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Introduction

Background

The subject of this thesis is the study of the cohomology of some families
of Artin groups. The classical braid group Br(n) was first defined by Artin
in [Art25]. Given a manifold M of dimension d > 2 we define the space
F(M,n) as the configuration space of ordered n-tuples of distinct points in
M and the space C(M, n) as the configuration space of unordered n-tuples of
distinct points in M. Artin gives a geometric description of the braid group
Br(n). If [EN62] Fox and Neuwirth proved that the braid group defined by
Artin is the fundamental group of the configuration space C'(E,n) of the
Euclidean plane E. The definition given by Artin leaded to many interesting
generalization.

The classical theory of braids is deeply connected with the theory of
reflection groups or Coxeter groups. Loosely speaking the classical braid
group can be obtained from the permutation group &, dropping the torsion
relations s = e. We have the same kind of relation between Artin groups and
reflection groups. In particular for each Coxeter group W we can associate
an Artin group Gyw. The classical Artin braid group Br(n) is the Artin
group associated to the Coxeter group of type A,_1, that is the group of
permutations of n elements &,. For each reflection group we can associate
the arrangement of reflection hyperplanes Ay,. The Coxeter group W acts
on the complement of this arrangement. In [Bri71] Brieskorn proved that
the fundamental group of the quotient Xy of the complement Yy of the
complexified arrangement with respect to the action of the group W is the
corresponding Artin group Gy .

Actually, for finite reflection groups, the orbit space Xy of the comple-
ment Yy of the complex arrangement is a classifying space of the corre-
sponding Artin group. This was proved by Fox and Neuwirth ([FN62|) for
the Artin braid group. This result had also been proved for Coxeter groups
of type Ay, Cn, Dy, Ga, Fy and Iy(p) by easy direct methods by Brieskorn
[Bri73al. In [Del72] Deligne gives a general proof of this result for all finite
Coxeter groups (see also [Par93|). It turns out that the braid group and all
the other Artin groups associated to finite Coxeter groups are torsion free;
for an infinite Coxeter group W the corresponding Artin group Gy is known
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to be torsion free only when the space Xy is known to be a K(m, 1) (see
further for examples), but no much is known in general. Recently Bessis
proved (|[Bes06]) that the complement Yy is a K (m, 1) space for all finite
complex reflection groups.

The fact that for a finite Coxeter group W the spaces Xy and Yy
are of type K (m,1) is used by Brieskorn ([Bri73al), Arnol’d (JArn69|), Fuks
(|[Fuk70]), Vainstein ([Vai78|), Gorjunov ([Gor78|) and others to compute
the cohomology of the corresponding fundamental groups. Independently in
[Coh76|, Cohen compute the homology of the braid group using the theory
of iterated loop spaces.

For a Coxeter group W of type Ay, Dy, Fg, Er and Eg, the space Xy
is homeomorphic to the complement of the discriminant locus in the base
space of the versal deformation of the corresponding rational singularity (see
[Bri73b]). It is not known whether these complements are K (m,1)’s for all
singularities.

When W is finite, the space Xy is an affine variety, the complement
of a singular hypersurface V associated to the group W in an affine space
E. In order to study the singularity associated to a Coxeter group W,
one can consider the corresponding Milnor fibration. In [Mil68], Milnor
studies the local behaviour of a complex hypersurface V in an euclidean
space E around a singular point zg. If S is a sphere of sufficiently small
radius about zg and K = SNV, then S — K is a smooth fiber bundle over
the circle S*. In fact if f(z) = 0 defines V, f a complex polynomial, then
z — f(2)/|f(2)| defines the fibration. Many results are given in case of
an isolated singularity and the fiber F turns out to be, up to homotopy, a
wedge of spheres. The singularities associated to Coxeter groups are not
isolated. It is still possible to study the topology of the fiber, computing
the cohomology groups and the monodromy action of the fibrations. It
turns out that this data provide much more information that the cohomology
of the complement Xy of the singularity. Actually the Milnor fiber F is
homotopy equivalent to an infinite cyclic covering of the complement Xy,
and the cohomology of the fiber F, together with the action induced by
the monodromy, is equivalent to the cohomology of the complement Xy
in a local system L defined over the ring of Laurent polynomials in one
variable Q[¢*!]. The result follows easily from the Shapiro’s Lemma for
homology, while in cohomology to provide another result (Theorem in
order to switch from Laurent series to Laurent polynomials. In the case of
the classical braid group this local system corresponds to the determinant
of the Burau representation ([Bur35|) and the singularity associated to W
is the discriminant. The theory of hypergeometric functions (described in
[Gel86], see also [OT01) [Var9s|) provides further motivations to the study of
twisted coefficients cohomology for Artin groups.

As we have seen, the theory of Artin groups is connected with the study of
hyperplane arrangements associated to Coxeter groups. For each hyperplane
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arrangement 4 in an affine space E we can associate a combinatorial data,
namely the stratification induced by the arrangement on the space E. From
the topological viewpoint it is interesting to consider the complement Y 4 of
the arrangement. In general one can ask how much the combinatorial data
determines the topology. In [Sal87] Salvetti introduced a CW-complex C
associated to a real arrangement 4 and determined by the stratification data.
He proved that this complex is homotopy equivalent to the complement of
the complexified arrangement. Moreover if the arrangement A is associated
to a reflection group W, the group W acts on the complex C and the quotient
complex is homotopy equivalent to the space Xy (see [Sal94], [DCS96]). An
extension of the results for an oriented matroid can be found in [GR89]. For
a general complex arrangement, in [BZ92| Bjorner and Ziegler construct a
finite regular cell complex of the homotopy type of the complement of the
arrangement

Using the purely combinatorial description of the Salvetti complex, it is
possible to study the local system cohomology of the space Xy,. We recall
that since for a finite Coxeter group W the space Xy is of type K(m, 1),
the cohomology of Xy (eventually with a local system of coefficients) is
equivalent to the cohomology of the corresponding Artin group Gy . For a
finite Coxeter group W an equivalent complex was discovered by different
methods by Squier in [Squ94]. The cohomology of the space Xy over the
local system L given by the ring of Laurent polynomials with rational coef-
ficients Q[¢*!] was computed for all finite irreducible Coxeter groups W by
De Concini, Procesi, Salvetti and Stumbo ([DCPS01, DCPSS99|). Indepen-
dently Frenkel’ ([Fre88|) and Markaryan ([Mar96]) get the same result, with
different methods, for the Coxeter group of type A,.

A natural and useful generalization of these computations is the study of
the local system over the ring of Laurent polynomials with integer coefficients
Z[qT]. For Artin groups associated to exceptional Coxeter groups the com-
putations are given in [CS04]. In this thesis we give a complete description in
cases A, and B, of the homology of the Artin groups, with coefficients in the
ring Z[q™!] of Laurent polynomials. We recall that this is equivalent to the
computation of the homology of the corresponding Milnor fiber with integer
coefficients and of the associated monodromy action. We do this generaliz-
ing some ideas of Markaryan and studying a spectral sequence induced by
a natural filtration on the Salvetti complex. We computes the homology of
these groups, instead of the cohomology, for technical reasons and simplicity
of computations. The final results stated in Theorem and Theorem
5.3.1)and are completely equivalent to cohomology computations. The main
problem with this computations is that the ring Z[g™!] is not a PID and
so a deep study of the spectral sequence is needed. The natural embedding
of Coxeter groups W,, — W, 11, where W, is a Coxeter group of type A,
or B, induces analogous maps for Artin groups and hence homology maps.
This allows us to define the limit group G, that turns out to be infinitely
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generated. In case A, we have the braid group Br(co) on infinitely many
strands. In Corollary and Theorem we give a description of the
homology of this groups as the stable homology of the corresponding finitely
generated Artin groups. Our results generalize the computations obtained
by different methods by Cohen and Pakianathan in [CP07] in the case of the
braid group Br(oo) on infinitely many strands on the same local system with
coefficients in a field.

Another natural generalization of the results of [DCPS01, DCPSS99] is
the computation of the cohomology of Artin groups associated to infinite
Coxeter groups. In this case many complications occurs. First of all in gen-
eral it is only conjectured that the space Xy is of type K(m,1). The con-
jecture is proved only in special or generic cases. Okonek in [Oko79| proves
that the space Xy is of type K(m,1) for the affine Coxeter group of type
A, (see also [CP03]) and C,,. Other results are given by Hendriks ([Hen85])
for Coxeter groups of large type and by Charney and Davis ([CD95b|) for
Coxeter groups satisfying the FC condition and for other infinite Coxeter
groups that are in some sense generic (see Section . Moreover in the
case of infinite Coxeter groups we can construct a Milnor fibration only up
to homotopy.

We compute the cohomology, with coefficients in the local system given
by the ring of Laurent polynomials Q[q™1], for the Artin group of affine type
A,. Some interesting group embedding show that this cohomology is equiva-
lent to the cohomology of the classical braid group Br(n) with coefficients in
a non-abelian representation introduced by Tits in [Tit66] and re-discovered
later by Tong, Yang and Ma in [TYM96]. Another group embedding relates
the homology of the affine Artin group of type A, to the cohomology of
the Artin group of type B, with coefficients in the Laurent polynomial in
two indeterminates, Q[¢*!,#*!], that turns out to be the Q-algebra of the
abelianization of the Artin group of type B,. Hence from this cohomology
we can recover any other cohomology of this group with coefficients in an
abelian representation. The result is given in Theorem [6.1.I] We compute
this cohomology using a filtration and an induced spectral sequence for the
Salvetti complex for B,. Some applications are given (see Theorem m
and Proposition .

Moreover in Theorem we prove that the complement Y 4 of the
complex arrangement of type B, is a K (m,1) space. This fact allows us
to compute the cohomology of the Artin group of affine type B, with co-
efficient in the ring of Laurent polynomials Q[¢™!, t*!] (Theorem [7.3.1). In
order to perform this computation we use the Salvetti complex associated
to the Coxeter group B,. Since this group is infinite, some modification are
necessary respect to the usual Salvetti complex. Moreover some technical
restrictions are needed in order to use the Laurent polynomials local system
to describe the cohomology of the Milnor fiber (see Proposition . Also
in this case we are considering the most general abelian representation for
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this group, hence as a corollary we can recover the cohomology with constant
coefficients for the space Xy associated to the affine Coxeter group of type
B,, (Theorem .

Throughout all this thesis, we always want to keep in mind, as a fixed
picture, the classical Artin braid group. Most of our work is a study around
the topological constructions related to this group with some possible gener-
alizations. We will try to stress this, in particular in the first chapters, with
examples that show how general constructions, when applied to the case of
classical braids, give rise to familiar objects.

Overview

The first two chapters of this thesis are a short survey of some standard facts
about Coxeter groups, Artin groups and group cohomology.

Chapter 1

We briefly resume the theory of Coxeter groups, their classifications and
their invariant polynomial algebras. We shows how one can associate to a
Coxeter group W a real hyperplane arrangement and to this arrangement a
space Xy with a fundamental group that is an Artin group. We also present
the problem about whether or not the space Xy is a K(m, 1) space and we
see how this problem has a positive solution when the Coxeter group W is
finite. Some technical statements about Poincaré series for Coxeter group
are given. Finally we present the construction of a Milnor fibration applied
to a singularity associated to a Coxeter group.

Chapter 2

We give the basic definitions about group cohomology and local systems.
We state the classical results about the cohomology of Artin groups and in
particular the Shapiro’s Lemma that relates the homology (or cohomology)
of two groups H, G, in case of group a extension H < G. Hence we introduce
the local system of Laurent polynomials associated to the Milnor fibration
described in the previous Chapter and we state the known results about the
cohomology of Artin groups with coefficients in this local system.

Chapter 3

We present the construction of the Salvetti complex for a general arrange-
ment and for the special case of an arrangement of reflection hyperplanes
associated to a Coxeter group. We explain how this gives a finite complex
that compute the cohomology of the Artin groups. Hence we give a general
idea of the filtration and spectral sequence techniques that we use to study
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this complex. In Section and we give two independent arguments
in order to see how, using Shapiro’s Lemma, the cohomology of the Milnor
fiber is in some cases equivalent to the cohomology of the Artin group with
local coefficients in the ring of Laurent polynomials.

Chapter 4

In this Chapter we compute the homology of the braid groups, with coeffi-
cients in the module Z[g*'] given by the ring of Laurent polynomials with
integer coefficients. The action of the braid group is defined by mapping each
generator of the standard presentation to multiplication by —q. The main
tool for our computation is the study of the cohomology of the algebra of
q-divided polynomials. The homology is endowed with a natural ring struc-
ture. Through the Chapter we prove some technical results about cyclotomic
polynomials, needed for computations.

Chapter 5

In this Chapter we compute the homology of the Artin groups of type B,
with coefficients in the module Z[g™!] given by the ring of Laurent polyno-
mials with integer coeflicients. This homology turns out to be a module on
the homology computed in the previous Chapter.

Chapter 6

The result of this Chapter is the determination of the cohomology of Artin
groups of type A4,, B, and A,, with non-trivial local coefficients. The main
result (Theorem is an explicit computation of the cohomology of the
Artin group of type B, with coefficients over the module Q[¢*', t*!]. Here
the first (n—1) standard generators of the group act by (—¢)—multiplication,
while the last one acts by (—t)—multiplication.

Chapter 7

In this Chapter we prove that the complement to the affine complex arrange-
ment of type B,isa K (m,1) space. We also compute the cohomology of the
affine Artin group G of type En with coefficients in some local systems. In
particular, we consider the module Q[qil,tﬂ], where the first n-standard
generators of G act by (—¢)-multiplication while the last generator acts by
(—t)-multiplication. The cohomology of G with trivial coefficients is derived
from the previous one.
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Chapter 1

Coxeter groups and
arrangements of hyperplanes

In this Chapter we introduce some definitions and constructions related to

Coxeter groups. For the results presented in sections and [L.5] we
mainly refer to [Bou68| and [Hum90].

1.1 Coxeter groups

We denote by W a group (with multiplicative notation) and by S a system
of generators of W such that S = S~!, e¢ S.

Definition 1.1.1. Let w € W. The smallest integer [ > 0 such that w can
be written as a product of [ elements of S is called length of w with respect
to S and is written lg(w).

Moreover, now we suppose that the set S is made of elements of order 2.

Definition 1.1.2. The couple (W,S) is called Cozeter system if, for all
s, s € S, the following holds: let m(s, s’) be the order or the product ss’ and
let I be the set of couples (s,s’) such that m(s,s’) is finite, then the set S
with the relations (ss')™(**) = e for all (s, s') in I is a presentation for the
group W, that is

W =<s,s | (ss')m(s’sl) =e>.

If (W, S) is a Coxeter system we also call W a Cozeter group. Let X C S,
we write Wx for the subgroup of W generated by the elements of X. A
subgroup like this and any subgroup conjugated to it by an element of W is
called parabolic subgroup.

Proposition 1.1.3. Let (W, S) be a Cozeter system and let X C S. The
following properties hold:
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(i) Wx,X) is a Cozxeter system, for any X C S;

(i1) If we consider Wx as a subgroup of W with length function lx, then
we have the equality x = lg for all the elements in the subgroup Wx ;

(iii) Let us define WX = {w € W | l(ws) > l(w)Vs € X}. Givenw € W
there exist a unique element u € WX and a unique element v € Wy
such that w = wv. Moreover l(w) = l(u) + l(v) and w is the unique
element of shortest length in the coset wWx.

O

We can associate to a Coxeter system (W, S) a symmetric matrix with
values in N U {+o0}; this matrix is called Cozeter matriz ad is defined as
follows: M = (m(s,s’))sses, where m(s,s’) is the order of the element
ss’. We can also associate to the Coxeter system (W, S) a graph T, called
Cozxeter graph, with labelling function f, as follows: the vertexes of the graph
I" correspond to the elements of S and the edges of I" correspond to the pairs
{s,s'} of distinct elements of S such that m(s,s’) > 3. The function f
associates to the edge {s, s’} the value m(s,s’). It is clear that the Coxeter
matrix completely determines the Coxeter graph and also the converse is

true.

Definition 1.1.4. We call a Coxeter system (W, S) irreducible if its graph
I' is connected.

In the picture of a Coxeter graph it is convenient to write above each
edge e the value f(e). In order to simplify the reading we usually omit to
write the value f(e) when it is equal to 3.

Example 1.1.5. We can easily see that the dihedral group of order 2m is a
. . 1

Coxeter group with two generators. Its Coxeter matrix is ( m T ), and

its Coxeter graph is:

m

[O—° iftm>3
or simply

1O——° ifm=23

o o ifm=2

Analogously the symmetric group 6,41 can be represented by the graph:

o O O o
1 2 3 n—1 n

with n vertexes.
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1.2 Coxeter groups and arrangements

Let E be an affine real space of finite dimension and suppose we have a set of
hyperplanes $ C E. We call the collection $ an arrangement of hyperplanes
of E. We can define the following equivalent relation between points in E:
we say that two points x,y are in the same equivalence class if and only if
for all H € $ one of the following hold:

(i) x € Hand y € H,

(ii) x and y are in the same open half-space determined by the hyperplane
H.

Definition 1.2.1. We call facet of E with respect to the arrangement $
each one of the equivalence classes for the relation defined above.

Definition 1.2.2. We call support of a facet the intersection of all the hy-
perplanes that contain the facet.

Definition 1.2.3. We call chamber of E (with respect to the arrangement
$) a facet the is not contained in any hyperplane of §).

Definition 1.2.4. Let C be a chamber of E. We call faces of C' all the facets
that are contained in the closure C' and whose support is an hyperplane of
the arrangement $. Moreover we say that an hyperplane H is a wall of C' if
it is the support of a face of C

Now we suppose that the space E is endowed with a scalar product
(i.e. a bilinear, symmetric, positively defined, non degenerate form). Given
an hyperplane H we write sy for the orthogonal reflection with respect to
H. Let $ an arrangement of hyperplanes of E and let W be the group
of isometries generated by the orthogonal reflections with respect to these
hyperplanes. We call W reflection group. Clearly W acts in a natural way
on the affine subspaces of E. Let us suppose that the following conditions
are satisfied:

(i) The arrangement §) is closed for the action of W;

(ii) Given two compact subsets K and L of E, the set {w € W | w(K)NL #
0} is finite.

Then the set $ is locally finite and we have the following:

Theorem 1.2.5. Let C' be a chamber and S the set of orthogonal reflections
with respect to the walls of C.

(i) The couple (W, S) is a Cozeter system;
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(ii) Let w € W and H be a wall of C. The relation l(sgw) > l(w) imply
that the chambers C and w(C) are on the same side with respect to to
the hyperplane H;

(iii) For every chamber C' there exist a unique element w € W such that
w(C)=C';
(iv) $) is the set of hyperplanes H such that sgp € W.
O

Let (W, S) be a Coxeter system. We can represent W as a group gener-
ated by orthogonal reflections in an euclidean space. Consider the real vector
space V with dimension n =|S| and with basis {a; | s € S}. We endow the
space V with the bilinear symmetric form so defined:

B(Oés>as/) - { _COSﬁ lf m(&S/) €z,
-1 if m(s,s") = oc.

For each s € S we associate the reflection o given by
os(x) =z — 2B(as, ).

By means of the reflections o5 we can define a unique homomorphism o :
W — GL(V), which is called Tit’s representation of W.

Theorem 1.2.6. Let W be a Cozeter group. The homomorphism o defined
above is injective. Moreover the following statements are equivalent:

(i) W is finite;
(i) The form B is positive, non degenerate;

(113) W is a finite orthogonal reflection group.
O

Remark 1.2.7. Tt follows from the injectivity of o that a reflection group is
completely determined by its Coxeter graph.

1.3 Finite and affine Coxeter groups

Let 'V be a vector space of dimension n over a generic field K.

Definition 1.3.1. We call pseudo-reflection an endomorphism s of V such
that Id — s has rank 1. We call s reflection if s> = Id.

Now let we suppose that G is a subgroup of GL(V) generated by pseudo-
reflections. Moreover we suppose that the characteristic of K does not divide
the order of the group G (e.g. when char(K) is 0). We fix a basis {v1,...,v,}
of V and we consider the symmetric algebra S of V. This algebra is canon-
ically isomorphic to the polynomial algebra A = K[x1,...,2,]. We can
consider the subalgebra R = AY of the G-invariant polynomials. We have :
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Theorem 1.3.2 (Chevalley). The subalgebra R is generated, as a K-algebra,

by n homogeneous algebraically independent elements f1,..., fn of positive
degree. In particular R is a graded polynomial K -algebra with trascendancy
degree n over K. O

Clearly the family of generators is not uniquely determined, but we have
the following uniqueness result:

Theorem 1.3.3. Let f1,...,fn and g1,...,9n be two set of homogeneous,
algebraically independent polynomials generating R. We write d; (resp. e;)
for the degree of f; (resp. gi). Then, up to reordering the two sets, for all
indezes © we have that d; = e;. O

Definition 1.3.4. We call the integers d; characteristic degrees (or charac-
teristic exponents) of G.

We can now state the following result for finite Coxeter groups:

Theorem 1.3.5. Let (W, S) be a finite irreducible Cozeter system. Its Coz-
eter graph is one of the following listed in Table and its characteristic
degrees are indicated in the Table. |

Example 1.3.6. In the case A, the Coxeter group W is isomorphic to
the group of permutations Gy, with set of generators S = {0,411 | i =
1,...,n}. The group &, acts over R"*! permuting the coordinates and the
subspace of W-invariant vectors is given by the line A = {z1 = -+ = 41 }.
We can chose as a set of invariant polynomials the symmetric polynomi-
als in n + 1 variables. If we consider the orthogonal space A\ we get an
n-dimensional vector space where W acts as a group of orthogonal trans-
formations. Moreover the action of W on the space ' is essential, that is
the space of W-invariant vectors is {0}. Finally the W-invariant polynomi-
als algebra is generated by n algebraically independent elements, that is the
symmetric polynomials of degree 2,...,n 4+ 1 in the variables x1,...,Zp11.

Now let V be a real vector space endowed with a scalar product (-, - ).
We call lattice of V the Z-span of a basis of V. A subgroup G of GL(V)is
said to be crystallographic if it stabilizes a lattice L in 'V, that is gL C L for
all g € G. It turns out that most finite reflection group are crystallographic.
We have the following condition:

Proposition 1.3.7. If o Coxeter group W is crystallographic, then each
integer m(s, s') must be 2,3,4 or 6 when s # s in S. O

This criterion rules out the groups of type Hs, Hy and the groups Iz(m)
for m different from 2,3,4,6. For all the remaining cases it is possible to
construct a W-stable lattice.

Now we need to introduce the definition of root system. Given a nonzero
vector a € V we write H, for the hyperplane orthogonal to « and s, for
the orthogonal reflection that fixes H, pointwise and maps a to —a.
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An O O o NI G o) 273,...7n+1
1 2 3 n—1 n
Bn O O O, e ,O 4 o 2’ 47 67 s ey 2n
1 2 3 n—1 n
D, 2,4,6,...,2n — 2,n
n—2
o—o—o-
1 2 3 n—1
n
Es 2,5,6,8,9,12
BT
O O O
1 2 4 5 6
Er 2,6,8,10,12, 14, 18
4T
O O O O o
1 2 3 5 6 7
Ex 2,8,12, 14, 18, 20, 24, 30
5T
O O O O)- O
1 2 3 4 6 7 8
F4 o 4 o) 25 67 87 12
1 2 3 4
Hj —> o o 2,6,10
1 2 3
H, o5 oo 2,12,20, 30
1 2 3 4
1 2

Table 1.1: Coxeter graphs for finite Coxeter groups
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Definition 1.3.8. A finite subset ® of nonzero vectors in V is called root
system if it satisfies the following conditions:

(R1) ® NRa = {a,—a} for all a € ®;
(R2) 5@ = @ for all a € P,

(R3) 2(%*5)) €7 forall o, § € ®.

Definition 1.3.9. Setting oV = %, the set ®V is the set of all coroots
aV for a € ®. It is also a crystallographic root system called inverse or dual

root system.

Definition 1.3.10. The Z-span L(®) of ® in V is called root lattice. Simi-
larly we define the coroot lattice L(®").

The group W generated by the reflections s, for a € ® is known as
Weyl group of ® and it turns out that Weyl groups are the same thing as
crystallographic Coxeter group. However there are two distinct root systems
By, and C), dual to each other, each giving as Weyl group the group previously
labelled as B,,.

We want to consider not just orthogonal reflections on V, but also affine
reflections relative to hyperplanes that do not necessarily pass through the
origin. Hence we introduce the affine group Aff(V), which is the semidirect
product of GL(V) and the group of translations by elements of V. It is easy
to see that the group of translations is normalized by GL(V).

Given a root system ®, for each root « and each integer k define the
affine hyperplane

Hyp={veV|(v,a) =k}
Note that H,o = H, and that H, can be obtained by translating H, by
%av. We define the corresponding affine reflection as follows:

Sa,k(V) =v = ((v,a) — k).

Definition 1.3.11. We define the affine Weyl group W, to be the subgroup
of Aff(V') generated by all affine reflections s, j, where oo € @,k € Z.

The structure of W, is more clear considering the following:

Proposition 1.3.12. The group W, is the semidirect product of W and the
translation group corresponding to the coroot lattice L = L(®). O

It turns out that any affine Weyl group can be represented as a reflec-
tion group. We will call these group affine Coxeter group. The following
classification result is the affine analogous of Theorem [[.3.5]

Theorem 1.3.13. The Cozeter group for which the associated bilinear form
B is positive semidefinite and not positive definite are precisely the affine
Weyl groups. The Cozeter graphs of the irreducible affine Weyl groups are
those listed in the following Table[1.3, O
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Ay
An(n>2)
By =Cy
By(n > 3)
5n(n > 2)
Dy(n > 4)
Eg

E;

Ey

Fy

Go

0o
Oo0——O
1 2
n+1
O O
1 2 3 n—1 n
4 4
O——O0—0
1 2 3
1
4
4 3 n n+1
2
4 4
o o Ovvrereen O '}
1 2 3 n n+1
1
n—1
4 n
9 n+1
3
4
O O
1 2 5 6 7
4T
O O O O
1 2 3 5 6 7 8
GT
O O O O
1 2 3 4 5 7 8 9
4
O O O
1 2 3 4 5
6
Oo——O0—O
1 2 3

Table 1.2: Coxeter graphs for affine Coxeter groups
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1.4 K(m, 1) spaces, arrangements and Artin groups

Definition 1.4.1. Let X be a topological space and let m be a discrete
group. We call X classifying space for the group m, or simply we say that X
is a K(m, 1) space, if the following conditions hold:

(i) X is path connected;
(ii) m(X) =m;
(i) (X)) =0 Vn > 1.
Equivalently X is a path connected space with a contractible universal cover.

For any discrete group G it is possible to realize a classifying space as
a CW-complex. This complex can be obtained starting from a presentation
of G and defining the complex skeleton by skeleton. We start with a single
point zg and we attach to xg as many 1-cells as the number of generators of
G. Then for each relation in the presentation of G we can attach a 2-cell,
gluing the boundary along the loop given by the relation, in order to add the
relation to the fundamental group of the CW-complex. This construction
give us a space with G as fundamental group. Hence we add, skeleton by
skeleton, higher dimension cells in order to k#ll all the higher homotopy
groups. In general it is not possible to get a K(m, 1) space as a finite CW-
complex. For example if the group G is finite and the CW-complex X is a
classifying space for GG, then X must be infinite dimensional. We’ll see that
in the case of some of the groups that we are going to consider there exist
classifying spaces that are finite CW-complexes. This will give us an easier
way to perform explicit computations in cohomology.

Let V be a finite dimensional vector space and let

A={H,,....H,)

be a finite arrangement of hyperplanes of V. If all the hyperplanes of the ar-
rangement A pass through the origin we say that the arrangement is central.
If V is a complex vector space, a deep topological problem is to understand
how the combinatorial properties of the arrangement A determine the topol-
ogy of the complement
Y =V\ [JH
HeA

An important problem is to understand when the space Y 4 is a K(m,1)
space. Given a real arrangement Ag in the real space Vg, the complement
Y 4, is the disjoint union of open chambers. If the arrangement is central,
these chambers are cones on the origin. We say that a central arrangement
Ag is simplicial if each chamber of the complement Y 4, is a simplicial cone,
that is it is a cone over the standard simplex.
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A special family of complex arrangement is given by arrangements of
hyperplanes defined by real equations. It means that we can get such an
arrangement starting from a real arrangement Ag in a real vector space R
and complexifying our space and our arrangement:

V=VrerC

A= {HR ®r C, for Hg € AR}
An important property of simplicial arrangements is given by the follow-
ing

Theorem 1.4.2 ([Del72|). Let Ag be a real finite central arrangement and
let Y 4 be the complement of its complezification. If Agr is simplicial, then
Y 4 is a K(m, 1) space. O

With more generality one can consider affine arrangements and infinite
arrangements.
Let W be a Coxeter group, with presentation

miss) _ o

<s,8 | (s8)
We can give the following:

Definition 1.4.3. We call Artin group of type W the group Gw given by
the following presentation:

m(s,s")factors  m(s,s")factors
< Ys ‘ s € Svgsgs’gsgs’ v = 0s'9sgs'gs -+ PeEr S 7é Slvm(373/> 7é +00 > .

Loosely speaking the group Gy is the group obtained from a presentation
of W dropping the relation s? = e for s € S.

Example 1.4.4. In the case of the symmetric group W = &,,41 with gen-
erators s, ..., S, we get the commuting relations

SiSj = SjSZ'

for | —j|> 2 and
SiSi+15i = Si+15iSi+1

fort=1,...,n—1. The last ones are called braid relations. In this example
the group Gy associated to W is called braid group on n strands and is
denoted by Br(n). We can think to an element of Br(n) (a braid) as a
collection of n paths in R? that do not intersect each other. Moreover each
path connect a point of a n-tuple, for example we can think to the set of
points (¢,0,0),7 = 1,...,n, with a point in a second n-tuple, for example the
points (i,1,0),i =1,...,n. Finally we require that each path (each strand)
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is parametrized such that the second coordinates is an increasing function.
Two braids are identified if they are homotopic. We can endow the set of
equivalence class of homotopic braids with a group structure as follows. The
product of two braids is given gluing the second braid to the end of the
first braid and rescaling the new braid. If we consider the space C(n) of
unordered n-tuples of distinct points in the space C, we can define the braid
group as Br(n) = m(C(n)). Notice that C(n) can be obtained taking the
complement of the hyperplanes of equation z; = z; in C", that is taking the
complement of the arrangement of reflection hyperplanes associated to &,
and then, taking the quotient with respect to the action of &,,.

The same construction can be done for a finite Coxeter group W, we can
realize W as a group of linear reflections of R™ (as explained in Section
and let $) be the arrangement of hyperplanes associated to W. The group
W acts on the space

Yy =C™\ | J He
He$H
and a result of Brieskorn (see [Bri7l]) states that Gy = w1 (Yw/W). If
there is no ambiguity we simply write Y instead of Yy, with the group W
understood.

With more generality, let W be a (finitely generated) Coxeter group,
which we realize through the Tits representation as a group of (in general,
non orthogonal) reflections in R™, where the base-chamber Cj is the positive
octant and S is the set of reflections with respect to the coordinate hyper-
planes. (It is possible to consider more general representations; see [Vin71]).
Let U := W.Cy be the orbit of the closure of the base chamber (the Tits
cone). Recall that ([Vin71]):

(i) U is a convex cone in R™ with vertex 0.
(i) U = R™ if and only if W is finite.
(iii) UY := int(U) is open in R™ and a (relative open) facet F C Cj is

contained in U? if and only if the stabilizer W is finite.

Let A be the arrangement of reflection hyperplanes of W. Set

Yy = [U° + iR\ |J Hc
HeA

as the complement of the complexified arrangement. Notice that the group
W acts freely on Yy so we can consider the orbit space
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Theorem 1.4.5 ([Bri73a, Dun83), vdL83|). The Artin group Gw is the fun-
damental group of the orbit space Xy . O

We can also consider the fundamental group of Yy :

Definition 1.4.6. We call pure Artin group associated to W the group
PAy =m(Yw).
Since we have the covering
W—Yw — Xw

the group P Ay is simply the kernel of the natural homomorphism Gy — W
and we have the short exact sequence that we obtain from the homotopy long
exact sequence of the covering:

OHPAWCLGWLWHO.

where every standard generator of the Artin group Gy maps to the corre-
sponding standard generator of the Coxeter group W:

Tigs— S VseES.

Given an element w € W we can take a reduced expression of w, that is
w = s;, ---s1, where [ = [(w) is the length of w. In this way we can lift w
to the element ¢(w) = gs,, -~ gs,, that lies in Gy (actually ¢(w) lies also
in the positive monoid of Gy). We have the following Theorem (see. e.g.
[GP00)):

Theorem 1.4.7 (Matsumoto’s Theorem). Let (W, S) be a Cozeter system
and (M, ) a monoid. Suppose that is given a map f: S — M such that:

m(s;t) factors m(s,t) factors
F&) ) f(s)-- = FOF(s)f(t) -~

where_both the terms have mis,t) factors. Then there exist a unique exten-
sion f: W — M, such that f(w) = f(siy)--- f(s1,) whenever w = s;, - sy,

s a reduced expression. O

As a consequence of this Theorem, the element 1 (w) does not depend on
the choice of the reduced expression of w, so we have a set-theoretic section
Y : W — Gw for the map 7 : Gy — W.

In the case of the braid group described above, we have that the kernel of
the projection 7 : Br(n) — &, is the pure braid group on n strands PBr(n)
that is the subgroup of Br(n) given by those braids that do not permute the
ending points, that is those collections of paths vy(t) = (71(t), ..., Vn(t)) such
that +;(0) = (¢,0,0) and ~;(1) = (4, 1,0).
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In the case we are considering (type A,, W = &,41) it is easy to see
that the space Yy is a K (m, 1) by induction on n (see [Bri73al). In fact the
projection on the first n coordinates gives a fibration p: Y4, — Y4, , with
fiber over the point x = (x1,...,z,) given by the space C\ {z1,...,z,}.
This is a K(m, 1), hence the thesis follows from the homotopy long exact
sequence of the fibration. As a consequence Yy /W is a K(m, 1) because it
is covered by Y.

In general since any real arrangement associate to a finite Coxeter group is

simplicial, there is the following important consequence of Theorem [Del72):

Theorem 1.4.8 (|[Del72|). Let W be a finite Cozeter group, then the space
Yw is a K(m,1) space. O

For a general Coxeter group W it is only conjectured that Yy isa K(m, 1)
space. For affine Coxeter groups of type A,, and C,, Okonek proved that the
space Y is a K(m,1) (see [OkoT79]). In [Hen85] Hendriks prove the conjecture
for Coxeter groups of large type, that is groups with Coxeter matrix m with
m(s,t) # 2 for all s,t.

Accordingly to [CD95b], we say that a Coxeter system satisfies the FC
condition if for every subset T' C S such that every pair of elements ¢, € T
generate a finite group, the T generate a finite group.

In [CD95b| Charney and Davis gave a proof of the conjecture for Coxeter
group satisfying the FC condition and for those Coxeter groups that are in
somnie sense generic, that is those for which each parabolic subgroup generated
by 3 elements in infinite.

In a complex vector space V it is possible to consider also complex re-
flections, that is pseudoreflections of finite order, possibly different from 2.
A group generated by complex reflections is called complex reflection group.
The theory of this kind of groups seems much more complicated than the
theory of usual Coxeter groups. It is possible to consider the complement
Y of the arrangement of the hyperplanes fixed by complex reflections of a
complex reflection group. Recently Bessis proved ([Bes06]) that for any finite
complex reflection group, the complement Y is a K (7, 1) space.

In Section we prove that

Theorem 1.4.9. For the affine Coxeter group W of type En the space Yy
is a K(m,1). O

1.5 Poincaré polynomials and Poincaré series

Let us fix a Coxeter system (W, S). For every subset X C W we can define
the (finite or infinite) sum

X(t)y=>_

weX
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In case X = W we get, by definition, the Poincaré series W(q) of W.

Moreover it holds
W)= >t =>"a,t"
weW n>0

where a, = #{w € W | l(w) = n}. If I C S, then W;(t) coincides with
the Poincaré series of W, as follows from (ii) in Proposition As a
consequence of (iii) of the same Proposition we have

W(t) = Wi(t)Wi(t).

For finite Coxeter groups the Poincaré series (actually polynomials) are
well known. We mention a factorization formula that will be useful later:

Theorem 1.5.1. Let W be a finite Coxeter group. We have:

t% —1
W(t) =
(t) =]
=1
where dy, . ..,dy, are the characteristic degrees of W. O

In order to recall closed formulas for Poincaré series, we first fix some
notations that will be adopted throughout all the following. We define the
q-analog of a positive integer m to be the polynomial

m
—1
mlg:=1+q+ g" =1

q—1

Let ¢;(q) be the i-th cyclotomic polynomial in the variable ¢. It is easy to
see that [m] = [;,, i(¢). Moreover we define the g-factorial and double
factorial inductively as:

[mlg!:= [mlg - [m — 1!
[m]g!! == [m]q - [m — 2],!!
where it is understood that [1]! = [1]!! = [1] and [2]!! = [2]. A g-analog of
the binomial (") is given by the polynomial
[m] _ [m]!
i), Tl — 1

We can also define the (g, t)-analog of an even number
[2m]qe := [m]q(1 + tg™ )

and of the double factorial

[2m] 44! = H[2i}q7t = [mlg! [T (1 +tg).
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Note that specializing ¢ to ¢, we recover the g-analog of an even number and
of its double factorial. Finally, we define the polynomial

[m];t o [2mlggt [m} ni_f(l—i—tqj). (1.5.1)

i [24] 4, [m — ]! i

q j=i

With this notation the ordinary Poincaré series for A,, B, and D, may be
written as

An(g) =Y ¢ =n+1], (1.5.2)
weA,

Bu(q):= > ¢"™ =[2n]," (1.5.3)
wE B,

Du(q) ==Y ¢"™ =[2(n— )] L. - [n], (1.5.4)
weDy,

For future use in cohomology computations, we are interested in a (q, t)-
analog of the usual Poincaré series for By, that is an analog of the Poincaré
series with coefficients in the ring R = Q[g*!, #*!] of Laurent polynomials.
This result and similar ones are studied in [Rei93|, to which we refer for
details.

Consider the Coxeter group W of type B,, with its standard generating
reflections s1, $2,...,8,. For w € W, let n(w) be the number of times s,
appears in a reduced expression for w. By Matsumoto Lemma, the number
n(w) is well-defined for a reduced expression of w.

We define the (g,t)-weighted Poincaré series for the Coxeter group of type

B, as the sum
W(g,t)= ) ¢ ),
weWw

where £ is the length function.

Proposition 1.5.2 ([Rei93]).
W(g,t) = [2n]q4!.

Proof. Consider the parabolic subgroup W; associated to the subset of re-
flections I = {s1,...,Sp—1}. Notice that W7 is isomorphic to the symmetric
group on n letters A,_1 and that it has index 2" in B,,. Let W1 be the set of
minimal coset representatives for W/Wj. Then, by multiplicative properties
on reduced expressions:

W(q,t) _ Z qé(w)fn(w)tn(w)
weWw

:< 3 qe(w%n(w')tn(w/)) ( 3 qe<w”>fn<w">tn<w">)_ (1.5.5)

w'ewl w"eWr
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Clearly, for elements w” € W;, we have n(w”) = 0; so the second factor in
(1.5.5)) reduces to the well-known Poincaré series for A,_i:

Z qe(w//)fn(w//)tn(w//) _ [n:lq!'

w"eWr

To deal with the first factor, instead, we explicitly enumerate the elements
of WI. Let Di = SiSi+1 - Sp for 1 <4 < n. Then, it can be easily verified
that W1 = {p;, pi,_, - Dinpiy |11 < i < --- < i,_1 < i,}. Notice that
(i, Pi, -+ PisPin) = 17 and £(pi,pi, -+ Pinpiy) = D5y U(piy) = DGy (n+
1 — ;). Thus,

n—1
Z qé(w’)—n(w’)tn(w’) _ H(l —i—tqi).
w' eWw! =0
Finally,
n—1
Wi(g,t) = (H(1 +tqi)>[n]q! = [2n],1-
=0

1.6 The Milnor fibration for arrangements

We now give a short resume of some results due to Milnor (see [Mil68] as a
main reference).

Let f(z1,...,Tn) be an analytic function on m complex variables defined
on a neighborhood of the origin that maps to C and is null in the origin.
We denote by Z the set {z | f(z) = 0} and by K the intersection of Z with
Se ={z € C"| ||z|]| = ¢}. We can map the complement S, \ K to the circle
S with the map

The following Theorem holds:

Theorem 1.6.1 (Fibration Theorem). There exists an ey > 0 such that for
€ < ¢ the space S. \ K is a C™ fibre bundle over S', with projection map

e
¢(2) = e 0

It follows from this Theorem that each fiber

Gy =9~ '(")

is a C*° manifold of real dimension 2(m — 1). We call the fiber G = G the
Milnor fiber of f. Moreover we have this result:

Theorem 1.6.2. FEach fiber Gy is parallelizable and it has the homotopy
type of a finite CW-complex of dimension m — 1. O
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Definition 1.6.3. Let us chose a smooth one-parameter set of homomor-
phisms
ht . Go — Gt

for 0 <t < 2w, where hg is the identity. We call the homomorphism h = ho,
the characteristic homomorphism of the fibration f.

Note that h depends on the choice that we have made for the 1-parameter
set of maps h;’s, but its homotopy class is uniquely determined.

Definition 1.6.4. We say that a polynomial f(z1,...,2y,) is a weighted
homogeneous polynomial of type (ai,...,a;) if it can be written as a linear

combination of monomials z{' - - - 2’ such that

This is equivalent to ask that

f(eazla-'weazm):ecf(zlv"'vzm) Ve e C.

Every homogeneous polynomial is an analytic function that is zero at the
origin. So we have:

Proposition 1.6.5. Let f be o weighted homogeneous polynomial. The Mil-
nor fiber G given by f is diffeomorphic to the nonsingular hypersurface

F={zeC"| f(z) =1}.

We can choose as a characteristic homomorphism h: G — G (orh: F — F)
the unitary transformation

hzis ... 2m) = (€20, emi/amy ),
|

Example 1.6.6. Given an hyperplane arrangement A4 C C", for each hyper-
plane H € A let Iy be a linear functional such that kerlyy = H. Moreover
we can associate to each hyperplane H a nonnegative integer a(H). Now we
can consider the homogeneous polynomial given by the product

1) =TT m™.

HeA

This gives a Milnor fibration f : Y4 — C*. It is a standard fact in the
theory of hyperplane arrangements that Y 4 has torsion-free homology (see
[OT92]). If n = 2, it is known that H.(F;Z) is torsion-free, as F is homotopic
to a bouquet of n — 1-spheres. In [CDS03] it is proved that for each prime
p and integer n > 2 there exist an arrangement A in C™ and integers a(H)
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for H € A for which H;(F,Z) has p-torsion. An important feature of the
polynomials f constructed in [CDS03] is the fact that they are not reduced,
that is a(H) > 1 for some H. The possibility of finding torsion homology
in the Milnor fiber for a reduced f remains open. We note also that if
[vr] is the homotopy class of a complete loop around the hyperplane H in
the fundamental group m(Y 4), then the map f; induced by f sends each
element [yg| to a(H) € Z = m1(C*) and clearly the fundamental group of
the Milnor fiber is the kernel of the map:

fr:m(Yaq) — Z.

Now counsider a finite Coxeter group W acting on the real vector space
V as a reflection group. Let Ve =V ®r C be the complexified space of V.
The group W acts in a natural way on the space V. Since the polynomials
fi of Theorem are W-invariant, the map f : V¢ — C" defined by
f:(z1,...,2n) — (f1,..., fn) passes to the quotient and induces a map
' Ve /W — C™. We get that the quotient space V¢ /W is an affine variety
isomorphic to the affine complex space C™. In fact the following Theorem
holds (see [Chebl [ST5H4) Loo84)):

Proposition 1.6.7. The map f' is a proper homeomorphism of the space
Vi /W onto a normal subvariety of C", whose algebra of regular functions
correspond through the map f to the algebra R of W -invariant polynomials.

O

In particular, since V¢ is irreducible and has complex dimension n, its
image must be an open set of C" containing the origin and it follows easily
that the map f’ must be surjective.

We denote by $ the arrangement of hyperplanes whose reflections sy
belong to W

H={HCV|ogecW}

Again we consider the map f. It determines a ramified covering f : Vg — C™
and we have the following

Proposition 1.6.8. Let us fiz a set fi1,..., fn of homogeneous, algebraically
independeg}f generators of the algebra of W-invariant polynomials R. Set
i

J = det(gj) to be the corresponding Jacobian. Moreover let we set D =

HH@5 lyg to be the defining polynomial of the arrangement.

(a) J = kD for some nonzero constant k depending on the choice of the
polynomials f;.

(b) A polynomial g is W-alternating if and only if it can be written as the
product of J times an invariant polynomial.
O
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Hence given A = (Jycq H and let A’ be the image of A through f. If
we consider the restriction of the map f to the sets:

Yw=Vc\A

Xy =Cm\ A
we get the covering

Yo L Xy

where the group W is the group of deck transformations of the covering and
the space Xy is isomorphic to the space Yy /W.

Now let W,V, D be as in Proposition and set 6 = D?. Tt is clear
that 4 is a W-invariant homogeneous polynomial. Hence ¢ can be written as
a polynomial on the f;’s, that is:

5(21, N ,Zm) == 5/(f1, N 7fm)-

Let F be the Milnor fiber for the map § : V¢ — C. Each element of W maps
the fiber F to itself. If we consider the quotient map ¢’ : V¢ /W — C (where
Vi /W is considered as an affine space) and the corresponding Milnor fiber
F' it is clear that F' = F/W. Moreover, if we denote by N the degree
of §, it turns out that ¢ is a weighted homogeneous polynomial of type
(1/N,...,1/N), while ¢’ is weighted homogeneous of type (di/N,...,dn/N),
where d; is the degree of f;.

We recall that since W is finite the space Xy is a classifying space for the
Artin group Gy and the map 5& induced by ¢’ on the fundamental groups
sends each standard generator g5, s € S of the Artin group to 1 € Z =
m1(C*). If we set Hy = m1(F') we get the short exact sequence

5/
0— Hy <Gy —Z — 0.

Hence the Milnor fiber F/ is a classifying space for the group Hyy.

Remark 1.6.9. The description of the map f4 given in Example implies
that each standard generator gs of the group Gy corresponds to a loop
around the singularity in the space Xy and lifts to an half loop in the space
Y. Moreover each standard generator g; maps to 1 € Z.

Remark 1.6.10. If W is a finite irreducible Coxeter group different from
B, Fy, I2(2m), then the group Hyy is the commutator subgroup of the Artin
group Gy .

Example 1.6.11. Again we consider the special case of W of type A,_1
and so the Artin group Gy is the braid group Br(n). In this case the space
Y is the complement of the braid arrangement

C\ Utz = 2}

i<j
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that is the space F(C,n) of ordered configurations of n distinct point in
C. The quotient X = Y /W is the space C(C,n) = C(n) of unordered
configurations of n distinct points in C. The map § is given by the product

H(Zz — Zj)2.

1<j

We can regard the space X as the space of monic polynomials of degree n
with n distinct roots and, for a polynomial p € X, the map §'(p) is the
discriminant d(p), that is the resultant of p and its derivative p/. So the
Milnor fiber is given by

F = {p|res(p,p) = 1}

where res(p, p’) is the resultant of the polynomial p and its derivative p’ (see
[AGZVSS|.

In this work we want to study the cohomology (and the homology) of the
fiber F/ for some irreducible Coxeter groups. We will also try to generalize,
up to homotopy, the fibrations described here to fibrations over ((C*)2 and
to fibrations for infinite Coxeter groups and we will study the cohomology
of the generalized homotopy Milnor fiber.



Chapter 2

Group cohomology and local
systems

Sections [2.1]and [2.2] contains standard definitions and constructions of group
cohomology. We refer for most of the proofs and for any missing detail to
[AMO4] (see also [Stebl]).

2.1 Principal bundles and K(7,1) spaces

Let F — E 2 B be a locally trivial fiber bundle with fiber F and with
projection map p. Given another space X and a map f : X — B there exist
an induced bundle f'(E) that is the subspace of the product X x E given
by the couples (x,y) such that f(z) = p(y). The bundle f#(E) is also called
pull-back bundle. We have the following commuting diagram:

F——F
fHE)=—~E
\LPI lp
X ! B

Definition 2.1.1. Let G be a topological group. A fiber bundle
F-E2B

is called principal G-bundle if the action of the group G on the total space
E is effective (that is gz = z if and only if x = e) and each fiber F is exactly
an orbit of the action of G.

It is clear from the definition that the fiber F of a principal G-bundle
is homeomorphic to the group G. If G has the homotopy type of a CW-
complex there is a special principal G-bundle such that all other G-bundles
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can be obtained from this as pull back. We have the following Theorem due
to Milnor

Theorem 2.1.2. For o given group G there exists a space Bg and a principal
G-bundle with total space Eg,

G — E¢ 2 Bg,

such that for any principal G-bundle G — E — B there exists a unique
homotopy class of maps f : X — Bg such that f}(Eg) = E. O

It follows that B¢ is unique, up to homotopy equivalence. In fact if we
have two such spaces, say Bg, Bl;, we should have two maps f : B¢ — By,
g : B, — Bg that induce respectively the fiber bundle Eg and Eg. It
follows that the compositions fg : B, — Bg, gf : B¢ — Bg induce
respectively the fiber bundle Ej, and E¢. Hence the two compositions must
be homotopic to the identity, respectively on the space Bg, By,.

Definition 2.1.3. A principal G-bundle G — Eg 2, B¢ as in Theorem
[2.1.2]is called universal principal G-bundle.

We have the following result:

Theorem 2.1.4. A principal G-bundle G — E L. B is universal if and only
if the total space is contractible. O

As a consequence of this Theorem we have:

Corollary 2.1.5. If w is a discrete group and B is a K(m, 1) space, the
untversal covering G — E L. B is a universal w-bundle. O

This justify the following generalized definition of classifying space:
Definition 2.1.6. If G is a topological group and G — Eg 2, Bgis a
universal principal G-bundle, the space B¢ is called classifying space for G.
2.2 Homology and cohomology of groups
Using the notion of classifying space we can give the following definition:

Definition 2.2.1. Let A be an abelian group, we call the groups
H*(G; A) = H"(Bg; A)

the cohomology groups of the group G with (untwisted) coefficients in the
group A.
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It is possible to give a purely algebraic definition of the cohomology of
a group G and this allows us to generalize this concept. First suppose that
a group G acts on the group of coefficients A, that is suppose that A is
a G-module. We can define the group ring Z[G] as the ring of finite linear
combinations of elements of G with coefficients in Z, with the product defined

as follows:
(D mig) - (3o migh) = S (mami) (990

With this definition the group A is a natural Z[G]-module and the struc-
ture of G-module corresponds to the structure of Z|G]-module.

Definition 2.2.2. Let M be a Z[G]-module, we call resolution of M over G
a long exact sequence of Z[G]-modules C; with maps 0;,

If each module C; is a free Z[G]-module, we have a free resolution.

It is easy to see that a free resolution of M always exists.

Proposition 2.2.3. Let ¢ : M — N be a momorphism of Z[|G]|-modules and
let
0=M20y 20 &0y ...

O<—N<B—OD06H1D16H2DQH~--

be two free resolutions. Then there exist morphisms ¢; : C; — D;, 0 < i < 00,
such that the diagram

0 M<5—Co=y— Cr=;— (s
l(ﬁ id’o iﬁbl ld)Q
0 N=<3—=Do<5—Di<;— D>
commutes. Moreover, given another choice of morphisms ¢, ¢y, ... such that
the diagram commutes, there exist maps p; : C; — Dy, 0 <1 < oo such that
Oiv1ti + pi—10; = ¢, — ¢;. O

The maps p; give a chain homotopy of the two resolutions. Again we
consider A a Z[G]-module and we define the Ext functor

to be the i-th cohomology group of the cochain complex

HomZ[G](C]7 A) = Cj(Ma A)
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for a given free resolution of M. It follows from Proposition that any
two free resolutions are chain homotopic, hence the groups Ext%[G](M 1 A)
do not depend on the chosen resolution.

In case that Z and A are trivial Z[G]-modules, than we get the previously
defined untwisted cohomology of G:

Extyyq(Z; A) = H'(G; A).

In fact we can consider a CW-complex structure on B¢ and the induced CW-
complex structure in FEg: since Eg is contractible, the associated cellular
chain complex is a free resolution of Z with Z[G]-modules (the structure is
given by the action of G on the fiber of each cell of Bg); moreover

Homge)(C.(Eg), A) = Homz(C.(Bg), A).

Hence the groups Ext give a generalizations of the cohomology groups of G.

If the group ring Z[G] acts non trivially on the group A4, we will write
H}(G; A) in place of
EXtZ[G} (Z; A).

Definition 2.2.4. The groups Exty(q)(Z; A) = H{ (G; A) are called cohomol-
ogy groups of G. If the action of G is nontrivial we talk of twisted coefficients
or simply we say that these groups are the cohomology groups of G with co-
efficients in the module M if the action of G is understood (in this case we
can simply write H*(G; A)).

In an analogous way we can define the Tor functor
Tor” (M, A) = H,(C, 26 A)
for a free resolution Cy of M with G-modules and we can give the following

Definition 2.2.5. The groups TorZl¢] (Z,A) = H.(G; A) are the groups of
homology of G with coefficients in the module M.

As for the cohomology, the algebraic definition generalizes a geometric
construction and we have that

H,(G; A) = Hi(Bg; A)

The case of twisted cohomology (resp. homology) corresponds to the
topological definition of cohomology (resp. homology) of a space X with a
local system of coeflicients.
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Theorem 2.2.6. Let G be a discrete group, A a Z[G]-module and X a
k(G,1) space. The map G — Aut(A) determines a local system of groups
L4 on the space X. Let X be the universal cover of X. We have the following
1somorphism, of complezes:

C*(X, L4) = Homgg) (Cu(X), A)

In particular the twisted cohomology (resp. homology) of G with coefficients
in the module A is isomorphic to the cohomology (resp. homology) of the
space X with coefficients in the local system L4:

H*(G, A) ~ H* (X, L.4)
H,(G,A) ~ H,(X, L4).

2.3 Cohomology of Artin groups

The study of the cohomology with constant (or untwisted) coefficients for
braid groups and the other infinite families of finite type Artin groups (i.e.
By, and D,,) has been started by Arnold in the 70’s (see [Arn69, [Arn70al
Arn70b]) and has been terminated with the contribution of many people.

A first important computations, due to Fuks, is the cohomology of the
braid groups Br(n) with coefficients in Zs:

Theorem 2.3.1 ([Fuk70]). The generators of the group H*(Br(n),Zs) can
be identified with the partitions of n as a sum of n — k powers of 2. We can
denote this generators by < 21, ... 2m—k > 1} > ... > 1, 4.
The multiplicative ring H*(Br(n), Zz) is generated by the elements
2k elements

———
arp=<2",...,2" > (r>1,k>0)

with dim a,, = 28(2" — 1), and with relations

km k Im l
—— f—/; — /—‘1‘
<2M 2™ 2,2 > 2™ 2™ 2,2 >=

km~+lm k141
— ——
B A U G <omoLom 22>
km kl
ag,kzo

Qriky " Qrg kg = 0 Zf 27‘1+k1+~~-+7’q+kq > m.
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The computation of the cohomology is done using a decomposition in
cells of the Alexandroff’s compactification of the unordered configuration
space C(n). To obtain such a decomposition it is considered the point at

infinity and the cells of type e(mz, ..., mg), where e(myq, ..., my) is the sub-
set of C(n) given by the points {z1,...,2,} € C(n) such that the points
21,...,2n € C lie exactly on k vertical real lines and moreover, numbering

the lines from left to right, we have that exactly m; points lie on the ¢th line.

After this result, the cohomology of braid groups has been computed
with coefficients in Z,, for all other primes. Several independent results have
been obtained by Cohen ([Coh76]), Segal ([Seg73|) and Vainshtein ([Vai78g]).

In [Coh76] Cohen establishes a general theory of homology operations
in n-fold loop spaces. This leads to the computation of the homology of
Q"y"X. When n = 2 and X = S° this gives the homology of classical braid
groups. The key point for the computation of the homology of braid groups
is the study of the map

Cn(RQ) s 922252

where C,,(R?) is the space of unordered configurations of n points in R2.

In [Vai78| Vainshtein use the same decomposition introduced by Fuks.
Here we rewrite the result in the formulation given by Vainshtein.

First note that the braid group Br(n) naturally embeds in the group
Br(n + 1) and we can define the limit group

Br(oco) = lim, Br(n).

Theorem 2.3.2 ([Vai78]). For a prime p # 2 the ring H *(Br(c0); Z,) is the
tensor product of the polynomial algebras Zy[z;], dimz; = 2l —2.0>0
and the exterior algebra with generators y;,dimy; = 2p7 — 1,5 > 0. There is

a natural map
H*(Br(c0); Zp) — H*(Br(n); Zy)

that is surjective. Its kernel is generated by monomials x,, -, y1, - - Y1,
with 2(p" ™t + oo pr L4 plt o4 pl) > n. Let B, be the Bockstein
homomorphism associated to the short exact sequence

0—Zp— Zyp2 — Zp — 0,
then it holds that Byx; = yit1, Bpy; = 0. O

Theorem 2.3.3 ([Vai78|). We have the following isomorphisms:
HYBr(n);Z) = H' (Br(n); Z) = Z

HO(Br(n):Z) = @ B,H ' (Br(n)Z,)  forq>2

where the sum 1s understood over all primes p. O
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The cohomology with integer coefficients for Artin groups of families B,
and D,, has been computed by Gorjunov:

Theorem 2.3.4 (|Gor78, [Gor81]).
HY(Gp,;Z) = EPHI"(Br(n—i);2Z);
=0

HYGp,;7) = ]_L}q(Br(n);Z)EB
® éﬂq*QJ(Br(n—2j>;Z)/Hq*2"<Br<n— 2j =152\ @
§=0

o | HT* 3 (Br(n - 2k — 3); Z)
Lk=0

The multiplicative structure of H*(Gp,;Z) and H*(Gp,;Z) is induced
by multiplication in the cohomology of braids. O

For Artin group of type Eg, Er, Eg, Fy, Hs, Hy, Is(m) (exceptional cases)
the cohomology has been computed by Salvetti in [Sal94]. The result is
showed in Table

w 12(28) 12(28 + 1) H3 H4 F4 E6 E7 Eg

HY| Z Z Z Z 7 7 Z Z

H'| 7° Z Z 7 77 Z Z Z

H?| Z Z 0 72 0 0 0

H3 Z 7Zx Zg Z2 ZQ Zg ZQ

H* Z 7 7 73 Zs

H5 ZG Zg ZQ X ZG
HS Zs ZsxZexZ — ZsxZg
H7 Z ZQ X ZG X7
HS8 Z

Table 2.1: Cohomology with constant coefficients: exceptional cases

2.4 Fibrations for Artin groups

Given an Artin group Gy we consider again the space Xy in order to study
the Milnor fibration

F, — XW — C*.
If the group W is finite, we recall that it acts on the complex vector space
V with orthogonal reflections. The product

o=1[%
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where H are the hyperplanes such that the corresponding reflection is in W,
determines a W-invariant map V — C and hence induce a map

§:V/W—C
and the fiber F’ is the Milnor fiber of the non isolated singularity F{ =
& 1(0) = 671(0)/W. Moreover the map
0 Gw =m(Xw) = m(C) =12

maps each generator gs to 1 and the Milnor fiber F’ is a classifying space for
the ker (5&.

If W is an affine Coxeter group, which acts by affine orthogonal reflections
on the complex affine space E, we can consider for each root a the complex
function f, : E — C so defined:

fa(v) _ (6271'2(1),@) _ 1)

11 7o

acd

and we define the map ¢ as

Again it is clear that the map § is W-invariant and ¢ is zero exactly on the
union of the hyperplanes

Fo= |J Hax
a€d keZ

In general ¢ (and so also ') is not a fibration, but we can take homotopy
equivalent spaces )/(\V/V and C* and a fibration &' : }/(\m// — C* homotopy
equivalent to &’. Call F/ the generic fiber of 4.

Hence F’ is the homotopy Milnor fiber of the nonisolated singularity
F{ = Fo/W of the analytic map ¢’ induced by 9.

In order to understand the topology of this singularity, we want to study
the cohomology (or homology) of the fiber F.

2.5 A topological construction

Let V = C™ a complex vector space and f : V — C a weighted homogeneous
polynomial of type (a1, ...,an) as in Section The singular fiber is Fy =
{ve V| f(v) =0} and we have the Milnor fibration

Fo X

where X is the complement V\Fj. Fix 1 as base point of C* and an arbitrary
point xg as base point of F. By standard homotopy theory we can extend
the fibration sequence to the left, to obtain, up to homotopy, a new fibration:

QOC*—=F - X
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where QC* is the space of maps S' — C*, with base point the constant
map 1 and it is homotopy equivalent to the integers Z. Since the inclusion
F — X is not a fibration, we have to replace F by a homotopy equivalent
space F to get an actual fibration over X:

QCc* - F 5 X. (2.5.1)

The space F is given by:

F = {(2,7) s € X,7:[0,1] — C,5(0) = L,y(1) = f()}.

The map 7 is given by the projection on the first coordinate. We can fix an
homotopy equivalence between F and F as follows. First define the inclusion
i : F — F, mapping a point z € F to the couple (z, 1) where 1 is the constant
path. We define how to lift a point (z,7) € F to a path 7 : [0,1] — X by

1

(1) = (@Y1 — )], .z [y (1 — )] ).

Finally, we define a retraction » : F — F by r(z,v) = 5(0). It is easy to
prove that the maps ¢ and r define an homotopy equivalence between F and
F.

This means that the Milnor fiber is homotopy equivalent to an infinite
cyclic cover of X. We can count the sheets of the cover by the numbers
of loop in C*. Moreover the deck transformations of F coincide with the
monodromy group of F generated by the characteristic homomorphism h.
Since the inclusion i : F < F is an homotopy equivalence we can identify
the cohomology groups H*(F; R) ~ H*(F; R) for a ring R. Set a := [], a;.
Since h* = 1d, the action of Z = 71 (C*) on H*(F; R) factors through Z/aZ.
So we can consider H*(F; R) as a R[¢¥]-module, where multiplication by ¢
acts as h.

Associated to the fibration the have a Leray-Serre spectral se-
quence that converges to H*(F, R). The Ea-term is

EDY = HP(X; HY(QC*; R))

where the action of the fundamental group of X on HY(QC*; R) is the mon-
odromy action. Since QC* is homotopy equivalent to Z, its cohomology is
concentrated in degree 0 and we can write it multiplicatively as the module
of Laurent series R[[tT]]. If we consider the subgroup Z C AutR[qi}(R[[qi]])
generated by the multiplication by ¢, we have that

H*(F,R) = H*(X; R[[¢%]))

where we consider the local system on the space X given by the module
R[[t*]] with action defined through the map

m1(X) L m1(C) = Z € Aut e (RI[¢*)).
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The dual result in homology gives
H.(F, R) = H.(X; R[g*])

with the analogous local system defined with the module R[g¥] on the space
X. Since h* = Id we finally observe that 1 — ¢® annihilates H*(F, R) and
H.(F,R).

2.6 The Shapiro’s Lemma

Let H < G be two groups and let M be a Z[H]-module. By means of the ring
inclusion Z[H| — Z[G] we can define the induced and coinduced modules of
H in G. We set:

Ind§; M = Z[G] @zpm M

and
CoInd§ M = Homy (Z[G], M).

We have the following result (see [Bro82)):

Lemma 2.6.1 (Shapiro’s Lemma). If H < G and M is a Z[H]-module, then
H,(H; M) ~ H,(G,Ind% M)

and

H*(H; M) ~ H*(G; CoInd$% M).
Proof. Let C be a free resolution of Z over Z[G]. We can regard C as a
resolution of Z with free Z[H] modules, hence we have the isomorphism

Since C @z M ~ C ®zq) (Z[G] @z M) = C @y (Ind% M), we get the
first equality.
The second equality follows from the isomorphism

Homy g (C,M) ~ Homgz g (C, COInd%M)

and this is a consequence of the following general fact: let o : R — S be a
homomorphism of unitary rings, given a S-module N, a R-module M and
a morphism of R-modules f : N — M, there exists a unique morphism of
S-modules g : N — Homp(S, M) such that 7g = f:

Homp(S, M)

A

N
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where 7 is the valuation induced on the element 1. Hence:
Homg(N,Homp(S, M)) ~ Hompg (N, M).

In order to prove the last statement we note that g must verify the
relation sg(n) = g(sn) for all s € S,n € N; valuating both the terms of the
equality in 1 we find that g(n)(s) = g(sn)(1) = w(g(sn)) = f(sn); then the
existence and uniqueness of such a morphism g follow easily. So the Lemma
is proved. O

2.7 Topology of the Milnor fiber for Artin groups

Recalling the previous observations, let W be a Coxeter group. We consider
the fibration

F oYy >C*

F — Xy & C
described in Section [2.4f We have that 71(Xy ) = Gw and m (Yw) = PAw
and if we set 71 (F') = Hy we have the following short exact sequence of

homotopy groups:
0 — Hwy < Gw 57 -0

that is Z ~ Gy /Hyw . Recall that m maps each standard generator gs to 1.
If the group W is finite, then the map ¢’ is given by a weighted homo-
geneous polynomial and we can use the observations of Section to show
that
H*(F';R) = H*(Xw; R[[g,q7']])
and
H.(F'; R) = H.(Xw; Rlg,q "))

where Gy acts on R[q,q~!] and R[q, ¢ '] mapping each g5 to the multipli-
cation by gq.

By means of the Shapiro’s Lemma we can state the result with more
generality. Consider any Coxeter group W such that Yy is a K (7, 1) space.
If W is infinite, let F’ be the homotopy Milnor fiber of the map §’. We have
the following result (see [Ere88§]):

Theorem 2.7.1. Let W be a Cozeter group such that Yy is a K(mw,1) space
and let )

F Xy 5
be the associated Milnor fibration. The fiber F' is a K(mw, 1) space and we
have the isomorphisms

H.(F';R) = H,(Hw;R) = H,(Gw; R[q,q"']) = H.(Xw; R[q, ¢ '),
H*(F';R) = H*(Hw; R)H*(Gw; Rllq,q" ")) = H*(Xw; R[lg. ¢ 1))



32 Group cohomology and local systems

The argument is the same as that used in [CS9§| for the homology of
arrangements of hyperplanes.

One can also prove (as we will see in Section [3.4and [3.5)) that for finite W
the cohomology of Gy computed over the Laurent series module R[[q, ¢~ ]]
is equivalent to the cohomology computed with coefficients over the module
of Laurent polynomial R[q,q '], with a degree shift:

Theorem 2.7.2. If W is a finite Coxeter group
H'(Gw; Rlla,q7']]) =~ HH(Gw; Rlg.q 7))
O

In the case R = Q this result has already been observed by C. De Concini
using the Universal Coefficients Theorem. In Section [3.4]and Section [3.5] two
independent proofs of Theorem are given. In the case of an infinite
Coxeter group, a partial result can be given in order to compute the coho-
mology H*(Gw; R[[q,q7']]) in terms of H*(Gw; R[q,q™']). We will see an
application of this partial generalisation in Section [7.3.2]

2.8 Cohomology of the Milnor fiber: known results

The cohomology of braid group with twisted coefficients over the Laurent
polynomial ring Q[g, ¢~ !] was computed in [DCPS01]. This result has been
obtained using a natural filtration on the complex C* associated to the braid
group. Later in [DCPSS99| the computations for the cohomology over the
same ring Q[g, ¢~ '] have been performed with similar methods for Artin
groups of type B, and D,,.

We recall the notation ,, for the m-th cyclotomic polynomial. The
results are the following:

Theorem 2.8.1 ([DCPS01|). Let R, be the local system over the ring R =
Qlq, ¢ Y] given by mapping each standard generator of Br(m + 1) to the
multiplication by —q. We denote by {h} the quotient module R/(pp). If
hi=m+1 orif hi =m then

H=241 (Be(m +1), Ry) = {h}.
All the other cohomology groups are zero. O

The same result was independently found by Frenkel in [Fre88| and Mar-
karyan in [Mar96].
With the same notation, for the cases B, and D,, we have:

Theorem 2.8.2 ([DCPSS99)).

H™(Gp,,Ry) = P{2r}

rln
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and, for s >0,
H" (G, R) = @ {2r}

r<ge,r|n

H"*(Gp, . Ry)= P {2r}.

r<tlrin

|

Theorem 2.8.3 (|[DCPSS99|). Forn € N, let S, ={k e N: k| n ork|
2(n—1) but ktn—1}. We use the convention that {h} = R/(en) if h is an
integer, otherwise {h} =0, we have that:

H"(Gp,,Ry) = €P {2h}
2heS—n

and, for s >0,

H"(Gp, R)= P {2h}@{";1}

-2
1<h<75=,2h€Sn

®2  Gf g ;
@ (2h) @ {Q} if is an integer,
s

even,n > 2
1<h<2=2 2heS,

@ {2h} ® {%} otherwise.

-2
1<h<"=2 2heS,

Hn725+1(GDn’ Rq) —

|

For Artin groups of type Iy(m), Hs, Hy, Fy, Eg, E7, Eg, analogous
computations over the ring of Laurent polynomials with rational coefficients
Q[g¢™!] can be found in [DCPSS99]. The same computations have been ex-
tended to integer coefficients, Z[¢™!] in [CS04]. We report the result in Table
We use the convention of writing R for the ring Z[¢™!] and the number
m for the module R/(¢y,). Moreover we define the following ideals:

Iy = (2,2)[60]/w60; Ji = [24]/p2s;
Is = (p3pepowia); It = (p206p14018);
Is = (2, p4)p20[24][30] /[6].
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W | I(m) Hj H, Fy
H| 0 0 0 0
H! 2 2 2 2
H? | R/[m] 0 0 2
o’ R/(p26010) 0 R/(p203%6)
HY R/I4 R/J4
W | FEg Er Fg
HOl 0 0 0
H'| 2 2 2
H?| 0 0 0
H3| 0 0 0
H*Y| 7)2 72 72
H5 | 638 6D7Z/2 4
HS | R/Is Z/3® (¢2,3)R/p6(¢2,2) Z/2®7Z/3
HT R/I; 8@ 12®Z/3
HS R/Ig

Table 2.2: Cohomology with coefficients in the ring Z[¢*']: exceptional cases



Chapter 3

Topology of arrangements

3.1 The Salvetti complex

Now we present a cell complex that has the same homotopy type of a the
complement Y 4 of the complexification of a real arrangement Ag. If the
arrangement Ag is the reflection arrangement of a Coxeter group W, then
the complex we are going to show is W-invariant and taking the quotient
respect to the action of W we get a complex with the same homotopy type
of the space Xy. The construction we are going to present can be found in
[Sal87], [Sal94] and [DCS96], where we refer for all proofs.

Let Agr be a finite real arrangement in R™. The arrangement induces a
stratification of the space R™ in facets. We call S the set of all facets and we
partially order S saying that F' > F' if and only if F D F'. Let Q the dual
cell complex of S. We can realize Q inside R” associating to each facet F7
of codimension j the point v(F7) € FV and considering the simplexes

o(F, ... Fi) = {Z)\kv(Fj’“) | Z)\k =1, € [0,1]}

k=0

where F* > Fik+1 for k = 0,...,7 — 1. We define the j-cell ej(ﬁj), dual to
FJ . as the union Ua(F°,... ,ijl,ﬁj), over all the chains FO > -.. > FJ.
Hence we have Q = |J e/ (F7), where the union is taken over all facets in S.

We can think to the 1-skeleton Q1 as a graph and we define the combi-
natorial distance between two vertexes v,v’ of Q as the minimum number
of edges in an edge-path connecting v to v'. For each cell e/ we indicate by
V(e?) = Qonel the O-skeleton of /. We have:

Lemma 3.1.1. For every verter v € Qg and for every cell ¢! € Q, there
exists a unique vertex w(v,e') € V(e') of minimal distance from v, that is:

d(v,w(v,e’)) < d(v,v") Vo' € V(e \ {w(v,e')}

If et C el then w(v,e?) = w(w(v, e), el). O
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Take a cell e/ = e/ (F7) = Jo(F°, ..., FI=Y FJ) of Q and let v € V(e).
We can map the simplex s(F°,..., F7) in C" by the application

¢v,ef(z )‘kU(Fk» - Z)‘kv(Fk) —i—iZ)\l(w(v,ek) - U(Fk))

One can prove that ¢, .; gives an embedding of ¢/ in Y 4. We call E7 (e, v)
the image of the map ¢, .;, and we define the Salvetti complex for the ar-
rangement A as the union

M= UEj(ej,v),
where the union is taken over all ¢/ and v.

Theorem 3.1.2 ([Sal87]). The CW-complex M is homotopy equivalent to
the complement Y 4. O

We remark that the fact that the maps ¢, .; glue together in the proper
way is a consequence of Lemma [3.1.1

Suppose that the arrangement A is the reflection arrangement associated
to a finite Coxeter group W. We have that the complex M is invariant for
the action of W and we call

C=M/W

its quotient. We will give a description of this quotient complex.

Let us fix a chamber Cj in the complement of the real arrangement Ag
and let vg be the vertex of Q contained in Cy. We denote by Sy the system
of facets of Cy (that is, the set of all facets included in the closure of C) and
by Qg the set of all cells that are in Q and are dual to a facet in Fy, that is
Qg is the set of all cells that intersect the chamber Cy. Note that Qg is not
a CW-complex. The following result holds:

Proposition 3.1.3. For every facet ' € S, there exists a unique facet Fy €
So that belongs to the W-orbit of F. For every cell e € @, there exists a
unique cell eg € Qg that belongs to the W-orbit of e. The elements v € W
such that y(eq) = e give a left coset of the stabilizer Wro of FO, where F° is
the dual of eq O

As a consequence of Proposition[I.1.3]it follows that there exists a unique
element of minimal length in each coset of Wgo. We denote by 7 the
element of minimal length with respect to the Coxeter system associated to
the chamber Cy and which maps eg to e. Now let Y 4 be as before. We have
the following result:

Theorem 3.1.4. The space Y /W has the same homotopy type of the CW-
complez C obtained as a quotient of Q identifying two cells e, e’ if and only
if they are in the same W -orbit, using the identification map induced by the
element Ve) 'y(_l). O

e/
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Definition 3.1.5. We call the complex C = Cy the Salvetti complex for
the group W and we denote by my : Q — Cy the projection map.

Corollary 3.1.6. Let W be a finite essential Cozeter group, the number of

i-cells in Cyy is E O

We can use the complex Cy to compute the cohomology and homology
of the group Gy . First suppose that the action of W is essential. Let
Hy, ..., H, be the walls of the fundamental chamber Cp, in correspondence
with the reflections of the set of generators of W {s1,...,s,} = S. Let v;
be the chosen point in H; N Cy. Each facet F € Sy corresponds to a unique
intersection H;, N---N H;,, k = codim (F'), where the H;, are the walls of
Co that contain F and iy < --- <. We endow the dual cell e(F') with the
orientation induced by the order of vg, v;,, ..., v;,. Moreover we orient each
cell e € Q requiring the map () to be orientation-preserving. In this way
the incidence number [e : €] € {0,1, —1} between cells of M is well defined
and passes to the quotient in Xyy .

To each cell in Cyy there corresponds a unique cell in Qp and a unique
facet in Sp. As a consequence, for every cell F' € F there is a unique subset
I'=T(F) C I, ={1,...,n} such that F' = NjerH;.

Lemma 3.1.7. Let F € Sy corresponds to the set T'. Let G' € S a facet
W -equivalent to F' € Sy, with I" = T'(F') C T, |I'| = |I| + 1, and such that
F' ¢ G (hence G' is Wr-equivalent to F'). Then e(G') C e(F) and the
following holds:
G/
[e(F) : e(GN] = (=1 e(F) : e(F)

where [(G') is the minimum length I(g) of an element g € W mapping F' to
G O

We give a description of the algebraic complex C* that compute the
cohomology of Cyy, that is the algebraic Salvetti complex.
Let us define C* as the free Z-module generated by k-cells of Cyy, k =
0,...,n:
C*={> arT |ar € Z,T C I,,[T| = k}.

Theorem 3.1.8. We have
H*(Cw;Z) ~ H*(C™)
where the coboundary 6% : C* — C*+1 s defined by:

My =Y (=1UTC N ()W) u )

JEI\T heWry 53/ Wr

We define o(j,I') = [{i € I' | i < j}| and Wppy = Wg. l(h) is the minimum
of the length of an element h in the coset h. O
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More generally, we can consider the cohomology with coefficients in a
local system. We use the following result:

Theorem 3.1.9. Let W be a finite Coxeter group and Cy the Salvetti com-
plex for W. Let M be a Gy -module and let b : W — Gy be the section
defined in Theorem . Suppose we have a local system L = L(Cy; M)
over Cy with coefficients in the module M given by the action of Gw on
M. Then

H*(Cw; L) ~ H*(C")

where the compler C*(q) is given by
C* ={) are(T) |ar € M,T C I,,|T| = k}
and the coboundary map is

MareM) = > D (=17 (1) @p(w)are(T U{j}).

JeI\T' wEWFu{]}

a

In the special case where R is a unitary commutative ring with ¢ a unit
of R and M is an R-module, consider the local system £, = L,(Cyw; M)
over Cyy with coefficients in the module M given by mapping each standard
generator of Gy = 71 (Cy), represented by a 1-cell Ty (e),e € Qo N Q1, to
the automorphism of M given by multiplication by —g. Then

H*(Cw; Lg) = H*(C™(q))
where the complex C*(q) is given by
C*q)={Y arl |ar € M,T C I, |T| = k}

and the coboundary map is

E(g)(T) = e Vo @ e
) (Q)(F)—jelzn:\r( 1) el (TU{5}).

The cohomology of exceptional Artin groups was computed in [Sal94]
using this special case of the complex described in Theorem [3.1.8]

Clearly one can use the Salvetti complex also to compute the homology.
The homology version of the complex of Theorem is:

Cr={> are(l') | ar € M,T C I,,, |T| = k}

and the boundary map is

klare(D) => " Y (=17 (=) (w)are(T\ {j}).

je wEWE\{J}
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For the local system £, = L,(Cw; M) defined as before, the complex C, =
C.(q) for the homology is the following

Cr(q) ={>_arT |ar € M,T C I,,[T| = k}
and the boundary map is

N et _Wrle) :
8k(Q)(F)—j€z;( )7 WF\{j}(q)(F\{j})'

We remark that although the choice of the multiplication by ¢ would be
equivalent, we use —¢q, which seems more natural to us, and also for coherence
with [CP07], [DCPS01], [DCPSS99].

The construction of the Salvetti complex can be extended to any infinite
Coxeter group W.

Take one point zg in the fundamental chamber Cjy; for any subset J C S
such that the parabolic subgroup W is finite, construct a (|J| — 1)-cell in
U as the “convex hull” of the Wj-orbit of zy in R™.

Figure 3.1: the space K(GA~2, 1) is given as union of 3 hexagons with edges
glued according to the arrows (there are: 1 0-cell, 3 1-cells, 3 2-cells in the
quotient).

So, we obtain a finite cell complex (see Figure which is the union of
(in general, different dimensional) polyhedra, corresponding to the maximal
subsets J such that W is finite. Now take identifications on the faces of
these polyhedra, the same as described for the finite case (they are shown in
Figure for the case Ay). We obtain a finite CW-complex Xy : it has a
|J|-cell for each J C S such that Wy is finite.

We obtain as in [Sal94]:
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Theorem 3.1.10. Cy is a deformation retract of the orbit space. O

The algebraic complex we get, for a local system over a Gy-module M
is
Ck = {ZGFB(F) |ar € M,T' C I, [T'| = k, [Wr| < oo}
The boundary formula is exactly the same. For the coboundary, just take
the sum over the j’s such that [Wpyj;| < co.

Remark 3.1.11. The standard presentation for Gy is quite easy to derive
from the topological description of Cyy; we may thus recover Van der Lek’s
result [vdL83].

Proposition 3.1.12. Lel K{;ﬁ” ={J CS : |Wy| < oo} with the natural
structure of stmplicial complex. Then the Euler characteristic of the orbit
space (so, of the group Gy when such space is of type K(m,1))) equals

X(K(").
In particular, if W is affine of rank n + 1 we have
X(Xw) = x(Ef") = 1=x(5"") = (-1)"

Proof. Last statement follows from the fact that K{:&n contains all proper
subsets of S; thus: ‘ )
H.(K{") = Hea(S"),

a

Remark 3.1.13. In our computations in the next chapters, sometimes we will
study cohomology and some others homology. The different choice has no
special meaning and is done just in order to get easier computations. In
fact the module structure of homology and cohomology give us the same
information, since they are related by the Universal Coefficient Theorem.

3.2 Filtrations on the Salvetti complex: an example

Let us now consider again our main example of Coxeter group, that is the
group of permutations on n + 1 elements W = A,,. We want to compute
the cohomology of the associated Artin group Gy, that is the Artin braid
group Br(n + 1) with coefficients in a local system over a Gy -module M.
The generators of the complex C} are associated to subsets of the set of
generators, that is the nodes of the Coxeter diagram for A,,. We can denote
each generator by a subset I' of the set {1,...,n}. We can identify each
subset I' with its characteristic functions, that is with a sequence of 0’s and
1’s of length n. A symbol 0 in the i-th position of the string means that
i ¢ T, while a symbol 1 means that i € I'. If A and B are two strings, we
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write AB for their concatenation. The degree |A| corresponds to the number
of 1’s that appear in A, and so it is the dimension of the corresponding cell.
Hence Cflk) is the subcomplex generated by strings of length n and degree k.

Using the notations of g-analog, for a string A we write Al = [[,[k; +
1]!, where the numbers k; are the length of the maximal substrings of A
containing only 1’s. Hence, applying Theorem and the computations
of Section the coboundary § is defined by the following rules:

5(A00B) = 6(A0)0B + (—1)41405(04),

a1 A111B!

AlOlB!AHlB’

§(A101B) = §(A1)01B + (—=1)4+1 4106(0B) + (-1)

51k =0,
001F = [k + 21F+1,
6180 = (=1)*[k + 2J17+1,
60170 = [k + 2](1¥10 + (—1)ko1r+1).

We can endow the complex (C7,6) with a filtration F' defined as follows:
F3C,, is the subcomplex of C}; generated by strings of kind A1°. We have
the following isomorphisms of complexes:

(FSCTL/FSJrlCn) = Cn—s—l[s + 1]7

where the notations [s+ 1] in square brackets means a shifting in the degree
by s+1 that is (F*C,,/F5T1C,)t = Cr(f__ss__ll), where the isomorphism is given
by the mapping:

A01% — A

Al1* — 0

We finally define a spectral sequence associated to C), and to the filtration
(F*Cp)s. We set
Eg,t — (Fscn/Fs+1Cn)s+t

and let the O-differential do : Ey* — E'" be the map induced by é.

Note that the quotient F"~'C,,/F"C, is isomorphic to the module M
generated by the string 01"~! and F"C,/F"*'C, = M with generator 1™.
We can give the following definition (see [Spa66]):

75 ={ce€ F°C, | 6c € F**"C,}

zZ5, ={ce F°Cy | dc =0}

where it is understood the natural graduation induced by the graduation of
Ch.
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Moreover we set:
B = 22 /(234 + 627

and we define the differential d, : ES' — EST " to be the homomor-
phism naturally induced by the map 6 : Z5 :— Z5™" and by ¢ : foll +
VAR VAR

In particular we get

EY' = H N (Féc, [F*HCy) = HY(Cpos—1)

and the differential d; is the boundary operator associated to the short exact
sequence

0 — e, /F*T2C, — F*C,/FT2C, — F°C,/F**'C, — 0.

Hence the i-th columns of the term E7 of spectral sequence for the co-
homology of C), is given by the cohomology of C),_;_1.

Using the filtration associate to the numbering of the Coxeter graph we
can give analogous spectral sequences for the other Artin groups.

3.3 Filtrations and spectral sequences

We want to give a more general description of what we explained with the
example in the previous Section, in order to understand how we can use
spectral sequences to compute the cohomology of Artin groups.

Suppose we have fixed a finitely generated Coxeter group W = Wr and
let T' be the Coxeter graph and G = Gy the associated Artin group. Let
n be the number of vertexes of I', that is the number of standard generator
of W. We can suppose to have a total order on the set of vertexes of T' (in
what follows, if not specified, for finite and affine irreducible Coxeter groups
we always use the order given by the numbering in Tables and Table
[1.2). Let C* be the algebraic Salvetti complex associated to G. We use the
numbering on the vertexes of I' in order to write the generators of C* as
strings of 0’s and 1’s.

Hence we filter the complex C* as follows: F°C'is the complex generated
by strings of type A1°. The quotients G°C' = F*C/F**t1C are isomorphic to
simpler complexes (with less generators), so we can assume we already know
their cohomology. The starting page of the associated spectral sequence is

Eyt =Gt

and, since the differential dy is just the map induced by the coboundary of
C* on the quotients G°C' = F*C/F**'C, the next term is

Ey = H(GHO).
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This means that the columns of the complex Fq corresponds to the coho-
mology of the complexes G*C'. We can choose as generators of the module
Ef’t some combinations ) m;A; where the strings A; are in the form A;01°.
The differential d,, is the map induced by the coboundary ¢ of the complex
C*, hence

dn . E’;’SL7t N Ei—i—n,t—n—&—l

maps an element a = Y m;A; to the sum of terms in da corresponding
to strings terminating with 017", For example, in case W = A,, if a =
> m; A;01" 1018 +> 1;B; € Ef;t, where the strings B;’s do not end with the
sequence 01"~101%, the differential d,a is given by the equivalence class of

|:S+Tl+1:| ZmZAZOls—HL

n

In particular we can consider the special case when the complex G*C' is
isomorphic to the complex~C~' associated to a Coxeter group G withn—s—1
generators, with a graph I' C I'. If the sum a = ) m;A; is a generator of
HY(C), a =3 m;A;01% is the corresponding generator of H*/(G*C).

In this way, it is possible to perform a computation of the spectral se-
quence up to the term E.. To compute the cohomology H*(C*) in general
we need to lift the generators of E, to generators of the cohomology C*
in order to solve, by means of direct computations on the complex C*, the

indeterminacy about lifting of modules.

3.4 The Novikov homology and degree shift

Let X be a connected differentiable manifold and let A : X — X be an
automorphism o X. We can consider the manifold Y defined as follows:

Y =X x, 8" =(XxR)/~

where (z,t) ~ (2/,¢') if ' =t +n and x = h™"(2’) (n € Z). Let G be the
fundamental group of Y. The natural fibration

f:Y - St
induces a surjective homomorphism for the fundamental groups:
fy:G— 7.

We need to fix some notation. Let A be a principal ideal domain (PID).
We write R for the ring of Laurent polynomials with coefficients in A, R =
Alg,q71]. Moreover we write M for the R-module of Laurent series with
coefficients in A, M = A[[g,q"!]]. We denote by N, the ring of Laurent
series Ny = Al[q]][¢~!] and analogously N_ = A[q][[¢"!]]. Note that the two
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rings N4 and N_ are PID (see [Far04], Lemma 1.10). Finally consider the
quotients My = M/N_ e M_ = M/N.

All these rings and modules have a natural structure of R-module and
so0, by means of the map fx they have an induced structure of module over
the group-ring Z[G], where the action is given by mapping an element g € G
to the multiplication by q/#9).

Hence we can define on the space Y the local systems R, M, M,
M_, N,, N_ associated respectively to the modules R, M, M,, M_, N,
N_, using the action induced by fx. We note that, using the map h, the
cohomology of the space X with coefficients in the ring A is endowed with a
natural structure of R-module.

Lemma 3.4.1. The following isomorphisms of R-modules hold:
H.(X,A)=H.(Y,R).
H*(X,A)=H*"(Y,M).

Proof. We have a fiber bundle of the space X x R over the space Y, with
fiber Z:
7Z—-XxR—-Y.

We have homology and cohomology spectral sequences associated to the fiber
bundle and since the fiber is 0-dimensional we get that:

H.(X, A) = H,(Y, H.(Z, A)).
H*(X,A) = H*(Y, H*(Z, A)).

Finally we observe that the fundamental group of the base Y acts on R ~
H.(Z,A) (resp. on M ~ H*(Z,A)) by means of the natural structure of
G-modulo of R (resp. M). O

In the early "80 Novikov presents a generalization of Morse theory of mul-
tivalued functions and closed 1-forms. In [Nov81] he considers the problem
of finding relations between critical points and the topology of the manifold.
Given a closed 1-form w on a compact manifold M, he considers a covering

T N—-M

(for a function g : M — S take w = dg) where the pull back 7*(w) = dh is
an exact form: hence a Morse function arises on the non compact manifold
N. Novikov defines a complex, (C¥,§), similar to the Morse complex, with
generators in 1-1 correspondence with the critical points of the form w and
with a boundary defined, as in Morse complex, counting flow lines. He
proves also that the homology of the complex (CE,§) is isomorphic to the
homology of the manifold N with non compact “semi-open” support, that is
with support in a closed set V. C {x € N | h(z) > K} for a certain constant
K. We refer to [Nov81l, Nov8&2| for a more detailed construction.
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Lemma 3.4.2. The cohomology H*(Y,N) is the Novikov cohomology of
the space Y associated to the map f. If the manifold X is compact or if the
automorphism h has finite order hN = 1d, this cohomology is zero. Analo-
gously the cohomology with coefficients in the module N_ is also zero.

Proof. The Novikov homology of the space Y corresponds (see [Nov&1]) to
the homology of X with coefficients in the local system A . To prove this
we can take a CW-decomposition of Y. Let C, be the associated algebraic
complex. Using the covering f we can lift the decomposition of X to a CW-
decomposition of X x R, which has an associated complex that is homotopy
equivalent (with a chain-homotopy) to C\x ®¢ R where the action of G on R
is just the action induced by fx. This complex computes (see Lemma
the homology of the space X.

Using [Nov81l Lemma 1| we have that the Novikov homology of Y asso-
ciated to f is equivalent to the homology of the complex (Cy ®g R) ®g N4 =
C. ®qg N4, that is the homology of the space Y with coefficients in the local
system N .

If M is compact, the fact that the Novikov homology is actually zero
follows easily from the observation that map f is a fibration and hence there
are no critical points. If h has finite order, note that the action of h x Id on
Y induces in the homology H.(Y,Ny) the multiplication by ¢ and since if
A is a field then the ring N, is also a field and ¢ = ¢V — 1 is different from
0, we have that the Novikov homology must be zero, because multiplication
by a nonzero element gives the null map. Finally applying the Universal
Coefficient Theorem for local coefficients (see for example [God73|, Theorem
5.4.2, p. 101) it follows that the cohomology H*(Y, N ) is zero. The proof
for N_ is completely equivalent. O

Theorem 3.4.3. Under the hypotheses of Lemmal3.4.2 we have the following
isomorphism of R-modules:

H*(X,A) = H*"(Y,R).

Proof. Since we can apply Lemma [3.4.2], we need just to prove that
H*(Y,M) = H*"(Y,R).

It is easy to see that we have the following exact sequence:
0—-R— Ny — M, —0. (3.4.1)

Since H*(Y,N4) = 0 the associated cohomology long exact sequence for the
space Y becomes:
H*(Y, M) =H"(Y,R). (3.4.2)

In the same way we have an isomorphism with M_ in place of M. Denote
respectively with §; and §_ these isomorphisms.
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Let us now consider the exact sequence
0—-R—M— M, ®M_—D0. (3.4.3)

The cohomology of the space Y with coefficients in M, & M_ splits
into the direct sum of two pieces, namely the cohomology with coefficients
in M4 and the cohomology with coefficients in M_. Hence in long exact
sequence associated to Equation we have the map

& H*(Y,My)® H(Y,M_) — HY(Y R)

where ¢’ = (¢/.,0"). We have that the map d; (resp. d_) is equal to the
map 0/, (resp. 0__). To see this consider the following exact diagram:

0 0 0
| | |
0 RC¢ Ny My 0
H [ H
0 Jf( ]\f M+ (<>) M_ —0
|
0—> M_ M_——
| |
0 0

In particular, looking at the cohomology long exact sequences associated to
the rows, we have:

H*(Y, M) o H**1(Y,R)

H (Y, M) @& H*(Y,M_)—L s g*+1(Y R)

and so it follows that 6, = ¢/,. In the same way one can shows that 6_ = ¢’_.
In particular it turns out that the map &’ is surjective, so we have the
following short exact sequence:

0 — H*(Y, M) S H (Y, M) H* (Y, M_) & H*L(Y,R) =0 (3.4.4)

where o = (ay, —). Using Equation (3.4.4) one can deduce that the map
oy is an isomorphism (and analogously a—). The Theorem follows from this
last observation together with Equation ([3.4.2)). O

We note that, since in the case of a Milnor fibration given by a weighted
homogeneous polynomial the characteristic automorphism h has finite order,
the previous result applies to the case of a fibration Xy — C* associated to
a finite Coxeter group W, hence provides a proof of Theorem [2.7.2}

Corollary 3.4.4. If W is o finite Cozeter group
H'(Gw; Rl[q,q7 ') ~ H(Gw; Rlg,¢7')).
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3.5 Well filtered complexes and degree shift

3.5.1 Main theorem

Let (C1,d) be a graduated complex and let C3 C Cy C C; be inclusions of
graduate complexes. Denote by d;; : C;/C; — C;/Cj the induced coboun-
dary on the quotient complex (1 < i < j < 3). There is an obvious exact
sequence of complexes:

0— Co/C3— C1/C3 5 C1/Co — 0

When di2 and dag vanish (for example if the complexes are trivial in all
degrees except exactly one) we get that H*(C1/Cs) = C1/Cy and H*(C2/C3)
= (C9/Cs, so the differential H*(Cy/Cy) — H*(Co/Cs) of the long exact
sequence associated to the above sequence gives a map

8:01/02 — 02/03.

In the following we call this map induced differential.

Let A be a commutative unitary ring. In this Section we indicate by R =
Alg,q71], the ring of Laurent polynomials with coefficients in A and by M
the R-module A[[q, ¢ !]]. Let (C*,d*) be a graduate cochain complex, with
C* an R-module and d* an R-linear map. We give the following recursive
definition:

Definition 3.5.1. The complex (C*,d*) is called well filtered if C* is a free
finitely generated R-module, C* # R and moreover, if C* #£ 0, the following
conditions are satisfied:

(a) C* is a filtered complex with a decreasing filtration F' which is com-
patible with the coboundary map d* and such that FoC = C* and
Fh11C = {0} for an integer n > 0 ;

(b) F,C = (F,C)" ~ F,_,C/F,C = (F_1C/F,C)"! ~ R;

(c) the induced differential d : F, 1C/F,C — F,C/F,.1C (following
from condition (b)) corresponds to the multiplication by a non-zero

polynomial p € R with first and last non-zero coefficients invertible in
4;

(d) for all integer ¢ # n — 1,n the induced complex ((F;C/F;11C)*,d}) is

a well filtered complex.

In the following when we consider a well filtered complex we always
suppose to have also a filtration F' as above. We write (C};,d},) for the
complex C* @ M with the natural induced graduation and coboundary.
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Theorem 3.5.2. Let (C*,d*) be a well filtered complex. We have the fol-
lowing isomorphism:
H*(C*) ~ H*(C%)).

In order to proof this fact we need two preliminary lemmas.
As a first step let us consider the natural inclusion of R-modules R <— M.
We have the short exact sequence of R-modules:

0-R—>M-—->M —0

where M’ = M/R. We indicate by C'* the complex C* @ M’ and we
consider the complexes C*, C%,, C'*. In a similar way we have the following
short exact sequence of R-modules:

0 Loy & e .

Since the maps ¢ and 7 commute with the coboundary maps, we actually
have a short exact sequence of complexes. So we obtain the following long
exact sequence:

AN - (o (ol g
g LEicn) = miery L (3.5.1)
2 ety
Lemma 3.5.3. Let (C*,d*) be a well filtered complex. With the notation
given above we have:

H'(C™) ~ H'(Cyy) & H'(Cly)

Proof. The R-module M’ splits into the sum of two modules in the following
way':

M =M, & M.
where M, = M/(Algl[lg~'])), M" = M/(Alg7'][[g]]). In a similar way we

get the splitting
cr=C"aC".

Moreover C"} and C'” are invariant for the coboundary induced by d*, so
the cohomology also splits:

H*(C™) = H*(C"}) @ H*(C'").

We want to show that the quotient projection 7, : C}; — C’% induces
an isomorphism 77 in cohomology. We will prove this by induction on the
number of generators of C* as a free R-module.

If C* = {0} the assertion is obvious. Suppose that C* has m generators,
with m > 1. Then the complexes ((F;C/F;;1C)*, d}) have a smaller number
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of generators and for ¢ # n — 1,n they are well filtered. Therefore we can
suppose by induction that the map ;. , defined analogously to 7, induces
an isomorphism in cohomology for all the complexes ((F;C/Fi;1C)*,dy),
1 # n — 1,n, that is the map

is an isomorphism for such i.

The filtration F' on C* induces filtrations on C}; and C’} in the following
way: F,Cy = F,C ®r M, FZC; = F,C ®r Mjr We have the following
natural isomorphisms:

(FiC/Fi41C)* @r M ~ (FiCpn/Fi1Cu)*

Through these isomorphisms the maps
(F:Cym/Fi1Cyn)* — (FCY JFia O

induced by 74 correspond to m;, and hence induce an isomorphism in coho-
mology for i #n — 1,n. N

Let us consider the spectral sequences EY and Elr’j associated to the
complexes Cy; and C’ i with the respective filtrations. We write 77 also for
the spectral sequences homomorphism induced by 7. By the definition of
the filtration F we have that B/ = EY =0ifi >norifi=n,n—1 and
j # 0. It is also clear that B} """ ~ E™" = M and F? ~E|" b = M.
For 0 < i < n—1 we get that B}/ ~ H*I(FC%,/Fiy1Cyy) and By ~
Hffj(FiC’i/Fi+1C’*+) therefore the inductive hypothesis gives that El7 ~
EZI’J and the isomorphism between the terms of the spectral sequences is given
by m%. Now consider the maps d~ WO M — M and d)” o : M — M.
By condition (c¢) we have that these maps correspond to the multiplication
by a non-zero polynomial p = E b;q" with bg, by invertible elements of the
ring A. We can rewrite p as follows

p=q°bs(1+qp) = q'by(1+q 'p")

with p’ € A[q], p” € Alg~']. Now we can look at these elements in M:

_T_l—qsb 12 qp
- _q—tb IZ —1 //
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Let m € M, m = ) ., a;q', we can write m = mq + m_, with my, =
Yoo a;q' and m_ = m —m,. Notice that the products p;1m+ and p~tm_
are well defined and the following equality holds:

m = p(p;lm_;'_ —i—p:lm_)

It turns out that the map d?_l’o : M — M is surjective and the same holds,
when passing to the quotient, for the map 3?71’0 My — M.

Let us suppose that an element m =3, _, a;q" is in the kernel of d
This means that pm = 0, that is for all integers k we have:

t
Z biak,i =0
i=s

n—1,0
1 .

and so we obtain:

t—s

ajp = —bs_l Z bs+iak_i (3.5.2)
i=1
t—s

ar = —b; "> biiapi. (3.5.3)
i=1

Therefore if we know a sequence of t— s consecutive coefficients of an element
m sent to zero by the multiplication by p we can use and to
calculate recursively all the other coeflicients, determining m completely. So
we find a bijection between ker d?_l’o and kerg?fl’o. In fact, if m € M
is such that pm = 0, then trivially also p[m]4+ = 0 (we write [m]4 for the
equivalence class of m in M’ ). Conversely if p[m] = 0 then we have pm = z,
with z € A[g][[¢7!]], that is z = Y, , vig" with v; € A and there exists an
integer [ such that v; = 0 for all ¢ > [. We can define recursively, for j > 0,
the following elements:

al-1]; = a;
aljl, = alj —1J; if i#£l—-t—7j
T _bt_l 22;81 b—ralj — 114 if i=l-t—j
and
~ a; if i>10—t
“E Al -t -1, it i<i—t

Notice that the coefficients v; for ¢ > h depend only on the coefficients a;
for i > h —t, so if we write m = ) .., a;q" we have that pm = 0 and

[m]4 = [m]4.
To sum up we have that the map 7% gives an isomorphism between the
i 3 i, . - —n—1
terms EY and B}’ for i < n — 1 and between kerd] "? and kerd; 0,
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Moreover E;j =FEy =0fori=mn—1and j # 0 and for i > n — 1; T
commutes with the differentials in the spectral sequences (i. e. 73 d; = d;n% ).
We remark that im d}~*° C kerd} ™ "? and im 371%2’0 C kerﬁ?fl’o and so 77}
induces an isomorphism between im d?_Q’O and im 871172’0. This implies that
7 gives the isomorphisms Ej > ~ E5 7 and Ey 0~ E; . Then we
have a complete isomorphism between Es and Eo and so between F,, and
FE. It follows that 7% induces an isomorphism in cohomology.

It is clear that the same fact holds for the map m_ : C5; — C”* and so
the Lemma is proved. |

We write ® for the isomorphism built in the proof of the previous Lemma.

Lemma 3.5.4. In the ezact sequence the map 7 composed with the
isomorphism ® corresponds to the diagonal map 3.

7 * X 1 * 7 *
H'(Cyy) — H'(Cy) © H'(Cyy)-

Proof. Tt is enough to notice that, making the identification H*(C'") =
H*(C") ® H*(C'"), we have that 7* = (7% ,7*) and so the statement
follows immediately. O

Proof. [Proof (of Theorem [3.5.2).] First of all we notice that, being 7*
injective, ¢* turns out to be the null map and §* is surjective. We call p; :
HY(C3)® HY(C%;) — H'(C},) the projection on the first component, ps the
projection on the second component and iy : H(C},) — H'(C%,) @ H(C},)
the inclusion defined by i1 : b+ (b,0). Finally we define a = §* o &1 0 4y.
We have the following diagram:

) * b3 1 * 7 * 4)})1 L 7 *
00— H'(Cy))—— H'(C},) © H'(Cyy) ——= H'(Cy;) —0

e
00— H'(Cy)) — H(C"y) H*H(CY) —=0

Clearly both the lines are exact. We want to show that the diagram com-
mutes. The commutativity for the first square follows by Lemma [3.5.4]
so it remains to prove that the second square commutes. A pair (a,b) €
HY(C3,)® H'(C3%/) is sent, by the multiplication by p; — pa, into the element
a—b € HY(C};). Then we have ij(a —b) = (a — b,0) and the difference
(a,b) — (a —b,0) = (b,b) is in the image of the map ¥. Therefore, because
of the commutativity of the first square, the images of the pairs (a,b) and of
(a—b,0) in H(C"},) are taken into the same element by the map J*. So we
get the commutativity of the diagram. The Theorem follows from the five
lemma. O
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3.5.2 Applications

Let us consider a finite set I" endowed with a fixed total ordering. We will
indicate by A a generic subset of I'. We also set again R = Alg, ¢~!], with
A a commutative unitary ring. For every pair (A,w) with A C T, w e T'\ A
we associate a polynomial pa ,(q,¢™ ') € R\ {0} such that the first and the
last non-zero coeflicients are invertible in A. Let also suppose that for every
pair (w,w") with w # v’ and w,w’ € I'\ A the following equation holds:

Paw(@a DPavtyw (€0 + Paw (@4 Dpavwyw(@a ) =0 (3.5.4)

Then we can consider the complex (C}:, d*) defined as follows:

Ct = EB R.ea

ACT

dea= Y pawltq eavfu)-
wel'\A
We remark that the relation gives d*? = 0. We can also give a natural
graduation to C} by defining the degree of an element e as the cardinality
of A, so we get a cochain complex.

Without loss of generality we can think I' = {1,...,n}. We introduce the
following notation: indicate by I'; and A, respectively the subsets {1,...,n—
i—1} and {n—i+1,...,n}. We can filter the complex C}. in the following way
(see also [DCPSO01]): let F;Cr be the subcomplex generated by the elements
ea, with A; C A.

We have the following result:

Theorem 3.5.5. With the filtration defined above the complex (C},d*) is
well filtered.

Proof. We can prove this by induction on the cardinality of I". If I" is empty
the Theorem is obvious. Therefore let us suppose that the Theorem holds
for all the complexes made up from a set with less than n elements and we
prove it for a complex Cf,, with I' = {1,...,n}.

It is straightforward to see that FoCr = C} and F,+1Cr = {0}. Moreover
F,Cr and F,_1Cr/F,Cr are generated respectively by the elements ep and
ea, _, and they are both isomorphic to R. The induced differential

d: anlcF/FnCF - FnCF/FnJrlCF

corresponds to the multiplication by the polynomial pa, , 1(q, q ).
Finally the complex ((F;Cr/F;+1Cr)*,d}) is isomorphic to the complex

)

Ct.,, where the coboundary is defined by the polynomials

pA,j(Qaq_l) = pAUAi,j(qv q_l) for A C ij € F’L \ A

and so it is well filtered by induction. O
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Now we apply last result and Theorem to the cohomology with
local coefficients of Artin groups. Consider the Salvetti complex C* defined
in Theorem for the local system L, = Ly(Xy; M).

Proposition 3.5.6. Let R = A[q,q" '] and M = R and let W be a finite
Cozeter group. Then the complex C* in Theorem [3.1.9 is well filtered.

Proof. In fact the polynomial Wr(q) divides Wrv(q) when I' C T”. Moreover
the polynomials Wr(q) are products of cyclotomic polynomials (see [Bou6§]),
so they have first and last non-zero coefficients equal to 1. By using Theorem
we can easily see that C* is well filtered. ]

Hence we find another proof of Theorem [2.7.2] announced in Section
Corollary 3.5.7. Let W be a finite irreducible Cozeter group and let

be the fibration defined in Section . Let R = Alq,q" '] be considered as a
Gw-module with the action defined before. Then the following equality holds:

H*(Fw; A) = H*"(Xw; R)
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Chapter 4

The integral homology of the
Milnor fiber for Artin groups of
type Ap

4.1 Notations and definitions

In [Mar96] Markaryan used the isomorphism between the standard resolution
of a certain algebra and the algebraic complex associated to the classifying
spaces for braid groups to compute the homology of braid groups with coef-
ficients in the local system Q[g™!]. In this Chapter we extend the use of this
resolution in order to compute the homology of braid groups with coefficients
in the local system K[g*!] for a generic field K.

Let R be a ring with identity and let ¢ be an element of R. Following
[Mar96] we define the algebra of ¢-divided polynomials T'r(t, q) as the graded
algebra over R with generators ¢; (i € N, degt; = i) and relations

Iy
tit; = { Z,J ]tiﬂ.

We recall that if ¢ commutes with a and b and ba = gab, then

n

(a+b)"=>" [ :L ] a'b" .

=0

Now we want to study the homology and cohomology (as defined in [CE56])
of the algebra I'r(t,q). We can consider the normalized standard complex
(see [CES6] for a general definition) that calculates the homology of the
algebra T'r(¢,q). The complex is given as follows:

0—R=C L&l
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where the R-module C), is freely generated by all the monomials of the form
a®t, ®---®t;,, with a € R and the boundary formula is:

8(a®ti1®~--®tin):

n—1
= Z(—l)]ﬂa Rty @ Dty @ Dy, =
j=1
- i+
— Z(_l)ﬂ-l [ J Z_jJJrl ] a@ty @ Qti iy, @Ry,
j=1

By means of the grading of the algebra I'g(t, q), the module C is decom-
posed into the direct sum of complexes of different degrees,

C = é C'(i)7
i=0

where deg(a®t;, ®---®t;,) = i1+ -+, and for c € C’,in) we set degc =n
and dimc = k.

The dual complex C*, given by the modules C" = Hom(C,, R) and
with coboundary map the transposed map of 0, computes the cohomology
ring of the algebra I'g(t, ¢). The multiplication is defined on representatives
as follows: if m] and m3 are the dual classes of the monomials m; and
ma, respectively, then the product mims3 is the dual class of the monomial
mi1 & mo.

Given a space X such that m1(X) = Br(n), we can define a local system
R on X. Over a point x € X we have the ring R; the system of coefficients
is twisted and the action is given by sending each standard generator of
the group Br(n) to multiplication by —¢. This action corresponds to the
determinant of the Burau representation for the braid group Br(n) (see, for
example, [CP07]). We remark that although the choice of the multiplication
by g would be equivalent, we use —¢, which seems more natural to us, and
also for coherence with [CP07|, [DCPS01], [DCPSS99].

The complex C,(ﬁ)* coincides with the complex (defined in [Sal94]) that
computes the cohomology of the group Br(n) with local coefficients R.

By the module H,(Br(x), R) we mean the bigraded module (the gradings
are the degree deg and the dimension dim) whose component of degree n
and dimension [ is H;(Br(n), R). We can think of H,(Br(x),R) as a ring
using the multiplication induced by the standard homomorphism (obtained
by juxtaposing braids)

fij « Br(i) x Br(j) — Br(i + j).

We have:
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Theorem 4.1.1. (|[Mar96|) The ring H,(Br(x), R) coincides, modulo a chan-
ge of indexes, with the cohomology ring of the algebra T'r(t, q):

Hl(BI'(n)7 R) = Hnil(FR(u q))(deg:n)

and the product structure in H,(Br(x), R) coincides with the cohomological
multiplication of the ring H*(Cr(t,q)). |

4.2 The Milnor fiber and some lemmas

We recall a construction from the previous chapters. Let V = C™ be a finite-
dimensional complex vector space. The symmetric group on n elements
S, acts on this space by permuting the coordinates. Let [;; be the linear
functional z; — z; and let H;; be the hyperplane {l;; = 0}. The complement
of the union of the hyperplanes

Y, =V\[JHy

1<j

is a classifying space for the pure braid group on n strands. If we consider
the quotient of Y,, with respect to the action of G,

we get a classifying space for the braid group Br(n). Consider the product
6= Hi<j l?j. The polynomial § is invariant with respect to the action of G,
and so it induces a map

6 X, — C*~.

The fiber Fy(n) = & '(1) is the Milnor fiber of the discriminant singularity
Fo(n) = UHi;/6, in the affine variety V/&,, (which is isomorphic to the
complex space C"). The complement of Fy(n) in V/&,, can also be regarded
as the set of polynomials with distinct roots in the space of all monic poly-
nomials of degree n with complex coefficients. Moreover, the fiber Fi(n) is
a classifying space for the commutator subgroup Br(n)" of the braid group
Br(n) and, as we have seen before, we have:

H,(Br(n),Z) ~ H,(F(n),Z) ~ H,(Br(n), Z[¢'])

and
H*(Br(n)',Z) ~ H*(F1(n),Z) ~ H**1(Br(n), Z[¢*1]),

with the usual g-action.

In what follows K is a field and p always refers to the characteristic
of the field K (p = 0 or p a prime). Cyclotomic polynomials are usually
defined over a field of characteristic 0, by saying that the m-th cyclotomic
polynomial is the monic polynomial whose roots are all simple roots and are
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all the m-th primitive roots of unity. Over a generic field K we can define
by induction the m-th cyclotomic polynomial ¢,,, by saying that o3 =¢—1
and ¢ — 1 = Hi‘m ;. For each positive integer m we define the ring
K(m) = Klq]/pm.

We have the following technical lemmas:

Lemma 4.2.1. ([Cal03]) Let m < n be two positive integers. In the ring
Z[q%1] we have:

( ) = (Om,p) if n=mp',i > 1, for a prime p
Prmi Pn (1) otherwise.

Proof. First of all, notice that the polynomials ¢,, are irreducible for all
m € N; hence, the quotient rings Z[q|/(¢m) are integral domains.
(i) First suppose that m { n and let [ = lem(m,n). Moreover we set
! l 0

m = - n' = % We have that ¢, | % and @, | % Furthermore ] = m’
[

(mod ¢,,) and % = n' (mod ¢,). Since we have (m/,n') = (1) it follows
that (¢m,n) = (1). Hence the polynomial ¢, is invertible in Z[g]/(¥m)
(and ¢y, is invertible in Z[q]/(¢n))-

(ii) Now we suppose that m | n. For a fixed m we want to prove by
induction on n that, modulo the multiplication by an invertible element in
Z[q]/(¢m), the following holds:

op=p ifn=mpi>1

on =1 otherwise.

If n = mp we have that

]

ﬁ =p (mod pn)

and so we can write

[[n]] = ¥n H Ppm/

m' | m,m’ <m
ptm/m’

Since all the factors in the product are invertible, it follows that, modulo
multiplication by invertible elements in Z[q]/(¢m), we get @, = p.
If n = mp’, in a similar way the next equality holds:

[[n”j] =, H Pripi = P’ (mod ¢,)
1<j<i
m' | m,m'p’ #n

ptm/m
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In the product there are exactly ¢ — 1 factors congruent to p and all the
others are invertible, so modulo invertible elements we have that ¢, = p.
Finally we consider the case n = mp]' ---p;*. Let us define the set

m’ | m,
0 < js < igVs,
T=S (m' j1,....50) e N (GGy, o gk) #(0,...,0),
m' # m if js = i4Vs,
pst(m/m') Vss.t. js #0

We have that:

m = A ew=

n'|n,n/tm

= H @m/ley,.pik =
I1eT

= pit---plt (mod p)

and, by the inductive hypothesis, in the product, for all s there are exactly
is factors congruent to pg; hence all the other factors are invertible and ¢,
must be invertible, too. So the Lemma is proved. a

As an easy consequence of this Lemma we obtain the following Corollary,
whose proof is left to the reader:

Corollary 4.2.2. Let i < j be two positive integers. Then we can write
Opi = Ppiw + pY (4.2.1)
where w,v € Zlg*'] and ¢ is invertible mod(ep:);
Pmpi = Pmpiw +PY (4.2.2)
where w, 1 € Zlg™Y] and 9 is invertible mod ;i )- O

We can fix once and for all polynomials wy,; i, Wypi mpis Cpi pis Ymps mpi
satisfying the equations (4.2.1]) and (4.2.2).

Lemma 4.2.3. ([Gue68]) Let m be an integer and p a prime. We have:

i—1
Ppi = b mod(p); (4.2.3)

if we suppose that p t m, then:

Cmpt = 207 mod(p) (4.2.4)

where ¢ denotes the Fuler ¢-function. O
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Now we consider again the algebra of ¢-divided polynomials T'r(¢,q) in
the case R = K(m).

Lemma 4.2.4. The following decompositions hold:
(a) if p=0 (see also [Mar96]):

Lk (my(t, @) = K(m)[up] @ K(m)u]/(ui); (4.2.5)

(b) if p #0: N
) (t0) = Q) K (p)[uyi] /(ul); (4.2.6)

=0

(c) ifp#0 and ptm:
Ly (t9) = K (m)[wn]/ (uf") @ Q) K (m)[uyiys]/(uy, ) (4.2.7)
=0

with degu; = j.

Proof. The proof of a) is given in [Mar96].

For b) let [i]ly, be the exponent of the biggest power of ¢, that divides
[i]!. The isomorphism is given as follows:
u’f“ullﬁl s

il 4 (4.2.8)
[i]'/op **

where k, - - - kg is the expression of ¢ in base p.
For ¢) we have the isomorphism given by

ti —

k, ko, k1 kr
UTUyy U st WUy 0yr
ty s I (4.2.9)
[Z]|/<Pm Pm

where k is the remainder of the division of ¢ by m and k, - - - kg is the expres-
sion of (i — k)/m in base p.

The Lemma follows from the next key observation: if k,.---kg is the
expression of i in the base p and k.. ---k{ is the expression for j (resp. k,
ky---koand k', k. - - - k{ are the numbers associated to 7 and j as in (4.2.9))),

then the polynomial ¢, (resp. ¢p,) does not divide { th ] if and only

if the expression for ¢ + j in base p is given by h,.---ho, with hy = k; + k;
for [ =0,...,r (resp. the numbers associated to i + j are h, h, - - - hg, with
h=k+Fk, h=k+kforl=0,...,7). O

The cohomology rings of R[u] and R[u]/(u) are already known. In fact
we have:
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Lemma 4.2.5. ([Mar96])
H*(R[u]) ~ Alz], deg(z) = deg(u),dim(z) =1,
Rix] forn =2

where deg(z) = deg(u), deg(y) = ndeg(u), dim(z) = 1, dim(y) = 2 and
A[z] is the exterior algebra over the ring R in the variable x. O

We remark that generators of the rings in the Lemma can be given as
follows: a representative x is given by the dual class of u. Moreover in
characteristic p = 0, a representative of y is given by

n—1 o
;( . >(uz®u )

and with p # 0, if n is a power of p, we can choose as a representative

1 n—1 n
) n—1i\*
p L) wrewy
1=1
where the notation (u’ ® u"~%)* means the dual class of (u’ ® u"~%).

4.3 Computations and results

Now we can calculate the cohomology of I'k,(t,q) (and so the homology
of Br(x) with coefficients in the local system K(m)) applying the fact that
the cohomology of a tensor product of algebras is the tensor product of the
cohomology of the factors.

Applying Lemma we have the following straightforward results:

Theorem 4.3.1. ([Mar96]) If p =0 and m = 2 then
H,(Br(x); K(2)) = Afs] © K (2)[a1];
form > 2:
H.(Br(x); K(m)) =~ Mapm] @ K (m)[ym] © Aai];
with degx; = ¢, dimx; =1 — 1, degy,, = m, dimy,, = m — 2. O

Theorem 4.3.2. Let p be a prime and m be a positive integer, such that
p{1m. We have the following cases:
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(a) if p=2:

H,(Br ®K NERIE

H.(Br(x); K(m)) = K(m)[yn] © Alz1] @ @) K (m)[zma];

=0
(b) if p>2 and m = 2:
H,(Br(x); K(p)) ~ é(K(p) [Ypi+1] ® Alzyi]);
1=0
H,(Br(x); K(2)) ~ K(2)[z1] ® ® 2)[yapi+1] @ Alop]);

(c) ifp>2and m > 2:

HL (B (o) K (m) = K (m) ] @ Ala] QK ()] © Al

=0
where degx; = degy; =i, dimxz; =i — 1, dimy; =i — 2. O

We want to use these results to compute the homology of Br(x) with
coefficients in the local system A over the ring A = K[g™!] with the same
twisting defined as in Section [4.1]

The exact sequence

1 — Br(n) < Br(n) - Z — 1,

tells us that the homology H.(Br(n); A) is H.(Br(n)'; K) as an A-module
(see for example [Mar96], [CS98| or [Cal0j]); since for n # 3,4, Br(n)” =
Br(n)' (see [GL69] for a proof of this), we have that Ho(Br(n); K) = K,
H;(Br(n)’; K) = 0. Moreover the A-action on Hy is trivial and so

Ho(Br(n); A) = A/(q+1)
as an A-module. Moreover we have:

Lemma 4.3.3. (|[Mar96]) The R-modules H;(Br(n), A)(n > 1,1 > 0) are
annihilated by multiplication by [n]!. ]

Let us consider a polynomial a € A. We can consider the set S, of all
elements b € A that are prime with a. It is clear that S, is a multiplicatively
closed set. We write A, for the localization Ag, of the ring A respect to
the set S,.
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It follows from Lemma that for p = 0, ¢p, is invertible in A, ) if
and only if m # n; for p # 0, ¢y, is invertible in A,y if and only if n # mp’
and m # np', Vi > 1.

The following decompositions hold for the homology of Br(n) with coef-
ficients in the local system A:

Lemma 4.3.4. Letn > 1. For p =0 we have:

H,(Br(n); A) ~ EB H.(Br(n); A,.));
m=2
forp#0:
H,(Br(n); A) ~ @ H.(Br(n); A,.))-

ptm or m=p

Proof. Consider the homomorphism

ims * Hu(Br(n); A) — H.(Br(n); A(,,.))

induced by the injection i, : A — A, ). We extend in a natural way the
map i, through the tensor product with A, ) and we get the new map

im + Ho(Br(n); A) ®4 A(p,) — Heo(Br(n); Ag,,.)- (4.3.1)

@m)

Using Lemmas [4.2.1} 4.2.3| and 4.3.3] it is easy to see that in order to prove

Lemma [4.3.4] it is enough to show that the map im 1S an isomorphism.
First we prove the injectivity of Z/; Let o be a representative of an

element v in Hx(Br(n); A)®aA(,,,). If the corresponding class of imU is zero,

and s0 i is a boundary, then there exists an element 3 such that dg = ima.
Multiplying 6 by an appropriate polynomial ¢ prime with ¢,,, we get an
element 3 = 9 that belongs to the resolution of Br(n) over A, so df’ = ya.
This means that o belongs to the zero class in H,(Br(n); A) and, since

is invertible in A, , @ belongs to the zero class in H.(Br(n); A) ®4 A(y,,)-

This proves the injectivity of .

To prove the surjectivity of i, we consider a class w in H,(Br(n); Aom))
and we choose a representative § for w. Multiplying 6 by an appropriate
polynomial 6 prime with ¢,, we get an element 3’ = 6 in the resolution for
H,(Br(n); A) and we have that

(B ®07") = 8.
This completes the proof. O

The next step is to compute H.(Br(n); A(,,,)). To do this, consider the
following short exact sequence:

0= Afg,) & At ™ K(m) =0
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where the first map is multiplication by ¢,,. We want to study the corre-
sponding homology long exact sequence:

5 Hyp (Br(x); K (m)) 2

( m)* T
ﬂHl(Br(*);A(W) ) Hy(Br(x); Ap,) ™ Hy(Br(+); K (m)) 2

ﬂ Hl_l(BI‘(*); A(cpm)) (wﬂ))*

We can decompose H;(Br(x); A(,,.)) as a direct sum of terms A/(¢"), where
¥ is a prime factor of ¢m. So, if Hj(Br(*); A(,,,)) has a direct summand
A/(Y"), generated by an element v, it follows that Hj1(Br(x); K(m)) and
H;(Br(x); K(m)) have as direct summand a copy of A/(1)) generate respec-
tively by w and w’ and we have that

B =it

and
!
T = W',

In Theorem [£.3.1] (case p = 0) we have these maps (see also [Mar96]):
Brm = Ym, TYm = Ym, fr1 = 0.
while in Theorem [4.3.2] (case p # 0), the homomorphisms act as follows:
5.% =0, ﬁxl =0,
27L71_1 —2 ’i—lfl/\«
Brgi = ¢, Toi-1; By = Yy for p>2;

BT i = cp(i’(pi)*lyfn;;i for i >0 or m > 2;

m

where z; and y; are defined such that:
TeXi = Ti; TxYs = Yi-
We can now state the following result:

Proposition 4.3.5. For p =0 we have, for m = 2:

Ho(Br(x); A(py)) = Ay 1]/ (9227);

and for m > 2:

Ho(Br(+); Ay,)) = Ao [0, yml / (27, mym);

if p# 0 and p t m we have the following cases:
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2
_ 9. ) ~ T1s Lo, 202
(@) Jor p = 2 B0 ) = Ay | o 2020 | /(o)

with 0 <4, i +1<ip < <ip, 0<7;

x17yTI’L7$m2i7 1’2
1> PmYm
H, (Br(x); Ag,.) = A, Tz Tyngin /< 9072i$2 ; | )
ymxmzh v mejh m<m2t
with 0 <4, i+1<ip <---<ip, 0< 51 <+ < Jn;

(b) forp>2 and m = 2:

2
T1, Ypis Tis
Ho(Br(x); A(g,)) = Agg,) [ Ypi i . in ] /( (ppi‘ply . )
p Pt

with 0 <1 < iy < -+ <ip;

xl)yQpiv 2 2
©2X71, T, 5
2 2
H*(Br(*), A(@2)) ~ A(L,DQ) xlepjl tet x2pjh /< ¢(pz) p. )
Yopilopin « " Lopin P2 Yo

with 0 < i <ip <--- <ip, 0< g1 < -+ < Jpy
(c) for p>2 and m > 2:
2 .2
L1 Ympt s T L
H,.(Br(*); A ~ A p ] N
(Brei Agn) = Ay | / ( Sy
with 0 <4 < i) < -+ <ip;
in all cases degx; = degy; = i,dimz; =¢— 1, dimy; =i — 2. O

In order to get H.,(Br(n);Z[g™!]) we still have to compute the Bockstein
homomorphism 3, associated to the short exact sequence

O—>Zp;>Zp2 — L — 0.

We'll see that, as in the case of trivial coefficients (see [Coh76| or [Vairg]),
there is no p?-torsion in the homology of braid groups.

In case a) of Proposition the Bockstein acts as follows (the coeffi-
cients v; ; are those defined in Corollary :

52‘%‘1 = 07 621‘%1 = 07

h

2 E 2 .2 .
,323327;$2i1 e $2ih = ’l]Z)QiS ’22‘132,‘5621‘571 H.Izit ;

s=1 t#s

Baym = 0, Bo}50 = 0,
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h
2 2 2
/BmeQimeil C o Loin = Z T/}ins—l’inmeixmzisfl H T 2it ,
s=1 t#s
h
) N ) 2 ) .
BoYmTypain = - Tppoin, = Ym2is—1 mYmTy9is—1 Tpoie |
s=1 s#t

in case b) we have:
ﬁpxl = Oa ﬁpypi = 07

h
Bplpi Tpin * Ty, = — E Ypis i Ypi Ypis—1 prit ;
s=1 s#L
h
2 ) P ) 2 ) ) .
ﬂprlep” ce ‘T2p1h = — ¢2pzs72pley2pzs—l xzplt ;
s=1 s#£t
5py2pi =0,

h
5py2pim2pil ce 1’2quh = — E ¢2pis72piy2piy2pi3_1 H x2pit ,
s=1

= s#t
finally in case ¢) the map is:
6px1 =0, /prmpi =0,
h
BpYmpi Tonpin * - Tpppin = Z Umpis mpi Ympt Ympis —1 H -
s=1 s#t

Lemma 4.3.6. The homology groups H,(Br(x); Z[¢*']) have no p*-torsion.
Proof. Notice that the monomials 1,z generate the groups
Ho(BI"(O), Z[qil])a HO(Br(l)a Z[qil])

and that both these modules are equal to Z[g™']. For i > 2 the groups

Ho(Br(i), Z[qT!]) = Z are generated by the monomials z{. Now consider the
following monomials:

Yhs Y1 (case p=0) (4.3.2)
2 2
x2j; ij:le? -9 4
xi.i?j? 1'377;2j1'1 } (Case p ) ( 33)

% %
Y i» ypg:xla

yépj, .y;p]-:xl, (case p > 2) (4.3.4)
y;npjdy:npjxl



4.4 Main Result 67

Because of the computations over Q[¢T!] ([DCPS01], [Mar96]), their lifting
generate a free Z-module of type Z[g!]/() in dimension d in the homology
of Br(n) whenever n = kh or n = kh+1 and d = k(h —2) and the Bockstein
is zero for all these monomials.

All the other monomials lift to torsion classes and all these classes don’t
have p?-torsion for any prime p. To prove this it is enough to show that
in the submodule M, C H.(Br(x),Z,[¢*!]) generated by all the monomials
different from the ones in (4.3.3) or (4.3.4), we have that

ker 3, = im f3,.

Let us consider the set S of the monomials that appear in the polynomial
rings of part a), b) and ¢) of Proposition and different from these in
and (139)

Let us say that a monomial w rises up to a monomial w’ is w appears
as a summand in Syw’. We call w a basic monomial if it doesn’t appear as
a summand in S,w’ for any monomial w’. We also say that a monomial w
is a child of w' if w’ is basic and we can rise up from w to w’ in a finite
number of steps. We notice that in general a basic polynomial can be of the
following form:

w = xi‘“ fv?,f’“yﬁ’i "'?J?fiﬂll ey

Let A, be the set of all monomials that are children of w (including w
itself). It is easy to see that A,, is in bijection with the set of the parts of
{1,...,s} (with s > 1) if [1,...,l5 are all different from 1, or with the set of
the parts of {1,...,s — 1} (with s > 2) if one of l1,...,ls is 1.

Let us say that a monomial w has ¢-torsion (over the ring Z,[g*!]) if
it generates a module isomorphic to Z,[g*!]/(). If a monomial w has -
torsion over Z,[g™!] then all the other monomials children of w have the
same torsion. Moreover consider the algebraic complex (M., 3,) given by
the module M,, generated (over Z,[g*!]) by all the monomials in A,, and
with the restriction of 8, to M,, as a boundary map: we have that (M., 3,)
is isomorphic to the algebraic complex that computes the reduced homology
of the (s — 1)-dimensional simplex with constant coefficients, over the ring
Zplg™'] /() and so ker B, = im 3, on M,,.

One can check that for every monomial w in S there exists one and only
one basic monomial w’ such that w is a child of w’. This implies that the
family of all different sets A,, gives a partition of S and so ker 3, = im (3,
on all the module M. The Lemma follows. |

4.4 Main Result

As a consequence of the last Lemma and of the previous computations, we
can now state our main Theorem. Recall that the ring H,(Br(x); R[g*']) is
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the bigraded direct sum of the modules H;(Br(n); R[¢*!]) = H;(F1(n), R),
where F1(n) is the Milnor fiber of the discriminant singularity for Br(n).

Theorem 4.4.1. Set degx; = degy; = ¢,dimz; = 0,dimz; = ¢ — 1,
dimy; =i — 2. Then:
SO AELT o +1 2 .
H,(Br(x); Q[¢™']) ~ Qlg™] [ T1, Ym, M > 2 ]/( L2271, PmYm ) ;

2 2
Z1,Ym, x2i+1yxm2i7

) 4 ininl T inha @%lxgiv
H, (Br(x); ZZ[Q ]) ~ 7o [q ] $72712i513m2i1 o Tn9in PmYm,
20,2

YmTppoi1 L pyoin PmLop9i
m>22fm
with 0 <7, i+1<i; <---<ip, 0< g1 < < Jn;
forp>2:
[ 2 ) ) T 2 92
1 Ypis Ympi s Y2pi ©27, pri’
ypi.’L'pil "'.’Bpih, .732 x2

4 4 x%xQ i Ty gy pi;_lmpj)
Ho(Br(x); Zplg™"]) = Zp[q™] e Yb  Ypis
y2p7’x2p’1 x2p1h 9 #(p%)

Ympi Tmpjr =" Lipin (pi(pj)y%i’
m>2,p{m Pm "Ympi

with 0 <1 <11 < -+ <ip, 0< 57 < g1 < -+ < Jn Finally, using the
notation of the proof of Lemma we have:

H, (Br(x); Z[g™")) ~

~ Zg) [ @1, ymom > 2] (022}, omim ) © @D BpM,.
p>2

a

In tables [4.2] [£.3 and [4.4] we give the explicit computations for some
cases. The results in Table correspond to those in [DCPS01] for coho-

mology. We use the notation ¢} for the module Z,[q]/(¢}) or Q[q]/(#})
(note that R[g*']/(¢%) = R[q]/(#%)). In Table we describe the additive
structure of the integral homology of the fiber F1(n).

Now consider the natural embeddings j, : Br(n) — Br(n+1). By defini-
tion the direct limit li_r)nnBr(n) is the braid group on infinitely many strands

Br(oco). Notice that the first p-torsion class in the groups H,(Br(n); Z[¢T'])
appears for n = 2p + 2 in dimension 2p — 2 and is stable; the corresponding
generator is z3x3 for p = 2 or z3ys, for p > 2. An equivalent result for the
cohomology was proved in [Cal03].

In [CP0O7] Cohen and Pakianathan compute the homology of the braid
group on infinitely many strands Br(oco) with coefficients in the local system
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nl] 2131475 6 7 8 9 10
Hy | w2 | @2 | o2 | ¢2 ©2 ©2 P2 ) )
Hy w3 | p3
Hy 03 | 03 | p2003 | p2D3 | 2 Y2 v
Hj 5 | P25 ©2 Y2 | P23 P2D¥3
Hy ©3 3 ©3 ©3 ©2
Hs 7 7 ©3 P2DP3
Hg 03 | P3DP3 | P2DP3Ds
Hy ©9 2By
Hg ©5
Table 4.1: H,(Br(n); Zs[qT])

n]213]4]5]6]T7 8 9 10

Ho | @2 | w2 | 2 | p2 | 2| @2 ©2 ©2 ©2

Hy w3 | ©3

Hy Y4 | pa | P3| P3

Hs ©5 | ¥s5 3 ©3

H, IR

Hs o7 | P2 D 7 2 2

Hg 3 8 ©5

H, 03 03

Hyg ©10

Table 4.2: H,(Br(n); Zs[gt!))

K[q™'] for any field K: this is the stable part of the homology of Br(n)
(with coefficients the same local system) with respect to the embeddings
We obtain the same result; moreover we are
able to compute the Bockstein operator, hence we give a presentation of the
homology of Br(co) with coefficients in the local system Z[¢T!].

Jn @ Br(n) — Br(n + 1).

Corollary 4.4.2. We have that

H,(Br(c0); Ql¢™")) = Q,

concentrated in dimension 0;

and for a prime p > 2

H.(Br(00); Zolg™")) = Zofa}, iy > 1]

H*(BI'(OO), Zp[qil]) = Zp[yQpia x2piai > O}/(xgpl

)
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n 2 3 4 5 6 7 8 9 10
Hy | o2 | w2 | w2 | w2 | w2 | w2 | w2 | w2 | ©2
Hy w3 | p3
Hy V4 | pa | P3| P3
Hj ©5 | ¥5 3 | 3
H, Y6 | Y6 | P4 | P4
Hs o7 | w7
Hg s | v8 | ¥5
Hy Y9 | o
Hyg 10

Table 4.3: H,(Br(n); Q[¢*!])

n|2]3]4]5 6 7 8 9 10
Hylzlzl|z|z Z Z Z Z Z
H, 72 | 7?2

H, 7% | 7?2 Zo ® 72 Zo @ZQ Zo Zo Zo
H; VA Z* 72 VR
Hy VA VR Zs®Z2 | 73DZ? | Zo®Zs
Hs Z5 Z5 73 2
Hg Z* 72 VALY A
H; VA 75
Hyg Z*

Table 4.4: H,(F1(n);Z)

with dimx; =i — 1, dimy; = ¢ — 2. The Bockstein operator acts as follows:
ﬁQin = -r%i—l;

Bpyi =05 Bpxi =y (for p > 2).

The homology H.,(Br(oo); Z[qT']) has no p*-torsion for any prime p. A pre-
sentation of H.(Br(oo); Z[g™]) is given by

2
Yopis Loj, )
2 . .
Z L5 Tgiy *+* Toi, /( 23:21,py2p,,:c2pj )
YopiLopi1 *** Lopin
with indexes running as follows: 0 < ii+1<ip < -+ <ip, 0<j <1 <

o+ < jp and p in the set of odd primes. The structure of Z[q']-module is
trivial and so the action of q corresponds to multiplication by —1. O



Chapter 5

The integral homology of the
Milnor fiber for Artin groups of
type Bp

5.1 The filtration and the homology spectral se-
quence for B,

In this Chapter we compute the homology of the Artin groups Gp, with
coefficients in the local system given by the ring R = Z[¢*!], where each
standard generator maps to (—¢)-multiplication. As we explained in Section
we use a filtration F' on the algebraic Salvetti complex C'(n) = Cy(By,),
induced by the order of the vertexes of the Coxeter graph of B, given in
Table 1.1} Hence the last vertex, connected with the special edge with label
4, is in position n.

Using the notation of Section we write the generator of the complex
as strings of 0’s and 1’s. We write 1(X) for the length of the string X and
degree deg(X) = | X| for the number of 1’s in the string X, that is equal to
the dimension of the corresponding cell. We define the subcomplex

F,C(n) = F,Cy(By)

to be the subcomplex generated by the strings of type XY, where 1(X) =
n—i—1,1(Y)=1i+1, degY <i. We have the inclusions

FoC(n) =< X0 >C F1C(n) C --- C F,41C(n) = C(n).
We note that we have the following isomorphism for the quotients:
FiC(n)/Fi-1C(n) ~ Ca,_;_,|i]

generated by the strings of the form X01° that corresponds to the string X
in the complex Cy, , ,[i] (recall that the index ¢ between square brackets
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means a graduation shifted by 7). In this isomorphism the boundary map of
0 of the complex Cy, , , corresponds to the map induced on the quotient
by the boundary of the complex C(n).

We can use the homology of C4;, computed in Chapter , in order to
describe the spectral sequence for C'(n). In fact we have:

Proposition 5.1.1. Given a ring R with a unit q, we can consider R as
a Gp, module mapping each standard generator to multiplication by (—q).
The filtration F on the complex C(n) induces a spectral sequence E* that
converges to H,(Gp,,, R). The first term or the spectral sequence is given by:

E;, = Hy(Br(t),R)

where the ring R is considered as a module over the group Br(n) with the
usual action, as in Chapter [}

As we did in Chapter [4] for the homology of braid groups, we start com-
puting the homology of Gp, with coefficient over the ring R = K(m) =
K[q]/(om) where K is a field of characteristic p (for simplicity we can fix
K=Qif p=0and K =T, for p # 0). In what follows p will always refer
to the characteristic of the field K. Moreover we denote by A[z] the exterior
algebra over the ring R in the variable z.

We recall some results for the homology of the braid groups, from Chapter
[l They are the starting point for the description of the spectral sequence
E*.

In case p =0, m > 2:

H.(Br(x), K(2)g) ~ A(2)[xa] © K(2)[z1]

Ho(Br(x), K(m)q) = A(m)[m] @ K(m)[ym] © A(m)[z1].
In case p =2, 2 m:

o

H.(Br(+), K(2)q) =~ X) K (2)[z21]

1=0

[e.9]

H.(Br(x), K (m)q) = Q) K (m)[2n21] ® K (m)[ym] ® A(m)[z1].
1=0

In case p > 2, pt m:

H.,(Br(x), K (p)q) ~ Q) (K (p) [ypir1] @ Ap)[z,])
=0
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H.(Br(x), K(2)q) = K(2)[z1] ® ® (K (2)[yapi+i] @ A(2)[gy])

~A(m)[21] @ K (m)[ym] © QQ) (K (1) [Ympi+1] @ A(m) )

%

I
o

We can give representatives for the z; and y; terms:

z; = 17710,
d(1m' 1)
Ypi = —————
" 1o

where a is the biggest power of ¢, that divides all the terms in d(1™""~10).
The dimension and degree of the generators are the following: degax; =
degy; =i, dimx; =i —1, dimy; = i — 2. Moreover, in the following sections
we introduce a generator z;, where we set deg z; = dim z; = ¢. The generator
z; in the homology of G, is represented by the string 1°~'T, where 1 is the
special vertex in the n-th position in the Coxeter graph of B,,.

5.2 Computations

In Chapter |4] we considered the sum
P H.(Br(n), R) = H.(Br(x), R)

as a ring with the product structure induced by the map Br(i) x Br(j) —
Br(i + j). Now it is useful to consider the sum

& H.(C(n), R) = H.(C(x), R)

where H,(C(%), R)deg=n = H«(C(n), R). It turns out that the description of
the complexes allow to define for the group H,(C(x), R) a structure of module
over the ring H,(Br(x), R). Hence in our description of the homology groups
H,.(C(n),R) we can simply give the set of generators of H.(C(x),R) as a
H,(Br(x), R)-module, with the nontrivial relations.

We omit the details of the study of the spectral sequences E* given in
the previous Section and we simply state the results. The computations are
straightforward, even if not completely trivial, and involve only standard
techniques.

We can resume the first step of the spectral sequence computations in
the next statement:
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Theorem 5.2.1. The homology groups of the complex C(n) with coefficients
over the ring K(m) are the following: Case p =0, m = 2:

H.(C(n), K(2)q) ~
~ (A(Q)[J:Q] ® K(2)[z1] ® K(2)[z1, ... ,zn]/(zf, Zizj))deg:n .

Casep=0, m>2,2{m:
H.(C(n),K(m)q) = 0.

Case p=0, m>2 2|m:

H,(C(n), K(m),) ~
<A(m) (2] @ K (m)[ym] @ K (m)[z124m 1, zm]/ (27, zizﬂ‘))deg:n '

~

Case p=2, m=2:
H.(C(n), K(2)q) ~ <<® K@)[S@]) ®K(2)[Z17"‘7zn]/(zi272izj)> :
1=0 deg=n

Casep=2,m>2 (2{m):

H,(C(n), K(m),) ~
~ ((@ K(m)[$m21]> @ K(m)[2m, 22m, - - -] / (22, zizj)> .
i=0 deg=n

Case p > 2, m=p:
HL(C(n), K (p)g) ~ 0.

Case p>2, m=2:
H(C(n), K(2)q) ~
(K(2)[w1] ® ® (K(2)[y2pi+1] ® A[ZL‘Qpi]) ® K(2)[z1,..., zn]> .
deg=n

~

=0

Casep>2,m>2 ptm,2¢{m:
H.(C(n), K(m)q) = 0.

Casep>2,m>2 pfm,2|m:
H.(C(n), K(m)q) ~

~ <® (B (70) [y ] @ A () [ ] ) @ K ()
i=0

$1zkg_1,zkrg]/(zl-2,zizj)> .
deg=n
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Let A = K[g%!]. The next step is the computation of the homology of
C(n) with coefficients in the ring A. We define the localization A, as in
Section The analogous of Lemma [£.3.3] and Lemma holds for the
homology of G, :

Lemma 5.2.2. ([Mar96]) The R-modules H(C(n),A)(n > 0,1 > 0) are
annihilated by multiplication by [2n]!!. O

Lemma 5.2.3. Letn > 1. For p =0 we have:

H.(C(n),A) ~ @ H,.(C(n), A(@m));

m=2

H,(C(n); A) ~ Q} H,(C(n), Aip,))-

ptm or m=p
|

The proofs are straightforward generalizations of the proofs of the corre-
sponding statements for the homology of Br(n) and we omit them.

By Lemmal5.2.3]in order to understand H.(C(n), A) we have to compute
the modules H.(C(n), A(,,,)) - To do this we can consider the following short
exact sequence:

0= A,y & At ™ K(m) =0

where the first map is multiplication by ¢,,. We want to study the corre-
sponding homology long exact sequence:

™ Hi(Cn), K (m)) 2

2 H(CO), Aey) 2 HI(C(), A,y) = HI(C(n), K (m)) 2

B (om).
— Hl_l(C(n), A(@m)) -

Once we compute the map 3, we can recover the description of the module
H.(C(n), A(y,,)) using the same argument of Section In the computa-
tion of the map § we can omit some terms that are not significant for the
computation of H.(C(n), A(,,,)): in general when we write

i)

fBa=¢' b wemean [Ba= ¢’ b+ (other terms multiplied by ¢

A case by case computation gives the following data. In the next propositions
we give the generators of the homology of the complex C'(x) as a module over
the corresponding homology ring of braid groups. The usual relations of the
homology ring of braids hold. We specify the other relations. In all cases we
set:

Talli = Yi> T Zi = Zi, TxTi = Tj.
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Case p=0,m=2
2
mPBr1 = 0, T fre = 27,
T32; = T12i—1 + T22i—2.

Proposition 5.2.4 (p = 0, m = 2). The module H.(C (%), A(,,)) over the
homology ring of braids is generated by

L,

T12i + Tazi—1

with pa-torsion.

Case p=0,m>2,2|m
Br1 =0, T fTm = Ym,
Bym =0,
frizpm 1 =0,
TefBzpm = T12pm 1.

Proposition 5.2.5 (p = 0, m > 2, 2 | m). The module H.(C(*),A,,.))
over the homology ring of braids is generated by

L,

L1222 —1

with @, -torsion,

YmZkm + T1Tm2pm 1

with Qm-torsion.

Case p=2, m=2

If 2¢a:
i—1_ 1.
Brgi = 80% lzv%i—l,

. 2i+1_2 ~ o~
ﬁZQia = ¥y (leQia—l + x222ia—2)7

Brap+1 = T122-
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Proposition 5.2.6 (p = 2, m = 2). The module H.(C(x), A(,,)) over the
homology ring of braids is generated by the terms:
L
L1Tgip * " Toip 22b
(i1 > 1) with pa-torsion (the indezes iy,...,i, are always intended i; <

<),
T1Xgiy - Loip Z9ig—1 T T2Toiy *** Toiy Z9iq_9

(i1 > i+ 1) with 3% ~'-torsion,
2
1'27;1_1.'1;22'2 s QJ‘Qih Z9iq
(in <i+1), with cp%ilfl—torsion, We have the relations
2 —
pa(xizon—1 + T12220K—2) = 0.

Casep=2,m>2,2tm

20=1—1~2
By = Pm Tin2i=15

if 21a (let z9g =1)
TxB2am = ITmZ(a—1)m>
for ¢ > 0
g -
Bzgiam = (pzn 2(me(Ziafl)m + x2mz(2ia72)m)'
Proposition 5.2.7 (p = 2, m > 2, 2 { m). The module H.(C(x),A,.))

over the homology Ting of braids is generated by the terms:

L

TnTomain = Topain 22iam
(iy > 1,1 >1, 24 a) with ppy,-torsion,
TmTmair * " Tipgin Z(2ia—1)m + TomTypoir = Tpoin Z(2ig—2)m,
. . . . i1 __ .
(i1>i+1,i>0,2¢fa) with 2, ~!-torsion
2 _ o
$m2i1,1xm212 e :me21h Z9iam,
. . . . i1 —1 . .
(i > i1 —1, 41 > 0) with 2 -torsion. The action of the elements x1,ym of

the homology ring of braids is trivial (i. e. multiplication by these elements
maps to zero).
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Case p>2, m=2

T Pxo = x%
and for ¢ > 0 i
p—L)p* -1~
ﬁ$2pi = @g Yopis

ifpta,i>0 (let 290 =1)
ﬂzapi = gpg (xlzapi—l + .’ITQZapi_Q),
TeBZapit1 = T1Zgpi,

TuBZapith = T1Zapitb—1 T T2Zapi4p—2
ifb=2,...,p— 1.

Proposition 5.2.8 (p > 2, m = 2). The module H.(C (%), A(
homology ring of braids is generated by the terms (let pfa):

02)) over the

1

)
T1Topir ** " Lopyin Zpia—1 + T2Topip “Topin Zpia—2
(ix > i) with cpgi—torsion,
x1$2pi1 . -x2pih Zpia
with pa-torsion,
T1Lopir * * * Lopin Zpia+b—1 + TaTgpin - Lopin Zptatb—2
(b=2,...,p—1) with pa-torsion,
y2p¢1 1‘2pi2 ce 332pih Zpia
(i < i1) with wgp_l)piil—torsz’on. Moreover we have the relations:
QDQ(ZC%Zapi_l + T12224pi_5) = 0

forb=1,...,p—1.

Case p>2,m>2,2|m,ptm

This is the last non-trivial case that we have to investigate.

ﬁympi =0,
Y T
/mepl - QO,gn ) ympla
ifpta _
7/_1~ ~
5Zapi% = ¥ T1Zapi 215

ﬂxlzapi%_l =0.
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Proposition 5.2.9 (p>2,m>2,2 | m,p{m). The module H.(C(x),A(,,.))
over the homology ring of braids is generated by the terms (let pta):

L

ymp’l mp'2 mp'h “ap® 5

1)pit—1 :
(i1 < i) with go(p o -torsion,
xlxmpil tee :Iimpih Zapi%,1

(i < i1) with cpf,i—torsion. The action of the element x1 of the homology ring
of braids is trivial (i. e. multiplication maps to zero)

Bockstein homomorphism

In order to compute the homology with coefficients in the ring R = Z[g™]
we need also to compute the Bockstein operator associated to the short exact

sequence
0—>Zp<—>Zp2 — Zp — 0.

The Bockstein operator (o acts as follows:

Boz1 =0,
/621%]‘ =0,
Baz120 = 0,

Ba(x120—1 + T220k—2) = 0,
h
B2x1$2i1 c Lgip 22k = Z Oéjxllgij—122k: H Loir |
j=1 1
,321‘2i1 e Toip (:L'leia,l + J?QZQia,Q) =
h
Z Q; 21—1 (2129141 + T222iq2 HUC%
J=1 t#]
with 21 a (i > 1),

2
ﬁgx?l,lxm “ e Ty Roig =

— E 06333211 1$ ij—1 ngthQZ

t#j

(i1 < i+ 1) where the coefficients «; in the last equations are invertible
modulo o.

/82$m = 07
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ﬁQxani = 07
BoxmZzigm =0,
B2(Tm2(2ia—1)m + T2mZ(2ia—2)m) = 0,

h

2
BoXm@pmoin = * Tppoin Z2igm = E T ois -1 29iam H T pp2is
=1 1]

with i1 > 1,4 > 1, 2¢ta,
/BQ‘Tinl T Topgin (xmz(?a—l)m + x2mz(2ia—2)m) =

h

— E ) )
= ajxm2ij,1(xmz(21a_1) + I'QmZ 2ig—2)m szzt
=1 1]

with iy >i+1,i>0,21}a,
2 ) ) ) _
ﬁ2$m2i1—1$m2’2 © Typoin F2igm —

h
- Z 211,@ =1 Hl’mzlt Z9iam

Z]

with ¢ > 41 — 1, 11 > (), where the coefficients «; are invertible modulo ¢y,.
The computations for the Bockstein operator 3, give:

,Bp.f(}l = 07
ﬁpy2pi =0,
Bp(xlza—l) =0,
ﬁpxl%pn Loy Zpiq—1 T T2Topin * " Topin Zpiq—2 =

_§ :O[] L1Zpiq— 1+x22pa 2 y?pJHprv
1]

,Bpl'lePil “r Lopin Zpiq =

— E ()[p{Elyng Hl'gp

t#j
Bp19pia “ Topin Zpiatb—1 T T2Topin ** * Topip Zpiqrh—2 =
h
= Z Q; ($1Zpia+b_1 + $22pia+b_2) Yopi H Topt s
J=1 t#j

BpYapin Topia * * * Topin Zpia
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h
= y2pi1 E aijpj H x2pit Zpia
=2 14

where the coefficients «; are invertible modulo ¢y,.
ﬁpympi =0,

BpYmpi1 Tpiz * Ly Zapi =

h
= ympil E O Ympi H xmpzzapi%
j=2 t#7

(il < i),

BpT1Typin * "L ppin Zapi m—1 =

h
=1 E A Ympi meptzapi%—l
i=1 1]

(1 <i1). The same argument used in Lemma for braid groups homology
gives:

Lemma 5.2.10. The homology groups H.(C(x), Z[gT']) have no p>-torsion
for any prime p. O

5.3 Main Theorem

Finally we can state the result:

Theorem 5.3.1. Set degx; = degy; = i,dimz; =i — 1, dimy; = i — 2,
degz; = dimz; = i. Let C(n) be the algebraic complex that compute the
homology of the Artin group Gp, . Let

C(x) =P cm).
We have the following description for the homology of C(x): the module
H.(C(x),Qlg™]) is generated by the terms
<L @12 + 222i-1, T12km—1, Y2m Zkm + L1Z2m Zkm—1 >

with relations
P2%i = PomZkm = P2mZkm—1 =0

over the ring

H*(Br(*)ﬂQ[qil]) = Q[qil] [ T1, Ym, M > 2 ] /( ()O?m%?@mym ) .
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Forp=2:

H*(C(*)7 Lo [q‘pmu) = H*(C(*)’ A(‘P2)) D @ H*(C(*)7 A(gom))
2tm
Forp>2:
H.(C(x), Znlg pru) = Hi(C(%), A(y) & P Hi(C(%), Ag))-

2lm

ptm

The module H,(C(x), Z[q*"]) is the direct sum of the free Z-module generated
by the terms

< 1,212 + 222i-1, T12km—1, Y2mZkm + T1T2mZkm—1 >

with relations
P22i = PomZkm = P2mZkm—1 = 0

over the ring

H,(Br(x), Z[g™"]) ~ Zg™'] | 21, ym,m >2 | /( 0223, 0mim ) -

and of the sum of torsion modules
P 5, H.(C(+), Zp[¢™)).
P

a

We can consider the embedding j,, : G, — GB,,,. We define the group
Gp,, as the limit group EnnGBﬂ,. The maps jpy induced in homology
give a description of the homology of the limit group Gp. as the limit
liLnnH*(GBn), that is the stable homology of Gp,. We obtain the following

result.

e o]

Theorem 5.3.2. Set M, (resp. Myz) be the graduated K-module given by
an infinite direct sum of a copy of K (resp. a copy of Z) for each nonnegative
dimension (p = charK ). We have:

H,(Gp..,Qla™"]) = Mo;

forp=2
H.(Gp..,K[qY]) = Zo[22, 21,7 > 1] @ My;

for a prime p > 2

H*(GBooa K[qil]) = Zp[yQp“pri’Z‘ > O]/(xgpl) ® gﬁp'
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The Bockstein operator acts as follows:
/6211722‘ = $§¢_1;

Bpyi =05 Bpxi = yi (for p > 2),
BpM, =0 Vp prime.

The homology H.(Gp_;Zlq™']) has no p*-torsion for any prime p. A pre-
sentation of H«(Gp_;Z[qt']) is given by

2
Yopis o5, 9
2 . ,
Z X5 Tgiy -+ Toiy, /( 2x217py2p3’x2pj ) ® Mz,
Yopi Lopin ** " Tapin

with indexes running as follows: 0 < i,i4+1<i] < - <ip, 0< <1 <
oo < jp, and p in the set of odd primes. The structure of Z[q*']-module is
trivial and so the action of q corresponds to multiplication by —1.

Moreover the homology of Gp_, has a natural structure of module over
the homology ring of Br(co). |
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Chapter 6

The case of the affine N
arrangements of type A,

6.1 Introduction

In this Chapter we give a detailed calculation of the cohomology of some
Artin groups with non-trivial local coefficients. Let R := Q[¢T!,¢t*!] be
the ring of two-parameters Laurent polynomials. The main result (Theorem
is the cohomology of the Artin group G, (of type B,,) with coefficients
in the module R, ;. The latter is the ring R with the module structure defined
as follows: the generators associated to the first n — 1 nodes of the Coxeter
diagram of B, act by (—q)—multiplication; the one associated to the last
node acts by (—t)—multiplication.

Let ¢m(q) be the m-th cyclotomic polynomial in the variable ¢q. Define
the R-modules (m > 1, i > 0)

{m}i = R/(om(q),q't +1).

and for m =1 set: '
{1}i = R/(¢'t +1).
Notice that the modules {m}; are all non isomorphic as R-modules. {m};
and {m/}; are isomorphic as Q[¢™']-modules if and only if m = m/ and are
isomorphic as Q[t*!]-modules if and only if ¢(m) = ¢(m’) (¢ is the Euler
m m’

function) and W =

7Z .
Our main result is the following
Theorem 6.1.1.
Dajn,0<k<a—oldt ®{1}n1  fi=n
HY(Gp,,Ryt) = @d|n,0§k§d72,d§#{d}k ifi=mn—2j
@dm,dgj%{d}nﬂ ifi=n—25—1.
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Notice also the geometrical meaning of the two-parameters cohomology
of Gp, : similar to the one-parameter case, it is equivalent to the trivial
cohomology of the “homotopy-Milnor fibre” associated to the natural map of
the orbit space onto a two-dimensional torus.

6.2 Inclusions of Artin groups

In this Section, we are primarily interested in Artin groups associated to
Coxeter graph of type A,,, B, and A,,_1 (see Figure .

r—r——r— 00— 00— 00— 00— 5'77.— g2

Figure 6.1: Coxeter graph of type A,, B, (n > 2) and Ay (n > 3). Labels
equal to 3, as usual, are not shown. Moreover, to fix notation, every vertex
is labelled with the corresponding generator in the Artin group.

Let Br,41 := G4, be the braid group on n+1 strands and BrZﬁ < Brp41

be the subgroup of braids fixing the (n + 1)-st strand. The group BrZﬁ is
called the annular braid group. Let Ky,+1 = {p1,...,Pnt+1} be a set of n+1
distinct points in C. The classical braid group Br,4+1 = G4, can be realized
as the fundamental group of the space of unordered configurations of n 4+ 1
points in C with base point K, 11 (see the left part of Figure , with
K¢ ={1,...,6}). We can now think to the subgroup Brﬁﬂ < Bryy1 as the
fundamental group of the space of unordered configurations of n points in
C*: in fact if we take p,+1 =0 and p; € S' C Cfori € 1,...,n, since for a
braid 8 € BrZﬂ the orbit of the (n + 1)-st point can be thought constant,
up to homotopy, we can think to § as a braid with n strands in the annulus
(see the right part of Figure [6.2)).

It is well known that the annular braid group is isomorphic to the Artin
group Gp, of type By,. For a proof of the following Theorem see [Cri99| or
[Lam94].

Theorem 6.2.1. Let 01,...,0, and €1,...,€,_1, €, be respectively the stan-
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Figure 6.2: A braid in Br{ represented as an annular braid on 5 strands.

dard generators for G 4, and Gp, . Then, the map

Gg, — Br;‘i% < Brp+1
€ 05 for1<i<n-1

€p — a,%
18 an 1somorphism. O

Using the suggestion given by the identification with the annular braid
group, a new interesting presentation for Gp, can be worked out. Let 7 =
€n€n—_1- - €2€1. It is easy to verify that:

T leT = €ir1 for1<i<n-—1

i.e. conjugation by 7 shifts forward the first n — 2 standard generators. By

analogy, let €, = 77 e,_17. We have the following

Theorem 6.2.2 ([CP03|). The group Gp, has presentation (G|R) where
g :{7—7 €1,€2,..., En}
R ={eie; =€j¢; fori#j—1,5+1}U
{ei€ir1€i = €ir1€i€41 U
{7 = €111}
where are all indexes should be considered modulo n. O

Letting 1,03, ...,0n be the standard generator of the Artin group of
type A,—1, we have the following straightforward corollary:
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Figure 6.3: As an annular braid the element 7 is obtained turning the bottom
annulus by a rotation of 27 /n.

Corollary 6.2.3 (|[CP03|). The map
GAHA S0, € € GBn

gives an 1somorphism between the group Génq and the subgroup of Gp, ge-
nerated by €1, ...,€e,. Moreover, we have a semidirect product decomposition
Gp, ~ GAnfl X (T). O

We have thus a “curious” inclusion of the Artin group of infinite type
A,_1 into the Artin group of finite type B,.

Remark 6.2.4. The proof of Theorem presented in the original paper
is algebraic and based on Tietze moves; a somewhat more concise proof can
however be obtained by standard topological constructions. Indeed, one can
exhibit an explicit infinite cyclic covering K(G; ,1) — K(Gp,,1) (see
[AII02]).

6.3 The cohomology of G,

6.3.1 Proof of the Main Theorem

In this Section we prove Theorem enunciated in the introduction. We
use the notations given in the Introduction.

To perform our computation we will use the algebraic Salvetti complex
introduced in and the spectral sequence induced by a natural filtration.
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The complex that computes the cohomology of G, over R, ; is given as
follows (see [Sal94]):
Ci=ERT

I'ci,
where I,, denote the set {1,...,n} and the graduation is given by | T |.

The set I,, corresponds to the set of nodes of the Coxeter diagram of B,
and in particular the last element, n, corresponds to the last node.

It is useful to consider also the complex C,. for the cohomology of G 4,
on the local system R;;. In this case the action associated to a standard
generator is always the (—¢)-multiplication and so the complex 6:; and its
cohomology are free as Q[t*]-modules. The complex C,, is isomorphic to C
as a R-module. In both complexes the coboundary map is

= _ o Vo (@:8) :
5(q,t)(r)—j€%:w( 1) g TUUh 631

where o(j,T") is the number of elements of I" that are less than j. In the case
Ay, Wr(g,t) is the Poincaré polynomial of the parabolic subgroup Wr C A,
generated by the elements in the set I', with weight —q for each standard
generator, while in the case B, Wr(q,t) is the Poincaré polynomial of the
parabolic subgroup Wr C B, generated by the elements in the set I', with
weight —q for the first n — 1 generators and —t for the last generator.
Using Proposition we can give an explicit computation of the co-

%{;(g)’ﬂ. For any I' C I, let T be the subgraph of the Coxeter

diagram B,, which is spanned by I'. Recall that if T is a connected component
of the Coxeter diagram of B,, without the last element, then

Wr(q,t) = [m+ l]q!7

efficients

where m =| ' |. If T is connected and contains the last element of B, then
Wr(q,t) = [2m]q4!,

where m =| T"|.
If T is the union of several connected components of the Coxeter diagram,
'=T1U--- UL, then Wr(q,t) is the product

k
H WFi (Q7 t)
=1

of the factors corresponding to the different components.

If 5 ¢ T we can write I'(j) for the connected component of T'U {j}
containing j. Suppose that m =| I'(j) | and ¢ is the number of elements in
I'(j) greater than j. Then, if n € T'(j) we have

Wrogy (@ 1) [m]'
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and
Wrugy (g, 1) _[m+1
Wr(q,t) i+1 q

otherwise.

It is convenient to represent generators I' C I, by their characteristic
functions I,, — {0, 1} so, simply by strings of Os and 1s of length n.

We define a decreasing filtration F' on the complex (C},§): F*C,, is the
subcomplex generated by the strings of type A1® (ending with a string of s
1’s) and we have the inclusions

C,=FC, > F'C,>---D>F"C,=R1" D F""'C, =0.
We have the following isomorphism of complexes:
(F5C,/F**1C,) ~ C_s 18] (6.3.2)

where C,,_s_1 is the complex for G4, . , and the notation [s] means that
the degree is shifted by s. Let E, be the spectral sequence associated to
the filtration F. The equality tells us how the F term of the spectral
sequence looks like. In fact for 0 < s <n — 2 we have

EY" = H"(Ga,_,_,,Rqs) = H'(Ga,_.,, Qla™ ) [t*] (6.3.3)

since the t-action is trivial. For s = n — 1 and s = n the only non trivial
elements in the spectral sequence are

B = g0 = R (6.3.4)
In order to prove Theorem we need to state the following lemmas.

Lemma 6.3.1. Let I(n,k) be the ideal generated by the polynomials

!/
n
[n—d] ford|n and d <k
q,t
If k| n the map

angk: R/(¢r(q)) — R/I(n,k—1)

/
wmduced by the multiplication by {n ﬁ k] is well defined and is injective.
q,t

)

Remark. The fact that this map is well defined will follow automatically
from the general theory of spectral sequences, as it is clear from the proof of
Theorem However, below we prove it by other means.
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Proof. Let d, k be positive integers such that d | n and k | n. We can observe

that vq(q) | Bj = {n ﬁ k] if and only if d t k. Moreover each factor g4
q q

appears in [Z} at most with exponent 1.
q

Let J(n, k) be the ideal generated by the polynomials [n ﬁ d} ford|n
q

and d < k. It is easy to see that we have the following inclusion:
n—1 .
I (+td)I(n, k) C I(n,k).
i=n—k

Moreover J(n, k) is a principal ideal and is generated by the product

poi(e) = [ a0

d|n,k<d
It follows that
L k]qmq) & Jn.k—1)
and so

!/
n
L e et
q;t
This proves that the map o, is well defined.
Now we notice that the factor ¢ (q) divides each generator of I(n,k—1),
!/

but does not divide [nﬁ } . This imply that «,, j is not the zero map
q;t

and that every polynomial in the kernel of «, , must be a multiple of ¢ (q),
hence the map must be injective. O

Lemma 6.3.2. Let I(n) be the ideal generated by the polynomials

/
n
[n—d} ford|n
q,t

)

Then 1(n) is the direct product of the ideals I; 4 = (pa(q),q't + 1) for d | n
and 0 < i < d—2 and of the ideal I,,_1 = (¢" 't +1). Moreover the ideals
I; 4 and I,,_1 are pairwise co-prime.

Proof: Notice that the polynomial (1+t¢"~!) divides each generator of the
ideal I(n), so we can write

I(n) = (1 +tq"")I(n)
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where I(n) is the ideal generated by the polynomials

—~— /
/
n n n—
[n—d] = [n—d] /(1+1q 1)
q,t q,t

Let n =dy > --- > dp = 1 be the list of all the divisors of n in decreasing
order. If we set

Pi :=pq,(q) and
d; ‘
Q= [ (+tg )

Jj=dit1+1

we can rewrite our ideal as

I(n) = ([n ndlj ; [n T;h_l] Qh-1, [n Tzlh_J Qn—2Qh—1, -

(6.3.5)
. [nfdj Q2 Qn-1, Ql"‘th)
We claim that we can reduce to the following set of generators:
I(n)=(Pi-- Py1, Pi-- Py oQun 1, Pi- Py 3Qn_2Qn_1 ... (63.6)

oy PLQo - Qi Q- Qp—1)

The first generator is the same in both equations and the j-th generator in
Equation (6.3.6) divides the corresponding generator in Equation (6.3.5)).

Now suppose that a factor ¢,,(¢) divides [n " d} but does not divide
- Y
Py --- Pj_1. We may distinguish two cases:
(1) Suppose that m { n. Then we can get rid of the factor ¢,,(¢q) in

{n " d ] with an opportune combination with the polynomial
- Y%

PPy

(ii) Suppose m | n. Then m = d; for some [ > j and we can get rid of
©m(q) using a suitable combination with the polynomial

P PQr - Qr

We may now proceed inductively. Supposing we have already reduced the
first 7 — 1 terms, we can reduce the j-th term of the ideal in Equation ((6.3.5|)
to the corresponding term in Equation ((6.3.6]).
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Now we observe that if J, I1, Iy are ideals and I) + I = (1), then
(J, I112) = (J,I1)(J, I2). Since the polynomials P; are all co-prime, we can
apply this fact to the ideal I(n) h — 2 times. At the i-th step we set

I = (P),

In=(Pig1- - Poo1,Piy1-- - Ph—2Qp—1,...,Qit1--- Qn_1),

J=(Qi Qn-1)-

So we can factor I(n) as
(Pr,Q1- Qn1)(Pa-+ Pr1, Po o Pp2Qp1,Q2- - Qp1) = - -~

o= (P, Q1 Qn1) (P, Q2 - Qpo1) -+ - (Pro1, Q1)
Finally we can split (Ps, Qs ---Qp—_1) as the product

(Ps, 1+ tq" %) - (Py, 1+ tg" %71,

So we have reduced the ideal I(n) in the product stated in the Lemma and
it is easy to check that all the ideals of the splitting are co-prime. O

Proof of Theorem[6.1.1. We can now prove our Theorem using the spectral
sequence described in the Equations (6.3.3) and (6.3.4)).

We introduce, as in [DCPSO01], the following notation for the generators
of the spectral sequence:

w, = 01720
2z, = 1"+ (=101t
bh = 01h_2
cp, = 1h_1
a(@) = Y (=1)Mwfzpw)
7=0
vp(i) = (fl)hjwizhw;lﬁf%th(—1)h(z_1)wﬁflch
7=0

We write {m}[t!] for the module R/(m(q)). The Ej-term of the spec-
tral sequence has a module {m}[t*!] in position (s,r) if and only if one of
the following condition is satisfied:

— —s—1.
(a) m|n—-s—1landr=n—s—20="—;

(b) m|n—sandr=n—s+1—2(%2).

m
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Moreover we have modules R in position (n — 1,0) and (n,0). We now look
at the dqi map between these two modules. Notice that E?_l’o is generated
by the string 01" ! and E{L’O is generated by the string 1”. Furthermore the
map
1,0 . ;n—1,0 0
dy s g0 s gy

/
is given by the multiplication by [n ﬁ 1] = [n]y(1+tg" 1) and is injective.

.t
It turns out that By~ "0 = 0 and ES"° = R/([n]y(1 4 t¢"~1)). Moreover all

the following terms E;-]’O are quotient of Ej".

Notice that every map between modules of kind {m}[t*'] and {m/}[t*!]
must be zero if m # m/. So we can study our spectral sequence considering
only maps between the same kind of modules.

First let us consider an integer m that doesn’t divide n. Say that m | n+c
with 1 < ¢ < m and set ¢ = 2. The modules of type {m}[t*'] are:

Ei‘m_c_l’n%_)‘(m_m_%ﬂ generated by 2, (i — A\)01rm 1

Ei‘mfc’"ﬂ*)‘(md)*%“ generated by vy, (i — A\)01Am ¢

forA=1,...,i— 1.
Here is a diagram for this case (we use the notation h for {m}[t*!]):

hih

h%h\

R/I

The map

dy : Ei\m—c—l7n+c—)\(m—2)—2i+1 R Ef\m—c,n+c—)\(m—2)—2i+l

)\ N /
" C} = [Am —dJg(1+tgm ey,

m—c—1 ot

Since ¢m(q) 1 [Am — ¢]4 the map is injective and in the Es-term we have:

is given by the multiplication by [

Egm—c—l,n+c—/\(m—2)—2i+1 — 0

Am— —A(m—2)—2i
2 e (D
for A\=1,...,i—1.

The other map we have to consider is

n—m,m—1 ., pn—mm-—1 n,0
dy, B — B
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The module Ep ™™ 1 = {m}m_c_1 is generated by 1™~1017~™ and so
/

n

the map is the multiplication by { ] . Since (1 + tg" 1) divides the
q,t

)

!/
coefficient [n fm} . the image of the map d% ™™ ! must be contained in
q,t

)

the submodule
(1+tq" EL = (1 +tq" " )R/([n]g(1 + tg" "))

that is in the quotient R/([n],). Since (¢ (q), [n]q) = (1) (recall that m does
not divide n) there can be no nontrivial map between the modules {m},—.—1
and R/([n),). It follows that the differential dyy ™™ ' must be zero.

As a consequence the Fy part described before collapses to Fo, and we
have a copy of {m},_c—1 as a direct summand of H" 2/=1(C,) for j =
0,...,7— 2, that is for m < ]%

Now we consider an integer m that divides n and let + = . The modules

of type {m}[tT!] are:

E{\m_l’n_’\(m_m_%ﬂ generated by  zp(i — A)01M L for 1 <A <i—1
E)\m,n—A(m—2)—2i+1

1 generated by vy, (i — A\)01M™ for 0 < X < i — 1.

The situation is shown in the next diagram (h = {m}[t*!]):

The map

dl : Ef\mfl,nfk(me)fQiJrl R Ef\m,nfk(mfZ)fQiJrl

m
am —1
this case the coefficient is zero in the module {m}[t™"] because ¢, (q) | [Am],
and so we have that Fh = --- = E,,_1. So we have to consider the map

!/
is given by the multiplication by { ] = [Am]y(1 + tg*™1), but in
q,t

til}
dj\nri,?f)\(me)fﬂJrl : E;rﬁ,lnf/\(mfZ)fQiJrl R EE/\Jrl)mfl,nf()\+1)(m72)72i+1

for A=0,...,i—2.
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This map corresponds to the multiplication by

A m—
Ot Dm—1" [+ Dm—1] M4 i
Am - Am H (L+1tg").
q;t q j=Am+1
It is easy to see that the polynomial {()\—i-;l\i;n— 1} is prime with the
Am,n—A(m—2)—2i+1 . X

torsion ¢, (¢) and so the map d
is isomorphic to

(AM+1)m—1
R/ em@, J[ A+t | = P {mh

j=Am+1 0<k<m—2

1 is injective and the cokernel

As a consequence we have that
Er)\nm—l,n—k(m—Q)‘—Qi-‘rl _ ®0§k§mf2{m}k for 1 <A<i—1
gy AL 0 for 0 <A <i—2.

and all these modules collapse to Eo,. This means that we can find ¢,,(q)-
torsion only in H"~2/(C,,) and for j > 1 the summand is given by

D mh
0<k<m—2
for d < J%
We still have to consider all the terms Epy ™™~ = {m}[t+1] for m | n.
Here the maps we have to look at are the following:

n—m,m—1 ., rm—m,m—1 n,0
dp, i — BV

!/
These maps correspond to multiplication by the polynomials [n ilm} .
q,t

rnf(l0)],)

We can now use Lemmam to say that all the maps a7 are injective
and Lemma to say that

B =E= P {mhe {1}
m|n,0<k<d—2

)

Moreover recall that

Since E%’ = H"(C,,), this complete the proof of the Theorem. O
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6.3.2 Other computations

We may also consider the cohomology of G, over the module Q[t*!], where

the action is trivial for the generators €y,...,€e,—1 and (—t)-multiplication
for the last generator €,. This cohomology is computed by the complex C}
of Section 3 where we specialize ¢ to —1. So we may use similar filtration
and associated spectral sequence. We used this argument in [CMS06b|. Here
we briefly indicate a different and more concise method, using the results of
Theorem We have:

Theorem 6.3.3.
H*(Gp,,Qt*]) = QtF/(1+1) l<k<n-1

H™"(Gp,,Q[t*]) = QIF']/(1+1) for odd n

H™Y(Gg,,Q[tT']) = Q[tF']/(1 —1t?) for even n.

Sketch of proof. Consider the short exact sequence:
0— Ql*", '] =4 Qlg*", '] — Q[F'] — 0
and the induced long exact sequence for cohomology

. — H'(Gp,,Ql¢*",t*")) Z2H! (Gp,, Qg™ #+1) —
—H (Gp,,Q[t*']) — --- .

The result is now a straightforward consequence of Theorem [6.1.1] O

6.4 More consequences

By means of Shapiro’s Lemma, the inclusions introduced in Section can
be exploited to link the cohomology of the Artin group of type A,_1, A, to
the cohomology of G, .

6.4.1 Cohomology of G;

Let M be any domain and let ¢ be a unit of M. We indicate by M, the
ring M with the G ;  -module structure where the action of the standard

1

generators is given by (—g)-multiplication.
Proposition 6.4.1. We have

H.(Gj, . My) =H.(Gp,, M[t*"]y.)
H*(G; M) ~H*(Gp,, M[[t*']]4.+)

n—1"
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where the action of Gg, on M[t¥'],; (and on M[[t*1]],:) is given by (—q)-
multiplication for the generators €1, ..., en—1 and (—t)-multiplication for the
last generator €,.

Proof. Applying Shapiro’s lemma to the inclusion 4,,_; < G B, , One obtains:
G
H(Gz .My ~H.(Gp,, Ide’;;1 M,)

M,) =H*(Gp,, Coindg ™ M,).

n—1

H'(G;

n—1’

By Corollary [6.2.3] any element of Indg};”’ M, = Z[Gp,) ®c; M, can
n—1

n—1

be represented as a sum of elements of the form 7¢ ® ¢™. Now, we have an
isomorphism of Z|Gp,]-modules

Z[Gp,) ®a,, My — Mt

defined by sending 7% ® ¢™ — (—1)"*t%¢(»=Datm and the result follows.
In cohomology we have similarly:

.. G
CodeE" M, = HomGAW1 (Z[GB,), My) =~ M[[tX"]] .-

n—1

By Propositions in order to determine the cohomology groups
"G4, M)

n—1’
it is necessary to know the cohomology of Gp, with values in the module
M][t*']] of Laurent series in the variable ¢. The latter is linked to the
cohomology with values in the module of Laurent polynomials by:

Proposition 6.4.2 (Degree shift).
H*(Gp,, M[[t™]qs) = H* (G, M[t*]q.).
d

This result was obtained in [Cal05] in a slightly weaker form, but it is
possible to extend it to our case with little effort.

Let from now on M = Q[¢F!]. In this case we have M[t*1],; = R,
so we obtain the cohomology of the Artin group of affine type A,_1 with

M, —coefficients by means of Theorem
In a similar way we get the rational cohomology of G 3

Proposition 6.4.3. We have
H.(Gj,_,,Q) ~H.(Gp,, Q™)
H*(Gj, Q) ~H*(G3,, Q™))

where the action of G, on Q[t™'] (and on Q[[t*']]) is trivial for the gener-
ators €1, . ..,en—1 and (—t)-multiplication for the last generator €,.

n—1 "
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To obtain the rational cohomology of GA”?l we may apply Proposition

together with Theorem [6.3.3]

6.4.2 Cohomology of G4, with coefficient in the Tong-Yang-
Ma representation

The Tong-Yang-Ma representation is an (n + 1)-dimensional representation
of the classical braid group G4, discovered in [TYM96]. Below we just
recall it, referring to [Sys01] for a discussion of its relevance in braid group
representation theory.

Definition 6.4.4. Let V be the free Q[u*!]-module of rank n + 1. The
Tong-Yang-Ma representation is the representation

p:Ga, — GLgp=1(V)
defined w.r.t. the basis e1,...,enp+1 of V by:
I; 4
ploi) = 2 (1)
I,
where I; denote the j-dimensional identity matrix and all other entries are
Z€ro.

Notice that the image of the pure braid group under the Tong-Yang-
Ma representation is abelian; hence this representation factors through the
extended Coxeter group presented in [Tit66].

Proposition 6.4.5. We have
H.(Gp,, M[t*),1) ~ H.(Ga,, M, ® V)

H*(Gp,, M[t*q4) = H (G a,, My @ V)

where each generator of G, acts on My @V by (—q)-multiplication on the
first factor and by the Tong-Yang-Ma representation the second factor.

Sketch of proof. For the statement in homology, by Shapiro’s lemma, it is
enough to show that IndggnM[til]%t ~M,®@V.

Notice that [Ga4, : GpB,] = n+ 1 and let choose as coset representatives
for G4, /Gp, the elements o; = (0;0i11 0p_1)on(0i0ir1 - 0pn_1) " for
1<i<n—-1, ap, =0y, Opt1 = €.

Then by definition of induced representation, there is an isomorphism of left

G a,-modules,
n+1

IndGA M) = @D M+ e

=1
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where the action is on the r.h.s. is as follows. For an element x € Gg4,,,
write zay = apa’ with 2 € Gp,. Then x acts on an element r - e €
@I Mt )e; as x(r - ex) = (') - ep.

Computing explicitly this action for the standard generators of G 4,,, we can
write the representation in the following matrix form:

—ql; 1
0 —q
oi gt 0
_qIn—i
for 1 <i<n—1, whereas
_qIn—l

Op — 0 1
—t 0

Conjugating by U = Diag(1,1,...,1,—¢ 1) and setting u = —g~>t, one ob-

tains the desired result.

Finally, since [Ga, : Gp,] = n + 1 < oo, the induced and coinduced repre-

sentation are isomorphic; so the analogous statement in cohomology follows.
O

In particular the cohomology of Gp, determined in Theorem is
isomorphic to the cohomology of G4, with coefficient in the Tong-Yang-Ma
representation twisted by an abelian representation.

By means of Shapiro’s lemma, we may as well determine the cohomology
of G4, with coefficient in the Tong-Yang-Ma representation. Indeed:

Proposition 6.4.6. We have
H.(Gp,, Q™)) = Ha(Ga,,V)
H* (G, Q™)) ~ H*(Ga,,V)
where V is the representation of G4, defined in[6.4.4)
As a consequence we have

Corollary 6.4.7. Let V be the (n + 1)-dimensional representation of the
braid group Br,i1 defined in[6.4.4] Then the cohomology

H*(Brn+1, V)
1s giwen as in Theorem|6.5.5.

Remark 6.4.8. In particular the homology of G ;  with trivial coefficients
is isomorphic to the homology of G 4, with coefficients in the Tong-Yang-Ma
representation.



Chapter 7

The case of the affine N
arrangements of type By,

7.1 Preliminary constructions

In this Chapter, we are primarily interested in Artin braid groups associated
to Coxeter graphs of type By, B, and D,, (see Table .

The associated Coxeter groups can be described as reflection groups with
respect to an arrangement of hyperplanes (or mirrors). Let z1,...,x, be the
standard coordinates in R™. Consider the linear hyperplanes:

Hk :{a;k = 0} L?J: :{l'i = :tl'j}
and, for an integer a € Z, their affine translates:
Hy(a) ={zr = a} L;E(a) ={z; = tz; + a}

The Coxeter group B, is identified with the group of reflections with
respect to the mirrors in the arrangement

A(Bn) == {Hp |1 <k <n}U{L}|1<i<j<n}

As such it is the group of signed permutations of the coordinates in R™. No-
tice that By, is generated by n basic reflections sq, ..., s, having respectively
as mirrors the n — 1 hyperplanes L:,riH (1 <i<n-—1) and the hyperplane
H,,. This numbering of the reflections is consistent with the numbering of
the vertexes of the Coxeter graph for B,, shown in Table [7.1]

The affine Coxeter group B, is the semidirect product of the Coxeter
group B, and the coroot lattice, consisting of integer vectors whose coordi-
nates add up to an even number. The arrangement of mirrors is then the

affine hyperplane arrangement:

A(Bn) == {Hg(a) |1 <k <n,acZ}yU{L(a)[1<i<j<n,acZ
(7.1.1)
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B O—O—0—0 600
G
B0 00O
o
©
00 86—

Table 7.1: Coxeter graphs of type B, By, D,.

It is generated by the basic reflections for B, plus an extra affine reflection 5
having L1, (1) as mirror. The latter commutes with all the basic reflections of
By, but sy, for which (3s2)% = 1. This accounts for the Coxeter graph of type
B, in the table, where, however, we chose by our convenience a somewhat
unusual vertex numbering.

Finally the group D,, has reflection arrangement:

A(Dy) = {L5|1<i<j<n}

and it can be regarded as the group of signed permutations of the coordinates
which involve an even number of sign changes. In particular D,, is a subgroup
of index 2 in B,,. The group is generated by n basic reflections w.r.t. the

hyperplanes L, and LI@'H (1<i<n-—1).

7.2 The K(m, 1) problem for the affine Artin group
of type B,

Recall that infinite type Artin groups are represented as groups of linear,
not necessarily orthogonal, reflections w.r.t. the walls of a polyhedral cone
C of maximal dimension in V = R". It can be shown that the union U =
Uwew wC of W-translates of C' is a convex cone and that W acts properly
on the interior U° of U. We may now rephrase the construction used in the
finite case as follows. Let A be the complexified arrangement of the mirrors
of the reflections in W and consider I := {v € V® C|R(v) € U°}. Then W
acts freely on Y = I'\ Jg 4 H and we can form the orbit space X :=Y /W.
It is known (|[vdL83|; see also [Sal94]|) that Gy is indeed the fundamental
group of X, but in general it is only conjectured that X is a K(m,1). In this
Section, we extend this result to the affine Artin group of type B,,, showing:
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Theorem 7.2.1. Y (B,) and, hence, X(B,) are K(m,1) spaces.

The idea of proof can be described in few words: up to a C* factor, the
orbit space is presented (through the exponential map) as a covering of the
complement to a finite simplicial arrangement, so we apply Theorem [1.4.2]

We just digress a bit on the peculiarity of affine Artin groups. In this
case the associated Coxeter group is an affine Weyl group W, and, as such, it
can be geometrically represented as a group generated by affine (orthogonal)
reflections in a real vector space. This geometric representation and that
given by the Tits cone are linked in a precise manner; indeed it turns out
that Uy for an affine Weyl group is an open half space in V and that W, acts
as a group of affine orthogonal reflections on a hyperplane section E of Uj.
The representation on E coincides with the geometric representation and
Y (W,) is homotopic to the complement of the complexified affine reflection
arrangement.

Using the explicit description of the reflection mirrors in Equation ,
the complement of the complexified affine reflection arrangement of type B,
is given by:

Y =Y(B,) ={xcC"|a;+z; ¢ Zforalli#j, v ¢ Z for all k}

On 'Y we have, by standard facts, a free action by translations of the coweight
lattice A, identified with the standard lattice Z"™ C C™.

Proof of Theorem We first explicitly describe the covering Y —
Y /A applying the exponential map y = exp(27iz) componentwise to Y:

Y —"——>Y/A~{yeC"|y; #y; ", yr #0,1}

(z1,...,3) —— (exp (2mizy), ..., exp (2miz,))

Notice now that the function

€A1y = gl) = T2 €T\ {1}

satisfies g(y~!) = —g(y). Further g is invertible, its inverse being given by

;j Therefore applying g componentwise to Y /A, we have:

Z
Y /A~ {zeC"|z # £z, 2, # £1}

Consider now the arrangement A in R"*! consisting of the hyperplanes
ij for 1 <i < j<n+1and H; and let Y(A) be the complement of its
complexification.

We have an homeomorphism

n:C*xY/A—Y(A)
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defined by
77()\, (z1,.. .,zn)) = (AN Az1,..0,Az)

To show that Y /A is a K(m, 1), it is then sufficient to show that Y (.A)
is a K(m,1). We will show in Lemma below that A is simplicial, and
therefore the result follows from Deligne’s Theorem [1.4.2] O

Remark By the same exponential argument one may recover the results of
[Oko79| for the affine Artin group of type A,,C,, (for further applications
we refer to [AII02]).

Lemma 7.2.2. Let A be the real arrangement in R" T consisting of the
hyperplanes ij for1<i<j<n+41and Hy. Then A is simplicial.

Proof. Notice that A is the union of the reflection arrangement A(D, 1)
of type Dy4+1 and the hyperplane H; = {x; = 0}. Hence we study how
the chambers of A(D,,+1) are cut by the hyperplane H;. Since the Coxeter
group Dy acts transitively on the collection of chambers, it is enough to
consider how the fundamental chamber Cy of A(D,,+1) is cut by the Dy 1-
translates of the hyperplane Hjy, i.e. by the coordinate hyperplanes Hj, for
k=1,2,....,n+1.

We may choose

COZ{—$2<J}1<1‘2<...<I‘n<l‘n+1}

as fundamental chamber. Of course, this is a simplicial cone. Notice that
the coordinate of a point in Cy are all positive except (possibly) the first.
Thus it is clear that for £ > 2 the hyperplanes H; do not cut Cy.

A quick check shows instead that Hy cuts Cg into two simplicial cones Cy,
Cy given precisely by:

Ci={0<z<z2<...<xp < Tpt1}
Co={0< - <z2<...<zp < Tpt1}

7.3 Cohomology

The second main result of this Chapter is the computation of the cohomology

of the group G (so, by Theorem , of X(B,)) with local coefficients.
We consider the 2-parameters representation of G B, over the ring Q[gT!, t*1]
and over the module Q[[¢T!, t*!]] defined by sending the standard generator
corresponding to the last node of the Coxeter diagram to (—t)—multiplication

and the other standard generators to (—g)—multiplication (minus sign is only
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for technical reasons). Such representations are quite natural to be consid-
ered: they generalize the analog 1-parameter representations that (for finite
type) correspond to considering the structure of bundle over the comple-
ment of the discriminant hypersurface in the orbit space and the monodromy
action on the cohomology of the associated Milnor fibre (see for example
[Ere88], [CS98|). We explain in Section various relations between these
cohomologies and the cohomology of the commutator subgroup of G5 .

The main tool to perform computations is the algebraic Salvetti com-
plex. The cohomology factorizes into two parts (see also [DCPSS99]) : the
tnvariant part reduces to that of the Artin group of finite type B,, whose
2-parameters cohomology was computed in [CMS06al; for the anti-invariant
part we use suitable filtrations and the associated spectral sequences.

Let ¢4 be the d-th cyclotomic polynomial in the variable q. We define
the quotient rings

{1} = Qlg™", /(1 + tq")

{d}i = Q¢ 7]/ (pa, 1 + tq)
d—1

{{d}}; = Qlg™, t*"]/ (¢, H 1+ tg').

The final result is the following one:

Theorem 7.3.1. The cohomology H”*S(ng,(@[[qﬂ,tﬂ]]) is given by

Qllg=*,t*]]  for s= 0

I
—

Dienysn for s

h>0

D (2n"e @ {die s for s=2

h>2 din
i€l (n,h) 0<i<d—2
@ {2h}§("’h’s)@ @ {d}i for s=2+2j
h>2 din
i€l(n,h) 0<i<d—2
<
P n""e @ {dha for s=3+2j
h>2 din
i€I(n,h) d<-n
where c(n,h,s) = max(0,|g;] — s), f(n,h) = Lingﬁflj and I(n,h) =

{n,...,n+h—=2}ifn=0,1,...,hmod(2h) and I(n,h) = {n+h—1,...,n+
2h—1} if n=h+1,h+2,...,2h — 1mod(2h).
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As a corollary we also derive the cohomology with trivial coefficients of
G, (Theorem[7.3.7)

We use a suitable filtration of the algebraic complex, reducing computa-
tion of the cohomology mainly to:

e calculation of generators of certain subcomplexes for the Artin group
of type D,, (whose cohomology was known from [DCPSS99|, but we
need explicit suitable generators);

e analysis of the associated spectral sequence to deduce the cohomology
of B,, with local coeflicients;

e use of some exact sequences for the cohomology with constant coeffi-
clents.

7.3.1 Algebraic complexes for Artin groups

As a main tool for cohomological computations we use the algebraic Salvetti
complex (see Section , which provides an effective way to determine the
cohomology of the orbit space X (W) with values in an arbitrary Gy-module.
When X(W) is a K(m,1) space, of course, we get the cohomology of the
group Gy .

For sake of simplicity, we restrict ourself to the abelian representations
considered in Section Let (W, S) be a Coxeter system. We recall that,
given a a representation 7 : Gy — R*, let M, be the induced structure
of Gy-module on the R-module M. We may describe a cochain complex
C*(W) for the cohomology H*(X(W); M,) as follows. The cochains in di-
mension k consist in the free R-module indexed by the finite parabolic sub-
group of W:

CHW) = @ M .ep (7.3.1)

and the coboundary map are completely described by the formula:

dler) = > (—1)a<F7F’>VWV/F’((”))eF/ (7.3.2)
'or i
ITY|=|0|+1
W/ |<oo

where Wr(n) is the n-Poincaré series of the parabolic subgroup Wr and
a(T',T”) is an incidence index depending on a fixed linear order of S. For
I\ T = {s'} it is defined as

a@I):=[{sel : s<s'}
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We identify (consistently with Table the generating reflections set S
for B,, with the set {1,2,...,n+1}. Tt is useful to represent a subset I C S
with its characteristic function. For example the subset {1,3,5,6} for Bg
may be represented as the binary string:

0
1 10110

To determine the cohomology of G , it will be necessary to give a close
look to the cohomology of Gp,,. It is convenient to number the vertex of D,
as in table and to regard parabolic subgroups as binary strings as before.

7.3.2 A generalized shift

Let R be the ring of Laurent polynomials Q[¢™!, #¥!] and M be the R-module
of Laurent series Q[[¢*!,¢*!]] and let R,;, M, be the corresponding local
systems, with action 7,;. Our main interest is to compute the cohomology
with trivial rational coefficient of the group

Zén = ker (GETL — Z2)

that is the commutator subgroup of G5 . By Shapiro Lemma (see [Bro82])
we have the following equivalence:

H*(Z§n7@) ~ H*(G'gnqu,t)

and the second term of the equality is computed by the Salvetti complex
C*(By) over the module M, ;. Notice that the finite parabolic subgroups of
Wén are in 1 —1 correspondence with the proper subsets of the set of simple
roots S. the index set S = {1,...,n + 1} except that for the whole set S of
all simple roots of B,,.

We can define an augmented Salvetti complex C*(B,) as follows:

C*(B,) = C*(By,) & (My,).es.

We need to define the boundary map for the n-dimensional generators. Let
us first define a quasi-Poincaré polynomial for G B, We set

n—1

Ws(g,t) = Wy (q,t) = 200 = D] [n] [](1+1t4).
=0

It is easy to verify that Wgn (g, 1) is the least common multiple of all Wr(q,t),
for I' C S with |I'| = n. This allows us to define the boundary map for the
generators er, with |I'| = n:

or.s) VB, (¢,7)

d(er) = (-1) (a0 e
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and it is straightforward to verify that C*(B,) is still a chain complex. More-
over we have the following relations between the cohomologies of C*(B,) and
C*(By): ' N L

H'(C"(By)) = H'(C"(Bn))

for i # n,n + 1 and we have the short exact sequence

0 — H™"(C*(By), My,) — H"(C*(By), Mgs) — My, — 0.

Finally one can prove that the complex 6*(§n) with coefficients in the local
system R, ; is well filtered (as defined in [Cal05]) with respect to the variable
t and so it gives the same cohomology, modulo an index shifting, of the com-
plex with coefficients over the module Q[t*!][[¢*']]. Another index shifting
can be proved with a slight improvement of the results in [Cal05], allowing
to pass to the module M. Hence we have the following

Proposition 7.3.2.
H'(Zg,,Q) = H'(C*(By), Myz) = H(C*(Bn), Ryz) = H*(Gj,, Ryy)
fori#£n,n+1 and
H"(Zg,,Q) ~ H(Gg , Mgs) ~ M
H™Y(Z5 ,Q) ~ H" (G, , Mgy) ~ 0.
O

From now on we deal only with the complex 6*(§n) with coefficients in
the local system R, ;.
7.3.3 A splitting of complexes

For Coxeter groups of type W = D, B,, the Salvetti’s complex C*W exhibits
an involution o defined by:

0, « 1 1
A A A — A
0, o 1 1,0 0
LA A JA A

Let I*W be the module of o-invariants and K*W the module of o-anti-
invariants. We may then split the complex into:

C*'W =I'W & K*W.

In particular the computation of the cohomology of C*W may be performed
analyzing separately the two subcomplexes.
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7.3.4 Cohomology of K*D,

The cohomology of the anti-invariant subcomplex for D,, was completely
determined in [DCPSS99|. However we will need for our purposes generators
for the cohomology groups which are not easily deduced from the argument
in the original paper. So we briefly recall this result.

Let Gl be the subcomplex of C(D,,) generated by the strings of type

(1) A and 1 A. Tt is easy to see that G is isomorphic (as a complex) to

K(Dy).
Define the set

Sp={h€Ns. t. 2h|nor hjn — 1 and 2ht (n — 1)}

Note that h appears in S, if and only if n = 2Ah (i.e. n is an even multiple
of h) or n = (2A 4+ 1)h + 1 (n is an odd multiple of h incremented by 1).

Proposition 7.3.3 ([DCPSS99]). The top-cohomology of G} is:
H"G, = P {2n}
heSn
whereas for s > 0 one has:
H G, = & {21}

hes,
l1<h<

H= Gl = @ {20}
heSy
1<h<g:

We need a description of the generators for these modules.
First we define the following basic binary strings:

0 1h—1

1 for p =20

1 12002017 for p>1

eulh] = 1 1Ch=Dh=1017=2 for 1 > 1

s, = 0172 I, = 01"
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A set of candidate cohomology generators is given by the following cocycles:

%Mmzéﬁ@mwmﬂ

QWHm=égmmwm%m

%MMzéﬁ@Ww%W

1 .
€u,2i+1 [h] = Ed(eu [h] (lhsh)zlh)‘

Indeed these cocycles account for all the generators:

Proposition 7.3.4. 1. Let n = 2)\h. Then for 0 < s < A the summand
of H""25(GL) isomorphic to {2h} is generated by ex_sa2s[h]. Simi-
larly for 0 < s < X the summand of H" 271(GL) is generated by
0)\—5—1,28+1[h]-

2. Letn = (2A+1)h+1. Then for 0 < s < X the summand of H"~25(G1)
isomorphic to {2h} is generated by ox_sas[h]. For 0 < s < X the
summand of H"~271(GL) is generated by ex_s 25+1[h].

Proposition is best proved by induction on n, recovering in partic-
ular the quoted result from [DCPSS99|.

Proof. We filter the complex G from the right and use the associated spec-

tral sequence. Let:
FL.GL = (A1%)

be the subcomplex generated by binary strings ending with at least k ones.
We have a filtration

Gl =FRG.>FRG.>...DOF, 2G> F, 1G>0
in which the subsequent quotients for k =1,2,...,n—3

F.GL
FoaGL (A01%) =~ Gy [K]

are isomorphic to the complex for G} _, | shifted in degree by k, while

FH_QG}l . 0 n—>2 1 _ 1 n—2

Therefore the columns of the Fq term of the spectral sequence are either the
module R or are given by the cohomology of G}l, with n’ < n. Reasoning by
induction, we may thus suppose that their cohomology has the generators
prescribed by the proposition. Since there can be no non-zero maps between
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the module {2h}, {21/} for h # h', we may separately detect the ypop-torsion
in the cohomology.

Fix an integer h > 1. Then the relevant modules for the @g;-torsion in
the E; term are suggested in Table We will call a column even if it

is relative to Géuh and odd if it is relative to G%2u+1)h+1 for some p. The

02,0
€2,1
. dpy1
01,2
€1,3 N
00,4 \\62,0
0
1011
(€12 ~{ 91,0
00,3 T~ €1,1 d
h+1
S50 00,2
dp—1 \
N
e
L€1,0
00,1
00,0
dp—1
R>R
di
1 1 1 1 1
G5h+1 G4h GS}H»I G2h Gh+1

Table 7.2: Spectral sequence for G}

differential dy is zero everywhere but d; : E{niQ’l) — Einfl’l) where it is

given by multiplication by [2(n—1)]!!/[n—1]!. Thus the Ey term differs from
the F; only in positions (n — 2,1) and (n — 1,1), where:

(n—1,1) _ R

ne21) _
" =0 B = B o =1t

N~

E

Then all other differentials are zero up to dj_s.
It is now useful to distinguish among 4 cases according to the remainder of
nmod(2h):

a) n=2\h+cfor1<c<h

b) n=02A+1)h+1

c)n=02 \+1)h+1+cforl1 <ec<h-—2

d) n=2X\h-
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dp_1
E\
hﬁ
(pop)
1
Gé/\h G(2>\71)h+1 Gzllh Gil'sthl G%h G}1’L+l

Table 7.3: Ej,_i-term of the spectral sequence for G in case a)

In case a), note the first column relevant for @op-torsion is even (see also
Table [7.3).

The differential dj_; maps the modules of positive codimension of an
even column G%uh (1 < p < A) to those in the odd column G%Q,ufl)thl'
Using the suitable generators of type e..[h],0..[h], the map dj_; may be
identified with the multiplication by

(7.3.3)

n—Q2u—1h-1] [2A—p)+c+h—-1
h—1 N h—1

Since this polynomial is non-divisible by sy, the restriction of dj_1 to pos-
itive codimension elements in even columns is injective. It follows that in
the Ej-term the only survivors are in positions (¢ + 2(\ — p)h — 1,2uh),
generated by e, o[h] and

(n—1,1) _ p(n—1,1) _ R
En =~ By T2 =D/ [n -1

Note that in E}(Ln_l’l) the only torsion of type <pl2h is given by the summand:
R
(p2n)

The setup is summarized in Table In the Table the survivors are in dark
grey boxes while annihilated terms are in light grey.
Further, using the generators and up to an invertible, we may identify

the differential da,, : Eéﬂf(’\_“)h_l’%h) — E;‘;hl’l with the multiplication

by cp;‘};“ (1 < p < A). Thus, for example, in the Esj,11 term the module in

position (¢ + 2(A — 1)h — 1,2h) vanishes and the @qp,-torsion in EéZ:l) is



7.3 Cohomology 113

reduced to R/(pox)*~!. Continuing in this way, all @op,-torsion vanishes. In
summary there is no @gp,-torsion in the cohomology of G.; this ends case a).

[

L]

D ......

D ......

D ......

D ......

D ...... %

- AN
d
O 2 \
U \
(pap)?
G%Ah G%Q)\—l)h"rl Géllh G113h+1 G%h G%H»l

Table 7.4: Setup for the higher degree terms in the spectral sequence for G,
in case a)

For case b), the first column in the spectral sequence relevant for o, is
still even. The differential dj,_; may be identified again as multiplication as
in formula [7.3.3] but now it vanishes, since the polynomial is divisible by

©2oh-

I

G%)\hG%2>\71)IL+1 G%(A—l)h G Gy Ghp
Table 7.5: Ej,_1-term of the spectral sequence for G, in case b)

The next non-vanishing differential is dj, 1. See Table [7.5] Tt takes the
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module in positive codimension in an odd column G % to the elements

2p+1)h+1
in the even column G%uh (for 1 < p < XA —1). Via generators, it may be
identified with the multiplication by

[n - 2Mh] _ [2@ —wh+h+1 (7.3.4)

h+1 | h+1

and it is therefore injective when restricted to modules in positive codimen-

.. . 2Ah—1,h+1
sion in odd columns. Further dp; is also non-zero as a map E,(LJrl )

E(n—l,l)

hi1 - Actually the term

R
2(n — D)/[n — 1!

(n=1,1)  p(n-11)
Ehil - E2n -

has R/(p2n) ! as the only summand with torsion of type ¢, . Tt is easy to
check that the relative map can be identified with the multiplication by gp%h.
Thus, the only survivors in the Fsp term are the first even column, the
top modules in the odd columns, generated in positions (2(A—p)h—1, (2u+
1h+1) by oo for 1 < p < X—1, as well as Eéz_l’l) which has R/(p2n)*
as summand.
Note that the higher differentials vanish when restricted to the first even
column. Actually we may lift the generators of type ex_s2s[h] to global
generators ey_s2s+1[h| for 0 < s < A. Similarly for 0 < s < A we may lift
0x—s—1,25+1]h] to the global generator oy_s_12s+2[h]. Finally, as in case a),

d2x—1)h+1

I

1 1 1 1 1 1
G2)\hG(2>\71)h+1 G2()\71)h G3h+1 Gap, Gh+1

Table 7.6: Setup for the higher degree terms in the spectral sequence for G}
in case b)

the module in positions (2(A—p)h—1, (2u+1)h+1) for 1 < g < A—1 vanish
in the higher terms of the spectral sequence while the module in position
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(n—1,1) has eventually as summand R/aj. Clearly the coboundary oy o[h]
projects onto a generator of the latter.

Case ¢) and d) present no new complications and are omitted. O

g

7.3.5 Spectral sequence for Gz
We can now compute the cohomology H*(Gg , Rg:). We will do this by

means of the Salvetti complex é*én

As in Section , let 1. B, be the module of the o-invariant elements
and K B,, the module of the o-anti-invariant elements. We can split our
module @‘En into the direct sum:

C*B,, = 1B, ® K B,.
Using the map 6 : C*B,, — 6‘\*571 so defined:

£:0A — gA

1 0
B:i1dm A+ | A

one can see that the submodule 1B, is isomorphic (as a differential complex)
to C*B,,. Its cohomology has been computed in [CMS06a]. We recall the
result:

Theorem 7.3.5 ([CMS06al).
Dapno<i<ao{dti ®{1}n1  ifi=n

H'(Gp,,Rqt) = ®d|n,0§i§d—2,d§#{d}i ifi=n—2j
@Cpm,dgj%{d}nA ifi=n—25—1.

|

Hence we only need to compute the cohomology of K B,,. In order to do
this we make use of the results presented in Section First consider the
subcomplex of C*B,, defined as
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It is easy to check that x gives an isomorphism of differential complex. Now
we define a filtration F on the complex L.:

FLL =< (1) ALY, 1 Al" > .

The quotient F; L} /F;11 L}, is isomorphic to the complex (G_;[t*!]) [i]
(see Proposition with trivial action on the variable ¢. Hence we use
the spectral sequence defined by the filtration F to compute the cohomology
of the complex L}.

The Ep-term of the spectral sequence is given by

(EL}L) (i+7)
(Fisa L))
= (G- [ [
(G Y[

pii _

for 0 <i <n — 2. Finally:
EyM =R E' =R

and all the other terms are zero. The differential dj : Eé’j — Eé’j 1 corre-
sponds to the differential on the complex GL_..It follows that the E'-term
is given by the cohomology of the complexes G}lﬂ-:

Ej; = H (G, _)[t™]
for0<i<n-—2and
EyM =R, EM =R

As in Section we can separately consider in the spectral sequence
FE, the modules with torsion of type cpéh for an integer h > 1.

For a fixed integer h > 0, let ¢ € {0,...,2h — 1} be the congruency class
of n mod(2h) and let A be an integer such that n = ¢+ 2A\h. We consider
the two cases:

a) 0 <c<h;

byh+1<c<2h-—1.

In case a) the modules of pop-torsion are:
with0<pu<A-1,0<i<A—pu—1

Ef+2uh,2(A—u)h—2i ~ {2h}[t*!]
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generated by eA—u—i,Qi[h]Och’_Quh;
with0< pu<A-1,0<i<A—pu—1

Ef+2uh,2()\fu)hf2ifl ~ {Qh}[til]

generated by 0>\—u—i—1,2i+1[h]01c+2“h;
with0<pu<A—1,0<i<A—pu—1

o A D LS OV ANy

generated by o,\_u_i_ml.[h}01c+2uh+h—1;
with0<p<A—=20<i<A—p—2

D A PR O VAN o

generated by ex_,_i—12i+1 [h]010+2uh+h—1_

In case b) the modules of pop-torsion are:
with0<pu<A-1,0<i<A—pu—1

Ef+2#h,2(>\—u)h—2i ~ {Qh}[til]

generated by ex_,_; 2;[h]01T2H;
with0<pu<A-1,0<i<A—pu—1
E;+2ﬂh’2()‘_ﬂ)h_2i_1 ~ {Qh}[til}
generated by ox_,_i_1,2i+1[h]01¢721R;
with0<pu<A0<i<A—pu

peTAhmhm L2020 o 4 3

generated by oy_,,_; 2;[h]01¢F21h—h=1,
With0< u<A—1,0<i<A—p—1
Ef+2,uh7h71,2(A7u)h+h+1f2i71 ~ (2R

generated by ex_,_; 2i+1 [h]01¢H21h=h=1

In the Ej-term of the spectral sequence, the only non-trivial map is the
map d; : E}”"" — EP'. that corresponds to the multiplication by the

polynomial
W — L'n 1J Ln 1
h
o = Tl - TL A5
=1 h<n
Then in E9 we have:
Ey M =0

and

Egl @R/ 902h )'
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Notice that the integer f(n,h) = |%2] — [%:2] corresponds to A in case a)
and to A+ 1 in case b).

Now we consider the higher differentials in the spectral sequence. The
first possibly non-trivial maps are d,_1 and dpy1. In case a) the map dj,_4
is given by the multiplication by

n+h—2

IT @ +td)

and the map dp4 is the null map. The maps
. +17 _ pet2ph2(A—p)h n,l
dopr—pyn * {12R}[ET] = EQ(A—NH)h PR — Eyix—in

where p goes from A — 1 to 0, correspond, up to invertible, modulo oy to

multiplication by
2h—1

b (T (1 + g

=0

Moreover they are all injective and the term E;(’l) is given by the quotient

A)h+1

2h—1 2h—1

R/(o3m: 03" H Lttg'), .., (J] 0 +tg)) =

i=0
2h—1
= R/(pan, [] (1 +ta)).
i=0
In case b) the map dj_; is null and the map dj; is the multiplication

by the polynomial
n+2h—1

H (1+tg).

i=n+h—1
The maps

2 —1,2(A— —
tj:l] _ Ec+ ph+h—1,2(A—p)h—h R El,n

do(r—p)hth+1 * {20} 2(A—p)h+h+1 2(A—p)htht1

where p goes from A to 0, correspond, up to invertible, modulo @sp,t0 mul-

tiplication by
2h—1

by (TT @+ tg')ntt,
1=0

Hence they are all injective and the term Eg()l\) hahao 18 given by the quotient

2h—1

R/(pan, J] (1+ ta) "
=0
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Since all the generators lift to global cocycles, it turns out that all the other
differentials are null. Hence we proved the following:

Theorem 7.3.6. .
H" YK B,) ~ @{{2h}} s
h>0
and, for s > 0:

H" (KB~ @ {2y

h>2
i€l(n,h)

with I(n,h) = {n,....,n+ h —2} if n ~ 0,1,...,hmod(2h), f(n,h) =
|2h=L | and I(n,h) = {n+h—1,...,n+2h—1} ifn~h+1,h+2,...,2h—
1mod(2h). O

Putting together the results of Theorem and we get Theorem
(31

As a corollary, we use the long exact sequences associated to

0— Q'™ v X — o

and

(t)

0 — QT2 Q[I*F!)) T Q[iEFY]] — 0

to get the constant coefficients cohomology for G B, Here m(z) is the mul-
tiplication by the series
> ()

1€EZ
We give only the result, omitting details which come from non difficult anal-
ysis of the above mentioned sequences and recalling that the Euler charac-
teristic of the complex is 1, for n even, and —1, for n odd.

Theorem 7.3.7.

Q if =0
Hi(GEn,Q): Q? if 1<i<n-—2
Q*lzl i i=n—-1,n

where the t and q actions correspond to the multiplication by —1. O
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Open problems

We want to list some of the many open problems related to our work and
that are left to forthcoming research.

As a generalization of the computations of Chapter [4] and Chapter [5| one
can study the homology, with integer coefficients in the ring Z[¢™'] for the
Artin groups of type D,,. Moreover the computations could be extended to
the ring of coefficients Z[¢*!,t*!], for the cases where the abelianization of
the Artin group is Z?, that is B, Fy, I2(2m). In Chapter @ we compute
the cohomology of the Artin group of type B,, with coefficients over the ring
Q[q¢™!, t*1]. The extension of the computations to the ring Z[¢T", t*!] seems
to be affordable, even if much more complicated.

A natural generalization of the results in Chapter [6] and Chapter [7] is
the computation of the cohomology for the other affine type Artin groups.
This leads to another problem. The computations in Chapter [7| were made
possible using the fact that the space Xy in case By, is of type K(m,1). It is
an open conjecture that the space Xy is a K(m, 1) for a any Coxeter group
W. Even inNaﬂEine cases, we know thg conjecture holds only for A, and C,
(|OkoT9]), By (Theorem and G (as a consequence of the results in
[CDI5h]). If this conjecture holds, it is possible to compute the cohomology
for all Artin groups using the Salvetti complex. Moreover, the conjecture
implies that all the Artin groups are torsion free, since the Salvetti complex
provides a finite resolution.

Similar to Chapter [6] Proposition [6.4.5] one can also study the cohomol-
ogy of Artin groups over non abelian representations.
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Index

g-analog

factorial,

of a binomial,

of a number,

double factorial,
g-divided polynomial algebra,
q, t-analog

of an even number,

Affine group,
Affine Weyl group,
Arrangement
simplicial, [9]
Arrangement of hyperplanes, [3] [9]
central, [J]
Artin group,
pure, [12]

Braid group,
on infinitely many strands,

pure, [12]

Chain homotopy,
Chamber,

face of a chamber,

wall of a chamber,
Characteristic degree,
Characteristic homomorphism,
Classifying space, [9]
Cohomology of a group,
Complex reflection,
Complex reflection group,
Coroot,
Coroot lattice,
Coxeter graph,
Coxeter group,

of large type,

Coxeter matrix,
Coxeter system,

irreducible,
Crystallographic group,
Cyclic cover,

Ext functor,

Face of a chamber,
Facet,

support of,

Group ring,

Homology of a group,

Induced bundle,

Lattice,
Length,

Milnor fiber,
Normalized standard complex,

Parabolic subgroup,
Poincaré series,
Principal G-bundle,

universal,
Pseudo-reflection,

Reflection,

Reflection group,

Resolution,

Root lattice, [7]

Root system,
dual,

Salvetti complex,
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Algebraic Salvetti complex,
Subalgebra
of invariant polynomials,

Tit’s representation,
Tong-Yang-Ma representation,
Tor functor,

Wall of a chamber,
Weighted

homogeneous polynomial,
Well filtered complex,

Weyl group, [7]
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