
Scuola Normale Superiore di Pisa

Classe di Scienze

Corso di Perfezionamento in Matematica

Tesi di Perfezionamento

Smooth Geometric Evolutions of Hypersurfaces

and Singular Approximation of Mean Curvature

Flow

Candidato:

Carlo Mantegazza
Relatore:

Luigi Ambrosio

Anno Accademico 2014 – 2015



Contents

Citations to Previously Published Works 2

Foreword 3

Chapter 1. Geometry of Submanifolds and Distance Functions 9
1.1. Geometry of Submanifolds 9
1.2. Some Extra Conventions 15
1.3. Tangential Calculus 16
1.4. Distance Functions 18
1.5. Higher Order Relations 25
1.6. The Distance Function on Riemannian Manifolds 30

Chapter 2. Functionals on Submanifolds of the Euclidean Space 38
2.1. Geometric Functionals 38
2.2. First Variation 39
2.3. Euler Equations of some Special Functionals 42

Chapter 3. The Evolution Problems and Short Time Existence of the Flows 56
3.1. The Evolution Problems 56
3.2. Short Time Existence 58

Chapter 4. A Priori Estimates 60
4.1. A Priori Estimates on the Sobolev Constants and on the Volume of the Evolving

Hypersurfaces 60
4.2. Interpolation Inequalities for Tensors 63

Chapter 5. Long Time Existence of the Flow and Convergence 67
5.1. Estimates on the Geometric Quantities 67
5.2. Long Time Existence and Regularity 77
5.3. Convergence 79
5.4. Other Functionals 80

Chapter 6. Singular Approximation of the Mean Curvature Flow 81
6.1. Curves in the Plane 83
6.2. The General Case 90
6.3. Convergence to the Mean Curvature Flow 93

Appendix A. Quasilinear Parabolic Equations on Manifolds
(In Collaboration with Luca Martinazzi) 96

Bibliography 108

1



Citations to Previously Published Works

Several results presented in this thesis appeared in the following papers:

• L. Ambrosio and C. Mantegazza, Curvature and distance function from a manifold. Dedicated
to the memory of Fred Almgren. J. Geom. Anal. 8 (1998), no. 5, 723–744.

• C. Mantegazza, Smooth geometric evolutions of hypersurfaces. Geom. Funct. Anal. 12
(2002), no. 1, 138–182.

• C. Mantegazza and A. C. Mennucci, Hamilton–Jacobi equations and distance functions on
Riemannian manifolds. Appl. Math. Opt. 47 (2003), 1–25.

• M. Eminenti and C. Mantegazza, Some properties of the distance function and a conjecture of
De Giorgi. J. Geom. Anal. 14 (2004), no. 2, 267–279.

• G. Bellettini, C. Mantegazza and M. Novaga, Singular perturbations of mean curvature flow.
J. Diff. Geom. 75 (2007), no. 3, 403–431.

• C. Mantegazza and L. Martinazzi, A note on quasilinear parabolic equations on manifolds.
Ann. Sc. Norm. Super. Pisa 9 (2012), 857–874.



Foreword

In the last years, a large interest has grown in connection with geometric evolutions of sub-
manifolds, also with motivations coming from mathematical physics (phase transitions, Stefan
problem). A model problem is the evolution of surfaces by mean curvature, which can be consid-
ered as the gradient flow of the Area functional. Indeed, ifM is a compact n–manifold embedded
in R

N without boundary and if Φt is a family of diffeomorphisms of Rn such that Φ0 is the iden-
tity, then

d

dt

[
Hn
(
Φt(M)

)]
t=0

= −
∫

M

〈H, X〉 dHn

where X = [Φt]
′
t=0 is the infinitesimal generator of Φt, Hn is the n–dimensional Hausdorff mea-

sure and H is the mean curvature vector of M .
This mathematical problem is intriguing because the appearance of singularities during the flow
(with the exceptions of planar Jordan curves, convex shapes, codimension one graphs) makes it
necessary a weak approach to get a global (in time) solution of the evolution problem. Starting
from the pioneering work of Brakke [18], a large literature is by now available on this subject
(see for instance Chen–Giga–Goto [25], Evans–Spruck [40], Huisken [54], Ilmanen [62] and the
references therein). The weak formulations are mainly based either on geometric measure theory
(currents, varifolds), or on the theory of viscosity solutions (the level set approach of Chen–Giga–
Goto [25], Evans–Spruck [40]). In the latter approach, a crucial role (see for instance Ambrosio–
Soner [7], Evans–Soner-Souganidis [39] and Soner [89]) is played by the analytical properties of
the distance function dM (x) from the manifold (see also Delfour–Zolésio [33, 34]). For instance,
in the codimension one case, it turns out that the boundary Mt = ∂Ut of a family of domains Ut
flows by mean curvature if and only if

∂t d(x, t) = ∆d(x, t) for every x ∈Mt

where d(x, t) is equal to the signed distance function from Mt, that is, d(x, t) = −dMt(x) if x ∈ Ut
and d(x, t) = dMt(x) if x /∈ Ut. Since the signed distance function makes no sense in higher codi-
mension problems, De Giorgi suggested in [30], [31] and [32] to work with the squared distance
function ηM (x) = [dM (x)]2/2. Setting η(x, t) = ηMt(x), it turns out that (see Ambrosio–Soner [7])
the mean curvature flow is characterized by the equation

∂t∇η(x, t) = ∆∇η(x, t) for x ∈Mt

because −∇η(x, t) represents the displacement of x ∈ Mt and −∆∇η(x, t) is the mean curvature
vector of Mt at x.

One of the parts of this work is a systematic study of the connections between the analytical
properties of ηM and the geometric invariants of the manifold M . In particular, in Chapter 1 we
will prove that ∇3ηM (x) and the second fundamental form Bx of M are mutually connected for
any x ∈ M by simple linear relations, moreover, for any unit normal vector ν the eigenvalues
of 〈Bx, ν〉 on the tangent space (in some sense, the “principal curvatures” in the direction ν) are
linked to the eigenvalues of ∇2ηM (xs) for any point xs on the normal line x+ sν.

Our motivations are also related to the analysis of the general class of geometric functionals,
including the Area functional and the Willmore functional (see Chen [24], Simon [87], Weiner [91],
Willmore [93])

H2(M) =

∫

M

|H|2 dHn ,
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depending on the second fundamental form of M , which have been widely investigated in the
literature (see Langer [68], Reilly [82], Rund [83] and Voss [90]).

We will see that in principle any autonomous “geometric” functional can be written as

F(M) =

∫

M

f
(
∇2
i1i2η

M , . . . ,∇γ
j1 ... jγ

ηM
)
dHn

for some function f depending on the standard derivatives in R
N of ηM up to a given order γ. In

this setting, the Area functional and the Willmore functional respectively correspond to

1

N − n

∫

M

∑

i,j

|∇2
ijη

M |2 dHn and

∫

M

∑

i,k

|∇3
ikkη

M |2 dHn.

One of the results of this work is a constructive algorithm for the computation of the first variation
of the functional F . Specifically, under smoothness assumptions on f we prove that there exists
a unique normal vector field EF such that

d

dt
F
(
Φt(M)

)∣∣∣∣
t=0

=

∫

M

〈EF |X〉 dHn

for any family of diffeomorphisms Φt whose infinitesimal generator isX . In general,EF depends
on the derivatives of ηM up to the order (2γ − 1) and, if f is a polynomial, then the same is true
for EF .
We will anyway carry out an explicit computation for the generalization of the Willmore func-
tional

Hp(M) =

∫

M

|H|p dHn.

In particular, in the codimension one case, we recover some of the results found by the above
mentioned authors (see Reilly [82], Voss [90]).

The advantages of this approach are its full generality and its independence by the dimension
and the codimension. However, it should be said that assumptions like n = 1 or n = (N − 1) are
very often important to get a manageable expression for EF . Another difficulty is related to the
fact that, even in the codimension one case, any symmetric functions of the principal curvatures
is in principle representable as above, but this representation is in practice not quite easy, with
the notable exceptions of |H|p and |B|p.

In Chapter 2 we will consider and compute the Euler equations of the functionals on hyper-
surfaces of Rn+1,

Gγ(M) =

∫

M

|∇γηM |2 dHn ,

where ∇γ is the standard (iterated) derivative in R
n+1, and

Cm(ϕ) =

∫

M

|∇mν|2 dµ ,

representing hypersurfaces in R
n+1 as immersions ϕ :M → R

n+1. Here µ and ∇ are respectively
the canonical measure and the Levi–Civita connection on the Riemannian manifold (M, g), where
the metric g is obtained by pulling back onM the usual metric of Rn+1 via the map ϕ. The symbol
∇m denotes the m–th iterated covariant derivative and ν a unit normal local vector field to the
hypersurface. Finally, B and H are respectively the second fundamental form and the mean
curvature of the hypersurface.
The functionals Cm are strictly related to the Gγ since, roughly speaking, the derivative of the unit
normal vector is the curvature of M .
We notice that G2 is a multiple of the Area functional. When instead γ = 3, the function inside
the integral above is equal to 3|B|2 and, if we also assume n = 2, the functional G3 coincides, up
to multiplicative and additive constants, depending on the genus of M (see the discussion at the
beginning of Section 2.3), with the Willmore functional.
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These two functionals have very similar leading terms in their first variation, that is,

2γ(−1)γ−1
( (γ − 2)–times︷ ︸︸ ︷

∆∆ . . .∆ H
)
ν and 2(−1)m+1

( m–times︷ ︸︸ ︷
∆∆ . . .∆H

)
ν

where ∆ is the Laplace–Beltrami operator of the hypersurface and H is the (scalar) mean curvature
ofM . Notice that such leading terms actually coincide, up to the constantm+2, when γ = m+2,
hence our analysis in Chapters 3, 4 and 5 will be in parallel for the two functionals.

In one of his last papers Ennio De Giorgi stated the following conjecture [31, Sect. 5, Conj. 2]
– see [32] for an English translation.

CONJECTURE (Ennio De Giorgi). Any compact, n–dimensional, smooth submanifold M of Rn+m

without boundary, moving by the gradient of the functional

DGk(M) =

∫

M

1 + |∇kηM |2 dHn ,

where ηM is the square of the distance function from M and Hn is the n–dimensional Hausdorff measure
in R

n+m, does not develop singularities, if k > n+ 1.

This result is central in his program to approximate singular geometric flows with sequences
of smooth ones that we will discuss in Chapter 6.
We will restrict our attention to the codimension one case, that is, the proof of this conjecture for
hypersurfaces. Moreover, instead of dealing directly with the functionals DGk, we will analyze
the gradient flow associated to the functionals

Fm(ϕ) =

∫

M

1 + |∇mν|2 dµ

and we will then deduce the same conclusion for the original functionals of De Giorgi, thanks to
their close connection. Moreover, these functionals can also play the same role in the approxima-
tion process in Chapter 6 that De Giorgi suggested.

The first step will be to obtain the following result (Theorem 3.1.3).

THEOREM . If the differentiation order m is strictly larger than [n/2], then the flows by the gradient
of DGm+2 and Fm of any initial, smooth, compact, n–dimensional, immersed hypersurface of Rn+1 exist,
are unique and smooth for every positive time ([n/2] means the integer part of n/2).
Moreover, as t→ +∞, the evolving hypersurface ϕt sub–converges (up to reparametrization and transla-
tion) to a smooth critical point of the respective functional.

Notice that the hypothesis m > [n/2] in general is weaker than the original one in De Giorgi’s conjec-
ture.

The simplest case n = 1 and m = 1 of this theorem is concerned with curves in the plane
evolving by the gradient flow of

F1(γ) =

∫

S1

1 + κ2 ds

since the curvature κ of a curve γ : S1 → R
2 satisfies κ2 = |∇ν|2. The global regularity in such

case was showed by Polden in the papers [79, 80] which have been a starting point for our work.
Wen in [92] found results similar to Polden’s ones, in considering the flow for

∫
S1
k2 ds of curves

with a fixed length.
In Chapter 3 we will state and discuss the evolution problems which turn out to be quasi-

linear parabolic systems of PDE’s on the manifold M . Moreover, we will deal with the very first
step of the analysis, that is, showing the short time existence and uniqueness of a smooth flow.
This is a particular case of a very general result of Polden proven in [57, 80].
Then, the long time existence is guaranteed as soon as we have suitable a priori estimates on the
flow, which are discussed in Chapter 4.

In the study of the mean curvature flow of a hypersurface, which gives rise to a second order
quasilinear parabolic system of PDE’s, via techniques such as varifolds, level sets, viscosity so-
lutions (see [4, 7, 18, 40, 62]), the maximum principle is the key tool to get comparison results
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and estimates on solutions. In our case, even if m = 1, the first variation and hence the corre-
sponding parabolic problem turns out to be of order higher than two, precisely of order 2m + 2,
so we have to deal with equations of fourth order at least. This fact has the relevant consequence
that we cannot employ the maximum principle to get pointwise estimates and to compare two
solutions, thus losing a whole bunch of geometric results holding for the mean curvature flow. In
particular, we cannot expect that an initially embedded hypersurface remains embedded during
the flow, since self–intersections could develop (an example is given by Giga and Ito in [50]). By
these reasons, techniques based on the description of the hypersurfaces as level sets of functions
seems of difficult application in this case and therefore we adopt a parametric approach as in the
work of Huisken [54].

Despite the large number of papers on the mean curvature flow, the literature on fourth or
even higher order flows is quite limited. Our work borrows from [26, 79, 80, 81] the basic idea of
using interpolation inequalities as a tool to get a priori estimates.
We want to remark here that a strong motivation for the study of these flows is actually the
fact that, in general, regularity is not shared by second order flows, with the notable exceptions
of the evolution by mean curvature of embedded curves in the plane (see [46, 52, 56]) and of
convex hypersurfaces (see [54]). So our result opens the possibility to canonically approximate
(possibly) singular flows with smooth ones by perturbation arguments (see [31, 32, Sect. 5] and
the beginning of Chapter 6).

In order to show regularity, a good substitute of the pointwise estimates coming from the
maximum principle, are suitable estimates on the second fundamental form in Sobolev spaces,
using Gagliardo–Nirenberg interpolation type inequalities for tensors. Since the constants in-
volved in these inequalities depends on the Sobolev constants and these latter on the geometry
of the hypersurface where the tensors are defined, we absolutely need some uniform control
independent of time on these constants. In [79] these controls are obvious as the constants de-
pend only on the length, on the contrary, much more work is needed here because of the richer
geometry of the hypersurfaces.

We will see in Chapter 4 that if m is large enough, the functionals DGm+2 and Fm, which
decrease during the flow, control the Lp norm of the second fundamental form for some exponent
p larger than the dimension. This fact, combined with a universal Sobolev type inequality due to
Michael and Simon [76], where the dependence of the constants on the curvature is made explicit,
allows us to get an uniform bound on the Sobolev constants of the evolving hypersurfaces and
then to obtain, in Chapter 5, time–independent estimates on curvature and all its derivatives in
L2. These bounds will imply in turn the desired pointwise estimates and the long time existence
and regularity of the flows.

Pushing a little the analysis, it also follows that if we consider a general, positive, geometric
functional

G(ϕ) =
∫

M

f(ϕ, g,B, ν, . . . ,∇sB,∇lν) dHn ,

such that the function f is smooth and has polynomial growth, choosing an integer m large
enough, the gradient flow of the “perturbed” functional, for any ε > 0,

Gεm(ϕ) = G(ϕ) + εFm(ϕ)

does not develop singularities (the same holds if we perturb the functional G with εDGm+2).
We then say that Fm and DGm+2 are smoothing terms for the functional G, that possibly does
not admit a gradient flow even for short time starting from a generic initial, smooth, compact,
immersed hypersurface.
It is then natural to investigate what happens when the constant ε > 0 in front of these smoothing
terms goes to zero.

This program, suggested by De Giorgi in [31, 32, Sect. 5], can be described as follows: given
a geometric functional G defined on submanifolds of the Euclidean space (or a more general
ambient space),

• find a functional F such that the perturbed functionals Gε = G+ εF give rise to globally
smooth flows for every ε > 0;
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• study what happens when ε → 0, in particular, the existence of a limit flow and in this
case its relation with the gradient flow of G (if it exists, smooth or singular).

If proved successful, this scheme would give a singular approximation procedure of the gradient
flow of G with a family of globally smooth flows.

Our work shows that the functionals Fm and DGm+2 satisfy the first point for any geometric
functional G defined on hypersurfaces in R

n+1 with polynomial growth, provided we choose an
order m large enough (depending on G).

About the second point, the very first case is concerned with the possible limits when ε → 0
of the gradient flows of

∫
M

1 + ε|∇mν|2 dµ when m > [n/2] and their relation with the mean
curvature flow, which is the gradient flow of the Area functional, obtained by letting ε = 0.

Ennio De Giorgi, in the same paper [31, Sect. 5, Cong. 3 and Oss. 2/3] cited above (see also [32,
Sect. 5, Conj. 3 and Rem. 2/3]), essentially stated the following conjecture.

CONJECTURE (Ennio De Giorgi). Let m > [n/2], if the parameter ε > 0 goes to zero, the flows ϕεt
associated to the functionals

DGεm(M) =

∫

M

1 + ε|∇m+2ηM |2 dHn

and starting from a common initial, smooth, compact, immersed hypersurface ϕ0 :M → R
n+1, converge

in some sense to the mean curvature flow of ϕ0,

∂ϕ

∂t
= Hν

(which is the gradient flow associated to the limit Area functional, as ε→ 0).

De Giorgi proposed this conjecture in general codimension, in the following we will discuss
only the case of evolving hypersurfaces, see anyway Remark 5.2.4 and Remark 6.3.3. Clearly, an
analogous conjecture can be stated for the ε–parametrized family of functionals

Fε
m(M) =

∫

M

1 + ε|∇mν|2 dµ .

The goal of Chapter 6 will be to show the following theorem (Theorem 6.0.5), related to the
above conjecture.

THEOREM . Let ϕ0 : M → R
n+1 be a smooth, compact, n–dimensional, immersed submanifold of

R
n+1. Let Tsing > 0 be the first singularity time of the mean curvature flow ϕ : M × [0, Tsing) → R

n+1

of M . For any ε > 0 let ϕε : M × [0,+∞) → R
n+1 be the flows associated to the functionals DGεm (or

Fε
m) with m > [n/2], that is,

∂ϕε

∂t
= Hν + 2ε(m+ 2)(−1)m

( m–times︷ ︸︸ ︷
∆Mt∆Mt . . .∆Mt H

)
ν + εLOT ν ,

where LOT denotes terms of lower order in the curvature and its derivatives, all starting from the same
initial immersion ϕ0.
Then, the maps ϕε converge locally in C∞(M × [0, Tsing)) to the map ϕ, as ε→ 0.

It is well known that a smooth compact submanifold of the Euclidean space, flowing by mean
curvature, develops singularities in finite time. This is a common aspect of geometric evolutions,
and motivates the study of the flow past singularities. Concerning the mean curvature motion,
several notions of weak solutions have been proposed, after the pioneering work of Brakke [18],
see for instance [4, 7, 8, 13, 15, 25, 30, 40, 59, 60, 61, 62, 89]. We recall that some of these solutions
may differ, in particular in presence of the so–called fattening phenomenon (see for instance [11]).
The above regularization of mean curvature flow with a singular perturbation of higher order
could lead to a new definition of generalized solution in any dimension and codimension.

At the moment we are not able to show the existence or characterize the limits of the approx-
imating flows after the first singularity, as the proof of the above theorem relies heavily on the
smoothness of the mean curvature flow in the time interval of existence. Our future goal would
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be to show the existence of some limit flow defined for all times, thus providing a new definition
of weak solution in any dimension and codimension.

As an example, we mention the simplest open problem in defining a limit flow after the first
singularity. It is well known (Gage–Hamilton [45, 46] and Huisken [54]) that a convex curve in
the plane (or hypersurface in R

n+1) moving by mean curvature shrinks to a point in finite time,
becoming exponentially round. In this case we expect that the approximating flows converge (in
a way to be made precise) to such a point at every time after the extinction.

We remark here (but we will not discuss such an extension in this work) that our method
works in general for any geometric evolution of submanifolds in a Riemannian manifold till the
first singularity time, even when the equations are of high order (like, for instance, the Willmore
flow, see [66, 67, 93]), choosing an appropriate regularizing term (of higher order).

Finally, it should be noted, comparing the evolution equations above with the one of the
mean curvature flow, that these perturbations could be considered, in the framework of geo-
metric evolution problems, as an analogue of the so–called vanishing viscosity method for PDE’s.
Indeed, we perturb the mean curvature flow equation with a regularizing higher order term mul-
tiplied by a small parameter ε > 0. The lower order terms, denoted by LOT, which appear, are
due to the fact that we actually perturb the Area functional and not directly the evolution equa-
tion. However, the analogy with the classical viscosity method cannot be pushed too far. For
instance, because of the condition k > [n/2] + 2, our regularized equations are of order not less
than four (precisely at least four for evolving curves, at least six for evolving surfaces). More-
over, as the Laplacians appearing in the evolution equation are relative to the induced metric, the
system of PDE’s is actually quasilinear and the lower order terms are nonlinear (polynomial).



CHAPTER 1

Geometry of Submanifolds and Distance Functions

In this chapter we introduce the basic notations and we discuss the geometry of Riemann-
ian submanifolds of the Euclidean space. Moreover, we analyze in detail the properties of the
distance function from such submanifolds.

1.1. Geometry of Submanifolds

The main objects we will consider are n–dimensional, complete submanifolds, immersed in
R
n+m, that is, pairs (M,ϕ) where M is an n–dimensional smooth manifold, compact, connected

with empty boundary, and a smooth map ϕ : M → R
n+m such that the rank of dϕ is everywhere

equal to n.
Good references for this section are [36, 47] (consider also [63, 64]).

The manifold M gets in a natural way a metric tensor g turning it in a Riemannian manifold
(M, g), by pulling back the standard scalar product of Rn+m with the immersion map ϕ.

Taking local coordinates around p ∈ M given by a chart F : Rn ⊃ U → M , we identify the
map ϕ with its expression in coordinates ϕ ◦ F : Rn ⊃ U → R

n+m, then we have local basis of

TpM and T ∗
pM , respectively given by vectors

{
∂
∂xi

}
and covectors {dxj}.

We will denote vectors onM byX = Xi, which meansX = Xi ∂
∂xi

, covectors by Y = Yj , that

is, Y = Yjdxj and a general mixed tensor with T = T i1...ikj1...jl
, where the indices refer to the local

basis.

In all the formulas the convention to sum over repeated indices will be adopted.

The tangent space at the point p ∈ M can be clearly identified with the vector subspace
dϕp(TpM) of Tϕ(p)R

n+m ≈ R
n+m. Then, we define its m–dimensional orthogonal complement

NpM to be the normal space to M at p. Clearly the trivial vector bundle TRn+m decomposes as
TRn+m = TM ⊕⊥ NM , that is, the orthogonal direct sum of the tangent bundle and the normal
bundle of M .

As the metric tensor g is induced by the scalar product of Rn+m, which will be denoted with
〈· | ·〉, we have

gij(x) =

〈
∂ϕ(x)

∂xi

∣∣∣∣
∂ϕ(x)

∂xj

〉
.

The metric g extends canonically to tensors as follows,

g(T, S) = gi1s1 . . . gikskg
j1z1 . . . gjlzlT i1...ikj1...jl

Ss1...skz1...zl

where gij is the inverse of the matrix of the coefficients gij . Then we define the norm of a tensor
T as

|T | =
√
g(T, T ) .

By means of the scalar product of Rn+m we also define a metric tensor on the normal bundle and,
as above, on all the tensors acting or with values in NM .

The canonical measure induced by the metric g is given by µ =
√
GLn where G = det(gij)

and Ln is the standard Lebesgue measure on R
n.

The induced covariant derivatives on (M, g) of a tangent vector field X or of a 1–form ω are
given by

∇M
i X

j =
∂

∂xi
Xj + ΓjikX

k and ∇M
i ωj =

∂

∂xi
ωj − Γkijωk ,
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where the Christoffel symbols Γ = Γkij are expressed by the following formula,

Γkij =
1

2
gkl
(

∂

∂xi
gjl +

∂

∂xj
gij −

∂

∂xl
gij

)
.

It is well know that, for a pair of tangent vector fields X and Y on M , we have

∇M
X Y =

(
∇R

n+m

X Y
)M

where the symbol M denotes the orthogonal projection on the tangent space of M .

Here, ∇R
n+m

X Y at a point p ∈ M denotes the covariant derivative of Rn+m acting on some local
extensions of the fields X and Y in an open subset of Rn+m, once considered M (actually it is
sufficient only a local embedding of M around p) as a subset of Rn+m. This is a well defined
expression, indeed, once identified any TpM as a vector subspace of Rn+m, the extensions of the
vector fields X and Y are vector fields in the ambient space R

n+m and it is easy to check that

(∇R
n+m

X Y )(p) depends only on the values of the two fields on M in the embedded neighborhood
of p, by the properties of the covariant derivative.

The covariant derivative ∇MT of a tensor T = T i1...ikj1...jl
will be denoted by ∇M

s T
i1...ik
j1...jl

=

(∇MT )i1...iksj1...jl
and with ∇kT we will mean the k–th iterated covariant derivative.

The gradient ∇Mf of a function and the divergence divX of a tangent vector field are defined
respectively by

g(∇Mf, v) = dfp(v) ∀v ∈ TM

and

divX = tr∇MX = ∇M
i X

i =
∂

∂xi
Xi + ΓiikX

k .

The Laplacian ∆MT of a tensor T is

∆MT = gij∇M
i ∇M

j T .

Using the notion of connection and covariant derivative on fiber bundles (for instance, see [63,
64]), one can check that the following definition is actually the covariant derivative associated to
the metric g on the normal bundle of M .
For any normal vector field ν on M and a tangent vector field X , we set

∇⊥
Xν =

(
∇R

n+m

X ν
)⊥

where the symbol ⊥ denotes the orthogonal projection on the normal space of M .
Then, we can consider from now on the following definition of covariant derivative of any vector
field (tangent or not) Y along M as follows

∇XY = ∇M
X Y

M +∇⊥
XY

⊥ =
(
∇R

n+m

X YM
)M

+
(
∇R

n+m

X Y ⊥
)⊥

,

where YM and Y ⊥ are respectively the tangent and normal components of the vector field Y .
We extend this covariant derivative also to “mixed” tensors, that is, tensors acting also on the

normal bundle of M , not only on the tangent bundle.
For instance, if T “acts” on (k+ l)–uple of fields along M such that the first k are tangent and the
other l are normal, we have

∇XT (X1, . . . , Xk, ν1, . . . , νl) = ∇X(T (X1, . . . , Xk, ν1, . . . , νl))

− T (∇M
XX1, . . . , Xk, ν1, . . . , νl)− · · · − T (X1, . . . ,∇M

XXk, ν1, . . . , νl)

− T (X1, . . . , Xk,∇⊥
Xν1, . . . , νl)− · · · − T (X1, . . . , Xk, ν1, . . . ,∇⊥

Xνl)

where ∇X immediately after the equality “works” according to the “target” bundle of T .
Associated to the connection ∇⊥ we have also a notion of curvature, called normal curvature,

defined in the standard way.
For a pair of tangent vector fields X , Y and any normal vector field ν, we set

R⊥(X,Y )ν = ∇⊥
Y∇⊥

Xν −∇⊥
X∇⊥

Y ν −∇⊥
[Y,X]ν
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and an associated (0, 4)–curvature tensor R⊥(X,Y, ν, ξ) = g(R⊥(X,Y )ν, ξ) which plays the same
role of the Riemann tensor in exchanging the covariant derivatives in the normal bundle.
If ξα is a local basis of the normal bundle (which is locally trivial) and ν = ναξα, we have

(∇⊥)2ijν
α − (∇⊥)2jiν

α = R⊥
ijβγg

βανγ .

It is then natural to consider the following couple of tensors (their tensor nature can be easily
checked).
For a pair of tangent vector fields X and Y , the form

B(X,Y ) =
(
∇R

n+m

X Y
)⊥

measures the difference between the covariant derivative of (M, g) and the one of the ambient
space R

n+m, indeed

∇M
X Y =

(
∇R

n+m

X Y
)M

= ∇R
n+m

X Y − B(X,Y ) . (1.1.1)

For a tangent vector field X and a normal one ν,

S(X, ν) = −
(
∇R

n+m

X ν
)M

which clearly satisfies

∇⊥
Xν =

(
∇R

n+m

X ν
)⊥

= ∇R
n+m

X ν + S(X, ν) .

The form B is called second fundamental form and it is a symmetric bilinear form with values in
the normal bundle NM . Its symmetry can be seen easily as the two connections have no torsion,

B(X,Y )− B(Y,X) = ∇M
Y X −∇M

X Y −∇R
n+m

Y X +∇R
n+m

X Y = [X,Y ]Rn+m − [X,Y ]M = 0

and dϕ([X,Y ]M ) = [dϕ(X), dϕ(Y )]Rn+m .

The bilinear form S, with values in TM , can be seen as an operator S(·, ν) : TM → TM (for
every fixed normal vector field ν ∈ NM ) called shape operator. Actually, S is self–adjoint and B is
the associated quadratic form, if X , Y are tangent vector fields and ν is a normal one, we have

g(Y, S(X, ν)) = − g
(
Y,
(
∇R

n+m

X ν
)M)

= −g(Y,∇R
n+m

X ν) (1.1.2)

= g(∇R
n+m

X Y, ν) = g
((

∇R
n+m

X Y
)⊥
, ν
)

= g(B(X,Y ), ν) ,

hence, B and S can be recovered each other.
By the symmetry of B it follows that

g(Y, S(X, ν)) = g(X, S(Y,Z))

hence, S(·, ν) is self–adjoint.
Finally, it is easy to check that |B|2 = |S|2 and also |∇kB|2 = |∇kS|2 for every k ∈ N.

We extend the forms B and S to any vector field along M as follows

B(X,Y ) =B(XM , YM ) , (1.1.3)

S(X,Y ) =S(XM , Y ⊥) ,

and, for any normal vector field ν we set

Bν(X,Y ) = 〈ν |B(XM , YM )〉 ,
Sν(X) =S(XM , ν) .

Clearly, by equation (1.1.2), it follows g(Y, Sν(X)) = Bν(X,Y ).
Choosing a local coordinate basis in M , we have

Bij = B(∂xi
, ∂xj

) =
(
∇R

n+m

∂xi
∂xj

)⊥
=

(
∂

∂xi

∂ϕ

∂xj

)⊥
=

(
∂2ϕ

∂xi∂xj

)⊥



1.1. GEOMETRY OF SUBMANIFOLDS 12

and

Bνij =
〈
ν
∣∣∣ ∂2ϕ

∂xi∂xj

〉
.

(Sν)i = S(∂xi
, ν) = −

(
∂ν

∂xi

)M
.

which are the more familiar definition of second fundamental form and of the shape operator.
The mean curvature vector H is the trace (with the induced metric) of the second fundamental form,

H = gijBij ,

by this definition, clearly H ∈ NM . We also define Hν = gijBνij .
Making explicit equation (1.1.1) and using identity (1.1.2) we have the so called Gauss–Weingarten

relations,
∂2ϕ

∂xi∂xj
= Γkij

∂ϕ

∂xk
+ Bij

(
∂ν

∂xi

)M
= −Bνikg

kj ∂ϕ

∂xj
for every normal vector field ν along M .
Notice that the first relation implies

∆Mϕ = gij∇2
ijϕ = gij

(
∂2ϕ

∂xi∂xj
− Γkij

∂ϕ

∂xk

)
= gijBij = H ,

component by component.
The second fundamental form B embodies all information on the curvature properties of M ,

this is expressed by the following relations with the Riemann curvature tensor of (M, g),

Rijkl = g(∇2
ji∂xk

−∇2
ij∂xk

, ∂xl
) = 〈Bik |Bjl〉 − 〈Bil |Bjk〉 ,

Rij = gklRikjl = 〈H |Bij〉 − gkl〈Bil |Bkj〉 ,
R = gijRicij = |H|2 − |B|2 ,

where the scalar products are meant in the normal space to M .

REMARK 1.1.1. These equations are often called Gauss equations by the connection with his
Theorema Egregium about the invariance by isometry of the Gaussian curvature G of a surface in
R

3, which is actually expressed by the third equation, once we rewrite it as R = 2G.
We recall that the Gaussian curvature of a surface is the product of the principal eigenvalues of
B (in codimension one, B can be seen as a real valued bilinear form, as we will see in a while).
Equivalently, G = det Sν where ν is a local unit normal vector field.

Then, the formulas for the interchange of covariant derivatives, which involve the Riemann
tensor, become

∇M
i ∇M

j X
s −∇M

j ∇M
i X

s = Rijklg
ksX l = (〈Bik |Bjl〉 − 〈Bil |Bjk〉) gksX l ,

∇M
i ∇M

j ωk −∇M
j ∇M

i ωk = Rijklg
lsωs = (〈Bik |Bjl〉 − 〈Bil |Bjk〉) glsωs . (1.1.4)

About the normal curvature, the analogues of Gauss equations are called Ricci equations. If
ξα is a local basis of the normal bundle we have,

R⊥
ijαβ = −g([Sα, Sβ ]∂xi

, ∂xj
)

where Sα and Sβ are respectively the operators Sξα and Sξβ and [Sα, Sβ ] denotes the commutator
operator SαSβ − SβSα : TM → TM .
Hence, the formula for the interchange of derivatives on the normal bundle become

∇⊥
i ∇⊥

j ν
α −∇⊥

j ∇⊥
i ν

α = R⊥
ijβγg

βανγ = g([Sγ , Sβ ]∂xi
, ∂xj

)gβανγ ,

for every normal vector field ν = ναξα.
Finally, the following Codazzi equations hold

(∇XB)(Y,Z, ν) = (∇Y B)(X,Z, ν) (1.1.5)

for every three tangent vector fields X , Y , Z and ν ∈ NM .
These equation are sometimes also called Codazzi–Mainardi equations as Delfino Codazzi [27] and
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Gaspare Mainardi [72] independently derived them (actually, they were discovered earlier by
Karl M. Peterson [78]).
They can be seen as an analogue of the II Bianchi identity satisfied by the Riemann tensor.

The importance of the Gauss, Ricci and Codazzi equations is that they are the analogues of
the Frenet equations for space curves. They determine, up to isometry of the ambient space, the
immersed submanifold, as it is expressed by the following fundamental theorem (first proved for
surfaces in R

3 by Pierre Ossian Bonnet [16, 17]), see [14, Chap. 2].

THEOREM 1.1.2. Let (M, g) be an n–dimensional Riemannian manifold with a Riemannian vector
bundle NM of rank m. Let ∇⊥ a metric connection on NM and B a symmetric bilinear form with values
in NM . Define the operator S(·, ν) : TM → TM by g(Y, Sν(X)) = 〈ν |B(X,Y )〉 and suppose that the
equations of Gauss, Ricci and Codazzi are satisfied by these tensors.
Then, around any point p ∈ M there exists an open neighborhood U ⊂ M and an isometric immersion
ϕ : U → R

n+m such that B coincides with the second fundamental form of the immersion ϕ and NM is
isomorphic to the normal bundle.
The immersion is unique up to an isometry of Rn+m, moreover, if two immersions have the same second
fundamental form and normal connection, they locally coincide up to an isometry of Rn+m.

A consequence of Codazzi equations is the following computation of the difference between
∆B and ∇2H,

∆Bαij −∇2
ijH

α = gpq
{
∇2
pqB

α
ij −∇2

ijB
α
pq

}
(1.1.6)

= gpq
{
∇2
piB

α
qj −∇2

ijB
α
pq

}

= gpq
{
∇2
ipB

α
qj −∇2

ijB
α
pq

}

+ gpq (〈Bpq |Bil〉 − 〈Bpl |Biq〉) glsBαsj
+ gpq (〈Bpj |Bil〉 − 〈Bpl |Bij〉) glsBαsq
+ gpqg([Sγ , Sβ ]∂xp

, ∂xi
)gβαBγqj

= (〈H |Bil〉 − gpq〈Bpl |Biq〉) glsBαsj
+ gpq (〈Bpj |Bil〉 − 〈Bpl |Bij〉) glsBαsq
+ gpq

[
g(Sβ(∂xp

), Sγ(∂xi
))− g(Sβ(∂xp

), Sγ(∂xi
))
]
gβαBγqj

= (〈H |Bil〉 − gpq〈Bpl |Biq〉) glsBαsj
+ gpq (〈Bpj |Bil〉 − 〈Bpl |Bij〉) glsBαsq
+ gpq

(
Bβpkg

klBγil − Bγpkg
klBβil

)
gβαBγqj

= (〈H |Bil〉 − gpq〈Bpl |Biq〉) glsBαsj
+ (〈Bpj |Bil〉 − 〈Bpl |Bij〉) gpqglsBαsq
+ 〈Bil |Bqj〉gpqgklBαpk − 〈Bpk |Bqj〉gpqgklBαil

= 〈H |Bil〉glsBαsj − 〈Bpl |Biq〉gpqglsBαsj − 〈Bpl |Bjq〉gpqglsBαsi
+ (2〈Bpj |Bil〉 − 〈Bpl |Bij〉) gpqglsBαsq .

Hence, such a difference is a third order homogeneous polynomial in B.

All the relations we discussed in this section are valid in the Euclidean ambient space. When the am-
bient space is a general Riemannian manifolds all the formulas need a correction term due to its curvature.
See [36, Chap. 6] and [14, Chap. 2].

1.1.1. The Codimension One Case. When the codimension is one, the normal space is one–
dimensional, so at least locally we can define up to a sign (sometimes we will have to deal with
this ambiguity) a smooth unit local normal vector field to M .
Actually, if the hypersurface M is orientable, this choice can be done globally.
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In the case the hypersurface M is compact and embedded (hence, it is also orientable), we
will always consider ν to be the unit inner normal.

The second fundamental form B then coincides with Bνν, hence in this case we can actually
consider the R–valued bilinear form Bν that, for sake of simplicity, we still call B, for all this
section.

We will denote with H the mean curvature function Hν = gijBνij and with S the shape operator
Sν = S(·, ν) : TM → TM .
Notice that B, S and H are defined up to the sign of ν (with the conventional choice above, the
second fundamental form of a convex hypersurface is nonnegative definite).

In the codimension one case are commonly defined the so called principal curvatures of M at
a point p, as the eigenvalues of the form B (defined up to a sign).
The relative eigenvectors in TpM are called principal directions.

In this case, many of the previous formula simplifies, as every derivative of ν must be a
tangent field, hence, in particular ∇⊥ν = 0,

∇M
X Y = ∇R

n+m

X Y − B(X,Y )ν

∇R
n+m

X ν = −S(X)

g(Y, S(X)) = B(X,Y )

Bij =
〈
ν
∣∣∣ ∂2ϕ

∂xi∂xj

〉

The Gauss–Weingarten relations become

∂2ϕ

∂xi∂xj
= Γkij

∂ϕ

∂xk
+ Bijν

∂ν

∂xi
= −Bikg

kj ∂ϕ

∂xj
. (1.1.7)

The Riemann curvature tensor of (M, g) is given by,

Rijkl =BikBjl − BilBjk ,

Rij =HBij − glkBilBkj ,

R = |H|2 − |B|2 .
Notice that in these last formulas the ambiguity of the definition up to a sign of B and H vanishes.
The Ricci equations are in this case trivial, the Codazzi equations get the simple form

∇M
i Bjk = ∇M

j Bik

and imply the following Simons’ identity [88]

∆MBij = ∇2
ijH+HBilg

lsBsj − |B|2Bij . (1.1.8)

Indeed, recalling the computation (1.1.6), as the normal space is one–dimensional, we have

∆MBij −∇2
ijH =HBilg

lsBsj − BplBiqg
pqglsBsj − BplBjqg

pqglsBsi

+ (2BpjBil − BplBij) g
pqglsBsq

=HBilg
lsBsj − |B|2Bij .

1.1.2. Example 1. Curves in the Plane. Let γ : (0, 1) → R
2 be a smooth curve in the plane,

suppose parametrized by the arclength s.
The metric is simply by ds2, we define the unit tangent vector τ = γs and we choose as unit
normal vector ν = Rτ where R is the counterclockwise rotation in R

2.
The second fundamental form is given by

Bss = B(τ, τ) =
(
∇R

n+m

τ τ
)⊥

= (∂τγs)
⊥
= γ⊥ss = γss

as γss is a normal vector.
In the case the curve is not parametrized by arclength, the metric tensor is given by gss = |γs|2ds2
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and

Bss = B(τ, τ) =
(
∇R

n+m

τ τ
)⊥

= (∂τγs)
⊥
= γ⊥ss = γss −

〈γss | γs〉γs
|γs|2

.

The mean curvature vector H is then

H = gssBss =
γss
|γs|2

− 〈γss | γs〉γs
|γs|4

= kν .

The mean curvature function k, which is defined up to the sign, is called by simplicity the curva-
ture of γ.

1.1.3. Example 2. Curves in R
n. Let γ : (0, 1) → R

n be a smooth curve in the space,
parametrized by the arclength s.
The metric is again given by ds2, and we still define the unit tangent vector τ = γs but now we
do not have an easy way to choose a unit normal vector as in the previous situation.
The second fundamental form is given by

Bss = B(τ, τ) =
(
∇R

n+m

τ τ
)⊥

= (∂τγs)
⊥
= γ⊥ss = γss

as γss is a normal vector. If γss 6= 0 we define |γss| = k 6= 0 and call unit normal of γ the vector
ν = γss/|γss|, that is, γss = kν and k is the (mean) curvature of γ which is defined up to the sign.

1.2. Some Extra Conventions

Now we introduce some non standard notation which will be useful in the computations of
the following chapters.

We will write T ∗ S, following Hamilton [53], to denote a tensor formed by contraction on
some indices of the tensors T and S using the coefficients gij .
Abusing a little the notation, if T1, . . . , Tl is a finite family of tensors (here l is not an index of the
tensor T ), with the symbol

l

⊛
i=1

Ti

we will mean T1 ∗ T2 ∗ · · · ∗ Tl .
We will use the symbol ps(T1, . . . , Tl) for a polynomial in the tensors T1, . . . , Tl and their

iterated covariant derivatives with the ∗ product like

ps(T1, . . . , Tl) =
∑

i1+···+il=s
ci1...il ∇i1T1 ∗ · · · ∗ ∇ilTl ,

where the ci1...il are some real constants.
Notice that every tensor Ti must be present in every additive term of ps(T1, . . . , Tl) and there are
not repetitions.
We will use instead the symbol qs when we are in the codimension one case, a unit normal
vector field is defined (at least locally) and the tensors involved are only B and ∇ν. Moreover,
repetitions are allowed in qs and in every additive term there must be present every argument of
qs, for instance,

q
s(∇ν,B) =

∑(
N

⊛
k=1

∇ik(∇ν)
M

⊛
l=1

∇jlB

)
with N , M ≥ 1.

The order s denotes the sum

s =
N∑

k=1

(ik + 1) +
M∑

l=1

(jl + 1) .

REMARK 1.2.1. Supposing that qs is completely contracted, that is, there are no free indices
and we get a function, then the order s has the following strong geometric meaning, if we con-
sider the family of homothetic immersions λϕ : M → R

n+1 for λ > 0, they have associated
normal νλ, metric gλ, connection ∇λ and second form Bλ satisfying the following rescaling equa-
tions,

(∇λ)iνλ = ∇iν (∇λ)jBλ = λ∇jB ,
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(gλ)ij = λ2gij (gλ)ij = λ−2gij .

Then every completely contracted polynomial qs in ∇ν and B will have the form

∑
(∇i1∇ν) . . . (∇ik∇ν) . . . (∇iN∇ν)∇j1B . . .∇jlB . . .∇jMB gw1z1 . . . gwtzt

with

s =

N∑

k=1

(ik + 1) +

M∑

l=1

(jl + 1)

and since the contraction is total it must be

t =
1

2

(
N∑

k=1

(ik + 1) +

M∑

l=1

(jl + 2)

)

as the sum between the large brackets give the number of covariant indices in the product above.
By this argument and the rescaling equations above, we see that qs rescales as

q
s(∇λνλ, . . . ,Bλ) =λM−2t

q
s(∇ν, . . . ,B)

=λ−(
∑N

k=1(ik+1)+
∑M

l=1(jl+1) )qs(∇ν, . . . ,B)
=λ−sqs(∇ν, . . . ,B) .

By this reason, with a little misuse of language, also when qs is not completely contracted, we
will say that s is the rescaling order of qs.

In most of the computations only the rescaling order and the arguments of the polynomials
involved will be important, so we will avoid to make explicit their inner structure.
An example in this spirit, are the following substitutions that we will often apply

∇ps(T1, . . . , Tl) = ps+1(T1, . . . , Tl) and ∇q
z(∇ν, . . . ,B) = q

z+1(∇ν, . . . ,B) .

We advise the reader that the polynomials ps and qz could vary from a line to another in a computation
by addition of terms with the same rescaling order. Moreover, also the constants could vary between
different formulas and from a line to another.

1.3. Tangential Calculus

We consider now M as an actual subset of Rn+m, in order to use the coordinates of the ambi-
ent space R

n+m, we can always do it at least locally as every immersion is locally an embedding.
At every point x ∈ M we have, as before, the n–dimensional tangent space TxM ⊂ R

n+m with
an associated linear map P (x) : R

n+m → R
n+m which is the orthogonal projection on TxM .

Then clearly, the map (I − P (x)) : Rn+m → R
n+m, where I is the identity of Rn+m, is instead

the orthogonal projection on the m–dimensional normal space NM at x which is the orthogonal
complement of TxM in R

n+m.

In this setting, the canonical measure µ =
√
GLn coincides with the n–dimensional Haus-

dorff measure counting multiplicities H̃n M .
If M is actually embedded (or the self–intersections have zero measure), we have µ = Hn M
with Hn the n–dimensional Hausdorff measure of Rn+m.

We call tangential gradient ∇Mf(x) of a C1 function defined in a neighborhood U ⊂ R
n+m of

a point x ∈M as the projection of ∇R
n+m

f(x) on TxM .
It is easy to check that ∇Mf depends only on the restriction of f toM∩U . Moreover, an extension
argument shows that ∇Mf can also be defined for functions initially defined only on M ∩ U .
If Pij is the matrix of orthogonal projection P : Rn+m → R

n+m on the tangent space (here the
indices refer to the coordinates of Rn+m), we have ∇M

i f(x) = Pij(x)∇jf(x).
Notice that Pij(x) = ∇M

i xj for any x ∈M .
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We also define the tangential derivative of a vector field Y = Y iei in R
n+m along M , in the

direction of a tangent vector X ∈ TxM as

∇M
X Y (x) =

n+m∑

i=1

〈X | ∇MY i〉ei

where e1, . . . , en+m is the standard basis of Rn+m.
In a similar way we can define the tangential divergence of a vector field X and the tangential

Laplacian of a function,

divM X =

n+m∑

i=1

∇M
i X

i , ∆Mf = divM ∇Mf

(here again the indices refer to the coordinates of Rn+m).
By a straightforward computation one can check that all these tangential operators (if the field
X is tangent to M ) coincide with the intrinsic ones considering (M, g) as an abstract Riemannian
manifold.

In several occasions we will consider the second fundamental form and the shape opera-
tor acting on vector fields in R

n+m as defined in formulas (1.1.3), that is, if e1, . . . , en+m is the
standard basis of Rn+m we have

Bkij = 〈B(ei, ej) | ek〉 = 〈B(eMi , eMj ) | e⊥k 〉 .
It is then easy to see that

Hi =

n+m∑

j=1

Bijj

and, by means of the above tangential derivative operator, we can compute the second funda-
mental form as

B(X,Y ) = −
m∑

α=1

〈X|∇M
Y ν

α〉να ∀X Y ∈ TxM , (1.3.1)

where {να} is any local smooth orthonormal basis of the normal space to M .
For a general smooth map Φ :M → R

k we can consider the tangential Jacobian,

JMΦ(x) =
[
det
(
dMΦ∗x ◦ dMΦx

)]1/2

where dMΦx : TxM → R
k is the linear map induced by the the tangential gradient and

(
dMΦx

)∗
:

R
k → TxM is the adjoint map.

THEOREM 1.3.1 (Area Formula). If Φ is a smooth injective map from M to R
k, then we have

∫

Φ(M)

f(y) dHn(y) =

∫

M

f(Φ(x)) JMΦ(x) dHn(x) (1.3.2)

for every f ∈ C0
c (R

k).

If {ei} is an orthonormal basis of Rn+m such that e1, . . . , en is a basis of TxM , we can express
the divergence of a tangent vector field X at the point x ∈M as

divX(x) =

n∑

i=1

g(ei,∇eiX(x)) =

n∑

i=1

〈ei | ∇R
n+m

ei X(x)〉 =
n∑

i=1

∂

∂xi
〈ei |X〉(x)

=
n+m∑

i=1

∇M
i 〈ei |X〉(x) .

It is not difficult to see that the last term is actually independent of the orthonormal basis {ei},
even if e1, . . . , en is not a basis of TxM . Then, we use this last expression (for any arbitrary

orthonormal basis {ei} of R
n+m) to define the tangential divergence divM X of a general, not

necessarily tangent, vector field X along M .
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Such definition is useful in view of the following tangential divergence formula (see [86, Chap. 2,
Sect. 7]), ∫

M

divM X dµ = −
∫

M

〈X |H〉 dµ (1.3.3)

holding for every vector field X along M .
If X is a tangent vector field we recover the usual divergence theorem,

∫

M

divX dµ = 0 . (1.3.4)

For detailed discussions and proofs of these results we address the reader to the books of Federer [43]
and of Simon [86].

1.4. Distance Functions

In all this section, e1, . . . , en+m is the canonical basis of Rn+m, M is a smooth, complete, n–
dimensional manifold without boundary, embedded in R

n+m and TxM , NxM are respectively
the tangent space and the normal space to M at x ∈M ⊂ R

n+m.
The distance function dM : Rn+m → R and the squared distance function ηM : Rn+m → R are

respectively defined by

dM (x) = dist(x,M) = min
y∈M

|x− y|, ηM (x) =
1

2
[dM (x)]2

for any x ∈ R
n+m (we will often drop the superscript M ). In this and the next sections we

analyze the differentiability properties of d and η and the connection between the derivatives of
these functions and the geometric properties of M .

Immediately by its definition, being the minimum of a family of Lipschitz functions with
Lipschitz constant 1, the same property holds also for d (the function η is instead only locally Lips-
chitz). In particular, both functions are differentiable almost everywhere in R

n+m, by Rademacher’s
theorem, moreover, at any differentiability point x ∈ R

n+m of d there exists a unique minimizing
point y ∈M such that d(x) = |x− y| and

∇d(x) = x− y

|x− y|
for such y ∈M .
Viceversa, if the point in M of minimum distance from x ∈ R

n+m \M is unique, the function d is
differentiable at x, see Section 1.6.
We have also easily

|∇d(x)| = 1 and |∇η(x)|2 = 2η(x) (1.4.1)

at any differentiability point of d.
These properties are true even if M is merely a closed set (the relation between the regularity

properties of dM and M is analyzed in detail in [42, 44]), as we will see in Section 1.6, but on
the second derivatives of dM and ηM only one side estimates are available, in general. These are
actually based on the convexity of the function AM (x) = |x|2/2− η(x) which can be expressed as

AM (x) = max
y∈M

〈x|y〉 − 1

2
|y|2 .

However, as it is natural to expect, higher regularity of M leads to higher regularity of dM and
ηM as we will see in Section 1.6 (see also [7], for instance).

PROPOSITION 1.4.1. For every point x ∈M , there exists an open neighborhood of x in R
n+m and a

constant σ > 0 such that η is smooth in the region

Ω =
{
y ∈ U | d(y) < σ

}
.
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REMARK 1.4.2. If M is compact we can actually choose U = R
n+m and a uniform constant

σ > 0. Moreover, since we will be mainly interested in local geometric properties of M and
since every immersion is locally an embedding, all the differential relations that we are going
to discuss hold also for submanifolds with self–intersections. We simply have to consider such
local embedding in a open set of Rn+m and the distance function only from this piece of M , in a
neighborhood, instead than from the whole M .

By the above discussion, in such set Ω it is defined the projection map πM : Ω →M associating
to any point x ∈ Ω the unique minimizer in M of the distance from x (again we will often drop
the superscript M ). This minimizer point is characterized by

πM (x) = x− dM (x)∇dM (x) = x−∇ηM (x) .

It should be remarked that d(x) =
√

2η(x) is smooth on Ω \M but it is not smooth up to M .
In the codimension one case this difficulty can be amended by considering the signed distance
function

d∗(x) =

{
d(x) if x /∈ E

−d(x) if x ∈ E

as M is the boundary of a bounded subset E of Rn+m.
In higher codimension, the function η is a good substitute of d∗(x) in many situations, see [7]

for an example of application to the motion by mean curvature.
The following result is concerned with the Hessian matrix of η.

PROPOSITION 1.4.3. For any x ∈ M the Hessian matrix ∇2η(x) is the (matrix of) orthogonal
projection onto the normal space NxM .
Moreover, for any x ∈M , letting p to be a unit vector orthogonal to M at x and defining

Λ(s) = ∇2η(x+ sp)

for any s ∈ [0, σ] such that the segment [x, x + σp] is contained in Ω, the matrices Λ(s) are all diagonal
in a common orthonormal basis {e1, . . . , en+m} such that 〈en+1, . . . , en+m〉 = NxM and, denoting by
λ1(s), . . . , λn+m(s) their eigenvalues in increasing order, we have

λn+1(s) = λn+2(s) = · · · = λn+m(s) = 1 ∀s ∈ [0, d(x)] .

The remaining eigenvalues are strictly less than 1 and satisfy the ODE

λ′i(s) =
λi(s)(1− λi(s))

s
∀s ∈ (0, d(x)]

for i = 1, . . . , n. Finally, the quotients λi(s)/s are bounded in (0, d(x)].

PROOF. We follow [7, Thm. 3.2]. Fixing x ∈ M and representing locally M as a graph of a
smooth function on the tangent space at x, it is easy to see, by an elementary geometric argument,
that

η(x+ y) =
|Ny|2
2

+ o(|y|2) = 1

2
〈Ny | y〉+ o(|y|2),

where N is the orthogonal projection on the normal space to M at the point x and o(t) is a real
function satisfying |o(t)|/t→ 0 as t→ 0. By differentiating twice with respect to y and evaluating
at y = 0, we find ηij(x) = Nij .

Since the distance function d is smooth in Ω \M , differentiating the equality |∇d|2 = 1, we
get

dijdj = 0 , dijkdj + dijdjk = 0 ,

in Ω \M and

ηjηj = 2η , ηijηj = ηi , ηijkηj + ηijηjk = ηik , (1.4.2)
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in the whole Ω.
Using the fact that ∇η(x+ sp) = ps and the third identity in (1.4.2) we obtain,

d

ds
Λij(s) =

∂ηij
∂xk

(x+ sp)pk (1.4.3)

= ηijk(x+ sp)ηk(x)/s

=
Λij(s)− Λik(s)Λkj(s)

s

for every s ∈ [0, σ].
Let e1, . . . , en+m be any basis such that Λ(σ) is diagonal with associated eigenvalues λi(σ), we
consider the unique solution µi(t) of the ODE

d

ds
µi(s) =

µi(s)(1− µi(s))

s
, ∀s ∈ (0, σ]

satisfying µi(σ) = λi(σ), for i = 1, . . . , n+m.
Then the matrices

Λ̂(s) =

n+m∑

i=1

µi(s)ei ⊗ ei ,

solve the differential equation (1.4.3) and satisfy Λ̂(σ) = Λ(σ). Hence, by the uniqueness of

solutions to system (1.4.3), we conclude Λ = Λ̂. Consequently the eigenvectors of Λ(s) are equal
to ei for every s ∈ (0, σ] and the eigenvalues λi(s) solve,

d

ds
λi(s) =

λi(s)(1− λi(s))

s
. (1.4.4)

In view of the fact that Λ(s) must converge, as s → 0+, to the matrix of orthogonal projection on
the normal space to M at the point x, the conclusion of the proposition follows.

Finally, we show that the quotients λi(s)/s are bounded as s→ 0+, when i = 1, . . . , n.
Solving the differential equation (1.4.4), we find

λi(s)

s
=

λi(σ)

σ + (s− σ)λi(σ)
, ∀s ∈ (0, σ] .

Therefore, if λi(σ) < 0, then λi(s) < 0 for all s and
∣∣∣∣
λi(s)

s

∣∣∣∣ ≤
∣∣∣∣
λi(σ)

σ

∣∣∣∣ , ∀s ∈ (0, σ] .

If, λi(σ) > 0 and i = 1, . . . , n, then λi(s) ∈ [0, 1) for all s and
∣∣∣∣
λi(s)

s

∣∣∣∣ ≤
λi(σ)

σ(1− λi(σ))
, ∀s ∈ (0, σ] .

So finally, for all s ∈ (0, σ] and i = 1, . . . , n, we have,
∣∣∣∣
λi(s)

s

∣∣∣∣ ≤ max
{ |λ|
σ[1 ∧ (1− λ)]

∣∣∣λ < 1 eigenvalue of ∇2η(x) with d(x) = σ
}

and we are done. �

As for every x ∈ Ω the gradient ∇d(x) is a unit vector belonging to Nπ(x)M and constant
along the segment π(x) + s(x− π(x)), by using the identity

∇2η = d∇2d+∇d⊗∇d,
it follows that also ∇2d(π(x) + s(x − π(x))) is diagonal in the same basis above, diagonalizing
∇2η(π(x)). Moreover, the eigenvalue associated to the eigenvector ∇d(x) is zero, (m − 1) eigen-
values are equal to 1/s and the n remaining ones β1(s), . . . , βn(s) are bounded and satisfy

β′
i(s) = −β2

i (s) ∀s ∈ (0, d(x)] (1.4.5)

as βi(s) = λi(s)/s, for i = 1, . . . , n.
A straightforward consequence of Proposition 1.4.3 is the following result.
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COROLLARY 1.4.4. Let x ∈ Ω and let Kx : Rn+m×R
n+m×R

n+m → R be the symmetric 3–linear
form induced by ∇3η(x). Then,

Kx(u, v, w) = 0

if at least two of the vectors u, v and w belong to Nπ(x)M .

We discuss now a while the geometric meaning of the eigenvalues λi(s) in Proposition 1.4.3.
We let xs = x + sp (p is a unit vector orthogonal to TxM ) and we consider the eigenvalues
λ1(s), . . . , λn(s) of ∇2η(xs) strictly less than 1 with e1, . . . , en the corresponding eigenvectors
(independent of s) spanning TxM .

PROPOSITION 1.4.5. For any i = 1, . . . , n we have

lim
s→0+

λi(s)

s
= λi

and the values λi are the eigenvalues of the symmetric bilinear form

−
〈
B(x)(u, v)| p

〉
u, v ∈ TxM

with associated eigenvectors {ei}.

PROOF. By the remark following the proof of Proposition 1.4.3, λi(s)/s are the eigenvalues
βi(s) of ∇2d(xs), then the existence of the limits is immediate as the quotients λi(s)/s = βi(s) are
bounded and monotone, by (1.4.5), as s→ 0+.
Let L be the affine (n+1)–dimensional space generated by TxM and p, passing through x. More-
over, let Σ ⊂ L be the smooth n–dimensional manifold obtained projecting U ∩M on L, for a

suitable neighborhood U of x, and let B(x) be the second fundamental form of Σ at x, viewing
Σ as a surface of codimension one in L. We denote (see Section 1.1.1) by λ1, . . . , λn the principal
curvatures at x of Σ (with the orientation induced near x by p), defined as the eigenvalues of the
symmetric bilinear form

〈B(x)(u, v)| p〉 u, v ∈ TxΣ = TxM .

Under the assumption m = 1, we clearly have Σ = M and the property is a straightforward
consequence of the well known formula (see for instance [51, Lemma 14.17])

βi(s) =
−λi

1− sλi
∀s ∈ (0, d(x)]

for the eigenvalues βi(s) of ∇2dΣ(xs) corresponding to eigenvectors in L (see also [41]).
In the general case, we notice that, by Proposition 1.4.1, the function ηΣ is smooth near x and

lim sup
y→x, y∈L

|ηM (y)− ηΣ(y)|
|y − x|4 < +∞ (1.4.6)

since Σ is obtained projecting M on the space L, containing x+ TxM . By this limit we infer

lim
s→0+

∇2ηM (xs)−∇2ηΣ(xs)

s
= 0 .

As all the matrices are diagonal in the same basis, denoting by λi(s) the eigenvalues of ∇2ηΣ(xs)

corresponding to the directions {ei}, the quotients λi(s)/s converge to the same limit of λi(s)/s,
that is, λi.

Finally, by (1.4.6) we have

∇3ηM (x)(u, v, p) = ∇3ηΣ(x)(u, v, p) ∀u, v ∈ TxM = TxΣ ,

hence, the relations in Proposition 1.4.9, that we will discuss in a while, yield
〈
B(x)(u, v)| p〉 =

〈
B(x)(u, v)| p〉 ∀u, v ∈ TxM

as p ∈ NxM ∩NxΣ.
This shows that λi are the eigenvalues of −〈B(x)| p〉 and that {ei} are the corresponding eigen-
vectors. �
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REMARK 1.4.6. In particular, the sum of the eigenvalues βi(s) = λi(s)/s of ∇2d(xs) converges
as s → 0+ to the quantity −〈H(x)| p〉. This property has been used in [7] to extend the level set
approach (see [25, 40, 77]) to the evolution by mean curvature of surfaces of any codimension.

For x ∈ M , we defined Pij(x) as the matrix of orthogonal projection P : Rn+m → R
n+m on

the tangent space and we saw that Pij(x) = ∇M
i xj . Actually, by Proposition 1.4.3, we have

Pij(x) = (δij − ηij(x)) ,

since ηij(x) is the matrix of orthogonal projection on NxM . Notice that such formula defining
Pij(x) makes sense in the whole Ω, in this case, Proposition 1.4.3 implies

P (x)(Tπ(x)M) = Tπ(x)M, and KerP (x) = Nπ(x)M .

However, we advise the reader that in general P (x) is not the identity on Tπ(x)M (∇2eta is the
identity on Nπ(x)M ).

We now define the 3–tensor C with components (in the canonical basis)

Cijk(x) = ∇M
i Pjk(x) = ∇M

i ∇M
j xk ,

which is clearly symmetric in the last two indices.
Since for any x ∈ M the matrix P (x) is the orthogonal projection on TxM , we can expect that
the tensor C(x) (encoding the “change” in the tangent plane) contains all information on the
curvature of M . In the following three proposition we will see that ∇3η(x), the tensor C(x) and
the second fundamental form B(x) are mutually connected by simple linear relations.

PROPOSITION 1.4.7. The second fundamental form tensors B(x) and the tensor C(x) are related for
any x ∈M by the identities

Bkij(x) = Pis(x)Cjsk(x) = Pjs(x)Cisk(x) , Cijk(x) = Bkij(x) + Bjik(x) . (1.4.7)

Moreover, the mean curvature vector H(x) of M is given by

Hk(x) =
n+m∑

s=1

Csks(x) . (1.4.8)

PROOF. We follow [58]. Let x ∈ M , u = ei, v = ej and let u′ = P (x)ei, v
′ = P (x)ej be the

projections of u and v on TxM . We have then, at the point x ∈M ,

Bkij =
∂[Pei]

s

∂v′
(δsk − Psk) =

∂Pis
∂v′

(δsk − Psk) = ∇lPisPlj(δsk − Psk)

=∇M
j Pis(δsk − Psk) = ∇M

j Pik −∇M
j (PisPsk) + Pis∇M

j Psk

=∇M
j Pik −∇M

j Pik ++Pis∇M
j Psk

=Pis∇M
j Psk = PisCjsk

where we used the fact that P 2 = P on M . The other relation follows by the symmetry of B.
Now we prove the second identity in (1.4.7). Using the first identity and the symmetry of P

we get

Bkij + Bjik = PjsCisk + PksCisj

= Pjs∇M
i Psk + Pks∇M

i Psj

= ∇M
i (PjsPsk)

= ∇M
i Pjk

= Cijk .

Finally, we prove (1.4.8),

Hk = Bkii = PisCisk = Pis∇M
i Psk = ∇M

s Psk =

n+m∑

s=1

Csks .

�
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PROPOSITION 1.4.8. The tensor C(x) and ∇3η(x) are related for any x ∈M by the identities

Cijk(x) = −Pil(x)ηljk(x) , ηijk(x) = −1

2

{
Cijk(x) + Cjki(x) + Ckij(x)

}
. (1.4.9)

PROOF. The first identity is an easy consequence of the fact that ∇2η(x) is the orthogonal
projection on NxM . To prove the second one, we write (omitting the dependence on x)

ηijk = − Cijk + (δis − Pis)ηsjk

= − Cijk + (δis − Pis)(−Cjsk + (δjt − Pjt)ηstk)

= − Cijk + (δis − Pis)(−Cjsk + (δjt − Pjt)(−Ckst + (δkl − Pkl)ηstl))

= − Cijk − Cjsk(δis − Pis)− Ckst(δis − Pis)(δjt − Pjt)

+ (δis − Pis)(δjt − Pjt)(δkl − Pkl)ηstl .

By Corollary 1.4.4, the last term is zero, so that (1.4.7) yields

ηijk = − Cijk − Cjki + CjskPis − Ckij + CkitPjt + CksjPsi − CkstPisPjt

= − Cijk − Cjki − Ckij + Bkij + Bjki + Bijk − PjtB
t
ik .

Since B(ei, ek) ∈ NxM we have PjtB
t
ik = 0, then exchanging the indices i and j in the above

formula, averaging and using the second identity in (1.4.7) we eventually get

ηijk = − Cijk − Cjki − Ckij +
1

2

{
Bkij + Bjki + Bijk + Bkji + Bikj + Bjik

}

= − 1

2

{
Cijk + Cjki + Ckij

}
.

�

PROPOSITION 1.4.9. The second fundamental form B(x) and ∇3η(x) are related for any x ∈ M by
the identities

Bkij(x) = ∇k(ηisηsj − ηij)(x) , ηijk(x) = −Bkij(x)− Bijk(x)− Bjki(x) . (1.4.10)

Moreover, the mean curvature vector H(x) of M is given by

H(x) = −∆(∇η)(x) .
PROOF. By Using relations (1.4.7) and (1.4.9) we can write each component Bkij of the second

fundamental form as a function of ∇3η as follows,

Bkij = PjsCiks (1.4.11)

= −PjsPilηlks
= −(δjs − ηjs)(δil − ηil)ηlks

= −ηijk + ηsjηkis + ηliηkjl − ηjsηilηlks

= −ηijk + ηsjηkis + ηsiηkjs

= ∇k(ηisηsj − ηij) .

Conversely, by the second identities in (1.4.9) and (1.4.7) we get

ηijk = − 1

2

{
Cijk + Cjki + Ckij

}

= − 1

2

{
Bkij + Bjik +Bijk + Bkji + Bjki + Bikj

}

= − Bkij + Bijk + Bjki .

By the first formula, we have

Hk = −ηkii +∇k

(n+m∑

i,s=1

η2is

)
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for every index k = 1, . . . , n + m. Since ∇2η(x) is symmetric,
∑n+m
i,s=1 η

2
is(x) coincides with the

sum of the squares of the eigenvalues of ∇2η(x). By Proposition 1.4.3, this quantity is equal to

n+ o(|x− x0|) near every point x0 ∈M , hence ∇k

(∑n+m
i,s=1 η

2
is

)
(x) vanishes on M . It follows that

H(x) = −∆(∇η)(x) ∀x ∈M . (1.4.12)

�

COROLLARY 1.4.10. Let x ∈ M and let Kx : Rn+m × R
n+m × R

n+m → R be the symmetric
3–linear form induced by ∇3η(x). Then,

Kx(u, v, w) = 0

if all the three vectors u, v and w belong to Tπ(x)M .

PROOF. It follows by the second relation in (1.4.10), as the second fundamental form takes
values in the normal space to M at x. �

From now on, instead of dealing with the squared distance function we will consider the
function

AM (x) =
|x|2 − [dM (x)]2

2
,

clearly smooth as ηM in the neighborhood Ω of M . We set

AMi1...ik(x) =
∂kAM (x)

∂xi1 . . . ∂xik

for the derivatives of AM in Ω.
We define the k–derivative symmetric tensor Ak(x) working on the k–uple of vectors vi ∈ R

n+m,

where vi = vji ej , as follows

Ak(x)(v1, . . . , vk) = AMi1...ik(x)v
i1
1 . . . vikk .

By sake of simplicity, we dropped the superscript M on Ak, by the same reason, we will also
often avoid to indicate the point x ∈M in the sequel.

The greater convenience of AM can be explained noticing that ∇2AM (x), for x ∈ M , is the
projection matrix on TxM and this quantity often appears in the computation of tangential gra-
dients.

We reformulate now the previous formulas in terms of AM .

PROPOSITION 1.4.11. The following properties of AM hold,

(a) for any x ∈ Ω, the vector ∇AM (x) coincide with the projection point πM (x) of x on M .
Moreover, ∇2AM (x) is zero on Nπ(x)M and maps Tπ(x)M onto Tπ(x)M .

If x ∈M , then ∇2AM (x) is the matrix P of orthogonal projection on TxM ;
(b) for any x ∈ Ω, the 3–linear form Kx : Rk × R

k × R
k → R given by

Kx(u, v, w) =

n+m∑

i,j,k=1

AMijk(x)u
ivjwk

is equal to zero if at least two of the 3 vectors u, v, w, are normal to M at π(x) = ∇AM (x) or if
x ∈M and the three vectors are all tangent;

(c) for x ∈ M , the second fundamental form B(x) and the mean curvature vector H(x) are related
to the derivatives of AM (x) by

Bkij(x) = AMjs (x)A
M
il (x)A

M
slk(x) =

(
δkl −AMkl (x)

)
AMijl(x), (1.4.13)

Hk(x) =

n+m∑

j=1

AMjkj(x), (1.4.14)

∇M
i A

M
jk(x) = Bkij(x) + Bjik(x). (1.4.15)



1.5. HIGHER ORDER RELATIONS 25

PROOF. The first statement follows by Proposition 1.4.3 and the second one by Corollary 1.4.4.
The first equality in (1.4.13) and (1.4.14) follow by relations (1.4.12) and (1.4.11). The second equal-
ity in (1.4.13) can be obtained multiplying both sides of the second relation in (1.4.10) by the nor-
mal projection (I −∇2AM ). Finally (1.4.15) is a restatement of the second equality in (1.4.7). �

By means of the relations in Propositions 1.4.7, 1.4.8, 1.4.9 we have the following estimates.

COROLLARY 1.4.12. At every point of M we have,

|C|2 ≤ |∇3AM |2 = 3|B|2 ≤ 3|C|2 .
PROOF. We have only to show the identity |∇3AM |2 = 3|B|2, the other inequalities are im-

mediate as the projection P is a 1–Lipschitz map.
We compute in a orthonormal basis {ei} such that 〈e1, . . . , en〉 = TxM , by means of the second
relation in (1.4.10), and keeping in mind that the second fundamental form B takes values in the
normal space NxM ,

|∇3AM |2 =

n∑

i,j,k=1

|ηijk|2

=
∑

n+1≤i≤n+m
1≤j,k≤n

|ηijk|2 +
∑

n+1≤j≤n+m
1≤i,k≤n

|ηijk|2 +
∑

n+1≤k≤n+m
1≤i,j≤n

|ηijk|2

=
∑

n+1≤i≤n+m
1≤j,k≤n

|Bkij + Bijk + Bjki|2 +
∑

n+1≤j≤n+m
1≤i,k≤n

|Bkij + Bijk + Bjki|2

+
∑

n+1≤k≤n+m
1≤i,j≤n

|Bkij + Bijk + Bjki|2

=
∑

n+1≤i≤n+m
1≤j,k≤n

|Bijk|2 +
∑

n+1≤j≤n+m
1≤i,k≤n

|Bjki|2 +
∑

n+1≤k≤n+m
1≤i,j≤n

|Bkij |2

=3
∑

n+1≤i≤n+m
1≤j,k≤n

|Bijk|2

=3|B|2 .
�

1.5. Higher Order Relations

In this section we work out some properties of the higher derivatives of the square of the
distance function from a submanifold, in particular, the relations with the covariant derivatives
of the second fundamental form. The main result here is a recurrence formula for Ak (Proposi-
tion 1.5.1), that is, the tensor of k–derivatives of the squared distance function from M , once its
action is split on tangent and normal vectors. Such formula is crucial to get “structure informa-
tion” and estimates on the tensors Ak (Corollary 1.5.3 and Proposition 1.5.6).

PROPOSITION 1.5.1. For every k ≥ 2 and s ∈ {0, . . . k} there exists a family pk,sj1...jk−s
of symmetric

polynomial tensors of type (s, 0) on M , where j1, . . . , jk−s ∈ {1, . . . , n+m}, which are contractions of
the second fundamental form B and its covariant derivatives with the metric tensor g, such that

Ak(X1, . . . , Xs, N1, . . . , Nk−s) = pk,sj1...jk−s
(X1, . . . , Xs)N

j1
1 . . . N

jk−s

k−s

for every s–uple of tangent vectors Xh and (k− s)–uple of normal vectors Nh in R
n+m (with the obvious

interpretation if s = 0 or s = k, that is, for instance in this latter case the symbols indexed by 1, . . . , k− s
are not present in the formulas).

Moreover, the tensors pk,sj1...jk−s
are invariant by exchange of the j–indices and the maximum order of

differentiation of B which appears in every pk,sj1...jk−s
is at most k − 3, when k ≥ 3. Considering the
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tangent plane at any point x ∈M also as a subset of Rn+m, the polynomial tensors pk,sj1...jk−s
are expressed

in the coordinate basis of the Euclidean space as follows

pk,sj1...jk−s
(X1, . . . , Xs)N

j1
1 . . . N

jk−s

k−s = pk,sj1...jk−s,i1...is
Xi1

1 . . . Xis
s N

j1
1 . . . N

jk−s

k−s .

Then, a family of tensors satisfying the above properties can be defined recursively according to the follow-
ing formulas

p2,0j1j2 = p2,1j1,i1 = 0 , p2,2i1i2 = δi1i2 (1.5.1)

pk,0j1...jk = pk,1j1...jk−1,i1
= 0 for every k ≥ 2 (1.5.2)

pk+1,s
j1...jk−s+1,i0i1...is−1

=(∇pk,s−1
j1...jk−s+1

)i0i1...is−1
if 2 ≤ s < k + 1 (1.5.3)

−
k−s+1∑

h=1

pk,s−1
j1...jh−1rjh+1...jk−s+1,i1...is−1

Bjhri0

−
s−1∑

h=1

pk,s−2
rj1...jk−s+1,i1...ih−1ih+1...is−1

Bri0ih

+

k−s+1∑

h=1

pk,sj1...jh−1jh+1...jk−s+1,i1...is−1r
Bjhri0

pk+1,k+1
i0i1...ik+1

=∇pk,ki0i1...ik −
k∑

h=1

pk,k−1
r,i1...ih−1ih+1...ik

Bri0ih . (1.5.4)

PROOF. If k = 2 we have immediately

A2(N1, N2) = 0, A2(X1, N1) = 0, A2(X1, X2) = Xi
1X

i
2 = δi1i2X

i1
1 X

i2
2

since X1 and X2 are tangent and A2 is the projection on the tangent space. Hence, formula (1.5.1)
follows.
We argue now by induction on k ≥ 2. When s = 0 the value Ak(N1, . . . , Nk)(x) depends only on
the function AM on the m–dimensional normal subspace to M at x, and on this subspace AM is
identically zero, hence the first equality in (1.5.2) is proved.
Suppose now that s ∈ {1, . . . , k+1}, we extend the vectorsXh ∈ TxM andNh ∈ NxM to a family
of local vector fields, respectively tangent and normal to M , then

Ak+1(X0, X1, . . . , Xs−1, N1, . . . , Nk−s+1) =
∂

∂X0

(
Ak(X1, . . . , Xs−1, N1, . . . , Nk−s+1)

)

−
s−1∑

h=1

Ak
(
X1, . . . Xh−1,

∂Xh

∂X0
, Xh+1, . . . , Xs−1, N1, . . . , Nk−s+1

)

−
k−s+1∑

h=1

Ak
(
X1, . . . , Xs−1, N1, . . . ,

∂Nh
∂X0

, . . . , Nk−s+1

)

where the last line is not present in the special case s = k + 1 and the second line is not present if
s = 1. In this last case, we have

Ak+1(X0, N1, . . . , Nk) =
∂

∂X0

(
Ak(N1, . . . , Nk)

)
−

k∑

h=1

Ak
(
N1, . . . ,

∂Nh
∂X0

, . . . , Nk

)
= 0

since the first term of the right member is zero by the first equality in (1.5.2) and, after decompos-

ing ∂Nh

∂X0
in tangent and normal part, the tangent term is zero by induction and the normal term

is zero for (1.5.2) again. This shows the second equality in (1.5.2).
So we suppose 1 < s < k + 1, by the inductive hypothesis,

Ak(X1, . . . , Xs−1, N1, . . . , Nk−s+1) = pk,s−1
j1...jk−s+1

(X1, . . . , Xs−1)N
j1
1 . . . N

jk−s+1

k−s+1
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thus, differentiating along X0, which is a tangent field, we obtain

Ak+1(X0,X1, . . . , Xs−1, N1, . . . , Nk−s+1)

=
∂

∂X0

(
pk,s−1
j1...jk−s+1

(X1, . . . , Xs−1)N
j1
1 . . . N

jk−s+1

k−s+1

)

−
s−1∑

h=1

Ak
(
X1, . . . ,

(∂Xh

∂X0

)M
, . . . , Xs−1, N1, . . . , Nk−s+1

)

−
s−1∑

h=1

Ak
(
X1, . . . ,

(∂Xh

∂X0

)⊥
, . . . , Xs−1, N1, . . . , Nk−s+1

)

−
k−s+1∑

h=1

Ak
(
X1, . . . , Xs−1, N1, . . . ,

(∂Nh
∂X0

)M
, . . . , Nk−s+1

)

−
k−s+1∑

h=1

Ak
(
X1, . . . , Xs−1, N1, . . . ,

(∂Nh
∂X0

)⊥
, . . . , Nk−s+1

)
.

We use now the symmetry of Ak and we substitute recursively pk,s, pk,s−1 and pk,s−2 to Ak,
according to the number of tangent vectors inside Ak,

Ak+1(X0,X1, . . . , Xs−1, N1, . . . , Nk−s+1)

=
∂

∂X0

(
pk,s−1
j1...jk−s+1

(X1, . . . , Xs−1)
)
N j1

1 . . . N
jk−s+1

k−s+1

+

k−s+1∑

h=1

pk,s−1
j1...jk−s+1

(X1, . . . , Xs−1)N
j1
1 . . .

∂N jh
h

∂X0
. . . N

jk−s+1

k−s+1

−
s−1∑

h=1

pk,s−1
j1...jk−s+1

(X1, . . . ,∇X0
Xh, . . . , Xs−1)N

j1
1 . . . N

jk−s+1

k−s+1

−
s−1∑

h=1

pk,s−2
rj1...jk−s+1

(X1, . . . , Xh−1, Xh+1, . . . , Xs−1)
[(∂Xh

∂X0

)⊥]r
N j1

1 . . . N
jk−s+1

k−s+1

−
k−s+1∑

h=1

pk,sj1...jh−1jh+1...jk−s+1

(
X1, . . . , Xs−1,

(∂Nh
∂X0

)M)
N j1

1 . . . N
jh−1

h−1 N
jh+1

h+1 . . . N
jk−s+1

k−s+1

−
k−s+1∑

h=1

pk,s−1
j1...jk−s+1

(X1, . . . , Xs−1)N
j1
1 . . .

[(∂Nh
∂X0

)⊥]jh
. . . N

jk−s+1

k−s+1 .

Adding the first and the third line on the right hand side we get the covariant derivative of the

tensor pk,s−1
j1...jk−s+1

times N j1
1 . . . N

jk−s+1

k−s+1 , adding the second and the last line we get

Ak+1(X0,X1, . . . , Xs−1, N1, . . . , Nk−s+1)

=∇pk,s−1
j1...jk−s+1

(X0, X1, . . . , Xs−1)N
j1
1 . . . N

jk−s+1

k−s+1

+

k−s+1∑

h=1

pk,s−1
j1...jk−s+1

(X1, . . . , Xs−1)N
j1
1 . . .

[(∂Nh
∂X0

)M]jh
. . . N

jk−s+1

k−s+1

−
s−1∑

h=1

pk,s−2
rj1...jk−s+1

(X1, . . . , Xh−1, Xh+1, . . . , Xs−1)
[(∂Xh

∂X0

)⊥]r
N j1

1 . . . N
jk−s+1

k−s+1

−
k−s+1∑

h=1

pk,sj1...jh−1jh+1...jk−s+1

(
X1, . . . , Xs−1,

(∂Nh
∂X0

)M)
N j1

1 . . . N
jh−1

h−1 N
jh+1

h+1 . . . N
jk−s+1

k−s+1 .
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Taking now into account that
[(∂Nh
∂X0

)M]r
=
[〈∂Nh
∂X0

,
∂

∂xi

〉 ∂

∂xi

]r
= −

〈
Nh,

∂

∂X0

∂

∂xi

〉〈 ∂

∂xi
, er

〉
= −Bjhri0X

i0
0 N

jh
h ,

where
{

∂
∂xi

}
i=1,...,n

is a basis of the tangent space of M , and

[(∂Xh

∂X0

)⊥]r
= Bri0ihX

i0
0 X

ih
h ,

substituting, we get

Ak+1(X0,X1, . . . , Xs−1, N1, . . . , Nk−s+1)

=∇pk,s−1
j1...jk−s+1

(X0, X1, . . . , Xs−1)N
j1
1 . . . N

jk−s+1

k−s+1

−
k−s+1∑

h=1

pk,s−1
j1...jh−1rjh+1...jk−s+1

(X1, . . . , Xs−1)B
jh
ri0
Xi0

0 N
j1
1 . . . N

jk−s+1

k−s+1

−
s−1∑

h=1

pk,s−2
rj1...jk−s+1

(X1, . . . , Xh−1, Xh+1, . . . , Xs−1)B
r
i0ih

Xi0
0 X

ih
h N

j1
1 . . . N

jk−s+1

k−s+1

+

k−s+1∑

h=1

pk,sj1...jh−1jh+1...jk−s+1
(X1, . . . , Xs−1,B

jh
ri0
Xi0

0 er)N
j1
1 . . . N

jk−s+1

k−s+1 .

Then, expressing the tensors in coordinates, we have

Ak+1(X0,X1, . . . , Xs−1, N1, . . . , Nk−s+1)

= (∇pk,s−1
j1...jk−s+1

)i0i1...is−1
Xi0

0 X
i1
1 . . . X

is−1

s−1 N
j1
1 . . . N

jk−s+1

k−s+1

−
k−s+1∑

h=1

pk,s−1
j1...jh−1rjh+1...jk−s+1,i1...is−1

Bjhri0X
i0
0 . . . X

is−1

s−1 N
j1
1 . . . N

jk−s+1

k−s+1

−
s−1∑

h=1

pk,s−2
rj1...jk−s+1,i1...ih−1ih+1...is−1

Bri0ihX
i0
0 . . . X

is−1

s−1 N
j1
1 . . . N

jk−s+1

k−s+1

+
k−s+1∑

h=1

pk,sj1...jh−1jh+1...jk−s+1,i1...is−1r
Bjhri0X

i0
0 . . . X

is−1

s−1 N
j1
1 . . . N

jk−s+1

k−s+1 ,

which is formula (1.5.3).
In the special case s = k + 1, to get formula (1.5.4), we just have to repeat the computations

dropping all the lines containing sums like
∑k−s+1
h=1 ..., which are not present.

Finally, assuming inductively that the polynomial tensors pk,s, pk,s−1 and pk,s−2 are symmetric
in the j–indices and contain covariant derivatives of B only up to the order k − 3 (when k ≥ 3),
also the claims about the symmetry and the order of the derivatives of B follow.

�

EXAMPLE 1.5.2. We compute some pk,s as a consequence of this proposition.

(1) When k = 2 we saw that

p2,0j1j2 = 0, p2,1j1 = 0, p2,2 = g .

(2) When k = 3 we have, by means of formulas (1.5.2) and (1.5.3),

p3,0j1j2j3 = 0, p3,1j1j2 = 0

p3,2j1,i1i2 = p2,2i2rB
j1
ri1

= Bj1i1i2

p3,3i1i2i3 = (∇p2,2)i1i2i3 + p2,1r,i2B
r
i1i3 + p2,1r,i3B

r
i1i2 = 0

that is,
p3,2j1 = Bj1 and p3,3 = 0 .
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(3) When k = 4 we have,

p4,0j1j2j3j4 =0, p4,1j1j2j3 = 0

p4,2j1j2,i1i2 = p3,2j1,i1rB
j2
ri2

+ p3,2j2,i1rB
j1
ri1

= Bj1i1rB
j2
ri2

+ Bj2i2rB
j1
ri1

p4,3j1,i1i2i3 =(∇p3,2j1 )i1i2i3 + p3,2r,i2i3B
j1
ri1

= (∇p3,2j1 )i1i2i3 + Bri2i3B
j1
ri1

= (∇Bj1)i1i2i3

since we contracted a normal vector with a tangent one,

p4,4i1i2i3i4 = − p3,2r i3i4B
r
i1i2 − p3,2r i2i4B

r
i1i3 − p3,2r i2i3B

r
i1i4

= − Bri3i4B
r
i1i2 − Bri2i4B

r
i1i3 − Bri2i3B

r
i1i4 .

Proposition 1.5.1 allows us to write Ak in terms of the tensors pk,s and the projections on the
tangent and normal spaces (hence contracting with the scalar product of Rn+m), so we get the
following corollary.

COROLLARY 1.5.3. For every k ≥ 3 the symmetric tensorAk can be expressed as a polynomial tensor
in B and its covariant derivatives, contracted with the scalar product of Rn+m.
The maximum order of differentiation of B which appears in Ak is k − 3. More precisely, the only tensors

among the pk,s containing such highest derivative are pk,k−1
j1

, given by

pk,k−1
j1

= ∇k−3Bj1 + LOT .

where we denoted with LOT (lower order terms) a polynomial term containing only derivatives of B up
to the order k-4.

PROOF. Looking at the tensors with the derivative of B of maximum order among the pk,sj1...jk−s
,

by formula (1.5.3) and the fact that the only non zero polynomials p3,sj1...j3−s,i1...is
are p3,2j1,i1i2 = Bj1i1i2

(see Example 1.5.2), it is clear that they come from the derivative ∇pk−1,k−2
j1

. Iterating the argu-

ment, the leading term in pk,k−1
j1

is given by ∇k−3p3,2j1 = ∇k−3Bj1 . �

REMARK 1.5.4. We can see in Example 1.5.2 that when k = 3 and 4, the lower order term
which appears above is zero. Actually, by a tedious computation, one can see that for k ≥ 5 this
is no more true.

COROLLARY 1.5.5. For every k ≥ 3 we have the following estimates at every point x ∈M ,

C1|∇k−3B|2 + LOT1 ≤ |Ak|2 ≤ C2|∇k−3B|2 + LOT2

where the two constants C1 and C2 depends only on k, n and m, and LOT1 and LOT2 are polynomial
terms containing only derivatives of B up to the order k-4.
Moreover, for a couple of “universal” functions F1 and F2 depending only on k, n and m, we have

k∑

i=3

|Ai|2 ≤F1

(k−3∑

i=0

|∇iB|2
)

k−3∑

i=0

|∇iB|2 ≤F2

( k∑

i=3

|Ai|2
)
.

PROOF. The first estimates follow by Corollary 1.5.3 and the structure of Ak obtained in
Proposition 1.5.1. The second statement is obtained by such estimates, by iteration. �

The decomposition of Ak in its tangent and normal components is very useful in studying in
even more detail the norm of Ak.
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Fixing at a point x ∈ M an orthonormal basis {e1, . . . , en+m} of Rn+m such that {e1, . . . , en}
is a basis of TxM , we have obviously

|Ak|2 =
∑

1≤i1,...,ik≤n+m
[Ak(ei1 , . . . , eik)]

2

≥
∑

1≤i1,i2≤n

n<i3,...,ik≤n+m

[Ak(ei1 , ei2 , ei3 , . . . , eik)]
2

≥
∑

n<j≤n+m

∑

1≤i1,i2≤n
[Ak(ei1 , ei2 , ej , . . . , ej)]

2

=
∑

n<j≤n+m

∑

1≤i1,i2≤n
[pk,2j...j,i1i2 ]

2 ,

that is,

|Ak|2 ≥
∑

n<j≤n+m
|pk,2j...j |2 .

We analyze this last term by means of formula (1.5.3). We have p2,2 = g and for every k ≥ 2,

pk+1,2
j...j,i0i1

=

k−1∑

h=1

pk,2j...j,i1rB
j
ri0

= (k − 1) pk,2j...j,i1rB
j
ri0
.

Then, by induction, it is easy to see that

pk,2j...j,i0i1 = (k − 2)! Bji0r1B
j
r1r2 . . .B

j
rk−3i1

hence, as the bilinear form Bj is symmetric, denoting with λjs its eigenvalues at the point x ∈M ,
we conclude

|pk,2j...j |2 = [(k − 2)!]2
n∑

s=1

(λjs)
2(k−2) ≥ C̃|Bj |2k−4 .

Coming back to our estimate,

|Ak|2 ≥ C̃
∑

n<j≤n+m
|Bj |2k−4 ≥ C

( ∑

n<j≤n+m
|Bj |2

)k−2

= C|B|2k−4 .

PROPOSITION 1.5.6. The following estimate holds,

|Ak|2 ≥ C|B|2k−4

where C is a universal constant depending only on k, n and m.

1.6. The Distance Function on Riemannian Manifolds

In this section we discuss more in detail some analytic properties of the distance function
that we stated without proof in Section 1.4.
We consider in full generality the distance function dK from a closed set K of a Riemannian
manifold (M, g) and we analyze the connection with the theory of viscosity solutions of Hamilton–
Jacobi equations. Indeed, we will see that the distance function is a viscosity solution of the
following Hamilton–Jacobi problem

{
|∇u| = 1 in M \K ,

u = 0 on ∂K

and we will use the property of semiconcavity shared by such solutions to analyze the properties
of dK .
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1.6.1. Stationary Hamilton–Jacobi Equations on Manifolds. Let M be a smooth and con-
nected, n–dimensional, differentiable manifold.

We consider the following Hamilton–Jacobi problem in Ω ⊂M ,
{
H(x, du(x), u(x)) = 0 in Ω ,

u = u0 on ∂Ω

where H : T ∗Ω× R → R and T ∗ denotes the cotangent bundle.

DEFINITION 1.6.1. Given a continuous function u : Ω → R and a point x ∈ M , the superdif-
ferential of u at x is the subset of T ∗

xM defined by

∂+u(x) =
{
dϕ(x) |ϕ ∈ C1(M), ϕ(x)− u(x) = min

M
ϕ− u

}
.

Similarly, the set

∂−u(x) =
{
dψ(x) |ψ ∈ C1(M), ψ(x)− u(x) = max

M
ψ − u

}

is called the subdifferential of u at x.
Notice that it is equivalent to replace the max (min) on all M with the maximum (minimum) in
an open neighborhood of x in M .

It is easy to see that ∂+u(x) and ∂−u(x) are both nonempty if and only if u is differentiable at
x ∈M . In this case we have

∂+u(x) = ∂−u(x) = {du(x)} .
We list here without proof some of the standard properties of the sub and superdifferential which
will be needed later.

PROPOSITION 1.6.2. If ψ : N → M is a map between the smooth manifolds N and M which is C1

around x ∈ N , then

∂+(u ◦ ψ)(x) ⊃ ∂+u(ψ(x)) ◦ dψ(x) = {v ◦ dψ(x) | v ∈ ∂+u(ψ(x))} .
If ψ is a local diffeomorphism near x, the inclusion becomes an equality. An analogous statement holds for
∂−.

PROPOSITION 1.6.3. If θ : R → R is a C1 function such that θ′(u(x)) ≥ 0, then

∂+(θ ◦ u)(x) ⊃ dθ(u(x)) ◦ ∂+u(x) = {dθ(u(x)) ◦ v | v ∈ ∂+u(x)} ,
similarly for ∂−. If θ′(u(x)) > 0 then the inclusion is an equality.

For a locally Lipschitz function u on a Riemannian manifold (M, g), ∂+u(x) and ∂−u(x) are
compact convex sets, almost everywhere coinciding with the differential of the function u, by
Rademacher’s theorem.
For a generic continuous function u we prove in the next proposition that ∂+u(x) and ∂−u(x) are
not empty in a dense subset.

PROPOSITION 1.6.4. Let u : Ω → R be a continuous function on an open subset Ω of M . Then the
subdifferential ∂−u(x) (the superdifferential ∂+u(x)) is not empty for every x in a dense subset of Ω.

PROOF. It is always possible to endow M with a Riemannian structure giving a metric d(· , ·)
on M which generates the same topology.
Consider a generic point y ∈ Ω and a geodesic ball B contained in Ω with center y. If the ball B

is small enough, the function x 7→ d2(x, y) is smooth in B. Taking a large positive constant A,
the function FA(x) = u(x) + Ad2(x, y) has a local minimum at a point xA in the interior of B. At
xA the subdifferential of the function FA must contain the origin of T ∗

xA
M , hence, being d2(x, y)

differentiable in the ball B, the differential of −d2(x, y) at xA belongs to ∂−u(xA). As the point
y and the ball B were arbitrarily chosen, the set of points where the subdifferential of u is not
empty is dense in Ω.
The same argument holds for the superdifferential of u, considering the function −u. �
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Now we introduce the notion of semiconcavity which will play a central role.

DEFINITION 1.6.5. Given an open set Ω ⊂ R
n, a continuous function u : Ω → R is called

locally semiconcave if, for any open convex set Ω′ ⊂ Ω with compact closure in Ω, there exists a
constant C such that one of the following three equivalent conditions is satisfied,

(1) ∀x, h with x, x+ h, x− h ∈ Ω′,

u(x+ h) + u(x− h)− 2u(x) ≤ 2C|h|2 ,

(2) u(x)− C|x|2 is a concave function in Ω′,
(3) D2u ≤ 2C Id in Ω′, as distributions (Id is the n× n identity matrix).

In order to give a meaning to the concept of semiconcavity when the ambient space is a
differentiable manifold M , we analyze the stability of this property under composition with C2

maps.

PROPOSITION 1.6.6. Let Ω and Ω′ two open subsets of Rn. If u : Ω → R is a Lipschitz function such
that u(x)−C |x|2 is concave and ψ : Ω′ → Ω is a C2 function with bounded first and second derivatives,
then u ◦ ψ : Ω′ → R is a Lipschitz function and u ◦ ψ(y)− C ′|y|2 is concave, for a suitable constant C ′.

The proof is straightforward. Then, the following definition is well–posed.

DEFINITION 1.6.7. A continuous function u : M → R is called locally semiconcave if, for any
local chart ψ : Rn → Ω ⊂M , the function u ◦ ψ is locally semiconcave in R

n.

The importance of semiconcave functions in connection with the generalized differentials is
expressed by the following proposition (see [21]).

PROPOSITION 1.6.8. Let the function u : M → R be locally semiconcave, then the superdifferential
∂+u is not empty at each point, moreover, ∂+v is upper semicontinuous, namely

xk → x, vk → v, vk ∈ ∂+u(xk) =⇒ v ∈ ∂+u(x) .

In particular, if the differential du exists at every point of Ω ∈M , then u ∈ C1(Ω).

Now we introduce the definition of viscosity solution.
Let Ω be an open subset of M and H, called Hamiltonian function, a continuous real function on
T ∗Ω× R. We are interested in the following Hamilton–Jacobi problem

H(x, du(x), u(x)) = 0 in Ω . (1.6.1)

DEFINITION 1.6.9. We say that a continuous function u is a viscosity solution of equation (1.6.1)
if for every x ∈ Ω,

{
H(x, v, u(x)) ≤ 0 ∀v ∈ ∂+u(x) ,

H(x, v, u(x)) ≥ 0 ∀v ∈ ∂−u(x) .
(1.6.2)

If only the first condition is satisfied (respectively, the second) u is called a viscosity subsolution
(respectively, a viscosity supersolution).

If Ω′ is an open subset of another smooth differentiable manifold N and ψ : Ω′ → Ω is a C1

local diffeomorphism, we define the pull–back of the Hamiltonian function ψ∗H : T ∗Ω′ × R → R

by

ψ∗H(y, v, r) = H(ψ(y), v ◦ dψ(y)−1, r) .

Taking into account Proposition 1.6.2, the following statement is obvious.

PROPOSITION 1.6.10. If u is a viscosity solution of H = 0 in Ω ⊂ M and ψ : Ω′ → Ω is a C1 local
diffeomorphism, then u ◦ ψ is a viscosity solution of ψ∗H = 0 in Ω′ ⊂ N .
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1.6.2. The Distance Function from a Closed Subset of a Manifold. From now on, (M, g)
will be a smooth, connected and complete, Riemannian manifold without boundary, of dimen-
sion n.

We consider a closed and not empty subset K and the distance function dK : M → R from
K, which is defined as the infimum of the lengths of the C1 curves starting at x and ending at
K. As M is complete, by the Theorem of Hopf–Rinow, such infimum is reached by at least one
curve which will be a smooth geodesic. We will also consider the function ηK = [dK ]2/2 as in the
previous sections.

In the following we will denote the distance between two points x, y ∈ M with d(x, y) and
the exponential map of (M, g) with Exp : TM × R → M . For simplicity, we will write |v| for the

modulus of a vector v ∈ TM , defined as
√
g(v, v).

PROPOSITION 1.6.11. The distance function dK is the unique viscosity solution of the following
Hamilton–Jacobi problem {

|∇u|2 − 1 = 0 in M \K ,

u = 0 on K
(1.6.3)

in the class of continuous functions bounded from below.
The function ηK is the unique viscosity solution of

{
|∇u|2 − 2u = 0 in M ,

u = 0 on K
(1.6.4)

in the class of continuous functions on M such that their zero set is K.

REMARK 1.6.12. The restriction to lower bounded functions is necessary, ‖x‖ and −‖x‖ are
both viscosity solutions of Problem (1.6.3) with M = R

n and K = {0}. Moreover, the complete-
ness of M plays an important role here, if M is the open unit ball of Rn the same example shows
that the uniqueness does not hold.
Notice also that every function [dH ]2/2 whereH is a closed subset ofM withH ⊃ K, is a viscosity
solution of Problem (1.6.4), equal to zero on K.

PROOF. The quantity dK(x) is the minimum time t ≥ 0 for any curve γ to reach a point
γ(t) ∈ K, subject to the conditions γ(0) = 0 and |γ′| ≤ 1; the function dK is then the value function
of a “minimum time problem”; this proves that dK is also a viscosity solution of Problem (1.6.3),
by well known results (see for example [10, Chap. 4, Prop. 2.3]). Then we show that the function
ηK is a solution of Problem (1.6.4).
First of all, notice that the distance function from K is a 1–Lipschitz function, hence ηK is locally
Lipschitz.
As dK is 1–Lipschitz, at every point of K the function ηK is differentiable and its differential is
zero. Hence, the definition of viscosity solution holds also for points belonging to K. In order
to prove the thesis, it is then sufficient to test conditions (1.6.2) on the generalized differentials at
the points of the open set M \K.

Since ηK is positive in M \ K, applying Proposition 1.6.3 with the function θ(t) =
√
2t, we see

that the function ηK is a viscosity solution of

g

( ∇u√
2u
,
∇u√
2u

)
− 1 = 0

in M \K. Being there positive, it also solves

g(∇u,∇u)− 2u = 0

in M \K. This fact together with the previous remark about the behavior of ηK at the points of
K gives the claim.

Suppose now that u is a viscosity solution of Problem (1.6.3) then, u is also a solution of
{
|∇u| − 1 = 0 in M \K ,

u = 0 on K .
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As in the work of Kružhkov [65], we consider the function v = −e−u which, by Proposition 1.6.3,
turns out to be a viscosity solution of

{
|∇v|+ v = 0 in M \K ,

v = −1 on K
(1.6.5)

moreover, |v| ≤ e− inf u.
We establish an uniqueness result for this last problem in the class of bounded functions v, which
clearly implies the first uniqueness result. We remark that the proof is based on similar ones
in [28, 29, 49].
We argue by contradiction, suppose that u and v are two bounded solutions of (1.6.5), |u|, |v| ≤ C,
and that at a point x we have u(x) ≥ 2ε+ v(x) with ε > 0.
Let b(x, y) :M ×M → R be a smooth function satisfying

• b ≥ 0
• |∇xb(x, y)|, |∇yb(x, y)| ≤ 2
• supM×M |d(x, y)− b(x, y)| <∞

such a function can be obtained smoothing the distance function in M ×M .
We fix a point x0 in K and we define the smooth function B(x) = b(x, x0)

2. By the properties of
b and the boundedness of u and v, the following function Ψ :M ×M → R

Ψ(x, y) = u(x)− v(y)− λd(x, y)2 − δB(x)− δB(y)

has a maximum at a point (x̂, ŷ) (dependent on the positive parameters δ and λ) and such maxi-
mum Ψ(x̂, ŷ) is less than 2C. Hence, the function

x 7→ [v(ŷ) + λd(x, ŷ)2 + δB(x) + δB(ŷ)]− u(x) (1.6.6)

has a minimum at x̂ while

y 7→ [u(x̂)− λd(x̂, y)2 − δB(x̂)− δB(y)]− v(y) (1.6.7)

has a maximum at ŷ.
If 2δ ≤ ε/B(x) then

Ψ(x̂, ŷ) ≥ Ψ(x, x) ≥ 2ε− 2δB(x) ≥ ε

hence, we get
δB(x̂) + δB(ŷ) + λd(x̂, ŷ)2 + ε ≤ u(x̂)− v(ŷ) ≤ 2C . (1.6.8)

This shows that, for a fixed δ, the minimizing pairs (x̂, ŷ), for λ varying, are all contained in a
bounded set and, if λ goes to +∞ the distance between x̂ and ŷ goes to zero. Possibly passing to
a subsequence for λ going to infinity, x̂ and ŷ converge to a common limit point z which cannot
belong to K, otherwise we would get ε ≤ u(z) − v(z) = 0, thus, for some λ large enough also x̂
and ŷ do not belong to K.
As the function d2(x, y) is smooth in Bz×Bz ⊂M ×M , where Bz is a small geodesic ball around
z, choosing a suitable λ large enough we can differentiate the functions inside the square brackets
in equations (1.6.6) and (1.6.7) obtaining

v̂ = δ∇B(x̂) + λ∇xd
2(x̂, ŷ) ∈ ∂+u(x̂) ,

ŵ = −δ∇B(ŷ)− λ∇yd
2(x̂, ŷ) ∈ ∂−v(ŷ) .

By Definition 1.6.9 we have that |v̂|+ u(x̂) ≤ 0 and |ŵ|+ v(ŷ) ≥ 0, hence

u(x̂)− v(ŷ) + |v̂| − |ŵ| ≤ 0 .

Moreover,

|v̂| − |ŵ| =
∣∣δ∇B(v̂) + λ∇xd

2(x̂, ŷ)
∣∣−
∣∣δ∇B(ŷ) + λ∇yd

2(x̂, ŷ)
∣∣

≥
∣∣λ∇xd

2(x̂, ŷ)
∣∣−
∣∣λ∇yd

2(x̂, ŷ)
∣∣− |δ∇B(ŷ)| − |δ∇B(x̂)|

=2λd(x̂, ŷ) |∇xd(x̂, ŷ)| − 2λd(x̂, ŷ) |∇yd(x̂, ŷ)| − |δ∇B(ŷ)| − |δ∇B(x̂)|
=2λd(x̂, ŷ)− 2λd(x̂, ŷ)− |δ∇B(ŷ)| − |δ∇B(x̂)|
=− |δ∇B(ŷ)| − |δ∇B(x̂)|
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which implies,
u(x̂)− v(ŷ)− δ|∇B(ŷ)| − δ|∇B(x̂)| ≤ 0 .

Finally, we have that

δ|∇B(x̂)| = 2δ|b(x̂, x0)∇b(x̂, x0)| ≤ 4δ
√
B(x̂)

and using the estimate δB(x̂) ≤ 2C which follows from equation (1.6.8),

δ|∇B(x̂)| ≤ 8
√
2δC ≤ ε/4

if δ was chosen small enough. Holding the same for ŷ, we conclude that

u(x̂)− v(ŷ)− ε/2 ≤ 0

which is in contradiction with the fact that u(x̂)− v(ŷ) ≥ ε.
About the second uniqueness claim, if u is a continuous viscosity solution of Problem (1.6.4)

then, by Proposition 1.6.4 the superdifferential of u is not empty in a dense subset of M \ K,
hence, directly by the equation and by continuity, u is non negative. By the hypothesis on its zero

set we conclude that u is positive in all M \K. Composing u with the function t 7→
√
2t, we see

that
√
2u is a positive, continuous viscosity solution of Problem (1.6.3), then it must coincide with

dK , by the previous result. It follows that u = ηK . �

We now study the singular set of dK ,

Sing =
{
x ∈M | ηK is not differentiable at x

}
.

REMARK 1.6.13. In this definition we used the squared distance function instead of the dis-
tance in order to avoid to consider also the points of the boundary of K, which are singular for
dK but not for ηK . It is trivial to see that outside K the distance and its square have the same
regularity.

PROPOSITION 1.6.14. The function dK is locally semiconcave in M \K.

PROOF. The distance function dK is a viscosity solution of H = 0 in M \K, where the Hamil-
tonian function is given by H(x, v, t) = |v|2 − 1. We choose a smooth local chart ψ : Rn → Ω ⊂M
and we define v = dK ◦ ψ, which is a locally Lipschitz function and, by Proposition 1.6.10, it is a
viscosity solution of ψ∗H = 0.
The pull–back of the Hamiltonian function on R

n takes the form

ψ∗H(y, w, s) = gψ(y)(dψ(w), dψ(w))− 1 = gij(y)wiwj − 1

for (y, w, s) ∈ R
n×R

n×R and where gij(y) are the components of the metric tensor of M in local
coordinates.
Since the matrix gij(y) is positive definite ψ∗H(y, w, s) is locally uniformly convex in w, hence,
by [71, Thm. 5.3], it follows that v = dK◦ψ is locally semiconcave in R

n. Recalling Definition 1.6.7,
this means that dK is locally semiconcave in M \K. �

The semiconcavity of dK allows us to work with the superdifferential when the gradient does
not exist. Indeed, it follows that the points of Sing are precisely those where the superdifferential
is not a singleton and the following result is a straightforward consequence of Proposition 1.6.8.

PROPOSITION 1.6.15. The function ηK is of class C1 in the open set M \ Sing and dK is C1 in
M \

(
K ∪ Sing

)
.

The semiconcavity property also gives information about the relations between the structure
of the superdifferential at a point x and the set of minimal geodesics from x to K (see [3, 5]).
The setExt(∂+ηK(x)) of extremal points of the (convex) superdifferential set of ηK at x is in one–
to–one correspondence with the family G(x) of minimal geodesics from x to K. Precisely G(x) is
described by

G(x) =
{
Exp(x,−v, ·) | [0, 1] →M | for v ∈ Ext(∂+ηK(x))

}
. (1.6.9)

Hence, the set of points of K at minimum distance from x are given by Exp(x,−v, 1) for v in
the set of extremal points of the superdifferential set of ηK at x. As a particular case we have
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that if the function ηK is differentiable at x if and only if the point of K closest to x is uniquely
determined and given by Exp(x,−∇ηK(x), 1).

We consider now a setK which is a k–dimensional, embeddedCr submanifold ofM without
boundary, with 0 ≤ k ≤ n− 1 (the case k = n is trivial) and r ≥ 2.

For every p ∈ K we consider the following three subsets of TpM ,

• TpK, the vector subspace of tangent vectors to K at p,
• NpK = {w ∈ TpM | gp(w, TpK) = 0}, the vector subspace of normal vectors to K at p,
• UpK = {w ∈ NpK | gp(w,w) = 1}, the subset of unit normal vectors to K at p,

then the bundles NK = {(p, v) | v ∈ NpK} and UK = {(p, v) | v ∈ UpK} inherit the structure of
TM . Being K a Cr submanifold of M , the bundles NK and UK are respectively n–dimensional
and (n− 1)–dimensional Cr−1 submanifolds of TM .
Notice that in the special case K = {p}, we have that NK = TpM and UK = S

n−1 ⊂ TpM .
We define the map F : UK ×R

+ →M as the restriction of the exponential map of M to UK,

F (p, v, t) = Exp(p, v, t) ∀(p, v) ∈ UK and t ∈ R
+.

Since UK is a Cr−1 manifold and the exponential map of M is smooth, F and all its derivatives
with respect to the variable t are of class Cr−1.

REMARK 1.6.16. If a minimal geodesic, parametrized by arc length, starts at a point p ∈ M
and arrives at a point q ∈ K, its velocity vector v at q has to belong to UqK, otherwise the
condition of minimality is easily contradicted.
Since the geodesics, parametrized by arc length, ending on K are given by the family of maps
t 7→ F (q, v, t) with (q, v) ∈ UK, the distance from K of a point p is given by the formula

dK(p) = inf{t ∈ R
+ | (q, v, t) ∈ F−1(p)}, (1.6.10)

which obviously becomes dK(p) = πR+

(
F−1(p)

)
when the counterimage is a singleton (the map

πR+ is the projection on the second factor of the product UK × R
+).

The study of the singularities of the squared distance function then reduces to the analysis of the
(possibly set valued) map F−1.
This problem, from the topological point of view, is naturally connected with the study of the
singularities of continuous maps between Euclidean spaces. For instance, when K coincides
with a single point of M the singular sets were shown to be related to the classes of singularities
considered by the Theory of Catastrophes, see [20].

Let us define the Cr−1 map exp : NK →M by

exp(p, v) = Exp(p, v, 1) ∀(p, v) ∈ NK.

At the points (p, 0) ∈ NK the map exp is differentiable and d exp(p, 0) is invertible between
T(p,0)NK and TpM , indeed T(p,0)NK can be identified with TpM and under such identification

d exp(p, 0) is the identity. Since, by hypothesis, the map exp is at least C1, it follows that in a
neighborhood of (p, 0) in NK the differential of exp is invertible, hence the map exp is a Cr−1

local diffeomorphism. Holding the relation F (p, v, t) = exp(p, vt), we conclude that for small
t > 0, the map F is a local diffeomorphism.
Being K at least C2, by a standard result in differential geometry, there exists an open tubular
neighborhood Ω′ of K in M formed by non intersecting, minimal geodesics starting normally from
K. Hence, by the previous discussion and possibly choosing a smaller tubular neighborhood Ω
of K, the map F−1 is well defined and Cr−1 in Ω \K (see for instance, [7]).
Then, the gradient of ηK exists in Ω and we have, by relations (1.6.9) and (1.6.10),

∇ηK(p) = dK(p)
∂F

∂t
(F−1(p)).

Since dK = πR+

(
F−1(p)

)
∈ Cr−1 in Ω and the functions F , ∂F∂t are of class Cr−1, it follows that

∇ηK is Cr−1 and ηK is Cr in Ω \K. The same Cr regularity in Ω \K follows immediately also
for the distance function dK .
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Moreover, the function ηK is Cr regular also on the set K, hence in the whole neighborhood Ω,
as the square regularizes the jump of the gradient in the direction normal to K, see [6, 7].

We summarize these results in the following proposition which has as a particular case
Proposition 1.4.1.

PROPOSITION 1.6.17. IfK is a regular submanifold of classCr, with r ≥ 2, then there exists an open
subset Λ of UK × R

+ with the property that if (q, v, t) ∈ Λ then also (q, v, s) ∈ Λ for every 0 < s < t,
and an open neighborhood Ω of K in M , such that the map F |Λ : Λ → Ω \K is a diffeomorphism.
Moreover,

• for every point in Ω there is an unique point of minimum distance in K (unique projection
property in Ω),

• the distance function dK is Cr in Ω \K,
• the squared distance function ηK is Cr in Ω.

REMARK 1.6.18. It can be proved that C1,1 is the minimal regularity of K to have the unique
projection property in a neighborhood, in this case also the squared distance function turns out
to be of class C1,1 (see [42, 44] and also [33, 34] for a detailed discussion of the relation between
the regularity of K and of dK .



CHAPTER 2

Functionals on Submanifolds of the Euclidean Space

In this chapter we are going to discuss the Euler equations of geometric functionals defined
on submanifolds of the Euclidean space. We will show an algorithm to compute the first variation
in general and we will analyze its “structural” properties for some selected functionals that will
be the main subject of the next chapters.

2.1. Geometric Functionals

We are interested in studying functionals defined on compact, n–dimensional, smooth sub-
manifolds of Rn+m depending on their geometric properties. More precisely, we consider integral
functionals as follows

F(ϕ) =

∫

M

f (ϕ, P,B,∇B, . . . ,∇sB) dµ , (2.1.1)

defined on the smooth immersions ϕ : M → R
n+m of n–dimensional differentiable manifolds,

where f is a real smooth function and µ is the canonical measure on M associated to the induced
metric via the immersion.
In codimension one, when m = 1, if ν is the inner normal vector field to the hypersurface, we
will also consider the functionals

F(ϕ) =

∫

M

f (ϕ, P,B,∇B, . . . ,∇sB, ν,∇ν, . . . ,∇rν) dµ ,

which are anyway expressible as the ones above, by the Gauss–Weingarten relations (1.1.7) relat-
ing ∇ν and B (clearly also P and ν have a one–to–one relation).

By simplicity and in order to have invariance under translation and rotation of the submani-
fold, in the sequel we will assume that the function f does not depend on the “position” ϕ and the
tangent space (hence, not on P and ν), that is, the functional is “autonomous” and “anisotropic”,
but with minor variations all the conclusions follow also without such hypotheses.

Interesting examples of these functionals are the following:

• Taking f = 1 we have the Area functional which is the volume of the submanifold. This
is clearly the simplest geometric functional on submanifolds.

• The functionals Wp(ϕ) =
∫
M

|B|p dµ and Hp(ϕ) =
∫
M

|H|p dµ.

In the special case of surfaces in R
3 and if p = 2, the two functionals coincide up to a con-

stant (by Gauss–Bonnet Theorem) and
∫
M

|H|2 dµ takes the name of Willmore functional
(see [93]).

• The functionals Bs(ϕ) =
∫
M

|∇sB|2 dµ and Cr(ϕ) =
∫
M

|∇rν|2 dµ, in codimension one,
which are connected by the Gauss–Weingarten relations (1.1.7).

Seeing the submanifold M at least locally as a smooth subset of Rn+m, by the relations be-
tween the second fundamental form and the distance function established in the previous chap-
ter, it follows that actually all these functionals can be expressed in terms of functional in the

function AM (x) = |x|2−[dM (x)]2

2 and its derivatives as follows

F(M) =

∫

M

f
(
AMij ... k(x)

)
dHn(x) , (2.1.2)

with the meaning that where M is not embedded, we consider the distance from a local embed-
ded piece and where Hn is the n–dimensional Hausdorff measure in R

n+m, counting multiplici-
ties. Notice that, by the hypotheses above, the function f does not depend on ∇AM (x) = x.
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Viceversa, every functional in the distance function and its derivatives can be expressed as a
geometric functional in the second fundamental form (and its derivatives).

It is then natural to consider among the interesting functionals also the following family that
we call De Giorgi functionals, see [31, Sect. 5] and [32, Sect. 5] for an English translation,

Gγ(M) =

∫

M

∑

|α|=γ
|AMα |2 dHn =

∫

M

|Aγ |2 dHn ,

with the notation of Section 1.4.

2.2. First Variation

In this section we show how to compute the first variation of the general functional (2.1.2). As
it is possible to express in this form the functionals (2.1.1) also, our procedure provides a method
to compute the first variation for these latter too.

We consider an n–dimensional smooth submanifoldM →֒ R
n+m and a smooth one–parameter

family of diffeomorphisms Φt of Rn+m in itself such that there exists a bounded open subset U of
R
n+m with Φt = Id in ∁U , for every t ∈ R, and Φ0 = Id. The smooth field with compact support

X(x) = ∂Φt(x)
∂t

∣∣∣
t=0

is called the infinitesimal generator of the family Φt.

By the above properties of Φt : R
n+m → R

n+m, for |t| small enough, this map gives a com-
pactly supported deformation of M that we denote with Mt = Φt(M), which is again a smooth
n–dimensional submanifold. We want now to compute the derivative of F(Mt) at t = 0,

d

dt

∫

Mt

f
(
AMt

i1i2
, . . . , AMt

j1 ... jγ

)
dHn

∣∣∣∣
t=0

.

The main result of this section is the following.

PROPOSITION 2.2.1. There exists a unique vector field EF (AM ) such that

d

dt
F(Mt)

∣∣∣∣
t=0

=

∫

M

〈EF
(
AM

)
|X〉 dHn

for any family Φt whose infinitesimal generator is X . Moreover EF (AM ) is normal and

(1) if f depends on the derivatives ofAM up to the order γ, thenEF (AM ) depends on the derivatives
of AM up to the order (2γ − 1);

(2) if the function f in the functional (2.1.2) is a polynomial, then EF (AM ) is a polynomial in the
derivatives of AM .

By the same argument leading to Proposition 1.4.1, we can find an open neighborhood Ω of
M = M0 such that for any t ∈ (−ε, ε) all the manifolds Mt are contained in Ω and the func-
tion At(x) = AMt(x) is a globally smooth function for t ∈ (−ε, ε) and x ∈ Ω. Notice that, by
construction, all the Mt are coincident outside some compact subset of Rn+m.

Applying the Area Formula (1.3.2) to the map Φt :M →Mt we can rewrite the derivative as

d

dt

∫

M

f
(
Ati1i2(Φt(x)), . . . , A

t
j1 ... jγ (Φt(x))

)
JMΦt(x) dHn(x)

∣∣∣∣
t=0

where JMΦt(x) denotes the tangential Jacobian on M of the map Φt.
Hence, carrying the derivative under the integral sign, we find out

d

dt
F(Mt)

∣∣∣∣
t=0

=

∫

M

∑

α

∂f

∂AMα

∂

∂t

[
Atα(Φt(x))

]∣∣∣∣
t=0

dHn(x)

+

∫

M

f
(
AMt

i1i2
, . . . , AMt

j1 ... jγ

) ∂

∂t
JMΦt(x)

∣∣∣∣
t=0

dHn(x) .
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where γ is a multiindex such that |α| ≤ γ.
Now, the derivative of the Jacobian is simply the tangential divergence of the infinitesimal gen-
erator field X and the derivative of the function [Atα(Φt(x))] can be expressed by

∂

∂t

[
Atα(Φt(x))

]∣∣∣∣
t=0

=
∂Atα
∂t

(x)

∣∣∣∣
t=0

+ 〈∇AMα (x) |X(x)〉 .

Using the fact that the function At(x) is smooth, we can exchange the order of differentiation in
the middle term of this equation to get

∂Atα
∂t

(x)

∣∣∣∣
t=0

= Dα

{
∂

∂t
At(x)

∣∣∣∣
t=0

}
.

To go on, we need to compute the t–derivative of the function At(x) at t = 0.

LEMMA 2.2.2. Under the above smoothness assumptions, we have

∂

∂t
At(x)

∣∣∣∣
t=0

= −〈∇AM (x)− x |X(∇AM (x))〉

in Ω, where X is the infinitesimal generator field of Φt.

PROOF. We consider a point x ∈ Ω and we define y = πM (x) ∈ M and z = Φt(y) ∈ Mt. We
have d2(x,M) = ‖x− y‖2 and d2(x,Mt) ≤ ‖x− z‖2, hence

AMt(x)−AM (x)

t
= −d

2(x,Mt)− d2(x,M)

2t

≥ ‖x− y‖2 − ‖x− z‖2
2t

=
〈z − y | 2x− y − z〉

2t
.

Now z − y = Φt(y)− y is infinitesimal as t→ 0, moreover

Φt(y) = y + tX(y) + o(t).

Then the last term of the equation above tends to

〈X(πM (x)) |x− πM (x)〉 = −〈∇AM (x)− x |X(∇AM (x))〉 .

This proves that

lim inf
t→0

AMt(x)−AM (x)

t
≥ −〈∇AM (x)− x |X(∇AM (x))〉 .

Now, using a similar reasoning with y = πMt(x) and z = Φ−1
t (y), we obtain the opposite estimate

lim sup
t→0

AMt(x)−AM (x)

t
≤ −〈∇AM (x)− x |X(∇AM (x))〉

and this proves the lemma. �

We can now write the following general formula

d

dt
F(Mt)

∣∣∣∣
t=0

=

∫

M

f
(
AMt

i1i2
, . . . , AMj1 ... jγ

)
divM X(x) dHn(x)

+

∫

M

∑

α

∂f

∂AMα
〈∇AMα (x) |X(x)〉 dHn(x)

−
∫

M

∑

α

∂f

∂AMα
Dα

[
〈∇AM (x)− x |X(∇AM (x))〉

]
dHn(x) .
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Applying the tangential divergence theorem 1.3.4 to the first term and adding together gradient
and tangential gradient of the functions AM we get

d

dt
F(Mt)

∣∣∣∣
t=0

=−
∫

M

f
(
AMi1i2 , . . . , A

M
j1 ... jγ

)
〈H |X〉 dHn (2.2.1)

+

∫

M

∑

α

∂f

∂AMα
〈∇⊥AMα |X〉 dHn

−
∫

M

∑

α

∂f

∂AMα
Dα

[
〈∇AM (x)− x |X(∇AM (x))〉

]
dHn(x)

recalling that H is the mean curvature vector and that the sign “⊥” denotes the projection on the
normal space to M .

It is now clear that the last step in getting to the Euler equations for F relies on the computa-
tion of the last term, and in particular on the study of the derivatives

Dα
[
〈∇AM (x)− x |X(∇AM (x))〉

]
. (2.2.2)

Before proceeding to this computation, we want to make some remarks on the first variation.

PROPOSITION 2.2.3. The first variation of the functional (2.1.2) depends only on the values on M of
the infinitesimal generator X . Moreover if the vector field X is tangent to M , the first variation is zero.

PROOF. Since ∇AM (x) ∈ M for any x ∈ Ω, formula (2.2.1) clearly implies that the first
variation depends only on X|M . If X is tangential, the first term is zero because H(x) ∈ NxM ,
the second one is clearly zero and the last one vanishes because ∇AM (x) − x is normal to M at
∇AM (x) for any x ∈ Ω. �

Since (2.2.1) is linear in X , splitting X(x) in P (x)X(x) and (I − P (x))X(x), we can assume
in the following that X(x) is normal to M at ∇AM (x) for any x ∈ Ω.

Now we go on with the study of the equation (2.2.2) assuming that the multiindex α is de-
scribed by (i1 . . . ir) with γ ≥ r ≥ 2. We can distribute the derivatives on the two terms inside the
scalar product. If all the derivatives act on the right term in the scalar product the result is zero,
because the quantity ∇AM (x) − x is zero on the manifold M . If all the derivatives go on the left
term, it is simple to see that we obtain exactly the second term, with the opposite sign, in equa-
tion (2.2.1) which simplifies. So we study the terms with at least one derivative on X(∇AM (x))
and at least one on ∇AM (x)− x.
Forgetting the term on the left in the scalar product, which will produce functions of kindAMj1 ... jt ,

we reduce ourselves to study the derivatives of functions like ϕ(∇AM (x)), where ϕ :M → R.

PROPOSITION 2.2.4. For every multiindex β the derivative Dβ [ϕ(∇AM (x))] can be expressed on
M by a sum of terms

g(AM )∇M
j1 ◦ ∇M

j2 ◦ . . . ◦ ∇M
jl
ϕ(x)

with l ≤ |β| and with the functions g being polynomials in the derivatives of AM up to the order |β|+ 1.

PROOF. We extend our notion of tangential gradient, denoting by ∇Mf(x) the projection of
the gradient of the function f on the tangent space of M at the point πM (x) even if x 6∈ M . This
vector clearly coincides with the tangential gradient if x ∈M .
We argue by induction on s = |β|, that every derivative can be written as a sum of terms of the
following kind

g
(
AM

)
∇M
j1 ◦ ∇M

j2 ◦ . . . ◦ ∇M
jl
ϕ(∇AM (x)) (2.2.3)

for x ∈ Ω, l ≤ s and where g
(
AM

)
denotes a function of the derivatives ofAM up to the order (s+

1) (here we tangentially differentiate l–times the function ϕ(y) and we evaluate the derivatives at
∇AM (x)).
If s = 1 we have only one derivative, hence

∂

∂xi
[ϕ(∇AM (x))] = ∇kϕ(∇AM (x))AMki (x) = ∇M

k ϕ(∇AM (x)) .
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as ∇2AM is the projection on the tangent space.
Now, assuming that the proposition is true for (s − 1), to get the induction step we have to
differentiate with respect to xi a formula like (2.2.3). If the additional derivative ∇i acts on g

(
AM

)

it does not matter, while when it acts on the other factor we apply the same reasoning of the case
s = 1 to get a term of the form

g
(
AM

)
AMik (x)∇M

k ◦ ∇M
j1 ◦ ∇M

j2 ◦ . . . ◦ ∇M
jl
ϕ(∇AM (x)).

Finally, if x belongs to M we have ∇AM (x) = x and the statement follows. �

PROOF OF PROPOSITION 2.2.1. The uniqueness of EF (AM ) easily follows by the possibility
to choose Φt(x) = x+ tX(x) where X is any vector field.
The existence of EF (AM ) and its computing algorithm are described by the following steps:

Step 1. Distribute the derivatives on the two terms in the scalar product in the last line of (2.2.1),
avoiding to have all the derivatives acting on a single term.

Step 2. Write the derivative operator on the field X in terms of tangential gradients, following
Proposition 2.2.4.

Step 3. Bring derivatives away from the field X , using the identity f∇M
i X

s = ∇M
i (fXs) −

Xs∇M
i f , and then the tangential divergence theorem 1.3.4 to exchange the integral of

∇M
i (fXs) with the integral of −HifXs. Iterating this procedure we get to a final expres-

sion hs(AM )Xs, which we are interested in.

In particular, we obtain that EF (AM ) has a polynomial dependence on the derivatives of AM if
the same is true for f . Applying Proposition 2.2.4 to expressions like

∂f

∂AMα

[
〈Dβ

(
∇AM (x)− x

)
|DτX(∇AM (x))〉

]

with β + τ = α and β, τ 6= 0, one finds terms of the following form

gσ(A
M )∇M

σ1
◦ . . . ◦ ∇M

σl
X(x)

with gσ depending on the derivatives of AM up to the order |α| and l ≤ |α| − 1. Integrating by
parts we obtain terms depending on the derivatives ofAM up to the order l+ |α|. Since l ≤ |α|−1
and |α| ≤ γ, we get terms with derivatives of order at most (2γ − 1). �

2.3. Euler Equations of some Special Functionals

We study now and compute explicitly the Euler equations in some interesting cases.
We will first consider the following functionals,

Hp(M) =

∫

M

|H|p dHn and Gγ(M) =

∫

M

∑

|α|=γ
|AMα |2 dHn , (2.3.1)

defined on compact, smooth n–dimensional submanifolds M of Rn+m with ∂M = ∅ and we will
compute their first variations by means of the procedure of the previous section,

Then, we will discuss the Euler equations, for any m ≥ 1, of the functionals

Cm(ϕ) =

∫

M

|∇mν|2 dµ ,

defined on the immersions ϕ : M → R
n+1 of a smooth closed hypersurface in R

n+1, where ν

is a local unit normal vector field to M and |∇mν|2 means
∑n+1
α=1 |∇mνα|2. The norm | · |, the

connection ∇ and the measure µ are all relative to the Riemannian metric g which is induced on
M by R

n+1 via the immersion ϕ. Notice that these functionals are well defined also without a
global unit normal vector field, when M is not orientable, because of the modulus.
Even if these functionals can be expressed in terms of the functionAM , we will compute their first
variation by means of a more “intrinsic”, direct computation, differentiating the geometric objects
associated to the Riemannian manifold (M, g), with the metric g induced by the immersion ϕ.

REMARK 2.3.1.
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• The mean curvature vector H of M , appearing inside the first integral in (2.3.1), can be
expressed as ∆

(
∇AM

)
(see Proposition 1.4.11).

• The Willmore functional corresponds to the case of surfaces in R
3 with p = 2, for further

references on this topic see [93].
• For γ = 2 the functional Gγ reduces to nHn(M), whose first variation is −nH.

If γ = 3, by Corollary 1.4.12, the functional Gγ is equal to 3 times the integral of the
square of the quadratic norm of B.

• By the Gauss–Bonnet theorem, in the case n = 2, m = 1 the functionals H2 and G3 are
proportional, if we consider a fixed genus family, as |B|2 is equal to |H|2 − 2λ1λ2, where
λ1, λ2 are the principal curvatures. In particular, in this case we have EG3

= 3EH2
(see

also Remark 2.3.3).

In the computations of this section we will need the following lemma expressing the Codazzi
equations (1.1.5) in extrinsic terms.

LEMMA 2.3.2. At every point of the manifold M , the following relation holds,

∇M
i Bljk −∇M

j Blik =
n+m∑

s=1

{
Blks∇M

i Pjs − Blks∇M
j Pis

+Bljs∇M
i Pks − Blis∇M

j Pks

+Bsik∇M
j Pls − Bsjk∇M

i Pls
}
,

where ∇M denotes the tangential gradient.

The proof is a straightforward computation starting by formula (1.1.5) and using the relations
of Section 1.4.

In codimension one this relation becomes very simple, denoting with ν a locally smooth,
unit normal vector field and with Bν the symmetric bilinear form 〈B|ν〉, by means of relations in
Proposition 1.4.7, we have

∇M
i Bνjk −∇M

j Bνik = νj [B
ν ]

2
ik − νi [B

ν ]
2
jk .

Moreover, setting in this formula j = k and summing over the index k, we get the equation

n+1∑

k=1

∇M
k Bνik = ∇M

i H + νi|B|2 (2.3.2)

where H = 〈H|ν〉.

2.3.1. The Euler Equation of Hp. We have seen in formula (2.2.1) that the first variation is
expressed by

d

dt
Hp(Mt)

∣∣∣∣
t=0

=−
∫

M

|H|p 〈H |X〉 dHn

+

∫

M

〈∇⊥|H|p |X〉 dHn (2.3.3)

− p
∑

ijl

∫

M

|H|p−2AMillD
ijj
[
〈∇AM (x)− x |X(∇AM (x))〉

]
dHn(x) .

By Proposition 2.2.3, we can assume thatX(x) is normal toM at ∇AM (x) for any x ∈ Ω. Studying
the last term and distributing the derivatives in the scalar product we obtain the following:

• With 3 derivatives on the left term we get

−
∫

M

〈∇⊥|H|p |X〉 dHn

that simplifies with the second term in equation (2.3.3).
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• 3 derivatives on the right term give zero, because the function ∇AM (x) − x is zero on
M .

• 2 derivatives on the left term,

−p
∫

M

|H|p−2AMill〈Djj
(
∇AM (x)− x

)
| ∇M

i X(x)〉 dHn(x)

−2p

∫

M

|H|p−2AMill〈Dij
(
∇AM (x)− x

)
| ∇M

j X(x)〉 dHn(x) .

The first term is zero because AMill is a normal vector and ∇M
i X is a tangential gradient.

The second one, using the tangential divergence theorem can be expressed as

2p

∫

M

|H|p−2 HjAMill〈∇AMij (x) |X(x)〉 dHn(x)

+2p

∫

M

∇M
j

{
|H|p−2AMillA

M
ijs

}
Xs dHn .

Finally, by the fact that the 3–tensor AMijk gives zero when applied to the two normal

vectors AMill and Hj (see Proposition 1.4.11(b)), we finally get

2p

∫

M

∇M
j

{
|H|p−2 HiAMijs

}
Xs dHn .

• 2 derivatives on the right term,

−p
∫

M

|H|p−2AMillD
i
(
∇sA

M (x)− xs
)
Djj

[
Xs(∇AM (x))

]
dHn(x)

−2p

∫

M

|H|p−2AMillD
j
(
∇sA

M (x)− xs
)
Dij

[
Xs(∇AM (x))

]
dHn(x) .

Using an orthogonality argument like above, we see that the second of these two terms
vanishes, while the first one gives

p

∫

M

|H|p−2AMsll
∂

∂xj

{
AMjr (x)A

M
rt (∇AM (x))Xs

t (∇AM (x))
}
dHn(x)

= p

∫

M

|H|p−2AMsllA
M
jr (x)

∂

∂xj

{
AMrt (∇AM (x))Xs

t (∇AM (x))
}
dHn(x)

+ p

∫

M

|H|p−2AMsllA
M
jjr(x)A

M
rt (∇AM (x))Xs

t (∇AM (x)) dHn(x)

= p

∫

M

|H|p−2AMsll∇M
r ◦ ∇M

r X
s(x) dHn(x) = p

∫

M

|H|p−2AMsll∆
MXs dHn(x)

where we used extensively Proposition 1.4.11(a) and in particular the identity

AMjr (x)A
M
rt (∇AM (x)) = AMjt (x) .

Substituting AMsll with Hs and using the properties of the tangential Laplacian, this final
term is equal to

p

∫

M

∆M
(
|H|p−2 Hs

)
Xs dHn.

Finally, adding all these results together, we get

d

dt
Hp(Mt)

∣∣∣∣
t=0

= −
∫

M

|H|p 〈H |X〉 dHn + p

∫

M

∆M
(
|H|p−2 Hi

)
Xi dHn

+2p

∫

M

∇M
j

{
|H|p−2 HsAMijs

}
Xi dHn .

Using the orthogonality of X and Proposition 1.4.11(b) we can simplify again the last term to get

2p e⊥i ∇M
j

{
|H|p−2HsAMijs

}
= 2p e⊥i |H|p−2∇M

j

{
HsAMijs

}
.
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Now we have,

e⊥i ∇M
j

{
HsAMijs

}
= e⊥i ∇M

j

{
HsBsij

}
= e⊥i H

s∇M
j Bsij

and using the relations of Lemma 2.3.2,

e⊥i ∇M
j Bsij = Bsjt∇M

j Pit

hence, substituting this quantity in the equation above, the term we are dealing with becomes

HsBsjt∇M
j Pit = HsBsjtA

M
jti = HsBsjtB

i
jt.

Then we get the Euler equation of Hp,

EHp
= −|H|pH+ 2p |H|p−2HsBsjtB

i
jtei + p∆M

(
|H|p−2 Hi

)
e⊥i , (2.3.4)

where we denoted by e⊥i = (I −∇2AM )ei the normal projections of the vectors of the canonical
basis of Rn+m.

In the codimension one case m = 1, we have a scalar form of the Euler equations. Indeed,
considering the scalar second fundamental form Bν = 〈B|ν〉 and the scalar mean curvature H =
〈H|ν〉, locally we can write X(x) = ϕ(x)ν(x) and Bljt = νlB

ν
jt, hence H(x) = H(x)ν(x), with ν

smooth unit normal vector field and ϕ in C∞(M).
Equation (2.3.4) then becomes

〈EHp
|X〉 =− |H|pHϕ+ 2pϕ|H|p−2Htr [Bν ]

2
+ pϕ∆M

(
|H|p−2H

)

+ pϕ |H|p−2
Hνi∆

Mνi

where we used the fact that νi∇Mνi is equal to zero because ν is a unit vector field.

By the same reason νi∆
Mνi = −〈∇Mνi|∇Mνi〉 = −∑i

∣∣∇Mνi
∣∣2, which is the square of the qua-

dratic norm of the bilinear form Bν , indeed, by relation (1.3.1) we have

Bνij = −∇M
i νj = −∇M

j νi .

The term tr [Bν ]
2 is clearly also equal to the norm of the second fundamental form |B|2, hence

EHp
=
[
−|H|pH + p |H|p−2

H|B|2 + p∆M
(
|H|p−2H

)]
ν .

In particular, for the Willmore functional we have the nice equation (see [93])

EH2
=
[
2∆MH + 2H|B|2 −H3

]
ν .

2.3.2. The Euler Equation of Gγ . By Remark 2.3.1, we assume γ > 2 and we perform the
full computation of EGγ

only for the case γ = 3 in codimension one. In the general case we only

study the part of EGγ
containing the greatest number of derivatives of the function AM .

Reasoning like in the previous example, the first variation of G3 in codimension one is given
by

d

dt
G3(Mt)

∣∣∣∣
t=0

=−
∫

M

|AMijk|2〈H|X〉 dHn

− 2

∫

M

AMijk A
M
ijs∇M

k X
s dHn

− 2

∫

M

AMijk
(
AMis − δis

)
∇M
j ∇M

k X
s dHn ,

permuting cyclically the indices i, j and k in the last two integrals. Integrating by parts,

d

dt
G3(Mt)

∣∣∣∣
t=0

=− 3

∫

M

|B|2〈H|X〉 dHn

+ 6

∫

M

∇M
k

(
∇M
k A

M
ij A

M
ijs

)
Xs dHn

+ 3

∫

M

AMijk
(
δis −AMis

) (
∇M
j ◦ ∇M

k +∇M
k ◦ ∇M

j

)
Xs dHn .
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Now we use the fact that AMis = δis − νiνs, moreover we set H = Hν and X = ϕν. Substituting
these quantities in the formula above and simplifying the terms equal to zero by orthogonality,
we obtain

d

dt
G3(Mt)

∣∣∣∣
t=0

=− 3

∫

M

ϕH|B|2 dHn

+ 6

∫

M

ϕ∆M (νiνj)∇M
i νj dHn

− 6

∫

M

ϕ∇M
k (νiνj)∇M

k A
M
ijsνs dHn

− 3

∫

M

∇M
j νk

(
∇M
j ∇M

k ϕ+∇M
k ∇M

j ϕ
)
dHn

− 3

∫

M

ϕ∇M
j νkνs

(
∇M
j ∇M

k νs +∇M
k ∇M

j νs
)
dHn .

Indeed, using the properties stated in Proposition 1.4.11, we can compute

ϕ∇M
k

(
∇M
k A

M
ij A

M
ijs

)
νs = −ϕ∇M

k

(
∇M
k νiνj∇M

i A
M
js +∇M

k νjνi∇M
j A

M
is

)
νs

= ϕ∇M
k

{(
∇M
k νi

) (
∇M
i νs

)
+
(
∇M
k νj

) (
∇M
j νs

)}
νs

= −2
(
∇M
k νi

) (
∇M
i νs

) (
∇M
k νs

)
.

Hence we have

d

dt
G3(Mt)

∣∣∣∣
t=0

=− 3

∫

M

ϕH|B|2 dHn − 12

∫

M

ϕ
(
∇M
k νi

) (
∇M
k νj

) (
∇M
i νj

)
dHn

− 3

∫

M

∇M
j νk

(
∇M
j ∇M

k ϕ+∇M
k ∇M

j ϕ
)
dHn

+ 6

∫

M

ϕ
(
∇M
j νk

) (
∇M
s νj

) (
∇M
k νs

)
dHn

=− 3

∫

M

ϕH|B|2 dHn

− 3

∫

M

∇M
j νk

(
∇M
j ∇M

k ϕ+∇M
k ∇M

j ϕ
)
dHn

− 6

∫

M

ϕ
(
∇M
k νi

) (
∇M
j νk

) (
∇M
i νj

)
dHn .

We introduce now the following elementary symmetric functions of the eigenvalues λi of Bν =
〈B|ν〉,

Ss =
∑

i1<i2 ... <is

λi1λi2 . . . λis , for s ≤ n

and we define Ss = 0 for s > n. The last term in the equation above can be written as

(
∇M
k νi

) (
∇M
k νj

) (
∇M
i νj

)
= −tr [Bν ]

3
= −

∑

i

λ3i .

Using the formula

S3
1 = −2(λ31 + λ32 + . . . + λ3n) + 3S1[S2

1 − 2S2] + 6S3

and recalling that H = S1 and S2
1 − 2S2 = |B|2, we have

2(λ31 + λ32 + . . . + λ3n) = H3 − 3H|B|2 + 6S3 .

Substituting this term in the equation above, we get
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d

dt
G3(Mt)

∣∣∣∣
t=0

=− 3

∫

M

ϕH|B|2 dHn + 3

∫

M

Bνjk
(
∇M
j ∇M

k ϕ+∇M
k ∇M

j ϕ
)
dHn

+ 18

∫

M

ϕS3 dHn − 3

∫

M

ϕH3 dHn + 9

∫

M

ϕH|B|2 dHn ,

and finally

d

dt

∫

M

|B|2 dHn

∣∣∣∣
t=0

= 2

∫

M

ϕH|B|2 dHn + 6

∫

M

ϕS3 dHn −
∫

M

ϕH3 dHn

+

∫

M

Bνjk
(
∇M
j ∇M

k ϕ+∇M
k ∇M

j ϕ
)
dHn .

Now, to conclude we show that the last term of the formula above is equal to

2

∫

M

ϕ∆MH dHn.

This can be done with the help of Codazzi equations, in particular using the relation (2.3.2),
∫

M

Bνjk∇M
j ∇M

k ϕdHn = −
∫

M

∇M
j Bνjk∇M

k ϕdHn

= −
∫

M

(
∇M
k H + νk|B|2

)
∇M
k ϕdHn = −

∫

M

∇M
k H∇M

k ϕdHn

=

∫

M

ϕ∇M
k ∇M

k H dHn =

∫

M

ϕ∆MH dHn .

Hence, the Euler equation of the functional G3 (which is three times the integral of |B|2) is given
by

EG3
= 3

[
2∆MH + 2H|B|2 −H3 + 6S3

]
ν.

REMARK 2.3.3. For a complete discussion of Euler equations of functionals depending on the
elementary symmetric functions of the eigenvalues of the second fundamental form, see [90].

Now we deal with the general functional Gγ .

PROPOSITION 2.3.4. For any γ > 2 the Euler equation of the functional Gγ is given by

EGγ
= 2γ(−1)γ−1

∑

j,i2,k2 ... iγ ,kγ

(
AMi2k2 . . . A

M
iγkγA

M
ji2k2 ... iγkγ

)
e⊥j + g(AM )

= 2γ(−1)γ−1
n+m∑

j=1

(
(γ − 2)–times︷ ︸︸ ︷

∆M∆M . . .∆M Hj
)
e⊥j + h(AM ) (2.3.5)

where the vector fields g(AM ), h(AM ) are polynomials in the derivatives of AM up to the order (2γ − 2).

PROOF. By Proposition 2.2.3, we can assume that the infinitesimal generator X is a normal
vector field. We can see, following the proof of Proposition (2.2.1), that the term with the highest
number of derivatives arises from the integral

−2

∫

M

AMi1 ... iγD
i1 ... iγ 〈∇AM (x)− x |X(∇AM (x))〉 dHn(x)

when all but one of the derivatives Dij act on the field X . We suppose that the only derivative
going on the left is Di1 . Hence, we have to study

−2

∫

M

AMi1 ... iγ
(
AMi1k(x)− δi1k

)
Di2 ... iγ

[
Xk(∇AM (x))

]
dHn(x) .

After doing the first derivative on X(∇AM (x)) we get AMiγj(x)(∇M
j X

k)(∇AM (x)). It is clear that

if we are only interested in the term containing the highest derivative, we can avoid to distribute
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derivatives on AMiγj(x) and then consider only the term containing the derivatives of the field.

Iterating this argument we get

−2

∫

M

AMi1 ... iγ
(
AMi1k(x)− δi1k

)
AMiγjγ . . . A

M
i2j2∇M

j2 ◦ . . . ◦ ∇M
jγX

k(x) dHn(x) .

Now we have to apply the tangential divergence theorem 1.3.4, noticing again that if we are
interested only in the highest derivative term, we can limit ourselves to differentiate the term
AMi1 ... iγ . Moreover, since we apply the theorem with tangential fields, no term containing H

appears. After doing this we obtain

(−1)γ2

∫

M

[
∇M
jγ ◦ . . . ◦ ∇M

j2A
M
i1 ... iγ

] (
AMi1k − δi1k

)
AMiγjγ . . . A

M
i2j2X

k(x) dHn(x) .

Using the orthogonality of X we get

−2(−1)γ
∫

M

[
∇M
jγ ◦ . . . ◦ ∇M

j2

(
∇i1A

M
)
i2 ... iγ

]
AMiγjγ . . . A

M
i2j2X

i1(x) dHn(x) .

Hence, performing the tangential derivatives and adding on all indices we get the first equality
in formula (2.3.5).
To obtain the second equality, we apply in the inverse direction the derivative of a product for-
mula to carry inside the components of the projectionAMitkt , in order to obtain the tangential Lapla-
cians. Notice that, with a reasoning similar to the one above, in doing this we only introduce
terms with an order of differentiation at most (2γ − 2). In this way we obtain

EGγ
= 2γ(−1)γ−1

n+m∑

j=1

(
(γ − 1)–times︷ ︸︸ ︷

∆M∆M . . .∆M
(
∇jA

M
))
e⊥j + h(AM ) .

The last step in proving this representation formula for Gγ is to recall that H = ∆M
(
∇AM

)
, by

Proposition 1.4.11). �

In codimension one we have another more standard form of the Euler equation EGγ
.

COROLLARY 2.3.5. If m = 1, for any γ > 2 the Euler equation of the functional Gγ is given by

EGγ
= 2γ(−1)γ−1

( (γ − 2)–times︷ ︸︸ ︷
∆∆ . . .∆H

)
ν + h(AM )

where h(AM ) is a normal vector field which is a polynomial in the derivatives of AM up to the order
(2γ − 2) and ∆ is the intrinsic Laplacian of the Riemannian manifold (M, g), with g the metric induced
by the immersion of M in R

n+1.

PROOF. If the codimension is one, we have H = Hν and the second formula in Proposi-
tion 2.3.4 becomes

EGγ
= 2γ(−1)γ−1

n+1∑

j=1

(
(γ − 2)–times︷ ︸︸ ︷

∆M∆M . . .∆M (Hνj)
)
e⊥j + h(AM ) ,

hence, after distributing all the Laplacians on the productHνj , the leading term is obtained when
all the Laplacians go on the mean curvature factor H . It is straightforward to check that all the
other lower order terms we obtain, expressing them with the function AM and its derivatives
by means of the relations of the previous section (after using the Gauss–Weingarten relations to
write any ∇Mν in terms of B), are polynomials in the derivatives of AM up to the order (2γ − 2),
hence we can absorb them into the term h(AM ). Finally, the normality of this latter follows by
Proposition 2.2.3.
We conclude the proof noticing that, since H is a function, the tangential Laplacian ∆M and the
intrinsic one ∆ on (M, g) coincide. �
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REMARK 2.3.6. We remark that in the two expressions in Proposition 2.3.4for the leading
term, we cannot substitute e⊥i with ei, because of the fact that neither the first nor the second are
in general normal vectors. This can be seen considering a torus T in R

3 with the biggest radius
equal to 2 and the smallest one equal to 1, for instance the one defined by

T ≡
{
(2− cosα) cosβ, (2− cosα) sinβ, sinα) ∈ R

3 | (α, β) ∈ R
2
}

and computing such two vectors in the first meaningful case γ = 3 at the point (2, 0, 1) on the top
of T .

The function ηT for the torus is given by

ηT (x, y, z) =
1

2

[√(√
x2 + y2 − 2

)2
+ z2 − 1

]2
.

Considering

AT (x, y, z) =
‖(x, y, z)‖2

2
− ηT (x, y, z)

and using the Mathematica1 package we computed
∑

i2,k2,i3,k3

ATi2k2A
T
i3k3A

T
ji2k2i3k3 = ATj1111 + 2ATj2211 +ATj2222

with j = 1 at (2, 0, 1) and we found the value −3, hence there is a tangential component in the
leading term of the first representation in expression (2.3.5).

For the second term we show the computation explicitly. We have that ∆THi = ∆T (Hνi),
hence

∆THi = νi∆
TH + 2〈∇T νi|∇TH〉+H∆νi

= νi∆
TH + 2∇T

k νi∇T
kH +H∇T

k∇T
k νi

= νi∆
TH − 2Bνik∇T

kH −H∇T
kB

ν
ik .

Now we apply the relation (2.3.2) to the last term in the equation above to get

∆THi = νi∆
TH − 2Bνik∇T

kH −H∇T
i H − νiH|B|2

= νi
(
∆TH −H|B|2

)
− (Hδik + 2Bνik)∇T

kH .

Since at the point (2, 0, 1) of the torus T we have Bν11 = 1 and Bν2j = 0, hence H = 1, the vector

ei∆
THi has a tangential part given by

−3(∇T
1H)e1 −H(∇T

2H)e2 . (2.3.6)

The quantity H = 〈H|ν〉 in a neighborhood of the point (2, 0, 1) is

H(x, y, z) = 2− 2√
x2 + y2

,

then

∇H(x, y, z) = 2
xe1 + ye2

(x2 + y2)
3/2

.

At the point (2, 0, 1) we have

∇H(2, 0, 1) =
1

2
e1 = ∇MH(2, 0, 1)

because the gradient is a tangent vector.
This, with the computation (2.3.6) shows that ei∆Hi can have a non zero tangential component.

1Mathematica is a registered trademark of Wolfram Research.
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2.3.3. The Euler Equation of Cm. As in the previous case of Gγ , we are going to analyze
the main properties and the structure of the first variation of the functional Cm, with particular
attention to the leading term, since computing the exact form can be quite complicated.

Instead of expressing the functional in terms of the function AM and applying the proce-
dure of Section 2.2, we compute directly its first variation, differentiating the geometric objects
associated to the Riemannian manifold (M, g), with the metric g induced by the immersion ϕ.

Suppose that we have a one–parameter family I of immersions ϕt :M → R
n+1, with ϕ0 = ϕ,

we compute

d

dt
Cm(ϕt)

∣∣∣∣
t=0

=
d

dt

∫

M

|∇mν|2 dµt
∣∣∣∣
t=0

(2.3.7)

where clearly the metric g, the covariant derivative ∇ and the normal ν depend on t.
Setting X(p) = ∂

∂tϕt(p)
∣∣
t=0

we obtain a vector field along M as a submanifold of Rn+1 via ϕ. It
is well known that

∂

∂t
µt

∣∣∣∣
t=0

= −〈H |X〉µ

so it follows,

d

dt
Cm(ϕt)

∣∣∣∣
t=0

= −
∫

M

|∇mν|2〈H |X〉 dµ+

∫

M

∂

∂t
|∇mν|2

∣∣∣∣
t=0

dµ

= −
∫

M

|∇mν|2H〈ν |X〉 dµ+

∫

M

∂

∂t

(
gi1j1 . . . gimjm∇i1...imν∇j1...jmν

) ∣∣∣∣
t=0

dµ .

Then, we need to compute the derivative in the last term.
For the metric tensor gij we have

∂

∂t
gij =

∂

∂t

〈
∂ϕ

∂xi

∣∣∣∣
∂ϕ

∂xj

〉

=

〈
∂X

∂xi

∣∣∣∣
∂ϕ

∂xj

〉
+

〈
∂X

∂xj

∣∣∣∣
∂ϕ

∂xi

〉

=
∂

∂xi

〈
X

∣∣∣∣
∂ϕ

∂xj

〉
+

∂

∂xj

〈
X

∣∣∣∣
∂ϕ

∂xi

〉
− 2

〈
X

∣∣∣∣
∂2ϕ

∂xi∂xj

〉

= aij(X) .

Differentiating the formula gisg
sj = δji we get

∂

∂t
gij = −gis ∂

∂t
gslg

lj = −gisasl(X)glj .

The derivative of the normal ν is given by

∂

∂t
ν =

〈
∂ν

∂t

∣∣∣∣
∂ϕ

∂xi

〉
∂ϕ

∂xj
gij = −

〈
ν

∣∣∣∣
∂2ϕ

∂t∂xi

〉
∂ϕ

∂xj
gij

= −
〈
ν

∣∣∣∣
∂X

∂xi

〉
∂ϕ

∂xj
gij = −∇〈ν |X〉 +

〈
∂ν

∂xi

∣∣∣∣ X
〉
∂ϕ

∂xj
gij

= −∇〈ν |X〉 +∇ναXα = b(X) .
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Finally the derivative of the Christoffel symbols is

∂

∂t
Γijk =

1

2
gil
{

∂

∂xj

(
∂

∂t
gkl

)
+

∂

∂xk

(
∂

∂t
gjl

)
− ∂

∂xl

(
∂

∂t
gjk

)}

+
1

2

∂

∂t
gil
{

∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

}

=
1

2
gil
{
∇j

(
∂

∂t
gkl

)
+∇k

(
∂

∂t
gjl

)
−∇l

(
∂

∂t
gjk

)}

+
1

2
gil
{
∂

∂t
gkzΓ

z
jl +

∂

∂t
glzΓ

z
jk +

∂

∂t
gjzΓ

z
kl +

∂

∂t
glzΓ

z
jk −

∂

∂t
gjzΓ

z
kl −

∂

∂t
gkzΓ

z
jl

}

− 1

2
gis

∂

∂t
gszg

zl

{
∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

}

=
1

2
gil
{
∇j

(
∂

∂t
gkl

)
+∇k

(
∂

∂t
gjl

)
−∇l

(
∂

∂t
gjk

)}

+ gil
∂

∂t
glzΓ

z
jk − gis

∂

∂t
gszΓ

z
jk

=
1

2
gil
{
∇j

(
∂

∂t
gkl

)
+∇k

(
∂

∂t
gjl

)
−∇l

(
∂

∂t
gjk

)}

=
1

2
gil {∇jakl(X) +∇kajl(X)−∇lajk(X)} .

Notice that all these derivatives are linear in the field X , since the aij(X) and b(X) are such.
Recalling the conventions we set in Section 1.2, we have the following lemma.

LEMMA 2.3.7. If a(X) = ∂
∂tg is the tensor defined before, for every covariant tensor T = Ti1...il we

have

∂

∂t
∇sT = ∇s ∂T

∂t
+ ps−1(T,∇a(X))

where the constants in the polynomials ps−1(T,∇a(X)) are universal.
Moreover, if the tensor T is a function f :M → R

k the last term ps−1(f,∇a(X)) can be substituted with
another polynomial p̃s−2(∇f,∇a(X)).

PROOF. We prove the lemma by induction on s ≥ 1.
If s = 1 then

∂

∂t
∇jTi1...il =

∂

∂t

(
∂

∂xj
Ti1...il − ΓrjizTi1...iz−1riz+1...il

)

=
∂

∂xj

∂

∂t
Ti1...il − Γrjiz

∂

∂t
Ti1...iz−1riz+1...il

− ∂

∂t
ΓrjizTi1...iz−1riz+1...il

=∇∂T

∂t
+ T ∗ ∇a(X)

by the previous computation, hence

∂

∂t
∇T = ∇∂T

∂t
+ p0(T,∇a(X))
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and the initial case is proved.
Supposing the lemma holds for s− 1, we have

∂

∂t
∇sT =

∂

∂t
∇(∇s−1T )

=∇
(
∂

∂t
∇s−1T

)
+ p0(∇s−1T,∇a(X))

=∇
(
∇s−1 ∂T

∂t
+ ps−2(T,∇a(X))

)

+ p0(∇s−1T,∇a(X))

=∇s ∂T

∂t
+∇ps−2(T,∇a(X))

+ p0(∇s−1T,∇a(X))

=∇s ∂T

∂t
+ ps−1(T,∇a(X))

where we set

ps−1(T,∇a(X)) = ∇ps−2(T,∇a(X)) + p0(∇s−1T,∇a(X)) .

By this last formula, it is clear that the constants involved are universal. Moreover, if T is a
function f : M → R

k then the term p0(f,∇a(X)) vanishes and the same formula says that
ps−1(f,∇a(X)) does not contain f without being differentiated. �

REMARK 2.3.8. In the following we will omit to underline that all the coefficients of the
polynomials ps and qs which will appear are algebraic, that is, they are the result of formal ma-
nipulations. In particular, such coefficients are independent of the manifold (M, g) where the
tensors are defined. This is crucial in view of the geometry–independent estimates we need in
the analysis of the following chapters.

PROPOSITION 2.3.9. The derivative

∂

∂t

(
gi1j1 . . . gimjm∇i1...imν∇j1...jmν

) ∣∣∣∣
t=0

depends only on the vector field X = ∂
∂tϕt

∣∣
t=0

and such dependence is linear. Hence, the first variation
of Cm is a linear function of the field X .

PROOF. Distributing the derivative in t on the terms of the product, we have seen that the
derivatives of the metric coefficients depends linearly on X , it lasts to check the derivative of
∇i1...imν.
By the last assertion of Lemma 2.3.7, we have

∂

∂t
∇mν = ∇m ∂ν

∂t
+ pm−2(∇ν,∇a(X))

and since ∂ν
∂t = b(X) we get

∂

∂t
∇mν = ∇mb(X) + pm−2(∇ν,∇a(X))

which proves the first part of the lemma as a(X) and b(X) are linear in X .
The second statement clearly follows by the previous computations and the first part of the
lemma. �

Now we want to prove that actually the first variation depends only on the normal component
of the fieldX , that is, 〈ν |X〉, by linearity, it is clearly sufficient to show that δCm(ϕ)(X) = 0 for ev-
ery tangent vector fieldX . By the previous proposition, in order to compute the derivative (2.3.7)
we can choose any family ϕt of immersions with X = ∂

∂tϕt
∣∣
t=0

.



2.3. EULER EQUATIONS OF SOME SPECIAL FUNCTIONALS 53

Given a vector field X along M as a submanifold of Rn+1 which is tangent, there exists a
tangent vector field Y on M such that dϕp(Y (p)) = X(p) for every p ∈M .
Then we consider the smooth flowL(p, t) :M×(−ε, ε) →M generated by Y onM as the solution
of the ODE’s system {

∂
∂tL(p, t) = Y (L(p, t)) ,

L(p, 0) = p

for every p ∈M and t ∈ (−ε, ε), and we define ϕt(p) = ϕ(L(p, t)).
Clearly ϕ0 = ϕ and

∂

∂t
ϕt(p)

∣∣∣∣
t=0

= dϕL(p,t)

(
∂

∂t
L(p, t)

)∣∣∣∣
t=0

= dϕp(Y (p)) = X(p) .

If now gt is the metric tensor on M induced by R
n+1 via the immersion ϕt, then the Riemann-

ian manifolds (M, gt) and (M, g) are isometric for every t ∈ (−ε, ε), being I(· , t) = ϕ−1 ◦ ϕt :
(M, gt) → (M, g) an isometry between them. Since the functional Cm is invariant by isometry,
Cm(ϕt) does not depend on t and its derivative is zero, hence, the first variation of Cm in the
tangent vector field X is zero.
By the previous discussion we have then the following proposition.

PROPOSITION 2.3.10. The first variation of Cm depends only on the normal component of the field
X .

This means that we can suppose that X is a normal field in studying the first variation of Cm.
Hence, we can strengthen the previous computations as follows,

∂

∂t
gij = aij(X) = −2

〈
X

∣∣∣∣
∂2ϕ

∂xi∂xj

〉
= −2 〈ν |X〉Bij

∂

∂t
gij = − gis

∂

∂t
gslg

lj = 2 〈ν |X〉Bij

∂

∂t
ν = −∇〈ν |X〉

∂

∂t
Γijk = − gil {∇j(〈ν |X〉Bkl) +∇k(〈ν |X〉Bjl)−∇l(〈ν |X〉Bjk)}

=∇B ∗ 〈ν |X〉+ B ∗ ∇〈ν |X〉 .

Supposing X normal, we have immediately the following modification of Lemma 2.3.7 sub-
stituting the tensor aij(X) with −2 〈ν |X〉Bij .

LEMMA 2.3.11. For every covariant tensor T = Ti1...il , we have

∂

∂t
∇sT = ∇s ∂T

∂t
+ ps(T,B, 〈ν |X〉)

where in ps(T,B, 〈ν |X〉) the derivative ∇sT does not appear. If T is a function f :M → R
k

∂

∂t
∇sf = ∇s ∂f

∂t
+ ps−1(∇f,B, 〈ν |X〉)

and ps−1(∇f,B, 〈ν |X〉) does not contain ∇sf .

This lemma and the fact that ∂ν∂t = −∇〈ν |X〉 lead to the following proposition.

PROPOSITION 2.3.12. Letting {eα} the canonical basis of Rn+1 and setting ν = ναeα ∈ R
n+1, we

have
∂

∂t
∇i1...imν

α = −∇i1...im∇α〈ν |X〉+ pm−1(∇ν,B, 〈ν |X〉)
where we denoted with ∇α〈ν |X〉 the α component of the gradient ∇〈ν |X〉 in the canonical basis of
R
n+1. Moreover, the derivative ∇mν is not present in pm−1(∇ν,B, 〈ν |X〉).
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We are finally ready to compute

d

dt

∫

M

|∇mν|2 dµt
∣∣∣∣
t=0

= −
∫

M

|∇mν|2H〈ν |X〉 dµ

+

∫

M

gi1j1 . . .
∂

∂t
gikjk . . . gimjm∇i1...imν∇j1...jmν dµ

− 2

∫

M

gi1j1 . . . gimjm ∇i1...im∇α〈ν |X〉∇j1...jmν
α dµ

+ 2

∫

M

∇mν ∗ pm−1(∇ν,B, 〈ν |X〉) dµ

= −
∫

M

|∇mν|2H〈ν |X〉 dµ

+ 2m

∫

M

∇mν ∗ ∇mν ∗ B〈ν |X〉 dµ

− 2

∫

M

gi1j1 . . . gimjm ∇i1...im∇α〈ν |X〉∇j1...jmν
α dµ

+

∫

M

pm−1(∇mν,∇ν,B, 〈ν |X〉) dµ .

Now, in order to “carry away” derivatives from 〈ν |X〉 in the last integral, we integrate by parts
with the divergence theorem, “moving” all the derivatives on the other terms of the products.
Hence, we can rewrite it as ∫

M

p2m−2(∇ν,∇ν,B)〈ν |X〉 dµ ,

which is equal to ∫

M

q
2m+1(∇ν,B)〈ν |X〉 dµ

with the conventions of Section 1.
Since also the second integral has this form, collecting them together, we obtain

d

dt

∫

M

|∇mν|2 dµt
∣∣∣∣
t=0

=

∫

M

q
2m+1(∇ν,B)〈ν |X〉 dµ

− 2

∫

M

gi1j1 . . . gimjm ∇i1...im∇α〈ν |X〉∇j1...jmν
α dµ .

Finally, we deal with this last term. First, by the divergence theorem it can be transformed in

−2(−1)m
∫

M

∇α〈ν |X〉∇jm...j1∇j1...jmν
α dµ ,

second, using the tangential divergence formula (1.3.3), it is equal to

2(−1)m
∫

M

〈ν |X〉∇α∇jm...j1∇j1...jmν
α dµ+

∫

M

q
2m+1(∇ν,B)〈ν |X〉 dµ ,

where the extra term q2m+1(∇ν,B)〈ν |X〉, which has a differentiation order lower than the first
term, comes from the product with the mean curvature in the tangential divergence formula.
Notice now that the permutation of derivatives introduces additional lower order terms of the
form ∫

M

q
2m+1(∇ν,B)〈ν |X〉 dµ

by formulas (1.1.4), hence we get

2(−1)m
∫

M

〈ν |X〉∇j1∇j1 . . .∇jm∇jm∇ανα dµ+

∫

M

q
2m+1(∇ν,B)〈ν |X〉 dµ
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that is,

2(−1)m
∫

M

〈ν |X〉
m–times︷ ︸︸ ︷

∆∆ . . .∆∇ανα dµ+

∫

M

q
2m+1(∇ν,B)〈ν |X〉 dµ .

By Gauss–Weingarten relations (1.1.7), we have

∇ανα = −∂ϕ
α

∂xi
gijBjlg

ls ∂ϕ
α

∂xs
= −ijBjlglsgsi = −gijBji = −H ,

so we conclude

d

dt

∫

M

|∇mν|2 dµt
∣∣∣∣
t=0

=

∫

M

q
2m+1(∇ν,B)〈ν |X〉 dµ− 2(−1)m

∫

M

m–times︷ ︸︸ ︷
∆∆ . . .∆H〈ν |X〉 dµ .

By the previous discussion this formula holds in general for every vector field X along M .
We summarize all these facts in the following proposition.

PROPOSITION 2.3.13. For any m ≥ 1 the Euler equation of the functional Cm is given by

ECm
=
(
2(−1)m+1

m–times︷ ︸︸ ︷
∆∆ . . .∆H + q

2m+1(∇ν,B)
)
ν .



CHAPTER 3

The Evolution Problems and Short Time Existence of the Flows

In this chapter and in the next ones we will study the evolution of hypersurfaces by (minus)
the gradient flow associated to the functionals

DGγ =

∫

M

1 + |Aγ |2 dHn , and Fm =

∫

M

1 + |∇mν|2 dµ ,

which are simply, the functionals Gγ and Cm with the addition of an Area term.

We have seen in the previous chapter in Corollary 2.3.5 and Proposition 2.3.13 that in codi-
mension one the Euler equations of the two functionals Gγ and Cm, when γ ≥ 3 and m ≥ 1
respectively, have analogous leading terms

2γ(−1)γ−1
( (γ − 2)–times︷ ︸︸ ︷

∆∆ . . .∆ H
)
ν and 2(−1)m+1

( m–times︷ ︸︸ ︷
∆∆ . . .∆H

)
ν

which actually coincide, up to the constant m+ 2, when γ = m+ 2.
Notice moreover, that in this case also the lower order terms have the same form, as q2m+1(∇ν,B)ν
can be expressed as a polynomial in the function AM and its derivatives up to the order 2m + 2
(by the very definition of the polynomials q2m+1(∇ν,B) in Section 1.2), which is the maximal
order of derivatives of AM that the lower order term in the Euler equation of the functional Gm+2

can contain.
Conversely, the term h(AM ) which appears in the expression of EGm+2

given by Corollary 2.3.5,
by means of Corollary 1.5.3, can be written as q2m+1(∇ν,B)ν.

Hence, as that Euler equation of the Area functional is simply minus the mean curvature H,
we have that

EDGm+2
=
(
−H + 2(m+ 2)(−1)m+1

m–times︷ ︸︸ ︷
∆∆ . . .∆H + q

2m+1(∇ν,B)
)
ν

and

EFm
=
(
−H + 2(−1)m+1

m–times︷ ︸︸ ︷
∆∆ . . .∆H + q

2m+1(∇ν,B)
)
ν ,

for m ≥ 1.
All this should not come as a surprise, since the two functionals are strictly related, indeed,

roughly speaking, the derivative of the normal is “more or less” the curvature of M .

3.1. The Evolution Problems

DEFINITION 3.1.1. The gradient flows of an initial, smooth, compact, n–dimensional, im-
mersed hypersurface ϕ0 : M → R

n+1, associated to the two functionals DGm+2 and Fm are
given by some smooth functions ϕ :M × [0, T ) → R

n+1 such that

(1) the map ϕt = ϕ(·, t) :M → R
n+1 is an immersion for every t ∈ [0, T );

(2) ϕ(p, 0) = ϕ0(p) for every p ∈M ;
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(3) the following PDE’s systems are satisfied, respectively,

∂ϕ

∂t
= − EDGm+2

= H+
(
2(m+ 2)(−1)m

m–times︷ ︸︸ ︷
∆Mt∆Mt . . .∆Mt H + q

2m+1(∇ν,B)
)
ν ,

∂ϕ

∂t
= − EFm

= H+
(
2(−1)m

m–times︷ ︸︸ ︷
∆Mt∆Mt . . .∆Mt H + q

2m+1(∇ν,B)
)
ν .

We denoted with ∆Mt the Laplacian of the Riemannian manifolds Mt = (M, gt), where gt is the
metric induced on M by the evolving immersion ϕt.

Notice that, despite the appealing form of the leading terms, the PDE’s systems are quasilinear
parabolic systems of partial differential equations or order 2m+2 on the manifoldM . Indeed, once
expressing everything in local coordinates, the coefficients of any Laplacian operator ∆Mt depend
on the derivatives of the immersion ϕt up to the order 2m+ 1.

In the study of the mean curvature flow of a hypersurface ϕ :M × [0, T ) → R
n+1,

∂ϕ

∂t
= Hν = ∆Mtϕ

(which is a second order parabolic flow), via techniques such as varifolds, level sets, viscosity
solutions (see [4, 7, 18, 40, 62]), the maximum principle is the key tool to get comparison results
and estimates on solutions (the quasilinear parabolic system is of second order).
In our case, even if m = 1, the first variations and hence the corresponding quasilinear parabolic
problems turn out to be of order higher than two, precisely of order 2m + 2, so we have to deal
with equations of fourth order at least. This fact has the relevant consequence that we cannot
employ the maximum principle to get pointwise estimates and to compare two solutions, thus
losing a whole bunch of geometric results holding for the mean curvature flow. In particular, we
cannot expect that an initially embedded hypersurface remains embedded during the flow, since
self–intersections can develop (an example is given by Giga and Ito in [50]). By these reasons,
techniques based on the description of the hypersurfaces as level sets of functions seems of dif-
ficult application in this case and therefore we adopt a parametric approach as in the work of
Huisken [54].

In the simplest one–dimensional case, with m = 1, the two functionals (not only their Euler
equations) coincide, up to a constant in front of κ2 and we are concerned with curves in the plane
evolving by the gradient flow of the functional

∫

S1

1 + κ2 ds , (3.1.1)

since the curvature κ of a curve γ : S1 → R
2 satisfies κ2 = |∇ν|2 and we have seen in Corol-

lary 1.4.12 that |∇3AM |2 = 3|B|2 = 3κ2.
In this special case, the flow was shown to exist globally smooth for every positive time by Polden
in the papers [79, 80], which have been a starting point for our work. We also mention that Wen
in [92] found results similar to Polden’s ones, in considering the flow for

∫
S1
κ2 ds of curves with

a fixed length.
In the paper [31, Sect. 5] (see [32, Sect. 5] for an English translation) De Giorgi stated the

following conjecture (Conj. 2, Pag. 267).

CONJECTURE 3.1.2 (De Giorgi). Any compact, n–dimensional, smooth submanifold M of
R
n+m without boundary, moving by the gradient of the functional

DGk(M) =

∫

M

1 + |∇kηM |2 dHn ,

where ηM is the square of the distance function from M and Hn is the n–dimensional Hausdorff
measure in R

n+m, does not develop singularities, if k > n+ 1.

An analogous conjecture (only in codimension one) can be stated for the flow by the gradient
of the functional Fm and, rereading the conjecture of De Giorgi with our notation in codimension
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one, they actually state that the flows of any initial, smooth, compact, immersed hypersurface
associated to the two functionals DGm+2 and Fm, have global existence and regularity, for a
suitably large m ≥ 1 (we will be more precise later on).

In the next section we will see that for both flows there exists for some positive time a unique
smooth evolution ϕt of any initial, smooth, compact, immersed submanifold. Then, to analyze
the long time existence and regularity of these flows we will need suitable a priori estimates, that
will be the goal of the next chapters.

In order to show regularity, a good substitute of the pointwise estimates coming from the
maximum principle, are suitable estimates on the second fundamental form in Sobolev spaces,
using Gagliardo–Nirenberg interpolation type inequalities for tensors. Since the constants in-
volved in these inequalities depends on the Sobolev constants and these latter on the geometry
of the hypersurface where the tensors are defined, before doing estimates we absolutely need
some uniform control independent of time on these constants. In [79] these controls are obvious
as the constants depend only on the length, on the contrary, much more work is needed here
because of the richer geometry of higher dimensional hypersurfaces.

The final result of our analysis will be the following theorem, which in particular, answers
affirmatively De Giorgi’s Conjecture 3.1.2 above.

THEOREM 3.1.3. If the differentiation order m is strictly larger than [n/2], then the flows by the
gradient of DGm+2 and Fm of any initial, smooth, compact, n–dimensional, immersed hypersurface of
R
n+1 exist, are unique and smooth for every positive time ([n/2] means the integer part of n/2).

Moreover, as t→ +∞, the evolving hypersurface ϕt sub–converges (up to reparametrization and transla-
tion) to a smooth critical point of the respective functional.

REMARK 3.1.4. Notice that the hypothesis m > [n/2] in general is weaker than the original
one in De Giorgi’s conjecture, the two conditions actually coincide in dimension one and two.

3.2. Short Time Existence

By means of a slight extension (see [38] for details) of the following theorem of Polden in [57]
(and [80, Sect. 2, Thm. 2.5.2]), there exists for some positive time a unique smooth evolution ϕt of
any initial, compact, smooth submanifold M for any of the two flows above.

THEOREM 3.2.1. If m ≥ 1, for any smooth immersion ϕ0 : M → N of an n–dimensional, compact,
hypersurface M in a smooth (n + 1)–dimensional Riemannian manifold (N,h), there exists a unique
smooth solution to the flow problem

∂ϕ

∂t
=

(
(−1)m

m–times︷ ︸︸ ︷
∆Mt∆Mt . . .∆Mt H +Φ(ϕ, ν,B,∇B, . . . ,∇2m−1B)

)
ν ,

defined on some positive time interval 0 ≤ t < T and taking ϕ0 as its initial value.

Looking at Polden’s proof, it is possible to allow the function Φ to depend also on the metric
gt induced by the immersion, moreover the higher covariant derivatives of the normal ν, by and
induction argument using the Gauss–Weingarten relations (1.1.7), can be expressed in terms of
the covariant derivatives of the second fundamental form B, hence both our evolution problems
fit into the hypotheses of Polden’s theorem, as the constants multiplying the leading terms can
be eliminated by a time–only rescaling.

REMARK 3.2.2.

• Notice that if we find a smooth solution of the evolution problem for some interval of
time, by the fact that the initial submanifold is immersed, the solution is still an im-
mersion (we assumed that M is compact) at least for short time, so such condition is
automatically satisfied.

• Once choosing a good parametrization for the evolving hypersurfaces, Polden is able to
reduce the evolution problem to solving a quasilinear parabolic equation on the compact
manifold M . He develops an existence/uniqueness/regularity theory for linear equa-
tions in parabolic Sobolev spaces and pass from the linear case to the quasilinear one by
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means of the inverse function theorem. Unfortunately, as pointed out by Sharples [85],
such procedure has a gap in the convergence of the solutions of the “frozen” linear prob-
lems to a solution of the quasilinear one.
In Appendix A, we attached the paper [74] with Luca Martinazzi where we filled the
gap in Polden’s proof. We assume his linear result and we show that his linearization
procedure actually works if one linearizes at a suitably chosen function and discusses in
details the above mentioned convergence.

• We have seen that from the point of view of short time existence the two functionals
DGm+2 and Fm behave the same and no restrictions onm ≥ 1 are needed. When instead
in the next chapters we will study the global existence and smoothness of the two flows,
we will need to put some hypotheses on m ≥ 1 (depending on the dimension) and
we will analyze more in detail their properties in order to get a priori estimates on the
geometric quantities leading to the regularity of the flows.



CHAPTER 4

A Priori Estimates

To prove long time existence we need a priori estimates on the second fundamental form
and its derivatives which will be obtained via Sobolev and Gagliardo–Nirenberg interpolation
inequalities for functions defined on Mt.
Since the hypersurfaces are moving, also the constants appearing in such inequalities change
during the flow, hence, before proceeding with the estimates, we need some uniform control on
them.

In this chapter we will see that if the integer m is larger than [n/2] then we have a uniform
control, independent of time, on the Ln+1 norm of the second fundamental form during the flows
by the gradient of the functionals DGm+2 and Fm. This is the crucial point where such hypothesis
on m is necessary.

This fact will allow us to show in the next section that also the above constants are uniformly
bounded during the flow.
Moreover, using an inequality of Michael and Simon, we will also prove also an a priori lower
bound on the volume of the evolving hypersurfaces.

4.1. A Priori Estimates on the Sobolev Constants and on the Volume of the Evolving
Hypersurfaces

We start dealing with the gradient flow associated to the functional Fm.
By the very definition of the flow, the value of the functional Fm decreases in time, as in

general if E is the Euler equation of any functional F , we have

d

dt
F(ϕt) = −

∫

M

[E(ϕt)]
2
dµt ≤ 0 ,

hence, as long as the flow associated to Fm remains smooth, we have the uniform estimate
∫

M

1 + |∇mν|2 dµt = Fm(ϕt) ≤ Fm(ϕ0) (4.1.1)

for every t ≥ 0.
Now we want to prove that if m > [n/2], this estimate implies that the Ln+1(µt) norms of the

second fundamental form B of Mt are uniformly bounded independently of time.
Our starting point is the following universal interpolation type inequalities for tensors.

PROPOSITION 4.1.1. Suppose that (M, g) is a smooth and compact n–dimensional Riemannian man-
ifold without boundary and µ the measure associated to g.
Then for every covariant tensor T and exponents q ∈ [1,+∞) and r ∈ [1,+∞], we have

‖∇jT‖Lp(µ) ≤ C‖∇sT‖
j
s

Lq(µ)‖T‖
s−j
s

Lr(µ) ∀j ∈ [0, s] , (4.1.2)

with
1

p
=

j

sq
+
s− j

sr
,

where the constant C depends only on n, s, j, p, q, r and not on the metric or the geometry of M .

The proof of the case r = +∞ can be found in [53, Sect. 12], along the same lines also the case
r < +∞ follows (see also [9, Chap. 3, Sect. 7.6]).

Suppose that M is orientable and that g is the metric induced by the immersion ϕ : M →
R
n+1, let ν be a global unit normal vector field on M .
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If in (4.1.2) we consider T = ν, s = m, j = 1, q = 2 and r = +∞, then we have |T | = 1 and
p = 2m, hence

‖∇ν‖L2m(µ) ≤ C‖∇mν‖
1
m

L2(µ) ,

for a constant C = C(n,m).
Since by (1.1.7) |∇ν| = |B|, we conclude

∫

M

|B|2m dµ ≤ C

∫

M

|∇mν|2 dµ ≤ CFm(ϕ) .

If M is not orientable, then there exists a two–fold Riemannian covering M̃ of M , with a locally

isometric projection map π : M̃ → M which is orientable and immersed in R
n+1 via the map

ϕ ◦ π. Repeating the previous argument for M̃ we get
∫

M̃

|B|2m dµ̃ ≤ C

∫

M̃

|∇mν|2 dµ̃ .

Since π is a local isometry and noticing that the global unit normal field on M̃ gives locally a unit
normal field onM , all the quantities which appear inside the integrals above do not change pass-

ing from M̃ to M , only when we integrate we need to take into account the two–fold structure of
the covering. This means that for every smooth function u :M → R we have

∫

M̃

u ◦ π dµ̃ = 2

∫

M

u dµ .

Hence, we deduce

2

∫

M

|B|2m dµ ≤ 2C

∫

M

|∇mν|2 dµ ≤ 2CFm(ϕ)

which clearly gives the same estimate as in the orientable case.
As 2m > 2[n/2], then 2m ≥ n+ 1, we have

∫

M

|B|n+1 dµ ≤
(∫

M

|B|2m dµ
)n+1

2m

(Vol M)
2m−n−1

2m ≤ CFm(ϕ) (4.1.3)

with a constant C = C(n,m).
Now we show that also the volume of (M, g) is well controlled by the value of Fm(ϕ) under

the hypothesis m > [n/2].
The bound from above is obvious, the bound from below in dimension n > 1 can be obtained via
the following universal Sobolev inequality due to Michael and Simon (see [76, 86]).

PROPOSITION 4.1.2. Let ϕ : M → R
n+1 be an immersion of an n–dimensional, compact hypersur-

face without boundary. OnM we consider the Riemannian metric induced by R
n+1 and the corresponding

measure µ.
Then, there exists a constant C = C(n, p) depending only on the dimension n and the exponent p such
that, for every smooth function u :M → R

(∫

M

|u|p∗ dµ
)1/p∗

≤ C(n, p)

(∫

M

|∇u|p dµ+

∫

M

|Hu|p dµ
)1/p

, (4.1.4)

where p ∈ [1, n), n > 1 and p∗ = np
n−p .

Considering the function u : M → R constantly equal to 1 in the inequality for p = 1, and
taking into account inequality (4.1.3), we get

(Vol M)
n−1
n ≤C

∫

M

|H| dµ

≤C‖B‖Ln+1(µ) (Vol M)
n

n+1

≤CFm(ϕ)
1

n+1 (Vol M)
n

n+1 .
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Dividing both members by (Vol M)
n−1
n , as n

n+1 >
n−1
n we conclude

1 ≤ CFm(ϕ)
1

n+1 (Vol M)
1

n(n+1)

that is,
C

Fm(ϕ)n
≤ Vol M ≤ Fm(ϕ)

for a constant C = C(n,m).

REMARK 4.1.3. With the same argument, it follows that also ‖B‖Ln+1(µ) can be controlled
above and below with Fm(ϕ) and that the functional Fm is uniformly bounded from below by a
constant greater than zero.

In the special case n = 1, we recall that for every closed curve γ : S1 → R
2 in the plane the

integral of the modulus of its curvature κ is at least 2π, then

2π ≤
∫

S1

|κ| ds ≤
(∫

S1

κ2 ds

)1/2√
Length γ ≤ C

√
Fm(γ)

√
Length γ .

Hence,
C

Fm(γ)
≤ Length γ ≤ Fm(γ)

with C = C(m).
Putting together all these inequalities and the uniform estimate (4.1.1) we obtain the follow-

ing result.

PROPOSITION 4.1.4. As long as the flow by the gradient of Fm, with m > [n/2], of a hypersurface
in R

n+1 exists, we have the estimates

‖B‖Ln+1(µt) ≤ C1 < +∞

0 < C2 ≤ Vol Mt ≤ C3 < +∞
where the three constants C1, C2 and C3 are independent of time.
They depend only on n, m and the value of Fm for the initial hypersurface.

Now we turn our attention to the functional DGm+2. Again, as the flow ϕt is variational, the
value of DGm+2(Mt) is monotone non increasing in time, hence it is bounded by its value on the
initial submanifold. This implies that, for all the evolving submanifolds,

Vol(Mt) +

∫

M

|Am+2|2 dµt ≤ C .

Hence, by means of Proposition 1.5.6 we get

Vol(Mt) +

∫

M

|B|2m dµt ≤ C

for a constant C independent of time.
Since when m > [n/2] we have 2m ≥ n + 1 we conclude, by the same argument used for the
functional Fm, that

Vol(Mt) + ‖H‖Ln+1(µt) ≤ C1 (4.1.5)

uniformly in time, for a constant C1 depending only on the initial submanifold. Analogously, we
also get the following uniform lower bound on the Volume of Mt,

0 < C2 ≤ Vol(Mt) ≤ C3 < +∞
with a couple of constants C2 and C3 independent of time (moreover, notice that Remark 4.1.3
applies too).
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REMARK 4.1.5. We underline the two key points where the properties of the distance func-
tion play a role here. First, when the orderm is larger than [n/2], the estimate |Am+2|2 ≥ Cm|B|2m
implies the a priori estimate (4.1.5) leading to the geometry–independent interpolation inequal-
ities that we will see in Proposition 4.2.7. Second, the “nice” structure of the leading term of the
Euler equation of the functional DGm+2.

4.2. Interpolation Inequalities for Tensors

We show now that the uniform bound on the Ln+1 norm of the second fundamental form
during the evolution, that we got in the previous section, implies that the constants involved
in some Sobolev and Gagliardo–Nirenberg interpolation type inequalities are also uniformly
bounded in time.

Recalling inequality (4.1.4), we have

‖u‖Lp∗ (µ) ≤ C(n, p)
(
‖∇u‖Lp(µ) + ‖Hu‖Lp(µ)

)
(4.2.1)

for every u ∈ C1(M), where p∗ = np
n−p and p ∈ [1, n).

PROPOSITION 4.2.1. If the manifold (M, g) satisfies Vol M + ‖H‖Ln+δ(µ) ≤ D for some δ > 0 then
for every p ∈ [1, n),

‖u‖Lp∗ (µ) ≤ C
(
‖∇u‖Lp(µ) + ‖u‖Lp(µ)

)
∀u ∈ C1(M) ,

where the constant C depends only on n, p, δ and D.

PROOF. Applying Hölder inequality to the last term of inequality (4.2.1), we get

‖u‖Lp∗ (µ) ≤ C(n, p)‖∇u‖Lp(µ) + C(n, p, δ,D)‖u‖Lp̃(µ)

where p̃ is given by

p̃ =
p(n+ δ)

n+ δ − p
= p∗

n(n+ δ)

n(n+ δ) + p∗δ
,

then p < p̃ < p∗.
Hence, we can interpolate ‖u‖Lp̃(µ) between a small fraction of ‖u‖Lp∗ (µ) and a possibly large
multiple of ‖u‖Lp(µ),

‖u‖Lp∗ (µ) ≤ C(n, p)‖∇u‖Lp(µ) + C(n, p, δ,D)
(
ε‖u‖Lp∗ (µ) + C(ε, p)‖u‖Lp(µ)

)
.

Choosing ε > 0 such that εC(n, p, δ,D) ≤ 1/2 and collecting terms we obtain

‖u‖Lp∗ (µ) ≤ C(n, p, δ,D)
(
‖∇u‖Lp(µ) + ‖u‖Lp(µ)

)
.

�

When p > n we prove the following L∞ result (see also [67, Thm. 5.6]).

PROPOSITION 4.2.2. If the manifold (M, g) satisfies Vol M + ‖H‖Ln+δ(µ) ≤ D for some δ > 0 then
for every p > n, we have

max
M

|u| ≤ C
(
‖∇u‖Lp(µ) + ‖u‖Lp(µ)

)
∀u ∈ C1(M) ,

where the constant C depends only on n, p, δ and D.

PROOF. Suppose first that M is embedded and n + δ ≥ p > n, clearly ‖H‖Lp(µ) is bounded
by a value depending on the constant D.
We consider M as a subset of Rn+1 via the embedding ϕ and µ as a measure on R

n+1 which is
supported on M . Then the following result holds ([86, Thm. 17.7]), let Bρ(x) be the ball of radius
ρ centered at x in R

n+1, for every 0 < σ < ρ < +∞ we have
(
µ(Bσ(x))

σn

)1/p

≤
(
µ(Bρ(x))

ρn

)1/p

+ C(n, p, δ,D)
(
ρ1−n/p − σ1−n/p

)
.

Hence, (
µ(Bσ(x))

σn

)1/p

≤ C1

ρn/p
+ C2ρ

1−n/p ,
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and choosing ρ = 1, for every 0 < σ < 1 we get the inequality

µ(Bσ(x)) ≤ C(n, p, δ,D)σn .

Then we need the following formula which is proved in [86, Sect. 18], as a consequence of the
tangential divergence formula (1.3.3).
For every 0 < σ < ρ < +∞ we have

∫
Bσ(x)

u dµ

σn
≤
∫
Bρ(x)

u dµ

ρn
+

∫ ρ

σ

τ−n−1

∫

Bτ (x)

r(|∇u|+ |uH|) dµ(y) dτ

where r = |x− y| and u is any smooth non negative function.
Noticing that r ≤ τ and using Hölder inequality we estimate

∫
Bσ(x)

u dµ

σn
≤
∫
Bρ(x)

u dµ

ρn
+

(∫

M

|∇u|p + |uH|p dµ
)1/p ∫ ρ

σ

τ−nµ(Bτ (x))
1−1/p dτ

≤
∫

B1(x)

u dµ+ C
(
‖∇u‖Lp(µ) + ‖uH‖Lp(µ)

) ∫ 1

σ

τ−nτn−n/p dτ

where in the last passage we set ρ = 1 used the previous estimate on µ(Bτ (x)). The function

τ−n/p is integrable since p > n and we get
∫
Bσ(x)

u dµ

σn
≤
∫

B1(x)

u dµ+ C
(
‖∇u‖Lp(µ) + ‖uH‖Lp(µ)

) 1− σ1−n/p

1− n/p
,

now sending σ to zero, on the left side we obtain the value of u(x) times ωn which is the volume
of the unit ball of Rn, hence

ωnu(x) ≤
∫

B1(x)

u dµ+ C
(
‖∇u‖Lp(µ) + ‖uH‖Lp(µ)

)

≤C(n, p, δ,D)
(
‖u‖L1(µ) + ‖∇u‖Lp(µ) + ‖uH‖Lp(µ)

)
.

For a general u we apply this inequality to the function u2, thus

u2(x) ≤ C

(∫

M

|u|2 dµ+

(∫

M

|u∇u|p dµ
)1/p

+

(∫

M

|u2H|p dµ
)1/p

)

≤ Cmax
M

|u|
(∫

M

|u| dµ+

(∫

M

|∇u|p dµ
)1/p

+

(∫

M

|uH|p dµ
)1/p

)
.

Since x ∈ R
n+1 was arbitrary we conclude that

max
M

|u| ≤ C(n, p, δ,D)
(
‖u‖L1(µ) + ‖∇u‖Lp(µ) + ‖uH‖Lp(µ)

)
.

for a constant C depending on n, p, δ and D.
IfM is only immersed, we consider the embeddings ofM in R

n+1×R
k given by the map ϕ×εψ :

M → R
n+1 × R

k, where ψ : M → R
k is an embedding of M in some Euclidean space. Then,

repeating the previous argument (it is possible since the starting inequalities from [86] hold for
embeddings in any R

l) we will get the same conclusion with a constantCε. Finally, asCε depends
only on Vol M and H, and all the geometric quantities converge uniformly when ε goes to zero,
we conclude that the inequality holds also in the immersed case.

Now, given any p > n, we choose p̃ = 1
2 min{n+ p, 2n+ δ}, then clearly n < p̃ < min{p, n+

δ/2}. By the inequality above we have

max
M

|u| ≤ C(n, p̃, δ,D)
(
‖u‖L1(µ) + ‖∇u‖Lp̃(µ) + ‖uH‖Lp̃(µ)

)
,

then using Hölder inequality and an interpolation argument as in the proof of Proposition 4.2.1
we get

max
M

|u| ≤ C(n, p̃, δ,D)
(
‖u‖L1(µ) + ‖∇u‖Lp̃(µ) + ‖u‖Lp(µ)

)
.
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Applying again Hölder inequality, as p̃ < p, we conclude that

max
M

|u| ≤ C(n, p̃, δ,D)
(
‖∇u‖Lp(µ) + ‖u‖Lp(µ)

)
,

which gives the thesis since p̃ depends only on n, p and δ. �

We now extend these propositions to tensors (see [9, Prop. 2.11] and also [22, 23]). Since
|T | is not necessarily smooth we apply the previous inequalities first to the smooth functions√
|T |2 + ε2, converging to |T | when ε→ 0. As

∣∣∣∇
√

|T |2 + ε2
∣∣∣ =

∣∣∣∣∣
〈∇T, T 〉√
|T |2 + ε2

∣∣∣∣∣ ≤
|T |√

|T |2 + ε2
|∇T | ≤ |∇T |

we get then easily the following result.

PROPOSITION 4.2.3. If the manifold (M, g) satisfies Vol M + ‖H‖Ln+δ(µ) ≤ D for some δ > 0 then
for every covariant tensor T = Ti1...il we have,

‖T‖Lp∗ (µ) ≤ C
(
‖∇T‖Lp(µ) + ‖T‖Lp(µ)

)
if 1 ≤ p < n, (4.2.2)

max
M

|T | ≤ C
(
‖∇T‖Lp(µ) + ‖T‖Lp(µ)

)
if p > n, (4.2.3)

where the constants depend only on n, l, p, δ and D.

We define the Sobolev norm of a tensor T on (M, g) as

‖T‖W s,q(µ) =

s∑

i=0

‖∇iT‖Lq(µ) .

COROLLARY 4.2.4. In the same hypothesis on (M, g) we have

‖∇jT‖Lp(µ) ≤ C‖T‖W s,q(µ) with
1

p
=

1

q
− s− j

n
> 0 , (4.2.4)

max
M

|∇jT | ≤ C‖T‖W s,q(µ) when
1

q
− s− j

n
< 0 . (4.2.5)

The constants depend only on n, l, s, j, p, q, δ and D.

PROOF. By inequality (4.2.2) applied to the tensor ∇jT we get

‖∇jT‖Lp(µ) ≤ C
(
‖∇j+1T‖Lp1 (µ) + ‖∇jT‖Lp1 (µ)

)

≤ C
(
‖∇j+2T‖Lp2 (µ) + 2 ‖∇j+1T‖Lp2 (µ) + ‖∇jT‖Lp2 (µ)

)

≤ . . .

≤ C
(
‖∇sT‖Lps−j (µ) + · · ·+ ‖∇jT‖Lps−j (µ)

)

≤ C‖T‖W s,ps−j (µ) .

Since the pi are related by
1

pi
=

1

pi+1
− 1

n
,

p0 = p and ps−j = q, we have

1

p
=

1

ps−j
− s− j

n
=

1

q
− s− j

n
,

and the first part of the corollary is proved.
The second part follows analogously using also inequality (4.2.3). �

Now we put together this result and the universal inequalities

‖∇jT‖Lp(µ) ≤ C ‖T‖
j
s

W s,q(µ)‖T‖
s−j
s

Lr(µ) , (4.2.6)

which are obviously implied by Proposition 4.1.1, to get the following interpolation type inequal-
ities.
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PROPOSITION 4.2.5. In the same hypothesis on (M, g) as before, there exist a constant C depending
only on n, l, s, j, p, q, r, δ andD, such that for every covariant tensor T = Ti1...il , the following inequality
hold

‖∇jT‖Lp(µ) ≤ C ‖T‖aW s,q(µ)‖T‖1−aLr(µ) , (4.2.7)

for all j ∈ [0, s], p, q, r ∈ [1,+∞) and a ∈ [j/s, 1] with the compatibility condition

1

p
=
j

n
+ a

(
1

q
− s

n

)
+

1− a

r
.

If such condition gives a negative value for p, the inequality holds for every p ∈ [1,+∞) on the left side.

PROOF. The cases a = j/s and a = 1 are inequalities (4.2.6) and (4.2.4), respectively, the
intermediate cases, when j/s < a < 1, are obtained immediately by the log–convexity of ‖ · ‖Lp(µ)

in 1/p, which is a linear function of a, and the fact that the right side is exponential in a.
If p is negative then 1

q − s
n < 0 and

1

q
− s− j

n
≤ j

n
+ a

(
1

q
− s

n

)
+

1− a

r
,

hence, the L∞ estimate of inequality (4.2.5) together with (4.2.6) gives the inequality for every
p ∈ [1,+∞). �

REMARK 4.2.6. By simplicity, we avoided to discuss in all the section the critical cases of the
inequalities, for instance p = n in Proposition 4.2.3. Actually, for our purposes, we just need to
say that in a critical case we can allow any value of p ∈ [1,+∞) in the left side of inequalities
like (4.2.7). This can be seen easily, by considering a suitable inequality with a lower integrability
exponent on the right side and then applying Hölder inequality.

Putting together the estimates of this section with Proposition 4.1.4 we obtain the following
result.

PROPOSITION 4.2.7. As long as the flow of a hypersurface in R
n+1 by the gradient of Fm or DGm+2

exists, with m > [n/2], for every smooth covariant tensor T = Ti1...il the following inequalities hold

‖∇jT‖Lp(µ) ≤ C ‖T‖aW s,q(µ)‖T‖1−aLr(µ) , (4.2.8)

for all j ∈ [0, s], p, q, r ∈ [1,+∞) and a ∈ [j/s, 1] with the compatibility condition

1

p
=
j

n
+ a

(
1

q
− s

n

)
+

1− a

r
.

If such condition gives a negative value for p, the inequality holds for every p ∈ [1,+∞) on the left side.
The constant C depends only on m, n, l, s, j, p, q, r and the value of the relative functional for the initial
hypersurface.



CHAPTER 5

Long Time Existence of the Flow and Convergence

Suppose that at a certain time T > 0 the evolving hypersurface by the gradient flow of the
functional Fm or DGm+2, with m > [n/2], develops a singularity. Then, considering the family
{Mt}t∈[0,T ), we are going to use the time–independent inequalities (4.2.8) to show that we have

uniform estimates

max
Mt

|∇kB| ≤ Ck < +∞ ∀t ∈ [0, T )

for all k ∈ N. We will see that such estimates are in contradiction with the development of a
singularity at time t = T , hence the flow must be smooth for every positive time.
To this aim we are going to study the evolution of the following integrals,

∫

M

|∇kB|2 dµt .

REMARK 5.0.8. As in the previous sections, we will omit to say in the computations that all
the polynomials ps and qs which will appear are algebraic, that is, they are the result of formal
manipulations. In particular, such coefficients are independent of the manifold (M, g) where the
tensors are defined.

The subsequent analysis is in common between the functionals Fm and DGm+2, being the
discussion of the a priori estimates of the previous chapter the only step needing a separate
treatment, hence, we will denote with Em the first variations of both functional, that we know,
by Chapter 3 have the common structure

Em =
(
−H + 2(−1)m+1

m–times︷ ︸︸ ︷
∆∆ . . .∆H + q

2m+1(∇ν,B)
)
ν .

5.1. Estimates on the Geometric Quantities

First we derive the evolution equations for g, ν, Γijk and B.
Essentially repeating the computations of Section 2.3.3, we get

∂

∂t
gij = − 2EmBij

∂

∂t
gij =2EmBij

∂

∂t
ν = ∇Em

∂

∂t
Γijk =∇Em ∗ B+ Em ∗ ∇B .

LEMMA 5.1.1. The second fundamental form of Mt satisfies the evolution equation

∂

∂t
Bij = 2(−1)m

(m+ 1)–times︷ ︸︸ ︷
∆ . . .∆ Bij + q

2m+3(B,B) + q
2m+3(∇ν,B) + q

3(B) .
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PROOF. Keeping in mind the Gauss–Weingarten relations (1.1.7) and the equations above,
we compute

∂

∂t
Bij = − ∂

∂t

〈
ν

∣∣∣∣
∂2ϕ

∂xi∂xj

〉

=

〈
ν

∣∣∣∣
∂2(Emν)

∂xi∂xj

〉
−
〈
∇Em

∣∣∣∣
∂2ϕ

∂xi∂xj

〉

=
∂2Em
∂xi∂xj

+ Em

〈
ν

∣∣∣∣
∂

∂xi

(
Bjlg

ls ∂ϕ

∂xs

)〉

−
〈
∂Em
∂xl

· ∂ϕ
∂xs

gls
∣∣∣∣ Γ

k
ij

∂ϕ

∂xk
− Bijν

〉

=
∂2Em
∂xi∂xj

− Γkij
∂Em
∂xk

+ EmBjlg
ls

〈
ν

∣∣∣∣Γ
z
is

∂ϕ

∂xz
− Bisν

〉

=∇i∇jEm − EmBisg
slBlj .

Expanding Em we continue,

∂

∂t
Bij =∇i∇j

(
2(−1)m

m–times︷ ︸︸ ︷
∆∆ . . .∆H+ q

2m+1(∇ν,B) + q
1(B)

)

−
(
2(−1)m

m–times︷ ︸︸ ︷
∆∆ . . .∆H+ q

2m+1(∇ν,B) + q
1(B)

)
Bisg

slBlj

=2(−1)m∇i∇j

m–times︷ ︸︸ ︷
∆∆ . . .∆H+ q

2m+3(∇ν,B) + q
3(B) .

Interchanging repeatedly derivatives in the first term we introduce some extra terms of the form
q2m+3(B,B) and we get

∂

∂t
Bij = 2(−1)m

m–times︷ ︸︸ ︷
∆∆ . . .∆∇i∇jH+ q

2m+3(B,B) + q
2m+3(∇ν,B) + q

3(B) ,

then using equation (1.1.8) we conclude

∂

∂t
Bij =2(−1)m

m–times︷ ︸︸ ︷
∆∆ . . .∆(∆Bij −HBilg

lsBsj − |B|2Bij)

+ q
2m+3(B,B) + q

2m+3(∇ν,B) + q
3(B)

=2(−1)m

(m+ 1)–times︷ ︸︸ ︷
∆∆ . . .∆ Bij + q

2m+3(B,B) + q
2m+3(∇ν,B) + q

3(B) .

�

Now we deal with the covariant derivatives of B.

LEMMA 5.1.2. We have

∂

∂t
∇kBij =2(−1)m

(m+ 1)–times︷ ︸︸ ︷
∆∆ . . .∆ ∇kBij

+ q
k+2m+3(B,B) + q

k+2m+3(∇ν,B) + q
k+3(B) .
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PROOF. With a reasoning analogous to the one of Lemma 2.3.11 applied to the tensor B and
by the previous lemma, we have

∂

∂t
∇kBij =∇k ∂

∂t
Bij + pk(B,B,Em)

=∇k ∂

∂t
Bij + q

k+2m+3(B,B) + q
k+2m+3(∇ν,B) + q

k+3(B,B)

=2(−1)m∇k

(m+ 1)–times︷ ︸︸ ︷
∆∆ . . .∆ Bij

+ ∇k
q
2m+3(B,B) +∇k

q
2m+3(∇ν,B) + ∇k

q
3(B)

+ q
k+2m+3(B,B) + q

k+2m+3(∇ν,B) + q
k+3(B,B)

=2(−1)m∇k

(m+ 1)–times︷ ︸︸ ︷
∆∆ . . .∆ Bij

+ q
k+2m+3(B,B) + q

k+2m+3(∇ν,B) + q
k+3(B) .

Interchanging the operator ∇k with the Laplacians in the first term and including the extra terms
in qk+2m+3(B,B), we obtain

∂

∂t
∇kBij =2(−1)m

(m+ 1)–times︷ ︸︸ ︷
∆∆ . . .∆ ∇kBij

+ q
k+2m+3(B,B) + q

k+2m+3(∇ν,B) + q
k+3(B) .

�

PROPOSITION 5.1.3. The following formula holds,

∂

∂t

∫

M

|∇kB|2 dµt = − 4

∫

M

|∇k+m+1B|2 dµt

+

∫

M

q
2(k+m+2)(B,B,B) + q

2(k+m+2)(∇ν,B,B) dµt

+

∫

M

q
2(k+2)(B,B) dµt .

PROOF. By the previous results we have

∂

∂t
|∇kB|2 =2gi1j1 . . . gikjkgisgjz

∂

∂t
∇i1...ikBij∇j1...jkBsz

+ gi1j1 . . .
∂

∂t
giljl . . . gikjkgisgjz∇i1...ikBij∇j1...jkBsz

=4(−1)mgi1j1 . . . gikjkgisgjz

(m+ 1)–times︷ ︸︸ ︷
∆∆ . . .∆ ∇i1...ikBij∇j1...jkBsz

+
(
q
k+2m+3(B,B) + q

k+2m+3(∇ν,B) + q
k+3(B)

)
∗ ∇kB

+ 2Emg
i1j1 . . .Biljl . . . gikjkgisgjz∇i1...ikBij∇j1...jkBsz

=4(−1)mgi1j1 . . . gikjkgisgjz

(m+ 1)–times︷ ︸︸ ︷
∆∆ . . .∆ ∇i1...ikBij∇j1...jkBsz

+ q
2(k+m+2)(B,B,B) + q

2(k+m+2)(∇ν,B,B) + q
2(k+2)(B,B)

=4(−1)mgisgjz∇ik+1
∇ik+1 . . .∇ik+m+1

∇ik+m+1∇i1...ikBij∇i1...ikBsz

+ q
2(k+m+2)(B,B,B) + q

2(k+m+2)(∇ν,B,B) + q
2(k+2)(B,B) .



5.1. ESTIMATES ON THE GEOMETRIC QUANTITIES 70

Interchanging the covariant derivatives in the first term we introduce some extra terms of the

form q2(k+m+2)(B,B,B), hence we get

∂

∂t

∫

M

|∇kB|2 dµt =

4(−1)m
∫

M

gisgjz∇ik+1 . . .∇ik+m+1∇ik+m+1
. . .∇ik+1

∇i1...ikBij∇i1...ikBsz dµt

+

∫

M

q
2(k+m+2)(B,B,B) + q

2(k+m+2)(∇ν,B,B) + q
2(k+2)(B,B) dµt

+

∫

M

q
2(k+2)(B,B) dµt ,

where the last integral comes from the time derivative of µt.
Then, carrying the m+ 1 derivatives ∇ik+1 . . .∇ik+m+1 on ∇i1...ikBsz by means of the divergence
theorem, we finally obtain the claimed result,

= − 4

∫

M

gisgjz∇ik+m+1
. . .∇ik+1

∇i1...ikBij∇ik+m+1 . . .∇ik+1∇i1...ikBsz dµt

+

∫

M

q
2(k+m+2)(B,B,B) + q

2(k+m+2)(∇ν,B,B) + q
2(k+2)(B,B) dµt

= − 4

∫

M

|∇k+m+1B|2 dµt

+

∫

M

q
2(k+m+2)(B,B,B) + q

2(k+m+2)(∇ν,B,B) + q
2(k+2)(B,B) dµt .

The leading coefficient became −4 since we multiplied 4(−1)m for (−1)m+1 while doing them+1
integrations by parts. �

Now we analyze the terms
∫

M

q
2(k+m+2)(B,B,B) dµt and

∫

M

q
2(k+m+2)(∇ν,B,B) dµt .

If one of the two polynomials contains a derivative ∇iB or ∇i(∇ν) of order i > k + m + 1,
then all the other derivatives must be of order lower than k +m, since the rescaling order of the
polynomials is 2(k+m+2) and the fact that there are at least three factors in every additive term.
In this case, using repeatedly the divergence theorem as before, to lower such highest derivative,
we get the integral of a new polynomial which does not contain derivatives of order higher than
k + m + 1. Moreover, if there is a derivative of order k + m + 1 then the order of all the other
derivatives in q2(k+m+2) must be lower or equal than k +m, by the same argument.
With the same reasoning, the term

∫

M

q
2(k+2)(B,B) dµt ,

can be transformed it in a term without derivatives of order higher or equal than k +m+ 1.
Hence, we can suppose that the last three terms in

∂

∂t

∫

M

|∇kB|2 dµt = − 4

∫

M

|∇k+m+1B|2 dµt

+

∫

M

q
2(k+m+2)(B,B,B) + q

2(k+m+2)(∇ν,B,B) dµt

+

∫

M

q
2(k+2)(B,B) dµt (5.1.1)

do not contain derivatives of B or of ∇ν of order higher than k + m + 1, possibly, only one
derivative of order k +m+ 1 can appear.
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LEMMA 5.1.4. The following inequality holds

|∇sν| ≤ |∇s−1B|+ |qs(B)| ,

where qs(B) does not contain derivatives of B of order higher than s− 2.

PROOF. By equations (1.1.7) it follows that ∇ν = B ∗ ∇ϕ, hence

∇sν = ∇s−1B ∗ ∇ϕ+
∑

i+j=s−2

∇iB ∗ ∇j∇2ϕ

and since ∇2
ijϕ = −Bijν, we get

∇sν =∇s−1B ∗ ∇ϕ+
∑

i+j=s−2

∇iB ∗ ∇j(Bν)

=∇s−1B ∗ ∇ϕ+
∑

i+j+k=s−2

∇iB ∗ ∇jB ∗ ∇kν .

Then, by an induction argument we can express ∇sν as

∇sν = ∇s−1B ∗ ∇ϕ+ q
s(B)

where qs(B) does not contain derivatives of order higher than s− 2.
Taking the norm of both sides we get

|∇sν| ≤ |∇s−1B ∗ ∇ϕ|+ |qs(B)|

and we conclude the proof computing

|∇s−1B ∗ ∇ϕ| =
∣∣∣∣∇i1...is−1

Bilg
lk ∂ϕ

∂xk

∣∣∣∣

=

(
∇i1...is−1

Bilg
lk ∂ϕ

∂xk
gi1j1 . . . gis−1js−1gij∇j1...js−1

Bjwg
wz ∂ϕ

∂xz

)1/2

=
(
∇i1...is−1

Bilg
lkgkzg

wzgi1j1 . . . gis−1js−1gij∇j1...js−1
Bjw

)1/2

=
(
∇i1...is−1

Bilg
lwgi1j1 . . . gis−1js−1gij∇j1...js−1

Bjw
)1/2

= |∇s−1B| .

�

Taking the absolute values inside the integrals and using this lemma to substitute every de-
rivative of ν in (5.1.1), we obtain

∂

∂t

∫

M

|∇kB|2 dµt ≤ −4

∫

M

|∇k+m+1B|2 dµt +
∫

M

|q2(k+m+2)(B)|+ |q2(k+2)(B)| dµt

where, as before, the two polynomials do not contain derivatives of B of order higher than k +
m + 1, possibly, only one derivative of order k +m + 1 can appear in every multiplicative term

of q2(k+m+2)(B).
Before going on, we remark that the ∗ product of tensors satisfies the following metric prop-

erty,

|T ∗ S| ≤ |T | · |S| . (5.1.2)
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This can be easily seen choosing an orthonormal basis at a point of M , in such coordinates we
have

|T ∗ S|2 =
∑

free
indices

( ∑

contracted
indices

Ti1...ikSj1...jl

)2

≤
∑

free
indices

( ∑

contracted
indices

T 2
i1...ik

)( ∑

contracted
indices

S2
j1...jl

)

≤
(∑

free
indices

∑

contracted
indices

T 2
i1...ik

)(∑

free
indices

∑

contracted
indices

S2
j1...jl

)

= |T |2 · |S|2 .
Now by definition we have

q
2(k+m+2)(B) =

∑

j

Nj

⊛
l=1

∇cjlB

with
Nj∑

l=1

(cjl + 1) = 2(k +m+ 2)

for every j, hence

|q2(k+m+2)(B)| ≤
∑

j

Nj∏

l=1

|∇cjlB|

by (5.1.2). Setting

Qj =

Nj∏

l=1

|∇cjlB|

we clearly obtain ∫

M

|q2(k+m+2)(B)| dµt ≤
∑

j

∫

M

Qj dµt .

If Qj contains a derivative of B of order k +m + 1, we have seen that all the others have order
lower or equal than k +m, then collecting derivatives of the same order, Qj can be estimated as
follows

Qj ≤ |∇k+m+1B| ·
k+m∏

i=0

|∇iB|αji

for some αji satisfying the rescaling condition

(k +m+ 2) +
k+m∑

i=0

(i+ 1)αji = 2(k +m+ 2) .

Hence, using Young inequality, for every εj > 0 we have

∫

M

Qj dµt ≤ εj

∫

M

|∇k+m+1B|2 dµt +
1

4εj

∫

M

k+m∏

i=0

|∇iB|2αji dµt

= εj

∫

M

|∇k+m+1B|2 dµt +
∫

M

|q2(k+m+2)(B)| dµt ,

where we put in evidence the fact that the last term satisfies again the rescaling condition and no
more contains the derivative ∇k+m+1B.
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Collecting all together such “bad” terms, and choosing suitable εj > 0 such that their total sum
is less than one, we obtain

∂

∂t

∫

M

|∇kB|2 dµt ≤ −3

∫

M

|∇k+m+1B|2 dµt +
∫

M

|q2(k+m+2)(B)|+
∫

M

|q2(k+2)(B)| dµt

where now in the last two terms all the derivatives of B have order lower than k+m+ 1. We are
then ready to estimate them via interpolation inequalities.

As before,

|q2(k+m+2)(B)| ≤
∑

j

Qj

and after collecting derivatives of the same order in Qj ,

Qj =

k+m∏

i=0

|∇iB|αji with
k+m∑

i+1

αji(i+ 1) = 2(k +m+ 2) .

Then,

∫

M

Qj dµt =

∫

M

k+m∏

i=0

|∇iB|αji dµt

≤
k+m∏

i=0

(∫

M

|∇iB|αjiγi dµt

) 1
γi

=

k+m∏

i=0

‖∇iB‖αij

Lαjiγi (µt)

where the γi are arbitrary positive values such that
∑

1/γi = 1.
We apply interpolation inequalities. If in (4.2.7) we take q = 2, r = n+1, s = k+m+1, j = i

and T = B we get

‖∇iB‖Lpi (µt)
≤ C‖B‖aW 2,k+m+1(µt)

‖B‖1−aLn+1(µt)

with

a =

1
pi

− i
n − 1

n+1

1
2 − k+m+1

n − 1
n+1

∈
[

i

k +m+ 1
, 1

]
(5.1.3)

and pi > 1.
Now, since the volumes of Mt and ‖B‖Ln+1(µt)

are uniformly bounded in time, also ‖B‖L2(µt)
is

uniformly bounded and using the universal inequalities (4.2.6) with p = q = r = 2 we have

‖B‖W 2,k+m+1(µt)
≤

k+m+1∑

s=0

C‖∇k+m+1B‖
s

k+m+1

L2(µt)

≤
k+m+1∑

s=0

‖∇k+m+1B‖L2(µt)
+ C

≤D‖∇k+m+1B‖L2(µt)
+ C ,

where we applied Young inequality.
Hence, we conclude that we have constants C, D independent of t such that

‖∇iB‖Lpi (µt)
≤
(
D‖∇k+m+1B‖L2(µt)

+ C
)a

(5.1.4)

for a as in (5.1.3) and pi > 1.

Choosing γi = 0 if αji = 0 and γi =
2(k+m+2)
αji(i+1) otherwise, we have clearly

k+m∑

i=0

1

γi
=

k+m∑

i=0

αji(i+ 1)

2(k +m+ 2)
= 1
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by the rescaling condition on the αji.
We claim that for every i ∈ {0, . . . , k +m}, the product pi = αjiγi satisfies the condition (5.1.3).

By definition, pi =
2(k+m+2)

i+1 , hence we must check that the following inequality holds

i

k +m+ 1
≤

i+1
2(k+m+2) − i

n − 1
n+1

1
2 − k+m+1

n − 1
n+1

≤ 1

for every i ∈ {0, . . . , k +m}. Since every term is an affine function of i, the claim follows if we
show that the inequality holds for i = 0 and i = k +m+ 1.
If i = 0 we have to prove that

0 ≤
1

2(k+m+2) − 1
n+1

1
2 − k+m+1

n − 1
n+1

≤ 1 ,

that is, since the denominator of the fraction is negative (as 2m ≥ n+ 1),

1

2
− k +m+ 1

n
− 1

n+ 1
≤ 1

2(k +m+ 2)
− 1

n+ 1
≤ 0 .

The right inequality is clearly true, again since 2m ≥ n+ 1, the left one becomes

k +m+ 1

2(k +m+ 2)
=

1

2
− 1

2(k +m+ 2)
≤ k +m+ 1

n

which is true as 2(k +m+ 2) ≥ n.
When i = k +m+ 1 the fraction is equal to 1, hence the inequality obviously holds.

Then, the exponents pi = αjiγi are allowed in inequality (5.1.4) and we get

‖∇iB‖Lαjiγi (µt) ≤
(
D‖∇k+m+1B‖L2(µt) + C

)aji

where aji is the relative value we obtain from (5.1.3).
Hence,

∫

M

Qj dµt ≤
k+m∏

i=0

‖∇iB‖αij

Lαjiγi (µt)

≤
k+m∏

i=0

(
D‖∇k+m+1B‖L2(µt) + C

)ajiαji

≤
(
D‖∇k+m+1B‖L2(µt) + C

)∑k+m
i=0 ajiαji

where the constants C and D are independent of t and

aji =

1
αjiγi

− i
n − 1

n+1

1
2 − k+m+1

n − 1
n+1

.

Multiplying this relation by αji and summing on i from 0 to k +m we get

k+m∑

i=0

αjiaji =

k+m∑

i=0

1
γi

− iαji

n − αji

n+1

1
2 − k+m+1

n − 1
n+1

=
1−∑k+m

i=0

(
iαji

n +
αji

n+1

)

1
2 − k+m+1

n − 1
n+1

=
1−∑k+m

i=0
αji(i+1)

n −∑k+m
i=0 αji

(
1

n+1 − 1
n

)

1
2 − k+m+1

n − 1
n+1
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recalling that
∑k+m
i=0 αji(i+ 1) = 2(k +m+ 2) we continue,

=
1− 2k+m+2

n +
∑k+m
i=0

αji

n(n+1)

1
2 − k+m+1

n − 1
n+1

=
1− 2k+m+1

n − 2
n +

∑k+m
i=0

αji

n(n+1)

1
2 − k+m+1

n − 1
n+1

.

Now, the denominator is negative and clearly

k+m∑

i=0

αji ≥
k+m∑

i=0

αji(i+ 1)

k +m+ 1
= 2

k +m+ 2

k +m+ 1
,

so we obtain

k+m∑

i=0

αjiaji ≤
1− 2k+m+1

n − 2
n + 2k+m+2

k+m+1
1

n(n+1)

1
2 − k+m+1

n − 1
n+1

=
1− 2k+m+1

n − 2
n + 2

n(n+1) +
2

k+m+1
1

n(n+1)

1
2 − k+m+1

n − 1
n+1

=
1− 2k+m+1

n − 2
n+1 + 2

k+m+1
1

n(n+1)

1
2 − k+m+1

n − 1
n+1

=2−
2

k+m+1
1

n(n+1)

k+m+1
n + 1

n+1 − 1
2

=2− 4

(k +m+ 1)[2(k +m+ 1)(n+ 1)− n(n− 1)]
< 2 .

Hence, we finally get

∫

M

Qj dµt ≤
(
D

∫

M

|∇k+m+1B|2 dµt + C

)1−δ

for a positive δ and using again Young inequality, we have
∫

M

Qj dµt ≤ εj

∫

M

|∇k+m+1B|2 dµt + C

for arbitrarily small εj . Repeating this argument for all the Qj and choosing suitable εj whose
sum is less than one, we conclude that

d

dt

∫

M

|∇kB|2 µt ≤ −2

∫

M

|∇k+m+1B|2 µt + C +

∫

M

|q2(k+2)(B)| dµt

with a constant C independent of time.
The last term can be treated in the same way. It can be estimated by the sum of the multi-

plicative terms Qj and collecting derivatives of the same order as before, we have

Qj ≤
k+m∏

i=0

|∇iB|βji with
k+m∑

i=0

βji(i+ 1) = 2k + 4 .

In this case the coefficients γi, when βji 6= 0, are given by γi =
2(k+2)
αji(i+1) , hence

k+m∑

i=0

1

γi
=

k+m∑

i=0

αji(i+ 1)

2(k + 2)
= 1

by the rescaling condition.
With an analogous control, one can see that the conditions on the exponent pi are satisfied. It
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lasts to compute

k+m∑

i=0

βjiaji =

k+m∑

i=0

1
γi

− iβji

n − βji

n+1

1
2 − k+m+1

n − 1
n+1

=
1−∑k+m

i=0

(
iβji

n +
βji

n+1

)

1
2 − k+m+1

n − 1
n+1

=
1−∑k+m

i=0
βji(i+1)

n +
∑k+m
i=0

βji

n(n+1)

1
2 − k+m+1

n − 1
n+1

=
1− 2k+4

n +
∑k+m
i=0

βji

n(n+1)

1
2 − k+m+1

n − 1
n+1

.

As the denominator is negative and

k+m∑

i=0

βji ≥
k+m∑

i=0

βji(i+ 1)

k +m+ 1
=

2k + 4

k +m+ 1
,

we obtain

k+m∑

i=0

βjiaji ≤
1− 2k+4

n +
∑k+m
i=0

βji(i+1)
k+m+1

1
n(n+1)

1
2 − k+m+1

n − 1
n+1

=
1− 2k+4

n + 2k+4
k+m+1

1
n(n+1)

1
2 − k+m+1

n − 1
n+1

< 2 ,

since this last inequality is equivalent to

1− 2k + 4

n
+

2k + 4

k +m+ 1

1

n(n+ 1)
> 1− 2(k +m+ 1)

n
− 2

n+ 1

and simplifying, to

2k + 4

k +m+ 1

1

n(n+ 1)
> −2(m− 1)

n
− 2

n+ 1

which is obviously true.
Concluding as before we finally get

d

dt

∫

M

|∇kB|2 µt ≤ −
∫

M

|∇k+m+1B|2 µt + C (5.1.5)

for a constant C independent of time.
By (4.1.2) and Young inequality, we have

∫

M

|∇kB|2 µt + C ≤ D‖∇k+m+1B‖
k

k+m+1

L2(µt)
‖B‖

m+1
k+m+1

L2(µt)
+ C

≤ D‖∇k+m+1B‖
k

k+m+1

L2(µt)
+ C

≤ 1

2

∫

M

|∇k+m+1B|2 µt + C

again with a uniform constant. Combining this inequality with (5.1.5), we obtain

d

dt

∫

M

|∇kB|2 µt ≤ − 1

2

∫

M

|∇kB|2 µt + C

and a simple ODE’s argument proves that there exists constants Ck independent of time such
that ∫

M

|∇kB|2 dµt ≤ Ck .
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To pass from W 2,p(µt) to pointwise estimates, first we notice that being all the derivatives of
B bounded in L2(µt), by inequalities (4.2.2), for every p ≥ 1 and k ∈ N we have constants Ck,p
such that ∫

M

|∇kB|p dµt ≤ Ck,p .

Then choosing a p > n, we apply inequalities (4.2.3) to every ∇kB to conclude that for every
k ∈ N we have constants Ck, independent of t, such that

max
Mt

|∇kB| ≤ Ck . (5.1.6)

Looking back at the way we obtained them, we can see that the constants Ck depend only on
the dimension n, the differentiation order k and the initial hypersurface ϕ0.

5.2. Long Time Existence and Regularity

Following Huisken [54, Sect. 8] and Kuwert and Schätzle [67, Sect. 8], these estimates imply
the smoothness of the map ϕ(p, t).
Since ∇kB are uniformly bounded in time, supposing that [0, T ) is the maximal interval of exis-
tence of the flow, we have

|ϕ(p, t)− ϕ(p, s)| ≤
∫ t

s

|Em(ϕξ)(p)| dξ ≤ C(t− s)

for every 0 ≤ s ≤ t < T , then ϕt uniformly converge to a continuous limit ϕT as t→ T .
We recall Lemma 8.2 in [54] (Lemma 14.2 in [53]).

LEMMA 5.2.1. Let gij a time–dependent metric on a compact manifold M for 0 ≤ t < T ≤ +∞.
Suppose that ∫ T

0

max
Mt

∣∣∣∣
∂

∂t
gij

∣∣∣∣ dt ≤ C .

Then the metrics gij(t) are all equivalent, and they converge as t → T uniformly to a positive definite
metric tensor gij(T ) which is continuous and also equivalent.

In our situation, if T < +∞, the hypotheses of this lemma are clearly satisfied, hence ϕ(·, T )
represents a hypersurface. Moreover, it also follows that there exists a positive constant C de-
pending only on n and ϕ0 such that for every 0 ≤ t < T we have

1

C
≤ gij(t) ≤ C .

Since
∂

∂t
gij = −2EmBij

by (5.1.6), for every k ∈ N we have
∥∥∥∥∇k ∂

∂t
gij

∥∥∥∥
L∞(µ)

≤ Ck ,

analogously, as the time derivative of the Christoffel symbols is given by

∂

∂t
Γijk = ∇Em ∗ B + Em ∗ ∇B

it follows that ∥∥∥∥∇k ∂

∂t
Γijk

∥∥∥∥
L∞(µ)

≤ Ck .

for every k ∈ N.
With an induction argument, we can prove the following formula (where we avoid to indicate
the indices) relating the iterated covariant and coordinate derivatives of a tensor T ,

∇mT = ∂mT +

m∑

i=1

∑

j1+···+ji+k≤m−1

∂j1Γ . . . ∂jiΓ∂kT . (5.2.1)
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By this formula and induction, it follows that

‖∂kΓijl‖L∞(µ) ,

∥∥∥∥∂
k ∂

∂t
Γijl

∥∥∥∥
L∞(µ)

≤ Ck ,

for every t ∈ [0, T ).
Applying again formula (5.2.1) to T = ∇sB we see that

∂k∇sB−∇k+sB =

k∑

i=1

∑

j1+···+ji+l≤k−1

∂j1Γ . . . ∂jiΓ ∂l∇sB ,

and by induction and estimates (5.1.6) we obtain

‖∂k∇sB‖L∞(µ) ≤ Ck,s

for every k, s ∈ N.
Since we already know that |ϕ| is bounded and |∂ϕ| = 1, by the Gauss–Weingarten relations (1.1.7)

∂2ϕ = Γ∂ϕ+Bν , ∂ν = B ∗ ∂ϕ
and the previous estimates, we can conclude that

‖∂kϕ‖L∞(µ) ≤ Ck

for every k ∈ N and t ∈ [0, T ).
The regularity of the time derivatives also follows by these estimates and the evolution equation.

Hence, the convergence ϕt → ϕT , when t → T , is in the C∞ topology and MT is smooth.
Then, using Theorem 3.2.1 to restart the flow with ϕT as initial hypersurface, we get a contradic-
tion with the fact that [0, T ) is the maximal interval of existence.

REMARK 5.2.2. Though this argument shows that the solution is classical, we cannot con-
clude that the estimates on the parametrization hold uniformly for every t ∈ [0,+∞) which is
instead the case for the estimates (5.1.6) on the curvature.

We have then shown Theorem 3.1.3, with the extra estimate of the following proposition.

PROPOSITION 5.2.3. If m > [n/2], the unique smooth solution of the evolution problem

∂ϕ

∂t
(p, t) = −Em(ϕt)(p)ν(p, t) ,

with an initial smooth, compact, immersed hypersurface ϕ0 : M → R
n+1 that is, the gradient flow

associated to the functional Fm or DGm+2, satisfies

max
Mt

|∇kB| ≤ Ck .

for constants Ck depending only on n, k and ϕ0.

REMARK 5.2.4. A natural extension would be to consider ambient spaces different by R
n+1

and a codimension s greater than one, that is, a general Riemannian manifold (N,h) of dimension
n+ s (notice that Polden’s Theorem 3.2.1 about short time existence of the flow already consider
hypersurfaces in a general target manifold), in particular to deal with the original conjecture
of De Giorgi 3.1.2 which was stated in arbitrary codimension. In this context the “analogous”
Fm–functional which can be considered is

Fm(ϕ) =

∫

M

1 + |∇mω|2 dµ

where ω = ν1 ∧ · · · ∧ νs is an s–vector obtained by a local orthonormal basis of the normal space
to the n–dimensional immersed submanifold ϕ :M → Nn+s.
This extension can actually be obtained by some technical and sometimes heavy but straightfor-
ward modifications of the arguments and computations of the previous chapters.

We remark that Kuwert, Schätzle and Dziuk in [37] extended Polden’s results to space curves.
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5.3. Convergence

Let us consider the function σ : [0,+∞) → R,

σ(t) =

∫

M

[Em(ϕt)]
2
dµt ≥ 0 .

Clearly we have
d

dt
Fm(ϕt) = −

∫

M

[Em(ϕt)]
2
dµt = −σ(t) ,

and integrating both sides in t on [0,+∞) we get
∫ +∞

0

σ(t) dt = Fm(ϕ0)−Fm(ϕt) ≤ Fm(ϕ0) .

Moreover, ∣∣∣∣
d

dt
σ(t)

∣∣∣∣ =
∫

M

∣∣∣∣2
∂Em(ϕt)

∂t
Em(ϕt)−H [Em(ϕt)]

3

∣∣∣∣ dµt ≤ C

by the bounds (5.1.6). Then the function σ, being Lipschitz and integrable on [0,+∞), converges
to zero at +∞. This means that every C∞ limit hypersurface of the flow ψ : M → R

n+1 satisfies
Em(ψ) = 0, that is, it is a critical point of Fm.

To find limit hypersurfaces, we need the following compactness result of Langer and Della-
dio [35, 69].

THEOREM 5.3.1. Let be given a family (M, gi) of closed, oriented, n–dimensional hypersurfaces,
isometrically immersed in R

n+1 via the maps ϕi : M → R
n+1, let µi the associated measures on M and

Bari the center of gravity of ϕi, that is,

Bari =

∫

M

ϕi dµi .

Let h be any metric tensor on M , if for some exponent p > n and C > 0 we have
∫

M

1 + |B|p dµi + |Bari| ≤ C < +∞ ,

then there exist a subsequence of {ϕi} (not relabeled) and diffeomorphisms σi : M → M such that,
{ϕi ◦ σi} converges in the W 2,p weak topology of maps from (M,h) → R

n+1 to an immersion ϕ : M →
R
n+1.

Translating the hypersurfaces ϕt : M → R in order to have Bart = 0 ∈ R
n+1, we are in

the above hypotheses. Hence, we can extract a subsequence of smooth hypersurfaces ϕi = ϕti
and diffeomorphisms σi : M → M such that, for a fixed metric h on M , the sequence {ϕi ◦ σi}
converges in the W 2,p weak topology to an immersion ψ :M → R

n+1.
With the arguments of the proof of Theorem 5.3.1 in [35, 69] and keeping into account that in our
case we have also the estimates (5.1.6), it is possible to conclude that actually the convergence is
in the C∞ topology and the limit hypersurface is smooth (see also [55, Prop. 3.4]).

As the analysis for the functional DGm+2 is analogous, we resume this discussion in the
following theorem.

THEOREM 5.3.2. The family of smooth hypersurfaces ϕ0 :M → R
n+1, immersed in R

n+1, evolving
by the gradient flow for the functional Fm or DGm+2, with m >

[
n
2

]
, up to reparametrizations and

translations, is compact in the C∞ topology of maps. Moreover, every limit point for t → +∞ is a C∞

critical hypersurface of the functional Fm or DGm+2, respectively.

REMARK 5.3.3. A natural open problem arising from the discussion of this section is the
question of the uniqueness of the limit hypersurface. It is also unknown to the author if actually
it can happen that the evolving hypersurface goes to the infinity when t→ +∞.
To conclude, we mention the problem of classification of the possible limit points of these flows,
or equivalently of the critical hypersurfaces of Fm and DGm+2. In his work [79] Polden com-
pletely classifies the limit curves of the flow of the functional (3.1.1), the analogous n–dimensional
result seems to be a much more difficult task.
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5.4. Other Functionals

It would be very interesting to study the flows in the “critical” case 2m = n, where our proof
fails since we are no more able to bound the constants in the inequalities independently of time,
as we did in Chapter 4.
Notice that the well known Willmore functional (see [67, 87, 93])

W(ϕ) =

∫

M

|B|2 dµ

falls exactly in this case if we add an area term, since |B|2 is equal to |∇ν|2.
To the author’s knowledge, up to now nor there is a proof of regularity of the flow, neither an
example showing the development of a singularity. Some important steps in this direction come
from the works of Kuwert and Schätzle [67, 66].

When 2m < n we do not expect regularity of the flow by the gradient of Fm or DGm+2,
since the curvature term should not be sufficient to give regularity and dumbbell–like separation
phenomena should appear during the flow of certain hypersurfaces. It should also be noticed
that in this and in the critical case, the n–dimensional unit sphere in R

n+1 “collapses” in finite
time.

Moreover, one can consider also “non–quadratic” functionals, for instance,

Fm,p(ϕ) =
∫

M

1 + |∇mν|p dµ when mp > n

(following the analogy with the Sobolev spaces), in particular,

F1,p(ϕ) =

∫

M

1 + |B|p dµ for p > n

which would give rise to a flow of order lower than the one of Fm when n > 1.
In the same spirit another interesting functional is

Hp(ϕ) =

∫

M

1 + |H|p dµ for p > n .

In all these cases the smoothness of the associated flows is an open problem.



CHAPTER 6

Singular Approximation of the Mean Curvature Flow

Slightly modifying our analysis in the previous chapters, it easily follows that if m > [n/2],
for every pair of positive constants α and β also the gradient flows of the functionals

Fαβ
m (ϕ) =

∫

M

α+ β|∇mν|2 dµ

and

DGαβm+2(M) =

∫

M

α+ β|Am+2|2 dHn

exists and are smooth for every positive time.
Moreover, if we consider a general, positive, geometric functional

G(ϕ) =
∫

M

f(ϕ, g,B, ν, . . . ,∇sB,∇lν) dHn ,

such that the function f is smooth and has polynomial growth, choosing an integer m large
enough, the gradient flow of the “perturbed” functional, for any ε > 0,

Gεm(ϕ) = G(ϕ) + εFm(ϕ)

does not develop singularities (the same if we perturb the functional G with εDGm+2).
This can be shown by first noticing that, as G is positive, the estimates on the constants in the
inequalities of Chapter 4 hold for the flow by the gradient of Gεm, then by choosing the or-
der m large enough in order that the term |∇mν|2 (or |Am+2|2) “dominates” all the others in
f(ϕ, g,B, ν, . . . ,∇sB,∇lν). This leads to the short time existence of the gradient flow and its
global regularity.
To be more precise, assuming for instance that f(ϕ, g,B, ν, . . . ,∇sB,∇lν) is bounded by C +
qs(∇ν,B) for some polynomial qs(∇ν,B) in the covariant derivatives of ∇ν and B (see Sec-
tion 1.2), as in the hypotheses, we consider an integer m ≥ 1 such that

• m is larger than the maximal order of differentiation of ν present in qs(∇ν,B),
• m− 1 is larger than the maximal order of differentiation of B present in qs(∇ν,B),
• 2m is larger than s, the rescaling order of qs(∇ν,B).

We recall that this latter is defined as

s =

N∑

k=1

(ik + 1) +

M∑

l=1

(jl + 1)

for a polynomial qs in ∇ν, B and their derivatives, of the form
∑

(∇i1∇ν) . . . (∇ik∇ν) . . . (∇iN∇ν)∇j1B . . .∇jlB . . .∇jMB gw1z1 . . . gwtzt

(see Remark 1.2.1 and the discussion therein).

By the first two conditions on m, the terms coming from the first variation of G are of lower order
than the leading term of the first variation of εFm (or εDGm+2, see the beginning of Chapter 3),
hence, the leading term of the Euler equation of Gεm is still given by

2ε(m+ 2)(−1)m+1
( m–times︷ ︸︸ ︷
∆∆ . . .∆H

)
ν
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and we can apply again Polden’s Theorem 3.2.1 in order to have short time existence and unique-
ness of the gradient flow of the functional Gεm, for every initial, smooth, compact, immersed hy-
persurface ϕ0 :M → R

n+1.
Getting the global regularity of the flow is a little bit more involved. Actually, the third condition
above on m is exactly what is needed in order that, after a careful inspection of all the arguments,
the estimates of Chapter 5 still hold for the flow by the gradient of Gεm.

REMARK 6.0.1. We underline that we could have also assumed that the integrand function
f in the functional G above, depends also on AM and its derivatives, by the relations between
the second fundamental form and the distance function established in the Chapter 1 (see also the
discussion at the beginning of Chapter 2).

We then say that Fm and DGm+2 are smoothing terms for the functional G, that possibly does
not admit a gradient flow even for short time starting from a generic initial, smooth, compact,
immersed hypersurface.
It this then natural to investigate what happens when the constant ε > 0 in front of these smooth-
ing terms goes to zero.

This program, suggested by De Giorgi in [31, 32, Sect. 5], can be described as follows: given
a geometric functional G defined on submanifolds of the Euclidean space (or a more general
ambient space),

• find a functional F such that the perturbed functionals Gε = G + εF give rise to smooth
flows for every ε > 0;

• study what happens when ε → 0, in particular, the existence of a limit flow and in this
case its relation with the gradient flow of G (if it exists, smooth or singular).

If proved successful, this scheme would give a singular approximation procedure of the gradient
flow of G with a family of globally smooth flows.

Our work shows that the functionals Fm and DGm+2 satisfy the first point for any geometric
functional G defined on hypersurfaces in R

n+1 with polynomial growth, provided we choose an
order m large enough (depending on G).

About the second point, the very first case is concerned with the possible limits when ε → 0
of the gradient flows of

∫
M

1 + ε|∇mν|2 dµ when m > [n/2] and their relation with the mean
curvature flow, which is the gradient flow of the Area functional, obtained by letting ε = 0.

De Giorgi, in the same paper [31, Sect. 5, Cong. 3 and Oss. 2/3] cited above (see also [32,
Sect. 5, Conj. 3 and Rem. 2/3]), essentially stated the following conjecture.

CONJECTURE 6.0.2 (De Giorgi). Let m > [n/2], if the parameter ε > 0 goes to zero, the flows
ϕεt associated to the functionals

DGεm(M) =

∫

M

1 + ε|Am+2|2 dHn

and starting from a common initial, smooth, compact, immersed hypersurface ϕ0 : M → R
n+1,

converge in some sense to the mean curvature flow of ϕ0,

∂ϕ

∂t
= Hν

(which is the gradient flow associated to the limit Area functional, as ε→ 0).

REMARK 6.0.3. De Giorgi proposed this conjecture in general codimension, in the follow-
ing we will discuss only the case of evolving hypersurfaces, see anyway Remark 5.2.4 and Re-
mark 6.3.3.

REMARK 6.0.4. Clearly, an analogous conjecture can be stated for the ε–parametrized family
of functionals

Fε
m(M) =

∫

M

1 + ε|∇mν|2 dµ .

The goal of this chapter will be to show the following theorem, related to such conjecture.
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THEOREM 6.0.5. Let ϕ0 :M → R
n+1 be a smooth, compact, n–dimensional, immersed submanifold

of Rn+1. Let Tsing > 0 be the first singularity time of the mean curvature flow ϕ :M × [0, Tsing) → R
n+1

of M . For any ε > 0 let ϕε :M × [0,+∞) → R
n+1 be the flow associated to the functional DGεm (or Fε

m)
with m > [n/2], that is,

∂ϕε

∂t
=H+ ε

(
2(m+ 2)(−1)m

m–times︷ ︸︸ ︷
∆Mt∆Mt . . .∆Mt H + q

2m+1(∇ν,B)
)
ν (6.0.1)

=H+ 2ε(m+ 2)(−1)m
( m–times︷ ︸︸ ︷
∆Mt∆Mt . . .∆Mt H

)
ν + εLOT ν

(LOT denotes terms of lower order in the curvature and its derivatives), all starting from the same initial
immersion ϕ0.
Then the maps ϕε converge locally in C∞(M × [0, Tsing)) to the map ϕ, as ε→ 0.

Since the proofs of this theorem for the two functionals DGεm or Fε
m are exactly the same, in

the sequel we will discuss only the case of DGεm.

EXAMPLE 6.0.6. In case of immersed plane curves γ : S1 → R
2, that is n = 1, the simplest

choice is m = 1. Since |A3|2 = 3κ2, where κ is the curvature of γ, in this simple case the approxi-
mating functionals read as ∫

γ

(
1 + 3εκ2

)
ds

where s is the arclength parameter and we. The regularized system which should approximate
the curve shortening flow is then

∂γ

∂t
=
(
κ− 6ε∂2sκ− 3εκ3

)
ν,

where ν is a suitable choice of the normal unit vector to the curve.

The crucial point in order to prove Theorem 6.0.5 is to obtain ε–independent estimates of the
curvature and its derivatives in order to gain sufficient compactness properties. We will get these
latter by computing the evolution equations satisfied by the L2 norms of the derivatives of the
second fundamental form of the flowing manifolds and by estimating via Gagliardo–Nirenberg
interpolation inequalities.
At the moment we are not able to characterize the possible limits of the approximating flows
after the first singularity time, as the proof of Theorem 6.0.5 relies heavily on the smoothness of the
mean curvature flow in the time interval of existence. Our future goal would be to get some limit
flow defined for all times, thus providing a new weak definition of solution to the mean curvature
flow.
We mention the simplest open problem in defining a limit flow after the first singularity.
It is well known (Gage–Hamilton [45, 46] and Huisken [54]) that a convex curve in the plane
(or hypersurface in R

n+1) moving by mean curvature shrinks to a point in finite time, becoming
exponentially round. In this case we expect that the approximating flows converge (in a way to
be made precise) to such point for every time after the extinction.

The plan of this chapter is the following. In the next section, in order to make the line of the
proof clearer, we work out in detail the ε–independent estimates in the simplest case of plane
immersed curves; also in this special case, the result appears to be nontrivial. In Section 6.2 we
consider the general case of a n–dimensional submanifold of Rn+1. Section 6.3 is devoted to show
Theorem 6.0.5.

6.1. Curves in the Plane

Let γ ∈ C∞(S1;R2) be a regular immersed closed curve in the plane R
2. Let τ = γx/|γx| = γs

and ν = Rτ be respectively the tangent and the normal to the curve γ, where R is the counter-
clockwise rotation of π/2 in the plane, and γx = ∂xγ.
We recall that ∂s = ∂x/|γx| and

∂sτ = κν, ∂sν = −κτ (6.1.1)
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where κ is the curvature of γ. In the sequel we let L = L(γ) =
∫
γ
1 ds be the length of the curve γ.

By simplicity, we will consider the functional

DGε/33 (γ) =

∫

γ

(
1 + εκ2

)
ds ,

instead of DGε3 (with n = m = 1), all the conclusions will holds clearly for this latter. Set

Eε = −κ+ 2ε∂2sκ+ εκ3 ,

then the gradient flow by DGε/33 is given by a smooth map γ : S1 × [0,+∞) → R
2 which is an

immersion for any t ∈ [0,+∞), equals a given immersion γ0 at time t = 0, and satisfies

∂tγ = −Eε ν , (6.1.2)

where ∂t =
∂
∂t . For notational simplicity, we omit the dependence of γ on ε.

LEMMA 6.1.1. We have
∂s∂tγ = −(∂sE

ε)ν + κEετ ,

in particular
〈∂s∂tγ, τ〉 = κEε . (6.1.3)

PROOF. It follows from equations (6.1.1) and the evolution equation (6.1.2). �

LEMMA 6.1.2. Let γ be a smooth closed curve, then

1

L
≤ 1

4π2

∫

γ

κ2 ds . (6.1.4)

PROOF. By Borsuk and Schwartz–Hölder inequalities we have

2π ≤
∫

γ

|κ| ds ≤
(∫

γ

κ2 ds

)1/2

L1/2 .

�

LEMMA 6.1.3. The following commutation rule holds:

∂t∂s = ∂s∂t − κEε∂s . (6.1.5)

PROOF. Observing that ∂t∂x|γx| = ∂x
|γx|∂t = ∂s∂t, we have

∂t∂s = ∂t

(
∂x
|γx|

)
=
∂t∂x
|γx|

− 〈γx, ∂tγx〉∂x
|γx|3

=
∂x
|γx|

∂t −
〈
γx
|γx|

,
∂tγx
|γx|

〉
∂x
|γx|

= ∂s∂t − 〈τ, ∂s∂tγ〉∂s .
Then the commutation rule (6.1.5) follows from equation (6.1.3). �

LEMMA 6.1.4. We have

∂tκ = −∂2sEε − κ2Eε = ∂2sκ+ κ3 − 2ε∂4sκ− 6εκ(∂sκ)
2 − 5εκ2∂2sκ− εκ5 . (6.1.6)

PROOF. We have
∂tκ = ∂t〈∂sτ, ν〉 = 〈∂t∂sτ, ν〉 .

Therefore, using formula (6.1.5) we have

∂tκ = 〈∂s∂t∂sγ, ν〉 − κEε〈∂sτ, ν〉 = 〈∂2s∂tγ, ν〉 − 〈∂s[κEε∂sγ], ν〉 − κ2Eε .

Using the evolution law (6.1.2) we get

〈∂2s∂tγ, ν〉 = −〈∂2s (Eεν), ν〉 = −∂2sEε + Eε〈∂s(κτ), ν〉 = −∂2sEε + κ2Eε .

In addition,
〈∂s[κEε∂sγ], ν〉 = κEε〈∂sτ, ν〉 = κ2Eε .

Hence ∂tκ = −∂2sEε − κ2Eε and the last equality in (6.1.6) follows by expanding Eε. �

REMARK 6.1.5. For ε = 0, formula (6.1.6) gives the well known evolution equation κt =
∂2sκ+ κ3, valid for motion by curvature, see [46, Lemma 3.1.6].
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By pushing a little the analysis in [9, Chap. 3, Sect. 7.6] and [9, Chap. 4] in the case of closed
curves, we can get the following special form of interpolation inequalities. We underline that the
“special” here refers to the fact that the influence of the geometry on the constants is explicit and
it is given only by the length of the curve.

PROPOSITION 6.1.6. Let γ be a regular closed curve in R
2 with finite length L. Let u be a smooth

function defined on γ, m ≥ 1 and p ∈ [2,+∞]. If n ∈ {0, . . . ,m− 1} we have the estimates

‖∂ns u‖Lp ≤ Cn,m,p‖∂ms u‖σL2‖u‖1−σL2 +
Bn,m,p
Lmσ

‖u‖L2 , (6.1.7)

where

σ =
n+ 1/2− 1/p

m
∈ [0, 1)

and the constants Cn,m,p and Bn,m,p are independent of γ.

Clearly inequalities (6.1.7) hold with uniform constants if applied to a family of curves having
lengths uniformly bounded below by some positive value.
We underline that the “special” here refers

REMARK 6.1.7. In the special case p = +∞, we have σ = n+1/2
m , and

‖∂ns u‖L∞ ≤ Cn,m‖∂ms u‖σL2‖u‖1−σL2 +
Bn,m
Lmσ

‖u‖L2 .

REMARK 6.1.8. In the particular case n = 0, m = 2, p = 6 we get σ = 1/6 and

‖u‖L6 ≤ C‖∂2su‖
1
6

L2‖u‖
5
6

L2 +
C

L
1
3

‖u‖L2 ,

for some C > 0, hence, by means of Young inequality |xy| ≤ 1
a |x|a+ 1

b |y|b, 1/a+1/b = 1, choosing

a = b = 2, x =
√
2‖∂2su‖L2 and y = C6

√
2
‖u‖5L2 , we obtain

∫

γ

u6 ds ≤
∫

γ

(∂2su)
2 ds+ C

(∫

γ

u2 ds

)5

+
C

L2

(∫

γ

u2 ds

)3

. (6.1.8)

In the particular case n = 0, m = 1, p = 4 we get σ = 1/4 and

‖u‖L4 ≤ C‖∂su‖
1
4

L2‖u‖
3
4

L2 +
C

L
1
4

‖u‖L2 ,

hence, reasoning as before,
∫

γ

u4 ds ≤
∫

γ

(∂su)
2 ds+ C

(∫

γ

u2 ds

)3

+
C

L

(∫

γ

u2 ds

)2

. (6.1.9)

We are now ready for the estimates. We recall that

∂t ds = κEε ds = (−κ2 + 2εκ∂2sκ+ εκ4) ds. (6.1.10)

LEMMA 6.1.9. We have

∂t

∫

γ

κ2 ds =

∫

γ

(
− 2(∂sκ)

2 + κ4 − 4ε(∂2sκ)
2 − εκ6 − 4εκ3∂2sκ

)
ds . (6.1.11)

PROOF. From (6.1.10) and Lemma 6.1.4 we get

∂t

∫

γ

κ2 ds =2

∫

γ

κ∂tκ ds+

∫

γ

(−κ4 + 2εκ3∂2sκ+ εκ6) ds

=2

∫

γ

κ
(
∂2sκ+ κ3 − 2ε∂4sκ− 6εκ(∂sκ)

2 − 5εκ2∂2sκ− εκ5
)
ds

+

∫

γ

(−κ4 + 2εκ3∂2sκ+ εκ6) ds

=

∫

γ

(
2κ∂2sκ+ κ4 − 4εκ∂4sκ− 12εκ2(∂sκ)

2 − 8εκ3∂2sκ− εκ6
)
ds.
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Therefore, integrating by parts, we obtain

∂t

∫

γ

κ2 ds =

∫

γ

(
− 2(∂sκ)

2 + κ4 − 4ε(∂2sκ)
2 − εκ6 − 12εκ2(∂sκ)

2 − 8εκ3∂2sκ
)
ds

=

∫

γ

(
− 2(∂sκ)

2 + κ4 − 4ε(∂2sκ)
2 − εκ6 − 4εκ3∂2sκ

)
ds,

where in the last equality we used the fact that −3
∫
γ
κ2(∂sκ)

2 ds =
∫
γ
κ3∂2sκ ds. �

PROPOSITION 6.1.10. The following estimate holds

∂t

∫

γ

κ2 ds ≤ C

(∫

γ

κ2 ds

)3

+ C

(∫

γ

κ2 ds

)5

, (6.1.12)

where C is a constant independent of ε.

PROOF. Adding to the right hand side of equation (6.1.11) the positive quantity 2ε(∂2sκ+κ
3)2

we get

∂t

∫

γ

κ2 ds ≤
∫

γ

(
− 2(∂sκ)

2 + κ4 − 2ε(∂2sκ)
2 + εκ6

)
ds .

Using now inequalities (6.1.8) and (6.1.9) we obtain

∂t

∫

γ

κ2 ≤
∫

γ

(
− (∂sκ)

2 − ε(∂2sκ)
2
)
ds+ Cε

(∫

γ

κ2 ds

)5

+
Cε

L2

(∫

γ

κ2 ds

)3

+ C

(∫

γ

κ2 ds

)3

+
C

L

(∫

γ

κ2 ds

)2

≤C

(∫

γ

κ2 ds

)5

+ C

(∫

γ

κ2 ds

)3

+
C

L

(∫

γ

κ2 ds

)2

+
C

L2

(∫

γ

κ2 ds

)3

≤C

(∫

γ

κ2 ds

)5

+ C

(∫

γ

κ2 ds

)3

,

where we supposed ε < 1 and in the last inequality we used the geometric estimate (6.1.4). �

We deal now with the higher derivatives of the curvature.
Since here we are working in dimension and codimension one, all polynomials in the curvature
κ and its derivatives are completely contracted, that is, they belong to the “family” qr(∂lsκ) (see
Section 1.2); moreover, every of their monomials is of the form

N∏

i=1

∂jis κ with 0 ≤ ji ≤ l and N ≥ 1

with

r =

N∑

i=1

(ji + 1) ,

as the ∗–product in this case is simply the usual product.

LEMMA 6.1.11. For any j ∈ N the following formula holds:

∂t∂
j
sκ = ∂j+2

s κ+ q
j+3(∂jsκ)− 2ε∂j+4

s κ− 5εκ2∂j+2
s κ+ εqj+5(∂j+1

s κ) . (6.1.13)

PROOF. We argue by induction on j.
The case j = 0 in (6.1.13) is equation (6.1.6), where q5(∂sκ) = −6κ(∂sκ)

2 − κ5.
Suppose that (6.1.13) holds for (j − 1); using the commutation rule (6.1.5) we get

∂t∂
j
sκ = ∂s∂t∂

j−1
s κ+ κ(κ− 2ε∂2sκ− εκ3)∂jsκ

= ∂s
[
∂j+1
s κ+ q

j+2(∂j−1
s κ)− 2ε∂j+3

s κ− 5εκ2∂j+1
s κ+ εqj+4(∂jsκ)

]

+ q
j+3(∂jsκ) + εqj+5(∂j+1

s κ) ,
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where we expressed qj+3(∂jsκ) = κ2∂jsκ and qj+5(∂j+1
s κ) = −(2κ∂2sκ+κ

4)∂jsκ. Hence, we deduce

∂t∂
j
sκ = ∂j+2

s κ+ q
j+3(∂jsκ)− 2ε∂j+4

s κ− 5εκ2∂j+2
s κ+ εqj+5(∂j+1

s κ) ,

which gives the inductive step. �

LEMMA 6.1.12. For any j ∈ N we have

∂t

∫

γ

|∂jsκ|2 ds =− 2

∫

γ

|∂j+1
s κ|2 ds− 4ε

∫

γ

|∂j+2
s κ|2 ds

+

∫

γ

q
2j+4(∂jsκ) ds+ ε

∫

γ

q
2j+6(∂j+1

s κ) ds .

PROOF. Using (6.1.10), (6.1.13) and integrating by parts we deduce

∂t

∫

γ

|∂jsκ|2 ds =2

∫

γ

∂jsκ ∂t∂
j
sκ ds+

∫

γ

|∂jsκ|2κEε ds (6.1.14)

=2

∫

γ

∂jsκ
(
∂j+2
s κ+ q

j+3(∂jsκ)
)
ds

+ ε

∫

γ

2∂jsκ
(
− 2∂j+4

s κ− 5κ2∂j+2
s κ+ q

j+5(∂j+1
s κ)

)
ds

−
∫

γ

|∂jsκ|2κ(κ− 2ε∂2sκ− εκ3) ds

= − 2

∫

γ

(
|∂j+1
s κ|2 + q

2j+4(∂jsκ)
)
ds

− 4ε

∫

γ

(
|∂j+2
s κ|2 + q

2j+6(∂j+1
s κ)

)
ds .

�

PROPOSITION 6.1.13. For any j ∈ N we have the ε–independent estimate, for ε < 1,

∂t

∫

γ

|∂jsκ|2 ds ≤ C

(∫

γ

κ2 ds

)2j+3

+ C

(∫

γ

κ2 ds

)2j+5

+ C (6.1.15)

where the constant C depends only on 1/L.

PROOF. We estimate the term
∫
γ
q2j+4(∂jsκ) ds as in Section 5.1. By definition, we have

q
2j+4(∂jsκ) =

∑

m

Nm∏

l=1

∂cml
s κ

with all the cml less than or equal to j and

Nm∑

l=1

(cml + 1) = 2j + 4

for every m. Hence,

|q2j+4(∂jsκ)| ≤
∑

m

Nm∏

l=1

|∂cml
s κ|

and setting

Qm =

Nm∏

l=1

|∂cml
s κ| ,

we clearly obtain ∫

γ

|q2j+4(∂jsκ)| ds ≤
∑

m

∫

γ

Qm ds .
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We now estimate any term Qm via interpolation inequalities. After collecting derivatives of the
same order in Qm we can write

Qm =

j∏

i=0

|∂isκ|αmi with

j∑

i=0

αmi(i+ 1) = 2j + 4 . (6.1.16)

Then
∫

γ

Qm ds =

∫

γ

j∏

i=0

|∂isκ|αmi ds ≤
j∏

i=0

(∫

γ

|∂isκ|αmiλi ds

) 1
λi

=

j∏

i=0

‖∂isκ‖αmi

Lαmiλi

where the values λi are chosen as follows: λi = 0 if αmi = 0 (in this case the corresponding term

is not present in the product) and λi =
2j+4

αmi(i+1) if αmi 6= 0. Clearly, αmiλi =
2j+4
i+1 ≥ 2j+4

j+1 > 2

and by the condition in (6.1.16),
∑j

i=0
λi 6=0

1
λi

=
∑j

i=0
λi 6=0

αmi(i+1)
2j+4 = 1.

As αmiλi > 2 these values are allowed as exponents p in inequality (6.1.7) and taking m = j + 1,
n = i, u = κ, we get

‖∂isκ‖Lαmiλi ≤ C‖∂j+1
s κ‖σmi

L2 ‖κ‖1−σmi

L2 +
C

L(j+1)σmi
‖κ‖L2 ≤ C

(
‖∂j+1
s κ‖L2 + ‖κ‖L2

)σmi ‖κ‖1−σmi

L2

with

σmi =
i+ 1/2− 1/(αmiλi)

j + 1

and the constant C depends only on 1/L.
Multiplying together all the estimates,

∫

γ

Qm ds ≤ C

j∏

i=0

(
‖∂j+1
s κ‖L2 + ‖κ‖L2

)αmiσmi ‖κ‖αmi(1−σmi)
L2 (6.1.17)

≤ C
(
‖∂j+1
s κ‖L2 + ‖κ‖L2

)∑j
i=0 αmiσmi ‖κ‖

∑j
i=0 αmi(1−σmi)

L2 .

Then we compute

j∑

i=0

αmiσmi =

j∑

i=0

αmi(i+ 1/2)− 1/λi
j + 1

=

∑j
i=0 αmi(i+ 1/2)− 1

j + 1

and using again the rescaling condition in (6.1.16),

j∑

i=0

αmiσmi =
4j + 6−∑j

i=0 αmi
2(j + 1)

.

Since
j∑

i=0

αmi ≥
j∑

i=0

αmi
i+ 1

j + 1
=

2j + 4

j + 1

we get

j∑

i=0

αmiσmi ≤
2j2 + 4j + 1

(j + 1)2
= 2− 1

(j + 1)2
< 2 .

Hence, we can apply Young inequality to the product in the last term of inequality (6.1.17), in
order to get the exponent 2 on the first quantity, that is,
∫

γ

Qm ds ≤
δm
2

(
‖∂j+1
s κ‖L2 + ‖κ‖L2

)2
+ Cm‖κ‖βL2 ≤ δm

∫

γ

|∂j+1
s κ|2 ds+ δm

∫

γ

κ2 ds+ Cm‖κ‖βL2 ,



6.1. CURVES IN THE PLANE 89

for arbitrarily small δm > 0 and some constant Cm > 0. The exponent β is given by

β =

j∑

i=0

αmi(1− σmi)
1

1−
∑j

i=0 αmiσmi

2

=
2
∑j
i=0 αmi(1− σmi)

2−∑j
i=0 αmiσmi

=
2
∑j
i=0 αmi −

4j+6−∑j
i=0 αmi

j+1

2− 4j+6−∑j
i=0 αmi

2(j+1)

=2
2(j + 1)

∑j
i=0 αmi − 4j − 6 +

∑j
i=0 αmi

4j + 4− 4j − 6 +
∑j
i=0 αmi

=2
(2j + 3)

∑j
i=0 αmi − 2(2j + 3)

∑j
i=0 αmi − 2

=2(2j + 3) .

Therefore, we conclude
∫

γ

Qm ds ≤ δm

∫

γ

|∂j+1
s κ|2 ds+ δm

∫

γ

κ2 ds+ Cm

(∫

γ

κ2 ds

)2j+3

.

Repeating this argument for all the Qm and choosing suitable δm whose sum over m is less than
one, we conclude that there exists a constant C depending only on 1/L and j ∈ N such that

∫

γ

q
2j+4(∂jsκ) ds ≤

∫

γ

|∂j+1
s κ|2 ds+ C

(∫

γ

κ2
)2j+3

+ C .

Reasoning similarly for the term q2j+6(∂j+1
s κ), we obtain

∫

γ

q
2j+6(∂jsκ) ds ≤

∫

γ

|∂j+2
s κ|2 ds+ C

(∫

γ

κ2 ds

)2j+5

+ C .

Hence, from (6.1.14) we get

∂t

∫

γ

|∂jsκ|2 ds ≤ −
∫

γ

|∂j+1
s κ|2 ds− ε

∫

γ

|∂j+2
s κ|2 ds

+ C

(∫

γ

κ2 ds

)2j+3

+ Cε

(∫

γ

κ2 ds

)2j+5

+ C

≤C

(∫

γ

κ2 ds

)2j+3

+ C

(∫

γ

κ2 ds

)2j+5

+ C

when ε < 1 and the constant C depends only on 1/L. �

By means of Propositions 6.1.10 and 6.1.13 we have then the following result.

THEOREM 6.1.14. For any j ∈ N there exists a smooth function Zj : R → (0,+∞) such that

∂t

∫

γ

|∂jsκ|2 ds ≤ Zj
(∫

γ

κ2 ds

)

for every ε < 1 and curve γ evolving by the gradient of the functional DGε/33 .

PROOF. The statement clearly follows by Propositions 6.1.10 and 6.1.13, since by Lemma 6.1.2
the quantity 1/L is controlled by

∫
γ
κ2 ds.

The smoothness of the functions Zj is obtained choosing possibly slightly larger constants in
inequalities (6.1.15) and (6.1.12). �
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This proposition, like the analogous one for the general case, Theorem 6.2.3, is the key tool in
order to get ε–independent compactness estimates. Indeed, for example, one can see that, by an
ODE’s argument, since all the flows (letting 0 < ε < 1 vary) start from a common initial, closed,
smooth curve, fixing any j ∈ N, there exists a common positive interval of time such that all the
quantities ‖∂isκ‖L2 , for i ∈ {0, . . . , j} are equibounded. This will allow us to get compactness and
C∞ convergence to the mean curvature flow as ε→ 0.

6.2. The General Case

By the computations in Chapter 2 (in particular Corollary 2.3.5) and the discussion at the
beginning of Chapter 3, we can write the evolution problem (6.0.1) as follows,

∂ϕε

∂t
= −Eεm = H+ 2ε(m+ 2)(−1)m

( m–times︷ ︸︸ ︷
∆Mt∆Mt . . .∆Mt H

)
ν + εq2m+1(∇2m−1B)ν ,

where Eεm is the Euler equation of the functional DGεm.
Essentially repeating the computations of Section 5.1, we have the following evolution equations
for the second fundamental form and its derivatives under the flow by the gradient of DGεm,

∂

∂t
∇sB =2ε(m+ 2)(−1)m∇s+2

m–times︷ ︸︸ ︷
∆∆ . . .∆H +∇s+2H

+ εp2m+s+3(∇2m+s+1B) + p
s+3(∇s+1B) .

We notice that every monomial of the terms p2m+s+3(∇2m+s+1B) and ps+3(∇s+1B) contains at
least two factors, since for both, the difference between the rescaling order and the highest possible
order of differentiation of B is two.

LEMMA 6.2.1. Flowing by the gradient of the functional DGεm, for any s ∈ N we have

∂

∂t

∫

M

|∇sB|2 dµ = − 2

∫

M

|∇s+1B|2 dµ+

∫

M

q
2s+4(∇s+1B) dµ (6.2.1)

− 4ε(m+ 2)

∫

M

|∇m+s+1B|2 dµ+ ε

∫

M

q
2m+4+2s(∇2m+s+1B) dµ

and
∂

∂t

∫

M

|B|2s+2 dµ =

∫

M

q
2s+4(∇2B) dµ+ ε

∫

M

q
2m+4+2s(∇2m+1B) dµ . (6.2.2)

Moreover, every monomial of the q–terms in the two formulas contains at least three factors, for the ∗–
product.

PROOF. We compute

∂

∂t
|∇sB|2 =4ε(m+ 2)(−1)m∇s+2

i1...islw

m–times︷ ︸︸ ︷
∆∆ . . .∆H∇s

j1...jsBpz g
i1j1 . . . gisjsglpgwz

+ 2∇s+2
i1...islw

H∇s
j1...jsBpz g

i1j1 . . . gisjsglpgwz

+ [εp2m+s+3(∇2m+s+1B) + p
s+3(∇s+1B)] ∗ ∇sB

=4ε(m+ 2)(−1)m∇s+2
i1...islw

m–times︷ ︸︸ ︷
∆∆ . . .∆H∇s

j1...jsBpz g
i1j1 . . . gisjsglpgwz

+ 2∇s+2
i1...islw

H∇s
j1...jsBpz g

i1j1 . . . gisjsglpgwz

+ εq2m+2s+4(∇2m+s+1B) + q
2s+4(∇s+1B)

and every monomial of the terms q2m+2s+4(∇2m+s+1B) and q2s+4(∇s+1B) contains at least three
factors, by the previous remark.
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Thus, we have that the time derivative of the quantity
∫
M

|∇sB|2 dµ is given by

4ε(m+ 2)(−1)m
∫

M

∇s+2
i1...islw

m–times︷ ︸︸ ︷
∆∆ . . .∆H∇s

j1...jsBpz g
i1j1 . . . gisjsglpgwz dµ

+ 2

∫

M

∇s+2
i1...islw

H∇s
j1...jsBpz g

i1j1 . . . gisjsglpgwz dµ

+ ε

∫

M

q
2m+2s+4(∇2m+s+1B) dµ+

∫

M

q
2s+4(∇s+1B) dµ ,

where we used that
∂

∂t
dµ = 〈H,Eεm〉 dµ,

hence its contribution can be absorbed in the last two terms (notice that, in doing this, the con-
dition of at least three factors in the monomials of q2m+2s+4(∇2m+s+1B) and q2s+4(∇s+1B) is
preserved).

Reasoning then as in Section 5.1 (integrating by parts and interchanging derivatives), we
eventually obtain equation (6.2.1).
The final polynomials q2m+2s+4(∇2m+s+1B) and q2s+4(∇s+1B) still have the three factors prop-
erty, as every interchange of covariant derivatives in the previous process always introduces an
extra lower order term, with one more factor of kind ∇lB (since the formula of interchange of
covariant derivatives involves the Riemann tensor, that we express in terms of B), which is ab-
sorbed in q2m+2s+4(∇2m+s+1B) and q2s+4(∇s+1B).
Equation (6.2.2) follows analogously. �

We set now, for any integer s > n/2 and ε > 0,

Qsε(t) =

∫

M

(
1 + |∇sB|2 + |B|2s+2

)
dµ, t ∈ [0,+∞). (6.2.3)

Letting ε > 0 vary, we want to study the evolution of Qsε under the flows ϕε associated with the
functionals DGεm (we recall that m > [n/2]).

By Lemma 6.2.1, we have

∂Qsε
∂t

= − 2

∫

M

|∇s+1B|2 dµ− 4ε(m+ 2)

∫

M

|∇m+s+1B|2 dµ (6.2.4)

+

∫

M

q
2s+4(∇s+1B) dµ+ ε

∫

M

q
2m+2s+4(∇2m+s+1B) dµ .

In order to deal with the polynomial terms we need the following easy consequence of Proposi-
tion 4.2.5.

LEMMA 6.2.2. There exists a constant C depending only on n, l, z, j, p, q, r and Q
[n/2]+1
ε , such that

for every compact, n–dimensional manifold (M, g), isometrically immersed in R
n+1, and covariant tensor

T = Ti1...il , the following inequality holds

‖∇jT‖Lp(µ) ≤ C ‖T‖σW z,q(µ)‖T‖1−σLr(µ) , (6.2.5)

for all z ∈ N, j ∈ {0, . . . , z}, p, q, r ∈ [1,+∞) and σ ∈ [j/z, 1] with the compatibility condition

1

p
=
j

n
+ σ

(
1

q
− z

n

)
+

1− σ

r
.

If such a condition gives a negative value for p, the inequality holds in (6.2.5) for every p ∈ [1,+∞) on
the left hand side.

PROOF. By Proposition 4.2.5, choosing any δ > 0 and setting D = Vol(M) + ‖H‖Ln+δ(µ), the
inequality holds for a constant C depending on n, l, z, j, p, q, r, δ and D. Hence, since by its
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definition

Q[n/2]+1
ε ≥

∫

M

(
1 + |B|n+4

)
dµ , for n even and

Q[n/2]+1
ε ≥

∫

M

(
1 + |B|n+3

)
dµ , for n odd,

the thesis follows. �

Working now as in Section 5.1, with s > n/2 fixed, we can interpolate the polynomial terms
as follows, ∫

M

q
2s+4(∇s+1B) dµ ≤

∫

M

|∇s+1B|2 dµ+ C1(Q
[n/2]+1
ε )

∫

M

q
2m+2s+4(∇2m+s+1B) dµ ≤ 3(m+ 2)

∫

M

|∇m+s+1B|2 dµ+ C2(Q
[n/2]+1
ε )

where C1(Q
[n/2]+1
ε ) and C2(Q

[n/2]+1
ε ) are some constants depending only on n, m, s and Q

[n/2]+1
ε .

We discuss briefly a key point of such estimates.
By Lemma 6.2.1, we know that the every monomial of q2s+4(∇s+1B) and q2m+2s+4(∇2m+s+1B)
contains at least three factors for the ∗–product.
Then, if a monomial of q2s+4(∇s+1B) contains a factor ∇s+1B, all the other factors ∇lB must have
0 ≤ l < s+ 1, because every other factor (which are at least two) contributes with l+ 1 ≥ 1 to the
total sum 2s + 4, giving the rescaling order. Hence, since ∇s+1B can eventually occur only one
time, we can “eliminate” it by means of Young inequality and interpolate.

Regarding the term q2m+2s+4(∇2m+s+1B), by the same argument, if some monomial contains
at least one occurrence of a derivative ∇m+s+1+jB for some integer j ≥ 0, then, all the other
factors ∇lB (which are at least two) must have 0 ≤ l < m+s+1− j. Then, integrating repeatedly
by parts, we can “move” j derivatives from the factor ∇m+s+1+jB to the other factors, obtaining
a polynomial q2m+2s+4(∇m+s+1B) whose monomials can contain at most only one occurrence of
the derivative ∇m+s+1B. At this point, we conclude like for the other polynomial, with Young
inequality and interpolation.

Hence, for every s > n/2, by (6.2.4) we have the estimate

∂Qsε
∂t

≤ −
∫

M

|∇s+1B|2 dµ− ε(m+ 2)

∫

M

|∇m+s+1B|2 dµ+ C(Q[n/2]+1
ε ) ,

where C = C1 + εC2 and the constants C1, C2 depend on ε only through Q
[n/2]+1
ε .

THEOREM 6.2.3. For any integer s > n/2 there exists a smooth function Zs : R → (0,+∞) such
that

∂t

∫

M

(
1 + |∇sB|2 + |B|2s+2

)
dµ ≤ Zs

(∫

M

(
1 + |∇[n/2]+1B|2 + |B|2[n/2]+4

)
dµ

)
(6.2.6)

for every ε ∈ (0, 1) and any smooth evolution by the gradient of the functional DGεm.

PROOF. The functions Zs can be clearly chosen to be smooth, possibly slightly enlarging the
constants in the last inequality above. �

As a consequence we get the following proposition.

PROPOSITION 6.2.4. In the same hypotheses of Theorem 6.2.3, there exists a continuous nonincreas-
ing function Θ : (0,+∞) → (0,+∞), independent of ε ∈ (0, 1), such that for every T ∈ R and

t ∈ [T, T +Θ(Q
[n/2]+1
ε (T ))] we have Q

[n/2]+1
ε (t) ≤ 2Q

[n/2]+1
ε (T ).

PROOF. The statement follows by a standard ODE’s argument applied to the differential
inequality

∂t

∫

M

(
1 + |∇[n/2]+1B|2 + |B|2[n/2]+4

)
dµ ≤ Z[n/2]+1

(∫

M

(
1 + |∇[n/2]+1B|2 + |B|2[n/2]+4

)
dµ

)

which is the first case of Theorem 6.2.3. �
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In other words, this proposition says that (for ε small) we have a uniform controlQ
[n/2]+1
ε (t) ≤

C in some time interval [T, T +Θ] (hence also a control the constants in Lemma 6.2.2 and on the
right hand side of inequalities (6.2.6) for every s > n/2), with C and Θ > 0 depending (smoothly)

only on the value of Q
[n/2]+1
ε at the starting time T .

6.3. Convergence to the Mean Curvature Flow

In this section we prove the convergence of solutions ϕε :M × [0,+∞) → R
n+1 to (6.0.1) (all

starting from a common immersion ϕ0) to the mean curvature flow ϕ : M × [0, Tsing) → R
n+1

before its first singularity time. Since we are considering ε→ 0, we can assume in all this section
that ε ∈ (0, 1).

Let Qs(t) denote, for each nonnegative time t before the first singularity, the right hand side
of equation (6.2.3) for the mean curvature flow ϕ at time t.

LEMMA 6.3.1. Let ε belong to some interval (0, ε0) with ε0 < 1.
If the family of immersions ϕε(·, T ) : M → R

n+1 are bounded in the C∞ topology, for any s ∈ N all
the quantities |∇sB| are uniformly bounded by ε–independent constants Cs < +∞, in the time interval

[T, T + θ], where θ = Θ(supε∈(0,ε0)Q
[n/2]+1
ε (T )) > 0 and Θ is the function in Proposition 6.2.4.

PROOF. By the C∞ boundedness of the family ϕε(·, T ) : M → R
n+1, all the quantities

Q
[n/2]+1
ε (T ) are equibounded, as ε ∈ (0, ε0). Since the function Θ is continuous and nonincreas-

ing, setting θ = Θ(supε∈(0,ε0)Q
[n/2]+1
ε (T )) > 0, by Proposition 6.2.4 there exists a constant C > 0

such that Q
[n/2]+1
ε (t) ≤ C for every ε ∈ (0, ε0) and t ∈ [T, T + θ].

Then, again by the boundedness of the family ϕε(·, T ) and Theorem 6.2.3, in the same time inter-
val [T, T + θ] all the quantities

∫

M

(
1 + |∇sB|2 + |B|2s+2

)
dµ ,

for every s > n/2, are bounded by ε–independent constants Cs < +∞. Moreover, all the con-
stants in the interpolation inequalities of Lemma 6.2.2 and Proposition 4.2.3 are also bounded.
Now, as a first step we see that, by means of Lemma 6.2.2, we get the following estimates, for
every p ∈ [2,+∞) and s > n/2, ∫

M

|∇sB|p dµ ≤ Cs,p

in the same time interval [T, T + θ]. Here again the constants Cs,p < +∞ are ε–independent.
Then, we conclude the proof by means of Proposition 4.2.3. �

LEMMA 6.3.2. Assume that at time t = T the family of maps ϕε(·, T ) : M → R
n+1 converges as

ε → 0 in the C∞ topology to the immersion ϕT : M → R
n+1. Then the maps ϕε smoothly converge in

the time interval [T, T + Θ(Q[n/2]+1(T ))) to the solution of the mean curvature flow starting from ϕT
(here, Q[n/2]+1(T ) is the quantity relative to the immersion ϕT ).

PROOF. Chosen any ε0 < 1, by the previous lemma, we have uniform bounds on B and its

derivatives in the time interval [T, T + θ] with θ = Θ(supε∈(0,ε0)Q
[n/2]+1
ε (T )). Then, there exists

C > 0 independent of ε ∈ (0, ε0) such that
∣∣∣∣
∂ϕε(p, t)

∂t

∣∣∣∣ = |Eεm(p, t)| < C ∀(p, t) ∈M × [T, T + θ], ε ∈ (0, ε0) .

Now we consider the metric tensors gεij(p, t) =
〈
∂ϕε(p,t)
∂xi

, ∂ϕ
ε(p,t)
∂xj

〉
, and fix a vector V = {vi} ∈

TpM . Then we have
∣∣∣∣
∂

∂t
|V |2gε(p,t)

∣∣∣∣ =
∣∣∂tgεij(p, t)vivj

∣∣ = 2
∣∣〈Eεm,Bij〉vivj

∣∣ ≤ 2|Eεm| |B|gε(p,t)|V |2gε(p,t) ≤ C|V |2gε(p,t)
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where C does not depend on ε ∈ (0, ε0).
Then a simple ODE’s argument shows that the metrics gεij are all equivalent; more precisely, there
exists a positive constant C depending only on ϕT such that

Id

C
≤ gεij(p, t) ≤ CId , (6.3.1)

as matrices.

Moreover, as functions, all the gεii =
∣∣∣∂ϕ

ε

∂xi

∣∣∣
2

are equibounded above by a common constant.

Hence, by Ascoli–Arzelà’s Theorem, up to a subsequence, the immersions ϕε uniformly con-
verge, as ε → 0 to some Lipschitz map ϕ̂ : M × [T, T + θ] → R

n+1, which clearly satisfies
ϕ̂(p, T ) = ϕT (p) for every p ∈M .

Similarly, as the time derivative of the Christoffel symbols is given by

∂

∂t
Γlij = ∇Eεm ∗ B + Eεm ∗ ∇B (6.3.2)

(see the beginning of Section 6.2) and all the metrics are equivalent, it follows that all the Christof-
fel symbols are equibounded. This means that estimating the covariant derivatives is equivalent
to estimate the standard derivatives in coordinates, hence, we have immediately |∂s∇lB| ≤ Cs,l
for every s, l ∈ N.
Since

∂

∂t
gεij = 2〈Eεm,Bij〉

we get ∣∣∣∣∇s ∂

∂t
gij

∣∣∣∣ ≤ Cs ,

and, by formula (6.3.2), ∣∣∣∣∇s ∂

∂t
Γlij

∣∣∣∣ ≤ Cs .

for every s ∈ N.
Hence, we get

∣∣∂s ∂∂tΓlij
∣∣ ≤ Cs which implies, as the family of maps ϕεT is bounded in the C∞–

topology, that |∂sΓlij | ≤ Cs.

Since we already know that |ϕε| are equibounded, |∂ϕε| ≤ C and ∂2ϕε = Γ∂ϕε + B, by the
estimates |∂s∇lB| ≤ Cs,l, we can conclude that the derivatives |∂sϕε| are all bounded by ε–
independent constants Cs, for every s ∈ N.
Finally, the uniform control on the time and mixed derivatives of ϕε follows using the evolution
equation.

Hence, the sub–convergence ϕε → ϕ̂, as ε → 0, is in the C∞ topology and ϕ̂ is smooth,
moreover, the limit metric is positive definite by (6.3.1).
Passing to the limit in the evolution equation ∂tϕ

ε = Eεm, by the bounds on B and its derivatives,
shows that ϕ̂ : M × [T, T + θ] → R

n+1 is the flow by mean curvature of the starting smooth
datum ϕT . Since this flow is unique, all the sequence of maps ϕε converges to ϕ̂ in the time
interval [T, T + θ].

Chosen now any δ > 0, we take ε0 > 0 such that

sup
ε∈(0,ε0)

Q[n/2]+1
ε (T )−Q[n/2]+1(T ) < δ ,

this is clearly possible as ϕε(·, T ) converges smoothly to ϕT .
Since the function Θ is nonincreasing (see Lemma 6.3.1), then we conclude that for any δ >
0 the sequence ϕε converges to the mean curvature flow of ϕT in the time interval [T, T +

Θ(Q[n/2]+1(T ) + δ)].
Letting δ to zero, as the function Θ is continuous, we get the thesis. �

We are now in the position to prove Theorem 6.0.5.
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PROOF OF THEOREM 6.0.5. Let Tmax be the maximal time such that ϕε converge to the so-
lution of the mean curvature flow equation ϕ in C∞(M × [0, Tmax)) starting at time t = 0 from
the common immersion ϕ0. Observe that Tmax is positive by Lemma 6.3.2. We want to show that
Tmax coincides with the first singularity time Tsing for ϕ.

Assume by contradiction that Tmax < Tsing. Then ϕ(·, t) → ϕ(·, Tmax) in C∞(M) as t→ Tmax.
As the function Θ is continuous, there exists

lim
t→Tmax

Θ(Q[n/2]+1(t)) = Θ(Q[n/2]+1(Tmax)) = τ > 0 .

Choosing now a time T ∈ [Tmax − τ/4, Tmax) such that Θ(Q[n/2]+1(T )) > τ/2, and applying
Lemma 6.3.2, we see that ϕε(·, t) converges to the mean curvature flow also for t in the interval
[T, T + τ/2]. As T + τ/2 ≥ Tmax − τ/4 + τ/2 > Tmax, we have a contradiction. �

REMARK 6.3.3. As we discussed in Remark 5.2.4 the extension to higher codimension of the
results of the previous chapters, all the material of this chapter also can be generalized (consid-
ering a suitable functional) leading to a full proof of the original conjecture of De Giorgi (see the
remark immediately after Conjecture 6.0.2).

REMARK 6.3.4. We remark here that this method works in general for any geometric evo-
lution of submanifolds in a Riemannian manifold till the first singularity time, even when the
equations are of high order (like, for instance, in the Willmore flow, see [66, 67, 93]), choosing an
appropriate regularizing term (of higher order).



APPENDIX A

Quasilinear Parabolic Equations on Manifolds

(In Collaboration with Luca Martinazzi)

Let (M, g) be a compact, smooth Riemannian manifold without boundary of dimension n
and let dµ be the canonical measure associated to the metric tensor g.

We consider the parabolic problem with a smooth initial datum u0 :M → R,
{
ut = Q[u] in M × [0, T ]
u( · , 0) = u0 on M ,

(A.3)

where Q is a smooth, quasilinear, locally elliptic operator of order 2p, defined in M × [0, T ) for
some T > 0 which, adopting (as in all the sequel) the Einstein convention of summing over
repeated indices, can be expressed in local coordinates as

Q[u](x, t) = Ai1...i2p(x, t, u,∇u, . . . ,∇2p−1u)∇2p
i1...i2p

u(x, t) + b(x, t, u,∇u, . . . ,∇2p−1u) ,

where A is a locally elliptic smooth (2p, 0)–tensor of the form

Ai1j1...ipjp = (−1)p−1Ei1j11 · · ·Eipjpp (A.4)

for some (2, 0)–tensors E1, . . . , Ep and a function b smoothly depending on their arguments.
Local ellipticity here means that for every L > 0 there exists a positive constant λ ∈ R such that
each tensor Eℓ satisfies

Eijℓ (x, t, u, ψ1, . . . , ψ2p−1)ξiξj ≥ λ|ξ|2g(x), for every ξ ∈ T ∗
xM , (A.5)

when x ∈ M , t ∈ [0, T ] with T < T , u ∈ R with |u| ≤ L, ψk ∈ ⊗kT ∗
xM with |ψk|g(x) ≤ L. In other

words we require that condition (A.5) holds for some positive λ whenever the arguments of Eijℓ
lie in a compact set K of their natural domain of definition and assume that λ depends only on
K. If λ > 0 can be chosen independent of K (i.e. of L), then we shall say that A is uniformly
elliptic.

Clearly, this is not the most general notion of quasilinear parabolic problems, due to the
special “product” structure of the operator, anyway it covers several important situations. For
instance, our definition includes the case of standard locally parabolic equations of order two
in non–divergence form. Notice that we make no growth assumptions on the tensor A and the
function b.

Interchanging covariant derivatives, integrating by parts and using interpolation inequalities
(see [80] for details), the following Gårding’s inequality holds for this class of operators. For every
smooth u and t ∈ [0, T ), we have

−
∫

M

ψAi1...i2p(u)∇2p
i1...i2p

ψ dµ ≥ σ‖ψ‖2Wp,2(M) − C‖ψ‖2L2(M) ∀ψ ∈ C∞(M) , (A.6)

where the constants σ > 0 and C > 0 depend continuously only on the Cp–norm of the tensor A
and on the C3p−1–norm of the function u at time t (and on the curvature tensor of (M, g) and its
covariant derivatives). In particular, if u depends smoothly on time, σ = σ(t) and C = C(t) are
continuous functions of time.

The aim of this note is to prove the following short time existence result.

THEOREM A.1. For every u0 ∈ C∞(M) there exists a positive time T > 0 such that problem (A.3)
has a smooth solution. Moreover, the solution is unique and depends continuously on u0 in the C∞–
topology.
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Our interest in having a handy proof of this result is related to geometric evolution problems,
like for instance the Ricci flow, the mean curvature flow, the Willmore flow [67], the Q–curvature
flow [73], the Yamabe flow [19, 84, 94], etc. In all these problems, the very first step is to have a
short time existence theorem showing that for an initial geometric structure (hypersurface, met-
ric) the flow actually starts. Usually, after some manipulations in order to eliminate the degen-
eracies due to the geometric invariances, one has to face a quasilinear parabolic equation with
smooth coefficients and smooth initial data.

If we replace the compact manifold M with a bounded domain Ω ⊂ R
n, short time existence

for quasilinear systems of order two, with prescribed boundary conditions and initial data, was
proven by Giaquinta and Modica [48] in the setting of Hölder spaces.

A different approach to Theorem A.1 was developed by Polden in his PhD Thesis [80] (see
also [57]), by means of an existence result for linear equations in parabolic Sobolev spaces and
the inverse function theorem. Unfortunately, as pointed out by Sharples [85], such procedure
has a gap in the convergence of the solutions of the “frozen” linear problems to a solution of the
quasilinear one.

In the same paper [85] Sharples, pushing further the estimates of Polden and allowing non-
smooth coefficients, was able by means of an iteration scheme to show the existence of a short
time solution of the quasilinear problem on a two–dimensional manifold, when the operator is
of order two and in divergence form.

Our goal here is instead to simply fill the gap in Polden’s proof. We start with his linear result
and we show that his linearization procedure actually works if one linearizes at a suitably chosen
function and discusses in details the above mentioned convergence.
As we do not assume any condition on the operator (only its product structure) and on the dimen-
sion of the manifold, we have a complete proof of the short time existence of a smooth solution
to these quasilinear locally parabolic equations of arbitrary order on compact manifolds and of
its uniqueness and smooth dependence on the initial data. We refer the interested reader to the
nice and detailed introduction in [85] for the different approaches to the problem.

In the next section we present the linearization procedure, assuming Polden’s linear result
(Proposition A.3 below) and we prove Theorem A.1 by means of Lemma A.6 which is the core of
our argument. Roughly speaking, when a candidate solution u stays in some parabolic Sobolev
space of order high enough, the functions u,∇u, . . . ,∇2p−1u are continuous (or even more reg-
ular), hence the same holds for the tensor A and the function b. This implies that the map
u 7→ (ut − Q[u]) is of class C1 between some suitable spaces, as it closely resembles a linear
map with regular coefficients. This allows the application of the inverse function theorem which,
in conjunction with an approximation argument, yields the existence of a solution. The last two
sections are devoted to the proof of Lemma A.6 and to the discussion of the parabolic Sobolev
embeddings on which such proof relies.

We mention that the results can be extended to quasilinear parabolic systems as the lineariza-
tion procedure remains the same and Polden’s linear estimates (Proposition A.3) can be actually
easily generalized, assuming a suitable definition of ellipticity. In fact one easily sees that our
result applies to all quasilinear systems whose linearization is invertible in the sense of Propo-
sition A.4 below. For more general definition of elliptic or parabolic operators of higher–order
see [2].

In the following the letter C will denote a constant which can change from a line to another and even
within the same formula.
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Proof of the Main Theorem

We recall Polden’s result for linear parabolic equations. Let us consider the problem



ut −Ai1...i2p∇2p

i1...i2p
u−

2p−1∑

k=0

Rj1...jkk ∇k
j1...jk

u = b

u( · , 0) = u0 ,

(A.7)

where all the tensors A and Rk depend only on (x, t) ∈ M × [0,+∞), are smooth and uniformly
bounded with all their derivatives. Moreover, we assume that the tensor A has the product
structure (A.4), where each Eℓ is uniformly elliptic.

The Gårding’s inequality for the linear operator

L(u) = Ai1...i2p∇2p
i1...i2p

u−
2p−1∑

k=0

Rj1...jkk ∇k
j1...jk

u

reads (see again [80] for details)

−
∫

M

ψL(ψ) dµ ≥ λ

2
‖ψ‖2Wp,2(M) − C‖ψ‖2L2(M) ∀ψ ∈ C∞(M) , (A.8)

where the constant C > 0 depends only on the Cp–norm of the tensors A and Rk. Clearly, by
approximation this inequality holds also for every ψ ∈W 2p,2(M).

DEFINITION A.2. For any m ∈ N and a ∈ R
+ we define Pma (M) to be the completion of

C∞
c (M × [0,+∞)) under the parabolic norm

‖f‖2Pm
a (M) =

∑

j, k ∈ N and 2pj + k ≤ 2pm

∫

M×[0,+∞)

e−2at|∂jt∇kf |2 dµ dt

and analogously Pm(M,T ) as the completion of C∞(M × [0, T ]) under the norm

‖f‖2Pm(M,T ) =
∑

j, k ∈ N and 2pj + k ≤ 2pm

∫

M×[0,T ]

|∂jt∇kf |2 dµ dt ,

for every T ∈ R
+.

Clearly for every T ∈ R
+ there is a natural continuous embedding Pma (M) →֒ Pm(M,T ).

We have then the following global existence result for problem (A.7), by Polden [80, Thm. 2.3.5].

PROPOSITION A.3. For every m ∈ N there exists a ∈ R
+ large enough such that the linear map

Φ(u) =
(
u0, ut −Ai1...i2p∇2p

i1...i2p
u−

2p−1∑

k=0

Rj1...jkk ∇k
j1...jk

u
)
= (u0, L(u)) , (A.9)

where u0 = u( · , 0), is an isomorphism of Pma (M) onto W p(2m−1),2(M)× Pm−1
a (M).

In the following it will be easier (though conceptually equivalent) to use the spaces Pm(M,T )
instead of the weighted spaces Pma (M). For this reason we translate Proposition A.3 into the
setting of Pm(M,T ) spaces.

PROPOSITION A.4. For every T > 0 and m ∈ N the map Φ given by formula (A.9) is an isomor-

phism of Pm(M,T ) onto W p(2m−1),2(M)× Pm−1(M,T ).

PROOF. The continuity of the second component of Φ is obvious while the continuity of the
first component follows as in the Polden’s proof of Proposition A.3 in [80]. Hence, the map Φ is
continuous, now we show that it is an isomorphism.

Given any b ∈ Pm−1(M,T ) we consider an extension b̃ ∈ Pm−1
a (M) of the function b and we let

ũ ∈ Pma (M) be the solution of problem (A.7) for b̃. Clearly, u = ũ|M×[0,T ] belongs to Pm(M,T )
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and satisfies Φ(u) = (u0, b) in M × [0, T ]. Suppose that v ∈ Pm(M,T ) is another function such
that Φ(v) = (u0, b) in M × [0, T ], then setting w = u− v ∈ Pm(M,T ) we have that




wt −Ai1...i2p∇2p

i1...i2p
w −

2p−1∑

k=0

Rj1...jkk ∇k
j1...jk

w = wt − L(w) = 0

w( · , 0) = 0 .

By the very definition of solution in Pm(M,T ) (see [80]) and Gårding’s inequality (A.8), we get

∫

M

w2(x, t) dµ(x) =

∫ t

0

∫

M

2wwt dµ ds

=2

∫ t

0

∫

M

wL(w) dµ ds

≤ − λ

2

∫ t

0

∫

M

|∇pw|2 dµ ds+ C

∫ t

0

∫

M

w2 dµ ds

≤C

∫ t

0

∫

M

w2(x, s) dµ(x) ds ,

as w( · , t) ∈ W 2p,2(M) for almost every t ∈ [0, T ] and where the constant C > 0 depends only
on T as the coefficients of the operator L are smooth. Then, by Gronwall’s lemma (in its integral
version) it follows that

∫
M
w2( · , t) dµ is zero for every t ∈ [0, T ], as it is zero at time t = 0. It

follows that w is zero on all M × [0, T ], hence the two functions u and v must coincide.
Since the map Φ : Pm(M,T ) → W p(2m−1),2(M) × Pm−1(M,T ) is continuous, one–to–one

and onto, it is an isomorphism by the open mapping theorem. �

REMARK A.5. When u0 and b are smooth the unique solution u of problem (A.7) belongs to
all the spaces Pm(M,T ) for every m ∈ N. As by Sobolev embeddings for any k ∈ N we can find
a large m ∈ N so that Pm(M,T ) continuously embeds into Ck(M × [0, T ]), we can conclude that
u actually belongs to C∞(M × [0, T ]).

Now we are ready to prove Theorem A.1. The tensor A and the function b from now on
will depend on x, t, u,∇u, . . . ,∇2p−1u as in the introduction. Since M is compact there exists a
constantC > 0 such that the initial datum satisfies |u0|+|∇u0|g+. . .+|∇2p−1u0|g ≤ C. Then, since
we are interested in existence for short time, possibly modifying the tensor A and the function b
outside a compact set with some “cut–off” functions, we can assume that if |u| + |∇u|g + . . . +
|∇2p−1u|g + t ≥ 2C, then

Eijℓ (x, t, u,∇u, . . . ,∇2p−1u) = gij(x), and b(x, t, u,∇u, . . . ,∇2p−1u) = 0 .

In particular we can assume that the tensors Eℓ are uniformly elliptic.
For a fixed m ∈ N, we consider the map defined on Pm(M,T ) given by

F(u) = (u0, ut −Q[u]) =
(
u( · , 0), ut −A(u) · ∇2pu− b(u)

)
,

where in order to simplify we used the notation

A(u) · ∇2pv(x, t) = Ai1...i2p(x, t, u(x, t), . . . ,∇2p−1u(x, t))∇2p
i1...i2p

v(x, t) ,

and

b(u)(x, t) = b(x, t, u(x, t), . . . ,∇2p−1u(x, t))

for u, v ∈ Pm(M,T ).
We have seen in Proposition A.4 that if A(u) and b(u) only depend on x ∈ M and t ∈ [0, T ] (and

not on u and its space derivatives), then F is a continuous map fromPm(M) ontoW p(2m−1),2(M)×
Pm−1(M). This is not the case in general when A and b depend on u and its derivatives, but it is
true if m ∈ N is large enough and in this case F is actually C1.
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LEMMA A.6. Assume that

m >
dimM + 6p− 2

4p
=
n+ 6p− 2

4p
, (A.10)

and u ∈ Pm(M,T ). Then F(u) ∈W p(2m−1),2(M)× Pm−1(M,T ) and the map

F : Pm(M,T ) →W p(2m−1),2(M)× Pm−1(M,T )

is of class C1.

We postpone the proof of this lemma to next section.
We fix m ∈ N such that the hypothesis of Lemma A.6 holds and we set

ũ0(x, t) =

m−1∑

ℓ=0

aℓ(x) t
ℓ

ℓ!

for some functions a0, . . . , am−1 ∈ C∞(M) to be determined later. Let w ∈ Pm(M,T ) be the
unique solution of the linear problem

{
wt = A(ũ0) · ∇2pw + b(ũ0)

w( · , 0) = u0 .

Such solution exists by Proposition A.4 and it is smooth by Remark A.5, as u0 and ũ0 are smooth
(thus also A(ũ0) and b(ũ0)).
Hence, we have

F(w) = (u0, wt −Q[w]) =
(
u0, (A(ũ0)−A(w)) · ∇2pw + b(ũ0)− b(w)

)
=: (u0, f) ,

where we set f = (A(ũ0)−A(w)) · ∇2pw + b(ũ0)− b(w).
If we compute the differential dFw of the map F at the “point” w ∈ C∞(M × [0, T ]), acting

on v ∈ Pm(M,T ), we obtain

dFw(v) =
(
v0, vt −Ai1...i2p(w)∇2p

i1...i2p
v −DwA

i1...i2p(w)v∇2p
i1...i2p

w . . . (A.11)

· · · −Dwj1...j2p−1
Ai1...i2p(w)∇2p−1

j1...j2p−1
v∇2p

i1...i2p
w

−Dwb(w)v · · · −Dwj1...j2p−1
b(w)∇2p−1

j1...j2p−1
v
)
,

where v0 = v( · , 0) and we denoted by Dwj1...jk
Ai1...i2p(w), Dwj1...jk

b(w) the derivatives of the

tensor A and of the function b with respect to their variables ∇k
j1...jk

w, respectively.

Then, we can see that dFw(v) = (z, h) ∈W p(2m−1),2(M)×Pm−1(M,T ) implies that v is a solution
of the linear problem




vt − Ãi1...i2p∇2p

i1...i2p
v −

2p−1∑

k=0

R̃j1...jkk ∇k
j1...jk

v = h

v( · , 0) = z ,

where

Ãi1...i2p =Ai1...i2p(w) ,

R̃j1...jkk =Dwj1...jk
Ai1...i2p(w)∇2p

i1...i2p
w +Dwj1...jk

b(w)

are smooth tensors independent of v.

By Proposition A.4 for every (z, h) ∈W p(2m−1),2(M)×Pm−1(M,T ) there exists a unique solution
v of this problem, hence dFw is a Hilbert space isomorphism and the inverse function theorem
can be applied, as the map F is C1 by Lemma A.6. Hence, the map F is a diffeomorphism of a

neighborhood U ⊂ Pm(M,T ) of w onto a neighborhood V ⊂ W p(2m−1),2(M) × Pm−1(M,T ) of
(u0, f).

Getting back to the functions aℓ, we claim that we can choose them such that aℓ = ∂ℓtw|t=0 ∈
C∞(M) for every ℓ = 0, . . . ,m− 1.
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We apply the following recurrence procedure. We set a0 = u0 ∈ C∞(M) and, assuming to have
defined a0, . . . , aℓ, we consider the derivative

∂ℓ+1
t w|t=0 = ∂ℓt [A

i1...i2p(x, t, ũ0,∇ũ0, . . . ,∇2p−1ũ0)∇2p
i1...i2p

w + b(x, t, ũ0,∇ũ0, . . . ,∇2p−1ũ0)]
∣∣∣
t=0

and we see that the right–hand side contains time-derivatives at time t = 0 of ũ0, . . . ,∇2p−1ũ0
and ∇2p

i1...i2p
w only up to the order ℓ, hence it only depends on the functions a0, . . . , aℓ. Then, we

define aℓ+1 to be equal to such expression. Iterating up to m− 1, the set of functions a0, . . . , am−1

satisfies the claim.
Then, aℓ = ∂ℓt ũ0|t=0 = ∂ℓtw|t=0 and it easily follows by the “structure” of the function f ∈

C∞(M × [0, T ]), that we have ∂ℓtf |t=0 = 0 and ∇j∂ℓtf |t=0 = 0 for any 0 ≤ ℓ ≤ m− 1 and j ∈ N.
We consider now for any k ∈ N the “translated” functions fk :M × [0, T ] → R given by

fk(x, t) =

{
0 if t < 1/k

f(x, t− 1/k) if 1/k ≤ t ≤ T .

Since f ∈ C∞(M × [0, T ]) and ∇j∂ℓtf |t=0 = 0 for every 0 ≤ ℓ ≤ m − 1 and every j ∈ N, all the
functions ∇j∂ℓtfk ∈ C0(M × [0, T ]) for every 0 ≤ ℓ ≤ m− 1 and j ≥ 0, it follows easily that

∇j∂ℓtfk → ∇j∂ℓtf in L2(M × [0, T ]) for 0 ≤ ℓ ≤ m− 1, j ≥ 0 ,

hence fk → f in Pm(M,T ).

Hence, there exists a function f̃ ∈ Pm−1(M,T ) such that (u0, f̃) belongs to the neighborhood

V of F(w) and f̃ = 0 in M × [0, T ′] for some T ′ ∈ (0, T ]. Since F|U is a diffeomorphism between

U and V , we can find a function u ∈ U such that F(u) = (u0, f̃). Clearly such u ∈ Pm(M,T ′) is
a solution of problem (A.3) in M × [0, T ′]. Since u ∈ Pm(M,T ′) implies that ∇2p−1u ∈ C0(M ×
[0, T ′]), parabolic regularity implies that actually u ∈ C∞(M × [0, T ′]).

We now prove uniqueness by a standard energy estimate, which we include for complete-
ness. In the sequel for simplicity we relabel T the time T ′ found above.

Suppose that we have two smooth solutions u, v : M × [0, T ] → R of Problem (A.3). Setting
w := u− v, we compute in an orthonormal frame

d

dt

∫

M

|∇pw|2 dµ =

∫

M

2∇p
i1...ip

w∇p
i1...ip

(
A(u) · ∇2pu−A(v) · ∇2pv

)
dµ

+

∫

M

2∇p
i1...ip

w∇p
i1...ip

(
b(u)− b(v)

)
dµ

=2

∫

M

∇p
i1...ip

w∇p
i1...ip

(
A(u) · ∇2pw

)
dµ

+ 2

∫

M

∇p
i1...ip

w∇p
i1...ip

(
(A(u)−A(v)) · ∇2pv

)
dµ

+ 2(−1)p
∫

M

∇p
i1···ip∇

p
i1···ipw

(
b(u)− b(v)

)
dµ

≤ 2

∫

M

∇p
i1...ip

w∇p
i1...ip

(
A(u) · ∇2pw

)
dµ

+ 2

∫

M

|∇2pw|
(
|A(u)−A(v)| |∇2pv|+ |b(u)− b(v)|

)
dµ ,

where the integrals over M are intended at time t ∈ [0, T ].

Now we consider the integral
∫
M

∇p
i1...ip

w∇p
i1...ip

(Aj1...j2p(u)∇2p
j1...j2p

w) dµ. Expanding the de-

rivative ∇p
i1...ip

(Aj1...j2p(u)∇2p
j1...j2p

w) we will get one special term Aj1...j2p(u)∇3p
i1...ipj1...j2p

w and

several other terms of the form B(x, t, u, . . . ,∇3p−1u)#∇qw with 2p ≤ q < 3p, for some tensor B
smoothly depending on its arguments, where the symbol # means metric contraction on some
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indices. For each of these terms, integrating repeatedly by parts, we can write

∫

M

∇pw#B(x, t, u, . . . ,∇3p−1u)#∇qw dµ =

2p∑

ℓ=p

∫

M

∇ℓw#Dℓ(x, t, u, . . . ,∇4p−1u)#∇q−pw dµ

where the tensors Dℓ are smoothly depending on their arguments.
Since u ∈ C∞(M × [0, T ]), all the tensors Dℓ are bounded, hence we can estimate

∫

M

∇p
i1...ip

w∇p
i1...ip

(A(u) · ∇2pw) dµ ≤
∫

M

∇p
i1...ip

wAj1...j2p(u)∇3p
i1...ipj1...j2p

w dµ

+ C

2p−1∑

r=p

2p∑

ℓ=p

∫

M

|∇ℓw| |∇rw| dµ .

where C is a constant independent of time (actually C depends only on the structure of A).
Interchanging the covariant derivatives we have

∇3p
i1...ipj1...j2p

w = ∇3p
j1...i2pi1...ip

w +

3p−1∑

q=0

Rq#∇qw

where the tensors Rq are functions of the Riemann tensor and its covariant derivatives, hence
they are smooth and bounded. We can clearly deal with this sum of terms as above, by means
of integrations by parts, obtaining the same result. Then we conclude, also using Gårding’s
inequality (A.6)
∫

M

∇p
i1...ip

w∇p
i1...ip

(A(u) · ∇2pw) dµ ≤
∫

M

∇p
i1...ip

wAj1...j2p(u)∇2p
j1...j2p

∇p
i1...ip

w dµ

+ C

2p−1∑

r=p

2p∑

ℓ=p

∫

M

|∇ℓw| |∇rw| dµ

≤− α

∫

M

|∇2pw|2 dµ+ C

2p−1∑

r=p

2p∑

ℓ=p

∫

M

|∇ℓw| |∇rw| dµ ,

for some positive constant α. Getting back to the initial computation and using Peter–Paul in-
equality we get

d

dt

∫

M

|∇pw|2 dµ ≤ − 2α

∫

M

|∇2pw|2 dµ+ C

2p−1∑

r=p

2p∑

ℓ=p

∫

M

|∇ℓw| |∇rw| dµ

+ C

∫

M

|∇2pw|
(
|A(u)−A(v)| |∇2pv|+ |b(u)− b(v)|

)
dµ

≤ − 2α

∫

M

|∇2pw|2 dµ+ C

2p−1∑

r=p

2p−1∑

ℓ=p

∫

M

|∇ℓw||∇rw| dµ

+

2p−1∑

r=0

(
εr

∫

M

|∇2pw|2 dµ+ Cεr

∫

M

|∇rw|2dµ
)

+ δ

∫

M

|∇2pw|2 dµ+ Cδ

∫

M

(
|A(u)−A(v)|2 + |b(u)− b(v)|2

)
dµ

≤ − α

∫

M

|∇2pw|2 dµ+ C

2p−1∑

r=0

∫

M

|∇rw|2 dµ

+ Cδ

∫

M

(
|A(u)−A(v)|2 + |b(u)− b(v)|2

)
dµ ,
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where we chose δ +
∑2p−1
r=0 εr = α and we used the fact that |∇2pv| is bounded.

As the tensor A and the function b are smooth, we can easily bound

|A(u)−A(v)|2 + |b(u)− b(v)2| ≤ C

2p−1∑

r=0

|∇ru−∇rv|2 = C

2p−1∑

r=0

|∇rw|2 ,

so finally

d

dt

∫

M

|∇pw|2 dµ ≤ −α
∫

M

|∇2pw|2 dµ+ C

2p−1∑

r=0

∫

M

|∇rw|2 dµ .

Now we have, using again Gårding’s and Peter–Paul inequalities,

d

dt

∫

M

w2 dµ =2

∫

M

w
(
A(u) · ∇2pu−A(v) · ∇2pv

)
dµ+ 2

∫

M

w
(
b(u)− b(v))

)
dµ

=2

∫

M

wA(u) · ∇2pw dµ+ 2

∫

M

w
(
(A(u)−A(v)) · ∇2pv + b(u)− b(v)

)
dµ

≤ − β

∫

M

|∇pw|2 dµ+ C

∫

M

w2 dµ+ C

∫

M

w(A(u)−A(v) + b(u)− b(v)) dµ

≤ − β

∫

M

|∇pw|2 dµ+ C

∫

M

w2 dµ+ C

∫

M

(
|A(u)−A(v)|2 + |b(u)− b(v)|2

)
dµ .

Estimating the last integral as before and putting the two computation together we obtain

d

dt

∫

M

(
|∇pw|2 + w2

)
dµ ≤ − α

2

∫

M

|∇2pw|2 dµ+ C

2p−1∑

r=0

∫

M

|∇rw|2 dµ .

In order to deal with the last term, we apply the following Gagliardo–Nirenberg interpolation
inequalities (see [9, Prop. 2.11] and [1, Thm. 4.14]): for every 0 ≤ r < 2p and ε > 0 there exists a
constant Cε such that

‖∇rf‖2L2(M) ≤ ε‖∇2pf‖2L2(M) + Cε‖f‖2L2(M)

for every function f ∈W 2p,2(M).
Hence, for some ε > 0 small enough we get,

d

dt

∫

M

(
|∇pw|2 + w2

)
dµ ≤ − α

4

∫

M

|∇2pw|2 dµ+ C

2p−1∑

r=0

ε

∫

M

|∇2pw|2 dµ+ C

2p−1∑

r=0

Cε

∫

M

w2 dµ

≤C

∫

M

w2 dµ .

From this ordinary differential inequality and Gronwall’s lemma, it follows that if the quantity∫
M
(|∇pw|2 + w2) dµ is zero at some time t0, then it must be zero for every time t ∈ [t0, T ]. Since

at t = 0 we have w( · , 0) = u0 − v0 = 0, we are done.

We now prove the continuous dependence of a solution u ∈ C∞(M × [0, T ]) on its initial
datum u0 = u( · , 0) ∈ C∞(M). Fix any m ∈ N satisfying condition (A.10), so that by the Sobolev
embeddings u ∈ Pm(M,T ) implies ∇2p−1u ∈ C0(M × [0, T ]). By the above argument, u =
(F|U )−1(u0, 0) ∈ Pm(M,T ) where F|U is a diffeomorphism of an open set U ⊂ Pm(M,T ) onto

V ⊂ W p(2m−1),2(M)× Pm−1(M,T ), with (u0, 0) ∈ V . Then, assuming that uk,0 → u0 in C∞(M)

as k → ∞, we also have uk,0 → u0 in W p(2m−1),2(M), hence for k large enough (uk,0, 0) ∈ V
and there exists uk ∈ U such that F(uk) = (uk,0, 0). This is the unique solution in Pm(M,T )
(hence in C∞(M × [0, T ]) by parabolic bootstrap) with initial datum uk,0. Moreover, since F|U is
a diffeomorphism, we have uk → u in Pm(M,T ).
By uniqueness, we can repeat the same procedure for any m ∈ N satisfying condition (A.10)
concluding that uk → u in Pm(M,T ) for every such m ∈ N, hence in C∞(M × [0, T ]).
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Proof of Lemma A.6

We shall write Pm = Pm(M,T ), Lq = Lq(M × [0, T ]), C0 = C0(M × [0, T ]) etc..., so that
for instance C0(Pm;C1) will denote the space of continuous maps from Pm(M,T ) to C1(M ×
[0, T ]). The first component of F , i.e. the map u 7→ u( · , 0) is linear and bounded from Pm to

W p(2m−1),2(M), by Proposition A.4, therefore it is C1. Obviously the map u 7→ ∂tu is linear and
bounded from Pm to Pm−1, hence also C1. Thus, it remains to show that the two maps

FA(u) := A(u) · ∇2pu , Fb(u) := b(u)

belong to C1(Pm;Pm−1).

We first prove that FA,Fb ∈ C0(Pm;Pm−1). By an induction argument, it is easy to see that
for every k ∈ N

∇k
(
A(u) · ∇2pu

)
=

k∑

j=0

∑

i1,i2,...,ij+1≥1
i1+···+ij+1≤k+2p+(2p−1)j

∂jA(u)#∇i1u# . . .#∇ij+1u , (A.12)

where ∂jA(u) denotes the j–th derivative of A with respect to any of its arguments and D#E
denotes an arbitrary contraction with the metric of two tensors D and E.

Taking into account formula (A.12) with k ≤ 2p(m − 1), in order to prove that the map

u 7→ ∇2p(m−1)(A(u) · ∇2pu) belongs to C0(Pm;L2) we have to show that any map of the form

u 7→ ∂jA(u)#∇i1u# · · ·#∇ij+1u (A.13)

belongs to C0(Pm;L2) whenever

i1 + · · ·+ ij+1 ≤ 2pm+ (2p− 1)j and i1, . . . , ij+1 ≥ 1 . (A.14)

The case r = 0 and ℓ = 2p− 1 of the Sobolev embeddings (A.24) below and condition (A.10)
imply that if u ∈ Pm then ∇2p−1u ∈ C0 (and the immersion is bounded), hence all the maps
u 7→ ∂jA(u) belong to C0(Pm;C0).
We can assume from now on that j ≥ 1, since in the case j = 0, we get the term A(u)#∇2p+ku
which is continuous from Pm to L2 as a function of u for k ≤ 2p(m− 1).
As for the factors ∇iℓu appearing in formula (A.13), first we assume that each iℓ is such that we
are in case (A.22) of Sobolev embeddings, i.e.

1

qℓ
:=

1

2
− 2pm− iℓ

n+ 2p
> 0, (A.15)

so that the map u 7→ ∇iℓu lies in C0(Pm;Lqℓ). By Hölder’s inequality, the condition

1

q
:=

j+1∑

ℓ=1

1

qℓ
=

j+1∑

ℓ=1

(
1

2
− 2pm− iℓ

n+ 2p

)
≤ 1

2
, (A.16)

implies that the map u 7→ ∇i1u# · · ·#∇ij+1u belongs to C0(Pm;Lq), hence also to C0(Pm;L2),
as Lq embeds continuously into L2 for q ≥ 2. Then, if we show inequality (A.16), the map defined
by formula (A.13) belongs to C0(Pm;L2). From inequalities (A.10), (A.14) and j ≥ 1 it follows,

j+1∑

ℓ=1

1

qℓ
≤ j + 1

2
− 2pm(j + 1)− 2pm− (2p− 1)j

n+ 2p
=

1

2
+
j

2
− (2pm− 2p+ 1)j

n+ 2p
<

1

2
. (A.17)

Now, if for some iℓ, say i1, . . . , is, we have 2pm−iℓ
n+2p > 1

2 , then we are in case (A.24) of Sobolev

embeddings and the corresponding maps u 7→ ∇iℓu belong to C0(Pm;C0), hence we can avoid
to estimate such factors, as for A(u). Then, since (A.15) holds for ℓ ∈ {s + 1, . . . , j + 1}, arguing
again by induction, in this case we have to deal with functions u 7→ ∇is+1u# · · ·#∇ij+1u under
the conditions

is+1 + · · ·+ ij+1 ≤ 2pm+ (2p− 1)(j − s) and is+1, . . . ij+1 ≥ 1 .
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Then, computing as in inequality (A.17) one shows

j+1∑

ℓ=s+1

1

qℓ
≤ j + 1− s

2
− 2pm(j + 1− s)− 2pm− (2p− 1)(j − s)

n+ 2p
(A.18)

=
1

2
+
j − s

2
− (2pm− 2p+ 1)(j − s)

n+ 2p

≤ 1

2
,

where we intend that if s = j + 1 there is nothing to sum. Notice that the last inequality is strict
if s 6= j, and in the case s = j the map u 7→ ∇ij+1u is continuous from Pm to L2 as ij+1 ≤ 2pm.

If in addition for some iℓ, say is+1, . . . , ir, we have 2pm−iℓ
n+2p = 1

2 (i.e. we are in the critical

case (A.23) of the Sobolev embeddings), we know that for such indices the maps u 7→ ∇iℓu
belong to C0(Pm;Lq) for every 1 ≤ q < ∞. Then inequality (A.18) still holds true if we choose
qs+1, . . . , qr large enough, since, unless s = r = j, the last inequality in (A.18) is strict.

Hence, we conclude as before that the map u 7→ ∇2p(m−1)(A(u) · ∇2pu) lies in C0(Pm;L2).
The time or mixed space-time derivatives ∂rt∇k(A(u) · ∇2pu) with 2pr + k ≤ 2p(m − 1) can

be treated in a similar way, observing that the functions ∂rt∇ℓu have the same integrability of
∇2pr+ℓu from the point of view of the embeddings (A.22)–(A.24).
Starting from formula (A.12) and differentiating in time, again by an induction argument, one
gets

∂rt∇k
(
A(u) · ∇2pu

)
=
r+k∑

j=0

∑

i1,...,ij+1,ι1,...,ιj+1≥0
i1+···+ij+1≤k+2p+(2p−1)j

ι1+···+ιj+1≤r

∂jA(u)#∂ι1t ∇i1u# · · ·#∂ιj+1

t ∇ij+1u . (A.19)

Then, with the same proof as before one shows that a map of the form

u 7→ ∂jA(u)#∂ι1t ∇i1u# · · ·#∂ιj+1

t ∇ij+1u

belongs to C0(Pm+1;L2) whenever i1, . . . , ij+1, ι1, . . . , ιj+1 ≥ 0 and

i1 + · · ·+ ij+1 + 2p(ι1 + · · ·+ ιj+1) ≤ 2pm+ (2p− 1)j .

Hence the map u 7→ ∂rt∇k
(
A(u) · ∇2pu

)
belongs to C0(Pm;L2) for 2pr + k ≤ 2p(m − 1), which

means that FA ∈ C0(Pm;Pm−1) as wished.
The map Fb can be treated in a similar way, so also Fb ∈ C0(Pm;Pm−1).

It remains to prove that dFA, dFb ∈ C0(Pm;L(Pm;Pm−1)), where L(Pm;Pm−1) denotes
the Banach space of bounded linear maps from Pm into Pm−1. We first claim that the Gateaux
derivative

(u, v) 7→ dFA(u)(v) :=
d

dt
FA(u+ tv)

∣∣∣
t=0

belongs to C0(Pm × Pm;Pm−1). Indeed, dFA(u)(v) can be written as

B(u, v)#∇2pu+A(u) · ∇2pv ,

where B is a tensor depending smoothly on x, t, u, . . . ,∇2p−1u and linearly on some derivative

of v up to the order 2p−1, that is, B(u, v) =
∑2p−1
ℓ=0 Bℓ(u) ·∇ℓv, compare with formula (A.11). The

estimates proven for FA can be applied to any term of the form ∂rt∇k(B(u, v)#∇2pu), since they
can be expressed as a sum similar to the right–hand side of identity (A.19). The only difference is
that now in every term of such sum one linear occurrence of u is replaced by v. Precisely, writing
u1 := u, u2 := v every term ∂jA(u)#∂ι1t ∇i1u# · · ·#∂ιj+1

t ∇ij+1u has to be replaced by some

D(u)#∂ι1t ∇i1uτ1# · · ·#∂ιj+1

t ∇ij+1uτj+1
(A.20)

where exactly one of the indices τ1, . . . , τj+1 is equal to 2, and the others are equal to 1.
An analogous reasoning applies to the term A(u) · ∇2pv. It is then easy to see, since v ∈ Pm like
u, that we can repeat the same estimates used to show the continuity of u 7→ FA(u). This proves



PARABOLIC SOBOLEV EMBEDDINGS 106

in particular that dFA(u) ∈ L(Pm;Pm−1).
In order now to prove that dFA ∈ C0(Pm;L(Pm;Pm−1)) we need to show that

sup
‖v‖Pm≤1

‖dFA(ũ)(v)− dFA(u)(v)‖Pm−1 → 0 as ũ→ u in Pm .

Again, this estimate is similar to what we have already done. Indeed, supposing that τj+1 is the
only index equal to 2 in (A.20) and assuming that there are no time derivatives for the sake of
simplicity, we want to see that, as ũ→ u in Pm,

sup
‖v‖Pm≤1

‖D(ũ)#∇i1 ũ# · · ·#∇ij ũ∇ij+1v −D(u)#∇i1u# · · ·#∇iju∇ij+1v‖L2 → 0 , (A.21)

where i1 + · · ·+ ij+1 ≤ 2pm+ (2p− 1)j (see formula (A.12) and condition (A.14)).
Adding and subtracting terms, one gets

∣∣∣D(ũ)#∇i1 ũ# · · ·#∇ij ũ∇ij+1v−D(u)#∇i1u# · · ·#∇iju∇ij+1v
∣∣∣

≤
{
|D(ũ)−D(u)| |∇i1 ũ| · · · |∇ij ũ|
+ |D(u)| |∇i1(ũ− u)| |∇i2 ũ| · · · |∇ij ũ|

+ · · · + |D(u)| |∇i1u| · · · |∇ij (ũ− u)|
}
|∇ij+1v| .

Studying now the L2 norm of this sum, the first term can be bounded as before and it goes to
zero as D(u) is continuous from Pm to L∞. The L2 norm of all the other terms, repeating step
by step the previous estimates, using Hölder’s inequality and embeddings (A.22)–(A.24), will be
estimated by some product

C‖u‖αPm‖ũ‖βPm‖v‖γPm‖ũ− u‖σPm ≤ C‖u‖αPm‖ũ‖βPm‖ũ− u‖σPm

for a constant C and some nonnegative exponents α, β, γ, σ satisfying α + β + γ + σ ≤ 1 and
σ > 0. Here we we used the fact that ‖v‖Pm ≤ 1.
As ũ− u → 0 in Pm, this last product goes to zero in L2, hence uniformly for ‖v‖Pm ≤ 1 and in-
equality (A.21) follows, as claimed. The analysis of the estimates with mixed time/space deriva-
tives is similar and all this argument works analogously for the term A(u) · ∇2pv.
Then, the Gateaux derivative dFA is continuous which implies that it coincides with the Frechét
derivative, hence FA ∈ C1(Pm;Pm−1).

The map Fb can be dealt with in the same way and we are done.

Parabolic Sobolev Embeddings

PROPOSITION A.7. Let u ∈ Pm(M,T ). Then for r, ℓ ∈ N with 2pr + ℓ ≤ 2mp, we have

‖∂rt∇ℓu‖Lq(M×[0,T ]) ≤ C‖u‖Pm(M,T ) if
1

q
=

1

2
− 2pm− ℓ− 2pr

n+ 2p
> 0 ; (A.22)

‖∂rt∇ℓu‖Lq(M×[0,T ]) ≤ C‖u‖Pm(M,T ) if
1

2
− 2pm− ℓ− 2pr

n+ 2p
= 0 and 1 ≤ q <∞ ; (A.23)

the function ∂rt∇ℓu is continuous and

‖∂rt∇ℓu‖C0(M×[0,T ]) ≤ C‖u‖Pm(M,T ) if
1

2
− 2pm− ℓ− 2pr

n+ 2p
< 0 , (A.24)

where the constant C does not depend on u.

PROOF. Of course we can write

Pm(M,T ) = L2([0, T ];H2mp(M)) ∩H1([0, T ];H2p(m−1)(M)) ∩ · · · ∩Hm([0, T ];L2(M)) .

By standard interpolation theory, see e.g. [70, Thm. 2.3], we have the continuous immersion

Pm(M,T ) →֒ Hs([0, T ];H2p(m−s)(M)), for all s ∈ [0,m] .
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We shall now assume that 1
2 − 2pm−ℓ−2pr

n+2p > 0 and prove inequality (A.22). For 0 ≤ σ < 1
2 and for

any Hilbert space X we have the Sobolev embedding

Hσ([0, T ];X) →֒ Lq([0, T ];X) for
1

q
=

1

2
− σ .

Then, for ℓ, r ∈ N with 2pr + ℓ ≤ 2pm and for any s ∈
(
m − ℓ

2p − n
4p ,m − ℓ

2p

]
∩
[
r, r + 1

2

)
, also

using the standard Sobolev embeddings on M , for every u ∈ Pm(M,T ) one gets

∂rt∇ℓu ∈ Hs−r([0, T ];H2p(m−s)−ℓ(M)) →֒ Lq([0, T ];H2p(m−s)−ℓ(M))

→֒ Lq([0, T ];Lq̃(M)) ,

with
1

q
=

1

2
− s+ r and

1

q̃
=

1

2
− 2p(m− s)− ℓ

n
.

We now choose s = rn+2pm−ℓ
n+2p and claim that s ∈

(
m− ℓ

2p − n
4p ,m− ℓ

2p

]
∩
[
r, r + 1

2

)
. Then

1

q
=

1

q̃
=

1

2
− 2pm− ℓ− 2pr

n+ 2p
,

hence for such q ∈ R we have

u ∈ Lq([0, T ];Lq(M)) ≃ Lq(M × [0, T ]) ,

and embedding (A.22) is proven. As for the claim, the inequalities s ≥ r and s ≤ m − ℓ
2p easily

follow from the inequality 2pr + ℓ ≤ 2pm, while inequality s < r + 1
2 is equivalent to 1

2 −
2pm−ℓ−2pr

n+2p > 0. This means 1
q > 0 which implies s > m− ℓ

2p − n
4p .

The proof of inequality (A.23) is analogous.

Finally, if 1
2 − 2pm−ℓ−2pr

n+2p < 0, using that for σ > 1
2 one has Hσ([0, T ];X) →֒ C0([0, T ];X) and

that for σ > n
2 one has Hσ(M) →֒ C0(M), for every u ∈ Pm(M,T ) we infer

∂rt∇ℓu ∈ Hs−r([0, T ];H2p(m−s)−ℓ(M)) →֒ C0([0, T ];C0(M)) ≃ C0(M × [0, T ]) ,

for s = rn+2pm−ℓ
n+2p ∈

(
r + 1

2 ,m− ℓ
2p − n

4p

)
. This proves embedding (A.24). �
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78. K. M. Peterson, Über die Biegung der Flächen, Ph.D. thesis, Doctoral Thesis, Dorpat Univ., 1853.
79. A. Polden, Closed curves of least total curvature, Arbeitsbereich Analysis Preprint Server – Univ. Tübingen,
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tuebingen.de/mozilla/home.e.html.

81. , Compact surfaces of least total curvature, Arbeitsbereich Analysis Preprint Server – Univ. Tübingen,
http://poincare.mathematik.uni-tuebingen.de/mozilla/home.e.html, 1997.

82. R. C. Reilly, Variational properties of functions of the mean curvature for hypersurfaces in space forms, J. Diff. Geom. 8 (1973),
465–477.

83. H. Rund, Invariant theory of variational problems on subspaces of a Riemannian manifold, vol. 5, Hamburger Math.
Einzelschriften, 1971.

84. H. Schwetlick and M. Struwe, Convergence of the Yamabe flow for “large” energies, J. Reine Angew. Math. 562 (2003),
59–100.

85. J. J. Sharples, Linear and quasilinear parabolic equations in Sobolev space, J. Diff. Eqs. 202 (2004), no. 1, 111–142.
86. L. Simon, Lectures on geometric measure theory, Proc. Center Math. Anal., vol. 3, Australian National University, Can-

berra, 1983.
87. , Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom. 2 (1993), 281–326.
88. J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105.
89. H. M. Soner, Motion of a set by the curvature of its boundary, J. Diff. Eqs. 101 (1993), no. 2, 313–372.
90. K. Voss, Variation of curvature integrals, Results in Math. 20 (1991), 789–796.
91. J. L. Weiner, On a problem of Chen, Willmore, et al., Indiana Univ. Math. J. 27 (1978), no. 1, 19–35.
92. Y. Wen, Curve straightening flow deforms closed plane curves with nonzero rotation number to circles, J. Diff. Eqs. 120 (1995),

89–107.
93. T. J. Willmore, An introduction to Riemannian geometry, Clarendon Press, Oxford, 1993.
94. R. Ye, Global existence and convergence of Yamabe flow, J. Diff. Geom. 39 (1994), no. 1, 35–50.


