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Introduction

Background

The subject of this thesis is the study of the cohomology of some families
of Artin groups. The classical braid group Br(n) was �rst de�ned by Artin
in [Art25]. Given a manifold M of dimension d ≥ 2 we de�ne the space
F (M, n) as the con�guration space of ordered n-tuples of distinct points in
M and the space C(M, n) as the con�guration space of unordered n-tuples of
distinct points in M . Artin gives a geometric description of the braid group
Br(n). If [FN62] Fox and Neuwirth proved that the braid group de�ned by
Artin is the fundamental group of the con�guration space C(E, n) of the
Euclidean plane E. The de�nition given by Artin leaded to many interesting
generalization.

The classical theory of braids is deeply connected with the theory of
re�ection groups or Coxeter groups. Loosely speaking the classical braid
group can be obtained from the permutation group Sn dropping the torsion
relations s2 = e. We have the same kind of relation between Artin groups and
re�ection groups. In particular for each Coxeter group W we can associate
an Artin group GW . The classical Artin braid group Br(n) is the Artin
group associated to the Coxeter group of type An−1, that is the group of
permutations of n elements Sn. For each re�ection group we can associate
the arrangement of re�ection hyperplanes AW . The Coxeter group W acts
on the complement of this arrangement. In [Bri71] Brieskorn proved that
the fundamental group of the quotient XW of the complement YW of the
complexi�ed arrangement with respect to the action of the group W is the
corresponding Artin group GW .

Actually, for �nite re�ection groups, the orbit space XW of the comple-
ment YW of the complex arrangement is a classifying space of the corre-
sponding Artin group. This was proved by Fox and Neuwirth ([FN62]) for
the Artin braid group. This result had also been proved for Coxeter groups
of type An, Cn, Dn, G2, F4 and I2(p) by easy direct methods by Brieskorn
[Bri73a]. In [Del72] Deligne gives a general proof of this result for all �nite
Coxeter groups (see also [Par93]). It turns out that the braid group and all
the other Artin groups associated to �nite Coxeter groups are torsion free;
for an in�nite Coxeter groupW the corresponding Artin group GW is known
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to be torsion free only when the space XW is known to be a K(π, 1) (see
further for examples), but no much is known in general. Recently Bessis
proved ([Bes06]) that the complement YW is a K(π, 1) space for all �nite
complex re�ection groups.

The fact that for a �nite Coxeter group W the spaces XW and YW

are of type K(π, 1) is used by Brieskorn ([Bri73a]), Arnol′d ([Arn69]), Fuks
([Fuk70]), Va��n²te��n ([Va��78]), Gorjunov ([Gor78]) and others to compute
the cohomology of the corresponding fundamental groups. Independently in
[Coh76], Cohen compute the homology of the braid group using the theory
of iterated loop spaces.

For a Coxeter group W of type Ak, Dk, E6, E7 and E8, the space XW

is homeomorphic to the complement of the discriminant locus in the base
space of the versal deformation of the corresponding rational singularity (see
[Bri73b]). It is not known whether these complements are K(π, 1)'s for all
singularities.

When W is �nite, the space XW is an a�ne variety, the complement
of a singular hypersurface V associated to the group W in an a�ne space
E. In order to study the singularity associated to a Coxeter group W ,
one can consider the corresponding Milnor �bration. In [Mil68], Milnor
studies the local behaviour of a complex hypersurface V in an euclidean
space E around a singular point z0. If S is a sphere of su�ciently small
radius about z0 and K = S ∩ V , then S −K is a smooth �ber bundle over
the circle S1. In fact if f(z) = 0 de�nes V, f a complex polynomial, then
z → f(z)/|f(z)| de�nes the �bration. Many results are given in case of
an isolated singularity and the �ber F turns out to be, up to homotopy, a
wedge of spheres. The singularities associated to Coxeter groups are not
isolated. It is still possible to study the topology of the �ber, computing
the cohomology groups and the monodromy action of the �brations. It
turns out that this data provide much more information that the cohomology
of the complement XW of the singularity. Actually the Milnor �ber F is
homotopy equivalent to an in�nite cyclic covering of the complement XW

and the cohomology of the �ber F, together with the action induced by
the monodromy, is equivalent to the cohomology of the complement XW

in a local system L de�ned over the ring of Laurent polynomials in one
variable Q[q±1]. The result follows easily from the Shapiro's Lemma for
homology, while in cohomology to provide another result (Theorem 2.7.2) in
order to switch from Laurent series to Laurent polynomials. In the case of
the classical braid group this local system corresponds to the determinant
of the Burau representation ([Bur35]) and the singularity associated to W
is the discriminant. The theory of hypergeometric functions (described in
[Gel86], see also [OT01, Var95]) provides further motivations to the study of
twisted coe�cients cohomology for Artin groups.

As we have seen, the theory of Artin groups is connected with the study of
hyperplane arrangements associated to Coxeter groups. For each hyperplane
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arrangement A in an a�ne space E we can associate a combinatorial data,
namely the strati�cation induced by the arrangement on the space E. From
the topological viewpoint it is interesting to consider the complement YA of
the arrangement. In general one can ask how much the combinatorial data
determines the topology. In [Sal87] Salvetti introduced a CW-complex C
associated to a real arrangementA and determined by the strati�cation data.
He proved that this complex is homotopy equivalent to the complement of
the complexi�ed arrangement. Moreover if the arrangement A is associated
to a re�ection groupW , the groupW acts on the complex C and the quotient
complex is homotopy equivalent to the space XW (see [Sal94], [DCS96]). An
extension of the results for an oriented matroid can be found in [GR89]. For
a general complex arrangement, in [BZ92] Björner and Ziegler construct a
�nite regular cell complex of the homotopy type of the complement of the
arrangement

Using the purely combinatorial description of the Salvetti complex, it is
possible to study the local system cohomology of the space XW . We recall
that since for a �nite Coxeter group W the space XW is of type K(π, 1),
the cohomology of XW (eventually with a local system of coe�cients) is
equivalent to the cohomology of the corresponding Artin group GW . For a
�nite Coxeter group W an equivalent complex was discovered by di�erent
methods by Squier in [Squ94]. The cohomology of the space XW over the
local system L given by the ring of Laurent polynomials with rational coef-
�cients Q[q±1] was computed for all �nite irreducible Coxeter groups W by
De Concini, Procesi, Salvetti and Stumbo ([DCPS01, DCPSS99]). Indepen-
dently Frenkel′ ([Fre88]) and Markaryan ([Mar96]) get the same result, with
di�erent methods, for the Coxeter group of type An.

A natural and useful generalization of these computations is the study of
the local system over the ring of Laurent polynomials with integer coe�cients
Z[q±1]. For Artin groups associated to exceptional Coxeter groups the com-
putations are given in [CS04]. In this thesis we give a complete description in
cases An and Bn of the homology of the Artin groups, with coe�cients in the
ring Z[q±1] of Laurent polynomials. We recall that this is equivalent to the
computation of the homology of the corresponding Milnor �ber with integer
coe�cients and of the associated monodromy action. We do this generaliz-
ing some ideas of Markaryan and studying a spectral sequence induced by
a natural �ltration on the Salvetti complex. We computes the homology of
these groups, instead of the cohomology, for technical reasons and simplicity
of computations. The �nal results stated in Theorem 4.4.1 and Theorem
5.3.1 and are completely equivalent to cohomology computations. The main
problem with this computations is that the ring Z[q±1] is not a PID and
so a deep study of the spectral sequence is needed. The natural embedding
of Coxeter groups Wn ↪→ Wn+1, where Wn is a Coxeter group of type An

or Bn induces analogous maps for Artin groups and hence homology maps.
This allows us to de�ne the limit group G∞, that turns out to be in�nitely



viii Introduction

generated. In case An we have the braid group Br(∞) on in�nitely many
strands. In Corollary 4.4.2 and Theorem 5.3.2 we give a description of the
homology of this groups as the stable homology of the corresponding �nitely
generated Artin groups. Our results generalize the computations obtained
by di�erent methods by Cohen and Pakianathan in [CP07] in the case of the
braid group Br(∞) on in�nitely many strands on the same local system with
coe�cients in a �eld.

Another natural generalization of the results of [DCPS01, DCPSS99] is
the computation of the cohomology of Artin groups associated to in�nite
Coxeter groups. In this case many complications occurs. First of all in gen-
eral it is only conjectured that the space XW is of type K(π, 1). The con-
jecture is proved only in special or generic cases. Okonek in [Oko79] proves
that the space XW is of type K(π, 1) for the a�ne Coxeter group of type
Ãn (see also [CP03]) and C̃n. Other results are given by Hendriks ([Hen85])
for Coxeter groups of large type and by Charney and Davis ([CD95b]) for
Coxeter groups satisfying the FC condition and for other in�nite Coxeter
groups that are in some sense generic (see Section 1.4). Moreover in the
case of in�nite Coxeter groups we can construct a Milnor �bration only up
to homotopy.

We compute the cohomology, with coe�cients in the local system given
by the ring of Laurent polynomials Q[q±1], for the Artin group of a�ne type
Ãn. Some interesting group embedding show that this cohomology is equiva-
lent to the cohomology of the classical braid group Br(n) with coe�cients in
a non-abelian representation introduced by Tits in [Tit66] and re-discovered
later by Tong, Yang and Ma in [TYM96]. Another group embedding relates
the homology of the a�ne Artin group of type Ãn to the cohomology of
the Artin group of type Bn with coe�cients in the Laurent polynomial in
two indeterminates, Q[q±1, t±1], that turns out to be the Q-algebra of the
abelianization of the Artin group of type Bn. Hence from this cohomology
we can recover any other cohomology of this group with coe�cients in an
abelian representation. The result is given in Theorem 6.1.1. We compute
this cohomology using a �ltration and an induced spectral sequence for the
Salvetti complex for Bn. Some applications are given (see Theorem 6.3.3
and Proposition 6.4.5).

Moreover in Theorem 7.2.1 we prove that the complement YA of the
complex arrangement of type B̃n is a K(π, 1) space. This fact allows us
to compute the cohomology of the Artin group of a�ne type B̃n with co-
e�cient in the ring of Laurent polynomials Q[q±1, t±1] (Theorem 7.3.1). In
order to perform this computation we use the Salvetti complex associated
to the Coxeter group B̃n. Since this group is in�nite, some modi�cation are
necessary respect to the usual Salvetti complex. Moreover some technical
restrictions are needed in order to use the Laurent polynomials local system
to describe the cohomology of the Milnor �ber (see Proposition 7.3.2). Also
in this case we are considering the most general abelian representation for
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this group, hence as a corollary we can recover the cohomology with constant
coe�cients for the space XW associated to the a�ne Coxeter group of type
B̃n (Theorem 7.3.7).

Throughout all this thesis, we always want to keep in mind, as a �xed
picture, the classical Artin braid group. Most of our work is a study around
the topological constructions related to this group with some possible gener-
alizations. We will try to stress this, in particular in the �rst chapters, with
examples that show how general constructions, when applied to the case of
classical braids, give rise to familiar objects.

Overview

The �rst two chapters of this thesis are a short survey of some standard facts
about Coxeter groups, Artin groups and group cohomology.

Chapter 1

We brie�y resume the theory of Coxeter groups, their classi�cations and
their invariant polynomial algebras. We shows how one can associate to a
Coxeter group W a real hyperplane arrangement and to this arrangement a
space XW with a fundamental group that is an Artin group. We also present
the problem about whether or not the space XW is a K(π, 1) space and we
see how this problem has a positive solution when the Coxeter group W is
�nite. Some technical statements about Poincaré series for Coxeter group
are given. Finally we present the construction of a Milnor �bration applied
to a singularity associated to a Coxeter group.

Chapter 2

We give the basic de�nitions about group cohomology and local systems.
We state the classical results about the cohomology of Artin groups and in
particular the Shapiro's Lemma that relates the homology (or cohomology)
of two groups H, G, in case of group a extension H < G. Hence we introduce
the local system of Laurent polynomials associated to the Milnor �bration
described in the previous Chapter and we state the known results about the
cohomology of Artin groups with coe�cients in this local system.

Chapter 3

We present the construction of the Salvetti complex for a general arrange-
ment and for the special case of an arrangement of re�ection hyperplanes
associated to a Coxeter group. We explain how this gives a �nite complex
that compute the cohomology of the Artin groups. Hence we give a general
idea of the �ltration and spectral sequence techniques that we use to study
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this complex. In Section 3.4 and 3.5 we give two independent arguments
in order to see how, using Shapiro's Lemma, the cohomology of the Milnor
�ber is in some cases equivalent to the cohomology of the Artin group with
local coe�cients in the ring of Laurent polynomials.

Chapter 4

In this Chapter we compute the homology of the braid groups, with coe�-
cients in the module Z[q±1] given by the ring of Laurent polynomials with
integer coe�cients. The action of the braid group is de�ned by mapping each
generator of the standard presentation to multiplication by −q. The main
tool for our computation is the study of the cohomology of the algebra of
q-divided polynomials. The homology is endowed with a natural ring struc-
ture. Through the Chapter we prove some technical results about cyclotomic
polynomials, needed for computations.

Chapter 5

In this Chapter we compute the homology of the Artin groups of type Bn,
with coe�cients in the module Z[q±1] given by the ring of Laurent polyno-
mials with integer coe�cients. This homology turns out to be a module on
the homology computed in the previous Chapter.

Chapter 6

The result of this Chapter is the determination of the cohomology of Artin
groups of type An, Bn and Ãn with non-trivial local coe�cients. The main
result (Theorem 6.1.1) is an explicit computation of the cohomology of the
Artin group of type Bn with coe�cients over the module Q[q±1, t±1]. Here
the �rst (n−1) standard generators of the group act by (−q)−multiplication,
while the last one acts by (−t)−multiplication.

Chapter 7

In this Chapter we prove that the complement to the a�ne complex arrange-
ment of type B̃n is a K(π, 1) space. We also compute the cohomology of the
a�ne Artin group G of type B̃n with coe�cients in some local systems. In
particular, we consider the module Q[q±1, t±1], where the �rst n-standard
generators of G act by (−q)-multiplication while the last generator acts by
(−t)-multiplication. The cohomology of G with trivial coe�cients is derived
from the previous one.
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The results presented in the sections 3.4 and 3.5 and in the chapters 4, 5,
6 and 7 are original. The results presented in Section 3.5 are published
in [Cal05]. The results of Chapter 4 are published in [Cal06]. The results
of the chapters 6 and 7 are obtained in collaboration with Davide Moroni
and Mario Salvetti; the results of Chapter 6 appear in the work [CMS06a]
accepted for publication; the results of Chapter 7 appear in [CMS06c] and
are submitted for publication.
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Chapter 1

Coxeter groups and

arrangements of hyperplanes

In this Chapter we introduce some de�nitions and constructions related to
Coxeter groups. For the results presented in sections 1.1, 1.2, 1.3 and 1.5 we
mainly refer to [Bou68] and [Hum90].

1.1 Coxeter groups

We denote by W a group (with multiplicative notation) and by S a system
of generators of W such that S = S−1, e /∈ S.

De�nition 1.1.1. Let w ∈ W . The smallest integer l ≥ 0 such that w can
be written as a product of l elements of S is called length of w with respect
to S and is written lS(w).

Moreover, now we suppose that the set S is made of elements of order 2.

De�nition 1.1.2. The couple (W,S) is called Coxeter system if, for all
s, s′ ∈ S, the following holds: let m(s, s′) be the order or the product ss′ and
let I be the set of couples (s, s′) such that m(s, s′) is �nite, then the set S
with the relations (ss′)m(s,s′) = e for all (s, s′) in I is a presentation for the
group W , that is

W =< s, s′ | (ss′)m(s,s′) = e > .

If (W,S) is a Coxeter system we also callW a Coxeter group. Let X ⊆ S,
we write WX for the subgroup of W generated by the elements of X. A
subgroup like this and any subgroup conjugated to it by an element of W is
called parabolic subgroup.

Proposition 1.1.3. Let (W,S) be a Coxeter system and let X ⊆ S. The
following properties hold:



2 Coxeter groups and arrangements

(i) (WX , X) is a Coxeter system, for any X ⊂ S;

(ii) If we consider WX as a subgroup of W with length function lX , then
we have the equality lX = lS for all the elements in the subgroup WX ;

(iii) Let us de�ne WX = {w ∈ W | l(ws) > l(w)∀s ∈ X}. Given w ∈ W
there exist a unique element u ∈ WX and a unique element v ∈ WX

such that w = uv. Moreover l(w) = l(u) + l(v) and u is the unique
element of shortest length in the coset wWX .

2

We can associate to a Coxeter system (W,S) a symmetric matrix with
values in N ∪ {+∞}; this matrix is called Coxeter matrix ad is de�ned as
follows: M = (m(s, s′))s,s′∈S , where m(s, s′) is the order of the element
ss′. We can also associate to the Coxeter system (W,S) a graph Γ, called
Coxeter graph, with labelling function f , as follows: the vertexes of the graph
Γ correspond to the elements of S and the edges of Γ correspond to the pairs
{s, s′} of distinct elements of S such that m(s, s′) ≥ 3. The function f
associates to the edge {s, s′} the value m(s, s′). It is clear that the Coxeter
matrix completely determines the Coxeter graph and also the converse is
true.

De�nition 1.1.4. We call a Coxeter system (W,S) irreducible if its graph
Γ is connected.

In the picture of a Coxeter graph it is convenient to write above each
edge e the value f(e). In order to simplify the reading we usually omit to
write the value f(e) when it is equal to 3.

Example 1.1.5. We can easily see that the dihedral group of order 2m is a

Coxeter group with two generators. Its Coxeter matrix is

(
1 m
m 1

)
, and

its Coxeter graph is:

����	
�
1

m

2
����	
� if m ≥ 3

or simply

����	
�
1 2

����	
� if m = 3

����	
� ����	
� if m = 2

Analogously the symmetric group Sn+1 can be represented by the graph:

����	
�
1

����	
�
2

����	
�
3

����	
�
n−1 n

����	
�
with n vertexes.
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1.2 Coxeter groups and arrangements

Let E be an a�ne real space of �nite dimension and suppose we have a set of
hyperplanes H ⊂ E. We call the collection H an arrangement of hyperplanes
of E. We can de�ne the following equivalent relation between points in E:
we say that two points x, y are in the same equivalence class if and only if
for all H ∈ H one of the following hold:

(i) x ∈ H and y ∈ H;

(ii) x and y are in the same open half-space determined by the hyperplane
H.

De�nition 1.2.1. We call facet of E with respect to the arrangement H

each one of the equivalence classes for the relation de�ned above.

De�nition 1.2.2. We call support of a facet the intersection of all the hy-
perplanes that contain the facet.

De�nition 1.2.3. We call chamber of E (with respect to the arrangement
H) a facet the is not contained in any hyperplane of H.

De�nition 1.2.4. Let C be a chamber of E. We call faces of C all the facets
that are contained in the closure C and whose support is an hyperplane of
the arrangement H. Moreover we say that an hyperplane H is a wall of C if
it is the support of a face of C

Now we suppose that the space E is endowed with a scalar product
(i.e. a bilinear, symmetric, positively de�ned, non degenerate form). Given
an hyperplane H we write sH for the orthogonal re�ection with respect to
H. Let H an arrangement of hyperplanes of E and let W be the group
of isometries generated by the orthogonal re�ections with respect to these
hyperplanes. We call W re�ection group. Clearly W acts in a natural way
on the a�ne subspaces of E. Let us suppose that the following conditions
are satis�ed:

(i) The arrangement H is closed for the action of W ;

(ii) Given two compact subsets K and L of E, the set {w ∈W | w(K)∩L 6=
∅} is �nite.

Then the set H is locally �nite and we have the following:

Theorem 1.2.5. Let C be a chamber and S the set of orthogonal re�ections
with respect to the walls of C.

(i) The couple (W,S) is a Coxeter system;
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(ii) Let w ∈ W and H be a wall of C. The relation l(sHw) > l(w) imply
that the chambers C and w(C) are on the same side with respect to to
the hyperplane H;

(iii) For every chamber C ′ there exist a unique element w ∈ W such that
w(C) = C ′;

(iv) H is the set of hyperplanes H such that sH ∈W .
2

Let (W,S) be a Coxeter system. We can represent W as a group gener-
ated by orthogonal re�ections in an euclidean space. Consider the real vector
space V with dimension n = |S | and with basis {αs | s ∈ S}. We endow the
space V with the bilinear symmetric form so de�ned:

B(αs, αs′) =
{
− cos π

m(s,s′) if m(s, s′) ∈ Z,
−1 if m(s, s′) =∞.

For each s ∈ S we associate the re�ection σs given by

σs(x) = x− 2B(αs, x)αs.

By means of the re�ections σs we can de�ne a unique homomorphism σ :
W → GL(V), which is called Tit's representation of W .

Theorem 1.2.6. Let W be a Coxeter group. The homomorphism σ de�ned
above is injective. Moreover the following statements are equivalent:

(i) W is �nite;

(ii) The form B is positive, non degenerate;

(iii) W is a �nite orthogonal re�ection group.
2

Remark 1.2.7. It follows from the injectivity of σ that a re�ection group is
completely determined by its Coxeter graph.

1.3 Finite and a�ne Coxeter groups

Let V be a vector space of dimension n over a generic �eld K.

De�nition 1.3.1. We call pseudo-re�ection an endomorphism s of V such
that Id− s has rank 1. We call s re�ection if s2 = Id.

Now let we suppose that G is a subgroup of GL(V) generated by pseudo-
re�ections. Moreover we suppose that the characteristic of K does not divide
the order of the group G (e.g. when char(K) is 0). We �x a basis {v1, . . . , vn}
of V and we consider the symmetric algebra S of V. This algebra is canon-
ically isomorphic to the polynomial algebra A = K[x1, . . . , xn]. We can
consider the subalgebra R = AG of the G-invariant polynomials. We have :



1.3 Finite and a�ne Coxeter groups 5

Theorem 1.3.2 (Chevalley). The subalgebra R is generated, as a K-algebra,
by n homogeneous algebraically independent elements f1, . . . , fn of positive
degree. In particular R is a graded polynomial K-algebra with trascendancy
degree n over K. 2

Clearly the family of generators is not uniquely determined, but we have
the following uniqueness result:

Theorem 1.3.3. Let f1, . . . , fn and g1, . . . , gn be two set of homogeneous,
algebraically independent polynomials generating R. We write di (resp. ei)
for the degree of fi (resp. gi). Then, up to reordering the two sets, for all
indexes i we have that di = ei. 2

De�nition 1.3.4. We call the integers di characteristic degrees (or charac-
teristic exponents) of G.

We can now state the following result for �nite Coxeter groups:

Theorem 1.3.5. Let (W,S) be a �nite irreducible Coxeter system. Its Cox-
eter graph is one of the following listed in Table 1.1 and its characteristic
degrees are indicated in the Table. 2

Example 1.3.6. In the case An the Coxeter group W is isomorphic to
the group of permutations Sn+1 with set of generators S = {σi,i+1 | i =
1, . . . , n}. The group Sn+1 acts over Rn+1 permuting the coordinates and the
subspace of W -invariant vectors is given by the line λ = {x1 = · · · = xn+1}.
We can chose as a set of invariant polynomials the symmetric polynomi-
als in n + 1 variables. If we consider the orthogonal space λ⊥ we get an
n-dimensional vector space where W acts as a group of orthogonal trans-
formations. Moreover the action of W on the space λ⊥ is essential, that is
the space of W -invariant vectors is {0}. Finally the W -invariant polynomi-
als algebra is generated by n algebraically independent elements, that is the
symmetric polynomials of degree 2, . . . , n+ 1 in the variables x1, . . . , xn+1.

Now let V be a real vector space endowed with a scalar product ( · , · ).
We call lattice of V the Z-span of a basis of V. A subgroup G of GL(V)is
said to be crystallographic if it stabilizes a lattice L in V, that is gL ⊂ L for
all g ∈ G. It turns out that most �nite re�ection group are crystallographic.
We have the following condition:

Proposition 1.3.7. If a Coxeter group W is crystallographic, then each
integer m(s, s′) must be 2, 3, 4 or 6 when s 6= s′ in S. 2

This criterion rules out the groups of type H3, H4 and the groups I2(m)
for m di�erent from 2, 3, 4, 6. For all the remaining cases it is possible to
construct a W -stable lattice.

Now we need to introduce the de�nition of root system. Given a nonzero
vector α ∈ V we write Hα for the hyperplane orthogonal to α and sα for
the orthogonal re�ection that �xes Hα pointwise and maps α to −α.
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Table 1.1: Coxeter graphs for �nite Coxeter groups
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De�nition 1.3.8. A �nite subset Φ of nonzero vectors in V is called root
system if it satis�es the following conditions:

(R1) Φ ∩ Rα = {α,−α} for all α ∈ Φ;

(R2) sαΦ = Φ for all α ∈ Φ;

(R3) 2(α,β)
(β,β) ∈ Z for all α, β ∈ Φ.

De�nition 1.3.9. Setting α∨ = 2α
(α,α) , the set Φ∨ is the set of all coroots

α∨ for α ∈ Φ. It is also a crystallographic root system called inverse or dual
root system.

De�nition 1.3.10. The Z-span L(Φ) of Φ in V is called root lattice. Simi-
larly we de�ne the coroot lattice L(Φ∨).

The group W generated by the re�ections sα for α ∈ Φ is known as
Weyl group of Φ and it turns out that Weyl groups are the same thing as
crystallographic Coxeter group. However there are two distinct root systems
Bn and Cn dual to each other, each giving as Weyl group the group previously
labelled as Bn.

We want to consider not just orthogonal re�ections on V, but also a�ne
re�ections relative to hyperplanes that do not necessarily pass through the
origin. Hence we introduce the a�ne group Aff(V), which is the semidirect
product of GL(V) and the group of translations by elements of V. It is easy
to see that the group of translations is normalized by GL(V).

Given a root system Φ, for each root α and each integer k de�ne the
a�ne hyperplane

Hα,k = {v ∈ V | (v, α) = k}.
Note that Hα,0 = Hα and that Hα,k can be obtained by translating Hα by
k
2α

∨. We de�ne the corresponding a�ne re�ection as follows:

sα,k(v) = v − ((v, α)− k)α∨.

De�nition 1.3.11. We de�ne the a�ne Weyl group Wa to be the subgroup
of Aff(V ) generated by all a�ne re�ections sα,k, where α ∈ Φ, k ∈ Z.

The structure of Wa is more clear considering the following:

Proposition 1.3.12. The group Wa is the semidirect product of W and the
translation group corresponding to the coroot lattice L = L(Φ∨). 2

It turns out that any a�ne Weyl group can be represented as a re�ec-
tion group. We will call these group a�ne Coxeter group. The following
classi�cation result is the a�ne analogous of Theorem 1.3.5.

Theorem 1.3.13. The Coxeter group for which the associated bilinear form
B is positive semide�nite and not positive de�nite are precisely the a�ne
Weyl groups. The Coxeter graphs of the irreducible a�ne Weyl groups are
those listed in the following Table 1.2. 2
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Ẽ7 ����	
�

����	
�
1

����	
�
2

����	
�
3

����	
�
5

4

����	
�
6 7

����	
�
8
����	
�
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1.4 K(π, 1) spaces, arrangements and Artin groups

De�nition 1.4.1. Let X be a topological space and let π be a discrete
group. We call X classifying space for the group π, or simply we say that X
is a K(π, 1) space, if the following conditions hold:

(i) X is path connected;

(ii) π1(X) = π;

(iii) πn(X) = 0 ∀n > 1.

Equivalently X is a path connected space with a contractible universal cover.

For any discrete group G it is possible to realize a classifying space as
a CW-complex. This complex can be obtained starting from a presentation
of G and de�ning the complex skeleton by skeleton. We start with a single
point x0 and we attach to x0 as many 1-cells as the number of generators of
G. Then for each relation in the presentation of G we can attach a 2-cell,
gluing the boundary along the loop given by the relation, in order to add the
relation to the fundamental group of the CW-complex. This construction
give us a space with G as fundamental group. Hence we add, skeleton by
skeleton, higher dimension cells in order to kill all the higher homotopy
groups. In general it is not possible to get a K(π, 1) space as a �nite CW-
complex. For example if the group G is �nite and the CW-complex X is a
classifying space for G, then X must be in�nite dimensional. We'll see that
in the case of some of the groups that we are going to consider there exist
classifying spaces that are �nite CW-complexes. This will give us an easier
way to perform explicit computations in cohomology.

Let V be a �nite dimensional vector space and let

A = {H1, . . . ,Hn}

be a �nite arrangement of hyperplanes of V. If all the hyperplanes of the ar-
rangement A pass through the origin we say that the arrangement is central .
If V is a complex vector space, a deep topological problem is to understand
how the combinatorial properties of the arrangement A determine the topol-
ogy of the complement

YA = V \
⋃

H∈A
H.

An important problem is to understand when the space YA is a K(π, 1)
space. Given a real arrangement AR in the real space VR, the complement
YAR is the disjoint union of open chambers. If the arrangement is central,
these chambers are cones on the origin. We say that a central arrangement
AR is simplicial if each chamber of the complement YAR is a simplicial cone,
that is it is a cone over the standard simplex.



10 Coxeter groups and arrangements

A special family of complex arrangement is given by arrangements of
hyperplanes de�ned by real equations. It means that we can get such an
arrangement starting from a real arrangement AR in a real vector space R
and complexifying our space and our arrangement:

V = VR ⊗R C

A = {HR ⊗R C, for HR ∈ AR}.

An important property of simplicial arrangements is given by the follow-
ing

Theorem 1.4.2 ([Del72]). Let AR be a real �nite central arrangement and
let YA be the complement of its complexi�cation. If AR is simplicial, then
YA is a K(π, 1) space. 2

With more generality one can consider a�ne arrangements and in�nite
arrangements.

Let W be a Coxeter group, with presentation

< s, s′ | (ss′)m(s,s′) = e > .

We can give the following:

De�nition 1.4.3. We call Artin group of type W the group GW given by
the following presentation:

< gs | s ∈ S,
m(s,s′)factors︷ ︸︸ ︷
gsgs′gsgs′ · · · =

m(s,s′)factors︷ ︸︸ ︷
gs′gsgs′gs · · · per s 6= s′,m(s, s′) 6= +∞ > .

Loosely speaking the group GW is the group obtained from a presentation
of W dropping the relation s2 = e for s ∈ S.

Example 1.4.4. In the case of the symmetric group W = Sn+1 with gen-
erators s1, . . . , sn we get the commuting relations

sisj = sjsi

for | i− j |> 2 and
sisi+1si = si+1sisi+1

for i = 1, . . . , n− 1. The last ones are called braid relations. In this example
the group GW associated to W is called braid group on n strands and is
denoted by Br(n). We can think to an element of Br(n) (a braid) as a
collection of n paths in R3 that do not intersect each other. Moreover each
path connect a point of a n-tuple, for example we can think to the set of
points (i, 0, 0), i = 1, . . . , n, with a point in a second n-tuple, for example the
points (i, 1, 0), i = 1, . . . , n. Finally we require that each path (each strand)
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is parametrized such that the second coordinates is an increasing function.
Two braids are identi�ed if they are homotopic. We can endow the set of
equivalence class of homotopic braids with a group structure as follows. The
product of two braids is given gluing the second braid to the end of the
�rst braid and rescaling the new braid. If we consider the space C(n) of
unordered n-tuples of distinct points in the space C, we can de�ne the braid
group as Br(n) = π1(C(n)). Notice that C(n) can be obtained taking the
complement of the hyperplanes of equation zi = zj in Cn, that is taking the
complement of the arrangement of re�ection hyperplanes associated to Sn

and then, taking the quotient with respect to the action of Sn.

The same construction can be done for a �nite Coxeter group W , we can
realize W as a group of linear re�ections of Rm (as explained in Section 1.2)
and let H be the arrangement of hyperplanes associated to W . The group
W acts on the space

YW = Cm \
⋃

H∈H

HC

and a result of Brieskorn (see [Bri71]) states that GW = π1(YW /W ). If
there is no ambiguity we simply write Y instead of YW , with the group W
understood.

With more generality, let W be a (�nitely generated) Coxeter group,
which we realize through the Tits representation as a group of (in general,
non orthogonal) re�ections in Rn, where the base-chamber C0 is the positive
octant and S is the set of re�ections with respect to the coordinate hyper-
planes. (It is possible to consider more general representations; see [Vin71]).
Let U := W.C0 be the orbit of the closure of the base chamber (the Tits
cone). Recall that ([Vin71]):

(i) U is a convex cone in Rn with vertex 0.

(ii) U = Rn if and only if W is �nite.

(iii) U0 := int(U) is open in Rn and a (relative open) facet F ⊂ C0 is
contained in U0 if and only if the stabilizer WF is �nite.

Let A be the arrangement of re�ection hyperplanes of W . Set

YW := [U0 + iRn] \
⋃

H∈A
HC

as the complement of the complexi�ed arrangement. Notice that the group
W acts freely on YW so we can consider the orbit space

XW := YW /W

.
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Theorem 1.4.5 ([Bri73a, Dun83, vdL83]). The Artin group GW is the fun-
damental group of the orbit space XW . 2

We can also consider the fundamental group of YW :

De�nition 1.4.6. We call pure Artin group associated to W the group

PAW = π1(YW ).

Since we have the covering

W ↪→ YW → XW

the group PAW is simply the kernel of the natural homomorphism GW →W
and we have the short exact sequence that we obtain from the homotopy long
exact sequence of the covering:

0→ PAW
i
↪→ GW

π→W → 0.

where every standard generator of the Artin group GW maps to the corre-
sponding standard generator of the Coxeter group W :

π : gs 7→ s ∀s ∈ S.

Given an element w ∈ W we can take a reduced expression of w, that is
w = si1 · · · s1l

where l = l(w) is the length of w. In this way we can lift w
to the element ψ(w) = gsi1

· · · gs1l
that lies in GW (actually ψ(w) lies also

in the positive monoid of GW ). We have the following Theorem (see. e.g.
[GP00]):

Theorem 1.4.7 (Matsumoto's Theorem). Let (W,S) be a Coxeter system
and (M, )̇ a monoid. Suppose that is given a map f : S →M such that:

m(s,t) factors︷ ︸︸ ︷
f(s)f(t)f(s) · · · =

m(s,t) factors︷ ︸︸ ︷
f(t)f(s)f(t) · · ·

where both the terms have m(s, t) factors. Then there exist a unique exten-
sion f̂ : W →M , such that f̂(w) = f(si1) · · · f(s1l

) whenever w = si1 · · · s1l

is a reduced expression. 2

As a consequence of this Theorem, the element ψ(w) does not depend on
the choice of the reduced expression of w, so we have a set-theoretic section
ψ : W → GW for the map π : GW →W .

In the case of the braid group described above, we have that the kernel of
the projection π : Br(n)→ Sn is the pure braid group on n strands PBr(n)
that is the subgroup of Br(n) given by those braids that do not permute the
ending points, that is those collections of paths γ(t) = (γ1(t), . . . , γn(t)) such
that γi(0) = (i, 0, 0) and γi(1) = (i, 1, 0).
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In the case we are considering (type An, W = Sn+1) it is easy to see
that the space YW is a K(π, 1) by induction on n (see [Bri73a]). In fact the
projection on the �rst n coordinates gives a �bration p : YAn → YAn−1 with
�ber over the point x = (x1, . . . , xn) given by the space C \ {x1, . . . , xn}.
This is a K(π, 1), hence the thesis follows from the homotopy long exact
sequence of the �bration. As a consequence YW /W is a K(π, 1) because it
is covered by YW .

In general since any real arrangement associate to a �nite Coxeter group is
simplicial, there is the following important consequence of Theorem [Del72]:

Theorem 1.4.8 ([Del72]). Let W be a �nite Coxeter group, then the space
YW is a K(π, 1) space. 2

For a general Coxeter groupW it is only conjectured thatYW is aK(π, 1)
space. For a�ne Coxeter groups of type Ãn and C̃n Okonek proved that the
space Y is a K(π, 1) (see [Oko79]). In [Hen85] Hendriks prove the conjecture
for Coxeter groups of large type, that is groups with Coxeter matrix m with
m(s, t) 6= 2 for all s, t.

Accordingly to [CD95b], we say that a Coxeter system satis�es the FC
condition if for every subset T ⊂ S such that every pair of elements t, t′ ∈ T
generate a �nite group, the T generate a �nite group.

In [CD95b] Charney and Davis gave a proof of the conjecture for Coxeter
group satisfying the FC condition and for those Coxeter groups that are in
some sense generic, that is those for which each parabolic subgroup generated
by 3 elements in in�nite.

In a complex vector space V it is possible to consider also complex re-
�ections, that is pseudore�ections of �nite order, possibly di�erent from 2.
A group generated by complex re�ections is called complex re�ection group.
The theory of this kind of groups seems much more complicated than the
theory of usual Coxeter groups. It is possible to consider the complement
Y of the arrangement of the hyperplanes �xed by complex re�ections of a
complex re�ection group. Recently Bessis proved ([Bes06]) that for any �nite
complex re�ection group, the complement Y is a K(π, 1) space.

In Section 7.2 we prove that

Theorem 1.4.9. For the a�ne Coxeter group W of type B̃n the space YW

is a K(π, 1). 2

1.5 Poincaré polynomials and Poincaré series

Let us �x a Coxeter system (W,S). For every subset X ⊂ W we can de�ne
the (�nite or in�nite) sum

X(t) =
∑
w∈X

tl(w).
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In case X = W we get, by de�nition, the Poincaré series W (q) of W .
Moreover it holds

W (t) =
∑

w∈W

tl(w) =
∑
n≥0

ant
n

where an = #{w ∈ W | l(w) = n}. If I ⊂ S, then WI(t) coincides with
the Poincaré series of WI , as follows from (ii) in Proposition 1.1.3. As a
consequence of (iii) of the same Proposition we have

W (t) = WI(t)W I(t).

For �nite Coxeter groups the Poincaré series (actually polynomials) are
well known. We mention a factorization formula that will be useful later:

Theorem 1.5.1. Let W be a �nite Coxeter group. We have:

W (t) =
n∏

i=1

tdi − 1
t− 1

where d1, . . . , dn are the characteristic degrees of W . 2

In order to recall closed formulas for Poincaré series, we �rst �x some
notations that will be adopted throughout all the following. We de�ne the
q-analog of a positive integer m to be the polynomial

[m]q := 1 + q + · · · qm−1 =
qm − 1
q − 1

Let ϕi(q) be the i-th cyclotomic polynomial in the variable q. It is easy to
see that [m] =

∏
i|m ϕi(q). Moreover we de�ne the q-factorial and double

factorial inductively as:

[m]q! := [m]q · [m− 1]q!
[m]q!! := [m]q · [m− 2]q!!

where it is understood that [1]! = [1]!! = [1] and [2]!! = [2]. A q-analog of
the binomial

(
m
i

)
is given by the polynomial[

m
i

]
q

:=
[m]q!

[i]q![m− i]q!

We can also de�ne the (q, t)-analog of an even number

[2m]q,t := [m]q(1 + tqm−1)

and of the double factorial

[2m]q,t!! :=
m∏

i=1

[2i]q,t = [m]q!
m−1∏
i=0

(1 + tqi).
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Note that specializing t to q, we recover the q-analog of an even number and
of its double factorial. Finally, we de�ne the polynomial[

m
i

]′
q,t

:=
[2m]q,t!!

[2i]q,t!![m− i]q!
=
[
m
i

]
q

m−1∏
j=i

(1 + tqj). (1.5.1)

With this notation the ordinary Poincaré series for An, Bn and Dn may be
written as

An(q) :=
∑

w∈An

q`(w) = [n+ 1]q! (1.5.2)

Bn(q) :=
∑

w∈Bn

q`(w) = [2n]q!! (1.5.3)

Dn(q) :=
∑

w∈Dn

q`(w) = [2(n− 1)]q!!. · [n]q (1.5.4)

For future use in cohomology computations, we are interested in a (q, t)-
analog of the usual Poincaré series for Bn, that is an analog of the Poincaré
series with coe�cients in the ring R = Q[q±1, t±1] of Laurent polynomials.
This result and similar ones are studied in [Rei93], to which we refer for
details.

Consider the Coxeter group W of type Bn with its standard generating
re�ections s1, s2, . . . , sn. For w ∈ W , let n(w) be the number of times sn

appears in a reduced expression for w. By Matsumoto Lemma, the number
n(w) is well-de�ned for a reduced expression of w.
We de�ne the (q, t)-weighted Poincaré series for the Coxeter group of type
Bn as the sum

W (q, t) =
∑

w∈W

q`(w)−n(w)tn(w),

where ` is the length function.

Proposition 1.5.2 ([Rei93]).

W (q, t) = [2n]q,t!!.

Proof. Consider the parabolic subgroup WI associated to the subset of re-
�ections I = {s1, . . . , sn−1}. Notice that WI is isomorphic to the symmetric
group on n letters An−1 and that it has index 2n in Bn. LetW I be the set of
minimal coset representatives for W/WI . Then, by multiplicative properties
on reduced expressions:

W (q, t) =
∑

w∈W

q`(w)−n(w)tn(w)

=
( ∑

w′∈W I

q`(w′)−n(w′)tn(w′)
)
·
( ∑

w′′∈WI

q`(w′′)−n(w′′)tn(w′′)
)
. (1.5.5)



16 Coxeter groups and arrangements

Clearly, for elements w′′ ∈ WI , we have n(w′′) = 0; so the second factor in
(1.5.5) reduces to the well-known Poincaré series for An−1:∑

w′′∈WI

q`(w′′)−n(w′′)tn(w′′) = [n]q!.

To deal with the �rst factor, instead, we explicitly enumerate the elements
of W I . Let pi = sisi+1 · · · sn for 1 ≤ i ≤ n. Then, it can be easily veri�ed
that W I = {pirpir−1 · · · pi2pi1 | i1 < i2 < · · · < ir−1 < ir}. Notice that
n(pirpir−1 · · · pi2pi1) = r and `(pirpir−1 · · · pi2pi1) =

∑r
j=1 `(pij ) =

∑r
j=1(n+

1− ij). Thus, ∑
w′∈W I

q`(w′)−n(w′)tn(w′) =
n−1∏
i=0

(1 + tqi).

Finally,

W (q, t) =
( n−1∏

i=0

(1 + tqi)
)
[n]q! = [2n]q,t!!.

2

1.6 The Milnor �bration for arrangements

We now give a short resume of some results due to Milnor (see [Mil68] as a
main reference).

Let f(x1, . . . , xm) be an analytic function onm complex variables de�ned
on a neighborhood of the origin that maps to C and is null in the origin.
We denote by Z the set {x | f(x) = 0} and by K the intersection of Z with
Sε = {z ∈ Cn | ‖z‖ = ε}. We can map the complement Sε \K to the circle
S1 with the map

φ(z) =
f(z)
| f(z) |

.

The following Theorem holds:

Theorem 1.6.1 (Fibration Theorem). There exists an ε0 > 0 such that for
ε ≤ ε0 the space Sε \K is a C∞ �bre bundle over S1, with projection map
φ(z) = f(z)

|f(z)| . 2

It follows from this Theorem that each �ber

Gθ = φ−1(eiθ)

is a C∞ manifold of real dimension 2(m− 1). We call the �ber G = G0 the
Milnor �ber of f . Moreover we have this result:

Theorem 1.6.2. Each �ber Gθ is parallelizable and it has the homotopy
type of a �nite CW-complex of dimension m− 1. 2
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De�nition 1.6.3. Let us chose a smooth one-parameter set of homomor-
phisms

ht : G0 → Gt

for 0 ≤ t ≤ 2π, where h0 is the identity. We call the homomorphism h = h2π

the characteristic homomorphism of the �bration f .

Note that h depends on the choice that we have made for the 1-parameter
set of maps ht's, but its homotopy class is uniquely determined.

De�nition 1.6.4. We say that a polynomial f(z1, . . . , zm) is a weighted
homogeneous polynomial of type (a1, . . . , am) if it can be written as a linear
combination of monomials zi1

1 · · · zim
m such that

i1
a1

+ · · ·+ im
am

= 1

This is equivalent to ask that

f(e
c

a1 z1, . . . , e
c

am zm) = ecf(z1, . . . , zm) ∀c ∈ C.

Every homogeneous polynomial is an analytic function that is zero at the
origin. So we have:

Proposition 1.6.5. Let f be a weighted homogeneous polynomial. The Mil-
nor �ber G given by f is di�eomorphic to the nonsingular hypersurface

F = {z ∈ Cm | f(z) = 1}.

We can choose as a characteristic homomorphism h : G→ G (or h : F→ F)
the unitary transformation

h(z1, . . . , zm) = (e2πi/a1z1, . . . , e
2πi/amzm).

2

Example 1.6.6. Given an hyperplane arrangement A ⊂ Cn, for each hyper-
plane H ∈ A let lH be a linear functional such that ker lH = H. Moreover
we can associate to each hyperplane H a nonnegative integer a(H). Now we
can consider the homogeneous polynomial given by the product

f(z) =
∏
H∈A

l
a(H)
H .

This gives a Milnor �bration f : YA → C∗. It is a standard fact in the
theory of hyperplane arrangements that YA has torsion-free homology (see
[OT92]). If n = 2, it is known thatH∗(F; Z) is torsion-free, as F is homotopic
to a bouquet of n − 1-spheres. In [CDS03] it is proved that for each prime
p and integer n > 2 there exist an arrangement A in Cn and integers a(H)
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for H ∈ A for which H1(F,Z) has p-torsion. An important feature of the
polynomials f constructed in [CDS03] is the fact that they are not reduced,
that is a(H) > 1 for some H. The possibility of �nding torsion homology
in the Milnor �ber for a reduced f remains open. We note also that if
[γH] is the homotopy class of a complete loop around the hyperplane H in
the fundamental group π1(YA), then the map f] induced by f sends each
element [γH] to a(H) ∈ Z = π1(C∗) and clearly the fundamental group of
the Milnor �ber is the kernel of the map:

f] : π1(YA)→ Z.

Now consider a �nite Coxeter group W acting on the real vector space
V as a re�ection group. Let VC = V ⊗R C be the complexi�ed space of V.
The group W acts in a natural way on the space VC. Since the polynomials
fi of Theorem 1.3.2 are W -invariant, the map f : VC → Cn de�ned by
f : (x1, . . . , xn) 7→ (f1, . . . , fn) passes to the quotient and induces a map
f ′ : VC/W → Cn. We get that the quotient space VC/W is an a�ne variety
isomorphic to the a�ne complex space Cn. In fact the following Theorem
holds (see [Che55, ST54, Loo84]):

Proposition 1.6.7. The map f ′ is a proper homeomorphism of the space
VC/W onto a normal subvariety of Cn, whose algebra of regular functions
correspond through the map f to the algebra R of W -invariant polynomials.

2

In particular, since VC is irreducible and has complex dimension n, its
image must be an open set of Cn containing the origin and it follows easily
that the map f ′ must be surjective.

We denote by H the arrangement of hyperplanes whose re�ections sH
belong to W

H = {H ⊂ V | σH ∈W}.

Again we consider the map f . It determines a rami�ed covering f : VC → Cn

and we have the following

Proposition 1.6.8. Let us �x a set f1, . . . , fn of homogeneous, algebraically
independent generators of the algebra of W -invariant polynomials R. Set
J = det( ∂fj

∂xj
) to be the corresponding Jacobian. Moreover let we set D =∏

H∈H lH to be the de�ning polynomial of the arrangement.

(a) J = kD for some nonzero constant k depending on the choice of the
polynomials fi.

(b) A polynomial g is W -alternating if and only if it can be written as the
product of J times an invariant polynomial.

2
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Hence given ∆ =
⋃

H∈H H and let ∆′ be the image of ∆ through f . If
we consider the restriction of the map f to the sets:

YW = VC \∆

XW = Cn \∆′

we get the covering

YW
f7−→ XW

where the group W is the group of deck transformations of the covering and
the space XW is isomorphic to the space YW /W .

Now let W,V, D be as in Proposition 1.6.8 and set δ = D2. It is clear
that δ is a W -invariant homogeneous polynomial. Hence δ can be written as
a polynomial on the fi's, that is:

δ(z1, . . . , zm) = δ′(f1, . . . , fm).

Let F be the Milnor �ber for the map δ : VC → C. Each element ofW maps
the �ber F to itself. If we consider the quotient map δ′ : VC/W → C (where
VC/W is considered as an a�ne space) and the corresponding Milnor �ber
F′, it is clear that F′ = F/W . Moreover, if we denote by N the degree
of δ, it turns out that δ is a weighted homogeneous polynomial of type
(1/N, . . . , 1/N), while δ′ is weighted homogeneous of type (d1/N, . . . , dm/N),
where di is the degree of fi.

We recall that sinceW is �nite the space XW is a classifying space for the
Artin group GW and the map δ′] induced by δ′ on the fundamental groups
sends each standard generator gs, s ∈ S of the Artin group to 1 ∈ Z =
π1(C∗). If we set HW = π1(F′) we get the short exact sequence

0→ HW �GW

δ′]→ Z→ 0.

Hence the Milnor �ber F′ is a classifying space for the group HW .

Remark 1.6.9. The description of the map f# given in Example 1.6.6 implies
that each standard generator gs of the group GW corresponds to a loop
around the singularity in the space XW and lifts to an half loop in the space
YW . Moreover each standard generator gs maps to 1 ∈ Z.
Remark 1.6.10. If W is a �nite irreducible Coxeter group di�erent from
Bn, F4, I2(2m), then the group HW is the commutator subgroup of the Artin
group GW .

Example 1.6.11. Again we consider the special case of W of type An−1

and so the Artin group GW is the braid group Br(n). In this case the space
Y is the complement of the braid arrangement

Cn \
⋃
i<j

{zi = zj}
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that is the space F(C, n) of ordered con�gurations of n distinct point in
C. The quotient X = Y/W is the space C(C, n) = C(n) of unordered
con�gurations of n distinct points in C. The map δ is given by the product∏

i<j

(zi − zj)2.

We can regard the space X as the space of monic polynomials of degree n
with n distinct roots and, for a polynomial p ∈ X, the map δ′(p) is the
discriminant d(p), that is the resultant of p and its derivative p′. So the
Milnor �ber is given by

F = {p | res(p, p′) = 1}

where res(p, p′) is the resultant of the polynomial p and its derivative p′ (see
[AGZV88].

In this work we want to study the cohomology (and the homology) of the
�ber F′ for some irreducible Coxeter groups. We will also try to generalize,
up to homotopy, the �brations described here to �brations over (C∗)2 and
to �brations for in�nite Coxeter groups and we will study the cohomology
of the generalized homotopy Milnor �ber.



Chapter 2

Group cohomology and local

systems

Sections 2.1 and 2.2 contains standard de�nitions and constructions of group
cohomology. We refer for most of the proofs and for any missing detail to
[AM94] (see also [Ste51]).

2.1 Principal bundles and K(π, 1) spaces

Let F → E
p→ B be a locally trivial �ber bundle with �ber F and with

projection map p. Given another space X and a map f : X→ B there exist
an induced bundle f ](E) that is the subspace of the product X × E given
by the couples (x, y) such that f(x) = p(y). The bundle f ](E) is also called
pull-back bundle. We have the following commuting diagram:

F

��

F

��
f ](E)

p2 //

p1

��

E

p

��
X

f // B

De�nition 2.1.1. Let G be a topological group. A �ber bundle

F→ E
p→ B

is called principal G-bundle if the action of the group G on the total space
E is e�ective (that is gx = x if and only if x = e) and each �ber F is exactly
an orbit of the action of G.

It is clear from the de�nition that the �ber F of a principal G-bundle
is homeomorphic to the group G. If G has the homotopy type of a CW-
complex there is a special principal G-bundle such that all other G-bundles
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can be obtained from this as pull back. We have the following Theorem due
to Milnor

Theorem 2.1.2. For a given group G there exists a space BG and a principal
G-bundle with total space EG,

G→ EG
p→ BG,

such that for any principal G-bundle G → E → B there exists a unique
homotopy class of maps f : X→ BG such that f ](EG) = E. 2

It follows that BG is unique, up to homotopy equivalence. In fact if we
have two such spaces, say BG,B′

G, we should have two maps f : BG → B′
G,

g : B′
G → BG that induce respectively the �ber bundle EG and E′

G. It
follows that the compositions fg : B′

G → B′
G, gf : BG → BG induce

respectively the �ber bundle E′
G and EG. Hence the two compositions must

be homotopic to the identity, respectively on the space BG,B′
G.

De�nition 2.1.3. A principal G-bundle G → EG
p→ BG as in Theorem

2.1.2 is called universal principal G-bundle.

We have the following result:

Theorem 2.1.4. A principal G-bundle G→ E
p→ B is universal if and only

if the total space is contractible. 2

As a consequence of this Theorem we have:

Corollary 2.1.5. If π is a discrete group and B is a K(π, 1) space, the
universal covering G→ E

p→ B is a universal π-bundle. 2

This justify the following generalized de�nition of classifying space:

De�nition 2.1.6. If G is a topological group and G → EG
p→ BG is a

universal principal G-bundle, the space BG is called classifying space for G.

2.2 Homology and cohomology of groups

Using the notion of classifying space we can give the following de�nition:

De�nition 2.2.1. Let A be an abelian group, we call the groups

H∗(G;A) = H∗(BG;A)

the cohomology groups of the group G with (untwisted) coe�cients in the
group A.
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It is possible to give a purely algebraic de�nition of the cohomology of
a group G and this allows us to generalize this concept. First suppose that
a group G acts on the group of coe�cients A, that is suppose that A is
a G-module. We can de�ne the group ring Z[G] as the ring of �nite linear
combinations of elements ofG with coe�cients in Z, with the product de�ned
as follows: (∑

migi

)
·
(∑

m′
ig
′
i

)
=
∑

(mim
′
i)(gig

′
i).

With this de�nition the group A is a natural Z[G]-module and the struc-
ture of G-module corresponds to the structure of Z[G]-module.

De�nition 2.2.2. Let M be a Z[G]-module, we call resolution of M over G
a long exact sequence of Z[G]-modules Ci with maps ∂i,

0←M
∂0← C0

∂1← C1
∂2← C2 ← · · ·

∂i← Ci ← · · · .

If each module Ci is a free Z[G]-module, we have a free resolution.

It is easy to see that a free resolution of M always exists.

Proposition 2.2.3. Let φ : M → N be a momorphism of Z[G]-modules and
let

0←M
∂0← C0

∂1← C1
∂2← C2 ← · · ·

0← N
∂0← D0

∂1← D1
∂2← D2 ← · · ·

be two free resolutions. Then there exist morphisms φi : Ci → Di, 0 ≤ i <∞,
such that the diagram

0 Moo

φ

��

C0∂0

oo

φ0

��

C1∂1

oo

φ1

��

C2∂2

oo

φ2

��

· · ·oo

0 Noo D0∂0

oo D1∂1

oo D2∂2

oo · · ·oo

commutes. Moreover, given another choice of morphisms φ′0, φ
′
1, . . . such that

the diagram commutes, there exist maps µi : Ci → Di, 0 ≤ i < ∞ such that
∂i+1µi + µi−1∂i = φ′i − φi. 2

The maps µi give a chain homotopy of the two resolutions. Again we
consider A a Z[G]-module and we de�ne the Ext functor

Exti
Z[G](M ;A)

to be the i-th cohomology group of the cochain complex

HomZ[G](Cj , A) = Cj(M,A)
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for a given free resolution of M . It follows from Proposition 2.2.3 that any
two free resolutions are chain homotopic, hence the groups Exti

Z[G](M ;A)
do not depend on the chosen resolution.

In case that Z and A are trivial Z[G]-modules, than we get the previously
de�ned untwisted cohomology of G:

Exti
Z[G](Z;A) = H i(G;A).

In fact we can consider a CW-complex structure on BG and the induced CW-
complex structure in EG: since EG is contractible, the associated cellular
chain complex is a free resolution of Z with Z[G]-modules (the structure is
given by the action of G on the �ber of each cell of BG); moreover

HomZ[G](C∗(EG), A) = HomZ(C∗(BG), A).

Hence the groups Ext give a generalizations of the cohomology groups of G.
If the group ring Z[G] acts non trivially on the group A, we will write

H∗
t (G;A) in place of

ExtZ[G](Z;A).

De�nition 2.2.4. The groups ExtZ[G](Z;A) =H∗
t (G;A) are called cohomol-

ogy groups of G. If the action of G is nontrivial we talk of twisted coe�cients
or simply we say that these groups are the cohomology groups of G with co-
e�cients in the module M if the action of G is understood (in this case we
can simply write H∗(G;A)).

In an analogous way we can de�ne the Tor functor

TorZ[G]
∗ (M,A) = H∗(C∗ ⊗G A)

for a free resolution C∗ of M with G-modules and we can give the following

De�nition 2.2.5. The groups TorZ[G]
∗ (Z, A) = H∗(G;A) are the groups of

homology of G with coe�cients in the module M .

As for the cohomology, the algebraic de�nition generalizes a geometric
construction and we have that

H∗(G;A) = H∗(BG;A)

.
The case of twisted cohomology (resp. homology) corresponds to the

topological de�nition of cohomology (resp. homology) of a space X with a
local system of coe�cients.
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Theorem 2.2.6. Let G be a discrete group, A a Z[G]-module and X a
k(G, 1) space. The map G → Aut(A) determines a local system of groups
LA on the space X. Let X̃ be the universal cover of X. We have the following
isomorphism, of complexes:

C∗(X,LA) = HomZ[G](C∗(X̃), A)

C∗(X,LA) = C∗(X̃)⊗Z[G] A.

In particular the twisted cohomology (resp. homology) of G with coe�cients
in the module A is isomorphic to the cohomology (resp. homology) of the
space X with coe�cients in the local system LA:

H∗(G,A) ' H∗(X,LA)

H∗(G,A) ' H∗(X,LA).

2

2.3 Cohomology of Artin groups

The study of the cohomology with constant (or untwisted) coe�cients for
braid groups and the other in�nite families of �nite type Artin groups (i.e.
Bn and Dn) has been started by Arnold in the 70's (see [Arn69, Arn70a,
Arn70b]) and has been terminated with the contribution of many people.

A �rst important computations, due to Fuks, is the cohomology of the
braid groups Br(n) with coe�cients in Z2:

Theorem 2.3.1 ([Fuk70]). The generators of the group Hk(Br(n),Z2) can
be identi�ed with the partitions of n as a sum of n− k powers of 2. We can
denote this generators by < 2l1 , . . . , 2ln−k >, l1 ≥ · · · ≥ ln−k.

The multiplicative ring H∗(Br(n),Z2) is generated by the elements

ar,k =

2k elements︷ ︸︸ ︷
< 2r, . . . , 2r > (r ≥ 1, k ≥ 0)

with dim ar,k = 2k(2r − 1), and with relations

<

km︷ ︸︸ ︷
2m, . . . , 2m, . . . ,

k1︷ ︸︸ ︷
2, . . . , 2 ><

lm︷ ︸︸ ︷
2m, . . . , 2m, . . . ,

l1︷ ︸︸ ︷
2, . . . , 2 >=

=
(
km + lm
km

)
· · ·
(
k1 + l1
k1

)
<

km+lm︷ ︸︸ ︷
2m, . . . , 2m, . . . ,

k1+l1︷ ︸︸ ︷
2, . . . , 2 >

a2
r,k = 0

ar1,k1 · · · arq ,kq = 0 if 2r1+k1+···+rq+kq > m.

2
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The computation of the cohomology is done using a decomposition in
cells of the Alexandro�'s compacti�cation of the unordered con�guration
space C(n). To obtain such a decomposition it is considered the point at
in�nity and the cells of type e(m1, . . . ,mk), where e(m1, . . . ,mk) is the sub-
set of C(n) given by the points {z1, . . . , zn} ∈ C(n) such that the points
z1, . . . , zn ∈ C lie exactly on k vertical real lines and moreover, numbering
the lines from left to right, we have that exactly mi points lie on the ith line.

After this result, the cohomology of braid groups has been computed
with coe�cients in Zp for all other primes. Several independent results have
been obtained by Cohen ([Coh76]), Segal ([Seg73]) and Vainshtein ([Va��78]).

In [Coh76] Cohen establishes a general theory of homology operations
in n-fold loop spaces. This leads to the computation of the homology of
ΩnΣnX. When n = 2 and X = S0 this gives the homology of classical braid
groups. The key point for the computation of the homology of braid groups
is the study of the map

Cn(R2) ↪→ Ω2Σ2S2

where Cn(R2) is the space of unordered con�gurations of n points in R2.
In [Va��78] Vainshtein use the same decomposition introduced by Fuks.

Here we rewrite the result in the formulation given by Vainshtein.
First note that the braid group Br(n) naturally embeds in the group

Br(n+ 1) and we can de�ne the limit group

Br(∞) = lim−→n Br(n).

Theorem 2.3.2 ([Va��78]). For a prime p 6= 2 the ring H ∗(Br(∞); Zp) is the
tensor product of the polynomial algebras Zp[xi], dimxi = 2pi+1 − 2, i ≥ 0
and the exterior algebra with generators yj ,dim yj = 2pj − 1, j ≥ 0. There is
a natural map

H∗(Br(∞); Zp)→ H∗(Br(n); Zp)

that is surjective. Its kernel is generated by monomials xr1 · · ·xrsyl1 · · · ylt

with 2(pr1+1 + · · · + prs+1 + pl1 + · · · + plt) > n. Let βp be the Bockstein
homomorphism associated to the short exact sequence

0→ Zp → Zp2 → Zp → 0,

then it holds that βpxi = yi+1, βpyi = 0. 2

Theorem 2.3.3 ([Va��78]). We have the following isomorphisms:

H0(Br(n); Z) = H1(Br(n); Z) = Z

Hq(Br(n); Z) =
⊕

p

βpH
q−1(Br(n); Zp) for q ≥ 2

where the sum is understood over all primes p. 2
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The cohomology with integer coe�cients for Artin groups of families Bn

and Dn has been computed by Gorjunov:

Theorem 2.3.4 ([Gor78, Gor81]).

Hq(GBn ; Z) =
∞⊕
i=0

Hq−i(Br(n− i); Z);

Hq(GDn ; Z) = Hq(Br(n); Z)⊕

⊕

 ∞⊕
j=0

Hq−2j(Br(n− 2j); Z)/Hq−2j(Br(n− 2j − 1); Z)

⊕
⊕

[ ∞⊕
k=0

Hq−2k−3(Br(n− 2k − 3); Z2)

]
.

The multiplicative structure of H∗(GBn ; Z) and H∗(GDn ; Z) is induced
by multiplication in the cohomology of braids. 2

For Artin group of type E6, E7, E8, F4,H3,H4, I2(m) (exceptional cases)
the cohomology has been computed by Salvetti in [Sal94]. The result is
showed in Table 2.1.

W I2(2s) I2(2s+ 1) H3 H4 F4 E6 E7 E8

H0 Z Z Z Z Z Z Z Z
H1 Z2 Z Z Z Z2 Z Z Z
H2 Z Z 0 Z2 0 0 0
H3 Z Z×Z2 Z2 Z2 Z2 Z2

H4 Z Z Z2 Z2
2 Z2

H5 Z6 Z2
6 Z2×Z6

H6 Z3 Z3×Z6×Z Z3×Z6

H7 Z Z2 ×Z6×Z
H8 Z

Table 2.1: Cohomology with constant coe�cients: exceptional cases

2.4 Fibrations for Artin groups

Given an Artin group GW we consider again the space XW in order to study
the Milnor �bration

F′ ↪→ XW → C∗.

If the group W is �nite, we recall that it acts on the complex vector space
V with orthogonal re�ections. The product

δ =
∏

l2H
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where H are the hyperplanes such that the corresponding re�ection is in W ,
determines a W -invariant map V→ C and hence induce a map

δ′ : V/W → C

and the �ber F′ is the Milnor �ber of the non isolated singularity F′
0 =

δ′−1(0) = δ−1(0)/W . Moreover the map

δ′] : GW = π1(XW )→ π1(C∗) = Z

maps each generator gs to 1 and the Milnor �ber F′ is a classifying space for
the ker δ′].

IfW is an a�ne Coxeter group, which acts by a�ne orthogonal re�ections
on the complex a�ne space E, we can consider for each root α the complex
function fα : E→ C so de�ned:

fα(v) = (e2πı(v,α) − 1)

and we de�ne the map δ as ∏
α∈Φ

fα.

Again it is clear that the map δ is W -invariant and δ is zero exactly on the
union of the hyperplanes

F0 =
⋃

α∈Φ,k∈Z
Hα,k.

In general δ (and so also δ′) is not a �bration, but we can take homotopy
equivalent spaces X̃W and C̃∗ and a �bration δ̃′ : X̃W → C̃∗ homotopy
equivalent to δ′. Call F′ the generic �ber of δ̃′.

Hence F′ is the homotopy Milnor �ber of the nonisolated singularity
F′

0 = F0/W of the analytic map δ′ induced by δ.
In order to understand the topology of this singularity, we want to study

the cohomology (or homology) of the �ber F′.

2.5 A topological construction

Let V = Cm a complex vector space and f : V→ C a weighted homogeneous
polynomial of type (a1, . . . , am) as in Section 1.6. The singular �ber is F0 =
{v ∈ V | f(v) = 0} and we have the Milnor �bration

F ↪→ X
f→ C∗

where X is the complement V\F0. Fix 1 as base point of C∗ and an arbitrary
point x0 as base point of F. By standard homotopy theory we can extend
the �bration sequence to the left, to obtain, up to homotopy, a new �bration:

ΩC∗ ↪→ F→ X
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where ΩC∗ is the space of maps S1 → C∗, with base point the constant
map 1 and it is homotopy equivalent to the integers Z. Since the inclusion
F ↪→ X is not a �bration, we have to replace F by a homotopy equivalent
space F to get an actual �bration over X:

ΩC∗ ↪→ F π→ X. (2.5.1)

The space F is given by:

F = {(x, γ) : x ∈ X, γ : [0, 1]→ C∗, γ(0) = 1, γ(1) = f(x)}.

The map π is given by the projection on the �rst coordinate. We can �x an
homotopy equivalence between F and F as follows. First de�ne the inclusion
i : F ↪→ F, mapping a point x ∈ F to the couple (x, 1) where 1 is the constant
path. We de�ne how to lift a point (x, γ) ∈ F to a path γ̃ : [0, 1]→ X by

γ̃(t) = (x1[γ(1− t)]
− 1

a1 , . . . , xm[γ(1− t)]−
1

am ).

Finally, we de�ne a retraction r : F → F by r(x, γ) = γ̃(0). It is easy to
prove that the maps i and r de�ne an homotopy equivalence between F and
F.

This means that the Milnor �ber is homotopy equivalent to an in�nite
cyclic cover of X. We can count the sheets of the cover by the numbers
of loop in C∗. Moreover the deck transformations of F coincide with the
monodromy group of F generated by the characteristic homomorphism h.
Since the inclusion i : F ↪→ F is an homotopy equivalence we can identify
the cohomology groups H∗(F;R) ' H∗(F;R) for a ring R. Set a :=

∏
i ai.

Since ha = Id, the action of Z = π1(C∗) on H∗(F;R) factors through Z/aZ.
So we can consider H∗(F;R) as a R[q±]-module, where multiplication by q
acts as h.

Associated to the �bration (2.5.1) the have a Leray-Serre spectral se-
quence that converges to H∗(F, R). The E2-term is

Ep,q
2 = Hp(X;Hq(ΩC∗;R))

where the action of the fundamental group of X on Hq(ΩC∗;R) is the mon-
odromy action. Since ΩC∗ is homotopy equivalent to Z, its cohomology is
concentrated in degree 0 and we can write it multiplicatively as the module
of Laurent series R[[t±]]. If we consider the subgroup Z ⊂ AutR[q±](R[[q±]])
generated by the multiplication by q, we have that

H∗(F, R) = H∗(X;R[[q±]])

where we consider the local system on the space X given by the module
R[[t±]] with action de�ned through the map

π1(X)
f→ π1(C∗) = Z ⊂ AutR[q±](R[[q±]]).
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The dual result in homology gives

H∗(F, R) = H∗(X;R[q±])

with the analogous local system de�ned with the module R[q±] on the space
X. Since ha = Id we �nally observe that 1 − qa annihilates H∗(F, R) and
H∗(F, R).

2.6 The Shapiro's Lemma

LetH < G be two groups and letM be a Z[H]-module. By means of the ring
inclusion Z[H] ↪→ Z[G] we can de�ne the induced and coinduced modules of
H in G. We set:

IndG
HM = Z[G]⊗Z[H] M

and
CoIndG

HM = HomZ[H](Z[G],M).

We have the following result (see [Bro82]):

Lemma 2.6.1 (Shapiro's Lemma). If H < G and M is a Z[H]-module, then

H∗(H;M) ' H∗(G, IndG
HM)

and
H∗(H;M) ' H∗(G; CoIndG

HM).

Proof. Let C be a free resolution of Z over Z[G]. We can regard C as a
resolution of Z with free Z[H] modules, hence we have the isomorphism

H∗(H;M) ' H∗(C ⊗Z[H] M).

Since C ⊗Z[H] M ' C ⊗Z[G] (Z[G]⊗Z[H] M) ' C ⊗Z[G] (IndG
HM), we get the

�rst equality.
The second equality follows from the isomorphism

HomZ[H](C,M) ' HomZ[G](C,CoIndG
HM)

and this is a consequence of the following general fact: let α : R → S be a
homomorphism of unitary rings, given a S-module N , a R-module M and
a morphism of R-modules f : N → M , there exists a unique morphism of
S-modules g : N → HomR(S,M) such that πg = f :

HomR(S,M)

π

��
N

g
99rrrrrrrrrrr f // M
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where π is the valuation induced on the element 1. Hence:

HomS(N,HomR(S,M)) ' HomR(N,M).

In order to prove the last statement we note that g must verify the
relation sg(n) = g(sn) for all s ∈ S, n ∈ N ; valuating both the terms of the
equality in 1 we �nd that g(n)(s) = g(sn)(1) = π(g(sn)) = f(sn); then the
existence and uniqueness of such a morphism g follow easily. So the Lemma
is proved. 2

2.7 Topology of the Milnor �ber for Artin groups

Recalling the previous observations, let W be a Coxeter group. We consider
the �bration

F ↪→ YW
δ→ C∗

F′ ↪→ XW
δ′→ C∗

described in Section 2.4. We have that π1(XW ) = GW and π1(YW ) = PAW

and if we set π1(F′) = HW we have the following short exact sequence of
homotopy groups:

0→ HW �GW
π→ Z→ 0

that is Z ' GW /HW . Recall that π maps each standard generator gs to 1.
If the group W is �nite, then the map δ′ is given by a weighted homo-

geneous polynomial and we can use the observations of Section 2.5 to show
that

H∗(F′;R) = H∗(XW ;R[[q, q−1]])

and
H∗(F′;R) = H∗(XW ;R[q, q−1])

where GW acts on R[q, q−1] and R[q, q−1] mapping each gs to the multipli-
cation by q.

By means of the Shapiro's Lemma we can state the result with more
generality. Consider any Coxeter group W such that YW is a K(π, 1) space.
If W is in�nite, let F′ be the homotopy Milnor �ber of the map δ′. We have
the following result (see [Fre88]):

Theorem 2.7.1. Let W be a Coxeter group such that YW is a K(π, 1) space
and let

F′ ↪→ XW
δ′→ C∗

be the associated Milnor �bration. The �ber F′ is a K(π, 1) space and we
have the isomorphisms

H∗(F′;R) = H∗(HW ;R) = H∗(GW ;R[q, q−1]) = H∗(XW ;R[q, q−1]),

H∗(F′;R) = H∗(HW ;R)H∗(GW ;R[[q, q−1]]) = H∗(XW ;R[[q, q−1]]).

2
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The argument is the same as that used in [CS98] for the homology of
arrangements of hyperplanes.

One can also prove (as we will see in Section 3.4 and 3.5) that for �niteW
the cohomology of GW computed over the Laurent series module R[[q, q−1]]
is equivalent to the cohomology computed with coe�cients over the module
of Laurent polynomial R[q, q−1], with a degree shift:

Theorem 2.7.2. If W is a �nite Coxeter group

H i(GW ;R[[q, q−1]]) ' H i+1(GW ;R[q, q−1]).

2

In the case R = Q this result has already been observed by C. De Concini
using the Universal Coe�cients Theorem. In Section 3.4 and Section 3.5 two
independent proofs of Theorem 2.7.2 are given. In the case of an in�nite
Coxeter group, a partial result can be given in order to compute the coho-
mology H∗(GW ;R[[q, q−1]]) in terms of H∗(GW ;R[q, q−1]). We will see an
application of this partial generalisation in Section 7.3.2.

2.8 Cohomology of the Milnor �ber: known results

The cohomology of braid group with twisted coe�cients over the Laurent
polynomial ring Q[q, q−1] was computed in [DCPS01]. This result has been
obtained using a natural �ltration on the complex C∗ associated to the braid
group. Later in [DCPSS99] the computations for the cohomology over the
same ring Q[q, q−1] have been performed with similar methods for Artin
groups of type Bn and Dn.

We recall the notation ϕm for the m-th cyclotomic polynomial. The
results are the following:

Theorem 2.8.1 ([DCPS01]). Let Rq be the local system over the ring R =
Q[q, q−1] given by mapping each standard generator of Br(m + 1) to the
multiplication by −q. We denote by {h} the quotient module R/(ϕh). If
hi = m+ 1 or if hi = m then

H i(h−2)+1(Br(m+ 1), Rq) = {h}.

All the other cohomology groups are zero. 2

The same result was independently found by Frenkel in [Fre88] and Mar-
karyan in [Mar96].

With the same notation, for the cases Bn and Dn we have:

Theorem 2.8.2 ([DCPSS99]).

Hn(GBn , Rq) =
⊕
r|n

{2r}
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and, for s > 0,
Hn−2s+1(GBn , Rq) =

⊕
r≤ n

2s
,r|n

{2r}

Hn−2s(GBn , Rq) =
⊕

r≤n−1
2s

,r|n

{2r}.

2

Theorem 2.8.3 ([DCPSS99]). For n ∈ N, let Sn = {k ∈ N : k | n or k |
2(n− 1) but k - n− 1}. We use the convention that {h} = R/(ϕh) if h is an
integer, otherwise {h} = 0, we have that:

Hn(GDn , Rq) =
⊕

2h∈S−n

{2h}

and, for s > 0,

Hn−2s(GDn , Rq) =
⊕

1<h≤n−2
2s

,2h∈Sn

{2h} ⊕
{
n− 1
s

}

Hn−2s+1(GDn , Rq) =



⊕
1<h≤n−2

2s
,2h∈Sn

{2h} ⊕
{n
s

}⊕2 if n
s is an integer,
even, n > 2⊕

1<h≤n−2
2s

,2h∈Sn

{2h} ⊕
{n
s

}
otherwise.

2

For Artin groups of type I2(m), H3, H4, F4, E6, E7, E8, analogous
computations over the ring of Laurent polynomials with rational coe�cients
Q[q±1] can be found in [DCPSS99]. The same computations have been ex-
tended to integer coe�cients, Z[q±1] in [CS04]. We report the result in Table
2.2. We use the convention of writing R for the ring Z[q±1] and the number
m for the module R/(ϕm). Moreover we de�ne the following ideals:

I4 = (ϕ2, 2)[60]/ϕ60; J4 = [24]/ϕ24;
I6 = (ϕ3ϕ6ϕ9ϕ12); I7 = (ϕ2ϕ6ϕ14ϕ18);
I8 = (ϕ2, ϕ4)ϕ20[24][30]/[6].
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W I2(m) H3 H4 F4

H0 0 0 0 0
H1 2 2 2 2
H2 R/[m] 0 0 2
H3 R/(ϕ2ϕ6ϕ10) 0 R/(ϕ2ϕ3ϕ6)
H4 R/I4 R/J4

W E6 E7 E8

H0 0 0 0
H1 2 2 2
H2 0 0 0
H3 0 0 0
H4 Z/2 Z/2 Z/2
H5 6⊕ 8 6⊕ Z/2 4
H6 R/I6 Z/3⊕ (ϕ2, 3)R/ϕ6(ϕ2, 2) Z/2⊕ Z/3
H7 R/I7 8⊕ 12⊕ Z/3
H8 R/I8

Table 2.2: Cohomology with coe�cients in the ring Z[q±1]: exceptional cases



Chapter 3

Topology of arrangements

3.1 The Salvetti complex

Now we present a cell complex that has the same homotopy type of a the
complement YA of the complexi�cation of a real arrangement AR. If the
arrangement AR is the re�ection arrangement of a Coxeter group W , then
the complex we are going to show is W -invariant and taking the quotient
respect to the action of W we get a complex with the same homotopy type
of the space XW . The construction we are going to present can be found in
[Sal87], [Sal94] and [DCS96], where we refer for all proofs.

Let AR be a �nite real arrangement in Rn. The arrangement induces a
strati�cation of the space Rn in facets. We call S the set of all facets and we
partially order S saying that F > F ′ if and only if F ⊃ F ′. Let Q the dual
cell complex of S. We can realize Q inside Rn associating to each facet F j

of codimension j the point v(F j) ∈ F j and considering the simplexes

σ(F i0 , . . . , F ij ) = {
j∑

k=0

λkv(F jk) |
∑

λk = 1, λk ∈ [0, 1]}

where F ik > F ik+1 for k = 0, . . . , j − 1. We de�ne the j-cell ej(F̃ j), dual to
F̃ j , as the union

⋃
σ(F 0, . . . , F j−1, F̃ j), over all the chains F 0 > · · · > F̃ j .

Hence we have Q =
⋃
ej(F j), where the union is taken over all facets in S.

We can think to the 1-skeleton Q1 as a graph and we de�ne the combi-
natorial distance between two vertexes v, v′ of Q as the minimum number
of edges in an edge-path connecting v to v′. For each cell ej we indicate by
V (ej) = Q0 ∩ ej the 0-skeleton of ej . We have:

Lemma 3.1.1. For every vertex v ∈ Q0 and for every cell ei ∈ Q, there
exists a unique vertex w(v, ei) ∈ V (ei) of minimal distance from v, that is:

d(v, w(v, ei)) < d(v, v′) ∀v′ ∈ V (ei) \ {w(v, ei)}

If ei ⊂ ej then w(v, ej) = w(w(v, ei), ej). 2
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Take a cell ej = ej(F j) =
⋃
σ(F 0, . . . , F j−1, F j) of Q and let v ∈ V (ej).

We can map the simplex s(F 0, . . . , F j) in Cn by the application

φv,ej (
∑

λkv(F k)) =
∑

λkv(F k) + i
∑

λl(w(v, ek)− v(F k)).

One can prove that φv,ej gives an embedding of ej in YA. We call Ej(ej , v)
the image of the map φv,ej , and we de�ne the Salvetti complex for the ar-
rangement A as the union

M =
⋃
Ej(ej , v),

where the union is taken over all ej and v.

Theorem 3.1.2 ([Sal87]). The CW-complex M is homotopy equivalent to
the complement YA. 2

We remark that the fact that the maps φv,ej glue together in the proper
way is a consequence of Lemma 3.1.1.

Suppose that the arrangement A is the re�ection arrangement associated
to a �nite Coxeter group W . We have that the complex M is invariant for
the action of W and we call

C = M/W

its quotient. We will give a description of this quotient complex.
Let us �x a chamber C0 in the complement of the real arrangement AR

and let v0 be the vertex of Q contained in C0. We denote by S0 the system
of facets of C0 (that is, the set of all facets included in the closure of C0) and
by Q0 the set of all cells that are in Q and are dual to a facet in F0, that is
Q0 is the set of all cells that intersect the chamber C0. Note that Q0 is not
a CW-complex. The following result holds:

Proposition 3.1.3. For every facet F ∈ S, there exists a unique facet F0 ∈
S0 that belongs to the W -orbit of F . For every cell e ∈ Q, there exists a
unique cell e0 ∈ Q0 that belongs to the W -orbit of e. The elements γ ∈ W
such that γ(e0) = e give a left coset of the stabilizer WF 0 of F 0, where F 0 is
the dual of e0 2

As a consequence of Proposition 1.1.3 it follows that there exists a unique
element of minimal length in each coset of WF 0 . We denote by γ(e) the
element of minimal length with respect to the Coxeter system associated to
the chamber C0 and which maps e0 to e. Now let YA be as before. We have
the following result:

Theorem 3.1.4. The space Y/W has the same homotopy type of the CW-
complex C obtained as a quotient of Q identifying two cells e, e′ if and only
if they are in the same W -orbit, using the identi�cation map induced by the
element γ(e)γ

−1
(e′). 2
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De�nition 3.1.5. We call the complex C = CW the Salvetti complex for
the group W and we denote by πW : Q→ CW the projection map.

Corollary 3.1.6. Let W be a �nite essential Coxeter group, the number of

i-cells in CW is

(
n
i

)
. 2

We can use the complex CW to compute the cohomology and homology
of the group GW . First suppose that the action of W is essential. Let
H1, . . . ,Hn be the walls of the fundamental chamber C0, in correspondence
with the re�ections of the set of generators of W {s1, . . . , sn} = S. Let vi

be the chosen point in Hi ∩ C0. Each facet F ∈ S0 corresponds to a unique
intersection Hi1 ∩ · · · ∩Hik , k = codim (F ), where the Hij are the walls of
C0 that contain F and i1 < · · · < ik. We endow the dual cell e(F ) with the
orientation induced by the order of v0, vi1 , . . . , vik . Moreover we orient each
cell e ∈ Q requiring the map γ(e) to be orientation-preserving. In this way
the incidence number [e : e′] ∈ {0, 1,−1} between cells of M is well de�ned
and passes to the quotient in XW .

To each cell in CW there corresponds a unique cell in Q0 and a unique
facet in S0. As a consequence, for every cell F ∈ F0 there is a unique subset
Γ = Γ(F ) ⊂ In = {1, . . . , n} such that F = ∩j∈ΓHj .

Lemma 3.1.7. Let F ∈ S0 corresponds to the set Γ. Let G′ ∈ S a facet
W -equivalent to F ′ ∈ S0, with Γ′ = Γ(F ′) ⊂ Γ, |Γ| = |Γ′|+ 1, and such that
F ′ ⊂ G′ (hence G′ is WF -equivalent to F ′). Then e(G′) ⊂ e(F ) and the
following holds:

[e(F ) : e(G′)] = (−1)l(G′)[e(F ) : e(F ′)]

where l(G′) is the minimum length l(g) of an element g ∈W mapping F ′ to
G′. 2

We give a description of the algebraic complex C∗ that compute the
cohomology of CW , that is the algebraic Salvetti complex.

Let us de�ne Ck as the free Z-module generated by k-cells of CW , k =
0, . . . , n:

Ck = {
∑

aΓΓ | aΓ ∈ Z,Γ ⊂ In, |Γ| = k}.

Theorem 3.1.8. We have

H∗(CW ; Z) ' H∗(C∗)

where the coboundary δk : Ck → Ck+1 is de�ned by:

δk(Γ) =
∑

j∈In\Γ

(−1)σ(j,Γ)+1)(
∑

h∈WΓ∪{j}/WΓ

(−1)l(h))(Γ ∪ {j})

We de�ne σ(j,Γ) = |{i ∈ Γ | i < j}| and WΓ(F ) = WF . l(h) is the minimum
of the length of an element h in the coset h. 2
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More generally, we can consider the cohomology with coe�cients in a
local system. We use the following result:

Theorem 3.1.9. Let W be a �nite Coxeter group and CW the Salvetti com-
plex for W . Let M be a GW -module and let ψ : W → GW be the section
de�ned in Theorem 1.4.7. Suppose we have a local system L = L(CW ;M)
over CW with coe�cients in the module M given by the action of GW on
M . Then

H∗(CW ;L) ' H∗(C∗)

where the complex C∗(q) is given by

Ck = {
∑

aΓe(Γ) | aΓ ∈M,Γ ⊂ In, |Γ| = k}

and the coboundary map is

δk(aΓe(Γ)) =
∑

j∈In\Γ

∑
w∈WΓ

Γ∪{j}

(−1)σ(j,Γ)(−1)l(w)ψ(w)aΓe(Γ ∪ {j}).

2

In the special case where R is a unitary commutative ring with q a unit
of R and M is an R-module, consider the local system Lq = Lq(CW ;M)
over CW with coe�cients in the moduleM given by mapping each standard
generator of GW = π1(CW ), represented by a 1-cell πW (e), e ∈ Q0 ∩Q1, to
the automorphism of M given by multiplication by −q. Then

H∗(CW ;Lq) ' H∗(C∗(q))

where the complex C∗(q) is given by

Ck(q) = {
∑

aΓΓ | aΓ ∈M,Γ ⊂ In, |Γ| = k}

and the coboundary map is

δk(q)(Γ) =
∑

j∈In\Γ

(−1)σ(j,Γ)WΓ∪{j}(q)
WΓ(q)

(Γ ∪ {j}).

The cohomology of exceptional Artin groups was computed in [Sal94]
using this special case of the complex described in Theorem 3.1.8.

Clearly one can use the Salvetti complex also to compute the homology.
The homology version of the complex of Theorem 3.1.9 is:

Ck = {
∑

aΓe(Γ) | aΓ ∈M,Γ ⊂ In, |Γ| = k}

and the boundary map is

∂k(aΓe(Γ)) =
∑
j∈

∑
w∈W

Γ\{j}
Γ

(−1)σ(j,Γ)(−1)l(w)ψ(w)aΓe(Γ \ {j}).
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For the local system Lq = Lq(CW ;M) de�ned as before, the complex C∗ =
C∗(q) for the homology is the following

Ck(q) = {
∑

aΓΓ | aΓ ∈M,Γ ⊂ In, |Γ| = k}

and the boundary map is

∂k(q)(Γ) =
∑
j∈Γ

(−1)σ(j,Γ) WΓ(q)
WΓ\{j}(q)

(Γ \ {j}).

We remark that although the choice of the multiplication by q would be
equivalent, we use−q, which seems more natural to us, and also for coherence
with [CP07], [DCPS01], [DCPSS99].

The construction of the Salvetti complex can be extended to any in�nite
Coxeter group W .

Take one point x0 in the fundamental chamber C0; for any subset J ⊂ S
such that the parabolic subgroup WJ is �nite, construct a (|J | − 1)-cell in
U0 as the �convex hull� of the WJ -orbit of x0 in Rn.

Figure 3.1: the space K(GÃ2
, 1) is given as union of 3 hexagons with edges

glued according to the arrows (there are: 1 0-cell, 3 1-cells, 3 2-cells in the
quotient).

So, we obtain a �nite cell complex (see Figure 3.1) which is the union of
(in general, di�erent dimensional) polyhedra, corresponding to the maximal
subsets J such that WJ is �nite. Now take identi�cations on the faces of
these polyhedra, the same as described for the �nite case (they are shown in
Figure 3.1 for the case Ã2). We obtain a �nite CW-complex XW : it has a
|J |-cell for each J ⊂ S such that WJ is �nite.

We obtain as in [Sal94]:
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Theorem 3.1.10. CW is a deformation retract of the orbit space. 2

The algebraic complex we get, for a local system over a GW -module M
is

Ck = {
∑

aΓe(Γ) | aΓ ∈M,Γ ⊂ In, |Γ| = k, |WΓ| <∞}.

The boundary formula is exactly the same. For the coboundary, just take
the sum over the j's such that |WΓ∪{j}| <∞.

Remark 3.1.11. The standard presentation for GW is quite easy to derive
from the topological description of CW ; we may thus recover Van der Lek's
result [vdL83].

Proposition 3.1.12. Let Kfin
W := {J ⊂ S : |WJ | < ∞} with the natural

structure of simplicial complex. Then the Euler characteristic of the orbit
space (so, of the group GW when such space is of type K(π, 1))) equals

χ(Kfin
W ).

In particular, if W is a�ne of rank n+ 1 we have

χ(XW ) = χ(Kfin
W ) = 1− χ(Sn−1) = (−1)n

Proof. Last statement follows from the fact that Kfin
W contains all proper

subsets of S; thus:
H∗(K

fin
W ) = H̃∗−1(Sn−1).

2

Remark 3.1.13. In our computations in the next chapters, sometimes we will
study cohomology and some others homology. The di�erent choice has no
special meaning and is done just in order to get easier computations. In
fact the module structure of homology and cohomology give us the same
information, since they are related by the Universal Coe�cient Theorem.

3.2 Filtrations on the Salvetti complex: an example

Let us now consider again our main example of Coxeter group, that is the
group of permutations on n + 1 elements W = An. We want to compute
the cohomology of the associated Artin group GW , that is the Artin braid
group Br(n + 1) with coe�cients in a local system over a GW -module M .
The generators of the complex C∗

n are associated to subsets of the set of
generators, that is the nodes of the Coxeter diagram for An. We can denote
each generator by a subset Γ of the set {1, . . . , n}. We can identify each
subset Γ with its characteristic functions, that is with a sequence of 0's and
1's of length n. A symbol 0 in the i-th position of the string means that
i /∈ Γ, while a symbol 1 means that i ∈ Γ. If A and B are two strings, we
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write AB for their concatenation. The degree |A| corresponds to the number
of 1's that appear in A, and so it is the dimension of the corresponding cell.
Hence C(k)

n is the subcomplex generated by strings of length n and degree k.
Using the notations of q-analog, for a string A we write A! =

∏
i[ki +

1]!, where the numbers ki are the length of the maximal substrings of A
containing only 1's. Hence, applying Theorem 3.1.9 and the computations
of Section 1.5 the coboundary δ is de�ned by the following rules:

δ(A00B) = δ(A0)0B + (−1)|A|A0δ(0A),

δ(A101B) = δ(A1)01B + (−1)|A|+1A10δ(0B) + (−1)|A|+1A111B!
A101B!

A111B,

δ1k = 0,

δ01k = [k + 2]1k+1,

δ1k0 = (−1)k[k + 2]1k+1,

δ01k0 = [k + 2](1k+10 + (−1)k01k+1).

We can endow the complex (C∗
n, δ) with a �ltration F de�ned as follows:

F sCn is the subcomplex of C∗
n generated by strings of kind A1s. We have

the following isomorphisms of complexes:

(F sCn/F
s+1Cn) ' Cn−s−1[s+ 1],

where the notations [s+ 1] in square brackets means a shifting in the degree

by s+1 that is (F sCn/F
s+1Cn)t = C

(t−s−1)
n−s−1 , where the isomorphism is given

by the mapping:
A01s 7→ A

A11s 7→ 0

We �nally de�ne a spectral sequence associated to Cn and to the �ltration
(F sCn)s. We set

Es,t
0 = (F sCn/F

s+1Cn)s+t

and let the 0-di�erential d0 : Es,t
0 → Es,t+1

0 be the map induced by δ.
Note that the quotient Fn−1Cn/F

nCn is isomorphic to the module M
generated by the string 01n−1 and FnCn/F

n+1Cn = M with generator 1n.
We can give the following de�nition (see [Spa66]):

Zs
r = {c ∈ F sCn | δc ∈ F s+rCn}

Zs
∞ = {c ∈ F sCn | δc = 0}

where it is understood the natural graduation induced by the graduation of
Cn.
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Moreover we set:

Es
r = Zs

r/(Z
s+1
r−1 + δZs−r+1

r−1 )

and we de�ne the di�erential dr : Es,t
r → Es+r,t−r+1

r to be the homomor-
phism naturally induced by the map δ : Zs

r :→ Zs+r
r and by δ : Zs+1

r−1 +
δZs−r+1

r−1 → δZs+1
r−1 .

In particular we get

Es,t
1 = Hs+t(F scn/F

s+1Cn) = Ht(Cn−s−1)

and the di�erential d1 is the boundary operator associated to the short exact
sequence

0→ F s+1Cn/F
s+2Cn → F sCn/F

s+2Cn → F sCn/F
s+1Cn → 0.

Hence the i-th columns of the term E1 of spectral sequence for the co-
homology of Cn is given by the cohomology of Cn−i−1.

Using the �ltration associate to the numbering of the Coxeter graph we
can give analogous spectral sequences for the other Artin groups.

3.3 Filtrations and spectral sequences

We want to give a more general description of what we explained with the
example in the previous Section, in order to understand how we can use
spectral sequences to compute the cohomology of Artin groups.

Suppose we have �xed a �nitely generated Coxeter group W = WΓ and
let Γ be the Coxeter graph and G = GW the associated Artin group. Let
n be the number of vertexes of Γ, that is the number of standard generator
of W . We can suppose to have a total order on the set of vertexes of Γ (in
what follows, if not speci�ed, for �nite and a�ne irreducible Coxeter groups
we always use the order given by the numbering in Tables 1.1 and Table
1.2). Let C∗ be the algebraic Salvetti complex associated to G. We use the
numbering on the vertexes of Γ in order to write the generators of C∗ as
strings of 0's and 1's.

Hence we �lter the complex C∗ as follows: F sC is the complex generated
by strings of type A1s. The quotients GsC = F sC/F s+1C are isomorphic to
simpler complexes (with less generators), so we can assume we already know
their cohomology. The starting page of the associated spectral sequence is

Es,t
0 = GsCs+t

and, since the di�erential d0 is just the map induced by the coboundary of
C∗ on the quotients GsC = F sC/F s+1C, the next term is

Es,t
1 = Hs+t(GsC).
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This means that the columns of the complex E1 corresponds to the coho-
mology of the complexes GsC. We can choose as generators of the module
Es,t

1 some combinations
∑
miAi where the strings Ai are in the form A′i01s.

The di�erential dn is the map induced by the coboundary δ of the complex
C∗, hence

dn : Es,t
n → Es+n,t−n+1

n

maps an element a =
∑
miAi to the sum of terms in δa corresponding

to strings terminating with 01s+n. For example, in case W = An, if a =∑
miAi01n−101s +

∑
liBi ∈ Es,t

n , where the strings Bi's do not end with the
sequence 01n−101s, the di�erential dna is given by the equivalence class of[

s+ n+ 1
n

]∑
miAi01s+n.

In particular we can consider the special case when the complex GsC is
isomorphic to the complex C̃ associated to a Coxeter group G̃ with n− s−1
generators, with a graph Γ̃ ⊂ Γ. If the sum ã =

∑
miAi is a generator of

Ht(C̃), a =
∑
miAi01s is the corresponding generator of Hs+t(GsC).

In this way, it is possible to perform a computation of the spectral se-
quence up to the term E∞. To compute the cohomology H∗(C∗) in general
we need to lift the generators of E∞ to generators of the cohomology C∗

in order to solve, by means of direct computations on the complex C∗, the
indeterminacy about lifting of modules.

3.4 The Novikov homology and degree shift

Let X be a connected di�erentiable manifold and let h : X → X be an
automorphism o X. We can consider the manifold Y de�ned as follows:

Y = X×h S
1 = (X× R)/ ∼

where (x, t) ∼ (x′, t′) if t′ = t + n and x = hn(x′) (n ∈ Z). Let G be the
fundamental group of Y. The natural �bration

f : Y → S1

induces a surjective homomorphism for the fundamental groups:

f# : G→ Z.

We need to �x some notation. Let A be a principal ideal domain (PID).
We write R for the ring of Laurent polynomials with coe�cients in A, R =
A[q, q−1]. Moreover we write M for the R-module of Laurent series with
coe�cients in A, M = A[[q, q−1]]. We denote by N+ the ring of Laurent
series N+ = A[[q]][q−1] and analogously N− = A[q][[q−1]]. Note that the two
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rings N+ and N− are PID (see [Far04], Lemma 1.10). Finally consider the
quotients M+ = M/N− e M− = M/N+.

All these rings and modules have a natural structure of R-module and
so, by means of the map f# they have an induced structure of module over
the group-ring Z[G], where the action is given by mapping an element g ∈ G
to the multiplication by qf#(g).

Hence we can de�ne on the space Y the local systems R, M, M+,
M−, N+, N− associated respectively to the modules R, M , M+, M−, N+,
N−, using the action induced by f#. We note that, using the map h, the
cohomology of the space X with coe�cients in the ring A is endowed with a
natural structure of R-module.

Lemma 3.4.1. The following isomorphisms of R-modules hold:

H∗(X, A) = H∗(Y,R).

H∗(X, A) = H∗(Y,M).

Proof. We have a �ber bundle of the space X × R over the space Y, with
�ber Z:

Z ↪→ X× R→ Y.

We have homology and cohomology spectral sequences associated to the �ber
bundle and since the �ber is 0-dimensional we get that:

H∗(X, A) = H∗(Y,H∗(Z, A)).

H∗(X, A) = H∗(Y,H∗(Z, A)).

Finally we observe that the fundamental group of the base Y acts on R '
H∗(Z, A) (resp. on M ' H∗(Z, A)) by means of the natural structure of
G-modulo of R (resp. M). 2

In the early '80 Novikov presents a generalization of Morse theory of mul-
tivalued functions and closed 1-forms. In [Nov81] he considers the problem
of �nding relations between critical points and the topology of the manifold.
Given a closed 1-form ω on a compact manifold M, he considers a covering

π : N→M

(for a function g : M→ S1 take ω = dg) where the pull back π∗(ω) = dh is
an exact form: hence a Morse function arises on the non compact manifold
N. Novikov de�nes a complex, (Ck

n , δ), similar to the Morse complex, with
generators in 1-1 correspondence with the critical points of the form ω and
with a boundary de�ned, as in Morse complex, counting �ow lines. He
proves also that the homology of the complex (Ck

n , δ) is isomorphic to the
homology of the manifold N with non compact �semi-open� support, that is
with support in a closed set V ⊂ {x ∈ N | h(x) > K} for a certain constant
K. We refer to [Nov81, Nov82] for a more detailed construction.
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Lemma 3.4.2. The cohomology H∗(Y,N+) is the Novikov cohomology of
the space Y associated to the map f . If the manifold X is compact or if the
automorphism h has �nite order hN = Id, this cohomology is zero. Analo-
gously the cohomology with coe�cients in the module N− is also zero.

Proof. The Novikov homology of the space Y corresponds (see [Nov81]) to
the homology of X with coe�cients in the local system N+. To prove this
we can take a CW-decomposition of Y. Let C∗ be the associated algebraic
complex. Using the covering f we can lift the decomposition of X to a CW-
decomposition of X×R, which has an associated complex that is homotopy
equivalent (with a chain-homotopy) to C∗⊗G R where the action of G on R
is just the action induced by f#. This complex computes (see Lemma 3.4.1)
the homology of the space X.

Using [Nov81, Lemma 1] we have that the Novikov homology of Y asso-
ciated to f is equivalent to the homology of the complex (C∗⊗GR)⊗GN+ =
C∗⊗GN+, that is the homology of the space Y with coe�cients in the local
system N+.

If M is compact, the fact that the Novikov homology is actually zero
follows easily from the observation that map f is a �bration and hence there
are no critical points. If h has �nite order, note that the action of h× Id on
Y induces in the homology H∗(Y,N+) the multiplication by q and since if
A is a �eld then the ring N+ is also a �eld and c = qN − 1 is di�erent from
0, we have that the Novikov homology must be zero, because multiplication
by a nonzero element gives the null map. Finally applying the Universal
Coe�cient Theorem for local coe�cients (see for example [God73], Theorem
5.4.2, p. 101) it follows that the cohomology H∗(Y,N+) is zero. The proof
for N− is completely equivalent. 2

Theorem 3.4.3. Under the hypotheses of Lemma 3.4.2 we have the following
isomorphism of R-modules:

H∗(X, A) = H∗+1(Y,R).

Proof. Since we can apply Lemma 3.4.2, we need just to prove that

H∗(Y,M) = H∗+1(Y,R).

It is easy to see that we have the following exact sequence:

0→ R ↪→ N+ →M+ → 0. (3.4.1)

Since H∗(Y,N+) = 0 the associated cohomology long exact sequence for the
space Y becomes:

H∗(Y,M+) = H∗+1(Y,R). (3.4.2)

In the same way we have an isomorphism withM− in place ofM+. Denote
respectively with δ+ and δ− these isomorphisms.



46 Topology of arrangements

Let us now consider the exact sequence

0→ R ↪→M →M+ ⊕M− → 0. (3.4.3)

The cohomology of the space Y with coe�cients in M+ ⊕M− splits
into the direct sum of two pieces, namely the cohomology with coe�cients
in M+ and the cohomology with coe�cients in M−. Hence in long exact
sequence associated to Equation (3.4.3) we have the map

δ′ : H∗(Y,M+)⊕H∗(Y,M−)→ H∗+1(Y,R)

where δ′ = (δ′+, δ
′
−). We have that the map δ+ (resp. δ−) is equal to the

map δ′+ (resp. δ′−). To see this consider the following exact diagram:

0
��

0
��

0
��

0 // R
� � // N+

//
� _

��

M+
// 0

0 // R
� � //

��

M //

��

M+
L

M− // 0

0 // M−

��

M− //

��

0

0 0

In particular, looking at the cohomology long exact sequences associated to
the rows, we have:

H∗(Y,M+)
δ+ // H∗+1(Y,R)

H∗(Y,M+)
L

H∗(Y,M−) δ′ // H∗+1(Y,R)

and so it follows that δ+ = δ′+. In the same way one can shows that δ− = δ′−.
In particular it turns out that the map δ′ is surjective, so we have the

following short exact sequence:

0→ H∗(Y,M)
α
↪→ H∗(Y,M+)⊕H∗(Y,M−) δ′→ H∗+1(Y,R)→ 0 (3.4.4)

where α = (α+, α−). Using Equation (3.4.4) one can deduce that the map
α+ is an isomorphism (and analogously α−). The Theorem follows from this
last observation together with Equation (3.4.2). 2

We note that, since in the case of a Milnor �bration given by a weighted
homogeneous polynomial the characteristic automorphism h has �nite order,
the previous result applies to the case of a �bration XW → C∗ associated to
a �nite Coxeter group W , hence provides a proof of Theorem 2.7.2:

Corollary 3.4.4. If W is a �nite Coxeter group

H i(GW ;R[[q, q−1]]) ' H i+1(GW ;R[q, q−1]).

2
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3.5 Well �ltered complexes and degree shift

3.5.1 Main theorem

Let (C1, d) be a graduated complex and let C3 ⊂ C2 ⊂ C1 be inclusions of
graduate complexes. Denote by dij : Ci/Cj → Ci/Cj the induced coboun-
dary on the quotient complex (1 ≤ i < j ≤ 3). There is an obvious exact
sequence of complexes:

0→ C2/C3 ↪→ C1/C3
π→ C1/C2 → 0

When d12 and d23 vanish (for example if the complexes are trivial in all
degrees except exactly one) we get thatH∗(C1/C2) = C1/C2 andH∗(C2/C3)
= C2/C3, so the di�erential H∗(C1/C2) → H∗(C2/C3) of the long exact
sequence associated to the above sequence gives a map

d : C1/C2 → C2/C3.

In the following we call this map induced di�erential.
Let A be a commutative unitary ring. In this Section we indicate by R =

A[q, q−1], the ring of Laurent polynomials with coe�cients in A and by M
the R-module A[[q, q−1]]. Let (C∗, d∗) be a graduate cochain complex, with
C∗ an R-module and d∗ an R-linear map. We give the following recursive
de�nition:

De�nition 3.5.1. The complex (C∗, d∗) is called well �ltered if C∗ is a free
�nitely generated R-module, C∗ 6= R and moreover, if C∗ 6= 0, the following
conditions are satis�ed:

(a) C∗ is a �ltered complex with a decreasing �ltration F which is com-
patible with the coboundary map d∗ and such that F0C = C∗ and
Fn+1C = {0} for an integer n > 0 ;

(b) FnC = (FnC)n ' Fn−1C/FnC = (Fn−1C/FnC)n−1 ' R;

(c) the induced di�erential d : Fn−1C/FnC → FnC/Fn+1C (following
from condition (b)) corresponds to the multiplication by a non-zero
polynomial p ∈ R with �rst and last non-zero coe�cients invertible in
A;

(d) for all integer i 6= n− 1, n the induced complex ((FiC/Fi+1C)∗, d∗i ) is
a well �ltered complex.

In the following when we consider a well �ltered complex we always
suppose to have also a �ltration F as above. We write (C∗

M , d
∗
M ) for the

complex C∗ ⊗R M with the natural induced graduation and coboundary.
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Theorem 3.5.2. Let (C∗, d∗) be a well �ltered complex. We have the fol-
lowing isomorphism:

H∗+1(C∗) ' H∗(C∗
M ).

In order to proof this fact we need two preliminary lemmas.
As a �rst step let us consider the natural inclusion of R-modules R ↪→M .

We have the short exact sequence of R-modules:

0→ R ↪→M →M ′ → 0

where M ′ = M/R. We indicate by C ′∗ the complex C∗ ⊗R M ′ and we
consider the complexes C∗, C∗

M , C ′∗. In a similar way we have the following
short exact sequence of R-modules:

0→ C∗ i
↪→ C∗

M
π→ C ′∗ → 0.

Since the maps i and π commute with the coboundary maps, we actually
have a short exact sequence of complexes. So we obtain the following long
exact sequence:

· · · π∗−→ H i−1(C ′∗) δ∗−→
δ∗−→ H i(C∗) i∗−→H i(C∗

M ) π∗−→ H i(C ′∗) δ∗−→
δ∗−→ H i+1(C∗) i∗−→ · · ·

(3.5.1)

Lemma 3.5.3. Let (C∗, d∗) be a well �ltered complex. With the notation
given above we have:

H i(C ′∗) ' H i(C∗
M )⊕H i(C∗

M )

Proof. The R-moduleM ′ splits into the sum of two modules in the following
way:

M ′ = M ′
+ ⊕M ′

−

where M ′
+ = M/(A[q][[q−1]]),M ′

− = M/(A[q−1][[q]]). In a similar way we
get the splitting

C ′∗ = C ′∗
+ ⊕ C ′∗

−.

Moreover C ′∗
+ and C ′∗

− are invariant for the coboundary induced by d∗, so
the cohomology also splits:

H∗(C ′∗) = H∗(C ′∗
+)⊕H∗(C ′∗

−).

We want to show that the quotient projection π+ : C∗
M → C ′∗

+ induces
an isomorphism π∗+ in cohomology. We will prove this by induction on the
number of generators of C∗ as a free R-module.

If C∗ = {0} the assertion is obvious. Suppose that C∗ has m generators,
with m > 1. Then the complexes ((FiC/Fi+1C)∗, d∗i ) have a smaller number
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of generators and for i 6= n − 1, n they are well �ltered. Therefore we can
suppose by induction that the map πi+, de�ned analogously to π+, induces
an isomorphism in cohomology for all the complexes ((FiC/Fi+1C)∗, d∗i ),
i 6= n− 1, n, that is the map

πi
∗
+ : H∗((FiC/Fi+1C)∗ ⊗R M)→ H∗((FiC/Fi+1C)∗ ⊗R M

′
+)

is an isomorphism for such i.
The �ltration F on C∗ induces �ltrations on C∗

M and C ′∗
+ in the following

way: FiCM = FiC ⊗R M , FiC
′
+ = FiC ⊗R M ′

+. We have the following
natural isomorphisms:

(FiC/Fi+1C)∗ ⊗R M ' (FiCM/Fi+1CM )∗

(FiC/Fi+1C)∗ ⊗R M
′
+ ' (FiC

′
+/Fi+1C

′
+)∗.

Through these isomorphisms the maps

(FiCM/Fi+1CM )∗ → (FiC
′
+/Fi+1C

′
+)∗

induced by π+ correspond to πi+ and hence induce an isomorphism in coho-
mology for i 6= n− 1, n.

Let us consider the spectral sequences Ei,j
r and E

i,j
r associated to the

complexes C∗
M and C ′∗

+ with the respective �ltrations. We write π∗+ also for
the spectral sequences homomorphism induced by π+. By the de�nition of

the �ltration F we have that Ei,j
r = E

i,j
r = 0 if i > n or if i = n, n − 1 and

j 6= 0. It is also clear that En−1,0
1 ' En,0

1 = M and E
n,0
1 ' E

n−1,0
1 = M ′

+.

For 0 ≤ i < n − 1 we get that Ei,j
1 ' H i+j(FiC

∗
M/Fi+1C

∗
M ) and E

i,j
1 '

H i+j(FiC
′∗
+/Fi+1C

′∗
+) therefore the inductive hypothesis gives that Ei,j

1 '
E

i,j
1 and the isomorphism between the terms of the spectral sequences is given

by π∗+. Now consider the maps dn−1,0
1 : M → M and d

n−1,0
1 : M ′

+ → M ′
+.

By condition (c) we have that these maps correspond to the multiplication
by a non-zero polynomial p =

∑t
i=s biq

i with bs, bt invertible elements of the
ring A. We can rewrite p as follows:

p = qsbs(1 + qp′) = qtbt(1 + q−1p′′)

with p′ ∈ A[q], p′′ ∈ A[q−1]. Now we can look at these elements in M :

p−1
+ = q−sb−1

s

∞∑
i=0

(−qp′)i

p−1
− = q−tb−1

t

∞∑
i=0

(−q−1p′′)i.
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Let m ∈ M , m =
∑

i∈Z aiq
i, we can write m = m+ + m−, with m+ =∑∞

i=0 aiq
i and m− = m−m+. Notice that the products p

−1
+ m+ and p−1

− m−
are well de�ned and the following equality holds:

m = p(p−1
+ m+ + p−1

− m−).

It turns out that the map dn−1,0
1 : M →M is surjective and the same holds,

when passing to the quotient, for the map d
n−1,0
1 : M+ →M+.

Let us suppose that an element m =
∑

i∈Z aiq
i is in the kernel of dn−1,0

1 .
This means that pm = 0, that is for all integers k we have:

t∑
i=s

biak−i = 0

and so we obtain:

ak = −b−1
s

t−s∑
i=1

bs+iak−i (3.5.2)

ak = −b−1
t

t−s∑
i=1

bt−iak+i. (3.5.3)

Therefore if we know a sequence of t−s consecutive coe�cients of an element
m sent to zero by the multiplication by p we can use (3.5.2) and (3.5.3) to
calculate recursively all the other coe�cients, determining m completely. So
we �nd a bijection between ker dn−1,0

1 and ker dn−1,0
1 . In fact, if m ∈ M

is such that pm = 0, then trivially also p[m]+ = 0 (we write [m]+ for the
equivalence class ofm inM ′

+). Conversely if p[m]+ = 0 then we have pm = z,
with z ∈ A[q][[q−1]], that is z =

∑
i∈Z viq

i with vi ∈ A and there exists an
integer l such that vi = 0 for all i > l. We can de�ne recursively, for j ≥ 0,
the following elements:

ã[−1]i = ai

ã[j]i =
{
ã[j − 1]i if i 6= l − t− j
−b−1

t

∑t−s
k=1 bt−kã[j − 1]i+k if i = l − t− j

and

ãi =
{
ai if i > l − t
ã[l − t− i]i if i ≤ l − t

Notice that the coe�cients vi for i > h depend only on the coe�cients ai

for i > h − t, so if we write m̃ =
∑

i∈Z ãiq
i we have that pm̃ = 0 and

[m]+ = [m̃]+.
To sum up we have that the map π∗+ gives an isomorphism between the

terms Ei,j
1 and E

i,j
1 for i < n − 1 and between ker dn−1,0

1 and ker dn−1,0
1 .
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Moreover Ei,j
2 = E

i,j
2 = 0 for i = n − 1 and j 6= 0 and for i > n − 1; π∗+

commutes with the di�erentials in the spectral sequences (i. e. π∗+di = diπ
∗
+).

We remark that im dn−2,0
1 ⊂ ker dn−1,0

1 and im d
n−2,0
1 ⊂ ker dn−1,0

1 and so π∗+
induces an isomorphism between im dn−2,0

1 and im d
n−2,0
1 . This implies that

π∗+ gives the isomorphisms En−2,0
2 ' En−2,0

2 and En−1,0
2 ' En−1,0

2 . Then we
have a complete isomorphism between E2 and E2 and so between E∞ and
E∞. It follows that π∗+ induces an isomorphism in cohomology.

It is clear that the same fact holds for the map π− : C∗
M → C ′∗

− and so
the Lemma is proved. 2

We write Φ for the isomorphism built in the proof of the previous Lemma.

Lemma 3.5.4. In the exact sequence (3.5.1) the map π∗ composed with the
isomorphism Φ corresponds to the diagonal map Σ:

H i(C∗
M )

Σ
↪→ H i(C∗

M )⊕H i(C∗
M ).

Proof. It is enough to notice that, making the identi�cation H∗(C ′∗) =
H∗(C ′∗

+) ⊕ H∗(C ′∗
−), we have that π∗ = (π∗+, π

∗
−) and so the statement

follows immediately. 2

Proof. [Proof (of Theorem 3.5.2).] First of all we notice that, being π∗

injective, i∗ turns out to be the null map and δ∗ is surjective. We call p1 :
H i(C∗

M )⊕H i(C∗
M )→ H i(C∗

M ) the projection on the �rst component, p2 the
projection on the second component and i1 : H i(C∗

M ) ↪→ H i(C∗
M )⊕H i(C∗

M )
the inclusion de�ned by i1 : b 7→ (b, 0). Finally we de�ne α = δ∗ ◦ Φ−1 ◦ i1.
We have the following diagram:

0 // H i(C∗
M ) � � Σ // H i(C∗

M )⊕H i(C∗
M )

p1−p2 //

Φ

H i(C∗
M )

i1
oo //

α
��

0

0 // H i(C∗
M ) π∗ // H i(C ′∗

M ) δ∗ // H i+1(C∗) // 0

Clearly both the lines are exact. We want to show that the diagram com-
mutes. The commutativity for the �rst square follows by Lemma 3.5.4,
so it remains to prove that the second square commutes. A pair (a, b) ∈
H i(C∗

M )⊕H i(C∗
M ) is sent, by the multiplication by p1−p2, into the element

a − b ∈ H i(C∗
M ). Then we have i1(a − b) = (a − b, 0) and the di�erence

(a, b) − (a − b, 0) = (b, b) is in the image of the map Σ. Therefore, because
of the commutativity of the �rst square, the images of the pairs (a, b) and of
(a− b, 0) in H i(C ′∗

M ) are taken into the same element by the map δ∗. So we
get the commutativity of the diagram. The Theorem follows from the �ve
lemma. 2
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3.5.2 Applications

Let us consider a �nite set Γ endowed with a �xed total ordering. We will
indicate by ∆ a generic subset of Γ. We also set again R = A[q, q−1], with
A a commutative unitary ring. For every pair (∆, w) with ∆ ⊂ Γ, w ∈ Γ\∆
we associate a polynomial p∆,w(q, q−1) ∈ R \ {0} such that the �rst and the
last non-zero coe�cients are invertible in A. Let also suppose that for every
pair (w,w′) with w 6= w′ and w,w′ ∈ Γ \∆ the following equation holds:

p∆,w(q, q−1)p∆∪{w},w′(q, q
−1) + p∆,w′(q, q−1)p∆∪{w′},w(q, q−1) = 0 (3.5.4)

Then we can consider the complex (C∗
Γ, d

∗) de�ned as follows:

C∗
Γ =

⊕
∆⊂Γ

R.e∆

d∗e∆ =
∑

w∈Γ\∆

p∆,w(q, q−1)e∆∪{w}.

We remark that the relation (3.5.4) gives d∗2 = 0. We can also give a natural
graduation to C∗

Γ by de�ning the degree of an element e∆ as the cardinality
of ∆, so we get a cochain complex.

Without loss of generality we can think Γ = {1, . . . , n}. We introduce the
following notation: indicate by Γi and ∆i respectively the subsets {1, . . . , n−
i−1} and {n−i+1, . . . , n}. We can �lter the complex C∗

Γ in the following way
(see also [DCPS01]): let FiCΓ be the subcomplex generated by the elements
e∆, with ∆i ⊂ ∆.

We have the following result:

Theorem 3.5.5. With the �ltration de�ned above the complex (C∗
Γ, d

∗) is
well �ltered.

Proof. We can prove this by induction on the cardinality of Γ. If Γ is empty
the Theorem is obvious. Therefore let us suppose that the Theorem holds
for all the complexes made up from a set with less than n elements and we
prove it for a complex C∗

Γ, with Γ = {1, . . . , n}.
It is straightforward to see that F0CΓ = C∗

Γ and Fn+1CΓ = {0}. Moreover
FnCΓ and Fn−1CΓ/FnCΓ are generated respectively by the elements eΓ and
e∆n−1 and they are both isomorphic to R. The induced di�erential

d : Fn−1CΓ/FnCΓ → FnCΓ/Fn+1CΓ

corresponds to the multiplication by the polynomial p∆n−1,1(q, q−1).
Finally the complex ((FiCΓ/Fi+1CΓ)∗, d∗i ) is isomorphic to the complex

C∗
Γi
, where the coboundary is de�ned by the polynomials

p∆,j(q, q
−1) := p∆∪∆i,j(q, q

−1) for ∆ ⊂ Γi, j ∈ Γi \∆

and so it is well �ltered by induction. 2
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Now we apply last result and Theorem 3.5.2 to the cohomology with
local coe�cients of Artin groups. Consider the Salvetti complex C∗ de�ned
in Theorem 3.1.9 for the local system Lq = Lq(XW ;M).

Proposition 3.5.6. Let R = A[q, q−1] and M = R and let W be a �nite
Coxeter group. Then the complex C∗ in Theorem 3.1.9 is well �ltered.

Proof. In fact the polynomial WΓ(q) divides WΓ′(q) when Γ ⊂ Γ′. Moreover
the polynomialsWΓ(q) are products of cyclotomic polynomials (see [Bou68]),
so they have �rst and last non-zero coe�cients equal to 1. By using Theorem
3.5.5 we can easily see that C∗ is well �ltered. 2

Hence we �nd another proof of Theorem 2.7.2 announced in Section 2.7:

Corollary 3.5.7. Let W be a �nite irreducible Coxeter group and let

FW ↪→ XW
δ′→ C∗

be the �bration de�ned in Section 2.7. Let R = A[q, q−1] be considered as a
GW -module with the action de�ned before. Then the following equality holds:

H∗(FW ;A) = H∗+1(XW ;R)

2
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Chapter 4

The integral homology of the

Milnor �ber for Artin groups of

type An

4.1 Notations and de�nitions

In [Mar96] Markaryan used the isomorphism between the standard resolution
of a certain algebra and the algebraic complex associated to the classifying
spaces for braid groups to compute the homology of braid groups with coef-
�cients in the local system Q[q±1]. In this Chapter we extend the use of this
resolution in order to compute the homology of braid groups with coe�cients
in the local system K[q±1] for a generic �eld K.

Let R be a ring with identity and let q be an element of R. Following
[Mar96] we de�ne the algebra of q-divided polynomials ΓR(t, q) as the graded
algebra over R with generators ti (i ∈ N, deg ti = i) and relations

titj =
[
i+ j
i

]
ti+j .

We recall that if q commutes with a and b and ba = qab, then

(a+ b)n =
n∑

i=0

[
n
i

]
aibn−i.

Now we want to study the homology and cohomology (as de�ned in [CE56])
of the algebra ΓR(t, q). We can consider the normalized standard complex
(see [CE56] for a general de�nition) that calculates the homology of the
algebra ΓR(t, q). The complex is given as follows:

0← R = C0
∂← C1

∂← C2
∂← · · · ,
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where the R-module Cn is freely generated by all the monomials of the form
a⊗ ti1 ⊗ · · · ⊗ tin , with a ∈ R and the boundary formula is:

∂(a⊗ ti1 ⊗ · · · ⊗ tin) =

=
n−1∑
j=1

(−1)j+1a⊗ ti1 ⊗ · · · ⊗ tij tij+1 ⊗ · · · ⊗ tin =

=
n−1∑
j=1

(−1)j+1

[
ij + ij+1

ij

]
a⊗ ti1 ⊗ · · · ⊗ tij+ij+1 ⊗ · · · ⊗ tin .

By means of the grading of the algebra ΓR(t, q), the module C is decom-
posed into the direct sum of complexes of di�erent degrees,

C =
∞⊕
i=0

C(i),

where deg(a⊗ ti1⊗· · ·⊗ tin) = i1 + · · ·+ in and for c ∈ C(n)
k we set deg c = n

and dim c = k.
The dual complex C∗, given by the modules Cn = Hom(Cn, R) and

with coboundary map the transposed map of ∂, computes the cohomology
ring of the algebra ΓR(t, q). The multiplication is de�ned on representatives
as follows: if m∗

1 and m∗
2 are the dual classes of the monomials m1 and

m2, respectively, then the product m∗
1m

∗
2 is the dual class of the monomial

m1 ⊗m2.
Given a space X such that π1(X) = Br(n), we can de�ne a local system

R on X. Over a point x ∈ X we have the ring R; the system of coe�cients
is twisted and the action is given by sending each standard generator of
the group Br(n) to multiplication by −q. This action corresponds to the
determinant of the Burau representation for the braid group Br(n) (see, for
example, [CP07]). We remark that although the choice of the multiplication
by q would be equivalent, we use −q, which seems more natural to us, and
also for coherence with [CP07], [DCPS01], [DCPSS99].

The complex C(n)
n−∗ coincides with the complex (de�ned in [Sal94]) that

computes the cohomology of the group Br(n) with local coe�cients R.
By the module H∗(Br(∗), R) we mean the bigraded module (the gradings

are the degree deg and the dimension dim) whose component of degree n
and dimension l is Hl(Br(n), R). We can think of H∗(Br(∗), R) as a ring
using the multiplication induced by the standard homomorphism (obtained
by juxtaposing braids)

µij : Br(i)× Br(j)→ Br(i+ j).

We have:
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Theorem 4.1.1. ([Mar96]) The ring H∗(Br(∗), R) coincides, modulo a chan-
ge of indexes, with the cohomology ring of the algebra ΓR(t, q):

Hl(Br(n), R) ' Hn−l(ΓR(t, q))(deg=n)

and the product structure in H∗(Br(∗), R) coincides with the cohomological
multiplication of the ring H∗(ΓR(t, q)). 2

4.2 The Milnor �ber and some lemmas

We recall a construction from the previous chapters. Let V = Cn be a �nite-
dimensional complex vector space. The symmetric group on n elements
Sn acts on this space by permuting the coordinates. Let lij be the linear
functional zi − zj and let Hij be the hyperplane {lij = 0}. The complement
of the union of the hyperplanes

Yn = V \
⋃
i<j

Hij

is a classifying space for the pure braid group on n strands. If we consider
the quotient of Yn with respect to the action of Sn

Xn = Yn/Sn

we get a classifying space for the braid group Br(n). Consider the product
δ =

∏
i<j l

2
ij . The polynomial δ is invariant with respect to the action of Sn

and so it induces a map
δ′ : Xn → C∗.

The �ber F1(n) = δ′−1(1) is the Milnor �ber of the discriminant singularity
F0(n) =

⋃
Hij/Sn in the a�ne variety V/Sn (which is isomorphic to the

complex space Cn). The complement of F0(n) in V/Sn can also be regarded
as the set of polynomials with distinct roots in the space of all monic poly-
nomials of degree n with complex coe�cients. Moreover, the �ber F1(n) is
a classifying space for the commutator subgroup Br(n)′ of the braid group
Br(n) and, as we have seen before, we have:

H∗(Br(n)′,Z) ' H∗(F1(n),Z) ' H∗(Br(n),Z[q±1])

and
H∗(Br(n)′,Z) ' H∗(F1(n),Z) ' H∗+1(Br(n),Z[q±1]),

with the usual q-action.
In what follows K is a �eld and p always refers to the characteristic

of the �eld K (p = 0 or p a prime). Cyclotomic polynomials are usually
de�ned over a �eld of characteristic 0, by saying that the m-th cyclotomic
polynomial is the monic polynomial whose roots are all simple roots and are
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all the m-th primitive roots of unity. Over a generic �eld K we can de�ne
by induction the m-th cyclotomic polynomial ϕm, by saying that ϕ1 = q− 1
and qm − 1 =

∏
i|m ϕi. For each positive integer m we de�ne the ring

K(m) = K[q]/ϕm.
We have the following technical lemmas:

Lemma 4.2.1. ([Cal03]) Let m < n be two positive integers. In the ring
Z[q±1] we have:

(ϕm, ϕn) =
{

(ϕm, p) if n = mpi, i ≥ 1, for a prime p
(1) otherwise.

Proof. First of all, notice that the polynomials ϕm are irreducible for all
m ∈ N; hence, the quotient rings Z[q]/(ϕm) are integral domains.

(i) First suppose that m - n and let l = lcm(m,n). Moreover we set
m′ = l

m , n′ = l
n . We have that ϕn | [l]

[m] and ϕm | [l]
[n] . Furthermore [l]

[m] ≡ m
′

(mod ϕm) and [l]
[n] ≡ n′ (mod ϕn). Since we have (m′, n′) = (1) it follows

that (ϕm, ϕn) = (1). Hence the polynomial ϕn is invertible in Z[q]/(ϕm)
(and ϕm is invertible in Z[q]/(ϕn)).

(ii) Now we suppose that m | n. For a �xed m we want to prove by
induction on n that, modulo the multiplication by an invertible element in
Z[q]/(ϕm), the following holds:

ϕn ≡ p if n = mpi, i ≥ 1
ϕn ≡ 1 otherwise.

If n = mp we have that

[n]
[m]
≡ p (mod ϕm)

and so we can write

[n]
[m]

= ϕn

∏
m′ | m,m′ < m
p - m/m′

ϕpm′

Since all the factors in the product are invertible, it follows that, modulo
multiplication by invertible elements in Z[q]/(ϕm), we get ϕn ≡ p.

If n = mpi, in a similar way the next equality holds:

[n]
[m]

= ϕn

∏
1 ≤ j < i

m′ | m,m′pj 6= n
p - m/m′

ϕm′pj ≡ pi (mod ϕm)
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In the product there are exactly i − 1 factors congruent to p and all the
others are invertible, so modulo invertible elements we have that ϕn ≡ p.

Finally we consider the case n = mpi1
1 · · · p

ik
k . Let us de�ne the set

I =

(m′, j1, . . . , jk) ∈ Nk+1

∣∣∣∣∣∣∣∣∣∣
m′ | m,

0 ≤ js ≤ is∀s,
(j1, . . . , jk) 6= (0, . . . , 0),
m′ 6= m if js = is∀s,

ps - (m/m′) ∀s s.t. js 6= 0

 .

We have that:

[n]
[m]

=
∏

n′|n,n′-m

ϕn′ =

=
∏
I∈I

ϕ
m′p

j1
1 ···pjk

k

≡

≡ pi1
1 · · · p

ik
k (mod ϕm)

and, by the inductive hypothesis, in the product, for all s there are exactly
is factors congruent to ps; hence all the other factors are invertible and ϕn

must be invertible, too. So the Lemma is proved. 2

As an easy consequence of this Lemma we obtain the following Corollary,
whose proof is left to the reader:

Corollary 4.2.2. Let i < j be two positive integers. Then we can write

ϕpj = ϕpiω + pψ (4.2.1)

where ω, ψ ∈ Z[q±1] and ψ is invertible mod(ϕpi);

ϕmpj = ϕmpiω + pψ (4.2.2)

where ω, ψ ∈ Z[q±1] and ψ is invertible mod(ϕmpi). 2

We can �x once and for all polynomials ωpj ,pi , ωmpj ,mpi , ψpj ,pi , ψmpj ,mpi

satisfying the equations (4.2.1) and (4.2.2).

Lemma 4.2.3. ([Gue68]) Let m be an integer and p a prime. We have:

ϕpi ≡ ϕpi−1

p mod(p); (4.2.3)

if we suppose that p - m, then:

ϕmpi ≡ ϕφ(pi)
m mod(p) (4.2.4)

where φ denotes the Euler φ-function. 2
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Now we consider again the algebra of q-divided polynomials ΓR(t, q) in
the case R = K(m).

Lemma 4.2.4. The following decompositions hold:

(a) if p = 0 (see also [Mar96]):

ΓK(m)(t, q) ' K(m)[um]⊗K(m)[u1]/(um
1 ); (4.2.5)

(b) if p 6= 0:

ΓK(p)(t, q) '
∞⊗
i=0

K(p)[upi ]/(up
pi); (4.2.6)

(c) if p 6= 0 and p - m:

ΓK(m)(t, q) ' K(m)[u1]/(um
1 )⊗

∞⊗
i=0

K(m)[upim]/(up
pim

); (4.2.7)

with deg uj = j.

Proof. The proof of a) is given in [Mar96].
For b) let [i]!ϕp be the exponent of the biggest power of ϕp that divides

[i]!. The isomorphism is given as follows:

ti 7→
uk0

1 u
k1
p · · ·ukr

pr

[i]!/ϕ
[i]!ϕp
p

(4.2.8)

where kr · · · k0 is the expression of i in base p.
For c) we have the isomorphism given by

ti 7→
uk

1u
k0
mu

k1
mp · · ·ukr

mpr

[i]!/ϕ
[i]!ϕm
m

(4.2.9)

where k is the remainder of the division of i by m and kr · · · k0 is the expres-
sion of (i− k)/m in base p.

The Lemma follows from the next key observation: if kr · · · k0 is the
expression of i in the base p and k′r · · · k′0 is the expression for j (resp. k,
kr · · · k0 and k′, k′r · · · k′0 are the numbers associated to i and j as in (4.2.9)),

then the polynomial ϕp (resp. ϕm) does not divide

[
i+ j
i

]
if and only

if the expression for i + j in base p is given by hr · · ·h0, with hl = kl + k′l
for l = 0, . . . , r (resp. the numbers associated to i + j are h, hr · · ·h0, with
h = k + k′, hl = kl + k′l for l = 0, . . . , r). 2

The cohomology rings of R[u] and R[u]/(ui) are already known. In fact
we have:
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Lemma 4.2.5. ([Mar96])

H∗(R[u]) ' Λ[x], deg(x) = deg(u),dim(x) = 1;

H∗(R[u]/(un)) '
{

R[x] for n = 2
R[y]⊗ Λ[x] for n > 2

where deg(x) = deg(u), deg(y) = n deg(u), dim(x) = 1, dim(y) = 2 and
Λ[x] is the exterior algebra over the ring R in the variable x. 2

We remark that generators of the rings in the Lemma can be given as
follows: a representative x is given by the dual class of u. Moreover in
characteristic p = 0, a representative of y is given by

n−1∑
i=1

(
n
i

)
(ui ⊗ un−i)∗

and with p 6= 0, if n is a power of p, we can choose as a representative

1
p

n−1∑
i=1

(
n
i

)
(ui ⊗ un−i)∗,

where the notation (ui ⊗ un−i)∗ means the dual class of (ui ⊗ un−i).

4.3 Computations and results

Now we can calculate the cohomology of ΓKp(t, q) (and so the homology
of Br(∗) with coe�cients in the local system K(m)) applying the fact that
the cohomology of a tensor product of algebras is the tensor product of the
cohomology of the factors.

Applying Lemma 4.2.5 we have the following straightforward results:

Theorem 4.3.1. ([Mar96]) If p = 0 and m = 2 then

H∗(Br(∗);K(2)) ' Λ[x2]⊗K(2)[x1];

for m > 2:

H∗(Br(∗);K(m)) ' Λ[xm]⊗K(m)[ym]⊗ Λ[x1];

with deg xi = i, dimxi = i− 1, deg ym = m, dim ym = m− 2. 2

Theorem 4.3.2. Let p be a prime and m be a positive integer, such that
p - m. We have the following cases:
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(a) if p = 2:

H∗(Br(∗);K(2)) '
∞⊗
i=0

K(2)[x2i ];

H∗(Br(∗);K(m)) ' K(m)[ym]⊗ Λ[x1]⊗
∞⊗
i=0

K(m)[xm2i ];

(b) if p > 2 and m = 2:

H∗(Br(∗);K(p)) '
∞⊗
i=0

(K(p)[ypi+1 ]⊗ Λ[xpi ]);

H∗(Br(∗);K(2)) ' K(2)[x1]⊗
∞⊗
i=0

(K(2)[y2pi+1 ]⊗ Λ[x2pi ]);

(c) if p > 2 and m > 2:

H∗(Br(∗);K(m)) ' K(m)[ym]⊗ Λ[x1]
∞⊗
i=0

(K(m)[ypi+1m]⊗ Λ[xpim]);

where deg xi = deg yi = i, dimxi = i− 1, dim yi = i− 2. 2

We want to use these results to compute the homology of Br(∗) with
coe�cients in the local system A over the ring A = K[q±1] with the same
twisting de�ned as in Section 4.1.

The exact sequence

1→ Br(n)′ ↪→ Br(n)→ Z→ 1,

tells us that the homology H∗(Br(n);A) is H∗(Br(n)′;K) as an A-module
(see for example [Mar96], [CS98] or [Cal05]); since for n 6= 3, 4, Br(n)′′ =
Br(n)′ (see [GL69] for a proof of this), we have that H0(Br(n)′;K) = K,
H1(Br(n)′;K) = 0. Moreover the A-action on H0 is trivial and so

H0(Br(n);A) = A/(q + 1)

as an A-module. Moreover we have:

Lemma 4.3.3. ([Mar96]) The R-modules Hl(Br(n), A)(n > 1, l > 0) are
annihilated by multiplication by [n]!. 2

Let us consider a polynomial a ∈ A. We can consider the set Sa of all
elements b ∈ A that are prime with a. It is clear that Sa is a multiplicatively
closed set. We write A(a) for the localization ASa of the ring A respect to
the set Sa.
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It follows from Lemma 4.2.1 that for p = 0, ϕm is invertible in A(ϕn) if
and only if m 6= n; for p 6= 0, ϕm is invertible in A(ϕn) if and only if n 6= mpi

and m 6= npi, ∀i ≥ 1.
The following decompositions hold for the homology of Br(n) with coef-

�cients in the local system A:

Lemma 4.3.4. Let n > 1. For p = 0 we have:

H∗(Br(n);A) '
∞⊕

m=2

H∗(Br(n);A(ϕm));

for p 6= 0:
H∗(Br(n);A) '

⊕
p-m or m=p

H∗(Br(n);A(ϕm)).

Proof. Consider the homomorphism

im∗ : H∗(Br(n);A)→ H∗(Br(n);A(ϕm))

induced by the injection im : A ↪→ A(ϕm). We extend in a natural way the
map im∗ through the tensor product with A(ϕm) and we get the new map

ĩm : H∗(Br(n);A)⊗A A(ϕm) → H∗(Br(n);A(ϕm)). (4.3.1)

Using Lemmas 4.2.1, 4.2.3 and 4.3.3 it is easy to see that in order to prove
Lemma 4.3.4 it is enough to show that the map ĩm is an isomorphism.

First we prove the injectivity of ĩm. Let α be a representative of an
element v in H∗(Br(n);A)⊗AA(ϕm). If the corresponding class of ĩmv is zero,

and so ĩmα is a boundary, then there exists an element β such that dβ = ĩmα.
Multiplying β by an appropriate polynomial ψ prime with ϕm, we get an
element β′ = ψβ that belongs to the resolution of Br(n) over A, so dβ′ = ψα.
This means that ψα belongs to the zero class in H∗(Br(n);A) and, since ψ
is invertible in A(ϕm), α belongs to the zero class in H∗(Br(n);A)⊗A A(ϕm).

This proves the injectivity of ĩm.
To prove the surjectivity of ĩm we consider a class w in H∗(Br(n);A(ϕm))

and we choose a representative β for w. Multiplying β by an appropriate
polynomial θ prime with ϕm we get an element β′ = θβ in the resolution for
H∗(Br(n);A) and we have that

ĩm(β′ ⊗ θ−1) = β.

This completes the proof. 2

The next step is to compute H∗(Br(n);A(ϕm)). To do this, consider the
following short exact sequence:

0→ A(ϕm)

ϕm
↪→ A(ϕm)

π→ K(m)→ 0



64 The integral homology of the Milnor �ber for Artin groups of type An

where the �rst map is multiplication by ϕm. We want to study the corre-
sponding homology long exact sequence:

· · · π∗→ Hl+1(Br(∗);K(m))
β→

β→ Hl(Br(∗);A(ϕm))
(ϕm)∗→ Hl(Br(∗);A(ϕm))

π∗→ Hl(Br(∗);K(m))
β→

β→ Hl−1(Br(∗);A(ϕm))
(ϕm)∗→ · · ·

We can decompose Hl(Br(∗);A(ϕm)) as a direct sum of terms A/(ψi), where
ψ is a prime factor of ϕm. So, if Hl(Br(∗);A(ϕm)) has a direct summand
A/(ψi), generated by an element v, it follows that Hl+1(Br(∗);K(m)) and
Hl(Br(∗);K(m)) have as direct summand a copy of A/(ψ) generate respec-
tively by w and w′ and we have that

βw = ψi−1v

and
π∗v = w′.

In Theorem 4.3.1 (case p = 0) we have these maps (see also [Mar96]):

βxm = ỹm, π∗ỹm = ym, βx1 = 0.

while in Theorem 4.3.2 (case p 6= 0), the homomorphisms act as follows:

βyi = 0, βx1 = 0,

βx2i = ϕ2i−1−1
2 x̃2i−1

2; βxpi = ϕpi−1−1
p ỹpi for p > 2;

βxmpi = ϕφ(pi)−1
m ỹmpi for i > 0 or m > 2;

where x̃i and ỹi are de�ned such that:

π∗x̃i = xi;π∗ỹi = yi.

We can now state the following result:

Proposition 4.3.5. For p = 0 we have, for m = 2:

H∗(Br(∗);A(ϕ2)) ' A(ϕ2)[x1]/(ϕ2x
2
1);

and for m > 2:

H∗(Br(∗);A(ϕm)) ' A(ϕm)[x1, ym]/(x2
1, ϕmym);

if p 6= 0 and p - m we have the following cases:
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(a) for p = 2: H∗(Br(∗);A(ϕ2)) ' A(ϕ2)

[
x1, x

2
2j ,

x2
2ix2i1 · · ·x2ih

]/(
ϕ2i

2 x
2
2i

)
with 0 ≤ i, i+ 1 < i1 < · · · < ih, 0 < j;

H∗(Br(∗);A(ϕm)) ' A(ϕm)

 x1, ym, x
2
m2i ,

x2
m2ixm2i1 · · ·xm2ih ,
ymxm2j1 · · ·xm2jh

/( x2
1, ϕmym,

ϕ2i

mx
2
m2i

)

with 0 ≤ i, i+ 1 < i1 < · · · < ih, 0 < j1 < · · · < jh;

(b) for p > 2 and m = 2:

H∗(Br(∗);A(ϕp)) ' A(ϕp)

[
x1, ypi ,

ypixpi1 · · ·xpih

]/(
x2

pi ,

ϕpi−1

p ypi

)
with 0 < i < i1 < · · · < ih;

H∗(Br(∗);A(ϕ2)) ' A(ϕ2)

 x1, y2pi ,
x2

1x2pj1 · · ·x2pjh

y2pix2pi1 · · ·x2pih

/(
ϕ2x

2
1, x

2
2pi ,

ϕ
φ(pi)
2 y2pi

)

with 0 < i < i1 < · · · < ih, 0 < j1 < · · · < jh;

(c) for p > 2 and m > 2:

H∗(Br(∗);A(ϕm)) ' A(ϕm)

[
x1, ympi ,

ympixmpi1 · · ·xmpih

]/(
x2

1, x
2
mpi ,

ϕ
φ(pi)
m ympi

)
with 0 ≤ i < i1 < · · · < ih;

in all cases deg xi = deg yi = i,dimxi = i− 1, dim yi = i− 2. 2

In order to get H∗(Br(n); Z[q±1]) we still have to compute the Bockstein
homomorphism βp associated to the short exact sequence

0→ Zp ↪→ Zp2 → Zp → 0.

We'll see that, as in the case of trivial coe�cients (see [Coh76] or [Va��78]),
there is no p2-torsion in the homology of braid groups.

In case a) of Proposition 4.3.5 the Bockstein acts as follows (the coe�-
cients ψi,j are those de�ned in Corollary 4.2.2):

β2x1 = 0, β2x
2
2i = 0,

β2x
2
2ix2i1 · · ·x2ih =

h∑
s=1

ψ2is ,2ix2
2ix

2
2is−1

∏
t6=s

x2it

 ;

β2ym = 0, β2x
2
m2i = 0,
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β2x
2
m2ixm2i1 · · ·xm2ih =

h∑
s=1

ψm2is−1,m2ix2
m2ix

2
m2is−1

∏
t6=s

xm2it

 ,

β2ymxm2i1 · · ·xm2ih =
h∑

s=1

ψm2is−1,mymx
2
m2is−1

∏
s 6=t

xm2it

 ;

in case b) we have:
βpx1 = 0, βpypi = 0,

βpypixpi1 · · ·xpih = −
h∑

s=1

ψpis ,piypiypis−1

∏
s 6=t

xpit

 ;

βpx
2
1x2pi1 · · ·x2pih = −

h∑
s=1

ψ2pis ,2pix2
1y2pis−1

∏
s 6=t

x2pit

 ;

βpy2pi = 0,

βpy2pix2pi1 · · ·x2pih = −
h∑

s=1

ψ2pis ,2piy2piy2pis−1

∏
s 6=t

x2pit

 ;

�nally in case c) the map is:

βpx1 = 0, βpympi = 0,

βpympixmpi1 · · ·xmpih = −
h∑

s=1

ψmpis ,mpiympiympis−1

∏
s 6=t

xmpit

 .

Lemma 4.3.6. The homology groups H∗(Br(∗); Z[q±1]) have no p2-torsion.

Proof. Notice that the monomials 1, x1 generate the groups

H0(Br(0),Z[q±1]), H0(Br(1),Z[q±1])

and that both these modules are equal to Z[q±1]. For i ≥ 2 the groups
H0(Br(i),Z[q±1]) = Z are generated by the monomials xi

1. Now consider the
following monomials:

yi
m, yi

mx1 (case p = 0) (4.3.2)

x2i
2j , x2i

2jx1,
x2i

m2j , x2i
m2jx1

}
(case p = 2) (4.3.3)

yi
pj , yi

pjx1,

yi
2pj , yi

2pjx1,

yi
mpj , y

i
mpjx1

 (case p > 2) (4.3.4)
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Because of the computations over Q[q±1] ([DCPS01], [Mar96]), their lifting
generate a free Z-module of type Z[q±1]/(ϕh) in dimension d in the homology
of Br(n) whenever n = kh or n = kh+1 and d = k(h−2) and the Bockstein
is zero for all these monomials.

All the other monomials lift to torsion classes and all these classes don't
have p2-torsion for any prime p. To prove this it is enough to show that
in the submodule Mp ⊂ H∗(Br(∗),Zp[q±1]) generated by all the monomials
di�erent from the ones in (4.3.3) or (4.3.4), we have that

kerβp = im βp.

Let us consider the set S of the monomials that appear in the polynomial
rings of part a), b) and c) of Proposition 4.3.5 and di�erent from these in
(4.3.3) and (4.3.4).

Let us say that a monomial w rises up to a monomial w′ is w appears
as a summand in βpw

′. We call w a basic monomial if it doesn't appear as
a summand in βpw

′ for any monomial w′. We also say that a monomial w
is a child of w′ if w′ is basic and we can rise up from w to w′ in a �nite
number of steps. We notice that in general a basic polynomial can be of the
following form:

w = x2a1
i1
· · ·x2ak

ik
yb1

j1
· · · ybk

jh
xl1 · · ·xls .

Let ∆w be the set of all monomials that are children of w (including w
itself). It is easy to see that ∆w is in bijection with the set of the parts of
{1, . . . , s} (with s ≥ 1) if l1, . . . , ls are all di�erent from 1, or with the set of
the parts of {1, . . . , s− 1} (with s ≥ 2) if one of l1, . . . , ls is 1.

Let us say that a monomial w has ϕ-torsion (over the ring Zp[q±1]) if
it generates a module isomorphic to Zp[q±1]/(ϕ). If a monomial w has ϕ-
torsion over Zp[q±1] then all the other monomials children of w have the
same torsion. Moreover consider the algebraic complex (Mw, βp) given by
the module Mw generated (over Zp[q±1]) by all the monomials in ∆w and
with the restriction of βp to Mw as a boundary map: we have that (Mw, βp)
is isomorphic to the algebraic complex that computes the reduced homology
of the (s − 1)-dimensional simplex with constant coe�cients, over the ring
Zp[q±1]/(ϕ) and so kerβp = im βp on Mw.

One can check that for every monomial w in S there exists one and only
one basic monomial w′ such that w is a child of w′. This implies that the
family of all di�erent sets ∆w gives a partition of S and so kerβp = im βp

on all the module M . The Lemma follows. 2

4.4 Main Result

As a consequence of the last Lemma and of the previous computations, we
can now state our main Theorem. Recall that the ring H∗(Br(∗);R[q±1]) is
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the bigraded direct sum of the modules Hi(Br(n);R[q±1]) = Hi(F1(n), R),
where F1(n) is the Milnor �ber of the discriminant singularity for Br(n).

Theorem 4.4.1. Set deg xi = deg yi = i,dimx1 = 0,dimxi = i − 1,
dim yi = i− 2. Then:

H∗(Br(∗); Q[q±1]) ' Q[q±1]
[
x1, ym,m > 2

] /(
ϕ2x

2
1, ϕmym

)
;

H∗(Br(∗); Z2[q±1]) ' Z2[q±1]


x1, ym, x

2
2i+1 , x

2
m2i ,

x2
2ix2i1 · · ·x2ih ,

x2
m2ixm2i1 · · ·xm2ih ,
ymxm2j1 · · ·xm2jh ,
m ≥ 2, 2 - m


/ ϕ2i

2 x
2
2i ,

ϕmym,

ϕ2i

mx
2
m2i


with 0 ≤ i, i+ 1 < i1 < · · · < ih, 0 < j1 < · · · < jh;

for p > 2:

H∗(Br(∗); Zp[q±1]) ' Zp[q±1]



x1, ypi , ympj , y2pi

ypixpi1 · · ·xpih ,

x2
1x2pj1 · · ·x2pjh

y2pix2pi1 · · ·x2pih ,

ympjxmpj1 · · ·xmpjh

m > 2, p - m


/


ϕ2x
2
1, x

2
2pi ,

x2
pi , x

2
mpj ,

ϕpi−1

p ypi ,

ϕ
φ(pi)
2 y2pi ,

ϕ
φ(pj)
m ympj


with 0 < i < i1 < · · · < ih, 0 ≤ j < j1 < · · · < jh. Finally, using the
notation of the proof of Lemma 4.3.6, we have:

H∗(Br(∗); Z[q±1]) '

' Z[q±1]
[
x1, ym,m > 2

] /(
ϕ2x

2
1, ϕmym

)
⊕
⊕
p≥2

βpMp.

2

In tables 4.1, 4.2, 4.3 and 4.4 we give the explicit computations for some
cases. The results in Table 4.3 correspond to those in [DCPS01] for coho-
mology. We use the notation ϕi

h for the module Zp[q]/(ϕi
h) or Q[q]/(ϕi

h)
(note that R[q±1]/(ϕi

h) = R[q]/(ϕi
h)). In Table 4.4 we describe the additive

structure of the integral homology of the �ber F1(n).
Now consider the natural embeddings jn : Br(n) ↪→ Br(n+1). By de�ni-

tion the direct limit lim
−→ nBr(n) is the braid group on in�nitely many strands

Br(∞). Notice that the �rst p-torsion class in the groups H∗(Br(n); Z[q±1])
appears for n = 2p+ 2 in dimension 2p− 2 and is stable; the corresponding
generator is x2

1x
2
2 for p = 2 or x2

1y2p for p > 2. An equivalent result for the
cohomology was proved in [Cal03].

In [CP07] Cohen and Pakianathan compute the homology of the braid
group on in�nitely many strands Br(∞) with coe�cients in the local system
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n 2 3 4 5 6 7 8 9 10
H0 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2

H1 ϕ3 ϕ3

H2 ϕ2
2 ϕ2

2 ϕ2⊕ϕ3 ϕ2⊕ϕ3 ϕ2 ϕ2 ϕ2

H3 ϕ5 ϕ2⊕ϕ5 ϕ2 ϕ2 ϕ2⊕ϕ3 ϕ2⊕ϕ3

H4 ϕ3 ϕ3 ϕ2
2 ϕ2

2 ϕ2

H5 ϕ7 ϕ7 ϕ3 ϕ2⊕ϕ3

H6 ϕ4
2 ϕ4

2⊕ϕ3 ϕ2⊕ϕ3⊕ϕ5

H7 ϕ9 ϕ2⊕ϕ9

H8 ϕ5

Table 4.1: H∗(Br(n); Z2[q±1])

n 2 3 4 5 6 7 8 9 10
H0 ϕ2 ϕ2 2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2

H1 ϕ3 ϕ3

H2 ϕ4 ϕ4 ϕ3 ϕ3

H3 ϕ5 ϕ5 ϕ3 ϕ3

H4 ϕ2
2 ϕ2

2 ϕ2 ⊕ ϕ4 ϕ2 ⊕ ϕ4 ϕ2

H5 ϕ7 ϕ2 ⊕ ϕ7 ϕ2 ϕ2

H6 ϕ8 ϕ8 ϕ5

H7 ϕ2
3 ϕ2

3

H8 ϕ10

Table 4.2: H∗(Br(n); Z3[q±1])

K[q±1] for any �eld K: this is the stable part of the homology of Br(n)
(with coe�cients the same local system) with respect to the embeddings
jn : Br(n) ↪→ Br(n + 1). We obtain the same result; moreover we are
able to compute the Bockstein operator, hence we give a presentation of the
homology of Br(∞) with coe�cients in the local system Z[q±1].

Corollary 4.4.2. We have that

H∗(Br(∞); Q[q±1]) = Q,

concentrated in dimension 0;

H∗(Br(∞); Z2[q±1]) = Z2[x2
2, x2i , i > 1]

and for a prime p > 2

H∗(Br(∞); Zp[q±1]) = Zp[y2pi , x2pi , i > 0]/(x2
2pi)
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n 2 3 4 5 6 7 8 9 10
H0 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2

H1 ϕ3 ϕ3

H2 ϕ4 ϕ4 ϕ3 ϕ3

H3 ϕ5 ϕ5 ϕ3 ϕ3

H4 ϕ6 ϕ6 ϕ4 ϕ4

H5 ϕ7 ϕ7

H6 ϕ8 ϕ8 ϕ5

H7 ϕ9 ϕ9

H8 ϕ10

Table 4.3: H∗(Br(n); Q[q±1])

n 2 3 4 5 6 7 8 9 10
H0 Z Z Z Z Z Z Z Z Z
H1 Z2 Z2

H2 Z2 Z2 Z2 ⊕ Z2 Z2⊕Z2 Z2 Z2 Z2

H3 Z4 Z4 Z2 Z2

H4 Z2 Z2 Z3⊕Z2 Z3⊕Z2 Z2⊕Z3

H5 Z6 Z6 Z2
2 Z2

2

H6 Z4 Z4 Z2⊕Z4

H7 Z6 Z6

H8 Z4

Table 4.4: H∗(F1(n); Z)

with dimxi = i− 1, dim yi = i− 2. The Bockstein operator acts as follows:

β2x2i = x2
2i−1 ;

βpyi = 0; βpxi = yi (for p > 2).

The homology H∗(Br(∞); Z[q±1]) has no p2-torsion for any prime p. A pre-
sentation of H∗(Br(∞); Z[q±1]) is given by

Z

 y2pi , x2
2j ,

x2
2ix2i1 · · ·x2ih

y2pjx2pj1 · · ·x2pjh

/( 2x2i , py2pj , x2
2pj

)
with indexes running as follows: 0 < i,i + 1 < i1 < · · · < ih, 0 < j < j1 <
· · · < jh and p in the set of odd primes. The structure of Z[q±1]-module is
trivial and so the action of q corresponds to multiplication by −1. 2



Chapter 5

The integral homology of the

Milnor �ber for Artin groups of

type Bn

5.1 The �ltration and the homology spectral se-

quence for Bn

In this Chapter we compute the homology of the Artin groups GBn with
coe�cients in the local system given by the ring R = Z[q±1], where each
standard generator maps to (−q)-multiplication. As we explained in Section
3.3, we use a �ltration F on the algebraic Salvetti complex C(n) = C∗(Bn),
induced by the order of the vertexes of the Coxeter graph of Bn given in
Table 1.1. Hence the last vertex, connected with the special edge with label
4, is in position n.

Using the notation of Section 3.2, we write the generator of the complex
as strings of 0's and 1's. We write l(X) for the length of the string X and
degree deg(X) = |X| for the number of 1's in the string X, that is equal to
the dimension of the corresponding cell. We de�ne the subcomplex

FsC(n) = FsC∗(Bn)

to be the subcomplex generated by the strings of type XY , where l(X) =
n− i− 1, l(Y ) = i+ 1, deg Y ≤ i. We have the inclusions

F0C(n) =< X0 >⊂ F1C(n) ⊂ · · · ⊂ Fn+1C(n) = C(n).

We note that we have the following isomorphism for the quotients:

FiC(n)/Fi−1C(n) ' CAn−i−1 [i]

generated by the strings of the form X01i that corresponds to the string X
in the complex CAn−i−1 [i] (recall that the index i between square brackets
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means a graduation shifted by i). In this isomorphism the boundary map of
∂ of the complex CAn−i−1 corresponds to the map induced on the quotient
by the boundary of the complex C(n).

We can use the homology of CAj , computed in Chapter 4, in order to
describe the spectral sequence for C(n). In fact we have:

Proposition 5.1.1. Given a ring R with a unit q, we can consider R as
a GBn module mapping each standard generator to multiplication by (−q).
The �ltration F on the complex C(n) induces a spectral sequence E∗ that
converges to H∗(GBn , R). The �rst term or the spectral sequence is given by:

E1
s,t = Hs(Br(t), R)

where the ring R is considered as a module over the group Br(n) with the
usual action, as in Chapter 4.

As we did in Chapter 4 for the homology of braid groups, we start com-
puting the homology of GBn with coe�cient over the ring R = K(m) =
K[q]/(ϕm) where K is a �eld of characteristic p (for simplicity we can �x
K = Q if p = 0 and K = Fp for p 6= 0). In what follows p will always refer
to the characteristic of the �eld K. Moreover we denote by Λ[x] the exterior
algebra over the ring R in the variable x.

We recall some results for the homology of the braid groups, from Chapter
4. They are the starting point for the description of the spectral sequence
E∗.

In case p = 0, m > 2:

H∗(Br(∗),K(2)q) ' Λ(2)[x2]⊗K(2)[x1]

H∗(Br(∗),K(m)q) ' Λ(m)[xm]⊗K(m)[ym]⊗ Λ(m)[x1].

In case p = 2, 2 - m:

H∗(Br(∗),K(2)q) '
∞⊗
i=0

K(2)[x2i ]

H∗(Br(∗),K(m)q) '
∞⊗
i=0

K(m)[xm2i ]⊗K(m)[ym]⊗ Λ(m)[x1].

In case p > 2, p - m:

H∗(Br(∗),K(p)q) '
∞⊗
i=0

(
K(p)[ypi+1 ]⊗ Λ(p)[xpi ]

)
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H∗(Br(∗),K(2)q) ' K(2)[x1]⊗
∞⊗
i=0

(
K(2)[y2pi+1 ]⊗ Λ(2)[x2pi ]

)
H∗(Br(∗),K(m)q) '

'Λ(m)[x1]⊗K(m)[ym]⊗
∞⊗
i=0

(
K(m)[ympi+1 ]⊗ Λ(m)[xmpi ]

)
We can give representatives for the xi and yi terms:

xi = 1i−10,

ympi =
d(1mpi−10)

ϕa
m

where a is the biggest power of ϕm that divides all the terms in d(1mpi−10).
The dimension and degree of the generators are the following: deg xi =
deg yi = i, dimxi = i− 1, dim yi = i− 2. Moreover, in the following sections
we introduce a generator zi, where we set deg zi = dim zi = i. The generator
zi in the homology of GBn is represented by the string 1i−11, where 1 is the
special vertex in the n-th position in the Coxeter graph of Bn.

5.2 Computations

In Chapter 4 we considered the sum⊕
n

H∗(Br(n), R) = H∗(Br(∗), R)

as a ring with the product structure induced by the map Br(i) × Br(j) →
Br(i+ j). Now it is useful to consider the sum⊕

n

H∗(C(n), R) = H∗(C(∗), R)

where H∗(C(∗), R)deg=n = H∗(C(n), R). It turns out that the description of
the complexes allow to de�ne for the groupH∗(C(∗), R) a structure of module
over the ring H∗(Br(∗), R). Hence in our description of the homology groups
H∗(C(n), R) we can simply give the set of generators of H∗(C(∗), R) as a
H∗(Br(∗), R)-module, with the nontrivial relations.

We omit the details of the study of the spectral sequences E∗ given in
the previous Section and we simply state the results. The computations are
straightforward, even if not completely trivial, and involve only standard
techniques.

We can resume the �rst step of the spectral sequence computations in
the next statement:
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Theorem 5.2.1. The homology groups of the complex C(n) with coe�cients
over the ring K(m) are the following: Case p = 0, m = 2:

H∗(C(n),K(2)q) '
'
(
Λ(2)[x2]⊗K(2)[x1]⊗K(2)[z1, . . . , zn]/(z2

i , zizj)
)
deg=n

.

Case p = 0, m > 2, 2 - m:

H∗(C(n),K(m)q) ' 0.

Case p = 0, m > 2, 2 | m:

H∗(C(n),K(m)q) '

'
(
Λ(m)[xm]⊗K(m)[ym]⊗K(m)[x1zk m

2
−1, zk m

2
]/(z2

i , zizj)
)

deg=n
.

Case p = 2, m = 2:

H∗(C(n),K(2)q) '

(( ∞⊗
i=0

K(2)[x2i ]

)
⊗K(2)[z1, . . . , zn]/(z2

i , zizj)

)
deg=n

.

Case p = 2, m > 2 (2 - m):

H∗(C(n),K(m)q) '

'

(( ∞⊗
i=0

K(m)[xm2i ]

)
⊗K(m)[zm, z2m, . . .]/(z2

i , zizj)

)
deg=n

.

Case p > 2, m = p:

H∗(C(n),K(p)q) ' 0.

Case p > 2, m = 2:

H∗(C(n),K(2)q) '

'

(
K(2)[x1]⊗

∞⊗
i=0

(
K(2)[y2pi+1 ]⊗ Λ[x2pi ]

)
⊗K(2)[z1, . . . , zn]

)
deg=n

.

Case p > 2, m > 2, p - m, 2 - m:

H∗(C(n),K(m)q) ' 0.

Case p > 2, m > 2, p - m, 2 | m:

H∗(C(n),K(m)q) '

'

(∞⊗
i=0

(
K(m)[ympi ]⊗Λ(m)[xmpi ]

)
⊗K(m)[x1zk m

2
−1, zk m

2
]/(z2

i , zizj)

)
deg=n

.

2
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Let A = K[q±1]. The next step is the computation of the homology of
C(n) with coe�cients in the ring A. We de�ne the localization A(a) as in
Section 4.3. The analogous of Lemma 4.3.3 and Lemma 4.3.4 holds for the
homology of GBn :

Lemma 5.2.2. ([Mar96]) The R-modules Hl(C(n), A)(n > 0, l ≥ 0) are
annihilated by multiplication by [2n]!!. 2

Lemma 5.2.3. Let n > 1. For p = 0 we have:

H∗(C(n), A) '
∞⊕

m=2

H∗(C(n), A(ϕm));

for p 6= 0:
H∗(C(n);A) '

⊕
p-m or m=p

H∗(C(n), A(ϕm)).

2

The proofs are straightforward generalizations of the proofs of the corre-
sponding statements for the homology of Br(n) and we omit them.

By Lemma 5.2.3 in order to understand H∗(C(n), A) we have to compute
the modulesH∗(C(n), A(ϕm)) . To do this we can consider the following short
exact sequence:

0→ A(ϕm)

ϕm
↪→ A(ϕm)

π→ K(m)→ 0

where the �rst map is multiplication by ϕm. We want to study the corre-
sponding homology long exact sequence:

· · · π∗→ Hl+1(C(n),K(m))
β→

β→ Hl(C(n), A(ϕm))
(ϕm)∗→ Hl(C(n), A(ϕm))

π∗→ Hl(C(n),K(m))
β→

β→ Hl−1(C(n), A(ϕm))
(ϕm)∗→ · · ·

Once we compute the map β, we can recover the description of the module
H∗(C(n), A(ϕm)) using the same argument of Section 4.3. In the computa-
tion of the map β we can omit some terms that are not signi�cant for the
computation of H∗(C(n), A(ϕm)): in general when we write

βa = ϕi
mb we mean βa = ϕi

mb+ (other terms multiplied by ϕi+1
m ).

A case by case computation gives the following data. In the next propositions
we give the generators of the homology of the complex C(∗) as a module over
the corresponding homology ring of braid groups. The usual relations of the
homology ring of braids hold. We specify the other relations. In all cases we
set:

π∗ỹi = yi, π∗z̃i = zi, π∗x̃i = xi.
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Case p = 0, m = 2

π∗βx1 = 0, π∗βx2 = x2
1,

π∗βzi = x1zi−1 + x2zi−2.

Proposition 5.2.4 (p = 0, m = 2). The module H∗(C(∗), A(ϕ2)) over the
homology ring of braids is generated by

1,

x1zi + x2zi−1

with ϕ2-torsion.

Case p = 0, m > 2, 2 | m

βx1 = 0, π∗βxm = ym,

βym = 0,

βx1zk m
2
−1 = 0,

π∗βzk m
2

= x1zk m
2
−1.

Proposition 5.2.5 (p = 0, m > 2, 2 | m). The module H∗(C(∗), A(ϕm))
over the homology ring of braids is generated by

1,

x1zk m
2
−1

with ϕm-torsion,

ymzk m
2

+ x1xmzk m
2
−1

with ϕm-torsion.

Case p = 2, m = 2

If 2 - a:

βx2i = ϕ2i−1−1
2 x̃2

2i−1 ,

βz2ia = ϕ2i+1−2
2 (x̃1z̃2ia−1 + x̃2z̃2ia−2),

βz2b+1 = x1z2b.
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Proposition 5.2.6 (p = 2, m = 2). The module H∗(C(∗), A(ϕ2)) over the
homology ring of braids is generated by the terms:

1,

x1x2i1 · · ·x2ihz2b

(i1 > 1) with ϕ2-torsion (the indexes i1, . . . , ih are always intended i1 <
· · · < ih),

x1x2i1 · · ·x2ihz2ia−1 + x2x2i1 · · ·x2ihz2ia−2

(i1 > i+ 1) with ϕ2
2i+1−1-torsion,

x2
2i1−1x2i2 · · ·x2ihz2ia

(i1 ≤ i+ 1), with ϕ2i1−1

2 -torsion. We have the relations

ϕ2(x2
1z2k−1 + x1x2z2k−2) = 0.

Case p = 2, m > 2, 2 - m

βxm2i = ϕ2i−1−1
m x̃2

m2i−1 ,

if 2 - a (let z0 = 1)
π∗βzam = xmz(a−1)m,

for i > 0
βz2iam = ϕ2i+1−2

m (x̃mz̃(2ia−1)m + x̃2mz̃(2ia−2)m).

Proposition 5.2.7 (p = 2, m > 2, 2 - m). The module H∗(C(∗), A(ϕm))
over the homology ring of braids is generated by the terms:

1,

xmxm2i1 · · ·xm2ihz2iam

(i1 > 1, i ≥ 1, 2 - a) with ϕm-torsion,

xmxm2i1 · · ·xm2ihz(2ia−1)m + x2mxm2i1 · · ·xm2ihz(2ia−2)m

(i1 > i+ 1, i > 0, 2 - a) with ϕ2i+1−1
m -torsion

x2
m2i1−1xm2i2 · · ·xm2ihz2iam

(i ≥ i1− 1, i1 > 0) with ϕ2i1−1

m -torsion. The action of the elements x1, ym of
the homology ring of braids is trivial (i. e. multiplication by these elements
maps to zero).
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Case p > 2, m = 2

π∗βx2 = x2
1

and for i > 0
βx2pi = ϕ

(p−1)pi−1−1
2 ỹ2pi ,

if p - a, i > 0 (let z0 = 1)

βzapi = ϕpi−2
2 (x̃1z̃api−1 + x̃2z̃api−2),

π∗βzapi+1 = x1zapi ,

π∗βzapi+b = x1zapi+b−1 + x2zapi+b−2

if b = 2, . . . , p− 1.

Proposition 5.2.8 (p > 2, m = 2). The module H∗(C(∗), A(ϕ2)) over the
homology ring of braids is generated by the terms (let p - a):

1,

x1x2pi1 · · ·x2pihzpia−1 + x2x2pi1 · · ·x2pihzpia−2

(i1 > i) with ϕpi

2 -torsion,

x1x2pi1 · · ·x2pihzpia

with ϕ2-torsion,

x1x2pi1 · · ·x2pihzpia+b−1 + x2x2pi1 · · ·x2pihzpia+b−2

(b = 2, . . . , p− 1) with ϕ2-torsion,

y2pi1x2pi2 · · ·x2pihzpia

(i ≤ i1) with ϕ(p−1)pi−1

2 -torsion. Moreover we have the relations:

ϕ2(x2
1zapi−1 + x1x2zapi−2) = 0

for b = 1, . . . , p− 1.

Case p > 2, m > 2, 2 | m, p - m

This is the last non-trivial case that we have to investigate.

βympi = 0,

βxmpi = ϕ(p−1)pi−1−1
m ỹmpi ,

if p - a
βzapi m

2
= ϕpi−1

m x̃1z̃api m
2
−1,

βx1zapi m
2
−1 = 0.
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Proposition 5.2.9 (p>2,m>2, 2 | m, p - m). The module H∗(C(∗),A(ϕm))
over the homology ring of braids is generated by the terms (let p - a):

1,

ympi1xmpi2 · · ·xmpihzapi m
2

(i1 < i) with ϕ(p−1)pi1−1

m -torsion,

x1xmpi1 · · ·xmpihzapi m
2
−1

(i ≤ i1) with ϕpi

m-torsion. The action of the element x1 of the homology ring
of braids is trivial (i. e. multiplication maps to zero)

Bockstein homomorphism

In order to compute the homology with coe�cients in the ring R = Z[q±1]
we need also to compute the Bockstein operator associated to the short exact
sequence

0→ Zp ↪→ Zp2 → Zp → 0.

The Bockstein operator β2 acts as follows:

β2x1 = 0,

β2x
2
2j = 0,

β2x1z2k = 0,

β2(x1z2k−1 + x2z2k−2) = 0,

β2x1x2i1 · · ·x2ihz2k =
h∑

j=1

αjx1x
2
2ij−1z2k

∏
t6=j

x2it

 ,

β2x2i1 · · ·x2ih (x1z2ia−1 + x2z2ia−2) =

=
h∑

j=1

αjx
2
2ij−1(x1z2ia−1 + x2z2ia−2)

∏
t6=j

x2it


with 2 - a (i1 > 1),

β2x
2
2i1−1x2i2 · · ·x2ihz2ia =

=
h∑

j=2

αjx
2
2i1−1x

2
2ij−1

∏
t6=j

x2itz2ia

(i1 ≤ i + 1) where the coe�cients αj in the last equations are invertible
modulo ϕ2.

β2xm = 0,
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β2x
2
m2i = 0,

β2xmz2iam = 0,

β2(xmz(2ia−1)m + x2mz(2ia−2)m) = 0,

β2xmxm2i1 · · ·xm2ihz2iam =
h∑

j=1

αjxmx
2
m2ij−1z2iam

∏
t6=j

xm2it


with i1 > 1, i ≥ 1, 2 - a,

β2xm2i1 · · ·xm2ih (xmz(2ia−1)m + x2mz(2ia−2)m) =

=
h∑

j=1

αjx
2
m2ij−1(xmz(2ia−1)m + x2mz(2ia−2)m)

∏
t6=j

x2it


with i1 > i+ 1, i > 0, 2 - a,

β2x
2
m2i1−1xm2i2 · · ·xm2ihz2iam =

=
h∑

j=2

αjx
2
m2i1−1x

2
m2ij−1

∏
t6=j

xm2itz2iam

with i ≥ i1 − 1, i1 > 0, where the coe�cients αj are invertible modulo ϕm.
The computations for the Bockstein operator βp give:

βpx1 = 0,

βpy2pi = 0,

βp(x1za−1) = 0,

βpx1x2pi1 · · ·x2pihzpia−1 + x2x2pi1 · · ·x2pihzpia−2 =

=
h∑

j=1

αj

(
x1zpia−1 + x2zpia−2

)
y2pj

∏
t6=j

x2pt ,

βpx1x2pi1 · · ·x2pihzpia =

=
h∑

j=1

αpx1y2pj

∏
t6=j

x2ptzpia

βpx1x2pi1 · · ·x2pihzpia+b−1 + x2x2pi1 · · ·x2pihzpia+b−2 =

=
h∑

j=1

αj

(
x1zpia+b−1 + x2zpia+b−2

)
y2pj

∏
t6=j

x2pt ,

βpy2pi1x2pi2 · · ·x2pihzpia =
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= y2pi1

h∑
j=2

αjy2pj

∏
t6=j

x2pitzpia

where the coe�cients αj are invertible modulo ϕm.

βpympi = 0,

βpympi1xmpi2 · · ·xmpihzapi m
2

=

= ympi1

h∑
j=2

αjympj

∏
t6=j

xmptzapi m
2

(i1 < i),
βpx1xmpi1 · · ·xmpihzapi m

2
−1 =

= x1

h∑
j=1

αjympj

∏
t6=j

xmptzapi m
2
−1

(i ≤ i1). The same argument used in Lemma 4.3.6 for braid groups homology
gives:

Lemma 5.2.10. The homology groups H∗(C(∗),Z[q±1]) have no p2-torsion
for any prime p. 2

5.3 Main Theorem

Finally we can state the result:

Theorem 5.3.1. Set deg xi = deg yi = i,dimxi = i − 1, dim yi = i − 2,
deg zi = dim zi = i. Let C(n) be the algebraic complex that compute the
homology of the Artin group GBn. Let

C(∗) =
⊕

n

C(n).

We have the following description for the homology of C(∗): the module
H∗(C(∗),Q[q±1]) is generated by the terms

< 1, x1zi + z2zi−1, x1zkm−1, y2mzkm + x1x2mzkm−1 >

with relations
ϕ2zi = ϕ2mzkm = ϕ2mzkm−1 = 0

over the ring

H∗(Br(∗),Q[q±1]) ' Q[q±1]
[
x1, ym,m > 2

] /(
ϕ2x

2
1, ϕmym

)
.
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For p = 2:

H∗(C(∗),Z2[q‘pmu) = H∗(C(∗), A(ϕ2))⊕
⊕
2-m

H∗(C(∗), A(ϕm)).

For p > 2:

H∗(C(∗),Z2[q‘pmu) = H∗(C(∗), A(ϕ2))⊕
⊕
2|m
p-m

H∗(C(∗), A(ϕm)).

The module H∗(C(∗),Z[q±1]) is the direct sum of the free Z-module generated
by the terms

< 1, x1zi + z2zi−1, x1zkm−1, y2mzkm + x1x2mzkm−1 >

with relations
ϕ2zi = ϕ2mzkm = ϕ2mzkm−1 = 0

over the ring

H∗(Br(∗),Z[q±1]) ' Z[q±1]
[
x1, ym,m > 2

] /(
ϕ2x

2
1, ϕmym

)
.

and of the sum of torsion modules⊕
p

βpH∗(C(∗),Zp[q±1]).

2

We can consider the embedding jn : GBn ↪→ GBn+1 . We de�ne the group
GB∞ as the limit group lim

−→ nGBn . The maps jn# induced in homology

give a description of the homology of the limit group GB∞ as the limit
lim
−→ nH∗(GBn), that is the stable homology of GBn . We obtain the following

result.

Theorem 5.3.2. Set Mp (resp. MZ) be the graduated K-module given by
an in�nite direct sum of a copy of K (resp. a copy of Z) for each nonnegative
dimension (p = charK). We have:

H∗(GB∞ ,Q[q±1]) = M0;

for p = 2
H∗(GB∞ ,K[q±1]) = Z2[x2

2, x2i , i > 1]⊗M2;

for a prime p > 2

H∗(GB∞ ,K[q±1]) = Zp[y2pi , x2pi , i > 0]/(x2
2pi)⊗Mp.
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The Bockstein operator acts as follows:

β2x2i = x2
2i−1 ;

βpyi = 0; βpxi = yi (for p > 2),

βpMp = 0 ∀p prime.

The homology H∗(GB∞ ; Z[q±1]) has no p2-torsion for any prime p. A pre-
sentation of H∗(GB∞ ; Z[q±1]) is given by

Z

 y2pi , x2
2j ,

x2
2ix2i1 · · ·x2ih

y2pjx2pj1 · · ·x2pjh

/( 2x2i , py2pj , x2
2pj

)
⊗MZ

with indexes running as follows: 0 < i,i + 1 < i1 < · · · < ih, 0 < j < j1 <
· · · < jh and p in the set of odd primes. The structure of Z[q±1]-module is
trivial and so the action of q corresponds to multiplication by −1.

Moreover the homology of GB∞ has a natural structure of module over
the homology ring of Br(∞). 2
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Chapter 6

The case of the a�ne

arrangements of type Ãn

6.1 Introduction

In this Chapter we give a detailed calculation of the cohomology of some
Artin groups with non-trivial local coe�cients. Let R := Q[q±1, t±1] be
the ring of two-parameters Laurent polynomials. The main result (Theorem
6.1.1) is the cohomology of the Artin groupGBn (of type Bn) with coe�cients
in the module Rq,t. The latter is the ring R with the module structure de�ned
as follows: the generators associated to the �rst n− 1 nodes of the Coxeter
diagram of Bn act by (−q)−multiplication; the one associated to the last
node acts by (−t)−multiplication.

Let ϕm(q) be the m-th cyclotomic polynomial in the variable q. De�ne
the R-modules (m > 1, i ≥ 0)

{m}i = R/(ϕm(q), qit+ 1).

and for m = 1 set:
{1}i = R/(qit+ 1).

Notice that the modules {m}i are all non isomorphic as R-modules. {m}i
and {m′}i′ are isomorphic as Q[q±1]-modules if and only if m = m′ and are
isomorphic as Q[t±1]-modules if and only if φ(m) = φ(m′) (φ is the Euler
function) and m

(m,i) = m′

(m,i′) .
Our main result is the following

Theorem 6.1.1.

H i(GBn , Rq,t) =


⊕

d|n, 0≤k≤d−2{d}k ⊕ {1}n−1 if i = n⊕
d|n, 0≤k≤d−2, d≤ n

j+1
{d}k if i = n− 2j⊕

d-n, d≤ n
j+1
{d}n−1 if i = n− 2j − 1.

2
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Notice also the geometrical meaning of the two-parameters cohomology
of GBn : similar to the one-parameter case, it is equivalent to the trivial
cohomology of the �homotopy-Milnor �bre� associated to the natural map of
the orbit space onto a two-dimensional torus.

6.2 Inclusions of Artin groups

In this Section, we are primarily interested in Artin groups associated to
Coxeter graph of type An, Bn and Ãn−1 (see Figure 6.1).

σn

σ̃2

σ̃3

σ̃1

Ãn−1

ε1 ε2

4
Bn

εn−1

σ1 σ2 σn−1

An

σ̃n−1

σ̃n

ε̄n

Figure 6.1: Coxeter graph of type An, Bn (n ≥ 2) and Ãn−1 (n ≥ 3). Labels
equal to 3, as usual, are not shown. Moreover, to �x notation, every vertex
is labelled with the corresponding generator in the Artin group.

Let Brn+1 := GAn be the braid group on n+1 strands and Brn+1
n+1 < Brn+1

be the subgroup of braids �xing the (n + 1)-st strand. The group Brn+1
n+1 is

called the annular braid group. Let Kn+1 = {p1, . . . , pn+1} be a set of n+ 1
distinct points in C. The classical braid group Brn+1 = GAn can be realized
as the fundamental group of the space of unordered con�gurations of n+ 1
points in C with base point Kn+1 (see the left part of Figure 6.2), with
K6 = {1, . . . , 6}). We can now think to the subgroup Brn+1

n+1 < Brn+1 as the
fundamental group of the space of unordered con�gurations of n points in
C∗: in fact if we take pn+1 = 0 and pi ∈ S1 ⊂ C for i ∈ 1, . . . , n, since for a
braid β ∈ Brn+1

n+1 the orbit of the (n + 1)-st point can be thought constant,
up to homotopy, we can think to β as a braid with n strands in the annulus
(see the right part of Figure 6.2).

It is well known that the annular braid group is isomorphic to the Artin
group GBn of type Bn. For a proof of the following Theorem see [Cri99] or
[Lam94].

Theorem 6.2.1. Let σ1, . . . , σn and ε1, . . . , εn−1, ε̄n be respectively the stan-
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43

43

3 4

2 5

1

2

1

5

1 2 5 6

Figure 6.2: A braid in Br66 represented as an annular braid on 5 strands.

dard generators for GAn and GBn. Then, the map

GBn → Brn+1
n+1 < Brn+1

εi 7→ σi for 1 ≤ i ≤ n− 1

ε̄n 7→ σ2
n

is an isomorphism. 2

Using the suggestion given by the identi�cation with the annular braid
group, a new interesting presentation for GBn can be worked out. Let τ =
ε̄nεn−1 · · · ε2ε1. It is easy to verify that:

τ−1εiτ = εi+1 for 1 ≤ i < n− 1

i.e. conjugation by τ shifts forward the �rst n− 2 standard generators. By
analogy, let εn = τ−1εn−1τ . We have the following

Theorem 6.2.2 ([CP03]). The group GBn has presentation 〈G|R〉 where

G ={τ, ε1, ε2, . . . , εn}
R ={εiεj = εjεi for i 6= j − 1, j + 1}∪
{εiεi+1εi = εi+1εiεi+1}∪
{τ−1εiτ = εi+1}

where are all indexes should be considered modulo n. 2

Letting σ̃1, σ̃2, . . . , σ̃n be the standard generator of the Artin group of
type Ãn−1, we have the following straightforward corollary:
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Figure 6.3: As an annular braid the element τ is obtained turning the bottom
annulus by a rotation of 2π/n.

Corollary 6.2.3 ([CP03]). The map

GÃn−1
3 σ̃i 7→ εi ∈ GBn

gives an isomorphism between the group GÃn−1
and the subgroup of GBn ge-

nerated by ε1, . . . , εn. Moreover, we have a semidirect product decomposition
GBn ' GÃn−1

o 〈τ〉. 2

We have thus a �curious� inclusion of the Artin group of in�nite type
Ãn−1 into the Artin group of �nite type Bn.

Remark 6.2.4. The proof of Theorem 6.2.2 presented in the original paper
is algebraic and based on Tietze moves; a somewhat more concise proof can
however be obtained by standard topological constructions. Indeed, one can
exhibit an explicit in�nite cyclic covering K(GÃn−1

, 1) → K(GBn , 1) (see
[All02]).

6.3 The cohomology of GBn

6.3.1 Proof of the Main Theorem

In this Section we prove Theorem 6.1.1 enunciated in the introduction. We
use the notations given in the Introduction.

To perform our computation we will use the algebraic Salvetti complex
introduced in 3.1 and the spectral sequence induced by a natural �ltration.
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The complex that computes the cohomology of GBn over Rq,t is given as
follows (see [Sal94]):

C∗
n =

⊕
Γ⊂In

R.Γ

where In denote the set {1, . . . , n} and the graduation is given by | Γ |.
The set In corresponds to the set of nodes of the Coxeter diagram of Bn

and in particular the last element, n, corresponds to the last node.
It is useful to consider also the complex C

∗
n for the cohomology of GAn

on the local system Rq,t. In this case the action associated to a standard
generator is always the (−q)-multiplication and so the complex C

∗
n and its

cohomology are free as Q[t±]-modules. The complex C
∗
n is isomorphic to C∗

n

as a R-module. In both complexes the coboundary map is

δ(q, t)(Γ) =
∑

j∈In\Γ

(−1)σ(j,Γ)WΓ∪{j}(q, t)
WΓ(q, t)

(Γ ∪ {j}) (6.3.1)

where σ(j,Γ) is the number of elements of Γ that are less than j. In the case
An WΓ(q, t) is the Poincaré polynomial of the parabolic subgroup WΓ ⊂ An

generated by the elements in the set Γ, with weight −q for each standard
generator, while in the case Bn WΓ(q, t) is the Poincaré polynomial of the
parabolic subgroup WΓ ⊂ Bn generated by the elements in the set Γ, with
weight −q for the �rst n− 1 generators and −t for the last generator.

Using Proposition 1.5.2 we can give an explicit computation of the co-

e�cients
WΓ∪{j}(q,t)

WΓ(q,t) . For any Γ ⊂ In, let Γ be the subgraph of the Coxeter

diagram Bn which is spanned by Γ. Recall that if Γ is a connected component
of the Coxeter diagram of Bn without the last element, then

WΓ(q, t) = [m+ 1]q!,

where m =| Γ |. If Γ is connected and contains the last element of Bn, then

WΓ(q, t) = [2m]q,t!!,

where m =| Γ |.
If Γ is the union of several connected components of the Coxeter diagram,

Γ = Γ1 ∪ · · · ∪ Γk, then WΓ(q, t) is the product

k∏
i=1

WΓi(q, t)

of the factors corresponding to the di�erent components.
If j /∈ Γ we can write Γ(j) for the connected component of Γ ∪ {j}

containing j. Suppose that m =| Γ(j) | and i is the number of elements in
Γ(j) greater than j. Then, if n ∈ Γ(j) we have

WΓ∪{j}(q, t)
WΓ(q, t)

=
[
m
i

]′
q,t
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and
WΓ∪{j}(q, t)
WΓ(q, t)

=
[
m+ 1
i+ 1

]
q

otherwise.
It is convenient to represent generators Γ ⊂ In by their characteristic

functions In → {0, 1} so, simply by strings of 0s and 1s of length n.
We de�ne a decreasing �ltration F on the complex (C∗

n, δ): F
sCn is the

subcomplex generated by the strings of type A1s (ending with a string of s
1's) and we have the inclusions

Cn = F 0Cn ⊃ F 1Cn ⊃ · · · ⊃ FnCn = R.1n ⊃ Fn+1Cn = 0.

We have the following isomorphism of complexes:

(F sCn/F
s+1Cn) ' Cn−s−1[s] (6.3.2)

where Cn−s−1 is the complex for GAn−s−1 and the notation [s] means that
the degree is shifted by s. Let E∗ be the spectral sequence associated to
the �ltration F . The equality 6.3.2 tells us how the E1 term of the spectral
sequence looks like. In fact for 0 ≤ s ≤ n− 2 we have

Es,r
1 = Hr(GAn−s−1 , Rq,t) = Hr(GAn−s−1 ,Q[q±1]q)[t±1] (6.3.3)

since the t-action is trivial. For s = n − 1 and s = n the only non trivial
elements in the spectral sequence are

En−1,0
1 = En,0

1 = R. (6.3.4)

In order to prove Theorem 6.1.1 we need to state the following lemmas.

Lemma 6.3.1. Let I(n, k) be the ideal generated by the polynomials[
n

n− d

]′
q,t

for d | n and d ≤ k

If k | n the map

αn,k : R/(ϕk(q))→ R/I(n, k − 1)

induced by the multiplication by

[
n

n− k

]′
q,t

is well de�ned and is injective.

Remark. The fact that this map is well de�ned will follow automatically
from the general theory of spectral sequences, as it is clear from the proof of
Theorem 6.1.1. However, below we prove it by other means.
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Proof. Let d, k be positive integers such that d | n and k | n. We can observe

that ϕd(q) |
[
n
k

]
q

=
[

n
n− k

]
q

if and only if d - k. Moreover each factor ϕd

appears in

[
n
k

]
q

at most with exponent 1.

Let J(n, k) be the ideal generated by the polynomials

[
n

n− d

]
q

for d | n

and d ≤ k. It is easy to see that we have the following inclusion:

n−1∏
i=n−k

(1 + tqi)J(n, k) ⊂ I(n, k).

Moreover J(n, k) is a principal ideal and is generated by the product

pn,k(q) =
∏

d|n,k<d

ϕd(q).

It follows that [
n

n− k

]
q

ϕk(q) ∈ J(n, k − 1)

and so [
n

n− k

]′
q,t

ϕk(q) ∈ I(n, k − 1).

This proves that the map αn,k is well de�ned.
Now we notice that the factor ϕk(q) divides each generator of I(n, k−1),

but does not divide

[
n

n− k

]′
q,t

. This imply that αn,k is not the zero map

and that every polynomial in the kernel of αn,k must be a multiple of ϕk(q),
hence the map must be injective. 2

Lemma 6.3.2. Let I(n) be the ideal generated by the polynomials[
n

n− d

]′
q,t

for d | n

Then I(n) is the direct product of the ideals Ii,d = (ϕd(q), qit + 1) for d | n
and 0 ≤ i ≤ d − 2 and of the ideal In−1 = (qn−1t + 1). Moreover the ideals
Ii,d and In−1 are pairwise co-prime.

Proof: Notice that the polynomial (1+ tqn−1) divides each generator of the
ideal I(n), so we can write

I(n) = (1 + tqn−1)Ĩ(n)
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where Ĩ(n) is the ideal generated by the polynomials

˜[ n
n− d

]′
q,t

:=
[

n
n− d

]′
q,t

/(1 + tqn−1)

Let n = d1 > · · · > dh = 1 be the list of all the divisors of n in decreasing
order. If we set

Pi :=ϕdi
(q) and

Qi :=
di∏

j=di+1+1

(1 + tqn−j)

we can rewrite our ideal as

Ĩ(n) =
([

n
n− dh

]
,

[
n

n− dh−1

]
Qh−1,

[
n

n− dh−2

]
Qh−2Qh−1, . . .

. . . ,

[
n

n− d2

]
Q2 · · ·Qh−1, Q1 · · ·Qh−1

) (6.3.5)

We claim that we can reduce to the following set of generators:

Ĩ(n) = (P1 · · ·Ph−1, P1 · · ·Ph−2Qh−1, P1 · · ·Ph−3Qh−2Qh−1 . . .

. . . , P1Q2 · · ·Qh−1, Q1 · · ·Qh−1)
(6.3.6)

The �rst generator is the same in both equations and the j-th generator in
Equation (6.3.6) divides the corresponding generator in Equation (6.3.5).

Now suppose that a factor ϕm(q) divides

[
n

n− dj

]
but does not divide

P1 · · ·Pj−1. We may distinguish two cases:

(i) Suppose that m - n. Then we can get rid of the factor ϕm(q) in[
n

n− dj

]
with an opportune combination with the polynomial

P1 · · ·Ph−1

(ii) Suppose m | n. Then m = dl for some l > j and we can get rid of
ϕm(q) using a suitable combination with the polynomial

P1 · · ·Pl−1Ql · · ·Qh−1

We may now proceed inductively. Supposing we have already reduced the
�rst j−1 terms, we can reduce the j-th term of the ideal in Equation (6.3.5)
to the corresponding term in Equation (6.3.6).
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Now we observe that if J, I1, I2 are ideals and I1 + I2 = (1), then
(J, I1I2) = (J, I1)(J, I2). Since the polynomials Pi are all co-prime, we can
apply this fact to the ideal Ĩ(n) h− 2 times. At the i-th step we set

I1 = (Pi),

I2 = (Pi+1 · · ·Ph−1, Pi+1 · · ·Ph−2Qh−1, . . . , Qi+1 · · ·Qh−1),

J = (Qi · · ·Qh−1).

So we can factor Ĩ(n) as

(P1, Q1 · · ·Qh−1)(P2 · · ·Ph−1, P2 · · ·Ph−2Qh−1, Q2 · · ·Qh−1) = · · ·

· · · = (P1, Q1 · · ·Qh−1)(P2, Q2 · · ·Qh−1) · · · (Ph−1, Qh−1).

Finally we can split (Ps, Qs · · ·Qh−1) as the product

(Ps, 1 + tqn−ds) · · · (Ps, 1 + tqn−dh−1).

So we have reduced the ideal I(n) in the product stated in the Lemma and
it is easy to check that all the ideals of the splitting are co-prime. 2

Proof of Theorem 6.1.1. We can now prove our Theorem using the spectral
sequence described in the Equations (6.3.3) and (6.3.4).

We introduce, as in [DCPS01], the following notation for the generators
of the spectral sequence:

wh = 01h−20
zh = 1h−10 + (−1)h01h−1

bh = 01h−2

ch = 1h−1

zh(i) =
i−1∑
j=0

(−1)hjwj
hzhw

i−j−1
h

vh(i) =
i−2∑
j=0

(−1)hjwj
hzhw

i−j−2
h bh + (−1)h(i−1)wi−1

h ch

We write {m}[t±1] for the module R/(ϕm(q)). The E1-term of the spec-
tral sequence has a module {m}[t±1] in position (s, r) if and only if one of
the following condition is satis�ed:

(a) m | n− s− 1 and r = n− s− 2n−s−1
m ;

(b) m | n− s and r = n− s+ 1− 2(n−s
m ).
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Moreover we have modules R in position (n− 1, 0) and (n, 0). We now look
at the d1 map between these two modules. Notice that En−1,0

1 is generated
by the string 01n−1 and En,0

1 is generated by the string 1n. Furthermore the
map

dn−1,0
1 : En−1,0

1 → En,0
1

is given by the multiplication by

[
n

n− 1

]′
q,t

= [n]q(1+ tqn−1) and is injective.

It turns out that En−1,0
2 = 0 and En,0

2 = R/([n]q(1 + tqn−1)). Moreover all
the following terms En,0

j are quotient of En,0
2 .

Notice that every map between modules of kind {m}[t±1] and {m′}[t±1]
must be zero if m 6= m′. So we can study our spectral sequence considering
only maps between the same kind of modules.

First let us consider an integerm that doesn't divide n. Say thatm | n+c
with 1 ≤ c < m and set i = n+c

m . The modules of type {m}[t±1] are:

E
λm−c−1,n+c−λ(m−2)−2i+1
1 generated by zm(i− λ)01λm−c−1

E
λm−c,n+c−λ(m−2)−2i+1
1 generated by vm(i− λ)01λm−c

for λ = 1, . . . , i− 1.
Here is a diagram for this case (we use the notation h for {m}[t±1]):

h
d1 // h

· · · d1 // · · ·

h
d1 // h

0

))RRRRRRRRRRR

R/I

The map

d1 : Eλm−c−1,n+c−λ(m−2)−2i+1
1 → E

λm−c,n+c−λ(m−2)−2i+1
1

is given by the multiplication by

[
λm− c

λm− c− 1

]′
q,t

= [λm− c]q(1+ tqλm−c−1).

Since ϕm(q) - [λm− c]q the map is injective and in the E2-term we have:

E
λm−c−1,n+c−λ(m−2)−2i+1
2 = 0

E
λm−c,n+c−λ(m−2)−2i+1
2 = {m}λm−c−1 = {m}m−c−1

for λ = 1, . . . , i− 1.
The other map we have to consider is

dn−m,m−1
m : En−m,m−1

m → En,0
m .
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The module En−m,m−1
m = {m}m−c−1 is generated by 1m−101n−m and so

the map is the multiplication by

[
n

n−m

]′
q,t

. Since (1 + tqn−1) divides the

coe�cient

[
n

n−m

]′
q,t

, the image of the map dn−m,m−1
m must be contained in

the submodule

(1 + tqn−1)En,0
m = (1 + tqn−1)R/([n]q(1 + tqn−1))

that is in the quotient R/([n]q). Since (ϕm(q), [n]q) = (1) (recall thatm does
not divide n) there can be no nontrivial map between the modules {m}m−c−1

and R/([n]q). It follows that the di�erential d
n−m,m−1
m must be zero.

As a consequence the E2 part described before collapses to E∞ and we
have a copy of {m}m−c−1 as a direct summand of Hn−2j−1(Cn) for j =
0, . . . , i− 2, that is for m ≤ n

j+1 .
Now we consider an integerm that divides n and let i = n

m . The modules
of type {m}[t±1] are:

E
λm−1,n−λ(m−2)−2i+1
1 generated by zm(i− λ)01λm−1 for 1 ≤ λ ≤ i− 1

E
λm,n−λ(m−2)−2i+1
1 generated by vm(i− λ)01λm for 0 ≤ λ ≤ i− 1.

The situation is shown in the next diagram (h = {m}[t±1]):

h
dm−1

((RRRRRRRRRRR

h
0 // h dm−1

))SSSSSSSSSSS

· · · 0 // · · ·
dm−1

))SSSSSSSSSSS

h
0 // h

The map

d1 : Eλm−1,n−λ(m−2)−2i+1
1 → E

λm,n−λ(m−2)−2i+1
1

is given by the multiplication by

[
λm

λm− 1

]′
q,t

= [λm]q(1 + tqλm−1), but in

this case the coe�cient is zero in the module {m}[t±1] because ϕm(q) | [λm]q
and so we have that E1 = · · · = Em−1. So we have to consider the map

d
λm,n−λ(m−2)−2i+1
m−1 : Eλm,n−λ(m−2)−2i+1

m−1 → E
(λ+1)m−1,n−(λ+1)(m−2)−2i+1
1

for λ = 0, . . . , i− 2.
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This map corresponds to the multiplication by[
(λ+ 1)m− 1

λm

]′
q,t

=
[
(λ+ 1)m− 1

λm

]
q

(λ+1)m−1∏
j=λm+1

(1 + tqj−1).

It is easy to see that the polynomial

[
(λ+ 1)m− 1

λm

]
q

is prime with the

torsion ϕm(q) and so the map dλm,n−λ(m−2)−2i+1
m−1 is injective and the cokernel

is isomorphic to

R

/ϕm(q),
(λ+1)m−1∏
j=λm+1

(1 + tqj−1)

 ' ⊕
0≤k≤m−2

{m}k.

As a consequence we have that

E
λm−1,n−λ(m−2)−2i+1
m =

⊕
0≤k≤m−2{m}k for 1 ≤ λ ≤ i− 1

E
λm,n−λ(m−2)−2i+1
m = 0 for 0 ≤ λ ≤ i− 2.

and all these modules collapse to E∞. This means that we can �nd ϕm(q)-
torsion only in Hn−2j(Cn) and for j ≥ 1 the summand is given by⊕

0≤k≤m−2

{m}k

for d ≤ n
j+1 .

We still have to consider all the terms En−m,m−1
m = {m}[t±1] for m | n.

Here the maps we have to look at are the following:

dn−m,m−1
m : En−m,m−1

m → En,0
m .

These maps correspond to multiplication by the polynomials

[
n

n−m

]′
q,t

.

Moreover recall that

En,0
1 = R

/([
n

n− 1

]′
q,t

)
.

We can now use Lemma 6.3.1 to say that all the maps dn−m,m−1
m are injective

and Lemma 6.3.2 to say that

En,0
n+1 = En,0

∞ =
⊕

m|n,0≤k≤d−2

{m}k ⊕ {1}n−1.

Since En,0
∞ = Hn(Cn), this complete the proof of the Theorem. 2
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6.3.2 Other computations

We may also consider the cohomology of GBn over the module Q[t±1], where
the action is trivial for the generators ε1, . . . , εn−1 and (−t)-multiplication
for the last generator εn. This cohomology is computed by the complex C∗

n

of Section 3 where we specialize q to −1. So we may use similar �ltration
and associated spectral sequence. We used this argument in [CMS06b]. Here
we brie�y indicate a di�erent and more concise method, using the results of
Theorem 6.1.1. We have:

Theorem 6.3.3.

Hk(GBn ,Q[t±1]) = Q[t±1]/(1 + t) 1 ≤ k ≤ n− 1

Hn(GBn ,Q[t±1]) = Q[t±1]/(1 + t) for odd n

Hn(GBn ,Q[t±1]) = Q[t±1]/(1− t2) for even n.

Sketch of proof. Consider the short exact sequence:

0→ Q[q±1, t±1]
1+q−→ Q[q±1, t±1]→ Q[t±1]→ 0

and the induced long exact sequence for cohomology

· · · → H i(GBn ,Q[q±1, t±1])
1+q−→H i(GBn ,Q[q±1, t±1])→
→H i(GBn ,Q[t±1])→ · · · .

The result is now a straightforward consequence of Theorem 6.1.1. 2

6.4 More consequences

By means of Shapiro's Lemma, the inclusions introduced in Section 6.2 can
be exploited to link the cohomology of the Artin group of type Ãn−1, An to
the cohomology of GBn .

6.4.1 Cohomology of GÃn−1

Let M be any domain and let q be a unit of M. We indicate by Mq the
ring M with the GÃn−1

-module structure where the action of the standard
generators is given by (−q)-multiplication.

Proposition 6.4.1. We have

H∗(GÃn−1
,Mq) 'H∗(GBn ,M [t±1]q,t)

H∗(GÃn−1
,Mq) 'H∗(GBn ,M [[t±1]]q,t)
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where the action of GBn on M [t±1]q,t (and on M [[t±1]]q,t) is given by (−q)-
multiplication for the generators ε1, . . . , εn−1 and (−t)-multiplication for the
last generator ε̄n.

Proof. Applying Shapiro's lemma to the inclusion Ãn−1 < GBn , one obtains:

H∗(GÃn−1
,Mq) 'H∗(GBn , IndGBn

GÃn−1

Mq)

H∗(GÃn−1
,Mq) 'H∗(GBn ,CoindGBn

GÃn−1

Mq).

By Corollary 6.2.3, any element of IndGBn
GÃn−1

Mq := Z[GBn ] ⊗GÃn−1
Mq can

be represented as a sum of elements of the form τα ⊗ qm. Now, we have an
isomorphism of Z[GBn ]-modules

Z[GBn ]⊗GÃn−1
Mq →M [t±1]q,t

de�ned by sending τα ⊗ qm 7→ (−1)nαtαq(n−1)α+m and the result follows.
In cohomology we have similarly:

CoindGBn
GÃn−1

Mq := HomGÃn−1
(Z[GBn ],Mq) 'M [[t±1]]q,t.

2

By Propositions 6.4.1, in order to determine the cohomology groups

H∗(GÃn−1
,Mq)

it is necessary to know the cohomology of GBn with values in the module
M [[t±1]] of Laurent series in the variable t. The latter is linked to the
cohomology with values in the module of Laurent polynomials by:

Proposition 6.4.2 (Degree shift).

H∗(GBn ,M [[t±1]]q,t) ' H∗+1(GBn ,M [t±1]q,t).

2

This result was obtained in [Cal05] in a slightly weaker form, but it is
possible to extend it to our case with little e�ort.

Let from now on M = Q[q±1]. In this case we have M [t±1]q,t = Rq,t,
so we obtain the cohomology of the Artin group of a�ne type Ãn−1 with
Mq−coe�cients by means of Theorem 6.1.1.

In a similar way we get the rational cohomology of GÃn−1
:

Proposition 6.4.3. We have

H∗(GÃn−1
,Q) 'H∗(GBn ,Q[t±1])

H∗(GÃn−1
,Q) 'H∗(GBn ,Q[[t±1]])

where the action of GBn on Q[t±1] (and on Q[[t±1]]) is trivial for the gener-
ators ε1, . . . , εn−1 and (−t)-multiplication for the last generator εn.
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To obtain the rational cohomology of GÃn−1
we may apply Proposition

6.4.2 together with Theorem 6.3.3.

6.4.2 Cohomology of GAn with coe�cient in the Tong-Yang-

Ma representation

The Tong-Yang-Ma representation is an (n+ 1)-dimensional representation
of the classical braid group GAn discovered in [TYM96]. Below we just
recall it, referring to [Sys01] for a discussion of its relevance in braid group
representation theory.

De�nition 6.4.4. Let V be the free Q[u±1]-module of rank n + 1. The
Tong-Yang-Ma representation is the representation

ρ : GAn → GLQ[u±1](V )

de�ned w.r.t. the basis e1, . . . , en+1 of V by:

ρ(σi) =


Ii−1

0 1
u 0

In−i


where Ij denote the j-dimensional identity matrix and all other entries are
zero.

Notice that the image of the pure braid group under the Tong-Yang-
Ma representation is abelian; hence this representation factors through the
extended Coxeter group presented in [Tit66].

Proposition 6.4.5. We have

H∗(GBn ,M [t±1]q,t) ' H∗(GAn ,Mq ⊗ V )

H∗(GBn ,M [t±1]q,t) ' H∗(GAn ,Mq ⊗ V )

where each generator of GAn acts on Mq ⊗ V by (−q)-multiplication on the
�rst factor and by the Tong-Yang-Ma representation the second factor.

Sketch of proof. For the statement in homology, by Shapiro's lemma, it is
enough to show that IndGAn

GBn
M [t±1]q,t 'Mq ⊗ V .

Notice that [GAn : GBn ] = n + 1 and let choose as coset representatives
for GAn/GBn the elements αi = (σiσi+1 · · ·σn−1)σn(σiσi+1 · · ·σn−1)−1 for
1 ≤ i ≤ n− 1, αn = σn, αn+1 = e.
Then by de�nition of induced representation, there is an isomorphism of left
GAn-modules,

IndGAn
GBn

M [t±1]q,t =
n+1⊕
i=1

M [t±1]ei
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where the action is on the r.h.s. is as follows. For an element x ∈ GAn ,
write xαk = αk′x

′ with x′ ∈ GBn . Then x acts on an element r · ek ∈⊕n+1
i=1 M [t±1]ei as x(r · ek) = (x′r) · ek′ .

Computing explicitly this action for the standard generators of GAn , we can
write the representation in the following matrix form:

σi 7→


−qIi−1

0 −q
q−1t 0

−qIn−i


for 1 ≤ i ≤ n− 1, whereas

σn 7→

 −qIn−1

0 1
−t 0

 .

Conjugating by U = Diag(1, 1, . . . , 1,−q−1) and setting u = −q−2t, one ob-
tains the desired result.
Finally, since [GAn : GBn ] = n + 1 < ∞, the induced and coinduced repre-
sentation are isomorphic; so the analogous statement in cohomology follows.

2

In particular the cohomology of GBn determined in Theorem 6.1.1 is
isomorphic to the cohomology of GAn with coe�cient in the Tong-Yang-Ma
representation twisted by an abelian representation.

By means of Shapiro's lemma, we may as well determine the cohomology
of GAn with coe�cient in the Tong-Yang-Ma representation. Indeed:

Proposition 6.4.6. We have

H∗(GBn ,Q[t±1]) ' H∗(GAn , V )

H∗(GBn ,Q[t±1]) ' H∗(GAn , V )

where V is the representation of GAn de�ned in 6.4.4.

As a consequence we have

Corollary 6.4.7. Let V be the (n + 1)-dimensional representation of the
braid group Brn+1 de�ned in 6.4.4. Then the cohomology

H∗(Brn+1, V )

is given as in Theorem 6.3.3.

Remark 6.4.8. In particular the homology of GÃn−1
with trivial coe�cients

is isomorphic to the homology of GAn with coe�cients in the Tong-Yang-Ma
representation.



Chapter 7

The case of the a�ne

arrangements of type B̃n

7.1 Preliminary constructions

In this Chapter, we are primarily interested in Artin braid groups associated
to Coxeter graphs of type Bn, B̃n and Dn (see Table 7.1).

The associated Coxeter groups can be described as re�ection groups with
respect to an arrangement of hyperplanes (or mirrors). Let x1, . . . , xn be the
standard coordinates in Rn. Consider the linear hyperplanes:

Hk ={xk = 0} L±ij ={xi = ±xj}

and, for an integer a ∈ Z, their a�ne translates:

Hk(a) ={xk = a} L±ij(a) ={xi = ±xj + a}

The Coxeter group Bn is identi�ed with the group of re�ections with
respect to the mirrors in the arrangement

A(Bn) := {Hk | 1 ≤ k ≤ n} ∪ {L±ij | 1 ≤ i < j ≤ n}.

As such it is the group of signed permutations of the coordinates in Rn. No-
tice that Bn is generated by n basic re�ections s1, . . . , sn having respectively
as mirrors the n− 1 hyperplanes L+

i,i+1 (1 ≤ i ≤ n− 1) and the hyperplane
Hn. This numbering of the re�ections is consistent with the numbering of
the vertexes of the Coxeter graph for Bn shown in Table 7.1.

The a�ne Coxeter group B̃n is the semidirect product of the Coxeter
group Bn and the coroot lattice, consisting of integer vectors whose coordi-
nates add up to an even number. The arrangement of mirrors is then the
a�ne hyperplane arrangement:

A(B̃n) := {Hk(a) | 1 ≤ k ≤ n, a ∈ Z} ∪ {L±ij(a) | 1 ≤ i < j ≤ n, a ∈ Z}.
(7.1.1)
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Bn 18?9>:=;< 28?9>:=;< 38?9>:=;< 48?9>:=;< n−28?9>:=;< n−18?9>:=;< n8?9>:=;<4

B̃n

18?9>:=;<
38?9>:=;< 48?9>:=;< n−18?9>:=;< n8?9>:=;< n+18?9>:=;<

28?9>:=;<
oooooo

4OOO
OOO

Dn

18?9>:=;<
38?9>:=;< 48?9>:=;< n−28?9>:=;< n−18?9>:=;< n8?9>:=;<

28?9>:=;<
oooooo

OOO
OOO

Table 7.1: Coxeter graphs of type Bn, B̃n, Dn.

It is generated by the basic re�ections for Bn plus an extra a�ne re�ection s̃
having L−12(1) as mirror. The latter commutes with all the basic re�ections of
Bn but s2, for which (s̃s2)3 = 1. This accounts for the Coxeter graph of type
B̃n in the table, where, however, we chose by our convenience a somewhat
unusual vertex numbering.

Finally the group Dn has re�ection arrangement:

A(Dn) := {L±ij | 1 ≤ i < j ≤ n}

and it can be regarded as the group of signed permutations of the coordinates
which involve an even number of sign changes. In particularDn is a subgroup
of index 2 in Bn. The group is generated by n basic re�ections w.r.t. the
hyperplanes L−12 and L+

i,i+1 (1 ≤ i ≤ n− 1).

7.2 The K(π, 1) problem for the a�ne Artin group

of type B̃n

Recall that in�nite type Artin groups are represented as groups of linear,
not necessarily orthogonal, re�ections w.r.t. the walls of a polyhedral cone
C of maximal dimension in V = Rn. It can be shown that the union U =⋃

w∈W wC of W -translates of C is a convex cone and that W acts properly
on the interior U0 of U . We may now rephrase the construction used in the
�nite case as follows. Let A be the complexi�ed arrangement of the mirrors
of the re�ections in W and consider I := {v ∈ V⊗C | <(v) ∈ U0}. Then W
acts freely on Y = I \

⋃
H∈AH and we can form the orbit space X := Y/W .

It is known ([vdL83]; see also [Sal94]) that GW is indeed the fundamental
group of X, but in general it is only conjectured that X is a K(π, 1). In this
Section, we extend this result to the a�ne Artin group of type B̃n, showing:
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Theorem 7.2.1. Y(B̃n) and, hence, X(B̃n) are K(π, 1) spaces.

The idea of proof can be described in few words: up to a C∗ factor, the
orbit space is presented (through the exponential map) as a covering of the
complement to a �nite simplicial arrangement, so we apply Theorem 1.4.2.

We just digress a bit on the peculiarity of a�ne Artin groups. In this
case the associated Coxeter group is an a�ne Weyl groupWa and, as such, it
can be geometrically represented as a group generated by a�ne (orthogonal)
re�ections in a real vector space. This geometric representation and that
given by the Tits cone are linked in a precise manner; indeed it turns out
that U0 for an a�ne Weyl group is an open half space in V and thatWa acts
as a group of a�ne orthogonal re�ections on a hyperplane section E of U0.
The representation on E coincides with the geometric representation and
Y(Wa) is homotopic to the complement of the complexi�ed a�ne re�ection
arrangement.

Using the explicit description of the re�ection mirrors in Equation (7.1.1),
the complement of the complexi�ed a�ne re�ection arrangement of type B̃n

is given by:

Y := Y(B̃n) = {x ∈ Cn |xi ± xj /∈ Z for all i 6= j, xk /∈ Z for all k}

On Y we have, by standard facts, a free action by translations of the coweight
lattice Λ, identi�ed with the standard lattice Zn ⊂ Cn.

Proof of Theorem 7.2.1 We �rst explicitly describe the covering Y →
Y/Λ applying the exponential map y = exp(2πix) componentwise to Y:

Y
π // Y/Λ ' {y ∈ Cn | yi 6= y±1

j , yk 6= 0, 1}

(x1, . . . , xn) � //
(
exp (2πix1), . . . , exp (2πixn)

)
Notice now that the function

C \ {0, 1}y 7→ g(y) =
1 + y

1− y
∈ C \ {±1}

satis�es g(y−1) = −g(y). Further g is invertible, its inverse being given by
z 7→ z−1

z+1 . Therefore applying g componentwise to Y/Λ, we have:

Y/Λ ' {z ∈ Cn | zi 6= ±zj , zk 6= ±1}

Consider now the arrangement A in Rn+1 consisting of the hyperplanes
L±ij for 1 ≤ i < j ≤ n + 1 and H1 and let Y(A) be the complement of its
complexi�cation.

We have an homeomorphism

η : C∗ ×Y/Λ→ Y(A)
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de�ned by
η
(
λ, (z1, . . . , zn)

)
= (λ, λz1, . . . , λzn)

To show that Y/Λ is a K(π, 1), it is then su�cient to show that Y(A)
is a K(π, 1). We will show in Lemma 7.2.2 below that A is simplicial, and
therefore the result follows from Deligne's Theorem 1.4.2. 2

Remark By the same exponential argument one may recover the results of
[Oko79] for the a�ne Artin group of type Ãn, C̃n (for further applications
we refer to [All02]).

Lemma 7.2.2. Let A be the real arrangement in Rn+1 consisting of the
hyperplanes L±ij for 1 ≤ i < j ≤ n+ 1 and H1. Then A is simplicial.

Proof. Notice that A is the union of the re�ection arrangement A(Dn+1)
of type Dn+1 and the hyperplane H1 = {x1 = 0}. Hence we study how
the chambers of A(Dn+1) are cut by the hyperplane H1. Since the Coxeter
group Dn+1 acts transitively on the collection of chambers, it is enough to
consider how the fundamental chamber C0 of A(Dn+1) is cut by the Dn+1-
translates of the hyperplane H1, i.e. by the coordinate hyperplanes Hk for
k = 1, 2, . . . , n+ 1.
We may choose

C0 = {−x2 < x1 < x2 < . . . < xn < xn+1}

as fundamental chamber. Of course, this is a simplicial cone. Notice that
the coordinate of a point in C0 are all positive except (possibly) the �rst.
Thus it is clear that for k ≥ 2 the hyperplanes Hk do not cut C0.
A quick check shows instead that H1 cuts C0 into two simplicial cones C1,
C2 given precisely by:

C1 = {0 < x1 < x2 < . . . < xn < xn+1}
C2 = {0 < −x1 < x2 < . . . < xn < xn+1}

2

2

7.3 Cohomology

The second main result of this Chapter is the computation of the cohomology
of the group GB̃n

(so, by Theorem 7.2.1), of X(B̃n)) with local coe�cients.
We consider the 2-parameters representation of GB̃n

over the ring Q[q±1, t±1]
and over the module Q[[q±1, t±1]] de�ned by sending the standard generator
corresponding to the last node of the Coxeter diagram to (−t)−multiplication
and the other standard generators to (−q)−multiplication (minus sign is only
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for technical reasons). Such representations are quite natural to be consid-
ered: they generalize the analog 1-parameter representations that (for �nite
type) correspond to considering the structure of bundle over the comple-
ment of the discriminant hypersurface in the orbit space and the monodromy
action on the cohomology of the associated Milnor �bre (see for example
[Fre88], [CS98]). We explain in Section 7.3.2 various relations between these
cohomologies and the cohomology of the commutator subgroup of GB̃n

.
The main tool to perform computations is the algebraic Salvetti com-

plex. The cohomology factorizes into two parts (see also [DCPSS99]) : the
invariant part reduces to that of the Artin group of �nite type Bn, whose
2-parameters cohomology was computed in [CMS06a]; for the anti-invariant
part we use suitable �ltrations and the associated spectral sequences.

Let ϕd be the d-th cyclotomic polynomial in the variable q. We de�ne
the quotient rings

{1}i = Q[q±1, t±1]/(1 + tqi)

{d}i = Q[q±1, t±1]/(ϕd, 1 + tqi)

{{d}}j = Q[q±1, t±1]/(ϕd,

d−1∏
i=o

1 + tqi)j .

The �nal result is the following one:

Theorem 7.3.1. The cohomology Hn−s(G eBn
,Q[[q±1, t±1]]) is given by

Q[[q±1, t±1]] for s = 0⊕
h>0

{{2h}}f(n,h) for s = 1

⊕
h>2

i∈I(n,h)

{2h}c(n,h,s)
i ⊕

⊕
d|n

0≤i≤d−2

{d}i ⊕ {1}n−1 for s =2

⊕
h>2

i∈I(n,h)

{2h}c(n,h,s)
i ⊕

⊕
d|n

0≤i≤d−2

d≤ n
j+1

{d}i for s =2 + 2j

⊕
h>2

i∈I(n,h)

{2h}c(n,h,s)
i ⊕

⊕
d-n

d≤ n
j+1

{d}n−1 for s =3 + 2j

where c(n, h, s) = max(0, b n
2hc − s), f(n, h) = bn+h−1

2h c and I(n, h) =
{n, . . . , n+h−2} if n ≡ 0, 1, . . . , hmod(2h) and I(n, h) = {n+h−1, . . . , n+
2h− 1} if n ≡ h+ 1, h+ 2, . . . , 2h− 1 mod(2h).
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As a corollary we also derive the cohomology with trivial coe�cients of
GB̃n

(Theorem 7.3.7)
We use a suitable �ltration of the algebraic complex, reducing computa-

tion of the cohomology mainly to:

• calculation of generators of certain subcomplexes for the Artin group
of type Dn (whose cohomology was known from [DCPSS99], but we
need explicit suitable generators);

• analysis of the associated spectral sequence to deduce the cohomology
of B̃n with local coe�cients;

• use of some exact sequences for the cohomology with constant coe�-
cients.

7.3.1 Algebraic complexes for Artin groups

As a main tool for cohomological computations we use the algebraic Salvetti
complex (see Section 3.1), which provides an e�ective way to determine the
cohomology of the orbit space X(W ) with values in an arbitrary GW -module.
When X(W ) is a K(π, 1) space, of course, we get the cohomology of the
group GW .

For sake of simplicity, we restrict ourself to the abelian representations
considered in Section 1.5. Let (W,S) be a Coxeter system. We recall that,
given a a representation η : GW → R∗, let Mη be the induced structure
of GW -module on the R-module M . We may describe a cochain complex
C∗(W ) for the cohomology H∗(X(W );Mη) as follows. The cochains in di-
mension k consist in the free R-module indexed by the �nite parabolic sub-
group of W :

Ck(W ) :=
⊕

Γ:|Γ|=k

|WΓ|<∞

M.eΓ (7.3.1)

and the coboundary map are completely described by the formula:

d(eΓ) =
∑
Γ′⊃Γ

|Γ′|=|Γ|+1

|WΓ′ |<∞

(−1)α(Γ,Γ′)WΓ′(η)
WΓ(η)

eΓ′ (7.3.2)

where WΓ(η) is the η-Poincaré series of the parabolic subgroup WΓ and
α(Γ,Γ′) is an incidence index depending on a �xed linear order of S. For
Γ′ \ Γ = {s′} it is de�ned as

α(Γ,Γ′) := |{s ∈ Γ : s < s′}|
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We identify (consistently with Table 7.1) the generating re�ections set S
for B̃n with the set {1, 2, . . . , n+ 1}. It is useful to represent a subset Γ ⊂ S
with its characteristic function. For example the subset {1, 3, 5, 6} for B̃6

may be represented as the binary string:

0
1

10110

To determine the cohomology of GB̃n
, it will be necessary to give a close

look to the cohomology of GDn . It is convenient to number the vertex of Dn

as in table 7.1 and to regard parabolic subgroups as binary strings as before.

7.3.2 A generalized shift

Let R be the ring of Laurent polynomials Q[q±1, t±1] andM be the R-module
of Laurent series Q[[q±1, t±1]] and let Rq,t, Mq,t be the corresponding local
systems, with action ηq,t. Our main interest is to compute the cohomology
with trivial rational coe�cient of the group

Z eBn
= ker (G eBn

→ Z2)

that is the commutator subgroup of G eBn
. By Shapiro Lemma (see [Bro82])

we have the following equivalence:

H∗(Z eBn
,Q) ' H∗(G eBn

,Mq,t)

and the second term of the equality is computed by the Salvetti complex
C∗(B̃n) over the module Mq,t. Notice that the �nite parabolic subgroups of
W eBn

are in 1−1 correspondence with the proper subsets of the set of simple
roots S. the index set S = {1, . . . , n+ 1} except that for the whole set S of
all simple roots of B̃n.

We can de�ne an augmented Salvetti complex Ĉ∗(B̃n) as follows:

Ĉ∗(B̃n) = C∗(B̃n)⊕ (Mq,t).eS .

We need to de�ne the boundary map for the n-dimensional generators. Let
us �rst de�ne a quasi-Poincaré polynomial for G eBn

. We set

ŴS(q, t) = Ŵ eBn
(q, t) = [2(n− 1)]!! [n]

n−1∏
i=0

(1 + tqi).

It is easy to verify that Ŵ eBn
(q, t) is the least common multiple of allWΓ(q, t),

for Γ ⊂ S with |Γ| = n. This allows us to de�ne the boundary map for the
generators eΓ, with |Γ| = n:

d(eΓ) = (−1)α(Γ,S)
Ŵ eBn

(q, t)

WΓ(q, t)
eS
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and it is straightforward to verify that Ĉ∗(B̃n) is still a chain complex. More-
over we have the following relations between the cohomologies of C∗(B̃n) and
Ĉ∗(B̃n):

H i(C∗(B̃n)) = H i(Ĉ∗(B̃n))

for i 6= n, n+ 1 and we have the short exact sequence

0→ Hn(Ĉ∗(B̃n),Mq,t)→ Hn(C∗(B̃n),Mq,t)→Mq,t → 0.

Finally one can prove that the complex Ĉ∗(B̃n) with coe�cients in the local
system Rq,t is well �ltered (as de�ned in [Cal05]) with respect to the variable
t and so it gives the same cohomology, modulo an index shifting, of the com-
plex with coe�cients over the module Q[t±1][[q±1]]. Another index shifting
can be proved with a slight improvement of the results in [Cal05], allowing
to pass to the module M . Hence we have the following

Proposition 7.3.2.

H i(Z eBn
,Q) ' H i(Ĉ∗(B̃n),Mq,t) ' H i+2(Ĉ∗(B̃n), Rq,t) ' H i+2(G eBn

, Rq,t)

for i 6= n, n+ 1 and

Hn(Z eBn
,Q) ' Hn(G eBn

,Mq,t) 'M

Hn+1(Z eBn
,Q) ' Hn+1(G eBn

,Mq,t) ' 0.

2

From now on we deal only with the complex Ĉ∗(B̃n) with coe�cients in
the local system Rq,t.

7.3.3 A splitting of complexes

For Coxeter groups of typeW = Dn, B̃n the Salvetti's complex C∗W exhibits
an involution σ de�ned by:

0
0
A

σ−→ 0
0
A

1
1
A

σ−→ − 1
1
A

0
1
A

σ−→ 1
0
A

1
0
A

σ−→ 0
1
A.

Let I∗W be the module of σ-invariants and K∗W the module of σ-anti-
invariants. We may then split the complex into:

C∗W = I∗W ⊕K∗W.

In particular the computation of the cohomology of C∗W may be performed
analyzing separately the two subcomplexes.
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7.3.4 Cohomology of K∗Dn

The cohomology of the anti-invariant subcomplex for Dn was completely
determined in [DCPSS99]. However we will need for our purposes generators
for the cohomology groups which are not easily deduced from the argument
in the original paper. So we brie�y recall this result.

Let G1
n be the subcomplex of C(Dn) generated by the strings of type

0
1
A and

1
1
A. It is easy to see that G1

n is isomorphic (as a complex) to

K(Dn).
De�ne the set

Sn = {h ∈ N s. t. 2h|n or h|n− 1 and 2h - (n− 1)}

Note that h appears in Sn if and only if n = 2λh (i.e. n is an even multiple
of h) or n = (2λ+ 1)h+ 1 (n is an odd multiple of h incremented by 1).

Proposition 7.3.3 ([DCPSS99]). The top-cohomology of G1
n is:

HnG1
n =

⊕
h∈Sn

{2h}

whereas for s > 0 one has:

Hn−2sG1
n =

⊕
h∈Sn

1 < h < n
2s

{2h}

Hn−2s+1G1
n =

⊕
h∈Sn

1 < h ≤ n
2s

{2h}.

2

We need a description of the generators for these modules.
First we de�ne the following basic binary strings:

oµ[h] =


0
1

1h−1 for µ = 0

1
1

12µh−201h for µ ≥ 1

eµ[h] =
1
1

1(2µ−1)h−101h−2 for µ ≥ 1

sh = 01h−2 lh = 01h.
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A set of candidate cohomology generators is given by the following cocycles:

oµ,2i[h] =
1
ϕ2h

d(oµ[h](shlh)i)

oµ,2i+1[h] =
1
ϕ2h

d(oµ[h](shlh)ish)

eµ,2i[h] =
1
ϕ2h

d(eµ[h](lhsh)i)

eµ,2i+1[h] =
1
ϕ2h

d(eµ[h](lhsh)ilh).

Indeed these cocycles account for all the generators:

Proposition 7.3.4. 1. Let n = 2λh. Then for 0 ≤ s < λ the summand
of Hn−2s(G1

n) isomorphic to {2h} is generated by eλ−s,2s[h]. Simi-
larly for 0 ≤ s < λ the summand of Hn−2s−1(G1

n) is generated by
oλ−s−1,2s+1[h].

2. Let n = (2λ+1)h+1. Then for 0 ≤ s ≤ λ the summand of Hn−2s(G1
n)

isomorphic to {2h} is generated by oλ−s,2s[h]. For 0 ≤ s < λ the
summand of Hn−2s−1(G1

n) is generated by eλ−s,2s+1[h].

Proposition 7.3.4 is best proved by induction on n, recovering in partic-
ular the quoted result from [DCPSS99].

Proof. We �lter the complex G1
n from the right and use the associated spec-

tral sequence. Let:
FkG

1
n = 〈A1k〉

be the subcomplex generated by binary strings ending with at least k ones.
We have a �ltration

G1
n = F0G

1
n ⊃ F1G

1
n ⊃ . . . ⊃ Fn−2G

1
n ⊃ Fn−1G

1
n−1 ⊃ 0

in which the subsequent quotients for k = 1, 2, . . . , n− 3

FkG
1
n

Fk+1G1
n

= 〈A01k〉 ' G1
n−k−1[k]

are isomorphic to the complex for G1
n−k−1 shifted in degree by k, while

Fn−2G
1
n

Fn−1G1
n

=
〈

0
1

1n−2

〉
' R[n− 1] Fn−1G

1
n =

〈
1
1

1n−2

〉
' R[n].

Therefore the columns of the E1 term of the spectral sequence are either the
module R or are given by the cohomology of G1

n′ with n
′ < n. Reasoning by

induction, we may thus suppose that their cohomology has the generators
prescribed by the proposition. Since there can be no non-zero maps between
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the module {2h}, {2h′} for h 6= h′, we may separately detect the ϕ2h-torsion
in the cohomology.
Fix an integer h > 1. Then the relevant modules for the ϕ2h-torsion in
the E1 term are suggested in Table 7.2. We will call a column even if it
is relative to G1

2µh and odd if it is relative to G1
(2µ+1)h+1 for some µ. The

o2,0

e2,1

o1,2

e1,3

o0,4 e2,0

o1,1

e1,2

o0,3

o1,0

e1,1

o0,2

e1,0

o0,1

o0,0

R R

G1
5h+1 G1

4h
G1

3h+1 G1
2h

G1
h+1

dh+1

##
##
##
## //

//

dh−1

//
dh+1

##
##

dh−1

//

d1

//

//

OO

Table 7.2: Spectral sequence for G1
n

di�erential d1 is zero everywhere but d1 : E(n−2,1)
1 → E

(n−1,1)
1 where it is

given by multiplication by [2(n−1)]!!/[n−1]!. Thus the E2 term di�ers from
the E1 only in positions (n− 2, 1) and (n− 1, 1), where:

E
(n−2,1)
2 = 0 E

(n−1,1)
2 =

R

[2(n− 1)]!!/[n− 1]!

Then all other di�erentials are zero up to dh−2.
It is now useful to distinguish among 4 cases according to the remainder of
nmod(2h):

a) n = 2λh+ c for 1 ≤ c ≤ h

b) n = (2λ+ 1)h+ 1

c) n = (2λ+ 1)h+ 1 + c for 1 ≤ c ≤ h− 2

d) n = 2λh-
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......

......

......

......

......

......

R

(ϕ2h)λ

G1
2λh

G1
(2λ−1)h+1 G1

4h
G1

3h+1 G1
2h

G1
h+1

//

OO

,,XXXXXX

,,XXXXXX

,,XXXXXX

,,XXXXXX

,,XXXXXX

,,XXXXXX

dh−1
,,XXXXXX

,,XXXXXX

,,XXXXXX

dh−1
,,XXXXXX

dh−1
,,XXXXXX

Table 7.3: Eh−1-term of the spectral sequence for G1
n in case a)

In case a), note the �rst column relevant for ϕ2h-torsion is even (see also
Table 7.3).

The di�erential dh−1 maps the modules of positive codimension of an
even column G1

2µh (1 ≤ µ ≤ λ) to those in the odd column G1
(2µ−1)h+1.

Using the suitable generators of type e·,·[h], o·,·[h], the map dh−1 may be
identi�ed with the multiplication by[

n− (2µ− 1)h− 1
h− 1

]
=
[
2(λ− µ) + c+ h− 1

h− 1

]
(7.3.3)

Since this polynomial is non-divisible by ϕ2h, the restriction of dh−1 to pos-
itive codimension elements in even columns is injective. It follows that in
the Eh-term the only survivors are in positions (c + 2(λ − µ)h − 1, 2µh),
generated by eµ,0[h] and

E
(n−1,1)
h ' E(n−1,1)

2 =
R

[2(n− 1)]!!/[n− 1]!
.

Note that in E(n−1,1)
h the only torsion of type ϕl

2h is given by the summand:

R

(ϕ2h)λ

The setup is summarized in Table 7.4. In the Table the survivors are in dark
grey boxes while annihilated terms are in light grey.

Further, using the generators and up to an invertible, we may identify
the di�erential d2µh : E(c+2(λ−µ)h−1,2µh)

2µh → En−1,1
2µh with the multiplication

by ϕλ−µ
2h (1 ≤ µ ≤ λ). Thus, for example, in the E2h+1 term the module in

position (c + 2(λ − 1)h − 1, 2h) vanishes and the ϕ2h-torsion in E(n−1,1)
2h+1 is
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reduced to R/(ϕ2h)λ−1. Continuing in this way, all ϕ2h-torsion vanishes. In
summary there is no ϕ2h-torsion in the cohomology of G1

n; this ends case a).

......

......

......

......

......

......

R

(ϕ2h)λ

G1
2λh

G1
(2λ−1)h+1 G1

4h
G1

3h+1 G1
2h

G1
h+1

//

OO d2λh

��

d4h

��

d2h

##

Table 7.4: Setup for the higher degree terms in the spectral sequence for G1
n

in case a)

For case b), the �rst column in the spectral sequence relevant for ϕ2h is
still even. The di�erential dh−1 may be identi�ed again as multiplication as
in formula 7.3.3, but now it vanishes, since the polynomial is divisible by
ϕ2h.

......

......

......

......

......

......

R

(ϕ2h)λ+1

G1
2λh

G1
(2λ−1)h+1

G1
2(λ−1)h G1

3h+1 G1
2h

G1
h+1

//

OO

**TTTTTTTTTTTT

**TTTTTTTTTTTT

**TTTTTTTTTTTT

**TTTTTTTTTTTT

**TTTTTTTTTTTT

dh+1 **TTTTTTTTTTTT

**TTTTTTTTTTTT

dh+1 **TTTTTTTTTTTT

dh+1

**UUUUU

Table 7.5: Eh−1-term of the spectral sequence for G1
n in case b)

The next non-vanishing di�erential is dh+1. See Table 7.5. It takes the
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module in positive codimension in an odd column G1
(2µ+1)h+1 to the elements

in the even column G1
2µh (for 1 ≤ µ ≤ λ − 1). Via generators, it may be

identi�ed with the multiplication by[
n− 2µh
h+ 1

]
=
[
2(λ− µ)h+ h+ 1

h+ 1

]
(7.3.4)

and it is therefore injective when restricted to modules in positive codimen-
sion in odd columns. Further dh+1 is also non-zero as a map E(2λh−1,h+1)

h+1 →
E

(n−1,1)
h+1 . Actually the term

E
(n−1,1)
h+1 ' E(n−1,1)

2 ' R

[2(n− 1)]!!/[n− 1]!

has R/(ϕ2h)λ+1 as the only summand with torsion of type ϕl
2h. It is easy to

check that the relative map can be identi�ed with the multiplication by ϕλ
2h.

Thus, the only survivors in the E2h term are the �rst even column, the
top modules in the odd columns, generated in positions (2(λ−µ)h−1, (2µ+
1)h + 1) by oµ,0 for 1 ≤ µ ≤ λ − 1, as well as E(n−1,1)

2h which has R/(ϕ2h)λ

as summand.
Note that the higher di�erentials vanish when restricted to the �rst even
column. Actually we may lift the generators of type eλ−s,2s[h] to global
generators eλ−s,2s+1[h] for 0 ≤ s < λ. Similarly for 0 ≤ s < λ we may lift
oλ−s−1,2s+1[h] to the global generator oλ−s−1,2s+2[h]. Finally, as in case a),

......

......

......

......

......

......

R

(ϕ2h)λ

G1
2λh

G1
(2λ−1)h+1

G1
2(λ−1)h G1

3h+1 G1
2h

G1
h+1

//

OO d(2λ−1)h+1

��

d3h+1

��

Table 7.6: Setup for the higher degree terms in the spectral sequence for G1
n

in case b)

the module in positions (2(λ−µ)h−1, (2µ+1)h+1) for 1 ≤ µ ≤ λ−1 vanish
in the higher terms of the spectral sequence while the module in position
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(n−1, 1) has eventually as summand R/ϕ2h. Clearly the coboundary oλ,0[h]
projects onto a generator of the latter.

Case c) and d) present no new complications and are omitted. 2

2

7.3.5 Spectral sequence for GB̃n

We can now compute the cohomology H∗(G eBn
, Rq,t). We will do this by

means of the Salvetti complex Ĉ∗B̃n.
As in Section [7.3.3], let ÎB̃n be the module of the σ-invariant elements

and K̂B̃n the module of the σ-anti-invariant elements. We can split our
module Ĉ∗B̃n into the direct sum:

Ĉ∗B̃n = ÎB̃n ⊕ K̂B̃n.

Using the map β : C∗Bn → Ĉ∗B̃n so de�ned:

β : 0A 7→ 0
0
A

β : 1A 7→ 1
0
A+

0
1
A

one can see that the submodule ÎB̃n is isomorphic (as a di�erential complex)
to C∗Bn. Its cohomology has been computed in [CMS06a]. We recall the
result:

Theorem 7.3.5 ([CMS06a]).

H i(GBn , Rq,t) =


⊕

d|n,0≤i≤d−2{d}i ⊕ {1}n−1 if i = n⊕
d|n,0≤i≤d−2,d≤ n

j+1
{d}i if i = n− 2j⊕

d-n,d≤ n
j+1
{d}n−1 if i = n− 2j − 1.

2

Hence we only need to compute the cohomology of K̂B̃n. In order to do
this we make use of the results presented in Section 7.3.4. First consider the
subcomplex of Ĉ∗B̃n de�ned as

L1
n =<

0
1
A,

1
1
A > .

We de�ne the map κ : L1
n → K̂B̃n by

κ :
0
1
A 7→ 0

1
A− 1

0
A
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κ :
1
1
A 7→ 2

1
1
A.

It is easy to check that κ gives an isomorphism of di�erential complex. Now
we de�ne a �ltration F on the complex L1

n:

FiL
1
n =<

0
1
A1i,

1
1
A1i > .

The quotient FiL
1
n/Fi+1L

1
n is isomorphic to the complex

(
G1

n−i[t
±1]
)
[i]

(see Proposition 7.3.3) with trivial action on the variable t. Hence we use
the spectral sequence de�ned by the �ltration F to compute the cohomology
of the complex L1

n.
The E0-term of the spectral sequence is given by

Ei,j
0 =

(
FiL

1
n

)(i+j)

(Fi+1L1
n)(i+j)

=
(
(G1

n−i)
(i+j)[t±1]

)
[i]

=(G1
n−i)

j [t±1]

for 0 ≤ i ≤ n− 2. Finally:

En−1,1
0 = R En,1

0 = R

and all the other terms are zero. The di�erential d0 : Ei,j
0 → Ei,j+1

0 corre-
sponds to the di�erential on the complex G1

n−i.It follows that the E
1-term

is given by the cohomology of the complexes G1
n−i:

E1
i,j = Hj(G1

n−i)[t
±1]

for 0 ≤ i ≤ n− 2 and

En−1,1
1 = R, En,1

1 = R.

As in Section 7.3.4, we can separately consider in the spectral sequence
E∗ the modules with torsion of type ϕl

2h for an integer h ≥ 1.
For a �xed integer h > 0, let c ∈ {0, . . . , 2h− 1} be the congruency class

of n mod(2h) and let λ be an integer such that n = c + 2λh. We consider
the two cases:

a) 0 ≤ c ≤ h;
b) h+ 1 ≤ c ≤ 2h− 1.
In case a) the modules of ϕ2h-torsion are:

with 0 ≤ µ ≤ λ− 1, 0 ≤ i ≤ λ− µ− 1

E
c+2µh,2(λ−µ)h−2i
1 ' {2h}[t±1]
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generated by eλ−µ−i,2i[h]01c+2µh;
with 0 ≤ µ ≤ λ− 1, 0 ≤ i ≤ λ− µ− 1

E
c+2µh,2(λ−µ)h−2i−1
1 ' {2h}[t±1]

generated by oλ−µ−i−1,2i+1[h]01c+2µh;
with 0 ≤ µ ≤ λ− 1, 0 ≤ i ≤ λ− µ− 1

E
c+2µh+h−1,2(λ−µ)h−h+1−2i
1 ' {2h}[t±1]

generated by oλ−µ−i−1,2i[h]01c+2µh+h−1;
with 0 ≤ µ ≤ λ− 2, 0 ≤ i ≤ λ− µ− 2

E
c+2µh+h−1,2(λ−µ)h−h+1−2i−1
1 ' {2h}[t±1]

generated by eλ−µ−i−1,2i+1[h]01c+2µh+h−1.
In case b) the modules of ϕ2h-torsion are:

with 0 ≤ µ ≤ λ− 1, 0 ≤ i ≤ λ− µ− 1

E
c+2µh,2(λ−µ)h−2i
1 ' {2h}[t±1]

generated by eλ−µ−i,2i[h]01c+2µh;
with 0 ≤ µ ≤ λ− 1, 0 ≤ i ≤ λ− µ− 1

E
c+2µh,2(λ−µ)h−2i−1
1 ' {2h}[t±1]

generated by oλ−µ−i−1,2i+1[h]01c+2µh;
with 0 ≤ µ ≤ λ, 0 ≤ i ≤ λ− µ

E
c+2µh−h−1,2(λ−µ)h+h+1−2i
1 ' {2h}[t±1]

generated by oλ−µ−i,2i[h]01c+2µh−h−1;
with 0 ≤ µ ≤ λ− 1, 0 ≤ i ≤ λ− µ− 1

E
c+2µh−h−1,2(λ−µ)h+h+1−2i−1
1 ' {2h}[t±1]

generated by eλ−µ−i,2i+1[h]01c+2µh−h−1.
In the E1-term of the spectral sequence, the only non-trivial map is the

map d1 : En−1,1
1 → En,1

1 , that corresponds to the multiplication by the
polynomial

Ŵ eBn
[q, t]

WBn [q, t]
=

n−1∏
i=1

(1 + qi) =
∏
h≤n

ϕ
bn−1

h
c−bn−1

2h
c

2h .

Then in E2 we have:
En−1,1

2 = 0

and
En,1

2 =
⊕

R/(ϕ
bn−1

h
c−bn−1

2h
c

2h ).
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Notice that the integer f(n, h) = bn−1
h c − b

n−1
2h c corresponds to λ in case a)

and to λ+ 1 in case b).
Now we consider the higher di�erentials in the spectral sequence. The

�rst possibly non-trivial maps are dh−1 and dh+1. In case a) the map dh−1

is given by the multiplication by

n+h−2∏
i=n

(1 + tqi)

and the map dh+1 is the null map. The maps

d2(λ−µ)h : {2h}[t±1] = E
c+2µh,2(λ−µ)h
2(λ−µ)h → En,1

2(λ−µ)h

where µ goes from λ − 1 to 0, correspond, up to invertible, modulo ϕ2h,to
multiplication by

ϕµ
2h(

2h−1∏
i=0

(1 + tqi))λ−µ.

Moreover they are all injective and the term En,1
2(λ)h+1 is given by the quotient

R/(ϕλ
2h, ϕ

λ−1
2h

2h−1∏
i=0

(1 + tqi), . . . , (
2h−1∏
i=0

(1 + tqi))λ) =

= R/(ϕ2h,

2h−1∏
i=0

(1 + tqi))λ.

In case b) the map dh−1 is null and the map dh+1 is the multiplication
by the polynomial

n+2h−1∏
i=n+h−1

(1 + tqi).

The maps

d2(λ−µ)h+h+1 : {2h}[t±1] = E
c+2µh+h−1,2(λ−µ)h−h
2(λ−µ)h+h+1 → E1,n

2(λ−µ)h+h+1

where µ goes from λ to 0, correspond, up to invertible, modulo ϕ2h,to mul-
tiplication by

ϕµ
2h(

2h−1∏
i=0

(1 + tqi))λ−µ+1.

Hence they are all injective and the term En,1
2(λ)h+h+2 is given by the quotient

R/(ϕ2h,

2h−1∏
i=0

(1 + tqi))λ+1.
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Since all the generators lift to global cocycles, it turns out that all the other
di�erentials are null. Hence we proved the following:

Theorem 7.3.6.

Hn+1(K̂B̃n) '
⊕
h>0

{{2h}}f(n,h)

and, for s ≥ 0:

Hn−s(K̂B̃n) '
⊕
h>2

i∈I(n,h)

{2h}⊕max(0,b n
2h
c−s)

i

with I(n, h) = {n, . . . , n + h − 2} if n ' 0, 1, . . . , hmod(2h), f(n, h) =
bn+h−1

2h c and I(n, h) = {n+h−1, . . . , n+2h−1} if n ' h+1, h+2, . . . , 2h−
1 mod(2h). 2

Putting together the results of Theorem 7.3.5 and 7.3.6, we get Theorem
7.3.1.

As a corollary, we use the long exact sequences associated to

0 −→ Q[[t±1]]
m(q)−→ M

1+q−→M −→ 0

and

0 −→ Q m(t)−→ Q[[t±1]] 1+t−→ Q[[t±1]] −→ 0

to get the constant coe�cients cohomology for G eBn
. Here m(x) is the mul-

tiplication by the series ∑
i∈Z

(−x)i.

We give only the result, omitting details which come from non di�cult anal-
ysis of the above mentioned sequences and recalling that the Euler charac-
teristic of the complex is 1, for n even, and −1, for n odd.

Theorem 7.3.7.

H i(G eBn
,Q) =


Q if i = 0
Q2 if 1 ≤ i ≤ n− 2
Q2+bn

2
c if i = n− 1, n

where the t and q actions correspond to the multiplication by −1. 2
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Open problems

We want to list some of the many open problems related to our work and
that are left to forthcoming research.

As a generalization of the computations of Chapter 4 and Chapter 5 one
can study the homology, with integer coe�cients in the ring Z[q±1] for the
Artin groups of type Dn. Moreover the computations could be extended to
the ring of coe�cients Z[q±1, t±1], for the cases where the abelianization of
the Artin group is Z2, that is Bn, F4, I2(2m). In Chapter 6 we compute
the cohomology of the Artin group of type Bn with coe�cients over the ring
Q[q±1, t±1]. The extension of the computations to the ring Z[q±1, t±1] seems
to be a�ordable, even if much more complicated.

A natural generalization of the results in Chapter 6 and Chapter 7 is
the computation of the cohomology for the other a�ne type Artin groups.
This leads to another problem. The computations in Chapter 7 were made
possible using the fact that the space XW in case B̃n is of type K(π, 1). It is
an open conjecture that the space XW is a K(π, 1) for a any Coxeter group
W . Even in a�ne cases, we know the conjecture holds only for Ãn and C̃n

([Oko79]), B̃n (Theorem 7.2.1) and G̃2 (as a consequence of the results in
[CD95b]). If this conjecture holds, it is possible to compute the cohomology
for all Artin groups using the Salvetti complex. Moreover, the conjecture
implies that all the Artin groups are torsion free, since the Salvetti complex
provides a �nite resolution.

Similar to Chapter 6, Proposition 6.4.5, one can also study the cohomol-
ogy of Artin groups over non abelian representations.
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q-analog
factorial, 14
of a binomial, 14
of a number, 14
double factorial, 14

q-divided polynomial algebra, 55
q, t-analog

of an even number, 14

A�ne group, 7
A�ne Weyl group, 7
Arrangement

simplicial, 9
Arrangement of hyperplanes, 3, 9

central, 9
Artin group, 10

pure, 12

Braid group, 10
on in�nitely many strands, 68
pure, 12

Chain homotopy, 23
Chamber, 3

face of a chamber, 3
wall of a chamber, 3

Characteristic degree, 5
Characteristic homomorphism, 17
Classifying space, 9, 22
Cohomology of a group, 22, 24
Complex re�ection, 13
Complex re�ection group, 13
Coroot, 7
Coroot lattice, 7
Coxeter graph, 2
Coxeter group, 1

of large type, 13

Coxeter matrix, 2
Coxeter system, 1

irreducible, 2
Crystallographic group, 5
Cyclic cover, 29

Ext functor, 23

Face of a chamber, 3
Facet, 3

support of, 3

Group ring, 23

Homology of a group, 24

Induced bundle, 21

Lattice, 5
Length, 1

Milnor �ber, 16

Normalized standard complex, 55

Parabolic subgroup, 1
Poincaré series, 14
Principal G-bundle, 21

universal, 22
Pseudo-re�ection, 4

Re�ection, 4
Re�ection group, 3
Resolution, 23
Root lattice, 7
Root system, 7

dual, 7

Salvetti complex, 36
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Algebraic Salvetti complex, 37
Subalgebra

of invariant polynomials, 4

Tit's representation, 4
Tong-Yang-Ma representation, 99
Tor functor, 24

Wall of a chamber, 3
Weighted

homogeneous polynomial, 17
Well �ltered complex, 47
Weyl group, 7
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