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PREFACE

The shape optimization problems naturally appear in engineering and biology. They aim to
answer questions as:

What a perfect wing may look like?

How to minimize the resistance of a moving object in a gas or a fluid?
How to build a rod of maximal rigidity?

What is the behaviour of a system of cells?

The shape optimization appears also in physics, mainly in electrodynamics and in the systems
presenting both classical and quantum mechanics behaviour. For explicit examples and further
account on the applications of the shape optimization we refer to the books [21] and [71].

Here we deal with the theoretical mathematical aspects of the shape optimization, concern-
ing existence of optimal sets and their regularity. In all the practical situations above, the shape
of the object in study is determined by a functional depending on the solution of a given partial
differential equation (shortly, PDE). We will sometimes refer to this function as a state function.
The simplest state functions are provided by solutions of the equations

—Aw =1 and — Au = \u,

which usually represent the torsional rigidity and the oscillation modes of a given object. Thus
our study will be concentrated mainly on the situations, in which these state functions appear,
i.e. when the optimality is intended with respect to energy and spectral functionals.

In Chapter [I]we provide some simple examples of shape optimization problems together with
some elementary techniques, which can be used to obtain existence results in some cases and
motivate the introduction of the quasi-open sets as natural objects of the shape optimization.
We also discuss some of the usual assumptions on the functionals, with respect to which the
optimization is performed. In conclusion, we give some justification for the expected regularity
of the state functions on the optimal sets.

In Chapter [2] we deal with the case when the family of shapes consists of the subsets of a
given ambient space, satisfying some compactness assumptions. A typical example of such a
space is a bounded open set in the Euclidean space R? or, following the original terminology of
Buttazzo and Dal Maso, a bozx. The first general result in this setting was obtained by Buttazzo
and Dal Maso in [33] and the proof was based on relaxation results by Dal Maso and Mosco
(see [62] and [53]). The complete proof was considerably simplified in [21I] (see also [30] for
a brief introduction to this technique), where only some simple analytic tools were used. This
Chapter is based on the results from [37], where we followed the main steps from [21], using
only variational arguments. This approach allowed us to reproduce the general result from [33]
in non-linear and non-smooth settings as metric measure spaces, Finsler manifolds and Gaussian
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spaces. Some of the proofs in this chapter are considerably simplified with respect to the original
paper [37] and some new results were added.

Chapter [3| is dedicated to the study of the capacitary measures, i.e. the measures with
respect to which the Sobolev functions can be integrated. The aim of this chapter is to gather
some results and techniques, basic for the theory of shape optimization and general enough to
be used in the optimization of domains, potentials and measures. Our approach is based on
the study of the energy state functions instead of functionals associated to capacitary measures.
The main ideas and results in this chapter are based on the work of Bucur [19], Bucur-Buttazzo
[22] and Dal Maso-Garroni [51]. The exact framework, in which the modern shape optimization
techniques can be applied, is provided by the following space of capacitary measures

Mgp(Rd) = {M capacitary measure : wy, € Ll(Rd)}

and was originally suggested by Dorin Bucur.

Chapter [4] is dedicated to the study of shape subsolutions, i.e. the sets which are optimal
for a given functional, with respect to internal perturbations. The notion of shape subsolution
was introduced by Bucur in [20] and had a basic role in the proof of the existence of optimal
set for general spectral functionals. A particular attention was given a special class of domains
known as energy subsolution, for which the cost functional depends on the torsion energy and
the Lebesgue measure of the domain. In [20] it was shown that the energy subsolutions are
necessarily bounded sets of finite perimeter and the proof was based on a technique introduced
by Alt and Caffarelli in [1]. Similar results were obtained in the [58] and [26]. In [29], we
investigated this notion obtaining a density estimate, which we used to prove a regularity result
for the optimal set for the second eigenvalue A in a box, and a three-phase monotonicity formula
of Cafarelli-Jerison-Kénig type, which allowed us to exclude the presence of triple points in some
optimal partition problems.

In Chapter bl we consider domains which are shape supersolutions, i.e. optimal sets with
respect to external perturbations. This chapter contains the main regularity results concerning
the state functions of the optimal sets. Our analysis starts with a result due to Briangon,
Hayouni and Pierre (see [17] and also [76]), which provides the Lipschitz continuity of the state
functions of energy functionals. This result was then successfully applied, in an appropriate
form, in the case of spectral functionals, to obtain the Lipschitz regularity of the corresponding
eigenfunctions (see [28]).

The last section contains some of the main results from [58]. We investigate the supersolu-
tions of functionals involving the perimeter, proving some general properties of these sets and
also the Lipschitz continuity of their energy functions. This last result is the key step in the
proof of the C1® regularity of the boundary of the optimal sets for spectral functionals with
perimeter constraint, which is proved at the end of the chapter.

In Chapter [6] we consider various shape optimization problems involving spectral functionals.
We present the recent results from [20]-[80], [25], [58] and [34]-[26], introducing the existence
and regularity techniques involving the results from the previous chapters and simplifying some

1wM indicates the energy state function associated to the measure p.
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of the original proofs.

The last Chapter [7] is dedicated to the study of optimizations problems concerning one
dimensional sets (graphs) in R?. The framework in this chapter significantly differs from the
theory in the rest of the work. This is due to the fact that there is a lack of ambient functional
space which hosts the functional spaces on the various shapes. With this Chapter we aim to keep
the discussion open towards other problems which present similar difficulties as, for example,
the optimization of the spectrum of the Neumann Laplacian.

Bozhidar Velichkov,
Pisa, 21 June 2013.






Résumé of the main original contributions

In this section we give a brief account on the main original contributions in the present thesis.

The main result from Chapter [2]is the following existence Theorem, which is the non-linear
variant of the classical Buttazzo-Dal Maso Theorem and was proved in [37]. Below, we state it
in the framework of Cheeger’s Sobolev spaces on metric measure spaces, but the main result is
even more general and is discussed in Section

Theorem 1 (Non-linear Buttazzo-Dal Maso Theorem). Consider a separable metric space (X, d)
and a finite Borel measure m on X. Let H'(X,m) denote the Sobolev space on (X, d, m) and
let Du = g, be the minimal generalized upper gradient of « € H'(X,m). Under the assumption
that the inclusion H'(X,m) < L?(X,m) is compact, we have that the problem

min {}"(Q) : QC X, Q Borel, Q] < c},

has solution, for every constant ¢ > 0 and every functional F increasing and lower semi-
continuous with respect to the strong—v—convergenceﬂ

This result was proved in [37] and naturally applies in many different frameworks as Finsler
manifolds, Gaussian spaces of infinite dimension and Carnot-Caratheodory spaces.

In Chapter [3], we use some classical techniques to review the theory of the capacitary mea-
sures in R? providing the reader with a self-contained exposition of the topic. One of our main
contributions in this chapter is the generalization for capacitary measures of the concentration-
compactness principle for quasi-open sets, a result from the paper of preparation [26].

Theorem 2 (Concentration-compactness principle for capacitary measures). Suppose that pu,
is a sequence of capacitary measures in R? such that the corresponding sequence of energy
functions wy,, has uniformly bounded Ll(Rd) norms. Then, up to a subsequence, one of the
following situations occur:

(i1) (Compactness) The sequence i, y-converges to some pu € ML (R?).

cap

(i2) (Compactness2) There is a sequence x, € R? such that |z,| — oo and p, (2, + ) 7-
converges.

27 typical example of such functionals is given by the eigenvalues of the Dirichlet Laplacian, variationally
defined as
I |Dul* dm

Ae() = min max =——F——,
£ KcHi () uek [ u?dm

where the minimum is over all k-dimensional subspaces K.
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(ii) (Vanishing) The sequence i, does not y-converge to the measure co = Iy, but the sequence
of resolvents R,,, converges to zero in the strong operator topology of £(L?(R%)). More-
over, we have ||wy,||cc — 0 and A\ (pn) — 400, as n — oo.

(iii) (Dichotomy) There are capacitary measures ) and p2 such that:
o dist({p) < oo}, {12 < co}) = 00, as n — oo;
o [y < pb A p2, for every n € N;
o dy(pny iy A pizy) = 0, as n— 00;
o HRMn - RM}IAM%HL(LQ) — 0, as n — oQ.

The results from Chapter [4] concerning the energy subsolutions, are from the recent paper
[29]. Our main technical results, which are essential in the study of the qualitative properties
of families of disjoint subsolutions (which naturally appear in the study of multiphase shape
optimization problems) are a density estimate and a three-phase monotonicity theorem in the
spirit of the two-phase formula by Caffarelli, Jerison and Kénig.

The following Theorem combines the results from Proposition and Proposition
which were proved in [29].

Theorem 3 (Isolating an energy subsolution). Suppose that Q C R is an energy subsolution.
Then there exists a constant ¢ > 0, depending only on the dimension, such that for every
To € QM, we have

lim sup [{wq > 0} N By (z0)] >

r—0 |Br|

As a consequence, if the quasi-open sets §2; and 29 are two disjoint energy subsolutions, then
there are open sets D1, Dy C R? such that Q1 € Dy, Q3 C Dy and Q; N Dy = QN Dy =0, up
to sets of zero capacity.

(0.0.1)

As a consequence, we have the following (see Proposition [6.2.8)):

Theorem 4 (Openness of the optimal set for Xs). Let D C R? be a bounded open set and € a
solution of the problem

min {/\Q(Q) +m|Q: QC D, Q quasi—open}.
Then there is an open set w C 2, which is a solution of the same problem.

A fundamental tool in the analysis of the optimal partitions is the following three-phase
monotonicity lemma, which we proved in [29].

Theorem 5 (Three-phase monotonicity formula). Let u; € H'(By), i = 1,2,3, be three non-
negative Sobolev functions such that Au; > —1, for each ¢ = 1,2, 3, and fRd u;u; dr = 0, for each
i # j. Then there are dimensional constants € > 0 and Cy > 0 such that, for every r € (0, 1),

we have
501 [ [Vl Vil ’
H(+ J,, it ae) <cu (”Z/ ]2 )

We note that we do not assume that the functions u; are continuous! This assumption was

part of the two-phase monotonicity formula, proved in the original paper of Caffarelli, Jerison
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and Kenig, where can be dropped, as well.

In Chapter |5 we discuss a technique, developed in [28], for proving the regularity of the
eigenfunctions associated to the optimal set for the k-th eigenvalue of the Dirichlet Laplacian.
Our main result is the following theorem from [28].

Theorem 6 (Lipschitz continuity of the optimal eigenfunctions). Let © be a solution of the
problem
min{/\k(Q) . 0 c RY Q quasi-open, Q| = 1}.

Then there is an eigenfunction u, € H{ (), corresponding to the eigenvalue A\;(f2), which is
Lipschitz continuous on R,

In the last section of Chapter [5| we study the properties of the measurable sets Q C R?
satisfying
P(Q) < P(Q), for every measurable set Q D €.

The results in this section are contained in [58], where we used them to prove the following
Theorem, which can now be found in Chapter [6]

Theorem 7 (Existence and regularity for A\; with perimeter constraint). The shape optimization
problem

min{)\k(Q) . Q cR% Q open, PQ)=1, |9 < oo},

has a solution. Moreover, any optimal set €2 is bounded, connected and its boundary 9 is C1@,
for every o € (0, 1), outside a closed set of Hausdorff dimension at most d — 8.

In Chapter [6] we prove existence results for the following spectral optimization
problems, for every k € N.

(1) Spectral optimization problems with internal constraint (see [25])
min {)\k(Q) . D' c Q c R Q quasi-open, |Q] =1, |Q| < oo};
(2) Spectral optimization problems with perimeter constraint (see [58])
min{)\k(Q) : QCRY Qopen, P(Q) =1, |Q] < oo};

(3) Optimization problems for Schrédinger operators (for k = 1,2 the result was proved in
[34], while for generic k € N the existence is proved in [26])

min {)\k(—A +V): V:R? = [0, +00] measurable, / VY2 de = 1};

Rd

(4) Optimization problems for capacitary measures with torsion-energy constraint (see
[26])

min {/\k(,u) . p capacitary measure in R?, E(pn) =— },

1 1
E(u):min{f \Vul|? dx + = u? dp — udx : uELl(Rd)ﬂHl(Rd)ﬂLQ(u)}.
2 R4 2 R4 Rd
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In the last Chapter [7] we consider a spectral optimization problem, which was studied in
[35]. More precisely we prove that the following problem
min {E(C) . C c RY closed connected set, D C C, HY(C) < 1},

where & is the Dirichlet Energy of the one dimensional set C and P C R is a finite set of points,
has solution for some configurations of Dirichlet points D and might not admit a solution in
some special cases (for example, when all the points in D are aligned).



CHAPTER 1

Introduction and examples

1.1. Shape optimization problems

A shape optimization problem is a variational problem, in which the family of competitors
consists of shapes, i.e. geometric objects that can be chosen to be metric spaces, manifolds or
just domains in the Fuclidean space. The shape optimization problems are usually written in
the form

min {]—"(Q) : Qeal, (1.1.1)
where

e F is the cost functional,
o A is the admissible family (set, class) of shapes.

If there is a set Q € A which realizes the minimum in , we call it an optimal shape,
optimal set or simply a solution of . The theory of shape optimization concerns, in par-
ticular, the existence of optimal domains and their properties. These questions are of particular
interest in the physics and engineering, where the cost functional F represents some energy we
wish to minimize and the admissible class is the variety of shapes we are able to produce. We
refer to the books [21] and [71] for an extensive introduction to the shape optimization problems
and their applications.

We will mainly concentrate on the class of shape optimization problems, where the ad-
missible family of shapes consists of subsets of a given ambient space D. In this case we will
sometimes call the variables 2 € A domains instead of shapes. The set D is called design region
and can be chosen to be a subset of R?, a differentiable manifold or a metric space. A typical
example of an admissible class is the following:

AZ{Q: Q c D, Q open, ]Q|§c},

where D is a bounded open set in R?, |-| is the Lebesgue measure and c is a positive real number.
The cost functionals F we consider are defined on the admissible class of domains A through
the solutions of some partial differential equation on each 2 € A. Typical examples are:

e the energy functionals
F®) = [ g(oula), Vu(z) da.
Q
where g is a given function and u € Hg () is the weak solution of the equation
_Au:fv U’EH(%(Q)v
where f is a fixed function in L?(D) and H{ () is the Sobolev space of square integrable

functions with square integrable distributional gradient on §2.

11
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e the spectral functionals

where F : R¥ — R is a given function and A\, (Q) is the kth eigenvalue of the Dirichlet
Laplacian on €, i.e. the kth smallest number such that the equation

—Auy = )\k(Q)uk, up € H&(Q),

has a non-trivial solution.

1.2. Why quasi-open sets?
In this section, we consider the shape optimization problem
min {E(Q) : QC D, Qopen, [Q = 1}, (1.2.1)

where D C R? is a bounded open set (a box) of Lebesgue measure |D| > 1 and E(Q) is the
Dirichlet Energy of €, i.e.

E(Q):min{;/QWu]zda:—/Qud:c: ueﬂg(m}. (1.2.2)

In the terms of the previous section, we consider the shape optimization problem ((1.1.1))
with admissible set
A= {Q: Q C D, Qopen, Q= 1},

and cost functional

1
EQ) = —/ wq dz, (1.2.3)
2 Ja
where wq is the weak solution of the equation
—Awg =1,  wq € HY(Q). (1.2.4)

Indeed, wq is the unique minimizer in H}(2) of the functional

1
J(u)zz/QVu|2dx—/Qudx,

1
E(Q) = / |Vwq|? da — / wq d. (1.2.5)
2 Jo Q
On the other hand, using wq as a test function in (1.2.4)), we have that
/ \Vwg|? de = / wq dz, (1.2.6)
Q Q
which, together with (1.2.5)), gives (|1.2.3)).

Remark 1.2.1. The functional T'(2) = —E(Q) is called torsion energy or just torsion. We will
call the function wq energy function or sometimes torsion function.

and so

Before we proceed, we recall some well-known properties of the energy functions.

e (Weak maximum principle) If U C Q are open sets, then 0 < wy < wgq. In particular,
the Dirichlet Energy is decreasing with respect to inclusion

E(Q) < E(U) < 0.
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e (Strong maximum principle) wg > 0 on Q. Indeed, for any ball B = B,.(z¢) C €,
by the weak maximum principle, we have wqg > wp. On the other hand, wp can be

written explicitly as

r2 — |z — x0]2

wp(r) = 2d ’

which is strictly positive on B, ().
e (A priori estimate) The energy function wgq is bounded in H{ () by the constant
depending only on the Lebesgue measure of Q. Indeed, by (1.2.6) and the Holder

inequality, we have
dt2 d+2
IVwollze < llwallzr < 19127 lwall 2 < CalQI 2 [Vwal g, (1.2.7)

where Cy is the constant in the Gagliardo-Nirenberg-Sobolev inequality in R<.

We now try to solve the shape optimization problem (1.2.11) by a direct method. Indeed,
let €2, be a minimizing sequence for (|1.2.11)) and let, for simplicity, w, := wq,,. By the estimate

(1.2.7), we have
|[Vw,|| < Cq4, ¥n € N.

By the boundedness of D, the inclusion H{ (D) C L?(D) is compact and so, up to a subsequence,
we may suppose that wy, converges to w € HE (D) strongly in L?(D). Suppose that Q = {w > 0}
is an open set. Then, we have

e semicontinuity of the Dirichlet Energy

E(Q) < liminf E(Qy). (1.2.8)

n—oo

Indeed, since w € H{ (), we have that
1
E)) < / \Vw|? dz — / wdx
2 Ja Q
< liminf{l/ \Vwy|? d — / wy, dx }

= liminf E(Qy,).

n—oo

e semicontinuity of the Lebesgue measure
|| < lim inf |Q,]. (1.2.9)
n—oo
This follows by the Fatou Lemma and the fact that

1o < liminf 1q,, (1.2.10)

n—o0

where 1 is the characteristics function of €. Indeed, by the strong maximum principle,
we have that

Q, = {w, > 0}.

On the other hand, we may suppose, again up to extracting a subsequence, that wy,
converges to w almost everywhere. Thus, if x € Q, then w(z) > 0 and so wy(z) > 0
definitively, i.e. x € 2, definitively, which proves (|1.2.10)).
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Let Q2 C D be an open set of unit measure, containing 2. Then, we have that QcA and,
by the monotonicity of E and (1.2.8)),

E(Q) < E(Q) <liminf E(Q,),

n—oo
ie. Qisan optimal domain for . In conclusion, we obtained that, under the assumption
that {w > 0} is an open set, the shape optimization problem has a solution. Unfor-
tunately, at the moment, since w is just a Sobolev function, there is no reason to believe that
{w > 0} is open. In fact the proof of this fact would require some regularity arguments which
can be quite involved even in the simple case when the cost functional is the Dirichlet Energy
E. Similar arguments applied to more general energy and spectral functionals can be compli-
cated enough (if even possible) to discourage any attempt of providing a general theory of shape
optimization.

An alternative approach is relaxing the problem to a wider class of admissible sets. The
above considerations suggest that the class of quasi-open sets, i.e. the level sets of Sobolev
functions, is a good candidate for a family, where optimal domains may exist. Indeed, it was
first proved in [33] that the shape optimization problem

min {E(Q) : Q C D, Q quasi-open, || = 1}, (1.2.11)

has a solution. After defining appropriately the Sobolev spaces and the PDEs on domains which
are not open sets, we will see that the same proof works even in the general framework of a metric
measure spaces and for a large class of cost functionals, decreasing with respect to inclusion.
For example, one may prove that there is a solution of the problem

min {)\k(Q) . QC D, Q quasi-open, || = 1}, (1.2.12)

where A\ (£2) is variationally characterized as

Ae(2) = min max M,
KCHL(Q) veKuz0 [ u?dx
where the minimum is taken over all k-dimensional subspaces K of H}(f2). Indeed, if Q, is a
minimizing sequence, then we consider the vectors (uf,...,u}}) € (H&(Qn))k of eigenfunctions,
orthonormal in L2. We may suppose that for each j = 1,...,k there is a function u; € H}(D)
such that uj — v’/ in L?. Arguing as in the case of the Dirichlet Energy, it is not hard to prove
that the (quasi-open) set

k
0 = J{u; # 0},

J=1

is a solution of (|1.2.12]).

1.3. Compactness and monotonicity assumptions in the shape optimization

In the previous section we sketched the proofs of the existence of an optimal domain for

the problems ([1.2.11]) and ([1.2.12f). The essential ingredients for these existence results were the

following assumptions:

e The compactness of the inclusion H}(D) C L?*(D) in the design region D;
e The monotonicity of the cost functional F.
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In Chapter 2] we prove a general existence result under the above assumptions, even in the case
when D is just a metric space endowed with a finite measure. Nevertheless, non-trivial shape
optimization problems can be stated without imposing these conditions. For example, by a
standard symmetrization argument, the problems

min {E(Q) . Q c RY, Q quasi-open, Q| = 1} , (1.3.1)

min {)\I(Q) . Q cRY Q quasi-open, Q| = 1} , (1.3.2)

have solution which, in both cases, is a ball of unit measure. It is also easy to construct some
artificial examples, in which the functional is not monotone and the domain is not compact, but
there is still an optimal set. For instance, one may take

min {)\1(9) +EQ) - EB)?: Qc R, Q quasi-open, Q| = 1} : (1.3.3)

where B is a ball of measure 1.

In this section we investigate in which cases the compactness and monotonicity assumptions
can be removed from the theory. In the framework of Euclidean space R?, the compactness
assumption (more or less) corresponds to the assumption that D C R? has finite Lebesgue
measure (see [22] for the conditions under which the inclusion of the Sobolev Space in L?(D) is
compact). In general the existence does not hold in unbounded design regions D even for the
simplest cost functionals and "nice” domains D (convex with smooth boundary).

Example 1.3.1. Let the design region D C R? be defined as follows

Dz{(w,y)e(1,+oo)><]R:é—1<y<1—%}.
Then the shape optimization problem

min {)\1(9) : Q C D, Q quasi-open, Q] = ﬂ'}, (1.3.4)
does not have a solution. Since the ball of radius 1 is the minimizer for \; in R%, we have that
A1 (B;) < inf {)\1(9) : Q C D, Q quasi-open, Q] < w}.

Moreover, the above inequality is, in fact, an equality since, by the rescaling property of Ay
(M (tQ) = t72X1(Q2)), we have that

A (Brn (wn)) = 7“7%)\1(31) — M(By), as, n — oo,

where B, (x,) C D is a sequence of balls such that r,, — 1 and z,, — 00, as n — co. On the
other hand, the ball of radius 1 is the unique minimizer for \; in R% and there is no ball of
radius 1 contained in D.

In the case D = R?, the question of existence have positive answer in the case of monotone
spectral functionals depending on the spectrum of the Dirichlet Laplacian. The analysis in this
cases is more sophisticated and even for problems involving the simplest spectral functionals as

min{)\k(Q) . Q cRY Q quasi-open, |Q| = 1} ) (1.3.5)

the proof was found only recently. The techniques involved are based on a variant of the
concentration-compactness principle and arguments for the boundedness of the optimal set and
can be applied essentially for functionals defined through the solutions of elliptic equations
involving the Dirichlet Laplacian. In fact, for general monotone cost functionals, the existence
in R? does not hold.
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Example 1.3.2. Let a : R? — (1,2] be a smooth function such that a(0) = 2 and a(z) — 1 as
x — o0. Then, the shape optimization problem

min {]—"(Q) . Q c RY, Q quasi-open, Q| = 1}, (1.3.6)

does NOT have a solution, where the cost functional F is defined as

F(Q) = —1/ udz,
2 Ja
where u € H}(Q) is the weak solution of
—div(a(z)Vu) =1, u € Hy(Q).

Indeed, since ¢ > 1 and since the ball of unit measure B is the solution of (|1.2.11)) in the case
D = R%, we have

E(B) < inf {I(Q) . 0 C RY, Q quasi-open, [ = 1}. (1.3.7)

On the other hand, taking a sequence of balls of measure 1, which go to infinity, we obtain that
there is an equality ([1.3.7]). Since, for every quasi-open set  of measure 1, we have

E(B) < E(Q) < F(Q),
we conclude that the problem ([1.3.6)) does not have a solution.

The monotonicity of the cost functional seems to be an assumption even more difficult to
drop. As the following example shows, even in the case of a bounded design region, the existence
might not occur:

Example 1.3.3. Let ag, k € N be a sequence of real numbers converging to zero fast enough.

k
For example ap = 2-2"" Then the shape optimization problem
min {]—"(Q) . Q C RY Q quasi-open, Q] = 1}, (1.3.8)

does NOT have a solution, where the cost functional F'is given by
+o0
F(Q) = apAps1(Q) — ().
k=1

Indeed, taking a minimizing sequence €, such that each €2, consists of n different disjoint balls,
it is not hard to check that F(€2,) — 0. On the other hand, no set of positive measure can have
spectrum of the Dirichlet Laplacian which consists of only one value.

Remark 1.3.4. We note that the choice of admissible set was crucial in the above example. In
fact, with the convention () = +o00, Vk € N and co — oo = 0, we have that the empty set )
is a solution of

min {.7-"(9) : Q C RY Q quasi-open, Q] < 1}, (1.3.9)

where the cost functional F is as in (|1.3.8)).
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1.4. Lipschitz regularity of the state functions

Once we obtain the existence of an optimal quasi-open set, a natural question concerns
the regularity of this set. In particular, we expect that the optimal sets are open and tat
their boundary is regular. In order to motivate these expectation we consider the the following
problem:

min {Al(Q) +19/: Qopen, QC D}, (1.4.1)

where D is a bounded open set with smooth boundary or D = R?. Suppose that € is a solution
of (T.4.1)) and suppose that the free boundary 9 N D is smooth. Let V : D — R? be a smooth
vector field with ¢ compact support in D and for ¢ € R, consider the family of sets

Oy = (Id + tV)(9).

We now consider the shape derivative of A1 in the direction of V' (see [71], [70]). For every
k € N such that \;(€2) is simple (i.e. of multiplicity one), we have

d
7‘ Me(€) = —/ (Vg |2(V - n) dHOT, (1.4.2)
dt lt=0 0N

where uy, € H}(2) is the kth eigenfunction on 2, normalized in L? and n(x) denotes the unit
vector, normal to the surface 02 in x € 9€). Since, on the other hand we have

d
el 0, = V-ndH?
dt )t=0| t‘ /89 " 7-[ ’

Vup|? =1 on oNND.

On the other hand, using the maximum principle and the regularity of D, we have that

(V| < M) [Jur]loo| Vool < C

we get that

where w € H} (D) solves

—Aw=1 in D, w=0 on 0JD,
and C' is a constant depending on D and A;(£2). Thus
|Vui| <max{C,1} on 09,

and so, a standard P function argument shows that u; is Lipschitz continuous with constant de-
pending on D and A;(Q2). Of course, this is not a rigorous argument, since we supposed already
that 9Q ND is smooth. Nevertheless, since the Lipschitz constant of u; does not depend on the
regularity of 0f2, it is natural to expect that there is a weaker form of the same argument that
gives the Lipschitz continuity of u; (and also the openness of ).

The analogous argument in the case of higher eigenvalues is more complicated, since the
simple form of the shape derivative does not hold in the case of multiple eigenvalues. On
the other hand, it is expected even if, by now, only numerical evidence is availableﬂ (see, for
example, [84] and [7]), that the solutions of

min {)\k(Q) + Q] : Q quasi-open, Q C Rd}, (1.4.3)

IThere is an argument due to Dorin Bucur that proves that there exists a solution Q of (1.4.3) such that
Ae(2) = Ae—1(9).
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are such that Ag(2) = A\p_1(Q2). For the sake of clearness, we suppose that the optimal set Q*,
solution of ([1.4.3)), is such that
)\k—Q(Q*) < Ak—l(Q*) = )\k(Q*) < )\k+1(Q*).
Suppose that €25 is an open and regular set which solves the auxiliary problenﬂ
min {(1 — 0)Ak(Q) + 0Ap—1(Q) + 2|2 : Q quasi-open, Q° C Q C Rd}. (1.4.4)
Suppose that Ag(2s5) = Ak—1(€Qs). Then Qs solves
min {)\k(Q) +2|Q] : Q quasi-open, Q* C Q C Rd}, (1.4.5)
and so,
M(€25) = A() < 2127 — [9%])
< Q7] = [€)
< Ae(Q2s) — A (29),
by the optimality of Q*. Thus, all the inequalities are equalities and so |[QsAQ*| = 0, i.e.
Q5 = Q.

Let now ¢* € [0, 1] be the largest real number such that Ag(Qs5+) = A\g—1(s+ )H We consider
the most important case when 6* € (0,1). Let d,, > 6" be a sequence converging to 6*. Then
the sequence of €5, converges to 5+ = Q* in L' and as we will see, up to a subsequence we
may suppose that

Aj(Qs,) = A (27), Vi=k—2k—1,kk+1.
Thus, we have
Ae-2(825,) < Ae—1(2s,) < Ak(€s,) < Aet1(82s,),
for each n € N. Thus the eigenvalues A\;(€25,) and Ax_1(f2s,) are both simple eigenvalues and
so, we can use the derivative (1.4.2)) for vector fields V such that V' - n > 0. Thus, we have
d

2| A= SN (U + V) (95,)) + b het (T + V) (©5,)) + 2| (1d +1V) (9, )|

= (Vo) (= (1= 60)|Vup P — 6|V +2),

where u}! and u}_, are, respectively, the kth and (k — 1)th eigenfunctions on €5, , normalized in
L%*(R%). Since V is arbitrary, we have that

(1= 8,) [Vl + 0n| Vil |2 <2 on 9,

and so, both u} and uj_; are Lipschitz. Moreover, the Lipschitz constant of uj is uniform in n
(even if 6* = 0). On the other hand, the infinity norm of the eigenfunctions can be estimated by
a function depending only on A, and so, we have also the uniform estimate ||u} |l < C, for every
n. Thus uj} converge uniformly, as n — oo, to some bounded Lipschitz function u : R? — R.
Since ||Vuk||z2 = A\(fs,), we have that v € H'(RY) and that u} converges to u weakly in
H'(RY). We first note that u = 0 outside *, by the L! convergence of Qs, to Q*. Thus, since
Q* is supposed to be regular, u € H&(Q*) Now it remains to check that w is a kth eigenfunction

2The idea to consider the functional F5(Q2) = (1 — 8)Ax(Q) + 6Ak_1(Q) was inspired by the recent work [83],
where it was given a numerical evidence in the support of the conjecture that for small § the optimal sets for Ax
are also optimal for Fs.

3As we will see in Chapter |5} this condition is closed.
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on Q*. Indeed, since Q* C Qs,, we can use any v € H}(Q*) as a test function for uy, i.e. we
have

Vuy - Vode = )\k(an)/ upv dx,
d

Rd R

and passing to the limit as n — oo, we obtain

Vu-Vvdr = )\k(an)/
Rd R

which concludes the proof that u is an eigenfunction on 2* with Lipschitz continuous extension
on R%.

uv dr,
d






CHAPTER 2

Shape optimization problems in a box

In this chapter we define two different variational convergences on the family of domains
contained in a given box. The term boz is widely used in the shape optimization and classically
refers to a bounded open set in R?. The theory of the weak-y and the strong—y—convergencel]
of sets in a box was developed in this linear setting (see, for example, [21] and the references
therein). Nevertheless, as it was shown in [37], this is a theory that uses a purely variational
techniques and it can be adapted to a much more general (non-linear) settings as those of
measured metric spaces.

We start by introducing the Sobolev spaces and elliptic PDEs on a measured metric space
together with some basic instruments as the weak and strong maximum principles. Since the
analysis on metric spaces is a theme of intense research interest in the last years (see, for
example, [67], or the more recent [4] and the references therein), we prefer to impose some
minimal conditions on an abstractly defined Sobolev space instead of imposing more restrictive
conditions on the metric space, which may later turn not to be necessary.

2.1. Sobolev spaces on metric measure spaces

From now on (X, d, m) will denote a separable metric space (X, d) endowed with a o-finite
regular Borel measure m.
Consider a linear subspace H C L?(X,m) such that:

(H1) H is a Riesz space (v,v € H = uVv,uAve H),
Suppose that we have a mapping D : H — L?(X,m) such that:

(D1) Du >0, for each v € H,

(D2) D(u+v) < Du+ Dw, for each u,v € H,
(D3) D(au) = |a|Du, for each u € H and « € R,
(D4) D(uVw) = Du- Iy + Dvu - Iycyy

Remark 2.1.1. In the above hypotheses on H and D, we have that D(u A v) = Dv - I~ +
Du - Ity<yy and D(|u|) = Du. Moreover, the quantity
1/2
luller = (Nel32(my + 1Dul2am))

defined for u € H, is a norm on the vector space H, which makes the inclusion H — L?(X,m)
continuous.

IThe strong-v-convergence is known in the literature as v or also 7, convergence. Our motivation for
introducing this new terminology is the fact that in the linear setting (Rd) the strong-+-convergence corresponds
to the strong convergence of the corresponding resolvent operators. We reserve the term v-convergence for an
even stronger convergence, corresponding to the norm convergence of these operators (see Chapter .

21
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Remark 2.1.2. The main example we will keep in mind throughout this chapter is X C R,
an open set of finite Lebesgue measure, and H = H& (X), the classical Sobolev space on X. The
operator D then is simply the modulus of the weak gradient, i.e. Du = |Vu].

We furthermore assume that:
(H1) (H,| - |lm) is complete,
(H2) the norm of the gradient is Ls.c. with respect to the weak L?(X,m) convergence, i.e.

for each sequence u,,, bounded in H and weakly convergent L?(X,m) to a function u €
L*(X,m), we have that u € H and

/|Du2dm§hminf/ |Du, | dm. (2.1.1)

Remark 2.1.3. If the embedding h — L?(X,m) is compact, the condition (H2) is equivalent
to suppose that if u, is a bounded sequence in H and strongly convergent in L?(X,m) to a
function u € L?(X,m), then we have that v € H and (2.1.1]) holds.

From now on, with H we denote a linear subspace of L?(X,m) such that the
conditions H1, D1, D2, D3, D4, H1 and H2 are satisfied.

Let now p be a (not necessarily locally finite) Borel measure on X, absolutely continuous
with respect to m, i.e. for every E C X such that m(F) = 0, we have u(F) = 0. We will keep
in mind two examples of such measures:

e 1 = fdm, for some measurable f;
o 1= Iq, where ) C X is a m-measurable set and

~ 0 if m(E\ Q) =0;
fa(®) = {—i:oo, if m((E§Q; > O.’ (21.2)
For p as above, we define the space H,, as
H, = {uEH: uELQ(u)}. (2.1.3)
Remark 2.1.4. Equipped with the norm
ol = (Nl + i) (214

the space H, is Banach. Indeed, if u, € H, is Cauchy in H,, then w, converges in H to
u € H, then u,, converges in L?(X,m) and so, we can suppose that u, converges to u m-almost
everywhere. Then u, converges to u u-almost everywhere and since u, is Cauchy in L?(yu), we
have the claim.

Remark 2.1.5. We always have the inequality
uller < llull,-

If there is a constant C' > 0 such that for every v € H,,, we have
ulla, < Cllulla,

then H, is a closed subspace of H.
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Example 2.1.6. The space H,, is not in general a closed subspace of H. In fact, suppose that
the interval X = (0, 1) is equipped with the Euclidean distance and the Lebesgue measure. Take
H = H}((0,1)) and let u = J:Q(fifx)% Then Cg°((0,1)) C Hy, and so H, is a dense subset of H.

On the other hand the function u(z) = (1 — x) is such that v € H \ H,,.

Example 2.1.7. If y = I, for some © C X, then we have that |ug = llullm,, for every
u € H,,. In particular, the space H,, is a closed subspace of H, which we denote by Hy(Q2) and
can be characterized as
Hy(Q) = {U,GH: u=0 m—ae. onX\Q}.
Definition 2.1.8. We say that a function u is a solution of the elliptic boundary value problem
— D*u+u+ pu = f, ue Hy, (2.1.5)

where f € L?(X,m), if u is a minimizer of the functional

Jx GIDul® + 30 — fu) dm+ 5 [y [u* du, if u € H,
J, (u) =

(2.1.6)
400, otherwise.

Remark 2.1.9. If y = fg, where 2 C X, then we say that u is a solution of
—D*u+u=f, u € Hy(9).

Lemma 2.1.10. Suppose that p is absolutely continuous with respect to m. Then for every
sequence Uy, bounded in H,, and weakly convergent in L*(X,m) tou € L*(X,m), we have that
u€ H, and

el < limin |1,

PRrROOF. Under the assumptions of the Lemma, we have that the sequence u,, is bounded in
L?(m + p). Thus it converges weakly in L%(m + i) to some v € L?(m + u). Since L?(m + pu) C
L?(m), we have that v = u. Now using and the semi-continuity of the L? norm with
respect to the weak L? convergence, we have the claim. O

Proposition 2.1.11. Suppose that the measure p is absolutely continuous with respect to m.
Then the problem (2.1.5) has a unique solution w, s € H,,. Moreover, we have

(i) wyep = tw, f, for every t € R;

(it) ku,f”%@ = Jx fwuydm;

(i) if f >0, then w, ¢ > 0.

PROOF. Suppose that u, is a minimizing sequence for J,, y in H,,. Since J, ;(0) = 0, we can
assume that for each n > 0
1

1
! / (IDunl? + ) dm + / W dpp < / Fum dm < | z20m 1tnll 20
2 Jx 2 Jx X

and thus, we obtain
lunllz2(m) < llunlla, < 20flz2q-

Up to a subsequence we may suppose that u, converges weakly to some u € L?(m). By Lemma

we obtain that
Jy,r(u) < liminf J, ¢(up),

n—oo
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and so, u € H}L is a solution of ([2.1.5).
Suppose now that u,v € H, are two minimizers for J,, ;. Then

w4+ Jup(u) + J, 5 (v)
Ju,f< >< Ky f Hyf )

2 - 2
Moreover, by the strict convexity of the L? norm, we have v = tu. Since the functional
t— J w,f (t),

is a polynomial of second degree in t € R with positive leading coefficient, it has unique minimum
in R and thus we have necessarily t = 1.
To prove (i), we just note that for every u € H,, we have

Point (ii) follows by minimizing the function ¢ — J,, s(tw,, r), for t € R.
For (iii), we note that, in the case when f > 0, we have the inequality J, r(|u|) < J, f(u),
for each u € H,, and so we conclude by the uniqueness of the minimizer of J,, s. ([l

Remark 2.1.12. From the proof of Proposition [2.1.11| we obtain, for any f € L?(X,m) and
1 << m, the estimates

1 1
sl < Wy V)| =5 [ Pty dm < 511y (2.7

For the solutions w,, r of (2.1.5)), we have comparison principles, analogous to those in the
Euclidean space.

Proposition 2.1.13. Let u be an absolutely continuous measure with respect to m. Then the
solutions of (2.1.5) satisfy the following inequalities:

(i) If u < v and f € L*(m) is a positive function, then w, 5 < w, .

(ii) If f,g € L*(X,m) are such that f < g, then w, < w4

Proor. (i) We write, for simplicity, u = w,, s and U = w,, ¢. Note that we have v > 0 and
U > 0. Consider the functions uV U € H,, and u AU € H,. By the minimizing property
of w and U, we have

JMf(u/\ U) > J%f(u), Juﬁf(U\/ U) > J'u’f(U).

We decompose the space as X = {u > U} U{u < U} to obtain

1 1 1
/ (]DU|2 +-U? — fU) dm + / U?dv >
{u>U} \2 2 2 Jiusuy
1 1 1
> / (\Du|2 + —u? — fu) dm + / u? dv,
{u>U} \2 2 2 Jiusuy
1 1 1
~|Dul? + Zu® — fu) dm + = u?dp >
2 2 2
{u>U}nw {u>U}

1 1 1
> / <|DU|2 + -U?% - fU) dm + / U2 dp.
{u>U} \2 2 2 Jiusuy

(2.1.8)
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Thus, we have

/ (u2—U2) duZ/ (uQ—UQ) dv,
{u>U} {u>U}

and since u? — U? > 0 on {u> U} and v > p, we have also the converse inequality and so

/ (uQ—UQ) du—/ (uQ—UQ) dv.
{u>U} {u>U}

Using again ([2.1.8]), we obtain that also

/ <1|DU\2 +ipe fU> dm :/ <1|Du\2 4l fu> dm,
{u>U} \2 2 {u>U} \2 2

and so
Jof(unNU) = J, f(u) and Juf(uvU) = J,¢(U).

By the uniqueness of the minimizers, we conclude that v < U.
Let v = w,y and U = w, 4. As in the previous point, we consider the test functions
uVU,u AU € H,. Using the optimality of v and U, we have

Ju,g(“ vU) > ng(U)a ch(u ANU) > Ju’f(u)

We decompose the metric space X as {u > U} U {u < U} to obtain

1 1 1
/ <2|Du\2 + §u2 - ug> dm + 2/ u?dp
{u>U} {u>U}
1 2 1.9 1 2
> DU+ ZzU*—gU | dm + - U= dpu,
2 2 2
{u>U} {u>U}
1 2, 1o 1 2
—|DU|* 4+ =U* — fU ) dm + = U”dpu
2 2 2
{u>U} {u>U}

> / <1]Du|2 + 1u2 — fu) dm + 1/ u® dy.
{usU}y \2 2 2 Jiwstny

Then, we have

0 2/ ( \Du|2+ —? fu) dm+1/ u? dp
{u>U} 2 Jiusuvy

- 1|DU|2+1U2—fU dm + U?du
2 2 2
{u>U} {u>U}

2/ g(u—U)dm — flu=U)dm = / (9— f)lu=U)dm > 0.
{u>U} {u>U} {u>U}

Thus, we obtain the equality

/ < |Du!2+ u fu) dm—i—l/ uw?dp
{(u>U} 2 Jpwsty

1 1 1
= Z|IDUP +=U% = fU ) dm+ = U?du,
2 2 2
{u>U} {u>U}
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and thus we have
Juyf(u) = J“,f(u A U).

By the uniqueness of the minimizer of J, ¢, we conclude that U > wu.
O

Corollary 2.1.14. Suppose that w C Q and that f € L?>(X,m) is a positive function. Then we
have wq y > wy, f, where wo ¢ and wy, ¢ are the solutions respectively of

—DZwQJ +waq = f, wo,f € ﬁO(Q),

~D?wy, f +wy s = f, Wy, f € Ho(w).
ProOOF. It is enough to note that Io < I, and then use Proposition (a). g
The following lemma is similar to [51, Proposition 3.1].

Lemma 2.1.15. Let p be a measure on X, absolutely continuous with respect to m. Foru € H,
and € > 0 let u. be the unique solution of the equation

— D%ug 4 ue + pue + ¢ tue = e (2.1.9)
Then we have

(a) us converges to u in L*(X,m), as e — 0, and
s = el g2y < €2l (2.1.10)
(b) \lucllm, < |lullg,, for every e >0, and
el = M el s (2.1.11)

(¢) if u>0, then us > 0;

(d) if u < f, then ue < e 'Cw, ;.

PROOF. We first note that u. is the minimizer of the functional J. : L?(X,m) — R defined
as

1
Jg(v):/X(\Dv]2+v2) dm—i—/XUQd,u—l—g/X]v—u]Qdm.

Since J.(us) < Jz(u), we have
1
el + =t = ey <

and thus we obtain (a) and the inequality in (b). Since u. — u in L?(X,m) and u. is bounded
in H,, we can apply Lemma [2.1.10| obtaining

< limi <li <
el . < i inf ffuc, < hsnisgplluellm < |lull g,

which completes the proof of (b). Point (¢) follows since J-(|uc|) < Jz(ue), whenever v > 0. To

prove (d) we just apply the weak maximum principle (Proposition [2.1.13] (ii)) to the functions
-1 -1

eu<e C. O

Remark 2.1.16. We note that if H,, endowed with the norm || - ||, is a Hilbert space, we
have that u. converges to u strongly in H,,. More generally, if H,, is uniformly convex, then u.
converges to u strongly in H, (see [16], Proposition III.30]).
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We will refer to the following result as to the strong maximum principle for the solutions of
(12.1.5).

Proposition 2.1.17. Let p be a measure on X, absolutely continuous with respect to m. Let
W € L2(Q) be a strictly positive function on X such that for every w € H we have ) Au € H.
Then for every v € H,,, we have that {u # 0} C {w > 0}, where w = w4 is the solution of the
equation

—D*w+w+ pw =Y, w e Hy,.

PRrROOF. Counsidering |u| instead of u, we can restrict our attention only to non-negative
functions. Moreover, by taking u A 1, we can suppose that 0 < u < ¢. Consider the sequence
ue of functions from Lemma [2.1.150 We have that u, < zflwu’w and so

{ue > 0} C {wyy > 0}.
Passing to the limit as € — 0, we obtain
{u>0} C {w,y >0}
O

Corollary 2.1.18. Let 11 and 1o be two strictly positive functions satisfying the conditions of
Proposition|2.1.17. Then we have

{wﬂﬂbl > 0} = {w/”‘)wZ > 0}'

Definition 2.1.19. We will say that H has the Stone property in L?>(X,m), if there is a function
W € L2(Q), strictly positive on X, such that for every v € H we have ) ANu € H.

Remark 2.1.20. If there is a function ¢ € H, strictly positive on X, then H has the Stone
property in L2(X,m).

Remark 2.1.21. For a generic Riesz space R, we say that R has the Stone property, if for every
u € R, we have u A 1 € R. If the constant 1 is in L?(X,m) and if H has the Stone property,
then H has the Stone property in L?(X,m), in sense of definition [2.1.19

Example 2.1.22. Let X = R? and m be the Lebesgue measure. Then the Sobolev space H&(Q),
for any (bounded or unbounded) set Q@ C R? has the Stone property in L?(R?). In fact the

Gaussian e~ 171%/2 ig strictly positive Sobolev function on RY.

Definition 2.1.23. Suppose that the space H has the Stone property in L*(X,m). For every
measure 1 on X, absolutely continuous with respect to m, we define the set Q, C X as

Qu = {wyy > 0}

Remark 2.1.24. We note that, after Corollary [2.1.18, the definition of €2, is independent on
the choice of .

Corollary 2.1.25. Suppose that H has the Stone property in L? and let  C X be a Borel set.
Then, setting u = I, we have

Q. CcQ  and  Ho(Q) = Ho().

Definition 2.1.26. Suppose that H satisfies the Stone property in L*>(X,m). We say that the

Borel set QQ C X is an energy set, if Q0 =, where u is the measure Iq.
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Remark 2.1.27. For each u € H the set 2 = {u > 0} is an energy set. In fact, setting u = Io,
we have that {w, ., > 0} C Q@ = {u > 0}, since w,, , € H,. On the other hand, using Proposition

2.1.17, we have {u > 0} C {w, > 0}.

2.2. The strong-v and weak-v convergence of energy domains

Throughout this section we will assume that H satisfies the properties H1, D1, D2, D3, D4,
H1 and H2 and that H has the Stone property in L?>(X, m). Moreover, we will need the further
assumption that the inclusion H — L2(X,m) is locally compact, i.e. every sequence u, € H
bounded in H admits subsequence for which there is a function v € H such that u,, converges to
uin L?(Bg(x), m), for every ball Bg(z) C X. Under these assumptions, we introduce a suitable
topology on the class of energy sets 2, which involves the spaces ﬁIO(Q) and the functionals
defined on them as the first eigenvalue of the Dirichlet Laplacian, the Dirichlet Energy, etc.

2.2.1. The weak-y-convergence of energy sets.

Definition 2.2.1. Suppose that v is a Stone function in L*(X,m) for H. We say that a
sequence of energy sets §y, weak-y-converges S if the sequence (wq,, 1)

L*(X,m) to some w € L*(X,m) and Q = {w > 0}.

n>1 COnverges strongly in

Remark 2.2.2. We will prove later in Corollary that the notion of the weak-+-convergence
is independent on the choice of 1.

Remark 2.2.3. We first note that the set {2 from Definition [2.2.9] is an energy set. Indeed,
since wy, 1= w,,  satisfies

—D?w,, + wy, + YWy, = 1, wy, € Hy,,,
we have that
lwnllar < lwnlla,, <20¢l20m), ¥ neN.

Thus, since w, — w, we have that w € H and
lwllz < liminf lw, |7 < 2[[¢] r20n).-
n—oo
Now, by Remark [2.1.27) = {w > 0} is an energy set.

Remark 2.2.4. We note that the equation w = w,, y, where u = TQ, does not necessarily hold.
In the case X = R? and H = H'(R?), we will see that w is of the form Wy, for some measure
p = .

Remark 2.2.5. If the inclusion H < L?(X,m) is locally compact, then the family of energy
set is sequentially compact with respect to the weak-v-convergence. Indeed, as we showed in
Remark the sequence wg,,  is bounded in H, for any choice of €2,,. Moreover, wq, < w,
where w is the solution of

—D*w+w =1, w e H.

Thus, by Lemma we have that wq, , has a subsequence convergent in L(X,m).

Lemma 2.2.6. Suppose that the inclusion H — L*(X,m) is locally compact. Let w, € L*(X,,)
be a sequence strongly converging in L?(X,,) to w € L*(X,m) and let u, be a bounded sequence
in H such that |u,| < wy, for every n € N. Then up to a subsequence u, converges strongly in
L*(X,m) to some function u € H.
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PROOF. By assumption (#2), we have that u,, converges weakly in L?(X, m) to some u € H.
Thus, it is sufficient to check that the convergence is strong, i.e. that the sequence u,, is Cauchy
in L2(X,m). Let Bgr(z) be a ball such that fX\BR(x) w? dm < €. Then for n large enough

/ uidmg/ w2 dm < 2,
X\Brg(z) X\Br(z)

and thus, since u,, converges to u in L?(Bg(x), m), we have that for n,m large enough

/ ]un—umIQdmgéEE—i—/ |t — Upm|? dm < 9e.
bt X\Br(x)
g

Proposition 2.2.7. Suppose that the space H has the Stone property in L?>(X,m) and that
the inclusion H — L?(X,m) is locally compact. Suppose that a sequence of energy sets €,
weak-y-converges to ) and suppose that (up)n>0 C H is a sequence bounded in H and strongly
convergent in L2(X, m) to a function u € H. If u, € Hy(Q) for every n, then u € Hy(S).

Proor. For sake of simplicity, we set w,, := wgq,, , and w to be the strong limit in L?(X,m)
of wy,. Since |u,| also converges to |u| in L?(X,m), we can suppose u, > 0 for every n > 1.
Moreover, since u, A 1) converges to u A ¢ in L?>(X,m) and {u > 0} = {u A > 0}, we can
suppose u, < 1, for every n < 1. For each n > 1 and every € > 0 we define u, . to be the
solution of

—D2un,5 +(1+ s_l)umE = tu,, Upe € ﬁo(ﬂn).
For every € > 0, we have that u, . is bounded in H and u, . < e lw,. Since w, converges to
w in L?(X,m), we apply Lemma m to obtain that there is a function u. € H such that u, .

converges strongly in L2(X,m) to u.. Moreover, we have u. < e !w and so, u. € ﬁo(Q). On
the other hand, for every n and e, we have

[t — Un.ellL2(m) < Vellunllr < VeC,
and so passing to the limit in L?, we have
Ju = uellL2(m) < VEC,
which implies that u. — u, strongly in L?(X,m) as ¢ — 0, and so u € ﬁo(ﬂ). g

Corollary 2.2.8. Suppose that the space H has the Stone property in L?>(X,m) and that the
inclusion H < L?(X,m) is locally compact. Let @ and 1) be two Stone functions and let 0, be
a sequence of energy sets such that wq, , converges in L?(X,m) to some wy, € H and wg, 4
converges in L*(X,m) to some wy, € H. Then {wy > 0} = {w, > 0}.

PRroOOF. Consider the function £ = ¢ A ¢». We note that & is a Stone function for H in
L%*(X,m). The sequence wg, ¢ is bounded in H and is such that wq, ¢ < wq, ,. By Lemma
we can suppose that wq, ¢ converges in L?(X,m) to some wg. Since we < w,, we have
that {we > 0} C {w, > 0}. On the other hand, by Proposition we have the converse
inclusion, i.e. {wg > 0} = {w, > 0}. Reasoning analogously, we have {w¢ > 0} = {wy > 0}
and so, we have the claim. O
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2.2.2. The strong-v-convergence of energy sets.

Definition 2.2.9. Suppose that v is a Stone function in L*(X,m) for H. We say that a
sequence of energy sets 1, strong-y-converges ) if the sequence (wq, ), converges strongly
in L?(X,m) to some wq ., € L*(X,m).

In what follows we show that the definition of the strong-y-convergence is independent on
the choice of the function 1 (see Corollary [2.2.13)). We start with two technical lemmas.

Lemma 2.2.10. Suppose that H and D satisfy the assumptions (H1), (D1), (D2), (D3), (D4),
(H1) and (H2). Suppose that u, € H and v, € H are two sequences converging strongly in
L*(X,m) tou € H and v € H, respectively. If we have

/|Du|2 m = hm / | Duy, |> dm and /\DUPdm: 1Lm/|Dvn|2dm,
X nTee X

then also
/ |D(uV v)|?dm = hm / |D(uy, V vp)|? dm,
X

/|D(u/\v)|2dm— hm/|D Un A vy)|? dm.
X

PROOF. Since we have that u, A v, — u A v and u, Vv, — u Vv in L2(X,m), we have

Jx ID(uVv)Pdm <liminf, oo [y |D(un V vp)? dm,

(2.2.1)
[x [DwAv)Pdm < liminfp, oo [y [D(tn Avy)*dm.
On the other hand we have
1D (u A )72y + 1DV 0) |22y = 1D Ul + (D012
= lim (D32 + 1001320 (222)

= lim_ (1D (un A vn)lFagmy + 1D(n V 0a) 20, ) -

n—oo

Now the claim follows since by (2.2.2)) both inequalities in (2.2.1)) must be equalities. O

Lemma 2.2.11. Suppose that the function ¢ € L?(X,m) is a Stone function for H and that the
inclusion H — L%(X,m) is locally compact. Suppose that the sequence wq,, 4 converges strongly
in L?(X,m) to wq.,. Then, for every v € Ho(SY), there is a sequence v, € Ho(Qy) strongly
converging to v in L*(X,m) and such that

/ |Dv|? dm = lim / | Dvy,|* dm. (2.2.3)
X n—oo X
PRrROOF. We set for simplicity

Wy, 1= WQ,, and W =1 WO 4)-

We take for simplicity v > 0. The proof in the case when v changes sign is analogous. We
first show that for v € Hp(2) the sequence v; = v A (tw) € Hp(f2) converges to v, strongly in
L?(X,m) as t — +oo and, moreover,

/|Dv\2dm— lim/ | Dvy|* dm.
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Indeed, since v; — v in L?(X,m), we have the semi-continuity

/]Dv]Qdmgliminf/ | Dug|* dm.

For the other inequality, we note that Jg (w) < Joy(w V v), and thus

2 2 1 1
/{ } (Stou+ ot —tuw) am < /{ }(2Dv|2+ g o), (224)
tw<v tw<v

which gives

2 [ty [Pwdm < [,y IDOPdm+ [, (07 = tw) dm

(2.2.5)
= iy 1D dm + (0122 = 10112, ) -
Now since [Dvi| = |Dv[1gyctyy + t|Dw[1 1<y, We have

which gives
/ |Dv|? dm > limsup/ | Dvg|* dm.
X t—o0 X

Thus, by using a diagonal sequence argument, we can restrict our attention to functions
v E I:TO(Q) such that v < tw, for some t > 0. Up to substituting ¢ by ¢y, we can assume t = 1.
We now suppose v < w and define v,, = v A w,, € ﬁo(ﬂn).

Since wy, — w in L?(X,m) and since w and w;,, minimize Jg , and Jo, > we get

/ | Dw, |2 dm = / (wpp — w2)dm —— | (wip —w?)dm :/ | Dw|? dm.
X X X

n—oo X

Now the claim follows by Lemma [2.2.10 U

Proposition 2.2.12. Suppose that the function 1 € L?(X,m) is a Stone function for H and
that the inclusion H — L*(X,m) is locally compact. Suppose that the sequence WQ,, ) CONVETGES
strongly in L*(X,m) to wqy. Then, for every function f € L?*(X,m), we have that wq, f
converges strongly in L*(X,m) to wq,f.

ProOF. We first note that, up to a subsequence, wq,, r converges to some w € H. Moreover,
since €Q,, weak-y-converges to (2, we have that w € Hy(2). We now prove that w minimizes the
functional Jo f. Let v € Ho(2) and let v, € Ho(€2,) be a sequence converging to v in L?(X,m)

and such that
/ |Dv|?> dm = lim / | Dv,, | dm.
X n—oo X

We note that such a sequence exists by Lemma [2.2.11} Thus we have

JQJ’(’U) = lim, Jﬂmf(’l)n) > liminf,, o0 Jgn’f(wgmf) > JQJ’(U]),
which proves that w is the minimizer of Jq ;. O
Corollary 2.2.13. Suppose that the functions @, € L?>(X,m) are Stone function for H and

that the inclusion H < L?*(X,m) is locally compact. Then the sequence wq,,,o converges strongly
in L2(X,m) to wo,,, if and only if, the sequence wq,, , converges strongly in L*(X,m) to wqy.
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Before we continue with our next proposition we define, for every Borel set Q C R?, the
operator || - ||z ) L*(X,m) — [0, +00] as

o = 4 el i € Ho(©),
Ho () +00, otherwise.

We also recall the definition of the I'-convergence of functionals:

Definition 2.2.14. Given a metric space (X,d) and sequence of functionals F,, : X — R U
{+00}, we say that J,, T'-converges to the functional F': X — R U {+oo}, if the following two
conditions are satisfied:

(a) (the T'-liminf inequality) for every sequence x,, converging in to x € X, we have

F(x) <liminf F,(x,);
n—oo
(b) (the T'-limsup inequality) for every x € X, there exists a sequence x, converging to x,
such that

n—oo

F(z)= lim Fn(a:n)ﬁ

Proposition 2.2.15. Suppose that H has the stone property in L?(X, m) and that the inclusion
H — L?(X,m) is locally compact. Then a sequence of energy sets 0, C X strong-y-converges
to the energy set S, if and only if, the sequence of operators || - ”FIo(Qn) I'-converges in L*(X,m)

to || - HﬁO(Q)-

PROOF. Suppose first that ,, strong-v-converges to Q. Let u,, € L?(X,m) be a sequence
strongly converging to u € L%?(X,m). Let u, be such that lim, . ||Un||ﬁO(Qn) < +4o00. Then

un € Ho(y), for every n € N and ||Jup |z < C. Then u € Hy(Q) and by the semi-continuity of
the norm H, we have

HUHﬁO(Q) < linn_1>i£f HUTLHFIO(QH)'

Let now u € ﬁo(Q). Then, by Lemma [2.2.11} there is a sequence u,, € ﬁIO(Qn) such that

el o0y = Jimn llen 7,

which proves that || - HFIO(Q ) [-converges in L?(X,m) to || - HFIO(Q)'
Suppose now that the I'-convergence holds and let ¢ € L?(X, m) be a Stone function for H.
Since the functional ¥(u) := [y ut dm is continuous in L?(X,m), we have that the sequence of

functionals
L2
JQnJJJ(u) = 5”””?[0(971) - \Ij(u)a
I-converges in L?(X,m) to Jo,,. Thus the sequence of minima wg,, 4 converges in L?(X,m) to

some w € H, which is necessarily the minimizer of Jg y, which concludes the proof. U

2this inequality is equivalent to F(z) > lim Sup,,_, o Fn(xn) due to the I'-liminf inequality.
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2.2.3. From the weak-vy to the strong-y-convergence. Let ¢ € L?(X,m) be a Stone
function for H and let €, be a sequence of energy sets such that wq,, ., converges in L*(X,m)
to w. In this subsection we investigate the relation between the functions w and wgq 4, where
Q = {w > 0}. We will mainly consider the case when m is a finite measure and 1 is a positive
constant. Fixing ¢ = 1, we will say that the sequence €2, strong-v-converges to €2, if w = wq 1.
We will prove in Proposition [2.2.18 that in general the inequality w < wgq,; always holds. The
equality does not always hold as some classical examples show (see [46] or [21]).

Lemma 2.2.16. Suppose that the inclusion H — L?(X,m) is locally compact and that 1) is
a Stone function in L*(X,m). Consider a sequence €, of energy sets, weak-vy-converging to
the energy set €, and the sequence of functions wq, 4 converging in L*(X,m) to w such that
{w > 0} = Q. Suppose that for each n > 1 we have that Q C Q,,. Then w = wq .

PRroOF. For the sake of simplicity we set w;,, = wq,, . For any set & C X, we consider the
functional Jg : L?(X, m) — R defined as

1 1 ~
JE(u) :/ (2]Du\2 + §u2 —wu) dm—l—/ u? dlp.
X X

Since ), is the unique minimizer of Jq, , by the semi-continuity of the norm |[D(:)|[12(m), We
have
Jao(w) < liminf Jo, (w,) < lini)inf Ja, (way) = Ja(way),
n—oo

n—o0
where we used wq ,; as a test function in Ho(€2,). Since wq 4 is the unique minimizer of Jo, we
obtain w = wgq . O

Lemma 2.2.17. Let H and D satisfy the conditions H1, D1, D2,D3, D4, H1 and H2 and
suppose that

(H2) H has the Stone property, i.e. ifu € H, thenu N1 € H;
(D5) for every u € H and ¢ € R, Du = 0 m-almost everywhere on the set {u = c}.

Then we have:
(i) Ifu € H and € > 0, then (u—e)t € H;
(i) If u € H and € > 0, then D((u —€)%) = Lyyse) Du;
(i) If @ C X and f € L*(X,m), then we have
(wa,r — )" =wq, (1-e) < wa, s,
where Q. = {wq ¢ > €}.
PRrROOF. Claim (i) follows by the equality (v — &)™ = u — u A e. For (i) we note that, by
(D5) D((u — &)™) vanishes on X \ {u > €}. On the other hand, we have
D(u—une) <Du+ D(uAce) and D(u) < D(u—uANe)+D(une),
and since D(u A€) = 0 on {u > €}, we obtain (i). To prove (i), we set w = wgq, s and note
that w, := (wq s — €)" is the unique minimizer of
1 1 ~
J(u) = / <2]Du|2 + §(u +wAe): = flut+wA 5)) dm, u € Hyp(9).
X
Thus, w, satisfies the equation

—D*w, +w, = f —e, we € fIO(Qg).
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In the next Proposition we will suppose that H satisfies also conditions (H2) and (D5) from
Lemma [2.:2.17} Under these assumptions we will prove a result resembling the weak maximum
principle for weak-v-limits. We note that in R? this result is immediate due to the characteri-
zation of the limit w = lim,,_, o wq.

Proposition 2.2.18. Let ¢ € L?(X,m) be a Stone function for H. Suppose that the inclusion
H — L*(X,m) is locally compact and that H satisfies (H1), (H2), (D1), (D2), (D3), (D4),
(D5), (H1) and (H2). Suppose that the sequence Q,, of energy sets is such that wq,,  converges
strongly in L*(X,m) to w € H. Then, setting Q@ = {w > 0}, we have w < wq.y.

Proor. Consider, for € > 0, the energy set ), = {wq, > ¢}. By Lemma [2.2.17] we have

(we, y» — g)t < WQe o < WO U1 (2.2.7)

Up to a subsequence, we may suppose that wqsyuqy converges strongly in L?(X,m) to some
w® € H. On the other hand, we note that (wq, , > )" converges in L2(X,m) to (w —¢)* and
so, v — v° strongly in L?(X,m), where

1 1
v,izl—g(wgmw/\e) and vazl—g(w/\s).

Thus we obtain that v, A was g,y converges in LQ(X, m) to v A w®. We now have
vy, =0 on and wo:unyw =0 on X\ (5, UQ),
and thus we obtain that
’U;i /\'UJQ:Zug)ﬂLy =0 on X \ Q.
Passing to the limit for n — 0o, we have v° A w® € Ho(€2) and since v° = 1 on X \ €2, we deduce
that w® € Hyp(€2). By Lemma [2.2.16, we have

’ws S w{ws>0},¢ S U}Q’w. (2.2.8)
On the other hand we have wqy < wa:yuq,y, for every n € N and so, passing to the limit,

w® > wq ,, which, together with (2.2.8) gives wo = w®. We now recall that after passing to the
limit as n — oo in (2.2.7)), we have

(w - €)+ < We = WQ -
Since € > 0 is arbitrary, we obtain w < wgq 4. a

Now we can prove the following result, which is analogous to [30, Lemma 4.10].

Proposition 2.2.19. Suppose that H has the Stone property in L?(X,m), that the inclusion
H < L?(X,m) is locally compact and that H satisfies (H1), (H2), (D1), (D2), (D3), (D4), (D5),
(H1) and (H2). Suppose that (2,)n>1 is a sequence of energy sets which weak-y-converges to
the energy set Q. Then, there exists a sequence of energy sets (§2,)n>1 strong-y-converging to
such that for each n > 1 we have the inclusion Q, C Q.

PROOF. Let ¢ € L?(X,m) be a Stone function for H. Consider, for each ¢ > 0, the sequence
of minimizers wq,,uos , where Q. = {wq 4 > €}. We can suppose that for each (rational) e > 0
the sequence is convergent in L?(X,m) to a positive function w. € H.

Consider the function v, = 1—1(wgq 4 Ae), which is equal to 0 on € and to 1 on X \Q. Then
we have that the sequence wq,uqs 4 A Ve € fIO(Qn) converges to w. A v. strongly in L?(X,m)
and is bounded in H. Then, since (), weak-y-converges to €2, by Proposition we have
we A ve € Ho(€2). Since ve = 1 on X \ ©, we have that also w. € Hy(€) and so, by Proposition
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2.2.18, we have w. < wq . On the other hand, by the weak maximum principle and Lemma
2.2.17) we have
(woy — &) < wa, .y < wo,u0. 4
and thus, passing to the limit as n — co, we obtain
(woy — &)t < w. < wq,
from where we can conclude by a diagonal sequence argument. O

Remark 2.2.20. This last result is useful in the study of functionals defined on the family of
energy sets £(X). More precisely, in the assumptions of Proposition [2.2.19 suppose that

F:E(X) — [0, +00],
is a functional on the family of energy sets such that:

(J1) F is lower semi-continuous (shortly, 1.s.c.) with respect to the strong-y-convergence, that
is

F(Q) < liminf F(Q,)  whenever Q, 5 Q.

n—oo
(J2) F is monotone decreasing with respect to the inclusion, that is

F() > F(Q2) whenever Q) C Qs.

Then F is lower semi-continuous with respect to the (weaker!) weak-vy-convergence. Indeed,
suppose that €2, weak-v-converges to 2. By Proposition [2.2.19 there exists a sequence of
energy sets (€2),>1 strong-y-converging to 2 and such that Q,, C Q). Thus we have

F() < liminf F(Q,) < lim inf F(Qn).

2.2.4. Functionals on the class of energy sets. In this subsection we analyse some of
the functionals defined on the set £(X) of energy sets in X.
For a given positive m-measurable function h : X — [0, 400], we consider the functional

My(Q) = /Q hdm.

If, for instance, h is constantly equal to 1, then M (Q2) = m(Q).

Lemma 2.2.21. For every positive m-measurable function h : X — [0,+00], the functional
My, : E(X) — [0,400] is l.s.c. with respect to the weak-y-convergence.

. . k— .
PRrOOF. Consider a weak-v-converging sequence (1, LY, Q and the function w € H
n—oo

such that {w > 0} = Q and wq, — w in L?(X,m). Up to a subsequence, we can assume that
wgq,, () — w(x) for m-almost every z € X. Then 1 < liminf,_,~ 1o, and so, by Fatou lemma

M, () = / Iohdm < lin_l)inf/ 1o, hdm = lirginf My ().
X n—oo X n—oo
O

Definition 2.2.22. For each Borel set Q) € B(X) the “first eigenvalue of the Dirichlet Laplacian”
on ) is defined as

XI(Q)_inf{/QyDuPdm: u € Hy(Q), /Qqum—l}. (2.2.9)
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More generally, we can define \,,(Q2), for each k > 0, as

Ae(Q) = inf sup{/ |Duf*dm : u € K, /ugdmzl}, (2.2.10)
KCHy(Q) Q Q

where the infimum is over all k-dimensional linear subspaces K of Ho(2).

Definition 2.2.23. For each f € L?>(X,m) and Q C X the Energy of ) with respect to f is
defined as

Ef(Q):inf{;/Q]Du\Qdm—i—;/ﬂzfdm—/ﬂufdm: uef[o(fl)}. (2.2.11)

Proposition 2.2.24. Suppose that 2 C X is an energy set of positive measure such that the
inclusion Hy(Q) — L2(X,m) is compact. Then there is a function ug € Ho(Q) with |ug| 2 =
1 and such that [o|Dul®*dm = Xl(Q) More generally, for each k > 0, there are functions
UL, ..., U € I;TO(Q) such that:

(a) ||ujllp2 =1, for each j =1,... k,

(b) [y uiuj =0, for each 1 <i < j <k,

(¢) [x |Dul*dm < Me(Q), for each u = aquy + - - - + apuy, where a4 +al=1

PROOF. Suppose that (uy)n>1 C Ho(Q) is a minimizing sequence for A1 (Q) such that
lunllz2(my = 1. Then (up)n>1 is bounded with respect to the norm of H and so, there is
a subsequence, still denoted in the same way, which strongly converges in L?(X,m) to some

function v € H:

L2(X,m
Up, M u € H.
n—oo

We have that ||u|/;2 = 1 and
/ |Du|? dm < liminf/ | Duy|? dm = X ().
QO n—oo O
Thus, u is the desired function. The proof in the case k > 1 is analogous. O

Proposition 2.2.25. Suppose that H has the stone property in L?>(X, m) and that the inclusion
H < L?(X,m) is compact. Then the functional A\, : £(X) — R defined by (6.4.4) is decreasing

with respect to the set inclusion and lower semicontinuous with respect to the weak-vy-convergence.

ProOF. It is clear that Xk is decreasing with respect to the inclusion, since w C 2 implies
H()(w) C H()(Q)

. . . L3(X
We now prove the semi-continuity. Let €2, 75 Q, that is wQ,, 1 L> w for some Stone
n—oo n—oo

function ¢ € L%(X,m) and = {w > 0}. We can suppose that the sequence A (£2,) is bounded
by some positive constant C. Let for each n > 0 the functions uf,..., uy € H, () satisty the
conditions (a),(b) and (c) of Proposition Then, we have that up to a subsequence we
can suppose that u} converges in L%(X,m) to some function u; € H. By Proposition we
have that u; € Ho(Q), Vj = 1,...,k. Consider the linear subspace K C Hy(2) generated by
U1, ..., up. Since ui,...,u; are mutually orthogonal in L?(X,m), we have that dim K = k and
S0

Xk(Q)Ssup{/Q]Du\Qdm: ueK, /Quzdm—l}.
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It remains to prove that for each u € K such that ||ul| 2 = 1, we have
/ |Du)? dm < lim inf A\ (€2,).
X n—oo

In fact, we can suppose that u = aquq + - - - + apuy, where a% + -4 ai = 1 and so, u is the
strong limit in L2(X, m) of the sequence u" = ayuf + - - + aguf € Ho($y,). Thus, we obtain

/ |Dul? dm < liminf/ |Du™|? dm < liminf A, (),
X n—oo X n—oo
as required. O

Remark 2.2.26. If we drop the compactness assumption for inclusion H — L?(X,m), then
the semi-continuity of Xk with respect to the weak-v-convergence does not hold in general.
For example consider X = R? and H = H'(RY). Taking as a Stone function the Gaussian
¥(x) = e 1#1°/2 we have that the sequence of solution of

—Awy, + wy, = 1, Wp, € H&(Bl(xn))a

converges strongly to zero in L?(RY), as x,, — 0o, since we have |wl|;2 < 191 2By (2n))- Thus
the sequence of unit balls By (z,,) strong-y-converges to the empty set, as |z,| — oo and so the
semi-continuity does not hold:

M(By) = lim inf X (Bi(24)) < M(0) = 4oc.
Proposition 2.2.27. Suppose that H has the Stone property in L*(X,m) and that the inclusion
H — L*(X,m) is locally compact. Then, for every f € L*(X,m), the functional Ey : £(X) — R

from Definition s decreasing with respect to the set inclusion and lower semi-continuous
with respect to the weak-vy-convergence.

ProoF. The fact that Ey is decreasing follows from the same argument as in Proposition
2.2.25] In order to prove the semi-continuity, we consider a sequence §2, weak-y-converging to
Q). Let now u,, be the solution of

—D?up, + uy = f, Uy, € ﬁo(ﬂn).

Then we have that u,, is bounded in H and thus since it is also bounded from above and below
by the solutions u’,u” € H of

—D2u'+u’:\f\, —DQUN—I—UHZ—’f’, u/7u/l€H7

we have that u, converges in L?(X,m) to some u € H. By the weak-vy-convergence, we have
that u € Ho(f2) and by the semi-continuity of the L?(m)-norm of Du, we have

1 1
E¢ () §/ <|Du|2—|—u2—fu> dm
0\ 2 2

1 1
< liminf/ (|Dun|2 + fufl — fun> dm
Q, \2 2

n—oo

= liminf F¢ ().

n—oo

3In the Euclidean space R? we have H{(B) = HA(B), for every ball B.



38 2. SHAPE OPTIMIZATION PROBLEMS IN A BOX

One can easily extend the above result to a much wider class functionals, depending on
CUXTE

Proposition 2.2.28. Suppose that H satisfies has the Stone property in L?(X,m), that the
inclusion H — L*(X,m) is locally compact and that satisfies the conditions (H1), (H2), (D1),
(D2), (D3), (D4), (D5), (H1) and (H2). Let j : X xR — R be a measurable function such that:

(a) j(x,-) is lower semi-continuous and decreasing for m-almost every r € X ;
(b) j(x,8) > —a(x)s — Bs®, where B > 0 is a constant and o € L*(X,m) is a given function.

Then for a given non-negative f € L?(X,m), we have that the functional

fj(Q):/)(j(.T,'IUQ,f)dx,

1s decreasing with respect to the set inclusion and is lower semi-continuous with respect to the
weak-y-convergence.

PRrROOF. Letw C Q. By the weak maximum principle, we get w,, y < wq,r. Then j(z,w, f(x)) >
j(x,wq, r(x)), for every x € X, which proves the monotonicity part. For the lower semi-
continuity we first notice that by Remark it is sufficient to prove that F} is l.s.c. with
respect to the strong-y-convergence. Consider a sequence (), strong-v-converging to (2. By
Proposition we have that wq,, s converges in L?(X,m) to wq ¢ and so, we have

. < Taninf 4
j(@,we,p(2)) < liminf j(z, we, ;(z)).
Since, for every E C X, we have

j(z,wp p(2)) > j(x,wx f(2) > —a(z)wx f(x) = fwx f(z)* € L'(X,m),

we can apply the Dominated Convergence Theorem, for the negative part of the function
j(z,wq, f(x)), and the Fatou Lemma, for the positive part, obtaining the semi-continuity of
Fi. 0

2.3. Capacity, quasi-open sets and quasi-continuous functions

Our main example of a couple H C L?(X,m), D : H — L?(X,m) is the Sobolev space
H = H'(R?) and the modulus of the gradient Du = |Vu|. In this classical framework, we
consider an open set 2 C R? and the Sobolev space HE(€2) on Q. Denoting with ﬁ& (Q) := Ho(R),
we have that, in general, the spaces f[&(Q) and H}(Q) might be different. Thus also the
functionals defined by minimizing a functional on H{ () or ﬁ&(Q) might be different. In order
to have a true extension of these functionals, classically defined for open sets €2 and the Sobolev
spaces H&(Q), we need a new notion of a Sobolev space on a generic measurable set 0 C R%.
Classically, this definition is given through the notion of capacity and, as we will see below, can
be extended to a very general setting.

In this section we give the notion of capacity in a very general setting, which is a natural
continuation of the discussion in the previous sections; we then introduce the Sobolev spaces
Hy(Q2) for a generic set Q and show that the natural domains for these spaces are again the
energy sets, introduced above. At the end of the section we discuss the questions concerning
the shape optimization problems in these different frameworks.

Let H C L*(X,m) and D : H — L?(X,m) satisfy the properties (H1), (H2), (D1), (D2),
(D3), (D4), (D5), (H1) and (H2). We assume, furthermore, that
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(H3) the linear subspace H NC(X), where C(X) denotes the set of real continuous functions
on X, is dense in H with respect to the norm || - || z;
(H4) for every open set 2 C X, there is a function uw € H N C(X) such that {u > 0} = Q.

Remark 2.3.1. We note that (#4) is equivalent to assume that for every ball B,(z) C X there
is a function v € H N C(X) such that {u > 0} = B, (x).

Definition 2.3.2. We define the capacity (that depends on H and D) of an arbitrary set Q C X
as

cap(2) = inf {Hu”%{ :uw€ H, u>1in aneighbourhood of Q} (2.3.1)
We say that a property P holds quasi-everywhere (shortly q.e.), if the set on which it does not

hold has zero capacity.

Remark 2.3.3. If u € H is such that v > 0 on X and u > 1 on Q C X, then [[ul% < m(%).
Thus, we have that cap(€2) > m(f2) and, in particular, if the property P holds q.e., then it also
holds m-a.e.

It is straightforward to check that the capacity is an outer measure. More precisely, we have
the following result.

Proposition 2.3.4. (1) If w C Q, then cap(w) < cap(Q?).
(2) If () ey @5 a family of disjoint sets, then

cap (U Qn) <) cap(Qy).
n=1 n=1

(8) For every Q1,Q9 C X, we have that
cap(Q1 U Qa) + cap(Q1 N Q) < cap(Q1) + cap(Qa).
(4) If @y C Qo C--- C Qy C ..., then we have

cap (U Qn> = h_)m cap(£2y,).
n=1

PROOF. Point (1) is a direct consequence of the definition; for a proof of point (2) see [61]
Theorem 1, Section 4.7], while for the point (3) and (4) we refer to [61, Theorem 2, Section
4.7). O

Remark 2.3.5. We note that the family of sets of zero capacity is closed with respect to the
intersection and union of two sets, as well as, with respect to the denumerable unions.

Remark 2.3.6. Definition coincides with the classical definition of capacity in R? with
H = H'(R?). We note that if 1 € H, then we simply have cap(Q2) = m(f2). This is the case when
X is a compact differentiable manifold and H is the Sobolev space on X. Thus our definition is
not satisfactory in all cases. For manifolds, for example it is natural to define the sets of capacity
zero using the local charts and the definition in the Euclidean space. An intrinsic definition of
capacity, which gives the desired family of sets of zero capacity also in this case, is the following:

cap(2) := inf { anp(Q N By, (zi); Bay, (zi)) : By, (zi) C X; QC U B, (mz)},
ieN i
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where
cap (QNBy, (2;); Bar, (x;)) := inf {||u|]%{ . u € Hy(Bay,(z;)), v > 1 in a neighbourhood of QﬁBri}.
We choose to work with Definition for sake of simplicity.

Definition 2.3.7. A function u : X — R is said to be quasi-continuous if there exists a decreas-
ing sequence of open sets (wn)n>1 such that:
e cap(w,) —— 0,
n—oo

e On the complementary wt of wy the function u is continuous.

Definition 2.3.8. We say that a set Q C X is quasi-open if there exists a sequence of open sets
(wn)n>1 such that
e QUuw, is open for each n > 1,
o cap(w,) —— 0.
n—o0

Remark 2.3.9. The sequence of open sets w,, in both Definition [2.3.7| and Definition can
be taken to be decreasing.

The following two Propositions contain some of the fundamental properties of the quasi-
continuous functions and the quasi-open sets.

Proposition 2.3.10. Suppose that a function u : X — R is quasi-continuous. Then we have
that:

(a) the level set {u > 0} is quasi-open,

(b) if u>0 m-a.e., thenuw >0 g.e. on X.

PRrROOF. See [71], Proposition 3.3.41] for a proof of (a) and [71l Proposition 3.3.30] for a
proof of (b). O

Proposition 2.3.11. (a) For each function u € H, there is a quasi-continuous function @ such
that w = @ m-a.e.. We say that @ is a quasi-continuous representative of w € H. If @ and
' are two quasi-continuous representatives of u € H, then @ =i q.e.

(b) If up, LN u, then there is a subsequence (up, )k>1 C H such that, for the quasi-continuous
n—oo -

representatives of u,, and u, we have

for ge. x € X.

PRrROOF. See [71], Theorem 3.3.29] for a proof of (a), and [71, Proposition 3.3.33] for a proof
of (b). O

Remark 2.3.12. We consider the following relations of equivalence on the Borel measurable
functions

cp . m .
u~v, ifu=wvqe, u~wv, ifu=vm-a.e.
We define the space
H? :={u:X - R : u quasi-cont., u € H}/ <, (2.3.2)

and recall that
H={u:X >R :ucH}/Z. (2.3.3)
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Then the Banach spaces H®’ and H, both endowed with the norm || - ||, are isomorphic. In
fact, in view of Proposition and Proposition it is straightforward to check that
the map [u]e, — [ulm is a bijection, where [u]e, and [u],, denote the classes of equivalence of u
related to < and C, respectively. In the sequel we will not make a distinction between H and
H and every function v € H will be identified with its quasi-continuous representative.

Proposition 2.3.13. Let @ C X be a quasi-open set. Then there is a (quasi-continuous)
function u € H such that Q = {u > 0} up to a set of zero capacity.

PROOF. Let w, be the sequence of open sets from Definition and let v, € H be such
that w, C {v, = 1} and ||v,||% < 2cap(wy). Let u, € H be such that {u, > 0} = QUw,. Then
wp, = up A (1 —vy,) € H is such that {w, >0} C 2 and

cap(\ {w, > 0}) < [[on 3 < 2cap(wn).

After multiplying to an appropriate constant, we may suppose that ||wy| g < 27"™. Thus the
limit w =Y 7, wy, exists and {w > 0} C © g.e.. On the other hand

cap(Q2\ {w > 0}) < cap(2\ {w, > 0}) < 2cap(wn),
and thus, passing to the limit as n — oo, we have the claim. O
Definition 2.3.14. For each Q) C X we define the space
Hy(Q) := {u €H : cap({u#0}\Q) = O}, (2.3.4)
which, by Proposition (b), is a closed linear subspace of H.

We define the function I on the m-measurable sets as

Io(E) = {0, if cap(E\ Q) =0,

(2.3.5)
+oo, if cap(F \ Q) > 0.

Then I is a Borel measure on X. Moreover, if v and v are two nonnegative functions on X
and u = v quasi-everywhere on X, then we have that [ yudlg = | y vdlg. As a consequence

the map
u+—>/ u?dlq,
X

is well defined on H and so, we have the characterization
Hy(Q) = {u €H: ue LQ(IQ)} = {u € H: / u?dlg < +oo}.
X
Thus, using Iq instead of the measure p in Proposition [2.2.7] we have

Proposition 2.3.15. Suppose that H has the Stone property in L*(X,m). Then for every
u € Ho(2), we have that cap({w > 0} \ {u # 0}) = 0, where w is the minimizer in Hy(2) of the

functional
1 1
J(u):/ |Du\2dm+/u2dm—/u¢dm.
2 Ja 2 Ja Q

Remark 2.3.16. Proposition [2.3.15|suggests that the natural domains for the spaces Hy(£2) are
the quasi-open sets. Indeed, for every measurable set {2 C X, there is a quasi-open set w C {2
such that Hyp(w) = Hp(Q2).
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Remark 2.3.17. We note that the inclusion Ho(€2) C Ho(€) holds for each subset 2 C X and,
in general, may be strict. For example, if X = R?, H = H'(R?) and Q = (—1,1) x {(=1,0) U
(0,1)} C R2, then holds the inequality Ho(Q) # Ho ().

Proposition 2.3.18. Suppose that H is uniformly convex and has the Stone property in L*(X,m).
Let Q0 C X be a given set. Then there is a quasi-open set w such that w C Q m-a.e. and

Ho(w) = Hy(w) = Hy(9). (2.3.6)
Moreover, w is unique up to a set of zero capacity.

PROOF. Let w be (the quasi-continuous representative in H of) the solution of
—D*w+w = 9, w € Hy(1),

where ¢ € L%(X,m) is the Stone function for H. Let u € Ho(2) be nonnegative and such that
u < 1 and let u. € ﬁo (©2) be the sequence from Proposition relative to the measure I~Q
Since u. < Ce™'w, we have that cap({uc > 0} \ {w > 0}) = 0. Moreover, by Remark [2.1.16] we
have that u. converges strongly in H to u and so, cap({u > 0} \ {w > 0}) = 0, which proves
that Hy(Q) C Ho({w > 0}). Thus, we obtain the existence part by choosing w = {w > 0}.
Suppose that w = {u > 0} and w’ = {u’ > 0} are two quasi-open sets satisfying ([2.3.6)).
Then, v/ € ﬁo(ﬂ) = Hy(w) and so, w’ = {¢/ > 0} C w q.e. and analogously, w C W' quasi-
everywhere. O

Remark 2.3.19. One can substitute the uniform convexity assumption in Proposition [2.3.18
with the assumption that the space H is separable. If this is the case, consider a countable
dense subset (u)p2, = A C Ho(2). Then the desired quasi-open set is

w::U{u#O}:{w>0}, where w:Z [

.
ueA = Zluella

In fact, let u € ﬁO(Q). Then, there is a sequence (u,)p>1 C A such that u, _}L u and, by
- n o

Proposition [2.3.11| (), u = 0 q.e. on X \ w and so, we have the existence of w. The uniqueness
follows as in Proposition [2.3.18

Proposition 2.3.20. Fvery quasi-open set is an enerqy set and every energy set is a quasi-open
set, up to a set of measure zero.

PROOF. The first part of the claim follows since, by Proposition every quasi-open
set is of the form u > 0 for some w € H. On the other hand, by Remark the sets of the
form {u > 0} are energy sets. For the second part of the claim, we note that by the Definition
of the energy set, we have that there is w € H such that m(QA{w > 0}) = 0. O

2.3.1. Quasi-open sets and energy sets from a shape optimization point of view.
In this subsection we show that for a large class of shape optimization problems, working with
energy sets or quasi-open sets makes no difference. This is the case when we consider spectral
or energy optimization problems. The main reason for this fact is that the shape functionals are
in fact not functionals on the sets €2, but functionals on the Sobolev spaces Hy(€2) or Ho(2).

Suppose that F' is a decreasing functional on the family of closed linear subspaces of H.
Then we can define the functional F on the family of Borel sets, by F(€2) = F(H(Q)), and
the functional F on the class of quasi-open sets, by F(Q) = F(H(2)). The following result
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shows that the shape optimization problems with measure constraint, related to F and F , are
equivalent.

Theorem 2.3.21. Suppose that H has the Stone property in L*(X,m) and that is separable or
uniformly convex. Let F' be a functional on the family of closed linear spaces of H, which is
decreasing with respect to the inclusion. Then, we have that

inf {F(I:TO(Q)) : Q Borel, m(Q)) < c} (2.3.7)
= inf {F(HO(Q)) : Q quasi-open, m(§2) < c}.
Moreover, if one of the infima is achieved, then the other one is also achieved.

PRrROOF. We first note that by Corollary [2.1.25] and Proposition [2.3.20] the infimum in the
Lh.s. of (2.3.7) can be considered on the family of quasi-open sets. Since F' is a decreasing
functional, we have that for each quasi-open 2 C X

F(Ho()) < F(Ho(9)).

On the other hand, by Proposition [2.3.20] there exists a quasi-open set w such that m(w) < m(Q)
and F(Hy(Q)) = F(Hy(w)) and so, we have that the two infima are equal.
Suppose now that )., is a solution of the problem

min {F(HO(Q)) : Q quasi-open, m(Q2) < c}.
Then we have that
F(Ho(Qep)) < F(Ho(Qep)) = inf { F(Ho(%2)) = @ Borel, m(®) < ¢},

and so the infimum on the Lh.s. in (2.3.7) is achieved, too.
Let €2,,, be a solution of the problem

min {F(ﬁo(Q)) : Q Borel, m(Q2) < c},

and let Q,, C Q,, a.e. such that Ho(Qp) = Ho(Qy,). Then the infimum in the r.h.s. in (2.3.7)
is achieved in €,,. In fact, we have

F(Ho(Q)) = F(Ho(S)) = inf {F(HO(Q)) . Q quasi-open, m(Q) < c},
which concludes the proof. O

Example 2.3.22. Typical examples of functionals satisfying the hypotheses of Theorem [2.3.21
are the eigenvalues \; defined variationally. Indeed, for any subspace L C H, we define

Dul?d
AR(L) = min may JxPUEdm
KCL0#£ueK fX uZdm

where the minimum is over the k-dimensional subspaces K of L. Thus, we have
AR(Ho() = A(Q)  and  Ax(Ho()) = \(9),
where for each Q) C X, we define

Dul?d
Ae(2) = min  max M, (2.3.8)
KCHo(Q) 0£uek [ udm

where the minimum is over the k-dimensional subspaces K of Hy((2).
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2.4. Existence of optimal sets in a box

In this section we apply the theory developed in Sections and We state here a
general Theorem in the abstract setting from these sections and then we will apply it to different
situations.

Theorem 2.4.1. Let (X,d) be a metric space and let m be a o-finite Borel measure on X.
Suppose that H C L*(X,m) has the Stone property in L?*(X,m), that the inclusion H <
L?*(X,m) is locally compact and that H satisfies the conditions (H1), (H2), (D1), (D2), (D3),
(D4), (D5), (H1) and (H2). Let F : E(X) — R be a functional on the family of energy sets
E(X) and such that:

o F is decreasing with respect to the set inclusion;

o F is l.s.c. with respect to the strong-y-convergence.

Then, for every couple A C B C X of energy sets, the shape optimization problem

mm{ﬂmzﬂeﬂXLACQCB,/

hmngl}, (2.4.1)
Q

has a solution for every m-measurable function h : X — [0, +0o0].

PROOF. Let €, be a minimizing sequence for (2.4.2)). Then there is a set 2 C X such that

Q,, weak-y-converges to €. We note that by the maximum principle we have A C Q C B.
Moreover, in view of Lemma [2.2.21] and Remark [2.2.20, we have

/ hdm < lim inf/ hdm and F(Q) < liminf F(Q,),
Q Qn

n—o0 n—oo

which proves that € minimizes (2.4.2)). O
Remark 2.4.2. We note that in the above Theorem one can take A = () and also B = X.

Corollary 2.4.3. Suppose that H C L*(X,m) satisfies the hypotheses of Theorem and
also conditions (H3) and (H4). Suppose, moreover, that H is separable or uniformly convexz.
Let F be a functional on the subspaces of H, decreasing with respect to the inclusion and such
that the functional Q — .F(ﬁo(Q)) is l.s.c. with respect to the strong-y-convergence.

Then, for every couple A C B C X of quasi-open sets, the shape optimization problem

min {]—"(HO(Q)) . Q quasi-open, A C Q2 C B, / hdm < 1}, (2.4.2)
Q
has a solution for every m-measurable function h : X — [0, +0o0].

2.4.1. The Buttazzo-Dal Maso Theorem. The first general result in the shape opti-
mization was stated in the Eucldean setting. Indeed, taking H = H'(RY) and Du = |Vu|, we
can define the weak-vy and the strong-+-convergence as in Section The following Theorem
was proved in [33] and is now a consequence of Theorem

Theorem 2.4.4. Consider D C R? a bounded open set suppose that F is a functional on the
quasi-open sets of R%, decreasing with respect to the set inclusion and lower semi-continuous
with respect to the strong-y-convergence. Then the shape optimization problem

min {]—'(Q) : Q quasi-open, Q C D, |Q] < c}, (2.4.3)

has a solution.
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Remark 2.4.5. In particular, the Buttazzo-Dal Maso theorem applies for functions depending
on the spectrum of the Dirichlet Laplacian A;(Q) < A(Q2) < ... on £, which we recall are
variationally characterized as

Vul?d
Ae(©) = min  max M, (2.4.4)
KCHY(Q)ueKuz0  [ou? d

where the minimum is over the k-dimensional subspaces K of H}(2). Suppose that the function
F : RN — [0, 4+00] satisfies the following conditions:
(F1) If 2 € [0, +oo]N and (2,,)n>1 C [0, 4+00] is a sequence such that for each j € N
20— 20),
where zy(Lj ) indicates the 4" component of z,, then

F(z) < lini)inf F(zp).

(F2) If zij) < zéj), for each j € N, then F(z1) < F(22).

Then the optimization problem
min {F(}\l(Q),)\Q(Q), ...) : QC D, Q quasi-open, |Q| < c},
has a solution.

2.4.2. Optimal partition problems. In this subsection we recall a generalization of the
Buttazzo-Dal Maso Theorem related to the partition problems. The existence of optimal parti-
tions of quasi-open sets is a well-known result. We state it here for a class of functionals which
may involve also the measures of the different regions. Following the terminology of [29], we
call the optimization problems for this type of cost functionals multiphase shape optimization
problems.

We consider a quasi-open set D C R of finite Lebesgue measure and a functional F on the
h-tuples of quasi-open subsets of D with the following properties:

(F1) F is decreasing with respect to the inclusion, i.e. if Q; C Q;, foralli=1,...,h, then
FQu, .., Q) < F(Qu, ..., )

(F2) F is lower semi-continuous with respect to the strong-y-convergence, i.e. if Q7 strong-v-
converges to €);, for every i = 1,... h, then

F(Qu,..., ) < liminf FQF,..., Op),

where the term strong-y-convergence refers to the classical strong-y-convergence in RY,
i.e. the one defined through the space H = H'(R?).

Then we have the following result:

Theorem 2.4.6. Let D C R? be a quasi-open set of finite Lebesque measure let F be a decreasing
and l.s.c. with respect to the strong-vy-convergence functional on the h-uples of quasi-open sets
in D. Then the multiphase shape optimization problem

min {f(Ql, ) 0 Q; C D quasi-open, Yi; Q;NQ; =0, Vi # j}, (2.4.5)

has a solution.
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ProoF. Let (QF,...,Q}) be a minimizing sequence of disjoint quasi-open sets in D. Then
up to a subsequence, we may suppose that there are quasi-open sets €2y, ...,Q, C D such that
)7 weak-v-converges to €, for each j =1,..., h. Let wg denote the solution of

—Awg =1, wg € HYE).
Then wen» converges in L*(D) to w; € HE(Q;) such that {w; > 0} = ;. Thus, since wonwen
converges in L' to w;w;, we have that [{w;w; > 0}] = 0 and so cap(Q; N Q;) = cap({ww; >
0}) = 0, which proves that 2; and €; are disjoint when ¢ # j. Thus the h-uple (Q,...,8}) is an

admissible competitor in (2.4.5)) and so, by the semi-continuity of F, we obtain the conclusion.
O

Remark 2.4.7. We note that if 7 and G are two functionals on the h-uples of quasi-open sets
in D satisfying (F1) and (F2), then the sum F + G also satisfies (F1) and (F2).
We conclude this section noting that the following functionals satisfy (F1) and (F2):
(i) F(Q,...,Q) = Z;‘:l Ak, (5), where ki, ...k, € N are given natural numbers;

" 1/p
(i) F(Q,...,0) = (z;?:l[Akj(Qj)}p) , where p € N;
(iii) F(Q,...,Q,) = Z;‘:l Ey,(Q;), where fi,..., f € L*(D) are given functions;

(iv) F(Q,..., Q) = X1, |91,

2.4.3. Spectral drop in an isolated box. In the setting of the classical Buttazzo-Dal
Maso Theorem the functionals we consider depend on the Dirichlet Laplacian. The kth Dirichlet
eigenvalue and eigenfunction, for example, are a non trivial solution of the equation

—Auk = /\k(Q)uk in Q,
uy, = 0 on 0.

Thus in the shape optimization problem
min{)\k(Q) : QCD, |9 < c},

we are in a situation where the box D has a boundary set to zero, i.e. 9D is connected to the
ground. In this case the box D has the role of a mechanical obstacle for the set 2. A different
situation occurs if we consider the set D to be isolated, i.e. the states of the system are described
through the solutions of the problem

—Aug = A\ (Q; D)uy, in Q,

up =0 on 0QND,

Qu = 0 on 9D N L.
In this case the boundary 9D is not only a mechanical obstacle, but also attracts the set €.
This situation is similar to the classical liquid drop problem, where the functional on the set Q
is given through the relative perimeter P(Q; D) = H (002N D).

Given a smooth bounded set D C R? and a (quasi-open) set Q C D, we note that the

relative eigenvalues A\ (£2; D) are variationally characterized as

Vul?d
M(€;D) =  min max M
KCHY (D) ueKuz0 [ u?dx
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where the minimum is over the k-dimensional subspaces K of H}(€%; D), which is defined as
HY (D) = {u € H'(D): u=0q.e. on D\Q},

where we used the term quasi-everywhere in sense of the space H'! (Rd). We have the following
Theorem:

Theorem 2.4.8. Let D C R? be a smooth bounded open set in R? and let F be an increasing
and lower semi-continuous function on RN. Then the shape optimization problem

min {F()q (D), \2(2;D),...) : QC D, Q quasi-open, | < c}, (2.4.6)
has a solution.

PROOF. We start by noting that the inclusion H(D) C L?(D) is compact. Thus, by Propo-
sition we have that the functional Q — A (£2; D) is l.s.c. with respect to the strong---
converges defined through the space H = H!(D). Thus, we have a solution of the problem m
in the class of quasi-open sets with respect to the space H!(D). Now it is sufficient to note
that these sets coincide with the quasi-open sets in R?, defined starting from the space H'(R?).
Indeed, let Q@ = {u > 0} for some u € H'(D). Since D is regular, u admits an extension
u € HY(RY) and thus Q = DN {u > 0}, which is a quasi-open set in the classical sense. O

2.4.4. Optimal periodic sets in the Euclidean space. In this subsection we consider
an optimization problem for periodic sets in R%. We say that Q C R? is t-periodic, if Q = tv+,
for every vector with entire coordinates v € Z%. Equivalently, we say that € is a set on the torus
Ty = (SY)?. For every Q C Ty, we define

Vul?d
Me(€;Tg) =  min max fQ’iZ‘x,
KCHLY(Ty) u€ K u0 fQu dx

where the minimum is over the k-dimensional subspaces K of HE(Q;Ty), defined as
H}(Q;Ty) = {u €Ty): u=0q.e. on (0,1)%\ Q},

where we used the term quasi-everywhere in sense of the space H'(R?) and H'(T,) is defined
as

HY(T,) = {u e HY((0,)%) : u(@r,....0,...,20) = w(xs, ..., 1,...,24), Vj = 1,...,d}.
Then, repeating the argument for Theorem we have the following

Theorem 2.4.9. Let F' be an increasing and lower semi-continuous function on RY. Then the
shape optimization problem

min {F(Al(Q;Td),AQ(Q;Td),...) . QC Ty, Q quasi-open, |20 (0,1)4] < c},

has a solution, where the term quasi-open s used in the classical sense given through the space
H'(RY).
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2.4.5. Shape optimization problems on compact manifolds. Consider a differen-
tiable manifold M of dimension d endowed with a Finsler structure, i.e. with a map g : TM —
[0, +00) which has the following properties:

(1) g is smooth on T'M \ {0};

(2) g is 1-homogeneous, i.e. g(xz, \X) = |A|g(z, X), VA € R;
(3) g is strictly convex, i.e. the Hessian matrix g;;(z) =

definite for each (z, X) € TM.

With these properties, the function g(z,-) : T,M — [0,+00) is a norm on the tangent space
T, M, for each = € M. We define the gradient of a function f € C°(M) as D f(zx) := ¢*(x,df),
where df, stays for the differential of f at the point x € M and g*(x,-) : Ty M — R is the
co-Finsler metric, defined for every £ € T M as

1 92

§W[92]($,X) is pOSitiVe

. o £(y)
F(@8)= S Ty

The Finsler manifold (M, g) is a metric space with the distance:

1
dya) = int{ [ 900 50)d 7201 = M. 2(0) =2, 5(1) =}

For any finite Borel measure m on M, we define H := H}(M, g, m) as the closure of the set of
differentiable functions with compact support C°(M ), with respect to the norm

lall:= \Jlull32 gy + 1Dl

The functional A is defined as in , on the class of quasi-open sets, related to the
H'(M,g,m) capacity. Various choices for the measure m are available, according to the na-
ture of the Finsler manifold M. For example, if M is an open subset of R, it is natural to
consider the Lebesgue measure m = £%. In this case, the non-linear operator associated to the

functional [ g*(z,dus)? dx is called Finsler Laplacian. On the other hand, for a generic man-
ifold M of dimension d, a canonical choice for m is the Busemann-Hausdorff measure my, i.e.
the d-dimensional Hausdorff measure with respect to the distance dy. The non-linear operator
associated to the functional [ g*(z,du,)? dmgy(z) is the generalization of the Laplace-Beltrami
operator and its eigenvalues on the A\ (£2) on the set 2 are defined variationally, as in (2.4.4)).
In view of Theorem and Corollary we have the following existence results.

Theorem 2.4.10. Given a compact Finsler manifold (M, g) with Busemann-Hausdorff measure
mg and an increasing and lower semi-continuous function F' on RN, we have that the problem

min{F()\l(Q),)\g(Q), ) mg(Q) < ¢, Q quasi-open, Q C M},
has a solution for every 0 < ¢ < mg(M).

Theorem 2.4.11. Consider an open set M C R% endowed with a Finsler structure g and the
Lebesque measure L. Let F be an increasing and lower semi-continuous function on RN, If the
diameter of M with respect to the Finsler metric dg4 is finite, then the following problem has a
solution:

min {F(Al(Q),)\g(Q), . ) Q| < e, Q quasi-open, Q C M},

where |Q| is the Lebesque measure of  and 0 < ¢ < |M]|.
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Remark 2.4.12. In [64] it was shown that if the Finsler metrics g(z,-) on R? does not depend
on z € R%, then the solution of the optimization problem

min {)\1(9) 0 Q] <e¢, Q quasi-open, Q C ]Rd},

is a ball (with respect to the Finsler distance d4) of measure c. It is clear that it is also the
case when in the hypotheses of Theorem [2.4.11] one considers ¢ > 0 such that there is a ball of
measure ¢ contained in M. On the other hand , if ¢ is big enough the solution is not, in general,
the geodesic ball in M (see [70, Theorem 3.4.1]). If the Finsler metric is not constant in x, the
solution will not be a ball even for small c¢. In this case it is natural to ask whether the optimal
set gets close to the geodesic ball as ¢ — 0. In [85] this problem was discussed in the case when
M is a Riemannian manifold. The same question for a generic Finsler manifold is still open.

2.4.6. Shape optimization problems in Gaussian spaces. Consider a separable Hilbert
space (M, (-, -)2¢) with an orthonormal basis (ey)ren. Suppose that u = Ng is a Gaussian mea-
sure on H with mean 0 and covariance operator ) (positive, of trace class) such that

Qe = vi(Q)ex,

where 0 < -+ < 1,(Q) < -+ < 11n(Q) < 11(Q) is the spectrum of Q.

Denote with £(H) the space of all linear combinations of the functions on H which have the
form Ej(x) = e for some h € H, where for sake of simplicity we set (-,-) = (-,-)3. Then,
the linear operator

V:EH) C L*(H,p) — L*(H, i3 H), VE), = ihE},

is closable. We define the Sobolev space W!2(#) as the domain of the closure of V. Thus, for
any function u € WH2(H), we defined the gradient Vu € L?(H, u; H).
We denote with Vju € L?(H, ) the components of the gradient in W12(H)

Viu = (Vu,eg).

We have the following integration by parts formula:

/Vkuvd,u—i—/ uVipvdu = L /azkuvd,u.
H M ve(Q) Ju

If Viu € WH2(H), then we can test the above equation with v = Vu to obtain

1
—/ Vk(Vku)vdu—i—/ xkvkuvdu—/ ViuViv du.
H k(@) Ju H

Summing over k € N, we obtain

/ (—Tr[Vzu] +(Q 'z, Vu)) vdu = / (Vu, Vv) du,
H H

where we set
1
g, Vu) = ——xViu.
(@ ) ijyk(@ £V

Suppose now that Q C H is a Borel set. Then we have the following
Definition 2.4.13. Given A € R, we say that u € Wol’Q(Q) is a weak solution of the equation
~Tr[V2u] + (Q'a, Vu) = Mu,  ue WyP(Q),
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if for each v € WOM(Q), we have

/ (Vu, Vo) du = )\/ uv dp.
H H

By a general theorem (see [56]), we know that there is a self-adjoint operator A on L?(€, )
such that for each u,v € Dom(A) C Wol’z(Q),

/Au-vd,uz/(Vu,Vv}du.
H H

Then, by the compactness of the embedding WO1 2(Q) < L%(p), A is a positive operator with
compact resolvent. Keeping in mind the construction of A, we will write

A= -Tr[V]+(Q 'z, V).

The spectrum of —T7[V2]+(Q 1z, V) is discrete and consists of positive eigenvalues 0 < \;(£2) <
A2(Q2) < ... for which the usual min-max variational formulation holds.

Theorem 2.4.14. Suppose that H is a separable Hilbert space with non-degenerate Gaussian
measure (. Then, for any 0 < ¢ < 1, the following optimization problem has a solution:

min {F(/\l(Q),)\Q(Q), .. ) : QCH, Q quasi-open, u(Q2) = c},
where F is a decreasing and l.s.c. function on RY.

PROOF. Take H := W'H2(H) and Du = ||Vu|y. The pair (H, D) satisfies the hypothesis
H1,...,M3 and H4. In fact, the norm |lul[* = ||lul|3; + ||Dul|3, is the usual norm in Wh2(H)
and with this norm W12(H) is a separable Hilbert space and the inclusion H — L?(H,u) is
compact (see [55, Theorem 9.2.12]). Moreover, the continuous functions are dense in W12(H),
by construction. Applying Proposition [2.2.25] Theorem and Corollary [2.4.3] we obtain the
conclusion. O

2.4.7. Shape optimization in Carnot-Caratheodory space. Consider a bounded open
and connected set D C R? and C vector fields Y3, ...,Y, defined on a neighbourhood U of
D. We say that the vector fields satisfy the Hormander’s condition on U, if the Lie algebra
generated by Yi,...,Y, has dimension d in each point z € U.

We define the Sobolev space I/VO1 ’2(D; Y) on D, with respect to the family of vector fields
Y = (Y1,...,Y,), as the closure of C2°(D) with respect to the norm

1/2

n
lully = [ lullZ + > [YullZ |
j=1

where the derivation Yju is intended in sense of distributions. For u € W& 2 (D;Y), we define
Yu=(Viu,...,You), and  |[Yu|= (Viu2+ -+ [Vau2)/* € LX(D).

Setting Du := |Yu| and H := Wol’Q(D; Y), we define, for any Q C D, the kth eigenvalue \;(€2)
of the operator Y2 + --- + Y;2 as in (2.4.4)).

Example 2.4.15. Consider the vector fields
X =0, and Y = z0y.
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We note that, since [X, Y] = 0y, the vector fields X and Y satisfy the Hérmander condition in
R?. Then operator X2 + Y? is given by
X?+Y? =07 +2°0,
and for every bounded Q C R? M\ (Q) is defined as the kth biggest number such that the
equation
— (2 +2202) wp = Mo (g, up € WP (% {X, YD),

has a non-trivial weak solution.

Theorem 2.4.16. Consider a bounded open set D C R? and a family Y = (Y1,...,Y,) of C®
vector fields defined on an open neighbourhood U of the closure D of D an suppose, moreover,

that Y1,...,Y, satisfy the Hormander condition on U. Then for every increasing and l.s.c.
function F on RY, the following shape optimization problems has a solution:
min {F()\l(Q),)\Q(Q), ...): QC D, Q quasi-open, Q| < c}. (2.4.7)

PRrROOF. It is straightforward to check that the space H := W& ’Q(D; Y') and the application
Du := |Yu| satisfy the assumptions of Theorem and Corollary Thus we only have
to check the lower semi-continuity of A\; with respect to the strong-~-convergence. This follows
by Proposition since the inclusion H C L?(D) is compact. This last claim holds since
Y1, ..., Y, satisfy the Héormander condition on U. In fact, by the Hormander Theorem (see [72]),
there is some € > 0 and some constant C' > 0 such that for any ¢ € C°(D)

k

lellae < C [ llellzz + D 150l | (2.4.8)
j=1

where we set
1/2
ane=</ W@N%1+KFF%> ,
Rd

being ¢ the Fourier transform of ¢. Let H§(D) be the closure of C2°(D) with respect to the
norm || - ||g=. Since the inclusion L*(D) C H§(D) is compact, we have the conclusion. O

2.4.8. Shape optimization in measure metric spaces. In this section we consider the
framework, which inspired the general setting we introduced in the previous sections. We briefly
recall the main definitions and results from [44] and then give our main existence result.

Definition 2.4.17. Let u : X — R be a measurable function. An upper gradient g for u is a
Borel function g : X — [0,4+00], such that for all points x1,x2 € X and all continuous rectifiable
curves, ¢ : [0,1] — X parametrized by arc-length, with c(0) = 1, c¢(l) = x2, we have

o)~ aten) < [ alets)is,
where the left hand side is intended as +oo if |u(z1)| or |u(z2)| is +oo.
Following the original notation in [44], for v € L?(X,m) we set
julz = inf { Hminf[lg;llz2 p, llullie = ull g2 + el

where the infimum above is taken over all sequences (g;), for which there exists a sequence
uj — u in L? such that, for each j, g; is an upper gradient for u;. We define the Sobolev space
H = H'(X,m) as the class of functions u € L?(X,m) such that the norm |lu|;2 is finite. In
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[44) Theorem 2.7] it was proved that the space H!(X,m), endowed with the norm || - [|1 2, is a
Banach space. Moreover, in the same work, the following notion of a gradient was introduced .

Definition 2.4.18. The function g € L?(X,m) is a generalized upper gradient of u € L*(X,m),
if there exist sequences (g;)j>1 C L*(X,m) and (u;);>1 C L*(X,m) such that

wj — u in L*(X,m), g; — g in L*(X,m),
and g; is an upper gradient for u;, for every j > 1.

For each u € H'(X,m) there exists a unique generalized upper gradient g, € L?(X,m),
such that

lulli2 = llullz2 + llgullr2;
moreover, for each generalized upper gradient g of u, we have g, < g. The function g, is called
minimal generalized upper gradient. It is the metric space analogue of the modulus of the weak
gradient |Vu|, when X is a bounded open set of the Euclidean space and u € H'(X), the usual
Sobolev space on X. Moreover, under some mild conditions on the metric space X and the
measure m, the minimal generalized upper gradient has a pointwise expression (see [44]). In
fact, for any Borel function u, one can define

u(z) — u(y)|

Lipu(z) = liminf sup ———2—,
r—0 d(z,y)=r T

with the convention Lipu(x) = 0, whenever z is an isolated point. If the measure metric
space (X, d, m) satisfies some standard assumptions (doubling and supporting a weak Poincaré
inequality), then the function Lip u is the minimal generalized upper gradient (see [44, Theorem
6.1] and also [4] for some new results on the gradient g,). This notion of weak differentiability
is flexible enough to allow the generalization of some of the notions, typical for the calculus
in the Euclidean space, to the measure metric space setting. For example, in a natural way,
one can define harmonic functions, solutions of the Poisson equation on an open set and some
shape functionals on the subsets 2 C X as the Dirichlet energy E(2) and the eigenvalue of the
Dirichlet Laplacian \;(€2) as in (2.4.4)).

Theorem 2.4.19. Consider a separable metric space (X,d) and a finite Borel measure m
on X. Let H'(X,m) denote the Sobolev space on (X,d,m) and let Du = g, be the mini-
mal generalized upper gradient of w € HY(X,m). Under the assumption that the inclusion
HY(X,m) < L?(X,m) is compact, the shape optimization problem

min {F(Al(Q),)\Q(Q),...) . QC X, Q Borel, |Q] < c},
has solution, for every constant ¢ > 0 and every function F increasing and lower semi-continuous
in RN,

Remark 2.4.20. There are various assumptions that can be made on the measure metric space
(X,d,m) in order to have that the inclusion H'(X,m) < L?*(X,m) is compact. A detailed
discussion on this topic can be found in [67), Section 8|. For the sake of completeness, we state
here a result from [67]:

Consider a separable metric space (X,d) of finite diameter equipped with a finite Borel
measure m such that:
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(a) there exist constants Cy, > 0 and s > 0 such that for each ball B,,(x¢) C X, each z € B, (x0)
and 0 < r < rg, we have that

S
m(Bw) | 7
m(Bry (o)) To
(b) (X,d,m) supports a weak Poincaré inequality, i.e. there exist Cp > 0 and o > 1 such that
for each u € H*(X,m) and each ball B,.(z) C X we have

1/2
][ u(y) — ][ udm}dm(y) < Cpr <][ gg dm) .
B, (z) By (x) Bor(x)

Then, the inclusion H'(X,m) < L?(X,m) is compact.







CHAPTER 3

Capacitary measures

In this chapter we discuss one of the fundamental tools in the shape optimization. The
capacitary measures generalize various situations involving PDEs in the Euclidean space RY,
allowing us to threat at once problems concerning elliptic problems on domains, Scrodinger
operators and operators involving traces of Sobolev functions on (d — 1)-dimensional sets.

3.1. Sobolev spaces in R?

We denote with C2°(R9) the infinitely differentiable functions with compact support in RY.
The spaces H'(R?) and H'(R?) are the closures of C2°(R?) with respect to the norms

1/2 1/2
lull g = (/ Vul? + 2 d;v) and  [lull sy = |Vl 2 = </ |Vu|2d:c> .
Rd Rd

We recall that if d > 3, the Gagliardo-Nirenberg-Sobolev inequality

|lull f2a/(a-2 < Cq||Vul| L2, Yu € Hl(Rd), (3.1.1)
holds, while in the cases d < 2, we have respectively
r4+2\ %2 r/(r r .
= < (732) T WIEIWE, vz 1 vae BRY (312
r+2 2/(r+2) r/(r+2) 2/(r+2) 1 2
||| pre < < 5 ) ||| ||V 172 , Vr>1, Yu € H (R?). (3.1.3)

Thus, in any dimension we have
ull g < Cd<HVuHL2 + HuHL1> and  H'RY N LY(RY = YR N LL(RY).

3.1.1. Concentration-compactness principle. In this section we recall a classical result
due to P.L.Lions (see [78]). Our formulation is slightly different from the original one and is
adapted to the use we will make of the concentration-compactness principle.

Definition 3.1.1. For every Borel measure i on R® we define the concentration function Q-
[0,4+00) — [0, 4+00] as
Qu(r) = sup (B (z)).

zeX

Remark 3.1.2. We note that @, is nondecreasing, nonnegative and

lim_Qu(r) = |Qullee = (RY).

r

The following lemma is elementary, but provides the compactness necessary for the concentration-
compactness Theorem below.

Lemma 3.1.3. For every sequence of non-decreasing functions Q. : [0, +00) — [0,1], there is
a subsequence converging pointwise to a non-decreasing function Q : [0,+00) — [0, 1].

55
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Theorem 3.1.4. Consider a sequence f, € L'(R?) of positive functions uniformly bounded in
Ll(Rd). Then, up to a subsequence, one of the following properties holds:

(1) There exists a sequence (y,)n>1 C R with the property that for all € > 0 there is some
R > 0 such that for all n € N we have

/ fndx <e.
R\ BR(xn)

(2) For every R > 0 we have

lim sup/ fndz | =0.
"0 \ z€R? J Bg(x)

(8) For every a > 1, there is a sequence x,, € R? and an increasing sequence R, — +00
such that

lim fndx =0,

n—oo BaRn (xn)\BRn (xn)

n—oo n—00

lim inf / fndx >0 and lim inf / fndz > 0.
Br,, (zn) RN By g, (zn)

PROOF. We first note that, up to rescaling, we can suppose || f,| 1 = 1, for every n € N.
Consider the concentration functions @, associated to the (probability) measure f, dx. By
Lemma up to a subsequence, @), converges pointwise to some nondecreasing @ : [0, +00) —
[0,1]. We first note that if lim; o, Q(¢) = 0, then @ = 0 and so, (2) holds.

Suppose that lim;—,~ Q(t) = 1. By the pointwise convergence of Q,, to @, we have that for
every € > 0, there are R. > 0 and n. € N such that Q,(R:) > (1 —¢), for every n > n.. In
particular, there is a sequence y5, € R? such that

/ fndz >1—c¢.
BRs(ny)
1/2

We note that the condition [ f,, dx =1 implies ]y}/ 2 Yl < Ryj2+ Re. Thus setting x, := yn
and R = Ry/; + R, we have

/ fnd:L‘Z/ fndr >1—c¢.
BR('Tn) BRE (y%)

Suppose that lim;_,o Q(t) =:1 € (0,1) and fix € > 0. Let R, > 0 be such that [ —e < Q(R;).
In particular, we have | — € < Q(R:) < Q(aR.) < l. Then, there exists N = N(g,«) € N such
that for each n > N, we have

l—e<Qn(R:) <Qn(aR:) <l+e. (3.1.4)

Thus, we can find a sequence y such that for each n > NV,

l—e</ fndazg/ frndx < Qn(aR:) <l+e.
Br. (v3) Bar. (y5)

The conclusion follows by a diagonal sequence argument. O

If the sequence f, € L'(R?) satisfies point (1) of the above Theorem, then it is concentrated
in the dense of the following Definition.
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Definition 3.1.5. We say that a sequence f, € L'(R%) has the concentration property if for
every € > 0 there is some R. > 0 such that

/ |fnldz <€, Vn € N.
RNBpg,

Remark 3.1.6. If a sequence f, € L'(R%) has the concentration property and g, € L'(R%)
is such that |gn| < C|fn| + |f|, for some C > 0 and some f € L'(R?), then g, also has the
concentration property.

Remark 3.1.7. Since the inclusion H'(R?) ¢ L} (R9) is compact, we have that if a sequence

loc

u, € LY(R?) N HY(R?) is bounded in L'(R?) N H'(R?) and has the concentration property, then
there is a subsequence converging strongly in L.

3.1.2. Capacity, quasi-open sets and quasi-continuous functions. We define the
capacity cap(E) of a measurable set E C R?, with respect to the Sobolev space H'(R?), as in

Definition (taking H = H'(RY)), i.e.
cap(F) = inf { / \Vul? +u?dr: v e HY(RY), u>1 in a neighbourhood of E} (3.1.5)
Rd

Remark 3.1.8. In dimension d > 3 one may define the capacity in an alternative way (see, for
example, [61, Chapter 4.7]).

cap(E) = inf { /d |Vu|?dz : uwe H (RY), v >1 in a neighbourhood of E} (3.1.6)
R

For d > 3 the two quantities cap(F) and cap(F) are related by an explicit inequality. Indeed, by
definition we have cap(E) < cap(FE), for every measurable £ C R%. On the other hand, suppose
that u, € H'(RY) is a sequence such that [[Vu,|%, converges to cap(E). Since |[V(0V up A
D2 < ||Vug| 12, we may suppose that 0 < u,, < 1. Thus, we have

d
2d_ d—2
/ VunQ—i—uida:g/ Vi, |* 4 upt 2 dxg/ |V, |? de + Cy (/ Vun2d:c> ,
R4 R4 Rd Rd

which after passing to the limit as n — oo gives

Gp(F) < cap(E) < @p(F) + Ca(c@n(E) ) .

In particular the sets of zero capacity defined through (3.1.5) and (3.1.6|) are the same.

Remark 3.1.9. In dimension two, the above considerations are no more valid since the quantity
defined in (3.1.6) is constantly zero. Indeed, for any v € H'(R?) and its scaling u;(z) := u(tx),
defined for t > 0, we have

/ |Vut|2da::t2/ |Vu|2(t:n)dm:/ Vul? dz,
R2 R2 R2

which in view of definition (3.1.6)) gives that cap(E) = cap(tE), for any ¢t > 0, and in particular
cap(B,) = cap(By), for any ball B, C R?. On the other hand, for 0 < r < 1, we can use the
log(R)

log(r)

L -1 27
2 . 2 _
. |Vul|*dx = 27T/T [Rlog (r)} dR = Tog ()] — 0

_l’_
radial test function u(R) = [ } to obtain the bound

c@p(B,) < /

R



58 3. CAPACITARY MEASURES

which gives that cap(B,) = 0, for every r > 0. Then, using the monotonicity of cap and a
standard approximation argument, one gets that cap = 0.

Remark 3.1.10. Given an open set D C R? and a measurable set E C R?, one may define the
capacity of E with respect to D in one of the following ways

capp(FE) = inf {/ |Vu|> + u?dz: w € H' (D), v >1 in a neighbourhood of E}, (3.1.7)
R4

capp(F) = inf { /d |Vu|>dz : uw € HY(D), u>1 in a neighbourhood of E} (3.1.8)
Since the measure of DRis finite, in any dimension d > 1, there is a constant C'p > 0 such that
capp(E) < capp(E) < Cpcapp(E).

In is immediate to checkE| that in any dimension
<cap(E) - 0) = (capD(E) - 0) = (6513@(E) - 0). (3.1.9)

In particular, (3.1.9)) shows that being of zero capacity is a local property. In fact an alternative
way to define a set of zero capacity in R is the following:

(cap(E) - o) = (cap Ba(e) (E N By(x)) = 0, for every ball B(z) C ]Rd>. (3.1.10)

The advantage of this definition is that it can be easily extended to manifolds ot other settings,
where the global definitions as (3.1.5]) fail to provide a meaningful notion of zero capacity setsﬂ

In the following Proposition we list the main properties of the capacity in R

Proposition 3.1.11. (1) If w C Q, then cap(w) < cap(12).
(2) If () e @5 a family of disjoint sets, then

cap <U Qn> <> cap(Q).
n=1 n=1
(8) For every Q1,09 C X, we have that
cap(Q1 U Qg) + cap(€21 N Qg) < cap(©1) + cap(€l2).
(4) If 9y C Qo C--- C Qy C ..., then we have

oo
cap (U Qn> = nh_}rrgo cap(Qy).

n=1

(5) If K C RY is a compact set, then we have
cap(K) = inf { ol + ¢ € C2RY), o =1 on K }.
(6) If A C R? is an open set, then we have
cap(A) = sup { cap(K) : K compact, K C A}.

(7) If Q C R? is measurable, then

cap(Q2) = inf { cap(A) : A open, Q C A}.

Lirst for sets E, which are compactly included in D, and then reasoning by approximation. The detailed
proof can be found in |71l Proposition 3.3.17].
20n compact manifolds, for example, definition (3.1.5]) gives precisely the measure of the sets E.
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(8) If K1 D Ko D ---D K, D... are compact sets, then we have

cap <ﬂ Kn> = 1i_>m cap(Ky,).
n=1

PrOOF. The points (1), (2), (3) and (4) are the same as in Proposition For the points

(5), (6), (7) and (8), we refer to [71] and [61]. O

Analogously, we define the quasi-open sets and the quasi-continuous functions. We summa-
rize the results from Section [2.3]in the following

Remark 3.1.12. (1) For every Sobolev function u € H'(R?), there is a unique, up to a
set of zero capacity quasi-continuous representative .

(2) If p : RY — R is a quasi-continuous function, then the level set {¢ > 0} is a quasi-open
set.

(3) For each quasi-open set €2 there is a quasi-continuous function u € H'(R?) such that
Q= {u>0}.

(4) fu, € H'(RY) converges strongly in H'(R?) tou € H'(R?), then there is a subsequence
of quasi-continuous representatives u,, which converges quasi-everywhere to the quasi-
continuous representative u.

(5) If u : R — R is quasi-continuous, then |{u > 0}| = 0, if and only if, cap({u > 0}) = 0.

Remark 3.1.13. From now on, we identify the Sobolev function v € H'(R?) with its quasi-
continuous representative .

All these results were already known in the general setting of Section In R% we can
identify the precise representative u through the mean values of u (see [61] Section 4.8])

Theorem 3.1.14. Let u € H'(RY). Then, for quasi-every xo € R%, we have

u(xp) = lim udx. (3.1.11)
r—0 BT(IO)

3.2. Capacitary measures and the spaces H lﬁ

Definition 3.2.1. A Borel measure 1 on R? is called capacitary, if for every set E such that
cap(E) = 0 we have u(E) = 0.

Remark 3.2.2. If uj and up are two positive Borel functions on R such that cap({u; # us}) =
0, then we have that f]Rd uy dp = f]Rd ug du. In particular, a Sobolev function u € Hl(Rd) is
square integrable with respect to u (u € L%(p)) if and only if its quasi-continuous representative
u, which is unique up to sets of zero capacity, is square integrable with respect to u.

Let u be a capacitary measure in R%. For a function u € H(R?), we define

%, ;:/ |Vu|2dx+/ u? dy, (3.2.1)
H R4 Rd

Hu||12% ::/ |Vu|2dx+/ u2dx+/ qu,u:HuH?q1 . (3.2.2)
Rd R4 Rd p+1

Definition 3.2.3. For every capacitary measure i in RY, we define the space H:L(]Rd) (or just
H}L) as

H(RY) : {u € H' R : [lullg < +oo} = {u € H'(RY) : |[u]lp2q) < +oo}. (3.2.3)
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Proposition 3.2.4. For every capacitary measure p the space H}L endowed with the norm || HH}L
is a Hilbert space, which is also Riesz space and has the Stone property. Moreover, the functions
of compact support are dense in Hﬁ

PRrOOF. We first prove that H} is a Hilbert space (see also [33]). Indeed, let u, be a Cauchy
sequence with respect to || - || mi- Then u, converges to u € H 1(R9) strongly in H' and thus
quasi-everywhere. Since p is absolutely continuous with respect to the capacity, we have that
u, converges to u p-a.e.. On the other hand, u, converges to some v € L?(u) in L? and so,
pra.e.. Thus u = v in L?(u) and so u € H,(R?) = H'(R?) N L?(p) is the desired limit.

For the Riesz and the Stone properties of H}L, we note that if u,v € Hﬁ, then also uAv € H;
anduANleH ;

We now prove that the functions of compact support

H,ic = {U € Hi(Rd) : 3R > 0 such that [{u # 0} \ Bg| = 0}’

are dense in H /i We report the calculation here, since we will use this argument several times
below. Consider the function ng(x) := n(z/R), where
neC®MRY), 0<n<1, n=1onB;, n=0onR\ By,

and let u € H}L Calculating the norm of u — nru = (1 — nr)u, we have
(1 = nr)ullfn = / V(1 = nr)u)|* da + / (1 = nr)ul* dz +/ (1= nr)ul® du.
a R R R
The last two terms converge to zero as R — oo by the dominated convergence Theorem, while

for the first one we note that [|[Vng|lco = R7Y|V||e and apply the Cauchy-Schwartz inequality
obtaining

/Rd V(1 —nr)w)Pdz = /Rd [(1 = nr)*IVul® + |Vngr[*u? + 2unr Vg - Vug] da

< / (1 - nr)2IVul?de + |[ull g (2R~ + R°2),
R4
which proves the claim. O

Definition 3.2.5. We define the space Hﬁ (RY) as the closure of the functions of compact support

H}, . C H}, with respect to the norm || - HH}L

The following result is a consequence of the density of H ;i,c in both H ;11 and H é

Corollary 3.2.6. Let pu be a capacitary measure in RE. Then the following are equivalent:
(a) H}L C LY(R?) and the injection H}L — LY(R?) is continuous;

(b) Hli C LY(R?) and the injection Hli < LY(RY) is continuous;

(c) Hlic C L' (RY) and the injection H/ﬁyc — LY(R?) is continuous.

Moreover, if one of (a), (b) and (c) holds, then we have that

1 _ 1 d 1 dy _ 17l d 1 dy _ 171
H) = H'®RHNL'RY = AL RN LI RY = A,

and the corresponding norms are equivalent.
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Definition 3.2.7. We say that two capacitary measures p and v are equivalent, if
Q) = v(Q), ¥Q C RY, Q quasi-operf]

Proposition 3.2.8. Let u and v be capacitary measures. Then the following are equivalent:

(a) p and v are equivalent;
(b) for every non-negative quasi-continuous function ¢ : R4 — R, we have

/ pdp = / pdv;
R4 R4
/ u? du:/ u? dv.
R4 R4

PrOOF. We first note that (a) = (b) follows by the formula

o= [ utto> i

Then (b) = (c) holds since every u € H'(R?) is quasi-continuous up to a set of zero capacity.
Thus, we only have to prove that (¢) = (a). Let Q C R? be a quasi-open set. By Proposition
we have that there is some u € H'(R?) such that {u > 0} = Q. Taking the positive part
of u and then uA1, we can assume 0 < u < 1 on RY. We now note that u. = 1A(e7'u) € H'(R?)
is decreasing in ¢ and converges pointwise to 1,0y as € — 0. Thus, we have

(c) for every u € HY(R?), we have

. H 2 BT 2 o
p(Q) = lim Rduedu—elggo Rduedu—y(Q).

O

Remark 3.2.9. From now on we will identify the capacitary measure p with its class of equiv-
alence from Definition which we will denote with Map (R9).

Remark 3.2.10. If u, v are two capacitary measures such that 4 = v, then H }L =H]
Definition 3.2.11. Let p and v be capacitary measures in R%. We will say that p > v, if
w(Q) > v(Q), VO C RY Q quasi-open.
Repeating the argument from the proof of Proposition we have

Proposition 3.2.12. Let i and v be capacitary measures. Then the following are equivalent:

(a) p2v;
(b) for every non-negative quasi-continuous function ¢ : R4 — R, we have

/ pdu > / @ dv;
R4 R4
(c) for every u € HY(R?), we have

/ u2du2/ u? dv.
R4 R4

Remark 3.2.13. If u, v are two capacitary measures such that y > v, then H }L C HL.

3Recall that a quasi-open set  C R? is a set such that for every € > 0 there is an open set w. C R? such
that QU w, is open and cap(w:) < €
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Definition 3.2.14. Let ju and v be capacitary measures in RY. We define the capacitary measure
uwVue Mcap(Rd) as

wV v(E) := max {,u(A) +v(E\A): V Borel set A C E},
for every Borel set E C RY.

Remark 3.2.15. It is straightforward to check that

p<puvVv<pu+v and H}

1 1
oo =H,NH,.

As we saw above, every capacitary measure p € Mcap(R?) generates a closed subspace of
H ; The classical Sobolev spaces H&(Q) can also be characterized through a specific capacitary
measure. We give a precise definition of this concept below.

Definition 3.2.16. Given a Borel set Q C R?, we define the capacitary measures Io and Io as

0, if cap(E\ Q) =0,
+oo, if cap(E\ Q) >0,

0, i [E\NQ[=0,

To(E) :{ too, if [E\Q|> 0.

and Io(E) = {

Remark 3.2.17. For every Q C R?, we have I > TQ

Remark 3.2.18. We note that for a function v € H'(R%), we have
(ue H}Q(Rd)) = (/ w?dlg < +oo) o (u € H&(Q)),
Rd
where for a generic set Q C R, we define

HY(Q) := {u e HY(RY) : cap ({u#0}\Q) = 0}. (3.2.4)

Analogously,

(vem ®) o ([ dh<tx) o (vef@),

Q
where

HL Q) = {u € H'(RY : [{u#0}\0|= o}.

Remark 3.2.19. If Q ¢ R? is an open set, then the smooth functions with compact support
in Q, C(Q) are dense in H}(Q), defined as in (3.2.4), with respect to the norm || - |1 (see
[71] Theorem 3.3.42]). The analogous result for fI&(Q) is true under the additional assumptio
that the boundary 0 locally is a graph of a Lipschitz function.

3.3. Torsional rigidity and torsion function

Given a capacitary measure p € Mecap(RY), we consider the functional J, : HY(R?) N
LYR?) — R U {+oc}, defined as

1 1
Ju(u) == 3 Jou |Vu|? dz + 5 /Rd u? dp — /]Rd udz. (3.3.1)

4n proposition we will provide another more general condition.
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Definition 3.3.1. For yu € Meap(RY), we define the torsional rigidity (or the torsion) T'(u) €
[0, +00] of the capacitary measure p as

T() = max{ — Ju(u): uwe HYRY) N Ll(Rd)} - max{ — Ju(u) : we HYR®RY N Ll(]Rd)}.
(3.3.2)
The Dirichlet Energy E(u) € [—00,0] of p is

E(y) = —T(p) := min {Ju(u) Cuwe H'(RY N Ll(Rd)}. (3.3.3)
Definition 3.3.2. We say that the capacitary measure p is of finite torsion if T'(u) < +o0.

Remark 3.3.3. Let p and v be capacitary measure such that y > v. Then we have J, > J,
and T'(u) < T(v). In particular, if T'(v) < 400 , then also T'(u) < +00.

Remark 3.3.4. Consider a bounded open set with smooth boundary Q C R?. Note that for
every u € H}(2), we have (for the second inequality below, see [60, Theorem 1, Section 5.6])

d-1 1/2

d
/u\d:cgymé(/ yu\cﬁld:p) gymi/ IVl dz < |05 (/ \vu|2dx) . (334)
Q R4 R4 Q

In particular, for every capacitary measure j € Mecap(R?) and every u € HE(Q), we have

1 1 24d
Tipuulw) 2 3IVullta+ 5 [ o2 du =195 |Vl (335)

Since Jr,vu(0) = 0, we can suppose that a minimizing sequence w, for Ji,y, is such that
Jigvu(un) < 0. By (3.3.5), we have ||[Vu,| 2 < 2|Q|(2+4)/2d " Thus, the sequence wu, is bounded
in H}(Q) and also in H}Qvu- By the compact inclusion Hg(Q) C L'(€), we can suppose that
U, converges to some u € Hﬁ N L'(Q) both weakly in Hﬁ and strongly in L?(Q). Thus, u is a
minimizer of Jy,y, in H'(R?) N L'(R?). Moreover, by the strict convexity of the functional, u
is the unique minimizer of Jy,y,. Let v € H}L N HE(Q) N LY(RY). Using that for every ¢ € R,
Jrgvu(u) < Jrgvu(u + ev) and taking the derivative for ¢ = 0, we obtain the Euler-Lagrange
equation

Vu-Vvda:—i—/

uvd,u—/ vdx. (3.3.6)
R4 Rd

R4
In particular, taking v = u in (3.3.6)), we get

/\Vu]zda:—i—/ u2d,u—/ udx. (3.3.7)
R Rd Rd

and thus, for the torsion, we obtain
1
E(IoV p) = Jrgvu(u) = —3 /d udz. (3.3.8)
R

Consider a capacitary measure j € Mcap(R?). For every R > 0, we consider the unique
minimizer wr € H'(R?) N L'(R?) of the functional .J Ip,,vu, Which exists due to Remark
Reasoning as in Proposition [2.1.13] we have that the weak maximum principle holds, i.e. for
every R > r > 0, we have wp > w,. Thus, {wR} R>0 1S an increasing family of functions in
L'(R%) and so it has a limit for almost every point in R?.

Definition 3.3.5. Let i € Mcap(Rd) be a capacitary measure. The torsion function w, of j is
the Lebesque measurable function defined as

wy = lim wr = sup wg,
R—o0 R>0
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where wg is the unique minimizer of the functional Ji, vy : H'(RY) N LYRY) — RU {+00}.

Example 3.3.6. If O C R? is a bounded set and p = I, then w,, is the weak solution of the
equation

~Aw=1, we H}N).
In particular, if Q is the ball Bgr(xg), then

R? — |z — x|? +

Example 3.3.7. If u = 0, then w, = +o0.
Example 3.3.8. If u = I, where Q C R? is the strip Q = {(:c,y) sz eR, ye (-1, 1)}, then

—_ 2\t
wu(‘rvy) = (123/)

The following result relates the integrability of w,, to the finiteness of the torsion 7'(x) and
to the compact embedding of H ; into L' (R9).

Theorem 3.3.9. Let u € Mcap(Rd) and let w, be its torsion function. Then the following
conditions are equivalent:

(1) The inclusion Hﬁ C LY(R%) is continuous and there is a constant C > 0 such that

1/2
lullze < C(IVulZe + [[ulZ2) "

(2) The inclusion Hﬁ C L' is compact and (3.3.9) holds.
(3) The torsion function w, is in L'(RY).
(4) The torsion T(u) is finite.

Moreover, if the above conditions hold, then w, € H/i N LY(R?) is the unique minimizer of Ju in
Hﬁ and

) for every u € Hi (3.3.9)

Cc? < / wy de = 2T (u).
Rd

PrROOF. We first prove that (3) and (4) are equivalent.
(8) = (4). Since the functions in Hli N L' with compact support are dense in HllL N LY, we
have

inf {Ju(u) Lue HY(RY) N Ll(Rd)} = inf inf {Ju(u) ‘u € Hyr, (RN Ll(Rd)}

R>0
. . 1
= ]ngo‘]/ﬁ(wR) = Il%I;fO{—Q/Rd wRdx} (3.3.10)

1
:—/ wy, dz > —00,
2 Rd

where the last equality is due to the fact that wp is increasing in R and converges pointwise
to wy,. Moreover, we have that w, € Hﬁ N LY(R?) and w,, minimizes J,. Indeed, since wg
converges to w,, in L'(R%) and wg is uniformly bounded in H }L by the inequality

/\VwR|2dx+/ w%du:/ wRdmgf wy, dz,
R R Ré R4

we have that w, € H}L and J,(w,) < liminfp o J,(wR).
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(4) = (3). By (3.3.10), we have that for every R > 0,
/Rd wrdr < —2inf {Ju(u) Tu € H;(Rd) N Ll(Rd)} < H00.
Taking the limit as R — co, and taking in consideration again , we obtain
/Rd w,, dz = —2inf {J#(u) cue HY(RY) N Ll(Rd)} < +oo. (3.3.11)

Since the implication (2) = (1) is clear, it is sufficient to prove that (1) = (4) and (4) =

(2)-
(1) = (4). Let u, € Hy be a minimizing sequence for .J, such that u, >0 and J,(u,) <0,
for every n € N. Then we have

1 1 1/2
/ |Vun|2dx—|—/ uid,ug/ undeC’(/ |Vun|2dx—|—/ uidu) ,
2 Rd 2 Rd Rd Rd Rd

and so uy, is bounded in Hﬁ(Rd) N LY(R?). Suppose that v is the weak limit of u,, in H}L Then

||U||H}L < 1inH_l>io%f Hun”H}L and /Rd udxr = nli}néo y Uy, AT,

where the last equality is due to the fact that the functional {u = [ d:c} is continuous in H }L

Thus, u € Hj N LY(RY) is the (unique, due to the strict convexity of .J,) minimizer of .J,, and so
E(p) = inf J, > —o0.

We now prove (3) = (1). Since, wy, € H}; N L'(R?) is the minimizer of J, in H} N L*(R?),

we have that the following Euler-Lagrange equation holds:
Vw,, - Vudx + / wyudp = / udzx, Yu € H;(Rd) N LY(RY). (3.3.12)
R4 R? R?
Thus, for every u € H;(Rd) N L'(RY), we obtain
1/2 1/2
lullzr < (IVwalZe + oy ) (Il22 + ull3aq,)
1/2
= w2 (19l + ul22q, )
Since H}L(]Rd) N LY(R?) is dense in H}L(]Rd), we obtain (1).

(8) = (2). Following [22] Theorem 3.2], consider a sequence w,, € H ; weakly converging to
zero in H}L and suppose that u, > 0, for every n € N. Since the injection H'(R?) — L} (R9)
is locally compact, we only have to prove that for every € > 0 there is some R > 0 such that
Jge tndx < e. Consider the function ng(z) := n(x/R) where

R

(3.3.13)

neC*RY), 0<n<1, n=1onB;, n=0onR\B;.
Testing (3.3.12) with (1 — ng)u,, we have
/d [uanu V(1 —=ng)+ (1 —nr)Vw, - Vun)] dx + /d wy (1 —nr)un dp = /d(l — nR)uy, dz,
R R R

and using the identity ||[Vng|lcc = R7!| V7|l and the Cauchy-Schwartz inequality, we have

1/2
/ wi du ,
B

which for R large enough gives the desired e. ]

tn 2 < Rl 2 |V g2 + [Vl Vel 2 + i 22 ( |

c
2R R
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Remark 3.3.10. In particular, by Theorem the continuity of the inclusion H }L c LY(RY)
is equivalent to the continuity of the inclusion H }L C L'(R%). The norm of the injection operator
i: Hﬁ — LY(R?) can be calculated in terms of the torsion 7'(u) and the torsion function w,.

Indeed, by (3.3.13)), we have that

1/2
lullz < flwal ) lell 7, = (2T (w)

On the other hand, for u = w,, we have an equality in (3.3.14}), which gives that the norm of
1/2

1/2HUH;I;, Vu € Hy. (3.3.14)

the injection operator is precisely (2T(u))

Example 3.3.11. Suppose that @ C R? is a set of finite Lebesgue measure and p = Ig or
p = Io. Then the torsion function wy, is in L'(RY) and so the inclusion H}(Q) — L'(R?) is
compact.

Example 3.3.12. Suppose that V : R? — [0, +00] is a measurable function such that f]Rd Vldr <
+00 and let 1 = V(x)dz. Then the embedding H}, C L'(R?) is compact and the function w,,
is in L'(R?). Indeed, let w, be a minimizing sequence for Jy in H, N L*(R%). Since we can
suppose Jy (wy) < 0, we have

1 , , , 1/2 3 1/2
= |Vw, | +wsV dx < Wy, dr < wiV dx V™ dx ,
2 Rd R4 Rd R4

which proves that inf,, J,(wy,) > —oo and so, we can apply Theorem m
Remark 3.3.13. From now on we will denote the space of capacitary measures of finite torsion

with ML (R?).

cap

3.4. PDEs involving capacitary measures

Let © € R? be a bounded open set with smooth boundary and let f € L?(Q2). We recall
that a function u € Hj(Q) is a weak solution of the equation

—Au=f,  ue HYQ),

if, for every v € H}(12), we have

Vu-Vudr = fvdzx,
Rd Rd

or, equivalently, if u € H}(2) is a minimizer in H}(Q) of the functional
1
J¢(v) :/ ~ |Vl = fodz.
Q2
We generalize this concept for the class of capacitary measures.

Definition 3.4.1. Suppose that u is a capacitary measure in R, 1 € Meap(R?). Let f € LP(R?)
for some p € (1,400]. We will say that the function u € Hli is a (weak) solution of the equation

— Au+ pu = f, u € Hli, (3.4.1)
if u is the minimizer for the variational problem

min {Ju,f(u) . we HA(RY N LP’(Rd)}, (3.4.2)
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where J,, ; : H'(R?) N LY (R?) — RU {400} is defined as
Jy,r () ::;/Rd|Vu|2dx+;/RdUQd,u—/Rdufdx (3.4.3)
Remark 3.4.2. If u € Hﬁ N L (R?) is a solution of (3-4.1)), then we have

Vu-Vvd:B+/

uwvdp = / fvdz, Y € Hi N LP' (RY). (3.4.4)
R4 Re

R4
Proposition 3.4.3. Let p be a capacitary measure of finite torsion: u € MCTap(Rd). Let f €
LP(RY), where
o pe[FL, 400, ifd >3,
e pe(l,+o00], ifd=2;
e pe[l, o], ifd=1.
Then there is a unique solution of the equation .

PRrROOF. The existence follows by the compact injection H ; < LY(R?) and the Sobolev

inequalities (3.1.1)), (3.1.2)) and (3.1.3)). The uniqueness is a consequence of the strict convexity
of J, . f- ]

If 1 and f satisfy the hypotheses of Proposition [3.4.3] then we denote with wy, s the unique
minimizer of J, s in H ; and we will refer to it as to the solution of the equation (3.4.1). As
in the metric case, we can compare the different solutions of (3.4.1)) using the weak maximum
principle.

Proposition 3.4.4. Let i € ML _(R?) be a capacitary measure in R of finite torsion and let

cap

p be as in Proposition m Then the solutions of (3.4.1) satisfy the following inequalities:
(i) If p < v and f € LP(RY) is a positive function, then w, s < w,, s.
(ii) If f,g € LP(R?) are such that f < g, then wy, 5 < w, 4.

Proor. We note that since p < v, T'(v) < T(p) < +00 and so the solution w, s exists. The
rest of the proof follows by the same argument of Proposition [2.1.13 O

Some of the classical estimates for solution of PDEs on a bounded open set can be repeated
in the framework of capacitary measures of finite torsion. In what follows, we obtain the classical
estimate ||ul|c < C||f||L», for p > d/2.

Lemma 3.4.5. Let u € ./\/lcTap(IR{d) be a capacitary measure of finite torsion. Let f be a non-
negative function such that f € LP(R?), for p € (d/2,+o0], and let u € H}L be the solution
of
—Au+ pu = f, ueHﬁ.
Then, there is a dimensional constant Cgq > 0 such that, for every t > 0, we have
Ca
— ) oo € ——— S $1(2/d=1/p
0= 1" o < > 1)

More precisely, Cq = (dwcl/d) _2, where wy is the volume of the unit ball in R?.

PROOF. We start noticing that by the weak maximum principle, © > 0 on R%. For every
t € [0, ||ul|so) and € > 0, we consider the function

ue =u At 4 (u—t—e)t € HY(RY).



68 3. CAPACITARY MEASURES

Since us . < u, we have that u; . € H i and so, we can use it as a test function for the functional
Jy,r- Indeed J, r(u) < J,, r(use) and ug . < u give

1 1
2/ |Vu\2d:v—/ Judx < 2/ ]Vut,€|2dx—/ fugedx.
Ré Rd Rd R

In particular, we get
1

/ |Vu|2da:§/ flu—ue) dmgz—:/ fdx.

2 J{t<u<tte} Rd {u>t}

By the co-area formula (see [66], Chapter 1]) we have
/ [Vl dH! 52/ fdx < 2||f|pol{u > t}]7.
{u=t} {u>t}

Setting ¢ : (0,4+00) — (0,+00) to be the monotone decreasing function (t) := [{u > t}|,
we have that

-1
Ot = /{ t}md}[‘l T<o (/{ i qu\de1> P({u > t})?

2(d—1)
d

1 d=2,1
< — It (dgf )% p() T = — 17115 (A} ) (1) T,

where P is the De Giorgi perimeter (see [66] or [5]) and dwd/ is the sharp constant from
the iso-perimetric inequality P(Q) > dw 1/d|Q]%1 in RY. Setting o = % +% <1land C =
(d l/d) | fllzs, we consider the ODE

y = —Cy*, y(to) = Yo (3.4.5)

1
The solution of (3.4.5)) is given by y(t) = (y(l) “—(1—a)C(t—tg)) ™. Since ¢(t) > 0, for every
t > 0 and y(t) > ¢(t), we have that there is some tyayx such that ¢(t) = 0, for every t > tyax.
Thus, taking yo = ¢(to) = [{u > to}|, we have the estimate

1/d
w
(= t0) ¥ [loo < tmax — to < 2( ) Il ol {u > to} 74717,

2/d—1/p
O

Corollary 3.4.6. Let u € Mcap(Rd) be a capacitary measure of finite torsion and let w,, be the
corresponding torsion function. If u > Iq, for some set  C R? of finite Lebesque measure then
we have the estimate ,
1 |Q|2 d
< Z 21 4.
where By is the unit ball in R®.

Remark 3.4.7. We note that the estimate is not sharp since, taking 2 = Bj and
v = Ip,, the torsion function is precisely wp, (z) = 5;(1 — ]m|2)+ and so, [[wp,|lc = 1/2d. A
classical result due to Talenti (see [88]) shows that the estimate
|Q‘2/d
H MHOO — 2d|B |2/d’

(3.4.7)

holds for every set €2 of finite measure and every p > Iq.
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Proposition 3.4.8. Let u € ML _(R%), d>2, p € (d/2,+oc] and f € LP(R?). Then there is a

cap
unique minimizer u € H}L of the functional J,, s : H}L — R. Moreover, u satisfies the inequality

[ulloo < CT ()| flzr, (3.4.8)

for some constants C' and a, depending on the dimension d and the exponent p.

PROOF. We first note that for any v € H& such that J,, r(v) < 0, we have

[owotars [ av<z [ fode <o)l
R4 Rd R4

On the other hand p > d/2 implies p’ < d%d2 and so p' € [1, dQ—_dQ]. Thus, using (3.3.9) with
C = P(u)"/? and an interpolation, we obtain

/]Rd |Vo|? do + /Rd v2dr < CaP ()| f|%, (3.4.9)

which in turn implies the existence of a minimizer u of .J, r, satisfying the same estimate.

In order to prove it is sufficient to consider the case f > 0. In this case the solution
is nonnegative v > 0 (since the minimizer is unique and J,, r(|u|) < J, ¢(u)) and, by Lemma
we have that u € L. We set M := |Jullx < +oc and apply again Lemma [3.4.5] to obtain

M2 M M L 8
= [ar—nasciln [ i s 4 a < ol
where we set § =2/d —1/p < 1. Thus we obtain
MYB < C||f e lullfy, (3.4.10)

and using (3.4.9) with v = u, we get (3.4.8). O

Corollary 3.4.9. Let u € ML _(R?) be a capacitary measure of finite torsion and let w,, be the

cap
corresponding torsion function. Then w, € L®(R?) and

2
d+2
il < Ca ([ )™ (B.a11)

for a dimensional constant Cy > 0.

3.4.1. Almost subharmonic functions. In this subsection we consider functions u €
H'(R?), which are subharmonic up to some perturbation term, i.e.

Au+f>0 in  [CPRY], (3.4.12)

where f € LP(R?). We will see that under some reasonable hypotheses on f the function u is
pointwise defined everywhere on R, i.e. every point of R? is a Lebesgue point for u. This result
has an immediate application to the positive solutions of the PDE

—Au+ pu = f, ueH:L(]Rd),
which satisfy the sub-harmonicity assumption (3.4.12)).

We start recalling a general measure theoretic result.

Definition 3.4.10. Consider a set E and a vector space R of real functions defined on E

(1) We say that R is a Riesz space, if for each u,v € R, u Av € R.

(2) We denote with R, the class of functions u : E — R U {4+00}| such that there is a
sequence of functions u, € R such that u = sup,, .

(8) We say that a linear functional L : R — R is Daniell, if:
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o L(u) >0, whenever u > 0;
o for each increasing sequence of functions u, € R such that u := sup,, u, € R, we
have that L(u) = sup,, L(uy,).

Remark 3.4.11. We note that a positive linear functional L : R — R is Daniell if and only if,

every decreasing sequence of functions u,, € R such that inf,, u, = 0, we have that inf,, L(u,) =
0.

Theorem 3.4.12 (Daniell). Let R be a Riesz space of real functions defined on the set E such
that 1 € R, and let L be a Daniell functional on R. Then, there is a unique measure p defined
on the sigma-algebra of sets £, generated by R, such that

R C LY p), L(u) = / udp, Yu € R. (3.4.13)
E

Proposition 3.4.13. Let p € [1,4+o0], f € LP(R?) and u € H'(R?) be such that
Au+tf>0 in  [H'®RYHNLF(RY).

Then, there is a Radon capacitary measure v on R? such that for every v € H'(R?) N C.(RY),
we have
- Vu-Voudx + fvdr = / vdv. (3.4.14)
R R Rd

PROOF. Let L be the restriction Au + f to the Riesz space R = C.(R?) N H'(RY). Then
L is a positive functional. We will prove that L a is Daniell functional. Consider a decreasing
sequence of functions v, € R such that inf, v, = 0 and a function g € R such that g > Iy, ~0}-
Thus, we have that 0 < L(vy,) < L(||vnllccg) = ||vnllooL(g). Thus it is sufficient to prove that
|lvnlloo — 0. Indeed, for every e > 0, the sequence of sets K, := {v, > €} is a decreasing
sequence of compact sets with empty intersection and so, it is definitively constituted of empty
sets.

Applying Daniell’s Theorem [3.4.12] we have that there is a measure v, on the o-algebra
generated by R, such that holds for any v € R. Since for every open set A C R%, there
is a function v € R such that A = {v > 0}, we have that v is a Borel measure. Moreover, for
every compact set K C R? there is a function ¢ € H'(R?) N C.(R?%) such that ¢ = 1 on K.
Thus, we have

V(K)g/ gpdu:—/ Vu-Vgod:r—l—/ pfdr < +oo,
Rd Rd Rd

which shows that v is a Radon measure.

To prove that v is capacitary, it is sufficient to check that for every compact set K C R?
such that cap(K) = 0, we have also v(K) = 0. Indeed, if cap(K) = 0, then there is a sequence
of functions v, € C.(R%) N H'(RY) such that v, > 1 on K and |jv,||gz1 — 0 as n — oo. Thus,
we have that

M(E)g/ vndu:—/Vu-andx+/vnfdx—>O.
R Q Q

Theorem 3.4.14. Suppose that

(a) u € HY(R?) N L>®(RY);

(b) f € LP(RY), for some p € (d/2,+oc];

(c) Au+ f >0 onR? in sense of distributions.



3.4. PDES INVOLVING CAPACITARY MEASURES 71

Then
(i) the function M, : (0,1) — R, defined as,

M(r) = ][ wdH4, (3.4.15)
OBr(z0)

is of bounded variation.
(i) Au is a signed Borel measure on RY and the weak derivative of M is characterized by

(B,
 dwgrd—1’

Proor. We will prove the above Theorem in three steps.

M'(r)

(3.4.16)

Step 1. We first prove (i) and () under the additional hypothesis u € C2(R%). Indeed, for
each 0 < r < R <1, we have

(‘?7“ [ ]éBTude—l} = gr { ][6 N u(rz) d?-[d_l(x)]

= Vu(rz) - md?—ld_l(m) = ][

Vu(z) ZdH (@) (3.4.17)
oB, dB; r

1 Au(By)
| Au(e)de = 295
dwgrd—1 /Br u(z) dz dwgrd—1

Moreover, M' € L*((0,1)), since

Au(By) 1
M'(r) = dogrd—T < gHAUHLOO(BT)

Step 2. Proof of (i). We consider a function
neCX®RY, 0<p<1l, n=1lonB;, n=0o0nR"\ By,

and, for every r > 0, we use the notation 7,(z) := n(z/r) and ¢.(z) = r~9n(x/r). Let
Ue := U * ¢ and

M.(r) := ]{93 ue dH4 Vr e (0,1).

1(pd
Then we have ue € C®(RY), [Jucloo < |Jtlloo, ue Lﬂ?) w and M. — M in L'((0,1)) and
e—

pointwise a.e. in (0,1). Moreover, M. € BV ((0,1)) and Auc + f > 0. We now prove that the
sequence M. is uniformly bounded in BV ((0,1)). Indeed, for any & € (0,1/2) we have

[ |Au(B,)] U (Aue + f)(By) + [p, | f|(z) dz
AL v

Y Au.(B,) |
< —d 2 dr | d
_/5 dwqrd=1 T /5 dwqrd=1 </BT 4 m) "

1
o Ry ey i Lo
8B1 8B5 k) dwd/p

< 2f|ullze + Capllfllze,

/ ML) dr

dwgrd—1

(3.4.18)
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where Cy ), is a constant depending only on d and p. Passing to the limit as § — 0 gives the
uniform boundedness of M. in BV ((0,1)) and so, the claim.

Step 3. Proof of (ii). By Proposition [3.4.13| we have that v := Au+ f is a Radon capacitary
measure on RY. As a consequence, Au = v — f is a (signed) Radon capacitary measure on R?.
Let u, be as in Step 2. Then we have that Au(B,) — Au(B,) for £!- almost every r € (0,1).
In fact, since

Aul(Ba) < viBr)+ [ |flde<oe, YR ©1)
Br
we have that for £1- almost every r € (0, R) the boundary 0B, is |Au|-negligible. For those r,
we have

Aue(B,) = /Rd 1p, * ¢ d(Au) — 1p, d(Au),

e—0 Rd

where the passage to the limit is due to the dominated convergence theorem applied to the
sequence [ |Ip, * ¢e — Ip,|d|Au|. In fact, for small enough e, the integrand is bounded by 21p,,
and Ip, * ¢.(z) — Ip, (), for every x ¢ OB, and so, for |Aul-almost every = € RZ. Moreover, it
is immediate to check that

’AUE‘(BT) < (AUE =+ f)(Br) + /B |f| dr < (Au)(BlJ,»E) + 2/ ‘f| dx < 400,

Bl+5

which shows that M.(r) — (dwdrd_l)_lAu(Br) in L'((6,1)), for every § > 0, which concludes
the proof of Step 3. O

Remark 3.4.15. In the hypotheses of Theorem [3.4.14] we have that the function M'(r) =
(dwdrdfl)flAu(BT) is L1(0,1) and we have the estimate

1
| @l < 2lulli + oo
where Cy,, is the constant from

Remark 3.4.16. The same conclusions of Theorem [3.4.14 hold under the alternative assumption
(a) w € H'(R?) and u > 0.
Indeed, the only difference is that the last estimate in (3.4.18)) would be with 1 4 ][ uwdHd1

0B1
instead of 2||u||~ and so, we would have

1
/ | M (r)|dr < 1 +][ wdH + Capl|f|l Lo,
0 0B,

where Cy, is the constant from

Remark 3.4.17. Tt is not hard to check that for a generic Sobolev function v € H'(R?) the

mean M (r) := ][ wdH?! is continuous for r € (0,400). Indeed, if u € C*(R?), then for
0B,
every x € 0Bj, we have

1/2

|u(Rzx) —u(rz)| = /TRm - Vu(sz)ds| < (R —r)'/? (/TR |Vul?(sz) ds)
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Integrating for x € 0B1, we have

R 1/2
(R—r)'/? </ |Vul|?(sx) ds) dH!
0B1 r

R 1/2
< |R—r|'/? <][ / |Vul|?(sx) dsd?-ld_1>
0By Jr

|R —r|'/?
= (dwgrd=1)172

IM(R) — M(r)| < ][

IVl 2,

which, by approximation, continues to hold for every u € H'(R?). In particular, we notice that
the radially symmetric Sobolev functions are continuous.

Corollary 3.4.18. In the hypotheses of Theorem [3.4.14] or Remark we have that for
every point xo € R?, the following limit

u(zp) := lim wdH4! (3.4.19)
r—0 9B, (z0)

exists and & = u almost everywhere on R%. Moreover, for every R > 0, we have that

_ R Au(B
][ wdH4 L —U(zg) = / U(iscgﬁ))) ds. (3.4.20)
9Br(z0) o dwgs

PROOF. We note that

R R
][ uwdH! —][ wdH! :/ M'(s)ds </ |M'(s)| de, (3.4.21)
OBR(zo0) OBy (x0) r r

where M'(s) is as in Theorem [3.4.14] Thus, applying Remark [3.4.15| we have that the limit
(3-4.19)) exists. Suppose now that zg € R? is a Lebesgue point for . Then we have

1 T
u(xg) = lim udx = lim dwgs?™? wdH | ds
r—0 By (z0) r—0 wdrd 0 OB (z0)

] r de_l de1 B
= lim y udH ds = u(xp),
r—=0 Jo r 8Bs(z0)

and so u(wg) = u(zg) for a.e. x9 € R% The identity (3.4.20) follows after passing to the limit
as r — 01in (3.4.21)). U

The first part of the above Corollary can be proved also in an alternative way. For the sake
of simplicity, we consider the case f € L>®(R%), which will be sufficient for our purposes.

Proposition 3.4.19. Let u € HY(R?) and f € L>°(R?). Suppose that Au + f > 0 in sense of
distributions on RE. Then every point xo € R? is a Lebesgue point for u and moreover, we have

lim ‘u - u(:co)’ dH*! = lim ‘u - u(:vo)’ dx = 0. (3.4.22)
r—0 aBT(Io) r—0 Br(-’EO)
PROOF. Since we have
Au+ | flloo > Au+ f >0,
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. . . . ||
we can restrict our attention to the case f = 1. We now consider the function v(z) := u(:n)+ﬁ
We note that Av > 0 and so, the function

T vdH,
OB (x0)

is increasing in r. Thus, we may choose a representative of v such that for every point zo € R?
the limit

v(xp) = lim vdH,
r—00 8BT(Z‘O)

exists. Thus, we may suppose that for every point zo € R? we have

u(zp) = lim udH
r—00 8BT(I0)

In order to prove (3.4.22)) we write

lim |u — u(xo)‘ dH?t < lim ‘v — v(xo)‘ dH + lim ‘|x|2 — ]m0|2{ dmit
r—0 aBr(mo) r—0 8B,~(a:0) r—0 8BT(LE0)
< lim vdH¥ — v(xg) + lim |z[* = |zo|?| dH,
r—0 dB,(z0) r—0 9B, (z0)

and we note that by the definition of v(x) the right-hand side converges to zero. The proof of
the second equality in (3.4.22)) is analogous. U

3.4.2. Pointwise definition, semi-continuity and vanishing at infinity for solutions
of elliptic PDEs. In this section we investigate some finer properties of the solutions of the
equation

—Au+ pu = f, uGH;,
where p is a capacitary measure of finite torsion. Our results will depend strongly on the theory
recalled in the previous section.

Lemma 3.4.20. Let y € ML (R?) be a capacitary measure of finite torsion. Suppose that
p € [1,+00] is as in Proposition 5’43 and f € LP(R?) is such that the solution u of the equation

—Au+ pu = f, uEHI}L,
is non-negative on RY. Then we have the inequality
Au+ flrsey >0 in [C2(RY]. (3.4.23)

PROOF. Let v be a non-negative function in C°(£2) or, more generally, in H'(R?)N L' (R%)N
L>®(R%). For each n > 1, consider the function p, : R — R defined by

0, ift<0,
pa(t) = q nt, if t € [0, 1], (3.4.24)
1, ift>1

Since py, is Lipschitz, we have that p,(u) € HY(R?), Vp,(u) = p,,(u)Vu and vp,(u) € H'(RY).
Moreover, since |p,(u)| < n|u| and v € L®(RY), we have that vp,(u) € H;, and so we can use it
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to test the equation for w.

/ fopp(u)de = Vu -V (vpn(u)) dx—i—/ uvpy (uw) dp
R4 Rd R4
/ 2 .
Z/QUPn(U)|VU| da:—l—/gpn(u)Vu Voudx (3.4.25)

> / pn(uw)Vu - Vudz.
Q

Since pn(u) T Liyso0y, a8 n — o0, we obtain (3.4.23). O
Remark 3.4.21. Let p € Mz;p(Rd) be a capacitary measure o finite torsion in R% and let

f € LP(RY), where p is as in Proposition Consider the solution u of the equation
—Au+ pu = f, uerb,
and the capacitary measures
pp = pV Igsoy  and gy =pV Igc-
We have that the positive and negative parts, uy and u_ of u are solutions respectively of
—Aug + pyuy = f, u+€Hi+, and —Au_ + p_u_ = —f, u_GHjL_.
Then, by Lemma [3.4.20] we have that
Auy + fliysey >0 and Au_ — fliu<oy 20,

in sense of distributions on R?. Thus, there are Radon capacitary measures vy and v_ on R¢
such that

vy o= Au+ + fﬂ{u>0} and v = Au_ — f]l{u<0}'

Theorem 3.4.22. Suppose that u € ML _(R?) is a capacitary measure of finite torsion and

cap

that f € LP(RY), for some p € (d/2,+oc]. Let u € Hﬁ be the solution of the equation
—Au+ pu = f, uGH;.
Then Au is a Radon measure on R?, every point zq € R? is a Lebesgue point for v and we have

u(xg) = lim wdH4! = lim udx.
r—0 OB, (z0) r—0 B, (z0)

Moreover, we have

4 ][ waptt| = AulBr(xo))
dr 9B, (z0) dwdrd—l
in sense of distributions on (0,1), and
b | Aul(B; (x0))
R d
/0 diogrd-1 r < 400,

where with |Au|, we denote the total variation of the measure Au.
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PRrOOF. It is sufficient to decompose v as in Remark and then to apply Theorem
for uy and u_. The integrability of the total variation of Au follows by Remark [3.4.15
and the inequality

D] < [Aug] + | Aus| < vi 4 |F] + v 1] < Aug + Au_ + 4]
]

Lemma 3.4.23. Let p € Mcap( 4 be a capacitary measure of finite torsion. Suppose that
p € (d/2,4+cc] and f € LP(R?). Then, there is a dimensional constant Cy > 0 such that the
solution u of the equation

—Au+ pu = f, ueH}”

satisfies the inequality

Call fllLr 24 ][
ulrg) < —————7r” pr + u| dzx, 3.4.26
@) <581 L (3.4.26)

for every xy € R,

PROOF. We first note that by Remark it is sufficient to prove the claim in the case
when u is non-negative. Let r > 0 and let w be the solution of the equation

—Aw=|f], we H)B(x0)).
By Lemma [3.4.20, we have
Alw—w)>0, in  [CF(B(x0))]"

Thus, we have

u(wo) < w(zo) +][

By (o)

< CdHf”Lp HBr||2/d_1/p+][ udx,
2/d—1/p By (o)

which proves the claim. O

Proposition 3.4.24. Let u € Mcap(Rd) be a capacitary measure of finite torsion. Suppose that
p € (d/2,+00] and f € LP(R?). Then the solution u of the equation

—Au+ pu = f, ueHﬁ,
vanishes at infinity.

PROOF. Suppose, that z, € R? is a sequence such that |z,| — co and u(z,) > J for some
6 > 0. For r > 0, by Lemma [3.4.23| we have

u(:C ) < Cd||f||LP HBr”2/d_1/p +][ udzx.

~2/d—1/p Br(zn)
Passing to the limit as n — oo, we obtain
Cyq
§< 24 B, 2/d— 1/p
< g7y el Bl
and since r > 0 is arbitrary, we conclude that 6 = 0. O

In a similar way we have the following semi-continuity result.
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Proposition 3.4.25. Let i € Mcap(Rd) be a capacitary measure of finite torsion. Suppose that
p € (d/2,+00] and f € LP(R?) is such that the solution u of the equation

—Au+ pu = f, ueHﬁ,

is non-negative on R%. Then u is upper semi-continuous. i.e. for every xo € R% for u, we have
u(zo) = lim 1wl oo (B, (20))-

PROOF. Suppose that @, — o is such that u(zyn) = (1 —€)l[ullL=(B, ,(20))- For r > 0, by

Lemma we have

Callfllze | 5 27d-1/ ][
_ o < n) < r P ’
(= Ml (@, o < wlwn) < 7P B IBATET0 A f uda

Passing to the limit as n — oo, we get

Callfllze 2/d—1/ ][
1— Ml o N S BT’ p+ U/dﬁlf
(= )lullzeimyueon < 57g =1 515 (a0

Now, we pass to the limit for » — 0 to obtain
(1= )lull Lo (B, ), (20)) < ulo),
which concludes the proof, since ¢ > 0 is arbitrary. O
3.4.3. The set of finiteness (2, of a capacitary measure. In this sub-section we intro-
duce the notion of set of finiteness of a capacitary measure. Roughly speaking, we expect that

whenever u € H;, u = 0 where y = +o00 and so, it is supported on the set {u < +oo}. The
precise definition of this set will be given below through the torsion function w,,.

Proposition 3.4.26. Let p be a capacitary measure in R? and let wy, be the torsion energy
function for p. For every u € Hl, we have that cap ({wu >0} \ {u# 0}) =0.

PROOF. As in Proposition we can suppose that 0 < u < 1. Since {w, > 0} =
Ugrsolwr > 0}, where wg are as in Definition we have only to prove that cap ({u >
0} \ {wg > 0}) = 0, for every R > 0. We first note that by the weak maximum principle
{wr > 0} C Bg and so, we only have to prove that cap ({ung > 0} \ {wg > 0}) = 0, where

nr(z) = n(xz/R) and
neCCOO(Rd)7 OSUSL {n>0}:Bl, 7]:1011.81/2

Setting ur = p VvV Ip,, we have that wg € H}LR and nru € H}LR. Reasoning as in Proposition
2.1.17| we consider the solution u. of

—Aue + pRus + 5_1u6 = 5_177Ru7

which is such that u. < e~'wg, by the weak maximum principle and converges to nru strongly
in H,, by Lemma [2.1.15| and Remark [2.1.16{ Thus, cap ({ung > 0} \ {wg > 0}) = 0 and so, we

have the claim. O
Definition 3.4.27. We define the set of finiteness €, of the capacitary measure p1 as
Q= {w, > 0}.

Proposition 3.4.28. For every capacitary measure p, we have p > Iq, .
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PROOF. It is sufficient to check that for every u € H'(R?), we have

/ u? dIQH S/ u? dpt.
Rd Rd

Indeed, let u € H/i Then cap({u # 0} \ Q,) = 0 and thus [z, u?dlg, = 0, which proves the
claim. O

Example 3.4.29. If Q) is a quasi-open set and u = Io, then Q, = €.

Example 3.4.30. If y = I for some Q C RY, then Q,, is such that [, \ Q| = 0 and H}(Q) =
H ().

3.4.4. The operator —A + ; and its resolvent. Let y be a capacitary measure on R?
with w,, € L'(R?). Then the map

Qu(u):/ ]Vu|2d:z+/ u? dp,
R4 R4

is a quadratic form on L?(R?) with domain H ;, which is complete with respect to this norm. By
a classical Theorem (see for example [57, Theorem 4.4.2]), there is a unique positive self-adjoint
operator —A+ u, on the Hilbert space obtained as the closure of the domain H ; of the quadratic

form @, with respect to the norm || - |12, such that
(A + p)u,v)2 = Vu-VvdJ:—i—/ uv dy, Vu,v € Dom(—A + p),
Rd Rd

where by Dom(—A + u) we denote the domain of —A + p, which is a dense subset of H }L

Remark 3.4.31. Let p be a capacitary measure in R? such that wy, € L'. Then, by Proposition
we have that for each f € L? N LP with p > d/2

[Ru(lloe < Cllfllze,

and thus R, can be extended to a continuous operator from L” to L* of norm depending only
on the dimension and ||w,||p:.

Remark 3.4.32. Let i be a capacitary measure in R? such that wy, € L'. Ifd < 3,thend/2 < d
and so, if f € L2(R%), then R,(f) € LP, for every p € [2,+0oc]. If the dimension d > 3, then
we can gain some integrability by interpolation between 2 and d > d/2. Indeed, let p € (2,d/2].
Then since

R,:I*-IL* and R,:L%— L™,
we have that

-2 4(p—2
IRl < Cllns where g =p (1+522) 5 p 4 21072

Remark 3.4.33. The closure of H,, with respect to the norm || - || 2 is precisely
L2(Q,) == {f € L2 (RY: f=0ae. on Rd\Qu}.

Indeed, this closure is surely included in Lz(Qu). For the opposite inclusion, consider A € R? an
open set of finite measure. There is a nonnegative function u € H'(R?) such that A = {u > 0}.
Since €, = {w, > 0} by definition, we have that {w, Au >0} =Q,NA and w, Au € H}L Now
let ue = 1A (E_l(wu Aw)). Then u. is an increasing sequence converging pointwise to 1ng,,-
By the Fatou Lemma and the fact that A is arbitrary, we have that the characteristic functions
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of the Borel sets are in the closure of H }L By linearity and the density of the linear combination
of characteristic functions in L?(,), we have the claim.

Remark 3.4.34. If the capacitary measure p is such that
1 2 . 71 ppl
H,C L or equivalently, H,=H,, (3.4.27)
then we have that the equation
—Au + pu = f, uEH;(Rd),
has a unique solution u € H j, for every f € L?(R%). We denote u with R, (f) and we have

IR (F)II72 < CHRu(f)IIfq& < Cllflle2 1R ()l 2,

hence R, : L?(R?) — L2?(R?) is a continuous operator such that Im(R,) C H } and whose
restriction to L?(£2,) is precisely the resolvent in 0 of the operator —A + p.

Remark 3.4.35. For every capacitary measure p and every ¢ > 0, the measure ¢t + p satisfies
the condition in (3.4.27). The operator Ry, is precisely the resolvent (¢t + (—A + p))~L.

Remark 3.4.36. If the inclusion H }L < L? is compact, then the operator R, is also compact
and so, its spectrum is given by the decreasing sequence

0<- < Ap(p) < Apa(p) <o < Ai(p).
The operator —A + p is positive and self-adjoint on L?(R%) and its spectrum is given by
0<A(p) < Xo(p) < < Mp) <.oey
where A\p(1t) = Ax(u)~'. Thus we have the variational characterization of \(u) as

Vul? dz + u?d
Ap(p) = min max Jua [V Jps ,u’
SkCH;lz UESK fRd u2 dx

where the minimum is taken over all k-dimensional subspaces Sy of H ; Moreover, there is a
complete (in L?) orthonormal system of eigenfunctions uy = uy(p) satisfying

—Auy, + pug = Me(@)ug,  up € Dom(=A+p) CH), o lugll2 = 1.

Remark 3.4.37. If w, € L'(R?), then the eigenfunctions uy(u) are bounded. Indeed, on one
hand we have that

[Rp]™ (ur) = Ar ()™ v,
while on the other, by remark we can choose n > 0 such that R, (ux) € L>. We note
that by this argument we have

Jur(p)lloo < C
where C'is a constant depending on ||w,|/f1, the dimension d and on Ay ().

A more precise estimate using the heat semigroup. In particular, the infinity bound on the
kth eigenfunction ug(p) can be provided by a constant depending only on the dimension and on
Ak (1)

Since the operator —A + p is positive and self-adjoint, the Hille-Yoshida Theorem (see for
example [59]) states that the operator (A — p) generates a strongly continuous semigroup T}, on
L%(9,), i.e. there is a family of operators T),(t) : L*(0,) — L?(,), for t € [0,400), such that

o T,(t): L?(Q2,) — L*(Q,) is continuous, for every t € [0, +00);
° TN(O) = Id;
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o T,,(t)oTy(s) =T,(t+ s), for every t,s € [0, +00);
e the map ¢t — T),(t)u is continuous as a map from [0, +00) to L?(2,) equipped with the
strong topology, for every u € L?(£),).

Example 3.4.38. If y = 0, then the semigroup Tp(t) can be written using the classical heat
kernel (see [60], Section 2.3]), i.e. for every f € L*(R?) and every t > 0, we have

To(0)1(e) = s [, e T S0

Remark 3.4.39. Let 1 € R? be a generic capacitary measure. A classical result from the
Theory of Semigroups states that a function uw € Dom(—A + p) if and only if the strong limit
lim, o+ £ H(T,(e)u — u) exists in L?(€2,). If this is the case we have

(A= pu= lim & (T(u—u).

Using this result and the semigroup property, it is straightforward to check that if u € Dom(—A+
1), then the application ¢ — T, (t)u is Frechet differentiable as a map from [0, +00) to L%(m)

and
d

dt

Remark 3.4.40. Suppose now that p is a capacitary measure such that the inclusion H ﬁ C

T,(t)u =Tyu(t) o (A — p)u = (A — p) o Ty, (t)u. (3.4.28)

L?(R%) is compact. Let uy be an eigenfunction for the operator R, i.e. Ry (ug) = Ag(p)ug.
Then uy € Dom(—A + p) and (—A + p)ugp = A\p(p)ug. In particular, by (3.4.28]), we have

d
ET(t)us = Tult) o (A — g = M) (1)
and so, since T),(0)uy = ug, we have
T (tug = e MWy W€ [0, +00). (3.4.29)

We now recall a result from the Theory of Semigroups, which is a variant of the Chernoff
Product Formula (see [59, Theorem 5.2] and [59] Corollary 5.5]).

Theorem 3.4.41. Let 1 be a capacitary measure in R% and let f € LQ(QM). Then we have
. n n
T(t)f = lim [?R(%W} f, (3.4.30)
where the limit on the r.h.s. is strong in L?($,,).

A consequence of this formula is the following:

Corollary 3.4.42. Let ju be a capacitary measure in R% and let f € LQ(QM). If f >0, the
for every t € [0,+00) we have T,(t)f > 0. In particular, for every f € L*(Q,) and every
t € [0,-+00), we have [T, (0)f] < T, (t)(1]).

PROOF. It is sufficient to note that if f > 0, then each term on the r.h.s. of (3.4.30) is
positive. O

In what follows we will need to compare the semigroups T}, for different choice s of the
capacitary measure p. To do so we extend the semigroup 7}, to the space L?(R%). Indeed, for
the capacitary measure u, we define

P, L*(RY) = L*(Q,),  Pu(u) = Lg,u.
Thus the family of operators Tvﬂ(t) i=T,(t) o P, : L>(R%) — L?(RY) satisfies
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fu(t)PM : L2(RY) — L%(£2,) is continuous, for every t € [0, +00);

Tu(o) = Py _

T,(t) o Ty(s) = Tyu(t + s), for every t, s € [0, +00);

the map t — 7),(t)u is continuous as a map from [0, +00) to L2(R?) equipped with the
strong topology, for every u € L?(R?).

Proposition 3.4.43. Let now p and v be capacitary measures n R¢ such that p > v. Then for
every nonnegative f € L2(R?) and every t € [0,+00), we have T,,(t)f < T, (t)f.

PROOF. We first note that p > v implies ©,, C ©,, and so, by Corollary we have
T.(f10,) = T,(f10,).

Now using the approximation from Theorem [3.4.41] and the maximum principle for capacitary
measures, we have that

Tu(f]]-QM) > fu(fﬂﬂu)a

which proves the claim. O

Corollary 3.4.44. Suppose that u is a capacitary measure such that the inclusion H; C L*(R%)
1s compact. Let uy € LQ(QM) be an eigenfunction for the operator R,,. Then we have the estimate

1
[kllos < €57 Ag (1) 4| 2. (3.4.31)
PROOF. By Remark Corollary and Proposition we have
e MW | = | T, (tyug] < T () uk] < To(juxl).

On the other hand, by Example we have

el (1) |z —y|? et () d
< - < - /4 .
ol < s [, ey < g (2
Now, choosing ¢t appropriately, we have the claim. ]

3.5. The y-convergence of capacitary measures

The ~-convergence on the family of capacitary measures is a variational convergence which
naturally appeared in the study of the elliptic problems on a varying domains. A great amount
of literature was dedicated to the subject, starting from the pioneering works of De Giorgi, Dal
Maso-Mosco, Chipot-Dal Maso, Cioranescu-Murat. Numerous applications were found to this
theory, especially in the field of shape optimization, where a technique for proving existence of
optimal domains was first introduced by Buttazzo and Dal Maso in [33]. In this section we try
to give a self-contained introduction to the topic, following the ideas from [33], [51] and [19].

Definition 3.5.1. Let u, be a sequence of capacitary measures in R We say that p, -

converges to the capacitary measure i, if the sequence of energy functions w,,, converges to w,
in L' (RY).

Remark 3.5.2. The family MCTap (R?) of capacitary measures of finite torsion is a metric space

with the metric dy (1, p12) = |[wy, — wy,|[z1. On the subspace {p € Meap(R?) ¢ [Jwy||1 < 1},
this metric is equivalent to the distance |wy, — wy, | rr, for every p € (1, +00).
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Remark 3.5.3. Classically, the term y-convergence was used to indicate what we will call ;.-
convergence, defined as follows: The sequence of capacitary measures pu, locally v-converges (or
Vioc-converges) to the capacitary measure i, if the sequence of energy functions wy, vi, converges
to wuyig N L' (RY), for every bounded open set Q C R?. The family of capacitary measures on
R¢, endowed with the 7., convergence, is metrizable (one can see easily construct a metric by
using a sequence of balls B,,, for n — 0o, and the distance d, from Remark . Moreover, it
is a compact metric space.

3.5.1. Completeness of the ~-distance. In this subsection we prove that the metric

space (Mgp(Rd), d,) is complete. Essentially, there are two ways to see this:

e The first one uses the classical result of the compactness with respect to the ;.. con-
vergence. In this case one has to prove that if w,, — w in L' and p, — p in j0c, then
w = wy,. This approach was used in [19], in the case u, = I4,, and basically the same
proof works in the general case. The further results on the «-convergence rely on the
analogous results for the ;.. convergence.

e The second approach consists in constructing, given the limit function w := limw,,, in
L'(R%), a capacitary measure p such that w = wy,. This technique was introduced in
[45] and was adopted in [51] (see also [T1]). The results in [51] refer to the case of
measures in a bounded open set  C R¢, but hold also in our case essentially with the
same proofs.

For sake of completeness, we report here the proof of the completeness of the y-distance. In
order to have a self-contained exposition, we will use the second approach.
Consider the set

K= {w e H'®YNLNRY : Aw+1>0in [H'(RY) N Ll(Rd)]’}.
Remark 3.5.4. We note that K is a closed convex set in H'(R%) N L*(R?). Moreover, if
p€ ME(RY), then by Lemma [3.4.20| we have
Awy, + 1gy, >0y > 0, as operator in HY(RY) N LY(RY),
and so w, € K.

Theorem 3.5.5. The space Mgp(Rd) endowed with the metric d is a complete metric space.

PROOF. Let u, be a sequence of capacitary measures, which is Cauchy with respect to the
distance d. Then the sequence wy, := w,, converges in L! to a some w € L'(R?). Since, for

/ |an|2dﬂ:+/ widun:/ wy, dz,
R4 R4 R

we have that w,, is bounded in H'(R%) and so w € H'(R%) N L'(RY) and the converges of w,
holds also weakly in H'(R?). By Remark we have that w, € K and so, w € K. In
particular, by the positivity of Aw + 1, we have that Aw + 1 = v is a (capacitary, by [71]
Proposition 3.3.35]) measure on R?. Thus it remains to prove that w = w,, for some capacitary
measure u. Following [51], Proposition 3.4], we define p as

/E;dy, if cap (E\ {w > 0}) =0,
+00, if cap (E\ {w > 0}) > 0.

every n € N,

W(E) = (3.5.1)
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It is straightforward to check that the function p, defined on the Borel sets in R?, is a measure.
Moreover, y is capacitary, since v is capacitary, and for every u € H'(R?) N L?(u) N L' (RY) we

have
/ wud,u:/ udyz/ udy = — Vu-dex—l—/ udzx.
Rd {w>0} R¢ R¢ R

Thus, w satisfies
—Aw+wp =1 weakly in Hj,NL',

and so w minimizes the functional J,, in L' N H ﬁ Finally, we obtain w = w,, € L}(R%). O

3.5.2. The ~-convergence of measures and the convergence of the resolvents R,,.
Let u be a capacitary measure in R? with w, € L'(R?). For every u € H;(]Rd) N LY (RY), we
denote with u. € H i(Rd) N L'(R?) the solution of the problem

1
min{/ |V112d$+/ UQdu—i—/ lv —ul?dx : UEHEL(Rd)ﬂLI(Rd)}. (3.5.2)
RA Rd € JRrd

Testing with u against the optimal wu. in (3.5.2]), we have

1
e, + ~ = el < [l (3.5.3)
We note that u. is the weak solution of the equation
1 1
— Aug + pue + —ue = —u,  ue € Hy(R") N L'(RY). (3.5.4)
€ €

In dimension d < 5, u € H'(R?) implies u € LP(R?), for some p > d/2. Thus u. € L>(R?), for
d < 5. In higher dimension (d > 5), we can gain some integrability of u. using the result from
Remark [3.4.32] We summarize these considerations in the following Lemma:

Lemma 3.5.6. Suppose that pu is a capacitary measure such that w, € L'(RY). Letu € H}L(Rd)ﬂ
LY(RY) be a given function. Then we have

() el gy < lul g
(8) Nlue = ulze < =2 ull g,

(c) If d < 5, then u. € L®(R?) and ||uc|loo < C, where the constant C depends on d, |wy| 11,
HUHHEA and €;

(d) If d > 5, then u. € LP, where p = 2% + -5 Moreover, ||u.||r» < C, where the constant C
depends on d, |wyl|lp1, |lull 5, and e.
I

We note that A := e 'R, 1 : H;(Rd) N LY(RY) — Hﬁ(Rd) N L'(R?) is the application
that associates to each u € H }L(Rd) N LY(R?) the minimizer u. of (3.5.2).

Lemma 3.5.7. Suppose that i is a capacitary measure such that w, € LY (R%). Then there is a
constant M € N, depending only on the dimension d, such that for every u € H}L(Rd) N LY(RY)
and every € > 0, we have:

(i) [[AZ (W) 51 < llull g for every n € N;
Hj, Hj

(11) [|AZ(u) — ul|z2 < n€1/2||u|]H}L, for every n € N;
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(iii) AM(u) € L®(R?) and || AM (u)||w < C, where the constant C' depends on d, ||[w| 11, HUHH}L

and €;

(iv) |[AM+L(u)| < Celwy, where C is the constant from point (iii).

PRrROOF. Points (i) and (i) follow from Lemma (a) and (b). The claim in (%) follows
by Lemma (c), if d <5, and by an iteration of the estimate from Lemma (d), in the
case d > 5. The point (iv) follows by (4ii) and the maximum principle. O

Lemma 3.5.8. Suppose that the sequence i, € Mg;p(Rd) y-converges to the capacitary measure
p. Let f, € L2(RY) be a sequence converging weakly in L? to f € L?>(R%). Then the sequence
Ry, (fa) converges strongly in L*(R?) to R, (f).

PROOF. We set for simplicity
Wy =Wy, w=w, and u, =Ry, (f).

We note that since
limsup || fn]| 2 < 400 and |un|] / frun dz,
n—o0

we have that ||uy|| i, < C, some constant C' not depending on n € N. In particular, u, is

uniformly bounded in H LR N LY (RY).

Consider now the operator A., for some ¢ > 0, and the constant M from Lemma |3 We
have that the sequence un . := [e 'R, | .1] Mt (uy,) is uniformly bounded in H'(R%) N Ll(Rd)
and since u, . < C.wy,, for some constant C., we have that u, . converges in L?*(R%). Since
llun — < (M +1)e'/2C, for every n € N, we have that u, is Cauchy sequence in L?(R%)
and so, it converges strongly in L? to some u € H'(R?) N L' (RY).

We now prove that u = R,(f). Indeed, for every ¢ € C°(R?), we have

/ uppdr = Vwy, - V(upp) da:+/ Wi Un P Ay,
Rd Rd Rd

= / (uann -V — wpVuy, - Vgo) dx + / V(wnp) - Vu, dx + / Wiy Uy Afbn
R4 R4 R4

= / (unVwy, - Voo — w, Vuy, - V) dz + / Wy p fr da.
R4 R

Passing to the limit as n — oo, we have

/ wp dr = / (uVw - Ve —wVu- V) dz + / wef dx. (3.5.5)
R4 R4 Rd

On the other hand, R, (f) also satisfies (3.5.5)) and so, taking v = u — R, (f), we have
/ v dr = / (vVw - Vo —wVu - Vo) dz, Vo € CX(RY), (3.5.6)
R Rd

or, equivalently,

/ v dr + / wVv-Vedr = / vVw - Vepdz, Vo € C2(RY). (3.5.7)
R4 R? R4
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Since v € L' N L? and w|Vv| € L?, we can estimate the left-hand side of (3.5.7) by ||[V¢||z2 and
thus we obtain

/ WV - Vipds < OVl e Ve € C2(RY, (3.5.8)
Rd
and so the operator

Y= vVw - Vedz,
Rd

can be extended to H'(RY). Taking v; := —t Vv A t, as a test function in (3.5.5)), we get

1
/ vide < —Vw - V(v}) — w|Vu|* dx
Rd R4 2

(3.5.9)
1
< / vfdw—/ w|Vu|? de,
2 Jpa Rd
where we used that Aw + 1 > 0. In conclusion, we have
1
/ v? de +/ w| Vo |* dz <0, (3.5.10)
2 JRrd Rd

which gives vy = 0. Since t > 0 is arbitrary, we obtain v = R,,(f), which concludes the proof. [

Remark 3.5.9. A careful inspection of the proof of Lemma shows that if u, € Mn(R9)
y-converges to u € Mn(R?) and if f, € L2(RY) converges weakly in L? to f € L?*(R%), then
Ry, +4(fn) converges strongly in L2(R?) to R,4+(f), for every ¢ > 0.

Proposition 3.5.10 (v implies convergence in norm). Let u, € ./\/lg;p(]Rd) be a sequence of

capacitary measures y-converging to pu € /\/lg;p(Rd). Then the sequence of operators R, €

L(L*(R?)) converges to R, € L(L*(RY)) in norm.
PRrROOF. We have to show that
Tim {sup {|1Ry, (f) = Ru(Hllzz S € L2RY, |fllp= =1} } =0
i.e. that for every sequence f,, € L?(R?%) with ||f,||;2 = 1, we have
nlggo 1Ry, (fn) = Bu(fu)ll 2 = 0.
Let f € L?(R?) be the weak limit of f,, in L?(RY). Then we have,
T 1R () = Bl o)l < msup | B () = R 2+ 1im s | B f) — B )52

The first term on the right-hand side is zero due to Lemma [3.5.8] The second term is zero due
to the compactness of the inclusion H }L — L*(R%). O

As a consequence, we obtain the following result.

Corollary 3.5.11. The functional A, : ML

cap

tary measure p the kth eigenvalue \,(1) of the operator —A + p in L*(R%), is continuous with

(RY) — [0, +-00], which associates to each capaci-

respect to the y-convergence.

The following is a classical result, which we will use to obtain another class of functionals

on MZ

cap

technique from the I'-convergence Theory (see [53, Proposition 4.3] and [9, Corollary 3.13]).
For sake of completeness, we give here a direct proof.

(R%), continuous with respect to the y-convergence. This result can be proved by a
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Proposition 3.5.12 (y implies I'-convergence of the norms). Let u,, be a sequence of capacitary
measures y-converging to u € ML _(R?). Then the sequence of functionals || -

cap I'-converges
in L2(R%) to || -

i,

ProOF. We first prove the ”"I' — lim inf” inequality. Let u, € H /in be a sequence converging
to u € L?(RY) strongly in L?(R?) and such that HU”HH}m < C, for every n € N, where C' > 0 is
a given constant. For every € > 0, consider the functions

up = 5_1Run+€71 (un), u® = 5_1RM+€71(U).

By Lemma we have that uS — u® in L?(R?). Moreover, since

I3 € € __ €
iy, = [ e g [ ) g
H, Rd I3 n—oo  Jpd £ Hj

we have that

|u = lim ||u;,
n—oo

. < limi .

g
On the other hand ||u, — u$ |2 < Cy/e and so passing to the limit, ||u — u®||;2 < Cy/e. Thus,
u® converges in L? to v and is bounded in H }L As a consequence u € H }L and

< T . < Timi .
lull g < gg(r)lf 1l gy < liminf fun|l g,
Let us now prove the "I"' —lim sup” inequality. For every u € H ;, we have to find a sequence
up, € H) converging in L*(R%) to u and such that [ull g, = limp oo [lunll 5, - We first note
13 HEn

that if u = R,4+(f), for some f € L}(RY) and ¢ > 0, then we may choose u, = R, ++(f)
Indeed, by Lemma and Remark we have that u, — u in L?(R%). Moreover, we have

2 2
nll = n(J — tun, d —tu)dx = N
[|lu ||an /Rdu (f —tuyp)de —— u(f —tu)dz HuHHﬁ

n—oo Rd

which completes the proof in the case v = R,4+(f). In the general case, it is sufficient to
approximate in H ﬁ, the function v € H ; with functions of the form R,4:(f). Taking u. =
e 'R, .—1(u), we already have that u. — u in L2(R%) and weakly in Hﬁ On the other hand,
testing with v — u. the equation , satisfied by u., we get

/\V(ug—u)\Qdﬂm—/ |u€—u]2d,u+€_1/ lue—ul* dx =
R4

Vu-V(u—uc) dx—i—/ u(u—ug) dpu,
R4 Rd Rd

Rd

and thus u. — u strongly in H }L, which concludes the proof. O

Remark 3.5.13. The converse implication holds only in the case when the sequence w,, is a

pre-compact set in L'(R?). Indeed, if this is the case and || - g1 T-converges in L*(R%) to
I| - HH;, where p is a capacitary measure, then p € ./\/lCTap(Rd) and i, y-converges to .

Example 3.5.14. Suppose that p, = I, +B, € Mgap(Rd), where |z, — +oo. Then the
sequence fi,, does not have a y-convergent subsequence. On the other hand, || - || HY I"-converges

to the functional defined as +oo, for any non-zero u € L?(R?) and 0, if u = 0.

Definition 3.5.15. We say that the sequence of quasi-open sets €, C R% ~-converges to the
quasi-open set §, if the sequence of capacitary measures Iq, ~y-converges to Iq.
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Remark 3.5.16. In the terminology from Chapter [2 the I'-convergence of the norms | - || ;1
Qn
to || - || g1 corresponds to the strong-y-convergence of the domains €2,. Thus, by Proposition
Q
3.5.12 we have that the following implications hold:

Y — convergence = StI‘ODg — 7y — convergence = weak — Y — convergence.

3.6. The vy-convergence in a box of finite measure

In this section we consider the case when the sequence of capacitary measures p,, is uniformly
bounded, i.e. when there is a capacitary measure v in R? such that w, € L'(R%) and p, > v,
for every n € N. A typical example of this situation are the capacitary measures in a box, i.e.
the measures p such that u < Ip, where D C R? is a given quasi-open set of finite Lebesgue
measure. Our first result in this setting is the following:

Theorem 3.6.1. Let v be a capacitary measure in R? such that w, € L*(RY). Suppose that
Ln is a sequence of capacitary measures in R such that p, > v. Then p, vy-converges to the
capacitary measure u, if and only if, the sequence of functionals || - HHin I'-converges in L*(R?)
to the functional || - HH}L

PRrROOF. The only if part follows by Proposition For the if part, it is sufficient to
note that we have the inequality w,, < w,, for every n € N. Thus, every sequence p, has a
~v-converging subsequence. Now the conclusion follows since the ~-limit is uniquely determined
by the I'-limit of the respective functionals. O

Corollary 3.6.2. Let v be a capacitary measure in R? such that w, € L'(R?). Then the set of
capacitary measures

/\/lz;g = {,u € /\/lg;p(Rd) o> 1/},
is compact with respect to the distance d.,.
ProOF. Let u, € Mg; be a given sequence of capacitary measures. Then the sequence of

energy functions w,, < w, by the maximum principle, and so there is a capacitary measure
pue ML such that p, y-converges to p. Thus, it is sufficient to check that 1 > v, i.e. that for

cap
every non-negative u € H }L, we have

H“HE}L = /Rd \Vul|? dz + /Rd u?dp > /Rd |Vu|2dx+/Rd u? dv = Hu||§{; (3.6.1)

Indeed, by Theorem the sequence of functionals || - || 1 T-converges in L*(R%) to || - | HY
and so, there is a sequence u,, € H én such that u, converges to u in L?(R?) and
lully = lm gy > lim gy > [l .

where the last inequality is due to the semi-continuity od the norm || - || 71 with respect to the
strong L?(R?)-convergence. O

In what follows we investigate the connection of the y-convergence and the weak convergence
of measures. In the particular case when the measures pu, are absolutely continuous with respect
to the Lebesgue measure, we have the following result.

Proposition 3.6.3. Let Q C R? be a given quasi-open set (of finite or infinite measure) and let
Vi, € LY(Q) be a sequence weakly converging in L' () to a function V. Setting pi, = Vpdr + Iq
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and p =V + Io, we have that the sequence of functionals || - HH}L I'-converges in L*(R?) to the
functional || - HH}L‘

PrOOF. We have to prove that the solutions u, = Ry, (1) of
—Auy, + Vyp(x)u, =1, u € HH (),
weakly converge in Hg () to the solution u = Ry (1) of
—Au+V(z)u =1, u € H(Q),

or, equivalently, that the sequence of functionals

u):/ |Vu|2dx—|-/Vn(:U)u2d:L‘,
Q Q

I'(L?(Q2))-converges to the functional

u):/ ]Vu\zdac—i—/V(x)uzdx.
Q Q

The I'-liminf inequality (Definition [2.2.14 (a)) is immediate since, if u,, — u in L?(Q2), we have
/ |Vu|? dx < liminf/ |V, |* de
Q n—o0 Q
by the lower semi-continuity of the H'(£2) norm with respect to the L?(Q)-convergence, and
/ V(z)u? dz < lim inf/ Vio(z)u2 dx
Q n—oo Q
by the strong-weak lower semi-continuity theorem for integral functionals (see for instance [31]).
Let us now prove the I-limsup inequality (Definition [2.2.14] (b)) which consists, given u €
HZ(Q), in constructing a sequence u,, — u in L?(2) such that
limsup/ Vi, |? dx +/ Vi(z)u? do < / |Vu|? de —I—/ V(x)u?® dx. (3.6.2)
n—o0
For every t > 0 let u' = (u A t) V (—t); then, by the weak convergence of V,,, for ¢ fixed we have
fim [ V() [ut 2 do = / V()| da,
Q

n—oo Q
and

lim V(x)\utlzda;:/V(x)|u|2d:c.
Q

t——+o0 Q

Then, by a diagonal argument, we can find a sequence t, — +0co such that

lim vn(m)yufndem:/V(xﬂuy?dx.
Q

n—oo 0

Taking now u, = u’", and noticing that for every t > 0

/|Vut]2d:c§/|Vu|2d:L“,
Q Q

we obtain (3.6.2) and so the proof is complete. O

Remark 3.6.4. If the quasi-open set €2 from Proposition has finite Lebesgue measure, then
the weak-L!(R?) convergence of V, to V implies the v-convergence of V,,dx + I to Vdzx + Iq.

In the case of weak™ convergence of measures the statement of Proposition |3.6.3|is no longer
true, as the following proposition shows.
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Proposition 3.6.5. Let Q@ C R? (d > 2) be a bounded open set and let V,W € LL(Q) be
two functions such that V> W. Then, there is a sequence V,, € L}F(Q), uniformly bounded
in LY(2), such that the sequence of measures Vy, dx converges weakly* in Q to V dx and the
sequence Vydx + Ig v-converges to Wdx + Iq.

PRroOF. For sake of simplicity, we will write w,, instead of w,,y1,. Without loss of generality
we can suppose fQ(V — W)dx = 1. Let py, be a sequence of probability measures on € weakly*
converging to (V — W) dx and such that each iy, is a finite sum of Dirac masses. For each n € N
consider a sequence of positive functions V;, ., € Ll(Q) such that fQ Vamdr =1 and V,, j,dx
converges weakly* to p, as m — oco. Moreover, we choose V;, ,, as a convex combination of
zj)*

We now prove that for fixed n € N, (V, , + W) dx vy-converges, as m — oo, to W dx or,
equivalently, that the sequence wyw v, ,, converges in L? to wy, as m — oo. Indeed, by the

functions of the form |Bl/m\_1]lBl/m(

weak maximum principle, we have

WWilg,, ,, S WWAV, . < WW,
where Q,, = Q\ (UBl/m(xj)).
J

Since a point has zero capacity in R? (d > 2) there exists a sequence ¢, — 0 strongly in
HY(R?) with ¢y, = 1 on By, (0) and ¢y, = 0 outside By /m(0). We have

/Q lww —wwirg,, ‘2 dr < 2|lww || Lo /Q (ww — wwrg,, ) dz

— 4wl = (E(W + In,,.,) — E(W)) (3.6.3)

1 1
Q

1 1
—/ S Vuw [ 4+ = Wuwd, — wy dx) ,
02 2
where w,, is any function in € H&(an) Taking
Wi () = ww () H (1= dm(z — z5)),
J
since ¢, — 0 strongly in H'(R?), it is easy to see that w,, — wy strongly in H'(Q) and so,
by (3.6.3), wwr,, . — ww in L*(€2) as m — oo. Since the weak convergence of probability

measures and the v-convergence are both induced by metrics, a diagonal sequence argument
brings to the conclusion. O

Remark 3.6.6. When d = 1, a result analogous to Proposition is that any sequence ()
weakly™ converging to p is also y-converging to p. This is an easy consequence of the compact
embedding of H}(€2) into the space of continuous functions on €2.

We note that the hypothesis V' > W in Proposition [3.6.5] is necessary. Indeed, we have the
following proposition, whose proof is contained in [36, Theorem 3.1] and we report it here for
the sake of completeness.

Proposition 3.6.7. Let u, € ./\/lé;p(Q) be a sequence of capacitary Radon measures weakly*
converging to the measure v and y-converging to the capacitary measure | € M;tlp(Q). Then
uw<vin .
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PROOF. We note that it is enough to show that pu(K) < v(K) whenever K CC Q is a
compact set. Let u be a nonnegative smooth function with compact support in §2 such that
u<1in{ and u =1 on K; we have

M(K)S/uzdugliminf uzdun—/UZdygl/({u>O}).
Q Q Q

n—oo

Since u is arbitrary, we have the conclusion by the Borel regularity of v. g

3.7. Concentration-compactness principle for capacitary measures

In this section we introduce one of the main tools for the study of shape optimization
problems in R?. Since when we work in the whole Euclidean space, we don’t have an a priori
bound on the minimizing sequences of capacitary measures, as happens for example in a box.
Thus, finding a convergent minimizing sequence becomes the main task in the of the existence of
optimal solution. Since the y-convergence of a sequence u,, of capacitary measures is determined
through the convergence of the corresponding energy functions w,,,, we can use the classical
concentration-compactness principle of P.L.Lions to determine the behaviour of w,,,. At this
point, we need to deduce the behaviour of the sequence u, from the behaviour of the sequence
of energy functions. In order to do this we will need some preliminary technical results.

3.7.1. The r-distance between comparable measures. The functional character of the
distance d-, makes quite technical the estimate on the distance between two capacitary measures.
In this section, we collect various estimates on the distance between capacitary measures p and
v which are comparable with respect to the order "<”, i.e. when we have v < por pu < v.
In particular, we consider the most important cases, when the two measures differ outside a
large ball (or a half-plane) or inside a small set. At the end we also give some estimates on the
variation of eigenvalues and the resolvent operators with respect to the y-distance.

Lemma 3.7.1. Suppose that p is a capacitary measure such that w, € LY(RY). Then, for every
R > 1 and every Ro > R; > 1 we have

dy(p, VvV Ipy) < / w,, dx +CR ™2, (3.7.1)
RNBpg/2
dV(M,M\/IB;‘%) < / w, dr + CR ™2, (3.7.2)
Bsar
dy (1, oV (I, A, )) < / wy, dz + C(Ry? + Ry?), (3.7.3)
2 Bory\BR, /2

where the constant C' depends only on ||w,||f1 and the dimension d.
PROOF. We set for simplicity wr = wuvi,, and nr(z) = n(z/R), where

UGCEO(Rd), 0<n<1, mn=1on By, nzOoan\Bg.
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Then we have

dy(p, pV Ipy,) = /Rd(w/i_wﬂ%) dx
= 2(Ju(w2R) - Ju(wu)) < Q(Ju(anu) - Ju(wu))
:/ \V(anu)\Qdm+/ n%deu—Q/ anudx—F/ w, d
Rd R4 R4 R4

:/ wi|VnR|2+Vw#-V(n122wu)d:E+/ mz%wzd,u—Z/ anudZL‘—F/ wy dx
R R4 R R4
:/ wZ\VnRFdx—i-/ néwdm—Q/ anuda?—i-/ wy, dx

R4 R4 R4 R4

=/ wiIVnRIdeJr/ (1 = nr)*w, dz
R4 R4

Va2 [
< lwull 2 + w,, dz,
R2 ’ ,u“ R\ B H

which proves (3.7.1). The inequalities (3.7.2) and (3.7.3]) follow by the same argument. [J

By a similar argument we have the following result, which is implicitly contained in [58|
Lemma 3.7] in the case when u = Iq.

Lemma 3.7.2. Suppose that pi is a capacitary measure in R such that wy, € LY(R%). For the

half-space H = {x € RY: c+ x-& > 0}, where the constant ¢ € R and the unit vector ¢ € RY
are given, we have

< ST oy Ty ey |
d (s 11V Inr) < /8]l /8Hw#d7-[ B TRy BT
(3.7.4)

ProOF. For sake of simplicity, set w := w,, M = ||w|/f~, ¢ = 0 and { = (0,...,0,—-1).
Consider the function

M , L1 < —v M,
oz, ... ) = %(QM — (21 + \/2M)2) ,—V2M < a1 <0, (3.7.5)
0 , 0< 1
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Consider the function wy = w Av € H(H) N H}L

dy(p, pV In) = /Rd(w — Wuviy) d
=2(Ju(wpviy) — Ju(w)) < 2(Ju(wh) — Ju(w))

< / \V(wg)|* = |Vw|? d —/ w? dp + 2/ (w —wpg)dz
Rd R\ H R

<

/ IV (w2 — \um«-/ Vul? d
{—V2M<z1<0} RI\ H

—/ w2d,u+2/ (w—wp)dr
R\ H R4

<2

VwH-V(wH—w)dx—i—Q/ (w—wp)dz
{—V2M <z1<0}

—/ \Vw]de—/ w2d,u—|—2/ wdz
RI\H RI\H RI\H

VU'V(wH—w)d:B—i—Q/ (w—wg) dzx
{—V2M<z1<0}

/{\/W<m1§0}

) /
{—V2M<z1<0}

—/ \Vw|2d:n—/ w2d,u+2/ wdz
R\ H RA\H RI\H

= V8M wd?—[dl—/ |Vw|2dz—/ deﬂ+2/ wdz.
dH RI\H RA\H RI\H

(3.7.6)
O

An analogous estimate allows us to prove the following

Lemma 3.7.3. Suppose that p is a capacitary measure such that w, € LY(RY). Then for every
Q c R4, we have

dy (i, 1V Ige) < [Jw,]|3, cap(€2).

PROOF. Suppose that cap(Q) > 0 and let p € H'(R?) be a function such that

0<¢<1 and  cap(Q) < |lollfn < (1+¢)cap(Q).
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Then we have

d"/(lu’J % \ IQC) = \/Rd (w,u - w/l/\/IQC) dr = 2(Ju(wu\/fgc) - JM(U)H))

< [ 1= P [

Rd

= /Rd V(11— g0)|2wi dx + /]Rd YV, - V(wu(1 - ¢)?) dz +/ (1- g0)2wi du

Rd
—2/ (1—¢)wudaz+/ wy, dx
R4 R4

= [ Vel + )udde < (149 can(@

(1-— gp)zwidu - 2/

Rd

(1-p)w,dz +/ wy, dx

Rd

which, after letting e — 0, proves the claim. ]

The following lemma is an estimate which appeared in [I] and [20] in the case p = Iq.

Lemma 3.7.4. Suppose that p is a capacitary measure such that w, € L' (RY). Then there is a
dimensional constant Cyq such that, for every By(xq) C R?, we have

dv(ﬂvﬂ\/IBr(:co)C) §—/ ]Vw#|2d:v—/ wid,u—{—2/ wy dx
By - B,

0B

r

PrROOF. Wihout loss of generality, we can suppose that g = 0. We denote with A, the
annulus By, \ B,.
Let ¢ : A1 — R™ be the solution of the equation
Ay =0, on Ay, =0, on 0B, =1, on 0Bs.
With ¢ : Ay — R we denote the solution of the equation
—A¢p=1, on Ay, ¢ =0, on 0By, ¢ =0, on 0Bs.
For an arbitrary r > 0, « > 0 and k > 0, we have that the solution v of the equation
—Av =1, on A,, v =0, on 085,, v = q, on 0By,
is given by
v(z) = r2o(x/r) + av(z/r), (3.7.7)

and its gradient is of the form

Vo(a) = r(V9)(a/r) + = (V) (w/r). (3.7.8)
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Let v be as in (3.7.7) with a > |[wy[e(B,,). Consider the function w = w, 1ps + (wy A
v) 1, and note that, by the choice of o, we have that w € H*(R%).

dy(p, pV Ipe) = /

) (wu — w/'LVIB$> dx
R

——/ Vw,ﬁdw—/ wid,u—i—2/ wudaﬂ-/ Vol — |Vw,|?* dz
T B'r Br Arﬂ{wu>v}
—|—/ v2—wid,u—2/ (v—w,)dx
Arn{wy>v} Arn{wy>v}
—/ VwMIQda:—/ wid,u—i—Q/ w“d:c—/ V(v —w,)|* de
B, B, B, Arn{wy>v}

—I—2/ Vv-V(v—wu)dx—Q/ (v—w,)dz
Arn{w,>v} Arn{w,>v}

S—/ Vw”]2dx—/ wid,u—l—Q/ w#dx+2/ w,|Vo| dH,
B, B By OB

IN

(3.7.9)
which, taking in consideration (3.7.8]) and the choice of « , proves the claim. O

Our next result is the capacitary measure version of [19, Lemma 3.6].

Lemma 3.7.5. Suppose that u, 1’ are capacitary measures in R® such that wy € Ll(Rd) and

' > . Then, we have
1/d
IRy = Ruwllequ) < © [dy ()],

where C is a constant depending only on the dimension d and the norm ||wy| 1.

PROOF. The proof follows the same argument as in [19, Lemma 3.6] and we report it here
for the sake of completeness. Let f € LP, f > 0, for some p > d/2. Then

/ [Ru(f) = Ry ()| dee SIIRu(f)—Rw(f)H&?l/ Ry(f) = By (f) de
R4 R4

el / f(wy, — wye) da (8.7.10)
]Rd

< CP Y| FI 0wy — wpll o
and so, R, — R, is a linear operator from L? to LP such that
- 1
IRy = Ryoll sy < CPHlwy — w7,
where, by Proposition the constant C' depends on the norm |jw,||;1. Since R, — R,/ is a

self-adjoint operator in L?, we have that

1/p

HRu - Ry’HE(LP’;Lp’) S CpileH o wﬂ'”m”
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and, finally, by interpolation

-1 1
1Ry = Ryl eqrzy < €7l — w1
Now using the L> estimate on w,, and taking p = d, we have the claim. ]

The following two results appeared respectively in [26] and [20]. We note that Lemma [3.7.6]
is just a slight improvement of [20, Lemma 3|, but is one of the crucial steps in the proof of
existence of optimal measures for spectral-torsion functionals.

Lemma 3.7.6. Let u be a capacitary measure such that w, € LY (R?). Then for every capacitary
measure v > p and every k € N, we have

1 d+d
() — Ay (v) < K2ei M(n) S /Rd (Ryu(w,)wy — Ry(w,)w,) da. (3.7.11)
ProOF. Consider the orthonormal in L?(R%) family of eigenfunctions w1, ..., ux € H ﬁ corre-

sponding to the compact self-adjoint operator R, : L>(R?) — L?(R%). Let Py : L?*(R?) — L%*(R?)

be the projection
k

Py(u) = Z (/ uu; d:n) Uj.
j=1 VR
Consider the linear space V' = Im(F}), generated by ui, ..., u; and the operators T, and T, on

V', defined by
T, = PyoRy,o Py and T,=P,oR, 0P
It is immediate to check that wuy,...,u; and Aj(p),...,A1(p) are the eigenvectors and the
corresponding eigenvalues of 7,,. On the other hand, for the eigenvalues A1(T,), ..., Ax(T,) of
T,, we have the inequality
A(T)) < Aj(v), Vji=1,... k. (3.7.12)
Indeed, by the min-max Theorem we have
Py o Ry o Py(u),
Aj(T,) = min  max (P o Ry o 2k(u) OI%
V;CV ueVuly; lJull7 -
= min  max 7<Ry(u),2u>,;2
V;CcL? ueVulV; HUHL2
< min  max 7(Ry(u),2u>L2
VicL? wel2ulVy  [ul[7s

=A;(v),

where with V; we denotes a generic (j — 1)-dimensional subspaces of L?(R%). Thus, we have the

estimate
0 Aj(0) — Aj(v) < AJ(T,) = A(T) < 1T — Tl (3.7.13)
and on the other hand
T, —T))u,u)e2 R, — R))u,u)r2
”T,u, . TI/HL‘,(V) = sup <( 1% 2) >L = sup <( 1% 2) >L
weV a2 ueV (w72
(3.7.14)
1
gsup/ R,(u) — R,(u))udzx.
U Tl i (Fin(0) — F)

Let w € V be the function for which the supremum in the r.h.s. of (3.7.14) is achieved. We can
suppose that |lu|;2 = 1, i.e. that there are real numbers a1, ..., ay, such that

U= aiui + - - - + agpug, where a%—i—---—%—a%:l.



96 3. CAPACITARY MEASURES

Thus, we have

I, = Tollewy < [ 1Rulu) = Rutw)] - Jul da
</ iaxmuﬁ - Rofw))| (]Zkl\uﬂ) dr
</ d(ji!(Ru<uj>—Ru<u]->|) - (jilw)dx e
</ (i (Bulusl) = Rullus)) ) - (i ) da

where the last inequality is due to the linearity and the positivity of R, — R,. We now recall
that by Corollary [3.4.44] we have [|uj]|o < eéx\k(,u)d/‘l, for each j = 1,...,k. By the weak

maximum principle applies for u; and w,, we have

d+4

| < €57 A1) T wp. (3.7.16)

Using against the positivity of R, — R, and substituting (3.7.16) in (3.7.15) we obtain the
claim. 0

Lemma 3.7.7. Let i be a capacitary measure such that w, € LY(R%). Then for every capacitary
measure v > 1 and every k € N, we have

Aj(1) — A;(v) < Cdy (), (3.7.17)

for every 0 < j < k, where C is a constant depending only on A\g(u) and the dimension d.

PROOF. Reasoning as in Lemma [3.7.6] by (3.7.13|) and (3.7.15)), for each 7 = 1,... k, we
have

Aj() = A5(0) < /R (2 (Bulual) = Rullui)) ) (i wi]) da
i=1 Jj=i
< (S e’ [ =) da

where u; € H /1 are the normalized eigenfunctions of —A + . Now the claim follows by the

estimate from Corollary [3.4.44 g

3.7.2. The concentration-compactness principle. In this subsection, we finally state
the version for capacitary measures of the concentration-compactness principle, originally proved
in [19] for quasi-open sets. Our main tools for determining the behaviour of a sequence of
capacitary measures are the estimates from the previous subsection.

Theorem 3.7.8. Suppose that j, is a sequence of capacitary measures in R% such that the
corresponding sequence of energy functions wy, has uniformly bounded LY (R%) norms. Then,
up to a subsequence, one of the following situations occurs:

(i1) (Compactness) The sequence i, vy-converges to some p € ML _(R%).

cap
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(i2) (Compactness2) There is a sequence T, € R such that |x,| — oo and pn(zn + -) -
converges.

(ii) (Vanishing) The sequence p,, does not y-converge to the measure oo = Iy, but the sequence
of resolvents R,,, converges to zero in the strong operator topology of L(L*(RY)). Moreover,
we have ||wy, ||cc = 0 and Ai(pn) — 400, as n — 0o.

(iii) (Dichotomy) There are capacitary measures ps and p2 such that:
° dist(Qu}l, Qu%) — 00, S N — 00;

o jin < iy, A pigh, for every n € N;
d d’Y(:unnurlL A /1721) — 0; as n — oo;

o |Ry, — Ruippzlleney — 0, asn— oo.

1,
PRrOOF. Consider the sequence wy, := w,,,, which is bounded in H'(R%) N L}(RY). We now
apply the concentration compactness principle (Theorem to the sequence w,,.
If the concentration (Theorem (1)) occurs, then by the compactness of the embedding
HY(RY) c L}, (R?), up to a subsequence wy, (- +,,) is concentrated in L!(R?) for some sequence

x, € R9. If x,, has a bounded subsequence, then w, converges (up to a subsequence) in L'(R%)
and so, we have (i1). If |z,| — oo, by the same argument we obtain (i2).

Suppose now that the vanishing (Theorem (2)) holds. We prove that (i) holds. Since
the sequence of norms || Ry, | z(z2) is uniformly bounded, it is sufficient to prove that for every
¢ € C°(Q) the sequence Ry, (¢) converges to zero strongly in L?(R9). Let ¢ € C°(R?) and let
e > 0. We choose R > =% large enough and N € N such that for every n > N, we have

/ wy, dr < <,
Br

By Lemma (3.7.2) and Lemma we have that
[1Bu(P)lr2 < [[Bu() = Buntge (P2 + [ Runpe (V)22 < Celloll 2,

for some universal constant C'. Thus we obtain the strong convergence in (ii).
We now prove that ||w,, || — 0. Suppose by absurd that there is 6 > 0 and a sequence

z, € R? such that wy, (z,) > 0. Since Aw,,, +1 >0 on R? we have that the function

= (z) r? — |z — 2,2

x = w,, (r) - ——————
Hn 2d ’

is subharmonic. Thus, choosing r = v/dd, we have
2

[ e 2 o) 352072

which contradicts Theorem (2).
Let u, € H bn be the first, normalized in L2(R?), eigenfunction for the operator —A + .
d+4

By Corollary we have
—Aup, + pinun = A1 (pn)un < A1 (pn)][tn oo < 61/87r)‘1(,un)7'
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Suppose that the sequence Ai(puy) is bounded. Then by the weak maximum principle we have
uy < Cw,,,, for some constant C'. Thus, we have

- / 2 dy < 02/ w?, di < Oy, ooy |11 — 0,
R4 R4

which is a contradiction.

Suppose that the dichotomy (Theorem (8)) occurs. Choose a = 8 and let z,, € R?
and R,, — oo be as in Theorem (3). Then, setting

iy =bn NV Ipyy @) and  pn = pa Vg, (2
by Lemma equation (3.7.3)), we have

n—oo

which, together with Lemma proves (iii). O

In the case when the measures pu,, have the specific forms p, = Tgn or un = Iq,,, we have the
following result, which appeared for the first time in [19] and later in [24], where the perimeter
was included as a variable. This result was also one of the fundamental tools in the proof of the
existence of optimal sets for spectral functionals with perimeter constraint in [58].

Theorem 3.7.9. Suppose that (), is a sequence of measurable sets of uniformly bounded mea-

sure. Then, up to a subsequence, one of the following situations occur:

(1a) The sequence €2y, 'y—convergeﬂ to a capacitary measure | € Mg;p(Rd) and the sequence

1o, € LY(RY) is concentrated.
(1b) There is a sequence x, € R such that |x,| — oo and x, + Q, ~y-converges and the
sequence 1o, (- + z,) € LY(RY) is concentrated.
(2) M (Q) = +00, as n — co.
(3) There are measurable sets QL and Q2 such that:
o dist(QL, Q%) — o0, asn — oo;

QL uQ2 cQ,, for everyn € N;

) dV(IQn,IQ%UQ%) — 0, as n — oo,

| Ra, — Roiuoz |22y — 0, as n — oo;

if P(2,) < 400, for every n € N, then
limsup (P(Q),) + P(Q2) — P(Q,)) = 0.

n—oo
PRrROOF. Let w, := wq,. By Corollary we have ||wy| 1 < C for some universal
constant C' and so the sequences ||wy ||z and ||wy || are also bounded. We now apply the
concentration compactness principle to the sequence of characteristic functions 1g,, .

SWe recall that when we deal with sets €, which are only measurable, the term ~-convergence refers to
the sequence of capacitary measures In,. On the other hand, we say that a sequence of quasi-open sets €,
y-converges, if the sequence of measures Io, y-converges.



3.7. CONCENTRATION-COMPACTNESS PRINCIPLE FOR CAPACITARY MEASURES 99

If the concentration (Theorem (1)) occurs, then the sequence wy, < ||[wy||cLlq, is also
concentrated and so we have (1a) or (1b) as in Theorem [3.7.8]

If the vanishing (Theorem [3.1.4] (2)) occurs, then the vanishing holds also for the sequence
wp, € L'(RY). Thus, by Theorem [3.7.8 (ii) and the fact that IRz, lezmay = A(Q), we
obtain (2). !

If the dichotomy (Theorem (3)) occurs, then it holds also for the sequence w,, € L' (R%).
Thus, applying Theorem we obtain all the claims in (3) but the last one. For the latter it
is sufficient to note that one can take in Theorem (iii), the sequence

QL =0, NBr,tc(x,) and Q2 =Q,\ Bgr,_c(xn),

for every € > 0 small enough. Thus, choosing € > 0 such that
Hd_l (a*Qn ﬁ 8BRn+€(;UTL)) e Hd_l (8*971, ﬂ aBan_E(J]n)) = 0’
we have the claim. 0

Remark 3.7.10. The same result holds if 2, is a sequence of quasi-open sets of uniformly
bounded measure. In this case we apply Theorem [3.7.8| to the sequence of measures p, = Iq,
and then proceed as in the proof of Theorem [3.7.9






CHAPTER 4

Subsolutions of shape functionals

4.1. Introduction

In this chapter we consider domains (quasi-open or measurable sets) Q C R?, which are
optimal for a given functional F only with respect to internal perturbations, i.e.

F(Q) < F(w), for every w C . (4.1.1)

We call the domains 2 satisfying (4.1.6)) subsolutions for the functional F. These type of sets
naturally appear in the following situations:

e Obstacle problems. If D C R? is a given set (a box) and  C D is a solution of the
problem

min {J—“(Q) L QC D}, (4.1.2)

then (2 is a subsolution for F.
e Optimal partition problems. If the domain D C R? is a given set (a box) and the couple
(©1,€Q9) is a solution of the problem

min { F() + F() : 01,9 D, 110 =0}, (4.1.3)

then each of the sets 1 and €2y is a subsolution for F.
e Change of the functional. If the set Q C R? is a solution of the problem

min {g(Q) L QcC Rd} , (4.1.4)
and the functional F is such that
G(Q) — G(w) > F(Q) — F(w), for every w C ,
then the sets (2 is a subsolution for F.

This last case is particularly useful when the functional G depends in a non trivial way on
the domain 2. One may take for example G to be any function of the spectrum of 2. In this
case extracting information on the domain 2, solution of (4.1.4]), might be very difficult. Thus,
it is convenient to search for a functional F, which is easier to treat from the technical point of
view.

If F is a decreasing functional with respect to the set inclusion, then every set Q C R% is a
subsolution for F. Of course, we are interested in functionals which will allow us to extract some
information on the subsolutions. Typically these are combinations of increasing and decreasing
function as, for example, F(2) = A1 (Q2) + |€2].

In many cases, the subsolution property (4.1.6) holds only for small perturbations of the
domain 2. In these cases, we will say that {2 is a local subsolution.

Definition 4.1.1 (Shape subsolutions in the class of Lebesgue measurable sets). Let F be a
functional on the family B(R?) of Borel sets in R we will say that the set Q € B(R?)

101
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e is a local subsolution with respect to the Lebesgue measure, if there is ¢ > 0
such that
F(Q) < Flw), Yw CQ such that |Q\w|<e.

e is a local subsolution with respect to the distance d,, if there is ¢ > 0 such that
F(Q) < Flw), YwCQ such that dv(fw,fg) <e.
e is a subsolution in D C R?, if we have

F(Q) < Flw), YwCQ suchthat Q\wC D.

In this chapter we consider subsolutions for spectral and energy functionals. Before we start
investigating the properties of these domains, we give an example of a well-studied functional,
which suggests what can we expect from the shape subsolutions.

Example 4.1.2. Let F(Q) := P(Q)|Q|™!, for every measurable Q C R?, where with P(f2) we
denote the De Giorgi perimeter of . If  is a (local with respect to the Lebesgue measure)
shape subsolution for F, then a standard argument gives that

(1) © is a bounded set;

(2) Q has an internal density estimate.
Nevertheless, we cannot expect, in general, that €2 has any regularity property. Indeed, if 2 is
the solution of

min {}"(Q) . QC D}, (4.1.5)

where D is a set with empty interior, then (2 is not even (equivalent to) an open set.

The notion of a shape subsolution with respect to a functional F depends on the domain
of definition of F. One can easily define shape subsolutions in the class of open sets, sets with
smooth boundary, quasi-open sets, etc.

Definition 4.1.3 (Shape subsolutions in the class of quasi-open sets). Let F : Acap(RY) — R
be a functional on the family of quasi-open sets Acap(R?).
e We say that the quasi-open set Q € Acap(R?) is a shape subsolution for F :
Acap(RY) — R, if
F(Q) < Flw), Vquasi-open w C . (4.1.6)

o We say that the quasi-open set ) € Acap(Rd) is a local shape subsolution for
F i Acap(RY) — R, if there is € > 0 such that

F(Q) < F(w), Vquasi-open w CQ such that d,(Q,w) <e. (4.1.7)
Remark 4.1.4. Suppose that we are given a functional F on the class of Borel sets. If Q ¢ R¢

is a quasi-open set, which is a shape subsolution for F : B(Rd) — R, then 2 is also a shape
subsolution for the same functional restricted on the class of quasi-open set F : Acap(R?) — R.

Remark 4.1.5. Suppose that the functional F : B(R?) — R is of the form
F(Q) = ®(Hy () +6(9),

where @ is a functional on the closed subspaces of H'(R?) and G : B(R?) — R is an increasing
functional with respect to the set inclusion (defined up to sets of zero capacity). Let € B(RY)
be a shape subsolution for F. Then, there is a quasi-open set w C 2 a.e. such that F(w) = F(£2)
and w is a shape subsolution for F : Acap(R?) — R. Indeed, there is a quasi-open set w such
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that cap(w\ Q) = 0 and H}(Q) = H}(w). Now the claim follows by the definition of subsolution.
The same holds, if F is of the form

F(Q) = ®(H(Q)) + (),

for ® is as above and G is an increasing functional with respect to the set inclusion (defined up
to sets of zero measure). Indeed, it is sufficient to note that there is a quasi-open set w such
that |w \ 2] = 0 and .FNIS(Q) = ﬁ&(w) = H}(w). Thus, w is a subsolution for the functional
F' 1 Acap(R?) — R defined as

F(Q) = 2(Hg() +G(Q).

Remark 4.1.6 (Subsolutions in the space of capacitary measures). The notion of a subsolution
can be extended in a natural way to the family of capacitary measures. Indeed, we say that the

capacitary measure p € Mg;p(}Rd) is a subsolution for the functional F : Mzap (RY) — RY, if we

have
F(u) < F(v), for every capacitary measure v > p. (4.1.8)

In this case the recovery of information on the set of finiteness 2, can be easily reduced to the
study of the shape subsolutions of the shape functional G : Acap(Rd) — R defined as
g(Q) = f(u V IQ).

Indeed, if the capacitary measure p is a subsolution for F, then the (quasi-open) set of finiteness
(1, is a shape subsolution for the functional G, since for every quasi-open w C 2,
G(Q) = F(u) < F(uV L) = G(w).
4.2. Shape subsolutions for the Dirichlet energy

We shall use throughout this section the notions of a measure theoretic closure 0" and a
measure theoretic boundary 0™ of a Lebesgue measurable set Q@ C R? which are defined as:

ﬁM:{xERd: |B,(x) N Q| >0, VT>O},

oMQ = {:1: eR: |B.(z)NQ >0, |Bo(z) NQ° >0, Vr > o} .
Moreover, for every 0 < a < 1, we define the set of points of density « as
_ d. o [Br(@) N9
Q(a)—{fL’GR : }1_r>r(1) |Br| =o,.
If Q has finite perimeter in sense of De Giorgi, i.e. the distributional gradient Vg is a measure
of finite total variation |V1g|(R?) < +o0, the generalized perimeter of € is given by

P(Q) = |V1g|(RY) = 171 (0%Q),

where 0*Q) is the reduced boundary of 2.

The s-dimensional Hausdorff measure is denoted by H*. To simplify notations and when
no ambiguity occurs, we shall use the notation |0B,(z)| for the (d — 1)-dimensional Hausdorff
measure of the boundary of the ball B,(z) centered in z of radius r.

Let © C R? be a measurable set of finite Lebesgue measure || < +oo and let f € L?(Q)
be a given function. We recall that the Sobolev space over € is defined as

H}(Q) = {u e HY(RY) : w =0 q.e. on QC}.
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The function v € H}(f2) is a solution of the equation
—Au=f, ucH}), (4.2.1)

if w minimizes the functional J; : H}(Q2) — R, where for every v € H} ()

1
Jr(v) = Q/Rd |Vu|2d:v—/Rdufdaz.

We note that, for every f € L%*(Q), a solution u of ([4.2.1)) exists and is unique. Moreover, for
every v € H} () we have

Vu-Vvdx:/ vfdzx,

R4 R4

and, taking v = u, we get

. 1
verﬁ(lf(lm Jr(v) = Jp(u) = —5 /Rd ufde =: Ef(Q). (4.2.2)

In the case when f = 1, we denote with wq the solution of (4.2.1) and with F(£2) the quantity
Eq(2). We call E(Q) the Dirichlet energy and wgq the energy (or torsion) function of 2. In the
Remark below, we list a few properties of wqo which were proved in Section [3.4

Remark 4.2.1. Suppose that Q C R? is a set of finite measure and that wg € H}(f) is the
energy function of 2. Then we have

(a) wq is bounded and
212/
o < ———
where By is the unit ball in R%.
(b) Awg + Tyy,>0y = 0 in sense of distributions on R
(c) Every point of R? is a Lebesgue point for wg.
d) For every zg € R% and every r > 0, we have the inequalities
(
2 2
r

wq(xg) < . +][ wo dH! and wa(xo) < — —I-][ wq dz. (4.2.3)
2d  JoB,(x0) 2d /B, (x0)

(e) wq is upper semi-continuous on RY,
(f) H5(Q) = Hy ({wa > 0}).

Remark 4.2.2. Point (d) of Remark in particular shows that the quasi-open sets are the
natural domains for the Sobolev spaces. Indeed, we recall that for any measurable set (2, the
set {wq > 0} C Q is quasi-open and such that H}(Q) = H} ({wa > 0}). On the other hand, if
Q) is quasi-open, then there is a function u € H}(2) such that Q = {u > 0} up to a set of zero
capacity. Since u € Hi({wq > 0}), we have that cap({u > 0} \ {wq > 0}) = 0 and so the sets
Q and {wq > 0} coincide quasi-everywhere.

Remark 4.2.3. From now on we identify wq with its representative defined through the equality

wa(zg) = lim wq dz, Vzo € R%
r—0 By (z0)

Thus, we identify every quasi-open set Q C R? with its representative {wq > 0}. With this
identification, we have the following simple observations:
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e Let € be a quasi-open set, Then the measure theoretical and the topological closure of
Q coincide 0 = 0. Indeed, we have 0" c Q. On the other hand, if zp € R? \QM,
then there is a ball B, (zo) such that wg = 0 on B,(xg) and so, zg € R?\ Q. Thus we
have also R? \ﬁM C R\ Q, which proves the claim.

e Let Q1 and Qy be two quasi-open sets. If |21 N Qs = 0, then Q3 N Qs = 0. Indeed, we
note that O Ny = {z € R?: wq, (z)wa,(z) > 0}. Since [Qy N Q| = 0, we have that
fRd wiws dx = 0. Note that every point of z € R? is a Lebesgue point for the product
wiwe, we have that wiwy = 0 everywhere on R4,

e Let 1 and Qs be two disjoint quasi-open sets. Then the measure theoretical and the
topological common boundaries coincide

00 NN = N0, =) N0 = aMQ, NnaMaQ,.
Following the original terminology from [20], we give the following:

Definition 4.2.4. We say that the quasi-open set Q € Acap(R?) is an energy subsolution
(with constant m) if Q is a local subsolution for the functional F(2) := E(2) + m|Q|, where
m > 0 is a given constant, i.e. if there is € > 0 such that

E(Q)+m|Q] < E(w) + mlw|, VYquasi-open w CQ  such that d,(Q,w) <e. (4.2.4)

Remark 4.2.5. For a pair of quasi-open sets ,w C R, we use the notation
dy(Qw) == dy(1o, Io) = /d lwag — wy| dx.
R

On the other hand, by the maximum principle we have wq > w,,, whenever w C €) are quasi-open
sets of finite measure. Thus, we have that

dy(w,Q) = /Rd(wg —wy) dz =2(E(w) — E(Q)), Yw C .

In particular, a set Q € Acap(RY) is an energy subsolution, if and only if,
2m|Q\ w| < dy(w,), V quasi-open w C Q such that dy(w,) <e. (4.2.5)

Remark 4.2.6. If  is an energy subsolution with constant m and m’ < m, then  is also an
energy subsolution with constant m/.

Remark 4.2.7. We recall that if O C R? is a quasi-open set of finite measure and ¢ > 0 is a
given real number, then we have

wia () = twa(z/t) and E(tQ) = tT2E(Q).

Thus, if € is an energy subsolution with constants m and &, then ' = ¢} is an energy subsolution

with constants m’ = 1 and &’ = et?2, where t = m~1/2.

Remark 4.2.8. If the energy subsolution @ C R? is smooth, then writing the optimality
condition for local perturbations of the domain Q with smooth vector fields (see, for example,
[71], Chapter 5]) we obtain

|Vwg|? >2m on 9.

Lemma 4.2.9. Let Q C R%, for d > 2, be an energy subsolution with constant m and let
w = wq. Then there exist constants Cy, depending only on the dimension d, and rg, depending



106 4. SUBSOLUTIONS OF SHAPE FUNCTIONALS

on the constant € from Deﬁm'tion such that for each o € R and each 0 < r < 1o we have
the following inequality:

1
/ |Vw|2da:+m}Br(xo)ﬂ{w > 0}
B,n(aco)

2
By (w0) 2r 9By (z0)

ProOF. Taking p = Ig in Lemma [3.7.3] we have that, for » > 0 small enough, the quasi-
open set w := Q\ B,(zp) can be used to test (4.2.4). Now the conclusion follows by Lemma
B4 O

(4.2.6)

Lemma 4.2.10. Let Q C R? be an energy subsolution with constant 1. Then there exist con-
stants Cq > 0 (depending only on the dimension) and ro > 0 (depending on the dimension and
on € from Definition such that for every xg € R% and 0 < r < rg the following implication
holds:

(HwQ”LN(BT(xO)) < Cd?“) = (wQ =0 on Br/g(-l‘o))- (4.2.7)

PRroOOF. Without loss of generality, we can assume that zg = 0 and we set w := wq. By the
trace theorem for W' functions (see [5, Theorems 3.87 and 3.88]), we have that

2
/ wdH™t <Oy / wdaz—l—/ |Vw| dz
0B, /s T JB,,, B2
2 1 9 1
<Cql- wdr + = |Vwl d:z:+f‘{w>0}ﬂBr/2‘
r B'r/2 2 B’!‘/2 2

2 1 1
<20y <THwHLOO(BT/2) + 2> (2/3 ‘V?U’2d1' + ‘{u > 0} N BT/2‘> ,
r/2

(4.2.8)
where the constant C; > 0 depends only on the dimension d.
We define the energy of w on the ball B, as
1
E(w,B,) = 2/ |Vw[®dz + | By N {w > 0}]. (4.2.9)
By
Combining (4.2.8) with the estimate from Lemma we have
2
E(w, Byjs) < / wdz + Cy <7“ + ||w||Loo(Br)> / wdH!
BT/Q r BT/2
(4.2.10)

2 1 1
< (ol + Co (Bl + 3 ) (74 ol ) ) B B

where the constants Cj depend only on the dimension d. The claim follows by observing that if
Hw”LOO(BT) <cr,

for some small ¢ and 7, then by (4.2.10) we obtain E(w, B, /3) = 0. d
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Lemma 4.2.11. Let p be a capacitary measure in R? such that wy, € L' (R%). Suppose that
there are constants C > 0 and ro > 0 such that for every xo € R% and 0 < r < rq the following
implication holds:

(lwull oy < Cr) = (w, =0 on Byja(ao)). (42.11)
Then for every 0 < r < min{rg,Cd/8}, the set Q, = {w, > 0} can be covered with N =
Callwy | 17471 balls of radius r, where Cy is a dimensional constant.

PROOF. Suppose, by absurd that, for some 0 < r < Rp, this is not the case and choose

points z1,...,zxy € R? such that z; € {w, > 0} and
J
Tjy1 € {U}M > 0}\ (U BT(SUl)) .
i=1
For each x;, we have ||wp|[r (B, ,(z;)) > Cr/4. For each j =1,..., N, consider y; € B, 4(;)
such that

w(y;) > Cr/8.
By construction we have that the balls B, /4(y;) are disjoint for j = 1,..., N. Since the function
w— % is subharmonic in B, (y;), we have the inequality

2
r? — |z -yl r?
w(e) ) dz > |B, 4 <w<y-> - ) ,
/BM(y» ( 2d / 7 2d

and summing on j, we get

i Cr r? Cr
ol 23" [ wdez NBul (5 - 5) > NIBual G5
=1 Br/a(y;) / 8 2d /16

O

In other words, Lemma [4.2.10| says that in a point of o (the measure theoretic closure
of the energy subsolution 2) the function wq has at least linear growth. In particular, the
maximum of wg on B, (x) and the average on 0B, () are comparable for r > 0 small enough.

Corollary 4.2.12. Suppose that Q C R is an energy subsolution with m =1 and let w = wq.
Then there exists ro > 0, depending on the dimension and the constant € from Definition [{.2-],
such that for every xq € oY and every 0 < r < rg, we have

2_d_2”wHL°°(BT(xO)) < ][ wdH! < HwHLOO(BQT(SC()))' (4.2.12)
OBar (o)
. . (2r)% — |z|?
PROOF. Suppose that o = 0 and consider the function pa,(z) := g By Remark

we have that A(w — ¢o,) > 0 on R? and 0 < 9, < 2r?/d on By,. Comparing w — @2,
with the harmonic function on By, with boundary values w, we obtain that for every = € B,,
we have

4r? — |x|? w(y) d—1 d d—1
w(zx) — por(x) < / dH_ySZJ[ wdH*".
(@) = par(@) dwa2r  Jap,, ly — x| w) 9B

dC,
For 0 < r < min {ro, ?d, 1}, where rg and Cy are the constants from Lemma|4.2.10] we choose

z, € B, such that

rCy

1
w(zr) > Sllwlp=s,) > =~
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Then we have
w oo 2 2 w oo
7” LTS <w(z,) < 2d ][ wdH + i < 24 ][ wdH + 7” e (B,«)’
2 6327‘ d 6327‘ 4
which proves the claim. O

Remark 4.2.13. In particular, there are constants ¢ and ry such that if x¢ € QM, then for
every 0 < r < rg, we have that

cr < ][ wo dHA.
OBr(z0)

.
Moreover, since / wq dr = / / wQ dH ds, we also have cr < ][ waq dx.
B, 0 JoB, B (w0)
As a consequence of Corollary|4.2.12] we can simplify (4.2.6)). Precisely, we have the following
result.

Corollary 4.2.14. Suppose that  C R? is an energy subsolution with m = 1. Then there are
constants Cq > 0, depending only on the dimension d, and rg, depending on the dimension d
and € from Definition such that for every xg € oY ando<r < ro, we have

1 R T _
2/ Vwg|? dz + [{wg > 0} N By(x0)] gcd”wQ”L;B%( 0))/ wo dHL. (4.2.13)
By (o) r OBr(x0)

PROOF. We set for simplicity w := wq and zog = 0. By Lemma and Corollary
for r > 0 small enough, we have

1 1
;H'LUHLOO(BT) > Cy and - ]{93 wdHI > 2712y, (4.2.14)

Thus, for r as above, we have

/ wdr < |By|
B

and so, it remains to apply the above estimate to (4.2.6)). O

d2=472¢, 1 _
el < o [ wdn,

T

Relying on inequality (4.2.13)) and Lemmal4.2.10[we get the following inner density estimate,
which is much weaker than the density estimates from [1]. The main reason is that we work

only with subsolutions and not with minimizers of a free boundary problem.

Proposition 4.2.15. Suppose that Q C R? is an energy subsolution. Then there exists a
constant ¢ > 0, depending only on the dimension, such that for every xy € ﬁM, we have
[{wq > 0} N By (z0)]

lim sup > c. (4.2.15)
r—0 ’Br|

ProoOF. Without loss of generality, we can suppose that zog = 0 and by rescaling we can
assume that m = 1. Let g and Cy be as in Lemma and let 0 < r < rg. By the Trace
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Theorem in WH1(B,), we have

1
/ wdH! §0d</ Vw|dx—|—/ wda:)
9By B, " JB,

SCd<</B ]Vw|2d:c> ’{w>0}ﬂB}1/2 Hw”L:’(BT)

IN

1/2

W 1,00

Cd <H HL (Bar) wde1> ‘{’U) > 0} n BT}I/Q
2r OB,

w oo
+CdH | oo (B,)

(4.2.16)
where the last inequality is due to Corollary [4.2.14] and Cy denotes a constant which depends
only on the dimension d. Let

1/2
X = </ wd%d_1> ,
OB,

1/

0 - Cd(lleL(sm) (w0} B[
2r

5 — Cd||wHL°°(B)

Then, we can rewrite (4.2.16f) as
X% <aX + 8.

But then, since a, 8 > 0, we have the estimate X < o + /3. Taking the square of both sides,
we obtain

/ wd,Hd_l < Cd‘{w > 0} QBA <||wHLOO(BZT) + ||w|L°°(Br)>
OBy

2r r
(4.2.17)
w
< 3Culw > 0y n 5, 1 Ex1)
By Corollary [£.2.12] we have that
W | [,00 B )
[wll Lo (B, ) - Cal{w > 0} N By [|w]| poo (Bar). (4.2.18)

r/2 - | B | 2r

for some dimensional constant Cy > 0. We choose the constant ¢ from (4.2.15)) as ¢ = (2C4)~*
and we argue by contradiction. Suppose, by absurd, that we have

_ {w>0}n B
limsup C ‘— —. 4.2.19
r—0 Pt |Br| 2 ( )
Setting, for r > 0 small enough,

”wHLOO(Br)

£lr) = B,

r
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and using (4.2.18)), we have that for each n € N the following inequality holds
C 0}N By,.y—n
< al{w > 0} N By,y— +1>‘f(

Flra= )y < VE— r4=m), (4.2.20)
2r4—(n
and so .
Cil{w >0} N B,,,-
Fra ey < f(n I | 5 }0 Bargmwen| (4.2.21)
k=0 ora-(k+D) |
By equation (4.2.19), we have that f(r4~") — 0, which is a contradiction with Lemma
4.2.10 O

Theorem 4.2.16. Suppose that the quasi-open set @ C R? is an energy subsolution with constant
m > 0. Then, we have that:

(i) Q is a bounded set and its diameter can be estimated by a constant depending on d, 2, m
and ro;
(ii) Q is of finite perimeter and
VomHT L (9%Q) < |9; (4.2.22)
(iii) Q is equivalent a.e. to a closed set. More precisely, Q2 = o a.e., oY = Rd\Q(O) and $ )
is an open set. Moreover, if  is given through its canonical representative from Remark

then Q = QM.

PROOF. The first statements follows by Lemma [4.2.11] In order to prove (ii), we reason as
in [20, Theorem 2.2]. Let w = wq and consider the set Q. = {w > £}. Since wg, = (w—¢)T, we
have that for small €, the distance d(£2,€2) is small, we can use 2. as a competitor in (4.2.4)
obtaining

1
2/ |Vw|? dx —/ wdx +m|Q] < E(Q)+m|Q < E(Q:) + m|€]
Rd R4

1
< / |V(w—5)+|2dx—/ (w — &)™ dx + m|Q|.
2 Jpa Rd

In particular, we have

|| 2/ wd:v—/ (w—¢e)t dx
R R

1
2/{0 <}\Vw]2dx+m]Q\Qg\
<w<e

AV

1 . 2
> -[{0<w <&} (/ \Vw]dac) +m[{0 <w < e}
2 {0<w<e}

> \/Zm/ |[Vw| dz.
{

O<w<e}
By the co-area formula we have
1 €
/ P ({w > t}) dt <v2m|Q|,
0

£

for each € > 0 small enough. Then, there is a sequence (g,,)n>1 converging to 0 and such that
P ({w > e,}) < v2m|Q)|. Passing to the limit as n — oo, we obtain (7).
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For the third claim, it is sufficient to prove that (o) satisfies
mm:RNﬁM:{x@W:@@mr>0mmumua@gmm=o} (4.2.23)

where the second equality is just the definition of ™. We note that Qo C R4 \ﬁM trivially

holds for every measurable 2. On the other hand, if z € QM, then, by Proposition [4.2.15] there
is a sequence r, — 0 such that

B Q
lim B @O o,
n—00 ‘Brn |
and so = ¢ (o), which proves the opposite inclusion and the equality in (4.2.23)). O

Remark 4.2.17. The second statement of Theorem [£.2.16)implies, in particular, that the energy
subsolutions cannot be too small. Indeed, by the isoperimetric inequality, we have
_ d
caV2m|Q T < V2mHIH(97Q) < Q| < Cy[HE (97 Q)] 7T,
and so
cdmg < |9 and cgm T < HUL(9%Q),

for some dimensional constant ¢, .

4.3. Interaction between energy subsolutions

In this section we consider configurations of disjoint quasi-open sets , ..., €, in R? each
one being an energy subsolution. In particular, we will study the behaviour of the energy
functions wgq,, ¢ = 1,...,n, around the points belonging to more than one of the measure
theoretical boundaries 9M);.

4.3.1. Monotonicity theorems. The Alt-Caffarelli-Friedman monotonicity formula is one
of the most powerful tools in the study of the regularity of multiphase optimization problems
as, for example, optimal partition problems for functionals involving some partial differential
equation, a prototype being the multiphase Alt-Caffarelli problem

min { Z/ |Vug|? — fiu; + Q21{u1>0} dr @ (u1,...,Um) € A(Q)}, (4.3.1)
=179

where Q C R? is a given (Lipschitz) bounded open set, @ : Q@ — R is a measurable function,
Sy fm € L®(Q) and the admissible set A(2) is given by

A(Q) = {(ul,...,um) € [HI(Q)]m cu; >0, u; =con df, wu; =0 a.e. on Q,Vi ;éj},
(4.3.2)

where ¢ > 0 is a given constant.

Remark 4.3.1. e If Q = 0, then we have a classical optimal partition problem as the
ones studied in [42], [47],[48],[49] and [68§].
elfc=1,m=1,fi=0and 0 < a < Q? <b< +oo, then (4.3.1)) reduces to the problem
considered in [1].

elfm=1Q=1, fi = f and fo = —f, then the solution of (4.3.1) is given by

u] = v’y = sup{u*, 0}, us = u” = sup{—u*,0},
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where u* € H}() is a solution of the following problem, considered in [17],

min{/ﬂ\VuFfud:quHu#OH: ueHg(Q)}.

e If, Q=1and fi = - = f, = f, then (4.3.1]) reduces to a problem considered in [29]
and [12].
One of the main tools in the study of the Lipschitz continuity of the solutions (uj,...,u},)

of the multiphase problem is the monotonicity formula, which relates the behaviour of
the different phases u; in the points on the common boundary d{u; > 0} N d{u; > 0}, the
main purpose being to provide a bound for the gradients [Vu;| and [V} in these points. The
following estimate was proved in [41], as a generalization of the monotonicity formula from [2],
and was widely used (for example in [I7] and also [28]) in the study of free-boundary problems.

Theorem 4.3.2 (Caffarelli-Jerison-Kenig). Let By C R? be the unit ball in R* and let uy, us €
HY(B1) be non-negative and continuous functions such that

Au; +1>0, for i=1,2, and uius =0 on Bj.

Then there is a dimensional constant Cyq such that for each r € (0,1) we have

(L[ IVl Vil :
11 (2 /B a2 ) = (1 ! Z/ a2 ) (43.3)

The aim of this and the following subsectlonsﬂ 14.3.2] [4.3.3| and 4.3.4] is to show that the
continuity assumption in Theorem can be dropped (Theorem and to provide the
reader with a detailed proof of the multiphase version (Theorem and Corollary of
Theorem which was proved in [29]. We note that the proof of Theorem follows pre-
cisely the one of Theorem given in [41]. We report the estimates, in which the continuity
assumption was used, in Section and we adapt them, essentially by approximation, to the
non-continuous case.

A strong initial motivation was provided by the multiphase version of the Alt-Caffarelli-
Friedman monotonicity formula, proved in [47] in the special case of sub—harmonicﬂ functions u;
in R?, which avoids the continuity assumption and applies also in the presence of more phases.
As a conclusion of the Introduction section, we give the proof of this result, which has the
advantage of avoiding the technicalities, emphasising the presence of a stronger decay in the
multiphase case and showing that the continuous assumption is unnecessary.

Theorem 4.3.3 (Alt-Caffarelli-Friedman; Conti-Terracini-Verzini). Consider the unit ball By C
R? and letuy, ..., um € Hl(Bl) be m non-negative subharmonic functions such that fRQ uu; dr =
0, for every choice of different indices i,j € {1,...,m}. Then the function

(1
d(r) = i|“d 4.3.4
=11 (5 [, 17w ) (134
is non-decreasing on [0,1]. In particular,

n 1 m

H< m/ V|2 dx) < </ |Vu1\2d:v+~-+/ |Vum]2d:r) . (4.3.5)

=1\ B B

IThe results in these sections are part of the note [91].
2The result in [47)] is more general and applies to (non-linear) eigenfunctions.
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PRrROOF. The function @ is of bounded variation and calculating its derivative we get

() iy, V2 !
3(1) ‘*+Z T VP dr (13

We now prove that the right-hand side is positive for every r € (0,1) such that u; € H'(0B,),

for every i = 1,...,m, and / UiUj dH'! = 0, for every i # j € {1,...,m}. We use the
0B,
sub-harmonicity of u; to calculate

Ou; 3 3
Vui2dx</ Uj— < / uf dH! / Voui|? dH! 4.3.7
/Tr pars [ wGmant < ([ )’ ([ wpan) (4.3.7)

and decomposing the gradient Vu; in the tangent and normal parts V., u; and V,u;, we have

/ \Vui|2d7-l1 :/ |Vnui|2d7-£1+/ |V7uz‘\2d7-[1
OB, OB, OB,

(4.3.8)
1 1
22/ Vil dH")? / Vil dHY)
Putting together (4.3.7)) and ( -, we obtaln
1
Jop. Vuil* dH! Jog. [Vrwi|2dH?\ 2
fBT | V|2 da =2 7 w2 dH] > 2/ A1 (0B, N ), (4.3.9)
By g 9B,

where we use the notation €2; := {u; > 0} and for an H'-measurable set w C OB, we define

2 7971
A1(w) = min { fa?é;V;:L;Z{ . ve HY(0B,), Hl({v #0}\w) = O} .

2
By a standard symmetrization argument, we have Aq (w) > </H1L()> and so, by (4.3.6))
w

and the mean arithmetic-mean harmonic inequality, we obtain the estimate

d'(r) m? 27
> . —— )
o) = r T z} H(OB, M) —
which concludes the proof. ]

4.3.2. The monotonicity factors. In this subsection we consider non-negative functions
u € H'(By) such that
Au+1>0  weaklyin  [Hi(B2)],

and we study the energy functional

. |Vul?
Ay(r) == /B a2 dx,

.

for r € (0,1), which is precisely the quantity that appears in (4.3.23)) and (4.3.37). We start
with a lemma, which was first proved in [41l Remark 1.5].

Lemma 4.3.4. Suppose that u € H'(Bs) is a non-negative Sobolev function such that Au-+1 > 1
on By C R, Then, there is a dimensional constant Cy such that

[Vul? 2
|22 dx < Cy s u“dx | . (4.3.10)
B1 2\D1
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PROOF. Let u. = ¢, * u, where ¢. € C2°(B;) is a standard molifier. Then u. — u strongly
in H'(By), u. € C*°(Bs) and Au.+1 >0 on By_.. We will prove (4.3.10]) for u.. We note that
a brief computation gives the inequality

A(u?) = 2|Vu|? + 2u-Aue > 2[Vu > —2u.  in [H{(Ba—2)] (4.3.11)
We now choose a positive and radially decreasing function ¢ € C2°(Bs /2) such that ¢ =1 on
By. By (4.3.11)) we get
é(7)|Vue|? 2ue + A(u?

)
QL) VUl g < p(z) e T2\ gy
22 e P a2

:/33/22 s s () o

-/ 2%;2 BTG 2V 0() V(o do - Ca(0)
3/2

¢()ue / 2
<2 Sdx+C uZ dx. 4.3.12
‘x’d 2 d B2\Bl 15 ( )

2
Bs/o

Bs /o
Thus, in order to obtain (4.3.10)), it is sufficient to estimate the norm [[uc|| o (p,) with the r.h.s.
of ({£.3.10). To do that, we first note that since A(uc(z) + |z|*/2d) > 0, we have

max{ () + || /2d} <Cy+Cy f ue dHY, Vr € (3/2,2 —¢), (4.3.13)
€5 OB,

and, after integration in r and the Cauchy-Schwartz inequality, we get

1/2
el Lo (By) < Ca+ Ca / wlds | (4.3.14)
B2\B1
which, together with (4.3.12), gives (4.3.10)). O

Remark 4.3.5. For a non-negative function v € H'(B,), satisfying
Au+1>0 in  [HYB,)],
we denote with A, (r) the quantity

2
Ay(r) = / ||v|:|2 dr < +o0. (4.3.15)

e The function r + A, (r) is bounded and increasing in r.
e We note that A,(r) is invariant with respect to the rescaling u,(z) := u(rz). Indeed,
for any 0 < r < 1 we have

Au, +1>0 and Ay, (1) = Au(r).

The next result is implicitly contained in [41l Lemma 2.8] and it is the point in which the

continuity of u; was used. The inequality (4.3.16]) is the analogue of the estimate (4.3.9), which
is the main ingredient of the proof of Theorem

Lemma 4.3.6. Let u € H'(B3) be a non-negative function such that Au+1>0 on By. Then
for Lebesgue almost every r € (0,1) we have the estimate

— dr < Cyll1+ — d e — d 4.3.16
A md 5 aT d( + ﬁ< ]éBT |Vul*dH ) + 2ra Jop [Vul*dH*, ( )
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where

| Sop, IV0[? dHAT
A :=min faBT 02 AT

cve HYOB,), H ' ({v#0}n{u=0}) = 0} . (4.3.17)

and o € RT is the characteristic constant of {u > 0} N By, i.e. the non-negative solution of
the equation

a<a+ d;2> =\ (4.3.18)

PROOF. We start by determining the subset of the interval (0,1) for which we will prove
that (4.3.16)) holds. Let u. := u * ¢, where ¢, is a standard molifier. Then we have that:

(i) for almost every r € (0,1) the restriction of u to dB, is Sobolev. i.e. upp, € H (9B,);
(ii) for almost every r € (0,1) the sequence of restrictions (Vuc)gp, converges strongly in
L2(0B,;RY) to (Vu)pp, -
We now consider r € (0,1) such that both (i) and (i7) hold. By using the scaling u,(x) :=
r~2u(rz), we can suppose that r = 1.

If H ({u =0} NOBy) =0, then A = 0. Now if Jom, |Vul?dH?! > 0, then the inequality
is trivial. If on the other hand, faBl |Vu|?dH?1 = 0, then u is a constant on dB; and
so, we may suppose that v = 0 on R?\ By, which again gives , by choosing Cj large
enough. Thus, it remains to prove the Lemma in the case H* ! ({u = 0} N9B;) > 0.

We first note that since %! ({u = 0} N dB;) > 0, the constant A defined in is
strictly positive. Using the restriction of u on 0B; as a test function in we get

A / W2 ML < / IVl dHE,
0B 0B,

where V. is the tangential gradient on dB;. In particular, we have
)\/ u? dH < / |V ul? dHIt < / IVul? dHI! =: B,(1). (4.3.19)
831 631 8-Bl
For every € > 0, using the inequality
A(u?) = 2u.Au, + 2|Vue|* > —2u. + 2| Vu|?,
and the fact that A(u6 + \x!2/2d> > 0, we have

2 2
2/ |V I </ 2ue + A(u?) s
B By

. |x|d72 - |x|d72

1/2 2
< Ca+ Cy (/ ugd’H“) +/ A(fjg da.
0B, B ||

We now estimate the last term on the right-hand side.

2 2 2—d
/ A(:fg) de = A(|l"2id)’u,g dx +/ [a(us) |x‘27d . 3(|I‘| )Ug:| d/del
By |zl B oB, L On on

(4.3.20)

< —d(d — 2wg(0) + / o, e

d?-[d_1+(d—2)/ u? dH4T (4.3.21)
8B1 8n

0By

g/ 2uaa“5 dHT + (d — 2)/ u?dH 1,
oB,  On 0B,
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where we used that —A(|z|>~?) = d(d — 2)wado (see for example [60, Section 2.2.1]). Since (ii)
holds, we may pass to the limit in (4.3.20) and (4.3.21]), as ¢ — 0. Using (4.3.19) we obtain the
inequality

2 1/2 1
2/ %dx gcd+cd(/ qu’Hd_l) +2</ u2d7{d—1>2 /
B, | 9B, 9B, dB1

+(d — 2)/ u? dH!
0B,

2 3
de_1>

Ou
on

[B,(1) 1 2 d—2 2
<Cy+Cy ()+/ Ou d’Hd1+a+()/ 9ul” a1
A a Jop, |On A oB, | OT
B,(1 B, (1
=Cyq+Cy (1) + ( ),
A «
where the last equality is due to the definition of « from (4.3.18)). O

4.3.3. The two-phase monotonicity formula. In this subsection we prove the Caffarelli-
Jerison-Kenig monotonicity formula for Sobolev functions. We follow precisely the proof given
in [41], since the only estimates, where the continuity of u; was used are now isolated in Lemma

M.34 and Lemma [4.3.61

Theorem 4.3.7 (Two-phase monotonicity formula). Let By C R? be the unit ball in RY and
Uy, Uy € Hl(Bl) be two non-negative Sobolev functions such that

Au; +1>0, for i=1,2, and uiug =0 a.e. in  Bj. (4.3.22)

Then there is a dimensional constant Cy such that for each r € (0,1) we have

2

11 <:2 /B |‘Z|Zi’22 dzx ) <Cy <1+Z/ |‘Z’Z”2 )2. (4.3.23)

=1
For the sake of simplicity of the notation, for ¢ = 1,2 and u1, us as in Theorem [£.3.7] we set
|V
Ai(r) == Ay, (r) = /B (= dz. (4.3.24)

In the next Lemma we estimate the derivative (with respect to r) of the quantity that
appears in the left-hand side of (4.3.23]) from Theorem m

Lemma 4.3.8. Let u; and us be as in Theorem . Then there is a dimensional constant
Cyq > 0 such that the following implication holds: if A1(1/4) > Cq and Az(1/4) > Cy4, then

d {Amfz(r)] s o1 ADAe)
dr T \/Al (r) \/A2 (r) T

for Lebesgue almost every r € [1/4,1].

PROOF. We set, for i = 1,2 and r > 0,

Bi(r) = / V]2 dH
0B,
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Since A; and As are increasing functions, they are differentiable almost everywhere on (0, 400).
Moreover, A} = B;, for i = 1,2, in sense of distributions and the function

e T A (1) Ao (1),

is differentiable a.e. with derivative

d [A1(r)As(r 4  By(r Bs(r)\ Ai(r)As(r
e

Thus, it is sufficient to prove, that for almost every r € [1/4, 1] we have

4 Bl(Y’) BQ(’I’) 1 1
——+ + > —Cy + . (4.3.25)
v Aur) o As(r) VAI(r)  /As(r)
By rescaling, it is sufficient to prove (4.3.25)) in the case r = 1. We consider two cases:
(A) Suppose that Bi(1) > 4A;(1) or Ba(1) > 4A2(1). In both cases we have
Bi(1)  Ba(1)
—4 + + >0,
Ar(1) - Aq(1)
which gives (4.3.25|).
(B) Suppose that Bi(1) <4A;(1) and Ba(1) < 4A3(1). By Lemma we have
Bi(1 Bi(1 A1 Bi(1
Ai(1) € Cy+ Cy W) B o g, /A0 Bl (4.3.26)
A1 201 A1 201

We now consider two sub-cases:

(B1) Suppose that a; >4 or as > 4. By (4.3.26)), we get

Aq(1) n Bl(l).

A(1) £ Cq N o

Now since VA1 > a; > 4 we obtain

4A4:(1) < Ca /AL (1) + Bi(1) =A1(1)< Ca Bl(l)>7

_l’_
VA A
which gives (4.3.25)).
(B2) Suppose that ay < 4 and ay < 4. Then for both i = 1,2, we have Cy < \/A4;/\ and
so, by (4.3.26))

QOéiAi(l) < Cd\/Ai(l) + B@(l)
Thus (4.3.25)) reduces to ag + a2 > 2, which was proved in [62] (see also [43]).
O

The following is the discretized version of Lemma and also the main ingredient in the
proof of Theorem [4.3.7]

Lemma 4.3.9. Let u; and uy be as in Theorem [[.3.7. Then there is a dimensional constant
Cy > 0 such that the following implication holds: if for some r € (0,1)

1 Vg |2 1 [Vusy|?
ﬂ/rdeCd and 7“4/& |x|d_2dx20d,

then we have the estimate

4 Ay (r/4) Aa(r/4) < (14 612(r)) Ar(r) Aa(r), (4.3.27)
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L[ Va2 N Vw2 Y
d12(r) ;:Cd<<r4/3 ]2 dx + 7"4/3 22 dx : (4.3.28)

2

where

PrOOF. Using the rescaling u,(z) =r~
cases:

(A) If Ay(1) > 4*A1(1/4) or Ay(1) > 4*A5(1/4), then

u(rz), we can suppose that » = 1. We consider two

A1(1) As(1) — 424, (1/4) As(1/4) > A1(1)(A2(1) - 44A2(1/4)) >0,

and so, we have the claim.
(B) Suppose that A1(1) < 4*A;(1/4) or Ay(1) < 4*A5(1/4). Then A;(r) > Cy and As(r) > Cy,
for every r € (1/4,1) and so, we may apply Lemmam

A1) As(1) — 44 A, (1/4) A (1/4) > —C,y /;4( \/All(r)+ \/AlQ(T)>A1(r)Ag(r)dr

3 1 1
~Cuy (\/A1(1/4)+\/A2(1/4)>A1(1)A2(1)

> —Cdg ( 10 16 ) Ap(1)A2(1),

JAD VA

where in the second inequality we used the monotonicity of A; and As.
O

The following lemma corresponds to [41), Lemma 2.9] and its proof implicitely contains [41],
Lemma 2.1] and [41], Lemma 2.3]. We state it here as a single separate result since it is only
used in the proof of the two-phase monotonicity formula (Theorem [4.3.7)).

Lemma 4.3.10. Let uy and ug be as in Theorem [{.3.7. Then there are dimensional constants
Cy > 0 and € > 0 such that the following implication holds: if A1(1) > Cy, A2(1) > Cyq and
41A1(1/4) > A1 (1), then Ag(1/4) < (1 —e)Ag(1).

PROOF. The idea of the proof is roughly speaking to show that if A;(1/4) is not too small
with respect to A;(1), then there is a big portion of the set {u; > 0} in the annulus By /5 \ By 4.
This of course implies that there is a small portion of {ug > 0} in By 5\ By4 and so Az(1/4) is
much smaller than As(1). We will prove the Lemma in two steps.

Step 1. There are dimensional constants C > 0 and 6 > 0 such that if A1(1) > C and
4*A1(1/4) > Ai(1), then [{ur > 0} N Bis \ Bijal 2 0|Bij2 \ Byjal-

By Lemma we have that

Ay(1/4) < Cy+ cd/ u? dz,
B1/o\By 4
and by choosing C > 0 large enough we get

A1(1/4) < C’d/ u? dz.
B1/2\B1/4
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Now if [{u1 > 0} N By \ Byja| > 1/2|By/3 \ Byy4l, then there is nothing to prove. Otherwise,
there is a dimensional constant Cy such that the Sobolev inequality holds

a—2

2d_ d
(/ ui dx) < C’d/ |V |* de < CqA;i(1).
B1/5\B1/4 B1/5\B1/4
By the Holder inequality, we get
2 2
A1(1/4) < Cyl{ur > 0} N Byjo \ ByjaldA1(1) < Cyl{ur > 0} N By \ Byjala4*A1(1/4),

which gives the clairrﬂ of Step 1 since A;1(1/4) > 0.

Step 2. Let § € (0,1). Then there are constants C > 0 and € > 0, depending on 6 and
the dimension, such that if A2(1) > C and [{uz > 0} N Byjg \ Byl < (1 —0)|Byj2 \ Bijal, then
As(1/4) < (1 —e)As(1).

Since [{ug = 0} N Byja \ Byl > 8|B1j2 \ Byjal, there is a constant Cs > 0 such that

/ ud dr < 05/ |Vug|? da.
B1/2\B1/4 B1/2\B1/4

1
/ |Vus|* de > / |Vug|? da > g,
B 2/p 2

since otherwise the claim holds with e = 1/2. Applying Lemma we obtain

We can suppose that

/ |Vug|? d SC’d—i—Cd/ u3 dx
By /4 B1/2\B1/4
< Cy+ CyCs / |VuQ]2d:n—/ Vg |? dz (4.3.29)
B B4
1
< (Cd05 + ) / |Vus|? d — Cd05/ |Vus|? da,
2) J, By
where for the last inequality we chose C' > 0 large enough. O

The proof of Theorem continues exactly as in [41]. In what follows, for i = 1,2, we
adopt the notation

AF = A;(47F),  bF =4 A,47F) and 6 =010 (47F),
where A; was defined in (4.3.24]) and 612 in (4.3.28]).

Proof of Theorem Let M > 0 be a fixed constant, larger than the dimensional
constants in Lemma Lemma and Lemma [4.3.10
Suppose that k£ € N is such that

A AT AL > M(1+ A+ 49)°. (4.3.30)
Then we have
Wh=4'Ak>M  and b5 =445 > M. (4.3.31)
Thus, applying Lemma we obtain if £ € N does not satisfy , then
AP AR AT < (1 4 6;,) AT AL (4.3.32)

3In dimension 2 the argument is analogous.
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We now denote with S;(M) the set
Sy (M) := {k EN: 4045 AL < M(1+ A%+ A8)2},

and with Sy the set

Spi={k e N atalr ALt < afal).
Let L € N be such that L ¢ S1(M) and let [ € {0,1,...,L} be the largest index such that
l € S1(M). Note that if {{+1,...,L —1}\ Sy = 0, then we have

AEAL AL <4 ETDALT AL < < g D AL AT < 4148 4L AL

which gives that L € Sy (4*M).
Repeating the proof of [41], Theorem 1.3], we consider the decreasing sequence of indices

l+1<ky,<-<ko<k <L,

constructed as follows:
e Ly is the largest index in the set {{ +1,..., L} such that ky ¢ So;
o kjy1 is the largest integer in {I +1,...,k; — 1} \ S2 such that
BT < (14 0,,,)0bY and by TN < (146, )b (4.3.33)

We now conclude the proof in four steps.

Step 1. 4*L ALl AL < 44n+1) gl pbs
Indeed, since {k; + 1,..., L} C So, we have

44LA{/A§ < 44(L_1)Af_114§_1 <. < 44(k1+1)A]f1+1A§1+1 < 4444]@114]{:114];1.
Step 2. 4%m Akm gkm < 4401 (1 4 A9 4 49)°.
Let k € {l+1,...,kn — 1} be the smallest integer such that k ¢ So. If no such k exists,
then we have
2
At AR Alm << 4D AT AR < g8 AL AL < 4% M (14 AD + AD).
Otherwise, since k,, is the last index in the sequence constructed above, we have that
P S (L4 o)k or BETL > (14 6k,
Assuming, without loss of generality that the first inequality holds, we get
i E+1
4A(k+1) Akt

s AU <t gk qE < <ata AL AL < 440 (14 AD + A,
k

Ak pAkm pkm
4%km Al gkm <

where in the second inequality we used Lemma [£.3.9) and afterwards we used the fact that
{t+1,...;k—1} C Ss.

Step 3. 4_4ij]1ch'1;]' S (1 + 5kj+1)il4kj+1A]1€j+1A]2€j+1-
We reason as in Step 2 choosing k € {kj;1 +1,...,k; — 1} to be the smallest integer such
that k ¢ So. If no such k exists, then {kj 11 +1,...,k; —1} C Sy and so we have

1

ki ik . ki— ki—1 . k; 1 ,k; 1
44k]A1]A2j < 44(k] l)Alj A2j <...< 44(kj+1+1)A1]+1+ A21+1+

< (14 8y, )4 Al Al
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where the last inequality is due to Lemma m Suppose now that k exists. Since k; and Ejqq
are consecutive indices, we have that

B S (L4607 or  BETE S (14 6p)by
As in Step 2, we assume that the first inequality holds. By Lemma we have

A(k+1) gR+1 S
44kt )A Ak-i-l 44kA11€Al2c <...< 44(kj+1+1)Akj+1+1Akj+1+1
1+ 5~ ! 2

<(1+ 5kj+1)44’“f+1A'f"“A’§j+1.

44k, Alfj A;j <

which concludes the proof of Step 3.

Step 4. Conclusion. Combining the results of Steps 1, 2 and 3, we get

AT AL AL < 4B M(1 4 A9 + A9)? H (1+0y,) (4.3.34)

We now prove that the sequences b]fj and bgj can both be estimated from above by a geometric
progression. Indeed, since k; ¢ Sz, we have

A AL < g AT AR < gr gl gl
Thus Alfj < 44Alfj 1 and analogously A];j < 44A§j 1. Applying Lemma [4.3.10 we get

At <1 -gAb and AP < (1-o)AY.
Using again the fact that k; ¢ Sa, we obtain
A A < gt AT AR < gt A (1 o) A
and so
b]fj <(1- e)blfj—s_1 and b’;j <(1- s)bgjﬂ, for every j=1,...,m. (4.3.35)

By the construction of the sequence kj;, we have that for i = 1,2

kjp1+1 prit

bsz i > i 2<1_§> bfgﬂj
1+6kj+1 (1+5kj+1)(1_5) 2

where for the last inequality we choose M large enough such that k ¢ S; (M) implies §; < /2,
where ¢ is the dimensional constant from Lemma [4.3.10l Setting o = (1 —£/2)/2, we have that

b?j > a‘zbf"“ >0 U2(j—m)b;€m > Mg2i=—m),

Cq

which by the definition of d; gives dx; < Mam_j < Cy0™ 9, for M > 0 large enough, and

4L AL AL H + Cao?) A3 M (1 + A + A9)°

< exp (Z log(1 + C’daj)>48M(1 + A9+ A9)?
st (4.3.36)

<exp (CaY o0l ) M (1+ A + A9)°
j=1
< exp (i)élgM(l + AV + A8)2,

l1—0
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which concludes the proof.
O

4.3.4. Multiphase monotonicity formula. This subsection is dedicated to the multi-
phase version of Theorem proved in [29]. The proof follows the same idea as in [41]. The
major technical difference with respect to the two-phase case consists in the fact that we only
need Lemma, and its three-phase analogue Lemma while the estimate from Lemma

[4:3710] is not necessary.

Theorem 4.3.11 (Three-phase monotonicity formula). Let By C R? be the unit ball in RY and
let u; € HY(By), i = 1,2,3, be three non-negative Sobolev functions such that

Au; +1>0, Vi=1,2,3, and uiuj =0 a.e. in By, Vi# j.
Then there are dimensional constants € > 0 and Cq > 0 such that for each r € (0,1) we have

3 3
1 |Vul] |Vul\
H (’I”2+E LT |ﬂ7|d_2 > < Cd (1 + Z/ |$’d 2 . (4337)

i=1

As a corollary, we obtain the following result.

Corollary 4.3.12 (Multiphase monotonicity formula). Let m > 2 and By C R? be the unit ball
in R, Let u; € HY(By),i=1,...,m, be m non-negative Sobolev functions such that

Au; +1>0, Vi=1,....,m, and wiu; =0 a.e. in By, Vi # j.
Then there are dimensional constants € > 0 and Cq > 0 such that for each r € (0,1) we have

< 1 . 4.3.
(ke [ 50 ) cd( D e (4339)

i=1

Remark 4.3.13. We note that the additional decay r—¢ provided by the presence of a third
phase is not optimal. Indeed, at least in dimension two, we expect that ¢ = m — 2, where m
is the number of phases involved. In our proof the constant e cannot exceed 2/3 in any dimension.

We now proceed with the proof of the three-phase formula. Before we start with the proof
of Theorem we will need some preliminary results, analogous to Lemma 4.3.8) and Lemma
4.9.9

We recall that, for ui, us and ug as in Theorem we use the notation

V| .
Ai(r) = /B ]2 de, for i=1,2,3. (4.3.39)

Lemma 4.3.14. Let uy, uo and us be as in Theorem |4.3.11. Then there are dimensional
constants Cq > 0 and € > 0 such that if A;(1/4) > Cy, for every i = 1,2,3, then

d [A1(r)As(r)As(r 1 1 1 A1(r)As(r)As(r
[ )]Z_Cd<\/A1(r)+\/A2(r)+\/Az(r)> R

for Lebesgue almost every r € [1/4,1].
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PrROOF. We set, for ¢ =1,2,3 and r > 0,
Bi(r) = / |V |* dHI
0By
Since A;, for i = 1,2, 3, are increasing functions they are differentiable almost everywhere on R
and A, = B; in sense of distributions. Thus, the function
T 7“_(6+3€)A1(7")A2(7')A3 (r),

is differentiable a.e. and we have

d [A1(r)As(r)As(r 6+3 Bi(r Bs(r Bs(r)\ Ai(r)As(r)As(r
e

Thus, it is sufficient to prove that for almost every r € [1/4,1] we have

B 6+ 3¢ Bl(’l“) BQ(’I“) B3(r) B 1 1 1
. Ay (r) + Ay(r) + As(r) > —Cy <\/A1(r) - NG + \/Ag(r)) . (4.3.40)

and, by rescaling, we may assume that »r = 1. We consider two cases.

(A) Suppose that there is some i = 1,2, 3, say ¢ = 1, such that (6 4+ 3¢)A;1(1) < By(1). Then we

e Bi1) |, Ba(l) | Ba() Bi(1)
1 2 3 1
—(6+3¢) + + > —(6+3¢) +
O3 4w T am T am =0
which proves (4.3.40)) and the lemma.
(B) Suppose that for each i = 1,2,3 we have (6 4+ 3¢)A;(1) > B;(1). Since, for every i =1,2,3

we have A<( ) > (4, Lemma m gives

1) < Cy/Bi(1)/Ai + Bi(1) /oy < Cyr/Ai(1)/Ni + Bi(1)/ v

Moreover, o < )\i, implies

20;4;(1) < Cq/Ai(1) + Byl (4.3.41)

Dividing both sides by A;(1) and summing for i = 1,2, 3, we obtain

w

3
2(a1 + ag + ag3)

i=1 1
and so, in order to prove and (B), it is sufﬁ(nent to prove that
6+ 3¢

5
Let Q7,953,035 C 0B; be the optimal partition of the sphere dB; for the characteristic
constant «, i.e. the triple {QF, Q5, Q%} is a solution of the problem

a1+ ag +ag >

(4.3.42)

min {a(Ql) +a() +a(3): Q C By ,Vi; HITHQ N Q) =0,Vi # j}. (4.3.43)

We recall that for a set Q2 C 9B, the characteristic constant «({2) is the unique positive
real number such that A(Q2) = a(Q)(a(Q) + d — 2), where

| Jop, IVOPH!
A(Q) = min { falBl T
We note that, by [62], a(2]) + «(2}) > 2, for i # j and so summing on i and j, we have

ve HY(OBy), HT ({u#£0}\ Q) = 0} :

6 < a(Q]) +a(Q3) + a(23) < a1 +az + as.
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Moreover, the first inequality is strict. Indeed, if this is not the case, then a(Q})+a(Q5) = 2,
which in turn gives that Q] and Q5 are two opposite hemispheres (see for example [43]).
Thus Q% = 0, which is impossibleﬂ Choosing ¢ to be such that 6 4+ 3¢ is smaller than the
minimum in , the proof is concluded.

g

Lemma 4.3.15. Let uy, uo and ug be as in Theorem |4.5.11 Then, there are dimensional
constants Cq > 0 and & > 0 such that the following implication holds: if for some r > 0

1 |Vui|2

rd B, ‘:L,|df2

dx > Cy, forall 1=1,2,3,

then we have the estimate

40594y (5) Az () As (7) < (14 012(r)) As(1) Az(r) Ag (1), (4.3.44)
where
d123(r) = C’dg (7014 /BT m dw) o . (4.3.45)

PROOF. We first note that the (4.3.44) is invariant under the rescaling u,(z) = r~2u(ar).
Thus, we may suppose that r = 1. We consider two cases:

(A) Suppose that for some i = 1,2,3, say i = 1, we have 4573 4;(1/4) < A;(1). Then we have
46132 A1 (1/4) Ag(1/4) A3(1/4) < A1(1)A2(1)A3(1).

(B) Suppose that for every i = 1,2,3, we have 453 A4;(1/4) > A;(1). Then A;(1/4) > C, for
some C, large enough and so, we can apply Lemma obtaining that

A1(1)Ag(1)A3(1)— 45732 A1 (1/4) A (1/4) A3(1/4)

which gives the claim.
O

We now proceed with the proof of the three-phase monotonicity formula. We present two
different proofs: the first one repeats precisely the main steps of the proof of Caffarelli, Jerison
and Kenig, while the second one follows a more direct argument.

AFor example, it is in contradiction with the equality «(027) + «(23) = 2, which is also implied by the
contradiction assumption.
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Proof I of Theorem [4.3.11] For i = 1,2, 3, we adopt the notation
Ab = A;47F), P =444 and 6y = 13(47h), (4.3.46)

where A; was defined in (4.3.24]) and §193 in (4.3.45)).
Let M > 0 and let

S1(M) = {k e N: 403k Ak Ak Ak < M (14 A9 + A9 + A%)S}

S = {k e N: 443 ALH AS < afafab]
We first note that if k£ ¢ S7, then we have
M(1+ A+ A + 49)% < al6+32)k gk gk A

< 4—(2—36)kbllc44kA12cAl§

< BECq(1+ AY + AY + A9)2,
where the last inequality is due to the two-phase monotonicity formula (Theorem |4.3.7)). Choos-
ing M > 0 big enough, we have that
(k ¢ Sl(M)) N (birc > Oy, Vi= 1,2,3).

Fix L € N and suppose that L ¢ S;(M). Let [ € {0,...,L} be the largest index such that
l € S1(M). We now consider two cases for the interval [l + 1, L].
(Case 1) If {l+1,...,L} C S, then we have
4OFIL AL AL AL < . < 4(6+32) (D) glb1 gLEL ALEL < 46432 (1+ A9 + A9 +A(3))3,

and so L € Sy (453 M).
(Case 2)If {i+1,...,L}\S2 # 0, then we choose k1 to be the largest index in {{+1,...,L}\
So. Then we define the sequence

l+1<k,< - <k <L,
by induction as

kit ::max{ké{l+1,...,k‘j—1}\5’2: bt < (14 g,

i

)b Vi:1,2,3}.

Jj+1

The proof now proceeds in four steps.

Step 1. 403 AL AL AL < 4(O+39)(kitD) gha g1 pFr
Indeed, since {k; + 1,... L} C Sa, we have

4(6+38)LA1LA2LA§’ <. < 4(6+35)(k1+1)A’1€1+1A12€1+1A§1+1 < 46+354(6+35)k1A’f1A§1A§1.
Step 2. 4(0+3)km ghm ghm ghm < 4543 pr(1 4 A9 4 A9 + AT)°,

Let k € {l+1,..., ks, — 1} be the smallest index such that k ¢ So. If no such k exists, then
we have

km Akm Akm pkm l l l l
4(6+38) Al AQ A3 <...< 4(6+3£)( +1)A1+1A2+1A3+1

§46+364(6+3€)lAl1Al2Aé g 46+36M(1+A(1)+A8+Ag)3
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Otherwise, since k,, is the last index in the sequence constructed above, there exists i € {1,2,3}
such that

B > (14 67)b. (4.3.47)
Assuming, without loss of generality that i = 1, we get

km Akm pkm Akm _ 4(— kmpkm g4km pkm Akm
46F3)km pkm pAkm gkm — 4(=243)km plim gAkm pkm Ak

< 4(72+3€)km(1 + 5,;)’16’;““ (1 +523(47km+1))44(km71)Al2cm71A§m71

(4.3.48)
< 4243 (km=1) (1 5,;)‘%’%“ 44 (km=1) glim=1 gkn—1 (4.3.49)
< 4(—2+3a)(fc+1)(1 4 6];)—11)1;@4—1 44(12+1)A§+1A§+1 (4.3.50)
_ 4(6+3a)(k+1)(1 + 5k)_1A’f+1A§+1A§+1
< 4(6+3e)kA11cAé:A§ << 4(6+3a)(l+1)All+1Al2+1Ag+1 (4.3.51)
<ATTAOTINALALAL < ATTEM (14 AY + AT+ AD), (4352)

where in order to obtain (4.3.48]) we used (4.3.47) and the two-phase estimate from Lemma
4.3.9; for (4.3.49)), we absorb the term that appears after applying Lemma using that if
M is large enough and & < 2/3, then (1 + Ja3(47#m11))472+3¢ < 1; repeating the same esti-

mate as above we obtain (4.3.50)); for (4.3.51)), we use the three-phase Lemma |4.3.15 and then
the fact that {I{+1,...,k} C So; for the last inequality (4.3.52)) we just observed that I € S1(M).

Step 3. 4(6+35)k]-AlfjAl2€jA§j < (1 i‘5kj+1)4(6+36)kj+1Alfj+1A§j+1A§j+1-
We reason as in Step 2 choosing k € {kj41 +1,...,k; — 1} to be the smallest index such
that k ¢ So. If no such k exists, then {k;41 +1,...,k; — 1} C S2 and so we have

643e)k; Aki oki gk 6+3¢) (kjr1+1) gRir1+1l 4kjatl 4kja+1
46300k ATT AT AT < L < 4039 (hya ) TTr TR AT A

<(1+ (Skj+1)4(6+35)kj+1Alfj+1A]2€j+1A§j+17

where the last inequality is due to Lemma Suppose now that k exists. Since k; and kjqq
are consecutive indices, there exists some i € {1, 2,3} such that

B > (14 6,)b0. (4.3.53)
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Without loss of generality we may assume that ¢ = 1.
4(6+3)k; Alfj A’;‘j A? _ g(=2+3e)k; b’lfj 44k A;“J' A’;j
< ACZE (1 5) B (14 (441D AP AT (4.3.59)
< 4(-243) (=) (] 4 5%)*117’;%1 44(’%'*1)14’2“1_114’;1_1 (4.3.55)

< 4(—2+3a)(12+1)(1 + 5}})—1bl;c+1 44(12+1)A§+1A§+1 (4.3.56)
— 4(6+3€)(/€+1)(1 + 5];)_1A]1€+1A§+1A]3€+1

< 4(6+3€)I~€A’%A§A§ <. < 4(6+3z-:)(kj+1+1)A]1fj+1+1A]2€j+1+1A§j+1+1 (4357)

< (14 Gy, JAOHsr1 g1 gT01 AL+t (4.3.58)

where for we used and Lemma 4.3.9 for (4.3.55)) and (4.3.56)), we use that for
M > 0 large enough and ¢ < 2/3 we have (1 + (523(4_"“"“))4‘”3E < 1; for (4.3.57)), we apply
Lemma and then the fact that {{+1,..., /;:} C S9; for the last inequality we use
Lemma [£.3.15]

Step 4. Conclusion.
By the steps 1, 2 and 3 we have that

4(6+39)L gL AL AL < 42(6+3€)M(1+A(1’+A8+Ag)3 H(1+6kj) (4.3.59)
j=1

we now prove that for each ¢ = 1,2, 3 the sequence bfj is majorized by a geometric progression
depending on M. Indeed, since k; ¢ S, we have

A]fjA];jAI;j < 46+3€A’1€j+1A’;j+1A§j+1
< 4—(2—36)44Ai7j+1(1 i 523(4_kj))A’§jA’;j

ki+1 (ki .k;
< o24AAT T AT AT

for some dimensional constant ¢ < 1, where the second inequality is due to Lemma and
the last inequality is due to the choice of M large enough and ¢ < 2/3. Thus we obtain

b <o?bT, Vi=1,2,3 and Vji=1,...,m. (4.3.60)

for each @ = 1,2,3 and each k; € S3. Now using the definition of the finite sequence k; and
(4.3.60]), we deduce that for all © =1,2,3 and j = 2,..., m we have

k; 2, ki+1 2 ki_ ki_
biﬂ <o bZ.] <0 (1 —|—5kj)bi3 1 < Ubiﬂ 1’
and so, repeating the above estimate, we get
b > o > > g > gy

and, by the definition (4.3.63)) (and (4.3.45]))of dy,,

ok, < %amT_j, Vi=1,...,m. (4.3.61)



128 4. SUBSOLUTIONS OF SHAPE FUNCTIONALS

By (4.3.59)) and (4.3.61) and reasoning as in (4.3.36)) we deduce

C
A6+39)L AL AL AL < exp (1—iﬁ> 426307 (14 A9 + A + A9)°, (4.3.62)
which concludes the proof of Theorem [£.3.11] O

Proof II of Theorem [4.3.11]. For i = 1,2, 3, we adopt the notation
Ak = A2(4_k), bf = 44kA1(4_k) and 5k = 5123(4_k), (4363)

7

where A; was defined in (4.3.24]) and d103 in (4.3.45)).
Let M > 0 and let

S(M) = {k eN: 468k AR Ak Ak < N(14 AD 4 AD + Ag)3}.

We will prove that if € > 0 is small enough, then there is M large enough such that for every
k ¢ S(M), we have

4630k Ak Ak Ak < M (1+ AD + AY + A9)°,

where C'is a constant depending on d and e.
We first note that if k£ ¢ S(M), then we have

M(1+ A9+ AQ+ A)® < 46430k gk Ak Ak
< 47(2735)kb11€44kAl2cA§

< 4=C=39kpkCy (1 + AY + AD 4 A9)?,

and so b'f > CglM 42=39)k \where Cy is the constant from Theorem Thus, choosing
e <2/3 and M > 0 large enough, we can suppose that, for every i = 1,2,3, bf > Cy, where Cy
is the constant from Lemma [4.3.T5

Suppose now that L € N is such that L ¢ S(M) and let

l:max{keN: keS(M)ﬁ[O,L]} < I,

where we note that the set S(M) N[0, L] is non-empty for large M, since for k = 0,1, we can
apply Theorem Applying Lemma [4.3.15| for k=14 1,...,L — 1 we obtain

ACIALAL AL < (T[T, (14 8,)) 4CHI0HD AL 4L A

< ( L+ 5k)> A(6+3) (1) AL AL AL (4.3.64)

< (TTESL (1 + 60)) 45730 (1+ A9 + A9 + 49)°,

where 6F is the variable from Lemma [4.3.15
Now it is sufficient to notice that for k =1+ 1,...,L — 1, the sequence J; is bounded by a
geometric progression. Indeed, setting o = 4-143¢/2 < 1, we have that, for k ¢ S(M), 6, < Co*,
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which gives
[Tl (46 < TIECh, (1 + Cob)

= exp (Zﬁ;}ﬂ log(1 + CU’“)) (4.3.65)

< exp (C S o’“) < exp (&) :

which concludes the proof. O

4.3.5. The common boundary of two subsolutions. Application of the two-phase
monotonicity formula. We start our discussion with a result which is useful in multiphase
shape optimization problems, since it allows to separate by an open set each quasi-open cell
from the others.

Lemma 4.3.16. Suppose that the disjoint quasi-open sets 21 and o are energy subsolutions.
Then the corresponding energy function wy and we vanish on the common boundary 021 NIy =
8M§21 N 8MQQ.

PRrROOF. Recall that, by Remark we may suppose that Q; = {w; > 0} and that, by
Remark every point R? is a Lebesgue point for both w; and ws.

Let zg € 0MQy N 9™ Q. Then, for each r > 0 we have |{w; > 0} N By(20)| > 0 and so, by
Proposition there is a sequence r, — 0 such that

. le >0} N Brn(xg)‘

> . 9.
nhl& B >c>0 (4.3.66)
Since ‘{wl > 0} N {wy > 0}| = 0, we have that
>0tNB
lim sup [{wz > 0} 0 Br@o)] ),y (4.3.67)
n—oo |Brn|

Since x( is a Lebesgue point for wsy, we have

wa (o) :nllrrgo o )wg dx
rn (L0

‘{U}Q >0}NB,, (xo)l
’Brn|

< limsup ||wa|| g (B,, (20)) lim sup
n—00 n—00

< (1 = c¢)limsup [|wal[ Lo (B, (2)) < (1 = )wa(zo),
n—o0

where the last inequality is due to the upper semi-continuity of wy (see Remark |4.2.1)). Thus,
we conclude that wy(zg) = 0 and, analogously w1 (xg) = 0. O

Proposition 4.3.17. Suppose that the disjoint quasi-open sets 1 and Qo are energy subsolu-
tions. Then there are open sets D1, Doy C R such that Q1 C D1, Q9 C Dy and 9y N Dy =
QoN Dy =0, up to sets of zero capacity.

PROOF. Define D; = R? \ﬁé‘/l and Dy = RY \ﬁi\/l, which by the definition of a measure
theoretic closure are open sets. As in Lemma4.3.16| we recall that ©; = {w; > 0} and that every

point of €; is a Lebesgue point for the energy function w; € H&(Qz) Since ; C ﬁf\/l, we have to
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show only that 1 C D; and Q9 C Ds or, equivalently, that € N ﬁé\/f =N ﬁi\/f = (). Indeed,

if this is not the case there is a point z¢ € €2, such that wj(zp) > 0, which is a contradiction
with Lemma [4.3.16 O

4.3.6. Absence of triple points for energy subsolutions. Application of the mul-
tiphase monotonicity formula. This subsection is dedicated to the proof of the fact that no
three energy subsolutions can meet in a single point. Our main tool will be the three-phase
monotonicity formula from Theorem We note that the monotonicity formula involves
terms, which are basically of the form ;FBT |Vw|? dz, while the condition that the subsolution
property provides concerns the mean of the function, i.e. fa B, wdHY T > er. These two terms
express in different ways the non-degeneracy of w on the boundary, but the connection between
them raises some technical issues, which esentially concern the regularity of the free boundary.

Remark 4.3.18 (Application of the monotonicity formula). Let Q1, Q9 and Q3 be three disjoint
quasi-open sets of finite measure in RY. Let w; € H}(;), for i = 1,2,3, be the corresponding
energy function and suppose that there is a constant ¢ > 0 such that

][ \Vw;|* dx > ¢, Vr € (0,1), Voo € R, Vi =1,2,3. (4.3.68)
By (z0)
Then, by Theorem we have that for every zo € 0MQ; NoMQy, we have

2
j[ \Vw; |* de < Ca (1+/ w%dm+/ w%daz> ., Vre(0,1) and i=1,2. (4.3.69)
BT(QEO) c Rd R4

Moreover, by the three-phase monotonicity formula, the set of triple points 9™ Q; NOMQy N
oM Qs is empty. Indeed, if 2o € OMQ; NOMQy N OMQ3, by Theorem [4.3.11| and the assumption
(4.3.68)), we would have

3 3 2
_ 1 /
3e .3 2 2
r e’ < = |Vw;|“dz | <Cy 1+E /wid:v ,
g(?“‘” B, (w0) ) = Jea

which is false for » > 0 small enough.

Remark 4.3.19 (The two dimensional case). In dimension two, the energy subsolutions satisfy
condition . Indeed, let 1, Qs C R? be two disjoint energy subsolution with m = 1 and
let g € OMQy N OMQy,. Setting xo = 0, by Corollary we get that for each 0 < r < rq the
following estimates hold:

cr S][ wy dH! and cr S]l wy dH". (4.3.70)
OB, OBy

In particular, we get that 0B, N {w; = 0} # 0 and 9B, N {ws = 0} # (. We now notice that
for almost every r € (0,rg) the restriction of wy and ws to B, are Sobolev functions. Thus, we

1 2 2
2mc? 3 < (/ w; d’H1> < / w? dH < ?"2/ |Vw;|? dH?,
0B, \Jon, 9B, ™ Jop,

where A < 400 a constant. Dividing by 72 and integrating for r € [0, R], where R < rq, we
obtain that for some constant ¢ > 0.

In particular, we obtain that if O, Q9, Q3 C R? are three disjoint energy subsolutions then
there are no triple points, i.e. the set 9MQ; NOMQy N M Q3 is empty.

have
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In higher dimension the inequality (4.3.68)) on the common boundary points will be deduced
by the following Lemma, which is implicitly contained in the proof of [1, Lemma 3.2].

Lemma 4.3.20. For every u € H*(B,) we have the following estimate:

1 2
7672y{u:o}m3ry (]{93 ud?-{d_1> < Cd/B \Vu|? dz, (4.3.71)

where Cy is a constant that depends only on the dimension d.

PROOF. We report here the proof for the sake of completeness, and refer the reader to [1,
Lemma 3.2 ]. We note that it is sufficient to prove the result in the case u > 0. Let v € H'(B,)
be the solution of the problem

min{/ \Vol?dz: u—v e HY(B,), UZU}.
B

We note that v is superharmonic on B, and harmonic on the quasi-open set {v > u}.
For each |z| < %, we consider the functions u, and v, defined on B, as

uz(x) :=u((r — |z|)z + ) and v(z) == v ((r—|z|)z + ).

Note that both u, and v, still belong to H!(B,) and that their gradients are controlled from
above and below by the gradients of u and v. We call S, the set of all |{| = 1 such that the set

{p: % < p <7, u.(pf) =0} is not empty. For £ € S. we define
r
=i =< p< =0y.
Te lnf{p g SP=1 u(pg) 0}

For almost all ¢ € S9! (and then for almost all £ € S.), the functions p — Vu,(p¢) and
p — Vg (p) are square integrable. For those £, one can suppose that the equation

((uz(p2£) — va(p28)) — (uz(p1€) — ve(pr€)) = " & V(uz(p) — va(p€)) dp,

p1
holds for all p1, p2 € [0,7]. Moreover, we have the estimate

r r 1/2
UZ(Tif) = / £ V(v —uz)(p€) dp < T —Te </ V(v — UZ)(Pf)‘Q dp) .
e Te

Since v is superharmonic we have that, by the Poisson’s integral formula,

v(x) > ¢q

Substituting « = (1 — r¢)z + re€, we have

vz<rgs>=v<<r_r§>z+rgg>zC”‘T&][ ucmdl:%“””é][ us dHOY,
2 0B, 0B,

r— |z|

wdH T

r B,

r 2 r

Combining the two inequalities, we have

_ 2 r
r—re (ﬁ Mmdl) <Cu [ V(. — (e dp.
B T¢

r2

Integrating over £ € S, C S9!, we obtain the inequality

— 2 r
( / e dg) ( ]éBr ud?—[d_l) <cy /8 . / V0~ )9 o,

and, by the estimate that g <re <r, we have
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=0y BABu(r2)] <][ ud?—[d_1>2 < cd/T IV (v, —u,)|? da

OBy

gcd/ V(v — )2 da.

Integrating over z, we obtain

1 2
r—z‘{u =0} N B,| <]éB ud?—[d_1> < Cd/ IV (u —v)|? dz. (4.3.72)

Now the claim follows by the fact that v is harmonic on {v — u > 0} and the calculation

/ |V(u—v)\2dm:/ \Vu]z—]Vv|2da:+2/ Vv-V(v—u)dxg/ |Vu|? da.
B”‘ Br B»,-

T

O

Theorem 4.3.21. Suppose that Q, Qy, Q3 C R are three mutually disjoint energy subsolutions.
Then the set Q1 NI N INs = MO N OMQ, NOMQy5 is empty.

PROOF. Suppose for contradiction that there is a point zg € 0 Q;NOM QNIM Q5. Without
loss of generality g = 0. Using the inequality (4.2.18)), we have

3

[will L (B, ) S Hwi > 0y N B\ (2 Ilwill oo (8o
H ,r,/2 SCd g ‘BT‘ H 27,. 9

i=1 i=1

and reasoning as in Proposition 4.2.15 we obtain that there is a constant ¢ > 0 and a decreasing
sequence of positive real numbers r, — 0 such that

Vn € N,

Since }{wl >0} N Brn‘ < |By,|, for each i = 1,2, 3, we have
|{w; >0} N By, |

< , Vn € N,
’BTT)|
and since {w; > 0}, {wy > 0} and {ws > 0} are disjoint, we get
, =0tNDB
1—-2c< [{w ‘B}’ ”"‘, VneN, Vi=1,2,3.
Tn

Thus, we may apply Lemma and then Lemma and Corollary , to obtain that
there is a constant ¢ > 0 such that for every n € N

2
; =0} N B, 1
¢ < [{w ; o] ][ wdH! gcd][ |Vw; |2 de,
By, | n JOB,, B,

n

which proves that (4.3.68]) holds for a sequence r, — 0. The conclusion follows as in Remark
4318 O

Remark 4.3.22. Let Qy,...,Q, C R? be a family of disjoint energy subsolutions. Then we can
classify the points in R? in three groups, as follows:
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e One-phase points
le{a:E]Rd: 30 > 0s.t. z ¢ OMQ, w;u}.
e Internal double-phase points
Zi = {w ERY: Fi#jst xedMOnoM; Ir>0st |Ba(w) N (U = o} .
e Boundary double-phase points
78 = {x eRY: Fi#jst wed”noMy; |B(x) N (QUQ)| >0, vr> o} .

4.4. Subsolutions for spectral functionals with measure penalization

In this section we investigate the properties of the local subsolutions for functionals of the
form

F(Q) = F()\l(Q), e )\k(Q)) + m|Q,
i.e. we are interested in the quasi-opens sets Q C R? such that

F()\l(Q)7 U] )\k(Q)) + m|Q‘ < F()\l(w)7 R )‘k‘(w)) + m|w|,
(4.4.1)
for every quasi-open w C 2 such that d,(w,) <e,

where m > 0 and € > 0 are constants and f : R¥ — R is a given function. Many of the properties
of the subsolutions {2 for the functionals descrived above are consequences of the results in the
previous sections. Indeed, we have the following:

Theorem 4.4.1. Suppose that Q is a local subsolution, in sense of (4.4.1)), for the functional

where m > 0 and F : R¥ — R is Lipschitz continuous in a neighbourhood of ()\1((2), .. ,)\k(Q)) S
R*. Then § is an energy subsolution.

PROOF. We first note that by Lemma applied for y = Ig and v = 1,,, we can find
constants € > 0 and C' > 0 (depending on d, |Q2| and A\x(2)) such that

Aj(w) = X(Q) < Cdy(Ig, 1,) = 2C(E(w) — E(Q)), Vi=1,...,k. (4.4.2)
Thus, we can choose € > 0 small enough such that
k
F(A(w), - Aw)) = F(M(Q), .., A(Q) <L (Ai(w) = X(Q)
Jj=1 (4.4.3)
< 2LCk(E(w) — E(Q)),

where L is a local Lipschitz constant for f and C is a constant from (4.4.2)). Now since {2 is a
subsoluion for F', we have that it is also an energy subsolution with constant m/(2LCk). O

Corollary 4.4.2. Suppose that Q is a local subsolution, in sense of (4.4.1), for the functional

wherem > 0 and F : RF — R is Lipschitz continuous in a neighbourhood of (A1(£2),..., \e(Q)) €
R*. Then Q is a bounded set of finite perimeter.
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In the case F'(A1,...,Ax) = A1, we can repeat some of the arguments obtaining some more
precise results.

Theorem 4.4.3. Suppose that the quasi-open set Q C R? is a local (for the distance dy) subso-
lution for the functional A\1(2) + m|Q|. Then,

(i) M1(92) < X2(2) and if u is the first eigenfunction on Q, then |\ {u > 0}| =0;
(ii) there are constants ro > 0 and m > 0 such that if x € QM, then for every 0 < r < rg we
have
er < lull oo (B, (2))s (4.4.4)
where u € H} () is the first, normalized in L?, eigenfunction on ;
(iii) Q has finite perimeter and we have the estimate

VMM Q) < A (Q)|Q)V2 (4.4.5)
(iv) § is quasi-connected, i.e. if A;B C Q are two quasi-open sets such that AU B = Q and
cap(AN B) =0, then cap(A) =0 or cap(B) = 0.

PROOF. Let u € H(Q) be a first, normalized in L?((2), eigenfunction on Q. Then {u >

0} CcQ
A({u>0}) = (2 /\Vuﬂ dx,
and so, we must have |\ {u > 0}| = 0. Now if u is another eigenfunction corresponding to A1 (£2)
such that [, utide = 0, then & must change sign on 2 and so, taking u* as first eigenfunction,
we have
A1(Q2) +m|Q] > M ({u > 0}) + m|{u > 0},

which is a contradiction. Thus, we have (7).

In order to prove (ii), we reason as in Lemma and Lemma [4.2.11] Indeed suppose
zg =0, r > 0 and let v be the solution of

—Av =a, v=0on B, and v = ||ul| oo (B,,) O Bay,

where a is a constant to be defined. Then, taking u, = UﬂBgr + (u Av)lp,,, for r > 0 small
enough we have

/Q|Vu|2da:+m|{u>0}\{ur>0}‘§/|Vur!2dx+((/ﬂu?dw>_l—l>/Q|Vur|2dx

/|Vur]2d:v+4>\1(Q)/(u2—u2) dzx,

/|Vurl2dx+0/ u— uy)

where C' is a constant depending only on the dimension d and A;(Q2) (we recall that ||u]je <
Car(Q)¥*, by Corollary [3.4.44). Now using the definition of u, and taking a = C, we have

/ \Vul?dz + m|B, N {u > 0}| S/ \Vo|> = |Vu|? dz + C (u —uy)dz,
By {v<u} {v<u}
S/ Vv-V(v—u)de+C (u—wv)dz,
{v<u} {v<u}

:/ u| Vol dHO < ¢y <7’—|—HUHPO(BQT)>/ wdH
OB, 2r 9B
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where C is a constant depending only on the dimension d and A;(£2). Now, reasoning a in
Lemma by the trace inequality and the boundedness of u, we obtain (7).

In order to prove the bound , we follow the idea from [20]. Let u be the first,
normalized in L?(QQ), eigenfunction on Q. Since A;({u > 0}) = A(Q2), we have that [{u >
0}AQ| = 0. Consider the set Q. = {u > €}. In order to use € to test the (local) subminimality
of 2, we first note that 2. y-converges to 2. Indeed, the family of torsion functions w, of €2 is
decreasing in ¢ and converges in L? to the torsion function w of {u > 0}, as ¢ — 0, since

Al(Q)/(w—wE)udm:/Vw-Vud:n—/ VwE-V(u—5)+d:E:/u—(u—€)+d1:—>0.
Q Q . Q

Now, using (u — &)* € H}(Q:) as a test function for A\ (), we have

Jo IV (u— 5)+]2dx

)\1(Q)+m|Q\ S/\l(QE)-i-m’QE’S f | +|2d —|—m]Q€\
Jo (W =(u—¢)T|?) da
2d A (2 Q)
A e AT
2 [ udz
24 Q)-—J2e Q.
/|V T+ A )1—2€fQudx+m| |

261 (Q)|Q) 12
§/|V(u—s)+|2dac+€l()|+m|ﬁg|.
Q 1—2¢ [qudz

Thus, we obtain
-1
/ [Vul?dz +m|{0 <u < e}| < 25A1(Q)ym1/2(1 - 25/ udac) . (4.4.6)
{0<u<e} Q

The mean quadratic-mean geometric and the Holder inequalities give

1/2
m1/2/ Vuldz < 2m'/? / |Vu|? de {0 <u< 5}’1/2
{0<u<e} {0<u<e}

(4.4.7)

-1

< 25A1(9)|Q|1/2(1 - 25/ udx) .

Q
Using the co-area formula, we obtain
L -1/2 1/2 -1
6/ (0% {u > 1)) dt < m™ 20 ()| (I—Qs/ud:n) : (4.4.8)
0 Q

and so, passing to the limit as € — 0, we obtain (4.4.5|).

Let us now prove (iv). Suppose, by absurd that cap(A) > 0 and cap(B) > 0 and, in
particular, |A| > 0 and |B| > 0. Since cap(ANB) = 0, we have that H}(Q) = H} (A)®H}(B) and
$0, A1(Q2) = min{\;(A), \1(B)}. Without loss of generality, we may suppose that \1(2) = A1 (A4).
Then, we have

A (A) +mlA| < M (A) + m(|A] + |B]) = M(2) + m|Q],

which is a contradiction with the subminimality of (2. O
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Remark 4.4.4. The claim (iv) from Theorem m gives a slightly stronger claim than that
from the point (i) of the same Theorem. Indeed, we have that
cap(©2\ {u > 0}) =0,
where u is the first Dirichlet eigenfunction on 2. We prove this claim in the following Lemma.

Lemma 4.4.5. Suppose that Q C R? is a quasi-open set of finite measure. If Q is quasi-
connected, then A\ () < A2(Q) and Q@ = {u1 > 0}, where uy is the first eigenvalue of the
Dirichlet Laplacian on Q.

ProOF. It is sufficient to prove that if u € H}(€) is a first eigenfunction of the Dirichlet
Laplacian on €, then Q = {u > 0}. Indeed, let w = {u > 0} and consider the torsion functions
w, and wg. We note that, by the weak maximum principle, we have w, < wgq. Setting

A = A\1(2), we have
/)\uwwdx:/Vu-wadx:/udx,
0 Q )

/)\uwgdx:/Vu-Vdex:/udx.
Q) Q Q

/ u(wq — wy,) dx =0, (4.4.9)
Q

and so, wg = w, on w. Consider the sets A = QN {wq = w,} and B = QN {wqg > w,}. By
construction, we have that AU B = Q and AN B = (). Moreover, we observe that A = w # ().
Indeed, one inclusion w C A, follows by , while the other inclusion follows, since by strong
maximum principle for w,, and wq we have the equality

Subtracting, we have

QN{wq = w,} ={wq >0} N{wag =w,} C {wy, >0} =w.
By the quasi-connectedness of 2, we have that B = (). Thus wg = w,, and so, w = Q up to a
set of zero capacity. O
Remark 4.4.6. If Q is a local subsolution for the functional A; +m|-|, then we have the estimate
AL(Q) > cgmiez, (4.4.10)
where ¢4 is a dimensional constant. In fact, by (4.4.5)) and the isoperimetric inequality, we have
M(Q)QY2 > VmP(Q) > cg/m|Q T
and so .
-2
A (Q) > cgv/m|Q| 27 .
By the Faber-Krahn inequality A;(Q)|Q[>/¢ > A1 (B)|B|*?, we obtain

d—2 d—2
_d—2

A(Q) > cav/m (\m%) T > en/m (Al(Q)*lAl(BnBP/d) T > ea/ma(Q)7T
Remark 4.4.7. Even if the subsolutions have some nice qualitative properties, their local
behaviour might be very irregular. In fact, one may construct subsolutions for the first Dirichlet
eigenvalue (and thus, energy subsolutions) with empty interior in sense of the Lebesgue measure,
Le. the set (1) of points of density 1 has empty interior. Consider a bounded quasi-open set D
with empty interior as, for example,

D—(O,l)x(O,l)\(

N

En- (QZZ>> C RZ,
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where {x;};ey = Q and r; is such that

— 1
anp(Bn. (x;)) < +o0 and Zﬂr? <3
1€EN 1€EN

Let ©Q C D be the solution of the problem
min {)\1((2) +1Q:QCD, Q quasi—open}.

Since, €2 is a global minimizer among all sets in D, it is also a subsolution. On the other hand,
D has empty interior and so does 2.

4.5. Subsolutions for functionals depending on potentials and weights

In this subsection, we consider functionals depending on the spectrum of the Schrédinger
operator —A + V for a fixed potential V. Indeed, let F be defined as

F(Q) == F(AV(Q),..., A/ (Q)) —I—/Qh(:c) dz, (4.5.1)

where V : R? — [0, +0c] and h : R? — [0, 4+0c] are given Lebesgue measurable functions and
where we used the notation

M (Q) = M\ (Vdz + 1),
for the kth eigenvalue of the operator —A + (V' + I), associated to the capacitary measure
Vdx 4 Ig. As in the previous sections, we say that €2 is a subsolution for F', if for every quasi-
open set w C Q, we have F(2) < F(w). We note that {2 might have infinite Lebesgue measure
and non-integrable torsion function wq, even if the torsion function of Vdx + I is integrable.

Thus, the natural notion of local subsolution would concern the y-distance between the measures
Vdx + Ig and Vdx + 1.

Definition 4.5.1. Suppose that () is a quasi-open set such that fQ h(z)dz < 400 and such that
the capacitary measure p = Vdx 4+ Iq has integrable torsion function. We say that Q) is a local
subsolution for the functional F, if for every quasi-open w C Q such that (dy(Vdx + 1, Vdx +
Ig) < e, we have F(Q) < F(w).

For Q such that (Vdz + Io) € MZ (R?), we use the notation

E(Q;V) = min {Jv(u) L we HE Q)N Ll(Q)}

1
— Jv(way) =~ [ wayda,
Rd
where
1 1
Jy(u) = / (]VuF + ~u?V — u) dx,
Rd 2 2

and wq v is the minimizer of Jy in Hg () N LY(Q). As in the previous section, we can restrict
our attention from the general functional F to the Dirichlet Energy E(Q;V) with a volume
term. Indeed, we have the following result.

Theorem 4.5.2. Suppose that Q is a local subsolution for the functional F given by (4.5.1),
where the function F : R¥ — R is locally Lipschitz continuous. Then there is m > 0 such that
Q is a local subsolution for the functional E(Q; V) +m [, h(x) d.

PROOF. The claim follows by the same argument as in Theorem O
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We now prove that every local, in capacity, subsolution for the functional E(Q;V) +
m fQ h(z)dz is a bounded set. In order to do that we need to use appropriate perturbations
of ) as for example those from Lemma [4.2.10} On the other hand, using sets obtained by
cutting off balls is rather complicated. In particular, we note that the estimate of the measure
H{wa,y > 0} N B,| is a difficult or impossible task since we have no a priori argument that ex-
cludes the possibility that both V and h are strictly positive on the whole RY. Thus, instead of
using perturbations with small balls, we will just test the subsolution €2 against sets of the form
QN H;, where H; is a half-space. This approach gives weaker results than these from Section
2] but the boundedness still holds.

Lemma 4.5.3. Suppose that Q is a local subsolution for the functional E(; V) +m [, h(x) dz,
where m > 0 and V : R? — [0, +00] and h : R? — [0, +00] are given measurable functions such
that the torsion function wqy of Vdx + Iq is integrable. If h > V=%, for some a € [0,1), then
Q is a bounded set.

PROOF. For each t € R, we set
Hy={zeR?: z; =t}, HY ={zx eRY: z; >t} H ={zeR: z; <t} (45.2)

We prove that there is some ¢ € R such that ]H;r N | = 0. For sake of simplicity, set w := wq
and M = ||w||p=. By Lemma and the subminimality of 2, we have

1 1
/ \Vw]2da:+/ wZVda:—i—/ hdr < V2M wd?-[dl—ir/ w dz, (4.5.3)
2 H:f 2 H H H, H

t t t

for every t € R. By aim to prove that the Lh.s. is grater than a power of fH+ wdz. Indeed, we
t
have

1/p 1/q 1 1
/ wP d < / w?V da / V %z | < / wZVd:H—/ V=dz, (4.5.4)
H HY HY P Jut q Jmt

where p > 1 and ¢ > 1 are such that

Fri=t
w2/P = (w2v)1/p(v—a)1/q7

i.e.
1 1
L )
P q p q
which gives
1 1
- = and N ,
q 14+« p l+a
and so,
waott dr < w*V dx + V™%dz. (4.5.5)

On the other hand, by the Sobolev inequality, we have

d—2

" T ,
wi-2 dx < Cy |Vw|® dx.
Hf Hf
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Thus, we search for g € (0,1), p > 1 and ¢ > 1 such that 1/p+1/¢ =1 and

B 1 1d—2
2a_ P 2d_ a4
/wdaj < / wetl dx /wd2d1‘
Hf Hf Hf
Thus, we have the system
1 1
S+ =1,
p g
1 a2
d )
o " %
l+aps g8 7
which gives
1 (1+a)(d+2) 1 d(l-a 5= d+ 2o
p  2d+1+a)’ g 2(d+1+a) S d+14a

In conclusion, we get

B
</ wd:r) <CVoM | wdHT'+ C/ wdx, (4.5.6)
HY Hy Hf

where C' is a constant depending on « and the dimension d. Setting

¢U%=z%uda

0=~ [ wan,

we have that

and, by , we have
6(t)° < —CV2M/(t) + Co(t),

which gives that ¢ vanishes in a finite time. Repeating this argument in any direction and using
that {w > 0} = Q, we obtain that € is bounded. O

4.6. Subsolutions for spectral functionals with perimeter penalization

In this section we consider subsolutions for functionals of the form
F(Q) = F(A(Q),..., A()) + mP(Q), (4.6.1)

where m > 0, F' : R¥ — R is a given function and P(Q) is the perimeter of the measurable set
Q) in sense of De Giorgi. Since the perimeter is not an increasing functional with respect to the
set inclusion, defining the subsolution using quasi-open or measurable sets is not equivalent. In
this section, we choose to work with measurable sets, since in the shape optimization problems
concerning the perimeter the existence results are easier to state in the class of measurable sets
than in the class of quasi-open sets. Thus, we have

Definition 4.6.1. We say that the measurable set Q) is a local subsoluti0~n ]igr the functional
F, if Q has finite measure and for each measurable w C Q such that d.(Iq,1,) < €, we have
F(Q) < Fw).

As in the previous sections, we have
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Theorem 4.6.2. Suppose that the measurable set  is a local subsolution for the functional F
from ([&.6.1), where F : R¥ — R is locally Lipschitz continuous. Then € is a local subsolution
for the functional E(Q) +mP(Q).

PROOF. See the proof of Theorem [4.4.1 O

As one may expect, all the subsolutions for functionals of the form F, with locally Lipschitz
F, are bounded sets. Indeed, we have the following:

Lemma 4.6.3. Suppose that the measurable set Q C R? is a subsolution for the functional

E(Q)+mP(Q). Then Q is a bounded set.

PROOF. We reason as in Lemma For each t € R, we set
Hi={zeR’: zy=t}, Hf={zeR?: x;1>t}), Hy ={zreR?: 2 <t}. (46.2)
We prove that there is some ¢ € R such that ]H;r N | = 0. For sake of simplicity, set w := wq
and M = ||w||p~. By Lemma and the subminimality of 2, we have

1

/+ \Vw|? dz +m(P(Q H) — HHH, N Q) <V2M [ wdH*! +/ wdz, (4.6.3)
Ht

2 Hy Hy
for every t € R. Using again the boundedness of w, we get
m(P(Q, H") — P(H,", Q) < V2M3*H1IY(H, N Q) + M|Q N Hf|. (4.6.4)
On the other hand, by the isoperimetric inequality, for almost every ¢ we have
QN HF T < CuP(QNHY) = Cy (”Hd‘l(Ht nQ) + PO, Hj)) (4.6.5)
Putting together and we obtain
QN Hf T <0 <7—Ld_1(Ht+ﬂQ) + ]QﬂHj]), (4.6.6)

where C'; is some constant depending on the dimension d, the constant m and the norm M.
Setting ¢(t) = |QNH,"|, we have that ¢(t) — 0 ast — 4oc and ¢/ (t) = —HI¥"1(H;NN). Chosing
T = T(Q) such that

Cio(t) < So(t) T V=T,

N |

equation (4.6.6|) gives
Pt) < —2010(0) " Vi>T,

which implies that ¢(¢) vanishes for some ¢ € R. Repeating this argument in any direction, we
obtain that 2 is bounded. O

4.7. Subsolutions for spectral-energy functionals

In this section we consider subsolutions for the functional, defined on the family of quasi-
open sets in R?,

F(Q) = F(A,u(Q), ..., A u(Q) — Eu(Q), (4.7.1)
where F : R¥ — R is a given function, ; is a capacitary measure such that wy, € Ll(Rd) and we
use the notation

)\k#(Q) = )‘k(ﬂ V IQ).
For f € LP(R?), where p € [2, 00], we set

1 1
EMf(Q)—min{Q/RquFdx—l—2/Rdu2du—/Rdufdx: ueHﬁﬂH&(Q)},
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Le. B, () = —% Jga fwp .0 dz, where wy, ¢ o solves
—Aw + pw = f, weHﬁﬁH&(Q).

For simplicity of the notation, we set £,(Q2) := E,, 1(Q).
Since the above functionals are defined with respect to the measure p, without any restriction
on the quasi-open sets €, the definition of local subsolution depends on the measure p.

Definition 4.7.1. We say that the quasi-open set @ C R? is a local subsolution for the functional

F and the measure p € Mg;p(Rd), if for every quasi-open set w C Q such that d.(uV I, pV Iq),

we have F () < F(w).

Theorem 4.7.2. Suppose that i is a capacitary measure such that w, € L'(RY) and let Q C R?
be a quasi-open set, local subsolution for F as in with respect to p. If F : RF — R is
locally Lipschitz, then §) is a local subsolution for the functional E,, ;(2)—E,(Q2), where f = cw,,
for some constant ¢ > 0 depending on p and k.

PRrROOF. The claim follows from Lemma by the argument as in Theorem [4.4.1 g

In the rest of this subsection we prove that the local subsolutions for the functionals of
the form (4.7.1]) are bounded sets. We need the following comparison principle ”at infinity” for
solutions of PDEs involving capacitary measures.

Lemma 4.7.3. Consider a capacitary measure of finite torsion pu € MZL_(R?). Suppose that

cap
U € H}L is a solution of

—Au+ pu = f, UGHEL,

where f € LY(R?) N L¥(RY) and lim, o0 f(z) = 0. Then, there is some R > 0, large enough,
such that u < w, on R?\ Bpg.

PROOF. Set v = u — w,. We will prove that the set {v > 0} is bounded. Taking v™ instead
of v and pV Iy,~0) instead of p, we note that it is sufficient to restrict our attention to the case
v >0 on R?. We will prove the Lemma in four steps.

Step 1. There are constants Ry > 0, Cq > 0 and § > 0 such that

1
1+5
</dv2<p2(1+5)> < Cd/d Volvide, Vo e Wy (BS,). (4.7.2)
R R
For any ¢ € W1(R%), we have that ve? € H }L and so we may use it as a test function in
—Av+pv=f—1, UEH;,

obtaining the identity

/ IV (pv)|? dz +/ v du = / |Vo|?v? da —|—/ vp?(f — 1) dx, Vo € WHe(R?).
Ré Rd R4 R4
(4.7.3)
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Let Ry > 0 be large enough such that 1 — f > ﬁ. Then for any ¢ € Wol’oo(]Rd \ Bg,), we use
the Holder, Young and the Sobolev’s inequalities together with (4.7.3|) to obtain

di2 d—2 4
g 2448 d+4 2d d+4 9 d+4
v a2 dx < (pv)a-2 dz ve” dx
R4 R4 R4
d R
2d
< — a2 ( — 2d
< gya (L®e) T [t

<ci( [ eoPast [ v pas)

< Cd/ Ve|?v? da,
R4

(4.7.4)

where Cy is a dimensional constant.

Step 2. There is some Ry > 0 such that the function M (r) := ][ v2 dHIY is decreasing
0B,
and conver on the interval (Ri,+00). We first note that, for R > 0 large enough, Av >

1 — f)Xgos0r > 0 as an element of H~'(B%). Since A(v?) = 2vAv + 2|Vv|?, we get that the
{v>0} R

2

function U := v? is subharmonic on R?\ Br. Now, the formal derivation of the mean M gives

M'(r) = ][ v-VUdH !,
0B

where v, is the external normal to OB,. Let R; > 0 be such that 1 > f on R? \ Bg,. Then for
any Ry <r < R < 400 we have

desa (RO M (R) = v 1M (1)) = /

OBr

= / AU dx > 0.
BRQ\BRl

If we have that M'(r) > 0 for some r > Ry, then M'(R) > 0 for each R > r and so M is
increasing on [r,+00), which is a contradiction with the fact that v (and so, M) vanishes at
infinity. Thus, M'(r) < 0, for all r € (Ry, +00) and so for every Ry < r < R < +00, we have

vR - VU dHI! — / vy - VU dH?
0B,

RT™Y(M'(R) — M'(r)) > R*'M'(R) — v~ ' M'(r) > 0,

which proves that M’(r) is also increasing.

Step 3. There are constants Ry >0, C >0 and 0 < § < 1/(d — 1) such that the mean value
function M (r) satisfies the differential inequality

M(r) < C(rIM' ()] + M) T oM ()55, v € (Ra, +00). (475)

We first test the inequality (4.7.2) with radial functions of the form ¢(x) = ¢(|z|), where

o(r) =0, for r <R, o(r) = Ts(_R])%’ for R<r < R+e(R), o(r)=1, forr > R+ ¢(R),
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y b

e(R)

M®R |

M(r)

—

R R+e(R) r

FIGURE 4.1. We estimate the integral f}?JrE(R) M(r)dr by the area of the rec-
tangle on the right, while for the integral |’ 1;:( R) M (r) dr is bounded from below
by the area of the triangle on the right.

where R > 0 is large enough and £(R) > 0 is a given constant. As a consequence, we obtain

oo T+ R+e(R)
< / r 1M (r) dr) < Cae(R)™? / M (r) dr. (4.7.6)

R+e(R) R

By Step 2, we have that for R large enough:

e M is monotone, i.e. M(r) < M(R) for r > R;
e M is convex M(r) > M'(R)(r — R) + M(R) for r > R.

We now consider take e(R) = %%, i.e. 2e(R) is exactly the distance between (R,0) and
)

the intersection point of the z-axis with the line tangent to the graph of M in (R, M(
Figure [.1)). With this choice of £(R) we estimate both sides of (4.7.6]), obtaining

) (see

(R+e(R))TT (iM(R)a(m) ViR R TR IM(R),  (47T)

. . . . 1 M(R .
which, after substituting e(R) with §|M,7(R))‘ gives (4.7.5]).
Step 4. Each non-negative (differentiable a.e.) function M (r), which vanishes at infinity
and satisfies the inequality (4.7.5)) for some 6 > 0 small enough, has compact support.

Let r € (Rg,+00), where Ry is as in Step 3. We have two cases:

(d—1)8

(a) If 7|M'(r)] > M(r), then M(r) < Cyir |M/(r)|1+g;

(d—1)3
(0) It |M'(F)) < M(r), then M(r) < ColM'(r)['*3(1-5™)
Choosing § small enough, we get that in both cases M satisfies the differential inequality

M(r)'=% < —Cro2 M (r), (4.7.8)
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for appropriate constants C' > 0 and 0 < d1,d2 < 1. After integration, we have
' — "l > M ()% (4.7.9)
for some constants C’, C” > 0, which concludes the proof. O

Below, we give an alternative and shorter proof of Lemma which uses the notion of a
viscosity solution.

ALTERNATIVE PROOF OF LEMMA [L.7.3] Set v = u—w,. We will prove that the set {v > 0}
is bounded. Taking v* instead of v and u V I1,~0y instead of u, we note that it is sufficient to
restrict our attention to the case v > 0 on R%. We now prove that if v € H'(R?) is a nonnegative
function such that

—Av+pw=f—1, veH,, (4.7.10)

where p € Mg;p(Rd), f € L®(R%) and limy| o0 f(x) = 0, then {v > 0} is bounded.

We first prove that there is some Ry > 0 large enough such that the function v satisfies
the inequality Av > 1/2 on R?\ Bpg, in viscosity sense, i.e. for each x € R?\ By, and each
@ € O®(RY), satisfying v < ¢ and ¢(x) = v(x), we have that Ap(z) > 1/2.

Suppose that ¢ € C>®(R%) is such that v < ¢, () = v(z) and Ap(z) < 1/2 —e. By
modifying ¢ and considering £/2 instead of €, we may suppose that, for 6 > 0 small enough,
{v+0> ¢} C By, and Ap < 1/2—¢ on the set {v 4 > ¢}. Now taking (v — ¢+ 0)* € H},
as a test function in , we get that

/(f—l)(v—gp—i—é)"‘dx: Vv-V(v—go—f—é)"‘dm—k/ v(v—@+8)Tdu
Rd

R4 R4

> Vo -V(—p+0)"de
Rd

= —/]Rd(v—g0+5)+A<pd:E

> (_;+6>/Rd(v_¢+6)+d$’

which gives a contradiction, once we choose Ry > 0 large enough such that f < 1/4 on R%\ B R -
For r € (Ry, +00), we consider the function M(r) = supyg v. Then M : (Rp,+00) — R
satisfies the inequality
d—1
r

1
M"(r) + M'(r) > 2’ in viscosity sense. (4.7.11)

Indeed, let r € (Rp, +00) and ¢ € C*°(R) be such that ¢(r) = M(r) and ¢ > M. Then, taking
a point xg € 0B, such that v(x) = M (r) (which exists due to the upper semi-continuity of v)
and the function ¢(z) := ¢(|x|), we have that ¢ € C®(R?), o(zo) = v(r) and ¢ > v, which
implies Ag > 1/2 and so holds.

There is a constant g9 > 0, depending on Ry, the dimension d and ||v]/~, such that the
function ¢ € C*°(R), which solves
; d—1 1
¢(r) +——d(r) =3, d(R) = ¢(Bo+e0) = 2||v]l, (4.7.12)
changes sign on the interval (Rg, Ry + £9). We set

to=sup{t:{M>g¢+1t}#0}>0.
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Since M is upper semi-continuous, there is some r € (Ro, Ry + o) such that M(r) = ¢(r) + to
and M < ¢ + tg, which is a contradiction with (4.7.11]). O

In order to prove the boundedness of the local subsolutions for functionals of the form
E; — Eq, we will need the notion of (A — p)-harmonic function.

Definition 4.7.4. Let u be a capacitary measure on R? such that wy, € L'(R%) and let Bg C R?
be a given ball. For every u € Hi we will denote with h, the solution of the problem

min{/ ]Vv]zdx—i—/ v? dp : UGH;, u—veHé(BR)}. (4.7.13)
(8 BR
We will refer to hy, as the (A — wp)-harmonic function on Br with boundary data u on OBR.

Remark 4.7.5. Properties of the (A — p)-harmonic functions.

e (Uniqueness). By the strict convexity of the functional in (4.7.13]), we have that the
problem (4.7.13)) has a unique minimizer, i.e. h,, is uniquely determined;

o (First variation). Calculating the first variation of the functional from (4.7.13)), we
have

Vhy - Vi dz +/ hapdp=0, Wy e H:nHE(BR), (4.7.14)
Rd Rd

and conversely, if the function h, € H}L satisfies (4.7.14]), then it minimizes (4.7.13));
e (Comparison principle). If u,w € H }L are two functions such that w > v on 0Bpg, then

hy < hy. Indeed, using h, V hy, € H EL and hy, Ahy, € H i to test the minimality of Ay,
and h,, respectively, we get

/ th|2d:n+/ hid#:/ |Vhw|2dx+/ h2 dy,
{hu>hw} {hU>hw} {hU>hw} {hU>hw}
which implies that h,, A h, is also minimizer of (4.7.13)) and so, hy A by = hy.

Lemma 4.7.6. Suppose that pu is a capacitary measure such that w, € L' (RY) and let the quasi-
open set @ C R be a local subsolution for the functional E, (2) — E, (), where f is a bounded
measurable function converging to zero at infinity, i.e. limp_ o0 ”fHLoo(B}:%) = 0. Then Q is

bounded.

ProoOF. Without loss of generality, we may suppose that y > Iq. Let, for generic quasi-open
set w C RY, R, : L®(R%) — L'(RY) be the operator that associates to a function f € L>(R%)
the solution w,, r.,. The subminimality of ) with respect to w C

Eu(Q) = Eu(Q) < By (W) = Eu(w),

can be stated in terms of Rq and R, as follows:
[ (Bav) = fRa(P) ds < [ (Ru() - FR(1) do. (4.7.15)
Ré Rd

Moreover, by considering f/2 instead of f, we can suppose that the above inequality is strict,
when w # (.
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We now show that choosing w = 2 N Bp, for some R large enough, we can obtain equality

in . Indeed, we have
0> [ (Ra(l) = Ro(1)) = F(Ralf) = Rol)) do

> [ (Ro(®) = R0) = (Rallfllf) = Rl ) do
- /B (Ra(1) — Ru(1)) — (Ralllfloef) — Rulllfllsef)) de

+/ (Ra(1) — Ra(||flloof)) dz
-

> / (Ra(1) = Ru(1)) = (Ra(| fllsof) — Bulllllsef)) da,
Br

where the last inequality holds for R > 0 large enough and is due to Lemma We now set
for simplicity w,u € H ; to be respectively the solutions of
—Aw+ pw =1 and — Au+ pu = || fllo f-

Thus, the functions

hw = Ro(1) — Ry(1) GH,LIL and hu = Ro(|[ flleof) — Ru(lflloc ),

are (A — p)-harmonic on the ball Br. By the comparison principle, since w > u on dBpg, we
have that hy,, > h, in Bgr. Thus, for R large enough and w = Q2 N Br, we have an equality in
(4.7.15)) which gives that Q@ = Q N Br and so 2 is bounded. O

Corollary 4.7.7. Suppose that p is a capacitary measure such that w,, € L' (RY) and let Q c R?
be a quasi-open set, local subsolution for F as in ([@.7.1) with respect to p. If F : R¥ — R is
locally Lipschitz, then € is a bounded set.

ProOOF. In view of Theorem and Lemma we have only to note that w,(z) — 0
as |z| — +oo. This fact was proved in [22] (see also [15] for a more precise account on the decay
of w,) and we reproduce here the argument for the sake of completeness. Suppose, by absurd
that there is some 6 > 0 and a sequence z,, € R? such that |z,| — oo and wy(x,) > 6. Up to
extracting a subsequence, we can suppose that |z, — x,,| > 24, for each pair of indices n # m.

62 — |z — zn)?
a 2d

(52
n) - a7 < d ’
wulen) = 5 = ]{95<wn>w“ ’

and so, considering § < 1, we obtain

0
—|Bs| < / wy dz, Vn € N,
2

Bs(zn)

Since the function w,(x) is subharmonic, we have that

which is a contradiction with the integrability of w,,. |



CHAPTER 5

Shape supersolutions and quasi-minimizers

5.1. Introduction and motivation

In this chapter we consider measurable sets © C R?, which are optimal for some given shape
functional F, with respect to external perturbations, i.e.

F(Q) < F(Q), for every measurable set Q' D Q. (5.1.1)

As in the previous chapter, we will try to recover some information on the set 2 starting
from ([5.1.1]).

We start by a few examples which will help us establish some intuition on what to expect
from the subsolutions of the energy and spectral functionals. To deal with these examples, we
consider the following classical Lemma due to Alt and Caffarelli.

Lemma 5.1.1. Suppose that D C R? is a given open set and that u € H& (D) is a non-negative
function such that

/ Va2 dz + m|{u > 0}] < / Voldz+ml{v> 0}, VoeHVD), v>u, (51.2)
D D

for some m > 0. Then the set Q = {u > 0} is open. Moreover, if there is some f € L>*(D)
such that
—Au=f, u € H(Q),

then u is locally Lipschitz continuous in D.

PROOF. Let B,(xg) C D be a given ball. Without loss of generality we can suppose that
xo = 0. Let v € H'(B,) solve the problem

min{/ |Vo|*dx: v € HY(B,), v>wuin B,, v=uon 837}.
Rd
Setting & = 1p,v + 1peu € HJ(D) and using (5.1.2)), we have

ml{u> 0} U By| — m|{u > 0} 2/ Vu|2dx—/ Vil dz
R R4
(5.1.3)

2
Cd 1 d—1
> — = BT d )
> Bt =002 (g7 [, v

where ¢q is a dimensional constant and the last inequality is due to (4.3.72]) from Lemma |4.3.20
Thus, we have that |B, N {u = 0}| > 0 implies

][ uwdH < mCyr, (5.1.4)
0B

and so, after integration
][ udr < mCyr, (5.1.5)
B

147
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where Cy is a dimensional constant. We now recall that for quasi-every zg € R%, we have

= i
u(zo) 50+ | By B (20)

Setting u = 0 on the set, where (5.1.6) does not hold, we have that for each zy € {u > 0}
(5.1.6) holds. Now if u(zg) > 0, then for some r > 0 small enough (5.1.5) does not hold and so
|Br(0) N {u = 0}| = 0. Now for v € H*(B,(x)) as above, we have

0 :/ |Vu|2 dac—/ |Vv|2d:E :/ \V(U—U)Pdiﬂa
B (z0) B (z0) Br (o)

and so u = v onB,(x). Since v is superharmonic, we obtain that u > 0 on B,(zg) which gives
that €2 is open.

We now set Dg := {x € D : dist(z,0D) > R}. For fixed R > 0, we prove that |Vul| €
L*°(Dpg). Suppose that xop € Dr N Q. If dist(xo, 0Q) > R/4, then by the gradient estimate (see

Lemma [5.2.3]), we have

Cq
V()] < Ca(l + B)||flloo + —2 / wd.
Rd+1 BR(xo)

udx. (5.1.6)

If dist(xg, 0f2) < R/4, then let r = dist(xp, ) = |xo — y|, for some y € I€. Again by the
gradient estimate

Cq
’VU(:L’()N < Cd(l +T2)”fHoo + T‘dH/B ( )uda:
r(Z0

Cq
< Ca(1+ 1) flloo + —pi7 uda
Td+1 B2’V‘(y)

< Ca(L+72)|| flloo + Cam,
which concludes the proof. O

Remark 5.1.2. We note that if D = R, then we have that u is Lipschitz continuous on the
whole RY.

We start with an example where this notion plays a fundamental role. For f € LP(R%), we
recall the notation

1
Jr () = / Vu|2dx—/ uf dz, (5.1.7)
2 Jpad R
for the functional J; : H'(RY) N LY (RY) — R. If p € [2,+00] and |Q| < 400, we define the
energy Ey(12) as

. 1
E¢(Q) = uer}r}gr(lg) Jp(u) = —3 /]Rd wyof dz, (5.1.8)

where wy o is the solution of
—Awpo=f,  wpo € Hy(Q),
which in the case f = 1 we denote with wgq.

Proposition 5.1.3. Suppose that D C R? is a given open set and that the quasi-open set Q C R?
s a solution of the problem

min {Ef(fl) +10/: QcQcD, Q quasz'—open}, (5.1.9)

where f € L®(R%) N L2(RY) is a given nonnegative function. Then Q is an open set and the
function wyq is locally Lipschitz continuous on D.
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Proor. We set for simplicity that w := wy o and we will prove that w satisfies the conditions
of Lemma Let v € H}(D) be such that v > w. Then, we have

1
2/ ]Vw|2d:6—/wfda:+|{w>0}|:Ef(Q)+\Q]
D D

< Er({v > 0}) + [{v > 0}

1
2/ |Vv|2dm—/vfd:c+|{v>0}|
D D

1

/ \Vo|? da —/ wfdx+ [{v> 0},

2Jp D

which finally gives (5.1.2]). O

Proposition 5.1.4. Suppose that D C R? is a given open set and that the quasi-open set  C R?
is a solution of the problem

IN

IN

min {)\1(@) +1Q: QcQcD, Q quasi—open}. (5.1.10)

Then € is an open set and the first eigenfunction u € HY(Q) is locally Lipschitz continuous on
D.

ProOOF. We suppose that u is non-negative and normalized in L?. We note that we have
Q = {u > 0}. Let v € H}(D) be such that v > u. Then, we have

/ Vul2de + [{u > 0} = A (Q) + Q]
D

< Ai({v > 0}) + {v > 0}
[ [Vv|? dx
= I}D v2dx

< / Vol2de + |{v > 0},
D

which gives ([5.1.2]). O

Remark 5.1.5. We note that in the propositions and we used only the optimality
of Q with respect to perturbations of the form Q = QU B, (z0). Thus, the same result holds for
quasi-open sets €, which are supersolutions for E;(2) + |Q| and are such that {w;q > 0} = €.
We also note that this last equality, which is trivial if {2 is open, might need special attention if
Q) is only quasi-open. In fact on quasi-open sets the strong maximum principle is known to hold
only for functions f uniformly bounded from below by a positive constant on 2.

+ [{v > 0}

Remark 5.1.6. We note that in the proofs of Proposition [5.1.3] and Proposition we used
the following two facts:

e The functionals Ef + |- | and Ay + | - | are energy functional, i.e. they can be written
as minima of functionals on H}(D). For example, the optimal set ) is given by Q =
{w # 0}, where w solves the variational problem

min{;/Rd|Vw\2d:v—/Rdwfdx+|{w7é()}\: we o &), (5.1.11)

Thus, we can restrict our attention to the functional space H{ (D) instead to the family
of quasi-open sets. We note also that this is not a property that all functionals have. The
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Dirichlet eigenvalues, for example, are defined through a min-max procedure, involving
a whole k-dimensional subspace of H'(RY). This fact considerably complicates the
analysis and will be one of the central arguments of this chapter.

e The second fact that was fundamental for our argument was the positivity of the state
functions w and u. In fact, we were not able to reproduce Lemma in the case
when u changes sign. This obstacle was overcome by Briancon, Hayouni and Pierre
in [I7]. We will reproduce their proof in Section introducing the framework of
quasi-minimizers.

In what follows we obtain the results from Propositions and for various functionals
of spectral or energy type with penalizations with measure or perimeter. Of main interest will
be the case when D = R?, in which we expect the state functions to be globally Lipschitz.

5.2. Preliminary results

In this section we threat some preliminary results, which are crucial in the study of the
regularity of the supersolutions. The results from Subsection are mainly from [17], while
the gradient estimate is classical and we report it here for convenience of the reader.

5.2.1. Pointwise definition of the solutions of PDEs on quasi-open sets. Let f €
L? (]Rd) and let 2 be a quasi-open set of finite measure. Consider the solution u of the equation

—Au=f, ucH}). (5.2.1)

Then the positive and the negative part uy = max{u,0} and u_ = max{—u,0} are solutions
respectively of the equations

—Auy = f, uy € Hy({u>0}), and —Au_=—f, u_€Hj({u<0}). (5.22)

Thus, by Lemma the operators
Aug+ f:H R SR  and  Au_ — f: H(RY) =R,
are positive and correspond to a Radon capacitary measures, which we denote with
w1 = Auy + f and po = Au_ — f.
Moreover, if f € LP(R?) for some p € (d/2, 4+0oc], then:
(1) By Lemma u € L>®(R?) and

Cd 2/d—
< __ 4 0|2/d=1/p
ko < 577 111219

(2) By Theorem [3.4.22] every point 2 € R? is a Lebesgue point for u,, u_ and u.

us(z) = lim uy dH! and u—(z) = lim u_ dHIL
r—0 9B, (x) r—0 9B, (z)

5.2.2. Gradient estimate for Sobolev functions with L*>° Laplacian.

Lemma 5.2.1. Suppose that u is a bounded harmonic function on the ball B, C R%. Then, we

have that
2d

IVull Lo (s, o) < —llull oo (s,)- (5.2.3)
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0
PROOF. Let us set u; := a—u Then u; is harmonic in B, and so the mean value property
7
holds for any = € B, : '
24 2
ui(z) = ][ ui(y) dy = d/ uv dH < | poo ) (5.2.4)
BT/Z(I) war aBr/Z(x r

U
Lemma 5.2.2. (sece [74, Chapter 9]) Consider the function T : R? x R? — R defined as

1 .
o -loglz—yl, ifd=2, .
T,Y) = 1 o g 2.
—_— | — d> 2.

Let f € L>®(B;) and let u : B, — R be defined as

u(z) = / P(x.y)f(y) dy. (5.2.6)

T

Then, we have that:

(a) v € H*(B,) and Au = f almost everywhere in B,

(b) u € CH2, for any o € (0,1),

(¢) llullpe(s,) < CorllfllLe(s,)

(d) Vullro(s,) < C1||fl|Loo(B,), where Co and Cy are constants depending only on the dimen-
ston d.

Lemma 5.2.3. Suppose that uw € H(B,.) is such that —Au = f in the ball B, for some function
f € L*(B,). Then we have the estimate
2d
IVullLee (s, ) < Call fllzee (s, + —llull oo s,). (5.2.7)

PROOF. Let uy be the Newton potential from Lemma [5.2.2] and let up, = u — un. Then uy,
is harmonic in B, and we have

IVull oo, ) < [Vunllze(s,,,) + IVunllL=(s, )
< il + 2 unll oo
< Ol it + el + (s,
< (1 + 24C0)| Loy + el
where Cy and C are the constants from Lemma g

Corollary 5.2.4. Suppose that Q C R? is an open set and suppose that u € H}(Q) is a non-
negative function satisfying

—Au + f, u € Hi(Q),
where f € L®°(RY). Suppose that there are constants C > 0 and rg > 0 such that

][ uwdr < Cr, Vrg € 00, VO < r <rg.
BT(IO)

Then w is Lipschitz continuous on R%. In particular, on the set

Q= {z€Q: dist(z,00)} < ro/4,
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we have the estimate

IVullz(o) < Ca((1+ )1l +C)-

Proor. We will prove that |Vu| € L>(Q). We first note that for every 2o € R? and every
r > 0, we have

r2 1
Ul Lo (Bo(z0) < == flloo + 5 udz. v
[ull oo (B, (20)) 2d” I |Br| J By (20) ( |

Indeed, since Au + || f]loo > 0 on R, we have that the function u(x) — || f||oo a7t 7"(” 21l s sub-
harmonic for every x; € Br(xo), and so

1 r? 1
B - udx ﬁHfHOO—}—— udx.
r r{Z1

flloo +
H|| EAR/

u@) < 2d
Suppose now that z¢ € Q. If dist(zg, Q) > ro/4, then by Lemma we have
Vul(@o) < a1l flloo + 75 Nl o (5, oo )

< o+ e+

< Ca((L+ D)l fllos +75"
If r == dist(zo, 02) < 19/4, we set y € 0N to be such that |y — x| = r and thus we have
Vul(@o) < Ca(llFlloe + 7l (5, 000

< Cyl( +7‘0 Hf\|oo+r_d_1/ udx)
1"/2(10)

(0
Cd( + 7o) flloo + 77 dl/BT(y)udx>
(0

< Ca(@+ 1)l fllo +C).

O

5.2.3. Monotonicity formula. In this last preliminary subsection we recall the Caffarelli-
Jerison-Kénig monotonicity formula in the case —Au = f.

Theorem 5.2.5. Let Q C R be a quasi-open set of finite measure, f € L®(Q) and v € H'(By)
be the solution in Q) of the equation

— Au = f, u € H}(Q). (5.2.9)

Setting ut = sup{u,0} and u~ = sup{—wu, 0}, there is a dimensional constant Cy such that for
each 0 <r <1/2

L[ Vet ()P L[ Ve (2) 2 2

d
where Cr, = Cy|| f||% ( + 19| +4>
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PrOOF. We apply Theorem to
ur = | fllsw™  and o wp = fIKT,
and substituting in (4.3.23]) we obtain the first inequality in (5.2.10). The second one follows,
using the equation ([5.2.9):
lullZ2 < Cal Q| VulF2 = C’dIQIQ/d/qudfv < Cal QP f ool - (5.2.11)

g

5.3. Lipschitz continuity of energy quasi-minimizers

In this section we study the properties of the local quasi-minimizers the Dirichlet integral.
More precisely, let f € L?(R?) and let u € H(R?) satisfy

—Au=f weaklyin H}({u #0}). (5.3.1)

Definition 5.3.1. We say that u is a quasi-minimizer for the functional

1
J¢(u) == 2/Rd |Vu|? de — /Rd uf dx, (5.3.2)

if there is a positive constant C such that for every v € HY(R?), for which v = v in R?\ B,(x0),
we have

Ji(u) < Jp(v) + Cre. (5.3.3)

Definition 5.3.2. We say that u is a local quasi-minimizer, if there are positive constants «
and ro such that for each ball B,(xo), of radius less than o, and each v € HY(R?), such that
u :fq;dm RY\ B,.(x9) and fBr(xo) IV(u —v)|?dx < «, we have that the inequality (5.3.3) is
satisfied.

Remark 5.3.3. The local quasi-minimality condition is equivalent to suppose that for every
ball B,(x), of radius smaller than 7o, and every ¢ € HE (B, (x0)), such that [ |Ve|?dz < a, we
have

1
KAu+ﬁwH§2A* Vel e+ O (5.3.4)
r(Zo

Moreover, if for some constant C' > 0 u satisfies

<Au+ﬂw>sc(/‘ \vwﬁm+wﬁ, (5.3.5)
By (zo)

for r and ¢, as above, then setting @ = (2C)~ 1y, we have that u satisfies (5.3.4) and so, is a
quasi-minimizer.

Remark 5.3.4. Let v € H}(B,(x)). Testing (5.3.4) with ¢ := rd/2HV1pH221¢, we obtain that
the quasi-minimality of u gives

x0)

1/2
(Au+ f,9)] < CrY/? (/( \V¢\2dx> : (5.3.6)
Br

Moreover, by the mean geometric-mean quadratic inequality, we have that condition ([5.3.6) is
equivalent to the quasi-minimality of u.
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Remark 5.3.5. If f € L>®(R?%) and the support  is of finite Lebesgue measure, then the
quasi-minimality of u with respect to J is equivalent to the quasi-minimality of u with respect
to the Dirichlet integral

Jo(u) = /Rd |Vu|? da.

In what follows we prove a Theorem concerning the Lipschitz continuity of the local quasi-
minimizers. This result is a consequence of the techniques introduced by Briancon, Hayouni and
Pierre [17].

Theorem 5.3.6. Let Q C R? be a measurable set of finite measure, f € L°°(Q) and the function

u € HY(Q) which satisfies the following conditions:

(a) —=Au = f in [H}(Q)]';

(b) w is a local quasi-minimizer for J, i.e. there are constants ro < 1 and Cy such that for every
v € R every 0 < r < rg and every p € H}(B,(x)) we have

(Au+ ) < CollVepll 2] Br| /2. (5.3.7)

Then u is Lipschitz continuous on R? and the Lipschitz constant depends on d, ||f|lco, ||, Cs
and rg.
In particular, Alu| is a measure such that for every x where u vanishes

|Alu||(Br(z)) < Crt, (5.3.8)
where the constant C' depends on d, || f|loo, || and Cy (but not on rg).
Above, a precise account on the Lipschitz constant of w is

Ik

d+4
lullzip < Ca (14 1945 + Co+ == ) flle-

o
One can observe that condition (b) is also necessary for the Lipschitz continuity of w. In fact, it
expresses in a weak form the boundedness of the gradient of u.

The proof of this theorem is implicitly contained in [17, Theorem 3.1]. Before we proceed
with the proof, we prove the following result in the special case when u is an eigenfunction for
the Dirichlet Laplacian on 2.

Theorem 5.~3.7. Under the hypotheses of Theorem|[5.5.0, assume that u is a normalized eigen-
function on HE(Q) (i.e. there exists A > 0 such that f = M and [u?dx = 1) satisfying condition
(a) and (b). Then, the Lipschitz constant is independent of rg.

ProOOF. We recall that we have the inequality
[ ul g < 2294, (5.3.9)

From Theorem with f = Au, we have that v is Lipschitz continuous. We shall prove that
the Lipschitz constant is independent on 9. Let = {u # 0}, which is an open set. Let x be
such that d(z, Q°) < min{ry/3,1} and let y € 092 such that R, := d(z,Q°) = |x —y|. By Lemma
0. 2.9
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2d
[Vu(z)] < CyAullL + F||“||LM(BR$(x))
ui
2d
< CaM||ul| L + R*||U||Loo(BQRm(y)) (5.3.10)
T

C
< (Ca+ Ro)Allull e + 2 ][ | dH,
Ry 0B3gr, (v)

The last inequality comes from the estimate on Bag, (y) of the subharmonic function

(3R.)* |-
lu| — T)‘Hu”om defined on Bsg, (y) (see Lemma |5.2.3)). Hence
Cd 3R; d

V(@) < (Ca+ Re)MullL + R/ s |Alul[(Bs(y)) ds

@ Jo (5.3.11)
< (Cd + Rx))\HUHLoo + 3CyC,
where C is the constant from ([5.3.8]).
Consider the function P € C*°(Q2) defined by

P = |Vul® + M? — 20%|Ju| L wg, (5.3.12)

where wg 18 the solution of
~Awg =1,  wg € HHQ).
We have that
AP = (2[Hess(u)]*> — 2A\|Vul?) + (2| Vul? — 22%u?) + 2X%||u]|Z, > 0. (5.3.13)

Thus, we have that
sup P < sup P,
Q €Q,d(z,00)<ro/3

and so, using (|5.3.44]), we obtain
IVal2, < 22%jul% Jwg loe + 27lul%, + ((Ca+ DAllull = +3CC)™. (5.3.14)

Now the conclusion follows by (5.3.9) and the estimate [[wg|oco < CylQ¥/.

Remark 5.3.8. Notice that the Lipschitz norm of u depends ultimately on d, |©2| and A.

For the proof of Theorem we will need two preliminary results (Lemma and
Lemma [5.3.10) from [17] (see also [76]). We reproduce here the detailed proofs for sake of
completeness.

Lemma 5.3.9. Suppose that u satisfies the conditions (a) and (b) from Theorem[5.3.6, Then
U 18 continuous.

PROOF. Let z,, — 7o, € R? and set 0, := |2, —Too|. If for some n, |B(zo0, 8,)N{u = 0}| =0,
then —Au = f in B(zs, d,) and so u is continuous in Z.
Assume now that for all n, |B(2eo,d,) N {u = 0}| # 0 and consider the function u,, : R — R
defined by up,(§) = u(rso + 0,€). Since |upllo = ||t]lco, for any n, we can assume, up to a
subsequence, that u,, converges weakly-* in L> to some function u., € L>®°(R%).
If we prove that use = 0 and that u, — ue uniformly on By, then we would have that u is
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continuous and u(Ts) = 0.
Step 1. us s a constant.
For all R > 1 and n € N, we introduce the function vg, such thay:

{ 7AUR,7L = fa in BR5n (xoo)a

(5.3.15)
Vpn =u, on J0Bgs, (Tso).

Setting v, (§) = VRn(Too + 0n&), we have that

/ |V (up, — vn)|2d§ = 5,21d/ |V (u — va)\zd:c
Bgr

B(mmyRén)

= 6%_d/ Vu-V(u—vpy)de — (5721_‘1/ fu—vgy)de
B(Zoo,R0n) B(2oo,R0n)

(5.3.16)
1/2
< o2 ( / V(u— vR,n)Fdx) RAY/259/2
B(2oo,R0n)
1/2
< CyRY%5, </ |V (ty, — vn)\2d§> :
Br
and thus, for §, < rg, we have
/ IV (1, — v)|2dE < CZRS2, (5.3.17)
Bgr

where C}, is the constant from (5.3.7). In particular, u, — v, — 0 in H!(Bg) for any R > 1. On
the other hand, we have that

_A n:52 I i B )
{ on=0nf, in Br (5.3.18)

vp < ||uf|loo, on OBRg.

Thus, v, are equi-bounded (by the maximum principle) and equi-continuous (by Lemma
on the ball Bg/, and so, the sequence vy, uniformly converges to some function which is harmonic
on Bg/p. By the uniqueness of the weak-+ limit in L°°, we have that this function is precisely
L. Thus, ue is a harmonic function on each B/, and so, on R?. Since it is bounded, it is a
constant.

Step 2. Uy — uoo in HY (RY).

In fact, for the functions v, = v, — U, We have that

{ — AT, = 62f, in Bg,

_ (5.3.19)
U < 2||u||oo, on OBg,

and v, — 0 uniformly on Bg/;. By Remark we have that ||V5n\|Loo(BR/4) — 0 and so,
Vp — Uso 1N Hl(BR/4) and the same holds for w,,.

Step 3. If use > 0, then u, — 0 uniformly on balls.
Since on {u, < 0}, the equality —Aw, = —&2f holds, we have that —Au, < —62fIf, <o} <
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62|f| on R%. Thus, it is enough to prove that for each R > 1, @, — 0 uniformly on Bp /2, Where

{—anéilﬂ, in B, (5.3.20)

Unp =u,, on JdBpg.

Since u,, — 0 in H'(Bg), we have that / U, dH" — 0. Writing @, = @, + Uy, where
OBRr

Wyn, € HY(BR), —Aw, = 62|f| and 1y, is the harmonic function on Bg with boundary values

equal to u,, we have the thesis of Step 3.

Step 4. uoo =0
Suppose that us > 0. Let y, = Too + 0p&n, where &, € Bi, be such that u(y,) = 0. For each
s > 0 consider the function ¢5 € C°(B(yn,2s)) such that 0 < ¢s < 1, ¢ps = 1 on B(yn, s) and
IVos|lree < %, where Cy is some constant depending only on the dimension d. Thus, we have
that
[{Au+ f,¢)] < CaCps?™, (5.3.21)

where C' is the constant from (5.3.7). Denote with p; and pe the positive Borel measures
Aut 4 fIs0y and Au™ — fI,c0p. Then, we have

p1(Bs(yn)) < (11, 6s) = (11 = pi2, &s) + {2, 6s) < CaCops’™" + pa(Bas(yn))- (5.3.22)
Moreover, since f € L°°, we have that for each s <1,
AUt (Bu(yn)) < (CaCh+ (1+ 2| floc) 5"~ + Au~ (Bas(yn)). (5.3.23)
Multiplying by s!~% and integrating, we obtain
][ ut diil < E ][ w” dHY 4 (CaCh + (1 + 29| flloo) Ons (5.3.24)
9Bs,, (yn) OB2sy, (yn)

or, equivalently,

][ Uy (€n + ) dHT! < % f u” (&4 ) AHT 4 (CaCh+ (1429 flloo)dn- (5.3.25)
0B, 0Bs3

Since, the right-hand side goes to zero as n — 00, so does the left-hand side. Up to a subsequence,
we may assume that &, — & and 8o, un(§n++) = Yoo (oo ++) = Uso In Hlloc(Rd). Thus %e = 0.
Step 5. The convergence u, — 0 is uniform on the ball Bj.

We already know that w, — 0 in H}

L (R%). Moreover, by the same argument as in Step 3, we
have that

— Alug| < 62l f], (5.3.26)

in R? and that |u,| — 0 uniformly on any ball. O

Lemma 5.3.10. Let u € H'(RY) satisfies the conditions (a) and (b) from Theorem . Then,
for each xy € R?, in which u vanishes, and each 0 < r < ro/4, where ro is the constant from
condition (b) in Theorem[5.3.6, we have that

|Alul[(Br(20)) < Ca(Cp+ /Crn + 1) r* 1, (5.3.27)

where Cy is a constant depending only on the dimension, Cy is the constant from (5.3.7) and
Cy, 18 the constant from the monotonicity formula (5.2.5).
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ProOOF. Without loss of generality we can suppose xg = 0. For each r > 0, consider the

functions

U w'=w —w’,

where v’} and w! are defined by
~Av, = %, in B,, —Auw’ = f*, in B,, (5.3.28)
v =ur, on 4B, wl =0, on 0B,. o

Thus we have that v, — w!, is harmonic in B, and so, the estimate
/ V(o — )2 da g/ Vet da. (5.3.29)
B By
Since u* — v, + wh. € HY(B,), we have

/ IV (u® — v +wh)|?de = : Vut - V(u® — vl +w'l) de

= / \VutPde + | VuT - V(wl —ol)de (5.3.30)
i B’r‘

§2/ \Vut|? da,

where the last inequality is due to (5.3.29). Thus, we obtain

<][ Yt — o +w:)|2dx) <][ Y — o +wz>|2dx)
r <4 (é yv;ﬁy?d:p) (]{B Vu[? dx) (5.3.31)

< 4Chn,

where the last inequality is due to the monotonicity formula (5.2.5)) and C,, is the constant that
appears there.
On the other hand, for 0 < r < rg <1, we have

/ IV(u—v" +w")|*de §2/ ]V(u—vr)|2da;+2/ |Vw" | dz
T i B"'

:2/ (V- V(u— ") + flu— o) dm+2/ V| da

T

< Cgrd + Cyre,
(5.3.32)
where (Y is the constant from condition (b). Using (5.3.31]) and (5.3.32)), we have

/ V(ut — o} +w'})|? da +/ V(u™ —o" +w")|*dz
B, B

< [ Wu—rrwpaee ([ 90 —v1;+w';>\2)é (1w = sy

< (C%44C,, + Cy)re.
(5.3.33)
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Denoting with Cj ,, 4 the constant
Chm.a = 2C% +8C,, = Cy, (5.3.34)

we have the estimate

/ IV (ut — o) dar < Chmar. (5.3.35)

T

Note that ut < vy, In fact, we have
At —v}) = Aut + f7 > Aub + fIm0, (5.3.36)
and so, ut — ¢!} is sub-harmonic in B, and vanishes on 9B, and thus, is negative. Analogously,

A(u™ =) > Au™ — fl,<0p and u~ < v”. Moreover, by (5.3.36) and the fact that ut — €
H}(B,), we have that

/ IV (ut — vfr)|2 dr > i V(@ —ut) Vut + (v} — u+)fI{u>0} dz
(5.3.37)
:/ (v, —ut) duy :/ vl dps.
r B'r
Applying the estimate (5.3.35) and setting
pn = Aut 4 flosoy,  pe = AuT — flgcop, (5.3.38)
we have that
/ v dpy < Chnar®, / v" dpg < Chpar® (5.3.39)
Id B'r
Setting U := u* — v} <0 on B", we have that for each z € B, 4
][ UdH™ <0< ut(z) = U(z) + (=), (5.3.40)
8BS'r/ﬁl('Z)
By the definition of U and Theorem [3.4.22] we have that
1 3r/4
f UdHT' —U(z) = / s Au(Bs(2)) ds. (5.3.41)
OBy )a(2) dwa Jo

Using (5.3.36[), we obtain

3r/4 3r/4
vi(z) = / s'TIAU(Bs(2)) ds > / 51701 (Bs(2)) ds. (5.3.42)
0 0
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Integrating both sides of (5.3.42)) on B, , with respect to du1(z), we obtain

Comalr/V! = [ () dpar(2)

B4
3r/4
> 2, a2 |t as
2 i, /j/ 1 (B (2)) ds (5:3:49)
3r/4
ZdTJd - 1 (z) /m s (B, 4) ds

> Cr? 4 11 (Bry)]?

which proves the claim. O

PRrROOF OF THEOREM [5.3.6l Note that we can assume Q = {u # 0}. Since, by Lemma
u : RY — R is continuous, we have that  := {u # 0} is open. For any r > 0, denote
with Q, C € the set {z € w: d(x,Q°) <r}. Choose ¥ € w, /p and let y € O such that
R, = |x —y| = d(x,Q°). We use the gradient estimate from Remark of u on the ball
BRI (.%')

2d
Vu(@)] < Callfllze + =Nl (g, =)

2d
< Call fllzee + 2= llull Lo (Bas, ()

C -
< (Cq+710)|Ifllze + RJ ) lu| dH ! (5.3.44)
T 3Rg (Y
Ca [* 14
< (Ca+ro)llfllze + 5~ .S |Alul|(Bs(y)) ds

< (Cq+ro)llfllLe + 3C4C,

where C' = Cy(Cp + /Cy, + 1) is the constant from Lemma [5.3.10, Since for z € Q\ €2, /5, we
have that

4d
[Vu(z)| < Cal| fllLe + 70||UHL°°, (5.3.45)

we obtain that w is Lipschitz and

||Vu\|Loo < (Cd + TO)HfHoo + Cymax {Cb +v/Cp +1, HUTHOO} . (5.3.46)
0
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5.4. Shape quasi-minimizers for Dirichlet eigenvalues

In this section we discuss the regularity of the eigenfunctions on sets which are minimal with
respect to a given (spectral) shape functional. Let A be the family of all Lebesgue measurable
sets in R? of finite measure endowed with the equivalence relation Q ~ Q if |[QAQ| = 0.

Definition 5.4.1. Let F : A — R. We say that the measurable set 2 € A is a shape quasi-
manimizer for the functional F, if there exist constants C' > 0 and rog > 0 such that for each ball
B, (x) € R? with radius less than ro we have

F(Q) < FQ)+C|B.|, VQ such that QAQ C B, (x).

Remark 5.4.2. If the functional F is non increasing with respect to inclusions, then 2 is a
shape quasi-minimizer, if and only if,

F(Q) < F(QUB.(z)) + C|B,|.

Remark 5.4.3. Suppose that () is a shape quasi-minimizer for the Dirichlet Energy
~ 1
EQ) = min{J(u) Cu€ H&(Q)}, where J(u) = 2/ |Vu|? da —/ udz.
R4 R4

Then, for every Q such that QAQ C B,(x), we have

J(wo) = E(Q) < E(Q) + C|B| < J(wa + ¢) + C|By,
for every ¢ € Hi(B,), where wg is the solution of
~Awg =1,  wq e HH Q).

Thus the function wgq is a quasi-minimizer for the functional J and thus, by Theorem the
energy function wgq is Lipschitz continuous on R¢.

The case F = A\ is more involved, since the kth eigenvalue is not defined through a single
state function but is variationally characterized by a min-max procedure involving an entire
linear subspace of ﬁé(Q) Thus, in order to transfer the minimality information from €2 to its
eigenfunctions, we need a result for the outer perturbations of a generic measurable set €.

In the lemma below, we shall assume that {2 is a generic set of finite measure and [ > 1 is
such that

Ak(Q) =+ = Mei1(92) > At (). (5.4.1)
Let ug_j11, ..., ug be l normalized orthogonal eigenfunctions corresponding to k-th eigenfunction
of the Dirichlet Laplacian on €.

The following notation is used: given a vector a = (ag_j41, ..., ;) € R!, we denote u, the
corresponding linear combination

Uy = Q41 Uk—]+1 T+ ... T QRUE- (5.4.2)

Lemma 5.4.4. Let Q C R? be a set of finite measure and 1 > 1 is such that holds. Then
there is a constant ro > 0 such that for every x € R%, every 0 < r < ro and every l-uple of
functions vg_iy1, ..., vx € HY(By(x)) with [|Vvj|> <1, for j=k—1+1,...,k, there is a unit
vector o € RY such that

+vo) P dr + Me—i1() + 1) [ |Vva|? dz
[ o +val2de — 3 [ |V, |2 da ’

where Uy, Vo are defined using notation (5.4.2)).

Me(QU B, (2)) < SV (ta (5.4.3)
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The constant ro depends on . In particular, if the gap Ap—1+1(Q2) — A\pg—1(Q2) vanishes, T
vanishes as well.

PRrROOF. Without loss of generality, we can suppose x = 0. By the definition of the k-th
eigenvalue, we know that

[ |Vul?dz

Ae(QU B,) < max { Tads

U € SPAN (UL, oy Uk, U141 + V141, -y Ug + Uk>} :

The maximum is attained for a linear combination
aquy + oo agqug—g + o1 (U1 + Vg—i11) + oo + g (ug + k).
Note that if \x_;(©2) < A\,(2U B;), then the vector
o= (Qp—i41,-.-, Q) € R!

is non zero, and moreover can be chosen to be unitary. The inequality Ap—;(2) < A\p(QU B, (x)),
is true for every = and every r < rqg provided r¢ is small enough. This can be proved for instance
by contradiction, since for every x, € R¢ and for every r, — 0, we have that Q U B,, (z,,)
~y-converges to 2.

For simplicity, we denote \; = A;(Q2), for every j.

Using the notation , for rg small enough, we have

[IV(ug+va)Pde X+2 [ Vug - Vogde + [|[Voe|* da
Uq + V| Az B + UV AT + | V2 dX
24 142 d 2

M2 (J, |Vua\2dx)1/2 (J, |V'va]2d:v>1/2

142 (fBrugédac)l/2 (fBrv?deym—i—fvadw

/2

e (fB,«O |Vua|2dx)1/2 (fBT \Vva|2d:z:>1
142 (fBr vidx)lﬂ + [p, vidr

Ap — 2 (me Vg |? dx>1/2 (fBr Vo, |2 dx>1/2

1/2
1 2C| B[4 ([, IV0al2dz) " + [CaByg 7 [ [Val? da

v

> A1 + )\k.
- 2
(5.4.4)
If all o; for ¢ = 1,..,k — [ are zero, then the assertion of the theorem is trivially true.

Otherwise, we define

1

,/a% + ... +ai_l

So [u?=1and [|Vul? < Ay

(1uy + ... + ag_jug—p).

u =
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Consequently,

2
M(QUB,) Smax{fV(ua—i—va—ktu)] dx y R}.

[ e + vo + tul?dz

We have

[1IV(tu+ ua + vo)|* dz < Ae1(Q) + 2t [Vu - V(ug +vo)dz+ [|V(ua + v0)|* dz
J(tu+ug +vy)2de 2+ 2t [u(ug +vq)dz + [ |uq +vo|?dz

2 Ak—1(2) + 2t [ Vu - Vug do + 2t fBT Vu - Vg de+ [pa |V(ua + vo)|?dx
N 12+ 2t [uug de + 2t [ uve de 4 [pa e +vol? do

2 X1 () + 2t fBr Vu - Vg dz + [pa |V (ua +va)[?ds

= = F(t).
242t [5 uwvadr + [ |ua + vol?de (*)
(5.4.5)
For sake of simplicity we pose:
a = Vu - Vo, dz, b= / UV, dz,
B, g
(5.4.6)
A:/ IV (e + w02 d, B:/ [t + Va2 2.
Rd Rd

Note that we can make a and b arbitrarily small, by choosing ry small enough. In fact, we have

the following estimates:
1/2 12
|Vul|? dx) </ |V, |? da:) ,
B,

1/2 1/2
la| < </ |Vu\2daz) (/ |V'Ua|2d1:> < (/
B, By By
(5.4.7)
1/2 1/2 1/2
b < (/ u? d:r> (/ vi d:n) < Cyrg </ |V'va|2d:v> ) (5.4.8)

Moreover, we can suppose that

0

Me/2<A<2\,+1, 1/2<B<2.

By (5:44) and the fact that limy,io F(t) = M < 2=LF% < P(0), we have that the
maximum of F' is attained in R. Computing the derivative, the zeros t of F’ satisfy

(Mot + a)(t> 4 2bt + B) — (t +b)(M\p_yt? + 2at + A) = 0,
or, after simplification,
t2(A\p_ib — a) + t(A\y_B — A) + (aB — bA) = 0.
Thus, we have that ||F||oc = max {F(t1), F(t2)}, where

_ A— )\ B+ \/(A — M1 B)? — 4(A\k_ib — a)(aB — bA)
N 2(/\k7lb — a)

_ A-\B _ 4(Mg—1b — a)(aB — bA)
2\t —a) (1 * \/1 (A -\, B)? )

t1,2

(5.4.9)
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We choose 1y small enough, in order to have
4(Ag—1b —a)(aB — bA) 1
(A— X\, B)? 2
Then, since the function z — /1 — z is bounded and 1-Lipschitz on the interval (—%, %), we
have the following estimate

A— /\kle 4()\k7lb — CL)(G,B — bA)
[t = |=——F——[1—4/1— 5

2(Ap—1b —a) (A= A1B)

< A— X\ B 4(Ag_1b —a)(aB — bA)

~ 1 2(A\k—ib — a) (A= M\ B)?

5.4.10
<9 aB — DA <2\a|B—|r|b|A <4]a\+>\k\by ( )
- A— Bl = A—X\ey B~ A- )\ B

1/2
< 1619 Axl] < (/ ]Vva|2dx> :
Ak — M-t B

The last inequality is obtained using (5.4.7)) and (5.4.8]), for ry small enough. On the other hand,
for to, we have

<l|ta] <2

1lA—-M\._B A— )\ B
\Akl A= Bl (5.4.11)

2| Myb—a Aiib—a

Note that if we chooose rg such that |¢1| < |t2|, then the maximum cannot be attained in t5.

In fact, (A\g_;b — a)tz > 0 and so, in to, the derivative F’ changes sign from negative to positive,

if 5 > 0 and from negative to positive, if t5 < 0, which proves that the maximum is attained in
t1. Choosing 7o such that

1 ) 1/2 1 ) 1/2
la] < = |V, | dx , |b| < = Vv, |*dx )
2 B, 4 B,

we have
22 A ) A
F(tl) < Ak 21t1+ aty + < Ak 21t1+| at1|+
t{ +2bt; + B ty —|2bt1| + B
1/2
Nt [, |Vval2da + 2]al (fBT ]Vva\2dx> +A
< /2 (5.4.12)
B —2J} (fBT |V'va]2d9c>
A+ My +1) fBr \Vvanx
- B =3 [ [Vval?dz
and so, the conclusion. O
Remark 5.4.5. In case A\ > Ap_1, the result of the lemma above, states as
\% 2dr + (M1 () + 1) [ |Vo)?d
)\k(QUBT(JJ)) < f| (uk—i_v)’ x+( k 1( )+ )f| U| l‘, (5.4.13>

[ |ug +v2da — § [ |Vv]2 dz

for every v € H}(B,(x)) with [|Vv[?dz <1, r < ro.
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Lemma 5.4.6. Let Q C R? be a shape quasi-minimizer for N\ such that A\,(Q) > \e_1(Q).
Then every eigenfunction u, € H&(Q), normalized in L? and corresponding to the eigenvalue
Me(Q), is Lipschitz continuous on RY.

PROOF. Let ui be a normalized eigenfunction corresponding to Ax. By the shape quasi-
minimality of €2, we have

Ae(Q) < M (QU B () + C| Byl (5.4.14)
Applying the estimate (5.4.13) for v € H}(B,), we obtain

(A + Me(Qug, )] < CBo] + () +1)/]Vv]2dx, (5.4.15)

and so, the function uy is a quasi-minimizer for

1
J(u) = B /Rd Vu|® do — /Rd A (Q)ugu dz.

Now since uy, is bounded by (5.3.9)), the claim follows by Theorem O

5.5. Shape supersolutions of spectral functionals

Definition 5.5.1. We say that the set Q C R is a shape supersolution for the functional F if

F(Q) < F(Q), VO

Remark 5.5.2. e Suppose that € is a shape supersolution for the functional F + A| - |.
Then we have

F(Q) < FQ)+AQ\Q, vQ>Q.

e If O* is a shape supersolution for F + A| - |, then for every A’ > A the set Q* is the
unique solution of

min {f(Q) + A'|Q] : Q Lebesgue measurable, QD Q*}

e If the functional F is non increasing with respect to the inclusion, we have, by Remark
that every shape supersolution for F + A - | is also a shape quasi-minimizer.

In Lemma we showed that the kth eigenfunctions of the the shape quasi-minimizers
for A\ are Lipschitz continuous under the assumption Ag(2) > Ax—1(€2). In the next Theorem,
we show that for shape supersolutions the later assumption can be dropped.

Theorem 5.5.3. Let Q* C R% be a bounded shape supersolution for A\, with constant A. Then
there is an eigenfunction up € HE(Q*), normalized in L* and corresponding to the eigenvalue
e (%), which is Lipschitz continuous on R,

PRrROOF. We first note that if A\g(Q*) > Ap_1(Q2*), then the claim follows by Lemma |5.4.6
Suppose now that Ag(2*) = A\p—1(Q*). For every ¢ € (0,1) consider the problem

min {(1 — )AR(Q) + X1 (Q) + 2410 - QO Q} (5.5.1)

We consider the following two cases:
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(i) Suppose that there is a sequence &, — 0 and a sequence ()., of corresponding minimizers

~—

for such that \g(Qc, ) > M\e—1(€Qe, ). For each n € N, Q. is a shape supersolution
for A\, with constant 2(1 —&,)"'A and so, by Lemma we have that for each n € N
the normalized eigenfunctions uy € I:T&(an), corresponding to Ag (2., ), are Lipschitz
continuous on R%. We will prove that the Lipschitz constant is uniform and then we will
pass to the limit. We first prove that €., ~-converges to Q* as n — oco. Indeed, by [25]
Proposition 5.12], €2 are all contained in some ball Br with R big enough. Thus, there
is a weak-y-convergent subsequence of €2, and let Q be its limit. Then €2 is a solution of
the problem

min {Ak(Q) 12010 Q> Q} (5.5.2)

On the other hand, by Remark we have that 2* is the unique solution of and
S0, Q = Q. Since the weak ~-limit Q* satisfies Q* C €, for every n € N, then Q. ~-
converges to *. By the metrizability of the «-convergence, we have that 2* is the ~-limit
of Q. as n — 0o. As a consequence, we have that A\ (€, ) = A\x(£2*) and by Remark
we have that the sequence uj is uniformly Lipschitz.

Then, we can suppose that, up to a subsequence uj} — wu uniformly and weakly in
H}(Bg), for some u € H}(Bg), Lipschitz continuous on R?. By the weak convergence of
u?, we have that for each v € H}(Q*)

/ Vu-Vvdr = lim Vup - Vudr = lim )\k(an)/ upvdr = )\k(Q*)/ uv dz.
Rd n—oo Rd n—oo Rd Rd

By the v-convergence of ()., we have that u € H}(2*) and so u is a k-th eigenfunction of
the Dirichlet Laplacian on 2*.
Suppose that there is some ¢¢ € (0, 1) such that €., is a solution of (5.5.1) and A\ (Q,) =

Me—1(Qs,). Then, Q. is also a solution of (5.5.2) and, by Remark Q, = Q*. Thus
we obtain that Q* is a shape supersolution for A\;_; with constant 2e, LA. If we have

Ae(F) = M1 (2F) > Ao (27),
then, we can apply Lemma obtaining that each eigenfunction corresponding to A\;_1(2*)
is Lipschitz continuous on R%. On the other hand, if

AR(Y7) = Ap—1 () = Ap—2(27),
we consider, for each € € (0, 1), the problem

min {(1 — o) Me(Q) + 20 [(1 — &) Ab_1(Q) + eXp_a()] +3A|Q : 2O Q} (5.5.3)

One of the following two situations may occur:
(a) There is a sequence &, — 0 and a corresponding sequence )., of minimizers of
such that
Ak=1(Qe,,) > Ap—2(€2e,,).-
(b) There is some &1 € (0,1) and ., solution of (5.5.3), such that

Ak—1 (QEI) = )‘k—Q(QH ) .

If the case (a) occurs, then since ()., is a shape quasi-minimizer for A\;_1, by Lemma m
we obtain the Lipschitz continuity of the eigenfunctions u}_,, corresponding to Ar_; on
Q... Repeating the argument from (i), we obtain that €. ~-converges to Q* and that
the sequence of eigenfunctions u} ; € HJ (., ) uniformly converges to an eigenfunctions
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up—1 € HL(Q), corresponding to A\p(Q2*) = A\_1(Q*). Since the Lipschitz constants of
uy_, are uniform, we have the conclusion.

If the case (b) occurs, then reasoning as in the case (ii), we have that ., = Q*. Indeed,
we have

(1 —€0)Ar(Qe;) + €0Ar—1(2,) + A€, |

(1 — 60))\k(Q ) + €0 [(1 — 51))\k_1(951) + 61)\k_2(951)] + 3A‘Q€1’
(1 - 80))\k(9*) + €o [(1 - 81))\]6,1(9*) + 51)\]6,2(9*)] + 3A’Q*’
(1 — 60))\k(Q*) + 60)\k_1(Q*) + 3A|Q*|

On the other hand, we supposed that Q* is a solution of (5.5.1)) with e = ¢y and so, it is
the unique minimizer of the problem

(5.5.4)

[IA

min {(1 — o) M(9) + code_1(Q) + 34|10 QD Q} (5.5.5)
Thus, we have Q* = Q.. We proceed considering, for any ¢ € (0, 1), the problem

min {(1 — 20) () + 0(1 — £1)Me_1(Q)

(5.5.6)
teoer [(1 = £)Ak_2() + eXe_s(Q)] +4A|Q]: Q5 Q}

and repeat the procedure described above. We note that this procedure stops after at most
k iterations. Indeed, if Q* is a supersolution for A\; and A (Q*) = -+ = A1 (Q*), then we
obtain the result applying Lemma [5.4.6] to A;.

O

As a consequence, we obtain the following result for the optimal set for the kth Dirichlet
eigenvalue.

Corollary 5.5.4. Let 2 be a solution of the problem
min {)\k(ﬂ) . QCRY Q quasi-open, |Q| = 1}.

Then there exists an eigenfunction ux, € H}(SY), corresponding to the eigenvalue M\ (), which
is Lipschitz continuous on RY.

Remark 5.5.5. We note that Theorem [5.5.3| can be used to obtain information for the super-
solutions of a general functional F. Indeed, let F' be a functional defined on the family of sets
of finite measure and suppose that there exist non-negative real numbers ¢, k € N, such that
for each couple of sets 2 C Q C R? of finite measure we have

cr (M (Q) — M(Q)) < F(Q) — F(Q).

If Q is a shape supersolution for F'+A|-|, then for any k such that ¢, > 0, there is an eigenfunction
ug € H}(Q), normalized in L? and corresponding to A(£2), which is Lipschitz continuous on R%.
It is enough to note that, whenever ¢, > 0, we have

A(Q) = M(Q) < ¢ (F(Q) = F(D) < ¢ 'AIQ\ 9.
The conclusion follows by Theorem [5.5.3

In order to prove a regularity result which involves all the eigenfunction corresponding to
the eigenvalues that appear in a bi-Lipschitz functional of the form F(/\k1 (), A, (Q)), we
need the following preliminary result.
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Lemma 5.5.6. Let Q* C R? be a supersolution for the functional A\ + Apy1 + -+ + Aetp
with constant A > 0. Then there are L*-orthonormal eigenfunctions uy, . . . JUk+p € H&(Q*),
corresponding to the eigenvalues A (%), ..., Apyp(§2°), which are Lipschitz continuous on R,

PROOF. We prove the lemma in two steps.

Step 1. Suppose that A\p(Q*) > Ae_1(Q2*). We first note that, by Lemma if j €
{k,k+1,...,k+ p} is such that X\;(Q*) > X;_1(Q*), then any eigenfunction, corresponding
to the eigenvalue \;(Q2*), is Lipschitz continuous on R?. Let us now divide the eigenvalues
Ae(2%), .., Aegp(€27) into clusters of equal consecutive eigenvalues. There exists k = ki < ko <
--+ < ks < k+ p such that

Ae—1(27) < A () =+ = Ay -1 (229)
< Ay (27) = -+ = Ay ()
<A () =0 = N (29).

Then, by the above observation, the eigenspaces corresponding to Ag, (%), Ag, (%), ..., Apgp(£2%)
consist on Lipschitz continuous functions. In particular, there exists a sequence of consecutive
eigenfunctions wuy, ..., ug4, satisfying the claim of the lemma.

Step 2. Suppose now that Ag(2*) = Ap_1(Q2*). For each ¢ € (0,1) we consider the problem

min { 3 M () 4 (1= )A(Q) +eXr (Q) + 24100 - QF CQC Rd}. (5.5.7)
j=1

As in Theorem [5.5.3] we have that at least one of the following cases occur:
(i) There is a sequence &,, — 0 and a corresponding sequence ()., of minimizers of such
that, for each n € N,
/\k<Qan) > Akjfl(Qen).
(ii) There is some g € (0, 1) for which there is €2, a solution of such that

/\k(Qm) = Ak—1 (Q50)'

In the first case €2, is a supersolution to the functional Ay + - - + A\py, with constant A/(1 —
en). Thus, by Step 1, there are orthonormal eigenfunctions ug, . .. Upyp € H(Qe,), which are
Lipschitz continuous on R?. Using the same approximation argument from Theorem we
obtain the claim. In the second case, reasoning again as in Theorem we have that ., = Q*
and we have to consider two more cases. If A\;_1(2*) > A\p_2(2*), we have the thesis by Step 1.
If Ap—1(2%) = Agp—2(2*), then we consider the problem

p
min { Z)\k+j(Q) + (1 — 80))\k(Q> + €0 [(1 — €)Ak,1<Q) + EAk,Q(Q)] + 3/\‘9’ - cQcC Rd}7
j=1

and proceed by repeating the argument above, until we obtain the claim or until we have a
functional involving Aq, in which case we apply one more time the result from Step 1. g

Theorem 5.5.7. Let F': RP — R be a bi-Lipschitz, increasing function in each variable and let
0 < ki <ky<--- <k, be natural numbers. Then for every bounded shape supersolution 2* of
the functional

Q— F()\kl(Q),n-,)\kp(Q))a
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there erists a sequence of orthonormal eigenfunctions ug,, ..., ux,, corresponding to the eigen-
values )\kj(Q*), j=1,...,p, which are Lipschitz continuous on R®. Moreover,
e if for some k; we have \g;(2%) > A\, —1(Q2%), then the full eigenspace corresponding to
Ak, (§2%) consists only on Lipschitz functions;
o if Mg (%) = Ai;_, (€2%), then there exist at least kj — kj—1 + 1 orthonormal Lipschitz
eigenfunctions corresponding to A, ().

PROOF. Let ¢y, ..., ¢, € RT be strictly positive real numbers such that for each z = (z;),y =
(y;) € RP, such that z; > y;, Vj € {1,...,p}, we have

F(x) - F(y) > ci(zr —y1) + -+ cplxp — up)-

We note that if * is a supersolution of F/(Ag,,. .., Ag,), then Q* is also a supersolution for the
functional
F=| min ¢| Mg+ +A),
Le{l,...,p} ]] (e 2
and, since minjcgy ;1 ¢; > 0, we can assume minjery 1 ¢ = 1.
Reasoning as in Lemma we divide the family (A, (2%),..., A, (%)) into clusters of
equal eigenvalues with consecutive indexes. There exist 1 <1i; < iy--- <1ig < p— 1 such that

My () = 0= Ay () < A 1) (QF) = -0 = A, (©7)
< /\k(12+1)(Q*) == )\kis ()
< )\k(is+1)(Q*) == A, ()

Since the eigenspaces, corresponding to different clusters, are orthogonal to each other, it is
enough to prove the claim for the functionals defined as the sum of the eigenvalues in each
cluster. In other words, it is sufficient to restrict our attention only to the case when Q* is a
supersolution for the functional F'(Ag,,...,A\x,) = ?:1 Ak; and is such that

Ay () = -+ = Mg (2°). (5.5.8)

Moreover, in this case Q* is also a supersolution (with possibly different constant A) for the sum
of consecutive eigenvalues Z]Zp: k, M- Indeed, it is enough to consider the functional

O |

p kp
FO) = 23 M@ +8 3 M),
j=1

k=k1

1
for a suitable value of 6, e.g. 6 = 5 . The conclusion then follows by Lemma [5.5.6

(kp_kl +1)

5.6. Measurable sets of positive curvature

Before we prove the theorem we need some preliminary results concerning the sets which,
in some generalized sense, have positive mean curvature.

Definition 5.6.1. We say that the measurable set 2 is a perimeter supersolution if it has
finite Lebesgue measure, finite perimeter and satisfies the following condition:

P(Q) < P(Q), for each Q> Q. (5.6.1)



170 5. SHAPE SUPERSOLUTIONS AND QUASI-MINIMIZERS

Remark 5.6.2. Let Q be an open set with boundary 0 of class C2. If Q is a perimeter
supersolution, then it has positive mean curvature with respect to the exterior normal vector
field on 9f). Lemma below shows that, even if it is less regular, it has positive mean
curvature in the viscosity sense.

The following simple Remark will play a crucial role in the study of spectral optimization
problems with perimeter constraint.

Remark 5.6.3. Suppose that F is a functional on the measurable sets, decreasing with respect
to the inclusion. Then, every supersolution for the functional F + P is also a supersolution for
the perimeter. Indeed, if this is not the case and there is some D Q such that P(Q) < P(Q),
we have

F(Q)+ P(Q) < F(Q)+ P(Q),
which is a contradiction. In particular, the same conclusion holds if
where I : R¥ — R is an increasing function on R¥.

The following result is classical (see, for instance, [66], [79, Theorem 16.14]) and so we only
sketch the proof.

Lemma 5.6.4. Let Q C R? be a perimeter supersolution. Then there exists a positive constant
¢, depending only on the dimension d, such that for every x € R?, one of the following situations
occurs:

(a) there is some ball B,(x) with r > 0 such that B.(z) C Q a.e.,
(b) for each ball B,(x) C R, we have |B,(z) N Q°| > ¢|B,|.

PROOF. Let € R Suppose that there is no 7 > 0 such that B,(z) C Q. We will prove
that (b) holds. Using the condition (5.6.1]) for @ = QU B,.(z) we get that for almost every r,

P(Q, B.(2)) < H¥ Y (0B, (z) N Q°).
Applying the isoperimetric inequality to B,(x) \ £, we obtain
[Bo(w) \ Q1 < Oy (P(9, Br(@) + HEH (0B, (2) 0 02))
(5.6.2)
< 2C,HTH OB, (z) NQC).

Consider the function ¢(r) = |B,(z) \ Q|. Note that ¢(0) = 0 and ¢'(r) = H¥ (0B, (x) N Q)
and so, by (5.6.2),
d 1
o @ /d
= ((ZS(T) ) ’
which after integration gives (b). O

Definition 5.6.5. If Q C R? is a set if finite Lebesque measure and if there is a constant ¢ > 0
such that for each point x € R? one of the conditions (a) and (b), from Lemma holds,
then we say that € satisfies an exterior density estimate.

In what follows we will denote with wq the solution of

—Awg =1,  wq e HH Q).
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We first note that a classical argument provides the continuity of wq on the sets with exterior
density.

Proposition 5.6.6. Let Q C R be a set of finite Lebesque measure satisfying an exterior density
estimate. Then there are positive constants C' and B such that, for each x € R® with the property
that |Br(z) N Q| > 0, for every r > 0, we have

lwallLe (B, (2)) < TB||1UQ”LOO(Rd)7 for each r > 0. (5.6.3)

In particular, if Q is a perimeter supersolution, then the above conclusion holds.

Proor. Let € R? be such that that |B,.(x) N Q| > 0, for every r > 0. Without loss
of generality we can suppose that + = 0. Setting w := wgq, we have that Aw +1 > 0 in
distributional sense on RY. Thus, on each ball B, (y) the function

-yl

u(z) = w(x) 2d )

is subharmonic and we have the mean value property
2
w(y) < - —l—][ w(x) de. (5.6.4)
2d B (y)

Let us define r, = 47". For any y € B,, ., (0), equation (5.6.4)) implies

w(y) < -2 —|—][ w(z) dr
4d B2rn+1 (y)

TTQL |Q N BZTn-H (y)|

et ) R YRS

(5.6.5)
2 92°N B, ,,(0)]
<5+ (=R oo

—2n

—d—
<S4 (1 ) C> [wll oo (B, (0)):

where in the third inequality we have used the inclusion B, ,(0) C By, (y) for every y €
By, .,(0). Hence setting

Tn+1
an = ||wl| oo (B, (0));

we have
—n

8 —d—
apt1 < Id + (1 —2 dc)an7

which easily implies a,, < Cagd™™8 for some constants 8 and C depending only on é This

gives (.6.3). O

Proposition 5.6.7. Let Q C R? be a set of finite Lebesgue measure satisfying an external
density estimate. Then the set

12N B, (2)|
Oy = R?: 31 |7 =1
! {”“" SN B @) |

s open and ﬁ&(Q) = H}(Q). In particular, if Q is a perimeter supersolution, then 0 is open
and HE(Q) = HE(OQ1).
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PROOF. Thanks to Lemma(5.6.4] ; is an open set. It remains to prove the equality between
the Sobolev spaces. We first recall that we have the equality
Hy () = Hy({wg > 0}).

We now prove that Q1 = {wq > 0} up to a set of zero capacity. Consider a ball B C ;. By
the weak maximum principle, wp < wgq and so

O C {wq > 0}.

In order to prove the other inclusion, we note that for every zo € R? \ N we have

wo (l‘o) = lim wq dx,
r—0 By (x0)
By Proposition wo = 0 on R\ Q; which gives the converse inclusion. O

In what follows we will prove that the energy functions wq, on sets €2 which are perimeter
supersolutions, are Lipschitz continuous. At the end by the maximum principle we will conclude
that all the eigenfunctions, on a set which is a perimeter supersolution, are Lipschitz continuous.

Proposition 5.6.8. Let Q C R? satisfy an exterior density estimate. Then wq : R — R is
Hélder continuous and

[wa () — wo(y)| < Cla —yl”, (5.6.6)
where 8 is the constant from Proposition[5.6.0,

PRrOOF. Thanks to Proposition , up to a set of capacity zero, we can assume that €2;
is open and that wq is the classical solution, with Dirichlet boundary conditions, of —Awg =1
in ;. Consider two distinct points z,y € R%. In case both = and y belong to 7, the estimate
is trivial. Let us assume that x € ; and let 2y € 9 be such that

|z — xo| = dist(z, 0Q1).
We distinguish two cases:
e Suppose that y € R? is such that
2|z — y| > dist(z, 082).
Hence ,y € Byj,—y|(z0) and by Proposition we have that
wo(z) < Clz —y|? and wa(y) < Clz —y|.
Thus we obtain
wa (@) —waly)| < 20|z —y|°. (5.6.7)
e Assume that y € R? is such that
2|z — y| < dist(z, 0).

Applying Lemma to wq in Bgigt(z,00,)(7) C Q1 we obtain

Cde”LOO(Bdist(z 09;) (@) . -1
||VwQ”L‘X’(Bdist(x,am)m(z)) = dist(z, 9 - < CddlSt(xvagl)ﬂ ) (5.6.8)

which, since 5 < 1, together with our assumption and the mean value formula implies

lwa(z) — woy)| < Cydist(z,d0)° o —y| < |z —y|°.



5.6. MEASURABLE SETS OF POSITIVE CURVATURE 173

In the following Lemma we show that a perimeter supersolution has positive mean curvature
in the viscosity sense. This is done showing that the function d(x, ) is super harmonic in
in the viscosity sense (see [39] for a nice account of theory of viscosity solutions). In case 92 is
smooth this easily implies that the mean curvature of 92, computed with respect to the exterior
normal, is positive (see for instance [65] Section 14.6]). A similar observation already appeared
in [40], in the study of the regularity of minimal surfaces, and in [73}, 81], in the study of free
boundary type problems.

We say that ¢ touches dq from below at zq if

do(wo) — p(z0) = D%in {da —¢}.

Lemma 5.6.9. Let Q C R? be a perimeter supersolution. Consider the function do(x) =
dist(x,Q°). Then for each p € C°(QY), touching dqo from below at xo € 2, we have Ap(xp) < 0.

PROOF. Suppose, by contradiction, that there are point xp € © and a function ¢ € CZ°(Q)
touching dg from below at xg for which Ap(xg) > 0. Up to a vertical translation, we can assume
that ¢(x0) = da(xg) > 0. Furthermore, by considering a a regularized version of the function
o(z) = (p(z) — |z — a;0|4)+, we can also suppose that ¢(x) < dq(z), for every x € Q different
from xg.

Let yo € 082 be such that dq(zo) = |zo — yol, then

Zo — Yo
Vop(xg) = ————. 5.6.9
¢(z0) PR— (5.6.9)
In order to prove this last equality, we first notice that, since ¢ is smooth, the inequality
o(@) — p(ao) < da(x) — da(wo) < o — w0, (5.6.10)

gives |Vp(zp)| < 1. Moreover, defining x; := tzg + (1 — t)yo, we have
do(zt) = |2 — yo| = tda(zo),

hence
m do(z¢) — dao(xo) _
—1 ’l‘t — {E0|

V(o) - T0=Y0 _ iy p(z) — p(z0) <1
[0 —wol 51 | — o t
which, together with , proves .

Let us now set h := ¢(x0) = da(xg) and choose a system of coordinates such that o = 0
and the unit vector ey is parallel to xg — yg. Since g—;‘; = 0, by the Implicit Function Theorem,
there is a (d — 1)-dimensional ball B~! ¢ R and a function ¢ € C*°(B%~1) such that {© = h}
is the graph of ¢ over B¢ i.e.

{p=h}N (B;H x (—r, r)) = {24 =d(x1,...,241)}- (5.6.11)
Since dg > ¢ with equality only at zg = 0, we have
{¢ > h} C {daq > h} and {¢ =h}N{daq =h} = {0}, (5.6.12)

which implies that 0 is a (strict) local minimum of the function

(21, 2g_1) > 23+ + a2 + (¢ — )2

Hence %(O) =...= 2% _(0) = 0. On the other hand, since

T Oz

So(xla CIEIE axd—lyqb(xla CIEIR a'xd—l)) = 07
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FIGURE 5.1. Proof of Lemma [5.6.9f applying the Divergence Theorem to the
grey region, we obtain a contradiction to the minimality of € if Ay > 0.

we get, denoting with the subscripts the partial derivatives,
@i+ ¢jpa =0,

©jj + 20j0ja+ ¢jjed + ¢juda =0,
for each j = 1,...,d — 1, and thus we obtain ¢;;(0) + ¢;;(0)¢4(0) = 0. By the contradiction
assumption

d d—1 d—1
0< ) 9ji(0) = ©aa(0) — ©a(0) > 5;(0) < —0a(0) D~ ¢;5(0),
j=1 J=1 J=1

where the last inequality is due to
(tea) +p(—tea) —2¢(0) _ . do(teq) + do(—teq) — 2dq(0)
< lim
12 t—0 12
Since, by (5.6.9)), we have p4(0) = 1, we deduce that Ag(0) < 0.

Let dg : T — R be the distance to the surface S = {z4 = ¢(z1,...,24-1)}. ie. dg(z) =
d(z,S), where T is a tubular neighbourhood of S and TF = {z4 > ¢}. Then dg € C>®(TTUS),

s 0%s
0xg 81:3
Arguing as above, we see that Adg(0) = —A¢(0) > 0 and so, Adg > 0, in a neighbourhood of

0inT+TUS.
By (5.6.12]) we see that for r small enough, there is some € > 0 such that

{h<dao<h+e}n{p>h}CB,.

©4q(0) = lim ? <0.
t—0

(0)=1 and (0) = 0.

If we define the set
Qe =QU{p>h} = (h+eey),
then Q¢ \ Q C By (—(h + €)eq). Denoting with de the distance from

Se={p=h} = (h+e€)ea,
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we see that Ade > 01in B,(—(h+¢€)eq), since de(x) = ds(x+ (h+€)eq). Hence, by the Divergence
Theorem, and recalling that on S, Vd. = —vq_, where vq_ is the exterior normal to €2, we have

0< Ad, dz = — / Vd, - v dH — / dH 1
Q\Q QN0 QNI (5.6.13)

<HTH QN OQ) — HIH(Q N o),
contradicting the perimeter minimality of {2 with respect to outer variations (see Figure[5.1)). O

We are now in position to prove the Lipschitz continuity of wq using dg as a barrier (see
[65] Chapter 14] for similar proofs in the smooth case).

Proposition 5.6.10. Suppose that the open set Q C R? is a perimeter supersolution. Then the
energy function wq : R — R, defined as zero on QF, is Lipschitz continuous.

PROOF. For sake of simplicity, we set w = wq and || - [|oo = || - || oo (). Let ¢ > 2Hw\|<1>é2 and
consider the function
h(t) = ct — t2. (5.6.14)
We claim that
w(z) < h(da(z)) Ve, (5.6.15)

Suppose this is not the case. Since both functions vanish on 0f2, there exists xy € 2 such that
h(da(xo)) — w(zo) = min {h(dq) —w},

that is the function ¢ := h™!(w) touches dgn from below. By our choice of ¢ the function h is
invertible on the range of w. Moreover, since wq(xo) > 0, the inverse function is also smooth in
a neighborhood of zy. By Lemma [5.6.9

Ap(zg) < 0.
Hence, the chain rule and the definition of h, (5.6.14])), imply
Aw(zo) = A(h o @) (wo) = 1" (¢(w0))|Vp(xo)[* + ' (p(w0)) Ap(x0) < —2|Vep(xo)|* = ~2,

where we have also taken into account that, since ¢ touches dg from below at x(, equation (5.6.9)
implies the |V(zg)| = 1. Since —Aw = 1 the above equation cannot hold, hence (5.6.15| holds

true. Now equations ([5.6.15)) and (5.6.14]), imply
w(z) < h(dg(z)) < cdg(x) Ve Q.
Arguing as in the proof of Proposition [5.6.8 we conclude that w is Lipschitz. O

Corollary 5.6.11. Suppose that the set Q is a supersolution for the functional F + P, where
F is decreasing with respect to the set inclusion. Then all the Dirichlet eigenfunctions on §2 are
Lipschitz continuous.

PROOF. Since F is a decreasing functional, we have that € is also a perimeter supersolution.
By Proposition [5.6.10], we have that wg, is Lipschitz. Now since for each k& € N, there is a constant
cx such that ||ug||cc < cx, we have that up < cpAp(Q)wq. Thus, |ug(z)| < Crdist(z, 0£2) ad so,

the conclusion follows by a standard argument as in Proposition [5.6.8 ]
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5.7. Subsolutions and supersolutions

We conclude this chapter with a discussion on the combination of the techniques relative to
subsolutions and supersolutions. There are several indications that this combination is sufficient
to establish the regularity of the boundary of 2 and not only of the state functions on €.

Example 5.7.1. Suppose that €2 is both a subsolution and a supersolution for the functional
E(Q) 4+ h(2), where h(Q) = / Q*dr and @ :R? — R is smooth. Then, by the classical
0

result of Alt and Caffarelli (see [1]), the set 2 is C1, for a € (0, 1).

We note that the regularity of the function ) plays a fundamental role in the proof of this
result in [T]. If @ is only measurable function such that 0 < ¢ < @Q < ¢!, then the regularity of
the boundary 0 (if any!) is not known. More precisely, we state here the following:

Conjecture 5.7.2. Suppose that 0 < m < M < 400 are two constants and suppose that the
set Q is a subsolution for E +m|-| and supersolution for E 4+ M|-|. Then the boundary 02 is
locally a graph of a Lipschitz function.

In this section we prove an analogous result for measurable sets 2, which are subsolutions
for E + mP and supersolutions for E + MP. The presence of the perimeter in the functional
allows us to use the classical regularity theory of the quasi-minimizers of the perimeter, which
considerably facilitates our task of achieving some regularity for 2.

Remark 5.7.3. Suppose that the measurable set {2 is a supersolution for E+ MP. Then, by
Remark Q) is a perimeter supersolution. Thus, we may restrict our attention to sets, which
are subsolutions for ¥ + mP and supersolutions for the perimeter.

Theorem 5.7.4. Let Q C RY be a set of finite Lebesque measure and finite perimeter. If
is an energy subsolution and a perimeter supersolution, then € is a bounded open set and its
boundary is C1 for every a € (0,1) outside a closed set of dimension d — 8.

PROOF. First notice that, by Lemma[4.6.3] © is bounded. Moreover, since €2 is a perimeter
supersolution, we can apply Proposition and Proposition obtaining that ) is an
open set and the energy function w := wq is Lipschitz.

We now divide the proof in two steps.

Step 1 (CH regulamty up to a < 1/2). Let xg € 92 and let B,(zp) be a ball of radius less
than 1. By Lemma [3.7.4] for each Q C Q, such that QAQ C B,(z0), the subminimality of Q
implies (for r <1)

m(P(Q) — P(Q) < / wdz + Cy <r + WWW) / wdH!
B (z0) r 8By (o) (5.7.1)

< Callwl| oo By zo)y ™

where Cj is a dimensional constant. Now since w is Lipschitz and vanishes on 0f), we have
W]l oo (B, (20)) < C7, hence equation (5.7.1]), implies

P(Q, By (20)) < P(Q, By(z0)) + Cre, (5.7.2)

where C' depends on the dimension d, the constant m and the Lipschitz constant of w (which,
in turn, depends only on the data of the problem). Moreover, by the perimeter subminimality,
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equation (5.7.2)) clearly holds true also for outer variations. Splitting every local variation Q of
Q) in an outer and inner variations, we obtain

P(Q, B,) — P(Q, By) = P(Q, B,) — (P(?z UQ,B,)+PQNQ,B,) - P, Br))
< P(Q,B,) — P(QNQ, B,)
<Ccrl, ¥V QAQC B, ().
Hence Q is a almost-minimizer for the perimeter in the sense of [89, 90]. From this it follows

that 99 is a C** manifold, outside a closed singular set ¥ of dimension (d — 8), for every
a € (0,1/2).

e Step 2. We want to improve the exponent of Holder continuity of the normal of 02 in the
regular (i.e. non-singular) points of the boundary. For this notice that, for every regular point
xo € 0), there exists a radius 7 such that 9Q can be represented by the graph of a C' function
¢ in B,(zg), that is, up to a rotation of coordinates

aQn BT(xO) = {:L‘d > (ﬁ(.Th ce ,wdfl)} N B,,«(a}()).

For every T € C}(B,(70); R?) such that T - vg < 0 and ¢ is sufficiently small, we consider the
local variation

Q= (Id + tT)(Q) C Q.
By the energy subminimality we obtain
m(P(Q) — P(Q)) < E(Q) — E(Q). (5.7.3)
Since T is supported in B, and 9QN B, is C', we can perform the same computations as in [71]
Chapter 5], to obtain that

2
E(Q) —EQ) = —t/ dwe T-vodH! + o(t). (5.7.4)
oonB, | OV
Moreover, see for instance [79, Theorem 17.5],
P(Qy) = P() +1 / divoeT dH*" + o(t) (5.7.5)
oQNB,

where divgaT is the tangential divergence of T'. Plugging ([5.7.4)) and ([5.7.5)) in (5.7.3)), a standard
computation (see [79), Theorem 11.8]), gives (in the distributional sense)

2
<C,

Vo 1 ’371)9
V| ———x | <~ | 5>
V1+1[Ve|? m | Ov
where the last inequality is due to the Lipschitz continuity of wg. Moreover applying (5.7.5)) to
outer variations of Q (i.e. to variations such that 7" - vq > 0) we get

Vo
V<\/1+\v¢|2> =

In conclusion ¢ is a C! function satisfying

Y R,
V1+ Vg2 ’

and classical elliptic regularity gives ¢ € C1?, for every a € (0,1). O






CHAPTER 6

Spectral optimization problems in RY

6.1. Optimal sets for the kth eigenvalue of the Dirichlet Laplacian

The aim of this section is to study the optimal sets for functionals depending on the eigen-
values of the Dirichlet Laplacian. A typical example is the model problem

min {)\k(Q) . Q C RY, Q quasi-open , |Q| = c}, (6.1.1)

where ¢ > 0 is a given constant. The existence of an optimal set for the problem was
proved recently by Bucur (see [20]) and by Mazzoleni and Pratelli (see [80]). The techniques of
the authors are completely different.

In [80] the authors reason on the minimizing sequence, proving that by modifying each
set in an appropriate way, one can find another minimizing sequence composed of uniformly
bounded sets. At this point the classical Buttazzo-Dal Maso theorem (see Theorem can
be applied.

The argument in [20] is based on a concentration-compactness principle in combination with
an induction on k. The boundedness of the optimal set is fundamental for this argument and
is obtained using the notion of energy subsolutions. We note that this technique can easily be
generalized and applied to other situations (optimization of potentials, capacitary measures, etc).
The price to pay is the fact that some restrictions are needed on the spectral functional. More
precisely, for the penalized version of the problem it is required that the spectral functional is
Lipschitz with respect to the eigenvalues involved, while in [80] was shown in the case of domains
this assumption can be dropped.

We note that by a simple rescaling argument (see Remark , the problem is
equivalent to

min {/\k(Q) +m|Q|: Q c R Q quasi-open }, (6.1.2)

for some positive constant m, to which we sometimes call Largange multiplier. For general
spectral functionals of the form

F(Q) = F()\kl(Q), cee )\;%(Q))7

the Lagrange multiplier problem is easier to threat, due to the fact that any quasi-open set can
be used to test . The connection between the optimization problem at fixed measure and
the penalized one is, in general, a technically difficult question; further complications appear if
we optimize under additional geometric constraints.

Our first result in this section concerns the existence of an optimal set for the problem
. Our result is more general and concerns shape optimization problems of the form

min {F(Akl(ﬂ), A, () + 9] - Q D, Q quasi-open }, (6.1.3)

where k1,...,k, € N and F': R — R satisfies some mild monotonicity and continuity assump-
tions.

179
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We will say that the function F': R? — R is:
e increasing, if for each x > y € RP, we have that F(z) > F(y)El;

e diverging at infinity, if lim, - F(x) = +oo;

e increasing with growth at least a > 0, if F' is increasing and the constant a > 0 is such
that, for every x > y, we have

F(z) — F(y) > alz — y|.

Theorem 6.1.1. Consider the set {ki,...,k,} C N and let F : R¥ — R be an increasing and
locally Lipschitz function diverging at infinity. Then there exists a quasi-open set, solution of
the problem . Moreover, under the above assumptions on F, every solution of s a
bounded set of finite perimeter.

If, furthermore, the function F is increasing with growth rate at least a > 0, then for every
optimal set €, there are p orthonormal and Lipschitz continuous eigenfunctions uy,, ..., ux, €
H{}(9), corresponding to the eigenvalues A, (), ..., Mg, (€2).

PROOF. Let Q, be a minimizing sequence for (6.1.3) in R%. By the Buttazzo-Dal Maso
Theorem for every n € N, there is a solution 2 of the problem

min {F(/\I(Q), M) 419 QCQ,, 0 quasi—open}. (6.1.4)

We now note that

e the sequence €27 is still a minimizing sequence for
e cach )} is a subsolution for the functional F(A1,..., \g) +] |-

By Theorem QF is a subsolution for E(£2) + m|Q|, where the constants m and ¢ from
Definition depend only on f, d and A\(€2)). Thus, by Lemma we can cover (2*
by N balls of radius r, where N and r do not depend on n € N. We can now translate the
different clusters of balls and the corresponding components of {2 obtaining sets (NZ’,; with the
same spectrum and measure as (2, for which there is some R > 0 such that diam(flfl) < R, for
some R not depending on n € N. After an appropriate translation we can suppose (2; C Bg.
Applying the Buttazzo-Dal Maso Theorem, we obtain the existence of a solution 2 of .

For the boundedness and the finiteness of the perimeter of the optimal sets, we note that by
Theorem any optimal set is an energy subsolution and so, it is sufficient to apply Theorem
4.2.10|

The existence of Lipschitz continuous eigenfunctions follows by Theorem [5.5.7] 0
We continue discussing the spectral optimization problems at fixed measure
min {F(Akl(Q), A, (Q): QC RY, Q quasi-open , || = c}, (6.1.5)

where the constant ¢ > 0, the function f : RP — R and ki,...,k, € N are given. We first note
that the problem

min {)\k(Q) . Q C RY, Q quasi-open , |Q| = c}, (6.1.6)

has a solution. Indeed, we have the following simple, but useful result.

L' We say that © = (z1,...,2p) >y = (y1,...,4p), if. ©; >y, for every j =1,...,p.
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Remark 6.1.2. Suppose that F and G are two functionals on the class of quasi-open (or
measurable) and suppose that 7 and G are homogeneous, i.e. there are real numbers o and 3
such that

FtQ)=t*F(Q) and  G@tQ) =t°G(Q), Vt>0.
Then given A > 0, Q* C R is a solution of the problem
min {}“(Q) FAG): QC Rd}, (6.1.7)

if and only if, Q* is a solution of

min {]—“(Q) . QCRY, GQ) = g(Q*)}, (6.1.8)
and the function

t s tOF () + tPAG(QY),

has minimum in ¢ = 1.

If the functional F is not homogeneous, the question is more involved and, in general, there
is no Lagrange multiplier A which allows to transform the problem into . For
functionals of the form F = F(Ag,, ..., A,), we have the following result, which allows to apply
the results from Chapters [] and

Proposition 6.1.3. Let G be a positive and 3-homogeneous functional. Suppose that the func-
tion I : RP — R is increasing, locally Lipschitz continuous and with growth at least a > 0. Then,
for every solution Q) of the problem

min {F()\kl (), M, () 1 QCRY, G(Q) = 1}, (6.1.9)

there are constants m and M such that Q is a local (with respect to the distance d.) subsolution
for the functional

F(Ak ()., Ak, () + mG(Q),

and supersolution for G and for the functional
F(Ae, (), A, () + MG().

PRrROOF. We first prove that 2 is a subsolution. Indeed, suppose that U C € and let ¢t =
(Q(Q)/Q(U))l/ﬁ. We note that G(tU) = G(€2) and so tU can be used to test the optimality of
Q. Suppose that t <1, i.e. G(U) > G(2). Then the inequality

F (Mg (), A, () +mG(Q) < F( My (U), ..., M, (U)) +mG(U),
trivially holds for any m > 0.

Suppose that ¢ > 1, i.e. G(U) < G(2). By the optimality of €2, properties (f2), (f3),
the trivial scaling properties of the eigenvalues and of the perimeter and the monotonicty of
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eigenvalues with respect to set inclusion, we obtain
0<F (N, (BU), .., A, (1U)) — F (A (), Q))
=F (M, (tU), ..., X, ((U)) — F (Mg, (U), . )\kp )
+F (M, (U), ..., M, (U)) = F ()\kl(Q), A, (Q))
at? = 1) | (A, (U), ..., A, (U))|
+F (M, (U), -, 2, (U) = F (Mg, (), -, Ak, ()

< a(G(@) % (G017 = 6@ ) | (U), . My ()]
+F (A (U)o Ay (0) = F (A (), gy ()

where L is the (local) Lipschitz constant of f and a > 0 is the lower on the growth of F'. Using

the concavity of the function z — 5 if B < 2, or the fact that G(U) < G(Q) if § > 2, we can
bound , ,

GU)? —G()F <C(Q)(GU) - G()),
which concludes the first part of the proof.

Consider the set Q D Q. We first note that G(Q) > G(€). Indeed, if this is not the case, we
have

tim (g(Q)/g@))w > 1,

snd so, for any k& € N, we have
AR(tQ) < M(9) < A(9).

On the other hand g(tﬁ) = G(Q) and so, by the optimality of Q and the strict monotonicity of
F', we have

0 < f (Mg (1), -, Mgy (82)) — £ (Mg (), -+, A, ()
< (@) Ak, (2)) = f (A (), A, () 0,

which is a contradiction and so, we have G(Q) > G(Q) and ¢ < 1. We now reason as in the
subsolution’s case.

0 < F(\, (19),. tQ) F (A, (92, Q))
= F(\, (19),. tQ)) — F (A, (), )\kp Q))
+ F(/\kl(ﬂ), .. .,)\kp(Q)) - F()\kl(Q), A ()
<Lt2-1) ‘(A,ﬂ(ﬁ), o Akp(ﬁ))’

FF (N (), A, () = F (M (), -, Ak, ()
< L(G(®) 7 (67— G(@)7) |, () A, ()]
FF (N (), A, () — F (M (), -+, A, (),

where L is the Lipschitz constant of f. Now the conclusions follows estimating the difference
~ 2 2
G()% —G(Q)5, as in the previous case. O

=N

Remark 6.1.4. We note that the conclusions of Proposition hold also if we substitute
Akys -« -5 Ak, With any p-uple Fi, . .., F, of functionals, which are positive, decreasing with respect
to the inclusion and a-homogeneous, for some a < 0.
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We are now in position to prove an existence of optimal sets for problems with measure
constraint.

Theorem 6.1.5. Consider the set {ki,...,k,} C N and suppose that the function f:RP — R
s increasing, locally Lipschitz continuous with growth at least a > 0. Then there exists a
solution of the problem . Moreover, any solution Q of 1s a bounded set with finite
perimeter and there are orthonormal Lipschitz continuous eigenfunctions ug,, ..., ux, € H&(Q),
corresponding to the eigenvalues Mg, (€2), ..., Mg, (€2).

PROOF. We argue by induction on the number of variables p. If p = 1, then thanks to the
monotonicity of f, any solution of (6.1.6) is also a solution of (6.1.5)) and so we have the claim

by Theorem and Remark

Consider now the functional
F(Q) = F(Akl(ﬂ), .. .,)\kp(Q)),

and let €2, be a minimizing sequence for (6.1.5). We now apply the quasi-open version (see
Remark [3.7.10|) of Theorem to the sequence €,,. Note that the vanishing (Theorem [3.7.9)
(it)) cannot occur since the sequence (Mg, (Qn), ..., Ak, (2,)) € R? remains bounded. On the

other hand, by the translation invariance of Ay, we can reduce the case Theorem (i2) to
(i1). Thus we have two possibilities for the sequence Q,,: compactness (i1) and dichotomy (iii).

If the compactness occurs, then by (i1) and the continuity of f, we have
nILH;oF(Akl (Qn), ey )\kp (Qn)) = F()\kl (N), c. ,)\kp(,u)),

where the capacitary measure u € ML _(R?) is the y-limit of Ig,. Let Q := Q,. Then p > Iq

cap
and by the monotonicity of A; and f, we have

F (1), A, (1) < F (A (), -, A, ().

Thus, it is sufficient to note that |2| < ¢, which follows since €,, weak-y-converges to 2 and so
we can apply Lemma [2.2.21

Suppose now that the dichotomy occurs. We may suppose that €, = A, U B,, where
the Lebesgue measure of A,, and B,, is uniformly bounded from below and dist(A4,, By,) — .
Moreover, up to extracting a subsequence, we may suppose that there is some 1 <[ < p and
two sets of natural numbers

1<a; < - < and 1< B4 < -+ < Bps
such that for every n € N, we have that the following to sets of real numbers coincide:
{)\al(An), v A (An)s Mgy (Bn), - Aﬁp(Bn)} = {)\kl(Qn), .. .,)\kp(Qn)}.

Indeed, if all the eigenvalues of §2,, are realized by, say, A, arguing as in the proof of Theorem
we can construct a strictly better minimizing sequence. Moreover, without loss of generality
we may assume that

Ao (An) = Mg, (), Vi=1,...,1, and Ag;(Bn) = A, (), Vi =1+1,...,p.
We can also suppose that for every ¢ and j, the following limits exist:

Ay, 1= nlgrolo A, (An) and Aj, = lim Ag (By).

& J n—00
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By scaling we also have that without loss of generality
|An| = ca and |Bp| = cg,

where ¢, and cg are fixed positive constants.
Let F,, : R — R be the restriction of F' to the [-dimensional hyperplane

{(xl,...,xp) eRP: x; :)\:g]_, j:l+1,...,p}.
Since [ < p, by the inductive assumption, there is a solution A* of the problem
min {Fa (Aai(A), ..., A (A)) s AC R?, A quasi-open, |A| = ca}, (6.1.10)
and since F' is locally Lipschitz, we have

lim F(Aa; (An)s -+ Aar(An)s Mgy (Bn)s -+ Ag, (Bn))

n—oo

= Tim F(Aay (An), s Ay (An)s N, o- - A3,

n—o0

> F(ag (A7), A (A7), N5 M)

= lim F(Aa, (A%), .. A (A%), A8, (Br), - As, (Bn)),

n—o0

and thus the minimum in is smaller than the infimum in . Moreover, A* is
bounded and so, up to translating B,, we may suppose that dist(A*, B,) > 0, for all n € N.
Thus, the sequence A* U B,, is minimizing for .

Let now Fj : RP~! — R be the restriction of F to the (p — [)-dimensional hyperplane

{(ml,...,xp) ERP: z; =N, (AY), i = 1,...,1},
and let B* be a solution of the problem
min {FB(/\61+1(B)7 .., A8,(B)): BC R?, B quasi-open, |B| = c5}. (6.1.11)

Clearly the minimum in is smaller than the minimum in and so than that in
. On the other hand, since both A* and B* are bounded and the functionals we consider
are translation invariant, we may suppose that dist(A*, B*) > 0. Thus the set Q* := A* U B* is
a solution of .

In order to prove the boundedness of a generic optimal set €2 and the finiteness of its
perimeter, we first note that, by Proposition with G(2) = |2, we have that that € is a
subsolution for the functional F’ ()\k?17 e )\kp) + |- |. Thus, by Theorem Q is an energy
subsolution an so the claim follows by Theorem [4.2.16 O

6.2. Spectral optimization problems in a box revisited

In Section we proved the Buttazzo-Dal Maso Theorem (see Theorem , which con-
cerns general decreasing and lower semi-continuous (with respect to the strong-vy-convergence)
shape functionals. Here we discuss more deeply the case when the box is an open subset of R?,
proving some additional properties of the optimal sets. We start by noting that the technique
from the previous section can be used to easily show that the box D C R? need not be bounded
or of finite measure in order to have an existence for the problem

min {F(Akl(Q), A () 19 Q€ D, Q quasi-open } (6.2.1)
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Theorem 6.2.1. Suppose that the function F : RP — R is locally Lipschitz continuous and
increasing. Suppose that the open set D C R wanishes at infinity, i.e. is such that

lim sup |(D\ By) N Br(z)| =0,

n—oo zERA

for every R > 0. Then there is a solution of (6.2.1). Moreover, any solution of (6.2.1) is a

bounded open set of finite perimeter.
PRrROOF. Consider a minimizing sequence (2,, and let 2}, be the solution of
min {F(Al(Q), oN@)H1Q QCQ,, 0 quasi—open}. (6.2.2)

As in Theorem we have that each (2 can be covered by NN balls of radius r, where N
and r do not depend on n € N. Let A, be an open set of at most N balls of radius r such
that 2y C A,. We can suppose that the number of connected components of A,, is constantly
equal to Ng < N. Moreover, each connected component A%, for j = 1,..., N¢ is such that
diam(A%) < R, for some universal R not depending on n and j. Since (2} is minimizing, we can
also suppose that for each j =1,..., N¢,

liminf |A7 N Q| > 0.
n—oo
Thus, by the condition (b), the sequence dist(0, Aﬁl) remains bounded as n — oo. Thus, there

is some R > 0 such that {2}, C By and so, we can apply the Buttazzo-Dal Maso Theorem
obtaining the existence of an optimal set. The boundedness and the finiteness of the perimeter

are again due to Theorem and Theorem O
Remark 6.2.2. The problem at fixed measure also admits optimal sets
min {F()\kl(Q), <\, (Q) 1 QC D, Q quasi-open , [ = c}, (6.2.3)

when the box D has finite measure. Since the presence of the external constraint D can sig-
nificantly complicate the passage from the problem at fixed measure to the penalized
problem . Below we provide an example for an optimal sets (at fixed measure), which is
bounded and has infinite perimeter.

Example 6.2.3. Suppose that D = D; U D, C R?, where
Dlz{(x,y)eRd: x>1, 0§y§1/x2}, (6.2.4)
and Dy = D; + (2,0). Thus, the solution of the problem
min {)\1(9) : Q C D, Q quasi-open, | = 1}, (6.2.5)

is one of the sets D; or Dy, which are both unbounded with infinite perimeter. A more compli-
cated counter-examples can be given also in the case when D is connected. In conclusion, we
note that this example shows that the analogue of Proposition [6.1.3]in a box D is in general
false, since the subsolutions for A; + m/| - | are necessarily bounded sets.

In the rest of this section, we aim to prove some regularity properties of the optimal quasi-
sets for low eigenvalues. In particular, we prove that the problem

min {\;(Q) + m|Q[: Q@ C D, Q open}, (6.2.6)
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has solution in the cases k = 1 and k = 2, when D is an open set vanishing at infinity. We note
that for D = R? this is trivial since the solutions are given, respectively, by a ball (for k = 1)
and two equal balls (for k£ = 2).

It was first proved in [17] that if D is open, then every solution of the problem

min {\(Q) +m|Q]: Q C D, Q quasi-open}, (6.2.7)

is a bounded open set. The analogous problem for higher eigenvalues (even for Ay) remained
open for a long time, the reason being that the available regularity techniques were based on the
classical approach by Alt and Caffarelli (see [1]) and can be applied for functionals of energy
type.

As far as we know, the first result for higher eigenvalues, was obtained by Michel Pierre who
claimed that if D is an open set of finite measure and 2 is a solution of

min {A2(Q) +m|Q|: Q C D, Q quasi-open}, (6.2.8)

such that \o(2) > A1(Q), then Q is (equivalent to) an open set. This, in fact, gives the existence
of an open solution of (6.2.8)), provided that the following conjecture holds:

Conjecture 6.2.4. Suppose that D' = () and D¢ is a bounded open set. Then any solution
of (6.2.8) is given by two disjoint equal balls or is equivalent in measure to a set Q) such that

Ao () > M (Q)F

In [29] a direct proof was given to the fact that every solution of contains an open
set, which is solution of the same problem. It was proved that, if us is a sign-changing second
eigenfunction on the optimal quasi-open set €2, then the two quasi-open level sets {ug > 0} and
{ug < 0} can be separated by two open sets, in which case regularity results for the problem
can be applied.

We start discussing the regularity of the optimal quasi-open set for the first eigenvalue of
the Dirichlet Laplacian (originally proved in [17]).

Proposition 6.2.5. Suppose that the quasi-open set € is a solution of the problem , where
D is an open set. Then ) is open and the first eigenfunction u € H&(Q) is locally Lipschitz
continuous in D. If, moreover, the external constraint D is such that its energy function wp is
Lipschitz continuous on R®, then u is also Lipschitz continuous on R®.

PROOF. We first note that the openness of €2 and the local Lipschitz continuity of u follow
by Proposition [5.1.3] Moreover, as we saw in the proof of Lemma [5.1.1] there is a constant
Cy > 0 such that, for every ball B,(z¢) C D¢, we have

(]Br(mo) \ Q| > 0) = (L wdH < mCdr>. (6.2.9)
|0B:| JaB, (z0)

Suppose now that w := wp is Lipschitz continuous. Since u € L°°, by the maximum
principle, there is a constant C' such that u < Cw. Let now x¢g € 9Q and let 0 < r < rg. If
we have that B,(zg) C D, then holds. If there is y € 9D such that |xo — y| < r, then
u < 2CLr on 0B, (xp), where L is the Lipscitz constant of w, and so holds again with
2C'L in place of mCy4. Now the conclusion follows by Corollary O

2We note that if Q is a solution of , then there are disjoint quasi-open sets 21,2 C € such that
Q1 UQy is also a solution of (it is sufficient to take the level sets Q1 = {uz > 0} and Q2 = {u2 < 0} of the
second eigenfunction uz on ). Our conjecture is based on the supposition that we can add part of the common
boundary of €2; and €22, thus obtaining a quasi-connected quasi-open set of the same measure.
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Before we proceed, with the study of the problem (/6.2.8]), we need a regularity result for the
optimal set for A; for fixed measure. The main tool is the following Lemma due to Briancon,
Hayouni and Pierre (see [17]).

Lemma 6.2.6. Suppose that €2 is a solution of the problem
min {)\1(9) : QC D, Q quasi-open, | = c}, (6.2.10)

where ¢ < |D| and D is a quasi-open set of finite measure. Then, there is some m > 0 such that
Q is a supersolution for \1 +m|-| in D.

PROOF. We will prove that there is some m > 0 such that 2 is a solution of the problem
min {)\1(9) +m(Q—-c)T: QCD, Q quasi—open}. (6.2.11)
Suppose that €, is a solution of . We have two case. If |Q,| < ¢, then we have
M () = A1(Qn) + (1| — )T < A(Q) +m(1Q] — )T = Au(2) < X(Qm),

and so, all the inequalities are equalities, which gives the optimality of Q. Suppose that |,,| > ¢
and let u be the first normalized eigenfunction on €2,,,. Then ), is a local shape subsolution for
A1 + m| - | and so, by Theorem and the following Remark we have

(@) > ea/m||' T > cav/mes,
which is absurd for m large enough (at least for d > 2, while the case d = 1 is trivial). O

Corollary 6.2.7. Suppose that € is a solution of , where D C R is an open set of
finite measure. Then £ is an open set and the first eigenfunction u of  is locally Lipschitz
continuous on D. If, moreover, the energy function wp is Lipschitz continuous on R%, then u
is also Lipschitz continuous on RY.

We are now in position to state our first result concerning the optimal set for As.

Proposition 6.2.8. Suppose that D C R? is an open set of finite measure and that Q is a
solution of the problem

min {)\Q(Q) +m|Q: QC D, Q quasz'—open}. (6.2.12)
Then there is an open set w C §), which is also a solution of (6.2.12)).

PROOF. Let up € H}(Q) be the second normalized eigenfunction of the Dirichlet Laplacian
on . Note that we can assume that ug changes sign. Indeed, if ug > 0, then Q@ = {u; >
0} U{uz > 0} and moreover, by the optimality of 2, we have A\;({u1 > 0}) = A ({uz > 0}),
and so u; — ug is a second eigenfunction which changes sign on Q. Let now Q4 = {us > 0}
and Q_ = {uz < 0}. Since A\2(2) = A2(Q4 UQ_), we have that Q4 UQ_ is also a solution of

(6.2.12). Suppose that Q@ C Q. Then
M)+ Q)+ Q-] = QU )+ |QUQ_|
> X(QpUQo) 4+ QU |
= M(Q4) + [Q4 | + [,
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and so, {24 and, analogously, Q2_ are subsolutions for A\; + | - | and, as a consequence, energy
subsolutions. By Proposition there are open sets D, and D_ such that Q. C Dy,
Q_cD_, 2. ND_=0and Q_NDy =0. Thus Q4 is a solution of

min{)\l(Q) : QC DND4, Q quasi-open, Q] = ]Q+]},

and so, by Corollary Q4 is open. Analogously, also Q2_ is open, which concludes the
proof. O

6.3. Spectral optimization problems with internal constraint
In this section we consider problems of the form
min {F(/\kl(Q), C A, (Q) + 19 D' C Q C RY Q quasi-open }, (6.3.1)

where {ki,...,kp} C N and D' ¢ R? is a given quasi-open selﬂ, to which we usually refer to as
internal constraint. Before we state our main results we need some preliminary results.

6.3.1. Some tools in the presence of internal constraint. The following is a general-
ization of the notion of a subsolution

Definition 6.3.1. Given the quasi-open set A, we say that the quasi-open set €2 is a shape
subsolution in A for the functional F if

F(Q) < Flw), YwCQ, w quasi-open, QAw C A. (6.3.2)

We say that Q is a local shape subsolution, if there is some € > 0 such that (6.3.2) holds only
for quasi-open sets w such that d(Iq, 1,) < €.

We will often use this notion in the presence of internal constraint D?, taking A = R¢\ D,
The following Theorems are analogous to (4.2.16) and Theorem m so we limit ourselves to
state the precise results.

Theorem 6.3.2. Suppose that the set ) is a local shape subsolution in A for the functional
E(Q2) +m|Q|. Then there are constants C' > 0 and ro > 0, depending only on m, d, € and A,
such that for every 0 < r < g, the set QN A, can be covered by Cr=%1 balls of radius r, where
A, ={z € R: dist(x, A) > r}. Moreover the perimeter of Q0 in A, P(2; A) is finite.

Theorem 6.3.3. Suppose that the set § is a shape subsolution in A for the functional

where F : R¥ — R is a locally Lipschitz function in R¥. Then there are positive constants m > 0
and € > 0, depending only on d, Q) and f, such that ) is a local shape subsolution in A for the
functional E(Q) + m|Q|, where € is the constant from Definition [6.3.1]

A fundamental tool allowing to understand the behaviour of a minimizing sequence for
(6.3.1) in R? is the concentration-compactness principle for quasi-open sets. We state here the
result in the presence of internal constraint.

Theorem 6.3.4. Let ), be a sequence of quasi-open sets of uniformly bounded measure, all
containing a given non-empty quasi-open set D*. Then, there exists a subsequence, still denoted
by Qy,, such that one of the following situations occurs.

3The index i stands for internal.
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(i) Compactness. The sequence ), y-converges to a capacitary measure jn and Rq,, converges
in the uniform operator topology of L*(R?) to R,,. Moreover, we have that D' C Q.
(ii) Dichotomy. There exists a sequence of subsets Q, C Q,, such that:
* [[Ro, — Rg, llz(r2@ayy — 0;
o O, is a union of two disjoint quasi-open sets Qy, = QruQ;
° d(QI, Q;) — 00,
e liminf, o |QF] > 0;
e limsup,,_,.. |2 N DY =0 or limsup,,_,, |2, N D! = 0.

PROOF. Since €2, is a sequence of quasi-open sets of uniformly bounded measure we can
apply the quasi-open version (see Remark of Theorem Thus it is sufficient to
prove that the compactness at infinity (72) and the vanishing (7i) cannot occur. Indeed, the
vanishing cannot occur, since by the maximum principle we have wgq, > wp:, for every n € N.

Suppose that we have that compactness at infinity, i.e. there is a divergent sequence x,
such that w,, 1, converges in L'(R?) (and so, also in L?(R%)). We note that the energy
function solution wpi, is just wp: translated by . By the maximum principle, we have that
WQ, 4z, = Wpiy,, and so

/wpi+xnw9n+wn dx > /w%i dz > 0.

On the other hand, since z,, — 0o, we have that wpi,, — 0 weakly in L?(R%). By the strong
convergence of wq, 4, in L?(R?) we have

/QUDi_;’_xann_i_xn dr — 0,

which is a contradiction.

It remains to check that the last claim from the dichotomy case. Indeed, since d(Q2;}, Q) —
0o, we have that one of the sequences of characteristic functions Lo+ or 1g- has a subsequence,
which converges weakly in L2(RY) to zero. Taking into account that 1%, € L2(R%), we have the
claim. U

6.3.2. Existence of an optimal set. We start by a discussion of the case of bounded
internal constraint D?, in which the existence can be obtained in the same manner as in Theorem
6. 1.1

Let F' : RP — R be a given increasing and locally Lipschitz function which diverges at
infinity. Suppose that D' is a bounded quasi-open set. Then the problem has a solution.
Indeed, suppose that €, is a minimizing sequence for and, for each n € N, consider the
solution 2} of the problem

min {F()\kl (Q),..., A, (V) + 19 : D' C Q C Q,, Q quasi-open } (6.3.3)

Then €, is a subsolution for F' (A, (), ..., A, () + |Q] in B, where Bg is a ball containing
D. By Theorem we have that each (2} is a local shape subsolution in B, for E(§2) +m|Q,
for some universal constant m and so Theorem [6.3.2] applies. Reasoning as in Theorem [6.1.1
we can suppose that the sets €2} are all contained in a ball of sufficiently large radius R >> 0.
Applying the Buttazzo-Dal Maso Theorem, we obtain the existence of a solution of .
We note that this argument works only if the internal constraint D? is bounded. The reason is
that Theoremmgives only that we can choose (,, to be in the set Di, = {x : dist(x, DY) < R},
for some R > 0 large enough. But the set D% has finite measure only if D* is bounded. Thus,
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for the general case we will use an argument based on the concentration-compactness principle
from Theorem [6.3.41
In order to prove existence for general internal obstacles D¢, we first consider the problem

min {)\k(Q) +m|Q] : D'cQCRY Q quasi—open}, (6.3.4)
where k € N, m > 0 and D’ C R? is a quasi-open sets. We have the following existence result.

Theorem 6.3.5. Let D' C R? be a quasi-open set of finite Lebesque measure and suppose that
the set RY \ﬁ contains a ball of radius R, where R > 0 is a constant depending on k, m and
d. Then the problem has a solution. Moreover, any solution 2 of s such that
QcC (D + Bﬁ), where R > 0 is a constant depending only D', k and m. In particular, if D
1s bounded the optimal sets are also bounded. Finally, there is an eigenfunction uy € H&(Q),
corresponding to the eigenvalue N\ (), which is Lipschitz continuous on R,

PROOF. We note that in the case D' = ) the claim follows by Theorem Thus we
suppose 0 < |D!| < co. We also note that if an optimal set exists, then Theorem and
Theorem [6.3.3] give the last claim.

Let ,, be a minimizing sequence for (6.3.4]). We apply to €2, the concentration-compactness
principle [6.3.4] If the compactness occurs, then we obtain the existence immediately. Thus, we
only need to check what happens in the dichotomy case.

We first prove that (b) holds, then the dichotomy is impossible and so we have the existence.
In fact, if the dichotomy occurs and Q. and €2 are as in Theore then we can suppose
that dist(0, 2, ) — oco. But then (b) implies that A1(2,;) — oo and so, for n large enough

M (2 U Q) = () < A( U DY),

which is absurd, since liminf,,_, |2,] < liminf |7 U D.

Suppose now that (a) holds and that we have dichotomy. We also suppose that
lim |Q,|=c- >0  and lim |Q, ND'| =0.
n—oo n—oo

Since (2, is a minimizing sequence, we can assume:

o A\ (4h) > M(QF UQ), since otherwise we would have
lim inf (D) +m|QF uD < lim inf A (Q2n) + m|QT UD| < lim inf A (Qn) + m|Qn| — me-,

which is a contradiction;

o \e(2) > Me(QF UQy), since otherwise we would have that the disjoint union Q* U D
is optimal for , where 2* is the optimal set for \; with measure constraint c_
placed in such a way that Q* N D’ = (. In the case k = 1, this is a contradiction
with the minimality. In fact in this case 2* is a ball of measure c_ which does not
intersect D’. Taking a ball B of slightly larger measure intersecting D?, we obtain a

better competitor for (6.3.4)).

Thus, we obtained that for £k = 1 the dichotomy does not appear and so we have the first step
of the induction.
For k > 1, we can assume that there is some 1 <[ < k — 1 such that

Me(QFUQT) = max {Ak_l(Qj{), )\Z(Q,j)}.



6.3. SPECTRAL OPTIMIZATION PROBLEMS WITH INTERNAL CONSTRAINT 191
Let (2;7)* be the solution of
min {)\k,l(Q) +m|Q|: D'CcQCQf, Q quasi—open},
and let 2* be a solution of
min {/\I(Q) : Q c R? Q quasi-open, Q| = c_}.

By Theorem and Theorem we have that all (£2;7)* can be covered by a finite number
of balls of sufficiently small radius. We now translate the connected components of this cover in
R?\ D, obtaining a set O which has the same measure and spectrum as (€27)* and is contained
in D4 By, for some R not depending on n. We now can choose * in such a way to not intersect
any of the sets (NZ;{ We claim that the sequence Qj{ U Q* is still minimizing for . Indeed,
we have

lim A () +m|Q| = lim A\ (QFUQ) +m|QF UDY +m|Q, |

n—oo n—oo

— lim max{Ak_l(Qg),Al(Q;)} | U D 4+ m| Q|

n—o0

= lim max{)\k_l(Qj;) +m|QTUDY, N(Q,) + m|Q) UDi|} + me_

n—oo

> tim ma { Ao (@) + mIS] L M%)+ ml; |} +me

n—oo

n—oo

= lim max {)\k_l(ﬁ:{), )\l(Qi)} +m|QF U,

We now again apply the concentration compactness principle, this time to the sequence Q:{ .
If O ~y-converges to a capacitary measure u, then the set ©, U Q* is a solution of . If
we are in the dichotomy case of Theorem then we reapply the above argument to the
sequence ?2;'{ , obtaining a minimizing sequence of sets composed of optimal sets for some A; in
R? and a sequence of sets containing D’ laying at finite distance from the internal constraint
D’. We note that this procedure stops since, as we saw above, the dichotomy in the case k = 1
is impossible for minimizing sequences.

The existence of Lipschitz continuous eigenfunction follows by Theorem [5.5.3 g
We are now in position to state our main result.

Theorem 6.3.6. Let D' C R? be quasi-open sets such that D' has finite Lebesque measure and
the set RY \ﬁ contains a ball of radius R, where R > 0 is a constant depending on k, m and d.
Then for every increasing and locally Lipschitz function F : RF — R, the problem has a
solution.

Any solution 2 of is such that Q C (D' + BE)’ where R > 0 is a constant depending
only D', f and m. Moreover, if F has growth bounded from belouﬂ then there are orthonor-
mal eigenfunctions uy,, ..., ux,, corresponding to the eigenvalues Mey (), /\kp(Q), which are
Lipschitz continuous on RY.

PROOF. The proof follows by induction on the number of variables of F', exactly as in
Theorem the first step of the induction being proved in Theorem [6.3.60] The Lipschitz
regularity of the eigenfunctions follows by Theorem [5.5.7] O

4Recall that a function F : R” — R has growth bounded from below, if there is a constant a > 0 such that
for each > y € RP, we have F(z) — F(y) > alz — y|.
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Using the same argument we can deal with the fixed measure version of the above results.
As we saw in the case of external constraint, the presence of the geometric obstacle makes
the passage from the problem at fixed measure to the penalized problem quite complicated.
Thus, proving the boundedness of the optimal set, which was one of the fundamental steps in
Theorem and Theorem becomes a difficult and in some cases impossible task. Thus,
the existence result for the problem

min {F()\kl(ﬂ), .. .,)\kp(Q)) : D' c Q c R Q quasi-open, |Q = c}, (6.3.5)
relies on the following result.

Proposition 6.3.7. Suppose that the internal constraint D satisﬁeﬂ

D'\ tD'
lim sup D'\ ¢ < 0. (6.3.6)
t—1+ t—1

Suppose that the function F : RP — R s locally Lipschitz and that there is a > 0 such that
F(z) — F(y) > alx —y|, Yy >z € RP.

Then every solution of the problem (6.3.5)) is a shape subsolution for the functional F()\kl, e ,/\kp)—{—
m| - |, for some m > 0, depending on a, D' and the dimension d.

PROOF. Let Q) be a solution of (6.3.5)). Suppose by contradiction, that for each ¢ > 0, there
is some quasi-open set €. such that D' C Q. C €,

F(Mey (Q2), - Ay () 4+ 2| < F( Ay (), .., A, () + €9, (6.3.7)
and note that by the optimality of {2 we necessarily have |2\ Q.| > 0.
By the compactness of the inclusion H} () C L?(€), we can suppose, up to a subsequence

that 2. y-converges to some capacitary measure p, whose regular set €2, is such that

Q,| < liminf |
|2, < lim nf |€2.],

Ae(§) < Ae(p) = lim Ax(Q2), vk € N.
Thus, by (6.3.7) we have that
Moy () = Ay () 5 oy Ak, () = Ak, ().

Note that [€2,| = |Q| = lim._,0|€2|. Indeed, if this is not the case, then the set ¢, U D", for
some t > 1 such that [tQ. UD| = ||, is a better competitor than Q in (6.3.5).

5This condition is for instance satisfied if D is bounded and Lipschitz, or if D¢ is starshaped.
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Let QL = ¢.Q. UD?, where t. is such that |Q2.| = c¢. Then, we have that
F(Mey (Q2), -+, Ay (92)) +€lQ:] < F( Ay ()., Ak, () + ]9

< F (Mg (Q0), 5 Ak, () + 2|
< F (M (8%, oo, A, (8:0)) + ]tQe U DY)
SF (82 M (), 122 Ak, () + € ([teQe| + D7\ 10

< PN (), .t 220, (Q0)) +e ([tQ] + D\ D7),
and so

t2—1 d i i
S w92, M (2) < ¢ (2 = DIl + D"\ D7) (6.3.8)

Passing to the limit as € — 0 we have t. — 17 and so, by (6.3.6)), there is some constant C' such
that for € small enough

a

‘()\kl (Qa); ey Akp (QJ)‘ < eC.

Passing to the limit as ¢ — 0, we have a contradiction. g

As a consequence of this result and the argument from Theorem and Theorem
we have the following:

Theorem 6.3.8. Suppose that the function F': RP — R is locally Lipschitz, diverges at infinity
and that there is some a > 0 such that

F(x)— F(y) > alx —y|, Yy >z € RP.

Suppose that D' C RY is a quasi-open set such that R? \ﬁ contains a ball of sufficiently large
radius and we have , ,
DD
limsup —— < o0
t—1t t—1
Then the problem (6.3.5) has a solution. Moreover, any solution ) of (6.3.5) is such that

QCD + By, where R >0 is a constant depending only D¢, f and c.

6.3.3. Existence of open optimal sets for low eigenvalues. In this subsection we
prove that the problem

min {)\k(Q) +m|Q: D'c QCRY Q open}, (6.3.9)

admits open solutions for £ = 1,2. The case kK = 1 was treated in [25] by the classical Alt-
Caffarelli technique, where was proved that any optimal set is necessarily open. An analogous
result for £k = 2 was, as far as we know, the first complete result concerning the openness of
an optimal set for higher eigenvalues. Our approach was inspired by the Pierre’s claim for the
optimal sets in a box and that the internal obstacle D' can be used to glue together the two
level sets {us < 0} and {us > 0} of the second eigenfunction us € H} (), thus proving that the
optimal set {2 must be (quasi-)connected and so, A\a(2) > A1 ().

We start discussing the regularity of the optimal quasi-open set for the first eigenvalue of
the Dirichlet Laplacian.
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Proposition 6.3.9. Suppose that the quasi-open set € is a solution of the problem
min {)\1(9) +m|Q: D'CcQCRY Q open}, (6.3.10)

where D is an open set of finite measure. Then §) is open and the first eigenfunction u € Hg ()
is Lipschitz continuous on RY.

PRrOOF. We first note that by Theorem [6.2.% there is a Lipschitz continuous first eigen-
function u; € Hg (). Then Q = {u; > 0} UD?, which is an open set. O

Proposition 6.3.10. Suppose that ) is a solution of the problem

min {)\Q(Q) +1Q: DPcQcR?Y Q quasz'—open}, (6.3.11)
where D' is a connected open set. Then there is an open set w C Q, which is also a solution of
(16.3.11)).

PROOF. Let us € HZ () be the second normalized eigenfunction of the Dirichlet Laplacian
on Q. Suppose first that uy changes sign and consider the set w = {us # 0} U D" If Ap(w) >
A1(€2), then by Lemma we have that wug is Lipschitz and so, w is open. If A2(Q2) = A1 (),
then wuo is also the first eigenfunction on w and so both u; and u, are first eigenfunctions. Thus,
if {ug > 0} N'D* # (), by the strong maximum principle on the connected open set D!, we have
that D! C {ug > 0} and by the optimality of w, {uz < 0} is a ball. Thus, we have that

M ({ug > 0}) = A\ ({ug < 0}) = Cyl{ua < 03742,
and so, we have that {ug > 0} is the solution of
min {)\1(9) FOMQ) Y2110 D; C Q}

Consider the function f(t) =t + C4t~%? and note that its minimum is achieved for t = \;(B),
where B is the ball minimizing A1 + | - | in R%. If {uz > 0} is not a ball, then we have that
' (A ({uz > 0})) > 0 and so {us > 0} is a local supersolution for A\; + m| - |, for some m > 0.
Thus, applying again Lemmal[5.1.1]as in Proposition [5.1.4] we have the claim in the case when ug
changes sign. If ug > 0 the argument is the same as in the disconnected case A2(2) = A\1(2). O

6.3.4. On the convexity of the optimal set for \;. Suppose that D' ¢ D C R¢ are
given (quasi-)open sets and let Q2 be a solution of

min{)\l(Q) : D' C QC D, Q quasi-open, |Q| = c}. (6.3.12)

It is natural to ask if some of the qualitative properties of the obstacles D? and D are transferred
to the optimal set €. The boundedness for example is such a property, i.e. if D’ is bounded,
then so is 2. A long-standing conjecture concerns the convexity of the optimal set.

Conjecture 6.3.11. Suppose that € is a solution of
min{/\l(Q) : QC D, Q quasi-open, | = c},

where the external constraint D¢ is a bounded convex open set. Then §) is conver.

6Alternatively, one may use Proposition
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FiGure 6.1. Convex internal obstacle does not imply convex optimal set.

Here we give a negative answer to the analogous question for a convex internal constraint.
More precisely, we prove that a solution €2 of the optimization problem

min {/\I(Q) . D' c Q c R% Q quasi-open, |Q| = c}, (6.3.13)

might not be convex, even if the constraint D* is convex.

1 1

Consider the sequence of internal constraints D%, where D!, = (—+, +) x (-1, 1) and consider

the sequence of optimal sets €, for the problem (6.3.13)) with internal constraint Df.

Proposition 6.3.12. For every ¢ < 4/m, there is N > 0 such that Q, is not convex for all
n > N.

PrROOF. We begin with some observations on the optimal sets.

(1) By a Steiner symmetrization argument, all the sets (2, are Steiner symmetric with re-
spect to the axes z and y (in consequence, they are also star-shaped sets).

(2) For n large enough, we consider the set ), = D,, U B*(c — ), where for any constant
a > 0, B*(a) denotes the ball with center in 0 and measure a. By the optimality of €,

we have
4

M Q) < M(Q,) < M (B*(c— 5))
By Theorem Q,, has a y-converging subsequence, still denoted by €,,. Let £ be the y-limit
of this subsequence. Then

e A\(©) <liminf A (Q,) <liminf A\ (B*(c — %)) = A1 (B*(¢));

n—oo n—oo
o Q] <liminf|Q,|=rc
n—o0

Using the fact that the ball is the unique minimizer of A\; under a measure constraint, we obtain
Q = B*(c). Consider now the two small balls B’, of center (0, /< —¢) and radius €, and B”, of
center (0, —/< + ¢) and radius e. Then we have

Q,NB ——QnB'=B" and Q,nNB"—-QnB"=B"

n—o0 n—oo
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Then there is some n large enough such that both sets B’ N, and B” N, are non-empty, and
Q,, cannot be convex (see Figure .

In fact, if by contradiction 2,, was convex, then we should have that the rhombus R with
vertices (—1,0), (0,—/<+¢), (1,0) and (0, /< —¢) is contained in ,. But

RI=2 /50> 0

for € small enough and ¢ < 4/m, which is in contradiction with the measure constraint. OJ

6.4. Optimal sets for spectral functionals with perimeter constraint

In this section we study the existence and regularity of optimal sets for spectral functionals
under a perimeter constraint in R%. In particular we study the shape optimization problem

min {F()\kl(Q), A () QCRY Qopen, P(Q) =1, Q] < oo}, (6.4.1)

where the function F': RP — R is such that:

(F1) F diverges at infinity, i.e. F(x) — 400 as || — 400;

(F2) F is locally Lipschitz continuous;

(F'3) F is increasing, i.e. for any z = (z1,...,2p) € R? and y = (y1,...,yp) € RP such that
x >y, i.e. satisfying x; > y;, for every j =1,...,p, we have F(x) > F(y). More precisely
we assume that for every compact set K C R?\ {0}, there exists a constant a > 0 such
that for any z,y € K, x > v,

F(x) — F(y) > alz — y|.

Remark 6.4.1. Any polynomial of g, ..., A,, with positive coefficients, satisfies the assump-
tions (F'1), (F2) and (F3).

As in the case of measure constraint, we simplest case when F' depends only on one of the
variables. By the monotonicity of F', this case is equivalent to solving

min{)\k(ﬂ) : QCRY Qopen, P(Q) =1, |Q] < —l—oo}, (6.4.2)
which, by Remark is equivalent to

min {/\k(Q) +mP(Q): QcRY Qopen, |Q] < —i—oo}, (6.4.3)
for some constant m > 0. In this case, we have the following result.

Theorem 6.4.2. The shape optimization problem (6.4.3)) has a solution. Moreover, any optimal
set ) is bounded and connected. The boundary 0 is CY*, for every a € (0,1), outside a closed
set of Hausdorff dimension at most d — 8.

PROOF. We prove this theorem in four steps.
Step 1 (Existence of generalized solution). We claim that, for any & € N and m > 0, there
exists a solution of the problem

min {Xk(Q) +mP(Q): QcR% Q measurable, |Q] < oo}. (6.4.4)

Let Q,, be a minimizing sequence for (6.4.4). By the concentration-compactness principle (The-
orem [3.7.9)), we have two possibilities for the minimizing sequence: compactness and dichotomy.
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Suppose that the compactness occurs. Since €, is minimizing, there is a constant C' > 0 such

1
loc

concentrated, we have that the convergence takes place in L'(R?) and P(Q) < liminf,, oo P(Q,).
On the other hand, the sequence of measures || is also bounded and so the sequence of

that P(£2,) < C. Thus we may suppose that 1, converges to 1 in L} (R?) and since 1q, is

energy functions w,,, solutions of
—Aw, =1,  wy, € HH(Q),

is bounded in L>®(R%). The sequence fgn converges to a capacitary measure p in RY, i.e.
wy, = wy, in LY(R?), where w), is the energy function of y. Since w, < C'lg,, for dome universal
C > 0, we obtain that w, < Clg.Thus Q, := {w, > 0} C Q and so, u > I, which in turn gives

M(9) < Ae(p) = lim X ().,

and so, if the compactness occurs, then €2 is a solution of ([6.4.4)).
Suppose now that the dichotomy occurs. Then we may suppose that Q, = QF UQ,", where
dist(Q;7, Q) > n and

P() = P2 + P(2),  Me(@a) = max { (@25, () },

where [ € {0,...,k} is fixed. Since 2, is minimizing, we may suppose | € {1,...k —1}. In
particular, if £ = 1, then the dichotomy cannot occur.

We now prove the existence of a solution of reasoning by induction. if k = 1,
then the existence holds since for every minimizing sequence, the compactness case of Theorem
necessarily occurs. Suppose now that the existence holds for 1,...,k — 1 and let §2,, be a
minimizing sequence for the functional A\x + mP. If the compactness occurs for €2,, then the
existence holds immediately. If we are in the dichotomy case, then we consider the solutions
and €2_ of the problems

min {X,(Q) . Q C R% Q measurable, |Q] < oo, P(Q) = lim P(Qj{)},

n—oo
min {Xk_l(ﬂ) . 0 C RY, Q measurable, |Q| < co, P(Q) = li_}rn P(Q;)},
n—oo
which admit solutions by the inductive assumption and Remark We now note that
N(QL) < liminf N(QF)  and  Ap_(Q-) < Liminf Ap_y(€2),
n—oo n—roo
and since we can suppose that {24 and €2_ are disjoint and distant sets, we have

Me(24 UQL) < max {Xl(m), X,Hm_)} < lim inf max {XZ(Q;), X,H(Q;)} = Tim inf Ay (),

n—oo

which gives that the disjoint union Q, U Q_ is a solution of .

Step 2 (Existence of open solution). Let € be a solution of . Then € is a supersolution
for Xk + mP and, since Xk is decreasing with respect to the inclusion, €2 is a supersolution for
the perimeter. Now by Proposition we have that Q is an open set and H( () = HL(Q).
In particular, by the variational definition of the Dirichlet eigenvalues, we have Ay (€2) = Az (€2).
Let now U C R? be any open set. Then

Ae(Q) + mP()

k() + mP(Q)
M(U) +mP(U)
M (U) +mP(U),

IN N



198 6. SPECTRAL OPTIMIZATION PROBLEMS IN R?¢

which, by the arbitrariness of U proves that 2 is a solution of (6.4.3)). Moreover, we proved that

there is a solution of (6.4.3)) which is also a solution of (6.4.4) and so, any solution of (6.4.3)
which is also a solution of (6.4.4)).

Step 3 (Boundedness and regularity). Let € be a solution of (and thus, of )
Then 2 is a perimeter supersolution and, by the results from Section [4.6] it is also a subsolution
for the functional E + mP, for some m > 0. By Theorem this implies that €2 is a bounded
open set with Ch® boundary, for every o < 1.

Step 4 (Connectedness of the optimal set). We first prove the result in dimension d < 7,
in which case the singular set of the boundary 9€) is empty. We first note that, since 2 is a
solution of , it has a finite number (at most k) of connected components. Suppose, by
contradiction, that there are at least two connected components of 2. If we take one of them
and translate it until it touches one of the others, then we obtain a set Q) which is still a solution
of . Using the regularity of the contact point for the two connected components, it is easy
to construct an outer variation of € which decreases the perimeter (see Figure . In fact,
assuming that the contact point is the origin, up to a rotation of the coordinate axes, we can
find a small cylinder C, and two C™® functions g; and go such that

91(0) = g2(0) = |Vg1(0)| = [Vg2(0)| = 0, (6.4.5)
and
ﬁc NC, = {gl(l'l, . ,xdfl) <xg < gg(l‘l, . ,{L'dfl)} N C,.

Now, for ¢ < r, consider the set ﬁg = QU Cy D Q. It is easy see that, thanks to (6.4.5) and the
C1@ regularity of g; and gs,

P(Q,) — P(Q) < Cuo® 1 — Cyo~! <0,

for ¢ small enough, which contradicts the minimality of Q

We now consider the case d > 8. In this case the singular set may be non-empty and so,
in order to perform the operation described above, we need to be sure that the contact point is
not singular.

Suppose, by contradiction, that the optimal set €2 is disconnected, i.e. there exist two
non-empty open sets A, B C 2 such that AUB =Q and AN B = . We have

DAUIB C 90 = oMQ,

where the last inequality follows by classical density estimates. By Federer’s criterion [79]
Theorem 16.2], A and B have finite perimeter. Arguing as in [3| Theorem 2, Section 4|, we
deduce that P(Q) = P(A) + P(B).

Since both A and B are bounded, there is some zo € R? such that dist(4,zq + B) > 0.
Then the set Q' = AU (2o + B) is also a solution of (6.4.6). Let z € A and y € d(xo + B) be
such that |x —y| = dist(A, xg+ B). Since the ball with center (x+y)/2 and radius |z —y|/2 does

7Another way to conclude is to notice that for Q the origin is not a regular point, a contradiction with

Theorem
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not intersect ', we have that in both = and y, ' satisfies the exterior ball condition. Hence
both z and y are regular pointsﬂ

Consider now the set Q" = (—z + A) U (—y + zo + B). It is a solution of and has
at least two connected components, which meet in a point which is regular for both of them.
Reasoning as in the case d < 7, we obtain a contradiction.

FIGURE 6.2. The variation from Step 4 of the proof of Theorem [6.4.2

0

Remark 6.4.3. The regularity of the free boundary proved in Theorem [6.4.2]is not, in general,
optimal. Indeed, it was shown in [24] that the solution Q of for k = 2 has smooth
boundary. The proof is based on a perturbation technique and the fact that A2(22) > A1 (£2)
and can be applied for every k € N under the assumption that the optimal set is such that
Ae(€2) > Ap—1(€2) . On the other hand it is expected (due to some numerical computations) that
the optimal set Q for A3 in R? is a ball and, in particular, A3(Q2) = \o(Q).

We are now in position to state the following more general result

Theorem 6.4.4. Suppose that F' : RP — R satisfies the assumptions (F1), (F2) and (F3).
Then the shape optimization problem

min {F(Akl(ﬂ), LA (Q) 1 QCRY Q open, P(Q) =1, Q] < —I—oo}, (6.4.6)

has a solution. Moreover, any optimal set £ is bounded and connected and its boundary OS) is
Cle, for every a € (0,1), outside a closed set of Hausdorff dimension at most d — 8.

PROOF. We first consider the problem
min{F(X;ﬁ(Q), e ,ka(ﬂ)) : Q C RY, Q measurable, P(Q) =1, |Q] < —i—oo}. (6.4.7)
By Proposition | with G = P, we have that any solution € of (6.4.7) is a subsolution for
F(Xiy (), ..., A, () + mP(2) and asupersolution for F(Xg, (Q),..., A, () + MP(Q) for
some m, M > 0. Thus, by Theorem ) is a supersolution for E—}—ﬁLP, for some m > 0 and,

by Remark Q) is a perimeter supersolution. Thus, by Theorem Q is a bounded open
set with C1®, outside a set of dimension at most d — 8, for every a € (0,1). Moreover, since

8This can be easily seen, since any tangent cone at these points is contained in an half-space and hence it
has to coincide with it, see [87, Theorem 36.5]
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Q) is a perimeter supersolution, we have H}(Q) = .FNIS(Q) and so, by the same argument as in

Theorem 2 is a solution of (6.4.6)) and every solution of is also a solution of (|6.4.7)).
The existence of a solution of (6.4.7]) follows by induction on the number of variables p,

using the same argument as in Theorem
In conclusion, the connectedness of the optimal set follows as in Step 4 of the proof of

Theorem [6.4.2] O

6.5. Optimal potentials for Schrédinger operators

In this section we consider optimization problems concerning potentials in place of sets, i.e.
we consider variational problems of the form

min {]—"(V) Ve v}, (6.5.1)

where V is an admissible class of nonnegative Borel functions on the open set Q ¢ R? and F
is a cost functional on the family of capacitary measures M,,(€2). The admissible classes we
study depend on a function ¥ : [0, +00] — [0, +00]

V= {V : Q — [0,400] : V Lebesgue measurable, / U(V)dx < 1} :
Q

The cost functional F is typically given through the solution of some partial differential equation
involving the operator —A 4+ V on 2 as, for example, the functional

FV) = FOu(V), ... 2(V) +/ VP da,
Q
where \,(V) := A\ (Vdx + Ig) and p € R.

6.5.1. Optimal potentials in bounded domain. In this subsection we consider the case
when  is a bounded open set. Our first result concerns constraints of the form ®(x) = 2P, for
some p > 1. More precisely, we have the following result:

Theorem 6.5.1. Suppose that Q@ C R? is a bounded open set. Let F : L}F(Q) — R be a
functional, lower semicontinuous with respect to the y-convergence, and let V be a weakly L' (£2)
compact set. Then the problem

min {J—"(V) Ve v}, (6.5.2)
admits a solution.
PROOF. Let (V},) be a minimizing sequence in V. By the compactness assumption on V, we

may assume that V;, tends weakly L!(Q) to some V € V. By Proposition [3.6.3, we have that V;,
~v-converges to V and so, by the semicontinuity of F,

F(V) <liminf F(V,,),
n—oo
which gives the conclusion. O

Corollary 6.5.2. Let F : R¥ — R be a lower semi-continuous function. let Q be a a given
quasi-open set of finite measure and let p > 1 be a given real numbers. Then, there exists a
solution of the problem

min {F()\l(v), i 7)\k(V)) +/

VPdx @ V:Q—|0,+o0] measumble}, (6.5.3)
Q

admits a solution.
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PrOOF. It is sufficient to note that both functionals F'(A,...,A\x) and V fQ VPdx are
lower semi-continuous with respect to the 7y-convergence. Indeed, for the second one, it is
sufficient to note that, by Proposition |3.6.3| on the bounded sets of positive functions in L? the
~v-convergence and the weak convergence in LP are equivalent. U

Remark 6.5.3. It is more appropriate to refer to the problem as to a maximization
problem. In fact, in the typical case when the function f is increasing, the solution of
is the potential constantly equal to zero on €). In order to have non-trivial solutions one has to
choose f to be a decreasing function on R¥.

We now turn our attention to the case when ® is a decreasing function. In this case it is
natural to expect that the problem has a non-trivial solution for increasing functions f.
Before we state our main existence result in this case, we will need two preliminary Lemmas.
The first one (Lemma is a classical result who can also be found in [31] and [5]. The
second one (Lemma is a classical semi-continuity result, which can be found in [31]. We
report here the proofs for the sake of completeness

Lemma 6.5.4. Consider an open set Q C R% and a o-finite Borel measure v on €. Let {bn}nen

be a sequence of positive Borel functions on R and let ¢ = sup,, ¢,. Then, we have that
/ ¢pdv = sup{Z/ ¢idV} ,
Q el Aq
where the supremum is over all finite subsets I C N and over all families {A;}icr of disjoint
open sets with compact closure in §2.

PRrROOF. By the monotone convergence theorem, it is enough to prove that for each £ € N,

k
sup ¢; dv = sup / i dv b .

Let B; = {¢i = sup;<;<; #i} and C; = B; \ Uj<;B;j. Then C1,...,C} are disjoint Borel subsets

of ) and
k
sup ¢;dv = / ¢; dv.
/Q ; C;

1<i<k

we have

Approximating each C; with compact sets K;;, from inside, and then aproximating each compact
set K;; with open sets A, such that {4, }1<i<y is a family of disjoint sets, we have the claim. [

Lemma 6.5.5. Let 1 < p,q < oo and let u, € LP(Q) and v, € L1(Q) be two sequences of
positive functions on the open set @ C R? such that u, converges strongly in LP to u € LP(f)
and vy, converges weakly in L9 to v € L1(2). Suppose that H : [0. + oco] — [0,+00] is a convex
function. Then we have

/uH(U) dzx < liminf/ upH (vy,) dx.
Q Q

n—oo
PROOF. Let us first prove the claim for H(z) = z. Indeed, if ¢ > p, then for each t > 0,

u, At converges strongly L7 to u At and so, we have that

/ v(uAt)de = im [ vy(up At)de <lim inf/ Up Uy, d, (6.5.4)
Q Q

n—oo Q n—oo
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and we obtain the thesis passing to the limit as ¢ — co. If ¢’ < p, then for each R > 0, we have
that 1p,u, converges strongly in L7 to 1 BpU and so

/v]lBRudx: lim [ v,lpunde Sliminf/ Vpln d, (6.5.5)
Q Q

n—oo QO n—oo

and we obtain the claim passing to the limit as R — oc.
We now prove the Lemma for generic function H. Let ay,,b, € R be such that for each
z €N

H(z) =sup{a,x +b,},
neN

and let Ai,..., Aj be disjoint open subsets of . On each A; consider a function ¢; € C°(Ay)
such that 0 < ¢; < 1. Then, we have that a,b € R

Z?:l Jolav +b)Tojudr < liminf, o Z?Zl Jo(avy +b)Tjuy dx
< lminfp o0 Yoy fo H(vn) st da (6.5.6)

< liminf, o0 [ H(vn)un de.

Taking the supremum over all ¢; € Cg°(A;) such that 0 < ¢; < 1, we obtain that

k
Z/ (av 4 b)Tude < liminf/ H(vy)uy, dz. (6.5.7)
j—l A] n— o0 Q
Now the claim follows by Lemma O

The following existence result was proved in [34].

Theorem 6.5.6 (Buttazzo-Dal Maso Theorem for potentials). Let Q C R? be a bounded open
set and ¥ : [0,400] — [0,+00] a strictly decreasing function such that there exists € > 0 for
which the function x — W1 (x1%¢), defined on [0, +00], is convex. Then, for any functional F :
Meap(2) = R, which is increasing and lower semi-continuous with respect to the ~y-convergence,

the problem (6.5.1) has a solution.

PrROOF. Let V,, € A(2) be a minimizing sequence for problem (6.5.1). Then, v, :=
(\P(Vn))l/ (%) is a bounded sequence in L'*¢(Q2) and so, up to a subsequence, we have that
v, converges weakly in L'*¢ to some v € L'*5(Q2). We will prove that V := U~ 1(v1*¢) is a
solution of (6.5.1). Clearly V € A(Q) and so it remains to prove that F(V) < liminf, F(V;).
By the compactness of the y-convergence in a bounded domain, we can suppose that, up to a
subsequence, V;, y-converges to a capacitary measure g € Mcap(§2). We claim that the following
inequalities hold true:

F(V) < F(v) <liminf F(V,,). (6.5.8)

n—oo
In fact, the second inequality in is the lower semi-continuity of F' with respect to the -
convergence, while the first needs a more careful examination. By the definition of «-convergence,
we have that for any u € H(€2), there is a sequence u,, € Hg () which converges to u in L?(Q)
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and is such that

/|Vu|2d$—|—/u2duz lim / VunIde—i-/uiVnde
Q Q n—=0o0 JO Q

= lim / VunIde—l—/ui\I/_l(v,lfa)d:v (6.5.9)
Q Q

n—oo

Z/ |Vu2dx+/u2\11_1(v1+a)dx
Q Q

:/ ]VuZda:—l—/uQde,
Q Q

where the inequality in (6.5.9)) is due to the strong-weak lower semi-continuity result from Lemma
6.5.5. Thus, for any u € Hg (), we have that

/u2du2/u2Vd1:,
Q Q

and so, V' < p. Since F is increasing, we obtain the first inequality in (6.5.8)) and so the
conclusion. O

Remark 6.5.7. The condition on the admissible set in Theorem|[6.5.6|is satisfied by the following
functions:

(1) ¥(z) = 2~P, for any p > 0;

(2) ¥(x) =e** for a > 0.

Indeed, if ¥(z) = 7P, then

) =
) =

Nt (.1‘1+8) _ l,—(l-‘,—e)/p’

is convex for any £ > 0. If U(z) = e~ **, then the function

Tl(gte) = — 1+te

log z,
is convex, also for any € > 0.

Remark 6.5.8. In particular, Theorem provides an existence result for the following
problem

min {)\k(V) : V:Q — [0,4+00] measurable, / V7 Pde = 1}, (6.5.10)

Q
where k£ € N, p > 0 and 2 is a bounded open set.

6.5.2. Optimal potentials in R?. In this subsection we consider optimization problems
for spectral funcionals in R%. In particular, we consider the problem

min {)\k(V) . V:R? = [0, +00] measurable, / V7 Pde = 1}. (6.5.11)

Rd
We note that the cost functional A\; (V) and the constraint [p, V7 dx have the following rescaling
properties:

Remark 6.5.9 (Scaling). Suppose that uy is the kth eigenfunction. Then we have
—Auy, + Vup = Apug,
and rescaling the eigenfunction ug, we have

—A(up(z/t)) + Veug(z/t) =t Neug (1),
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where
Vi(z) := t 2V (2/1). (6.5.12)
Repeating the same argument for every eigenfunction, we have that
Me(V2) = t720(V). (6.5.13)
On the other hand, we have
/ V., Pdr = / PV (z/t) 7P do = t?P+e / VP dx. (6.5.14)
Rd Rd Rd

Now as in the case of eigenvalues on sets, we have

Remark 6.5.10 (Existence of a Lagrange multiplier). The potential V : R — [0, +0c] is a
solution of

min {)\k(V) +m [ V7 Pde: V:RY— [0, +o0] measurable}, (6.5.15)

R4
if and only if, for every ¢ > 0, we have that XZ, defined as in (6.5.12)), is a solution of

min {)\k(V) : V:R? = [0, +00] measurable, /Rd V7 Pde = y VP dm}, (6.5.16)

and the function
F@) =720 (V) + [ VP dg,
Rd
achieves its minimum, on the interval (0,+00), in the point ¢ = 1.

In the case k = 1, the existence holds for every p > 0 by a standard variational argument.

Proposition 6.5.11 (Faber-Krahn inequality for potentials). For every p > 0 there is a solution
Vp of the problem (6.5.11)) with k = 1. Moreover, there is an optimal potential V,, given by

1/p
vp:< / yup|2p/<p+1>dx> | 2/ P, (6.5.17)
R4

where up is a radially decreasing minimizer of

(p+1)/p
min / \Vul|* dz + (/ |u|?P/ (PFHD) dx) . ue HY(RY), / wdr=1%. (6.5.18)
R4 Rd Rd

Moreover, u, has a compact support, hence the set {V), < 400} is a ball of finite radius in R,

PROOF. Let us first show that the minimum in is achieved. Let u, € H'(R?) be a
minimizing sequence of positive functions normalized in L?. Note that by the classical Pélya-
Szegd inequality (see for example [77]) we may assume that each of these functions is radially
decreasing in R? and so we will use the identification wu, = u,(r). In order to prove that the
minimum is achieved it is enough to show that the sequence u, converges in L?(R?). Indeed,
since u, is a radially decreasing minimizing sequence, there exists C' > 0 such that for each
r > 0 we have

U (r) 2P/ (P < 1 w2/ (1) g0 < g
~ Bl Jp, " —rd
Thus, for each R > 0, we obtain
+o0
/ ul dr < Oy / pm D/ pd=1 g — CoRTVP, (6.5.19)
BS, R
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where C; and Cy do not depend on n and R. Since the sequence u, is bounded in H'(R9), it
converges locally in L?(R%) and, by , this convergence is also strong in L?(R%). Thus,
we obtain the existence of a radially symmetric and decreasing solution u, of .

We now note that for any u € L?(R?) and V" € L'(RY), we have

(p+1)/p 1/p
(/ !u\zp/(”“)dx> </ W2V dx (/ V—de> :/ W2V dz.
Rd R4 R4 Rd

Thus, for any u € H'(R?), such that Jga u? dx = 1, we have

(r+1)/p
/ |Vul|? dx + </ |u|?P/ (PH1) dx) < / \Vul|? dz + / u?V de,
Rd Rd Rd Rd

which gives that the minimum in is smaller than A1 (V'), for any V' such that fRd VPdx
and so, it is also smaller than the minimum in for k = 1. We now note that, writing
the Euler-Lagrange equation for wu,, which minimizes , we have that wu, is the first
eigenfunction for the operator —A +V,, on R?. Thus, we obtain that V), solves for k = 1.

We now prove that the support of u, is a ball of finite radius. By the radial symmetry of
up we can write it in the form u,(x) = u,(|z|) = u,(r), where r = |z|. With this notation, u,

satisfies the equation:
, d—1

P

/ S __
T Up + Cpuy, = Aup,

where s = (p—1)/(p+1) <1 and C, > 0 is a constant depending on p. After multiplication by
u;, and integration, we get
_u;(r) > (s_flup(r)er _ §up(r) > .

Now, since u,, vanishes at infinity, we obtain for r > 0 large enough

() 2 (2(fjl)up<r>8“)l/2.

Integrating both sides of the above inequality, we conclude that u, has a compact support. [

We now prove an existence result in the case k = 2. By Proposition [6.5.11} there exists
optimal potential V},, for A;, such that the set of finiteness {V}, < +oo} is a ball. Thus, we have
a situation analogous to the Faber-Krahn inequality, which states that the minimum

min{)\l(Q) L QCRY Q| = c}, (6.5.20)

is achieved for the ball of measure c. We recall that, starting from (6.5.20]), one may deduce,
by a simple argument (see for instance [70]), the Krahn-Szego inequality, which states that the
minimum

min{)\g(Q) L QCRY Q| = c}, (6.5.21)
is achieved for a disjoint union of equal balls. In the case of potentials one can find two optimal
potentials for A\; with disjoint sets of finiteness and then apply the argument from the proof of
the Krahn-Szegd inequality.

Proposition 6.5.12 (Krahn-Szego inequality for potentials). There exists an optimal potential,
solution of for k = 2. Moreover, it can be chosen to be of the form min{Vy,Va}, where
Vi and Va are optimal potentials for A1, whose sets of finiteness {V1 < +oo} and {Vo < 400}
are disjoint balls and, moreover, V1 is a translation of Vs.
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PRrOOF. Given Vi and V; as above, we prove that for every V : R? — [0, +oo] with
Jga VP dx =1, we have

)\g(min{Vl, VQ}) S )\Q(V)

Indeed, let uo be the second eigenfunction of —A + V. We first suppose that us changes sign on
R? and consider the functions Vy = sup {V, I{WSO}} and V_ = sup {V, Touy>0y }ﬂ We note that

1 2/ V7 Pde > V+pd$—|—/ V_Pdzx.
R4 R R4
Moreover, on the sets {uz > 0} and {uz < 0}, the following equations are satisfied:
—Aug + Viug = X (V)ug, —Auy +Voug = Xa(V)uy,
and so, multiplying respectively by u; and u, , we get
Xo(V) > M (Vy), Ao(V) > M (V0), (6.5.22)

where we have equalities, if and only if| u; and u, are the first eigenfunctions corresponding to
A1 (V4) and A(V_). Let now Vi and V_ be optimal potentials for A\; from Proposition [6.5.11
corresponding to the constraints

/ Vi Pdr = / V. Pdr  and / VPde= [ VPda
Rd R4 Rd Rd

By Proposition [6.5.11f the sets of finiteness of ‘N/Jr and V_ are compact, hence we may assume
(up to translations) that they are also disjoint. By the monotonicity of A\;, we have

max {A1(V1), M (Vo) } < max {\(V}), M (Vo))
and so, we obtain
Ao (min{Vi, Va}) < max {\(V4), \(Vo)} < max {1 (Va), M(Vo) Y < Ao(V),

as required. If ug does not change sign, then we consider V; = sup{V, f{u2:0}} and V_ =
sup{V, f{ulzo}}, where u; is the first eigenfunction of —A + V. Then the claim follows by the
same argument as above. O

We now turn our attention to the general case k > 2.

Remark 6.5.13 (Compactness of the embedding H{, — L'). We first note that if p € (0,1]
and f]Rd V=P dx < 400, then for every R > 0 the solution wg of the equation

—Awgr + Vwg =1, wgr € HY(Bg) N L*(Vdx),

9We recall that, for any measurable A C R?, we have

~ ~+o00, T € A,
Ta(z) =
0, x ¢ A
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is such that

(1+p)(d+2) (d—2)(1—p)
2p_ 2(d+2p 2d_ 2(d+2p
= (d+2p) 24 (d+2p)
wprdr < wp' dr wp ~dr
R4 R4 R4
1 (1+p)(d+2) (d—2)(1—p)
E= | 2t a3\ 22
< </ whV da:) < vr d:c> <C’d/ ]VwR]2dx)
R4 R4 R4

(1-p)

p(d+2) d+2 d
9 2(d+2p) B 2(d+2p) 9 2(d+2p)
< wgrV dz V™ Pdx Cq |Vwg|* dx
R4 R4 R4
1/2
<cC </ WR dx) ,
Rd

for some appropriate constant C' > 0. Thus we have that the sequence wg is uniformly bounded
in L'(R%) and so the energy function wy = supg wg is in L'(R?), which in turn gives that the
inclusion Hi(R%) — L1(R?) is compact and, in particular, the spectrum of —A + V' is discrete.

We now apply the results from Chapter [3]and Chapter [4] to obtain the existence of optimal
potential in R<.

Theorem 6.5.14. Suppose that p € (0,1). Then, for every k € N, there is a solution of the
problem (6.5.11)). Moreover, any solution V' of (6.5.11)) is constantly equal to +o00 outside a ball

of finite radius.

ProoOF. By Remark every solution of is a solution also of the penalized
problem , for some appropriately chosen Lagrange multiplier m > 0. Thus, by Theorem
and Lemma we have that if V' is optimal for , then it is constantly o0
outside a ball of finite radius.

The proof of the existence part follows by induction on k. The first step k£ = 1 being proved
in Proposition . We prove the claim for £ > 1, provided that the existence holds for all
1,...,k—1.

Let V,, be a minimizing sequence for (6.5.11]). By Remark [6.5.13] we have that the sequence
wy;, is uniformly bounded in L'(R?) and so, by Theorem ave two possibilities for the
sequence of capacitary measures V,dz: compactness and dichotomy.

If the compactness occurs, then there is a capacitary measure p such that the sequence
Vpdx y-converges to p. By Proposition [3.5.12) we have that || - ||H‘l/n I'-converges in L2(R?) to

| - [|[1. Now, by the same argument as in Theorem ([6.5.6)), we have that V' = pi,, is a solution
of (6.5.11).

If the dichotomy occurs, then we can suppose that V,, = V,F V V| where

1/Vo=1/V,F +1/V,,  dist({V,| < oo}, {V,, <oo}) = +oc.

Since V), is minimizing, there is 1 <[ < k — 1 such that
Akz(‘/n) = )‘Z(Vn+) > )‘k—l(vn_)‘
Taking the solutions, V™ and V~ respectively of

min {)\Z(V) . V:R? = [0, +00] measurable, / V7Pdr = lim |7 daz},
R4

n—oo Rd

min {/\k,l(V) c ViR [0, +00] measurable, / VPdx = lim |7 dac},

R4 n—00 R4
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in such a way that dist({V*+ < oo}, {V~ < o0}) > 0, we have that V = V* AV~ is a solution

of (6.5.11). O

6.6. Optimal measures for spectral-torsion functionals

In this section we consider spectral optimization problems for operators depending on ca-
pacitary measures. The admissible class of measures is determined through the torsion energy

1 1
E(p) = mm{/ V|2 dz + / w? dp —/ wdr : ue LY(RY) ﬂHl(Rd)},
2 Jpa 2 Jpa Rd H
while the spectrum corresponding to the measure p is defined as

Vul?dz + [, u?d
Ak() = min max Jea V1 Jps ,u’
KCH} uek Jga u? dx

(6.6.1)

where the minimum is over all k-dimensional spaces K C H }L We recall that if the F(u) < +oo,
then the torsion energy function w, € LY(RY) (u € ML _(R?)), we have that the embedding

cap

H ﬁ C L'(RY) is compact and the spectrum of the operator (—A 4 p) is discrete and is given

precisely by (6.6.1)).
Fixed a capacitary measure v on R? such that w, € L'(R%), we will prove the existence of
optimal capacitary measures for the problem

min {F(Al(ﬂ), ce, )\k(ﬂ)) . p capacitary measure, E(u) =c¢, p > I/}, (6.6.2)

where ¢ € [E(v),0) and F : R¥ — R is a given function. We note that the case v = Ip, where
D C R? is a bounded quasi-open set, corresponds to an optimization problem in the box D.

Theorem 6.6.1. Let v be a capacitary measure on R? such that w, € L'(RY) and let F : R¥ — R
be a given lower semi-continuous function. Then, for any ¢ € [E(v),0), the optimization problem

(6.6.2) has a solution.

PRrOOF. Consider a minimizing sequence p, for (6.6.2). By Corollary we have that up
to a subsequence u, y-converges to some capacitary measure pu € MCTap(]Rd) such that pu > v.
Thus, we have

1 1
E(u) = —/Rd wydr = — lim ~ Wy, de = lim E(py).

2 n—oo 2 R n—00

By the semi-continuity of F' and of the spectrum Ay, with respect to the y-convergence, we have
that

F()\l(u), .. .,)\k(u)) < limian()\l(,un), ey /\k(,un)),

n—o0

which concludes the proof. ]

In R? the existence of an optimal set is more involved due to the lack of the compactness
provided by the box D. In this case we consider the model problem

min {)\k(,u) . p capacitary measure, E(u) = c}. (6.6.3)

As in the case of potentials, we note that the functionals Ag(x) and E(u) have the following
rescaling properties:
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Remark 6.6.2 (Scaling). Suppose that uy is the kth eigenfunction of (—A + u). Then we have
—Auy 4 pug = Mg, (1) ug,
and rescaling the eigenfunction ug, we have
—A(up(x /1)) + prug (/) = 2N\ ()ur(2/1),
where gy == t42u(-/t), i.e. for every ¢ € L'(p), we have
[ ot @)= 12 [ oau (66.4)
Repeating the same argument for every eigenfunction, we have that
() = ). (6.6.5)
On the other hand, we have
—A(wy(z/t)) + 72 p(/t)w, (o /t) = 2,

and so,
wy, (2) = tPwy(z/t) and E(us) =t E(p). (6.6.6)

As in the cases of optimization of domains and potentials, we have:

Remark 6.6.3 (Existence of a Lagrange multiplier). The capacitary measure i € ML _(R%) is

cap
a solution of

min {)\k(ﬂ) —mE(u): pe ./\/lg;p(Rd)}, (6.6.7)
if and only if, for every ¢ > 0, the capacitary measure fi;, defined as in (6.6.4), is a solution of
min {)\k(u) : e ME(RY, B(u) = E(ﬁt)}, (6.6.8)

and the function
F(t) = 1720 (0) — mi*H B ),

achieves its minimum, on the interval (0, +00), for ¢t = 1.

Theorem 6.6.4. For every k € N and ¢ < 0, there is a solution of the problem (6.6.3]). More-
over, for any solution y of (6.6.3)), there is a ball Br such that p > Ip,,.

PROOF. Suppose first that u is a solution of (6.6.3). By Remark w is also a solution of
the problem , for some constant m > 0. Let €, be the set of finiteness of the capacitary
measure 4. By the optimality of 4, we have that €2, is a subsolution for the functional

Q= M\e(pVIg) —mE(pV Ig).

By Corollary [£.7.7, we have that €2, is a bounded set and so there is a ball Bg such that > Ip,,.
The proof of the existence part follows by induction on k. Suppose that £ = 1 and let u,
be a minimizing sequence for the problem

min {Al(u) —mE(u): pe€ Mgp(Rd)}. (6.6.9)

By the concentration-compactness principle (Theorem [3.7.8)), we have two possibilities: com-
pactness and dichotomy. If the compactness occurs, we have that, up to a subsequence, u,
y-converges to some p € ML (R?). Thus, by the continuity of A\; and E, we have that y is a

cap
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solution of . We now show that the dichotomy cannot occur. Indeed, if we suppose that
Wn = pt V., where pf and p,, have distant sets of finiteness, then

M(pn) = min{Ai(pg), M (t)}  and  E(un) = E(ut) + E(uy,).
Since, by Theorem [3.7.8

liminf (— E(y,))) >0 and liminf (— E(u,)) >0,

n—o0 n—oo

we obtain that one of the sequences p,} and pu., say u is such that

liminf (A1 (g,)) — mE(p,})) < liggioréf (M (pn) = mE(un)),

n—o0

which is a contradiction and so, the compactness is the only possible case for pi,.

We now prove the claim for k > 1, provided that the existence holds for all 1,... &k — 1.

Let p, be a minimizing sequence for . The sequence w,,, is uniformly bounded
in L'(R?) and so, by Theorem we have two possibilities for the sequence of capacitary
measures fi,: compactness and dichotomy.

If the compactness occurs, then there is a capacitary measure p such that the sequence pu,
~v-converges to p, which by the continuity of A; and the energy E, is a solution of .

If the dichotomy occurs, then we can suppose that p, = u\V u., where the sets of finiteness
Qui and QM are such that

dist(Q,+,92,-) = +00,  E(un) = E(py) + Euy),
lim E(uf) <0  and lim E(u,) < 0.
n—oo n—oo
Since p, is a minimizing sequence, there is a constant 1 <[ < k — 1 such that

Me(pn) = Np) = Mema(pir)-

Taking the solutions, u™ and u~ respectively of

min {X(n) : g€ ME,RY, B(u) = lim B(u)},

n—oo

min { N () : € MEL(RY), B(u) = Tim E(ur) |,

n—oo

in such a way that dist (Q#+, QV) > 0, we have that y = u™ V p~ is a solution of (6.6.3). [

Remark 6.6.5. The Kohler-Jobin inequality (we refer to [14] and the references therein for more
details on this isoperimetric inequality) states that the ball B, such that E(B) = ¢, minimizes
the first eigenvalue \;(€2) under the constraint F({) = ¢, among all open sets  C RY. Since
the set {Ig : @ C R? open} ¢ MZ (R?) is dense in MZ, (R?) (see [33]), we have that the

measure Ip solves (6.6.3)) for k£ = 1.

The following conjecture is due to Giuseppe Buttazzo and was recently supported by a
numerical calculation performed by Beniamin Bogosel.

Conjecture 6.6.6. Let Q) C R be the union of k disjoint balls of equal radius BV, ... B®)
such that E(BW) = ... = B(B®) = c/k. Then the measure = Io, is a solution of (6.6.3).
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6.7. Multiphase spectral optimization problems
Let D C R? be a quasi-open set of finite measure, let p € N and let
ki,....,k, €N and mi,...,my, € (0, +00),

be given numbers. We consider the problem
P

min { Z ()\kj Q) +my|Q]) + (,...,9Q,) quasi-open partition of D}, (6.7.1)
j=1
where we say that the p-uple of quasi-open sets (Ql, cel ,Qp) is a quasi-open partition of €2, if
p
Uacp  and  inQ; =0, fori#je{l,...,p} (6.7.2)
j=1

We say that the partition is open, if all the sets €2; are open.
Remark 6.7.1. We note that the existence of optimal partitions holds thanks to Theorem [2.4.6

In this section we study the qualitative properties of the optimal partitions and we prove
the existence of an open optimal partition in the case when the eigenvalues involved in
are only A; and A2. The results we present here were obtained in [29]. We refer also to [12]
for some numerical computations and further study of the qualitative properties of the optimal
partitions. For the existence part we use the general result from Theorem [2.4.0] the openness
and the other properties of the optimal partitions follow by the results on the interaction be-
tween the energy subsolutions and the regularty results from Section [6.3.3

We start by a result on the multiphase optimization problems in their full generality, i.e.
we consider the variational problem

P
min {g(}"l (1), ... ,fp(Qp)) + Z m; || : (Ql, . Qp) quasi-open partition of D}, (6.7.3)
i=1

where

(P1) the function g : RP — R is increasing in each variable and lower semi-continuous;

(P2) the functionals Fi,...,F, on the family of quasi-open sets are decreasing with respect to
inclusions and continuous for the y-convergence;

(P3) the multipliers my,...m, are given positive constants.

Definition 6.7.2. We say that the functional F, defined on the family of quasi-open sets in RY,
is locally ~y-Lipschitz for subdomains (or simply v-Lip), if for each quasi-open set Q C R?, there
are constants C' > 0 and € > 0 such that

IF(Q) = F(Q)] < Cdy(2,9),
for every quasi-open set Qc Q, such that d,y(ﬁ, Q) <e.

Remark 6.7.3. Following Theorem we have that the functional associated to the k-th
eigenvalue of the Dirichlet Laplacian Q — A\ (2) is y-Lip, for every k € N.

Theorem 6.7.4. Let D C R? be a quasi-open set of finite measure. Under the conditions (P1),
(P2) and (P3), the problem (6.7.3)) has a solution.
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Suppose that the function g : RP — R is locally Lipschitz and that each of the functionals
Fi, i =1,...,p is y-Lip. If the quasi-open partition (4, ...,Qp) is a solution of (6.7.3), then
every quasi-open set ;, 1 =1,...,p, is an energy subsolution. In particular, we have

(i) the quasi-open sets Q; are bounded and have finite perimeter;
(ii) there are no triple points, i.e. if i,j and k are three different numbers, then

M n oMy n oMoy, =0
(11i) There are open sets Dy,..., D, C R? such that
Q;, CD;, Vi and Qiﬂ'Dj:@, if 1#j.
PROOF. The existence part follows by Theorem We now prove that each §2; is an
energy subsolution. We set for simplicity ¢ = 1 and let €2y C €1 be a quasi-open set such that
dy(1,21) < e. We now use the partition (21, Qs,..., Q) to test the optimality of (Q1,...,€,).

By the Lipschitz continuity of g, the v-Lip condition on Fi,...,F, and the minimality of
(Q1,...,9Qp), we have

m1(|Q1] — []) < g(Fi(Q), Fa(Qa),- -, Fa(m)) — g(Fi(Q), Fo(Q2), ..., Fu(Qn))

< L(Fi(Q1) — Fi()) < CLdy(Q1, ) < CL(E(Q1) — E(M)),

where L is the Lipschitz constant of g and C' the constant from Definition [6.7.2] Repeating
the argument for €2;, we obtain that it is a local shape subsolution for the functional E(2) 4+

(CL)~'m;|Q|. The claims (i), (ii) and (iii) follow by Theorem [4.2.16] Proposition [4.3.17| and

Theorem [£.3.21] O
Remark 6.7.5. A consequence of the claim (i) of Theorem we have that each cell €; of
a given optimal partition (€,...,€,) is a solution of the problem

min {]—“i(Q) . QCD;ND, Q quasi-open, |Q] = |Q,~\}. (6.7.4)

Theorem 6.7.6. Let D C R? be a bounded open set. Then every partition (Qq, ..., Q,), optimal
for (6.7.1)), is composed of energy subsolutions satisfying the conditions (i), (i) and (i) of
Theorem[6.7.4. Moreover, we have that
(iv) For everyi € {1,...,p}, there is an open set D; C D such that the set Q; is a solution of
the problem

min {)\kl(Q) +m;|Q: QCD; quasi—open}. (6.7.5)

(v) If k; = 1, then the set §; is open and connected.

(vi) If k; = 2, then there are non-empty disjoint connected open sets wf and w; ,

subsolutions for the functional \y +m;|-| and are such that the set w; := wf Uw, CQ;

is also a solution (6.7.5)) and the partition (Qy,...,w;,..., ), of (6.7.1).

PROOF. We first note that, by Theorem we have that A\ is v-Lip and so, satisfies the

hypotheses of Theorem
In order to prove (iv), we set i = 1 and then we note that by Theorem (i17), there is

an open set D; C D such that
Q0 Cc D and DlﬂQi:(D, for i > 2.

which are

10We recall that by 8™ Q we denote the measure theoretic boundary of Q.
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Thus, we can use any quasi-open set 2 C D; and the associated quasi-open partition (€2, Qq,...,€Q))
to test the optimality of (21,...,,), which gives that €, solves (6.7.5]).
Now (v) and (vi) are consequences of (iv) and Proposition and Proposition from

Section [6.3.3]
O

Remark 6.7.7. We note that if we know that, for a generic bounded open set D C R¢, the
problem
min {)\k(Q) +m|Q: QCD, Q quasi—open},

has an open solution, then also the multiphase problem ([6.7.1)) has an open solution.






CHAPTER 7

Appendix: Shape optimization problems for graphs

In the previous chapters we discussed a wide variety of spectral optimization problems.
In particular, we have a theory, which can be successfully applied to study the existence of
optimal sets in the very general context of metric measure spaces. The variables in this case
were always subsets of a given ambient space, since most of the geometric and analytical objects
can be viewed as subspaces of some bigger space, this is quite a reasonable assumption. The
more restrictive assumption, and the one that provided enough structure to develop the theory,
concerns the cost functionals. More precisely, to each subset ) of the ambient space X we
associate in a specific way a subspace H(f2) of some prescribed functional space H on X. The
cost functionals with respect to which we optimize are in fact of the form F(Q) = F(H(2)),
where F is a functional on the subspaces of H.

If we have a functional F' for which we cannot prescribe a functional space H and represen-
tation of the form above, then the question becomes more involved. This is the case for example
with the problem

min {,uk(Q) : QCRY Qopen, Q] = 1},

where p(€Q) is the kth eigenvalue of the Neumann Laplacian on 2. A similar problem occurs
when we consider the problem

min {)\k(M) . dim(M) = m, M embedded in RY, 9M =D, H™(M) < 1},

where D C R? is a given compact embedded manifold of dimension m —1 and the optimization is
over all embedded manifolds M C R? of dimension 2 < m < d, with respect to the kth Dirichlet
eigenvalue on M. By H™, as usual, we denote the m-dimensional Hausdorff measure on R
The one dimensional analogue of this problem can be stated as

min {)\k(C’) : C c R? closed connected set, D C C, H(C) < 1}, (7.0.6)

where D is a given (finite) closed set and A is defined through an appropriately chosen functional
space on C' of continuous functions vanishing on D. In this Chapter we will concentrate our
attention on in the case kK = 1 and in the case of the Dirichlet Energy £ (C)ﬂ

Our main result is an existence theorem for optimal metric graphs, where the cost functional
is the extension of the energy functional defined above. In Section we show some explicit
examples of optimal metric graphs. The last section contains a discussion, on the possible
extensions of our result to other similar problems, as well as some open questions.

IThe change of notation with respect to the previous chapters is due to the fact that the letter F is reserved
for the number of edges of graph.

215
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7.1. Sobolev space and Dirichlet Energy of a rectifiable set

Let C C R? be a closed connected set of finite length, i.e. H!(C) < oo, where H! denotes
the one-dimensional Hausdorff measure. On the set C we consider the metric

1
de(z,y) = inf {/0 5(t)|dt : ~:]0,1] — R? Lipschitz, y([0,1]) € C, ¥(0) = z, (1) = y} ,

which is finite since, by the First Rectifiability Theorem (see [6, Theorem 4.4.1]), there is at
least one rectifiable curve in C' connecting x to y. For any function v : C — R, Lipschitz with
respect to the distance d (we also use the term d-Lipschitz), we define the norm

s ) = /C () dH () + /c | ()2 dH (),

where

| (z) = hr;ljal;lp W

The Sobolev space H'(C) is the closure of the d-Lipschitz functions on C with respect to the

norm || - HHl(C)-

Remark 7.1.1. The inclusion H'(C) € C(C;R) is compact, where C(C;R) indicates the space
of real-valued functions on C, continuous with respect to the metric d. In fact, for each z,y € C,
there is a rectifiable curve v : [0, d(z, y)] — C connecting = to y, which we may assume arc-length
parametrized. Thus, for any u € H'(C), we have that

d(z,y)
uz) — u(y)| < /0 '

d(z,y)
< d(z,y)"/? (/0

< d(z,y)"* | |20

o)

and so, u is 1/2-Holder continuous. On the other hand, for any = € C, we have that
L) = [ (uw) = i) 2 ) 04 w) > tua) =12 ey,
where [ = H'(C). Thus, we obtain the L> bound
[ullzee < T2 ull 2oy + 12110 2y < (72 +12) Jull g ey
and so, by the Ascoli-Arzeld Theorem, we have that the inclusion is compact.

Remark 7.1.2. By the same argument as in Remark above, we have that for any u €
H'(C), the (1,2)-Poincaré inequality holds, i.e.

/C u(z) — ;/cud’;’-ll dH! (z) < 1P/ (/C \u/\QdH1>1/2. (7.1.1)

Moreover, if u € H'(C) is such that u(z) = 0 for some point = € C, then we have the Poincaré

inequality:
lullp2ey < M2l oo ey < Ul [l z2ce)- (7.1.2)
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Since C is supposed connected, by the Second Rectifiability Theorem (see [6, Theorem 4.4.8])
there exists a countable family of injective arc-length parametrized Lipschitz curves ~; : [0,{;] —
C, i € N and an H!'-negligible set N C C such that

C=NU <Ulm(%)> ,

i

where I'm(v;) = 7:([0,1;]). By the chain rule (see Lemma below) we have

[ Luu)] = Wiu(e),  vieN

and so, we obtain for the norm of u € H'(C):

ol o / (o) )+ 3 /

Moreover, we have the inclusion

St (7.1.3)

H'(C) C ®ienH' ([0, 1)), (7.1.4)

which gives the reflexivity of H!(C) and the lower semicontinuity of the H'(C) norm, with
respect to the strong convergence in L?(C).

Lemma 7.1.3. Let v : [0,1] — R? be an injective arc-length parametrized Lipschitz curve with
v([0,1]) € C. Then we have

'jtu(*y(t))‘ = |u/|(y(t)), for L'-a.e. t €10,1]. (7.1.5)

PROOF. Let u : C — R be a Lipschitz map with Lipschitz constant Lip(u) with respect to
the distance d. We prove that the chain rule (7.1.5) holds in all the points ¢ € [0,!] which are
Lebesgue points for }%u('y(tm and such that the point (¢) has density one, i.e.

L HHCN B (y(1))

r—0 2r

=1, (7.1.6)

(thus almost every points, see for istance [81]) where B,.(z) indicates the ball of radius r in R
Since, H'-almost all points = € C have this property, we obtain the conclusion. Without loss of
generality, we consider ¢ = 0. Let us first prove that |u/|(y(0)) > |%u('y(0))‘. We have that

(3 (®) — u((0))] | d
@A) a0

since 7 is arc-length parametrized. On the other hand, we have

)

|u'|(7(0)) > limsup
t—0

) = Tim sup @) = u(@)]
[u'|(z) =1 nsup
u(yn) — u(z)|

p— 1‘

[u(n(rn)) — u(1(0))]

um@))\ i (7.17)
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where y,, € C is a sequence of points which realizes the lim sup and =, : [0, 7,] — R? is a geodesic
in C connecting z to y,. Let S, = {t : v,(t) = v(t)} C [0,7y], then, we have

2

| d 2 d ,
| |Guon@)] de< [ |GuGo)] de+ Lit) (- 150
0 S7L
™| d 2
< [ |G| de+ Lipte) 04 (B, (10) ) - 20). (T.18)
0
and so, since v(0) is of density 1, we conclude applying this estimate to (7.1.7)). O

Given a set of points D = {Dy,...,D;} C R? we define the admissible class A(D;1) as the
family of all closed connected sets C containing D and of length H!(C) = I. For any C € A(D;1)
we consider the space of Sobolev functions which satisfy a Dirichlet condition at the points D;:

HY(C;D)={uec H'C):u(D;)=0,j=1...,k},

which is well-defined by Remark For the points D; we use the term Dirichlet points. The
Dirichlet Energy of the set C with respect to D1, ..., Dy is defined as

E(C;D)=min{J(u) : ue Hy(C;D)}, (7.1.9)
where

J(u) = ;/C\u’](az)Qd’l-ll(x)—/cu(x) M (). (7.1.10)

Remark 7.1.4. For any C € A(D;l) there exists a unique minimizer of the functional J :
H& (C;D) — R. In fact, by Remark we have that a minimizing sequence is bounded in
H' and compact in L2. The conclusion follows by the semicontinuity of the L? norm of the
gradient, with respect to the strong L? convergence, which is an easy consequence of equation
. The uniqueness follows by the strict convexity of the L? norm and the sub-additivity of
the gradient |u'|. We call the minimizer of J the energy function of C with Dirichlet conditions
in Dy,...,Dy.

Remark 7.1.5. Let u € H'(C) and v : C — R be a positive Borel function. Applying the chain
rule, as in ([7.1.3), and the one dimensional co-area formula (see for instance [5]), we obtain a
co-area formula for the functions u € H(C):

l;
/Cv(x)m(x) dH (z) = Z/O
ZZ/;OO( > vow(t)) dr (7.1.11)

uoy; (t)=1

:/Om( > v(a)) dr.

u(z)=T7

Soufou(0) | v(oi(0)

7.1.1. Optimization problem for the Dirichlet Energy on the class of connected
sets. We study the following shape optimization problem:

min {£(C; D) : C € A(D;1)}, (7.1.12)

where D = {Dy, ..., D;.} is a given set of points in R? and [ is a prescribed length.
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Remark 7.1.6. When k = 1 problem ([7.1.12)) reads as
E=min{&(C;D) : H'(C)=1, DeC}, (7.1.13)

where D € R? and | > 0. In this case the solution is a line of length [ starting from D (see
Figure . A proof of this fact, in a slightly different context, can be found in [63] and we
report it here for the sake of completeness.

T

FiGurE 7.1. The optimal graph with only one Dirichlet point.

Let C € A(D;!) be a generic connected set and let w € Hi(C; D) be its energy function, i.e.
the minimizer of J on C. Let v : [0,]] — R be such that p,(7) = py(7), where pu,, and pu, are
the distribution function of w and v respectively, defined by

p (1) = HY(w < 1) ZH (w; <71), (1) = H (v < 7).

It is easy to see that, by the Cavalieri Formula, |[v||z(j0)) = [lwllzr(c), for each p > 1. By the

co-area formula ([7.1.11))
too teo 1 \-1L oo dr
N2 a1 _ / —
fwran= | (2 1) ir [ (X ) =gy @

where we used the Cauchy-Schwartz inequality and the identity

-tz e [ (5 )

<t ||

which implies that p,(t) = >, |w/| The same argument applied to v gives:

/Ol v/\2dx:/0 OO(UZ:;W\) dr:/o+oo Mj(TT). (7.1.15)

Since py, = py, the conclusion follows.

The following Theorem shows that it is enough to study the problem on the class
of finite graphs embedded in RY. Consider the subset Ay (D;1) C A(D;l) of those sets C, for
which there exists a finite family 7; : [0,/;] = R, i =1,...,n with n < N, of injective rectifiable
curves such that U;v;([0,1;]) = C and ~,;((0,1;)) N ;((0,;)) = 0, for each i # j.

Theorem 7.1.7. Consider the set of distinct points D = {D1,..., Dy} C R? and 1 > 0. We
have that

inf {£(C;D) : C€ A(D;1)} =inf {E(C;D) : C e An(D;1)}, (7.1.16)
where N~: 2k — 1. Moreover, if C is a {olution of the problem , then there is also a
solution C of the same problem such that C € An(D;l).

PROOF. Consider a connected set C € A(D;1). We show that there is a set C € Ay (D;1)
such that £(C; D) < E(C; D). Let ny : [0,a1] — C be a geodesic in C connecting D1 to Dy and
let 19 : [0,a] — C be a geodesic connecting D3 to Dp. Let ay be the smallest real number such
that n2(a2) € 11([0,a1]). Then, consider the geodesic 3 connecting Dy to D; and the smallest



220 7. APPENDIX: SHAPE OPTIMIZATION PROBLEMS FOR GRAPHS

real number ag such that n3(as) € n1([0,a1]) Un2([0, az]). Repeating this operation, we obtain
a family of geodesics n;, ¢ = 1,...,k — 1 which intersect each other in a finite number of points.
Each of these geodesics can be decomposed in several parts according to the intersection points
with the other geodesics (see Figure .

FicURE 7.2. Construction of the set C’.

So, we can consider a new family of geodesics (still denoted by n;), n; : [0,1;] — C, i =
1,...,n, which does not intersect each other in internal points. Note that, by an induction
argument on k > 2, we have n < 2k — 3. Let C' = U;n;([0,;]) C C. By the Second Rectifiability
Theorem (see [6, Theorem 4.4.8]), we have that

C=C UFEUT,

where H}(E) = 0 and T’ = (U;r:f 'yj), where v; : [0,/;] — C for j > 1 is a family of Lipschitz
curves in C. Moreover, we can suppose that H!(I'NC’) = 0. In fact, if H'(Im(y;) NC") # 0 for
some j € N, we consider the restriction of v; to (the closure of) each connected component of
IR\ C).

Let w € H}(C; D) be the energy function on C and let v : [0,#(T")] — R be a monotone
increasing function such that [{v < 7}| = H!({w < 7} NT). Reasoning as in Remark we

have that
1 H(D H'(I) 1
/ \v'\zdac—/ vdr < /]w’]zd”;’-ll —/wd?-[l. (7.1.17)
2 Jo 0 2 Jr r

Let o : [0, H!(T")] — R? be an injective arc-length parametrized curve such that Im(o)NC’ =
0(0) = 2/, where 2’ € C' is the point where wes achieves its maximum. Let C = C' U I'm(0).

Notice that C connects the points Dy, ..., Dy, and has length H1(C) = HY(C') + H (Im(c)) =
H(C") + HY(T) = . Moreover, we have

E(C;D) < J(w) < J(w) = E(C; D), (7.1.18)
where w is defined by

@(z) = {w(x)’ foed, (7.1.19)

v(t) + w(z') —v(0), if z=o0o(t).
We have then (7.1.18)), i.e. the energy decreases. We conclude by noticing that the point 2’
where we attach ¢ to C’ may be an internal point for 7;, i.e. a point such that n; *(z’) € (0,1;).

Thus, the set Cis composed of at most 2k — 1 injective arc-length parametrized curves which
does not intersect in internal points, i.e. C € Ag,_1(D;1). d

Remark 7.1.8. Theorem above provides a nice class of admissible sets, where to search
for a minimizer of the energy functional £. Indeed, according to its proof, we may limit ourselves
to consider only graphs C such that:
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(1) C is a tree, i.e. it does not contain any closed loop;

(2) the Dirichlet points D; are vertices of degree one (endpoints) for C;

(3) there are at most k — 1 other vertices; if a vertex has degree three or more, we call it
Kirchhoff point;

(4) there is at most one vertex of degree one for C which is not a Dirichlet point. In this
vertex the energy function w satisfies Neumann boundary condition w’ = 0 and so we
call it Neumann point.

The previous properties are also necessary conditions for the optimality of the graph C (see
Proposition [7.2.11] for more details).

As we show in Example the problem may not have a solution in the class of
connected sets. It is worth noticing that the lack of existence only occurs for particular config-
urations of the Dirichlet points D; and not because of some degeneracy of the cost functional
E. In fact, we are able to produce other examples in which an optimal graph exists (see Section

7.3).

7.2. Sobolev space and Dirichlet Energy of a metric graph

Let V = {Vi,...,Vn} be a finite set and let E C {e;; = {V;,V;}} be a set of pairs of
elements of V. We define combinatorial graph (or just graph) a pair I' = (V, E'). We say the set
V = V(I') is the set of vertices of I and the set E = E(I") is the set of edges. We denote with
|E| and |V| the cardinalities of E and V' and with deg(V;) the degree of the vertex V;, i.e. the
number of edges incident to V;.

A path in the graph I is a sequence V,,, ..., V,, € V such that for each k =0,...,n—1, we
have that {V4,, Va,,,} € E. With this notation, we say that the path connects Vi, to V;,. The
path is said to be simple if there are no repeated vertices in V,,, ..., V,, . We say that the graph
I' = (V, E) is connected, if for each pair of vertices V;, V; € V' there is a path connecting them.
We say that the connected graph I is a tree, if after removing any edge, the graph becomes not
connected.

If we associate a non-negative length (or weight) to each edge, i.e. amapl: E(T') — [0, +00),
then we say that the couple (I',1) determines a metric graph of length

(T) =Y Ieij).

1<J

A function u : I' — R™ on the metric graph I' is a collection of functions w;; : [0, ;] — R,
for 1 <1i# j < N, such that:

(1) uji(x) = uij(lsj — x), for each 1 <i # j < N,
(2) ul](o) - ulk(o)a for all {i7j7 k} - {17 e '7N}7
where we used the notation l;; = I(e;;). A function uw : I' — R is said continuous (u € C(T")),

if u;; € C([0,1;]), for all i,5 € {1,...,n}. We call LP(I") the space of p-summable functions
(p € [1,400)), i.e. the functions u = (u;;);; such that

1
Hu||1£p(r) = 9 Z Huijuﬁp(o,lzj) < 400,
1,J
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where ||+ || 1r(q,5) denotes the usual LP norm on the interval [a,b]. As usual, the space L?(T') has
a Hilbert structure endowed by the scalar product:
1
<U7U>L2(F) = 3 ZWU’UUM?(OJM)-
1,3

We define the Sobolev space H!(T) as:
H%D:{ueC@yuUEHﬂmﬁm,WJE{LHWM}

which is a Hilbert space with the norm

1 1 lij lij
HUHJ%P(F) =3 Z Huz‘jHip([o,zij]) =35 Z (/0 ’“ij‘2d$+/0 ’“QJle’) .

i,j ,J
Remark 7.2.1. Note that for u € H'(T') the family of derivatives (u;j)l <izj<y S MOt A function
on I', since u;;(z) = Luji(lyy — x) = —u};(lij — x). Thus, we work with the function [v'| =

(‘uéj‘)lgz‘;ﬁjSN € LZ(F)'

Remark 7.2.2. The inclusions H'(I') ¢ C(T) and HY(T') C L?*() are compact, since the
corresponding inclusions, for each of the intervals [0, l;;], are compact. By the same argument,

the H! norm is lower semicontinuous with respect to the strong L? convergence of the functions
in H(T).
For any subset W = {Wq,..., Wy} of the set of vertices V(I') = {V1,..., Vny}, we introduce
the Sobolev space with Dirichlet boundary conditions on W:
HyT;W)={ue H'(T) : u(Wy) =" =u(W;) =0}.
Remark 7.2.3. Arguing as in Remark we have that for each u € H}(T; W) and, more
generally, for each u € H'(T') such that u(V,) = 0 for some o = 1,..., N, the Poincaré inequality
[l 2y < 2| < U L2y, (7.2.1)

holds, where
o layi= [ P dei= 3 [ i da
r 7 0

On the metric graph I', we consider the Dirichlet Energy with respect to W:
ET; W) =inf{J(u) : ue Hy(I;W)}, (7.2.2)
where the functional J : H}(I'; W) — R is defined by

J(u):;/r\ullzdx—/rud:c. (7.2.3)

Lemma 7.2.4. Given a metric graph I of length | and Dirichlet points {W1,... , Wi} C V(T') =
{Vi,...,Vn}, there is a unique function w = (wij)1<izj<n € HY(T; W) which minimizes the
functional J. Moreover, we have

(i) for each 1 <i#j < N and each t € (0,1;;), —wj; = 1;

(ii) at every vertex V; € V(I'), which is not a Dirichlet point, w satisfies the Kirchhoff’s law:

where the sum is over all j for which the edge e;; exists;
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Furthermore, the conditions (i) and (i1) uniquely determine w.

PRrOOF. The existence is a consequence of Remark and the uniqueness is due to the
strict convexity of the L? norm. For any ¢ € H{(I'; W), we have that 0 is a critical point for
the function

1
E»—>/|(w+5<p)’|2dx—/(w+scp)dx.
2 Jr r

Since ¢ is arbitrary, we obtain the first claim. The Kirchhoff’s law at the vertex V; follows by
choosing ¢ supported in a “small neighborhood” of V;. The last claim is due to the fact that if
u € HE(T; W) satisfies (i) and (ii), then it is an extremal for the convex functional J and so,
U= W. 0

Remark 7.2.5. As in Remark [7.1.5] we have that the co-area formula holds for the functions
u € H(T') and any positive Borel (on each edge) function v : I' — R:

[r@hl@ar= 3 / ()

1<i<j<N

- /+°° o(x)) dr (7.2.4)

1<i<j<N u”(m =T

_ /0 +°°( > () dr

u(x)=T1
7.2.1. Optimization problem for the Dirichlet Energy on the class of metric

graphs. We say that the continuous function v = (vij)i<izj<ny : I' = R? is an immersion of
the metric graph I' into RY, if for each 1 < i # j < N the function 7;; : [0,1;;] — R? is an
injective arc-length parametrized curve. We say that v : I' — R? is an embedding, if it is an
immersion which is also injective, i.e. for any ¢ # j and i’ # j’, we have

(1) 755 ((0,255)) Mirjo ([0, Lirjr]) = 0,

(2) 745(0) = v44(0), if and only if, i =i’

Remark 7.2.6. Suppose that I' is a metric graph of length [ and that v : I' — R? is an
embedding. Then the set C := (I') is rectifiable of length H'(y(I')) = I and the spaces H'(T")

and H'(C) are isometric as Hilbert spaces, where the isomorphism is given by the composition
with the function ~.

Consider a finite set of distinct points D = {Dy,..., Dy} C R? and let [ > St(D), where
St(D) is the length of the Steiner set, the minimal among the ones connecting all the points D;
(see [6] for more details on the Steiner problem). Consider the shape optimization problem:

min {5(F;V) : T e CMG, (T) =1, Vc V(T'), 3y:T — R? immersion, v(V) = D} ,
(7.2.5)
where C MG indicates the class of connected metric graphs. Note that since [ > St(D), there is
a metric graph and an embedding v : T' — R such that D C v(V(T')) and so the admissible set
in the problem is non-empty, as well as the admissible set in the problem

min {S(F;V) . T e CMG, I(T) =1, V c V(I'), 3y:T — R? embedding, (V) = D}
(7.2.6)
We will see in Theoremthat problem admits a solution, while Example shows
that in general an optimal embedded graph for problem may not exist.
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Remark 7.2.7. By Remark and by the fact that the functionals we consider are invariant
with respect to the isometries of the Sobolev space, we have that the problems and
are equivalent, i.e. if ' € CMG and v : I' = R? is an embedding such that the pair (T',v) is a
solution of (7.2.6)), then the set (T') is a solution of the problem (7.1.12)). On the other hand, if C
is a solution of the problem (7.1.12), by Theorem we can suppose that C' = Y, ([0, 1)),
where ~; are injective arc-length parametrized curves, which does not intersect internally. Thus,
we can construct a metric graph I' with vertices the set of points {w(()),w(li)}fil C R?, and
N edges of lengths [; such that two vertices are connected by an edge, if and only if they are
the endpoints of the same curve ;. The function v = (v;)i=1,. . v : ' = R? is an embedding by
construction and by Remark we have £(C; D) = E(I'; D).

Theorem 7.2.8. Let D = {D1,..., Dy} C R? be a finite set of points and let | > St(D) be a
positive real number. Suppose that T' is a connected metric graph of length 1, V C V(I') is a set
of vertices of ' and v : T — R? is an immersion (embedding) such that D = Y(V). Then there
exists a connected metric graph r of at most 2k wvertices and 2k — 1 edges a setV C V( ) of
vertices of I and an immersion (embedding) 7 : T — R? such that D = V(V) and

E(T;V) < E; V). (7.2.7)

PROOF. We repeat the argument from Theorem We first construct a connected metric
graph I such that V(I'V) C V(') and the edges of I are appropriately chosen paths in I'. The
edges of I', which are not part of any of these paths, are symmetrized in a single edge, which we
attach to I'V in a point, where the restriction of w to I achieves its maximum, where w is the
energy function for I.

Suppose that Vi,...,V, € V C V(') are such that v(V;) = D;, i = 1,..., k. We start con-
structing I by taking V := {V4,...,V;} € V(I'). Let o1 = {Vi,, Vi, ..., Vi.} be a path of dif-
ferent vertices (i.e. simple path) connecting Vi = V;, to Vo =V, and let 62 = {V},,Vj,,....V}, }
be a simple path connecting Vi =V}, to V3 = Vj,. Let t’ € {1 ..,t} be the smallest integer
such that Vj, € o1. Then we set V;, € V(I) and o2 = {V},,V};,...,V},}. Consider a simple
path 3 = {Ving, Vinys - - -, Vin, } connecting Vi = V,,, to V3 = V,,,, and the smallest integer »/
such that V;, , € o1 Uoa. We set V,,, , € V(T’) and o3 = {Ving, Vinys - - - , Vin,, }. We continue
the operation until each of the points Vi,...,V} is in some path o;. Thus we obtain the set of
vertices V(I). We define the edges of I by saying that {V;,Vi} € E(I") if there is a simple
path o connecting V; to Viy and which is contained in some path o; from the construction above;
the length of the edge {V;, Vi/} is the sum of the lengths of the edges of I" which are part of o.
We notice that IV € CMG is a tree with at most 2k — 2 vertices and 2k — 2 edges. Moreover,
even if I is not a subgraph of I' (E(I') may not be a subset of E(I")), we have the inclusion
HY(T") c HY(T).

Consider the set E” C E(I") composed of the edges of I' which are not part of none of the
paths o; from the construction above. We denote with I” the sum of the lengths of the edges in
E". For any e;; € E" we consider the restriction w;; : [0,1;;] — R of the energy function w on e;;.
Let v : [0,1"] — R be the monotone function defined by the equality [{v > 7}[ = > _ v {wi; >
7}|. Using the co-area formula and repeating the argument from Remark we have

that
1 l// ll‘]
2/ W' |2da —/ x)dr < Z < / w; 2da —/ Wy d:c) : (7.2.8)
0 0 0

eEU

l//
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Let I be the graph obtained from I' by creating a new vertex Wj in the point, where the
restriction wps achieves its maximum, and another vertex W, connected to Wi by an edge of
length I”. Tt is straightforward to check that [ is a connected metric tree of length [ and that
there exists an immersion 7 : [ — R? such that D = i(fi) The inequality ([7.2.7)) follows since,
by (7.2.8), J(w) < J(w), where w is defined as w on the edges E(I") C E(T) and as v on the
edge {Wy, Wa}. O

Before we prove our main existence result, we need a preliminary Lemma.

Lemma 7.2.9. Let I be a connected metric tree and let V C V(I') be a set of Dirichlet vertices.
Let w € HE(T;V) be the energy function on T with Dirichlet conditions in V, i.e. the function
that realizes the minimum in the definition of E(I'; V). Then, we have the bound ||w'||p~ < I(T).

ProOF. Up to adding vertices in the points where |w’| = 0, we can suppose that on each
edge e;; := {V;,V;} € E(T) the function w;; : [0,1;;] — R is monotone. Moreover, up to
relabel the vertices of I" we can suppose that if e;; € V(I') and ¢ < 7, then w(V;) < w(Vj). Fix
Vi, Vi € V(T') such that e;z € E(T"). Note that, since the derivative is monotone on each edge,
it suffices to prove that ]w /(0)] < U(T"). It is enough to consider the case i < ', i.e. w},(0) > 0.
We construct the graph r inductively, as follows (see Figure |7 .

(1) Vi e V(I); B
(2) if V; € V(I') and Vj, € V(I') are such that ej; € E(I') and j < k, then Vj, € V(T') and
eji € E(T).
ANy
AN TN

%Oé\'oi‘/o\\oj\f TN
" \O<N \o_/\[
— o\

FiGure 7.3. The graph f; with the letter N' we indicate the Neumann vertices.

The graph I constructed by the above procedure and the restriction w € H! (f) of wto D
have the following properties:
(a) On each edge ej;, € E(T), the function @ Wjy, is non-negative, monotone and w7 = —1;
(b) w(Vj) > w(Vk) whenever e;, € E(I' ) and j > k;
(c) if V; e V(I I') and j > i, then there is exactly one k < j such that ekrj € E);
(d) for j and k as in the previous point, we have that

0 < @ (ly) < ijs

where the sum on the right-hand side is over all s > j such that e;; € E (T'). If there are not
such s, we have that wk] (lg;) = 0.
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The first three conditions follow by the construction of I, while condition (d) is a consequence
of the Kirchkoft’s law for w.

We prove that for any graph I and any function @ € H(T'), for which the conditions (a), (b),
(c) and (d) are satisfied, we have that

> wj;(0) <UL,
j

where the sum is over all j > 7 and ¢;; € E(f) It is enough to observe that each of the
operations (i) and (i7) described below, produces a graph which still satisfies (a), (b), (c) and
(d). Let V; € V(I') be such that for each s > j for which ejs € E(T), we have that wi(ljs) =0
and let k < j be such that e;;, € E(T).

(i) If there is only one s > j with ejs € E(T), then we erase the vertex V; and the edges
erj and ejs and add the edge ey of length [y, := l; + [js. On the new edge we define
Wgs : [0, lsx] — RT as

2
~ x -
Whs () = ==+ les 2 + 01 (0),
which still satisfies the conditions above since @;Cj —lej <ljs, by (d), and W), = ls > @;j(O).
s ) I s

(ii) If there are at least two s > j such that ej; € E(T"), we erase all the vertices V; and edges

ejs, substituting them with a vertex Vg connected to V; by an edge e;g of length

lis = szs,

where the sum is over all s > j with e;s € E(I’ ) On the new edge, we consider the function

w;s defined by
2

~ €T ~
sz(a:) = —? + ljgl‘ + w(Vj),

which still satisfies the conditions above since

Yo @W0)= Y s =ls = wjs(0).
{s:s>5} {s:s>5}
We apply (i) and (i¢) until we obtain a graph Wlth Vertlces Vi, Vj and only one edge e;; of length
I(T'). The function we obtain on this graph is —Z- ° 4+ I(T)x with derivative in 0 equal to I(T').

Since, after applying (¢) and (i), the sum 3, w (O) does not decrease, we have the claim. [

Theorem 7.2.10. Consider a set of distinct points D = {D1,...,Dy} C R? and a positive real
number | > St(D). Then there exists a connected metric graph I', a set of vertices V C V(I)
and an immersion v : I' — R® which are solution of the problem . Moreover, I' can be
chosen to be a tree of at most 2k vertices and 2k — 1 edges.

PROOF. Counsider a minimizing sequence (I',,~,) of connected metric graphs I',, and im-
mersions 7, : I', — R%. By Theorem we can suppose that each I'), is a tree with at most
2k vertices and 2k — 1 edges. Up to extracting a subsequence, we may assume that the metric
graphs I'), are the same graph I' but with different lengths Lis of the edges e;;. We can suppose
that for each e;; € E(T) I — lij for some l;; > 0 as n — oo. We construct the graph I from T
identifying the vertices V;, V; € V(I') such that l;; = 0. The graph [ is a connected metric tree
of length [ and there is an immersion 3 : I' — R% such that D C ~(T ) In fact if {V1,...Vn}
are the vertices of I', up to extracting a subsequence, we can suppose that foreacht=1,..., N



7.2. SOBOLEV SPACE AND DIRICHLET ENERGY OF A METRIC GRAPH 227

(Vi) = X; € RE We define 5(V;) := X; and vij ¢+ [0,1;5] — R? as any injective arc-length
parametrized curve connecting X; and X, which exists, since

To prove the theorem, it is enough to check that
ET;V) = lim £ V).
n—oo

Let w™ = (w:;)” be the energy function on I';,. Up to a subsequence, we may suppose that
for each i = 1,..., N, w™(V;) = a; € R as n — oco. Moreover, by Lemma we have that

if l;; = 0, then a; = a;. On each of the edges e;; € E(I"), where [;; > 0, we define the function

wij . [O, l”] — R as the parabola such that ’U)U(O) = aq, w”(l”) = aj and w;’] = —1on (O, l”)
Then, we have

1 l?j n\/|2 l?j n 1 & 712 i

2/0 [(wiy)'|" d —/0 wi; dx — 5 ; |(wiz)'|* dz _/0 w;j dx,

and so, it is enough to prove that w = (wj;);; is the energy function on T, ie. (by Lemmal|7.2.4)
that the Kirchoff’s law holds in each vertex of I'. This follows since for each 1 < i # j < N we
have

(1) (w}5)'(0) — w;;(0), as n — oo, if l;; # 0;
(2) [(wf)'(0) = (wib)' ()| < 17 — 0, as n — o0, if [;; = 0.

The proof is then concluded. O
The proofs of Theorem and Theorem [7.2.10| suggest that a solution (I',V,7) of the

problem ([7.2.5) must satisfy some optimality conditions. We summarize this additional infor-

mation in the following Proposition.

Proposition 7.2.11. Consider a connected metric graph T', a set of vertices V C V(T') and an
immersion v : T' — R? such that (I',V,) is a solution of the problem . Moreover, suppose
that all the vertices of degree two are in the set V. Then we have that:
(i) the graph I is a tree;
(ii) the set V has exactly k elements, where k is the number of Dirichlet points {D1,..., Dy};
(iii) there is at most one vertex V; € V(I') \'V of degree one;
(iv) if there is no vertex of degree one in V(I')\ 'V, then the graph I' has at most 2k — 2 vertices
and 2k — 3 edges;
(v) if there is exactly one vertex of degree one in V(I') \ 'V, then the graph T' has at most 2k
vertices and 2k — 1 edges.

Proor. We use the notation V(I') = {V1,...,Vn} for the vertices of I" and e;; for the
edges {V;,V;} € E(T'), whose lengths are denoted by [;;. Moreover, we can suppose that for
j =1,...,k, we have v(V;) = Dj;, where D;,..., Dy are the Dirichlet points from problem
and so, {Vi,...,Vi} C V. Let w = (wjj);; be the energy function on I' with Dirichlet
conditions in the points of V.

(i) Suppose that we can remove an edge e;; € E(I'), such that the graph I" = (V(T'), E(T')\ e;5)
is still connected. Since w;; = —1 on [0,/;;] we have that at least one of the derivatives

1;(0) and wi;(1;5) is not zero. We can suppose that wi;(l;;) # 0. Consider the new graph r
to which we add a new vertex: V(I') = V(I') UV, then erase the edge e;j and create a new
one ey = {V;, Vo}, of the same length, connecting V; to Vp: E(T') = (E(T) \ eij) Uej. Let

w
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w be the energy function on ' with Dirichlet conditions in V. When seen as a subspaces
of @;;H([0,1;5]), we have that HZ(T;V) C H&(f;V) and so E(T; V) < £(I;V), where the
equality occurs, if and only if the energy functions w and w have the same components in
@®i;H1([0,1;;]). In particular, we must have that w;; = w;o on the interval [0,;;], which is
impossible since wj;(li;) # 0 and wjy(l;;) = 0.

(it) Suppose that there is a vertex V; € V with j > k and let w be the energy function on I' with
Dirichlet conditions in {Vi,. .., Vi }. We have the inclusion H}(I';V) c HY(T; {V4,...,Vi})
and so, the inequality J(w) = £(I;{V1,...,Vi}) < EI;V) = J(w), which becomes an
equality if and only if w = w, which is impossible. Indeed, if the equality holds, then in
Vj, w satisfies both the Dirichlet condition and the Kirchoft’s law. Since w is positive, for
any edge ej; we must have w;;(0) = 0, w’;(0) = 0, w}; = —1 ad wj; > 0 on [0, l;;], which is
impossible.

(#11) Suppose that there are two vertices V; and Vj of degree one, which are not in V, i.e. 4, j > k.
Since I is connected, there are two edges, e; and e;; starting from V; and Vj respectively.
Suppose that the energy function w € HJ(I; {V4, ..., Vi}) is such that w(V;) > w(V;). We
define a new graph I' by erasing the edge ej; and creating the edge e;; of length [;;. On
the new edge e;; we consider the function w;j(x) = wj; (x) +w(V;) —w(Vj). The function w
on I obtained by this construction is such that J(@) < .J(w), which proves the conclusion.

The points (iv) and (v) follow by the construction in Theorem and the previous claims (),

(ii) and (%ii). O

Remark 7.2.12. Suppose that V; € V(I') \ V is a vertex of degree one and let V; be the

vertex such that e;; € E(I'). Then the energy function w with Dirichlet conditions in V satisfies

w;i(O) = 0. In this case, we call V; a Neumann vertex. By Proposition an optimal graph

has at most one Neumann vertex.

In some situations, we can use Theorem to obtain an existence result for (7.1.12)).

Proposition 7.2.13. Suppose that Dy, Dy and Ds be three distinct, non co-linear points in R?
and let | > 0 be a real number such that there exists a closed set of length | connecting D1, Do
and D3. Then the problem (7.1.12)) has a solution.

PROOF. Let the graph T' be a solution of (7.2.5) and let v : T' — R be an immersion of T
such that v(V;) = D; for j = 1,2, 3. Note that if the immersion v is such that the set v(I') C R¢
is represented by the same graph I', then (I") is a solution of ([7.1.12]) since we have

E(Fa {Vlavéa‘/é}) = E(O7 D1>D27D3)'

By Proposition we can suppose that I' is obtained by a tree IV with vertices V7, Vo and
V3 by attaching a new edge (with a new vertex in one of the extrema) to some vertex or edge
of . Since we are free to choose the immersion of the new edge, we only need to show that
we can choose v in order to have that the set (I") is represented by I. On the other hand we
have only two possibilities for IV and both of them can be seen as embedded graphs in R? with
vertices D1, Dy and Ds. O

7.3. Some examples of optimal metric graphs

In this section we show three examples. In the first one we deal with two Dirichlet points,
the second concerns three aligned Dirichlet points and the third one deals with the case in which
the Dirichlet points are vertices of an equilateral triangle. In the first and the third one we find



7.3. SOME EXAMPLES OF OPTIMAL METRIC GRAPHS 229

the minimizer explicitly as an embedded graph, while in the second one we limit ourselves to
prove that there is no embedded minimizer of the energy, i.e. the problem does not admit
a solution.

In the following example we use a symmetrization technique similar to the one from Remark
/. 1.0

Example 7.3.1. Let D; and D be two distinct points in R? and let [ > |D; — Ds| be a real
number. Then the problem

min {g(r; (Vi,Va}): T € CMG, I(T) =1, Vi, Vs € V(I),

7.3.1
exists v : I' = R immersion, v(V1) = Dy,v(Va) = DQ}. ( )

has a solution (I',~), where I' is a metric graph with vertices V(I") = {V1, Vo, V3, V4} and edges
E(T) = {e13 = {V1,Vs}, €23 = {V2, Va}, eas = {V4, V3}} of lengths l13 = ly3 = 3|Dy — Ds| and
I34 = | — | Dy — Ds|, respectively. The map v : I' — R? is an embedding such that v(V;) = Dy,
v(Va) = Dy and y(V3) = w (see Figure [7.4)).

2

2

=~
&
&

FIGURE 7.4. The optimal graph with two Dirichlet points.

To fix the notations, we suppose that |D; — Da| = [ —e. Let u = (uj;);; be the energy
function of a generic metric graph ¥ and immersion o : ¥ — R? with Dy, Dy € o(V(%)).
Let M = max{u(z) : € ¥} > 0. We construct a candidate v € H}(T;{V1,V2}) such that
J(v) < J(u), which immediately gives the conclusion.

We define v by the following three increasing functions

V13 = V23 EHl([O, (Z—E)/QD, v34€H1([0,€D,
with boundary values
1)13(0) = 1)23(0) =0, 1)13(([ — 8)/2) = U23((l — 8)/2) = 7)34(0) =m < M,

and level sets uniquely determined by the equality g, = u,, where u, and u, are the distribution
functions of v and v respectively, defined by

p() =H' (fu<t) = Y H'{uy <t}),

ei;€E(X)

() =H' {v<th) = Y H'{vs <t}).

§=1,2,4

As in Remark we have ||v]| 1) = [|ul/L1(c) and

—1
/2 | da = /0M<UZ:; ]u’|) dr > /OMnZ(T) (uzz; u’|1(7')) dr = /OM Zig:; dr (7.3.2)
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where n,(7) = H°({u = 7}). The same argument holds for v on the graph T' but, this time,

with the equality sign:
M M 2
/12 _ / _ Ty (T)
/F|v |“dx = /0 (;:T lv ]) dr —/0 ) dr, (7.3.3)

since |v'| is constant on {v = 7}, for every 7. Then, in view of and (7.3.3)), to conclude
it is enough to prove that n,(7) > n,(7) for almost every 7. To this aim we first notice that,
by construction n,(r) = 1 if 7 € [m, M] and n,(7) = 2 if 7 € [0,m). Since n, is decreasing
and greater than 1 on [0, M], we only need to prove that n, > 2 on [0, m]. To see this, consider
two vertices Wp, Wy € V() such that o(W;) = Dy and o(Ws) = Ds. Let n be a simple path
connecting Wi to Ws in X. Since o is an immersion we know that the length (7)) of 1 is at least
[ — e. By the continuity of u, we know that n, > 2 on the interval [0, max, u). Since n, =1 on

[m, M], we need to show that max, u > m. Otherwise, we would have
{n) < {u < maxu}| <[{u <m}| = {v <m}| =[D1 — Dof < (n),
which is impossible.

Remark 7.3.2. In the previous example the optimal metric graph I' is such that for any
(admissible) immersion v : I' — R?, we have |y(V}) — v(V3)| = l13 and |y(Va) — v(V3)| = la3, i.e.
the point v(V3) is necessary the midpoint w, so we have a sort of rigidity of the graph I'.
More generally, we say that an edge e;; is rigid, if for any admissible immersion v : I' — R%, i.e.
an immersion such that D = v(V), we have |y(V;) — v(V})| = l;j, in other words the realization
of the edge ¢;; in R? via any immersion v is a segment. One may expect that in the optimal
graph all the edges, except the one containing the Neumann vertex, are rigid. Unfortunately,
we are able to prove only the weaker result that:

(1) if the energy function w, of an optimal metric graph I', has a local maximum in the
interior of an edge e;;, then the edge is rigid; if the maximum is global, then I" has no
Neumann vertices;

(2) if I" contains a Neumann vertex Vj, then w achieves its maximum at it.

To prove the second claim, we just observe that if it is not the case, then we can use an argument
similar to the one from point (iii) of Proposition erasing the edge e;; containing the
Neumann vertex V; and creating an edge of the same length that connects V; to the point,
where w achieves its maximum, which we may assume a vertex of I' (possibly of degree two).

For the first claim, we apply a different construction which involves a symmetrization
technique. In fact, if the edge e;; is not rigid, then we can create a new metric graph of
smaller energy, for which there is still an immersion which satisfies the conditions in problem
(7.2.5). In this there are points 0 < a < b < l;; such that l;; — (b — a) > |y(V;) — v(V;)| and
ming, y wi; = wij(a) = wi;(b) < max, ) wi;. Since the edge is not rigid, there is an immersion
such that |y;;(a) —7;5(b)| > |b — a|. The problem with Dy = 7;j(a) and Dy = 7;;(b) has
as a solution the T-like graph described in Example This shows, that the original graph
could not be optimal, which is a contradiction.

Example 7.3.3. Consider the set of points D = {Dy, Do, D3} C R? with coordinates respec-
tively (—1,0), (1,0) and (n,0), where n is a positive integer. Given [ = (n + 2), we aim to show
that for n large enough there is no solution of the optimization problem

min{E(F;V) T e OMG, () =1, VY V(I), 3y:T — R embedding, D = W(V)}.
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In fact, we show that all the possible solutions of the problem
min {E(F;V) :'e CMG, I(T)=1, vcV(), 3Iy:T — R immersion, D = v(V)}, (7.3.4)

are metric graphs I' for which there is no embedding v : I' — R? such that D C ~(V(I)).
Moreover, there is a sequence of embedded metric graphs which is a minimizing sequence for
the problem .

More precisely, we show that the only possible solution of is one of the following
metric trees:

(i) ;1 with vertices V(I'1) = {V1,Vh,V3,V4} and edges E(I'1) = (e1s = {V1,Vi},e24 =
{Va,Vi},e34 = {V3,V4} of lengths l14 = log = 1 and l34 = n, respectively. The set of
vertices in which the Dirichlet condition holds is Vi = {V1, V, V3}.

(ii) I'y with vertices V(Fg) = {‘/Vz‘}?:p and edges E(FQ) = {614, €24, €35, €45, 656} ,where €5 =
{Wi, Wy} for 1 <i#j<6oflengths liy =14+, loa=1—-a,l3s =n—f,l4s = — «a,
ls6 = «, where 0 < o < 1 and @ < 8 < n. The set of vertices in which the Dirichlet
condition holds is V; = {Vi, V5, V3}. A possible immersion v is described in Figure

Vs
o« 1 o+
Vs
1 Vi W V3 |41 Vi Va V3

FIGURE 7.5. The two candidates for a solution of (7.3.4]).

We start showing that if there is an optimal metric graph with no Neumann vertex, then
it must be I';. In fact, by Proposition [7.2.11] we know that the optimal metric graph is of the
form T'y, but we have no information on the lengths of the edges, which we set as l; = l(e;4), for
i =1,2,3 (see Figure . We can calculate explicitly the minimizer of the energy functional
and the energy itself in function of Iy, Iy and [3.

h

lo( Va I3

Vi Va V3
FIGURE 7.6. A metric tree with the same topology as I';.

The minimizer of the energy w : I' — R is given by the functions w; : [0,l;] — R, where
1=1,2,3 and
2
x
wi(x) = D) + a;x.

where
_h lols(ly + I + 13)

2 2(l1l2 + lol3 —l—l3l1)7
and ao and ag are defined by a cyclic permutation of the indices. As a consequence, we obtain

a

that the derivative along the edge e14 in the vertex Vj is given by

I lals(ly + 1o +13)
- _h 7.3.5
wy(l1) 1+a 2 + 2(l1lz + lal3 + 1311)’ ( )
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and integrating the energy function w on I', we obtain

(I3 + Iy + 13)211 1513

Al + lals + 13l1)

Studying this function using Lagrange multipliers is somehow complicated due to the com-

1
EM {1, Vo, V3}) = —ﬁ(lf +134+13) -

plexity of its domain. Thus we use a more geometric approach applying the symmetrization
technique described in Remark in order to select the possible candidates. We prove that
if the graph is optimal, then all the edges must be rigid (this would force the graph to coincide
with I'1). Suppose that the optimal graph I' is not rigid, i.e. there is a non-rigid edge. Then,
for n > 4, we have that Iy < l; < I3 and so, by (7.3.5)), we obtain wj(l3) < w}(l1) < wh(ls). As
a consequence of the Kirchoff’s law we have wj(l3) < 0 and wj(l2) > 0 and so, w has a local
maximum on the edge e34 and is increasing on ej4. By Remark [7.3:2] we obtain that the edge
e34 is rigid.

We first prove that wj(l;) > 0. In fact, if this is not the case, i.e. w}(l1) < 0, by Remark
we have that the edges ej4 is also rigid and so, I; + 13 = |D; — D3| =n+1, ie. ls = 1.
Moreover, by (7.3.5), we have that w{(l1) < 0, if and only if 12 > Iyl3 = I3. The last inequality
does not hold for n > 11, since, by the triangle inequality, lo + 3 > |Dy — D3| = n — 1, we have
Iy < 3. Thus, for n large enough, we have that w is increasing on the edge e4.

We now prove that the edges ej4 and eqy are rigid. In fact, suppose that eoq is not rigid.
Let a € (0,11) and b € (0,l2) be two points close to [; and Iy respectively and such that
wig(a) = way(b) < w(Vy) since wyg and woyy are strictly increasing. Consider the metric graph
I whose vertices and edges are

V() = {Vi =W, Vo = Vo, Vs = V3, Vi = Vi, Vs, Vi },
E() = {e1s, €25, €45, €34, €s6 ),
where e;; = {IZ, 17}} and the lengths of the edges are respectively (see Figure [7.7)

lis=a, loys=0b, lys =1lo — b, s34 =13, lsg =1, —a.

a Vi Vi

'/.;/\O\ Ve
7
i b 1% °

Va Vs Va V3
FIGURE 7.7. The graph I (on the left) and the modified one T’ (on the right).
The new metric graph is still a competitor in the problem ([7.3.4]) and there is a function

w € H&(f;{Vl,Vg,Vg}) such that (I'; {V1, Va, Va}) < J(@) = J(w), which is a contradiction
with the optimality of I'. In fact, it is enough to define w as

W15 = wi4|[0,a), Was = Waalop], Wsa = W2alp1,), W4 = W34, Wea = Wid|[a ],

and observe that w is not the energy function on the graph T since it does not satisfy the
Neumann condition in YN/G. In the same way, if we suppose that w4 is not rigid, we obtain a
contradiction, and so all the three edges must be rigid, i.e. I' =T';.

In a similar way we prove that a metric graph I' with a Neumann vertex can be a solution
of only if it is of the same form as I's. We proceed in two steps: first, we show that, for
n large enough, the edge containing the Neumann vertex has a common vertex with the longest
edge of the graph; then we can conclude reasoning analogously to the previous case. Let I' be
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a metric graph with vertices V(I') = {Vi}?:l, and edges E(T') = {eis, €24, €34, €45, €56}, where
eij ={Vi,Vj} for 1 <i# j <6.

We prove that w(Vs) < maxe,, w, i.e. the graph I' is not optimal, since, by Remark
the maximum of w must be achieved in the Neumann vertex Vg (the case E(I') =
{614, €925, €34, €45, 656} is analogous). Let w15 - [0, l15] — R, wes - [0, l65] — R and w34 [0, 134] —
R be the restrictions of the energy function w of I' to the edges ej5, eg5 and e3q of lengths I15,
lgs and l34, respectively. Let u : [0,115 + l56] — R be defined as

w15(a:), T € [0,[15],
u(z) =
wse(x — l15), = € [l15.015 + I56)-

If the metric graph I' is optimal, then the energy function on wss4 on the edge eq5 must be
decreasing and so, by the Kirchhoff’s law in the vertex Vs, we have that w/5(l15) + wgs(le5) < 0,
i.e. the left derivative of u at [15 is less than the right one:

d—u(li5) = wis(his) < wyg(0) = Oy u(lys).

By the maximum principle, we have that

2
~ x 1
u(e) < u(z) = —— + (lis +lse)z < 5 (ls + Is6)°.
On the other hand, wz4(z) > v(z) = —% + 137433, again by the maximum principle on the interval

[0,134]. Thus we have that

1 1
> = 13, > ~(li5 + 156)* > w(V,
[ wsa(z) > L (@) = Slsa > 5 (ls +1s6)” = w(Vs),

for n large enough.

Repeating the same argument, one can show that the optimal metric graph I' is not of the
form V(F) - (V17 Va, Vs, Va, VB)? E(F) - {Vlﬂ V4}7 {V27 V4}7 {V?n V4}7 {V47 V5}'

Thus, we obtained that the if the optimal graph has a Neumann vertex, then the corre-
sponding edge must be attached to the longest edge. To prove that it is of the same form as Iy,
there is one more case to exclude, namely: T' with vertices, V/(T') = (V4, Vo, V3, Vy, V5), E(T) =
{1, Va}, {Va, Va}, {V5, Va}, {V4, V5}} (see Figure[7.8). By Example[7.3.1] the only possible can-
didate of this form is the graph with lengths [({V1,V2}) = |D1 — Do| = 2, {({Va,V4}) = "T_l,
I({V3,Va}) = 251, 1({Va,V5}) = 2. In this case, we compare the energy of I' and I'y, by an
explicit calculation:

5 —3n2+6 ?(n+1)?
E(T {1, Vo, Va}) = — = 2’1 o _7;22121% i) = &(Ty; {V1, Va, Vi}),

for n large enough.

n Vs
Vi Vi Vi Va3 Vi Voo ol Wy ool W

FIGURE 7.8. The graph I'; (on the left) has lower energy than the graph I' (on the right).

Before we pass to our last example, we need the following Lemma.
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Lemma 7.3.4. Let w, : [0,1] = R be given by wq(x) = —% +ax, for some positive real number
a. If we(1) < wa(l) < max,cp,1) wa(z), then J(wa) < J(w,), where J(w) = %fol |w'|? do —
fol wdz.

PRrOOF. It follows by performing the explicit calculations. U

Example 7.3.5. Let D;, Dy and D3 be the vertices of an equilateral triangle of side 1 in R?,

ie.
Dy = (_?70)7 D, = (?? _%)7 D3 = (\6@7 %)
We study the problem with D = {Dy, Do, D3} and [ > /3. We show that the solutions
may have different qualitative properties for different [ and that there is always a symmetry
breaking phenomena, i.e. the solutions does not have the same symmetries as the initial config-
uration D. We first reduce our study to the following three candidates (see Figure [7.9):
(1) The metric tree I'1, defined by with vertices V(I') = {V3, Vo, V3, V,} and edges E(T") =
{e14, €24, €34}, where e;; = {V;, V;} and the lengths of the edges are respectively los =

@ — /2% — 1, for some x € [1/2,1/v/3]. Note that the length of I'y is
less than 1+ \/?;/2, i.e. it is a possible solution only for [ < 1+ \/?:/2 The new vertex
Vy is of Kirchhoff type and there are no Neumann vertices.

(2) The metric tree I'y with vertices V' = (V1, Va, V3, Vy, Vs) and E(T') = {e14, €24, €34, €45},
where e;; = {V;,V;} and the lengths of the edges l14 = log = l34 = 1/V3, lys =1 — /3,
respectively. The new vertex V} is of Kirchhoff type and V3 is a Neumann vertex.

(3) The metric tree I's with vertices V(I') = {Vi,Va, V3, V4, V5, Vs} and edges E(I') =
{e15, €24, €34, €45, €56}, where e;; = {Vz,V} and the lengths of the edges are loy =
l34:$, 115:% ——fv4x2 l45—f—ﬁ—f 4(132 1 and l56:
l—2x—+/3/2+ %\/4.%27— . The new vertices V4 and V5 are of Kirchhoff type and Vg
is a Neumann vertex.

Vs Ve
Vs Vs Vs
Vi Vi Wi Vi Vi Vi
Vs
Va Vo Vo

FIGURE 7.9. The three competing graphs.

l34 = 2, liy =

Suppose that the metric graph I' is optimal and has the same vertices and edges as I';.
Without loss of generality, we can suppose that the maximum of the energy function w on I is
achieved on the edge eyq. If l24 #* 134, we consider the metric graph [ with the same vertices
and edges as I' and lengths l14 = ly4, l24 = l34 = (lg4 + l34)/2. An immersion 7 r— R2, such
that 4(V;) = Dj, for j = 1,2, 3 still exists and the energy decreases, i.e. ET;{V1, Vo, V3}) <

E(M;{V1, Vo, V3}). In fact, let v = woy = wsy : [0, 124';34] — R be an increasing function such
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that 2[{v > 7}| = [{wa4 > 7} + [{wss4 > 7}|. By the classical Polya-Szeg6 inequality and by the
fact that woy and wsy have no constancy regions, we obtain that

J(Waq) + J(W34) < J(waa) + J(w34),

and so it is enough to construct a function w14 : [0,114] — R such that wi4(l14) = Wa4 = w34 and
J(w14) < J(wiq). Consider a function such that @}, = —1, w14(0) = 0 and w14(l14) = Wa4(l24) =
w34(l34). Since we have the inequality wi4(l14) < W14(l14) < maxjgy,,) w14 = maxp w, we can
apply Lemma and so, J(w4) < J(wi4). Thus, we obtain that loy = l34 and that both the
functions wyy and wsy are increasing (in particular, l14 > log = l34). If the maximum of w is
achieved in the interior of the edge e14 then, by Remark the edge e;4 must be rigid and
S0, all the edges must be rigid. Thus, I" coincides with I'; for some x € (%, %] If the maximum
of w is achieved in the vertex Vj, then applying one more time the above argument, we obtain
lig =log =34 = %, i.e. I'is I'y corresponding to x = %

Suppose that the metric graph I' is optimal and that has the same vertices as I'y. If
w = (w;;)i; is the energy function on I' with Dirichlet conditions in {V1, V2, V3}, we have that
w14, Wo4 AN W34 are increasing on the edges eq4, ea4 and e3y4. As in the previous situation I' = I'y,
by a symmetrization argument, we have that l;4 = log = l34. Since any level set {w = 7}
contains exactly 3 points, if 7 < w(Vy), and 1 point, if 7 > w(Vy), we can apply the same
technique as in Example to obtain that l14 = loy = l34 = %

Suppose that the metric graph I' is optimal and that has the same vertices and edges as
I's. Let w be the energy function on I' with Dirichlet conditions in {V1, V2, V3}. Since we
assume I' optimal, we have that wys is increasing on the edge ess and w(Vs) > w;j;, for any
{i,7} # {5,6}. Applying the symmetrization argument from the case I' = I'y and Lemma
we obtain that loy = l34 = = and that the functions wgs = w34 are increasing on [0, la4].
Let a € [0,l15] be such that wis(a) = w(Vs). By a symmetrization argument, we have that
necessarily l15 —a = ly5 an that wys(x) = wis(x — a). Moreover, the edges e15 and ey are rigid.

Indeed, for any admissible immersion v = (vy;5)i : I' — R?, we have that the graph T with
vertices V(I') = {V1, Vi, Vs, Ve} and edges E(I') = {{YZ,V5},{V4,V5},{V5,V6} , is a solution
for the problem with Dy := y15(a) and Dg := ~(Vy). By Example and Remark
7.3.2, we have |y15(a) —v(Va)| = 2l45 and, since this holds for every admissible v, we deduce the
rigidity of ej5 and eyq5. Using this information one can calculate explicitly all the lengths of the
edges of I' using only the parameter x, obtaining the third class of possible minimizers.

Ve
Va Va3 Vs Vi
Ve
Vi Vi Vi Vi Vi Vi Vi Vi
Vs
Va Va Va Va

FIGURE 7.10. The optimal graphs for | < 1++/3/2, 1 =14++/3/2,1> 1++/3/2
and [ >>1++/3/2.

An explicit estimate of the energy shows that:
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(1) If /3 < 1 < 1+ +/3/2, we have that the solution of the problem (7.2.5) with D =
{D1, D3, D3} is of the form I'y (see Figure [7.10)).

(2) If I > 1+ +/3/2, then the solution of the problem (7.2.5) with D = {Dj, Dy, D3} is of
the form I's.

In both cases,the parameter x is uniquely determined by the total length [ and so, we have
uniqueness up to rotation on %’r Moreover, in both cases the solutions are metric graphs, for
which there is an embedding v with v(V;) = D;, i.e. they are also solutions of the problem

(7.2.6) with D = {Dy, Dy, D3} and [ > /3.
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