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Introduction

In this thesis we are concerned with large deviation principle for the laws of
solutions of a family of stochastic differential equations.

The large deviation principle is a very important tool in probabilistic
research. It is used to investigate the behavior of a family of probability
laws µε, on a complete separable metric space (F, ρ), depending on a param-
eter ε, when the parameter tends to 0.

In general µε will converge weakly to a Dirac measure µ0 for ε→ 0. We
want to estimate the rate of convergence to 0 of the measure of Borel subsets
of F : if the large deviation principle is satisfied (if the family µε has the large
deviation property), the rate for a Borel subset is the infimum on the subset
of a given, lower semicontinuous, non-negative, function I, named the rate
functional.

The large deviation principle is used in many situations: from the behav-
ior of dynamical systems in a small noise environment for better understand-
ing of real systems in physics, to establishing the standard form of growing
crystals.

We give the definitions about the large deviation principle in Chapter 1,
where we also establish (Theorem 1.9) that a family of Gaussian measures
with covariance εQ, where Q is a given trace class operator, has the large
deviation property.

In this work we focus on some particular families of measures, those given
by solutions of stochastic differential equations on infinite dimensional spaces.

This matter was studied by many authors in various settings: Varad-
han [57] formulated the large deviation principle, and in the finite dimen-
sional case it was established by Frĕıdlin & Wentzell [35] and Azencott [3],
and studied, later, by Doss & Dozzi [28] and Tudor [56].

We remind some known results to give the background setting: in Chap-
ter 2, we are concerned with the following well-known family of linear prob-
lems, that have solution in the space of pathwise continuous and adapted
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processes from [0, T ] into a Hilbert space H:

uε(t) = x+

t∫
0

Auε(ϑ) dϑ+
√
εBW (t), x ∈ H, t ∈ [0, T ].

Here A : D (A) ⊂ H → H is an unbounded linear operator generating a
strongly continuous semigroup S on H, B : U → H is a bounded linear
operator, B maps a separable Hilbert space U in H, ker(B) = {0}, and W
is a U -cylindrical Wiener process defined in a stochastic basis (Ω,F ,Ft,P).

We prove that the laws of solutions are Gaussian measures and we give
an explicit formulation of the covariance operator. Therefore we establish
the large deviation property for the linear case. This property holds, with
the same rate functional, also in the case of a problem defined in a separable
Banach space E ⊂ H, densely and as Borel subset embedded in H.

In Section 2.4, we also extend these results allowing the base time interval
for the solutions to be infinite, as in the work from the author [31].

In Chapter 3 we show results for the following semilinear problem the
non-linear part G is of locally Lipschitz or dissipative type, both on the
space E and H.{

duε(t) = (Auε(t) +G(uε(t)))dt+
√
εBdW (t), ε > 0,

uε(0) = x.

We recall some results about existence and uniqueness of this problem in the
various setting, then we establish the large deviation principle for the laws of
solutions. Our method is based on the use of the contraction principle (see
Remark 1.5), to transport the large deviation principle for the linear problem
to the non linear, via an application Ψ, that we prove to be continuous.
Ψ goes from the space of solutions of the linear equation to the space of
solutions of the non linear one, and, given the uniqueness of solutions, it is
bijective. These results extend preceding works, giving an explicit formula
for the rate function and providing the large deviation principle for equations
with dissipative non-linear terms on H, see the author [29, 30]

The case of stochastic differential equations with additive perturbation
in a Banach subspace E of H is not a new subject and was studied also
by Smoleński et al. [54], by applying the contraction principle. There the
problem is solved assuming that the semilinear part G is Lipschitz in E.
Peszat [48] generalized this result still assuming that G is Lipschitz in E.
Chenal and Millet [16], proved a more general large deviation result assuming
E to be the space of α−Hölder continuous function on [0, 1], and that the non
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linear terms are Lipschitz and sublinear on E. The theory can be also applied
to systems of reaction-diffusion equations with additive noise considered in
Cerrai [13, 14, 15].

In Chapter 4, we arrive to the new part of this thesis concerning the
Volterra problems; the results presented in this chapter are mainly proved
in the papers from the author and Bonaccorsi [8, 7, 9], and here we give a
systematic exposition from the point of view of large deviations.

We are concerned about the following Volterra semilinear problem:

uε(t) = x+

t∫
0

a(t− ϑ)[Auε(ϑ) +G(uε(ϑ))] dϑ+
√
εBW (t),

where a : ]0,+∞[ → ]0,+∞[ is a continuous locally integrable kernel. This
problem is a generalization of the previous one (it is sufficient to consider
a ≡ 1), and arises from the analogous deterministic problem related to visco-
elasticity and population dynamics.

The linear version of this problem was first introduced in Clément &
Da Prato [19, 20] and further analyzed by Clément et al. [22]. The idea
developed in these papers is to extend the semigroup approach of Da Prato
& Zabczyk [26]. Rovira & Sanz-Solé [51, 52] affronted the problem when the
stochastic term is a Brownian sheet and the other terms are globally Lips-
chitz; they proved also a Large deviation property for the laws of solutions
of the problem.

In Subsection 2.5.1 we proved that the laws of solutions of the Volterra
linear problem are Gaussian and we give an explicit representation of the
covariance operator. Thus we establish the large deviation principle for those
laws.

The case of the non-linear equation is studied in the case of Lipschitz and
of dissipative semilinear part. Here are established existence and uniqueness
of the Volterra problems.

Then, as in the former chapter, we establish large deviation principle for
the Volterra problems, proving that the functional Ψ, from solution space of
the linear equation to the solution space of the non linear one, is continuous.

Finally, in Chapter 5, we give a short introduction to the problem of
the exit time from bounded domains of solution of differential stochastic
equations in the small noise asymptotics. There will not be results about the
Volterra case since its solutions has no longer the Markovian property, which
is the fundamental toll to obtain the results therein. We hope to give results
in this direction in future papers.
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Chapter 1

Large deviations

In this chapter we shall give an abstract formulation for a class of large
deviation problems. We will follow the exposition of Varadhan [58, Section 2].

Then we give a simple result in which the principle is satisfied: the Gaus-
sian case.

1.1 The large deviation principle

Let (F, ρ) be a complete separable metric space. We set for all Borel subsets
M of F and for all δ > 0

B(M, δ) =
⋃

x∈M

B(x, δ) =
⋃

x∈M

{y : ρ(x, y) < δ}.

Let {µε}ε>0 be a family of Borel probability measures on F ; typically, as
ε ↓ 0, µε weakly converges to a probability measure which is degenerate, i.e.,
has unit mass, at some point x0 in F . For several sets G, then, µε(G) → 0
as ε ↓ 0. In the examples we look at, µε(G) will tend exponentially rapidly
to zero as ε ↓ 0, with an exponential constant depending on the set G and
the relevant situation. We describe the situation in the following context.

Definition 1.1. We shall say that a function I : F → [0,+∞] is a rate
function if I is lower semi-continuous and if, for arbitrary r > 0, the level
set K(r) = {x ∈ F : I(x) ≤ r} is compact.

Definition 1.2. We say that {µε}ε>0 obeys the large deviation principle
or has the large deviation property with rate function I(·), if there exists a
function I(·) : F → [0,+∞], satisfying the Definition 1.1, such that for each
closed set Γ ⊂ F

lim sup
ε↓0

ε log µε(Γ) ≤ − inf
x∈Γ

I(x), (1.1.1)
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and for each open set G ⊂ F

lim inf
ε↓0

ε log µε(G) ≥ − inf
x∈G

I(x). (1.1.2)

It follows that I(x0) must be be zero and typically I(x) > 0 for x 6= x0.
We shall see several examples of this situation in the next chapters. One can
establish easily that if A is a Borel set such that

inf
x∈Å

I(x) = inf
x∈A

I(x) = inf
x∈Ā

I(x)†,

then
lim
ε↓0

ε log µε(A) = − inf
x∈A

I(x).

We give now the properties a rate function must fulfill:
There is an interesting consequence of this definition that we now state

and prove as a proposition

Proposition 1.3. Let µε satisfy the large deviation principle with a rate
function I(·). Then for any bounded continuous function G(x) on F

lim
ε↓0

ε log
[∫

F
e

G(x)
ε µε(dx)

]
= sup

x∈F
[G(x)− I(x)] (1.1.3)

Proof. Upper bound. Given ε > 0, there exists a finite number n of closed
sets Ci covering F such that the oscillation of G(·) on these sets is at most
δ > 0. Then we have∫

F
e

G(x)
ε µε(dx) ≤

∑n
i=1

∫
Ci
e

G(x)
ε µε(dx) ≤

∑n
i=1

∫
Ci
e

Gi+δ

ε µε(dx),

where Gi is minx∈Ci
{G(x)}. Therefore

lim sup
ε↓0

ε log
[∫

F
e

G(x)
ε µε(dx)

]
≤ sup

1≤i≤n
[Gi + δ − inf

x∈Ci

I(x)]

≤ sup
1≤i≤n

sup
x∈Ci

[G(x)− I(x)] + δ

= sup
x∈F

[G(x)− I(x)] + δ.

Since δ > 0 is arbitrary we have done.
Lower bound. Given δ > 0 there exists a point y ∈ F such that

G(y)−G(y) ≥ sup
x∈F

[G(x)− I(x)]− δ/2.

†Here Å and Ā are respectively the interior and the closure of the Borel set A.
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We can also find a neighborhood U of y such that

G(x) ≥ G(y)− δ/2 for x ∈ U.

Then we have

lim inf
ε↓0

ε log
[∫

F
e

G(x)
ε µε(dx)

]
≥ lim inf

ε↓0
ε log

[∫
U
e

G(x)
ε µε(dx)

]
≥ G(y)− δ/2− inf

x∈U
I(x) ≥ G(y)− I(y)− δ/2

≥ sup
x∈F

[G(x)− I(x)]− δ.

Since δ is arbitrary we have done

Sometimes is useful a slight variation of the above theorem, which we
state and prove as another proposition.

Proposition 1.4. Let µε satisfy the large deviation principle with a rate
function I(·). Let Gε(·) a family of non-negative functions such that for
some lower semi-continuous non negative function G(·) one has

lim inf
ε↓0

y→x

Gε(y) ≥ G(x) for all x ∈ F. (1.1.4)

Then

lim sup
ε↓0

ε log
[∫

F
e−

Gε(x)
ε µε(dx)

]
≤ − inf

x∈F
[G(x) + I(x)] (1.1.5)

Proof. Let l = infx∈F [G(x) + I(x)]. For any δ > 0 and x ∈ F there is a open
neighborhood Ux,δ of x such that

inf
y∈Ūx,δ

I(y) ≥ I(x)− δ, lim inf
ε↓0

inf
y∈Ūx,δ

Gε(y) ≥ G(x)− δ.

Therefore as ε ↓ 0 ∫
Ux,δ

e−
Gε(z)

ε µε(dz) ≤ e−
l−2δ

ε
+o( 1

ε).

We choose an r much greater than l. We have that K(r) is a compact
set, so there exist a finite number n(r) of Ux,δ that cover K(r); this number
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does not depend on ε. We call U the union of those n(r) sets. Since Gε ≥ 0,
we have ∫

F\U

e−
Gε(z)

ε µε(dz) ≤ µε(F \ U) ≤ e−
1
ε

infz∈F\U I(z)+o( 1
ε)

≤ e−
1
ε

infz∈F\K(r) I(z)+o( 1
ε)

≤ e−
r
ε
+o( 1

ε).

On the other hand, as ε ↓ 0∫
U

e−
Gε(z)

ε µε(dz) ≤ n(r)e−
l−2δ

ε
+o( 1

ε).

If we chose k large enough the term e−
k
ε is negligible compared to e−

l−2δ
ε for

ε ↓ 0. Since δ is arbitrary, the proof is complete.

Remark 1.5. Let {µε}ε>0 be a family of probability measures on a Polish
space F satisfying the large deviation principle with a rate function I(·). Let
Ψ be a continuous mapping from F to another Polish space F̂ . Then the
family of image measures {νε}ε>0 on F̂ defined by Ψ

νε = µε ◦Ψ−1

also satisfies the large deviation principle with rate function J(·) given by

J(y) = inf
x∈Ψ−1(y)

I(x). (1.1.6)

We will refer to this as the “contraction principle”.

The large deviation principle has some equivalent formulations that some-
times are easier to use compared to those in Definition 1.2.

Proposition 1.6. Let I : F → [0,+∞] be a rate function, then the following
statements are equivalent:

i. the family {µε}ε>0 satisfies the upper bound (1.1.1)

ii. ∀r > 0, ∀δ > 0, ∀γ > 0, ∃ε0 > 0 such that ∀ε ∈ ]0, ε0[

µε(B(K(r), δ)) ≥ 1− e−
1
ε
(r−γ). (1.1.7)
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Proof. I =⇒ II. Let r > 0, δ > 0, γ > 0, Γ = F \ B(K(r), δ), such that
infx∈Γ I(x) ≥ r. From (I) it follows that ∃ε0 > 0 such that, if ε ∈ ]0, ε0[, we
have ε log µε(Γ) < −r + γ, which implies (II).

II =⇒ I. Let us consider a closed set Γ of F . Let r0 = infx∈Γ I(x).
If r0 = 0 then (I) obviously hold, so we can assume r0 > 0. Let us choose
r ∈ ]0, r0[; then, K(r) and Γ are disjoint and there exists δ such that the sets
B(K(r), δ) and Γ are disjoint as well. So, we have that

µε(Γ) ≤ 1− µε(B(K(r), δ)).

Now from (II), given γ > 0, ∃ε0 > 0 such that for all ε ∈ ]0, ε0[

µε(Γ) ≤ e
1
ε
(r−γ).

It follows that
lim sup

ε↓0
ε log µε(Γ) ≤ −r + γ.

Since γ and r can be chosen arbitrary near to 0 and r0, (I) follows.

Proposition 1.7. Let I : F → [0,+∞] be a rate function. Then, the follow-
ing statements are equivalent:

i. the family {µε}ε>0 satisfies the lower bound (1.1.2);

ii. ∀x ∈ F , ∀δ > 0, ∀γ > 0, ∃ε0 > 0 such that ∀ε ∈]0, ε0[

µε(B(x, δ)) ≥ e−
1
ε
(I(x)+γ). (1.1.8)

Proof. I =⇒ II. Let x ∈ F , δ > 0, γ > 0, K = B(x, δ). From (I) it follows
that ∃ε0 > 0 such that, if ε ∈ ]0, ε0[, we have

ε logB(x, δ) ≥ − inf
y∈K

I(y)− γ ≥ −I(x)− γ,

and (II) follows.

II =⇒ I. Let us consider an open set G of F . Let us consider x ∈ G
and choose a δ > 0 such that B(x, δ) ⊂ G. Then, given γ > 0, ∃ε0 > 0 such
that ∀ε ∈ ]0, ε0[

µε(G) ≥ µε(B(x, δ)) ≥ e−
1
ε
(I(x)+γ).

Then we have that

lim inf
ε↓0

ε log µε(G) ≥ −(I(x) + γ) for all x ∈ G

Since γ can be chosen arbitrary small, (I) follows.

The inequalities (1.1.7) and (1.1.8) are often referred to as exponential
estimates of Frĕıdlin-Wentzell.
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1.2 Large deviation principle for a family of

Gaussian measures

Let E be a separable Banach space with norm ‖·‖E and µ a symmetric
Gaussian measure on E. We define Hµ to be the reproducing kernel of µ.
We remind the definition of reproducing kernel in the following definition:

Definition 1.8. Let µ be a symmetric Gaussian measure on separable Ba-
nach space E. A linear subspace Hµ, equipped with Hilbert norm |·|µ and
inner product 〈·, ·〉µ, is said to be a reproducing kernel space for µ if Hµ is
complete, continuously embedded in E, and such that, for arbitrary φ ∈ E∗,
the law of φ on R is a Gaussian measure

L (φ) = N (0, |φ|2µ),

where |φ|µ = sup‖h‖E≤1 |φ(h)| and N (a,A) denote a Gaussian measure on a
Hilbert space with mean a and covariance operator A.

The existence and uniqueness of such space in our case can be found e. g.
in Da Prato & Zabczyk [26, Theorem 2.7].

Given the measure µ we can define a family {µε}ε>0 of Gaussian measures,
accumulating near 0, by the formula

µε(Γ) = µ(
√
εΓ), (1.2.9)

for all Borel subset Γ of E, and ε > 0.
Then we are able to prove the following theorem

Theorem 1.9. Let the family {µε}ε>0 be defined by (1.2.9), then {µε}ε>0

satisfies the Frĕıdlin-Wentzell estimates with rate function

I(x) =

{
1
2
|x|2µ if x ∈ Hµ

+∞ otherwise.

This is a particular but significant case of Cramér’s Theorem, see for
instance Varadhan [58, Section 3].

Proof. As before we set K(r) = {x ∈ Hµ : 1
2
|x|2µ ≤ r}. We recall that

it is possible to find an orthonormal basis {ek}k∈N of Hµ such that, for an
arbitrary sequence {ξk}k∈N of independent normal random variables on a
probability triple (Ω,F ,P), the series

∑+∞
k=0 ξkek converges in E, P-a.s., to a

random variable X with L (X) = µ.
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We first establish the estimate in point (II) of Proposition 1.6. Let
r0 > 0, δ > 0, γ > 0, ε ∈ ]0, 1[ be fixed, and , for n ∈ N, let X be a random
variable such that L (X) = µ. We have

µε(E\B(K(r), δ)) = P
(√

εX /∈ B(K(r), δ)
)

= P
(
{
√
εX /∈ B(K(r), δ)} ∩ {

√
ε
∑n

k=0 ξkek /∈ K(r)}
)

+ P
(
{
√
εX /∈ B(K(r), δ)} ∩ {

√
ε
∑n

k=0 ξkek ∈ K(r)}
)

≤P
(√

ε
∑n

k=0 ξkek /∈ K(r)
)

+ P
(
‖
√
ε
∑∞

k=n+1 ξkek‖E ≥ δ
)

= P
(∑n

k=0 ξk
2 > 2r

ε

)
+ P

(
‖
∑∞

k=n+1 ξkek‖2
E ≥ δ2

ε

)
= P
(
exp (a

∑n
k=0 ξk

2) > exp (2a r
ε
)
)

+ P
(
exp (b‖

∑∞
k=n+1 ξkek‖2

E) ≥ exp (b δ2

ε
)
)

≤(1− 2a)−
n
2 exp (−2a r

ε
)

+ exp (−b δ2

ε
)E
[
exp(b‖

∑∞
k=n+1 ξkek‖2

E)
]

=I1 + I2.

We first choose b in such way that

e−
bδ2

ε ≤
(
e2 − 1

2e2

)
1

2
e−

1
ε
(r−γ), ∀r ∈ ]0, r0[, ∀ε > 0.

Then we choose n such that

E
[
exp (b‖

∑∞
k=n+1 ξkek‖2

E)
]
≤ e2

e2 − 1
;

this is possible since E
[
exp (b‖

∑∞
k=n+1 ξkek‖2

E)
]

is bounded for all n ∈ N and
because

∑∞
k=n+1 ξkek → 0 in probability for n→ +∞.

Finally we choose a ∈ ]]0, 1
2
[ such that (1− 2a)r0 <

1
2
γ. It is easy to see,

now, that for sufficiently small ε > 0 and for all r ∈ ]0, r0[

I1 ≤
1

2
e−

1
ε
(r−γ) and I2 ≤

1

2
e−

1
ε
(r−γ)

as required.

Now to establish the estimate in point (II) of Proposition 1.7, we shall
need a stronger version:

∀r0 > 0, ∀δ > 0, ∀γ > 0, ∃ε0 > 0 such that ∀ε ∈ ]0, ε0[, ∀x ∈ F such that
|x|2µ ≤ r0,

µε(B(x, δ)) ≥ e−
1
ε
( 1
2
|x|2µ+γ). (1.2.10)
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This estimate is a direct corollary of the following property of Gaussian
measures:

µ(B(h, r)) ≥ µ(B(0, r))e−
1
2
|h|2µ ,

for arbitrary r > 0 and h ∈ Hµ. This property can be proved using the
Cameron-Martin formula and symmetry of the Gaussian measure as follows:

µ(B(h, r)) =µ({x ∈ E | ‖x− h‖E ≤ r}) =

∫
‖x−h‖E≤r

µ(dx)

=

∫
‖x‖E≤r

e−〈x,h〉µ−
1
2
|h|2µ µ(dx) = e−

1
2
|h|2µ

∫
‖x‖E≤r

e−〈x,h〉µ µ(dx)

=
1

2
e−

1
2
|h|2µ

∫
‖x‖E≤r

e−〈x,h〉µ + e〈x,h〉µ µ(dx)

≥e−
1
2
|h|2µ

∫
‖x‖E≤r

µ(dx) = e−
1
2
|h|2µµ(B(0, r)),

that end the proof.

An interesting application of the Proposition 1.9 is the following. Let β(·)
be a real Brownian motion on [0, 1], then its law will be a Wiener measure µ
on C0([0, 1]).

Proposition 1.10. If we define µε = L (
√
εβ(·)), then µε will satisfy a large

deviation principle with rate functional

I(f) =


1

2

1∫
0

|f ′(ϑ)|2 dϑ
for f absolutely continuous with

a square integrable derivative

+∞ otherwise.

(1.2.11)

Here we give an alternative, more direct, proof that does not use the
general theorem for the Gaussian measures.

Proof. Lower bound. Given f ∈ C0([0, 1]) with I(f) < +∞ and a neighbor-
hood U of f , for any δ > 0 we can find a g ∈ U and a neighborhood V ⊂ U
of g, such that I(g) ≤ I(f) + δ, and g is twice continuously differentiable.
Then

µε(U) ≥ µε(V ),

and it is sufficient to show that

lim inf
ε↓0

ε log µε(V ) ≥ −I(g) ≥ −I(f)− δ.
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Let us denote with νε the measure corresponding to x − g, where x is
distributed according to µε. If we denote by G the translate V − g, then G
is a neighborhood of the zero function. By the definition of νε,

µε(V ) = νε(G) =

∫
G

dνε

dµε

dµε.

By the Cameron-Martin formula, νε is absolutely continuous with respect to
µε, and the Radon-Nikodým derivative dνε

dµε
is given by

dνε

dµε

= exp

−1

ε

1∫
0

g′(ϑ) dx(ϑ)− 1

2ε

1∫
0

g′(ϑ)2 dϑ


= exp

1

ε

1∫
0

x(ϑ)g′′(ϑ) dϑ− 1

ε
g′(1)x(1)− 1

ε
I(g)

.
For r > 0 sufficiently small we have that B(0, r) ⊂ G, then we have

µε(V ) ≥ νε(G) ≥ νε(B(0, r)) =

∫
B(0,r)

dνε

dµε

dµε

≥ µε(B(0, r)) inf
x∈B(0,r)

dνε

dµε

(x) ≥ µε(B(0, r)) exp

[
−1

ε
I(g)− 1

ε
r‖g′′‖C([0,1])

]
.

Since µε(B(0, r)) → 1 for ε ↓ 0 for any r > 0, we have

lim inf
ε↓0

ε log µε(V ) ≥ −I(g)− r‖g′′‖C([0,1]).

But since g is twice differentiable, we have that ‖g′′‖C([0,1]) is finite, and
letting r → 0 we obtain our lower bound.

Upper bound. Let Γ be any closed set in C0[0, 1]. Choose δ > 0 then
if π is any map from C0[0, 1] into itself, we have

µε(Γ) ≤ µε(f | πf ∈ B(Γ, δ)) + µε(f | ‖πf − f‖C0([0,1]) ≥ δ).

Take π = πn, the polygonalisation of any function x in C0[0, 1] with step size
1
n
. Then

µε(f | πnf ∈ B(Γ, δ)) ≤ µε(I(πnf) ≥ lδ),
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where lδ = inff∈B(Γ,δ) I(f). I(πnf) is a finite random variable under µε and
2
ε
I(πnf) has a χ2 distribution with n degrees of freedom. Therefore

µε(I(πnf) ≥ lδ) =
1

Γ
(

n
2

) ∞∫
lδ

e−
y
ε

(y
ε

)n
2
−1

d
y

ε

≤ exp

[
− lδ
ε

+ o

(
1

ε

)]
as ε ↓ 0.

It follows that lim supε↓0 ε log µε(I(πnf) ≥ lδ) ≤ −lδ.
On the other hand,

µε(f | ‖πf − f‖C0([0,1]) ≥ δ) ≤nµε

(
sup

0≤t≤1/n

|x(t)− x(0)| ≥ δ

2

)

≤2nµ1

(
sup

0≤t≤1/n

|x(t)− x(0)| ≥ nδ

2
√
ε

)

=4n
1√
2π

∞∫
nδ
2
√

ε

e−
1
2
y2

dy

= exp

[
−nδ

8ε
+ o

(
1

ε

)]
as ε ↓ 0.

It follows that lim supε↓0 ε log µε(f | ‖πf − f‖C0([0,1]) ≥ δ) ≤ −nδ
8

.
Combining the above calculations we obtain

lim sup
ε↓0

ε log µε(Γ) ≤ min

[
lδ,
nδ

8

]
= lδ for n→∞.

For any closed set Γ its easy to verify that

lim
δ↓0

lδ = inf
f∈Γ

I(f).

We now let δ ↓ 0 and we have the upper bound.
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Chapter 2

Large deviation for the
stochastic convolution

2.1 The linear stochastic equation

Let H and U be separable Hilbert spaces, and {ek}k∈N and {fh}k∈N complete
orthonormal systems in H and in U respectively. We are concerned with the
following family of linear stochastic equations in H of the form

uε(t) = x+

t∫
0

Auε(ϑ) dϑ+
√
εBW (t), x ∈ H, t ∈ [0, T ], (2.1.1)

where A : D (A) ⊂ H → H is a self-adjoint (generally unbounded) op-
erator in H, negative definite; B : U → H is a bounded linear operator,
withker(B) = {0}; W is a U -cylindrical Wiener process defined in a stochas-
tic basis (Ω,F ,Ft,P); ε is a positive number. We assume the following:

Hypothesis 2.1. The operator A is diagonal in the basis {ek}k∈N:

Aek = −µkek, µk ≥ ω ∈ R.

Definition 2.2. We define S(·) as the semi-group generated by A:

S(t) = etA, t ≥ 0.

We define a mild solution to (2.1.1) to be a mean square continuous
stochastic process u(t), t ∈ [0, T ], such that

uε(t) = S(t)x+
√
εWS(t), (2.1.2)
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where WS(t), called the stochastic convolution. It is defined by:

WS(t) =

t∫
0

S(t− ϑ)B dW (ϑ).

Definition 2.3. Let L2 = L2(U,H) be the space of Hilbert-Schmidt opera-
tors from U into H, equipped with the norm

‖Ψ‖2
L2 =

+∞∑
h,k=0

|〈Ψfh, ek〉|2.

Then, in order to prove that the stochastic convolution process is well
defined, we impose the following condition.

Hypothesis 2.4. We require

T∫
0

‖S(ϑ)B‖2
L2

dϑ < +∞.

We know, see Da Prato & Zabczyk [26, Theorem 5.4], that if Hypothe-
ses 2.1 and 2.4 hold, there exists a unique mild solution of (2.1.1) on [0, T ].

In this chapter we shall discuss large deviations for the laws of the family
of solutions uε.

2.2 Stochastic convolution as random vari-

able

Let us consider the stochastic convolution process WS(·). Assume that W (t)
has the form

W (t) =
+∞∑
h=0

fhβh(t), t ≥ 0,

where {βh(t)}h∈N is a family of real standard independent Brownian motions.

Proposition 2.5. Let us assume that Hypotheses 2.1 and 2.4 hold; then, for
any t ≥ 0, WS(t) is a Gaussian random variable on U , with zero mean and
covariance operator

Q =

t∫
0

S(ϑ)BB∗S∗(ϑ) dϑ.

17



Proof. We may write

WS(t) =

t∫
0

S(t− r)B dW (r) =
+∞∑
h=0

t∫
0

S(t− r)Bfh dβh(r);

it follows that

E
[
|WS(t)|2

]
=

+∞∑
k=0

t∫
0

|S(t− r)Bfh|2 dr =

t∫
0

‖S(ϑ)B‖2
L2

dϑ < +∞.

Set

W n
S (t) =

n∑
h=0

t∫
0

S(t− r)Bfh dβh(r);

then W n
S (t) is a centered Gaussian random variable on H, and the limit for

n going to infinity converges to WS(t). Hence, WS(t) is a centered Gaussian
random variable.

Finally, the covariance operator Q is defined by

〈Qx, y〉 = E [〈WS(t), x〉 〈WS(t), y〉]

= E

+∞∑
h=0

t∫
0

〈S(t− r)Bfh, x〉 dβh(r)

t∫
0

〈S(t− r)Bfh, y〉 dβh(r)


=

+∞∑
h=0

t∫
0

〈S(t− r)Bfh, x〉 〈S(t− r)Bfh, y〉 dr

=

t∫
0

〈S(t− r)BB∗S∗(t− r)x, y〉 dr

as required.

Now we consider the stochastic convolution as a random variable on the
space L2(0, T ;H). In the next theorem we shall show that WS(·) is a centered
Gaussian random variable, and we shall give an explicit formulation for the
covariance operator.

Theorem 2.6. Let us assume that Hypotheses 2.1 and 2.4 hold. Then the
law µ of the stochastic convolution WS(·) is a symmetric Gaussian measure
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on H = L2(0, T ;H) with covariance operator

Qϕ(t) =

T∫
0

g(t, ϑ)ϕ(ϑ) dϑ,

where

g(t, ϑ) =

t∧s∫
0

S(t− r)BB∗S∗(t− r) dr.

Proof. First of all, we prove that the trajectories of stochastic convolution
belong to H a.s. For a measurable version of stochastic convolution we have,
by the Fubini Theorem,

E
[
‖WS(·)‖2

H
]

=

T∫
0

E
[
|WS(ϑ)|2H

]
dϑ =

T∫
0

ϑ∫
0

‖S(σ)B‖2
L2

dσ dϑ < +∞,

so WS(·) takes values in H.
We must check that L (WS(·)) is Gaussian. We recall the following result,

see for instance Da Prato & Zabczyk [26, Proposition 2.9]

Proposition 2.7. Let µ be a measure on a separable Banach space E and
F a linear subspace of E∗ separating points† in E and generating the Borel
σ-field of E. Then, if every ϕ ∈ F has symmetric Gaussian law then µ is
symmetric Gaussian.

Now let us consider the following family F of functionals (h⊗ a) ∈ H∗;
h : [0, T ] → R, a ∈ H,

(h⊗ a)(ϕ) =

T∫
0

h(ϑ) 〈a, ϕ(ϑ)〉H dϑ, ϕ ∈ H.

Since

(h⊗ a)(WS(·)) =

T∫
0

h(ϑ) 〈a,WS(ϑ)〉H dϑ,

and 〈a,WS(·)〉H is a real Gaussian process, mean square continuous, with
mean 0, by Proposition 2.7 we have that L (WS(·)) is symmetric Gaussian
distribution N (0,Q) on H.

†We mean a linear subspace of E∗ such that for each point x of E there exist at least
two points y1, y2 in the subspace such that y1(x) 6= y2(x).
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We want to give a representation formula for Q, in order to have an
explicit description of Q− 1

2 , which shall be necessary for the definition of the
rate functional I(·).

Given two functions ϕ, ψ in H, we have

〈Qϕ, ψ〉H =E [〈ϕ,WS(·)〉H 〈ψ,WS(·)〉H]

=E

 T∫
0

〈ϕ(ϑ),WS(ϑ)〉 dϑ

T∫
0

〈ψ(t),WS(t)〉 dt


=

T∫
0

T∫
0

E [〈ϕ(ϑ),WS(ϑ)〉 〈ψ(t),WS(t)〉] dt dϑ. (2.2.3)

Since for t > ϑ

E[〈ϕ(ϑ),WS(ϑ)〉 〈ψ(t),WS(t)〉]
=E [E [〈ϕ(ϑ),WS(ϑ)〉 〈ψ(t),WS(t)〉| Fϑ]]

=E [〈ϕ(ϑ),WS(ϑ)〉 E [〈ψ(t),WS(t)〉| Fϑ]]

=E [〈ϕ(ϑ),WS(ϑ)〉 〈ψ(t),E [WS(t)| Fϑ]〉] ,

and by independence from the past

E [WS(t)| Fϑ] = E

 ϑ∫
0

S(t− σ)B dW (σ) +

t∫
ϑ

S(t− σ)B dW (σ)

∣∣∣∣∣Fϑ


=

ϑ∫
0

S(t− σ)B dW (σ),

we have

E[〈ϕ(ϑ),WS(ϑ)〉 〈ψ(t),WS(t)〉]
=E [〈ϕ(ϑ),WS(ϑ)〉 〈ψ(t),E [WS(t)| Fϑ]〉]

=
〈[∫ ϑ∧t

0
S(t− σ)BB∗S∗(ϑ− σ) dσ

]
ϕ(ϑ), ψ(t)

〉
.

If we define

g(t, ϑ) =

ϑ∧t∫
0

S(t− σ)BB∗S∗(ϑ− σ) dσ,
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(2.2.3) becomes

〈Qϕ, ψ〉H =

T∫
0

T∫
0

〈g(t, ϑ)ϕ(ϑ), ψ(t)〉 dϑ dt

=

T∫
0

〈∫ T

0
g(t, ϑ)ϕ(ϑ) dϑ, ψ(t)

〉
dt,

that is

Qϕ(t) =

T∫
0

g(t, ϑ)ϕ(ϑ) dϑ.

Remark 2.8. We see that the relation

Q = LL∗,

is satisfied with L defined in the following way:

Lψ(t) =

t∫
0

S(t− ϑ)Bψ(ϑ) dϑ, ψ(·) : [0, T ] → U, (2.2.4)

and consequently

L∗ϕ(t) =

T∫
t

B∗S∗(ϑ− t)ϕ(ϑ) dϑ, ϕ(·) : [0, T ] → H, (2.2.5)

with ϕ, ψ square integrable functions.

We have then the following corollary, see Da Prato & Zabczyk [26, Corol-
lary B.5]:

Corollary 2.9. Let Q the covariance operator of the stochastic convolution
WS(·). If we define L as in (2.2.4) we have

Im(Q
1
2 ) = Im(L)

and

‖Q− 1
2ϕ‖ =‖L−1ϕ‖ for all ϕ ∈ Im(L).

21



2.3 Large deviations for the stochastic con-

volution

For any ε > 0, we consider the laws of the processes
√
εWS(·) on the space

H.

Theorem 2.10. Suppose that Hypotheses 2.1 and 2.4 hold, and let µ be the
law of the stochastic convolution process WS(·). Then, the family of laws
{µε}ε>0

µε = L
(√

εWS(·)
)

satisfies a large deviation principle with respect to the rate functional I(·)
given by

I(u) =


1

2

T∫
0

∣∣B−1[u′(ϑ)− Au(ϑ)]
∣∣2
U

dϑ for u ∈ Im(L)

+∞ otherwise.

Proof. We proved in Theorem 2.6 that the process WS(·) has a Gaussian law
on the space H, so from Theorem 1.9, the family µε satisfy a large deviation
principle with rate functional

I(u) =


1

2

T∫
0

|Q− 1
2u(ϑ)|2 dϑ u ∈ Im(Q− 1

2 )

+∞ otherwise.

To obtain an explicit formula for the rate I(·), we recall the Corollary 2.9,
so it is sufficient to find an explicit formula for the inverse of the operator L
introduced in (2.2.4).

Given z ∈ H, we set u = Qz = LL∗z. Then we have

u(t) =

t∫
0

g(t, ϑ)z(ϑ) dϑ+

T∫
t

g(t, ϑ)z(ϑ) dϑ. (2.3.6)
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Differentiating the previous identity in t, we have:

u′(t) =g(t, t)z(t) +

t∫
0

A ϑ∫
0

S(t− σ)BB∗S∗(ϑ− σ) dσ

 z(ϑ) dϑ

− g(t, t)z(t) +

T∫
t

A ϑ∫
0

S(t− σ)BB∗S∗(ϑ− σ) dσ

 z(ϑ) dϑ

+

T∫
t

BB∗S∗(ϑ− t)z(ϑ) dϑ.

Therefore, from (2.3.6) we have

u′(t) = Au(t) +

T∫
t

BB∗S∗(ϑ− t)z(ϑ) dϑ.

Hence the following expression is meaningful

B−1 [u′(t)− Au(t)] =

T∫
t

B∗S∗(ϑ− t)z(ϑ) dϑ.

Recalling (2.2.5), we see that

B−1 [u′(t)− Au(t)] = L∗z(t).

Since by definition L−1u = L∗z, we have the following expression for the rate
functional:

I(u) =


1

2

T∫
0

∣∣B−1[u′(ϑ)− Au(ϑ)]
∣∣2
U

dϑ for u ∈ Im(L)

+∞ otherwise.

Remark 2.11. The rate functional can be defined in another way. Assume
that z ∈ L2(0, T ;U) and consider the following integral control system

uz(t) =

t∫
0

Auz(ϑ) dϑ+

t∫
0

Bz(ϑ) dϑ, t ∈ [0, T ],
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which is solved by

uz(t) =

t∫
0

S(t− ϑ)Bz(ϑ) dϑ.

It follows that the rate functional can be expressed in terms of z:

I(u) = inf

1

2

T∫
0

|z(ϑ)|2U dϑ

∣∣∣∣ uz = u


This formulation has the following interpretation: I(·) can be viewed as the
minimal “energy”, given by the forcing term z, to allow the system to remain
in u.

2.4 Stochastic convolution on infinite time

In this section we will assume:

Hypothesis 2.12.
+∞∫
0

‖S(ϑ)B‖L2
dϑ < +∞.

This hypothesis implies that the parameter ω in Hypotheses 2.1 is posi-
tive, i.e. A is strictly monotone.

As before, we know, see Da Prato and Zabczyk [26, Theorem 5.4], that if
Hypotheses 2.1 and 2.12 hold, there exists a unique mild solution of (2.1.1)
for all T and then on [0,+∞[.

We want to prove the following

Theorem 2.13. Suppose that Hypotheses 2.1 and 2.12 hold. Given a func-
tion ρ ∈ C([0,+∞[; ]0,+∞[) ∩ L1(0,+∞), the stochastic convolution WS(·)
is a centered Gaussian random variable on H∞ = L2([0,+∞), ρ;H), where
H∞ is the Hilbert space of measurable functions from (0,+∞) to H endowed
with the following weighted scalar product

〈ϕ, ψ〉H∞ =

+∞∫
0

〈ϕ(ϑ), ψ(ϑ)〉 ρ(ϑ) dϑ.
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Proof. As in Theorem 2.6, we prove that the trajectories of a stochastic
convolution belongs to H∞ a.s.. For a measurable version of stochastic con-
volution we have, by the Fubini Theorem,

E
[
‖WS(·)‖2

H∞

]
=

+∞∫
0

E
[
|WS(ϑ)|2H

]
ρ(ϑ) dϑ

=

+∞∫
0

ϑ∫
0

‖S(σ)BB∗S∗(σ)‖L2
dσ ρ(ϑ) dϑ ≤

+∞∫
0

Mρ(ϑ) dϑ < +∞,

so WS(·) takes values in H∞.
It easy to see as in Theorem 2.6 that L (WS(·)) is Gaussian.
To explicit the covariance operator Q∞ we take ϕ, ψ ∈ H∞. Then, we

follow the same calculation of the Theorem 2.6, so we have:

〈Q∞ϕ, ψ〉H∞ =E
[
〈ϕ,WS〉H∞ 〈ψ,WS〉H∞

]
=

+∞∫
0

+∞∫
0

E [〈ϕ(ϑ),WS(ϑ)〉H 〈ψ(σ),WS(σ)〉H ] ρ(σ) dσ ρ(ϑ) dϑ

Since for ϑ > σ

E [〈ϕ(ϑ),WS(ϑ)〉H 〈ψ(σ),WS(σ)〉H ]

=
〈[∫ σ

0
S(σ)BB∗S∗(σ) dσ

]
S∗(ϑ− σ)ϕ(ϑ), ψ(σ)

〉
H
,

defining again

g(t, ϑ) =

t∧ϑ∫
0

S(t− σ)BB∗S∗(ϑ− σ) dσ.

we obtain

〈Q∞ϕ, ψ〉H∞ =

+∞∫
0

+∞∫
0

〈g(σ, ϑ)ϕ(ϑ), ψ(σ)〉H ρ(ϑ) dϑ ρ(σ) dσ

=

+∞∫
0

〈∫ +∞
0

g(σ, ϑ)ϕ(ϑ) ρ(ϑ) dϑ, ψ(σ)
〉
H
ρ(σ) dσ.
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Then we have that WS(·) is a symmetric Gaussian random variable on H∞
with covariance operator Q∞, where Q∞ : H∞ → H∞ is defined by

Q∞h(t) =

+∞∫
0

g(t, ϑ)h(ϑ) ρ(ϑ) dϑ, for t ∈ [0,+∞[.

If we denote with U∞ the Hilbert space of measurable functions from
[0,+∞[ to U endowed with the standard scalar product

〈f, g〉U∞ =

+∞∫
0

〈f(ϑ), g(ϑ)〉U dϑ,

then, as before, we see that is satisfied the relation

Q∞ = LL∗,

with L : U∞ → H∞ defined as

Lψ(t) =

t∫
0

S(t− ϑ)Bψ(ϑ) dϑ, ψ(·) :[0,+∞[→ U, (2.4.7)

with ψ square integrable function. Consequently, by the chosen scalar prod-
ucts on H∞ and U∞, we have

L∗ϕ(t) =

∞∫
t

B∗S∗(ϑ− t)ϕ(ϑ) ρ(ϑ) dϑ, ϕ(·) :[0,+∞[→ H, (2.4.8)

with ϕ square integrable too.

Remark 2.14. We point out that the standard (not weighted) scalar product
on U∞ is the unique one that allows such a decomposition of Q∞.

2.4.1 Large deviation in infinite time

For any ε > 0, we consider the family of measures {µε}ε>0 defined by

µε = L
(√

εWS(·)
)

on the space H∞.
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Theorem 2.15. Suppose that Hypotheses 2.1 and 2.12 hold. Then the family
µε satisfies a large deviation principle with respect to the rate functional I(·)
given by

I(u) =


1

2

+∞∫
0

∣∣B−1[u′(ϑ)− Au(ϑ)]
∣∣2
U

dϑ for u ∈ Im(L)

+∞ otherwise.

Proof. We proved in Theorem 2.13 that the Gaussian process WS(·) has a
Gaussian law µ on the space H∞, so we have automatically that a large
deviation principle is fulfilled, with the following rate functional:

I(u) =

{
1
2
‖Q− 1

2∞ u‖2
H∞ , u ∈ Im

(
Q

1
2∞

)
,

+∞ otherwise.

As in Theorem 2.10 we can give a more explicit formulation for the rate
functional I(·).

Given z ∈ H∞, we set u = Q∞z = LL∗z. Then we have

u(t) =

t∫
0

g(t, ϑ)z(ϑ) ρ(ϑ) dϑ+

+∞∫
t

g(t, ϑ)z(ϑ) ρ(ϑ) dϑ.

Differentiating in t we have:

u′(t) =g(t, t)z(t)ρ(t) +

t∫
0

A ϑ∫
0

S(t− σ)BB∗S∗(ϑ− σ) dσ

 z(ϑ) ρ(ϑ) dϑ

− g(t, t)z(t)ρ(t) +

+∞∫
t

A ϑ∫
0

S(t− σ)BB∗S∗(ϑ− σ) dσ

 z(ϑ) ρ(ϑ) dϑ

+

+∞∫
t

BB∗S∗(ϑ− t)z(ϑ) ρ(ϑ) dϑ,

thus we obtain

u′(t) = Au(t) +

+∞∫
t

BB∗S∗(ϑ− t)z(ϑ) ρ(ϑ) dϑ.
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Hence the following expression is meaningful

B−1 [u′(t)− Au(t)] =

+∞∫
t

B∗S∗(ϑ− t)z(ϑ) ρ(ϑ) dϑ,

Recalling (2.4.8) we see that

B−1 [u′(t)− Au(t)] = L∗z(t).

since, by definition L∗z = L−1u, we have, in accordance with the scalar
product on U∞, that

‖L−1u‖2
U∞ =

+∞∫
0

∣∣B−1[u′(ϑ)− Au(ϑ)]
∣∣2
U

dϑ;

Then the expression for the rate functional, that does not depend on the
weight ρ, follows:

I(u) =


1

2

+∞∫
0

∣∣B−1[u′(ϑ)− Au(ϑ)]
∣∣2
U

dϑ for u ∈ Im(L)

+∞ otherwise.

2.5 The linear Volterra equation

There is another interesting extension of problem (2.1.1), which involves the
use of convolution kernels as in the following problem.

uε(t) = x+

t∫
0

a(t− ϑ)Auε(ϑ) dϑ+
√
εBW (t), x ∈ H, t ∈ [0, T ], (2.5.9)

where, as in section 2.1, A : D (A) ⊂ H → H is a self-adjoint (generally
unbounded) operator in H, negative definite, that satisfies Hypothesis 2.1;
B : U → H is a bounded linear operator, with ker(B) = {0}; W is a U -
cylindrical Wiener process defined in a stochastic basis (Ω,F ,Ft,P); ε is a
positive number; moreover we impose the following:

Hypothesis 2.16. The kernel a : ]0, T ] → ]0,+∞[ satisfies:

a(t) ∈ C(]0, T ]) ∩ L1
loc(0, T ).
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That this problem is a generalization of (2.1.1) is straightforward posing
a ≡ 1.

This problem is the stochastic version of the following Volterra problem

u(t) = x+

t∫
0

a(t− ϑ)Au(ϑ) dϑ x ∈ H, t ∈ [0, T ]. (2.5.10)

The solution to this problem can be given as follows

u(t, x) = S(t)x,

where the resolvent {S(t)}t>0 is a family of bounded linear operators:

Definition 2.17. A family {S(t), t ∈ [0, T ]} of bounded linear operators in
a Banach space X is called a resolvent of (2.5.10) if the following conditions
are satisfied:

i. S(t) is strongly continuous on [0, T ] and S(0) = I;

ii. S(t) commutes with A;

iii. the resolvent equation holds:

S(t)x = x+

t∫
0

a(t− ϑ)AS(ϑ)x dϑ, (2.5.11)

for all x ∈ D (A), t ∈ [0, T ].

Notice that the Volterra equation (2.5.10) has a unique solution if and
only if it admits a resolvent. Moreover it worts mention that here we restrict
ourselves to consider solutions on a finite interval [0, T ] while normally it
is aasumed that time goes throught all R+, see Prüss [50] for an exaustive
reference on Volterra equations.

Hypothesis 2.18. The Volterra equation (2.5.10) admits an unique solution,
and we denote by S(t), t ∈ [0, T ], the associated resolvent.

It is possible to show, in view of Hypothesys 2.1, that the resolvent is
diagonal in the basis {ek}k∈N of H. We introduce now the solution sα(·),
α ∈ R, of the scalar integral equation

sα(t) + α

t∫
0

a(t− ϑ)sα(ϑ) dϑ = 1, t ∈ [0, T ]. (2.5.12)
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Let −µk be an eigenvalue of A with eigenvector ek. Then,

S(t)ek = sµk
(t)ek, t ∈ [0, T ].

We now consider the stochastic convolution process WS(t):

WS(t) =

T∫
0

S(t− ϑ)B dW (ϑ). (2.5.13)

where, as in the standard case, we assume that the process W (t) has the
form

W (t) =
+∞∑
h=0

fhβh(t), t ∈ [0, T ],

where {fh}h∈N is an orthonormal system in U and {βh(t)}h∈N is a family of
real standard independent Brownian motions.

Then the stochastic convolution WS(·) is well defined for all t ∈ [0, T ], if
the following hypothesis holds

Hypothesis 2.19. We require

T∫
0

‖S(ϑ)B‖2
L2

dϑ < +∞.

Theorem 2.20. Under Hypotheses 2.1, 2.16, 2.18 and 2.19, for any t ≥
0, WS(t) is a real, Gaussian random variable, with mean 0 and covariance
operator

Q =

t∫
0

S(ϑ)BB∗S∗(ϑ) dϑ.

Proof. We may write

WS(t) =

t∫
0

S(t− ϑ)B dW (ϑ) =
+∞∑
h=0

t∫
0

S(t− ϑ)Bfh dβh(ϑ);

it follows that

E [WS(t)]2 =
+∞∑
h=0

t∫
0

|S(t− ϑ)Bfh|2 dϑ =

t∫
0

‖S(ϑ)B‖2
L2

dϑ < +∞.
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Set

W n
S (t) =

n∑
h=0

t∫
0

S(t− ϑ)Bfh dβh(ϑ);

then W n
S (t) is a centered Gaussian random variable on H, and the limit for

n → +∞ converges to WS(t). Hence, WS(t) is a centered Gaussian random
variable.

Finally, the covariance operator Q is defined by

〈Qx, y〉 = E [〈WS(t), x〉 〈WS(t), y〉]

=

t∫
0

〈S(t− ϑ)BB∗S∗(t− ϑ)x, y〉 dϑ,

as required.

As in the standard case (a ≡ 1) we can show that the stochastic convo-
lution is a Gaussian process although it is not Markovian anymore.

Theorem 2.21. Suppose that Hypotheses 2.1, 2.16, 2.18 and 2.19 hold, then
the law µ of the stochastic convolution WS(·) is a symmetric Gaussian mea-
sure on H = L2(0, T ;H) with covariance operator

Qϕ(t) =

T∫
0

g(t, ϑ)ϕ(ϑ) dϑ,

where

g(t, ϑ) =

t∧ϑ∫
0

S(t− r)BB∗S∗(ϑ− r) dr.

We omit the proof of this theorem since it is exactly the same proof as in
Theorem 2.6. We point out that, in the proof of Theorem 2.6, we don’t need
to suppose the stochastic convolution to be Markovian.

As in the standard case, we see that is satisfied the relation

Q = LL∗,

with L defined:

Lψ(t) =

t∫
0

S(t− ϑ)Bψ(ϑ) dϑ, ψ(·) : [0, T ] → U (2.5.14)
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and consequently

L∗ϕ(t) =

T∫
t

B∗S∗(ϑ− t)ϕ(ϑ) dϑ, ϕ(·) : [0, T ] → H, (2.5.15)

with ψ, ϕ square integrable functions.

2.5.1 Large deviation for the stochastic convolution in
the Volterra case

For any ε > 0, we shall consider the laws of the processes
√
εWS(·) on the

space L2(0, T ;H).
We will use a stronger assumption on the kernel a:

Hypothesis 2.22. The kernel a : [0, T ] → ]0,+∞[ satisfies:

a(t) ∈ C([0, T ]) ∩W 1,1(0, T ).

Theorem 2.23. Suppose that Hypotheses 2.1, 2.18, 2.22 and 2.19 hold.
Then the family µε satisfies a large deviation principle with respect to the
rate functional I(·) given by

I(u) =


1

2

T∫
0

∣∣B−1[u′(ϑ)− a(0)Au(ϑ)

−(a′ ∗ Au(·))(ϑ)]
∣∣2
U

dϑ for u ∈ Im (L) ,

+∞ otherwise.

Here (a ∗ b)(t) stands for
∫ t

0
a(t− ϑ)b(ϑ) dϑ.

Proof. From Theorem 2.21 it follows that the family µε satisfy a large devi-
ation principle with rate functional

I(u) =


1

2

T∫
0

|L−1(u)(ϑ)|2U dϑ u ∈ Im (L)

+∞ otherwise.

We give now an explicit formulation for the operator L−1 introduced
above. Let u = L(z), with z ∈ L2(0, T ;U); then we have:

u(t) = (S ∗Bz(·))(t).
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From the resolvent equation

S(t)− (a ∗ AS(·))(t) = I,

we have

(a ∗ Au)(t) = (a ∗ AS ∗Bz)(t) = −(I ∗Bz(·))(t) + (S ∗Bz(·))(t)
= −(I ∗Bz(·))(t) + u(t).

Differentiating, we have

Bz(t) = u′(t)− d

dt
(a ∗ Au)(t),

thus

z(t) = L−1u(t) =B−1[u′(t)− d

dt
(a ∗ Au)(t)] (2.5.16)

=B−1[u′(t)− a(0)Au(t)− (a′ ∗ Au)(t)].

This is sufficient to obtain the explicit formula of the rate functional I(·).

Remark 2.24. As before we can write another definition of the rate functional.
Assume that z ∈ L2(0, T ;U) and consider the following integral control sys-
tem

uz(t) =

t∫
0

a(t− ϑ)Auz(ϑ) dϑ+

t∫
0

Bz(ϑ) dϑ, t ∈ [0, T ],

which is solved by

uz(t) =

t∫
0

S(t− ϑ)Bz(ϑ) dϑ.

It follows that the rate functional can be expressed in terms of z:

I(u) = inf

1

2

T∫
0

|z(ϑ)|2U dϑ

∣∣∣∣ uz = u

 (2.5.17)

Again this formulation has the following interpretation: I(·) can be viewed
as the minimal “energy”, given by the forcing term z, to allow the system to
remain in u.
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Remark 2.25. The rate functional defined in (2.23) coincides with the Onsa-
ger-Machlup functional for equation (2.5.9), compare Bonaccorsi [5, Theorem
1].

Let us recall that the Onsager-Machlup functional, for a diffusion X,
answers the following question: given two smooth curves arising from the
same point, which one is more probable for the evolution of the system? In
the finite dimensional case, the problem has been analyzed by many authors,
starting from the work of Onsager & Machlup [47], see for instance the book
of Ikeda & Watanabe [39] and the bibliography therein.

In the infinite dimensional case, it was proposed in Bardina et al. [4] to
consider the limiting behavior of ratios of the form

γε(ϕ) =
Pr(‖X(·)− ϕ(·)‖L2(0,T ;H) ≤ ε)

Pr(‖WS(·)‖L2(0,T ;H) ≤ ε)

when ε → 0: if the limit limε→0 γε(ϕ) = exp(J0(ϕ)) exists for all ϕ in a
suitable class of deterministic function, then the functional J0 is called the
Onsager-Machlup functional associated to the diffusion X.

In Bonaccorsi [5] the Onsager-Machlup functional is defined similarly;
then, it is proved that the limit exists for all functions ϕ = uz, when z ∈
L2(0, T ;U), and it coincides with the functional I(·) defined in (2.5.17).

2.6 Stochastic convolution on Banach space

In this section we denote with E ⊂ H a separable Banach space, densely
embedded in H as Borel subset. Moreover, E will be equipped with the
norm ‖·‖E.

We assume that Hypotheses 2.1 and 2.4 hold.
We are interested in studying the following problem on the space E:{

duε(t) = Auε(t)dt+
√
εBdW (t), ε > 0,

uε(0) = x ∈ E.
(2.6.18)

We shall denote by AE the part of A in E ‡.
We will assume:

Hypothesis 2.26. AE generates a strongly continuous semigroup of oper-
ators SE(·) on E, and there exists ω ∈ R such that ‖SE(t)‖E ≤ eωt for all
t ∈ [0, T ],

‡Given a subspace E ⊂ H and an operator S : H → H, we define by SE(·) the part of
S(·) in E as the operator S(·) restricted to the subset {x ∈ D (S(·)) ∩ E : S(·)x ∈ E}.
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Hypothesis 2.27. WS has an E-continuous version WSE
.

By a mild solution of (2.6.18) we mean a mean square continuous stochas-
tic process uε(t, x) ∈ C([0, T ];E), such that:

uε(t) = SE(t)x+
√
εWSE

(t).

2.6.1 Large deviation for the stochastic convolution on
the Banach space E

We want, here, to show that the laws µε = (L (uε))ε>0 of uε fulfill a large
deviation principle with respect to a suitable functional I(·) (the following
result is known see Peszat [48]).

Theorem 2.28. Let us assume that Hypotheses 2.1, 2.4, 2.26 and 2.27
hold. Then {µε}ε>0 fulfills a large deviation principle with respect to the
functional I(·), defined as follows:

I(u) =

{
1
2

∫ T

0
|B−1(u′(ϑ)− AEu(ϑ))|2U dϑ, u ∈ Im(LE),

+∞ otherwise,

where LE is the part of L in C([0, T ];E):

LEψ(t) =

t∫
0

SE(t− ϑ)Bψ(ϑ) dϑ, ψ(·) : [0, T ] → U

Proof. Since E is dense in H, the spaces L2(0, T ;E) and C([0, T ];E) are
both densely embedded in L2(0, T ;H).

Since the laws of uε are Gaussian both on the space L2(0, T ;H) and the
space C([0, T ];E), from the uniqueness of the reproducing kernel, we have
that the reproducing kernels Hµε are the same in both spaces, see Da Prato &
Zabczyk [26, Proposition 2.8]. From this we have that the family of Gaussian
measures {µε}ε>0 satisfies a large deviation principle with respect to the
functional I(·) defined as:

I(u) =

{
1
2
|u|2Hµ1

, u ∈ Hµ1 ,

+∞ otherwise,

Since, on the Hilbert space L2(0, T ;H), it can be shown that

I(u) =


1

2

T∫
0

∣∣B−1[u′(ϑ)− Au(ϑ)]
∣∣2
U

dϑ for u ∈ Im(L),

+∞ otherwise,
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the same statement holds for the sub-space C([0, T ];E).
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Chapter 3

Large deviation for the
semilinear problem

In this chapter we shall study the following semilinear problem:

uε(t) = x+

t∫
0

Auε(ϑ) +G(uε(ϑ)) dϑ+
√
εBW (t),

with x ∈ H, t ∈ [0, T ]. Or, in the equivalent formulation,{
duε(t) = Auε(t)dt+G(uε(t))dt+

√
εBdW (t), ε > 0,

uε(0) = x

Here G is a non linear perturbation.
This problem has been studied in many settings: we shall analyze some

of them, proving that it has an unique solution in some suitable sense. Then,
we shall show a Large Deviation Principle for the laws of the solutions uε(·),
via a continuous correspondence between solutions of the linear equation and
solutions of the non-linear equation, using the contraction principle.

In the Section 3.1 we shall study this problem on the space H in the case
of a non linear term G Lipschitz, then in Section 3.2 we shall study the case
of dissipative G on a Banach space E densely embedded in H.

3.1 The case with Lipschitz non-linearity

As in Chapter 2, let H and U be separable Hilbert spaces and let {ek}k∈N
and {fh}h∈N be complete orthonormal systems in H and in U respectively.
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u(t) = x+

t∫
0

Au(ϑ) +G(u(ϑ)) dϑ+BW (t), (3.1.1)

with x ∈ H, t ∈ [0, T ].
We assume that the Hypotheses 2.1 and 2.4 hold and, moreover, that the

non-linear term G satisfies the following

Hypothesis 3.1. The non linear functional G : D (G) ⊂ H → H is locally
Lipschitz continuous and sublinear.

Note that, under Hypothesis 3.1 on the nonlinear coefficient G, it is pos-
sible to define the following constant

C(|x|) = C0(1 + |x|),

such that
C(|x|) ≥ sup

|z|≤|x|
G(z).

By definition, an implicit mild solution to (3.1.1) is a mean square con-
tinuous stochastic process u(t), t ∈ [0, T ], adapted to the filtration {Ft}t≥0,
such that

u(t) = S(t)x+

t∫
0

S(t− ϑ)G(u(ϑ)) dϑ+WS(t),

where S(·) and WS(·) are the the semigroup generated by A and the stochas-
tic convolution respectively.

Problem (3.1.1) is well known and it is studied by many authors; here
we remind the main result. Define CF([0, T ];H) to be the space of processes
u(t), t ∈ [0, T ], Ft-adapted, such that there exists a version of u with u(·) ∈
C([0, T ];H). We can state the following

Theorem 3.2. Let us assume Hypotheses 2.1, 2.4 and 3.1. Then (3.1.1) has
a unique mild solution in CF([0, T ];H).

The proof follows easily from a fixed point argument; see the proof of the
more general Theorem 4.4 that applies here with a ≡ 1.
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3.1.1 Large deviations

To obtain a large deviation property for the family of laws of uε(·), we cannot
apply directly the contraction principle through (3.1.1), since we have not a
large deviation property for the cylindrical Wiener process W (·).

Instead we define Ψ : ZT → ZT as the solution functional that maps each
given trajectory z(·) of WS(·) to the corresponding solution u(·), as follows

u(t) = S(t)x+

t∫
0

S(t− ϑ)G(u(ϑ)) dϑ+ z(t). (3.1.2)

We see that Ψ maps solutions of the linear problem (2.1.1) on to solutions
of the non-linear problem (3.1.1).

We can, now, state the large deviation property for the family of laws
of uε(·).
Theorem 3.3. Suppose that the assumptions of Theorem 3.2 hold; then the
family of laws of uε(·) satisfies a large deviation principle with respect to the
rate functional

J(u) =


1

2

T∫
0

∣∣B−1[u′(ϑ)− Au(ϑ) +G(u(ϑ))]
∣∣2 dϑ for u ∈ R

+∞ otherwise.

where R is the the subspace of C([0, T ];H) given by

R =

{
u ∈ C([0, T ];H))

∣∣∣∃z ∈ L2(0, T ;U) :

u(t) = S(t)x+

t∫
0

S(t− ϑ)G(u(ϑ)) dϑ+

t∫
0

S(t− ϑ)Bz(ϑ) dϑ

}
.

We want to strength that the functional J is:

J(·) = I(Ψ−1(·)).
Proof. We have that L (uε(·)) = Ψ ◦L (

√
εz(·)), so if we show that the bijec-

tion Ψ is continuous, the result follows from Theorem 2.10 and Remark 1.5.
Consider z1(·), z2(·) in ZT and the corresponding solutions u1(·), u2(·) of

(3.1.2). Suppose ‖zi‖ZT
≤ K0, then from Theorem 3.2 we have ‖ui‖ZT

≤ K,
so without loss of generality we can consider G globally Lipschitz.

Then from (3.1.2) there exists a constant C such that

‖u1 − u2‖ZT
≤ C‖z1 − z2‖ZT

,

and this ends the proof.
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3.2 The case with dissipative non-linearity

Let H,U be separable Hilbert spaces, and E ⊂ H a separable Banach space,
densely embedded in H as Borel subset. Let |·| and ‖·‖E be the norms
respectively on H and E.

We assume the Hypotheses 2.1, 2.4, 2.26 and 2.27 hold. Now we assume
that G : D (G) ⊂ H → H is a nonlinear operator defined on a subset of the
Hilbert space H. We shall consider then (3.1.1) in the smaller state space E,
on which the operator G is well defined and continuous. This method requires
also that the initial condition takes values in the space E.

We are concerned with the problem{
duε(t) = (Auε(t) +G(uε(t)))dt+

√
εBdW (t), ε > 0,

uε(0) = x ∈ E.
(3.2.3)

Let us first give the definition of mild solution for (3.2.3): a predictable
H-valued process u(t), t ∈ [0, T ], is said to be a mild solution of (3.2.3) if

P

 T∫
0

|u(ϑ)|2H dϑ < +∞

 = 1, P-a.s.

and, for arbitrary t ∈ [0, T ], we have

u(t) = S(t)x+

t∫
0

S(t− ϑ)G(u(ϑ)) dϑ+WS(t), P-a.s..

We want to show that the laws µε = L (uε) for ε > 0 of uε fulfill a large
deviation principle with respect to a suitable functional I.

Dissipativity of the non-linear operator

We have that G is a dissipative functional, i.e. the following Hypotheses hold:

Hypothesis 3.4. G : D (G) → H is a functional such that E ⊂ D (G) ⊂ H
and the part GE of G in E is dissipative and uniformly continuous on bounded
subsets of E.

Let us recall some properties of dissipative mappings.
G : E → E is said to be dissipative if

‖x− y‖E ≤ ‖x− y − α(G(x)−G(y))‖E, ∀x, y ∈ E, ∀α > 0.
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To obtain equivalent definitions of the previous one, we introduce the
notion sub-differential of the norm in a Banach space E: a mapping (possibly
multivalued) σ : E → E∗ such that

σ(x) = {y ∈ E∗ : 〈x, y〉E,E∗ = ‖x‖E, ‖y‖E∗ = 1}.

The following equivalence holds: G is dissipative if and only if for any
x, y ∈ E there exists z∗ ∈ σ(x− y) such that

〈G(x)−G(y), z∗〉E,E∗ ≤ 0. (3.2.4)

In a Hilbert space (3.2.4) becomes

〈G(x)−G(y), x− y〉H ≤ 0, ∀x, y ∈ D (G) .

Under Hypothesis 3.4, G is maximal dissipative i.e. the following result
holds, see e.g. Da Prato & Zabczyk [26, Appendix D]:

Proposition 3.5. If Hypothesis 3.4 holds, then for any α > 0 and any y ∈ E
there exists a unique x = Jα(y) such that

x− αG(x) = y.

We define the Yosida approximations Gα, α > 0, of G by setting

Gα(x) = G(Jα(x)) =
1

α
(Jα(x)− x), x ∈ E, (3.2.5)

where
Jα(x) = (I − αG)−1(x), x ∈ E. (3.2.6)

The following proposition describes the main properties of Jα and Gα.

Proposition 3.6. Let G : E → E be a continuous dissipative mapping, and
let Jα and Gα be defined by (3.2.6) and (3.2.5) respectively. Then we have:

i. Jα is a contraction:

‖Jα(x)− Jα(y)‖E ≤‖x− y‖E, ∀x, y ∈ E,

and

lim
α→0

Jα(x) =x, ∀x ∈ E,

ii. Gα is dissipative and Lipschitz continuous:

‖Gα(x)−Gα(y)‖E ≤
2

α
‖x− y‖E, ∀x, y ∈ E

and

‖Gα(x)‖ ≤‖G(x)‖E, ∀x ∈ E ⊂ D (G) .
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3.2.1 Solution of dissipative stochastic problem on E

Here we give the following well known result:

Theorem 3.7. Assume Hypotheses 2.1, 2.4, 2.26, 2.27 and 3.4 hold; then
the problem (3.2.3) has a unique solution in C([0, T ];E).

Proof. Here we follow Da Prato & Zabczyk [26, Theorem 7.13]. First we set

v(t) = u(t)− z(t),

where z(·) is a fixed trajectory of WSE
(·). Consider the following equation

v(t) = SE(t)x+

t∫
0

SE(t− ϑ)G(v(ϑ) + z(ϑ)) dϑ, x ∈ E. (3.2.7)

Let us introduce, for any α > 0, the following approximating equation:

vα(t) = SE(t)x+

t∫
0

SE(t− ϑ)Gα(vα(ϑ) + z(ϑ)) dϑ, x ∈ E.

Since Gα is dissipative and Lipschitz continuous, the previous equation has a
unique solution v ∈ C([0, T ];E) for all z ∈ C([0, T ];E). Moreover, it is easy
to check that

‖vα(t)‖E ≤ eωt‖x‖E +

t∫
0

eω(t−ϑ)‖G(z(ϑ))‖E dϑ (3.2.8)

This shows that, z being fixed, the sequence {vα(·)}α>0 is uniformly bounded.
To show the convergence of the approximating sequence, we set, for any

α, β > 0,
gα,β = vα − vβ, uα = vα + z, uβ = vβ + z.

Then gα,β is the solution of the following problem{
d
dt
gα,β(t) = AEgα,β(t) +Gα(uα(t))−Gβ(uβ(t)),

gα,β(0) = 0
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Let y∗α,β,t ∈ σ(gα,β(t)), then we have

d−‖gα,β(t)‖E

dt
≤ ω‖gα,β(t)‖E +

〈
Gα(uα(t))−Gβ(uβ(t)), y∗α,β,t

〉
E,E∗

≤ ω‖gα,β(t)‖E +
〈
G(uα(t))−G(uβ(t)), y∗α,β,t

〉
E,E∗

+
〈
G(Jα(uα(t)))−G(uα(t)), y∗α,β,t

〉
E,E∗

−
〈
G(Jβ(uβ(t)))−G(uβ(t)), y∗α,β,t

〉
E,E∗

≤ω‖gα,β(t)‖E + ‖G(Jα(uα(t)))−G(uα(t))‖E

+ ‖G(Jβ(uβ(t)))−G(uβ(t))‖E.

Now by (3.2.8) and recalling that G is bounded on bounded subsets of E,
there exists R > 0 such that

‖uα(t)‖E ≤ R, ‖G(uα(t))‖E ≤ R, ∀t ∈ [0, T ],∀α ∈ (0, 1].

Moreover
‖Jα(uα(t))− uα(t)‖E ≤ α‖G(uα(t))‖E ≤ αR,

and so

‖G(Jα(uα(t)))−G(uα(t))‖E + ‖G(Jβ(uβ(t)))−G(uβ(t))‖E

≤ K(αR) +K(βR),

where K(·) is a modulus of continuity† of G restricted to B(0, R). From the
previous estimate we have

‖gα,β(t)‖E ≤ (K(αR) +K(βR))

t∫
0

ews dϑ, (3.2.9)

that yields the convergence of the sequence {vα}α>0 in C([0, T ];E) to a func-
tion v. It is easily seen that v solves (3.2.7). The uniqueness follows taking
the difference of two solutions, and using the Gronwall lemma.

From (3.2.8) it follows that the bound in (3.2.9) also holds when z is not
fixed but ranges into a bounded subset of C([0, T ];E). From this we have
the following.

†We recall that any function K : R+ → R+ such that

i. limr→0 K(r) = 0

ii. |G(x)−G(y)| ≤ K(|x− y|), ∀x, y ∈ D

is called modulus of continuity of G restricted to D.
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Corollary 3.8. Suppose the hypotheses of the Theorem 3.7 hold, and suppose
‖z(t)‖E ≤ M , for all t ∈ [0, T ], for a fixed M ∈ R. Then ‖v − vα‖C([0,T ];E)

does not depend on z, and we have

‖v(t)− vα(t)‖E ≤ 2K(α)
1

ω
(ewT − 1) = K ′(α).

with
K ′(α) −−→

α→0
0.

Large deviations for the semilinear dissipative equation

Let us consider the following functional Ψ : C([0, T ];E) → C([0, T ];E),
defined as

Ψ(z) = u, z ∈ C([0, T ];E),

where u is the solution of the following control problem associated to (3.2.3):

u(t) = S(t)x+

t∫
0

S(t− ϑ)G(u(ϑ)) dϑ+ z(t), t ∈ [0, T ]. (3.2.10)

We want to prove that Ψ is an homeomorphism from C([0, T ];E) into
itself.

We give a preliminary result

Lemma 3.9. Assume, besides the Hypotheses 2.1, 2.26 and 3.4, that G is
Lipschitz. Then Ψ is continuous.

Proof. Given two functions z, z1 in C([0, T ];E), we set u = Ψ(z) and
u1 = Ψ(z1). From (3.2.10) we have:

u(t)− u1(t) = z(t)− z1(t) +

t∫
0

SE(t− ϑ)(G(u(ϑ))−G(u1(ϑ))) dϑ

From Hypotheses 2.1 and 2.26, we have that ‖SE(t)‖ ≤ M, ∀t ∈ [0, T ]; so
denoting with L the Lipschitz constant of G, we find

‖u(t)− u1(t)‖E ≤ ‖z − z1‖C([0,T ];E) +ML

t∫
0

‖u(ϑ)− u1(ϑ)‖E dϑ,

for all t ∈ [0, T ]. Now the proof follows from the Gronwall Lemma.
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Theorem 3.10. Assume Hypotheses 2.1, 2.26 and 3.4 hold. Then, Ψ is an
homeomorphism from C([0, T ];E) into itself.

Proof. From the proof of Theorem 3.7, we have that Ψ is a bijection from
C([0, T ];E) into itself. We first prove the continuity of Ψ, then the continuity
of its inverse.

As before, let u = Ψ(z) and u1 = Ψ(z1). Since we must prove continuity,
we can suppose, without loss of generality, that

max{‖z − z1‖C([0,T ];E), ‖z‖C([0,T ];E), ‖z1‖C([0,T ];E)} ≤ C,

so the hypotheses of Corollary 3.8 are satisfied.
Denoting by uα and uα,1 the solutions of the approximated problem, with

G replaced by its Yosida approximation Gα, corresponding to z and z1 re-
spectively, we have

‖u− uα‖C([0,T ];E) ≤ K ′(α), ‖u1 − uα,1‖C([0,T ];E) ≤ K ′(α),

where K ′(·) is the same as in the Corollary 3.8.
Since Gα is Lipschitz, from Lemma 3.9 the theorem follows.

We can now prove the inverse. Let z = Ψ−1(u) and z1 = Ψ−1u1; again,
without loss of generality, we can suppose that

max{‖u− u1‖C([0,T ];E), ‖u‖C([0,T ];E), ‖u1‖C([0,T ];E)} ≤ C.

So, from the continuity of u, u1, we have that the values of u1(t) and u(t)
belong to a bounded subset D of E.

From (3.2.10) we have

‖z1(t)− z(t)‖E ≤ ‖u1 − u‖C([0,T ];E) +M

t∫
0

‖G(u1(ϑ))−G(u(ϑ))‖E dϑ.

Since the values of u, u1 belong to D, we have that ‖G(u1(ϑ))−G(u(ϑ))‖E

is uniformly continuous on [0, T ] and the claim follows. So we have proved
that Ψ is an homeomorphism.

From Theorem 3.10, we can now prove a large deviation principle for the
solutions of the semilinear stochastic equation (3.2.3).

We denote with νε = L (uε(·)) on the space C([0, T ];E).
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Theorem 3.11. The family of measure {νε}ε>0 fulfills the large deviation
principle with respect to the following functional J :

J(u) =

{
1
2

∫ T

0
|B−1(u′(ϑ)− AEu(ϑ)−G(u(ϑ)))|2U dϑ, u ∈ R,

+∞ otherwise,

where R is the the subspace of C([0, T ];E) given by

R =

{
u ∈ C([0, T ];E))

∣∣∣∃z ∈ L2(0, T ;U) :

u(t) = SE(t)x+

t∫
0

SE(t− ϑ)G(u(ϑ)) dϑ+

t∫
0

SE(t− ϑ)Bz(ϑ) dϑ

}
.

Proof. From the very definition of Ψ it follows νε = Ψ ◦ µε.
Since we have that J(u) = I(Ψ−1(u)), from Theorem 2.28, recalling that

Ψ is an homeomorphism, we can conclude that the large deviation property
for νε holds.

3.2.2 Solution of dissipative stochastic problem on H

We are concerned with equation (3.2.3), on the space H under suitable as-
sumptions.

First of all let us recall some definitions.

Definition 3.12. G : D (G) ⊂ E → E∗ is said to be hemicontinuous if and
only if G is continuous on the straight lines i.e.

G((1− t)x+ ty) −−→
t→0

G(x),

for all x, y ∈ D (G) such that ((1− t)x+ ty) ∈ D (G) for all t ∈ [0, 1]

Definition 3.13. G : D (G) ⊂ E → E∗ is said to be coercive if and only if

lim
|x|E→∞

〈G(x), x〉E,E∗

|x|E
= −∞.

Here we give two hypotheses that guarantee that G is maximal monotone.

Hypothesis 3.14. G : D (G) = E → H is dissipative, hemicontinuous,
coercive.
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Hypothesis 3.15. G : D (G) = E → H is dissipative, hemicontinuous and
it satisfies

〈G(x), x〉H ≤ 0, x ∈ D (G) .

Theorem 3.16. If Hypothesis 3.14 or 3.15 holds, then G is maximal dissi-
pative in H

For the proof see Minty [44], Browder [12].
We will also assume:

Hypothesis 3.17. There exists 0 < k < 1 and ψ : R → R, bounded on
bounded sets, such that

|G(x)| ≤ k|Ax|+ ψ(|x|), x ∈ D (A) .

Let us first give the definition of generalized solution for (3.2.3): a pre-
dictable H-valued process uε(t), t ∈ [0, T ], is said to be a generalized solution
of (3.2.3) if and only if

P

 T∫
0

|uε(ϑ)|2H dϑ < +∞

 = 1,

and for an arbitrary sequence {xn}n∈N ∈ E such that |xn − x|H → 0 the
corresponding sequence of solutions un of (3.2.3) tends to u in C([0, T ];H),
P-a.s.

Define:
vε(t) = uε(t)− zε(t),

where zε(·) is the solution of the linear problem (2.1.1). Equation (3.2.3) can
now be written as

vε(t) =

t∫
0

S(t− ϑ)G(vε(ϑ) + zε(ϑ)) dϑ. (3.2.11)

Let us prove the following

Theorem 3.18. Let us assume that Hypotheses 2.1, 3.17, and 3.14 or 3.15
hold then (3.2.3) has a unique generalized solution.

We are going to solve (3.2.11) pathwise, i.e. we claim that the following
equation has a generalized solution for all z ∈ C([0, T ];H)

u(t) = S(t)x+

t∫
0

S(t− ϑ)G(u(ϑ)) dϑ+ z(t), x ∈ H. (3.2.12)
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The deterministic semilinear equation

We are going to prove that (3.2.12) has a unique solution u ∈ C([0, T ];H)
for all z ∈ C([0, T ];H).

Let us consider the following approximating equation

uα(t) = S(t)x+

t∫
0

S(t− ϑ)Gα(uα(ϑ)) dϑ+ z(t). (3.2.13)

Since Gα is differentiable and Lipschitz, (3.2.13) has strict a solution uα,
with uα ∈ C([0, T ]; D (A)), see Da Prato and Zabczyk [26, Appendix A].

First of all we prove the following Lemma.

Lemma 3.19. Let α > 0, z1, z2 ∈ C([0, T ];H), and u1, u2 the corresponding
solutions of (3.2.13). We have

|u1(t)− u2(t)| ≤ e(t−ϑ)ω|u1(ϑ)− u2(ϑ)|
+ ω−1(e(t−ϑ)ω − 1)‖z1 − z2‖C([0,T ];H), ∀0 ≤ ϑ ≤ t ≤ T. (3.2.14)

In particular we have

‖u1 − u2‖C([0,T ];H) ≤ ω−1(eωT − 1)‖z1 − z2‖C([0,T ];H).

Proof. Since Gα = 1
α

(Jα − I), from (3.2.13) we have

u1(t)− u2(t) = S(t− ϑ)(u1(ϑ)− u2(ϑ))

− 1

α

t∫
ϑ

S(t− σ)(u1(σ)− u2(σ)) dσ

+
1

α

t∫
ϑ

S(t− σ)(Jα(u1(σ))− Jα(u2(σ))) dσ

+ z1(t)− z2(t).

From the variation of constant formula, we have

u1(t)− u2(t) = e−
t−ϑ

α S(t− ϑ)(u1(ϑ)−u2(ϑ))

+
1

α

t∫
ϑ

e−
t−σ

α S(t− σ)(Jα(u1(σ))−Jα(u2(σ))) dσ

+

t∫
ϑ

e−
t−σ

α S(t− σ)
(

dz1(σ)− dz2(σ)−A(z1(σ)−z2(σ)) dσ
)
.
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So, since Jα is 1-Lipschitz

|u1(t)− u2(t)| ≤ e(t−ϑ)(ω−α−1)|(u1(ϑ)− u2(ϑ))|

+
1

α

t∫
ϑ

e(t−σ)(ω−α−1)|u1(σ)− u2(σ)| dσ

+ ‖z1 − z2‖C([0,T ];H).

Let us denote ϕ(t) = e−(t−ϑ)(ω−α−1)|u1(t)− u2(t)|, then we have

ϕ(t) ≤ ϕ(ϑ) +
1

α

t∫
ϑ

ϕ(σ) dσ + e−(t−ϑ)(ω−α−1)‖z1 − z2‖C([0,T ];H).

Thus, from Gronwall Lemma, we have

ϕ(t) ≤ e
t−ϑ

α ϕ(ϑ) + ‖z1 − z2‖C([0,T ];H)

t∫
ϑ

e−(σ−ϑ)(ω−α−1) dσ.

that gives

|u1(t)−u2(t)|≤e(t−ϑ)ω|u1(ϑ)−u2(ϑ)|+‖z1−z2‖C([0,T ];H)

t∫
ϑ

e(t−σ)(ω−α−1) dσ,

and we obtain (3.2.14).

We can now prove the following

Theorem 3.20. Let us assume that Hypotheses 2.1, 3.17 and 3.14 or 3.15
hold. Then the equation (3.2.12) has a unique generalized solution in the
space C([0, T ];H) for all z ∈ C([0, T ];H).

Proof. We shall prove the theorem in two steps. We first suppose that x ∈
D (A) ⊂ E and z ∈ C1([0, T ];H), then we shall solve the general case.

Step I. Let Gα be the Yosida approximator of G, and let us consider
the solution uα ∈ C([0, T ]; D (A)) of (3.2.13).

We want to show that the solutions uα tend to u in the space C([0, T ];H).
Let α, β be positive real numbers, let uα and uβ be the solutions of

(3.2.13) for α and β respectively. Then, we have:{
d
dt

(uα(t)− uβ(t)) = A(uα(t)− uβ(t)) + (Gα(uα(t))−Gβ(uβ(t)))

uα(0)− uβ(0) = 0
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Taking the scalar product with uα(t)− uβ(t), we have:

1

2

d

dt
|uα(t)− uβ(t)|2 ≤ ω|uα(t)− uβ(t)|2+

+ 〈Gα(uα(t))−Gβ(uβ(t)), uα(t)− uβ(t)〉 .
(3.2.15)

From the definition of uα(t) and uβ(t), recalling the properties of resolvent
Jα, we have

uα(t)− uβ(t) = (uα(t)− Jαuα(t)) + (Jαuα(t)− Jβuβ(t)) + (Jβuβ(t)− uβ(t))

= −αGα(uα(t)) + (Jαuα(t)− Jβuβ(t)) + βGβ(uβ(t)).

From Gα(uα(t)) = G(Jα(uα(t))) we have:

〈Gα(uα(t))−Gβ(uβ(t)), uα(t)− uβ(t)〉 =

= −〈Gα(uα(t))−Gβ(uβ(t)), αGα(uα(t))− βGβ(uβ(t))〉+

+ 〈G(Jα(uα(t)))−G(Jβ(uβ(t))), Jαuα(t)− Jβuβ(t)〉 .

Then, since G is dissipative,

〈Gα(uα(t))−Gβ(uβ(t)), uα(t)− uβ(t)〉
≤ −α|Gα(uα(t))|2 − β|Gβ(uβ(t))|2+

+ (α + β)|Gα(uα(t))||Gβ(uβ(t))|

≤ α

4
|Gα(uα(t))|2 +

β

4
|Gβ(uβ(t))|2

If we give a uniform bound C1 to |Gα(uα(t))|, as in Lemma 3.22, we have

〈Gα(uα(t))−Gβ(uβ(t)), uα(t)− uβ(t)〉 ≤ C1

4
(α + β).

Then (3.2.15) becomes:

1

2

d

dt
|uα(t)− uβ(t)|2 ≤ ω|uα(t)− uβ(t)|2 + C1(α + β). (3.2.16)

Hence the sequence uα converges uniformly to a certain u in C([0, T ];H).
It follows that u is a solution to (3.2.12). The uniqueness of u is ensured by
a standard dissipative argument.

Step II. In the general case with x ∈ H and z ∈ C([0, T ];H), let us
consider a sequence xn ∈ D (A) and a sequence zn ∈ C1([0, T ];H). Denote
with un and uα,n respectively the corresponding solutions to equation (3.2.12)

50



and to equation (3.2.13). Fixed ε > 0, from Lemma 3.19, we have that there
exists n ∈ N such that

‖uα,n − uα,m‖C([0,T ];H)

≤ eωT |xn − xm|+ ω−1(eωT − 1)‖zn − zm‖C([0,T ];H)) ≤
ε

3
,

for all n,m > n. So, since the sequence uα,n converges to un in C([0, T ];H),
we have that there exists α > 0 such that

‖uα,n − un‖C([0,T ];H) ≤
ε

3
, ‖uα,m − um‖C([0,T ];H) ≤

ε

3
,

for all 0 < α ≤ α. Then the sequence of un is a Cauchy sequence that
converges to a certain u ∈ C([0, T ];H), the generalized solution of (3.2.12).

Corollary 3.21. The functional Γ : C([0, T ];H) → C([0, T ];H) defined by
Γ(z) = u, where u is the solution to (3.2.12), is continuous.

Proof. As in the Theorem 3.20, using the Lemma 3.19, we have for z1, z2 ∈
C([0, T ];H)

‖Γ(z1)− Γ(z2)‖C([0,T ];H) = ‖u1 − u2‖C([0,T ];H)

≤ ω−1(eωT − 1)‖z1 − z2‖C([0,T ];H)

that ends the proof.

Thus, it remains to prove the following Lemma.

Lemma 3.22. In the settings of Theorem 3.20, in the particular case of
x ∈ D (A) and z ∈ C1([0, T ];H), there exists a constant C1 such that

|Gα(uα(t))| ≤ C1 ∀α > 0, ∀t ∈ [0, T ]. (3.2.17)

Proof. First of all we shall proof that∣∣∣∣ ddtuα(t)

∣∣∣∣ ≤ C2 t ∈ [0, T ],∀α > 0.

From the Lemma 3.19 we have

|uα(t+ h)− uα(t)| ≤ etω|uα(h)− uα(0)|
+ ω−1(etω − 1)‖z(·+ h)− z(·)‖C([0,T ];H). (3.2.18)
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By dividing by h, and letting h→ 0, we have∣∣∣∣ ddtuα(t)

∣∣∣∣ ≤ etω

∣∣∣∣ ddtuα(0)

∣∣∣∣+ ω−1(etω − 1)‖z′‖C([0,T ];H).

Then, since
d

dt
uα(0) = Ax+Gα(x) + z′(0),

we have, recalling that x ∈ D (A),∣∣∣∣ ddtuα(0)

∣∣∣∣ ≤ |Ax|+ |G(x)|+ |z′(0)| = C3.

So, ∣∣∣∣ ddtuα(t)

∣∣∣∣ ≤ C3 + ω−1(eωT − 1)‖z′‖C([0,T ];H) = C2.

From this we have also |uα(t)| ≤ C2T ; in-fact,

d

dt
|uα(t)| ≤

∣∣∣∣ ddtuα(t)

∣∣∣∣ ≤ C2,

so uα(t) is uniformly bounded.
We can show now that Auα(t) is bounded for all t ∈ [0, T ], α > 0. Since

uα is a strong solution of (3.2.13), we have uα ∈ D (A). From this and from
Hypotheses 3.17 follows that

|Auα(t)| ≤
∣∣∣∣ ddtuα(t)

∣∣∣∣+ |Gα(uα(t))|+ |z′|

≤ C2 + ‖z′‖C([0,T ];H) + |G(uα(t))|
≤ C2 + ‖z′‖C([0,T ];H) + k|Auα(t)|+ ψ(|uα(t)|).

So, recalling that ψ(|uα(t)|) is bounded by a constant C4 since |uα| ≤ TC2,
and that ‖z′‖C([0,T ];H) is finite, we have

|Auα(t)| ≤
C2 + ‖z′‖C([0,T ];H) + C4

1− k
= C5.

From this we have

|Gα(uα(t))| ≤ |Gα(uα(t))| ≤ kC5 + C4 = C1,

that ends the proof.
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Large deviations

Let us consider the following functional Ψ : C([0, T ];H) → C([0, T ];H),
defined as

Ψ(z) = u, z ∈ C([0, T ];H),

where u is the solution of (3.2.12). From Theorem 3.20, we have that Ψ is a
bijection from C([0, T ];H) into itself, and, as stated in the Corollary 3.21, is
continuous.

We can now prove a large deviation principle for the solutions of the
semilinear stochastic equation (3.2.3).

We denote with νε the law of uε(·) on the space C([0, T ];H).

Theorem 3.23. Let us assume that Hypotheses 2.1, 3.17 and 3.14 or 3.15
hold. Then, the family of measure {νε}ε>0 fulfills the large deviation principle
with respect to the following functional J :

J(u) =

{
1
2

∫ T

0
|B−1(u′(ϑ)− Au(ϑ)−G(u(ϑ)))|2U dϑ, u ∈ R̃,

+∞ otherwise,

where R̃ is the the subspace of C([0, T ];H) given by

R̃ =

{
u ∈ C([0, T ];H))

∣∣∣∃z ∈ L2(0, T ;U) :

u(t) = S(t)x+

t∫
0

S(t− ϑ)G(u(ϑ)) dϑ+

t∫
0

S(t− ϑ)Bz(ϑ) dϑ

}
.

Proof. From the definition of Ψ, we have that νε = Ψ◦µε, the image measure
of the measure µε through Ψ, and we have that J(u) = I(Ψ−1(u)).

From Theorem 2.10, since Ψ is continuous, the theorem follows.
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Chapter 4

Large deviation for the
Volterra semilinear problem

In this chapter we shall concern about the generalization to the semilinear
problems of the previous chapter, to Volterra equations.

Here and in the remaining of the section we denote with S(·) the resolvent
associated to a, A, as in (2.5.11), instead of the semigroup generated by A.

We shall need two different assumptions on the kernel a. In the first case
we assume the Hypothesis 2.22 to hold, in the second case we shall assume

Hypothesis 4.1. The kernel a : ]0, T ] → ]0,+∞[ is completely monotone,
a∈L1

loc(0, T ), and there exists a Bernstein function k(t) = k0 +
∫ t

0
k1(ϑ) dϑ

associated to a(t), the relation between a(t) and k(t) being given by

k0a(t) +

t∫
0

k1(t− ϑ)a(ϑ) dϑ = 1, t ∈ [0, T ].

Remark 4.2. We point out that the two hypotheses are overlapping only for
constant kernels, that is non Volterra case, since for instance the first allows
a(t) = tα−1

Γ(α)
with α ∈ [1, 2), while the other imposes α to be in (0, 1].

4.1 The case with Lipschitz non-linearity

We consider here the Volterra equation:

u(t) = x+

t∫
0

a(t− ϑ)[Au(ϑ) +G(u(ϑ))] dϑ+BW (t), (4.1.1)

with x ∈ H, t ∈ [0, T ].
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Definition 4.3. The mild solution to (4.1.1) in H is the solution to the
stochastic integral equation

u(t) = S(t)x+ a(0)(S ∗G(u))(t) + (S ∗ a′ ∗G(u))(t) +WS(t). (4.1.2)

We can state now the following theorem of existence and uniqueness for
the following problem (see the author & Bonaccorsi [8]).

Theorem 4.4. Let us assume Hypotheses 2.1, 2.18, 2.22, 2.19 and 3.1. Then
equation (4.1.1) has a unique mild solution in CF([0, T ];H).

Proof. Define v(t) = u(t) − z(t), t ≥ 0, where z(·) = WS(·), and note that
(4.1.2) can be written as

v(t) = S(t)x+ a(0)(S ∗G(v + z))(t) + (S ∗ a′ ∗G(v + z))(t). (4.1.3)

We are going to solve the previous equation pathwise, since WS(·) has
H-continuous trajectories.

Set ZT = C([0, T ];H) and moreover

Γ(v)(t) = S(t)x+ a(0)(S ∗G(v + z))(t) + (S ∗ a′ ∗G(v + z))(t).

Since G is continuous on H, a′ is continuous in time and S is strongly
continuous, Γ(·) maps ZT in ZT .

Using a fixed point argument, (compare the proof of Theorem 7.10 in
Da Prato & Zabczyk [26]) it is possible to show that, for T0 small enough,
there exists a unique mild solution on [0, T0]. To obtain global existence, it
is sufficient to prove that |v(·)| remains bounded.

Let us take the norm in (4.1.3):

|v(t)| ≤ |S(t)x|+ a(0) |(S ∗G(v + z))(t)|+ |(S ∗ a′ ∗G(v + z))(t)| .

From the assumption on S(·) the following estimate holds:

|S(t)x| ≤M |x|, ∀t ∈ [0, T ];
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the convolution integral is bounded by:

|(S ∗ a′ ∗G(v + z))(t)| ≤
t∫

0

∣∣∣∣∣∣S(t− r)

r∫
0

a′(r − s)G(v(s) + z(s)) ds

∣∣∣∣∣∣ dr
≤M

t∫
0

t∫
s

a′(r − s) dr|G(v(s) + z(s))| ds

≤M

t∫
0

(a(t− s)− a(0))|G(v(s) + z(s))| ds

≤ 2M‖a‖∞

t∫
0

|G(v(s) + z(s))| ds

≤ 2M‖a‖∞

t∫
0

C(|z(s)|)[1 + |v(s)|] ds

≤ 2MC(‖z‖ZT
)‖a‖∞

t∫
0

[1 + |v(s)|] ds;

finally the middle term is bounded by

a(0)|(S ∗G(v + z))(t)| ≤ a(0)

t∫
0

|S(t− r)||G(v(r) + z(r))| dr

≤ a(0)M

t∫
0

|G(v(r) + z(r))| dr

≤ a(0)M

t∫
0

C(|z(r)|)[1 + |v(r)|] dr

≤ a(0)MC(‖z‖ZT
)

t∫
0

[1 + |v(r)|] dr.
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Summing up the above computations we get

|v(t)| ≤M |x|+ tMC(‖z‖ZT
)(2‖a‖∞ + a(0))

+MC(‖z‖ZT
)(2‖a‖∞ + a(0))

t∫
0

|v(s)| ds.

Therefore, from Gronwall Lemma, |v(t)| is bounded on [0, T ] by a constant
that depends on x, T , M , a and that depends on z only through its norm in
ZT .

4.1.1 Large deviation in the Lipschitz case

In order to examine the large deviation associated to the solution of the
problem (4.1.1) we replace, here, the operator B with

√
εB, leading to the

equation:

uε(t) = x+

t∫
0

a(t− ϑ)[Auε(ϑ) +G(uε(ϑ))] dϑ+
√
εBW (t),

for x ∈ H, t ∈ [0, T ].
We define Ψ : ZT → ZT as the solution functional that maps each given

trajectory z(·) of WS(·) to the corresponding solution u(·), as follows

u(t) = S(t)x+ a(0)(S ∗G(u(·)))(t) + (S ∗ a′ ∗G(u(·)))(t) + z(t). (4.1.4)

We see that Ψ maps solutions of the linear problem (2.5.9) into solutions of
the non-linear problem (4.1.1).

We can now state the large deviation property for the family of laws of
uε(·).

Theorem 4.5. Suppose that he assumptions of Theorem 4.4 hold. Then
the family of laws of µε = L (uε(·)) satisfies a large deviation principle with
respect to the rate functional

J(u) =


1

2

T∫
0

∣∣B−1[u′(ϑ)− a(0)(Au(ϑ) +G(u(ϑ)))

− a′ ∗ (Au+G(u))(ϑ)]
∣∣2 dϑ

for u ∈ R

+∞ otherwise,
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where R is the the subspace of C([0, T ];H) given by

R =

{
u ∈ C([0, T ];H))

∣∣∣∃z ∈ L2(0, T ;U) : u(t) = S(t)x

+ a(0)(S ∗G(u))(t) + (S ∗ a′ ∗G(u))(t) + (S ∗Bz)(t)

}
.

As before we have
J(·) = I(Ψ−1(·)).

Proof. We have that µε = Ψ ◦L (
√
εz(·)), so if we show that the bijection Ψ

is continuous, the result follows from Theorem 2.10 and Remark 1.5.
Consider z1(·), z2(·) in ZT and the corresponding solutions u1(·), u2(·) of

(4.1.4). Suppose ‖zi‖ZT
≤ K0, then from Theorem 4.4 we have ‖ui‖ZT

≤ K,
so without loss of generality we can consider G globally Lipschitz.

Let us define vi(·) = ui(·)− zi(·). Then we have

|v1(t)− v2(t)| ≤ |a(0)[(S ∗G(v1 + z1))(t)− (S ∗G(v2 + z2))(t)]|
+ |(S ∗ a′ ∗G(v1 + z1))(t)− (S ∗ a′ ∗G(v2 + z2))(t)|.

As in Theorem 4.4, from Lipschitzianity of G, we have

|v1(t)− v2(t)| ≤ |a(0)|ML

t∫
0

(
|v1(s)− v2(s)|+ |z1(s)− z2(s)|

)
ds

+ 2M‖a‖∞L
t∫

0

(
|v1(s)− v2(s)|+ |z1(s)− z2(s)|

)
ds

≤ML(|a(0)|+ 2‖a‖∞)

t∫
0

|v1(s)− v2(s)| ds

+ML(|a(0)|+ 2‖a‖∞)‖z1 − z2‖ZT

So from Gronwall’s lemma we have

‖v1 − v2‖ZT
≤ K̃‖z1 − z2‖ZT

;

since ui(·) = vi(·) + zi(·), this ends the proof.
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Remark 4.6. As in the linear case the rate functional is related to the control
system given by (4.1.4), so it is possible to give the following definition for
the rate functional in terms of z:

J(u) = inf

1

2

T∫
0

|z(ϑ)|2 dϑ : z such that (4.1.4) has solution u


and this formulation brings us again to interpret J(u) as the minimal “en-
ergy”, given by the forcing term z, to allow the system to remain in u.

Opposite to the linear case considered in Remark 2.25, in the nonlinear
case, even for a ordinary differential equation, the rate functional J defined
above does not coincide with the Onsager-Machlup functional, compare for
instance Bardina et al. [4].

4.2 The case with dissipative non-linearity

As before we are concerned with a Volterra generalization of previous problem
as follows:

u(t) = x+

t∫
0

a(t− ϑ)[Au(ϑ) +G(u(ϑ))] dϑ+BW (t). (4.2.5)

Here we assume that Hypotheses 2.18, 2.19, 2.26, 2.27, 4.1 and 3.4 hold.
To solve the problem (4.2.5) as usual we define v(t) = u(t) −WS(t) and

note that for the E-valued process v(t), (4.2.5) may be written in the form

v(t) = x−
t∫

0

a(t− ϑ)Av(ϑ) dϑ+

t∫
0

a(t− ϑ)G(v(ϑ) + z(ϑ)) dϑ, (4.2.6)

where z(t) = WS(t) ∈ C([0, T ];E) is a trajectory of the stochastic convolu-
tion process.

Since a(t) is a completely monotone kernel, if we introduce the linear
Volterra operator

Lu(t) =
d

dt

[
k0u(t) +

t∫
0

k1(t− ϑ)u(ϑ) dϑ

]
, t ∈ [0, T ],
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it is possible to rewrite (4.2.6) as an equivalent integro-differential problem:L[v − x](t) + Av(t) = G(v(t) + z(t)),

k0v(0+) + (k1 ∗ v)(0+) = k0x.
(4.2.7)

We arrive, therefore, to a (family of) deterministic equation (depending on
ω) in a real separable Banach space E, that we shall study via the techniques
of integro-differential Volterra equations.

Theorem 4.7. Assume that E is a real Banach space and let the coefficients
in (4.2.6) satisfy Hypotheses 2.18, 2.19, 2.26, 2.27, 3.4 and 4.1. Then, for
any x ∈ D (A), there exists a unique generalized solution v(t) to the abstract
non-linear Volterra equation (4.2.7).

Then, we shall say that u(t) = v(t) +WS(t) is a generalized mild solution
to (4.2.5) in C([0, T ];E).

The complete proof of this theorem is beyond the scope of this thesis, so
we briefly recall the ideas in the author & Bonaccorsi [7] that lead to the
proof.

The problem under consideration is the following Volterra integral equa-
tion

L[v − x](t) + Av(t) = F (t, v(t)); (4.2.8)

in our case F (t, v(t)) = G(v(t) + z(t)) The problem was introduced since the
early 1970s in the case where F (t, v) = f(t); this case, that we shall call the
“inhomogeneous problem”, is an important step also in our construction.

The next step in the literature is to consider functional perturbations of
such problem, see for instance Crandall & Nohel [24] or Gripenberg [38]. In
the author & Bonaccorsi [7], we consider perturbation operators acting on
E, but we can allow such operators to be non-autonomous. The study of
(4.2.8) with the operator F (t, v) is based on the results for the inhomoge-
neous problem F = f(t) and a fixed point argument; this should justify the
appellative of “perturbation term” given to F (t, v).

Volterra operators

We first discuss some properties of the linear Volterra operator

Lv(t) =
d

dt

k0v(t) +

t∫
0

k1(t− ϑ)v(ϑ) dϑ

 , t > 0, (4.2.9)
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with domain

D (L) = {f ∈ Lp((0,+∞);E) | k0f + (k1 ∗ f) ∈ W 1,p((0,+∞);E)}

The operator L is m-accretive in Lp((0,+∞);E), for any 1 ≤ p < ∞, and
densely defined, see Clément [18], Proposition 3.2. There is a natural repre-
sentation of its inverse operator L−1 in terms of the kernel a(t).

L−1v(t) =

t∫
0

a(t− ϑ)v(ϑ) dϑ. (4.2.10)

Now, we focus, for a moment, on the explicit form of the Yosida approx-
imation Lµ = L(I +µ−1L)−1. The following result is proved in the author &
Bonaccorsi [7].

Lemma 4.8. The operator Lµ = L(I + µ−1L)−1 is given by

Lµv(t) = µ
d

dt
(v ∗ sµ)(t). (4.2.11)

Inhomogeneous problem

We consider the inhomogeneous problem

L[v − x](t) + Av(t) = f(t). (4.2.12)

In order to define a generalized solution to (4.2.12), we shall consider
an approximate equation, where the operator L is replaced by its Yosida
approximation Lµ, µ > 0. Let vµ be the solution of the following equation

Lµ[vµ(·)− x](t) + Avµ(t) = f(t). (4.2.13)

In the next theorem, we establish the existence of a generalized solution of
(4.2.12).

Theorem 4.9. Assume that the coefficients in (4.2.12) satisfy, 2.26 and 4.1,
and let x ∈ D (A) = E and f ∈ C([0,+∞);E). Then, for every µ > 0
(4.2.13) has a unique solution vµ(·) ∈ C([0,+∞);E).

As µ→∞, there exists a function v = U(x, f) with v ∈ L1
loc((0,+∞);E)

such that vµ → v in L1
loc((0,+∞);E).

If x ∈ D (A) then the convergence takes place also in L∞loc((0,+∞);E)
and the limit function v belongs to C([0,+∞);E).

The function v = U(x, f), that exists according to Theorem 4.9, is called
the generalized solution for problem (4.2.12).
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Non-autonomous perturbations

Now we return to (4.2.8). Before we discuss the case of dissipative non-
linearities, which is the object of Theorem 4.7, we shall consider the case of
a Lipschitz non-linearity. We shall say that v(t) is a generalized solution of
(4.2.8) if v = U(x, F (·, v)).

Theorem 4.10. Let the assumptions of Theorem 4.9 be fulfilled and assume
that the nonlinear term F : [0, T ]×E → E is a continuous function, and that
there exists a function η(t) ∈ L∞loc(0,+∞) such that, for any t ∈ (0,+∞),

‖F (t, v1)− F (t, v2)‖ ≤ η(t)‖v1 − v2‖. (4.2.14)

Then there exists a unique generalized solution to (4.2.8){
L[v(·)− x](t) + Av(t) = F (t, v(t)),

t ∈ (0,+∞), v(0+) = x.

Let us give an idea of the proof of Theorem 4.7. Preliminarly, we notice
that, in our setting, we consider as non-autonomous perturbation F (t, v(t))
the function F (v(t) + z(t)); next, we introduce, for any α > 0, the approxi-
mating equation

L(vα − x)(t) + Avα(t) = Fα(vα(t) + z(t)), (4.2.15)

where Fα(·) are the Yosida approximations of F (·). Since Fα is Lipschitz
continuous and bounded in norm by F , we obtain an a priori estimate for
the approximating solution vα(·) as follows:

‖vα(t)‖ ≤ s−ω(t) ‖x‖ − 1

ω

(
r−ω ∗ ‖F (z(·))‖

)
(t).

This assures that the sequence {vα(·)} is bounded uniformly in α.

To show the convergence of the sequence, we set, for any α, β > 0,

gα,β(t) = vα(t)− vβ(t),

and we estimate the relevant norm with techniques analogous to those used
in the proof of 3.7, based on the a priori estimate of ‖vα(·)‖ and dissipativity
of F . Thanks to a convolutional Gronwall lemma (see for instance the author
& Bonaccorsi [7]), we obtain

‖gα,β(t)‖ ≤ [ρF ( 2
α
R) + ρF ( 2

β
R)]
(
a ∗ s−ω

)
(t),
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where ρF is the modulus of continuity of F (·) on the bounded set B(0, 2R).
This yields the convergence of the sequence vα(t) in C([0, T ];E) to a

function v, which is easily seen to be the unique generalized solution for
problem (4.2.7).

We conclude this section with a last remark about equation (4.2.8).

Remark 4.11. Notice that we are concerned with a continuous and m-dissi-
pative operator G; however, since this term is non-autonomous, we cannot
consider the sum (A−G) as a unique operator, even if we assume that
(−A+G) is m-dissipative.

Now we can focus on the transfer functional Ψ that associates the tra-
jectories of the stochastic convolution process to a solution of the nonlinear
problem (4.2.7).

We may be more precise on the regularity of Ψ;

Theorem 4.12. Suppose that the assumptions of Theorem 4.7 hold. Then
the functional Ψ : C([0, T ];E) → C([0, T ];E) that associates a trajectory of
the stochastic convolution process to the solution of (4.2.7) is continuous.

Proof. Our argument is divided into two steps. In the first step we suppose
that the non linear term F is locally Lipschitz on E, while in the second we
prove the theorem in the general case.

Step I. Let z1(t) be a continuous function on E; since we want to
show that Ψ is continuous at the point z1 of C([0, T ];E), we can restrict
ourselves to a bounded neighborhood B around z1. Then, since F is lo-
cally Lipschitz, we can suppose, without loss of generality, that F is totally
Lipschitz on B, with Lipschitz constant equal to Λ.

Let z2 belongs to B and denote by v1 = Ψ(z1) and v2 = Ψ(z2) respec-
tively. From definition of generalized solution, we have that there exist two
sequences v1,µ, v2,µ such that

vi,µ → vi ∈ L1
loc((0,+∞);E) ∩ C((0,+∞);E), i ∈ {1, 2},

and

Lµ(vi,µ − x)(t) + Avi,µ(t) = F (vi(t) + zi(t)), i ∈ {1, 2}.

Then subtracting term to term we have

Lµ(v1,µ − v2,µ)(t) + A(v1,µ(t)− v2,µ) = F (v1(t) + z1(t))− F (v2(t) + z2(t)).
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Choose an element y∗ in the sub-differential ∂‖v1,µ(t) − v2,µ(t)‖; taking
the scalar product of both members in previous equation with y∗, we have

〈Lµ(v1,µ − v2,µ)(t), y∗〉+ 〈A(v1,µ(t)− v2,µ(t)), y∗〉
= 〈F (v1(t) + z1(t))− F (v2(t) + z2(t)), y

∗〉 .

Recalling the definition of Lµ, we get

µ
(
‖v1,µ(t)− v2,µ(t)‖ −

(
‖v1,µ(·)− v2,µ(t)‖ ∗ rµ

)
(t)
)

− ω‖v1,µ(t)− v2,µ(t)‖ ≤ Λ(‖v1(t)− v2(t)‖+ ‖z1(t)− z2(t)‖).

From this equation we obtain an estimate on the norm ‖v1,µ(t)−v2,µ(t)‖ via a
convolutional Gronwall lemma (see the author & Bonaccorsi[9, Lemma 4.1]):

‖v1,µ(t)− v2,µ(t)‖ ≤ Λωµ

ω

d

dt

(
µ−1
[
‖v1 − v2‖+ ‖z1 − z2‖

]
∗ s−ωµ

+ a ∗
[
(‖v1 − v2‖+ ‖z1 − z2‖)

]
∗ s−ωµ

)
(t).

where ωµ = µω
µ−ω

.

Since, passing to the limit µ → ∞, we have ((a + µ−1) ∗ s−ωµ)(t) →
(a ∗ s−ω)(t), we obtain:

‖v1(t)− v2(t)‖ ≤ Λ
d

dt

(
a ∗
[
(‖v1 − v2‖+ ‖z1 − z2‖)

]
∗ s−ω

)
(t),

that becomes

‖v1(t)− v2(t)‖ ≤ Λ
(
a ∗
[
‖v1 − v2‖+ ‖z1 − z2‖

])
(t)

− Λ
(
a ∗
[
‖v1 − v2‖+ ‖z1 − z2‖

])
(t)

+ Λ
(
− 1

ω
r−ω ∗

[
‖v1 − v2‖+ ‖z1 − z2‖

])
(t)

= Λ
(
− 1

ω
r−ω ∗

[
‖v1 − v2‖+ ‖z1 − z2‖

])
(t).

Now since − 1
ω
r−ω(t) is a completely monotone kernel, we can apply again

the convolutional Gronwall lemma and we have:

‖v1(t)− v2(t)‖ ≤
(
−r̃−Λ ∗ ‖z1 − z2‖

)
(t),

where r̃−Λ(t) satisfies

r̃−Λ(t) + Λ
ω

(
r̃−Λ ∗ r−ω

)
(t) = Λ

ω
r−ω(t).
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Since −r̃−Λ(t) ≤ −r−(ω+Λ)(t) for all t ≥ 0, we have

‖Ψ(z1)(t)−Ψ(z2)(t)‖ ≤
(
−r−(ω+Λ) ∗ ‖z1 − z2‖

)
(t). (4.2.16)

Therefore Ψ is continuous in the Lipschitz case.

Step II. In the general case we can approximate F with its Yosida
approximations Fα. So, denoting with Ψα the functional corresponding to Ψ
in (4.2.7) with Fα in place of F , we have:

‖Ψ(z1)−Ψ(z2)‖ ≤ ‖Ψ(z1)−Ψα(z1)‖
+ ‖Ψα(z1)−Ψα(z2)‖+ ‖Ψα(z2)−Ψ(z2)‖.

Remark 4.13. Since the a priori estimate of solution v(t) to Theorem 4.7
depends on the function z(t) only via its supreme norm, we have that also the
coefficients involved in the proof of the theorem depends “only” on supreme
norm of z(t) (see author & Bonaccorsi[7, Theorem 4.1]).

Then, we can state that from Theorem 4.7 for all ε there exists a α small
enough such that

‖Ψ(z1)−Ψα(z1)‖ ≤ ε,

‖Ψα(z2)−Ψ(z2)‖ ≤ ε,

for all z1(t), z2(t) in the same bounded set of C([0, T ];E). Now continuity of
Ψ follows from continuity of Ψα.

4.2.1 Large deviations in the dissipative case

We shall consider now problem (4.2.5) with B replaced by
√
εB, and the

family of its solutions uε(t). We denote by νε = L (uε) the law of uε(·) on
the space C([0, T ];E). From Theorem 4.12, via the contraction principle, we
prove

Theorem 4.14. Suppose that the assumptions of Theorem 4.7 hold and that
E is densely and continuously embedded in H as Borel subspace. Then, the
family of laws νε satisfies the large deviation principle with respect to the
following explicit functional J : C([0, T ];E) → [0; +∞]

J(u) =


1

2

T∫
0

∣∣B−1 d
dt

[u(ϑ)+(a ∗ Au)(ϑ)− (a ∗G(u))(ϑ)]
∣∣2 dϑ

for u ∈ R̃

+∞ otherwise,

(4.2.17)
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where R̃ is the subset of C([0, T ];E) defined as

R̃ =
{
u ∈ C([0, T ];E)

∣∣∣ ∃g ∈ L2(0, T ;H) : u(t) = S(t)x

+
d

dt

[ t∫
0

S(t− ϑ) (a ∗G(u))(ϑ) dϑ

]
+

t∫
0

S(t− ϑ)Bg(ϑ) dϑ
}
. (4.2.18)

Proof. We have that νε = Ψ ◦ µε, where by Theorem 4.12 the functional Ψ
is continuous. Thus, from a slight variation of Theorem 2.28, due to the
Volterra case and the different hypotheses on a, the family of laws νε has
the large deviation property with respect to the functional J = Ψ−1(I).
Eventually the result follows since the definition of Ψ implies that J has the
explicit formulation (4.2.17).
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Chapter 5

The exit problem

In this chapter we consider the following semilinear problem, already consid-
ered in the Section 3.2:{

duε(t) = Auε(t)dt+G(uε(t))dt+
√
εBdW (t), ε > 0,

uε(0) = x,

and the related control system:{
d
dt
fx,z(t) = Afx,z(t) +G(fx,z(t)) +Bz(t),

fx,z(0) = x.
(5.0.1)

We assume in this chapter that G(0) = 0 so that in the case z ≡ 0, 0
is an equilibrium point for the control system. Moreover, we impose that
there exists an open bounded neighborhood D ⊂ E of 0 which is uniformly
attracted to 0 by (5.0.1) in the case z ≡ 0:

Hypothesis 5.1.

∀r > 0, ∃T > 0, such that ‖fx,0(t)‖ ≤ r ∀t ≥ T, x ∈ D. (5.0.2)

Note that u0(·) = fx,0(·). So the Assumption 5.1 means that

lim
t→+∞

u0(t) = 0.

However, for ε > 0, the behavior of uε(t) will be totally different due to the
influence of the additive noise: the solution uε(t), starting from inside D will
eventually reach the boundary ∂D.

To see this denote by τx,ε the exit time from D of the process uε(t)
originating in x:

τx,ε = inf {t ≥ 0 | uε(t) ∈ Dc, uε(0) = x}. (5.0.3)

Now we can prove the following result.
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Proposition 5.2. If the process BW (·) is not identically 0, then for arbitrary
x ∈ D and ε > 0, E [τx,ε] < +∞.

Proof. We can assume that D = {x ∈ E | ‖x‖ ≤ R} for some R > 0 and that
G is a bounded transformation. Since the process BW (·) is non degenerate,
there exists ϕ ∈ E∗, ‖ϕ‖E∗ = 1, such that the one-dimensional Gaussian
variable ϕ(WS(1)) is non degenerate. Define

qε(x) = P(τx,ε > 1),

and note that

qε(x) ≤ P(‖uε(1)‖ ≤ R) ≤ P(|ϕ(uε(1))| ≤ R).

Since G is bounded, there exists R1 > 0 such that

|ϕ(uε(1))| ≥
√
ε|ϕ(WS(1))| −R1, P-a.e..

It follows that

qε(x) ≤ P
(
|ϕ(WS(1))| ≤ R+R1√

ε

)
= pε < 1, ∀x ∈ D.

Moreover, for arbitrary k = 0, 1, 2, . . .

P(τx,ε > k + 1) = P(Ak ∩Bk),

where

Ak ={‖uε(t)‖ < R,∀t ∈ [0, k]} ∈ Fk,

Bk ={‖uε(k + s)‖ < R,∀s ∈ [0, 1]}.
It follows that

P(τx,ε > k + 1) = E [E [IAk
∩ IBk

| Fk]] = E [1Ak
E [IBk

| Fk]] .

On the other hand

E [IBk
| Fk] = E

[
Iuε(k+·)∈Γ

∣∣Fk

]
,

where
Γ = {f ∈ C([0,+∞[;E) | ‖f(t)‖ < R ∀t ∈ [0, 1]}.

By the Markov property of solution (see Da Prato & Zabczyk [26, Corol-
lary 9.13])

E
[
Iuε(k+·)∈Γ

∣∣Fk

]
= qε(uε(k)) ≤ pε.

Consequently, by induction, we have

P(τx,ε > k) ≤ pk
ε , k = 0, 1, 2, . . . .

Therefore it easy to show that

E [τx,ε] ≤ 1/(1− pε).
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5.1 Exit rate estimates

It is intuitively clear that

lim
ε↓0

E [τx,ε] = +∞.

In this section we will calculate the rate of divergence in the previous
equation. To achieve this we will use the following exponential estimates
obtained applying Proposition 1.6 and Proposition 1.7 to Theorem 3.11. Let
us define

Kx
T (r) = {f ∈ C([0, T ];E) | f = fx,z;

1

2
‖z‖L2(0,T ;H) ≤ r2}.

Let R0 > 0, r0 > 0 and T > 0 be numbers such that all sets Kx
T (r0), and

{‖x‖ ≤ R0} are contained in a bounded subset of C([0, T ];E). Then

i. ∀δ > 0, ∀γ > 0, ∃ε0 > 0 such that ∀ε ∈]0, ε0[, ∀x ∈ E with ‖x‖ ≤ R0:

P(dC([0,T ];E) (uε, K
x
T (r)) < δ) ≥ 1− e−

1
ε
(r2−γ); (5.1.4)

ii. ∀δ > 0, ∀γ > 0, ∃ε0 > 0 such that ∀ε ∈]0, ε0[, ∀z ∈ L2(0, T ;U)
satisfying 1

2
‖z‖L2(0,T ;H) ≤ r2

0, ∀x ∈ E with ‖x‖ ≤ R0

P
[

sup
t∈[0,T ]

‖uep(t)− fx,z(t)‖E < δ
]
≥ e−

1
ε

(
1
2

R T
0 |z(ϑ)|2 dϑ+γ

)
. (5.1.5)

We define

e = inf

{
1

2

T∫
0

|z(ϑ)|2 dϑ
∣∣∣ f 0,z(T ) ∈

(
D
)c
, T > 0

}
.

We will call e the upper exit rate.
For any r > 0 let

er = inf

{
1

2

T∫
0

|z(ϑ)|2 dϑ
∣∣∣ fx,z(T ) ∈

(
D
)c
, T > 0, ‖x‖ ≤ r

}
.

We call the number
e = lim

r↓0
er

the lower exit rate. Note that we have always e ≤ e.
The main result of this section is the following theorem. In its formulation

we set
D0 = {x ∈ D | fx,0(t) ∈ D, ∀t ≥ 0}.
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Theorem 5.3. We assume that the Hypotheses of Theorem 3.11 and 5.1
hold. Then we have

lim sup
ε↓0

ε log E [τx,ε] ≤ e, x ∈ D, (5.1.6)

lim inf
ε↓0

ε log E [τx,ε] ≥ e, x ∈ D0. (5.1.7)

Theorem 5.3 is a generalization of finite dimensional results due to Frĕıdlin
& Wentzell [35]. The presentation follows Zabczyk. [61, 62].

Proof. Without loss of generality, we can assume that G is globally Lipschitz,
with constant L and that ‖S(t)‖ ≤M , ∀t > 0.

Step I. Proof of the estimate (5.1.6). Let us fix a control ẑ such
that f 0,ẑ ∈ (D)c. It is enough to show that

lim sup
ε↓0

ε log E [τx,ε] ≤ 1

2

T∫
0

|ẑ(ϑ)|2 dϑ = r̂.

It follows, from the continuous dependence on initial data of the solution of
(3.1.2), that there exists two positive numbers δ1, δ2, such that

‖x‖ ≤ δ1 =⇒ dE

(
fx,ẑ(T ), ∂D

)
≥ δ2.

Since

P(τx,ε < T ) ≥ P

(
sup

t∈[0,T ]

‖uep(t)− fx,ẑ(T )‖ < δ2

)
,

from (5.1.4) one obtains that, for any γ > 0, there exists ε0 > 0 such that
for all ε ∈]0, ε0[, and x ∈ E with ‖x‖ ≤ δ1

qε(x) = P(τx,ε < T ) ≥ e−
1
ε
(r̂+γ).

Taking into account Hypothesis 5.1 and the continuous dependence on initial
data of solutions of (5.0.1), one can find positive numbers T1 and p1 such that

P(‖uε(T1)‖ ≤ δ1) ≥ p1,

for all x ∈ D and all sufficiently small ε > 0. Consequently, by the Markov
property, we obtain that

P(τx,ε < T + T1) ≥ P
[
(‖uε(T1)‖ ≤ δ1) ∩ (∃s ∈ [0, T ] | uε(T1 + s) ∈ ∂D)

]
≥ E [qε(uε(T1))] 1{‖uε(T1)‖≤δ1}

≥ e−
1
ε
(r̂+γ)P(‖uε(T1)‖ ≤ δ1) ≥ p1e

− 1
ε
(r̂+γ),
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for x ∈ D, or, equivalently,

P(τx,ε ≥ T + T1) ≤ p = 1− p1e
− 1

ε
(r̂+γ), x ∈ D.

By successive applications of the Markov property, we have

P(τx,ε ≥ k(T + T1)) ≤ pk, k = 0, 1, 2, . . . .

Then, we have,

E
[

τx,ε

T + T1

]
≤ 1

1− p
= p1

−1e
1
ε
(r̂+γ).

Thus,
lim sup

ε↓0
ε log E [τx,ε] ≤ r̂ + γ;

since γ is arbitrary, we have (5.1.6).

Step II. Proof of the estimate (5.1.7). Fix γ > 0, choose r > 0 such
that er ≥ e−γ and fix 0 < r0 < r. We shall show that estimate (5.1.7) holds
in the case ‖x‖ = r. Define

σx,ε
1 = inf {t ≥ 0 | ‖uε(t)‖ = r, ‖uε(t1)‖ = r0 for some t1 ∈ [0, t]}.

We shall show first that there exists ε1 > 0 such that, for all ε ∈]0, ε1[,

pε
1(x) = P(σx,ε

1 < τx,ε) ≥ 1− e−
1
ε
(er−γ), for |x| = r. (5.1.8)

Note that
pε

1(x) = P(‖uε(t)‖ = r0, for some t < τx,ε).

Then,
qε
1(x) = 1− pε

1(x) = P(‖uε(t)‖ > r0,∀t < τx,ε).

For arbitrary T > 0, we have therefore

qε
1(x) ≤ P(τx,ε ≤ T ) + P(uε(t) ∈ K, ∀t ∈ [0, T ]) = P1 + P2,

where K = D ∩ {x ∈ E | ‖x‖ ≥ r0}. From Lemma 5.4 below, there exists
ε0 > 0, such that

P2 < e−
1
ε
(er−γ), ∀ε ∈ ]0, ε0[.

It remains to estimate P1. Let us remark that, again by (1.1.7) applied
to our case, and by the definition of er,

P(τx,ε ≤ T ) ≤ P(dC([0,T ];E) (uε, K
x
T (er)) ≥ r

2
) ≤ e−

1
ε
(er−γ),
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for all sufficiently small ε and x ∈ D such that ‖x‖ = r. In this way the
proof of (5.1.8) is complete.

We will generalize the estimate (5.1.8) and show

pε
k(x) = P(σx,ε

k < τx,ε) ≥ (1− e−
1
ε
(er−γ))k, (5.1.9)

for |x| = r, k = 0, 1, 2, . . . , where σx,ε
0 = 0, and

σx,ε
k+1 = inf {t > σx,ε

k | ‖uε(t)‖ = r,∃t1 ∈ [σx,ε
k , t] : ‖uε(t1)‖ = r0}.

However, by the strong Markov property,

pε
k+1(x) =E

[
p1(uε(σ

x,ε
k ))1{σx,ε

k <τx,ε}

]
≥(1− e−

1
ε
(er−γ))P(σx,ε

k < τx,ε), ‖x‖ = r,

so the generalization (5.1.9) follows by induction. Let Ck = {σx,ε
k < τx,ε},

then by (5.1.9) we have

P(Ck) ≥ (1− e−
1
ε
(er−γ))k.

Let moreover

sk =

{
inf {s ≥ 0 | ‖uε(σ

x,ε
k + s)− uε(σ

x,ε
k )‖ ≥ r−r0

2
} if σx,ε

k < +∞,

+∞ otherwise

It is clear that on Ck \ Ck+1

τx,ε ≥ s0 + · · ·+ sk

and, therefore,

E [τx,ε] ≥
∞∑

k=0

E
[
(s0 + · · ·+ sk)1Ck\Ck+1

]
=

∞∑
k=0

E [sk1Ck
].

This finishes the proof of (5.1.7) for any x ∈ D such that ‖x‖ = r.
If now x ∈ D0 then there exists p ∈]0, 1[ and T2 > 0 such that

P(uε(t) ∈ S for some t ∈ [0, T2]) ≥ p,

where S = {x ∈ D | ‖x‖ = r}. Using the strong Markov property one
obtains immediately

pε
k(x) ≥ p(1− e−

1
ε
(er−γ))k, k = 0, 1, 2, . . . .

So by the above argument (5.1.7) follows in the general case.
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Lemma 5.4. Assume that Hypothesis 5.1 holds. Then ∀r0 > 0, ∀L > 0,
∃ε0 > 0 such that ∀x ∈ K = D ∩ {x ∈ E | ‖x‖ ≥ r0}, ∀ε ∈ ]0, ε0[:

P(uε(s) ∈ K, for s ∈ [0, T ]) ≤ e−
L
ε . (5.1.10)

Proof. Let Kδ be a δ neighborhood of K, δ ≤ r0

3
. There exists T1 > 0, δ > 0

such that, if t ≥ T1 and x ∈ Kδ, then ‖wx(t)‖ ≤ r0

3
.

Let x ∈ K, z ∈ L2(0, T ;U) be a control such that fx,z(s) ∈ Kδ, ∀s ∈
[0, T1]. If M1 = ‖B‖, then

‖wx(t)− fx,z(t)‖ ≤ML

t∫
0

‖wx(ϑ)− fx,z(ϑ)‖ dϑ+MM1

t∫
0

|z(ϑ)| dϑ,

consequently

r0
3
≤ ‖wx(T1)− fx,z(T1)‖ ≤ eMLT1MM1T1

1
2

 T1∫
0

|z(ϑ)|2 dϑ


1
2

,

and

1

2

T1∫
0

|z(ϑ)|2 dϑ ≥
(

r0
3MM1

T1
− 1

2 eMLT1

)2

= M2.

By a simple induction argument, we have that, if fx,z(t) ∈ Kδ for all t ∈
[0, jT1], for some j = 1, 2, . . ., then

1

2

jT1∫
0

|z(ϑ)|2 dϑ ≥ jM2.

Let us remark that, if T = jT1 > 2L, then

P(uε(s) ∈ K, for s ∈ [0, T ]) ≤ P(dC([0,T ];E) (uε, K
x
T (2L)) ≥ r0

3
).

Taking into account again (1.1.7), we can find ε0 > 0 such that (5.1.10) holds
for ε ∈]0, ε0[ and all x ∈ K. This finishes the proof of this lemma.

5.2 Exit place determination

A closed set C ⊂ ∂D is called an exit set for the problem (3.2.3) and set D
if for arbitrary δ > 0 and all x sufficiently close to 0:

lim
ε↓0

P(dE (uε(τ
x,ε), C) > δ) = 0.
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It turns out that for a large class of problems and domains D one can
often find an exit set occupying only a small portion of the boundary ∂D.
We will introduce a family of exit sets which have a useful control theoretic
interpretation and are sufficiently small.

Define for x ∈ E, T > 0 and r > 0†

γx
T (r) = cl

y ∈ E : y = fx,z(t), t ∈ [0, T ],
1

2

T∫
0

|z(ϑ)|2 dϑ ≤ r

 ,

γx(r) = cl

{⋃
T≥0

γx
T (r)

}
, r ≥ 0, T ≥ 0, x ∈ E.

Set

Cr = cl

y ∈ ∂D : dE

y, ⋃
‖x‖≤r

γx(e+ r)

 ≤ r

 .

Note that C0 is exactly the closure of the set of all elements of ∂D which can
be reached from 0, by the system (5.0.1) in the case z ≡ 0, with the minimal
possible energy e. In several cases it is possible to show that

⋂
r>0Cr = C0.

We shall state, without proof, that for r > 0 the sets Cr are exit sets. This
is an extension of a finite dimensional result due to Frĕıdlin & Wentzell [35].

Theorem 5.5. Under Hypothesis 5.1, for all r > 0 and x ∈ D0,

lim
ε↓0

P(uε(τ
x,ε) ∈ Cr) = 1.

†With cl {Γ} we denote the closure of Γ
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de Matemática (50).

[12] Felix E. Browder. Nonlinear elliptic boundary value problems. Bull.
Amer. Math. Soc., 69:862–874, 1963.

[13] Sandra Cerrai. Differentiability with respect to initial datum for solu-
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[43] Annie Millet and Marta Sanz-Solé. Varadhan estimates for the density
of the solution to a parabolic stochastic partial differential equation.
In Stochastic analysis and applications (Powys, 1995), pages 330–342.
World Sci. Publishing, River Edge, NJ, 1996.

[44] George J. Minty. On a “monotonicity” method for the solution of
non-linear equations in Banach spaces. Proc. Nat. Acad. Sci. U.S.A.,
50:1038–1041, 1963.

78
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