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Introduction

This thesis is concerned with some aspects of logarithmic geometry, with a focus on the infinite
root stack of a log scheme and the moduli problem for parabolic sheaves.

State of the art

Logarithmic geometry was firstly inspired by questions of arithmetic geometry and developed
by Kazuya Kato ([Kat89]), and later it spread to touch various other areas of algebraic geometry,
including moduli theory (for an introduction, see [Ogu] or [ACG+13]). The basic insight was
that there are some morphisms of schemes that are not smooth, but for some (for example coho-
mological) aspects are as good as a smooth morphism; the theory originated as a mean to exploit
this “hidden smoothness”.

The main objects of the theory are logarithmic schemes: in Kato’s formulation, a log scheme is
a scheme X together with a sheaf of monoids M on the small étale site Xét and a map of sheaves
of monoids α : M → OX , where OX has its multiplicative structure, such that the restriction
α|α−1(O×X ) : α−1(O×X ) → O×X is an isomorphism. The idea behind this is that the preimage α−1(s)
of a section of OX is the set of “logarithms” of such a section (it could be empty), and α is some
kind of exponential.

The prototypical example is the following: assume that X is a scheme and D ⊆ X is an
effective Cartier divisor. Then we can take M to be the sheaf of functions on X that are invertible
outside of D, and the map α : M → OX to be the inclusion, and we obtain a log scheme. An
important instance of this situation is when we have a morphism with semi-stable reduction
X → Spec(R) with R a discrete valuation ring (i.e. étale locally on X there is a smooth morphism
X → Spec(R[x1, . . . , xr]/(x1 · · · xr − π)) where π ∈ R is a uniformizer), and we take D to be the
special fiber X0 ⊆ X, which is a reduced normal crossing divisor.

One can define morphisms of log schemes, and define various properties of log schemes and
morphisms that extend the corresponding non-logarithmic notion. In particular there is a concept
of log smoothness of a morphism of log schemes; as it happens with ordinary smoothness, one can
formulate it via an infinitesimal lifting criterion, or via local freeness of a sheaf of logarithmic
differentials. For example, all normal toric varieties over a field have a canonical log structure, and
are log smooth.

In the case of a variety over a field equipped with the log structure coming from a normal
crossing divisor, this sheaf of logarithmic differentials (with respect to the structure morphism
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6 INTRODUCTION

to the spectrum of the base field) is exactly the sheaf of 1-forms that have at most poles of
order 1 along the divisor. These forms are called logarithmic forms because formally one has
d(log(x)) = dx/x, and this has a pole of order 1 at zero.

Parabolic sheaves were first introduced by Mehta and Seshadri ([MS80]) in order to generalize
to the non-proper case the correspondence between unitary representations of the fundamental
group of a smooth complex projective curve C and semi-stable vector bundles of degree 0 on
C. If C is not proper, one can take a compactification C ⊆ C by adding finitely many points
C \ C = {p1, . . . , pk}. A parabolic bundle as defined by Mehta and Seshadri is a vector bundle E
on C, together with additional data: for every one of the points pi we have a filtration

0 = Fi,ki+1 ⊂ Fi,ki
⊂ · · · ⊂ Fi,1 = Epi

of the fiber Epi , and a set of real numbers 0 ≤ ai,1 < · · · < ai,ki
< 1 called weights. We remark

here that in our work we will use assume that the weights are rational numbers.
Mehta and Seshadri give this definition after showing that a unitary representation of the

fundamental group of an open curve leads naturally to such a structure (for example, the weights
come from the eigenvalues of the unitary matrix associated by the representation to a small loop
around the corresponding point), and after introducing a suitable notion of parabolic degree and
(semi-)stability, they prove that there is an equivalence between unitary representations of the
fundamental group and semi-stable parabolic bundles of parabolic degree 0.

The definition has been generalized in several steps, by replacing C with a projective variety
X and the points pi with an effective Cartier (simple normal crossing) divisor D ⊆ X ([MY92,
Bis97, Moc06, IS07, Bor09]). In particular Maruyama and Yokogawa ([MY92]) define a parabolic
sheaf on a smooth projective variety X equipped with an effective Cartier divisor as a coherent
torsion-free sheaf E on X together with a filtration

E(−D) = Fk+1 ⊂ Fk ⊂ · · · ⊂ F1 = E

and some weights 0 ≤ a1 < · · · < ak < 1. This is clearly a reformulation of Mehta and Seshadri’s
definition in the case of curves. This definition corresponds to considering a log structure induced
by D that is not the one we described before if D is not smooth, and in some sense is the
“wrong” one. Borne ([Bor09]) gives a definition in the case of a simple normal crossing divisor
that corresponds to considering the “correct” log structure, by “separating” the components of
the divisor D. Subsequently, in [BV12], Borne and Vistoli give a definition of a parabolic sheaf
on a general coherent log scheme, that gives back the previous definitions in the corresponding
particular cases.

This last definition, which is the one we will use throughout this document, requires a slightly
different point of view on the concept of a log scheme. For a scheme X, call DivX the fibered
category over the small étale site of X, whose objects over T → X are pairs (L, s) consisting of
a line bundle L on T together with a global section s ∈ Γ(T, L), and the arrows are the obvious
ones. This fibered category has a tensor product that makes it into a symmetric monoidal fibered
category.

A logarithmic scheme can also be defined as a scheme X together with a sheaf of monoids A
on the small étale site Xét and a symmetric monoidal functor L : A → DivX , where we see A as
a discrete monoidal fibered category. One can go from the definition with the map α : M → OX
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to this different one by taking a quotient (in the stacky sense) by O×X , so in this new notation
the sheaf A is what usually is denoted M, i.e. the quotient sheaf M/O×X . This assumes that the
action of O×X on M is faithful, i.e. the log scheme is quasi-integral. We will only be concerned
with integral log schemes.

We also need a system of denominators for the sheaf A, that plays the role of the weights in
Seshadri’s definition. This is a second sheaf of monoids B together with an injective morphism
of sheaves of monoids A → B that is moreover of Kummer type. This means that if we take any
element b ∈ Bx, where x is a geometric point of X, then there exists a positive integer n such that
nb is in the image of Ax → Bx. This makes B into a sheaf consisting of “roots” of sections of A,
in some sense. An important example is given by the maps A → 1

n A, where 1
n A is just A, and

the map is multiplication by n (this assumes that A is torsion-free, to ensure injectivity).
Starting from B, one defines a fibered category Bwt having as objects sections of Bgp (the

associated sheaf of groups), and morphisms b → b′ the sections b′′ of B such that b + b′′ = b′.
A parabolic sheaf with denominators in B as defined in [BV12] is a cartesian functor E : Bwt →
QCohX , where QCohX is the fibered category of coherent sheaves restricted to Xét, together with
isomorphisms Eb+a

∼= Eb ⊗ La for any sections b of Bgp and a of A, satisfying some compatibility
condition. For example, one of these conditions is that the map Eb → Eb+a coming from the
arrow a : b→ b + a of Bwt should correspond to multiplication by the distinguished section of La
(recall that L is a functor A → DivX , and in DivX each object consists of an invertible sheaf with
a specified global section) as a morphism Eb → Eb ⊗ La.

Note that this gives back the definition of Maruyama and Yokogawa: consider the log struc-
ture on X induced by the symmetric monoidal functor N → Div(X) sending 1 to (OX(D), s),
where s is the canonical section. A parabolic sheaf (say with weights in 1

2 N) on the resulting log
scheme may be visualized as a sequence of coherent sheaves Eq on X parametrized by q ∈ 1

2 Z,
and with maps

· · · → E− 3
2
→ E−1 → E− 1

2
→ E0 → E 1

2
→ E1 → E 3

2
→ · · ·

where we have Eq+n ∼= Eq ⊗OX(nD) for q ∈ 1
2 Z and n ∈ Z. In particular the piece

E−1 → E− 1
2
→ E0

determines the rest of the sheaf, there is an isomorphism E−1
∼= E0 ⊗OX(−D), and the compo-

sition E−1 → E− 1
2
→ E0 coincides with the canonical map E0 ⊗OX(−D) → E0, so, assuming

that all the maps of the parabolic sheaf are injective, from this we get a filtration as in Maruyama
and Yokogawa’s definition. Injectivity of the maps in this case follows for example from torsion-
freenes of the parabolic sheaf, as we define it later in this document.

Parabolic sheaves can be naturally interpreted as quasi-coherent sheaves on a certain algebraic
stack over X. We denote by XB/A the stack over X that has as objects over T a morphism T → X
together with a symmetric monoidal functor BT → DivT that lifts the pullback AT → DivT to
T of the log structure of X. Objects of this stack are in a sense “roots” of the log structure of X
with respect to the system of denominators, and XB/A is called the root stack of X with respect to
A → B. Although the general definition was first given in [BV12], the idea of the construction is
essentially due to Olsson ([Ols07, MO05]).



8 INTRODUCTION

The main result of [BV12] is that there is an equivalence of tensor categories between quasi-
coherent sheaves on XB/A and parabolic sheaves on X with respect to A→ B.

The moduli problem for parabolic sheaves has been considered firstly by Mehta and Seshadri
for curves ([MS80]), and then by Maruyama and Yokogawa for varieties with an effective divisor
([MY92]). They introduce a notion of parabolic degree (resp. parabolic Hilbert polynomial) and a
stability condition, and they construct, using GIT, moduli spaces that parametrize (S-equivalence
classes of) (semi-)stable parabolic sheaves.

The original motivation for this work was to generalize these results about moduli of parabolic
sheaves to the case of a general log scheme.

The present work

This thesis is divided into two parts. The first one consists of a treatment of the infinite root stack
of a log scheme and the second one is about moduli of parabolic sheaves.

In this document we will always work over a fixed field k. The part about the infinite root
stack and some parts of the discussion of the moduli theory of parabolic sheaves are also valid
without this assumption, but for homogeneity’s sake we prefer to make it from the start.

The infinite root stack

The part about the infinite root stack is joint work with my thesis supervisor Angelo Vistoli.
The infinite root stack of a fine saturated log scheme X, denoted by X∞, can be defined as

the inverse limit over all systems of denominators A → B of the root stacks XB/A; in other
words, it parametrizes liftings of the symmetric monoidal functor A→ DivX along all systems of
denominators. Alternatively, it can be described as a root stack relative to the maximal Kummer
extension A → AQ = lim−→n∈N

1
n A containing all the others. This kind of Kummer extension was

not considered in [BV12], since AQ is never finitely generated. Consequently the corresponding
root stack is more complicated. In fact it is not algebraic (only pro-algebraic) and not of finite
type, but despite being quite intimidating at first sight, it is a very natural, functorial object to
associate to a log scheme X.

We investigate some aspects of its geometry, and the relations with the log geometry of the
log scheme X. It turns out that there is a very strong relation: we are able to give a criterion for a
map X∞ → Y∞ to come from a morphism of log schemes X → Y (this does not always happen, as
simple examples show) and by explicitly describing a method to get back the log structure of X
from its infinite root stack X∞, we show that the root stack determines the log structure uniquely.

Theorem (2.3.23). Let X and Y be fine and saturated log schemes, and assume that we have an isomor-
phism f : X∞ ∼= Y∞ between the infinite root stacks. Then there exists an isomorphism of log schemes
X ∼= Y inducing f .

We analyze the local structure of X∞, showing that locally for the étale topology of X it can
be described as a quotient stack by a (non-finite type) diagonalizable group scheme. This shows
that X∞ has an fpqc presentation, that, despite not being as good as a smooth one, allows us to
give a natural notion of quasi-coherent sheaf on it. The concept of a coherent sheaf is trickier,



INTRODUCTION 9

since X∞ is not coherent in general. In fact, we will mostly use finitely presented sheaves instead
of coherent ones.

The infinite root stack is the natural environment for parabolic sheaves with arbitrary rational
weights. We define those, in the spirit of [BV12], and extend Borne and Vistoli’s result on the
equivalence with quasi-coherent sheaves on the root stack.

Theorem (2.2.48). Let X be a fine saturated log scheme. Then there is a tensor equivalence between the
category of parabolic sheaves with rational weights on X and quasi-coherent sheaves on the infinite root
stack X∞.

We also investigate an interesting relation with the Kummer-flat topos of Kato ([Kat, Niz08]).
The corresponding site is obtained by considering Kummer-flat morphisms Y → X, i.e. mor-
phisms which are (locally) flat morphisms to a base change of X by a Kummer morphism of
monoids. By associating with a Kummer-flat map Y → X the induced morphism between the
root stacks Y∞ → X∞, which is representable and fppf, we obtain a functor kfl(X) → fppf(X∞)
from the Kummer-flat site of X and an opportunely defined fppf site of X∞. We prove that this
functor induces an equivalence between the corresponding topoi.

Theorem (2.4.8). Let X be a fine saturated log scheme. Then there is an equivalence of ringed topoi
(X∞)fppf

∼= Xkfl between the fppf topos of the infinite root stack X∞ and the Kummer-flat topos of X.

We also compare quasi-coherent sheaves on the fppf and fpqc topoi of X∞. Although they
are probably not the same thing in general, finitely presented sheaves are in fact the same, and
so we obtain an identification between finitely presented sheaves on the Kummer-flat topos and
finitely presented sheaves (i.e. finitely presented parabolic sheaves with rational weights) on the
infinite root stack. This has some potential application to K-theory of log schemes ([Niz08]) and
to a parabolic version of the Riemann-Hilbert correspondence.

Moduli of parabolic sheaves

The second part of this document is about moduli of parabolic sheaves. We need some additional
assumptions for this part: the log scheme X will be a fine and saturated projective log scheme
over a field k, with a fixed polarization and with a global simplicial chart P → Div(X) for the
log structure. Simpliciality means that the positive rational cone spanned by P in Pgp ⊗ Q is
simplicial, i.e. its extremal rays are linearly independent. Furthermore we assume that the
log structure is generically trivial, meaning that there is a schematically dense open subscheme
U ⊆ X such that the log structure restricted to U is trivial (part of the results actually hold
without this last assumption).

We define a notion of (semi-)stability for finitely presented parabolic sheaves with arbitrary
rational weights (i.e. finitely presented sheaves on the infinite root stack X∞), and construct a
moduli space. The final result is the following theorem.

Theorem (4.3.5). Let X be a projective fine saturated log scheme over a field k of characteristic 0 with
generically trivial log structure and with a global chart P → Div(X) with P simplicial, and h ∈ Q[x]
a polynomial of degree dim(X). There is an Artin stack Mss

h parametrizing semi-stable torsion-free
parabolic sheaves with rational weights and reduced Hilbert polynomial h and an open substack Ms

h ⊆
Mss

h parametrizing stable torsion-free parabolic sheaves with reduced Hilbert polynomial h.
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The stack Mss
h is locally of finite type and has a good moduli space Mss

h which is a disjoint union of
projective schemes, and there is an open subscheme Ms

h ⊆ Mss
h which is a coarse moduli space for Ms

h.
Moreover the mapMs

h → Ms
h is a Gm-gerbe.

We will explain later why we need the assumption on the characteristic of k. We remark
that this result is new also in the case of a projective variety with an effective Cartier divisor:
both Mehta and Seshadri ([MS80]) and Maruyama and Yokogawa ([MY92]) fix the weights of the
parabolic sheaves when they construct the moduli spaces.

Although it would be nice to have a moduli theory of sheaves directly on X∞, the fact that it is
not of finite type makes this difficult, and we resort to taking a sort of “limit” of moduli theories
on the finite root stacks instead. The first step is to give a moduli theory for parabolic sheaves
with fixed denominators.

The basic idea is the following: since parabolic sheaves on X with respect to a fixed system of
denominators A → B are equivalent to quasi-coherent sheaves on the root stack XB/A, one can
do moduli theory of coherent sheaves on XB/A. Nironi ([Nir]) developed a moduli theory for
coherent sheaves on tame DM stacks over a field by introducing a notion of (modified) Hilbert
polynomial and (semi-)stability, by means of a generating sheaf, which is a locally free sheaf that
contains all representations of the stabilizer group at any point of the stack. We remark that the
root stack is DM only if a certain condition on the characteristic of the base field is satisfied.
Nironi’s machinery should work also for tame Artin stacks, so the results we obtain are probably
valid in general. For simplicity in this introduction we assume that the characteristic of our base
field is 0.

By comparison with the notion of parabolic Hilbert polynomial defined by Maruyama and
Yokogawa in [MY92] we are able to identify a suitable generating sheaf on the root stack and to
apply Nironi’s machinery, in some cases. More precisely, although root stacks of a projective log
scheme are probably always global quotient stacks (and so they will have generating sheaves),
to isolate a “canonical” generating sheaf we need additional data, that we identify in what we
call a locally constant sheaf of charts for the system of denominators A → B. The case in which
there is a global chart (i.e. a Kummer morphism of fine saturated monoids P → Q that induces
A → B via sheafification) is contained in this broader notion. The resulting concept of (semi-
)stability of parabolic sheaves does depend on the choice of this additional datum, as we show
with an example: a parabolic sheaf can be semi-stable if we use a chart and become unstable if we
use another one. This is analogous to what happens when changing the polarization in moduli
theory of coherent sheaves.

Here is the result we get by applying Nironi’s machinery.

Theorem (3.3.37). Let X be a projective polarized fine saturated log scheme over a field k with a system of
denominators A→ B and a locally constant sheaf of charts, and H ∈N[x] a polynomial. Then there is an
Artin stackMss

H that parametrizes families of semi-stable parabolic sheaves with respect to A → B, with
modified Hilbert polynomial H. MoreoverMss

H is of finite type and has a good moduli space Mss
H which is

a projective scheme, obtained as a GIT quotient.
There is an open substackMs

H ⊆Mss
H parametrizing stable parabolic sheaves with Hilbert polynomial

H, and a corresponding open subscheme Ms
H ⊆ Mss

H , which is moreover a coarse moduli space. More
precisely, the mapMs

H → Ms
H is a Gm-gerbe.
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Note that the simpliciality and generic triviality assumptions on the log scheme are absent
here. They will be important for the limit process.

We also remark that this is just the final result of [Nir] applied to the situation of parabolic
sheaves on a log scheme, and the original contribution here is the determination of the correct
generating sheaf. This construction of course gives back Seshadri’s and Maruyama and Yoko-
gawa’s moduli spaces when applied to a curve with some points or a projective variety with an
effective Cartier divisor respectively. This was already briefly noted by Nironi.

The next step is to take a limit of the stacks that we obtain at finite level. Note that it is not
clear that we get well-defined maps on the moduli stacks by extending the denominators, and in
fact the main question here regards the behavior of (semi-)stability under pullback along maps
of finite root stacks.

Now we have to assume that the log structure of X is simplicial, and we consider the minimal
Kummer extension of the form P ⊆ Nr (simpliciality of P ensures that we can find such an
extension), and the root stacks Xn = X 1

n Nr/P, on which we have “canonical” generating sheaves
and the corresponding moduli stacksMss

n andMs
n of (semi-)stable parabolic sheaves. The Xn are

a cofinal system among the root stacks, so X∞ = lim←−n∈N
Xn, and moreover the transition maps

Xm → Xn when n | m are all flat. The flatness, which is one of the reasons for the simpliciality
assumption, ensures in particular that pullbacks of pure sheaves remain pure (recall that semi-
stable sheaves are always pure).

Let us preliminarily remark that the Hilbert polynomial is not preserved by pullback along
Xm → Xn, so it is not convenient to fix it in this setting. What is preserved is the reduced Hilbert
polynomial, i.e. the polynomial h that we obtain by dividing the Hilbert polynomial H by d!
times its leading coefficient (where d is the degree of H), so that h has leading term xd/d!. We
denote by Mss

h,n and Ms
h,n the stacks that we obtain by fixing the reduced Hilbert polynomial.

They are disjoint unions of (possibly infinitely many of) the previous stacks Mss
H,n and Ms

H,n
respectively.

We show that in this setting semi-stability is always preserved, so that whenever n | m we have
maps of moduli stacksMss

h,n →M
ss
h,m induced by pullback along Xm → Xn, and moreover these

are always open immersions. The same is not true for stability, which is not necessarily preserved.
When it is preserved, we have corresponding open immersionsMs

h,n →M
s
h,m, and moreover in

this case these maps, together with Mss
h,n → M

ss
h,m and the induced morphisms Mss

h,n → Mss
h,m

and Ms
h,n → Ms

h,m between the moduli spaces, are all an open and closed immersions. We also
show with examples that if stability is not preserved, the open immersion Mss

h,n → M
ss
h,m need

not be closed.
If stability is not preserved, it is not clear to us if the maps Mss

h,n → Mss
h,m between the good

moduli spaces are open and closed immersions. We show that they are always geometrically
injective, open and closed. We also do not have any examples where they are not immersions,
and it is plausible that this could always be the case.

We give some conditions that ensure that stability is preserved. A notable situation where
this holds is when the log structure of X is generically trivial and we are considering torsion free
(i.e. pure of maximal dimension) sheaves.

Theorem (4.2.33). Let X be a projective polarized fine saturated log scheme with a simplicial global chart
P → Div(X) over a field k. Assume furthermore that the log structure of X is generically trivial. Then
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the pullback along Xm → Xn preserves stability of parabolic torsion-free sheaves.

From now on we restrict to this situation, i.e. we consider only torsion-free sheaves. We gather
the results of this discussion in the following theorem.

Theorem (4.2.10, 4.2.30). Let X be a projective polarized fine saturated log scheme over a field k of char-
acteristic 0 with generically trivial log structure and with a global chart P → Div(X) with P simplicial,
n, m two positive integers with n | m and h ∈ Q[x] a polynomial of degree dim(X).

Then (semi-)stability of torsion-free sheaves is preserved by pullback along the projection Xm → Xn,
and the resulting morphisms Mss

h,n → M
ss
h,m and Ms

h,n → M
s
h,m between the moduli stacks, together

with the induced maps Mss
h,n → Mss

h,m and Ms
h,n → Ms

h,m of their good moduli spaces, are open and closed
immersions.

Finally thanks to these results we can define (semi-)stability for finitely presented sheaves
on the infinite root stack, declaring a sheaf to be (semi-)stable if any finitely presented sheaf
on a finite root stack that pulls back to it is (semi-)stable. We obtain a stack Mss (resp. Ms)
parametrizing families of (semi-)stable parabolic sheaves with rational weights, and we show
that it is the direct limit (which is really an increasing union) of the corresponding stacks at finite
level. We also construct the good moduli spaces Mss and Ms by taking a direct limit.

We remark that the stacks and spaces that we obtain are not of finite type: the space Mss is a
union of projective schemes, but it can be an infinite union. We do not know if one can fix more
refined invariants than the reduced Hilbert polynomial in order to cut out finite type loci in these
stacks and spaces.

We stress once again that, provided that Nironi’s machinery also works for tame Artin stacks,
the characteristic 0 hypothesis can be omitted, and all the results still hold, up to replacing “good
moduli space” with “adequate moduli space” in every instance.

Future perspectives

Here we discuss some questions left open by the present work, which might be worth pursuing
in the future.

One possibly fruitful direction of research is a further study of the infinite root stack of a
logarithmic scheme. As we mentioned, the close relation between the geometry of X∞ and
the logarithmic geometry of X itself (for example the relation with the Kummer-flat topos) has
potential interesting applications to matters of logarithmic geometry. For instance, the K-theory
of logarithmic schemes ([Niz08]), for which the Kummer-flat topos is a fundamental ingredient,
can be reinterpreted on the the stack X∞, and here one can use results on the K-theory of algebraic
stacks (with some care, since X∞ is not algebraic, but only pro-algebraic). Another possible
application is to a parabolic version of the Riemann-Hilbert correspondence: in [IKN05], the
authors give a version (in characteristic 0) of this correspondence that involves the Kummer-étale
site. There should be an analogous result in arbitrary characteristic involving the Kummer-flat
site instead, and perhaps by using the equivalence with the fppf topos of X∞, one can write down
a parabolic version.

A natural question left open by Nironi ([Nir]) and by my own work is the following: how
do the moduli spaces of sheaves depend on the chosen generating sheaf, and consequently on



INTRODUCTION 13

the chart of the logarithmic structure? What happens to the moduli spaces when one changes
them? The corresponding problem for the change of polarization in the moduli theory of coherent
sheaves has been studied in some cases, mainly in dimension 2 ([MW97, EG95, Qin93]): there is
a chamber decomposition of the ample cone of the variety, and the moduli spaces are constant
inside the chambers. Moreover when the polarization crosses a wall, there are interesting flip-like
maps connecting the corresponding moduli spaces. It is plausible that something similar happens
by varying the generating sheaf: the ample cone should be replaced by a “generating” cone inside
the numerical K-theory of the root stack, and one could expect a chamber decomposition and
interesting maps when the sheaf crosses a wall. The variation of the moduli spaces of parabolic
bundles when one varies the weights was studied in this spirit, on a curve, in [BH95].

Another unresolved question is the formulation of a moduli theory without a global chart (or
a locally constant sheaf of charts) for the logarithmic structure. Logarithmic schemes without
global charts are common, one example is the projective plane with an irreducible nodal curve,
and it would be nice to have a theory that works also in these cases. The main difficulty here is
to find a generating sheaf that is “canonically defined” in some sense.

The introduction of a Higgs field to the structure of a parabolic bundle produces what is
called a parabolic Higgs bundle. Moduli spaces of these were studied in the case of curves
([Yok93, BY96]), and it is probably worth it to try to apply the same methods we used here for
bare parabolic shaves to construct moduli spaces of parabolic Higgs sheaves on more general
logarithmic schemes.

Lastly, it would be interesting to have a theory for moduli of parabolic sheaves with real
weights. Such a theory seems to be lacking even in the case of a variety equipped with an
effective divisor, since in [MY92] at a certain point the authors assume that the weights are
rational. Notably, in the case of curves it is proven in [MS80] that a fixed sequence of real weights
can be substituted with close enough rational weights without modifying the corresponding
notion of semi-stability, so in fact the case with rational weights is sufficient. One can wonder if
something like this also happens in general.

Description of contents

Here we describe the contents of each chapter in some detail.
Chapter 1 contains preliminary notions and results. Most of the results here are well-known

or in the literature, and we give references instead of writing down proofs whenever possible.
In Section 1.1 we recall basic nomenclature and facts about commutative monoids. Section 1.2
is about logarithmic geometry: for the convenience of the reader we briefly recall the definitions
and facts that we will need to use in the rest of the thesis. We also recall the construction of root
stacks and their basic properties. Section 1.3 is about parabolic sheaves. We recall the definitions
from [BV12], and sketch the proof of the equivalence with quasi-coherent sheaves on the root
stack (1.3.8), since the constructions used in it will show up a couple of times in the following
chapters.

The remaining chapters can be roughly divided in two parts: the first one introduces the
infinite root stack of a log scheme X and studies some aspects of its geometry and its relations to
the log geometry of X (Chapter 2), while the second part is focused on the moduli problem for
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parabolic sheaves on a log scheme (Chapters 3 and 4).
Chapter 2 is about the infinite root stack. After a preliminary section (2.1) about inverse

limits of stacks, in Section 2.2 we define the infinite root stack X∞ and discuss its local geometry.
As a consequence we are able to define quasi-coherent sheaves, and we discuss two different
sites on X∞: one is defined by using representable fpqc morphisms (2.2.31) and the other one,
that will show up later when we explore the relation with the Kummer-flat topos, by using
representable fppf morphisms (2.2.38). We show that finitely presented sheaves are the same
on these two sites (2.2.40). In section 2.3 we extend the definitions and results of [BV12] to the
infinite root stack and to parabolic sheaves with rational weights. The last two sections of this
chapter are about recovering information about the log scheme X from the infinite root stack. We
describe a reconstruction method that allows us to recover the log structure from the infinite root
stack (2.3.1), showing in particular that log schemes with isomorphic infinite root stacks must be
isomorphic themselves, and we show that the fppf topos of X∞ that we introduced in Section 2.2
is equivalent to the Kummer-flat topos of Kato (2.4). We conclude that finitely presented sheaves
on the Kummer-flat topos are exactly finitely presented parabolic sheaves with rational weights
(2.4.11).

In Chapter 3 we investigate the moduli theory for parabolic sheaves with respect to a fixed
system of denominators. Sections 3.1 and 3.2 contain preliminary discussions of pullbacks of
parabolic sheaves along morphisms of log schemes and of various properties, such as coherence,
flatness over a base scheme and pureness, that are very important in moduli theory. In section 3.3
we discuss the choice of the generating sheaf on the root stack, that we will use to apply Nironi’s
machinery. We operate this choice by inspecting Maruyama and Yokogawa’s treatment and by
finding a generating sheaf that generalizes their definition of parabolic Hilbert polynomial in the
case of a variety with an effective Cartier divisor (3.3.1). We also explain how to relax a little the
requirement about having a global chart, introducing what we call “locally constant sheaves of
charts” (3.3.3). Finally, we apply Nironi’s theory and state the results that we get out of it about
stacks of parabolic sheaves (3.3.4). In the last section we show with an example that the notion of
stability that we get depends on the chart of the log structure that we choose (3.4).

Chapter 4 is about moduli theory for parabolic sheaves with arbitrary rational weights. Our
strategy is to take a “limit” of the moduli theories at finite level that we described in the preceding
chapter. Section 4.1 is about a simpliciality condition that we have to impose on the log structure
of the log scheme X for our methods to work. In particular this ensures that we have a cofinal
system of root stacks whose transition maps are all flat (4.1.4). In Section 4.2 we study the
behavior of (semi-)stability with respect to pullback along maps between root stacks. We show
that semi-stability is always preserved, and stability is preserved in some cases, for example
when the log structure of X is generically trivial. We also study the induced maps between the
moduli stacks of (semi-)stable sheaves and the corresponding moduli spaces (4.2.4). Finally, the
last section is about the resulting moduli theory for finitely presented parabolic sheaves with
rational weights (4.3).
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Notations and conventions

We will always work over a fixed field k. Most of Chapter 2 and some parts of Chapter 3 make
perfect sense for log schemes over Z, but we felt it was more convenient to make this assumption
from the start. In Chapter 4 we will also assume that the characteristic of k is zero (see Remark
3.3.24).

Schemes and stacks will always be over k. We will denote by (Sch) and (St) the categories of
schemes and stacks (for the étale topology) over k respectively. If S is a scheme over k, we will
denote by (Sch /S) the category of schemes over S, and analogously with other “slice” categories.
Furthermore we will denote by (Aff) and (Algsp) the categories of affine schemes and algebraic
spaces over k respectively.

The symbol ×k will denote fibered product over Spec(k). We will usually omit the subscript
in tensor products, unless it is not clear over what the tensor product is taken.

If C is a category, the symbols c ∈ C will mean that c is an object of C. As (almost) everybody
does, we will ignore set-theoretic subtleties regarding categories and sites. As usual Cop

will
denote the opposite category. For symmetric monoidal categories, we use the same conventions
described in [BV12, 2.4], and for fibered categories we refer to [FGI+07, Chapter 1].

The symbol X will most of the times denote a log scheme over k, with Deligne–Faltings
structure given by L : A→ DivX . In Chapter 3, the symbol X will denote the root stack of X with
respect to the fixed system of denominators A→ B.

A morphism of stacks over k will be representable if the base change of an algebraic space is
an algebraic space. An algebraic stack or Artin stack for us will be a stack (in groupoids) with
a smooth presentation (i.e. a representable smooth epimorphism from an algebraic space) and
representable diagonal. An algebraic stack will be Deligne–Mumford (sometimes abbreviated DM)
if it has a presentation which is moreover étale. An algebraic stack is tame if it has finite inertia
and linearly reductive stabilizer groups (see [AOV08]).

We will consider (small) sites and the corresponding topoi of a scheme or stack X ; they
will be introduced along the way. As for notation, if for example we are considering the étale
topology, we will denote by ét(X ) the small étale site and by Xét the corresponding topos. If T
is a topos, QCoh(T ) will denote the category of quasi-coherent sheaves on T , and FP(T ) will be
the subcategory consisting of finitely presented sheaves.

Whenever we have a groupoid R ⇒ U, a superscript eq will denote equivariant objects with
respect to the groupoid. For example FPeq(U) will denote the category of finitely presented
equivariant sheaves on U.

A geometric point of a scheme X will be a morphism Spec(K) → X from the spectrum of an
algebraically closed field to X. It will often be denoted just by p → X. If x is a point of X, with
x we will denote the geometric point lying over x obtained by taking the algebraic closure of the
residue field k(x). In particular if A is a sheaf on the small étale site of X and x is a point of X,
Ax will denote the stalk of A at the geometric point x.

A subscript will often be a shorthand for pullback along a morphism of schemes.
The word “morphism” will be interchangeable with both “homomorphism” and “map”. The

difference between the last two is that “homomorphism” will usually refer to a morphism of
algebraic structures (for example groups), whereas “map” will be used mostly for morphisms of
geometric objects (for example schemes).
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Chapter 1

Preliminaries

In this chapter we collect some basic notions and results that will be used throughout this docu-
ment. We will mostly give references instead of proofs here.

The first section is about monoids, the second one about logarithmic geometry, and third one
treats parabolic sheaves.

1.1 Monoids

This section is about the basics of monoids and homomorphisms between them. As general
references for monoids we point out the books [Réd65, RS99] and the notes [Ogu].

Definition 1.1.1. A monoid is a set P together with a binary operation + : P × P → P that is
associative and has a neutral element 0 ∈ P.

A homomorphism of monoids f : P→ Q is a function such that f (p + p′) = f (p) + f (p′) for all
p, p′ ∈ P and f (0) = 0.

We will usually write the monoid operation as addition, but sometimes it will be convenient
to use a multiplicative notation. For example if X is a scheme, the structure sheaf OX is a sheaf
of monoids with respect to multiplication.

All our monoids will be commutative, i.e. for any p, p′ ∈ P we have p + p′ = p′ + p. We will
denote by (CommMon) the category of commutative monoids.

We will denote by P+ the subset P \ {0} ⊆ P.

Remark 1.1.2. If G is a group, then it is also a monoid with respect to its group operation.
Whenever we will consider G as a monoid, it will be in this sense.

This gives an inclusion functor (Ab) → (CommMon) from the category of abelian groups to
the category of commutative monoids.

We will denote by k[P] the monoid algebra of P. It is defined as the k-algebra generated by
indeterminates xp for p ∈ P, and with relations xp+p′ − xpxp′ for every pair p, p′ ∈ P.

The algebra k[P] is naturally P-graded, with the degree defined in the obvious way by
deg(xp) = p.

17
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Definition 1.1.3. An ideal I ⊆ P of a monoid P is a subset such that for every p ∈ I and q ∈ P
we have p + q ∈ I.

There is a bijection between homogeneous ideals of k[P] with respect to the P-grading and
ideals of the monoid P, by taking for an ideal I ⊆ P the ideal of k[P] generated by the elements
xp with p ∈ I.

Given a monoid P we can form the associated group Pgp. We start from P × P and take a
quotient by the equivalence relation that identifies pairs (p1, p′1) and (p2, p′2) if there exists q ∈ P
such that

p1 + p′2 + q = p2 + p′1 + q.

The idea here is that the pair (p, p′) stands for the “difference” p− p′.
One checks that Pgp, with the induced operation given by

[p1, p′1] + [p2, p′2] = [p1 + p2, p′1 + p′2]

is an abelian group, and there is a homomorphism P → Pgp sending p ∈ P to [p, 0]. Moreover
this homomorphism is universal with respect to homomorphisms f : P → G with G a group, i.e.
every such f factors through f ′ : Pgp → G. The resulting functor (−)gp : (CommMon) → (Ab)
from commutative monoids to abelian groups is left adjoint to the inclusion functor (Ab) →
(CommMon).

Definition 1.1.4. A monoid P is integral if the canonical homomorphism P → Pgp is injective, or
equivalently if p + q = p + r in P implies q = r.

We will denote by (IntCommMon) the category of integral commutative monoids.

Definition 1.1.5. A submonoid Q ⊆ P of a monoid P is a subset that contains the neutral element
0 and such that q + q′ ∈ Q for every q, q′ ∈ Q.

If {pi}i∈I is a collection of elements of a monoid P, the smallest submonoid of P containing
all of the pi’s will be denoted by 〈pi〉i∈I , or by 〈p1, . . . , pr〉 in case the collection is finite. This
submonoid coincides with the subset of P of elements that can be written as a1 pi1 + · · ·+ ak pik
for some k, a1, . . . , ak ∈N and i1, . . . , ik ∈ I.

Definition 1.1.6. A monoid P is finitely generated if there exist a finite number of elements
p1, . . . , pr ∈ P such that 〈p1, . . . , pr〉 = P. A monoid is fine if it is both integral and finitely
generated.

By a theorem of Rédei [RS99, Theorem 5.12], every finitely generated commutative monoid is
also finitely presented. This means that the relations between the generators pi can be described
by using finitely many of them. If we want to specify the relation in addition to the generators
we will use the following notation: given a finite number of generating elements p1, . . . , pr ∈ P,
assume that r1 = s1, . . . , rj = sj is a generating set (as a congruence, i.e. an equivalence relation
stable under translations ([Ogu, Section 1.1])) for the relations among the pi’s, where every ri and
si is an expression of the form ∑r

i=1 ai pi for ai ∈N. Then we will write

P = 〈p1, . . . , pr | r1 = s1, . . . , rj = sj〉.
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This expresses P as a quotient of the free monoid on the generators p1, . . . , pr.
A monoid is free if it is isomorphic to Nr for some r. Equivalently, it has a presentation with

finitely many generators and no relations.

Example 1.1.7. The submonoid P ⊆ N2 generated by (2, 0), (0, 2), (1, 1) can also be described as
〈p, q, r | p + q = 2r〉.

Quotients in the category of monoids are subtler than the ones in more familiar setting (like
groups), so we will not go into details (see [Ogu, Section 1.1]). We need only to remark that the
category of commutative monoids (CommMon) has all colimits: direct sums are constructed as
for abelian groups, and coequalizers by taking quotients. In particular we have amalgamated
sums: for a diagram

P
f //

g
��

Q

R

of commutative monoids there is commutative monoid Q⊕P R, unique up to isomorphism, that
completes the diagram to a (commutative) square, and such that for any other monoid P′ with
maps h : Q→ P′ and k : R→ P′ such that h ◦ f = k ◦ g : P→ P′, there exists a unique Q⊕P R→ P′

that makes all diagrams commute.
As the notation suggests, Q⊕P R is a quotient of the direct sum Q⊕ R, but the equivalence

relation does not have a nice description, except in particular cases (for example if one of the
monoids is a group).

Definition 1.1.8. A unit in a monoid P is an element p ∈ P such that there exists q ∈ P such that
p + q = 0. A sharp monoid is a monoid in which the only unit is 0.

The subset of units P× ⊆ P is a subgroup, the group of units of P. The quotient P/P× is
usually denoted by P, and is clearly a sharp monoid.

Example 1.1.9. All free monoids are sharp, and so is every submonoid of a free monoid.
A group is sharp as a monoid if and only if it is trivial.

Definition 1.1.10. An integral monoid P is torsion-free if Pgp is torsion-free as an abelian group,
or equivalently if np = nq with n ∈N implies p = q.

An integral monoid P is saturated if p ∈ Pgp and np ∈ P for some n ∈N imply p ∈ P.

We denote by (SatCommMon) the category of saturated commutative monoids. If a monoid
is both fine and saturated we will usually abbreviate it by saying that it is an fs monoid, and we
will denote by (FSCommMon) the category of fs monoids.

Proposition 1.1.11. Every fine saturated sharp monoid is torsion-free.

Proof. Assume that n(p − q) = 0 in Pgp for p, q ∈ P. Then since P is saturated, we have that
p− q ∈ P, and moreover this is a unit, since p− q+ (n− 1)(p− q) = 0, so by sharpness p− q = 0,
and p = q.
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There are operations that make a monoid integral and saturated. If P is any monoid, we set
Pint to be the image of P inside Pgp with respect to the natural map P → Pgp. Then Pint is an
integral monoid, and for any homomorphism P → Q with Q integral there is a factorization
Pint → Q. In particular a morphism of monoids P→ Q induces a morphism Pint → Qint, and the
resulting functor (−)int : (CommMon) → (IntCommMon) is left adjoint to the inclusion functor
(IntCommMon)→ (CommMon).

If P is an integral monoid, we define Psat to be the submonoid

Psat = {p ∈ Pgp | np ∈ P for some n ∈N}

of Pgp. The monoid Psat is saturated, and for any homomorphism P→ Q with Q saturated there
is a factorization Psat → Q. This implies that saturation gives a functor (−)sat : (IntCommMon)→
(SatCommMon) that is left adjoint to the inclusion functor (SatCommMon)→ (IntCommMon).

If P is finitely generated then Psat is finitely generated as well, and in this case we will denote
it by Pfs, to stress the fact that it is going to be fine and saturated.

Fine sharp monoids can be presented in a canonical way using indecomposable elements.

Definition 1.1.12. An element p of a monoid P is indecomposable if p = q + r in P implies q = 0
or r = 0.

Proposition 1.1.13. Let P be a fine sharp monoid. Then P has a finite number of indecomposable elements,
and they are generators for P.

Proof. Let us fix a finite number of generators p1, . . . , pk for P. Now every q ∈ P can be written
as q = ∑ ai pi, and if q is an indecomposable, then we must have that ai = 0 for all but one i0, and
ai0 = 1, so q = pi0 . In other words every indecomposable must coincide with one of the p′is, and
so they are finitely many.

Now let us assume that some pk is not indecomposable, and let us show that we can omit
it from the list. Assume pk = p + q with p, q 6= 0, and let us write p = ∑ ai pi and q = ∑ bi pi,
so pk = ∑(ai + bi)pi. Now if ak + bk 6= 0, using integrality we could cancel pk and obtain
0 = ∑i 6=k(ai + bi)pi + (ak + bk − 1)pk. By sharpness this would imply ai = bi = 0 for i 6= k,
and ak + bk = 1. In other words p = pk and q = 0, or the other way around, contradicting the
assumption.

So ak = bk = 0. This says that pk = ∑i 6=k(ai + bi)pi lies in the submonoid generated by the
remaining pi’s, so we can omit it from the generators.

After finitely many steps, we are left with a finite generating set made up exactly by the
indecomposable elements of P.

The following gives embedded models for particularly nice monoids.

Proposition 1.1.14 ([Ogu, Corollary 2.2.6]). Every fine sharp torsion-free monoid is a submonoid of Nr

for some r.

Let P be a fine saturated torsion-free monoid. Then Pgp is a free abelian group Zr for some r,
that we will call rank of P. We will denote by PQ the positive rational cone spanned by P inside
Pgp ⊗Q, i.e.

PQ = {a ∈ Pgp ⊗Q | na ∈ P for some n ∈N}
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where we see P ⊆ Pgp ⊗Q in the natural way.
If we denote by 1

n P the submonoid of Pgp⊗Q consisting of the elements p
n for p ∈ P, we have

inclusions 1
n P ⊆ 1

m P whenever n | m, and PQ =
⋃

n
1
n P. The inclusion 1

n P ⊆ 1
m P can be seen as

multiplication by k = m/n from P to itself.
If φ : P→ Q is a morphism of fs sharp monoids we have an induced morphism φQ : PQ → QQ.
This construction makes sense for arbitrary monoids: for every n we take a copy Pn of P and

define Pn → Pm for n | m to be multiplication by m/n. We can form the direct limit

PQ = lim−→
n

Pn.

If P is not fs and torsion-free the maps of this system might not be injective: for example if P is
the monoid with two elements 0, 1 and 1 + 1 = 1, then every morphism Pn → Pm is the identity,
and P ∼= PQ.

Remark 1.1.15. The resulting functor (−)Q commutes with pushouts of monoids. This follows
from the fact that, as we just remarked, PQ can be written as a direct limit, and direct limits
commute with colimits.

Definition 1.1.16. Let P and Q be fs monoids. A Kummer homomorphism φ : P→ Q is an injective
homomorphism such that for any q ∈ Q there exists a positive n ∈N such that nq ∈ φ(P).

Equivalently, if P and Q are torsion-free φ is Kummer if and only if φQ : PQ → QQ is an
isomorphism.

Example 1.1.17. A fundamental example of Kummer homomorphism is the one we already de-
scribed: for P be an fs torsion-free monoid and let φ : P→ P be multiplication by a fixed n ∈N.

Here is another (less trivial) example: let P be the submonoid of N2 generated by (2, 0), (0, 2)
and (1, 1), and let φ : P→N2 be the inclusion.

Let us now describe a particular kind of quotient maps that are important in logarithmic
geometry.

Definition 1.1.18. The kernel ker(φ) of a homomorphism of monoids φ : P→ Q is the submonoid
of P consisting of elements p ∈ P such that φ(p) = 0.

A morphism of monoids φ : P → Q is a cokernel if the induced map P/ ker(φ) → Q is an
isomorphism. Equivalently, if φ(p1) = φ(p2) implies that there exist q1, q2 ∈ ker(φ) such that
q1 + p1 = q2 + p2 in P.

Note that, contrarily to what happens with groups, not every surjective map of monoids is a
cokernel.

Example 1.1.19. The first projection N2 → N is a cokernel: its kernel is the subset of N2 of
elements of the form (0, n), and if (a, b) and (c, d) have the same image, i.e. a = c, we have
(a, b) + (0, d) = (c, d) + (0, b).

The morphism N2 → N that sends (a, b) to a + b is surjective, but is not a cokernel, because
its kernel is trivial.
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1.2 Logarithmic geometry

We will almost always adopt the point of view of [BV12] regarding logarithmic geometry, which
differs from the original one of Kato. Other references for the classical point of view on logarith-
mic geometry are [Kat89, Ogu]. We briefly recall the main definitions and results.

If X is a scheme, we will denote by Div(X) the symmetric monoidal category of pairs (L, s)
with L a line bundle on X and s a global section of L. The monoidal structure is given by
tensor product in the evident way. Furthermore we will denote by DivX the symmetric monoidal
fibered category over the small étale site Xét (i.e. the site that has as objects étale maps U → X
and equipped with the étale topology), whose objects over U → X are pairs (L, s) consisting of a
line bundle on U with a global section, with monoidal operation given again by tensor product.
Note that Div(X) is the category of “global sections” of DivX .

These should be thought of as a categories of “generalized Cartier divisors”. The advantage
over ordinary Cartier divisors is that invertible sheaves and sections can be always pulled back,
and thus have better functoriality properties. As a fibered category, DivX is the restriction of the
stacky quotient

[
A1/Gm

]
to Xét.

Remark 1.2.1. We will be dealing with sheaves of monoids on the small étale site Xét. Whenever
we will attach some property to a sheaf of monoids A on Xét, for example integral, saturated,
and so on, we always mean that all the geometric stalks (i.e. pullbacks to geometric points x → X
of X) of the sheaf A have that property.

Definition 1.2.2. A Deligne–Faltings (abbreviated DF) structure on a scheme X is a symmetric
monoidal functor L : A→ DivX from a sheaf of monoids on Xét, with trivial kernel. A logarithmic
scheme is a scheme X equipped with a DF structure.

We will usually refer to a DF structure as the functor L : A → DivX , occasionally as the pair
(A, L). Also, we will often abbreviate the word “logarithmic” with just “log”.

Remark 1.2.3. This definition (as well as everything that follows) makes sense also for X an Artin
stack. The only difference is that we have to use the lisse-étale site of X in place of the small étale
site. In the case of schemes or DM stacks, using the lisse-étale site or the small étale site produces
the same theory if we restrict to fine log structures (Definition 1.2.20 below, and for a proof see
[Ols03, Proposition 5.3]).

In the rest of this section and for most of the document we will mainly be concerned with log
schemes, but from time to time the wording “log stack” will come up. For precise definitions, see
[Ols03].

A morphism (φ, Φ) : (A, L)→ (B, N) of DF structures on a scheme X is a morphism φ : A→ B
of sheaves of monoids, together with a natural isomorphism Φ : L ∼= M ◦ φ. Morphisms can be
composed in the obvious way.

The link with the usual definition of a (quasi-integral) log structure as a morphism α : M →
OX of sheaves of monoids such that α−1(O×X ) ∼= O×X is the following: recall that quasi-integral
means that the natural action of O×X on M is faithful. This is implied for example by integrality,
as the name suggests.

Starting from α we get L by dividing (in the stacky sense) by O×X , so in particular A = M =
M/O×X , and L is A = M/O×X → OX/O×X ∼= DivX . In other words a section of A is sent by L to the
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dual La of the invertible sheaf associated to the Gm-torsor given by the fiber Ma of M → M = A
over a, and the restriction of α to Ma → OX gives the section of La.

In the other direction, given L, we get back α by taking the fibered product M = A×DivX OX ,
and the induced morphism M→ OX .

This constructions give an equivalence of between quasi-integral log schemes in the sense of
[Kat89] and log schemes in the sense of [BV12]. We will freely pass from one point of view to the
other one in the following.

Remark 1.2.4. Note that the sheaf A of a log scheme is a sheaf of sharp monoids. This fol-
lows from the fact that L has trivial kernel and the units of DivX are isomorphic to (OX , 1), or
alternatively from this description of A as M.

Example 1.2.5. Every scheme X has a trivial log structure, by taking as A the constant sheaf of
trivial monoids, or equivalently by taking M = O×X with the inclusion into OX .

Example 1.2.6. If k is algebraically closed, a log structure on Spec(k) simply amounts to a monoid
P, and the morphism P→ k inducing the log structure sends 0 to 1 and everything else to 0. The
corresponding “sheaf” of monoids on Spec(k)ét is P⊕ k×.

If P = N, then the resulting log scheme is called the standard log point.

Example 1.2.7. Let X be a scheme, and D ⊆ X an effective Cartier divisor, seen as a closed
subscheme. Then the subsheaf M ⊆ OX defined as

M(U) = { f ∈ OX(U) | f |U\D is invertible }

gives a log structure on X. We will call this the log structure induced by the divisor D.

Example 1.2.8. Let P be a monoid. Then the spectrum of the monoid algebra X = Spec(k[P]) has
a natural log structure, which is induced by the monoid homomorphism P→ k[P] = OX(X).

From now on Spec(k[P]) will always be tacitly equipped with this log structure.

Notation 1.2.9. As for notation, if (X, A, L) is a log scheme as above, we will often denote with
just X both the log scheme and the underlying scheme. Occasionally it will be important to
distinguish between schemes and log schemes: in those occasions, an underlined letter like Y
will denote a bare scheme, and Y will denote a log scheme.

Regarding the sheaf A and the functor L, when we will have several log schemes around we
will denote by AX and LX the data associated with a log scheme X. This subscript notation will
also often be a shorthand for pullback, but we are confident that the meaning will always be clear
from the context.

If f : X → Y is a morphism of schemes and L : A→ DivY is a DF structure on Y, then we have
a pullback DF structure f ∗L : f ∗A→ DivX on X.

Definition 1.2.10. A morphism of log schemes X → Y is a morphism f : X → Y of the underlying
schemes, together with a morphism from the pullback DF structure f ∗LY : f ∗AY → DivX to
LX : AX → DivX , i.e. a morphism of sheaves of monoids f ∗AY → AX together with a natural
isomorphism of the composite f ∗AY → AX → DivX with f ∗LY.

Log schemes form a category with this notion of morphism, that we will denote by (LogSch).
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Definition 1.2.11. A morphism of log schemes X → Y is strict if the morphism from f ∗LX to LY
is an isomorphism.

Strict morphisms are morally morphisms of log schemes where nothing is happening from
the “log” point of view.

Now assume that P is a finitely generated monoid, X is a scheme and P → Div(X) is a
symmetric monoidal functor. Then there is an induced DF structure A → DivX , where A is
obtained as the quotient of the constant sheaf PX by the kernel of the induced functor PX → DivX .
In particular note that ker(PX → A) = ker(PX → DivX).

Definition 1.2.12. Let X be a log scheme, and A a sheaf of monoids on X. A global chart for A
is a finitely generated monoid P together with a morphism of monoids P → A(X) such that the
induced morphism of sheaves PX → A is a cokernel in the category of sheaves of monoids.

The last sentence means more precisely that if K is the kernel of PX → A, then there is an
induced isomorphism PX/K ∼= A, where the left-hand side is the quotient sheaf.

Equivalently we can say that we have a symmetric monoidal functor P → Div(X) such that
the induced DF structure on X is isomorphic to L : A → DivX . Moreover one can show ([BV12,
Proposition 3.14]) that being a cokernel is something that can be checked on the stalks. In par-
ticular if P → Div(X) is a chart for A → DivX , then for any x ∈ X the stalk Ax is a cokernel of
P.

Notation 1.2.13. If L : A → DivX is a DF structure and a ∈ A(U) is a section, we will set
L(a) = (La, sa), and we will sometimes call sa the distinguished section of La. The same notations
will be used for a symmetric monoidal functor P→ Div(X) where P is a monoid.

Definition 1.2.14. A sheaf of monoids on a scheme X is coherent if étale locally on X it has a chart.
A log scheme X is coherent if the sheaf A is coherent.

From now on all log schemes will be coherent, unless specified otherwise.
One shows that charts for a coherent log scheme can be obtained from stalks of the sheaf A:

for every point x ∈ X there is an étale neighborhood of x where X has a global chart with monoid
Ax.

Consequently, a coherent log scheme X has a maximal open subscheme U ⊆ X such that the
restriction of the log structure to U is trivial. This open subset coincides with the set of points of
X where the stalk of the sheaf A is trivial.

Definition 1.2.15. A noetherian log scheme X has generically trivial log structure if the open
subscheme U where the log structure is trivial is schematically dense (i.e. it contains all associated
points of X).

Example 1.2.16. If X is a noetherian scheme with an effective Cartier divisor D ⊆ X, then the log
structure induced by D is clearly trivial on U = X \ D, and since U is schematically dense, the
log structure is generically trivial.

If X is any scheme and P is any fine monoid, the log structure induced by the morphism
P → Div(X) sending 0 to (OX , 1) and everything else to (OX , 0) is not generically trivial, unless
P itself is trivial.
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This notion of chart, introduced and studied in [BV12] is slightly different from Kato’s one.

Definition 1.2.17. A Kato chart for a log scheme (X, M) is a finitely generated monoid P together
with a homomorphism P→ M(X), such that the induced morphism P→ M(X) is a chart for M.

Clearly a Kato chart induces a chart for A = M. Moreover it turns out that having Kato charts
étale locally is equivalent to having charts étale locally.

Remark 1.2.18. The datum of a Kato chart is equivalent to a strict morphism of log schemes X →
Spec(k[P]) (obtained by composing P → M(X) with M(X) → OX(X)), and analogously a chart

for A = M amounts to a strict morphism X →
[
Spec(k[P])/P̂

]
, where P̂ is the diagonalizable

group scheme D[Pgp], Cartier dual to the group Pgp, and the quotient stack has the log structure
induced by descent from the one of Spec(k[P]).

The morphism that sends a Kato chart to the associated chart is given by composition with
the strict morphism Spec(k[P])→

[
Spec(k[P])/P̂

]
.

This explains the fact that charts give us local models for (the log structure of) log schemes
and, as we will see, also for natural objects over them, like root stacks.

Remark 1.2.19. In [BV12], the authors make a make a point to use charts for M instead of Kato
charts, and develop the theory by using the quotient stack

[
Spec(k[P])/P̂

]
as a local model,

instead of the monoid algebra Spec(k[P]).
It turns out that having charts étale locally is the same as having Kato charts étale locally

([BV12, Proposition 3.28]). Because of this there is no loss of generality in using Kato charts when
dealing with local problems. Since we feel that some aspects of the treatment are simplified by
using Kato charts, in the study of the infinite root stack of a log scheme (Chapter 2) we will
usually work with charts coming from Kato charts.

In the chapters about moduli of parabolic sheaves, on the contrary, we will typically use charts
that may not come from Kato charts, since we will need to have a global chart on a projective log
scheme, and global charts exist more often than global Kato charts (think of the case of a variety
with a simple normal crossings divisor, 1.2.21).

The presence of charts will be extremely important for what follows. As is customary, we
incorporate it in the notion of fs log scheme.

Definition 1.2.20. A log scheme X is fine if the sheaf A is coherent and integral.
A log scheme X is fine and saturated, abbreviated fs, if the sheaf A is coherent, integral and

saturated.

We will mostly be dealing with fine and saturated log schemes. Note that since A is sharp,
by proposition 1.1.11 it will also be torsion-free. We will denote the category of fs log schemes by
(FSLogSch).

Example 1.2.21. Consider again the example of 1.2.7. Let X be a noetherian scheme and D ⊆ X
be an effective Cartier divisor. We have a symmetric monoidal functor N→ Div(X) sending 1 to
(OX(D), s), where s is the image of 1 along the natural morphism OX → OX(D), and this makes
X into a log scheme.
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However, the induced DF structure is isomorphic to the one of 1.2.7 only if D is smooth. This
is because if D is for example given by xy = 0 in A2, around the origin we should be able to
distinguish the two branches of the divisor, and the DF structure of the previous paragraph does
not do that.

Instead, assume that D is simple normal crossings and let D1, . . . , Dk be its irreducible com-
ponents. Then we have a symmetric monoidal functor Nk → Div(X) sending the i-th generator
ei to (OX(Di), si), where si is again the canonical section, and the induced DF structure on X is
isomorphic to the one of example 1.2.7.

Note that if we want Kato charts for this log scheme, we need to have equations for the
irreducible components Di (because the morphism lands inOX rather than in DivX), so in general
charts will exist only locally, whereas we have a global chart for M.

Charts can be used to describe morphisms A→ B between coherent sheaves of monoids.

Definition 1.2.22. Let A and B be sheaves of monoids on Xét, and j : A→ B a morphism. A chart
for j consists of two finitely generated monoids with homomorphisms P→ A(X) and Q→ B(X)
giving charts for A and B, and a morphism P→ Q that makes the diagram

P //

��

Q

��
A(X) // B(X)

commutative.

One can show ([BV12, Proposition 3.17]) that for any morphism j : A → B between coherent
sheaves of monoids on X, we can find a chart étale locally on X, and moreover we can choose P
and Q to be stalks of the sheaves A and B over some point of X.

Using a similar definition of chart for morphisms between log schemes, we can describe
such morphisms locally as strict morphisms followed by a pullback of a morphisms of monoid
algebras.

Definition 1.2.23. Let f : X → Y be a morphism of log schemes. A chart for f consists of monoids
P, Q and morphisms Q→ AX(X), P→ AY(Y) and P→ Q such that the first two morphisms are
charts for X and Y, and P→ Q induces the given morphism f ∗AY → AX .

One can show that morphisms of fs (coherent would be enough) log schemes always admit
charts étale locally, and moreover if X → Y is a morphism of fs log schemes and we have a chart
for Y around a point y ∈ Y, we can find a chart for the morphisms that extends the given chart
for Y. This holds both for charts and Kato charts.

Note that this essentially says that for any morphism X → Y of fs log schemes, étale locally
on X and Y we can find a commutative diagram of log schemes
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X

((

--

Y×Spec(k[P]) Spec(k[Q]) //

��

Spec(k[Q])

��
Y // Spec(k[P])

where the two horizontal maps are strict and so is the diagonal one. This presents the morphism
X → Y (étale locally) as a strict morphism followed by a base change of morphisms of monoid
algebras.

As we already remarked, charts for coherent log schemes can be produced from stalks of the
sheaf AX . This assures that if the stalks of the sheaf AX have some property (for example are
saturated), then we can find charts where the monoid has such property. The converse (if a chart
has some property, then all the stalks of AX have that property) is sometimes subtler, for example
for saturation.

Let us now spend some words on fibered products of log schemes. The category (LogSch)
has fibered products: given log schemes X, Y, Z and a diagram

Y

��
Z // X

we can define the fibered product Y×X Z as follows: we take the fibered product of the underly-
ing schemes, call it W, and pull back to it the three DF structures, obtaining a diagram

(AX)W //

��

(AZ)W

(AY)W

of sheaves of monoids (here (−)W stands for pullback to W). We then take the pushout of
this last diagram, which has a natural symmetric monoidal functor to DivW , and the induced
DF structure. This defines a log scheme with underlying scheme W, that is the desired fibered
product. Moreover one shows that if X, Y, Z are coherent (i.e. they have charts locally), then also
Y×X W is, and charts for the three induce a chart for the product.

If one works with fs log schemes, than this construction has to be modified, since if X, Y, Z are
fs then the fibered product in (LogSch) is not necessarily fs. The problem is that the amalgamated
sum of fs monoids need not be fs itself.

To fix this, one shows that there are left adjoints (−)int and (−)sat to the inclusion functors of
the category of coherent (resp. fine) log schemes in the category of fine (resp. fs) log schemes.
These are constructed locally from the analogous constructions on monoids, and then glued
together. Once one has these functors, it is immediate to check that ((Y ×X Z)int)sat is a fibered
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product in the category (FSLogSch). Étale locally, the underlying scheme of this fibered product
is given by a base change of the ordinary fibered product of the schemes along a morphism of
the form Spec(k[(Pint)sat])→ Spec(k[P]), which is a finite map.

From now on if X, Y, Z are fs log schemes we will denote their fibered product in (FSLogSch)
by Y×X Z, unless specified otherwise.

1.2.1 Root stacks

For proofs and more details about this section we refer to [BV12].
Let X be a log scheme, with DF structure L : A → DivX . Given a sheaf of monoids B on Xét

containing A, we are interested in parametrizing extensions of L to L′ : B→ DivX .

Example 1.2.24. The basic example of this situation is the following: let X = A1
k , equipped with

the log structure induced by the origin 0 ∈ X, seen as an effective Cartier divisor. This has a chart
given by L : N→ Div(X), sending 1 to (OX , x) where A1

k = Spec(k[x]).
Consider the inclusion N ⊆ 1

n N, and look at extensions 1
n N → Div(X) of L. These clearly

correspond functorially to n-th roots of the indeterminate x. A more careful analysis shows that
the stack parametrizing such extensions is the quotient stack

[Spec(k[x, t]/(tn − x))/µn]

where µn acts by multiplication on t.
This is the first example of a root stack, for the log scheme X with respect to the system of

denominators (induced by) N ⊆ 1
n N.

Definition 1.2.25. Let X be a log scheme. A system of denominators on X is a sheaf of monoids B
on Xét with a morphism j : A → B, such that B is coherent, and j is Kummer, meaning that for
any point x ∈ X the induced morphism jx : Ax → Bx is Kummer.

If j : A → B is a system of denominators, by the discussion in the preceding section étale
locally we have charts P → A(X) and Q → B(X) such that the morphism P → Q is Kummer.
Vice versa, if P→ A(X) gives a chart for A and P→ Q is a Kummer morphism with P and Q fs
monoids, then we get a system of denominators A→ B, with Q giving a chart for B.

Remark 1.2.26. Note that the definition does not require B to be saturated. Nevertheless, most of
the times we will deal with systems of denominators A → B on fs log schemes where B is fs as
well.

Definition 1.2.27. The root stack XB/A of X with respect to the system of denominators j : A→ B
is the following fibered category over X: objects over a scheme φ : T → X are symmetric monoidal
functors φ∗B→ DivT together with an isomorphism of the restriction along φ∗A→ φ∗B with the
pullback DF structure φ∗L : φ∗A → DivT , and arrows are isomorphisms of DF structures, with a
compatibility with respect to restriction to φ∗A.

Usually we will refer to an object of XB/A(T) only as the functor φ∗B → DivT , omitting the
isomorphism between φ∗A→ φ∗B→ DivT and φ∗A→ DivT . This should cause no confusion.
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The root stack has a natural morphism XB/A → X that we will usually call the projection of
XB/A to X. Over the root stack XB/A we have a tautological DF structure with sheaf of monoids
π∗B, where π : XB/A → X is the projection, extending π∗L : π∗A → DivXB/A . We will usually
denote it by Λ : π∗B→ DivXB/A when there is only one root stack in play.

If the system of denominators j : A → B has a global chart P → Q, its root stack can be
described by considering lifts Q → Div(T) of the pullback of P → Div(X). In this case the root
stack will also be denoted by XQ/P. Moreover, since étale locally we always have a chart for j,
locally every root stack XB/A is isomorphic to a root stack of the form XQ/P.

Example 1.2.28. Let X = Spec(k) be the standard log point, and take the Kummer extension
N ⊆ 1

n N. Then if Xn denotes the corresponding root stack, we have an isomorphism

Xn ∼= [Spec(k[t]/(tn))/µn] ,

where µn acts by multiplication on t. This is a particular case of a general description of the root
stack as a quotient stack in presence of a global chart (Proposition 1.2.29 below).

This example generalizes to give a quotient description of root stacks of the form XQ/P, and
thus local models for root stacks in general. Assume that P → Div(X) is a global chart for
X, and fix a Kummer extension P → Q. The chart given by P corresponds to a morphism
X →

[
Spec(k[P])/P̂

]
, where as usual P̂ = D[Pgp] is the diagonalizable group scheme associated

to Pgp. The morphism P → Q induces a morphism of the spectra of the monoid algebras
Spec(k[Q])→ Spec(k[P]), which (being equivariant with respect to the natural morphism Q̂→ P̂)

in turn gives a map
[
Spec(k[Q])/Q̂

]
→
[
Spec(k[P])/P̂

]
.

Proposition 1.2.29 ([BV12, Proposition 4.13]). We have an isomorphism

XQ/P
∼= X×[Spec(k[P])/P̂]

[
Spec(k[Q])/Q̂

]
.

In other words every root stack with respect to P → Q is a pullback of the quotient stack[
Spec(k[Q])/Q̂

]
, which is then some kind of “universal” model.

This gives a quotient stack description of XQ/P itself: call η : E→ X the P̂-torsor correspond-

ing to the map X →
[
Spec(k[P])/P̂

]
, and note that we have a P̂-equivariant map E→ Spec(k[P]).

Then we have an isomorphism

XQ/P
∼=
[
(E×Spec(k[P]) Spec(k[Q]))/Q̂

]
for the natural action.

Moreover E is affine over X, and if we set R = η∗OE, then we have E×Spec(k[P]) Spec(k[Q]) ∼=
Spec

X
(R⊗k[P] k[Q]). This gives a description of quasi-coherent sheaves on XQ/P, that is the key

to the relation with parabolic sheaves, and will be important in what follows: quasi-coherent
sheaves on XQ/P are Qgp-graded quasi-coherent sheaf on X, of modules over the sheaf of rings
R⊗k[P] k[Q]. The grading corresponds to Q̂-equivariance.
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We have a second description as a quotient stack in presence of a Kato chart: if P → Div(X)
comes from a Kato chart P→ OX(X), then the cartesian diagram expressing XQ/P as a pullback
can be broken up

XQ/P //

��

[
Spec(k[Q])/µQ/P

]
//

��

[
Spec(k[Q])/Q̂

]
��

X // Spec(k[P]) //
[
Spec(k[P])/P̂

]
in two cartesian squares, where µQ/P is the Cartier dual D[C] of the cokernel C of the morphism
Pgp → Qgp, a finite abelian group. Consequently, we also have an isomorphism

XQ/P
∼=
[
(X×Spec(k[P]) Spec(k[Q]))/µQ/P

]
for the natural action.

Example 1.2.30. A particular case that will be important in the following is the one of n-th roots.
Given an fs torsion-free monoid P, we consider the Kummer extension P ⊆ 1

n P. In this case
we will denote by Pn the monoid 1

n P (this is just to remember the denominators, since of course
Pn ∼= P), and the group µPn/P will be denoted just by µn(P). In conclusion the root stack of the
monoid algebra X = Spec(k[P]) in this case is

Xn = XPn/P
∼= [Spec(k[Pn])/µn(P)] .

The following is an immediate consequence of the previous discussion.

Theorem 1.2.31 ([BV12, Proposition 4.19]). Let X be a log scheme and j : A → B a system of denom-
inators. The root stack XB/A is a tame Artin stack. It is finite over X (meaning proper and quasi-finite),
finitely presented, and if for every geometric point x → X the order of the group Bgp

x /Agp
x is prime to the

characteristic of k (for example if char(k) = 0), then XB/A is Deligne–Mumford.

Being a tame Artin stack, the root stack XB/A has a coarse moduli space.

Proposition 1.2.32. Assume that A and B are sheaves of fine and saturated monoids. Then the coarse
moduli space of XB/A is the morphism XB/A → X.

Proof. This is a local question on X, so we can assume to have a chart P→ Div(X) for X coming
from a Kato chart, and a chart P → Q for the system of denominators. Moreover, since in this
case

XQ/P
∼= X×Spec(k[P])

[
Spec(k[Q])/µQ/P

]
with the notation introduced above, by tameness we can reduce to showing that the morphism[
Spec(k[Q])/µQ/P

]
→ Spec(k[P]) is a coarse moduli space.

This follows from the fact that the invariants of the action of µQ/P on Spec(k[Q]) are exactly
Spec(k[P]). Recall how the action is constructed: µQ/P is the Cartier dual D[C] of the cokernel
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C of Pgp → Qgp, the algebra k[Q] has a natural Qgp-grading that induces a C-grading, and this
gives the action of µQ/P.

The invariants are the piece of degree zero with respect to this C-grading, and are generated
by the xq’s such that q ∈ Q goes to zero in C, i.e. with q ∈ Pgp ∩ Q = P, since P and Q are fine
and saturated. This concludes the proof.

Note that in the proof we only used the fact that Pgp ∩Q = P, i.e. that the morphism P → Q
is exact.

The last proposition implies in particular that π∗ : QCoh(XB/A) → QCoh(X) is exact, since
XB/A is tame and X is the coarse moduli space.

This root stack construction has some functoriality properties: if Y → X is a morphism of log
schemes and we have compatible system of denominators on X and Y, we get a morphism be-
tween the root stack. The following proposition covers the simplified case in which the morphism
is strict.

Proposition 1.2.33. Let X be a log scheme with DF structure L : A → DivX and j : A → B a system of
denominators. If f : Y → X is a strict morphism of log schemes, then we have an isomorphism Yf ∗B/ f ∗A

∼=
XB/A ×X Y, i.e. the diagram

Yf ∗B/ f ∗A //

��

XB/A

��
Y // X

is cartesian.

Proof. This is immediate from the functorial description of the root stack: objects of XB/A ×X Y
over a scheme T are given by pairs (φ, g, N) where φ : T → Y and g : T → X are morphisms such
that f ◦ φ = g, and N : g∗B → DivT is a lifting of the pullback DF structure g∗L : g∗A → DivT .
Now since g∗ = φ∗ f ∗, these are precisely the objects of the root stack Yf ∗B/ f ∗A over the scheme
T.

We also have a functoriality with respect to successive Kummer extensions: if A → B and
A→ B′ are systems of denominators with a factorization

A //

��

B′

B

??

then we have a morphism XB′/A → XB/A defined by restricting the extension of the DF structure
B′T → DivT along BT → B′T for every scheme T → X. We will sometimes call this operation an
“extension of denominators”.

In fact this morphism is very similar to the projection XB/A → X from a root stack to the log
scheme X.

Proposition 1.2.34. Let j : A → B and j′ : B → B′ be two systems of denominators over the log scheme
X. Then the root stack XB′/A can be identified with the root stack of the log stack XB/A with respect to the
system of denominators j′.



32 CHAPTER 1. PRELIMINARIES

Proof. Take a morphism T → XB/A from a scheme, and equip T with the pullback of the universal
DF structure of XB/A. Then the following diagram is cartesian

TB′/B //

��

XB′/A

��
T // XB/A

and this clearly implies the conclusion.
The fact that the square is cartesian is an easy verification.

Because of this, the map XB′/A → XB/A behaves in some sense as a coarse moduli space. For
example, we have a projection formula for quasi-coherent sheaves.

Proposition 1.2.35 (Projection formula for the root stacks). With the notation of the preceding propo-
sition, denote by π : XB′/A → XB/A the natural map, and assume that A, B and B′ are fine and saturated.
Then:

• OXB/A
∼= π∗OXB′/A

,

• if F ∈ QCoh(XB′/A) and G ∈ QCoh(XB/A) we have a functorial isomorphism π∗F ⊗ G ∼=
π∗(F⊗ π∗G),

• consequently for F ∈ QCoh(XB/A) we have an isomorphism F ∼= π∗π∗F on XB/A.

Proof. The last bullet is consequence of the first two.
After noting that we have maps OXB/A → π∗OXB′/A

and π∗F ⊗ G → π∗(F ⊗ π∗G), by flat
base change along T → XB/A, we reduce to proving the statements for πT : TB′/B → T, where
the log structure on T is the pullback of the universal DF structure of XB/A. Now since B and B′

are fine and saturated, the morphism πT is a coarse moduli space of a tame Artin stack, and the
claims follow: the first one is a general property of coarse moduli spaces, and the second follows
for example from Proposition 4.5 of [Alp12].

To conclude, we note that where the log structure is trivial, the root stack is trivial as well.

Proposition 1.2.36. Let X be a log scheme with a DF structure L : A → DivX , j : A → B be a system
of denominators, and let U ⊆ X be the maximal open subset where the log structure is trivial. The the
restriction of π : XB/A → X to U is an isomorphism XB/A ×X U ∼= U.

Proof. This follows from the fact that the inclusion U ⊆ X is strict and the root stack construction
is compatible with strict base-change (1.2.33), and from the easy fact that for a trivial log scheme
X, the projection from the root stack to X is an isomorphism.
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1.3 Parabolic sheaves

In this section we will introduce parabolic sheaves on a log scheme, and link them to quasi-
coherent sheaves on root stacks. Once again our main reference is [BV12].

Let X be a log scheme with DF structure L : A → DivX , and j : A → B be a system of
denominators. Let us assume first that we have a chart j0 : P→ Q for A→ B.

Let us introduce a category of weights Qwt associated to Q: objects are elements of Qgp, and
an arrow a→ b is an element q ∈ Q such that b = a + q. We will write a ≤ b to mean that there is
an arrow from a to b. Note that if Q is integral (and this will often be the case in our treatment),
the element q that gives the arrow is uniquely determined.

The symmetric monoidal functor L : P → Div(X) giving the DF structure extends to a sym-
metric monoidal functor Lwt : Pwt → Pic(X) in the obvious way. If p ∈ Pgp, we denote Lwt(p)
simply by Lp.

Definition 1.3.1. A parabolic sheaf on X with denominators in Q is a functor E : Qwt → QCoh(X)
that we denote by a 7→ Ea, for a an object or an arrow of Qwt, with an additional datum for any
p ∈ Pgp and a ∈ Qgp of an isomorphism of OX-modules

ρE
p,a : Ep+a ∼= Lp ⊗ Ea

called the pseudo-periods isomorphism.
These isomorphism are required to satisfy some compatibility conditions. Let p, p′ ∈ Pgp,

r ∈ P, q ∈ Q and a ∈ Qgp. Then the following diagrams are commutative

Ea
Er //

��

Er+a

ρE
r,a
��

OX ⊗ Ea
σr⊗id // Lr ⊗ Ea

Ep+a
ρE

p,a //

Eq

��

Lp ⊗ Ea

id⊗Eq

��
Ep+q+a

ρE
p,q+a // Lp ⊗ Eq+a

Ep+p′+a

ρE
p+p′ ,a //

ρE
p,p′+a

��

Lp+p′ ⊗ Ea

µp,p′⊗id

��
Lp ⊗ Ep′+a

id⊗ρE
p′ ,a // Lp ⊗ Lp′ ⊗ Ea,

where µp,p′ : Lp+p′
∼= Lp ⊗ Lp′ is the natural isomorphism given by L, and the composite

Ea = E0+a
ρE

0,a // L0 ⊗ Ea ∼= OX ⊗ Ea

coincides with the natural isomorphism Ea ∼= OX ⊗ Ea.
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The sheaves Ea will be sometimes called the pieces of the parabolic sheaf E.

Remark 1.3.2. This has an abstract interpretation in terms of module categories. There are natural
morphisms + : Pwt × Qwt → Qwt and ⊗ : Pic(X) ×QCoh(X) → QCoh(X). Then the pseudo-
periods isomorphism ρE is an isomorphism between the composites E ◦+ and ⊗◦ (Lwt× E) from
Pwt ×Qwt to QCoh(X), and E is in some sense Pwt-equivariant.

There is a notion of morphisms of parabolic sheaves, which is a natural transformation E →
E′ between the two functors Qwt → QCoh(X) which is compatible with the pseudo-periods
isomorphism in the obvious sense, so we get a category Par(X, j0) of parabolic sheaves on X with
respect to j0 : P→ Q. This is in fact an abelian category in the natural way, with a tensor product
and internal Homs.

Example 1.3.3. Let us examine the case of the standard log point, i.e. X = Spec(k) with log
structure induced by L : N → k sending 0 to 1 and 1 to 0, and with system of denominators
N ⊆ 1

2 N.
In this case Qwt ∼= 1

2 Z as a partially ordered set in the natural way, and a parabolic sheaf
E : 1

2 Z → QCoh(Spec(k)) is determined by its values at 0 and 1
2 , since the pseudo-periods iso-

morphism gives for any 1
2 k and n ∈N an isomorphism

E 1
2 k+n

∼= E 1
2 k.

In other words we can visualize E as a pair of vector spaces V0 and V1 with maps

0 1
2 1

V0
a // V1

b // V0

such that a ◦ b = 0 and b ◦ a = 0 (since these compositions have to coincide with multiplication
by the image of 1 in k, i.e. zero.

Note that this set of data is exactly the same thing as a quasi-coherent sheaf on the root stack
X 1

2 N/N
. In fact we have an isomorphism

X 1
2 N/N

∼= [Spec(k[ε])/µ2]

where ε2 = 0 and µ2 acts by changing the sign of ε. A quasi-coherent sheaf on the root stack
is thus a µ2-equivariant k[ε]-module, i.e. a Z/2Z-graded k[ε]-module. The two pieces of the
grading correspond to the vector spaces V0 and V1 above, and the two maps correspond to
multiplication by ε.

This is the simplest example of the correspondence between parabolic sheaves and quasi-
coherent sheaves on root stacks of Theorem 1.3.8 below.

Example 1.3.4. Let X be a scheme and D ⊆ X an effective Cartier divisor. Consider the log
structure on X induced by the symmetric monoidal functor N→ DivX sending 1 to (OX(D), s),
and the Kummer extension j : N ⊆ 1

2 N.
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Then a parabolic sheaf on X with respect to j consists of quasi-coherent sheaves E 1
2 k for any

k ∈ Z, and of morphisms E 1
2 k → E 1

2 k+ 1
2 n for any n ∈N, with the properties as in the definition. In

particular if m ∈ Z we have an isomorphism E 1
2 k+m

∼= E 1
2 k⊗OX(mD), and the map E 1

2 k → E 1
2 k+m

for positive m corresponds to multiplication by s⊗m. Note that if the sheaves E 1
2 k are torsion-free

(say X is integral for simplicity) and s is not a zero-divisor, then all these maps will be injective.
Because of the pseudo-periods isomorphism, we can identify a parabolic sheaf with the data

consisting of the sheaves E0, E 1
2

together with the two maps

0 1
2 1

E0 // E 1
2

// E1.

The rest of the data is completely determined by this diagram.
Clearly we could have as well chosen the sheaves corresponding to −1,− 1

2 , 0. We will see that
for us it will be more convenient to identify a parabolic sheaf with the sheaves and maps in this
second range.

Remark 1.3.5. The two preceding example suggest a way to visualize parabolic sheaves (at least
if Qgp is free): one should think of the lattice Qgp inside the vector space Qgp ⊗Q, and imagine
a quasi-coherent sheaf on each point of the lattice. Moreover there is a map (possibly more than
one, if the monoids are not integral) from a sheaf in the point q to the one in q′ if and only if
q ≤ q′, and if p ∈ P, then the corresponding map from q to p + q coincides with Eq → Eq ⊗ Lp
given by multiplication by the section of Lp. For example if Qgp has rank 1, then a parabolic sheaf
can be seen as a “sequence” of sheaves arranged on the real line on the integral points, with maps
going to the right.

The same definition with minor variations defines a parabolic sheaf in absence of a global
chart. Starting from the sheaf B one defines a weight category Bwt in analogy with the preceding
case.

Definition 1.3.6. A parabolic sheaf on X with denominators in the sheaf B is a cartesian functor
E : Bwt → QCohX , together with the datum for every U → X étale, any p ∈ Agp(U) and a ∈
Bgp(U) of an isomorphism of OU-modules

ρE
p,a : Ep+a ∼= Lp ⊗ Ea

called the pseudo-periods isomorphism.
These morphism satisfy the conditions analogous to those of the preceding definition, and

the following one in addition: if f : U → V is a morphism over X and we have p ∈ Agp(V) and
a ∈ Bgp(V), then the isomorphism

ρE
f ∗p, f ∗a : E f ∗(p+a)

∼= L f ∗p ⊗ E f ∗a

is the pullback to U of ρE
p,a : Ep+a ∼= Lp ⊗ Ea.
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As for the preceding case there is a notion of morphism (a natural transformation compatible
with the pseudo-periods isomorphisms) that gives a category Par(X, j) of parabolic sheaves on X
with denominators in B, and this is an abelian category with a tensor product and internal Homs.
This construction has some functoriality property with respect to morphisms of log schemes
X → Y. We will discuss this in some detail in Chapter 3.

Furthermore, Par(X, j) can be extended to a fibered category Par(X, j) over the small étale site
Xét by taking over an étale morphism U → X the category Par(U, j|U) where U has the pullback
log structure. This fibered category is a stack for the étale topology, by standard arguments of
descent theory.

In the case in which we have a global chart, we can use either one of the definitions.

Proposition 1.3.7 ([BV12, Proposition 5.10]). Let X be a log scheme with a system of denominators
j : A→ B, admitting a global chart j0 : P→ Q. Then we have an equivalence Par(X, j) ∼= Par(X, j0).

This says that when dealing with local statements about parabolic sheaves, we can assume
that they are relative to a chart.

The following is the main result of [BV12], and relates parabolic sheaves on X with respect to
j : A→ B to quasi-coherent sheaves on the root stack XB/A.

Theorem 1.3.8 ([BV12, Theorem 6.1]). Let X be a log scheme with DF structure L : A → DivX ,
and j : A → B a system of denominators. Then there is a tensor equivalence of abelian categories
Φ : QCoh(XB/A)→ Par(X, j).

We sketch the proof here, since the definition of the two functors will come up at some point
of our treatment.

Sketch of proof. Let us denote by π : XB/A → X the projection, and by Λ : π∗B → DivXB/A the
universal DF structure on the root stack XB/A.

Let us describe the functor Φ. Given a quasi-coherent sheaf F on XB/A, we want to get a
parabolic sheaf Φ(F). We set, for U → X étale and b ∈ Bgp(U)

Φ(F)b = π∗(F⊗Λb).

This gives a cartesian functor Bwt → QCohX by means of the maps Λb → Λb+b′ for b ∈ Bgp

and b′ ∈ B, and there is a pseudo-periods isomorphism, basically coming from the fact that if
a ∈ A(U), then Λa ∼= π∗La, and using the projection formula for π.

Now since parabolic sheaves on X and quasi-coherent sheaves on XB/A form a stack in the
étale topology of X, we can construct the quasi-inverse étale locally, and so we can assume that
we have a chart j0 : P → Q for the system of denominators. In this case recall that we have an
isomorphism

XQ/P
∼=
[
Spec

X
(R⊗k[P] k[Q])/Q̂

]
and consequently quasi-coherent sheaves on XQ/P are Qgp-graded quasi-coherent sheaves on X,
which are modules over the sheaf of rings R⊗k[P] k[Q].

Starting from a parabolic sheaf E ∈ Par(X, j0), we define Ψ(E) as the direct sum
⊕

q∈Qgp Eq.
This is a Qgp-graded quasi-coherent sheaf on X, that has a structure of R-module (this uses
the pseudo-periods isomorphism). Moreover it is also a sheaf of k[Q]-modules in the natural
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way, and the two actions are compatible over k[P] by the properties of parabolic sheaves. This
gives Ψ(E) the structure of a Qgp-graded quasi-coherent sheaf of R⊗k[P] k[Q]-modules, i.e. of a
quasi-coherent sheaf on XQ/P.

One checks that these two constructions are inverses, and thus give equivalences.

From the proof of this theorem we see that if the log structure of a noetherian log scheme
X is generically trivial, then the maps Eb → Eb′ between the pieces of any parabolic sheaf are
generically isomorphisms. Moreover in this case if we also assume that the maps Eb → Eb′

are injective (this will be automatic for torsion-free parabolic sheaves, see Proposition 3.2.13) the
pieces Eb cannot be zero, unless the whole parabolic sheaf is.

This is not true in general, as the following example shows.

Example 1.3.9. Let us take a scheme X and the log structure induced by N→ Div(X) that sends
every non-zero element to (OX , 0). Then the following

−1 − 1
2 0

E0 // 0 // E0

is a perfectly good parabolic sheaf E with weights in 1
2 N, for E0 a non-zero quasi-coherent sheaf

on X. In this case the pushforward π∗(E⊗Λ− 1
2
) along π : X 1

2 N/N
→ X is the zero sheaf on X.

Notation 1.3.10. In the following chapters we will always denote by Φ the mentioned equivalence
and by Ψ its quasi-inverse just described, regardless of the log scheme X they refer to. This should
cause no confusion.

Moreover we will refer to both these functors as “the BV equivalence”, for Borne-Vistoli.

Remark 1.3.11. A variant of this theorem also holds for log stacks: if X is a log stack with a
system of denominators j : A → B, there is an equivalence between parabolic sheaves on X with
respect to j and quasi-coherent sheaves on the root stack XB/A. The proof is just a matter of
taking an atlas and keeping track of descent data. We will use this without further comment,
especially in Chapter 4.

To conclude, let us describe in parabolic terms pushforwards and pullbacks between root
stacks: let j : A→ B and j′ : A→ B′ be systems of denominators on X, with a factorization

A //

��

B′

B

??

and consider the canonical map π : XB′/A → XB/A.
We have a functor F : Par(X, j′) → Par(X, j) given by “restriction”: we have an inclusion

Bgp → B′ gp, that identifies Bwt with a subcategory of B′wt. Consequently given a parabolic sheaf
E ∈ Par(X, j′) we can restrict the functor E : B′wt → QCohX to Bwt, and one checks that, together
with the induced pseudo-periods isomorphism, this gives a parabolic sheaf in Par(X, j).
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Proposition 1.3.12. The functor F described in the preceding discussion corresponds to the pushforward
functor π∗ : QCoh(XB′/A)→ QCoh(XB/A).

Proof. First of all we can assume that we have charts for both A→ B and B→ B′, say P→ Q and
Q→ Q′.

We will use the construction of the equivalence Φ of 1.3.8. We want to show that for a quasi-
coherent sheaf E on XQ′/P, we have a natural isomorphism ΦQ(π∗E)q ∼= ΦQ′(E)q compatible
with the pseudo-periods isomorphism, where we see q ∈ Q ⊆ Q′ on the right-hand side.

Let us further denote by p′ : XQ′/P → X and p : XQ/P → X the two projections, so that
p′ = p ◦ π, and by Λ′ : Q′ → Div(XQ′/P) and Λ : Q → Div(XQ/P) the universal DF structures.
Note that if q ∈ Q we have Λ′q ∼= π∗Λq.

By definition we have

ΦQ′(E)q = p′∗(E⊗Λ′q) ∼= p∗(π∗(E⊗ π∗Λq)) ∼= p∗(π∗(E)⊗Λq) ∼= ΦQ(π∗(E))q,

where we used the projection formula for π (1.2.35).
Compatibility with the pseudo-periods isomorphism is proved with a similar calculation.

Let us now turn to pullback, whose description is more complicated. We will describe it in
the case where we have global charts j0 : P→ Q and j′0 : Q→ Q′ for A→ B and B→ B′.

Let us define a functor G : Par(X, j0) → Par(X, j′0). Start with a parabolic sheaf E : Qwt →
QCoh(X), and take an element q′ ∈ Q′ gp. Denote by Qq′ the set

Qq′ = {q ∈ Qgp | q ≤ q′}

where q ≤ q′ means that there exists a ∈ Q′ such that q + a = q′. This is naturally a pre-ordered
set, and we have a functor Qq′ → QCoh(X) by restricting E.

We define
G(E)q′ = lim−→

q∈Qq′

Eq

which is a quasi-coherent sheaf on X, being a colimit of quasi-coherent sheaves.
Note that in particular if Qq′ has a maximum m (i.e. if there is an element m ∈ Qgp such that

q ≤ m for any q ∈ Qq′ ), then G(E)q′ = Em. Further, if q ∈ Qgp, we clearly have G(E)q = Eq,
where of course we see q ∈ Qgp ⊆ Q′ gp.

If we have an arrow q′ → q′′ in Q′wt, i.e. an element a ∈ Q′ such that q′ + a = q′′, then
we have a homomorphism Qq′ → Qq′′ given by inclusion, and this induces a map G(E)q′ →
G(E)q′′ . This defines a functor G(E) : Q′wt → QCoh(X). Similar reasonings give a pseudo-
periods isomorphism, so that G(E) becomes a parabolic sheaf, and one checks that G gives a
functor Par(X, j0)→ Par(X, j′0) as claimed.

It is also immediate to check that G is left adjoint to the F constructed above (in the case where
we have global charts), and that the unit of the adjunction id→ F ◦ G is an isomorphism.

Proposition 1.3.13. Assume that we have global charts for A → B and B → B′ as in the preceding
discussion. Then the functor G described in the preceding discussion corresponds to the pullback functor
π∗ : QCoh(XB/A)→ QCoh(XB′/A).
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Proof. This follows from uniqueness of adjoint functors and the preceding proposition.

Example 1.3.14. Consider again the situation of Example 1.3.4, and the Kummer extensions N ⊆
1
2 N ⊆ 1

4 N. Call π : X4 → X2 the projection, and assume that we have a parabolic sheaf E with
respect to N ⊆ 1

2 N, given by

0 1
2 1

E0 // E 1
2

// E1

as above. Then the pullback π∗E on X4 can be described as a parabolic sheaf as

0 1
4

1
2

3
4 1

E0 E0 // E 1
2

E 1
2

// E1.

In fact in this case the set Qq′ of the description above has always a maximum, and the direct
limit reduces to evaluating the parabolic sheaf E at the maximum. For example if we take q′ = 1

4 ,
then Qq′ has 0 as maximum, and consequently (π∗E) 1

4
will be just E0.

Corollary 1.3.15. Let X be a log scheme with DF structure L : A → DivX , and A → B, B → B′ two
systems of denominators. Then pullback along π : XB′/A → XB/A is fully faithful.

Proof. Being a local question in the étale topology of X, this follows from the previous proposi-
tions and from the fact that the unit of the adjunction G a F is an isomorphism. In fact in general
if G is left adjoint to F and the unit id→ F ◦ G is an isomorphism, then

Hom(A, B) ∼= Hom(A, F(G(B))) ∼= Hom(G(A), G(B))

and the composition coincides with the function induced by G.
Alternatively, the conclusion follows directly from the third bullet of Proposition 1.2.35, which

says that the unit of the adjunction π∗ a π∗ is an isomorphism.
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Chapter 2

The infinite root stack of a
logarithmic scheme

Let X be an fs log scheme, with log structure L : A→ DivX . For every n ∈N we have a Kummer
extension of the sheaf A given by {jn : A→ 1

n A}n∈N.
The root stacks πn : Xn → X corresponding to these extensions admit natural maps between

them. Precisely, whenever n | m we have a morphism πn,m : Xm → Xn, given functorially by
taking a lifting 1

m AT → DivT of L over some T → X to the restriction 1
n AT → DivX to the

subsheaf 1
n AT ⊆ 1

m AT . These morphisms are compatible in a suitable sense, and make the
sequence of root stacks into an inverse system of algebraic stacks, with ordered set the set of
non-zero natural numbers and the ordering given by divisibility. As we will see, this is a (locally)
cofinal subsystem of a bigger projective system where one considers any Kummer extension of
sheaves of monoids.

We want to take the inverse limit of this projective system in order to get a stack X∞, which
we will call the “infinite root stack” of X, that parametrizes extensions of the log structure of X
with arbitrary denominators. This stack will be non-algebraic and have other nasty properties,
but on the bright side it will “embody” parabolic sheaves on X with arbitrary rational weights,
and it will have nice local models that resemble the ones of the finite root stacks.

Moreover we will see that the geometry of the infinite root stack is closely related to the
logarithmic geometry of the log scheme. Specifically, we will show that there is a reconstruction
procedure that gives back the log structure starting from the infinite root stack, and that one can
recover the Kummer-flat topos of Kato ([Kat, Niz08]) from an opportunely defined fppf topos of
the infinite root stack. We will also see that quasi-coherent sheaves on X∞ correspond to parabolic
sheaves with arbitrary rational weights, so that finitely presented Kummer-flat sheaves on X are
the same thing as finitely presented parabolic sheaves with rational weights.

In this chapter (and from here on) we assume that X is fine and saturated. Some parts of the
theory make sense without this assumption, but for simplicity we prefer to keep this hypothesis
always in the background instead of bringing it out only when it is really needed.

First of all we need some preliminaries on inverse limits of stacks.

41
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2.1 Inverse limits of algebraic stacks

There are probably several instances of a definition of an inverse limit of stacks in the literature.
We lay them down yet one more time, to establish the notation and for the convenience of the
reader.

Assume in this section that I is a partially ordered set, which is moreover filtered, i.e. for
every pair i, j ∈ I there exists k ∈ I such that k ≥ i and k ≥ j. Also, let us fix a category D.
Every fibered category in this section will be over D, and will be a category fibered in groupoids.
This assumption is not crucial and without it one only needs to add the word “cartesian” in the
appropriate places, but we will not need this generality.

Definition 2.1.1. An inverse system of fibered categories indexed by I is the datum of a set {Ci}i∈I
of fibered categories indexed by I, together with a transition functor Fi,j : Cj → Ci every time that
j ≥ i. Moreover we have the following data: for every index i ∈ I an isomorphism Fi,i

∼= id, and
for every triple i, j, k ∈ I such that k ≥ j ≥ i, we have a natural isomorphism αi,j,k : Fi,j ◦ Fj,k

∼= Fi,k
of functors Ck → Ci, that satisfies the following compatibility condition: whenever we have
i, j, k, l ∈ I such that l ≥ k ≥ j ≥ i the following diagram of functors Cl → Ci commutes

Fi,j ◦ Fj,k ◦ Fk,l
αi,j,k Fk,l //

Fi,jαj,k,l

��

Fi,k ◦ Fk,l

αi,k,l

��
Fi,j ◦ Fj,l

αi,j,l // Fi,l .

Remark 2.1.2. In some situations all the natural isomorphisms αi,j,k are identities. If this happens
we will say that the inverse system is strict. The inverse system of root stacks of a log scheme
will have this property.

We can take the inverse limit of an inverse system of fibered categories. One can give a (2-
categorical) universal property that uniquely identifies this limit, we will instead define and use
a specific model.

Definition 2.1.3. The canonical inverse limit C = lim←−i∈I
Ci of an inverse system of fibered categories

{Ci, Fi,j} is the fibered category defined as follows:

• for an object d ∈ D, the category C(d) has as objects collections {ξi}i∈I of objects ξi ∈ Ci(d),
together with, for every i, j ∈ I with j ≥ i, an isomorphism φi,j : Fi,j(ξ j) ∼= ξi. These
isomorphisms satisfy the following compatibility condition: every time that we have i, j, k ∈
I such that k ≥ j ≥ i, the following diagram in Ci commutes

Fi,j(Fj,k(ξk))
Fi,j(φj,k) //

αi,j,k(ξk)

��

Fi,j(ξ j)

φi,j

��
Fi,k(ξk)

φi,k // ξi.
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• Morphisms in C(d) from {ξi, φi,j} to {ηi, ψi,j} are collections of arrows fi : ξi → ηi in Ci(d)
that are compatible with the isomorphisms φi,j and ψi,j, in the obvious sense.

• The pullback of {ξi, φi,j} ∈ C(d) along f : e → d is defined as { f ∗ξi, f ∗φi,j}, i.e. by pulling
back both the objects and the morphisms, in the corresponding category Ci.

Note that for any i there is an obvious projection functor πi : C → Ci, and for any i, j ∈ I with
j ≥ i there is a canonical isomorphism Fi,j ◦ πj

∼= πi.
The fibered category C thus defined has the following universal property.

Proposition 2.1.4. For any fibered category E with functors Gi : E → Ci and for any pair i, j ∈ I with
j ≥ i, a natural isomorphism βi,j : Fi,j ◦ Gj

∼= Gi, such that for i, j, k ∈ I with k ≥ j ≥ i the two morphism

of functors Fi,k ◦Gk → Gi given by βi,k and by the composition Fi,k ◦Gk
α−1

i,j,k−→ Fi,j ◦ Fj,k ◦Gk → Fi,j ◦Gj →
Gi coincide, there exists a unique functor G : E → C such that πi ◦ G = Gi.

Proof. Since we must have πi ◦ G = Gi, the action of G on objects is determined by G(d) =
{Gi(d)}i∈I , and the isomorphisms φi,j are given by the natural isomorphisms βi,j. The action on
arrows is also given by the Gi’s.

Definition 2.1.5. A fibered category E with the data as in the previous paragraph is an inverse
limit of an inverse system {Ci, Fi,j} if the induced functor G : E → C = lim←−i∈I

Ci to the canonical
inverse limit is an equivalence of fibered categories.

Definition 2.1.6. A cofinal subset of a filtered partially ordered set I is a subset J ⊆ I such that
for any i ∈ I there exists j ∈ J with j ≥ i.

By equipping J with the induced order relation, we can see it as a filtered partially ordered
set, and consider CJ = lim←−j∈J

Cj. By cofinality, for any i ∈ I we can choose j(i) ∈ J such that

j(i) ≥ i, and by composing the projection CJ → Cj(i) with Fi,j(i) : Cj(i) → Ci, we get a functor
CJ → Ci for each i. Note that if i = j ∈ J, we can take the functor CJ → Cj to be just the projection
of the inverse limit.

One readily checks that there are natural isomorphisms after composing with the transition
maps of the system {Ci}i∈I , and thus we get a compatible system of functors to the inverse
system, and by Proposition 2.1.4, a functor FJ : CJ → lim←−i∈I

Ci.

Remark 2.1.7. Note that the functor FJ is compatible with restriction to comma categories on the
base category D.

Proposition 2.1.8. For any cofinal subset J ⊆ I in a filtered partially ordered subset, the functor FJ is an
equivalence.

Sketch of proof. We can fix an object d ∈ D and show that FJ(d) : CJ(d) → (lim←−i∈I
Ci)(d) is an

equivalence.
The functor FJ(d) is fully faithful, by looking at the components in lim←−i∈I

Ci corresponding to
indices in J.

It is essentially surjective, since for any family {ξi}i∈I with isomorphisms φi,j, corresponding
to an object ξ ∈ (lim←−i∈I

Ci)(d), we can just take its “restriction” to the indices in J, and this will
give an object of CJ(d), with image isomorphic to the original ξ.
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Proposition 2.1.9. Assume that D is equipped with a Grothendieck topology and all the fibered categories
Ci are stacks over D. Then lim←−i∈I

Ci is a stack as well.

Proof. The proof is by standard descent theory arguments. Basically, descent data for lim←−i∈I
Ci

amount to descent data (for objects and morphisms) for the single Ci’s, so we can glue them at
each stage and put everything together.

More succinctly, one could say that limits commute with stackification, so a limit of stacks is
a stack.

2.2 The infinite root stack

The root stacks of a log scheme X naturally form an inverse system of stacks over (Sch /X). Let us
consider the set I = {Kummer extensions j : A→ B with B coherent}, ordered by (j′, B′) ≥ (j, B)
if there is morphism B→ B′ with a commutative diagram

A
j′

  

j

��
B // B′.

Recall that “coherent” requires B to have charts locally in the étale topology, and this implies in
particular that it is finitely generated. For example, A→ AQ is not an element of I.

Remark 2.2.1. Note that if j : A → B is Kummer, then jQ : AQ → BQ is an isomorphism, and
so B is canonically isomorphic to a subsheaf of AQ. This says that we do not lose anything by
restricting to subsheaves of AQ, and from now on in a Kummer extension A → B, the sheaf B
will always be a subsheaf of AQ.

Now, for any j : A→ B ∈ I, we have the root stack XB/A, and when (j′, B′) ≥ (j, B), restriction
to B gives a functor XB′/A → XB/A. Moreover these data give an inverse system of stacks over
(Sch /X) indexed by I.

The partially ordered set I is filtered: given j : A → B and j′ : A → B′ in I, we take B′′ =
B + B′ ⊆ AQ, and j′′ : A → B′′ the induced morphism. Then (j′′, B′′) is an element of I that
dominates both (j, B) and (j′, B′).

Definition 2.2.2. The infinite root stack of the logarithmic scheme X is the inverse limit X∞ =
lim←−(A→B∈I)

XB/A.

By Proposition 2.1.9, X∞ is a stack over (Sch /X) (with the fpqc topology or any coarser
one). By definition of the inverse limit, the objects of X∞(T) for a scheme T → X are collections
{LA→B : BT → DivT}A→B of liftings of the DF structure of X, together with compatibility isomor-
phisms for any morphism of Kummer extensions, and the arrows are compatible collections of
arrows.

We have the following alternative description.

Proposition 2.2.3. There is a natural isomorphism X∞ ∼= XAQ/A with the root stack with respect to the
“maximal” Kummer extension A→ AQ.
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Remark 2.2.4. We stress once again that in a system of denominators A → B, the sheaf B is
finitely generated, so A → AQ is not a system of denominators. Despite this, one can define a
root stack XAQ/A exactly as in the finitely generated case (see Definition 1.2.27).

This means that objects of XAQ/A over a scheme T → X are liftings (AQ)T → DivT of the
pullback DF structure AT → DivT , and arrows are morphisms of DF structures.

We also remark here that taking (−)Q commutes with pullback, i.e. in the situation above we
have (AQ)T ∼= (AT)Q as sheaves on T. This holds basically because colimits commute with left
adjoints.

Lemma 2.2.5. Let T → X be a morphism. Then there is an isomorphism

lim−→
A→B

BT → (AQ)T

as fibered categories on (Sch /T).

Proof. First of all note that on (Sch /X), the maps B → B′ of the direct system are injective, and
since they are compatible with the inclusions B ⊆ AQ and B′ ⊆ AQ, we can identify the direct
limit as the ascending union

⋃
A→B B ⊆ AQ, as a sheaf. By exactness of the pullback, all this

remains true if we are on the scheme T, so we can assume T = X.
Let us prove that the inclusion ⋃

A→B
B ⊆ AQ

is an equality. This means that any section s ∈ AQ(U) with U → X étale, comes étale locally on
U from (

⋃
A→B B)(U), so in particular we can assume that there is a chart P→ A on X, where P

is a finitely generated monoid.
Since (PQ)X → AQ is surjective, s will locally come from an element p ∈ PQ, that will lie in

some 1
n P ⊆ PQ, as P is finitely generated. The image of p in 1

n A, an element of
⋃

A→B B, will be
s.

Proof of Proposition 2.2.3. For any system of denominators A ⊆ B ⊆ AQ we have a restriction
morphism XAQ/A → XB/A, and by varying B we get a map XAQ/A → X∞. Functorially, for a
scheme T → X, the morphism above sends a lifting (AQ)T → DivT of the DF structure on X to
the collection of its restrictions to systems of denominators A ⊆ B ⊆ AQ.

Because of the previous lemma, we have lim−→A→B
BT ∼= (AQ)T , and consequently

Hom((AQ)T , DivT) = Hom( lim−→
A→B

BT , DivT) = lim←−
A→B

Hom(BT , DivT).

In other words, morphisms of stacks (AQ)T → DivT correspond to compatible systems of mor-
phisms BT → DivT , and it is clear that symmetric monoidal functors correspond to collections
of symmetric monoidal functors. Moreover this equivalence respects the compatibility with the
DF structure AT → DivT coming from X. This says that the morphism XAQ/A → X∞ is an
isomorphism.

It is possible to reduce considerably the set of indices over which we take the limit, and still
obtain the infinite root stack as a result.
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Fix a system of denominators k : A→ A′ and consider the subset

Ik = I(k : A→A′) =

{
A→ 1

n
A′
}

n∈N

⊂ I,

where the ordering induced by I corresponds to the divisibility ordering on N. The case k =
idA gives the natural tower of extensions where we just take all sections of A with some fixed
denominator n.

Note that this subset is not necessarily cofinal, although that this is true if X is quasi-compact.

Example 2.2.6. Consider a countable disjoint union of points X =
⊔

n∈N Spec(k) with k alge-
braically closed, with the standard rank 1 log structure on each point.

In this case we have A = NX , AQ = QX , and, although as sheaves we have
⋃ 1

n A = AQ, it
is not true that every system of denominators A ⊆ B ⊆ AQ is contained in some 1

n A. Indeed, it
suffices to take the section s of AQ that takes the value 1

n on the n-th copy of Spec(k), and the
submonoid it generates inside AQ.

Proposition 2.2.7. The subset Ik ⊆ I is cofinal if X is quasi-compact.

Proof. Let us fix a system of denominators A → B. Since X is quasi-compact, it has a finite
covering by affines where there is a global chart for A → B. On each of these open affines, if
P→ Q is the given chart, we can find n such that Q ⊆ 1

n P, since Q is finitely generated. If we let
N be the least common multiple of these finitely many indices, we have B ⊆ 1

N A on X.

Despite the fact that the subset Ik ⊆ I is not necessarily cofinal, the induced morphism be-
tween the inverse limits is always an isomorphism.

Proposition 2.2.8. The natural functor AIk : lim←−n∈N
X 1

n A′/A → X∞ induced by the inclusion Ik ⊆ I is
an isomorphism.

Proof. This follows from the previous lemma and from proposition 2.1.8, using the fact that the
two are stacks on (Sch /X).

From now on we will often see X∞ as the inverse limit of such a “small” subsystem, typically
as lim←−n∈N

Xn, where Xn = X 1
n A/A.

The construction of the infinite root stack is functorial, as it is apparent from the interpretation
as a root stack for the extension A ⊆ AQ: if f : X → Y is a morphism of log schemes, then there
is an induced map f∞ : X∞ → Y∞ that sends a lifting ((AX)Q)T → DivT (for a scheme T → X)
of the DF structure of X to the composition (( f ∗AY)Q)T → ((AX)Q)T → DivT , a lifting of the
DF structure of Y. This can also be seen as the morphism induced by the morphisms Xn → Yn
between the intermediate root stacks by taking the inverse limit.

Remark 2.2.9. Moreover, as it happens with the finite root stacks, if the morphism f is strict, then
the square

X∞ //

��

Y∞

��
X // Y
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is cartesian. In fact since f ∗AY ∼= AX , we have ( f ∗AY)Q
∼= (AX)Q and this implies that an object

of X∞(T) is an object of Y∞(T), plus a map T → X over Y.

The infinite root stack has a natural projection X∞ → X, which is defined functorially on
X∞(T) by forgetting everything but the morphism T → X. Clearly this is the same as the
composite of the two projections X∞ → XB/A → X for any system of denominator A→ B.

Proposition 2.2.10. Assume that X is noetherian and the log structure of X is generically trivial, i.e.
the open subscheme U ⊆ X where the log structure is trivial is schematically dense. Then the projection
π : X∞ → X is an isomorphism over U.

Proof. This follows from the fact that the formation of X∞ commutes with strict base change, and
over U the projection from any root stack is an isomorphism.

2.2.1 Local models

Let us now consider the local version of this construction, where there is a chart. This will lead
us to local models for the infinite root stack.

When X has a global chart P→ Div(X), following our previous construction, we can consider
the set I = {Q ⊆ PQ | Q is finitely generated }, partially ordered by inclusion. As before, I is
filtered (by taking Q + Q′ ⊆ PQ).

We can consider the inverse limit (X∞)P = lim←−I
XQ/P, and, as in the discussion of the pre-

ceding section, one can show that the objects of (X∞)P(T) for φ : T → X correspond to liftings
PQ → Div(T) of the DF structure of X. In other words (X∞)P is isomorphic to the root stack
XPQ/P corresponding to the Kummer extension P ⊆ PQ (we omit the details).

Lemma 2.2.11. Let X be a log scheme with DF structure L : A → DivX and a global chart P →
Div(X). Then there is an isomorphism (X∞)P ∼= X∞. Moreover, this isomorphism is compatible with the
isomorphisms XQ/P

∼= XB/A, where A→ B is a system of denominators with chart P→ Q.

Proof. The proof follows closely the one of Proposition 4.18 of [BV12], with minor modifications.
We sketch it briefly for the convenience of the reader.

Let us define a functor X∞ → (X∞)P as follows: for a scheme T → X, we send an object
(AQ)T → DivT of X∞(T) to the composition PQ → (AQ)T(T) → Div(T), which is an object
of (X∞)P when equipped with the obvious induced natural isomorphism of the composition
P → PQ → Div(T) with the morphism P → Div(T) coming from the chart on X. The action on
arrows is clear.

The quasi-inverse (X∞)P → X∞ associates to an object PQ → Div(T) the induced DF structure
(AQ)T → DivT . Here (AQ)T is the sheaf quotient ((PQ)T/K)sh, where K is the kernel of the
given functor PQ → Div(T), which coincides with the kernel of PQ → AQ, since ker(PT → AT) =
ker(PT → DivT).

Compatibility with the isomorphisms XQ/P
∼= XB/A is clear from the construction.

To describe local models for X∞, let us start from the “universal” case of the spectrum of a
monoid algebra.

Assume that X = Spec(k[P]) for a finitely generated monoid P, with the natural log structure.
Then we have a description of X∞ as a quotient stack, as it happens with finite root stacks: recall



48 CHAPTER 2. THE INFINITE ROOT STACK OF A LOGARITHMIC SCHEME

from 1.2.30 that in this case Xn ∼= [Spec(k[Pn])/µn(P)], where we set Pn = 1
n P and µn(P) denotes

the Cartier dual D[Cn] of the cokernel Cn of the map Pgp → Pgp
n .

Moreover let us denote by µ∞(P) the Cartier dual D[C∞] of the cokernel C∞ of the morphism
Pgp → Pgp

Q
. There are inclusions Cn ⊆ C∞ and in fact C∞ is the ascending union of such

subgroups (with respect to divisibility). Correspondingly µ∞(P) ∼= lim←−n
µn(P).

Note that since P is fine and saturated, by choosing appropriate generators we have Pgp ∼=
Zr, consequently Cn ∼= (Z/nZ)r and C∞ ∼= (Q/Z)r, and correspondingly µn(P) ∼= (µn)r and
µ∞(P) ∼= (µ∞)r, where µ∞ = D[Q/Z] ∼= lim←−n

µn.

Proposition 2.2.12. We have an isomorphism X∞ ∼= [Spec(k[PQ])/µ∞(P)].

Proof. The stacks [Spec(k[Pn])/µn(P)], together with the natural maps

[Spec(k[Pm])/µm(P)]→ [Spec(k[Pn])/µn(P)]

for n | m form an inverse system of stacks over (Sch / Spec(k[P])), and for every n ∈ N we have
from Example 1.2.30 an isomorphism Fn : Xn → [Spec(k[Pn])/µn(P)]. Moreover one checks that
these isomorphisms are compatible with the transition maps of the two inverse systems, and thus
give a morphism

F = lim←−
n∈N

Fn : X∞ → lim←−
n∈N

[Spec(k[Pn])/µn(P)] ,

which is an isomorphism.
Now it suffices to note that we have an isomorphism

lim←−
n

[Spec(k[Pn])/µn(P)] ∼= [Spec(k[PQ])/µ∞(P)] .

In fact we have a map

[Spec(k[PQ])/µ∞(P)]→ lim←−
n∈N

[Spec(k[Pn])/µn(P)]

obtained by change of fiber along µ∞(P) → µn(P) for every n, and this has a quasi-inverse that
can be described as follows.

Assume that we have an object of lim←−n∈N
[Spec(k[Pn])/µn(P)] over a scheme T → Spec(k[P]),

i.e. a sequence of µn(P)-torsors

Qn

��

// Spec(k[Pn])

T

with equivariant maps Qn → Spec(k[Pn]), and every time that n | m, an isomorphism Qm ×µm(P)

µn(P) ∼= Qn, where as usual Qm ×µm(P) µn(P) = (Qm × µn(P))/µm(P), with the obvious compat-
ibility properties.

Since the maps Qm → Qn are affine, we can take the inverse limit Q = lim←−n
Qn as a scheme

over T. This has an action of µ∞(P) = lim←−n
µn(P), and moreover it is a torsor for µ∞(P), since the



2.2. THE INFINITE ROOT STACK 49

morphism Q× µ∞(P)→ Q×T Q is an isomorphism, being the inverse limit of the isomorphisms
Qn × µn(P) ∼= Qn ×T Qn.

Finally the µn(P)-equivariant maps Qn → Spec(k[Pn]) induce a µ∞(P)-equivariant morphism
Q→ lim←−n

Spec(k[Pn]) = Spec(k[PQ]), and this gives an object

Q //

��

Spec(k[PQ])

T

of [Spec(k[PQ])/µ∞(P)] over T. These two maps are mutually quasi-inverses.

Remark 2.2.13. We have the following description of k[PQ]: take a finite set of generators p1, . . . , pr
of P, some indeterminates t1, . . . , tr, and the (finitely many) polynomials fi ∈ k[t1, . . . , tr] coming
from the relations among the generators, so that k[P] ∼= k[t1, . . . , tr]/( fi). Then we have

k[PQ] ∼= k[t
1
n
1 , . . . , t

1
n
r | n ∈N]/( fi(t

1
n
1 , . . . , t

1
n
r ) | n ∈N).

For example, if P = 〈p, q, r | p + q = 2r〉, then we have k[P] ∼= k[x, y, z]/(xy − z2), where the
equation comes from the relation p + q = 2r, and

k[PQ] ∼= k[x
1
n , y

1
n , z

1
n | n ∈N]/(x

1
n y

1
n − z

2
n | n ∈N).

As for the group µ∞(P), we already remarked that µ∞(P) = D[(Q/Z)r] ∼= (µ∞)r where r is the
rank of Pgp.

Now we will see that this description as a quotient stack extends to the case where there is a
global chart.

Assume that X is a log scheme with a global chart P → Div(X) coming from a Kato chart
P→ OX . Then recall that the root stack Xn fits in a cartesian diagram

Xn //

��

[Spec(k[Pn])/µn(P)]

��
X // Spec(k[P]).

We can obtain a description as a quotient stack stack by pulling the data back to X: the stack Xn
is isomorphic to the quotient [Un/µn(P)] where Un = X ×Spec(k[P]) Spec(k[Pn]) and the action is
the natural one on the second factor.

If n | m we have natural affine morphisms fn,m : Um → Un (induced by Spec(k[Pm]) →
Spec(k[Pn])) and φn,m : µm(P)→ µn(P), and moreover fn,m is equivariant with respect to φn,m, so
they fit together in a morphism of groupoids in schemes

Um × µm(P)

����

// Un × µn(P)

����
Um // Un.
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Moreover if n | m and m | k, the morphism Uk → Un coincides with the composition Uk → Um →
Un. In other words {Un}n∈N is an inverse system with index set N with the divisibility ordering
and with affine transition maps, so the inverse limit U∞ = lim←−n

Un makes sense as a scheme.
We have an action of µ∞(P) on U∞ obtained as limit of the actions at the finite levels, and we

can consider the quotient stack [U∞/µ∞(P)].

Proposition 2.2.14. There is an isomorphism X∞ ∼= [U∞/µ∞(P)]. In particular X∞ has a representable
fpqc morphism from a scheme, U∞ → X∞. Moreover, X∞ fits in the following cartesian diagram

X∞ //

��

[Spec(k[PQ])/µ∞(P)]

��
X // Spec(k[P])

Proof. For every n we have an isomorphism Xn ∼= [Spec(k[Pn])/µn(P)] ×Spec(k[P]) X, and these
isomorphisms are compatible with the transition maps Xm → Xn and

[Spec(k[Pm])/µm(P)]→ [Spec(k[Pn])/µn(P)] .

Consequently we have an isomorphism

X∞ ∼= lim←−
n

Xn ∼= lim←−
n
([Spec(k[Pn])/µn(P)]×Spec(k[P]) X) ∼=

∼= (lim←−
n

[Spec(k[Pn])/µn(P)])×Spec(k[P]) X ∼= [Spec(k[PQ])/µ∞(P)]×Spec(k[P]) X,

and the diagram in the statement is cartesian.
Because the diagram is cartesian we have

X∞ ∼=
[

X×Spec(k[P]) Spec(k[PQ])/µ∞(P)
]
= [U∞/µ∞(P)]

since U∞ ∼= X×Spec(k[P]) Spec(k[PQ]).

Example 2.2.15. Assume X = Spec(k) is the standard log point. In this case, as is explained in
Example 1.2.28, the root stacks of X are given by Xn ∼= [Spec(k[t]/(tn))/µn], where µn acts by
multiplication. Since

lim←−
n

Spec(k[t]/(tn)) ∼= Spec(k[t
1
n | n ∈N]/(t)) = Spec(k)×Spec(k[N]) Spec(k[Q+])

the preceding proposition implies that the infinite root stack of X is described as

X∞ ∼=
[
Spec(k[t

1
n | n ∈N]/(t))/µ∞

]
,

where µ∞ acts via the natural Q/Z-grading on k[t
1
n | n ∈N]/(t).

The morphism X∞ → Xn to the intermediate n-th root stack Xn ∼= [Spec(k[t]/(tn))/µn] is in-
duced by the homomorphism k[t]/(tn)→ k[t

1
n | n ∈N]/(t) sending t to t

1
n , which is equivariant

with respect to the natural morphism µ∞ → µn.
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Example 2.2.16. More generally if X = Spec(k) with the log structure given by a fine saturated
sharp monoid P, with P → Div(k) that sends 0 to 1 ∈ k and everything else to 0 ∈ k, then the
infinite root stack is

X∞ ∼=
[
Spec(k[PQ]/(P+)/µ∞(P)

]
where recall that P+ = P \ {0}, and (P+) ⊆ k[PQ] is the ideal generated by the variables xp with
p ∈ P+.

More concretely take a system of generators p1, . . . , pr for P, and some indeterminates t1, . . . , tr.
Call fi(t1, . . . , tr) the polynomials coming from a finite set of generating relations for the pj’s, so
that k[P] = k[t1, . . . tr]/( fi). Then we have

X∞ ∼=
[

Spec
(

k[t
1
n
1 , . . . , t

1
n
r | n ∈N]/(t1, . . . , tr, fi(t

1
n
1 , . . . , t

1
n
r ) | n ∈N)

)
/µs

∞

]
where s is the rank of Pgp and the action is given, as in the previous example, by the natural

(Q/Z)s-grading on the k-algebra k[t
1
n
1 , . . . , t

1
n
r | n ∈N]/(t1, . . . , tr, fi(t

1
n
1 , . . . , t

1
n
r ) | n ∈N).

Example 2.2.17. Let X be a smooth curve and D ⊆ X an effective Cartier divisor, i.e. a finite
number of points {x1, . . . , xk}. Then the projection X∞ → X restricted to U = X \ D is an
isomorphism, and over the points xi the stack X∞ has the structure of the infinite root stack of
the standard log point, i.e.

(X∞)xi
∼=
[
Spec(k(xi)[t

1
n | n ∈N]/(t))/µ∞

]
.

Thus in this case we can see X∞ as X with added stacky structure on the points xi, with a rather
large stabilizer group.

We deduce the following results for general log schemes, without assuming that there is a
global chart.

Corollary 2.2.18. The infinite root stack X∞ of any log scheme X has an étale cover by quotient stacks
of the form just described, i.e. it is étale locally a quotient of an affine scheme by a diagonalizable group
scheme.

Remark 2.2.19. In this discussion we used the standard root stacks of X, but we could have equiv-
alently used the root stacks given by A→ 1

n A′, where A→ A′ is a fixed system of denominators,
or even an arbitrary cofinal subset of the partially ordered set of systems of denominators.

This implies that the infinite root stack, even though it is not algebraic in the sense of Artin,
still has some kind of (very) weak algebraicity property.

Definition 2.2.20. An fpqc stack is a stack (in groupoids) X on (Sch) that has an fpqc presentation
(i.e. an fpqc representable morphism U → X from a scheme), and such that the diagonal X →
X ×k X is representable.

Corollary 2.2.21. The infinite root stack X∞ of an fs log scheme X is an fpqc stack. Moreover it has an
fpqc presentation which is an inverse limit of flat (smooth in characteristic 0) presentations for the finite
root stacks Xn.
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Proof. This follows from the previous preposition, by taking a disjoint union of the presenta-
tions described above in the local case. Representability of the diagonal follows from the local
description as a root stack.

Apart from this algebraicity property, in what follows we will exploit the fact that X∞ is an
inverse limit of Artin stacks (what we could call a “pro-algebraic stack”) and that we can find
presentations that are inverse limits of presentations for the finite stacks. When we will refer to
presentation of the finite root stacks Xn yielding an fpqc presentation of X∞, we will write them
as Un → Xn as before and, in the local case where there is a global chart, Gn will be the group
µn(P). The inverse limits will be U∞ = lim←−n

Un and G∞ = lim←−n
Gn.

It is quite clear from its description and simple examples that X∞ is not going to be “of finite
type over k”, or “noetherian” even if X is. Note that it is not even clear what these adjectives
should mean, hence the quotation marks.

In fact, since X∞ has only an fpqc atlas, we have to be careful when we talk about properties
like being noetherian, locally of finite type/presentation and such, since they are not local with
respect to the fpqc topology, i.e. if f : X → Y is fpqc and X is say of finite type over k, it is
not necessarily the case that Y also is, and vice versa. One would like to define such properties
on any presentation of the stack, but the fact that one presentation has it will not imply that all
presentations do.

About properties of morphisms, whenever we have a representable morphism X → Y be-
tween fpqc stacks, we will say that it has some property (for example it is flat, smooth, étale, of
finite type, and such) if all base changes by schemes have said property, as usual.

Example 2.2.22. Take the standard log point X = Spec(k). Then the infinite root stack is

X∞ ∼=
[
Spec(k[t

1
n | n ∈N]/(t))/µ∞

]
and, although the words do not mean anything precise, it is reasonable that it should be consid-
ered as non-noetherian and hence not of finite type over k, since for example the ideal (t

1
n )n∈N is

not finitely generated.

The fact that the infinite root stack is not “noetherian” complicates the discussion of coherent
sheaves, since “finitely presented” and “coherent” become different concepts. This issue would
be absent if X∞ were at least coherent, meaning that OX∞ is a coherent sheaf, i.e. every finitely
generated ideal I ⊆ OX∞ is also finitely presented.

This is true in some cases, but false in general, as the following example shows.

Example 2.2.23. Consider the submonoid P ⊆ Z3 generated by e1 = (1, 0, 0), e2 = (0, 1, 0),
e3 = (0, 0, 1) and e4 = (1, 1,−1). The associated rational cone PQ ⊆ Q3 is given by the inequalities

PQ = {(a1, a2, a3) ∈ Q3 | a1 ≥ 0, a2 ≥ 0, a1 + a3 ≥ 0, a2 + a3 ≥ 0}.

Let us consider the spectrum X = Spec(k[P]) of the monoid algebra of P.
From what we discussed, the infinite root stack X∞ has a flat presentation U∞ → X∞ where

U∞ = Spec(k[PQ]), and the natural way to prove that X∞ is coherent would be to prove that U∞
is, but this is not the case.
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Let us set R = k[PQ] and let xi = xei ∈ k[PQ] be the element corresponding to ei, and consider
the ideal I ⊆ R generated by x1 and x3. We will show that I is not finitely presented, by showing
that the kernel

K = {( f1, f3) ∈ R2 | x1 f1 + x3 f3 = 0}

of the presentation of I is not finitely generated.
To check this, we will show that its image J ⊆ R along the first projection R2 → R is not

finitely generated. Since J is a homogeneous ideal, it corresponds to an ideal A ⊆ PQ (Definition
1.1.3), the set of degrees of non-zero elements in J.

Let us check that we can describe A as

A = {(a1, a2, a3) ∈ Q3 | a1 ≥ 0, a2 ≥ 0, a1 + a3 ≥ 0, a2 + a3 ≥ 1}.

In fact, if a ∈ A then there exist f1, f3 ∈ R such that x1 f1 + x3 f3 = 0, with f1 of degree a. Note
that necessarily f3 6= 0, and call b the degree of f3. Then we conclude that a + e1 = b + e3, and
consequently a− e3 + e1 is in PQ.

Conversely if a− e3 + e1 ∈ PQ and a ∈ PQ, we have that x1xa − x3xa−e3+e1 = 0 (where as usual
xp denotes the element of k[PQ] corresponding to p ∈ PQ), so a ∈ A. Finally, one checks easily
that a− e3 + e1 ∈ PQ and a ∈ PQ are equivalent to the inequalities above.

Now consider

A0 = {a = (a1, a2, a3) ∈ A | a1 = 0, a2 + a3 = 1}
= {(0, a2, a3) ∈ Q3 | a2 ≥ 0, a3 ≥ 0, a2 + a3 = 1}.

It is easy to check that a + b ∈ A0 implies a = 0 for a ∈ PQ and b ∈ A, and this says that any
set of generators of A as an ideal of PQ must contain a set of generators of A0, and thus must be
infinite. In conclusion the ideal J is not finitely generated.

The ideal I ⊆ k[PQ] descends to give an ideal sheaf I ⊆ OX∞ on X∞, and since finite presen-
tation is fpqc local, I is not finitely presented, and X∞ is not coherent.

Remark 2.2.24. Note that the monoid in the last example is not simplicial (meaning that the
rational cone it generates in Pgp ⊗Z Q is not simplicial). This is not a coincidence: we will see
that if the log structure has a simplicial global chart in this sense, then there is a cofinal system
of root stacks with flat transition maps and OX∞ is coherent. We will return on this once we have
discussed quasi-coherent sheaves on X∞ with some detail (see Proposition 2.2.46).

Note that the infinite root stack X∞ has some natural DF structures. We need to be careful
when we talk about sheaves of monoids, since X∞ is not algebraic. A sheaf of monoids on X∞
for us will be a sheaf of monoids on a small étale site of X∞, with objects isomorphism classes
of étale representable morphisms A → X∞ and arrows classes of morphisms over X∞, with
coverings given by families of classes of jointly surjective étale morphisms.

With this definition, X∞ has a DF structure Λn : π∗ 1
n A→ DivX∞ for any n (where π : X∞ → X

is the projection), that consists of the pullback of the universal DF structure of the finite root stack
Xn, and moreover we have a universal DF structure Λ∞ : π∗AQ → DivX∞ that extends all the Λn
simultaneously.
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Here, in analogy with the case of schemes and algebraic stacks, DivX∞ is the fibered category,
on the small étale site described above, consisting of invertible sheaves with sections. We will
define precisely quasi-coherent sheaves on X∞ shortly.

To conclude this section, we show that, as it happens with the intermediate root stacks, the
infinite root stack of X can be seen as the infinite root stack of any intermediate root stack XB/A.

Proposition 2.2.25. Let X be a log scheme, and fix a system of denominators A → B. Then XB/A is
a log stack, with the tautological log structure given by the universal lifting Λ : BXB/A → DivXB/A , and
we can consider its infinite root stack (XB/A)∞. Then the natural map (XB/A)∞ → X∞ induced by the
projection XB/A → X is an isomorphism.

Proof. This follows immediately from the fact that the morphism A→ B induces an isomorphism
AQ
∼= BQ (and likewise on any base change along T → X), and the log structure on XB/A is given

by the tautological DF structure Λ : BXB/A → DivXB/A .
With some more detail, we can define a morphism X∞ → (XB/A)∞ by sending an object

N : (AQ)T → DivT of X∞(T) to the induced (BQ)T → Div(T), together with the morphism
T → XB/A determined by the restriction of N to BT ⊆ (AQ)T .

One checks that this is a quasi inverse to the map (XB/A)∞ → X∞.

2.2.2 Sheaves on the infinite root stack

Let us give a definition of quasi-coherent sheaf on an arbitrary fibered category over (Sch). Let
us denote by QCoh the fibered category of quasi-coherent sheaves on (Sch). In other words for
a scheme T, the category QCoh(T) is the category of quasi-coherent sheaves on T, and for a
morphism S→ T we have the usual pullback functor QCoh(T)→ QCoh(S).

In what follows we will repeatedly use the fact that QCoh is a stack for the fpqc topology of
(Sch). For a proof of this see the first chapter of [FGI+07].

Definition 2.2.26. Let X → (Sch) be a fibered category. A quasi-coherent sheaf on X is a cartesian
functor X → QCoh of fibered categories over (Sch).

Equivalently, a quasi-coherent sheaf on X assigns to every morphism φ : T → X of fibered
categories from a scheme T a quasi-coherent sheaf Eφ ∈ QCoh(T) on T, and for any factorization

S
f //

ψ ��

T

φ
��
X

we have an isomorphism α f : f ∗Eφ
∼= Eψ of quasi-coherent sheaves on S. These are required to

satisfy some compatibility properties that we leave to the reader to spell out.
This definition applies in particular to the infinite root stack X∞ of a log scheme, and gives us

a notion of quasi-coherent sheaf. Let us introduce two equivalent notions, that use the fact that
X∞ is an fpqc stack.

Assume more generally that X is any fpqc stack over (Sch), and fix an fpqc presentation
U → X , with R = U ×X U where U is a scheme. Using the presentation we can give the
following definition for quasi-coherent sheaves on X .
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Definition 2.2.27. A quasi-coherent sheaf (E, α) on X is a quasi-coherent sheaf E on U, together
with descent data with respect to the groupoid R ⇒ U → X , i.e. an isomorphism α : π∗1 E ∼= π∗2 E,
where π1, π2 : R→ U are the two projections, satisfying the cocycle condition on R×X R×X R. A
morphism of quasi-coherent sheaves f : (E, α)→ (F, β) is a morphism f : E→ F of quasi-coherent
sheaves on U which is compatible with the descent data.

We will write QCoh(X ) for the category of quasi-coherent sheaves on X . It is, as usual, an
abelian category, and it is independent of the chosen fpqc presentation for X .

Proposition 2.2.28. Let X → (Sch) be an fpqc stack and let us fix an fpqc presentation U → X . Then
the two notions we gave above for quasi-coherent sheaves on X agree.

Proof. This follows directly from the fact that quasi-coherent sheaves on schemes satisfy fpqc
descent.

Definition 2.2.29. A quasi-coherent sheaf (E, α) on X is finitely presented if the sheaf E is finitely
presented on U.

We will denote by FP(X ) the full subcategory consisting of finitely presented (E, α). As the
notation suggests, this full subcategory is also independent of the choice of the fpqc presentation.
This relies on the standard fact that if f : X → Y is fpqc and F ∈ QCoh(Y), then F is finitely
presented if and only if f ∗F is.

Remark 2.2.30. As we already mentioned, the fact that X∞ is not coherent makes finitely pre-
sented sheaves, and not coherent ones, the right object for our purposes.

A third way of defining quasi-coherent sheaves is by defining a “small fpqc site” of X , in
analogy with the lisse-étale site of an Artin stack, and take quasi-coherent sheaves on this site.

Definition 2.2.31. The small fpqc site fpqc(X ) of X has as objects isomorphism classes of repre-
sentable morphisms of stacks A → X , morphisms are commutative diagrams and coverings are
families {Ai → A}i∈I of classes of jointly surjective fpqc morphisms. We will denote by Xfpqc
the corresponding topos of sheaves.

Remark 2.2.32. The point of taking isomorphism classes of maps is that we want to get a 1-
category. Representable maps into X form a 2-category, but this is equivalent to the 1-category
that we get by taking isomorphism classes. From now on for simplicity and to avoid making
notations more complicated we will pretend that the objects of the site are actual morphisms to
X∞ (and this will also happen with the fppf and étale variations).

Let us show that this last concept of quasi-coherent sheaf is the same as the one that uses an
fpqc presentation.

Proposition 2.2.33. There is an equivalence of categories between the category QCoh(Xfpqc) of quasi-
coherent sheaves on the small fpqc topos of X and the category QCoh(X ) of quasi-coherent sheaves defined
using an fpqc presentation.

Moreover, this equivalence restricts to an equivalence FP(Xfpqc) ∼= FP(X ) between the subcategories
of finitely presented sheaves.
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Proof. Let us introduce a smaller fpqc topos for X : we will denote by fpqcsch(X ) the subcategory
of fpqc(X ) of objects V → X of fpqc(X ) where V is a scheme. It is a site with the induced
topology. The inclusion fpqcsch(X ) → fpqc(X ) is a morphism of sites, and by descent for
quasi-coherent sheaves it induces an equivalence of categories QCoh(Xfpqcsch)→ QCoh(Xfpqc).

Now let us show that there is an equivalence QCoh(Xfpqcsch) ∼= QCoh(X ): we have a functor
QCoh(Xfpqcsch)→ QCoh(X ) that sends a quasi-coherent sheaf on the topos Xfpqcsch to its restric-
tion to an fpqc presentation U → X , together with the associated descent data. By descent of
quasi-coherent sheaves along fpqc morphisms, this functor is an equivalence.

Finally, finitely presented sheaves are clearly preserved in each of the two steps.

Note that the small fpqc topos has some functoriality properties. Namely, if f : X → Y is a
representable morphism of fpqc stacks, there are the usual pushforward and pullback functors
f∗ : Xfpqc → Yfpqc and f ∗ : Yfpqc → Xfpqc, together with an adjunction f ∗ a f∗. Moreover f ∗

is right exact, so it preserves quasi-coherence, finite generation and presentation. We will still
denote its restriction by f ∗ : QCoh(Yfpqc)→ QCoh(Xfpqc).

Remark 2.2.34. If X is a scheme, then quasi-coherent sheaves in the small fpqc topos are the same
as Zariski quasi-coherent sheaves (and, in fact, the same is true for all “intermediate” topologies,
for example the étale topology). For this we refer to [Sta13, Tag 03DR].

Now we specialize the situation back to the infinite root stack of a log scheme X. The fact that
X∞ is an inverse limit implies that every finitely presented sheaf on it comes from some finite
level.

Proposition 2.2.35. Let X be a fs log scheme. The pullback morphisms FP(Xn) → FP(Xm) for n, m
with n | m fit into a direct system of categories. Moreover the pullbacks FP(Xn) → FP(X∞) along
the projection X∞ → Xn are compatible with the structure maps of the system, and if in addition X is
quasi-compact the induced functor lim−→ FP(Xn)→ FP(X∞) is an equivalence.

This follows directly from the following lemma.

Lemma 2.2.36. Consider the presentations Un → Xn and U∞ → X∞ discussed in Section 2.2.1.
Then we have an equivalence

FPeq(U∞) = lim−→
n

FPeq(Un),

where (−)eq denotes the category of equivariant sheaves with respect to the corresponding groupoid.

Proof. We will use the approximation properties of finitely presented sheaves on an inverse limit,
as discussed in EGA IV-3 [Gro67], Section 8. Namely we will use that if {Ti}i∈I is an inverse sys-
tem of schemes with affine transition maps and quasi-compact and quasi-separated base scheme
T0, we have

FP(lim←−
i

Ti) = lim−→
i

FP(Ti),

i.e. finitely presented sheaves on the limit come from a scheme Ti, “uniquely”, meaning that two
such sheaves on Ti and Tj become isomorphic on some Tk, and likewise for morphisms.
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First of all from U∞ = lim←−n
Un we have that FP(U∞) = lim−→n

FP(Un), and secondly, since

U∞ ×X∞ U∞ ∼= lim←−
n
(Un ×Xn Un)

and
U∞ ×X∞ U∞ ×X∞ U∞ ∼= lim←−

n
(Un ×Xn Un ×Xn Un),

we also have identifications

FP(U∞ ×X∞ U∞) = lim−→
n

FP(Un ×Xn Un)

and
FP(U∞ ×X∞ U∞ ×X∞ U∞) = lim−→

n
FP(Un ×Xn Un ×Xn Un).

From this it is easy to see that descent data at the infinite level must come, uniquely, from finite
level.

Remark 2.2.37. This also holds if we use the subsystem
{

A→ 1
n A′

}
n∈N

for some fixed system

of denominators A→ A′, or any cofinal subset of the set of systems of denominators on X.

There is another natural site over X∞, obtained by using fppf morphisms instead of fpqc ones,
that will be related to the Kummer-flat site of the log scheme X later in this chapter (Section
2.4). We will prove here that finitely presented sheaves on this new site are the same as finitely
presented fpqc sheaves.

Again, we give the definition for a general fpqc stack X .

Definition 2.2.38. The small fppf site fppf(X ) of X is the site defined as follows: objects are
isomorphism classes of representable fppf morphisms of stacks A → X , the morphisms are
classes of morphisms of stacks A → B over X , and the covers are collections of classes of jointly
surjective representable fppf morphisms. The associated fppf topos will be denoted by Xfppf.

Note that this time X may have no fppf morphism from a scheme, so this topos is subtler
than the small fpqc topos.

Since any representable fppf morphism A → X is also fpqc, we have an inclusion functor
i : fppf(X ) → fpqc(X ), which is continuous and induces a morphism of topoi (i∗, i∗) : Xfpqc →
Xfppf. Moreover, if f : X → Y is a representable morphism of fpqc stacks, then we have pushfor-
ward and pullback functors f∗ : Xfppf → Yfppf and f ∗ : Yfppf → Xfppf, together with an adjunction
f ∗ a f∗.

Remark 2.2.39. Additionally, pullback on quasi-coherent sheaves is compatible with the mor-
phism (i∗, i∗), i.e. the following diagram is 2-commutative

QCoh(Yfppf)
i∗ //

f ∗

��

QCoh(Yfpqc)

f ∗

��
QCoh(Xfppf)

i∗ // QCoh(Xfpqc)

where we used the same letter i∗ for X and Y .
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In general there is no reason for (i∗, i∗) this to be an isomorphism, even if we restrict to quasi-
coherent sheaves. Nonetheless, we can say something if we restrict to finitely presented sheaves
on an infinite root stack X∞.

Proposition 2.2.40. The morphism of topoi (i∗, i∗) induces an equivalence

FP((X∞)fppf) ∼= FP(X∞).

Remark 2.2.41. As we will see in the proof, here it is crucial to use the inverse system defining X∞.
Also, we believe that this equivalence can not be extended to quasi-coherent sheaves without any
finiteness hypothesis, and in fact we believe that quasi-coherent sheaves in the two topoi should
be different.

The philosophical reason is that when one proves that Zariski quasi-coherent sheaves are a
stack for the fpqc topology (and from this follows that quasi-coherent sheaves are the same in all
topologies), one defines quasi-coherence on the same topology for which the objects are locally
rings (i.e. the Zariski topology), when in our case we have fppf sheaves on an object that is only
fpqc-locally a ring.

Remark 2.2.42. While the fact that i∗ preserves finitely presented sheaves is standard, the corre-
sponding fact for i∗ is not obvious, and will follow from the proof.

Proof. We start by giving an alternative description of the two functors i∗ and i∗: let us de-
fine α : FP((X∞)fppf) → FP(X∞), and β : FP(X∞) → FP((X∞)fppf). Let us fix a presentation
φ : U∞ = lim←−n

Un → X∞ coming from flat presentations of the finite root stacks (as in the dis-
cussion preceding Proposition 2.2.14) for X∞, and recall that FP(X∞) is by definition the cate-
gory FPeq(U∞) of finitely presented sheaves over U∞, equivariant with respect to the groupoid
R = U∞ ×X∞ U∞ ⇒ U∞. For the rest of the proof we will denote U∞ just by U, to ease the
notation.

Given a finitely presented sheaf F ∈ FP((X∞)fppf), we consider the pullback φ∗F ∈ FP(Ufppf) =
FP(U). This sheaf comes naturally equipped with descent data with respect to the groupoid
R ⇒ U, and this gives an object α(F) ∈ FPeq(U).

Conversely, let us assume that G ∈ FPeq(U), and that f : A → X∞ is an object of (X∞)fppf.
We consider the pullback RA ⇒ UA → A of the groupoid R ⇒ U, and the pullback GA of G to
UA, together with the pullback of the descent data. This gives an object GA of FPeq(UA), and we
define

β(G)(A) = Homeq(OUA , GA).

Let us check that β(G) is a sheaf on (X∞)fppf. This follows from descent of quasi-coherent
sheaves on schemes: given a fppf morphism A → B in (X∞)fppf, we have to check that β(G)(B)
is the equalizer of the two pullback maps β(G)(A) ⇒ β(G)(A×B A) (it is clear that β(G) carries
disjoint unions into products).

By following the construction of β, we pull back the presentation U from X∞, obtaining the
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following diagram

UA×BA

kU

��////

��

UA //

��

hU

""
UB

��

gU //U

��
A×B A // //A //B //X∞

and what we have to prove is that Homeq(OUB , g∗UG) is the equalizer of the two maps

Homeq(OUA , h∗UG) ⇒ Homeq(OUA×BA
, k∗UG),

This is true by descent properties of quasi-coherent sheaves on schemes, and the fact that UA →
UB is fppf.

Now let us check that β(G) is finitely presented, and that α ◦ β ∼= id. We will use the fact that
FPeq(U) = lim−→n

FPeq(Un) (see Proposition 2.2.36). This gives us a finitely presented equivariant
sheaf on some Un, whose pullback on U is G. We also consider the fpqc stack Yn defined by the
cartesian square in the diagram

U
π

  $$

φ

��

Yn //

h
��

Un

��
X∞ // Xn.

The fpqc stack Yn together with the morphism h is an object of fppf(X∞), and on it we have a
finitely presented (fpqc) sheaf Gn (pulled back from Un) with an isomorphism π∗Gn ∼= G.

(Moreover, U = lim←−n
Yn. This is easy to see functorially, since (locally on X) Yn parametrizes

extensions of the DF structure together with a Kato chart, and U parametrizes extensions to PQ

together with a Kato chart, and a collection of compatible Kato charts at finite levels is the same
as a Kato chart for PQ.)

To see that α ◦ β ∼= id, note that α(β(G)) = φ∗(β(G)) = π∗h∗(β(G)) for G ∈ FPeq(U), so
it is enough to show that h∗(β(G)) ∼= Gn as a sheaf on the fppf site of Yn (note that since h is
fppf, h∗ is just a restriction). This will also show that β(G) is finitely presented in (X∞)fppf, since
Yn → X∞ is an fppf morphism and Gn is finitely presented on Yn.

To check this, note that there is a natural map a : Gn → h∗(β(G)), defined as follows: for
j : V → Yn in fppf(Yn), and the usual diagram

UV //

��

UYn

��
V // Yn

we set
a(V) : Gn(V)→ h∗(β(G))(V) = Homeq(OUV , p∗Gn)
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where p : UV → Yn is the composition UV → UYn → Yn, as the natural map sending a section of
Gn over V , seen as a morphism OV → Gn|V , to its pullback along UV → V . The fact that this
map is a bijection follows from the fact that Gn is an fpqc sheaf on Yn, and UV → V is fpqc.

Finally, the fact that β ◦ α ∼= id follows from the following lemma.

Lemma 2.2.43. There are natural isomorphisms of functors α ∼= i∗ : FP((X∞)fppf) → FP(X∞) and
β ∼= i∗ : FP(X∞)→ FP((X∞)fppf).

Proof of lemma. Note that we implicitly use the equivalence FP(X∞) ∼= FP((X∞)fpqc) of propo-
sition 2.2.33 restricted to finitely presented sheaves. Let us first consider β: if G ∈ FPeq(U)
corresponds to G̃ ∈ FP(X∞) and f : A → X∞ is fppf, then by descent for fpqc sheaves with

respect to the fpqc groupoid RA ⇒ UA → A, we have β(G)(A) = G̃(A) = i∗
(

G̃
)
(A), and this

gives β ∼= i∗.
As for α, let us show first that we have a morphism a : i∗ → α: given F ∈ FP((X∞)fppf), we

have i∗F(A) = lim−→ F(B) where the limit runs through the diagrams

A //

  

B

~~
X∞

and B → X∞ is fppf. Now for a fixed B, we have a map F(B) → α(F)(A) given by pullback
Hom(OB , F|B) → Homeq(OUB , (φ∗F)|UB ) → Homeq(OUA , (φ∗F)|UA) = α(F)(A), where the last
equality follows from fpqc descent. These maps are compatible with restrictions, and thus induce
a map i∗F(A)→ α(F)(A), and this gives the natural transformation a.

Now consider the pullback φ∗(i∗F) → φ∗(α(F)) to U of the morphism a(F) just defined. By
compatibility of the pullback with the morphisms of topoi, φ∗(i∗F) is just φ∗F, and on the other
hand φ∗(α(F)) is by definition φ∗F. After these identifications the morphism φ∗(a(F)) is the
identity, and since i∗F and α(F) are fpqc sheaves and φ : U → X∞ is fpqc, this implies that a(F)
is an isomorphism.

Now i∗ ◦ i∗ ∼= id is an easy check since i∗ is a restriction, and this concludes the proof.

The following gives a projection formula (as in Proposition 1.2.35) for the infinite root stack.

Proposition 2.2.44 (Projection formula for the infinite root stack). Let X be a fine saturated log
scheme, A ⊆ B a system of denominators with B saturated, and denote by π : X∞ → XB/A be the
canonical projection. Then:

• π∗ : QCoh(X∞)→ QCoh(XB/A) is exact,

• OXB/A
∼= π∗OX∞ ,

• if F ∈ QCoh(XB/A) and G ∈ QCoh(X∞) we have a functorial isomorphism F ⊗ π∗G ∼=
π∗(π∗F⊗ G),

• consequently for F ∈ QCoh(XB/A) we have an isomorphism F ∼= π∗π∗F on XB/A.
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Proof. The last bullet is consequence of the second and third.
Recall (Proposition 2.2.25) that the projection XB/A → X induces an isomorphism (XB/A)∞ →

X∞. Consequently, if T → XB/A is a morphism from a scheme, then the following diagram is
cartesian

T∞

��

// X∞

��
T // XB/A

where T has the pullback log structure, from BXB/A → DivXB/A .
After noting that we have maps OXB/A → π∗OX∞ and F ⊗ π∗G → π∗(π∗F ⊗ G), by flat

base change we can reduce to proving the same statements for πT : T∞ → T. After further étale
shrinking on T we can assume that T is affine and that we have a chart P → Div(T) for the log
structure induced by a Kato chart.

By Proposition 2.2.14 we have an isomorphism T∞ = [U∞/G∞], where as usual U∞ =
T×Spec(k[P]) Spec(k[PQ]) and G∞ = D[C∞] is the diagonalizable group Cartier dual of the cokernel
C∞ of Pgp → Pgp

Q
.

Let us prove first that OT → (πT)∗OT∞ is an isomorphism. Clearly it is sufficient to prove
that OT(T) → OT∞(T∞) is a bijection, for then the same reasoning will apply to an étale mor-
phism S → T. This map coincides with the natural map Hom(T, A1) → Hom(T∞, A1) given by
composition. Now note that, since T∞ = lim←−n

Tn, we have a natural function

lim−→
n

Hom(Tn, A1)→ Hom(T∞, A1)

which is moreover a bijection. This follows from the fact that morphisms Tn → A1 are precisely
morphisms Un → A1 that are Gn-invariant (where we are using the notation of Section 2.2.1), and
the same holds for T∞. Furthermore U∞ = lim←−n

Un, G∞ = lim←−n
Gn and A1 is finitely presented

over k, so lim−→n
Homeq(Un, A1) = Homeq(U∞, A1). Finally we have Hom(Tn, A1) = Hom(T, A1)

since T is the coarse moduli space of Tn.
For the first and third bullets it suffices to note that T∞ is a quotient stack of an affine scheme

by a diagonalizable group and in this situation pushforward corresponds to taking invariants.
By the discussion in SGA3 [ABD+66], in particular Expose I Théorème 5.3.3, taking invariants is
exact, and proposition 4.5 of [Alp12] implies our thesis.

As a consequence, we see that X is a coarse moduli space of X∞, at least with respect to maps
to schemes.

Corollary 2.2.45. Let X be a fs log scheme. The morphism X∞ → X has the following property: for any
map X∞ → T to a scheme T, there exists a unique factorization X∞ → X → T.

Proof. Observe first of all that the morphism π : X∞ → X is a homeomorphism. This follows
from the fact that all projections from finite root stacks Xn → X are homeomorphisms, since they
are coarse moduli spaces by 1.2.32.

Now if T is affine, the conclusion is immediate from the fact that π∗OX∞
∼= OX . The general

case follows from this by covering T with affines Ti and considering the inverse images Xi ⊆ X∞,
which will come from unique open subschemes Xi ⊆ X.
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To conclude this section, let us prove what we anticipated in Remark 2.2.24 about coherence
of the infinite root stack. This is the analogue of Proposition 3.3 of [Niz08].

Proposition 2.2.46. Let X be a fine and saturated log scheme with a global chart P → Div(X). Assume
that there is a cofinal system P ⊆ Qi ⊆ PQ of Kummer extensions such that the transition maps XQj/P →
XQi/P are flat for every j ≥ i. Then the infinite root stack X∞ is coherent.

Proof. We have an inverse system of flat presentations {Ui}i∈I of Xi = XQi/P, such that the
transition maps are affine and flat, and the inverse limit U∞ = lim←−i

Ui is an fpqc presentation of
X∞. This implies that for any i the projection πi : X∞ → Xi is flat. Moreover by cofinality of the
subsystem {Qi}i∈I we have FP(X∞) ∼= lim−→i

FP(Xi).
Take a finitely generated sheaf of ideals I ⊆ OX∞ , and call Q the cokernel, so we have an exact

sequence

0 // I // OX∞

p // Q // 0.

The sheaf Q on X∞ is finitely presented, so by the analogue of Lemma 2.2.36 it comes from some
Qi ∈ FP(Xi), and moreover we have a morphism pi : OXi → Qi that pulls back to p. If we denote
by Ii the kernel of pi, a finitely presented sheaf on Xi, by flatness of πi we have that I ∼= π∗i Ii, and
from this follows that I is finitely presented.

2.2.3 Parabolic sheaves with rational weights

In this section we extend the BV equivalence to parabolic sheaves with arbitrary rational weights.
The definitions and results are immediate generalizations of the ones of [BV12] that we recalled
in Chapter 1 for finite root stacks (corresponding to “coherent” systems of denominators). We
spell them out anyway for the convenience of the reader.

Let us fix a log scheme X with DF structure L : A→ DivX . Assume first that there is a global
chart P→ DivX .

As we already noted in Chapter 1, recall that L : P → Div(X) extends to Lwt : Pwt → Pic(X).
For p ∈ Pgp, we will denote Lwt(p) just by Lp.

Definition 2.2.47. A parabolic sheaf (E, ρE) with rational weights on the log scheme X is a functor
E : Pwt

Q
→ QCoh(X) that we denote by a 7→ Ea, for a an object or an arrow of Pwt

Q
, with an

additional datum for any p ∈ Pgp and a ∈ Pgp
Q

of an isomorphism of OX-modules

ρE
p,a : Ep+a ∼= Lp ⊗ Ea

called the pseudo-periods isomorphism.
These isomorphism are required to satisfy some compatibility conditions. Let p, p′ ∈ Pgp,

r ∈ P, q ∈ PQ and a ∈ Pgp
Q

. Then the following diagrams are commutative

Ea
Er //

��

Er+a

ρE
r,a
��

OX ⊗ Ea
σr⊗id // Lr ⊗ Ea
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Ep+a
ρE

p,a //

Eq

��

Lp ⊗ Ea

id⊗Eq

��
Ep+q+a

ρE
p,q+a // Lp ⊗ Eq+a

Ep+p′+a

ρE
p+p′ ,a //

ρE
p,p′+a

��

Lp+p′ ⊗ Ea

µp,p′⊗id

��
Lp ⊗ Ep′+a

id⊗ρE
p′ ,a // Lp ⊗ Lp′ ⊗ Ea,

where µp,p′ : Lp+p′
∼= Lp ⊗ Lp′ is the natural isomorphism given by L, and the composite

Ea = E0+a
ρE

0,a // L0 ⊗ Ea ∼= OX ⊗ Ea

coincides with the natural isomorphism Ea ∼= OX ⊗ Ea.

A morphism of parabolic sheaves with rational weights is a natural transformation compatible
with the pseudo-periods isomorphism.

As in the case of parabolic sheaves with fixed weights, the definition extends to the general
case (without a global chart), where one requires the commutativity of the diagrams and compat-
ibility of ρE with pullback. One shows that in the presence of a global chart, the corresponding
categories are equivalent (the analogous of Proposition 5.10 of [BV12].

This gives an abelian category Par(X) of parabolic sheaves with rational weights on X, with
a tensor product and internal Homs.

Recall that on the infinite root stack X∞ we have a universal DF structure L∞ : π∗AQ → DivX∞ ,
and by restriction to π∗ 1

n A ⊆ π∗AQ, for every n we get a DF structure Ln : π∗ 1
n A→ DivX∞ ,

The following is an analogue of Theorem 6.1 in [BV12], and has the same exact proof, by using
the natural DF structure of X∞.

Proposition 2.2.48. There is a tensor equivalence of abelian categories Par(X) ∼= QCoh(X∞).

Proof. See the proof of Theorem 6.1 in [BV12], or the sketch of proof in 1.3.8.

Proposition 2.2.49. Let X be a log scheme with DF structure L : A→ DivX , and j : A→ B be a system
of denominators. Then pullback along π : X∞ → XB/A is fully faithful.

Proof. This is proved as the corresponding statement in the case of finite root stacks. We refer to
the discussion in Section 1.3.

As for the case of finite root stacks, alternatively this follows from Proposition 2.2.44, which
proves that the unit of the adjunction π∗ a π∗ is an isomorphism, so π∗ is fully faithful.

This says that parabolic sheaves with respect to some system of denominators can be seen
inside the category of parabolic sheaves with arbitrary rational weights.
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Example 2.2.50. Let us see how this happens in a simple case: assume that X is a scheme and
D ⊆ X is an effective Cartier divisor, and consider the log structure given by N → Div(X)
sending 1 to (OX(D), s). Then a parabolic sheaf E on X2 = X 1

2 N/N
is determined by three

sheaves and two maps

−1 − 1
2 0

E⊗OX(−D) // E1 // E.

A parabolic sheaf on X∞ is determined by a sheaf E corresponding to 0 (and in −1 there will still
be E⊗OX(−D)), but this time we have a sheaf Eq for any rational number q ∈ (−1, 0), and an
arrow Eq → Eq′ every time that q ≤ q′, and those will be compatible with compositions.

If we follow the recipe for the pullback along π : X∞ → X2, it is easy to see that the pullback
of the parabolic sheaf E will have

(π∗E)0 = E

(π∗E)q = E⊗OX(−D) for − 1 ≤ q < −1
2

(π∗E)q = E1 for − 1
2
≤ q < 1

and the morphisms that are not the identity are given by the maps of E.
This situation is particularly simple because for any given rational q ∈ (−1, 0), the set {q′ ∈

1
2 Z | q′ ≤ q} has a maximum, and the direct limit in the construction of the pullback is trivial. In
the case of more complicated log structures one would need to take more complicated colimits.

Note that it is clear from this description that Hom(π∗E, π∗E) = Hom(E, E), and also that we
have π∗π∗E ∼= E, from the description of the pushforward.

In conclusion the infinite root stack allows us to interpret parabolic sheaves with arbitrary
rational weights as quasi-coherent sheaves.

Remark 2.2.51. There are definition of parabolic sheaves with arbitrary rational weights in the
literature (for example in [Bor09]), but as far as we know they all assume that the parabolic sheaf
is completely determined by a finite set of rational numbers (as in the example above), and in
our definition this might not happen.

In fact in some situations (for example on a variety with a simple normal crossings divisor)
the sheaves that are determined by a finite number of (finitely presented) pieces and with a
“semicontinuity from the left” are exactly the ones that are finitely presented, and they come
from a finitely presented sheaf on some finite root stack Xn.

2.3 The infinite root stack determines the log scheme

In the last two sections of this chapter we will consider the following question:
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Question 2.3.1. what can we deduce about the fs log scheme X from its infinite root stack X∞?

In the present section we will describe a reconstruction procedure that gives back the log
structure of X in terms of the infinite root stack X∞, and we will apply this to show that two
log schemes X and Y having isomorphic infinite root stacks must be isomorphic themselves.
As an application we will also give conditions for a morphism between two infinite root stacks
X∞ → Y∞ to come from a morphism of log schemes X → Y. In the next section (2.4) we will
show that the Kummer-flat topos of a log scheme can be identified with the fppf topos of its
infinite root stack.

To investigate these questions it is natural to consider the functor (−)∞ : (FSLogSch) → (St)
that associates to an fs log scheme X its infinite root stack X∞. A natural way to show that log
schemes with isomorphic infinite root stacks must be isomorphic would be to show that this
functor is fully faithful. Although we will show that it is faithful, it is not true that it is full.

Example 2.3.2. Consider the standard log point X = Spec(k) with k algebraically closed and DF
structure L : N→ Div(k) sending 1 to 0. Then it is easy to see that the monoid of endomorphisms
X → X of log schemes over k is a semidirect product of N and k×, where n ∈N acts by raising to
the n-th power. The component in N of an endomorphism gives the homomorphism N→N, the
component in k× corresponds to the natural isomorphism between the two functors N→ Div(k).

Moreover, we saw in Example 2.2.15 that the infinite root stack can be described as the quotient

X∞ ∼=
[
Spec(k[t

1
n | n ∈N]/(t))/µ∞

]
.

This is of course non-reduced, and its reduction (X∞)red ⊆ X∞ is the quotient [Spec(k)/µ∞] =
Bµ∞. One checks that the morphism X → X corresponding to (n, a), where n ∈ N and a ∈ k×,
induces the morphism X∞ → X∞ determined by t

1
m 7→ a

1
m t

n
m , where we chose a compatible

system of n-th roots of a ∈ k× (a different choice yields the same map, up to isomorphism). Note
that this kills all the t

1
k with k ≤ n (since t = 0), but the ones with k > n are not killed.

Now note that the inclusion k ⊆ k[t
1
n | n ∈ N] induces a morphism X∞ → (X∞)red and the

composition X∞ → (X∞)red ⊆ X∞ does not come from a morphism X → X, since all t
1
n are

killed.

We give a name to morphisms of root stacks coming from a morphism between the log
schemes.

Definition 2.3.3. Let X and Y be fs log schemes. We say that a morphism φ : X∞ → Y∞ is
logarithmic if there exists a morphism of log schemes f : X → Y such that φ ∼= f∞ : X∞ → Y∞.

The morphism constructed in the example above is not logarithmic. We will give a charac-
terization of logarithmic morphisms (Proposition 2.3.20), which will generalize in some sense
Example 2.3.2. This characterization will imply in particular that isomorphisms X∞ ∼= Y∞ do
come from morphisms X → Y (that have to be isomorphisms themselves).

2.3.1 Recovering the log structure

We will now describe the reconstruction process that will let us recover the log structure from the
infinite root stack. From now on for a while we will focus on DF structures on a single scheme
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X. Because of this, in the discussion that follows we will use the notation ∞√
(A, L) for the infinite

root stack of the log scheme X with DF structure L : A→ DivX .
Let us first give an abstract definition of an “infinite root stack” over X.

Definition 2.3.4. An infinite root stack over a scheme X is a stack X on Xét with a morphism
X → X, that étale locally on X is the infinite root stack of some fs DF structure.

More precisely, there is an étale covering {Ui → X}i∈I and fs monoids {Pi}i∈I with morphisms
Ui → Spec(k[Pi]) and an isomorphism

X ×X Ui
∼= (Spec(k[P]))∞ ×X Ui

over Ui.

An infinite root stack over X is an fpqc stack, in the sense of Definition 2.2.20. Of course, if
(A, L) is a DF structure on X, then ∞√

(A, L) is an infinite root stack on X. Moreover, we will show
that every infinite root stack is of this form (Theorem 2.3.11).

Let us explain how to construct a DF structure on X, starting from an infinite root stack
X → X.

If X is an infinite root stack over X, we will use the notation DivXét for the symmetric monoidal
fibered category over Xét whose objects over U → X are the objects of Div(XU), where XU
denotes the fibered product X ×X U.

Definition 2.3.5. Let π : X → X be an infinite root stack. Consider the symmetric monoidal
fibered category AX → Xét defined as follows. For each étale map U → X, the objects of AX (U)
are of the form (Λ, Λn, φ, αm,n), where:

(a) Λ is an object of Div(U).

(b) For each positive integer n, Λn is an object of Div(XU).

(c) φ : Λ1
∼= π∗Λ is an isomorphism in Div(XU).

(d) For each m | n, αm,n : Λ⊗(n/m)
n ∼= Λm is an isomorphism in Div(XU).

(e) Suppose that p is a point of X; denote by Xp the fiber of X over p. If n is sufficiently divisible
and Λn = (Ln, sn), then the restriction of sn to Xp is nonzero.

We require the isomorphisms αm,n to be subject to the following compatibility conditions.

(i) αn,n = idΛn for any n.

(ii) if m | n and n | p, then

αm,p = α
⊗(p/n)
m,n ◦ αn,p : Λ⊗(p/n)

p ∼= Λm.

The arrows (Λ, Λn, φ, αm,n)→ (Λ′, Λ′n, φ′, α′m,n) are given by isomorphisms Λ ∼= Λ′ and Λn ∼=
Λ′n compatible with the φ’s and the αm,n’s. The fibered structure is obtained from the evident
pseudo-functor structure.

We call the objects of AX (U) infinite roots.
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We will see that this fibered category gives a DF structure on X, and that if we started from
an infinite root stack of a DF structure, we get back the original DF structure. In the rest of this
section we sketch how the proof works. Some of the following statement will be proved later,
after we discussed the notion of an infinite root in a monoid.

Lemma 2.3.6. (Λ, Λn, φ, αm,n) and (Λ′, Λ′n, φ′, α′m,n) be infinite roots in an infinite root stack X . Then
the tensor product

(Λ⊗Λ′, Λn ⊗Λ′n, φ⊗ φ′, αm,n ⊗ α′m,n)

is also an infinite root.

Proof. Here this essential point is to show that if we set Λn = (Ln, sn) and Λ′n = (L′n, s′n), then the
restriction of sn ⊗ s′n to any geometric fiber is nonzero for sufficiently divisible n. This follows
from the second statement in Lemma 2.3.18 below.

This gives AX a symmetric monoidal structure by tensor product.

Proposition 2.3.7. Let X → X be an infinite root stack. Then the symmetric monoidal category AX is
fibered in equivalence relations.

Hence by dividing by isomorphism we obtain a sheaf of monoids on Xét, call it AX : Xét →
(CommMon), and the projectionAX → AX is an equivalence. By choosing a symmetric monoidal
quasi-inverse AX → AX and composing with the obvious symmetric monoidal functor AX →
DivX that sends (Λ, Λn, φ, αm,n) to Λ, we obtain a symmetric monoidal functor LX : AX → DivX ,
unique up to a unique isomorphism.

Proposition 2.3.8. The sheaf AX is fine saturated.

Proof. Since being fine saturated is a local condition in the étale topology, and étale-locally X
comes from a fine saturated DF structure, this follows from Proposition 2.3.9 below.

Hence, from an infinite root stack X → X we obtain a fine saturated DF structure (AX , LX ).
Now suppose that (A, L) is a DF structure on X, and X =

∞√
(A, L). Recall moreover that

there exist a symmetric monoidal functor L̃ : AQ → DivXét , and an isomorphism of symmetric
monoidal functors between the restriction of L̃ to A, and the composite of L with the pullback
DivX → DivXét . We will describe how to get a morphism A → AX of symmetric monoidal
categories on Xét.

Let U → X be an étale map, and a ∈ A(U). Then we obtain an object L(a) of Div(U).
Furthermore, for each positive integer n we also obtain an object L̃(a/n) ∈ Div(XU). The fact
that the functor is symmetric monoidal gives, for each m | n, isomorphisms αm,n : L̃(a/n)⊗(n/m) ∼=
L̃(a/m) in Div(XU). Furthermore, the isomorphism between the restriction of L to A, and the
composite of L with the pullback Div(U) → Div(XU) yields an isomorphism φ : Λ1 = L̃(a) ∼=
L(a). This gives a symmetric monoidal functor A→ AX ; by definition, the composite of A→ AX
with AX → DivX is precisely L.

Proposition 2.3.9. Suppose that (A, L) is a fine saturated DF structure on X, and set X =
∞√
(A, L).

Then the composite A→ AX → AX is an isomorphism.

Corollary 2.3.10. The DF structures (A, L) and (AX , LX ) are isomorphic.
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Now conversely, let us show how to compare the infinite root stack ∞√
(AX , LX ) of the DF

structure (AX , LX ) with X itself.
Given an infinite root stack X , let us produce a functor X → ∞√

(AX , LX ). Let f : T → X be
a morphism; we need to construct a morphism T → ∞√

(A, L), that is, an extension ( f ∗A)Q →
Div(T) of the DF structure f ∗L : f ∗A→ DivT . Call f−1 A the pullback presheaf on Tét; its sections
on an étale map V → T are colimits lim−→ A(U), where the colimit is taken over all factorizations
V → U → X, with U → X étale, of the composite V → T → X → X. The sheafification of
the presheaf BT on Tét sending V to ( f−1 A)(V)⊗Q is the sheaf ( f ∗A)Q; by [BV12, Proposition
3.3], every symmetric monoidal functor BT extends uniquely to a symmetric monoidal functor
( f ∗A)Q → Div(T).

Consider the filtered category IV defines as follows. The objects are pairs (m, V → U → X),
where m is a positive integer and V → U → X is a factorization of the composite V → T → X →
X, with U → X étale. An arrow φ : (m, V → U → X) → (n, V → U′ → X) exists only when
m | n, in which case it consists of a morphism φ : U → U′ such that the diagram

U

V X

U′

φ

commutes. Composition is the obvious one.
There is a lax 2-functor from Iop

V into the 2-category of symmetric monoidal categories,
sending each (m, V → U → X) into AX (U), and each morphism φ : (m, V → U → X) →
(n, V → U′ → X) into the composite of the pullback φ∗ : AX (U′) → AX (U) with the functor
AX (U) → AX (U) given by raising to the (n/m)th power. We have a canonical equivalence of
symmetric monoidal categories between lim−→IV

AX (U) and the monoid BT(V).
There is also a symmetric monoidal functor lim−→IV

AX (U) → Div(V) that sends an object

(Λ, Λn, φ, αm,n
)

over (m, V → U → X) to h∗Λm, where h : V → XU is the morphism induced
by V → U and the composite V → T → X . By composing this with a quasi-inverse of the
equivalence lim−→IV

AX (U) → BT(V) we obtain a symmetric monoidal functor BT(V) → Div(V).
This induces the desired symmetric monoidal functor BT → Div(T).

Theorem 2.3.11. The resulting functor X → ∞√
(AX , LX ) is an equivalence.

Proof. The statement is local in the étale topology on X, so we may assume that X =
∞√
(A, L) for a

DF structure L : A→ DivX . In this case the result follows immediately from Proposition 2.3.9.

To prove these facts we need to study the corresponding notion of an infinite root for a monoid
P.

2.3.2 Infinite quotients in sharp fine saturated monoids

Let P be a sharp fine saturated monoid, and assume that Pgp has rank r. In other words we have
Pgp ∼= Zr, and consequently Pgp

Q
∼= Qr. Moreover Pgp

Q
/Pgp = Pgp ⊗ (Q/Z) is isomorphic to

(Q/Z)r. We consider Pgp
Q

as a topological space via the usual metric topology on Qr.
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Set
qP = lim←−

n
(Pgp

Q
/Pgp)[n] = Pgp ⊗ Ẑ ∼= Ẑr,

where the square brackets denote the n-torsion, the map (Pgp
Q

/Pgp)[n]→ (Pgp
Q

/Pgp)[m] for m | n
is given by multiplication by n/m, and by Ẑ we denote the profinite completion of Z. An element
of qP consists of a collection {λn} of elements of Pgp

Q
/Pgp such that λ1 = 0, and (n/m)λn = λm

whenever m | n.
Set

∆P = PQ \ (P+ + PQ) ,

where recall that P+ = P \ {0}. Since ∆P is the complement of an ideal in PQ, it has the property
that if γ, δ ∈ PQ and γ + δ ∈ ∆P, then γ and δ are in ∆P. Hence, if n is a positive integer, γ ∈ Pgp

Q
,

and nγ ∈ ∆P, then γ ∈ ∆P.
The set ∆P is clearly bounded in Pgp

Q
. Also, if v1, . . . vm are the indecomposable elements of

P we have

∆P = PQ \
m⋃

i=1

(vi + PQ) ;

since PQ is closed in Pgp
Q

, we have that ∆P is open in PQ.
We set

∆0
P = {γ ∈ ∆P | (γ + Pgp) ∩ ∆P = {γ}} .

By definition, the restriction of the projection Pgp
Q
→ Pgp

Q
/Pgp to ∆0

P is injective.

Lemma 2.3.12. The set ∆0
P is a neighborhood of 0 in PQ.

Proof. It is easy to see that 0 ∈ ∆0
P. Also, we have

∆0
P =

⋂
γ∈Pgp\{0}

(
∆P \ (γ + ∆P)

)
;

but ∆P is bounded, so there exists a finite number of γ ∈ Pgp \ {0} such that ∆P ∩ (γ + ∆P) 6= ∅.
So it is enough to prove that ∆P \ (γ + ∆P) is neighborhood of 0 in PQ for all γ ∈ Pgp \ {0}.

If γ ∈ −PQ we have

∆P \ (γ + ∆P) = γ +
(
∆P \ (−γ + ∆P)

)
= ∅ .

Otherwise, we have 0 /∈ γ+ PQ, so ∆P \ (γ+ PQ) is neighborhood of 0 in PQ, and ∆P \ (γ+ PQ) ⊂
∆P \ (γ + ∆P). This finishes the proof.

There is a group homomorphism Pgp → qP sending each p ∈ Pgp into the element p/∞ =

{[p/n]} ∈ qP. This is easily seen to be injective. Consider the restriction P→ qP.
We need to recognize elements in qP that come from P. To do so, we introduce the following

definition.

Definition 2.3.13. Let {λn} be an element of qP. A determination function for {λn} is a function
Φ : N+ → {0, 1} with the following properties
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(a) If m | n, then Φ(m) ≤ Φ(n).

(b) Φ(m) = 1 for some m ∈N+.

(c) For every positive integer m the following holds: assume there exists a positive integer k and
a sequence γ1, . . . , γk of elements of λkm ∩ ∆P such that we have γ1 + · · ·+ γk /∈ ∆P. Then
Φ(m) = 0.

An element {λn} of qP is an infinite quotient if it admits a determination function. We denote
the set of infinite quotients in P by P/∞.

To motivate this definition let us note that the image p/∞ = {[p/n]} of an element p ∈ P has
a determination function. Let us define Φ by

n 7−→
{

1 if p/n ∈ ∆0
P

0 if p/n /∈ ∆0
P .

Let us check that this is a determination function. The first two conditions are immediate, and
for the third one, note that if Φ(m) = 1, then p/km ∈ ∆0

P for any k. Consequently if we take
a sequence γ1, . . . , γk of elements of [p/km] ∩ ∆P, we will necessarily have γi = p/km for all i
(basically by definition of ∆0

P), and the sum γ1 + · · ·+ γk will be p/m ∈ ∆0
P ⊆ ∆P. This shows

that also the third condition is satisfied.
The following proposition says in particular that the converse holds, i.e. infinite quotients in

qP correspond exactly to elements of P.

Proposition 2.3.14.

(a) Let {λn} be an infinite quotient in P. For every sufficiently divisible n we have λn = [γn] for some
γn ∈ ∆0

P.

(b) Let {λn} and {λ′n} be infinite quotients in P. For every sufficiently divisible n we have λn = [γn]
and λ′n = [γ′n] with γn + γ′n ∈ ∆0

P.

(c) The image of P in qP is precisely P/∞.

Thus P/∞ is a submonoid of qP, which is isomorphic to P.

Proof. Let us show that there is a norm |−| on Pgp
Q

with the property that |γ + δ| = |γ|+ |δ| for
any γ and δ in PQ. For this, notice that there is basis v1, . . . vr of Pgp

Q
∼= Qr with the property

that every vector in PQ has non-negative coordinates (in fact, since P is sharp the cone in the dual
space (Pgp

Q
)∨ that is dual to PQ has nonempty interior, so it contains a basis of P∨Q , and the dual

basis in Pgp
Q

has this property). Then the norm |x1v1 + · · ·+ xrvr| = |x1| + · · · + |xn| has this
property.

Now choose a positive integer m such that Φ(m) = 1 and a positive real number ε such that
every γ ∈ PQ with |γ| ≤ ε is in ∆0

P. Since ∆P is bounded in Pgp
Q

, choose N > 0 with the property
that Nε is larger than the diameter of ∆P. If n is divisible by m and n/m > N, then we claim that
|γn| ≤ ε (where γn ∈ ∆P is such that [γn] = λn), so that γn ∈ ∆0

P, which will conclude the proof
of part (a).
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In fact if |γn| > ε, then we can take k = n/m and the sequence γn, . . . , γn of k copies of
γn ∈ λkm ∩ ∆P. For the sum of these elements we have |kγn| > kε > Nε, and consequently
kγn /∈ ∆P. This contradicts the third condition in the definition of a determination function and
the fact that we chose m to satisfy Φ(m) = 1.

By a similar reasoning and by choosing ε such that every γ ∈ PQ with |γ| ≤ 2ε is in ∆0
P, we

see that (b) holds.
For (c), for any p ∈ P we already gave a determination function for p/∞, and so p/∞ ∈ P/∞.
Conversely, suppose that {λn} ∈ P/∞, and fix a determination function Φ : N+ → {0, 1}.

Choose m such that Φ(m) = 1 and λkm = [γkm] with γkm ∈ ∆0
P for all k (this is possible by the

first part of the proof). For every positive integer k we have kγkm = γm + pk for some pk ∈ Pgp.
If pk 6= 0 we would have γm + pk /∈ ∆P, because γm ∈ ∆0

P; but this implies Φ(m) = 0, by the
third condition in the definition of a determination function. Hence γkm = γm/k for all k. Since
q = mγm ∈ P we have γn = q/n for all n divisible by m, which implies that this is true for all n,
so that {λn} = q/∞.

2.3.3 Picard groups of infinite root stacks over geometric points

Next we need some results on the Picard group of an infinite root stack over a geometric point.
We will show that it can be identified with the quotient Pgp

Q
/Pgp, where P is the stalk of the sheaf

A at the point.
If k is a field, we will denote by ∞√P/k the infinite root stack of the DF structure (A, L) on

Spec(k), where A is the constant sheaf of monoids on (Spec(k))ét corresponding to P, and L : A→
DivSpec(k) corresponds to the homomorphism Λ : P → k that sends 0 into 1 and everything else
into 0.

In other words, ∞√P/k is the fiber product Spec(k) ×Spec(k[P])
[
Spec(k[PQ])/µ∞(P)

]
, where

Spec(k) → Spec(k[P]) corresponds to the ring homomorphism k[P] → k determined by Λ. Or,
again, we have

∞√
P/k =

[
Spec(k[PQ]/(P+))/µ∞(P)

]
where the action of µ∞(P) on Spec(k[PQ]/(P+)) is determined by the natural Pgp

Q
/Pgp-grading

on k[PQ]/(P+). Moreover the reduced substack (
∞√P/k)red is the classifying stack Bkµ∞(P) =[

Spec(k)/µ∞(P)
]
.

Set R = k[PQ]/(P+). This is a Pgp
Q

-graded algebra. If γ ∈ Pgp
Q

, we have dimk Rγ = 0 if
γ /∈ ∆P, and dimk Rγ = 1 if γ ∈ ∆P. We will use the induced Pgp

Q
/Pgp-grading, so that for any

λ ∈ Pgp
Q

/Pgp we have Rλ = ⊕γ∈λ∩∆P Rγ.
Invertible sheaves on ∞√P/k correspond to Pgp

Q
/Pgp-graded invertible modules on R; this gives

a very concrete description of Pic(∞√P/k). There is a natural homomorphism

Pgp
Q

/Pgp = Hom(µ∞(P), Gm
)
−→ Pic(

∞√
P/k)

that sends γ ∈ Pgp
Q

/Pgp into the graded R-module R(λ), where R(λ) = R as an R-module, but
the Pgp

Q
/Pgp-grading is defined by R(λ)µ = Rλ+µ.

Since R is the inductive limit of the local artinian rings k[ 1
n P]/(P+), every invertible module

on R is trivial; hence, every Pgp
Q

/Pgp-graded invertible module on R is of the form R(λ) for
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λ ∈ Pgp
Q

/Pgp. So the homomorphism above is surjective. Since R(λ)⊗R k = k(γ) is a Pgp
Q

/Pgp-
graded vector space, we see that R(λ) ∼= R(µ) if and only if λ = µ, and the homomorphism is
also injective.

Let us record this in a lemma.

Lemma 2.3.15. The natural homomorphism

Pgp
Q

/Pgp = Hom
(
µ∞(P), Gm

)
−→ Pic(

∞√
P/k)

is an isomorphism.

Furthermore, if λ = [L] ∈ Pic(∞√P/k) = Pgp
Q

/Pgp, we have H0(
∞√P/k, L) = R(λ)0 = Rλ. So

dimk H0(
∞√P/k, L) = ](λ ∩ ∆P).

Let (Λ, Λn, φ, αm,n
)

and (Λ′, Λ′n, φ′, α′m,n
)

be infinite roots on ∞√P/k, and set Λn = (Ln, sn) and
Λ′n = (L′n, s′n). The following will be used later.

Lemma 2.3.16. For sufficiently divisible n, we have dimk H0(
∞√P/k, Ln) = 1, and the multiplication

map
H0(

∞√
P/k, Ln)⊗k H0(

∞√
P/k, L′n) −→ H0(

∞√
P/k, Ln ⊗ L′n)

is an isomorphism.

Proof. This follows from 2.3.14(a) and (b).

2.3.4 Proofs

Lemma 2.3.17. Let π : X → X be an infinite root stack. Assume that X is locally noetherian, and let F
be a finitely presented sheaf on X . Then π∗F is coherent.

Proof. The statement is local in the étale topology on X, so we may assume that X = Spec(A), and
that X is an infinite root stack coming from a DF structure endowed with a Kato chart L : P→ A.
For each n > 0 we have a factorization

∞√
(P, L) n√

(P, L) X ,
ρ φ

where n√
(P, L) denotes the n-th root stack.

The sheaf F is finitely presented, so for some n there exists a finitely presented sheaf G on
n√
(P, L) and an isomorphism F ∼= ρ∗G. Since ∞√

(P, L) is fppf locally an infinite root stack over
n√
(P, L), we have that G = ρ∗ρ∗G by 2.2.44, so π∗F = φ∗G, and the statement is clear.

Lemma 2.3.18. Let π : X → X be an infinite root stack, and let (Λ, Λn, φ, αm,n) be in infinite root on X .
Set Λn = (Ln, sn).

If X is quasi-compact, then for sufficiently divisible n the sheaf π∗Ln is an invertible sheaf on X, and
the section sn ∈ H0(X, π∗Ln) does not vanish anywhere.

Furthermore, let (Λ′, Λ′n, φ′, α′m,n) be another infinite root on X , and set Λ′n = (L′n, s′n). Then for
sufficiently divisible n the multiplication map

π∗Ln ⊗ π∗L′n −→ π∗(Ln ⊗ L′n)

is an isomorphism.
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Proof. Since formation of AX commutes with base change on X, the pushforward π∗ also com-
mutes with base change, the statement is local in the étale topology, and every DF structure is
obtained étale-locally by base change from a scheme of finite type over Z, we may assume that
X is noetherian. Each Ln is invertible on X and π∗OX = OX , so we see that the annihilator of
π∗Ln is trivial. Since each π∗Ln is coherent, by Lemma 2.3.17, to prove the statement it is enough
to check that sn generates all the fibers of π∗Ln. Again because π∗ commutes with base change,
and by Nakayama’s lemma, we can reduce to the case that X = Spec(k), where k is a field.

We can also assume that k is algebraically closed. Then X =
∞√P/k for a certain sharp fine

saturated monoid P. Then it is enough to show that dimk H0(
∞√P/k, Ln) = 1 for sufficiently

divisible n; this is the content of Lemma 2.3.16.

Proof of Proposition 2.3.7. Since the category AX is fibered in groupoids, it is enough to show that
an object of someAX (U) ha no non-trivial automorphisms. We may assume that X = U, and X is
quasi-compact. Choose an object (Λ, Λn, φ, αm,n

)
of AX (X), and set Λ = (L, s) and Λn = (Ln, sn).

An automorphism of (Λ, Λn, φ, αm,n
)

is given by a sequence of elements ξn ∈ O×X (X ) = O×X (X)

with ξnsn = sn for all n, and such that ξ
(m/n)
n = ξm whenever m | n. From Lemma 2.3.18 we see

that ξn = 1 when n is sufficiently divisible, and this implies that ξn = 1 for all n.

Proof of Proposition 2.3.9. The statement can be checked on the geometric stalks; since formation
of AX commutes with base change, we may assume that X = Spec(k) is the spectrum of an
algebraically closed field k, so that the logarithmic structure is given by a sharp fine saturated
monoid P and the monoidal functor L : P → Div(k) sending 0 to (OSpec(k), 1) and anything else
to (OSpec(k), 0). Then the root stack X =

∞√
(P, L) equals X =

[
Spec(k[PQ]/(P+))/µ∞(P)

]
for a

sharp fine saturated monoid P.
Let us identify Pic(X ) with Pgp

Q
/Pgp. We have a homomorphism of monoids AX → qP send-

ing an infinite root (Λ, Λn, φ, αm,n
)

to {[Ln]}, where Λn = (Ln, sn). The element {[Ln]} has a
determination function N+ → {0, 1}, sending n to 0 if sn = 0 and to 1 otherwise; hence this gives
a homomorphism AX → P/∞.

Let (Λ, Λn, φ, αm,n
)

and (Λ′, Λ′n, φ′, α′m,n
)

be two infinite roots on XP. Assume that [Ln] =
[L′n] for all n; then from Lemma 2.3.16 we see that for sufficiently divisible n there is a unique
isomorphism Ln ∼= L′n carrying sn to s′n. These give an isomorphism of the two infinite roots.
This implies that the homomorphism AX → P/∞ is injective.

Now consider the composite P = A → AX → P/∞, which is easily seen to send p ∈
P into p/∞ ∈ P/∞. Since AX → P/∞ is injective and P → P/∞ is an isomorphism, by
Proposition 2.3.14(c), the result follows.

2.3.5 Morphisms of infinite root stacks

In this section we characterize morphisms of infinite root stacks that come from morphisms of
DF structures, by means of infinite roots.

Let (φ, Φ) : (A, L) → (B, M) be a morphism of DF structures on X. Recall that this means
that φ : A → B is a homomorphism of sheaves of monoids on Xét, while Φ : L ∼= M ◦ φ is a
base-preserving isomorphism of symmetric monoidal functors A → DivX . A morphism of fine
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saturated DF structures as above induces a morphism of fibered categories ∞√φ : ∞√
(B, M) →

∞√
(A, L) by composition.
It is not true however that any morphism ∞√

(B, M) → ∞√
(A, L) of stacks over X comes from

a morphism of DF structures (for an example, see 2.3.2).

Definition 2.3.19. As in Definition 2.3.3, we call logarithmic the morphisms ∞√
(B, M)→ ∞√

(A, L)
between two infinite root stacks over X that come from morphisms of the corresponding DF
structures.

We have the following characterization of logarithmic morphisms.

Proposition 2.3.20. A morphism f : Y → X of infinite root stack over X is logarithmic if and only if for
any geometric point p → X and any infinite root λ on the geometric fiber Xp, the pullback f ∗p λ is again
an infinite root on Yp.

Note that this excludes precisely what happens in example 2.3.2, where the map X∞ → X∞

kills all the elements t
1
n .

Proof. The “only if” part follows from Proposition 2.3.9, and the “if” part is also immediate
from the previous discussion: a morphism f : Y → X satisfying the condition on infinite roots
induces a morphism of monoids AX → AY by pullback, and in turn this fits into a morphism
(φ f , Φ f ) : (AX , LX )→ (AY , LY ) of DF structures in the evident way.

Finally, it is easy to see that the morphism ∞√φ f coincides with f .

The composite of two logarithmic morphisms of infinite root stack is logarithmic. Thus,
infinite root stacks over X with logarithmic morphisms form a 2-category; we will call it the 2-
category of infinite root stacks. Taking the infinite root stack defines a functor F from the opposite
of the category of DF structures to this 2-category of infinite root stacks over X.

Proposition 2.3.21. The functor F described above is faithful.

Proof. Assume that we have two morphisms of DF structures (φ, Φ), (ψ, Ψ) : (A, L) → (B, M)
that induce isomorphic maps between the root stacks f ∼= g : Y → X , where X =

∞√
(A, L),

Y =
∞√
(B, M) and f = ∞√φ, g = ∞√ψ. Now f and g will induce the same morphism between the

DF structures f ∗ = g∗ : (AX , LX )→ (AY , LY ), and since the diagram

(A, L)
(φ,Φ) //

��

(B, M)

��
(AX , LX )

f ∗ // (AY , LY )

commutes, along with the analogous one with (ψ, Ψ), and the vertical maps are isomorphisms
by 2.3.10, the conclusion follows.

As a corollary, we see that the functor that sends a fs log scheme to its infinite root stack is
faithful, and that the infinite root stack determines the log scheme.

Corollary 2.3.22. The functor X 7→ X∞ from (FSLogSch) to the category (St) of stacks over k is faithful.
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Proof. Assume that we have two morphisms of log schemes f , g : X → Y that induce the same
map f∞ ∼= g∞ : X∞ → Y∞. First of all from the fact that X and Y are “coarse moduli spaces” of
X∞ and Y∞ respectively (see Corollary 2.2.45) we conclude that the two morphisms of schemes
f , g : X → Y are equal.

Once we have this, the result follows from 2.3.21 after pulling back to X.

Corollary 2.3.23. Let X and Y be fs log schemes. Assume that we have an isomorphism X∞ ∼= Y∞ of
stacks over k. Then this is induced by an isomorphism of log schemes X ∼= Y.

Proof. From Corollary 2.2.45 we see that the isomorphism X∞ ∼= Y∞ induces an isomorphism of
the schemes X ∼= Y. After pulling everything back to X, we just have to note that isomorphisms
of infinite root stacks are logarithmic by Proposition 2.3.20 (since the condition about infinite
roots is trivially satisfied). Consequently the given isomorphism comes from a morphism of DF
structures and this has to be an isomorphism, once again by Proposition 2.3.21.

To conclude, we prove a lemma which will be useful in the next section.

Lemma 2.3.24. Let (φ, Φ) : (A, L)→ (B, M) and (ψ, Ψ) : (A, L)→ (C, N) be morphisms of DF struc-
tures on a scheme X, such that ψ is Kummer. Suppose that f : ∞√

(C, N) → ∞√
(B, M) is a morphism of

stacks over X making the diagram

∞√
(C, N)

∞√
(B, M)

∞√
(A, M)

f

∞√φ ∞√ψ

commute. Then f is logarithmic.

Proof. We need to check that f sends infinite roots in geometric fibers to infinite roots; by base
change, we may assume that X = Spec(k), where k is an algebraically closed field. For con-
sistency with the previous notation, set P = A, Q = B and R = C; we need to check that the
homomorphism f ∗ : Rgp

Q
/Rgp → Qgp

Q
/Qgp induced by f sends R/∞ into Q/∞ (here we are using

the identification Qgp
Q

/Q gp ∼= Pic(∞√Q/k)). Taking projective limits and using the identifications
qP ∼= Pgp ⊗ Ẑ we obtain a commutative diagram

Pgp ⊗ Ẑ

Rgp ⊗ Ẑ Qgp ⊗ Ẑ
f ∗

in which the two diagonal arrows take P into R and Q respectively. We need to show that f ∗ takes
R into Q. Since the homomorphism P→ R is Kummer, given r ∈ R we can find a positive integer
n such that nr comes from P; this implies that n f ∗(r) = f ∗(nr) is in Q. Since Ẑ/Z is torsion
free, we see that f ∗(r) ∈ Qgp; since Q is saturated this implies f ∗(r) ∈ Q, and this concludes the
proof.
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Corollary 2.3.25. Let X, Y and Z be fs log schemes with two maps Z → X and Y → X, the first one
being Kummer, and let F : Z∞ → Y∞ be a morphism of infinite root stacks over X∞. Then F is logarithmic.

Proof. From Corollary 2.2.45 we see that Z∞ → Y∞ induces a morphism of schemes Z → Y that
makes the diagram

Z

��

// Y

��
X

commute.
Now we can pullback the log structures of Y and X (together with their infinite root stacks)

to Z, and the result follows from the preceding proposition.

2.4 The infinite root stack recovers the Kummer-flat topos

In this section we will show that the Kummer-flat topos of a log scheme ([Kat, Niz08, INT13])
can be recovered as the fppf topos of the corresponding infinite root stack.

We briefly recall the construction of the Kummer-flat topos of a log scheme.

Definition 2.4.1. A morphism of fine saturated log schemes f : Y → X is Kummer-flat if it is
log-flat and Kummer, and the underlying map of schemes is locally of finite presentation.

Recall that a morphism f : Y → X is log-flat if the following holds: fppf locally on X and Y
we can find Kato charts P→ MX and Q→ MY and a morphism P→ Q such that the diagram

Y //

��

Spec(k[Q])

��
X // Spec(k[P])

commutes, and the induced map Y → X ×Spec(k[P]) Spec(k[Q]) is flat. A morphism f : Y → X
is Kummer if the corresponding f ∗AX → AY is Kummer, meaning that the homomorphism of
monoids ( f ∗AX)y → (AY)y is Kummer for any geometric point y→ Y.

Since charts can be made up from stalks, if f : Y → X is Kummer-flat, then locally we can find
charts as above such that in addition P → Q is Kummer, and it is proven in [INT13] that we can
also make Y → X×Spec(k[P]) Spec(k[Q]) locally of finite presentation.

For a log scheme X, there is a site, called the Kummer-flat site and denoted by kfl(X), whose
objects are morphisms of log schemes U → X that are Kummer-flat, with morphisms of log
schemes over X as arrows, and with jointly surjective families {Ui → U}i∈I of Kummer-flat
morphisms as coverings. The corresponding topos Xkfl is called the Kummer-flat topos of X.

Remark 2.4.2. The site Xkfl has a final object and fibered products. Given a diagram

V

��
Z // Y
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in Xkfl, the fibered product is given by the fibered product V×Y Z in the category of fine saturated
log schemes over k, together with the induced Kummer-flat map V ×Y Z → X.

Remark 2.4.3. If we have two objects Y → X and Z → X of Xkfl, then any morphism Z → Y in
Xkfl is also Kummer. This follows from the fact that if two morphisms of fs torsion-free monoids
P→ Q and P→ R are Kummer and we have a commutative diagram

P //

��

R

Q

??

then also Q→ R is Kummer.
Indeed, any r ∈ R has some multiple nr coming from p, which means that it also comes from

Q. Moreover the map is injective: if q and q′ go to the same element r, take n ∈ N such that
nr, nq and nq′ all come from P. Then if say p goes to nq and p′ goes to nq′, since P → R is
injective and p, p′ both go to nr, we must have p = p′, which means nq = nq′, and so q = q′ by
torsion-freeness.

One can also restrict to considering Kummer-étale morphisms, where the definitions are the
analogous ones, with “flat” replaced by “étale” in all the instances. The results are the Kummer-
étale site két(X) and the corresponding Kummer-étale topos Xkét. In the characteristic zero case
these étale variants are usually enough for applications.

Proposition 2.4.4. Let f : Y → X be a Kummer-flat (resp. Kummer-étale) morphism of log schemes.
Then the induced morphism f∞ : Y∞ → X∞ between the infinite root stacks is representable and fppf (resp.
representable and étale).

Proof. Since the question is local for the fppf topology of X and Y, we can assume that we have a
diagram

Y

((

--

X×Spec(k[P]) Spec(k[Q]) //

��

Spec(k[Q])

��
X // Spec(k[P])

where Y → X×Spec(k[P]) Spec(k[Q]) is fppf (resp. étale) and strict, and P→ Q is Kummer.
Now in turn this means that we have a commutative diagram

XQ/P

��
Y

==

// X
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where the map Y → XQ/P is strict and flat (resp. étale). Consequently by taking infinite root
stacks we have a cartesian diagram

Y∞ //

��

(XQ/P)∞ ∼= X∞

��
Y // XQ/P

where we used Remark 2.2.9 and Proposition 2.2.25, and from this we see that Y∞ → X∞ is flat
(resp. étale).

Representability follows from the local description of the map Y∞ → X∞ as a map between
quotient stacks, and the following lemma.

Lemma 2.4.5. Let G be a diagonalizable group (not necessarily of finite type) over a ring R, and H ⊆ G
be a diagonalizable subgroup. Assume that H acts on an affine scheme T and G acts on an affine scheme S
over R, and we have a morphism T → S that is equivariant with respect to the immersion H ⊆ G. Then
the induced morphism

[T/H]→ [S/G]

between the quotient stacks is affine.

Proof. By fpqc descent, to check that the map is affine (as well as any map between fpqc stacks)
we can reduce to checking it for a particular fpqc presentation of the target stack.

Now note that we have a diagram

[T/H] // [S/H] //

��

[S/G]

��
BRH // BRG

where the square is cartesian, and the conclusion follows from the two cartesian diagrams

[G/H] //

��

Spec(R)

��
BRH // BRG

and
T //

��

S

��
[T/H] // [S/H]

and the fact that the quotient [G/H] is represented by a diagonalizable group, and in particular
is affine.
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Because of proposition 2.4.4 there is a natural functor F : kfl(X) → fppf(X∞) from the
Kummer-flat site of X to the small fppf site of X∞, acting on objects by taking f : Y → X to
f∞ : Y∞ → X∞, and on arrows by taking g : Z → Y over X to g∞ : Z∞ → Y∞ over X∞.

Lemma 2.4.6. The functor F preserves fibered products.

Proof. The statement means that if
W //

��

V

��
Z // Y

is a cartesian diagram in Xkfl, then the diagram

W∞ //

��

V∞

��
Z∞ // Y∞

is 2-cartesian, i.e. the induced morphism W∞ → Z∞ ×Y∞ V∞ is an equivalence.
Recall first of all that the morphisms Z → Y and V → Y are Kummer, and denote by A, B, C, D

the sheaves of monoids giving the log structures of Y, V, Z, W respectively. Recall that W is
obtained in the following way: we first form the fibered product of the underlying schemes
V ×Y Z and, locally where we have charts P→ A, Q→ B, R→ C, equip it with the log structure
coming from the pushout Q⊕P R of the diagram

P //

��

Q

��
R // Q⊕P R

and then base change along Spec(k[(Q ⊕P R)fs]) → Spec(k[Q ⊕P R]). Now note that since the
functor P 7→ PQ preserves pushouts (Remark 1.1.15), the diagram

PQ
//

��

QQ

��
RQ

// (Q⊕P R)Q

is also a pushout, but in this case the maps PQ → QQ and PQ → RQ are isomorphisms, since
P → Q and P → R are Kummer. Consequently the remaining two maps in the diagram are also
isomorphisms, and we have (Q⊕P R)Q

∼= PQ.
Now we construct a quasi-inverse to the natural functor W∞ → Z∞ ×Y∞ V∞. Take an object of

(Z∞ ×Y∞ V∞)(T), i.e. a triple (ξ, η, f ) where ξ : (BT)Q → DivT and η : (CT)Q → DivT are liftings
of the DF structures coming from V and Z respectively, and f is an isomorphism between their
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restrictions to (AT)Q. Call E the pushout of the diagram

AT //

��

BT

CT

of sheaves of monoid over T. The preceding remarks imply that (AT)Q, (BT)Q, (CT)Q are all
isomorphic, and they are also isomorphic to EQ, so we have an induced DF structure EQ → DivT .
Moreover since EQ = (AT)Q is integral and saturated, the map E→ EQ factors through E→ Efs,
the fine saturation of the sheaf E. By restriction along Efs → EQ, this gives a log structure on T
that makes the diagram

T //

��

V

��
Z // Y

a commutative diagram of fs log schemes. Consequently there is an induced (strict) morphism
T → W, and together with the lifting (DT)Q

∼= EQ → DivT of the DF structure coming from W
this gives our object of W∞(T). We leave the remaining verifications to the reader.

Remark 2.4.7. The stronger statement that the functor X 7→ X∞ from fine saturated log schemes
over k to stacks over k preserves fibered products is probably false. For the preceding proof it is
essential that the morphisms involved are Kummer.

Proposition 2.4.8. The functor F gives a morphism of topoi Xkfl → (X∞)fppf, which is an equivalence.

Proof. We will apply the following lemma from the Stacks Project (Lemma 7.27.1 in [Sta13, Tag
039Z]).

Lemma 2.4.9. Let C, D be sites and u : C → D a functor. If

1. u is continuous and cocontinuous

2. given a, b : U′ → U in C such that u(a) = u(b), then there exists a covering { fi : U′i → U′} in C
such that a ◦ fi = b ◦ fi for every i,

3. given U, U′ ∈ C and a morphism c : u(U′) → u(U) in D, then there exists a covering { fi : U′i →
U′} in C and morphisms ci : U′i → U such that u(ci) = c ◦ u( fi) for every i,

4. given V ∈ D, then there exists a covering of V in D of the form {u(Ui)→ V},

then there is an equivalence Sh(C) ∼= Sh(D).

Note that, as remarked in the proof in the Stacks Project, the functor α : Sh(D) → Sh(C) that
plays the role of the “pullback functor” of the mentioned equivalence is defined in the natural
way by α(G)(c) = G(u(c)) for an object c ∈ C.

Back to the proof, the fact that F is continuous follows from Proposition 2.4.4 and Lemma
2.4.6. Showing that it is cocontinuous amounts to proving that for any object Z∞ → X∞ of
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(X∞)fppf, where Z → X is Kummer-flat, any covering {Ai → Z∞} in (X∞)fppf can be refined by
the family of maps {(Zi)∞ → Z∞}, for some Kummer-flat covering {Zi → Z}. Clearly this will
follow from item number 4 applied to Z in place of X.

Note that item number 2 (local faithfulness) follows directly from Corollary 2.3.22, and item
number 3 (local fullness) from Corollary 2.3.25, that implies that every morphism Z∞ → Y∞ in
(X∞)fppf is logarithmic, i.e. comes from a morphism Z → Y of log schemes. All that is left is to
prove item number 4.

Let us fix an object A → X∞ of (X∞)fppf. After étale-shrinking X, we can assume that we have
a Kato chart P → OX for the log structure of X. We will find a Kummer-flat morphism Y → X
with a factorization Y∞ → A → X∞, such that Y∞ → A is fppf and surjective.

Take a presentation U∞ → X∞ coming from a compatible system of presentations Un → Xn,
as in the discussion preceding 2.2.14, and the groups Gn and G∞. Consider the pullback of U∞ to
A, as in the cartesian square

V //

��

U∞

��
A // X∞.

where V is an algebraic space and V → U∞ is fppf, since A → X∞ is representable and fppf.
Note that the description of X∞ as a quotient [U∞/G∞] gives a presentation of A as [V/G∞]

for the induced action, and we have a groupoid presentation of the form

V × G∞ ⇒ V → A.

Since the morphism V → U∞ is fppf and U∞ = lim←−n
Un, we have an fppf morphism Vn → Un

such that the diagram

V //

��

Vn

��
U∞ // Un

is cartesian.
Now we claim that in fact the whole groupoid presentation of A comes from some finite level:

in fact, also the action of G∞ on V, which can be seen as a morphism V × G∞ → V × G∞ (over
U × G∞), must come from some morphism Vn × G∞ → Vn × G∞ (over Un × G∞) where Vn is as
above, since V × G∞ → U× G∞ is fppf and U× G∞ = lim←−n

(Un × G∞). Moreover by increasing n
we may assume that this last morphisms also gives an action of G∞ on Vn.

The action of G∞ = lim←−n
Gn factors through some finite stage Gm, because Vn is of finite type.

This simply follows from looking at the coaction of the Hopf algebra of G∞. This gives us an
action Gm ×Vn → Vn.

Now denote by k the least common multiple of n and m. We first pull the action back along
Vk → Vn (where Vk = Vn ×Un Uk), obtaining an action Gm ×Vk → Vk, and finally by means of the
map Gk → Gm, we get an action Gk ×Vk → Vk, and we take the quotient stack Ak = [Vk/Gk].

The morphism Vk → Uk induces a representable and fppf map Ak = [Vk/Gk] → [Uk/Gk] =
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Xk, and the diagram
A //

��

Ak

��
X∞ // Xk.

is cartesian.
In fact, the morphism X∞ → Xk factors as

X∞ = [U∞/G∞]→ [Uk/G∞]→ [Uk/Gk] = Xk

and we can calculate the fibered product in two steps. For the rightmost map, we have A×Xk
[Uk/G∞] ∼= [Vk/G∞], since in the diagram

[Vk/G∞] //

��

[Vk/Gk]

��
[Uk/G∞] //

��

[Uk/Gk]

��
BG∞ // BGk

the two squares are cartesian.
For the second base change, note that the following square is cartesian

[V/G∞]

��

// [Vk/G∞]

��
[U/G∞] // [Uk/G∞]

since V ∼= Vk ×Uk U by construction. In conclusion A = [V/G∞] ∼= Ak ×Xk X∞.
Moreover if we equip Ak with the pullback of the log structure of Xk along the map Ak → Xk

we have an isomorphism (Ak)∞ ∼= A. This is just because by construction Ak → Xk is strict, and
so we have an isomorphism (Ak)∞ ∼= Ak ×Xk (Xk)∞ ∼= A, since (Xk)∞ ∼= X∞.

Now if we also endow Vk with the pullback log structure from Xk the composition Vk → X
will be Kummer-flat, and we have a factorization (Vk)∞ → (Ak)∞ ∼= A → X∞. All that is left is
to note that the map (Vk)∞ → A is surjective, fppf and representable (i.e. a cover in the fppf site).
This follows from the fact that Vk → Ak has those properties and is strict, so the map between
the infinite root stacks is a base change, by Remark 2.2.9. This concludes the proof.

The same line of reasoning proves the analogue of these results for the Kummer-étale topos,
which is particularly relevant in characteristic zero. In this case the étale variant of the topos is
typically sufficient for applications, whereas in the positive characteristic case one often has to
look at the Kummer-flat one.

We state the result in this case.
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Let X be a log scheme over a field of characteristic 0, and let ét(X∞) denote the small étale
site of X∞, consisting of the category of isomorphism classes of representable étale morphisms
A → X∞ endowed with the étale topology. Denote by (X∞)ét the corresponding topos. By
Proposition 2.4.4 the association (Y → X) 7→ (Y∞ → X∞) gives a functor két(X)→ ét(X∞).

Theorem 2.4.10. This functor induces an equivalence of ringed topoi Xkét
∼= (X∞)ét.

Back to the general situation, by combining Proposition 2.4.8 with 2.2.40 we see that finitely
presented (and in particular, for example, locally free of finite rank) Kummer-flat sheaves on a
log scheme are precisely finitely presented sheaves on its infinite root stack, i.e. finitely presented
parabolic sheaves.

Corollary 2.4.11. There is an equivalence of categories FP(Xkfl) ∼= FP(X∞).

Proof. This follows formally from the fact that the equivalence of Proposition 2.4.8 is an isomor-
phism of ringed topoi, after we equip them with the structure sheaf O on both sides. This is im-
mediate from the description of the functor α : (X∞)fppf → Xkfl as α(G)(Y → X) = G(Y∞ → X∞)
(see the proof of 2.4.8), and the fact that for π : Y∞ → Y we have π∗OY∞

∼= OY (Proposition
2.2.44).
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Chapter 3

Moduli of parabolic sheaves with
fixed weights

The subject of this chapter is the moduli theory for parabolic sheaves on a log scheme X, with a
fixed system of denominators.

The strategy will be the following: by the BV equivalence, parabolic sheaves on X with denom-
inators in B/A correspond to quasi-coherent sheaves on the root stack XB/A. We can therefore
study the moduli theory of coherent sheaves on said root stack.

The moduli theory for coherent sheaves on a tame DM stack has been developed in [Nir].
Apart from assuming that X is projective over a field and choosing a polarization, one also has
to choose a generating sheaf on the root stack. In general there are many choices for such a
sheaf, and it is not clear which of them is best suited to generalize the notion of stability given by
Seshadri and Maruyama and Yokogawa in the case of curves and varieties with a divisor.

One case where it is possible to find a distinguished generating sheaves that generalizes the
situations in the literature is the case in which we have a global chart P → Div(X) for the log
structure of X, or more generally what we call a locally constant sheaf of charts on X. In this case
we isolate a generating sheaf that gives back the stability notions already present in the literature
in the particular cases, and we get moduli spaces for pure parabolic sheaves with weights in B/A.

We will also see that the choice of the sheaf of charts changes the notion of stability. This
phenomenon is analogous to the change of the stability when one changes the polarization in the
context of moduli of coherent sheaves on a projective scheme.

For the whole chapter, X will be a fine and saturated log scheme with a DF structure L : A→
DivX , and j : A → B will be our fixed system of denominators. Moreover X will be projective
over k, and from Section 3.2 on X will denote the root stack XB/A. To apply Nironi’s machinery
we will also have to assume the root stack XB/A is Deligne–Mumford. This is automatic if for
example char(k) does not divide the order of the group Bgp

x /Agp
x for any geometric point of X

(see 1.2.31).

85
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3.1 Pullbacks of parabolic sheaves

Let X be a log scheme with log structure L : A → DivX , and f : Y → X a morphism of schemes.
Equip Y with the pullback log structure, and assume furthermore that j : A → B is a system of
denominators. We want to define a pullback functor f ∗ from parabolic sheaves on X with respect
to j to parabolic sheaves on Y with respect to the pullback system of denominators f ∗ j : f ∗A →
f ∗B. The BV equivalence suggests a natural way to do it: recall that we denote the functors giving
the equivalence by Φ : QCoh(XB/A) → Par(X, j) and Ψ : Par(X, j) → QCoh(XB/A) (see Section
1.2.1 for details).

Assume more generally that Y is a log scheme with log structure N : C → DivY, h : C → D is
a system of denominators, f : Y → X is a morphism of log schemes and the morphism f ∗A→ C
fits in a commutative diagram

f ∗A

��

// C

��
f ∗B // D.

Then we have a natural morphism of root stacks Π : YD/C → XB/A and a commutative diagram

YD/C //

��

XB/A

��
Y

f // X

sending an object ξ : φ∗D → DivT of YD/C(T), where φ : T → Y, to the composition Π(ξ) : ( f ◦
φ)∗B→ φ∗D → DivT , which is an object of XB/A(T).

In case N = f ∗L and h = f ∗ j, the diagram is also cartesian, so that Yf ∗B/ f ∗A
∼= XB/A ×X Y.

Definition 3.1.1. Given a parabolic sheaf E ∈ Par(X, j), the pullback f ∗E of E along f is the
parabolic sheaf Φ(Π∗(Ψ(E))) ∈ Par(Y, h) corresponding via the BV equivalence to the pullback
of the quasi-coherent sheaf Ψ(E) ∈ QCoh(XB/A) along Π.

The pullback f ∗E is unique up to isomorphism, and functorial, in the sense that f ∗ : Par(X, j)→
Par(Y, h) is a functor. Moreover by definition the diagram

Par(X, j)
f ∗ //

Ψ
��

Par(Y, h)

Ψ
��

QCoh(XB/A)
Π∗ // QCoh(YD/C)

is 2-commutative.
We can now define a fibered category Par(X, j) → (Sch /X) of parabolic sheaves on X by

taking as Par(X, j)(T), where φ : T → X, the category Par(T, φ∗ j) of parabolic sheaves over T,
equipped with the pullback log structure, and with respect to φ∗ j. The arrows of Par(X, j) are
defined using the notion of pullback just described.
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On the other hand we also have the fibered category QCoh(XB/A) → (Sch /X), whose fiber
category over φ : T → X is QCoh(Tφ∗B/φ∗A) and the arrows are again defined by pullback.

Basically by definition, we have the following extension of Theorem 1.3.8.

Proposition 3.1.2. There are equivalences of fibered categories Φ : QCoh(XB/A) → Par(X, j) and
Ψ : Par(X, j)→ QCoh(XB/A) that coincide with the BV equivalences on every fiber category.

Proof. The functors Φ(T) and Ψ(T) for T → X are defined by the functors of the BV equivalence
on T (equipped with the pullback log structure), and the resulting Φ and Ψ are cartesian by
construction. Finally, they are equivalences since they are so fiberwise.

This implies in particular that Par(X, j) is a stack for the fpqc (or any coarser) topology of
(Sch /X), as one can verify directly by standard arguments of descent theory.

In the case where X and the system of denominators have a global chart, the pullback of a
parabolic sheaf along a strict morphism f : Y → X has a simple “purely parabolic” description
(which seems to be lacking for example for a non-strict morphism): assume that we have charts
L0 : P → Div(X) for L and j0 : P → Q for j. Then P and j0 also give charts on Y for f ∗A and
f ∗ j, and given a parabolic sheaf E : Qwt → QCoh(X), we can define f ∗E as the composition
Qwt → QCoh(X)→ QCoh(Y), where the last functor is pullback of quasi-coherent sheaves.

Proposition 3.1.3. The functor f ∗E is a parabolic sheaf on Y, and the corresponding quasi-coherent sheaf
Ψ( f ∗E) on the root stack Yf ∗B/ f ∗A is naturally isomorphic to the pullback along Π : Yf ∗B/ f ∗A → XB/A
of the quasi-coherent sheaf Ψ(E) on XB/A corresponding to E.

Proof. It is clear that f ∗E is a parabolic sheaf, by applying f ∗ to the pseudo-periods isomorphism
ρE and all the relevant diagrams.

Let us now show that the parabolic sheaf Φ(Π∗Ψ(E)) ∈ Par(Y, f ∗ j) is isomorphic to f ∗E as
defined above.

For q ∈ Qgp, let us calculate

( f ∗E)q = f ∗Eq = f ∗π∗(Ψ(E)⊗Λq)

and
Φ(Π∗Ψ(E))q = (πY)∗(Π∗Ψ(E)⊗ (ΛY)q).

Note now that (ΛY)q = Π∗Λq, so

(πY)∗(Π∗Ψ(E)⊗ (ΛY)q) ∼= (πY)∗Π∗(Ψ(E)⊗Λq).

Now we apply Proposition 1.5 of [Nir] to the cartesian diagram

Yf ∗B/ f ∗A
Π //

πY

��

XB/A

π

��
Y

f // X

to get a functorial base change isomorphism f ∗π∗ → (πY)∗Π∗ of functors QCoh(XB/A) →
QCoh(Y).
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This gives an isomorphism ( f ∗E)q → Φ(Π∗Ψ(E))q for any q ∈ Q. By functoriality, by putting
all these isomorphisms together we get a natural isomorphism of functors Qwt → QCoh(X),
which moreover respects the pseudo-periods isomorphisms, and so is an isomorphism of parabolic
sheaves.

This also gives a local description of the pullback as defined in general, using local charts for
the Kummer morphism j.

When there is no global chart, it is still possible to give a parabolic description of the pullback
along a strict morphism, even though it is more complicated. Since we are not going to use this
description, we only sketch it briefly for completeness.

With notations as above, assume that E : Bwt → QCohX is a parabolic sheaf on X. Both Bwt

and QCohX are stacks on the small étale site Xét, and we can pull them back together with the
morphism E using f , thus obtaining a morphism f ∗(Bwt) → f ∗QCohX of stacks over Yét. The
composition with the natural morphism f ∗QCohX → QCohY will be our desired f ∗E.

Proposition 3.1.4. We have a natural equivalence of symmetric monoidal stacks f ∗(Bwt) ∼= f ∗(B)wt on
Yét, and the resulting functor f ∗E : f ∗(B)wt → QCohY is a parabolic sheaf on Y.

Proof. To see that f ∗(Bwt) ∼= f ∗(B)wt note that Bwt has a presentation (as a stack over Xét) as
Bgp × B ⇒ Bgp, and by pulling back everything we get a presentation for f ∗(Bwt). On the other
hand f ∗(Bgp) ∼= f ∗Bgp, and the presentation f ∗Bgp × f ∗B ⇒ f ∗B gives f ∗Bwt.

Let us show that f ∗E is a parabolic sheaf. Recall that the pseudo-periods isomorphism ρE can
be seen an an isomorphism of functors E ◦ + ∼= ⊗ ◦ (Lwt × E) : Awt × Bwt → QCohX , and the
only other condition for E to be a parabolic sheaf is that it should be Awt-equivariant. Pulling
back ρE along f , and using the fact that the diagram

f ∗ PicX × f ∗QCohX
f ∗⊗X //

��

f ∗QCohX

��
PicY ×QCohY

⊗Y // QCohY

is 2-commutative, we get a pseudo-periods isomorphism for f ∗E. Finally, f ∗E is clearly f ∗Awt-
equivariant, so it is a parabolic sheaf.

One can show that the pullback of parabolic sheaves thus defined is compatible with the BV
equivalence and pullback of quasi-coherent sheaves on the root stacks, so it coincides (as always
up to isomorphism) with the one we defined before.

3.2 Families of parabolic sheaves

Using the notion of pullback, we can now define families of parabolic sheaves on a fixed log
scheme X, and with respect to a Kummer morphism j : A → B. We define a fibered category
ParX → (Sch) by setting, for a scheme T, ParX(T) = Par(T×k X, π∗T j) (with πT : T ×k X → X the
second projection), and by declaring that pullback along a morphism f : S→ T over k is given by
the pullback of parabolic sheaves along the induced morphism S×k X → T×k X of log schemes.
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Of course here T ×k X plays the role of a trivial family with fiber X, and a parabolic sheaf over
T×k X is seen as a “naive” (i.e. without any flatness hypothesis) family of parabolic sheaves over
X.

On the other hand we have a second fibered category QCohXB/A
→ (Sch) of quasi-coherent

sheaves over the root stack XB/A, where for a scheme T, we have

QCohXB/A
(T) = QCoh(T ×k XB/A) = QCoh((T ×k X)π∗T B/π∗T A)

with pullback along S→ T defined by the induced morphism S×k XB/A → T ×k XB/A.
To ease the notation, for the rest of this chapter X will denote the root stack XB/A, and for a

scheme T, a subscript (−)T will denote a base change to T, or to the fibered product XT = T×k X
along the projection πT : XT → X (this ambiguity should cause no real confusion). For example
LT : AT → DivXT will denote the pullback log structure.

Also, in what follows we will repeatedly consider properties of parabolic sheaves on XT
relative to the base T. It will be useful to keep in mind the following diagram, where all the
squares are cartesian.

XT //

��

X

��
XT //

��

X

��
T // Spec(k)

Note that XT ∼= (XT)BT/AT , from Proposition 1.2.33. Moreover the projection XT → XT is a coarse
moduli space for any T, since the log structure of T is fine and saturated (see 1.2.32).

The proof of Proposition 3.1.2 yields, with minor modifications, the following result.

Proposition 3.2.1. There are equivalences Φ : QCoh
X
→ ParX and Φ : ParX → QCoh

X
, restricting to

the BV equivalences on the fiber categories.

This allows us to systematically transport various (absolute and relative) notions from ordi-
nary quasi-coherent sheaves to parabolic sheaves. Some of the notions that we will examine will
also have a parabolic interpretation.

Definition 3.2.2 (Meta-definition). A parabolic sheaf E ∈ Par(XT , jT) has some property, absolute
or over the base T (for example is coherent, finitely generated, finitely presented, locally free, flat over
T), if the corresponding Ψ(E) ∈ QCoh(XT) has said property.

These definitions also make sense for an arbitrary log scheme, not of the form XT . We restrict
to this case because we are interested in families of parabolic sheaves over a fixed log scheme X.

Let us now focus on moduli theory for sheaves on X. This requires some hypotheses.

Assumptions 3.2.3. From now on X will be projective over k, with a fixed very ample line bundle
OX(1). This polarization will be fixed throughout all that follows, so we will omit it from the
notations.
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As sketched in the introduction, the strategy is to reduce to moduli of coherent sheaves on the
root stack X. For this we need to introduce some properties of parabolic sheaves, that will single
out the correct concept of “family of coherent parabolic (pure) sheaves”.

Let us start with coherence: the definition is contained in 3.2.2, but let us spell it out again.

Definition 3.2.4. A parabolic sheaf E ∈ Par(XT , jT) is coherent if the corresponding Ψ(E) ∈
QCoh(XT) is coherent.

Here is a parabolic interpretation of coherence.

Proposition 3.2.5. A parabolic sheaf E ∈ Par(XT , jT) is coherent if and only if for every étale morphism
U → XT and every section b ∈ Bwt

T (U), the quasi-coherent sheaf Eb ∈ QCoh(U) is coherent.

Proof. Assume first that E is coherent. Then, since πT : XT → T is proper, the pushforward
Eb = (πT)∗(E⊗Λb) is still coherent.

In the other direction, this is a local problem so we can assume that there is a global chart.
In this case, recall that the quasi-coherent sheaf on X corresponding to E is obtained by taking⊕

v∈Qgp Ev as a sheaf on X, with an action of the sheaf of algebras A =
⊕

u∈Pgp Lu, and then by
descending it on the quotient stack X. Now it suffices to notice that a finite number of the Ev
generate the direct sum as a sheaf of A-modules (thanks to the pseudo-periods isomorphism),
and since the Ev’s are coherent we are done.

Now let us turn to flatness.

Definition 3.2.6. A parabolic sheaf E ∈ Par(XT , jT) is flat over T if the corresponding Ψ(E) ∈
QCoh(XT) is flat over T.

The following proposition gives a parabolic interpretation of flatness.

Proposition 3.2.7. A parabolic sheaf E ∈ Par(XT , jT) is flat over T if and only if for every étale morphism
U → XT and every section b ∈ Bwt

T (U) the quasi-coherent sheaf Eb ∈ QCoh(U) is flat over T.

Proof. Assume first that the sheaf Ψ(E) ∈ QCoh(XT) is flat over T. Given f : U → XT étale,
call U the base change of XT to U, πU : U → U the projection to the coarse moduli space, and
fU : U→ XT the base change of f .

U
fU //

πU

��

XT

πT
��

U
f // XT

Now for b ∈ Bwt
T (U) we have

Eb = (πU)∗( f ∗UΨ(E)⊗ (ΛT)b) ∈ QCoh(U).

Since (ΛT)b is invertible (so flat over T, since XT , and hence U, are) and Ψ(E) is flat over T by
assumption (so that also its pullback to U is), the sheaf f ∗UΨ(E)⊗ (ΛT)b is flat over T. Furthermore
since X is tame, so that U also is, the pushforward along the projection to the coarse moduli space
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πU : U → U preserves flatness over the base T (Corollary 1.3 of [Nir]). In conclusion Eb is flat
over T.

Conversely, since the question is local we can assume that X has a global chart.
Now recall once again that the sheaf Ψ(E) is defined by forming

⊕
q∈Qgp Eq, a quasi-coherent

sheaf on X. Then this is regarded as a quasi-coherent sheaf on the relative spectrum of a sheaf
of algebras on X, and by descent this gives a quasi-coherent sheaf on the root stack X (which
is a quotient stack of this relative spectrum). Now since by assumption all the Eq are flat over
T, their direct sum is flat over T, and the quasi-coherent sheaf induced on the relative spectrum
mentioned above will be as well. Finally by descent Ψ(E) itself will be flat over T.

In moduli theory of coherent sheaves (and in all of moduli theory, in fact), flatness is a crucial
condition to impose on a family.

Definition 3.2.8. A family of parabolic sheaves on X with denominators in B/A over a base scheme
T is a coherent parabolic sheaf E ∈ Par(XT , jT) that is flat over T.

From now on the wording “family of parabolic sheaves” will always include this flatness
condition.

The last important concept in moduli of coherent sheaves is pureness.
For the definition of a pure sheaf on an algebraic stack we refer to [Nir] and [Lie07]. It is

the natural generalization of the concept for schemes; one possible definition is that a coherent
sheaf on a (noetherian) Artin stack is pure if and only if its pullback to a smooth presentation is.
Moreover one can define the support of a coherent sheaf F on an algebraic stack X as the closed
substack defined by the kernel of the morphism OX → End(F). The dimension of F will be the
dimension of the support, and a sheaf is pure of dimension d if and only if all of its subsheaves
have dimension d.

We declare the zero sheaf to be pure of arbitrary dimension. This allows us to simplify some
statements and does no harm, since the property of being zero for a flat sheaf over a projective
family if open and closed.

We will say that a coherent sheaf F is torsion-free on a noetherian algebraic stack X if it is pure
of maximal dimension (the dimension of X ). Note that this does not imply that F is supported
everywhere unless X is integral.

Definition 3.2.9. A parabolic sheaf E ∈ Par(XT , jT) is pure of dimension d if the corresponding
Ψ(E) ∈ QCoh(XT) is pure of dimension d.

As for the preceding properties, there is a parabolic interpretation of pureness.

Proposition 3.2.10. A parabolic sheaf E ∈ Par(XT , jT) is pure of dimension d if and only if for every
étale morphism U → XT and every section b ∈ Bwt

T (U) the quasi-coherent sheaf Eb ∈ QCoh(U) is pure
of dimension d.

Here we use the convention that the zero sheaf is pure of arbitrary dimension. Let us first
prove the following lemma.
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Lemma 3.2.11. Let E be a coherent sheaf on a noetherian scheme X, and set d = dim(F). Then E is pure
of dimension d if and only if for every open subset U ⊆ X such that dim(X \U) < d, the adjunction map
σ : E→ i∗i∗E is injective, where i : U → X is the inclusion.

Proof. First note that the injectivity of E → i∗i∗E is equivalent to the fact that if V ⊆ X is open,
and f ∈ E(V) is such that f |U∩V = 0, then f = 0.

Assume first that the second condition holds, and by contradiction that E is not pure, so that
there is a non-zero subsheaf G ⊆ E with dim(G) < d. Take U = X \ Supp(G), which is an open
subscheme of X with dim(X \U) < d. Now by assumption if V ⊆ X is any open subset and
f ∈ E(V), if the restriction of f to U ∩ V is zero, then f itself is. In particular every section of
G(V) ⊆ E(V) will be zero, since it restricts to zero on U ∩V by construction of U. So G(V) = 0
for any V, against the fact that G was non-zero.

Vice versa, assume that there is an open subset U ⊆ X with dim(X \U) < d and such that
σ : E→ i∗i∗E is not injective. Set G = ker(σ), and notice that this is a subsheaf of E of dimension
strictly less than d, so that E is not pure. In fact we have Supp(G) ⊆ X \U, since if x ∈ U, then
the map σx : Ex → (i∗i∗E)x ∼= Ex is the identity, so Gx = 0.

Corollary 3.2.12. If X is a noetherian DM stack and E ∈ Coh(X ) is pure of dimension d then for every
open substack U ⊆ X such that dim(X \ U ) < d, the adjunction map σ : E → i∗i∗E is injective, where
i : U → X is the inclusion.

Proof. One can take a groupoid presentation R ⇒ U → X and repeat the proof of the above
lemma on U with “equivariant” (with respect to the groupoid) sheaves and open subsets.

Proof of Proposition 3.2.10. Assume first that G = Ψ(E) is pure of dimension d, and fix f : U → X
étale, and b ∈ Bwt(U). Moreover call U the base change of X to U, πU : U → U the projection,
and fU the base change of f .

U
fU //

πU
��

X

π
��

U
f // X

We will show that the coherent sheaf Eb = (πU)∗( f ∗U(G)⊗Λb) ∈ Coh(U) is pure of dimension d.
Set G′ = f ∗U(G), and notice that this is still pure of dimension d on U (it may be zero).

Notice that since πU is proper and quasi-finite, if Eb is not zero (in which case there is nothing
to prove) than it has dimension d. Take an open subset V ⊆ U with dim(U \ V) < d, and call
i : V → U the inclusion. We will show that the adjunction map σ : Eb → i∗i∗Eb is injective, and
by Lemma 3.2.11 this will prove that Eb is pure of dimension d.

Call V the fiber product V ×U U, denote by j : V→ U the base change of the inclusion V ⊆ U
and πV : V → V the base change of the projection. The map j is an open immersion, so V is an
open substack of U, with complement of dimension less than d. Since G′ is pure, by Corollary
3.2.12 the map σ′ : G′ → j∗ j∗G′ is injective.

Now the pushforward (πU)∗ and tensor product with Λb are both exact functors, so the
induced map

Eb = (πU)∗(G′ ⊗Λb)→ (πU)∗(j∗ j∗(G′)⊗Λb)
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is still injective. Now note that by the projection formula we have

j∗ j∗(G′)⊗Λb
∼= j∗(j∗(G′)⊗ j∗(Λb)) ∼= j∗ j∗(G′ ⊗Λb).

From the cartesian diagram

V
j //

πV
��

U

πU
��

V i // U

we first see that (πU)∗ j∗ = i∗(πV)∗, and since i is flat, by base change (Proposition 1.5 of [Nir])
we also have a canonical isomorphism (πV)∗ j∗ ∼= i∗(πU)∗.

By putting everything together we have that the composite

Eb = (πU)∗(G′ ⊗Λb)→ (πU)∗ j∗ j∗(G′ ⊗Λb) ∼= i∗i∗(πU)∗(G′ ⊗Λb) ∼= i∗i∗Eb,

which coincides with the adjunction map of Eb, is injective, and this is what we had to show.
Note that some of these Eb can be zero (see Example 1.3.9), which is consistent with our

convention about the zero sheaf, but if E is not zero as a parabolic sheaf, than necessarily we will
have Eb 6= 0 for some U → X étale and b ∈ Bwt(U).

Now for the converse, assume that all the Eb’s are pure of dimension d, and that E is not zero
(otherwise there is nothing to prove). If by contradiction Ψ(E) is not pure, then there is a non
zero pure subsheaf Ψ(G) ⊆ Ψ(E), of dimension strictly less than d, say d′ ≥ 0. Now pick U → X
étale and b ∈ Bwt(U) such that Gb 6= 0.

By the first part of the proof 0 6= Gb ⊆ Eb is pure of dimension d′, so Eb is non zero and thus
of dimension d > d′. In particular Eb is not pure, and this contradicts the assumption.

In case the log structure of X is generically trivial, the maps between the pieces of a torsion-
free parabolic sheaf are injective.

Proposition 3.2.13. Let X be a noetherian log scheme with generically trivial log structure and with a
chart P → Div(X), and let j : P → Q be a Kummer extension of fine saturated monoids. Take a torsion-
free parabolic sheaf E ∈ Par(X, j). Then for any pair q, q′ ∈ Qwt such that q ≤ q′, the morphism Eq → Eq′

is injective.

Proof. If Eq is zero there is nothing to prove.
Otherwise, by assumption we have a schematically dense open subscheme U ⊆ X on which

the log structure is trivial. Consequently the restriction of the projection XQ/P → X to U is an
isomorphism UQ/P

∼= U, and the morphism Eq → Eq′ is an isomorphism on U. If K is the kernel
of this morphism, it follows that K has dimension strictly less then the dimension of X, but then
since Eq is pure of maximal dimension by 3.2.10, we must have K = 0, i.e. the map is injective.

Finally, we give the definition of a family of pure parabolic sheaves.

Definition 3.2.14. A family of pure d-dimensional parabolic sheaves on X with denominators in B/A
over a base scheme T is a coherent sheaf E ∈ Par(XT , jT) that is flat over T, and such that for any
geometric point t→ T, the pullback Et on Xt is pure of dimension d.

Now that we have these basic properties laid out we will discuss (semi-)stability, in order to
get a well-behaved moduli stack.
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3.3 Generating sheaves and stability conditions

As in the case of sheaves on schemes, if we want to construct moduli spaces we need to come
up with some good notion of stability. The equivalence with coherent sheaves on an algebraic
stack together with the theory for moduli of coherent sheaves on algebraic stacks of [Nir] suggest
that a way to do this is to find a (canonical, ideally) generating sheaf on the root stack XB/A. For
generalities about generating sheaves see [Nir] and the references therein.

Although root stacks are probably always global quotient stacks, so that they will have gener-
ating sheaves, in general there does not seem to be a canonical choice of such a sheaf. It is possible
to single out distinguished generating sheaves in presence of a global chart for the logarithmic
structure, or in slight greater generality, of a locally constant sheaf of charts.

Another important aspect of this is the behavior of the stability with respect to the maps
between the root stacks, when we have a morphism of Kummer extensions. This will be the main
topic of the next chapter, where we will discuss a moduli theory with varying denominators.

We will recall Nironi’s method along the way. We first give the definition of a generating
sheaf, and recall how it is used to give a notion of Hilbert polynomial and slope. The definition
makes sense for X any tame Artin stack.

Definition 3.3.1. A locally free sheaf E of finite rank on X is a generating sheaf if for any geometric
point x → X the fiber Ex contains every irreducible representation of Stab(x).

Once we have a generating sheaf, we can define what Nironi calls the modified Hilbert polyno-
mial. We will drop the adjective “modified” for brevity.

Definition 3.3.2. The Hilbert polynomial (with respect to E ) of a coherent sheaf F ∈ Coh(X) is the
Hilbert polynomial

PE (F) = P(π∗(F⊗ E∨)) ∈ Q[m]

of the coherent sheaf π∗(F⊗ E∨) on X, with respect to OX(1).

Note that, since π∗(−⊗ E∨) preserves the dimension (see [Nir], Proposition 3.6), PE (F) will
be a polynomial of degree d where d = dim(F), and as usual we can write it as

PE (F)(m) =
d

∑
i=0

αi(F)
i!

mi

where αi(F) are rational numbers, that depend also on E of course. Sometimes, when the sheaf
F is clear from the context, we will denote these coefficients just by αi

The number αd(F), which is always positive, will be called the multiplicity of the sheaf F. If X
is integral and F has maximal dimension, it is strictly related to the rank of the sheaf π∗(F⊗ E∨)
on X.

Definition 3.3.3. The reduced Hilbert polynomial or (generalized) slope of a coherent sheaf F ∈
Coh(X) is the polynomial

pE (F) =
PE (F)
αd(F)

=
1
d!

md + . . . +
α0(F)
αd(F)

∈ Q[x].
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Remark 3.3.4. We are aware that the word “slope” is usually reserved to the quotient

µ(F) =
αd−1(F)

αd(F)
,

that in the case of curves is closely related to the ratio deg(F)/ rk(F), but nonetheless in this
document we will use it to mean the reduced Hilbert polynomial, since we will never have to
mention the “real” slope.

This slope will give a notion of (semi-)stable parabolic sheaves, and we will restrict to that
class in order to get well-behaved moduli stacks and moduli spaces. Before describing how this
happens (which we will do in Section 3.3.4), let us focus on the choice of the generating sheaf.

3.3.1 The case of a variety with a divisor

To get some clues for the choice of the generating sheaf, let us look at the case of a projective
variety X over k, equipped with the log structure induced by an effective Cartier divisor. In this
case, moduli spaces of parabolic sheaves with rational weights have been constructed in [MY92],
by generalizing the classical GIT construction of moduli spaces of (semi-)stable coherent sheaves
on a projective scheme. Their result in turn generalizes the first results of Seshadri [Ses82] on
curves.

Let us recall their definition of a parabolic sheaf. Let X be a projective smooth (connected)
scheme over k, and D ⊆ X an effective Cartier divisor.

Definition 3.3.5. A MY-parabolic sheaf E∗ on X is given by the following data:

• a coherent torsion-free sheaf E ∈ Coh(X),

• a sequence of real numbers a1, . . . , ak called weights, such that 0 ≤ a1 < a2 < · · · < ak < 1,
and

• a filtration E(−D) = Fk+1(E) ⊂ Fk(E) ⊂ · · · ⊂ F1(E) = E of E, where E(−D) is the image
of the natural map OX(−D)⊗ E→ E.

The rank of E∗ will be the rank of the torsion-free sheaf E.
From now on we will assume that the weights a1, . . . , ak are rational numbers. This is crucial

for the correspondence with quasi-coherent sheaves on a root stack to work, and also for the
moduli theory developed in [MY92] (the rationality assumption is on page 94). Moreover, in light
of what follows it is more convenient to think about the opposites −1 < −ak < · · · < −a1 ≤ 0.

Let us now describe explicitly how this definition is connected with our definition of a
parabolic sheaf.

First observe that the divisor D induces a log structure on X, given by the morphism L : N→
Div(X) that sends 1 ∈ N to (OX(D), s), where s is the section of OX(D) corresponding to the
natural map OX → OX(D). This coincides with what we called the “induced log structure”
(which is “finer”) in Example 1.2.7 only if D is irreducible.

Given a MY-parabolic sheaf E, let us take n to be the least common multiple of the denomi-
nators of the weights ai, and consider the system of denominators j : N→ 1

n N.
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Now we define a parabolic sheaf, that we still denote by E ∈ Par(X, j), as follows. Set ai =
bi
n

with bi ∈N, and for q = a
n with −n < a ≤ 0 define E a

n
= Fi(E), where −bi ≤ a < −bi−1, with the

convention that b0 = 1 and bk+1 = −1. For an arbitrary a
n ∈ Q, we set E a

n
= E a′

n
⊗OX(bD), where

−n < a′ ≤ 0, b ∈ N and a
n = a′

n + b, and for a
n ≤

a′
n there is an obvious morphism E a

n
→ E a′

n
,

which is either the identity or an inclusion. Moreover by construction there is a pseudo-periods
isomorphism, and this gives a parabolic sheaf in our sense.

Conversely, given a parabolic sheaf E ∈ Par(X, j) such that the maps E a
n
→ E a′

n
are all injective,

we obtain a MY-parabolic sheaf by taking as weights the opposites of the numbers i
n ∈ Q∩ (−1, 0]

such that E i−1
n
→ E i

n
is not an isomorphism, and the filtration consisting of the sheaves E a

n
with

−n ≤ a ≤ 0, but without repetitions.
This gives an equivalence between MY-parabolic sheaves and parabolic sheaves with injective

maps. The injectivity condition is implied by torsion-freeness of E, see Proposition 3.2.13.
From this description we see that the weights of the MY definition are nothing else than (the

opposites of) what we could call “jumping numbers” for a parabolic sheaf with injective maps,
i.e. the numbers i

n ∈ (−1, 0] where the subsheaf E i
n
⊆ E “jumps” with respect to the preceding

one.

Remark 3.3.6. If E∗ is a MY-parabolic sheaf and L ∈ Pic(X) is an invertible sheaf, then there is
a natural MY-parabolic sheaf E∗ ⊗ L obtained by tensoring everything with L. In particular this
gives for any m ∈ Z the MY-parabolic sheaf E∗(m) = E∗ ⊗OX(m).

In [MY92], in order to construct moduli spaces, they define a parabolic Hilbert polynomial.
Let us briefly recall their definitions and results.

Definition 3.3.7. The MY-parabolic Euler characteristic of a MY-parabolic sheaf E∗ is the rational
number

χMY(E∗) = χ(E(−D)) +
k

∑
i=1

aiχ(Gi),

where Gi is the quotient Fi(E)/Fi+1(E).
The MY-parabolic Hilbert polynomial of E∗ is the polynomial with rational coefficients given by

PMY(E∗)(m) = χMY(E∗(m)),

where E∗(m) = E∗ ⊗OX(m).
The MY-reduced parabolic Hilbert polynomial of E∗ is the polynomial

pMY(E∗) =
PMY(E∗)
rk(E∗)

.

Remark 3.3.8. The rank of E∗ is the rank of the torsion-free sheaf E. Note that, since Gi =
Fi(E)/Fi+1(E) is generically zero, if instead of using rk(E∗) we use the leading coefficient of
PMY(E∗) (as one does when dealing with pure sheaves, not necessarily torsion-free), we would
get a scalar multiple of pMY(E∗), which of course would then give the same stability condition.

Definition 3.3.9. A parabolic subsheaf F∗ ⊆ E∗ of a MY-parabolic sheaf E∗ is a MY-parabolic sheaf
F∗ such that
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• F ⊆ E is a subsheaf with E/F torsion-free,

• Fbi
⊆ Eaj for every i, where bi are the weights of F∗, and aj is the smallest weight of E∗ such

that aj ≥ bi.

Remark 3.3.10. This is slightly different from the stronger definition given in [MY92], and on the
other hand agrees with the one given later in [Yok93].

Definition 3.3.11. A MY-parabolic sheaf E∗ is (semi-)stable if for any parabolic subsheaf F∗ ⊆ E∗
we have

pMY(F∗) (≤) pMY(E∗).

This notion of (semi-)stability has many properties resembling the ones of classical (semi-
)stability for coherent sheaves, for example the existence of Harder-Narasimhan and Jordan-
Hölder filtrations.

Now let us define the moduli functor for parabolic sheaves. Fix finitely many rational numbers
a1, . . . , ak with 0 ≤ a1 < . . . < ak < 1, polynomials H, H1, . . . , Hk and define for a scheme T

MY(T) =

{
flat families of MY-parabolic sheaves E∗ on XT

with weights a1, . . . , ak and property (*)

}/
∼ .

where property (*) is: for any geometric point t → T, the restriction (E∗)t is semi-stable,
P((E)t) = H and P((E)t/Fi+1(E)t) = Hi, where P denotes the Hilbert polynomial on X. We
omit the dependence of the functor on the polynomials and the weights for brevity.

The equivalence relation ∼ is defined as follows: E∗ ∼ F∗ if there are global filtrations of the
two sheaves such that:

• they restrict to Jordan-Hölder filtrations on every geometric point,

• the associated graded parabolic sheaves are flat over the base scheme, and differ by an
invertible sheaf coming from the base scheme.

Note that the polynomials Hi and H determine the parabolic Hilbert polynomial of (E∗)t. Vice
versa, if we fix the parabolic Hilbert polynomial we have finitely many choices for H, H1, . . . , Hk,
since fixing these is equivalent to fixing the Hilbert polynomials of the pieces of the sheaf in
[−1, 0). We also have a subfunctor MY ⊆ MY, corresponding to families of stable MY-parabolic
sheaves.

These functors satisfy some boundedness and openness properties. The following is the main
result of [MY92] and [Yok93] (in the latter the result is stated more generally for parabolic Higgs
bundles).

Theorem 3.3.12 ([MY92, Yok93]). The functor MY has a coarse moduli space M which is locally of
finite type and separated. If the family of parabolic sheaves with fixed data H, H1, . . . , Hk and a1, . . . , ak is
bounded (for example if char(k) = 0), then M is projective over k.

The subfunctor MY has a coarse moduli space M, which is an open subscheme of M.
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To extend these result to general log schemes we aim to find in this particular case a gener-
ating sheaf E on X = X 1

n N/N
(for some fixed n) that gives the parabolic Hilbert polynomial of

Maruyama and Yokogawa, where the parabolic sheaves have weights in 1
n N.

A little thought produces the locally free sheaf

E = OX(D)⊕OX(2D) · · · ⊕ OX(nD) =
n⊕

i=1

OX(iD),

where D is the universal root on X of the pullback of the divisor D: in fact assume we have a
torsion-free parabolic sheaf E ∈ Par(X, j), with weights a1, . . . , ak, and thus jumping numbers

−ak, . . . ,−a1 ∈ (−1, 0] ∩ 1
n N. Let us write aj =

bj
n for bj ∈N.

The MY-parabolic Hilbert polynomial of the MY-parabolic sheaf corresponding to E is

PMY(E∗)(m) = χ(E(−D)(m)) +
k

∑
i=1

bi
n

χ(Gi(m))

=
1
n

(
nχ(E(−D)(m)) +

k

∑
i=1

biχ(Fi(E)(m)/Fi+1(E)(m))

)

=
1
n

(
nχ(E(−D)(m)) +

k

∑
i=1

bi(χ(Fi(E)(m))− χ(Fi+1(E)(m)))

)

=
1
n

(
(n− bk)χ(E(−D)(m)) +

k−1

∑
i=0

(bi+1 − bi)χ(Fi+1(E)(m)))

)

where in the last line b0 = 0.
On the other hand the Hilbert polynomial we get by using the sheaf E above is

PE (E)(m) = P(π∗(E⊗ E∨))(m) = P

(
n⊕

i=1

π∗(E⊗OX(−iD))
)
(m)

=
n

∑
i=1

P
(

E− i
n

)
(m) =

n

∑
i=1

χ
(

E− i
n
(m)

)
(recall that E− i

n
= π∗(E⊗OX(−iD))) and this last expression coincides with PMY(E∗)(m) after

dividing by n, since among the sheaves E− i
n

, with 1 ≤ i ≤ n there are exactly n− bk copies of
E(−D) = Fk+1(E) (just to the right of −1), exactly bk − bk−1 copies of Fk(E), and so on. Of course
the constant factor 1

n does not affect the notion of (semi-)stability that we get.

Remark 3.3.13. This says that the notion of (semi-)stability for MY-parabolic sheaves is equivalent
to the notion of stability when we use the generating sheaf E introduced above, so the two moduli
theories that we get should be the same.

There is a minor detail, though, related to the fact that by working on the root stack X =
X 1

n N/N
we only bound the denominators of the weights (in the divisibility sense), when in
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[MY92] and [Yok93], the authors fix the jumps of the parabolic sheaves, and the parabolic Hilbert
polynomials of the quotients Fi(E)/Fi+1(E).

We will return later on this point, and describe a comparison between our moduli stacks and
spaces and Maruyama and Yokogawa’s (Section 3.3.5).

3.3.2 The general case

Now we turn to the general case of a log scheme X with a global chart L : P → Div(X), and
a Kummer extension j : P → Q, that gives a chart for the system of denominators A → B. The
previous example suggests the following construction: since Q is sharp and fine, its finite number
of indecomposable elements are a minimal set of generators (see Proposition 1.1.13), call them
q1, . . . , qr. Moreover, call di the order of the image of qi ∈ Qgp in the quotient Qgp/Pgp.

If Λ : Q → Div(X) is the universal lifting of the log structure of X, for any qi we have an
associated invertible sheaf Λi = Λ(qi) on X, and we consider the locally free sheaf

E = EQ/P =
⊕

1≤ai≤di

Λ

(
∑

i
aiqi

)
=

⊗
i=1,...,r

 ⊕
j=1,...,di

Λ⊗j
i

 .

Note that if X is the log scheme given by a variety with an effective Cartier divisor, then this
sheaf corresponds to the one described in the last section: in fact for N ⊆ 1

n N, we have the only
indecomposable element 1

n , and the order d is exactly n, so that

E =
⊕

1≤i≤n
Λ
(

i
n

)
=

⊕
1≤i≤n

OX(iD),

since in this case the universal DF structure of X is the functor Λ : 1
n N→ Div(X) that sends 1

n to
the universal root (OX(D), s) of the pullback of the divisor D.

We will denote this sheaf by E when the Kummer extension is clear, and by EQ/P when it
needs to be specified. In particular we will write En for E 1

n P/P, or more generally E 1
n Q/P for a

fixed Kummer extension P ⊆ Q, which will be clear from the context.

Remark 3.3.14. One could argue that the sheaf

E ′ =
⊕

0≤ai<di

Λ

(
∑

i
aiqi

)
=

⊗
i=1,...,r

 ⊕
j=0,...,di−1

Λ⊗j

 .

in which we take OX instead of Λ⊗di
i (which is the pullback of something from X, so corresponds

to the trivial representation of the stabilizer of any point of X) in each summand would be some-
what more natural. In fact one could twist different pieces of the direct sum with an invertible
sheaf coming from X and still have a perfectly good generating sheaf.

The choice of the one we singled out is guided by the fact that in the case of a variety with a
divisor it gives back the (semi-)stability of Maruyama and Yokogawa, and, as we will see in the
next chapter, it will allow semi-stability to be preserved after changing denominators, something
that does not happen for example with the generating sheaf written down in the last formula.
Actually we will also need to use the alternative sheaf E ′ in that instance, but only as an accessory.
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Proposition 3.3.15. The locally free sheaf E is a generating sheaf on X.

Proof. Recall from that the global chart for the system of denominators gives the following
description for the stack of roots: the map X → [Spec(k[P])/P̂] corresponding to the chart
P → Div(X) for the logarithmic structure of X gives a P̂-torsor η : E → X, and X is iso-
morphic to the quotient stack [E ×Spec(k[P]) Spec(k[Q])/Q̂], where the action of Q̂ on the first
factor is induced by the action of P̂ on E and the natural homomorphism Q̂ → P̂. In par-
ticular a quasi-coherent sheaf on X corresponds to a Q̂-equivariant quasi-coherent sheaf on
E ×Spec(k[P]) Spec(k[Q]), or equivalently to a Qgp-graded quasi-coherent sheaf of modules over
the sheaf of rings B = A⊗k[P] k[Q], where A = η∗OE.

Now fix a geometric point p → X. We will show that the fiber Ep = p∗E at p of E contains
every irreducible representation of the stabilizer group Stab(p) ⊆ Ĝ ⊆ Q̂. Notice that being a
closed subgroup of a diagonalizable group we will have Stab(p) = D[M] for a quotient M of
the group G, and the action of Stab(p) on Ep will correspond to an M-grading. Moreover since
Stab(p) is diagonalizable, irreducible representations correspond to characters, so what we need
to verify is that in the M-grading every piece is non zero.

This grading is obtained as follows: the Qgp-grading on the sheaf corresponding to E on
E ×Spec(k[P]) Spec(k[Q]) is inherited by the various summands, and by construction the sheaf
corresponding to Λi = Λ(qi) is in degree qi. This gives a Qgp grading on Ep by pulling back, and
we finally get the M-grading by means of the homomorphism Qgp → G → M.

More explicitly, following through the above we find

Ep ∼=
⊕

m∈M
k(p)⊕a(m)

where a(m) is the number of r-tuples (e1, . . . , er) of integers such that 0 < ei ≤ di and e1m1 +
. . . + ermr = m, where mi is the image of qi in M. Since the qi’s generate G, the mi’s will generate
M (and still have order at most di), so a(m) ≥ 1 for any m. This means that every character of
Stab(p) appears in Ep, so E is a generating sheaf on X.

This settles the choice of a generating sheaf in the case where there is a global chart. One
would hope that this construction could be generalized to an arbitrary log scheme, by patching
the local generating sheaves on open subsets where there is a chart. Unfortunately, it is not so
clear how to do this.

Example 3.3.16. Let us look at the simplest example of a log scheme coming from a normal
crossing divisor, but not simple normal crossing.

Take X to be a projective smooth surface over k, with an irreducible curve D with one ordinary
node p ∈ D ⊆ X as effective divisor, inducing a log structure L : A → DivX . In this example
X does not have a global chart: it has a chart with monoid N on the complement of the node
U = X \ {p}, and one with N2 in some étale neighborhood V → X of the node p, where the two
branches are separated, call them D1, D2.

Let us say we are considering square roots, so let X,U,V denote the root stacks of X, U, V
(the last two with the pullback log structure) with respect to the Kummer extensions A → 1

2 A,
N→ 1

2 N and N2 → 1
2 N2 respectively. Our construction gives us generating sheaves EU and EV
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on the root stacks of U and V, and the idea would be to glue them along the intersection U×X V,
which is none other than the root stack of V \ {q}, where q is the preimage of the node.

It is clear though that this can not work for a pretty stupid reason: the sheaf EU = OU(D)⊕
OU(2D) has rank 2 and EV = OV(D1 +D2)⊕OV(2D1 +D2)⊕OV(D1 + 2D2)⊕OV(2D1 + 2D2)
has rank 4.

Then one could think of constructing a generating sheaf on X by taking OX(D) ⊕ M ⊕ N,
where M and N have ranks 2 and 1 respectively, and are obtained by descent from OV(2D1 +
D2)⊕OV(D1 + 2D2) and OU(2D)⊕OU(D), and OV(2D1 + 2D2) and OU(2D) respectively (we
will see that something like this works in the equivariant case described below).

This attempt also fails: the sheaves OV(2D1 + 2D2) and OU(2D) are naturally identified after
restricting to U×X V, so they give the desired sheaf N by descent, but there is no natural way to
identify the restrictions of OV(2D1 +D2)⊕OV(D1 + 2D2) and OU(2D)⊕OU(D). The “moral”
reason for this is that in V one can tell apart the branches of the curve around the node, and in
U one can not do it.

This shows that the obvious strategy will not work in general. The next example will demon-
strate that if we add some structure to the situation, then we can obtain a generating sheaf.

Example 3.3.17. A case where we get a generating sheaf is the following: assume that the X
described in the last example admits a µ2-cover Y → X (assume char(k) 6= 2, for simplicity) from
another surface Y, that has two irreducible smooth curves D1, D2 ⊆ Y that are exchanged by the
action, and that map to D ⊆ X. In other words there is an involution µ : Y → Y that exchanges
D1 and D2, and we have X = Y/µ and D = (D1 ∪ D2)/µ.

For example, we could take a curve C of genus 2 and fix two Weierstrass points p, q ∈ C.
Then we can embed C in its Jacobian J, a surface, by c 7→ OC(c− p), and consider the translation
C̃ of C by the point of order 2 given by OC(q− p). Since the self intersection C2 is 2 and C ∩ C̃
contains OC and OC(q− p), these are the only points in the intersection and the intersection is
transverse. The quotient of J by the translation by OC(q− p) gives our X, and the image of the
union C ∪ C̃ is the nodal curve.

Back to the general situation, note first of all that the morphism of log schemes f : Y → X
(where the log structures are given by the divisors) is strict, so the following diagram is cartesian

Y
f //

πY
��

X

πX
��

Y
f // X

where Y and X are the root stacks parametrizing square roots of the log structures.
In particular f : Y → X is a µ2-torsor (call µ : Y → Y the corresponding involution), and

we can use descent for quasi-coherent sheaves with respect to f : note that we have natural
isomorphisms µ∗OY(D1) ∼= OY(D2) and µ∗OY(D2) ∼= OY(D1), so both OY(2D1 + D2) ⊕
OY(D1 + 2D2) and OY(2D1 + 2D2) will be µ2-equivariant. By descent we get two locally free
sheaves M and N on X of rank 2 and 1 respectively, and by construction the locally free sheaf

E = OX(D)⊕M⊕ N

is a generating sheaf on X.
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This example can be generalized to a situation in which we have what we call a locally constant
sheaf of charts for the log structure of X, which is something that binds together charts on different
open subsets of X, and consequently will bind together the corresponding generating sheaves on
such opens.

In the example above, this sheaf is obtained by descent from the constant sheaf of monoids N2
Y

on Y, glued to itself along f , using the morphism N2 →N2 that switches the two coordinates.

3.3.3 Locally constant sheaves of charts

We introduce the additional structure that allows us to define a generating sheaf.

Definition 3.3.18. Let X be a log scheme with DF structure L : A → DivX and fix a system of
denominators j : A → B. A locally constant sheaf of charts for this data is a sheaf of monoids Q on
X, together with the following:

• an étale covering {Ui → X}i∈I and isomorphisms φi : Q|Ui
∼= (Q0)Ui , where Q0 is a fixed

fine sharp monoid (hence the “locally constant”),

• a morphism of sheaves of monoids α : Q → B, which is a cokernel (hence the “sheaf of
charts”),

• for every i ∈ I, a fine monoid Pi, a Kummer morphism βi : Pi → Q0 and a morphism of
monoids Pi → A(Ui), that together with α and the φi’s gives a chart for j on Ui.

We will refer to a locally constant sheaf of charts as above by writing (Q, Q0, {Ui → X}i∈I , Pi →
Q0).

Remark 3.3.19. Clearly a global chart for A→ B gives a locally constant sheaf of charts.
Another particular case of interest is the following: the sheaf A has a locally constant sheaf of

charts, i.e. a sheaf of monoids P which is locally (P0)Ui for some fixed fine and sharp monoid P0

and with a cokernel P→ A, as in the definition, and B = 1
n A for some n ∈N.

The datum of a locally constant sheaf of charts is essentially equivalent to that of a torsor
ϕ : Y → X for a finite group G, such that ϕ∗B has a global chart, which is in some sense equiv-
ariant with respect to G, as in example 3.3.17. This is the content of the construction that follows.

Suppose we have a locally constant sheaf of charts, with the same notation as above. Consider
the sheaf F = Isom(Q, Q0) on the big étale site of X, which associates to a map f : T → X the
set Isom(Q, Q0)(T) = Isom( f ∗Q, (Q0)T) of isomorphisms of sheaves of monoids, and acts in the
obvious way on the morphisms. Notice that this is a locally constant sheaf for the étale topology
on X, and specifically we have isomorphisms F|Ui

∼= Isom((Q0)Ui , (Q0)Ui ) = Aut(Q0)Ui .
Set G = Aut(Q0), the group of monoid automorphisms of Q0, and notice that this is a finite

group: in fact since Q0 is fine and sharp, it has a finite number of indecomposable elements
(see Proposition 1.1.13), and those must be permuted by any automorphism, which in turn is
completely determined by the induced permutation.

Being a finite locally constant sheaf, F is represented by a scheme Y over X, call ϕ : Y → X
the structure morphism.
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Remark 3.3.20. In other words, by the Yoneda Lemma, we have a functorial bijection

HomX(T, Y) = {( f , η) where f : T → X and η : f ∗Q ∼= (Q0)T}

and the identity idY ∈ HomX(Y, Y) corresponds to a universal object (ϕ, ξ), with ξ : ϕ∗Q ∼=
(Q0)Y, such that for any morphism f : T → X and η : f ∗Q ∼= (Q0)T there is a unique morphism
f : T → Y such that f = ϕ ◦ f and the following diagram commutes

f
∗

ϕ∗Q

��

f
∗
ξ // (Q0)T

f ∗Q,

η

::

where the vertical arrow is the canonical isomorphism.

In particular note that on Y we have ξ : ϕ∗Q ∼= (Q0)Y and ϕ∗α : ϕ∗Q→ ϕ∗B is still a cokernel,
since α is. Composing the two we get a cokernel (Q0)Y → ϕ∗B, corresponding to a chart Q0 →
(ϕ∗B)(Y) for the pullback ϕ∗B.

Moreover since F is a G-torsor by means of the obvious left action obtained by composition,
ϕ is also a G-torsor. Denote by Y the stack of roots of the DF structure on Y with respect to the
kummer morphism ϕ∗(A) → ϕ∗(B), which is just the fibered product X×X Y. Notice that the
induced map ϕ̃ : Y→ X is a representable G-torsor, for the G-action induced on Y by that on Y.

Now our strategy is to take a “naturally defined” generating sheaf on Y, which will be G-
equivariant, by generalizing slightly the construction of 3.3.2, and then get by descent a sheaf on
X, which will be our generating sheaf.

We start by defining the generating sheaf E on Y: call {q1, . . . , qr} the indecomposable ele-
ments of Q0. Notice that this time the monoid giving the chart for the DF structure ϕ∗A of Y
is not the same over all of Y: we have an étale covering {Yi → Y}i∈I induced by the covering
{Ui → X}i∈I in the definition of the sheaf of charts, and on each Yi we have a chart βi : Pi → Q0
for the kummer morphism ϕ∗A→ ϕ∗B. Let us set Gi = Q0

gp/Pgp
i with projection πi : Qgp

0 → Gi,
and this time put

di = gcd{ord(πi( f (qi))) for f ∈ Aut(Q0)},

where ord is the order of an element in the finite group Gi.
Finally denote by Λ : Q0 → Div(Y) the pullback of the universal DF structure on X along the

projection ϕ̃ : Y→ X, and set Λi = Λ(qi), and

E =
⊕

1≤ai≤di

Λ

(
∑

i
aiqi

)
=

⊗
i=1,...,r

 ⊕
j=1,...,di

Λ⊗j
i

 .

as in 3.3.2.
Since ϕ̃ : Y → X is a representable G-torsor, to give E the structure of a G-equivariant sheaf

we have to give an isomorphism λ : α∗E ∼= π∗2E , where α, π2 : Y×X G → Y are the action and
the second projection, that satisfies a compatibility condition on the triple product Y×X G×X G.
Here we are considering the finite group G as a relative group scheme over X in the usual way,
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as G = äg∈G X, so in particular we have Y ×X G ∼= äg∈G Y, and the action corresponds to
morphisms ψ(g) : Y → Y for g ∈ G. The resulting map ψ : G → AutX(Y) is an injective group
homomorphism, so in particular all the ψ(g) are automorphisms. All of this holds for Y too, and
from now on we will make the following abuse of notation: we will write simply g in place of
ψ(g), and also to denote the corresponding automorphism Y → Y over X.

The above discussion shows that in order to give the isomorphism λ as above, we can equiv-
alently give isomorphisms λg : g∗E ∼= E for g ∈ G, satisfying the natural compatibility property
with respect to composition.

Proposition 3.3.21. There are canonical isomorphisms λg : g∗E ∼= E for g ∈ G, such that for any
g, h ∈ G we have λg ◦ g∗λh = λhg : (hg)∗E ∼= E .

Proof. We will show that there are canonical isomorphisms g∗Λ(qi) ∼= Λ(g(qi)) for each i, com-
patible with composition in G. Putting all of those and their various tensor powers together, we
will get isomorphisms λg : g∗E ∼= E with the desired properties.

First of all let us fix g ∈ G, and describe the pullback g∗F for a quasi-coherent sheaf on Y:

given an étale map f : U → Y from a scheme, we have (g∗F)(U) = F(U
g◦ f−→ Y) as an OU(U)-

module.
Secondly, by unraveling the definitions one checks that the map g(U) : Y(U) → Y(U) takes

an object of Y, which will be a morphism a : U → Y together with a lifting a∗ϕ∗B → DivU of
the pullback of the DF structure ϕ∗A → DivY to U, to the composition g ◦ a, together with the
induced lifting a∗g∗ϕ∗B → DivU , obtained using the canonical isomorphism a∗g∗ϕ∗B ∼= a∗ϕ∗B
(recall that ϕ ◦ g = ϕ).

Putting these facts together, the conclusion follows from the claim that we have a commutative
diagram

(Q0)Y

gY

��

// ϕ∗Q

can
��

(Q0)Y // g∗ϕ∗Q

of sheaves of monoids on Y, where all the maps are isomorphisms, can stands for the canonical
isomorphism (coming from ϕ ◦ g = ϕ), and the horizontal arrows are the maps corresponding
to idY (top one) and g : Y → Y (bottom one) in the Yoneda correspondence described in Remark
3.3.20. In other words the top arrow is ξ−1, and the bottom one is g∗ξ−1, and the equality to
prove is

can ◦ ξ−1 = g∗ξ−1 ◦ gY. (3.3.22)

Let us show that the conclusion follows from this: in fact, g∗Λ(qi)(U) for an étale f : U → Y will

be Λ(qi) applied to the composition U → Y
g→ Y, so we have to ask ourselves what is the image

of qi ∈ Q0 in Div(U), with respect to the morphism Q0 → Div(U) coming from the composition

(Q0)U ∼= f ∗φ∗Q ∼= (g ◦ f )∗ϕ∗Q→ DivU

where the first two maps are the top row and the right one of the preceding diagram, pulled back
to U. The above claim shows that this image is precisely Λ(g(qi)).
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To prove the claim we need to give names to various morphisms of sheaves of monoids: recall
from above that a morphism f : Y → Y over X corresponds to an isomorphism f ] : ϕ∗Q ∼= (Q0)Y.
Let us put α( f ) = f ] ◦ ξ−1, where ξ : ϕ∗Q ∼= (Q0)Y is the universal isomorphism of the Yoneda
correspondence. Then one can check that α : AutX(Y) → Aut((Q0)Y) is an isomorphism of
groups, and in particular for g ∈ G, we have α(ψ(g)) = gY : (Q0)Y → (Q0)Y.

Writing down how f ] is obtained as a pullback of the universal object ξ, we get that, if we
denote by β( f ) : ϕ∗Q ∼= f ∗ϕ∗Q the canonical isomorphism, then β( f ) = f ∗(ξ−1) ◦ f ].

Now using these equalities we get

β( f ) ◦ ξ−1 = f ∗ξ−1 ◦ f ] ◦ ξ−1 = f ∗ξ−1 ◦ α( f ),

and applying this to g ∈ G seen as the corresponding g : Y → Y, we get exactly the equality
3.3.22.

The statement about the composition can again be checked on the single LQ0(qi), and boils
down to a similar calculation, using the commutative diagram

(Q0)Y

gY

��

// ϕ∗Q

��
(Q0)Y //

hY
��

g∗ϕ∗Q

��
(Q0)Y // g∗h∗ϕ∗Q.

By descent along torsors, the data given in the previous proposition give a locally free sheaf
E ∈ Coh(X).

Proposition 3.3.23. The sheaf E is a generating sheaf on X.

Proof. Take a geometric point p → X. Since the map Y → X is étale and surjective there exists
a lifting q → Y of p, so that Ep = Eq, and moreover there is an index i ∈ I such that the image
of p in X is in the image of Ui → X, where {Ui → X}i∈I is an étale covering that satisfies the
requirement in the definition of a locally constant sheaf of charts.

By construction of Y we have Stab(q) = Stab(p) ⊆ Ĝi ⊆ Q̂0, so it suffices to verify that every
character of Stab(q) = D[M] appears in the decomposition of the k(q)-vector space Eq for the
action of Stab(q), and this is true by the same argument used in the proof of proposition 3.3.15,
since the images of the qi’s will generate both Gi and its quotient M.

3.3.4 Results

From now on we will assume that the log scheme X has a locally constant sheaf of charts
(Q, Q0, {Ui → X}i∈I , Pi → Q0), that may in particular be a global chart P → Q for the Kum-
mer extension j : A→ B. In fact this last situation will come up more often than the more general
one, since we will be able to say more with a global chart.
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In this situation we can produce a generating sheaf E on the root stack X = XB/A, and we can
apply Nironi’s theory [Nir] for moduli of coherent sheaves on an algebraic stack. In this section
we will summarize the notions and results that we get from it.

The proof of the results that are simply stated in this section can all be found in [Nir].

Remark 3.3.24. In order to apply Nironi’s theory we have to assume that the root stack XB/A is
Deligne–Mumford. For example, this is assured by the condition the char(k) does not divide the
order of the quotient Bgp

x /Agp
x for any geometric point x → X (as in 1.2.31). We will include this

assumption in our treatment from now on.
This will force us to assume that char(k) = 0 in the next chapter, since we will have to consider

a cofinal system of root stacks, and, for example if we consider the system of root stacks Xn, it
would do no good to exclude indices divisible by some fixed prime p.

We remark that it seems likely that Nironi’s theory also applies to tame Artin stacks, with-
out the Deligne–Mumford assumption. If this were true our results would hold in arbitrary
characteristic.

Notation 3.3.25. From now on we will use the same letter to denote a coherent sheaf E ∈ Coh(X)
on the root stack and the corresponding parabolic sheaf Φ(E) ∈ Par(X, j). In particular we will
denote by Eb the piece π∗(Φ(E) ⊗ Λb) ∈ Coh(X) of the parabolic sheaf corresponding to the
element b ∈ Bwt(U).

From now on we will be drawing parabolic sheaves more often. We recall how to visualize
them, in the case where there is a global chart P→ Q for the system of denominators: one has to
picture the lattice Qgp, and imagine a quasi-coherent sheaf Eq on X on each point q of the lattice.
Moreover there are maps Eq → Eq′ exactly when q ≤ q′, in the sense that there exists q′′ ∈ Q
such that q′ = q + q′′, and if p ∈ P, then the sheaf Eq+p is isomorphic to Eq ⊗ Lp, and the map
Eq → Eq+p corresponds to multiplication by the distinguished section of Lp. In practice it will be
enough to draw a small portion of the sheaf, which will determine it uniquely.

The starting point is the definition of the generalized slope pE (E) ∈ Q[m] for a parabolic sheaf
E ∈ Par(X, j) (Definition 3.3.3). We recall that it is defined as

pE (E)(m) =
PE (E)(m)

αd(E)
=

χ(π∗(E⊗ E∨)(m))

αd(E)

where d is the degree of the Hilbert polynomial PE (E) = P(π∗(E⊗ E∨)), and αd(E) is d! times
its leading coefficient, a positive rational number.

From now on this will be simply called the slope of E, and if there is no risk of confusion we
will omit to mention E in Euler characteristics, Hilbert polynomials and slopes.

If the Kummer extension j : A→ B has a global chart P→ Q, then E is a sum of line bundles
and π∗(E⊗ E∨) also splits as a direct sum

π∗(E⊗ E∨) = π∗(E⊗ (
⊕

1≤ai≤di

Λ⊗a1
1 ⊗ · · · ⊗Λ⊗ar

r )∨)

=
⊕

1≤ai≤di

π∗(E⊗ (Λ⊗a1
1 ⊗ · · · ⊗Λ⊗ar

r )∨) =
⊕

1≤ai≤di

E−∑ aiqi

of pieces of E in some kind of (negative) “fundamental region” for the Kummer extension P→ Q.
We will give a name to the pieces of E that show up in this decomposition.
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Definition 3.3.26. The fundamental pieces of E are the pieces Eq with q = −∑ aiqi and 1 ≤ ai ≤ di,
where qi are the indecomposable elements of Q and di is the order of the image of qi in the
quotient Qgp/Pgp.

Example 3.3.27. For example, if P = N2 and we are considering the extension N2 → 1
2 N2, then

for a parabolic sheaf E ∈ Par(X, j) the fundamental pieces are the four sheaves in the “negative
unit square”

−1 − 1
2

E−1,− 1
2

// E− 1
2 ,− 1

2
− 1

2

E−1,−1

OO

// E− 1
2 ,−1

OO

−1

A similar description holds if P is free and we are considering the extension P→ 1
n P.

From the fundamental pieces of a parabolic sheaf we can reconstruct all of its pieces, since
for any q ∈ Qgp there is a p ∈ Pgp such that q + p = −∑ aiqi for 1 ≤ ai ≤ di, and consequently
Eq ∼= E−∑ aiqi ⊗ L∨p . We can even reconstruct the morphisms between the pieces of E (and then
the whole sheaf), from the morphisms between the fundamental pieces and, for example, all
morphisms

E(− ∑
i 6=i0

aiqi − qi0)→ E(− ∑
i 6=i0

aiqi)

for varying i0 and ai.
In example 3.3.27, these additional morphisms would be the ones going up and right of the

negative unit square, to the pieces of E “lying on the coordinate axes”, i.e. the thicker arrows in
the following picture

−1 − 1
2 0

E−1,−1 ⊗ L0,1 // E− 1
2 ,−1 ⊗ L0,1 // E−1,−1 ⊗ L1,1 0

E−1,− 1
2

//

KS

E− 1
2 ,− 1

2
+3

KS

E−1,− 1
2
⊗ L1,0

OO

− 1
2

E−1,−1

OO

// E− 1
2 ,−1

+3

OO

E−1,−1 ⊗ L1,0

OO

−1.

Remark 3.3.28. Note that if P is not free, then it is not necessarily the case that every fundamental
piece shows up exactly once in π∗(E⊗ E∨). Take for example

P = 〈p, q, r | p + q = 2r〉,



108 CHAPTER 3. MODULI OF PARABOLIC SHEAVES WITH FIXED WEIGHTS

the Kummer extension P ⊆ 1
4 P, and denote by Λ1 = Λ( 1

2 p), Λ2 = Λ( 1
2 q) and Λ3 = Λ( 1

2 r), where
Λ : 1

2 P → DivX is the universal DF structure on the root stack X. Note that since p + q = 2r, we
have Λ1 ⊗Λ2 ∼= Λ⊗2

3 . Then the generating sheaf is

E =

(
4⊕

i=1

Λ⊗i
1

)
⊗
(

4⊕
i=1

Λ⊗i
2

)
⊗
(

4⊕
i=1

Λ⊗i
3

)

and for example the piece Λ⊗2
1 ⊗Λ⊗2

2 ⊗Λ3 shows up also as Λ1⊗Λ2⊗Λ⊗3
3 , since in 1

4 P we have

2
(

1
4

p
)
+ 2

(
1
4

q
)
+

1
4

r =
1
4

p +
1
4

q + 3
(

1
4

r
)

.

So accordingly, the fundamental piece E(−2
(

1
4 p
)
− 2

(
1
4 q
)
− 1

4 r) will appear twice in π∗(E ⊗
E∨).

From the splitting of π∗(E⊗ E∨) described above we also see that

PE (E) = P(π∗(E⊗ E∨)) = P(
⊕

1≤ai≤di

E−∑ aiqi ) = ∑
1≤ai≤di

P(E−∑ aiqi )

is the sum of the Hilbert polynomials of the fundamental pieces of F. Consequently, assuming
that the fundamental pieces of F all have dimension d (and recall that by our conventions the
zero sheaf is pure of any dimension), for the slope of F we have

pE (E) =
∑1≤ai≤di

P(E−∑ aiqi )

∑1≤ai≤di
αd(E−∑ aiqi )

= ∑
1≤ai≤di

γ(ai)
p(E−∑ aiqi ) (3.3.29)

where d is the dimension of E, and

γ(ai)
=

αd(E−∑ aiqi )

∑1≤ai≤di
αd(E−∑ aiqi )

are rational numbers such that 0 ≤ γ(ai)
≤ 1 and ∑1≤a1≤di

γ(ai)
= 1.

In other words the slope of the parabolic sheaf E (provided that all its non-zero pieces are of
the same dimension) is a weighted mean of the slopes of its non-zero fundamental pieces. The
condition about the pieces is satisfied in particular if E is pure, as we saw in Proposition 3.2.10.

Definition 3.3.30. A parabolic sheaf is (semi-)stable if it is pure, and for any subsheaf G ⊆ E we
have

pE (G) (≤) pE (E).

As is usually done in moduli theory of sheaves, we write (≤) to indicate that one should read
≤ when he considers semi-stability, and < when he considers stability.

This notion of stability has many properties of the classical notion of Gieseker stability on a
projective scheme.
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Remark 3.3.31. For example, as in the classical case, (semi-)stability can be checked on saturated
subsheaves G ⊆ E, i.e. subsheaves such that the quotient E/G is pure of the same dimension as
E. This implies that line bundles are all stable.

Moreover, a direct sum E1 ⊕ E2 is never stable, and is semi-stable if and only if E1 and E2 are
semi-stable of the same slope.

Example 3.3.32. It is clear that if the fundamental pieces of a parabolic sheaf E are all (Gieseker)
semi-stable (as coherent sheaves on X, with respect to the same polarization that we fixed at the
beginning), then E will be semi-stable. In fact, every fundamental piece Fq of a subsheaf F ⊆ E is
a subsheaf Fq ⊆ Eq of the corresponding fundamental piece of E, and by (semi-)stability of Eq we
have

P(Fq)α
d(Eq) (≤) P(Eq)α

d(Fq)

where P is the ordinary Hilbert polynomial on X, and αd is its leading coefficient.
By summing on the fundamental pieces and diving by the sum of the αd’s, we get exactly

pE (F) (≤) pE (E)

so E is (semi-)stable. In particular if all the fundamental pieces of a parabolic sheaf are line
bundles, then it is semi-stable.

The following two results are also identical to the corresponding ones for classical moduli
theory of sheaves. They provide filtrations that “break up” a parabolic sheaf in semi-stable
pieces, and a semi-stable parabolic sheaf in stable pieces.

Proposition 3.3.33 (Harder-Narasimhan filtration). For any parabolic sheaf E ∈ Par(X, j) there is a
filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ek ⊂ Ek+1 = E

such that

• the quotients Ei/Ei−1 are semi-stable for i = 1, . . . , k + 1; call pi the slope pE (Ei/Ei−1),

• the slopes are such that p1 > · · · > pk+1.

Moreover this filtration is unique, and it is called the Harder-Narasimhan filtration of the parabolic sheaf
E.

Proposition 3.3.34 (Jordan-Hölder filtration). For any semi-stable parabolic sheaf E ∈ Par(X, j) there
is a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fh ⊂ Fh+1 = E

such that the quotients Fi/Fi−1 are stable with slope pE (E) for i = 1, . . . , h + 1.
This filtration is not unique, but the set {Fi/Fi−1}i=1,...,h+1 of partial quotients of the filtration is

unique, as is their direct sum

gr(E) =
h+1⊕
i=1

Fi/Fi−1,

sometimes called the associated graded sheaf of E.
Any such filtration is called a Jordan-Hölder filtration of the parabolic sheaf E.
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Note that since the quotients Fi/Fi−1 of the above filtration are stable with the same slope, the
parabolic sheaf gr(E) is semi-stable with the same slope as E.

Definition 3.3.35 (S-equivalence). Two parabolic sheaves E, E′ ∈ Par(X, j) are said to be S-
equivalent if their associated graded sheaves gr(E) and gr(E′) are isomorphic.

Equivalently one can say that the sets {Fi/Fi−1} and {F′i /F′i−1} of quotients of a Jordan-Hölder
filtrations of the two sheaves are the same, i.e. such quotients are pairwise isomorphic.

Recall that a semi-stable sheaf is called polystable if it is a direct sum of stable sheaves, which
then must all have the same slope. Every parabolic semi-stable sheaf E ∈ Par(X, j) is S-equivalent
to exactly one polystable sheaf, the sheaf gr(E).

The notion of (semi-)stability satisfies some openness and boundedness conditions, as shown
in [Nir]. We summarize the final product of the theory.

Fix a polynomial H ∈ Z[x], and define the stackMss
H over (Sch) having as objects ofMss

H(T)
for a scheme T families of parabolic sheaves E ∈ Par(XT , jT) such that for every geometric point
t → T, the restriction Et ∈ Par(Xt, jt) is pure and semi-stable with Hilbert polynomial H, and as
arrows isomorphisms of parabolic sheaves. The pullback Mss

H(T) → Mss
H(S) for S → T is the

pullback of parabolic sheaves we discussed earlier.
Note that of course this stack also depends on the system of denominators A → B, but we

omitted it in the notation to keep it lighter.
Denote by Ms

H ⊆ Mss
H the subcategory parametrizing families of parabolic sheaves that are

stable on the fibers, instead of merely semi-stable. This is an open substack.

Remark 3.3.36. To define (semi-)stability on the base change Xt = X ×k Spec(k(t)) we use the
pullback of the generating sheaf E that we have on X along the natural map (Xt)B/A → XB/A =
X.

Here is the result that we obtain from [Nir, Section 6].

Theorem 3.3.37. Let X be a projective log scheme with a DF structure L : A → DivX and j : A → B a
system of denominators with a locally constant sheaf of charts. Moreover assume that the root stack XB/A
is Deligne–Mumford.

Then the stack Mss
H of semi-stable parabolic sheaves is an Artin stack of finite type over k, and it has

a presentation as a global quotient stack [Q/GLN,k], where Q is an open subscheme of a certain quot
scheme. Moreover it has a good (resp. adequate, in positive characteristic) moduli space in the sense of
Alper [Alp12, Alp], that we denote by Mss

H . This moduli space is a projective scheme, constructed with
GIT techniques.

The open substackMs
H ⊆ Mss

H of stable sheaves also has a good moduli space Ms
H , which is an open

subscheme of Mss
H , and the mapMs

H → Ms
H is a Gm-gerbe.

Some comments about this theorem.

Remark 3.3.38. We should have included also the locally constants sheaf of charts in the notation
for the stackMss

H , since stability is not independent of the choice, as we will see shortly.

Remark 3.3.39. We chose to fix the Hilbert polynomial in this formulation, but one can also fix
other invariants of coherent sheaves, for example Chern classes, or the reduced Hilbert polyno-
mial h. The corresponding moduli stacks are defined analogously, and the results one obtains
translate verbatim.
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In particular, in the next chapter we will fix the reduced Hilbert polynomial h ∈ Q[x], that is
obtained from H by dividing it by d! times its leading coefficient, d being the degree, and consider
the corresponding stacksMs

h ⊆M
ss
h . Note that for exampleMss

h will be a disjoint union

Mss
h =

⊔
H=h

Mss
H

where H is H divided by d! times its leading coefficient. This has a good moduli space, the
disjoint union of the corresponding moduli spaces, and the same is true for the substack of stable
sheaves.

In the same spirit one can form the disjoint union Mss =
⊔

H∈Z[x]Mss
H and the analogous

one for stable sheaves. This stack, that parametrizes parabolic sheaves on X with respect to the
system of denominators A → B without fixing invariants, will still have a good moduli space,
the disjoint union of the Mss

H , which of course will not be projective anymore.

Remark 3.3.40. The points of the good moduli space Mss
H do not correspond to isomorphism

classes of semi-stable sheaves, but rather to S-equivalence classes, or, in other words, to isomor-
phism classes of polystable sheaves. This follows from the GIT construction.

Moreover, a point of the stackMss
H is closed if and only if the corresponding sheaf is polystable.

This follows from the description as a quotient and from the fact that an orbit of a point is closed
if and only if it is polystable (see Theorem 6.20 of [Nir]).

3.3.5 Comparison with Maruyama and Yokogawa’s theory

In this short section we remark that this construction recovers the moduli spaces of Maruyama
and Yokogawa. Recall from 3.3.1 that they considered the case of a projective variety X with an
effective Cartier divisor D ⊆ X. This induces a log structure on X, given by the global chart
N → Div(X) sending 1 to (OX(D), s). Recall also their definition of a parabolic sheaf on X as a
torsion-free sheaf E with a filtration E(−D) = Fk+1(E) ⊂ Fk(E) ⊂ · · · ⊂ F1(E) = E and rational
weights 0 ≤ a1 < · · · < ak < 1.

Let us fix a common denominator n ∈ N for the weights ai, and consider the root stack
Xn = X 1

n N/N
. Torsion-free quasi-coherent sheaves on Xn correspond to parabolic sheaves of the

form
−1 − n−1

n . . . − 1
n 0

E⊗OX(−D)
fn−1 // En−1

fn−2 // . . .
f1 // E1

f0 // E.

where every sheaf is torsion-free and the maps are injective by 3.2.10 and 3.2.13.
This resembles closely the definition of a MY-parabolic sheaf. The difference is that Maruyama

and Yokogawa fix the weights, i.e. the sequence of numbers − a
n corresponding to maps Ea+1 →

Ea that are not isomorphisms. We will check now that fixing the weights gives a component of
our moduli stack of parabolic sheaves, and that this component gives back the moduli spaces of
Maruyama and Yokogawa.
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Let us fix a sequence of rational weights 0 ≤ a1 < · · · < ak < 1 and a polynomial H ∈ Q[x].
Write ai =

bi
n , and let us denote by Mss(a1, . . . , ak) the stack of families of parabolic torsion free

sheaves on X, such that the morphism Ej+1 → Ej is an isomorphism if and only if j is not in
{b1, . . . , bk} (in other words, −ai are exactly the indices where the sheaf jumps).

This clearly gives a subcategoryMss(a1, . . . , ak) ⊆Mss of the moduli stack we defined above,
and moreover this map of stacks is an open and closed immersion.

To see this we need the following lemma, which says moreover that the flatness of the coker-
nels that is required in [MY92] in the definition of the moduli functor is actually automatic.

Lemma 3.3.41. Let X be a noetherian log scheme with generically trivial log structure, j : P→ Q a chart
for a system of denominators on X and E ∈ Par(XT , jT) be a family of torsion-free parabolic sheaves on a
scheme T. Then for every pair q ≤ q′ in Qgp the cokernel of the map Eq → Eq′ is flat over T.

Proof. Note first of all that the map Eq → Eq′ is injective. This follows from the fact that it
is injective on the geometric fibers, by 3.2.13, from projectivity of XT → T and flatness of the
sheaves over T.

The conclusion now follows from the local criterion of flatness: if we pull back the exact
sequence

0 // Eq // Eq′ // Q // 0

along a point t of T, then the map Eq ⊗ k(t) → Eq′ ⊗ k(t) is injective by 3.2.13, since it is a
map between pieces of a parabolic sheaf over a log scheme with generically trivial log structure
(the fiber Xt). Consequently, since by flatness of Eq′ we have Tor1(Eq′ , k(t)) = 0, we also have
Tor1(Q, k(t)) = 0, and by the local criterion of flatness this shows that Q is flat over T.

What we stated above follows from the fact that if E is a family of torsion-free parabolic
sheaves on Xn over a scheme T, then the cokernels of the injective maps Ea+1 → Ea are flat
over T, and consequently the locus where they are trivial (which is the locus where these maps
are isomorphisms) is open and closed in T (since it coincides with the locus where the Hilbert
polynomial of the cokernels is zero, for example).

On the other hand we have an obvious “projection” mapMss(a1, . . . , ak)→ MY to the moduli
functor of Maruyama and Yokogawa (we recalled their definition in Section 3.3.1; note that here
we did not fix Hilbert polynomials). Moreover one can check that, if we denote by Mss(a1, . . . , ak)
the good moduli space ofMss(a1, . . . , ak), there is a factorization

Mss(a1, . . . , ak) //

��

MY

xx
Mss(a1, . . . , ak)

of the mapMss(a1, . . . , ak) → Mss(a1, . . . , ak), and this implies that Mss(a1, . . . , ak) is the moduli
space constructed by Maruyama and Yokogawa.

In conclusion the moduli spaces of Maruyama and Yokogawa are open and closed subschemes
of the moduli spaces that we produce.
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Remark 3.3.42. In this discussion we did not fix Hilbert polynomials for our parabolic sheaves
nor for MY-parabolic sheaves. Nevertheless the arguments carry through if one fixes them (the
ones that Maruyama and Yokogawa fix determine our parabolic Hilbert polynomial), and the
corresponding spaces will be open and closed in the ones we considered here, as usual.

We also considered only semi-stable sheaves, but the same conclusions hold for stable sheaves.

3.4 Dependance of stability on the chart

Since there are many choices for a chart or a locally constant sheaf of charts of a logarithmic
structure with a kummer morphism (when they exist, of course), the problem of the dependance
of the (semi-)stability of a parabolic sheaf on the chart or the sheaf of charts is a very natural one.
It turns out that the (semi-)stability is not independent of the chart (or the locally constant sheaf
of charts), as we will show with the following example.

Take X = P1 × P1, with effective divisor D = D1 + D2 where D1 and D2 are two distinct
closed fibers of the first projection X → P1, so that O(D1) ∼= O(D2) ∼= O(1, 0) and O(D) ∼=
O(2, 0). The DF structure induced by D, call it L : A → DivX , has two natural charts l : N →
Div(X), sending 1 to (O(D), sD), with sD the canonical section of O(D) as usual, and l′ : N2 →
Div(X), sending (1, 0) to (O(D1), sD1) and (0, 1) to (O(D2), sD2).

Notice that any cokernel of monoids P→ N2 would give us a new chart P→ Div(X) for the
DF structure L, since the composite of two cokernels is still a cokernel (this is an easy verification).
The simplest case of this is a projection Nr →N2 with r ≥ 3, but in this case a calculation shows
that the (semi-)stability does not change.

Take instead P = N4/(e1 + e2 = e3 + e4), where the ei’s are the canonical basis, call pi the
image of ei in P, and consider the morphism φ : P→N2 determined by

φ(p1) = (1, 0)
φ(p2) = (0, 1)
φ(p3) = (1, 1)
φ(p4) = (0, 0).

We claim that φ is a cokernel, and so the composition P → N2 → DivX gives a chart for the DF
structure L.

Lemma 3.4.1. The map φ is a cokernel.

Proof. We denote an element p of P by a quadruple (a, b, c, d), where a, b, c, d > 0 and p =
ap1 + bp2 + cp3 + dp4. Clearly such a quadruple is not unique, as we have (a, b, c, d) = (a + 1, b +
1, c− 1, d− 1) if c, d > 1, and the analogue for a, b > 1. In this representation, the map φ sends
(a, b, c, d) to (a + c, b + c).

With a simple computation one sees that φ−1(0) = 〈p4〉 ⊆ P, so to show that φ is a cokernel
we have to verify that if φ(p) = φ(p′), then there exist e, e′ ∈N such that p + ep4 = p′ + e′p4.

Now φ(p) = φ(p′) means (a + c, b + c) = (a′ + c′, b′ + c′). Assume without loss of generality
that a ≥ b; then (a, b, c, d) = (a− b, 0, c + b, d + b), and since

a′ − b′ = (a′ + c′)− (b′ + c′) = (a + c)− (b + c) = a− b,
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we also have a′ ≥ b′ and (a′, b′, c′, d′) = (a′ − b′, 0, c′ + b′, d′ + b′). Since a − b = a′ − b′ and
c + b = c′ + b′, we only have to worry about the last term, and this is easy: if d + b ≤ d′ + b′, just
take e = (d′ + b′)− (d + b) and e′ = 0, otherwise take e = 0 and e′ = (d + b)− (d′ + b′).

Remark 3.4.2. The map φ above is an example of a cokernel P → N2 that “does not split”, i.e.
such that N2 is not a direct summand of P: there is a natural section N2 → P of φ, but the
resulting map N2 ⊕ 〈p3, p4〉 → P is not an isomorphism, so that φ does not “split”.

Now take the kummer morphism j : A → 1
2 A, and as usual call X the stack of roots of X

with respect to j, denote by D1,D2 and D = D1 +D2 the universal square roots of D1, D2 and
D respectively, and call E and E ′ the two generating sheaves associated to the charts l′ : N2 →
Div(X) and l′ ◦ φ : P→ Div(X). By following the construction of the generating sheaf we get

E = O(D)⊕O(2D1 +D2)⊕O(D1 + 2D2)⊕O(2D)

and, noting that the indecomposable elements of P are precisely the pi’s, we get E ′ = E ′′ ⊕ E ′′
(since Λp4

∼= Λ2p4
∼= O), where

E ′′ = O(2D)⊗ (O ⊕O(D1)⊕O(D2)⊕O(D)⊕
⊕O(2D1 +D2)⊕O(D1 + 2D2)⊕O(D)⊕O(2D));

in particular pE ′(F) = pE ′′(F) for any parabolic sheaf F ∈ Par(X, j).
Our objective is to find a parabolic sheaf F ∈ Par(X, j) that is E -(semi-)stable but not E ′-(semi-

)stable. Our example will be an extension of two line bundles L and L′ on the root stack X: the
point will be that such an extension is semi-stable (and in fact stable, if is not trivial) if and only
if L and L′ have the same slope. To find an F with the property we want, it will suffice then to
find L and L′ such that

pE (L) = pE (L′)

but
pE ′(L) 6= pE ′(L′).

Now recall that to give a torsion-free parabolic sheaf F ∈ Par(X, j), it suffices to give a torsion-
free coherent sheaf F0 ∈ Coh(X), together with a subsheaf F1 ⊆ F0 such that F0(−D) ⊆ F1. In
particular we can take F1 = F0, and we get a (somewhat trivial) parabolic sheaf, we will denote it
by F̃0 ∈ Par(X, j). For such a parabolic sheaf, using

π∗
(

F̃0 ⊗O(−Di)
)
= F0

π∗
(

F̃0 ⊗O(−D)
)
= F0

π∗
(

F̃0 ⊗O(−2D)
)
= F0(−D)

π∗
(

F̃0 ⊗O(−2D1 −D2)
)
= F0(−D1)

π∗
(

F̃0 ⊗O(−D1 − 2D2)
)
= F0(−D2)

we find

pE
(

F̃0

)
=

1
4
(p(F0) + p(F0(−D1)) + p(F0(−D2)) + p(F0(−D)))
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=
1
4
(p(F0) + 2p(F0(−D1)) + p(F0(−D)))

where p denotes the usual Gieseker (generalized) slope of the coherent sheaf F0 on X with respect
to the fixed polarization, that in our case will be H = O(1, 1), and D1 ∼ D2 in our case.

The calculation for E ′′ gives

pE ′′
(

F̃0

)
=

5
8

p(F0(−D)) +
1
8
(p(F0(−2D)) + p(F0(−D− D1)) + p(F0(−D− D2)))

=
5
8

p(F0(−D)) +
1
8
(p(F0(−2D)) + 2p(F0(−D− D1))) .

Now take L0 = O(2, 0) and L′0 = O(1, 1). A straightforward calculation using

χ(O(a, b)(m)) = (a + 1 + m)(b + 1 + m)

and recalling that O(−D) ∼= O(−2, 0) and O(−D1) ∼= O(−1, 0) , yields

pE
(

L̃0

)
= m2 + 3m + 2 = pE

(
L̃′0
)

but
pE ′′

(
L̃0

)
= m2 +

3
2

m +
1
2

and
pE ′′

(
L̃′0
)
= m2 +

3
2

m− 1

as we wanted.

Remark 3.4.3. This shows that it is not true that (semi-)stability is independent of the chart, but
it could well be that nonetheless the moduli spaces of (semi-)stable sheaves are isomorphic. For
example there could be some autoequivalence fE ,E ′ : Coh(X)→ Coh(X) such that F ∈ Coh(X) is
E -(semi-)stable if and only if fE ,E ′(F) is E ′-(semi-)stable.

For example, if X is a log scheme coming from a divisor D and D denotes the universal square
root on X = X2, then instead of the sheaf O(D)⊕O(2D) we could take O⊕O(D) as generating
sheaf, as we remarked in 3.3.14. In this case though there is a very simple autoequivalence as
above, namely tensoring by O(−D), that does the trick.

In the example we just gave, using the fact that every invertible sheaf on X is of the form
L = π∗M⊗O(aD1 + bD2) for M ∈ Pic(X) and a, b are either 1 or 0, a computation shows that
tensoring by any L does not make the slopes corresponding to E and E ′ equal. We do not know
if in this case there is some other autoequivalence of Coh(X) that identifies the moduli spaces.
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Chapter 4

Moduli of parabolic sheaves with
varying weights

In this chapter we consider the moduli problem of parabolic sheaves with rational weights on
a log scheme X, without bounding the denominators or fixing a finitely generated Kummer
extension. For this, the infinite root stack X∞ is a natural object to consider, in view of the corre-
spondence between quasi-coherent sheaves on it and parabolic sheaves with rational weights.

The natural approach to this problem is to take a limit of the moduli theory at finite levels,
and this is what we will do in this chapter. In particular this will require X to have a global
chart P→ Div(X), giving us, as we saw in the last chapter, the generating sheaves En on the root
stacks Xn = X 1

n P/P, and the moduli spaces and stacksMs
n ⊆Mss

n and Ms
n ⊆ Mss

n of (semi-)stable
parabolic sheaves on X (here the subscript keeps track of the denominators, and the Hilbert
polynomial is not fixed for now).

In order to have this for every n, in this chapter we will assume that the characteristic of k
is zero. As remarked in the last chapter (see 3.3.24), this would be unnecessary if we knew that
Nironi’s machinery works on projective tame Artin stacks.

The ideal situation to take a limit would be the following.

Ideal Theorem 4.0.1 (?). Let X be a projective log scheme over k with a global chart P→ Div(X). Then
for every pair n, m ∈ N with n | m there is a morphism ιn,m : Mss

n → Mss
m , that induces in,m : Mss

n →
Mss

m between the good moduli spaces, given by the pullback along Xm → Xn. Moreover these morphisms
are open and closed immersions.

This would allow us to make sense of the direct limit lim−→n
Mss

n as a scheme, which would be
a moduli space for parabolic sheaves with arbitrary rational weights on X.

Even without the last statement about the morphisms, the direct limit would still make sense
as an ind-scheme, and we will see that it would be a good candidate for a “moduli space” of
parabolic sheaves with arbitrary rational weights.

Unfortunately even the first part of Ideal Theorem 4.0.1 does not always hold. We will see that
semi-stability is preserved by pullback along Xm → Xn if P is free, and the following example
shows that in general this need not necessarily be.

117
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Example 4.0.2. Let us take P = 〈p, q, r | p + q = 2r〉 and a projective curve X over k with
log structure induced by the morphism P → Div(X) that sends p, q and r to invertible sheaves
Lp, Lq, Lr, together with the zero section.

Their degrees need to satisfy deg(Lp) + deg(Lq) = 2 deg(Lr) since L⊗2
r
∼= Lp ⊗ Lq; let us

assume that deg(Lp) = 0, deg(Lq) = 2 and deg(Lr) = 1. Let us consider a fourth line bundle
L on X, of degree d. The sheaf L on X can be seen as a parabolic sheaf on X1 = X, and as
such, being a line bundle, it is stable. We will show that its pullback along π : X2 → X is not
semi-stable.

Note that parabolic sheaves on X2 can be visualized as in the following diagram

−2 − 3
2 −1 − 1

2 0

◦oo

��

F(0,0) ⊗ L∨p // F(−1,0)
// F(0,0) 0

F(− 3
2 ,− 1

2 )

;;

// F(− 1
2 ,− 1

2 )

;;

− 1
2

F(0,0) ⊗ L∨r

;;

OO

// F(0,−1)

OO

−1

· · · F(− 1
2 ,− 3

2 )

OO

;;

− 3
2

F(0,0) ⊗ L∨q

OO

−2

where we have a sheaf for every point ( a
2 , b

2 ) with a and b integers which are congruent modulo
2, and all the sheaves are uniquely determined by the ones in the diagram. In particular since we
chose the zero sections when we defined the log structure, note that all the maps Fb → Fb ⊗ Lp
are zero, and the same holds with Lq and Lr.

One calculates the pullback π∗L (as explained in Section 1.3), and checks that in the diagram
above it has

F(0,0) = L

F(− 1
2 ,− 1

2 )
= L⊗ L∨r
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F(−1,0) = L⊗ L∨p ⊕ L⊗ L∨r
F(0,−1) = L⊗ L∨q ⊕ L⊗ L∨r

F(− 3
2 ,− 1

2 )
= L⊗ L∨p ⊗ L∨r ⊕ L⊗ (L∨r )

⊗2

F(− 1
2 ,− 3

2 )
= L⊗ L∨q ⊗ L∨r ⊕ L⊗ (L∨r )

⊗2

(the direct sums come from taking a direct limit, of course). One also checks that the pieces that
contribute to the slope (i.e. the fundamental pieces), using the generating sheaf

E =
(

Λ
( p

2

)
⊕Λ (p)

)
⊗
(

Λ
( q

2

)
⊕Λ (q)

)
⊗
(

Λ
( r

2

)
⊕Λ (r)

)
,

are two copies of each of the following

L⊗ (L∨r )
⊗2

L⊗ (L∨r )
⊗3

L⊗ (L∨r )
⊗3 ⊕ L⊗ L∨q ⊗ (L∨r )

⊗2

L⊗ (L∨r )
⊗3 ⊕ L⊗ L∨p ⊗ (L∨r )

⊗2

and so the parabolic degree of π∗L is

2(d− 2 + d− 3 + d− 3 + d− 4 + d− 3 + d− 2) = 12d− 34

and its parabolic rank is 12, so that the parabolic slope (the ratio of degree divided by the rank) is
µE (π

∗L) = d− 17
6 . In the present case (semi-)stability can be described by using this slope, since

we are on a curve.
Finally one sees that π∗L has a parabolic subsheaf G were the only relevant pieces for the

slope are two copies of L⊗ L∨p ⊗ (L∨r )⊗2, and the remaining ones are all zero, so that its parabolic
degree is 2(d− 2) = 2d− 4. Since its parabolic rank is 2, its parabolic slope will be µE (G) = d− 2,
which is greater than µE (π

∗L).
In conclusion π∗L is not semi-stable.

This example leaves us with two choices: either we put additional hypotheses on the monoid,
or we choose a different cofinal system of submonoids of PQ with better properties.

Our solution is a mix of these two strategies: we will assume that P is what we call a simplicial
monoid, and we will take a slightly different cofinal system, made up of the monoids 1

n Nr for a
Kummer extension P ⊆Nr.

4.1 Simplicial logarithmic structures

In this section we briefly describe simplicial monoids and logarithmic structures.

Definition 4.1.1. A monoid P is simplicial if it is fine, saturated, sharp and the positive rational
cone PQ it generates inside Pgp

Q
is simplicial, meaning that its extremal rays are linearly indepen-

dent.
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Definition 4.1.2. An indecomposable element p ∈ P that lies on an extremal ray of the rational
cone PQ will be called extremal. Non-extremal indecomposables will be called internal.

In other words, an indecomposable p ∈ P is extremal if q + r ∈ 〈p〉 implies q, r ∈ 〈p〉.
Assume P is a simplicial monoid, and call p1, . . . , pr its extremal indecomposable elements,

and q1, . . . , qs its internal ones. For any q ∈ P, we can write q = ∑i ai pi in PQ, where ai ∈ Q, and
by simpliciality of P the ai are uniquely determined.

In particular for every qj we have get a relation cjqj = ∑i aij pi in P where (cj, {aij}) = 1. These
relations will be called the standard relations of P.

Proposition 4.1.3. Every simplicial monoid has a Kummer morphism to some free monoid Nr. Viceversa,
if a fine saturated monoid P has a Kummer morphism P ⊆Nr, then P is simplicial.

In fact we will see that there is a minimal such Kummer extension, that we well call the free
envelope of P.

The preceding proposition is the reason for introducing this simpliciality hypothesis. The
Kummer extension P ⊆ Nr gives us a sequence P ⊆ 1

n Nr = Pn of finitely generated Kummer
extensions such that

⋃
n Pn = PQ, and since Nr is free the transition maps Xm → Xn between the

corresponding root stacks are flat, as the following lemma shows.

Lemma 4.1.4. Let X be a log stack with a global chart Nr → Div(X). Then for any n, the projection
π : Xn → X is flat.

This implies that all projections Xm → Xn between root stacks are flat as well, and actually
for this one needs to assume that the log structure of X is locally free, in the sense that the stalks
of A are all free monoids. For example if D ⊆ X is a normal crossings divisor, then the induced
log structure on X is locally free, but does not necessarily have a global chart.

Proof. We can assume that X is a log scheme. Then this follows from the fact that the projection
Xn → X is a base change of the morphism [Ar/µr

n]→ Ar induced by the map Ar → Ar given by
raising the variables to the n-th power. This last morphism is flat, and the conclusion follows.

This assures that purity of coherent sheaves is preserved by pullback (recall that a semi-stable
sheaf is pure). This cofinal system of root stacks will also be crucial for the arguments that we
will use in the rest of this chapter.

Let us remark that this simpliciality assumption is forced if we want to find a cofinal system
of root stacks with flat transition maps on the universal model.

Recall the following criterion from [Kat89].

Proposition 4.1.5. If P and Q are integral monoids and h : P → Q is an injective morphism, then the
induced map Z[P] → Z[Q] is flat if and only if the following condition is satisfied: for any x1, x2 ∈ P,
y1, y2 ∈ Q such that h(x1)y1 = h(x2)y2, there exist x3, x4 ∈ P and y ∈ Q such that y1 = h(x3)y,
y2 = h(x4)y, (and then automatically x1x3 = x2x4).

Proposition 4.1.6. Let P be a fine saturated torsion-free sharp monoid. If the natural morphism Z[P]→
Z[PQ] is flat, then P is a free monoid.
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Proof. Let p1, . . . , pk denote the indecomposable elements of P, so that P has a presentation with
generators the pi’s and some relations. We need to show that there are no (nontrivial) relations.

First notice that we can assume that every pi is in some nontrivial relation, otherwise we can
write P = P′ ⊕Nh where P′ satisfies this condition, and focus on P′.

Let us now embed P in some Nr (using 1.1.14), so that every p ∈ P can be identified with a
vector with r coordinates. Thus we can write pi = (pi1, . . . , pir) for pij ∈ N, and for every pi we
can consider the sum s(pi) = ∑j pij ∈ N of its components. Among the pi’s there will be one,
assume it is p1, such that s(pi) ≥ s(p1) for every i. Notice that this implies that for every i 6= 1
there exists an m ∈ {1, . . . , r} such that pim > p1m. This embedding also allows us to define a
monoid homomorphism λ : P→N, by composing the embedding in Nr with the map that takes
the sum of the coordinates, landing in N. This map has the property that λ(p) = 0 if and only if
p = 0.

By assumption p1 will show up in some relation ∑i ai pi = ∑i bi pi with a1 6= b1. In particular
we can assume (by integrality of P) that (exactly) one among a1 and b1 is zero, say b1 = 0, and
more generally for any i, at least one of ai and bi is zero. Among all such relations, we can
consider one in which λ(∑i ai pi) = λ(∑i bi pi) ∈N is minimal.

So we have a relation in P of the form

∑
i∈I

ai pi = ∑
j∈J

bj pj (4.1.7)

where I, J ⊆ {1, . . . , r} are non-empty, I ∩ J = ∅, 1 ∈ I and ai, bj > 0 for any i ∈ I, j ∈ J. Now
we pick and element of J, say it is 2, and call d = ∑i 6=1 ai pi, d′ = ∑j 6=2 bj pj, so that our relation
becomes a1 p1 + d = b2 p2 + d′.

Relation 4.1.7 gives, for any positive integer n, the relation

∑
i∈I

ai
pi
n

= ∑
j∈J

bj
pj

n
(4.1.8)

in PQ. This can also be written as

a1
p1

n
+

d
n
= b2

p2

n
+

d′

n
.

Using the last line, we get the following equality in PQ:

a1 p1 +
d
n
+ (n− 1)b2

p2

n
= b2 p2 +

d′

n
+ (n− 1)a1

p1

n
.

This is a relation in PQ of the form x1 + y1 = x2 + y2, with xi ∈ P and yi ∈ PQ, where x1 =

a1 p1 + b (n−1)b2
n cp2, x2 = b2 p2 + b (n−1)a1

n cp1, y1 = d
n +

{
(n−1)b2

n

}
p2 and y2 = d′

n +
{

(n−1)a1
n

}
p1,

where as usual b·c and {·} are the floor and fractional part of a rational number. From the flatness
hypothesis and proposition 4.1.5, we know that there exist x3, x4 ∈ P and y ∈ PQ such that

d
n
+

{
(n− 1)b2

n

}
p2 = x3 + y
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d′

n
+

{
(n− 1)a1

n

}
p1 = x4 + y.

Now the claim is that for n big enough, we necessarily have x4 = 0 or x4 = p1. This would

conclude the proof: notice that for n big enough,
{

(n−1)b2
n

}
= 1− b2

n , and
{

(n−1)a1
n

}
= 1− a1

n . So

if x4 = 0, the equalities above would give d− d′ = nx3 + (n− a1)p1 − (n− b2)p2 in Pgp. But we
also know that d− d′ = b2 p2 − a1 p1 in Pgp, and this gives n(x3 + p1) = np2 in P, and by torsion-
freeness we finally get p2 = x3 + p1, a contradiction since p1 and p2 are distinct indecomposable
elements of P.

In case x4 = p1, we get d′ = a1 p1 + ny (notice that ny ∈ P by saturation of P, since ny is both
in Pgp and in PQ, and so it has a multiple in P). Since this is a relation in P involving p1 (recall
d′ = ∑j 6=2 bj pj, and 1 /∈ J \ {2}) and clearly λ(d′) < λ(∑i bi pi), this contradicts the minimality
of λ(∑i bi pi) among such relations. Notice that λ(d′) = 0 also gives a contradiction with the
sharpness of P, since then a1 p1 + ny = 0.

To prove that x4 = 0 or p1 for n big, let us write x4 = ∑i ci pi. Notice that for any m ∈ {1, . . . , r},
the m-th coordinate of d′/n converges to zero as n grows. Since there are a finite number of

coordinates, we can take n large enough so that
(

d′
n

)
m
< 0, 000001 for any m. Let us show that ci

has to be zero for i 6= 1: if ci ≥ 1, pick m such that pim > p1m, and consider the m-th coordinate
in the equality defining x4.

We get
(

d′
n

)
m
+ p1m >

(
d′
n

)
m
+
(
1− a1

n
)

p1m = ∑i ci pim + ym ≥ pim, and since
(

d′
n

)
m

is small
and p1m, pim are integers, we can conclude p1m ≥ pim, a contradiction. For the same reason
c1 ≤ 1, and so x4 = 0 or x4 = p1, concluding the proof.

Proposition 4.1.9. If there is a sequence of monoids Qn ⊆ PQ containing P, and such that Qn ⊆ Qm
every time that n|m,

⋃
n Qn = PQ and Z[P] → Z[Qn] is flat for every n (or even for n very divisible),

then Z[P]→ Z[PQ] is flat as well.

Proof. This follows immediately from the flatness criterion recalled above.

Corollary 4.1.10. If P is such that there exists a sequence of monoids Qn ⊆ PQ containing P, and such
that Qn ⊆ Qm every time that n|m,

⋃
n Qn = PQ and Z[Qn]→ Z[Qm] is flat every time that n|m, then

P is simplicial.

This shows that simpliciality of P is forced if we want to have flat transition maps in the
universal model.

Let us now construct for a simplicial monoid P the minimal Kummer extension to a free
monoid.

Proof of Proposition 4.1.3. Assume that cjqj = ∑i aij pi be the standard relations of P, and let bij =
ci/ gcd(ci, aij), a positive integer. The standard relations can be rewritten as follows

qj = ∑
i

aij

gcd(ci, aij)
· pi

bij
.

Finally, let di = lcm(bij | j = 1, . . . , r), and let F(P) be the (free) submonoid of Pgp⊗Z Q generated
by the elements p1

d1
, . . . , pr

dr
. By construction we have P ⊆ F(P), and PQ = F(P)Q, so the morphism

is Kummer.
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The converse is clear, since if we have a Kummer morphism P ⊆Nr, then PQ
∼= Qr

+, which is
a simplicial cone.

Definition 4.1.11. We will call the monoid F(P) constructed in the proof the free envelope of P.
The rank of P will be the rank of the free monoid F(P), or equivalently of the free abelian group
Pgp.

Example 4.1.12. Let P = 〈p, q, r | p + q = 2r〉. Then p and q are the extremal indecomposables,
and the only standard relation

r =
p
2
+

q
2

gives the two generators p
2 and q

2 for the free envelope F(P).
If we identify P with the submonoid of N2 generated by (2, 0), (1, 1), (0, 2), then F(P) coin-

cides with N2, as p
2 = (1, 0) and q

2 = (0, 1).

The free envelope has the following universal property.

Proposition 4.1.13. For any Kummer homomorphism φ : P → Nr there exists a unique (injective) ho-
momorphism φ̄ : F(P)→Nr extending φ.

The proof is easy and left to the reader.
One can give the following definition of a simplicial log scheme.

Definition 4.1.14. A fs log scheme X is simplicial if for any geometric point x → X the stalk
(AX)x is a simplicial monoid.

Since charts can be made up from stalks, a simplicial log scheme has local charts P→ Div(X)
with P a simplicial monoid.

The converse (if there are simplicial charts, then the stalks are simplicial) is also true, and
follows from the fact that the kernel of a morphism P → Q from a simplicial monoid to a sharp
fs monoid is generated by extremal indecomposables. From this one sees that the map PQ → QQ

corresponds to a quotient by the span of a subset of a basis of Pgp
Q

, and consequently QQ is still
a simplicial cone inside Qgp

Q
.

Remark 4.1.15. Despite this general definition, for the rest of this chapter we will assume that X
has a global chart P→ Div(X), in which P is moreover simplicial.

4.2 (semi-)stability and extension of denominators

For the rest of this chapter, X will be a projective simplicial log scheme with a global chart
P→ Div(X), where P is a simplicial monoid of rank r.

The first thing we want to do is to replace X by the root stack X1 = XF(P)/P, where F(P) ∼= Nr

is the free envelope of P introduced in the last section. After we have done this, when considering
parabolic sheaves on Xn = X 1

n F(P)/P = (X1) 1
n F(P)/F(P) we can see them as parabolic sheaves on

the log stack X1, where the log structure has a free chart, and the transition maps Xm → Xn will
be flat (see 4.1.4). This way we can effectively argue as if the log structure on X itself had a free
chart to start with.
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Denote by En the generating sheaf on Xn coming from the root stack structure over X, and
Ẽn the generating sheaf that comes from seeing it as a root stack over X1. We would like to say
that these two generating sheaves give the same stability. This is true, provided that we equip X1
with the right generating sheaf relative to X.

The following lemma relates the generating sheaves of two root stacks of X, where one of
them is obtained by taking n-th roots over the other one.

Lemma 4.2.1. Let X be a log scheme with a global chart P → Div(X), and let P ⊆ Q be a Kummer
extension. Consider the commutative diagram

X 1
n Q/P

π //

p′ ""

XQ/P

p
}}

X

and the generating sheaves En on X 1
n Q/P and E on XQ/P relative to X, and Erel on X 1

n Q/P obtained

by seeing it as a root stack over XQ/P with respect to the Kummer extension Q ⊆ 1
n Q. Denote by

L : Q→ Div(XQ/P) the universal DF structure on XQ/P and by pi the indecomposable elements of Q.
Then we have an isomorphism

En ∼= π∗E ⊗ Erel ⊗ π∗M

where M = (
⊗r

i=1 L(pi))
∨ = L(∑i −pi).

Proof. Denote by Ln : 1
n Q → Div(X 1

n Q/P) the universal DF structure on X 1
n Q/P, and by di the

order of the image of pi in Qgp/Pgp.
Let us write down the generating sheaves. We have

En =
⊕

0<ai≤ndi

Ln

(
∑

i
ai

pi
n

)

E =
⊕

0<bi≤di

L

(
∑

i
bi pi

)

Erel =
⊕

0<ci≤n
Ln

(
∑

i
ci

pi
n

)

so that, since π∗L (pi) ∼= Ln
(
n pi

n
)
,

π∗E =
⊕

0<bi≤di

Ln

(
∑

i
nbi

pi
n

)
.

In conclusion

π∗E ⊗ Erel ⊗ π∗M ∼=
⊕

0<bi≤di
0<ci≤n

Ln

(
∑

i
(nbi + ci − n)

pi
n

)
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and this is En, since every 0 < ai ≤ ndi arises exactly once as nbi + ci − n for 0 < bi ≤ di and
0 < ci ≤ n.

Remark 4.2.2. The locally free sheaf E ⊗M on XQ/P of the previous lemma is still a generating
sheaf, and it is precisely the generating sheaf E ′ of Remark 3.3.14.

If we equip X1 with the generating sheaf E ⊗M, then the stability notions on Xn correspond-
ing to En relative to X and Ẽn relative to X1 are the same. Indeed if F ∈ Coh(Xn), then (keeping
the notation of the lemma, with Q = F(P)) from the previous lemma and the projection formula
for π we see that

pEn(F) = p(p′∗(F⊗ E∨n ))
= p(p∗π∗(F⊗ π∗(E ⊗M)∨ ⊗ Ẽn

∨
))

= p(p∗(π∗(F⊗ Ẽn
∨
)⊗ (E ⊗M)∨))

= pE⊗M(π∗(F⊗ Ẽn
∨
))

where p denotes the reduced Hilbert polynomial on X. Note also that if P is already free, then
E ⊗M is indeed trivial. In conclusion we can replace X by X1 in what follows, even though we
will keep this notation for clarity.

Notation 4.2.3. From now on we will fix an isomorphism F(P) ∼= Nr, and denote the canonical
log structure on Xn by Ln : 1

n Nr → Div(Xn). Moreover pi for i = 1, . . . , r will denote the inde-
composable elements of F(P) ∼= Nr, and for any r-tuple of integers (a1, . . . , ar), we will denote by
L(ai)

n the invertible sheaf Ln
(
∑i ai

pi
n
)

on the root stack Xn. In particular Li
n will be the invertible

sheaf L(0,...,1,...,0)
n = Ln

( pi
n
)

on Xn.
In the same spirit, if E is a parabolic sheaf on Xn and (e1, . . . , er) is an element of Zr, we denote

by E(ei)
the piece of the parabolic sheaf E corresponding to the element ( e1

n , . . . , er
n ) of 1

n Zr.

We will consider the generating sheaves En on Xn that we introduced in the last chapter, the
notion of (semi-)stability defined by them, the corresponding moduli stacks Mss

n and Ms
n of

(semi-)stable sheaves, with good moduli spaces Mss
n and Ms

n. If F is a coherent sheaf on Xn, with
pn(F) we will denote the reduced Hilbert polynomial pEn(F) obtained by using the generating
sheaf En. We will also denote just by p the reduced Hilbert polynomial on X1, with respect to the
generating sheaf E ⊗M discussed above.

We summarize here the results of this section.

Theorem 4.2.4. Let X be a projective simplicial log scheme over k with a global chart, and n, m two
natural numbers with n | m. Then:

• the pullback along π : Xm → Xn of a semi-stable sheaf is semi-stable (with the same reduced Hilbert
polynomial), so we get a morphism ιn,m : Mss

n →Mss
m . This morphism in turn induces in,m : Mss

n →
Mss

m between the good moduli spaces.

• ιn,m is always an open immersion, and in,m is proper, open and injective on geometric points (in
particular it is also finite).
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• if pullback along π preserves stability (for example this happens if the log structure of X is generically
trivial), then ιn,m restricts to a morphism ιon,m : Ms

n → Ms
m between the stacks of stable sheaves,

and correspondingly in,m restricts to io
n,m : Ms

n → Ms
m between the good moduli spaces. Moreover

in this case all the maps are open and closed immersions.

Remark 4.2.5. The fact that in,m is an open and closed immersion (i.e. an immersion of a union
of connected components) will allow us to make sense of the direct limit of the moduli spaces as
a scheme.

We will see that the pullback along π does not preserve stability in general, and if this happens
we will not be able to take the direct limit of the stack/space of stable sheaves, nor to conclude
that in,m is an immersion of a union of connected components. Being open, closed and injective,
its image will still be a union of connected components, but it may not be an isomorphism onto
the image. We do not have any example where it does not happen, but we also have no reason
for why it could not happen.

Let us see with a simple example why semi-stability is preserved

Example 4.2.6. Assume that X is an integral projective log scheme with a rank 1 free chart
N → Div(X), and denote by (L, s) ∈ Div(X) the image of 1 ∈ N, and say we are considering
pure sheaves of maximal dimension. Let us consider the extension of denominators π : X4 → X2,
and a semi-stable coherent sheaf F ∈ Coh(X2). Let us give names to the fundamental pieces of
F, say

−1 − 1
2 0

F = F0 // F1 // F0 ⊗ L

so that

p2(F) =
p(F0) + p(F1)

rk(F0) + rk(F1)
.

The pullback π∗F ∈ Coh(X4) corresponds to the parabolic sheaf

−1 − 3
4 − 1

2 − 1
4 0

π∗F = F0 F0 // F1 F1 // F0 ⊗ L

and notice that

p4(π
∗F) =

2(p(F0) + p(F1))

2(rk(F0) + rk(F1))
= p2(F).
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Now take a subsheaf G ⊆ π∗F, corresponding to the following diagram

−1 − 3
4 − 1

2 − 1
4 0

π∗F = F0 F0 // F1 F1 // F0 ⊗ L

G = G0
f0 //?�

OO

G1
f1 //?�

OO

G2
f2 //?�

OO

G3
f3 //?�

OO

G0 ⊗ L
?�

OO

and with

p4(G) =
p(G0) + p(G1) + p(G2) + p(G3)

rk(G0) + rk(G1) + rk(G2) + rk(G3)
.

Now note that from G we can get the following two subsheaves G′, G′′ of our original F

−1 − 1
2 0

F = F0 // F1 // F0 ⊗ L

G′ = G0
f1◦ f0 //?�

OO

G2
f3◦ f2//?�

OO

G0 ⊗ L
?�

OO

and
−1 − 1

2 0

F = F0 // F1 // F0 ⊗ L

G′′ = G1
f2◦ f1 //?�

OO

G3
f0◦ f3//?�

OO

G1 ⊗ L
?�

OO

where f0 ◦ f3 : G3 → G1 ⊗ L denotes the composition of f3 with f0 ⊗ id : G0 ⊗ L→ G1 ⊗ L.
We have

p2(G′) =
p(G0) + p(G2)

rk(G0) + rk(G2)
≤ p2(F)

p2(G′′) =
p(G1) + p(G3)

rk(G1) + rk(G3)
≤ p2(F)

since F is semi-stable, and it is easy to see that p4(G) = α1 p2(G′) + α2 p2(G′′), where 0 ≤ αi ≤ 1
and α1 + α2 = 1. In conclusion p4(G) ≤ α1 p2(F) + α2 p2(F) = p2(F) = p4(π

∗F), so π∗F is
semi-stable on X4.

Note that G′ and G′′ can be zero, but the argument still works. If they are both zero, then
G itself is zero and there is nothing to prove. Otherwise assume that G′ is zero and G′′ is not.
In this case G′ doesn’t contribute to the reduced Hilbert polynomial of G at all, and in fact
p4(G) = p2(G′′), and the rest of the argument applies.
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The following lemma relates the generating sheaves of Xn and Xm, and is the starting point
of the proof.

Lemma 4.2.7. Set m = nk, and consider the commutative diagram

Xm
π //

p′ !!

Xn

p}}
X1.

We have an isomorphism
Em ∼= π∗En ⊗ En,m ⊗M

where En,m is the generating sheaf of Xm as a root stack of Xn and M =
(⊗r

i=1 Li
m
)⊗(−k)

= Lm(∑i −k pi
m ).

Proof. This is a particular case of Lemma 4.2.1.

Lemma 4.2.8. With the notation of the previous lemma, let G ∈ Coh(Xm) be a coherent sheaf on
Xm. Then pm(G) is a weighted mean of the reduced Hilbert polynomials of the non-zero sheaves among
π∗
(

G⊗ L(di)
m

)
on Xn, with 0 ≤ di < k.

Proof. Let us compute pm(G), using the previous lemma and the projection formula for the mor-
phism π (Proposition 1.2.35):

pm(G) = p(p′∗(G⊗ E∨m))
= p(p∗π∗(G⊗ π∗E∨n ⊗ E∨n,m ⊗M∨))
= p(p∗(π∗(G⊗ E∨n,m ⊗M∨)⊗ E∨n ))
= pn(π∗(G⊗ E∨n,m ⊗M∨))

(where p denotes the reduced Hilbert polynomial on X1) and since we have E∨n,m ⊗ M∨ =⊕
0≤di<k Lm

(
∑i di

pi
m
)
=
⊕

0≤di<k L(di)
m , the last expression is equal to

pn(
⊕

0≤di<k

π∗(G⊗ L(di)
m ))

and this is a weighted mean of the polynomials pn(π∗(G⊗ L(di)
m )), as claimed.

Note that if for some (di) the sheaf π∗(G ⊗ L(di)
m ) is zero, then the corresponding Hilbert

polynomial will not contribute to the reduced Hilbert polynomial of G (this accounts for the
“non-zero” part of the statement).

Remark 4.2.9. Let us describe the sheaf G(di) = π∗(G ⊗ L(di)
m ) in a more concrete way as a

parabolic sheaf on X1. This will be important for the proof of the next results.
Let us take (ei) ∈ Zr with 0 ≤ ei < n, and let us calculate the component (G(di))(ei)

∈ Coh(X1).
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We have

(G(di))(ei)
= p∗(π∗(G⊗ L(di)

m )⊗ L(ei)
n )

= p∗(π∗(G⊗ L(di)
m ⊗ π∗L(ei)

n ))

= p∗(π∗(G⊗ L(di)
m ⊗ L(kei)

m ))
= p∗π∗(G⊗ Lm(∑i(di + kei)

pi
m ))

= p′∗(G⊗ Lm(∑i(di + kei)
pi
m ))

= G(di+kei)
.

This calculation has the following “pictorial” interpretation: the parabolic sheaf G(di) is obtained
by dividing the unit hypercube in 1

m Nr in nr smaller hypercubes (of “size” kr), by subdividing
each segment in n pieces, and then by picking the pieces of G in position (di) in each of these
hypercubes, together with the induced maps.

Let us clarify this with a simple example in rank 2: let us assume that X has a free log
structure L : N2 → Div(X), and take m = 4, n = 2 and a parabolic sheaf F ∈ Coh(X4). If we take
(di) = (1, 1), then by the calculation above the parabolic sheaf F(1,1) = π∗(F⊗ L(1,1)

4 ) ∈ Coh(X2)
(where π : X4 → X2) takes the following form

−1 − 1
2 0

F−3,−3 ⊗ L0,1 // F−1,−3 ⊗ L0,1 // F−3,−3 ⊗ L1,1 0

F−3,−1 //

OO

F−1,−1 //

OO

F−3,−1 ⊗ L1,0

OO

− 1
2

F−3,−3 //

OO

F−1,−3 //

OO

F−3,−3 ⊗ L1,0

OO

−1

and we see that it is obtained by subdividing the (negative) unit square of 1
4 N2 in four smaller

squares and looking at the top right sheaf, corresponding to (1, 1), in each of these squares,
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together with the maps between them:

−1 − 3
4 − 1

2 − 1
4 0

F−4,−4 ⊗ L0,1 // F−3,−4 ⊗ L0,1 // F−2,−4 ⊗ L0,1 // F−1,−4 ⊗ L0,1 // F−4,−4 ⊗ L1,1 0

F−4,−1 //

OO

F−3,−1 //

OO

F−2,−1 //

OO

F−1,−1 //

OO

F−4,−1 ⊗ L1,0

OO

− 1
4

F−4,−2 //

OO

F−3,−2 //

OO

F−2,−2 //

OO

F−1,−2 //

OO

F−4,−2 ⊗ L1,0

OO

− 1
2

F−4,−3 //

OO

F−3,−3 //

OO

F−2,−3 //

OO

F−1,−3 //

OO

F−4,−3 ⊗ L1,0

OO

− 3
4

F−4,−4 //

OO

F−3,−4 //

OO

F−2,−4 //

OO

F−1,−4 //

OO

F−4,−4 ⊗ L1,0

OO

−1.

From this example we see that F is literally “made up” from the sheaves π∗(F⊗ L(di)
m ). This will

be useful in some of the following arguments.

Proposition 4.2.10. With the notation of the previous lemmas, let F ∈ Coh(Xn) be a coherent sheaf on
Xn. Then pm(π∗F) = pn(F), and if F is semi-stable, then π∗F is semi-stable as well.

For the proof, we will need the following lemma.

Lemma 4.2.11. Let Y be a log stack with a free global chart L : Nr → Div(Y), and consider the root
stack π : Yn → Y, with Ln : 1

n Nr → Div(Yn) the canonical lifting of the log structure of Y. Then for any
0 ≤ di < n, we have

π∗L
(di)
n ∼= OY.

Proof. This is a calculation on the universal model for the root stack.
First of all by taking a presentation we can assume that Y is a log scheme with a free global

chart. The chart gives a cartesian diagram

Yn //

π

��

[Ar/µr
n]

π′

��
Y // Ar

where the vertical map π′ is induced by raising the variables to the n-th power. Now π′ is a
coarse moduli space of a tame DM stack and the diagram is cartesian, so we have a base change
formula (Proposition 1.5 of [Nir]), and L(di)

n is a pullback of the corresponding sheaf on [Ar/µr
n],

so we can reduce to proving the statement in the universal case.
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In this case, the invertible sheaf L(di)
n over [Ar/µr

n] corresponds to the module of rank one
over A = k[x1, . . . , xr] generated by xd1

1 · · · x
dr
r . Pushing forward amounts to taking invariants for

µr
n, and if 0 ≤ di < n it is clear that the invariants are k[xn

1 , . . . , xn
r ]. This shows that π′∗L

(di)
n ∼= OAr

in this case, and concludes the proof.

Proof of Proposition 4.2.10. We will apply the last lemma to the morphism π : Xm → Xn, which is
a relative root stack morphism.

First let us prove that pm(π∗F) = pn(F): by Lemma 4.2.8, pm(π∗F) is a weighted mean of the
polynomials pn(π∗(π∗F ⊗ L(di)

m )). But in this case by the projection formula for π (Proposition
1.2.35) and the previous lemma we have

pn(π∗(π
∗F⊗ L(di)

m )) = pn(F⊗ π∗L
(di)
m ) = pn(F)

so that pm(π∗F) = pn(F).
Now let us show that if F is semi-stable on Xn, then π∗F is semi-stable on Xm. For any

subsheaf G ⊆ π∗F, we know that pm(G) is a weighted mean of the non-zero ones among the
reduced Hilbert polynomials pn(π∗(G⊗ L(di)

m )) for 0 ≤ di < k. Now note that by exactness of π∗

the inclusion G⊗ L(di)
m ⊆ π∗F⊗ L(di)

m will induce

π∗(G⊗ L(di)
m ) ⊆ π∗(π

∗F⊗ L(di)
m ) ∼= F⊗ π∗L

(di)
m ∼= F

and by semi-stability of F we see that if π∗(G⊗ L(di)
m ) is non-zero, then

pn(π∗(G⊗ L(di)
m )) ≤ pn(F).

This in turn implies that pm(G) ≤ pn(F) = pm(π∗F), so we conclude that π∗F is semi-stable on
Xm.

Corollary 4.2.12. The pullback functor along π : Xm → Xn induces a morphism ιn,m : Mss
n → Mss

m of
stacks over (Aff)op, and a corresponding morphism in,m : Mss

n → Mss
m between the good moduli spaces.

Proof. The functor ιn,m(S) : Mss
n (S)→Mss

m(S) is defined as pullback along the morphism Xm ×k
S→ Xn×k S. It is well-defined because of the preceding proposition and of the fact that Xm → Xn
is flat, so in particular it preserves purity. The morphism in,m is defined by the universal property
of Mss

n as a good moduli space.

Remark 4.2.13. Proposition 4.2.10 shows that the reduced Hilbert polynomial (unlike the non-
reduced one) is preserved by pullback, so that the morphism ιn,m restricts to Mss

h,n → M
ss
h,m for

any fixed h ∈ Q[x].

Proposition 4.2.14. The morphism ιn,m is an open immersion.

Proof. Let us consider a morphism f : S→Mss
m from a scheme, and the cartesian diagram

X //

��

S

f
��

Mss
n

ιn,m //Mss
m .
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The morphism f corresponds to a family F ∈ Coh(Xm ×k S) of semi-stable sheaves on Xm, and
by construction X(T) is the category of triples (φ : T → S, G, β) with G ∈ Coh(Xn ×k T) a family
of semi-stable sheaves and β : ιn,m(G) ∼= φ∗F as coherent sheaves on Xm ×k T. Note that by
adjunction we have a map α : π∗SπS∗F → F of sheaves on Xm ×k S.

Consider the locus S0 ⊆ S of points where α is an isomorphism. We will prove that this is an
open subscheme of S, and that it represents the fibered product X.

First of all observe that if f : X → Y is a proper morphism and F is a quasi-coherent sheaf of
finite type on X, then the locus of points of Y such that Fy = 0 is an open subset of Y. This is
because the support of F is a closed subset of X, and its image in Y, which is closed by properness,
is the complement of the locus where Fy = 0. In fact: it is clear that if y is not in f (Supp(F)),
then Fy = 0. On the other hand, if y ∈ f (Supp(F)), let us take a point in the preimage and
localize X and Y. We end up with a local morphism of local rings A → B, a B-module M such
that M/mB M 6= 0 (by Nakayama), and we need to show that M/mA M 6= 0. This is clear from
mA M ⊆ mB M ⊆ M.

Let us look at the kernel and cokernel of α,

0 // K // π∗SπS∗F // F // Q // 0.

Since tensor product is right exact, the locus on S where α is surjective is exactly the locus where
Qs = 0. Let us call this locus S′ ⊆ S, an open subscheme. Once we restrict to S′ the map α is
surjective, so K satisfies base change over points of S, since F is flat over S. Now the locus in S′

where α is an isomorphism, our S0, is exactly the locus where Ks = 0, which is therefore open,
both in S′ and in S.

From the preceding discussion, on S0 we have an isomorphism α0 : π∗S0(πS0)∗F0 ∼= F0 where
F0 is the restriction of F to Xm ×k S0, so the object (S0 → S, (πS0)∗F0, α0) is an object of X(S0)
(recall that ιn,m is pullback along π). This object corresponds to a map g : S0 → X (which coincides
with the one induced by the two maps S0 → S, S0 →Mss

n ). We claim that g is an equivalence.
Indeed, it is essentially surjective because if (φ : T → S, G, β) is an object of X(T), then the

map φ will factor through S0, since a parabolic sheaf F ∈ Coh(Xm) comes from Xn if and only
if π∗π∗F → F is an isomorphism (by the projection formula), and the sheaf π∗SπS∗F satisfies
base change. This gives us an object of S0(T), whose image is readily checked to be isomorphic
to (φ : T → S, G, β). On the other hand one checks that for a fixed scheme T over k, objects
(φ : T → S, G, β) and (ψ : T → S, H, γ) are isomorphic if and only if φ = ψ and there are no
non-trivial automorphisms, so g is also fully faithful.

Remark 4.2.15. The locus S0 can also be described as the locus where all the maps that are
identities in the pullback of a parabolic sheaf from Xn are isomorphisms.

Now we turn our attention to the behavior of stable sheaves.

Proposition 4.2.16. Assume that the pullback along π of any stable sheaf is still stable. Then ιn,m restricts
to an open immersion ιon,m : Ms

n →Ms
m, inducing io

n,m : Ms
n → Ms

m (which coincides with the restriction
of in,m).

We will need a couple of lemmas.

Lemma 4.2.17. If G ∈ Coh(Xn) is a sheaf such that π∗G ∈ Coh(Xm) is stable, then G is stable on Xn.
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Proof. Let F ⊆ G be a non-zero proper subsheaf. Then since π is flat and π∗ is fully faithful,
π∗F ⊆ π∗G is a non-zero proper subsheaf, and thus pn(F) = pm(π∗F) < pm(π∗G) = pn(G),
since π∗G is stable.

Lemma 4.2.18. The square

Ms
n

ιon,m //

��

Ms
m

��
Mss

n
ιn,m //Mss

m

is cartesian.

Proof. Denote by X the fibered product Mss
n ×Mss

m M
s
m. The objects of X(T) for T a scheme

over k are triples (G, H, α), where G ∈ Coh(Xn ×k T) is a family of semi-stable sheaves, F ∈
Coh(Xm×k T) is a family of stable sheaves, and α : π∗TG ∼= H is an isomorphism in Coh(Xm×k T).
We have a map g : Ms

n → X sending a family of stable sheaves F ∈ Coh(Xn ×k T) over T to the
object (F, π∗T F, id) of X(T), and we will prove that this is an equivalence.

Now take an object (G, H, α) of X(T). The previous lemma implies that the fibers of G are
stable, since their pullback to Xm is stable. This says that G is an object ofMs

h,n, and one checks
that g(G) = (G, π∗TG, id) is isomorphic to the original (G, H, α), so g is essentially surjective.
For fully faithfullness, it is sufficient to notice that given a morphism (φ, ψ) : (F, π∗T F, id) →
(G, π∗TG, id) the component ψ : π∗T F → π∗TG has to coincide with π∗Tφ.

Remark 4.2.19. From the proof it is clear that this lemma will also hold if we are considering
variants with fixed reduced Hilbert polynomial h ∈ Q[x] (or with some other fixed datum, com-
patible with pullback), i.e. the square

Ms
h,n

ιon,m //

��

Ms
h,m

��
Mss

h,n
ιn,m //Mss

h,m

is cartesian as well.

Proof of Proposition 4.2.16. The fact that pullback preserves stability implies that ιn,m mapsMs
n to

Ms
m, so the map ιon,m is well-defined. Lemma 4.2.18 implies that ιon,m is an open immersion, since

we know that ιn,m is an open immersion, and the statement for io
n,m follows from the properties

of good moduli spaces.

The morphism ιn,m : Mss
n →Mss

m is not always closed.

Example 4.2.20. Consider the case of the standard log point, i.e. X = Spec(k) with the log
structure L : N → k, sending 0 to 1 ∈ k and everything else to zero. Consider the projection
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π : X2 → X, and the family of parabolic sheaves {Et}t∈k with weights in 1
2 N, over A1

k , given by
(Et)a = k for any a ∈ 1

2 Z, and maps

(Et)−1 → (Et)−1/2 → (Et)0 = k ·t→ k 0→ k

This is a flat family of semi-stable sheaves over A1
k , i.e. an object ofMss

2 (A
1
k). Notice also that

the diagram

k ·t // k 0 // k

k k 0 //

·t

OO

k

shows that for t 6= 0, Et is isomorphic to the pullback of the unique invertible sheaf on Spec(k),
but when t = 0 this is clearly not true.

This essentially shows that the following diagram is cartesian

A1
k \ {0} //

��

A1
k

Et

��
Mss

1
ι1,2 //Mss

2

and this implies that ι1,2 is not closed in this case.

In this example the pullback of a stable sheaf need not be stable in general. Let us examine
directly a larger class of examples where this happens.

Example 4.2.21. Assume that X is a log scheme with a chart L : N → Div(X) such that L(1) =
(L1, 0) ∈ Div(X), and let F be a stable sheaf on X1. Then for every 0 ≤ i < n we have the stable
parabolic sheaf

−1 · · · − i
n · · · 0

Fi = 0 // 0 // · · · // 0 // F // 0 // · · · // 0 // 0

on Xn, with one copy of F in place − i
n , and 0 everywhere else (of course when i = 0 we will have

F⊗ L−1
1 in place −1).

Given m = nk, the pullback along π : Xm → Xn of Fi is given by

−1 · · · − ki
m · · · − ki−k+1

m · · · 0

π∗Fi = 0 // · · · // F F · · · F F // · · · // 0,
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or, in other words

(π∗Fi)a =

{
F for − ki

m ≤ a ≤ − ki−k+1
m

0 otherwise

with the obvious maps (so there are k copies of F). The sheaves π∗Fi are semi-stable, but not
stable anymore: for example we have a subsheaf G ⊆ π∗F given by

−1 · · · − ki
m · · · − ki−k+2

m − ki−k+1
m − k(i−1)

m · · · 0

π∗Fi = 0 // · · · // F · · · F F // 0 // · · · // 0

G = 0
?�

OO

// · · · // 0
?�

OO

// · · · // 0
?�

OO

// F
?�

OO

// 0
?�

OO

// · · · // 0,
?�

OO

that is

Ga =

{
F for a = − ki−k+1

m
0 otherwise,

and clearly pm(G) = pm(π∗Fi) = p1(F).
Moreover it is easy to describe the stable factors of π∗Fi: they are precisely the sheaves Gj

with one copy of F in place − ki−j
m for 0 ≤ j ≤ k − 1, and all zeros otherwise. Note that all of

the sheaves on Xn described in Remark 4.2.9 (obtained starting from one of the stable factors Gj)
coincide with the original Fi or are zero, in this case.

Note also that π∗Fi is not even polystable: of the sheaves Gj just described, only G = Gk−1 is
a subsheaf of π∗Fi. The polystable sheaf

⊕
Gj which is S-equivalent to π∗Fi is

−1 · · · − ki
m · · · − ki−k+1

m · · · 0

⊕
Gj = 0 // · · · // F 0 // F 0 // · · · 0 // F 0 // F // · · · // 0

where all the maps are zero.

This example can be generalized in arbitrary rank. For example if X has a chart L : N2 →
Div(X) with both (1, 0) and (0, 1) going to (L1,0, 0) and (L0,1, 0), this example carries through ver-
batim (so that again there will be stable sheaves that become strictly semi-stable after pullback),
but we can also do something different.

Let us introduce some notation first.

Notation 4.2.22. We need to draw parabolic sheaves on Xn, where X is a log stack with a free log
structure Nr → Div(X).
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When r = 1, we can draw parabolic sheaves easily as a the segment in [−1, 0]

· · · −1 − n−1
n · · · − 1

n 0 · · ·

· · · // F0 // F1 // · · · // Fn−1 // F0 ⊗ L // · · ·

of a “sequence” of sheaves arranged on the real line.
If r = 2 we can draw the sheaf as the square [−1, 0]2 (for example if we are taking square

roots)

−1 − 1
2 0

F−1,−1 ⊗ L0,1 // F− 1
2 ,−1 ⊗ L0,1 // F−1,−1 ⊗ L1,1 0

F−1,− 1
2

//

OO

F− 1
2 ,− 1

2
//

OO

F−1,− 1
2
⊗ L1,0

OO

− 1
2

F−1,−1

OO

// F− 1
2 ,−1

//

OO

F−1,−1 ⊗ L1,0

OO

−1

inside a “diagram” on the plane with a sheaf on every point with integral coordinates and maps
going up and to the right.

If the rank is bigger this becomes less feasible, but we have an “inductive” way of drawing
parabolic sheaves in higher rank. For example, the sheaf with r = 2 above can be drawn in the
following way: say that the DF structure is given by L : N2 → Div(X), and consider the new DF
structure given by the composition N ⊆ N2 → Div(X), where N ⊆ N2 is the inclusion of the
first or second component. Call the resulting log schemes X̃1 and X̃2 respectively.

Then a parabolic sheaf on the root stack X2 can be drawn as a diagram

· · · −1 − 1
2 0 · · ·

· · · // F0 // F1 // F0 ⊗ L(1,0)
// · · ·

with the formal properties of a parabolic sheaf on X̃1, but where the sheaves F0 and F1 are
parabolic sheaves on X̃2. In other words we are “collapsing” the vertical direction, and the price
is to use parabolic sheaves in place of quasi-coherent sheaves.

In general if X is a log scheme with a chart L : Nr → DivX , let us consider the DF structure
given by the inclusion Nr−1 ⊆ Nr → DivX that omits the i-th standard generator ei. Call X̃ the
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resulting log scheme. Then a parabolic sheaf on Xn can be seen as a diagram

−1 · · · − j
n · · · 0

◦

other directions
��

i-th directionoo

F0 // F1 // · · · // Fn−j−1 // Fn−j // Fn−j+1 // · · · // Fn−1 // F0 ⊗ Lei

where each of the Fi’s is a parabolic sheaf on the root stack X̃n.

We will use this notation several times in the following arguments.

Example 4.2.23. Take a log scheme X with a global chart L : N2 → Div(X), and now assume
only that L((0, 1)) = (L0,1, 0) ∈ Div(X), and the section of L1,0 can be non-zero, and let us fix
n = 2 for simplicity. Consider as in the preceding discussion the log scheme X̃, which has the
same underlying scheme as X, but the log structure is given by N ⊆ N2 → Div(X), where the
map is the immersion as the first component, so the image of 1 is (L1,0, s1,0).

Take a stable sheaf F ∈ Coh(X̃2), say

−1 −1/2 0

F = F0 // F1 // F0 ⊗ L1,0

and form the following parabolic sheaf, call it F′, on X2

−1 − 1
2 0

0 // 0 // 0 0

F′ = F0 //

OO

F1 //

OO

F0 ⊗ L1,0

OO

− 1
2

0

OO

// 0 //

OO

0

OO

−1
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or, with the notation of 4.2.22,

−1 − 1
2 0

◦

horizontal direction
��

vertical directionoo

F′ = 0 // F // 0.

Note that this is well defined because the given section of L0,1 is zero. It is clear that F′ is also
stable on X2, since its subsheaves correspond exactly to subsheaves of F on X̃2, and the slopes
are the same. Assume also that π̃∗F is stable on X̃4, where π̃ : X̃4 → X̃2 is the projection.

Now consider the pullback of F′ along π : X4 → X2

−1 − 3
4 − 1

2 − 1
4 0

0 // 0 // 0 // 0 // 0 0

F0

OO

F0

OO

// F1

OO

F1

OO

// F0 ⊗ L1,0

OO

− 1
4

π∗F′ = F0 F0 // F1 F1 // F0 ⊗ L1,0 − 1
2

0 //

OO

0 //

OO

0 //

OO

0 //

OO

0

OO

− 3
4

0

OO

// 0 //

OO

0 //

OO

0 //

OO

0

OO

−1
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and notice that this is not stable, because the following sheaf G ∈ Coh(X4)

−1 − 3
4 − 1

2 − 1
4 0

0 // 0 // 0 // 0 // 0 0

F0

OO

F0

OO

// F1

OO

F1

OO

// F0 ⊗ L1,0

OO

− 1
4

G = 0 //

OO

0 //

OO

0 //

OO

0 //

OO

0

OO

− 1
2

0 //

OO

0 //

OO

0 //

OO

0 //

OO

0

OO

− 3
4

0

OO

// 0 //

OO

0 //

OO

0 //

OO

0

OO

−1

is a subsheaf of π∗F′, and clearly has p4(G) = p4(π
∗F′) = p2(F′).

Once again we can easily describe the stable factors: they are the sheaf G, and the analogous
one with the rows corresponding to − 1

4 and − 1
2 switched (note that this is not a subsheaf of

π∗F′), so that the polystable sheaf S-equivalent to π∗F′ is

−1 − 3
4 − 1

2 − 1
4 0

0 // 0 // 0 // 0 // 0 0

F0

OO

F0

OO

// F1

OO

F1

OO

// F0 ⊗ L1,0

OO

− 1
4

F0

0

OO

F0 //

0

OO

F1

0

OO

F1 //

0

OO

F0 ⊗ L1,0

0

OO

− 1
2

0 //

OO

0 //

OO

0 //

OO

0 //

OO

0

OO

− 3
4

0

OO

// 0 //

OO

0 //

OO

0 //

OO

0

OO

−1.

As in the previous example, we can completely reconstruct F′ from any of its stable factors,
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for example from G, as π∗(G⊗ L(di)
4 ) for some (di) (for example (1, 1) works). Finally note that

π∗(G⊗ L(di)
4 ) is either isomorphic to F′, or is zero.

We will see now that the behavior in the previous example is in fact typical for stable sheaves
with non-stable pullback.

Notation 4.2.24. We denote by Xi (for i = 1, . . . , r) the log stack given by X1, together with the log
structure induced by the composition Nr−1 ⊆Nr → Div(X1), where Nr−1 ⊆Nr is the inclusion
that omits the i-th basis element.

Let Coh((Xi)n)si denote the subcategory of Coh((Xi)n) of sheaves annihilated by the section
si of Li coming from the log structure (meaning that every component of the parabolic sheaf is
annihilated by si). We define fully faithful functors Ii

n,j : Coh((Xi)n)si → Coh(Xn) for i = 1, . . . , r,

and j = 1, . . . , n as follows: for F ∈ Coh((Xi)n)si , we set

Ii
n,j(F)a1,...,ar =

{
Fa1,...,âi ,...,ar for ai = −

j
n

0 otherwise.

with maps
Ii
n,j(F)a1,...,ar → Ii

n,j(F)a1,...,ak+
1
n ,...,ar

defined to be zero, except if ai = −
j
n and k 6= i, in which case it is defined as the corresponding

map
Fa1,...,âi ,...,ar → Fa1,...,ak+

1
n ,...,âi ,...,ar

of the sheaf F.
In other words, Ii

n,j(F) is obtained by placing F in the “slice” ai = −
j
n , and filling the rest with

zeros. Note that this is well defined only if the components of F are annihilated by si.
If we use the notation of 4.2.22, we can draw Ii

n,j(F) as

−1 · · · − j
n · · · 0

◦

other directions
��

i-th directionoo

Ii
n,j(F) = 0 // 0 // · · · // 0 // F // 0 // · · · // 0 // 0

and from this description, it is clear that:

• we have pn(Ii
n,j(F)) = pn(F),

• subsheaves of Ii
n,j(F) correspond bijectively to subsheaves of F via Ii

n,j,

• so Ii
n,j(F) is (semi-)stable on Xn if and only if F is (semi-)stable on (Xi)n.
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Now let us set m = nk and assume that F is stable, so that Ii
n,j(F) is also stable. Consider the

pullback of Ii
n,j(F) along π : Xm → Xn, and consider also the projection πi : (Xi)m → (Xi)n. We

can write the pullback as

−1 · · · − kj
m · · · − kj−k+1

m · · · 0

◦

other directions
��

i-th directionoo

π∗ Ii
n,j(F) = 0 // · · · // π∗i F π∗i F · · · π∗i F π∗i F // · · · // 0,

and, as in example 4.2.21, we see that π∗ Ii
n,j(F) is not stable: the sheaf Ii

m,kj−k+1(π
∗
i F) ∈ Coh(Xm)

having one copy of π∗i F in the “slice” ai = −
kj−k+1

m is a proper subsheaf of the pullback π∗ Ii
n,j(F)

−1 · · · − kj
m · · · − kj−k+1

m · · · 0

◦

other directions

��

i-th directionoo

π∗ Ii
n,j(F) = 0 // · · · // π∗i F · · · π∗i F π∗i F // · · · // 0

Ii
m,kj−k+1(π

∗
i F) = 0

?�

OO

// · · · // 0
?�

OO

// · · · // 0
?�

OO

// π∗i F
?�

OO

// · · · // 0
?�

OO

and has pm(Ii
m,kj−k+1(π

∗
i F)) = pm(π∗ Ii

n,j(F)), as they are both equal to pn(F) on (Xi)n.

We can describe the stable factors of π∗ Ii
n,j(F) if π∗i F if stable on (Xi)m (which is not always

the case): the quotient π∗ Ii
n,j(F)/Ii

m,kj−k+1(π
∗
i F) is the sheaf

−1 · · · − kj
m · · · − kj−k+1

m · · · 0

◦

other directions
��

i-th directionoo

0 // · · · // π∗i F π∗i F · · · π∗i F // 0 // · · · // 0

with one less copy of π∗i F at the end, and it has Ii
m,kj−k+2(π

∗
i F) as a subsheaf with the same

slope. Inductively, we see that the stable factors of π∗ Ii
n,j(F) are the sheaves Ii

m,kj−h(π
∗
i F) for
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h = 0, . . . , k− 1, and the semi-stable sheaf S-equivalent to π∗ Ii
n,j(F) is

−1 · · · − kj
m · · · − kj−k+1

m · · · 0

◦

other directions
��

i-th directionoo

0 // · · · // π∗i F 0 // π∗i F 0 // · · · 0 // π∗i F 0 // π∗i F // · · · // 0

with zeros instead of identity maps.
The next proposition says that every stable sheaf F ∈ Coh(Xn) such that π∗F ∈ Coh(Xm) is

not stable is of this form.

Proposition 4.2.25. Let F ∈ Coh(Xn) be a stable sheaf. Then π∗F ∈ Coh(Xm) is not stable if and only
if F is in the image of one of the functors Ii

n,j, for some i, j.

Proof. The “if” part is contained in the previous discussion.
For the other direction, let us consider a subsheaf G ⊆ π∗F, along with the subsheaves π∗(G⊗

L(di)
m ) ⊆ F for 0 ≤ di < k. Recall that by proposition 4.2.8, the slope pm(G) is a weighted mean of

the polynomials pn(π∗(G⊗ L(di)
m )), with π∗(G⊗ L(di)

m ) non-zero.

The only possibility for G to be destabilizing is that pn(π∗(G⊗ L(di)
m )) = pn(F) for all non-zero

π∗(G⊗ L(di)
m ), and by stability of F this implies π∗(G⊗ L(di)

m ) = F for those values of (di).

Nota also that if π∗(G ⊗ L(di)
m ) = F for all values of (di), then we must have G = π∗F: this

can be seen directly from the description of the sheaves π∗(G⊗ L(di)
m ) given in Remark 4.2.9, or

from the fact that the direct sum E =
⊕

0≤di<0 L(di)
m is a generating sheaf for the relative root stack

π : Xm → Xn, and the cokernel of G ⊆ π∗F would be sent to zero by π∗(−⊗ E) ([Nir, Lemma
3.4]).

This implies that if π∗F is not stable, then there is a subsheaf G with

• π∗(G⊗ L(di)
m ) = 0 or π∗(G⊗ L(di)

m ) = F for all 0 ≤ di < k, and

• each of the two cases occur for at least one (di).

Now we will see that this implies that F is in the image of one of the functors Ii
n,j. From now on

for brevity we will write G(di) = π∗(G⊗ L(di)
m ) ∈ Coh(Xn).

Observe first that if G(di) = F for some (di), then G(ei) = F also for any (ei) ≥ (di) in the
componentwise order. This is because, since G is a subsheaf of π∗F, the diagram

F = (π∗F)(di) (π∗F)(ei) = F

F = G(di) //
?�

OO

G(ei)
?�

OO
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commutes, and this forces G(ei) = F. This implies that if G(di) = 0, then G(ei) = 0 for any
(ei) ≤ (di). In particular we necessarily have G(0,...,0) = 0 and G(k−1,...,k−1) = F. Now we justify
the fact that there is a direction i0 ∈ {1, . . . , r} such that G(di) = 0 and F both occur for di with
i 6= i0 fixed, and di0 ranging from 0 to k− 1.

Look first at the sheaves G(a,0,...,0) for 0 ≤ a < k: if G(k−1,0...,0) = F, we are done. Otherwise,
all the sheaves of this form are 0, and we look at G(k−1,a,0,...,0) for 0 ≤ a < k, and so on. If we are
unlucky, at the (r − 1)-th step we will find G(k−1,...,k−1,0) = 0, and so the sheaves G(k−1,...,k−1,a)

satisfy the requirement, since for a = 0 we have 0 and for a = k− 1 we have F.

Now we claim that all the maps of the parabolic sheaf F in the direction i0 are necessarily
zero: in fact take (a1, . . . , ar) ∈ ([−1, 0) ∩ 1

n Z)r, and consider the map

f : F(a1,...,ar) → F(a1,...,ai0+
1
n ,...,ar)

.

By looking at the hypercubes corresponding to these two sheaves in the pullback π∗F, along
with the subsheaf G and its property that in the direction i0 it has both F and 0, we see that the
following diagram commutes (the top row is in π∗F, the bottom in the subsheaf G)

F(a1,...,ar)

f // F(a1,...,ai0+
1
n ,...,ar)

F(a1,...,ai0+
1
n ,...,ar)

F(a1,...,ar)
// 0 //?�

OO

F(a1,...,ai0+
1
n ,...,ar)

from which we deduce that f is zero.

Example 4.2.26. Let us examine a simple example more closely. Assume that r = 2, set L((1, 0)) =
(L1,0, s1,0) and L((0, 1)) = (L0,1, s0,1) and take a parabolic sheaf

−1 − 1
2 0

F−1,−1 ⊗ L0,1 // F− 1
2 ,−1 ⊗ L0,1 // F−1,−1 ⊗ L1,1 0

F = F−1,− 1
2

//

OO

F− 1
2 ,− 1

2
//

OO

F−1,− 1
2
⊗ L1,0

OO

− 1
2

F−1,−1

OO

// F− 1
2 ,−1

//

OO

F−1,−1 ⊗ L1,0

OO

−1
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on X2, and its pullback π∗F along π : X4 → X2,

−1 − 3
4 − 1

2 − 1
4 0

F−1,−1 ⊗ L0,1 F−1,−1 ⊗ L0,1 // F− 1
2 ,−1 ⊗ L0,1 F− 1

2 ,−1 ⊗ L0,1 // F−1,−1 ⊗ L1,1 0

F−1,− 1
2

OO

F−1,− 1
2

//

OO

F− 1
2 ,− 1

2

OO

F− 1
2 ,− 1

2

OO

// F−1,− 1
2
⊗ L1,0

OO

− 1
4

F−1,− 1
2

F−1,− 1
2

// F− 1
2 ,− 1

2
F− 1

2 ,− 1
2

// F−1,− 1
2
⊗ L1,0 − 1

2

F−1,−1

OO

F−1,−1

OO

// F− 1
2 ,−1

OO

F− 1
2 ,−1

//

OO

F−1,−1 ⊗ L1,0

OO

− 3
4

F−1,−1 F−1,−1 // F− 1
2 ,−1 F− 1

2 ,−1
// F−1,−1 ⊗ L1,0 −1.

Now assume that π∗F is not stable, so that we have a subsheaf G ⊆ π∗F with p4(G) = p4(π
∗F) =

p2(F). As we discussed, this means that the four sheaves

π∗(G⊗ L(0,0)
4 ), π∗(G⊗ L(1,0)

4 ), π∗(G⊗ L(0,1)
4 ), π∗(G⊗ L(1,1)

4 ) ⊆ F

on X2 are either F or 0, and both cases occur.

Let us look at the square [−1,− 3
4 ]

2 of G. We have the following cases:

−1 − 3
4

F−1,−1 F−1,−1 − 3
4

0 //

OO

F−1,−1 −1
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or
−1 − 3

4

0 // F−1,−1 − 3
4

0 //

OO

F−1,−1 −1

or
−1 − 3

4

F−1,−1 F−1,−1 − 3
4

0 //

OO

0

OO

−1,

or
−1 − 3

4

0 // F−1,−1 − 3
4

0 //

OO

0

OO

−1,

and, in each of these cases, the pattern will be the same in each of the other three squares of
[−1, 0]2.

Now assume we are in the first case, and look at the segment [−1, 1
4 ]× {−1} of G, along with

the inclusion in the same line of F

−1 − 3
4 − 1

2 − 1
4 0 1

4

F = F−1,−1 F−1,−1 // F− 1
2 ,−1 F− 1

2 ,−1
// F−1,−1 ⊗ L1,0 F−1,−1 ⊗ L1,0 −1

G =
?�

OO

0 //?�

OO

F−1,−1 // 0 //?�

OO

F− 1
2 ,−1

// 0 //?�

OO

F−1,−1 ⊗ L1,0 −1.

From this diagram we can conclude that the maps F−1,−1 → F− 1
2 ,−1 and F− 1

2 ,−1 → F−1,−1 ⊗ L1,0

are zero. By looking at the line [−1, 0]× {− 1
2} we see analogously that also the maps F−1,− 1

2
→
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F− 1
2 ,− 1

2
and F− 1

2 ,− 1
2
→ F−1,− 1

2
⊗ L1,0 are zero and so the parabolic sheaf F

−1 − 1
2 0

F−1,−1 ⊗ L0,1
0 // F− 1

2 ,−1 ⊗ L0,1
0 // F−1,−1 ⊗ L1,1 0

F = F−1,− 1
2

0 //

OO

F− 1
2 ,− 1

2

0 //

OO

F−1,− 1
2
⊗ L1,0

OO

− 1
2

F−1,−1

OO

0 // F− 1
2 ,−1

0 //

OO

F−1,−1 ⊗ L1,0

OO

−1

has zero maps in the horizontal direction.

The other cases are similar.

Note that if the square
[
−1,− 3

4
]2

was the last one in our list (the one with three zeros), then
the conclusion would be that the maps of the sheaf in both the horizontal and vertical direction
are zero. This is a case in which F is of the form Ii

n,j(F′) for a sheaf F′ ∈ (Xi)n, but F′ will again

have non-stable pullback to (Xi)m, and thus we can apply the whole procedure again to F′.

Returning to the proof, the above discussion implies that, using the notation of 4.2.22, the
sheaf F can be written as

−1 − n−1
n · · · − 1

n 0

◦

other directions
��

i0-th directionoo

F = F0
0 // F1

0 // · · · 0 // Fn−1
0 // F0 ⊗ Li0

where all the parabolic sheaves Fh ∈ Coh((Xi0)n) are annihilated by the section si0 , so in fact
Fh ∈ Coh((Xi0)n)si0

. Now note that unless only one of the Fh’s is non-zero, a sheaf of this form

cannot be stable, since it is the direct sum of the parabolic sheaves having Fh in place − n−h
n (in

the direction i0) and zero everywhere else, and a semi-stable direct sum is stable if and only if
there is only one factor, which moreover is stable.



4.2. (SEMI-)STABILITY AND EXTENSION OF DENOMINATORS 147

In conclusion F is of the form

−1 − n−1
n · · · − n−h+1

n − n−h
n

n−h−1
n · · · 0

◦

other directions
��

i0-th directionoo

F = 0 // 0 // · · · // 0 // Fh // 0 // · · · // 0

or, in other words, F = Ii0
n,n−h(Fh) with Fh ∈ Coh((Xi0)n)si0

a stable sheaf, and this concludes the
proof.

Lemma 4.2.27. Let F ∈ Coh(Xn) be a stable sheaf and let F′ ∈ Coh(Xm) be one of the stable factors of
π∗F. Then for any 0 ≤ di < k the sheaf π∗(F′ ⊗ L(di)

m ) ∈ Coh(Xn) is isomorphic to F or zero (and both
cases occur if π∗F is not stable).

Proof. If π∗F is still stable, this is clear from the description of the pullback and by remark 4.2.9.
In the other case we know that F must be of the form Ii

n,j(G) with G stable on (Xi)n from the
preceding proposition, and we know the stable factors F′ of π∗F from the discussion preceding
the proof of 4.2.25, if the pullback of G along (Xi)m → (Xi)m is stable. If this pullback is not
stable we can apply Proposition 4.2.25 again to G, and after a finite number of steps we will get
down to a stable sheaf.

From the explicit form of the stable factors and the description of the sheaves π∗(F′ ⊗ L(di)
m ) ∈

Coh(Xn) of Remark 4.2.9, the conclusion follows.

Lemma 4.2.28. Let F, G ∈ Coh(Xn) be stable sheaves such that π∗F and π∗G are S-equivalent on Xm.
Then F ∼= G on Xn.

Proof. If one of π∗F or π∗G is stable, then π∗F ∼= π∗G (since S-equivalent implies isomorphic, if
one of the sheaves is stable) and since π∗ is fully faithful we conclude that F ∼= G.

If both π∗F and π∗G are not stable, denote by Fi and Gj their stable factors. Since π∗F and
π∗G are S-equivalent, they have the same stable factors, so for some i and j we have Fi

∼= Gj. Now

by Lemma 4.2.27, the shaves π∗(Fi ⊗ L(di)
m ) and π∗(Gj ⊗ L(di)

m ) for 0 ≤ di < k are isomorphic to F
or G respectively, or zero. Since F and G are not zero, and the isomorphism Fi

∼= Gj will induce

isomorphisms π∗(Fi ⊗ L(di)
m ) ∼= π∗(Gj ⊗ L(di)

m ) for any (di), we get an isomorphism F ∼= G.

Proposition 4.2.29. The morphism in,m : Mss
n → Mss

m between the good moduli spaces is geometrically
injective. In particular, being proper, it is also finite.

Proof. Fix an algebraically closed extension k ⊆ K, and let us show that Mss
n (K) → Mss

m(K) is
injective. This means that if F, G ∈ Coh((XK)n) are semi-stable sheaves such that π∗F, π∗G ∈
Coh((XK)n) are S-equivalent, then F and G are S-equivalent themselves. We can assume that F
and G are polystable, and write F =

⊕
i Fi and G =

⊕
j Gj as sums of stable sheaves on (XK)n.

We will proceed by induction on N = max{#stable factors of F, #stable factors of G}.
For N = 1, this is the previous lemma, applied to XK.
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If N > 1, write Fi,h and Gj,k for the stable factors of π∗Fi and π∗Gj respectively. Since

π∗F =
⊕

i
π∗Fi

and
π∗G =

⊕
j

π∗Gj

are S-equivalent, they will have the same stable factors, so for some i, j, k, h we have Fi,h
∼= Gj,k.

Now let us look at the sheaves π∗(Fi,h ⊗ L(di)
m ) and π∗(Gj,k ⊗ L(di)

m ) on Xn for all 0 ≤ di < k: by
Lemma 4.2.27, they are isomorphic to Fi, and Gj respectively, or zero. But since neither of Fi or Gj
is zero, as in the proof of the previous lemma, we can conclude that the isomorphism Fi,h

∼= Gj,k
induces Fi

∼= Gj.
After erasing these two factors from F and G, we end up with two polystable sheaves F′ and

G′ with max{#stable factors of F′, #stable factors of G′} = N − 1 and such that π∗F′ and π∗G′

are S-equivalent. By the induction hypothesis F′ and G′ are isomorphic, and this concludes the
proof.

The part about finiteness follows from Chevalley’s theorem.

Proposition 4.2.30. If the pullback of a stable sheaf is stable, then all the maps ιn,m, ιon,m, in,m, io
n,m are

open and closed immersions.

Proof. We already know that ιn,m is an open immersion. The fact that stable sheaves go to stable
sheaves implies that polystables go to polystables, and this says that ιn,m sends closed points to
closed points (recall that the closed points of Mss

n correspond to polystable sheaves). Since we
know that the induced map in,m on the good moduli spaces is finite, by Proposition 6.4 of [Alp12]
we can conclude that ιn,m is also finite, and in particular closed. This shows that ιn,m is an open
and closed immersion, and this implies the conclusion also for in,m.

Finally, the same conclusion for ιon,m and io
n,m holds because of Lemma 4.2.18.

It is not clear to us that this should hold in general. Example 4.2.20 showed that ιn,m need not
be closed in general.

Example 4.2.31. As in 4.2.20 consider the standard log point, i.e. X = Spec(k) with the log
structure L : N→ k, sending 0 to 1 ∈ k and everything else to zero, and the map π : X2 → X. We
showed that ι1,2 : Mss

1 →Mss
2 is not closed.

Note first of all that in case everything is semi-stable, since the reduced Hilbert polynomial
(of a non-zero sheaf) is always 1, and the only stable sheaves are those without proper non-zero
subsheaves. Furthermore Mss

1 and Mss
1 are disjoint union of substacks/schemes parametrized

by a natural number r ∈ N (the rank). Let us restrict to the component (Mss
1 )1 parametrizing

semi-stable sheaves of rank 1. This lands in the component (Mss
2 )2 parametrizing semi-stable

sheaves on X2 of parabolic rank 2.
Let us show that i1,2 : (Mss

1 )1 → (Mss
2 )2 is an open and closed immersion. It is clear that

(Mss
1 )1
∼= BGm, since we are just parametrizing invertible sheaves, and so (Mss

1 )1 = Spec(k). On
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the other hand (Mss
2 )2 has three connected components, parametrizing sheaves of the following

three kinds:
−1 − 1

2 0

k⊕ k // 0 // k⊕ k

0 // k⊕ k // 0

k // k // k.

The first two kinds correspond to components of the form B GL2, that have Spec(k) has moduli
space, and the third one parametrizes pairs (L, M) of invertible sheaves with two maps a : L→ M
and b : M→ L such that a ◦ b = 0 and b ◦ a = 0.

From this description we see that this component can be identified with the quotient stack
[Spec(k[x, y]/(xy))/Gm ×Gm] for the action defined by (α, β) · (x, y) = (αβ−1x, α−1βy). From
this we see that the moduli space of this component is also Spec(k). In conclusion the morphism
(Mss

1 )1 → (Mss
2 )2 is the inclusion of one component Spec(k)→ Spec(k)ä Spec(k)ä Spec(k).

We have no examples in which in,m is not an open and closed immersion, so one could con-
jecture that this is always the case. At the very least, the fact that on each connected component
the inductive limit stabilizes (in the sense that in,m is an isomorphism for n, m big enough) seems
very reasonable.

The following example shows that the fact that the map between spaces is an immersion will
not follow from general facts on good moduli spaces.

Example 4.2.32. We will construct an example of an open immersion between Artin stacks with
good moduli spaces, that does not induce an immersion on the moduli spaces.

Let us consider the action of Gm on the second component of X = A1×Gm = Spec(k[x, t±1]),
and the natural action on Y = Spec(A) where A ⊆ k[x, t] is the subring generated by monomials
of total degree at least 2, i.e. x2, xt, t2, x3, . . .. We have a Gm equivariant map X → Y which is
an open immersion (since outside the origin A is just A2 \ 0), and therefore induces an open
immersion between the quotient stacks [X/Gm]→ [Y/Gm].

The induced morphism between the good moduli spaces is the normalization map A1 → C
where C is the standard cuspidal curve, and therefore is not an immersion.

The following proposition gives sufficient conditions that ensure that stability is preserved
under pullback.

Proposition 4.2.33. The pullback of a stable sheaf is stable in each of the following cases:

• we are considering torsion-free sheaves and the log structure on X is generically trivial (as in 1.2.15);

• we look at components corresponding to a reduced Hilbert polynomial h ∈ Q[x], which is not the
reduced Hilbert polynomial of a stable parabolic sheaf on one of the log stacks Xi.
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Proof. This is immediate from the previous discussion: a stable sheaf with non-stable pullback
will have a lot of zeros, but the maps of a torsion-free parabolic sheaf on a log scheme with
generically trivial log structure are injective (see 3.2.13), and this is it for the first part.

As for the second part, a stable sheaf with a non-stable pullback is of the form Ii
n,j(F) for some

F ∈ Coh((Xi)n)si , and recall that pn(Ii
n,j(F)) = pn(F).

Remark 4.2.34. Let us briefly discuss the significance of the second condition. Clearly, it will only
be meaningful if the set of reduced Hilbert polynomials of stable parabolic sheaves on X is not
entirely contained in the set of reduced Hilbert polynomials of stable sheaves on one of the Xi.

We feel that this should be the case in general: the reduced Hilbert polynomial of a parabolic
sheaf is in particular the reduced Hilbert polynomial of a sheaf on X (the sum of its fundamental
pieces), but this sheaf on X is typically not even semi-stable. Moreover, adding generators to the
log structure should give more freedom for stable sheaves, and thus for the set of their Hilbert
polynomials. For example if the log structure has rank 1, the pieces of a parabolic stable sheaf
need not be stable on X.

Anyways, to completely understand this problem first of all one should understand the prob-
lem of which polynomials in Q[x] can be realized as reduced Hilbert polynomials of some stable
sheaf, which is non-trivial even in the classical (non-parabolic) setting.

With that said, let us look at the example of curves, where one can say something.
If X = P1, say with the log structure corresponding to the divisor given by 0, then the reduced

Hilbert polynomial of any coherent sheaf is of the form h(x) = x + q with q ∈ Q[x], and since the
only stable sheaves are the line bundles, their reduced Hilbert polynomials are exactly those for
which q is an integer.

In this case for any fixed q ∈ Q there are stable parabolic sheaves on X that have x + q as
their reduced Hilbert polynomial (it suffices to consider parabolic sheaves whose pieces are all
line bundles), so that the second condition in the last proposition is meaningful in this case.

On the other hand if the genus of X is at least 1, reduced Hilbert polynomials are still of the
form x + q with q ∈ Q, but now any one of these polynomials is a reduced Hilbert polynomial
of a stable sheaf on X. In fact it known that for any fixed degree and rank (that we may assume
coprime) an a curve of genus at least 1 there is a stable sheaf of the fixed degree and rank. In this
case the second condition of the last proposition cannot be applied in a meaningful way.

4.3 Limit moduli theory on X∞

In this section we will use the notations of the last one, and moreover we will denote by
πn,m : Xm → Xn the natural projection for n | m, and by πn : X∞ → Xn the projection from
the infinite root stack. Note that, being an inverse limit of flat morphisms, πn is flat.

The subject of this section is the moduli theory for finitely presented sheaves on X∞ that we
get by taking a limit of the theories at finite levels. In our setting X∞ is coherent by 2.2.46, so
that finitely presented sheaves are the same as coherent sheaves, but since this does not hold in
general we will formulate everything using finitely presented sheaves.

Recall from 2.2.35 that FP(X∞) = lim−→n
FP(Xn), and this means that

• every finitely presented sheaf F ∈ FP(X∞) is of the form π∗nFn for some n and Fn ∈ FP(Xn),



4.3. LIMIT MODULI THEORY ON X∞ 151

• for any n, m and Fn ∈ FP(Xn), Fm ∈ FP(Xm) such that F ∼= π∗nFn ∼= π∗mFm, there exists
k ≥ n, m such that π∗n,kFn ∼= π∗m,kFm on Xk.

Definition 4.3.1. The reduced Hilbert polynomial p(F) of F ∈ FP(X∞) is the reduced Hilbert poly-
nomial pn(Fn) of any finitely presented sheaf Fn ∈ FP(Xn) such that π∗nFn ∼= F.

Since π∗n is fully faithful and pm(π∗n,m(Fn)) = pn(Fn) by Proposition 4.2.10, the reduced Hilbert
polynomial of F is well-defined.

Definition 4.3.2. A finitely presented sheaf F ∈ FP(X∞) is pure if it comes from a pure sheaf on
one of the Xn.

A finitely presented pure sheaf F ∈ FP(X∞) is (semi-)stable if for any finitely presented sub-
sheaf G ⊆ F we have

p(G) (≤) p(F).

Proposition 4.3.3. Let F ∈ FP(X∞), and assume Fn ∈ FP(Xn) is such that π∗nFn ∼= F. Then F is
semi-stable if and only if Fn is semi-stable on Xn. The “only if” part is true with “semi-stable” replaced by
“stable”.

Proof. If π∗nFn is (semi-)stable, then since π∗n is fully faithful and πn is flat, if G ⊆ Fn is a non-zero
proper subsheaf, then π∗nG ⊆ π∗nFn is also a non-zero proper subsheaf, and

pn(G) = p(π∗nG) (≤) p(π∗nFn) = pn(Fn).

On the other hand, if Fn is semi-stable, consider a finitely presented subsheaf G ⊆ π∗Fn. Since
it is finitely presented, G will come from some Gm ∈ FP(Xm). By pushing forward the inclusion

π∗mGm ⊆ π∗nFn

to Xk where k = lcm(m, n) and using the projection formula for πk, we see that G comes from
π∗m,kGm ⊆ π∗n,kFn. Since by Proposition 4.2.10 π∗n,kFn is semi-stable on Xk, we see that

p(G) = pk(π
∗
m,kGk) ≤ pk(π

∗
n,kFn) = p(π∗nFn)

so π∗nFn is semi-stable.

Example 4.3.4. The previous statement is false for stable sheaves in general, and there are stable
sheaves Fn ∈ FP(Xn) such that π∗nFn is not stable. Indeed, this will happen if π∗n,mFn is not stable
for some m = kn, and we saw examples where this happens in the last section.

We consider the stack FPX∞ over (Aff)op of finitely presented sheaves on X∞, defined as
follows: an object over A ∈ (Aff)op is a finitely presented sheaf on (X∞)A = X∞ ×k Spec(A),
flat over A, and arrows are defined using pullback along (X∞)B → (X∞)A for a homomorphism
A→ B.

Inside FPX∞ there is a subcategory parametrizing families of semi-stable sheaves: defineMss

(resp. Ms) as the stack over (Aff)op with objects over A ∈ (Aff)op finitely presented sheaves F on
(X∞)A, flat over Spec(A), and such that for every geometric point p → Spec(A), the pullback of
F to (X∞)p is semi-stable (resp. stable).

In the rest of this chapter we will prove the following theorem.



152 CHAPTER 4. MODULI OF PARABOLIC SHEAVES WITH VARYING WEIGHTS

Theorem 4.3.5. Let X be a projective simplicial log scheme over k with a global simplicial chart P →
Div(X). The stack Mss is an Artin stack, locally of finite presentation, and it has an open substack
Ms ⊆Mss parametrizing stable sheaves.

If in addition stability is preserved by pullback along the projections Xm → Xn between the root stacks
of X (for example if the log structure of X is generically trivial, and we are considering pure sheaves
of maximal dimension), then Mss has a good moduli space Mss, which is a disjoint union of projective
schemes. Moreover there is an open subscheme Ms ⊆ Mss that is a coarse moduli space for the substack
Ms, andMs → Ms is a Gm-gerbe.

Let us start by relating the stack of parabolic sheaves on X∞ with the ones at finite level.

Proposition 4.3.6.

• We have a natural isomorphism of stacks over (Aff)op

lim−→
n
Mss

n →Mss.

• If pullbacks preserve stability, then we also have an isomorphism

lim−→
n
Ms

n →Ms

which is compatible with the previous one. Moreover, in this last case the transition maps are open
and closed immersions, soMss andMs are in fact a union of connected components of the stacks at
finite level.

Proof. Let us recall first of all how to define the direct limit lim−→n
Mss

n .
Given in general a filtered directed system {Ci}i∈I of fibered categories over some category

D, we can define the direct limit C = lim−→i∈I
Ci as a fibered category over D as follows: objects

are pairs (d, c), where d ∈ D and c ∈ Ci(d) for some i ∈ I, and a morphism (d, c) → (d′, c′)
is a pair ( f , g) where f : d → d′ is a morphism in D, and g is an element of the direct limit
lim−→i≥i0

Hom(φi0,i( f ∗c′), φi0,i(c)), where i0 is an index where both c and c′ are defined. In other
words we are taking the disjoint union of the objects and the direct limit for morphisms, fiberwise.
If D is a site and Ci are stacks, we can stackify C to get the direct limit as a stack.

In our particular case note that the direct limit is already a stack: this is because, since we’re
working on (Aff)op, every covering has a finite refinement, so we can reduce effectivity of descent
data and the fact that Hom is a sheaf to some finite level. Moreover, since all the maps ιn,m
are fully faithful, in the direct limit we have Hom(Fn, Fm) = HomMss

h
(π∗n,hFn, π∗m,hFm), where

h = lcm(n, m).
Now for every n ∈ N the pullback along πn : X∞ → Xn induces ιn : Mss

n → Mss, and
moreover these maps are compatible with the transition maps of the system ιn,m. Thus we have a
morphism

ι : lim−→
n
Mss

n →Mss.

We will check that this is fully faithful and essentially surjective.
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Take a k-algebra A, and consider the map (lim−→n
Mss

n )(A) → Mss(A). If F is an object
of Mss(A), i.e. a finitely presented sheaf on (X∞)A = X∞ ×k Spec(A), then since (X∞)A =
lim←−n

(Xn)A, we have FP((X∞)A) = lim−→ FP((Xn)A), and F comes from some Fn ∈ FP((Xn)A).
Moreover by possibly increasing n we can assume that Fn is flat over A, and its fibers over (Xn)p
for geometric points p → Spec(A) will be semi-stable by Proposition 4.3.3, since their pullback
to (X∞)p is. In other words Fn is an object ofMss

n (A), and its image in (lim−→n
Mss

n )(A) via ι will
be isomorphic to F.

For full faithfulness, if Fn and Fm are two objects of (lim−→n
Mss

n )(A), as noted above we have
Hom(Fn, Fm) = HomMss

h
(π∗n,hFn, π∗m,hFm) with h = lcm(n, m), and since pullback along (X∞)A →

(Xh)A is fully faithful, the conclusion follows.
The same line of reasoning works for the statement about stable sheaves, and compatibility of

the maps is immediate from the compatibility at finite level.

Remark 4.3.7. What perhaps is not clear enough, is that j : Ms ⊆ Mss is an open substack. This
holds even if stability is not preserved by pullback.

In fact, take a morphism f : T → Mss, and note that we can assume that T is affine, say
T = Spec(A). The map f corresponds to a sheaf F ∈ Mss(A), and by the preceding proposition
F will come from some Fn ∈ Mss

n (A).
From this, and the observation that j−1Mss

n
∼=Ms

n, we see that the fibered productMs×Mss T
coincides with Ms ×Mss

n T = j−1Mss
n ×Mss

n T = Ms
n ×Mss

n T, and this is open in T because
Ms

n →Mss
n is an open immersion.

Proposition 4.3.8. The stack Mss is an Artin stack, locally of finite presentation over k. Being an open
substack,Ms has the same properties.

Lemma 4.3.9. For any n ∈N the morphism ιn : Mss
n →Mss induced by pullback is an open immersion.

Proof. This goes exactly as the proof of Lemma 4.2.14. The main point is that, by the projection
formula for πn : X∞ → Xn, a finitely presented sheaf F ∈ FP(X∞) comes from Xn if and only if
the adjunction morphism π∗nπn∗F → F is an isomorphism.

Proof of Proposition 4.3.8. Let us fix a smooth presentation An →Mss
n for every n ∈N. We have a

natural induced map A =
⊔

n An → lim−→n
Mss

n =Mss, and this is a smooth presentation forMss.
Indeed, the map is an epimorphism since Mss is a union of the open substacks Mss

n , and
An → Mss

n is an epimorphism, and for a morphism f : T → Mss from a scheme T we have
A×Mss T =

⊔
n(An ×Mss T), so we can consider a single piece An ×Mss T. Now it suffices to note

that the map An →Mss
n ⊆Mss is a composition of two smooth representable morphisms.

Let us now show that the diagonal ∆ : Mss → Mss ×k Mss is representable. Let us take
a morphism f : T → Mss ×k Mss from a scheme, and consider the fibered product over ∆.
SinceMss ×kMss is the union of its open substacks {Mss

n ×kMss
n }n∈N, we have a Zariski cover

{Tn = f−1(Mss
n ×kMss

n )}n∈N of T, and the question is Zariski-local, so we can replace T with
one Tn. Consequently, f factors as T →Mss

n ×kMss
n ⊆Mss ×kMss, and since the diagram

Mss
n

//

��

Mss
n ×kMss

n

��
Mss //Mss ×kMss
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is cartesian, the fibered product Mss ×Mss×kMss T = Mss
n ×Mss

n ×kMss
n T is representable by an

algebraic space.

4.3.1 What invariants can we fix?

Before we go further, let us briefly consider the following problem: can we fix some invariants
for finitely presented sheaves on X∞, in order to cut out a finite-type moduli stack inside Mss?
Ideally, since we are taking a limit of the theories at finite level, we would like to fix some invariant
of coherent sheaves on the Xn’s, that is preserved by pullback along the maps πn,m : Xm → Xn.

The stacks Mss
n we considered up to this point are not of finite type themselves, and the

standard solution when one studies moduli of coherent sheaves is to fix the Hilbert polynomial
H ∈ Q[x]. This gives finite-type components, both of the corresponding moduli stack and of its
good moduli space (the components of the moduli space are actually even projective). There are
other things one can fix, for example Chern classes, but here we will focus mainly on Hilbert
polynomials.

It is clear that we cannot fix the Hilbert polynomial at the limit, since it is not preserved by
pullback. Rather, we have Pm(π∗n,m(F)) = k · Pn(F), where k is such that m = nk. On the other
hand, we saw in Proposition 4.2.10 that the reduced Hilbert polynomial h is preserved by pullback,
i.e. pm(π∗n,mF) = pn(F) for any F ∈ FP(Xn). This also follows immediately from the formula
for the Hilbert polynomial, which implies that we have αm(π∗n,m(F)) = k · αn(F), where αn(F)
denotes the multiplicity of the sheaf F on Xn, and so

pm(π
∗
n,mF) =

Pm(π∗n,mF)
αm(π∗n,mF)

=
k · Pn(F)
k · αn(F)

= pn(F).

Notation 4.3.10. We denote by Mss
h,n and Ms

h,n the stacks that parametrize families of (semi-
)stable parabolic sheaves on Xn with reduced Hilbert polynomial h ∈ Q[x]. They will have good
moduli spaces Mss

h,n and Ms
h,n, and since the reduced Hilbert polynomial is preserved by pullback,

the morphisms ιn,m : Mss
n → Mss

m will restrict to morphisms Mss
h,n → M

ss
h,m, which we will still

denote by ιn,m. The same goes for the morphism in,m, and also for ιon,m, io
n,m when they are defined.

Exactly as in Proposition 4.3.6, we have an isomorphism

lim−→
n
Mss

h,n
∼=Mss

h

and the analogous one for stable sheaves if stability is preserved by pullback.
This all works well with the direct limit, but there is an issue: Mss

h,m is not necessarily of
finite type. In fact, fixing the reduced Hilbert polynomial h does not fix the rank (say we are
considering torsion-free sheaves), like it happens with the ordinary Hilbert polynomial, and the
rank can become arbitrarily large, without changing h. In other words, we haveMss

h,n =
⊔

HMss
H,n

where the union ranges over H ∈ Q[x] of degree d such that H/α = h, where α is d! times the
leading coefficient of H.

Example 4.3.11. In the case of X = Spec(k), the standard log point, the Hilbert polynomial
coincides with the rank, the reduced Hilbert polynomial is always 1 (and everything is semi-
stable), so Mss

1,n is the only non-empty stack at level n, and it decomposes as a disjoint union⊔
HMss

H,n, where H is an integer.
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Moreover all of the piecesMss
H,n are non-empty, as it is easy to write a parabolic sheaf on Xn

of arbitrary rank, and even in the limit Mss
1 = lim−→n

Mss
1,n there are infinitely many connected

components: for any n, the parabolic sheaf

−1 − n−1
n − n−2

n · · · 0

0 // k // 0 // · · · // 0

in Mss
1,n(k), having one copy of k in position − n−1

n and all zeros elsewhere, is not in the closure
of any point of the stacksMss

1,h with h ≤ n, so it will belong to a connected component which is
outside of the image of those stacks.

In the case where the logarithmic structure of X is generically trivial, X is integral and we are
considering torsion-free sheaves, there is another thing that we can fix and that gives intermediate
components of finite type, namely the rank of the pushforward of the sheaf to X. In fact, since
π : Xn → X is generically an isomorphism, if F ∈ FP(Xn) has rank r, the pushforward π∗F will
still have rank r. Moreover the “parabolic” rank of π∗n,m(F) is easily seen to be m · r, so fixing h
and r is equivalent to fixing H, and thus will give a finite-type union of components Mss

h,r,n of
Mss

n .
With these assumptions, the moduli stacksMss

h,r,n andMs
h,r,n are of finite type, and the good

moduli space Mss
h,r,n (resp. Ms

h,r,n) is projective (resp. quasi-projective).
We remark that even in this case, the “limit” moduli stack Mss

h,r is not necessarily of finite
type, and it can have infinitely many connected components.

Example 4.3.12. Take X = P1, with the log structure induced by the divisor 0 + ∞, and let us fix
the reduced Hilbert polynomial h(x) = x + n for n ∈ Z, and rank r = 1.

For any m ∈N, the parabolic sheaf

−1 −m−1
m −m−2

m · · · − 2
m − 1

m 0

F = O(n− 2) // O(n− 1) O(n− 1) · · · O(n− 1) // O(n) O(n)

on Xm has reduced Hilbert polynomial

pm(Fm)(x) =
x + n− 1 + (m− 2)(x + n) + x + n + 1

m
= x + n = h(x)

and rank 1, so it gives is a point of Mss
h,1, and it sits in the substack Mss

h,1,m. Moreover, it is not
in any of the Mss

h,1,j with j | m (otherwise the only two non-identity maps would need to be the
identity), and so it not in a connected component coming from lower levels, since in this case the
immersions are open and closed. This shows that there are infinitely many components inMss

h,1,
and so it is not of finite type.
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4.3.2 Taking the limit

Motivated by the previous discussion on how to see the stackMss of semi-stable sheaves on X∞
as a direct limit of the stacks Mss

n of semi-stable sheaves on the finite root stacks, we want to
justify the fact that the direct limit of the moduli spaces at finite levels is a good candidate for a
moduli space for the stackMss. There is no reason for this direct limit to be a scheme in general,
but rather only an ind-scheme. For this reason we have to consider ind-moduli spaces as well.

Ind-schemes in the literature are usually required to have closed embeddings as transition
maps of their defining filtered system, and this is not necessarily the case in our situation, as far
as we know. We will use the following definition.

Definition 4.3.13. An ind-algebraic space over k is a presheaf on (Aff)op that can be written as a
filtered direct limit lim−→i∈I

Xi of a directed filtered system of sheaves, which are moreover algebraic
spaces.

A morphism of ind-algebraic spaces is a morphisms of sheaves over (Aff)op, and there is a cat-
egory of ind-algebraic spaces over k, which we denote (Ind-algsp). There is a fully faithful functor
(Algsp) → (Ind-algsp) that takes an algebraic space to the functor it represents on (Aff)op. In
particular, an ind-algebraic space X gives a presheaf on (Algsp)op defined as X(T) = Hom(T, X),
where the Hom is taken as presheaves on (Aff)op.

The point that we want to make is that ifMss admits a good moduli space (which is usually
the case for stacks parametrizing (semi-)stable sheaves, so it seems the right object to look for),
than it has to be isomorphic to the direct limit lim−→n

Mss
n .

First of all let us show that if lim−→n
Mss

n is an algebraic space, then it has the factorization
property that good moduli spaces possess.

Proposition 4.3.14. Let {Mi}i∈I be a directed system of locally noetherian Artin stacks with good moduli
spaces {Mi}i∈I , and assume that lim−→i

Mi is an algebraic space. Then it has the following universal prop-
erty: for every morphism lim−→i

Mi → N to an algebraic space there exist a unique morphism lim−→i
Mi → N

that completes the diagram
lim−→i
Mi

�� ""
lim−→i

Mi // N.

In particular if lim−→i
Mi is locally noetherian and has a good moduli space, then this is canonically isomor-

phic to lim−→i
Mi.

Proof. This follows directly from

Hom(lim−→
i
Mi, N) = lim←−

i
Hom(Mi, N) = lim←−

i
Hom(Mi, N) = Hom(lim−→

i
Mi, N)

where the second equality is by the factorization property of the good moduli spaces.

This implies that if lim−→n
Mss

n is an algebraic space andMss has a good moduli space, then this
has to be isomorphic to lim−→n

Mss
n .

Let us show now that if stability is preserved, then lim−→n
Mss

n is indeed a good moduli space
forMss. In fact, after a lemma about direct limits, we will complete the proof of 4.3.5.
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Lemma 4.3.15. Let {Mi}i∈I be a filtered directed system of schemes, where every transition map is an
open and closed immersion. Then the ind-scheme lim−→i∈I

Mi is isomorphic as an ind-scheme to a disjoint
union of components of the Mi’s, and in particular it is a scheme.

Proof. Let us write Ai for the set of connected components of the scheme Mi. The open and
closed immersion Mi → Mj for i ≤ j induces a function of sets Ai → Aj, and these functions for
varying i and j form a filtered directed system of sets. Let A be the direct limit of this directed
system, and for every a ∈ A fix a component Xa of some Mi that goes to a in the limit. We claim
that the scheme

M =
⊔

a∈A
Xa

is the direct limit of the system.
In fact we have natural maps Mi → M that induce a map of presheaves lim−→i

Mi → M on
(Aff)op. We have to verify that this is a natural isomorphism: injectivity is clear, since every Mi
is an open and closed subscheme of M, and surjectivity follows from the fact that the image of a
morphism Spec(A) → M is contained in finitely many Ma’s, by quasi-compactness of Spec(A).

Proof of 4.3.5. The fact that Mss is an Artin stack locally of finite presentation is in Proposition
4.3.8, and the fact that stable sheaves form an open substack is explained in Remark 4.3.7.

As for the second part, assume that stability is preserved by pullback, so that all the maps
between the stacks and moduli spaces are open and closed immersions. In particular Mss and
Ms will be ascending unions of (open and closed) substacks, where at each step we might add
some new connected components. Let Mss be the direct limit of the system {Mss

n }n∈N of good
moduli spaces at finite level. By the preceding lemma, this will be a disjoint union Mss =

⊔
i Mi,

where each Mi is a connected component of some Mss
n .

We have a natural map Mss → Mss, and since being a good moduli space is a local prop-
erty, we can restrict to a single component Mi, say it comes from Mss

n . Now the fibered product
Mss ×Mss Mi will clearly be the connected component of Mss (coming from Mss

n and) corre-
sponding to Mi, and so the projectionMss ×Mss Mi → Mi is a good moduli space, because it is a
good moduli space at level n.

The remaining statements about the substack of stable sheaves follow in the same way from
the corresponding statement for the stacksMs

n at finite level.

In the remaining few pages we will show that, even without the assumption that lim−→n
Mn is an

algebraic space, ifMss has a good moduli space M then there is an isomorphism M ∼= lim−→n
Mn.

This hints at the fact that the direct limit of the moduli spaces at finite level gives the correct
moduli space at the limit, even though it might not be an algebraic space.

Definition 4.3.16. Let M be an Artin stack over (Aff)op. A naive ind-moduli space for M is an
ind-algebraic space M with a morphismM→ M such that for any other morphismM→ N to
an ind-algebraic space, there is a unique factorizationM→ M→ N.

Remark 4.3.17. The previous definition will only play a role in the heuristics that justify the fact
that we want to look at the direct limit of the moduli spaces at finite level, and is not meant to be
particularly meaningful otherwise.
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Remark 4.3.18. As usual with objects defined by a universal property, if an Artin stackM admits
a naive ind-moduli space, then this is unique up to isomorphism.

Now we need a couple of facts about ind-algebraic spaces. Note that by definition if Y =
Spec(A) is affine, then we have

Hom(Y, lim−→
i∈I

Xi) = lim−→
i∈I

Hom(Y, Xi).

Lemma 4.3.19. If Y is a qcqs (quasi-compact and quasi-separated) scheme over k and lim−→i∈I
Xi is an

ind-algebraic space, we have
Hom(Y, lim−→

i∈I
Xi) = lim−→

i∈I
Hom(Y, Xi).

Proof. The proof is by gluing along affines. Write Y as a union of finitely many affine open subsets
Y1, . . . , Yn.

We have a natural function

lim−→
i∈I

Hom(Y, Xi)→ Hom(Y, lim−→
i∈I

Xi)

defined by [Y → Xi] 7→ (Y → Xi → lim−→i
Xi). Let us show that it is bijective.

If [Y → Xi] and [Y → Xj] have the same image Y → lim−→i
Xi, then for any h ∈ {1, . . . , n} the

restrictions of the two maps to the open subset Yh ⊆ Y will be equal after composition with the
map to lim−→i

Xi, and so they will be also equal after composition with the map to some finite Xk,
because in this case we know that Hom(Yh, lim−→i

Xi) = lim−→i
Hom(Yh, Xi). Since the Yh’s are finitely

many, we can find an index that works for all of them, and this shows that [Y → Xi] = [Y → Xj].
As for surjectivity, take a morphism f : Y → lim−→i

Xi, and restrict it to fh : Yh → lim−→i
Xi. Every

fh will come from some finite level, and since they are finitely many there will be a k such that
fh comes from gh : Yh → Xk. Now we examine the intersections Yhk = Yh ∩ Yk: since Y is quasi-
separated, we can cover each Yhk with finitely many affines, and since the restrictions of gh and
gk to any of these affines will give the same map to lim−→i

Xi, we can find a bigger index k that
renders them equal as maps to Xk. In finitely many steps, the maps gh will agree on the double
intersections Yhk, and will yield a map g : Y → Xk that is in the preimage of f .

Lemma 4.3.20. LetM be a qcqs Artin stack over k and lim−→i
Xi be an ind-algebraic space. Then we have

a bijection Hom(M, lim−→i
Xi) = lim−→i

Hom(M, Xi).

Proof. The proof mimics the one of the preceding lemma, with respect to a smooth presentation
U →M which is a disjoint union of finitely many affines.

Lemma 4.3.21. Any ind-algebraic space X = lim−→i
Xi is a sheaf in the étale topology of (Aff)op.

Proof. Let A be a k-algebra, and A → Aj morphisms that give a covering of Spec(A) in the
étale topology. Note that since Spec(A) is quasi-compact we can extract a finite subcovering
{A1, . . . , An}, and it is sufficient to show that the sheaf condition holds for it. Now it suffices to
note that the diagrams

Xi(A)→
n

∏
j=1

Xi(Aj) ⇒ ∏
j,k=1,...,n

Xi(Aj ⊗A Ak)



4.3. LIMIT MODULI THEORY ON X∞ 159

are equalizers for all i, since the Xi’s are sheaves for the étale topology, and filtered directed limits
are exact and commute with finite products, so that also the diagram

X(A)→
n

∏
j=1

X(Aj) ⇒ ∏
j,k=1,...,n

X(Aj ⊗A Ak)

is an equalizer.

Lemma 4.3.22. Let X be an ind-algebraic space. Then the functor Hom(−, X) : (Algsp)op → (Set) is a
sheaf for the étale topology.

Proof. Let T be an algebraic space and {Ti → T}i∈I an étale covering. We have to show that a com-
patible collection of morphisms φ : Ti → X of presheaves on (Aff)op yields a unique morphism
T → X.

Let us consider a k-algebra A together with a morphism Spec(A)→ T. By base change, from
the covering {Ti → T}i∈I we obtain an étale covering {Yi → Spec(A)}i∈I , that we can refine to a
covering {Spec(Bj) → Spec(A)}j∈J by affines. Now the morphisms Ti → X restrict to the Bj to
give elements ξ j ∈ X(Bj), and the compatibility on the fibered products Ti ×T Ti′ gives equality
of the restrictions of ξ j and ξ j′ to X(Bj ⊗A Bj′). From Lemma 4.3.21 we obtain a unique element
of X(A), and this construction gives a morphism of presheaves T → X. It is immediate to check
that this morphism restricts to the given ones over the Ti’s, and is unique.

Proposition 4.3.23. A good moduli space M for a locally noetherian Artin stack M is also a naive
ind-moduli space.

Proof. Let us fix an affine étale covering {Ui → M}i∈I of the algebraic space M. By the properties
of good moduli spaces, the restriction M×M Ui → Ui is still a good moduli space, so it enjoys
the universal property for maps to algebraic spaces, sinceM is locally noetherian.

Now fix an ind-algebraic space N = lim−→j
Nj. We have to show that the map Hom(M, N) →

Hom(M, N) is a bijection. Since Hom(−, N) is a sheaf on (Sch)op with the étale topology by
Lemma 4.3.22, to verify this we can pass to the étale cover Ui. Now since Ui and M×M Ui are
qcqs, by 4.3.20 and the universal property of good moduli spaces we have

Hom(Ui, N) = Hom(Ui, lim−→Nj) = lim−→Hom(Ui, Ni) =

= lim−→Hom(M×M Ui, Ni) = Hom(M×M Ui, N).

and this concludes the proof.

Proposition 4.3.24. Let {Mi}i∈I be a filtered directed system of locally noetherian Artin stacks with good
moduli spacesMi → Mi. Assume moreover that eachMi and Mi is a disjoint union of qcqs stacks (resp.
spaces), in a compatible way. Then lim−→i

Mi → lim−→i
Mi is a naive ind-moduli space.

Proof. Since the stacksMi are locally noetherian, their good moduli spaces will be universal with
respect to maps to algebraic spaces. Let us writeMi,k for the (qcqs) components ofMi and Mi,k
for the ones of Mi, so that the mapsMi,k → Mi,k are good moduli spaces.

Let us consider an ind-algebraic space N = lim−→j
Nj, and let us calculate
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Hom(lim−→
i
Mi, N) = lim←−

i
Hom(Mi, lim−→

j
Nj) =

= lim←−
i

⊔
Hom(Mi,k, lim−→

j
Nj) = lim←−

i

⊔
lim−→

j
Hom(Mi,k, Nj)

where we used in the last equality that that Mi,k are qcqs. Now by the universality property
of the good moduli spaces we have Hom(Mi,k, Nj) = Hom(Mi,k, Nj), and then we can repack
everything together

lim←−
i

⊔
lim−→

j
Hom(Mi,k, Nj) = lim←−

i

⊔
Hom(Mi,k, lim−→

j
Nj) =

= lim←−
i

Hom(Mi, lim−→
j

Nj) = Hom(lim−→
i

Mi, N)

where we used the fact that Mi,k is also qcqs, and the preceding lemmas.

This discussion applies to the moduli stack of parabolic sheaves with rational weights, since
the stacksMss

n , together with their good moduli spaces, are disjoint unions of qcqs stacks (resp.
spaces) and locally noetherian.

Corollary 4.3.25. If the moduli stack of parabolic sheaves with rational weightsMss admits a good moduli
space M, then there is an isomorphism M ∼= lim−→n

Mss
n .
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