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Abstract

The lattice Boltzmann method (LBM) is a numerical solver for the Navier-Stokes
equation, based on an underlying molecular dynamic model. Recently, it has
been extended towards the simulation of complex fluids.
In this thesis, we use the asymptotic expansion technique to investigate the stan-
dard scheme, the initialization problem and possible developments towards mov-
ing boundary and fluid-structure interaction problems. At the same time, it will
be shown how the mathematical analysis can be used to understand and improve
the algorithm.

First of all, we elaborate the tool “asymptotic analysis”, explaining the methods
and the strategy we use for the investigation. A first application to the LBM is de-
scribed, recovering the approximation of the Navier-Stokes solution starting from
the lattice Boltzmann equation. As next, we extend the analysis, to investigate
the origin and the dynamic of initial layers. A class of initialization algorithms to
generate accurate initial values within the LB framework is described in detail.

Then we study the features of a simple moving boundary LBM. In particular, we
concentrate on the initialization of new fluid nodes created by the variations of
the computational fluid domain.

Finally, to set up an LBM for fluid structure interaction, efficient routines to
evaluate forces are required. We describe the Momentum Exchange algorithm
(MEA). Precise accuracy estimates are derived, and the analysis leads to the
construction of an improved method to evaluate the interface stresses.
In conclusion, we test the defined code and validate the results of the analysis on
several simple benchmarks.
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Introduction

In recent years, the mathematical modeling of real-life problems has become
a powerful tool in practical applications. The Computational Fluid Dynamics
(CFD) is a subset of this branch, which groups a large variety of numerical meth-
ods, used to approximate the solution of systems involving fluid flows. Among
them, we investigate the Lattice Boltzmann method (LBM).
The LBM was developed in the early 90s [2, 7, 32], as an evolution of the former
rather inaccurate Lattice Gas Cellular Automata (LGCA) [13, 40]. The mathe-
matical analysis of the LBM [18] has shown its relation with the Navier-Stokes
equations and its properties as approximate solver.
More precisely, the LBM can be considered as a simple, low order accuracy (first
order in time, second order in space), explicit integrator of the Navier-Stokes
equations. It is true that there are plenty of schemes, which can achieve more
accurate results. Why then focus on the LBM?
The low accuracy is compensated by a favorable algorithmic formulation, which
allows efficient implementations. Moreover, due to the existence of an underlying
kinetic model, the LBM satisfies a set of symmetry properties and conservation
constraints, which hold independently on the size of the discretization.

Scopes

The aim of this thesis is to develop some new features of the LBM, towards
the application to moving boundary (MB) and fluid-structure interaction (FSI)
problems. Using a mathematical tool, we analyze existing algorithms and pro-
pose improved versions, needed to extend the standard LBM. Such schemes are
then validated on simple benchmarks and are considered as the basis for further
developments.

Overview and main results

In chapter 1, the main background is described. Section 1.1 introduces the
LBM, through a short derivation, which also fixes the notations.
In section 1.2 a general formulation of asymptotic expansion is presented in de-
tail. First we deal with a formalization of the theoretical tools, setting up the

1
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Figure 1: A two dimensional lattice Boltzmann discrete velocity model (D2Q9).
From a kinetic scheme point of view, each node contains 9 particle distributions (one
rest population and 8 moving populations).

background and the necessary ingredients. Starting from a general perturbed
equation, we try to identify which elements are relevant in a general case and
which steps can be formalized on an abstract level. It will result in a heuristic
algorithm, which describes the procedure used to perform the asymptotic analy-
sis.
In section 1.3 the application of the procedure to the LBM is illustrated in detail.
In our intentions the goal of the analysis is to predict the behavior of the scheme.
Calling f̂h the numerical solution produced by the LBM on a regular grid of size
h (small parameter), we consider an ansatz, i.e. a guess for a particular structure
of f̂h. In the particular case of the LBM, we start with a power series in h,

f̂h = f (0) + hf (1) + h2f (2) + . . . ,

where the coefficients f (k) = f (k)(t,x) are functions of physical time and space.
Inserting the ansatz into the algorithm, we are able to derive a prediction by
expressing the coefficients f (k) in terms of Navier-Stokes solutions, which allows
us to discuss the accuracy of the scheme (figure 2).

In chapter 2 we introduce the initial layer phenomena as a typical problem of
LBM simulations. In this case, we investigate more general expansions, where
the coefficients depend on additional time variables.
In section 2.2 we define the two-scales expansion, introducing an additional faster
time. With a more flexible ansatz, containing three time scales (section 2.3), we
will be able to predict the leading order of the oscillatory layers (figure 3). In
conclusion, we relate the origin of an initial layer to an inaccurate setting of the
initial conditions.

Chapter 3 focuses on LB-initializations. To avoid initial layers, we consider some
pre-processors to efficiently generate initial values for the LBM. Sections 3.2 and
3.3 describe some initialization algorithms. First, for a simple periodic case, a
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Figure 2: Double logarithmic plot of the maximum error in pressure (crosses ×) and
velocity (circles ◦) versus grid size, in a particular LB simulation. The (averaged)
slope of the curve gives the experimental order of accuracy. The dashed line indicates
the slope predicted by the analysis.
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Figure 3: Prediction of the error simulating a particular Navier-Stokes solution with
LBM. The continuous line is predicted by the analysis. The crosses (×) indicate the
numerical results. Left: Error in pressure. Right: Oscillations in the gradient of
velocity.

detailed analysis is performed. After that, we discuss the construction of a general
routine, suitable for boundary value problems. Employing these routines, we
reduce the amplitude of initial layers (figure 4). Using the information obtained
from the analysis, the initialization routines are improved both in accuracy and
efficiency.

From chapter 4, we start to investigate a moving boundary version of the LBM
(section 4.1), which has the following ingredients:

• standard LBM (fluid domain)

• boundary conditions

• force evaluation
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Figure 4: Same problem as in figure 3. The line shows the numerical error in
pressure. Now, an initialization algorithm has been applied. The error has been
reduced considerably.

• movement of the structure

• updating of the domains

In practice, the algorithm is tested on simple benchmarks. We use a family of
problems based on the following model, which we call cylinder-in-flow. It consists
of a disk (two dimensional section of a cylinder), surrounded by a fluid flow
(figure 5). The ultimate task will be to simulate an interaction problem with

PSfrag replacements
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Figure 5: The cylinder in flow (CiF) benchmark. In a practical simulation, the
parameters to be specified are: length (L) and width (H) of the domain, radius of
the disk (R), boundary conditions, initial conditions for the fluid and the disk. The
motion of the disk can be given (moving boundary problem) or determined by the
interaction with the flow (fluid-structure interaction).

the structure moving through the fluid according to the force and the torque
generated by the flow.
Step by step, we discuss and analyze the different aspects of the algorithm, start-
ing from the refill problem (section 4.2). Since the fluid-solid boundary is moving
through the fixed lattice, at certain time steps we will have to initialize the nodes
entering the fluid domain from the solid one (figure 6). Using the hydrodynamic
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Figure 6: The movement of the boundary Γ(t) through the grid creates and erases
fluid nodes.

variables available at the neighboring fluid nodes and the data on the boundary,
the task is to construct an initialization algorithm for a single node which does
not spoil the accuracy of the standard scheme, and which is as stable and efficient
as possible.
Several algorithms are compared and analyzed, describing advantages and disad-
vantages. An improved routine is investigated, similar in spirit to the approach
proposed in [16] to implement boundary conditions. With the help of the analy-
sis, we construct a relatively simple approach, satisfactory in terms of accuracy,
efficiency and suitability in connection with the LBM. The theoretical conclusions
are validated on several numerical tests (figure 7 and 9).
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Figure 7: Examples of a flow around a structure. Simulation of (periodic) disks,
moving horizontally in a channel. Arrows showing the velocity vectors and the corre-
sponding contour lines of the horizontal velocity are drawn. On the top, the disks start
to move, dragging the flow. At the bottom, the situation approaches a stationary
flow, with a portion of space tending to a constant velocity.

To complete the investigation of fluid-structure interactions, we need a routine
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to couple the LBM with the evaluation of the interactions and a solver for the
solid dynamic. Chapter 5 deals with the evaluation of the interaction between
fluid and solid object within the LBM.
In section 5.3 we describe, investigate and improve the Momentum Exchange
Algorithm (MEA), proposed in [27] (figure 8).
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Figure 8: Sketch of the momentum exchange algorithm. For any fluid node xB,
having a neighbor xB + c out of the fluid domain, the momentum exchanged with
the boundary point γ is given by the difference of incoming and outgoing momenta in
xB, along the direction c. This quantity is considered as a force contribution acting
on the solid body.
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Figure 9: Left: Drag force FD(t) acting on a disk moving horizontally in a channel,
approaching a stationary value. Right: Same situation, but simulated in a reference
system moving with the disk. Now the walls move horizontally: this is a standard
LB simulation, no special routines for moving boundaries are needed. The two tests
produce a similar result for the stationary value, which reflects Galilean invariance in
leading order.

It was originally designed to be a simple method to evaluate the global force
exerted on a solid body, as the sum of small contribution of momentum exchanged
between the body and the fluid. Performing an asymptotic analysis we introduce
corrective terms, to improve the precision of the results.
The algorithm is tested both for global and local forces. A theoretical estimate
of the accuracy is proven. We show that the scheme is too inaccurate for the
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approximation of local interactions, although it is precise enough to approximate
the global force. In section 5.4 we propose an improved algorithm to evaluate the
local stresses, constructed starting from the results of the previous analysis. A
satisfying accuracy (same as the accuracy of LBM) is achieved. Figure 10 shows
a particular application.
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Figure 10: Left: Benchmark used to test the algorithm to evaluate the local forces.
It belongs to the CiF family, consisting of a rotating disk, between two planes, sliding
walls. Right: Local forces, decomposed in tangential (ft on the left y-axis, denoted
with ◦) and normal component (fn on the right y-axis, with ×). γ ∈ [0, 2π) is the
coordinate along the circle.
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Figure 11: (a) Simple fluid-structure interaction model. The disk is placed between
two sliding walls, and connected to a spring. (b) Result for the horizontal force on
the disk, versus time (left) and displacement of the disk’s center of mass, until an
equilibrium position is reached (right).

In conclusion, we perform some numerical simulation of a simple Fluid-Structure
interaction benchmark (some results are shown in figure 11, combining all the
routines proposed and analyzed in this thesis.





Chapter 1

Asymptotic Analysis of the
lattice Boltzmann Equation

We begin introducing the background, on which the rest of the thesis is built:
the asymptotic analysis and the lattice Boltzmann method. Namely, this
chapter contains a definition of the numerical scheme and its analysis in the regu-
lar case. Besides the derivation of the Navier-Stokes equations, further properties
will be investigated.

In section 1.1 we provide an introduction to the lattice Boltzmann method (LBM),
deriving briefly the algorithm within the specific model we have used. In section
1.2 the basic ideas of the asymptotic analysis are stated. The topic is approached
in a general way. Its standard application to the LBM is described in section 1.3.
The validity of theoretical results is discussed through some classical examples.

1.1 The Lattice Boltzmann Method

Among the numerical methods in computational fluid dynamics, the lattice Boltz-
mann schemes have the peculiarity of reproducing the dynamics of incompressible
fluids, governed by the Navier-Stokes equations, by modeling the particle inter-
actions on a mesoscopic scale. Historically, they originated as a development of
the Lattice Gas Cellular Automata (LGCA) [13, 14, 32]. Later works have shown
how they can be derived starting from a discretization of the Boltzmann Equation
(BE) [17, 41]. However, from a mathematical point of view, the analysis presented
in [18] recognizes the lattice Boltzmann models to be a particular class of finite
differences schemes for the Navier-Stokes equations. For a detailed derivation, as
well as overviews and classifications of the lattice Boltzmann schemes, we refer,
for example, to [2, 7, 8, 10, 36, 39, 40].

9



10 Chapter 1. Asymptotic Analysis of LBE

1.1.1 Discrete kinetic framework

In the following, we consider the incompressible Navier-Stokes equation as a
mathematical model to describe fluid flows on a domain Ω ⊂ Rd, d = 2, 3. The
equations are of the form

{
∇ · u = 0
∂tu + ∇p+ u · ∇u = ν∇2u,

t > 0, x ∈ Ω

u(0,x) = u0(x), x ∈ Ω.

(1.1)

Within a kinetic model, a similar dynamics can be described by the Boltzmann
Equation (BE)

∂tf(t,x,v) + v · ∇xf(t,x,v) = J(f(t,x,v)), t > 0, x ∈ Ω,v ∈ Rd (1.2)

where f(t,x,v) represents the probability of finding a particle at position x with
velocity v at time t, while the collision functional J(f) models the effects of
collision between particles.
We discretize the continuous problem in the framework of equation (1.2). The
ingredients are a finite time step ∆t and a regular spatial grid

G(∆x) ⊂ Zd, (1.3)

whose nodes are defined by

j ∈ G(∆x)
def⇐⇒ xj = j∆x ∈ Ω. (1.4)

PSfrag replacements

Ω

G(h)

j=(jx,jy)
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Figure 1.1: G(h) is a regular square grid, whose nodes are denoted with 2D integer
vectors.

For the LBM, the two discretizations are related by the scaling

∆t = ∆x2. (1.5)

The implementation of the algorithm, for simplicity, is described using integer
indices, n for time and j for space.
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Regarding the velocity space, we choose a finite set

V = {ci | i = 1, . . . b} ⊂ Zd, (1.6)

which is symmetric
V = −V, (1.7)

and has the propertya

∀ci ∈ V : G(∆x) + ci ⊂ G(∆x) (1.8)

i.e., the vectors ci are node-to-node connections of the grid G(∆x). For square
lattices, different velocity spaces V can be considered. We focus on the D2Q9
model in two dimensions (figure 1.2), with nine vectors (in lattice units)

c0 = (0, 0),
c1 = (1, 0), c2 = (1, 1), c3 = (0, 1), c4 = (−1, 1)
c5 = (−1, 0), c6 = (−1,−1), c7 = (0,−1), c8 = (1,−1).

(1.9)

Having defined the grid G(h) and the discrete velocities connecting the nodes, we
consider also

G(h) :=
⋃

j∈G(h)

(⋃

ci∈V

j + [0, 1]ci

)
∩ Ω, (1.10)

i.e. the subset of Ω containing the lines (horizontal, vertical and diagonal) of the
LB grid.
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Figure 1.2: Left. Sketch of the lattice, the velocities ci, and the weights f ∗
i , in the

D2Q9 model. Bigger circles indicate larger weights. Right. A three-dimensional
model (D3Q15). In both the cases, the velocity vectors connect only direct neighbors
on the grid.

Approximating the advective derivatives

∂

∂t

+ ci · ∇x

aTo have simpler arguments, we restrict to the periodic case. Modifications regarding bound-
ary value problems are described in section 1.1.3.
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[17, 19, 39], we end up with the lattice Boltzmann Equation (LBE)

f̂i(n+ 1, j + ci) = f̂i(n, j) + Ji(f̂(n, j)). (1.11)

The functionsb f̂i : N × G(h) → R indicate the numerical solutions for the den-
sity of particles associated with link ci at the n-th iteration, and node j. The
collisions are modeled by the term Ĵi := Ji(f̂) which can be related, using suit-
able quadrature formulas with respect to the particular chosen space V, to the
collision integral in the Boltzmann equation (1.2) [17, 36, 39].
We call

Dh := N × G(h) (1.12)

the domain of definition of the LB solutions f̂i. For shortness, we denote the set
of functions between a set A and a set B as

F(A,B) := {φ : A→ B}. (1.13)

So that

f̂ih ∈ F(Dh,R).

In what follows, we will try to avoid the double subscript notation f̂ih, using,
when possible, only f̂i or f̂h.

1.1.2 Two-step dynamics and compact notation

In the practical implementation, the evolution step (1.11) is usually split in two
sub-steps, the local collision:

f̂ c
i (n, j) = f̂i(n, j) + Ji(f̂(n, j)) (1.14)

where f̂ c
i is the so called post-collision distribution, and the advection:

f̂i(n+ 1, j + ci) = f̂ c
i (n, j). (1.15)

In the LBE (1.11) f̂ can be considered a vector in Rb, whose components are the
populations f̂i.
Introducing the notation

f̂n : G(∆x) → R, f̂n(j) := f̂(n, j) (1.16)

to indicate the numerical solution at a certain time step, and the grid-translation
operator

S : f 7→ Sf, with (Sf)i(j) = fi(j + ci), (1.17)

bWith N, we denote the set of all the natural numbers, including zero.
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equation (1.11) can be summarized asc

Sf̂n+1 = (I + J)(f̂n). (1.18)

Finally, we introduce the compact notation for equation (1.18)

∀(n, j) ∈ Dh : LBM(h, f̂h)(n, j) = 0, (1.19)

where f̂h ∈ Xh := F(Dh,Rb) and LBM(h, ·) is an operator

LBM(h, ·) : Xh → Xh, (1.20)

which practically contains a set of rules to compute the function f̂h on the discrete
domain.
Within the vector notation, we can use the scalar product

〈f, g〉 =
b∑

i=1

figi, f, g ∈ Rb, (1.21)

and the vectors
1 := (1, . . . , 1) ∈ Rb,

cα := (c1α, . . . , cbα) , α ∈ {x, y}
to abbreviate the moments taken with respect to the velocity vectors ci:

ρ(f) :=

b∑

i=1

fi = 〈f, 1〉,

uα(f) :=
b∑

i=1

ciαfi = 〈f, cα〉.
(1.22)

1.1.3 BGK approximation and basic algorithm

Different numerical methods are defined, specifying the form of Ji in equation
(1.11). We choose an operator in a linear relaxation form,

J(f) = A (f eq − f) + g, (1.23)

where A is a b×b positive semi definite matrix, with eigenvalues ωi, which satisfy
for stability reasons (for detailed theoretical and numerical treatment of stability,
see [19, 24, 31])

0 < ωi < 2. (1.24)

cOn a periodic domain (satisfying (1.8)) the operator S is invertible:

S−1(I + Ji)(f̂
n).

scheme for advancing in time.
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The additional vector g ∈ Rb is used to include volume forces (see section 1.3).
In (1.23) f eq

i is the equilibrium distribution. Its form depends on the discrete
velocity space. In general, it is a function of f through the averaged density ρ
and the averaged velocity u, defined in equation (1.22):

f eq(f) = Heq
i (ρ(f),u(f)). (1.25)

For the D2Q9 model

Heq
i (ρ,u) = f ∗

i

(
ρ + c−2

s ci · u +
c−4
s

2

(
|ci · u|2 − c2s|u|2

))
(1.26)

where cs = 1√
3

is the lattice sound speed, and

f ∗
i = 4

9
, for i = 0

f ∗
i = 1

9
, for i = 1, 3, 5, 7

f ∗
i = 1

36
, for i = 2, 4, 6, 8.

(1.27)

The function f eq
i is chosen is such a way to satisfy a set of algebraic requirements

and symmetries, in relation with the Maxwellian equilibrium of kinetic theoryd.
In the equilibrium Heq

i we identify a linear and a quadratic part:

Heq
i (ρ,u) = H

L(eq)
i (ρ,u) +H

Q(eq)
i (u,u). (1.28)

Using the notation

(v ⊗ w)αβ =
1

2
(vαwβ + vβwα) , (1.29)

the following relations hold:

b∑

i=1

Heq
i (ρ,u) =

b∑

i=1

H
L(eq)
i (ρ,u) = ρ

b∑

i=1

ciH
eq
i (ρ,u) =

b∑

i=1

ciH
L(eq)
i (ρ,u) = u

b∑

i=1

ci ⊗ ciH
L(eq)
i (ρ,u) = c2sρI

b∑

i=1

ci ⊗ ciH
Q(eq)
i (u,u) = u ⊗ u.

(1.30)

The first two identities in (1.30) are related to the conservation of mass and
momentum. If the matrix A satisfies

1TA = 0

dMore details can be found in [19, 39].
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cT
αA = 0

also the collision operator J (in the form (1.23)) conserves locally mass and
momentum.
The most general form of the matrix A leads to the Multiple Relaxation Time
model (MRT), proposed and investigated in the recent literature [11, 31]. Differ-
ent relaxation parameters are defined for the f -moments of different order. The
simplest collision operator (Single relaxation time) is known as the BGK approx-
imation (based on the homonym original model for the Boltzmann equation [3]).
Formally, it is obtained by setting

A =
1

τ
I, (1.31)

with one relaxation time τ >
1

2
. We restrict to this case. An analysis of a

wide class of linear collision operator, including also the MRT model, has been
presented in [19]. Finally, the BGK-lattice Boltzmann method reads

f̂i(n + 1, j + ci) = f̂i(n, j) +
1

τ

(
f eq

i (f̂) − f̂i

)
(n, j). (1.32)

Boundary conditions

The iteration (1.32) is well defined for each point of G(h) only if the property (1.8)
holds for the whole discrete lattice. In other words, if the domain Ω is periodic,
or if it coincides with the whole space.
In the presence of boundaries, some nodes will have one or more neighbors out
of the domain (figure 1.3). For such points, the advection step cannot be defined
as in (1.15). Additional algorithms, which incorporate the boundary conditions,
are needed.
We define the boundary set

B = B(Ω, h) := {(k, i) ∈ G(h) × {1, . . . , b} | xjB+ci
/∈ Ω} (1.33)

containing boundary couples. Each couple identifies a node needing a different
update rulee. For each (k, i) ∈ B, we call the point k a boundary node and i an
outgoing direction in k. The direction i∗, such that ci∗ = −ci is called incoming
direction at k. To complete the algorithm (1.32), the distributions fi∗(n + 1,k)
have to be specified. We do not enter in details now. Some specific algorithms to
include boundary conditions on pressure or velocity are described and analyzed
in chapters 3 and 4, discussing their consistency within the method.
As notation, we write

f̂i∗(n+ 1,k) = BCi∗
(
dB, fn, fn−1, . . . ;n,k

)
, for (k, i) ∈ B, (1.34)

eIn general, for domains Ω(t) varying in time, we have to consider a time-depending set
B(Ω(tn), h) (section 4.1.2).
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to indicate the boundary rule for the variable f̂i∗, as a functions of a certain set of
data dB (from the original Navier-Stokes problem) and the numerical solutions
at the previous time steps.
Regarding initial conditions in time, we need an initialization rule:

f̂(0, j) = I(d0; j), (1.35)

in accordance with certain initial data d0 provided by the original problem (1.1).
Extending equation (1.19), we can use the general notation

LBM(d; h, f̂h) = 0, (1.36)

which includes the set of rules for the interior domain, plus the additional ones
(initial value, boundary conditions) and the data dependence.
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Figure 1.3: A boundary node is a lattice point xB (•), with at least one neighbor
xB−hci∗ (×) out of the considered domain. In this case, ci∗ is an incoming direction,
and the population fi∗ on xB cannot be updated with the usual advection.

A sample lattice Boltzmann algorithm, reads

Algorithm 1.1.
set initial values: ρ0, u0, f̂i(0, j),
DO n = 0, 1, . . .
evaluate equilibrium → Heq

i (ρn,un)

collision step → f̂ c
i (n, j)

IF (boundary set 6= ∅)
{ boundary conditions → f̂i∗(n+ 1,k) }

advection step → f̂i(n+ 1, j)
evaluate moments → ρn+1,un+1

END

Properties of the method

Shortly, we summarize here the main characteristics of the LBM, and the advan-
tages in using it in particular classes of problems.
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Locality. In the implementation described before, the collision step (equation
(1.14)) is the one which contains the biggest effort. Involving only variables at
the node (n, j), it is a completely local computation. The second step (advection)
only performs an exchange of the information between neighboring nodes.

Parallel computing. Therefore, the LBM is particularly suitable for a parallel
implementation. The structure of the scheme, minimizes the need of information
exchange between the processors (only required for the advection), maximizing
the amount of operations which has to be performed on a single computational
node. The ratio between these two quantities, expresses the efficiency of the
method. Symmetries The LBM is based on a simplified model of mesoscopic

molecular dynamics. With respect to other numerical methods, the LBM has a
set of built-in properties, such as symmetries and conservation laws, which come
from the underlying structure. Therefore, they are satisfied independently of the
size of the discretization.

Complex geometries. Of course, the concept of efficiency makes sense only
compared with other approaches. In detail, due to its mesoscopic formulation,
the LBM is used at its best in problems involving complex geometries. In its
simplest form, only a characterization of the nodes (fluid-boundary) is required.

Drawbacks. Despite of the listed qualities, the method is far from being optimal.
Many points have still to be clarified and improved. Mainly, the property of
allowing easy modeling of the geometry also leads to a low accuracy. In other
words, to reach the accuracy provided by other schemes, very fine discretization
(i.e. higher computational effort) is required.

Hence, the efficiency, presented as a merit, turns out to be a necessity, to make
LBM competitive. Our goal will be to improve and extend the LBM, preserving
the advantages described above.

Main ideas of the expansion

As next, we study the behavior of the algorithm (1.32), deriving its relation with
the system of partial differential equations (1.1), using methods of asymptotic
analysis.

Practically, to investigate the scheme, we look for a representation of the LB
solution in form of a power series

f̂h ≈ f (0) + hf (1) + h2f (2) + . . . .

Determining the coefficients f (k) order by order, we can characterize the scheme
and predict the results. Such predictions are also used to improve the algorithm
if its behavior is not satisfactory.
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1.2 Asymptotic Analysis

We first introduce the topic in a general form. Later on, we focus on the particular
application to the lattice Boltzmann algorithm.

1.2.1 Formal asymptotic: general background

The asymptotic analysis is a widely used tool, to investigate equations depending
on a small parameter h� 1 [26].
Let us consider some simple example. Typically, we can deal with perturbed
systems of (ordinary or partial) differential equations, e.g.

x′′ − hx′ + x = f(x, t), x ∈ C2([0, T ],R), (1.37)

or algebraic equations,

x3 + hx2 − x = 0, x ∈ C. (1.38)

Besides, the technique has been also successfully applied to study the behavior
of numerical methods, in which the small parameter is related to a certain
discretization. For instance, let us consider the explicit Euler scheme:

x̂h(n+ 1) − x̂h(n) = hf(x̂h(n)), n ∈ G(h) (1.39)

where G(h) = {0, . . . , N} are the indices of a partition tn = hn of an interval
[0, T ] ⊂ R and f : R → R is sufficiently regular. In this case, the solution is a
grid function

x̂h : G(h) → R.

Using the notation introduced in (1.13), we have x̂h ∈ F(G(h),R), for the fixed
h ≤ 1. Compared with the previous class of problems, now the solution space

Xh = F(G(h),R)

itself depends on the small parameter.
In general, given a set H ⊂ (0, 1] with an accumulation point at 0 (set of small
parameters) and a family of normed spaces {Xh}h∈H , we can consider the sequence
of problems

L(h, x̂h) = 0, h ∈ H (1.40)

with solutions x̂h ∈ Xh, and

Lh := L(h, ·) : Xh → Xh.

As already indicated in equation (1.20) we are going to consider the LBM in this
formulation.
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Underlying framework

The starting point is now equation (1.40). Let be given

• the set H ⊂ (0, 1] (with an accumulation point at 0),

• a family of linear and normed spaces X = {(Xh, ‖ ‖Xh
) | h ∈ H},

• a family of operators L = {Lh : Xh → Xh | h ∈ H}, such that, for all
h ∈ H, there exists x̂h such that Lh(x̂h) = 0.

We call Lh the algorithm on Xh. The elements xh which satisfy Lh(xh) = 0, are
called solutions to Lh. The problem admits an elegant and compact formulation,
introducing the set

X :=
∏

h∈H

Xh. (1.41)

Remark. If, as in the examples (1.37), (1.38), Xh = Y , for all h ∈ H, then

X = F(H, Y ).

PSfrag replacements

H

h
x̂hŷh
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Figure 1.4: Left: Sketch of the space X, in the case Xh = R. An element x̂ ∈ X
is a curve in R2. Right: The case Xh = R2.

X inherits the properties of the family X.

Lemma 1.1. X is a normed linear space.

Proof. To prove the lemma we introduce the absolute value of x ∈ X:

|x|(h) := ‖x(h)‖Xh
∈ R+, h ∈ H (1.42)

(where x(h) = xh). The linearity follows directly from the linearity of the com-
ponents Xh. To conclude, using the definition in equation (1.42), it is easy to
show that

‖x‖∞ := sup
h∈H

|x|(h) (1.43)
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is a norm on X.
In fact, ‖x‖∞ = 0 implies

∀h ∈ H : ‖x(h)‖Xh
= 0

hence x(h) = 0, for all h ∈ H. Then,

‖λx‖∞ = sup
h∈H

‖λx(h)‖Xh
= |λ| sup

h∈H
‖x(h)‖Xh

= |λ|‖x‖∞.

For the triangular inequality, we have

‖x + y‖∞ = sup
h

‖x(h) + y(h)‖Xh
≤ sup

h
‖x(h)‖Xh

+ sup
h

‖y(h)‖Xh
.

Remark. The norm ‖x‖∞ induces a topology on X, which is equivalent to the
product topology of the spaces Xh.

1.2.2 Asymptotic analysis as optimization problem

Ansatz and approximate solutions

Having introduced the space X, we define the algorithm on X as the operator

L : X → X
x 7→ L[x], with L[x](h) := L(h,xh).

(1.44)

An exact solution to L is an element x̂ ∈ X such that L[x̂] = 0, i.e. a solution
for all h ∈ H.
To find an exact solution will not always be our goal. For example, assume that
L is a numerical method, as the LBM in (1.32). In this case, for any fixed h ∈ H,
we can compute an element x̂h ∈ Xh, such that

L(h, x̂h) = 0,

simply running the algorithm and taking the output.
The algorithm L can be seen as a ”black box” which, given a specific value of the
parameter h, produces the corresponding projection on Xh of the exact solution

h
L→ x̂h : L(h, x̂h) = 0.

Executing the algorithm we can only have a sample of the solution through the
family X. In this case, our scope will rather be to understand the behavior of the
solution x̂h for small values of h.
To do this, we look for an approximation of x̂ which depends only on few param-
eters:

x̂h ≈ Fh = F (h;α0, . . . , αM). (1.45)
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Formally, we perform the analysis restricting to a subset A ⊂ X, called ansatz.
Within the ansatz we try to derive an easy representation of the numerical solu-
tion. The elements F ∈ A will be called predictions. To specify a prediction
in A the finite set of free parameters has to be fixed. Summarizing, the scope
of the asymptotic analysis is to find an approximation of an exact solution to L
for small h, in a particular class A ⊂ X which satisfies a set of constraints, and
whose elements have only a small number of degrees of freedom (figure 1.5).

PSfrag replacements
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Figure 1.5: The philosophy of the asymptotic analysis. The circles • represent the
projections x̂h of the solution to the algorithm L, obtained experimentally (running
the algorithm) for specific values of h ∈ H. Aim of the analysis is to find a prediction
Fh, only depending on few parameters, able to approximate the exact solution for
small h.

The meaning of the symbol ”≈” in (1.45) has to be specified. To fix the ideas, let
us consider a particular case, with the algorithm L invertible and with inverse
L−1 Lipschitz. For F ∈ X, we can estimate

|F − x̂| = |L−1L[F ] − L−1L[x̂]| ≤ CL−1|L[F ] − L[x̂]| = CL−1 |L[F ]|. (1.46)

In this casef

|L[F ]| → 0 ⇒ |F − x̂| → 0,

i.e. the element F approximates the solution x̂ for h ∈ H small. We consider the
following task:

• Asymptotic solution to L: find F ∈ A such that

lim
h→0

‖L(h, F (h))‖Xh
= 0. (1.47)

Having in mind the estimate (1.46), the smallness of the residue L[F ] indicates
how good is an approximation of the solution.

fWarning. For a function F such that |L[F ]|(h) → 0, it is not true, in general, that

|F − x̂| → 0,

x̂ being such that L[x] = 0. It makes sense to discuss the implication only within a specific
problem, knowing more in detail the properties of the operator L.
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Example 1.1. Suppose we want to understand the h-dependence of the solution
x̂h to

L(h, xh) := d2x2
h + hxh − 1 = 0, (1.48)

for some fixed d ∈ C, d 6= 0.
Considering the elements F and G such that

∀h ∈ H : Fh =
1

d
, Gh =

1

d
− h

2d2
,

we obtain

L(h, Fh) = d2

(
1

d2

)
+
h

d
− 1 =

h

d
,

L(h,Gh) = d2

(
1

d2
+

h2

4d4
− h

d3

)
+
h

d
− h2

2d2
− 1 = − h2

4d2
.

Hence, the residues L[F ] and L[G] are decreasing functions, for h→ 0.
For the problem (1.48) the exact solution can be analytically computed as

x̂±h = − h

2d2
±

√
h2 + 4d2

2d2
= − h

2d2
± 1

d

√
1 +

h2

4d2
.

Actually, in this case F and G are approximation of x̂+
h .
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Figure 1.6: Left: Plot of the solution x̂+
h of equation (1.48) (crosses, ×) and of the

prediction Gh (solid line), for h ≤ 0.05. Right: The difference
∣∣x̂+

h −Gh

∣∣.

Problem data Generally a perturbed equation depends also on particular data,
fixed by the specific problem. For example, one can think of the boundary con-
dition of a differential problem, or of equations including some parameters, like
the previous example (1.48). A proper notation would then be

L(d; h,xh) = 0.

We consider the analysis for fixed data. Thus, the dependence of L on d is not
explicitly written, and the data is considered as a part of L itself.
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The minimization procedure

Once we have fixed the background, we describe the strategy of investigation,
explaining informally the main ideas of the approach we will follow in applying
the asymptotic analysis.
The situation is the following. We have an algorithm L, i.e. an equation depend-
ing on a small parameter h. Through L we can derive the solution for particular
values of h. However, we want to understand the behavior of the algorithm for
small h. Within a suitable subset A ⊂ X, called ansatz, we look only for an
approximation of the solution, in the sense discussed above.
As shown in the previous example 1.1, there may be approximations of different
accuracy. Naturally, our goal is to find the best approximation in A. Of course,
the notion of ”best” requires an order on A. The first task of the next section
will be to introduce a relation ≺ on A, so that, for F,G ∈ A, F ≺ G means ”F
is better than G”. It can be done in a natural way (see example 1.1), based on
the order of the residue.
In this framework, we can consider the asymptotic analysis as an optimization
problem, where we have to find the minimum in the set A ⊂ X with respect to
the order ≺.
Let us assume to have an initial ansatz A, totally ordered with respect to ≺. We
consider the following procedure to find the optimum.

Iterative optimization algorithm:

A(0) = A

for k ≥ 0
set A(k+1) =

{
F ∈ A(k) | ∃G ∈ A(k) : F ≺ G

}

repeat until A(k+1) = ∅
(1.49)

The idea is to exclude step by step some elements, to find the optimal one or to
get closer to it.

1.2.3 Ordering the approximations

In the usual applications there is a natural way to define if an asymptotic solution
is ”better” than another (see also example (1.48)). In fact, |L[F ]|(h) is smaller
than |L[G]|(h) for small h if it converges faster to zero. Besides the property
|L(F )| → 0, the speed of convergence is also important. We classify the elements
of X in that sense.

Definition 1.1. Let ω ∈ F(H,R+)g. We say that the property A(ω) holds even-

gIn the following, we use the notation

R+ = {x ∈ R | x ≥ 0}.
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tually (abbreviated evt.) iff ∃h̄ > 0 such that A(ω|H∩(0,h̄)) is true.
For example, ω ≤ K eventually, iff

∃h̄ > 0 : ∀h ∈ H, h < h̄ : ω(h) ≤ K.

Lemma 1.2. The conjunction of a finite number of eventually true statements,
is also eventually true.

Proof. Let N ∈ N, N > 0. Let ω ∈ F(H,R+), such that A1(ω), . . . , AN(ω) hold
eventually. Then, there exist h̄1, . . . , h̄N such that

∀i ≤ N : Ai

(
ω|H∩(0,h̄i)

)
is true.

Therefore, taking h̄ = min{h̄1, . . . , h̄n},

(A1 ∧ . . . AN)(ω|H∩(0,h̄))

is true.

Order comparisons (Landau symbols) Let f, g ∈ F(H,R+) be two real
positive functions. We define

f ∈ O(g), for h→ 0
def⇐⇒ ∃K : f ≤ Kg evt. (1.50)

(f is of the same order of g). Additionally,

f ∈ o(g), for h→ 0
def⇐⇒ ∀δ > 0 : f < δg evt. (1.51)

(f is of order higher than g).
The above conditions are standard notations in performing asymptotic investi-
gations (see [26]). They can easily be verified in some special case.

Lemma 1.3. Let f, g ∈ F(H,R+), and assume g > 0 eventually. We have

f ∈ o(g) ⇐⇒ lim sup
h→0

f(h)

g(h)
= 0.

f ∈ O(g) ⇐⇒ ∃C ∈ (0,+∞) :
f

g
≤ C ⇐⇒ lim sup

h→0

f

g
<∞.

The proof is omitted.
This concept of order can be extended to the normed space X. Let F,G ∈ X.
Using the absolute value |F | defined in equation (1.42):

F ∈ O(G)
def⇐⇒ |F | ∈ O(|G|) (1.52)

(and similarly for F ∈ o(G)).
Now, we can define the criterion to order the elements of X, according to an
algorithm L.
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Definition 1.2 (Precision order). Let F,G ∈ X. We say that F is more
precise than G for L (denoted F ≺L G) iff

L[F ] ∈ o(L[G]).

Remark. Assume we have two algorithms L and M defined on the same space
X, such that

∀h ∈ H : Mh = h2Lh.

Of course, any solution to L is also solution to M . In some sense, we can say
that the two algorithm are equivalent. The definition 1.2 is constructed in such
a way to be invariant with respect to such equivalence of algorithm. In fact,

F ≺L G ⇐⇒ F ≺M G.

Note that, in contrast to this, notions depending explicitly on the order of the
residue (like the order of consistence) are not invariant with respect to this equiv-
alence.
In the example

d2x2 + hx− 1 = 0, (1.53)

considering the elements

Gh =
1

d
− h

2d2
, Fh =

1

d

we can say G ≺L F , since

lim
h→0

|L[G]|
|L[F ]| = 0.

As next, we analyze the properties of the defined order.

Lemma 1.4. Let E, F,G ∈ X.

(a) E ≺L F, F ≺L G =⇒ E ≺L G,

(b) F 6≺L F.

Proof. Both the statements are direct consequences of the definition (1.51). Con-
cerning (a), the hypothesis means

∀δ > 0 : |L[E]| < δ|L[F ]| evt. (1.54)

Analogously,
∀δ > 0 : |L[F ]| < δ|L[G]| evt. (1.55)

Hence, for any ε > 0, it holds, choosing δ =
√
ε in (1.54)-(1.55):

|L[E]| < ε|L[G]| evt.
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which proves the statement.
Regarding (b), we have to prove

L[F ] 6∈ o(L[F ]).

We assume the negation,
L[F ] ∈ o(L[F ]).

According to the definition, it means

∀δ > 0 : F < δF evt.,

but for δ = 1 we have an absurd statement.
One remark is perhaps worth to do: despite the intuitive meaning of the relation
≺L which makes the statement (b) look obvious, we note that a slightly different
definition, namely

f ∈ o(g), for h→ 0 ⇔ ∀δ > 0 : f ≤ δg evt. (1.56)

(where the “≤” appears on the right side, instead of “<”) would not allow to
conclude F 6≺L F . In particular, a solution x̂ to L would satisfy x̂ ≺L x̂, because
L[x̂] = 0.

The previous lemma proves the property of anti-reflexivity and transitivity of the
relation ≺L on X. In other words,

Proposition 1.1. The relation ≺L defines a partial ordering on X.

However, we need a total ordering, which is not assured. As an example, let us
consider again the equation

d2x2 + hx− 1 = 0, (1.57)

and the elements

F ′
h =

1

d
− h, G′

h =
1

d
+ h.

We have

L(h, F ′
h) = h

(
−2d+

1

d

)
+O(h2), L(h,G′

h) = h

(
2d+

1

d

)
+O(h2).

Therefore, neither F ′ ≺L G′ nor G′ ≺L F ′. In this case, the residues of F ′ and
G′ are of the same order (unless d = 1√

2
).

Definition 1.3. Let F,G ∈ X. We say that F is as precise as G for L (denoted
F =L G) iff

L[F ] ∈ O(L[G]), L[G] ∈ O(L[F ]).
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Using the definition in equation (1.50), we can prove the following

Lemma 1.5. Let F,G ∈ X. Then, F =L G iff

∃K1, K2 > 0 : K−1
1 |L[F ]| ≤ |L[G]| ≤ K2|L[F ]| evt.

Proof. The conditions L[F ] ∈ O(L[G]), L[G] ∈ O(L[F ]) are equivalent to

(a)∃K1 > 0 : |L[F ]| ≤ K1|L[G]| evt. (1.58)

(b)∃K2 > 0 : |L[G]| ≤ K2|L[F ]| evt. (1.59)

Which proves the statement, because of lemma 1.2 (combination of a finite num-
ber of eventually true statement).

Classes of precision

Proposition 1.2. The relation =L is an equivalence relation on X.

Proof. The reflexivity
F =L F

is obvious. Also the symmetry is true by construction. Regarding the transitivity,
let us assume to have E, F,G ∈ X, such that E =L F , F =L G. Using lemma
1.5, we have

∃K1, K2 > 0 : K−1
1 |L[E]| ≤ |L[F ]| ≤ K2|L[E]| evt., (1.60)

as well as
∃K3, K4 > 0 : K−1

3 |L[F ]| ≤ |L[G]| ≤ K4|L[F ]| evt. (1.61)

Therefore, there exist K5 = K1K3, K6 = K2K4, such that

K−1
5 |L[E]| ≤ |L[G]| ≤ K6|L[E]| evt. (1.62)

Applying again lemma 1.5, the last relation (1.62) implies E =L G.

Therefore, for F ∈ X, we can define the equivalence class

[F ] := {G ∈ X | G =L F},

which we call the precision class of F . Identifying predictions which have residues
of the same order, we can come closer to a total ordering in the quotient set

X/L := {[F ]L | F ∈ X}. (1.63)

Definition 1.4. Let [F̄ ], [Ḡ] ∈ X/L. We define

[F̄ ] ≺L [Ḡ]
def⇐⇒ F̄ ≺L Ḡ.
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For simplicity, we keep on using the same notation ≺L for the ordering, also when
it is intended as a comparison of classes, on the quotient set.
To prove that ≺L is well defined on the classes, we have to show that it does not
depend on the particular representing elements of the classes: given two classes
[F̄ ] and [Ḡ], we can compare them choosing any F ∈ [F̄ ] and G ∈ [Ḡ].

Lemma 1.6 (semi-transitivity). Let E, F,G ∈ X. Then,

(a) E ≺L F, F =L G⇒ E ≺L G.

(b) E =L F, F ≺L G⇒ E ≺L G.

Proof. (a) From the definitions,

∀δ > 0 : |L[E]| < δ|L[F ]| evt.

and
∃K > 0 : |L[F ]| < K|L[G]| evt.

Hence, for all ε > 0, taking δ = K−1ε,

|L[E]| < ε|L[G]| evt.

Therefore, L[E] ∈ o(L[G]).
The statement (b) is proven using an analogous argument.

Using lemma 1.6, we can demonstrate the following result.

Lemma 1.7. Let F̄ , Ḡ ∈ X, such that F̄ ≺L Ḡ. Then,

∀F ∈ [F̄ ], ∀G ∈ [Ḡ] : F ≺L G.

Proof. Take any F ∈ [F̄ ] and G ∈ [Ḡ]. We have then

F =L F̄ , F̄ ≺L Ḡ.

Using lemma 1.6, part (b),
F ≺L Ḡ.

Similarly,
F ≺L Ḡ, Ḡ =L G

implies (lemma 1.6, part (a))
F ≺L G.

In conclusion, the definition 1.4 is well posed.
We can prove an analogous of lemma 1.4, also for the ordering on the quotient
set, so that
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Proposition 1.3. The relation ≺L defines a partial ordering on X/L.

However, going over from X to X/L may not be enough to turn ≺L in a total
ordering. It may happen that for two elements F,G ∈ X, we are not able to
decide whether [F ] ≺L [G] or [G] ≺L [F ].

Example 1.2. To construct a special case, we consider the simple algorithm

L(h, xh) = xh,

where xh ∈ [0, 1]. The solution of

L(h, x̂h) = 0

is trivially x̂h = 0. Now, we choose the elements

Fh :=





h
[

1
2k
, 1

2k−1

)
, k ≥ 1

h2
[

1
2k+1

, 1
2k

)
, k ≥ 1

and
Gh := h

3
2 .

In this case it holds
L[F ] = F 6∈ o(G) = o(L[G]),

and similarly
L[G] 6∈ o(L[F ]),

so that neither F ≺L G nor G ≺L F . Moreover, note that

F 6∈ O(G), G 6∈ O(F ),

hence
[F ] 6= [G].

None of the statement [F ] ≺L [G] nor [G] ≺L [F ] nor [F ] = [G] are true, i.e. the
two elements cannot be compared.

Requiring the total ordering: reasonable ansatz

Consequently, to obtain a total ordering, we have to restrict the investigation to
reasonably subsets of X. As discussed in section 1.2.2, performing the asymptotic
analysis we look for approximate solutions to L in an ansatz A ⊂ X (whose
elements are named predictions).
Remark. The quotient set X/L is defined as the set of the classes

[F ] = {G ∈ X | G =L F}.
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Considering an ansatz A ⊂ X (a subset of X in general), it might happen that,
for F ∈ A,

[F ] 6⊂ A.

The quotient A/L is defined as the subset of X/L of the precision classes which
have at least a representative element in A:

A/L = {[F ] | F ∈ A} . (1.64)

How to guarantee a total ordering, even on the subset A/L?We need a particular
consideration. Since the role of the ansatz is to simplify the investigation, extreme
cases as in example 1.2 are normally excluded. We assume the total ordering as
a property a priori of the ansatz.

Definition 1.5. An ansatz A ⊂ X is reasonable iff the quotient set A/L is
totally ordered with respect to ≺L.

At this point, the question might arise how to check whether a certain ansatz
is reasonable, i.e. whether ≺L is a total ordering on it. We do not answer this
question in general. The argument would require many technicalities, which are
not reflecting the usual way to proceed. Typically, the ansatz is defined according
to the problem we are interested in. Only after focusing on a particular ansatz
for a specific algorithm, we can discuss whether it is reasonable or not.

The asymptotic expansions Having introduced the arguments from a general
point of view, we do here some considerations regarding a particular ansatz,
starting with a simple example. Let us consider again the algorithm

L[x] = x

on X = F(H,R), and the ansatz

A = {F ∈ X | ∀h ∈ H : Fh = hα, α ∈ [0, 1]} . (1.65)

In this case it is easy to check that A is reasonable. In fact, ∀F,G ∈ A, assuming

∀h ∈ H : Fh = hα, Gh = hβ,

we have
F ≺L G ⇐⇒ α < β.

Now, assume we want to apply the iterative procedure defined in (1.49) to the
ansatz A. For simplicity, we identify a prediction F ∈ A using the real number

αF ∈ [0, 1] : ∀h ∈ H : Fh = hαF .

We have that
∀F ∈ A : αF < 1 ⇒ ∃G ∈ A : F ≺L G.
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Therefore, the first iteration gives

A(1) = {F ∈ X | ∀h ∈ H : Fh = hα, α ∈ [0, 1)} (1.66)

(only α = 1 has been excluded).
Any successive iteration, will not restrict the ansatz anymore:

∀k ≥ 1 : A(k) = A(1) = {F ∈ X | ∀h ∈ H : Fh = hα, α ∈ [0, 1)} . (1.67)

The example shows that, in practice, to use the algorithm (1.49) the ansatz has
to be totally ordered and not denseh.
In our applications we will often consider

A =

{
x ∈ X | xh =

∑

k∈K

hkx
(k)
h , x

(k)
h ∈ Xh

}
, (1.68)

i.e. the set of the formal power series in h, a coefficients in a index set K.
Definition (1.68) can be seen as a particular case of a more general class of
ansatz.

Definition 1.6. A sequence of functions (ωk), ωk ∈ F(H,R+), is called asymp-
totic sequence (for h→ 0) iff

• lim
h→0

ωk = 0,

• ωk+1 ∈ o(ωk), for h→ 0.

Definition 1.7. Let (ωk) be an asymptotic sequence, and let {Ch} be a family of
sets, with Ch ⊂ Xh, for all h ∈ H. We call the ansatz

A =

{
F ∈ X | F =

∑

k∈K

ωk(h)f
(k)
h , f

(k)
h ∈ Ch

}

the set of formal asymptotic expansions in ωk, with coefficients in the family
{Ch}. Ch are called spaces of coefficients.

The elements of the asymptotic sequence, play a role similar to a numerable basis
in the space A, while the coefficients represent the degrees of freedom. In other
words, the free parameters of the ansatz.

hWithout restricting to powers of h, the space X contains predictions with quite arbitrary
convergence speeds. Namely, having chosen any two functions ω1(h), ω2(h) converging to zero,
such that

ω2 ∈ o(ω1)

(ω2 is faster than ω1), there exists ω∗(h) such that

ω∗ ∈ o(ω1), ω2 ∈ o(ω∗).
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Definition of the optimum

Within a totally ordered ansatz A, we can look for the minimal element.

Definition 1.8. Let A ⊂ X. F ∗ is an L-minimum in A (simply, a minimum)
iff

@G ∈ A : G ≺L F
∗.

Analogously, the notion of minimum can be defined for the classes in the quotient
set A/L.

The following lemma characterizes the solutions to the algorithm, through the
relation ≺L.

Lemma 1.8. Let x ∈ X such that L[x] = 0. Then,

(a) ∀G ∈ X : |L[G]| > 0 evt. ⇒ x ≺L G (a solution is more precise than all
the non-solutions).

(b) @F ∈ X : F ≺L x (a solution is a minimum on X).

Proof. (a) Let us take a G such that |L[G]| > 0 eventually. Hence, for all δ > 0
it holds

0 = |L[x]| < δ|L[G]| evt. ⇒ x ≺L G.

(b) Let us suppose that

∃F ∈ A : F ≺L x.

It means,

∀δ > 0 : |L[F ]| < δ|L[x]| evt.

But it is absurd, since δ|L[x]| = 0 and |L[F ]| ≥ 0.

Therefore, if the ansatz A contains a solution to L, this will be minimum in A.

1.2.4 The heuristic algorithm

Algorithm 1.2 (Optimization of the ansatz).

(1) A(0) = A

for k ≥ 0

(2) set A(k+1) =
{
F ∈ A(k) | ∃G ∈ A(k) : F ≺L G

}

(3) repeat until A(k+1) = ∅
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Remarks. The construction of A(k+1) in the algorithm, does not need to employ
the precision classes. Let us fix an element F ∈ A(k). Holding

∃G ∈ A(k) : [F ] ≺L [G] ⇐⇒ ∃G ∈ A(k) : F ≺L G,

the iteration in algorithm 1.2 is equivalent to

A(k+1) =
{
F ∈ A(k) | ∃G ∈ A(k) : [F ] ≺L [G]

}
.

We use a class-free notation. However, it has to be kept in mind that each
prediction represents its precision class. Moreover, observe that if the ansatz
A(k) contains a prediction F ∈ A, it contains the subset [F ] ∩ A of the class of
precision.

Lemma 1.9. Let A be a reasonable ansatz. Let K be such that A(K) 6= ∅.

A(K+1) = ∅ ⇐⇒ ∃F ∈ A(K) : A
(K)
/L = {[F ]}. (1.69)

Proof. First of all, we note that if A is reasonable, i.e. the quotient set A/L is
totally ordered, any subset A(k) will be reasonable as well.
⇒) If A(K+1) = ∅, we formally end up with a set A(K) such that

∀F ∈ A(K) : @G ∈ A(K) : G ≺L F, (1.70)

by construction. Let us choose F ∈ A(K). Equation (1.70) excludes, for all
G ∈ A(K), the relation [F ] ≺L [G] and [G] ≺L [F ] (otherwise we could define a

set of better predictions). Therefore, since the set A
(K)
/L is totally ordered,

∀G ∈ A(K) : [F ] = [G].

Hence,

A(K) ⊂ [F ],

which is true for all F ∈ A(K). Considering the quotient set we have

∀F ∈ A(K) : A
(K)
/L = {[F ]} .

Equivalently,

A(k) = [F ] ∩ A.

⇐) If A(K) consists of a single precision classes,

∀G1, G2 ∈ A(K) : G1 =L G2.

Hence, there are no better predictions to define a new ansatz A(K+1).
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In conclusion the algorithm ends with a single precision class A(K), i.e. the
minimum. Inside it we can choose a representative element.
The iteration for A(k+1) does not provide any operational rule. If only few proper-
ties of L are known, we will start with a rather general ansatz A(0). To construct
the set A(1), we would need to check for all the elements F ∈ A(0), whether there
exists a worse element.
In practice the procedure is simplified using an heuristic version of the algorithm
(see next paragraph 2). It may result in missing the minimum in the original A,
finding a ”sub-optimal” solution, or a minimum in a subset Ã ⊂ A.

1. Selecting the initial ansatz To begin, we choose an ansatz A which is
supposed to be large enough to contain sufficiently many elements of X, but also
not too general, otherwise the analysis will become hard. The choice is made
according to the properties of the algorithm, the space and the kind of solutions
we are interested in. It can be modified and adapted to the result we get, step
by step.
We do not check at this stage whether the ansatz is reasonable or not. If we en-
counter problems regarding the total ordering, we include additional constraints.

2. Iteration step Let assume we have found the ansatz A(k). To perform the
iteration k+1, we do not process the whole A(k). We will rather select a suitably
large subset

A(k+1) ⊂
{
F ∈ A(k) | ∃G ∈ A(k) : F ≺L G

}
,

with predictions for which we can easily find worse ones. If we can find a sat-
isfactory set (where ”satisfactory” is again depending on the problem we are
considering), we will take this as new ansatz A(k+1). We call the ansatz A(k+1),
the set of selected better predictions at the iteration k + 1.

Remarks. Observe that the procedure could be related to the formal one at any
time. Selecting A(k+1) as a subset of the effective better prediction is equivalent
to include, at the step k, additional restrictions:

A(k+1) =
{
F ∈ A(k) | ∃G ∈ A(k) : F ≺L G

}
∩ I (k+1).

In view of
A(k+1) =

⋂

j≤k+1

A(j), (1.71)

the condition defining the ansatz A(k+1) can be inserted as well in any of the
previous ansatz A(j).
Therefore, we would obtain the same result at this level, restarting the algorithm
with the ansatz

Ã(0) = A(0) ∩
( ⋃

j≤k+1

I(j)

)
(1.72)
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and performing the iteration as defined in 1.2.

3. Checking the stopping criterion The iterations continue until we find

A(k+1) = ∅.

This condition has to be carefully checked during the analysis.

The size of the final precision class

Let us consider the equation

L(h, xh) = x3
h + hx2

h − xh = 0, xh ∈ C. (1.73)

It has exact solutions

x̂z
h = 0, x̂±h =

−h±
√
h2 + 4

2
. (1.74)

However, assume we look for approximate solutions in the ansatz

A = {x ∈ RH | xh = x0 + hx1 + h2x2}.

Inserting a general x ∈ A into the algorithm, we can find the general expression
of the residue

L(h, xh) = (x3
0 − x0) + h(3x2

0x1 + x2
0 − x1) + h2(3x0x

2
1 + 2x0x1 + 3x2

0x2 − x2)

+ h3(x3
1 + 6x0x1x2 + x2

1 + 2x0x2) + h4(3x0x
2
2 + 3x2

1x2 + 2x1x2)

+ h5(3x1x
2
2 + x2

2) + h6x3
2 (1.75)

which we can write as

L(h, xh) =
6∑

k=0

hkr(k)(x0, x1, x2). (1.76)

Since the residue is expressed as a finite power series in h, with real coefficients,
the ansatz is reasonable. In fact, taken any two predictions, we can compare them
simply checking which one has the lowest-order non zero coefficient. Actually,
the same property is also used to find predictions more precise than others. We
can proceed order by order selecting at each iteration only the elements which
are solutions of the equations

r(k)(x0, x1, x2) = 0.

For k = 0, the residue is
r(0) = x3

0 − x0.
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Hence, the predictions in the set

A(1) =
{
x ∈ A | xh = x0 + hx1 + h2x2, x0 ∈ {0, 1,−1}

}

are more precise than, for example, the elements y ∈ A such that

∀h ∈ H : yh = 2.

In general, for all the remaining

y ∈ A : y3
0 − y0 6= 0

we cannot find worse approximations. They belong all to the same precision
classes. In this simple situation, A(1) the complete set of better predictions.
At this point we can observe that the ansatz contains a solution to L, namely x =
0. This will be a minimum. To investigate approximations to the other solutions
we can develop a tree-algorithm, following separately the subsets specified in the
definition of A(0). This can be done introducing additional hypothesis on the
initial ansatz (see equation (1.72)). For example, to exclude x = 0, we assume to
start with

A = {x ∈ RH | xh = x0 + hx1 + h2x2, x0 6= 0}.
Now,

A(1) =
{
x ∈ A | xh = x0 + hx1 + h2x2, x0 ∈ {1,−1}

}
.

We can continue solving

r(1)(x0, x1, x2) = 3x2
0x1 + x2

0 − x1 = 0

and finding the set

A(2) =

{
x ∈ A(1) | xh = x0 + hx1 + h2x2, x1 =

x2
0

1 − 3x2
0

}
=

=

{
x ∈ A | xh ∈

{
±1 − h

2
+ h2x2

}}
. (1.77)

It is a set of better predictions. For instance, for y ∈ A(1) such that

yh = 1 + h

we have
∀x ∈ A(2) : x ≺L y.

Analogously, in the following step we have

A(3) = {x ∈ A(2) | 3x0x
2
1 + 2x0x1 + 3x2

0x2 − x2 = 0} =

=

{
x ∈ A | xh ∈

{
xp

h = 1 − 1

2
h+

1

8
h2, xn

h = −1 − 1

2
h− 1

8
h2

}}
. (1.78)
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The last set contains only two elements. Since

L(h, xp
h) =

h4

64
+O(h5), L(h, xn

h) = −h
4

64
+O(h5)

they belong to the same class of precision.
Observe that

∀x ∈ A(3) : r(3)(x0, x1, x2) = 0

and
∀x ∈ A(3) : r(4)(x0, x1, x2) 6= 0

Since A(3) is already a subset of a precision class, we conclude

A(4) = ∅

and the algorithm stops.
In this case, the algorithm terminates with two fully determined elements of the
initial ansatz A(0). Note that expanding in Taylor series the roots of (1.73),
around h = 0, we find

x̂± = ±1 − 1

2
h± 1

8
h2 +O(h4). (1.79)

PSfrag replacements

x(1)

x̂+

x̂z

x(0)

0

1

H

Figure 1.7: In the examples (1.73), one exact solution is x̂+ = 1− h

2
+

√
h2

4
+ 1. It

is drawn as bold line (together with the root x̂z = 0). With the ansatz A considered,

we found the predictions x(0) = 1 and x(1) = 1 − h

2
(dashed lines), which get close

to the exact solution for h going to zero. Figure is not in scale.

An improper ansatz In the same way we investigate the simple equation

x2 − h = 0. (1.80)

with the ansatz

A = {x ∈ RH | xh = x0 + hx1 + h2x2, x0, x1, x2 ∈ R}.
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The residue has the general form

L(h, xh) = x2
0 + h(2x0x1 − 1) + h2(x2

1 + 2x0x2) + h3x1x2 + h4x2.

Hence, we can conclude that x0 = 0 defines a set of better predictions:

A(1) =
{
x ∈ A | xh = hx1 + h2x2

}
.

However, we are already left with a single precision class, since

∀x ∈ A(1) : L(h, xh) = −h +O(h2).

Comparing the minimum classes These two simple applications show a
relevant difference. In the first case, the minimum class (i.e. the class which is
the minimum on A/L) is composed of two elements, xp and xn, which are two
approximate solutions of equation (1.73). In the second example, the algorithm
terminates with the ansatz A(1). This is the minimum class, containing all the
elements in the initial ansatz A(0), which have a distance O(h) from x = 0.
Intuitively, this class has size O(h).

The concept of size can be properly defined. Let be given a function ω ∈
F(H,R+). For F ∈ A, we can say that the class [F ] has size O(ω) in A if
any other element G ∈ A, such that F −G ∈ O(ω), belongs to the class [F ]:

∀G ∈ A : |F −G| ∈ O(ω) ⇒ F =L G.

Equivalently, [F ] has size O(ω) in A iff

[F ] + A ∩O(ω) ⊂ [F ]. (1.81)

Additionally, we can say that the class [F ] has size o(ω) in A iff

∃ψ ∈ o(ω) : [F ] has size O(ψ). (1.82)

Since the technique is in principle applicable to a wide class of problems, we do
not discuss the details of the definition.

The size of the minimum class in the initial ansatz indicates whether the ansatz
is adapt to investigate the algorithm. If the last iteration provides a too big
set, there are different possible choices for the best prediction, which give the
same precision. In other words, we are taking into account too many degrees of
freedom, more than how many we are actually able to fix.

Remark. Considering the ansatz of the asymptotic expansions with respect to
the sequence (ωk), definition (1.81) can be interpreted as follows. A class has size
O(ωk) if the precision does not depend on the k-th coefficient.
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A different example: numerical schemes

We consider now the differential problem

x′ = λx, x(0) = x0, λ > 0 (1.83)

for x : [0, 1] → R, which we try to solve numerically using the explicit Euler
method:

x̂h(0) = x0,
x̂h(n+ 1) − x̂h(n) = hλx̂h(n), n ≥ 0.

(1.84)

For this problem (a numerical method for differential initial value problems), we
take

H =

{
1

N
| N ∈ N, N > 0

}
,

which identifies, for each N , the N -points discretization of [0, 1]. For h ∈ H,

x̂h(n) ∈ Xh = F({0, 1, . . . , N(h)},R),

i.e. it is a function on an h-depending discrete set, defined according to a dis-
cretization of [0, 1] with nodes tn = nh.
Viewing (1.84) as a problem in the form (1.40),

L(h, x̂h)(n+ 1) =

{
x̂h(0) − x0 n + 1 = 0

x̂h(n+ 1) − x̂h(n) − hλx̂h(n) n + 1 > 0,

we apply the technique defined above, to approximate the solution x̂h, which
corresponds, in this case, to the numerical solution provided by the scheme.
First, we chose the ansatz

A =

{
y ∈ X | yh(n) =

∑

k∈K

hky(k)(hn), y(k)(t) ∈ C∞(I)

}

(K being a finite set of indices). It is a set of the power series in h, with smooth
coefficients. Let us consider the iteration for n > 0. Inserting the ansatz into the
algorithm (1.84), we get

L(h, yh)(n+ 1) =
∑

k∈K

hky(k)(tn+1) −
∑

k∈K

hky(k)(tn) − λh
∑

k∈K

hky(k)(tn).

Now, Taylor expanding the functions y(k) around t = tn,

L(h, yh) = h
(
y(0)′ − λy(0)

)
+ h2

(
y(1)′ − 1

2
y(0)′′ − λy(1)

)
+O(h3). (1.85)
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As done in the previous example, we define the sets A(k) with the predictions
which cancel the different orders in the residues (1.85). Regarding the initial
conditions, the residue reads

L(h, yh)(0) = y(0)(0) − x0 +
∑

k∈K

hky(k)(0). (1.86)

Solving L(h, yh)(0) = 0 order by order, equation (1.86) fixes the initial condition
for the coefficients of the predictions.
Considering the leading order, we construct the set

A(1) = {y ∈ A | y(0)′ − λy(0) = 0, y(0)(0) = x0},

of the better predictions. It contains a relation with the solutions of the original
problem (1.83).
Performing a further step, we have

A(2) =

{
y ∈ A(1) | y(1)′ =

1

2
y(0)′′ − λy(1) =

1

2
λ2y(0) − λy(1), y(1)(0) = 0

}
.

The process could be continued. However, limiting the initial ansatz to

Ã = {y ∈ A | yh(n) = y(0)(hn) + hy(1)(hn), y(0), y(1) ∈ C∞(I)}

(taking K = {0, 1}) we finish after two steps.
Remarks. Using the asymptotic analysis, we have been able to derive some
information about the numerical method. Summarizing,

• the solution of the differential problem (1.83) does not satisfy the algorithm
(1.84);

• the leading order of the asymptotic solution to (1.84), however, solves the
same differential problem the method has been applied to;

• A(2) contains the minimum on A/L. Whether the precision class contains
a single element or not depends, in general, on the differential problem we
are considering.

1.3 A regular case: from the LBE to Navier-

Stokes

The asymptotic expansion has been very successfully applied to the lattice Boltz-
mann method, to study the behavior in periodic domains [19, 24]. Besides, bound-
ary conditions [9, 20, 23] and several other features, such as grid-refinement [37],
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initial conditions [5], force evaluation [6] and fluid mixtures [1] have been inves-
tigated with the same principle.
We recover here some results, applying the technique described before. With
the practical example, we show how how the analysis works and the conclusion
it leads to. In particular, since in the rest of the thesis we make a wide use of
asymptotic analysis, scope of this part is also to explain the general ideas of the
practical procedure.
The computations are carried out for the particular BGK model. Details, more
general results and overviews of the asymptotic expansion for the LBE can be
found in [19].

The ingredients of the analysis

Continuous and discrete problems We have in mind to solve the motion of
a fluid governed by an initial value incompressible Navier-Stokes problem

{
∇ · u = 0
∂tu + ∇p+ u · ∇u = ν∇2u + G

t ∈ [0, T ], x ∈ Ω

u(0,x) = u0(x), x ∈ Ω,

(1.87)

on a periodic domain Ω ⊂ R2. We refer to equations (1.87) as the continuous
problem.
The spatial discretization is a grid G(∆x), as in equation (1.4). The time step is
chosen according to the scaling

∆t = ∆x2 = h2 (1.88)

(called in literature diffusive scaling), which has been demonstratedi to be neces-
sary condition [19] to recover the problem (1.87) in the limit ∆x,∆t → 0.
The discrete problem is the BGK-LBM in a periodic domain:

f̂i(n+ 1, j + ci) = f̂i(n, j) +
1

τ

(
f eq

i (f̂) − f̂i

)
(n, j) + gi(n, j)

︸ ︷︷ ︸
Ĵi(n, j)

. (1.89)

The term
gi(n, j) = h3f ∗

i c
−2
s ci · G(tn,xj), (1.90)

is used to take into account the effect of the volume force G in equations (1.87).
The origin of the expression for gi will be clear at the end of the analysis. Observe
that ∑

i

gi = 0,
∑

i

gici = h3G. (1.91)

iIn the approach presented here, we assume (1.88) as a former relation. In [19], the condition
results as a consequence of the analysis.
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Calling N(T, h) the number of time steps necessary to cover the time interval
[0, T ] of problem (1.87), the numerical solution f̂h is a function on the discrete
domain

Dh = {0, 1, . . . , N(T, h)} × G(h). (1.92)

Let us describe the LBM using the formalism introduced in section 1.1. In this
case, H is the subset of (0, 1] containing the grid sizes h, which allow a periodic
discretization of the continuous domain. Then, for all h ∈ H, we have

Xh = F(Dh,R
b). (1.93)

The interior algorithm For each h ∈ H the interior LBM is defined by the
set of equations (1.89)

LBMi(h, f̂h)(n + 1, j) = f̂i(n+ 1, j + ci) − f̂i(n, j) + Ĵi(n, j) = 0

forj n+ 1 > 0. We consider

L(h, f̂h)(n, j) = LBM(h, f̂h)(n, j) n ∈ {1, . . . , N(T, h)}, j ∈ G(h), (1.94)

where Dh = {1, . . . , N(T, h)} × G(h) is the interior discrete domain, excluding
the initial conditions for f̂h.
A solutionk to Lh is a numerical result f̂h, which we obtain running the LBM on
a grid of size h.
To apply the asymptotic analysis, following the strategy described in section
1.2.4, we need now to construct an ansatz.

1.3.1 The regular expansion

In the problem
L(h, f̂h) = 0,

the f̂h ∈ F(Dh,Rd) are functions on an h-discrete domain Dh. Dealing with
continuous and discrete problems, the grid is related to a continuous domain D,
through a function

ηh : Dh → D, (1.95)

which we call discretization map.

Example 1.3. For the LBM, we have

ηd
h(n, j) = (nh2, hj), (1.96)

defined according to the (diffusive) scaling (1.88).

jWe use the index n + 1 to define the algorithm, since equation (1.89) expresses an update

rule for the variables f̂i at time n + 1.
kTo completely define a solution, proper initial (and boundary) conditions are needed. The

interior algorithm does not contain information regarding the starting value for n = 0.
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Definition 1.9 (Coordinate map). Let E be a set and

Yh(E) := F(Dh, E).

An element y ∈ Y (E) =
∏

h∈H

Yh(E) is called a coordinate map (from Dh) on E.

So, the discretization map is a particular coordinate map on D. Given a coor-
dinate map y on E, we have a recipe to construct a particular subset of X (for
the LBM, Xh is defined in equation (1.93)). Namely (diagram in figure 1.8), for
a function f : E → Rd, we have

f(yh) ∈ Xh.

Defining
F := f(y), with f(y)(h) := f(yh),

then F ∈ X.

Dh Rd

E

-f̂h

@
@Ryh �

��
f

Figure 1.8: Diagram of the relevant spaces, cited in the definition 1.9 of a coordinate
map. The numerical solution f̂h is a general function defined on the discrete domain.
We choose a particular ansatz, constructed through a coordinate map.

Definition 1.10. Let y be a coordinate map on a given set E, and C a space of
functions defined on E. The ansatz of power series with coefficients in C is
the set

A(y,C) :=

{
F ∈ X | Fh =

∑

k∈K

hkf (k)(yh), f
(k) ∈ C

}
,

where K is a finite set of indices.

Definition 1.11. The class A(y,C) is called regular ansatz iff

(1) y is a coordinate on D
(2) C = C∞(D)

(1.97)

The regular expansion is the analysis performed within a regular ansatz.

Note that in a regular ansatz expansion the spaces of coefficients do not depend
on h. Actually, the hypothesis of C∞(D) coefficients could be replaced with a
less restrictive requirement. This assumption allows to simplify the investigation.
The regularity we need to perform the analysis can be fixed a posteriori.
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Coefficients of the regular predictions

Let us consider the ansatz A(y,C) of the expansions through the coordinate map
y. Let K be the set of indeces, and let us call

k̄ = max{k | k ∈ K}.

Starting from a set of functions
{
f (k) | f (k) ∈ C, k ≤ k̄

}
it is immediate to con-

struct the prediction F ∈ A with coefficients f (k), defining

∀h ∈ H : Fh(f
(0), . . . , f (k̄)) =

∑

k≤k̄

hkf (k)(yh). (1.98)

On the other hand, given F ∈ A, how can we pick up the coefficient of order k?
In words, we are looking for a map

f
(k)
i : A → C

F 7→ f
(k)
i (F )

(1.99)

which gives ”the k-th coefficient of Fh”, such that

∀h ∈ H : Fh =
∑

k≤k̄

hkf (k)(F )(yh).

The previous equation has to hold at each point of the discrete domain. Therefore,
the functions f

(k)
i (F ) can be defined pointwise starting from the prediction F .

Let us focus on the regular ansatz for the LBM, where Dh = N × G(h) and

yh(n, j) = (nh2, hj) = (tn,xj).

However, the argument can be extended also in more general cases (see 2.2).
For fixed coordinates (t,x) ∈ D, we need to consider a proper limit processes.
Namely, we choose a sequence of parameters (hm)m≥0, tending to zero,

hm
m→∞−→ 0,

and two sequences of indeces (nhm
) and (jhm

) such that

h2
mnhm

m→∞−→ t, hmjhm

m→∞−→ x.

Then, the coefficients in (t,x) can be defined iteratively:

f (0)(F )(t,x) = lim
m→∞

Fhm
(nhm

, jhm
),

∀k > 0 : f (k)(F )(t,x) = lim
m→∞

1

hk
m

(
Fhm

(nhm
, jhm

) −
∑

l≤k−1

hl
mf

(l)(F )(t,x)

)
.

(1.100)
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1.3.2 Preparing the regular ansatz for the LBM

A general prediction in the regular ansatz A(ηd, C∞(D)) for the LBM has the
form

Fh(n, j) = f (0)(tn,xj) + hf (1)(tn,xj) + h2f (2)(tn,xj) + . . . (1.101)

with smooth coefficients f (k) . As remarked before, the series expressing F does
not consist of an infinite number of terms, but is extended to a finite set K.
However, the number of considered coefficients can be fixed in a second moment.
Applying the algorithm 1.2, we search a prediction for the interior algorithm
(1.94). At the beginning, many steps will be done on a not totally rigorous level,
taking into account some considerations derived from the known properties of
the method, and the already existent analysisl of it.
Similarly to what we have done in the previous examples, we start inserting the
expansion (1.101) into the algorithm (1.94)

LBMi(h, Fh)(n+ 1, j) =
∑

k∈K

hkf
(k)
i (tn+1,xj+ci

) −
∑

k∈K

hkf
(k)
i (tn,xj)−

1

τ

(
f eq

i

(∑

k∈K

hkf (k)(tn,xj)

)
−
∑

k∈K

hkf
(k)
i (tn,xj)

)
− gi(n, j).

We assume that also the term gi(n, j) can be expanded in power seriesm

gi(n, j) =
∑

k∈K

hkg
(k)
i (tn,xj)

(choosing a suitable K).
The right hand side contains smooth functions on the continuous domain D.
Using a Taylor expansion around the point (tn,xj), we get

LBMi(h, Fh)(n + 1, j) =
∑

k∈K

hk
(
h2∂t + hci · ∇ + . . .

)
f

(k)
i (tn,xj)−

∑

k∈K

hk

[
1

τ

(
f

eq,(k)
i (Fh(n, j)) − f

(k)
i (tn,xj)

)
− g

(k)
i (tn,xj)

]
+ . . . , . (1.102)

grouping in f eq,(k) all the terms of order hk. The dots at the end of the equation
allude to a remainder, which contains all the term of the expansion with indices
k 6∈ K. We do not deal with this technical problem. In the considered case
the set K will always contain the relevant orders, while the remainder will be
asymptotically ignorable.

lWe follow the guideline of the derivation presented in [19].
mWith definition (1.90), we have

g
(3)
i = f∗

i c−2
s ci · G, g

(k)
i = 0, for k 6= 3.
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Equilibrium of order k To derive an explicit expression of f eq,(k) we consider
the equilibrium as a function of the moments of the particle distribution (equation
(1.25)):

f eq
i (Fh) = Heq

i (ρ(Fh),u(Fh)) ,

where ρ and u are defined as (equation (1.22))

ρ(Fh) =
∑

i

Fhi, u(Fh) =
∑

i

Fhici. (1.103)

Considering F in the form (1.101), analogous expansions are inherited from the
moments:

ρ(Fh) =
∑

k∈K

hkρ(k)(F ), u(Fh) =
∑

k∈K

hku(k)(F ), (1.104)

where the coefficients of order k (h-independent) are obtained taking the moments
of the coefficients of F (defined in equation (1.100)) of the corresponding order:

ρ(k)(F ) =
∑

i

f
(k)
i (F ), u(k)(F ) =

∑

i

f
(k)
i (F )ci. (1.105)

Introducing the expression (1.26) for Heq
i , the equilibrium of order k is defined

isolating (splitting Heq
i as in equation (1.28))

f
eq,(k)
i (F ) = H

L(eq)
i (ρ(k)(F ),u(k)(F )) +

∑

m+l=k

H
Q(eq)
i (u(m)(F ),u(l)(F )). (1.106)

Observe that f
eq,(k)
i depends only on the coefficients of the prediction F , through

equations (1.105).
In the leading orders we have

f eq,(0) = f ∗
i ρ

(0) + c−2
s f ∗

i ci · u(0) +H
Q(eq)
i (u(0),u(0)), (1.107)

f eq,(1) = f ∗
i ρ

(1) + c−2
s f ∗

i ci · u(1) + 2H
Q(eq)
i (u(0),u(1)), (1.108)

f eq,(2) = f ∗
i ρ

(2) + c−2
s f ∗

i ci · u(2) +H
Q(eq)
i (u(1),u(1)) + 2H

Q(eq)
i (u(0),u(2)). (1.109)

Using (1.106), we can eventually write equation (1.102) in the form

LBMi(h, Fh)(n+ 1, j) =
∑

k∈K

hkr
(k)
i (F )(ηd

h(n, j)), (1.110)

where r(k)(F )(ηd) is, for each k ≥ 0, the residue of order hk, which depends only

on the continuous functions f
(k)
i (F ) (treating the expansion coefficients of the

force term g as a constant).
Explicitely,

r
(k)
i (F ) =

∑

l+m=k, l>0

Dl,if
(m)
i (F ) − 1

τ

(
f

eq,(k)
i (F ) − f

(k)
i (F )

)
+ g

(k)
i . (1.111)
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As in [19], we have introduced the operator

Dl,i =
∑

a+b=l

∂t
a

a!

(ci · ∇)b

b!
, (1.112)

which groups all the derivatives giving order l in h.
To perform the iteration to find the minimum, we proceed trying to construct,
order by order, the coefficients f (k)(F ) such that

r(k)(F ) = 0, (1.113)

which expresses a constraint on the coefficients of the prediction F .

Selecting the better predictions The solutions for the coefficients are de-
rived recursively, starting from k = 0 and inserting in the recovered solutions in
the following orders.
We start from a regular ansatz A. Since the expansion of Fh begins from k = 0,
we assume

∀k < 0 : f
(k)
i (F ) = 0.

Additionally, to make more comfortable the reading, we index the iterations of
the algorithm 1.2 starting from k = 0, instead of with k = 1.

[k = 0] In the leading order, we have

r(0)(F ) = f (0)(F ) − f eq,(0)(F ). (1.114)

First, we search a prediction which does not cancel the residue. Let us consider
the element G ∈ A such that

∀h ∈ H : Gi := |ci|2 −
∑

m |cm|2∑
m 1

, (1.115)

for which we have f
(0)
i (G) = G. The moments are

ρ(0)(G) = 0, u(0)(G) = 0,

and the equilibrium of order zero is (using equation (1.107)) f
eq,(0)
i (G) = 0. As a

consequence the residue (1.114) reads

r(0)(G) = G 6= 0. (1.116)

Therefore, taking a subset of the solutions of (1.114) we can select a set of pre-
dictions which are better than G. Defining

A(0) = {F ∈ A | f (0)
i (F ) = f ∗

i }, (1.117)
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(which is trivially not empty), it is easy to show that

∀F ∈ A(0) : ρ(0)(F ) = 1, u(0)(F ) = 0. (1.118)

Hence f
eq,(0)
i = f ∗

i , which implies

∀F ∈ A(0) : r(0)(F ) = 0

and F ≺L G. The set A(0) is the subset of the selected better predictions in the
ansatz A.

[k = 1] We proceed in a similar way. Equation (1.111) for k = 1 reads

r(1)(F ) = f (1)(F ) − f eq,(1)(F ). (1.119)

Now, we consider the prediction G(1) ∈ A(0) such that

∀h ∈ H : G(1) := f ∗
i + hG, (1.120)

G being the prediction defined in (1.115). As before

f (1)(G(1)) = G, ρ(1)(G(1)) = 0, u(1)(G(1)) = 0, (1.121)

which give (equation (1.108)) f
eq,(1)
i = 0 and

r(1)(G(1)) = G 6= 0.

A set of better predictions can be constructed defining

A(1) = {F ∈ A(0) | f (1)
i (F ) = c−2

s f ∗
i ci · v(1), v(1) ∈ (C∞(D))d}. (1.122)

In fact, since
∀F ∈ A(1) : ρ(1)(F ) = 0, u(1)(F ) = v(1), (1.123)

we have f eq,(1)(F ) = f (1)(F ) and the residue vanishes.
In the definition (1.122) there are no special conditions on the field v(1) appearing

in f
(1)
i (F ). In fact,

f
(1)
i (F ) = c−2

s f ∗
i ci · v(1) (1.124)

is only a constraint on the structure of the coefficientsn f
(1)
i .

Obviously, A(1) 6= ∅.
nDue to the symmetry properties of the lattice, it holds

∀v(1) ∈ F(D, Rd) : v(1) =
∑

i

ci

(
c−2
s f∗

i ci · v(1)
)
,
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Example 1.4 (Stationary first order). For example, we could restrict the
analysis to an even smaller subset of the better predictions, choosing v(1) = 0:

A(1) =
{
F ∈ A(0) | f (1)(F ) = 0

}
.

Despite the restrictive choice, it is still possible to perform another iteration of
the algorithm. More details are given in the following derivation.

[k = 2] In the following order we obtain

r
(2)
i (F ) = f

(2)
i (F ) −

(
f

eq,(2)
i (F ) − τci · ∇f (1)

i (F )
)
. (1.125)

It can be proven that r(2) differs from zero choosing the prediction G(2) ∈ A(1)

defined by
∀h ∈ H : G(2) := f ∗

i + h2G. (1.126)

To cancel the second order residue we select the elements F ∈ A(1) such that

f
(2)
i (F ) = f ∗

i q
(2) + c−2

s f ∗
i ci · v(2) − τci · ∇f (1)

i (F ), (1.127)

for smooth fields q(2) and v(2).
We have

ρ(2)(F ) = q(2) − τ∇ · u(1)(F ), u(2)(F ) = v(2). (1.128)

Inserting (1.128) into the equilibrium (1.109) yields

r(2)(F ) = −τf ∗
i ∇ · u(1)(F ).

Therefore, for predictions F ∈ A(1), the residue r(2)(F ) vanishes only if u(1)(F )
is divergence-free. The set

A(2) = {F ∈ A(1) | f (2)
i (F ) = f ∗

i q
(2) + c−2

s f ∗
i ci · v(2) − τci · ∇f (1)

i (F ),

q(2) ∈ C∞(D), v(2) ∈ (C∞(D))d, ∇ · u(1)(F ) = 0} (1.129)

contains better predictions.
In view of (1.123), to have

A(2) 6= ∅,
the field v(1), which could be freely chosen to define the ansatz A(1), has to be
divergence-free. All the elements in A(1) such that ∇·u(1)(F ) 6= 0 will be excluded
at this stage.
Observe that the particular choice v(1) ≡ 0 (example 1.4) satisfies the condition.
Equivalently, we could have selected at the previous step (equation (1.71)) the
set

A(1) = {F ∈ A(0) | f (1)
i (F ) = c−2

s f ∗
i ci · v(1), v(1) ∈ (C∞(D))d, ∇ · v(1) = 0}.

(1.130)
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[k = 3] Continuing in the same way, to cancel the following order we consider the
predictions F ∈ A(2) such that

f
(3)
i (F ) = f ∗

i q
(3) + c−2

s f ∗
i ci · v(3) − τ

(
∂tf

(1)
i (F ) + ci · ∇f (2)

i (F ) − g
(3)
i

)
, (1.131)

for smooth fields q(3) and v(3). Computing the third order moments, evaluating
equation (1.111) for k = 3 and the equilibrium of order three (details in [19]), we
have r(3)(F ) = 0 iff

∂tu
(1)(F ) + c2s∇ρ(2)(F ) + ∇ · (u(1) ⊗ u(1))(F ) = c2s

(
τ − 1

2

)
∇2u(1)(F ) + G

∇ · u(2)(F ) = 0.
(1.132)

Hence, we define the set

A(3) =
{
F ∈ A(2) | f (3)

i (F ) = f ∗
i q

(3) + c−2
s f ∗

i ci · v(3)

−τ
(
ci · ∇f (2)

i (F ) + ∂tf
(1)
i (F ) − gi

)
, q(3) ∈ C∞(D), v(3) ∈ (C∞(D))d,

u(1)(F ), ρ(2)(F ), u(2)(F ) satisfy (1.132)
}
. (1.133)

The procedure can be pursued for any order k ≥ 0 in the same way. However,
to show how the optimization algorithm works for the LBM, it is enough what
we have done so far. Formally, the procedure would terminate at this level if we
start with the ansatz

A3 := {F ∈ A(ηd, C∞) | ∀k ≥ 4 : f
(k)
i (F ) = 0}.

Equations (1.132) already shows a relation with Navier-Stokes, which also justifies
the definition (1.90) of ĝi in connection to the volume forces.

Hydrodynamic equations

Having understood how to proceed, we summarize the main results obtained so
far and suggest a shortcut to perform some further step.
To define the ansatz A(k), we have used a condition on the structure of the
coefficients derived from equation (1.111):

f
(k)
i (F ) = f

eq,(k)
i (F ) − τ

( ∑

l+m=k, l>0

Dl,if
(m)
i (F ) − g

(k)
i

)
. (1.134)

In order to have r(k)(F ) = 0, we got supplementary conditions involving the
moments of previous orders, in form of a PDE system.
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Without describing the computation in detail (see [19] for general results), we
give explicitely only the equations for the leading order moments.

In what follows we define the pressure coefficients

p(k)(F ) = c2sρ
(k)(F ). (1.135)

Additionally, in view of equation (1.132), we fix the relaxation time in order to
have ν = c2s(τ − 1

2
) (ν being the viscosity in the original Navier-Stokes problem).

We find that u(2), p(3) (suppressing the argument F ) solve a homogeneous Stokes
equation

{
∇ · u(2) = 0

∂tu
(2) + ∇p(3) − ν∇2u(2) = 0.

(1.136)

For the following order, the couple (u(3), p(4)) has to be a solution to the following
inhomogeneous Oseen-type problem:





∇ · u(3) = −c−2
s ∂tp

(2) +
1

2
∇ ·G

∂tu
(3) + ∇p(4) + 2∇ ·

(
u(1) ⊗ u(3)

)
= ν∇2u(3).

(1.137)

Remark. The lack of initial data in the previous PDE systems is due to the fact
that we are no considering the initial conditions for the algorithm.

Particular choices of the moments Defining the coefficients f (0) and f (1) we
did not have any particular restriction on the moments. Nevertheless, we have
considered only particular forms of the coefficients, which lead to

ρ(0)(F ) = 1, u(0)(F ) = 0, ρ(1)(F ) = 0. (1.138)

Different definitions are possible, to select the better predictions for k = 0 and
k = 1. However, we observe that the adopted restrictions lead to a relation
with the Navier-Stokes equations, which could not be true in more general cases.
Therefore, in the following analysis it has to be checked whether the restrictions
(1.138) are fulfilled and do not lead to inconsistencies in the higher orders.
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The interior prediction

We define the ansatz
◦

A3 of the inner expansions up to the order h3, collecting
the predictions

F ∈ A | ∀t > 0, ∀x ∈ Ω :

f
(0)
i (F )(t,x) = f ∗

i ,

f
(1)
i (F )(t,x) = f ∗

i c
−2
s ci · u(t,x),

f
(2)
i (F )(t,x) = f ∗

i c
−2
s p(t,x) + f ∗

i c
−2
s ci · v(2)(t,x) +H

Q(eq)
i (u,u)(t,x)

− τf ∗
i c

−2
s (ci · ∇)ci · u(t,x),

f
(3)
i (F )(t,x) = f ∗

i c
−2
s q(3)(t,x) + f ∗

i c
−2
s ci · v(3)(t,x)

− τ

[
(ci · ∇)f

(2)
i (F )(t,x) +

(
(ci · ∇)2

2
+ ∂t

)
f

(1)
i (F )(t,x) − g

(3)
i (t,x)

]

f
(k)
i (F )(t,x) = 0, for k ≥ 4,

(1.139)
where the functions u, p are a smooth solution to the Navier-Stokes problem

{
∇ · u = 0

∂tu + ∇p+ u · ∇u = ν∇2u + G,
(1.140)

the couple (v(2), q(3)) solves the system (1.136)

{
∇ · v(2) = 0

∂tv
(2) + ∇q(3) − ν∇2v(2) = 0,

(1.141)

and v(3) satisfies 



∇ · v(3) = −c−2
s ∂tp+

1

2
∇ · G

∂tv
(3) + 2∇ ·

(
u ⊗ v(3)

)
= ν∇2v(3)

(1.142)

((1.137) using p(4) = 0).

Theorem 1.1 (LBM inner expansion). Assume that there exist smooth solu-

tions to the problems (1.140), (1.141), (1.142). Then, the ansatz
◦

A3 of the inner
expansions is not empty, and it holds

∀F ∈
◦

A3 : LBM [F ] ∈ o(h3), (1.143)

i.e. the minimum class in A is of size o(h3).

Proof. The previous derivation proves property (1.143) for the predictions in
◦

A3.
Performing further iterations of the optimization algorithm, the minimum class
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will be constructed taking a subset of
◦

A3. Since the coefficients coincide up to

the third order, the difference between two predictions in a subset of
◦

A3 will be
of order o(h3), and so the size of the resulting minimum class.

At this point, the problem is still too general to make a more precise statement
regarding the classes of precisions. In particular, to have equations determining
the coefficientso up to k ≤ 3, assures only that the classes of precision are smaller
than O(h3). The residue of order h4 reads

r
(4)
i (F ) = −τ

[(
∂t(ci · ∇) +

(ci · ∇)3

6

)
f

(1)
i (F )+

(
∂t +

(ci · ∇)2

2

)
f

(2)
i (F ) + ci · ∇f (3)

i (F )

]
. (1.144)

Without more specifications on the moments we are not able to discuss whether

there are predictions in
◦

A3 able to cancel the residue r(4).
For example, observe that the if problems (1.140), (1.141), (1.142) admit zero
solutions, then the prediction such that

∀k > 0, f
(k)
i (F ) = 0

satisfies equation (1.144).

1.3.3 Asymptotic of the initialization

The analysis of the LBM has to be completed treating the influence of the initial
conditions, to derive a precise relation with the Navier-Stokes problem (1.87).
Formally, the algorithm to be analyzed is

L(h, f̂h)(n, j) :=

{
IC(u0; h, f̂h)(j) n = 0, j ∈ G(h)

LBM(h, f̂h)(n, j) n > 0, j ∈ G(h).
(1.145)

The initialization IC depends on the initial data of the continuous problem, in
this case the velocity u0. We assume that it is consistent with it, i.e.

û(0, j) = hu0(xj). (1.146)

Note. Using a lattice units reference system (unitary ∆x and ∆t), the physical
velocity has to be rescaled by h.

oDetermining a coefficient means, for us, to have a precise equation for it. Observe that if
there are multiple solutions for the differential problems (1.140), (1.141), (1.142) we could fall
into the technical problems in defining the coefficients.
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Equilibrium initial conditions

In this section we focus on the equilibrium initialization, defined setting

f̂h(0, j) = Heq(1, hu0(xj)). (1.147)

Observe that (1.147) satisfies (1.146).

This is one of the most popular choices to initialize a lattice Boltzmann simu-
lation. However, the procedure we use can be extended to any kind of initial
values. Some example will be considered in the following chapters.

We introduce

ICEQ(j)(u0; h, fh) := f̂h(0, j) −Heq(1, hu0(xj)) (1.148)

into the algorithm (1.145):

L(h, f̂h)(n, j) :=

{
f̂h(0, j) −Heq

i (1, hu0(xj)) n = 0, j ∈ G(h)

LBM(h, f̂h)(n, j) n > 0, j ∈ G(h).
(1.149)

The sequence of better predictions can be constructed similarly as before, con-
sidering separately the residues of the two algorithm. However, since theorem
1.1 already gives a precise result regarding the precision of the predictions in the

ansatz
◦

A3 with respect to the interior LBM, if we choose
◦

A3 as initial ansatz we
only need to check the order of residue of the initialization rule.

Since

Heq
i (1, hu0) = 1 + hc−2

s f ∗
i ci · u0 + h2H

Q(eq)
i (u0,u0), (1.150)

inserting a prediction from a regular ansatz

Fh(n, j) =
∑

k∈K

hkf (k)(tn, j)

into the algorithm (1.148), we found the residue

ICEQ(u0; h, Fh)(j) =
(
f

(0)
i (F )(0,xj) − f ∗

i

)

+ h
(
f

(1)
i (F )(0,xj) − c−2

s f ∗
i ci · u0(xj)

)

+ h2
(
f

(2)
i (F )(0,xj) −H

Q(eq)
i (u0,u0)(xj)

)

+
∑

k∈K,k≥3

hkf (k)(F )(0,xj) =

=
∑

k∈K

hkr
(k)
IC (F )(ηd

h(0, j)).

(1.151)
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The residue is canceled completely with a prediction F ∈ A such that

f
(0)
i (F )(0,x) = f ∗

i

f
(1)
i (F )(0,x) = f ∗

i c
−2
s ci · u0(x)

f
(2)
i (F )(0,x) = H

Q(eq)
i (u0,u0)(x),

f
(r)
i (F )(0,x) = 0, r ≥ 3,

(1.152)

which is therefore a solutionp to the initialization (1.148).
Substituting order by order the solution for the interior coefficients (1.139) into
the residue (1.151) we have

∀F ∈
◦

A3 : r
(0)
IC(F ) = 0, (1.153)

∀F ∈
◦

A3 : r
(1)
IC(F )(x) = c−2

s f ∗
i (u(1)(0,x) − u0(x)). (1.154)

Therefore, the first order residue vanishes in the set

AIC,(1) = {F ∈
◦

A3 | f (1)
i (F ) = f ∗

i c
−2
s ci · u,u(0,x) = u0(x)}, (1.155)

i.e. u is the velocity which solves the Navier-Stokes problem (1.140), with initial
condition u0.
For k = 2, we obtain

∀F ∈ AIC,(1) : r
(2)
IC(F )(x) = f ∗

i c
−2
s p(0,x) − τf ∗

i c
−2
s ci · ∇u0(x), (1.156)

where p is the Navier-Stokes pressure for the interior domain and the condition
u(0,x) = u0(x) has been used.

Initial data depending minimum class We cannot use a general argument
anymore, since the result depends on the initial data u0. In fact, r

(2)
IC(F ) = 0 only

if the initial data are such that

p(0,x) = 0, ∇u0 = 0. (1.157)

In case (1.157) is not satisfied, we cannot find better predictions in AIC,(1), and
the optimization algorithm stops. Extending theorem 1.1, we have now

∀F ∈ AIC,(1) : L[F ] ∈ O(h2). (1.158)

In other words, for the LBM combined with equilibrium initial conditions, there
are no way to choose the coefficient f (2) to define a better predictions in the regular
ansatz, i.e. the precision does not depend on the coefficient f (2)(F ). Equivalently,
the minimum precision class in a regular ansatz, including the initialization rule
has size O(h2). It has grown, respect to the result obtained with the simple
interior LBM. However, if (1.157) holds, then

∀F ∈ AIC,(1) : L[F ] ∈ o(h2). (1.159)

pIt is not surprising, since the initialization rule (1.148) is given as input of the algorithm.
However, there are cases (see chapter 3, where the initial values are obtained as result of
initialization routines) when an explicit solution for the initial condition is not known.
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Ideal initializations

It would be natural to say, that the equilibrium initial condition does not repre-
sent a good choice to initialize the LBM. From the theoretical point of view, one
can think of initialization rules which limit the size of the precision classes. For
example, we define

Definition 1.12. An initialization rule IC is a second order initialization
for the interior LBM iff

• the minimum class of the resulting algorithm has size o(h2) in A,

i.e. the prediction which includes f (2) as specified in the ansatz
◦

A3 is better than
the simple expansion only up to f (1).

The definition implies that, for a second order initialization, the coefficient f (2)

defined as the interior coefficient evaluated at time t = 0,

f
(2)
i (F )(0,x) = f ∗

i c
−2
s p(0,x)+H

Q(eq)
i (u0,u0)(x)− τf ∗

i c
−2
s ci ·∇u0(x) · ci, (1.160)

selects a set of better predictions.
Similarly, third order and higher order initializations could be defined. The 1.12
is not an empty definition. Here, we assume the existence of such algorithms. In
chapters 2 and 3, we will discuss how to construct better initialization for the
LBM.

1.3.4 Prediction of the LB solution

For our purpose, it suffices to have derived the coefficients for k ≤ 3, and the
equations for the hydrodynamic moments appearing in them.

Corollary 1.1 (LBM prediction). Let denote with (uNS, pNS) a solution to
the (periodic) Navier-Stokes problem (1.87), with initial condition

uNS|t=0 = u0. (1.161)

Let LBMIC be the algorithm combining the LBM and an initialization rule IC.
Let assume that, for the initial data u0, IC is a second order initialization. Defin-
ing the ansatz

ALBM =
{
F ∈ A | ∀k ≤ 2 : f (k)(F ) = fLBM,(k), ∀k > 2 : f (k)(Fh) = 0

}
,

(1.162)
with

f
LBM,(0)
i = f ∗

i ,

f
LBM,(1)
i = f ∗

i c
−2
s ci · uNS,

f
LBM,(2)
i = f ∗

i c
−2
s pNS +H

Q(eq)
i (uNS,uNS) − τf ∗

i c
−2
s (ci · ∇)ci · uNS,

(1.163)
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then,
∀F ∈ ALBM : LBM IC [F ] = o(h2),

i.e. the minimum class in A with respect to LBMIC has size o(h2).

Proof. The proof is a straightforward conclusion of the previously derived rela-
tions. A second order initialization realizes the conditions (taking the moments
of the coefficients (1.163) for n = 0)

u(1)(F )(0,x) = u0(x), u(2)(F )(0,x) = 0, (1.164)

p(2)(F )(0,x) = pNS(0,x), p(3)(F )(0,x) = 0. (1.165)

These relations have to be inserted in the PDEs for the moments derived in
theorem 1.1, checking then the order of the resulting residue.
Holding the initial conditions (1.164), (1.165), the field uNS, pNS satisfy (1.87)
(with the initial condition (1.161)). Moreover, the system (1.141) with homo-
geneous initial condition has only a trivial solution. Since the structure of f (2)

and f (3) is such that u(2)(F ) = 0 and ρ(3)(F ) = 0, the hypothesis of theorem 1.1
regarding the moments are satisfied. Thus, the leading orders of the residue of
the algorithm LBM vanishes up to h2.
Performing further steps of the optimization algorithm, the precision of a predic-
tion in A, can only be improved modifying the third order coefficient. Hence, the
minimal size of the precision classes is o(h2). Since this conclusion holds for the
initialization rule (by assumption), the statement is true also for the combined
algorithm.

Remark. Observe that if the initial data are such that the problem (1.87) admits
a trivial solution, the prediction ansatz such that

f (0)(F ) = f ∗, ∀k > 0 : f (k)(F ) = 0

is a solution to the algorithm.

The truncated expansion

The last result means that, applying the algorithm to find the minimum to the
regular ansatz A (truncated at some order K), we would arrive (but, in general,
do not stop) at the ansatz ALBM. A more detailed analysis would be necessary,
to check whether we can find better predictions in the ansatz ALBM. However,
for our first application it is enough to have assured that the minimal precision
class is of size o(h2). In fact, having relations regarding the coefficients up to the
second order, we can consider the truncated expansion

F̂i(n, j) =
2∑

k=0

hkf
LBM,(k)
i (tn,xj) (1.166)
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(a general prediction in the ansatz ALBM), neglecting the successive terms which
would specify the class of the minimum in the ansatz.
The idea is to use the truncated expansion as a prediction (which is meant now,
as a function which can predict) of the lattice Boltzmann solution f̂ .
In particular, since suitable moments of F̂i yield the Navier-Stokes solution uNS,
pNS, we conclude that the corresponding moments of f̂i approximate these fields:

1

h
û =

1

h

∑

i

f̂ici = uNS +O(h2) (1.167)

p̂ := c2s

∑
i f̂i − 1

h2
= pNS +O(h). (1.168)

Since we have stopped at the second order coefficients, the uncertainty on the
third order coefficient appears on the remainders of equations (1.167)-(1.168).
As additional result, we can extract

Ŝ[u] = − 1

τc2sh
2

∑

i

ci ⊗ ci

(
f̂i − f eq

i (f̂)
)

(1.169)

as a first order approximation of the (rate-of-strain) tensor

S[u] ≡ ∇u + ∇uT .

Numerical tests - the Taylor-Vortex solution

To test the procedure and the results derived before, we use some simple analytic
smooth solution of the Navier-Stokes equations (1.87), on a periodic square.
Namely, the test problems are based on the two-dimensional periodic Taylor vor-
tex field. Given a, b ∈ R, on the periodic domain

Ω =

[
0,

2π

a

]
×
[
0,

2π

b

]
,

we consider

ua,b
TV (t, x, y) = −U0

a
cos (ax) sin (by) exp

(
−ν(a2 + b2)t

)

va,b
TV (t, x, y) =

U0

b
sin (ax) cos (by) exp

(
−ν(a2 + b2)t

) (1.170)

pa,b
TV (t, x, y) = −U

2
0

4

(
1

a2
cos (2ax) +

1

b2
cos (2by)

)
exp

(
−2ν(a2 + b2)t

)
. (1.171)

as solutions to different problems:

• TV-NS: Navier-Stokes,
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• TV-ST: Stokes, using a linearized equilibrium functionq and adding a vol-
ume force G = ∇pTV in equation (1.87).
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Figure 1.9: Left. Streamlines of the vortex field uTV , for a = b = 2π. Right.
Level curves of the initial pressure (1.171).

The initial conditions in the practical simulations are defined through the equi-
librium initialization (equation (1.148))

f̂i(0, j) = Heq
i (1, hu0(j)) (1.172)

(the initial condition of problem (1.87) has been rescaled by h in the lattice unities
reference system).
As we have already observed, the hypothesis of corollary 1.1 combining initial data
and initialization rule is not satisfied, using (1.172), unless the initial pressure p0

and the initial velocity u0 satisfy

p0 ≡ 0, ∇u0 = 0. (1.173)

Therefore, we perform two different tests.

Homogeneous initial conditions Consider the problem
{

∇ · u = 0
∂tu + ∇p+ u · ∇u = ν∇2u + Gα

u(0,x) = 0,

(1.174)

in Ω × [0, T ], where

Gα = α̇uTV + α(α− 1)uTV · ∇uTV , (1.175)

qAn analogous derivation shows that, using a linear equilibrium

fL(eq)(f) = H
L(eq)
i (ρ(f)),u(f))

yields to the solution to a Stokes problem.
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and

α(t) = t3. (1.176)

An analytic solution is given by

uα(t,x) = α(t)uTV (t,x), pα(t,x) = α(t)pTV (t,x). (1.177)

Relations (1.173) holds.

The following pictures show the errors

Eu(tn) = max
j∈G(h)

‖û(n, j)) − uα(tn,xj)‖, Ep(tn) = max
j∈G(h)

‖p̂(n, j) − pα(tn,xj)‖

in velocity and in pressure.
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Figure 1.10: Comparison between the numerical solutions for u and p and the mo-
ments of the prediction F of equation (1.166), for the problem (1.174). Two grids,
h = 0.05 (dashed line) and h = 0.025 (bold line) are compared. Left: Maximum
error Eu in velocity versus time. Right: Maximum error in pressure Ep.

The behavior of the errors in figure 1.10 and the order plot in figure 1.11 show
that the results are second order accurate. Actually, for the pressure we achieved
an even better accuracy than the one predicted by (1.168). It depends (see [19])
on the problem and on the particular choice of the initial condition.

General IC: arising of initial layers Now we look at the case u0 6≡ 0.

Figures 1.12 shows a clear reduction of the accuracy (first order in velocity and
inconsistent pressure). The maximum error in pressure, in figure 1.13, is affected
by an initial layer, which is responsible for the loss of precision.

In the following chapters, we investigate more deeply the influence of the initial-
ization on the accuracy of the results.
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Figure 1.11: Tests over several grids, shows the experimental order of convergence
of the numerical results. Double logarithmic plots (in a log10 scale) of maximum
error versus grid size, for velocity (×) and pressure (◦) are drawn, together with a
reference line of slope 2.

−2.6 −2.4 −2.2 −2 −1.8
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Figure 1.12: LBM used to simulate the TV-NS solution, without the smoothing
factor α(t). As in figure 1.11, the order plot for velocity (×) and pressure (◦) are
drawn. Now, velocity is less accurate, pressure is inconsistent. Reference slopes 1
and 2 are also drawn (dashed lines).

1.3.5 Outline of the asymptotic expansion technique

As a conclusion, we summarize the main ideas used to perform the asymptotic
analysis, providing a set of practical tools regarding the application to the LBM.

We have derived precise results concerning the ansatz ALBM. The idea is to use it
as basis ansatz for further investigations and extensions of the standard scheme.
Namely, if we can justify the use of the prediction F LBM , we will recover the
accuracies for pressure and velocity predicted for the interior domain.

The effects of new algorithms will be discussed with respect to the consequences
they have on the ansatz ALBM, the predictions and the classes of precision.
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Figure 1.13: Maximum error in pressure Ep, versus time. Compared to figure 1.10,
an initial layer affects the result.

Coupling of LBM with other algorithms For example, let assume to have
an algorithm

L(h, f̂h)(j) :=

{
LBM(h, f̂h)(j) j ∈ D1

h

M(h, f̂h)(j) j ∈ D2
h.

(1.178)

which combines the LBM and another scheme M , on two subset of the discrete
domain Dh.
The analysis of the initialization rules in equation (1.145) is an example, where
we use the interior LBM, for n > 0, plus an additional algorithm for n = 0. We
want to generalize the procedure used in section 1.3.3.
We start the analysis with the ansatz ALBM. Practically, we insert the expressions
of the coefficients fLBM,(k) into the expressions for the residues

r
(k)
M (F ) = 0 (1.179)

of the algorithm M . If, for some k ≤ 2,

@F ∈ ALBM : r
(k)
M (F ) = 0,

the optimization algorithm terminates at the step kr.

A theoretical result Observe that if

M [F LBM] = 0

we do not need to perform additional analysis on the algorithm M , since the total
residue, for the prediction F LBM, coincides with the residue

LBM[F ].

rAs for the initialization, concerning the algorithm L defined in equation (1.178), we can
say that M is a coupling of order k for the interior LBM, iff the interior coefficients evaluated
in D2

h defines a set of better predictions for L.
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Lemma 1.10 (Self-compatibility). For all F ∈ X, there exists an algorithm
LF such that

LF [F ] = 0.

Proof. Simply, set
LF (h, f̂h) = f̂h − Fh.

Despite the apparently trivial proof, the lemma contain useful elements, and
suggests an analytical approach towards the construction of new features for the
LBM.
According to lemma 1.10, we can construct an algorithm whose results can be
predicted using F LBM(n, j) just setting the value of the previous prediction point
by point.

Corollary 1.2. Let (n∗, j∗) ∈ Dh, we define

LBM∗(h, f̂h)(n, j) :=





LBM(h, f̂h)(n, j) (n, j) 6= (n∗, j∗)∑

k≤2

hkfLBM,(k)(tn∗
,xj∗) (n, j) = (n∗, j∗).

Then, the precision classes in the regular ansatz respect to LBM∗ are of size o(h2)
(as in corollary 1.1).

In practice we will follow this idea, trying to construct extension to the LBM
in order to have the same prediction as the interior algorithm, up to the second
order.

Example 1.5. For instance, regarding the initial conditions, we have that

ICLBM(h, f̂h)(j) = f̂(0, j) − F LBM(0, j)

is a second order initialization. In other words, the coefficients up to the second
order are initialized according to the interior ones evaluated at time t = 0 (see
equation (1.160)).

Correction of the coefficients As a final remark, let us assume to have
derived a prediction

F̂h =
∑

k

hkf (k),

for the solution to a certain algorithm L in a considered A.
Suppose that the coefficients do not correspond to our expectations.
Instead, we would prefer

F̃h =
∑

k

hkf̃ (k).
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Can we find an algorithm L̃, in such a way to obtain F̃ as prediction?
The scheme (1.180) sketches the way to follow. To construct a new corrected
scheme L̃, we act directly on the equations determining the coefficients, defining
the modifications in the relations for f (k)(F ), in such a way that they are now
satisfied by F̃ , instead of by F .

Lh L̃h

↓ ↑
f (k) ↔ f̃ (k)

(1.180)

Subsequently, walking back the procedure used to go from L to f (k), we try to
translate such modifications in a corrected algorithm L̃.
Regarding the LBM, this target prediction corresponds to the truncated expansion
F LBM. However, the idea of diagram (1.180) will be successfully applied also in
other situations.



Chapter 2

Initial layers and Multiscale
expansion

The behaviors observed in the previous benchmarks motivate a further refinement
of the asymptotic for the LBE.

In section 2.1, we introduce the layers and the irregular expansions. To explain
the method, we perform a detailed two-scales expansion in section 2.2, and a
three-scales in section 2.3, predicting, in some practical example, the initial layers
arising in the numerical results. Section 2.4 draws the conclusion.

2.1 Irregular behaviors

The regular ansatz (1.101) is restricted to the scaling ∆t = ∆x2. The coefficients

f
(k)
i only depend on the physical variables t and x. This hypothesis covers the

physical incompressible limit, but sometimes the analysis based on the regular
ansatz is not satisfactory. In fact a numerical method can produce additional
phenomena, of numerical origin, which can mix with the results. In other words,
it might be possible that f̂ contains non-physical behaviors, which the predictions
in a regular ansatz (1.101) are not able to catch.

Within the regular ansatz, we have derived a prediction which contains an approx-
imate Navier-Stokes solution. However, if the initial conditions are inaccurate,
the predictions in the regular ansatz are only quite poor approximations of f̂ (big
sizes of the precision classes).

Through some examples, we will show in which sense the regular ansatz lacks
of elements. Then, we enlarge the ansatz set including irregular functions. The
approach shows the flexibility and the variety of possibilities offered by the asymp-
totic analysis to describe a numerical method.

65
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2.1.1 Equilibrium initial conditions

Without describing the topic from a general point of view, we illustrate the tech-
nique focusing on the equilibrium initial conditions (reporting equation (1.172))

f̂h(0, j) = Heq(1, hu0(xj)) (2.1)

(where u0 is the initial data for the velocity).
The results using initialization (2.1) in the problem TV-NS (same test as in the
previous chapter) are shown in figure 2.1-2.2.
The analysis of the equilibrium initial conditions presented in the previous chapter
(section 1.3.3), reveals that the trouble are due to the the inconsistent initializa-
tion of the second order coefficient. To have a second order initialization it should
be initialized according to the interior coefficient fLBM,(2) at time t = 0:

f
LBM,(2)
i (0,x) = H

eq,(2)
i (1 + h2c−2

s p0(x), hu0(x)) − τf ∗
i c

−2
s (ci · ∇)ci · u0(x),

p0 being the initial Navier-Stokes pressure.
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Figure 2.1: Initial layer in pressure; Ep
C(t) is the value p̂− pTV in the central point

xC of the unit square (where pTV takes its maximum), initializing with (2.1). The
exact initial value of pressure is ∼ 0.012. The initial layer is of the same order of the
pressure, since it does not decrease refining the grid.

For general initial data, initialization (2.1) (as well as any initialization based on
the equilibrium function) will not be a second order initialization. As a conse-
quence, the precision of a prediction does not depend on the second order coeffi-
cient (corollary 1.1 does not hold). Therefore, the approximation of pressure and
stress tensor (contained in the second order coefficient) are no longer assured. At
this stage, there are two possible ways to approach the problem. From a practical
point of view, having identified the cause in the inconsistent initial conditions,
a better initialization could be set up. This topic will be discussed in chapter
3. On the other hand, one could try to understand the irregular behavior of the
scheme in more detail, looking for better predictions in a bigger ansatz.
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Figure 2.2: Typical initial layers in S[u], initializing with (2.1). Error ESxx

M (tn), in the
component Sxx evaluated at the point xM = (0.25, 0.25), is drawn, computed with
grid 40 × 40 (left) and 80 × 80 (right). The crosses (×) show the value at every
time step. The damping depends on the number of iterations,not on the physical
time.

2.1.2 Extending the regular ansatz

So far, we only regarded the LBM as a numerical solver for the Navier-Stokes
equations. In the regular ansatz the coefficients of the predictions only depend
on the physical variables. Using the asymptotic expansion approach, we now try
to describe also the compressible scale, even if the resulting predictions do not
correspond to physical behaviors.

Keeping the structure A = A(y,C), we can include more time and space variables,
through a different coordinate-map (instead of (n, j) 7→ (tn,xj)) or extend the the
class C. Any ansatz, constructed differently from definition 1.11, will be named
irregular expansion. A simple sketch of the relevant domains is given in figure
2.3.

Dh Rd

E = D × Ih

-f̂h

Q
Q

QQsyh �
�

��3
f

Figure 2.3: Extension of the diagram in figure 1.8 for the irregular ansatz. Allowing
more freedom for the map yh, we do not assume the mapping into D. In general,
the sets yh(Dh) will only contain the continuous domain, times additional irregular

spaces Ih.

Observe that, without the diffusive coupling, in the transformation between dis-
crete and continuous variables, the arising functions are not well defined in the
limit h→ 0, performed according to ∆t = h2∆x, even if, for any h > 0, they are.
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Example 2.1. Let us consider

ηh(n, j) :=
(
n, nh, nh3, nh2, hj

)
= (n, sn, rn, tn,xj),

within a LBM. In a physical simulation for time t ≤ T :

D = [0, T ] × Ω,

the algorithm is defined for NT = Th−2 time steps, and we have Dh = [0, NT ] ×
G(h). Hence, for any h,

ηh(Dh) ⊂
[
0,
T

h2

]
×
[
0,
T

h

]
× [0, Th] ×D = Ih ×D.

Note that, for h → 0, some components of the sets Ih are growing, while others
are shrinking.

2.2 Two-scales expansion

We want to investigate the dynamic of the oscillatory layer appearing in the
numerical pressure as shown in figure 2.1. Inspired by the test case, we modify
the original expansion adding a dependence on a faster time s = hn.

Definition 2.1. Using E = R × R × Ω and the coordinate map

η2
h(n, j) : Dh → E

(n, j) 7→ (h2n, hn, hj) := (tn, sn,xj),
(2.2)

we define the two-scales ansatz A2 = A(η2, C∞(E)), whose predictions have
the general form

Fh(n, j) ≡
∑

k∈K

hkf
(k)
i (η2

h(n, j)), (2.3)

with functions f
(k)
i (t, s,x) smooth.

As we did before, given a prediction F ∈ A2, we introduce the projections

f (k) : A2 → C∞

F 7→ f (k)(F )

such that f (k)(F ) is the k-th coefficient of the expansion of F . The functions
f (k)(F ) are defined generalizing to the coordinate map (2.2) the limit processes
used in equation (1.100) for the regular case.
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Residue for the new ansatz

Formally, we consider the algorithm

L(h, f̂h)(n, j) :=

{
f̂h(0, j) −Heq(1, hu0(xj)) n = 0, j ∈ G(h)

LBM(h, f̂h)(n, j) n > 0, j ∈ G(h)
(2.4)

inserting a general two-scales expansion expansion into it and sorting the different
order in h. Regarding the interior part, for n > 0, we obtain (compare with
(1.102))

LBMi(h, Fh)(n + 1, j) =
∑

k∈K

hk
(
h2∂t + h∂s + hci · ∇ + . . .

)
f

(k)
i (F )(tn, sn,xj)−

∑

k∈K

hk

[
1

τ

(
f

eq,(k)
i (F )(tn, sn,xj) − f

(k)
i (F )(tn, sn,xj)

)
− g

(k)
i (tn,xj)

]
+ . . . (2.5)

As before, the equilibrium of order k reads

f
eq,(k)
i = H

L(eq)
i (ρ(k),u(k)) +

∑

l+m=k

H
Q(eq)
i (u(l),u(m)),

ρ(k)(F ) and u(k)(F ) being defined as the moments of the coefficient f (k)(F ).
Introducing

D̂l,i =
∑

2a+b=l

∂a
t

a !

(∂s + ci · ∇)b

b!
, (2.6)

which is a straightforward extensions of the previous operator (1.112) in presence
of an additional time variable, we can write equation (2.5) in the form

LBMi(h, Fh)(n+ 1, j) =
∑

k∈K

hkr
(k)
i (F )(η2(n, j)) (2.7)

witha

r
(k)
i (F ) =

∑

l+m=k, l>0

D̂l,if
(m)
i (F ) − 1

τ

(
f

eq,(k)
i (F ) − f

(k)
i (F )

)
+ g

(k)
i . (2.8)

Besides the equations for the interior part, we have to consider the initialization
rule of (2.4). The computation has been already performed in section 1.3.3. Using
the notation

ICEQ(h, f̂h)(j) = f̂h(0, j) −Heq(1, hu0(xj)),

aOriginating from the same algorithm, equations (1.111) and (2.8) exemplify the dependence
of the residues on the coordinate map.
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the residue of a prediction F reads

ICEQ
i (h, Fh)(j) = f

(0)
i (F )(0, 0,xj) − f ∗

i

+ h
(
f

(1)
i (F )(0, 0,xj) − f ∗

i c
−2
s ci · u0(xj)

)

+ h2
(
f

(2)
i (F )(0, 0,xj) −H

Q(eq)
i (u0,u0)(xj)

)

+
∑

k≥3

hkf
(k)
i (F )(0, 0,xj),

(2.9)

which we can rewrite as

ICEQ(h, Fh)(j) =
∑

k∈K

hkr
(k)
IC (F )(xj). (2.10)

2.2.1 Projected algorithm

In this section, we want to focus on the phenomena affecting the numerical results
for pressure (i.e. density) and velocity. Therefore, instead of the LBM (2.4) we
will rather consider an algorithm whose output are the moments of the variable
f̂h. It can be described by the following sequence of operations:

f̂i(n + 1, j + ci) = f̂i(n, j) + Ji(f̂(n, j)),

ρ̂h(n+ 1, j) = ρ(f̂h(n+ 1, j)) =
∑

i

f̂i(n+ 1, j),

ûh(n+ 1, j) = u(f̂h(n+ 1, j)) =
∑

i

f̂i(n+ 1, j)ci,

(2.11)

(denoting with Ji(f̂) the collision operator). In words, we run the standard LBM,
extracting then ρ̂ and û projecting the results on the moment space.
Using a compact notation (obtained substituting the first equation of (2.11) into
the others), we define the projected algorithm

MOM(h, ρ̂h, ûh, f̂h) =

[
MOMρ

MOMu

]
=

=

[
ρ̂h(n+ 1, j) −∑i f̂i(n, j − ci) + Ji(f̂(n, j − ci))

ûh(n + 1, j) −∑i

(
f̂i(n, j − ci) + Ji(f̂(n, j − ci))

)
ci

]
. (2.12)

Observe that, since ρ̂h = ρ(f̂h) and ûh = u(f̂h), the principal variables are still
the distributions f̂h. A prediction for ρ̂ (or û) will be derived taking the moment
of a prediction F for the standard LBM:

ρh(F ) = ρ(Fh) =
∑

i

Fih.
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If Fh is an asymptotic expansion, so will be also the predictions ρh(F ) and uh(F ).
In fact

ρh(F ) =
∑

i

(∑

k∈K

hkf
(k)
i (F )

)
=
∑

k∈K

hkρ(k)(F )

shows that the coefficients of the inherited expansion for the moments are the
moments of the coefficients of Fh:

ρ(k)(F ) =
∑

i

f
(k)
i (F ).

Projected residues

In practice, we are interested in expansions able to cancel the residue of the
algorithm MOM. It can be related to the LBM-residue. We have

LBMi(h, Fh)(n+ 1, j) =
∑

k∈K

hkr
(k)
i (F )(n, j),

which means, for all (n, j) ∈ Dh,

Fih(n+ 1, j) = Fih(n, j − ci) + Ji(Fh(n, j − ci)) +
∑

k∈K

hkr
(k)
i (F ). (2.13)

Taking the moment of order zero of both sides leads to

ρh(F )(n+1, j)−
∑

i

Fih(n, j − ci) + Ji(Fh(n, j − ci)) =
∑

i

∑

k∈K

hkr
(k)
i (F ). (2.14)

The left hand side is the residue of the prediction ρ(F ) in the algorithm MOMρ.
Thus we can write

MOMρ(h, ρh(F )) =
∑

k∈K

r(k)
ρ (F ), (2.15)

where
r(k)
ρ (F ) =

∑

i

r
(k)
i (F ). (2.16)

Analogously, for the velocity we have

MOMu(h,uh(F )) =
∑

k∈K

r(k)
u (F ), (2.17)

with
r(k)
u (F ) =

∑

i

r
(k)
i (F )ci. (2.18)

In conclusion,
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Proposition 2.1. The residue of the projected LBM is the projection of the
LBM-residue.

We call the vector

r
(k)
MOM(F ) =

[
r
(k)
ρ (F )

r
(k)
u (F )

]
(2.19)

the projected residue of order k.
Investigating the algorithm for the moments, we are interested only in finding
better prediction for MOM. Hence, we will look for predictions which cancel the
projected residue.
Remark. Observe that, since r

(k)
MOM is a projection on the moments space of

r(k)(F ), it holds

r(k)(F ) = 0 ⇒ r
(k)
MOM(F ) = 0,

but the vice versa is not true. It might happen that a certain prediction F cancels
the projected residues, but not the single components.
Taking the moments of equation (2.8) for a general k, we obtain PDE systems
for the coefficients of the moments in the interior domain:

∂tρ
(k−2)+∇ · u(k−1) + ∂sρ

(k−1) +
1

2

(
∇⊗∇p(k−2) + ∂2

sρ
(k−2)

)
+

+ ∂s(∇ · u(k−2)) =
∑

i


g(k)

i −
∑

l+m=k
m<k−2

D̂lf
(m)
i (F )




(2.20)

∂tu
(k−2) + ∇ · p(k−1) + ∂su

(k−1) +
1

2

∑

i

ci(ci · ∇)2f
(k−2)
i + ∂2

su
(k−2)+

+ ∂s(∇ · p(k−2)) =
∑

i

ci


g(k)

i −
∑

l+m=k
m<k−2

D̂lf
(m)
i (F )


.

(2.21)

In the previous, we have introduced the pressure tensor of order k:

p(k) :=
∑

i

f
(k)
i ci ⊗ ci. (2.22)

Similarly, projecting the residue (2.10) for the initialization yields

r
(0)
IC,ρ(F ) = ρ(0)(F ) − 1, ∀k > 0 : r

(k)
IC,ρ(F ) = 0

r
(1)
IC,u(F ) = u0, ∀k 6= 1 : r

(k)
IC,u(F ) = 0.

(2.23)

Remark. If for a certain k the projected residues depends only on the moments
of the coefficients (as it happens for the lower orders), the prediction which cancels
it will be a function only of the moments as well.
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2.2.2 Preparing the ansatz

To process the two-scale ansatz for the projected LBM, we apply the optimization
algorithm as we did for the regular case. However, some initial considerations
allow to simplify the analysis. Observe that in addition to the regular case,
the residues (2.8) containing only the derivatives with respect to the faster time
variable. Therefore, if some coefficient does not depend on s we can partially
recycle the results of the computation performed in the previous case.

k = 0, k = 1. Keeping the regularity

Let us denote with (uNS , pNS) a solution of a periodic incompressible Navier-
Stokes, with initial condition uNS(0,x) = u0(x). We start with a regular two-
scales ansatz A2 (equation (2.3)). Observe that the predictions in the ansatz (not
s-depending)

A2,(1) = {F ∈ A2 | f (0)
i (F ) = f ∗

i , f
(1)
i (F )(t,x) = f ∗

i c
−2
s ci · uNS(t,x)},

cancel the leading orders of the residue (2.8) for the LBM (as in section 1.3.2)
and for the equilibrium initial conditions (section 1.3.3). Therefore, the projected
residues vanish as well. We have

∀F ∈ A2,(1) : ρ(0)(F ) = 1, ρ(1)(F ) = 0,

u(0)(F ) = 0, u(1)(F )(t,x) = uNS(t,x),
(2.24)

which are the same conditions on the leading order moments which we had in the
regular case. The choice of such initial ansatz can be justified by the fact that
the initial layer we want to investigate appears first in the second order in h.

k = 2. The irregular moments

Regarding the following order, an argument analogous to the one discussed in
section the 1.3.2 can be used to show that the interior LBM-residue is removed
by a prediction F ∈ A2,(1) such that

f
(2)
i (F )(t, s,x) = f ∗

i c
−2
s

(
pNS(t,x) + p(2)

e (t, s,x)
)
) + f ∗

i c
−2
s ci · u(2)

e (t, s,x)

+H
Q(eq)
i (uNS,uNS)(t,x) − τci · f (1)

i (F )(t,x). (2.25)

where p
(2)
e and u

(2)
e are smooth field and pNS is the Navier-Stokes pressure.

The coefficient in equation (2.25) has the same structure as the one defined in
equation (1.127) for the regular ansatz. The only difference is the dependence on
the new time scale, which adds a new parameter to the predictions. We have split
the pressure in f

(2)
i to evidence the Navier-Stokes part pNS and the additional

error pe, which depends on s. It holds

ρ(2)(F )(t, s,x) = c−2
s

(
pNS(t,x) + p(2)

e (t, s,x)
)
.
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Concerning the initial condition, the projected residue reads

r
(2)
IC,ρ(F )(x) = ρ(2)(F )(0, 0,x) = c−2

s

(
pNS(0,x) + p(2)

e (0, 0,x)
)
,

r
(2)
IC,u(F )(x) = u(2)

e (0, 0,x).
(2.26)

Therefore, we select the better predictions defining the ansatz

A2,(2) =
{
F ∈ A | f (2)

i (F )(t, s,x) = f ∗
i c

−2
s

(
pNS(t,x) + p(2)

e (t, s,x)
)

+f ∗
i c

−2
s ci · u(2)

e (t, s,x) +H
Q(eq)
i (uNS,uNS)(t,x) − τci · f (1)

i (F )(t,x),

p(2)
e ∈ C∞(E), u(2)

e ∈ (C∞(E))d, p(2)
e (0, 0,x) = −pNS(0,x), u(2)

e (0, 0,x) = 0
}
.

(2.27)

Remark. Within the extended ansatz, using the new degrees of freedom p
(2)
e and

u
(2)
e , we have been able to find a suitable second order coefficient to define better

predictions (which decreases the size of the minimum class).

In particular, the function p
(2)
e allows to set a zero initial pressure in the second

order coefficient.

2.2.3 Initial layer equations

We are interested in the prediction of the new parameters p
(2)
e and u

(2)
e . They are

fixed by the differential equations (2.20)-(2.21) recovered taking the projection
of the residues of higher orders, with initial conditions (2.23).

k = 3. Dynamic of initial layers

Using properties (2.24), equations (2.21)-(2.21) for k = 3 give

∂sp
(2)
e = −c2s∇ · u(2)

e

∂su
(2)
e = −

(
∂tu

(1) + ∇p(2)
NS + ∇ · (u(1) ⊗ u(1)) − ν∇2u(1) − G

)
= −∇p(2)

e

(2.28)
(where u(1) = uNS has been used).
Decoupling the previous system, we have two wave-type equations:

∂2
sp

(2)
e = c2s∇2p(2)

e

∂2
s (∇ · u(2)

e ) = c2s∇2(∇ · u(2)
e ).

(2.29)

We focus on the equation for p
(2)
e .

The ansatz defined in equation (2.27) defines the initial conditions

p(2)(0, 0,x) = −pNS(0,x) = −p0(x),

∂sp
(2)(0, 0,x) = ∇ · u(2)

e (0, 0,x) = 0.
(2.30)
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However, to close problem (2.29), conditions for p(2)(0, t,x) (initial values in s)
and the first s-derivative ∂sp

(2)(0, t,x) for general t > 0 are needed. We introduce
unknown initial conditions:

p(2)
e (0, t,x) = Pin(t,x),

∂sp
(2)
e (0, t,x) = Qin(t,x),

(2.31)

with Pin and Qin to be determined. According to (2.30), we have

Pin(0,x) = −p0(x). (2.32)

Qin(0,x) = 0. (2.33)

The unknown initial values appears because the time scales t, s are couple in the
expansion, since tn = hsn. In particular, at the initial time step n = 0, both take
the value zero. However, performing the analysis, they have to be considered as
independent variables. Additional relations for the new unknowns will be derived
from the equation for the coefficients of higher orders.
Remark. Equation (2.32) shows that an inconsistent initial condition in pressure

is related to a source for an oscillating error p
(2)
e . In practice, one should therefore

use the correct initial pressure. Obviously, if (2.31) were both homogeneous, the
system (2.29) would have the zero solution.

Solutions in a particular case

For particular structures of the initial data of the problem, and consequently of
the functions Pin(t,x) and Qin(t,x), some solution of (2.29) can be constructed.
Let us consider an initial pressure p0 such that

p0(x) =

M∑

r=1

ε0r(x) (2.34)

where the ε0r(x) are eigenfunctions of the Laplacian with (different) negative
eigenvalues, such that

∀r = 1, . . . ,M : ∇2ε0r(x) = −λ2
rε

0
r(x) (2.35)

∀s 6= r : λs 6= λr. (2.36)

Recalling the relation
Pin(0,x) = −p0(x),

we assume the unknown initial data to be of the form

Pin(t,x) =

M∑

r=1

εr(t,x) (2.37)

where the εr(t,x) are eigenfunctions of the spatial Laplacian with negative eigen-
values.
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Definition 2.2. A function satisfying (2.35)-(2.37), will be called an
M-frequency function, with frequencies (λ1, . . . , λM).

Definition 2.3. An M-frequency function P (t,x) is called separable, if it can
be expressed as

P (t,x) =
M∑

r=1

Φr(t)pr(x). (2.38)

We have in mind the construction of solution for initial pressure formally expand-
able in a Fourier series in space,

p0(x) =
∑

p̂kRe (exp (−ik · x)),

extending the sum (2.34) for M → ∞. However, to keep the argument free of
technicalities, only finite sums will be considered.

Single-frequency solution If the initial Navier-Stokes pressure is an eigen-
function of the Laplacian:

∇2pNS(0,x) = −λ2pNS(0,x),

we look for solutions in the form

p(2)
e (t, s,x) = h(s, t)ε(t,x), (2.39)

where
∇2ε = −λ2ε.

In this case, the initial values for s = 0,

Pin(t,x) = h(0, t)ε(t,x)
Qin(t,x) = ∂sh(0, t)ε(t,x),

(2.40)

are 1-frequency functions. From the first equation of (2.29), h(s, t) solves

∂2
sh(s, t) = −c2sλ2h(s, t). (2.41)

Hence, the single frequency solution is

p(2)
e (t, s,x) = cos(ηs+ Θ(t))ε(t,x), with η = csλ. (2.42)

Including the constraints (2.32)-(2.33) for t = 0:

Pin(0,x) = −pNS(0,x) = cos(Θ(0))ε(0,x)
Qin(0,x) = 0 = sin(Θ(0))ε(0,x),

(2.43)

we have
ε(0,x) = −pNS(0,x), Θ(0) = 0 (2.44)

(of course, it can be chosen ε(0,x) = pNS(0,x), Θ(0) = π).
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Multiple-frequency solution More generally, let us assume

pNS(0,x) =
M∑

r=1

pr(x), with ∇2pr = −λ2
rpr. (2.45)

In this case, we search a solution of (2.29) in which the pressure is a sum

pe(t, s,x) =
M∑

r=1

hr(s, t)εr(t,x) (2.46)

and
∇2εr = −λ2

rεr.

The s-initial conditions Pin, Qin are now M -frequency functions.
Since equation (2.29) is linear, we can work distinctly on the different frequencies,
solving systems analogously to (2.41) for the different r = 1, . . . ,M . The multiple
frequency solution reads

p(2)
e (t, s,x) =

M∑

r=1

cos(ηrs+ Θr(t))εr(t,x), with ηr = csλr. (2.47)

From (2.28) the velocity u
(2)
e can be computed:

u(2)
e (t, s,x) = −

M∑

r=1

1

ηr
sin(ηrs+ Θr(t))∇εr(t,x). (2.48)

Now, t-initial values give

Pin(0,x) = −
M∑

r=1

pr(x) =
M∑

r=1

cos(Θr(0))εr(0,x)

Qin(0,x) = 0 =

M∑

r=1

sin(Θr(0))εr(0,x),

(2.49)

which can be solved by

Θr(0) = 0, εr(0,x) = −pr(x), r = 1, . . . ,M. (2.50)

Slowly increasing terms To recover the functions εr(t,x), Θr(t), we have to
derive further information from the following order equations. The ansatz A2,(3)

has to be constructed choosing p
(2)
e and u

(2)
e which cancel the projected residue

r
(3)
MOM(F ). However, it can be not enough in a general case. For example, if

the time interval is unbounded, it has to be assured also that the following order
residue r

(4)
MOM does not increase up to the order O

(
1
h

)
, producing a residue in the

algorithm of the same order as r
(3)
MOM. In the present case, it might happen that

Pin, Qin generate slowly varying t-depending terms , of size increasing in time,
which become O

(
1
h

)
in a long time range t ≤ T ∈ O

(
1
h

)
(secular terms).
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Example 2.2. Let us consider the equation

∂2
sy

(3) = −y(3) − Φ sin s. (2.51)

A solution of (2.51) is given by

y(3)(t, s) = Y0 sin s+
Φ

2
s cos s.

For Φ 6= 0, y(3) contains a secular term.

Hence, we look for conditions on the functions Pin(t,x) and Qin(t,x) in order to
keep the residues of the following order bounded.

k = 4. Secular terms

Without enter in the details of the computations, we consider equations (2.20)-

(2.21), for k = 4. First, we recall a result regarding the ansatz
◦

A3 constructed

for the interior LBM in the regular case (theorem 1.1). We define, for F ∈
◦

A3

u(3)
reg(F ) =

∑

i

f
(3)
i (F ),

as the moments of the regular third order coefficient. We have (equation (1.142))
that

∂tp
(2)
NS + c2s∇ · u(3)

reg =
1

2
∇ · G

∂tu
(3)
reg + 2∇ ·

(
uNS ⊗ u(3)

reg

)
= ν∇2u(3)

reg

(2.52)

Coming back to the irregular expansion, we define the field

u(3)
e (t, s,x) = u(3)(t, s,x) − u3)

reg(t,x), (2.53)

which contains the s-depending part of the third order velocity.
Using relation (2.52), and calling

p(3)
e = c2sρ

(3)

we end up with the following system of PDEs for the irregular functions:

∂sp
(3)
e + ∂tp

(2)
e + c2s∇ · u(3)

e = 0

∂su
(3)
e + ∂tu

(2)
e + ∇p(3)

e + 2∇ ·
(
uNS ⊗ u

(2)
e

)
= ν

(
∇2u

(2)
e + ∇(∇ · u(2)

e )
)
.

(2.54)

Combining the equations (2.54) and inserting also relations (2.28) between p
(2)
e

and u
(2)
e , we have

∂2
sp

(3)
e + c2s∇2p(3)

e = −2∂s

(
∂tp

(2)
e − ν∇2p(2)

e

)
+ 2c2s∇ · U1,2. (2.55)

We have substituted
U1,2 = ∇ ·

(
uNS ⊗ u(2)

e

)
.
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Excluding the sources We do not need to solve equation (2.55). To avoid
secular terms, it is enough to force the right hand side to be zero. It can be
proven that the solutions of the resulting system are bounded in time. Hence, we
derive explicitly the sources for the secular terms in equation (2.55), considering
the M-frequency solution (2.47)-(2.48):

2c2s∇ · U1,2 = 2
(
∇uNS : (∇u(2)

e )T + uNS · ∇(∇ · u(2)
e )
)

= (2.56)

=

M∑

r=1

ηr sin(ηrs+ Θr)2λ
−2
r

(
∇uNS : ∇⊗∇εr − λ2

ruNS · ∇εr
)

=

= 2
M∑

r=1

ηr sin(ηrs + Θr)2λ
−2
r (∇ · (uNS · ∇ ⊗ ∇εr)) (2.57)

(since uNS is divergence-free, and using the properties of an M-frequency solu-
tion),

−2∂s

(
∂t − ν∇2

)
p(2)

e = 2
M∑

r=1

ηr sin(ηrs+ Θr)
(
∂tεr + νλ2

rεr
)

− 2

M∑

r=1

ηrΘ̇r cos(ηrs + Θr)εr. (2.58)

Imposing the right hand side of equation (2.55) to be zero, frequency by frequency,
and including the relations (2.50) for t = 0, we get the systems:

∂tεr = −νλ2
rεr + 2λ−2

r (∇ · (uNS · ∇ ⊗ ∇εr)) ,
εr(0,x) = −pr(0,x)

(2.59)

Θ̇r = 0, Θ(0) = 0. (2.60)

Regarding the phases, it allows to conclude

Θr(t) = 0, r = 1, . . . ,M (2.61)

hence Qin(t,x) = 0. Therefore, the problem is reduced to the determination of

Pin =
M∑

r=1

εr,

recovering the remaining unknowns from the PDEs (2.59)b.

bFor general initial conditions, the needed equations have to be derived from the condition
of zero sources

∂t(∇ · u(2)) = ν∇2(∇ · u(2)
e ) + 2

(
∇uNS : (∇u(2)

e )T + uNS · ∇(∇ · u(2)
e )
)

. (2.62)



80 Chapter 2. Initial layers and Multiscale expansion

Correct initial pressure Using an initialization which includes the correct ini-
tial pressure, is equivalent to set homogeneous initial conditions for the functions
εr in the system (2.59), which has therefore zero solution, i.e. Pin = Qin = 0. As
a consequence, also the initial condition (2.31) for the system (2.29) are homoge-

neous and the irregular pressure p
(2)
e vanishes.

Linear problem

A particular solution can be found restricting the analysis to the Stokes equation.
Here, the quadratic term U1,2 drops out and equation (2.59) becomes

∂tεr = −νλ2
rεr, r = 1, . . . ,M . (2.63)

Involving only a time derivative, such equation can be solved for unknown initial
conditions in a separable form

Pin(t,x) =
M∑

r=1

Φr(t)pr(x).

In fact, the second order solution reads

p(2)
e (t, s,x) =

M∑

r=1

cos(ηrs)Φr(t)pr(x), (2.64)

u(2)
e (t, s,x) = −

M∑

r=1

1

ηr

sin(ηrs)Φr(t)∇pr(x). (2.65)

Equations (2.50)-(2.63), which yield

Φ̇r(t) = −νλ2
rΦr(t), Φ(0) = −1, (2.66)

fix the time-depending functions

Φr(t) = − exp(−νλ2
rt), r = 1, . . . ,M. (2.67)

In conclusion, we find the prediction for the initial layer

p(2)
e (t, s,x) = −

M∑

r=1

cos(ηrs) exp(−νλ2
rt)pr(x),

composed by a viscosity dependent t-decaying factors and s-oscillatory terms,
with frequencies related to the spatial frequencies of the initial error.
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2.2.4 Prediction of initial layers

The Taylor vortex solution

As a test for the results obtained in section 2.2.3, we use the vortex solution
of problems TV-ST or TV-NS (introduced in section 1.3.4). The exact initial
pressure can be written as

pTV
0 (x) = pa(x) + pb(y), (2.68)

with

∇2pa(x) = −4a2pa(x), ∇2pb(y) = −4b2pb(y). (2.69)

Note that it is a one-frequency function if a = b, with λ = 2a and a two-
frequencies if a 6= b.
Initializing the lattice Boltzmann with the equilibrium distribution (2.1), we have

p(2)
e (0, 0,x) = −pTV

0 (x). (2.70)

Navier-Stokes problem: single frequency For the sake of simplicity, re-
garding the full Navier-Stokes problem, we only experiment with the test case
a = b = 2π, on the (periodic) domain Ω = [0, 1)2. The initial pressure has the
property (

∇⊗∇pTV
0

)
α,β

= −4a2pTV
0 δα,β. (2.71)

As a consequence

∇ · (uNS(0,x) · ∇ ⊗ ∇ε(0,x)) = −4a2pTV
0 ∇uNS(0,x) = 0, (2.72)

which allows us to simplify equation (2.59) as

∂tε(t,x) = −4a2ν ε(t,x). (2.73)

The latter admits a solution of the form ε(t,x) = Φ(t)pTV
0 (x), where (from (2.70))

Φ̇ = −4a2νΦ
Φ(0) = −1.

(2.74)

In conclusion, we have the prediction, for the initial layer in pressure:

p(2)
e (s, t,x) = − cos(2acss) exp(4a2νt)pTV

0 (x). (2.75)

The results are shown in figure 2.4. The behavior of the error (in a selected point)
is drawn, together with the prediction (2.75). We observe a good agreement
between them.
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Figure 2.4: Problem TV-NS, with a = b = 2π. Prediction of the error in pressure (in
the central point, as shown in figure 2.1), for τ = 0.56, and related viscosity ν = 0.02,
after initialization (2.1). The continuous line represents the predicted value, using
(2.75). Computation on grid 40× 40, with numerical results (×) sampled every 10th
iteration of the algorithm.

Stokes problem: M-frequency In the linear problem TV-ST, we use the
initial pressure

pTV,a,b
0 (x) = pa(x) + pb(y), (2.76)

as particular case of

p0(x) =

M∑

q=1

p
TV,aq ,bq

0 (x) =

2M∑

r=1

pr(x), (2.77)

summing vortices with different frequencies.
According to (2.64), the behavior of the initial layer is described by

p(2)(t, s,x) = − cos(2acss)e
−4a2νtpa(x) − cos(2bcss)e

−4b2νtpb(x). (2.78)

In figure 2.5, the prediction (2.78) is compared with the numerical result after an
equilibrium initialization.

Moreover, the known leading order term of the error can be subtracted from the
numerical results, to improve the approximation. Defining

ˆ̂p(n, j) = p̂(n, j) − p(2)
e (h2n, hn, hj) (2.79)

(doing the same for velocity), figure 2.6 shows that a better accuracy is reached.

Finite modes-Stokes problem

Following the same path, we perform some numerical test using a more general
M-frequency initial pressure.
We consider

p(t,x) =
∑

k∈I

p̂k(t)e
ik·x, (2.80)
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Figure 2.5: Layer in pressure for problem TV-ST, with a = 2π, b = 4π. The predic-
tion (2.78) (solid lines) reproduces the numerical error (sampled by ×, at iterations
h−1, 2h−1,...). Grid is 40 × 40. Note the presence of another frequency (compare
with figure 2.4) in the fast oscillations, which is rapidly damped. On the right, the
two components of the prediction are superimposed.
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Figure 2.6: (a) Problem TV-NS: Error in pressure after the result has been corrected
as proposed in equation (2.79). Plot for grid 40 × 40 (left) and 80 × 80 (right).
(b) Double logarithmic plot of the error in pressure versus grid size, removing the
predicted initial layer. Accuracy has been improved.
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written as a complex sum of eigenfunctions of the spatial Laplacian, for a finite
set I ⊂ Z2. It can be viewed as a solution of a Stokes problem including a volume
force

G(t,x) =
∑

k∈I

ĝk(t)e
ik·x (2.81)

(M-frequency force) which satisfies

∇2p = ∇ · G, (2.82)

i.e. with coefficients ĝk such that

|k|2p̂k = −i(k · ĝk). (2.83)

Assuming equilibrium initialization with zero pressure, the prediction of the ini-
tial layer gives

p(2)
e (t, s,x) =

∑

k∈I

− cos (cs|k|s)p̂k(t)e−ν|k|2teik·x. (2.84)
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Figure 2.7: Left: Error in pressure (central point of the unit square), for a finite-

modes Stokes problem, sampled with ×. Oscillations with different frequencies can
be generated. The prediction (2.64) (solid lines), follows the numerical results with
good agreement. Right: Double logarithmic plot of the error in pressure versus
grid size, using the correction (2.79). The indicated slope refers to an approximated
straight line.

We test the previous result on a Stokes problem with exact pressure

p0(x, y) =
(sin (2π(x+ y)) − cos (2π(x+ y)))

4π
− cos (6πx)

2π
,

which is generated by a force

G(x, y) =

(
cos (2π(x+ y)) + 3 sin (6πx)

sin (2π(x+ y))

)
.
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Equation (2.84) predicts

p(2)
e =

1

4π
(cos (2π(x+ y)) − sin (2π(x+ y))) cos (2

√
2π acss) exp (−8π2νt)+

+
1

2π
cos (6πx) cos (6πcss) exp (−36π2νt), (2.85)

i.e. an initial layer sum of two fast oscillating function, differently damped in
time t. Results of this benchmark are shown in figure 2.7.

2.3 Discrete time scale

The previous two-scales analysis has been limited to the lower order moments of
f̂ . Actually, since the initial layer affects the variable f̂ , focusing on pressure and
velocity does not describe completely the initial layer problem. For example, we
did not get information about the layer appearing in the stress tensor (shown in
figure 2.2), using the equilibrium initialization.
According to the definition (1.169) for Ŝ, this layer comes from the
non-equilibrium part of f̂i, which gives by construction (because of the conser-
vation constraints (1.30) of the equilibrium distribution) zero contribution to
pressure and velocity.

2.3.1 Lack of non equilibrium

Remark. If the initialization lacks in the non equilibrium of f
(2)
i , any asymp-

totic expansion ansatz does not contain predictions with smooth coefficients able
to cancel the second order residue.
If fact, let us consider the lattice Boltzmann equation written in the form

f̂i(n+ 1, j + ci) − f̂i(n, j) = −1

τ
f̂neq

i (n, j), (2.86)

and a prediction

Fh(n, j) = f (0) + hf (1)(tn,xj) + h2f (2)(yh(n, j)) +O(h3), (2.87)

with f (0) and f (1) defined as in the regular case (as in the previous analysis) The
coordinate yh can be more general than the diffusive one.
Using a Taylor expansion in equation (2.86), we end up with the condition

−τci · ∇f (1)
i (tn,xj) = f

neq,(2)
i (yh(n, j)). (2.88)

For the equilibrium initialization fneq = 0 and the last relation evaluated at n = 0
gives

−τc−2
s f ∗

i ci · ∇u0(xj) · ci = f
neq,(2)
i (Fh)(0, j) = 0. (2.89)
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Equation (2.89) does not have solution, if ∇u0 6= 0. Hence, we have to use a
basically different ansatz, in order to cancel the LBM-residue of second order
for an equilibrium initialization. This is an example where the projected residue
of the same order can be canceled (with the two-scale ansatz), but the single
components can not.

Periodicity in space: Initial layer in stress tensor

We derive a prediction for the initial layer in the stress tensor, assuming to be in
a periodic domain. For simplicity, we consider the initialization

f̂i(0, j) = Heq
i (1 + h2p0(xj), hu0(xj)), (2.90)

which avoids the initial layer in pressure analyzed before.

Definition 2.4. We define the grid-scale ansatz as

A3 =

{
F ∈ X | Fh(n, j) =

∑

k≤2

hkf
LBM,(k)
i (tn,xj) + h2σi(n,xj)

}
(2.91)

where fLBM,(k) are the interior coefficient for the regular case (1.163) and σi are
functions smooth in space.

The discrete time scale can be introduced in more general ways. However, defi-
nition 2.4 allows a more clear application of the analysis to this case.
In a general prediction

Fih(n, j) =
∑

k≤2

hkf
LBM,(k)
i (tn,xj) + h2σi(n,xj), (2.92)

we have added to the regular expansion the degree of freedom σi(n,xj), which
depends on the discrete time scale. We compute the residue of the LBM, looking
for the condition on σi which allows to cancel the leading order.
Inserting the ansatz (2.92) into the LBE (2.86), we have

f
(2)
i (tn+1, n+ 1,xj + hci) − f

(2)
i (tn, n,xj) = −1

τ
f

neq,(2)
i (tn, n,xj). (2.93)

Taylor expanding in t and x,

σi(n + 1,xj) + ci · ∇fLBM,(1)
i (tn,xj) − σi(n,xj)) =

−1

τ

(
f

eq,(2)
i (tn,xj) − f

LBM,(2)
i (tn,xj) − σi(n,xj)

)
.

(2.94)

Note the difference between equation (2.94) and the previous (2.89). The discrete
component balances the initial lack in the non equilibrium. Since the function σ
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has been assumed smooth in space, it has been expanded as well. Some consid-
erations which excludes this hypothesis will be done in the next section.

Being

f
eq,(2)
i − f

LBM,(2)
i = −τci · ∇fLBM,(1)

i

we have the difference equation

σi(n+ 1,xj) =

(
1 − 1

τ

)
σi(n,xj). (2.95)

From the residue of the initial conditions

r
(2)
IC(F )(x) =

∑

k≤2

hkf
LBM,(k)
i (0,x) + h2σi(0,x) −H

(eq)
i (1 + h2p0(x), hu0(x)),

we obtain the initial condition

σi(0,x) = τc−2
s f ∗

i ci · ∇u0(x) · ci, (2.96)

which yields

σi(n,x) =

(
1 − 1

τ

)n

τc−2
s f ∗

i ci · ∇u0(x) · ci. (2.97)

Regarding the stress tensor, taking the second order ci-moment of σ

Σ = ci ⊗ ci σ, (2.98)

we obtain a prediction of the layer in the non-equilibrium part:

Σ(n,x) = λ(τ)nτc2s S [u0(x)] , λ(τ) =

(
1 − 1

τ

)
. (2.99)

The layer is decreasing (‖Σ(n)‖ → 0) when |λ| < 1, i.e. for τ >
1

2
, it oscillates

when λ < 0 (τ < 1) and it is over damped when λ > 0 (τ > 1). Note that if
∇u0 = 0, there is no additional layer in the non equilibrium part.

The comparisons between the prediction (2.99) and the initial layer for the prob-
lem TV-NS, are shown in figure 2.8. Additionally, in figures 2.9 and 2.10 we test
the order of accuracy of the prediction and the effects of different values of τ .

Pointwise arise of error

To derive the prediction (2.99), we have used the hypothesis of regularity in x.
The result

σi(n,xj) = λ(τ)nτc−2
s f ∗

i ci · ∇u0(xj) · ci
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Figure 2.8: Initial layer in S[u] (×) in problem TV-NS. Maximum amplitude oscilla-
tion of the component Sxx is drawn (×), compared with the prediction (2.99) (solid
line) as solution of a difference equation. Grid is 80 × 80. In contrast to figure 2.2,
the abscissae indicates the iteration steps n.
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Figure 2.9: The predicted initial layer (2.99) is removed from the result Ŝ, obtained
with initialization (2.90). Grid 40 × 40 (left) and 80 × 80 (right) are compared in
time.
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Figure 2.10: Behavior of the initial layer in S for different τ . On the left, for
τ = 0.505, the oscillations persist over a long time scale. On the right, for τ = 2,
they decay very fast.

is a smooth function which oscillates separately in each node j of the grid. Because
of the symmetry properties of the discrete velocity model, since

∑

i

σi(n,xj) = 0,
∑

i

ciσi(n,xj) = 0, (2.100)

such initial layer evolves in a space orthogonal to the vectors

(1, . . . , 1), (cix)1≤i≤b, (ciy)1≤i≤b ∈ Rb.

and will therefore be invisible in pressure and in velocity. In fact, we could treat
the irregular behaviors in pressure and velocity excluding the oscillations in the
non-equilibrium part.
This property only holds if the layer arises uniformly over all the domain Ω. If
the error appears on a limited subset of Ω, for example at a single node xP of
the grid, the oscillations in the non equilibrium part spoil also in the moments
ρ and u. In fact as the populations propagate to the next nodes, the neighbors
will be unsymmetrically affected. Moreover, if the spatial regularity is no longer
true, the previous procedure cannot be applied.
This is a typical trouble, which arises in moving boundary problems (presented
in detail in chapter 4). Here, we perform a qualitative analysis. Taking as basic
behavior what we found for the periodic case, we investigate, using some simple
benchmarks, the dynamics of the error arising in a single point.

The test problems we consider are based on the TV-NS model, used also for the
previous numerical tests. Let us fix the domain

Ω = [0, 1)2
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and define two sets

XE =
{
kE

r | r = 1, . . . R
}
⊂ G(h), TE =

{
nE

r | r = 1, . . . R
}
⊂ N

of nodes and times. At the time step nE
r we add artificially an error, performing

a re-equilibration at the node kr, replacing

f̂i(n
E
r ,k

E
r ) → Heq

i (ρ̂(nE
r ,k

E
r ), û(nE

r ,k
E
r )). (2.101)

Two different cases will be investigated.
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Figure 2.11: Examples of a field of pressure (Taylor vortex) where an artificial error
has been inserted in a single node, through a re-equilibration. Pressure and velocity
on the node are not changed. The picture shows the contour plots of pressure one
step after the re-equilibration (left) and some time steps later (right). Due to the
low viscosity used (ν < 0.01) the error in pressure has propagated to a rather wide
neighborhood.

Simple pointwise error (SIMPLE) The sets XE, TE are generated without
particular relation between two successive replacements. As expected, in figure
2.12 we observe that the error in the second order coefficient affects the pressure,
as a layer in the discrete time scale. However, it is quickly reduced in time after a
few oscillations on the discrete time scale. Hence, it depends on n, with a struc-
ture similar to (2.98). The damping factor depends on the viscosity. Responsible
for the claimed loss of accuracy are the highest peaks, generated immediately
after a re-equilibration.

Error arising along a curve (CURVE) Let Γ ⊂ Ω be a closed curve, pa-
rameterized with a coordinate γ ∈ [0, 2π), counterclockwise oriented (see figure
2.13). We identify with Ωint the closed part of the domain, inside the curve Γ,
and Ωext = Ω\Ωint ∪ Γ (the point on Γ are considered part of the computational
domain). The set XE is defined by

k ∈ XE ⇐⇒ xk ∈ Ωext ∧ ∃i : xk + hci ∈ Ωint, (2.102)
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Figure 2.12: Run of the SIMPLE re-equilibration benchmark, error in pressure is
shown for grids 40× 40 and 80× 80. The peaks in the error are of zeroth order, but
the error is fast decreasing to zero. The damping factor depends on the viscosity.
Here, ν = 0.03.
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Figure 2.13: Sketch of how the benchmark for the CURVE re-equilibration is con-
structed. Once defined a closed curve Γ ⊂ Ω, here a circle, the nodes having a
neighbor inside the curve (•) are numbered, according to a coordinate γ on Γ. Re-
equilibrations are performed following this ordering.
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Figure 2.14: (a) Maximum error in pressure re-equilibrating the problem CURVE.
Two different grid sizes are compared. Now, the introduced perturbations interact
during the propagation. Besides the peaks of order zero, the whole profile of the error
increases in time, in contrast to the benchmark SIMPLE. (b) Superimposed maximal
errors in velocity, for h = 0.025 (dashed) and h = 0.0125 (solid). The Result is only
first order accurate.

i.e. xk is a node in Ωext which has at least a neighbor in Ωint.
Numbering XE =

{
kE

r , r = 1, . . . , R(Γ)
}
, we define

TE =

{
nr :=

1

h2

1

R(Γ)
r, r = 1, . . . , R(Γ)

}
,

so that all the nodes are processed in a physical time T = 1.
Note that, now, the curve Γ and time T are fixed, not grid-depending. Hence, de-
creasing the grid size (i.e. increasing the cardinality ofXE), more re-equilibrations
take place.
The results show a strong decrease of the accuracy in pressure (figure 2.14). The
error does consists of more and more dense peaks, which do not reduce, decreasing
the grid size h. Analogously, we observe a first order accurate velocity.

2.3.2 TRT models

In this section, we investigate shortly a slightly different lattice Boltzmann model.
Instead of the BGK approximation in equation (1.11), we consider the so called
TRT model (Two Relaxation Times).
In general, for a function F ∈ F(V,Rb) on the velocity space V, we can define
the even part:

F+
i =

F (ci) + F (ci∗)

2
, with ci∗ = −ci, (2.103)

and the odd part:

F−
i =

F (ci) − F (ci∗)

2
. (2.104)
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The TRT-LBM is defined as

f̂i(n + 1, j + ci) = f̂i(n, j)

+
1

τ+

(
f eq

i (f̂) − f̂i

)+

(n, j) +
1

τ−

(
f eq

i (f̂) − f̂i

)−
(n, j). (2.105)

A general asymptotic analysis of the LBM, which includes a wide class of collision
operators has been performed in [19]. Our purpose is to analyze the effect of a
second relaxation time on a multiscale ansatz. In particular, on the two-scale and
on the discrete-time ansatz.
The consequence of distinguishing between odd and even quantities, is that in
each coefficient f

(k)
i the odd and the even part of the non equilibrium will behave

differently. Observe that for f (0), f (1), which are already at the equilibrium state,
nothing will change. For the second order f (2) (odd function), the non equilibrium
part relaxes with τ+. For a general discrete multi-scale ansatz

Fh(n, j) =
∑

k<2

fLBM,(k)(h2n, hj) +
∑

k∈K,k≥2

hk
(
f (k)(hn, h2n, hj) + σ(k)(n, hj)

)
,

we can derive partial differential equations for the oscillating terms in the second
and third order, and difference equation for the discrete functions σ(k).
Without entering in the details of the computation, we point out the effect of the
double relaxation time in a special case. Let us assume we use a second order
initialization, i.e. that the nodes are initialized according to (1.163), up to the
second order. The ansatz we consider reads

Fih(n, j) = f
LBM,(0)
i + hf

LBM,(1)
i (tn,xj) + h2f

LBM,(2)
i (tn,xj)

+ h3
(
f

(3)
i (tn, sn, n,xj) + σ

(3)
i (n,xj)

)
(2.106)

Performing the Taylor expansion as in section 2.3.1, we find eventually the pre-
diction

σ
(3)
i (n + 1,xj) =

(
1 − 1

τ−

)
σ

(3)
i (n,xj). (2.107)

The odd relaxation time differently relaxes some components of the discrete-time
oscillation in higher orders.

2.4 Summary

So far, we have presented a detailed formulation of the asymptotic expansion
technique, and some applications to LBM.
The results regarding the approximation of Navier-Stokes in the have been ex-
tended including irregular behaviors, to predict initial layers and grid oscillations.
Numerical tests validate the technique and the derived predictions.
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Figure 2.15: Effect of a TRT model. Monitoring the quantity Ŝxx−Σxx in the point
xM (simulation of problem TV-NS), we observe the error in the order h3. Simulations
are performed on a 40 × 40 grid. On the left, we use a single τ = 0.56 (same as
in figure 2.9). On the right, choosing τ+ = 0.56, τ− = 1, the additional initial
oscillations have been reduced.

Next scopes

Our goal is to investigate possible extension of the lattice Boltzmann method
towards the fluid-structure interaction problems.
In the following chapters the asymptotic analysis will be used as a tool to define
new algorithms. The prediction for the interior LBM will be a criteria to decide
whether a variant of the original algorithm could or could not be satisfactory for
our purpose.
The treatment proposed so far, will result useful to have an idea of the general
behavior of the errors (fast-time oscillations, grid-scale, symmetry, etc.) within
an LB implementation.



Chapter 3

Analysis of initialization
algorithms

We have presented a deep asymptotic analysis of the LBM in presence of wrong
initial conditions, covering the origin and the prediction of oscillatory layers in
time. Now, we approach the problem from a different angle. With the acquired
knowledge about inaccurate initializations, our scope is to avoid initial layers by
employing some pre-processor to the LBM, able to generate better initial values
in an efficient way.
In section 3.1 we present once more the problem, giving some example and defin-
ing the benchmarks. A solution for the periodic case, using an algorithm first
proposed in [33], is described and analyzed in section 3.2. In section 3.3, we
extend the algorithm to boundary value problems. Section 3.4 contains further
developments, remarks and some corollary results.

3.1 The initial layer problem

As usual, the starting point is an incompressible Navier-Stokes initial boundary
value problem

{
∇ · u = 0
∂tu + ∇p+ ∇ · (u ⊗ u) = ν∇2u + G

t > 0, x ∈ Ω

u(t,x) = uB(t,x), t > 0, x ∈ ∂Ω

u(t,x) = u0(x), t = 0, x ∈ Ω

(3.1)

on a given domain Ω ⊂ R2.

3.1.1 Test problems

The numerical results are based on simple solutions of (3.1).

95
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Namely, we simulate a particular Taylor vortex field (section 1.3.4), on the square
Ω = [0, 1)2, with

uTV (t, x, y) =




− 1

2π
cos (2πx) sin (2πy)

1

2π
sin (2πx) cos (2πy)


 exp (−8π2νt), (3.2)

pTV (t, x, y) = − 1

16π2
(cos (4πx) cos (4πy)) exp (−16π2νt). (3.3)

Both the problems Navier-Stokes (TV-NS) or Stokes (TV-ST) (using a linearized
equilibrium and adding a volume force G = ∇pTV ), are considered.

Such problems are naturally implemented with periodic boundary. However,
also a bounded domain can be considered, assigning the exact velocity

uB(t,x) = uTV (t,x), x ∈ ∂Ω

on the boundary of the square as boundary condition.

Besides, we consider another linear problem with Dirichlet boundary conditions
(denoted with DBC):

{
∇ · u = 0
∂tu + ∇p = ν∇2u + GDBC t > 0, x ∈ Ω = [0, 1] × R

u(0,x) = uDBC
0 (x), x ∈ Ω

u(t,x) = uB(t,x), t > 0, x ∈ ∂Ω

(3.4)

with

GDBC(t,x) =

(
sin 2πx
− sin 2πy

)
−
(

e−t

0

)
(3.5)

and velocity on the boundary

uB(t, 0, y) = uB(t, 1, y) =

(
e−t

0

)
, y ∈ R. (3.6)

Exact solutions are

uDBC(t,x) = e−t, vDBC(t,x) = 0, (3.7)

pDBC(t,x) =
1

2π
(cos 2πy − cos 2πx) . (3.8)
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3.1.2 Lattice Boltzmann initial conditions

As an introduction, we present a short overview of possible choices for the initial
values, describing their main features. The simplest way consists of initializing
with equilibrium values

f̂i(0, j) = Heq
i (1, hu0(xj)). (3.9)

As already remarked before, it is not completely in accordance with the problem.
In view of (1.168), a constant initial density ρ0 = 1, is equivalent to an initial
pressure p0 = 0. However, for general u0 and G, the physical initial pressure
obeys

∇2p0 = −∇ · (∇ · (u0 ⊗ u0)) + ∇ ·G|t=0. (3.10)

which follows by taking the divergence of the Navier-Stokes equation at time
t = 0.
Figure 3.1 shows the results of the LBM for the problem TV-NS, using the initial
values (3.9). As observed and analyzed in chapter 2, the initial discrepancy in
pressure produces an initial layer, which does not vanish for h→ 0.
To include the initial pressure, we could use an additional Poisson solver, esti-
mating p̃ from equation (3.10) and defining

f̂i(0, j) = Heq
i (1 + h2c−2

s p̃(j), hu0(xj)). (3.11)

With initialization (3.11), the initial layer still appears in the tensor S[u]. An
initialization which includes also the initial non equilibrium part, and leads to
better results, was first proposed in [38]:

f̂i(0, j) = Heq
i (1 + h2c−2

s p̃(j), hu0(xj)) − h2τc−2
s f ∗

i

(
ci ⊗ ci : S̃(j)

)
. (3.12)

using a numerical approximation S̃, of the tensor S[u0].
At this point, it seems that to construct better initializations, more and more
expensive routines are required. However, the approach presented in [33], which
we analyze and generalize in this chapter, allows to achieve initialization (3.12)
completely within the LB framework.

3.2 LB Initialization routines (periodic case)

3.2.1 A first initialization algorithm

We focus on a periodic domain, without boundaries. The following algorithm has
been proposed in [33]a to initialize LBM according to (3.12).
It has the same structure as the classical LBM. Only, in the collision step, the
velocity is kept fixed and equal to u0 in the equilibrium function. We assume to
initialize the procedure with equilibrium initial conditions (3.9).

aUsing the MRT model.
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Figure 3.1: Qualitative behavior of initial layers. (a) Error Ep
C(t) in pressure for

the problem TV-NS, in the central point xC of the unit square. Initialization (3.9),
comparison between different grids. (b) Superimposed oscillatory initial layers in
S[u], with initial values (3.11). The quantity ESxx

M = Ŝxx − Sxx is shown, in the
point of maximum amplitude oscillation, for h = 0.05 (dashed line) and h = 0.025
(solid).

Algorithm 3.1 ((periodic) LB-initialization).

initialize ρ̂(0, j) = 1, f̂(0, j) = Heq
i (1, hu0(xj))

DO WHILE ||ρ̂(n+ 1, ·) − ρ̂(n, ·)|| > ε (fixed by tolerance criterion)

u0-collision: f̂ c
i (n, j) = f̂i(n, j) + 1

τ
(Heq

i (ρ̂(n, j), hu0(xj)) − f̂i(n, j)) + ĝi(0, j)

advection: f̂i(n + 1, j + ci) = f̂ c
i (n, j)

ρ̂(n+ 1, ·) =
∑

i f̂i(n+ 1, ·)
END

Asymptotic analysis

Defining

LBM0
i (h, f̂h)(n+ 1, j + ci) = f̂i(n+ 1, j + ci) − f̂i(n, j)

−
(

1

τ

(
Heq

i (ρ(n, j), hu0(xj)) − f̂i(n, j)
)

+ ĝi(0, j)

)
(3.13)

(LBM with fixed collision velocity), we analyze the algorithm

L(h, f̂h)(n, j) =

{
f̂(0, j) −Heq(1, hu0(xj)) n = 0, j ∈ G(h)

LBM0(h, f̂h)(n, j) n > 0, j ∈ G(h)
(3.14)

using a regular ansatz, for which the predictions have the form (1.101):

Fih(n, j) =
∑

k∈K

hkf
(k)
i (h2n, hj).
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Since in what follows the time t is not the “real” time, i.e. the same appearing
in the Navier-Stokes equation (3.1) (the algorithm is used only to initialize the
populations, keeping the initial velocity and the initial force fixed), we will call
it pseudotime, even if we indicate it with the letter t. The frozen quantities are
denoted with subscript 0, like u0 or G0.

As in the previous chapter, particular attention will be given to the moments. In
particular, since the velocity is kept fixed, we focus on the pressure, computed
through (see equation (1.168))

p̂h(n, j) = c−2
s

ρ̂h(n, j) − 1

h2
. (3.15)

Therefore we perform the analysis introducing a variant of the projected algorithm
MOMρ (defined in equation (2.12), section 2.2.1) for the density, which gives as
output the numerical pressure:

MOMp(h, p̂h, f̂h) = p̂h − c−2
s

ρ̂h − 1

h2
, (3.16)

where ρ̂h = ρ(f̂h).

To find a prediction for the results initialization algorithm, we apply the heuristic
optimization 1.2.4 starting from a regular ansatz A. The argument which leads
to the derivation of the coefficients is totally analogous to the one used in section
1.3.2 for the standard LBM. Without repeating the computations, eventually we
find that the minimum class is contained in the subset (compare with (1.139))

F ∈ A |
f

(0)
i (F ) = f ∗

i ,

f
(1)
i (F )(x) = f ∗

i c
−2
s ci · u0(x),

f
(2)
i (F )(t,x) = f ∗

i c
−2
s p(t,x) +H

Q(eq)
i (u0,u0)(x) − τf ∗

i c
−2
s (ci · ∇)ci · u0(x),

f
(3)
i (F )(t,x) = f ∗

i c
−2
s p(3)(t,x)

− τ

(
(ci · ∇)f

(2)
i (F )(t,x) +

(ci · ∇)2

2
f

(1)
i (F )(x) − τg

(3)
0,i (x)

)
,

(3.17)
with smooth fields p and p(3). Note that f (0) and f (1) are constant functions. The
predictions defined in (3.17) cancel the third order residue of LBM0 if the field p
satisfies 




∇p+ ∇ · (u0 ⊗ u0) = ν∇2u0 + G0 −
1

τ
w

c−2
s ∂tp+ ∇ ·w +

1

2
(∇2p+ ∇ · (u0 ⊗ u0)) = 0.

(3.18)
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In (3.18) the field w is the first order moment of the coefficient f
(3)
i ,

w =

b∑

i=1

cif
(3)
i , (3.19)

which can be recovered from the first equation and inserted into the second,
obtaining

∂tp = ν(∇2p + ∇ · (∇ · (u0 ⊗ u0)) −∇ · G0) +
c2s
2
∇ · G0. (3.20)

To fix the initial condition for p we consider the residue of the initialization rule
(3.9). As remarked before (section 3.1.2), it leads to

p(0,x) = 0, x ∈ Ω . (3.21)

From the asymptotic expansion of F , we can derive an expansion for the pressure:

p̂(Fh) = p+ hp(3) + h2p(4) + h3p(5) + . . . . (3.22)

Using the definition (3.15) of p̂ , the coefficients (for k ≥ 2) reads

p(k)(F ) = c−2
s ρ(k)(F ). (3.23)

Note that the expansion (3.22) starts from the second order, since

ρ(0)(F ) = 1, ρ(1)(F ) = 0

if F is defined as in (3.17). Since equation (3.15) is scaled by h2, the indexes of
the expansion coefficients in (3.22). have been shifted. For simplicity, we have
called p the second order coefficient.
Equation (3.22) expresses the relation between a prediction F for the LB-variables
and a prediction for the pressure p̂h. To fix the coefficients p(k) we investigate the
following order residues for the projected algorithm (3.16). Introducing the field

w(4)(F ) :=
∑

i

cif
(4)
i (F ), (3.24)

we obtain, for the coefficient p(3), the system




∇p(3) = −1

τ
w(4)

c−2
s ∂tp

(3) + ∇ · w(4) +
1

2
∇2p(3) = 0

(3.25)

which can be reduced to
∂tp

(3) = ν∇2p(3). (3.26)

Inserting the initial condition

p(3)(0,x) = 0, (3.27)

required to cancel the third order projected residue of the initialization in algo-
rithm 3.1, equation (3.26) has solution p(3) = 0.
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An LB Poisson solver

We use the coefficients (3.17) to set up the truncated expansion

F̂ = f (0) + hf (1) + h2f (2) + h3f (3), (3.28)

which is employed to investigate the behavior of the initialization routine.

Now we analyze equation (3.20) in more detail. If ∇ · G0 = 0, it shows that p
solves the Poisson equation (3.10) at the steady state (in pseudotime). Hence,
according to (3.22) we can extract from F a second order accurate pressure, since
(as a consequence of (3.26))

p̂h − p ∈ O(h2)

(the higher order coefficients have not been fixed).

On the other hand, the procedure does not work if the force has non zero diver-
gence, because equation (3.20) is then different from (3.10). Figure 3.2 exemplifies
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Figure 3.2: (a) Algorithm 3.1 applied to vortex solution (20× 20 grid), for viscosity
ν1 = 0.006 (bold line), ν2 = 5ν1 = 0.030 (solid), ν3 = 5ν2 = 0.15 (dashed) (the
arrow in the plots shows the increasing viscosity). Left: error EC

p (t) of central point
pressure in logarithmic pseudotime during initialization for TV-NS problem. Right:
TV-ST problem (with additional non divergence-free force). The error is increasing
like ν−1. (b) Double logarithmic plot of maximum error in initial pressure versus grid
size in TV-ST, with (◦) and without (×) the corrected force term g∇.

the problem. Looking at the pressure during the initialization algorithm for a
TV-ST problem (where an additional non divergence-free volume force is present)
we see an error in the asymptotic value increasing like ν−1 (this relationship is
also explained by equation (3.20)). Fixing the viscosity and refining the grid
(figure 3.2b), the error in the initial pressure (solution of (3.10)) does not reduce
(slope ∼ 0 in the double logarithmic plot).
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To cure this anomaly we modify the collision step, replacing ĝi with

g∇i ≡ h3c−2
s f ∗

i ci · G + h4f ∗
i

∇ · G
2

, (3.29)

which produces a new term in (3.20) able to remove the undesired source. Results
of this modified routine confirm that the corrected force g∇i allows to recover a
second order accurate initial pressure (slope ∼ 2) solving equation (3.10) only by
using LB-type iterations.
Other aspects of the (modified) algorithm 3.1 follow from the analysis performed
in section 3.2.1. Actually, it is more than a LB Poisson solver, since it does not
even require an approximation of ∇u0 to set correctly also the non equilibrium
part of f

(2)
i , according to the interior coefficient of the standard LBM (1.163) at

time t = 0 (as initialization (3.12) does). It represents therefore a second order
initialization.
On the other hand, we observe that the number of pseudotime steps needed to
reach the steady state of equation (3.20) is a function (∼ 1

ν
) of viscosity, i.e. of τ

(it can be seen in figure 3.2, showing the error in pressure approaching a steady
value). Therefore, once guaranteed the accuracy in pressure for a general force
field, our next aim is to see whether it is possible to reduce the computational
effort to get it. Within the MRT model, a solution has been proposed in [33].
Here, employing the BGK lattice Boltzmann, we show that the efficiency can be
improved even in this much more simple model.

3.2.2 Accelerated initialization

The idea is the following: since the Poisson equation (3.10) does not depend on
ν, to have a faster procedure, it should be possible to run the algorithm with
a higher, faster, viscosity (i.e. using a different τ). This allows the pressure
to get closer to its limit in less iterations. Unfortunately, the simple increasing
of viscosity leads to a wrong initial tensor S[u], in which we still see a zeroth
order initial layer (figure 3.3, 3.4). This is due to a wrong initialization of the

(τ -depending) non-equilibrium term in f
(2)
i , which is different from the interior

coefficient f
LBM,(2)
i . However, even initializing with a different value of τ , we can

use the definitions of the coefficients (3.17) to derive a recipe to correct the initial

populations, re-obtaining an algorithm whose residue vanishes if f
(2)
i (F ) coincide

with the interior coefficient fLBM,(2)|t=0. Practically, calling τ̃ the new relaxation
time and

r ≡ τ

τ̃
,

we first isolate (up to order h) the term we are interested in,

f
(2),noneq,τ̃
i =

1

h2

(
f̂ τ̃

i −Heq
i (1 + h2p̂, hu0) +O(h3)

)
,
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Figure 3.3: Same simulation as in figure 3.1, the error in p and Sxx are now shown
after the modified viscosity initialization. It reduces the order of initial layer in pressure
(left) but not in the tensor S[u] (right). Dashed line: 20×20 grid. Solid line: 40×40
grid.

subtracting from the output f̂ τ̃
i of the accelerated routine the previous order

terms. Then, we reconstruct “by hand” an approximation of the correct initial
second order,

f̄
(2)
i = (1− r)

(
f ∗

i c
−2
s p̂+H

Q(eq)
i (u0,u0)

)
+ r

(
f τ̃

i − f ∗
i − hf ∗

i c
−2
s ci · u0

h2

)
. (3.30)

The corrected distributions are then

f̄ τ̃
i = f ∗

i + hf
(1)
i + h2f̄

(2)
i = (1 − r)Heq

i (1 + h2c−2
s p̂, hu0) + rf̂ τ̃

i . (3.31)

Note that equation (3.31) also provides a simple formula to correct the initial val-
ues. Performing the iterative algorithm, the correction can be easily implemented
as

f̄ τ̃
i = (1 − r)Heq

i (ρ̂, hu0) + rf̂ τ̃
i , (3.32)

where both the quantities appearing on the right hand side do not need to be
evaluated (the equilibrium can be taken from the collision step of the last itera-
tion).

Algorithm 3.2 (Accelerated (periodic) LB-initialization).
(given initial data u0 and force G0)
compute ∇ ·G0 (at least first order accurately), g∇

run algorithm 3.1 with τ̃
compute pressure p̂ and equilibrium H eq

i (ρ̂, hu0)

initialize LBM using (3.32)

Using equations (3.30)-(3.31), a prediction and the coefficients defined in (3.17)
F̄ τ̃

h for the accelerated initialization can be constructed. We can estimate the
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difference between F τ̃ and the initial interior prediction

FLBM,0
h = FLBM

h |t=0 =
∑

k≤3

hkfLBM,(k) (3.33)

(constructed from (1.163)) of the standard LBM as

FLBM,0
h − F̄ τ̃

h = h3
(
−rf (3),τ̃ + fLBM,(3)

)
+O(h4). (3.34)

Proposition 3.1. The accelerated initialization procedure 3.2 defines a second
order initialization for the interior LBM.

The next numerical tests (figure 3.4) compare results of the original initialization
routine, with the accelerated one. The original viscosity is ν ∼ 0.03, with τ =
0.59. As faster relaxation time we use τ̃ = 1, which allows also to simplify the
implementation of the LB collision step. The tolerance criterion in algorithm
3.1 is based on the difference between the pressure in two successive pseudotime
iterations (related to an approximated ∂tp) and the gain in CPU time is about
65%. Initial layers in pressure and viscous stress tensor have been compared. We
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Figure 3.4: (a) Double logarithmic plot of maximum error in initial pressure (left)
and S[u] (right) for TV-NS, versus grid size (τ = 0.59, viscosity ∼ 3 · 10−2). The
curves are obtained with original-viscosity routine (×), algorithm 3.1 run with τ = 1
(◦), and accelerated routine, inclusive of correction (�). (b) Error in pressure versus
grid size for original (×) and accelerated (◦) initialization applied to TV-ST.

get first order accuracy for p̂ and second order (only after correction (3.31)) for
Ŝ, even if, for pressure, after the accelerated procedure the initial layer amplitude
may be slightly biggerb.

bIt happens mainly because we modify the f
(3)
i . Using the evaluation of error (3.34), we can

express the modification occurring in the third order coefficients (as given in (3.17)) running
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Special viscosity

Performing a further step of asymptotic analysis, equating to zero the projected
residue of the next orders, we find an equation for the coefficient p(4) of expansion
(3.22):




A(τ)∂tp

(4) +B(τ)∂2
t p = ∇2p(4) +

1

τ
φ(τ)F(u0,G0) + γ(τ)∇2(∇ · G0)

p(4)(0,x) = 0, x ∈ Ω.
(3.36)

The initial condition is fixed by the equilibrium initialization. The operator F

involves fourth and sixth order derivatives of the initial data. The function φ(τ)

is a second order polynomial with two real roots, τ ∗± =
1

2
± 1√

6
. This means that

if ∇ · G0 = 0, with the special value τ ∗+ ∼ 0.9089, p(4) vanishes at the steady
state, and the expansion predicts a fourth order initial pressure (the coefficient
p(5) behaves like the previous odd term p(3), see [19]). Note that the third order
error in the coefficients has not been removed (it is just “invisible” in pressure)
and that the fourth order pressure will, in general, become of second order once
starting the actual LBE iteration. Figure 3.5 validates the theoretical conclusions.
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Figure 3.5: Double logarithmic plot of maximum error in the initial pressure after
initialization routine, for τ = τ ∗+ (◦) and τ = 1 (×).

algorithm 3.2:

E
(3)
i := f

(3),τ
i − f̄

(3),τ̃
i = (τ − τ̃ )τc2

sf
∗

i (ci · ∇)2(ci · u0). (3.35)

This part is only responsible of the increasing of the amplitude (figure 3.4a) of the initial layer

in pressure. It arises even using the original viscosity routine, because the expression of f
(3),τ
i

differs anyway from the initial values of fLBM,(3) given in (1.139) (section 1.3). In particular, a
term involving ∂tu|t=0 is missing, affecting our prediction F̄ τ̃

h from order h3. Note that in the
linear problem, original and accelerated routines lead to similar results (equation (3.35) only
involves quadratic terms), figure 3.4b.
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3.3 Initialization for boundary value problems

3.3.1 The Neumann condition for pressure

Considering a bounded domain, through a boundary rule we introduce additional
boundary conditions for the pressure in equations (3.18). Projecting the Navier-
Stokes equations at the initial time along the direction of the normal n to the
boundary, we have

∂p0

∂n
= −n[(u · ∇)u] + ν(∇2u) · n + G · n − (∂tu) · n. (3.37)

Rewriting the first part of equation (3.18) as

∇p+ (u0 · ∇)u0 = ν∇2u0 + G − 1

τ
w (3.38)

and imposing
∂p

∂n
=

∂p0

∂n
we obtain a relation involving the field w (on the

boundary):
w · n = τ∂tu|t=0 · n. (3.39)

Assuming a Dirichlet condition for the velocity in the Navier-Stokes problem,
our aim is to construct a boundary rule for the algorithm 3.1, which achieves the
conditions

u(1)(x) = uB(x), x ∈ ∂Ω. (3.40)

w(x) =
∑

i

cif
(3)
i (x) = τ∂tu|t=0(x), x ∈ ∂Ω (3.41)

((3.41) is actually more than (3.39)).
There are many ways [4, 20] to include a specific Dirichlet condition (3.40) for
the velocity in an LB algorithm. None of them, however, has been built to deal
with a condition on the moment w as (3.41).

3.3.2 LB-boundary condition algorithms

Within the LB implementation, we consider the first order BFL-rulec. Namely, for
xk ∈ Ω, which has a direction i∗ crossing the boundary (outgoing direction), i.e.
xk+hci∗ /∈ Ω, the boundary rule defines the population occupying the link i, with
ci = −ci∗ (incoming direction), which is not updated by the advection. The idea
of the BFL is to interpolate such distribution by using the value of neighboring
nodes after performing the collision step. According to the notations in figure
3.6:

f̂i(n + 1,k) = C1(q)f̂
c
i∗(n,k) + C2(q)f̂

c
i∗(n,k + ci)+

C3(q)f̂
c
i (n,k) + h2D(q)f ∗

i c
−2
s uB(bi∗(k)) · ci,

(3.42)

(f̂ c
i indicates the distribution after collision).

cFrom M.Bouzidi, M.Firdaouss, P.Lallemand, reference [4].
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Figure 3.6: Sketch of the BFL boundary conditions. The bold line is the boundary, ci

is an incoming direction at the boundary node xk, ci∗ is outgoing and connects the
fluid node (circles) to the first boundary one (cross). With q we denote the distance (in
lattice units) between the boundary node and the point bi∗(k) ∈ Γ (intersection along
the link ci∗). The new population (top arrow) is computed interpolating between the
boundary node and the left one (bottom arrows) .

In the previous equation, bi∗(k) is the point where the link ci∗ intersects the
boundary, and q ∈ [0, 1) is the distance

q =
|bi∗(k) − xk|

h
.

The additional momentum on the right hand side is used to incorporate the
Dirichlet condition on the velocity. The coefficients Ci and D have different
expression, according to q ≤ 1

2
or q > 1

2
. This algorithm will be described in

chapter 4 in more detail (see also [20], for a general overview of boundary rules).
In the simple case q = 0.5, we recover the popular bounce-back algorithm:

f̂i(n + 1,k) = f̂ c
i∗(n,k) + 2hc−2

s f ∗
i ci · uB(bi(k)) . (3.43)

It is known ([20], summarized in section 4.1.2) that the boundary conditions
(3.42) are consistent with the boundary velocity uB, for any value of q ∈ [0, 1).
The analysis of algorithm

L(h, f̂h)(n, j) :=

{
LBMi(h, f̂h)(n, j) (n, j) ∈ Ω : xj − hci ∈ Ω

BFLi(h, f̂h)(n, j) otherwise
(3.44)

produces a minimum class in the regular ansatz whose predictions have the same
coefficients, for k = 0, 1, 2, as the interior LBM, with the additional constraint
that the field u(1) is the particular solution to Navier-Stokes which satisfies

u(1)(x) = uB(x), x ∈ ∂Ω.

Therefore, we can use the prediction which gives second order accurate velocity
and first order pressure also for LBMBFL. Nevertheless, this does not assure the
applicability of the boundary rule also for the initialization algorithm.
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Initialization with BFL rule

Figures 3.7-3.9 show some examples of application of the rule (3.42), implemented
on the boundary during the initialization algorithm.
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Figure 3.7: Examples of the error in pressure after initialization routine for the prob-
lem DBC, applying the bounce-back rule (3.43), for h = 0.05 (left) and h = 0.025
(right). The algorithm has been run until it showed convergence. However, the limit
does not approximate the initial pressure.

We consider first the linear problem DBC, with the grid placed at distances q = 1
2

from the boundary (bounce-back is used). Then we simulate the Taylor vortex
TV-NS, forcing the Dirichlet conditions on x = 0, x = 1, placing the grid inside
[0, 1)2 in such a way to have the left and the right boundaries at distances (resp.)
q = 0.75 and q = 0.25. To measure the error in pressure, we take the overall
maximum in space

Ep(tn) := max
j∈G(h)

‖p̂(n, j)) − p(tn,xj)‖ . (3.45)
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Figure 3.8: Initial layer in pressure simulating the benchmark DBC, after having run
an initialization algorithm. The quantity Ep(t) is shown, versus time t. Grid size:
h = 0.05 (left), h = 0.025 (right). The viscosity is ν ∼ 0.03 (τ = 0.56).

The procedure does not work, because an inconsistent pressure is produced.
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Figure 3.9: Maximum error in pressure Ep(t) in the problem TV-NS, initializing
the LBM with algorithm 3.2+BFL rule. Simulation with h = 0.05 (left) and with
h = 0.025 (right).

Usually, analyzing the classical LBM through a truncated expansion, we are inter-
ested in the results for pressure and velocity, whose approximations are contained
in the coefficients f (k) for k ≤ 2. Thus, a truncated expansion (chapter 1)

F̂ = f (0) + hf (1) + h2f (2)

is enough to predict an approximate Navier-Stokes solution. The present case is
different, since we deal with additional relations for the coefficients f (3) (through
the moment w), which influence the field p. In the shown examples, the initial-
ization fails, because equation (3.41) is not achieved by the boundary algorithm
(3.42).
We have to understand how the coupling of algorithm 3.1- equation (3.42) acts

on the coefficients f
(3)
i , and, if possible, to introduce a correction term.

3.3.3 Corrected initialization

Enforcing consistent boundary conditions As the initialization rule, the
boundary algorithm represents a scheme which is coupled with the interior LBM.
Hence, to justify the usage of the interior prediction also for the boundary rule,
the coefficients of the expansions have to coincide up to order three, since we
want to predict also the field w.
Remark. In other words, to state a result analogous to corollary 1.1 also for the
non periodic initialization algorithm, we need third order boundary conditions.
Furthermore, we want to achieve conditions (3.41).

Simple case: Bounce-Back We look more carefully at the behavior of the
initialization algorithm when a bounce-back boundary condition (3.43), in the
case q = 1

2
, is applied.
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According to the notations in equation (3.42), let i be an incoming direction on the
node xk, so that the last point on the LB grid can be written as xk = bi∗(k)+ h

2
ci.

We use a Taylor expansion in relation (3.43), around bi∗(k), sorting then the dif-

ferent orders in h. As previously remarked, f
(1)
i and f

(2)
i are consistent with the

interior expansion, therefore only the third order will be considered.
The strategy is to first define a target expansion, based on the interior coeffi-
cients (3.17), restricted with (3.40)-(3.41) on the boundary. Then, to look for a
correction (section 1.3.5) to the boundary condition rule, so that the resulting
prediction coincides with the target one.

First of all, the coefficients f (3) of the boundary algorithm have to coincide, up
to the third order, with the inner coefficient (3.17) of the initialization routine.

Inserting the values for f
(0)
i , f

(1)
i , f

(2)
i into f

(3)
i , we have for algorithm (3.14)

f
INIT,(3)
i = f ∗

i c
−2
s

(
p(3) − τci ·

(
∇p+ ∇Q0

i −
(
τ − 1

2

)
D0

i − G0

))
. (3.46)

We have used

Q0
i =

1

2

(
c−2
s |ci · u0|2 − |u0|2

)
, D0

i = (ci · ∇)2u0.

Note that Q0
i and D0

i are constant during the initialization algorithm, since they
only depend on u0.

Additionally, we want to achieve the correct condition for the gradient of pressure:

∇p = ∇p0. (3.47)

Therefore we end up with a third order coefficient (called exact), which looks like

f
EX,(3)
i = f ∗

i c
−2
s p(3)

− τf ∗
i c

−2
s ci ·

(
−∂tu|t=0 + ν∇2u0 −∇ · (u0 ⊗ u0) + ∇Q0

i −
(
τ − 1

2

)
D0

i

)
.

(3.48)

On the other hand, expanding algorithm (3.43), inserting the post-collision distri-
bution, for f̂ c

i∗(n,k), and isolating the third order term, we found (the superscript
BB denote the bounce-back rule)

f
BB,(3)
i = f ∗

i c
−2
s p(3)

+ f ∗
i c

−2
s ci ·

(
(τ − 1)∇p+

(
τ − 1 − 1

2τ

)
∇Q0

i −
(
τ 2 − 3

2
τ

)
D0

i − τG0

)
.

(3.49)
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All the quantities are evaluated at boundary point bi∗(k) and pseudotime tn.
Comparing (3.49) and (3.48), the condition to be satisfied (to have the required
third order coefficient in the prediction for the boundary rule) is

f
BB,(3)
i (tn,bi∗(k)) = f

EX,(3)
i (tn,bi∗(k)). (3.50)

It is, in general, not true.
To force (3.50), we introduce the following modification. Through the Rb vector

Wi = (1 − 2τ)∇p0 −
1

τ

(
2τ 2 − τ − 1

2

)
∇Q0

i + λ(τ)D0
i + 2τG0, (3.51)

we define the corrected bounce-back

f̂i(n+ 1,k) = f̂ c
i∗(n,k) + 2hc−2

s f ∗
i ci · uB(bi∗(k)) + h3f ∗

i c
−2
s ci · Wi, (3.52)

which leads, by construction, to the equality (3.50).

Numerical tests We test the corrected routine on the simple problem DBC,
with boundaries parallel to the y-axes, located in x = 0 and x = 1. The last fluid
nodes are placed at half-grid space far from the boundary.
Since

D0
i = Q0

i = ∇2u0 = ∇p(t = 0,x)|∂Ω = 0,

the corrected boundary algorithm reads in this case

f̂i(n+ 1,k) = f̂ c
i∗(n,k) + h2f ∗

i c
−2
s ci · u0(bi∗(k)) + h32τf ∗

i c
−2
s ci · G0. (3.53)
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Figure 3.10: Error in pressure field using the corrected bounce-back rule (3.53)
(compare with figure 3.7), for h = 0.05 (left) and h = 0.025 (right). The accuracy
is now first order. The leading term in the error can be predicted from the coefficient
p(3) of the expansion for pressure. Due to the simplicity of the problem, the leading
order error is a linear function. Observe that in this case the prediction for the leading
order error p(3) is a solution to ∇2p(3) = 0.

The error in the initial pressure and the initial layer in time, in figures 3.10-3.11,
after the corrected initialization have been reduced by one order in h.
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Figure 3.11: Error Ep(t) after corrected bounce-back. Comparisons between different
grid, h = 0.05 (dashed) and h = 0.025 (solid).

General correction

In its general form, the BFL can be corrected, proceeding in the same way as the
bounce-back. The algorithm (3.42) has to be modified as

f̂i(n + 1,k) = C1(q)f̂
c
i∗(n,k) + C2(q)f̂

c
i∗(n,k + ci) + C3(q)f̂

c
i (n,k)

+ hDi(q)f
∗
i c

−2
s uB(bi∗(k)) · ci + h3c−2

s f ∗
i ci ·Wi(q, τ,u0)(bi∗(k)), (3.54)

in order to match the expansion (3.17), for the interior domain, and the gradient
∇p0 on the boundary.
Performing the computationd, to satisfy a relation analogous to (3.50), we found
for the correction the expression

Wi(q, τ,u0) = A(q, τ)∇p0 + F (q, τ)G0 +Q(q, τ)∇Q0
i +D(q, τ)D0

i , (3.55)

where

A(q, τ) =

{
2q − 2τ q ≤ 1

2

−1 + 1−τ
q

q > 1
2

,

F (q, τ) =

{
2τ q ≤ 1

2
τ
q

q > 1
2

,

Q(q, τ) =

{
2q − 2τ + 1−q

τ
q ≤ 1

2

− τ
q
− 1 + 1

q
+ q

τ
q > 1

2

,

D(q, τ) =

{
2τ 2 + τ(−1 − 2q) + q − q2 q ≤ 1

2

1
q
τ 2 + τ

(
1 − 3

2q

)
+ 1

2q
(1 − q − q2) q > 1

2

≡ κq(τ).

(3.56)

In practice, the correction term Wi can be computed starting from the initial
data u0, analytically (if possible), or approximating the derivatives. Concerning

dThe computation has been carried out with MAPLE.
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the gradient of the initial pressure ∇p0, it can be recovered from the Navier-Stokes
equation, as a function of u0 and ∂tu|t=0. On the boundary, both the functions
are known. In the next section 3.4.1 some efficient procedure to evaluate these
and other terms involving the initial data u0 will be analyzed.

Numerical tests The second set of numerical tests regards the vortex solution
TV-NS, defined in section 3.1.1, including two straight vertical boundaries, placed
at distances qW = 0.25 (west boundary) and qE = 0.75 (east boundary) from the
first and the last point in horizontal direction.

The results of the simulations, where the correction (3.51) has been used, are
shown in figure 3.12. The terms appearing in Wi have been computed analyti-
cally.
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Figure 3.12: Error Ep(t) in pressure using corrected boundary conditions, for the
same benchmark as in figure 3.9. Grid h = 0.05 (dashed) and h = 0.025 (solid) are
compared.

Remark. Note that in the problem TV-NS the correction consists only of the
term D0

i (the other functions vanish on the boundary), which appears multiplied
by the polynomial κq(τ). In the case q = 0.5 (bounce-back),

κ 1
2
(τ) = 2τ 2 − 2τ +

1

4
, (3.57)

which has two real roots, τ± =
1

2
+

1√
8
, with τ+ ∼ 0.854. The performed analysis

predicts the existence of a special value of viscosity for which, theoretically, no
correction is needed, to match the desired condition.

As additional validation of the asymptotic expansion technique, figure 3.13 con-
firms this expectation. The error (overall maximum) in pressure, drawn as a
function of τ , takes its minimum near τ+.
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Figure 3.13: Problem TV-NS, boundaries placed at q =
1

2
. Value of

max
j∈G(h)

∣∣p̂(0, j) − pTV-NS(0,xj)
∣∣ after initialization, as function of τ . Left: Error with

the bounce-back rule, for h = 0.05 (points), h = 0.025 (crosses) and h = 0.0125
(circles). The error is not decreasing, and it takes its minimum close to τ ∗2 . Right:
Now the correction is used, first order accuracy is reached. The error behaves like 1

ν
,

for ν � 1, and like λ(τ) far from 1
2

(dotted line).

3.3.4 Accelerated routines

Another important aspect of the initialization algorithm concerns its efficiency.
The convergence of p towards the initial pressure p0 depends on viscosity and can
become very slow, for small ν. As in the periodic case, we want to speed up the
procedure, by using a different value of τ , also in presence of boundaries.
Running the initialization with a different relaxation time τ I (related viscosity
νI), the coefficients of the expansion are (compare with (3.17)):

f
τI ,(1)
i = f ∗

i c
−2
s ci · u0

f
τI ,(2)
i = f ∗

i c
−2
s pI +H

Q(eq)
i (u0,u0) − τ If ∗

i c
−2
s (ci · ∇)ci · u0,

f
τI ,(3)
i = f ∗

i c
−2
s

(
p(3) − τ Ici ·

(
∇pI + ∇Q0

i −
(
τ I − 1

2

)
D0

i − G0

)) (3.58)

where pI is solution of a system of PDE analogous to (3.18), where τ I and νI

replace the original τ and ν:

∇pI + (u0 · ∇)u0 = νI∇2u0 + G0 −
1

τ I
w

c−2
s ∂tp

I + ∇ · w +
1

2
(∇2pI + ∇ · (u0 ⊗ u0)) =

1

2
∇ · G0

(3.59)

In the interior domain, an accelerated equation for pi is obtained:

∂tp
I = νI∇2(pI − p0). (3.60)

So far, everything works just as in the previous periodic boundary situation
(section 3.2.2). If we proceed similarly as in section 3.3.3, the corrected BFL rule
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(3.54) involves now the vector

Wi(q, τ, τ
I ,u0) = A(q, τ I)∇p0(ν) + F (q, τ I)G0 +Q(q, τ I)∇Q0

i +D(q, τ I)D0
i .

(3.61)
It is analogous to the previous (3.51), only the dependence on the original vis-
cosity ν is present in the term ∇p0.

Combining the correction for f
(2)
i derived before, (section 3.2.2) and the one for

f
(3)
i , we can formally define

Algorithm 3.3 (General LB-Initialization Algorithm).
given initial data u0 and force G0

compute O(h)-approximation of ∇ ·G0, g∇

compute O(h)-approximation of ∇p0 on the boundary

set fast relaxation time → τ I

compute O(h)-approximation of Wi

DO n = 1, 2, . . .
interior: algorithm 3.1

BC: rule (3.54)
compute pressure p and equilibrium from p and u0

initialize LBM using (3.32)
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Figure 3.14: Order plot of maximum error in pressure, for DBC problem (left) and
vortex field (right). Comparisons between original viscosity initialization, ν ∼ 0.3
(τ = 0.59), (crosses) and the accelerated routines, τ I = 1 (circles). The routines
have been run under a convergence criterion based on the difference between two
successive iteration of pressure. The gain in computational time is about 70% (in
both the cases). The slopes refer to 1-degree polynomials which are least squares
approximations of the discrete data.
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Initial time derivative

Using the results of the analysis concerning the moments, other interesting rela-
tions can be derived. Comparing the equations

∇p+ (u0 · ∇)u0 = νI∇2u0 + G0 −
1

τ I
w,

relating p and w in algorithm 3.3, and

∂tu|t=0 + ∇p0 + (u0 · ∇)u0 = ν∇2u0 + G0

(Navier-Stokes at initial time), an explicit expression for w is recovered:

w = τ I
(
∂tu|t=0 + (νI − ν)∇2u0

)
. (3.62)

Assuming that our prediction approximates the numerical solution f̂ , in view of
definition (3.24), the field w can be extracted as:

ŵ =

∑
i cif̂i − hu0

h2
= w +O(h). (3.63)

Equation (3.62) predicts that, after the initialization procedure, the populations
contain an approximated initial time derivative of velocity:

∑
i cif̂i − hu0

τ Ih2
− (νI − ν)∇2u0 = ∂tu|t=0 +O(h). (3.64)

Observe that an estimate of ∇2u0 is also needed, using a relaxation time τ I 6= τ
(see section 3.4.1).
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Figure 3.15: Approximation of the initial time derivative (∂tu0x)|t=0, through the field
1
τI ŵx, from (3.62). Grid size is h = 0.025, Original viscosity ν = 0.03 (τ = 0.59).
Accelerated routine has been run with νI = 1

6
(τ I = 1). Left: Surface plot of the

approximation. Right: Surface plot of the error.
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3.4 Further remarks

The asymptotic expansion approach has successfully predicted the behavior of
the LBM. In particular, we have corrected the original algorithm starting from
the prediction we have been looking for (lemma 1.10).
In this conclusive section, we use the expansion in the opposite way: for a given
algorithm, if we are able to predict the results it produces, useful routines can be
constructed.

3.4.1 Overfrozen LBM

So far, we have constructed a solution to the Poisson equation (3.10) as well
as the time derivative ∂tu|t=0, only using a modified equilibrium in the lattice
Boltzmann equation, with a frozen velocity field.
Keeping also the density ρ0 fixed in the equilibrium function, we define the over-
frozen LBE:

f̂i(n+ 1, j + ci) = f̂i(n, j) +
1

τ

(
f eq

i (ρ0(xj), hu0(xj)) − f̂i(n, j)
)

+ g0
i (j). (3.65)

Observe that the operator,

J00
i (f) =

1

τ
(Heq

i (ρ0, hu0) − fi) (3.66)

does not conserve neither the mass nor the velocity.
Performing the asymptotic expansion starting with a regular ansatz of type, we
find the coefficients

f
00,(1)
i = f ∗

i c
−2
s ci · u0

f
00,(2)
i = f ∗

i p0 +H
Q(eq)
i (u0,u0) − τf ∗

i c
−2
s (ci · ∇)ci · u0,

f
00,(3)
i = −τc−2

s f ∗
i

(
ci · ∇p0 + (ci · ∇)Q0

i −
(
τ − 1

2

)
(ci · ∇)2ci · u0 − G0

)
,

(3.67)
p0 being an initial given pressure field.
The coefficients (3.67) do not depend on time. However, the prediction is sta-
tionary only if we start with a second order initialization, which already realizes
conditions (3.67). Therefore, we will analyze algorithm (3.65) in case of start-
ing with inaccurate equilibrium initial values. Of course, this overfrozen method
could not be regarded as a solver for hydrodynamical problem. Nevertheless, we
will show some simple applications hidden in it.

Fast non-equilibrium set up

We have computed (section 2.3) a prediction for the initial oscillatory layer in the
stress tensor appearing using an equilibrium initialization, due to the grid scale
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oscillation (equation (2.97))

σi(n, j) =

(
1 − 1

τ

)n

τc2sci · ∇u0(xj) · ci (3.68)

which affects the coefficient f
(2)
i . The derivation of equation (3.68) works also in

the framework of the overfrozen LBM, initializing with (3.9) or (3.11).
Now, let assume we run the method (3.65), performing linear iterations (HQ(eq) =
0), with τ = 1 and density ρ0 = 0. The predicted additional layer σi vanishes
after a single time step, and the stationary state

f
00,(2)
i (n, j) = f ∗

i c
−2
s (ci · ∇)ci · u0(xj) (3.69)

holds for n ≥ 2. It is therefore possible to set up the non-equilibrium part of the
initial distribution in a fast and efficient way.

Algorithm 3.4 (Non-Equilibrium set up).
set ρ0 = 0, τ = 1

f̂(0, j) = H
L(eq)
i (0, hu0(xj))

linear overfrozen LBM:

f̂i(n+ 1, j + ci) = H
L(eq)
i (0, hu0(xj))

extract second order:

f̂
(2)
i (j) = f̂ih(n+ 1, j) − hc−2

s f ∗
i ci · u0(xj)

initial non-equilibrium : f
neq,(2)
i = τ f̂

(2)
i +O(h)

Stress tensor and Laplacian evaluations

Running the overfrozen method, on a periodic domain, with

ρ0 = 0, τ = 1, G = 0, HQ(eq) = 0 (linear),

the predicted coefficients read

f
(1)
i = f ∗

i c
−2
s ci · u0

f
(2)
i = −f ∗

i c
−2
s (ci · ∇)ci · u0,

f
(3)
i =

1

2
c−2
s f ∗

i (ci · ∇)2ci · u0,

(3.70)

for n ≥ 2.
Again, despite of wrong initial conditions, equations (3.70) recover the behavior
of f̂ for n > 1, since the arising initial layers relaxes to zero after a single iteration,
due to the choice τ = 1. Taking the second order moment of f̂ , we can conclude:

1

h2

∑

i

f̂ici ⊗ cif̂ = c2s(∇u0 + ∇uT
0 ) +O(h2), (3.71)
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which gives a second order approximation of the gradient of the initial velocity
field.
Result (3.71) is already contained in the previous section 3.4.1. Additionally,
evaluating the first order moment of the population,

1

h

∑

i

f̂ici = u0 +
1

2
c2sh

2∇2u0 +O(h3), (3.72)

we have

L̂[u0] :=
1

h3
2c−2

s

(∑

i

f̂ici − hu0

)
= ∇2u0 +O(h). (3.73)

In conclusion, given a field u0 : Ω → R on a periodic domain Ω, we have:

Algorithm 3.5 (u0-Derivatives evaluation).
set parameters: ρ = 0, τ = 1

initial conditions: f̂(0, j) = HL(eq)(0, hu0(xj))
linear overfrozen LBM:

f̂i(n+ 1, j + ci) = H
L(eq)
i (0, hu0(xj))

extract stress tensor:

Ŝ =
c−2
s

h2

∑

i

f̂ici ⊗ ci

extract Laplacian:

L̂(u0) =
1

h3
2c−2

s

(∑

i

f̂ici − hu0

)

In general, for bounded domains, the above procedure 3.5 could fail on the bound-
ary. However, it can still be regarded as an efficient routine, to be coupled with
other approaches (e.g. finite differences, etc.) on the boundary nodes.
In figure 3.16 we check the approximations of S(u0) and ∇2u0 for u0 = uTV over
the periodic domain Ω = [0, 1)2, employing algorithm 3.5. The double logarithmic
plot, of the maximum overall errors, shows first order accuracy in h.

Finite differences interpretation

Note that equation (3.65) has the form

f̂i(n+ 1, j + ci) =

(
1 − 1

τ

)
f̂i(n, j) +Heq

i (ρ0(xj), hu0(xj)) + ĝ0
i (j). (3.74)

If ρ0 = 0, G = 0, τ = 1, it is a simple one-step algorithm.
Removing the dependence on n, we can write the result after a single iteration:

f̂(j) = hc−2
s f ∗

i ci · u0(xj−ci
), (3.75)
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Figure 3.16: Left: Approximation of (∇2u0)x with (3.73), for u0 = uTV . The

difference L̂(u0)−∇2u0 is shown, for a grid h = 0.025. Right: Double logarithmic
plot, for the accuracy of the approximation of S[u0] (sampled with ×) and ∇2u0 (◦).

so that

Ŝ(j) =
1

h
c−2
s

∑

i

f ∗
i ci ⊗ ci(ci · u0(xj−ci

)), (3.76)

and

L̂(u0)(j) =
1

h2
2c−2

s

[∑

i

f ∗
i c

−2
s ci(ci · u0(xj−ci

)) − u0(xj)

]
. (3.77)

We develop equation (3.77) for the D2Q9 model, to establish a connection with
finite difference schemes. In this framework, it is useful a compact notation
[21], denoting the sum of a discrete function over a 2D-stencil, around a node
j = (jx, jy), as a matrix 3 × 3:




a−1,1 a0,1 a1,1

a−1,0 a00 a1,0

a−1,−1 a0,−1 a1,−1


u0(xj) :=

1∑

l,m=−1

al,mu0(xjx+l,jy+m). (3.78)

Inserting the value of the entries, we obtain

L̂x(u0) =
1

h2




1
2

0 1
2

2 −6 2
1
2

0 1
2


 u0(xj) +




−1
2

0 1
2

0 0 0
1
2

0 −1
2


 v0(xj), (3.79)

where we recognize a first order stencil for the Laplacian ∇2u0 and a weighted
averaged of values of v0, which vanishes up to the order h3. Similarly:

L̂y(u0) =
1

h2




−1
2

0 1
2

0 0 0
1
2

0 −1
2


 u0(xj) +




1
2

2 1
2

0 −6 0
1
2

2 1
2


 v0(xj) (3.80)

approximate the y-component.
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In conclusion, the results (3.71)-(3.73) express nothing else but finite difference
approximations of the gradient and the Laplacian of the field u0, contained in
the special LB iteration. Analogous considerations have been done in [21] for the
classical LB method.

3.4.2 Higher order initialization

After the analysis, the question might arise, whether it is possible to further
improve the initial value, defining initializations of higher orders.
Let us consider the periodic case. For the third order, we would need to construct
an initialization consistent with the definition of the coefficient f (3) of (1.139)
(interior algorithm):

f
(3)
i (0,x) = f ∗

i c
−2
s ci · u(3)(0,x)−

τc−2
s f ∗

i ci ·
(
∂tu(t,x)|t=0 + ∇p0(x) + ∇Q0

i (x) −
(
τ − 1

2

)
D0

i (x) − G0(x)

)
.

(3.81)
As before, the only data we have is the initial velocity field u0. To set up a higher
order initialization, we need to compute, at least with first order accuracy, all the
fields appearing in (3.81).
Manipulating the initialization routines described throughout the chapters, and
conventional approximation formulas (e.g. finite differences), the quantities de-
rived from the initial data u0 and p0 can be extracted. With the procedure of
section 3.3.4, also the initial time derivative is available.
An additional equation for the field u(3)(t,x) is recovered in order to cancel
the projected residue (equation (1.142) recovered analyzing the standard LBM,
section 1.3.2).
To have a third order initialization, u(3) should satisfy

∇ · u(3)(0,x) = −c2s∂tp
(2)(0,x) +

c2s
2
∇ · G0, x ∈ Ω. (3.82)

In practice we need additional solvers, which would only lead to a small improve-
ment, in the whole LBM method. Furthermore, in presence of boundaries, using
the initialization algorithm 3.3 also a higher-order boundary rule is required to
avoid layers in p(3).
At this stage, it seems that the gain in the accuracy we could reach does not
actually compensate the required computational effort.





Chapter 4

Moving boundary problems

Using some of the results derived so far, we deal with the possible extensions
for the LBM towards moving boundary problems. The analysis will be used to
motivate the defined algorithms, which are then tested and validated numerically
through various benchmarks.
Section 4.1 begins defining a basic LB code for moving boundary problems. Sec-
tion 4.2 deals with the refill problem, analyzing two algorithms proposed in a
previous work [29]. A rigorous asymptotic allows to point out the critical steps,
advantages and disadvantages of the different approaches. As a result, in section
4.3, we propose and test an improved procedure, based on a similar idea used to
implement boundary conditions in [16].

4.1 A Moving boundary lattice Boltzmann

4.1.1 Fixed lattice and moving boundaries

To model a moving boundary problem, we divide a domain Ω ⊂ R2 as

Ω = ΩF (t) ∪ Γ(t) ∪ ΩS(t),

in a fluid part, a solid part and the interface Γ between them. In the fluid sub-
domain, we consider the following incompressible Navier-Stokes problem with
moving boundaries (MB-NS):

{
∇ · u = 0 t > 0, x ∈ ΩF (t)
∂tu + ∇p+ u · ∇u = ν∆u + G t > 0, x ∈ ΩF (t)

u(t,x) = uB(t,x) x ∈ Γ(t)
u(0,x) = u0(x) x ∈ ΩF (0).

(4.1)

The domain ΩS(t) is supposed to be known (moving boundary problem, without
interaction).

123
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The computational lattice covers both the fluid and the solid part. A flag is
added to each node of the grid to indicate whether it is a fluid or a solid one.
The movement of the boundary can swap the flags, erasing fluid nodes or creating
new ones.

Sets of nodes

Within the grid G(h), we define different classes of points. Running the algorithm,
they are processed differently.

Definition 4.1. Introducing the generalized fluid domain

ΩF = ΩF ∪ Γ, (4.2)

at every time step tn = nh2 we define

• IF (n) :=
{
k ∈ G(h) | xk ∈ ΩF (tn)

}
, the fluid nodes at time tn,

• Iint(n) :=
{
k ∈ IF (n) | ∀ci ∈ V : xk+ci

∈ ΩF (tn)
}
, the interior nodes,

• Ib(n) := {k ∈ IF (n) | ∃ ci ∈ V : xk+ci
∈ ΩS(tn)}, the boundary nodes.

According to definition (4.2), a node will be fluid if belonging to the fluid domain
or to the interface. In words, IF (n) represents the nodes which are relevant for
the fluid dynamics. Among them, the interior nodes have all neighbors in the
fluid domain and are updated with the classical collision+advection algorithm
(1.32). The boundary nodes have at least one neighbor in the solid domain.
For the implementation, we associate to each node the grid flag:

mn(k) =





1 k ∈ Iint(n)

0 k ∈ Ib(n)

−1 k /∈ IF (n)

(4.3)

Furthermore, we distinguish the discrete velocities in a boundary node.

Definition 4.2. Let k ∈ Ib. We define

• VO(n,k) = {ci ∈ V | xk+ci
∈ ΩS(tn)}, outgoing directions;

• VI(n,k) = {ci ∈ V | xk−ci
∈ ΩS(tn)}, incoming directions;

• Ṽ(n,k) = V − VO − VI .

Note that the set Ṽ is symmetric:

Ṽ = −Ṽ. (4.4)
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Figure 4.1: Left: At each time step tn, the nodes have different roles. In the
figure, the circles (◦) are internal nodes, the diamonds (�) are the boundary and the
black squares (�) represent the solid points, out of the domain Ω(tn). Right: The
translation in terms of grid flag (4.3).

Additionally, we collect in a set the boundary couples, i.e. couples formed by
a boundary node and one of the related outgoing direction:

B(Ω(tn), h) :=
{
(k, i) ∈ G(h) × {1, . . . , b} | xk ∈ ΩF (tn), xk+ci

∈ ΩS(tn)
}

(4.5)

(already introduced in section 1.1). It depends on the structure of the domain,
the interface, the grid and the time step. For simplicity, we will denote it as

Bn = B(Ω(tn), h).

It holds
(k, i) ∈ Bn ⇐⇒ k ∈ Ib(n) and ci ∈ VO(n,k).

In future, the preference of one notation rather than the other will depend on the
context.
Equivalently

(k, i) ∈ Bn ⇐⇒ ∃q ∈ [0, 1) : xk + qhci ∈ Γ(tn).

Note that since the node on the interface are considered fluid, the variable q can
assume the value zero. There exists a natural correspondence

Bn → Γ(tn)
(k, i) 7→ bn

i (k)
(4.6)

where

bn
i (k) := xk + qhci, (4.7)

is the boundary point related to the couple (k, i). In some cases, we will use the
set

Bn = {bn
i (k), | (k, i) ∈ Bn} ⊂ Γ, (4.8)
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which collects the intersections of grid and interface. Calling G(h) the subset of
Ω containing the lattice links (equation (1.10)):

Bn = G(h) ∩ Γ . (4.9)

If we consider the interface to be a closed, regular, curve (in two dimensions), we
can introduce a parameterization

Γ → [0, 2π)
b 7→ γ

(4.10)

which is a one-to-one correspondence In the following, we will use both the nota-
tions b(γ) and γ(b) to denote a point on the interface and (resp.) its coordinate.

Refill step As already remarked, the characterization of the grid nodes (4.3)
is time depending. According to the movement of the boundary, the nodes can
move from the boundary to the internal set, appear or disappear as fluid node.
If a node becomes fluid only at time tn+1, i.e.

xk ∈ ΩF (tn+1), xk /∈ ΩF (tn),

the distributions f̂i(n+ 1,k) have to be defined. We will call the process dealing
with initialization of a new fluid node a refill.

4.1.2 Description and analysis of the algorithm

According to the previous notations, we define

Algorithm 4.1 (Moving Boundary LB).
Initialize variables

DO n = 1, . . .
INTERIOR-LBM: for (n, j, i) : j ∈ Iint(n), j ∈ Ib(n) ∧ ci /∈ VI(n, j):

collision + advection

BOUNDARY CONDITIONS: for (k, i) ∈ Bn:

boundary condition rule for f̂i∗(n+ 1,k) (with ci∗ = −ci)
UPDATE DOMAIN AND FLAGS :

ΩS(tn) → ΩS(tn+1) (known) ⇒ mn → mn+1

IF new fluid nodes

{REFILL}
END

Algorithm 4.1 is defined in an extremely general way. Going through it, we
describe more in detail some possible choices for boundary condition algorithms
and refill approaches.
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Use of the Asymptotic analysis

In this case, we want to investigate the algorithm composed by

LBMMB
i (h, f̂h)(n, j) :=





ICi(h, f̂h)(j) n = 0

L(h, f̂h)(n, j) n > 0, (j, i∗) 6∈ Bn

BCi(h, f̂h)(n, j) n > 0, (j, i∗) ∈ Bn

REFi(h, f̂h)(n, j) n > 0, mn−1(j) < 0 ∧ mn(j) ≥ 0

(4.11)
(where i∗ is such that ci∗ = −ci). Here, IC is an initialization rule, LBM is
the standard lattice Boltzmann algorithm for the interior domain, BC is the
algorithm used for the boundary conditions and REF the one to deal with the
refill step.
We want to use the same ansatz ALBM obtained for the interior domain, which is
represented by the prediction (corollary 1.1 of chapter 1)

F LBM
h (n, j) =

2∑

k=0

hkfLBM,(k)(tn,xj), (4.12)

with coefficients

f
LBM,(0)
i = f ∗

i ,

f
LBM,(1)
i = f ∗

i c
−2
s ci · u,

f
LBM,(2)
i = f ∗

i c
−2
s p+H

Q(eq)
i (u,u) − τf ∗

i c
−2
s (ci · ∇)ci · u,

(4.13)

where u and p solve the Navier-Stokes moving boundary problem.
To check whether it is possible to use the prediction F LBM in this case, we analyze
the algorithm (4.11) starting from the ansatz ALBM. As explained in section 1.3.5
(and already applied to the analysis of the initial condition), to do this we insert
the coefficients (4.13) (which cancel the leading orders of the LBM-residue) into
the expression of the residues of the moving boundary LBM (4.11).

Remark. Once we have justified the use of the prediction (4.12), we can again
conclude that the lattice Boltzmann solution f̂ approximates the solution of
Navier-Stokes, as the interior solution does. In section 1.3.4, using (4.12), we
concluded

h−1û = h−1
∑

i

cif̂i = u +O(h2), p̂ = c2s

∑
i f̂i − 1

h2
= p+O(h). (4.14)

Boundary conditions

The implementation of the boundary conditions of problem (4.1), within a kinetic
scheme, suffers from the same difficulties encountered with the initialization. The



128 Chapter 4. Moving boundary problems

LBM involves a set of variables which is typically larger than the number of
conditions provided by the hydrodynamical problem. Therefore, the boundary
conditions of the original problem are not enough to fix all degrees of freedom
of the kinetic scheme. The additional constraints have to be defined carefully, in
order to avoid the appearance of wrong behavior on the hydrodynamical level.

The topic is not treated in detail here. Description of reliable choices can be
found in [4, 12, 15, 16, 22, 34]. An overview of different approaches, analyzed
with the asymptotic expansion technique has been presented in [20]. We will only
summarize shortly the asymptotic analysis and the main results, regarding the
method proposed in [4], which we use in the numerical simulations.

BFL rule Figure 4.2 (left) exemplifies the neighborhood of a boundary node
xk. We have to define the population

f̂i(n+ 1,k),

for the velocity ci which are incoming directions at a node k ∈ Ib(n), according
to the velocity uB prescribed on boundary.
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Figure 4.2: Left: The point xk is a boundary node at the time tn, the directions
i∗ = 1, i∗ = 2 are outgoing. Therefore, the corresponding incoming i = 5, i = 6 have
to be defined, in accordance with the Dirichlet condition uB. Right: Sketch of the
BFL boundary conditions. The bold line is the boundary, i is an incoming direction
at the boundary node xk (circles), i∗ is the related outgoing direction connecting xk

to a solid node (cross). q is the distance (in lattice units) between xk and the point
bn

i (k) ∈ Γ (see equation (4.7)).

The BFL-rulea interpolates the incoming population at the node xk, using the
values of the neighboring nodes after collision (see figure 4.2), and adding an
amount of momentum to achieve the required Dirichlet condition on velocity.

aFrom M.Bouzidi, M.Firdaouss, P.Lallemand, ref. [4].
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If i∗ indexes the link such that ci∗ = −ci, then (k, i∗) ∈ Bn. The algorithm reads

f̂i(n + 1,k) = C1(q(n))f̂ c
i∗(n,k) + C2(q(n))f c

i∗(n,k + ci) + C3(q(n))f c
i (n,k)+

+ 2D(q(n))f ∗
i c

−2
s huB(bn

i∗(k)) · ci, (4.15)

where f c
i is the population after collision, q ∈ [0, 1) is the distance between xk

and the boundary, along the link ci (in lattice units) and bn
i∗(k) is the point

belonging to Γ defined in (4.7).
The interpolation coefficients (time depending through q) have the expressions

C1(q) =

{
2q q < 1

2
1
2q

q ≥ 1
2

, C2(q) =

{
(1 − 2q) q < 1

2

0 q ≥ 1
2

, C3(q) =

{
0 q < 1

2
2q−1
2q

q ≥ 1
2

(4.16)
while

D(q) =

{
1 q < 1

2
1
2q

q ≥ 1
2

. (4.17)

For q = 1
2
, equation (4.15) reduces to the well known bounce-back rule (see also

section 3.3.2),

f̂i(n+ 1,k) = f̂ c
i∗(n,k) + 2hf ∗

i c
−2
s uB(bn

i∗(k)) · ci. (4.18)

Asymptotic analysis First, we compute the residue for a regular expansion
of the ansatz ALBM inserting the prediction (4.12) into the algorithm (4.15).
The different orders are sorted, using a Taylor expansion around the pointb

(tn,b
n
i∗(k)) ∈ Γ(tn) and the relations

xk = bn
i∗(k) + hq(n)ci

xk+ci
= bn

i∗(k) + h(1 + q(n))ci .
(4.20)

In the resulting equation, we insert the expression

f
(1)
i = c−2

s f ∗
i ci · u,

coming from the interior algorithm. We find the following condition (abbreviating
b = bn

i∗(k))

(1 + C1 + C2 − C3) ci∗ · u(tn,b) = 2D ci∗ · uB(tn,b). (4.21)

Since
∀q ∈ [0, 1) : 1 + C1(q) + C2(q) − C3(q) = 2D(q), (4.22)

bTo analyze the boundary conditions we have to choose a sequence of the center (t̄h, x̄h) of
the Taylor expansion such that

∀h ∈ H : x̄h ∈ Γ(t̄h). (4.19)
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equation (4.21) reduces to

ci∗ · u(tn,b) = ci∗ · uB(b). (4.23)

In substance, it is reasonable to add a constraint on the field u, and modify the
ansatz (equation (1.155), for the interior LBM and the initialization rule) as

A(1) = {F ∈ ALBM | f (1)
i (Fh) = f ∗

i c
−2
s ci · u(Fh),∇ · u = 0,

u(0,xj) = u0(xj), u(tn,b) = uB(b)}. (4.24)

It is a restriction reflecting Dirichlet boundary conditions in problem (4.1). It
means, that the velocity has to be a solution to Navier-Stokes, satisfying the
proper initial and boundary condition.
In the second order, an analogous procedure leads to [20]

ci∗ · u(2)(F ) = (−q + C1(1 − q) − qC2 + C3(1 + q)) ci∗ · ∇u · ci∗, (4.25)

where
u(2)(F ) =

∑

i

cif
(2)
i (F ). (4.26)

Since
∀q ∈ [0, 1) : −q + C1(1 − q) − qC2 + C3(1 + q) = 0, (4.27)

it follows
u(2)(F )(tn,b) = 0, (4.28)

i.e., we find a boundary condition consistent with the solution

u(2) = 0

for the interior domainc. In virtue of equations (4.23), (4.28), we can select the
expansion up to the second order with coefficients fLBM,(k). The scheme preserves
the predicted second order in velocity and the first order in pressured.

Local boundary conditions The boundary rule (4.15) can be implemented in
a simple way, but not in all situations. Namely, it requires at least one additional
fluid node in the incoming direction. Boundaries with special curvatures, or
corners (figure 4.3), are not covered by this approach.

cTrying to do the same for the k = 3, we find a relation which cannot be satisfied within
both by the interior and the boundary algorithm. Theoretically, the regular ansatz could be
modified [20] to predict also the irregular behaviors in higher orders.

dAs remarked at the beginning (section 1.2.1), it does not assure

|F̂ BFL − f̂ | = O(h3),

for any t > 0, since the BFL-rule may suffer from instability. In particular, algorithm (4.15)
does not conserve the mass, in contrast to the bounce-back condition (4.18), whose stability has
been proven [23, 25]. On the other hand, the bounce-back rule is not able to reach the same
accuracy.
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Figure 4.3: Two situations in which BFL cannot be applied, in the node indicated
with •. Left: The fluid domain is inside a circle, the upper node, considered belonging
to the fluid, does not have horizontal fluid neighbors, for any h > 0. Right: The
critical node is located in a corner, no diagonal neighbors are available.

In practice, the BFL rule might be replaced, in such special points, by the simpler
bounce-back rule (4.18). However, this leads to a loss in accuracy. A possible
solution has been presented in [22]. It is based on the principle of lemma 1.10
(self-compatibility), directly approximating the coefficient given for the interior
LBM. Through a linear combinations of the different fm(n,k), for cm ∈ VI(n,k),

an approximation of the predicted second order coefficient
˜

f
LBM,(2)
i is constructed,

defining the new population as the sum

f̂i(n+ 1,k) = f
LBM,(0)
i + hf

LBM,(1)
i + h2 ˜

f
LBM,(2)
i =

= f
LBM,(0)
i + hf

LBM,(1)
i + h2f

LBM,(2)
i +O(h). (4.29)

Periodic pressure drop In some simulations, problems involving pressure
boundary conditions can be considered. The following algorithm [9] can deal
with a directional pressure drop applied on a periodic box.
Let us assume, for simplicity, to have Ω = [0, 1)2 and the condition

p(t,x)|x=0 − p(t,x)|x=1 = ∆P (t), (4.30)

besides the periodicity in all directions.
The idea is to re-inject the distributions exiting from the side x = 1 after having
modified the coefficients in order to achieve the difference ∆p. In some steps, the
Periodic Pressure Drop conditions read

DO jy = 1, 2, . . . , Ny

periodic BC: fi(n+ 1, (1, jy)) = fi(n, (N, jy))

evaluate ∆P = c2s [ρ(n+ 1, (1, jy)) − ρ(n, (N, jy))]

impose ∆P: fi(n+ 1, (1, jy)) = fi(n+ 1, (1, jy)) + f ∗
i c

−2
s h2

[
∆P − ∆P

]

END

(4.31)



132 Chapter 4. Moving boundary problems

The periodicity assures mass conservation during the simulation, since the quan-
tities added/subtracted on both the sides are balanced.

4.2 Refill methods

Figure 4.4 illustrates an example of a node which has become part of the fluid
region at a certain time step. In that point, the LBM populations have to be ini-
tialized. We want to approach the problem from the point of view of asymptotic
analysis. In view of lemma 1.10, it would be enough to define an algorithm by
approximating the coefficients fLBM,(k) in the different orders. However, a direct
approximation can be difficult, since it contains unknown functions (for exam-
ple, the Navier-Stokes solution). Therefore we will rather consider first-attempt
algorithms, perform the analysis in the usual way and look at the conditions on
the coefficients and for the corrections we need to achieve the desired prediction
(see section 1.3.5).
The starting point are two algorithms, proposed in [29], which will be described,
analyzed and improved in this section.
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Figure 4.4: The boundary has moved from the time tn (dashed line) to tn+1 (solid
line), over the node xk. Populations f̂i(n+ 1,k) need to be defined.

4.2.1 Benchmarks

We define simple benchmarks, which allow to easily construct analytical solutions
and to better focus on the problem we are interested in. Once the algorithms have
been fixed, we will consider more general test cases (section 5.5).

Plane Moving Walls

First, we set Ω = R2, and choose

ΩF (t) = [aL(t), aR(t)] × R, (4.32)
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where aL and aR are given function, in the form

aL(t) = l0 + ΦW (t), aR(t) = r0 + ΦW (t). (4.33)

The model describes the space between two plane infinite walls, parallel to the
y-axis and moving horizontally with the same given velocity,

ȧi(t) = Φ̇W (t) = ϕW (t), i = L,R (4.34)

with incompressible flow in between. We call this benchmark the Moving Walls
(MW) problem (figure 4.5).
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Figure 4.5: Left: Sketch of the Moving Walls model.The distance aR(t) − aL(t)
is fixed in time, both the walls move with the same velocity. Right: Wall’s speed
ϕ̂W (t̂), as a function of (non dimensional) time. To avoid initial layers in leading
orders, we use a smooth start, approaching a constant velocity with a C 2-profile.

Smooth start The idea of the benchmark is to simulate a steady constant
horizontal movement of the walls. We initialize the simulations using equilibrium
initial conditions

f̂i(0, j) = Heq
i (1, hu0(xj)).

As discussed in chapter 1, such choice is reliable only for particular initial condi-
tions of the flow. Therefore, we start with a rest configuration, moving the walls
according to a function ϕW such thate

ϕW (0) = 0,
ϕW (t) = 1, ∀t ≥ T1,
ϕW (t) ∈ C2,

(4.36)

eExplicitly, ϕW (t) = ϕ̂W (t̂), with t =
T1

2
t̂ and

ϕ̂W (t̂) =





t̂3

6
for t̂ ∈ [0, 1]

3t̂5 − 22t̂4 +
371

6
t̂3 − 83t̂2 + 54t̂ − 41

3
for t̂ ∈ [1, 2]

1 for t̂ ≥ 2.

(4.35)
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for a given T1 > 0. The C2-regularity is needed to avoid troubles like boundary
and initial layers, in the leading orders.

We consider two different cases. In the Simple Moving Walls (SMW) model, the
boundaries start to move with the fluid at rest. Due to incompressibility, in the
exact solutions the fluid and the walls move together as a rigid structure:

uSMW(t, x) = ϕW (t), vSMW = 0 (4.37)

The pressure can be chosen up to a time depending function. The field

pSMW(t, x) = −ϕ̇W (t)

(
x− aL(t) + aR(t)

2

)
. (4.38)

satisfies Navier-Stokes plus the zero-average conditionf

∀t ≥ 0 : 〈pSMW〉(t) =

∫

ΩF (t)

pSMW(t,x)dx = 0. (4.39)

All the quantities are only function of x.
A variant of this problem is obtained forcing a non trivial flow inside the walls.
Considering the 2π-Taylor vortex solution (see section 1.3.4),

uTV (t, x, y) =

(
− 1

2π
cos (2πx) sin (2πy)

1
2π

sin (2πx) cos (2πy)

)
exp (−8π2νt) (4.40)

pTV (t, x, y) = − 1

16π2
(cos (4πx) + cos (4πy)) exp (−16π2νt), (4.41)

in the Vortex Moving Walls (VMW) benchmark, we add, to the problem (4.1),
the boundary conditions

u(t, ai(t)) = ϕW (t) + uTV (t, ai(t)), i = L,R (4.42)

and the volume force

GV MW (t,x) = ϕW (t)∇uTV (t,x). (4.43)

Analytically, we have the solutions

uV MW (t,x) = ϕW (t) + uTV (t,x), vV MW = vTV (t,x) (4.44)

pV MW (t, s) = pTV (t,x) + pSMW(t, x). (4.45)

fSuch choice is justified by the initial condition, ρ = 1. In view of equation (1.168), used to
extract the pressure, at the initial time we have 〈p〉(0) = 0.
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Forced renormalization of pressure A pressure which solves Navier-Stokes
is fixed up to a function of time. Since we have chosen the zero average solution
(4.39), this condition has to be forced in the algorithm, too. Therefore, after each
LB-time step the populations are renormalized:

f̂i(n, j) = f̂i(n, j) −
1

|IF (n)|


 ∑

j∈IF (n)

f̂i(n, j) − 1


 (4.46)

(|IF (n)| being the number of generalized fluid nodes), forcing a zero average
pressure.

Handmade refill process

To isolate the refill step within an LB algorithm, another particular benchmark is
used, retracing the benchmark CURVE of section 2.3.1 (pointwise arise of error).
We consider the curve

Γ = {x ∈ Ω | ‖x − xC‖ = R} = {xC +R(cos γ, sin γ), γ ∈ [0, 2π)} (4.47)

as the interface between a fluid domain and a solid disk of radius R centered at
xC .
However, instead of simulating a moving boundary problem, we perform virtual,
prearranged refills, without moving the interface. More precisely, having the set

Ib(Γ) = {km | m = 1, . . . NΓ} (4.48)

of the boundary nodes numbered from 1 to NΓ, we define

T (Γ) =

{
nm := m

h−2

NΓ
| m = 1, . . .NΓ

}
. (4.49)

The benchmarks proceeds as follows: at time step nm the values f̂i(nm,km) are
erased, trying the reconstruction as it would be a refill step. At time T = 1, each
node in Ib(Γ) will have been processed once. Unlike the problem of section 2.3.1,
we now include also zero velocity boundary conditions on Γ.

4.2.2 Equilibrium refill (EQ)

This approach [29] reconstructs the populations on the new node using the equi-
librium distribution for approximate density and velocity.
Calling k the node to be refilled at time step n + 1 (see figure 4.4), first we
compute approximations of density and velocity on the new node

ρ̃n+1,k = Fρ(ρ̂,k), ũn+1,k = Fu(û,k), (4.50)
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through some extrapolation rules Fρ, Fu, setting then

f̂i(n+ 1,k) := Heq
i (ρ̃n+1,k, ũn+1,k). (4.51)

In other words, the equilibrium refill reads

REFEQ
i (h, f̂h)(n+ 1,k) := f̂i(n+ 1,k) −Heq

i (ρ̃n+1,k, ũn+1,k). (4.52)

The choice of the extrapolation might depend on the particular flow and motion
of the boundary. For example, if the boundary is moving parallel to the x-axis
(figure 4.4, left), a three-points backward approximation (along the x-axis) can
be used. The density can be extrapolated looking at the last three nodes,

ρ̃n+1,k = 3ρ̂(n+ 1,k − c1) − 3ρ̂(n+ 1,k − 2c1) + ρ̂(n+ 1,k − 3c1), (4.53)

and the velocity interpolated between the boundary and the previous two nodes:

ũn+1,k = 2
huB(tn+1,b

n
1 )

q2 + 3q + 2
+ 2q

û(n+ 1,k − c1)

q + 1
− 2q

û(n+ 1,k − 2c1)

q + 2
(4.54)

(the velocity uB has to be rescaled by h, since it is expressed in physical unities),
where

q =
1

h

(
bn+1

1 (k) − xk

)

is the distance from the boundary (at time tn+1) in lattice units. According to
the choice of the direction c5 for the interpolation, we have used the boundary
point bn+1

1 (k) in the previous formulas.

Numerical tests In figure 4.6, we compare the maximum overall errors for
pressure and velocity for the moving walls model. The application of the Equi-
librium refill, shows unsatisfactory results for pressure.
Although in the SMW the results are still first order accurate, in the VMW the
pressure is inconsistent, since the error does not decrease refining the discretiza-
tion.
Regarding the velocity (figure 4.7), we observe the first order accuracy in the
problem VMW.

Asymptotic analysis We insert the interior coefficients (4.13) into the algo-
rithm (4.52), checking the resulting conditions to cancel the residue.
Since we are using a second order interpolation, we assume that (4.14) holds for
the leading orders of ρ̃ and ũ. Therefore, ρ̃ and ũ approximate the hydrodynamics
on the boundary:

ρ̃ = 1 + h2c−2
s p(2) +O(h3), ũ = huB +O(h3)
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Figure 4.6: Maximum errors in pressure Ep(t). On the top, the problems SMW,
for which the results on the grids 40 × 40 (left side) and 80 × 80 (right side) are
compared. On the bottom, the more general VMW.
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Figure 4.7: Maximum error in velocity simulating the problem VMW. Two grids are
compared, 40 on the left, 80 × 80 on the right. The error decreases like h.
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(evaluated in (tn,b
n
i (k))). We can conclude that a condition arising from the

equilibrium refill is

f
(k)
i (Fh) = f

eq,(k)
i (Fh), for k = 0, 1, 2. (4.55)

Compared to the interior LBM, the non-equilibrium is missing.
In conclusion, for a flow such that

fLBM,(2) = f eq,(2)

(such as the SMW), the size of the minimum precision class remains small enough
(o(h2)) also including the refill step. Hence, we can use the truncated expansion
up to the second order, which predicts first order pressure.
Otherwise, we can restrict to

F̂ = f (0) + hf (1),

which does not contains information about the pressure, but is enough to predict
a first order accurate velocity. This expectation is confirmed by the result shown
in figure 4.7.
Actually, the refill step produces analogous phenomena as those described in
chapter 2, where wrong initial conditions for the second order coefficient have
been analyzed. In particular, we refer to the theoretical investigation and to the
numerics performed in section 2.3.1 (lack of non-equilibrium). We have shown
how the accuracy in pressure and velocity could be spoiled, even if they are
correctly approximated (as for algorithm (4.52)) in the equilibrium function.

4.2.3 Interpolation + Advection refill (IA)

In view of the previous analysis, refill (4.52) cannot be satisfactory. The follow-
ing approach combines different algorithms, according to the different roles the
links play in the LBM. Using the sets VO (outgoing directions), VI (incoming
directions), and Ṽ of definition 4.1, we initialize

f̂i(n+ 1,k) =





f̂i(n,k − ci), ci ∈ VO(k, n+ 1) (advected)

E(f̂i, n+ 1,k, ci) ci ∈ VI(k, n+ 1) (i-interpolated)

F(f̂i, n+ 1,k,uB) ci ∈ Ṽ(k, n+ 1) (u-interpolated)

(4.56)

where E is the second order extrapolation

E(φ, n,k, ci) = 3φ(n,k + ci) − 3φ(n,k + 2ci) + φ(n,k + 3ci) (4.57)

along the direction ci, and F is an approximation routine to be chosen according
to the problem. For example, we can use an extrapolation along a particular
direction cex

m , relevant for the problem. In the problems SMW or VMW we use
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a backward extrapolation along the x-axis, taking cex
m = c5, since the walls are

moving horizontallyg (as we did for the equilibrium refill).

Numerical tests Simulating the same benchmarks used to test the equilibrium
refill (4.52), we observe now that the troubles in pressure have been solved (figure
4.8). The accuracy in velocity has been improved to second order, and in the
pressure to first order in h.
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Figure 4.8: Same tests as in figure 4.6, but using the refill (4.56). Errors in pressure
Ep(t) for the problems VMW. Results are first order accurate.
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Figure 4.9: Errors in velocity for the refill method (4.56). Left: Grid 40 × 40.
Right: Grid 80 × 80.

Regarding the benchmark CURVE, in chapter 2, simulating the pointwise re-
equilibration we have already tested an algorithm analogous to the equilibrium
refill. We obtained an inconsistent pressure (figure 2.14). Figure 4.11 shows that
the accuracy has been improved, employing the refill (4.56).

gIn general, different approaches are possible. For example, one could choose to extrapo-
late along the direction which minimizes the scalar product with the velocity uB at a closed
boundary point.
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Figure 4.10: Order plot of the velocity and the pressure, testing the refills on different
grids. Legend: (◦) : EQ refill, pressure. (×): EQ refill, velocity . (�) : IA refill,
pressure . (∗) : IA refill, velocity .
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Figure 4.11: Interpolation+Advection refill used in the benchmark CURVE. Maxi-
mum error in pressure is shown. Left: Grid 40 × 40. Right: Grid 80 × 80.
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Asymptotic analysis Now, the three different rules in (4.56) coupled with the
internal lattice Boltzmann have to be separately analyzed.
Since the outgoing directions are updated with the interior LBM, the residue will
vanish automatically using the interior coefficients.
Regarding the incoming directions, we expand the relations

f̂i(n+ 1,k) = 3f̂i(n+ 1,k + ci)− 3f̂i(n+ 1,k + 2ci) + f̂i(n+ 1,k + 3ci). (4.58)

Included in these formula, are the relations for the BC for f̂i(n+ 1,k+ ci), since
k + ci was a boundary node at time tn. The update rule is actually

f̂i(n + 1,k) = 3(C1(qn)f̂ c
i∗(n,k + ci) + C2(qn)f̂ c

i∗(n,k + 2ci) + C3(qn)f̂ c
i (n,k)+

+Di(qn,uB)) − 3f̂i(n+ 1,k + 2ci) + f̂i(n+ 1,k + 3ci), (4.59)

where qn = q(n) is the distance at the previous time step. Obviously, only the case
qn >

1
2

is consideredh (before the node k had entered the fluid region). Inserting

a regular expansion for f̂i(n+1,k) and the interior coefficients on the right hand
side of (4.59) (where only interior nodes are involved), we find

f
(k)
i = fLBM

i , k = 0, 1, 2.

Regarding the directions ci ∈ Ṽ, we insert the interior coefficients into (4.59),
since these populations belong to the inner solution. Since the refilled population
are constructed using a second order approximation of the solution in the interior
domain, the resulting residue is removed up to the second order.
Eventually, we can use a prediction

F̂h = fLBM,(0) + hfLBM,(1) + h2fLBM,(2) (4.60)

based on the coefficients (4.13), which predicts the same accuracy as the interior
LBM and boundary conditions (4.15).
Stability remarks. As observed deriving the asymptotic expansion technique
(in section 1.2.1), (4.60) does not assure

|F̂ − f̂ | = O(h3).

In particular, the extrapolation rules used to get the approximations could pro-
duce instability. In fact, unlike the equilibrium refill (4.52), the algorithm (4.56)
does not interpolate u and p on the new nodes. It can affect the mass conserva-
tion, already spoiled by the boundary condition rule. However, we do not enter
in the details of a stability analysis.

hEven more, the analysis can be reduced to

qn = 1 − O(h).
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4.3 A compromise: Equilibrium + Non equilib-

rium refill (EnE)

After the previous analysis and the numerical tests, we can figure out the advan-
tages and the disadvantages of using the two approaches.

The equilibrium refill is easily implemented with interpolation restricted to
the hydrodynamics, but it gives inaccurate results. In particular, we observe a
smooth hydrodynamics right after the refill step (due to the interpolation), which
becomes highly inaccurate (inconsistent pressure) in the following iterations. It
is due to the missing non equilibrium. As we discussed in chapter 2, such error
appears in pressure and velocity as a grid scale oscillations, after one propagation
step, damped in a viscosity dependent number of iterations.

The second approach theoretically solves that problem. The reconstruction in-
volves the population, either transported from the inner domain or extrapo-
lated. As a consequence, both equilibrium and non equilibrium are recovered,
with enough accuracy. However, the implementation of this algorithm is not lo-
cal and needs the communication with several neighboring nodes. It can become
complicated in a general case.

Idea In view of the previous considerations, the aim is to construct a refill step

• which is a simple algorithm, well fitting to LB implementation,

• based on interpolation of p and u,

• able to reconstruct equilibrium and non equilibrium with enough accuracy
to keep the precision of the scheme.

According to the analysis, it is enough to complete the reconstruction of the
populations copying the non equilibrium part from a neighbor of the new fluid
node. We choose a simple first order extrapolation. It has to be mentioned that
a similar idea was used in [16], to implement the Dirichlet boundary condition.
In practice, we propose the following algorithm:

Algorithm 4.2 (EQ+non EQ (EnE) Refill).
choose an extrapolation direction cex

m (incoming)
interpolate:

ρ̃ = Fρ(ρ, n + 1,k, cex
m ), ũ = Fu(u, n + 1,k, cex

m )
use approximated equilibrium

f̂i(n+ 1,k) = Heq
i (ρ̃, ũ) , i = 1, . . . , b

add approximated non equilibrium

f̂i(n+ 1,k) = fi(n+ 1,k) + fneq
i (n + 1,k + cex

m ), i = 1, . . . , b
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Asymptotic Analysis We can recycle the results of the previous analysis.
By construction, the new populations contain a second order correct equilibrium
part, and a first order non equilibrium (approximation from a neighboring node).
In conclusion, with an algorithm which requires little additional work compared
to the EQ-refill, we are able to apply lemma 1.10, i.e. the prediction for the
moving boundary algorithm achieves the same accuracy in pressure and velocity
as the interior LBM.

4.3.1 Numerical simulations

We use the simple test cases VMW and CURVE, to check the validity of the
prediction for the EnE-refill. In figure 4.12, the error in pressure for the problem
VMW is shown, comparing two different grids. With the double logarithmic plot,
we measured experimentally the accuracy order of pressure and velocity. The
results for the error behavior are similar to the interpolation+advection refill.
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Figure 4.12: Benchmark VMW, using Equilibrium-non Equilibrium refills. (a) Max-
imum error in pressure. The grid 40 × 40 and 80 × 80 are compared. (b) Double
logarithmic plot, of the maximum errors (in space and time) in pressure and velocity,
with approximate orders of accuracy.

Figure 4.13 shows the results for the benchmark CURVE. The first order accuracy
in pressure is achieved.
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Figure 4.13: Results for the benchmark CURVE, refilling the nodes with the
Equilibrium-non Equilibrium method. Maximum error in pressure versus time, for
the grids 40× 40 (left) and 80× 80 (right). In this case, the error decreases faster
than h.



Chapter 5

Fluid structure interaction

Due to the particular suitability of the LBM in modeling flows through complex
geometries, the interaction between fluid and structure became an interesting field
of application of the method. Such problems, however, require special routines
to evaluate the boundary forces due to the fluid flow.
The best characteristics of the LBM lie in its efficiency. Therefore, any additional
algorithm should be able to preserve such a property, in order to keep the LBM
numerically competitive. We focus on the Momentum Exchange algorithm (MEA,
proposed in [27]), which models the fluid-boundary interaction based on simple
particle dynamics, and which requires only a low additional computational effort.
In fact, this algorithm has been used in numerical simulations [28, 30, 35] but, to
our knowledge, has not been investigated theoretically in depth. In this chapter,
besides some comparison between different approaches, we present an asymptotic
analysis of that algorithm, discussing in general its accuracy.
In section 5.1 we set up the model problem and some benchmarks. Some meth-
ods to evaluate the forces, based on the direct extrapolation of the stresses, are
shortly presented, tested and commented in section 5.2. The MEA is described
in section 5.3, with examples of applications, analysis and comparisons between
theoretical and numerical results. An accuracy estimate is stated. In section 5.4
an improved algorithm for the evaluation of the local interaction is proposed,
shortly discussed and tested on some benchmark. Finally, section 5.5 summa-
rizes the steps performed so far and presents the numerical results for simple
interaction problems.

5.1 The flow model

We consider the domain Ω decomposed in a fluid and a solid part, separated by
an interface Γ:

Ω = ΩF (t) ∪ Γ(t) ∪ ΩS(t).

At the beginning, we assume that ΩS(t) moves with a given velocity along a

145
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prescribed path. This will help us to formulate simple test problems for which
the exact boundary forces are known. If the state of the system is known at
the initial time t = 0, the dynamics of the fluid can be described by an initial
boundary value incompressible Navier-Stokes problem,

{
∇ · u = 0

∂tu + ∇p+ u · ∇u = ν∇2u + G
t > 0, x ∈ ΩF (t)

u(t,x) = uB(t,x), x ∈ Γ(t)

u(0,x) = u0(x), x ∈ ΩF (0).

(5.1)

where uB(t,x) is the given velocity of the interface point x ∈ Γ(t) at time t and
G is the volume force acting on the fluid.
We are interested in the total boundary forcea defined according to

FS(t) =

∫

Γ(t)

(−p(t,x)I + Sν(t,x)) · n(x)dγ(x), (5.2)

where
Sν = Sν[u] = ν

(
∇u + ∇uT

)
(5.3)

is the viscous stress tensor and n the normal vector to Γ, pointing out of the solid
domain. If t denotes the tangential vector to Γ, which is obtained by following
the interface counterclockwise, the local stresses are

ft := (Sν · n) · t, fn := −p + (Sν · n) · n. (5.4)

A coordinate γ ∈ [0, 2π) to parameterize the interface is introduced (equation
(4.10)). To denote a point on Γ we use both the expression b and b(γ), or
indicating its coordinate with γ(b).

The motion of the structure

In the present work, we do not focus on a general dynamical of the structure.
Specifically, only rigid bodies (disks) are considered, for which Newton’s equations





ẍCM = FS =
FS

M

Ω̇ = TS =
TS

I

(5.5)

aThe total torque acting on the solid,

T(t) =

∫

Γ(t)

(x − xCM (t)) × [(−p(t,x)I + Sν(t,x)) · n(x)] dγ(x),

could be considered in the same way.
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(M and I being the mass and the moment of inertia) are solved with a simple
explicit integration in time (first order Euler method):

ûn+1
CM − ûn

CM = h2F
n

S

Ω̂n+1 − Ω̂n = h2T
n

S

x̂n+1
CM − x̂n

CM = h2
(
ûn+1

CM + ûn
CM

)
.

(5.6)

5.1.1 Benchmark: the cylinder-in-flow

In order to set up a lattice Boltzmann method including the boundary force
evaluation, we consider a disk ΩS(t) with radius R < 1 as a solid body in the
rectangle Ω = [0, L] × [0, 1] (see figure 5.1).
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Figure 5.1: The model CiF. The parameter L regulates the ratio between the length
and the width of the domain. The solid ΩS(t) = {x ∈ Ω | ‖x− xC‖ < R} is placed
in the center. We refer to the boundary with North (N), South (S), East (E), West

(W). Furthermore, γ ∈ [0, 2π) is the coordinate on the interface.

The benchmark is defined adding to the Navier-Stokes equation the Dirichlet
boundary condition on the disk:

u(t,x) = uD
CM(t) + ΩD(t) × (xCM(t) − x), t > 0, x ∈ Γ(t), (5.7)

uD
CM and ΩD being the translational and rotational velocity of the disk. The

motion of the disk is assumed to be known.
We will consider periodic boundary conditions as well as the motion in a channel,
including

u(t, x, y = 1) = uN(t), t > 0
u(t, x, 0) = uS(t), t > 0

(5.8)

Physically, this situation models a cross section of a flow around a periodic array
of long cylinders. We refer to the problem as cylinder-in-flow (CiF). To test
the algorithm, we use two simple exact solutions of (5.1) in the unit square
Ω = [0, 1)2, denoted CiF0 and CiF1.
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In the case of CiF0, we move the disk with constant velocity u0 in a flow with
the same constant velocity, zero pressure, and vanishing body force G = 0. As a
consequence, the local stresses vanish and the total boundary force is zero.
In the case CiF1, we again move the body with a constant velocity u0 in the
constant flow field u(t,x) = u0. However, to obtain a non-trivial local force, we
choose a periodic function p0 and define the body force G = ∇p0 which generates
a pressure p(t,x) = p0(x). For the particular choice

p0(x, y) = sin (2πx) cos (2πy) (5.9)

we obtain

ft(t, γ) = 0,
fn(t, γ) = − sin (2π(xC(t) +R cos γ)) cos (2π(yC(t) +R sin γ))︸ ︷︷ ︸

−p0(x(t, γ), y(t, γ))

, (5.10)

with γ ∈ [0, 2π].
In the future, to quickly identify the parameters of a benchmark of type CiF, we
will use a notation as in figure 5.2.
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Figure 5.2: We use this simple sketch to refer to a benchmark. Dashed lines represent
periodic boundaries, bold lines are solid walls. On the right, CiF1 is depicted.

5.2 Extrapolation approaches

Before describing in detail the Momentum Exchange algorithm, we present a
short overview of possible different approaches to evaluate the interaction. They
will serve for future comparison.
In principle the force (5.2), as well as the local interaction (5.4), could be evalu-
ated using a quadrature on the interface. Schematically, using the abbreviations
p(γ) = p(b(γ)), Sν(γ) = Sν(b(γ)),

F̂S =
G∑

r=1

wi (−p(γi)n(γi) + Sν(γi) · n(γi)) (γi+1 − γi). (5.11)
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The previous formula is based on a partition

{γ1, . . . , γG} ⊂ [0, 2π),

i.e. a partition

PΓ = {b(γr) | γr ∈ [0, 2π), r = 1, . . . , G} ⊂ Γ

of the interface, and uses the values of p and Sν on those points. Unfortunately,
approximations of pressure and stress tensor, p̂ and Ŝν, are only available at the
lattice nodes. To have an operational formula within a LBM, (5.11) has to be
combined with additional routines, to extrapolate the values on the interface.
Several choices are available at this stage. Without too many details, we describe
some examples, particularly fitting in the LB-framework.

Boundary Node approximations Within the LBM, we have introduced
(equation (4.5)) the set of boundary couples

Bn :=
{
(k, i) ∈ G(h) × {1, . . . , b} | xk ∈ ΩF (tn), xk+ci

∈ ΩS(tn)
}
. (5.12)

Each boundary couple (k, i) ∈ Bn defines a point bn
i (k) ∈ Γ, when the link

crosses the interface.
Hence, we can construct the set of the intersections grid-boundary at time tn

Bn = G(h) ∩ Γ(tn) = {bn
i (k) | (k, i) ∈ Bn}

(introduced in equation (4.8)).
Identifying each point of Γ with its coordinate in [0, 2π), the set Bn can be ordered

Bn = {b(γr) = bn
ir(kr), | r = 1, . . . , |B|}

(and consequently Bn). The same set can be seen as a discretization of the
interface:

PΓ = Bn.

The simplest approximation for pressure and stress tensor, is done using the
values at the corresponding boundary node:

p̃BN (bn
i (k)) = p̂(k) (5.13)

(and similarly for the components of Sν).

Lattice-Link extrapolation Otherwise, with the same partition PΓ, the ap-
proximated value can be obtained via a linear (or quadratic) extrapolation
following the link ci:

p̃LL(bn
i (k)) = (1 + q)p̂(k) − qp̂(k − ci) (5.14)

being q = h−1‖xk − bn
i (k)‖ (in lattice unities). A disadvantage of these ap-

proaches, is that the partition is unstructured. Of course, simplified variants are
possible, which only consider intersection with horizontal, or vertical, or diagonal
links.
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Figure 5.3: Using the partition defined by the intersections grid-interface, the pres-
sure on the boundary point (�) can be extrapolated with the nodes (•) encountered
following, ci-backward, the intersecting link.

Bilinear extrapolation Differently, we can define a LB-independent dis-
cretization {b(γr)} ⊂ Γ, and take the pressure and stress tensor at the clos-
est lattice node. Calling

kγr := node such that ‖xkγr − b(γr)‖ = min
j∈IF (n)

{‖xj − b(γr)‖}, (5.15)

we can use the approximation

p̃(b(γr)) = p̂(kγr). (5.16)
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Figure 5.4: Taking the values at the closest lattice nodes, approximations of p and
Sν on a boundary point (�) can be constructed. Left: A simple way, is to take the
value on the closest node (•). Right: More complicated, is a bilinear extrapolation,
based on three not aligned nodes (•).

A bit more complicated is a three-points bilinear extrapolation (an example
is drawn in figure 5.4), obtained by searching, for any γ in the partition, three
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nodes

kγ ∈ G(h) : ‖xkγ − b(γ)‖ = min
j∈IF (n)

{‖xj − b(γ)‖},

j1, j2 : ‖kγ − jr‖ is minimum, kγ − j1, kγ − j2 linearly independent

and by approximating bilinearly

p̃BIL(b(γ)) =
p̂(j1) − p̂(kγ)

j1x − kγ
x

(x(γ) − kγ
x) +

p̂(j2) − p̂(kγ)

j2y − kγ
y

(
y(γ) − kγ

y

)
+ p̂(kγ)

(5.17)
(assuming j1y = kγ

y , j2x = kγ
x, as in figure 5.4).

LLFQ algorithm The LLFQb algorithm has been proposed and tested in [30].
The partition PΓ is pre-defined on the interface, and for each b(γr) ∈ PΓ, we
proceed as follows. According to the notation in figure 5.5, we consider the
lattice node Dr, close to b(γr), the point Cr, intersection between the grid and
the line bDr and the nodes Ar and Br, located in opposite sides of Cr. From
the populations f̂i(Ar), f̂i(Br), approximations for f̂i(Cr) are constructed:

f̃i(Cr) = f̂i(Ar)BrCr + f̂i(Br)ArCr,

then, using linear extrapolation,

f̃LLFQ
i (b(γr)) =

1

DrCr

(
f̂i(Dr)brCr − f̃i(Cr)brDr

)
(5.18)

is defined. From the resulting distributions, p̃ and S̃ν are extracted.
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Figure 5.5: The approximation in [30] is constructed by extrapolating the LB popu-
lation on a pre-selected boundary point b(γ) (diamond) from a close node D and a
point C (black circles). In turn, the populations on C have to be interpolated from
two nodes A and B (crosses). Furthermore, an averaged over the possible choices
of D is considered.

Many choices of the node Dr are possible. In fact, an arithmetic average between
more points is performed. For more details, see [30].

bFrom the authors H.Li, X.Lu, H.Fang, Y.Qian.
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Numerical tests

As a preliminary test for the defined algorithms, we perform the computation of
the stresses in the problem CiF1 defined in section 5.1. Only normal stresses, due
to the pressure, are present. Figure 5.6 shows a comparison between the different
approaches. In this simple case, all of them produce similar and regular results.
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Figure 5.6: The presented extrapolation methods are compared, applied to the prob-
lem CiF1. We sampled with small circles (ordinate on the left y-axis) the pressure,
while the exact solution (5.9) is superimposed as a bold line. The dashed line (right y-
axis) is the error in the result for the stress Sν

xx (exact solution Sν
xx = 0). Top-left:

boundary node approximation. Top-right: lattice-link extrapolation. Bottom-
left: bilinear approximation. Bottom-right: LLFQ algorithm.

About the accuracy, assuming to get a first order accurate pressure running
the LBM, we cannot expect to go beyond that precision. It is experimentally
confirmed in the order plot in figure 5.7.

In figure 5.9, we compare the extrapolations to evaluate the stresses around the
cylinder in the problem CiF summarized in the diagram in figure 5.8, for which
the analytic solution is unknown.

The LB-grid defined discretization, consisting of a bigger amount of nodes, shows
noisy and irregular behaviors. More smooth are the bilinear and LLFQ approxi-
mations.
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Figure 5.7: Investigation of the pressure accuracy order, for the approximation meth-
ods (pressure) described above: boundary node (×), bilinear (∗), lattice-link (◦),
LLFQ (�). The dashed reference lines indicates first order accuracy.
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Figure 5.8: Considered CiF benchmark.
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Figure 5.9: As in figure 5.6, the different extrapolation approaches are compared,
on the CiF problem, simulating a cylinder rotating with angular velocity ΩD = 3,
between two walls moving horizontally. The circles sample the tangential stress f̂t
(y-axis on the left), while the dashed-crosses line represents the normal one f̂n (y-
axis on the right). Top-left: boundary node approximation. Top-right: lattice-

link extrapolation. Bottom-left: bilinear approximation. Bottom-right: LLFQ
algorithm.
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Remarks

In a general situation, the implementation of the previous method can be awk-
ward, especially dealing with irregular boundaries and complex geometries. In
fact, the nodes containing the information used in equations (5.13)-(5.18) have
to be searched, case by case, around the boundary point. The resulting routines
reduce the efficiency of the LBM. The property of locality of operations is lost.

Concerning the accuracy, it has to be remarked that the LBM provides only low
order pressure and stress tensor (first order in h). Therefore, for general problems,
increasing the complexity and the order of the approximations (for example going
from linear to quadratic, etc.), does not assure any gain in precision.

In view of these considerations, a good solution would consists of a rather simple
scheme, well-fitting in the lattice framework, which does not require too much
exchange of information and, as a consequence, is not supposed to produce high
accuracy results.

5.3 Momentum exchange algorithm

We investigate the features of the Momentum Exchange Algorithm (MEA), pro-
posed in its original form by A. Ladd in [27], which allows to evaluate the inter-
action between fluid and boundary using directly the variables of LBM.

PSfrag replacements
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f c
i (n)
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Figure 5.10: Applying the boundary rule on a boundary couple (k, i), the momentum
exchanged in the point bn

i (k) is defined as the difference between the incoming
fi∗(n + 1,k) and the population after collision f c

i (n,k).

The idea is to consider the momentum transferred to the solid from each boundary
fluid node xk interacting with the boundary along a link ci (see figure 5.10). The
net momentum is given by the sum of momentum due to the particles moving
with opposite velocities ci and ci∗.

φi(n,k) ≡ cif̂
c
i (n,k) − ci∗ f̂i∗(n+ 1,k) = ci

(
f̂i∗(n + 1,k) + f̂ c

i (n,k)
)
. (5.19)
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(f c
i is the distribution after collision). Using the set Bn of boundary couples

(equation (5.12)) the force is approximated by

F̂(n) =
∑

(k,i)∈Bn

φi(n,k). (5.20)

In practice, the algorithm can be summarized as

Algorithm 5.1 (Momentum Exchange Algorithm).
Given the boundary set Bn = {(kr, ir), r = 1, . . . |B|}
initialize F̂ = 0
DO over Bn

LB-collision: → f̂ c
i (n,k)

boundary condition: → f̂i∗(n+ 1,k)

momentum exchanged: φi(n,k) = ci

(
f̂i∗(n+ 1,k) + f̂ c

i (n,k)
)

update: F̂ = F̂ + φi(n,k)
end

5.3.1 Numerical tests and asymptotic analysis

Algorithm 5.1 is now tested on the problem CiF0. In absence of pressure, we
compare the results for the local stresses, by evaluating the momentum exchanged
point by point along the boundary, when the flow and the cylinder are fixed
(u0 = 0), or both moving with the same velocity u0 = (5, 0) (figure 5.11). Despite
the trivial exact solution ft = fn = 0, we observe the presence of local forces
in relevant orders, different in the two cases and highly irregular, even if both
pressure and velocity are exact in the domain.

To investigate the properties of the algorithm, we analyze the scheme

MEA(h, F̂h, f̂h, f̂h)(n) =




F̂h(n) −
∑

(k,i)∈Bn

φi(n,k),

f̂h(n) −
∑

(k,i)∈B′

φi(n,k),


 (5.21)

which computes the approximate global force according to (5.20) and the local
forces using a sum of boundary couples restricted to a proper subset B ′ ⊂ Bn.
The variables F̂h and f̂h are actually derived from the LB-output f̂h:

F̂h = F(f̂h), f̂h = f(f̂h).

Therefore, to perform the analysis and search a prediction which cancel the
residue of (5.21), we use the result obtained with the the regular ansatz (chapter
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Figure 5.11: Results of the MEA for the normal stress fn, simulating CiF0 on a
25× 25 grid. For each boundary point bn

i (k) the value computed with (5.19) at the
corresponding node xk is drawn. The exact solution is fn = 0. (a) Flow at rest,
u0 = (0, 0). The results show strong oscillations. Note that consecutive points (×)
are not connected by lines for clarity. (b) Zoom on a small part of the boundary
around the north pole γ = π

2
now with connecting lines to demonstrate the oscillation.

(c) Same model as in (a), but with u0 = (5, 0). Galilean invariance is not satisfied
(in the relevant order).

1, whose consistency has been checked also in chapter 4 for the moving boundary
algorithm), assuming that the LB solution is approximated by a prediction

FLBM
h =

2∑

k=0

hkfLBM,(k),

with coefficients(1.163):

f
LBM,(0)
i = f ∗

i ,

f
LBM,(1)
i = f ∗

i c
−2
s ci · u,

f
LBM,(2)
i = f ∗

i c
−2
s p+H

Q(eq)
i (u,u) − τf ∗

i c
−2
s (ci · ∇)ci · u,

(5.22)

where u and p solve the Navier-Stokes problem (5.1).

By definition, an asymptotic expansion for the force is the sum over the grid point
(k, i) in Bn of the asymptotic expansions for the momentum exchange φi(k).

A prediction for φi(k) is derived inserting the prediction for the f̂i, in equations
(5.19) and using the relation (4.15) for the population updated with the boundary
conditions. We have (dropping the time dependence for brevity):

φi(k) = φ
(0)
i (bi(k)) + h2φ

(2)
i (bi(k)) + O(h3), (5.23)
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with

φ
(0)
i = 2f ∗

i ci

φ
(2)
i = 2f ∗

i c
−2
s

(
p+

c−2
s

2

(
|ci · uB|2 − c2su

2
B

)
− c−2

s νci · ∇uB · ci

)
ci.

(5.24)

All the quantities in equations (5.23)-(5.24) are evaluated at the boundary point
bn

i (k).
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Figure 5.12: Left: Formula (5.24) for horizontal boundary. The points on the
boundary (�) where the functions are evaluated can be interpreted as nodes of a
quadrature rule for the integral (5.2) over an interval I of length h. The location
of such nodes depends on the distance q. Right: Meaning of the coarser grid hc

introduced in theorem 5.1. For a point g0 ∈ Γ (�), the local boundary Γ0(g0, hc)
(bold line inside the circle) can be identified as a ball centered in g0 and diameter hc,
intersected with the interface. The momentum exchange is evaluated at the points
interacting with Γ0 (•).

Plane horizontal boundary To better understand equation (5.24), we look
at a simple example, with an horizontal boundary on the top of the fluid flow
(figure 5.12 left).

In our convention for the discrete velocities of the model D2Q9 (figure 1.2), the
last row of fluid nodes interacts with the solid along the directions i = 2, 3, 4.
Computing explicitly the sum Φ(k) = φ2(k)+φ3(k)+φ4(k) with equation (5.24),
for a particular boundary node xk, we have (suppressing the argument k)

Φ =
1

3

(
0
1

)
+ h2

(
−1

2
[Sν

xy(b2) + Sν
xy(b4)]

1
6
[p(b2) + 4p(b3) + p(b4)] − Sν

yy(b3)

)
+

+ h2

(
1
2
[uB(b2)vB(b2) + uB(b4)vB(b4)]
1
6
[vB(b2) + 4vB(b3)

2 + vB(b4)
2]

)
+O(h3) (5.25)



5.3. Momentum exchange algorithm 159

The zero order term predicts a surplus of pressurec, and it is not related to the
integral (5.2). The second order is a combination of quadrature formulas over a
small interval on the boundary for the functions p, Sν, plus a quadratic function
of velocity, which breaks the Galilean invariance (as happened in the test problem
CiF0, figure 5.11).

5.3.2 Corrected and averaged momentum

After discovering the unwanted terms in expression (5.24), we can use the expan-
sion to define a corrected momentum exchange algorithm, based on the values

φi(k) = φi(k) − 2f ∗
i ci − h2f ∗

i c
−4
s

(
|ci · uB(bn

i (k))|2 − c2suB(bn
i (k))2

)
ci. (5.26)

Using this modification, the simple test problem CiF0 with zero boundary stresses
is now solved correctly.

We continue our analysis with problem CiF1 where a prescribed pressure distri-
bution appears on the boundary. Results obtained with the modified MEA are
shown in figure 5.13. Obviously, the approximation of the local stresses (figure
5.13) is still unsatisfactoryd. In the special case of horizontal boundary the sum
of momentum exchange in a boundary node (5.25) had a clear relation with an
approximate integration rule. However, for general curved boundary the distribu-
tion of these points and of the outgoing directions along the interface is extremely
irregular, and the momentum exchange in a single boundary node might not be
directly related to an approximation of the stresses on the interface. Moreover,
the ME-interaction is discrete, i.e. using directly the momentum exchange φi(k)
as approximation of the stress in the point bn

i (k) allows only to define the bound-
ary interaction in special points (the intersections between grid and lattice). In
other words, the MEA does not allow to define the force acting on an arbitrary
b ∈ Γ.

To overcome these problems, we have analyzed an averaged value of the momen-
tum exchanged along small intervals on the boundary. In practice, we choose a
partition {bm} ⊂ Γ based on a coarse grid size hc > h. The approximation of the
local force in bm is computed summing all the momentum exchange contributions
(with a proper weight relating h and hc) of the couples (k, i) ∈ B(Γ) such that
the corresponding bn

i (k) belongs to an hc neighborhood of bm.

cUnless (as pointed out in [35]) we define the pressure using

p̂ := c2
sρ̂.

The term of order zero in equation (5.24) would be than encompassed into the pressure. This,
however, does not suffice to correct the original algorithm in a general case.

dIt should be remarked that the MEA in the form 5.1 has not been designed for local stress
evaluation. However, for our purpose it represents just an initial step, to be further improved.
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Figure 5.13: Problem CiF1 (pressure different from 0). Left: The symbols (×)
denote the values (5.26) for each boundary couple (k, i) versus the related point
bn

i (k) ∈ Γ, identified by γ ∈ [0, 2π), for a 50 × 50 grid. The solid line is the exact
solution (5.10). Right: Results using a 100 × 100 grid. The approximation on the
fine scale (crosses) is more noisy, but does not improve the approximation of the
local stresses. Averaged values, computed grouping the points according to a grid
hc = h0.5 (�), are indicated by diamonds.

Algorithm 5.2 (Coarsing procedure).
let be given:

the set B = {γr = γ(bir(kr)) | (kr, ir) ∈ B} (intersections grid-boundary)
the values ME := {φi(k) | (k, i) ∈ B }

set the coarse grid parameter hc

define partition of the interface:

{bm = b(γc
m) | γc

m = mhc, m = 1, . . . ,M}
DO l = 1,M
initialize the averaged forces Fc

m = 0
DO j = 1, |B|
IF (m− 1

2
)hc < γr < (m+ 1

2
)hc

Fc
m = Fc

m + φ(kr)
END IF

END DO

normalize Fc
m = Fc

m

h

hc

END DO

This algorithm leads to better results (figure 5.13, right). From a theoretical
point of view, the improvements can be rigorously stated using the asymptotic
prediction for the momentum exchanged. The following result is valid also for
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the three dimensional D3Q15 model.

Theorem 5.1.
Let b0 ∈ Γ be a point on a smooth d-dimensional interface (d = 1, 2) of fi-
nite length. Given the LB-grid size h, we consider a coarser grid hc, such that

h ∈ o(hc), and the related interval Γ0(b0, hc) =

{
b ∈ [0, 2π) : ‖b − b0‖ <

hc

2

}
.

Defining local averages of the exact and approximate normal stress in Γ0

I(b0, hc) =
1

hd
c

∫

Γ0

(−pI + S) · n dσ, Φ(b0, hc) =

(
h

hc

)d ∑

(k,i):bi(k)∈Γ0

φi(k)

h2
,

the following estimate holds

∣∣I(b0, hc) − Φ(b0, hc)
∣∣ ∈ O

(
hc +

h

hc

)
. (5.27)

The detailed proof is given in appendix B. Shortly, it is based on writing the sum
Φ̄(b0, hc) in terms of the functions p and Sν, using equation (5.24) combined with
a Taylor expansion around the node b0. The resulting expressions can be viewed
as approximate integration rules on the interface. Unfortunately, the weights of
the arising quadrature formulas do not sum up exactly to one at every node,
which rules out first order accuracy. However, using some arithmetical properties
of the weights, it can be shown that the deviation from one goes to zero, if the
weights are summed over subsets of the interface which are large compared to
the grid size h of the regular grid. On the other hand, the Taylor approximation
is less accurate if it is used on a coarse mesh of typical distance hc. Hence, a
balance between fine and coarse grid arises in equation (5.27), and to obtain an
optimal error bound, a good compromise is required.

Corollary 5.1 (Optimal coarsening).
Choosing hc =

√
h, equation (5.27) gives∣∣∣I(b0,

√
h) − Φ̄

(
b0,

√
h
)∣∣∣ ∈ O

(√
h
)
. (5.28)

To validate the result of theorem 5.1, we compare the momentum exchange eval-
uated along the boundary point in problem CiF1, averaged according to several
coarser grids of type hc = hα. The order plot in figure 5.14 confirms the predicted
result. The best rate is obtained choosing hc =

√
h.

It should be noted that the averaging does not affect the accuracy of the global
force evaluation.

Theorem 5.2. Let Γ be a smooth d-dimensional interface of finite length. Denot-

ing with Φ(Γ) =
∑

(k,i)∈B(Γ)

φi(k)

h2
the total sum of corrected momentum exchange,

it holds ∣∣∣∣
∫

Γ

(−pI + S) · n dσ − hd Φ(Γ)

∣∣∣∣ ∈ O(h). (5.29)
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Figure 5.14: Double logarithmic plot of the error in the local forces versus
the grid size h. Comparisons of different coarser grids hc = hα, with α =
0.25(�), 0.5(◦), 0.75(∗), 0.9(×). The dashed lines represent reference slopes.

The result is proven in appendix B.

Test on the cylinder in flow In figure 5.15 we show the result (double log-
arithmic plot) for the MEA used to compute the total force on the disk in the
problem CiF1. The value for the exact solution is obtained using a high accuracy
numerical quadrature, for the pressure (5.9). The plot confirms the expected first
order accuracy.
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Figure 5.15: Double logarithmic plot (logarithm of error vs logarithm of the grid
size) for the MEA, used to compute the force in the problem CiF1. The value used
as exact solution is a high order numerical approximation of the integral (5.2).
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5.4 The ME-stress extraction

In a practical simulations, we need the force acting on the structure to solve the
dynamic. In the case of flows around rigid bodies, the result of theorem 5.2 au-
thorizes to use the MEA to evaluate the global force, since the predicted accuracy
is the same as for the pressure (first order in h). Nevertheless, there is a wide
class of problem (typically, interaction with deformable structure or multiphase
flows, when the computation involves local stresses along the interface) where
the local evaluation with the averaged MEA is not satisfactory. Any approximate
solver for the movement of the interface would carry an error of at least O(

√
h),

consequently spoiling the accuracy of the LBM.

5.4.1 Improving the stress evaluation

The origin of the loss of accuracy for the boundary forces, can be identified
retracing the proof of theorem 5.1. Actually, in the first example (horizontal
boundary) presented in section 5.3, everything works fine. First order accurate
result are produced, for both local and global forces. In that special case, the
extremely regular structure of the geometry, allows to define naturally a O(h)-
discretization of the interface and gives the local sum

Φ(k) =
∑

i:(k,i)∈B

φi(k)

additional properties, which are in general true only after averaging over a large
number of points.

To fix the ideas, let us consider the predicted expression for i = 1

φ1(k) =

(
2

3
p(b1) − Sν

xx(b1)

)
+O(h). (5.30)

Assuming first order accuracy for p and Sν, (5.30) contains already an approx-
imate combination of stresses. The problem is that p and Sν are multiplied by
different constants. In some situations, like horizontal boundaries, the resulting
combination of φi is balanced exactly when summing the contributions, which
leads to an immediate relation with

−pn + Sν · n. (5.31)

However, this does not happen for general boundaries.

The scope of the averaging is to smooth out the differences between the discrete
sum and the integrand (5.31). However, this is by far not the only solution to
the problem.
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The ME based extrapolation Since φi (as in (5.30)) contains the quantities
p and Sν, which we are interested in, we will try to construct an extrapolation
rule based on the MEA. Once more, we will show how the knowledge acquired
with the asymptotic analysis is crucial for improving an algorithm. Everything
we will do is based on the predicted coefficient φ(2).
Namely, our scope is to find a sequence of operations in order to extract a first
order approximation of the pressure and the stress tensor from φi.

Simple algorithm to extract the stresses

We assume that running the LBM we get a first order correct pressure p̂. The
idea at the basis of the algorithm is straightforward. A first order approximation
of the pressure (as well as of the stress tensor) in bn

i (k), is given by the value

p̂(k) = p(xk) +O(h) = p(bn
i (k)) +O(h)

at the boundary node, to which bn
i (k) and φi(k) are related.

Therefore, from

σi(k) = φ̄i(k) − h2ap,ip̂(k) = h2
(
aSν

α,β
,iSν

α,β[u(k)] +O(h)
)

(5.32)

we obtain a first order approximation of the stress tensor:

Ŝν
αβ[u(k)] =

σi

h2aSν
α,β

,i
= Sν

α,β[u(k)] +O(h).

The procedure to approximate the local interaction is based on the idea

MEA (corrected) + approximation of pressure + extraction of stress tensor
=

local interaction

Of course, the other way around is also possible, subtracting from φi the stress
tensor on the node k. However, the choice of the pressure leads to a cheaper
algorithm.
Notice that from (5.32), we can extract the approximation of the component Sν

α,β,

for α, β, i such that aSν
α,β

,i 6= 0. In practice

φ1, φ5 → Sν
xx

φ2, φ4, φ6, φ8 → Sν
xy

φ3, φ7 → Sν
yy .

Hence, for each couple (k, i) ∈ Bn, only a single component of the stress tensor is
available, at the point bn

i (k) ∈ Γ. Concerning the pressure, in each intersection
bn

i (k), we take the value in the node k.
Formally, we propose the following algorithm:
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Figure 5.16: Points along the interface in which the stresses are evaluated. The
different partitions, used in the proof of lemma 5.2, are used to integrate the different
component of Sν .

Algorithm 5.3 (ME-stress extraction).
boundary set: B = {(kr, ir)} , intersections:

{
γr = γ(bn

ir(kr))
}
⊂ [0, 2π)

corrected momentum exchange: → φir(kr)
pressure evaluation: → p(kr)

compute σir(kr) = φir(kr) − h2ap,ip(k)
EXTRACT STRESSES:

IF ir = 1, 5, Ŝν
xx(γr) = h−2σir(kr)

IF ir = 2, 6, Ŝν
a

xy(γr) = h−22σir(kr)

IF ir = 3, 7, Ŝν
yy = h−2σir(kr)

IF ir = 4, 8, Ŝν
b

xy = h−22σir(kr)

construct partitions B(i,i∗) := {bir(kr) | ir = i, i∗} =
{
b
(
γ

(i,i∗)
r

)}

Having stored the values on the interface on the different partitions B(i,i∗), we
need to post-process them, in order to calculate the local stresses, which combines
pressure and stress tensor. To do this, we first define a regular partition on the
interface of size ∆γ (with ∆γ ∈ O(h)):

γ = (γm), γm := m∆γ;

then, we collect for each interval

[
γm − ∆γ

2
, γm +

∆γ

2

]
the points of the i-

partitions which fall into it, averaging between the corresponding values of p
and Sν (figure 5.17).

Remarks. Such computation of the stress tensor along the interface, has been in-
spired by the proof of theorem 5.2 (appendix B), treating differently the different
discrete velocity links.
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Figure 5.17: Sketch of the operation done in algorithm 5.4. On the interface Γ ∼
[0, 2π], we define the regular grid γm. The circles • are the node in which we
have stored the stresses running algorithm 5.3. The values of p and Sν in a node
γm, are obtained as the average of those related to the nodes belonging to the cell[
γm − ∆γ

2
, γm + ∆γ

2

]
.

Algorithm 5.4 (MEA-local stresses).
define a regular partition: γm = m∆γ
pressure evaluation:

initialize nint = 0, pm = 0
FOR r = 1, . . . , |B|

{ IF |γr − γm| ≤
∆γ

2
pm = pm + p̂(kr)
nint = nint + 1 }

END

pm =
pm

nint

stress tensor:

nint = 0
FOR r = 1, . . . , |B(1,5)|

{ IF |γ(1,5)
r − γm| ≤

∆γ

2
Sν

xxm = Sν
xxm + Ŝν

xx(γ
(1,5)
r )

nint = nint + 1 }
END

Sν
xxm =

Sν
xxm

nint

IF nint = 0, ⇒ Sν
xxm = 0

(analogous for Sν
xy, Sν

yy)
LOCAL STRESSES:

tangential:
(
f̂t

MEA
)

m
=
(
Sν

m · n
)
· t

normal:
(
f̂n

MEA
)

m
= −pm +

(
Sν

m · n
)
· n
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Regarding the off diagonal component Sν
xy, two different approximations (in two

different sets of points) are computed, one for the couple of direction (2, 6), one
for the couple of direction (4, 8), and the arithmetic average is used.

5.4.2 Numerical tests and comparisons

To test the MEA and the procedure 5.4, we use the benchmark drawn in figure
5.9, simulating a rotating cylinder between two walls.
The problem is simulated on a channel with L = H = 1, grid 40 × 40, and
choosing

uN (t) = uS(t) = (−1, 0)
‖ΩD(t)‖ = 3
R = 0.2.

(5.33)

In figure 5.18 we observe the velocity and pressure field after a steady state is
reached.
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Figure 5.18: Contour lines of the pressure (left) and the horizontal velocity (right)
fields, at time T = 1, for the problem CiF in a channel with non-zero angular velocity.
The viscosity is ν = 0.03.

Using the MEA, we compute the lift (figure 5.19) and the drag (figure 5.20) force
on the disk .
Regarding the local forces, we compare the ME-stress extraction and the bilinear
extrapolation, described in section 5.2. The results are shown in figures 5.21-5.22.

5.5 Ultimate numerical simulations

5.5.1 Moving cylinder

The next benchmark involves the refill algorithm and the force computation. Aim
of the simulations is to validate the Equilibrium + non Equilibrium refill for the
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Figure 5.19: Left: Lift force on the cylinder versus time, for viscosity ν = 0.3. After
an oscillatory initial behavior, it follows a smooth profile into a steady state. Right:
Stationary values of the lift force for different angular velocities, 0.5 ≤ Ω ≤ 20.
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Figure 5.20: Stationary values of the drag force for different viscosities, in the range
0.01 < ν < 0.3.
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with the procedure 5.4. Tangential stress f̂t
MEA
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f̂n
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(×, right y-axis) are superimposed, as functions of the coordinate γ ∈ [0, 2π)
parameterizing the interface. Compare with figure 5.9. Right: The evaluation using
bilinear extrapolation is reported.
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Figure 5.22: The quantities p, Sν
xx, Sν

xy, used in algorithm 5.4 are drawn along the
interface (as functions of γ ∈ [0, 2π)). The lines evidence the structures of the
different grids. Top-left: pressure, evaluated as in the closest node extrapolation.
Top-right: Sν

xx. Bottom: Sν
xy, the grid for the links (2, 6) and (4, 8) are displayed

separately (circles ◦). An unified plot would show irregular behavior (up-down), which
is smoothed out performing the average in algorithm 5.4 (rightmost plot, data are
sampled with asterisks ∗). Grid size h = 1

40
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moving boundary problems, and to observe the effect of the refilling on the force
evaluation.
The disk is placed on the midline of a channel of length and width equal to
one. Periodic boundary condition are used on the left and on the right. We
consider the CiF models represented in figure 5.23. The moving boundary test is
performed comparing two different choices for the boundary conditions:

(a)

{
uN(t) = 1, uS(t) = 1,
uD

CM = 0, ΩD = 0

(b)

{
uN(t) = 0, uS(t) = 0,
uD

CM = (−1, 0), ΩD = 0

(5.34)
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Figure 5.23: Benchmarks used to test the refill algorithms and the force computation.
A disk of radius R = 0.2 is placed in a channel of unitary length and width. The flow
viscosity is ν = 0.03.

We measure the drag force acting on the disk, comparing the results in the two
cases, which are at the steady state theoretically equal. For the simulations, BFL
boundary conditions are used on the disk and on the walls.
We perform different simulations, testing the three different refill approaches.
The stationary drag force computed on the moving disk approximates the result
obtained moving the walls and keeping the disk fixed (figure 5.24). However, in
the moving boundary simulations the force is affected by jumps and fast frequency
oscillations, which are investigated in figure 5.25 in more detail, for the different
refill approaches. The results validate the theoretical conclusions of chapter 4.
Using the Equilibrium refill the observed jumps in the force do not decrease after
refining the grid. Better precision (jumps reducing as O(h)) is achieved with the
Interpolation+Advection and the Equilibrium+non Equilibrium refill.

5.5.2 Periodic elastic fibers

To simulate a simple fluid-structure interaction problem, we consider the following
variation of the CiF. The disk ΩS(t) is located initially on the center line of a
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Figure 5.24: On the problem CiF in figure 5.23 we compute the drag force using
the EQ-refill (top-left), the IA-refill (top-right) and the EnE-refill (bottom-left).
Situation approaching a stationary state is shown, compared with the stationary state
of a simulation in a reference system fixed with the cylinder (bottom-right).Grid
size h = 1
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rectangular channel. The center of the disk xC(t) is connected to a spring whose
rest length is equal to zero. It can be seen as a model for the motion of a long
cylindric fiber, driven by a fluid flow. We call this benchmark periodic elastic
fiber (PEF).

Parameters and set up of the algorithm In figure 5.26 we indicate the
parameters needed to set up a simulation of the benchmark PEF. To define
the Navier-Stokes problem, we have to set up the domain (ratio between length
L and width H), the boundary conditions (channel or fully periodic) and the
initial conditions for the fluid. The parameters concerning the solid structure
are the properties of the fiber (static and dynamic parameters, radius and elastic
constant) and its initial motion.
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Figure 5.26: Relevant parameters to set up a PEF simulation. On the right, the solid
structure.

Numerical results

PEF-1 We perform two simulations. First (figure 5.27, left), we consider the
disk in a channel whose top and bottom walls move horizontally with velocity

uB(t) = ϕW (t),

where ϕW (t) is the smooth profile used in chapter 4 (equation (4.35)). It has the
properties

ϕW (0) = 0,

ϕW (t) = 1, t ≥ T1

ϕW ∈ C2

(we choose T1 = 0.5). Initially, fluid and disk are at rest,

u0 = 0, uCM
0 = 0, ΩD

0 = 0.
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We fix the width H = 1 of the channel and choose a double length L = 2. The

disk has radius R = 0.2 and it is initially placed on the midline y =
1

2
. This

condition allows to check the correctness of the results for the lift force which has
to be zero because of the symmetry. The problem is called PEF-1.
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Figure 5.27: Left: Benchmark PEF-1. In a channel of length L = 2 and width
H = 1, a disk of radius R = 0.2 is initially placed on the midline. Two values of the
elastic constant are used, k1

0 = 2.5 and k2
0 = 10. The flow viscosity is ν = 0.055

(τ = 0.67). Right: Benchmark PEF-2. The domain is a periodic unit square, the
disk has radius R = 0.2 and the elastic constant is k0 = 5. A horizontal pressure
drop ∆PB(t) is applied from left to right.

The results for two different values of the elastic constant are compared, using

a grid parameter h =
1

80
. We consider k1

0 = 2.5 and k2
0 = 10 = 4k1

0. Results in

figures 5.28-5.29 show drag and lift forces. The force Fx has an oscillatory profile,
with exponentially damped amplitude. The jumps appear in relation with the
refills. However, they are rapidly absorbed. Similarly, we observe jumps and
peaks of the error in Fy.
In the simulation with k0 = 10, the oscillation period is half of the one observed for
k0 = 2.5. Moreover, in this second case the disk moves less, and a lower number
of refills is performed. We obtain less jumps in the forces. Sizes, however, are
comparable.
In figures 5.30 we compare the movements of the disk (trajectory of the center of
mass is shown) inside the channel. The displacement is mainly along the x-axis.
In the ordinates, we observe only variations of very small size. The final value
can be used to compute the drag force of the disk in the flow:

FD = k0(xCM(t) − xCM(0)).

The displacements, along x and y reduce by a factor four, using k0 = 10. The
values of the drag force in the two simulations are approximatively the same.
We observe that also the final errors in the lift forces are similar.
Finally, the difference of pressure ∆PD at the opposite sides of the disk (left-
most and rightmost point) is monitored. Figures 5.31 show these quantities as a
function of time. We observe an oscillatory profile, similar to the other quantities.
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Figure 5.28: Benchmark PEF-1. The approximated drag (left) and lift (right) forces
on the fiber section are shown. Top: The case k0 = 2.5. Bottom: The case
k0 = 10. In both situations, the exact lift force is zero due to the symmetry of the
problem. The grid size is h = 1
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Figure 5.29: Zoom of the previous figure 5.28, on a single period of oscillation of
the forces Fx. Left: k0 = 2.5. Right: k0 = 10.
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Figure 5.30: Displacement of the center of mass, with respect to the initial position.
Top: Elastic constant k0 = 2.5. On the left, the motion of the center of mass is
shown. On the right, the displacement of the x-coordinate as a function of time.
Bottom: Result for k0 = 10. The higher elasticity constant has a stabilizing effect.
The oscillations in the trajectory (left pictures) have smaller amplitude. Grid size:
h = 1
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The results are affected by discontinuities due to the refills. This happens because
at each refill step, we need to reconstruct the population on the new fluid node.
It can be done only up to a certain order. Therefore, it is important to check
the order of the jump amplitude. We simulate the same problem (PEF-1, with

elastic constant k0 = 2.5) on a finer grid h =
1

80
which is half of the previous one.

Results are shown in figure 5.32. The horizontal force has a more regular profile,
and the peaks in the lift force (representing an error measure) visibly decrease,
although the number of performed refills increases (finer grid size).
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Figure 5.32: Simulation of the problem PEF-1, with elastic constant k0 = 2.5 (as
in figure 5.28). A grid of size h = 1

80
has been used. Top: forces exerted on the

disk. The size of the jumps has been reduced, as well as the error in Fy. Bottom:
Trajectory of the center of mass. The displacement along the y-axis is approximatively
one fourth of the one obtained with the coarser grid.

In figure 5.33 we compare the sizes of the jumps arising after the refill step, for two
different grids. Since the decreasing rate is higher than the one of the grid size,
we conclude that the jumps do not affect the leading order of the force. In other
words, the leading orders of the hydrodynamics are continuously approximated
by the refill.

PEF-2 In the second case, the domain is a periodic unit square, H = L = 1.
The disk is placed in the center. On the boundary, we add a periodic pressure
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Figure 5.33: Drag force on the disk, zoom on a sequence of jumps arising after the
refill steps, close to the minimum point of Fx. Each circle • represents an iteration
step. Left: Grid h = 1
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. Right: Grid h = 1
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drop (section 4.1.2), forcing an oscillating gradient

∆PB(t) = ∆P 0
B sin ϑt.

For the pulsation the value ϑ =
2π

0.3
is used, and the benchmark is simulated for

a time T = 12. At the initial time, there is no flow and disk is at rest. The elastic
constant is k0 = 5. We call this benchmark PEF-2 (figure 5.27, right).
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Figure 5.34: Problem PEF-2. The plot shows the abscissa of the center of mass
versus time.

In figures 5.34, 5.35 the numerical results for h =
1

40
are shown. We compute the

position of the center of mass and the two components of its velocity, as functions
of time.
The movement along the x-axis shows a transient flow, with the presence of oscil-
lations depending on the spring constant. Later, we see a steady state governed
by the gradient of pressure. The motion has the same period as ∆PB(t).
Also the velocity shows two superimposed oscillations. In the vertical components
v and yCM no appreciable variations are visible. In this benchmark the initial
symmetry configuration is preserved.
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Chapter 6

Conclusions

6.1 Summary of the results

Through the thesis we have performed a detailed analysis of the LBM, starting
from the properties of the standard algorithm and investigating some possible
extensions.
In particular, we focused on initialization routines, moving boundary algorithms
and fluid-structure interaction problems. Step by step, we have analyzed sepa-
rately different topics, searching for suitable solution from both the theoretical
and practical point of view.
The strategy of our investigation has been based on the asymptotic analysis.
The scope of the thesis has been actually double. Besides the practical issues of
developing the scheme, the particular case of the LBM has been used to explain
and to show the features of the asymptotic analysis, how the technique work and
its applicability.

Analysis of LBM: understand the scheme and the numerical results
In chapter 1 the analysis has been used to understand the scheme, deriving the
relation with the Navier-Stokes equation and predicting the behavior of the nu-
merical solution. We have estimated theoretically the accuracy of the scheme,
validating the expectations on a simple benchmark.
Starting from the results of the first numerical tests, in chapter 2 we have inves-
tigated in detail the arising of oscillating errors. As a result we obtained a set of
equations to describe the dynamic of the initial layers. In some particular cases
analytical solutions have been computed, able to predict the leading order error
as a function of the initial conditions. The prediction has been successfully tested
in some numerical simulations.

Initialization routines: correct and improve the algorithms In chapter
3 we have used the results of the analysis also to derive corrections to existing
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algorithms. A detailed treatment of LB-initialization routines, used to generate
initial condition for LB simulations, has been presented. The simpler initial-
ization in periodic domains (with the algorithm proposed in [33]) has been the
starting point. We developed some corrections to construct an extended routine
for non-periodic problem, defining an original boundary condition rule.

Moving boundary and force evaluation: propose new routines To ap-
proach a LBM for moving boundary problems, we began considering a simple
algorithm (chapter 4), combining the interior scheme, a boundary update rule
and a refill step, i.e. a method to initialize the fluid nodes created by the move-
ment of the boundary through the computational domain. Making use of the
results of the analysis, a refill algorithm has been constructed, which is able to
achieve the same accuracy as the LBM with a rather simple implementation (a
similar idea has been proposed in [16] to implement the boundary condition).

Finally, in chapter 5 we studied different choices to evaluate the forces on obstacles
in flow in a LB simulation. We focused on the Momentum Exchange algorithm
[27]. The analysis yielded to an accuracy estimate, proven for the case of smooth
boundaries and tested on a simple model. According to this result, the MEA does
not achieve enough accuracy in the approximation of the local stresses along the
boundary. Therefore, we have constructed an improved algorithm, based on the
theoretical prediction for the numerical solution.

Numerical validations In conclusion, we have presented some simple numer-
ical simulations to validate the proposed extensions to the LBM. For the basic
algorithm we set up, we have derived a list of properties, accuracy results and
main difficulties. The scope of this model is to fix a starting point to be furtherly
developed in particular applications.

6.2 Further ideas: what needs to be done and

what can be done

The presented algorithms have to be considered as preliminary versions. Further
validations on more general test cases are necessary, to observe how the different
routines interact together in general situations.

An important point concerns the stability. Using the asymptotic expansion as we
did (up to the second order in h), we are able to recover the information regarding
the stability only partially. Even to investigate the interior LBM in this sense,
deeper expansion are needed [23]. A detailed analysis of special algorithms like
boundary condition rules or refills step becomes a large topic, which is left to
future researches.
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Moreover, in our analysis we only focused on the construction of valid schemes,
consistent with the standard LBM, not dealing in detail with the global efficiency.
In a real implementation of the code, a sequence of algorithm as the one presented
here might not be optimal.

Outlook: fluid-structure interaction and free interface problems

The algorithm to evaluate the interface stresses can theoretically achieve the
same accuracy as the LBM. It is reliable for coupled applications, since it will
not reduce the precision of the solver for the hydrodynamics.
In principle, it is therefore possible to model flows through deformable structures,
such as filters or obstacles with elastic interfaces.
More in general, the stress extraction algorithm can be used in the simulations
of free interface problems. It allows to approach LB models for multiphase flows
or mixtures, which are of great interests in several practical applications.





Appendix A

List of principal notations

General

C,R,Q,Z,N Complex, Real, Rational, Integer, Natural numbers
x, (x, y, z) point in Euclidean space, scalar coordinates
∆,∇,∇· Laplace operator, Gradient, Divergence
h grid size (small parameter)
F(A,B) functions from the set A to the set B
χA characteristic function of the set A

Hydrodynamics and Navier-Stokes equations

Ω,ΩF ,ΩS Domain, fluid domain, solid domain
Γ Boundary, interface
γ coordinate on Γ
u velocity
u, v component of velocity (in 2D)
u0,uB initial and boundary velocities
ρ density
p pressure
S[u], Sxx, Sxy, Syy rate-of-strain tensor, component (in 2D)
Sν[u] stress tensor
G volume force in Navier-Stokes equations
ν viscosity
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186 Appendix A. List of principal notations

Asymptotic Analysis

L general notation for algorithm
H set of small parameters, H ⊂ [0, 1)
X domain of definition of L
x̂ solution to L
D continuous domain
Dh h-discretized domain
dh element of Dh

A ansatz
F prediction (element of an ansatz)
f (k), f (k)(F ) expansion coefficients, coefficients of a F ∈ A

r(k)(F ) residue of order k for F ∈ X

Lattice Boltzmann Method

LBM Lattice Boltzmann Method

f̂ , f̂h, f̂i LB solution (different notations)
n time step, state after collision
G(h) discrete grid of size h
j general grid node
V discrete velocity space
ci, cix, ciy discrete velocity, scalar components

J(f̂), Ĵ LB-collision operator
f c

i post-collision distribution
τ BGK relaxation time
ω BGK relaxation frequence

f eq(f̂h) equilibrium distribution (function of f̂)

fL(eq)(f̂h), f
Q(eq)(f̂h) linear and quadratic part of f eq(f̂h)

Heq(ρ,u), HL(eq)(ρ,u), HQ(eq)(ρ,u) equilibrium as function of the moments
f ∗

i LB-weights
cs lattice sound speed
gi force term in LBE
(k, i) boundary couple
bn

i (k) boundary point related to (k, i)



Appendix B

Accuracy properties of the MEA

Theorem B.1 (5.1).
Let b0 ∈ Γ be a point on a smooth d-dimensional interface (d = 1, 2) of finite
length. Given the LB-grid size h, we consider a coarser grid size hc, such that

h ∈ o(hc), and the related interval Γ0(b0, hc) =

{
b ∈ [0, 2π) : ‖b − b0‖ <

hc

2

}
.

Defining local averages of the exact and approximate normal stress in Γ0

I(b0, hc) =
1

hd
c

∫

Γ0

(−pI + S) · n dσ, Φ(b0, hc) =

(
h

hc

)d ∑

(k,i):bi(k)∈Γ0

φi(k)

h2
,

the following estimate holds

∣∣I(b0, hc) − Φ(b0, hc)
∣∣ ∈ O

(
hc +

h

hc

)
. (B.1)

The proof of theorem 5.1 proceeds as follows. First, in section B.1 we introduce
notations and quantities which will be useful during the demonstration. Then,
we analyze in section B.2 and B.3 the effect of averaging the momenta exchanged
along the interface, proving the convergence toward the local integral. In section
B.4 we extend the proof to the total force evaluation.
We perform detailed a computation for d = 1, with a one-dimensional interface
in a domain Ω ⊂ R2. The case d = 2 is a straightforward extension.

B.1 Preliminary definitions

Like in chapter 5, we introduce the set of boundary couples

B(Γ) =
{
(k, i) ∈ G(h) × {1, . . . , 8} | xk ∈ ΩF , xk + hci ∈ ΩS

}
. (B.2)

It depends on the domain Ω, the grid G(h) and the shape of the boundary Γ.
In the notation of equation (B.2), we stress the influence of Γ. Each boundary
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couple identifies a point on the interface:

B(Γ) → B ⊂ Γ
(k, i) 7→ bi(k)

i.e. the intersection between the interface Γ and the link ci starting from the
node k (figure B.1, right). The base of the proof is the expansion derived for the
corrected momentum exchangea φ (equations (5.24) and (5.26)):

φ̄i(k) = h2φ
(2)
i (bi(k)) +O(h3), (B.4)

where

φ
(2)
i (bi(k)) =

[
2f ∗

i c
−2
s

(
p(bi(k)) − c−2

s νci · ∇uB(bi(k)) · ci

)]
ci. (B.5)

Those expressions, for different i, are composed by evaluating a macroscopic
function ζ (like p or Sν

α,β) at the boundary point bi(k) related to the couple
(k, i) ∈ B, with particular weights. To generalize the notations, we introduce the
vector aζ,i = (aζ,i

x , a
ζ,i
y ) which indicates the two-dimensional weight multiplying

the function ζ in φi:

φ
(2)
i (b) =

∑

ζ

aζ,iζ(b). (B.6)

Example B.1. Since φ
(2)
1 =

(
2

3
p− Sν

xx, 0

)
, we have

ap,1 =

(
2

3
, 0

)
, aSν

xx,1 = (−1, 0).

Grid-interface projections

For the boundary set B(Γ) defined in (B.2), we consider the projections

ΠG : B(Γ) → G(h), ΠV : B(Γ) → {1, . . . , 8}. (B.7)

We indicate with X(Γ) = ΠG(B(Γ)) the set of boundary grid points.
To have a more direct notation for the objects under consideration, we also define
a map on the set X(Γ), which gives all the outgoing directions on a boundary
node k ∈ X:

P : X(Γ) → P({1, . . . , 8})
k 7→ ΠV

(
Π−1

G
(k)
)
.

(B.8)

This map is obviously strictly related to the grid and the shape of the boundary,
as the set B is.

aHowever, without additional effort, we can consider a statement similar to theorem 5.1,
considering the second order coefficient of the original ME (section B.3.4)

φ
(2)
i = 2f∗

i c−2
s

(
p +

c−2
s

2

(
|ci · uB |2 − c2

su
2
B

)
− c−2

s νci · ∇uB · ci

)
ci. (B.3)
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Figure B.1: Sketch of a boundary node (circle) in the fluid domain ΩF , close to the
interface Γ. The couple (k, 8) ∈ B, being the point xk + hc8 ∈ ΩS.The vector n is
the outgoing (with respect to the solid) normal to the interface.

B.2 Straight boundaries

First, we consider theorem 5.1 in the special case of straight boundaries. Per-
forming the proof will help in understanding the way to proceed in more general
cases.
We assume the interface Γ to be a straight line, with constant inclination θ ∈
[0, 2π). Without loss of generality, we consider (figure B.2) Ω = [0, 1] × [0, tanθ]
and the solid domain

ΩS = {(x, y) ∈ Ω | y < x tan θ}. (B.9)

In other words, the boundary (named θ-boundary in the future) is inclined by θ
with respect to the x axis. In this particular situation, the outgoing normal to
the interface is n = (− sin θ, cos θ).
Actually, we also assume 0 ≤ θ ≤ π

4
(note that the case θ = 0 has been already

solved in the example of flat boundaries in chapter 5, equation (5.25)). Otherwise,
a similar proof can be repeated rotating the reference system, i.e. exchanging the
role of x and y or of the discrete links in the following formulas.

Frequency of appearance

The structure of P(k) (outgoing direction in the node k) can be described through
some algebraic relations. Let us consider a node k = (kx, ky). From

xk ∈ ΩF ∪ Γ ⇐⇒ ky ≥ tanθkx

and

i ∈ P(k) ⇔ xk + hci ∈ ΩS

⇔ hky + hciy < tan θ(hkx + hcix)

⇔ hky < tanθhkx + h(tanθcix − ciy),
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Figure B.2: Boundary points for a straight boundary with inclination θ. Here tanθ =
3
5
. According to (B.9), the fluid region is on the top. n is the solid-outgoing normal.

we conclude
i ∈ P(k) ⇔ 0 ≤ ky − tanθkx < tanθcix − ciy. (B.10)

Inequality (B.10) has solutions only if the right hand side is greater than zero. We
call boundary crossing link any discrete velocity ci such that tanθcix−ciy > 0.
To fix the ideas, we look at the two extreme situations.
If θ = 0, relation (B.10) reduces to

i ∈ P(k) ⇔ 0 ≤ ky < −ciy (ky ≥ 0). (B.11)

In this case the boundary points (see figure B.3, left) are the nodes k such that

ky = 0. From the condition (B.11), we have ciy < 0, i.e. i = 6, 7, 8. If θ =
π

4
(figure B.3, right), the condition is 0 < ky − kx < cix − ciy. It is satisfied by
i = 1, 7 and kx = ky, or by i = 8 and ky = kx, kx + 1. Notice that there are two
couples with the same kx, containing i = 8, and tanθc8x − c8y = 2, while only one
with i = 1 or i = 7 and tanθc1x − c1y = tanθc7x − c7y = 1 . In these examples the
quantity cix tanθ − ciy estimates how many ky satisfy the inequality for a fixed
kx. This suggests a further characterization of the θ-boundary.

Definition B.1 (Frequency of appearance). If the interface is a θ-boundary,
we define the frequency of appearance of the link i in the set P(k) as

mθ,i ≡ max
(
tanθcix − ciy, 0

)
. (B.12)

As remarked in (B.10),
i ∈ P(k) ⇔ mθ,i > 0. (B.13)

Within the restriction 0 ≤ θ ≤ π
4
, we have

tanθcix − ciy > 0 ⇔ i ∈ {1, 6, 7, 8}.
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Figure B.3: Sketch of the boundary direction for the cases θ = 0, θ =
π

4
. In the

second example, for a fixed kx, the link i = 8 appears twice (nodes ◦ and •), with
respect to the directions i = 1, 7 (nodes •).

Remark. Since mθ,i ∝ (ci · n), ci has to be an outgoing direction. Such con-
dition has been already announced. However, the function mθ,i contains more
information. In some sense, mθ,i counts the boundary couples. This concept will
be formalized in general in the following part. Through mθ,i a set of properties
relating the macroscopical weights aζ,i to the integral (5.2) can be proven.

Lemma B.1. Let us define

Wθ(ζ) =
∑

i

mθ,i

(
ai,ζ

x

ai,ζ
y

)
. (B.14)

It holds

Wθ(p) =

(
tanθ
−1

)
,Wθ(Sν

xx) =

(
− tanθ

0

)
,

Wθ(Sν
xy) =

(
1

− tanθ

)
, Wθ(Sν

yy) =

(
0
1

)
.

(B.15)

Proof. We will proof only the relation for W θ
x (p) (others are similar). Direction

by direction, we have

ap,1 =

(
2

3
, 0

)
= −ap,5, ap,2 =

(
1

6
,
1

6

)
= −ap,6,

ap,3 =

(
0,

2

3

)
= −ap,7, ap,4 =

(
−1

6
,
1

6

)
= −ap,8.



192 Appendix B. Accuracy properties of the MEA

Hence,
∑

i

ap,i
x max

(
tanθcix − ciy, 0

)
=

=
2

3
max (tanθ, 0) +

1

6
max (tanθ − 1, 0) − 1

6
max (− tanθ − 1, 0) −

− 2

3
max (− tanθ, 0) − 1

6
max (− tanθ + 1, 0) +

1

6
max (tanθ + 1, 0) =

=
2

3
tanθ +

1

6
(tanθ − 1) +

1

6
(tanθ + 1) = tanθ.

A direct consequence is the following

Lemma B.2. Let b ∈ Γ. It holds

∑

ζ

Wθ(ζ)ζ(b) =
1

cos θ
n(b) · (−p(b) + Sν(b)) . (B.16)

The last relation expresses a connection between the discrete sum of the ME φ
and the continuous integral of the hydrodynamical fields. Furthermore, it serves
to identify where the integral measure come from. Heuristically, let us consider
an integral ∫

∆Γ

(−p + Sν) · ndγ

which corresponds to the force acting on a subset ∆Γ of a θ-inclined interface.
The increment dγ can be expressed as

dγ = dγx
1

cos θ
(B.17)

being dγx the increment on the x-axis. In case of curved boundary, equation
(B.17) would be a first order approximation (in h) of the increment.
Remark. The particular dependence on the abscissae comes from the restriction

0 ≤ θ <
π

4
. In general, the axis which spans the angle θ with the interface is

involved.

B.2.1 Averaged momentum exchanged

For a point b0 ∈ Γ and a parameter hc, we set

I(b0, hc) =

{
x ∈ Γ | ‖x− b0x‖ ≤ hc

2

}
. (B.18)

It is the subset of Γ whose projection on the x-axis is an
hc

2
-neighborhood of b0x.
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For this subset of the interface, we consider the set

B(b0, hc) := {(k, i) ∈ B(Γ) | bi(k) ∈ I(b0, hc)} ⊂ B(Γ),

of the boundary couples which identify a point in I(b0, hc), and the set

X(b0, hc) = ΠG (B(b0, hc)) ,

of boundary grid nodes exchanging momentum with the subset I(b0, hc).
According to the statement of theorem 5.1, we need a coarse parameter hc(h)
such that

h ∈ o(hc).

For example, we could consider

hc = hα, 0 ≤ α < 1.

In what follows, we define a coarse grid as

hc(h) = L(h)h, (B.19)

L(h) being the number of finer grid nodes belonging to a coarse grid step. Since
h ∈ o(hc), we have

lim
h→0

L(h) = +∞ . (B.20)

The idea is to prove a set of estimates regarding the boundary set and the mo-
mentum exchange which leads to the continuous integral after taking the average
over several grid nodes. To do this, we relate the boundary set to the shape of
the boundary, through the frequency of appearance mθ,i.
Formally, introducing the characteristic function of a set A:

χA(x) =

{
1 x ∈ A
0 x /∈ A

,

we have

Lemma B.3.
1

L

∑

k∈X(b0,Lh)

χP(k)(i) = mθ,i +O

(
1

L

)
.

Thus, mθ,i represent asymptotically the number of times per unity of length a link
i appears as outgoing direction in a set of points of length L on the x-axis.

Proof. The sum ∑

k∈X(b0,Lh)

χP(k)(i)
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expresses the number of times the boundary is crossed by a link ci outgoing from
nodes k ∈ X(b0, Lh).
We restrict to 0 ≤ tanθ ≤ 1. Moreover, for simplicity we can shift the axis in

order to have b0 = h
L

2
, i.e.

∀k ∈ X(b0, hc) : 0 ≤ kx ≤ L− 1 . (B.21)

Of course, the links i = 2, 3, 4, 5 satisfy trivially the property, holding mθ,i = 0.
Now, let us consider the directions such that mθ,i > 0. Calling k = (kx, ky), the
condition χP(k)(i) = 1 means

kx tanθ ≤ ky < (kx + cix) tanθ − ciy. (B.22)

Since kx, ky ∈ Z, we can count the integer solutions of inequality (B.22). Namely,
for fixed kx ∈ {0, . . . , L− 1} and ci ∈ V, we have

d(kx + cix) tanθ − ciye − dkx tanθe (B.23)

possible choices for ky, such that χP(k)(i) = 1 (k is a boundary node and ci is an
outgoing direction). In equation (B.23), d e denoted the upper integer part. For
α ∈ R:

dαe = min
n∈Z

{n | n ≥ α}. (B.24)

So that, summing up for kx ≤ L− 1,

∑

k∈X(b0,Lh)

χP(k)(i) =
L−1∑

kx=0

(
d(kx + cix) tanθ − ciye − dkx tanθe

)
. (B.25)

To complete the proof we use some simple arithmetic relations.

Sub-lemma B.3.1. Let α ∈ R, n ∈ Z. Then

(A)dα + ne = dαe + n

(B)dαe = α +O(1).

Since ciy ∈ Z, using sublemma B.3.1, part (A), we can write sum (B.25) as

L−1∑

kx=0

(
d(kx + cix) tanθ − ciye − dkx tanθe

)
=

= −ciyL +

L−1+cix∑

kx=cix

dkx tanθe −
L−1∑

kx=0

dkx tanθe. (B.26)

We distinguish between three different situations.
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(a): cix = 0. In this case, the two sums on the right hand side of equation (B.26)
are equal, i.e. ∑

k∈X(b0 ,Lh)

χP(k)(i) = −ciyL. (B.27)

(b): cix = 1. In the expression

∑

k∈X(b0 ,Lh)

χP(k)(i) = −ciyL+

L∑

kx=1

dkx tanθe −
L−1∑

kx=0

dkx tanθe

the two sums over kx can be grouped in a single one, which has telescopic prop-
erties, i.e. the addenda balance themselves. Only the lowest, for kx = 0 (which
vanishes), and the highest, for kx = L, remains, giving

∑

k∈X(b0 ,Lh)

χP(k)(i) = −ciyL+ cixdL tanθe = −ciyL + cixL tanθ +O(1). (B.28)

(c): cix = −1. In the last case, we have

∑

k∈X(b0,Lh)

χP(k)(i) = −ciyL+
L−2∑

kx=−1

dkx tanθe −
L−1∑

kx=0

dkx tanθe =

− ciyL− dtanθe − d(L− 1) tanθe (B.29)

(it is again a telescopic sum). Applying sub-lemma B.3.1, part (B)

−dtanθe − d(L− 1) tanθe = − tanθ +O(1) − (L− 1) tanθ +O(1),

so that ∑

k∈X(b0,Lh)

χP(k)(i) = −ciyL + cixL tanθ +O(1). (B.30)

Summarizing, for cix ∈ {−1, 0, 1} it holds

∑

b∈X(b0,Lh)

χP(k)(i) = Lmθ,i +O(1). (B.31)

Dividing by L the proof is complete.

As a consequence, we obtain an estimate for the number of points in the boundary
set.

Corollary B.1.
|X(b0, Lh)|

L
= 1 + tanθ +O

(
1

L

)
.
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Proof. Within the restriction 0 ≤ tanθ ≤ 1, we have that

∀k ∈ X(b0, Lh) : χP(k)(8) = 1,

i.e. the link c8 is outgoing in each boundary node. Thus,

|X(b0, Lh)| =
∑

b∈X(b0 ,Lh)

χP(k)(8).

Since mθ,8 = 1+tanθ, the corollary is just a particular case of the previous lemma
B.3.

Coarse grids

Lemmas B.2 and B.3 motivate the origin of the coarser grid. In fact, considering
a discretization parameter hc(h) = L(h)h such that (equation (B.20))

lim
h→0

L(h) = +∞,

for small h we can translate the previous properties in asymptotic estimates.
Let b0 ∈ Γ be given. We define the coarse interval

I(b0, hc) =

{
(x, y) ∈ Γ | ‖x− b0x‖ ≤ hc

2

}
(B.32)

(considering the distance along the x-axis) and focus on the subintegralb

I(b0, hc) =

∫

I(b0,hc)

n · (−p + Sν) dγ :=

∫

I(b0,hc)

Zdγ. (B.33)

bIn practice, the parameter hc can be used to define a coarse partition of the interface

{br
0 | r = 1, . . . R} ⊂ Γ

such that

Γ =

R⋃

r=1

I(br
0, hc).

Consequently, the original integral along Γ can be divided in sub-integrals

I =

R∑

r=1

I(br
0, hc),

where

I(br
0, hc) =

∫

I(br

0
,hc)

n · (−p + Sν) dγ :=

∫

I(br

0
,hc)

Zdγ.

In the theorem, we focus on a single coarse interval.
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Using a Taylor expansion we have

I(b0, hc) =
hc

cos θ
Z(b0) +O(h2

c). (B.34)

At the same time,

Φ(b0, hc) =
∑

(k,i)∈B(b0 ,hc)

φ̄i(k) =

8∑

i=1


 ∑

k∈X(b0,hc)

χP(k)(i)φ̄i(k)


. (B.35)

Inserting the prediction (5.24) for (the corrected) φ̄i and its Taylor expansion
around b0, the previous formula becomes

Φ(b0, hc) = h2




8∑

i=1

φ̄
(2)
i (b0)

∑

k∈X(b0,hc)

χP(k)(i) +O(hc)


 . (B.36)

Remark. We average over a coarse grid cell, which contains L nodes of the
original grid along the x-axis. Moreover, since the quantities in which we are
interested are of order h2 in Φ(b0, hc), we consider an averaged and rescaled
sumc

Φ(b0, hc) =
1

L

Φ(b0, hc)

h2
. (B.37)

We have

Φ(b0, hc) =
8∑

i=1

φ
(2)
i (b0)

∑

k∈X(b0,hc)

(
χP(b)(i)

L
+O(L−1hc)

)
=

=

8∑

i=1

mθ,iφ
(2)
i (b0) +O(

∣∣X(b0, hc)
∣∣L−1hc).

Estimating the right hand side using lemma B.3 and corollary B.1 we find

Φ(b0, hc) =
1

cos θ
Z(b0) +O

(
h

hc

)
+O(hc). (B.38)

Being L =
hc

h
, the relation between (B.34) and (B.36) is now

∣∣∣∣
I(b0, hc)

hc

− Φ(b0, hc)

∣∣∣∣ ∈ O

(
hc +

h

hc

)
. (B.39)

cIn the case of a two-dimensional interface, the relation between the points of fine and coarse

grid involves
(

h
hc

)2

. Equation (B.37) contains in general a factor
(

h
hc

)d

.
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In the enunciate of theorem 5.1, we deal with the coarse set

Γ0(b0, hc) =

{
b ∈ Γ |

∥∥b − b0

∥∥ < hc

2

}

which is slightly different from the I(b0, hc) considered in equation (B.39). How-
ever, for straight interfaces these two sets are asymptotically equal, in the sense
that their lengths are of the same order, and the number of nodes of difference
(belonging to one but not to another) goes to zero as L goes to infinity. Hence, the
validity of the argument is not affected, i.e. estimate (B.39) proves the theorem
for straight boundaries.

B.3 Generalization for curved boundaries

To generalize the proof, we follow the path which yielded equation (B.39), inves-
tigating the modification we need in a more general case.

B.3.1 Interface as smooth function of x

Let us assume that the interface Γ is described by the graph of a smooth function:

∃g smooth : Γ = {(x, y) ∈ Ω | y = g(x)} , (B.40)

In this case, the fluid and solid domains are identified by

ΩF = {(x, y) ∈ Ω | y > g(x)} , ΩS = {(x, y) ∈ Ω | y < g(x)} (B.41)

(compare with equation (B.9)).

PSfrag replacements hc

h

I

Figure B.4: Example of a coarse cell hc × hc in a lattice of size h. The squares
represent the solid node, the circles the fluid ones. The set I = I(b0, hc) (bold line)
is the portion of interface contained in the cell.

Assuming to have chosen a point b0 ∈ Γ and a coarse parameter hc, defining the
related coarse interval I(b0, hc) as in equation (B.32), we focus on a single cell
hc × hc (figure B.4).
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B.3.2 Averaged inclination

We look for a geometric condition on a couple (k, i) belonging to the set B(b0, hc).
According to (B.41),

(k, i) ∈ B(b0, hc) ⇐⇒ hky ≥ g(hkx)
h(ky + ciy) < g(hkx + hcix).

(B.42)

If g(x) is smooth, we can write (fundamental theorem of calculus)

g(hkx + hcix) = g(hkx) +

∫ hkx+hcix

hkx

g′(s)ds. (B.43)

Using s = h(kx + cixσ), we have

g(hkx + hcix) = g(hkx) + hcix

∫ 1

0

g′(hkx + hcixσ)dσ (B.44)

which allows to rewrite (B.42) as

(k, i) ∈ B(b0, hc) ⇐⇒

0 ≤ ky −
g(hkx)

h
< cix

∫ 1

0

g′(hkx + hcixσ)dσ − ciy. (B.45)

In view of (B.45), having fixed the node k, the direction ci intersects the interface
iff

cix

∫ 1

0

g′(hkx + hcixσ)dσ − ciy > 0. (B.46)

Different interpretations of (B.45) are possible. In words, equation (B.46) ex-
presses the fact that the vector ci from the node k is a boundary crossing link
in terms of the average of the function g′(x) in the range h[kx, kx + cix].

Let us consider a boundary couple (k, i) ∈ B(b0, hc). We can denote with

〈g′〉(bi(k)) =

∫ 1

0

g′(hkx + hcixσ)dσ. (B.47)

the average of g′(x) in the x-cell containing the intersection bi(k) (figure B.5).

As well, we can introduce the angle 〈θ〉 ∈
[
−π

2
,
π

2

]
such that

tan〈θ〉(bi(k)) = 〈g′〉(bi(k)), (B.48)

i.e. the average inclination of the interface in h[kx, kx + cix].
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The definition of 〈θ〉 can be extended to any point of the interfaced, i.e.

∀b ∈ Γ : 〈θ〉(b) = average inclination in the x-cell containing b.

In other words, we are looking at the interface Γ as a piecewise straight line, with
inclinations equal to the average on the corresponding cells (figure B.5).

Remark. Condition (B.45) is purely geometric, and related to a property of the
grid and the interface. The averaged inclination (B.49) will be used to transport
the results proven for straight boundaries also in the case of a curved interface.
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PSfrag replacements
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Figure B.5: Left: Averaged inclination of the interface between the abscissae kx and
kx + 1. Formula (B.47) expresses the averaged inclination of the interface, over the
interval of size h containing the intersection lattice-boundary b. The dashed line is
a straight boundary with inclination equal to the averaged one. Right: In a hc × hc

cell (figure B.4), using (B.47) we approximate the interface with a piecewise straight
approximation.

Generalized frequency of appearance

Relation (B.45) can be rewritten as

∀(k, i) ∈ B(b0, hc) : cix tan〈θ〉(bi(k)) − ciy > 0. (B.50)

It generalizes the previous relation (B.10) in case of curved boundaries, where
the inclination is no longer constant.

dFormally, any b ∈ Γ is contained in one and only one x-cell:

∃ !k(b) ∈ G(h) : b ∈ h[kx(b), kx(b) + 1) × h[ky(b), ky(b) + 1),

and we can define

〈θ〉(b) = tan−1

(∫ 1

0

g′(hk(b)x + hσ)dσ

)
. (B.49)
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In analogy with the previous results, we introduce the generalized frequency of
appearance

〈m〉(k,i) = max

{
cix

∫ 1

0

g′(hkx + hcixσ)dσ − ciy, 0

}
. (B.51)

In case of straight boundary with constant inclination θ, g ′(x) = tanθ, 〈m〉 does
not depend on k and it coincides with the frequency of appearance previously
defined.

Lemma B.4.

∀k ∈ X(b0, hc) : 〈m〉(k,i) = m〈θ〉(b0),i +O(hc).

Proof. Let us take (k, i) ∈ G(h) × {1, . . . , 8}. We have

〈m〉(k,i) =

{
cix tan〈θ〉(bi(k)) − ciy (k, i) ∈ B(Γ)

0 (k, i) /∈ B(Γ).
(B.52)

Taylor expanding g around b0x, for the points bi(k) in the considered coarse cell,
it holds

tan〈θ〉(bi(k)) = tan〈θ〉(b0) +O(hc).

Hence,

〈m〉(k,i) =

{
cix tan〈θ〉(b0) − ciy +O(hc) (k, i) ∈ B(Γ)

0 (k, i) /∈ B(Γ).
(B.53)

The straight frequency of appearance reads

m〈θ〉(b0),i = max{cix tan〈θ〉(b0) − ciy, 0}.

It might happen, that for (k, i) ∈ B(b0, hc) we have 〈m〉(k,i) > 0 but m〈θ〉(b0),i = 0,
or vice versa. In words, (k, i) is a boundary couple for Γ, but not for a straight
approximation with inclination 〈θ〉(b0). However, in this case

cix tan〈θ〉(b0) ≤ 0

cix tan〈θ〉(b0) +O(hc) > 0,

which imply
〈m〉(k,i), m〈θ〉(b0),i ∈ O(hc).

In conclusion
〈m〉(k,i) = m〈θ〉(b0),i +O(hc).
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Therefore, in the considered hc × hc cell, up to an error O(hc) we can consider
the frequency of appearance of a straight interface with inclination equal to the
average in the coarse cell (figure B.6).
Obviously, the boundary couples of a straight approximation of the interface do
not coincide with the boundary couples of the original one. However, the lemma
tells that this happens only when the frequency of appearance is of order O(hc).
Inother words the differences between the boundary set of the interface Γ and of
its straight approximation is small, for small hc. Formally,

Lemma B.5.

1

L

∑

k∈X(b0,Lh)

χP(k)(i) = m〈θ〉(b0),i +O

(
1

L

)
+O(hc).

Proof. Let k ∈ X(b0, Lh) and ci ∈ V be fixed. As before (lemma B.3), we
estimate the sum counting, for each kx, how many choices for ky we have, such
that k = (kx, ky) ∈ X(b0, Lh) and i ∈ P(k).
According to condition (B.42), it has to hold

g(hkx)

h
≤ ky <

g(hkx + hcix)

h
− ciy.

Hence, there are ⌈
g(hkx + hcix)

h
− ciy

⌉
−
⌈
g(hkx)

h

⌉

possible solution ky ∈ Z. For simplicity, since hc = Lh, we assume (see lemma
B.3)

∀k ∈ X(b0, Lh) : 0 ≤ kx ≤ L− 1

(it can be done shifting the interface along the x-axis).
We have

∑

k∈X(b0 ,Lh)

χP(k)(i) =

L−1∑

kx=0

⌈
g(hkx + hcix)

h
− ciy

⌉
−
⌈
g(hkx)

h

⌉
=

= −ciyL +

L−1∑

kx=0

⌈
g(hkx + hcix)

h

⌉
−
⌈
g(hkx)

h

⌉
.

(B.54)

With an argument analogous to the one used to prove lemma B.3, we split the
cases cix = 0, 1,−1.
If cix = 0, equation (B.54) reduces to

∑

k∈X(b0 ,Lh)

χP(k)(i) = −ciyL. (B.55)
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If cix = 1 we have a telescopic sum, which yields

∑

k∈X(b0 ,Lh)

χP(k)(i) = −ciyL+

⌈
g(Lh)

h

⌉
−
⌈
g(0)

h

⌉
=

= −ciyL+
g(Lh) − g(0)

h
+O(1).

(B.56)

From

g(Lh) − g(0) =

∫ Lh

0

g′(x)dx = Lh

∫ 1

0

g′(Lhσ)dσ,

using the Taylor expansion for g′(x) we can estimate

g(Lh) − g(0)

h
= L (〈g′〉(b0) +O(hc)) ,

which yields

∑

k∈X(b0,Lh)

χP(k)(i) = Lm〈θ〉(b0),i +O(Lhc) +O(1). (B.57)

The case cix = −1 is analogous, so that we can conclude

∀cix ∈ {0, 1,−1} :
1

L

∑

k∈X(b0 ,Lh)

χP(k)(i) = m〈θ〉(b0),i +O(hc) +O

(
1

L

)
.

The result is analogous to lemma B.3, only using 〈θ〉(b0) instead of θ, and with
an additional term O(hc).

PSfrag replacements

kx

kx + 1

h

hc

I

b

Figure B.6: From the subset of interface I(b0, hc) ⊂ Γ of figure B.4, we reduce to
a straight interface with inclination equal to the average in the LB cell (of size h)
containing b0 (bold line). Differences in the structure of the boundary node set of Γ
and of the straight approximation appear only if the frequency of appearance 〈m〉(k,i)

is small.
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From discrete grid to continuous integral

Let us define

W〈θ〉(b)(ζ) =
∑

i

m〈θ〉(b),ia
i,ζ. (B.58)

Applying lemma B.1, using the averaged angle 〈θ〉(b0) instead of the constant θ,
it holds

W〈θ〉(b0)(p) =

(
tan〈θ〉(b0)

−1

)
+O(hc),

W〈θ〉(b0)(Sν
xx) =

(
− tan〈θ〉(b0)

0

)
+O(hc),

W〈θ〉(b0)(Sν
xy) =

(
1

− tan〈θ〉(b0)

)
+O(hc),

W〈θ〉(b0)(Sν
yy) =

(
0
1

)
+O(hc).

(B.59)

Note that, considering curved boundaries we have to use the averaged value on
the hc-cell instead of a constant inclination.

As a consequence, the relation with the continuous integral is stated in the fol-
lowing lemma.

Lemma B.6.

∑

ζ

W〈θ〉(b0)(ζ)ζ(b0) =
1

cos θ(b0)
n(b0) · (−p(b0)I + Sν(b0)) +O(hc). (B.60)

Proof. From lemma B.2, using θ = 〈θ〉(b0), it follows directly

∑

ζ

W〈θ〉(b0)(ζ)ζ(b0) =
1

cos〈θ〉(b0)
n(b0) · (−p(b0)I + Sν(b0)) +O(hc). (B.61)

Using a Taylor expansion for the function g(x), we have also

θ(b0) = 〈θ〉(b0) +O(hc),

which combined with (B.61) proves the statement. Note that the only difference
with respect to the straight boundary case, is the additional error O(hc).



B.3. Generalization for curved boundaries 205

Now, we have the ingredients to estimate the sum of momentum exchange.

1

L

∑

(k,i)∈B(b0 ,hc)

φ
(2)
i (bi(k)) =

1

L

8∑

k=1


 ∑

k∈X(b0 ,hc)

χP(k)(i)φ
(2)
i (bi(k))


 =

=
1

L

8∑

k=1

(
φ

(2)
i (b0) +O(hc)

) ∑

k∈X(b0,hc)

χP(k)(i) =

=
8∑

k=1

φ
(2)
i (b0)

1

L

∑

k∈X(b0,hc)

χP(k)(i) +O

(
hc

|X(b0, hc)|
L

)
=

=

8∑

k=1

φ
(2)
i (b0)m〈θ〉(b0),i +O

(
1

L

)
+O

(
hc

|X(b0, hc)|
L

)
.

Regarding the last term, an estimate of the cardinality of X(b0, hc) follows from
lemma B.5:

|X(b0, hc)| ∈ O(L), (B.62)

since it holds for the straight approximation of the boundary.

Condition (B.62) expresses indirectly a limit on the length of the interface in the
considered coarse cell. If the interface has finite length, in each coarse cell the
length goes to 0 with hc, as well as the number of grid-boundary intersections.
In practice, it might happen that the result is true only eventually, i.e. for hc

smaller than a threshold value hc (figure B.7).

PSfrag replacements
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Figure B.7: In practice, to have a limit for the number of boundary nodes in a
coarse interval, the interface should not be too long inside the considered coarse cell.
If the interface is smooth and has finite length, decreasing with hc, the number of
intersection will be eventually bounded by the number L of nodes contained in a
coarse grid step.
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In conclusion, we can write

1

L

∑

(k,i)∈B(b0 ,hc)

φ
(2)
i (bi(k)) =

8∑

k=1

φ
(2)
i (b0)m〈θ〉(b0),i +O

(
1

L

)
+O (hc) =

=
1

cos〈θ〉(b0)
Z(b0) +O

(
1

L

)
+O(hc),

(B.63)

which combined with (B.33) yields again estimate (B.39), proving the statement.

B.3.3 Smooth interfaces

In general, assume the interface to be given by

Γ = {(x, y) ∈ Ω | Z(x, y) = 0},

Z ∈ F(Ω,R) being a smooth function. Assume that the curve Z does not have
singularity points, i.e. ∇Z 6= 0.
Once we have chosen a point b0 ∈ Γ and the grid size hc, if the gradient of Z

does not vanish we can always assume to solve the equation

Z(x, y) = 0

with respect to x or to y (Dini’s theorem). In practice it could be necessary to
choose a parameter hc small enough.
Therefore, we can reduce to the previous situation, locally around b0. Expressing
x as a function of y, it is enough to perform a rotation of the reference system
and repeat the proof of theorem 5.1 as in section B.3.1.

B.3.4 Statement for the original MEA

Concerning the original MEA (5.19), to generalize (B.39) we need a suitable limit,
as the integral (5.2) is for the corrected algorithm. Recalling the expression of
the ME

φi(k) = φ
(0)
i + h2φ̄

(2)
i = −2c−2

s f ∗
i ci+

h22f ∗
i c

−2
s

(
p+

c−2
s

2

(
|ci · uB|2 − c2s|uB|2

)
− c−2

s νci · ∇uB · ci

)
ci (B.64)

(the functions φ(k), p, uB are evaluated at the boundary point bi(k)), the exten-
sion of lemma B.6 is straightforward. Explicitely, using the same notation

φ
(2)
i =

∑

ζ

aζ,iζi, (B.65)
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where ζ = p,Sν
α,β, uαuβ and aζ,i are the corresponding weights (equation (B.6)),

from (B.65) we obtain (compare with (B.59))

W〈θ〉(u2) =

(
tan〈θ〉

0

)
, W〈θ〉(uv) =

(
−1

tan〈θ〉

)
, W〈θ〉(v2) =

(
0
−1

)
.

(B.66)
Additionally: ∑

i

2f ∗
i m〈θ〉,ici = −c2s

1

cos〈θ〉n. (B.67)

Lemma B.6 becomes

∑

ζ

W〈θ〉(b0)(ζ)ζ(b0) =

=
1

cos〈θ〉(b0)
n(b0) · (−p(b0)I + Sν(b0) − uB(b0) ⊗ uB(b0)) +O(hc). (B.68)

In view of (B.68), we define a generalized integral

J(b0, hc) = c2s

∫

I(b0,hc)

−ndγ + h2

∫

I(b0,hc)

n · (−pI + Sν − uB ⊗ uB) dγ =

= J0(b0, hc) + h2J2(b0, hc). (B.69)

At the same time, we introduce an expansion for the sum of the different orders
in the ME (B.64)

Φ =
∑

(k,i)∈B(Γ)

φi(k) = Φ(0) + h2Φ(2).

Skipping the details of the derivation, which is completely analogous to the pre-
vious one, we find the following estimates, order by order:

∣∣∣∣∣
J0(b0, hc)

hc

−
(
h

hc

)d

Φ(0)(b0, hc)

∣∣∣∣∣ ∈ O

(
hc +

h

hc

)
. (B.70)

∣∣∣∣∣
J2(b0, hc)

hc

−
(
h

hc

)d

Φ(2)(b0, hc)

∣∣∣∣∣ ∈ O

(
hc +

h

hc

)
. (B.71)

Remarks. The additional term in the second order can be written as
∫

I

uB(uB · n)dγ.

Hence, if uB = 0 (fixed boundary) or uB · n = 0 (for example, in the case of
sliding flat walls) it does not give contribution.
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B.4 Global force evaluation

Theorem B.2 (5.2). Let Γ be a smooth d-dimensional interface of finite length.

Denoting with Φ(Γ) =
∑

(k,i)∈B(Γ)

φi(k)

h2
the total sum of corrected momentum ex-

change, it holds ∣∣∣∣
∫

Γ

(−pI + S) · n dσ − hd Φ(Γ)

∣∣∣∣ ∈ O(h). (B.72)

As before, the proof is discussed for d = 1, considering a one-dimensional inter-
face in a domain Ω ⊂ R2. We will actually prove that estimate (B.72) is true
eventually, i.e. for h small enough. The argument is based on the prediction of
the second order coefficient

φ
(2)
i =

(
p− c−2

s νci · ∇uB · ci

)
ci. (B.73)

Simplified interface geometries
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Figure B.8: (a) On the left, the interface (bold line) crosses the horizontal link three
times in a single lattice cell. This case is excluded choosing a grid size h small enough
(right). (b) The link c1 from the fluid node k intersects the boundary in a point b,
such that c1 · n(b) > 0. In a neighborhood of b (solid line), the solid domain is on
the same side of the fluid node. Therefore, there exist at least two other intersections
on the link connecting k and k + c1.

To avoid a nasty treatment of the different possible geometric configurations, we
add some simplifying hypothesis. Let us consider the situations depicted in figure
B.8a. We assume to have a grid of size h small enough, such that there is at most
one intersection lattice-interface along a single node-node link.
In this case, if the direction ci starting from the boundary node k is outgoing,
i.e.

xk ∈ ΩF ∪ Γ, xk + hci ∈ ΩS,
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and crosses the boundary at the point bi(k), it has to hold

ci · n(b) ≤ 0. (B.74)

In fact, if ci ·n(bi(k)) > 0 it will be ci ·n(b) > 0 also in a neighborhood of bi(k).
Let us focus for simplicity on the case i = 1 (figure B.8b). This implies that at
least a small part of solid domain will be on the left of the considered boundary
point. However, if xk ∈ ΩF and xk + hc1 ∈ ΩS , along the link c1 there have to
be at least two intersections more.
Actually, regarding the intersection grid-boundary there are two possibilities. It
could happen that a subset of the interface coincides with a part of the LB-lattice
G(h). In this case (see figure B.9a), the normal vector is orthogonal also to the
lattice link, i.e. ci · n = 0.
In this situation we consider an ε-perturbed interface, where ε is an arbitrary small
parameter. Without discuss the operation in detail, we assume to construct an
interface Γε which is a small deformation of Γ in a neighborhood of the points
{b ∈ Γ | ci · n(b) = 0}, in such a way that the boundary nodes do not change,
but the normal vector to Γε is no longer orthogonal to ci (figure B.9b).

(a) (b)
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n(b)
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n(b)
PSfrag replacements
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nε(bε)

ε
Γε

Figure B.9: (a) On the left, the link c1 crosses the interface in a point b such
that c1 · n(b) = 0. On the right, the outgoing direction coincides with part of the
boundary. (b) The bold line is an ε-perturbation of the interface depicted in figure
(a), right. Now there is a single intersection point bε, and c1 · nε(bε) < 0.

Starting assumptions Summarizing,

• up to considering an arbitrary small perturbation of the interface,

• taking a grid size h small enough

we assume to deal with an interface Γ smooth one-dimensional such that

(a) a node-node link intersects Γ at most once,

(b) ∀bi(k) ∈ B(Γ) : ci · n(bi(k)) < 0.
(B.75)
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i-dependent partitions

Holding condition (B.75), we have

∀bi(k) ∈ B(Γ) :
ci · n(bi(k))

|ci · n(bi(k))| = −1.

We write explicitely the expressions (B.73) for different i (suppressing the argu-
ment bi(k)) as

φ
(2)
1 = − c1 · n

|c1 · n|

(
−2

3
p+ Sν

xx, 0

)

φ
(2)
2 = − c2 · n

|c2 · n|

(
−1

6
p+

1

2
Sν

xy,−
1

6
p+

1

2
Sν

xy

)

φ
(2)
3 = − c3 · n

|c3 · n|

(
0,−2

3
p+ Sν

yy

)

φ
(2)
4 = − c4 · n

|c4 · n|

(
1

6
p+

1

2
Sν

xy,−
1

6
p− 1

2
Sν

xy

)

φ
(2)
5 =

c1 · n
|c5 · n|

(
−2

3
p+ Sν

xx, 0

)

φ
(2)
6 =

c2 · n
|c6 · n|

(
−1

6
p+

1

2
Sν

xy,−
1

6
p+

1

2
Sν

xy

)

φ
(2)
7 =

c3 · n
|c7 · n|

(
0,−2

3
p+ Sν

yy

)

φ
(2)
8 =

c4 · n
|c8 · n|

(
1

6
p+

1

2
Sν

xy,−
1

6
p− 1

2
Sν

xy

)
.

(B.76)

The use of
ci · n
|ci · n|

we made in equations (B.76) is an expedient to have the

expressions in brackets in a form analogous as the one we have in integral (5.2)
(where p appears with a minus and Sν with a plus, for i = 1, . . . , 8).
The intersections grid-boundary are irregularly distributed along Γ. Collecting
separately the intersections with links of different orientation, we obtain more
structured partitions. Let us divide the lattice in sub-grids (four, for the D2Q9)

G(1,5) := {(x, y) ∈ Ω | y = hjy, j ∈ G(h)} ,
G(3,7) := {(x, y) ∈ Ω | x = hjx, j ∈ G(h)} ,
G(2,6) := {(x, y) ∈ Ω | y = (x− hjx) + hjy, j ∈ G(h)} ,
G(4,8) := {(x, y) ∈ Ω | y = −(x− hjx) + hjy, j ∈ G(h)} .

(B.77)

In words, G(i,i∗), with ci∗ = −ci, is the subset of Ω containing the lines of the
lattice parallel to ci and ci∗.
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We can also write
G(i,i∗) = {hj ± [0, 1]hci | j ∈ G(h)}.

As next, we construct the subsets of B containing the intersection between inter-
face and sub-grids

Bs(Γ) = Γ ∩ Gs, (B.78)

s = (i, i∗) being a couple of indexes such that ci = −ci∗ .
Each set Bs defines a different partition of Γ. The total number of points in each
partition depends on the geometry of the grid and the interface. With the usual
parameterization of Γ through the coordinate γ ∈ [0, 2π)

[0, 2π) → Γ
γ 7→ b(γ) = (x(γ), y(γ)),

(B.79)

we can order the elements of Bs according to their coordinates:

Bs = {bs
r = b(γs

r) | r = 1, . . . , P s} .

Remark. Because of the condition is ci ·n < 0, each point in Bs is related either
to the link ci or to the opposite ci∗, being

ci · n = −ci∗ · n.

Equivalently, within the four sets Bs(Γ), we are counting exactly once all the
intersections between Γ and the lattice G(h).

Reference systems

Let us focus on a particular direction ci which intersects the interface in a certain
point of coordinate γr. We introduce the orthogonal reference systems Si, defined,
for a given ci, by (figure B.10)

ξ = ciyx− cixy
η = cixx + ciyy.

(B.80)

The coordinate Si = (ξ, η) is obtained rotating the original system, so to orient
the ordinates as the vector ci. For example, for ci = c1 = (1, 0), the coordinates
change from (x, y) to (−y, x).
Expressing a point on the interface as b = (x(γ), y(γ)), for the tangential and
the normal vector the following geometrical relations hold:

t =

(
∂x

∂γ
,
∂y

∂γ

)

n =

(
∂y

∂γ
,−∂x

∂γ

)
= (nx, ny).
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In terms of the coordinate system (ξ, η), we have

∂ξ

∂γ
=
∂ξ

∂x

∂x

∂γ
+
∂ξ

∂y

∂y

∂γ
= ciy(−ny) + (−cix)nx = −ci · n. (B.81)

In view of (B.75), if γr ∈ B then ci · n(b(γ)) 6= 0 in a neighborhood of γr.
Therefore, we can locally define an inverse

γ = γ(ξ),

and express a point b ∈ Γ as (Dini’s Theorem)

b = (ξ, η(γ(ξ))). (B.82)

It holds, in view of (B.81),

∂γ

∂ξ
(b) = − 1

ci · n(b)
.
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Figure B.10: Left: Rotation of the axis which defines the reference system Si,
according to a boundary couple (k, i). The axes η has the same versus and direction
as the outgoing direction ci. Right: Interval for the integration (B.84), between γr =
γ(0) (coordinate of the intersection b = (0, η(0)), using ξ = 0 in the representation
(B.82) for a point on the interface) and γr+1 = γ(h) (for ξ = h).

Generalized i-quadrature

Assume now to deal with two consecutive intersections, between Γ and two par-
allel links of the lattice. We indicate these points with

b(γr),b(γr+1) ∈ B(i,i∗).

Technical problems might arise if the scalar product ci·n approaches zero between
γr and γr+1. Hence, we consider the set

B
(i,i∗)
0 =

{
b(γr) ∈ B(i,i∗) | ∀γ ∈ (γr, γr+1) : ci · n(b(γ)) < 0

}
(B.83)
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of all the nodes γr in the i-partition for which the scalar product does not expe-
rience any change of sign, remaining below zero (as it is in b(γr)).
In the coordinate system Si, fixing the zero of the coordinate ξ in correspondence
with the considered intersection point, we have (figure B.10)

γr = γ(0), γr+1 = γ(h).

The terms involved in the MEA-sum are of the form (equation (B.6))

φi(br) =
∑

ζ

aζ,iζ(br).

Considering the integration of the pressure, for a fixed direction i (an analogous
argument can be used also for the stress tensor). Using the abbreviations p(γ) =
p(b(γ)) and n(γ) = n(b(γ)), we have

hp(γr) =

∫ h

0

p(γ(ξ))dξ +O(h2) =

∫ h

0

p(γ(ξ))
ci · n(γ(ξ))

ci · n(γ(ξ))
dξ +O(h2) =

=

∫ γr+1

γr

−p(γ)ci · n(γ)dγ +O(h2). (B.84)

Extending the sum to the set Bs
0 defined in (B.83), we conclude

Φs
x =

∑

(k,m)∈B(Γ):
m∈{i,i∗},bi(k)∈Bs

0

hφm(k) = ap,i

∫

Γs
0

−p(γ)ci · n(γ)dγ+

∑

α,β

aSν
α,β

,i

∫

Γs
0

Sν
α,β(γ)(ci · n(γ))dγ +O(h), (B.85)

where s = (i, i∗) and the subset Γs
0 ⊂ Γ collects all the interval between the

consecutive nodes in Bs
0.

The above formula takes into account also the intersections between the interface
and the links ci∗. In this case, as in equation (B.76), the inversion of sign

ap,i = −ap,i∗

is reabsorbed by the defined pre-factor
ci · n
ci∗ · n

.

Estimates for the neglected parts Together with equation (B.85), we need
to estimate the contribution to the integral due to the part of the interface out
of Γs

0. By definition, γr /∈ Bs
0 if there is a point γ∗ between γr and γr+1 such that

ci ·n(γ∗) = 0. If the grid size is small enough (i.e. eventually), we can restrict to
two situations (figure B.11):

(a) the function ci · n(γ) has a simple zero between γr and γr+1,

(b) there exists an interval Ir ⊂ (γr, γr+1) such that ci · n(γ) = 0, for all γ ∈ Ir.
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(a) (b)
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Figure B.11: (a) The function ci · n(γ) has a zero between γr and γr+1. (b) The
function ci ·n(γ) vanishes in a subset Ir ⊂ (γr, γr+1). The integral for the force does
not receive contributions from this part of the boundary.

If the interface is smooth and has finite length, the function ci · n has only a
finite number of simple zeros, i.e. there will be only a finite number of points
belonging to the cases (a) and, consequently, a finite number (independent on
h) of neglected intervals of length O(h). Concerning the case (b), we can simply
include the subset Ir of the interface into the integral of equation (B.85):

Φs
x = ap,i

∫

Γs
0∪Ir

−p(γ)ci · n(γ)dγ+

∑

α,β

aSν
α,β

,i

∫

Γs
0∪Ir

Sν
α,β(γ)(ci · n(γ))dγ +O(h), (B.86)

since ci · n(γ) = 0, for all γ ∈ Ir. Therefore, including in Γs
0 also the subsets of

the interface belonging to the case (b), the set excluded from the computation
only consists of a finite number of intervals of length O(h). We can then estimate

∫

Γ/Γs
0

n · (−pI + Sν) dγ ∈ O(h), eventually.

Finally, writing explicitely the relations (B.86) for all the couples (i, i∗):

Φ(1,5)
x =

∫

Γ

nx(γ)

(
−2

3
p(γ) + Sν

xx(γ)

)
dγ +O(h), Φ(1,5)

y ∈ O(h),

Φ(3,7)
x ∈ O(h), Φ(3,7)

y =

∫

Γ

ny(γ)

(
−2

3
p(γ) + Sν

yy(γ)

)
dγ +O(h),

Φ(2,6)
x =

∫

Γ

(nx + ny)

(
−1

6
p+

1

2
Sν

xy

)
dγ +O(h),

Φ(2,6)
y =

∫

Γ

(nx + ny)

(
−1

6
p+

1

2
Sν

xy

)
dγ +O(h),

Φ(4,8)
x =

∫

Γ

(nx − ny)

(
−1

6
p− 1

2
Sν

xy

)
dγ +O(h),

Φ(4,8)
y =

∫

Γ

(−nx + ny)

(
−1

6
p− 1

2
Sν

xy

)
dγ +O(h).

(B.87)
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So that, being the numerical result the total amount of all the contributions of
(B.87), we obtain the estimate which proves lemma 5.2:

(
Φ(1,5) + Φ(3,7) + Φ(2,6) + Φ(4,8)

)
=




∫

Γ

nx(−p+ Sν
xx) + nyS

ν
xy

∫

Γ

ny(−p+ Sν
yy) + nxS

ν
xy


+O(h).

(B.88)
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The uncorrected momentum exchange Using a similar argument (see sec-
tion B.3.4), it can be proven that the uncorrected momentum exchange leads to
an approximation of

J = c2s

∫

Γ

−ndγ + h2

∫

Γ

(−p + Sν − uB ⊗ uB) · n dγ. (B.89)

Observe that ∫

Γ

−ndγ = 0

if Γ is a closed curve. Moreover,
∫

Γ

(uB ⊗ uB) · n dγ = 0

if the boundary is fixed, or moving orthogonal to a constant normal (plane walls).
If the structure is a rigid body, it holds

∀b ∈ Γ : uB(b) = uB(b0) + Ω × b0b,
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being Ω the angular velocity and b0 a reference point of the body. For some
particular configuration, like a circular interface, choosing b0 as the center we
have ∫

Γ

(uB ⊗ uB) · n dγ = 0,

since n is parallel to b0b.

Conclusive remark Even if separately the sums of momentum exchange along
the different lattice directions lead to different integrals, the symmetry properties
of the discrete velocities set V balance the global sum.
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