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Introduction

Often numerical data in scientific computing arise from real-world measure-
ments, and so are perturbed by noise, uncertainty and approximation. Recently
some attempts have been made to describe them using multivariate polynomial
models, which, in the numerical world, mix two apparently inconsistent types
of data: the continuous and the discrete. This apparent inconsistency is already
clear when we deal with a single polynomial over the reals. It consists of a
discrete part, the support, and a continuous part, the set of its coefficients. The
support is a well-known concept in classical algebra and is defined as the set
of monomials having a non-zero coefficient. The set of coefficients inherits the
continuity from the space to which it belongs, that is the field of real numbers; if
the polynomial coefficients are not exact, but derive from the numerical world,
the very notion of polynomial acquires a blurred meaning. In the same vein,
any other structure based on polynomials, such as an ideal, which involves real
data loses its rigorous algebraic nature. From a computational point of view, it
cannot be handled using exact methods, since the sophisticated tools provided
by Computer Algebra can no longer be applied, while the general-purpose tech-
niques provided by Numerical Analysis generally return unsatisfactory “local”
results. Since the late 1990s a new field of investigation is emerging. It has
been given different names, the most important ones being Numerical Polyno-
mial Algebra, introduced by Hans J. Stetter, Approximate Commutative Algebra
(ApCoA), introduced by L. Robbiano, and Numerical Algebraic Geometry, in-
troduced by A. Sommese.

The motivation for our work comes from a problem of modeling oil produc-
tion. It arose within the Algebraic Oil Project, an international cooperation
between Shell International Exploration & Production (Rijswijk, The Nether-
lands), the Department of Mathematics of the University of Genova (Italy),
and the Faculty of Informatics and Mathematics of the University of Passau
(Germany). The optimization of oil production is obviously one of the main
problems in oil industry: increasing the ultimate recovery of an oil or gas reser-
voir is, up to now, the most challenging problem in the extraction operations.
An oil reservoir is a very special physical system which is nearly impossible to
study using a computer simulation or physical laboratory experiments. Tradi-
tional modeling techniques assume that equations which describe the flow of the
fluids through the reservoir are available. However their limited success suggests
that they do not provide a good representation of the interactions occuring dur-
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2 Introduction

ing the production phase. The current low ultimate recovery rates may well be
caused by the fact that the interactions between the production units are still
unknown, so that actions taken to increase the extraction could end up inhibit-
ing rather than stimulating the production. Our aim is to find a model for the
total production of a group of wells or a collection of zones which describes the
production behaviour correctly over longer time scales; the idea is to take into
account the interactions between the zones and so to provide a decomposition
of the total production as a combination of the separate contributions of the
individual wells.

Rather than starting from the physical knowledge of the phenomenon, we
want to strengthen the idea that good models for many industrial problems can
be constructed using a bottom-up process, in which the mathematical model is
derived by interpolating the measured values at a finite set of points. In the
exact case the problem of interpolation can be solved using the vanishing ideal of
the set of points, that is the ideal comprising all polynomials which vanish at the
given points, and a suitable vector space basis of its coordinate ring. Notice that
the vanishing ideal enables us to find all the equivalent models, since it embodies
all the relationships among the points. Classically, it is computed using the
Buchberger-Möller Algorithm [BM82], a low complexity method which returns
a Gröbner basis of the ideal. Unfortunately, as already stated, the data coming
from real-world experiments are always affected by noise, they are imprecise, or
known with limited accuracy. Our aim is to solve the interpolation problem in
the approximate case.

We formalize the concept of approximate datum by using the notion of em-
pirical point already introduced by Stetter [Ste04]. We view the measurements
coming from a finite number of real-life experiments as empirical points of an
affine space: we assume that each experimental datum consists of the measure-
ments of n different physical quantities, so that it can be encoded as a point
of Kn, where K is a field usually equal to R; the whole empirical data set can
thus be organized as a finite set of points of Kn. Note that since each point
corresponds to a single test, and each coordinate to a single measurement, the
error affecting each component of the point mostly derives from the limits of
accuracy of the measuring instruments. For this reason, we suppose we know
the tolerances on the empirical data, that is the absolute error on each data
coordinate. Naturally, the tolerance in one coordinate may differ from that of
another coordinate. But we do require that the tolerance in a given coordinate
be the same for all the data points (e.g. identical instruments were used to
obtain the measurements in that coordinate). More formally, we require that
there is a common tolerance vector ε = (ε1, . . . , εn) valid for all the input points.
Given the tolerance ε and a data point p ∈ Kn, we view the pair (p, ε) as an
empirical point representing a “cloud” of data which differ from p by less than
the tolerance. Any point lying inside this cloud can be considered equivalent to
the measurement p from a numerical point of view, and is called an admissible
perturbation of the point p.

Often in the experimental tests a way to bound the inaccuracy affecting
the data consists of registering many times the value of the same datum. This
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leads to deal with large body of experimental data, often characterized by a
high level of redundancy. To reduce the volume of data we find a good way
of “thinning out” such large sets before using the symbolic-numeric approach.
The preprocessing technique is based on the idea of reducing “redundancy” in
the original data: we regard subsets of original points which lie close to each
other as repeated measurements, and replace them by a single representative
value. If the intersection of different empirical points (intuitively represented
as clouds) is “sufficiently large”, we can replace them by a single empirical
point carrying essentially the same empirical information. Based on this idea of
clustering together empirical points we design three algorithms which thin out
a large set of redundant data to produce a smaller set of “equivalent” empirical
points. Naturally, the degree of the reduction depends on how much redundancy
is present in the original data.

Having introduced a good mathematical formalization for an empirical data
set, and having defined a useful technique for reducing the redundancy, we face
the problem of approximate interpolation (that is interpolation in the approxi-
mate case). As in the exact case, the main task consists of computing the “van-
ishing ideal” of a finite set of empirical points, where we put the expression van-
ishing ideal in inverted commas as we must clarify what we mean by it. Indeed,
there exist different approaches to this problem: among them we mention the
works of H. M. Möller et al. [MS00], T. Sauer [Sau07], D. Heldt et al. [HKPP06],
M. Kreuzer et al. [KPR08], and C. Fassino [Fas08].

Our point of view is the following: in order to emphasize the numerical
equivalence among all the feasible and small perturbations of the original set
of points, we provide a common characterization of their vanishing ideals, and,
when possible, we compute a numerically stable representation of them. The
idea is the following. We let P = K[x1, . . . , xn] be the polynomial ring in
the indeterminates x1, . . . , xn over K, X a finite set of distinct points of Kn,
and I(X) ⊆ P its vanishing ideal; we let ε be the common tolerance on the

points of X. If X̃ is another set of points of Kn, each differing by less than the
uncertainty from the corresponding element of X, then X̃ is called an admissible
perturbation of X and (intuitively) the two sets can be considered as equivalent.

Nevertheless, given two distinct admissible perturbations X̃1 and X̃2 of X, it can
happen that their vanishing ideals I(X̃1) and I(X̃2) have very different bases:
this is a well known phenomenon when using Gröbner basis theory (see [KKR05]
and [KR00]) which turns out to be unsuitable as a numerical tool. To overcome
this drawback and to highlight the numerical equivalence among all the ad-
missible perturbations X̃ of X, we focus our attention on determining an order
ideal O such that the residue classes of its elements form a vector space basis of
the quotient ring P/I(X̃), for any perturbation X̃. Such an O is called a stable
quotient basis for the empirical set (X, ε). Now, suppose that #O = #X, and
let MO(X) be the matrix whose rows are the images of the terms t ∈ O under
the evaluation map at X. A necessary and sufficient condition for O to be a
(monomial) basis of the vector space P/I(X) is that MO(X) is a non-singular
matrix, that is its determinant is not zero. Since the determinant is a continu-
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ous function in the matrix entries, this defines an open condition, and explains
the choice of the adjective stable. Notice that stable quotient bases provide a
common characterization of the ideals I(X) and I(X̃): they highlight the geo-
metrical properties of the empirical set (X, ε) and, via the border basis theory,
guarantee the existence of a structurally stable representation of I(X).

Border bases appeared for the first time in connection with problems arising
in numerical analysis during the 1980s, thanks to the work of Hans J. Stetter
(see [AS88] and [Ste04]); then, during the 1990s, the importance of these re-
sults for computer algebra was pointed out by H. Michael Möller (see [MS95]
and [Möl93]). In 1999 the first algebraic properties of border bases were pre-
sented by B. Mourrain (see [Mou99]). In 2005, A. Kehrein, M. Kreuzer and
L. Robbiano wrote a survey devoted to laying the algebraic foundations of
the border basis theory for zero-dimensional ideals (see [KKR05] and [KR05]).
Recently, M. Kreuzer and L. Robbiano (see [KR08]), and later L. Robbiano
(see [Rob08]) examined a natural link between border bases and Hilbert schemes
which provides a further improvement to the solid mathematical foundations of
the border basis theory.

Our decision to use border bases for describing the vanishing ideal I(X) is
based on two main reasons: firstly, the works mentioned above certify border
bases as a good tool for dealing with numerical problems; secondly, border
bases are easy to compute since, once a basis O of the quotient ring P/I(X) is
fixed, the corresponding border basis can be obtained by simple combinatoric
and linear algebra computations. The border basis B of I(X) built upon a
stable quotient basis O is also called stable. Indeed B exhibits good numerical
behaviour: any other O-border basis B̃ of I(X̃) can be obtained by means of a
small and continuous variation of the coefficients of the polynomials of B, while
the supports remain unchanged.

Notice that stable quotient bases (and consequently stable border bases) do
not always exist (see Example 5.1.5, Chapter 5): in such cases we exploit the
wider notion of stable order ideal. Though stable order ideals do not define a
monomial basis of the vector space P/I(X), they nevertheless provide P/I(X̃)

with a common structure for any admissible perturbation X̃ of X, and give
information on the geometrical configuration of the original points.

The method we present for computing a stable order ideal of an empirical
point set is essentially based on the Buchberger-Möller (BM) Algorithm; we
generalize it to the numerical frame by introducing a new notion of numerical
linear dependence of vectors. A practical implementation of this theoretical
method is given by the Stable Order Ideal (SOI) Algorithm which is included
in CoCoALib [CoC]. The practical approach is based on a first order error
analysis of the problem, since, from our point of view, the interest is focussed
on small perturbations of the original set of points. In order to investigate the
stability of the order ideal, the SOI Algorithm uses a parametric description
of the admissible perturbations of the points and uses some results on the first
order approximation of rational functions, so that the check of numerical linear
dependence of vectors can be greatly simplified. If the cardinality of the stable
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order ideal O equals the cardinality of the set of input points, then O is a stable
quotient basis for the ideal of points, the correspondingO-border basis B of I(X)
exists and is stable w.r.t. the input tolerance ε. To determine B it suffices to
find the border of O, a simple combinatorical computation, and then solve a
full rank linear system for each element of its border ∂O.

In conclusion, the thesis originated from a very specific problem in industrial
mathematics, namely the optimization of oil field production. The approach
taken here is new in the sense that we discard the idea of using simulation;
instead, we try to recover good relations among the physical quantities involved
starting from experimental measurements. We prefer a bottom-up procedure
over the classical top-down methods. This choice led us to use tools which
are more typical of commutative algebra and algebraic geometry, therefore we
had to somehow navigate uncharted waters. However, some successes in the
applications of these methods are currently encouraging us to continue this line
of research.

We divide the thesis into three main parts: in the first part, which consists
of Chapters 1 and 2, we recall the background material; in the second part,
which is made up of Chapters 3, 4, and 5, we present a frame to deal with
approximate data and a new method to tackle the problem of interpolation in
the approximate case; finally, in the third part, that is in Chapter 6, we apply
this new method to an actual industrial problem arising in oil fields, namely the
control of the production of oil.

Based on the specialised texts [KR00], [KR05], and [CLO92], in Chapter 1 we
recall the general notation along with some definitions and results of algebraic-
geometry theory useful for the topics treated in the thesis. In Chapter 2 we
introduce and characterize the concepts of affine point set, the most important
mathematical object of this thesis, and its vanishing ideal; we also describe the
Buchberger-Möller Algorithm [BM82], a classical and efficient method for com-
puting the vanishing ideal of a finite set of points. We generalize this result in
two different ways: in one case we simply replace the operation of row reduction
used in it by the least squares method; in the other one we perform a similar
variation but with the aim of computing a border basis of the ideal of points. In
Chapter 3 we define a formal framework for dealing with indetermination in Rn.
In particular, we introduce the basic definition of empirical point and discuss the
analogies with the definition given by Stetter [Ste04]; we give the definitions of
empirical vector and empirical evaluation vector; we introduce the notion of nu-
merical linear dependence, and adapt it to the empirical evaluation case. Based
on [AFT07], in Chapter 4 we describe a method to reduce the “redundancy” in
the empirical data set; we present two algorithms, the Agglomerative Algorithm
and the Divisive Algorithm, both included in CoCoALib (a GPL C++ library
for doing Computation in Commutative Algebra, see [CoC]), which thin out sets
of empirical points while preserving their overall geometrical structure. Some
numerical examples to illustrate the behaviour of the algorithms on different
geometrical configurations of points are also presented. Based on [AFT08], in
Chapter 5 we present a symbolic-numeric method to characterize the vanishing
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ideal of an empirical set of points. In particular, we introduce the notions of
stable order ideal, stable quotient basis and stable border basis of a finite set
of empirical points. Then, we describe a theoretical method and a practical
algorithm, the SOI Algorithm, available in CoCoALib, for their computation.
A section with numerical examples to show the effectiveness of the presented
results is also included. In Chapter 6 we address one of the most important
problems arising in the oil fields, namely the control of the oil production. We
treat it in the case of a multi-zone well by making the crucial assumption of
the existence of a causal relationship between the production of oil and a set
of variables having a special physical meaning. The results refer to the case of
a two-zone well: the redundancy of the set of numerical data coming from it
is reduced by applying the techniques of Chapter 4; the new set of empirical
points is then used for the SOI computations. Starting from these results, we
compute different polynomials for the production, we test their reliability and
compare their prediction skills.
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Chapter 1

Preliminaries on polynomial

algebra

In this chapter we introduce the tools of algebraic-geometry theory that we
use in the thesis. Almost all the definitions and results we present are taken
from the specialised texts [KR00], [KR05], and [CLO92] to which the interested
reader is referred for a deeper understanding of the topics.

1.1 Algebraic foundations

Throughout this thesis we will mainly work with multivariate polynomials and
rational functions. This section is devoted to introducing their definitions and
properties (see Section 1.1.1 and 1.1.2). We start by recalling the definition of
the basic algebraic structures.

Definition 1.1.1. A monoid (S, ·) (or simply S if no ambiguity can arise) is
defined to be a set S together with an operation · : S×S → S which is associative
and for which there exists an identity element, i.e. an element 1S ∈ S such that
1S · s = s ·1S = s for all s ∈ S. A monoid is called commutative if s · s′ = s′ · s
for all s, s′ ∈ S. Furthermore, if in S every element is invertible, i.e. for all
s ∈ S there exists an element s′ ∈ S which satisfies s · s′ = s′ · s = 1S , then S is
called group.

By a ring (R,+, ·) (or simply R) we shall always mean a commutative
ring with identity element, i.e. a set R together with two associative operations
+, · : R × R → R such that (R,+) is a commutative group with identity
element 0R, such that (R, ·) is a commutative monoid with identity element 1R,
and such that the distributive laws are satisfied. If 1R = 0R then R is called
the trivial ring as it contains the single element 0R. A field is a ring K such
that (K \ {0K}, ·) is a group.

For the rest of this chapter we let R be a ring. Some elements of a ring
have special properties. For instance, if r ∈ R and rr′ = 0 implies r′ = 0 for all

9
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r′ ∈ R, then r is called a non zero-divisor. A ring whose non-zero elements
are non zero-divisors is called an integral domain. For instance, every field is
an integral domain.

We recall the concept of a ring homomorphism.

Definition 1.1.2. Let R,S be rings. A map ϕ : R → S is called a ring
homomorphism if ϕ(1R) = 1S and for all elements r, r′ ∈ R we have ϕ(r+r′) =
ϕ(r) + ϕ(r′) and ϕ(r · r′) = ϕ(r) · ϕ(r′), i.e. if ϕ preserves the ring operations.

Sometimes a field and a group are tied together by an operation of the field
on the group to produce the very well known algebraic structure of vector
space. In this case the elements of the fields are usually called scalars, the
elements of the group are called vectors, and the operation is called scalar
multiplication.

The following definition introduces the very important notion of ideal.

Definition 1.1.3. Let R be a ring; a subset I ⊆ R is called an ideal of R if it
is an additive subgroup of R and R · I = {r · i | r ∈ R, i ∈ I} ⊆ I.

Note that, given any ideal I in a ring R, we can form the residue class
ring R/I in the obvious way; the canonical map R → R/I is a ring homomor-
phism. Now, consider the following definition.

Definition 1.1.4. Let I be an ideal of R.

(a) A set {mλ | λ ∈ Λ} of elements of I is called a system of generators
of I if every m ∈ I has a representation m = r1mλ1

+ . . . + rnmλn
for

some n ∈ N, r1, . . . , rn ∈ R and λ1, . . . , λn ∈ Λ. In this case we write
I = 〈mλ | λ ∈ Λ〉.

(b) The ideal I is called finitely generated if it has a finite system of gen-
erators. If I is generated by a single element, it is called a principal
ideal.

1.1.1 Polynomial rings

Let R be a ring; as in [KR00] we define multivariate polynomial rings over R
recursively, starting from the notion of univariate polynomial ring. For this
reason we recall here its definition. We consider the set R(N) of all sequences
(r0, r1, . . .) of elements r0, r1, . . . ∈ R such that ri 6= 0 for only finitely many
indices i ≥ 0. We let ei = (0, . . . , 0, 1, 0, 0, . . .) be the element of R(N) having 1
at position i+ 1. Obviously, every element of R(N) has a unique representation
(r0, r1, . . .) =

∑
i∈N riei. Given two elements

∑
i∈N riei and

∑
i∈N siei, we define

(
∑

i∈N

riei

)
·
(
∑

i∈N

siei

)
=
∑

i∈N




i∑

j=0

rjsi−j


 ei
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It is easy to check that the set R(N), together with componentwise addition and
the multiplication defined above, is a commutative ring with identity e0; further,
ei = (e1)

i for all i ∈ N.

Definition 1.1.5. Let R be a ring; let R(N) be equipped with the ring structure
defined above.

(a) Let x be a symbol and x = e1; the ring R(N) is called the polynomial
ring in the indeterminate x over R and is denoted by R[x]. It is a
commutative ring and every element of R[x] has a unique representation∑

i∈N rix
i with ri ∈ R and ri 6= 0 for only finitely many indices i ∈ N.

(b) Let n ≥ 2 and x1, . . . , xn be symbols; we recursively define R[x1, . . . , xn] =
(R[x1, . . . , xn−1])[xn] and call it the polynomial ring in n indetermi-
nates over R.

(c) The elements of a polynomial ring are called polynomials. Polynomi-
als in one indeterminate are often called univariate polynomials, while
polynomials in several indeterminates are called multivariate polyno-
mials.

Some properties of a ring are inherited by polynomial rings over it, as shown
in the following proposition.

Proposition 1.1.6. Let R be an integral domain.

(a) The units in R[x1, . . . , xn] are the units in R.

(b) The polynomial ring R[x1, . . . , xn] is an integral domain.

Proof. See Proposition 1.1.9 in [KR00].

Among the different properties of a polynomial ring we recall the Univer-
sal Property, which claims that the ring homomorphisms starting from it are
uniquely defined by the images of the indeterminates, and those images may be
chosen freely.

Proposition 1.1.7. (Universal Property of the Polynomial Ring)
Let R,S be rings and let ϕ : R → S be a ring homomorphism; let n ≥ 1, and
s1, . . . , sn be elements in S. Then there exists a unique ring homomorphism
ψ : R[x1, . . . , xn]→ S such that ψ|R = ϕ and ψ(xi) = si for i = 1, . . . , n.

Proof. See Proposition 1.1.12 in [KR00].

A ring homomorphism ψ defined as above is also called an evaluation ho-
momorphism; we write the image ψ(f) of f as f(s1, . . . , sn) and call it the
evaluation of f at (s1, . . . , sn).

We shall use the following compact and unique representation of a multi-
variate polynomial f ∈ R[x1, . . . , xn]:

f =
∑

α∈Nn

cαx
α (1.1)
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where α = (α1, . . . , αn) ∈ Nn and xα = xα1

1 · · ·xαn
n , and where only finitely

many elements cα ∈ R are different from zero. We give the following definitions.

Definition 1.1.8. Let n ≥ 1.

(a) A polynomial f ∈ R[x1, . . . , xn] of the form f = xα1

1 · · ·xαn
n such that

(α1, . . . , αn) ∈ Nn is called a term (or power product). The set of all
terms of R[x1, . . . , xn] is denoted by Tn.

(b) For a term t = xα1

1 · · ·xαn
n ∈ Tn, the number deg(t) = α1 + . . . + αn is

called the degree of t.

(c) The map log : Tn → Nn defined by xα1

1 · · ·xαn
n 7→ (α1, . . . , αn) is called

the logarithm.

Note that the set Tn is a commutative monoid whose identity element is
1 = x0

1 · · ·x0
n. It is easy to prove that the map log : Tn → Nn is an isomorphism

of monoids, and the monoid Tn does not depend on the ring of coefficients R.

Definition 1.1.9. Let n ≥ 1 and let f =
∑

α∈Nn cαx
α ∈ R[x1, . . . , xn] be a

polynomial.

(a) For every α ∈ Nn the element cα ∈ R is called the coefficient of the
term xα in f .

(b) The set {xα ∈ Tn | cα 6= 0} is called the support of f and denoted by
Supp(f). In particular Supp(0) = ∅.

(c) If f 6= 0, the number max{deg(xα) | xα ∈ Supp(f)} is called the degree
of f and denoted by deg(f). The degree of the zero polynomial is not
defined.

For example, let f ∈ Q[x1, x2, x3] be the polynomial

f = x1x2x3 −
3

5
x3

1 + 5x3
2 − 4x3

3 + x1x2 − 5x1 − 7x2 + 15

The support of f is

Supp(f) = {x3
1, x

3
2, x

3
3, x1x2, x1, x2, 1}

and consists of 7 terms. The terms in Supp(f) have been ordered by decreasing
degree; the sequence of degrees is 3, 3, 3, 2, 1, 1, 0. However, this is not enough
to order them completely since there are several terms with the same degree.
Complete orderings on Tn will be introduced in Section 1.2.1.

Consider the following definition.

Definition 1.1.10. Let n, k ≥ 1, and let f1, . . . , fk ∈ R[x1, . . . , xn]; then we
define the set

〈f1, . . . , fk〉 =
{

k∑

i=1

hifi | h1, . . . , hk ∈ R[x1, . . . , xn]

}
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The crucial fact is that 〈f1, . . . , fk〉 is an ideal in R[x1, . . . , xn] (a proof is
given in Lemma 3, Chapter 1.4, in [CLO92]) which is called the ideal generated
by f1, . . . , fk.

We recall Definition 1.1.4 and specify it further in the case of polynomial
ideals. We say that a polynomial ideal I ⊆ R[x1, . . . , xn] is finitely generated
if there exist f1, . . . , fk ∈ R[x1, . . . , xn] such that I = 〈f1, . . . , fk〉; then the set
{f1, . . . , fk} is called a system of generators or a basis of I.

In this respect, there is a nice analogy between polynomial algebra and
linear algebra. Let P = K[x1, . . . , xn] be a polynomial ring over the field K;
the definition of ideal of P is similar to the definition of vector subspace over K;
further, the ideal generated by a set of polynomials f1, . . . , fk ∈ P is similar to
the span of a finite number of vectors v1, . . . , vk, since the linear combinations
are built up using field coefficients for the span, and polynomial coefficients for
the ideal generated. In contrast to vector spaces, a basis of a polynomial ideal
does not need to meet the condition of linear independence. This fact causes
difficulties in extending the univariate division algorithm to the multivariate
case (see Section 1.2.2) and, consequently, implies that a polynomial in an ideal
could be expressed as a P -linear combination of the basis elements in different
ways. Nevertheless, for polynomial rings over fields, the following fundamental
result holds.

Theorem 1.1.11. (Hilbert’s Basis Theorem)
Let n ≥ 1, and let K be a field. Every ideal I ⊆ K[x1, . . . , xn] is finitely
generated, that is I = 〈f1, . . . , fk〉 for some f1, . . . , fk ∈ I.

Proof. See Theorem 4, Section 5, Chapter 2 in [CLO92].

Hilbert’s Basis Theorem guarantees that any ideal I ⊆ K[x1, . . . , xn] has a
finite system of generators. Nevertheless I may have many different bases: in
Section 1.2.3 we will define a very useful type of basis, namely a Gröbner basis,
which rapidly became, since its invention, a fundamental tool for modern alge-
bra, both for its theoretical and practical consequences. Then in Section 1.3.4
and only for zero-dimensional ideals we will introduce the notion of border basis,
a useful generalization of Gröbner bases to tackle problems arising in numerical
analysis.

1.1.2 Fields of rational functions

It is well-known that the ring of integers Z can be embedded in any field of
characteristic 0, the “smallest” being the field of rational numbers Q, since Q

is formed by the fractions m
n

, where m ∈ Z, n ∈ Z \ {0}. This construction can
be generalized to any integral domain R.

Proposition 1.1.12. Let R be an integral domain. We consider the set of
pairs {(r, s) | r, s ∈ R and s 6= 0}. For two such pairs (r, s), (r′, s′), we let
(r, s) ∼ (r′, s′) if and only if rs′ − r′s = 0.
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(a) The relation ∼ is an equivalence relation.

(b) Let us denote the set of all equivalence classes by Q(R) and the equivalence
class of a pair (r, s) by r

s
. Then the rules

r

s
+
r′

s′
=
s′r + sr′

ss′
and

r

s
· r

′

s′
=
rr′

ss′

for all r, r′ ∈ R, and for all s, s′ ∈ R \ {0} make Q(R) into a field.

(c) The map R→ Q(R) defined by r → r
1 is a ring homomorphism.

Proof. See Proposition 3.5.2 in [KR00].

Definition 1.1.13. Let R be an integral domain, and let Q(R) be the set
defined in Proposition 1.1.12; then Q(R) is called the quotient field, or field
of fractions of R.

Let K be an arbitrary field, let x1, . . . , xn be indeterminates, and P =
K[x1, . . . , xn] be a polynomial ring. A well known example of the previous
construction is given by the field of rational functions

K(x1, . . . , xn) = Q(P ) =

{
f(x1, . . . , xn)

g(x1, . . . , xn)
: f, g ∈ K[x1, . . . , xn], g 6= 0

}

which is the field of fractions of the polynomial ring P .

1.2 Introduction to Gröbner bases

1.2.1 Term orderings and leading terms

In Section 1.1.1 we hinted at the problem of how to arrange the elements of the
support of a polynomial: here, we consider in detail this problem.

Using the recursive definition of multivariate polynomials, we see that the
way of writing the terms in the support depends on the univariate case, and
thus on how T1 is ordered. There is no unique way to do it. For instance, if
we look at the univariate polynomial f(x) = 1 + 3x − 2x3 we see that there
are 6 different representations of f which are related to the 6 different ways
of ordering the three elements in Supp(f) = {1, x, x2}, namely 1 + 3x − 2x3,
1 − 2x3 + 3x, 3x + 1 − 2x3, 3x − 2x3 + 1, −2x3 + 1 + 3x and −2x3 + 3x + 1.
Indeed, there is a technical reason which validates only the first and the last
representations. Suppose we want to multiply f(x) by x2, say. After termwise
multiplication, the rule continues to hold and we do not have to reorder the
result, which on the contrary does not happen in the other cases. This leads
to an extra property that an ordering of terms should have, the property of
being compatible with multiplication. In a more technical setting we require
that the total ordering on T1 makes it into an ordered monoid. For instance,
the specification 1 < x implies x < x2 < x3, and so on; for T1 only two possible
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orderings are left, the one described by 1 < x and the one described by x < 1.
This is enough for the univariate polynomials and also for the multivariate ones,
if a recursive representation is used.

Nevertheless the problem of how to order terms in Tn (when n > 1) cannot
be solved using the previous arguments, since, for instance, it is not well defined
if the polynomial f(x1, x2, x3) = x1x3 + 3x2

2 should be written as x1x3 + 3x2
2 or

rather as 3x2
2 + x1x3. Thus total orderings on Tn are introduced and discussed

in this section.

Definition 1.2.1. Let (Γ, ◦) be a commutative monoid. A relation σ on Γ is
a subset of Γ×Γ. If a pair (γ1, γ2) is in that subset, we shall write γ1 ≥σ γ2. A
relation σ on Γ is called complete if any two elements γ1, γ2 ∈ Γ are comparable,
i.e. if we have γ1 ≥σ γ2 or γ2 ≥σ γ1. A complete relation σ on Γ is called a
monoid ordering if the following conditions are satisfied for all γ1, γ2, γ3 ∈ Γ.

(a) γ1 ≥σ γ1

(b) γ1 ≥σ γ2 and γ2 ≥σ γ1 imply γ1 = γ2

(c) γ1 ≥σ γ2 and γ2 ≥σ γ3 imply γ1 ≥σ γ3

(d) γ1 ≥σ γ2 implies γ1 ◦ γ3 ≥σ γ2 ◦ γ3

If, in addition, we have

(e) γ1 ≥σ 1Γ for all γ ∈ Γ

then σ is called a term ordering on Γ.

If σ is a relation on Γ, and if γ1, γ2 ∈ Γ are such that γ1 ≥σ γ2, we also
write γ2 ≤σ γ1.

Let n ≥ 1, and Tn be the set of all terms in the indeterminates x1, . . . , xn.
Under the isomorphism of monoids log : Tn → Nn, term orderings on Tn cor-
respond 1− 1 to term orderings on Nn. We recall some of the most important
term orderings on Tn.

Definition 1.2.2. Let t1, t2 ∈ Tn. We say that

(a) t1 ≥Lex t2 if and only if the first non-zero component of log(t1)− log(t2) is
positive or t1 = t2. The relation ≥Lex defines a term ordering on Tn which
is called the lexicographic term ordering and is denoted by Lex.

(b) t1 ≥DegLex t2 if we have deg(t1) > deg(t2), or if deg(t1) = deg(t2)
and t1 ≥Lex t2. The relation ≥DegLex defines a term ordering on Tn

which is called the degree-lexicographic term ordering and is denoted
by DegLex.

(c) t1 ≥DegRevLex t2 if we have deg(t1) > deg(t2), or if deg(t1) = deg(t2) and
the last non-zero component of log(t1) − log(t2) is negative, or t1 = t2.
The relation ≥DegRevLex defines a term ordering on Tn which is called
the degree-reverse-lexicographic term ordering and is denoted by
DegRevLex.
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Example 1.2.3. Let x2
1x

2
3, x1x

2
2x3, and x5

2 be power products in T3.
Using Lex, the indeterminates x1, . . . , xn are ordered decreasingly, i.e. we

have x1 >Lex . . . >Lex xn. For instance, we have x2
1x

2
3 >Lex x

5
2 and x2

1x
2
3 >Lex

x1x
2
2x3, since both (2, 0, 2) − (0, 5, 0) = (2,−5, 2) and (2, 0, 2) − (1, 2, 1) =

(1,−2, 1) have a positive first component.
Using DegLex, we see that the indeterminates are again ordered decreasingly:

x1 >DegLex . . . >DegLex xn. But we have a different ordering on the terms:
x5

2 >DegLex x
2
1x

2
3, since deg(x5

2) = 5 > 4 = deg(x2
1x

2
3), and we have x2

1x
2
3 >DegLex

x1x
2
2x

2
3, since deg(x2

1x
2
3) = 4 = deg(x1x

2
2x3) and (2, 0, 2) − (1, 2, 1) = (1,−2, 1)

has a positive first component.
Once again, using DegRevLex, the indeterminates x1, . . . , xn are ordered

decreasingly. In this case we have x5
2 >DegRevLex x

2
1x

2
3, since deg(x5

2) = 5 > 4 =
deg(x2

1x
2
3), and we have x1x

2
2x3 >DegRevLex x

2
1x

2
3, since both terms have degree 4

and (1, 2, 1)− (2, 0, 2) = (−1, 2,−1) has a negative last component.

Definition 1.2.4. A monoid ordering σ on Tn is called degree compatible
if t1 ≥σ t2 for t1, t2 ∈ Tn implies deg(t1) ≥ deg(t2).

Note that the term orderings DegLex and DegRevLex are degree compatible.

Once a term ordering on Tn is chosen, each non-zero polynomial f can be
represented in a unique way as a sum according to the sorted list of terms in
Supp(f). The hierarchy created in Supp(f) implies the existence of a power
product which is “bigger” and “more important” than the other terms. The
last part of this section is devoted to introducing and explaining this notion and
related concepts, since one of the main ideas of Computational Commutative
Algebra is to study or detect properties of ideals using information coming
from these mathematical objects. In what follows, we let R be a ring, n ≥ 1,
P = R[x1, . . . , xn] be a polynomial ring, and σ be a term ordering on Tn. For
each polynomial f ∈ P \ {0} we shall use the following unique representation.

f =
k∑

i=1

citi (1.2)

where ci ∈ R \ {0}, and where t1, . . . , ts ∈ Tn are such that t1 >σ . . . >σ ts.

Definition 1.2.5. For a non-zero element f ∈ P , let f =
∑k

i=1 citi be the
representation according to (1.2).

(a) The term LTσ(f) = t1 ∈ Tn is called the leading term of f w.r.t. σ.

(b) The element LCσ(f) = c1 ∈ R\{0} is called the leading coefficient of f
w.r.t. σ. If LCσ(f) = 1 , we say that f is monic.

(c) The element LMσ(f) = LCσ(f) · LTσ(f) = c1t1 is called the leading
monomial of f w.r.t. σ.

Note that for the zero polynomial f these concepts are not defined.
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Definition 1.2.6. Let I ⊆ P be an ideal.

(a) The ideal LTσ(I) = 〈LTσ(f) | f ∈ I \ {0}〉 is called the leading term
ideal of I with respect to σ.

(b) The set {LTσ(f) | f ∈ I \ {0}} ⊆ Tn will be denoted by LTσ{I}.

Note that, for I = 〈0〉, we get LTσ(I) = 〈0〉 and LTσ{I} = ∅, using the
above definitions. If f1, . . . , fk ∈ P \ {0}, and if I = 〈f1, . . . , fk〉 is the ideal
generated by them, we have 〈LTσ(f1), . . . ,LTσ(fk)〉 ⊆ LTσ(I). The following
example shows that this can be a proper inclusion.

Example 1.2.7. Let K be a field, and I be the ideal in K[x, y] generated by
f1 = x−1 and f2 = xy−3; let σ = DegLex. Then f = y ·f1−1 ·f2 = −y+3 ∈ I
implies LTσ(f) = y ∈ LTσ(I), but y does not belong to the ideal generated by
LTσ(f1) = x and LTσ(f2) = xy.

Nevertheless, there are sets of polynomials of I whose leading terms gener-
ate LTσ(I) as the next proposition shows.

Proposition 1.2.8. Let I ⊆ P be an ideal. Then there exist f1, . . . , fk ∈ I
such that we have LTσ(I) = 〈LTσ(f1), . . . ,LTσ(fk)〉.

Proof. See Proposition 1.5.6. in [KR00].

In Example 1.2.7 we saw that for f = y·f1−1·f2 = −y+3 and σ = DegLex the
leading monomials of the two summands cancel out, so that y, the leading term
of the result, is smaller than the leading terms of the summands. This example
shows that some generators have a special behaviour with respect to the leading
terms of the elements they generate. More precisely, we have that y = LTσ(f) /∈
〈LTσ(f1),LTσ(f1)〉 = 〈x, xy〉. However, according to Proposition 1.2.8, there
exists another set of generators of 〈f1, f2〉 whose leading terms generate the
leading term ideal. This is a simple example showing that not all systems of
generators of an ideal are equal: some systems of generators are “more” special
than others, as will be evident in Section 1.2.3 once the very important notion
of Gröbner basis will be introduced.

In order to point out the importance of the set LTσ{I} we consider the
following example.

Example 1.2.9. Let I ⊆ Q[x, y, z] be the ideal generated by f1 = 2x − y and
f2 = y2+2, and let σ = DegLex. We assert that LTσ(I) = 〈LTσ(f1),LTσ(f2)〉 =
〈x, y2〉; it follows that the set LTσ{I} contains all the terms which are multiples
of x or y2. Consider the residue class ring Q[x, y, z]/I: it is clear that it can
be viewed as a Q-vector space. Note that a basis of Q[x, y, z]/I is given by the
residue classes of the infinite set {1, y, z, yz, z2, yz2, z3, . . .} which is equal to the
set T3 \ LTσ{I}.

The conclusion of Example 1.2.9 is indeed an example of a fundamental result
in Computational Commutative Algebra, known as Macaulay’s Basis Theorem.
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Theorem 1.2.10. (Macaulay’s Basis Theorem)
Let K be a field, let P = K[x1, . . . , xn] be a polynomial ring over K, let I ⊆ P
be an ideal, and let σ be a term ordering on Tn. We denote the set of all terms
in Tn \ LTσ{I} by B. Then the residue classes of the elements of B form a
basis of the K-vector space P/I.

Proof. See Theorem 1.5.7 in [KR00].

Macaulay’s Basis Theorem gives us a first idea of how to compute effectively
in P/I. If, for some term ordering σ, LTσ(I) is known, the theorem guarantees
that it is possible to represent every element of P/I uniquely as a finite linear
combination of the residue classes of the elements of Tn \ LTσ{I}.

1.2.2 Division algorithm and rewrite rules

Macaulay’s Basis Theorem is the first step towards being able to compute in
residue class rings P/I, where P = K[x1, . . . , xn] is a polynomial ring over a
field K, σ is a term ordering on Tn, and I ⊆ P is a non-zero ideal. One problem
that has still to be addressed is the lack of an effective procedure for writing
each residue class as a linear combination of the residue classes of the terms
contained in Tn \ LTσ{I}. For univariate polynomials the answer is given by
the division with remainder algorithm, as shown in the following example.

Example 1.2.11. In the case K = Q, n = 1, and P = K[x1] = K[x], consider
the polynomials f = 3x4 + 2x2 + x + 1 and g = x2 + 1, and let I = 〈g〉 ⊆ P .
It is easy to prove that f ≡ x + 2 mod I. If we apply to f and g the division
with remainder procedure we obtain:

3x4 +2x2 +x +1 x2 +1
3x4 +3x2 3x2

−x2 +x +1
−x2 −1 −1

+x +2 3x2 −1

In other words we have f = qg+ r where q = 3x2 − 1 and r = x+ 2, and where
the characteristic property of the remainder r is deg(r) < deg(g).

The univariate polynomial ring K[x] over a field K is a principal ideal
domain, that is it has the property that all its ideals are principal. In the
univariate case the situation is as follows. Consider a non-zero ideal I ⊆ P ,
where P = K[x] is a polynomial ring over the field K, and let g = adx

d +
ad−1x

d−1+. . .+a0 be a generator of I such that ad 6= 0, i.e. such that deg(f) = d.
By using the division with remainder algorithm, for any given polynomial f we
get a representation f = qg+ r, where r is either zero or a polynomial of degree
less than d. This implies that every element in the ring K[x]/(g) can be uniquely
represented as a linear combination of the residue classes 1, x̄, . . . , x̄d−1, in which
the coefficients are exactly those of r.

When we deal with polynomials in two indeterminates, we can try to imitate
the procedure explained in Example 1.2.11 and proceed as follows.
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Example 1.2.12. Let f = xy + x − y, g1 = x − 1, and g2 = xy − 3 be three
polynomials in Q[x, y]. In order to imitate the division with remainder algorithm
we look for polynomials q1, q2, and r such that f = q1g1 + q2g2 + r. With that
goal, we eliminate LTDegLex(f) step by step as follows:

xy +x −y x −1
xy −y y

+x
+x −1 +1

+1 y +1

Note that LTDegLex(1) = 1 is not divisible by LTDegLex(g1) or LTDegLex(g2) so
that it has to be added to the remainder. We obtain a representation f = q1g1+
q2g2 + r such that q1 = y + 1, q2 = 0, and r = 1. Note that we have deg(r) =
0 < 1 = deg(g1).

Example 1.2.13. The result of the procedure described in the previous exam-
ple depends very much on the order of the elements g1, g2. For instance, if we
let g′1 = g2 and g′2 = g1, and look again for the polynomials q′1, q

′
2, and r′ such

that f = q′1g
′
1 + q′2g

′
2 + r′, we get a different result:

xy +x −y xy −3
xy −3 +1

+x −y +3 +1

x −y +3 x −1
x −1 +1
−y +4 +1

We find a representation f = q′2g1 + q′1g2 + r′ such that q′1 = 1, q′2 = 1, and
r′ = −y + 4 6= r.

Let K be a field, n ≥ 1, P = K[x1, . . . , xn] be a polynomial ring, and σ
be a term ordering on Tn. The procedure described in Example 1.2.12 can be
extended to the general case to obtain the following algorithm.

Algorithm 1.2.14. (The Division Algorithm)
Let s ≥ 1, and let f, g1, . . . , gs ∈ P \ {0}. Consider the following sequence of
instructions.

1. Let q1 = . . . = qs = 0, r = 0, and p = f .

2. Find the smallest i ∈ {1, . . . , s} such that LTσ(p) is a multiple of LTσ(gi)

If such an i exists, replace qi by qi + LMσ(p)
LMσ(gi)

and p by p − LMσ(p)
LMσ(gi)

· gi

Otherwise, replace r by r + LMσ(p) and p by p− LMσ(p).

3. Repeat step 2 until p = 0. Return the tuple (q1, . . . , qs) ∈ P s, the poly-
nomial r ∈ P , and stop.

Theorem 1.2.15. Algorithm 1.2.14 returns a tuple (q1, . . . , qs) ∈ P s and a
polynomial r ∈ P such that

f = q1g1 + . . .+ qsgs + r
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and either r = 0 or r is a K-linear combination of monomials none of which
is divisible by any of LTσ(g1), . . . ,LTσ(gs). Furthermore, if qigi 6= 0, then we
have

deg(f) ≥ deg(qigi)

Proof. See Theorem 3, Section 3, Chapter 2 in [CLO92].

The following definition will be of fundamental importance when we discuss
normal forms (see Section 1.2.3).

Definition 1.2.16. Let s ≥ 1, let f, g1, . . . , gs ∈ P \ {0}, and let G be the
tuple (g1, . . . , gs). We apply the Division Algorithm and obtain a representation
f = q1g1 + . . .+ qsgs + r with q1, . . . , qs, r ∈ P . Then the polynomial r is called
the normal remainder of f with respect to G and is denoted by NRσ,G(f), or
simply by NRG(f) if no confusion can arise. For f = 0, we let NRG(f) = 0.

If we carefully look at the Division Algorithm, we see that the event which
triggers step 2 is the detection of a term in the support of p which is a multiple
of one of the leading terms LTσ(g1), . . . ,LTσ(gs). Once such a term has been
found, we use the corresponding polynomial gi as a rewrite rule for replacing
its leading term by its “tail”, with the obvious adjustment if gi is not monic.
Note that in the Division Algorithm the rewrite rules have a well defined hi-
erarchy, i.e. the application of the first rewrite rule is preferred to the second
one, and so on. If instead we were allowed to use at each step any applicable
rewrite rule, we could obtain a different result (as shown in Example 1.2.12).
Nevertheless in Section 1.2.3 we will prove the existence of sets of rewrite rules
with the property that any possible combination of the applicable rewrite rules
will eventually lead to the same result. We rephrase the above ideas in a more
technical way as follows.

Definition 1.2.17. Let g1, . . . , gs ∈ P \ {0} and G = {g1, . . . , gs}.
(a) Let f1, f2 ∈ P , and suppose there exists a constant c ∈ K, a term

t ∈ Tn, and an index i ∈ {1, . . . , s} such that f2 = f1 − c t gi and
t · LTσ(gi) 6∈ Supp(f2). Then we say that f1 reduces to f2 in one step

using the rewrite rule defined by gi, and we write f1
gi−→ f2. The passage

from f1 to f2 is also called a reduction step.

(b) The transitive closure of the relations
g1−→, . . . , gs−→ is called the rewrite

relation defined by G and is denoted by
G−→.

(c) An element f1 ∈ P with the property that there is no i ∈ {1, . . . , s} and

no f2 ∈ P \ {f1} such that f1
gi−→ f2 is called irreducible with respect

to
G−→.

(d) The equivalence relation defined by
G−→ will be denoted by

G←→.

In the following proposition we give a fundamental property of rewrite rela-
tions.
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Proposition 1.2.18. Let f ∈ P , g1, . . . , gs ∈ P \{0}, and let G = {g1, . . . , gs}.
Then we have f

G←→ 0 if and only if f ∈ 〈g1, . . . , gs〉.

Proof. See Proposition 2.2.2 in [KR00].

Unfortunately it is not clear how we could use Proposition 1.2.18 to check
whether a given polynomial f ∈ P is contained in the ideal 〈g1, . . . , gs〉 (and thus
solving the Ideal Membership Problem), because we do not know the direction of

the reduction steps in f
G←→ 0. In other words, if we use only the reduction steps

f = f0
gi1−−→ f1

gi2−−→ . . ., we might get stuck at some point with an irreducible

element with respect to
G−→, as shown in the following example.

Example 1.2.19. Let n = 2, P = Q[x, y], g1 = x − 1 and g2 = xy − 3 be
polynomials of P , G = {g1, g2}, and σ = DegLex. Consider the polynomial
f = x2y − 3; since f = 3 · g1 + x · g2 it follows that it is contained in the ideal

〈g1, g2〉. But if we use the reduction step f
g1−→ xy− 3

g1−→ y− 3, we arrive at an

irreducible element with respect to
G−→.

We conclude that, only with the use of a set of rewrite rules, or equivalently
with the Division Algorithm, it is not possible to solve the ideal membership
problem, i.e. it is not always possible to decide whether an element f ∈ P is
contained in the ideal 〈g1, . . . , gs〉. A positive answer in this direction is given
in the following section by the theory of Gröbner bases.

1.2.3 Gröbner bases

At the end of Section 1.2.1 we observed that not all of systems of generators of
a polynomial ideal are equal, that means there exist systems of generators that
are more special than others. We called special the sets of polynomials which ex-
hibited a particular behaviour with respect to the leading terms of the elements
they generated. In this section we introduce another aspect under which a gen-
erating set of polynomials could be considered special. Let P = K[x1, . . . , xn]
be a polynomial ring over a field K, I ⊆ P an ideal, {g1, . . . , gs} be a generating
set of I, and σ a term ordering on Tn. We recall from Section 1.2.2 that every gi

can be viewed as a rewrite rule, that is a rule for replacing LMσ(gi) by its tail
LMσ(gi) − gi, a polynomial that indeed represents the same residue class. If a
polynomial f ∈ P contains a term in its support which is a multiple of LTσ(gi)
for some i ∈ {1, . . . , s} then we can use the rule associated to gi and rewrite f .
The element obtained in this way is congruent to f modulo I. The procedure
of moving from one representative of this residue class to another resembles the
division algorithm. However, if we apply the rewriting rules g1, . . . , gs in a dif-
ferent order we obtain a different result (see Example 1.2.12). The generating
set {g1, . . . , gs} of I is considered special if, no matter which order we choose, we
always arrive at the same final result. In this section we prove the equivalence of
the different conditions under which some sets of polynomials are called special,
and combine all these ideas with the very important notion of Gröbner bases.
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As usual we let K be a field, n ≥ 1, P = K[x1, . . . , xn] a polynomial ring,
and σ a term ordering on Tn. In the following theorem we provide some basic
and equivalent characterizations of Gröbner bases (see also Proposition 1.2.8).

Theorem 1.2.20. (Characterization of Gröbner Bases)
Let G = {g1, . . . , gs} be a set of non-zero polynomials of P , let I = 〈g1, . . . , gs〉 ⊆
P the ideal generated by G, and

G−→ the corresponding rewrite rule. The following
conditions are equivalent.

(a) For every element f ∈ I \ {0}, there are f1, . . . , fs ∈ P such that f =∑s
i=1 figi and LTσ(f) ≥ LTσ(figi), for all i = 1, . . . , s such that figi 6= 0.

(b) The set {LTσ(g1), . . . ,LTσ(gs)} generates the ideal LTσ(I).

(c) For an element f ∈ P , we have f
G−→ 0 if and only if f ∈ I.

(d) If f ∈ I is irreducible with respect to
G−→ then we have f = 0.

(e) For every element f1 ∈ P , there is a unique element f2 ∈ P such that

f1
G−→ f2 and f2 is irreducible with respect to

G−→.

Proof. See Theorem 2.4.1 in [KR00].

Definition 1.2.21. Let G = {g1, . . . , gs} ⊆ P be a set of non-zero polynomials
which generates the ideal I = 〈g1, . . . , gs〉 ⊆ P . If the conditions of Theo-
rem 1.2.20 are satisfied, then G is called a Gröbner basis of I with respect
to σ, or equivalently a σ-Gröbner basis of I. In the case I = 〈0〉, the only
possible Gröbner basis is G = ∅.

The following result concerns the existence of Gröbner bases. From Propo-
sition 1.2.8 it follows that there are polynomials g1, . . . , gs ∈ I satisfying condi-
tion (b) of Theorem 1.2.20. The question is whether they generate the ideal I;
the following proposition answers to it affirmatively.

Proposition 1.2.22. (Existence of a σ-Gröbner Basis)
Let I be a non-zero ideal of P .

(a) Given g1, . . . , gs ∈ I \ {0} such that LTσ(I) = 〈LTσ(g1), . . . ,LTσ(gs)〉, we
have I = 〈g1, . . . , gs〉, and the set G is a σ-Gröbner basis of I.

(b) The ideal I has a σ-Gröbner basis G = {g1, . . . , gs} ⊆ I \ {0}.

Proof. See Proposition 2.4.3 in [KR00].

The above result does not give any guarantees about the uniqueness of
Gröbner bases: given a term ordering σ, an ideal I ⊆ P has many σ-Gröbner
bases. For instance, we can add arbitrary non-zero elements of I to a σ-Gröbner
basis and it remains a σ-Gröbner basis of I. The notion of σ-Gröbner basis can
be refined to achieve uniqueness as follows.
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Definition 1.2.23. Let G = {g1, . . . , gs} ⊆ P \ {0} and I = 〈g1, . . . , gs〉. We
say that G is a reduced σ-Gröbner basis of I if the following conditions are
satisfied.

(a) For i = 1, . . . , s, we have LCσ(gi) = 1.

(b) {LTσ(g1), . . . ,LTσ(gs)} is a minimal system of generators of LTσ(I).

(c) For i = 1, . . . , s, we have Supp(gi − LTσ(gi)) ∩ LTσ{I} = ∅.

Theorem 1.2.24. (Existence and uniqueness of reduced σ-Gröbner
bases) For every ideal I ⊆ P there exists a unique reduced σ-Gröbner basis.

Proof. See Theorem 2.4.13 in [KR00].

Let G = {g1, . . . , gs} be a σ-Gröbner basis of the ideal I = 〈g1, . . . , gs〉 ⊆ P ,
and let f ∈ P . By an abuse of notation we call G the tuple (g1, . . . , gs) as
well; from Theorem 1.2.20 part (e) it follows that there exists a unique fG ∈ P
such that f

G−→ fG and fG is irreducible w.r.t.
G−→. A priori this element seems

to depend on the Gröbner basis chosen, though in facr it does not, as proved
in [KR00], Proposition 2.4.7. We give a name to this important concept.

Definition 1.2.25. Let I ⊆ P be a non-zero ideal, and let f ∈ P . The element
fG ∈ P described above is called the normal form of f modulo I with respect
to σ. It is denoted by NFσ,I(f), or simply NFσ(f) if it is clear which ideal is
considered.

The following corollary contains the most important property of normal
forms.

Corollary 1.2.26. In the above situation NRG(f) agrees with NFσ,I(f); in
particular, the normal remainder does not depend on the order of the elements
g1, . . . , gs.

We observe that the Division Algorithm with respect to a Gröbner basis
therefore provides an effective method for computing normal forms, and fur-
nishes a direct solution to the ideal membership problem, that is the prob-
lem of checking whether a polynomial is contained in a given polynomial ideal
(see [CLO92] and [KR00], Proposition 2.4.10).

1.3 Introduction to Border bases

In this section we summarize the theory of border bases of a zero-dimensional
ideal I in the polynomial ring P = K[x1, . . . , xn]. The main idea behind the
notion of border basis is the search for more “general” systems of generators
of I, which nevertheless give rise to a K-basis of the quotient ring P/I. In
contrast to Gröbner bases theory which gives a description of P/I using the set
of terms Tn \LTσ{I} (see Macaulay’s Basis Theorem), border basis theory aims
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at describing the same quotient ring (as well as the ideal I) using a different
and more general concept, i.e. a factor closed set of monomials O which may
not depend on any term ordering σ. If there exists a term ordering σ such
that O = Tn \ LTσ{I}, we will show that the O-border basis of I contains the
reduced σ-Gröbner basis of I. Nevertheless, we will see that there exist border
bases that cannot be associated to any Gröbner basis. This means that, in the
zero-dimensional case, the theory of border bases is indeed an extension of the
Gröbner basis theory.

This section is organized as follows: firstly, we introduce the notion of zero-
dimensional ideal; then, in Section 1.3.2 we define an order ideal O as a factor
closed set of terms of Tn. The advantages of using such a set rather than an
arbitrary one are manifold. For instance, we can define the border ∂O of O by
∂O = ∪n

i=1xiO\O. To describe the multiplicative structure of P/I it suffices to
know how products xit ∈ ∂O with t ∈ O are expressed as a linear combination
of monomials in O plus an element of I. Moreover, by defining ∂O = O∪∂O and
∂2O = ∂(∂O) and repeating this procedure, we can introduce higher borders,
and measure the “distance” of each term t from the set O. Although this notion
is not quite as well behaved as the degree, it enables us to define the Border
Division Algorithm (see Section 1.3.3), which is a generalization of the Division
Algorithm when no term ordering is given. Finally, Section 1.3.4 is dedicated
to defining formally the concept of border bases, analyzing their characteristics,
and comparing them with the theory of Gröbner bases.

1.3.1 Zero-dimensional ideals

For the rest of this chapter we let K be a field, P = K[x1, . . . , xn] a polynomial
ring over K, g1, . . . , gs ∈ P , and I = 〈g1, . . . , gs〉 ⊆ P be the generated ideal. In
order to introduce the notion of zero-dimensional ideal we recall the equivalent
conditions which define the Finiteness Criterion.

Proposition 1.3.1. (Finiteness Criterion)
Let σ be a term ordering on Tn. The following conditions are equivalent.

(a) For i = 1, . . . , n we have I ∩K[xi] 6= (0).

(b) The K-vector space P/I is finite-dimensional.

(c) The set Tn \ LTσ{I} is finite.

(d) For every i ∈ {1, . . . , n} there exists a number αi ≥ 0 such that we have
xαi

i ∈ LTσ(I).

Proof. See Proposition 3.7.1 in [KR00].

Definition 1.3.2. An ideal I = 〈g1, . . . , gs〉 ⊆ P is called zero-dimensional
if it satisfies the equivalent conditions of the Finiteness Criterion 1.3.1.
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1.3.2 Order ideals

Let Tn be the monoid of terms in P . The following kind of subset of Tn will be
central to this section.

Definition 1.3.3. Let O be a non-empty subset of Tn.

(a) The factor closure (abbr. closure) of O is the set O of all power products
in Tn which divide some power product of O.

(b) The set O is called an order ideal if O = O, i.e. if O is factor closed.

Since the concept of order ideal has been used in several branches of math-
ematics, it appears in the literature with many different names: a collection of
alternatives can be found in [KR05], Section 0.5. Given an order ideal O, we
introduce other useful subsets of Tn related to O.

Definition 1.3.4. Let O ⊆ Tn be an order ideal.

(a) The border ∂O of O is defined to be ∂O = (x1O ∪ · · · ∪ xnO) \ O. The
first border closure of O is the set ∂O = O ∪ ∂O.

(b) For every k ≥ 1, we inductively define the (k + 1)st border of O by

∂k+1O = ∂(∂kO) and the (k + 1)st border closure of O by the rule

∂k+1O = ∂kO ∪ ∂k+1O. For convenience, we let ∂0O = ∂0O = O.

(c) The elements of the minimal set of generators of the monomial ideal cor-
responding to Tn \ O are called the corners of O.

We observe that the set of corners of O is a subset of its border ∂O, and its
k−th border closure is an order ideal for every k ≥ 0.

Example 1.3.5. 1. Let O = {1, x, y, y2, xy2} ⊂ T2; the set O is not an
order ideal as it does not contain xy which is a factor of xy2 ∈ O. We
visualize O in Figure 1.1.

x

yx

1

y

Figure 1.1: Representation of O in T2

2. Let O = {1, x, y, x2, xy, y2, x3, x2y, y3, y4} ⊂ T2; the set O is an order
ideal. Its border is ∂O = {xy2, x4, x3y, x2y2, xy3, xy4, y5}, and its corners
are the set C = {xy2, x4, x3y, y5}. We visualize O, its border ∂O, and the
set of corners C in Figure 1.2.
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Figure 1.2: Representation of O, ∂O and C in T2

The following definition allows us to measure the “distance” of a term from
an order ideal.

Definition 1.3.6. Let O ⊆ Tn be an order ideal.

(a) For every t ∈ Tn, the unique number k ∈ N such that t ∈ ∂kO is called
the index of t with respect to O and is denoted by indO(t).

(b) For a polynomial f ∈ P \ {0}, we define the index of f with respect to O
(or the O-index of f) by indO(f) = max{indO(t) | t ∈ Supp(f)}.

We point out that there is a drawback to using the O-index to order terms
in Tn: the O-index ordering is not always compatible with multiplication since
indO(t) ≤ indO(t′) does not, in general, imply indO(tt′′) ≤ indO(t′t′′). We show
such a situation in the following example.

Example 1.3.7. Let O = {1, x, y, x2, xy, x2y} ⊆ T2. Then O is an order ideal
with border ∂O = {y2, xy2, x3, x2y2, x3y}. Figure 1.3 illustrates the situation.
Consider the terms x2 and y2: we have indO(x2) < indO(y2). However, multi-
plying both terms by x2 we get indO(x2 · x2) > indO(x2 · y2).

The following definition identifies those order ideals of particular interest
to us.

Definition 1.3.8. Let I ⊆ P be a zero-dimensional ideal, and O ⊆ Tn be a
factor closed set of terms. If the residue classes of the elements of O form a
vector space basis of P/I then we call O a quotient basis for I.

1.3.3 The border division algorithm

We let I ⊆ P be a zero-dimensional ideal and Tn be the monoid of terms
of P . Further, we let O = {t1, . . . , tµ} be a finite order ideal in Tn, and
∂O = {b1, . . . , bν} be its border. When possible, we shall use the order ideal O
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order ideal
first border
second border

y

1 x

Figure 1.3: Representation of O, ∂O and ∂2O in T2

as a quotient basis for the zero-dimensional ideal I. Given a zero-dimensional
ideal we shall look for a system of generators with the following shape.

Definition 1.3.9. A set of polynomials G = {g1, . . . , gν} is called an O-border
prebasis if the polynomials have the form gj = bj −

∑µ
i=1 αijti with each

coefficient αij ∈ K.

Using border prebases it is possible to define an algorithm for polynomial
division with remainder similar to the classical Division Algorithm (see Sec-
tion 1.2.2).

Algorithm 1.3.10. (The Border Division Algorithm)
Let O = {t1, . . . , tµ} be an order ideal in Tn, let ∂O = {b1, . . . , bν} be its border,
and {g1, . . . , gν} be an O-border prebasis. Given a polynomial f ∈ P , consider
the following sequence of instructions.

1. Let f1 = . . . = fν = 0, c1 = . . . = cµ = 0, and h = f .

2. If h = 0, return (f1, . . . , fν , c1, . . . , cµ) and stop.

3. If indO(h) = 0 then write h = c1t1+. . .+cµtµ with c1, . . . , cµ ∈ K. Return
(f1, . . . , fν , c1, . . . , cµ) and stop.

4. If indO(h) > 0 then let h = a1h1 + . . . + ashs with a1, . . . , as ∈ K \ {0}
and distinct h1, . . . , hs ∈ Tn such that indO(h1) = indO(h). Determine
the smallest index i ∈ {1, . . . , ν} for which h1 factors as h1 = t bi with a
term t ∈ Tn of degree indO(h)− 1. Subtract a1t gi from h, add a1t to fi,
and continue with step 2.

Theorem 1.3.11. Algorithm 1.3.10 returns a tuple (f1, . . . , fν , c1, . . . , cµ) ∈
P ν ×Kµ such that

f = f1g1 + . . .+ fνgν + c1t1 + . . .+ cµtµ

and deg(fi) ≤ indO(f)− 1 for all i ∈ {1, . . . , ν} with figi 6= 0. This representa-
tion does not depend on the choice of the term h1 in step 4.
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Proof. See Proposition 6.4.11 in [KR05].

As can happen with the Division Algorithm, the order of the polynomials in
the O-border prebasis can affect the outcome of the Border Division Algorithm.
Further, just as we did in Section 1.2.2, the result of the Border Division Algo-
rithm is used to define the normal O-remainder NRO,G(f) = c1t1 + . . .+cµtµ
of a polynomial f with respect to the tuple G = (g1, . . . , gν). The elements f
and NRO,G(f) represent the same residue class in the ring P/〈g1, . . . , gν〉; in
particular, the residue classes of the elements of O generate the K-vector space
P/〈g1, . . . , gν〉, though they do not always represent a basis of it. We formalize
this notion in Section 1.3.4.

Also in border basis theory it is possible to define the concept of rewrite
relation associated to a border prebasis G = {g1, . . . , gν}. Let f ∈ P , let
t ∈ Supp(f) be a multiple of a border term t = t′bi, and let c ∈ K be the
coefficient of t in f . Then h = f−ct′gi does not contain the term t anymore. We

say that f reduces to h in one step using gi and write f
gi−→ h. The reflexive,

transitive closure of the relations
gi−→, i ∈ {1, . . . , ν}, is called the rewrite

relation associated to G and is denoted by
G−→. Rewrite relations associated to

border prebases do not exhibit all the properties enjoyed by the ones associated

to Gröbner bases, nevertheless the equivalence relation
G←→ captures equivalence

modulo a zero-dimensional ideal, and this is enough for characterizing border
bases (see Theorem 1.3.19).

1.3.4 Border bases

In this subsection we define formally the notion of border bases.

Definition 1.3.12. Let B = {g1, . . . , gν} be an O-border prebasis, and let
I ⊆ P be an ideal containing B. If O is a quotient basis for I then B is called a
border basis of I founded on O, or more briefly, an O-border basis of I.

From Definition 1.3.12 it is not very clear that an O-border basis of I is
indeed a system of generators of the ideal: we claim this fact in the following
proposition.

Proposition 1.3.13. Let B be an O-border basis of a zero-dimensional ideal
I ⊆ P . Then the ideal I is generated by B.

Proof. See Proposition 6.4.15 in [KR05].

A necessary condition for the existence of an O-border basis of I is clearly
given by #O = dimK(P/I). However, this condition is not sufficient, as the
following example shows.

Example 1.3.14. Let P = Q[x, y], and let

I = 〈xy − 1

2
y2 − x+

1

2
y, x2 − y, y3 − 5y2 + 4y〉
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be a zero-dimensional ideal of P . It is easy to prove that dimQ(P/I) = 4; in T2

there are exactly 5 order ideals containing 4 elements:

O1 = {1, x, x2, x3}, O2 = {1, x, x2, y}, O3 = {1, x, y, xy}
O4 = {1, x, y, y2}, O5 = {1, y, y2, y3}

But not all of these are suitable for founding a border basis of I: in fact O2

cannot be a quotient basis for I since y − x2 ∈ I. Similarly O5 cannot form a
basis for P/I since y3 − 5y2 + 4y ∈ I.

The following fundamental proposition proves the existence and uniqueness
of border bases.

Proposition 1.3.15. (Existence and Uniqueness of Border Bases)
Let I ⊆ P be a zero-dimensional ideal, and let O = {t1, . . . , tµ} be a quotient
basis for I.

(a) There exists a unique O-border basis B of I.

(b) Let B be an O-border prebasis whose elements are in I. Then B is the
O-border basis of I.

(c) Let k be the field of definition of I. Then the O-border basis of I is
contained in k[x1, . . . , xn].

Proof. See Proposition 6.4.17 in [KR05].

The existence of a border basis for a zero-dimensional ideal I is related to
the existence of an order ideal O, which is also a quotient basis for I. From
Macaulay’s Basis Theorem we know that, given an ideal I, each term ordering σ
on Tn defines a unique order ideal Oσ(I) = Tn \ LTσ{I}, whose residue classes
form a vector space basis of P/I. The existence of border bases can thus be
proved using a result of Gröbner bases theory. We show it and the relationship
between Gröbner bases and border bases in the following proposition.

Proposition 1.3.16. Let σ be a term ordering on Tn, let I ⊆ P be a zero-
dimensional ideal, and Oσ(I) be the order ideal Tn \LTσ{I}. Then there exists
a unique Oσ(I)-border basis B of I, and the reduced σ-Gröbner basis of I is the
subset of B corresponding to the corners of Oσ(I).

Proof. See Proposition 6.4.18 in [KR05].

In general the ideal I does not necessarily have an O-border basis for every
order ideal O consisting of dimK(P/I) elements, but there always exists an O-
border basis of I, when O = Tn \ LTσ{I} and σ is some term ordering. On
the other hand, we show in Example 1.3.17 that not every border basis arises
from a term ordering. In particular, a border basis of an ideal I does not arise
from a term ordering exactly when the order ideal on which the basis is founded
is not of the form Oσ(I), for some term ordering σ. In this sense, the theory
of border bases of zero-dimensional ideals is a generalization of the theory of
Gröbner bases.



30 Preliminaries on polynomial algebra

Example 1.3.17. Let P = Q[x, y], let

I = 〈4xy − 5y2 − 6x+ 9y, x2 − y2 − 3x+ 3y, 2y3 − 9y2 − 2x+ 11y〉
be a zero-dimensional ideal of P , and O = {1, x, y, xy} ⊆ T2 be an order ideal. It
is easy to prove that O is a quotient basis for I, so Proposition 1.3.15 guarantees
the existence of the unique O-border basis B of I. However, B does not arise
from any term ordering σ on T2: in fact, if x <σ y then x2 <σ xy so that
LTσ(I) = 〈x2, xy, y3〉 or LTσ(I) = 〈x4, y〉. Much the same happens if y <σ x:
then y2 <σ xy and LTσ(I) = 〈y2, xy, x3〉 or LTσ(I) = 〈y4, x〉. In any case
Oσ(I) = T2 \ LTσ{I} 6= O.

We want to highlight the properties of border bases just as we did for Gröbner
bases (see Proposition 1.2.20). For this reason we first introduce the notion of
border form which mimics the concept of leading term.

Definition 1.3.18. Given f ∈ P , we write f = a1u1+. . .+asus with coefficients
a1, . . . , as ∈ K \ {0} and terms u1, . . . , us ∈ Tn satisfying indO(u1) ≥ . . . ≥
indO(us).

(a) For f 6= 0, we call BFO(f) =
∑

{i|indO(ui)=indO(f)} aiui ∈ P the border

form of f with respect to O. For f = 0, we let BFO(f) = 0.

(b) Given an ideal I ⊆ P , we call BFO(I) = 〈BFO(f) | f ∈ I〉 the border
form ideal of I with respect to O.

The following result holds.

Theorem 1.3.19. (Characterization of Border Bases)
Let I ⊆ P be a zero-dimensional ideal, O ⊆ Tn be a quotient basis for I,

B = {g1, . . . , gν} be the O-border basis of I, and
B−→ be the corresponding rewrite

rule. The following conditions are equivalent.

(a) For every f ∈ I \ {0}, there exist polynomials f1, . . . , fν ∈ P such that
f = f1g1 + . . .+ fνgν and deg(fi) ≤ indO(f)− 1 whenever fi 6= 0.

(b) The set {BFO(g1), . . . ,BFO(gν)} generates the ideal BFO(I).

(c) For an element f ∈ P , we have f
B−→ 0 if and only if f ∈ I.

(d) If f ∈ I is irreducible with respect to
B−→, then we have f = 0.

(e) For every element f1 ∈ P , there is a unique element f2 ∈ P such that

f1
B−→ f2 and f2 is irreducible with respect to

B−→.

Proof. See Propositions 6.4.23, 6.4.25, and 6.4.28 in [KR05].

Similarly to Gröbner bases, border bases exhibit good behaviour with respect
to the Border Division algorithm: in Proposition 6.4.19, [KR05] it is shown that
the normal O-remainder does not depend on the order of the elements of a
border basis. The notion of normal form is thus generalized to border basis
theory.
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Definition 1.3.20. Let B = {g1, . . . , gν} be the O-border basis of a zero-
dimensional ideal I. The O-normal form of a polynomial f ∈ P with respect
to O is the polynomial NFO,I = NFO,B(f).

We observe that if there exists a term ordering σ such that O = Oσ(I) we
have NFO,I(f) = NFσ,I(f).
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Chapter 2

Ideals of exact points

In this chapter we introduce and characterize a finite set of points, the most
important mathematical object of this thesis. Based on [KR05], Section 6.3,
in the first section we illustrate the concept of the vanishing ideal I(X) of an
affine point set X, and show how some geometric properties of X are related to
the algebraic properties of the affine coordinate ring P/I(X). In Section 2.2 we
describe the Buchberger-Möller Algorithm[BM82], an efficient method which,
starting from the coordinates of the points, computes a Gröbner basis of the
vanishing ideal of an affine point set. This classical result is generalized in two
different ways: in Section 2.3 we present some equivalent variants of it obtained
simply by replacing the operation of row reduction by the least squares method;
in Section 2.4 we perform a similar generalization for computing border bases
of ideals of points.

2.1 The vanishing ideal of a set of points

Let n ≥ 1, let K be a field, and P = K[x1, . . . , xn] be a polynomial ring over K.
We introduce the basic definition of a finite set of points of Kn.

Definition 2.1.1. An element p = (c1, . . . , cn) ∈ Kn is called a point of Kn;
the numbers c1, . . . , cn ∈ K are called the coordinates of p.
A finite set X = {p1, . . . , ps} of distinct points p1, . . . , ps ∈ Kn is called an
affine point set, or more simply a finite set of points of Kn.

We can generalize the notion of evaluation homomorphism (given in Sec-
tion 1.1.1) to a finite set X of points of Kn, and define the following objects.

Definition 2.1.2. Let X = {p1, . . . , ps} be an affine point set of Kn, and let
G = {g1, . . . , gk} ⊆ P be a non-empty finite set of polynomials.

33
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(a) The K−linear map evalX : P → Ks defined by

evalX(f) =




f(p1)
...

f(ps)




is called the evaluation map associated to X. For brevity we write f(X)
to mean evalX(f).

(b) The evaluation matrix of G at X, written MG(X) ∈ Mats×k(K), is
defined as having entry (i, j) equal to gj(pi), i.e. whose columns are the
images of the polynomials gi under the evaluation map.

An algebraic way to describe a finite set X of points of Kn is to give the set
of all the polynomials in P which vanish at all the points of X.

Definition 2.1.3. Let X ⊆ Kn be a finite set of points. The set of all polyno-
mials f ∈ P such that f(p) = 0 for all points p ∈ X, forms an ideal of P . This
ideal is called the vanishing ideal of X in P and is denoted by

I(X) = {f ∈ P | f(p) = 0, ∀ p ∈ X}

In the following example we compute the vanishing ideal in a very simple
case: s = 1, i.e. the set X is made up of a single point of Kn.

Example 2.1.4. Let p = (c1, . . . , cn) ∈ Kn be a point of Kn and let X = {p}.
It is simple to prove that the vanishing ideal of X is given by

I(X) = I(p) = 〈x1 − c1, . . . , xn − cn〉 ⊆ P

Note that, in this very particular case, the generators 〈x1− c1, . . . , xn− cn〉 are
both the reduced σ-Gröbner basis (for any term ordering σ), and the O-border
basis (where O = {1}) of the vanishing ideal I(X).

The basic properties of the vanishing ideal I(X) are collected in the following
proposition.

Proposition 2.1.5. (Basic Properties of vanishing ideals)
Let X = {p1, . . . , ps} be a finite set of distinct points of Kn.

(a) We have I(X) = I(p1) ∩ . . . ∩ I(ps).

(b) The map ϕ : P/I(X)→ Ks defined by ϕ(f + I(X)) = evalX(f) is an iso-
morphism of K-algebras. In particular, the ideal I(X) is zero-dimensional.

(c) For any term ordering σ on Tn, the set Oσ(I) = Tn \LTσ{I(X)} consists
of precisely s terms.

Proof. See Proposition 6.3.3 in [KR05].
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2.2 The Buchberger-Möller algorithm

In this section we present an algorithm, known as the Buchberger-Möller (BM)
Algorithm, for computing a Gröbner basis of the vanishing ideal I(X), where
X = {p1, . . . , ps} is a finite set of distinct points of Kn. A very naive way to
compute I(X) is to use the formula I(X) = I(p1)∩ . . .∩I(ps) given in Proposi-
tion 2.1.5, part (a), and the result of Example 2.1.4. However, this approach is
computationally not efficient for large sets of points, i.e. when s ≫ 0, because
the necessary intersection computations become very lengthly. To remedy this
situation an algorithm of low complexity (as it depends polynomially on n and s)
was presented by B. Buchberger and M. Möller in [BM82]. The success of the
BM-Algorithm is due to its efficiency, its intrinsic simplicity and its bent to
generalizations. Several ways to generalize it have since now been proposed: for
instance, it has been applied to points with multiplicity (see [Lak91]), to points
lying in projective spaces (see [ABKR00], [AKR05]), or to points known with
limited accuracy (see [HKPP06], [AFT08], [Fas08]). Though the BM-Algorithm
is already very efficient, there exist also variants to optimize it. For instance,
if K is the field of rational numbers, a modular version of the BM-Algorithm is
presented in [ABKR00], where a modular technique is used to tame the problem
of coefficient growth. We present here the BM-Algorithm as it was presented
in [BM82].

Remark 2.2.1. Before presenting the algorithm, we note that in [BM82] the
evaluation vectors are represented as rows rather than as columns. The reason
is that the authors decided to simplify the matrices by using row reductions,
that is by performing elementary operations on the rows. We recall here that a
matrix is in row echelon form if it satisfies the following requirements: 1) all
nonzero rows are above any rows of all zeros; 2) the leading coefficient of a row
(i.e. its first nonzero entry) is strictly to the right of the leading coefficient of
the row above it. A matrix can be always reduced to row echelon form using
elementary row operations.

Algorithm 2.2.2. (The Original Buchberger-Möller Algorithm)
Let K be a field, let n ≥ 1, let σ be a term ordering on the power products Tn,
and let X = {p1, . . . , ps} be a finite set of distinct points of Kn. Consider the
following sequence of instructions.

BM1 Start with the empty lists G = [ ], O = [ ], S = [ ], a list L = [1], and the
matrix M = (mij) over K with s columns and initially zero rows.

BM2 If L = [ ], return the pair (G,O) and stop. Otherwise, choose the
term t = minσ(L), the smallest according to the ordering σ, and delete
it from L.

BM3 Compute the evaluation vector t(X) = (t(p1), . . . , t(ps)) ∈ Ks, and re-
duce the matrix M ′ =

(
M
v

)
to row echelon form by computing

v = t(X)−
∑

i

αi(mi1, . . . ,mis) αi ∈ K
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BM4 If v = (0, . . . , 0) then append the polynomial t −∑αisi to G, where si

is the i-th element in S. Remove from L all multiples of t. Continue with
step BM2.

BM5 Otherwise v 6= (0, . . . , 0), so append v as a new row of M and append
t −∑i αisi as a new element of S. Adjoin t to O, and put into L those
elements of {x1t, . . . , xnt} which are neither multiples of an element of L
nor of LTσ(G). Continue with step BM2.

Theorem 2.2.3. Algorithm 2.2.2 stops after finitely many iterations. It re-
turns a pair (G,O) such that G is the reduced σ-Gröbner basis of the vanishing
ideal I(X) and O = Tn \ LTσ{I(X)} is a quotient basis of I(X).

Proof. See Theorem 6.3.10 in [KR05].

We illustrate the BM-Algorithm by reproducing a complete computation on
a small affine point set X.

Example 2.2.4. Let X be the finite set of points of Q2 consisting of the 4 points
p1 = (−1, 1), p2 = (0, 0), p3 = (1, 1), and p4 = (2, 4) and let σ =DegRevLex.
We compute I(X) and follow the steps of the algorithm.

BM1 Let G = [ ], O = [ ], S = [ ], and L = [1].

BM2 Choose t = 1, and let L = [ ].

BM3 Compute t(X) = (t(p1), . . . , t(p4)) = (1, 1, 1, 1) = (v1, v2, v3, v4).

BM5 Let M = (1, 1, 1, 1), S = [1], O = {1}, and L = [y, x].

BM2 Choose t = y and let L = [x].

BM3 Compute t(X) = (t(p1), . . . , t(p4)) = (1, 0, 1, 4) and v = (0,−1, 0, 3).

BM5 Let M =
(

1 1 1 1
0 −1 0 3

)
, S = [1, y − 1], O = {1, y}, and L = [x, y2].

BM2 Choose t = x and let L = [y2].

BM3 Compute t(X) = (t(p1), . . . , t(p4)) = (−1, 0, 1, 2) and v = (0, 0, 2, 6).

BM5 Let M =
(

1 1 1 1
0 −1 0 3
0 0 2 6

)
, S = [1, y − 1, x + y], O = {1, y, x}, and L =

[y2, xy, x2].

BM2 Choose t = y2 and let L = [xy, x2].

BM3 Compute t(X) = (t(p1), . . . , t(p4)) = (1, 0, 1, 16) and v = (0, 0, 0, 12).

BM5 Let M =

(
1 1 1 1
0 −1 0 3
0 0 2 6
0 0 0 12

)
, S = [1, y − 1, x+ y, y2 − y], O = {1, y, x, y2},

and L = [xy, x2, y3].
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BM2 Choose t = xy and let L = [x2, y3].

BM3 Compute t(X) = (t(p1), . . . , t(p4)) = (−1, 0, 1, 8) and v = (0, 0, 0, 0).

BM4 Let G = (xy − 1
2y

2 − x+ 1
2y) and L = [x2, y3].

BM2 Choose t = x2 and let L = [y3].

BM3 Compute t(X) = (t(p1), . . . , t(p4)) = (1, 0, 1, 4) and v = (0, 0, 0, 0).

BM4 Let G = (xy − 1
2y

2 − x+ 1
2y, x

2 − y) and L = [y3].

BM2 Choose t = y3 and let L = [ ].

BM3 Compute t(X) = (t(p1), . . . , t(p4)) = (1, 0, 1, 64) and v = (0, 0, 0, 0).

BM4 Let G = (xy − 1
2y

2 − x+ 1
2y, x

2 − y, y3 − 5y2 + 4y) and L = [ ].

BM2 Return (G,O) and stop.

The result of this computation is that G = {xy− 1
2y

2−x+ 1
2y, x

2−y, y3−5y2+4y}
is the reduced σ-Gröbner basis of I(X) andO = {1, y, x, y2} represents a Q-basis
of Q[x, y]/I(X).

2.3 Some variations to the BM-Algorithm

Though it is not evident from its design, from a conceptual point of view the
BM-Algorithm can be split into two principal tasks: determining the quotient
basisO (and implicitly LTσ{I(X)}), and then computing the reduced σ-Gröbner
basis G of I(X) from LTσ{I(X)} by linear algebra. The core of the first task
stands in the computation of a vector space basis of P/I(X): the reduction to
row echelon form performed in step BM3 is only a tool for testing the linear
dependence of the evaluation vector t(X) (in this particular case represented as
a row) on the space spanned by the rows of the matrix M . In Section 2.3.2 we
present an equivalent version of the BM-Algorithm which is essentially obtained
by replacing the operation of row reduction by another procedure for testing the
linear dependence of vectors, namely the method of least squares, introduced in
the following section.

2.3.1 The method of least squares

Let r, c ∈ N, with r > c, and let K be a field. Consider the linear system of
equations:

Ax = b (2.1)

where A ∈ Matr×c(K) is a full rank matrix, and b ∈ Kr is a vector. The linear
system Ax = b contains more equations than unknowns, i.e. it is overdeter-
mined. Usually a full rank overdetermined system does not allow any exact



38 Ideals of exact points

solution since a necessary condition for its existence is that the vector b belongs
to the subspace generated by the columns of A, which is generically a proper
subspace of Kr. In such cases the Least Squares Problem (LSP) comes into
play:

find x∗ ∈ Kc s.t. ‖Ax∗ − b‖2 = min
x∈Kc

‖Ax− b‖2 (2.2)

Solving (2.2) means looking for an “optimal” solution of Ax = b or, equiva-
lently, determining a vector x∗ ∈ Rc which minimizes the Euclidean distance
between Ax and b. If x∗ is the solution of the LSP, then we have

At(Ax∗ − b) = 0 (2.3)

We prove it by contadiction; suppose x ∈ Kc, z ∈ Kc, and α ∈ K and consider
the equality

‖A(x∗ + αz)− b‖22 = ‖(Ax∗ − b) + αAz‖22 =

= ‖Ax∗ − b‖22 + 2αztAt(Ax∗ − b) + α2‖Az‖22
If we choose z = −At(Ax − b) and α ∈ K such that 2α‖z‖22 < ‖Az‖22 then we
obtain the contradictory inequality ‖A(x∗ +αz)− b‖2 < ‖Ax∗− b‖2. From (2.3)
we may also conclude that, if x∗ is a solution of the LSP, then x∗+w solves (2.2)
if and only if w ∈ ker(A); since A has full column rank it follows that (2.2) admits
a unique solution.

In order to give an explicit solution to (2.2) we introduce the pseudoinverse
(also known as Moore-Penrose pseudoinverse) of a matrix which is a generaliza-
tion of the notion of the inverse matrix.

Definition 2.3.1. Let r, c ∈ N, and let A ∈ Matr×c(K); the Moore-Penrose
pseudoinverse (or more simply the pseudoinverse) of A is the unique matrix
A† ∈ Matc×r(K) satisfying the four Moore-Penrose conditions:

(i) AA†A = A

(ii) A†AA† = A†

(iii) (AA†)t = AA†

(iv) (A†A)t = A†A

If K = C, parts (iii) and (iv) of the above definition hold with the conjugate
transpose. In some special cases an explicit formula for A† is provided.

Proposition 2.3.2. Let A ∈ Matr×c(K).

(a) If A has orthonormal columns (that is AtA = Ic) or orthonormal rows
(that is AAt = Ir) then A† = At.

(b) If A has full column rank then A† = (AtA)−1At, and it is a left inverse
of A, that is A†A = Ic.
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(c) If A has full row rank then A† = At(AAt)−1, and it is a right inverse
of A, that is AA† = Ir.

(d) If both columns and rows of A are linearly independent, that is if A is a
non-singular square matrix, then A† = A−1.

Proof. See Section 5.5.4 in [GL89].

We have the following result.

Proposition 2.3.3. Let r, c ∈ N, with r > c, let A ∈ Matr×c(K) be a full
rank matrix, and S ⊆ Kr be the vector subspace generated by the columns of A.
Then the operation π : Kr → Kr defined by π : v 7→ AA†v is the orthogonal
projection onto S, that is Im(π) = S and π2 = π.

Proof. See Section 5.5.4 in [GL89].

Note that a similar result holds when r < c, that is in the case the matrix A
has full row rank and the subspace S is generated by its rows.

Now, we want to relate the notion of pseudoinverse to the LSP (2.2). If we
multiply each side of (2.1) by At we obtain

AtAx = Atb

which is a linear system whose exact solution x∗ ∈ Kc is

x∗ = (AtA)−1Atb = A†b (2.4)

The vector x∗ is indeed the unique solution of the LSP (2.2) since, from Proposi-
tion 2.3.3, we know that AA†b = Ax∗ is the projection of b onto the subspace S
generated by the columns of A. The vector

ρ∗ = b−Ax∗ = (I −AA†)b ∈ Kr (2.5)

is called the minimal residual of the least squares problem (2.2), and is often
used to check whether b belongs to S, as the following statement holds true:

b ∈ S ⇐⇒ ρ∗ = 0

Note that ρ∗ = 0 is also a necessary and sufficient condition to have an exact
solution to the overdetermined linear system (2.1).

2.3.2 Equivalent algorithms

In this section we present some equivalent variants of the BM-Algorithm. As
in Section 2.2 we let X = {p1, . . . , ps} be a finite set of distinct points of Kn,
and I(X) be its vanishing ideal. We start with a trivial variation of Algo-
rithm 2.2.2: a small change in step BM5 is performed in order to obtain a
matrix M whose transposed is the evaluation matrix MO(X) instead of MS(X)
as in the original version.
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Algorithm 2.3.4. In the setting of Algorithm 2.2.2, replace step BM5 by the
following instruction:

BM5’ Otherwise v 6= (0, . . . , 0), so append t(X) as a new row of M and
t−∑i αisi as a new element of S. Adjoin t to O, and put into L those
elements of {x1t, . . . , xnt} which are neither multiples of an element of L
nor of LTσ(G). Continue with step BM2.

It is easy to conclude that the above algorithm is equivalent to the BM-
Algorithm, and thus it returns the same result. In the following algorithm
we introduce deeper changes: the new version is obtained by replacing the
operation of row reduction performed in the BM-Algorithm, step BM3, by a
similar procedure for testing the linear dependence of vectors based on the least
squares method (see Section 2.3.1).

Algorithm 2.3.5. (The least squares version)
In the setting of Algorithm 2.2.2 consider the following sequence of instructions.

LS1 Start with the empty lists G = [ ], O = [ ], S = [ ], a list L = [1], and the
matrix M = (mij) over K with s rows and initially zero columns.

LS2 If L = [ ], return the pair (G,O) and stop. Otherwise, choose the term
t = minσ(L), the smallest according to the ordering σ, and delete it from L.

LS3 Compute the evaluation vector t(X) = (t(p1), . . . , t(ps)) ∈ Ks, and solve
the least squares problem Mx = b, where b = t(X), by computing the
vectors x∗ and ρ∗ (see formulas (2.4) and (2.5))

x∗ = M†b

ρ∗ = (Is −MM†)b

LS4 If ρ∗ = (0, . . . , 0) then append the polynomial t −∑x∗i si to G, where si

is the i-th element in S. Remove from L all multiples of t. Continue with
step LS2.

LS5 Otherwise ρ∗ 6= (0, . . . , 0), so append ρ∗(X) as a new column of M and
append t−∑i x

∗
i si as a new element of S. Adjoin t to O, and put into L

those elements of {x1t, . . . , xnt} which are neither multiples of an element
of L nor of LTσ(G). Continue with step LS2.

Theorem 2.3.6. Algorithm 2.3.5 stops after finitely many iterations. It re-
turns a pair (G,O) such that G is the reduced σ-Gröbner basis of the vanishing
ideal I(X) and O = Tn \ LTσ{I(X)} is a quotient basis of I(X).

Proof. We observe that this algorithm has the same structure of the BM-
Algorithm. Its termination and its correcteness can be simply proved by adapt-
ing the proof of the BM-Algorithm (e.g. see Proposition 6.3.10 in [KR05]) to
this particular case.
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Note that, differently from the classical BM-Algorithm, which computes the
matrix M making an incremental triangularization of the transposed of the
evaluation matrix MO(X) with operations of row reduction, Algorithm 2.3.5
builds M by computing, with the least squares method, an incremental orthog-
onalization of MO(X). From a computational point of view the operations in
step LS3 are not very demanding sinceM† = (M tM)−1M t and the matrixM tM
is diagonal. Our decision to give here a detailed description of Algorithm 2.3.5
is due to the fact that the generalized version of the BM-Algorithm for sets of
approximate points will be based on it (see Chapter 5).

2.4 Computation of border bases

In this section we describe a method for computing a border basis of the van-
ishing ideal I(X), where X = {p1, . . . , ps} is a finite set of distinct points of Kn.
The procedure consists essentially of two main tasks: determining a quotient
basis O for I(X), and then computing the border basis of I(X) founded on it.
We describe how to perform the first task using a strategy based on the BM-
Algorithm (or its variants, see Sections 2.2 and 2.3.2). The quotient basis O
is built stepwise: initially O is empty; then, at each iteration, a new power
product t is considered. If the evaluation vector t(X) is linearly independent of
the set of evaluation vectors {ti(X) | ti ∈ O} then t is added to O; otherwise t
is added to the set of corners of the order ideal.

Algorithm 2.4.1. (The Quotient Basis Algorithm)
Let K be a field, let n ≥ 1, and let X = {p1, . . . , ps} be a finite (non-empty) set
of distinct points of Kn. Consider the following sequence of instructions.

QB1 Start with the empty lists O = [ ], C = [ ], V = [ ], and a list L = [1].

QB2 If L = [ ] return O and stop. Otherwise, choose any term t ∈ L, and
delete it from L.

QB3 Compute the evaluation vector t(X) = (t(p1), . . . , t(ps)) ∈ Ks, and check
whether t(X) is linearly dependent on the elements of V .

QB4 If t(X) is linearly dependent on the elements of V , then add t to C.
Continue with step QB2.

QB5 Otherwise t(X) is linearly independent of the elements of V , so add t(X) to
the list V . Append t to O, and put into L those elements of {x1t, . . . , xnt}
which are neither multiples of an element of L nor of C. Continue with
step QB2.

Theorem 2.4.2. Algorithm 2.4.1 stops after finitely many iterations and re-
turns a set of terms O which is a quotient basis of I(X).

Proof. First we exhibit termination. In each iteration either step QB4 is per-
formed or step QB5. By its construction, the list V is made up of linearly
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independent vectors. Hence step QB5, which appends a vector to V , can be
performed at most s times. Since the list L is enlarged only in step QB5 and
each iteration removes one element of L, we arrive at L = ∅ after finitely many
iterations.

Now we exhibit correctness. Since, by construction, the set V = {t(X)|t ∈ O}
is made up of linearly independent vectors, it follows that the residue classes of
the elements of O form a vector space basis of P/I(X). To show that O is factor
closed we prove by induction on the number of iterations of the algorithm that,
after steps QB2-QB5 have been performed, L ∪ C is the set of corners of O.
This is clearly true after the first iteration: since X is not empty, the term t = 1
is added to O and L ∪ C = {x1, . . . , xn} is the set of corners of O. Now we
follow the steps of one iteration. Let t, t1, . . . , tk be the elements of L ∪ C, and
suppose that the term t ∈ L is considered at the current iteration. If step QB4
is performed, the claim is trivially true since neither O nor L ∪ C do change.
Suppose that the step QB5 is performed. The set of corners of O ∪ {t} is made
up by the elements z ∈ Tn which belong to the minimal set of generators of the
monomial ideal 〈t1, . . . , tk, x1t, . . . , xnt〉, that is the terms z = tj , j = 1 . . . k, or
z = xit, i = 1 . . . n, and such that z is not a multiple of any tj . Then the claim
follows from the definition of L in step QB5.

Note that in Algorithm 2.4.1 the main task of step QB3 is to check the linear
dependence of a set of vectors, which can be easily done using the techniques
we have already described, namely the row reduction (see Section 2.2) or the
method of least squares (see Section 2.3.1). Further, in step QB2 the choice
of the power product t to consider at each iteration is completely free: any
strategy that chooses a term t from the list L can be applied, since L is a
subset of the corners of O, and this fact guarantees that O∪{t} is factor closed.
This complete freedom allows Algorithm 2.4.1 to compute any quotient basis
for I(X) including those that do not arise from a term ordering σ. However, as a
particular case, the strategy of the BM-Algorithm can be used, where the power
product t is chosen according to a fixed term ordering σ, so that Algorithm 2.4.1
computes the quotient basis Oσ(I(X)) associated to σ. We show this particular
case in the following example.

Example 2.4.3. Let X be the finite set of points of R2 given in Example 2.2.4

X = {(−1, 1), (0, 0), (1, 1), (2, 4)}

We apply Algorithm 2.4.1 on X and follow its steps.

QB1 Let O = [ ], C = [ ], V = [ ], and L = [1].

QB2 Choose t = 1, and let L = [ ].

QB3 Compute t(X) = (1, 1, 1, 1).

QB5 The vector t(X) is linearly independent of the elements of V .
Let V = [(1, 1, 1, 1)], O = {1}, C = [ ] and L = [x, y].
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QB2 Choose t = x, and let L = [y].

QB3 Compute t(X) = (−1, 0, 1, 2).

QB5 The vector t(X) is linearly independent of the elements of V .
Let V = [(1, 1, 1, 1), (−1, 0, 1, 2)], O = {1, x}, C = [ ] and L = [x2, y].

QB2 Choose t = y, and let L = [x2].

QB3 Compute t(X) = (1, 0, 1, 4).

QB5 The vector t(X) is linearly independent of the elements of V .
Let V = [(1, 1, 1, 1), (−1, 0, 1, 2), (1, 0, 1, 4)], O = {1, x, y}, C = [ ] and
L = [x2, xy, y2].

QB2 Choose t = xy, and let L = [x2, y2].

QB3 Compute t(X) = (−1, 0, 1, 8).

QB5 The vector t(X) is linearly independent of the elements of V .
Let V = [(1, 1, 1, 1), (−1, 0, 1, 2), (1, 0, 1, 4), (−1, 0, 1, 8)], O = {1, x, y, xy},
C = [ ] and L = [x2, y2].

QB2 Choose t = y2, and let L = [x2].

QB3 Compute t(X) = (1, 0, 1, 16).

QB4 The vector t(X) is linearly dependent on the elements of V . Let C = [y2].

QB2 Choose t = x2, and let L = [ ].

QB3 Compute t(X) = (1, 0, 1, 4).

QB4 The vector t(X) is linearly dependent on the set V . Let C = [y2, x2].

QB2 The list L is empty, so return O = {1, x, y, xy} and stop.

Note that, although Algorithm 2.4.1 is very similar to the BM-Algorithm, it
computes a different quotient basis of I(X) (in this case {1, x, y, xy} whereas
in Example 2.2.4 the returned order ideal was {1, y, x, y2}), since in step QB2
it employs a random criterion to choose the term t to be considered.

Starting from a quotient basis O for the vanishing ideal of X, the O-border
basis of I(X) can be determined with simple linear algebra computations, as
described in the following algorithm.

Algorithm 2.4.4. (The Border Basis Algorithm)
Let K be a field, let n ≥ 1, let X = {p1, . . . , ps} be a finite set of distinct points
of Kn, and let O be a quotient basis for I(X). Consider the following sequence
of instructions.
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BB1 Start with the empty list B = []; compute the border ∂O ofO, e.g. directly
from the formula in Definition 1.3.4, and the evaluation matrix MO(X) ∈
Mats,s(K).

BB2 For each t ∈ ∂O compute the evaluation vector t(X) ∈ Ks, compute the
solution α ∈ Ks of the linear system MO(X) α = t(X), and append the
polynomial t−∑i αiti to B, where ti is the i-th element in O.

BB3 Return the list B and stop.

Proposition 2.4.5. Algorithm 2.4.4 stops after finitely many iterations and
returns the O-border basis B of the vanishing ideal I(X).

Proof. The set B is an O-border prebasis of I(X) and its elements are in I(X)
by construction. Then, our claim follws from Proposition 1.3.15, part (b).

We observe that in the procedure for computing a border basis for an ideal
of points, the main role is played by the quotient basis O, and so the essential
part is represented by Algorithm 2.4.1. From Proposition 1.3.16 we recall that,
if I ⊆ P is a zero-dimensional ideal, and O is equal to Oσ(I) for some term
ordering σ, the O-border basis contains the σ-Gröbner basis of I. Nevertheless
Example 1.3.17 shows that not every border basis arises from a term ordering σ,
and this happens exactly when the order ideal on which the basis is founded is
not of the form Oσ(I), for some term ordering σ.

We end this section with the following example.

Example 2.4.6. Let X be the finite set of points of R2 given in Examples 2.2.4
and 2.4.3; let O = {1, x, y, xy} be the quotient basis computed in Example 2.4.3.
We compute the O-border basis of I(X) by applying the Algorithm 2.4.4 on X.

BB1 Let B = [ ]; compute ∂O = {x2, x2y, xy2, y2} and the evaluation matrix

MO(X) =

(
1 −1 1 −1
1 0 0 0
1 1 1 1
1 2 4 8

)

BB2 Let t = x2; compute t(X) = (1, 0, 1, 4), α = (0, 0, 1, 0), and append x2− y
to B = [ ].
Let t = x2y, compute t(X) = (1, 0, 1, 16), α = (0,−2, 1, 2), and append
y2 − 2xy − y + 2x to B = [x2 − y].
Let t = xy2, compute t(X) = (−1, 0, 1, 32), α = (0,−4, 0, 5), and append
xy2 − 5xy + 4x to B = [x2 − y, x2y − 2xy − y + 2x].
Let t = y2, compute t(X) = (1, 0, 1, 16), α = (0,−2, 1, 2), and append
y2 − 2xy − y + 2x to B = [x2 − y, x2y − 2xy − y + 2x, xy2 − 5xy + 4x].

BB3 Return B = [x2− y, x2y− 2xy− y+2x, xy2− 5xy+4x, y2− 2xy− y+2x]
and stop.

The result of this computation is the O-border basis B of I(X); note that B
arises from no term orderings on T2.



Chapter 3

Empirical points and

empirical vectors

In this chapter we define a formal framework for dealing with indetermination
in Rn (with n ≥ 1). In Section 3.1 we introduce the basic definition of empirical
point, discuss the analogies with Stetter’s definition [Ste04], formalize the idea of
redundancy in a set of points and hint at the possible methods to overcome it. In
Section 3.2 we give the definition of empirical vector and empirical evaluation
vector, we describe the concept of numerical linear dependence, and how to
adapt it to the empirical case.

3.1 Finite sets of empirical points

Frequently a mathematical model of a physical phenomenon is derived from
processing a large number of real-world measurements which are perturbed by
noise, uncertainty and approximation. If each experimental test consists of
the measurement of n different physical quantities, the empirical data can be
organized as a set of points in Rn. Each point corresponds to a single test,
and each coordinate to a single measurement, so that the error affecting each
component of the point most likely derives from the limits of accuracy of the
measuring instruments. This fact leads to the following basic assumption: given
an empirical datum p ∈ Rn, the estimates ε1, . . . , εn ∈ R+ of the error in each
component of p are known.

Given the tolerance ε = (ε1, . . . , εn) and a measurement p ∈ Rn, we view
the pair (p, ε) as an empirical point representing a neighbourhood of data which
differ from p by less than the tolerance ε. In particular, any point p̃ ∈ Rn

which differs from p componentwise by less than the corresponding εi can be
considered equivalent to p from a numerical point of view. We can formalize
this idea by means of the definition of empirical point, introduced by Stetter
in [Ste04].

45
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Definition 3.1.1. Let p ∈ Rn be a point and let ε = (ε1, . . . , εn) with each
εi ∈ R+, be the vector of the componentwise estimated errors. An empirical
point pε is the pair (p, ε) where we call p the specified value and ε the
tolerance.

We make the following assumption: given a set of empirical points whose
specified values belong to Rn, we shall suppose that a single common tolerance
vector ε = (ε1, . . . , εn) exists for the entire set, i.e. each value εi estimates the
uncertainty in the i-th component of all of the points. This is a natural assump-
tion if the values of each single variable derive from real-world measurements
of a physical quantity using instruments with the same accuracy. On the other
hand different variables typically represent measurements of different physical
quantities (e.g. temperature and pressure) with different instruments, so the
various εi are probably all different.

Notation 3.1.2. We denote by ε = (ε1, . . . , εn), with each εi ∈ R+, the com-
mon tolerance vector of a set of empirical points of Rn. For any p ∈ Rn we
write pε to mean the corresponding empirical point having p as specified value
and ε as tolerance. We denote by Xε = {pε

1, . . . , p
ε
s} a set of empirical points

each having tolerance ε, and by X = {p1, . . . , ps} ⊆ Rn the set of the specified
values associated to Xε.

Let pε be an empirical point of Rn; we define the positive diagonal ma-
trix E = diag(1/ε1, . . . , 1/εn) ∈ Matn,n(R) and use E-weighted norms ‖ · ‖α,E

on Rn (defined in [DBA74]) in order to “normalize” the distance between points
w.r.t. the tolerance ε. For completeness, we recall here the definition:

‖v‖α,E := ‖Ev‖α
Later on, when using the Euclidean norms ‖ · ‖2 or ‖ · ‖2,E , the index 2 will be
omitted for simplicity of notation.

An empirical point pε defines its neighbourhood of perturbations according
to the following definition.

Definition 3.1.3. Let pε be an empirical point of Rn. We define its neigh-
bourhood of perturbations as

Nα(pε) = {p̃ ∈ Rn : ‖p̃− p‖α,E < 1}

and we call each p̃ ∈ Nα(pε) an admissible perturbation of the specified
value p.

As above when we use the Euclidean norm we leave out the index 2, so that
we write N(pε) instead of N2(pε). Note that each element in Nα(pε) can be
obtained by perturbing the coordinates of the specified value p by amounts less
than the tolerance ε; so we can say that each admissible perturbation p̃ ∈ Nα(pε)
represents the same empirical information as p. Clearly the shape of Nα(pε),
that is the shape of the unit ball of (Rn, ‖ · ‖α,E), is different for different values
of α. Figure 3.1 shows some examples of Nα(pε) in R2 with α = 1, 2,∞.
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Figure 3.1: Neighbourhoods of perturbations of pε with ε1 = ε2

Note that, though deeply inspired by Stetter’s work, our definition of neigh-
bourhood of perturbations (see Definition 3.1.3) slightly differs from his idea
of family of neighborhoods of data clouds. In his formalization, in order to
preserve the vague character of indetermination present in every area of scien-
tific computing, Stetter associates to each empirical quantity (p, ε) a family of
neighborhoods parametrized by a positive real parameter δ in the following way:

Nα
δ (p, ε) = {p̃ ∈ Rn : ‖p̃− p‖α,E ≤ δ}, δ ∈ R \ {0}

Stetter’s concept of empirical data is closely related to that of fuzzy data, which
is based on a probability distribution and is mainly used in engineering ap-
plications (see for instance [AFG+00]); but rather than dealing with formal
probabilities Stetter associates with the parameter δ a validity scale: he con-
siders the values p̃ ∈ Nα

δ (p, ε) with δ = O(1), i.e. δ real number of order 1, as
valid instances of the empirical quantity pε. The relation between the values of
the parameter δ ∈ R \ {0} and an intuitive concept of validity can be visualized
using the following representation:

values of δ : 0 . . . 1 1 . . . 3 3 . . . 10 10 . . . 30 10 . . . 30 30 . . .
validity : valid probably possibly possibly probably invalid

valid valid invalid invalid

This means that, as in our interpretation, any value p̃ with ‖p̃− p‖α,E ≤ 1
is a valid instance for the empirical quantity pε; nevertheless any point p̃ with a
larger distance from p may well occur, though this is assumed to be less and less
probable. Unlike our deterministic point of view, Stetter considers the value 1
not as a strict boundary for the quantity ‖p̃−p‖α,E but rather as a mark for the
interpretation of the potential numerical values of pε. Figure 3.2 shows some
examples of Nα

δ (p, ε), in R2 with α = 1, 2,∞: the solid lines corresponds to
δ = 1, the dashed line corresponds to δ = 3.

Though we believe that the formalization of the concept of empirical point
given by Stetter in [Ste04] is the best one for describing the uncertain data, in
this work we decided, for the sake of simplicity, to adopt a slightly different and
less general point of view (see Definition 3.1.3).

The following definition concerns the notion of distinct empirical points,
i.e. points carrying different empirical information.
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Figure 3.2: Families of neighborhoods Nα
δ (p, ε) with ε1 = ε2

Definition 3.1.4. Let pε
1 and pε

2 be two empirical points whose specified values
belong to Rn; pε

1 and pε
2 are said to be distinct if

Nα(pε
1) ∩Nα(pε

2) = ∅

Given an empirical set Xε, we want to analyze the empirical information
carried by its empirical points. Unfortunately it does not seem to be possible to
produce a natural definition of “equivalence” between empirical points, as the
intuitive relation generated by the nearness measure of points of Rn is reflexive
and symmetric, but seldom transitive (a classical example where transitivity
vanishes is sketched in Figure 3.3).
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Figure 3.3: Chain configuration

In the following definition we introduce a condition which tells us when an
empirical set of points can be represented by a single “equivalent” point (which
we choose to be the average of the original set).

Definition 3.1.5. The set Xε = {pε
1, . . . , p

ε
s} of empirical points of Rn is col-

lapsable if

‖pi − q‖α,E ≤ 1 ∀ i = 1, . . . , s (3.1)

where q = 1
s

∑s
i=1 pi is the centroid of X.

If Xε is collapsable, the centroid q of X belongs to each set Nα(pε
i ), so the

intersection
⋂

iN
α(pε

i ) 6= ∅. However, this condition alone does not guarantee
that the set Xε is collapsable. In fact, for it the intersection Nα(pε

i ) must be
non-empty and the centroid must lie in the intersection. Now, when Xε is
collapsable the empirical point qε is numerically equivalent to every point in
Xε. We formalize this idea as follows.
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Definition 3.1.6. The empirical centroid of a set Xε is the empirical point
qε where q is the centroid of the set X. If Xε is a collapsable set, its empirical
centroid is called the valid representative of Xε.

In Figure 3.4 we show a simple example of a collapsable set of points and its
valid representative (when n = 2, α = 2, and ε1 = ε2).
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Figure 3.4: A collapsable set of empirical points and its valid representative

If a set of empirical points contains a collapsable subset, it contains some
redundancy, i.e. it carries relatively little empirical information compared to
the number of points in it. Based on this idea we design in Chapter 4 some
methods to “thin out” such sets by finding a smaller set of empirical points with
much lower redundancy yet which still contains essentially the same empirical
information.

We end this section by generalizing the concept of admissible perturbation
of an empirical point (given in Definition 3.1.3) to Xε. We define an admissible
perturbation of Xε to be any set made up of s distinct points, each being an
admissible perturbation of a different empirical point of Xε. The admissible
perturbations of Xε are denoted by X̃ = {p̃1, . . . , p̃s} ⊆ Rn, where each p̃i ∈
Nα(pε

i ).

3.1.1 A parametric description of Xε

Let Xε = {pε
1, . . . , p

ε
s} be a finite set of distinct empirical points with specified

values X ⊆ Rn, and let α = 2 (that is we use a weighted 2-norm on Rn); we
represent an admissible perturbation of Xε by using first order infinitesimals for
the perturbation in each coordinate; that is, we express it as a function of sn
error variables

e = (e11, . . . , es1, e12, . . . , es2, . . . , e1n, . . . , esn)

Specifically, the admissible perturbation is X̃(e) = {p̃1(e), . . . , p̃s(e)} where

p̃k = (pk1 + ek1, pk2 + ek2, . . . pkn + ekn)

The conditions on the values of the ekj such that each p̃k is an admissible
perturbation of the point pk are equivalent to the following:

‖(ek1, . . . , ekn)‖α,E ≤ 1 for each k (3.2)
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We observe that the coordinates of each perturbed point p̃k(e) are elements
of the polynomial ring R = R[e] and that each variable ekj represents the
perturbation in the j-th coordinate of the specified value pk. The domain of
the perturbed set X̃(e), viewed as a function of sn variables, is denoted by Dε.
Obviously, if α = 2, that is we use the Euclidean norm on Rn, and if δ ∈ Dε we
have

‖δ‖2 =
n∑

j=1

s∑

k=1

δ2kj ≤
n∑

j=1

sε2j ,

and consequently

‖δ‖ ≤ √s‖ε‖ (3.3)

To keep evident the dependence on the error variables e, we extend the
concepts of Definition 2.1.2, namely the evaluation map of a polynomial f ∈ P
and the evaluation matrix of a set of polynomials G = {g1, . . . , gk} ⊆ P , to a

generic perturbed set X̃(e), using the following notation:

evaleX(e)(f) = (f(p̃1(e)), . . . , f(p̃s(e))) ∈ Rs

for brevity denoted by f(X̃(e)); similarly we write the evaluation matrix

MG(X̃(e)) =
(
g1(X̃(e)), . . . , gk(X̃(e))

)
∈ Mats×k(R)

3.2 Finite sets of empirical vectors

In this section we define the notion of empirical vector and introduce a gen-
eralized concept of linear dependence. Let n ≥ 1 and let Rn be the trivial
n-dimensional vector space over R. Since each vector v ∈ Rn is indeed a point
of Rn, the concept of empirical vector directly follows from that of empirical
point. For completeness we give here the definition of empirical vector of Rn.

Definition 3.2.1. Let v ∈ Rn be a vector and let ε = (ε1, . . . , εn) with each
εi ∈ R+, be the vector of the componentwise estimated errors. An empirical
vector vε is the pair (v, ε) where we call v the specified value and ε the
tolerance.

As for the empirical points, the empirical vectors are elements of Rn whose
components are affected by errors, and only an estimate for the amount of
uncertainty is known. Any vector ṽ ∈ Rn which differs from v componentwise
by less than the corresponding εi can be considered equivalent to v from a
numerical point of view. Based on Definition 3.1.3 we introduce the notion of
admissible perturbation of an empirical vector.
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Definition 3.2.2. Let vε be an empirical vector of Rn. We define its neigh-
bourhood of perturbations as

Nα(vε) = {ṽ ∈ Rn : ‖ṽ − v‖α,E < 1}

and we call each ṽ ∈ Nα(vε) an admissible perturbation of the specified
value v.

A very important aspect when dealing with empirical vectors concerns the
notion of linear dependence. Let’s consider the following example.

Example 3.2.3. Let v1 = (1, 0) and v2 = (1, δ), with δ 6= 0, |δ| ≪ 1, be
vectors of R2, and suppose that the components of v2 are known with limited
accuracy (see Figure 3.5). Clearly v1 and v2 are linearly independent vectors
of R2. Nevertheless if a small perturbation on v2 is allowed, the vectors v1 and
v2 turn out to be linearly dependent.

v

v2

1

δ

Figure 3.5: Two numerically linearly dependent vectors

Let k ≥ 1, and let v1, . . . , vk be k vectors of Rn known with limited accuracy.
Suppose that the vectors are linearly independent, so that none of them can be
written as a linear combination of the others. In some cases a small perturbation
on the components of each vector vi could lead to a new family of linearly
dependent vectors (see for instance Example 3.2.3). Therefore, the original
vectors v1, . . . , vk should be considered linearly dependent from a numerical
point of view. We formalize this idea in the following definition.

Definition 3.2.4. Let vε1

1 , . . . , v
εk

k be k empirical vectors of Rn. The empirical
vectors vε1

1 , . . . , v
εk

k are said to be numerically linearly dependent if there
exist admissible perturbations ṽ1, . . . , ṽk of vε1

1 , . . . , v
εk

k which are linearly depen-
dent (according to the classical definition). If no such admissible perturbations
exist then vε1

1 , . . . , v
εk

k are said to be numerically linearly independent.

We observe that the above definition generalizes the classical notion of lin-
ear dependence. If the empirical vectors vε1

1 , . . . , v
εk

k are numerically linearly
independent, then, according to the classical definition, the specified values
v1, . . . , vk are linearly independent, but the converse does not hold. If the real
vectors v1, . . . , vk are linearly dependent, then the same holds, from a numerical
point of view, for the empirical vectors vε1

1 , . . . , v
εk

k for any choice of the toler-
ances ε1, . . . , εn, that is vε1

1 , . . . , v
εk

k are numerically linearly dependent. On the
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other hand the numerical linear dependence among a set of empirical vectors
vε1

1 , . . . , v
εk

k does not imply the classical linear dependence among the set of
specified values v1, . . . , vk.

In the following definition we introduce a particular empirical vector: the
empirical evaluation vector.

Definition 3.2.5. Let Xε be a set of empirical points of Rn, and let f ∈ P be a
polynomial. The empirical vector f(Xε) having f(X) ∈ Rn as its specified value
and the set

Nα(f(Xε)) = {f(X̃) : X̃ ∈ Nα(Xε)}
as its neighbourhood of perturbations is called the empirical evaluation vec-
tor of f associated to Xε.

Note that Nα(f(Xε)) has not the same shape as the neighbourhoods of per-
turbation Nα(Xε) of the empirical points. When dealing with empirical evalua-
tion vectors the notion of numerical linear dependence given in Definition 3.2.4
needs to be more precisely specified.

Definition 3.2.6. Let Xε be a finite set of empirical points of Rn, and let
f1, . . . , fk be polynomials of P . If there exist an admissible perturbation X̃

of Xε such that the evaluation vectors f1(X̃), . . . , fk(X̃) are linearly dependent
(according to the classical definition), then the empirical evaluation vectors
f1(X

ε), . . . , fk(Xε) are said to be numerically linearly dependent. If no
such admissible perturbation exist, then f1(X

ε), . . . , fk(Xε) are said to be nu-
merically linearly independent.

In order to determine a numerical linear dependence among empirical vectors
which derive from evaluation maps, different approaches based on classical linear
algebra techniques have since now been proposed. Among them there exist
methods which use the theory of the singular value decomposition. In the
following example we show how such a method would be inadequate in our
context.

Example 3.2.7. Let P = R[x, y], let α = 2, and let Xε be a set of 3 empir-
ical points having X = {(0, 0), (1, 1), (2, 2)} as the set of specified values and
ε = (0.4, 0.4) as the tolerance (see Figure 3.6).

Consider the power products t1 = 1, t2 = y, t3 = y2, and the order ideal
O = {t1, t2, t3} = {1, y, y2}. Let MO(X) ∈ Mat3×3(R) be the evaluation matrix
of O associated to X

MO(X) =




1 0 0
1 1 1
1 2 4


 ∈ Mat3×3(R)

Its minimun sigular value is about 0.35, which is less than the componentwise
tolerances εi, so the empirical vectors t1(X

ε), t2(X
ε), t3(X

ε) would be considered
linearly dependent.



3.2 Finite sets of empirical vectors 53

��
��
��
��

��
��
��
��

��
��
��
��

p

p1

2

p3

x

y

Figure 3.6: Three aligned points

On the contrary, from our point of view, the empirical evaluation vectors
t1(X

ε), t2(X
ε), t3(X

ε) are numerically linearly independent since there exists no

perturbation X̃ of Xε such that t1(X̃), t2(X̃), t3(X̃) are linearly dependent. In

fact, consider the admissible perturbation X̃ = {p̃1, p̃2, p̃3} of Xε where:

p̃1 = (p̃11, p̃12) p̃2 = (p̃21, p̃22) and p̃3 = (p̃31, p̃32)

The evaluation matrix

MO(X̃) =




1 p̃12 p̃2
12

1 p̃22 p̃2
22

1 p̃32 p̃2
32


 ∈ Mat3×3(R)

is a Vandermonde matrix having determinant det(MO(X)) = (p̃22 − p̃12)(p̃32 −
p̃22)(p̃32−p̃22). It follows that, for each perturbation X̃ of Xε, the matrix MO(X̃)
is invertible, and this concludes the proof.
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Chapter 4

Reducing redundant

empirical points

In this chapter we present some methods (introduced in [AFT07]) to “thin out”
a large body of empirical points prior to applying the costly algebraic algorithms
described in Chapter 5. Our approach is based on the idea of reducing “redun-
dancy” in the original data: we regard subsets of original points which lie close
to each other as repeat measurements, and replace them a single representative
value. We illustrate this intuitive idea in the following example where an initial
set of 12 points is thinned out to an equivalent set of 4 points.

Example 4.0.8. Given the set X of 12 points in R2

X = {(−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (1, 0),

(−1, 1), (0, 1), (1, 1), (5,−2.9), (5, 0), (5, 2.9)}

we suppose that each coordinate is perturbed by an error less than 1.43 (the
Euclidean norm on R2 is used). In this situation, the first nine points most likely
derive from measurements of the same quantity; therefore it is quite reasonable
(and appropriate) to collapse them onto a single representative, for example the
point (0, 0). In contrast, since the last three points are well separated, they
should not be collapsed. This partition, shown in Figure 4.1, is found by our
algorithms, as reported in Examples 4.1.3 and 4.1.8.

Based on the idea of clustering together empirical points which could derive
from repeated measurements of the same datum, we design three algorithms
which thin out a large set of redundant data to produce a smaller set of “equiv-
alent” empirical points. Naturally, the degree of the reduction depends on how
much redundancy is present in the original data.

This chapter is organized as follows. In Section 4.1 we present the Agglomer-
ative and the Divisive Algorithms which thin out sets of empirical points while
preserving their overall geometrical structure. The two algorithms are included

55
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Figure 4.1: Appropriate partition of X

in CoCoALib which is available from the web site [CoC]. In this section we also
include a description of the third algorithm, the very simple Grid Algorithm.
The relationship with the theory of Cluster Analysis is discussed in Section 4.2.
In Section 4.3 we present some numerical examples to illustrate the behaviour
of our algorithms on different geometrical configurations of points.

4.1 Algorithms

In this section we describe two algorithms that, given a set Xε of empirical
points of Rn, compute a partition Lε = {Lε

1, . . . , L
ε
k} of it, consisting of non-

empty collapsable sets, and a set Yε = {qε
1, . . . , q

ε
k} where each qε

i is the valid
representative of Lε

i . Our algorithms make use of the (weighted) Euclidean
norm on Rn and differ in the strategies for building the partitions:

1. the Agglomerative Algorithm initially puts each point of Xε into a
different subset and then iteratively unifies pairs of subsets into larger
collapsable sets;

2. the Divisive Algorithm initially puts all the points of Xε into a single
subset and then iteratively splits off the remotest outlier and “evens up”
the new partition.

We observe that the partition L produced by these algorithms enables us to
determine easily the multiplicity of each valid representative: indeed, the mul-
tiplicity of qε

i is just the cardinality of Lε
i .
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4.1.1 The Agglomerative Algorithm

The Agglomerative Algorithm (AA) implements a unifying method. The sets in
the partition are determined by an iterative process. Initially each set contains
a single original empirical point, then iteratively the two closest sets are unified
provided their union is collapsable. This method is fast when the input points
are well separated w.r.t. the tolerance, as then only a few set unifications are
required.

Algorithm 4.1.1. (The Agglomerative Algorithm)
Let Xε = {pε

1, . . . , p
ε
s} be a set of empirical points, with each pi ∈ Rn and

with a common tolerance ε = (ε1, . . . , εn). Let ‖ · ‖E be the weighted 2-norm
on Rn w.r.t. E = diag(1/ε1, . . . , 1/εn). Consider the following sequence of
instructions.

AA1 Start with the subset list L = [L1, . . . , Ls] where each Li = {pi}, and the
list Y = [q1, . . . , qs] of the centroids of the Li.

AA2 Compute the symmetric matrix M = (mij) where mij = ‖qi − qj‖E for
each qi, qj ∈ Y.

AA3 If |Y| = 1 or min{mij : i < j} > 2 then return the pair (L, Y), and stop.

AA4 Choose ı̂, ̂ s.t. mı̂̂ = min{mij : i < j} and compute the centroid q of
Lı̂ ∪ L̂

q =
|Lı̂|qı̂ + |L̂|q̂
|Lı̂|+ |L̂|

AA5 If ‖p− q‖E ≤ 1 for every p ∈ Lı̂ ∪L̂ then in L replace Lı̂ by Lı̂ ∪L̂ and
remove L̂. Similarly, in Y replace qı̂ by q and remove q̂ and then go to
step AA2. Otherwise put mı̂̂ =∞ (any value greater than 2 will do) and
go to step AA3.

Theorem 4.1.2. Algorithm 4.1.1 computes a pair (L, Y) such that:

• {Lε
i : Li ∈ L} is a partition of Xε into collapsable sets, no two of which

can be unified into a collapsable set;

• for each qi ∈ Y the empirical point qε
i is the valid representative of Lε

i .

Proof. First we prove finiteness. Step AA2 is performed only finitely many
times and so a finite number of matrices M is computed. In fact, after the first
computation of M , this step is performed only when the algorithm removes an
element from Y, i.e. at most s− 1 times. Now, also step AA4 is performed only
finitely many times on the same matrix M , because it is performed only when
the minimal element mı̂̂ of the matrix M is less than or equal to 2, in which
case either two subsets are unified or mı̂̂ is replaced by∞; but this can happen
at most s2/2 times.

Next we show correctness. First, note that the elements of L define a par-
tition of X. In fact, in step AA1 we set L = [{p1}, . . . , {ps}]; the only place
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where L changes is in Step AA5 when we unite two of its elements, and so a
new partition of X is obtained. Consequently Lε is also a partition of Xε.

For each Li ∈ L, the corresponding empirical set Lε
i is collapsable. This is

clearly true in step AA1. Step AA5 unites two elements of L only if their union
is collapsable: step AA4 computes the centroid q of Li ∪Lj and step AA5 tests
condition (3.1) for each point in Li ∪ Lj .

Now we prove that upon termination the union of any pair of elements of L
is not collapsable. If the algorithm stops because Y (and L too) contains a
single element, the conclusion is trivial. Otherwise, the algorithm ends because
mij > 2 for all i < j. We observe that the elements mij of the final matrix M
are such that either mij = ‖qi− qj‖E or mij =∞ but ‖qi− qj‖E ≤ 2. The case
where mij =∞ is trivial: an entry in M can become ∞ only in step AA5 after
having verified that Lε

i ∪ Lε
j is not collapsable. In the case where mij is finite

we show by contradiction that the union of Lε
i and Lε

j is not a collapsable set.
We suppose that ‖p − q‖E ≤ 1 for each p ∈ Li ∪ Lj , where q is the centroid of
Li ∪ Lj . Let m = |Li| and n = |Lj |, then we have

‖qi − qj‖E =

∥∥∥∥∥∥
1

m

(∑

p∈Li

p−mq
)

+
1

n

(
nq −

∑

p∈Lj

p

)∥∥∥∥∥∥
E

=

=

∥∥∥∥∥∥
1

m

∑

p∈Li

(p− q) +
1

n

∑

p∈Lj

(q − p)

∥∥∥∥∥∥
E

≤

≤ 1

m

∑

p∈Li

‖p− q‖E +
1

n

∑

p∈Lj

‖q − p‖E

From the hypothesis, we deduce that ‖qi − qj‖E ≤ 2, a contradiction.
Finally, we can conclude the proof since, by construction, each element qi ∈ Y

is the centroid of Li and Lε
i is collapsable, so the empirical centroid qε

i is indeed
the valid representative of Lε

i .

Note that, in step AA5, we must check the condition that ‖p− q‖E ≤ 1 for
each p ∈ Lı̂∪L̂. In fact, if we check only the condition ‖qı̂−q̂‖E ≤ 1, there are
pathological examples where not collapsable sets are built in the final partition
(see Example 4.3.3).

The algorithm as presented here can easily be improved from the computa-
tional point of view: in step AA2 it is not necessary to compute a new matrix M
after uniting Lı̂ and L̂; it suffices to remove the ̂-th column and update the
ı̂-th row.

For completeness, we include a brief complexity analysis; but as the timings
in Table 4.1 show, computation time depends greatly on the density of the
input points, with AA performing best when the density is low. With the
improvement described in the previous paragraph the worst case complexity of
AA is O(s2(n + s)) arithmetic operations. The principal contributions to the
complexity are O(ns2) for the creation of the matrix M in step AA2, O(s2) for
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finding the minimum in step AA3 and O(ns) in step AA5 to test the condition
and also to update the matrix M ; steps AA3 to AA5 are in a loop which may
perform as many as s iterations. In the best case, no iterations are performed,
and the complexity is just that of step AA2, namely O(ns2).

In the following example we apply the Agglomerative Algorithm to the points
of Example 4.0.8 to show that the desired partition is obtained (see Figure 4.1).

Example 4.1.3. Let Xε = {pε
1, . . . , p

ε
12} be a set of empirical points with tol-

erance ε = (1.43, 1.43), whose specified values coincide with the set X of Ex-
ample 4.0.8:

X = {(−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (1, 0),

(−1, 1), (0, 1), (1, 1), (5,−2.9), (5, 0), (5, 2.9)}

The AA computes, at each step, the following partitions, clustering together only
the first nine points. We indicate in bold face the union created in step AA5.

1. L =
{
{p1}, {p2}, {p3}, {p4}, {p5}, {p6}, {p7}, {p8}, {p9}, {p10}, {p11}, {p12}

}

2. L =
{
{p1,p2}, {p3}, {p4}, {p5}, {p6}, {p7}, {p8}, {p9}, {p10}, {p11}, {p12}

}

3. L =
{
{p1,p2,p4}, {p3}, {p5}, {p6}, {p7}, {p8}, {p9}, {p10}, {p11}, {p12}

}

4. L =
{
{p1, p2, p4}, {p3,p6}, {p5}, {p7}, {p8}, {p9}, {p10}, {p11}, {p12}

}

5. L =
{
{p1, p2, p4}, {p3, p6}, {p5,p8}, {p7}, {p9}, {p10}, {p11}, {p12}

}

6. L =
{
{p1,p2,p4,p5,p8}, {p3, p6}, {p7}, {p9}, {p10}, {p11}, {p12}

}

7. L =
{
{p1,p2,p3,p4,p5,p6,p8}, {p7}, {p9}, {p10}, {p11}, {p12}

}

8. L =
{
{p1,p2,p3,p4,p5,p6,p7,p8}, {p9}, {p10}, {p11}, {p12}

}

9. L =
{
{p1,p2,p3,p4,p5,p6,p7,p8,p9}, {p10}, {p11}, {p12}

}

4.1.2 The Divisive Algorithm

The Divisive Algorithm (DA) implements a “subdivision” method. The sets
in the partition are determined by an iterative process. Initially the partition
consists of a single set containing all the points. Then iteratively DA seeks
the original point farthest from the centroid of its set. If the distance between
them is below the tolerance threshold then the algorithm stops, because all
original points are sufficiently well represented by the centroids of their sets.
Otherwise it splits off the worst represented original point into a new set initially
containing just itself. Then DA proceeds with a redistribuition phase with the
aim of associating each original point to the current best representative subset
(locally) minimizing the total central sum of squares, defined as follows [RR03].
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Definition 4.1.4. Let X be a subset of Rn and let q be its centroid. The
central sum of squares of X is defined to be:

∑

p∈X

‖p− q‖2

Definition 4.1.5. Let L = {L1, . . . , Lk} be a partition of the set X. The total
central sum of squares of the partition L is defined to be:

I(L) =
k∑

j=1

Ij

where Ij is the central sum of squares of Lj .

If Xε contains many closely packed empirical points, DA turns out to be
more efficient than AA, since only a few subdivisions are required.

Algorithm 4.1.6. (The Divisive Algorithm)
Let Xε = {pε

1, . . . , p
ε
s} be a set of empirical points, with each pi ∈ Rn and a com-

mon tolerance ε = (ε1, . . . , εn). Let ‖ · ‖E be the weighted 2-norm on Rn w.r.t.
E = diag(1/ε1, . . . , 1/εn). Consider the following sequence of instructions.

DA1 Start with the list L = [L1] where L1 = X, and the centroid list Y = [q1]
where q1 is the centroid of L1.

DA2 Let L = [L1, . . . , Lr] and Y = [q1, . . . , qr], the list of the centroids of the
elements of L. For each pi ∈ X set di = ‖pi − qj‖E where Lj is the subset
(of X) to which pi belongs. Build the list D = [d1, . . . , ds].

DA3 If max(D) ≤ 1 then return the pair (L, Y), and stop.

DA4 Choose an index ı̂ such that dı̂ = max(D), and compute the index ̂ of
the subset L̂ to which pı̂ belongs. Remove pı̂ from L̂ and compute the
new centroid q̂ of L̂; append Lr+1 = {pı̂} to L and qr+1 = pı̂ to Y.

DA5 Compute the total central sum of squares I(L) of the new partition L.

DA6 For each p ∈ X and for each Lk ∈ L, denote by Lp,k the partition L but
with p moved into Lk. Compute each total central sum of squares I(Lp,k).

DA7 Choose a point p̂ ∈ X and an index k̂ s.t.

I(L
p̂,k̂

) = min{I(Lp,k) : p ∈ X, Lk ∈ L}

DA8 If I(L
p̂,k̂

) ≥ I(L) then go to DA2. Otherwise set L = L
p̂,k̂

. Compute
the centroids of the new partition L. Go to DA5.



4.1 Algorithms 61

Theorem 4.1.7. Algorithm 4.1.6 computes a pair (L, Y) such that:

• {Lε
i : Li ∈ L} is a partition of Xε into collapsable sets;

• for each qi ∈ Y, the empirical point qε
i is the valid representative of Lε

i .

Proof. Later on we shall refer to the loop DA5–DA8 as “the redistribution
phase”: points are moved from one subset to another in order to strictly decrease
the total central sum of squares. Note that in the redistribution phase the
cardinality of L does not change as the algorithm never eliminates any set in L.
Indeed, if the singleton set Lj = {p} belongs to L, the point p will not be moved
to another set Lk ∈ L leaving Lj empty, since this new configuration cannot
have smaller total central sum of squares: the combined central sum of squares
of the sets Lj = {p} and Lk is

Ij + Ik = 0 +
∑

r∈Lk

‖r − qk‖2

where qk is the centroid of Lk, whereas the combined central sum of squares of
the new sets L′

j = ∅ and L′
k = Lk ∪ {p} is

I ′j + I ′k = 0 +

(
‖p− q′k‖2 +

∑

r∈Lk

‖r − q′k‖2
)

where q′k is the centroid of L′
k = Lk∪{p}. And since qk is the centroid of Lk, we

have
∑

r∈Lk
‖r − q′k‖2 ≥

∑
r∈Lk

‖r − qk‖2. Consequently the new total central
sum of squares cannot be smaller.

Now we prove finiteness. The algorithm comprises two nested loops: the
outer loop spanning steps DA2–DA8, and the redistribution phase (steps DA5–
DA8). The outer loop cannot perform more than s iterations because step DA4
can be performed at most s times; anyway, after s iterations the termination
criterion in step DA3 will surely be satisfied as all the di would be zero.

The redistribution loop will perform only finitely many iterations. Each
iteration strictly reduces the total central sum of squares, and since X is finite
it has only finitely many partitions. Consequently there are only finitely many
possible values for the total central sum of squares.

Next we show correctness. The elements of L define a partition of X. This
is trivially true in step DA1. The creation of a new subset in step DA4 clearly
maintains the property. The redistribution phase merely moves points between
subsets (in step DA8), so also preserves the property.

The test in step DA3 guarantees that upon completion of the algorithm
each Li ∈ L corresponds to a collapsable Lε

i . By construction, each element
qi ∈ Y is the centroid of Li. Thus qε

i is the valid representative of Lε
i .

For completeness, we include a brief complexity analysis; but as the tim-
ings in Table 4.1 show, computation time depends greatly on the density of
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the input points, with DA performing best when the density is high. The al-
gorithm contains two nested loops: DA2–DA8 and DA5–DA8. The outer loop
can perform at most O(s) iterations since each iteration increases the number of
subsets in the partition. It seems to be tricky to bound the number of iterations
the inner loop performs; based on experience, we conjecture that the inner loop
performs O(s) iterations. Now, steps DA6 and DA7 lie inside both loops and so
are clearly dominant; their combined complexity is O(ns2) per iteration. Hence
we obtain O(ns4) arithmetic operations as the worst case complexity for DA
as a whole. In the best case, when no iterations are performed, the complexity
is O(ns).

In the following example we apply the Divisive Algorithm to the points of
Example 4.0.8 to show that the desired partition is obtained (see Figure 4.1).

Example 4.1.8. Let Xε = {pε
1, . . . , p

ε
12} be a set of empirical points with toler-

ance ε = (1.43, 1.43), whose specified values coincide with the set X of Example
4.0.8:

X = {(−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (1, 0),

(−1, 1), (0, 1), (1, 1), (5,−2.9), (5, 0), (5, 2.9)}

The DA computes, at each step, after the redistribution phase, the following
partitions. We use the bold face to indicate the newly sundered sets.

1. L =
{
{p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12}

}

2. L =
{
{p1,p2,p3,p4,p5,p6,p7,p8,p9}, {p10,p11,p12}

}

3. L =
{
{p1, p2, p3, p4, p5, p6, p7, p8, p9}, {p10}, {p11,p12}

}

4. L =
{
{p1, p2, p4, p5, p8, p3, p6, p7, p9}, {p10}, {p11}, {p12}

}

As mentioned before, DA performs fewer iterations than AA since many input
points are close together w.r.t. the tolerance.

4.1.3 A particularly quick method: the Grid Algorithm

We recall the ∞-norm and its corresponding E-weighted norm on Rn (see
also [DBA74]):

‖v‖∞ = max
i=1...n

|vi| and ‖v‖∞,E = ‖Ev‖∞

where E = diag(1/ε1, . . . , 1/εn), as before.
A particularly quick method for decreasing the cardinality of the set Xε

can be designed using a regular grid, consisting of half-open balls of radius 1/2
w.r.t. the E-weighted norm ‖ · ‖∞,E . We arbitrarily choose one ball to have the
origin as its centre then tessellate to cover the whole space; note that the balls
are actually cuboids. We shall use the notation [z] to mean the closest integer
to z (rounding up in the case of a tie).
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Algorithm 4.1.9. (The Grid Algorithm)
Let Xε = {pε

1, . . . , p
ε
s} be a set of empirical points, with each pi ∈ Rn and a

common tolerance ε = (ε1, . . . , εn). Consider the following sequence of instruc-
tions.

GA1 Create the set of balls B = {b(p1), . . . , b(ps)} where b(x1, . . . , xn) is the ε-
ball centred on (ε1[x1/ε1], . . . , εn[xn/εn]), that is the grid ball containing
the point (x1, . . . , xn).

GA2 For each grid ball g ∈ B, create the subset Lg containing exactly those pi

for which b(pi) = g.

GA3 Compute the list Y = [q1, . . . , qt] of the centroids of the Lg. Return the
pair (L, Y), where L = [L1, . . . , Lt].

Theorem 4.1.10. Algorithm 4.1.9 computes a pair (L, Y) such that:

• {Lε
i : Li ∈ L} is a partition of Xε;

• each qi ∈ Y gives a good representative qε
I of Lε

i .

This algorithm computes a partition of Xε by gathering all the empirical
points whose specified values lie in the same ball into the same subset. Suppose
that one of these subsets comprises the empirical points pε

1, . . . , p
ε
m, and let

qε be their empirical centroid, then qε is a “good” representative of each pε
i

because

‖pi − q‖∞,E =

∥∥∥∥pi −
1

m

m∑

j=1

pj

∥∥∥∥
∞,E

≤ 1

m

m∑

j=1

‖pi − pj‖∞,E < 1

However, in general such a subset is not collapsable, a notion defined in terms
of the 2-norm.

Note that, since the separations of the empirical points are ignored by this
method, unsatisfactory partitions can be obtained, e.g. close points may happen
to belong to different balls and so be assigned to different subsets in the partition.
Nevertheless, this drawback is compensated by the speed and simplicity of the
method. In particular, this grid method (with a smaller radius) can be used to
reduce the bulk of a very large body of dense data before applying one of the
more sophisticated but slower algorithms, i.e. AA or DA. Another application
of the grid method is to help choose the more suitable algorithm between AA
and DA by estimating the numbers of sets in the partitions which would be
produced. The complexity of GA is O(ns log s) if we sort the list B and the set
of input points X.

4.2 Relationship with Cluster Analysis

The idea of analyzing a large body of empirical data and of partitioning it into
sets of “similar values” has been well studied in the theory of Cluster Analysis
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(e.g. see [KM00]). The overall aim of Cluster Analysis is to separate the original
data into clusters where the members of each cluster are much more similar to
each other than to members of other clusters. In contrast, our methods are
more concerned with thinning out groups of very close values while ignoring
more distant points. Below we show how Ward’s “classical” algorithm [RR03],
an agglomerative hierarchical method, and Li’s more recent algorithm [Li06], a
divisive hierarchical method, partition the empirical points of Example 4.0.8.

Example 4.2.1. Let Xε be the set of empirical points whose set of specified
values is given in Example 4.0.8; similarly, let ε = (1.43, 1.43) as given there. We
recall that in Examples 4.1.3 and 4.1.8 both our algorithms AA and DA obtained
the minimal partition into collapsable sets, as illustrated in Figure 4.1.

Ward’s and Li’s algorithms do not obtain this minimal partition. In fact,
after 8 steps, Ward’s algorithm puts the points (5,−2.9) and (5, 0) into the same
cluster, while the first nine points of X still belong to different clusters. Since
this is an agglomerative method no set of points is split during the computation,
so Ward’s algorithm fails to recognise the collapsable set of nine points. In a
similar vein, Li’s algorithm goes astray at the third step: it divides the first nine
points of X into two subsets while the points (5,−2.9) and (5, 0) still belong to
the same cluster. Since this is a hierarchical divisive method, once a set is split
it can never be joined together again, so Li’s algorithm needlessly splits the
collapsable set of nine points.

Now we consider another method of Cluster Analysis, the QT Clustering
(see [HKY99]), because it has a number of similarities to our methods, espe-
cially AA. QT Clustering computes a partition of the input data using a given
limit on the diameter of the clusters. It works by building clusters according
to their cardinality, while we are primarily interested in the local geometrical
separations of the input data.

Example 4.2.2. Let Xε be a set of empirical points with tolerance ε = (0.5)
and with specified values X = {0, 0.05, 0.9, 1, 1.2} ⊆ R. Applying the QT
Clustering algorithm with maximum cluster diameter equal to 2ε, we obtain the
partition

{
{0, 0.05, 0.9, 1}, {1.2}

}
where {0, 0.05, 0.9, 1}ε is a not collapsable set.

In contrast, if we apply AA or DA to Xε, we obtain the more balanced partition{
{0, 0.05}, {0.9, 1, 1.2}

}
whose elements consist of specified values of collapsable

sets. We maintain that our partition is more plausible as a grouping of noisy
data.

4.3 Numerical tests and illustrative examples

In this section we present some numerical examples to show the effectiveness and
the potential of our techniques. Both AA and DA have been implemented using
the C++ language, and are included in CoCoALib [CoC] (see also [Abb06]).
All computations in the following examples have been performed on an Intel
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Pentium M735 processor (at 1.7 GHz) running GNU/Linux and using the im-
plementation in CoCoALib. For simplicity of presentation, the data in the fol-
lowing artificial examples are prescaled so that the tolerance is isotropic, i.e. all
the εi are equal.

Example 4.3.1. Clouds of empirical points.
In this example we consider an empirical set Xε containing two well separated
empirical points and three clusters, two big and one small. Both AA and DA
compute five valid representatives for Xε, but because the result comprises very
few points DA is faster than AA.
Let Xε be a set of empirical points, with tolerance ε = (20, 20) and specified
values X = ∪5

i=1Xi ⊆ R2, where

• X1 consists of 82 points lying inside the disk of radius 10 centered on (0, 0),

• X2 consists of 64 points lying inside the disk of radius 10 centered on
(40, 50),

• X3 = {(49, 0), (50, 0), (50, 1)}, X4 = {(9, 41)} and X5 = {(−10, 80)}.

Both AA and DA compute the “intuitive” partition consisting of 5 subsets
Li = Xi for i = 1, . . . , 5, as shown in Figure 4.2.

Figure 4.2: Appropriate partition of X

Example 4.3.2. Empirical points close to a circle
In this example we compare the behaviour of AA and DA on a family of artificial
test cases, comprising sets of empirical points with similar geometrical config-
urations but with differing “densities”. Let X1, X2 ⊂ R2 be two sets of points
lying close to the circle of radius 200 and centered at the origin. They con-
tain 2504 and 5032 points, respectively. The numerical tests are performed by
applying both AA and DA to the empirical sets Xε

1 and Xε
2 for various (isotropic)

values of ε: viz. ε1 = 2k for k = 0, . . . , 6, and note that for a fixed set of points
increasing ε effectively increases the density of the points.
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In Table 4.1 we summarize the results obtained from processing X1 and X2

respectively. The first column contains the value of the tolerance, the columns
labeled with “#VR” contain the number of the valid representatives computed
by AA and DA respectively, while those labeled with “Time” show the timings
(in seconds) of each algorithm. The results show that DA runs quickly if ε is
large, that is when the set of empirical points is dense enough, since only a few
splittings of the original set are needed. On the other hand, when the points
are well separated, AA is preferable since the final partition consists of a large
number of sets.

2504 empirical points 5032 empirical points
AA DA AA DA

ε #VR Time #VR Time #VR Time #VR Time
1 911 1 s 727 293 s 2096 6 s 1460 2306 s
2 462 3 s 347 184 s 734 31 s 587 1250 s
4 224 8 s 173 114 s 263 118 s 185 577 s
8 108 18 s 87 66 s 121 317 s 86 314 s

16 56 50 s 41 33 s 61 733 s 41 166 s
32 29 117 s 20 15 s 28 1680 s 21 79 s
64 13 2633 s 10 6 s 14 3695 s 10 25 s

Table 4.1: Points close to a circle

Figure 4.3 shows a subset of X1 (the crosses) and its valid representatives
(the dots) w.r.t. the tolerance ε = (16, 16).

Figure 4.3: Valid representatives of X1

The computational timings can be drastically reduced if we apply GA (see
Section 4.1.3) before applying AA or DA. Let us consider two cases where com-
putation time was high: AA with ε = 64, and DA with ε = 2. In the case
AA with ε = 64, we make a first reduction of the data using a grid whose
balls have a weighted radius of 1/4; the computation takes 0.14 seconds and
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produces 48 points. Now AA is applied to this result, and produces an output
of 13 points in 0.01 seconds — overall far faster than applying AA directly, but
the final result is less accurate.
Analogous remarks hold for the test with DA and ε = 2: using a grid whose
balls have a weighted radius of 1/2 we obtain 1657 points in 0.2 seconds; then
the execution of DA on this output takes 83 seconds to return 466 points. Once
again, a drastic reduction in time at the cost of a lower quality result.

Example 4.3.3. Example of the “zip”
This first example illustrates the necessity of the test at Step AA5. Indeed, if
the condition is not checked the algorithm builds a partition consisting of not
collapsable sets.

Let Xε be a set of empirical points whose tolerance is ε = (2.199, 2.199) and
whose set of specified values X ⊆ R2 is given by:

X = {(0.1, 2), (2, 0), (4.2, 0), (6.4, 0), (8.6, 0), (3.1, 3) (5.3, 3), (7.5, 3)}

Applying AA to Xε we obtain the following partition

{
{(0.1, 2), (3.1, 3)}, {(2, 0), (4.2, 0)}, {(6.4, 0), (8.6, 0)}, {(5.3, 3), (7.5, 3)}

}

for which the set of specified values of the valid representatives is

Y = {(1.6, 2.5), (3.1, 0), (7.5, 0), (6.4, 3)}

In Figure 4.4 we represent the points of X and Y using big and small dots
respectively.
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Figure 4.4: Example of the “zip”

However, if we check only the distance between the centroids in step AA5, all
the elements of Xε are placed in a single set which is obviously not collapsable.
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Example 4.3.4. Example of the “three-pointed star”
We have seen that AA always produces a partition into collapsable sets such
that no pair can be unified into a collapsable set. In most cases the partition
produced by DA also enjoys this property; however, this is not true in general.
Such a situation is shown in this example.

Let Xε be a set of 6 empirical points whose tolerance is ε = (1, 1) and whose
set of specified values X ⊆ R2 is given by:

X = {(0.577, 0.99), (0.577,−0.99), (0, 0.0001), (0, 0),

(−1.1551, 0), (−1.155, 0)}
Applying both AA and DA we obtain the two different partitions LA and LD:

LA =
{
{(0.577,−0.99)},
{(0.577, 0.99), (0, 0.0001), (0, 0)},
{(−1.1551, 0), (−1.155, 0)}

}

LD =
{
{(0.577,−0.99)},
{(0.577, 0.99)},
{(0, 0.0001), (0, 0), (−1.1551, 0), (−1.155, 0)}

}

associated to the valid representatives whose specified values are

YA = {(0.577,−0.99), (0.192333, 0.330033), (−1.15505, 0)}
YD = {(0.577, 0.99), (0.577,−0.99), (−0.577525, 0.000025)}

respectively. To highlight the different partitions obtained, in Figure 4.5 we plot
the points of X and YA using big and small dots; in Figure 4.6 we use the same
symbols for X and YD.
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Figure 4.5: Representation of
the sets X and YA
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Figure 4.6: Representation of
the sets X and YD

It is trivial to verify that the elements of Lε
A are pairwise not unifiable into

a collapsable set, while the same property does not hold for the partition Lε
D

since {(0.577,−0.99)ε} ∪ {(0.577, 0.99)ε} is a collapsable set.
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Example 4.3.5. Example with experimental data
In this example we use a set Xε of 1000 empirical points in R2 which is a subset
of a time series collected by A. Jessup, (Applied Physics Laboratory, University
of Washington), and others and described in [JMK91] (with permission). This
time series records the height of ocean waves as a function of time, measured
via an infrared wave gauge.

Figure 4.7: Valid representatives (99 points) of wave data

We applied both AA and DA (with anisotropic tolerance ε = (0.25, 0.1))
to X, and obtained two different partitions having respectively 99 and 90 valid
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representatives. In this case the data is relatively sparse, so AA proves to be
faster than DA (taking 1.3 vs. 9.4 seconds). As AA was considerably faster
we selected its output to be illustrated in Figure 4.7 together with the original
points (we use small dots for the original data, large dots for the output of AA).
Qualitatively the output of DA is very similar to that produced by AA.



Chapter 5

A global characterization of

a set of empirical points

This chapter is based on [AFT08] and aims at giving a global characterization

of the vanishing ideals I(X̃), where X̃ is any admissible perturbation of a set Xε

of empirical points, independently of the data uncertainty.
Since any admissible perturbation X̃ is made up of points differing by less

than the uncertainty from the corresponding elements of X, then any set X̃ can
be considered equivalent to any other admissible perturbation of Xε, in partic-
ular to X. Nevertheless, given two distinct admissible perturbations X̃1 and X̃2

of Xε, it can happen that their affine coordinate rings P/I(X̃1) and P/I(X̃2) as

well as their vanishing ideals I(X̃1) and I(X̃2) have very different bases – this is
a well known phenomenon in Gröbner basis theory. In order to “emphasize” the
numerical equivalence among the admissible perturbations X̃ of Xε, we look for
a common characterization of P/I(X̃) and, when possible, we give a structurally

stable representation of the vanishing ideals I(X̃). More precisely our goal is to

determine a basis O of the quotient ring P/I(X̃) valid for every admissible per-

turbation X̃ of Xε. Unfortunately, not every quotient basis O for I(X) exhibits
this good numerical behaviour. We consider the following example.

Example 5.0.6. Let Xε be the set of empirical points having

X = {(−1,−5), (0,−2), (1, 1), (2, 4.1)} ⊆ R2

as the set of specified values and ε = (3/20, 3/20) as the tolerance; let ‖ · ‖E
be the weighted 2-norm on R2 w.r.t. E = diag(20/3, 20/3). Consider the order
ideal O = {1, y, x, y2}: since the evaluation matrix MO(X) of O associated to X,

MO(X) =




1 −5 −1 25
1 −2 0 4
1 1 1 1
1 4.1 2 16.81




71
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is non singular, then O is a quotient basis of I(X).

Now consider the slightly perturbed set of points X̃ (which is indeed an
admissible perturbation of Xε):

X̃ = {(−1,−5), (0,−2), (1, 1), (2, 4)}

In this case, the order ideal O does not form a vector space basis of P/I(X̃) as
the evaluation matrix

MO(X̃) =




1 −5 −1 25
1 −2 0 4
1 1 1 1
1 4 2 16




is singular. We conclude observing that a small (admissible) change in the
coordinates of the points of X has led to a drastic change in the associated
vector space basis of P/I(X).

Example 5.0.6 suggests that, when dealing with a set Xε of empirical points,
a notion of “numerically stable” quotient basis is necessary: a quotient basis O
for I(X) is stable if exhibits good numerical behaviour, that is if its residue

classes form a vector space basis of P/I(X̃), where X̃ is any admissible per-
turbation of the empirical set Xε (see Definition 5.1.3). Stable quotient bases

provide a common characterization of the ideals I(X) and I(X̃), highlight the
geometrical properties of the empirical set Xε and, by using the border basis
theory, guarantee the existence of a structurally stable representation of I(X).

Border bases appeared for the first time in connection with problems arising
in numerical analysis during the 1980s, thanks to the work of Hans J. Stetter
(see [AS88] and [Ste04]); then, during the 1990s, the importance of these re-
sults for computer algebra was pointed out by H. Michael Möller (see [MS95]
and [Möl93]). In 1999 the first algebraic properties of border bases were pre-
sented by B. Mourrain (see [Mou99]). In 2005, A. Kehrein, M. Kreuzer and
L. Robbiano wrote a survey devoted to laying the algebraic foundations of the
border basis theory for the zero-dimensional ideals (see [KKR05] and [KR05]).
Recently, M. Kreuzer and L. Robbiano (see [KR08]), and later L. Robbiano
(see [Rob08]) examined a natural link between border bases and Hilbert schemes
which provides a futher improvement to the solid mathematical foundations of
the border basis theory.

Our decision to use border bases for describing the vanishing ideal I(X) is
based on two main reasons: firstly, the works mentioned above certify border
bases as a good tool for dealing with numerical problems; secondly, border bases
are easy to compute since, once a quotient basis O is fixed, the corresponding
border basis can be obtained by simple combinatorical and linear algebra com-
putations; so, in the empirical frame we focus our attention on determining a
stable quotient basis O.

Unfortunately, as we will show in Example 5.1.5, stable quotient bases (and
consequently stable border bases) do not always exist: in such cases we turn to
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the wider notion of stable order ideal given in Definition 5.1.1. In fact, though
stable order ideals do not define a monomial basis of the vector space P/I(X),

they nevertheless provide P/I(X̃) with a common structure, for any admissible

perturbation X̃ of Xε, and thus give information on the geometrical configuration
of the original points.

This chapter is organized as follows: in Section 5.1 we introduce the con-
cept of numerical stability for structures associated to a set of empirical points,
namely stable order ideals, stable quotient bases and stable border bases; then,
in Section 5.2 we present a theoretical method and a practical algorithm for
computing them.

5.1 Stable structures for Xε

For the rest of this chapter we let n ≥ 1, P be the polynomial ring R[x1, . . . , xn],
and Xε = {pε

1, . . . , p
ε
s} be a finite set of distinct empirical points with speci-

fied values X = {p1, . . . , ps} ⊆ Rn and tolerance ε = (ε1, . . . , εn), where each
εi ∈ R+. We let E = diag(1/ε1, . . . , 1/εn) and use the weighted 2-norm ‖ · ‖E
on Rn.

5.1.1 Stable order ideals

Definition 5.1.1. Let O be an order ideal of Tn, then O is stable w.r.t. Xε if
the evaluation matrix MO(X̃) has full rank for each admissible perturbation X̃

of Xε.

Given any finite set Xε of empirical points, an order ideal O stable w.r.t. Xε

always exists: in fact, the trivial order ideal O = {1} is stable w.r.t. any em-
pirical set Xε. In the following example we show a case of a non-stable order
ideal.

Example 5.1.2. Let Xε be the set of empirical points given in Example 5.0.6.
Consider the order ideal O = {1, y, x}: it is easy to prove that MO(X) is a full
rank matrix. Nevertheless O is not stable w.r.t. Xε: in fact, let

X̃ = {(−1,−5), (0,−2), (1, 1), (2, 4)}

be an admissible perturbation of Xε. Now, rank(MO(X̃)) = 2, and so the order
ideal O is not stable w.r.t. Xε.

5.1.2 Stable quotient bases

We specialize to quotient bases the notion of stability given in Definition 5.1.1
for simple order ideals.

Definition 5.1.3. Let O be a quotient basis for I(X), then O is stable w.r.t. Xε

if the evaluation matrix MO(X̃) is non singular for each admissible perturba-

tion X̃ of Xε.
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Our assumption to deal with sets of distinct empirical points is due to the
following result.

Proposition 5.1.4. Let Xε be a finite set of empirical points of Rn, not neces-
sarily distinct, and let O be a quotient basis of I(X). If the set Xε contains at
least a pair of non-distinct empirical points then O is non-stable w.r.t. Xε.

Proof. Let Xε = {pε
1, . . . , p

ε
s}, and X = {p1, . . . , ps} ⊆ Rn be its set of specified

values; let O = {t1, . . . , ts} ⊆ Tn be a quotient basis of I(X). Let pε
i , p

ε
j , with

i 6= j, be two non-distinct empirical points of Xε. Since N2(pε
i ) ∩ N2(pε

j) 6= ∅
there exist admissible perturbations p̃i of pi and p̃j of pj such that p̃i = p̃j . As

a consequence the evaluation matrix of O at X̃ = {p̃1, . . . , p̃i, . . . , p̃j , . . . , p̃s} is
singular.

However note that there are sets of distinct empirical points Xε for which
the vanishing ideal I(X) has no stable quotient basis.

Example 5.1.5. Let P = R[x, y], and let Xε be the set of empirical points
having

X = {(0, 0), (−5, 12), (12,−5)}
as the set of specified values and ε = (2.51, 2.51) as the tolerance. It is simple
to verify that the points of Xε are distinct. There are only 3 order ideals in T2

containing exactly 3 elements:

O1 = {1, x, x2}, O2 = {1, x, y} and O3 = {1, y, y2}

We prove that none of them is a quotient basis for I(X) stable w.r.t. Xε. In

fact, let X̃1, X̃2, X̃3 be 3 admissible perturbations of Xε:

X̃1 =
{(
− 5

2
, 0
)
,
(
− 5

2
, 12
)
,
(
− 12, 5

)}

X̃2 =
{(7

4
,
7

4

)
,
(
− 27

4
,
41

4

)
,
(41

4
,−27

4

)}

X̃3 =
{(

0,−5

2

)
,
(
− 5, 12

)
,
(
12,−5

2

)}

The evaluation matrices MO1
(X̃1) and MO3

(X̃3) are Vandermonde matrices, so

it is easy to verify that det(MO1
(X̃1)) = det(MO3

(X̃3)) = 0. Further

det
(
MO2

(X2)
)

= det




1 7/4 7/4
1 −27/4 41/4
1 41/4 −27/4


 = 0

This concludes the proof.

We end this section by observing that, given any finite set of points X, any
quotient basis O for I(X) is stable w.r.t. Xδ for a sufficiently small value of
the tolerance δ; this is equivalent to saying that O has a “region of stability”
w.r.t. X, as the following proposition shows.
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Proposition 5.1.6. Let X be a finite set of points of Rn and I(X) be its van-
ishing ideal; let O be a quotient basis for I(X). Then there exists a tolerance
δ = (δ1, . . . , δn), with each δi > 0, such that O is stable w.r.t. Xδ.

Proof. Let MO(X) be the evaluation matrix of O associated to the set X;
then MO(X) is a structured matrix whose ntries depend continuously on the
points in X. Since, by hypothesis, O is a quotient basis for I(X), it follows
that MO(X) is invertible. Recalling that the determinant is a polynomial func-
tion in the matrix entries, and noting that the entries of MO(X) are polyno-
mials in the points’ coordinates, we can conclude that there exists a tolerance
δ = (δ1, . . . , δn), with each δi > 0, such that det(MO(X̃)) 6= 0 for any perturba-

tion X̃ of Xδ.

Nevertheless, since the tolerance ε of the empirical points in Xε is given a
priori by the measurements, Proposition 5.1.6 does not give a direct answer to
the problem of stability. If the given tolerance ε on the points is larger than
the “region of stability” of a chosen quotient basis O, then O will not be stable
w.r.t. Xε; such a situation is shown in the following example.

Example 5.1.7. Let Xε be the set of empirical points given in Example 5.0.6;
Consider the order ideal O1 = {1, y, x, y2}, which is a quotient basis for I(X);

O1 is not stable w.r.t. Xε. Indeed, consider again the perturbation X̃ of Xε

X̃ = {(−1,−5), (0,−2), (1, 1), (2, 4)}

The evaluation matrix MO1
(X̃) is singular, so O1 is not stable w.r.t. Xε since

its “region of stability” is too small w.r.t. the given tolerance ε.
Now consider the quotient basis O2 = {1, y, y2, y3}, and let

X̃ = {(−1 + e1,−5 + e2), (e3,−2 + e4), (1 + e5, 1 + e6), (2 + e7, 4.1 + e8)}

be a generic admissible perturbation of Xε, where the parameters ei ∈ R satisfy

‖(e1, e2)‖E ≤ 1 ‖(e3, e4)‖E ≤ 1 ‖(e5, e6)‖E ≤ 1 ‖(e7, e8)‖E ≤ 1

We prove that O2 is stable w.r.t. Xε. In fact, for each perturbation X̃ of Xε,
we see that MO2

(X̃) is a Vandermonde matrix whose determinant is equal to
(e4− e2 +3)(e6− e2 +6)(e8− e2 +9.1)(e6− e4 +3)(e8− e4 +6.1)(e8− e6 +3.1).

Since each |ei| ≤ 0.15, it follows that, for any admissible perturbation X̃, the

matrix MO2
(X̃) is invertible, and so it is always possible to compute an O2-

border basis of the ideal I(X̃). In fact O2 is stable w.r.t. X(δ1,δ2), where δ1 is
unlimited and δ2 < 1.5.

5.1.3 Stable border bases

Intuitively, a basis B of the vanishing ideal I(X) is considered to be structurally

stable if, for each admissible perturbation X̃ of Xε, it is possible to produce
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a basis B̃ of I(X̃) only by means of a slight and continuous variation of the

coefficients of the polynomials of B, that is if there exists a basis B̃ of I(X̃)
whose polynomials have the same support as the corresponding polynomials
of B. We know that the supports of the polynomials of a border basis are
easily computable and completely determined by the quotient basis O upon
which the border basis is founded (see Definition 1.3.12). We start this section
with the following result which highlights the importance of stable quotient
bases and make a connection with border basis theory (see also Proposition 4.20
in [MR02]).

Proposition 5.1.8. Let Xε be a set of s distinct empirical points, and let O =
{t1, . . . , ts} be a quotient basis for I(X) which is stable w.r.t. Xε. Then, for

each admissible perturbation X̃ of Xε, the vanishing ideal I(X̃) has an O-border

basis B̃. Furthermore, if ∂O = {b1, . . . , bν} is the border of O then B̃ consists
of ν polynomials of the form

gj = bj −
s∑

i=1

αijti for j = 1 . . . ν (5.1)

where the coefficients aij ∈ R satisfy the linear systems

bj(X̃) =

s∑

i=1

αijti(X̃)

Proof. Let X̃ be an admissible perturbation of Xε and let evaleX
: P → Rs

be the R-linear evaluation map associated to the set X̃. It is easy to prove
that I(X̃) = ker(evaleX

) and, consequently, that the quotient ring P/I(X̃) is
isomorphic to Rs as a vector space. Since O is stable w.r.t. the empirical
set Xε, it follows that {t1(X̃), . . . , ts(X̃)} are linearly independent vectors. More-

over #X̃ = #O, so the residue classes of the elements of O form a vector space
basis of P/I(X̃).

For each power product bj lying in the border ∂O let vj = bj(X̃) be the
associated evaluation vector. Now vj can be expressed as

vj =

s∑

i=1

αijti(X̃) for some αij ∈ R

We define the polynomial gj = bj −
∑s

i=1 αijti; by construction evaleX
(gj) = 0,

and so B̃ = {g1, . . . , gν} is contained in I(X̃); it follows that B̃ is the O-border

basis of the ideal I(X̃).

We observe that the coefficients αij of each polynomial gj ∈ B̃ are just the

components of the solution αj of the linear system MO(X̃)αj = bj(X̃). It follows

that αij are continuous functions of the points of the set X̃ and so, since the

order ideal O is stable w.r.t. Xε, they undergo only continuous variations as X̃

changes. Now, the definition of stable border basis follows naturally.
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Definition 5.1.9. Let Xε be a finite set of distinct empirical points, let O be
a quotient basis for the vanishing ideal I(X). If O is stable w.r.t. Xε then the
O-border basis B for I(X) is said to be stable w.r.t. the set Xε.

Given a finite set Xε of empirical points, a border basis for I(X) stable
w.r.t. Xε does not always exist (see Example 5.1.5). However, Proposition 5.1.8
and the subsequent observation on the continuity of the coefficients αij prove
that, if O is a quotient basis for I(X) stable w.r.t. Xε, then the stable O-border
basis B of the ideal I(X) exists and is indeed structurally stable: namely, there

exists a border basis B̃ for the perturbed ideal I(X̃), sharing the same structure

as B, and whose coefficients differ only slightly, provided that X̃ is an admissible
perturbation of Xε.

5.2 A method for computing stable structures

In this section we address the problem of finding an order ideal O stable w.r.t. a
given finite set of s distinct empirical points, Xε. If O contains s power products,
that is if O is a quotient basis of I(X), the corresponding stable border basis
is also computed. The numerical examples show that O can have cardinality
less than s when the tolerance on the points is, in some sense, too large; this
phenomenon is illustrated in Examples 5.1.5 and 5.3.9.

Here we present the theoretical approach to the problem; Section 5.2.1 is
dedicated to some technical results necessary for a practical implementation of
the theoretical procedure, which is described in detail in Section 5.2.2.

Based on Algorithm 2.4.1, which is designed to determine a quotient basis
for an ideal of exact points, our method starts from Xε and computes a stable
order ideal O by performing tests on the numerical linear dependence of a set of
empirical evaluation vectors (see Definition 3.2.6). The strategy for computing
a stable order ideal O is the following. The order ideal O is built stepwise:
initially O comprises just the power product 1; then, at each iteration, a new
power product t is considered. If the empirical evaluation vector t(Xε) is numer-
ically linearly independent of the family of vectors O(Xε) := {ti(Xε) | ti ∈ O},
then t is added to O; otherwise t is added to the set of generators of a monomial
ideal J . We sum up this procedure in the Table 5.1.

We observe that the procedure described in Table 5.1 indeed defines an
algorithm for computing an order ideal O stable w.r.t. Xε. The procedure ends
after a finite number of iterations: in fact, at each iteration, the algorithm
performs either step 3 or step 4. We observe that step 3 can be executed at
most s − 1 times since in Rs any set of s + 1 vectors is (numerically) linearly
dependent. Moreover, step 4 is the only place where a term t /∈ J is added
to the set of generators of J , but, since P is Noetherian, this can happen only
finitely many times. We claim that the set O is an order ideal stable w.r.t. Xε:
by construction O is factor closed, and, from step 3, O is stable w.r.t. Xε as it
is associated to a set of numerically linearly independent empirical vectors.

Another observation concerns the choice (in step 2) of the power product t
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1. Input a finite non-empty set Xε. Let O = {1} and J = (0).

2. Choose a term t in the set of corners of O not belonging to J , and
compute the empirical evaluation vector t(Xε). If no such term t exists,
return O and stop.

3. If t(Xε) is numerically linearly independent of the set O(Xε) then add t
to O. Continue with step 2.

4. Otherwise, add t to the set of generators of J . Continue with step 2.

Table 5.1: Theoretical approach for computing a stable order ideal

to consider at each iteration: any strategy that chooses a term t in the set of
corners can be applied. A possible technique is the one used in the Buchberger-
Möller algorithm (see Algorithm 2.2.2), where the chosen power product t is
the smallest candidate according to a fixed term ordering σ. Note that σ is
only used as a computational tool for choosing t; in fact the final computed
set O is not, in general, the same as that which would be obtained processing
the set X using Algorithm 2.4.1 with the same term ordering. Consider the
following example (and see also Examples 5.3.1 and 5.3.3).

Example 5.2.1. Let Xε be the set of empirical points having

X = {(0, 0), (1, 1), (2, 2.1)} ⊆ R2

as the set of specified values and ε = (0.15, 0.15) as the tolerance; let σ be the
degree lexicographic term ordering on T2 with x > y.

We apply Algorithm 2.4.1 to X and the above procedure to Xε by using in
steps Q2 and step 2 the criterion for choosing the power product t based on σ.
Algorithm 2.4.1 returns the order ideal O1 = {1, y, x}, which is indeed equal to
Oσ(I(X)), while the above procedure computes O2 = {1, y, y2} 6= O1.

We conclude this section with a brief observation about the computation of
stable quotient bases and stable border bases: if the output O of the above algo-
rithm contains exactly #X elements, then O is necessarily a stable quotient basis
for I(X), so the corresponding O-border basis B exists and is stable w.r.t. Xε.
To determine B it suffices to apply Algorithm 2.4.4, that is find the border of O
(a simple combinatorical computation), and then for each element of the border
solve a linear system (as described in the proof of Proposition 5.1.8).

5.2.1 Remarks on first order approximation

In this section we prove some results on the first order approximation of the
rational functions of the field F = K(x1, . . . , xn), where K = Q or K = R. We
use multi-index notation to give the formal Taylor expansion of f ∈ F at 0:

f =
∑

|α|≥0

Dαf(0)

α!
xα
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We recall that given α = (α1, . . . , αn) ∈ Nn, we have |α| = α1 + · · · + αn

and α! = α1! . . . αn! Similarly Dα = Dα1

1 . . . Dαn
n (where Dj

i = ∂j/∂xj
i ) and

xα = xα1

1 . . . xαn
n . Each f ∈ F can be decomposed into components of homoge-

neous degree in the following way:

f =
∑

k≥0

fk where fk =
∑

|α|=k

Dαf(0)

α!
xα

and where, by convention, D(0...0)f = f . Each polynomial fk is called the
homogeneous component of degree k of f .

Analogously, we can decompose a matrix M ∈ Matr×c(F ) into homogeneous
parts in the following way.

Definition 5.2.2. Let M =
(
m(i, j)

)
be a matrix in Matr×c(F ); we define Mk,

the homogeneous component of degree k of M , to be the matrix whose (i, j)
entry is the homogeneous component of degree k of m(i, j).

Let v ∈ Matr×1(F ) and M ∈ Matr×c(F ) be a full rank matrix, with r ≥ c.
We define α ∈ Matc×1(F ) and ρ ∈ Matr×1(F ) via the following formulas:

α = (M tM)−1M tv
ρ = v −Mα

(5.2)

We observe that for any point δ ∈ Kn which lies in the domain of α, we can
evaluate to obtain x = α(δ) as the least squares solution to M(δ) x = v(δ), and
that the corresponding residual is ρ(δ) (see Section 2.3.1).

In our application, the matrix M comprises only polynomial entries, so the
domain of α contains precisely those points δ ∈ Kn at which det(M(δ)tM(δ)) 6=
0, i.e. at which M(δ) has full rank (in Matr×c(K)).

The following proposition characterizes the homogeneous components of de-
grees 0 and 1 of α and ρ.

Proposition 5.2.3. Let r, c ∈ N with r ≥ c; let v be a vector in Matr×1(F )
and let M be a full rank matrix in Matr×c(F ). Let α ∈ Matc×1(F ) and
ρ ∈ Matr×1(F ) be defined by (5.2). Then the homogeneous components of de-
grees 0 and 1 of α are

α0 = (M t
0M0)

−1M t
0v0

α1 = (M t
0M0)

−1(M t
0v1 +M t

1v0 −M t
0M1α0 −M t

1M0α0)
(5.3)

and the homogeneous components of degrees 0 and 1 of ρ are

ρ0 = v0 −M0α0

ρ1 = v1 −M0α1 −M1α0
(5.4)

Proof. First we prove a simple result about the homogeneous components of
degrees 0 and 1 of the inverse of a matrix. Let A be a non singular element
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of Matc×c(F ), and let B be its inverse. The homogeneous components B0

and B1 are given by

B0 = A−1
0 B1 = −A−1

0 A1A
−1
0 = −B0A1B0 (5.5)

We show this by decomposing A and B into sums of homogeneous components:

A = A0 +A1 +A2+ and B = B0 +B1 +B2+

where A2+ =
∑

i≥2Ai and B2+ =
∑

i≥2Bi. Now, since AB = Ic, the c × c
identity matrix, we have

(A0 +A1 +A2+)(B0 +B1 +B2+) = Ic

and our claim is immediate after expanding the product into a sum of homoge-
neous components.

Now we prove the result of the proposition. Since M is full rank, the matrix
A = M tM is non singular and so we can define

α = A−1M tv (5.6)

ρ = v −Mα (5.7)

Applying to (5.7) the homogeneous degree decomposition up to degree 1 we
have

ρ0 + ρ1 = (v0 −M0α0) + (v1 −M0α1 −M1α0)

thus (5.4) follows.
Since A0 = M t

0M0 and A1 = M t
0M1 + M t

1M0, from formula (5.5) we have
the first two homogeneous components of B = A−1 ≡ A−1

0 −A−1
0 A1A

−1
0 . Up to

degree 1, formula (5.6) becomes

α0 + α1 = B0(M
t
0v0 +M t

0v1 +M t
1v0) +B1M

t
0v0 =

= B0

(
M t

0v0 +M t
0v1 +M t

1v0 −A1B0M
t
0v0

)

and so

α0 = (M t
0M0)

−1M t
0v0

α1 = (M t
0M0)

−1(M t
0v1 +M t

1v0 −M t
0M1α0 −M t

1M0α0)

thus the proof is concluded.

5.2.2 The SOI Algorithm

In this section we present the Stable Order Ideal (SOI) Algorithm, a practical
implementation of the theoretical method for computing stable order ideals
described in Section 5.2.

Given a finite set Xε of distinct empirical points the SOI Algorithm computes
an order ideal O stable w.r.t the empirical set Xε. The practical approach
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used is based on a first order error analysis of the problem, as our interest is
essentially focused on small perturbations X̃ of the empirical set Xε. In order
to investigate the stability of O the SOI Algorithm uses some results on the
first order approximation of rational functions (see Section 5.2.1) and exploits

the parametric description of an admissible perturbation X̃ of Xε defined in
Section 3.1.1, so that the notion of numerical linear dependence of empirical
evaluation vectors given in Definition 3.2.6 and used above is greatly simplified.
As a consequence the check on the numerical linear dependence is carried out
only by using the classical least squares method (as in Algorithms 2.3.5).

A first observation concerns the choice of the power product t to analyze at
each iteration (step 2): as already pointed out any strategy that chooses t such
that O ∪ {t} is factor closed can be applied, also the one which exploits a fixed
term ordering σ. For the sake of simplicity, the version of the SOI Algorithm
presented below employs this latter strategy.

Another observation concerns the main loop of the algorithm (steps 3 and 4):
note that the check on the numerical linear dependence of empirical evaluation
vectors in terms of the parametric description X̃(δ), is equivalent to checking

whether ρ(δ), the component of the evaluation vector t(X̃(δ)) orthogonal to the

column space of the matrix MO(X̃(δ)), vanishes for some δ ∈ Dε. This check,
greatly simplified by our restriction to first order error terms, requires a real
parameter γ depending on the norm of ρ2+ =

∑
k≥2 ρk, where each ρk is the

homogeneous component of degree k of ρ (see Theorem 5.2.5).

Algorithm 5.2.4. (The Stable Order Ideal Algorithm)
Let Xε = {pε

1, . . . , p
ε
s} be a finite set of distinct empirical points, with X ⊆ Rn

and a common tolerance ε = (ε1, . . . , εn), and let e = (e11, . . . , esn) be the error
variables whose constraints are given in (3.2). Let σ be a term ordering on Tn

and γ ≥ 0 (see Theorem 5.2.5). Consider the following sequence of instructions.

S1 Start with the lists O = [1], L = [x1, . . . , xn], and C = [ ]; create the
matrices M0 ∈ Mats×1(R) initially with all the elements equal to 1, and
M1 ∈ Mats×1(R) initially with all the elements equal to 0.

S2 If L = [ ] return the set O and stop. Otherwise let t = minσ(L) and delete
it from L.

S3 Let v0 and v1 be the homogeneous components of degrees 0 and 1 of the eval-
uation vector v = t(X̃(e)). Compute the vectors (see Proposition 5.2.3)

ρ0 = v0 −M0α0

ρ1 = v1 −M0α1 −M1α0

where

α0 = (M t
0M0)

−1M t
0v0

α1 = (M t
0M0)

−1(M t
0v1 +M t

1v0 −M t
0M1α0 −M t

1M0α0).
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S4 Let Ct ∈ Mats×sn(R) be such that ρ1 = Cte. Let k be the maximum

integer such that the matrix Ĉt, formed by selecting the first k rows of Ct,
has minimum singular value σ̂k greater than ‖ε‖. Let ρ̂0 be the vector

comprising the first k elements of ρ0 and let Ĉ†
t be the pseudoinverse

of Ĉt. Compute δ̂ = −Ĉ†
t ρ̂0, which is the minimal 2-norm solution of the

underdetermined system Ĉtδ̂ = −ρ̂0 (see [DH93]).

S5 If ‖δ̂‖ > (1+γ)
√
s‖ε‖ then adjoin the vector v0 as a new column of M0 and

the vector v1 as a new column of M1. Append the power product t to O,
and add to L those elements of {x1t, . . . , xnt} which are not multiples of
an element of L or C. Continue with step S2.

S6 Otherwise append t to the list C, and remove from L all multiples of t.
Continue with step S2.

Theorem 5.2.5. Algorithm 5.2.4 stops after finitely many steps and returns a
factor closed set O ⊂ Tn. If γ satisfies supδ∈Dε

‖ρ2+(δ)‖ ≤ γ
√
s‖ε‖2 then O is

an order ideal stable w.r.t. the empirical set Xε. In particular, when #O = s
then I(X) has a corresponding stable border basis w.r.t. Xε.

Proof. First we claim that ρ0, ρ1, α0, α1 computed in step S3 are the homoge-
neous components of degrees 0 and 1 of the residual ρ and of the solution α as
defined in equations (5.2), where M = MO(X̃(e)). To prove this claim it is suf-
ficient to apply Proposition 5.2.3 and to observe that the matrices M0 and M1

coincide with the homogeneous components of degrees 0 and 1 of M . Clearly,
this is true at the first iteration, since M has all entries equal to 1. We apply
induction on the number of iterations. Assume that M0 and M1 are the com-
ponents of degrees 0 and 1 of M and suppose that the power product t is added
to O. Since the last column of MO∪{t}(X̃(e)) is given by t(X̃(e)), whose com-
ponents of degrees 0 and 1 are t0 and t1 respectively, the new matrices [M0, v0]

and [M1, v1] are the components of degrees 0 and 1 of MO∪{t}(X̃(e)). We con-
clude that the vectors ρ0 + ρ1 and α0 + α1 coincide with ρ and α, up to first
order.

Now we prove the finiteness and the correctness of Algorithm 5.2.4. First
we show finiteness. At each iteration the algorithm performs either step S5 or
step S6. We observe that step S5 can be executed at most s− 1 times; in fact,
once M0 becomes a square matrix, i.e. after s − 1 iterations of step S5, the
residual vector ρ0 will always be zero, and consequently the minimal 2-norm
solution ê of the linear system Cte = −ρ0 is also zero. Moreover, step S5
is the only place where the set L is enlarged (with a finite number of terms),
while each iteration removes from L at least one element; we conclude that the
algorithm reaches the condition L = [ ] after finitely many iterations.

In order to show correctness we prove, by induction on the number of iter-
ations, that the output set O is an order ideal stable w.r.t. Xε. This is clearly
true after zero iterations, i.e. after step S1 has been executed. By induction as-
sume that a number of iterations has already been performed and that the order
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ideal O is stable; let us follow the steps of the new iteration, in which a power
product t is considered. If step S6 is performed the claim is true because O
does not change. Otherwise, if step S5 is performed, the set O∗ = O ∪ {t} is
factor closed by the restriction on the choice of t. In order to prove that O∗

is stable w.r.t. Xε we simply show that ρ(δ) does not vanish for any δ ∈ Dε,

since ρ(δ) is the component of t(X̃(δ)) orthogonal to the columns of MO(X̃(δ)),

and ρ(δ) 6= 0 implies that MO∗(X̃(δ)) has full rank. Define ρ̂(δ) to be the vector
comprising the first k elements of ρ(δ). Clearly ρ̂(δ) 6= 0 implies ρ(δ) 6= 0, so
it suffices to prove that ρ̂(δ) does not vanish on Dε. Suppose by contradiction

that there exists δ̃ ∈ Dε satisfying

ρ̂(δ̃) = ρ̂0 + Ĉtδ̃ + ρ̂2+(δ̃) = 0 (5.8)

Let ξ = Ĉ†
t ρ̂2+(δ̃) be the minimal 2-norm solution of the linear system

Ĉtξ = ρ̂2+(δ̃) (5.9)

Substituting (5.9) into (5.8), we obtain Ĉt(δ̃ + ξ) = −ρ̂0. Since δ̃ ∈ Dε we have

‖δ̃‖ ≤ √s‖ε‖ and since δ̂ is the minimal 2-norm solution of Ĉtδ̂ = −ρ̂0 we have

‖δ̂‖ ≤ ‖δ̃ + ξ‖. Thus we obtain

‖δ̂‖ ≤ ‖δ̃ + ξ‖ ≤ √
s‖ε‖+ ‖Ĉ†

t ‖‖ρ̂2+(δ̃)‖ =

=
√
s‖ε‖+

‖ρ̂2+(δ̃)‖
σ̂k

≤

≤ (1 + γ)
√
s‖ε‖

This contradicts the condition at the start of step S5, and so we conclude
that ρ(δ) does not vanish for any δ ∈ Dε. The final comment is immediate

by Proposition 5.1.8.

In order to implement the SOI Algorithm a value of γ has to be chosen
even if an estimate of supδ∈Dε

‖ρ2+(δ)‖ is unknown. Since we consider small

perturbations X̃ of the empirical set Xε, in most cases ρ0 +ρ1(δ) is a good linear
approximation of ρ(δ) for every δ ∈ Dε. For this reason supδ∈Dε

‖ρ2+(δ)‖ is
small and a value of γ ≪ 1 can be chosen to obtain a set O stable w.r.t. Xε. On
the other hand, if ρ is not well approximated by its homogeneous components
of degrees 0 and 1 then our strategy loses its meaning, since it is based on the
first order analysis.

5.3 Numerical examples

In this section we present some numerical examples to show the effectiveness
of the SOI Algorithm. Our algorithm is implemented using the C++ language
and the CoCoALib (see [CoC]) and all computations have been performed on
an Intel Pentium M735 processor (at 1.7 GHz) running GNU/Linux. In all
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the examples, the SOI Algorithm was run using a fixed precision of 1024 bits
for the twin-float arithmetic implemented in CoCoALib (called RingTwinFloat,
see [Abb07]), with the parameter γ = 0.1 and using the degree lexicographic
term ordering σ; in addition, the coefficients of the polynomials are displayed
as truncated decimals.

The following example shows that even though we use a term ordering σ in
the SOI Algorithm, the resulting O-border basis need not contain the τ -Gröbner
basis of I(X) for any term ordering τ .

Example 5.3.1. The quotient basis O is not of Gröbner type
Let Xε be a set of distinct empirical points having

X = {(1.1, 1.1), (0.9,−1.1), (−0.9, 0.9), (−1.1,−0.9)}

as the set of specified values and ε = (0.1, 0.1) as the tolerance. Applying the
SOI algorithm to Xε, we obtain the quotient basis O = {1, x, y, xy} which is
stable w.r.t. Xε.

Let τ be any term ordering on Tn and Oτ (I(X)) = Tn \ LTτ{I(X)} be
the quotient basis associated to τ . We observe that O 6= Oτ (I(X)): in fact,
since τ is a term ordering we have either x2 <τ xy or y2 <τ xy; further-
more, the evaluation vectors x2(X) and y2(X) are each linearly independent of
{1(X), x(X), y(X)} so that one of x2 or y2 must belong to Oτ (I(X)). We
conclude that the O-border basis of I(X) does not contain any Gröbner basis
of I(X).

Nevertheless, if there is no perturbation on the coordinates of the original
points, that is if ε = 0, the SOI Algorithm returns the set O = LTσ(I(X)),
which is a quotient basis of I(X); the O-border basis of I(X) thus contains the
σ-Gröbner basis.

Example 5.3.2. Let Xε be the set of 11 distinct empirical points having

X = {(−15.625,−2.5), (−8,−2), (−3.375,−1.5), (−1,−1), (−0.125,−0.5),

(0, 0), (0.125, 0.5), (1, 1), (3.375, 1.5), (8, 2), (15.625, 2.5)} ⊆ R2

as the set of specified values and ε = (0, 0) as the tolerance. Applying the SOI
Algorithm to Xε, we obtain the quotient basis

O = {1, y, x, y2, xy, x2, xy2, x2y, x3, x2y2, x3y}

which is stable w.r.t. Xε. The stable O-border basis B of I(X) is given by:

B ≈





y3 − x
xy3 − x2

x2y3 − x3

x4 − 13.75x3y + 63.938x2y2 − 119.45x2 + 82.328xy − 14.063y2

x4y − 125.13x3 + 759.69x2y − 1560.15xy2 + 1117.95x− 193.36y
x3y2 − 13.75x3 + 63.94x2y − 119.45xy2 + 82.328x− 14.063y
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The σ-Gröbner basis is:

G =





y3 − x
x4 − 55/4x3y + 1023/16x2y2 − 7645/64x2 + 5269/64xy − 225/16y2

x3y2 − 55/4x3 + 1023/16x2y − 7645/64xy2 + 5269/64x− 225/16y

It is simple to observe that the polynomials of B whose leading form belongs
to the corners of O, namely the first, the third and the last elements, coincide
with the σ-Gröbner basis of I(X).

The following three examples show how the SOI Algorithm detects the sim-
plest geometrical configuration almost satisfied by the empirical set Xε.

Example 5.3.3. Four almost aligned points
We consider the empirical set Xε given in Example 5.0.6; we recall here the
points in X

X = {(−1,−5), (0,−2), (1, 1), (2, 4.1)} ⊆ R2

and the tolerance ε = (0.15, 0.15). Applying the SOI Algorithm to Xε we obtain
the quotient basis O = {1, y, y2, y3} which is stable w.r.t. Xε, as we proved in
Example 5.0.6. As O is a quotient basis for I(X) we can compute the border
basis B founded on it:

B ≈





x+ 0.0002y3 + 0.0012y2 − 0.3328y − 0.6686
xy + 0.0008y3 − 0.3286y2 − 0.6643y − 0.0079
xy2 − 0.3301y3 − 0.6471y2 + 0.0098y − 0.0326
xy3 − 0.0199y3 − 7.1199y2 − 7.3933y + 13.533
y4 + 1.9y3 − 21.6y2 − 22.3y + 41

Note that the lowest degree polynomial of B,

f1 = x+ 0.0002y3 + 0.0012y2 − 0.3328y − 0.6686

highlights the fact that X contains “almost aligned” points. In fact, if we neglect
the terms with smallest coefficients, f simplifies to x− 0.3328y − 0.6686. Since
the coefficients of a polynomial are continuous functions of its zeros and the
quotient basis O is stable w.r.t. Xε, we can conclude that there exists a small
perturbation X̃ of X containing aligned points and for which the associated
evaluation matrix MO(X̃) is invertible. A simple example of such a set is given

by X̃ = {(−1,−5), (0,−2), (1, 1), (2, 4)}. Note that the algorithm also yields
the almost vanishing polynomial f2 = x− 0.330y − 0.656 which also highlights
tha fact that X contains “almost aligned” points. A further interesting example
is obtained by taking the difference of f1 and f2. The resulting polynomial
h = 0.0002y3 + 0.0012y2 − 0.0027y − 0.0118 has small values at the points
of X. But this is not a contradiction to the “almost linear independence” of the
terms contained in O, since there is no admissible perturbation of X for which h
vanishes.
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A completely different result is obtained by applying to the set X the Buch-
berger-Möller algorithm w.r.t. the same term ordering σ. The σ-Gröbner basis G
of I(X) is:

G =





x2 − 1/9y2 − 121/30x+ 9/10y + 101/45
xy − 1/3y2 − 41/10x+ 7/10y + 41/15
y3 + 6y2 + 516243/100x− 171781/100y − 172581/50

and the associated quotient basis is Oσ(I(X)) = T2 \LTσ{I(X)} = {1, y, x, y2}.
We observe that Oσ(I(X)) is not stable (see Example 5.0.6) because the eval-

uation matrix MOσ
(X̃) is singular for some admissible perturbations of X, for

instance X̃ just above. In particular, the information that the points of X are
“almost aligned” is not at all evident from G.

Example 5.3.4. Empirical points close to an ellipse
Let X ⊆ R2 be a set of points created by perturbing by less than 0.1 the
coordinates of 10 points lying on the ellipse 4x2 + y2 − 100 = 0,

X = {(−5.07, 0.02), (4.98, 0), (3.05, 8.07), (3.01,−8.02), (−3.02, 7.99),

(−2.98,−8), (4.01, 5.94), (3.98,−6.06), (−3.92, 6.03), (−4.01,−6)}

Let Xε be the set of empirical points whose set of specified values is X and
whose common tolerance is ε = (0.1, 0.1). Applying the SOI Algorithm to Xε

we obtain, after 11 iterations, the stable quotient basis

O = {1, y, x, y2, xy, y3, xy2, y4, xy3, xy4}

We use linear algebra to compute the corresponding stable border basis B
of I(X). We can identify the “almost elliptic” configuration of the points of X

by looking at f the lowest degree polynomial contained in B:

f ≈ x2 + 0.273y2 − 25.250 + 10−2(0.004xy4 + 0.020xy3 − 0.034y4

−0.489xy2 − 0.177y3 − 1.371xy + 9.035x+ 9.810y)

We observe that f highlights the fact that X contains points close to an el-
lipse. In fact, if we neglect the terms with smallest coefficients, f simplifies
to x2 + 0.273y2 − 25.250. Since the coefficients of a polynomial are continuous
functions of its zeros and the quotient basis O is stable w.r.t. Xε, we can con-
clude that there exists a small perturbation X̃ of X containing points lying on
an ellipse and such that the associated evaluation matrix MO(X̃) is invertible.
A simple example of such a set is given by

X̃ = {(−5, 0), (5, 0), (3, 8), (3,−8), (−3, 8),

(−3,−8), (4, 6), (4,−6), (−4, 6), (−4,−6)}



5.3 Numerical examples 87

Example 5.3.5. In this example we apply the SOI Algorithm to two sets of
points which are the output of the Agglomerative and the Divisive Algorithms.
We consider the set X2 ⊆ R2 given in Example 4.3.2 as the original set of points;
we recall that X2 is made up of 5032 points lying close to the circle of radius 200
and centered at the origin. We call Y1 and Y2 the set of valid representatives
obtained by applying the AA and the DA to Xε

2, with ε = (64, 64). We have

Y1 = {(−198.46,−17.8768), (−193.366, 46.0792), (−181.034,−81.8125),

(−145.47, 132.429), (−129.486,−149.977), (−62.6498, 188.546),

(−66.367,−187.972), (21.3435,−195.551), (35.3222, 193.707),

(129.221,−148.831), (124.263, 155.095), (173.186, 97.5654),

(190.032,−52.137), (196.248, 34.453)}
Y2 = {(109.38,−163.448), (−123.76,−152.857), (−109.347, 163.608),

(121.045, 155.095), (−9.06163,−196.388), (7.07879, 196.572),

(188.826, 54.8762), (−189.924,−50.954), (184.636,−67.6265),

(−183.875, 70.1091)}

Note that Y1 consist of 14 and 10 points respectively (see also Table 4.1). We
choose ε = (5, 5). Applying the SOI Algorithm to Yε

1 and Yε
2 we obtain the

stable quotient bases O1 and O2

O1 = {1, y, x, y2, xy, y3, xy2, y4, xy3, y5, xy4, y6, xy5, y7}
O2 = {1, y, x, y2, xy, y3, xy2, y4, xy3, y5}

Let B1 and B2 be the stable border bases of I(X1) and I(X2) built upon O1

and O2; let f1 and f2 be the lowest degree polynomial of B1 and B2:

f1 = x2 − 0.036xy + 1.029y2 + 1.632x− 10.030y − 39466.67 +

+10−3(2 · 10−9y7 − 10−8xy5 + 2 · 10−8y6 + 2 · 10−5 − 10−4xy4 +

+10−4y5 + 3 · 10−3xy3 − 10−3y4 − 5 · 10−1xy2 + 2y3)

f2 = x2 + 0.001xy + 0.997y2 + 0.080x− 0.290y − 38667.78 +

+10−5(10−5y5 − 3 · 10−3xy3 + 9 · 10−3y2 − 10−1xy2 + y3)

Note that f1 and f2 highlight the fact that Y1 and Y2 contain points lying
close to a circle. In fact, if we neglect the terms with smallest coefficients, f1
and f2 simplify to x2 − 0.036xy + 1.029y2 + 1.632x − 10.030y − 39466.67 and
x2 + 0.001xy + 0.997y2 + 0.080x− 0.290y − 38667.78.

In the next example we show the behaviour of the SOI Algorithm when
applied to several sets of points with similar geometrical configuration but with
different cardinality.

Example 5.3.6. Empirical points close to a circle
Let X1,X2,X3,X4 ⊂ R2 be sets of points created by perturbing by less than
0.01 the coordinates of 8, 16, 32 and 64 points lying on the circumference x2 +
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y2−1 = 0, and let ε = (0.01, 0.01) be the tolerance. We summarize in Table 5.2
the numerical tests performed by applying the SOI algorithm to the empirical
set Xε

i , for i = 1 . . . 4. The first two columns of the table contain the name
of the processed set and the value of its cardinality. The column labelled with
“Corners” refers to the set of corners of the stable order ideal computed by the
algorithm.

Input #Xi Corners
X1 8 {x2, xy3, y5}
X2 16 {x2, y4}
X3 32 {x2, y5, xy4}
X4 64 {x2, y4}

Table 5.2: Output of SOI computed on sets of points close to a circle

Note that the set of corners of the stable order ideals computed by the
SOI Algorithm always contain the power product x2: this means that there
is a numerical linear dependence among the empirical vectors associated to
the power products {1, y, x, y2, xy, x2} and that some useful information on the
geometrical configuration of the points could be found.

The numerical tests suggest that in most cases the SOI Algorithm computes
a stable quotient basis, allowing us to determine a stable border basis of I(X).
The following example shows a phenomenon of “premature termination”: the
stable order ideal computed by the SOI Algorithm contains less than #X terms
since the tolerance on the set X is, in some sense, too large.

Example 5.3.7. Three almost aligned points
Let Xε be the set of distinct empirical points having

X = {(0.1, 0), (0.98, 1), (2.03, 2)} ⊂ R2

as the set of specified values and ε = (0.6, 0.6) as the tolerance.
Applying the SOI Algorithm to Xε we obtain the order ideal O = {1, y}

which is stable; however, this is not a quotient basis, so we cannot obtain the
corresponding stable border basis of I(X). We observe that this result is not
due to the inadequacy of the first order approximation approach on which the
SOI Algorithm is based, but rather to the fact that I(X) has no stable quotient
bases w.r.t. ε. In fact, it is simple to verify that each of the order ideals of T2

containing exactly 3 elements, that is:

O1 = {1, x, x2}, O2 = {1, x, y}, O3 = {1, y, y2}

is not a stable quotient basis of I(X).

The same situation occurs when considering the set of points of Exam-
ple 5.1.5.
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Example 5.3.8. Let Xε be the set of empirical points given in Example 5.1.5.
Applying the SOI Algorithm to Xε we obtain the order ideal O = {1}, which is
trivially stable.

The following example investigates further on the possible causes of the
premature termination of the SOI Algorithm. In particular we see that, with a
fixed set of specified values, the algorithm produces different results for different
values of ε.

Example 5.3.9. Empirical points close to two conics and a cubic
Let Xε be the set of distinct empirical points having

X = {(1, 6), (2, 3), (2.449, 2.449), (3, 2), (6, 1)} ⊂ R2

as the set of specified values and ε1 = (0.15, 0.15) as the tolerance. Applying
the SOI Algorithm to Xε1 , we obtain the stable order ideal O1 = {1, y, x, y2};
however, this is not a quotient basis, so we cannot obtain the corresponding
stable border basis. This is due to the fact that the points of X lie close to the
hyperbola γ1 : xy−6 = 0, the circle γ2 : (x−6)2+(y−6)2−25 = 0 and the cubic
γ3 : y3 − 12y2 + 6x+ 47y − 73 = 0. So, if the tolerance is too big, they “almost
satisfy” all of them. In Figure 5.1 we plot with black dots the points of X, we
plot in red the hyperbola γ1 and in blue the circle γ2. In Figure 5.2 we zoom in
around the third point of X, p3 = (2.449, 2.449). As in the previous figure, the
red line refers to γ1 and the blue line to γ2; with the black line we plot the circle
which bounds the admissible perturbations of pε1

3 . Note that both γ1 and γ2

intersect the neighbourhood of perturbations.
Observe how the problem does not arise if we use a smaller tolerance, e.g.

ε2 = (0.01, 0.01). Applying the SOI Algorithm to Xǫ2 we obtain the stable
quotient basis O2 = {1, y, x, y2, y3}, and its corresponding border basis:

B2 ≈





xy + 0.0047y3 − 0.0560y2 + 0.0280x+ 0.2194y − 6.336
x2 − 0.4265y3 + 6.118y2 − 14.559x− 32.047y + 77.711
xy2 + 0.0114y3 − 0.1372y2 + 0.0686x− 5.463y − 0.8231
y4 − 14.477y3 + 76.724y2 − 14.862x− 188.419y + 214.345
xy3 + 0.0280y3 − 6.336y2 + 0.1680x+ 1.316y − 2.016

In Figures 5.3 and 5.4 we zoom in around the point p3; as above, the red
line refers to the hyperbola γ1, the blue line to the circle γ2, and the black
lines to the circles which bound the admissible perturbations of p3 w.r.t. ε1
and ε2. Note that when we consider the tolerance ε2 only the hyperbola crosses
the neighbourhood of perturbations of p3. We suspect that in many cases the
reason for the premature termination of the SOI Algorithm is related to the
presence of more varieties which almost satisfy the original points. We plan to
investigate the existence and properties of these special varieties in our future
research (see Chapter 7).
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Chapter 6

Application in the oil

industry

In this chapter we show some results of our methods (illustrated in Chapters 4
and 5) when applied to real data coming from oil industry. The addressed prob-
lem is the modeling of oil production in the case of a multi-zone well. The
traditional modeling techniques assume that equations which describe the flow
of the fluids through the reservoir are available. However their limited suc-
cess suggest that they do not provide a good representation of the interactions
occuring during the production phase. Our aim is to find a model for the to-
tal production of a group of wells or a collection of zones which describes the
production behaviour correctly over longer time scales; the idea is to take into
account the interactions between the zones and so to provide a decomposition
of the total production as a combination of the separate contributions of the
individual wells. Rather than starting from the physical knowledge of the phe-
nomenon, we share the idea that good models for many industrial problems can
be constructed using a bottom-up process, in which the mathematical model is
derived by interpolating the measured values on a finite set of points. For this
reason we make the following assumption: we view the oil reservoir as a physi-
cal system which can be completely described in terms of measurable physical
quantities, one of which being the oil production itself. We represent the set of
all measurements associated to the physical quantities as a (mathematical) set
of points on top of which we can build the interpolation model. In this way we
find an algebraic model (which is polynomial in nature) for the oil production
which depends on the relevant physical entities of the oil reservoir. During the
modeling process we pay particular attention to the relations which describe the
interactions of the different zones in the same production unit, and we use them
to provide a decomposition of the total oil production as a combination of the
separate contributions of the well.

This chapter is organized as follows. Based on [KPR08] and [HH01], in
Section 6.1 we provide some background about the physical nature of an oil
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reservoir and describe the problem of the control of the oil production, which
is very relevant in the frame of the oil industry. In Section 6.2 we describe in
detail the case of a two-zone well, we introduce new indeterminates for repre-
senting the physical entities involved in the production process, and state the
crucial assumption on the existence of a causal relationship between the new
indeterminates and the production. In Section 6.2.1 we describe a setM of nu-
merical data coming from tests done on a two-zone well; then, in Section 6.2.2
we reduce the redundancy ofM using the techniques introduced in Chapter 4.
In Section 6.2.3 we apply the SOI Algorithm on this new set of empirical points
and, starting from these results, we compute different polynomials for the pro-
duction, we test their reliability and compare their prediction skills.

6.1 Oil fields, gas fields and drilling wells

In order to have a commercial deposit of oil or gas, three geological conditions
must have been met. In the subsurface of the producing area there must be a
source rock, that is a rock which generated the oil or gas at some time in the
geological past; there must be a separate reservoir rock to hold the two fluids,
and finally a trap in the reservoir rock to concentrate them into commercial
quantities. If any one of the above conditions fails to hold, the process of
oil/gas field formation and/or exploitation cannot occur.

The uppermost crust of the earth in oil and gas-producing areas is composed
of sedimentary rock layers. Sedimentary rocks are composed of particles, such
as sand grains, seashells, and salt, which are the source and reservoir for oil
and gas. Since the densities of oil and gas are lower than the density of water
(which also occurs in the subsurface sedimentary rocks), buoyancy forces them
to rise through fractures in the subsurface rocks. The rising oil and gas can
encounter a layer of reservoir rock, a sedimentary rock containing billions of
tiny interconnected spaces called pores. In this case the oil, gas, and water will
flow into the pores and move along the reservoir rock layer, which is the path
of least resistance. The movement of these fluids toward the surface is called
migration (see Figure 6.1).

Because of migration the oil, gas, and water can end up a considerable dis-
tance, both vertically and horizontally, from where they were originally formed,
to where they encounter a trap, that is a high point in the reservoir rock, usually
a natural arch, where they stop, concentrate, and separate according to their
densities. The gas is the lightest and goes to the top of the trap to form the free
gas cap; the oil goes in the middle to form the oil reservoir; the (salt) water,
the heaviest, goes to the bottom. To complete the trap, a caprock, that is a
seal which does not allow fluids to flow through it (usually shale and salt), must
overlie the reservoir rock; without a caprock the oil and gas would leak up to
the surface of the ground (see Figure 6.2).

During the early days of drilling, it was erroneously thought that there were
large flowing underground rivers and subsurface pools of oil. Early drillers,
however, had some success because many subsurface traps were leaky: there
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Figure 6.1: Generation and migration of oil and gas

were small fractures in the caprock, and some of the oil and gas leaked up and
seeped onto the surface. Only by the early 1900s, the principles of subsurface oil
and gas deposits became better known: oil companies realized that by mapping
how the sedimentary rock layers crop out on the surface of the ground, the
rock layers could be projected into the subsurface, and traps could be located.
However, up to now, the only way to know for sure if a trap contains commercial
amounts of gas and oil is to drill a well.

A well drilled to find a new oil or gas field is called a wildcat well. Unfortu-
nately, most wildcats are dry holes with no commercial amounts of oil or gas. In
fact, depending on the test results, the wildcat can be plugged and abandoned
or recognized as a producer. In this case, a long length of large diameter steel
pipe (called a casing), is lowered down the hole to complete the well.

����������������������������
����������������������������
����������������������������
����������������������������

Cap RockFree 
Gas Cap

Oil 
Reservoir

Water

Surface

Figure 6.2: Petroleum trap
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In order for the oil or gas to
flow into the well, the cas-
ing is shot with explosives
to form holes called perfo-
rations. A long length of
narrow diameter steel pipe
(called tubing) is then sus-
pended down the center of
the well. The produced flu-
ids are brought up the tub-
ing to the surface to pre-
vent them from touching
and corroding the casing,
which is the hardest part to
repair.

Tubing

Casing

Perforations

Perforations and tubing in a well

In a gas well, gas flows to the surface by itself. There exist some oil wells,
early in the development of an oil field, in which the oil has enough pressure to
flow up to the surface by itself. Most oil wells, however, do not have enough
pressure and an artificial lift must be used: gas is injected into the production
tubing of the well, it mixes with the oil and makes it lighter, so that the back
pressure of the reservoir is reduced. On the surface, gas is prepared for delivery
to a pipeline by gas-conditioning equipment that removes impurities such as
water vapor and corrosive gases. For oil, a long steel tank, called a separator,
is used to separate natural gas and salt water from it; the separated oil is then
stored in steel stock tanks.

During the exploitation of a reservoir the pressure on the remaining fluids
drops; the production of oil and gas from a field decreases with time, and this
decrease is represented by the associated decline curve. The shape of the decline
curve and the total volume of fluid that can be produced from a reservoir (which
is called ultimate recovery) depend on the reservoir drive, the natural energy
that forces the oil or gas through the subsurface reservoir and into the well. The
ultimate recovery of gas from a gas reservoir is often about 80% of the gas in
the reservoir. Oil reservoirs are far more variable and less efficient: they range
from 5% to 80% recovery but the average is only 30% of the oil present in the
reservoir. This leaves 70% of the oil remaining in the pressure depleted reservoir
which cannot be economically extracted anymore.

6.1.1 Multi-zone wells

A well may produce from different parts, called pockets or zones, of an oil reser-
voir. Usually each producing zone has its own packer and tubing string, so
that the fluids coming from the different formations do not intermingle (mul-
tiple completions). However, a complete separation among the different zones
is often very difficult to achieve. The well is then completed into two or more
interacting zones and is called a multi-zone well. The total production of a
multi-zone well is measured at the surface, and consists of the contributions



6.2 A two-zone well and its production polynomial 97

of the different pockets interacting with each other in the common production
tubing (commingled production). The separate contributions can be controlled
by valves, called the down-hole valves, to determine the rate of flow into the
common tubing at the different locations of the reservoir.

As for most physical systems showing interactions, a multi-zone well can not
be described by an additive model: the total oil production is not, in general,
the sum of the productions of each zone. During the operations of oil extraction,
the physical state of the reservoir changes: the production of oil in one zone is
usually accompanied by the loss of a certain amount of gas in the reservoir,
which might stimulate or inhibit the oil production in the other zones. We
believe that the reason of the (usually) low ultimate recovery rate of a multi-zone
well is due to the fact that the interactions among the different producing zones
are unknown. A deeper understanding of the mentioned interactions would lead
to a bigger production rate and therefore to a partial solution of the ultimate
recovery problem, which is, up to now, the most challenging problem in oil and
gas production operations.

6.2 A two-zone well and its production polyno-

mial

We consider a multi-zone well consisting of two producing and interacting zones
(see Figure 6.3).
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Figure 6.3: Representation of a two-zone well

Like in a single oil well, the common production flows to the bulk separa-
tor, where the different phases, namely oil, gas, and water are separated and
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the production rates of the separated phases are measured. Besides the phase
productions, measurements like pressures, temperatures and injected “lift-gas”
are collected; down-hole valves positions are also recorded. A typical set of
production variables for a two-zone well is contained in Table 6.1.

Prod vars Physical Description
ICV1 Valve Position - zone 1
ICV2 Valve Position - zone 2
Pann1

Down Hole Pressure Annulus - zone 1
Pann2

Down Hole Pressure Annulus - zone 2
Ptub1

Down Hole Pressure Tubing - zone 1
Ptub2

Down Hole Pressure Tubing - zone 2
THP Tubing Head Pressure
FLP Flow Line Pressure
G Gas Production
Q Gross (Oil, Water)

Table 6.1: Production variables in a two-zone well

The physical meaning of the production variables introduced in Table 6.1 is
described in the following list (see also Figure 6.4 for a schematic representation):

ICVi: opening of the valve positioned at zone i=1 or i=2, and through which
the oil produced in that zone is collected; the opening is measured in
percentages: 0% means that the valve is completely closed, 100% means
that the valve is completely open;

Panni
: pressure of the oil measured at the annulus at zone i=1 or i=2;

Ptubi
: pressure of the oil measured at the tubing at zone i=1 or i=2;

THP: pressure of the oil measured at the head of the tubing;

FLP: pressure of the oil measured at the transportation tubing;

G: quantity of gas produced while extracting the oil;

Q: quantity of gross (oil and water) produced.

We simplify the set of measurements by using very basic knowledge of the
physical system. We define new indeterminates (which will be used for the
rest of the experiment) by associating them with physical quantities in the
production problem, that means that the evaluation of each indeterminate at
the set of data is indeed the measurement of the associated physical quantity.
An example could be the indeterminate x = (y1 − y2)y3, where, for instance,
the original production variables y1 and y2 are related to pressures, and y3 is
related to the physical state of a restriction, that is y3 describes the status of
any obstacle in the flow like a valve, a piece of tubing, or the inflow opening from
the reservoir to the production tubing. The quantity y1−y2 is associated to the
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Figure 6.4: Production variables in a two-zone well

pressure drop over the restriction, and thus the new indeterminate x acquires
the physical meaning of a driving force over it.

We define the 8 new indeterminates x1, . . . , x8 and associate them with func-
tions of the original production variables as described in Table 6.2.

New indets Physical meaning
x1 ICV1

x2 ICV2

x3 ICV1 ∗ ICV2

x4 (Pann2
− Ptub2

) ∗ Ind2 := ∆Pinflow
2

x5 (Pann1
− Ptub1

) ∗ Ind1 := ∆Pinflow
1

x6 G
x7 (Ptub2

− Ptub1
) ∗ Ind2 := ∆Ptubing

x8 THP− FLP := ∆Ptransport

Table 6.2: New indeterminates and their physical meaning

The functions Ind1 and Ind2 used in Table 6.2 are defined by:

Indi =

{
1 if ICVi > 0 ⇐⇒ ICVi is open
0 if ICVi = 0 ⇐⇒ ICVi is closed

Note that they depend on the valve positions ICV1 and ICV2, and so give
information on the status of the down-hole valves. Furthermore, we have the
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following implications:

x1 = 0 =⇒ x3 = 0, x5 = 0
x2 = 0 =⇒ x3 = 0, x4 = 0, x7 = 0

(6.1)

The physical interpretation of the differences of pressures used in Table 6.2 is
schematically sketched in Figure 6.5.
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Figure 6.5: Schematic representation of a two-zone well

The indeterminates x1 and x2 correspond to the down-hole valve positions;
x3 is associated to the physical condition of the interaction between the two
zones. We recall that the only possible inflows from the reservoir into the
production tubing are at zone 1 via valve 1, or at zone 2 via valve 2, or both
when the two valves are opened simultaneously and the two zones interact,
which is the state represented by x3.

The physical quantities associated to x4, . . . , x8 may all be interpreted as
driving forces of the oil production: x4 (x5 respectively) is the pressure which
drives the oil out of the first (second) zone when the valve in that zone is open;
if the valve is closed we assume its value to be zero. For this assumption some
physical knowledge about the problem has been applied; we explain it briefly
by focussing on x4. If the valve in zone 2 is closed, it may very well be that the
pressure difference Pann2

− Ptub2
is not zero, but it does not have the meaning

of a driving force over the oil, as there is no flow through the valve. Hence we
set x4 to zero for this situation, and we do exactly the same for x5 with respect
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to the first zone. Also the gas production, represented by the indeterminate x6,
behaves as a driving force. When a large amount of gas is produced in the
deeper parts of the reservoir, it disperses in the fluid mixture, makes it lighter,
and in this way increases the lift on the oil, and consequently the amount of
production. The indeterminate x7 is associated to the pressure which drives
out the oil from the first zone when the second zone (assumed to be the lower
one, see Figure 6.3) is producing; if the valve at zone 2 is closed, we assume its
value to be zero. Also in this case, it may happen that the pressure difference
Ptub2

− Ptub1
does not vanish, though this does not imply that there is transport

of fluids in the lowest part of the tubing. Hence, in order to have the significance
of a driving force, x7 is set equal to zero when the valve at zone 2 is closed.
Finally, the indeterminate x8 is associated to the pressure which drives the oil
at the surface and through the transportation tubing.

Being recognized as driving forces, the physical quantities associated to
x4, . . . , x8 may all be viewed as the causing quantities of the oil production,
which itself can be viewed as their effect; the whole process is regulated by
the variables x1, x2, x3, that is by the valve positions. Basically, we make the
following crucial assumption.

Assumption 6.2.1. There exists a causal relationship between the oil produc-
tion and the driving forces. Using suitable inputs, this causal relationship is
polynomial in nature.

If we denote the oil production by f , the algebraic translation of the above
assumption becomes the following: f ∈ R[x1, . . . , x8], where the indeterminates
x1, . . . , x8 have the physical meaning expressed in Table 6.2. Rather than being
associated with an indeterminate, the oil production is expressed by a poly-
nomial, its measurements being the evaluation of that polynomial at the set of
data collected during the experiments. The problem of modeling the production
in terms of the measurable physical quantities can be rephrased as the problem
of finding a polynomial f ∈ R[x1, . . . , x8] properly fitting the values of the oil
production at the measured values of x1, . . . , x8.

6.2.1 Description of the data

The numerical data come from tests done on a two-zone well; the information
recorded refers to the situation where at most one of the down-hole valves is
closed. The possible inflows from the reservoir to the production tubing are at
the location of zone 1, or zone 2, or both. In all three situations data have been
collected at different valve openings.

Using the simplification on the production variables illustrated in Section 6.2,
the numerical data are indeed the measurements of the physical quantities asso-
ciated to the variables x1, . . . , x8, and are available at 7400 time samples. They
are organized as a set of points M ⊆ R8 which appear noisy and redundant.
The production Q is the amount of gross (oil and water) produced, and it also
consists of 7400 samples.
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The set M is divided into blocks made up of measurements collected at 36
combinations of the valve openings; note that some combinations are repeated,
and so M corresponds to 31 different physical situations of the two-zone well.
Table 6.3 contains the values of the valve openings x1 and x2, their combina-
tion x3, and the number of measurements contained in each block (labeled with
i = 1, . . . , 36).

To quantify the dispersion of the data we compute the difference between
the maximum and the minimum values for each of the variables x1, . . . , x8 in
each block i = 1, . . . , 36; the differences are labeled with ∆x1, . . . ,∆x8 and
are contained in Table 6.4. Table 6.5 contains the averages ∆x1, . . . ,∆x8 of
∆x1, . . . ,∆x8 computed across the blocks.

6.2.2 Data reduction

In order to test the reliability of our approach, the set M of measurements is
divided into two parts: a computational partM1 of size 6000 and corresponding
to the first 31 combinations (with repetition) of the valves openings, and a testing
partM2 of size 1400 and corresponding to the last 5 combinations of the valves.
The two parts are a partition ofM, that isM1 ∪M2 =M andM1 ∩M2 = ∅.

We observe that the points of the data set M1 are noisy and redundant.
We reduce them using the techniques described in Chapter 4; in particular,
we apply the Divisive Algorithm (DA, included in CoCoALib [CoC]) to the
empirical set (M1, ε), where

ε = (0.1, 0.1, 0.1, 100, 250, 40, 80, 280) (6.2)

The choice of the tolerance vector ε comes from the analysis of the data per-
formed in Section 6.2.1: each component εi, with i ≥ 4, satisfies the relation
εi ≈ ∆xi/2 (approximated by excess, compare the value of ε with Table 6.5).
This means that, from an intuitive point of view, we consider as equivalent the
set of points whose componentwise distances are less than the corresponding
averages of dispersion. Furthermore, note that the value 0.1 of the first three
components of ε is fictitious and it has been chosen to avoid to handle the
case εi = 0. Nevertheless, it is important to observe that 0.1 plays the same
role as 0: it allows to identify only the measurements having the same first three
entries, exactly as if there is no error affecting their valus.

After the Divisive Algorithm we obtain the reduced set of points PPP ⊆ Q8,
made up of 77 well separated points. From Chapter 4 we recall that the basic
idea of the preprocessing technique is to gather together points which lie close
together w.r.t. the tolerance ε, and replace them by a single valid representative.
The multiplicity of a representative point has been defined as the number of orig-
inal points it replaces. Table 6.6 contains the multiplicity of the points in PPP
ordered decreasingly. The multiplicities smaller than 15 are typed in red: the
corresponding points derive from observations that are numerically distant from
the rest of the data, and so most likely encode failures in the measurements, for
instance caused by the transit from one valve opening combination to another.
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i #i-th block x1 x2 x3

1 59 10 0 0
2 47 20 0 0
3 285 30 0 0
4 119 40 0 0
5 120 50 0 0
6 240 60 0 0
7 272 70 0 0
8 118 80 0 0
9 150 90 0 0
10 113 100 0 0
11 151 0 100 0
12 85 0 40 0
13 41 0 70 0
14 631 40 100 4000
15 94 10 100 1000
16 118 20 100 2000
17 119 30 100 3000
18 92 40 100 4000
19 66 50 100 5000
20 693 10 100 1000
21 100 100 10 1000
22 95 100 20 2000
23 157 100 30 3000
24 769 100 40 4000
25 92 0 40 0
26 121 10 40 400
27 120 20 40 800
28 121 30 40 1200
29 105 30 50 1500
30 122 30 60 1800
31 740 30 70 2100
32 202 40 70 2800
33 113 50 70 3500
34 48 0 70 0
35 143 30 70 2100
36 739 40 70 2800

Table 6.3: Valve openings and number of experiments inM
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i ∆x1 ∆x2 ∆x3 ∆x4 ∆x5 ∆x6 ∆x7 ∆x8

1 0 0 0 0 863.29 24.85 0 755.6
2 0 0 0 0 766.4 101.96 0 1031.8
3 0 0 0 0 1476.04 55.16 0 1289.92
4 0 0 0 0 902.17 34.08 0 604.06
5 0 0 0 0 516.21 25.01 0 571.44
6 0 0 0 0 800.4 67.42 0 727.36
7 0 0 0 0 175.17 80.76 0 279.88
8 0 0 0 0 36.4 66.65 0 152.81
9 0 0 0 0 31.28 87.2 0 134.58
10 0 0 0 0 28.53 91.65 0 110.73
11 0 0 0 7.5 0 25.5 24.56 292.64
12 0 0 0 109.13 0 98.2 54.19 375.1
13 0 0 0 88.61 0 41.8 163.84 410.3
14 0 0 0 8.27 178.32 26.33 76.77 514.79
15 0 0 0 15.44 336.75 23.29 172.27 247.44
16 0 0 0 25.88 524.96 25.92 251.06 349.14
17 0 0 0 15.88 436.7 65.91 211.99 271.93
18 0 0 0 9.43 170.16 42.66 94.41 171.81
19 0 0 0 3.99 20.24 17.9 23.2 84.89
20 0 0 0 10.55 90.17 13.79 31.33 208.83
21 0 0 0 359.55 45.12 114.61 84.27 650.39
22 0 0 0 285.46 53.69 49.93 129.42 291.54
23 0 0 0 411.71 53.69 47.6 220.79 316.04
24 0 0 0 2492 4593.37 163.99 1072.54 3359.84
25 0 0 0 539.66 0 98.2 201.95 875.16
26 0 0 0 291.43 595.87 92.17 121.81 521.69
27 0 0 0 478.76 910.62 50.53 194.6 719.6
28 0 0 0 487.7 247.04 47.75 242.62 341.22
29 0 0 0 253.2 127.25 11.76 109.16 198.12
30 0 0 0 190.08 93.32 10.79 95.99 154.51
31 0 0 0 75.24 378.52 56.52 151.41 892.56
32 0 0 0 42.04 220.22 29.65 88.32 212.84
33 0 0 0 469.5 2472.48 76.08 1061.55 1775.99
34 0 0 0 91.08 0 56.77 173.38 410.3
35 0 0 0 68.48 386.4 52.87 151.41 348.49
36 0 0 0 21.61 56.4 799.34 39.21 237.09

Table 6.4: Dispersion of x1, . . . , x8 inM

∆x1 ∆x2 ∆x3 ∆x4 ∆x5 ∆x6 ∆x7 ∆x8

0 0 0 190.34 488.53 77.07 145.61 552.51

Table 6.5: Averages ∆x1, . . . ,∆x8 on the blocks ofM
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Such points can be regarded as outliers, and are omitted in the rest of the com-
putation. The multiplicities between 15 and 17 are typed in yellow: with high
probability the corresponding points encode some failures which occured when
the measurements were collected, though the situation is not as clear as above;
these points may or may not be considered in the rest of the computation.

Point p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Mult 783 621 593 463 237 210 168 153 151 150
Point p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

Mult 130 120 119 118 117 116 116 116 115 113
Point p21 p22 p23 p24 p25 p26 p27 p28 p29 p30

Mult 111 110 104 103 102 101 91 73 66 63
Point p31 p32 p33 p34 p35 p36 p37 p38 p39 p40

Mult 62 41 29 18 17 16 13 13 12 12
Point p41 p42 p43 p44 p45 p46 p47 p48 p49 p50

Mult 11 8 8 8 8 7 5 5 5 5
Point p51 p52 p53 p54 p55 p56 p57 p58 p59 p60

Mult 4 4 4 4 3 3 3 3 3 3
Point p61 p62 p63 p64 p65 p66 p67 p68 p69 p70

Mult 3 3 3 2 2 2 2 2 2 2
Point p71 p72 p73 p74 p75 p76 p77

Mult 1 1 1 1 1 1 1

Table 6.6: Multiplicities of the points in PPP

As an example we plot some elements ofM replaced by some points in PPP
having small multiplicity. We consider the points ofM at positions 4948−5184;
in Figures 6.6 and 6.7 we plot the values of their 5-th and 7-th coordinates. In
green we plot the points at positions 4948 − 4960 replaced by p37, multiplic-
ity 13; in blue we plot the points at positions 4961 − 5063 replaced by p24,
multiplicity 103; in black the points at positions 5064 − 5065 replaced by p69,
multiplicity 2; in magenta the points at positions 5066− 5067 replaced by p64,
multiplicity 2; in cyan the points at positions 5066− 5080 replaced by p38, mul-
tiplicity 13; in red the points at positions 5081−5184 replaced by p23, multiplic-
ity 104. The points plotted in green, black, magenta and cyan are associated
to points whose multiplicity is smaller than 15, and so they are considered as
outliers. Indeed they result from measurements occured during the transit from
one valve openings combination to another: at positions 4947 − 4948 valve 1
passes from 10% to 20% opening, and again at positions 5067 − 5068 it goes
from 20% to 30%. These points are omitted from any future computation.

We define the sets Z1, Z2 ⊆ PPP , in which the points having yellow and
red multiplicities, or only red multiplicities (see again Table 6.6), are omitted:

Z1 = {pi ∈ PPP | multiplicity(pi) ≥ 18} (6.3)

Z2 = {pi ∈ PPP | multiplicity(pi) ≥ 15}
We observe that #Z1 = 34 and #Z2 = 36; further, in both cases the orig-
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Figure 6.6: Coordinate x5 of M, positions 4948− 5184
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inal measurements are properly represented since, for instance, all the valve
combinations in PPP are also contained in Z1 and Z2.

6.2.3 Computation of stable order ideals and production

polynomials

In this section we aim at finding a good representation/prediction for the oil
production. The following approximation problem is addressed: given the values
of the oil production at a sample set we want to find the polynomial of best
approximation. As in the multivariate regression theory, our purpose is indeed
to find a multivariate polynomial which fits the input data. In our method
the model is given by the order ideal O returned by the SOI Algorithm when
applied to a suitable data set. Starting from O, the production polynomial f
is computed as a linear combination of its elements. The coefficients of such
a linear combination are obtained by projecting the vector of the measured
values of the production onto the linear span generated by the evaluation vectors
{t(M1) | t ∈ O} (and using the least squares technique, see Section 2.3.1).

We consider the sets Z1 and Z2 defined in (6.3); we fix a tolerance vector ε
and, for each Zi, we compute a stable order ideal of I(Zi) by applying the SOI
Algorithm to the empirical set (Zi, ε). Apart from the first three components
ε1, ε2, ε3 which are set equal to zero, the choice of the tolerance vector ε is
independent of the error estimates used during the phase of data reduction (see
formula (6.2) and Table 6.5). In fact, working with fewer points which represent
a much larger and very redundant data set means giving much more importance
to the clustered points than to the original ones, and therefore lowering the error
allowed on each component. Moreover, we recall that the strategy used in the
SOI Algorithm works only for small perturbations of the input data, while it
loses its meaning if we consider big changes on them. For all these reasons, we
fix a tolerances ε such that |εi| < 1.

Note that all the experiments and computations are done in the polynomial
ring Q[x1, . . . , x8]; the SOI Algorithm is executed using the degree lexicographic
term ordering σ, with x1 <σ . . . <σ x8; in addition, the coefficients of the
polynomials are displayed as truncated decimals.

First experiment
We apply the SOI Algorithm to (Z1, ε), with ε = (0, 0, 0, 0.8, 0.8, 0.8, 0.8, 0.8).
The returned stable order ideal is:

O1 = {1, x1, x2, x3, x4, x5, x6, x7, x8, x
2
1, x1x3, x1x4, x1x5, x1x6,

x1x7, x1x8, x
2
2, x2x3, x2x4, x2x5, x2x6, x2x7, x2x8, x

2
3, x3x4,

x3x5, x3x6, x3x7, x3x8, x
2
4, x4x5, x

2
5, x5x6, x5x8}

Note that O1 contains 34 terms and so it is a stable quotient basis for the
vanishing ideal I(Z1).
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Starting from O1 we compute the production polynomial f1:

f1 = x1 (0.001x8 − 0.004x7 − 0.032x6 − 4 · 10−4x5 + 9 · 10−4x4 + 0.011x1

−9.205) + x2 (0.001x8 − 0.004x7 − 0.017x6 − 2 · 10−4x5 + 3 · 10−4x4

+0.073x2 − 12.317) + x3 (−3 · 10−4x8 + 2 · 10−4x7 + 6 · 10−4x6

−3 · 10−5x5 + 10−5x4 + 3 · 10−5x3 − 0.003x2 − 0.002x1 + 0.312)

−2 · 10−5x2
4 + 2 · 10−5x4x5 − 10−5x2

5 − 2 · 10−5x5x6 + 4 · 10−6x5x8

−0.016x4 − 0.004x5 + 3.547x6 + 0.206x7 − 0.063x8 + 1005.56

We compare the values of f1 evaluated at M with the measured values of
the gross production Q. In Figure 6.9 we plot in blue the real values of the
production Q, in green the evaluations of f1 atM1, and in red the evaluations
of f1 atM2 (the “predictions”); a zooming of the prediction part is contained in
Figure 6.10. We observe that the polynomial f1 is a good predictor: the absolute
values of the differences between the evaluations of f1 and the measured values
of the oil production are plotted in Figure 6.8.
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Figure 6.8: Error in the prediction of f1

It is evident that the polynomial f1 has extremely high values at two points
ofM, namely the measurements recorded at positions 7019 and 7173. We look
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Figure 6.9: Oil production from polynomial f1
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Figure 6.10: Oil production from polynomial f1: the predicted part



110 Application in the oil industry

at the measurements registered in M at the position 7019 and its neighbours:

7018 : (40, 70, 2800, 223.47, 680.20, 133.54, 791.10, 10132.71)
7019 : (40, 70, 2800, 220.12, 661.39, 930.22, 770.65, 9961.28)
7020 : (40, 70, 2800, 215.77, 641.83, 154.18, 761.60, 10151.90)
7021 : (40, 70, 2800, 224.75, 661.55, 138.52, 772.98, 10124.02)

and at the values of the production Q:

7018 : 867.35
7019 : 1105.71
7020 : 941.12
7021 : 885.54

We notice that indeed a big variation occurs inM, position 7019, at variable x6,
which corresponds to the gas production: the quantity of gas produced during
the extraction varies from 133.54 to 930.22 (in red), and then back to 154.18
and 138.52. A similar alteration is registered for the gross production: its values
fluctuate from 867.35 to 1105.71 (in red) and then back to 941.12 and 885.54.
Since the physical quantities are collected at every minute, it is highly probable
that such changes are related to faults in the processing of data acquisition,
which can be regarded as false measurements. The same situation occurs at the
position 7173; the values of the neighbour points inM are:

7171 : (40, 70, 2800, 228.48, 691.24, 134.80, 793.58, 10123.63)
7172 : (40, 70, 2800, 229.14, 687.34, 216.37, 789.45, 10101.54)
7173 : (40, 70, 2800, 223.46, 653.33, 835.71, 759.31, 10027.89)
7174 : (40, 70, 2800, 218.64, 643.32, 145.71, 760.54, 10095.67)

and in the production Q:

7171 : 872.00
7172 : 861.21
7173 : 1147.96
7174 : 913.20

Despite the satisfactory results achieved in the prediction of the oil pro-
duction, we can’t conclude that the polynomial f1 is the solution we looked
for: f1 does not give information about the unknown interactions occurring in
a production unit, and so cannot provide a complete solution to the problem of
oil production. From our point of view, a good numerical approximation and
prediction of the production values are not enough to deal completely with the
production problem. We require stronger results involving the structure of the
model for the production in terms of the driving inputs.

Second experiment
We apply the SOI Algortihm to (Z2, ε), with ε = (0, 0, 0, 0.8, 0.8, 0.8, 0.8, 0.8).
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The returned stable order ideal is:

O2 = {1, x1, x2, x3, x4, x5, x6, x7, x8, x
2
1, x1x3, x1x4, x1x5, x1x6,

x1x7, x1x8, x
2
2, x2x3, x2x4, x2x5, x2x6, x2x7, x2x8, x

2
3, x3x4,

x3x5, x3x6, x3x7, x3x8, x
2
4, x4x5, x

2
5, x5x6, x5x8, x

3
1, x1x

2
5}

Note that O2 contains 36 terms and so it is a stable quotient basis for the
vanishing ideal I(Z2).

In this case we compute the production polynomial in a slightly different
way: we select from O2 the “maximal” subset S such that S ∈ 〈x1, x2, x3〉,
S = {x1, x2, x3, x

2
1, x1x3, x1x4, x1x5, x1x6, x1x7, x1x8, x

2
2, x2x3, x2x4,

x2x5, x2x6, x2x7, x2x8, x
2
3, x3x4, x3x5, x3x6, x3x7, x3x8, x

3
1, x1x

2
5}

By applying the least squares method w.r.t. the monomial set S, we obtain the
production polynomial f2:

f2 = x1 (28.523− 0.530x1 + 3 · 10−4x4 − 9 · 10−5x5 + 0.010x6 − 0.002x7

+7 · 10−4x8 + 0.003x2
1 − 10−9x2

5) + x2 (10.068− 0.072x2 + 0.002x4

−10−4x5 + 0.036x6 − 0.001x7 + 2 · 10−4x8) + x3 (−0.363 + 0.003x1

+0.002x2 + 10−5x3 + 3 · 10−5x4 − 6 · 10−5x5 − 10−4x6 + 10−4x7

−2 · 10−5x8)

We compare the values of f2 evaluated at M with the measured values of
the gross production Q. In Figure 6.11 we plot in blue the real values of the
production Q, in green the evaluations of f2 atM1, and in red the evaluations
of f2 at M2 (the “predictions”); a zooming of the prediction part is contained
in Figure 6.12. The differences between the evaluations of f2 and the measured
values of the oil production are plotted in Figure 6.13. We observe that f2
takes extremely high values when evaluated at the measurements recorded at
positions 7019 and 7173 of M; as argued for f1, we conclude that such big
variations are related to failures in the measurements rather than to faults in
the computation, and so they do not undermine the reliability of the model.

Now, we compare the reliability of the two computed models; in Figure 6.14
we plot the difference between the prediction errors deriving from f2 and f1.
Since most of the plot lies in the first quadrant, we conclude that the predictions
of f1 are more reliable than those of f2. Despite this, f2 gives a more satisfactory
answer to the problem of oil production, since it provides more information
about the interactions of the two zones. We decompose f2 as follows:

f2 = f21 + f22 + f23 (6.4)

where f21, f22, f23 ∈ Q[x1, . . . , x8] are given by:

f21 = x1 g1

f22 = x2 g2

f23 = x3 g3 + g4
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Figure 6.11: Oil production from polynomial f2
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Figure 6.13: Error in the prediction of f2
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and g1, g2, g3, g4 ∈ Q[x1, . . . , x8] are

g1 = −10−9x2
5 + 0.003x2

1 + 7 · 10−4x8 + 0.010x6 − 9 · 10−5x5 − 0.530x1 +

+28.523

g2 = 2 · 10−4x8 − 0.001x7 + 0.036x6 + 0.002x4 − 0.072x2 + 10.068

g3 = −2 · 10−5x8 + 10−4x7 − 10−4x6 − 6 · 10−5x5 + 3 · 10−5x4 + 10−5x3 +

+0.002x2 + 0.003x1 − 0.363

g4 = 10−4x2x5 − 0.002x1x7 + 3 · 10−4x1x4

By using decomposition (6.4) we are able to detect the contributions of each sin-
gle well to the total oil production, and have a tool to investigate their unknown
interactions. In fact, note that

supp (f21) ⊆ I(x1)

supp (f22) ⊆ I(x2)

supp (f23) ⊆ I(x1x4, x1x7, x2x5, x3)

and so, using (6.1), we have

f2 |x2=0= f21 and f2 |x1=0= f22

As a consequence, f21 is a model for the production of zone 1, and f22 represents
the production of zone 2. We consider the polynomials g1 and g2 as describing
the nature of the inflow at zone 1 and zone 2, in the sense that for all points ofM
at which the evaluation of a monomial ct, where t is a term in the support of g1
or g2, and c is the corresponding coefficient, is positive the inflow is stimulated,
whereas if the evaluation is negative the inflow is inhibited. The same holds for
the polynomials g3 and g4, which are used to give a description of the nature
of the interactions occuring inside the production tubing. The polynomial f23
provides with information on the state of the two (interacting) zones, since it is
non-zero when zone 1 and zone 2 are simultaneously producing.

We now give a more detailed interpretation of the physical meaning of the
polynomials f21, f22 and f23. Firstly we consider f21 and f22. The contribution
to the production represented by each polynomial is naturally adjusted via the
variables x1 and x2, that is via the openings of the valves. Then we focus our
attention on g1 and g2. Note that g1 and g2 can be further decomposed into two
parts: a part which is related to the pushing from the sub-surface and which
represents the driving of the fluids through the valve openings, and a part which
represents the influence on the individual productions due to “external” factors.
In our particular case we decompose g1 and g2 in the following way:

g1 = g11 + g12

g2 = g21 + g22
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where

g11 = −10−9x2
5 + 0.003x2

1 +−9 · 10−5x5 − 0.530x1 + 28.523

g12 = 7 · 10−4x8 + 0.010x6

g21 = 0.002x4 − 0.072x2 + 10.068

g22 = 2 · 10−4x8 − 0.001x7 + 0.036x6

In the polynomial g11 the coefficients of the terms x5 and x2
5, which represent

the pressure that drives the oil out of the first zone, see Table 6.2, are small and
negative: under the tacit assumption of a (relatively) high and constant reservoir
pressure this means that a (relatively) large volume of fluids per unit of time is
flowing from the reservoir into the well’s tubing system. For the polynomial g21
the situation is the opposite: the coefficient of the term x4, representing the
pressure that drives the oil out of the second zone, is relatively big and positive,
and so the production is inhibited.

The “external” influence which comes into play in the polynomials g12 and g22
is due to two main factors: the presence of oil and gas in the production tubing,
and the interaction between surface and sub-surface events. In both polyno-
mials g12 and g22 the coefficient of the term x6 is positive: the gas present
inside the production tubing mixes with the oil, makes it lighter, so that the
production rate increases. The term x7 appears only in g22 and with a negative
coefficient. In fact zone 1 is above zone 2, and so the fluid already present in the
production tubing does not affect the inflow of oil occuring through valve 1. On
the contrary the contribution of zone 2 is inhibited by the pressure of the fluid
which occurs on valve 2. Finally in both polynomials g12 and g22 the coefficient
of the term x8 is small (order of magnitude 10−4) and positive, which means
that a slight pressure in the transportation tubing stimulates the production of
the two zones.

Before we perform a similar analysis for the polnomial f13, we compare
the values of the polynomials f21 and f22 evaluated at subsets of M with the
measured values of the gross production Q. In the following figures we plot in
blue the real values of the production Q, in red and in green the evaluations
of f21 and f22 at the points of the chosen subset of M. Figure 6.15 contains
the first 10 experiments consisting of the first 1523 measurements of M: the
valve positioned at zone 2 is kept closed, and only zone 1 is producing (see
Table 6.3), so no interaction between the two zones can occur (that is f23 = 0).
In Figures 6.16, 6.17, and 6.18 we analyze a similar situation: inM we select the
experiments in which valve 1 is kept closed, and only zone 2 is producing. Again
no interaction between the two zones can occur. The three plots correspond to
the three blocks inM made up by the measurements 1524− 1800, 4735− 4826,
and 6471− 6518. Note that in these cases the prediction polynomial f2 does an
excellent job.

We consider the polynomial f23. The amount of interaction occuring between
the two different zones while they are simultaneously producing is adjusted via
the variables x1, x2, and x3, that is via the openings of the valves. Then we
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Figure 6.15: Evaluation of f21 and f22 at points 1− 1523 ofM
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Figure 6.16: Evaluation of f21 and f22 at points 1524− 1800 of M
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Figure 6.17: Evaluation of f21 and f22 at points 4735− 4826 of M
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Figure 6.18: Evaluation of f21 and f22 at points 6471− 6518 of M
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focus our attention on the polynomials g3 and g4 (we recall that f23 = x3g3+g4).
In g3 the coefficients of the terms x1 and x2 are approximately the same, which
suggests that the two zones exhibit the same behaviour. Nevertheless, if we
consider the coefficients of the terms x4 and x5 we conclude that the contribution
from zone 1 stimulates the production, while the simultaneous opening of valve 2
produces an inhibitory effect. We characterize further the polynomial f23 by
analyzing its evaluations at subsets of M corresponding to the case of the two
zones producing together; the corresponding blocks of measurements inside M
are: block 1801−4734, block 4827−6470, and block 6519−7400. In Figures 6.19,
6.20 and 6.21 we plot in cyan the evaluations of f23 at the points ofM; as for the
separate productions, we plot in blue the real values of the production Q, in red
and in green the evaluations of f21 and f22 at the points ofM. Note that in some
cases the evaluation of f21 is nearly constant, despite changes in the evaluations
of f22 and f23 over the same subset. An example is given by the measurements
5067− 6155 (see again Figure 6.20): in this case the valve positioned at zone 1
is constantly open for 30%, the opening of the valve positioned at zone 2 varies
from 40% to 70%. We notice that the contribution to the total production
measured by the polynomial f21 is nearly constant, while the evaluations of f22
and f23 at the selected points varies with the opening of valve 2. Our claim
is that the multi-phase flow of the fluids from the reservoir at valve 1 is not
influenced by changes which occur in its down-stream path. In oil production
operations this type of information is crucial.
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Figure 6.19: Evaluation of f21, f22 and f23 at points 1801− 4734 of M
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Figure 6.20: Evaluation of f21, f22 and f23 at points 4827− 6470 of M
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Figure 6.21: Evaluation of f21, f22 and f23 at points 6519− 7400 of M
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Chapter 7

Future works

Following the investigations decribed in this thesis we make a list of problems
that are left open to be further developed.

• The study of the properties of the polynomials “almost vanishing” at the
input points.

• The study of the relationship between the SOI Algorithm and the other
“numerical” algorithms available (e.g. the AVI Algorithm [HKPP06], the
NBM Algorithm [Fas08]).

• A variation to the SOI Algorithm which is invariant under the scaling of
the input empirical points.

• The construction of a set of polynomials really vanishing at a set of admis-
sible points (for instance using the theory of the complete intersections).
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Notation

Sets and Special Sets

A ⊆ B set A is a (not necessarily proper) subset of B
A ⊂ B set A is a proper subset of B
A \B set difference of A and B
#A number of elements of a finite set A
N set of natural numbers, N = {0, 1, 2, . . .}
Z set of integers
Q set of rational numbers
R set of real numbers
R+ set of strictly positive real numbers
Tn set of terms in the indeterminates x1, . . . , xn

O factor closed set of terms of Tn

X affine point set
Xε finite set of empirical points

X̃ admissible perturbation of Xε

Nα(pε) neighbourhood of perturbations of an empirical point

Rings and Fields

R ring
K field
Q(R) field of fractions of an integral domain R
K[x1, . . . , xn] polynomial ring in the indeterminates x1, . . . , xn

over K
K(x1, . . . , xn) field of rational functions in the indeterminates

x1, . . . , xn over K
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Vectors and Matrices

‖v‖α α-norm of a vector
‖v‖ Euclidean norm of a vector (α = 2)
‖v‖α,E E-weighted α-norm of a vector
‖v‖E E-weighted Euclidean norm of a vector
Matm,n(R) set of m× n matrices over R
M−1 inverse of a matrix
M† Moore-Penrose pseudoinverse of a matrix
det(M) determinant of a matrix
rank(M) rank of a matrix
MG(X) evaluation matrix of G at X

Orderings

≥σ monoid ordering
Lex lexicographic term ordering
DegLex degree-lexicographic term ordering
DegRevLex degree-reverse-lexicographic term ordering

Polynomials

deg(f) degree of a polynomial
Supp(f) support of a polynomial
LTσ(f) leading term of a polynomial
LCσ(f) leading coefficient of a polynomial
LMσ(f) leading monomial of a polynomial
LTσ(f) leading term of a polynomial

Ideals

〈fλ | λ ∈ Λ〉 ideal generated by the set {fλ | λ ∈ Λ}
LTσ(I) leading term ideal of I
LTσ{I} monoideal of terms in I
Oσ(I) the set Tn \ LTσ{I}
I(X) vanishing ideal of a set of points
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