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Abstract

In this Ph.D. dissertation we deal with the issue of the regularity and the estimation of
probability laws for diffusions with non-globally smooth coefficients, with particular focus on
financial models.
The analysis of probability laws for the solutions of Stochastic Differential Equations (SDEs)
driven by the Brownian motion is among the main applications of the Malliavin calculus on
the Wiener space: typical issues involve the existence and smoothness of a density, and the
study of the asymptotic behaviour of the distribution’s tails. The classical results in this area
are stated assuming global regularity conditions on the coefficients of the SDE: an assumption
which fails to be fulfilled by several financial models, whose coefficients involve square-root
or other non-Lipschitz continuous functions. Then, in the first part of this thesis (chapters
2, 3 and 4) we study the existence, smoothness and space asymptotics of densities when
only local conditions on the coefficients of the SDE are considered. Our analysis is based
on Malliavin calculus tools and on tube estimates for Itô processes, namely estimates on the
probability that an Itô process remains around a deterministic curve up to a given time.
We give applications of our results to general classes of option pricing models, including
generalisations of CIR and CEV processes and Local Stochastic Volatility models. In the
latter case, the estimates we derive on the law of the underlying price have an impact on
moment explosion and, consequently, on the large-strike asymptotic behaviour of the implied
volatility.
Implied volatility modeling, in its turn, makes the object of the second part of this thesis
(chapters 5 and 6). We deal with some questions related to the issue of an efficient and
economical parametric modelisation of the volatility surface. We focus on J. Gatheral’s SVI
model, first tackling the problem of its calibration to the market smile. We propose an
effective quasi-explicit calibration procedure and display its performances on financial data.
Then, we analyse the capability of SVI to generate efficient time-dependent approximations
of symmetric smiles, providing the corresponding numerical applications in the framework of
the Heston stochastic volatility model.

Keywords: Smoothness of densities, SDEs, locally regular coefficients, Malliavin calculus,
diffusion Tail Asymptotics, Tube estimates for Itô processes, Law of the Stock Price, Implied
Volatility, SVI, Heston, Calibration.



Sommario

In questa tesi di Perfezionamento trattiamo dei problemi di regolarità e di stima di leggi
di probabilità per le diffusioni a coefficienti non globalmente regolari, con una particolare
attenzione per le applicazioni ai modelli finanziari.
Lo studio delle leggi delle soluzioni di Equazioni Differenziali Stocastiche (SDE) dirette dal
moto Browniano è una fra le principali aree di applicazione del calcolo di Malliavin sullo
spazio di Wiener: delle problematique tipiche includono l’esistenza e la regolarità di una
densità e lo studio del comportamento asintotico delle code della distribuzione. I risultati
classici in questo settore sono tipicamente formulati assumendo delle condizioni di regolar-
ità globale sui coefficienti dell’equazione, un’ipotesi che risulta violata nel caso di numerosi
modelli finanziari, i cui coefficienti fanno intervenire delle radici quadrate o altre funzioni non
globalmente lipschitziane. Di conseguenza, nella prima parte di questa tesi (capitoli 2, 3 e
4) studiamo l’esistenza, la regolarità e il comportamento asintotico spaziale delle densità nel
caso in cui vengano assunte soltanto delle condizioni locali sui coefficienti dell’equazione. La
nostra indagine è basata sugli strumenti del calcolo di Malliavin e su delle “tube estimates”
per i processi di Itô, ovvero delle stime per la probabilità che un processo di Itô resti attorno
ad una curva deterministica fino ad un instante assegnato. Formuliamo dapprima i nostri
risultati in un contesto generale per le diffusioni, quindi li applichiamo a delle classi generali
di modelli per la valutazione delle opzioni, includendo delle generalizzazioni dei processi CIR
e CEV e dei modelli a volatilità locale-stocastica (LSV). Per questi ultimi, le stime che ricavi-
amo sulla legge dell’attivo sottostante hanno delle conseguenze sull’esplosione dei momenti,
e quindi sul comportamento asintotico in strike della volatilità implicita.
La modellizzazione della volatilità implicita, a sua volta, constituisce l’oggetto della seconda
parte della tesi (capitoli 5 e 6), nella quale affrontiamo alcune questioni legate al problema
della costruzione di una parametrizzazione economica ed efficiente dell’intera superficie di
volatilità. Ci concentriamo in particolare sul modello SVI di J. Gatheral, considerando in
primo luogo la sua calibrazione alle quotazioni di mercato. Ne proponiamo una nuova strate-
gia di calibrazione semi-esplicita, di cui illustriamo le prestazioni su dei dati reali. Quindi,
analizziamo la capacità del modello SVI di generare delle approssimazioni parametriche per
gli smiles simmetrici, estendendolo ad un modello a coefficienti dipendenti dal tempo. In par-
ticolare, ne formuliamo e implementiamo le applicazioni numeriche alla superficie di volatilità
generata dal modello di Heston.

Parole chiave: Stime di densità, SDE, regolarità locale, calcolo di Malliavin, comportamento
asintotico delle code, Tube estimates per i processi di Itô, distribuzione dello Stock Price,
Volatilità Implicita, SVI, Heston, Calibrazione.



Résumé

Dans cette thèse, nous traitons des problèmes de régularité et d’estimation de lois pour des
diffusions avec coefficients non globalement réguliers, avec une attention particulière pour les
modèles financiers.
L’étude des lois des solutions d’Equations Différentielles Stochastiques (EDS) dirigées par
le mouvement Brownien est un des principaux secteurs d’application du calcul de Malliavin
sur l’espace de Wiener : des problématiques typiques dans ce domaine concernent l’existence
et la régularité d’une densité et l’étude du comportement asymptotique des queues de la
distribution. Les résultats classiques sur ce sujet requièrent des conditions de régularité globale
sur les coefficients de l’EDS, une condition qui n’est pas satisfaite par plusieurs modèles
financiers, dont les coefficients font intervenir des racines carrées ou d’autre fonctions non
globalement lipschitziennes. Par conséquent, dans la première partie de cette thèse (chapitres
2, 3 et 4), nous étudions l’existence, la régularité et l’asymptotique en espace de densités
lorsqu’on n’impose que des conditions locales sur les coefficients de l’EDS. Notre analyse
dans cette partie se base sur les outils du calcul de Malliavin et sur des estimations de
“tubes” pour les processus d’Itô, c’est-à-dire des estimations sur la probabilité qu’un processus
d’Itô reste à proximité d’une courbe déterministe jusqu’à un instant donné. Nous appliquons
nos résultats à des classes générales de modèles pour l’évaluation d’options, comprenant des
généralisations des processus CIR et CEV et des modèles à volatilité locale-stochastique
(LSV). Dans ce deuxième cas, les estimations que nous obtenons pour la loi du sous-jacent
entraînent l’explosion des moments et ont ainsi un impact sur le comportement asymptotique
en strike de la volatilité implicite.
La modélisation de la volatilité implicite, à son tour, fait l’objet de la deuxième partie de
cette thèse (chapitres 5 et 6), où nous abordons des questions reliées au problème d’une
modélisation paramétrique efficace et économique de toute la surface de volatilité. Nous nous
focalisons en particulier le modèle SVI de J. Gatheral, en abordant en premier lieu le problème
de sa calibration aux smiles de marché. Nous proposons une nouvelle stratégie de calibration
quasi-explicite, dont nous illustrons les performances sur des données réelles. Ensuite, nous
analysons la capacité du SVI à générer de bonnes approximations paramétriques pour les
smiles symétriques, en le généralisant à un modèle dépendant du temps. Notamment, nous
formulons et mettons en oeuvre l’application numérique aux smiles générés par le modèle de
Heston.

Mots clé : Estimation des densités, EDS, régularité locale, calcul de Malliavin, asymptotiques
des queues, Tube estimates pour les processus d’Itô, loi du Stock, Volatilité Implicite, SVI,
Heston, Calibration.
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Chapter 1

Introduction

1.1 Analysis of probability laws for SDEs

The smoothness and tail behaviour of probability laws for the solutions of Stochastic Differ-
ential Equations (SDEs) driven by the Brownian motion is one of the central topics in the
study of the applications of the Malliavin calculus on the Wiener space (cf. [55], Chapter 2,
and references therein). With the word “tail” we refer here to the behaviour of the comple-
mentary cumulative distribution function P(|X| > y) for large values of y, and eventually, if
the law of X admits a continuous density pX , to the behaviour of pX at ±∞.

Let us be more precise: fix a T > 0 and consider the SDE

Xx
t = x+

∫ t

0

b(Xx
s )ds+

d∑
j=1

∫ t

0

σj(X
x
s )dW j

s , t ≤ T (1.1.1)

where x ∈ Rm; b, σj : Rm → Rm for every j = 1, . . . , d and W = ((W 1
t , . . . ,W

d
t ), t ≤ T )

is a standard d-dimensional Brownian motion. Let (σ)ij = σij and consider the following
conditions

• b, σj ∈ C∞b (Rm; Rm) for all j = 1, . . . , d;

• there exists a c > 0 such that σσ∗(y) ≥ c Im ∀y ∈ Rm,

where ∗ stands for matrix transposition and Im is the m ×m identity matrix. Under these
conditions, it is obvious that eq. (1.1.1) admits a unique strong solution for every initial
condition x. When looking at the fixed-time marginal laws of this solution, we have the
following classical result:

Theorem 1.1.1. For every x ∈ Rm and every t > 0, the law of Xx
t admits a density

pt(x, ·). pt is infinitely differentiable with respect to each variable. Moreover, there exist
strictly positive constants c1, c2 and functions C1, C2 : R+ → R+ such that
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C1(t) exp
(
−|y − x|

2

c1t

)
≤ pt(x, y) ≤ C2(t) exp

(
−|y − x|

2

c2t

)
, (1.1.2)

where | · | denotes the Euclidean norm in Rm.

In a word, Xx
t admits a smooth density and this density can be “sandwiched” between two

Gaussian bounds as in (1.1.2). This density is smooth with respect to both the state variable y
and the initial condition x: in the sequel, we will be interested in particular in the dependence
(smoothness and bounds) with respect to the state variable y, since this is what determines
European Option prices when Xx models the price (or the log-returns) of a financial security.
Theorem 1.1.1 can be proven relying either on analytical methods derived the from classical
PDE’s theory (cf. for example [3]) or on probabilistic tools, involving Malliavin’s stochastic
calculus of variations.
Let us remark that a complete discussion of the subject introduced here would require sev-
eral extensions and comments. First of all, let us mention that an estimate analogous to
(1.1.2) holds for the partial derivatives of pt with respect to y: namely, for every k ∈ N there
exist positive functions C1,k, C2,k : R+ → R+ such that C1,k(t) exp

(
− |y−x|

2

c1t

)
≤
∣∣ ∂αpt(x,y)
∂yα1 ···∂yαk

∣∣ ≤
C2,k(t) exp

(
− |y−x|

2

c2t

)
, where α ∈ {1, . . . ,m}k denotes a multi-index of lenght k. Secondly,

although the conditions of regularity and uniform ellipticity on the coefficients b and σ are
quite demanding, these hypotheses can be relaxed in many directions. The uniform ellip-
ticity condition can be replaced by a much weaker assumption, the well know Hörmander’s
condition, allowing for degenerate diffusion matrix σσ∗ (cf. the groundbreaking article by
Malliavin [50] and Kusuoka and Stroock’s subsequent work [42], [43]). Since this condition
involves the partial derivatives of any order of the coefficients, the C∞ condition must hold
when Hörmander’s condition is assumed; moreover, the results in this framework are typically
stated for globally Lipschitz-continuous b and σ. On the other hand, PDE methods apply for
much less regular coefficients, allowing to prove Theorem 1.1.1 assuming that b and σ are just
bounded measurable functions. Nevertheless, in this case the uniform ellipticity condition
must hold (cf. again [3]). Last but not least, with PDE methods it is in general more difficult
to explicitly identify the constants appearing in estimate (1.1.2).

Summing up, even if other partial refinements are possible, few results are available for
the case when all the global conditions (smoothness, boundedness, Lipschitz-continuity, el-
lipticity) are dropped at once. To our knowledge, the main result in this direction is provided
by Kusuoka and Stroock in [43] (see the discussion of their results at the end of §1.3.1).
Before presenting our contribution on this topic, we would like to introduce one of the main
motivations for this work, namely the existence of stochastic models for financial securities
whose coefficients are not globally “well-behaved”. This is a situation where tail asymptotics
heavier than Gaussian are possible, or better still, as we are going to see, expressly sought.
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1.2 A motivation for extensions: financial models

1.2.1 A framework of non globally well-behaved coefficients

Many popular models for option pricing rely on SDEs whose coefficients do not satisfy global
regularity assumptions, in particular they are not globally Lipschitz-continuous or uniformly
elliptic.

Let us recall the main examples of such models. The celebrated Cox-Ingersoll-Ross (CIR)
process considers a SDE with square root diffusion coefficient:

dXt = (a− bXt)dt+ σ
√
XtdWt (1.2.1)

where a ≥ 0, b ∈ R, σ > 0. The mean-reverting character of the drift coefficient (for b > 0)
allows to control the large-time value of the solution while the square root coefficient has the
advantage of making the characteristic function of the process analytically tractable. The CIR
process has been originally employed as a model for short interest rates [16] and subsequently
by Heston [37] to model the stochastic variances of assets. Under the risk-neutral measure,
the Heston model for the forward price Ft of an asset is given by the two-dimensional SDE

dFt = Ft
√
VtdWt

dVt = κ(θ − Vt)dt+ σ
√
VtdZt

d〈W,Z〉t = ρdt,

(1.2.2)

where F0, V0 > 0; ρ ∈ [−1, 1] is the correlation parameter and we have considered the
typical reparameterisation of the drift of the instantaneous variance V introducing the factors
k, θ > 0. The Heston model shares the analytical properties of the CIR process (it is indeed
an Affine Stochastic Volatility Model, cf. the definition in [40]) and is particularly tractable:
in particular, it allows for semi-explicit solutions for the prices of Vanillas. This is indeed
one of the most widely exploited models for option pricing and hedging in Equity and FX
markets The uncorrelated Heston model (obtained setting ρ = 0) will be the main example
of application of some results on the implied volatility we present in Chapter 6. Yet in the
framework of models for stock price and forward rate dynamics, the main example of a local
volatility model is given by the Constant Elasticity of Variance (CEV) model [15], which can
be seen as an extension of the Black-Scholes model to a two parameter family:

dFt = αF β
t dWt, (1.2.3)

where Ft is again the forward price of an asset or the forward rate and the parameters α > 0

and β ∈ (0, 1) allow to tune respectively the level of the volatility and the asymmetry of
option prices with respect to the at-the-money strike price K = F0 (the so-called “skewness”



10 CHAPTER 1. Introduction

of the implied volatility smile, see below). In this example, the “singularity” of the model
is once again given by the non globally Lipschitz-continuous (and not uniformly elliptic)
diffusion coefficient fβ, β < 1. The CEV model has a straightforward generalisation to a
stochastic volatility model originally proposed by Hagan, Kumar, Lesniewski and Woodward
in [33] and known as the SABR (Stochastic-Alpha Beta Rho) model:

dFt = σtF
β
t dWt

dσt = νσtdZt, σ0 = α

d〈W,Z〉t = ρdt,

(1.2.4)

where the log-normal process σt with initial value α replaces the constant volatility and the
additional parameters ν and ρ allow for a finer tuning of option prices.

It is important to recall, of course, that the key for the popularity of these models, which
is their analytical tractability, basically amounts to the fact that they allow for a complete
or almost complete knowledge of the law of the underlying process. Let us be more specific:
for the CIR and CEV processes, the fixed-time density is known explicitly, eventually under
the form of the sum of a series. Precisely, if X is a CIR process (1.2.1) starting at x, the
density of Xt on the open positive real line (0,∞) is given by (cf. for exemple [44]):

pCIRt (y) =
ebt

2ct

(yebt
x

)ν/2
exp
(
−x+ yebt

2ct

)
Iν

( 1

ct

√
xyebt

)
=

ebt(ν+1)

(2ct)ν+1
yν exp

(
−x+ yebt

2ct

) ∞∑
n=0

( x
ct

)n (
yebt

4ct

)n
n!Γ(ν + n+ 1)

, y > 0,

(1.2.5)

where ct = (ebt−1)σ2/4b, ν = 2a/σ2−1 and Iν denotes the modified Bessel function of index
ν, and in the second line we have expanded Iν with its classical series representation. Using
the asymptotic property Iν(z) ∼ 1√

2πz
ez for large z, we can observe that this density has

exponential (but not gaussian) decay at infinity. Also, we incidentally remark that pCIRt is
bounded or unbounded in the neighborhood of zero according to the value of ν. The density
for the CEV process (1.2.3) starting at F0, as provided in e.g. Davydov and Linetsky [18], is

pCEVt (y) = F
1/2
0

y−2β+1/2

α2(1− β)t
exp
(
−F

2(1−β)
0 + y2(1−β)

2α2(1− β)2t

)
Iν

( F 1−β
0 y1−β

α2(1− β)2t

)
, y > 0 (1.2.6)

now with ν = 1
2(1−β)

. Using again the asymptotic properties of Iν , it is possible to see (as

observed in [22], Theorem 1.6) that log pt(y) is asymptotic to − y2(1−β)

2α2(1−β)2t
, for large values of

y.
For the two-dimensional models (1.2.2) and (1.2.4), the density of the underlying price Ft is
not explicitly accessible. For the Heston model (1.2.2), the affine property allows to compute
the characteristic function E[eiuXt ] of the log price Xt = log(Ft/F0). This is obviously suffi-
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cient to characterise the law of Xt (hence of Ft) and to evaluate European options via Fourier
inversion methods (cf. e.g. [14]), nevertheless no closed-form expression of the density is
provided in the literature. It is still possible to exploit the knowledge of the characteristic
function in order to show that the law of Xt actually admits a smooth density (cf. [27],
Remark 10) and to derive sharp estimates of this density at ±∞ (cf. [20] and again [27]).
For the SABR model (1.2.4), some approximations of the density of Ft close to F0 can be
obtained relying on perturbation techniques for PDEs as in [34].

If the structure of the model coefficients is slightly changed (e.g. the affine structure of
the Heston model is broken), explicit computation are no longer possible. This is the case
if, for example, a skew function is added to a stochastic volatility model, yielding a so called
local-stochastic volatility model as in [36] (this kind of situation will be our main concern
in Chapter 3). The methods based on the knowledge of the characteristic function or in
general on affine principles break down, hence accessing the law of the process becomes a
more difficult challenge. As addressed above, this is a situation where the classical methods
for the evaluation of the density based on Malliavin calculus techniques do not apply, because
of the irregularity of the coefficients of the SDE.

1.2.2 Connexions between tail asymptotics and Implied Volatility

In this section we present some non-trivial connections between the law of the underlying
price and one of the main financial quantities popping up in the context of derivative pricing.
It is a generic assertion that the tail behaviour of the law of the underlying price affects the
prices of European options: this relation can be made much more precise, in particular when
switching from option prices to another remarkable financial variable - the Black-Scholes
implied volatility.

Let us briefly recall the definition and properties of the implied volatility: let C(k, T )

denote the price of a European call option maturing at T and with strike price F0e
k, then

the implied volatility of the option is the non-negative solution σ(T, k) to the equation

C(k, T ) = CBS(k, T, σ(T, k)) (1.2.7)

where CBS(k, T, σ) is the price of a Black-Scholes call option of strike F0e
k, maturity T and

volatility σ. The Black-Scholes price being strictly monotone with respect to σ, σ(T, k) is well
defined and unique. The model-implied volatility is obtained replacing the lhs in (1.2.7) by the
option price yield by the model, C(k, T ) = E[(F0e

XT −F0e
k)+]. The market-implied volatility

σmarket(T, k) is obtained in the same way using market option prices for different values of
k and T . The function k 7→ σ(T, k) (and sometimes the whole surface (k, T ) 7→ σ(T, k)) is
referred to as to the smile. Unless differently specified, in the sequel by implied volatility we
will mean the model-implied one.
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It is clear that the definition of the implied volatility in a given model only requires the
price of the option to be an arbitrage price. While it can be checked that in the aforementioned
models the risk-neutral price F of the underlying is an integrable martingale, it can happen
that some moment of FT of order p > 1 becomes infinite. This phenomenon actually does
appear in several stochastic volatility models, such as the Heston model (1.2.2), and has
been attentively studied by several authors (cf. e.g. Lions and Musiela [48], Andersen and
Piterbarg [2] and Keller-Ressel [40]). If on the one hand the lack of moment stability calls
for additional care (if, for example, one wants to manipulate variances), on the other hand
the explosion of moments plays a crucial role in determining the asymptotic properties of
the smile for large values of |k|. In order to make this dependence precise, let the critical
exponents p∗T (F ) and q∗T (F ) of FT be given by

p∗T (F ) = sup{p ≥ 1 : E[F p
T ] <∞}, q∗T (F ) = sup{q ≥ 0 : E[F−qT ] <∞}.

Lee [46] has proven, in a complete model-free manner, a formula relying the critical exponents
to the asymptotic slopes of the implied variance (the square of implied volatility), which reads:

lim sup
k→∞

Tσ(T, k)2

k
= ϕ(p∗T (F )− 1), lim sup

k→∞

Tσ(T,−k)2

k
= ϕ(q∗T (F )), (1.2.8)

where ϕ(x) := 2 − 4(
√
x2 + x − x), ϕ(∞) := 0. The relations in (1.2.8) are known as the

“right” and “left” moment formula. As pointed out by Lee, Eq. (1.2.8) is useful for model
selection purposes: since the market-implied variance smiles usually display “wings” (i.e.
k → σmarket(T, k)2 has left and right asymptotes), so has to do the model-implied volatility,
hence the exponential moments of the underlying process F must explode (otherwise p∗T (F ) =

q∗T (F ) =∞ and (1.2.8) states that the implied volatility is flat for large values of |k|). Pushing
things further, the moment formula can help model calibration: the values of the slopes at
the left hand sides of (1.2.8) can be observed from market data for values of |k| large enough;
if on the other hand the critical exponents are known functions of the model parameters, the
use of (1.2.8) can provide reasonable initial guesses of parameters values. Let us recall that
Benaim and Friz [9] subsequently refined Lee’s result, showing how the asymptotics of the
distribution function of log-returs can be directly translated to the asymptotics of the implied
volatility smile. Their result reads as follows: let PT (y) := P(XT ≤ y) be the cumulative
distribution function of XT = log(FT/F0), then under a mild regularity condition on PT

(namely, the “log-tails” − log(1− PT (y)) and − log(PT (−y)) are regularly varying at +∞),

if ∃ε > 0 : E[F 1+ε
T ] <∞, then

Tσ(T, k)2

k
∼ ϕ

(
− log(1− PT (k))

k
− 1
)

if ∃ε > 0 : E[F−εT ] <∞, then
Tσ(T,−k)2

k
∼ ϕ

(
− log(PT (−k))

k

) (1.2.9)
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where f(k) ∼ g(k) means limk→∞ f(k)/g(k) = 1. The relations in (1.2.9) are known as
the right and left “tail-wing” formula. As pointed out by the authors, the tail-wing formula
contains the full asymptotics of the smile: other than providing conditions under which the
lim sup in the moment formula is actually a true limit, the formula allows to identify the
behaviour of sublinear smiles. Indeed, in models where 1 − PT (y) ∼ exp(−cy1+γ) for some
γ > 0 (the Black-Scholes model corresponding to γ = 1, c = 1

2σ2T
), all the positive moments

of FT are finite1, hence p∗T (F ) = ∞ and ϕ(p∗T (F ) − 1) = 0 and the moment formula only
tells that the implied variance is sublinear. Using the easily proven property ϕ(x) ∼ 1

2x
, the

tail-wing formula allows to find the explicit asymptotics σ(T, k) ∼ 1
2Tc
k1−γ (which yields,

trivially, σ(T, k) ∼ σ2 for the Black-Scholes model).
It is again a trivial statement that the properties of regularity of the law of the underlying
determine the regularity of option prices as functions of the strike price. More precisely, it is
easy to see that the density of FT (when existing) is the second derivative of the option price
with respect to the strike: it is sufficient to differentiate twice with respect to K the identity
C(T,K) =

∫∞
0

(y −K)+pT (y)dy in order to obtain

∂2C(T,K)

∂K2
= pT (K).

Then, the positivity and smoothness of the density come into play when studying the con-
vexity and smoothness of option prices as functions of the strike price (last but not least, the
previous relation allows to design “sanity checks” for option pricing formulae: any approxi-
mation formula for the price of a call should display a positive second derivative).

The results presented above largely motivate the interest of studying and enhancing the
existing results on tail asymptotics for the solutions of SDEs, in particular for the classes of
SDEs arising in financial models. From the mathematical point of view, the challenge is to
settle appropriate techniques in order to apply powerful tools (Malliavin calculus, localization
arguments, tube estimates for Itô processes) in this non-standard framework.

1.3 Outline of results : Part I

1.3.1 Upper and lower estimates under local assumptions

In the first part of this thesis, we focus on the problem of formulating a statement analogous
to Theorem 1.1.1 when every global assumption on the coefficients of the SDE is dropped
and replaced by the corresponding local one. In particular, we are interested in developing
tools to study the smoothness of the law and the tail behaviour of the cumulative distribution

1If this statement does not appear obvious, the following argument can be used: for every p > 0, we have
E[F p

T ]/F p
0 = E[epXT ] ≤ 1 +

∑
k≥0 E[epXT 1{k<XT≤k+1}] ≤ 1 + ep

∑
k≥0 epkP(XT > k) and the last series is

seen to converge if P(XT > k) = 1− PT (x) ∼ exp(−cx1+γ).
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function (cdf) and the density which be effective when applied to the classes of equations
presented in section 1.2.

In Chapter 2 we state our main results on the smoothness of the density and we provide
upper bounds. We start by placing ourselves in an abstract framework, in order to consider
general local hypotheses: to do so, let us fix some y0 ∈ Rm and 0 < R ≤ 1 which represent -
roughly speaking - the point at which the density is evaluated and the size of the neighborhood
where the local assumptions are given. Then, we consider the SDE (1.1.1) under the following
assumptions on the coefficients:

(H1) (local smoothness) b, σj ∈ C∞b (B5R(y0); Rm);

(H2) (local ellipticity) σσ∗(y) ≥ cy0,R Im for every y ∈ B3R(y0), for some 0 < cy0,R < 1,

where BR′(y0) denotes the open ball BR′(y0) = {y ∈ Rm : |y − y0| < R′}. Moreover, we
assume that existence of strong solutions holds for the couple (b, σ) and state our result for
a strong solution to the equation. Dropping the dependence w.r.t to the initial condition x
for the ease of notation, our main result reads as follows:

Theorem 1.3.1 (Theorem 2.2.4, Chapter 2). Assume (H1) and (H2) and let (Xt; t ∈ [0, T ])

be a strong solution to (1.1.1). Then, for any initial condition x ∈ Rm and any 0 < t ≤ T ,
the random vector Xt admits an infinitely differentiable density pt,y0 on BR(y0). Furthermore,
for any integer k ≥ 3 there exists a function Λk : Rm → [0,∞) depending also on R, T,m, d
and on the coefficients of equation (2.2.1) such that, setting

Pt(y) = P
(
inf{|Xs − y| : s ∈ [(t− 1) ∨ t/2, t]} ≤ 3R

)
,

then one has
pt,y0(y) ≤ Pt(y0)

(
1 +

1

tm3/2

)
Λ3(y0)

for any y ∈ BR(y0). Analogously, for every α ∈ {1, . . . ,m}k, k ≥ 1,

|∂αpt,y0(y)| ≤ Pt(y0)

(
1 +

1

tm(2k+3)/2

)
Λ2k+3(y0)

for every y ∈ BR(y0).

Two facts are of central importance in the statement of Theorem 1.3.1: first of all, the
functions Λk appearing in the upper bounds are known explicitly. These functions contain
the dependence with respect to the bounds on the coefficients and their derivatives and to
the ellipticity constant cy0,R. The expression of the Λk’s is provided in a more detailed version
of this theorem in Chapter 2 (Theorem 2.2.4), which we do not give here not to burden the
notation. As a second important fact, we succeed in keeping the probability term Pt(y0)
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as a multiplicative factor in the bounds for the density and its derivatives: this feature is
crucial for the estimation of pt,y0(y) for large values of y. As a consequence, the application
of Theorem 1.3.1 in order to evaluate the density of the law in concrete cases requires the
simultaneous evaluation of the functions Λk - which basically reduces to a computational step
- and of the probability term Pt(y0). We show how to deal with both these terms in situations
of interest. The third factor appearing in the upper bounds is close to one for large values of
t and explodes as t goes to zero: let us just mention here that the dependence with respect to
time of this factor is actually not optimal (the negative powers of t are too high: for m = 1,
we would expect a factor 1/t1/2 rather than 1/t3/2). Since we are mainly interested in the
fixed-time tail asymptotics of the law, this factor will not be a problem for the core of our
study.
In section 2.2, besides setting up the tools we need in order to prove Theorem 1.3.1, we show
that the evaluation of the functions Λk - whose original expression is rather involved - can
be simplified under some additional assumptions on the growth of the coefficients (precisely,
under a condition of polynomial growth: cf. assumptions (H1’) and (H4) in §2.2.1). This
is the object of Theorem 2.2.5, which follows from Theorem 1.3.1 and shows how the upper
bounds provided therein can be translated into actual tail bounds on the density and its
derivatives. We devote the last section of the chapter, section 2.3, to the application of the
previous results to a class of equations embedding the CIR and CEV processes, namely to
SDEs of the form

Xt = x+

∫ t

0

(a(Xs)− b(Xs)Xs)ds+

∫ t

0

γ(Xs)X
α
s dWt, (1.3.1)

where α ∈ [1/2, 1) and a, b and γ are C∞b functions. After discussing the existence and
uniqueness of positive strong solutions to such equations, we study in details the properties
of the density that results from the previous theorems, analysing its behaviour at infinity
(Proposition 2.3.3) and at zero (Proposition 2.3.4), i.e. the point where the diffusion coef-
ficient is singular. The explicit expressions of the densities of the classical CIR (1.2.5) and
CEV processes (1.2.6) show that the resulting estimates are in the good range on the log-scale
(that is, they have the good exponential decay at infinity). We point out that this is a case
where the treatment of the functions Λk is easily achieved; on the other hand, to deal with
the probability term Pt we rely on some specifically designed tools that involve comparison
of the SDE to Brownian motion via a Lamperti-type transformation and invoking the ex-
istence of quadratic exponential moments for suprema of the Brownian motion (Fernique’s
theorem). In Chapter 4 we start a deeper study of the techniques that can be used in order
to upper bound the probability term Pt in general situations, focusing on the application of
tube estimates for Itô processes (see below).
Let us close the outline of Chapter 2 by comparing our main result, Theorem 1.3.1, to the
similar results by Kusuoka and Stroock mentioned in section 1.1. In the same spirit of our
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study, in section “4. Localization” of [43], the authors consider how to obtain local conclu-
sions on the density of a diffusion under local assumptions on the coefficients. Their main
statements, Theorem 4.5 and the subsequent Corollary 4.10, already allow to say that under
hypotheses (H1) and (H2), a strong solution to (1.1.1) admits a smooth density pt(x, ·) on
BR(y0) (actually, this density is automatically defined on the whole set where the coefficients
are regular, namely B3R(y0) in our framework, but the radius of the set is of course not the
main point). In this sense, the first part of Theorem 1.3.1 is not new. In addition, that
Theorem 4.5 in [43] proves the regularity of the map x 7→ pt(x, ·), x ∈ BR(y0) and holds
under the more general Hörmander’s condition rather than the ellipticity assumption (H2).
But, the upper bounds provided therein for pt(x, y) and its partial derivatives are meaningful
only on the diagonal, that is when the initial condition x belongs to BR(y0) and y is close
to x: up to multiplicative time-depending constants, the main factor appearing in the upper
bounds (cf. (4.7) and (4.9) in [43]) is exp

(
−(|y− x| ∧ (R∧ 1))2/Ct

)
, which looses its interest

when we want to consider large values of |y − x|. The upper bounds provided in Theorem
1.3.1 have the advantage of being suitable to obtain tail estimates, as we have shown in the
subsequent Theorem 2.2.5 and in the study of eq. (1.3.1). Moreover, we allow for a more
precise identification of the bounding constants: see the Introduction of Chapter 2 and §2.2.3.

In Chapter 3 we tackle the problem of obtaining lower bounds on the cumulative distri-
bution function and (when existing) on the density of the law, under local assumptions on the
coefficients of the SDE. We work in the same spirit of Chapter 2, that is, keeping in mind the
financial models in §1.2.1 as the main target for applications. Typically, to obtain significant
lower bounds for the densities of diffusions is a more challenging task: in Chapter 3, we take
up this problem working within the class of SDEs appearing in the so-called Local-Stochastic
Volatility (LSV) models, namely SDEs of the form:

dXt = −1

2
η(t,Xt)

2f(Vt)
2dt+ η(t,Xt)f(Vt)dW

1
t , X0 = 0

dVt = β(t, Vt)dt+ σ(t, Vt)dW
2
t ,

(1.3.2)

where W 1 and W 2 are two correlated Brownian motions. The function f is chosen to be pos-
itive, so that f(V ) represents a variance, and the real-valued process X models the logarithm
of the forward price of an asset. Applying Itô’s formula, it is easy to see that Ft := F0e

Xt

satisfies dFt = η(t,Xt)f(Vt)FtdW
1
t , hence LSV models embed stochastic volatility models

(when η ≡ 1) and in particular the Heston model (when in addition f(v) =
√
v and V is a

CIR process). LSV models have gained a great importance in the context of option pricing in
recent years, in particular when the appearance of derivatives whose value depends on the dy-
namics of the implied volatility (volatility derivatives) has demanded the introduction of more
elaborate models. They have been studied and supported in particular by Henry-Labordère
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[36, 35] or Lipton [49], who considered the problem of an efficient calibration strategy to
the market smile, while other authors focused on the asymptotic properties of the implied
volatility, as Forde & Jacquier [25] for the small-time asymptotics in the uncorrelated case.

Giving sharp tail estimates of the cumulative distribution and the density of the log-
price Xt in this “case-study” yet calls for the solution of non-trivial problems and for the
development of non-standard techniques. Let us discuss this point more in detail. Since it
satisfies the equation Ft = F0 +

∫ t
0
η(s,Xs)f(Vs)FsdW

1
s , the forward price F = (Ft; t ≥ 0)

is seen to be a positive local martingale. Then, a simple application of Fatou’s Lemma
shows that F is actually an integrable supermartingale. From the integrability property
of FT , T > 0, a simple application of Markov’s inequality shows that, for every y > 0,
P(XT > y) = P(eXT > ey) ≤ e−yE[eXT ] that is, up to multiplicative constants, the right tail
of the distribution of XT admits the exponential upper bound e−y. It has been seen in §1.2.2
that in models such as (1.3.2), the moments of FT of exponent greater than one or smaller
than zero can explode: of course, moment explosion occurs when the tails of the distribution
of XT are sufficiently heavy. More precisely, if the law of XT admits a density and this density
behaves as e−c|y| for |y| → ∞ for some constant c > 1, then positive and negative exponential
moments of Xt of order p will explode for p ≥ c. Dragulescu and Yakovenko [20] showed
that the density of the log-price does behave as e−c|y| in the Heston model (1.2.2), exploiting
the analytical computations that can be carried for the characteristic function of XT . Let us
mention that the work of [20] on the stock price distribution in the Heston model has been
extended and sharpened with the addition of higher-order terms to the leading e−c|y|, first by
Gulisashvili and Stein [32] in the case of zero correlation and subsequently by Friz et al. [27].

The main aim of Chapter 3 is to show that the cumulative distribution of the log forward
price X and, when existing, its density, behave as exp(−c|y|) for large |y| in the following
class of LSV models:

dXt = −1

2
η(t,Xt)

2Vtdt+ η(t,Xt)
√
VtdW

X
t

dVt = β(t, Vt)dt+ σ(t, Vt)
√
VtdW

V
t ,

(1.3.3)

obtained from (1.3.2) setting f(v) =
√
v. This class contains the Heston model and the

“universal volatility model” (without the jump part) considered in [49], but is much wider,
allowing for general coefficients β, σ in the SDE of the variance. While on the one hand we
consider reasonable Lipschitz, boundedness and ellipticity conditions on the coefficients η and
σ (but we allow the drift β to be any measurable function with sub-linear growth), on the other
hand we emphasize that the square-root factors in (1.3.3) impose the necessity to work under
local regularity assumptions. Let us also remark that, at this level, we are not concerned with
the (possibly intricate) discussion on the existence and/or uniqueness of solutions to (1.3.3):
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our results indeed hold for any couple of processes (X, V ) = (Xt, Vt; t ∈ [0, T ]) satisfying
(1.3.3). The situation where the diffusion coefficient of the second SDE in (1.3.3) is replaced
by σ(t, v)vp for a p > 0 (thus embedding the class of models considered by Andersen &
Piterbarg in [2]) is at the basis of the motivation for the further study we begin to develop in
Chapter 4. Let us introduce the main tool of our analysis: we rely on an estimate involving
the trajectory of the couple (X, V ) up to time T obtained by Bally, Fernandez & Meda
in [8], which we refer to as to a “tube” estimate. In [8], the authors provide estimates
for the probability that an Itô process remains in a tube of given radius around a given
deterministic curve, under some conditions of local Lipschiz-continuity, local boundedness
and local ellipticity on the coefficients of the process. As a result, the probability of staying
in the tube is lower bounded by an integral functional of the curve itself, of the deterministic
radius and the coefficients of the SDE. The work we carry out in Chapter 3 is to cast this
functional in a simple form, and then to optimize over the possible choices of curves and
radii. This formulation leads to the solution of an Euler-Lagrange optimization problem: the
explicit computations that follow allow us to obtain a lower bound which is in the desired
asymptotic range. To present our main result in this direction, let us introduce the following
objects: for y ∈ R, define the point y and the one-dimensional curves x̃t, ṽt, R̃t, t ∈ [0, T ] by

y = |y|+ V0; φ(t) =
sinh(t/2)

sinh(T/2)
;

ṽt = V0

(√ y

V0

φ(t)− e−T/2φ(t) + e−t/2
)2

; x̃t = sign(y)(ṽt − V0); R̃t =
1

2

√
(V0 ∧ 1)ṽt

where sign(x) = 1 if x ≥ 0 and sign(x) = −1 if x < 0. Our main result is the following
estimate:

P
(
|(Xt, Vt)− (x̃t, ṽt)| ≤ R̃t, 0 ≤ t ≤ T

)
≥ exp

(
−cTψ(ρ⊥)× |y|

)
(1.3.4)

which holds for |y| large enough, where ψ is an explicit function and cT is a strictly positive
constant depending on the model parameters and explicitly on T , but not on y nor on the
correlation parameter ρ (in §3.2.1, Theorem 3.2.1, we precise how large |y| must be and
give the expression of ψ and cT ). The curves x̃·, ṽ·, R̃· are the product of the optimization
procedure we set up, appearing as the solution to the Euler-Lagrange equations in section
3.3.1. We remark that the curve x̃· ends up at x̃T = y while the terminal radius R̃T is
proportional to

√
|y|: hence, dropping the multiplicative constants for simplicity and writing

P(|XT − y| ≤
√
|y|) ≥ P(|(XT , VT ) − (x̃T , ṽT )| ≤ R̃T ), then using (1.3.4), we obtain the

desired lower bound for the terminal distribution (this argument is made rigorous in Corollary
2 in §3.2.2). This result already allows us to state our main conclusion on the asymptotic
behaviour of the implied volatility, namely: the implied volatility always displays wings
(equivalently, is never flat) in the class of models (1.3.3) (cf. estimate (3.2.11) in Corollary 2
for the precise statement on the asymptotic slopes of the implied variance). Notice that the
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fact that the tube estimate (1.3.4) is given for the couple (X, V ) is crucial in our framework:
indeed, in order to estimate the behaviour of XT we need to have a control on the variance
Vt for all t ∈ [0, T ].
We would like to notice that the results we obtain in this chapter on the law of the underlying
and on moment explosion are significant by themselves, as generalisations of the existing
results on stochastic volatility models (that is to say, apart from the fact that we employ
special techniques in order to circumvent the singular coefficients).
As a second part of our study, we extend the previous estimates to the density of the law.
More precisely, under some additional regularity hypotheses on the coefficients of the SDE,
we discuss the existence of a density for the law of XT and show that the exponential lower
bound holds for the density as well. This last step requires to work out some “small balls”
estimates (cf. Proposition 3.2.1 in §3.2.3) and to employ the integration by parts formula of
Malliavin calculus. As done in Chapter 2, this tool needs to be coupled with an appropriate
localization procedure. We rely here on the decomposition of XT into a Gaussian term plus
a perturbation, following the idea of Bally & Caramellino in [6]: then, the desired lower
bound on the density follows from an operation of balance between the two terms of the
decomposition. This operation involves a sharp estimation of the Sobolev norms of the
perturbation term, for which we take advantage of the estimates of the norms of a diffusion
derived in Chapter 2, §2.2.3. Our final estimate on the density pXT of XT reads

pXT (y) ≥ 1

MT

exp
(
−eTψ(ρ⊥)|y|

)
for |y| > MT , where MT and eT are constants depending on model parameters and explicitly
on T (cf. Theorem 3.2.2).

In Chapter 4, we pursue our study in the area of tube estimates for Itô processes and
their applications. First of all, we give a new formulation of the tube estimate itself. Actu-
ally, the starting point for the study we develop in this chapter dates back to a discussion
that Vlad Bally had with Emmanuel Gobet during a conference in Helsinky in 20082. The
tube estimate in [8], which is one of the core tools for the analysis carried in Chapter 3, is
obtained by construction of an appropriate time-grid on the interval [0, T ], then exploiting
the short time behaviour of Itô processes. E. Gobet suggested that martingale time-change
techniques could be a powerful (yet simple) instrument to obtain similar results in this area.
Here we take up this problem, and the results show that Gobet’s intuition was correct: cou-
pling elementary time-change techniques for martingales with the appropriate localization
arguments, we manage to obtain similar results to [8], but the current estimates are sharper
and the hypothesis are weaker. Last but not least, the machinery we have to settle here is
considerably lighter, as a consequence the proofs of the main results are easier. Besides tube

2I am grateful to Prof. Vlad Bally for sharing with me these useful insights.
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estimates, exploiting the same tools we derive upper bounds for suprema of Itô processes,
namely we find functions C(y) such that the estimate P

(
supt≤T |Xt| > y

)
≤ C(y) is signif-

icant in the asymptotic range. We formulate our basic estimate involving the time-change
argument considering general Itô processes and tubes of simple geometry in Theorem 4.2.1,
while the subsequent Propositions 4.3.2 and 4.3.3 specialise the result to diffusions and arbi-
trary deterministic tubes.
The first main application of these results, in the spirit of the work of the previous chapters,
is to derive tail estimates for fixed-time distribution functions and - when existing - densities.
The lower bounds for the probability to stay inside a tube up to time T translate into lower
bounds for the terminal distribution, using for example the techniques already settled in
Chapter 3. In its turn, the upper bound on the supremum of the process over [0, T ] provides
the corresponding upper bound on the law at time T : while the tails of the cdf can be triv-
ially estimated by P(|XT | > y

)
≤ P

(
supt≤T |Xt| > y

)
, to estimate the density we can apply

Theorem 1.3.1 in Chapter 2. In particular, the current upper bound on supt≤T |Xt| provides
a way to estimate, in a general framework, the factor Pt appearing in the upper bounds for
the density and its derivatives in Theorem 1.3.1 (cf. Remark 4.3.1). We give applications
of these results to the class of one-dimensional SDEs considered in Chapter 2, namely to
CIR/CEV-type processes with local coefficients as (1.3.1), showing that the tube estimates
provided here are effective and allow to obtain significant tail estimates from above and below
(cf. Propositions 4.3.1 and 4.3.4). The application to general diffusions is currently under
study, and we pledge to fill this gap very quickly.

1.4 Outline of results : Part II

The results in the second part of this thesis are motivated by numerical applications. We
deal with the calibration of a parametric model to the market smile and with approximate
pricing formulae for the implied volatility. As a consequence, the mathematical tools that we
employ here are somehow less sophisticated than the ones in the first part. Nevertheless, the
results we provide are of straight interest for applications and the formulae and algorithms
we propose can be directly implemented following our presentation. The computational and
calibration performances are illustrated by numerical tests.

1.4.1 A closer look to implied volatility: Heston and SVI

The square root coefficient in (1.2.2) is the central source of difficulties for the Heston model.
The non-Lipschitz character of this coefficient makes several manipulations of financial inter-
est, such as the computation of Greeks or the implementation of simulation schemes for the
SDE, more intricate, and obstructs the direct application of Malliavin calculus tools. This
last limitation is what led us to the study developed in Part I of this thesis. At the same
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time, the square root coefficient lies at the basis of the analytical tractability of the model
in the context of option pricing. Thanks to nothing but the fact that (

√
x)2 = x, as pointed

out in §1.2.1, the Heston model is an Affine Stochastic Volatility Model (cf. [40]) and, in
particular, the characteristic function of the log-price Xt = log(Ft/F0) is known explicitly.
As a consequence, the evaluation of European Vanilla options in the Heston model can be
put under the form of a Fourier inversion problem: the solution to this problem yields the
well known semi-closed formula for Vanillas (which is known since the original article of He-
ston [37]), and the pricing problem eventually boils downs to the computation of a complex
integral. In recent years, several authors have been concerned with the efficient numerical
evaluation of this integral, proposing some effective and robust implementation solutions. A
survey of such recent advances on the Heston model can be found in [61].

In its turn, the implied volatility is usually recovered from the prices of Vanillas by
numerical inversion of the Black-Scholes formula. Due to the high non linearity of the BS
formula with respect to the volatility parameter, in general no closed or semi-closed formula is
available to directly compute the implied volatility (i.e. the numerical inversion step cannot be
overcome), and the Heston model makes no exception. The behaviour of the implied volatility
in limiting cases (extreme strikes, short and large maturities) can still be attentively studied
using different asymptotic techniques, as we have seen in Chapter 3 for the large strike limits,
but it is indeed a challenge to analytically describe the whole implied volatility surface at
once. In Chapter 6 in Part II, we remark that, exploiting the knowledge of characteristic
functions in the Heston model, semi-closed formulae for the implied volatility (i.e., formulae
involving the integral of an explicit function) can be actually obtained at some very specific
points. It this basis point is sufficiently meaningful (this will be, of course, the At-The-Money
point), one can exploit this semi-closed formula to build efficient analytical approximations
of the whole smile. To fix ideas, fix a maturity T and recall the implied volatility σ(T, x) as a
function of log-moneyness x := log(K/F0) from (1.2.7). Suppose that a formula is available
for the value of σ at the At-The-Money (ATM) point x = 0: since the slopes of the function
k 7→ σ2(T, x) for x→ ±∞ are known in semi-closed form using (1.2.8), to restore the whole
time T -slice of the smile we need to make an interpolation choice between the ATM value
and the behaviour for large values of |x|. To this scope, an approach is to choose a suitable
parametric family of curves. It turns out that a choice which is very well suited for this kind
of operation within the Heston model is given by the Stochastic Volatility Inspired (SVI)
parametric model proposed by J. Gatheral in [28], which we take into consideration in the
second part this thesis.

Chapter 5, then, is devoted to the SVI model. We overview the main properties of the
model and deal with the problem of the calibration to the market smile.
Parametric models are of common use in the treatment of the volatility surface. Apart from
the extrapolation of smile points, they provide a smoothing of the market smile and the
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consequent facilities in the calibration of stochastic models for the underlying (including the
reconstruction of a local volatility surface via Dupire’s formula). SVI corresponds to the
following parametric family of curves:

σSV I(x)2 = a+ b
(
r(x−m) +

√
(x−m)2 + γ2

)
. (1.4.1)

where σ2
SV I is the implied variance at fixed time-to-maturity T , x the log-moneyness x =

log(K/F0) and a, b, ρ,m, γ are the model parameters. (5.1.1) is known as the Stochastic
Volatility Inspired (SVI) model since the functional form has been inspired by the results on
the large-time asymptotics of implied variance in the Heston model. It is widely known that
the SVI parameterisation (5.1.1) proves to have outstanding performances in the calibration to
single-maturity slices of the implied smile on Equity indexes. Nevertheless, it is also common
knowledge that the least square calibration of (5.1.1) is typically affected by the presence
of several local minima. To our experience, even when SVI is calibrated to simulated data,
i.e. a smile produced by SVI itself, local minima that are difficult to sort out (least square
objective ≈ 10−8 for reasonable volatilities, σ ≈ 20% − 40%) are found far away from the
global one (objective = 0). This unpleasant feature brings some difficulties, when one wants
to design a reliable and robust parameter identifications strategy in SVI model. Because of
the local minima, the same smile can be - remarkably well - calibrated with sets of parameters
that are totally different one from the other. As a result, the solution yield by a least square
optimizer usually displays a strong dependence on the input starting point. The big issue,
then, becomes the stability of calibrated parameters through time-to-maturity. This feature
comes into play in a significant way when one is trying to parameterize the whole volatility
surface.

In Chapter 5, we present a procedure providing a trustworthy and robust calibration of the
SVI parametric form (5.1.1), having the pleasant feature to be almost insensitive to the initial
parameter guess. We rely on some simple observations on the symmetries of the functional
form (5.1.1) (cf. §5.3.1) to downsize the minimization problem from dimension 5 (the number
of parameters in (5.1.1)) to dimension 2 (namely, m and γ), while the optimization over the
remaining 3 is performed exactly (except for a few minimum searches in dimension 1, which
can nevertheless be performed accurately and fast). Last but not least, the method yields
an optimal parameter set which is automatically consistent with the arbitrage constraint on
the slopes of implied variance. The performances of this calibration strategy are displayed
by some numerical tests in section 5.4.

In Chapter 6 we implement the approach to the approximation of implied volatility we
have outlined at the beginning of this section. In particular, we provide semi-closed formulae
for the ATM curve t → σ(t, 0). These formulae do not apply only to Heston, but to any
continuous model that allows for an explicit computation of the Laplace transform of the
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quadratic variation of the log price Xt. We formulate our results under the assumption that
the smile is symmetric, namely σ(t, x) = σ(t,−x) for all t ≥ 0 and x ∈ R. Of course, this
assumption introduces a considerable simplification and is not realistic in financial markets,
whose smile are typically skewed, nevertheless the results we provide can be straightforwardly
applied to a skewed smile by considering a displaced model, as we show in section 6.4. We
consider symmetric smiles since they enjoy some useful properties. In particular, Tehranchi
[63] recently showed that for any price process which is a continuous martingale, a symmetric
smile characterises the law of the log-price Xt conditional to its quadratic variation 〈X〉t,
precisely

P(Xt ∈ dy|〈X〉t) = N
(
−1

2
〈X〉t, 〈X〉t

)
(dy) (1.4.2)

where N (µ, σ2) is the Gaussian law of mean µ and variance σ2. Then, the main idea is
to combine this result with the identities relating the log price cumulative distribution and
density on the one hand and, on the other, the implied volatility and its second derivative at
the ATM point x = 0:

P(Xt > 0) = N
(
−tσ(t, 0)

2

)
, pt(0) =

exp
(
− tσ2(t,0)

8

)
√

2πt σ2(t, 0)

(
1 + t ∂2

xσ
2(t, x)|x=0

)
(1.4.3)

where N is the standard normal cdf and pt(·) is the density of Xt (we remark that we are in
a situation where the law of Xt, t > 0, actually admits a density, thanks to (1.4.2)). In the
first part of this thesis, we have focused on the estimation of P(Xt > y) and pt(y) for large
values of y, in general situations and classes of models. Now, exploiting the consequence
(1.4.2) of the symmetric smile assumption, together with some properly designed integral
representations of the normal density and cumulative distribution (cf. Lemmas 6.2.2 and
6.2.1), we can provide an exact computation of these two quantities, for any value of y. The
result reads as follows:

Proposition 1.4.1 (Proposition 6.2.4, Chapter 6). Under the assumption of a symmetric
smile, for every t > 0 the density pt and the cdf P(Xt > ·) of the log forward price Xt satisfy

pt(y) =
e−

y
2

π
√

2

∫ ∞
0

cos
(√

2zy
)

√
z

E
[
e−(z+ 1

8
)〈X〉t

]
dz,

P(Xt > y) =
1

4
√

2π
e−

y
2

∫ ∞
0

cos(
√

2zy)− 2
√

2z sin(
√

2zy)√
z(z + 1

8
)

E
[
e−(z+ 1

8
)〈X〉t

]
dz

(1.4.4)

for every y ∈ R.

It is clear, then, that in models where the Laplace transform of the quadratic variation 〈X〉t
is explicitly known, the integral representations (1.4.4) translate into semi-closed formulae
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for the density and the cdf of Xt. Using this formulae for y = 0 and inverting the relations
(1.4.3) with respect to σ(t, 0) and ∂2

xσ
2(t, x)|x=0, we get the corresponding formulae for the

ATM implied volatility level and curvature. This is an important consequence, since it allows
us to access detailed information about the time dependence (the Term Structure) of the
smile in the neighborhood of the ATM point, which is usually difficult to work out explicitly.
Since the asymptotic slopes of the smile are provided by the moment formula (1.2.8), we are
only left with the interpolation of the at-the-money and “far-from-the-money” structures. We
make use of a symmetric SVI model with time dependent parameters, namely

σSV I(x)2 = a(t) + b(t)
√
x2 + γ(t)2. (1.4.5)

It is a matter of computation to define a(t), b(t) and γ(t) so that (1.4.5) match the ATM level
and curvature and the asymptotic slopes of the implied volatility. We eventually obtain an
approximation of the smile in any given symmetric model (with known Laplace transform)
involving semi closed-form parameters a(t), b(t) and γ(t). Let us mention that, since (1.4.4)
hold for every y ∈ R, as an additional consequence of Proposition 1.4.1 we obtain a pricing
formula for Vanillas in a general symmetric model.
The Heston model (1.2.2) generates symmetric smiles in the case of zero correlation between
the two driving Brownian motions (this is a general feature of stochastic volatility models, cf.
for example Renault and Touzi [57]). In section 6.3, we implement the integral representation
formulae discussed so far in the framework of the uncorrelated Heston model. In particular,
we concentrate our efforts on the manipulation of the resulting semi-closed formulae in order
to make the numerical implementation as stable and straightforward as possible. Starting
from the formulation in (1.4.5), we remove all the possible singularities of the integrands
and squeeze the integration over the bounded interval [0, 1]. The final formulae, presented
in Propositions 6.3.1 and 6.3.4, only involve the integrals of bounded functions over the fixed
interval [0, 1], a feature which is extremely convenient for numerical purposes. Last but not
least, as a result of working only with Laplace transforms and not with Fourier transforms, in
the final formulae we avoid complex integrals, which are typically more difficult to deal with.
Some numerical experiments in section 6.5 show the validity of our results for the Heston
model: the formula for the ATM implied volatility proves to be extremely accurate, and the
time-dependent SVI approximation displays considerable performances in a wide range of
maturities and strikes (cf. the discussion in section 6.5, Tables 6.1-6.2 and Figures 6.2-6.3).

The body of this document is organized as follows. Each chapter contains an Introduction,
the presentation of the main results with detailed proofs of all the involved technical lemmas
and possibly a conclusion, and can therefore be read as a stand-alone part of the document.
The Introduction of each chapter, then, borrows some parts of the current introductory
section, adding more technical information and a more specific presentation of the material.
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Part I

Tail Asymptotics for SDEs with locally
smooth coefficients
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Chapter 2

Smoothness and upper bounds on
densities for SDEs

Abstract

We study smoothness of densities for the solutions of SDEs whose co-
efficients are smooth and nondegenerate only on an open domain D.
We prove that a smooth density exists on D and give upper bounds
for this density. Under some additional conditions (mainly dealing with
the growth of the coefficients and their derivatives), we formulate upper
bounds that are suitable to obtain asymptotic estimates of the density
for large values of the state variable (“tail” estimates). These results
specify and extend some results by Kusuoka and Stroock in [43], but our
approach is substantially different and based on a technique to estimate
the Fourier transform inspired from Fournier [26] and Bally [5]. This
study is motivated by existing models for financial securities which rely
on SDEs with non-Lipschitz coefficients. Indeed, we apply our results to
a square root-type diffusion (CIR or CEV) with coefficients depending on
the state variable, i.e. a situation where standard techniques for density
estimation based on Malliavin calculus do not apply. We establish the
existence of a smooth density, for which we give exponential estimates
and study the behaviour at the origin (the singular point).

Keywords: Smoothness of Densities, Stochastic Differential Equations, Tail estimates,
Irregular Coefficients, Malliavin calculus

Note

The results in this chapter are due to appear in the article [51] in the Annals of Applied Prob-
ability. I would like to thank my advisor Prof. Vlad Bally for many stimulating discussions
on the content of this chapter, Prof. Alexander Yu. Veretennikov of University of Leeds for
insights on equations with square root coefficients and an anonymous referee who read the
first version of [51] and helped me improving the presentation.
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2.1 Introduction

It is well known that Malliavin calculus is a tool which allows, among other things, to prove
that the law of a diffusion process admits a smooth density. More precisely, if one assumes
that the coefficients of an SDE are bounded C∞ functions with bounded derivatives of any
order and that, on the other hand, the Hormandër condition holds, then the solution is
a smooth functional in Malliavin’s sense and it is nondegenerate at any fixed positive time.
Then, the general criterion given by Malliavin [50] allows to say that the law of such a random
variable is absolutely continuous with respect to the Lebesgue measure and its density is a
smooth function (see [54] for a general presentation of this topic).

The aim of this chapter is to relax the aforementioned conditions on the coefficients:
roughly speaking, we assume that the coefficients are smooth only on an open domain D

and have bounded partial derivatives therein. Moreover, we assume that the nondegeneracy
condition on the diffusion coefficient holds true onD only. Under these assumptions, we prove
that the law of a strong solution to the equation admits a smooth density on D (Theorem
2.2.1). Furthermore, when D is the complementary of a compact ball and the coefficients
satisfy some additional assumptions on D (mainly dealing with their growth and the one
of derivatives), we give upper bounds for the density for large values of the state variable
(Theorem 2.2.2). We will occasionally refer to these aymptotic estimates of the density
as to “tail estimates” or estimates on the density’s “tails”. As we have pointed out in the
Introduction of this thesis, local results have already been obtained by S. Kusuoka and D.
Stroock in [43], section 4. Let us recall that here the authors work under local regularity and
nondegeneracy hypotheses, too, but the upper bounds they provide on the density are mostly
significant on the diagonal (i.e. close to the starting point), but they are not appropriate for
tail estimates. Moreover, the constants appearing in their estimates are not explicit (cf.
(4.7)-(4.9) in Theorem 4.5 in [43] and the corresponding estimates in Corollary 4.10). In the
present chapter, we provide upper bounds that are suitable for tail estimates and we find out
the explicit dependence of the bounding constants with respect to the coefficients of the SDE
and their derivatives. Our bounds turn out to be applicable to the case of diffusions with tails
stronger than Gaussian. This is what happens in the framework of square-root diffusions,
which is our major example of interest (see further below and section 2.3). Also, our approach
is substantially different from the one in [43]. In particular, we rely on a Fourier transform
argument, employing a technique to estimate the Fourier transform of the process inspired
from the work of N. Fournier in [26] and of V. Bally in [5] and relying on specifically-designed
Malliavin calculus techniques. We estimate the density pt(y) of the diffusion at a point y ∈ D
performing an integration by parts that involves the contribution of the Brownian noise only
on an arbitrarily small time interval [t− δ, t]: this allows us to gain a free parameter δ that
we can eventually optimize, and the appropriate choice of δ proves to be a key point in our
argument. We do not study here the regularity with respect to initial condition (which may
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be the subject of future work).

As in the Introduction of this thesis, our study is motivated by applications in Finance,
in particular by the study of models for financial securities which rely on SDEs with non-
Lipschitz coefficients. The main examples of such models (CIR, CEV, SABR, Heston) are
recalled in §1.2.1. In this chapter, we apply our results to one dimensional SDEs of the form

Xt = x+

∫ t

0

(a(Xs)− b(Xs)Xs)ds+

∫ t

0

γ(Xs)X
α
s dWt, (2.1.1)

where α ∈ [1/2, 1) and a, b and γ are C∞b functions. When the coefficients a, b, σ are
constant, the solutions to this class of equations include the classical CIR process (α = 1/2)
and a subclass of the CEV local volatility diffusions (when a ≡ b ≡ 0). As pointed out by
M. Bossy and A. Diop in [12], SDEs with square-root terms and coefficients depending on
the level of the state variable arise as well in the context of the modelization of turbulent
flows in fluid mechanics. Recall from the Introduction that for the CIR and CEV processes
the density of Xt is known explicitly: then, the main contribution of our results lies in the
fact that they apply to the more general framework of SDEs whose coefficients are functions
of the state variable, thus when explicit computations are no longer possible. Theorem
2.2.2 directly applies and tells that Xt admits a smooth density on (0,+∞): under some
additional conditions on the coefficients (mainly dealing with their asymptotic behaviour at
∞ and zero) we give exponential-type upper bounds for the density at infinity (Proposition
2.3.3) and study the explosive behaviour of the density at zero (Proposition 2.3.4). The
explicit expressions of the densities of the classical CIR (1.2.5) and CEV processes (1.2.6)
show that our estimates are in the good range.

The Chapter is organized follows: in section 2.2 we present our main results on SDEs
with locally smooth coefficients (§2.2.1) and we collect all the technical elements we need to
give their proofs. In particular, in §2.2.2 we recall the basic tools of Malliavin calculus on the
Wiener space, which will be used in §2.2.3 to obtain some explicit estimates of the L2-norms
of the weights involved in the integration by parts formula. This is done following some
standard techniques of estimation of Sobolev norms and inverse moments of the determinant
of the Malliavin matrix (as in [54] and [17], section 4), but in our computations we explicitly
pop out the dependence with respect to the coefficients of the SDE and their derivatives. This
further allows to obtain the explicit estimates on the density tails. section 2.2.4 is devoted to
the proof of the theorems stated in §2.2.1. We employ the Fourier transform argument and
the optimized integration by parts we have discussed above. Finally, in section 2.3 we apply
our results to the solutions of (2.1.1).
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2.2 Smoothness and upper bounds on densities for SDEs

with locally smooth coefficients

2.2.1 Main results

In what follows, b and σj are measurable functions from Rm into Rm, j = 1, . . . , d. For
y0 ∈ Rm and R > 0, we denote by BR(y0) (resp. BR(y0)) the open (resp. closed) ball
BR(y0) = {y ∈ Rm : |y − y0| < R} (resp. BR(y0) = {y ∈ Rm : |y − y0| ≤ R}), where | · |
stands for the Euclidean norm. We follow the usual notation denoting C∞b (A) the class of
infinitely differentiable functions on the open set A ⊆ Rm which are bounded together with
their partial derivatives of any order. For a multi-index α ∈ {1, . . . ,m}k, k ≥ 1, ∂α denotes
the partial derivative ∂k

∂xα1
...∂xαk

.
Let 0 < R ≤ 1 and y0 ∈ Rm be given. We consider the SDE

X i
t = xi +

∫ t

0

bi(Xs)ds+
d∑
j=1

∫ t

0

σij(Xs)dW
j
s , t ∈ [0, T ], i = 1, . . . ,m (2.2.1)

for a finite T > 0 and x ∈ Rm, and assume that the following hold:

(H1) (local smoothness) b, σj ∈ C∞b (B5R(y0); Rm);

(H2) (local ellipticity) σσ∗(y) ≥ cy0,R Im for every y ∈ B3R(y0), for some 0 < cy0,R < 1;

(H3) existence of strong solutions holds for the couple (b, σ).

Let then (Xt; t ∈ [0, T ]) denote a strong solution of (2.2.1). Our first main result follows.

Theorem 2.2.1. Assume (H1), (H2) and (H3). Then for any initial condition x ∈ Rm

and any 0 < t ≤ T , the random vector Xt admits an infinitely differentiable density pt,y0 on
BR(y0). Furthermore, for any integer k ≥ 3 there exists a positive constant Λk depending
also on y0, R, T , m, d and on the coefficients of equation (2.2.1) such that, setting

Pt(y) = P
(
inf{|Xs − y| : s ∈ [(t− 1) ∨ t/2, t]} ≤ 3R

)
,

then one has
pt,y0(y) ≤ Pt(y0)

(
1 +

1

tm3/2

)
Λ3 (2.2.2)

for any y ∈ BR(y0). Analogously, for every α ∈ {1, . . . ,m}k, k ≥ 1,

|∂αpt,y0(y)| ≤ Pt(y0)

(
1 +

1

tm(2k+3)/2

)
Λ2k+3 (2.2.3)

for every y ∈ BR(y0).
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The functional dependence of Λk with respect to y0, R, T and to the bounds on the coefficients
b and σ is known explicitly. We provide the expression of Λk in section 2.2.4, in a more detailed
version of Theorem 2.2.1 (Th. 2.2.4) which we do not give here for the simplicity of notation.

When the coefficients of (2.2.1) are smooth outside a compact ball and have polynomial
growth together with their derivatives therein, by Theorem 2.2.1 a smooth density exists
outside the same compact, and one can deduce some more easily-read bounds on the tails.
More precisely, we consider the following assumptions:

(H1’) there exist η ≥ 0 such that b, σj are of class C∞ on Rm \Bη(0), and (H2) holds for any
R > 0 and y0 such that B3R(y0) ⊂ Rm \Bη(0);

(H4) there exist q, q > 0 and positive constants 0 < C0 < 1 and Ck, k ≥ 1, such that for any
α ∈ {1, . . . ,m}k

|∂αbi(y)|+ |∂ασij(y)| ≤ Ck(1 + |y|q) (2.2.4)

and
σσ∗(y) ≥ C0|y|−q Im (2.2.5)

hold for |y| > η.

Theorem 2.2.2. Assume (H1’) and (H3).

(a) For any initial condition x ∈ Rm and for any 0 < t ≤ T , Xt admits a smooth density
on Rm \Bη(0).

(b) Assume (H4) as well. Then estimates (2.2.2) and (2.2.3) hold with R = 1 and

Λk = Λk(y0) := Ck,T
(
1 + |y0|q

′
k(q)
)
, (2.2.6)

for every |y0| > η+5. The value of the exponent q′k(q) is explicitly known (and provided
in Theorem 2.2.5).

(c) If moreover sup0≤s≤t |Xs| has finite moments of all orders, then for every p > 0 and
k ≥ 1 there exist positive constants Ck,p,T such that

|pt(y)| ≤ C3,p,T

(
1 +

1

tm3/2

)
|y|−p

|∂αpt(y)| ≤ Ck,p,T

(
1 +

1

tm(2k+3)/2

)
|y|−p, α ∈ {1, . . . ,m}k

(2.2.7)

for every 0 < t ≤ T and every |y| > η + 5.

In the previous, the Ck,p,T are positive constants depending on k, p, T and also on m, d and
on the bounds (2.2.4) and (2.2.5) on the coefficients.

The proofs of these results will be given in section 2.2.4.
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Notation Through the rest of the chapter, < ·, · > will denote the Euclidean scalar product
in Rm, while the notation | · | will be used both for the absolute value of real numbers and
for the Euclidean norm in Rm. Furthermore, when Θ = θ1, . . . , θν is a family of parameters,
unless different specified by CΘ we denote a constant depending on the θi’s but not on any
of the other existing variables. All constants of such a type may vary from line by line, but
always depend only on the θi’s. For functions of one variable, the k-th derivative will be
denoted by dkf

dxk
or f (k). Finally, we will follow the convention of summation over repeated

indexes, wherever present.

2.2.2 Elements of Malliavin Calculus

We recall hereafter some elements of Malliavin calculus on the Wiener space, following [54].
Let W = (W 1

t , . . . ,W
d
t ; t ≥ 0) be a d-dimensional Brownian motion defined on the canonical

space (Ω,F ,P). For fixed T > 0, let H be the Hilbert space H = L2([0, T ]; Rd). For any
h ∈ H we setW (h) =

∑d
j=1

∫ T
0
hj(s)dW j

s , and consider the family S ⊂ L2(Ω,F ,P) of smooth
random variables defined by

S =
{
F : F = f(W (h1), . . . ,W (hn));h1, . . . , hn ∈ H; f ∈ C∞pol(Rn);n ≥ 1

}
,

where C∞pol denotes the class of C∞ functions which have polynomial growth together with
their derivatives of any order.
The Malliavin derivative of F ∈ S is the d-dimensional stochastic processDF = (D1

rF, . . . , D
d
rF ; r ∈

[0, T ]) defined by

Dj
rF =

n∑
i=1

∂f

∂xi
(W (h1), . . . ,W (hn))hji (r), j = 1, . . . , d.

For any positive integer k, the k-th order derivative of F is obtained by iterating the derivative
operator: for any multi-index α = (α1, . . . , αk) ∈ {1, . . . , d}k and (r1, . . . , rk) ∈ [0, T ]k, we set
Dα1,...,αk
r1,...rk

F := Dα1
r1
· · ·Dαk

rk
F . Given p ≥ 1 and positive integer k, for every F ∈ S we define

the seminorm

||F ||k,p =

(
E[|F |p] +

k∑
h=1

E
[
||D(h)F ||p

H⊗h

])1/p

,

where

||D(k)F ||H⊗k =

(∑
|α|=k

∫
[0,T ]k

∣∣Dα1,...,αk
r1,...rk

F
∣∣2dr1 · · · drk

)1/2

,

and the sum is taken over all the multi-indexes α = (α1, . . . , αk) ∈ {1, . . . , d}k. We denote
with Dk,p the completion of S with respect to the seminorms || · ||k,p, and we set D∞ =

∩p≥1 ∩k≥1 Dk,p. We may occasionally refer to ||F ||k,p as the stochastic Sobolev norm of F .
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In a similar way, for any separable Hilbert space V we can define the analogous spaces Dk,p(V )

and D∞(V ) of V -valued random variables with the corresponding || · ||k,p,V semi-norms (the
smooth functionals being now of the form F =

∑n
j=1 Fjvj, where Fj ∈ S and vj ∈ V ). In

particular, for any Rd-valued process (us; s ≤ t) such that us ∈ Dk,p for all s ∈ [0, t] and

||u||H +
k∑

h=1

||D(h)u||H⊗h+1 <∞ P-a.s.,

we have

||u||k,p,H =

(
E[||u||pH] +

k∑
h=1

E
[
||D(h)u||p

H⊗h+1

])1/p

.

Finally, we denote by δ the adjoint operator of D.

One of the main applications of Malliavin calculus consists in showing that the law of a
nondegenerate random vector F = (F 1, . . . , Fm) ∈ (D∞)m admits an infinitely differentiable
density. The property of nondegeneracy, understood in the sense of the Malliavin covariance
matrix , is introduced in the following

Definition 2.2.1. A random vector F = (F 1, . . . , Fm) ∈ (D∞)m, m ≥ 1, is said to be
nondegenerate if its Malliavin covariance matrix σF , defined by

(σF )i,j =< DF i, DF j >H, i, j = 1, . . . ,m,

is invertible a.s. and moreover
E[det(σF )−p] <∞

for all p ≥ 1.

The key tool to prove smoothness of the density for a nondegenerate random vector is the
following integration by parts formula (cf. [54]).

Proposition 2.2.1. Let F = (F 1, . . . , Fm) ∈ (D∞)m, m ≥ 1, be a nondegenerate random
vector. Let G ∈ D∞ and φ ∈ C∞pol(Rm). Then for any k ≥ 1 and any multi-index α =

(α1, . . . , αk) ∈ {1, . . . ,m}k there exists a random variable Hα(F,G) ∈ D∞ such that

E [∂αφ(F )G] = E [φ(F )Hα(F,G)] , (2.2.8)

where the Hα(F,G) are recursively defined by

Hα(F,G) = H(αk)(F,H(α1,...,αk−1)(F,G)),

H(i)(F,G) =
m∑
j=1

δ
(
G(σ−1

F )i,jDF
j
)
.
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2.2.3 Explicit bounds on integration by parts formula for diffusion

processes

The notation of this section is somehow cumbersome, as we try to keep our bounds as general
and as accurate as possible. The framework will nevertheless considerably simplify in section
2.2.4, when we will give the proofs of the results stated in section 2.2.1.

Throughout this section, X = (Xt; t ≥ 0) will denote the unique strong solution of the
SDE

X i
t = xi +

∫ t

0

Bi(Xs)ds+
d∑
j=1

∫ t

0

Aij(Xs)dW
j
s , t ≥ 0, i = 1, . . . ,m, (2.2.9)

where x ∈ Rm and Bi, Aij ∈ C∞b (Rm) for all i = 1, . . . ,m and j = 1, . . . , d. We assume that
the diffusion matrix A satisfies the following ellipticity condition at starting point x:

(E) A(x)A(x)∗ ≥ c∗Im,

for some c∗ > 0, where ·∗ stays for matrix transposition. Without loss of generality, we will
suppose c∗ < 1.
We recall that the first-variation process of X is the matrix-valued process

(Yt)i,j =
∂X i

t

∂xj
, i, j = 1, . . . ,m

which satisfies the following equation, written in matrix form:

dYt = Im +

∫ t

0

∂B(Xs)Ysds+
d∑
l=1

∫ t

0

∂Al(Xs)YsdW
l
s,

where ∂B and ∂Al are respectively the m ×m matrices of components (∂B)i,j = ∂jB
i and

(∂Al)i,j = ∂jA
i
l. By means of Itô’s formula, one shows that Yt is invertible and that the

inverse Zt := Y −1
t satisfies the equation

Zt = Im −
∫ t

0

Zs

{
∂B(Xs)−

d∑
l=1

(∂Al(Xs))
2
}
ds−

d∑
l=1

∫ t

0

Zs∂Al(Xs)dW
l
s. (2.2.10)

Additional notation. For k ≥ 0, we define

|B|k = 1 +
m∑
i=1

∑
0≤|α|≤k

sup
x∈Rm

|∂αBi(x)|,

|A|k = 1 +
∑
i,j

∑
0≤|α|≤k

sup
x∈Rm

|∂αAij(x)|,

(2.2.11)
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where |α| is the length of the multi-index α. Then, for p ≥ 1 and t ≥ 0 we set

ep(t) := et
p/2(t1/2|B|1+|A|1)p (2.2.12)

and
eZp (t) := et

p/2(t1/2(|B|1+|A|21)+|A|1)
p

. (2.2.13)

The constants in (2.2.12) and (2.2.13) naturally arise when estimating the moments of the
random variables Xt, Yt and Zt. Indeed, the results given in the following proposition can
be easily obtained from (2.2.9) and (2.2.10) applying Burkholder’s inequality and Gronwall’s
lemma.

Proposition 2.2.2. For every p > 1 there exists a positive constant Cp,m depending on p and
m but not on the bounds on B and A and their derivatives such that, for every 0 ≤ s ≤ t ≤ T ,

i) E
[

sup
s≤r≤t

|X i
r −X i

s|p
]
≤ Cp,m(t− s)p/2

(
(t− s)1/2|B|0 + |A|0

)p
, (2.2.14)

ii) sup
s≤t

E [|(Zs)i,j|p] ≤ Cp,me
Z
p (t)Cp,m (2.2.15)

for all i, j = 1, . . . ,m.

For any t > 0, the iterated Malliavin derivative of Xt is the solution of a linear SDE. The
coefficients of this equation are bounded, hence it is once again a straightforward application
of Gronwall’s lemma to show that the random variables Dα1,...,αk

r1,...,rk
Xt have moments of any

order which are finite and uniformly bounded in r1, . . . , rk. This is indeed the content of [54],
Th. 2.2.2. The following lemma highlights the explicit constants appearing in the estimates
of the Lp-norms of the iterated derivative, expressing them in terms of the bounds (2.2.11)
on A and B.

Lemma 2.2.1. For every k ≥ 1 and every p > 1 there exist a positive integer γk,p and a pos-
itive constant Ck,p depending on k, p but not on the bounds on B and A and their derivatives
such that, for any t > 0,

sup
r1,...,rk≤t

E
[∣∣Dj1,...,jk

r1,...,rk
X i
t

∣∣p] ≤ Ck,p|A|kpk−1

(
t1/2|B|k + |A|k

)(k+1)2p
ep(t)

γk,p , (2.2.16)

for all i = 1, . . . ,m and (j1, . . . , jk) ∈ {1, . . . , d}k.

The proof of this result is based on some standard but rather cumbersome computations,
hence we skip it to Appendix 2.4.1. We rather give hereafter the proof of some estimates
which follow easily from Lemma 2.2.1 and will be useful in the following sections.
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Corollary 1. For any k ≥ 1 and p > 1, there exists a positive constant Ck,p depending only
on k and p such that, for any t > 0,

i) E
[
||D(k)X i

t ||
p

H⊗k

]1/p

≤ Ck,p t
k/2|A|kk−1

(
t1/2|B|k + |A|k

)(k+1)2

ep(t)
γk,p ; (2.2.17)

ii) ||φ(Xt)||k,p ≤ Ck,p ||φ||k
(
1 +

(
t ∨ tk

)1/2)|A|kk−1

(
t1/2|B|k + |A|k

)(k+2)2

ep(t)
kγk,p , (2.2.18)

where i) holds for i = 1, . . . ,m and ii) for any φ ∈ C∞(Rm).

Proof. i) Employing the definition of || · ||H⊗k and Lemma 2.2.1, a simple computation holds:

E
[
||D(k)X i

t ||
p

H⊗k

]1/p

≤ Ck,p

{
tk(

p
2
−1)
∫

[0,t]k
E
[

sup
|α|=k

∣∣Dα1,...,αk
r1,...rk

X i
t

∣∣p]dr1 · · · drk
}1/p

≤ Ck,p t
k/2|A|kk−1

(
t1/2|B|k + |A|k

)(k+1)2

ep(t)
γk,p/p,

hence we get bound (2.2.17).
ii) We start from the definition of || · ||k,p and write:

||φ(Xt)||k,p =

(
E[|φ(Xt)|p] +

k∑
h=1

E
[
||D(h)φ(Xt)||pH⊗h

])1/p

≤ ||φ||0 +
k∑

h=1

E
[
||D(h)φ(Xt)||pH⊗h

]1/p

.

(2.2.19)

Using the notation introduced in the proof Lemma 2.2.1, we have :

D(h)φ(Xt) =
∑

I1,...,Iν={1,...,h}

∂k1 · · · ∂kνφ(Xt)
ν∏
l=1

D(card(Il))Xkl
t ,

where, with a slight abuse of notation, we have now written D(h) for the generic derivative
of order h. Repeatedly applying Holder’s inequality for Sobolev norms and using bound
(2.2.17), we get:

E
[
||D(h)φ(Xt)||pH⊗h

]
≤ ch,p

∑
h1,...,hν=1,...,h

h1+···+hν=h

E
[∥∥∥∂k1 · · · ∂kνφ(Xt)

ν∏
l=1

D(hl)Xkl
t

∥∥∥p
H⊗h

]

≤ ch,p||φ||ph
∑

h1,...,hν=1,...,h

h1+···+hν=h

sup
i=1,...,m

ν∏
l=1

E
[
||D(hl)X i

t ||
2lp

H⊗hl

]1/2l

≤ ch,p||φ||ph
{
th/2|A|hh−1

(
t1/2|B|h + |A|h

)(h+2)2
}p
ep(t)

hγh,p .
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By means of this bound, from (2.2.19) we get the desired estimate when setting Ck,p ≥
max{ch,p : h ≤ k}.

We need a last preliminary result on the inverse moments of the determinant of the Malli-
avin covariance matrix of Xt. This result is again achieved with some standard arguments:
but, as in Lemma 2.2.1, the next lemma finds out the explicit constants appearing in the
estimate of the Lp-norms of det(σXt)

−1.

Lemma 2.2.2. For every p > 1 and t > 0,

E
[
|detσXt |

−p]1/p ≤ Cp,m,d e
Z
4(mp+1)(t)

Cp,m,dKm(t, c∗), (2.2.20)

where
Km(t, c∗) = 1 +

(
4

tc∗
+ 1

)m
+

1

c
2(m+1)
∗

(
t1/2||B||0||A||32 + ||A||21

)2(m+1)

for some positive constant Cp,m,d depending on p,m and d but not on the bounds on B and
A and their derivatives.

The proof is once again postponed to Appendix 2.4.1.
We now come to the main result of this section. We give an estimate of the L2-norm of

the random variables Hα involved in the integration by parts formula (2.2.8), when F = Xt.
The proof follows the arguments of [17], proof of Lemma 4.11, but is given in the general
setting of an integration by parts of order k ∈ N, and moreover it takes advantage of the
explicit bounds which have been obtained in Corollary 1 and Lemma 2.2.2.
We give this result employing some slightly more compact notation, defining:

Pk(t) = t1/2|B|k + |A|k;

PA
k (t) = |A|kPk+1(t).

Theorem 2.2.3. For every k ≥ 1 there exists a positive constant Ck = Ck,m,d such that, for
any multi-index α ∈ {1, . . . ,m}k, any G ∈ D∞ and t > 0,

||Hα(Xt, G)||0,2 ≤ Ck ||G||k,2k+1

(
t−

k
2 ∨ t

k(k−1)
2

)(
tmKm(t, c∗)

) k(k+3)
2

×
(
PA
k

)φk(e8(t) ∨ e2k+2(t)
)Ck(

eZ32m+4(t) ∨ eZ2k+4m+4(t)
)Ck (2.2.21)

where Km(t, c∗) has been defined in Lemma 2.2.2, and

φk = 3m(k + 4)2.

Remark 2.2.1. Estimate (2.2.21) is rather involved. For our purposes, the most important
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elements are: the dependence with respect to time of the factor t−
k
2 ∨t

k(k−1)
2 and the coefficient

PA
k containing the bounds on the derivatives of the coefficients. We remark that the factor
tmKm(t, c∗) is bounded for t close to zero. Moreover, when t < 1, the factor t−

k
2 ∨ t

k(k−1)
2

reduces to t−
k
2 .

Proof. We write σt = σXt for simplicity of notation. We first use the continuity of δ (see [17],
Proposition 4.5) and Holder’s inequalities for Sobolev norms to obtain :

||H(α1,...,αk)(Xt, G)||0,2 = ||H(αk)(Xt, H(α1,...,αk−1)(Xt, G))||0,2

=

∥∥∥∥ m∑
j=1

δ
(
H(α1,...,αk−1)(Xt, G)(σ−1

t )αk,jDX
j
t

) ∥∥∥∥
0,2

≤ Cm||H(α1,...,αk−1)(Xt, G)||1,4
m∑
j=1

||(σ−1
t )αk,j||1,8||DX

j
t ||1,8,H. (2.2.22)

To estimate the last factor we can directly use the definition of || · ||k,p,H and apply Corollary
1. The major part of the efforts in the rest of the proof will be targeted on the estimation of
||(σ−1

t )i,j||k,p.
We claim that for any k ≥ 1, p > 1 and for all i, j = 1, . . . ,m,

||(σ−1
t )i,j||k,p ≤ ck,p

(
t−1 ∨ t

k
2
−1
)

(tmKm(t, c∗))
1+k

× PA
k (t)φ

′
k+2(k+4)2ep(t)

ck,p eZ4(mp+1)(t)
ck,p ,

(2.2.23)

where
φ′k = 2(k + 1)(m− 1)

and ck,p is a positive constant depending also on m, d but not on t and on the bounds on
B and A and their derivatives. Iterating process (2.2.22) and repeatedly using estimates
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(2.2.23) and (2.2.17), one easily obtains the desired estimate:

||H(α1,...,αk)(Xt, G)||0,2 ≤ Ck,m,d ||G||k,2k+1

(
tmKm(t, c∗)

)k
×

k∏
h=1

(
t−1 ∨ t

h
2
−1
)(
t ∨ th

) 1
2
(
tmKm(t, c∗)

)h
× PA

k (t)k(φ′k+2(k+4)2+(k+1)2)

×
k∏

h=1

e2h+2(t)ch,m,d eZ4(2h+2m+1)(t)
ch,m,d

≤ Ck,m,d ||G||k,2k+1

(
tmKm(t, c∗)

) k(k+3)
2

×
(
t−

k
2 ∨ t

k(k−1)
2

)
PA
k (t)φk

×
(
e8(t) ∨ e2k+2(t)

)Ck,m,d (
eZ32m+4(t) ∨ eZ2k+4m+4(t)

)Ck,m,d
.

Proof of (2.2.23). We follow [17], proof of Lemma 4.11. We start from the definition of
|| · ||k,p and write:

||(σ−1
t )i,j||k,p =

(
E
[
|(σ−1

t )i,j|p
]

+
k∑

h=1

E
[
||D(h)(σ−1

t )i,j||pH⊗h
])1/p

. (2.2.24)

For the first term, we simply use Cramer’s formula for matrix inversion,

|(σ−1
t )i,j| = (detσt)

−1σ
(i,j)
t ,

where σ(i,j)
t denotes the (i, j) minor of σt. We then apply Holder’s inequality and bounds

(2.2.17) and (2.2.20) and get

E[|(σ−1
t )i,j|p] ≤ c(1)

p,m

{
E
[
det(σt)

−2p
]
E
[
|σ(i,j)
t |−2p

]}1/2

≤ c(1)
p,m

{
E
[
det(σt)

−2p
]

E
[
sup
i
||DX i

t ||
4(m−1)p
H

]}1/2

≤ c
(1)
p,m,d t

−p (tmKm(t, c∗))
p

×
{
|A|0

(
t1/2|B|1 + |A|1

)4
}2(m−1)p

× ep(t)c
(1)
p,m,d eZ4(mp+1)(t)

c
(1)
p,m,d ,

(2.2.25)

where Km(t, c∗) is the constant defined in Lemma 2.2.2. To estimate the second term, as
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done in[17], proof of Lemma 4.11, we iterate the chain rule for D:

D(σ−1
t )i,j = −

m∑
a,b=1

(σ−1
t )i,aD(σt)a,b(σ

−1
t )b,j.

We take advantage of the notation introduced in the proof of Lemma 2.2.1 and for (β1, . . . , βk) ∈
{1, . . . ,m}k, k ≥ 1, we write:

|Dβ1,...,βk
r1,...,rk

(σ−1
t )i,j| ≤∑
I1∪···∪Iν={1,...,k}

m∑
a1,...,aν=1

b1,...,bν=1

|(σ−1
t )i,a1(σ

−1
t )b1,a2 · · · (σ−1

t )bν−1,aν (σ
−1
t )bν ,j|

× |Dβ(I1)
r(I1) (σt)a1,b1 · · ·D

β(Iν)
r(Iν) (σt)aν ,bν |. (2.2.26)

We repeatedly apply Holder’s inequality for Sobolev norms to (2.2.26) and get:

E
[
||D(k)(σ−1

t )i,j||pH⊗k
]
≤ c

(2)
k,p,m

∑
k1,...,kν=1,...,k

k1+···+kν=k

{
sup

a,a1,...,aν=1,...,m

b,b1,...,bν=1,...,m

E
[∥∥(σ−1

t )ν+1
a,b

× D(k1)(σt)a1,b1 · · ·D(kν)(σt)aν ,bν
∥∥p
H⊗k

]}

≤ c
(2)
k,p,m sup

k1,...,kν=1,...,k

k1+···+kν=k

{
sup

a,b=1,...,m
E
[
|(σ−1

t )a,b|(ν+1)p
]

×
ν∏
l=1

sup
al,bl=1,...,m

E
[∥∥D(kl)(σt)al,bl

∥∥2lp

H⊗kl

]1/2l
}
,

(2.2.27)

where, as in the proof of Corollary 1, we have written D(kl) for the generic derivative of order
kl. To estimate D(kl)(σt)al,bl we use bound (2.2.17) and get:

E
[
||D(k)(σt)i,j||pH⊗k

]
≤ E

[∥∥∥∥ k∑
h=0

(
k

h

)∫ t

0

D(h)DsX
i
t ·D(k−h)DsX

j
t

∥∥∥∥p
H⊗k

]

≤ c
(3)
k,p

k∑
h=0

E
[
||D(h)DX i

t ||
2p

H⊗h+1

]1/2

× E
[
||D(k−h)DXj

t ||
2p

H⊗k−h+1

]1/2

≤ c
(3)
k,p t

( k2 +1)p

× |A|(k+2)p
k

(
t1/2|B|k+1 + |A|k+1

)2(k+2)2p
ep(t)

2γk+1,p ,

(2.2.28)

where we have once again applied Holder’s inequality for Sobolev norms in the second step.
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Using (2.2.28) together with (2.2.27), bound (2.2.25) and (2.2.24) and observing that tmKm(t)

is greater than one for all the values of t, we finally obtain

||(σ−1
t )i,j||k,p ≤ ck,p

(
t−1 ∨ t

k
2
−1
)

(tmKm(t, c∗))
1+k

× |A|φ
′
k+k(k+2)

k (t1/2|B|k+1 + |A|k+1)φ
′
k+2(k+4)2

× ep(t)ck,p eZ4(mp+1)(t)
ck,p ,

for a positive constant ck,p depending also on m, d. Estimate (2.2.23) follows.

2.2.4 Proof of Theorems 2.2.1 and 2.2.2

We now come to the proof of the results stated in section 2.2.1. We recall that an Rm-valued
random vector X is said to admit a density on an open set A ∈ Rm if LX |A possesses a
density, LX being the law of X. This is equivalent to say that

E[f(X)] =

∫
R
f(x)p(x)dx (2.2.29)

holds for all f ∈ Cb(R) such that supp(f) ⊂ A, for some positive p ∈ L1(A).

We refer to the setting of section 2.2.1. We recall that X = (Xt; t ∈ [0, T ]) denotes a
strong solution of

X i
t = xi +

∫ t

0

bi(Xs)ds+
d∑
j=1

∫ t

0

σij(Xs)dW
j
s , t ∈ [0, T ], i = 1, . . . ,m, (2.2.30)

where b and σ satisfy the assumptions (H1)-(H3). For k ≥ 1 and f ∈ Ck(Rm), we denote

|f |k,BR(y0) = 1 +
∑
|α|≤k

sup
x∈BR(y0)

|∂αf(x)|, (2.2.31)

where the sum is taken over all the multi-index α ∈ {1, . . . ,m}k. Let us define the following
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“local” version of the constants appearing in the estimates of the previous section:

Pk(t, y0) = t1/2|b|k,B5R(y0) + |σ|k,B5R(y0), P σ
k (t, y0) = |σ|k,B5R(y0)Pk+1(t, y0)

PZ
1 (t, y0) = t1/2

(
|b|1,B5R(y0) + |σ|21,B5R(y0)

)
+ |σ|1,B5R(y0)

PC
m(t, y0) =

(
t1/2|b|0,B5R(y0)|σ|32,B5R(y0) + |σ|21,B5R(y0)

)2(m+1)

Cm(t, y0) = tm +
4m

c
2(m+1)
y0

(
1 + PC

m(t, y0)
)

ep(t, y0) = exp
(
tp/2P1(t, y0)p

)
, eZp (t, y0) = exp

(
tp/2PZ

1 (t, y0)p
)
.

In order to prove Theorem 2.2.1, we simplify this rather heavy notation introducing a constant
that contains the factors appearing in estimate (2.2.21) in Theorem 2.2.3 (recall the constant
φk defined there):

Θk(t, y0, γ) = Cm(t, y0)
mk(mk+3)

2 P σ
mk(t, y0)φmk+(mk+2)2

×
(
e8(t, y0) ∨ e2mk+2(t, y0)

)γ (
eZ32m+4(t, y0) ∨ eZ2mk+4m+4(t, y0)

)γ
.

As addressed in section 2.2.1, the following theorem is a more detailed version of Theorem
2.2.1. In particular, it provides the explicit expression of the constant Λk appearing in
estimates (2.2.2) and (2.2.3).

Theorem 2.2.4. Assume (H1), (H2) and (H3). Then, for any initial condition x ∈ Rm

and any 0 < t ≤ T , the random vector Xt admits an infinitely differentiable density pt,y0 on
BR(y0). Furthermore, for every k ≥ 1 there exists a positive constant Ck = Ck,m,d such that,
setting

Λk(t, y0) = Ck R
−mk

(
P0(t, y0)mk + Θk(t, y0, Ck)

)
(2.2.32)

and
Pt(y) = P

(
inf{|Xs − y| : s ∈ [(t− 1) ∨ t/2, t]} ≤ 3R

)
,

then one has
pt,y0(y) ≤ Pt(y0)

(
1 +

1

tm3/2

)
Λ3(t ∧ 1, y0) (2.2.33)

for every y ∈ BR(y0). Analogously, for any α ∈ {1, . . . ,m}k, k ≥ 1,

|∂αpt,y0(y)| ≤ Pt(y0)

(
1 +

1

tm3/2

)
Λ2k+3(t ∧ 1, y0) (2.2.34)

for every y ∈ BR(y0).

To prove this result we rely on the following classical criterion for smoothness of laws
based on a Fourier transform argument (cf. [54], Lemma 2.1.5).
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Proposition 2.2.3. Let µ be a probability law on Rm, and µ̂(ξ) =
∫

R e
i<ξ,y>µ(dy) its char-

acteristic function. If µ̂ is integrable, then µ is absolutely continuous w.r.t. the Lebesgue
measure and

p(y) =
1

(2π)m

∫
Rm

e−i<ξ,y>µ̂(ξ)dξ (2.2.35)

is a continuous version of its density. If moreover∫
Rm
|ξ|k|µ̂(ξ)|dξ <∞ (2.2.36)

holds for any k ∈ N, then p is of class C∞ and for any multi-index α = (α1, . . . , αk) ∈
{1, . . . ,m}k,

∂αp(y) = (−i)k
∫

R

( k∏
j=1

ξαj
)
e−i<ξ,y>µ̂(ξ)dξ.

Proof (of Theorem 2.2.4). Step 1 (“localized” characteristic function). Fix a t in (0, T ]. Let
φR ∈ C∞b (Rm) be such that 1BR(0) ≤ φR ≤ 1B2R(0) and |φR|k ≤ 2kR−k. We first observe that
if m0 = E[φR(Xt − y0)] is zero, then it just follows that p ≡ 0 is a density for Xt on BR(y0).
Otherwise, we consider Lt,y0 the law on Rm such that∫

Rm
f(y)Lt,y0(dy) =

1

m0

E [f(Xt)φR(Xt − y0)] , (2.2.37)

for all f ∈ Cb(Rm). If Lt,y0 possesses a density, say p′t,y0 , it follows that pt,y0(y) := m0p
′
t,y0

is a density for Xt on BR(y0). Indeed, for any f ∈ Cb such that supp(f) ⊂ BR(y0), (2.2.37)
implies ∫

Rm
f(y)pt,y0(y)dy =

∫
Rm

f(y)m0p
′
t,y0

(y)dy

= m0

∫
Rm

f(y)Lt,y0(dy)

= E [f(Xt)] .

If the characteristic function of Lt,y0

p̂t,y0(ξ) =

∫
Rm

ei<ξ,y>Lt,y0(dy) =
1

m0

E
[
ei<ξ,Xt>φR(Xt − y0)

]
is integrable, then by Proposition 2.2.3 Lt,y0 admits a density. Hence, we focus on the
integrability of p̂t,y0 ; in particular, we show that condition (2.2.36) of Proposition 2.2.3 holds
true for all k ∈ N.
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Moreover, the inversion formula (2.2.35) yields the representation for pt,y0

pt,y0(y) := m0 p
′
t,y0

(y) =
m0

(2π)m

∫
Rm

e−i<ξ,y>p̂t,y0(ξ)dξ

=
1

(2π)m

∫
Rm

e−i<ξ,y>E
[
ei<ξ,Xt>φR(Xt − y0)

]
dξ.

(2.2.38)

Step 2 (localization). We define the coefficients

b
i
(y) = bi(ψ(y − y0)),

σij(y) = σij(ψ(y − y0)),
(2.2.39)

where ψ ∈ C∞(Rm; Rm) (a truncation function) is defined by

ψ(y) =


y if |y| ≤ 4R

5 y
|y| if |y| ≥ 5R

and ψ(y) ∈ B5R(0) for all y ∈ Rm. ψ can be defined in such a way that, for all i = 1, . . . ,m,
||ψi||1 ≤ 1 and ||ψi||k ≤ 2k−2R−(k−1) for all k ≥ 2. As a consequence of (H1), the b and
σ defined in this way are C∞b -extensions of b|B4R(y0) and σ|B4R(y0). Furthermore, there exist
constants c = ck,m such that

|bi|k ≤ ck,mR
−(k−1) |bi|k,B5R(y0),

|σij|k ≤ ck,mR
−(k−1) |σij|k,B5R(y0)

(2.2.40)

and by (H2), for any y ∈ B3R(y0) the matrix σ(y) is elliptic:

σ σ∗(y) ≥ cy0,RIm, y ∈ B3R(y0). (2.2.41)

For y ∈ Rm we denote by X(y) = (Xs(y); 0 ≤ s ≤ t) the unique strong solution of the
equation

X
i

s(y) = yi +

∫ s

0

b
i
(Xu(y))du+

d∑
j=1

∫ s

0

σij(Xu(y))dW j
u , 0 ≤ s ≤ t, i = 1, . . . ,m. (2.2.42)

Let now 0 < δ < t/2 ∧ 1. We employ an up-downcrossing argument to estimate the
increments of X in the neighborhood of y0 by replacing them with the increments ofX. More
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precisely, let ν = νt,δ and τ = τt,δ be the stopping times defined by

νt,δ = inf {s ≥ t− δ : Xs ∈ B3R(y0)} ;

τt,δ = inf {s ≥ νt,δ : Xs /∈ B4R(y0)}
(2.2.43)

and inf{∅} =∞. Suppose that φR(Xt−y0) > 0, so that Xt ∈ B2R(y0) and ν < t. On this set,
if ν > t− δ then |Xt∧τ −Xν | ≥ R. This implies |X t∧τ−ν(Xν)−Xν | = |Xt∧τ −Xν | ≥ R. Here
we are employing the fact that on the interval [ν, τ ] X stays in B4R(y0), hence in the region
where the truncated coefficients b, σ coincide with the original ones b, σ. On this interval,
both X and X satisfy equation (2.2.42) for which pathwise uniqueness holds, hence we can
replace X by X and employ the flow property for X. Notice that flow property may not hold
true for X (due to possible lack of uniqueness for the couple (b, σ)), but it always does for X.
Analogously, if ν = t− δ and τ < t then |Xτ −Xν | = |Xτ−ν(Xν)−Xν | ≥ R. In both cases,
sup0≤s≤δ |Xs(Xν)−Xν | ≥ R. Hence, we conclude that

{φR(Xt − y0) > 0} = {φR(Xt − y0) > 0, t− δ = ν < t < τ}

∪
{
φR(Xt − y0) > 0, sup

0≤s≤δ
|Xs(Xν)−Xν | ≥ R

}
hence p̂t,y0 rewrites as:

m0p̂t,y0(ξ) = E
[
ei<ξ,Xt>φR(Xt − y0)1{φR(Xt−y0)>0, sup0≤s≤δ |Xs(Xν)−Xν |≥R}

]
+ E

[
ei<ξ,Xt>φR(Xt − y0)1{φR(Xt−y0)>0, t−δ=ν<t<τ}

]
.

We now claim that for all q > 0 the following estimate holds:

P
(
φR(Xt − y0) > 0, sup

0≤s≤δ
|Xs(Xν)−Xν | ≥ R

)
≤ cq,mR

−q δq/2P0(δ, y0)q P
(

inf
t−δ≤s≤t

|Xs − y0| ≤ 3R
)
, (2.2.44)

for some positive constant cq,m. (2.2.44) will be proved later on.
On the other hand,

E
[
ei<ξ,Xt>φR(Xt − y0)1{φR(Xt−y0)>0, t−δ=ν<t<τ}

]
= E

[
E
[
ei<ξ,Xδ(y)>φR(Xδ(y)− y0)

∣∣∣Xt−δ = y
]
1{t−δ=ν<t<τ}

]
≤ P(|Xt−δ − y0| < 3R)× sup

y∈B3R(y0)

∣∣∣E [ei<ξ,Xδ(y)>φR(Xδ(y)− y0)
]∣∣∣. (2.2.45)

Step 3 (integration by parts). We apply integration by parts formula (2.2.8) to estimate
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the last term in (2.2.45). By (2.2.40), (2.2.41) and Lemma 2.2.2, Xδ(y) is a smooth and
nondegenerate random vector for any δ > 0 and y ∈ B3R(y0). Then, for a given k ≥ 1 we
define the multi-index

α = (1, . . . , 1︸ ︷︷ ︸
k times

, . . . ,m, . . . ,m︸ ︷︷ ︸
k times

),

such that |α| = km. Hence, recalling that ∂xkei<ξ,x> = iξkei<ξ,x>,∣∣∣E [ei<ξ,Xδ(y)>φR(Xδ(y)− y0)
]∣∣∣

≤ 1∏m
i=1 |ξi|k

∣∣∣E[∂αei<ξ,Xδ(y)>φR(Xδ(y)− y0)
]∣∣∣

≤ 1∏m
i=1 |ξi|k

E
[∣∣Hα(Xδ(y), φR(Xδ(y)− y0))

∣∣],
(2.2.46)

for any y ∈ B3R(y0).
We need to separately estimate ||φ(Xδ(y)− y0)|||α|,2|α|+1 . By Corollary 1, this is given by

||φ(Xδ(y)− y0)||mk,2mk+1 ≤ ck,mR
−mk(1 + δ1/2

)
|σ|mkmk−1,B5R(y0)

× Pmk(y0, δ)
(mk+2)2 e2mk+1(δ)ck,m

≤ ck,mR
−mkP σ

mk(y0, δ)
(mk+2)2 e2mk+1(δ)ck,m

for some positive constant ck,m. Then, from (2.2.44), (2.2.45), (2.2.46) and Theorem 2.2.3 it
follows that

m0|p̂t,y0(ξ)| ≤ Ck,qPR(δ, t, y0)Ik,q(ξ, δ, y0) (2.2.47)

for some constant Ck,q depending also on m and d, with

PR(δ, t, y0) = P
(

inf
t−δ≤s≤t

|Xs − y0| ≤ 3R
)

and

Ik,q(ξ, δ, y0) = R−qδq/2P0(δ, y0)q +
R−mk∏m
i=1 |ξi|k

δ−mk/2 Θk(δ, y0, Ck,q).

Estimate (2.2.47) holds simultaneously for any ξ ∈ Rm, 0 < δ < t/2 ∧ 1, q > 0 and k ≥ 1.
The constant Θk(δ, y0, Ck,q) appears when applying estimate (2.2.21).

Step 4 (optimization). We show that for any ξ and any l ≥ 1 δ can always be chosen
in such a way that there exist q and k such that Ik,q(ξ, δ, y0) goes to zero at ∞ faster than(∏m

i=1 |ξi|
)−(l+2)

.
Denoting ||ξ|| =

∏m
i=1 |ξi|, we set

δ := δ(ξ) = t/2 ∧ 1 ∧ ||ξ||−a
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for some a > 0 that is to be identified hereafter. For this choice of δ,

PR(δ(ξ), t, y0) ≤ P
(

inf
t/2∨(t−1)≤s≤t

|Xs − y0| ≤ 3R
)

= Pt(y0)

and

Ik,q(ξ, δ(ξ), y0) ≤ R−q
(
||ξ||−

qa
2 ∧ (t ∧ 1)

q
2

)
P0(t ∧ 1, y0)q

+R−mk
(
||ξ||−k(1−ma

2
) ∨ ||ξ||−k(t ∧ 1)−

mk
2

)
Θk(t ∧ 1, y0, Ck,q), (2.2.48)

since δ → P0(δ, y0) and δ → Θk(δ, y0, Ck,q) are increasing, hence P0(δ(ξ), y0) ≤ P0(t ∧ 1, y0)

and the same holds for Θk.
We consider the leading terms determining the decay of Ik,q(ξ, δ(ξ), y0) with respect to ξ

and impose
qa

2
= k(1− ma

2
). (2.2.49)

Setting a = 1/m, (2.2.49) yields q = mk, hence qa
2

= k(1 − ma
2

) = k
2
. Therefore, we get the

bound

Ik,q∗k(ξ, δ(ξ), y0) ≤ R−mk
(
||ξ||−k/2 ∧ (t ∧ 1)mk/2

)
P0(t ∧ 1, y0)mk

+R−mk
(
||ξ||−k/2 ∨ (t ∧ 1)−mk/2||ξ||−k

)
Θk(t ∧ 1, y0, Ck,q∗k) (2.2.50)

with q∗k = mk. Estimate (2.2.50) holds for any k ≥ 1 and ξ 6= 0, then it proves that the
function pt,y0(y) defined in (2.2.38) is in fact well defined and infinitely differentiable with
respect to y.

Let us come to estimate (2.2.33). We take (2.2.38) and cut off the integration over a
region I of finite Lebesgue measure on which ||ξ|| =

∏m
i=1 |ξi| remains smaller than a given

constant. That is, we write:

pt,y0(y) =
1

(2π)m

∫
Rm

e−i<ξ,y>E
[
ei<ξ,Xt>φR(Xt − y0)

]
dξ

≤ 1

(2π)m

[∫
I

E [φR(Xt − y0)] dξ

+

∫
Ic
e−i<ξ,y>E

[
ei<ξ,Xt>φR(Xt − y0)

]
dξ

]
≤ 1

(2π)m

[
P(|Xt − y0| < 2R)λm(I)

+ Ck,q∗kPt(y0)

∫
Ic
Ik,q∗k(ξ, δ(ξ), y0)dξ

]
,

where λm denotes the Lebesgue measure on Rm. As we have seen, the last term is such that
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∫
Ic
Ik,q∗k(ξ, δ(ξ), y0)dξ ≤ R−mkP0(t ∧ 1, y0)mk

∫
Ic
|ξ|−k/2dξ

+R−mkΘk(t ∧ 1, y0, Ck,q∗k)

(
(t ∧ 1)−mk/2

∫
Ic∩{ξ:|ξ|<(t∧1)−m}

|ξ|−kdξ

+

∫
Ic∩{ξ:|ξ|≥(t∧1)−m}

|ξ|−k/2dξ
)
.

Now, since ∫
Ic∩{ξ:|ξ|≥(t∧1)−m}

|ξ|−k/2dξ ≤
∫
Ic
|ξ|−k/2dξ = c

(1)
k <∞

and
(t ∧ 1)−mk/2

∫
Ic∩{ξ:|ξ|<(t∧1)−m}

|ξ|−kdξ ≤ (t ∧ 1)−mk/2c
(2)
k <∞

hold for any k ≥ 3, we then take k = 3 and get the estimate

pt,y0(y) ≤ C∗ Pt(y0)

[
1 +R−3m

(
P0(t ∧ 1, y0)3m + (t ∧ 1)−3m/2Θ3(t ∧ 1, y0, Cm,d)

)]
for every y ∈ BR(y0), for a positive constant C∗: estimate (2.2.33) then follows. For estimate
(2.2.34) on the derivatives we proceed in the same way, observing that for α ∈ {1, . . . ,m}l,
|ξ|−k/2 ×

∏l
j=1 |ξαj | is integrable at ∞ as soon as k ≥ 2l + 3.

Proof of (2.2.44).
We remark that {φR(Xt− y0)} ⊆ {t− δ ≤ ν ≤ t} ⊆ {t− δ ≤ ν ≤ t,Xν ∈ B3R(y0)}, hence

P
(
φR(XT − y0) > 0, sup

0≤s≤δ
|Xs(Xν)−Xν | ≥ R

)
≤ P

(
t− δ ≤ ν ≤ t,Xν ∈ B3R(y0), sup

0≤s≤δ
|Xs(Xν)−Xν | ≥ R

)
≤ R−q P(t− δ ≤ ν ≤ t) sup

y∈B3R(y0)

E
[

sup
0≤s≤δ

|Xs(y)− y|q
]
.

Using boundedness of coefficients of (2.2.42), it is easy to show that

E
[

sup
0≤s≤δ

|Xs(y)− y|q
]
≤ cq,m δ

q/2P0(δ, y0)q

for some positive constant cq,m.

As addressed in section 2.2.1, the constants appearing in the definition of Λk (2.2.32) can
be considerably simplified under assumptions (H1)’ and (H4), resulting in some polynomial-
type bounds. The following result corresponds to Theorem 2.2.2: in the current statement,
we explicitly give the expression of the exponent q′k(q) appearing in bound (2.2.6).

Theorem 2.2.5. Assume (H1)’ and (H3).
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(a) For any initial condition x ∈ Rm and any 0 < t ≤ T , Xt admits a smooth density on
Rm \Bη(0).

(b) Assume (H4) as well. Then the constant Λk defined in Theorem 2.2.4 is such that

Λk(t, y0) ≤ Ck,T
(
1 + |y0|q

′
k(q)
)
, (2.2.51)

for every 0 < t ≤ T and every |y| > η + 5. The exponent q′k(q) is worth

q′k(q) = mk(q + 4)(m+ 1)(mk + 3) + 2qm(φmk + (mk + 2)2).

(c) If moreover sup0≤s≤t |Xs| has finite moments of all orders, then for every p > 0 and
every k ≥ 1 there exist positive constants Ck,p,T such that

|pt(y)| ≤ C3,p,T

(
1 +

1

tm3/2

)
|y|−p

|∂αpt(y)| ≤ Ck,p,T

(
1 +

1

tm(2k+3)/2

)
|y|−p, α ∈ {1, . . . ,m}k

(2.2.52)

for every 0 < t ≤ T and every |y| > η + 5.

The Ck,p,T are positive constants depending also on m, d and on bounds (2.2.4) and (2.2.5)
on the coefficients.

Proof. (a) We do not need any more to distinguish between y0 and the (close) point y where
the density is evaluated, hence we just set y = y0 and consider suitable radii. For |y| > η, we
set Ry = 1

10
dist(y,Bη(0))∧1. By (H1)’, b and σ are of class C∞b on B5Ry(y) and satisfy (H2)

on B3Ry(y). From Theorem 2.2.4 it follows that Xt admits a smooth density on BRy(y). This
holds true for every ball BRy(y) with center y in Rm \Bη(0), hence statement (a) follows.

(b) Without loss of generality, we take R = 1. As a consequence of (2.2.4), the constants
introduced before Th. 2.2.4 can be bounded as follows, for 0 ≤ t ≤ T and |y| > η + 5:

Pk(t, y) ≤ c
(1)
k (1 + (|y|+ 5)q) ≤ c

(1)
k |y|

q

P σ
k (t, y) ∨ PZ

1 (t, y) ≤ c
(1)
k |y|

2q

PC
m(t, y) ≤ c(1)(|y|4 + |y|2)2(m+1) ≤ c(1)|y|8(m+1)

Cm(t, y) ≤ c(1)

C
2(m+1)
0

|y|2q(m+1)|y|8(m+1) ≤ c(1)|y|2(q+4)(m+1),

(2.2.53)

for some constants c(1) and c(1)
k depending also on m, q and on the bounds on b, σ and their

derivatives in (2.2.4) and (2.2.5).
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The exponential factors e and eZ must be treated on a specific basis. Indeed, e·(t, y)

and eZ· (t, y) may explode when |y| → +∞. Nevertheless, explosion can be avoided stepping
further into the optimization procedure set up in the proof of Th. 2.2.4. More precisely, we
restart from step 4 and force the state variable y to appear in the choice of δ, setting

δ(ξ, y) = t/2 ∧ 1 ∧ |ξ|−a ∧ |y|−4q.

Now, whatever the value of p is, ep and eZp are reduced to

ep(δ(ξ, y)) ≤ ep(1 ∧ |y|−4q, y) ≤ exp
(
c

(1)
1

(
1 ∧ |y|−2qp

)(
1 + 1 ∧ |y|−2q

)p|y|qp)
≤ exp

(
cp
(
1 ∧ |y|−2qp

)
|y|qp

)
≤ exp

(
cp
)

and
eZp (δ(ξ, y)) ≤ eZp (1 ∧ |y|−4, y) = exp

(
c

(1)
1

(
1 ∧ |y|−2qp

)(
1 + 1 ∧ |y|−2q

)p|y|2qp)
≤ exp

(
cp
)
.

We then perform the integration over ξ as done in the last step of the proof of Th. 2.2.4, and
employing (2.2.53) we obtain estimate (2.2.51) for Λk, for |y| > η + 5. The value of q′k(q) is
obtained from the definition of Θk and (2.2.53).

(c) From boundedness of moments of sups≤t |Xs|, for any interval It ⊆ [0, t] one can easily
deduce the estimate

P
(
inf{|Xs − y| : s ∈ It} ≤ 3

)
≤ P

(
sup{|Xs| : s ∈ It} ≥ |y| − 3

)
≤ 1

(|y| − 3)r
E
[
sup
s≤t
|Xs|r

]
≤ c(2)

r

1

|y|r
,

(2.2.54)

for any r > 0, 0 ≤ t ≤ T and |y| > 3. It is then easy to obtain the desired estimate on pt
with Theorem 2.2.4: for a given p > 0, we employ (2.2.33) with y0 = y and (2.2.54) with
r > p + q′3(q). Similarly, to obtain the estimate on derivatives one employs (2.2.34) and
(2.2.54) with r > p+ q′2k+3(q).

2.3 Application to square root-type diffusions: a CIR/CEV

process with local coefficients

We apply our results to the solution of equation (2.1.1) We will be able to refine the polynomial
estimate on the density at +∞ giving exponential-type upper bounds. Under some additional
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assumptions on the coefficients, we also study the asymptotic behaviour of the density at zero,
i.e. the point where the diffusion coefficient is singular.

We first collect some basic facts concerning the solution of (2.1.1). Let us recall the SDE{
dXt = (a(Xt)− b(Xt)Xt)dt+ γ(Xt)X

α
t dWt, t ≥ 0, α ∈ [1/2, 1)

X0 = x ≥ 0.
(2.3.1)

When α = 1/2 and a, b and γ are constant, the solution to (2.3.1) is the celebrated Cox-
Ingersoll-Ross process (see [16]), appearing in finance as a model for short interest rates. It
is well known that, in spite of the lack of globally Lipschitz-continuous coefficients, existence
and uniqueness of strong solutions hold for the equation of a CIR process. If a ≥ 0, the
solution stays a.s. in R+ = [0,+∞); furthermore, a solution starting at x > 0 stays a.s.
in R> = (0,+∞) if the Feller condition 2a ≥ γ2 is achieved (cf. [44] for details). The
following proposition gives the (straightforward) generalization of the previous statements to
the case of coefficients a, b, γ that are functions of the underlying process. The proof is left
to Appendix 2.4.2.

Proposition 2.3.1. Assume

(s0) α ∈ [1/2, 1); a, b and γ ∈ C1
b with a(0) ≥ 0 and γ(x)2 > 0 for every x > 0.

Then, for any initial condition x ≥ 0 there exist a unique strong solution to (2.3.1) which is
such that P(Xt ≥ 0; t ≥ 0) = 1. Let then τ0 = inf{t ≥ 0 : Xt = 0}, with inf{∅} =∞.

• If α > 1/2 and

(s1)’ a(0) > 0 and z 7→ 1
γ2(z)z2α−1 is integrable at 0+,

then
P(τ0 =∞) = 1. (2.3.2)

• If α = 1/2 and

(s1) 1
γ2 is integrable at zero,

(s2) there exists x > 0 such that 2a(x)
γ(x)2

≥ 1 for 0 < x < x,

then the same conclusion on τ0 holds.

When X is a CIR process, the moment-generating function of Xt can be computed ex-
plicitly, leading to the knowledge of the density. Setting Lt = (1 − e−bt)γ2/4b, then Xt/Lt

follows a non central chi-square law with δ = 4a/γ2 degrees of freedom and parameter
ζt = 4xb/(γ2(ebt − 1)) (recall that here x is the initial condition). The density of Xt is
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then given by (cf. [44]):

pt(y) =
e−ζt/2

2δ/2Lt
e−y/(2Lt)

( y
Lt

)δ/2−1
∞∑
n=0

(
y

4Lt

)n
n!Γ(δ/2 + n)

ζnt , y > 0.

We incidentally remark that pt is in general unbounded, since yδ/2−1 diverges at zero when
δ/2 − 1 = 2a/γ2 − 1 is negative (in fact, fixed a value of δ/2 − 1, there exists a n ≥ 0 such
that dn

dyn
pt is unbounded).

The standard techniques of Malliavin calculus cannot be directly applied to study the
existence of a smooth density for the solution of (2.3.1), as the diffusion coefficient in general
is not (depending on γ) globally Lipschitz continuous. Actually, E. Alos and C. O. Ewald [1]
have shown that if X is CIR process, then Xt, t > 0, belongs to D1,2 when the Feller condition
2a ≥ γ2 is achieved. Higher order of differentiability (in the Malliavin sense) can be proven,
requiring a stronger condition on a and γ, and the authors apply these results to option
pricing within the Heston model. If we are interested in density estimation, the results of
the previous sections allow to overcome the problems related to the singular behaviour of the
diffusion coefficient and to directly establish the existence of a smooth density, independently
from any Feller-type condition (provided that (s0) is satisfied). More precisely, we can give
the following preliminary result:

Proposition 2.3.2 (Preliminary result). Assume (s0) and let a, b, γ be of class C∞b . Let
X = (Xt; t ≥ 0) be the strong solution of (2.3.1) starting at x ≥ 0. For any t > 0, Xt admits
a smooth density pt on (0,+∞). pt is such that limy→∞ pt(y)yp = 0 for any p > 0.

Proof. It is easy so see that, under the current assumptions, the drift and diffusions coefficients
of (2.3.1) satisfy (H1)’ with η = 0 and (H4) with q = 1. (H3) holds as well, by Proposition
2.3.1. As the coefficients have sub-linear growth, for any t > 0, sups≤tXs has finite moments
of any order. The conclusion follows from Theorem 2.2.5 (c).

2.3.1 Exponential decay at ∞

In order to further develop our study of the density, we could take advantage of some of the
generalized-chaining tools settled by Viens and Vizcarra in [64]. In particular notice that, in
order to estimate the density by means of Theorem 2.2.5, we need to deal with the probability
term Pt(y) appearing therein. For our present purposes, we can rely on alternative strategies
involving time-change arguments and the existence of quadratic exponential moments for
suprema of Brownian motions (Fernique’s theorem) in the current section, and a detailed
analysis of negative moments of the process X in section 2.3.2.

From now on, condition (s0) is assumed, the coefficients a, b, γ are of class C∞b and (Xt; t ≤
T ) denotes the unique strong of (2.3.1) on [0, T ], T > 0. We make explicit the dependence
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with respect to the initial condition denoting pt(x, ·) the density at time t of X starting at
x ≥ 0. The following result improves Proposition 2.3.2 in the estimate of the density for
y →∞.

Proposition 2.3.3. Assume that

lim
x→∞

b(x)x1−α > −∞. (2.3.3)

Then there exist positive constants γ0 and Ck(T ), k ≥ 3, such that

pt(x, y) ≤ C3(T )

(
1 +

1

t3/2

)
exp
(
−γ0

(y − x)2(1−α)

2Ct

)
(2.3.4)

and

p
(k)
t (x, y) ≤ Ck(T )

(
1 +

1

t(2k+3)/2

)
exp
(
−γ0

(y − x)2(1−α)

2Ct

)
(2.3.5)

for every y > x+ 1, with C = 23−2α + 2|γ|20(1−α)2. The Ck(T ) also depend on α and on the
coefficients a, b and γ.

Remark 2.3.1. In the case of constant coefficients and a = b = 0, the bound (2.3.4) can be
compared to the density of the CEV process as provided for example in [22], Th. 1.6 (see also
the references therein). The comparison shows that our estimate is in the good range on the
log-scale.

Proof. In the spirit of Lamperti’s change-of-scale argument (cf. [39], pag 294), let ϕ ∈
C2((0,∞)) be defined by

ϕ(x) =

∫ x

0

1

|γ|0yα
dy =

1

|γ|0(1− α)
x1−α,

so that ϕ′(x) = 1
|γ|0xα . Let moreover θ ∈ C∞b (R) be such that 1[2,∞) ≤ θ ≤ 1[1,∞) and θ′ ≤ 1.

We set

ρ(x) =

{
θ(x)ϕ(x) x > 0

0 x ≤ 0,

so that ρ is of class C2(R). We define the auxiliary process Yt = Xt− x, t ≥ 0, which is such
that P(Yt ≥ −x) = 1, t ≥ 0. An application of Itô’s formula yields:

ρ(Yt) =

∫ t

0

f(Ys)ds+Mt,

where
f(y) = ρ′(y)(a(y)− b(y)y) +

1

2
ρ′′(y)γ(y)2y2α
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and

Mt =

∫ t

0

ρ′(Ys)γ(Ys)Y
α
s dWs.

The key point is the fact that f is bounded from above on (−x,∞) and, on the other hand,
M is a martingale with bounded quadratic variation. Indeed, f is continuous, it is zero for
y ≤ 1 and for y > 2 one has:

f(y) =
a(y)

|γ|0yα
− b(y)

|γ|0
y1−α − α

2

γ(y)2

|γ|0
yα−1,

hence, recalling that a is bounded, limy→∞ f(y) < ∞ is ensured by condition (2.3.3). Then
we set C1 = supy≥0 f(y). For M , one has:

〈M〉t =

∫ t

0

ρ′(Ys)
2γ(Ys)

2Y 2α
s ds

≤
∫ t

0

(
ϕ(2) + ϕ′(Ys)

)2
γ(Ys)

2Y 2α
s ds

≤ 2(ϕ(2)2 + 1)t,

(2.3.6)

hence we set C2 = 2(ϕ(2)2 + 1) = 2
(

22(1−α)

|γ|20(1−α)2
+ 1
)
. Now, since ρ is strictly increasing,

{Yt > y} = {ρ(Yt) > ρ(y)} for any y > 0. Moreover, {ρ(Yt) > ρ(y)} ⊆ {Mt + C1t > ρ(y)} ⊆
{2M2

t + 2C2
1 t

2 > ρ(y)2}. We set It = [(t − 1) ∨ t/2, t] and τ = inf{s ≥ 0 : Ys ≥ 3/2}. The
quadratic variation of M is strictly increasing after τ , since (ρ(Yτ∨t)γ(Yτ∨t)Y

α
τ∨t)

2 > 0: hence,
by Dubins & Schwartz theorem (cf. Th. 3.4.6 in [39]) there exists a 1-dimensional Brownian
motion (bt; t ≥ 0) such that Mτ∨t = b〈M〉τ∨t . Clearly one has {Yt > 2} ⊆ {τ < t}, so that for
y > 2

P t(y) = P(∃s ∈ It : Ys > y) ≤ P(∃s ∈ It : Ys > y, τ < s)

≤ P(∃s ∈ It : 2M2
s + 2C2

1s
2 > ρ(y)2, τ < s)

≤ P
(

sup
τ<s≤t

(
2M2

s + 2C2
1s

2
)
> ρ(y)2

)
≤ P

(
sup

0<s≤t
b2
〈M〉s + C2

1 t
2 >

1

2
ρ(y)2

)
≤ P

(
sup
s≤C2t

b2
s + C2

1 t
2 >

1

2
ρ(y)2

)
.

We now employ the scaling property for the Brownian motion (bs; s ≥ 0) ∼ (
√
a bs/a; s ≥ 0),

a > 0, and Fernique’s Theorem (cf. [38], pg 402). The latter tells that there exists a positive
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constant γ0 such that exp(γ0 sups≤1 b
2
s) is integrable, hence

P t(y) ≤ P
(
γ0 sup

s≤1
b2
s + γ0

C2
1

C2

t >
γ0

2C2t
ρ(y)2

)
≤ exp

(
−γ0

ρ(y)2

2C2t

)
E
[
e
γ0
C2

1
C2
t+ γ0 sups≤1 b

2
s

]
≤ C0 exp

(
−γ0

ρ(y)2

2C2t
+ γ0

C2
1

C2

t
)
,

where C0 = E[exp(γ0 sups≤1 b
2
s)] is a universal constant. The estimates on the density of

Xt and its derivatives now follow from Theorem 2.2.4 (estimates (2.2.33) and (2.2.34)) and
Theorem 2.2.5 (b), using Xt−x = Yt, the value of the constant C2 and taking e.g. R = 1/6.

2.3.2 Asymptotics at 0

We have established conditions under which the solution of (2.3.1) admits a smooth density
pt on (0,+∞). According to Proposition 2.3.1, the process remains almost surely in R+: this
trivially means that for any t > 0, Xt has an identically zero density on (−∞, 0), which can
be extended to 0 when τ0 =∞ a.s. We are now wondering what are sufficient conditions for
pt to converge to zero at the origin, hence providing the existence of a continuous (eventually
differentiable, eventually C∞) density on the whole real line.

What we have in mind is the application of Theorem 2.2.5 to the inversed process Yt = 1
Xt

(considered on the event {τ0 =∞}). An application of Itô’s formula yields

dYt = Jα(Yt)dt− γ̂(Yt)Y
2−α
t dWt, (2.3.7)

where
Jα(Yt) = −â(Yt)Y

2
t + b̂(Yt)Yt + γ̂(Yt)

2Y 3−2α
t

with the notation f̂(y) = f(1/y), y > 0, for f = a, b, σ. Equation (2.3.7) has super-linear
coefficients, in particular condition (2.2.4) of Theorem (2.2.2) holds with q = 2. Willing to
apply Theorem 2.2.5 (c), we first need some preliminary result on the moments of Y . The
proof of the next statement is based on the techniques employed in [11], proof of Lemma 2.1,
that we adapt to our framework.

Lemma 2.3.1. 1) If α > 1/2, assume (s1)’. Then for any initial condition x > 0, for
any t > 0 and p > 0

E
[
sup
s≤t

1

Xp
s

]
≤ C, (2.3.8)

for some positive constant C depending on x, p, α, t and on the coefficients of equation
(2.3.1).
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2) If α = 1/2, then assume (s1) and (s2) and let

l∗ = lim
x→0

2a(x)

γ(x)2
> 1. (2.3.9)

Then (2.3.8) holds for p > 0 such that

p+ 1 < l∗. (2.3.10)

Proof. Let τn be the stopping time defined by τn = inf{t ≥ 0 : Xt ≤ 1/n}. The application
of Itô’s formula to Xp

t∧τn , p > 0, yields

E
[

1

Xp
t∧τn

]
=

1

xp
+ E

∫ t∧τn

0

ϕ(Xs)ds (2.3.11)

where
ϕ(x) = p

b(x)

xp
+

p

xp+1

(p+ 1

2
γ(x)2x2α−1 − a(x)

)
︸ ︷︷ ︸

g(x)

, x > 0.

It is easy to see that, if
lim
x→0

g(x) < 0 (2.3.12)

there exists a positive constant C such that ϕ(x) < p |b|0
xp

+ C, for every x > 0. If (2.3.12)
holds, from (2.3.11) we get

E
[
sup
s≤t

1

Xp
s∧τn

]
≤ 1

xp
+ Ct+ p|b|0

∫ t

0

E
[
sup
u≤s

1

Xp
u∧τn

]
ds,

hence, by Gronwall’s lemma,

E
[
sup
s≤t

1

Xp
s∧τn

]
≤
( 1

xp
+ Ct

)
ep|b|0t. (2.3.13)

We verify (2.3.12), distinguishing the two cases.

Case α > 1/2. We simply observe that limx→0 g(x) = −a(0) < 0. Estimate (2.3.8) then
follows by taking the limit n→∞ in (2.3.13) and using Proposition 2.3.1 under assumption
(s1)’.

Case α = 1/2. We have g(x) = p+1
2
γ2(x)−a(x). If p satisfies (2.3.10), then (2.3.9) ensures

that limx→0 g(x) < 0. We conclude again taking the limit n→∞ and using Proposition 2.3.1
under assumptions (s1) and (s2).

We are now provided with the tools to prove the following

Proposition 2.3.4. 1) If α > 1/2, assume (s1)’. Then for every t > 0, every p ≥ 0 and



2.3. Application to square root-type diffusions: a CIR/CEV process with local coefficients57

every k > 0 the density pt of Xt on (0,+∞) is such that

lim
y→0+

y−p|pt(y)| = 0

lim
y→0+

y−p|p(k)
t (y)| = 0.

(2.3.14)

2) If α = 1/2, then assume (s1) and (s2) and define l∗ as in Lemma 2.3.1. If

l∗ > 3 + q′3(2) (2.3.15)

(where q′.(.) has been defined in Theorem 2.2.5), then

lim
y→0+

y−ppt(y) = 0 (2.3.16)

for every 0 ≤ p < l∗ − (3 + q′3(2)). Moreover, if

l∗ > 2k + 3 + q′2k+3(2), (2.3.17)

then
lim
y→0+

y−p|p(k)
t (y)| = 0 (2.3.18)

for every 0 ≤ p < l∗ − (2k + 3 + q′2k+3(2)).

Proof . We apply Theorem 2.2.2 to Y = 1/X. For simplicity of notation, we write p for
pt and pY for the density of Yt. As Y satisfies equation (2.3.7), from Theorem 2.2.2 (b) it
follows that the bound (2.2.51) on Λk holds with q′k(q) = q′k(2). Hence, from Theorem 2.2.2
(c) it follows that

lim
y′→+∞

pY (y′)|y′|p′ = 0 (2.3.19)

and, for a given k ≥ 0,
lim

y′→+∞
p

(k)
Y (y′)|y′|p′ = 0 (2.3.20)

if sups≤t Ys has a finite moment of order r > p′ + q′2k+3(2).
Now, it is easy to see that

p(y) =
1

y2
pY

(1

y

)
(2.3.21)

hence, after some rather straightforward computations,

|p(k)(y)| ≤ Ck

(1

y

)2(k+1)
k∑
j=0

j∑
ν=1

dν

dyν
pY

(1

y

)
, 0 < y < 1. (2.3.22)

Once again, we distinguish the two cases.
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Case α > 1/2. If 1/2 < α < 1, by Lemma 2.3.1, (2.3.19) and (2.3.20) hold for any p′ > 0.
Then (2.3.14) easily follows from (2.3.21) and (2.3.22).

Case α = 1/2. By Lemma 2.3.1, (2.3.15) is the condition for sups≤t Ys to have finite
moment of order strictly greater than 2 + q′3(2) + p, with p < l∗− (3 + q′3(2)). By (2.3.21), in
this case (2.3.19) holds true with k = 0 and p′ = 2 + p, hence (2.3.16) holds. Similarly, by
(2.3.22) estimate (2.3.18) holds if (2.3.19) holds with p′ = p+2(k+1). The latter condition is
achieved if sups≤t Ys has finite moment of order strictly greater than 2(k+ 1) + q′2(k+3)(2) + p,
which is in turn ensured by (2.3.17).

Remark 2.3.2. Proposition 2.3.3 states that pt decays exponentially at infinity for any value
of α, as far as condition (2.3.3) holds true. When α > 1/2, Proposition 2.3.4 states that
pt and all its derivatives tend to zero at the origin, while the price to pay for the same
conclusion to hold is higher when α = 1/2 (cf. conditions (2.3.15) and (2.3.17), which
become rapidly strong for growing values of k). With regard to this behaviour at zero, we
recall that Proposition 2.3.4 only provides sufficient conditions for estimates (2.3.16) and
(2.3.18) to hold. We do not give any conclusion on the behaviour of the density at zero when
condition (2.3.15) (or (2.3.17) for the derivatives) fail to hold.

2.4 Technical proofs

We collect here the proofs of the more technical results of this chapter.

2.4.1 Proofs of Lemmas 2.2.1 and 2.2.2

Proof (of Lemma 2.2.1). We refer to the notation introduced in the proof of [54], Th. 2.2.2,
allowing to write the equation satisfied by the k-th Malliavin derivative in a compact form.
This is stated as follows: for any subset K = {h1, . . . , hη} of {1, . . . , k}, one sets j(K) =

jh1 , . . . , jhη and r(K) = rh1 , . . . , rhη . Then, one defines

αil,j1,...,jk(s, r1, . . . , rk) : = Dj1,...,jk
r1,...,rk

Ail(Xs)

=
∑

∂k1 · · · ∂kνAil(Xs)

×Dj(I1)
r(I1)X

k1
s · · ·D

j(Iν)
r(Iν)X

kν
s

and
βij1,...,jk(s, r1, . . . , rk) : = Dj1,...,jk

r1,...,rk
Bi(Xs)

=
∑

∂k1 · · · ∂kνBi(Xs)

×Dj(I1)
r(I1)X

k1
s · · ·D

j(Iν)
r(Iν)X

kν
s ,

where in both cases the sum is extended to the set of all partitions of {1, . . . , k} = I1∪· · ·∪Iν .
Finally, one sets αij(s) = Aij(Xs). Making use of this notation, it is shown that the equation
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satisfied by the k-th derivative reads as:

Dj1,...,jk
r1,...,rk

X i
t =

k∑
ε=1

αijε,j1,...,jε−1,jε+1,...,jk
(rε, r1, . . . , rε−1, rε+1, . . . , rk)

+

∫ t

r1∨···∨rk

(
βij1,...,jk(s, r1, . . . , rk)ds+ αil,j1,...,jk(s, r1, . . . , rk)dW

l
s

)
(2.4.1)

if t ≥ r1 ∨ · · · ∨ rk, and Dj1,...,jk
r1,...,rk

X i
t = 0 otherwise. We prove (2.2.16) by induction. The

estimate is true for k = 1, with γ1,p = 2C1,p: this simply follows with an application of
Burkholder’s inequality and Gronwall’s lemma to (2.4.1) taken for k = 1. Let us suppose
that (2.2.16) is true up to k − 1. As done for k = 1, we apply Burkholder’s inequality to
(2.4.1) and, setting r = r1 ∨ · · · ∨ rk, we get:

E
[
|Dj1,...,jk

r1,...,rk
X i
t |p
]

≤ Ck,p

{
k∑
ε=1

E
[
|αijε,j1,...,jε−1,jε+1,...,jk

(rε, r1, . . . , rε−1, rε+1, . . . , rk)|p
]

+ (t− r)
p
2
−1
∑

I1∪···∪Iν
card(I)≤k−1

∫ t

r

E
[(

(t− r)
1
2 |∂k1 · · · ∂kνBi(Xs)|+

d∑
l=1

|∂k1 · · · ∂kνAil(Xs)|
)p

× |Dj(I1)
r(I1)X

k1
s · · ·D

j(Iν)
r(Iν)X

kν
s |p
]
ds

+ (t− r)
p
2
−1

∫ t

r

E
[(

(t− r)
1
2 |∂kBi(Xs)|+

d∑
l=1

|∂kAil(Xs)|
)p|Dj1,...,jk

r1,...,rk
Xk
s |p
]
ds

}
, (2.4.2)

where, in the last line, we have isolated the term depending on Dj1,...,jk
r1,...,rk

X.
To estimate the second term in (2.4.2) we notice that, for any partition I1 ∪ · · · ∪ Iν of
{1, . . . , k} such that card(I) ≤ k − 1, using (2.2.16) up to order k − 1 we have:

E
[(

(t− r)
1
2 |∂k1 · · · ∂kνBi(Xs)|+

d∑
l=1

|∂k1 · · · ∂kνAil(Xs)|
)p|Dj(I1)

r(I1)X
k1
s · · ·D

j(Iν)
r(Iν)X

kν
s |p
]

≤ C
{
|A|kk−2(t1/2|B|k + |A|k)χk

}p
ep(t)

λ
(1)
k,p , (2.4.3)

where we have defined

λ
(1)
k,p := sup

I1∪···∪Iν={1,...,k}
card(I)≤k−1

{
γcard(I1),p + · · ·+ γcard(Iν),p

}
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and

χk = 1 +
ν∑
l=1

(card(Il) + 1)2.

It is easy to see that
χk ≤ (k + 1)2,

since
ν∑
l=1

card(Il)
2 = (k − 1)2

ν∑
l=1

card(Il)
2

(k − 1)2
≤ (k − 1)2

ν∑
l=1

card(Il)

(k − 1)
= (k − 1)k,

so that

χk = 1 +
ν∑
l=1

card(Il)
2 + 2

ν∑
l=1

card(Il) + ν

≤ 1 + (k − 1)k + 2k + ν

≤ 1 + k2 − k + 3k = (k + 1)2.

To estimate the first term in (2.4.2), notice that we have as well:

E
[∣∣∣αijε,j1,...,jε−1,jε+1,...,jk

(rε, r1, . . . , rε−1, rε+1, . . . , rk)
∣∣∣p]

≤ C
{
|A|kk−1(r

1
2
ε |B|k−1 + |A|k−1)k

2
}p

ep(t)
λ
(2)
k,p , (2.4.4)

with
λ

(2)
k,p := sup

I1∪···∪Iν={1,...,k−1}

{
γcard(I1),p + · · ·+ γcard(Iν),p

}
.
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We remark that λ(1)
k and λ(2)

k are defined by means of the γ’s up to order k − 1.
Collecting (2.4.2), (2.4.3) and (2.4.4), we get

E
[
|Dj1,...,jk

r1,...,rk
X i
t |p
]
≤ Ck,p

{
|A|kpk−1(t1/2|B|k−1 + |A|k−1)k

2pep(t)
λ
(2)
k,p

+ (t− r)
p
2 |A|kk−2(t1/2|B|k + |A|k)(k+1)2pep(t)

λ
(1)
k,p

+ (t− r)
p
2
−1
(
t1/2|B|1 + |A|1

)p m∑
k=1

∫ t

r

E
∣∣Dj1,...,jk

r1,...,rk
X i
s

∣∣p ds}

≤ Ck,p|A|kpk−1(t1/2|B|k + |A|k)(k+1)2pep(t)
λ
(1)
k,p∨λ

(2)
k,p

×
(
1 + Ck,p t

p/2(t1/2|B|1 + |A|1)pep(t)
Ck,p
)

≤ Ck,p|A|kpk−1

(
t1/2|B|k + |A|k

)(k+1)2p
ep(t)

λ
(1)
k,p∨λ

(2)
k,p+2Ck,p ,

where we have applied Gronwall’s lemma to get the second inequality. The constant Ck,p may
vary from line by line, but never depends on t and on the bounds on B and A. We recursively
define γk,p by setting γk,p := λ

(1)
k,p ∨ λ

(2)
k,p + 2Ck,p, and we finally obtain (2.2.16).

Proof (of Lemma 2.2.2). Step 1. We first use the decomposition DsXt = YtZsA(Xs) (see for
example [54]) and write

σXt = Yt

∫ t

0

ZsA(Xs)A(Xs)
∗Z∗sds Y

∗
t

= YtUtY
∗
t ,

(2.4.5)

where we have set Ut =
∫ t

0
ZsA(Xs)A(Xs)

∗Z∗sds. Notice that Ut is a positive operator, and
that for any ξ ∈ Rm we have

< ξ, Utξ >=

∫ t

0

< A(Xs)
∗Z∗s ξ, A(Xs)

∗Z∗s ξ > ds =
d∑
j=1

∫ t

0

< ZsAj(Xs), ξ >
2 .

From identity (2.4.5) it follows that detσXt = (detYt)
2 detUt = (detZt)

−2 detUt. Hence,
applying Holder’s inequality:
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E
[
| detσXt |−p

]
≤
(
E
[
| detZt|4p

]
E
[
(detUt)

−2p
])1/2

≤ Cp,m
(
eZ4p(t)

mE
[
(detUt)

−2p
])1/2

,

(2.4.6)

where in the last step we have used bound (2.2.15) on the entries of Zt.

Step 2. Let λt = inf |ξ|=1 < ξ, Utξ > be the smallest eigenvalue of Ut, so that E [(detUt)
−2p] ≤

E
[
λ−2mp
t

]
. We evaluate P(λt ≤ ε).

For any ξ such that |ξ| = 1, using the elementary inequality (a+ b)2 ≥ a2/2− b2 we get

d∑
j=1

< ZsAj(Xs), ξ >
2 ≥ 1

2

d∑
j=1

< Aj(x), ξ >2 −
d∑
j=1

< ZsAj(Xs)− Aj(x), ξ >2

≥ 1

2
c∗ −

d∑
j=1

|ZsAj(Xs)− Aj(x)|2,

where in the last step we have used the ellipticity assumption (E). For any ε > 0 and a > 0

such that aε < t, the previous inequality gives

P(λt ≤ ε) ≤ P
(

1

2
ac∗ε− sup

s≤aε

{
aε

d∑
j=1

|ZsAj(Xs)− Aj(x)|2
}
≤ ε

)
,

thus, if we take a = 4/c∗ in order to have ac∗/2 = 2 and apply Markov’s inequality, we obtain:

P(λt ≤ ε) ≤ P
(

sup
s≤aε

{ d∑
j=1

|ZsAj(Xs)− Aj(x)|2
}
≥ c∗

4

)

≤ dq−1 4q

cq∗

d∑
j=1

E
[
sup
s≤aε
|ZsAj(Xs)− Aj(x)|2q

]
,

(2.4.7)

where the last holds for all q > 1. Now, to estimate the last term we claim that, for all
j = 1, . . . , d,

E
[
sup
s≤t
|ZsAj(Xs)− Aj(x)|2q

]
≤ C tq

(
t1/2|B|0|A|32 + |A|21

)2q

eZ2q(t)
C , (2.4.8)

for a constant C depending on q,m, d but not on the bounds on B and A. From (2.4.7) and
this last estimate, it follows that

P(λt ≤ ε) ≤ Cq,m,d
εq

c2q
∗

(
t1/2|B|0|A|32 + |A|21

)2q

eZ2q(t)
Cq,m,d ,

for any ε such that 4ε/c∗ < 1 ∧ t.
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Step 2. We finally estimate E[λ−2mp
t ]. We write

E[λ−2mp
t ] = E[λ−2mp

t 1{λt>1}] +
∞∑
k=1

E[λ−2mp
t 1{1/(k+1)<λt≤1/k}]

≤ 1 +
∞∑
k=1

(k + 1)2mp P(1/(k + 1) < λt ≤ 1/k),

and separate the contribution of the sum over k > 4
tc∗

to obtain:

E[λ−2mp
t ] ≤ 1 +

∑
1≤k≤ 4

tc∗

(k + 1)2mpP(1/(k + 1) < λt ≤ 1/k)

+
∑
k> 4

tc∗

(k + 1)2mp P(λt ≤ 1/k)

≤ 1 +

(
4

tc∗
+ 1

)2mp

P(λt ≤ 1)

+ Cq,m,d e
Z
2q(t)

Cq,m,d
1

c2q
∗

(
t1/2|B|0|A|32 + |A|21

)2q

×
∑
k> 4

tc∗

(k + 1)2mp 1

kq
.

We finally take q = 2mp + 2 in order to get convergent series. This last estimate, together
with (2.4.6), gives the desired result.

Proof of (2.4.8). We apply Itô’s formula to the product ZtAj(Xt) and get:

d (ZtAj(Xt)) = Zt

{
(∂AjB − ∂BA) +

d∑
l=1

∂Al(∂AlAj − ∂AjAl)
}

(Xt)dt

+ Zt

(1

2
∂k1∂k2AjA

k1
l A

k2
l

)
(Xt)dt

+ Zt

d∑
l=1

(∂AjAl − ∂AlAj)(Xt)dW
l(t).

(2.4.9)
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Hence, by Burkholder’s inequality,

sup
i=1,...,m

E
[
sup
s≤t

∣∣∣(ZsAj(Xs)− Aj(x))i
∣∣∣2q]

≤ C
{
t2q−1

(
|B|0|A|1 + |B|1|A|0 + |A|21|A|0 + |A|2|A|20

)2q

+ tq−1 (|A|1|A|0)2q
}∫ t

0

E
[

sup
h,k=1,...,m

|(Zu)h,k|2q
]
du

≤ Ctq
(
t1/2|B|0|A|32 + |A|21

)2q
eZ2q(t)

C ,

where the constant C depends on q,m and d, but not on t and on the bounds on B and A
and their derivatives. In the last step, we have once again used bound (2.2.15) on the entries
of Z.

2.4.2 Proof of Proposition 2.3.1

We first collect the basic facts we need to give the proof of Proposition 2.3.1. We will start
by proving existence and uniqueness of strong solutions for the following equation:

Xt = x+

∫ t

0

(a(Xs)− b(Xs)Xs)ds+

∫ t

0

γ(Xs)|Xs|αdWs, t ≥ 0, α ∈ [1/2, 1) (2.4.10)

whose coefficients are defined on the whole real line (a, b and γ are the functions appearing in
(2.3.1)). Once we have established that the unique strong solution of (2.4.10) is a.s. positive,
then (2.4.10) will coincide with the original equation (2.3.1).

The proof of Proposition 2.3.1 is splitted in the following two short Lemmas.

Lemma 2.4.1. Assume condition (s0) of Proposition 2.3.1. Then, existence and uniqueness
of strong solutions hold for (2.4.10). Moreover, for any initial condition x ≥ 0 the solution
is a.s. positive, P(Xt ≥ 0; t ≥ 0) = 1.

Proof. Existence of non-explosive weak solutions for (2.4.10) follows from continuity and
sub-linear growth of drift and diffusion coefficients. The existence of weak solutions together
with pathwise uniqueness imply the existence of strong solutions (cf. [39], Prop. 5.3.20
and Cor. 5.3.23). Pathwise uniqueness follows in its turn from a well-known theorem of
uniqueness of Yamada and Watanabe (cf. [39], Prop. 5.2.13). Indeed, as a, b, γ ∈ C1

b the
diffusion coefficient of (2.4.10) is locally Holder-continuous of exponent α ≥ 1/2 and the drift
coefficient is locally Lipschitz-continuous. We apply the standard localization argument for
locally Lipschitz coefficients and Yamada-Watanabe’s theorem to establish that solutions are
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pathwise unique up to their exit time from a compact ball, hence pathwise uniqueness holds
for (2.4.10).

Lemma 2.4.2 deals with the second part of Proposition 2.3.1, i.e. the behaviour at zero.
The proof is based on Feller’s test for explosions of solutions of one-dimensional SDEs (cf. [39],
Th. 5.5.29). Letting τ denote the exit time from (0,∞), that is τ = inf{t ≥ 0 : Xt /∈ (0,∞)}
with inf ∅ =∞, we have to verify that

lim
x→0

pc(x) = −∞ (2.4.11)

with pc defined by

pc(x) :=

∫ x

c

exp

(
−2

∫ y

c

a(z)− b(z)z

γ(z)2z2α
dz

)
dy, x > 0, (2.4.12)

for a fixed c > 0. Property (2.4.11) implies that P(τ =∞) = 1, then τ ≡ τ0 with τ0 as defined
in Proposition 2.3.1, because the solution of (2.4.10) does not explode at∞ (cf Lemma 2.4.1).
The inner integral in (2.4.12) is well defined and finite for any y > 0 because γ(z)2 > 0 for
any z > 0 and γ is continuous.

Remark 2.4.1. The conclusion does not depend on the choice of c ∈ (0,∞).

Lemma 2.4.2. Assume (s0) and let X = (Xt; t ≥ 0) denote the unique strong solution of
(2.4.10) for initial condition x > 0. Then the statements of Proposition 2.3.1 on the stopping
time τ0 hold true.

Proof. We prove (2.4.11), for c = 1. We assume without restriction that x < 1 and distinguish
the two cases.

Case α > 1/2. We have a(z) ≥ a(0)− |a|1z, z > 0. Then

a(z)− b(z)z

γ(z)2z2α
≥ a(0)− (|a|1 + b(z))z

γ(z)2z2α
≥ a(0)

|γ|20z2α
− |a|1 + |b|0
γ(z)2z2α−1

.

1
γ(z)2z2α−1 is integrable at zero by (s1)’, then there exist a positive constant K such that

−2

∫ y

1

a(z)− b(z)z

γ(z)2z2α
≥ 2a(0)

|γ|20

∫ 1

y

dz

z2α
+K =

2a(0)

(2α− 1)|γ|20

( 1

y2α−1
− 1
)

+K

hence

p1(x) ≤ −C
∫ 1

x

exp
( 2a(0)

(2α− 1)|γ|20
1

y2α−1

)
dy

= −C
∫ 1

x

1

1

t2
exp
( 2a(0)

(2α− 1)|γ|20
t2α−1

)
dt→x→0+ −∞.
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Case α = 1/2. By (s2),
2a(z)

γ(z)2z
≥ 1

z
,

for z < x. Hence
2
a(z)− b(z)z

γ(z)2z
≥ 1

z
− 2|b|0

1

γ(z)2

and thus, 1
γ2 being integrable at zero, for x < x we have

p1(x) ≤ −C
∫ 1

x

exp
(∫ 1

y

1

z
dz
)
dy

= −C
∫ 1

x

1

y
dy →x→0+ −∞.
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Chapter 3

Lower bounds on distribution functions
and densities: the case of
Local-Stochastic Volatility models

Abstract

We show that in a large class of stochastic volatility models with addi-
tional skew-functions (local-stochastic volatility models) the tails of the
cumulative distribution of the log-returns behave as exp(−c|y|), where c

is a positive constant depending on time and on model parameters. We
obtain this estimate proving a stronger result: using some estimates for
the probability that Itô processes remain around a deterministic curve
from [8], we lower bound the probability that the couple (X, V ) remains
around a two-dimensional curve up to a given maturity, X being the
log-return process and V its instantaneous variance. Then we find the
optimal curve leading to the bounds on the terminal cdf. The method we
rely on does not require inversion of characteristic functions but works
for general coefficients of the underlying SDE (in particular, no affine
structure is needed). Even though the involved constants are less sharp
than the ones derived for stochastic volatility models with a particular
structure ([2, 40, 27]), our lower bounds entail moment explosion, thus
implying that Black-Scholes implied volatility always displays wings in
the considered class of models. As a second step, using Malliavin calcu-
lus techniques, we show that an analogous estimate holds for the density
of the log-returns as well.

Keywords: Law of the stock price, Local-Stochastic Volatility, Moment Explosion, Im-
plied Volatility, tube estimates for Itô processes, Malliavin calculus

Note

The results in this chapter have been submitted for publications in Finance & Stochastics,
in a joint paper with V. Bally. The corresponding preprint can be found at [7].
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3.1 Introduction

As outlined in the Introduction of this thesis, in this chapter we will focus on the following
class of diffusions:

dXt = −1

2
η(t,Xt)

2f(Vt)
2dt+ η(t,Xt)f(Vt)dW

1
t

dVt = β(t, Vt)dt+ σ(t, Vt)dW
2
t ,

(3.1.1)

where W 1 and W 2 are two correlated Brownian motions on some filtered probability space
(Ω,F , (Ft)t≥0,P). The function f usually being positive, the couple (X, f(V )) lives in R×R+:
when X models the logarithm of the forward price of an asset and V its instantaneous
variance, Eq. (3.1.1) defines a so-called local-stochastic volatility model (LSV). The function η
is the local volatility (or skew) function; the autonomous process V is the stochastic volatility.
Local-stochastic volatility models embed stochastic volatility models (when η ≡ 1) and have
been intensively studied by the financial community in these last years, in particular when
the appearance of derivatives whose value depends on the dynamics of the implied volatility
demanded the introduction of more elaborate models. Some authors have focused on the
problem of how to design an efficient calibration strategy of such a model to the market smile,
as Lipton [49] or Henry-Labordère [36, 35], others have given a particular attention to the
asymptotics of implied volatility, as Forde & Jacquier in [25] for the small-time asymptotics
in the uncorrelated case. This chapter is devoted to the issue of giving asymptotic estimates
of the cumulative distribution and (when existing) of the density of the log forward price X.

Let us recall the context of our study and the related work of other authors. Recall from
the Introduction 1 that, setting Ft = F0e

Xt , F0 > 0, then F = (Ft; t ≥ 0) satisfies

Ft =

∫ t

0

Fsη(s,Xs)f(Vs)dW
1
s ,

hence F is a positive Itô local martingale. Then, a simple application of Fatou’s Lemma
allows to show that F is actually an integrable supermartingale. From the integrability
property of FT , T > 0, a simple application of Markov’s inequality shows that, for every
y > 0, P(XT > y) = P(eXT > ey) ≤ e−yE[eXT ] that is, up to multiplicative constants, the
right tail of the distribution of XT admits the exponential upper bound e−y. It has been seen
in §1.2.2 that in models such as (1.3.2), the moments of FT of exponent greater than one or
smaller than zero can explode. (cf. [48], Andersen & Piterbarg [2] and Keller-Ressel [40]).
The interest of several authors for the phenomenon of moment explosion is explained - among
others - by its connexion with the asymptotic behaviour of implied volatility, which is made
rigorous by Lee’s Moment Formula [46]. Let us recall the basic notation we will employ: the
definition of the implied volatility is found at (1.2.7), and we define the critical exponents
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p∗T (X) and q∗T (X) of eXT by

p∗T (X) = sup{p ≥ 1 : E[epXT ] <∞}, q∗T (X) = sup{q ≥ 0 : E[e−qXT ] <∞}.

We slightly change the notation with respect to the definition in the Introduction 1, since
from now on we want to refer to the log-price X rather than the stock price F . Lee’s moment
formula (1.2.8) reads:

lim sup
k→∞

Tσ(T, k)2

k
= ϕ(p∗T (X)− 1), lim sup

k→∞

Tσ(T,−k)2

k
= ϕ(q∗T (X)), (3.1.2)

where ϕ(x) = 2 − 4(
√
x2 + x − x), ϕ(∞) = 0 (cf. §1.2.2 for the refinement of this result by

Benaim and Friz [9]). Concerning the impact of (3.1.2) on model calibration, we refer the
discussion in §1.2.2. Some authors focus on the explicit computation of the critical exponents,
as [2] or [40] for some classes of stochastic volatility models: as a result, the critical exponents
are not available in closed form but can be straightforwardly obtained solving (numerically)
a simple equation.
Of course, moment explosion occurs when the tails of the distribution of XT are sufficiently
heavy. More precisely, if the law of XT admits a density and this density behaves as e−c|y|

for |y| → ∞ for some constant c > 1, then positive and negative exponential moments of Xt

of order p will explode for p ≥ c. Dragulescu and Yakovenko [20] showed that the density
of the log-price does behave as e−c|y| in the Heston model (1.2.2), exploiting the analytical
computations that can be carried for the characteristic function of XT . Let us mention that
the work of [20] on the stock price distribution in the Heston model has been extended and
sharpened with the addition of higher-order terms to the leading e−c|y|, first by Gulisashvili
and Stein [32] in the case of zero correlation and subsequently by Friz et al. [27].

The main aim of Chapter 3 is to show that the cumulative distribution of the log forward
price X and, when existing, its density, behave as exp(−c|y|) for large |y| in the following
class of LSV models:

dXt = −1

2
η(t,Xt)

2Vtdt+ η(t,Xt)
√
VtdW

X
t (3.1.3)

dVt = β(t, Vt)dt+ σ(t, Vt)
√
VtdW

V
t , (3.1.4)

obtained from (3.1.1) setting f(v) =
√
v. Eq. (3.1.4) for the variance process is given on the

domain R+ = [0,∞), i.e. a process V satisfying (3.1.4) is such that P(Vt ∈ [0,∞), t ∈ [0, T ]) =

1. This class contains the Heston model and the “universal volatility model” (without the
jump part) considered in [49], but is much wider, allowing for general coefficients β, σ in the
SDE of the variance. While on the one hand we consider reasonable Lipschitz, boundedness
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and ellipticity conditions on the coefficients η and σ (but we allow the drift β to be any
measurable function with sub-linear growth), on the other hand we emphasize that the square-
root factors in (3.1.3)-(3.1.4) impose the necessity to work under local regularity assumptions.
Let us also remark that, at this level, we are not concerned with the (possibly intricate)
discussion on the existence and/or uniqueness of solutions to (3.1.3)-(3.1.4): our results
indeed hold for any couple of processes (X, V ) = (Xt, Vt; t ∈ [0, T ]) satisfying (3.1.3)-(3.1.4).
The situation where the diffusion coefficient of (3.1.4) is replaced by σ(t, v)vp for a p > 0

(thus embedding the class of models considered by Andersen & Piterbarg in [2]) is at the basis
of the motivation for the further study we begin to develop in Chapter 4. Let us introduce
the main tool of our analysis: we rely on an estimate involving the trajectory of the couple
(X, V ) up to time T obtained by Bally, Fernandez & Meda in [8], which we refer to as to a
“tube” estimate. In [8], the authors provide estimates for the probability that an Itô process
remains in a tube of given radius around a given deterministic curve, under some conditions
of local Lipschiz-continuity, local boundedness and local ellipticity on the coefficients of the
process. As a result, the probability of staying in the tube is lower bounded by an integral
functional of the curve itself, of the deterministic radius and the coefficients of the SDE. The
work we carry out in this chapter is to cast this functional in a simple form, and then to
optimize over the possible choices of curves and radii. This formulation leads to the solution
of an Euler-Lagrange optimization problem: the explicit computations that follow allow us
to obtain a lower bound which is in the desired asymptotic range. To present our main result
in this direction, let us introduce the following objects: for y ∈ R, define the point y and the
one-dimensional curves x̃t, ṽt, R̃t, t ∈ [0, T ] by

y = |y|+ V0; φ(t) =
sinh(t/2)

sinh(T/2)
; (3.1.5)

ṽt = V0

(√ y

V0

φ(t)− e−T/2φ(t) + e−t/2
)2

; x̃t = sign(y)(ṽt − V0); R̃t =
1

2

√
(V0 ∧ 1)ṽt

where sign(x) = 1 if x ≥ 0 and sign(x) = −1 if x < 0. Our main result is the following
estimate:

P
(
|(Xt, Vt)− (x̃t, ṽt)| ≤ R̃t, 0 ≤ t ≤ T

)
≥ exp

(
−cTψ(ρ⊥)× |y|

)
(3.1.6)

which holds for |y| large enough, where ψ is an explicit function and cT is a strictly positive
constant depending on the model parameters and explicitly on T , but not on y nor on the
correlation parameter ρ (in §3.2.1, Theorem 3.2.1, we precise how large |y| must be and
give the expression of ψ and cT ). The curves x̃·, ṽ·, R̃· in (3.1.5) are the product of the
optimization procedure we set up, appearing as the solution to the Euler-Lagrange equations
in section 3.3.1. We remark that the curve x̃· ends up at x̃T = y while the terminal radius
R̃T is proportional to

√
|y|: hence, dropping the multiplicative constants for simplicity and

writing P(|XT − y| ≤
√
|y|) ≥ P(|(XT , VT ) − (x̃T , ṽT )| ≤ R̃T ), then using (3.1.6), we obtain
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the desired lower bound for the terminal distribution (this argument is made rigorous in
Corollary 2 in §3.2.2). This result already allows us to state our main conclusion on the
asymptotic behaviour of the implied volatility, namely: the implied volatility always displays
wings (equivalently, is never flat) in the class of models (3.1.3)-(3.1.4) (cf. (3.2.11) in Corollary
2 for the precise statement on the asymptotic slopes of the implied variance). Notice that the
fact that the tube estimate (3.1.6) is given for the couple (X, V ) is crucial in our framework:
indeed, in order to estimate the behaviour of XT we need to have a control on the variance
Vt for all t ∈ [0, T ].
We would like to notice that the results we obtain in this chapter on the law of the underlying
and on moment explosion are significant by themselves, as generalisations of the existing
results on stochastic volatility models (that is to say, apart from the fact that we employ
special techniques in order to circumvent the singular coefficients).
As a second part of our study, we extend the previous estimates to the density of the law.
More precisely, under some additional regularity hypotheses on the coefficients of the SDE,
we discuss the existence of a density for the law of XT and show that the exponential lower
bound holds for the density as well. This last step requires to work out some “small balls”
estimates (cf. Proposition 3.2.1 in §3.2.3) and to employ the integration by parts formula of
Malliavin calculus. As done in Chapter 2, this tool needs to be coupled with an appropriate
localization procedure. We rely on the decomposition of XT as a Gaussian term plus a
perturbation, following the idea of Bally & Caramellino in [6]: the desired lower bound on
the density follows from an operation of balance between the two terms of the decomposition.
This operation involves a sharp estimation of the Sobolev norms of the perturbation term,
for which we take advantage of the estimates of the Sobolev norms of a diffusion derived in
Chapter 2, §2.2.3. Our final estimates on the density pXT of XT reads

pXT (y) ≥ 1

MT

exp
(
−eTψ(ρ⊥)|y|

)
for |y| > MT , where MT and eT are constants depending on model parameters and explicitly
on T . If the density happens not to be continuous, the inequality is understood almost surely
(see Theorem 3.2.2 for the precise statement).
The chapter is organized as follows. In section 3.2 we give our working hypotheses and a
detailed presentation of the main results. In particular, in §3.2.1 we prove estimate (3.1.6)
and in §3.2.2 we state the corollary for the terminal cdf, the moment explosion and the implied
volatility slopes. In §3.2.3 we give our results on the density of XT . Sections 3.3 and 3.4 are
devoted to the proofs of the results stated in section 3.2: Malliavin calculus appears from
section 3.4, while the tools employed in the previous are borrowed from stochastic calculus
for Itô processes. Finally, section 3.6 contains the proofs of the most technical results.
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3.2 Main results

In this section we give our working hypotheses and a detailed presentation of the main results.
Let us consider the class of models (3.1.3)-(3.1.4). For the ease of computations, we

decorrelate the driving Brownian motions in the usual way and rewrite (3.1.3)-(3.1.4) as

dXt = −1

2
η(t,Xt)

2Vtdt+ η(t,Xt)
√
Vt(ρdW

1
t + ρ⊥dW

2
t ), t ≤ T (3.2.1)

dVt = β(t, Vt)dt+ σ(t, Vt)
√
VtdW

1
t , t ≤ T (3.2.2)

were (W 1
t ,W

2
t ; t ≤ T ) is a two-dimensional standard Brownian motion. We consider de-

terministic initial conditions X0 = 0 and V0 > 0, finite time horizon T > 0, ρ ∈ (−1, 1)

and we denote ρ⊥ :=
√

1− ρ2. Eq. (3.2.2) for the variance process is given on the domain
R+ = [0,∞), i.e. a process V satisfying (3.2.2) is such that P(Vt ∈ [0,∞), t ∈ [0, T ]) = 1. We
assume that the coefficients η, β and σ in (3.2.1)-(3.2.2) satisfy the following conditions, for
some K > 1:

(R) (regularity) η : [0, T ] × R → R and σ : [0, T ] × [0,∞) → R are Lipschitz-continuous
functions, more precisely

|η(s, x)− η(t, y)| ≤ K(|x− y|+ |s− t|)

|σ(s, v)− σ(t, u)| ≤ K(|v − u|+ |s− t|)

hold for every (s, t, x, y) ∈ [0, T ]× [0, T ]×R×R, respectively every (s, t, v, u) ∈ [0, T ]×
[0, T ]× [0,∞)× [0,∞).

(G) (growth) The mesurable function β : [0, T ] × [0,∞) → R has sub-linear growth in v,
more precisely

|β(t, v)| ≤ K(1 + v)

for every (t, v) ∈ [0, T ] × [0,∞). Moreover, there exist constants 0 < η < 1 < η and
0 < σ < 1 < σ such that

η ≤ η(t, x) ≤ η, σ ≤ σ(t, v) ≤ σ

hold for every (t, x) ∈ [0, T ]× R, respectively (t, v) ∈ [0, T ]× [0,∞).

Remark 3.2.1. Despite of the boundedness condition on η, σ given in (G), obviously none
of the drift and diffusion coefficients in the system (3.2.1)-(3.2.2) is bounded, because of the
factors Vt and

√
Vt.
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Remark 3.2.2. In hypothesis (R), we could replace Lipschitz-continuity with respect to the
couple (t, x) (resp. (t, v)) with Lipschitz-continuity with respect to the state variable x (resp.
v) and Holder-continuity of exponent 1/2 with respect to time, and all the results of sections
3.2.1 and 3.2.2 would still hold.

Remark 3.2.3. We are not interested here in discussing the existence and/or uniqueness
of solutions to (3.2.1)-(3.2.2) under conditions (R) and (G). All the results we give in this
subsection and in the following (but not in subsection 3.2.3, where a new set of hypotheses is
considered) indeed hold for any couple of processes (X, V ) = (Xt, Vt; t ∈ [0, T ]) which satisfy
(3.2.1)-(3.2.2).

Notation Sets and filtrations. As done previously, |·| will still denote the absolute value for
real numbers as well as the Euclidean norm for vectors, i.e. |x| =

√∑n
i x

2
i if x ∈ Rn. We recall

that BR(x) is the open ball in Rn of center x and radius R, BR(x) = {y ∈ Rn : |y− x| < R}.
Moreover, we denote (F it , t ≥ 0) the completion of the filtration generated by W i, i = 1, 2,
and Ft = F1

t ∨ F2
t . λn is the Lebesgue measure on Rn.

Classes of functions, derivatives, norms. C1([0, T ]) denotes the class of real functions of [0, T ]

which have uniformly continuous derivative on (0, T ). We will make use of the class L(µ, h)

defined in [8], section 2 : given a fixed time horizon T , µ ≥ 1 and h > 0, L(µ, h) is the class
of functions f : [0, T ]→ R+ = [0,∞) such that for every t, s ∈ [0, T ] with |t− s| < h one has

f(t) ≤ µf(s).

We denote C0,k([0, T ] × Rn) (resp. C0,k
b ([0, T ] × R)) the class of continuous functions of

[0, T ]×Rn which have continuous (resp. bounded continuous) partial derivatives with respect
to the second variable up to order k. Let Θk be the set of multi-indexes of length k with
components in {1, . . . , n}, Θk = {1, . . . , n}k. For α ∈ Θk and g ∈ C0,k([0, T ]×Rn), we denote
∂αg = ∂kg

∂xα1 ···∂xαk
. We define the norms

|g|k = 1 ∨
k∑
j=0

∑
α∈Θk

sup
t∈[0,T ]

sup
x∈Rn
|∂αg(t, x)|.

Constants. For a vector of parameters Λ = (λ1, . . . , λν), we shall denote CΛ (resp. CΛ(t)) a
positive constant (resp. function of time) depending on the λi’s but not on any of the other
existing variables. As in the previous chapter, constants of such a type may vary from line
by line, but always depend only on Λ.
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3.2.1 Estimates around a Deterministic Curve

We fix T > 0. We consider three one-dimensional curves x, v, R of class C1([0, T ]) such that:
Rt > 0 for any t ∈ [0, T ] and x and v have the same initial values as X and V in (3.2.1)-
(3.2.2) (in particular, x0 = 0). We look for a lower bound on the probability that a process
(Xt, Vt) = (Xt, Vt; t ≤ T ) satisfying (3.2.1)-(3.2.2) stays in the tube of radius Rt around the
deterministic curve (xt, vt) up to time T , that is a lower bound on the quantity

P(|(Xt, Vt)− (xt, vt)| ≤ Rt, 0 ≤ t ≤ T ). (3.2.3)

To lower bound (3.2.3) we employ the estimate provided in [8], Theorem 1. The main result of
this section, Theorem 3.2.1, makes use of the triplet of curves x̃t, ṽt, R̃t defined in (3.1.5). As
addressed in the Introduction, the choice of these particular curves relies on an optimization
problem: they indeed appear as the solutions of some Euler-Lagrange equations (see section
3.3.1). Recall the ψ from the Introduction:

ψ(r) =
1

r6

(
ln
(1

r

)
+ 1
)
, r > 0. (3.2.4)

Theorem 3.2.1. Assume conditions (R) and (G) and let (Xt, Vt; 0 ≤ t ≤ T ) be two processes
satisfying (3.2.1)-(3.2.2). Then for every y ∈ R with |y| large enough, precisely

|y| > V0

(
1 + 2 sinh(T/2)

)2
, (3.2.5)

and with the curves x̃·, ṽ·, R̃· defined in (3.1.5) one has

P
(
|(Xt, Vt)− (x̃t, ṽt)| ≤ R̃t, t ∈ [0, T ]) ≥ exp

(
−cTψ(ρ⊥)× |y|

)
. (3.2.6)

The constant cT is given by

cT = c∗
( 1

T
+ 1
)
ec
∗T 2

, (3.2.7)

where c∗ is strictly positive constant depending on the model parameters V0, K, η, σ, η, σ given
in (R) and (G) but not on y nor on the correlation parameter ρ.

Remark 3.2.4. Let us discuss the impact of the factor ψ(ρ⊥) and of the maturity T in the
lower bound (3.2.6) a bit further. It is known that the correlation effects moment explosion in
stochastic volatility models, a negative correlation bringing - as intuitively clear - a dampening
effect (cf. [2], sections 3 and 4). In a Heston model, obtained when the variance process in
(3.2.2) has constant parameters and mean-reverting drift, the upper critical moment of eXT

tends to infinity when ρ → −1 and XT even becomes a bounded random variable when
ρ = −1, and the behaviour is the opposite when ρ > 1. The factor ψ(ρ⊥) = ψ(

√
1− ρ2) has

the expected explosive behaviour when ρ→ −1, but it symmetrically decrements the rhs of
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(3.2.6) for ρ > 0, making the lower bound significant in particular for ρ ∈ (−1, 0). The small
time asymptotics 1

T
of the constant cT is what expected for a diffusion; on the other hand,

the large time dependence ec∗T 2 makes the bound (3.2.6) not directly applicable to study the
large-time asymptotics.

3.2.2 Lower bounds for Cumulative Distribution Function and Mo-

ments

Theorem 3.2.1 leads, in particular, to lower bounds on the tails of the complementary cumu-
lative distribution function (complementary cdf in short) of XT , i.e. P(|XT | > ·). Indeed,
on the one hand we can simply lower bound the probability to be in the tube at the final
“time-slice”, P(|(XT , VT )− (x̃T , ṽT )| ≤ R̃T ) with the probability to stay in the tube up to time
T . On the other hand, the final time radius R̃T in (3.1.5) is - roughly speaking - propor-
tional to

√
|y|. Hence, when y → ∞ (resp. y → −∞) the infimum (resp. the supremum)

of the interval [y − R̃T , y + R̃T ] becomes large (resp. small) and this allows to obtain tail
estimates for P(|XT | > ·) that are in the same asymptotic range as (3.2.6). This observation
is made rigorous in the proof of the following Corollary, which is indeed a direct consequence
of Theorem 3.2.1.

Corollary 2. Under the assumptions of Theorem 3.2.1, for any y > 0 satisfying (3.2.5) and

y > 2(V0 ∨ 1)2(1 + V0), (3.2.8)

one has
P(XT > y) ∧ P(XT < −y) ≥ exp

(
−cTψ(ρ⊥)× y

)
(3.2.9)

where cT is the constant given in (3.2.7). In particular, the critical exponents are finite:

p∗T (X) ∨ q∗T (X) ≤ cTψ(ρ⊥), (3.2.10)

hence the implied volatility diplays left and right wings, i.e.

lim sup
k→∞

Tσ(T, k)2

k
≥ ϕ(cTψ(ρ⊥)− 1) > 0,

lim sup
k→−∞

Tσ(T, k)2

k
≥ ϕ(cTψ(ρ⊥)) > 0.

(3.2.11)

Remark 3.2.5. As addressed in the Introduction, eXT is integrable for every T > 0. A
simple application of Markov’s inequality shows that, for every y > 0, P(XT > y) = P(eXT >

ey) ≤ e−yE[eXT ]. This is not in contradiction with (3.2.9), because on the one hand ψ(ρ⊥) is
greater than or equal to one for any value of ρ⊥ ∈ (0, 1] (cf. (3.2.4)), and on the other the
constant c∗ in (3.2.7) is greater than 1, hence cT > 1 for every T > 0, too.
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Remark 3.2.6. In this chapter we are mainly interested in the law of XT . Estimate (3.2.6)
can of course be applied to derive the analogous lower bound for the joint law of XT and VT .
See Proposition 3.2.1 in the next section for a refined statement in this direction.

3.2.3 Lower bounds for the density

We consider now some stronger regularity conditions on the coefficients of (3.2.1)-(3.2.2):

(R’) (regularity’ ) (R) and (G) hold and η ∈ C0,2
b ([0, T ] × R), σ ∈ C0,2

b ([0, T ] × [0,∞)),
β ∈ C0,2

b ([0, T ]× [0,∞)) ∩ Lip([0, T ]× [0,∞)) with |η|2 ∨ |σ|2 ≤ K.

Remark 3.2.7. Under condition (R’), the system (3.2.1)-(3.2.2) admits a unique strong
solution. Indeed, the existence of a weak solution (X, V ) that satisfies (3.6.1) follows from
the continuity and sub-linearity of the coefficients. Then, pathwise uniqueness holds for
(3.2.2) after a theorem of uniqueness of Yamada and Watanabe (cf. [39], Prop. 5.2.13) and
weak existence and pathwise uniqueness together imply strong existence ([39], Cor. 5.3.23).
Given the unique solution to (3.2.2), standard arguments allow to prove pathwise uniqueness
for (3.2.1).

We will give a lower bound for the density of the law of XT under hypothesis (R’). Notice
first that the law of XT is absolutely continuous with respect to the Lebesgue measure λ1

on R. This fact may be proven in (at least) two ways. First, we may look to the law of XT

conditional to (W 1
t , t ≤ T ). Then XT appears as a functional of the independent Brownian

motion (W 2
t , t ≤ T ) and, using the Bouleau-Hirsch criterium (cf. [55]), we obtain a density

pXT (W 1, x) for the conditional law. Then, the law of XT has the density E[pXT (W 1, x)] =

pXT (x). A second way would be to use the results in Chapter 2, Theorem 2.2.5, telling that
the couple (XT , VT ) admits a density pT (x, v) on R×(0,∞) (meaning that the law of (XT , VT )

restricted to R× (0,∞) has the density pT (x, v)). This immediately yields the existence of a
density pXT (x) for the marginal law of XT . Nevertheless, we remark that none of the above
approaches guarantee that the density of XT is continuous.

Before giving an estimate of the density of XT itself, we need to work out some estimates
for the probability that XT stays in a ball of “small” radius.

Proposition 3.2.1 (Lower bounds for balls of small radius). Let R(j)(y) be given by

R(j)(y) =
(√
|y|
)1−j

, j ∈ N

(so that R(0)(y) =
√
|y|, R(1)(y) = 1, R(2)(y) = 1√

|y|
, ...). Assume (R’) and let (Xt, Vt; 0 ≤

t ≤ T ) be the unique strong solution to (3.2.1)-(3.2.2). Then, for any y satisfying (3.2.5)
and |y| > 16 ∨ 2(V0 ∨ 1)2(1 + V0),

P
(
|(XT , VT )− (y, |y|+ V0)| ≤ R(j)(y)

)
≥ exp

(
−(j + 1)dTψ(ρ⊥)× |y|

)
. (3.2.12)
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The constant dT is given by dT = 2c∗
(

1
T 2 + 1

)
e(c∗+1)T 2, c∗ being the constant in (3.2.7).

Remark 3.2.8. By taking j large enough, the radius R(j)(y) can be made arbitrarily small.
Then we would like to make use of (3.2.12) to obtain a lower bound for the density of XT

computed at y, but we cannot pass to the limit with j in (3.2.12) because the rhs tends to
zero as j →∞. Nevertheless, we can obtain a lower bound for the density using (3.2.12) for
finite j and the integration by parts formula of Malliavin Calculus. This is what we actually
do in order to prove the next theorem.

Here is the main result for this section.

Theorem 3.2.2. Assume (R’) and let (Xt, Vt; 0 ≤ t ≤ T ) be the unique strong solution to
(3.2.1)-(3.2.2). Then, there exists a strictly positive constant MT depending on T and on the
model parameters such that for λ1-a.e. y with |y| > MT ,

pXT (y) ≥ 1

M T
exp
(
−eTψ(ρ⊥)|y|

)
(3.2.13)

where eT = 136c∗
(

1
T 2 + 1

)
e(c∗+1)T . The inequality (3.2.13) is understood in the sense

∫
|y|>MT

f(y)pXT (y)dy ≥ 1

M T

∫
|y|>MT

f(y) exp
(
−eTψ(ρ⊥)|y|

)
dy

for every f ∈ Cb(R).

Remark 3.2.9. If the density pXT (y) is continuous, then (3.2.13) holds for every y with
|y| > MT .

We recall that for a Heston model with constant coefficients, the density pXT (y) is asymptotic
to exp(−c|y|), cf. [20, 27].

3.3 Proof of results in 3.2.1 and 3.2.2

We start by giving a preliminary result that will be used in the proof of Theorem 3.2.1. We
consider x·, v· in C1([0, T ]) and R, c, λ, γ, L : [0, T ]→ R+ satisfying

x0 = 0; v0 = V0; v′t > 0;

x′, v′, R, c, λ, γ, L ∈ L(µ, h)
(3.3.1)

and we define the stopping time

τR = τR(X, V ) = inf{t ≤ T : |(Xt, Vt)− (xt, vt)| > Rt}.
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Moreover, we denote

b(t, x, v) =

(
−1

2
η(t, x)2v

β(t, v)

)
;

σ1(t, x, v) =

(
ρη(t, x)

√
v

σ(t, v)
√
v

)
; σ2(t, x, v) =

(
ρ⊥η(t, x)

√
v

0

)
and consider the conditions:

|b(t,Xt∧τR , Vt∧τR)|+
∑
j=1,2

|σj(t,Xt∧τR , Vt∧τR)| ≤ ct; (3.3.2)

λtI2 ≤ σσ∗(t,Xt∧τR , Vt∧τR) ≤ γtI2; (3.3.3)

E
[∑
j=1,2

|σj(s,Xs, Vs)− σj(t,Xt, Vt)|21{τR≥s}

]
≤ L2

t (s− t) (3.3.4)

which correspond to hypothesis (H) in [8]. Then, according to Theorem 1 in [8], the estimate

P(|(Xt, Vt)− (xt, vt)| ≤ Rt, 0 ≤ t ≤ T ) ≥ exp
(
−Q(µ)

(
1 +

∫ T

0

Fx,v,R(t)dt
))

(3.3.5)

holds with the rate function

Fx,v,R(t) =
1

h
+

(x′t)
2 + (v′t)

2

λt
+ 2(c2

t + L2
t )
( 1

λt
+

1

R2
t

)
. (3.3.6)

and the constant Q(µ) given by

Q(µ) =
qµ
φ2
λ,γ

ln
qµ
φλ,γ

, (3.3.7)

where
φλ,γ = inf

t≤T

λt
γt

; qµ = 812e2µ73. (3.3.8)

(We actually denote φλ,γ the constant ρ in [8]). The following proposition is the starting
point to prove Theorem 3.2.1.

Proposition 3.3.1. Assume conditions (R) and (G). Let xt, vt, Rt satisfy (3.3.1) and con-
sider a process (Xt, Vt) = (Xt, Vt; 0 ≤ t ≤ T ) satisfying (3.2.1)-(3.2.2). Let moreover

Rt ≤ Rvt, t ∈ [0, T ] (3.3.9)

hold for a fixed R ∈ (0, 1). Then, setting Θ = (K, η, σ,R, V0), there exist strictly positive
constants c = cΘ;L = LΘ; γ = γΘ;λ = λΘ,η,σ such that for every 0 ≤ t < s ≤ T the
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conditions (3.3.2)-(3.3.3)-(3.3.4) are fulfilled by the curves

ct = cvt; L2
t = LTvt;

γt = γvt; λt = ρ2
⊥λvt.

LT is given by LT = LeC2T 2, where C2 is the constant appearing in Lemma (3.6.1). The
curves ct, Lt, γt, λt belong respectively to L(µ, h), L(

√
µ, h), L(µ, h), L(µ, h).

Proof. In what follows we shall repeatedly apply the inequality
√
v ≤ 1 + v, v > 0.

(3.3.2): We notice that for every t, x, v ∈ [0, T ]× R× [0,∞),

|b(t, v, x)|+
∑
j=1,2

|σj(t, v, x)|

≤ 1

2
η2v +K(1 + v) + (ρ+ ρ⊥)η

√
v + σ

√
v

≤ K + (ρ+ ρ⊥)η + σ +
(1

2
η2 +K + (ρ+ ρ⊥)η + σ

)
v

≤ c(1 + v)

where the last holds with c = 1
2
η2 + K + 2η + σ. Then, employing the condition (3.3.9) on

the radius and the fact that vt ≥ V0 for any t ∈ [0, T ] by (3.3.1),

|b(t,Xt∧τR , Vt∧τR)|+
∑
j=1,2

|σj(t,Xt∧τR , Vt∧τR)|

≤ c(1 + Vt∧τR) ≤ c(1 + (vt +Rt))

≤ c(1 +R)(1 + vt) ≤ 2c(1 +R)
1 ∨ V0

V0

vt

(3.3.10)

and the last inequality holds since (1 + v) ≤ 2V0∨1
V0
v for any v > V0.

(3.3.3): Let σσ∗i,j(t, x, v) =
∑

k=1,2 σ
i
k(t, x, v)σjk(t, x, v), i, j = 1, 2. The condition

λtI2 ≤ σσ∗(t,Xt∧τR , Vt∧τR) ≤ γtI2 (3.3.11)

for the given λt, γt will follow from the computation of the eigenvalues of σσ∗. Denoting
η := η(t, x) and σ := σ(t, v) for simplicity of notation, we have

σσ∗(t, x, v) =

(
η2v ρησv

ρησv σ2v

)
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hence the smallest, respectively the largest, eigenvalue satisfy

λt(x, v) =
1

2

(
η2v + σ2v −

√(
η2v + σ2v

)2 − 4η2σ2v2ρ⊥

)
≥ ρ2

⊥
η2σ2v2

η2v + σ2v
≥ ρ2

⊥
η2σ2

2(η2 + σ2)
v

γt(x, v) =
1

2

(
η2v + σ2v +

√(
η2v + σ2v

)2
+ 4η2σ2v2ρ⊥

)
≤ η2v + σ2v ≤ (η2 + σ2)v

(3.3.12)

Proceeding as before we have

λt(Xt∧τR , Vt∧τR) ≥ ρ2
⊥

2(η2σ2)

η2 + σ2

1−R
1 +R

vt = ρ2
⊥λ(η, σ, η, σ, R)vt;

γt(Xt∧τR , Vt∧τR) ≤ (η2 + σ2)(1 +R)vt = γ(η, σ,R)vt;

Then (3.3.11) follows with λt, γt as in the statement of the proposition.
(3.3.4): Because of assumption (R), for every s, t ∈ [0, T ] × [0, T ], every x, y ∈ R × R and
every v, u ∈ [0,∞)× [0,∞) we have

|η(s, x)
√
v − η(t, y)

√
u| ≤

√
uK(|x− y|+ |s− t|) + η|

√
v −
√
u|

≤
√
uK(|x− y|+ |s− t|) +

η

2 min(
√
v,
√
u)
|v − u|

(3.3.13)

and

|σ(s, v)
√
v − σ(t, u)

√
u| ≤

√
uK(|x− y|+ |s− t|) + σ|

√
v −
√
u|

≤
√
uK(|x− y|+ |s− t|) +

σ

2 min(
√
v,
√
u)
|v − u|.

(3.3.14)

It follows, for every t ≤ s ≤ T ,

E
[
|η(s,Xs)

√
Vs − η(t,Xt)

√
Vt|21{τR≥s}

]
≤ 4K2E

[
Vt
(
|Xs −Xt|2 + (s− t)2

)
1{τR≥s}] + E[

η2

2 min(Vt, Vs)
|Vs − Vt|21{τR≥s}

]
≤ 4K2

(
(1 +R)vtC2e

C2T 2

(s− t) + T (s− t)
)

+
η2

2(1−R)vt
C2e

C2T 2

(s− t)

≤ C2

(
8(1 +R)K2V0 ∨ 1

V0

+
η2

2(1−R)V 2
0

)
eC2T 2

vt(s− t)
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where C2 is the constant considered in Lemma 3.6.1. Analogously,

E
[
|σ(s, Vs)

√
Vs − σ(t, Vt)

√
Vt|21{τR≥s}

]
≤ 4K2

(
(1 +R)vtC2e

C2T 2

(s− t) + T (s− t)
)

+
σ2

2(1−R)vt
C2e

C2T 2

(s− t)

≤ C2

(
8(1 +R)K2V0 ∨ 1

V0

+
σ2

(1−R)V 2
0

)
eC2T 2

vt(s− t).

Estimate (3.3.4) then follows from the two previous inequalities and the expression of σ1, σ2.
The last statement on the curves ct, Lt, γt, λt follows from the fact that the function afp

belongs to L(µp, h) if f belongs to L(µ, h), p > 0 and a is a positive constant.

Basically, what Theorem 3.2.1 does is to compute the right hand side of (3.3.5) on a
particular curve satisfying conditions (3.3.2)-(3.3.3)-(3.3.4), so that (3.3.5) translates into
the explicit lower bound (3.2.6). The choice of the deterministic curve (xt, vt) considered in
Theorem 3.2.1 is of course motivated by the form of the rate function (3.3.6). More precisely,
consider any xt, vt, Rt that satisfy (3.3.1). Then, by Proposition 3.3.1, the estimate (3.3.5)
holds with

Fx,v,R(t) =
1

h
+

(x′t)
2 + (v′t)

2

ρ2
⊥λvt

+ 2(c2v2
t + LTvt)

( 1

ρ2
⊥λvt

+
1

R2
t

)
, (3.3.15)

φλ,γ = inf
t≤T

λt
γt

=
ρ2
⊥λ

γ
inf
t≤T

vt
vt

=
ρ2
⊥λ

γ
(3.3.16)

and Q(µ) as given in (3.3.7).

3.3.1 A Lagrangian minimization problem

We start from the simple observation that maximizing the lower bound in (3.3.5) is equivalent
to minimizing the exponent Q(µ)(1 +

∫ T
0
Fx,v,R(t)dt). Due to the presence of the competing

terms 1
vt

+ 1
R2
t
and (x′t)

2 + (v′t)
2 in Fx,v,R, we make the choice

Rt =
1

2

√
V0vt (3.3.17)

so that R2
t is proportional to vt, and consider curves xt, vt such that |x′t| = |v′t|, precisely

xt = sign(y)(vt − V0), t ∈ [0, T ]. (3.3.18)

Equations (3.3.17) and (3.3.18) define Rt and xt given vt, as happens for (3.1.5). We remark
that the radius in (3.3.17) satisfies the requirement Rt ≤ 1

2
vt of Proposition 3.3.1. Moreover,

if the arrival point xT = y of the curve xt is given, the same will be for vt. We define the
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“shifted” arrival point y = vT setting

y = |y|+ V0. (3.3.19)

After (3.3.17)-(3.3.18), the rate function (3.3.15) reduces to

F v(t) =
1

h
+

2

ρ2
⊥λvt

(v′t)
2 + 2(c2v2

t + LTvt)
( 1

ρ2
⊥λ

+ 1
) 1

vt
(3.3.20)

which is a function of the curve vt only. Since we want to upper bound F v, we can get rid of
all the constants and just keep the explicit dependence with respect to the curve vt: defining

ΓT = 1 ∨ 2
c2 + LT

(V0 ∧ 1)ρ2
⊥λ
, (3.3.21)

we have
F v ≤

1

h
+ ΓT

((v′t)
2

vt
+ vt

)
and the constant Γ carries the explicit dependence w.r.t the model parameter ρ⊥. The
strategy we shall follow is to consider

L(vt, v
′
t) =

(v′t)
2

vt
+ vt (3.3.22)

and to look for the solution of the minimization problem

min
v

∫ T

0

L(vt, v
′
t) (3.3.23)

with the constraints
v0 = V0; vT = y. (3.3.24)

The problem (3.3.23)-(3.3.24) is the classical minimization problem in the Calculus of Varia-
tions for Lagrangian systems: a stationary point for the integral functional in (3.3.23) is the
solution of the Euler-Lagrange equation

d

dt

dL
dv′

(vt, v
′
t)−

dL
dv

(vt, v
′
t) = 0

under the constraints (3.3.24). The Euler-Lagrange equation associated to the Lagrangian
(3.3.22) is easily obtained to be:

v′′t
v′t

=
v′t
2vt

+
vt
2v′t

. (3.3.25)
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A closer look to Eq. (3.3.25) reveals that it can be turned into a linear second order ODE
with the change of variables

ut =
( vt
V0

) 1
2
, (3.3.26)

which indeed converts (3.3.25) into

u′′t −
1

4
ut = 0, (3.3.27)

now with the constraints
u0 = 1; uT =

( y
V0

) 1
2
. (3.3.28)

The explicit solution to (3.3.27)-(3.3.28) is easily found to be

ut =
( y
V0

) 1
2 sinh(t/2)

sinh(T/2)
− e−T/2 sinh(t/2)

sinh(T/2)
+ e−t/2. (3.3.29)

The curve ṽt defined in (3.1.5) corresponds to the one given by (3.3.26) and (3.3.29). What
Theorem 3.2.1 does, then, is to pick up this particular curve, to check for which values of µ, h
and y the curve ṽ′t belongs to L(µ, h) and satisfies ṽ′t > 0 from (3.3.1), hence to estimate the
integral functional in (3.3.23).

Proof of Theorem 3.2.1. Step 1. We show that ṽ′t > 0, t ∈ [0, T ] and ṽ′ ∈ L(4, h) with

h =
(
y
V0

) 1
2

tanh(T/2), if y satisfies (3.2.5). Taking advantage of the notation introduced in
(3.3.26), we have

ṽ′t = 2V0utu
′
t.

and a simple calculation yields

u′t =
(( y

V0

) 1
2 − e−T/2

) cosh(t/2)

2 sinh(T/2)
− 1

2
e−t/2. (3.3.30)

We remark that ut > 0 for every t ∈ [0, T ] as soon as y > X0, hence by (3.3.27) u′′t > 0, too,
and consequently u′t is an increasing function. Using the expression of u′0 given by (3.3.30),
it is easy to verify that (3.2.5) implies u′t ≥ u′0 ≥ 1

4
> 0. Now, we simply observe that

u ∈ L(2, ||u′||−1
∞ ): indeed, for every s, t ∈ [0, T ] such that |s− t| < ||u′||−1

∞ ,

us ≤ ut + ||u′||∞|s− t| ≤ ut + 1 ≤ 2ut

where the last holds because ut ≥ u0 = 1. Analogously, u′ ∈ L(2, ||u||−1
∞ ) because

u′s ≤ u′t + ||u′′||∞|s− t| ≤ u′t + (1− a)2||u||∞|s− t| ≤ 2u′t

holds if |s− t| < ||u||−1
∞ , employing in the last step the fact that u′t ≥ u′0 ≥ 1

4
. Because ut and
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u′t are increasing, we have

||u||∞ = uT =
( y
V0

) 1
2
; ||u′||∞ = u′T ≤

( y
V0

) 1
2 1

2 tanh(T/2)

Observing that tanh(T/2) < 1, we conclude that both u and u′ belong to the class L(2, h)

with h =
(
V0

y

) 1
2

tanh(T/2). The fact that ṽ′t ∈ L(4, h) for the same h now follows from the
property cfg ∈ L(µf × µg, hf ∧ hg) if f ∈ L(µf , hf ), g ∈ L(µg, hg) and c is a constant.

Step2. We estimate the integral functional at the right hand side of (3.3.5).
By Proposition 3.3.1 and the computations at the beginning of the current section, we know
that the rate function Fx̃,ṽ,R̃ is upper bounded by F ṽ defined in (3.3.20), more precisely

Fx̃,ṽ,R̃ ≤ 1
h

+ ΓT

(
(ṽ′t)

2

ṽt
+ ṽt

)
. Making once again use of u defined in (3.3.26), we have (ṽ′t)

2 =

4V 2
0 u

2
t (u
′
t)

2, hence∫ T

0

Fx̃,ṽ,R̃(t)dt ≤
∫ T

0

(1

h
+ ΓT

((ṽ′t)
2

ṽt
+ ṽt

))
dt

≤ T

h
+ ΓT

∫ T

0

(
4V0

u2
t (u
′
t)

2

u2
t

+ V0u
2
t

)
dt

≤ T

h
+ 4ΓTV0

∫ T

0

((u′t)
2 + u2

t )dt

≤
( y
V0

) 1
2 T

tanh(T/2)
+ 4ΓTV0

∫ T

0

((u′t)
2 + u2

t )dt

and we just have to integrate the expressions for ut and u′t over [0, T ]. Since we are interested
in an upper bound for the integral, we simplify the computations using

ut ≤
( y
V0

) 1
2
( sinh(t/2)

sinh(T/2)
+ 1
)
, u′t ≤

1

2

( y
V0

) 1
2 cosh(t/2)

sinh(T/2)
.

Hence, setting

c
(1)
T =

∫ T

0

( sinh(t/2)

sinh(T/2)
+ 1
)2

dt; c
(2)
T =

1

4

1

sinh(T/2)2

∫ T

0

cosh(t/2)2dt

c̃T = 2
( T

tanh(T/2)
+ 4V0(c

(1)
T + c

(2)
T )
)

we obtain that, if y satisfies (3.2.5) so that in particular ( y
V0

)1/2 < y
V0
< 2|y|,

∫ T

0

Fx̃,ṽ,R̃(t)dt ≤ c̃TΓT |y| = c̃TΓT |y|.

We remark that have c(1)
T ≤

∫ T
0

4dt ≤ 4T , c(2)
T ≤ 1

4
T

tanh(T
2

)2
≤ 1

T
+T and T

tanh(T/2)
≤ T+1, hence

c̃T ≤ 4(20V0+1)( 1
T

+T ) for a positive constant c depending on V0. On the other hand, recalling



3.3. Proof of results in 3.2.1 and 3.2.2 85

the expression of ΓT from (3.3.21), we have ΓT ≤ Γ
ρ2⊥
eC2T 2 for a positive constant Γ ≥ 1

depending on V0, k, η, σ, η, σ but not on ρ⊥ or T , hence c̃TΓT ≤ 4(20V0 + 1) Γ
ρ2⊥

( 1
T

+T )eC2T 2 ≤
c∗

ρ2⊥
( 1
T

+ 1)ec
∗T 2 with c∗ ≥ 1. Now, by (3.3.16), the constant Q(µ) in (3.3.7) is given by

Q(µ) =
γ2q

ρ4
⊥λ

2
ln

γq

ρ2
⊥λ

with q = 812e2473. Eventually multiplying the constant c∗ by γ2q
λ2 ln γq

λ
, we conclude that

exp
(
−Q(µ)

(
1 +

∫ T

0

Fx̃,ṽ,R̃(t)dt
))
≤

exp
(
−2c∗

( 1

T
+ 1
)
ec
∗T 2 1

ρ6
⊥

(
ln
( 1

ρ⊥

)
+ 1
)
× |y|

)
(3.3.31)

for every y satisfying (3.2.5). Using (3.3.5) and the definition of ψ in (3.2.4), the proof is
completed.

We now prove Corollary 2.

Proof of Corollary 2. We consider y ∈ R∗ with |y| > (1−V0)/2 and we now define y = 2|y|+V0

and consider x̃t, ṽt, R̃t as in (3.1.5). We remark that R̃T = 1
2

√
V0 ∧ 1

√
2|y|+ V0 ≤ y

2
if |y| is

larger that the larger root of |y|2V0−2|y|−V0. This holds in particular if |y| > 2(V0∨1)(1+V0)

as in (3.2.8). If y > 0, we write

P(XT > y) ≥ P
(
|XT − 2y| ≤ y

2

)
≥ P(|XT − 2y| ≤ R̃T ) ≥ P(|(XT , VT )− (2y, y)| ≤ R̃T )

and
P(XT < −y) ≥ P

(
|XT − (−2y)| ≤ |y|

2

)
≥ P(|XT − (−2y)| ≤ R̃T )

≥ P(|(XT , VT )− (−2y, y)| ≤ R̃T )

and in both cases the last term is larger than P(|(Xt, Vt)− (x̃t, ṽt)| ≤ R̃t, t ∈ [0, T ]). Theorem
3.2.1 then yields estimate (3.2.9). To prove (3.2.10), we shall first show that if E[epXT ] <∞,
then p ≤ cTψ(ρ⊥). Indeed, it is sufficient to observe that if E[epXT ] = C < ∞, p > 0, then
P(XT > y) ≤ Ce−p×y for all y > 0 by Markov’ inequality:

P(XT > y) = P(epXT > epy) ≤ e−p×yE[epXT ]. (3.3.32)

Since (3.2.9) and (3.3.32) hold simultaneously for all y from a certain range on, clearly this
implies p ≤ cTψ(ρ⊥). With the same argument and using the estimate for P(XT < −y), one
shows that if E[e−qXT ] < ∞, q > 0, then q ≤ cTψ(ρ⊥). Finally, the estimate (3.2.11) on the
implied volatility is a direct consequence of moment formula (3.1.2) and of (3.2.10), recalling
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that the function ϕ is decreasing.

3.4 Proof of results in 3.2.3

We introduce some compact notation that will be used throughout this section. For t, s with
0 ≤ t < s ≤ T and x1, v1 ∈ R × [0,∞) we denote (X t,x1

u , V t,v1
u ; t ≤ u ≤ s) the solution of

(3.2.1)-(3.2.2) on [t, s] with initial conditions Xt = x1 and Vt = v1. We denote Y t,x1,v1
u the

couple (Xx1
u , V

v1
u ) and

xx1,x2
u = x1 +

x2 − x1

s− t
(u− t), u ∈ [t, s]

vv1,v2u = v1 +
v2 − v1

s− t
(u− t), u ∈ [t, s]

(3.4.1)

the line segments between (t, x1),(s, x2) and (t, v1),(s, v2) respectively. For y 6= 0 and a couple
of radii R1, R2 with 0 < R2 ≤ R1 ≤ |y|, we define

Ax1,v1
t,s (y,R2) :=

{
|Y t,x1,v1
u − (xx1,y

u , vv1,y+|V0|
u )| ≤ R2, u ∈ [t, s]

}
;

pt,s(y,R1, R2) = inf
(x1,v1)∈BR1

(y,|y|+V0)
P
(
Ax1,v1
t,s (y,R2)

)
.

Moreover, we set
ε0 =

ρ⊥η σ

4
√

2ρ η
∧ 1 (3.4.2)

with ε0 = 1 if ρ = 0, and

δ0 =
ε20q

160K2
∧ T

2
; q = P

(
sup
u≤1
|bu| ≤

ε0

4
√

2σ

)
(3.4.3)

where (bu, u ≥ 0) is a standard Brownian motion under P. The following lemma provides
some estimates that will be used in the proof of Proposition 3.2.1 and Theorem 3.2.2.

Lemma 3.4.1. Let y ∈ R with |y| > 16 and R1, R2 with 0 < R2 ≤ R1 ≤
√
|y|. Assume (R’).

Then, for any 0 ≤ t < s ≤ T ,

pt,s(y,R1, R2) ≥ exp
(
−cTψ(ρ⊥)

( R2
1

(s− t)y
+
y2

R2
2

(s− t)
))

(3.4.4)

where cT is the constant defined in (3.2.7). Moreover, if y > 0, for any t > 0 and any
0 < δ < δ0

y
∧ t we have

inf
v∈Bε0

√
δy/2(y)

P
(
|V t,v
s − y| < ε0

√
δy, t− δ ≤ s ≤ t;
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∣∣∣∫ t

t−δ
(σ(u, V t,v

u )− σ(t− δ, V t,v
t−δ))

√
V t,v
u dW 1

u

∣∣∣ ≤ ε0
√
δy
)
≥ 1

2
q. (3.4.5)

The proof of this lemma is not particularly enlightening for the rest of our study, hence
we postpone it to Appendix 3.6.2. Here we give the proof of Proposition 3.2.1.

Proof (of Proposition 3.2.1). Step 1. We consider R1, R2 with 0 < R1 < R2 ≤
√
|y| and

T
2
≤ t < s ≤ T . We have {Ys ∈ BR2(y, |y| + V0)} ⊃ {Yt ∈ BR1(y, |y| + V0)} ∩ {Yu ∈

BR2(x
Xt,y
u , v

Vt,|y|+V0
u ), t < u ≤ s}. Hence, applying Markov property for the process Y

P(Ys ∈ BR2(y, |y|+ V0)) ≥ P({Yt ∈ BR1(y, |y|+ V0)} ∩ {Yu ∈ BR2(x
Xt,u
u , vVt,|y|+V0

u ), t < u ≤ s})

= E
[
1{Yt∈BR1

(y,|y|+V0)}E
[
1{Yu∈BR2

(x
Xt,y
u ,v

Vt,|y|+V0
u ),t<u≤s}|Ft

]]
= E

[
1{Yt∈BR1

(y,|y|+V0)}E
[
1Ax1,v1t,s (y,R2)|Yt = (x1, v1)

]]
≥ P(Yt ∈ BR1(y, |y|+ V0))× pt,s(y,R1, R2).

(3.4.6)

Step 2. We define the time step

δj = δj(y) =
T

2|y|j
, j ≥ 1.

Applying Lemma (3.4.1), for any j ≥ 1 we have

inf
T
2
≤t≤T−δj

pt,t+δj(y,R
(j−1)(y), R(j)(y)) ≥ exp

(
−cTψ(ρ⊥)

((R(j−1)(y))2

δj(y)|y|
+

y2

(R(j)(y))2
δj(y)

))
= exp

(
−cTψ(ρ⊥)

(
2
y2−j

T |y|1−j
+

y2

|y|1−j
T

2|y|j
))

= exp
(
−2cTψ(ρ⊥)

( 1

T
+ T

)
|y|
)
.

(3.4.7)

On the other hand, R̃ = 1
2

√
(V0 ∧ 1)(|y|+ V0) ≤ 1

2

√
|y|+ V0 ≤

√
|y|
2
≤ R(0)(y). Applying

Theorem (3.2.1) on the interval [0, t], we have

inf
T
2
≤t≤T

P(Yt ∈ BR(0)(y)(y, |y|+ V0)) ≥ inf
T
2
≤t≤T

P(Yt ∈ BR̃(y, |y|+ V0))

≥ inf
T
2
≤t≤T

exp
(
−ct
(1

t
+ 1
)
ψ(ρ⊥)|y|

)
≥ exp

(
−2cT

( 1

T
+ 1
)
ψ(ρ⊥)|y|

)
.

(3.4.8)
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Step 3. We fix j ∈ N∗ and define

tjk = T −
k∑

h=1

δj−h+1, 0 ≤ k ≤ j,

so that t0 = T and tjk−1− t
j
k = δj−k+1 for 1 ≤ k ≤ j. Moreover, since

∑∞
k=1 δk = T

2

∑∞
k=1

1
yj
≤

T
2

1
y−1
≤ T

2
, we have tjk ≥ T

2
for all j ∈ N∗, 1 ≤ k ≤ j. Repeatedly applying (3.4.6) and (3.4.7),

we get

P(YT ∈ BR(j)(y, |y|+ V0)) = P(Yt0 ∈ BR(j)(y, |y|+ V0))

≥ P(Ytj ∈ BR(0)(y, |y|+ V0))

j∏
k=1

ptjk,t
j
k−1

(y,R(j−k)(y), R(j−k+1)(y))

≥ P(Ytj ∈ BR(0)(y, |y|+ V0))× exp
(
−2jcT

( 1

T
+ T

)
ψ(ρ⊥)|y|

)
≥ exp

(
−2(j + 1)cT

( 1

T
+ T ∨ 1

)
ψ(ρ⊥)|y|

)
and in the last step we have applied (3.4.8). Using the expression for the the constant cT
given in (3.2.7), we have cT

(
1
T

+T ∨ 1
)
≤ c∗

(
1
T

+ 1
)
ec
∗T 2
(

1
T

+T ∨ 1
)
≤ 2c∗

(
1
T 2 + 1

)
e(c∗+1)T 2

and (3.2.12) is proved.

Let us go back Theorem 3.2.2. To lower bound the density of XT we follow the approach
of [6], section 5. The idea is to treat XT as a random variable of the form

F = x+G+R,

where x ∈ R, R ∈ D2,∞ and G is a Wiener integral G =
∑

j=1,2

∫ T
0
hj(t)dW

j
t , with hj :

[0,∞) → R deterministic. Here D2,∞ denotes the space of the random variables which are
two times Malliavin differentiable in Lp for every p ≥ 2. Remark that G is a centered Gaussian
random variable with variance ∆ =

∑
j

∫ T
0
hj(t)

2dt > 0. Let g∆(y) = 1√
2π∆

exp(− y2

2∆
) denote

the density of G and ||R||2,p the stochastic Sobolev norm of R of order two. Our starting
point is the following result due to Bally and Caramellino in [6], which we restate here in a
form suitable for our purposes.

Proposition 3.4.1 (Proposition 8 in [6]). If the law of F has a density pF , then for any
f ∈ Cb(R) one has ∫

R

f(y)pF (y) ≥
∫
R

f(y)
(
g∆(y − x)− ε(∆, R)

)
dy, (3.4.9)
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with
ε(∆, R) =

C∗√
∆

(
1 + ||R∆||2,q∗

)l∗||R∆||2,q∗

where R∆ = R/
√

∆ and C∗, q∗, l∗ are universal constants.

Proof. Using point i) of Proposition 8 in [6], we know that there exists a probability measure
P on (Ω,F) such that dP

dP ≤ 1 and the law of F under P is absolutely continuous with respect
to the Lebesgue measure. Again according to [6], the associated density pF satisfies

sup
y∈R
|pF (y)− g∆(y − x)| ≤ ε(∆, R)

for the given ε(∆, R). (We refer to [6] for the explicit construction of the probability P).
Then, for any f ∈ Cb(R) we have∫

R

f(y)pF (y) = E[f(F )] ≥ E
[
f(F )

dP
dP

]
≥
∫
R

f(y)
(
g∆(y − x)− ε(∆, R)

)
dy

which proves (3.4.9).

Remark 3.4.1. If the density pF is continuous, then (3.4.9) implies pF (y) ≥ g∆(y − x) −
ε(∆, R) for all y ∈ R.

Remark 3.4.2. We shall use conditional calculus in order to prove Theorem 3.2.2 : in
particular, we will work with Malliavin derivatives only with respect to the Brownian noise
Wt, t ∈ [T−δ, T ], and consider conditional expectations with respect to FT−δ, for a δ < T . As
in the proof of Theorem 2.2.4, this allows us to gain a free parameter δ in (3.4.9) that we can
eventually optimize, and this feature turns out to be crucial in our analysis (cf. Propositions
3.4.2 and 3.4.3 hereafter). The use of conditional Malliavin calculus in order to derive lower
bounds for the density of a random variable is not new and has been employed by, among
others, [41], [4] and [31]. In our framework, we face some supplementary difficulties. Let us
point them out: first, to estimate the marginal density of XT we have to separately estimate
the whole path of the stochastic volatility V up to time T . This was the motivation of
estimate (3.4.5). Second, in order to manipulate the Sobolev norms of R we need all the
involved random variables to be smooth in Malliavin sense, but this is not guaranteed in our
framework due to the presence of the non-Lipschitz square-root coefficients in (3.2.1) and
(3.2.2). This is why we introduce a regularization of the coefficients of the SDE, as we do
hereafter.

Let us implement what stated in Remark 3.4.2. We consider the case of positive y in
Theorem 3.2.2: the case of negative y is proven in the analogous manner. We assume y > 2
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and introduce two parameters δ > 0 and l ∈ N such that:

δ <
δ0

y2
;

1

yl
<

1

2
ε0ρ⊥η

√
yδ (3.4.10)

and ε0, δ0 as defined in (3.4.2) and (3.4.3). We remark that for such a value of δ we have
ε0
√
δy < ε0

√
δ0 < 1. Then, we consider a truncation function ψ ∈ C∞b (R,R) such that

ψ(x) = x for |x − y| ≤ 1, ψ(x) = y − 3
2
for x ≤ y − 2 and ψ(x) = y + 3

2
for x ≥ y + 2. ψ

can be defined in such a way that |ψ|0 ≤ y+ 3
2
≤ 2y and

∑k
j=1 supx∈R |ψ(j)(x)| ≤ 2

k(k−1)
2 . We

define the sets

Aδ,l(X, V ) = {|XT−δ − y| <
1

yl
, |VT−δ − (y + V0)| < ε0

2

√
yδ}

and

Aδ(V ) =
{
|Vs − y| < ε0

√
δy, T − δ < s ≤ T ;∣∣∣∫ T

T−δ
(σ(u, Vu)− σ(T − δ, VT−δ))

√
VudW

1
u

∣∣∣ ≤ ε0
√
δy
}
,

and denote
Aδ,l = Aδ,l(X, V ) := Aδ,l(X, V ) ∩ Aδ(V ).

Finally, we consider (X t, V t;T − δ ≤ t ≤ T ) the (unique strong) solution to the equation

X t = XT−δ −
1

2

∫ t

T−δ
η(s,Xs)

2ψ(V s)ds+

∫ t

T−δ
η(s,Xs)

√
ψ(V s)(ρdW

1
s + ρ⊥dW

2
s ),

V t = VT−δ +

∫ t

T−δ
β(s, V s)ds+

∫ t

T−δ
σ(s, V s)

√
ψ(V s)dW

1
s .

(3.4.11)

We remark that on the set Aδ,l, ψ(Vt) = Vt for all t ∈ [T − δ, T ]. Hence, since pathwise
uniqueness holds for (3.4.11), we have (Xt, Vt)(ω) = (X t, V t)(ω) for (t, ω) ∈ [T − δ, T ]× Aδ,l
and in particular Aδ,l = Aδ,l(X, V ) ⊂ Aδ,l(X,V ). Under hypothesis (R’), X t and V t belong
to the space D2,p associated to (W 1

t ,W
2
t ), t ∈ [T − δ, T ], for all p > 1.

We decompose the random variable XT in the following way:

XT = G0 +G+R,
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where

G0 = XT−δ + ρη(T − δ,XT−δ)

∫ T

T−δ

√
ψ(V t)dW

1
t

G = ρ⊥η(T − δ,XT−δ)

∫ T

T−δ

√
ψ(V t)dW

2
t

R = −1

2

∫ T

T−δ
η(t,X t)

2ψ(V t)dt

+

∫ T

T−δ
(η(t,X t)− η(T − δ,XT−δ))

√
ψ(V t)(ρdW

1
t + ρ⊥dW

2
t ).

(3.4.12)
Conditional to FT−δ ∨ F1

T , the random variable G is a centered Gaussian with variance
I = ρ2

⊥η(T−δ,XT−δ)
2
∫ T
T−δ ψ(V t)dt. By the definition of ψ, we have I ≥ ρ2

⊥η
2
∫ T
T−δ(y−

3
2
)dt ≥

1
2
ρ2
⊥η

2yδ. Similarly, we can see that an upper bound for I is given by 2ρ2
⊥η

2yδ, hence

∆ ≤ I = V ar(G|FT−δ ∨ F1
T ) ≤ a∆ (3.4.13)

with
∆ =

1

2
ρ2
⊥η

2yδ, a = 4
η2

η2
.

Using (3.4.13) and Lemma (3.4.1), we can prove the following statement (which is the anal-
ogous of Lemma 5 in [4]):

Proposition 3.4.2. Let g(·|FT−δ ∨ F1
T ) denote the density of G conditional to FT−δ ∨ F1

T .
Then, for any y, δ, l satisfying (3.4.10),

g(y −G0|FT−δ ∨ F1
T ) ≥ 1

ρ⊥ηe
√

4πδy
on the set Aδ,l. (3.4.14)

Proof. Recall that I = ρ2
⊥η(T − δ,XT−δ)

2
∫ T
T−δ ψ(V t)dt. Moreover, let us set J = ρη(T −

δ,XT−δ)
∫ T
T−δ

√
ψ(V t)dW

1
t (so that G0 = XT−δ + J). Then

g(y −G0|FT−δ ∨ F1
T ) =

1√
2πI

exp
(
− 1

2I
(y − (XT−δ + J))2

)
. (3.4.15)

Since I ≥ ∆ and |y −XT−δ| ≤ 1
yl

on Aδ,l, on this set we have

|y −XT−δ|√
I

≤
1
yl√
∆
≤ 1

where the last inequality holds because of (3.4.10). Now, using equation (3.4.11) for V ,
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σ(T − δ, V T−δ)

∫ T

T−δ

√
ψ(V t)dW

1
t = V T − V T−δ −

∫ T

T−δ
β(t, V t)dt

−
∫ T

T−δ
(σ(t, V t)− σ(T − δ, V T−δ))

√
ψ(V t)dW

1
t ,

hence, on the set Aδ,l∣∣∣∫ T

T−δ

√
ψ(V t)dW

1
t

∣∣∣ ≤ 1

σ

(
|V T − V T−δ|+

∫ T

T−δ
|β(t, V t)|dt

+
∣∣∣∫ T

T−δ
(σ(t, V t)− σ(T − δ, V T−δ))

√
ψ(V t)dW

1
t

∣∣∣)
≤ 1

σ

(
2ε0
√
yδ +K(1 + y + ε0

√
yδ)δ + ε0

√
yδ
)

≤ 1

σ
(2ε0 + 2K

√
yδ + ε0)

√
yδ ≤ 4ε0

σ

√
yδ

and the two last inequality are obtained using K(1 + y + ε0
√
yδ)δ < K(1 + y + 1)δ < 2Kyδ,

then 2K
√
yδ ≤ 2K

√
δ0 ≤ ε0 after (3.4.3). The previous estimate yields |J | ≤ 4ε0ρη

σ

√
yδ, hence

|J |√
I
≤ |J |√

∆
≤ ε0

4
√

2ρη

ρ⊥ησ
≤ 1

and the last inequality holds after (3.4.2). Finally, for the exponential term in (3.4.15) we
have

exp
(
− 1

2I

(
y − (XT−δ − J)

)2)
≥ e−

1
2

(1+1)2 ≥ e−2 (3.4.16)

on the set Aδ,l. Since I ≤ a∆ = 2ρ2
⊥ηyδ, (3.4.16) yields (3.4.14).

The second result we need in order to prove Theorem 3.2.2 is an estimation of the reminder
R. Let R∆ := R/

√
∆ as in Proposition 3.4.1.

Proposition 3.4.3. Let y, δ, l satisfy (3.4.10). Then, for every p > 1 there exists a positive
constant cp such that

||R∆||T−δ,δ,2,p ≤
cp
ρ⊥η

√
δy31 × ecpT p on the set Aδ,l. (3.4.17)

The constant cp depends also on K but not on the other model parameters.

Remark 3.4.3. Similar estimates (with different powers of δ and y) could be obtained for
||R∆||T−δ,δ,k,p, k > 2, under the corresponding regularity assumptions on the coefficients η, β
and σ.

We can now prove Theorem 3.2.2.
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Proof (of Theorem 3.2.2). We make an explicit choice of δ and l:

δ = δ0Θ2
T × y−31; l = 16; with ΘT =

ρ⊥η
22−l

∗−5/2

√
πeηC∗cp

e−2cpT p (3.4.18)

where C∗ and cp are the constant appearing in, respectively, (3.4.9) and (3.4.17). Conditions
(3.4.10) are satisfied as soon as

y > MT with MT = 2/(ε0ρ⊥η
√
δ0ΘT ).

We now apply Proposition 3.4.1 to the law of XT conditional to F = FT−δ∨F1
T . Let pXT

(·|F)

(resp. g(·|F)) denote the conditional density of XT (resp. G), by Prop. 3.4.1 we have∫
y>MT

f(y)pXT
(y|F)dy ≥

∫
y>MT

f(y)
(
g(y −G0|F)− ε(∆, R)

)
dy

≥
∫
y>MT

f(y)
( 1

ρ⊥ηe
√

4πδy
− ε(∆, R)

)
dy

with
ε(∆, R) =

C∗√
∆

(
1 + E[||R∆||2,q∗|F ]

)l∗E[||R∆||2,q∗ |F ]

=
C∗√

∆

(
1 + E[||R∆||T−δ,δ,2,q∗ |F1

T ]
)l∗E[||R∆||T−δ,δ,|F1

T ].

For the given value of δ, ||R∆||T−δ,δ,2,q∗ < 1 on the set Aδ,l, hence by Prop. 3.4.3 ε(∆, R) is
bounded by

ε(∆, R) ≤ C∗cp
ρ2
⊥η

2
× 2l∗+1/2 ×

√
δy31eCpT

p

on the set Aδ,l. The value of δ in (3.4.18) is chosen in such a way that the right hand side in
this last estimate is smaller than 1

2
× 1

ρ⊥ηe
√

4πδy
, hence

∫
y>MT

f(y)pXT
(y|F)dy ≥

∫
y>MT

f(y)

ρ⊥ηe
√

4πδy
dy =

∫
y>MT

f(y)

ρ⊥ηe
√

4πδ0ΘT

y15dy

on the set Aδ,l.

Let us now estimate the probability of the set Aδ,l. Since 1
yl
< ε0

2

√
yδ by condition (3.4.10),

then AT−δ ⊃ {(XT−δ, VT−δ) ∈ B 1

yl
(y, y + V0)}. Hence, we apply Prop. 3.2.1 for j = 2l + 1

and obtain

P(AT−δ) ≥ P
(
(XT−δ, VT−δ) ∈ B 1

yl
(y, y + V0)

)
≥ exp

(
−(2l + 2)dT−δψ(ρ⊥)y

)
Since 2l + 2 = 34 and 1

(T−δ)2 <
4
T 2 , then (2l + 2)dT−δ ≤ 136c∗

(
1
T 2 + 1

)
e(c∗+1)T := eT and

P(AT−δ) ≥ exp(−eTψ(ρ⊥)y). Applying Markov property for the process V and (3.4.5) in
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Lemma 3.4.1, it is easy to see that

P(Aδ,l) ≥
q

2
P(AT−δ) ≥

q

2
exp
(
−eTψ(ρ⊥)y

)
. (3.4.19)

Finally, let us denote pXT (·|F) the density of XT conditional to F . We have∫
R
f(y)pXT (y)dy =

∫
R
f(y)E[pXT (y|F)]dy

≥
∫

R
f(y)E[pXT (y|F)1Aδ,l ]dy

=

∫
R
f(y)E[pXT

(y|F)1Aδ,l ]dy

≥
∫

R
f(y)

1

ρ⊥ηe
√

4πδ0ΘT

y15 × P(Aδ,l)dy.

Using estimate (3.4.19), we obtain (3.2.13).

3.5 Conclusions

We have shown that the left and right tails of the distribution of the log price X decay no
faster than exponentials in local stochastic volatility models driven by square root diffusions
- namely, in the model class (3.1.3)-(3.1.4) - no matter how the (possibly time-dependent)
skew function η, the volatility drift β and volatility of variance σ are chosen, provided they
satisfy some reasonable boundedness and linear-growth conditions - namely, conditions (R)
and (G) in section 3.2. Together with the elementary observation that eX is an integrable
supermartingale, this yields the “sandwich” estimate e−c1(t)y ≤ P(Xt > y) ≤ e−c2(t)y for large
values of y. From the point of view of the financial modelisation, our estimate has an impact
on moment explosion and, by Lee’s moment formula, it translates into lower bounds on the
asymptotic slopes of the implied volatility.

Our result is not limited to fixed-time marginal laws: we have shown that the exponential
lower bound actually holds for the probability that the whole trajectory of the couple (X, V )

remains in a “tube” of given deterministic radius around a given deterministic curve for all
the times up to a given maturity. This means that our main estimate can also be applied to
the two-dimensional joint distribution of X and V and to study the law of suprema of the
components of the solution to (3.1.3)-(3.1.4). Back to the financial level, this can eventually
lead to bounds on the prices of barrier and exotic options. We have also shown how one can
apply density estimation techniques for locally-elliptic random variables on the Wiener space
and Malliavin calculus tools to prove that a lower bound in the same asymptotic range holds
the for the density of X as well.
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3.6 Technical proofs

3.6.1 Preliminary estimates

Lemma 3.6.1. Assume (G) and let (Xt, Vt; 0 ≤ t ≤ T ) be two processes satisfying (3.2.1)-
(3.2.2). Then for every 0 ≤ t ≤ s ≤ T and every p ≥ 1 there exist a positive constant Cp
such that

E
[

sup
t≤r≤s

(
|Xr −Xt|2p + |Vr − Vt|2p

)∣∣∣Ft] ≤ Cp(s− t)p exp(Cps
2p). (3.6.1)

Cp also depends on the parameters K, η, σ given in (G) and on V0.

Proof. Observing that both the functions v → β(t, v) and v → σ(t, v)
√
v have sub-linear

growth under (G), (3.6.1) follows from the application of Burkholder’s inequality and Gron-
wall’s Lemma to the process (Vt; 0 ≤ t ≤ T ) satisfying (3.2.1), then to (Xt; 0 ≤ t ≤ T )

satisfying (3.2.2).

3.6.2 Proof of Lemma 3.4.1

Proof. Estimate (3.4.4): Consider (x1, v1) ∈ BR1(y, |y|+ V0). On the set
Ax1,v1
t,s (xx1,y

· , v
v1,|y|+V0
· , R·), with Ru = R2, u ∈ [t, s], we have Vu > |y| −R1 −R2 > |y| − 2

√
|y|

and Vu < |y| + R1 + R2 < |y| + 2
√
|y| for all u ∈ [t, s]. Therefore, 1

2
|y| < Vu < 2|y| for all

u ∈ [t, s], if |y| > 16. Using estimates (3.3.10), (3.3.12), (3.3.13) and (3.3.14) it is easy to show
that conditions (3.3.2),(3.3.3) and (3.3.4) are satisfied for the process (X t,x1

u , V t,v1
u ; t ≤ u ≤ s),

the curves xx1,y
· , v

v1,|y|+V0
· , the radius R· and the constant curves

cu = c|y|; L2
u = LT |y|;

γu = γ|y|; λu = ρ2
⊥λ|y|,

(3.6.2)

defined for u ∈ [t, s], where c, LT , γ, λ are the same as in Proposition 3.3.1. The derivatives
x′·, v

′
· and the radius R· being constant, all the involved curves belong to L(1,∞). The factor

φλ,γ in (3.3.7) is still given by φλ,γ =
ρ2⊥λ

γ
, hence Qλ,γ = γ2q

ρ4⊥λ
2 ln γq

ρ2⊥λ
with q = 812e2. On the

other hand, using the constant ΓT defined in (3.3.21), we have∫ s

t

Fx,v,R(u)du =

∫ s

t

((x′u)
2 + (v′u)

2

λu
+ 2(c2

u + L2
u)
( 1

λu
+

1

R2
u

))
du

≤ 4ΓT

∫ s

t

( R2
1

(s− t)2y
+ y2

(1

y
+

1

R2
2

))
du

≤ 8ΓT

( R2
1

(s− t)y
+
y2

R2
2

)
(s− t)

)
.

Estimate (3.3.5) then tells that (3.4.4) holds with the same constant cT defined in (3.2.7).
(3.4.5): We fix t > 0, v ∈ Bε0

√
δy/2(y) and write V = V t,v for simplicity. We set B = {|Vs−
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y| < ε0
√
δy, t−δ ≤ s ≤ t} and C =

{∣∣∣∫ tt−δ(σ(u, Vu)−σ(t−δ, Vt−δ))
√
VudW

1
u

∣∣∣ ≤ ε0
√
δy
}
. Since

ε0
√
δy < ε0

√
δ0 < 1, on the set B we have Vs < 1 + y < 2y and |β(s, Vs)| < K(2 + y) < 2Ky

for all s ∈ [t− δ, t]. Hence, on the set B

|Vs − v| ≤ 2Kyδ +
∣∣∣∫ s

t−δ
σ(u, Vu)

√
Vu ∧ 2ydW 1

u

∣∣∣
and 2Kyδ < ε0

4

√
δy because δ < δ0/y. Therefore

P(B) ≥ P
(

sup
t−δ≤s≤t

|Vs − v| ≤
ε0
2

√
δy
)
≥ P

(
sup

t−δ≤s≤t

∣∣∣∫ s

t−δ
σ(u, Vu)

√
Vu ∧ 2ydW 1

u

∣∣∣ ≤ ε0
4

√
δy
)
.

We time-change the stochastic integral into bAs , where (bs; s ≥ 0) is a standard Brownian
motion and we denote As =

∫ s
t−δ σ(u, Vu)

2(Vu ∧ 2y)du the quadratic variation (Dubins &
Schwartz theorem, cf. Th. 3.4.6 in [39]). Since As, s ∈ [t − δ, t], is uniformly bounded by
σ22yδ, we have supt−δ≤s≤t |bAs| ≤ sup0≤s≤2σ2yδ |bs|. Using the scaling propertyof the Brownian
motion (bcs; s ≥ 0) ∼ (

√
cbs; s ≥ 0) we obtain

P(B) ≥ P
(

sup
0≤s≤2σ2yδ

|bs| ≤
ε0
4

√
δy
)

= P
(

sup
0≤s≤1

|bs| ≤
ε0

4
√

2σ

)
= q.

The same arguments lead to

P(B ∩ Cc) ≤ P
(∣∣∣∫ t

t−δ
(σ(u, Vu)− σ(t− δ, Vt−δ))

√
VudW

1
u

∣∣∣ > ε0
√
δy;Vu < 2y, t− δ ≤ u ≤ t

)
≤ P

(∣∣∣∫ t

t−δ
(σ(u, Vu)− σ(t− δ, Vt−δ))

√
Vu ∧ 2ydW 1

u

∣∣∣ > ε0
√
δy
)

= P(|b̃Bt | > ε0
√
δy)

where Bt =
∫ t
t−δ(σ(u, Vu)− σ(t− δ, Vt−δ))2(Vu ∧ 2y)du and (b̃s; s ≥ 0) is a standard Brownian

motion. Using (R), we have Bt ≤ 2K2(δ2 + |Vu − Vt−δ|2) · 2y · δ ≤ 4K2(δ2 + 4ε20δy) · yδ ≤
20K2ε20(δy)2, hence

P(B ∩ Cc) ≤ P
(

sup
s≤20K2ε20(δy)2

|b̃s| > ε0
√
δy
)

= P
(

sup
s≤1
|b̃s| >

1√
20K2δy

)
≤ 20K2δy E

[
sup
s≤1
|b̃s|2

]
≤ 80K2δ0 ≤

1

2
q

and we have used Doob’s inequality and the value of δ0 to get the two last inequalities. We
conclude that

P(B ∩ C) = P(B)− P(Cc ∩B) ≥ q − 1

2
q =

1

2
q.
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3.6.3 Tools of Conditional Malliavin calculus

We briefly introduce the main elements of conditional Malliavin calculus. We consider a
probability space (Ω,F ,P) with a filtration (Ft, t ≥ 0), and a d-dimensional Brownian motion
(Wt, t ≥ 0) with respect to this filtration. We fix some t > 0 and δ > 0. Conditional Malliavin
calculus amounts to consider the standard Malliavin derivative operators, but focusing on the
derivatives with respect to Wt, t ∈ [t, t+ δ] on the one hand, and to replace expectations with
conditional expectations with respect to Ft on the other hand.

Let us introduce some compact notation, denoting Θk = {1, . . . , d}k the set of multi-
indexes of length k with components in {1, · · · , d}, and RΘk := {(xα)α∈Θk : xα ∈ R}. For
F ∈ Dk,p and α ∈ Θk, we now denote Dk,αF the derivative of F of order k and index α, and
Dk
s1,...,sk

F := (Dk,α
s1,...,sk

F )α∈Θk . The conditional Malliavin calculus is based on the use of the
following scalar product and norm: for every fixed t, δ > 0 and U, V : [t, t + δ) → RΘk we
define

〈U, V 〉t,δ,k :=

∫
[t,t+δ)k

∑
α∈Θk

V α(s1, . . . , sk)U
α(s1, . . . , sk)ds1 · · · dsk,

|V |2t,δ,k := 〈V, V 〉2t,δ,k =

∫
[t,t+δ)k

∑
α∈Θk

|V α(s1, . . . , sk)|2ds1 · · · dsk.

For F ∈ Dk,p, we define the following Sobolev norms:

||F ||2t,δ,k :=
k∑
i=0

|DiF |2t,δ,i =
k∑
i=0

∑
α∈Θi

∫
[t,t+δ)i

|Di,α
s1,··· ,siF |

2ds1 · · · dsi,

||F ||pt,δ,k,p := E[||F ||pt,δ,k|Ft]; |||F |||pt,δ,k,p := ||F ||pt,δ,k,p − E[|F |p|Ft].

Notice that ||F ||t,δ,k,p is not a constant (as happens in the standard Malliavin calulus) but
an Ft-measurable random variable. The standard norm ||F ||k,p corresponds to ||F ||0,∞,k,p.
Remark that by the definition of |||F |||t,δ,k,p, using the elementary inequality bp/2

2
≤ (a2 +

b)p/2 ≤ 2p/2bp/2 for positive a, b and p ≥ 2, we have

1

2
f ≤ |||F |||pt,δ,k,p ≤ 2p/2f, (3.6.3)

with f = E
[(∑k

i=1

∑
α∈Θi

∫
[t,t+δ)i

|Di,α
s1,...,si

F |2ds1 · · · dsi
)p/2]

.
We will make use of the two following inequalities: first, let F,G ∈ ∩p≥1Dk,p. Then, for every
p ≥ 1,

||FG||t,δ,k,p ≤ k!2k||F ||t,δ,k,2p||G||t,δ,k,2p. (3.6.4)

In addition, for every k ≥ 1 there exists a constant µ(k) such that for every φ ∈ Ck
b , every
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p > 1 and every F ∈ Dk,p, one has

|||φ(F )|||t,δ,k,p ≤ µ(k)|φ|k|||F |||t,δ,k,2kp, (3.6.5)

where |φ|k =
∑k

i=0 supx∈R |φ(i)(x)|. Inequality (3.6.5) is a consequence of the chain rule
and of (3.6.4). The proof of (3.6.4) is based on some rather standard (but cumbersome)
computations and can be found in the Appendix of [4], Lemma 2.5.

Let us now consider diffusion processes. We consider some T > 0 and 0 < δ < 1 ∧ T and
(Yt; t ∈ [T − δ, T ]) the unique strong solution to the equation

Yt = YT−δ +

∫ t

T−δ
B(s, Ys)ds+

d∑
j=1

∫ t

T−δ
Aj(s, Ys)dW

j
s , T − δ ≤ t ≤ T,

where YT−δ ∈ L2(Ω,FT−δ; Rn) and B,Aj ∈ Lip([T − δ, T ] × Rn; Rn) ∩ C∞b (Rn; Rn) for all
j = 1, . . . , d. Recall the function ep(t) = et

p/2(t1/2|B|1+|A|1)p from (2.2.12) in Chapter (2) and
let us define

Nk(A,B) := |A|kk−1

(
|B|k + |A|k

)(k+1)2

.

The following proposition gives the conditional version of the estimates in Chapter 2, Lemma
2.2.1 and Corollary 1.

Proposition 3.6.1. For any k ≥ 1 and any p > 1 there exists a positive constant dk,p
depending on k, p but not on the bounds on B and A and their derivatives such that, for
every T − δ ≤ t ≤ T and for every l = 1, . . . ,m,

sup
α∈Θk

sup
s1,...,sk∈[T−δ,T )k

E
[∣∣∣Dk,α

s1,...,sk
Y l
t

∣∣∣p∣∣∣FT−δ]1/p

≤ dk,pNk(A,B)ep(δ)
dk,p (3.6.6)

|||Y l
t |||T−δ,δ,k,p ≤ 2kdkdk,p ×

√
δ ×Nk(A,B)ep(δ)

dk,p . (3.6.7)

Proof. Inequality (3.6.6) relies on the same proof as Lemma Lemma 2.2.1 in Chapter 2.
Estimate (3.6.7) is a consequence of (3.6.6): for any i = 1, . . . , k and l = 1, . . . , n, we have(∫

[T−δ,T )i
|Di,α

s1,...,si
Y l
t |2ds1 · · · dsi

)p/2
≤ δi(

p
2
−1)

∫
[T−δ,T )i

|Di,α
s1,...,si

Y l
t |pds1 · · · dsi,

hence, using (3.6.3) and
∑k

i=1 card(Θi) =
∑k

i=1 d
i ≤ kdk, we obtain

|||Y l
t |||

p
T−δ,δ,k,p ≤ 2p/2(kdk)p max

i=1,...,k
δi(

p
2
−1) max

α∈Θi

(∫
[T−δ,T )i

E[|Di,α
s1,...,si

Y l
t |p|FT−δ]ds1 · · · dsi

)
≤ 2p/2(kdk)p × δp/2 × dk,pNk(A,B)pep(δ)

pdk,p ,

which proves (3.6.7).
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3.6.4 Proof of Proposition 3.4.3

Proof. We assume without further mention that we are on the set Aδ,l. Since T − δ and δ are
fixed, we drop them from the notation and write ||F ||k,p instead of ||F ||T−δ,δ,k,p and so on.

We first show that estimate (3.4.17) holds for E[|R∆|p|FT−δ]1/p. Using |η(t, x)−η(s, y)|
√
ψ(v) ≤

K
√
y(|s− t|+ |y − x|) and applying Burkholder’s inequality we obtain

E[|R|p|FT−δ] ≤ cp

(
δp−1

∫ T

T−δ
E[|ψ(V t)|p|FT−δ]dt

+ δp/2−1

∫ T

T−δ
E[(η(t,X t)− η(T − δ,XT−δ))

pψ(V t)
p/2|FT−δ]dt

)
≤ cp

(
(δy)p + δp/2−1Kpyp/2

∫ T

T−δ
(δp + ||X t −XT−δ||p0,p)dt

)
≤ cp(δy)p/2

(
(δy)p/2 +Kpδp +KpCpδ

p/2eCpT
p
)

≤ cp(δy)peCpT
p

,

where we have used δ <
√
δ <
√
δy and Lemma 3.6.1 to estimate ||X t −XT−δ||p0,p = E[|X t −

XT−δ|p|FT−δ]. Then we have

||R∆||0,p ≤ cp
1

ρ⊥η

√
δyeCpT

p

. (3.6.8)

We now estimate the Sobolev norms of X and V . Notice that by the definition of ψ we have
|ψ|0 ≤ y + 3

2
≤ 2y hence |ψ(·)|k ≤ c

(1)
k y for all k ≥ 1, for some constant c(1)

k . Similarly,

|
√
ψ|0 ≤

√
y + 3

2
≤ 2
√
y and d

dv

√
ψ(v) = ψ′(v)

2
√
ψ(v)

, hence

∣∣∣ d
dv

√
ψ(·)

∣∣∣
0
≤ |ψ′|0

2
√
y − 3

2

≤ |ψ
′|0√
2y

and it can be seen easily that |
√
ψ(·)|k ≤ c

(1)
k

√
y for an eventually different constant c(1)

k . With
a slight abuse of notation, we write |σ

√
ψ|k (resp. |ηψ|k) for the | · |k-norm of the function

(t, v) → σ(t, v)
√
ψ(v) (resp. (t, x, v) → η(t, x)

√
ψ(v)). Then, using (3.6.7) with k = 2, for

any t ∈ [T − δ, T ] we have

|||V t|||2,8p ≤ 4× d2,8p ×
√
δ × |σ

√
ψ|21(|β|2 + |σ

√
ψ|2)9

× exp(d2,8p δ
4p(|β|1 + |σ

√
ψ|1)8p)

≤ c(2)
p K9 ×

√
δ × |

√
ψ|92|

√
ψ|21 × exp(d2,8p δ

4pK16p|
√
ψ|8p1 )

≤ c(2)
p ×

√
δy11 × exp(c(2)

p × (δy)4p).

Hence, using δy < 1 we get |||V t|||2,8p ≤ c
(2)
p ×

√
δy11, for a (eventually different) constant
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c
(2)
p . An analogous estimate holds for |||X t|||2,8p: observing that the only difference is in the
contribution of the drift term |ηψ|2 ≤ Kc

(1)
3 y, we have

|||X t|||2,8p ≤ c(2)
p

√
δ × |ψ|92 × |

√
ψ|21 × exp(c(2)

p × (
√
δ|ψ|1)8p)

≤ c(2)
p

√
δy20

since
√
δy < 1, too. Now using (3.6.5) and denoting µ = µ(2), we have ||η(t,X t)

2||2,2p ≤
µ|η|22|||X t|||2,8p and ||ψ(V t)||2,2p ≤ µ|ψ|2|||V t|||2,8p ≤ µc

(1)
3 y|||V t|||2,8p. Hence, using (3.6.4),

we get

sup
T−δ≤t≤T

|||η(t,X t)
2ψ(V t)|||2,p ≤ 2!22µ2K2c

(1)
3 y × |||X t|||2,8p|||V t|||2,8p ≤ cp

√
δ2y31, (3.6.9)

where the constant cp also depends onK. We denoteR = −1
2
I+J , setting I =

∫ T
T−δ η(t,X t)

2ψ(V t)dt

and J =
∫ T
T−δ(ηt − ηT−δ)

√
ψ(V t)(ρdW

1
t + ρ⊥dW

2
t ). Then, using (3.6.3)

|||I|||p2,p ≤ 2p/2E
[
δp−1

∫ T

T−δ

( 2∑
k=1

∑
α∈Θk

∫
[T−δ,T )k

|Dk,α
s η(t,X t)

2ψ(V t)|2
)p/2

dt
∣∣∣FT−δ]

≤ 2p/2+1δp−1

∫ T

T−δ
|||η(t,X t)

2ψ(V t)|||p2,pdt

≤ cp(δ
4y31)p/2.

We now estimate the first Sobolev norm of J . For the ease of notation, we write ηt for
η(t,X t). For T − δ ≤ s ≤ t ≤ T , we have D1,j

s ((ηt− ηT−δ)
√
ψ(V t)) = D1,j

s (ηt

√
ψ(V t)), hence

D1,j
s

∫ T

T−δ
(ηt − ηT−δ)

√
ψ(V t)(ρdW

1
t + ρ⊥dW

2
t ) = (ηs − ηT−δ)

√
ψ(V s))ρj

+

∫ T

T−δ
D1,j
s (ηt

√
ψ(V t))(ρdW

1
t + ρ⊥dW

2
t ) (3.6.10)

with ρj = ρ1j=1 + ρ⊥1j=2. Using bound (3.6.6) and proceeding as for (3.6.9) we obtain

supt∈[T−δ,T ] E
[∣∣∣D1,j

s (ηt

√
ψ(V t))

∣∣∣p∣∣∣FT−δ]1/p

≤ cp|η|1|
√
ψ|1
√
y11+20 ≤ cp

√
y32, where cp de-
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pends also on K. Then, starting from (3.6.3) and using Burkholder’s inequalities

|||J |||p1,p ≤ 2pδp/2−1

∫ T

T−δ
||(ηs − ηT−δ)

√
ψ(V s)||p0,pds

+ δp−1
∑
j=1,2

∫ T

T−δ

∫ T

T−δ
E
[
|D1,j

s (ηt

√
ψ(V t))|p

∣∣∣FT−δ]dtds
≤ 2pKpδp/2−1yp/2

∫ T

T−δ
(δ + ||Xs −XT−δ||0,p)pds+ cpδ

p+1y32p/2

≤ cp(δ
2y32)p/2eCpT

p

.

The Sobolev norms of higher order are estimated in a similar way, giving the bound |||J |||2,p ≤
cp
√
δ2y32eCpT

p . Finally, |||R|||2,p ≤ |||I|||2,p+ |||J |||2,p ≤ cp
√
δ2y32eCpT

p and this last estimate
together with (3.6.8) yields |||R∆|||2,p ≤ cp

1
ρ⊥η

√
δy31eCpT

p , which is (3.4.17).
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Chapter 4

Tube estimates and general lower and
upper bounds via time-change techniques

4.1 Introduction

The starting point for the study we develop in this chapter dates back to a discussion that
Vlad Bally had with Emmanuel Gobet during a conference in Helsinky in 20081. The tube
estimate in [8], which is one of the core tools for the analysis carried in the previous chapter,
is obtained by construction of an appropriate time-grid on the interval [0, T ], then exploiting
the short time behaviour of Itô processes. E. Gobet suggested that martingale time-change
techniques could be a powerful (yet simple) instrument to obtain similar results in this area.
Here we take up this problem, and the results show that Gobet’s intuition was correct:
coupling elementary time-change techniques for martingales with the appropriate localization
arguments, we manage to obtain similar results to [8], but the current estimates are sharper
and the hypothesis are weaker. Last but not least, the machinery we have to settle here is
considerably lighter, as a consequence the proofs of the main results are easier. Besides tube
estimates, exploiting the same tools we derive upper bounds for suprema of Itô processes,
namely we find functions C(y) such that the estimate P

(
supt≤T |Xt| > y

)
≤ C(y) is significant

in the asymptotic range. In Theorem 4.2.1 we formulate our basic estimate involving the
time-change argument considering general Itô processes and tubes of simple geometry, which
basically reduces to cylindric crowns of the form {(t, y) ∈ [0, T ] × Rn : R1 ≤ |y| ≤ R2} (cf.
hypothesis (H) and Remark 4.2.1 in section 4.2). The subsequent Propositions 4.3.2 and 4.3.3
specialise the result to diffusions and arbitrary deterministic tubes.
The first application of these results, in the spirit of the work of the previous chapters, is to
work out tail estimates for fixed-time distribution functions and - when existing - densities.
The lower bounds for the probability to stay inside a tube up to time T translate into lower
bounds for the terminal distribution, using for example the techniques already settled in
Chapter 3. In its turn, the upper bound on the supremum of the process over [0, T ] provides

1I am grateful to Prof. Vlad Bally for sharing with me these useful insights.
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the corresponding upper bound on the law at time T : while the tails of the cdf can be
trivially estimated by P(|XT | > y

)
≤ P

(
supt≤T |Xt| > y

)
, to estimate the density we can

apply Theorem 1.3.1 in Chapter 2. In particular, the current upper bound on supt≤T |Xt|
provides a way to estimate, in a general framework, the factor Pt appearing in the upper
bounds for the density and its derivatives in Theorem 1.3.1 (cf. Remark 4.3.1). We give
applicationsof these results to the class of one-dimensional SDEs considered in Chapter 2,
namely CIR/CEV-type processes with local coefficients as (1.3.1), showing that the tube
estimates provided here are actually effective and allow to obtain significant tail estimates
from above and below (cf. Propositions 4.3.1 and 4.3.4). The application to general diffusions
is currently under study, and we pledge to fill this gap very quickly.

4.2 The basic estimate

Notation. Matrices. We denoteMn(R) the space of real n×n matrices and S+
n ⊂Mn(R)

the family of symmetric positive definite matrices. For a ∈ Mn(R), we denote ||a|| :=

sup|y|=1 |ay| the operator norm and we set λ(a) := inf |y|=1 |ay|. If a ∈ S+
n , then ||a||, respec-

tively λ(a), is the larger, respectively the smaller, eigenvalue of a. | · | will still denote the
absolute value for real numbers as well as the Euclidean norm for vectors, i.e. |x| =

√∑n
i x

2
i

if x ∈ Rn. We recall that for every a ∈ S+
n it is uniquely defined in S+

n a matrix a1/2 (the
square root of a) such that a1/2a1/2 = a. Moreover, a is invertible, the inverse a−1 belongs to
S+
n and we have (a−1)1/2 = (a1/2)−1. We also remark that ||a1/2||2 = ||a|| and λ(a1/2)2 = λ(a).

In this section we give our main tube estimate. We consider an n-dimensional Itô process
on [0, T ], starting from zero:

Yt =

∫ t

0

b(s, ω, Ys)ds+
d∑
j=1

∫ t

0

σj(s, ω, Ys)dW
j
s , t ≤ T, (4.2.1)

where W = ((W 1
t , . . . ,W

d
t ), t ≤ T ) is a standard d-dimensional Brownian motion and b, σj :

[0, T ]×Ω×Rn → Rn are measurable functions such that the above integrals make sense. Let
moreover R > 0 and τR = inf{t ≥ 0 : |Yt| > R}.

Remark 4.2.1. We may of course set b(t, ω) = b(t, ω, Yt(ω)) and σ(t, ω) = σ(t, ω, Yt(ω)) and
write Y as a general Itô process. The parameterization of the coefficients in (4.2.1) allows us
to “localize” our assumptions, in the spirit of the previous chapter. We will indeed ask the
functions b(t, ω, y) and σ(t, ω, y) to satisfy some conditions only for y such that 1

4
R ≤ |y| ≤ 3

4
R

(cf. hypothesis (H) below).

We denote a = σσ∗, that is aij =
∑d

k=1 σ
i
kσ

j
k, and we have a ∈ S+

n , Tr(a) =
∑d

j=1

∑n
i=1 |σij|2 =∑d

j=1 |σj|
2. We define the auxiliary functions q, h : R+×Ω×Rn \ {0} → R and v : R+×Ω×



4.2. The basic estimate 105

Rn \ {0} → Rn by

q(t, ω, y) = Tr(a(t, ω, y))− 〈a(t, ω, y)y, y〉
|y|2

,

h(t, ω, y) =
q2(t, ω, y)

〈a(t, ω, y)y, y〉
and

v(t, ω, y) = q(t, ω, y)
a(t, ω, y)y

〈a(t, ω, y)y, y〉
.

These functions will come into play in the proof of Theorem 4.2.1 below. Notice that v is
defined so that for every y ∈ Rn we have

〈v(t, ω, y), y〉 = q(t, ω, y)

and
〈a−1(t, ω, y)v(t, ω, y), v(t, ω, y)〉 = h(t, ω, y).

Moreover, remark that when n = 1, q, h and v are identically zero.

We now state our assumptions. For the ease of notation, let us denote at,y := a(t∧τR, ω, y)

and bt,y := b(t ∧ τR, ω, y). Moreover, we drop the dependence with respect to ω ∈ Ω when
this can be done without generating confusion.

(H) There exist some functions cb, cσ : R+ × R+ → R+ and a : R+ × R+ → S+
n such that

for every t ∈ [0, T ] and every y ∈ Rn such that 1
4
R ≤ |y| ≤ 3

4
R,

〈at,yξ, ξ〉 ≤ 〈a(R, t)ξ, ξ〉 ∀ξ ∈ Rn, P-a.s.

|a−1/2
t,y bt,y| ≤ cb(R, t) P-a.s.

h(t, y) ≤ cσ(R, t) P-a.s.

∫ T

0

(
||a(R, s)||+ c2

b(R, s) + c2
σ(R, s)

)
ds <∞.

Theorem 4.2.1. Under (H),

P
(

sup
t≤T
|Yt| ≤ R

)
≥ exp

(
−(
√
αT (R) +

√
βT (R))2

)
(4.2.2)



106 CHAPTER 4. Tube estimates via time-change techniques

with

αT (R) =

∫ T

0

||a(R, s)||ds, αT (R) = 2 log
(π

2

)
+

2π2

R2
αT (R)

βT (R) =

∫ T

0

(
c2
b(R, s) + 1{n>1}cσ(R, s)

)
ds.

Moreover, if 16αT (R)(βR(T ) + ln(2)) < R2,

P
(

sup
t≤T
|Yt| ≥ R

)
≤ exp

(
−
(√

αT (R)−
√
βT (R)

)2) (4.2.3)

with
αT (R) =

R2

16αT (R)
− ln(2).

Remark 4.2.2. Estimate (4.2.2) will be used for small values of R, and estimate (4.2.3) for
large values of R.

Remark 4.2.3. The hypotheses under which the tube estimate 4.2.2 holds are actually
weaker with respect to the ones in [8]. In particular, we demand no Lipschitz assumptions
on σ.

Proof. We consider the stopping times τ ′R := inf{t : |Yt| ≥ 1
2
R} and τ ′′R := inf{t ≥ τ ′R :∣∣|Yt| − R

2

∣∣ ≥ 1
4
R}. It is clear that τ ′′R ≤ τR so that P (τR ≥ T ) ≥ P (τ ′′R ≥ T ). We will look for

a lower bound for this last probability.
Step 1. Let AR(t) := {τ ′R ≤ t ≤ τ ′′R}. Notice that on the set AR(t) we have |Yt| ≥ R

4
> 0

hence v(t, Yt) is well defined. Let us define the d-dimensional process θ = (θ(t), t ∈ [0, T ]) by

θ(t) := 1AR(t)σ∗(t, Yt)a
−1(t, Yt)

(
b(t, Yt) + v(t, Yt)

)
.

We remark that θt is worth zero outside AR(t) and that, for every t ∈ [0, T ], we have:

|θ(t)|2 = 1AR(t)〈a−1(t, Yt)(b(t, Yt) + v(t, Yt)), b(t, Yt) + v(t, Yt)〉

≤ 1AR(t) × 2
(
〈a−1(t, Yt)b(t, Yt), b(t, Yt)〉+ 〈a−1(t, Yt)v(t, Yt), v(t, Yt)〉

)
≤ 1AR(t) × 2

(
|a−1/2(t, Yt)b(t, Yt)|2 + h(t, Yt)

)
≤ 1AR(t) × 2

(
c2
b(R, t) + 1{n>1}cσ(R, t)

)
,

(4.2.4)

and the indicator function comes from the fact that h is identically zero when n = 1.
Step 2 (Itô + Girsanov). Let us define

W t = Wt +

∫ t

0

θ(s)ds, et = exp
(
−
∫ t

0

〈θ(s), dWs〉 −
1

2

∫ t

0

|θ(s)|2ds
)
, t ≤ T.

By (4.2.4), the process (et; t ≤ T ) is a martingale under P and the measure P̃ defined by
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dP̃
dP = eT is a probability measure on (Ω,FT ). Hence, by Girsanov’s theorem the process
(W t; t ≤ T ) is a P̃-Brownian motion. Now, since σ(t, Yt)θ(t) = b(t, Yt) + v(t, Yt) on the set
AR(t), on this set we have

Yt = Yτ ′R −
∫ t

τ ′R

v(s, Ys)ds+
d∑
j=1

∫ t

τ ′R

σj(s, ω, Ys)(dW
j
s + θj(s)ds)

= Yτ ′R −
∫ t

τ ′R

v(s, Ys)ds+
d∑
j=1

∫ t

τ ′R

σj(s, Ys)dW
j

s.

We now apply Itô’s formula to |Yt|. Using ∂xi |x| = xi
|x| and ∂

2
xixj
|x| = 1

|x|(δij −
xixj
|x|2 ) we have

|Yt| = |Yτ ′R |+
∫ t

τ ′R

1

|Ys|

(
−〈v(s, Ys), Ys〉+ Tr(a(s, Ys))−

〈a(s, Ys)Ys, Ys〉
|Ys|2

)
ds

+
d∑
j=1

∫ t

τ ′R

〈σj(s, Ys)Ys, Ys〉
|Ys|

dW
j

s.

By the definition of v the drift term in the previous equation is zero and, since |Yτ ′R | =
R
2
, for

τ ′R ≤ t ≤ τ ′′R we have

|Yt| =
R

2
+

d∑
j=1

∫ t

τ ′R

〈σj(s, Ys)Ys, Ys〉
|Ys|

dW
j

s.

Step 3 (Time-change). The process mt :=
∑d

j=1

∫ t
0

1AR(t)
〈σj(s,Ys)Ys,Ys〉

|Ys| dW
j

s is a martingale
with quadratic variation

〈m〉t =

∫ t

0

1AR(t)
〈a(s, Ys)Ys, Ys〉

|Ys|2
ds ≤

∫ t

0

1AR(t)
〈a(R, s)Ys, Ys〉

|Ys|2
ds ≤ αT (R).

In particular, by Dubins & Schwarz Theorem there exists a one-dimensional P̃-Brownian
motion b = (b(t); t ≤ T ) such that b(〈m〉t) = mt.

Step 4. Conclusion. Applying estimate (4.4.2) in Lemma 4.4.1, section 4.4, we have

P̃(AR(T )) = P̃(τ ′R ≤ T ≤ τ ′′R) = P̃(τ ′R < T, sup
τ ′R≤t≤T

∣∣∣|Yt| − R

2

∣∣∣ ≤ R

4
)

= P̃(τ ′R < T, sup
τ ′R≤t≤T

∣∣|b(〈m〉t)∣∣ ≤ R

4
)

= Ẽ
[
1{τ ′R<T}Ẽ[1{supτ ′

R
≤t≤αT (R) |b(t)|≤

R
4
}|Fτ ′R ]

]
≥ P̃(τ ′R < T )×

( 2

π

)2

exp
(
−2π2

R2
αT (R)

)
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hence

P̃(τ ′′R ≥ T ) = P̃(τ ′R ≥ T ) + P̃(τ ′R < T, τ ′′R ≥ T ) ≥
( 2

π

)2

exp
(
−2π2

R2
αT (R)

)
= exp(−αT (R)).

Now, by Holder’s inequality, for every p > 1 we have

P̃(τ ′′R ≥ T ) = E[1{τ ′′R≥T}eT ] ≤ P(τ ′′R ≥ T )(p−1)/pE[epT ]1/p. (4.2.5)

Since, by the martingale property,

E[epT ] = E
[
exp
(
−
∫ T

0

〈pθ(s), dWs〉 −
1

2

∫ T

0

|pθ(s)|2ds+
p(p− 1)

2

∫ T

0

|θ(s)|2ds
)]

≤ exp
(
p(p− 1)

∫ T

0

(c2
b(R, s) + cσ(R, s))ds

)
= exp

(
p(p− 1)βT (R)

)
,

from this last inequality and (4.2.5) we obtain

P(sup
t≤T
|Yt| ≤ R) ≥ P(τ ′′R ≥ T ) ≥ P̃(τ ′′R ≥ T )p/(p−1)

E[epT ]1/(p−1)

≥ exp
(
− p

p− 1
αT (R)− pβT (R)

)
.

= exp
(
− p

p− 1
αT (R)− pβT (R)

)
.

(4.2.6)

We can optimize the right hand side expression over p: it is easy to see that

max
p>1

{
exp
(
− p

p− 1
αT (R)− pβT (R)

)}
= exp

(
−
(√

αT (R) +
√
βT (R)

)2) (4.2.7)

Inequalities (4.2.6) and (4.2.7) yield estimate (4.2.2).

Estimate 4.2.3. We proceed in an analogous way: we remark that we have

P̃(τ ′′R ≤ T ) = P̃
(
τ ′R ≤ τ ′′R ≤ T, sup

τ ′R≤t≤T

∣∣∣|Yt| − R

2

∣∣∣ ≥ R

4

)
≤ P̃

(
τ ′R ≤ τ ′′R ≤ T, sup

τ ′R≤t≤τ
′′
R

|b(〈m〉t)| ≥
R

4

)
≤ P̃

(
sup

0≤t≤αT (R)

|bt| ≥
R

4

)
hence, applying inequality (4.4.3) in Lemma 4.4.1,

P̃(τ ′′R ≤ T ) ≤ 2 exp
(
− R2

16αT (R)

)
= exp

(
−
( R2

16αT (R)
− ln(2)

))
= exp(αT (R)).
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On the other hand, for every p > 1

Ẽ[e−pT ] = E[e
−(p−1)
T ]

= E
[
exp
(∫ T

0

〈(p− 1)θ(s), dWs〉 −
1

2

∫ T

0

|(p− 1)θ(s)|2ds+
p(p− 1)

2

∫ T

0

|θ(s)|2ds
)]

≤ exp
(
p(p− 1)

∫ T

0

(c2
b(R, s) + cσ(R, s))ds

)
= exp

(
p(p− 1)βT (R)

)
.

Applying again Holder’s inequality, we obtain

P
(

sup
t≤T
|Yt| ≥ R

)
≤ P(τ ′′R ≤ T ) = Ẽ

[
1{τ ′′R≤T}e

−1
T

]
≤ P̃(τ ′′R ≤ T )(p−1)/p × Ẽ[e−pT ]1/p

≤ exp
(
−p− 1

p
αT (R)− (1− p)βT (R)

)
If

16αR(T )(βR(T ) + ln(2)) < R2, (4.2.8)

the right hand expression has a minimum over p > 1, and it is easy to see that

min
p>1

{
exp
(
−p− 1

p
αT (R)− (1− p)βT (R)

)}
= exp

(
−
(√

αT (R)−
√
βT (R)

)2)
. (4.2.9)

Proof of (4.2.7) and (4.2.9): Maximizing exp(−f(p)) amounts to minimize f(p). In
(4.2.7), we have f(p) = p

p−1
αT (R) + pβT (R). Derivation yields

f ′(p) =
(p− 1)2βT (R)− αT (R)

(p− 1)2

hence, noticing that βT (R) > 0, αT (R) > 0, the minimum of f over (1,∞) is attained at
p∗ = 1 +

√
αT (R)
βT (R)

. Direct computation yields f(p∗) = (
√
αT (R) +

√
βT (R))2.

Similar computations show that p → g(p) := p−1
p
αT (R) + (1 − p)βT (R) has a maximum

over (1,∞) if and only if αT (R) > βT (R), that is if (4.2.8) holds. In this case we have
maxp>1 g(p) = (

√
αT (R) −

√
βT (R))2 > 0 and we obtain (4.2.9). If (4.2.8) does not hold, g

is decreasing over (1,∞) and the value of exp(−g(p)) ≥ exp(−g(0)) = 1 is not meaningful as
an upper bound on P(τ ′′R ≤ T ).
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4.3 Lower and upper estimates of distribution functions:

application to diffusions

4.3.1 Upper Bounds

In this section we show how the “upper-bound” part of Theorem 4.2.1 (that is, estimate
(4.2.3)) can be directly applied in order to obtain tail upper bounds for the law of diffusions.
We will work on an example, focusing on the class of one-dimensional diffusions considered
in Chapter 2, section 3.

Exemple 1. Let

Xt = x+

∫ t

0

b̃(Xs)ds+ σ

∫ t

0

Xα
s dWs, t ≤ T (4.3.1)

where

• 0 < α < 1;

• There exists κ > 0 and β ∈ [0, 1] such that

b̃(x) ≤ κxβ for every x > 1. (4.3.2)

In the spirit of the work of Chapter 3, we do not deal here with the issue of existence
and uniqueness of solutions to (4.3.1). The result we give hereafter holds indeed for any
X = (Xt, t ≤ T ) such that P(Xt ≥ 0, t ≤ T ) = 1 and Xt satisfies (4.3.1) for all t.

Proposition 4.3.1. If (4.3.2) holds with β < 1 and R is large enough, precisely

R > 4x ∨
(

25 ln(2)σ2 × T ∨ 1

κ2T

)1/(2(1−α))

∨
(

28+4ακ2T 2
)1/(2(1−β))

(4.3.3)

then

P
(

sup
t≤T
|Xt − x| > R

)
≤ exp

(
−R

2(1−α)

27σ2T

)
. (4.3.4)

In particular, for every z > x+R with R satisfying (4.3.3),

P(XT > z) ≤ exp
(
−(z − x)2(1−α)

27σ2T

)
. (4.3.5)

If (4.3.2) holds with β = 1 and (4.3.3) holds, then (4.3.4) and (4.3.5) hold for T small enough,
precisely

T < 2−(4+2α)κ−1. (4.3.6)

Remark 4.3.1. Let us come back to the estimate for the density of the law provided in
Chapter 2. When α ∈ [1/2, 1), under the appropriate regularity assumptions on the drift
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coefficient b̃, XT admits a smooth density pT on (0,∞), for every T > 0. More precisely, if
b̃ ∈ C∞(R) and b̃(0) ≥ 0, then by the same arguments as in Lemma 2.4.1, eq. (4.3.1) admits
a unique strong solution X and by Theorem 2.2.4, the law of XT restricted to (0,∞) has a
smooth density pT . An upper bound on this density is given by

pT (z) ≤
(

1 +
1

T 3/2

)
PT (z)Λ(z),

where Λ is an explicitly known function with polynomial growth and PT (z) = P
(

infs∈[T/2,T ] |Xs−
z| ≤ 3

)
(to be precise, we have set R = 1 in Theorem 2.2.4 and we denote Λ(z) := Λ3(T∧1, z).

The polynomial growth of the function Λ follows from the same arguments as in Proposition
2.3.2). An issue is how to estimate the term PT (z) (a problem which is already tackled in
Chapter 2, relying on some arguments specifically designed for equations such as (4.3.1)).
We can now upper bound PT (z) by means of the previous proposition: we simply write

PT (z) ≤ P
(

sup
s∈[T/2,T ]

Xs ≥ z − 3
)
≤ P

(
sup
s≤T
|Xs − x| ≥ z − x− 3

)
,

then use (4.3.4). Doing this we eventually obtain the same asymptotic estimate (up to
multiplicative constants) as the one derived in Chapter 2, Proposition 2.3.3.

Proof. We consider the process

Yt = Xt − x =

∫ t

0

b̃(x+ Ys)ds+ σ

∫ t

0

(x+ Ys)
αdWs.

Let us define a(y) = σ2(x+ y)2α and b(y) = b̃(x+ y). It is easy to see that, for 1
4
R ≤ y ≤ 3

4
R,

a(y) ≤ σ2(x+
3

4
R)2α ≤ σ2R2α

|b(y)|√
a(y)

≤
κ(x+ 3

4
R)β

σ(x+ 1
4
R)α

≤ 4ακ

σ
×Rβ−α

where we have used x < 1
4
R because of (4.3.3). Then the hypothesis (H) holds for the

process Y and the constant functions a(R, t) = σ2R2α and cb(R, t) = 4ακ
σ
Rβ−α. We have

αT (R) =
∫ T

0
a(R, t)dt = σ2R2αT and βT (R) =

∫ T
0
cb(R, t)

2dt =
(

4ακ
σ

)2
R2(β−α)T . Moreover,

βT (R) < ln(2) by (4.3.3) hence

16αT (R)(βT (R) + ln(2)) ≤ 16σ2R2αT × 2
(4ακ

σ

)2
R2(β−α)T

= 25+4ακ2T 2R2β.
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Case β < 1. When β < 1, by (4.3.3) the previous inequality reads

16αT (R)(βT (R) + ln(2)) ≤ R2 (4.3.7)

therefore all the conditions in order to apply estimate (4.2.3) are verified. Remark that by
(4.3.3) we also haveαT (R) = R2

16σ2R2αT
− ln(2) ≥ R2(1−α) 1

32σ2T
, hence

(√
αT (R)−

√
βT (R)

)2 ≥ R2(1−α)

32σ2T

(
1− 4α+3/2κ

T

R1−β

)2

≥ R2(1−α)

32σ2T × 4
(4.3.8)

since 4α+3/2κ T
R1−β < 1

2
by (4.3.3). Estimate (4.2.3) in Theorem 4.2.1 yields (4.3.4). The

inequality (4.3.5) follows obviously using (4.3.4).
Case β = 1. Condition (4.3.7) holds if 25+4ακ2T 2, which is in its turn assured by (4.3.6).

Analogously, (4.3.8) holds if 4α+3/2κT < 1
2
, that is if condition (4.3.6) holds.

4.3.2 Lower Bounds

We start by developing an “interface” allowing to apply estimate (4.2.2) in Theorem 4.2.1
to obtain tube estimates for diffusion processes. In particular, since Theorem 4.2.1 only
considers constant radius R and no deterministic curve, we want to introduce a curve on
which the tube is centered. This can be achieved simply by working on the shifted process
Xt−xt. On the other hand, instead of introducing a time-dependent radius Rt, we will rescale
the process by multiplying it by an invertible matrix. This reasonings are implemented in
the following two propositions.

Let: R > 0, x ∈ Rn, φ ∈ C([0, T ]; Rn),

Xt = x+

∫ t

0

b̃(s,Xs)ds+
d∑
j=1

∫ t

0

σ̃j(s,Xs)dW
j
s , t ≤ T,

and

xt = x+

∫ t

0

φsds, t ≤ T.

Let us denote ã(t, x) = σ̃σ̃∗(t, x). We consider the following conditions:

(I) ã(t, xt) > 0;

(G) (growth condition) There exists µ(R) > 1 and a function c : R+ → Rn such that for
every t ∈ [0, T ] and every y such that |y − xt| ≤ 3

4
R,

∣∣ã(t, xt)
−1/2

(
b̃(t, y)− φt

)∣∣ ≤ |ã(t, xt)
−1/2c(t)| P-a.s.

1

µ(R)
〈ã(t, xt)ξ, ξ〉 ≤ 〈ã(t, y)ξ, ξ〉 ≤ µ(R)〈ã(t, xt)ξ, ξ〉 ∀ξ ∈ Rn,P-a.s.
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Tr(ã(t, y)) ≤ µ(R)Tr(ã(t, xt)) P-a.s.

Proposition 4.3.2. Under (I) and (G),

P(|Xt − xt| ≤ R, t ∈ [0, T ]) ≥ exp
(
−(
√
αT (R) +

√
βT (R))2

)
(4.3.9)

with

αT (R) = µ(R)

∫ T

0

||ã(s, xs)||ds, αT (R) = 2 log
(π

2

)
+

2π2

R2
αT (R),

βT (R) = µ(R)

∫ T

0

(∣∣ã(s, xs)
−1/2c(t)

∣∣2 + 1{n>1}µ(R)2 9

16
R2Tr(ã(s, xs))

2

λ(ã(s, xs))

)
ds.

Proof. We consider the process

Yt = Xt − xt =

∫ t

0

(b̃(s, xs + Ys)− φs)ds+
d∑
j=1

∫ t

0

σ̃j(s, xs + Ys)dW
j
s , t ≤ T.

For every y ∈ Rn such that |y| ≤ 3
4
R and for every ξ ∈ Rn we have:

〈ã(t, xt + y)ξ, ξ〉 ≤ µ(R)〈ã(t, xt)ξ, ξ〉

and

|a−1/2(t, xt + y)
(
b̃(t, xt + y)− φt

)
|2 = 〈ã−1(t, xt + y)

(
b̃(t, xt + y)− φt

)
,
(
b̃(t, xt + y)− φt

)
〉

≤ µ(R)〈ã−1(t, xt)
(
b̃(t, xt + y)− φt

)
,
(
b̃(t, xt + y)− φt

)
〉

= µ(R)|a−1/2(t, xt)c(t)|2.

We now claim that(
Tr(ã(t, xt + y))− 〈ã(t,xt+y)y,y〉

|y|2

)2

〈ã(t, xt + y)y, y〉
≤ µ(R)3 9R2

16

Tr(ã(t, xt))
2

λ(ã(t, xt))
. (4.3.10)

Then, the hypothesis (H) is satisfied by the process Yt = Xt− xt and the functions a(R, t) =

µ(R)ã(t, xt); cb(R, t) =
√
µ(R)|ã(t, xt)

−1/2c(t)|; cσ(R, t) = µ(R)3 9
16
R2 Tr(ã(t,xt))2

λ(ã(t,xt))
. Estimate

(4.2.2) in Theorem 4.2.1 yields the desired result.

Proof of (4.3.10). Tr(ã(t, xt+y)) equals the sum of the (positive) eigenvalues of ã(t, xt+y),
while 〈ã(t,xt+y)y,y〉

|y|2 is clearly smaller than the larger eigenvalue. Hence 0 < Tr(ã(t, xt + y))−
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〈ã(t,xt+y)y,y〉
|y|2 < Tr(ã(t, xt + y)) and

(
Tr(ã(t, xt + y))− 〈ã(t,xt+y)y,y〉

|y|2

)2

〈ã(t, xt + y)y, y〉
≤ Tr(ã(t, xt + y))2 × |y|2

inf |z|=1〈ã(t, xt + y)z, z〉

≤ µ(R)2Tr(ã(t, xt))
2 × 9

16
R2 µ(R)

λ(ã(t, xt))
.

In the previous proposition we have applied Theorem 4.2.1 to the shifted process Xt−xt. As
previously stated, we can also rescale the process multiplying by an invertible matrix. If we
consider ã(t, xt)

−1/2(Xt−xt), applying Itô’s formula it is easy to see that the diffusion matrix
of the resulting process is ã(t, xt)

−1ã(t,Xt). This is not the identity matrix but it is not “far”
from it, since the process Xt remains in the tube around the curve xt. In particular, we can
ask for this matrix to be elliptic up to τR. Then, assume (I) and let

ΓT (R) =
{

(t, y) ∈ [0, T ]× Rn : |ã(t, xt)
−1/2(y − xt)| ≤

3

4
R
}
.

We consider the following conditions:

(D) t→ ã(t, xt)
ij ∈ C1([0, T ]);

(G’) (growth condition) There exists µ(R) > 1 and a function c : R+ → Rn such that for
every (t, y) ∈ ΓT (R),

|ã(t, xt)
−1/2(b̃(t, y)− φt)| ≤ |ã(t, xt)

−1/2c(t)| P-a.s.

1

µ(R)
〈ã(t, xt)ξ, ξ〉 ≤ 〈ã(t, y)ξ, ξ〉 ≤ µ(R)〈ã(t, xt)ξ, ξ〉 ∀ξ ∈ Rn,P-a.s.

Proposition 4.3.3. Under (I), (D) and (G’),

P
(∣∣ã(t, xt)

−1/2(Xt − xt)
∣∣≤ R, t ∈ [0, T ]

)
≥ exp

(
−(
√
αT (R) +

√
βT (R))2

)
(4.3.11)

with

αT (R) = 2 log
(π

2

)
+ µ(R)

2π2

R2
T,

βT (R) = 1{n>1}µ(R)3n2 9R2

16
T + 2µ(R)

∫ T

0

(∣∣ã(s, xs)
−1/2c(t)

∣∣2
+

9

64
R2||ã(t, xt)

−1 d

dt
(ã(t, xt))||2

)
ds.
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Proof. We denote ãt := ã(t, xt) for simplicity. Let us define b, σj : B0(3
4
R)→ Rn, j = 1, . . . , n

and a : B0(3
4
R)→ S+(n) by

b(t, y) := ã
−1/2
t

(
b̃(t, xt + ã

1/2
t y)− φt

)
+
d

dt

(
ã
−1/2
t

)
ã

1/2
t y

σj(t, y) := ã
−1/2
t σ̃j(t, xt + ã

1/2
t y), j = 1, . . . , d

a(t, y) := σσ∗(t, y) = ã
−1/2
t ã(t, xt + ã

1/2
t y)ã

−1/2
t .

Then, an application of the Ito’s formula allows one to show that the process Y = (Yt, t ≤ T ),
Yt = ã

−1/2
t (Xt − xt), satisfies

Yt =

∫ t

0

b(s, Ys)ds+
d∑
j=1

∫ t

0

σj(s, Ys)dW
j
s .

Let us consider t ∈ [0, T ], y ∈ Rn with |y| ≤ 3
4
R and ξ ∈ Rn. By (G’), we have

〈a(t, y)ξ, ξ〉 = 〈ã(t, xt + ã
1/2
t y)ã

−1/2
t ξ, ã

−1/2
t ξ〉

≤ µ(R)〈ã(t, xt)ã(t, xt)
−1/2ξ, ã(t, xt)

−1/2ξ〉 = µ(R)|ξ|2
(4.3.12)

and, with analogous reasoning,

〈a(t, y)ξ, ξ〉 ≥ 1

µ(R)
|ξ|2. (4.3.13)

As a consequence of (4.3.12), Tr(a(t, y)) ≤ µ(R)n. Hence, proceeding as in the proof of
(4.3.10) in Proposition 4.3.2, we have(

Tr(a(t, y))− 〈a(t,y)y,y〉
|y|2

)2

〈a(t, y)y, y〉
≤ Tr(a(t, y))2µ(R)|y|2 ≤ µ(R)3n2 9

16
R2.

Now, it is easy to see that

d

dt

(
ã
−1/2
t

)
= −1

2
ã−1
t

d

dt
(ãt)ã

−1/2
t

so that d
dt

(
ã
−1/2
t

)
ã

1/2
t y = −1

2
ã−1
t

d
dt

(ãt)y, hence

|b(t, y)|2 ≤ 2
(∣∣ã−1/2

t

(
b̃(t, xt + ã

1/2
t y)− φt

)∣∣2 +
1

4

∣∣ã−1
t

d

dt
(ãt)y

∣∣2)
≤ 2
(∣∣ã−1/2

t c(t)
∣∣2 +

9

64
R2||ã−1

t

d

dt
(ãt)||2

)
.

On the other hand, by (4.3.13) we have |a(t, y)−1/2b(t, y)|2 = 〈ã(t, y)−1b(t, y), b(t, y)〉 ≤
µ(R)|b(t, y)|2. As a consequence of the inequalities previously obtained, the hypothesis (H)
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is satisfied by the process Y and the functions

a(R, t) = µ(R)In, t ≤ T ; cσ(t) = µ(R)3n2 9

16
R2, t ≤ T

cb(R, t) = 2µ(R)
(
|ã(t, xt)

−1/2c(t)|2 +
9

64
R2||ã(t, xt)

−1 d

dt
(ã(t, xt))||2).

Estimate (4.2.2) in Theorem 4.2.1 yields the desired result.

We can now continue the example of the previous section. We give lower bounds for the
tails of the distribution function of a process Xt satisfying (4.3.1) that are in the same range
(on the log-scale) as the upper bound (4.3.5) in Prop. (4.3.1).

Proposition 4.3.4 (Example 1, continued). Let X = (Xt, t ≤ T ) be a continuous process
satisfying (4.3.1). Then, there exist strictly positive constants cT and dT depending also on
x and α, such that for every z large enough, precisely

z > x
(
1 + 2 sinh(T/2)

)1/(1−α)
, (4.3.14)

we have
P(Xt > z) ≥ exp

(
−dT − cT z2(1−α)

)
. (4.3.15)

Proof. We will give the proof in three steps, mainly following the scheme set up in Chapter
3, Theorem 3.2.1 and Corollary 2. Let us consider

R =
2

3σ
x1−α. (4.3.16)

Step 1. We refer to the notation in the proof of Proposition (4.3.1). Let us consider a
curve x· ∈ C1([0, T ]) such that

x0 = x, xT = 2z, x′t > 0 ∀t ∈ [0, T ]. (4.3.17)

Clearly t 7→ a(xt) = σ2x2α
t ∈ C1([0, T ]). For every t ∈ [0, T ] and every y such that |y − xt| ≤

3
4
Ra(xt)

1/2 = 3
4
Rσxαt , we have

a(y) ≤ σ2
(
xt +

3

4
Rσxαt

)2α ≤ 22ασ2x2α
t ,

since 3
4
Rσxαt ≤ x1−αxαt ≤ xt by (4.3.16). Similar computations lead to a(y) ≥ σ2

22αx
2α
t ;

moreover, since β ≤ 1,

|b(y)− x′t| ≤ κyβ + x′t ≤ κ
(
xt +

3

4
Rσxαt

)β
+ x′t ≤ 2κxt + x′t.

Then, the hypothesis (I), (D) and (G’) are satisfied for the process X, the curve x· and with
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µ(R) = 22α, c(t) = 2κxt + x′t. Then we have

βT (R) = 22α+1

∫ T

0

((2κxt + x′t)
2

σ2x2α
t

+
9R2

64
× 4α2

(x′t
xt

)2)
dt

≤ 22α+1

∫ T

0

(4κ2

σ2
x

2(1−α)
t +

5

4σ2

(x′t)
2

x2α
t

)
dt

and the last inequality comes from (4.3.16) and the fact that x2α
t = x2α

(
xt
x

)2α ≤ x2α
(
xt
x

)2
=

x2
t

x2(1−α) .

Step 2 (Lagrange optimization). Let us set Γ(x) = 22α+1

σ2 max(4κ2, 5
4
). We are led to the

minimize the functional

Γ(x)

∫ T

0

L(xt, x
′
t)dt (4.3.18)

under the constraints (4.3.17), where L(x, x′) = x2(1−α) + (x′)2

x2α . The Euler-Lagrange equation
associated to L is easily found to be

x′′t
x′t

= α
x′t
xt

+ (1− α)
xt
x′t
. (4.3.19)

Eq. (4.3.19) can be explicitly solved by means of the change of variables ut =
(
xt
x

)1−α, which
converts (4.3.19) into the linear equation

u′′t − (1− α)2ut = 0, u0 = 1, uT = (2z/x)1−α. (4.3.20)

The solution to (4.3.20) is given by

ut =
(2z

x

)1−α
ϕ(t)− e−(1−α)Tϕ(t) + e−(1−α)t,

where ϕt = sinh((1−α)t)
sinh((1−α)T )

. Let us set x̃t = xu
1/(1−α)
t . It is now a matter of computation to

evaluate the functional in (4.3.18) on this particular curve. A direct computation shows that
u′t > 0, hence x′t > 0, if z satisfies (4.3.14). Moreover, we have

ut ≤
(2z

x

)1−α
ϕ(t) + e−(1−α)t, u′t ≤

(2z

x

)1−α cosh((1− α)t)

sinh((1− α)T )
,

(x̃′t)
2

x̃2α
t

=
x2(1−α)

(1− α)2
(u′t)

2

hence∫ T

0

L(x̃t, x̃
′
t)dt ≤ x2(1−α)

∫ T

0

(
u2
t +

(u′t)
2

(1− α)2

)
dt

≤ 2(2z)2(1−α)

∫ T

0

(
ϕ(t)2 +

cosh2((1− α)t)

(1− α)2 sinh2((1− α)T )

)
dt+ x2(1−α) 1− e−2(1−α)T

1− α
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Setting

cT := 24−2αΓ(x)

∫ T

0

(
ϕ(t)2 +

cosh2((1− α)t)

(1− α)2 sinh2((1− α)T )

)
dt

dT := 2αT (R) + 2Γ(x)x2(1−α) 1− e−2(1−α)T

1− α

= 4 log
(π

2

)
+ 22α+2 9σ2π2

4x2(1−α)
T + 2Γ(x)x2(1−α) 1− e−2(1−α)T

1− α

we have (
√
αT (R) +

√
βT (R))2 ≤ 2(αT (R) + βT (R)) ≤ dT + cT z

2(1−α). Estimate (4.3.11) in
Proposition 4.3.3 then yields

P
(
|Xt − x̃t| ≤ σRx̃αt , t ∈ [0, T ]

)
≥ exp

(
−dT − cT z2(1−α)

)
. (4.3.21)

Step 3. We conclude by observing that z > Rσzα if (4.3.14) holds, hence

P(XT ≥ z) ≥ P(|XT − 2z| ≤ σRzα) ≥ P
(
|Xt − x̃t| ≤ σRx̃αt , t ∈ [0, T ]

)
and (4.3.21) yields (4.3.15).

4.4 A lemma on suprema of Brownian motion

Here we prove a lemma about the law of suprema of the one-dimensional Brownian motion.

Lemma 4.4.1. Let (bt; t ≥ 0) be a standard one-dimensional Brownian motion. Then, for
every T > 0 and every ε > 0,

P
(

sup
t≤T
|bt| < ε

)
=

∞∑
n=2k+1,k≥0

(−1)
n−1

2
4

πn
e−

π2n2T
8ε2 , (4.4.1)

in particular

P
(

sup
t≤T
|bt| < ε

)
≥ 2

π
e−

π2T
8ε2 . (4.4.2)

We also have
P
(

sup
t≤T
|bt| > ε

)
≤ 2e−ε

2/2T . (4.4.3)

Proof. Estimate (4.4.3) is proven in [58], pg. 60, relying on exponential brownian martingales.
On the other hand, according to [38], pg. 520-521, we have

P
(

sup
t≤T
|b(t)| < ε

)
=
∞∑
n=1

exp
(
−λnT

ε2

)
φn(0)

∫ 1

−1

φn(y)dy, (4.4.4)

where 0 < λ1 ≤ λ2 ≤ . . . are the eigenvalues and (φn)n the corresponding eigenfunctions of
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the eigenvalue problem {
1
2
φ′′(x) + λφ(x) = 0, x ∈ (−1, 1)

φ(−1) = φ(1) = 0.
(4.4.5)

Therefore, in order to prove (4.4.1) we are left with the explicit computation of the spectrum.
It is easy to see that the solution to (4.4.5) is given by

λn =
π2n2

8
, φn(x) = sin

(πn
2

(x− 1)
)
.

Now, by direct computation

φn(0)

∫ 1

−1

φn(y)dy =

{
0 if n is even
(−1)

n−1
2

4
πn

if n is uneven,

hence, in the sum at the right hand side of (4.4.4) only the uneven terms give a contribution,
and direct substitution gives (4.4.1). (4.4.2) follows from (4.4.1)



120 CHAPTER 4. Tube estimates via time-change techniques



121

Part II

Implied volatility and the SVI
parametric model: calibration and

time-dependent extensions
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Chapter 5

Quasi-Explicit Calibration of Gatheral’s
SVI model

Abstract

We present a procedure - based on dimension reduction in the parameters
space - providing a quasi-explicit calibration of J. Gatheral’s SVI implied
variance model. The resulting parameter identification is reliable, robust
and stable.

Keywords: SVI model, Calibration.

Note

The study developed in this chapter is motivated by some smart remarks of Claude Martini
on the properties of the SVI model. I implemented the numerical tests that are presented in
section 5.4 relying on Zeliade Systems’ code development framework. I would like to thank
Zeliade Systems’ team for the related technical support (in particular Steve Younan and
Tarek Bouz for several insights on C#) and for providing with the market data.

5.1 A simple model and a delicate calibration

In [28], Jim Gatheral proposes the following parametric form to model the fixed-maturity
smile:

σ2
SV I(x) = a+ b

(
ρ(x−m) +

√
(x−m)2 + γ2

)
, (5.1.1)

where σ2
SV I is the implied variance (square of implied volatility) at fixed time-to-maturity

T , x the log-moneyness x := log(K/F0) and a, b, ρ,m, γ are the model parameters. (5.1.1)
is known as the Stochastic Volatility Inspired (SVI) model since the functional form of the
curve has been inspired by the results on the large-time asymptotics of implied variance in
the Heston model.
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Parametric models (SVI, approximations of implied volatility in CEV or SABR models,
others) are of common use in the treatment of the volatility surface. Apart from the extrap-
olation of smile points, they provide a smoothing of the market smile and the consequent
facilities in the calibration of stochastic models for the underlying (including the reconstruc-
tion of a local volatility surface via Dupire’s formula, for which interpolation in time is also
needed). It is widely known that the SVI functional form (5.1.1) proves to have outstanding
performances in the calibration to single-maturity slices of the implied smile on Equity in-
dexes. Nevertheless, it is also common knowledge that the least square calibration of (5.1.1)
is typically affected by the presence of several local minima. To our experience, even when
SVI is calibrated to simulated data, i.e. a smile produced by SVI itself, local minima that are
difficult to sort out (least square objective ≈ 10−8 for reasonable volatilities, σ ≈ 20%−40%)
are found far away from the global one (objective = 0).
This unpleasant feature brings some difficulties, when one wants to design a reliable and
robust parameter identifications strategy in SVI model. Because of the local minima, the
solution yield by a least square optimizer usually displays a strong dependence on the input
starting point. Of course, smart initial guesses of parameters can be done by looking to
the “geometry” of the observed smile (asymptotic slopes, minimum). Then, one can run the
calibration using more than one non-linear optimizer and/or restarting from several different
initial guesses. Nonetheless, the strategy to find the initial point is not defect-free and re-
quires attention, since the desired smile features are not available in all the cases and often
not for all maturities (e.g. the wings are not both observed, smile has no clearly visible
minimum). The calibration reset, though useful, does not guarantee to overcome all the local
minima: the final choice of optimal parameters can still be ambiguous, since the same smile
can be - remarkably well - calibrated with sets of parameters that are totally different one
from the other. The big issue, then, becomes the stability of calibrated parameters through
time-to-maturity. This feature comes into play in a significant way when one is trying to
parameterize the whole volatility surface.

This chapter presents a procedure providing a trustworthy and robust calibration of the
SVI parametric form (5.1.1), having the pleasant feature to be almost insensitive to the
initial parameter guess. We rely on some simple observations on the symmetries of the
functional form (5.1.1) to downsize the minimization problem from dimension 5 (the number
of parameters in (5.1.1)) to dimension 2 (namely, m and γ), while the optimization over the
remaining 3 is performed exactly (except for a few minimum searches in dimension 1, which
can nevertheless be performed accurately and fast). Last but not least, the method yields
an optimal parameter set which is automatically consistent with the arbitrage constraint on
the slopes of the implied variance. The procedure is presented in section 5.3. We start by
reviewing the main properties of the SVI parametric family in the next section.
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5.2 Parameter constraints and limiting cases

The parameters a, b, ρ,m, γ in general depend on time-to-maturity T . We assume that b, γ, ρ
satisfy

b > 0, γ ≥ 0, ρ ∈ [−1, 1].

Further conditions on b and ρ follow from arbitrage conditions (cf. §5.2.2 hereafter). We will
discuss some constraints on the parameters γ and a in §5.2.3 and §5.2.4. We recall that in
this chapter we just look to the parameterization of time-slices of the implied variance.

5.2.1 Slopes and minimum

We review the main interesting properties of the parametric form (5.1.1). As pointed our in
cf.[28], it is easy to see that the left and right asymptotes are respectively

σ2
L(x) = a− b(1− ρ)(x−m),

σ2
R(x) = a+ b(1 + ρ)(x−m).

The term adding to a in (5.1.1) is always positive and convex with respect to x. Simple
computations show that σ2

SV I has a unique minimum point if ρ2 6= 1 and is in its “degenerate”
form if ρ2 = 1, precisely:

• if ρ2 6= 1, the minimum is min{σ2
SV I} = a+ bγ

√
1− ρ2 attained at x∗ = m− ργ√

1−ρ2
;

• if ρ2 = 1, σ2
SV I is not-increasing for ρ = −1 and not-decreasing for ρ = 1 and

– if γ 6= 0, σ2
SV I is strictly monotone and the minimum is never attained (neverthe-

less, σ2
SV I → a respectively for x→∞ or x→ −∞);

– if γ = 0, σ2
SV I has the shape of a Put or Call payoff of strike m (precisely, σ2

SV I is
worth a for x ≥ m if ρ = −1 and for x ≤ m if ρ = 1).

5.2.2 Arbitrage constraints (b and ρ)

A necessary condition for the absence of arbitrage is given by a constraint on the maximal
slopes of the total implied variance Tσ2

SV I(x). As found in [59], this condition reads

∀ x,∀ T, |T∂xσ2
SV I(x)| ≤ 4. (5.2.1)

As stated in [28], this translates into the following equivalent condition on b and ρ :

b ≤ 4

(1 + |ρ|)T
. (5.2.2)
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Figure 5.1: Examples of SVI smile shapes. SVI parameters are a = 0.04, b = 0.4, ρ =
−0.4,m = 0.05, γ = 0.1 (left) and a = 0.04, b = 0.2, ρ = −1,m = 0.1, γ = 0.5 (right).

5.2.3 Limiting cases γ → 0 and γ →∞ (almost-affine smiles)

As observed in §5.2.1 for the case ρ2 = 1, letting γ → 0 also makes the SVI parameterisation
piecewise affine. In this case, the implied variance reads

σ2
SV I(x) = a+ b(ρ∓ 1)(x−m) (5.2.3)

respectively in the two regions x < m and x > m. Smiles which can be excellently fitted with
a monotone affine parameterisation σ2(x) = px+ q are not uncommon on Equity indexes, in
particular for largest maturities: we will refer to them as to “almost-affine” smiles. Clearly, the
calibration of SVI to an almost-affine smile is an ill-posed problem: thinking of a downward
smile to fix ideas, it is sufficient to let γ → 0, then m to be greater than the largest observed
log-moneyness (in order to pick up the minus sign in (5.2.3)) and the matching of the two
relevant quantities, i.e. smile slope p and intercept q, gives the two equations

b(ρ− 1) = p,

a− bm(ρ− 1) = q

which correspond to infinitely many choices for the parameters a, b, ρ.

The same kind of limiting behaviour is attained in the limit γ →∞ and a→ −∞, in the
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precise way that we specify as follows. Assume a < 0 and γ >> 1, then

σ2
SV I(x) = a+ b

(
ρ(x−m) +

√
γ2 + (x−m)2

)
= −|a|+ bρ(x−m) + bγ

√
1 +

(x−m)2

γ2

∼ −|a|+ bρ(x−m) + bγ
(

1 +
(x−m)2

2γ2

)
∼|a|=bγ bρ(x−m) + b

(x−m)2

2γ
.

Hence
lim

γ→∞,a→−∞,|a|=bγ
σ2
SV I(x) = bρ(x−m)

for any value of x, and this correspond again to an affine smile whose slope and intercept will
identify the product bρ and the parameter m, but not b, ρ and m separately.

Smiles tend to flatten with increasing time to maturity, and curved smiles can continuously
deform into almost-affine ones. Since robustness and stability of the calibration are the
features we have in mind, we would like the calibration strategy to avoid falling into the
instable behaviour caused by the limiting SVI cases we have outlined above. Hence, we
decide to choose a strictly positive lower bound for γ (γmin = 0.005 in our numerical tests)
and state that if this threshold is reached, then an unambiguous calibration of SVI is not
doable, in the sense that any precise choice of model parameters is arbitrary (of course one
could decide, for example, to inherit one of the SVI parameters from the calibration to the
previous time-slice - if any - but this goes back to user choices). In the same way, we want to
avoid the γ →∞, a→ −∞ limiting behaviour: to do this, we claim that a good choice is to
constrain a to positive values. Setting an upper bound for γ would prevent it from assuming
too high values, but this would not avoid the situation where γ sticks to γmax and a becomes
very negative.

5.2.4 Constraints on a

The constraints on parameter a have been partially discussed in the previous section. A
priori, negative values of a could be allowed, since the positivity of the parameterisation is
simply achieved by asking that the minimum of σ2

SV I (when attained) be non-negative, i.e.

a ≥ −bγ
√

1− ρ2

(if the minimum is not attained, then ρ2 = 1 and the previous condition becomes a ≥ 0). In
the previous section we have explained that, in order to avoid the phenomena of “coupling”



128 CHAPTER 5. Quasi-Explicit Calibration of Gatheral’s SVI model

of low values of a and high values of γ, we prefer to assume

a ≥ 0. (5.2.4)

We just add here that an obvious upper bound on a is:

a ≤ max
i
{σ2

i }, (5.2.5)

where the σ2
i ’s are the market variances at the given maturity. Condition (5.2.5) simply

follows from a consistent vertical location of the graph of (5.1.1): clearly the curve σ2
SV I

giving the optimal fit cannot be systematically greater than the largest observed variance.

5.3 A convex optimization problem with Linear Program

Let us now come to the calibration problem. As it stands, the calibration of the SVI para-
metric form, cast as a least square problem, yields an optimization in dimension 5. In thee
following we show that, relying on some simple observations on the properties of the func-
tional form (5.1.1), one can reformulate the problem reducing the main dimension from 5 to
2.

5.3.1 Dimension reduction: drawing out the linear objective

We focus hereafter on the total variance ṽ = Tσ2
SV I rather than on variance. The main

ingredient of the method is the fact that, by means of the change of variables

y =
x−m
γ

the SVI parametrization transforms into

ṽ(y) = aT + bγT (ρy +
√
y2 + 1).

This expression nicely shows how, for fixed values of m and γ, the support of the curve Tσ2
i is

fully determined by the factors a, ρ and the product bγ. Thus, most important, if we redefine
the model parameters as

c = bγT

d = ρbγT

ã = aT,

then ṽ(y) turns out to depend linearly on c, d, a:

ṽ(y) = ã+ dy + c
√
y2 + 1.
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Therefore, for fixed m and γ, we look for the solution of the problem:

(Pm,γ) min
(c,d,ã)∈D

f{yi,vi}(c, d, ã)

where f{yi,vi} is the cost function

f{yi,vi}(c, d, ã) = f(c, d, ã) =
n∑
i=1

(
ã+ dyi + c

√
y2
i + 1− ṽi

)2
,

with ṽi = Tσ2
i , and D is the compact and convex domain (a parallelepipedon)

D =


0 ≤ c ≤ 4γ

|d| ≤ c and |d| ≤ 4γ − c
0 ≤ ã ≤ maxi{ṽi}

which is obtained from bounds (5.2.2) and (5.2.4)-(5.2.5) on parameters b, ρ and a. Letting
(c∗, d∗, ã∗) denote the solution of Pm,γ and (a∗, b∗, ρ∗) the corresponding triplet for a, b, ρ, then
the complete calibration problem is restored as

(P ) min
m,γ

n∑
i=1

(σ2
SV I(m, γ, a

∗, b∗, ρ∗;xi)− σ2
i )

2.

Our goal is therefore to solve Pm,γ in the fastest and most accurate way: once this is done,
the only task left is to look for the solution of the 2-dim problem P .

5.3.2 Explicit solution of the reduced problem

Let us focus on Pm,γ (the reduced problem). This is a convex optimization problem with
linear program, and all the constraints defining the admissible domain D are linear. It is
clearly seen, then, that this problem admits an explicit solution, and it becomes extremely
easy to deal with.
The cost function f is convex and, if the target smile contains at least three points (an
assumption that we are going to make for the following), the gradient of f is zero at just
one point, and this is the unique global minimum of f . Therefore, only two scenarios are
possible:

• the minimum of f overD is attained at the interior ofD, and this is the global minimum
of f ;

• the minimum of f over D is attained on the boundary ∂D.

Then, this yields the simple recipe:
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Step 1. find the global minimizer of f , solving the linear system ∇f = 0. If the output belongs
to D, then stop;

Step 2. if Step 1 yields a global minimum outside D, then look for min∂D f .

The gradient of the cost function f is the affine mapping

1

2
∇f(c, d, ã) = A

 c

d

ã

− b

=

 (n+ Y2) Y4 Y3

Y4 Y2 Y1

Y3 Y1 n


 c

d

ã

−
 vY2

vY

v


(5.3.1)

with
Y1 =

∑
i yi Y2 =

∑
i y

2
i

Y3 =
∑

i

√
y2
i + 1 Y4 =

∑
i yi
√
y2
i + 1

and
vY2 =

∑
i ṽi
√
y2
i + 1

vY =
∑

i ṽiyi

v =
∑

i ṽi.

Then, Step 1 corresponds to the solution of the 3× 3 linear system A× (c, d, ã) = b, whose
numerical treatment goes without saying. The constrained optimization problem addressed
in Step 2 can be solved applying a Lagrange multipliers method for each of the (flat) sides
of the domain D. Then, Step 2 involves only the solution of 3× 3 linear systems, plus a few
explicit one-dimensional minimizations along the perimeter of the sides. We accept to solve
these one-dimensional minimum searches that do not have explicit solution (there are three
of them) employing any one-dimensional optimizer (e.g., Brent’s method), which is fast and
reliable enough not to deteriorate global efficiency.
Once the two steps are accomplished, the solution of the reduced problem (Pm,γ) is achieved
in explicit form. The calibration of (5.1.1) is then carried out solving the 2-dimensional
problem (P ) with some iterative optimizer, whose performances will be extremely enhanced
with respect to the original problem in full dimension.

5.4 Numerical Results

In this section we display some numerical tests and calibration results showing the perfor-
mances of the Quasi-Explicit method.

Table 5.1 compares the “direct” procedure, i.e. standard least square calibration in di-
mension 5, and the Quasi-Explicit method for a SVI model calibrated to simulated data,
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i.e. a smile generated by SVI itself, for fixed T = 1. The Root Mean Square Error RMSE
is
√∑

i(σ
2
SV I(xi)− σ2

i )
2, hence when looking to RMSE values one must take into account

that the natural scale is the one of a variance. For the Standard Least Square calibration,
the input value for a is inferred from the minimum observed variance, and the calibration is
restarted 10 times from 10 randomly chosen points (b ∈ [0, 0.5], ρ ∈ [−1, 1],m ∈ [2 min(xi) <

0, 2 max(xi) > 0], γ ∈ [0, 1]). We do not go to great effort here in identifying a smart initial
guess for all the parameters since the randomized procedure works quite well anyway, and our
intention is rather to display the performances of the Quasi-Explicit calibration. We recall
that, for the latter, no inputs for a, b and γ are needed; moreover, we take the initial guesses
for m and γ as simple as it might be, i.e. a randomly chosen point. Standard Least Square
optimization is performed with truncated-Newton algorithm, while the optimization over m
and γ for the Quasi-Explicit method employs Nelder-Mead simplex algorithm. As it is seen
from Table 5.1, even if a classical calibration can work properly, the Quasi-Explicit technique
brings the objective to extremely small values. Moreover, the calibration we have obtained
in the case ρ = −0.9 finely shows how a downward SVI smile can be more-than-reasonably
calibrated with a SVI smile reaching its minimum (and then pointing upwards) for large
values of the log-moneyness, hence with a set of parameters which is far away from the true
one.
Table 5.2 and Figure 5.2 display the result of the Quasi-Explicit calibration of SVI model
to the market-implied smile on DAX and EuroStoxx 50 indexes, for two different dates (20
August and 22 September 2008, respectively). Concerning Table 5.2, the quality of the fit is
excellent through all maturities, somehow worse just for the very shortest one, T = 1 month
(but this has seemed quite normal to us, since the target market smile for this maturity
presented some irregularities). Calibrated parameters show a good stability: obviously, a
dependence w.r.t. time to maturity is expected - time-dependence is not taken into account
by SVI model - but the important fact here is that the parameters do not show a noisy
behaviour (smooth time-dependence is particularly seen for a and b). In particular, concern-
ing the behaviour of ρ: ρ is different than −1 just for the first time-slice, which is the only
non downward-pointing smile (cf. Figure 5.2, the smile on DAX on 20 August shows the
same feature), and then it sticks to −1, because for all other maturities the smile is purely
decreasing. The Quasi-Explicit method has indeed the tendency to fit decreasing smiles with
anti-correlated SVI parameterizations.

5.5 Conclusions

Given the excellent performances of the Quasi-Explicit method - at least for what concerns
calibration on Equity indexes - we claim that this methodology responds properly to the
question of how to obtain an unambiguous identification of a time-slice of implied variance
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Method Parameters a b ρ m γ RMSE
True value 0.04 0.1 −0.5 0.0 0.1

Standard LS start. pt 0.048 10 r.p. 10 r.p. 10 r.p. 10 r.p.
calibrated 0.041 0.098 −0.51 −4e−4 0.095 7.9e−8

Quasi-Expl. start. pt - - - 1 r.p. 1 r.p.
calibrated 0.040 0.10 −0.50 −8e−7 0.100 5.0e−14

True value 0.1 0.06 −0.9 0.24 0.06

Standard LS start. pt 0.11 10 r.p. 10 r.p. 10 r.p. 10 r.p.
calibrated 0.004 0.11 −0.19 0.73 0.58 8.3e−8

Quasi-Expl. start. pt - - - 1 r.p. 1 r.p.
calibrated 0.10 0.060 −0.90 0.240 0.060 3.4e−17

Table 5.1: Calibration of SVI model to simulated data. The two calibration strategies,
Standard Least Square (dim = 5) and the Quasi-Explicit method are compared, for T = 1.
For Standard Least Square, the starting value for a is inferred from minimum variance.

T (Yrs) a b ρ m γ RMSE
0.082 0.027 0.234 0.068 0.100 0.028 1.6e−6

0.16 0.030 0.125 −1.0 0.074 0.050 2.8e−7

0.26 0.032 0.094 −1.0 0.093 0.041 2.1e−7

0.33 0.028 0.105 −1.0 0.096 0.072 1.3e−7

0.58 0.026 0.080 −1.0 0.127 0.098 7.1e−8

0.83 0.026 0.066 −1.0 0.153 0.113 1.8e−8

1.33 0.031 0.047 −1.0 0.171 0.065 5.2e−8

1.83 0.037 0.039 −1.0 0.152 0.030 9.1e−10

2.33 0.036 0.036 −1.0 0.200 0.083 1.3e−9

2.82 0.038 0.036 −1.0 0.170 0.139 2.4e−9

3.32 0.034 0.032 −1.0 0.246 0.199 7.2e−10

4.34 0.044 0.028 −1.0 0.188 0.069 2.6e−7

Table 5.2: Calibration of SVI model to the implied smile on the DAX Index on 20 August
2008. Each maturity is separately calibrated.

in terms of a set of SVI parameters. Once the high-quality fit is achieved, the SVI functional
form can serve in many ways. Besides smile point extrapolation, one can recast the calibration
of any stochastic model for the underlying as a calibration to the smooth objective (5.1.1).
The matching of the geometry (levels, slopes and curvature) of the two model smiles may
lead to explicit mappings of SVI parameters onto the ones of the chosen model, in the
spirit (in another context) of the calibration methodology of [56]. Of course, this subject
includes the issue of extracting a local volatility surface with Dupire’s formula: since this
needs interpolation in time, at this level the time-interpolation mechanism becomes as well
a crucial point.
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Figure 5.2: Calibration of SVI model to the implied smile on the EuroStoxx 50 Index on 22
September 2008, for the two shortest maturities.
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Chapter 6

The Term Structure of Implied Volatility
in Symmetric Models

Abstract

We study the term structure of the implied volatility in a situation where
the smile is symmetric. Starting from the recent result by Tehranchi [63]
that a symmetric smile generated by a continuous martingale necessarily
comes from a mixture of normal distributions, we derive representation
formulae for the at-the-money (ATM) implied volatility level and curva-
ture in a general symmetric model. As a result, the ATM curve is directly
related to the Laplace transform of the quadratic variation of the log
price. To deal with the remaining part of the volatility surface, we build
a time dependent SVI-type [28] approximation which matches the ATM
and far from the money structure. As an instance of a symmetric model,
we consider the uncorrelated Heston model: in this framework, our for-
mula for the ATM volatility takes semi-closed (and easy to implement)
form and proves to be extremely accurate, and the time-dependent SVI
approximation displays good performances in a wide range of maturities
and strikes. In addition, we show how to apply our results to a skewed
smile by considering a displaced model. A noteworthy fact is that in the
whole of our analysis we will deal only with Laplace transforms and not
with Fourier transforms, thus avoiding any complex-valued function.

Keywords: Implied volatility, Term structure, Symmetric smile, SVI, Heston, real-valued
functions.

Note

The results in this Chapter have been submitted for publication in the International Journal
of Theoretical and Applied Finance, in a joint paper with C. Martini. The corresponding
preprint can be found at [19]. I owe to Claude Martini brilliant insights on implied volatil-
ity modeling: besides him, I would like to thank Antoine Jacquier (Imperial College and
Zeliade Systems) and José da Fonseca (Auckland University of Technology, Ecole Supérieure
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d’Ingénieurs Léonard de Vinci and Zeliade Systems) for useful discussions on this subject and
for reading an earlier version of the manuscript [19], and Pierre Cohort (Zeliade Systems) for
insights on displaced models.

6.1 Introduction

The implied volatility is usually recovered from the prices of options by numerical inversion
of the Black-Scholes formula. Looking at the implied volatility as a function of time to
maturity and strike of the option, the non-linearity of the BS formula makes it difficult to
work out the analytical properties of such a function. In recent years, several authors have
studied the (static and dynamic) properties the implied volatility surface must exhibit in an
arbitrage-free model, with a painstaking emphasis on its behaviour in limiting cases: extreme
strikes, short and large maturities. Concerning the dependence with respect to strike, a few
major theoretical results are known in a model-independent framework: in particular, the
celebrated moment formula (1.2.8) by Lee [46] relates the extreme-strike slopes of the implied
volatility to the critical moments of the underlying. Let us recall that the ŞrightŤ part of
the moment formula (i.e. for the right part of the smile) reads:

lim sup
x→+∞

tσ(t, x)2

x
= ψ(u∗ − 1) (6.1.1)

where σ(t, x) denotes the implied volatility of a European Call option with maturity t and
strike K = F0e

x, ψ(u) = 2 − 4(
√
u2 + u − u) and u∗ = u∗(t) := sup{u ≥ 1 : E[F u

t ] < ∞}
is the critical moment of the underlying price F = (Ft)t≥0. An analogous formula holds
for the left part of the smile, i.e. for the lim supx→−∞. In order to apply this formula in
fashionable models, some authors have concentrated their efforts on the computation of the
critical moments u∗(t), see Andersen & Piterbarg [2] and Keller-Ressel [40] in the framework of
stochastic volatility. The study of short- (resp. long-) time asymptotics of implied volatility
is motivated by the search for efficient calibration strategies of the underlying stochastic
model to the market smile at short (resp. long) maturities. Short time results have been
obtained following a PDE approach, as in Medvedev and Scaillet [52], Berestycki et al. [10]
and Lewis [47] for stochastic volatility models. Some recent works provide deep insights on
the large-time behaviour, as done by Tehranchi [62] in a general setting and Keller-Ressel [40]
for Affine Stochastic Volatility Models. Given its high tractability, a particular attention has
been given to the Heston model [37]. Recall that under the risk-neutral measure, the Heston
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model for the forward price Ft of an asset is given by the SDE

dFt = Ft
√
VtdWt

dVt = κ(θ − Vt)dt+ σ
√
VtdZt

d〈W,Z〉t = ρdt,

(6.1.2)

with F0 > 0 and deterministic initial variance V0 > 0. When the two Brownian motions W
and Z are independent, i.e. ρ = 0, we refer to (6.1.2) as to the uncorrelated Heston model.
A survey of the recent advances on the Heston model (in the general framework ρ ∈ [−1, 1])
can be found in [61]. For the Heston model, sharp results are available on the behaviour
of implied volatility at extreme strikes (cf. again [2] and [40] for the computation of the
asymptotic slopes and the refinements from Friz et al. [27]) and at short and long maturities
(cf. Forde & Jacquier [23], and Forde, Jacquier & Mijatovic [24]).
Parametric forms modeling the implied volatility surface must of course be consistent with
the theoretical behaviour described above. So does GatheralŠs SVI parameterisation [28].
Recall from the previous chapter that SVI reads:

σ2
SV I(x)2 = a+ b

(
r(x−m) +

√
(x−m)2 + γ2

)
, (6.1.3)

where σ2
SV I models the implied variance as a function of the log-moneyness x at fixed maturity

by means of the five factors a, b, r,m, γ. The parametric form at the rhs of (6.1.3) has been
inspired by the known results on the large-time asymptotics of the ATM value and the
wings of implied variance in the Heston model. Very recently, Gatheral & Jacquier [30] have
shown that the large maturity (t→∞) Heston smile does belong to the SVI family (6.1.3),
thus confirming Gatheral’s original conjecture. On the other hand, still very recently Friz
and other authors [27] have shown that at finite maturities (t < ∞) the Heston smile is
not exactly described by a SVI, and that an additional term should be added to the SVI
parameterisation to account for the fine behaviour of the wings. More precisely, relying on
some sharp asymptotic estimates of the probability distribution of the Heston spot price, the
authors show the validity of the following expansion for large log-moneyness x:

σ(x, t)2t ≈
(
β1(t)

√
x+ β2(t) + β3(t)

log(x)√
x

)2

, (6.1.4)

where the coefficients β1(t), β2(t), β3(t) are explicit functions of the maturity, the critical
moment u∗(t) and the model parameters.
Despite of all the aforementioned recent advances on the asymptotics of the implied volatility
surface, in the general setting fewer results are available in order to describe the behaviour
of the implied volatility close to the money and at intermediate maturities. We mention that
Gatheral [29] proposes an heuristic derivation, and discusses the validity, of an approximation
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of the ATM implied variance in the Heston model, of the form σ(t, 0)2 = (V0− θ′)1−e−k′t
k′t

+ θ′,
where θ′, k′ are functions of Heston parameters.

The main aim and contribution of this chapter is to tackle the problem of the implied
volatility term structure in a general setting, at least in a situation where the smile is
symmetric. Tehranchi [63] recently showed that a symmetric smile (symmetric meaning
σ(t, x) = σ(t,−x), for all x and t) generated by an underlying continuous martingale neces-
sarily comes from a mixture of normal distributions (cf. eq. (6.2.2) in this chapter for the
precise statement of this property). Using this result, together with some properly designed
representations of the normal density and cumulative distribution, we derive representation
formulae of the density and the cumulative distribution of the log-price in a general symmet-
ric model (cf. Proposition 6.2.4). 6.2.4). Then, basing on some simple equations relating the
distribution of the underlying price directly to the ATM implied volatility curve, we exploit
the previous result to work out the corresponding formulae for the ATM implied volatility
level and curvature. As a result, the ATM implied volatility curve is directly related to the
Laplace transform of the quadratic variation of the underlying log price: consequently, our
representation formulae take a semi-closed form (i.e. the integral of an explicit function) as
soon as this Laplace transform is known as a function of model parameters. To deal with
the remaining part of the volatility surface, we build a time dependent SVI-type approxi-
mation which matches the ATM and “far-from-the-money” (extreme strikes) structure. This
construction provides an almost closed-form expression of the ATM implied volatility in the
uncorrelated Heston model, which is provided in section 6.3.1. In some numerical experi-
ments we perform in section 6.5 we show that the resulting formula for the ATM implied
volatility in the Heston model is extremely accurate (we compare the output to the standard
pricers based on the inversion of Fourier transforms), and that the time-dependent SVI ap-
proximation displays considerable performances in a wide range of maturities and strikes. As
an additional product of our approach, we will get a new quasi-explicit form of the density
and of the cumulative distribution (for every strike) of the uncorrelated Heston log price
(see Proposition 6.3.4). Even though it is clear that the symmetric smile assumption is not
realistic in financial markets, our results can be straightforwardly applied to skewed smiles by
considering a displaced model, as we do in section 6.4. Finally, a noteworthy fact is that all
along the chapter we will deal only with Laplace transforms and not with Fourier transforms,
thus avoiding complex numbers and the related oscillatory integrals.

6.2 Symmetric Models and Symmetric Smiles

We consider a positive continuous martingale F = (Ft, t ≥ 0) defined on a complete prob-
ability space (Ω,F ,P) with filtration (Ft, t ≥ 0) satisfying the usual conditions. We denote
E the expectation under P. In the standard setting, Ft will be the forward price of an asset
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at time t and P the risk-neutral measure. If this is the case, since Ft is a forward price the
interest rate, the possible dividends and the repo rates are already included in the price itself.

We will make use of some well known relations between the probability distribution of the
log forward price Xt = log(Ft/F0) and the Black-Scholes implied functions (volatility or total
variance). Let us recall these results briefly. We refer to x as to the (log forward) moneyness
of a Call option struck at K = F0e

x. Moreover, we denote ω(t, x) = tσ(t, x)2 the so-called
total implied variance (or total variance for short) and CBS(x, ω) the price of a Black-Scholes
Call option maturing at t, with log moneyness x and total variance ω. By the definition of
ω(x, t) we have

E[(F0e
Xt − F0e

x)+] = CBS(x, ω(x, t)).

Differentiating the above equation w.r.t. x yields1

−F0e
xP(Xt > x) = ∂xCBS(x, ω(x, t)) + ∂ωCBS(x, ω(x, t))∂xω(x, t).

We use some well known identities for the derivatives of the Black-Scholes Call price,

∂xCBS(x, ω) = −F0e
xN(d2),

∂ωCBS(x, ω) = F0N
′(d2 +

√
ω)

1

2
√
ω

where N(d) =
∫ d
−∞

e−
z2

2√
2π
dz is the standard normal cdf and d2 = − x√

ω
−
√
ω

2
. Together with

the identity e−xN ′(d2 +
√
ω) = N ′(d2), the previous relations yield

P(Xt > x) = N(d2)− N ′(d2)

2
√
ω(t, x)

∂xω(t, x) (6.2.1)

where d2 is computed on the total variance, i.e. d2 = − x√
ω(t,x)

−
√
ω(t,x)

2
. eq. (6.2.1) holds in

a model independent framework and relates the smile to the distributional properties of the
underlying: the right hand side depends only on Black-Scholes implied quantities, while the
left hand side is the (complementary) cdf of the log forward price Xt.

In the next section we will show how, in the presence of a symmetric smile, one can provide
a representation formula for the left hand side of (6.2.1) on a very special curve in the (x, t)

plane, the ATM curve x = 0. In the spirit of the chapter, this will be done focusing on
Laplace rather than Fourier transforms, hence avoiding any complex integration. In section
(6.2.4) we will show how to extend the same approach to the “away-from-the-money” case,
that is to the computation of P(Xt > x) for any value of x ∈ R.

1At this level, we assume that some sufficient conditions for the Call prices and the implied volatility to
be differentiable with respect to x are satisfied. This is the case if the distribution of Ft is continuous (see
for example [62]). In the situation we consider, it will be seen hereafter that the distribution of Ft admits a
density for all t > 0.
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We consider the following situation

Assumption 1 (Symmetric Smile). The smile is symmetric, in the sense that σ(t, x) =

σ(t,−x) holds for every t > 0 and x ∈ R.

Let us start by some remarks on the consequences of such an assumption. Several authors
have investigated the relationship existing between a symmetric smile and the properties
of the underlying stochastic dynamics. In the context of stochastic volatility, Renault and
Touzi [57] showed that independent volatility gives a symmetric smile. Carr and Lee [13]
proved a converse of this result, showing that a symmetric smile is necessarily produced by
an uncorrelated SV model. Actually, Carr and Lee’s result holds for a much larger range of
dynamics of the underlying. Investigating Put-Call symmetry relations, they prove that as
soon as the underlying F is a cdlg martingale, the implied volatility smile is symmetric if and
only if F is geometrically symmetric (cf. (6.2.24) in this chapter for the exact formulation
of this property). Tehranchi [63] characterizes the property of geometric symmetry in terms
of the distributional properties of the log price. Precisely, Tehranchi shows that if F is
a geometrically symmetric continuous martingale, then for all t the distribution of log(Ft)

is a mixture of normal distributions, in the precise sense that the distribution of log(Ft)

conditional to 〈log(F )〉t is N (−1
2
〈log(F )〉t, 〈log(F )〉t), t > 0. In the notation of the previous

section (Xt = log(Ft/F0)), this property reads

P(Xt ∈ dy|〈X〉t) = N
(
−1

2
〈X〉t, 〈X〉t

)
(dy). (6.2.2)

Then, let us denote

pt(y|〈X〉t) =
1√

2π〈X〉t
exp
(
−(2y + 〈X〉t)2

8〈X〉t

)
, t > 0, y ∈ R. (6.2.3)

Eq. (6.2.2) tells that pt(y|〈X〉t) is the conditional density of Xt given 〈X〉t. Therefore, unless
for the trivial case where 〈X〉t = 0 for some t > 0 (i.e. F is constant on [0, t]), we remark
that (6.2.2) in particular implies that the law of Xt admits a density for all t > 0 and this
this unconditional density is given by pt(y) = E[pt(y|〈X〉t)]. Eqs (6.2.1) and (6.2.2)-(6.2.3)
are our starting point to derive the representation formulae for the implied volatility in the
next two sections.

6.2.1 A representation formula for the ATM implied volatility

Under Assumption 1, ∂xσ(t, x)|x=0 = ∂xω(t, x)|x=0 = 0 for all t > 0. Hence, taking x = 0 in
(6.2.1) and inverting the normal cdf,

σ(t, 0) = − 2√
t
N−1

(
P(Xt > 0)

)
, t > 0. (6.2.4)
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We focus on the argument of N−1, P(Xt > 0). Observing that (6.2.2) in particular implies
P(Xt > 0|〈X〉t) = 1−N(1

2

√
〈X〉t) = N(−1

2

√
〈X〉t), we easily get

P(Xt > 0) = E
[
N
(
−1

2

√
〈X〉t

)]
, t > 0. (6.2.5)

We now provide a “Laplace transform representation” of the normal cdf N (what we mean
by this is made clearer in Lemma 6.2.1 hereafter). This kind of result will lead to a formula
relying (6.2.5) - hence the ATM implied volatility σ(t, 0) - to the Laplace transform of the
quadratic variation of X. The motivation for this approach to the implied volatility stems
from the fact that a closed form expression for the Laplace transform of 〈X〉t is available
in several financial models (e.g. Heston). As soon as this Laplace transform is known as a
function of model parameters, our representation formula converts into a semi-explicit formula
for the ATM implied volatility (and we can obtain much more, cf. sections 6.2.2 and 6.2.4).
In section 6.3, we work out all the related computations in the case of the Heston model.

Lemma 6.2.1. 2 Let N denote the standard normal cdf, N(d) =
∫ d
−∞

e−
z2

2√
2π
dz. Then, for

every I ≥ 0

N
(
−1

2

√
I
)

=
1

4
√

2π

∫ ∞
0

e−(z+ 1
8

)I

(z + 1
8
)
√
z
dz. (6.2.6)

Proof. Eq. (6.2.6) holds for I = 0, since the rhs is worth 1
4
√

2π

∫∞
0

1
(z+ 1

8
)
√
z
dz =

1
4
√

2π
4
√

2 arctan(2
√

2z)|z→∞z=0 = 1
2
. Then, the derivative of the rhs with respect to I is

− 1

4
√

2π

∫ ∞
0

e−(z+ 1
8

)I

√
z

dz = − e−
I
8

4
√

2π

∫ ∞
0

e−zI√
z
dz = − e−

I
8

4
√

2πI

which is integrable on (0,∞) and equal to ∂IN(−1
2

√
I).

Remark 6.2.1. It is easy to check that the function I → N(−1
2

√
I) is completely monotonic

(cf. [53] for the definition of complete monotonicity). Lemma 6.2.1 shows that this function
is indeed the (shifted) Laplace transform of 1

(z+ 1
8

)
√
z
.

We plug (6.2.6) into the argument of N−1 in (6.2.5) and, exchanging the order of integra-
tions by means of Fubini’s theorem, we obtain

P(Xt > 0) =
1

4
√

2π

∫ ∞
0

E
[
e−(z+ 1

8
)〈X〉t

]
(z + 1

8
)
√
z

dz, t > 0. (6.2.7)

Remark 6.2.2. Writing E
[
e−(z+ 1

8
)〈X〉t

]
= 1−(1−E

[
e−(z+ 1

8
)〈X〉t

]
) and using again 1

4
√

2π

∫∞
0

1
(z+ 1

8
)
√
z
dz =

2This useful representation of the normal distribution is due to C. Martini.
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1
2
, Eq (6.2.7) can be rewritten as

P(Xt > 0) =
1

2
− 1

4
√

2π

∫ ∞
0

1− E
[
e−(z+ 1

8
)〈X〉t

]
(z + 1

8
)
√
z

dz,

showing that P(Xt > 0) < 1
2
for all t > 0. In turn, this implies N−1(P(Xt > 0)) < 0.

Eq (6.2.7) allows us to make our first statement on the term structure of implied volatility.

Proposition 6.2.1. Under Assumption 1, the ATM implied volatility σ(t, 0) satisfies

σ(t, 0) = − 2√
t
N−1

( 1

4
√

2π

∫ ∞
0

E
[
e−(z+ 1

8
)〈X〉t

]
(z + 1

8
)
√
z

dz
)
, t > 0. (6.2.8)

Proof. Done above.

6.2.2 A representation formula for the ATM probability density and

the implied volatility curvature

There exists a well known relation between the second derivative of the implied volatility
and the density of the log forward price Xt. In this section, we show how one can obtain
a representation analogous to (6.2.8) for the ATM probability density pt(0): using this rep-
resentation and the one obtained for the ATM implied volatility, we will deduce a similar
formula for the ATM curvature ∂2

xσ(t, x)2|x=0 (resp. ∂2
xσ(t, x)|x=0) of implied variance (resp.

implied volatility).
We first recall the relationship between the density and the ATM curvature: differentiating
with respect to x once more in (6.2.1) yields

−pt(x) = N ′(d2)
(
∂xd2 + ∂ωd2 · ∂xω(t, x)

)
− N ′(d2)

2
√
ω(t, x)

∂2
xω(t, x)− d

dx

( N ′(d2)

2
√
ω(t, x)

)
∂xω(t, x)

hence, taking x = 0 and using ∂xω(t, x)|x=0 = 0,

pt(0) = N ′(d2|x=0)
(
−∂xd2|x=0 +

∂2
xω(t, x)|x=0

2
√
ω(t, 0)

)
.

Now using d2|x=0 = −
√
ω(t,0)

2
, ∂xd2|x=0 = − 1√

ω(t,0)
, N ′(d) = e−

d2

2√
2π

, we get

pt(0) =
e−

ω(t,0)
8√

2πω(t, 0)

(
1 + ∂2

xω(t, x)|x=0

)
that is

∂2
xω(t, x)|x=0 = 2

(√
2πω(t, 0)e

ω(t,0)
8 pt(0)− 1

)
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or equivalently, in terms of implied volatility σ(t, x)

∂2
xσ(t, x)2|x=0 =

2

t

(
σ(t, 0)

√
2πte

tσ2(t,0)
8 pt(0)− 1

)
. (6.2.9)

We remark that eq. (6.2.9) is actually written for the ATM curvature of implied variance
σ(t, x)2. Of course from (6.2.9) and (6.2.8) one can deduce the corresponding expression for
the ATM curvature of implied volatility ∂2

xσ(t, x)|x=0 = ∂2
xσ(t,x)2|x=0

2σ(t,0)
. Since in the next section

we are mainly interested in building SVI-type approximations for the implied variance, we
keep (6.2.9) and do not switch to implied volatility.

Let us now focus on pt(0). By (6.2.3) one has

pt(0) =
1√
2π

E
[ 1√
〈X〉t

e−
〈X〉t

8

]
, (6.2.10)

and the derivation of a formula analogous to (6.2.8) will be based on the same ingredient:

Lemma 6.2.2. For every I > 0,

1√
I

=
1√
π

∫ ∞
0

e−zI√
z
dz. (6.2.11)

Proof. By direct computation of the integral.

Proposition 6.2.2. Under Assumption 1, the density pt of the log forward price Xt satisfies

pt(0) =
1

π
√

2

∫ ∞
0

E
[
e−(z+ 1

8
)〈X〉t

]
√
z

dz, t > 0. (6.2.12)

Moreover, the ATM curvature of the implied variance is given by

∂2
xσ(t, x)2|x=0 =

2

t

(
σ(t, 0)

√
2πte

tσ2(t,0)
8 pt(0)− 1

)
. (6.2.13)

Proof. For (6.2.12), plug (6.2.11) into (6.2.10) and exchange the order of integrations. Eq.
(6.2.13) is (6.2.9).

6.2.3 The optimal time-dependent SVI approximation

Recall Gatheral’s SVI parameterisation of implied variance (6.1.3). For this parametric form
to fulfill Assumption 1, we must have r = m = 0, then (6.1.3) simplifies to

σSV I(x)2 = a+ b
√
x2 + γ2. (6.2.14)

We recall that (6.2.14) holds for fixed maturity. Our main concern is how to account for
term structure of implied variance in (6.2.14). Of course this can be done introducing time-
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dependent parameters,
σSV I(t, x)2 = a(t) + b(t)

√
x2 + γ(t)2, (6.2.15)

and the issue becomes how to choose a(t), b(t), γ(t) so that the time-dependence is both
smooth enough and suitable for the description of market features.

We answer the question of how to build a parameterisation within the class (6.2.15)
that best matches the implied variance of a symmetric model. The construction of the time-
dependent parameters will be based on the representation formulae (6.2.8) and (6.2.12). Since
these formulae describe the ATM term structure (both implied variance level and curvature),
we have to add an ingredient that accounts for the behaviour far from the money. This
is easily done observing that the parameter b(t) in (6.2.15) gives the asymptotic slopes of
x→ σSV I(t, x)2, in the sense that

lim
x→±∞

σSV I(t, x)2

|x|
= b(t)

hence b(t) can be related to the asymptotic slopes of total implied variance

lim sup
x→±∞

t σ(t, x)2

|x|
= β(t) (6.2.16)

which are given by the moment formula (6.1.1) in a model-independent framework. Using
these elements, we can make our SVI-type parameterisation of the implied variance surface
explicit.

Proposition 6.2.3. Let σ(t, x)2 denote the implied variance under Assumption 1. Let β(t)

be given by (6.2.16). Then, setting

a(t) = σ(t, 0)2 − β(t)2

t2∂2
xσ(t, x)2|x=0

; b(t) =
β(t)

t
; γ(t) =

β(t)

t∂2
xσ(t, x)2|x=0

,

the parametric form
σSV I(t, x)2 = a(t) + b(t)

√
x2 + γ(t)2 (6.2.17)

satisfies the following “matching” properties:

σSV I(t, 0)2 = σ(t, 0)2; (ATM level)

∂2
xσSV I(t, x)2|x=0 = ∂2

xσ(t, x)2|x=0; (ATM curvature)

lim
x→±∞

t σSV I(t, x)2

|x|
= lim

x→±∞

t σ(t, x)2

|x|
= β(t). (Asymptotic slopes)
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Proof. The first and third equations are obvious. The second follows from the explicit com-
putation of the second derivative of x→ σSV I(t, x)2.

The performances of the parameterisation (6.2.17) will be illustrated in section 6.5 for the
uncorrelated Heston model.

6.2.4 Extension to “away-from-the-money” probability distribution

Propositions 6.2.1 and 6.2.2 provide the time-dependence of the ATM implied volatility σ(t, 0)

(equivalently, by (6.2.4), of P(Xt > 0)) and of the density pt(0) on the very special ATM curve
x = 0. It is actually possible to generalize the approach of the previous sections and to relate
the density pt(x) and the cumulative distribution function P(Xt > x) at any point x ∈ R
to the Laplace transform of 〈X〉t, in such a way that the resulting representations avoid
integration in the complex plane. We show hereafter how this can be done: as happens for
Propositions 6.2.1 and 6.2.2, the fundamental ingredient is a Laplace-transform representation
of the function giving the conditional density pt(·|〈X〉t) in (6.2.3).

Lemma 6.2.3. For every I > 0 and x, y ∈ R, one has:

1√
I
e−

(2y+I)2

8I =
e−

y
2

√
π

∫ ∞
0

cos
(√

2zy
)

√
z

e−(z+ 1
8

)Idz (6.2.18)

and∫ ∞
x

1√
2πI

e−
(2y+I)2

8I dy

=
1

4
√

2π
e−

x
2

∫ ∞
0

cos(
√

2zx)− 2
√

2z sin(
√

2zx)√
z(z + 1

8
)

e−(z+ 1
8

)Idz. (6.2.19)

Remark 6.2.3. Taking y = 0 in (6.2.18) and x = 0 in (6.2.19) one finds, respectively, (6.2.11)
and (6.2.6).

Proof of Lemma 6.2.3. We start from the expression of Weber’s integral ([45] p. 132, [21]
Appendix)

bν

(2I)ν+1
e−

b2

4I =

∫ ∞
0

e−u
2IJν(bu)uν+1du, I > 0, b > 0, ν > −1,

where Jν is the ordinary Bessel function of the first kind of order ν. Taking ν = −1
2
and
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using J− 1
2
(x) =

√
2
πx

cos(x), x ∈ R, we easily obtain

e−
b2

4I

√
I

=
2√
π

∫ ∞
0

e−u
2I cos(bu)du

=
1√
π

∫ ∞
0

e−zI
cos(b

√
z)√

z
dz, I > 0, b > 0.

(6.2.20)

We now consider the lhs in (6.2.18) and, expanding the exponent (2y+ I)2 and using (6.2.20)
with b =

√
2y, we get

1√
I
e−

(2y+I)2

8I = e−
y
2
− I

8 × e−
y2

2I

√
I

=
e−

y
2

√
π

∫ ∞
0

cos
(√

2zy
)

√
z

e−(z+ 1
8

)Idz

which is indeed(6.2.18).

Now integrating (6.2.18) with respect to y between x and ∞ and exchanging the integra-
tions with respect to y and z (the integrability conditions are clearly satisfied) we get

1√
2π

∫ ∞
x

1√
I
e−

(2y+I)2

8I dy =
1

π
√

2

∫ ∞
0

e−(z+ 1
8

)I

∫ ∞
x

e−
y
2

cos
(√

2zy
)

√
z

dy dz. (6.2.21)

By direct computation,∫ ∞
x

e−
y
2

cos
(√

2zy
)

√
z

dy = e−
x
2

cos(
√

2zx)− 2
√

2z sin(
√

2zx)

4
√
z(z + 1

8
)

,

hence, making the substitution in (6.2.21), we finally get to

1√
2π

∫ ∞
x

1√
I
e−

(2y+I)2

8I dy =
1

4
√

2π
e−

x
2

∫ ∞
0

cos(
√

2zx)− 2
√

2z sin(
√

2zx)√
z(z + 1

8
)

e−(z+ 1
8

)Idz

which is (6.2.19).

Let us go back to the the distribution of Xt. The consequence of Lemma 6.2.3 reads as
follows.

Proposition 6.2.4. Under Assumption 1, for every t > 0 the density pt and the cdf P(Xt > ·)
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of the log forward price Xt satisfy

pt(y) =
e−

y
2

π
√

2

∫ ∞
0

cos
(√

2zy
)

√
z

E
[
e−(z+ 1

8
)〈X〉t

]
dz,

P(Xt > x) =
1

4
√

2π
e−

x
2

∫ ∞
0

cos(
√

2zx)− 2
√

2z sin(
√

2zx)√
z(z + 1

8
)

E
[
e−(z+ 1

8
)〈X〉t

]
dz

(6.2.22)

for every x, y ∈ R.

Proof. Recall that pt(y) = E[pt(y|〈X〉t)] with pt(y|〈X〉t) given by (6.2.3). Using Lemma
(6.2.3), eq. (6.2.18) we directly obtain the first claim in (6.2.22). For the cdf, repeatedly
applying Fubini’s theorem we have

P(Xt > x) =

∫ ∞
x

pt(y)dy =

∫ ∞
x

E[pt(y|〈X〉t)]dy (6.2.23)

= E
[∫ ∞

x

pt(y|〈X〉t)
]
dy

= E
[∫ ∞

x

1√
2π〈X〉t

e
− (2y+〈X〉t)

2

8〈X〉t

]
dy

=
1

4
√

2π
e−

x
2

∫ ∞
0

cos(
√

2zx)− 2
√

2z sin(
√

2zx)√
z(z + 1

8
)

E
[
e−(z+ 1

8
)〈X〉t

]
dz

and we have applied Lemma 6.2.3, eq. (6.2.19), in the last step.

6.2.5 A pricing formula for symmetric models

We end this section noticing that from Proposition 6.2.4 we can deduce a pricing formula for
Vanillas in a general symmetric model.

Since F is a martingale, for any given t > 0 we can define a probability measure P∗

(sometimes called the Share measure) setting dP∗
dP = Ft

F0
. The property of geometric symmetry

of F (see the discussion at the beginning of this section) reads

E
[
g
(Ft
F0

)]
= E

[Ft
F0

g
(F0

Ft

)]
(6.2.24)

for all bounded measurable g. Denoting E∗ the expectation under P∗, we have E
[
g
(
Ft
F0

)]
=

E∗
[
g
(
F0

Ft

)]
hence F0

Ft
has the same law under P∗ as Ft

F0
under P. In particular, for any K > 0,

we have E[Ft1{Ft>K}] = F0P∗(Ft > K) = F0P∗(F0

Ft
< F0

K
) = F0P(Ft

F0
< F0

K
) = F0P(Xt < −x).

Hence, denoting C(t, x) the price of a European Call option maturing at t and struck at
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K(x) = F0e
x, we have

C(t, x) = E
[
Ft1{Ft>K(x)}

]
−K(x)P(Ft > K(x))

= F0P(Xt < −x)−K(x)P(Xt > x)

= F0

(
1− P(Xt > −x)− exP(Xt > x)

)
.

(6.2.25)

This justifies the following

Proposition 6.2.5. Under Assumption 1, the price of a European Call option maturing at
t and struck at K(x) = F0e

x is given by

C(t, x) = F0

(
1− 1

2
√

2π
e
x
2

∫ ∞
0

cos(
√

2zx)√
z(z + 1

8
)
E
[
e−(z+ 1

8
)〈X〉t

]
dz.
)

(6.2.26)

Proof. Plug (6.2.22) in (6.2.25) and simplify.

6.3 Uncorrelated Heston model

The uncorrelated Heston model (6.1.2) belongs to the class of symmetric models considered
in section 6.2. In particular, according to (6.1.2) the process Xt = log(Ft/F0) satisfies

Xt = −1

2

∫ t

0

Vsds+

∫ t

0

√
VsdWs, t ≥ 0,

so that 〈X〉t =
∫ t

0
Vsds (the integrated instantaneous variance). The Laplace transform of

the integrated variance
∫ t

0
Vsds is known in closed-form as a function of model parameters

(and can be obtained relying on the affine properties of the variance process, cf. for example
[58]). From now on we will assume κ, θ, σ > 0 and will make use of the rescaling of model
parameters considered in [61], setting

V 0 =
V0

σ
; α =

κ

σ
; ψ =

κθ

σ2
; t = σt. (6.3.1)

The next lemma recalls the well-known expression of the Laplace transform of
∫ t

0
Vsds, taking

advantage of the rescaling (6.3.1).

Lemma 6.3.1. Let (Vt; t ≥ 0) be the unique strong solution to the second SDE in (6.1.2).
Then, for every t > 0 and every λ > 0 one has

E
[
e−λ

∫ t
0 Vsds

]
=
(
pα(a) + (1− pα(a))e(t, a)

)−2ψ

× exp

(
−tψ

2
a− V 0

2
a

pα(a)(1− ε(t, a))

pα(a) + (1− pα(a))ε(t, a)

)
(6.3.2)
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with
ε(t, a) = exp

(
−t
(a

2
+ α

))
; pα(a) =

4α + a

4α + 2a
; a =

√
8λ+ 4α2 − 2α.

Proof. Use the closed-form expression of E
[
e−λ

∫ t
0 Vsds

]
from [58] and compose with (6.3.1).

All the results stated in section 6.2 apply to uncorrelated Heston: it is basically a matter of
computation to employ (6.3.2) and of Propositions 6.2.1-6.2.5 to work out the corresponding
semi-explicit formulae (i.e. formulae involving the integral of an explicit function) for the
ATM volatility level and curvature. This is what we implement in the following subsection.

6.3.1 Semi-explicit formulae for implied volatility

Consider equations (6.2.8), (6.2.12) and (6.3.2). Having in mind the ease of implementation
of the resulting formulae, we make the following subsequent changes of variables (recall that
z > 0):

a =

√
8
(
z +

1

8

)
+ 4α2 − 2α, a ∈ [

√
1 + 4α2 − 2α,∞) (6.3.3)

v =
a

2α
− v0, with v0 =

√
1 +

1

4α2
− 1 > 0. (6.3.4)

The substitution (6.3.3) comes into play naturally when considering (6.3.2), while (6.3.4)
simplifies the dependence to the parameter α and shifts the integration back to (0,∞). After
these substitutions and the proper simplifications (remark that we have z = α2

2
v(v+2v0 +2)),

we get
E[e−(z+ 1

8
)It ] = h̃(t, v), (6.3.5)

with

h̃(t, v) = P̃ (t, v)−2ψ exp

(
−αψt(v0 + v)− αV 0(v0 + v)

P̃ (t, v)− ẽ(t, v))

P̃ (t, v)

)
;

P̃ (t, v) = p̃(v) + (1− p̃(v))ẽ(t, v);

ẽ(t, v) = exp(−αt(v0 + 1 + v));

p̃(v) =
v0 + 2 + v

2(v0 + 1 + v)
; v0 =

√
1 +

1

4α2
− 1.

(6.3.6)

Equations (6.2.7) and (6.2.12) become respectively

P(Xt > 0) =
1

2πα

∫ ∞
0

g̃(v)h̃(t, v)dv

and
pt(0) =

α

π

∫ ∞
0

q̃(v)h(t, v)dv,
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with
g̃(v) =

v0 + 1 + v
√
v
√

2(v0 + 1) + v (v0 + v)(v0 + 2 + v)
;

q̃(v) =
v0 + 1 + v

√
v
√

2(v0 + 1) + v
.

(6.3.7)

Since 1
2
< p̃(v) < 1 and 0 < ẽ(t, v) < 1 for every v, t > 0, we observe that the function

h̃(t, v) is particularly well-behaved: in particular, v → h̃(t, v) is bounded for any value of t
and exponentially decaying as v →∞. On the other hand, the functions g̃ and q̃ diverge as

1√
v
at zero: to remove the singularity, we consider the additional change of variable

x =

√
v√

v + 1
. (6.3.8)

The substitution (6.3.8) allows at the same time to remove the singularities at zero and to
squeeze the integration over the bounded interval [0, 1]. Thus, we end up with the integral
of bounded functions over the fixed interval [0, 1], a feature which is extremely convenient for
numerical purposes. Here are our final formulae.

Proposition 6.3.1 (ATM formulae). In the uncorrelated Heston model (6.1.2), for all t > 0

the ATM implied volatility σ(t, 0) and the ATM density pt(0) of the log forward price Xt

satisfy

σ(t, 0) = − 2√
t
N−1

( 1

πα

∫ 1

0

g(x)h(t, x)dx
)
, (6.3.9)

respectively

pt(0) =
2α

π

∫ 1

0

q(x)h(t, x)dx (6.3.10)

with

g(x) =
((v0 + 1)x2 + x2)x√

2(v0 + 1)x2 + x2 (v0x
2 + x2)((v0 + 2)x2 + x2)

;

q(x) =
(v0 + 1)x2 + x2

x3
√

2(v0 + 1)x2 + x2
;

h(t, x) = P (t, x)−2ψ exp

(
−αψtv0x

2 + x2

x2 − αV 0(v0x
2 + x2)

P (t, x)− e(t, x)

x2P (t, x)

)
;

P (t, x) = p(x) + (1− p(x))e(t, x); e(t, x) = exp
(
−αt(v0 + 1)x2 + x2

x2

)
;

p(x) =
(v0 + 2)x2 + x2

2((v0 + 1)x2 + x2)
; x = (1− x); v0 =

√
1 +

1

4α2
− 1.

The ATM curvature of the implied variance is given by

∂2
xσ(t, x)2|x=0 =

2

t

(
σ(t, 0)

√
2πte

tσ2(t,0)
8 pt(0)− 1

)
. (6.3.11)
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Proof. Done above: the final claim is achieved performing the change of variable (6.3.8) in
(6.3.6)-(6.3.7).

Remark 6.3.1. Actually, with the change of variable (6.3.8) we have introduced a singularity
in the function q(x) as x tends to 1. But, unlike the singularity at zero, the divergence at
x = 1 is strongly dampened by the decreasing exponential in h(t, x). Hence, as happens for
(6.3.9), the integrand in (6.3.10) is smooth and bounded over [0, 1], too.

Prop 6.3.1 allows to compute the coefficients of the time-dependent SVI approximation
given in Prop 6.2.3. Recall that the extreme log-moneyness slope of implied variance is
given by formula (6.1.1) in terms of the critical moment u∗. In the Heston model, the
critical moment can be computed as in Andersen and Piterbarg [2] or Keller-Ressel [40]
(cf. also [61], Prop 11): these authors provide a closed-form formula for the explosion time
t∗(u) = sup{t ≥ 0 : E[F u

t ] < ∞}, hence u∗(t) is obtained by numerical inversion of the
equation t∗(u∗(t)) = t. For completeness of the presentation, we restate here this well known
result (in the uncorrelated case), proposing a small variant of the statements in [2] and [40].

Proposition 6.3.2. Let β(t) = limx→±∞
t σ(t,x)2

|x| , where σ(t, x) is the implied volatility in the
uncorrelated Heston model. Then

β(t) = 4α
(√

(1 + ω∗(t)2) +
1

4α2
−
√

1 + ω∗(t)2
)

(6.3.12)

where ω∗(t) is the unique solution in [ π
2t
, π
t
] of t∗(ω∗(t)) = ασ

2
t, with

t∗(ω) =
2π − arccos

(
1−ω2

1+ω2

)
2ω

. (6.3.13)

This result can be proved without difficulty relying on affine principles as in [40] and perform-
ing an appropriate time rescaling of the involved Riccati equations. As it stands, the value of
the asymptotic slopes given by (6.3.12) and (6.3.13) is not manifestly seen to coincide with
Andersen and Piterbarg’s and Keller-Ressel’s one, but it can be checked that the values of
β(t) are actually the same. The advantage of the formulation in Prop (6.3.2) is to make the
function t∗ to be inversed independent of model parameters: as a consequence, the values of
the root ω∗ can be tabulated once for all, fastening the computations.

Let us come back to the SVI parameterisation. The functional form (6.2.17) we use
to build our approximation of implied volatility clearly belongs the original SVI class [28].
As pointed out in the Introduction, very recently Friz and other authors [27] have shown
that at finite maturities (t < ∞) the Heston smile is not exactly described by the SVI
parameterisation and that an additional term should be added to SVI to account for the
fine behaviour of the wings. Hence, to be consistent with Heston, we should take Friz et al.’s
correction into account in our approximation: this would amount to an additional term of the
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form 2β1(t)β2(t)
√
x. In our framework, it is not obvious how to implement such a correction

term for every log-moneyness without crushing the ATM structure: a term proportional to√
|x| would of course not have the desired ATM convexity. Hence, even though the time-

dependent SVI parameterisation would benefit from the introduction of such a term in the
far wings, the close to the money structure would be affected and we retain the parametric
form (6.2.17) as it stands. This works yet considerably well for reasonable ranges of model
parameters, maturities and strikes (cf. the results in section 6.5).

Here we restate Prop 6.2.3 in the framework of uncorrelated Heston.

Proposition 6.3.3. Let

a(t) = σ(t, 0)2 − β(t)2

t2∂2
xσ(t, x)2|x=0

; b(t) =
β(t)

t
; γ(t) =

β(t)

t∂2
xσ(t, x)2|x=0

,

with σ(t, 0), ∂2
xσ(t, x)2|x=0 and β(t) given by (6.3.9), (6.3.11) and (6.3.12) respectively. Then,

the parametric form
σSV I(t, x)2 = a(t) + b(t)

√
x2 + γ(t)2 (6.3.14)

has the same ATM level, ATM curvature and extreme log-moneyness slopes of the implied
variance under the uncorrelated Heston model (6.1.2) (cf. the “matching” properties of Propo-
sition 6.2.3).

The approximation (6.3.14) of the implied volatility in the uncorrelated Heston model is
straightforward to implement and computationally cheap: once the ATM implied volatility
and curvature and the asymptotic slopes of the smile have been computed for a given ma-
turity t, the computation of the whole smile (i.e. σ(t, x) for all the desired values of x) is
instantaneous. The performances of this approximation for different strikes and maturities
will be illustrated in section 6.5 by some numerical examples.

We close this section by making the statements of Proposition 6.2.4 specific to uncorrelated
Heston.

Proposition 6.3.4. In the uncorrelated Heston model (6.1.2), for all t > 0 and k ∈ R the
density pt(k) and the complementary cdf P(Xt > k) of the log forward price Xt are given by,
respectively

pt(k) =
2α

π

∫ 1

0

q(x)c(k, x)h(t, x)dx, (6.3.15)

P(Xt > k) =
e−k/2

πα

∫ 1

0

g(x)s(k, x)h(t, x)dx, (6.3.16)
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where
c(k, x) = cos

(αkx
x2 r(x)

)
;

s(k, x) = c(k, x)− 2
αx

x2 r(x) sin
(αkx
x2 r(x)

)
;

r(x) =
√

2(v0 + 1)x2 + x2;

x = (1− x); v0 =

√
1 +

1

4α2
− 1

and the functions g, h, q are the ones of Proposition 6.3.1.

Proof. Use (6.3.5) and the changes of variables (6.3.3)-(6.3.4)-(6.3.8) in (6.2.22) and (6.2.26).

As an immediate consequence (cf. Prop. 6.2.5), we obtain a formula for the price of a
European Call option in the uncorrelated Heston model:

C(t, k) = F0P
(
Xt < log

F0

K

)
−KP

(
Xt > log

K

F0

)
= F0

(
1− 2

e
k
2

πα

∫ 1

0

((v0 + 1)x2 + x2)x cos
(
αkx
x2 r(x)

)√
2(v0 + 1)x2 + x2 (v0x

2 + x2)((v0 + 2)x2 + x2)
h(t, x)dx

)
,

(6.3.17)
where C(t, k) is a Call maturing at t and struck at K := F0e

k and the function h(t, x) is
given in Prop. 6.3.1.

Remark 6.3.2. It seems to us that the formulation of Call options prices in (6.3.17) is
new, since setting ρ = 0 in the classical solutions for Call prices based on extended Fourier
transforms (cf. [37], [47] and many others) is not sufficient to get rid of the complex-valued
functions. Proposition 6.3.4 provides indeed a fully “real” (in the algebraic sense) approach
to option pricing in the Heston model.

6.4 An application to a skewed smile

Since market smiles are skewed, the uncorrelated Heston model (6.1.2) is quite unlikely to
fit a set of market option prices. Nevertheless, the SVI parameterisation (6.3.14) can be
straightforwardly applied to a skewed smile, by considering a displaced model (cf. [60] and
the subsequent literature). Let (Ft, t ≥ 0) be the forward price in a displaced Heston model:

dFt = (βFt + (1− β)F0)
√
VtdWt

dVt = κ(θ − Vt)dt+ σ
√
VtdZt,

(6.4.1)
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where W,Z are independent Brownian motions and β ∈ [0, 1] is the displacement parameter
introducing the asymmetry in the model (β = 1 corresponding to zero displacement). As
is well known, option pricing under the model (6.4.1) boils down to option pricing in the
standard Heston model (6.1.2). Indeed, let

F̃t = βFt + (1− β)F0, Ṽt = β2Vt, (6.4.2)

then the couple (F̃ , Ṽ ) satisfies

dF̃t = F̃t
√
ṼtdWt

dṼt = κ(θ̃ − Ṽt)dt+ σ̃
√
ṼtdZt

Ṽ0 = β2V0; θ̃ = β2θ; σ̃ = βσ,

(6.4.3)

meaning that (F̃ , Ṽ ) is an uncorrelated Heston couple with “dislaced” parameters Ṽ0, θ̃, σ̃

(while F0 and κ remain the same). The affine transformation of forward price and variance
(6.4.2) translates into the following mapping for the price CD of a Call option in the displaced
model:

CD(t, x) := E[(Ft − F0e
x)+]

=
1

β
E
[(
F̃t − F0(1− β + βex)

)+]
,

(6.4.4)

hence the price of a Call on Ft is 1/β times the price of a Call on F̃t, the new log-moneyness
being log(1− β + βex).

We approximate the implied volatility of the “undisplaced” model (6.4.3) using the SVI pa-
rameterisation (6.3.14). Denoting σSV I(t, x;V0, k, θ, σ) the SVI approximation of the implied
variance in the uncorrelated Heston model with parameters F0, V0k, θ, σ and (with obvious
notation) CBS(t, x;σ) the price of a Black-Scholes Call, we have

CD(t, x) ≈ 1

β
CBS

(
t, log(1− β + βex);σSV I

(
t, log(1− β + βex); β2V0, k, β

2θ, βσ
))
. (6.4.5)

Equation (6.4.5) gives a fast and economical approach to the pricing of Vanillas in the skewed
displaced model (6.4.1).

6.5 Numerical Results

In this section we show the validity and accuracy of the representation formulae obtained in
section 6.3 for the implied volatility in uncorrelated Heston. At all the time, our benchmark
Call option pricer is the usual semi-analytical pricer based on extended Fourier transforms
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(and the reference implied volatilities are obtained by numerical inversion of BS formula).

Table 6.1 compares the values of the implied volatility obtained by the standard pricing
with the ones obtained with formula (6.3.9), for a set of Heston parameters. The integration in
(6.3.9) is performed using a fixed-tolerance Gaussian quadrature. The two series are perfectly
in line, proving the validity of formula (6.3.9). Table 6.2 analyses the performances of the
time-dependent SVI parametric form (6.3.14): we refer to this model as to the “Optimal
SVI” in the sense of the matching of the ATM and far from the money structure as stated in
Proposition 6.3.3. Only the right half of the smile is considered, the left part being identical
by symmetry. The errors on implied volatilities are considerably small for all maturities and
log-moneynesses up to 0.15 and remain under reasonable limits for log-moneynesses between
0.15 and 0.25. Let us remark that the SVI approximation (6.3.14) performs particularly well
when the maturity is large: this is consistent with the recent result by Gatheral & Jacquier
[30] proving that the large time Heston smile does converges to a (properly parameterised)
SVI model. For short maturities (t = 1 month) the approximation of the implied volatility is
less precise, but we remark that the larger errors in Table 6.2 occur when the sensitivity of the
option value with respect to the volatility is small and that in any case for short maturities
one is most interested in log moneyness close to zero. The parameterisation (6.3.14) actually
provides a very good approximation of the Heston implied volatility close to the money. Of
course, the accuracy of formula (6.3.9) and of approximation (6.3.14) varies in the model
parameter domain and the usual care is needed in applications; in particular, as the standard
Heston pricers, the formula can be patched using Lewis’ expansion for small volatility of
volalitility [47].

Figure 6.1 shows some typical profiles of the integrands in (6.3.9) and (6.3.17). As already
pointed out in section 6.3, the functions that are integrated in our semi-closed formulae
are particularly well-behaved: in particular, they are bounded and smooth functions of the
interval [0, 1]. Figure 6.2 is a sanity check of formula (6.3.17) (which we refer to as to
the “Uncorrelated formula”): we compare with the Call option prices obtained by usual
pricing, for three different maturities (1 month, 1y, 3y from bottom to top). The uncorrelated
formula (6.3.17) works as expected and shows perfect agreement with the standard pricing
results: the advantage of this formulation with respect to the usual Fourier-based pricing is
to contain real valued functions only. Finally, figure 6.3 displays some examples of skewed
smiles produced by the displaced model (6.4.1) for different maturities (1 month, 1y, 3y from
top to bottom). The skewed smiles are obtained applying the mapping (6.4.4) to the Call
option prices computed with the usual pricer (“semi-analytic” method) and using the SVI
approximation of the implied variance as in (6.4.5).
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Maturity
Pricer : 1 month 4 months 1y 2y 3y 5y 10y

Usual Fourier transforms 19.593 18.958 17.939 17.866 18.018 18.342 18.842

Semi-closed formula (6.3.9) 19.592 18.958 17.939 17.862 18.014 18.340 18.840

Maturity
Pricer : 1 month 4 months 1y 2y 3y 5y 10y

Usual Fourier transforms 27.448 26.002 22.657 21.076 20.441 20.045 20.197

Semi-closed formula (6.3.9) 27.446 26.001 22.652 21.071 20.436 20.044 20.195

Table 6.1: Values of the ATM implied volatility in the uncorrelated Heston model. The values
obtained by standard pricing with Fourier transforms and the ones obtained with formula
(6.3.9) are compared. Heston parameters are V0 = 0.04, σ = 0.5, κ = 1.0, θ = 0.04 (first
series) and V0 = 0.08, σ = 0.8, κ = 0.5, θ = 0.06 (second series).

Figure 6.1: Profiles of the function to be integrated in formula (6.3.9) to obtain the 1 month
ATM implied volatility (left) and in formula (6.3.17) to obtain the price of a 1 month, log-
moneyness= 0.2 Call option (right) in the uncorrelated Heston model.
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t = 1 month log-moneyness
Model: 0.0 0.025 0.05 0.10 0.15 0.20 0.25

FT pricer 2.2556 1.2472 0.6256 0.1225 0.0185 0.0023 0.0002
19.59 19.68 19.92 20.71 21.68 22.70 23.72

Optimal SVI 2.2556 1.2470 0.6245 0.1194 0.0167 0.0023 0.0002
19.59 19.68 19.91 20.60 21.41 22.24 23.06

t = 1 year log- moneyness
Model: 0.0 0.025 0.05 0.10 0.15 0.20 0.25

FT pricer 7.1461 6.0585 5.1162 3.6320 2.5830 1.8471 1.3286
17.94 17.98 18.12 18.59 19.26 20.04 20.87

Optimal SVI 7.1461 6.0585 5.1152 3.6215 2.5519 1.7931 1.2570
17.94 17.98 18.11 18.56 19.16 19.84 20.54

t = 5 years log- moneyness
Model: 0.0 0.025 0.05 0.10 0.15 0.20 0.25

FT pricer 16.2466 15.2217 14.2421 12.4230 10.8006 9.3480 8.0792
18.34 18.35 18.37 18.43 18.56 18.70 18.89

Optimal SVI 16.2466 15.2217 14.2421 12.430 10.7930 9.3585 8.0802
18.34 18.35 18.36 18.43 18.55 18.70 18.89

Table 6.2: Comparison of the values of the implied volatility in the uncorrelated Heston model
obtained by usual pricing with Fourier transforms (“FT pricer”) and with the time-dependent
SVI approximation (6.3.14) (“Optimal SVI”). Heston parameters are V0 = 0.04, σ = 0.5, κ =
1.0, θ = 0.04. At each line, the first entry is the Call option price, the second entry the
volatility.

6.6 Conclusions

We have obtained single-integral representation formulae for the ATM level and curvature of a
symmetric smile generated by a continuous martingale. This result is based on the derivation
of the corresponding representations of the law (cumulative distribution and density) of the
log forward price X in terms of the Laplace transform of the quadratic variation of X. The
resulting formulae take the form of the integral of a known real-valued function as soon as this
Laplace transform in known in closed form, as e.g. in the uncorrelated Heston model. This
result allows us to build time-dependent SVI parameterisations which match the ATM and
extreme strike structure and are therefore optimal as SVI parameterisations of a symmetric
volatility surface. This time-dependent SVI model provides a very good and computationally
cheap approximation of the implied volatility in the uncorrelated Heston model close to the
money. We have addressed how to apply this assembly to a skewed smile by considering a
displaced model: a subject for future work is how to generalise this approach to parameterise
the smiles generated by a correlated stochastic volatility model.
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Figure 6.2: A “sanity check” of formula (6.3.17) (the “Uncorrelated formula”) for Call option
prices in the uncorrelated Heston model. Comparison with the usual pricing with Fourier
transform is shown. From bottom curve to top curve, option maturities are 1 month, 1y ,
3y. Heston parameters are V0 = 0.08, σ = 0.5, κ = 0.5, θ = 0.08.

6.7 Proof of Proposition 6.3.2

The Heston model is an affine stochastic volatility model (ASVM), according to the definition
of [40]. In particular, we have

E
[
exp(uXt + vVt)

]
= exp(φ(t, u, v) + uX0 + ψ(t, u, v)V0) (6.7.1)

for every (t, u, v) ∈ R+×R2 (allowing for the case where both sides of the identity are infinite).
The functions φ and ψ satisfy the system of Riccati equations

∂tφ(t, u, v) = F (u, ψ(t, u, v)), φ(0, u, v) = 0

∂tψ(t, u, v) = R(u, ψ(t, u, v)), ψ(0, u, v) = v

with
F (u, v) = kθv

R(u, v) =
1

2
u(u− 1) +

σ2

2
v2 − kv + ρσuv.

We aim here to compute the explosion time t∗(u) = sup{t ≥ 0 : E[exp(uXt)] < ∞}, u > 1.
Recalling that X0 = 0, by (6.7.1) we have E[exp(uXt)] = exp(φ(t, u, 0) + ψ(t, u, 0)V0). Since
φ(t, u, v) = kθ

∫ t
0
ψ(s, u, v)ds, it follows that t∗(u) is the explosion time of ψ(·, u, 0), that
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Figure 6.3: Skewed implied volatility smiles produced by the displaced model (6.4.1): we
show the comparison between the values obtained by usual pricing with Fourier transforms
(“Semi-analytic”, plus sign) and with the SVI approximation (6.3.14) (solid line). From
top curve to bottom curve, option maturities are 1 month, 1y, 3y. Heston parameters are
V0 = 0.08, σ = 0.5, κ = 0.5, θ = 0.08 and the displacement parameter is β = 0.5.

is t∗(u) = sup{t ≥ 0 : ψ(t, u, 0) < ∞}. Therefore we focus on the equation for ψ, in the
uncorrelated case ρ = 0.

Proof of Proposition 6.3.2. Step 1 (Rescaling of the Riccati equation). Recalling the param-
eter rescaling (6.3.1), we have

R
(
u,
v

σ

)
=

1

2
u(u− 1) + v2 − αv =

1

2
(v − α)2 − 1

2

(
α2 − u(u− 1)

)
Hence, defining

u(ω) :=
1

2
+

√
α2(1 + ω2) +

1

4
, ω > 0; R2(ω, v) :=

2

α2
R
(
u(ω), α

v

σ

)
we have R2(ω, v) = (v − 1)2 + ω2. It is easy to check that, for every ω > 0, the solution to
the Riccati equation

∂tψ2(t, ω, v) = R2(ω, ψ2(t, ω, v)), ψ2(0, ω, v) =
σ

α
v (6.7.2)
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is such that
ψ(t, u(ω), v) =

α

σ
ψ2

(ασt
2
, ω, v

)
(6.7.3)

for all t. We will show (Step 3) that for u ≤ u(0), ψ(t, u, 0) is finite for all t. Hence it is
sufficient to compute the explosion time of ψ2(·, ω, 0): by (6.7.3), ψ(·, u(ω), 0) explodes at t
iff ψ2(·, ω, 0) explodes at ασt

2
. Let us remark that the advantage of considering Eq (6.7.2) is

the fact that ψ2 depends on model parameters only through the initial condition.
Step 2 (Solution of the rescaled Riccati equation). For simplicity, we drop the dependence

with respect to ω and write ψ2(t) := ψ2(t, ω, 0). Let us denote v+ = 1 + iω and v− = 1− iω
the two roots of R2(ω, v), so that we have R2(ω, v) = (v − v+)(v − v−). Let us also denote
ψ±2 (t) = ψ2(t)− v±. By (6.7.2), we have

∂tψ
+
2 (t) = ψ+

2 (t)ψ−2 (t), ∂tψ
−
2 (t) = ψ−2 (t)ψ+

2 (t).

Then, introducing the initial condition ψ±2 (0) = ψ2(0)− v± = −v±,

ψ+
2 (t) = −v+ exp

(∫ t

0

ψ−2 (s)ds
)

ψ−2 (t) = −v− exp
(∫ t

0

ψ+
2 (s)ds

)
hence, taking ratios,

ψ2(t)− v+

ψ2(t)− v−
=
ψ+

2 (t)

ψ−2 (t)
=

1 + iω

1− iω
exp(2iωt).

It follows that ψ2(t) is finite valued until there is a t such that the lhs is worth 1, that is a t
such that

exp(2iωt) =
1− iω
1 + iω

=
1− ω2

1 + ω2
− 2i

ω

1 + ω2
. (6.7.4)

As ω ranges from 0 to∞, the lhs of this expression turns counterclockwise on the unit circle,
while the rhs fills the lower half unit circle clockwise, from right to left. Hence, the smaller t
which solves eq. (6.7.4) is such that π < 2ωt < 2π and that cos(2ωt) = 1−ω2

1+ω2 , that is

t∗(ω) =
2π − arccos

(
1−ω2

1+ω2

)
2ω

.

Recalling the time scaling (6.7.3), the critical exponent u∗(t) = inf{u > 0 : E[exp(uXt)] =

∞} = inf{u > 0 : ψ(t, u, 0) = ∞} is given by u∗(t) = u(ω∗(t)), where ω∗(t) is the unique
solution in [ π

2t
, π
t
] of t∗(ω∗(t)) = ασ

2
t. Eq (6.3.12) now follows easily from the expression of

u(ω) and from Lee’s moment formula (6.1.1).
Step 3. Let us come back to R(u, v) : the two roots of v 7→ R(u, v) are

v± =
α±

√
α2 − u(u− 1)

σ
.
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If 0 < u < u(0) = 1
2

+
√
α2 + 1

4
, then α2 − u(u − 1) > 0 and v+ and v− are both real with

0 < v− < v+. Then, the same arguments as in Step 2 yield

ψ(t, u, 0)− v+

ψ(t, u, 0)− v−
=
v+

v−
exp((v+ − v−)t)

and it is easy to see that this entails that ψ(t, u, 0) is finite for all t. Finally, if u = u(0), then
v+ = v− = α/σ and R(u(0), v) = σ2

2

(
v− α

σ

)2. The equation ∂tψ(t, u(0), 0) = σ2

2

(
ψ(t, u(0), 0)−

α
σ

)2 can be solved by separation of variables, giving

ψ(t, u(0), 0) =
α2t

ασt+ 2

hence ψ(t, u(0), 0) is finite for all t, too.
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