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Chapter 1

Introduction

1.1 Problem formulation and motivations

Quantized control systems are controlled dynamical systems with input and/or output maps
taking values in discrete (say, quantized) sets. As a simple reference model, consider a discrete
time system of the type





x(t + 1) = f
(
x(t), u(t)

)

y(t) = qY
(
x(t)

)

x(t) ∈ Rn , u(t) ∈ U ⊂ Rm , qY(x) ∈ Y ,

(1.1)

where U and/or Y are finite sets and f : Rn × Rm → Rn is such that, ∀ z ∈ Rm , f( · , z)
is a smooth function. Depending on the problem, the control set U and/or the output map
qY may be assigned or be a design objective. In this framework, a controller is a system
processing sequences of outputs y(t) , y(t − 1) , . . . and returning an input u(t) ∈ U for
the system with the purpose that the resulting trajectories x(t) , x(t + 1) , . . . have desired
behaviors.
Quantized control systems belong to the wider class of hybrid systems. The hybrid nature of
the model is caused by the coexistence of continuous state variables with discrete input and/or
output variables. In particular, in a quantized control problem, the overall system results
to be organized into two levels reflecting its mixed logical/dynamical nature (see Fig. 1.1) :
at the physical level, the plant is modelled by an equation like (1.1) ; at the logical level,
the controller is a device mapping output strings to input strings from discrete alphabets.
The designer operates at the logical level. The overall picture results in a highly nonlinear
dynamical system. Actually, even in the seemingly easy situation in which the dynamics is
described by a linear transformation, that is

f(x, u) = Ax + Bu ,

the presence of discrete variables produces nonlinear closed loop dynamics which may exhibit
features such as the presence of multiple isolated equilibria, limit cycles and chaotic behaviors

7
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Controller: finite state machine

Figure 1.1: Graphical illustration of the hybrid structure of a quantized control system.

(
see e.g., [63, 127, 29, 42]

)
. This kind of models are referred to as quantized linear systems

and are the subject of this thesis. From now on, we will tacitly refer to this class of systems.

The presence of quantization is traditionally believed to play adversely on control performance
(if anything, it disrupts linearity of the system) . However, its introduction has profound
practical and technological motivations deeply rooted in the following two classes of problems:
the “control with discrete sensors and/or actuators” and the “control under communication
constraints”.

Control with discrete sensors and/or actuators: digital controllers interact with the envi-
ronment by means of Analog–to–Digital or Digital–to–Analog converters that have a finite
resolution, which may even be very coarse. Think, for instance, of a stepper motor (where
the allowed control actions are: “stand still”, “one step forward” or “one step backward”; i.e.,
U is made up of three elements only) or a low resolution camera. More in general, think of a
low cost sensing and actuation apparatus. In these cases, the input and/or output variables
are inherently quantized. As a result, the set of control actions U in system (1.1) and the
output map qY (modelling the sensors) are fixed. Prominent issues are in this case to sort
out the achievable control goals and to synthesize a controller that maximizes performance.

Control under communication constraints: when a finite capacity communication link is
present in the control loop, even if sensors and actuators have high resolution and can be
reasonably modelled by means of continuous variables, the input and/or output signals have
to be quantized and encoded into discrete–valued variables, suitable for the transmission
(see Fig. 1.2) . In a growing number of applications of modern technologies, one has to
deal with large scale, possibly geographically distributed, complex and networked systems
where multiple tasks are to be accomplished at the same time. Think, for instance, of the
management of the control devices in a vehicle, of the remote control of a plant (being that a
manufacturing process or a complex robotic device) or of the mobile telephony. In this kind
of applications, the issues of control and of communication between the different components
of the system cannot be separated. Indeed, although the overall communication capacity
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Figure 1.2: The basic scheme for the “control under communication constraints” problem.

may be high, due to the large amount of control tasks, only a small amount of it can be
reserved for each subsystem. Not only this is the cause of performance deterioration, but
even basic properties such as stability can be jeopardized. An efficient management of the
limited communication resource requires that control and communication problem be jointly
treated [131] .
In terms of mathematical models, consider the control of a system whose input and output
variables take values in continuous spaces (e.g., u ∈ Rm and y ∈ Rq ) , but where the flow of
information between the various components of the control loop is subject to communication
constraints. Quantization has to be introduced so as to enable communication: thus, the
quantized sets U and Y , as well as the output map qY , are design parameters chosen to
accomplish the desired goals and to satisfy the communication constraint.

The two cases are often combined.

Since the beginning of the nineties, quantization has been studied under a new perspective.
The underlying point of view has been that of regarding quantization as a useful tool rather
than an undesirable phenomenon. For instance, in the control with discrete sensors and ac-
tuators, quantization is studied with a view to the possibility of attaining a control goal by
means of the simplest and less expensive technology; in the control under communication
constraints, quantization is introduced on purpose and the interest is for the coarsest quan-
tization that preserve the possibility of achieving a desired control objective. The need for
a deeper understanding of the role of quantization in systems dynamics has encouraged the
different competencies of various scientific areas (such as Systems theory, Information and
Communication theory as well as Theoretic Computer Science) to meet in a common math-
ematical background. Thus, it is not surprising that such a change of viewpoint has allowed
to unveil undisclosed properties of quantized systems and to bring to light new opportunities
offered by quantization.

Stability is the fundamental property required for a controlled system. Accordingly, stabi-
lization is the master problem in control. As far as quantized linear systems are concerned,
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the basic observation is that, if the control function u(t) is constrained to take values from a
finite set and the system is open loop unstable, then it is not possible either to achieve closed
loop asymptotic stability or to confine the trajectories within arbitrarily small neighborhoods
of the origin [29] . The first consequence of this fact is that the two examples presented above
are quite different with regard to the stabilization problem.
In the control with discrete sensors and/or actuators, since the control set U is fixed and
typically finite, then the problem has to be properly reformulated in terms of a weaker pro-
perty than classical Lyapunov stability. For these models, practical stability notions are to
be considered [29, 131, 45, 118] . Accordingly, the practical stabilization may consist in the
synthesis of symbolic feedback controllers capable of steering the system to within sufficiently
small neighborhoods Ω of the equilibrium, starting from large attraction basins X0

(
this

property is referred to as (X0, Ω)–stability
)
. In this framework, the interesting issues to be

studied are really varied and mutually dependent: beginning with, but not limited to, the
characterization of the feasible pairs (X0,Ω) such that (X0,Ω)–stabilization is possible and
the synthesis of a control law that accomplish the stabilization task.
In the control under communication constraints, instead, one can take advantage of the pos-
sibility of designing quantization to achieve asymptotic stabilization. This can be done by
means of control policies where a finite set of control values is taken to be time–varying
and adaptively chosen [17, 123] . In other words, the quantizer resolution is increased as
the trajectories get close to the equilibrium but, at each stage, the control law takes values
from a finite set (so that the communication constraint be satisfied) . However, in order that
stabilization can be achieved, at each stage it is necessary that a sufficiently large number
of control values be available. The discovery of the minimal number of symbols to be trans-
mitted and enabling the stabilization, as well as a stabilizing control policy (or, equivalently,
the identification of a minimal value R > 0 for the capacity of the communication channel
allowing for stabilization and a corresponding control and communication protocol) , have
been the most relevant contributions on the subject in the recent past [131, 5, 126, 89, 80] .

Motivated by the emerging control applications and by the never–ending interest for large–
scale systems, most of the efforts of the researchers in the control community have been
addressed to the problem of the stabilization under communication constraints. In this the-
sis, instead, the main focus is on some mathematical issues stemming from the stabilization
problem for systems with discrete sensors and/or actuators. In particular, the underlying
assumption all along this work is that the input and/or output quantization is assigned. Al-
though also some aspects concerned with the control under communication constraints will be
considered, the preponderant role of quantization is that of representing a physical constraint
on the system rather than a degree of freedom in design.
Let us briefly describe the main questions we deal with in this thesis. The (X0, Ω)–stabiliza-
tion is based on two main ingredients: a pair (X0,Ω) of controlled invariant sets [11] (that
is, sets within which it is possible to maintain confined the trajectories of the system) and a
control law realizing convergence from X0 to Ω . Thus, a preliminary step with respect to
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the control synthesis consists in studying the controlled invariant neighborhoods of the equi-
librium: this is referred to as the analysis stage. Because of the quantization constraint, both
the invariance analysis and the control synthesis, which in turn is related with the reachabil-
ity issue [2, 119, 10] , are quite involved problems and many questions are still open. Besides
practical stabilization, also the study of closed loop performance is a central issue, as well as
the study of the price one has to pay in terms of complexity of the quantization in order to
achieve desired performance. More precisely, as far as closed loop performance are concerned,
not only one is interested in the study of the transient behavior (which may be measured in
terms of the speed of convergence towards the final set Ω ) , but also the steady–state pro-
perties are a relevant parameter to be taken into account

(
e.g., through some suitable notion

of size for the final set Ω or through the amount of contraction Volume (X0)/Volume (Ω)
)
.

As for the complexity of an (X0, Ω)–stabilizing control law, it is meant as a measure model-
ling the cost to implement such a controller. According to the situation, complexity may be
related with the sophistication of the sensing and control apparatus or, in a “control under
communication constraints” framework, with the bandwidth required to transmit the con-
trol law. A feasible choice is that of considering a quantity related with the entropy of the
controller (which in turn is related with the number of control values taken by the controller
to accomplish the stabilization task) . In particular, the measure of complexity is depending
on the geometric structure of the considered quantization. The problems we want to tackle
consist in the analysis of the way closed loop performance vary with the complexity of the
controller, in provide formal mathematical tools to quantify the existing trade off between
performance and complexity, and in the identification of fundamental performance limits in
quantized control.

To sum up, for a quantized linear system where U ⊂ Rm is an arbitrarily assigned quantized
input set (i.e, besides being quantized, there is not any further assumption on the structure
of the assigned input set) and qY is an arbitrarily assigned output map returning quantized
measurements of the state of the system, we address the following questions and we propose
innovative contributions (see next Section 1.3) :

1. Analysis: determine a family of controlled invariant sets. Among all controlled in-
variant sets, determine the smallest (in some proper sense) final neighborhood of the
equilibrium Ω within which convergence of the trajectories can be ensured;

2. Synthesis: provide systematic tools for the design of controllers achieving practical
stability properties;

3. Performance and complexity: introduce suitable measures of performance and com-
plexity, analyze their mutual dependence and the limits on performance imposed by a
fixed complexity.

To be precise, in the analysis and synthesis problems, the control set is always assumed to
be quantized whereas the output of the system is either the full state x (absence of output
quantization) or a quantized measurement of x . The quantized measurement case is divided
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in two instances: state quantization (i.e., state space partitions made up of bounded sets) or
output quantization

(
i.e., the output is of the type y = qY(x) = qo(Cx) , with C ∈ Rq×n

and qo induces a partition of the output space Rq made up of bounded sets
)
. In the study

of performance and complexity, the focus is on state quantization.

1.2 Overview of the literature on quantized systems

Quantization has been studied ever since the late fifties (Kalman [63] , Bertram [8]) . Several
years before the formal definition of chaos, Kalman showed the emergence of limit cycles and
chaotic behaviors in dynamical systems under quantized control.
Sampled–data systems and signal processing have been the first field of interest for quan-
tization: in this framework, there exists a considerable amount of literature on estimation
problems and optimal control under quantized measurements (see the book of Curry [27]
and references therein) . In many of the pioneering works, quantization is modelled as an
additive white noise perturbing a nominal system and techniques from Bayesian estimation
and stochastic control are adopted. This assumption, however, is to be verified and results
to be reasonable only if the quantizer has sufficiently high resolution. A remarkable excep-
tion is represented by the work of Curry, where a quantizer is modelled as a deterministic
memoryless nonlinearity. Such an approach allows for a more qualitative study of the effects
of quantization and keeps up with the novel interpretation, proposed by the author, of re-
garding a quantizer like a device providing limited information rather than a mere source
of approximation. It is notable that the idea of modelling quantization as a deterministic
nonlinearity is underlying many important contributions on the subject up to nowadays (e.g.,
Delchamps [29] , Brockett and Liberzon [17] , Fu and Xie [51]) : this approach is taken also
in this thesis.
Another interesting model for quantization is the set–membership description proposed by
Schweppe [112] and by Bertsekas and Rhodes [9] to deal with state estimation problems under
quantized measurements.
Digital implementation of control systems has been for long time the major field of interest
in the framework of quantized systems (Moroney [87]) . With regard to this problem, most of
the efforts are spent to construct controllers (often quite involved) allowing for mitigation of
the quantization effects. Ingenious analysis tools to study the effect of quantization on digital
controlled systems are those based on norm–Lyapunov functions and presented by Michel et
al. in [84, 85, 56] (the last of these references is concerned with nonlinear systems) .

A renewed interest on quantization was brought by the seminal paper of Delchamps [29] .
In that work, the idea of regarding quantization simply as a partial observation, as inspired
by the work of Curry, is revived. Such an approach, and the tools provided by the ergodic
theory [81, 71] , has allowed the author to make a significant contribution towards the un-
derstanding of the role of quantization. Specifically, Delchamps has showed that asymptotic
stabilization of an unstable plant is not possible in the presence of quantization; nevertheless,
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if the plant is not too unstable, it is possible to control the state of the system as close as
desired to the origin; if instead the condition of “mild” instability is not satisfied, controlla-
bility to the origin is not possible and chaotic behaviors arise. This work has given the first
intuition on the existence of a critical rate of transmission, depending on the instability of
the system, below which there is no control policy enabling for asymptotic stabilization of the
system. For this reason, it has been the cornerstone for much of the subsequent developments
in the studies on quantized control systems, especially in the framework of the control under
communication constraints.
Further insight was brought by the work of Wong and Brockett [131] , where the stabilization
under communication constraints is studied by complementing the tools from the Systems
theory with those from the Information theory. In that paper, the practical stability notion
of containability is introduced and, by means of an information theoretic inequality (i.e., the
Kraft inequality [26]) , the first explicit necessary condition for stabilizability is carried out
that relates the instability of the system with the available bit–rate for communication.
These results explicitly show that the presence of a communication constraint in the stabi-
lization of a continuous time system has a profound impact. Indeed, if communication were
possible at any rate, then stabilization would be always achieved by reducing the sampling
period. In other words, it is possible to approximate any continuous time signal by switching
very fast between discrete values (Raisch [109]) . On the contrary, the presence of such a
constraint induces a lower bound on the sampling period inhibiting this possibility.

The definition of a dynamic quantization scheme, where the range of the quantizer is time–
varying and adaptively chosen so that the resolution is increased as the trajectories get close
to the equilibrium (Brockett and Liberzon [17] , Tatikonda [123]) , has been one of the most
significant methodology introduced in the recent literature (this approach is often referred to
as the “zooming” technique and an embryonal version of it can be found in the paper of Sznaier
and Sideris [120]) . This policy is proved to guarantee asymptotic, rather than mere practical,
stabilization. With reference to this technique, a precise mathematical formulation is given by
Liberzon [75] to the idea that closed loop asymptotic stability is achievable provided that the
expansion due to the instability of the open loop system can be outweighed by a sufficiently
fine partition of the state (or output) space. When a finite capacity communication link is
present in the control loop, this policy can be successfully implemented only if the capacity
of the channel is sufficiently high. These ideas have been the basis to determine the necessary
and sufficient condition on the rate of the channel that preserve asymptotic stabilizability
(Tatikonda and Mitter [123, 126] , Hespanha et al. [55] , Nair and Evans [88]) . For discrete
time systems, the condition is

R >
∑

|λi(A)|>1

log2 |λi(A)| , (1.2)

where λi(A) are the eigenvalues of the open loop system. A similar analysis, allowing for
the possibility of packet losses, is offered by Ling and Lemmon [80] . In [89] , Nair and
Evans consider the case of linear systems under non–deterministic and unbounded noise:
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the instability of the system is characterized in terms of the entropy rate of the open loop
dynamics and the use of the entropy power inequality of Information theory [26] allowed
the authors to show that inequality (1.2) is a necessary and sufficient condition also for
mean square stabilizability. A thorough study of the dynamical properties of scalar systems
operating near the data rate limit has been worked out by Baillieul in [5] and, in accordance
with Delchamps’ work, the emergence of chaotic behaviors is observed.
The crucial property ensuring that the zooming technique does indeed permit asymptotic
stabilization is the input–to–state stability [62] of the ideal (i.e., non–quantized) underlying
dynamics: this fact makes for the generalization of this technique to more general nonlinear
systems (Liberzon and Hespanha [77] , De Persis [31]) . Moreover, it has been explicitly shown
by Liberzon and Něsić [92, 78] that the zooming technique is also related with small–gain
theory [67] : this has been the basis for extensions to input–to–state stabilization of quantized
linear systems in the presence of an unknown disturbance (Liberzon and Něsić [79]) .

Also in the framework of static quantizers, small–gain theory offers profitable tools. A fun-
damental contribution and a point of reference for the scientific community is provided by
the work of Elia and Mitter [39] : in this paper, the authors are interested in the problem
of understanding the minimum information needed to carry out a stabilization task. It is
shown that, for a given stabilizable discrete time linear system, the minimum density of a
static single–input quantizer ensuring that stabilizability is preserved is achieved by a lo-
garithmic quantizer. This result is in accordance with the intuition that, when the system
state is far off from the equilibrium, a coarse control action can be used, whereas when the
state is approaching the equilibrium, “fine–grained” corrections are needed. A logarithmic
quantizer, when modelled as a static nonlinearity, can be seen as an uncertainty included in
a sector [67] . As a counterpart, the nonlinearity representing the corresponding quantization
error is a standard example of a finite gain nonlinearity. Actually, the results in [39] can be
interpreted in terms of small–gain conditions in the functional space H∞ . Thus, by taking
advantage of robust control techniques, the results of Elia and Mitter has been extended by
Fu and Xie [51] to more general cases such as systems with multiple inputs or with output
quantization. Moreover, it is possible to include performance requirements such as guaran-
teed quadratic cost under quantized outputs or H∞ performance under quantized inputs.
Some of the ideas on logarithmic quantization are extended by Ishii and Francis to continuous
time models in [60, 61] .
In the aforementioned papers, the range of the control law u(t) is made up of infinite points
accumulating towards 0 (as it follows by the increase of the quantizer resolution while the
trajectories get close to the equilibrium) and asymptotic stabilization is possible. This is not
the case if instead the controller is forced to take only a finite number of values: in this case,
0 is an isolated point for the range of the quantized control law and only practical stability,
such as (X0,Ω)–stability, can be ensured.
An issue related with the work of Elia and Mitter, but referred to finite range quantizers, is
the one considered by Bullo and Liberzon [18] . In this paper, for a given continuous time
linear system and a feedback law guaranteeing closed loop stability in the absence of quan-
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tization, a static state quantizer taking a prefixed number of values has to be found so that
a “destabilizing measure” is minimized (thus, ensuring good practical stability properties for
the closed loop dynamics in the presence of quantization) . It is shown that the design can be
conveniently cast as a locational optimization problem [36] and different algorithms to solve
it are discussed.
The emergence of chaos in linear systems under quantized control bears an unsuspected
design opportunity for constructing efficient practically stabilizing controllers (Fagnani and
Zampieri [42, 43]) . The idea is as much brilliant as it is simple: if the dynamics within
X0 is chaotic, then almost all the trajectories will eventually enter any neighborhood Ω of
the equilibrium; in addition, the quantized control law can be defined so as to ensure the
invariance of Ω , thus trapping the trajectories therein. Therefore, with the effort needed to
guarantee the invariance of X0 , also the convergence towards Ω is ensured. As one expects,
the smaller Ω is, the larger the mean time taken by the trajectories to enter Ω is. More in
general, there exists a trade off between performance of the closed loop system and complex-
ity of the controller. Fagnani and Zampieri report a detailed study of this trade off in [45] .
As already mentioned in the previous section, the analysis is enriched by the necessity of
defining two performance parameters: one accounting for the transient behavior, the other
for the steady–state. This yields a variety of optimal quantized controllers depending on the
relative weight given to these parameters. This kind of analysis is extended by Delvenne [30]
to quantizers with more complex topological structure.

Many results have been developed also for stochastic models. In [110, 111] , Sahai and
Mitter consider the feedback stabilization over a noisy channel. They show that the classical
characterization of a communication channel in terms of the Shannon capacity is not suitable
to deal with the stabilization of unstable processes. It is proved, instead, that the right
notion is that of anytime capacity, a function of the so called anytime reliability (namely,
the exponential rate at which the probability of decoding error of a message is guaranteed to
decay with time when communication happens at rate R ) . By establishing the equivalence
between feedback stabilization and reliable communication in the anytime sense, these works
have contributed to bring further insight on the relations between control and communication.
Borkar and Mitter [14] and Matveev and Savkin [82] have studied LQG control under limited
data rate. The former reference, in particular, deals with separation properties between
coding and control, an issue which is further analyzed by Tatikonda et al. in [125] .
Other references on the control under communication constraints include papers dealing
with the control of networked systems having a topological structure which is more complex
than a single feedback loop (Tatikonda [124] , Nair et al. [90] , Matveev and Savkin [83] , Li
and Baillieul [73]) and the special issue of the IEEE Transactions on Automatic Control on
“Networked control systems” [1] . A comprehensive presentation of the main results from the
literature can be found in the work of Nair et al. [91] .

Most of the papers listed above presume that the quantization better suited to the control
objective can be freely chosen. Much more limited is the list of papers dealing with the
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control of systems under assigned input and/or output quantization. Moreover, in most of
the contributions only uniform quantization is considered. For instance, the reachability
of a neighborhood of 0 under uniform input or state quantization is studied by Sznaier et
al. [119, 120] by means of the Minkowsky functional [12] . The work of Delchamps [29] deals
with uniform state quantization and practical stability properties are studied in terms of
standard quadratic Lyapunov functions. In addition to uniform quantizers, analysis results
are provided by Michel et al. in [85] for logarithmic quantizers. Also the recent paper of Azuma
and Sugie [4] deals with assigned uniformly quantized inputs, but dynamic quantization
is proposed: namely, a dynamic quantizer is designed so as to minimize the norm of the
difference between the given linear plant and the cascade interconnection of the quantizer
with the given plant. The study is restricted to open loop behavior.

Different approaches are those based on optimal control techniques: in this case, the control
law is the result of an optimization problem. Among these methods, a suitable framework
is provided by the so called Model Predictive Control techniques (MPC) , for their ability to
effectively deal with constraints in the control action. A detailed study of the application of
MPC to quantized control systems can be found in the work of Quevedo et al. [108] . In this
paper, the practically stabilizing control law is provided in closed form and analysis methods
are included to determine the invariant sets for the corresponding closed loop dynamics. An
extension of MPC based techniques for networked control systems is proposed by Goodwin
et al. in [54] . Here, assigned finite input sets and quantized measurements are considered:
the state estimation problem is studied either in terms of a set–valued observer or, for non–
deterministic plants, via Kalman filtering; the control synthesis is then carried out with a
receding horizon policy. Closed loop analysis is offered only for open loop stable plant.
The so called dual mode MPC scheme is considered by Picasso et al. in [98] : in this case,
convergence to within a priori determined invariant sets can be enforced. For uniformly quan-
tized single–input systems, Picasso and Bicchi present the corresponding feasibility analysis
of the quantized MPC scheme in [101] .
In the contribution proposed by Su et al. [118] , the design of practically stabilizing controllers
is converted into a nonlinear programming problem: such an approach can be applied to a
wide class of hybrid systems including quantized input models as a particular case.

A synthesis of the main results on the stabilization of quantized systems, including technical
details, can be also found in the contribution of Picasso et al. [106] .

1.3 Summary of the thesis and main contributions

1.3.1 Summary of the thesis

We focus on the practical stabilization problem for discrete time linear systems under assigned
input and/or output quantization. The study has been organized into three steps: analysis,
synthesis and study of the relations between performance of the closed loop system and
complexity of the controller.
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In Chapter 2 , besides the main definitions, the most relevant issues addressed in the thesis
are presented through simple scalar examples.
The analysis stage is presented in Chapter 3 . This study is prior to the control synthesis
and, in agreement with the final goal of (X0,Ω)–stabilization, it is concerned with the search
for controlled invariant neighborhoods of the equilibrium. Two methods are proposed: the
first one provides controlled invariant hypercubes. This technique can be applied to reachable
single–input systems only but it has optimality properties (i.e., it is capable of returning a
final set Ω of minimal size, see Section 3.1.2) and it is suitable to handle the cases of systems
under input and output quantization. In the second method, controlled invariant ellipsoids
are considered which result from classic Lyapunov arguments for quadratic functions: this
approach is feasible for any stabilizable system but results are often quite conservative and
limited to input quantization. In Section 3.1.3 , an extension is proposed to the controlled
invariance analysis for multiple scalar systems sharing a limited capacity communication
channel: in this case, the issues of the control under assigned quantization are combined with
those from the control under communication constraints.
The control synthesis problem is faced in Chapters 4 , 5 and 6 .
It is shown in Chapter 3 , that a quantized version of the classical deadbeat controller (the
so called qdb–controller) is directly involved in the invariance analysis of hypercubes. Hence,
in Chapter 4 , (X0, Ω)–stability of the closed loop dynamics generated by a qdb–controller
is studied in terms of pairs (X0, Ω) made up of hypercubes. This analysis is developed
for various cases including systems with arbitrarily assigned single–input and single–output
quantization

(
in this most general case, the study is performed in terms of the size of hy-

percubes bounding the initial condition, the state transient and the steady–state evolution,
which is the so called (X0, X1, Ω)–stability

)
.

Small–gain theorems [67] are the technical tool allowing us to deal with the general class
of multi–input systems. The small–gain approach for the design of practically stabilizing
control laws is presented in Chapters 5 and 6 . It is an abstract methodology enabling to
solve the control synthesis problem in a systematic way. In this framework, the system and
the feedback controller are seen as input/output operators. Small–gain theorems provide
conditions for the closed loop stability in terms of the norms of these operators. In this way,
the control synthesis problem is converted into the satisfaction of suitable relations between
the norms of the system and of the controller. A more detailed introduction to this approach
is given in Section 5.1 . In this part of the thesis, systems under arbitrarily assigned multi–
input quantization are considered, while full state is assumed to be available (in particular,
measurements are not quantized) . Two small–gain approaches are fitted on quantized input
systems so as to guarantee closed loop practical stability.
The first approach is presented in Chapter 5 and consists of considering the input/output
operators as elements of the so called Hardy’s functional space H∞ . In this way, the con-
trol synthesis for practical stabilization is transformed into a particular control problem in
H∞ [132, 117] . The corresponding practical stability analysis is based on the Lyapunov ar-
guments for quadratic functions illustrated in Chapter 3 and yields pairs (X0, Ω) of invariant
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ellipsoids.
The other method is proposed in Chapter 6 : here, the input/output operators are associated
with elements of the functional space `1 , hence the control synthesis for practical stabiliza-
tion is turned into a control problem in `1 [128, 34] . The corresponding practical stability
analysis provides hypercubes within which the trajectories are proved to be confined. These
results extend to multi–input systems those illustrated in Chapter 4 for the qdb–controller,
which indeed are shown to be achievable as a particular case of the `1 control technique.
For single–input systems, the control synthesis problem is entirely solved by means of the
`1 approach whereas, in the multi–input case, the proposed methodology is complementary
to the one relying on the H∞ theory. Namely, the control synthesis is performed in the
H∞ framework, whilst a small–gain theorem in `1 enables us to obtain a less conservative
steady–state analysis of the closed loop dynamics than that based on invariant ellipsoids pro-
vided in Chapter 5 . Furthermore, a formulation of the control synthesis problem for practical
stabilization is also proposed in terms of a mixed H∞/`1 control problem. As far as the size
of the final set Ω is concerned, the control synthesis in `1 , and the corresponding closed
loop analysis, appears to inherit the optimality properties of the analysis based on invariant
hypercubes (in this respect, only numerical examples are given) .
Finally, the analysis of the relations between the closed loop performance and the complexity
of the controller is carried out in Chapter 7 . The study is performed with reference to
the coding issue rising in the “control under communication constraints” framework (thus,
the complexity of the controller is related to the bandwidth needed for transmission of the
control symbols) . To this end, it is convenient to analyze the dynamics of the system in a
probabilistic fashion. Namely, the state of the system at time t is represented by a proba-
bility distribution µt : the focus is on the evolution of the second moment of the distribution
(i.e., the mean–square value, or energy, of the distribution) . An entropy–like function of the
energy is defined to measure the complexity of the state quantization induced by the con-
troller. The asymptotic and the transient behavior of the system are described in terms of
the asymptotic value of the energy of the evolving distributions and of the convergence rate
towards the asymptotic value, respectively. The behaviors of the considered quantities for
various types of quantizers are analyzed, including (but not limited to) the main quantizers
considered in the previous chapters of the thesis. Moreover, fundamental relations between
complexity and steady–state performance and between complexity and transient behavior are
worked out by means of the mathematical tools offered by the Information theory. The study
is restricted to the case of scalar linear systems, which already contains the basic difficulties
one encounters for more complex systems.

A general picture of the thesis organization, including references to the various types of
quantizations taken into consideration and to the relations between the different addressed
topics, is given in Fig. 1.3 .
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1.3.2 Main contributions

A list of the main contributions of the thesis is the following:

1. The practical stabilization problem for discrete time linear systems under arbitrarily
assigned input and/or output quantization has not received sufficient attention by the
control community. For this problem, systematic analysis and control synthesis tools
are offered. The cases where only practical stabilization is possible (e.g., when the
quantizers are static and have a finite range) are considered.

2. For single–input systems, an original method is proposed to determine hypercubic con-
trolled invariant sets. The approach is completely analytic (rather than algorithmic)
and it is capable of dealing with systems under arbitrarily assigned quantization. One
relevant contribution is the possibility of handling also output quantization. Moreover,
it is proved that the considered family of invariant sets contains an element whose size
is minimal with respect to any controlled invariant set. Convergence to such a set
is ensured by a qdb–controller, whose practically stabilizing properties are studied in
terms of invariant hypercubes. (See Chapters 3 and 4) .

3. A quantized version of a control law which is stabilizing in the absence of quantization(
as, for instance, u(x) = qU(Kx) , for some qU : Rm → U and a stabilizing control gain

K ∈ Rm×n
)

is not guaranteed to achieve practical stabilization. The idea of resorting
to robust control techniques to determine feasible choices for the non–quantized control
law is not new, but a thorough study of the small–gain approach for the control synthesis
of practically stabilizing quantized controllers under assigned multi–input quantization
indeed is. In particular, the method based on the `1 theory is quite new and especially
indicated to deal with practical stabilization. (See Chapters 5 and 6) .

4. A parallel issue, where quantization is not directly involved, has been the development
of innovative tools for the analysis and the control synthesis in `1 . In this respect,
interesting results have been worked out for the special class of positive systems. (See
Section 6.1) .

5. An analysis of performance and complexity for static quantizers capable of dealing
with distributions having unbounded support has not been previously considered in
the literature and poses interesting theoretical issues. A powerful relation between
the complexity of the controller (as measured by an entropy–like function) and the
geometric structure of the corresponding quantization is worked out in terms of the
Laplace transformation. Moreover, fundamental limits in performance, enforced by
the given complexity of a controller, have been carried out by means of information
theoretical inequalities relating the entropy of the control process to the behavior of
the energy of the evolving distributions. (See Chapter 7) .

Let us discuss the items of the above list with detailed references to the existing literature.
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1. As we have clarified in previous Section 1.2 , the control under communication con-
straints have been the predominant subject of the recent literature on quantized control
systems. There are two main consequences of this fact: first, recently developed control
tools (as for instance the robust control techniques in `1 ) have not been extensively
applied to the practical stabilization problem under assigned quantization. Secondly,
most of the methods introduced in the literature are tailored to the asymptotic stabiliza-
tion and dynamic quantizers: for this reason, with few remarkable exceptions [39, 61] ,
they overlook the practical stabilization issue and, above all, they rarely provide the
tools to solve the problem under arbitrarily assigned quantization (i.e, when no special
assumptions are made on the structure of the assigned quantized sets) .

2. Although there exist a wide literature on controlled invariance (see [11] and references
therein) , the problem for quantized input systems is not trivial. In fact, not only quan-
tization disrupts linearity of a system, but also other properties, such as convexity of
the control set, are lost. This fact inhibits the use of many classical results on controlled
invariance under constrained control.
The perturbation technique proposed in [108] contains some ideas similar to those pre-
sented in this thesis but it only allows to determine invariant sets for a specified closed
loop dynamics and it is often computationally untractable. In [19] a method is pro-
posed which employs geometric arguments and allows one to deal with multi–input
systems and robustness issues. However, only quantization resulting from the uniform
tiling of the state space can be handled. A quite general framework within which in-
variant sets can be studied, and allowing one to deal with quantization, is provided
by the Viability theory [3] . We mention, inter alia, the “Controlled Invariance Kernel
Algorithm” [113]. The main drawback of this technique is that it is computationally
intensive because of the increasingly larger number of constraints needed to describe
the sets generated at the various stages of the algorithm. Another interesting approach
is the one proposed in [118] for switching systems (thus including quantized systems as
a special case) where invariant Euclidean balls are algorithmically computed using non-
linear programming. This technique can efficiently handle the two stages of practical
stabilization (i.e., invariance and convergence) but it has to cope with a non–convex op-
timization, hence the global optimum may not be found. Furthermore, in many cases,
looking for invariant Euclidean balls is too restrictive as a quantized input system may
have invariant sets but no invariant balls. Among classical methods for the analysis of
controlled invariance, those based on Lyapunov theory and quadratic functions are the
most easily adaptable to quantized systems. Although not always explicitly referred to
the controlled invariance problem, this approach is common in the literature (see, for
instance, [29, 17, 39]) .
While all these techniques are of quite general application, on the other hand they typ-
ically yield conservative results. That is, they are not capable of providing information
on the minimal invariant set for a system under assigned input quantization.
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Moreover, the nature of the practical stabilization problem varies with the different
types of output map qY considered. Results in the literature are mainly concerned
with quantization of the state [29, 17, 80] or quantization of the innovation [39, 126] .
Results for quantized outputs are given in [17, 51] but a detailed study on the synthesis
of symbolic controllers for discrete time systems with arbitrarily assigned quantized
outputs has not been addressed so far (to the best of our knowledge) .

3. Robust control techniques have been already used to study the stabilization problem for
quantized systems. The analysis techniques proposed in [84, 85] and employing norm–
Lyapunov functions are similar to those based on quadratic functions illustrated in this
thesis. However, they are not suitable to deal with control synthesis and are limited
to SISO systems. In [61] , sample–data systems and uniform or logarithmic quantizers
are considered. The small–gain approach in H∞ proposed in this thesis, instead, is
closely related to the sector bound approach proposed in [51] . In the work of Fu and
Xie, the H∞ control tools are employed to design the coarsest quantizers preserving
asymptotic stabilizability. In this way, logarithmic quantizers are considered for MIMO
systems. The study does not involve quantitative analysis of practical stability and
is restricted to particular types of quantizers (namely, logarithmic quantizers acting
independently on each component of the multi–input or multi–output variable, thus
giving rise to a quantized set in the form of a cartesian product) . On the contrary,
the formulation in terms of small–gain conditions proposed in this thesis can efficiently
handle any arbitrarily assigned multi–input quantized set.
The functional space H∞ is isomorphic to the space of the operators between input
and output sequences belonging to `2 , hence vanishing for t → +∞ . It is deeply–
rooted in this fact the reason why the H∞ control tools are indicated for those cases
where asymptotic stabilization is achievable (i.e., when the range of the control function
u(t) is allowed to have 0 as an accumulation point so that the quantization error is
vanishing for t → +∞ ) . This is not the case when, for instance, the control function
is forced to take a finite number of control values. In this situation, the quantization
error is a persistent (i.e., non–vanishing) disturbance which can be seen as a sequence
in `∞ . Therefore, the choice of studying the practical stabilization in the `1 functional
space (whose elements define operators between input and output sequences belonging
to `∞ ) is natural and it is not surprising that, as for the steady–state performance, the
corresponding results appear to be less conservative than those based on H∞ theory.
Although we are mainly interested on the stabilization under assigned quantization,
the proposed techniques can be applied also to design the quantizers so as to achieve
desired stability properties. In this case, the results based on `1 control turn out to be
conservative in terms of bit–rate with respect to the tight bound proved in [126, 89, 80] .
This is however inherently related with the faster convergence rate the proposed control
strategy ensures (see Remark 16 in Section 4.2.2) .
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4. The design of a controller so that the `∞–gain1 of the operator associated to the
corresponding closed loop dynamics is below a desired threshold, or minimized, is called
the `1–control problem. This problem has been introduced in [128] and has been the
subject of a certain amount of literature [28, 34, 113, 65, 38, 7] . The main proposed
approaches take advantage of the convex structure of the set of all stabilizing controllers
and, either the problem is transformed into an infinite dimensional linear optimization,
or a linear (or quadratic) programming formulation is presented. Hence, algorithmic
procedures are carried out for numerical approximation of the solution. Differently from
the case of dynamic controllers, the problem of minimizing the `∞–gain by means of
static output feedback has been less investigated. In this case, the main difficulties rise
from the fact that the set of stabilizing control gains is not convex.
Assuming that a good synthesis methodology may be found if suitable analysis tools
are available, we have first turned our attention to the problem of evaluating the `∞–
gain of a BIBO–stable linear system. In this respect, the main results [6, 58] are still
based on algorithmic procedures that do not appear to be practical for extension to
control synthesis problems. The main contribution of Section 6.1 consists in providing
an easy method for the computation of an upper bound for the `∞–gain of a BIBO–
stable linear system. Although the proposed bound is not always feasible (i.e., it can
be computed only for some particular systems) and often quite conservative, yet it is
useful in some interesting cases. In particular, the bound is proved to be tight for
single–input positive systems. Furthermore, the proposed method can be extended to
deal with control synthesis: a sufficient criterion is provided that allows one to find a
static output feedback u = Ky so that the `∞–gain of the closed loop dynamics is
below a desired threshold. This can be done by solving a system of linear inequalities.

5. The presence of a communication constraint in the control loop is the cause of perfor-
mance deterioration mainly due to quantization and transmission delays. The suitable
mathematical framework within which these phenomena can be analyzed is offered by
the Information theory. This approach has been pursued ever since [131] and later
on by [89, 44, 125, 30] . Motivated by the “control under communication constraints”
problem, the analysis of the relations between closed loop performance and complexity
of the controller has been first offered in [42, 45] . An information theoretical oriented
study is given in [44, 30] . These works deal either with distributions having a bounded
support or with dynamic quantizers. As clarified in [89] , to cope with distributions hav-
ing an unbounded support, control laws taking infinite values are necessary. Because
we consider static controllers (as opposed to time–varying techniques widely studied in
the literature [123, 17, 125, 89, 80]) , infinite symbols are necessary to encode the con-
trol values. This poses technical problems concerned with transmission delays caused
by the presence of arbitrarily long coding sequences, as well as theoretical questions
on the definition of a proper complexity measure for a controller (indeed, a cardinality

1That is, the induced norm of an operator between sequences belonging to `∞ .
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function as proposed in [45] is no more meaningful) . Not only the notion of entropy
in Information theory is enabling us to deal with these problems, but it provides us
with powerful technical aids for the analysis of the relations between performance and
complexity. For instance, recently studied information theoretic relations between the
entropy of continuous and discrete variables [46] allow us to determine a lower bound
on the achievable asymptotic value of the energy under assigned quantization.

Further discussions can be found in the introductory parts of the various sections.

References [97, 100, 102, 48, 103, 105, 104, 106, 107] are a selection of the main publications
where earlier versions of the contributions of this thesis can be found. The writing of other
papers, on the most recently developed parts of this work, is in progress.
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1.5 Notation and terminology

Matrices and vectors:

Consider a given square matrix A ∈ Rn×n and a vector x ∈ Rn .

• Let




λ(A) be an eigenvalue of A

S(A) :=
{
λ(A) ∈ C |λ(A) be an eigenvalue of A

}
be the spectrum of A

ρ(A) := max
λ(A)∈S(A)

|λ(A)| be the spectral radius of A .

If ρ(A) < 1 , then the matrix A is said to be Schur.

• x′ and A′ stand for the transpose of the vector x and of the matrix A , respectively.

• ei is the i–th vector of the canonical basis.

• xi := e′ix is the i–th component of the vector x .
The i–th component of the vector Ax is denoted by (Ax)i .
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• Ai,j := e′ixej is the (i, j)–th entry of the matrix A .

• Ih is the identity matrix in Rh×h. Sometimes, when the dimension is clear from the
context, the subscript “h” is omitted.

• For Ω ⊆ Rn, AΩ := {Aω |ω ∈ Ω} .

Systems:

• A discrete time, time–invariant and strictly proper dynamical linear system




x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t)
x ∈ Rn, u ∈ Rm and y ∈ Rq

is denoted by Σ(A,B, C) . In order to avoid useless redundancies, the matrices B and
C are always supposed to be full rank.

• Either x+(t) or simply x+ are often used to denote x(t + 1) .

Norms:

• For v ∈ Rn and p ∈ [1 , ∞] , we let:

‖v‖p :=





( ∑n
i=1 |vi|p

)1/p if p ∈ [1 , ∞[

max
i=1,...,n

|vi| if p = ∞ .

• For A ∈ Rn×n and p ∈ [1 , ∞] , we let:

‖A‖p := sup
x∈Rn,x 6=0

‖Ax‖p

‖x‖p
.

It holds that

‖A‖p =





√
ρ(A′A) =

√
ρ(AA′) if p = 2

max
i=1,...,n

∑n
j=1 |Ai,j | if p = ∞ .

Sets:

• The cardinality of a set S is denoted by #S .

• A set S is said to be finite iff # S < +∞ , whereas, it is said to be countable iff there
exists an injective function f : S → N . Hence, finite sets are countable sets.

• Intervals are denoted by: [a , b ] := {x ∈ R | a ≤ x ≤ b} , ]a , b [ := {x ∈ R | a < x < b} ,
[a , b [ := {x ∈ R | a ≤ x < b} , etc.

• Let R+ := R ∩ [0 , +∞[ .
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• For a given ε > 0 , let εZ := {εz | z ∈ Z} .

• Let BR := {x ∈ Rn | ‖x‖2 ≤ R} .

• For a given Rn×n 3 P > 0 and r ∈ R , let

EP,r2 :=
{
x ∈ Rn |x′Px ≤ r2

}
.

• Let E ⊆ Rn :
E denotes the closure of E ;
χE(x) is the characteristic function of E , namely:

χE(x) =

{
1 if x ∈ E

0 otherwise ;

cE denotes the complementary set;
for v ∈ Rn , let E − v := {x ∈ Rk |x + v ∈ E} .

• Given two sets D and E , let E \D := {e ∈ E | e 6∈ D} .

• For E ⊆ R , diam(E) := sup
x,y∈E

|x− y| is the diameter of E .

• For Ω ⊆ Rn , let Pri Ω := {ωi ∈ R | ∃ω = (ω1, . . . , ωi, . . . , ωn) ∈ Ω} = {ωi |ω ∈ Ω} ;
diami Ω := diam

(
Pri Ω

)
.

• Let
Qn(∆) :=

[−∆
2 , ∆

2

]n =
{
x ∈ Rn | ‖x‖∞ ≤ ∆

2

}

be the closed hypercube of edge length ∆ ;
denote by Qo

n(∆) :=
[− ∆

2 , ∆
2

[n the semi–open hypercube.

Probability:

• Probability spaces are simply denoted by the sample space Ω , both the σ–algebra and
the probability measure are understood (to our purposes, it is enough to specify the
distribution of the considered random variables) .

• We denote by Pr(R) the space of Borel probability measures on R .

• For m ∈ ]0 , 1] and x ∈ R , mδx denotes the delta–measure having mass m concen-
trated at x ∈ R . That is, if A ⊆ R is a Borel set, then

mδx(A) =

{
m if x ∈ A

0 otherwise .

• Let X be a random variable taking values in R : by E[X] and Var[X] we mean the
expectation and the variance of X .
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• We denote by Pr(Z) the space of discrete probability measures on Z : its elements
will be identified with sequences p = {pk}k∈Z of non–negative real numbers such that∑

k∈Z pk = 1 .

Other notation:

• If not otherwise stated, the logarithms are in the base e .

• The floor function is bxc := max {z ∈ Z | z ≤ x} ;
the ceil function is dxe := min {z ∈ Z | z ≥ x} .

• The Gamma function is defined by
{

Γ(x) :=
∫ +∞
0 e−ttx−1dt

x > 0 .

For n ∈ N , it holds that Γ(n + 1) = n! .

• The sign function is defined by

sign (x) :=

{ |x|
x if x 6= 0

1 otherwise .

• Let f : X → Y and g : Y → Z :
for Y ⊆ Y , f−1(Y ) := {x ∈ X | f(x) ∈ Y } denotes the inverse image of Y ;
g ◦ f denotes the composite function, (g ◦ f)(x) := g

(
f(x)

)
.

• Consider a function φ : X → R and assume that µ :=min
x∈X

φ(x) is well–defined. We

let,
argmin

x∈X
φ(x) := {x ∈ X |φ(x) = µ} .

We write y =argmin
x∈X

φ(x) to mean any y ∈ argmin
x∈X

φ(x) . Symmetric assumptions are

considered for argmax
x∈X

φ(x) .

• Let f and g be two real functions defined on a half–line [x0 , +∞[⊂ R and such that
limx→+∞ f(x) = limx→+∞ g(x) = +∞ . By the notation

for x → +∞ , f(x) ∼ g(x)

we mean that limx→+∞
f(x)
g(x) = 1 or, equivalently, that f(x) = g(x)

(
1 + h(x)

)
with

limx→+∞ h(x) = 0 .



Chapter 2

Definitions and examples

This thesis is concerned with the practical stabilization problem for a discrete time and
time–invariant dynamical system of the type





x(t + 1) = Ax(t) + Bu(t)

y(t) = qY
(
x(t)

)

x ∈ Rn, u ∈ U ⊂ Rm , y ∈ Y
A ∈ Rn×n, B ∈ Rn×m, t ∈ N .

(2.1)

It is assumed that 0 ∈ U , thus (x = 0 , u = 0) is an equilibrium pair, and U is an assigned
quantized set. Also the output map qY : Rn → Y is assigned and, according to the consid-
ered problem, either is the identity map qY(x) = x (full state available) or Y is a countable
set (quantized measurement) .
Some clarifications are in order: first, the definition of quantized set is needed; secondly,
precise assumptions on the output map qY are to be specified; finally it must be clarified
what a controller is and which the proper notion of practical stability/stabilization for sys-
tem (2.1) is. This is the subject of the next few sections. The review of these points allows
us to emphasize some features of system (2.1) that raise some of the main questions on the
stabilization problem which are studied in this thesis.
Our first concern is the case where the input set U and the output map qY are given. No
special assumptions are done on the structure of U . Particular cases, such as uniform or
logarithmic quantizations, will be considered in examples only, whilst the theory can be ap-
plied to very general input sets. Similarly, the assumptions specified for qY will be really
mild. Most of the proposed results can be extended to the case where the designer has the
freedom to choose the input set and/or the output map: references to this case will be given
in remarks and examples.

29
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2.1 Quantized sets and locally finite partitions

We assume that the reader is familiar with basic notions of general topology, such as those
of closed set, compact set, isolated point and accumulation point for a set. These concepts
can be revised in [66] .

Definition 1 A set U endowed with a topology is said to be discrete iff all its points are
isolated.

Definition 2 A set U ⊂ Rm is said to be quantized iff it is closed and discrete with respect
to the standard Euclidean topology.

Elementary examples of quantized sets are the following: any finite set U ⊂ Rm is a quantized
set; an easy case of a quantized set having infinite cardinality is U = Z ⊂ R .

Lemma 1 (Basic properties of quantized sets)
ı) The following properties are equivalent:

1- U ⊂ Rm is quantized;
2- U has no accumulation points;
3- ∀S ⊂ Rm such that S is bounded, it holds that #(U ∩ S) < +∞ .

ıı) If U ⊂ Rm is quantized, then U is countable.

Proof. See in Appendix A.1.1 .

While quantized sets are countable, the contrary is not true: e.g., the set of rational numbers
Q ⊂ R is countable but it is not a quantized set. With an expressive sentence, we may say
that the notion of quantized set is the closest concept generalizing that of a finite set.
A relaxation of the notion of quantized set, where the accumulation of values towards one
point (which is taken to be 0 ) is allowed, is provided by the following

Definition 3 A set U ⊂ Rm is said to be quantized in the generalized sense (generalized
quantized set) iff U is a closed set and U \ {0} is discrete.

If U is a quantized set, then it is also a generalized quantized set (but not vice versa, see
next Example 1) . Hence, the properties stated for generalized quantized sets hold also for
quantized sets.

Example 1 The set

U := {0} ∪
{
± 1

n + 1
|n ∈ N

}

is a generalized quantized set but it is not a quantized set. In fact, 0 is an accumulation
point for U . In other words, U is closed but it is not discrete . ♣
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We shall see in Section 2.3 that the stabilization problem for system (2.1) is significantly
different depending on the fact that the control set U is assumed to be quantized or quantized
in the generalized sense.
Let U g ⊂ Rm be a generalized quantized set. A quantized set can be obtained by the
truncation of U g : consider a neighborhood Ω0 of 0 , then U := {0} ∪ (U g ∩ cΩ0

)
is a

quantized set which is said to be obtained by truncation of U g within Ω0 . In a broad sense,
the term truncation will be used to allude to the fact that 0 is an isolated point.

Definition 4 Let U ⊂ Rm be a generalized quantized set: a quantizer is a map

qU : Rm → U .

When U is a control set, qU is called an input quantizer.
For a given quantizer, the corresponding quantization error is the map defined by

qe := qU − I : Rm → Rm

y 7→ qU(y)− y .

The following special class of quantizers is relevant for our study:

Definition 5 Let U ⊂ Rm be a generalized quantized set: a quantizer qU : Rm → U is said
to be a nearest neighbor quantizer iff ∀ y ∈ Rm, qU(y) is an element of U minimizing the
Euclidean distance from y .

The nearest neighbor quantizer is well–defined because U is a closed set. For a given set
U , there are several nearest neighbor quantizers but they only differ for the values taken in
correspondence of those y ∈ Rm such that

# argmin
u∈U

‖y − u‖2 ≥ 2 .

Notice also that, if qU is a nearest neighbor quantizer, then the associated quantization error
is such that the function

‖qe‖2 : Rm → R+

y 7→ ‖qe(y)‖2

is continuous.

Definition 6 A partition of Rm is a family of subsets of Rm , say {Ci}i∈I (for some set of
indices I ) , such that Rm =

⋃
i∈I Ci and ∀ i1 , i2 ∈ I , i1 6= i2 , Ci1 ∩ Ci2 = ∅ .

A partition is said to be locally finite iff for any bounded set S ⊂ Rm , it holds that

# {i ∈ I | S ∩ Ci 6= ∅} < +∞ .

For any given map f : Rm → I , the partition of Rm defined by
{
Rm =

⋃
i∈I Ci

Ci :=
{
y ∈ Rm | f(y) = i

}

is referred to as the partition induced by f .
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Figure 2.1: Uniform quantization of R2 with u02 = 3
5 ·u01 . Broken lines define the partition

of R2 induced by qU .

Let us discuss the relations between locally finite partitions and the partitions induced by a
quantizer.
The partition induced by a nearest neighbor quantizer is the so called Voronoi partition
generated by U (see [94]) . If U is a quantized set, then the Voronoi partition generated by
U is locally finite.
Given a locally finite partition {Ci}i∈I of Rm , ∀ i ∈ I , pick1 ui ∈ Ci . It is easy to see that
the set U := {ui | i ∈ I} is a quantized set. Moreover, the quantizer qU : Rm → U defined
by qU(y) = ui if and only if y ∈ Ci is such that its induced partition is the given one and
∀u ∈ U , u ∈ q−1

U (u) . Vice versa, it is easy to construct examples of quantizers qU taking
values in a quantized set U (not in the generalized sense) and such that ∀u ∈ U , u ∈ q−1

U (u)
but the induced partition is not locally finite (see Example 30 in Appendix A.1.1) : of course,
such a quantizer is not a nearest neighbor one.

Let us provide some typical examples of quantizers.

Definition 7 (Uniform quantization of RmRmRm ) Let u0 > 0 . A set U ⊂ R is said to be
uniformly quantized with parameter u0 iff U = u0Z . By a uniform quantization of R with

parameter u0 we mean a nearest neighbor quantizer qU : R→ U := u0Z .
For i = 1 , . . . , m , let u0i > 0 . By a uniform quantization of Rm with parameters (u01 , . . . ,

u0m) we mean a nearest neighbor quantizer qU : Rm → U := u01Z×· · ·×u0mZ (see Fig. 2.1) .

It is straightforward to see that

Lemma 2 If qU is a uniform quantization of Rm with parameters (u01 , . . . , u0m) and qe

is the corresponding quantization error, then ∀ y ∈ Rm, it holds that

‖qe(y)‖2 ≤ 1
2

√√√√
m∑

i=1

u2
0i . 2

1Notice that, for the construction, we are using the Zermelo’s axiom of choice [86] .
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Figure 2.2: Componentwise logarithmic quantization of R2 with u02 = 1
2 ·u01 , θ1 = 1.4 and

θ2 = 1.6 . Broken lines define the partition of R2 induced by qU .

Definition 8 (Componentwise logarithmic quantization of RmRmRm ) Let u0 > 0 and
θ > 1 . A set U ⊂ R is said to be logarithmically quantized with parameters (u0, θ) iff

U = {0} ∪ {±u0θ
h |h ∈ N} .

If instead h ∈ Z , then U is a generalized quantized set and it is said to be logarithmically

quantized in the generalized sense.
By a (generalized) logarithmic quantization of R with parameters (u0, θ) we mean a nearest
neighbor quantizer qU : R → U , where U is a (generalized) logarithmically quantized set of
parameters (u0, θ) .
For i = 1 . . . m , let u0i > 0 , θi > 1 and U i be a logarithmically quantized set of
parameters (u0i, θi) . By a componentwise logarithmic quantization of Rm with parameters(
(u01, θ1) , . . . , (u0m, θm)

)
we mean a nearest neighbor quantizer qU : Rm → U := U 1 × · · · ×

Um (see Fig. 2.2) .

The quantizer
qU : Rm → U 1 × · · · × Um

y 7→ (
qU1

(y1) , · · · , qUm(ym)
)
,

where ∀ i = 1, . . . ,m , qUi
: R → U i is a logarithmic quantization of R , is a particular

componentwise logarithmic quantization of Rm .
Notice that the cartesian product of generalized logarithmically quantized sets is not a gen-
eralized quantized set: in fact, fix an index i ∈ {1 . . . , m} and, ∀ j 6= i , fix an integer kj ,
then the sequence

U ⊃ {uk}k∈Z =
{
( u01θ

k1
1 · · · u0iθ

k
i · · · u0mθkm

m )
}

k∈Z
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is accumulating towards

u = ( u01θ
k1
1 · · · u0i−1θ

ki−1

i−1 0 u0i+1θ
ki+1

i+1 · · · u0mθkm
m ) .

Hence, there are infinite accumulations points different from 0 .
For logarithmic quantizations of Rm , the quantization error is not bounded. Nevertheless,
the relative quantization error is bounded:

Lemma 3 Consider a generalized logarithmic quantization of R with parameters (u0, θ) ,
then ∀ y 6= 0 ,

|qe(y)|
|y| ≤ θ − 1

θ + 1
.

Proof. See in Appendix A.1.1 .

The relative error of a logarithmic quantization of R differs from that of a generalized
logarithmic quantization only in a neighborhood of 0 . Because of the truncation, around
0 the relative error is larger than in the generalized logarithmic quantization case and it
reaches its maximal value equal to 1 for 0 < |y| ≤ u0/2 . The details will be illustrated in
Example 19 of Chapter 5 (see also Fig. A.2 in Appendix A.4.1) . In Example 20 of the same
chapter, also the behavior of the relative error of componentwise logarithmic quantizations
of R2 is studied .

In the above examples, the quantized sets U ⊂ Rm are all in the form of a cartesian product,
that is U = U 1 × · · · × Um , with U i ⊂ R . In this case, it is possible to deal with quantizers
qU acting separately on each component of the vector y ∈ Rm . This is not possible for more
general quantized sets U ⊂ Rm :

Definition 9 (Joint radial logarithmic quantization of R2R2R2) Let N 3 N ≥ 3 , u0 > 0
and θ > 1 . Consider

`k :=
{

(x1, x2) =
(
λ cos(2πk/N), λ sin(2πk/N)

) ∈ R2 |λ ≥ 0
}

, k = 0, 1, . . . , N − 1 ,

ch := {x ∈ R2 | ‖x‖2 = u0θ
h} , h ∈ N .

Let L :=
⋃N−1

k=0 `k and C :=
⋃

h∈N ch . A set U ⊂ R2 is said to be radially logarithmically

quantized with parameters (N, u0, θ) iff

U = {0} ∪ (L ∩ C)

(see Fig. 2.3) . If instead, in the definitions of ch and C , we let h ∈ Z , then U is a
generalized quantized set and it is said to be radially logarithmically quantized in the generalized

sense.
By a (generalized) radial logarithmic quantization of R2 with parameters (N, u0, θ) we mean a
nearest neighbor quantizer qU : R2 → U , where U is a (generalized) radially logarithmically
quantized set of parameters (N, u0, θ) .
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Figure 2.3: Radial logarithmic quantization of R2 with N = 6 and θ = 2 . Full lines define
the partition of R2 induced by qU .

Also for the generalized radial logarithmic quantization the relative quantization error is
bounded.

Lemma 4 Consider a generalized radial logarithmic quantization of R2 with parameters
(N, u0, θ) , then ∀ y ∈ R2 \ {0} ,

‖qe(y)‖2

‖y‖2
≤

√
1− 4θ cos2(π/N)

(θ + 1)2
.

Proof. The joint radial logarithmic quantization will be studied in details in Chapter 5 and
the proof of this lemma is reported at the end of Appendix A.4.1 .

Considerations similar to those we made for the relative error of a logarithmic quantization
of R can be done on the behavior of the relative error of a radial logarithmic quantization
of R2 (in particular, its maximal value is equal to 1 in a neighborhood of 0 ) . The details
will be illustrated in Example 21 of Chapter 5 .

In the particular case of quantized sets U ⊂ R , it is useful to introduce the following quan-
tities.

Definition 10 Let U ⊂ R be a quantized set such that U 6= {0} . The resolution at 0 of U
is defined by

u0 := min
u∈U\{0}

|u| .

The definition of resolution at 0 can be generalized to a notion taking into account the overall
control set or, more in general, a portion of it:
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Figure 2.4: Representation of the dispersion of a quantized set Û = {u1 , . . . , u6} ⊂ R .

Definition 11 Consider a quantized set U ⊂ R , let Û ⊆ U and denote by Û ch the convex
hull of Û . The dispersion of Û is defined as

ρÛ :=

{
sup

{
b− a

∣∣ ]a, b[⊆ Û ch and ]a, b[ ∩ Û = ∅}
if # Û > 1

+∞ otherwise .
(2.2)

In plain words, the dispersion of Û is the maximal gap between consecutive elements of Û
(see Fig. 2.4) .

2.2 The output map qY

The output map qY : Rn → Y of system (2.1) is characterized by its induced state space
partition: {

Rn =
⋃

y∈Y Cy

Cy := q−1
Y (y) .

(2.3)

We consider three cases:

1. Full state: it is the case in which quantization is on inputs only while full state is
available. Namely, qY(x) = x and Y = Rn

(
clearly, ∀ y ∈ Y , Cy = {y} )

. In this case,
system (2.1) is referred to as full state or as quantized input (depending on the context)
and it is often denoted by Σ(A,B,U) .

The following two instances are generically referred to as quantized measurement case. In
both cases, the induced state space partition is assumed to be locally finite.

2. State quantization: it is the case in which, at least in a sufficiently large neighborhood
of the equilibrium, the state space partition is made of bounded sets. Namely, there
exists a sufficiently large r > 0 such that ∀ y ∈ qY(Br) , Cy is bounded. In this case,
system (2.1) is referred to as quantized input and quantized state (or quantized state,
for short) .

3. Output quantization: it is the case in which the output map is of the type qY = qo◦C ,
with C ∈ Rq×n ( q < n ) and the map qo : Rq → Y induces a locally finite partition
of Rq . It is assumed that (A,C) is an observable pair. As q < n , the state space
partition is made of unbounded sets. In this thesis, we only deal with single–output
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systems (i.e., q = 1 ) and it is assumed that ∀ y ∈ Y , q−1
o (y) ⊆ R is a connected

set
(
thus, q−1

o (y) ⊆ R is either an interval of finite length or a half–line
)
. This case

of system (2.1) is referred to as quantized input and quantized output (or quantized
output, for short) .

The quantized measurement case is a model for situations where, although the dynamics is
deterministic, only partial information about the state of the system are available.

2.3 The stabilization problem for quantized linear systems

The basic fact on the stabilization problem for system (2.1) is that, if U is a quantized set
and the system is open loop unstable, then stabilization in the Lyapunov sense is not possible
(see also [29]) . Namely, for any control law u( · ) taking values in a quantized set U , 0 is
not a stable equilibrium for the closed loop dynamics (regardless of the argument of u ) .
This gives reasons for the need of introducing a weaker notion of stability to be considered
for quantized systems, that is the so called practical stability. The following example is useful
to gain insight on this fact:

Example 2 Consider the quantized input system




x(t + 1) = ax(t) + u(t)

|a| > 1

u ∈ U ⊂ R ,

(2.4)

where U 6= {0} is a quantized set containing 0 . It holds that any control law u( · ) taking
values in U does not stabilize the system. In fact, assume that u( · ) is such that 0 is a
stable equilibrium for the closed loop system: by definition [67] , this means that

∀ ε > 0 and ∀ t0 ≥ 0 , ∃ δ(ε, t0) > 0 such that |x(t0)| < δ(ε, t0) ⇒ |x(t)| < ε ∀ t ≥ t0 .

We claim that, if such a control law exists, then u(t) = 0 whenever |x(t)| < u0
1+|a| , where u0

is the resolution at 0 of the control set U . This is a contradiction because, in the neighborhood
Ω0 :=

{
x ∈ R ∣∣ |x| < u0

1+|a|
}

, the closed loop system coincides with the open loop dynamics
x(t + 1) = ax(t) which is unstable.
The proof of the claim is trivial, it is sufficient to show that, for ε = u0

1+|a| , it holds that, if
|x(t)| < ε and |x(t + 1)| < ε , then u(t) = 0 : |x(t + 1)| < ε if and only if −ε − ax(t) <

u(t) < ε− ax(t) . From this inequality it follows that if |x(t)| < ε = u0
1+|a| , then |u(t)| < u0 .

By definition of u0 , this implies that u(t) = 0 . ♣
The key point of the example is that the value u = 0 is an isolated point of U (i.e., u0 > 0 ) .
The same arguments can be hence easily extended to show that, for any open loop unstable
quantized linear system (2.1) and any control law taking values in a quantized set, if x = 0
is an equilibrium for the closed loop dynamics, then such an equilibrium is unstable.
Next Example 3 shows that, if instead the control set is quantized in the generalized sense,
then closed loop asymptotic stability can be achieved.
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Figure 2.5: Closed loop dynamics in Example 3 ( a = 2 , K = −3/2 and θ = 3/2 ) .

Example 3 Consider again system (2.4) but assume that U is a logarithmically quantized
set in the generalized sense with parameters (u0, θ) . Let us consider a control law of the type
u(x) = qU(Kx) , where qU : R→ U is a nearest neighbor quantizer and K ∈ R is such that
|a+K| < 1 (i.e., K is a stabilizing control gain in the ideal case of absence of quantization) .
The corresponding closed loop dynamics is

x(t + 1) = (a + K)x(t) + qe

(
Kx(t)

)
:

this is the feedback interconnection of the asymptotically stable linear system Σ(a + K, 1,K)
with the nonlinearity qe representing the quantization error.
If K is such that ∀x 6= 0 , |x+| < |x| , then V (x) := x2 is a Lyapunov function for the
closed loop system and x = 0 is a globally asymptotically stable equilibrium. We look for a
condition on K ensuring that this property holds irrespective of the choice of the particular
nearest neighbor quantizer (recall that, given U , a nearest neighbor quantizer is not unique) .
It is easy to show that a necessary and sufficient condition in order that this happen is

|a + K|+ θ − 1
θ + 1

|K| < 1 (2.5)

(see Fig. 2.5 and Lemma 25 in Appendix A.1.2) . With γ∗(θ) := θ−1
θ+1 and γs(K) := |K|

1−|a+K| ,
under the assumption that |a + K| < 1 , condition (2.5) is equivalent to

γs(K) · γ∗(θ) < 1 . (2.6)

Inequality (2.6) is called small–gain condition: this issue will be investigated in Chapters 5
and 6 , here we tell in advance that γs(K) is the `2–gain (or, equivalently, the H∞–norm)
of the linear system Σ(a + K, 1,K) , whereas γ∗(θ) is the `2–gain of the nonlinearity qe .
The allowed choices for K ensuring that stabilization in the presence of quantization is
achievable are less than in the ideal case of absence of quantization. In fact, let

Ksg := {K ∈ R | γs(K) · γ∗(θ) < 1}
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and
K := {K ∈ R | |a + K| < 1} ,

by condition (2.5) ,
Ksg ⊂ K .

Moreover, if θ is too large
(
i.e., if γ∗(θ) is too close to 1

)
, Ksg may be empty. Indeed,

as K ∈ R varies so that |a + K| < 1 , γs(K) is minimized for K = −a , accordingly
γs(−a) = |a| . Hence, ∃K ∈ R such that, for any nearest neighbor quantizer, V (x) = x2 is
a Lyapunov function for the closed loop dynamics (or, equivalently, Ksg 6= ∅ ) if and only if
|a| θ−1

θ+1 < 1 , that is

θ <
|a|+ 1
|a| − 1

. (2.7)

If instead one has the freedom to choose a generalized quantized set U (i.e., U is not as-
signed) , then the problem is easier and stabilization is always achievable. Namely, ∀ |a| > 1
and for any control gain K ∈ K , there exists a logarithmically quantized set in the generalized
sense such that the system is stabilized by u(x) = qU(Kx) . In fact, it is sufficient to choose
the parameter θ so that γ∗(θ) < 1/γs(K) . Therefore, any choice of θ within the non–empty
interval ]

1 ,
γs(K) + 1
γs(K)− 1

[

is feasible. With K = −a , γs(K) is minimized and γs(K)+1
γs(K)−1 achieves its maximum value

equal to |a|+1
|a|−1 : since for |a| > 1 , |a|+1

|a|−1 is a decreasing function of |a| , then the more
unstable the open loop system is, the smaller the allowed values for θ are. As it is clear by
Definition 8 , smaller values of θ correspond to more densely quantized sets (see [39] for a
formal definition of density of quantization) . ♣
Exactly because stabilization is possible with generalized quantized sets whereas it is not
possible in the presence of quantization (unless the system is already open loop stable) ,
our interest is focused on the latter case. Moreover, generalized quantized control sets with
values accumulating towards the origin are an idealization where the peculiar features of
quantization are lost. In fact, infinite control values belong to any bounded neighborhood
of 0 and this situation is really different from the property stated in Lemma 1.ı that makes
quantized sets closely related to finite sets.

2.3.1 Practical stability

A notion of stability suited to quantized systems comes out naturally by the discussion of
the following example.

Example 4 Consider again system (2.4) . Let the control law be u(x) = qU(−ax) , where
qU is a nearest neighbor quantizer. The corresponding closed loop dynamics is

x(t + 1) = qe

(− ax(t)
)
.
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Figure 2.6: Closed loop dynamics in case 1 of Example 4 (a = 2 ) .
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Figure 2.7: Closed loop dynamics in case 2 of Example 4 (a = 2 and θ = 7/3 ) .

Let us analyze this dynamics for three different quantized sets.

Case 1: assume that U = u0Z . By Lemma 2 , it holds that ∀x ∈ R , |x+| ≤ u0/2 (see
Fig. 2.6) . Namely, for t ≥ 1 , all the trajectories are confined inside the interval Ω :=[− u0

2 , u0
2

]
.

Case 2: assume that U is a logarithmically quantized set of parameters (u0, θ) and θ is
such that inequality (2.7) holds. In this case, for |x| ≤ u0/2 , it holds that |x+| = |qe(−ax)| ≤
u0/2 , whereas for |x| > u0/2 , |x+| ≤ |a| θ−1

θ+1 · |x| < |x| by inequality (2.7) (see Fig. 2.7) .
Thus, with Ω := [−u0

2 , u0
2 ] , it holds that ∀x ∈ Ω , x+ ∈ Ω and ∀x(0) ∈ R , ∃ t ∈ N such

that x(t) ∈ Ω : also in this case all the trajectories eventually enters a neighborhood Ω of the
equilibrium and remain confined therein.

Case 3: assume that U = {0} ∪ {±u0 ,±2u0 ,±4u0 ,±6u0} (thus, U is a finite set) and
a = 2 . In this case, for |x| ≤ u0/2 , it holds that |x+| = |qe(−2x)| ≤ u0/2 ; for u0/2 < |x| <
6u0 , |x+| < |x| and for |x| ≥ 6u0 , |x+| ≥ |x| (see Fig. 2.8) . Thus, with Ω := [−u0

2 , u0
2 ]

and X0 := [−∆0
2 , ∆0

2 ]
(
for any ∆0 ∈ [0 , 12u0[

)
, it holds that ∀x ∈ Ω , x+ ∈ Ω and

∀x(0) ∈ X0 , ∃ t ∈ N such that x(t) ∈ Ω . That is, all the trajectories starting from X0

eventually enters a neighborhood Ω of the equilibrium and remain confined therein. ♣
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Figure 2.8: Closed loop dynamics in case 3 of Example 4 .

In the three cases, although x = 0 is an unstable equilibrium for the closed loop dynamics, it
is possible to make the trajectories non–divergent (in the finite case, only those starting from
a sufficiently small neighborhood X0 of the equilibrium) and, even better, to make them
convergent to a bounded neighborhood Ω of the equilibrium. This property is not stability
in the Lyapunov sense, but it is the closest behavior to stability that one can aim to obtain
by the quantized control of an open loop unstable linear system. This is an example of the
typical behavior of the so called practically stable systems.

We are ready to introduce the formal notion of practical stability. Many definitions for this
property have been introduced in the literature on quantized systems, all of them are related
with the requirement of ultimate boundedness of the trajectories and with the notion of
invariant set [11] .
Let us consider a time invariant dynamical system

{
x+ = f(x)

x ∈ Rn.
(2.8)

Definition 12 A set Ω ⊆ Rn is said to be positively invariant for system (2.8) iff ∀x ∈ Ω ,
x+ ∈ Ω .

We consider the following notions of practical stability:

Definition 13 (Practical stability) Let Ω , X0 and X1 be bounded subsets of Rn such
that Ω and X0 are neighborhoods of the origin, Ω ⊆ X1 and X0 ⊆ X1 .
ı) System (2.8) is said to be (X0, X1, Ω)–stable iff ∀x(0) ∈ X0 , x(t) ∈ X1 ∀ t ≥ 0 and
∃ t̄ ∈ N such that ∀ t ≥ t̄ , x(t) ∈ Ω .
ıı) System (2.8) is said to be (X0, Ω)–stable iff both X0 and Ω are positively invariant and
∀x(0) ∈ X0 ∃ t̄ ∈ N such that ∀ t ≥ t̄ , x(t) ∈ Ω .
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Remark 1 ( (X0,X0,Ω)–stability vs (X0,Ω)–stability) Consider the particularization
of (X0, X1, Ω)–stability to the case X1 = X0 , that is (X0, X0, Ω)–stability. If system (2.8)
is (X0,Ω)–stable, then it is (X0, X0, Ω)–stable. In general, the contrary is not true because,
although the trajectories starting from X0 will eventually remain confined within Ω , the
set Ω is not guaranteed to be positively invariant. Thus, (X0, X0, Ω)–stability, is a weaker
stability notion than (X0, Ω)–stability.

Let us introduce the practical stabilization problem for system (2.1) . First, the notion of
positive invariance is extended to controlled systems:

Definition 14 A set Ω ⊆ Rn is said to be qY–controlled invariant for system (2.1) iff ∀ y ∈
qY(Ω) , ∃u ∈ U such that ∀x ∈ q−1

Y (y) ∩ Ω , x+ = Ax + Bu ∈ Ω .
Controlled invariance is the particularization of the notion of qY–controlled invariance to
quantized input systems (i.e., qY is the identity map) : a set Ω ⊆ Rn is said to be controlled

invariant for system Σ(A, B,U) iff ∀x ∈ Ω , ∃u ∈ U such that x+ = Ax + Bu ∈ Ω .

Namely, ∀x ∈ Ω it must be possible to select a control, as a function of the available
measurement qY(x) only, such that x+ ∈ Ω .
Given the most general form of system (2.1) (i.e., in the quantized input and quantized output
case) , a controller is a machine (see [114]) that, based on quantized output measurements
y ∈ Y and on the internal state w ∈ W , selects a quantized control value u ∈ U . In
formulae, the controller is described by the following system defined on some set W :





w(t + 1) = γ
(
w(t), y(t), t

)

u(t) = k̄
(
w(t), y(t), t

)

t ∈ N ,

(2.9)

where γ : W ×Y × N→W and k̄ : W ×Y × N→ U (the map k̄ , when it is not explicitly
depending on the time, is simply denoted by k ) . The closed loop dynamics induced by the
feedback interconnection of such a controller with system (2.1) is:





x(t + 1) = Ax(t) + Bk̄
(
w(t), qY

(
x(t)

)
, t

)

w(t + 1) = γ
(
w(t), qY

(
x(t)

)
, t

)
.

(2.10)

In some cases (i.e., full state or quantized state systems) , it will be sufficient to consider the
subclass of controllers (2.9) made of static and time–invariant controllers: namely, W = {w}
and k̄ is not depending on t . In this case, the control law is a static state feedback u(·) of
the type k ◦ qY : Rn → U , for some k : Y → U , and the closed loop dynamics

x+ = Ax + B(k ◦ qY)(x) (2.11)

is of the type in equation (2.8) .
The goal is to design a controller so that the corresponding closed loop dynamics have practi-
cal stability properties. The controllers considered in this thesis are all defined on a quantized
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set W and practical stability properties are referred only to the state variable x of the con-
trolled system

(
i.e., to the continuous component of the overall state (x,w) of the closed

loop system (2.10)
)
:

Definition 15 (Practical stabilization) (Cf. [45]) Let Ω , X0 and X1 be bounded subsets
of Rn such that Ω and X0 are neighborhoods of the origin, Ω ⊆ X1 and X0 ⊆ X1 .
The controller (2.9) is said to be (X0, X1,Ω)–stabilizing iff the corresponding closed loop
dynamics (2.10) is so that ∀x(0) ∈ X0 and ∀w(0) ∈ W , x(t) ∈ X1 ∀ t ≥ 0 and ∃ t̄ ∈ N
such that ∀ t ≥ t̄ , x(t) ∈ Ω . In this case, system (2.10) is said to be (X0, X1,Ω)–stable.
A static and time–invariant controller k ◦ qY is said to be (X0, Ω)–stabilizing iff the closed
loop system (2.11) is (X0, Ω)–stable.
The set Ω is often referred to as the final set.

Remark 2 To be really precise, the definition of (X0, X1, Ω)–stabilizing controller should
take into account the fact that the controller (2.9) , and hence system (2.10) , is time–varying.
Nevertheless, most of the controllers we consider in this thesis are time–invariant. The only
time–varying controllers are such that ∃T < n so that, for t ≥ T ,

{
w(t + 1) = γ

(
w(t), y(t)

)

u(t) = k
(
w(t), y(t)

)
.

Namely, after a few time instants the controller behaves like a time–invariant system. For this
reason, we find unnecessary to introduce a more general definition of stabilizing controller.

Remark 3 (On the steady–state behavior) Because an open loop unstable system (2.1)
with quantized input set U is not stabilizable in the classical sense, then it is not possible to
confine the trajectories within arbitrarily small final sets Ω . Thus, for a given system (2.1) ,
it is interesting to evaluate the optimal closed loop steady–state behavior that can be achieved
or, in other words, to find the minimal (in some proper sense) final set Ω . This issue will be
investigated with particular attention, starting from the analysis of the minimality properties
for controlled invariant neighborhoods of the origin (see Section 3.1.2) .

If k ◦ qY is (X0, X0, Ω)– or (X0,Ω)–stabilizing, then X0 (and, in the latter case, also Ω )
is positively invariant for the closed loop system. The following lemma makes explicit the
relation between positive invariance and qY–controlled invariance. Thus, with regard to
the practical stabilization problem, it clarifies the importance of searching for qY–controlled
invariant sets for system (2.1) .

Lemma 5 Let X0 ⊂ Rn , there exists a controller of the type k◦ qY such that X0 is positively
invariant for the closed loop system x+ = Ax+B(k◦qY)(x) if and only if X0 is qY–controlled
invariant.

Proof. It is a trivial consequence of the definition of qY–controlled invariance.
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We conclude this section with the definition of a controller that is often encountered in this
thesis and that, especially for single–input systems, plays a central role for the practical
stabilization problem. It is the quantized version of the classical deadbeat controller:

Definition 16 (The qdb–controller) Given a quantized input system Σ(A,B,U) , if K ∈
Rm×n is such that all the eigenvalues of the matrix A + BK are in 0 and qU is a nearest
neighbor quantizer, then the feedback law

k : Rn → U
x 7→ qU(Kx)

is called quantized deadbeat controller (qdb–controller).

This is exactly the controller we analyzed in Example 4 and, except for the fact that U was
a generalized quantized set, in Example 3 .

2.3.2 Nonlinear behaviors of quantized linear systems

Although the dynamics of the state of system (2.1) is described by a linear transformation, a
quantized linear system is a nonlinear system in every respect. Certainly, the input/output
relation is nonlinear if measurements are quantized. If full state is available but inputs are
quantized, even if the “superposition principle” is still valid, nonlinearity arises from the
fact that the inputs are restricted to take values in a nonlinear space (in other words, the
operator mapping the input to the state of the system is the restriction of a linear operator
to a nonlinear domain) . Therefore, the closed loop dynamics of a quantized linear system
is nonlinear and may exhibit typical features of nonlinear dynamics such as the presence
of multiple isolated equilibria, limit cycles and chaotic behaviors. For instance, when K in
Example 3 is chosen so that γs(K) ·γ∗(θ) = 1, the closed loop dynamics has multiple isolated
equilibria and/or limit cycles (depending on the sign of a and a + K ) . Whereas, when
a ∈ Z ( |a| > 1 ) , the closed loop behavior within Ω in case 1 of Example 4 is the prototype
of discrete time chaotic dynamics (see [71, 81]) .

2.4 Complexity vs performance

Let us direct our attention towards case 1 and 2 of Example 4 . In both cases, the trajectories
converge to the same final set Ω : this property can be expressed by saying that the closed
loop dynamics have the same steady–state performance. On the other hand, the two closed
loop behaviors are different: under the uniform quantization it holds that convergence to the
final set is achieved in time t = 1 ; in the case of logarithmic quantization, instead, the time
required to converge into Ω is not constant. That is, the closed loop dynamics have different
performance in the transient behavior.
Closed loop performance depend on the quantization scheme. It is intuitive that the more
dense (in some proper sense) the control set U is, the better closed loop performance can
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be achieved. Namely, there exists a trade off between performance and what will be referred
to as the complexity of the quantizer. Besides practical stabilization of system (2.1) , we are
interested in a quantitative study of the relations between quantization and performance. To
this end, we need to introduce suitable parameters to measure performance and to charac-
terize quantizers.
Performance can be measured in several ways. For instance, the transient behavior may be
evaluated through the decaying rate of the norm of the state of the system or in terms of the
mean time taken by the trajectories to reach the final set (in the latter case, see [45]) . The
steady–state performance can be measured through the size of the final set Ω or through
the amount of contraction realized by the control law2. On the contrary, it is less evident
how to properly introduce a quantitative description of a quantizer. As a starting point, let
us consider the following function: for a given quantizer qU : Rn → U , let {Cu}u∈U be the
partition induced by qU and assume that it is locally finite; let

N : R+ → N
r 7→ # {u ∈ U | Cu ∩ Br 6= ∅} .

We call this function, the complexity function associated to the quantizer qU .
The motivation to consider this kind of function and the reason why we associate it to the
idea of complexity of a quantizer have an explanation in the framework of networked systems.
In fact, consider a quantized input system controlled by a state feedback qU : Rn → U
and assume that the state of the system is transmitted to the controller through a digital
communication link. To this end, the state x has to be properly encoded. Actually, to select
the right control value, the controller needs only to know the element Cu of the partition
the current state belongs to. Hence, it is sufficient to encode the elements {Cu}u∈U of the
partition rather than the continuous variable x . Moreover, if the state of the system is known
to be confined in a bounded set, say x ∈ Br (for some r ≥ 0 ) , then one has to encode only
the elements Cu intersecting Br : the function N(r) exactly returns the number of elements
to encode.

Example 5 (Complexity vs Performance for logarithmic quantizers) As an illu-
strative example, let us consider again case 2 of Example 4 . Since the final set is Ω =[− u0

2 , u0
2

]
, we let u0 be the parameters measuring the steady–state performance: the smaller

is u0 the better are the steady–state performance. As for the transient behavior, we have
seen that, if x(t) 6∈ Ω , then |x(t)| ≤ (|a| θ−1

θ+1

)t · |x(0)| . Hence, the norm of the state is
exponentially decreasing at a rate not smaller than

T (θ) := log
θ + 1

|a|(θ − 1)
, (2.12)

2Formal definitions for these concepts will be given when necessary. As an explanatory example, in case 3

of Example 4 , ∀∆0 < 12u0 , the closed loop dynamics is
(
[−∆0

2
, ∆0

2
] , [−u0

2
, u0

2
]
)
–stable: in this case we

may say that the size of the final set is u0 or that the contraction is equal to 12 .
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that is
if x(t) 6∈ Ω , |x(t)| ≤ e−T (θ)t|x(0)| .

We let T (θ) be the measure of performance in the transient behavior. The decaying rate
T (θ) is a decreasing function of θ : thus, the increase of θ is the cause of deterioration of
performance in the transient. It holds that





limθ→1+ T (θ) = +∞
lim

θ→
( |a|+1
|a|−1

)− T (θ) = 0 .

Let us compute the complexity function associated to the logarithmic quantizer u(x) = qU(x)
of parameters (u0, θ) . The state space partition induced by qU is made of intervals such that
the set of the extremes of these intervals is

S(u0, θ) :=
{
± u0

2|a|
}
∪

{
±u0(θ + 1)

2|a| θh
∣∣∣h ∈ N

}
⊂ R .

By the expression of S(u0, θ) , it is an easy computation to see that, for sufficiently large r ,
the qualitative behavior of the function N(r)/2 is3

N(r)
2

'
log

( 2|a|r
u0(θ+1)

)

log θ
:= Ñ(r) .

Inverting equation (2.12) and substituting for θ in the expression of Ñ , we obtain

Ñ(T , u0) =
log (|a|eT −1)r

u0eT

log |a|eT +1
|a|eT −1

. (2.13)

This equation establishes the connection and the trade off between the complexity of the quan-
tizer and the performance in both the steady–state and the transient behavior. Let us comment
the main features of equation (2.13) : assume that r > 0 is fixed and sufficiently large,

1. Given u0 and |a| , Ñ is an increasing function of T . Moreover, limT →+∞ Ñ(T ) =
+∞ and

for T → +∞ , Ñ(T ) ∼ C1(u0, |a|, r) · eT ,

where C1(u0, |a|, r) = |a|
2 log

( |a|r
u0

)
. That is, the complexity grows as performance in

the transient improve and, asymptotically, is exponentially divergent.

2. Given T and |a| , Ñ is a decreasing function of u0 . Moreover, limu0→0+ Ñ(u0) = +∞
and

for u0 → 0+ , Ñ(u0) ∼ −C2(T , |a|) · log u0 ,

where C2(T , |a|) = 1/ log |a|eT +1
|a|eT −1

. That is, complexity grows as performance in the
steady–state improve and, at the vanishing of u0 , is logarithmically divergent.

3The function N(r)/2 contains all the information because the partition is symmetric with respect to the

origin. The choice of considering N(r)/2 is consistent with the treatment of this topic that will be developed

in Chapter 7 .
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3. Given T and u0 , Ñ is an increasing function of |a| . Moreover, lim|a|→+∞ Ñ(|a|) =
+∞ and

for |a| → +∞ , Ñ(a) ∼ eT

2
· |a| log |a| .

That is, complexity grows with the instability of the open loop system and, asymptoti-
cally, is quasi–linearly divergent. ♣

The definition of the complexity function N has been motivated with reference to the coding
issue. Actually, it is relevant not only the number of symbols to be encoded, but also the
length of the coding sequences: in fact, if the communication link in the control loop can
transmit at a finite rate, then long coding sequences are the cause of delay and hence of
performance deterioration. If the model includes a statistics on the cells, then the average
length of the coding sequences can be minimized by encoding the most probable cells with
the shortest sequences, and vice versa. Hence, a more suited complexity function should be
defined by taking into account the underlying statistics. To this end, the right mathematical
framework is that of the Information theory and the right notion to be considered is that of
entropy. This issue, and the corresponding analysis of complexity vs performance, will be
addressed in Chapter 7 .





Chapter 3

Analysis

In this chapter, the problem of the search for qY–controlled invariant sets for system (2.1)
is considered. Although there exists a wide literature on controlled invariance (see [11] and
references therein) , the problem for quantized input systems is not trivial. Indeed, most
of the results on constrained control are limited to bounded convex sets and hence do not
apply to the quantized control case. The main results available for quantized systems are
based on algorithmic procedures: we mention, inter alia, the “Controlled Invariance Kernel
Algorithm” [113] in the framework of the Viability theory [3] , the “Inclusion Principle” [108]
and methods based on nonlinear programming [118] . While these approaches are of quite
general application, on the other hand they are affected by the limitations due to compu-
tational complexity and, above all, they typically yield conservative results. That is, in a
(X0,Ω)–stabilization problem, it is desirable to find a small final invariant set Ω but the
aforementioned methods are not capable of providing information on the minimal invariant
set for a system under assigned input quantization.

In this chapter, we propose two analytical methods. The first one is completely original and
deals with the controlled invariance analysis of hypercubes: although it can be applied to a
restricted class of systems (i.e., reachable single–input systems) , on the other hand it has
some features making this approach quite appealing. In fact, the analysis is really simple to
handle and, for this reason, it is suitable to deal with cases that, in the current literature, have
been faced only marginally: namely, the analysis (and, in next Chapter 4 , also the synthesis)
for systems under arbitrarily assigned input and output quantization. Moreover, in many
interesting cases (e.g., in the presence of uniform or logarithmic input quantization) , the
family of invariant hypercubes contains an element which is, in a precise sense, the smallest
one with respect to any other controlled invariant neighborhood of the equilibrium.
The second approach relies on classical tools derived by stability analysis based on quadratic
Lyapunov functions and returns controlled invariant ellipsoids: this method can be applied to
the more general class of stabilizable multi–input systems but only the quantized input case
has been considered. Moreover, results are often quite conservative. Anyhow, this approach
turns out to be very useful also in the context of control synthesis for practical stabilization

49
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(see Chapter 5) .

The chapter is organized as follows: Section 3.1 deals with the controlled invariance analysis
for quantized input systems in the full state case. The analysis based on hypercubes is intro-
duced in Section 3.1.1 ; in subsequent Section 3.1.2 , the minimality properties of hypercubes
are proved; Section 3.1.3 is devoted to an extension of the results presented in the previ-
ous sections to a problem in the framework of the control under communication constraints.
The invariance analysis based on ellipsoid is described in Section 3.1.4 . In Section 3.2 , the
analysis of controlled invariant hypercubes is extended to the case of systems with quantized
single–input and quantized measurements: Section 3.2.1 deals with the quantized state case;
in Section 3.2.2 , quantized outputs are considered.

3.1 Controlled invariance: quantized input

In this section we study the controlled invariance problem for system (2.1) in the full state
case. Hence, we consider a system Σ(A,B,U) where only the input set is quantized.

3.1.1 Controlled invariant hypercubes: single–input

Let us suppose that system (2.1) is single–input and that the pair (A,B) is reachable. In this
case, under the general assumption that U is a quantized set, it is possible to find controlled
invariant sets within a particularly simple class of polytopes. Namely, hypercubes in the
controller form coordinates.
Because of the reachability assumption, throughout this section it is assumed without loss of
generality (see [114]) that the system is represented in the controller form coordinates, that
is:

A0)

A =




0 1 · · · 0
...

. . . . . .
...

0 0 · · · 1
a1 a2 · · · an




, B =




0
...
0
1




, (3.1)

where zn − anzn−1 − · · · − a2z − a1 is the characteristic polynomial of A .
In the controller form coordinates, ‖A‖∞ = max

i=1,...,n

∑n
j=1 |Ai,j | = max

{
1 ,

∑n
i=1 |ai|

}
. Let

α :=
n∑

i=1

|ai| .

If α ≤ 1 , then the system is open loop stable: in fact, ∀x ∈ Rn , ‖Ax‖∞ ≤ ‖x‖∞ . In
particular, ∀∆ > 0 , the hypercube Qn(∆) is controlled invariant. Hence, the interesting case
to study the invariance problem is α > 1 . Nevertheless, in anticipation of the stabilization
problem, it is convenient to state some results under the more general assumption α ≥ 1 .
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Remark 4 (The qdb–controller) Notice that K = (−a1 · · · − an ) is the unique K ∈
R1×n such that the controller k(x) := qU(Kx) , where qU : R → U is a nearest neighbor
input quantizer, is a qdb–controller. Thus, for single–input reachable systems Σ(A,B,U) in
the controller form coordinates, a qdb–controller takes the form

k(x) = qU
(−∑n

i=1 aixi

)
= qU

(− (Ax)n

)
(3.2)

and the closed loop dynamics x+ = Ax + Bk(x) is such that

{
x+

i = xi+1 for i = 1, . . . , n− 1

x+
n = qU

(− (Ax)n

)
+ (Ax)n = qe

(− (Ax)n

)
.

(3.3)

The analysis of controlled invariance for hypercubes Qn(∆) in controller form coordinates is
particularly simple. In fact, given ∆ > 0 , let x ∈ Qn(∆) and u ∈ U : by the controller form
of (A,B) ,

x+ =
(
x2, . . . , xn,

∑
i aixi + u

) ∈ Qn(∆) ⇔ ∣∣∑
i aixi + u

∣∣ ≤ ∆
2 . (3.4)

Thus, for hypercubes Qn(∆) in controller form coordinates, invariance can be tested consid-
ering the n–th component only. We seek a characterization of controlled invariant hypercubes
in terms of algebraic relations between quantities related to the dynamics of system (2.1) and
to the control set U .
To this end, we first notice that the controlled invariance of a given hypercube Qn(∆) only
depends on a bounded subset of the whole control set U , indeed:

Lemma 6 Consider system (2.1) , assume A0 and that α ≥ 1 . If x ∈ Qn(∆) and u is
such that x+ ∈ Qn(∆) , then u ∈ [− ∆

2 (α + 1) , ∆
2 (α + 1)

]
.

Proof. Since ‖A‖∞ = α and A is in controller form, then

Prn

(
AQn(∆)

)
=

[− ∆
2 α , ∆

2 α
]
. (3.5)

Now, x+ ∈ Qn(∆) implies that −∆
2 ≤ (Ax)n+u ≤ ∆

2 , namely −∆
2 −(Ax)n ≤ u ≤ ∆

2 −(Ax)n

which implies −∆
2 (α + 1) ≤ u ≤ ∆

2 (α + 1) because of (3.5) .

Hence, the set of control values that are relevant to ensure the invariance of Qn(∆) is

U(∆) := U ∩ [− ∆
2 (α + 1) , ∆

2 (α + 1)
]
. (3.6)

It holds that U(∆) 6= ∅ (in fact, it contains 0 ) and, by Lemma 1.ı , U(∆) is a finite set.
The analysis of controlled invariant hypercubes is carried out in terms of the following scalar
functions of the edge length ∆ : let

{
m(∆) := min U(∆)
M(∆) := max U(∆)

(3.7)
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Figure 3.1: U(∆) = {m(∆) = u1, u2, u3, u4, u5, u6 = M(∆)} : ρ(∆) = u3 − u2 , the thicker
segments represent the intervals where m(∆) and M(∆) satisfy inequalities (3.11a–b) .

and, according to (2.2) , let

ρ(∆) := ρU(∆)
=





sup
{
b− a

∣∣ ]a, b[⊆ [m(∆),M(∆)] and

]a, b[ ∩ U(∆) = ∅}
if #U(∆) > 1

+∞ otherwise

(3.8)

be the dispersion of U(∆) (see Fig. 3.1) . The three functions m(∆) , M(∆) , ρ(∆) depend
on the dynamics of the system only through the infinity norm of A . The function M(∆)
is piecewise constant and non–decreasing with ∆ , whilst m(∆) is piecewise constant and
non–increasing. Given U 6= {0} , let

∆̄ :=
2u0

α + 1
(3.9)

(where u0 is the resolution at 0 of U , see Definition 10) , then: for ∆ < ∆̄ , ρ(∆) = +∞ ;
for ∆ ≥ ∆̄ , ρ(∆) is piecewise constant, right continuous and non–decreasing with ∆ . Since
ρ(∆̄) = u0 and u0 ≥ ∆̄ , then

ρ : [∆̄ , +∞[→ [∆̄ , +∞[ . (3.10)

Further details on the behavior of these functions are given later on in Remark 5 .

Theorem 1 (Controlled invariant hypercubes) Consider system Σ(A,B,U) , assume
A0 and that α = ‖A‖∞ > 1 . For ∆ > 0 , Qn(∆) is controlled invariant if and only if





m(∆) ≤ −∆
2

(
α− 1

)

M(∆) ≥ ∆
2

(
α− 1

)

ρ(∆) ≤ ∆ .

(3.11a)

(3.11b)

(3.11c)

The following result is useful to prove the theorem and clarifies the role of the qdb–controller
for the invariance problem.

Proposition 1 Consider system Σ(A,B,U) , assume A0 and let k : Rn → U be a qdb–
controller. For ∆ > 0 , Qn(∆) is controlled invariant if and only if it is positively invariant
for the closed loop system x+ = Ax + Bk(x) .
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Proof. By condition (3.4) , Qn(∆) is controlled invariant if and only if ∀x ∈ Qn(∆) ,
∃u ∈ U such that

∣∣(Ax)n + u
∣∣ ≤ ∆

2 . By definition of nearest neighbor quantizer,

argmin
u∈U

∣∣(Ax)n + u
∣∣ = qU

(− (Ax)n

)
.

As qU
(− (Ax)n

)
= k(x) , the thesis follows.

Proof of Theorem 1. Let us prove the necessity of (3.11a) : let x ∈ Qn(∆) be such that
(Ax)n = ∆

2 α
(
see equation (3.5)

)
. If Qn(∆) is controlled invariant, then ∃u ∈ U such that

∆
2 ≥

∣∣(Ax)n + u
∣∣ =

∣∣∆
2 α + u

∣∣ . That is, ∃u ∈ U such that −∆
2 (α + 1) ≤ u ≤ −∆

2 (α− 1) : by
definition of m(∆) , this means that m(∆) ≤ −∆

2 (α− 1) (see Fig. 3.1) .
The necessity of (3.11b) can be proved similarly by considering x ∈ Qn(∆) such that (Ax)n =
−∆

2 α .
To prove the necessity of (3.11c) we argue by contradiction: if ρ(∆) = +∞ , then U(∆) = {0}
but ‖A‖∞ = α > 1 implies AQn(∆) 6⊆ Qn(∆) which contradicts the invariance of Qn(∆) .
If instead ∆ < ρ(∆) < +∞ , then ∃u1 ∈ U(∆) and u2 ∈ U(∆) such that u2 − u1 > ∆ and
]u1 , u2[∩U = ∅ . Let w := u1+u2

2 , w ∈ Prn

(
AQn(∆)

)
=

[−∆
2 α , ∆

2 α
]

because u2−u1 > ∆
and, by equation (3.6) , u1 ≥ −∆

2 (α+1) and u2 ≤ ∆
2 (α+1) . Hence, ∃ x̃ ∈ Qn(∆) such that

(Ax̃)n = −w . Let qU be a nearest neighbor quantizer: by construction, |qU(w) − w| > ∆
2 ,

but ∣∣qU(w)− w
∣∣ =

∣∣qU
(− (Ax̃)n

)
+ (Ax̃)n

∣∣ (a)
= |x̃+

n|
(b)

≤ ∆
2

,

where equality (a) holds by equation (3.3) and inequality (b) follows by Proposition 1 .
Finally, let us show that the validity of inequalities (3.11) is a sufficient condition for the
controlled invariance of Qn(∆) . According to condition (3.4) and Proposition 1 , let us show
that ∀x ∈ Qn(∆) ,

∣∣qU
(−(Ax)n

)
+(Ax)n

∣∣ ≤ ∆
2 . If x is such that −(Ax)n ∈

[
m(∆) , M(∆)

]
,

then
∣∣qU

(− (Ax)n

)
+(Ax)n

∣∣ ≤ ρ(∆)
2 by definition of ρ(∆) . If instead −(Ax)n < m(∆) , then

∣∣qU
(− (Ax)n

)
+ (Ax)n

∣∣ (c)

≤ ∣∣m(∆) + (Ax)n

∣∣ = m(∆) + (Ax)n

(d)

≤ −∆
2 (α− 1) + ∆

2 α = ∆
2 ,

where in inequality (c) we used the fact that argmin
u∈U

∣∣u + (Ax)n

∣∣ = qU
( − (Ax)n

)
and in

inequality (d) we used inequality (3.11a) and the fact that (Ax)n ≤ ∆
2 α

(
see equation (3.5)

)
.

The case −(Ax)n > M(∆) is similar.

Before presenting some examples, let us briefly describe the way to compute the functions
ρ(∆) , M(∆) and m(∆) .

Remark 5 (Computation of ρ(∆) , M(∆) and m(∆) ) For the sake of simplicity, we
consider the case of a control set U symmetric with respect to the origin, the extension to
the general case is straightforward. Consider a system Σ(A, B,U) in the controller form
coordinates with α ≥ 1 and

U = {0} ∪ {±u0 ,±u1 ,±u2 , . . . } ,
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where 0 < u0 < u1 < u2 < · · · . Let K := {k ∈ N |uk ∈ U} be the set of indices for the
elements of U \ {0} (thus, either K = {0, 1, . . . , N} or K = N , depending on whether U is
a finite set or not) .
First, compute α = ‖A‖∞ .

• Computation of M(∆) and m(∆) : since U is symmetric with respect to the origin,

∀∆ > 0 , m(∆) = −M(∆) .

Let us compute M(∆) : this function is piecewise constant, non–decreasing and right contin-
uous. According to equations (3.6) and (3.7) , the set of the discontinuity points of M(∆) is
JM :=

{
∆ > 0 | ∆

2 (α + 1) = uk for some k ∈ K}
=

{
2uk
α+1 | k ∈ K

}
. Therefore, for ∆ > 0 ,

M(∆) =

{
0 if ∆ ∈ ]

0, 2u0
α+1

[

uk if ∆ ∈ [
2uk
α+1 ,

2uk+1

α+1

[ (3.12)

(
if U is finite and K = {0, 1, . . . , N} , then M(∆) = uN ∀∆ ≥ 2uN

α+1

)
.

• Computation of ρ(∆) : also ρ(∆) is piecewise constant, non–decreasing and right con-
tinuous but, while the set JM of the discontinuity points of M(∆) is depending on all the
positive values of U , the set Jρ of the discontinuity points of ρ(∆) only depends on a subset
of the positive control values (which are referred to as critical control values) . In fact, ρ(∆) is
discontinuous in correspondence of those values of ∆ such that U(∆) includes a new control
value ukc whose distance from ukc−1 is larger than the dispersion of U ∩ [−ukc−1, ukc−1] .
In formulae, let u−1 := 0 and

Kc := {0} ∪ {k ∈ K \ {0} | ∀ i < k , uk − uk−1 > ui − ui−1}
:= {k0 , k1 , k2 , . . . } ⊆ K

be the set of indices corresponding to the critical control values ( 0 = k0 < k1 < k2 < · · · ) .
Then, Jρ =

{
2uk
α+1 | k ∈ Kc

}
. Therefore, for ∆ > 0 ,

ρ(∆) =





+∞ if ∆ < ∆̄ = 2u0
α+1

u0 if ∆ ∈ [
2u0
α+1 ,

2uk1
α+1

[

uki − uki−1 if ∆ ∈ [ 2uki
α+1 ,

2uki+1

α+1

[
(3.13)

(
if Kc is a finite set, say Kc = {k0 , . . . , kN} , then ρ(∆) = ukN

− ukN−1 ∀∆ ≥ 2ukN
α+1

)
.

Notice that, ∀∆0 > ∆̄ , the function ρ takes only a finite number of values over the interval
[∆̄ ,∆0] (it is a consequence of the fact that 0 ∈ U is an isolated point) .

Example 6 (Finite control set) Consider the quantized input system




x+ =

(
0 1

5/4 1/4

)
x +

(
0
1

)
u

u ∈ U ,
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Figure 3.2: Plot of M(∆) for the system in Example 6 .

where U = {0 ,±1 ,±2 ,±3 ,±4 ,±6 ,±8 ,±12 ,±16 ,±24} . Let us determine the controlled
invariant hypercubes by applying Theorem 1 . Notice that, since |det A| = 5/4 > 1 , the
system is open loop unstable.
Let us compute the functions M(∆) and ρ(∆)

(
m(∆) = −M(∆)

)
.

The infinity norm of A is α = 3
2 .

The function M(∆) is determined by simple substitution of the numerical values of α and
uk in equation (3.12) . The plot of M(∆) is reported in Fig. 3.2 , here we report only
its discontinuity points: JM =

{
2uk
α+1 | k ∈ K

}
=

{
4
5 , 8

5 , 12
5 , 16

5 , 24
5 , 32

5 , 48
5 , 64

5 , 96
5

}
. Condi-

tions (3.11a–b) are satisfied for ∆ ∈ [
4
5 , 96

]
.

As far as ρ(∆) is concerned, the set of the critical control values is {1 , 6 , 12 , 24} ⊂ U . Thus
Jρ =

{
4
5 , 24

5 , 48
5 , 96

5

}
and, by equation (3.13) ,

ρ(∆) =





+∞ if ∆ < ∆̄ = 4
5

1 if ∆ ∈ [
4
5 , 24

5

[

2 if ∆ ∈ [
24
5 , 48

5

[

4 if ∆ ∈ [
48
5 , 96

5

[

8 if ∆ ≥ 96
5 ,

(3.14)

see the plot in Fig. 3.3 . In particular, condition (3.11c) is satisfied ∀∆ ≥ 1 .
Therefore, Q2(∆) is controlled invariant if and only if 1 ≤ ∆ ≤ 96 . ♣
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Figure 3.3: Plot of ρ(∆) for the system in Example 6 .

Example 7 (Uniformly quantized controls) Given a system Σ(A,B,U) in the control-
ler form coordinates with α = ‖A‖∞ > 1 , if U is uniformly quantized with parameter u0 ,
then ∀∆ ≥ u0 , the hypercube Qn(∆) is controlled invariant. To show this, let us apply
Theorem 1 .
In this case, a closed formula for M(∆) can be provided, in fact: for ∆ > 0 , M(∆) = ku0 ,
where k is the largest integer such that ku0 ≤ ∆

2 (α + 1)
(
see equations (3.6) and (3.7)

)
.

Hence,

M(∆) = −m(∆) =
⌊

∆(α + 1)
2u0

⌋
· u0 .

Since M(∆) >
(∆(α+1)

2u0
− 1

)
u0 = ∆α+∆−2u0

2 , then

∀∆ ≥ u0 , M(∆) >
∆
2

(α− 1)

and both inequalities (3.11a) and (3.11b) are satisfied.
As for ρ(∆) , the unique critical control value is u0 , therefore

ρ(∆) =

{
+∞ if ∆ < ∆̄ = 2u0

α+1

u0 if ∆ ≥ 2u0
α+1 .

Since α > 1 , then ∆̄ < u0 and inequality (3.11c) is satisfied ∀∆ ≥ u0 .
The plots of M(∆) and ρ(∆) are reported in Fig. 3.4 . ♣

Remark 6 Notice that the commonly used inequality bxc > x− 1 is tight. That is, for any
arbitrarily small ε > 0 , it holds that bxc − (x− 1) = ε whenever x = z− ε , with z ∈ Z and
0 < ε < 1 . The same holds for the inequality dxe < x + 1 .

Example 8 (Logarithmically quantized controls) Given a system Σ(A,B,U) in the
controller form coordinates with α = ‖A‖∞ > 1 , if U is logarithmically quantized with
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Figure 3.4: Plot of M(∆) and of ρ(∆) for a system with α = 2 and uniformly quantized
controls (see Example 7) .

parameters (u0, θ) and 1 < θ ≤ α+1
α−1 , then ∀∆ ≥ u0 , Qn(∆) is controlled invariant. To

show this, let us apply Theorem 1 .
We first compute the functions M(∆) , m(∆) and ρ(∆) in the general case θ > 1 . Also in
this case, a closed formula for M(∆) can be provided, in fact: according to equation (3.12) ,
M(∆) = 0 for 0 < ∆ < 2u0

α+1 , whilst for ∆ ≥ 2u0
α+1 , M(∆) = u0θ

k , where k is the largest
integer such that u0θ

k ≤ ∆
2 (α + 1)

(
see equations (3.6) and (3.7)

)
. Hence,

M(∆) = −m(∆) =





0 if 0 < ∆ < 2u0
α+1

u0 · θ
⌊

logθ

(
(α+1) ∆

2u0

)⌋
if ∆ ≥ 2u0

α+1 .

As far as ρ(∆) is concerned,

ρ(∆) =





+∞ if ∆ < ∆̄ = 2u0
α+1

u0 if 2u0
α+1 ≤ ∆ < 2u0

α+1 θ

⌊
logθ( θ2

θ−1
)
⌋

u0
θ−1

θ · θ
⌊

logθ

(
(α+1) ∆

2u0

)⌋
if ∆ ≥ 2u0

α+1 θ

⌊
logθ( θ2

θ−1
)
⌋

(3.15)

(the details of the computations are reported in Appendix A.2.1) .
Now, let us assume that 1 < θ ≤ α+1

α−1 and let us show that conditions (3.11) are satisfied
∀∆ ≥ u0 : for ∆ ≥ 2u0

α+1 ,

M(∆) > u0 · θ logθ

(
(α+1) ∆

2u0

)
−1 =

α + 1
2 θ

∆ ≥ ∆
2

(α− 1)

because θ ≤ α+1
α−1 and α > 1 . In particular, conditions (3.11a–b) are satisfied for ∆ ≥ u0 .

As for condition (3.11c) , for ∆ ≥ 2u0
α+1 θ

⌊
logθ( θ2

θ−1
)
⌋
, by removing the floor function in the

expression of ρ(∆) , we have

ρ(∆) ≤ (θ − 1)(α + 1)
2 θ

∆ ≤ ∆



58 CHAPTER 3. ANALYSIS

6M(∆)

-
∆

y = α−1
2 ∆ = ∆

2
u0

u0θ

u0θ
2

u0θ
3

2u0

α+1
2u0

α+1 θ
2u0

α+1 θ
2 2u0

α+1 θ
3

6ρ(∆)

-
∆

y = ∆

u0

u0(θ−1)θ

u0(θ−1)θ2

2u0

α+1
2u0

α+1 θ
2=

2u0

α+1 θ

⌊

logθ

(

θ
2

θ−1

)⌋

2u0

α+1 θ
3

Figure 3.5: Plot of M(∆) and of ρ(∆) for a system with α = 2 and logarithmically quantized
controls with parameter (u0, θ = 1.8) (see Example 8) .

because, for θ > 0 and α > 1 , (θ−1)(α+1)
2 θ ≤ 1 ⇔ θ ≤ α+1

α−1 . Hence, a fortiori, ∀∆ ≥ u0 ,
ρ(∆) ≤ ∆ (see also Fig. 3.5) . ♣

Remark 7 If 1 < θ < α+1
α−1 , by the above computations it follows that





ρ(u0) = u0

ρ(∆) < ∆ if ∆ > u0

M(∆) > ∆
2 (α− 1) if ∆ ≥ u0 .

(3.16)

It is immediate to check that these relations hold true also for α = 1 and θ > 1 . These
properties will be useful in Chapter 4 when dealing with the control synthesis for practical
stabilization.
If instead θ > α+1

α−1 , the set of the values of ∆ such that Qn(∆) is controlled invariant
becomes a non–connected union of intervals whose size decreases as θ increases and, for
sufficiently large values of θ , it becomes empty.

3.1.2 Hypercubes are minimal invariants

There are many possible shapes for invariant sets, the reasons for considering one class or
another (e.g., ellipsoids, hypercubes or more general polytopes) can be varied. Three basic
requirements one would aim at satisfying are: simplicity of description of the considered
sets, simplicity of practical stability analysis and optimality. Since the goal of practical
stabilization is to confine the trajectories of the system within small controlled invariant
neighborhoods of the equilibrium, then optimality means that the considered family contains
an invariant set which the trajectories can be made convergent to and that the size of such a
set is minimal with respect to all controlled invariant sets. These requests are often trading
off: e.g., ellipsoids can be easily described but they are not optimal (as it will be shown
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in Section 3.1.4) ; polytopes instead are usually optimal but may be of arbitrarily complex
description.
In this section, once explicitly remarked the simplicity of the controlled invariance analysis
based on hypercubes, we analyze geometric properties holding for invariant sets of arbitrary
shape and show the peculiarities exhibited by hypercubes in controller form coordinates. This
analysis is helpful to properly define the concept of size for a set and is introductory to the
statement of the minimality theorems for hypercubes. The bottom line is that the choice
of considering hypercubes for the practical stabilization problem is motivated by the fact
that they meet all the requirements of simplicity of description, simplicity of analysis and
optimality.
Unless otherwise stated, throughout this section it is assumed that the system is represented
in the controller form coordinates

(
see assumption A0 in equation (3.1)

)
. Notice that there

is no loss of generality in changing coordinates in the state space and to compare different
sets all in the same coordinates.

Invariance analysis for hypercubes is simple

The simplicity of description of hypercubes, as well as the resulting controlled invariance
analysis (see Theorem 1) , is apparent. The following simple result is helpful to appreciate
such a simplicity compared with other types of sets:

Lemma 7 [43] Ω ⊆ Rn is controlled invariant if and only if AΩ ⊆ ⋃
u∈U (Ω−Bu) . 2

Despite the simple formulation, the practical application of this invariance criterion is not
straightforward when dealing with arbitrary sets Ω . In particular, to test the invariance of
Ω , it is in general necessary to determine AΩ . We have seen instead that for Ω = Qn(∆)
the analysis can be reduced to a 1–dimensional problem where invariant hypercubes are
characterized by simple algebraic relations between ∆ , α and the scalar functions ρ(∆) ,
m(∆) and M(∆) . Furthermore, while Lemma 7 may give some insight on the geometric
characteristics of controlled invariant sets, on the other hand it does not really answer the
question of how to construct controlled invariant sets for a given system Σ(A,B,U) .

Geometric properties of invariant sets

The attention is now turned to the study of some geometric properties holding for arbitrarily
shaped invariant sets and on how these results can be used for the practical stability analysis.
First, it is useful to extend Definition 15 as follows:

Definition 15b A static and time–invariant state feedback controller k : Rn → U is said to
be (X0, Ω)–stabilizing in N steps iff the closed loop system x+ = Ax + Bk(x) is (X0, Ω)–
stable and ∀x(0) ∈ X0 , it holds that x(N) ∈ Ω .

Since we will widely exploit the properties of the canonical controller form, it is worth recalling
that the control acts only on the n–th component while the others shift upwards.
Let Pr(i1,...,im) x := (xi1 , . . . , xim) :
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Proposition 2 Consider system Σ(A,B,U) and assume A0 . If Ω ⊆ Rn is controlled
invariant, then Pr(2,...,n) Ω ⊆ Pr(1,...,n−1) Ω . In particular, Prn Ω ⊆ Prn−1 Ω ⊆ · · · ⊆ Pr1 Ω
and diamn Ω ≤ diamn−1 Ω ≤ . . . ≤ diam1 Ω .

Proof. ∀ y = (y2, . . . , yn) ∈ Pr(2,...,n) Ω , ∃x ∈ Ω with x = (x1, y2, . . . , yn) . Let u ∈ U be
such that x+ ∈ Ω : x+ = (y2, . . . , yn, x+

n) , hence y ∈ Pr(1,...,n−1) Ω .

Given Ω ⊆ Rn , let Z := Prn Ω and

Ω∗ := Ω ∩ Zn . (3.17)

The main property of Ω∗ is exhibited by the following

Proposition 3 Consider system Σ(A,B,U) and assume A0 . If Ω ⊆ Rn is a controlled
invariant neighborhood of the origin, then Ω∗ is a controlled invariant neighborhood of the
origin and ∀φ : Rn → U rendering Ω positively invariant, φ is (Ω, Ω∗)–stabilizing in n−1
steps.

Proof. Ω∗ is a neighborhood of the origin because so are both Ω and Zn . Since Ω is
positively invariant, to prove that φ is (Ω, Ω∗)–stabilizing in n − 1 steps, we have to show
that ∀x(0) ∈ Ω , ∀ t ≥ n− 1 and ∀ i = 1, . . . , n , xi(t) ∈ Z . Indeed, ∀x ∈ Ω , x+

n ∈ Z by
the definition of Z . Since the system is in controller form, the thesis follows.

Corollary 1 If φ is (X0,Ω)–stabilizing, then φ is (X0, Ω∗)–stabilizing. 2

Therefore, Ω \ Ω∗ is a redundant part of the invariant set Ω , meaning that the trajectories
lie within Ω \ Ω∗ only for a transient time of at most n − 1 steps. As the aim of practical
stabilization is to confine the trajectories within small controlled invariant neighborhoods of
the origin, in the analysis of stabilizing control laws it is then proper to replace the final set
Ω by Ω∗ , namely to “cut off ” the redundant region. This procedure is effective because, by
Proposition 2, Pri Ω ⊆ Pri−1 Ω ∀ i = 2, . . . , n and Ω\Ω∗ 6= ∅ whenever one of the inclusions
is strict. In general, (Ω∗)∗ ⊂ Ω∗ , namely the cut–off procedure can be iterated.
Notice that if Ω = Qn(∆) , then Ω∗ = Ω , namely the hypercubes Qn(∆) are non–redundant.
This is not the case for more commonly encountered types of invariant sets such as ellipsoids.
Quantitative results on the effect of the cut–off procedure on ellipsoids will be given in
Section 3.1.4 .
Hypercubes are not the only example of invariant sets such that Ω∗ = Ω , the same property
holds if Ω is inscribed in a hypercube. This fact will be relevant in next section when
discussing on the minimality of hypercubes and is related with the advisability of introducing
two notions of minimality. Indeed, among these notions, the strongest one allows us to exclude
the existence of invariant sets Ω inscribed in the smallest invariant hypercube.

Minimality properties of invariant hypercubes

In order to investigate the minimality properties of the smallest controlled invariant hypercube
with respect to all controlled invariant sets, we need to introduce a suitable notion of size
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for controlled invariant sets. We choose to study the minimality problem by comparing sets
according to their extension in some vector norm ‖ · ‖∗ . That is, for a neighborhood Ω of
the origin, we consider

‖Ω‖∗ := sup
x∈Ω

‖x‖∗ .

Indeed, by achieving the convergence of the trajectories to within Ω , it is guaranteed that

lim sup
t→+∞

‖x(t)‖∗ ≤ ‖Ω‖∗ .

For comparison purposes, we will also consider the volume and the containment relation.
Nevertheless, the volume only is not suitable in the practical stability framework because it
does not provide any information about how far a trajectory can go away from the equilibrium.
As for the containment relation, although it may appear to be a natural way of comparing
invariant sets, this relation is not a total ordering and controlled invariance does not behave
well as for intersection (i.e., if Ω1 and Ω2 are controlled invariant, then Ω1 ∩ Ω2 is not
necessarily controlled invariant) , therefore the minimality problem formulated in terms of
the containment relation is not well posed.
In what follows, sets are measured by considering their extension in the infinity norm in the
controller form coordinates. More precisely, we consider the diameter of the sets along the
n coordinate directions (i.e., diami Ω , i = 1, . . . , n ) . Actually, according to Propositions 2
and 3 , the relevant quantity is diamn Ω , in fact longer extensions of Ω along the other
directions can be cut off. Hence we give the following

Definition 17 Consider a system x+ = Ax + Bu in the controller form coordinates and let
Ω be a controlled invariant neighborhood of the origin: the quantity diamn Ω is referred to
as the magnitude of Ω . We say that Ω is minimal in magnitude iff any bounded controlled
invariant neighborhood of the origin Ω′ has a magnitude greater than or equal to that of Ω .

If the pair (A,B) is not in controller form, the magnitude of Ω can be easily computed
through the formula diam

(
PrB (Ω)

)
/‖B‖2

2 , where PrB(x) := x′B ∈ R .
Hence, the magnitude is the measure we use for comparing invariant sets. In some cases it is
still possible to consider the containment relation and to study minimality properties which
are stronger than minimality in magnitude: next, a result in this direction will be given in
Theorem 3 .
Obviously, if the open loop system x+(t) = Ax(t) is stable, then there exist arbitrarily small
invariant neighborhoods of the origin. Therefore, we only consider the case of systems whose
open loop dynamics is not stable in the Lyapunov sense: we identify these systems by saying
that the matrix A is unstable.

Theorem 2 (Minimality in magnitude) Consider system Σ(A,B,U) and assume A0 .
Let u0 = min

u∈U\{0}
|u| be the resolution at 0 of U and Ω be a bounded controlled invariant

neighborhood of the origin. If A is an unstable matrix, then diami Ω ≥ u0 ∀ i = 1, . . . , n .
In particular, if Qn(u0) is controlled invariant, then Qn(u0) is minimal in magnitude.
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Figure 3.6: Visual help for the proof of Theorem 2 : the thicker segment represents Prn (AΩ0) .

Proof. Thanks to Proposition 2 , it is sufficient to show that diamn Ω ≥ u0 (i.e., that the
magnitude of Ω is greater than or equal to u0 ) . Let us assume by contradiction that d :=
diamn Ω < u0 . Set a1 := inf

x∈Ω
xn and a2 := sup

x∈Ω
xn , then Prn Ω ⊆ [ a1 , a2 ] , a2−a1 = d < u0

and 0 ∈ [ a1 , a2 ] . Let Ω0 be the path connected component of Ω containing 0 (see [115]) .
As Prn ◦A is a continuous function, Prn (AΩ0) is an interval. Two cases can occur:

I) Suppose that Prn (AΩ0) ∩ c[ a1 , a2 ] 6= ∅ : since Prn (AΩ0) is an interval that intersects
[ a1 , a2 ] (in fact it contains 0) , then, with θ := u0 − d , there exists x̂ ∈ Ω0 such that
(Ax̂)n ∈ ] a1 − θ , a1 [ ∪ ] a2 , a2 + θ [ . In this case, by the definition of u0 , it is easy to see
that ∀u ∈ U , x̂+

n /∈ [ a1 , a2 ] (see Fig. 3.6) : this contradicts the controlled invariance of Ω
as Prn Ω ⊆ [ a1 , a2 ] .

II) Suppose instead that Prn (AΩ0) ⊆ [ a1 , a2 ] . We claim that ∃x ∈ Ω0 such that Ax /∈ Ω .
The claim implies the thesis, in fact: for such an x , by the controlled invariance of Ω ,
∃u ∈ U \{0} such that x+ ∈ Ω , but u 6= 0 together with (Ax)n ∈ [a1 , a2] and a2−a1 < u0

imply that x+
n /∈ [ a1 , a2 ] which contradicts the fact that x+ ∈ Ω .

Let us prove the claim: first, since Ω0 is a bounded neighborhood of the origin, AΩ0 6⊆ Ω0 .
In fact, if the contrary held, then ∀ k ∈ N , AkΩ0 ⊆ Ω0 which contradicts the fact that A is
unstable. Since AΩ0 is path connected, if AΩ0 ⊆ Ω , then AΩ0 would be contained in a path
connected component of Ω . As 0 ∈ AΩ0 ∩Ω0 , then AΩ0 ⊆ Ω0 which is a contradiction.

Corollary 2 If system Σ(A,B,U) is reachable and A is unstable, a necessary condition for
the (X0, Ω)–stabilizability of the system is that the magnitude of Ω is greater than or equal
to u0 . 2

Clearly, for the (X0, Ω)–stabilizability it is also necessary that Ω is reachable from X0 .
We will be back on this issue in next Chapters 4 , 5 and 6 , where the focus is on the con-
trol synthesis for practical stabilization. However, it is worth to mention that the cases in
which U is uniformly or logarithmically quantized provide two classes of examples where the
(X0, Ω)–stabilizability holds with Ω = Qn(u0) (this will be shown in Examples 15 and 16 of
Section 4.1) . Namely,
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the lower bound for the magnitude of Ω necessary for
the (X0, Ω)–stabilizability is attained by a hypercube.

Here, we limit ourselves to notice that, if U is uniformly quantized with parameter u0 , the
minimal invariant hypercube is Qn(u0) (see Example 7 in Section 3.1.1) which, by Theo-
rem 2 , is minimal in magnitude. In the case of a logarithmically quantized control set with
parameters (u0, θ) and 1 < θ ≤ α+1

α−1 , the same property holds for Qn(u0) (see Example 8) .
These fundamental classes of examples are not the only cases where the lower bound for
the magnitude of Ω is attained by a hypercube. Indeed, the same properties hold for the
particular system considered in Example 6

(
the

(
X0, Qn(u0)

)
–stabilizability will be shown

in Example 14 of Section 4.1
)
.

It has to be stressed that invariant neighborhoods Ω strictly contained in Qn(u0) and with
smaller volume can exist (see Example 9 below) . Nevertheless, Theorem 2 states that, even
if such an Ω exists, it spreads up to the border of Qn(u0) in all the directions of the co-
ordinate axes (i.e., ∀ i = 1, . . . , n , diami Ω = u0 ; see Fig. 3.7) so that Ω and Qn(u0) are
equivalent as for their extension in the infinity norm. Therefore, even if the convergence
of the trajectories to within such an Ω was proved, no improvement would be obtained in
terms of the asymptotic behavior of the system, namely, it would be still guaranteed that
lim supt→+∞ ‖x(t)‖∞ ≤ ‖Ω‖∞ = ‖Qn(u0)‖∞ .

Example 9 Let us consider the quantized input system
{

x+ = Ax + Bu

x ∈ Rn, u ∈ Z ,

where, as usual, the pair (A,B) is in controller form. Assume that A is an unstable matrix
such that 0 < |det A| < 1 .
By U = Z , it easily follows that the semi–open hypercube Qo

n(1) =
[− 1

2 , 1
2

[n is controlled
invariant and that ∀x ∈ Qo

n(1) , there exists a unique u ∈ Z such that x+ ∈ Qo
n(1) . It is

hence univocally defined the map

T : Qo
n(1) → Qo

n(1)
x 7→ x+ .

Since A is unstable, Qo
n(1) is minimal in magnitude by Theorem 2 . Because detA 6= 0 ,

T is a local diffeomorphism at 0 , therefore ∀ k ∈ N , the set T k
(
Qo

n(1)
)

is a neighborhood
of the origin. Moreover, since T k+1

(
Qo

n(1)
) ⊆ T k

(
Qo

n(1)
)
, then T k

(
Qo

n(1)
)

is controlled
invariant and, being a subset of Qo

n(1) , it is minimal in magnitude. Furthermore, we claim
that

∀ k ∈ N , T k+1
(
Qo

n(1)
) ⊂ T k

(
Qo

n(1)
)

(3.18)

and, denoted by µ the Lebesgue measure,

lim
k→+∞

µ
(
T k

(
Qo

n(1)
))

= 0 . (3.19)
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Figure 3.7: The non–connected shaded region represents the controlled invariant set
T

(
Qo

n(1)
)

for the two dimensional system discussed in Example 9 and having a1 = 0.4
and a2 = 4 .

Namely, {T k
(
Qo

n(1)
)}k∈N is a strictly decreasing sequence of controlled invariant neighbor-

hoods of the origin made up of minimal in magnitude sets and containing elements of arbi-
trarily small volume. According to Theorem 2 , all of these sets spread up to the border of
Qn(1) in all the coordinate directions, thus having the same extension in the infinity norm
as Qn(1) . The typical structure of one of the sets of the sequence (in the two dimensional
case) is represented by the shaded region in Fig. 3.7 .
Before proving the claim, notice that, by definition, the set T k

(
Qo

n(1)
)

is reachable in k

steps by any point in Qo
n(1) . In next Chapter 4 , we will also see that, with a qdb–controller,

T k
(
Qo

n(1)
)

is reachable in k + n steps by any point in Rn (see Example 15 in Section 4.1) .
Let us prove the claim. As for the inclusion (3.18) , because T k+1

(
Qo

n(1)
) ⊆ T k

(
Qo

n(1)
)
, we

have only to show that indeed the inclusion is strict. It holds that

∀ k ∈ N , µ
(
T k+1

(
Qo

n(1)
)) ≤ µ

((
A ◦ T k

)(
Qo

n(1)
))

, (3.20)

in fact: ∀u ∈ Z , let Su :=
{
x ∈ Rn |u− 1

2 ≤ xn < u+ 1
2

}
and Ru := Su∩

(
A ◦T k

)(
Qo

n(1)
)
;

then
(
A ◦ T k

)(
Qo

n(1)
)

=
⋃

u∈ZRu and T k+1
(
Qo

n(1)
)

=
⋃

u∈Z(Ru − Bu) , inequality (3.20)

then easily follows. Since µ
((

A ◦ T k
)(

Qo
n(1)

))
= |detA| · µ

(
T k

(
Qo

n(1)
))

and |detA| < 1 ,
then inequality (3.20) yields

∀ k ∈ N , µ
(
T k+1

(
Qo

n(1)
)) ≤ |det A| · µ

(
T k

(
Qo

n(1)
))

< µ
(
T k

(
Qo

n(1)
))

.

This implies that ∀ k ∈ N , T k+1
(
Qo

n(1)
) ⊂ T k

(
Qo

n(1)
)

and µ
(
T k

(
Qo

n(1)
)) ≤ |det A|k ·

µ
(
Qo

n(1)
)
, thus the limit in equation (3.19) holds . ♣

Example 9 shows that a minimal in magnitude set can contain other minimal in magnitude
sets having smaller volume (indeed, having an arbitrarily small volume) . This gives the
reasons for the need to introduce the concept of strong minimality which strengthens the
minimality in magnitude by involving the containment relation.
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Definition 18 A controlled invariant neighborhood of the origin Ω is said to be strongly

minimal iff it is minimal in magnitude and any neighborhood of the origin Ω′ strictly contained
in Ω is not controlled invariant.

If the system is sufficiently unstable (in a sense specified below) , then the strong minimality
property holds for hypercubes. More precisely,

Theorem 3 (Strong minimality) Consider system Σ(A,B,U) and assume A0 . Let
u0 = min

u∈U\{0}
|u| be the resolution at 0 of U . If

|a1| > 1 +
n∑

i=2

|ai| (3.21)

and Ω ⊆ Qo
n(u0) is a controlled invariant neighborhood of the origin, then Ω = Qo

n(u0) . In
particular, if Qo

n(u0) is controlled invariant, then it is strongly minimal.

Proof. We show that if such an Ω exists, then it contains a subset whose uncontrolled
evolution is confined within Qo

n(u0) until it covers the whole semi–open hypercube. By
definition of u0 , such an evolution is also the unique ensuring that the trajectories starting
from this subset remain within Qo

n(u0) : since Ω is controlled invariant, this entails that
Ω = Qo

n(u0) .
In detail, the matrix A is invertible and

(A−1x)j =

{
xn−

∑n−1
i=1 ai+1xi

a1
if j = 1

xj−1 otherwise .
(3.22)

Let θ := (1+
∑n

i=2 |ai|)
|a1| . By the assumption in equation (3.21) , θ < 1 , then

∀x ∈ Rn,
∣∣(A−1x)1

∣∣ ≤ |xn|+
∑n−1

i=1 |ai+1||xi|
|a1| ≤ θ · ‖x‖∞ < ‖x‖∞ . (3.23)

Equations (3.22) and (3.23) imply that A−1Qo
n(u0) ⊂ Qo

n(u0) , thus ∀h ∈ N ,

A−hQo
n(u0) ⊆ A−h+1Qo

n(u0) ⊆ · · · ⊆ A−1Qo
n(u0) ⊂ Qo

n(u0) , (3.24)

and in particular ‖A−h‖∞ ≤ 1. Moreover, by the Hamilton–Cayley identity,

A−n =
1
a1

(
In −

n∑

i=2

aiA
−n−1+i

)
,

therefore ‖A−n‖∞ ≤ θ : this means that A−nQn(u0) ⊆ Qn(θ u0) and it immediately follows
that ∀ k ∈ N , A−nkQo

n(u0) ⊆ Qn(θk u0) .
Let Ω be a controlled invariant neighborhood of the origin: since lim

k→+∞
θk = 0 , ∃ k̂ ∈ N

such that Qn(θk̂ u0) ⊆ Ω , therefore A−nk̂Qo
n(u0) ⊆ Ω . We claim that if A−mQo

n(u0) ⊆ Ω for
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some m ≥ 1 , then A−m+1Qo
n(u0) ⊆ Ω . In our case, the hypothesis of the claim is satisfied

∀m ≥ nk̂ and the recursive application of the claim implies that Qo
n(u0) ⊆ Ω , namely the

thesis.
Let us prove the claim. First, we show that if x ∈ Ω and Ax ∈ Qo

n(u0) , then Ax ∈ Ω . In
fact, by the controlled invariance of Ω , ∃u ∈ U such that x+ ∈ Ω ⊆ Qo

n(u0) : such a control
value must be u = 0 because for u 6= 0 , x+ 6∈ Qo

n(u0) . Indeed, −u0
2 ≤ (Ax)n < u0

2 by
assumption, hence

−u0

2
+ u ≤ x+

n = (Ax)n + u <
u0

2
+ u , (3.25)

and for u 6= 0 it holds that |u| ≥ u0 which, together with inequalities (3.25) , yields either
x+

n ≥ u0
2 or x+

n < −u0
2 . Now, consider y ∈ A−m+1Qo

n(u0) and let us show that y ∈ Ω : since
−m + 1 ≤ 0 , then y ∈ Qo

n(u0)
(
see the inclusions in equation (3.24)

)
. Let x := A−1y ∈

A−mQo
n(u0) : x ∈ Ω by assumption and y = Ax ∈ Qo

n(u0) , therefore y ∈ Ω .

Thus, under the assumption in equation (3.21) , Qo
n(u0) is strongly minimal in both the cases

of uniformly and logarithmically quantized controls
(
in the latter case, if 1 < θ ≤ α+1

α−1

)
.

Remark 8 Assuming |a1| > 1+
∑n

i=2 |ai| , which by the way is a condition involving only the
coefficients of the characteristic polynomial of A , is the same as asking that A−1Qo

n(u0) ⊂
Qo

n(u0) , namely it is a stability requirement on the matrix A−1 , hence corresponding to an
instability property of A .

It can be shown that the condition ensuring the strong minimality of Qo
n(u0) is only sufficient

(see [99]) , nevertheless the result is interesting because it shows that there are cases in which,
among the minimal diameter sets (i.e., diami Ω = u0 ∀ i = 1, . . . , n ) , the whole Qo

n(u0) is
actually the smallest controlled invariant set.

3.1.3 An extension to networked systems

In this section, we take advantage of some results presented in the previous sections to address
an issue in the framework of the control under communication constraints. We consider the
problem of controlling multiple scalar systems through a limited capacity shared channel (see
Fig. 3.8) . It is assumed that each system is affected by process noise and can be controlled
by actuators with values in an assigned uniformly quantized set. The control objective is to
bound the evolution of the systems in specified sets (controlled invariance) . It is part of the
problem to find an optimal allocation of the shared communication resource to the different
control activities. This section provides fundamental conceptual tools to attack the design
problem in the formal framework of an optimization problem.

Traditional control design is based on ideal assumptions concerning the type of information
that can flow across the control loop. Unfortunately, real implementation platforms exhibit
non–idealities that may substantially invalidate these assumptions. As a result, the system’s
closed loop performance can be severely affected. This problem shows up with particular
strength when multiple control loops share a limited pool of computation and communication
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Figure 3.8: Pictorial representation of the problem analyzed in Section 3.1.3 .

resources. In this case, the designer is confronted with the challenging task of choosing at
the same time the control law and the optimal allocation policy for the shared resources
(control algorithm/system architecture co–design) . An intriguing general discussion for this
class of problems can be found in [16] . Investigations in this field have been developed in
several directions. A first prong of research activities has focused on the problem of resource
sharing [95, 57, 22] . However, these works do not explicitly cope with quantization and bit–
rate constraints that, on the contrary, play an important role in complex distributed systems.
A remarkable thread of papers on the problem of stabilization under bit–rate constraints is
included in the recent literature on quantized control systems (see [91, 106] and references
therein) . In most of these works, the authors design quantization schemes instrumental to the
goal of finding encoding/decoding policies that make for an optimal use of the channel. In this
section, instead, we keep on studying the problem under the assumption that quantization is
assigned and we focus on the analysis of the attainable control performance.
The general setting we refer to is depicted in Fig. 3.8 . This can be thought of as “smart–
sensor” scenario, i.e., one where processing activities are located in the proximity of sensors
and commands have to be sent to actuators by a channel.
For the sake of simplicity, the analysis is restricted to scalar systems under unform input
quantization and ruled by control laws generated by periodic sampling. A limited bandwidth
channel is shared between several independent control loops: in order to limit the “channel
occupation”, some of the levels provided by the quantized actuators can be left unused.
Therefore, the subset U necessary to accomplish the control task is a design parameter along
with the sampling period. Thus, the quantized actuators are regarded as given “hardware”
components to build on the top of. In this framework, quantization has a twofold role: on
the one hand it is a constraint imposed by the physics of the system (e.g., because actuation
and/or sensing are inherently quantized) , on the other hand it is introduced on purpose in
order to allow for communication over the finite capacity channel. The final goal is to produce
automated procedures for the optimal allocation of the channel capacity among the different
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loops and for the choice of the set of design parameters. It has to be stressed that, in this
context, the presence of noise is of particular interest. Indeed, it emphasizes the importance of
the sampling period especially for unstable systems where long sampling intervals determine
performance degradation due to longer uncompensated actions of the noise term.

Notation: In this section, for Λ > 0 , we let1 I(Λ) :=
[− Λ

2 ; Λ
2

]
.

Problem formulation

Consider a set of N ≥ 1 continuous time scalar plants




˙̃xi(τ) = aix̃i(τ) + ũi(τ) + w̃i(τ)

x̃i(0) = x̃0
i ∈ R

τ ∈ R+

i = 1, . . . , N ,

(3.26)

where the control function ũi(τ) takes values in a quantized set Ui ⊆ εi Z ( εi > 0 ) and
w̃i(τ) ∈ I(wi) (wi ≥ 0 ) represents an exogenous noise term. It is supposed that w̃i(τ) is an
integrable function. Each scalar system is characterized by the triple (ai, εi,wi) which are
the given parameters and it is denoted by Σ(ai, εi, wi) .
We assume that the states x̃i ( i = 1, . . . , N ) are sampled periodically at time 0, Ti, 2Ti, . . .

(the sampling intervals Ti are design parameters) . Based on these samples, N individual
control values are derived and transmitted over a shared communication channel to zero–order
hold devices in the respective actuator nodes. The sampled–data control system correspond-
ing to system (3.26) is





xi(t + 1) = αixi(t) + βiui(t) + wi(t)

xi(0) = x̃0
i

t ∈ N
i = 1, . . . , N ,

(3.27)

where xi(t) = x̃i(tTi) and




αi = eaiTi

βi =
∫ Ti

0 eaisds

wi(t) =
∫ (t+1)Ti

tTi
eai

(
(t+1)Ti−s

)
w̃i(s)ds .

Each Ti–sampled system is denoted by Σ(ai, εi, wi, Ti) . From the last equation it follows
that the discrete time disturbance wi(t) takes values in I(β · wi) .
In this setting, the discrete time control law is a function

qi : R → Ui ⊆ εi Z
xi(t) 7→ ui(t)

(3.28)

1This notation is redundant because I(Λ) = Q1(Λ) , but certainly it is more intuitive.
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so that, with the zero–order hold, the continuous time control law is the piecewise constant
function

ũi(τ) = ui(t) , τ ∈ [ tTi , (t + 1)Ti [ .

The control goal is to guarantee practical stability for the closed loop dynamics of each plant,
more precisely we consider the controlled invariance problem. Namely, we are interested in
finding neighborhoods of the equilibrium where the trajectories of each plant can be confined
irrespective to any noise affecting the systems. In this framework, the controlled invariance
notion introduced in Definition 14 of Section 2.3.1 is extended in the following way:

Definition 19 (Robust controlled invariance)
ı) For a continuous time system Σ(a, ε,w) with control set U ⊆ εZ , the interval I(∆) is
said to be (T, w)–controlled invariant iff ∀ x̃0 ∈ I(∆) , ∃u ∈ U such that for any integrable
function w̃ : [ 0 , T ] → I(w) the solution of

{
˙̃x(τ) = ax̃(τ) + u + w̃(τ)
x̃(0) = x̃0

is such that, ∀ τ ∈ [ 0 , T ] , x̃(τ) ∈ I(∆) .

ıı) For a discrete time system Σ(a, ε, w, T ) with control set U ⊆ εZ , the interval I(∆)
is said to be w–controlled invariant iff ∀x ∈ I(∆) , ∃u ∈ U such that ∀w ∈ I(β · w) ,
x+ = αx + βu + w ∈ I(∆) .

The following proposition allows us to get rid of the distinction between continuous time and
discrete time:

Proposition 4 Consider system Σ(a, ε, w, T ) : if x0 ∈ I(∆) and u ∈ U is such that, ∀w ∈
I(β · w) , x0+ = αx0 + βu + w ∈ I(∆) , then for any integrable function w̃ : [ 0 , T ] → I(w)
the solution x̃(τ) of {

˙̃x(τ) = ax̃(τ) + u + w̃(τ)
x̃(0) = x0 (3.29)

is such that, ∀ τ ∈ [ 0 , T ] , x̃(τ) ∈ I(∆) .
In particular, if I(∆) is w–controlled invariant for the discrete time system Σ(a, ε,w, T ) ,
then it is (T, w)–controlled invariant for the continuous time system Σ(a, ε, w) .

Proof. See in Appendix A.2.2 .

Conversely, it is obvious that if I(∆) is (T, w)–controlled invariant for system Σ(a, ε,w) , then
I(∆) is w–controlled invariant for system Σ(a, ε,w, T ) . Thus, it is sufficient to introduce
and to check the properties based on invariance only for discrete time models.

The plants share a limited bandwidth channel with bit–rate R .

Definition 20 (The channel) By a limited bandwidth channel of capacity R we mean a
device capable of transmitting R bits per unit of time without transmission error.
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In particular, the number of symbols σ that can be transmitted during the time interval T

satisfies σ ≤ 2RT . Since the number of bits to be transmitted at each sampling instant is
integer, we require that σ ≤ 2bRT c .
According to some optimality criterion, the total capacity R of the shared communication
link is split among the N control loops. Hence, the bit–rates Ri’s devoted to each control
loop have to comply with the following inequality:

∑N
i=1 Ri ≤ R .

It is supposed that the allocation Ri is time–invariant, in other words, the resource assign-
ment is decided once and forever.
In accordance with the framework described so far, we introduce the following

Definition 21 Consider system Σ(a, ε, w) , suppose that a channel of capacity R is connect-
ing the controller to the plant: the triple (R, T,∆) is said to be feasible for the invariance
problem iff there exists a control set U ⊂ εZ rendering I(∆) w–controlled invariant for
system Σ(a, ε, w, T ) and satisfying #U ≤ 2bRT c .
Consider a set of systems

{
Σ(ai, εi, wi)

}
i=1 ,..., N

. Let ~R := (R1, . . . , RN ) , ~T := (T1, . . . , TN )

and ~∆ := (∆1, . . . , ∆N ) . The triple (~R, ~T , ~∆) is said to be feasible iff ∀ i = 1, . . . , N ,
(Ri, Ti, ∆i) is feasible for the invariance problem related to system Σ(ai, εi,wi) .

In this problem, the input quantization is assigned ( ui ∈ εiZ ) but, in order to meet the
communication constraint, the designer has the freedom to choose the input sets Ui ⊂ εiZ
where the control laws are restricted to take values. Therefore, quantization is both a physical
constraint and a means to enable communication over the shared channel.

We are ready for the explicit problem formulation. The presence of multiple plants opens
up different design possibilities as to how the communication capacity of the link can be
shared between the different control loops with the purpose of solving a controlled invariance
problem. We propose the following approach:

• Problem formulation: For a given set of systems
{
Σ(ai, εi,wi)

}
i=1 ,..., N

, consider a

vector ~∆0 identifying a set of N intervals within which the trajectory of the N systems are
desired to be confined. Let f : (R+)N → R+ be a cost function penalizing realizations ~∆
differing from the desired target ~∆0 , for instance:

f(~∆) :=
‖~∆0 − ~∆‖∞
‖~∆0‖∞

. (3.30)

The design problem is formulated as follows: find

(~R∗, ~T ∗, ~∆∗) = argmin
(~R,~T ,~∆)

f(~∆)

subj. to:





~∆ ∈ D∑N
i=1 Ri ≤ R

(~R, ~T , ~∆) feasible ,

(3.31)
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where D ⊆ (R+)n is a specified domain within which ~∆ is desired to lie. Thus, the constraint
~∆ ∈ D can be seen as a performance requirement and/or as a safety constraint.
For each of the N systems, the minimizing tern (~R∗, ~T ∗, ~∆∗) determines the bandwidth
R∗

i ’s to be assigned, the sampling periods T ∗i ’s and the intervals I(∆∗
i )’s which can be

made invariant. By definition, the feasibility of (~R∗, ~T ∗, ~∆∗) ensures the realizability of the
solution, that is: the existence of N control laws of the type in equation (3.28) , each one
taking values in a finite set Ui ⊂ εiZ so that both the robust invariance of I(∆∗

i ) is ensured
and the communication constraint imposed by the available bandwidth Ri is satisfied .

• Equivalent problem formulation and solution methodology: Consider

Rmin(~∆) :=
N∑

i=1

R
(i)
min(∆i) ,

where R
(i)
min(∆i) is the smallest bit–rate Ri ensuring that there exists a choice of Ti such

that (Ri, Ti, ∆i) is feasible for the i–th system. It is immediate to check that the minimum
of problem (3.31) is equal to

min
~∆

f(~∆)

subj. to:

{
~∆ ∈ D
Rmin(~∆) ≤ R .

(3.32)

For, the solution of problem (3.31) can be organized in the following five steps:

1. For each plant, determine the function R
(i)
min(∆) and consider problem (3.32) ;

2. Solve problem (3.32) and find a minimizing vector ~∆∗ ;

3. Assign the bandwidth R
(i)
min(∆

∗
i ) to the i–th system;

4. Choose the sampling periods Ti’s so that ∀ i = 1, . . . , n , the triple
(
R

(i)
min(∆

∗
i ), Ti,∆∗

i

)

is feasible;

5. Determine the corresponding control laws.

In order to compute the function R
(i)
min(∆) , the characterization of the feasible triples is

needed. Thus, once the first and the second steps of the above list are solved, the other
steps directly follow. The determination of R

(i)
min(∆) is the only step involving issues from

the control theory and quantization. This is the reason why, in this section, we go into the
details of step 1 only. As far as the solution of problem (3.32) is concerned, we limit ourselves
to mention that, once the function R

(i)
min(∆) is available, the problem can be algorithmi-

cally solved with a standard branch and bound scheme [70] and each step of the algorithm
requires the (numerical) solution of a non–linear scalar equation. For the cost function in
equation (3.30) , the details of the algorithm can be found in Section 2.4 of [96] .



72 CHAPTER 3. ANALYSIS

Before going into the characterization of the feasible triples and into the computation of the
function R

(i)
min(∆) , let us illustrate a simple example which is helpful for the understanding

of the problem setting.

Example 10 (Tracking of an unknown reference) Consider N agents moving on a
line. Denote by ỹi(τ) the position of the i–th agent at time τ and assume that its dynamics
is ˙̃yi(τ) = ũi(τ) . Let r(τ) be an unknown reference to track and suppose that |ṙ(τ)| ≤ w

2 .
A camera takes the measures of the displacements x̃i(τ) := ỹi(τ) − r(τ) of the agents and
sends the quantized control values ũi’s to the actuators (i.e., to each agent) through a shared
channel of capacity R . The resulting dynamics of the displacement of the i–th agent is

˙̃xi(τ) = ũi(τ)− ṙ(τ)

so that the problem is modelled by system (3.26) with ai = 0 ∀ i = 1, . . . , N . ♣

Single plant analysis: feasibility

This section is devoted to the characterization of the feasible triples (R, T,∆) for a given
system Σ(a, ε,w) .

Given ∆ > 0 and T > 0 , suppose that there exists a control set U ⊂ εZ rendering I(∆)
w–controlled invariant for system Σ(a, ε,w, T ) . Let `(∆, T ) ∈ N be the minimum of the
cardinality of the control sets U ⊂ εZ rendering I(∆) w–controlled invariant. By the
definition of feasibility, it immediately follows that a triple (R, T,∆) is feasible for system
Σ(a, ε,w) if and only if

R ≥ 1
T

⌈
log2 `(∆, T )

⌉
. (3.33)

This condition is an effective tool to solve the feasibility problem once the expression for the
function `(∆, T ) is determined. Let us start with the characterization of the domain D(`)
of the function `(∆, T ) . Given ∆ > 0 , assume that U = εZ and let

T (∆) :=
{

T > 0 | I(∆) is w–controlled invariant for system Σ(a, ε,w, T )
}

.

The domain of `(∆, T ) is
D(`) =

{
(∆, T ) | T ∈ T (∆)

}
.

The following result is the main step to determine the set T (∆) :

Proposition 5 (w–invariance conditions) Consider system Σ(a, ε,w, T ) : if w > 0 and
U = εZ , then

ı) if a < 0 , I(∆) is w–controlled invariant if and only if

∆ ≥ min
{

βw
1−α ; β (ε + w)

}
= min

{
w
|a| ;

eaT−1
a (ε + w)

}
;

ıı) if a ≥ 0 , I(∆) is w–controlled invariant if and only if

∆ ≥ β (ε + w) =

{
T · (ε + w) if a = 0

eaT−1
a (ε + w) if a > 0 .
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Proof. System Σ(a, ε,w, T ) can be rewritten in the form




x+ = αx + û + w

û ∈ βεZ

w ∈ I(β · w) .

Thus, I(∆) is w–controlled invariant for system Σ(a, ε, w, T ) if and only if ∀x ∈ I(∆) ,
∃ û ∈ βεZ such that ∀w ∈ I(β · w) it holds that |αx + û + w| ≤ ∆

2 . This is equivalent to
requiring that ∀x ∈ I(∆) , ∃ û ∈ βεZ such that |αx + û| ≤ ∆−βw

2 . Therefore, with

ξ̂(∆) := max
x∈I(∆)

min
û∈βεZ

|αx + û| ,

it holds that I(∆) is w–controlled invariant for system Σ(a, ε, w, T ) if and only if ξ̂(∆) ≤
∆−βw

2 , that is

ξ(∆) ≤ −βw
2

, (3.34)

where ξ(∆) := ξ̂(∆)− ∆
2 . It is straightforward to figure out that

ξ̂(∆) =

{
α
2 ∆ if 0 < ∆ ≤ βε

α

βε
2 if ∆ ≥ βε

α .

Thus, lim∆→0+ ξ(∆) = 0 , lim∆→+∞ ξ(∆) = −∞ and, for ∆ ∈ ]
0 , βε

α

]
, ξ(∆) = α−1

2 ∆.

ı) If a < 0 , then 0 < α < 1 and ξ(∆) is a decreasing function. Therefore, there exists
∆̃ > 0 such that condition (3.34) is satisfied ∀∆ ≥ ∆̃ . By the expression of ξ(∆) , it is a
trivial computation to find that, if −βw

2 ≥ ξ
(βε

α

)
, then ∆̃ = βw

1−α ; otherwise ∆̃ = β(ε + w) .

Since −βw
2 ≥ ξ

(βε
α

)
= βε(α−1)

2α if and only if βw
1−α ≤ β(ε+w) , then ∆̃ = min

{ βw
1−α ; β(ε+w)

}
.

ıı) If a ≥ 0 , then α ≥ 1 and, for ∆ ∈ ]
0 , βε

α

]
, ξ(∆) ≥ 0 . Hence, in order that inequal-

ity (3.34) be satisfied, it is necessary that ∆ > βε
α : with ξ̂(∆) = βε

2 , one finds that the
invariance condition is ∆ ≥ β(ε + w) .

Remark 9 Differently from the case considered in Section 3.1.1 , because of the presence of
the noise term, also for a ≤ 0 (namely, for |α| ≤ 1 ) the invariance problem is meaningful.
If w = 0 , it is interesting to notice that, while for a 6= 0 the invariance conditions provided
by Proposition 5 coincide with those we found in Section 3.1.1 for uniformly quantized control
sets, this is not true for a = 0 . In fact, if a = 0 and w = 0 , then u = 0 guarantees the
invariance of any subset of R ; instead, with w = 0 , the condition of Proposition 5. ıı becomes
∆ ≥ βε . This fact is not a contradiction (in fact, in Proposition 5 we assumed w > 0 ) and
points out that, for a marginally stable system in the presence of input quantization, as w ≥ 0
varies, the size of the minimal invariant interval I(∆) is discontinuous in w = 0 .

T (∆) , and hence the domain of the function `(∆, T ) , is determined by solving for T the
invariance conditions provided by Proposition 5 :
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Corollary 3 Consider system Σ(a, ε,w, T ) , assume w > 0 and that U = εZ . For ∆ > 0 ,
the following facts hold:

ı) if a < 0 and ∆ ≥ w
|a| , I(∆) is w–controlled invariant ∀T > 0 ; if ∆ < w

|a| , I(∆) is
w–controlled invariant if and only if

T ≤ min
{

1
a log

(
1− |a|∆

ε+w

)
; 1
|a| log

(
1 + w

ε

)}
;

ıı) if a = 0 , I(∆) is w–controlled invariant if and only if

T ≤ ∆
ε + w

;

ııı) if a > 0 , I(∆) is w–controlled invariant if and only if

T ≤ 1
a

log
(
1 +

a∆
ε + w

)
. 2

Before we proceed to the calculation of `(∆, T ) , we derive a lower bound for ` from which
necessary conditions for the feasibility of a triple (R, T,∆) are obtained. To this aim, let us
introduce an invariance criterion holding for systems Σ(a, ε,w, T ) : for ∆ > 0 and u ∈ εZ ,
let

Xu :=
{
x ∈ R | ∀w ∈ I(β · w) , x+ = α x + β u + w ∈ I(∆)

}
=

=
{
x ∈ R | − 1

α(∆
2 + β u− β w

2 ) ≤ x ≤ 1
α(∆

2 − β u− β w
2 )

}
.

(3.35)

Consider {
xu := − 1

α

(
∆
2 + β u− β w

2

)

xu := 1
α

(
∆
2 − β u− β w

2

)
:

(3.36)

if Xu 6= ∅ , then Xu = [xu , xu] with Lebesgue measure µ(Xu) = ∆−β w
α . It is straightforward

to see that I(∆) is w–controlled invariant if and only if2

⋃

u∈U
Xu ⊇ I(∆) . (3.37)

Hence, if I(∆) is w–controlled invariant for system Σ(a, ε,w, T ) with U ⊂ εZ , then ∆ ≤
µ
(⋃

u∈U Xu

)
≤ #U · ∆−β w

α . That is,

#U ≥
⌈ ∆α

∆− β w

⌉
. (3.38)

In particular,

#U ≥ dαe =
⌈
eaT

⌉
. (3.39)

2Both Xu and the invariance condition (3.37) can be formulated in the more general case U ⊆ R . Thus,

condition (3.37) is an extension of Lemma 7 in Section 3.1.2 to systems affected by bounded noise.
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Proposition 6 (Necessary conditions of feasibility) Consider system Σ(a, ε, w) : if the
triple (R, T,∆) is feasible, then

ı) R ≥ a
log 2 + 1

T log2
∆

∆−β(T )·w .

If moreover, a > 0 , then:

ıı) T ≥ 1
R ;

ııı) ∆ ≥ ε+w
a (e a/R − 1) .

Proof. See in Appendix A.2.2 .

Remark 10 When w = 0 and a > 0 , Proposition 6. ı provides the well known bound

R ≥ a

log 2
(3.40)

(see [5]). The same bound is approached when ∆ À β(T ) · w .
The condition in Proposition 6. ıı explicitly shows that the presence of a communication
constraint induces a lower bound on the sampling period. Therefore, the possibility of approx-
imating any continuous–time signal by switching very fast between discrete values is inhibited.

We pass now to the exact computation of the function `(∆, T ) : we mainly address the case
of an unstable plant (a > 0) , which indeed is the most interesting as far as the design of the
sampling interval T is concerned.

Proposition 7 (Computation of `(∆, T ) and of the corresponding U ) Consider
system Σ(a, ε,w, T ) , assume that w > 0 and a ≥ 0 . Let ∆ > 0 be such that T ∈ T (∆) ,
then

`(∆, T ) = 1 +




2
⌈

1
2ε

(
∆(α−1)

β + w
)⌉

⌊
∆−βw

βε

⌋



, (3.41)

where the dependence on T is implicit in α and β . A control set U ⊂ εZ of minimal
cardinality `(∆, T ) between those ensuring the w–controlled invariance of I(∆) is

U = {u1 < u2 < · · · < u`(∆,T )} ,

where 



u1 := −
⌈

1
2ε

(
∆(α−1)

β + w
)⌉
· ε

uk+1 := uk +
⌊

∆−βw
βε

⌋
· ε (

for k = 1, . . . , `(∆, T )− 1
)
.

(3.42)

Moreover, the invariance of I(∆) is ensured by any discrete time control law q : R → U
such that

∀x ∈ I(∆) , q(x) ∈ {uk ∈ U |x ∈ Xuk
} . (3.43)
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Proof. See in Appendix A.2.2 .

For unstable plants (i.e., a > 0 ) , let us make explicit the dependence of ` from the sampling
period T : 




`(∆, T ) = 1 +

⌈
2
⌈

a∆+w
2 ε

⌉
⌊

a∆

ε (eaT−1)
−w

ε

⌋
⌉

T ∈ T (∆) i.e., 0 < T ≤ 1
a log

(
1 + a ∆

ε+w

)
.

(3.44)

Single plant analysis: determination of Rmin(∆)

We pass now to the determination of the smallest bit–rate R ensuring that, for a given
∆ > 0 , there exists a choice of T such that the triple (R, T,∆) is feasible. That is,

Rmin(∆) := min
{
R > 0 | ∃T such that (R, T,∆) is feasible

}
.

For the sake of brevity, the analysis will henceforth be restricted to the case a > 0 . Let

Tmax(∆) :=
1
a

log
(
1 +

a∆
ε + w

)
,

by condition (3.33) and Corollary 3.ııı ,

Rmin(∆) = min
T∈ ] 0 , Tmax(∆) ]

1
T

⌈
log2 `(∆, T )

⌉
. (3.45)

Given ∆ > 0 , the mapping `(∆, T ) is piecewise constant with T . Hence, the local min-
ima of the “channel occupation” function 1

T

⌈
log2 `(∆, T )

⌉
are taken in correspondence of

discontinuity points of `(∆, T ) . The discontinuity points T1 < T2 < · · · < Tk can be deter-
mined using equation (3.44) , thus the local minima of the channel occupation function can
be listed. However, a closed formula for Rmin(∆) is difficult to work out. We hence provide
an expression which is a good estimate of Rmin(∆) .

Proposition 8 Consider system Σ(a, ε,w) and assume that a > 0 . For ∆ > 0 , a sufficient
condition on R in order that the triple (R, T,∆) is feasible for some T > 0 is

R ≥ Rsuf
min(∆) :=

a

log
(
1 + a∆

2 ε
⌈

a∆+w
2 ε

⌉
+w

) .

Proof. We show that, indeed, Rsuf
min(∆) = 1

T1

⌈
log2 `(∆, T1)

⌉
, where T1 is the first disconti-

nuity point of `(∆, T ) . Let us compute T1 : for a given ∆ > 0 , the argument of the floor
in the denominator of equation (3.44) is a decreasing function of T , in particular `(∆, T ) is
non–decreasing with T . Hence, to determine T1 , it is sufficient to find the largest T such
that the denominator in equation (3.44) is greater than or equal to the numerator, that is to
solve

a∆
ε (eaT − 1)

− w
ε

= 2
⌈

a∆ + w
2 ε

⌉
.
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q

q

q

1
T

⌈

log2 `(∆, T )
⌉

T1 Tmax

a

log 2

6

-
T

Figure 3.9: Graph of 1
T

⌈
log2 `(∆, T )

⌉
for a = 2 , ε = 1 , w = 1.8 and ∆ = 2 .

∆

R
suf
min(∆)

a

log 2

6

-

Figure 3.10: The graph of Rsuf
min(∆) for the system of Fig. 3.9.

Hence,

T1 =
1
a

log
(

1 +
a∆

2 ε
⌈

a∆+w
2 ε

⌉
+ w

)
.

Accordingly,
∀T ∈ ] 0 , T1] , `(∆, T ) = 2 (3.46)

so that 1
T1

⌈
log2 `(∆, T1)

⌉
= 1

T1
.

Remark 11 The effect of the noise on the system is governed by the function β(T ) which
grows exponentially: hence, as the sampling interval T increases, the system is more and
more affected by the noise. It is then natural to expect that the local minimum in corre-
spondence of the first discontinuity point T1 is close to the actual minimum of the function
(see Fig. 3.9) . This fact can be explicitly verified for a∆ À max {ε , w} , in fact (see also
Fig. 3.10) :

lim
∆→+∞

Rsuf
min(∆) =

a

log 2
,
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namely, as ∆ → +∞ , Rsuf
min(∆) approaches the theoretical lower bound on R (see Proposi-

tion 6. ı and Remark 10) .

By equation (3.46) , the feasible triple
(
Rsuf

min(∆), T1, ∆
)

leads to the implementation of a
binary feedback law. It has been shown in [72] that the strategy of considering a binary
control law and a short sampling interval T is the most robust with respect to uncertainties
on the really available bandwidth.
For a given ∆ > 0 , if R is not much larger than Rmin(∆) , the set of values of T such
that (R, T,∆) is feasible consists of disjoint intervals whose right extremes are discontinuity
points of the function `(∆, T ) (see Fig. 3.9) . A criterion to discriminate the allowed va-
lues for T , apart from robustness arguments, should take the entailed channel occupation
1
T

⌈
log2 `(∆, T )

⌉
into account.

3.1.4 Controlled invariant ellipsoids: multi–input

There is a strict relation between Lyapunov theory and invariance [11, 12] : for instance,
under suitable assumptions on the considered dynamical system, from the knowledge of an
invariant set it is possible to derive a Lyapunov function for the system. Conversely, if V (x) is
a Lyapunov function for a system x+ = f(x) , a family of invariant sets is canonically associa-
ted to V . In fact, any sublevel set of V , namely, any set of the type {x ∈ Rn |V (x) ≤ v} ,
v ≥ 0 , is invariant. For a system x+ = f(x, u) , control Lyapunov functions are still helpful
to determine controlled invariant sets: in this case the controlled invariance analysis and the
control synthesis problem are not entirely separated. A common technique to find controlled
invariant sets consists of the synthesis of a control law u(·) so that a Lyapunov function V is
available for the closed loop system; then, the sublevel sets of V form a family of controlled
invariant sets for the open loop system. Once a controlled invariant set has been found in
this way, the synthesis of a control law ensuring the invariance of such a set is not bound to
the control law u(·) which, thus, may be viewed in general as an auxiliary tool.
Unfortunately, the relation between Lyapunov theory and controlled invariance becomes
weaker in the presence of quantization. There are several mathematical reasons for that,
most of them lie in the fact that major characteristics of the structure of the system are lost
because of quantization. Indeed, not only quantization introduces nonlinearity in the system,
but also convexity properties are lost (a quantized set is not convex) . Even more substan-
tially, since closed loop asymptotic stability cannot be achieved for quantized systems, then
it is not possible to construct a control Lyapunov function. Therefore, classical techniques
based on Lyapunov theory must be properly revised in order to deal with quantized systems.
In this section we present results extending the Lyapunov based approach to the quantized
input case. As it is clarified in the second part of this section, this kind of analysis is quite
conservative form the point of view of the search for the invariant set of minimal size. On
the other hand these results will turn out to be fruitful for control synthesis purposes in the
framework of small–gain theory (see Section 5.3) .
Consider a linear system x+ = Ax + Bu , where the pair (A,B) is stabilizable and u ∈ U =
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Rm . For any fixed K ∈ Rm×n such that A + BK is Schur, let Rn×n 3 P > 0 be a solution
of the Lyapunov inequality

(A + BK)′P (A + BK)− P < 0 .

The function V (x) := x′Px is a quadratic Lyapunov function for the closed loop system
x+ = (A + BK)x , therefore any sublevel set of V is positively invariant for the closed loop
dynamics. That is, ∀ r ≥ 0 , the ellipsoid EP,r2 is a controlled invariant set for the original
system x+ = Ax + Bu .
With the suitable corrections, this technique can be used to derive controlled invariant ellip-
soids also when the control set is quantized. In fact, consider a stabilizing matrix K and
P > 0 as above, and the quantized control law u(x) = qU(Kx) , for some input quantizer
qU : Rm → U . The corresponding closed loop system is

x+ = (A + BK)x + Bqe(Kx) , (3.47)

where qe(Kx) = qU(Kx) − Kx is the quantization error. In this case, V (x) = x′Px is
no more a Lyapunov function for the system. Nevertheless, if x is such that the norm
of the quantization error qe(Kx) is not too large with respect to the norm of x , we may
still expect that V (x+) − V (x) ≤ 0 . Therefore, for sufficiently large r > 0 , the sublevel
set EP,r2 could be positively invariant for system (3.47) , hence controlled invariant for the
original system x+ = Ax+Bu . Proposition 9 below makes precise this argument in the case
where the quantization error is uniformly bounded. Actually, it is clear the intuition that, for
this kind of argument, the meaningful quantity is the relative quantization error ‖qe(Kx)‖2

‖Kx‖2 .
However, the study in terms of the relative quantization error is more tightly intersecting
control synthesis problems than the study in the case of bounded absolute quantization error.
Therefore, we put off this more general case till Section 5.3 , where the controlled invariance
analysis under uniformly bounded relative quantization error follows from control synthesis
results based on a small–gain theorem (see Remark 25 at the end of Section 5.3.2) .

Proposition 9 (Uniformly bounded error) Consider the system

x+(t) = Fx(t) + Be(t) , (3.48)

assume that F is Schur and that ∀ t ≥ 0 , ‖e(t)‖2 ≤ E0 . For any Rn×n 3 S > 0 , let P be
the solution of the Lyapunov equation

F ′PF − P = −S (3.49)

and 



r2
i := R2

(
λmax(P − S) + λmin(S)

)
, where

R = E0
λmin(S) α(P ) , and

α(P ) = ‖F ′PB‖2 +
√
‖F ′PB‖2

2+ λmin(S)‖B′PB‖2 .

(3.50)

Then, ∀ r2 ≥ r2
i , EP,r2 is invariant.
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Proof of Proposition 9. The initial part of the proof mimics arguments used in [17] .
Let V (x) := x′Px , where P > 0 is the solution of the Lyapunov equation (3.49) for some
Rn×n 3 S > 0 . Then,

∆V (x) := V (x+)− V (x) =

= −x′Sx + 2x′F ′PBe + e′B′PBe ≤
≤ −x′Sx + 2|x′F ′PBe|+ |e′B′PBe| ≤
≤ −λmin(S)‖x‖2

2 + 2E0‖F ′PB‖2 · ‖x‖2 + E2
0 ‖B′PB‖2 := f(‖x‖2) ,

where the last expression is obtained thanks to the Cauchy–Schwarz inequality. Notice that
f(‖x‖2) is a second order polynomial having roots of opposite sign. Let us determine R > 0
such that f(R) = 0 : it holds that

{
R = E0

λmin(S) α(P ) , where

α(P ) = ‖F ′PB‖2 +
√
‖F ′PB‖2

2 + λmin(S)‖B′PB‖2 .
(3.51)

Hence, for x such that ‖x‖2 > R , ∆V (x) ≤ f(‖x‖2) < 0 . Namely, as long as the state lies
outside the closed ball BR , V is decreasing along the trajectory.
Let us consider the behavior of the trajectories starting from BR . With

M2
0 :=max

x∈BR

V (x+) ,

it holds that ∀ r2 ≥ M2
0 , the ellipsoid EP,r2 is invariant. In fact,

EP,r2 = (EP,r2 ∩ BR) ∪ (EP,r2 \ BR)

and x+ ∈ EP,r2 if and only if V (x+) ≤ r2 : if x ∈ EP,r2 ∩ BR , then V (x+) ≤ M2
0 ≤ r2 ; if

instead x ∈ EP,r2 \ BR , then V (x+) < V (x) ≤ r2 .
It is hence sufficient to show that r2

i defined in equation (3.50) is an upper bound for M2
0 :

V (x+) = ∆V (x) + V (x) =

= x′(P − S)x + 2x′F ′PBe + e′B′PBe ≤
≤ λmax(P − S)‖x‖2

2 + 2E0‖F ′PB‖2 · ‖x‖2 + E2
0‖B′PB‖2 := g(‖x‖2) .

By equation (3.49) , λmax(P − S) = λmax(F ′PF ) ≥ 0 , therefore

max
‖x‖2≤R

g(‖x‖2) = g(R)

and
M2

0 =max
x∈BR

V (x+) ≤max
x∈BR

g(‖x‖2) = g(R) .

Since g(‖x‖2)− f(‖x‖2) = λmax(P − S)‖x‖2
2 + λmin(S)‖x‖2

2 and f(R) = 0 , we get

g(R) = R2
(
λmax(P − S) + λmin(S)

)
= r2

i (3.52)

and this concludes the proof.
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Remark 12 The fact that practical stability properties hold for system (3.48) under bounded
inputs is a straightforward consequence of the fact that a stable linear system is input–to–state
stable [62] . The contribution of Proposition 9 consists in providing a quantitative invariance
analysis for ellipsoids. Actually, Proposition 9 can be easily extended to include also the
analysis of convergence properties: this aspect is postponed to Chapter 5 (see Proposition 14
in Section 5.3.1) which is specifically devoted to the convergence issue in practical stabilization.

Let us show how Proposition 9 can be used to determine controlled invariant sets for a
quantized input linear system. Consider a system

{
x+ = Ax + Bu

x ∈ Rn, u ∈ U ⊂ Rm,
(3.53)

where (A,B) is a stabilizable pair. Assume that the input quantizer qU : Rm → U is such
that the corresponding quantization error is uniformly bounded, namely

E0 := sup
y∈Rm

‖qU(y)− y‖2 < +∞ . (3.54)

Consider any K ∈ Rm×n such that F := A + BK is Schur. Let u(x) := qU(Kx) : the
resulting closed loop dynamics is described by system (3.47) . The assumption (3.54) ensures
that ∀K ∈ Rm×n and ∀x ∈ Rn , ‖qe(Kx)‖2 ≤ E0 , therefore the closed loop system satisfies
the hypotheses of Proposition 9 . Accordingly, for any Rn×n 3 S > 0 , let P be the solution
of the Lyapunov equation (3.49) and r2

i be defined as in (3.50) . Then, ∀ r2 ≥ r2
i , the

ellipsoid EP,r2 is invariant for the closed loop system (3.47) and, in particular, it is controlled
invariant for system (3.53) .
Uniform quantizers (see Definition 7 in Section 2.1) are the typical examples where the
corresponding quantization error is uniformly bounded and the proposed analysis technique
can be applied.

Example 11 Consider the quantized input system




x+ = Ax + Bu =




2 2 −1
0 0 1
0 −4 4


x +




1 0
0 0
0 1


u

u ∈ U = Z2 ⊂ R2.

(3.55)

The pair (A,B) is reachable, thus stabilizable. However, denoted by B[i] the i–th column of
B , both the pairs (A,B[1]) and (A,B[2]) are neither reachable nor stabilizable.
Following the theory developed above, let us provide controlled invariant ellipsoids.
Consider the quantized control law u(x) := qU(Kx) , where qU : R2 → Z2 is a uniform
quantizer . With the usual notation F = A + BK and qe(Kx) = qU(Kx) −Kx ∈ R2 , the
closed loop dynamics is

x+ = Fx + Bqe(Kx) , (3.56)
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where, according to Lemma 2 , ∀x ∈ R3, ‖qe(Kx)‖2 ≤ E0 =
√

2
2 irrespective of K ∈ R2×3 .

Two choices for the matrix K are considered, in both cases u = Kx is a deadbeat controller.

Case 1: with

K =

(
−2 −1 1
0 4 −4

)
,

the closed loop matrix

F =




0 1 0
0 0 1
0 0 0




is such that F 2 6= 0 and F 3 = 0 . With S = I , the Lyapunov equation (3.49) is solved by

P1 =




1 0 0
0 2 0
0 0 3


 .

According to equation (3.50) , elementary computations allow one to find r2
i = 27

2 . Therefore,
∀ r2 ≥ 27

2 the ellipsoid

EP1,r2 =
{
x ∈ R3 |x2

1 + 2x2
2 + 3x2

3 ≤ r2
}

is invariant for system (3.56) , hence it is controlled invariant for system (3.55) .
The lengths of the semi–axes of the minimal invariant ellipsoid EP1,r2

i
are sj := ri√

λj(P )
,

j = 1, 2, 3 . That is,




s1 = 3
2

√
6 ' 3.67 in the direction of x1

s2 = 3
2

√
3 ' 2.6 in the direction of x2

s3 = 3
2

√
2 ' 2.12 in the direction of x3 .

Case 2: if instead

K =

(
−2 −2 1
0 4 −4

)
,

the closed loop matrix

F =




0 0 0
0 0 1
0 0 0




is such that F 2 = 0 . With S = I , the Lyapunov equation (3.49) is solved by

P2 =




1 0 0
0 1 0
0 0 2



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and it can be easily found that r2
i = 2 . Hence, ∀ r2 ≥ 2 , the ellipsoid

EP2,r2 =
{
x ∈ R3 |x2

1 + x2
2 + 2x2

3 ≤ r2
}

is invariant for system (3.56) , hence it is controlled invariant for system (3.55) .
In this case, the lengths of the semi–axes of the minimal invariant ellipsoid EP2,r2

i
are:





s1 =
√

2 ' 1.42 in the direction of x1

s2 =
√

2 in the direction of x2

s3 = 1 in the direction of x3 .

In case 2, we found a minimal invariant ellipsoid which is smaller than in case 1. This is
consistent with the fact that the considered control law is such that F 2 = 0 while, in case 1 ,
F 2 6= 0 . ♣

Single–input reachable systems: hypercubes vs ellipsoids

In this subsection, single–input reachable systems under uniformly quantized controls are con-
sidered and a quantitative comparison is provided between the result of the invariance analysis
based on ellipsoids and on hypercubes. As explained at the beginning of Section 3.1.2 , with
reference to the practical stabilization problem, a good mark for the considered family of sets
is that it contain a small invariant set. Thus, the comparison involves different measures of
the size of the minimal invariant set contained in each family. Both the volume, the contain-
ment relation and the diameter of the considered sets in specific directions are considered.
Also the effect of the cut–off procedure

(
see equation (3.17)

)
is studied. It is shown that

invariant ellipsoids are significantly more conservative than hypercubes and that also the
cut–off procedure allows for significant improvements. The case of two dimensional systems
is considered in full details. Some results are presented for the general case too and suggest
that, as the state space dimension increases, ellipsoids are more and more conservative.

Let us consider a generic second order and single–input reachable system under uniform input
quantization: 




x+ = Ax + Bu =

(
0 1
a1 a2

)
x +

(
0
1

)
u

u ∈ Z .

(3.57)

By Example 7 in Section 3.1.1 , we know that ∀∆ ≥ 1 , Q2(∆) is controlled invariant.
By Proposition 1 , we also know that a qdb–controller makes these hypercubes (squares)
positively invariant for the corresponding closed loop system. Let us analyze the invariance
of ellipsoids when the system is controlled by a qdb–controller.
Let qU be a nearest neighbor quantizer and let u(x) = qU(Kx) , where K = (−a1 − a2) .
With qe(Kx) = qU(Kx)−Kx , the closed loop dynamics is

x+ = Fx + Bqe(Kx) =

(
0 1
0 0

)
x +

(
0
1

)
qe(Kx) (3.58)
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and ∀x ∈ R2 ,
∣∣qe(Kx)

∣∣ ≤ 1
2 . Let us apply Proposition 9 : for

R2×2 3 S =

(
s1 s3

s3 s2

)
> 0 (3.59)

(hence with s1 > 0 , s2 > 0 and s1s2 − s2
3 > 0 ) , it holds that

λmin(S) =
s1 + s2 −

√
(s1 − s2)2 + 4s2

3

2
. (3.60)

Denote by P (S) the solution of the Lyapunov equation (3.49) , then

P (S) =

(
s1 s3

s3 s1 + s2

)
. (3.61)

Therefore,

P (S)− S =

(
0 0
0 s1

)
, F ′P (S)B =

(
0
s3

)
, B′P (S)B = s1 + s2 ,

consequently

R =
1

2λmin(S)

(
|s3|+

√
s2
3 + λmin(S)(s1 + s2)

)

=
1

2λmin(S)

(
|s3|+

√
λ2

min(S) + s1s2

)
(3.62a)

(3.62b)

and
r2
i (S) = R2

(
s1 + λmin(S)

)
. (3.63)

Thus, for any given R2×2 3 S > 0 and ∀ r2 ≥ r2
i (S) , the ellipsoid EP (S),r2 is invariant for

system (3.58) , hence it is controlled invariant for system (3.57) .

Let us compare the minimal invariant hypercube Q2(1) and the minimal invariant ellipsoid
EP (S),r2

i
provided by Proposition 9 as the matrix S > 0 varies. The following result establishes

that, ∀S > 0 , the minimal invariant ellipsoid EP (S),r2
i

is larger than the hypercube Q2(1)
both in terms of the volume and of the containment relation.

Proposition 10 In the above setting it holds that:

ı) min
R2×23S>0

Area (EP (S),r2
i
) = π√

2
and such a minimum is achieved if and only if S = s1I .

ıı) ∀S > 0 , Q2(1) ⊂ EP (S),r2
i (S) .

Proof. See in Appendix A.2.3 .

Thus, with the choice S = I resulting in the controlled invariant ellipsoid of minimal area,
one obtains r2

i = 1 and

EP (I),r2
i (I) =

{
x ∈ R2 |x2

1 + 2x2
2 ≤ 1

}
.



3.1. CONTROLLED INVARIANCE: QUANTIZED INPUT 85

E∗
P (I),r2

i
(I)

EP (I),r2

i
(I)

r

r

6

-1

√
2/2

Q2(1)

EP (I),r2

i
(I)

r

r

6

-1

√
2/2

1/2
r

Figure 3.11: Left : The minimal invariant ellipse provided by Proposition 9 with the optimal
choice of S = I and, in darker grey, the smaller invariant set E∗

P (I),r2
i (I)

obtained via the
cut–off procedure. Right: The dotted region represents the minimal invariant hypercube.

The area reduction brought by considering the minimal invariant hypercube is really signifi-
cant, in fact

Area
(
Q2(1)

)

Area (EP (I),r2
i (I))

=
√

2
π
' 0.45 .

Let us quantify the effect of the cut–off procedure in terms of area reduction (see also
Fig. 3.11) : it holds that Pr2

(EP (I),r2
i (I)

)
=

[
−

√
2

2 ,
√

2
2

]
whereas Pr1

(EP (I),r2
i (I)

)
= [−1 , 1 ] ,

therefore E∗
P (I),r2

i (I)
= EP (I),r2

i (I) ∩ Q2(
√

2) and3

Area (E∗
P (I),r2

i (I)
) =

4√
2

∫ √
2/2

0

√
1− x2dx =

π/2 + 1√
2

.

Hence,
Area (E∗

P (I),r2
i (I)

)

Area (EP (I),r2
i (I))

=
1
2

+
1
π
' 0.82 .

Namely, also taking the cut–off into account provide a tangible improvement in the invariance
analysis.

We conclude the section with a brief study on the extension of the above comparison to n–th
order single–input reachable systems.
Consider the n–th order version of the system in equation (3.57) . Also in this case, we know
that ∀∆ ≥ 1 , the hypercube Qn(∆) is controlled invariant. Let us analyze the invariance
of ellipsoids when the system is controlled by a qdb–controller. For S = I ∈ Rn×n , the
minimal invariant ellipsoid provided by Proposition 9 is

EP (I),r2
i (I) =

{
x ∈ Rn | ∑n

j=1 jx2
j ≤ n2

4

}
,

3Indeed,
∫ √

1− x2dx = 1
2

(
x
√

1− x2 + arcsin x
)
.
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and, for j = 1, . . . , n , Prj

(EP (I),r2
i (I)

)
=

[− n
2
√

j
, n

2
√

j

]
. In particular,

diamn EP (I),r2
i (I) =

√
n .

Therefore, as the state space dimension n increases, while the magnitude (see Definition 17 in
Section 3.1.2) of the minimal invariant hypercube remains constant equal to 1 , the magnitude
of EP (I),r2

i (I) diverges.
A qualitative result on the analysis of the effect of the cut–off procedure can be obtained by
considering the ratio between diam1 EP (I),r2

i (I) and diamn EP (I),r2
i (I) . Indeed,

E∗
P (I),r2

i (I)
= EP (I),r2

i (I) ∩
(
Prn

(EP (I),r2
i (I)

))n
,

so that diamn EP (I),r2
i (I) is the magnitude of the invariant set E∗

P (I),r2
i (I)

and dictates the entity
of the “cut”, while, according to Proposition 2 in Section 3.1.2 , the direction along the first
coordinate is the one more affected by the cut–off procedure. Because

diam1 EP (I),r2
i (I)

diamn EP (I),r2
i (I)

=
√

n ,

also the effect of the cut–off procedure is more and more significant at the increasing of the
state space dimension.
The same phenomenon is pointed out when analyzing the volume of the minimal invariant
ellipsoid. In fact, such a volume, which is to be compared with the unitary volume of the
minimal invariant hypercube Qn(1) , is4

Volume (EP (I),r2
i (I)) =

(n
√

π)n

2n Γ
(

n
2 + 1

)√
n!

:= V(n)

and, using the Stirling’s formula [50] to bound n! , it can be seen that limn→+∞V(n) = +∞ .

4Recall that the volume of the unit n–ball is πn/2

Γ(n/2+1)
and that Γ(n + 1) = n! (see the notation in

Section 1.5) .



3.2. CONTROLLED INVARIANCE: QUANTIZED MEASUREMENTS 87

r

r

r

r

r

r

r

r

y0

y1

y2

y3

y4
y5

y6

yN

Figure 3.12: An example of state space partition induced by a state quantizer qY .

3.2 Controlled invariance: quantized single–input and quan-

tized measurements

In this section we study the qY–controlled invariance problem for system (2.1) in the case
where both the inputs and the measurements are quantized. We first consider the quantized
state case, the theory is then extended to deal with quantized outputs. The latter case is
handled by constructing a state–observer fed by the discrete output values of the system and
returning a state space quantization. Because the state quantization obtained in this way
is time–varying, the results from the quantized state case need to be further elaborated in
order to be applied to the quantized output problem.
As in Section 3.1.1 , throughout this section we assume that the pair (A,B) is reachable and
that it is in the controller form

(
see assumption A0 in equation (3.1)

)
. Recall that

α :=
n∑

i=1

|ai| .

3.2.1 Controlled invariant hypercubes: state quantization

In this section, we extend to the quantized state case the invariance analysis of hypercubes
Qn(∆) developed in Section 3.1.1 . According to the definition given in Section 2.2 , this is
the case in which, at least in a sufficiently large neighborhood of the equilibrium, the state
space partition induced by qY is made of bounded sets, see Fig. 3.12 . Namely, there exists
a sufficiently large r > 0 such that ∀ y ∈ qY(Br) , Cy is bounded.
For a given ∆ > 0 , consider the hypercube Qn(∆) and let

Y(∆) := qY
(
Qn(∆)

) ⊆ Y (3.64)

be the set of possible outputs when x ∈ Qn(∆) . Consider also C∗y := Cy ∩ Qn(∆) , where
Cy = q−1

Y (y)
(
see equation (2.3)

)
.

The qY–controlled invariance of Qn(∆) is tantamount to requiring that ∀ y ∈ Y(∆) , ∃u ∈ U
such that AC∗y + Bu ⊆ Qn(∆) . By relation (3.4) , this is equivalent to

∀ y ∈ Y(∆) , ∃u ∈ U such that Prn(AC∗y) + u ⊆ [− ∆
2 , ∆

2

]
. (3.65)
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As we did in Section 3.1.1 , we seek an algebraic relation to identify the qY–controlled invariant
hypercubes. To this aim, we have to introduce a quantity suited to describe the output
quantizer qY . For ∆ > 0 and y ∈ Y(∆) , let h∗(y) := diamn(AC∗y) and

H∗(∆) := max
y∈Y(∆)

h∗(y) .

Moreover, let 



c∗sup(y) := sup {Prn(AC∗y)}
c∗inf(y) := inf {Prn(AC∗y)}
c∗mid(y) := c∗sup(y)+c∗inf(y)

2 = c∗inf(y) + h∗(y)
2 :

(3.66)

these quantities depend on ∆ too.
Consider also

h(y) := diamn(ACy) (3.67)

and
H(∆) := sup

y∈Y(∆)
h(y) . (3.68)

These quantities are more easily computable than h∗(y) and H∗(∆) as they avoid determin-
ing the intersection C∗y = Cy ∩Qn(∆) . But, as a consequence of the fact that H(∆) ≥ H∗(∆) ,
they lead to a more conservative analysis. Notice that H(∆) and H∗(∆) , which are de-
fined in controller form coordinates, depend on A and are non–decreasing functions of ∆ .
Furthermore, since the state space partition induced by qY is locally finite, then ∀∆0 > 0 ,
H(∆) takes only a finite number of values over the interval [0,∆0] .

Theorem 4 (qY–controlled invariant hypercubes) Consider system (2.1) , assume A0
and that α = ‖A‖∞ > 1 . For ∆ > 0 , necessary conditions for the qY–controlled invariance
of Qn(∆) are: 




m(∆) ≤ −∆
2

(
α− 1

)

M(∆) ≥ ∆
2

(
α− 1

)

ρ(∆) ≤ ∆

H∗(∆) ≤ ∆ .

(3.69a)

(3.69b)

(3.69c)

(3.69d)

If moreover ρ(∆) + H∗(∆) ≤ ∆ , then Qn(∆) is qY–controlled invariant.

To prove Theorem 4 (and other results that will follow), we need two preliminary results.
Next Proposition 11 is the counterpart of Proposition 1 in Section 3.1.1 :

Proposition 11 Consider system (2.1) , assume A0 and let qU : R → U be a nearest
neighbor quantizer. For ∆ > 0 , Qn(∆) is qY–controlled invariant if and only if

∀ y ∈ Y(∆) ,
∣∣c∗mid(y) + qU

(− c∗mid(y)
)∣∣ +

h∗(y)
2

≤ ∆
2

.
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Proof. By condition (3.65) , Qn(∆) is qY–controlled invariant if and only if

∀ y ∈ Y(∆) , ∃u ∈ U such that Prn(AC∗y) + u ⊆ [− ∆
2 , ∆

2

] (a)⇐⇒

∀ y ∈ Y(∆) , ∃u ∈ U such that
∣∣c∗mid(y) + u

∣∣ + h∗(y)
2 ≤ ∆

2

(b)⇐⇒
∀ y ∈ Y(∆) ,

∣∣c∗mid(y) + qU
(− c∗mid(y)

)∣∣ + h∗(y)
2 ≤ ∆

2 ,

where equivalence (a) is an easy consequence of the definitions of c∗mid(y) and h∗(y) , and
equivalence (b) holds because argmin

u∈U

∣∣c∗mid(y) + u
∣∣ = qU

(− c∗mid(y)
)
.

Thus, nearest neighbor quantizers have a central role also for the qY–invariance problem. We
hence dwell on proving some basic properties of these quantizers. To this end, it is helpful
to refer to the following notation: under the assumption that α ≥ 1 , ∀∆ > 0 such that
ρ(∆) < +∞ , define the partition

R = Sm(∆) ∪ N∆ ∪ SM(∆)

where



Sm(∆) :=
]−∞ , m(∆)− ρ(∆)

2

[

N∆ :=
[
m(∆)− ρ(∆)

2 , M(∆) + ρ(∆)
2

]

SM(∆) :=
]
M(∆) + ρ(∆)

2 , +∞[
.

(3.70)

Let S∆ := Sm(∆) ∪ SM(∆) . As it is better clarified in the following Lemma 8 , the set S∆

represents the region where the nearest neighbor quantizers are saturating.

Lemma 8 (Properties of the nearest neighbor quantizers) Consider system (2.1) ,
assume A0 and that α ≥ 1 . Let qU : R → U be a nearest neighbor quantizer. Con-
sider ∆ > 0 :
ı) if inequalities (3.69a–b) hold, then ∀ z ∈ Prn

(
AQn(∆)

)
, qU(z) ∈ U(∆) ;

ıı) if ρ(∆) < +∞ and z ∈ N∆ , then |qU(z)− z| ≤ ρ(∆)
2 ;

ııı) assume ρ(∆) < +∞ and let z be such that qU(z) ∈ U(∆) :
if z ∈ SM(∆) , then qU(z) = M(∆) and |qU(z)− z| = −(

qU(z)− z
)

> ρ(∆)
2 ;

if z ∈ Sm(∆) , then qU(z) = m(∆) and |qU(z)− z| = qU(z)− z > ρ(∆)
2 .

Proof. See in Appendix A.2.4 .

Proof of Theorem 4. First notice that, if Qn(∆) is qY–controlled invariant for sys-
tem (2.1) , then a fortiori it is controlled invariant for the system Σ(A,B,U) where the output
map qY is replaced with the identity map. Therefore, the necessity of conditions (3.69a–b–c)
holds by Theorem 1 in Section 3.1.1 .
If Qn(∆) is qY–controlled invariant, by Proposition 11 it holds that ∀ y ∈ Y(∆) , h∗(y) ≤ ∆:
the necessity of (3.69d) hence follows .
Finally, let us show that the validity of inequalities (3.69a–b) together with ρ(∆)+H∗(∆) ≤
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∆ is a sufficient condition for the qY–controlled invariance of Qn(∆) . We prove it by ap-
plying Proposition 11 : first, since Prn

(
AQn(∆)

)
=

[− ∆
2 α , ∆

2 α
] (

see equation (3.5)
)

and⋃
y∈Y(∆) C∗y = Qn(∆) , then ∀ y ∈ Y(∆) ,

{
c∗sup(y) ≤ ∆

2 α

c∗inf(y) ≥ −∆
2 α .

(3.71)

Consider a nearest neighbor quantizer qU . Let y ∈ Y(∆) , if −c∗mid(y) ∈ N∆ , then by
Lemma 8. ıı ,

∣∣c∗mid(y) + qU
(− c∗mid(y)

)∣∣ +
h∗(y)

2
≤ ρ(∆)

2
+

h∗(y)
2

≤ ρ(∆) + H∗(∆)
2

≤ ∆
2

.

If instead −c∗mid(y) ∈ SM(∆) , then

∣∣c∗mid(y) + qU
(− c∗mid(y)

)∣∣ + h∗(y)
2

(a)
=

∣∣c∗mid(y) + M(∆)
∣∣ + h∗(y)

2 =

(b)
= −(

c∗mid(y) + M(∆)
)

+ h∗(y)
2 =

= −c∗inf(y)−M(∆) ≤
(c)

≤ ∆
2 α− ∆

2 (α− 1) = ∆
2 ,

where equalities (a) and (b) follows by Lemma 8. ııı
(
which can be applied because, since

−c∗mid(y) ∈ Prn

(
AQn(∆)

)
, then by Lemma 8. ı, qU

(− c∗mid(y)
) ∈ U(∆)

)
, and inequality (c)

follows by inequalities (3.71) and (3.69b) .
The case − c∗mid(y) ∈ Sm(∆) is similar.

Since H(∆) ≥ H∗(∆) , then an easily computable invariance condition is provided by the
following corollary:

Corollary 4 Under the same assumptions of Theorem 4 , a sufficient condition for the qY–
controlled invariance of Qn(∆) is that inequalities (3.69a–b) hold together with ρ(∆) +
H(∆) ≤ ∆ . 2

Remark 13 The boundedness assumption of Cy has never been explicitly invoked and it is
relevant only when dealing with the function H(∆) . Indeed, the results presented in this
section hold true also in the quantized output case. Nevertheless, in this more general case,
the hypotheses of Theorem 4 are typically not satisfied: in particular, condition (3.69d) is
met only in special cases. As far as Corollary 4 is concerned, in the quantized output case
qY = qo ◦ C , H(∆) ≡ +∞ unless5 KerC = Ker (a1 · · · an) .

5Where Ker C := {x ∈ Rn |Cx = 0} .
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Example 12 (Finite control set and quantized state) Let us consider a quantized sta-
te version of the system in Example 6 of Section 3.1.1 , that is





x+ =

(
0 1

5/4 1/4

)
x +

(
0
1

)
u

y = qY(x) =

(
qcw(x1)
qcw(x2)

)
,

where, as in Example 6 , u ∈ U = {0 ,±1 ,±2 ,±3 ,±4 ,±6 ,±8 ,±12 ,±16 ,±24} , and the
quantizer qcw : R→ Y1 ⊂ R is defined as follows:

qcw(z) :=





dze − 1
2 if 0 ≤ z ≤ 4

2h−1 · qcw

(
z

2h−1

)
if 2h < z ≤ 2h+1 , for h = 2, 3, 4

40 if z > 32

−qcw(−z) if z < 0 .

Let us determine the function H(∆) and the values of ∆ such that the sufficient condition
for the qY–controlled invariance of Q2(∆) given in Corollary 4 is satisfied.
To this end, we first briefly describe the state space partition induced by qY (see Fig. 3.13) .
It is a componentwise quantization, we hence focus on the partition induced by qcw . The
interval [0, 4] is divided into 4 intervals of equal length 1 ; each interval [4, 8] , [8, 16] and
[16, 32] is divided into 2 intervals of equal length (2 , 4 and 8 , respectively). For z > 32 ,
the quantizer is saturating. The partition induced by qcw is a saturated version of a so called
floating–point quantization, a type of quantization that will be studied in Chapter 7 and that
extends the logarithmic quantization.
Since diam2

(
AQ2(λ)

)
= ‖A‖∞ ·λ = 3

2λ , by the properties of the quantizer qcw it immediately
follows that

H(∆) =





3/2 if 0 < ∆ ≤ 8

3 if 8 < ∆ ≤ 16

6 if 16 < ∆ ≤ 32

12 if 32 < ∆ ≤ 64

+∞ if ∆ > 64 .

Finally, let us determine the values of ∆ satisfying inequalities (3.69a–b) and ρ(∆)+H(∆) ≤
∆ . The functions M(∆) and m(∆) depend only on the control set U and have been
determined in Example 6 . The function ρ(∆) + H(∆) is obtained by combining H(∆)
with ρ(∆) determined in equation (3.14) of Example 6 (see the plot reported in Fig. 3.14) .
Therefore, according to Corollary 4 , a sufficient condition for the qY–controlled invariance
of Q2(∆) is 5

2 ≤ ∆ ≤ 64 . ♣
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6x2

-
x1

4 8 16 32

Figure 3.13: State space partition induced by the state quantizer qY of Example 12 .

6ρ(∆) + H(∆)

-
∆

y = ∆

4

5

24

5
8 48

5
16 96

5
32

5/2
7/2

5

7

10

14

20

Figure 3.14: Plot of ρ(∆) + H(∆) for the system in Example 12 .



3.2. CONTROLLED INVARIANCE: QUANTIZED MEASUREMENTS 93

3.2.2 Controlled invariant hypercubes: output quantization

The techniques we have introduced in the previous sections can be extended to deal with
quantized outputs (see Section 2.2) . We consider single–output systems: this is the case
where qY = qo ◦C , with C ∈ R1×n and (A,C) is an observable pair. It is assumed that the
map qo : R → Y induces a locally finite partition of R and that ∀ y ∈ Y , q−1

o (y) ⊆ R is a
connected set

(
thus, q−1

o (y) ⊆ R is either an interval of finite length or a half–line, the latter
case corresponding to the saturation of the output quantizer

)
.

As we noticed in Remark 13 of the previous section, the property of qY–controlled invariance
is too strong for a quantized output system. In this section, we hence consider a particular
kind of invariance which consists of guaranteeing that, at time t + 1 , the state of the system
can be confined within a set Ω assuming that the state was in Ω , not only at time t , but also
for a sufficiently long past time–horizon; the only available information to select the control
value is the corresponding sequence of past (quantized) inputs and outputs. This kind of
invariance will be referred to as dynamic qY–controlled invariance and will turn out to be
useful in next Chapter 4 when considering the control synthesis for practical stabilization in
the presence of output quantization.
First, a state–observer is constructed: in this framework, because of the output quantization,
the observer is a machine fed by discrete values y ∈ Y , and returning an estimate x̂(t) of
the current state. More precisely, the machine also returns a set Cx̂(t) ⊂ Rn within which the
current state x(t) is guaranteed to lie. In accordance with the terminology of Section 2.2 , the
ensemble of the sets Cx̂(t) that the observer can return at a given time t may be viewed as
a state space quantization: that is, in a sufficiently large neighborhood of the origin, the sets
Cx̂(t)’s are bounded. Therefore, in a second stage, the analysis of the dynamic qY–controlled
invariance of hypercubes can be performed by taking advantage of the theory developed for
the quantized state case. However, those results need to be further elaborated because indeed
the ensemble of the Cx̂(t)’s are a time–varying state space quantization. Let us go into the
details.

Construction of the quantized state–observer

By suitably redefining qo without modifying the induced output space partition (hence,
without loss of generality) , we can assume that Y ⊂ R and, if y ∈ Y is such that the closure
of q−1

o (y) is an interval of finite length λy , that y is the middle point of such an interval.
Thus, with

Y? := {y ∈ Y | q−1
o (y) is an interval of finite length} , (3.72)

it holds that

∀ y ∈ Y? , q−1
o (y) = [ y − λy

2 , y + λy

2 ] . (3.73)
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The function ~qo : Rn → Yn defined by ~qo(z) :=
(
qo(z1), . . . , qo(zn)

)
induces a partition of

Rn such that ∀ ~y ∈ Yn
? , the closure of ~q−1

o (~y ) is ~y + P~y , where

P~y =
[
−λ~y1

2
,

λ~y1

2

]
× · · · ×

[
−λ~yn

2
,

λ~yn

2

]
.

Let

S :=




0 0 · · · 0
CB 0 · · · 0

CAB CB
. . . 0

...
...

. . .
...

CAn−2B CAn−3B · · · CB



∈ Rn×(n−1) .

For t ≥ n − 1 , denote by ~u (t) and ~y (t) the vectors collecting respectively the last n − 1
inputs and the last n outputs of the system at time t , that is

{
~u (t) :=

(
u(t− n + 1), . . . , u(t− 1)

)′

~y (t) :=
(
y(t− n + 1), . . . , y(t)

)′
.

Let R :=
[
An−2B | · · · |AB |B ] ∈ Rn×(n−1) and O ∈ Rn×n be the observability matrix (i.e.,

the matrix whose i–th row is CAi−1 ) : O is invertible because the pair (A,C) is observable.
By standard theory on observability (see, for instance, [114]) it holds that

~y (t) = ~qo

(O x(t− n + 1) + S~u (t)
)
,

hence
x(t− n + 1) ∈ O−1

(
~q−1
o

(
~y (t)

)− S~u (t)
)

and
x(t) ∈ An−1O−1

(
q−1
o

(
~y (t)

))−An−1O−1S~u (t) + R~u (t) .

Accordingly, consider the map ψ : Yn × Un−1 → Rn defined by

ψ( ~y, ~u ) := An−1O−1~y + (R−An−1O−1S)~u .

For t ≥ n− 1 , the quantized state–observer is defined by the following equations:




x̂(t) := ψ
(
~y (t) , ~u (t)

)

x(t) ∈ An−1O−1
(
q−1
o

(
~y (t)

))
+ (R−An−1O−1S)~u(t) .

(3.74)

If ~y (t) ∈ Yn
? , since the closure of ~q−1

o (~y ) is ~y + P~y , then

x(t) ∈ Cx̂(t) := An−1O−1
(P~y(t)

)
+ An−1O−1~y (t) + (R−An−1O−1S) ~u (t) : (3.75)

Cx̂(t) is a bounded parallelogram and x̂(t) = ψ
(
~y (t) , ~u (t)

)
is the centroid of Cx̂(t) .
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Analysis: invariance of hypercubes

As in equation (3.64) , for ∆ > 0 , let

Y(∆) :=
(
qo ◦ C

)(
Qn(∆)

)
.

If ∆ > 0 is such that Y(∆) ⊆ Y? , let

Λ∆ := max
y∈Y(∆)

λy . (3.76)

We define

H̃(∆) :=





diamn

(
AnO−1

(
Qn(Λ∆)

))
if Y(∆) ⊆ Y?

+∞ otherwise .
(3.77)

Similarly to the function H(∆) defined in equation (3.68) of Section 3.2.1 , the function
H̃(∆) is non–decreasing with ∆ and, ∀∆0 > 0 , H̃(∆) takes only a finite number of values
over the interval [0, ∆0] (the latter property is a consequence of the fact that the partition
induced by qo : R→ Y is assumed to be locally finite) .
The meaning of the quantity H̃(∆) and its analogy with H(∆) become apparent in the
proof of the following result:

Theorem 5 (Dynamic qY–controlled invariant hypercubes) Consider system (2.1) ,
assume A0 and that α = ‖A‖∞ ≥ 1 . Suppose that the system is quantized single–output
(see Section 2.2) with qY = qo ◦ C , where C ∈ R1×n and (A,C) is an observable pair. Let
∆ > 0 be such that 




m(∆) ≤ −∆
2

(
α− 1

)

M(∆) ≥ ∆
2

(
α− 1

)

ρ(∆) + H̃(∆) ≤ ∆

(3.78a)

(3.78b)

(3.78c)

and U = U(∆) . For some t ≥ n−1 , assume that ∀ τ = t−n+1 , . . . , t , x(τ) ∈ Qn(∆) . Let
x̂(t) be the issue of the quantized state–observer defined in equation (3.74) and qU : R→ U
be a nearest neighbor quantizer. Then, u = qU

(
− (

Ax̂(t)
)
n

)
is such that

x(t + 1) = Ax(t) + Bu ∈ Qn(∆) .

Proof. The proof is given below after a preliminary result.

Remark 14 The assumption U = U(∆) is needed to ensure that u = qU

(
− (

Ax̂(t)
)
n

)
∈

U(∆) . Indeed, by Lemma 6 in Section 3.1.1 , this is a necessary condition in order that
x(t+1) ∈ Qn(∆) . Notice, however, that this is a mild assumption that can be always satisfied
simply by saturating the controller

(
i.e., by neglecting the control values out of U(∆)

)
.
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Remark 15 Differently from the analogous invariance theorems presented in the previous
sections (i.e., Theorem 1 in Section 3.1.1 and Theorem 4 in Section 3.2.1) , in Theorem 5
we assumed α ≥ 1 . While it is still true that the invariance analysis for α = 1 is trivial (in
this case, in fact, u = 0 ensures the invariance of any hypercube) , on the other hand, since
Theorem 5 consists of an invariance analysis under a given control law, then also the case
α = 1 is significant.

The main tool to prove Theorem 5 , as well as other results in next Chapter 4 , is the following:

Lemma 9 (Main tool) Consider system (2.1) , assume A0 and that α = ‖A‖∞ ≥ 1 . Let
∆ > 0 be such that ρ(∆) < +∞ and inequalities (3.78a–b) hold. Consider a qdb–controller
k : Rn → U . Given x ∈ Qn(∆) and x̂ ∈ Rn , let H ≥ 0 be such that

∣∣(A(x− x̂)
)
n

∣∣ ≤ H
2 .

If k(x̂) ∈ U(∆) , then x+ = Ax + Bk(x̂) is such that

|x+
n| ≤max

{
ρ(∆) + H

2
, ‖x‖∞ − ϕ(∆)

}
, (3.79)

where
ϕ(∆) := min

{
M(∆)− ∆

2 (α− 1) , −∆
2 (α− 1)−m(∆)

}
. (3.80)

Proof. By definition of k , x+
n = (Ax)n + qU

( − (Ax̂)n

)
, where qU is a nearest neighbor

quantizer. Notice that, by Lemma 8. ı in Section 3.2.1 ,

qU
(− (Ax)n

) ∈ U(∆) . (3.81)

With reference to the partition R = Sm(∆) ∪ N∆ ∪ SM(∆) defined in equation (3.70) of
Section 3.2.1 , three cases can occur:

I) Suppose that −(Ax̂)n ∈ N∆ , then

|x+
n| =

∣∣(A(x− x̂)
)
n

+ (Ax̂)n + qU
(− (Ax̂)n

)∣∣ ≤
≤ ∣∣(A(x− x̂)

)
n

∣∣ +
∣∣(Ax̂)n + qU

(− (Ax̂)n

)∣∣ ≤
≤ H

2 + ρ(∆)
2 ,

where the last inequality follows by the hypothesis on H and by Lemma 8.ıı .

II) Suppose that −(Ax̂)n ∈ S∆ and x is such that −(Ax)n ∈ N∆ . If −(Ax̂)n ∈ Sm(∆) ,
then k(x̂) = m(∆) thanks to Lemma 8. ııı which can be applied because, by assumption,
k(x̂) ∈ U(∆) . Hence,

x+
n = (Ax)n + m(∆)

(a)

≤ (Ax)n + qU
(− (Ax)n

) (b)

≤ ρ(∆)
2 ,

where inequality (a) holds because m(∆) = min U(∆) 3 qU
(− (Ax)n

) (
see equation (3.81)

)
,

and inequality (b) follows by Lemma 8.ıı . Moreover, by Lemma 8. ııı , (Ax̂)n+qU
(−(Ax̂)n

)
>

ρ(∆)
2 , and, by assumption,

(
A(x− x̂)

)
n
≥ −H

2 , therefore

x+
n =

(
A(x− x̂)

)
n

+ (Ax̂)n + qU
(− (Ax̂)n

)
> −H

2 + ρ(∆)
2 > −H +ρ(∆)

2 .



3.2. CONTROLLED INVARIANCE: QUANTIZED MEASUREMENTS 97

To sum up, |x+
n| ≤ ρ(∆)+H

2 .
The case −(Ax̂)n ∈ SM(∆) is similar.

III) Suppose that −(Ax̂)n ∈ S∆ and −(Ax)n ∈ S∆ . If −(Ax̂)n ∈ Sm(∆) , we know by
part II that k(x̂) = m(∆) and x+

n > −H +ρ(∆)
2 . Assume that −(Ax)n ∈ SM(∆) , since

qU
(− (Ax)n

) ∈ U(∆) , then

x+
n = (Ax)n + m(∆) < (Ax)n + M(∆)

(c)
= (Ax)n + qU

(− (Ax)n

) (d)
< −ρ(∆)

2 ,

where both equality (c) and inequality (d) hold by Lemma 8.ııı . Hence, |x+
n| < H +ρ(∆)

2 .
If instead −(Ax)n ∈ Sm(∆) , then |x+

n| ≤ ‖x‖∞ − ϕ(∆) . In fact: in this case k(x) = k(x̂) =
m(∆) and, thanks to inequalities (3.78a–b) , we can write m(∆) = −∆

2 (α− 1)− ϕ(∆)− θ ,
with θ ≥ 0 . Again by Lemma 8. ııı , x+

n = (Ax)n + m(∆) > ρ(∆)
2 > 0 , hence

|x+
n| = (Ax)n + m(∆) ≤ ∑n

i=1 |ai| |xi|+ m(∆) ≤ α · ‖x‖∞ + m(∆) =

= α · ‖x‖∞ − ∆
2 (α− 1)− ϕ(∆)− θ ≤ ‖x‖∞ − ϕ(∆) ,

where the last inequality holds because
(‖x‖∞ − ∆

2

)
(α− 1)− θ ≤ 0 .

The case −(Ax̂)n ∈ SM(∆) is similar.

Proof of Theorem 5. By the controller form of the system, it is sufficient to show that
x+(t) is such that |x+

n| ≤ ∆
2 . Since ρ(∆) + H̃(∆) ≤ ∆ and, by inequalities (3.78a–b) ,

ϕ(∆) ≥ 0 , then |x+
n| ≤ ∆

2 thanks to inequality (3.79) of Lemma 9 with H = H̃(∆) . Hence,
it is sufficient to show that the hypotheses of Lemma 9 are satisfied: since U = U(∆) , then
qU

(
− (

Ax̂(t)
)
n

)
= k

(
x̂(t)

) ∈ U(∆) ; it remains only to show that

∣∣∣
(
A

(
x(t)− x̂(t)

))
n

∣∣∣ ≤ H̃(∆)
2

. (3.82)

First notice that, by inequality (3.78c) , it holds that H̃(∆) < +∞ and therefore ∆ is
such that Y(∆) ⊆ Y? . Moreover, since ∀ τ = t − n + 1 , . . . , t , x(τ) ∈ Qn(∆) , then
~y(t) ∈ Yn

? . Hence, x̂(t) is the centroid of the parallelogram Cx̂(t) defined in equation (3.75)
and containing x(t) . Therefore, to prove that inequality (3.82) holds, it is sufficient to show
that diamn(ACx̂(t)) ≤ H̃(∆) . Indeed, according to equation (3.75) , Cx̂(t) is a translation of
the set An−1O−1

(P~y(t)

)
and P~y(t) ⊆ Qn(Λ∆) , then

diamn(ACx̂(t)) = diamn

(
AnO−1(P~y(t))

) ≤ diamn

(
AnO−1

(
Qn(Λ∆)

))
= H̃(∆) .

Example 13 (Finite control set and quantized output) Let us consider a quantized
output version of the system in Example 6 of Section 3.1.1 , that is





x+ =

(
0 1

5/4 1/4

)
x +

(
0
1

)
u

y = qY(x) = qo(Cx) ,
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where, as in Example 6 , u ∈ U = {0 ,±1 ,±2 ,±3 ,±4 ,±6 ,±8 ,±12 ,±16 ,±24} . As far as
the output map qY is concerned, suppose that C = ( 3/2 1/3 ) and that the extremes of the
intervals forming the output space partition induced by qo are

{± 3
2 ,±9

2 ,±15
2 ,±25

2 ,±39
2

}
.

Let us determine the equation of the quantized state–observer, the function H̃(∆) and the
values of ∆ satisfying inequalities (3.78) .
According to equations (3.72) and (3.73) , let Y = Y?∪{±ys} = {0 ,±3 ,±6 ,±10 ,±16 ,±ys}(
where Y? collects the middle points of the output quantization intervals and, for |Cx| > 39

2 ,
qo takes the saturation values ±ys ∈ R : e.g., ys = 20

)
. With this definition of Y , the

equation of the quantized state–observer is

x̂(t) = ψ
(
~y (t) , ~u (t)

)
= AO−1~y (t) + (R−AO−1S)~u (t) ,

where, since

O−1 =
1

161

(
114 −24
−30 108

)
, R =

(
0
1

)
and S =

(
0

1/3

)
,

then

x̂(t) =
1

161

[(
−30 108
135 −3

)(
y(t− 1)

y(t)

)
+

(
−36
162

)
u(t− 1)

]
.

In order to determine the function H̃(∆) , we have to compute Λ∆

(
see equation (3.76)

)
.

First, C
(
Q2(∆)

)
=

[− ‖C‖∞∆
2 , ‖C‖∞∆

2

]
=

[− 11
12∆ , 11

12∆
]
. Hence,

Y(∆) =





{0} if 0 < ∆ < 18
11

(
as it results by 11

12∆ < 3
2

)

{0 ,±3} if 18
11 < ∆ < 54

11

(
as it results by 11

12∆ < 9
2

)

and so on .

For ∆ = 18/11 , ∆ = 54/11 , and so on, the set Y(∆) depends on the value taken by the
output quantizer at the extremes of the intervals forming the output space partition: let us
assume that the intervals where Y(∆) is constant are those reported above but closed on the
right (in this example, the final result does not change if other cases are considered) .
For y ∈ Y? , the values of λy are:

λ0 = λ±3 = λ±6 = 3 , λ±10 = 5 and λ±16 = 7 .

Therefore, with the above assumption on Y(∆) ,

Λ∆ =





3 if ∆ ≤ 90
11

(
as it results by 11

12∆ ≤ 15
2

)

5 if 90
11 < ∆ ≤ 150

11

(
as it results by 11

12∆ ≤ 25
2

)

7 if 150
11 < ∆ ≤ 234

11

(
as it results by 11

12∆ ≤ 39
2

)
.

For ∆ such that Y(∆) ⊆ Y?

(
i.e., for ∆ ≤ 234

11

)
, we have

H̃(∆) = diam2

(
A2O−1

(
Q2(Λ∆)

))
.
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-

6

∆

ρ(∆) + H̃(∆)

4

5

24

5

90

11

48

5

150

11

96

5

234

11

25/7

32/7

44/7

58/7

10

14

Figure 3.15: Plot of ρ(∆) + H̃(∆) for the system in Example 13 .

Since

A2O−1 =
1

4 · 161

(
540 −12
−15 537

)
,

then diam2

(
A2O−1

(
Q2(Λ∆)

))
= 15+537

4·161 Λ∆ = 6
7Λ∆ so that

H̃(∆) =





18
7 if 0 < ∆ ≤ 90

11

30
7 if 90

11 < ∆ ≤ 150
11

6 if 150
11 < ∆ ≤ 234

11

+∞ if ∆ > 234
11 .

Finally, let us determine the values of ∆ satisfying inequalities (3.78) . As for M(∆) and
m(∆) , see Example 6 . The function ρ(∆)+H̃(∆) is obtained by combining H̃(∆) with ρ(∆)
determined in equation (3.14) of Example 6 (see the plot reported in Fig. 3.15) . Therefore,
∆ satisfies inequalities (3.78) if and only if 25

7 ≤ ∆ ≤ 234
11 . ♣





Chapter 4

The qdb–controller

This chapter and next Chapters 5 and 6 are devoted to the control synthesis for practical
stabilization of system (2.1) .

For single–input reachable systems, we have introduced in previous Chapter 3 a nice and
easy technique for the invariance analysis of hypercubic sets. In the case of quantized input
systems, we have also proved optimality properties of invariant hypercubes: that is, the
smallest final set Ω so that (X0,Ω)–stabilization can be achieved is a hypercube. We have
also seen that the controlled invariance of hypercubes is directly related to their positive
invariance under a qdb–controller. In this chapter, we go further into the study of single–
input reachable systems: we consider the practical stabilization by means of a qdb–controller
and we analyze the (X0, X1,Ω)–stability properties of the corresponding closed loop dynamics
in terms of hypercubic sets X0 , X1 and Ω . According to the terminology introduced in
Section 2.2 , all the three cases of quantized input, quantized state and quantized outputs are
considered: see next Sections 4.1 , 4.2.1 and 4.2.2 , respectively.

Throughout this chapter, it is assumed that system (2.1) is represented in the controller form
coordinates

(
see assumption A0 in equation (3.1) of Section 3.1.1

)
. Recall that

α :=
n∑

i=1

|ai| .

Differently from the invariance problem, which is meaningful only for α > 1 , the practical
stabilization problem is significant also when α = 1 because convergence properties (from X0

to Ω ) are to be ensured. The case α < 1 is trivial because, by Lemma 28 in Appendix A.5.1 ,
the matrix A is Schur and u(t) ≡ 0 guarantees asymptotic stability.

4.1 Practical stabilization: quantized single–input

In this section, we consider system (2.1) in the quantized input case Σ(A,B,U) and a qdb–
controller

(
see equation (3.2)

)
. The main result on the practical stability properties of the

corresponding closed loop dynamics is the following:

101
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Theorem 6 ( (X0,Ω)–stabilization: quantized single–input reachable systems)
Consider system Σ(A,B,U) , assume A0 and that α = ‖A‖∞ ≥ 1 . Let k : Rn → U
be a qdb–controller. If ∆0 > 0 is such that





m(∆0) < −∆0

2
(
α− 1

)

M(∆0) >
∆0

2
(
α− 1

)

ρ(∆0) < ∆0 ,

(4.1a)

(4.1b)

(4.1c)

then it is well defined
∆inf := max

{
∆ < ∆0 | ρ(∆) = ∆

}
(4.2)

and the control law u(x) = k(x) is
(
Qn(∆0), Qn(∆inf)

)
–stabilizing.

Proof. The proof is based on the following idea: it is shown that the qdb–controller is(
Qn(∆0), Qn(∆1)

)
–stabilizing, with ∆1 := ρ(∆0) . The argument is then iterated until ∆m̂

is found such that ρ(∆m̂) = ∆m̂ (it holds that ∆m̂ = ∆inf ) . The details of the proof of the
theorem are given after the proof of some preliminary results needed to show these facts.

The main tool to prove Theorem 6 is the following result:

Lemma 10 (Main tool) Consider system (2.1) , assume A0 and that α = ‖A‖∞ ≥ 1 . Let
∆ > 0 be such that ρ(∆) < +∞ and inequalities (4.1a–b) hold. Consider a qdb–controller
k : Rn → U .

ı) If x ∈ Qn(∆) , then x+ = Ax + Bk(x) is such that

|x+
n| ≤max

{
ρ(∆)

2
, ‖x‖∞ − ϕ(∆)

}
, (4.3)

where ϕ(∆) is defined in equation (3.80) of Section 3.2.2 .

ıı) Let ∆′ := ρ(∆) : if ρ(∆) < ∆ , then the qdb–controller is
(
Qn(∆), Qn(∆′)

)
–stabilizing.

Proof. ı) It is a particular case of Lemma 9 in Section 3.2.2 : in fact, inequalities (4.1a–b)
imply inequalities (3.78a–b) , then it is sufficient to consider x̂ = x and H = 0 ; the only
apparent discrepancy is the supplementary assumption k(x̂) ∈ U(∆) in Lemma 9 but, as we
notice in equation (3.81) , for x̂ = x this hypothesis is satisfied.
Since this statement is a simplified version of Lemma 9 , it is useful to provide also an explicit
proof of it. This can be found in Appendix A.3.1 .

ıı) It is a consequence of part ı and of the controller form of the system. In fact: ϕ(∆) > 0
by inequalities (4.1a-b) , therefore inequality (4.3) implies that ∀ γ ∈ [∆′ , ∆] , Qn(γ) is
positively invariant. Moreover, because x+ = (x2, . . . , xn, x+

n) , inequality (4.3) also implies
that

∀x(0) ∈ Qn(∆) , ‖x(n)‖∞ ≤max
{

∆′
2 = ρ(∆)

2 , ‖x(0)‖∞ − ϕ(∆)
}

:
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since ϕ(∆) > 0 , the iteration of this argument yields the
(
Qn(∆), Qn(∆′)

)
–stability.

Two more technical results are needed. These statements turn out to be useful also to prove
other results that will follow in Section 4.2 and in Section 6.2 .

Lemma 11 Let a < ∆0 and φ : [a,∆0] → [a, ∆0[ be a non–decreasing function. If φ is
right continuous or φ takes a finite number of values for ∆ ∈ [a,∆0] , then the sequence
{∆k}k∈N defined by ∆k+1 := φ(∆k) is non–increasing and

∆inf := lim
k→+∞

∆k = max
{
∆ < ∆0 |φ(∆) = ∆

}
. (4.4)

Moreover, ∀∆ ∈ ]∆inf , ∆0] it holds that φ(∆) < ∆ .

Proof. See in Appendix A.3.1 .

Lemma 12 Consider system (2.1) , assume A0 and that α ≥ 1 . If ∆ > 0 satisfies inequal-
ities (4.1a–b) , then any ∆′ ∈ [ρ(∆) , ∆[ satisfies inequalities (4.1a–b) .

Proof. See in Appendix A.3.1 .

Proof of Theorem 6. For ∆ ≥ ∆̄, the function ρ is right continuous, non–decreasing and
ρ : [∆̄, +∞[→ [∆̄, +∞[

(
see the discussion after equation (3.8) in Section 3.1.1

)
. There-

fore, thanks to inequality (4.1c) , the restriction of ρ to the interval [∆̄, ∆0] satisfies the
assumptions of Lemma 11 . Hence, the sequence {∆k}k∈N defined by ∆k+1 := ρ(∆k) is
non–increasing and limk→+∞∆k = ∆inf , with ∆inf as defined in equation (4.2) . Actually,
since for ∆ ∈ [∆̄ ,∆0] , ρ(∆) takes only a finite number of values (see Remark 5) , then
∃ m̂ ∈ N , m̂ ≥ 1 , such that ∆m̂ = ∆inf . Thus, it is defined a finite and decreasing sequence

∆0 > ∆1 > · · · > ∆m̂−1 > ∆m̂ = ∆inf . (4.5)

The thesis of the theorem is achieved by showing that ∀ k = 0 , . . . , m̂−1 , the qdb–controller
is

(
Qn(∆k), Qn(∆k+1)

)
–stabilizing. To this end, we apply Lemma 10.ıı : it is sufficient to

show that ∀ k = 0 , . . . , m̂ − 1 , ∆k satisfies inequalities (4.1) . Indeed, ρ(∆k) < ∆k by
construction of the sequence (4.5) ; inequalities (4.1a–b) are satisfied by ∆k as it follows by
recursive application of Lemma 12 .

Theorem 6 will be extended to more general controllers in Theorem 13 of Section 6.2.2 .

Example 14 (Finite control set) Let us consider the system in Example 6 of Section 3.1.1
and let k : R2 → U be a qdb–controller. It holds that ∀∆0 ∈ ]1 , 96[ , the control law
u(x) = k(x) is (

Q2(∆0) , Q2(1)
)
–stabilizing .

In fact, by the computations done in Example 6 , it follows that ∆ satisfies inequalities (4.1)
if and only if 1 < ∆ < 96 , and ρ(1) = 1 : the result holds by Theorem 6 . ♣
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Example 15 (Uniformly quantized controls) Similarly to Example 7 , let us consider
a system Σ(A,B,U) in the controller form coordinates with α = ‖A‖∞ ≥ 1 and U is a
uniformly quantized set with parameter u0 . Let k : Rn → U be a qdb–controller. It holds
that ∀∆0 > u0 , the control law u(x) = k(x) is

(
Qn(∆0) , Qn(u0)

)
–stabilizing in n steps

(see Definition 15b in Section 3.1.2) .
In fact, by the computations done in Example 7 , it follows that ∆ satisfies inequalities (4.1)
if and only if ∆ > u0 , and ρ(u0) = u0 (the check that this is true also for α = 1 is
straightforward) . Hence, the

(
Qn(∆0) , Qn(u0)

)
–stability of the closed loop dynamics holds

by Theorem 6 . To see that the convergence to within Qn(u0) is guaranteed in n steps,
it is sufficient to notice that the system is in controller form and that ∀x ∈ Rn, |x+

n| =∣∣qe

(− (Ax)n

)∣∣ ≤ u0
2

(
see equation (3.3) in Section 3.1.1 and Lemma 2 in Section 2.1

)
. ♣

Example 16 (Logarithmically quantized controls) Similarly to Example 8 , let us con-
sider a system Σ(A,B,U) in the controller form coordinates with α = ‖A‖∞ ≥ 1 , U is a
logarithmically quantized set with parameters (u0, θ) and 1 < θ < α+1

α−1 (if α = 1 , simply
assume that θ > 1 ) . Let k : Rn → U be a qdb–controller. It holds that ∀∆0 > u0 , the
control law u(x) = k(x) is

(
Qn(∆0) , Qn(u0)

)
–stabilizing .

In fact, by equation (3.16) in Remark 7 of Section 3.1.1 , ∆ satisfies inequalities (4.1) if and
only if ∆ > u0 , and ρ(u0) = u0 : the result holds by Theorem 6 . ♣

4.2 Practical stabilization: quantized single–input and quan-

tized measurements

In this section, the practical stabilization technique presented in the previous section, as well
as the practical stability analysis of the corresponding closed loop dynamics, is extended to
the case where both the inputs and the measurements are quantized.
The qdb–controller k is a state feedback law: therefore, first an estimate x̂ of the current
state x has to be found by processing the quantized measurements, then a control law
of the type u = k(x̂) can be considered. In the quantized output case, we have seen in
Section 3.2.2 how to construct a state observer to obtain x̂ . In the quantized state case,
instead, the problem is easier: indeed, we shall see that it is reasonable to take the output
y ∈ Y as an estimation of the current state.

4.2.1 Practical stabilization: state quantization

Let us consider system (2.1) in the quantized state case. According to the presentation in
Section 2.2 , we assume that, at least up to sufficiently large values of ∆ ,

H(∆) < +∞
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(
see equation (3.68) in Section 3.2.1

)
.

Let ∆ > 0 be such that H(∆) < +∞ and, for y ∈ Y(∆) , consider Cy . Similarly to the
definition of c∗mid(y) in equation (3.66) , let

cmid(y) :=
sup {Prn(ACy)}+ inf {Prn(ACy)}

2

be the middle point of Prn(ACy) . By suitably redefining qY without modifying the induced
state space partition (hence, without loss of generality) , we can assume that

{ Y ⊂ Rn

∀ y ∈ Y such that Cy is bounded , y is such that (Ay)n = cmid(y) .
(4.6)

We take y = qY(x) as an estimate of the current state x . The control action is then selected
through a qdb–controller, as if the state was y . The main result on the practical stability
properties of the resulting closed loop dynamics is the following:

Theorem 7 ( (X0,Ω)–stabilization: quantized state and quantized single–input
reachable systems) Consider system (2.1) , assume A0 and that α = ‖A‖∞ ≥ 1 . Let
k : Rn → U be a qdb–controller. If ∆0 > 0 is such that





m(∆0) < −∆0

2
(
α− 1

)

M(∆0) >
∆0

2
(
α− 1

)

ρ(∆0) + H(∆0) < ∆0

(4.7a)

(4.7b)

(4.7c)

and1 U = U(∆0) , then it is well defined

∆inf := max
{
∆ < ∆0 | ρ(∆) + H(∆) = ∆

}
(4.8)

and the control law u(x) = (k ◦ qY)(x) is
(
Qn(∆0), Qn(∆inf)

)
–stabilizing.

Proof. The proof is based on the same we idea used to prove Theorem 6 in previous
Section 4.1 . Also in this case, a preliminary result is needed. Hence, the details of the proof
of the theorem are reported after the proof of next Lemma 13 .

The main tool to prove Theorem 7 is the following result:

Lemma 13 (Main tool) Consider system (2.1) , assume A0 and that α = ‖A‖∞ ≥ 1 .
Let ∆ > 0 be such that inequalities (4.7) hold. Consider ∆′ := ρ(∆) + H(∆) and let
k : Rn → U be a qdb–controller: if (k ◦ qY)

(
Qn(∆)

) ⊆ U(∆) , then the controller (k ◦ qY) is(
Qn(∆), Qn(∆′)

)
–stabilizing and (k ◦ qY)

(
Qn(∆′)

) ⊆ U(∆′) .

1As far as the assumption U = U(∆0) is concerned, see the discussion in Remark 14 of Section 3.2.2 .
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Proof. First notice that, ∀x ∈ Qn(∆) , the hypotheses of Lemma 9 in Section 3.2.2 are sat-
isfied with x̂ := qY(x) and H = H(∆) . In fact: inequalities (4.7) imply inequalities (3.78) ;
the assumption (k ◦ qY)

(
Qn(∆)

) ⊆ U(∆) ensures that k(x̂) ∈ U(∆) ; finally,

∣∣(A(x− x̂)
)
n

∣∣ (a)
=

∣∣(Ax)n − cmid(x̂)
∣∣ (b)

≤ h(x̂)
2

(c)

≤ H(∆)
2 ,

where equality (a) follows by the assumption in equation (4.6) , inequalities (b) and (c) hold
by definition of h(x̂)

(
see equation (3.67)

)
and H(∆)

(
see equation (3.68)

)
, respectively.

Thus, x+ = Ax + B(k ◦ qY)(x) is such that inequality (3.79) holds with H = H(∆) .
Moreover, thanks to inequalities (4.7a–b) , ϕ(∆) > 0

(
see equation (3.80)

)
. Hence, inequal-

ity (3.79) implies that ∀ γ ∈ [∆′ , ∆] , Qn(γ) is positively invariant and, by Lemma 6 in Sec-
tion 3.1.1 , it holds that (k ◦ qY)

(
Qn(γ)

) ⊆ U(γ) . Moreover, because x+ = (x2, . . . , xn, x+
n) ,

inequality (3.79) also implies that

∀x(0) ∈ Qn(∆) , ‖x(n)‖∞ ≤max
{

∆′
2 = ρ(∆)+H(∆)

2 , ‖x(0)‖∞ − ϕ(∆)
}

:

the iteration of this argument yields the
(
Qn(∆), Qn(∆′)

)
–stability because ϕ(∆) > 0 .

Proof of Theorem 7. For ∆ ∈ [∆̄, ∆0] , let φ(∆) := ρ(∆) + H(∆) . It holds that: the
function φ is non–decreasing because so are both ρ and H ; φ(∆̄) ≥ ∆̄ because φ(∆̄) >

ρ(∆̄) ≥ ∆̄ ; φ(∆0) < ∆0 thanks to inequality (4.7c) ; and, for ∆ ∈ [∆̄, ∆0] , it takes only a
finite number of values because this property holds for both ρ (see Remark 5 in Section 3.1.1)
and H

(
see the discussion on the properties of H(∆) after equation (3.68)

)
. Hence, by

Lemma 11 , the sequence {∆k}k∈N defined by ∆k+1 := ρ(∆k) + H(∆k) is non–increasing
and limk→+∞∆k = ∆inf , with ∆inf as defined in equation (4.8) . Moreover, ∃ m̂ ∈ N ,
m̂ ≥ 1 , such that ∆m̂ = ∆inf . Thus, it is defined a finite and decreasing sequence

∆0 > ∆1 > · · · > ∆m̂−1 > ∆m̂ = ∆inf . (4.9)

The thesis of the theorem is achieved by showing that ∀ k = 0 , . . . , m̂ − 1 , the control law
u(x) = (k ◦ qY)(x) is

(
Qn(∆k), Qn(∆k+1)

)
–stabilizing. To this end, we apply Lemma 13 :

it is sufficient to show that ∀ k = 0 , . . . , m̂ − 1 , ∆k satisfies inequalities (4.7) and (k ◦
qY)

(
Qn(∆k)

) ⊆ U(∆k) . Indeed, ρ(∆k) < ∆k by construction of the sequence (4.9) ; in-
equalities (4.7a–b) are satisfied by ∆k as it follows by recursive application of Lemma 12 ;
finally, (k ◦ qY)

(
Qn(∆k)

) ⊆ U(∆k) : this holds for k = 0 as we assumed U = U(∆0) , while
for k = 1, . . . , m̂− 1 it follows by recursive application of Lemma 13 .

Example 17 (Finite control set and quantized state) Let us consider the system in
Example 12 of Section 3.2.1 . It holds that ∀∆0 ∈

]
5
2 , 64

]
, the control law u(x) = (k ◦

qY)(x) , where k : R2 → U(∆0) is a qdb–controller with saturated inputs (see Remark 14 in
Section 3.2.2) , is (

Q2(∆0) , Q2

(
5
2

))
–stabilizing .

In fact, by the computations done in Example 12 , it follows that ∆ satisfies inequalities (4.7)
if and only if 5

2 < ∆ ≤ 64 , and ρ
(

5
2

)
+ H

(
5
2

)
= 5

2 : the result holds by Theorem 7 . ♣
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4.2.2 Practical stabilization: output quantization

Let us consider system (2.1) in the quantized single–output case. The framework and the
terminology is the same as in Section 3.2.2 . We define a dynamic qdb–controller: it is a
controller taking the more general form in equation (2.9) and consisting of a qdb–controller
k but the control action is selected as if the current state was x̂(t) , the state estimation
resulting from the quantized state–observer

(
see equation (3.74)

)
. We then analyze the

practical stability properties of the resulting closed loop dynamics. Since the output x̂(t) =
ψ

(
~y (t) , ~u (t)

)
of the quantized state–observer is available only after a transient (i.e., for

t ≥ n− 1 ) , then the controller needs to be initialized for t ≤ n− 2 : this is the reason why,
in this case, only (X0, X1,Ω)–stability can be guaranteed rather than (X0, Ω)–stability.
Let the dynamic qdb–controller be defined as follows: denote by k : Rn → U a qdb–controller
and let

u(t) :=

{
0 if t ≤ n− 2
(k ◦ ψ)

(
~y (t), ~u (t)

)
if t ≥ n− 1 .

(4.10)

This controller can be modelled in the form of equation (2.9) with W := Yn × Un−1 and
suitably defined maps γ and k̄ : see the details in Appendix A.3.2 .
The corresponding practical stability result is the following:

Theorem 8 ( (X0,X1,Ω)–stabilization: quantized single–output and quantized
single–input reachable systems) Consider system (2.1) , assume A0 and that α =
‖A‖∞ ≥ 1 . Suppose that the system is quantized single–output (see Section 2.2) with
qY = qo ◦ C , where C ∈ R1×n and (A,C) is an observable pair. Let ∆1 > 0 be such
that 




m(∆1) < −∆1

2
(
α− 1

)

M(∆1) >
∆1

2
(
α− 1

)

ρ(∆1) + H̃(∆1) < ∆1

(4.11a)

(4.11b)

(4.11c)

and2 U = U(∆1) . Consider ∆0 := ∆1
‖An−1‖∞ , then it is well defined

∆inf := max
{
∆ < ∆1 | ρ(∆) + H̃(∆) = ∆

}
(4.12)

and the dynamic qdb–controller (4.10) is
(
Qn(∆0), Qn(∆1), Qn(∆inf)

)
–stabilizing.

Proof. For ∆ ∈ [∆̄,∆1] , let φ(∆) := ρ(∆) + H̃(∆) . It holds that: the function φ is
non–decreasing because so are both ρ and H̃ ; φ(∆̄) ≥ ∆̄ because φ(∆̄) > ρ(∆̄) ≥ ∆̄ ;
φ(∆1) < ∆1 thanks to inequality (4.11c) ; and, for ∆ ∈ [∆̄,∆1] , it takes only a finite
number of values because this property holds for both ρ (see Remark 5 in Section 3.1.1)
and H̃

(
see the discussion on the properties of H̃(∆) after equation (3.77)

)
. Hence, by

Lemma 11 , the sequence {∆h}h∈N\{0} defined by ∆h+1 := ρ(∆h)+H̃(∆h) is non–increasing

2As far as the assumption U = U(∆1) is concerned, see the discussion in Remark 14 of Section 3.2.2 .
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and limh→+∞∆h = ∆inf , with ∆inf as defined in equation (4.12) . Moreover, ∃ m̂ ∈ N ,
m̂ ≥ 2 , such that ∆m̂ = ∆inf . Thus, it is defined a finite and decreasing sequence

∆1 > ∆2 > · · · > ∆m̂−1 > ∆m̂ = ∆inf . (4.13)

Let us analyze the closed–loop dynamics under the dynamic qdb–controller (4.10) . For
t ≤ n− 1 , by the controller form of A , it holds that

∀x(0) ∈ Qn(∆0) and ∀ t ≤ n− 1 , x(t) ∈ Qn(∆0‖An−1‖∞) = Qn(∆1) . (4.14)

For notational convenience, we let t1 := 0 . The hypotheses of Theorem 5 in Section 3.2.2
are satisfied with ∆ = ∆1 and t = t1 +n− 1 : this follows by the property (4.14) and by the
assumption U = U(∆1) . Therefore, since for t ≥ n− 1 , u(t) = k

(
x̂(t)

)
= qU

(
− (

Ax̂(t)
)
n

)
,

then it holds that
∀ t ≥ n , x(t) ∈ Qn(∆1) .

Furthermore, the application of Lemma 9 as in the proof of Theorem 5 , guarantees that

∀ t ≥ n , |xn(t)| ≤ max
{

∆2
2 = H̃(∆1)+ρ(∆1)

2 , ‖x(t− 1)‖∞ − ϕ(∆1)
}

, (4.15)

where ϕ(∆1) is defined in equation (3.80) . Since the system is in controller form and, by
inequalities (4.11a–b) , ϕ(∆1) > 0 , then inequality (4.15) implies that

∃ t2 > 0 such that ∀ t ≥ t2 , x(t) ∈ Qn(∆2) . (4.16)

If m̂ > 2
(
see the sequence (4.13)

)
, then we claim that at time t2+n−1 we are in the position

to repeat the above arguments and to prove that ∃ t3 > 0 such that ∀ t ≥ t3 , x(t) ∈ Qn(∆3) .
To this end, it is sufficient to show that the hypotheses of Theorem 5 are satisfied with
∆ = ∆2 and t = t2 + n − 1 , and that the strict inequalities (4.11a–b) , which ensure that
ϕ(∆2) > 0 and guarantee the convergence to within Qn(∆3) , hold true. Let us do this check.
By the property (4.16) , two facts follow: first, ∀ τ = t2 , . . . , t2 + n − 1 , x(τ) ∈ Qn(∆2) ;
secondly, thanks to Lemma 6 , ∀ t ≥ t2 , k

(
x̂(t)

) ∈ U(∆2) . The latter property means that
there is no contradiction in arguing as if U = U(∆2) . Finally, inequalities (4.11a–b) are
satisfied by ∆2 thanks to Lemma 12 .
The arguments above can be repeated until tm̂ is found such that ∀ t ≥ tm̂ , x(t) ∈ Qn(∆m̂) .
This proves the

(
Qn(∆0), Qn(∆1), Qn(∆inf)

)
–stability of the closed loop dynamics.

Example 18 (Finite control set and quantized output) Let us consider the system in
Example 13 of Section 3.2.2 . It holds that ∀∆1 ∈

]
25
7 , 234

11

]
, the dynamic qdb–control-

ler (4.10) with saturated inputs U = U(∆1) (see Remark 14 in Section 3.2.2) , is
(
Q2

(
∆1
α

)
, Q2(∆1) , Q2

(
5
2

))
–stabilizing ,

where α = ‖A‖∞ = 3
2 .

In fact, by the computations done in Example 13 , it follows that ∆ satisfies inequalities (4.11)
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Figure 4.1: A trajectory generated by the dynamic qdb–controller for the system in Exam-
ple 18 with ∆1 = 21 ( ∆0 = 14 ) and x(0) = (5.42 6.60) . Broken lines identify the state
space partition induced by qY .

if and only if 25
7 < ∆ ≤ 234

11 , and ρ
(

25
7

)
+ H̃

(
25
7

)
= 25

7 : the result holds by Theorem 8 .
An example of trajectory, corresponding to the case of the dynamic qdb–controller with satu-
rated inputs U = U(∆1) , ∆1 = 21 , is reported in Fig. 4.1 . ♣

Remark 16 (On the design of the I/O quantization) In this thesis, our first concern
is the stabilizability analysis under assigned quantization. However, the presented results can
be applied also to design quantization so as to guarantee that desired stability properties hold
true. To ensure invariance, it is sufficient to design the control set U and the output map qY
so that the functions ρ(∆) + H(∆) , m(∆) and M(∆) satisfy the hypotheses of Corollary 4
in Section 3.2.1 (or of Theorem 5 in Section 3.2.2 if quantization is on the output) ; if also
convergence properties are desired, then it is sufficient to satisfy the hypotheses of Theorem 7
in Section 4.2.1 (or of Theorem 8) . This can be done by elementary computations.
For instance, when qY(x) = x (i.e., H(∆) ≡ 0 ) , a control set ensuring the invariance of
Qn(∆) can be constructed according to the conditions provided by Theorem 1 in Section 3.1.1 .
Among these sets, one of minimal cardinality is a saturated version of a uniformly quantized
control set with parameter ∆ and it is made up of approximately ‖A‖∞ elements. In [126,
89, 80] , it has been proved that the minimal number of control symbols necessary and sufficient
for stabilization is

#U ' Πλu(A)∈Su(A)|λu(A)| ,
where Su(A) :=

{
λ(A) | |λ(A)| > 1

}
. Compared with this bound, our result can be conserva-

tive. For instance, if A is antistable
(
that is, S(A) = Su(A)

)
, then

Πλu(A)∈Su(A)|λu(A)| = |α1| ≤ ‖A‖∞ =
∑n

i=1 |αi| .
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On the other hand, our controller guarantees better performance in terms of convergence rate
because it prevents the trajectories from making large excursions while converging towards
the equilibrium. Indeed, our theory can be usefully combined with so–called “zooming” [17]
or “nesting” [45] techniques: examples have been provided in [45] showing that a nesting
version of our controller approaches optimal theoretical bounds relating the number of control
values and the speed of convergence

(
both considered as functions of the contraction C :=

Volume (X0)/Volume (Ω)
)
.



Chapter 5

The small–gain approach in H∞ :

quantized multi–input

5.1 Introduction to the small–gain approach

In this chapter and in next Chapter 6 , we develop a more systematic approach to the prob-
lem of the synthesis of practically stabilizing controllers. The proposed methodology is based
on the so called small–gain theorems, a class of results on the stability analysis of nonlinear
feedback systems (see Fig. 5.1) . In this framework, the system is viewed as a “black box”.
That is, the behavior of the system is described by an input/output operator that specifies
the output of the system as a function of the input only, while the internal dynamics is not
explicitly involved. Although the norm of this operator provides a rough description of the
properties of the system, yet this information can be enough for control synthesis purposes.
In fact, if the system under consideration can be decomposed into the feedback interconnec-
tion of subsystems and the norms of the operators associated to these subsystems satisfy a
suitable relation, the so called small–gain condition, then stability of the overall dynamics
can be asserted. The stabilization procedure based on small–gain theorems exactly consists
in finding a controller so that the norms of the operators associated to the subsystems satisfy
the desired relation. It is hence an abstract methodology, meaning that the control synthesis

Σ1

Σ2

Σ

Figure 5.1: Factorization of an overall dynamics Σ into the feedback interconnection of two
subsystems Σ1 and Σ2 .

111
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for stabilization is converted into the search for suitable operators within a functional space.
In both Chapters 5 and 6 , we consider system (2.1) in the quantized input case Σ(A,B,U) ,
while full state is assumed to be available. A natural, but not necessarily successful, approach
to the control synthesis consists of considering controllers resulting from the quantization of a
control law that guarantee asymptotic stability in the ideal conditions of absence of quantiza-
tion. By operating in this way, the outcome is a closed loop dynamics that can be described
as the feedback interconnection of the ideal closed loop dynamics with a nonlinearity repre-
senting the quantization error (see Example 3 in Section 2.3) . Stabilization can be achieved
if the ideal controller has robustness properties with respect to the quantization error. In
general, the inference of stability properties from the analysis of the subsystems constituting
a feedback loop is not a trivial issue. For instance, it is well known that the interconnection of
stable systems may return an overall unstable dynamics. When nonlinear terms are included
into the loop, there is not a complete and exhaustive theory for the stability analysis. There
are instead various techniques and, although some of them are of quite general applicability,
they typically provide only sufficient conditions for stability. In this respect, classical meth-
ods are those based on the absolute stability criteria [67] and include small–gain theorems.
As it will be shown into details in next Section 5.2 , the gain of a system is a generalization
of the notion of norm for the input/output operator representing the system. Namely, the
gain is a measure of the amplification (or attenuation) of the norm of a signal as it passes
through the system. The small–gain condition ensures that the norm of the signals circu-
lating in the feedback loop remains bounded and, under suitable assumptions, this is also
sufficient to prove stability of the internal dynamics of the system. Nevertheless, the outcome
of a classical small–gain theorem is typically Lyapunov stability. Since open loop unstable
discrete–time quantized systems are not stabilizable in the classical sense, this approach can-
not be directly applied to this kind of systems. As shown in Example 2 of Section 2.3 , the
reason why asymptotic stability is not achievable in the presence of quantization lies in the
loss of control resolution as the trajectories approach the origin, which is indeed caused by
the truncation of the quantizer. In particular, it can be seen that the gain associated to
the quantization error is dictated by the behavior of the corresponding operator exactly in
the proximity of 0 . Moreover, the value of such a gain is too large so that there is no way
to satisfy the classical small–gain condition (see, for instance, Remark 21 in Section 5.3.2) .
Consequently, a relaxed notion of gain for the quantization error is needed that does not take
into account for the input/output relation when the input is small. Accordingly, we introduce
generalized notions of gain for a static nonlinear map which essentially consist of the classical
gain but the behavior of the nonlinearity in a neighborhood of the origin is overlooked. This
allows us to prove generalized versions of the small–gain theorem whose outcome is practical
stability. Indeed, a small–gain condition given in terms of the gain of the ideal system (i.e.,
in the absence of quantization) and of the generalized gain of the quantization error, together
with a bound on the quantization error in a neighborhood of the origin, guarantees that
the closed loop system is practically stable. A quantitative analysis of the size of the final
invariant set within which trajectories are confined is included. This result is the basis to
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carry out a systematic procedure for the solution of the stabilization problem in the presence
of input quantization. In fact, the synthesis of practically stabilizing controllers is obtained
by direct application of the theoretical tools that allow one to analyze the generalized gain
of a nonlinear operator and to synthesize a controller that guarantees that the gain of the
ideal system is below a threshold ensuring that the small–gain condition is met. Moreover, a
family of quantized controllers can be obtained simply by tuning the design parameters as,
for instance, the desired gain of the ideal system or, if also the quantized control set can be
chosen, the generalized gain of the quantization error. In this way, it is possible to study
more general problems than mere practical stabilization, where also requests on the closed
loop performance can be enforced (such as a minimal guaranteed speed of convergence or
desired practical stability properties expressed in terms of the size of the set within which
trajectories can be confined, see Example 24 at the end of Section 5.3.3) .
Since the gain of a system depends on the particular choice of the norm used to measure
signals, the control synthesis technique and the practical stability analysis based on a small–
gain theorem changes according to the variation of the considered norm. In this thesis we
focus on two cases: the `2–norm and the `∞–norm. The former case is extensively faced in
Section 5.3 . When the `2–norm is considered, the input/output operator associated to the
system is an element of the so called Hardy’s functional space H∞ and the control synthe-
sis for practical stabilization can be transformed into a particular control problem in H∞
(see [132, 117]) . The corresponding practical stability analysis is based on Lyapunov argu-
ments for quadratic functions and on invariant ellipsoids. The other case, when the `∞–norm
is considered, is studied in next Chapter 6 : here, the corresponding input/output operator is
naturally associated with an element of the functional space `1 , hence the practical stabiliza-
tion problem can be turned into a control problem in `1 (see [128, 34]) . The corresponding
practical stability analysis provides hypercubes within which the trajectories are proved to
be confined.
The choice of studying the practical stabilization in the `1 functional space is natural when
quantized control sets, instead of the most often encountered case of generalized quantized
sets (see Definition 3 in Section 2.1) , are considered. In fact, as a consequence of the fact that
the quantized control values are isolated and do not have accumulation points, the quantiza-
tion error is a persistent (i.e., non–vanishing) disturbance, hence to be treated as a signal in
`∞ . Accordingly, the steady–state analysis based on results from the control in `1 appears
to be less conservative than the one based on H∞ theory. This fact has a counterpart in the
minimality properties of hypercubes proved in Section 3.1.2 . Nevertheless, the literature on
the control in `1 is not as exhaustive as that for the H∞ control and, somehow, the same
holds for the theory we develop here. In fact, some results presented in the framework of `1

theory are less general than their analogous in the H∞ case. Anyhow, the complementation
of the H∞ approach with the `1 theory is shown to bring significant contributions to the
stabilization problem. In this respect, our main result is a generalized small–gain theorem
for practical stability analysis (see Theorem 12 in Section 6.2.1) . The combination of this
theorem with the practical stability analysis relying on H∞ theory leads to a mixed H∞/`1
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analysis tool whose potency is pointed out through some numerical examples. Moreover, also
a solution to the stabilization problem is given in terms of a mixed H∞/`1 control synthe-
sis problem whose study is one of the most interesting open issues for future investigations.
These results has allowed us to provide a first extension to multi–input systems of the prac-
tical stabilization technique presented in Chapter 4 and based on the analysis of invariant
hypercubes.

Next sections are organized as follows: in Section 5.2 , the main definitions on the norms
of signals and systems are briefly reviewed and the notation for the various operators and
functional spaces is fixed. In Section 5.3 , a generalized small–gain theorem is proved for oper-
ators belonging to the H∞ functional space and the application to the practical stabilization
of quantized input linear systems are illustrated. Thorough explanations are provided for
the implementation of the proposed technique and several numerical examples are reported.
Chapter 6 follows the same line but in the case of the `1 functional space, it includes results
on the mixed H∞/`1 analysis and an example of the mixed H∞/`1 control synthesis.

5.2 Signals and systems

In this section, we briefly review the definitions and some classical results on the norms of
signals and systems. The presentation is restricted to the notions needed for the understand-
ing of the subsequent sections. For a comprehensive presentation we refer to [67] (which,
although devoted to continuous–time systems, has partially inspired the organization of this
section) or to any good textbook on systems theory.

By a signal we mean a function ~v : N → Rh×k . For t ∈ N , let v(t) be the t–th element
of the sequence defining ~v , hence we may write ~v = {v(t)}t∈N . The signal ~v is said to be
positive iff ∀ i = 1, . . . , h , ∀ j = 1, . . . , k and ∀ t ∈ N , vi,j(t) ≥ 0 . The null signal ~v ≡ 0 is
denoted by ~0 . The shift operator σ is defined by

σ~v := {v(t + 1)}t∈N , (5.1)

its k–th iteration is σk~v = {v(t + k)}t∈N .
For any given norm ‖ · ‖∗ on Rh×k and for p ∈ [1,∞] , let

`p(Rh×k) :=





{~v : N→ Rh×k | ∑+∞
t=0 ‖v(t)‖p

∗ < +∞} if p ∈ [1,∞[
{
~v : N→ Rh×k | sup

t∈N
‖v(t)‖∗ < +∞}

if p = ∞ .

In both cases, `p(Rh×k) is a normed space with

‖~v‖p :=





(∑+∞
t=0 ‖v(t)‖p

∗
)1/p

if p ∈ [1,∞[

sup
t∈N

‖v(t)‖∗ if p = ∞ .
(5.2)
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While the value of ‖~v‖p depends on the particular choice of the norm ‖ · ‖∗ on Rh×k , on
the other hand, by the equivalence of the norms defined on finite dimensional vector spaces,
the set `p(Rh×k) does not. The choice of the norm ‖ · ‖∗ can be hence specified from time
to time. From now on, we assume that a vector norm ‖ · ‖∗ has been fixed on Rl for any
l ∈ N , and, ∀M ∈ Rl1×l2 , we consider the induced operator norm

‖M‖∗ := sup
x∈Rl2\{0}

‖Mx‖∗
‖x‖∗ .

In this section, we deal with the following three cases of signal norms: p = 1 , p = 2 or
p = ∞ . As for the choice of the norm ‖ · ‖∗ , when p = 1 we assume that

‖v(t)‖∗ := ‖v(t)‖∞ = max
i=1,...,h

k∑

j=1

|vi,j(t)| ; (5.3)

when p = 2 we assume that

‖v(t)‖∗ := ‖v(t)‖2 =
√

ρ
(
v(t)′ · v(t)

)
;

when p = ∞ we assume that

‖v(t)‖∗ := ‖v(t)‖∞ = max
i=1,...,h

k∑

j=1

|vi,j(t)| .

Let us consider an input/output dynamical system of the type




x(t + 1) = f
(
x(t) , u(t)

)

y(t) = h
(
x(t)

)

x(0) ∈ Rn

u ∈ Rm, y ∈ Rq,

(5.4)

assume that (x = 0, u = 0) is an equilibrium pair, namely f(0, 0) = 0 , and that h(0) = 0 .
Such a system is denoted by Σx(0)

(
where the subscript aims at stressing the dependence

from the initial condition
)
. For a given input signal ~u = {u(t)}t∈N , it is univocally identified

the corresponding output signal ~y(~u) = {y(t)}t∈N , where




y(0) := h
(
x(0)

)

y(t) := h
(
f
(
x(t− 1) , u(t− 1)

))
for t > 0 .

There is hence an input/output relation that may be represented as an operator ςx(0) between
suitable signal sets `(u) and `(y) :

ςx(0) : `(u) → `(y)

~u 7→ ~y(~u) .
(5.5)

When such a relation is “well behaved”, the system is said to be input/output stable. More
precisely:
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Definition 22 Let p ∈ [1 , ∞] , system Σx(0) (or, equivalently, the input/output operator
ςx(0) ) is said to be `p–stable iff ∀ ~u ∈ `p(Rm) , ~y(~u) ∈ `p(Rq) .
If moreover, ∃ γ ≥ 0 and β ≥ 0 such that

∀ ~u ∈ `p(Rm) , ‖~y(~u)‖p ≤ γ‖~u‖p + β , (5.6)

then the system is said to be finite–gain `p–stable.
If there exists min {γ ≥ 0 | ∃β ≥ 0 such that relation (5.6) is satisfied } := γs , then γs is
said to be the `p–gain of the system.

The `p–stability is concerned with the input/output relation only and, in general, it does not
say anything on the properties of the internal dynamics ~x = {x(t)}t∈N . The notion of gain
is a generalization of the concept of norm of an operator to the case where ςx(0)(~0) 6= ~0 : the
affine term β in inequality (5.6) is such that ‖~y(~0)‖p ≤ β and it is called bias term.

Linear systems are a particular class of system (5.4) : let us discuss input/output stability
for these special models. In this case, it turns out to be convenient to denote by e the input
of the system. For a linear system of the type





x(t + 1) = Fx(t) + Be(t)
y(t) = Cx(t)
x(0) ∈ Rn

e ∈ Rm, y ∈ Rq,

(5.7)

it holds that y(t) = ya(t) + yf(t) , where ya(t) := CF tx(0) is the autonomous output of
the system and yf(t) :=

∑t−1
τ=0 CF t−τ−1Be(τ) is the forced output

(
which is not depending

on x(0)
)
. A sufficient condition in order that system Σx(0) is `p–stable ∀x(0) ∈ Rm and

∀ p ∈ [1 , ∞] is that F is a Schur matrix. Such a condition is not necessary in general,
nevertheless this is the only case we are interested in for our analysis.
Let us analyze the output signals ~ya and ~yf under the assumption that F is a Schur matrix.
As far as the autonomous output is concerned, it holds that limt→+∞ ya(t) = 0 with an
exponential decaying rate. More precisely, two constants b ≥ 1 and 0 ≤ r < 1 can be
computed such that

∀ t ≥ 0 , ‖F t‖∗ ≤ b rt . (5.8)

Also,

inf {r ≥ 0 | ∃ b ≥ 1 such that relation (5.8) holds} = ρ(F ) .

Therefore, ∃ β̃ ≥ 0 such that ‖ya(t)‖∗ = ‖CF tx(0)‖∗ ≤ β̃ rt
(
e.g., β̃ = ‖C‖∗ · ‖x(0)‖∗ · b

)

and ‖~ya‖p ≤ β , where

β :=





β̃
(1−rp)1/p if p ∈ [ 1,∞ [

β̃ if p = ∞ .
(5.9)
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The forced output yf(t) =
∑t−1

τ=0 CF t−τ−1Be(τ) depends linearly on the input and can be
rewritten as a convolution: yf(t) =

∑t−1
τ=0 g(t − τ)e(τ) := (~g ∗ ~e)(t) , where ~g is the impulse

response of the system, namely

g(t) =

{
0 if t = 0
CF t−1B if t ≥ 1 .

(5.10)

Let us denote by G the linear operator representing the dependence of the forced output
from the input:

G : `p(Rm) → `p(Rq)
~e 7→ ~yf(~e) = ~g ∗ ~e .

By definition,

‖G‖p := sup
~e∈`p(Rm)\{~0}

‖~yf(~e)‖p

‖~e‖p
. (5.11)

It holds that ∀ p ∈ [1,∞] , ‖G‖p < +∞ (i.e., G is continuous) and ‖G‖p is the `p–gain of
system (5.7) (see Chapter 5 of [67] for more details) . As the operator G acts between the
input and the output signal spaces, then it is invariant under change of coordinates in the
state space (and so it is its norm) .
To sum up, consider system (5.7) and suppose that F is Schur. Then, for x(0) ∈ Rm and
p ∈ [1 , ∞] , it holds that

∀~e ∈ `p(Rm) , ‖~y(~e)‖p ≤ ‖G‖p‖~e‖p + β ,

where the bias term β is provided in (5.9) and is the only quantity depending on the initial
condition x(0) .
It is useful to fix some terminology:

Definition 23 Let system (5.7) be given and assume that F is a Schur matrix. The linear
operator G : `p(Rm) → `p(Rq) is called the input/output operator associated to the system
(with p to be specified from time to time according to the problem under consideration) .
Consider the auxiliary system Σ(F,B, I) : the input/output operator associated to this system
is denoted by G(I) and is called the input/state operator associated to system (5.7) ; the
corresponding impulse response is denoted by ~g (I).

For a linear system of the type in equation (5.7) , it is possible to get rid of the dependence
on the initial condition x(0) by defining a notion of input/output stability that takes into
account the forced output only. When the `∞–norm is considered we have the following

Definition 24 Consider system (5.7) and let ~g : N→ Rq×m be its impulse response. If the
linear relation ~yf = ~g ∗ ~e defines a bounded operator

`∞(Rm) 3 ~e
G7−→ ~yf ∈ `∞(Rq) ,

then the system is said to be BIBO–stable.
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With reference to the Kalman decomposition of a linear system (see, e.g., [114]) , it is well
known that the impulse response ~g , and hence the input/output operator G , only depends
on the restriction of the system to the so called “reachable and observable” part.

Definition 25 Given system (5.7) , the eigenvalues of the reachable and observable part of
the system are called the poles of the system.
Let {λ1, . . . , λnp} ⊂ C be the set of the poles of system (5.7) and, ∀ k = 1, . . . , np , let mk ∈ N
be the algebraic multiplicity of the k–th pole. The polynomial d(z) := Πnp

k=1(z−λk)mk is called
the polynomial of the poles of the system.

Lemma 14 For a given system (5.7) , the following properties are equivalent:

1- the system is BIBO–stable;
2- the poles of the system belong to the interior of the unit ball of C ;
3- ~g ∈ `1(Rq×m) .

In particular, if system (5.7) is reachable and observable, then it is BIBO–stable if and only
if F is a Schur matrix.

Proof. See, e.g., [114] .

As a consequence of the fact that the notion of `∞–stability involves the full output signal
~y = ~ya + ~yf , there are BIBO–stable systems that are not `∞–stable1. Hence, the study of
‖G‖∞ is meaningful in the more general framework of BIBO–stable systems. On the other
hand, when dealing with `∞–stability we always assume that F is a Schur matrix: in this
case we know by the above discussion that ∀x(0) ∈ Rn , system (5.7) is `∞–stable (in par-
ticular, it is BIBO–stable) and the `∞–gain of the system coincides with ‖G‖∞ .
The control problem which consists of finding a stabilizing controller for system (5.7) , so
that the `∞–gain of the closed loop dynamics is below a desired threshold, is referred to as
the control problem in `1 . This terminology is motivated by property 3 of Lemma 14 and
by the fact that there is a relation between ‖G‖∞ and the `1–norm of ~g (this relation will
be illustrated in Corollary 6 of Section 6.1.1) .
In order to evaluate the `p–gain of a linear system, it is often useful to resort to its rep-
resentation in the frequency domain. Hence, let us briefly recall the basic facts about the
monolateral Z–transformation of a signal.
Given a signal ~v : N → Rq×m , the (monolateral) Z–transformation of ~v is defined as the
formal series

Z[~v](z) :=
+∞∑

t=0

v(t)z−t (5.12)

and it is usually denoted by V (z) . The basic properties of the Z–transformation are lineari-
ty

(
i.e., Z[c1~v1 + c2~v2](z) = c1Z[~v1](z)+ c2Z[~v2](z)

)
, the functorial property with respect to

1It is sufficient to consider a BIBO–stable system such that the pair (F, C) is observable but there exists

an eigenvalue of the non–reachable part of the system which is outside the unit ball: if x(0) is an eigenvector

corresponding to such an eigenvalue, then the autonomous output signal is divergent.
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the convolution of signals
(
i.e., Z[~v1 ∗ ~v2](z) = Z[~v1](z) · Z[~v2](z)

)
and injectivity.

For a given linear system (5.7) , let ~g be its impulse response and G(z) be the Z–transforma-
tion of ~g . Because Z[~yf ](z) = G(z)·Z[~e](z) , G(z) is called the transfer matrix of the system.
When considered as a function of the complex variable z , it is well known that

G(z) = C(zI − F )−1B .

In particular, G(z) is a strictly proper rational matrix
(
i.e., ∀ i = 1, . . . , q and ∀ j =

1, . . . , m , Gi,j(z) = ni,j(z)/mi,j(z) , where ni,j(z) and mi,j(z) are polynomials such that
deg(ni,j) < deg(mi,j)

)
. Moreover, if F is Schur, then G ∈ H∞ , where

H∞ :=
{
V : C→ Cq×m | for z ∈ C , |z| > 1 , V is analytical and bounded

}
.

H∞ is a Banach space (called Hardy space) with the norm defined by

‖V ‖∞ := sup
z∈C , |z|>1

‖V (z)‖2 .

By the “maximum modulus principle” [21] , it follows that

‖G‖∞ = max
θ∈[0,2π]

‖G(eiθ)‖2 .

Remark 17 The norm ‖G‖∞ should not be confused with the norm ‖G‖∞ : the former is the
`∞–gain of the system and it is concerned with the input/output operator defined on `∞(Rm)
(hence, in the time domain) ; the latter is the H∞–norm of the transfer matrix (hence, in
the frequency domain) and, actually, it is the `2–gain of the system (see Proposition 13 in
Section 5.3) .

Finally, let us briefly review some basic facts on the relation between state space and in-
put/output descriptions of linear systems

(
i.e., representation as in equation (5.7) or through

the transfer matrix G(z)
)
. A more detailed and thorough presentation can be found in [114] .

For any given strictly proper rational matrix G(z) , it is well known by realization theory that
there exists a finite dimensional linear system of the type in equation (5.7) whose transfer
matrix is G(z) . Given two linear systems Σ(F1, B1, C1) and Σ(F2, B2, C2) sharing the same
transfer matrix G(z) , the reachable and observable part of the two systems coincide but for
a linear change of coordinates . In view of these facts, the notion of pole of a system given in
Definition 25 applies without ambiguity both to a linear system as in equation (5.7) or to a
rational transfer matrix G(z) .

Let us introduce the nonlinear input/output relation that will be of primary importance
for our study. A static nonlinearity is a non–dynamical input/output relation of the type
y = h(u) for some h : Rm → Rq . We can associate to such a h an input/output operator as
in equation (5.5) , where ~y(~u) :=

{
h
(
u(t)

)}
t∈N , and to study the `p–stability of this operator

according to Definition 22 . With slight abuse of terminology, the `p–stability properties of
this operator are referred to as the `p–stability properties of h . If ∃ γ∗ ≥ 0 and β∗ ≥ 0 such
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that ∀u ∈ Rm , ‖h(u)‖∗ ≤ γ∗‖u‖∗ + β∗ , then h is finite–gain `∞–stable and relation (5.6)
is satisfied with γ = γ∗ and β = β∗ . If h(0) 6= 0 then ∀ p ∈ [1 , ∞[ , h is not `p–stable.
If instead β∗ = 0 , then ∀ p ∈ [1 , ∞] and ∀ ~u ∈ `p(Rm) , ‖~y(~u)‖p ≤ γ∗‖~u‖p (in particular,
γ∗ does not depend on p , it only depends on the vector norm ‖ · ‖∗ ) . This motivates the
following

Definition 26 Let p ∈ [1,∞] , a function h : Rm → Rq is said to be unbiased with classical2

`p–gain γ iff ∀u ∈ Rm , ‖h(u)‖p ≤ γ‖u‖p .

We conclude this section with the statement of one classical version of the small–gain theorem
for the `p–stability analysis of discrete–time linear systems under nonlinear static output
feedback:

Proposition 12 (Small–gain for `p–stability) Consider the linear system (5.7) and as-
sume that F is a Schur matrix. Consider on Rm and Rq the norm ‖ · ‖p̂ , for some
p̂ ∈ [1 , ∞] , and assume that the vector norm ‖ · ‖∗ appearing in equation (5.2) to define the
`p–norm of the input and output signals ~e and ~y is ‖ · ‖p̂ . Denote by γs the corresponding
`p–gain of the system. Let ϕ : Rq → Rm be a static nonlinearity which is unbiased with
classical `p̂–gain γ . If γs · γ < 1 , then the system

{
x(t + 1) = Fx(t) + Bϕ

(
Cx(t)

)
+ Be

y(t) = Cx(t)

is `p–stable.

Proof. See, e.g., [69] . It is a consequence of the fact that the small–gain condition implies
that the map ~ϕ ◦ G : `p(Rm) → `p(Rm) , where ~ϕ(~y) :=

{
ϕ
(
y(t)

)}
t∈N , is a contraction with

~0 being its unique fixed point.

In this thesis we deal with generalized versions of this proposition suitable to study practical
stability, hence including also the analysis of the internal dynamics. We consider the two
cases p = 2 (in Section 5.3) and p = ∞ (in Section 6.2) . In both cases, a reference to the
computation (or the estimation) of ‖G‖p is included.

5.3 `2/`2 small–gain for practical stability of multi–input sys-

tems

Before stating the generalized small–gain theorem for practical stability, let us recall the basic
facts on the `2–gain of a linear system and let us introduce a generalized notion of gain for
a static nonlinearity.

2In opposition to the generalized notions of gain that are defined later on.
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Proposition 13 ( `2–gain and bounded real lemma) Consider the linear system (5.7)
and assume that F is a Schur matrix. Then the `2–gain of the system is equal to ‖G‖∞ .
For γ > 0 , ‖G‖∞ < γ if and only if there exists a unique P ≥ 0 such that





P = F ′PF + F ′PB(γ2I −B′PB)−1B′PF + C ′C

γ2I −B′PB > 0

F + B(γ2I −B′PB)−1B′PF is Schur .

(5.13)

Moreover, if the pair (F, C) is observable, then P > 0 .

Proof. See [33] and [129] .

Motivated by the discussion in Section 5.1 , let us define a generalized notion of gain in `2 .

Definition 27 Let %0 > 0 and γe ≥ 0 . A map

ϕ : Rp → Rm

y 7→ ϕ(y)

is said to have %0–external gain γe iff ‖y‖2 > %0 ⇒ ‖ϕ(y)‖2 ≤ γe‖y‖2 .

For a fixed value of %0 > 0 , if γ̃e is a %0–external gain of ϕ , then also any γe > γ̃e is a
%0–external gain of ϕ . The smallest feasible value for γe to be a %0–external gain is

γe(%0) = sup
‖y‖2>%0

‖ϕ(y)‖2

‖y‖2
.

Sometimes we will refer to the %0–external gain of ϕ : with this terminology we mean γe(%0) .
As γe is a non increasing function, if γe(%0) < +∞ , a smaller value for the external gain may
be obtained by increasing %0 . However, there are important cases where such a decreasing
property does not hold (we will see examples later on in the class of logarithmic quantizers) ,
we hence give the following

Definition 28 A map ϕ : Rp → Rm is said to be standard with natural external gain γe iff
∃ %̄0 > 0 such that

∀ %0 > %̄0 , sup
‖y‖2>%0

‖ϕ(y)‖2

‖y‖2
= γe .

Notice that, although a natural value of the external gain is associated to a standard non
linearity ϕ , decreasing %0 below a certain threshold makes in general the %0–external gain
increase (see Examples 19 and 21 in Section 5.3.2) .

5.3.1 Practical stability analysis in H∞

The main result in this section provides a sufficient condition for practical stability in terms of
a generalized small–gain theorem, it also includes a quantitative analysis of practical stability.
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Theorem 9 (Small–gain in H∞ : (X0,Ω)–stability analysis) Let us consider a linear
system 




x(t + 1) = Fx(t) + Be(t)
y(t) = Cx(t)
x ∈ Rn, e ∈ Rm, y ∈ Rp,

(5.14)

where F is a Schur matrix. Let G(z) be the transfer matrix of the system and γs := ‖G‖∞
be the `2–gain of the system. For a given qe : Rp → Rm , consider the control law

e(t) = qe

(
y(t)

)
:

the corresponding closed–loop dynamics is

x(t + 1) = Fx(t) + Bqe

(
Cx(t)

)
. (5.15)

Suppose that ∃ %0 > 0 , γe ≥ 0 and E0 ≥ 0 such that the following conditions hold:

a) qe has %0–external gain γe ;
b) if ‖y‖2 ≤ %0 , then ‖qe(y)‖2 ≤ E0 ;
c) γs · γe < 1 .

Then a matrix Rn×n 3 P > 0 and a constant r2
i > 0 can be explicitly determined such that

the following properties hold for system (5.15) :

ı) ∀ r2 ≥ r2
i , the ellipsoid EP,r2 is positively invariant;

ıı) ∀ r2
1 ≥ r2

2 > r2
i the system is

(EP,r2
1
, EP,r2

2

)
–stable.

Proof. Let γ > γs be such that γ·γe < 1 . For Rn×n 3 Q > 0 , let GQ(z) := Q
1
2 (zI−F )−1B .

Consider Q > 0 such that

γs + ‖GQ‖∞ < γ (5.16)
(
this can be achieved, for instance, with Q = λI and sufficiently small λ > 0

)
. With

C̃ :=

(
C

Q
1
2

)
,

let

G̃(z) := C̃(zI − F )−1B =

(
G(z)
GQ(z)

)
.

Since ‖G̃‖∞ ≤ ‖G‖∞ + ‖GQ‖∞ = γs + ‖GQ‖∞ , then ‖G̃‖∞ < γ . By Proposition 13 , as F

is Schur and (F, C̃) is observable, ∃P > 0 such that system (5.13) is satisfied. In particular,
such a P satisfies the discrete–time algebraic Riccati equation

P = F ′PF + F ′PB(γ2I −B′PB)−1B′PF + C ′C + Q . (5.17)
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Let V (x) := x′Px and ∆V (x) := V (x+)− V (x) (the dependence on t is omitted) , then

∆V (x) = 2x′F ′PBe + e′B′PBe− x′F ′PB(γ2I −B′PB)−1B′PFx− y′y − x′Qx =

= 2x′F ′PBe− e′(γ2I −B′PB)e + γ2e′e− y′y − x′Qx−
−x′F ′PB(γ2I −B′PB)−1B′PFx =

= γ2e′e− y′y − x′Qx− (e− e∗)′(γ2I −B′PB)(e− e∗) ,

where
e∗ = (γ2I −B′PB)−1B′PFx .

Hence,
∆V (x) ≤ γ2e′e− y′y = γ2‖e‖2

2 − ‖y‖2
2 .

Let x be such that y = Cx satisfies ‖y‖2 > %0 : by the hypothesis a, ‖e‖2
2 ≤ γ2

e‖y‖2
2 ,

therefore
∆V (x) ≤ ‖y‖2

2

(
(γ · γe)2 − 1

)
< 0 . (5.18)

Assume instead that ‖y‖2 ≤ %0 . With3

S := F ′PB(γ2I −B′PB)−1B′PF + C ′C + Q > 0 , (5.19)

P satisfies the Lyapunov equation

F ′PF − P = −S (5.20)
(
see equation (5.17)

)
. By the hypothesis b, ‖e‖2 ≤ E0 , we can hence follow arguments that

are similar to those we used to prove Proposition 9 . Indeed, ∆V (x) can be written as

∆V (x) = −x′Sx + 2x′F ′PBe + e′B′PBe

so that

∆V (x) ≤ −λmin(S)‖x‖2
2 + 2E0‖F ′PB‖2 · ‖x‖2 + E2

0 ‖B′PB‖2 := f(‖x‖2) . (5.21)

Thus, if ‖x‖2 > R , where R is defined as in equation (3.51) by
{

R = E0
λmin(S) α(P ) , where

α(P ) = ‖F ′PB‖2 +
√
‖F ′PB‖2

2 + λmin(S)‖B′PB‖2 ,

then ∆V (x) < 0 . Therefore, the region where ∆V (x) may be positive is D0 := BR ∩
{x | ‖Cx‖2 ≤ %0} . In order to analyze the behavior of the trajectories starting from D0 ,
∀ ε ≥ 0 let Dε := BR+ε ∩ {x | ‖Cx‖2 ≤ %0} and

M2
ε := max

x∈Dε

V (x+) .

3At this stage, the matrix Q > 0 is needed to guarantee that S > 0 . We will be back on the importance

of calling Q into the question later on.
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It holds that ∀ r2 ≥ M2
0 , the ellipsoid EP,r2 is invariant. In fact,

EP,r2 = (EP,r2 ∩ D0) ∪ (EP,r2 \ D0)

and x+ ∈ EP,r2 if and only if V (x+) ≤ r2 : if x ∈ EP,r2 ∩ D0 , then V (x+) ≤ M2
0 ≤ r2 ; if

instead x ∈ EP,r2 \ D0 , then V (x+) < V (x) ≤ r2 .
Let us provide an upper bound for M2

ε . As in the proof of Proposition 9 , for x ∈ Dε ,

V (x+) = ∆V (x) + V (x) =

= x′(P − S)x + 2x′F ′PBe + e′B′PBe ≤
≤ λmax(P − S)‖x‖2

2 + 2E0‖F ′PB‖2 · ‖x‖2 + E2
0‖B′PB‖2 := g(‖x‖2) .

By equation (5.20) , λmax(P − S) = λmax(F ′PF ) ≥ 0 , then max
x∈BR+ε

g(‖x‖2) = g(R + ε) .

Therefore4,
max
x∈Dε

g(‖x‖2) ≤ g(R + ε)

and
∀ ε ≥ 0 , M2

ε ≤ g(R + ε) . (5.22)

In particular
(
following the same arguments that led to equation (3.52)

)
,

M2
0 ≤ g(R) = R2

(
λmax(P − S) + λmin(S)

)
.

Hence, the proof of part ı is achieved with

r2
i := R2

(
λmax(P − S) + λmin(S)

)
, where





R = E0
λmin(S) α(P ) ,

α(P ) = ‖F ′PB‖2 +
√
‖F ′PB‖2

2+ λmin(S)‖B′PB‖2 ,

P is the solution of equation (5.17) and

S = F ′PB(γ2I −B′PB)−1B′PF + C ′C + Q .

(5.23)

To prove part ıı let us first show that the following claim holds true: ∀ ε > 0 and ∀x(0) ∈
Rn \ Dε , ∃ t > 0 such that x(t) ∈ Dε . In fact, with C1 := {x | ‖Cx‖2 > %0} and C2 :=
{x | ‖Cx‖2 ≤ %0 and ‖x‖2 > R + ε} , it holds that Rn \ Dε = C1 ∪ C2 . By equation (5.18) ,
if x ∈ C1 then ∆V (x) < %2

0

(
(γ · γe)2 − 1

)
< 0 ; if instead x ∈ C2 , then, by equation (5.21) ,

∆V (x) ≤ f(R + ε) < 0 . Hence, with δ := max
{
f(R + ε) ; %2

0

(
(γ · γe)2 − 1

)}
< 0 , it holds

that
∀x ∈ Rn \ Dε , ∆V (x) ≤ δ < 0 :

the convergence in finite time to Dε easily follows because V is a positive definite quadratic
form.

4Actually, if C ∈ Rp×n with p < n , then max
x∈Dε

g(‖x‖2) = g(R + ε) . In fact, in this case {x | ‖Cx‖2 ≤ %0}
is unbounded and hence ∃x ∈ Dε such that ‖x‖2 = R + ε .
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Given r2
1 ≥ r2

2 > r2
i , as the invariance of both EP,r2

1
and EP,r2

2
has already been verified,

to prove
(EP,r2

1
, EP,r2

2

)
–stability we have only to show that ∀x(0) ∈ EP,r2

1
, ∃ t > 0 such that

x(t) ∈ EP,r2
2
. Since g is a continuous function and g(R) = r2

i < r2
2 , ∃ ε > 0 such that

g(R + ε) ≤ r2
2 . By the claim, ∀x(0) ∈ EP,r2

1
, ∃ t ≥ 0 such that x(t) ∈ Dε , therefore, by

definition of M2
ε , it holds that x(t + 1) ∈ EP,M2

ε
. The thesis follows because EP,M2

ε
⊆ EP,r2

2
:

in fact, by equation (5.22) , M2
ε ≤ g(R + ε) ≤ r2

2 .

A classical version of the small–gain theorem is a particular case of Theorem 9 , indeed:

Corollary 5 (Classical small–gain in H∞ for asymptotic stability) If ∀ y ∈ Rp ,
‖qe(y)‖2 ≤ γe‖y‖2 and γs · γe < 1 , then x = 0 is a globally asymptotically stable equi-
librium for system (5.15) .

Proof. By the assumption on qe , ∀ %0 > 0 , qe has %0–external gain γe and ‖y‖2 ≤ %0 ⇒
‖qe(y)‖2 ≤ γe · %0 := E0(%0) . In particular, qe(0) = 0 so that 0 is an equilibrium. In the
proof of Theorem 9 we have shown that

∀x ∈ Rn \ BR , ∆V (x) < 0 ,

where
R = E0(%0)

α(P )
λmin(S)

.

Since lim%0→0 E0(%0) = 0 and %0 can be chosen arbitrarily small, then ∀x ∈ Rn \ {0} ,
∆V (x) < 0 .

If qe is bounded in norm, the practical stability analysis becomes simpler as there is no need
to resort to small–gain arguments.

Proposition 14 (Uniformly bounded qe ) Assume that ∀ y ∈ Rp , ‖qe(y)‖2 ≤ E0 . For
any Rn×n 3 S > 0 , let P be the solution of the Lyapunov equation

F ′PF − P = −S

and 



r2
i := R2

(
λmax(P − S) + λmin(S)

)
, where

R = E0
λmin(S) α(P ) , and

α(P ) = ‖F ′PB‖2 +
√
‖F ′PB‖2

2+ λmin(S)‖B′PB‖2 .

Then the following properties hold for system (5.15) :

ı) ∀ r2 ≥ r2
i , the ellipsoid EP,r2 is positively invariant;

ıı) ∀ r2
1 ≥ r2

2 > r2
i the system is

(EP,r2
1
, EP,r2

2

)
–stable.

Proof. Part ı is a direct consequence of Proposition 9 .
The proof of part ıı can be obtained with slight modifications of the proof of Theorem 9.ıı .
Specifically, it is sufficient to replace Dε with BR+ε (and, accordingly, to modify the definition
of Mε ) . Correspondingly, one has to change the statement of the claim needed to prove
convergence as follows: ∀ ε > 0 and ∀x(0) ∈ Rn \ BR+ε , ∃ t > 0 such that x(t) ∈ BR+ε .
The proof of this fact is trivial because ∀x(0) ∈ Rn \ BR+ε , ∆V (x) ≤ f(R + ε) < 0 .
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5.3.2 Practical stabilization of quantized input systems via H∞–control

Let us show how Theorem 9 and Proposition 14 can be used to synthesize practically stabi-
lizing controllers and to analyze the resulting closed loop dynamics for quantized input linear
systems. Consider a system {

x+ = Ax + Bu

x ∈ Rn, u ∈ U ⊂ Rm,
(5.24)

where the pair (A, B) is supposed to be stabilizable. For the moment, the quantized control
set U is assumed to be given, nevertheless, most of the theory we are going to present can
be easily adjusted on the case where also U can be chosen (see also Remark 24 at the end
of this section and Example 24 in Section 5.3.3).
The goal is to design a constant feedback matrix K ∈ Rm×n and an input quantizer qU :
Rm → U so that the control law

u(x) = qU(Kx)

practically stabilizes system (5.24) .
With the quantization error qe : Rm → Rm defined by qe(y) = qU(y) − y (see Definition 4
in Section 2.1) , the closed–loop dynamics induced by u(x) is

x+ = (A + BK)x + Bqe(Kx) . (5.25)

First notice that, if K is such that A + BK is Schur, then we are in the right framework to
apply Theorem 9 or Proposition 14 : it is sufficient to let F := A + BK and C := K .
Let us begin by considering the simple case in which the quantization error is uniformly
bounded. The typical example where this property occurs is provided by systems under
uniform input quantization (see Definition 7 in Section 2.1) . In this case, the suitable tool
to face the problem is Proposition 14 . All the details can be found in the discussion and in
the examples presented in Section 3.1.4 . The result presented in that section must be simply
combined with the convergence property stated in Proposition 14.ıı .
Let us consider now the general case. Suppose that qe is such that ∃ %0 > 0 , γe ≥ 0
and E0 ≥ 0 as in the hypotheses a–b of Theorem 9 (we will be back on this later on) . If
K ∈ Rm×n is such that also hypothesis c is satisfied, then Theorem 9 guarantees the practical
stability of the closed loop system (5.25) and provides the final invariant ellipsoid EP,r2

i
to

which convergence can be ensured5. Therefore, the problem is now reduced to find such a
K . In other words, with GK(z) := K(zI − A − BK)−1B , we have to solve the following
problem: given γ∞ ≤ 1

γe
, find K ∈ Rm×n such that

{
A + BK is Schur

‖GK‖∞ < γ∞ .

(5.26a)

(5.26b)

The solution of the practical stabilization problem and the analysis of the resulting closed
loop dynamics can be summarized in the following theoretical procedure:

5To be really precise, we have proved the convergence to any ellipsoid of the type EP,r2
i +ε , ∀ ε > 0 .
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Procedure 1 (Practical stabilization and closed loop analysis) Given system (5.24) ,
do:

1. Input quantization: fix an input quantizer qU and analyze the corresponding quantiza-
tion error qe by providing γe and E0 ;

2. Control synthesis: let γ∞ ≤ 1/γe and find K ∈ Rm×n that solves problem (5.26) ;

3. Closed loop analysis: apply Theorem 9 with F := A + BK and C := K .

(a) Consider the Riccati equation (5.17) . Choice of the parameters γ and Q : with
γs = ‖GK‖∞ , let γ be such that γs < γ < 1

γe
and fix Rn×n 3 Q > 0 such that

condition (5.16) is satisfied. Find P that solves equation (5.17) ;

(b) Compute r2
i

(
which is depending on E0

)
according to equation (5.23) ;

4. Final result: ∀ r2
1 ≥ r2

2 > r2
i , system (5.24) controlled with u(x) = qU

(
Kx

)
is(EP,r2

1
, EP,r2

2

)
–stable.

In order to implement such a procedure, a deeper analysis of steps 1 , 2 and 3a is needed.
Step 1 is essentially a geometry issue whose study is postponed to the end of the discussion
of the other two steps.

• Control synthesis: implementation of step 2

Problem (5.26) is a standard control problem in H∞ and a wide literature is available for
that (see, inter alia, [59, 116, 33]) . Actually, the formulation in (5.26) is a particular case
of the so called state feedback H∞ control problem known as the “actuator disturbance”
case (see, e.g., [13]) . Namely, the noise term directly affects the input of the system or, with
an equivalent terminology, there is an input–matched disturbance term. We recall here a
classical result which is the particularization to our case of one of the several solutions for
the general state feedback problem.

Definition 29 A matrix A is said to be unmixed iff all its eigenvalues λ(A) are such that
|λ(A)| 6= 1 .

Lemma 15 (The actuator disturbance case) Consider a discrete–time system




x+ = Ax + B(u + e)
y = u

x ∈ Rn, u ∈ Rm

and assume that the matrix A is unmixed. With u = Kx the dynamics gets
{

x+ = (A + BK)x + Be

y = Kx .
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Let GK(z) = K(zI − A − BK)−1B be the corresponding transfer matrix. There exists
K ∈ Rm×n such that A + BK is Schur and ‖GK‖∞ < γ∞ if and only if there exists
Rn×n 3 P ∗ ≥ 0 such that the following conditions hold:





P ∗ = A′
(
P ∗ − γ2∞−1

γ2∞
P ∗B

(
I + γ2∞−1

γ2∞
B′P ∗B

)−1
B′P ∗

)
A

(
I −BB′(I + γ2∞−1

γ2∞
P ∗BB′)−1

P ∗
)
A is Schur

γ2
∞I −B′P ∗B > 0 .

(5.27a)

(5.27b)

(5.27c)

In this case, a feasible choice for K is the central H∞ controller, namely

Kc(γ∞) := −B′(I + γ2∞−1
γ2∞

P ∗BB′)−1
P ∗A . (5.28)

Proof. See e.g., [33, 117, 24] . Here we limit ourselves to notice that condition (5.27b) is
tantamount to requiring that A + BKc(γ∞) is Schur.

If A is Schur the problem is trivial because K = 0 ensures ‖GK‖∞ = 0 . Hence, unless
otherwise stated, from now on we always assume that the matrix A is not Schur.
Let us suppose that A is unmixed: in order that conditions (5.27) be satisfied, it is necessary
that γ∞ > 1 : in fact, for γ∞ = 1 , equation (5.27a) becomes P ∗ = A′P ∗A and, because A

is unmixed, the only positive semi–definite solution is P ∗ = 0 . For γ∞ = 1 and P ∗ = 0 ,
condition (5.27b) becomes A is Schur6. For γ∞ > 1 , ∃P ∗ ≥ 0 such that conditions (5.27a)
and (5.27b) hold if and only if the pair (A,B) is stabilizable and A is unmixed

(
see [117]

)
.

However, condition (5.27c) might not be satisfied for some γ∞ > 1 . Hence, the problem
raises of the computation of

γinf := inf {γ∞ > 1 | ∃P ∗ ≥ 0 such that conditions (5.27) hold } .

For single–input systems, it has been proved in [51] that

γinf = Πλu(A)∈Su(A)|λu(A)| , (5.29)

where Su(A) :=
{
λ(A) | |λ(A)| > 1

}
. In other words, the supremum of the feasible gains

for the quantization error, that is 1
γinf

, only depends on the unstable poles of the open loop
system. As expected, the more unstable the system is, namely the larger Πλu(A)∈Su(A)|λu(A)|
is, the smaller the allowed values for γe are. Indeed, smaller values of γe correspond to input
sets more densely quantized.
For multi–input systems it has been proved in [13] that

1 ≤ γinf ≤ 1 +
√

1 + λ∞ := γA,B , (5.30)

6Actually, the property that if A is not Schur, then ‖GK‖∞ ≥ 1 holds true also if A is not unmixed (see

Lemma 16) .
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where λ∞ = ‖B′P∞B‖2 and P∞ is the stabilizing solution of the standard Riccati equation

P = A′
(
P − PB

(
I + B′PB

)−1
B′P

)
A .

It will be shown in Example 23 in Section 5.3.3 that, for multi–input systems, γinf can be
strictly smaller than Πλu(A)∈Su(A)|λu(A)| . That is, to obtain practical stability properties for
a multi–input system, a lower input quantization density is tolerated (i.e., a larger external
gain γe is allowed) than for a single–input system with the same amount of open loop
instability7.
To sum up, for systems Σ(A,B,U) with A unmixed, Lemma 15 provides the necessary and
sufficient condition for the existence of a solution K to the H∞ control problem (5.26) .
An explicit solution is the central H∞ controller K = Kc(γ∞) . For single–input systems,
problem (5.26) is feasible if and only if

γ∞ ∈
]
Πλu(A)∈Su(A)|λu(A)| , 1

γe

]
. (5.31)

For multi–input systems, by inequalities (5.30) , a sufficient condition for the feasibility of
problem (5.26) is

γ∞ ∈
]
γA,B ,

1
γe

]
,

a necessary condition is γ∞ ∈
]
1 , 1

γe

]
or, equivalently, γe < 1 .

Remark 18 Expression (5.29) had already been found in [39] with reference to the search
of the coarsest quantizer guaranteeing asymptotic stability. Indeed, in that paper a method
equivalent to the approach presented in [51] , but formally different, was used. The same
expression also appears in the stabilizability condition under bit–rate constraint presented, for
instance, in [89, 126, 80]

(
see equation (1.2) in Section 1.2 ; the continuous time version of

this condition is the one in equation (3.40) of Section 3.1.3 , see also [5]
)
.

Remark 19 (Recalibration of the Riccati equation) When problem (5.26) is solved by
means of system (5.27) , not only one obtains ‖GK(γ∞)‖∞ < γ∞ , but in some cases such a
norm can be significantly smaller than γ∞ . This phenomenon may be undesirable because
the reduction of the H∞–norm of the system can result in the increase of the H2–norm.
Therefore, one may be interested in using Lemma 15 with the purpose of obtaining a closed
loop system with a H∞–norm approximately equal to a specified value γ̄ . In this case, one
has to solve system (5.27) with some proper γ∞ > γ̄ . The determination of such a γ∞ is
referred to in the literature as the recalibration of the Riccati equation. A thorough reference
for this problem is [13] .

Remark 20 (Algorithmic computation of γinf ) If A is unmixed and not Schur, thanks
to Lemma 15 , an easy algorithm for the computation of γinf can be carried out:

7Notice that we are only talking about the dispersion of the control values, we are not comparing the

number of control values needed to obtain a desired practical stability objective.
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• Let γ
(0)
0 := 1 and γ

(0)
1 := γA,B + ε (for any ε > 0 ) ;

• Assume that γ
(h)
0 and γ

(h)
1 are given, let us construct γ

(h+1)
0 and γ

(h+1)
1 .

Let γ(h+1) := γ
(h)
0 +γ

(h)
1

2 and try to solve system (5.27) with γ∞ = γ(h+1) :

– If system (5.27) is not feasible, let γ
(h+1)
0 := γ(h+1) and γ

(h+1)
1 := γ

(h)
1 ;

– If system (5.27) is feasible, let γ
(h+1)
0 := γ

(h)
0 and γ

(h+1)
1 := γ(h+1) .

It holds that, ∀h ∈ N , γ
(h)
0 ≤ γinf < γ

(h)
1 : this follows by Lemma 15 because, ∀h ∈ N ,

system (5.27) is not feasible for γ∞ = γ
(h)
0 and it is feasible for γ∞ = γ

(h)
1 . This property

holds for h = 0 thanks to inequality (5.30) , and for h ≥ 1 by construction. Thus,

lim
h→+∞

γ
(h)
1 = γinf .

Using equation (5.28) , the algorithm can also incorporate a sequence K(h) := Kc

(
γ

(h)
1

)
of

stabilizing control gains such that

∀h ∈ N , γinf ≤ ‖GK(h)‖∞ < γ
(h)
1 .

Moreover, we can take advantage of the fact that ‖GK(h)‖∞ < γ
(h)
1 to reduce the number

of iterations needed to reach a suitable approximation of γinf . To this end, in case that
system (5.27) is feasible, the updating rule of γ

(h)
1 can be modified as follows:

• – if system (5.27) is feasible, let γ
(h+1)
0 := γ

(h)
0 and, with γ̃(h+1) := ‖GKc(γ(h+1))‖∞ ,

let γ
(h+1)
1 be any real number such that γ̃(h+1) < γ

(h+1)
1 < γ(h+1) .

If A is not unmixed, then Lemma 15 cannot be applied for the implementation of step 2
of the practical stabilization procedure. In this case, one has to resort to other techniques
allowing one to solve problem (5.26) : a reference including a detailed treatment for this case
is [59] . Here we limit ourselves to notice that also in this case a necessary condition in order
that problem (5.26) is feasible is that γe < 1 , in fact:

Lemma 16 If A is not Schur and K ∈ Rm×n is such that A + BK is Schur, then

‖GK‖∞ ≥ 1 .

Proof. Assume that there exists K such that A + BK is Schur and γs := ‖GK‖∞ < 1 .
Let qU(y) ≡ 0 , then qe(y) = qU(y)− y = −y and ∀ y ∈ Rm, ‖qe(y)‖2 = γe‖y‖2 with γe = 1 .
Therefore, by Corollary 5 , system x+ = (A + BK)x + Bqe(Kx) is asymptotically stable.
But x+ = (A + BK)x + Bqe(Kx) = (A + BK)x−BKx = Ax that contradicts the fact that
A is not Schur.

Remark 21 Given a quantized set U ⊂ Rm and any input quantizer qU : Rm → U , the
classical `2–gain of the corresponding quantization error qe is greater than or equal to 1 .
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In fact, since 0 ∈ U is an isolated point (in fact, U is discrete) , ∃ z ∈ Rm \ {0} such that
argmin

u∈U
‖u− z‖2 = 0 , therefore

‖qe(z)‖2

‖z‖2
=
‖qU(z)− z‖2

‖z‖2
≥ ‖0− z‖2

‖z‖2
= 1 .

This fact, together with Lemma 16 , implies that if A is not Schur, it is not possible to
design a controller qU(Kx) so that the classical small–gain condition given in Corollary 5
is satisfied. This is not surprising as we know that asymptotic stabilization of an open loop
unstable linear system by means of a quantized control law is not possible (see Example 2 in
Section 2.3) .

• Closed loop analysis: implementation of step 3a

The implementation of step 3a requires some indications on the way to choose the parameters
γ and Q to be considered in equation (5.17) . Different choices of these parameters give rise
to different results of the practical stability analysis. Some heuristic rules are provided in
order to reduce conservativeness in the practical stability analysis.
Remind that γs = ‖GK‖∞ . We have observed that, as γ varies in

]‖GK‖∞ , 1
γe

[
, the

solution P of equation (5.17) changes slowly. Then, according to equation (5.23) , the size of
the final invariant ellipsoid EP,r2

i
mainly depends on the choice of Q > 0 . In particular, the

value of λmin(S) appearing in the denominator of the expression for r2
i is determined by Q :

the more λmin(S) is large, the more the final ellipsoid is small. Since S is a matrix of the
form S = Q + W (P, γ)

(
where W (P, γ) is a positive (semi) definite matrix

)
, then, with the

purpose of increasing λmin(S) , γ and Q > 0 can be chosen so as to maximize λmin(Q) . To
this end, a suboptimal choice consists of taking γ ∈ ]

γs , 1
γe

[
and letting Q = λ · In , with

λ > 0 such that ‖Gλ·In‖∞ < γ− γs . Clearly, the larger is γ , the larger is λmin(Q) = λ . We
can hence obtain a better result by choosing γ and Q > 0 as follows: fix ε > 0 such that
ε ¿ 1

γe
− γs and let

γ :=
1
γe
− ε .

Then, according to condition (5.16) , let

Q := argmax


Rn×n 3 X > 0
‖GX‖∞ ≤ γ − γs − ε

λmin(X) . (5.32)

We have also observed that, when K is such that ‖GK‖∞ is close to γinf and Q ' 0 , then
λmin(S) ' λmin(Q) ' 0 so that the final invariant ellipsoid provided by Theorem 9 can be
really large. This situation can not be avoided if γinf < 1/γe but γinf · γe ' 1 : in this case,
in fact, ‖GK‖∞ ' γinf and Q ' 0 (see Fig. 5.2) . This is consistent with the fact that, in
this case, γs · γe ' 1 (see case 2 of Example 22 in Section 5.3.3) . As it will be discussed in
Remark 24 , it is important to take this fact into account when Theorem 9 is employed to
deal with a stabilization problem in which the choice of the quantized set U is part of the
design.
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-r r r

γinf γs 1/γe

γ

Figure 5.2: Representation of the mutual relations between γinf , γs = ‖GK‖∞ , γ
(
appearing

in equation (5.17)
)

and 1/γe in the implementation of step 3a.
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Figure 5.3: Logarithmic quantization of R , the behavior of |qe| for θ = 1.8 .

• Input quantization: implementation of step 1

Let us go back to the analysis of the external gain of the quantization error qe and to the
possibility of satisfying the hypotheses a–b of Theorem 9 . The analysis of qe consists of two
steps: in order to determine an external gain, one has to study the function

Rm \ {0} 3 y 7→ γ(y) :=
‖qe(y)‖2

‖y‖2

and, for fixed positive values of %0 , to find an upper bound for sup
‖y‖2>%0

γ(y) ; in order to

determine the absolute quantization error E0 near 0 , one has to find an upper bound for
sup

‖y‖2≤%0

‖qe(y)‖2 . This study, at least theoretically, can be done for any arbitrarily assigned

input set U and input quantizer qU : Rm → U . Some typical examples of input quantizers
are considered below. For the sake of clarity of presentation, only the results are presented
while all the technical details can be found in Appendix A.4.1 .

Example 19 (The logarithmic quantization of RRR) Let qU : R → U be a logarithmic
quantization of R with parameters (u0, θ) , where u0 > 0 and θ > 1 (see Definition 8 in
Section 2.1) . The corresponding quantization error qe(y) = qU(y)−y is standard with natural
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external gain γe = θ−1
θ+1 . More precisely, qe satisfies the hypotheses a–b of Theorem 9 with





%0 = u0(θ+1)
2θ

γe = θ−1
θ+1

E0 = u0
2

(5.33)

and u0(θ+1)
2θ is the smallest value of %0 so that the corresponding external gain is the natural

one.
As it is required for the feasibility of problem (5.26) , it holds that γe < 1 .
Actually, the analysis of qe can be done according to the variation of %0 . In general, changes
of %0 induce changes of the parameters E0 and γe . Consequently, Procedure 1 is modified
beginning from step 1 and different closed loop systems having different practical stability
properties may be obtained. In particular, the size of the final invariant ellipsoid EP,r2

i
depends

on these parameters. Let us analyze the way the final invariant set EP,r2
i

changes with respect
to the case where %0 takes the value in equation (5.33) . As qe is standard, the %0–external
gain does not change if %0 > u0(θ+1)

2θ . On the contrary, the absolute quantization error near
the origin

E0(%0) := sup
‖y‖2≤%0

‖qe(y)‖2

is non decreasing with %0 and lim%0→+∞E0(%0) = +∞ . This behavior reflects on the size of
the final invariant ellipsoid EP,r2

i
, in fact: since the external gain is constant, the matrix P

can be held constant (i.e., steps 2 and 3a of Procedure 1 do not vary by changing %0 ) ; on the
other hand r2

i increases quadratically with E0

(
see equation (5.23)

)
. If instead %0 < u0(θ+1)

2θ ,
then, as %0 decreases, the %0–external gain increases until it reaches the maximal value equal
to 1 for %0 = u0

2 (see Fig. 5.3 as well as Fig. A.2 in Appendix A.4.1 where all the details are
given) . Whilst, correspondingly, the absolute quantization error remains constant. Hence,
the only effect of decreasing %0 is that of restricting the range of feasible choices for γ in
step 2 of Procedure 1 . Thus, there is no improvement in reducing %0 . The bottom line is
that the least conservative practical stability result is obtained by choosing γe and E0 for
step 1 of Procedure 1 according to equation (5.33) .

The problem consisting of tuning the parameters defining the control set U so that desired
values of E0 and %0–external gain γe are obtained will be referred to as the inverse problem.
This question is important when the control design includes also the possibility of choosing
the quantized set U (see Remark 24 for a discussion on these problems and Example 24 in
Section 5.3.3) . As far as the “inverse problem” for the logarithmic quantization of R is
concerned, both the external gain γe and the absolute quantization error near the origin E0

can be made arbitrarily small by choosing θ sufficiently close to 1 and u0 sufficiently close
to 0 , respectively. ♣

There are two main types of quantized multi–input sets depending on whether U ⊂ Rm is
in the form of a cartesian product, that is U = U 1 × · · · × Um (with U i ⊂ R ), or not. An
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in–depth discussion on the main differences between the two structures is given in Remark 22
at the end of Example 21 . Here we only recall that if U is in the form of a cartesian product,
then it is possible to deal with input quantizers qU acting separately on each component of
the input vector (such a qU is called a componentwise quantizer) . In the other case instead,
the input components are not decoupled and the multi–input space must be jointly quantized.
The following two examples illustrate these two cases for a planar control space and allow us
to point out some features of the two schemes.

Example 20 (The componentwise logarithmic quantization of R2R2R2) Let qU : R2 →
U be a logarithmic quantization of R2 with parameters

(
(u01, θ1), (u02, θ2)

)
, where for i =

1, 2 , u0i > 0 and θi > 1 (see Definition 8 in Section 2.1) . Assume, for simplicity, that

qU : R2 → U
y 7→ (

qU1(y1) , qU2(y2)
)
,

with qUi : R → U i being a logarithmic quantization of R with parameters (u0i, θi) . In this
case

qe(y) = qU(y)− y =
(
qe1(y1) , qe2(y2)

)
,

where8 qei(yi) = qUi(yi)− yi .
For i = 1, 2 , let %0i := u0i(θi+1)

2θi
, then ∀ %0 ≥

√
%2
01 + %2

02 , qe satisfies the hypotheses a–b of
Theorem 9 with





γe(%0) =max
{√

γ2
e1 +

(%02

%0

)2(1− γ2
e1) ,

√
γ2

e2 +
(%01

%0

)2(1− γ2
e2)

}

E0(%0) =
√
E01(%0)2 + E02(%0)2 ,

(5.34)

where γei := θi−1
θi+1 and E0i(%0) := max

|yi|≤%0

|qei(yi)| .

An explicit formula for E0i(%0) is given as follows: with ni(%0) :=
⌊
logθi

2%0

u0i(θi+1)

⌋
, it holds

that

E0i(%0) = max
{

u0i

2
, γei

u0i(θi + 1)
2

θ
ni(%0)
i , |u0iθ

ni(%0)+1
i − %0|

}
. (5.35)

Let us analyze the main properties of these quantities. The external gain γe given in equa-
tion (5.34) is a decreasing function and it is such that ∀ %0 ≥

√
%2
01 + %2

02 ,

max {γe1 , γe2} < γe(%0) < 1 (5.36)

with lim%0→+∞ γe(%0) = max {γe1 , γe2} . In particular, the componentwise logarithmic quan-

tization is not standard9. More in detail: γe(%0) >max {γe1 , γe2} because of what we call the

8For a general nearest neighbor quantizer, the functions qei are not well–defined but equations (5.34)

and (5.35) still hold true.
9Actually, the expression for γe(%0) given in equation (5.34) is just an upper bound for the smallest feasible

value of γe to be a %0–external gain (i.e., for the %0–external gain) . Nevertheless, it is not difficult to show

that the decreasing property holds true also for such a smallest feasible value.



5.3. `2/`2 SMALL–GAIN FOR PRACTICAL STABILITY 135

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

qq

q q

%
0

q qq qq qq qq qq qq

q

q

q

q

q

q

q

q

q

q

q

q

-
y1

6y2

U

Figure 5.4: Example of a set U ⊂ R2 logarithmically quantized with parameters(
(u01, θ1), (u02, θ2)

)
: u02 = 2

5 · u01 , θ1 = 1.4 and θ2 = 1.6 . The shaded region is the
portion of the input space affected by the truncation of a nearest neighbor quantizer.

anisotropy of the componentwise quantization. Namely, while in the logarithmic quantization
of R the truncation of the quantizer does not affect qU out of a bounded neighborhood of
0 , in the componentwise case instead there are special unbounded regions showing the traces
of truncation (see Fig. 5.4) . This happens when ‖y‖2 ≥ %0 but ∃ i ∈ {1 , 2} such that
|yi| < %0i (i.e., when only one of the components of y is truncated by the corresponding
scalar quantizer) . On the other hand this truncation effect fades away as the distance from
the origin increases and this accounts for the decrease of γe at the increase of %0 .
Thus, the external gain can be reduced by increasing %0 but, similarly to Example 19 , E0 is
a non decreasing function of %0 such that10 lim%0→+∞E0(%0) = +∞ . Also in this case it is
natural to expect that large values of the absolute quantization error E0 lead to a large size of
the final invariant ellipsoid EP,r2

i
and hence to weak practical stability properties of the closed

loop system. Nevertheless, in this case the analysis is much more involved than the one we
did in Example 19 because γe is not constant. There is indeed a trade off between γe and
E0 which are, respectively, decreasing and non decreasing with %0 . We do not analyze this
trade off because the complexity of the relations between the parameters contributing to the
definition of the final invariant set EP,r2

i
makes really hard the study of the way such a final

set varies with %0 . Such a complexity is apparent by looking at Procedure 1 where, differently
from Example 19 , the results of all the steps are affected by the variation of %0 . Here we
limit ourselves to claim that if %0 =

√
%2
01 + %2

02

(
i.e., if %0 takes the minimal allowed value

10Also the expression for E0(%0) given in equation (5.34) is just an upper bound for sup‖y‖2≤%0
‖qe(y)‖2 ,

but the qualitative behavior of these two quantities is the same.
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in equation (5.34)
)
, then

γe(%0) =max

{√
γ2

e1%
2
01 + %2

02

%0
,

√
%2
01 + γ2

e2%
2
02

%0

}
>

√
2

2
,

more precisely,

inf



u01 > 0
u02 > 0
θ1 > 1
θ2 > 1

γe

(√
%2
01 + %2

02

)
=
√

2
2

(5.37)

(as usual, the proof can be found in Appendix A.4.1) .

This property provides a spin–off for the “inverse problem” as it is clarified by inequal-
ity (5.38) below. Also in this case both the external gain γe(%0) and the absolute quantization
error near the origin E0(%0) can be made arbitrarily small. This is achieved by fixing %0 > 0 ,
then by choosing θi sufficiently close to 1 and u0i sufficiently close to 0 . In fact, according
to equation (5.34) , it is sufficient to have both %0i

%0
and γ0i close to 0 . More details can be

found in Appendix A.4.1 . Notice that to obtain a small %0–external gain, %0i

%0
must be small

and, consistently with equation (5.37) , if %0i

%0
< ε ¿ 1 (for i = 1, 2 ) , then

%0 >

√
%2
01 + %2

02

ε
√

2
À

√
%2
01 + %2

02 . (5.38)

♣

Finally, let us present an example of a quantized control set U ⊂ R2 where the different
input components are not independently quantized.

Example 21 (The joint radial logarithmic quantization of R2R2R2) Let qU : R2 → U be
a radial logarithmic quantization of R2 with parameters (N, u0, θ) , where N 3 N ≥ 3 ,
u0 > 0 and θ > 1 (see Definition 9 in Section 2.1) . The corresponding quantization error

qe(y) = qU(y) − y is standard with natural external gain γe =
√

1− 4θ cos2(π/N)
(θ+1)2

. More
precisely, qe satisfies the hypotheses a–b of Theorem 9 with





%0 = u0(θ+1)
2θ cos(π/N)

γe =
√

1− 4θ cos2(π/N)
(θ+1)2

E0 = max
{

u0
2 cos(π/N) ; u0

2θ

√
(θ − 1)2 + (1 + θ)2 tan2(π/N)

}
(5.39)

and u0(θ+1)
2θ cos(π/N) is the smallest value of %0 so that the corresponding external gain is the

natural one.
Also in this case, γe < 1 as desired. Because qe is standard, there is no benefit in choos-
ing %0 > u0(θ+1)

2θ cos(π/N) . Nevertheless, differently from the logarithmic quantization of R , it
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is possible that a suitable choice of %0 < u0(θ+1)
2θ cos(π/N) results in a less conservative practical

stability result. In fact, for such a %0 the external gain increases, but it can be shown that,
if u0

2θ

√
(θ − 1)2 + (1 + θ)2 tan2(π/N) > u0

2 cos(π/N) , then E0 decreases (whereas in the scalar
case E0 was constant) . Again, we do not carry out the analysis of this trade off because the
interdependence between the parameters implicated in the definition of the final invariant el-
lipsoid is really involved. However, considering γe and E0 for step 1 of Procedure 1 according
to equation (5.39) is an effective choice.

Let us consider the “inverse problem”: both the external gain γe and the absolute quantization
error near the origin E0 can be made arbitrarily small by choosing N sufficiently large, θ

sufficiently close to 1 and u0 sufficiently close to 0 . ♣

Remark 22 (Componentwise quantization vs joint quantization) Let us analyze the
main differences between the componentwise quantization (i.e., U is in the form of a carte-
sian product) and the joint quantization of a multi–input set. While doing that, we point out
how some peculiarities of Examples 20 and 21 are related to the different structure of these
two types of quantization.
The first point we want to emphasize is concerned with the structure assumed by the con-
troller. Since in the componentwise quantization the input quantizer qU acts separately on
each component of the control vector, then the m input channels can be independently run
by the controller without information exchange among them. In the joint quantization case
instead, the independence between the input components is lost and a central intelligence is
needed in the controller to run the different input channels.
As it has been clarified in [64] , the same stability performance can be obtained with a coarser
quantization if a joint quantizer is used rather than a componentwise one. Nevertheless,
the advantage of considering a joint quantization may vanish by slightly changing the as-
sumptions. In this respect, an example is provided by the design of the so called “minimum
distortion” quantizer, a critical issue in the framework of control under communication con-
straints [39, 18] . The problem consists of designing the quantizer that minimize the average
norm of the quantization error while guaranteeing stability (under some constraints on the
number of control values or on the density of quantization) . Well, it has been shown in [52]
that, if on the one hand it is true that the optimal result is obtained with a joint quantization,
on the other hand the improvements with respect to the componentwise case are modest whilst
complexity grows up exponentially with the dimension of the input space.
Indeed, there is in general a computational complexity problem with joint quantization that
often renders more attractive the componentwise structure. As a matter of fact, many works
recently appeared in the literature and dealing with joint quantization are limited to planar
input sets (see e.g., [40]) . Also Example 21 provided here is for U ⊂ R2 and it is not easily
generalizable to an input space of higher dimension. On the contrary, the definition of the
componentwise quantization can be directly extended to any dimension m ∈ N .
Finally, there is a structural problem with componentwise quantizations, which is what in
Example 20 was referred to as anisotropy. Since each input component is independently quan-
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tized, then each component is also separately affected by the truncation near 0 of the cor-
responding scalar quantizer. On the overall input space, this causes the propagation of the
truncation effects in special directions and on unbounded regions (see Fig. 5.4) . In fact, as
we have already noticed in Example 20 , if y ∈ Rm is such that ∃ i ∈ {1, 2, . . . ,m} so that yi

is in a neighborhood of 0 where the i–th scalar quantizer is truncated (and this happens for
y ∈ Rm of arbitrarily large norm) , then such an y is affected by the truncation of the com-
bined quantizer. This causes deterioration of performance with respect to a joint quantizer
where instead it is possible to limit the drawbacks of truncation to a bounded neighborhood of
0 . Moreover, the analysis itself of a componentwise quantizer is complicated by anisotropy.
For instance, the estimate of γe and E0 , becomes more and more involved as the dimension
of the input space increases. This happens because the truncation can affect any combination
of the m components of y .
Anisotropy has an influence also for the “inverse problem” (i.e., the design of a quantized set
U so that desired values of E0 and of %0–external gain can be obtained) . We have seen in
Example 20 that, in order to obtain a small value of the %0–external gain, it is necessary that
%0 À

√
%2
01 + %2

02 . That is, the external gain must be measured in a region sufficiently far
from the origin where the truncation effect is attenuated. For joint logarithmic quantizers,
the matter is completely different: because of the standard property, the design of quantization
ensuring a small external gain can be done irrespective of %0 (see Examples 19 and 21) .

Remark 23 (Generalized logarithmic quantization) As we have shown in Example 3
of Section 2.3 , closed loop asymptotic stability, rather than mere practical stability, can be
achieved if generalized quantized control sets are considered. An easy method allowing for the
asymptotic stabilization of a linear system under generalized input quantization consists in
satisfying a small–gain condition.
For instance, let qU be a generalized (radial) logarithmic quantization of R (R2 ) : in this
case, we have shown in Section 2.1 that the quantization error qe has classical `2–gain γ∗ < 1
(the value of γ∗ is provided in Lemma 3 and Lemma 4 , respectively) . Therefore, Corollary 5
can be applied and, provided that the H∞ control problem of finding K ∈ Rm×n such that
‖GK‖∞ < 1/γ∗ is feasible, asymptotic stability in the Lyapunov sense can be ensured.
A separate discussion is needed for the componentwise logarithmic quantization of Rm . Al-
though we noticed in Section 2.1 that the cartesian product of generalized logarithmically
quantized sets is not a generalized quantized set, it is interesting to consider also this case.
For such a generalized componentwise logarithmic “quantization” of Rm , it is straightforward
to see that the “quantization” error qe has classical `2–gain γ∗ =max {γe1 , γe2 , . . . , γem} ,
where γei is the classical `2–gain of the quantization error along the i–th component.
Notice that, because of the absence of truncation, the problems deriving from anisotropy are
removed and also the generalized componentwise logarithmic “quantization” gives rise to a
“quantization” error which is standard with a natural gain. This is the case considered
in [39, 51] .



5.3. `2/`2 SMALL–GAIN FOR PRACTICAL STABILITY 139

Let us conclude this paragraph with a couple of remarks concerned with related issues: first,
the problem where the quantized set U is not assigned and its choice is part of the design is
discussed; afterwards, a backward step is done to the analysis of controlled invariance.

Remark 24 (On the design of the quantized set U ) In the examples above, we have
mentioned the importance of the “inverse problem” with reference to the case where the design
of the quantized set U is part of the control synthesis. Let us discuss a couple of interesting
cases where results based on the small–gain theorem can be usefully applied. Both of them
rise in the context of the control under communication constraints.

Given system (5.24) , suppose that a stabilizing matrix K is given while both the quan-
tized input set U ⊂ Rm and the quantizer qU must be designed so that the feedback law
u(x) = qU(Kx) guarantee desired practical stability properties. Theorem 9 allows one to
solve this problem. A rough application of it consists of making the quantization error qe

satisfy the following properties: γe < 1
‖GK‖∞ (in order to ensure convergence properties)

and E0 is sufficiently small (so that a desired size of the final invariant ellipsoid EP,r2
i

be
achieved) . Nonetheless, as it has been clarified in the discussion of the implementation of
step 3a of Procedure 1 , the convergence issue and the assignment of the size of the final set
as resulting from Theorem 9 are not decoupled, therefore a more aware application of this
result is recommended. There is indeed a trade off between γe and E0 , let us give some
intuition of this: while the choice of a maximal allowed value for γe permits to minimize the
density of quantization, on the other hand it also makes the gap 1

γe
−‖GK‖∞ small. As such

a gap becomes more and more narrow, in order to obtain a small invariant ellipsoid EP,r2
i
,

E0 must be smaller and smaller11: to this end, the quantizer must be truncated nearer and
nearer 0 . In other words, by increasing γe , a quantized set that tends to accumulate towards
0 is needed and, despite the decrease of quantization density, the number of control values
within fixed neighborhoods of the origin may increase. This fact has an obvious drawback to
the problem of control under communication constraints where the goal is to minimize the
number of control values that allow one to achieve a desired stability property.
Once the proper values of γe and E0 to be associated to some quantization error qe have
been identified, the construction of U and of qU that accomplish these parameters is mainly
a geometrical issue. The choice of a standard logarithmic quantizer is the natural one for
two interrelated reasons: first, because a standard logarithmic quantizer allows one to obtain
convergence by minimizing the density of quantization [39] ; secondly, because a standard log-
arithmic quantizer is characterized by its natural external gain and this makes the “inverse
problem” easy to solve. Of course, also a componentwise logarithmic quantization is a feasible
option as well as other types of quantizers, including a uniform one. In Examples 19 , 20
and 21 we have provided all the necessary tools to solve the problem when m = 1 or m = 2 .

11The discussion on the implementation of step 3a of Procedure 1 is useful to gain insight on this fact: if
1

γe
−‖GK‖∞ is small, then also the matrix Q resulting from the solution of problem (5.32) is small. Namely,

there isn’t enough room to add a non negligible term Q > 0 in equation (5.17) with the purpose of increasing

λmin(S) (see case 2 of Example 22 in Section 5.3.3) . Since, in general, λmin(S) can be quite small (especially

if ‖GK‖∞ ' γinf ) , then E0 must be small accordingly
(
see equation (5.23)

)
.
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A numerical example is reported in Section 5.3.3 (see Example 24) .
Other methods for the synthesis of U and qU have been also considered in the literature,
as for instance those related with the theory of “minimum distortion quantization” and “lo-
cational optimization” problems [36] . A paper where the link between stabilization under
quantized control and the locational optimization problem is pointed out is [18] . That paper
also provides comprehensive references to the wide literature on the subject.

A variation of this problem consists in designing both K and U so as to guarantee practical
stability properties and to minimize the number of control values or the density of quantiza-
tion . This problem has been stated in [39] : the solution presented in that paper is restricted
to SISO systems and has not a direct interpretation in terms of a small–gain condition. Suc-
cessively, the same problem has been considered again in [51] where a solution has been given
for MIMO systems. In this case the approach is based on a “sector bound” method [67] , a
technique directly related to the small–gain approach, but only “componentwise” input quan-
tizations have been taken into account. Moreover, only asymptotic stabilization is considered
so that the issues inherent with practical stability are bypassed.

Remark 25 (Back to controlled invariance analysis) The results of this section, in
particular Theorem 9.ı , expand to a broader class of quantizers the kind of controlled in-
variance analysis presented in Section 3.1.4 . This wider ensemble includes logarithmically
quantized sets and, more in general, quantized sets so that it is possible to construct an input
quantizer qU such that the relative quantization error ‖qe(y)‖2

‖y‖2 , rather than the absolute one,
is bounded.

5.3.3 Numerical examples

The practical stabilization technique and some aspects discussed in the previous section are
illustrated in the numerical examples below.

Example 22 Let us consider the following quantized input system:




x+ = Ax + Bu =

(
0 1
−1 5/2

)
x +

(
1
2

)
u

u ∈ U ⊂ R ,

(5.40)

where U is a logarithmically quantized set with parameters (u0, θ) = (1 , 2) .
Two practically stabilizing control laws are synthesized and the corresponding closed loop
dynamics are analyzed through the implementation of Procedure 1 .
First, notice that the pair (A, B) is not reachable but it is stabilizable. The eigenvalues of
A are λ1(A) = 1/2 and λ2(A) = 2 , hence A is unmixed. According to equation (5.29) ,

γinf = inf
{ ‖GK‖∞ |K ∈ R1×2 is such that A + BK is Schur

}
= 2 .
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Case 1:

1. Input quantization: we consider a nearest neighbor input quantizer qU : R → U .
According to equation (5.33) , the corresponding quantization error qe satisfies the hy-
potheses a–b of Theorem 9 with 




%0 = 3
4

γe = 1
3

E0 = 1
2 .

2. Control synthesis: problem (5.26) is feasible if and only if γ∞ ∈
]
γinf , 1

γe

]
= ] 2 , 3 ]

(
see

equation (5.31)
)
. Let us apply Lemma 15 : we choose γ∞ ensuring that the closed loop

system has a H∞–norm close to γinf . With γ∞ = 2.01 , the Riccati equation (5.27a)
is solved by

P ∗ =

(
0.4430 −0.8860
−0.8860 1.7719

)

and, according to equation (5.28) ,

K := Kc(2.01) =
(

0.6645 −1.3289
)
.

3. Closed loop analysis: let us apply Theorem 9 for the analysis of the resulting closed loop
dynamics. It holds that

F := A + BK =

(
0.6645 −0.3289
0.3289 −0.1579

)

whose eigenvalues are λ1(F ) = 1/2 and λ2(F ) = 0.0066 . It holds that ‖GK‖∞ =
2.0066 < 2.01 .

(a) Following the discussion on the implementation of step 3a , we consider equa-
tion (5.17) with γ = 2.999 and Q = 0.194 · I2 (we made the suboptimal choice
of considering matrices Q of the type Q = λ · I2 ) . With these choices, equa-
tion (5.17) is solved by

P =

(
0.7990 −0.9630
−0.9630 1.9992

)

whose eigenvalues are λ1(P ) = 0.2645 and λ2(P ) = 2.5338 .

(b) According to equation (5.23) , r2
i = 4.0579 .

4. Final result: ∀ r2
1 ≥ r2

2 > 4.0579 , system (5.40) controlled with u(x) = qU(Kx) is(EP,r2
1
, EP,r2

2

)
–stable.
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This result becomes more expressive by providing the lengths of the semi–axes of the final
invariant ellipsoid EP,r2

i
. The j–th semi–axis is sj = ri√

λj(P )
, in this case:

{
s1 = 3.9170
s2 = 1.2655 .

Case 2: let us modify the control synthesis step and let us show how performance change
when the gap 1

γe
−‖GK‖∞ is reduced. The controller is synthesized so that ‖GK‖∞ ·γe = 0.9

(in case 1 we have ‖GK‖∞ · γe = 0.6687 ). We hence look for K such that ‖GK‖∞ = 2.7 .
To this end, we use Lemma 15 together with a recalibration of the Riccati equation (see
Remark 19) , so we let γ∞ = 4.243 in system (5.27) . With this choice of γ∞ we obtain

K := Kc(4.243) =
(

0.5294 −1.0588
)

and ‖GK‖∞ = 2.7 as desired. By repeating the steps done in case 1 , we find

P =

(
0.3957 −0.7764
−0.7764 1.5638

)

(
with λ1(P ) = 0.0082 and λ2(P ) = 1.9513

)
and r2

i = 1.0420 · 104 . Thus, the semi–axes of
the final ellipsoid EP,r2

i
are {

s1 = 1126.8
s2 = 73.1 .

The deterioration of the practical stability result is evident. It must be stressed that, as a
consequence of the reduced gap 1

γe
− ‖GK‖∞ , in step 3a we find a matrix Q which is much

smaller than the one we found in case 1 : in this case, in fact, Q = 0.0061 · I2 . Moreover,
λmin(S) = 0.0062 ' λmin(Q) : this means that the size of λmin(S) is dictated by the size
of λmin(Q) . Hence, the main responsibility for the large size of the final invariant ellipsoid
fall in the lack of room to find a Q > 0 causing the increase of λmin(S) . Other numerical
simulations provide a clear evidence of this trend to the worsening of the result as ‖GK‖∞
approaches 1/γe .

We will be back on this example at the end of Section 6.2.2 (see Example 29) . In both cases 1
and 2 , we will show that the analysis of the closed loop dynamics can be significantly improved
by supplementing it with arguments based on a small–gain theorem in the `1 functional space.
For case 1 , the simulation of a trajectory will be also reported in Fig. 6.3 . ♣

Example 23 Let us consider again the system defined by the pair (A,B) considered in
Example 11 of Section 3.1.4 , that is





x+ = Ax + Bu =




2 2 −1
0 0 1
0 −4 4


x +




1 0
0 0
0 1


u

u ∈ U ⊂ R2,

(5.41)
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where U ⊂ R2 is a radially logarithmically quantized set with parameters (N, u0, θ) =
(32 , 1 , 5/4) .
In this example, a stabilizing control gain K∗ ∈ Rm×n is determined which realizes the mi-
nimum value γinf that can be attained by ‖GK‖∞ . Then, the practical stability properties of
the closed loop system x+ = Ax + BqU(K∗x) are analyzed, where qU : R2 → U is a nearest
neighbor quantizer.
Recall that the pair (A,B) is reachable, thus stabilizable, and neither the pair (A,B[1]) nor
(A,B[2]) are stabilizable (where B[i] denotes the i–th column of B ) . The eigenvalues of
A are all equal to 2 , hence A is unmixed. By taking advantage of the algorithm for the
computation of γinf provided in Remark 20 , we find that γinf = 4 and that such a value is
attained for

K∗ =

(
−8/5 −8/5 0

0 4 −16/5

)
.

The closed loop dynamics is x+ = Fx + Bqe(K∗x) , where

F := A + BK∗ =




2/5 2/5 −1
0 0 1
0 0 4/5




and its eigenvalues are λ1(F ) = 2/5 , λ2(F ) = 4/5 and λ3(F ) = 0 .
We can apply Theorem 9 for the practical stability analysis of the closed loop system, in
fact: according to equation (5.39) , the quantization error qe associated to the quantizer qU
satisfies the hypotheses a–b of Theorem 9 with





%0 = 0.9044

γe = 0.1478

E0 = max
{

0.5024 ; 0.1336
}

= 0.5024 .

Since ‖GK∗‖∞ · γe = 0.5911 < 1 , then also hypothesis c of Theorem 9 is satisfied. The
quantitative analysis of practical stability can hence be obtained by implementing step 3 of
Procedure 1 . The method is the same we used in Example 22 : with γ = 1/γe − ε = 6.7665
and Q = 0.1007 · I3 , equation (5.17) is solved by

P =




3.2137 3.1130 −0.0671
3.1130 19.2137 −12.8671
−0.0671 −12.8671 16.8894




whose eigenvalues are λ1(P ) = 1.7738 , λ2(P ) = 6.3744 and λ3(P ) = 31.1687 . Finally,
according to equation (5.23) , r2

i = 2390.7 and the semi–axes of the final ellipsoid EP,r2
i

are




s1 = 36.7118
s2 = 19.3661
s3 = 8.7580 . ♣
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Finally, let us give an example where the quantized set U is part of the design.

Example 24 Let us consider a scalar system

x+ =
5
2
x + u ,

assume that K = −2 and that the problem consists in designing a quantized set U ⊂ R and
an input quantizer qU : R → U such that the following properties hold for the closed loop
system

x+ =
5
2
x + qU(Kx) :

ı) ∀ r2
1 ≥ r2

2 > 1 , the system is
(
[−r1, r1], [−r2, r2]

)
–stable;

ıı) ∀x such that |x| > 1 , it holds that |x+| ≤ 3
4 |x| .

With the terminology of Theorem 9 , the former property corresponds to impose that the
final invariant ellipsoid EP,r2

i
is the interval [−1, 1] . The latter condition is a performance

requirement corresponding to enforce a lower bound on the speed of convergence irrespective
to the quantization error.
As usual, the closed loop dynamics can be rewritten in the form

x+ =
1
2
x + qe(−2x) .

It holds that γs =
∥∥− 2

(
z − 1

2

)−1∥∥
∞ = 4 .

To solve the problem, we apply Theorem 9 : a value of γe is determined such that γs ·γe < 1
and the performance requirement in ıı is fulfilled; then we look for E0 so as to obtain the
desired size of the final invariant set; finally, we choose U and qU so that the corresponding
quantization error attains the determined parameters γe and E0 (i.e., we solve an “inverse
problem”) .
Since

|x+|
|x| =

∣∣1
2x + qe(−2x)

∣∣
|x| ≤ 1

2
+ 2

∣∣qe(−2x)
∣∣

| − 2x| ,

then, in order that for |x| > 1 , be |x+| ≤ 3
4 |x| , it is sufficient to impose that qe has a

%0–external gain γe with %0 = 2 and γe ≤ 1/8
(
as far as the condition on γe is concerned,

see also inequality (2.5) with γe in place of θ−1
θ+1 and 3/4 in place of 1 in the right–hand

side
)
. Any choice of γe in this range ensures that γs · γe < 1 : we pick γe = 1/8 , which is

the value maximizing the dispersion of the quantized set. The implementation of step 3a of
Procedure 1 yields Q = 3.996 , γ = 7.999 and P = 11.5015 . In order that EP,r2

i
= [−1, 1] ,

it must be r2
i = P . Therefore, the inverse implementation of step 3b (i.e., where r2

i is given
and E0 is unknown) allows one to determine the needed value of E0 : by equation (5.23) ,
an easy computation provides E0 = 1/2

(
take advantage of equation (5.20) and of the fact

that all the matrices indeed are scalars
)
.

Let us construct U and qU : we look for a logarithmic quantization of R with parameters
(u0, θ) such that the corresponding quantization error qe has 2–external gain equal to 1/8
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and absolute quantization error within B2 bounded by 1/2 . To this end, we solve the “inverse
problem” for the logarithmic quantization of R (see Example 19) . A solution is given by
θ = 9/7 and u0 = 1 , in fact: with this choice of the parameters, according to equation (5.33) ,
%0 = 8/9 < 2 and γe = 1/8 , then the 2–external gain is equal to 1/8 as desired. Let us check
that max

|y|≤2
|qe(y)| ≤ 1

2 : by equation (5.33) , for |y| ≤ 8/9 , |qe(y)| ≤ u0/2 = 1/2 , whereas, for

y such that 8/9 < |y| ≤ 2 it holds that |qe(y)| ≤ 1
8 |y| ≤ 1

4 . ♣





Chapter 6

The small–gain approach in `1 :

quantized multi–input

In this chapter, we lay down the theory for a different solution to the practical stabilization
problem for quantized input systems. The main tool is still a generalized small–gain theo-
rem, but here the signals are viewed as elements of the functional space `∞ . As explained
in Section 5.1 , this case gives rise to the so called control problem in `1 and it is the natural
approach to the problem when quantized control sets are considered. Nevertheless, the main
limitations of the theory on `1 control lie in the fact that, although it has been the subject
of a certain amount of literature [28, 34, 113, 65, 38, 7] , this theory is not as elegant and
exhaustive as the one for the H∞ control.
The chapter is organized as follows: in Section 6.1 , we focus on the study of the `∞–gain
of linear systems. A novel approach to the computation of an upper bound for the `∞–gain
and to the control synthesis in `1 under static output feedback is presented. The subse-
quent Section 6.2 is the counterpart of Section 5.3 : in Section 6.2.1 we prove results on
the practical stability analysis of feedback systems which rely on a small–gain theorem in
`1 (i.e., involving the `∞–gains of the operators forming the system) . These results can
be merged together with those from Section 5.3.1 , thus providing mixed H∞/`1 analysis
tools. In Section 6.2.2 , we illustrate how the developed theory can be applied for the prac-
tical stabilization of quantized input systems. We also show that the practical stabilization
technique based on invariant hypercubes, presented in Chapter 4 , can be interpreted as the
outcome of the generalized small–gain theorem in `1 : this observation allows us to extend
that technique to a larger class of controllers than the quantized deadbeat only. Examples are
reported showing the weight of the contribution brought by the `1 theory to the stabilization
problem, in particular, as far as the analysis of the steady–state performance are concerned.
Although some results are not as general as those presented in the context of the H∞ control,
the following sections provide significant improvements to the theory developed so far and
disclose interesting issues for further investigations.

147
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6.1 A factorization approach to the analysis and control syn-

thesis in `1

In this section, we study the `∞–gain of a linear system and the problem of the synthesis of
a static output feedback ensuring that the `∞–gain of the closed loop dynamics is below a
desired threshold. As remarked in the above introduction, the theory of the `1 control still
presents some gaps to be filled. For instance, closed formulae for the `∞–gain of a system
are missing. In [15] , an upper bound for the `∞–gain of a linear system is given in terms of
the singular values of the Hankel operator [53] . This result has been the basis to carry out
efficient numerical algorithms for the computation of ‖G‖∞ (see [6, 58]) . Although these
methods allow one to find a good estimate of the `∞–gain of a system, they do not appear to
be practical to deal with control synthesis problems. As far as control synthesis is concerned,
the approaches proposed in [28, 34, 113, 65, 38] take advantage of the convex structure of the
set of all stabilizing controllers and, either the problem is transformed into an infinite dimen-
sional linear optimization, or a linear (or quadratic) programming formulation is presented.
Also in this case, algorithmic procedures are carried out for the numerical approximation
of the solution. When the synthesis is restricted to static output feedback controllers, the
problem becomes more complex because the set of stabilizing control gains is not convex.
Actually, the minimization of the closed loop `∞–gain by means of static output feedback
has been less investigated.
The main contribution of this section consists in providing an easy method for the compu-
tation of an upper bound for the `∞–norm of the input/output operator G associated to
a BIBO–stable system (5.7) . Although the proposed bound is not always feasible (i.e., it
can be computed only for some particular systems) and often quite conservative, yet it turns
out to be useful in some interesting cases. In particular, the bound is proved to be tight
for single–input positive systems [49] . Furthermore, the proposed method is suitable to deal
with control synthesis: a sufficient criterion is provided that allows one to find a linear static
output feedback so that the `∞–gain of the closed loop dynamics is below a desired threshold.
This can be done by solving a system of linear inequalities.
The upper bound is obtained by factorizing the overall dynamics in terms of subsystems
whose computation of the `∞–gain is simple. To obtain the desired factorization, it is conve-
nient to resort to the representation of system (5.7) in the frequency domain, namely to the
transfer matrix G(z) of the system. Let us stress once more that the norm ‖G‖∞ considered
in the previous section should not be confused with the norm ‖G‖∞ whose study is the main
subject of this section (see Remark 17 in Section 5.2) .

Let us recall the definitions of the norms of signals in `∞ and in `1 . For ~v : N→ Rk ,

‖~v‖∞ := sup
t∈N

‖v(t)‖∞ ;
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while for ~g : N→ Rq×m ,

‖~g‖1 :=
+∞∑

t=1

‖g(t)‖∞ .

6.1.1 Analysis in `1

Under the assumption of BIBO–stability, let us consider the problem of computing ‖G‖∞(
see equation (5.11)

)
. The following Proposition provides an expression of ‖G‖∞ in terms

of the impulse response.

Proposition 15 If system (5.7) is BIBO–stable, then

‖G‖∞ = max
i=1,...,q

+∞∑

τ=0

m∑

j=1

|gi,j(τ)| . (6.1)

Proof. Although this is a well known fact in systems theory, its proof is explicitly reported
in Appendix A.5.1 for completeness.

Corollary 6 The following relation holds between ‖G‖∞ and the `1–norm of the impulse
response:

1
q
‖~g ‖1 ≤ ‖G‖∞ ≤ ‖~g ‖1 .

In particular, for single–output systems, ‖G‖∞ = ‖~g ‖1 .

Proof. In fact:

‖G‖∞ = max
i=1,...,q

+∞∑

τ=0

m∑

j=1

|gi,j(τ)| ≤
+∞∑

τ=0

max
i=1,...,q

m∑

j=1

|gi,j(τ)| = ‖~g ‖1 .

On the other hand,

q · max
i=1,...,q

∑+∞
τ=0

∑m
j=1 |gi,j(τ)| ≥ ∑q

i=1

∑+∞
τ=0

∑m
j=1 |gi,j(τ)| =

=
∑+∞

τ=0

∑q
i=1

∑m
j=1 |gi,j(τ)| ≥

≥ ∑+∞
τ=0 max

i=1,...,q

∑m
j=1 |gi,j(τ)| = ‖~g ‖1 .

By reversing the order of the summations, equation (6.1) can be rewritten as

‖G‖∞ =

∥∥∥∥∥∥∥



‖~g1,1‖1 · · · ‖~g1,m‖1

...
. . .

...
‖~gq,1‖1 · · · ‖~gq,m‖1




∥∥∥∥∥∥∥
∞

. (6.2)

Thus, the analysis of the `∞–gain of a MIMO system can be reduced to the study of the
`∞–gain for SISO systems.
The expression for ‖G‖∞ given in Proposition 15 is not practical because, in general, it
requires the computation of an infinite series. There are two classes of systems where ‖G‖∞
can be exactly computed: externally positive systems and FIR systems.
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Definition 30 (See [49]) System (5.7) is said to be externally positive iff its impulse response
~g is positive.

Clearly, ~g is positive if and only if ∀ i = 1, . . . , q and ∀ j = 1, . . . , m , ~gi,j is positive. Hence,
also the analysis of external positivity can be reduced to SISO systems.

Lemma 17 Consider system (5.7) , assume that e ∈ R and y ∈ R . Let

G(z) =
cnzn−1 + cn−1z

n−2 + · · ·+ c1

zn − fnzn−1 − · · · − f1

be the transfer function of the system. A sufficient condition for the external positivity of
system (5.7) is that ∀ k = 1, . . . , n , ck ≥ 0 and fk ≥ 0 .

Proof. See also [49] . The transfer matrix of the linear system Σ(F, B,C) , with

F =




0 1 . . . 0
...

. . . . . .
...

0 0 . . . 1
f1 f2 . . . fn




, B =




0
...
0
1




and C =
(

c1 c2 . . . cn

)
,

is G(z) . As the entries of the matrices F , B and C are non–negative, then the impulse
response is positive.

Proposition 16 (‖G‖∞ of externally positive systems) If system (5.7) is BIBO–sta-
ble and externally positive, then

‖G‖∞ = ‖G(1)‖∞ .

Proof. Because ~g is positive, then ∀ i = 1, . . . , q and ∀ j = 1, . . . , m ,

Gi,j(1) =
+∞∑

t=0

gi,j(t) = ‖~gi,j‖1 .

The thesis then immediately follows by equation (6.2) .

In next Lemma 18 , a well known relation between the H∞ norm and the `∞–gain of a
BIBO–stable SISO system is recalled. A consequence of this relation is that, for externally
positive SISO systems, the two norms coincide.

Lemma 18 (Equivalence of H∞ and `1 norms for externally positive SISO sys-
tems) Consider a BIBO–stable system (5.7) , assume that e ∈ R and y ∈ R . Then

‖G‖∞ ≤ ‖G‖∞ .

Moreover, if the system is externally positive, then

‖G‖∞ = ‖G‖∞ = |G(1)| .
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Proof. For θ ∈ [0, 2π[ , it holds that

|G(eiθ)| = ∣∣ ∑+∞
t=0 g(t) · 1

eiθt

∣∣ ≤ ∑+∞
t=0 |g(t)| · ∣∣ 1

eiθt

∣∣ = ‖~g‖1 = ‖G‖∞ .

Therefore,
‖G‖∞ = max

θ∈ [0,2π[
|G(eiθ)| ≤ ‖G‖∞ .

For a positive system, ‖G‖∞ = |G(1)| ≤ ‖G‖∞ . The thesis follows.

Definition 31 Consider system (5.7) and let ~g be its impulse response. The system is said
to be finite impulse response (FIR) iff ∃ r ∈ N , such that ∀ t > r , g(t) = 0 .

By definition, system (5.7) is FIR if and only if

G(z) =
1
zr

r∑

t=1

g(t)zr−t

for some r ∈ N . This is equivalent to say that all the poles of the system are in 0 . Hence,
a sufficient condition for system (5.7) to be FIR is that F is nilpotent, the condition is also
necessary if the system is reachable and observable.
It is useful to introduce the following notation: if G(z) is the transfer matrix of a FIR system,
we let G ∈ Rq×mr be defined by

G :=
[
g(1) | · · · | g(r)

]
. (6.3)

For a FIR system, the computation of ‖G‖∞ is trivial as the series in equation (6.1) is a
finite sum. According to equation (5.3) ,

‖G‖∞ = max
i=1,...,q

r∑

τ=1

m∑

j=1

|gi,j(τ)| = ‖G‖∞ . (6.4)

We are ready to introduce the main result of this section. Consider system (5.7) , assume
without loss of generality that q ≥ m and let G(z) be the transfer matrix of the system:
G(z) is a strictly proper rational matrix. It is always possible to factorize G(z) in the form

G(z) = N(z)
(
Im + D(z)

)−1
, (6.5)

where N(z) and D(z) are the transfer matrices of FIR systems1 (see Fig. 6.1) . Three
methods to obtain this factorization are described in next Remark 27 .

Theorem 10 (Bound for ‖G‖∞ ) Consider system (5.7) , assume without loss of general-
ity that q ≥ m and let the transfer matrix of the system be factorized as in equation (6.5) .
If ‖D‖∞ < 1 , then the system is BIBO–stable and

‖G‖∞ ≤ ‖N‖∞
1− ‖D‖∞ .

1If q ≤ m , just consider a factorization of the type G(z) =
(
Iq + D(z)

)−1
N(z) .
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h
u y

Im N

D

Figure 6.1: Block diagram representation of the factorization of G(z) considered in Theo-
rem 10 .

Proof. Denote by Im : `∞(Rm) → `∞(Rm) the identity operator. Since ‖D‖∞ < 1 , then
the operator (Im+D)−1 : `∞(Rm) → `∞(Rm) is well–defined and ‖(Im+D)−1‖∞ ≤ 1

1−‖D‖∞
(see Lemma 27 in Appendix A.5.1) . Also, N : `∞(Rm) → `∞(Rq) because N(z) is a FIR
system. From the factorization (6.5) of G(z) , it follows that G = N◦(Im+D)−1 : `∞(Rm) →
`∞(Rq) and hence,

‖G‖∞ ≤ ‖N‖∞‖(Im +D)−1‖∞ ≤ ‖N‖∞
1− ‖D‖∞ .

Remark 26 For a given transfer matrix G(z) , a factorization of G(z) of the type in equa-
tion (6.5) is not unique. Different factorizations of the same G(z) give rise, in general, to
different operators N and D , and hence to different upper bounds for ‖G‖∞ . Also, it may
happen that condition ‖D‖∞ < 1 , which allows one to apply Theorem 10 , is satisfied for
some specific factorizations whilst it is not for some others. These phenomena, which are
illustrated in next Examples 25 and 26 , raise the issue of the search for conditions on G(z)
that guarantee the existence of a factorization (6.5) such that ‖D‖∞ < 1 and the search for
the factorization that minimizes the corresponding upper bound for ‖G‖∞ . In this thesis,
however, we do not face these points and we let them as open issues for future investigations.

Remark 27 (Methods for the computation of the factorization (6.5)) Let us pro-
vide some methods that, for any strictly proper transfer matrix G(z) ( q ≥ m ) , allow one to
obtain a factorization as in equation (6.5) .

• Method 1: factorization (6.5) can be obtained in the form of a right coprime rational
matrix factorization of G(z) (see [68]) . The standard state space approach to obtain such
a factorization is the following: let Σ(F,B,C) be a reachable and observable linear system
whose transfer matrix is G(z) and K be a matrix such that all the eigenvalues of F + BK

are in 0 . Then 



N(z) = C
(
zI − (F + BK)

)−1
B

D(z) = K
(
zI − (F + BK)

)−1
B

(6.6)

are such that equation (6.5) holds2. The details to determine such a Σ(F, B, C) can be found,
for instance, in [114] .

2If q ≤ m , just consider a left coprime rational matrix factorization: let L be such that all the eigenvalues

of F + LC are in 0 and let N(z) = C
(
zI − (F + LC)

)−1
B and D(z) = C

(
zI − (F + LC)

)−1
L .
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Next methods 2 and 3 are purely algebraic approaches that do not involve state space realiza-
tions of G(z) .

• Method 2: let d(z) be the monic least common multiple of the denominators of G(z)
and r := deg(d) . Let

D̄(z) :=
d(z)
zr

Im ,

then equation (6.5) holds with

{
N(z) = G(z)D̄(z)

D(z) = D̄(z)− Im .
(6.7)

• Method 3: for j = 1, . . . ,m , let dj(z) be the monic least common multiple of the denom-
inators appearing in the j–th column of G(z) and rj := deg(dj) . Let3

D̄(z) := diag
{

d1(z)
zr1

, . . . ,
dm(z)
zrm

}
,

then equation (6.5) holds with

{
N(z) = G(z)D̄(z)

D(z) = D̄(z)− Im .
(6.8)

In general, N(z) and D̄(z) resulting from method 3 are not right coprime rational matrices.
In case they are, the factorizations resulting from methods 1 and 3 coincide.

Next Proposition 17 is just a particularization of Theorem 10 to single–input systems. This
particular case allows us to point out that, for a special class of externally positive single–
input systems, the bound resulting from Theorem 10 is indeed an equality (see Corollary 7
below) .

Proposition 17 ( `∞–gain of single–input systems) Consider a strictly proper rational
transfer matrix G(z) of a linear system with u ∈ R and y ∈ Rq . Let d(z) = zn −∑n

k=1 fkz
k−1 be the polynomial of the poles of the system4 and G(I)(z) be defined by G(I)

k (z) :=
zk−1/d(z) , k = 1, . . . , n . Let C ∈ Rq×n be such that G(z) = CG(I)(z) . If f :=

∑n
k=1 |fk| <

1 , then the system is BIBO–stable and

‖G‖∞ ≤ ‖C‖∞
1− f

.

3Where diag
{

d1(z)
zr1 , . . . , dm(z)

zrm

}
:=

∑m
j=1

dj(z)

z
rj eje

′
j , ej ∈ Rm.

4It is easy to see that d(z) is the monic least common multiple of the denominators of G(z) ; see also [25] .
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Proof. Since
∑n

k=1 |fk| < 1 , then the poles of G(z) lie into the interior of the unit ball of
C (see Lemma 28 in Appendix A.5.1) and the system is BIBO–stable. As G(z) = CG(I)(z) ,
then G(z) can be factorized in the form





G(z) = N(z)
(
1 + D(z)

)−1
, with

N(z) = 1
zn C




1
z
...

zn−1




= 1
zn

∑n
t=1 Cetz

t−1

D(z) = −∑n
t=1 ftzt−1

zn

(6.9)

(where et is the t–th vector of the canonical basis) . By equation (6.4) , ‖N‖∞ = ‖C‖∞
and ‖D‖∞ =

∑n
t=1 |ft| < 1 . We can hence apply Theorem 10 which yields

‖G‖∞ ≤ ‖N‖∞
1− ‖D‖∞ =

‖C‖∞
1− f

.

Corollary 7 Under the assumptions of Proposition 17 , if ∀ i = 1, . . . , q and ∀ j = 1, . . . , n ,
Ci,j ≥ 0 and ∀ k = 1, . . . , n , fk ≥ 0 , then

‖G‖∞ =
‖C‖∞
1− f

.

Proof. The system is externally positive because, ∀ i = 1, . . . , q , Gi(z) = e′iCG(I)(z)
satisfies the hypotheses of Lemma 17 . Thus, by Proposition 16 , ‖G‖∞ = ‖G(1)‖∞ and, by
equation (6.9) ,

‖G(1)‖∞ =

∥∥∥∥∥∥∥
1

1− f
C




1
...
1




∥∥∥∥∥∥∥
∞

=
‖C‖∞
1− f

.

Let us illustrate, through some numerical examples, how to take advantage of Theorem 10 to
compute an upper bound for ‖G‖∞ . The transfer matrix G(z) is factorized according to the
different methods presented in Remark 27 and the resulting bounds for ‖G‖∞ are compared.

Example 25 Consider a MIMO system whose transfer matrix is

G(z) =

(
1

z+1/3
z+1

(z−1/2)(z+1/4)
−2

z−1/2
z

(z−1/4)(z+1/4)

)
.

Case 1: Let us factorize G(z) according to the method 1 in Remark 27 . A reachable and
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observable linear system Σ(F, B, C) whose transfer matrix is G(z) can be easily found to be




x(t + 1) =




0 1 0 0 0
1/6 1/6 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 −1/32 1/16 1/2




x(t) +




0 0
1 0
0 0
0 0
0 1




u(t)

y(t) =

(
−1/2 1 −1/4 3/4 1
−2/3 −2 0 −1/2 1

)
x(t) .

With

K =

(
−1/6 −1/6 0 0 0

0 0 1/32 −1/16 −1/2

)
,

by equation (6.6) one gets G(z) = N(z)
(
Im + D(z)

)−1 , where




N(z) =




z− 1
2

z2

z2+ 3
4
z− 1

4
z3

−2z− 2
3

z2

z− 1
2

z2


 =

= 1
z3

[(
1 1
−2 1

)
z2 +

(
−1/2 3/4
−2/3 −1/2

)
z +

(
0 −1/4
0 0

)]

D(z) =




− 1
6
z− 1

6
z2 0

0 − 1
2
z2− 1

16
z+ 1

32
z3


 =

= 1
z3

[(
−1/6 0

0 −1/2

)
z2 +

(
−1/6 0

0 −1/16

)
z +

(
0 0
0 1/32

)]
.

Thus,

N =
[
n(1) |n(2) |n(3)

]
=

(
1 1 −1/2 3/4 0 −1/4
−2 1 −2/3 −1/2 0 0

)
,

and, according to equation (6.4) , ‖N‖∞ = ‖N‖∞ = 25
6 . Similarly,

D =
[
d(1) | d(2) | d(3)

]
=

(
−1/6 0 −1/6 0 0 0

0 −1/2 0 −1/16 0 1/32

)
,

and ‖D‖∞ = ‖D‖∞ = 19
32 < 1 . Hence, by Theorem 10 ,

‖G‖∞ ≤ 25/6
1− 19/32

=
400
39

' 10.26 .

Case 2: Let us factorize G(z) according to the method 2 in Remark 27 . It holds that

d(z) = (z + 1/3)(z − 1/2)(z + 1/4)(z − 1/4) ,
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so that, with

D̄(z) =
z4 − 1

6z3 − 11
48z2 + 1

96z + 1
96

z4
I2 ,

by equation (6.7) one gets G(z) = N(z)
(
I2 + D(z)

)−1 , where




N(z) = 1
z4

(
z3 − 1

2z2 − 1
16z + 1

32 z3 + 13
12z2 − 1

12

−2z3 − 2
3z2 + 1

8z + 1
24 z3 − 1

6z2 − 1
6z

)

D(z) = 1
z4

(−1
6I2 z3 − 11

48I2 z2 + 1
96I2 z + 1

96I2

)
.

Thus, ‖N‖∞ = 25
6 and ‖D‖∞ = 5

12 < 1 . Hence, by Theorem 10 ,

‖G‖∞ ≤ 25/6
1− 5/12

=
50
7
' 7.14 .

Case 3: In this example, the factorization of G(z) according to the method 3 in Remark 27
leads to the same factorization we found in Case 1 .

Case 4: Taking advantage of equation (6.2) and of external positivity properties of some of
the components of ~g , the exact computation of ‖G‖∞ can be carried out. Since

g1,1(t) =

{
0 for t = 0
(−1

3)t−1 for t ≥ 1 ,

then ‖~g1,1‖1 = 1
1−1/3 = 3

2 . By Lemma 17 , both ~g1,2 and ~g2,2 are positive; hence, by
Proposition 16 , ‖~g1,2‖1 = G1,2(1) = 16

5 and ‖~g2,2‖1 = G2,2(1) = 16
15 . As for ~g2,1 , it holds

that ‖~g2,1‖1 = 2‖~g +
2,1‖1 , where ~g +

2,1 is the impulse response of the externally positive system
whose transfer function is G+

2,1(z) := 1
z−1/2 . Thus, ‖~g2,1‖1 = 2G+

2,1(1) = 4 . Therefore
equation (6.2) yields

‖G‖∞ =

∥∥∥∥∥

(
3/2 16/5
4 16/15

)∥∥∥∥∥
∞

=
76
15
' 5.067 .

♣
In Example 25 , the second method of factorization leads to a smaller upper bound for ‖G‖∞
than the one we found when we used the right coprime factorization. Nevertheless, as it is
explicitly illustrated in next Example 26 , this is not true in general.
For a MIMO system, instead of applying Theorem 10 to the overall G(z) , one may use it to
bound the `1–norm of each SISO impulse response ~gi,j that composes the system, then to
resort to equation (6.2) . While this approach may provide a less conservative upper bound for
‖G‖∞ , on the other hand it does not appear to be profitable for control synthesis purposes.

Example 26 Consider a MIMO system whose transfer matrix is

G(z) =

(
1
z

1
z−1/2

1
z−1/4

1
z−1/5

)
.
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Also in this example, the factorization methods 1 and 3 , presented in Remark 27 , lead to the
same factorization of G(z) . We hence consider only the algebraic methods.

Case 1: Let us factorize G(z) according to the method 2 in Remark 27 . It holds that

d(z) = z(z − 1/2)(z − 1/4)(z − 1/5) =

= z4 − 19
20z3 + 11

40z2 − 1
40z .

It immediately follows that,

‖D‖∞ =
19
20

+
11
40

+
1
40

=
5
4

> 1

and hence Theorem 10 cannot be applied.

Case 2: If instead we factorize G(z) according to method 3 , then

{
d1(z) = z(z − 1/4)

d2(z) = (z − 1/2)(z − 1/5) .

Hence, with

D̄(z) = diag
{

d1(z)
z2

,
d2(z)
z2

}
=

1
z2

(
z2 − 1

4z 0

0 z2 − 7
10z + 1

10

)
,

by equation (6.8) one gets G(z) = N(z)
(
I2 + D(z)

)−1 , where





N(z) = 1
z2

(
z − 1

4 z − 1
5

z z − 1
2

)

D(z) = 1
z2

(
−1

4z 0

0 − 7
10z + 1

10

)
.

Thus, ‖N‖∞ = 5
2 and ‖D‖∞ = 4

5 < 1 . Hence, by Theorem 10 ,

‖G‖∞ ≤ 5/2
1− 4/5

=
25
2

.

Case 3: By Lemma 17 , G(z) is the transfer matrix of an externally positive system. There-
fore, by Proposition 16 ,

‖G‖∞ = ‖G(1)‖∞ = 3 .

This gives evidence of the fact that the proposed bound may be quite conservative. Moreover,
for multi–input systems also the tightness of the bound for positive systems is lost. ♣
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6.1.2 Synthesis in `1

Let us consider now the following control synthesis problem in `1 :

Problem 1 (Control synthesis: static output feedback) For a given discrete–time
system 




x+ = Ax + B(u + e)
y = Cx

x ∈ Rn, u ∈ Rm, y ∈ Rq

(6.10)

and γ > 0 , find K ∈ Rm×q such that, under the static output feedback u = Ky , the closed
loop system {

x+ = (A + BKC)x + Be

y = Cx .
(6.11)

is BIBO–stable and, denoted by GK its input/output operator, it holds that ‖GK‖∞ ≤ γ .

As in Section 5.3.2 , we deal with the “actuator disturbance” case. This is indeed the case
that turns out to be useful for the practical stabilization of quantized input systems. One of
the main features of Theorem 10 is that of being suitable to deal with this control synthesis
problem.

Theorem 11 (Static output feedback in `1 ) Consider system (6.10) , assume without
loss of generality that q ≥ m and let G(z) = C(zI−A)−1B be factorized in the form G(z) =
N(z)

(
Im + D(z)

)−1 as in equation (6.5) . Consider the closed loop dynamics (6.11) under
the static output feedback u = Ky , let GK(z) := C(zI−A−BKC)−1B be the corresponding
transfer matrix and, if system (6.11) is BIBO–stable, denote by GK its input/output operator.
If K ∈ Rm×q is such that ‖DK‖∞ < 1 , where DK(z) := D(z)−KN(z) , then system (6.11)
is BIBO–stable and

‖GK‖∞ ≤ ‖N‖∞
1− ‖DK‖∞ . (6.12)

Before proving the theorem, let us derive the solution to Problem 1 in terms of linear in-
equalities.

Corollary 8 (Linear inequalities formulation) With the same notation of Theorem 11 ,
let γ ≥ ‖N‖∞ . As in equation (6.3) , let N =

[
n(1) | · · · |n(r)

] ∈ Rq×mr and D =[
d(1) | · · · | d(r)

] ∈ Rm×mr (for suitable r ∈ N ) be the matrices associated to the FIR
systems N(z) and D(z) appearing in the factorization (6.5) . If ∃K ∈ Rm×q such that

∀ i = 1, . . . ,m ,
mr∑

j=1

∣∣∣Di,j −
q∑

l=1

Ki,lNl,j

∣∣∣ ≤ 1− ‖N‖∞
γ

, (6.13)

then
‖GK‖∞ ≤ γ .
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Proof. By Theorem 11 , a sufficient condition in order that K ∈ Rm×q is such that ‖GK‖∞ ≤
γ is that ‖DK‖∞ < 1 and ‖N‖∞

1−‖DK‖∞ ≤ γ . This is equivalent to find K ∈ Rm×q such that

‖DK‖∞ ≤ 1− ‖N‖∞
γ

.

Because DK(z) = D(z) −KN(z) = 1
zr

∑r
t=1

(
d(t) −Kn(t)

)
zr−t , by equation (6.4) it holds

that ‖DK‖∞ = ‖D−KN‖∞ . Condition (6.13) is tantamount to requiring that ‖D−KN‖∞ ≤
1− ‖N‖∞

γ

(
see equation (5.3)

)
.

Proof of Theorem 11. It is sufficient to show that GK(z) = N(z)
(
Im + DK(z)

)−1 ,
the thesis then follows by Theorem 10 . The transfer matrix GK(z) can be rewritten as
GK(z) =

(
Iq −G(z)K

)−1
G(z) . Thus,

GK(z) =
(
Iq −G(z)K

)−1
G(z) =

(a)
= G(z)

(
Im −KG(z)

)−1 =

= N(z)
(
Im + D(z)

)−1
(
Im −KN(z)

(
Im + D(z)

)−1
)−1

=

= N(z)
(
Im + D(z)−KN(z)

)−1 =

= N(z)
(
Im + DK(z)

)−1
,

where equality (a) follows by Lemma 29 in Appendix A.5.2 .

Theorem 11 and Corollary 8 provide a sufficient criterion for the solution of Problem 1 . How-
ever, because the upper bound (6.12) may be in general quite conservative, in some cases the
linear inequalities (6.13) are not feasible even if a solution to the control synthesis problem
exists. Moreover, the issues related with the non uniqueness of the factorization (6.5) (see
Remark 26 and Examples 25 and 26) also affects the control synthesis problem.
Nonetheless, there is a special case of Problem 1 where the proposed control synthesis tech-
nique turns out to be particularly useful, namely, that of state feedback for single–input
systems.

Proposition 18 (State feedback for single-input systems) Consider a strictly proper
rational transfer matrix G(z) of a linear system with u ∈ R and y ∈ Rn . Let d(z) =
zn − ∑n

k=1 akz
k−1 be the polynomial of the poles of the system and G(I)(z) be defined by

G(I)

k (z) := zk−1/d(z) , k = 1, . . . , n . Let C ∈ Rn×n be such that G(z) = CG(I)(z) . Then,
∀ γ ≥ ‖C‖∞ , a control gain K ∈ R1×n can be determined by solving a system (6.13) such
that the closed loop dynamics with u = Kx is BIBO–stable and ‖GK‖∞ ≤ γ .
Moreover, if ∀ i, j = 1, . . . , n , Ci,j ≥ 0 , then a solution exists to system (6.13) so that the
equality ‖GK‖∞ = γ is satisfied.

Proof. First notice that, because the system is of order n and y ∈ Rn, then C ∈ Rn×n

is invertible. It holds that G(z) = N(z)
(
1 + D(z)

)−1 , where N(z) and D(z) are defined
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as in equation (6.9) (with at in place of ft ) . Hence, N = C , D =
( −a1 −a2 · · · −an

)

and ‖N‖∞ = ‖C‖∞ . For γ ≥ ‖C‖∞ , there exists a solution to system (6.13) if and only
if ∃K ∈ R1×n such that ‖D − KN‖∞ ≤ 1 − ‖C‖∞

γ . Since D − KN = (DC−1 − K)C , then
‖D−KN‖∞ ≤ ‖DC−1−K‖∞‖C‖∞ . Therefore, K can be chosen so as to make ‖DC−1−K‖∞ ,
and hence ‖D−KN‖∞ , arbitrarily small.
Notice that the row vector D−KN collects the coefficients of the polynomial of the poles of
GK(z) . The last statement is hence a direct consequence of Corollary 7 : let γ ≥ ‖C‖∞ , it is
sufficient to pick K ∈ R1×n so that D−KN = (−f1 −f2 . . . −fn ) , with fk ≥ 0 ∀ k = 1, . . . , n

and
∑n

k=1 fk = 1− ‖C‖∞
γ . This is achieved with K =

(
D + ( f1 f2 . . . fn )

)
C−1 .

Let us provide an example where the control synthesis technique based on Corollary 8 allows
one to solve Problem 1 for a MIMO system.

Example 27 Let us consider the system




x(t + 1) =




0 0 1 0
0 0 0 1

1/4 0 3/4 0
0 1/4 0 3/4


x(t) +




0 0
0 0
1 0
0 1




(
u(t) + e(t)

)

y(t) =

(
0 −1 2 0

1/2 0 0 1

)
x(t) .

The goal is to find K ∈ R2×2 such that, with u = Ky , the closed loop system is BIBO–stable
with ‖GK‖∞ ≤ 10 .
It is a reachable and observable system whose poles are 1 and −1/4 (both with double multi-
plicity) , therefore the system is not BIBO–stable (see property 2 of Lemma 14) . The transfer
matrix of the system is

G(z) =

(
2z

(z−1)(z+1/4) − 1
(z−1)(z+1/4)

1/2
(z−1)(z+1/4)

z
(z−1)(z+1/4)

)
=

(
2z −1
1/2 z

)
1

z2 − 3
4z − 1

4

.

Hence, G(z) = N(z)
(
I2 + D(z)

)−1 with

N(z) :=
1
z2

[(
2 0
0 1

)
z +

(
0 −1

1/2 0

)]

and

D(z) :=
1
z2

[(
−3/4 0

0 −3/4

)
z +

(
−1/4 0

0 −1/4

)]
.

Accordingly,

N =

(
2 0 0 −1
0 1 1/2 0

)
and D =

(
−3/4 0 −1/4 0

0 −3/4 0 −1/4

)
.
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Figure 6.2: The feasibility regions of system (6.13) in the case considered in Example 27 .

As ‖N‖∞ = 3 , according to Corollary 8 , we look for K ∈ R2×2 such that ‖D − KN‖∞ ≤
1− 3

10 = 7
10 . We have

D−KN =

(
−3

4 − 2K1,1 −K1,2 −1
4 −

K1,2

2 K1,1

−2K2,1 −3
4 −K2,2 −K2,2

2 −1
4 + K2,1

)
,

thus system (6.13) takes the form of




∣∣3
4 + 2K1,1

∣∣ + |K1,2|+
∣∣1
4 + K1,2

2

∣∣ + |K1,1| ≤ 7
10

|2K2,1|+
∣∣3
4 + K2,2

∣∣ +
∣∣K2,2

2

∣∣ +
∣∣K2,1 − 1

4

∣∣ ≤ 7
10 .

The system is solved for (K1,1,K1,2) ∈ K1 ⊂ R2 , where K1 is the quadrilateral whose vertices
are

P1 =
(− 3

8 , 1
20

)
, P2 =

(− 3
10 , 0

)
, P3 =

(− 3
8 , − 3

20

)
, P4 =

(− 2
5 , 0

)
,

and for (K2,1,K2,2) ∈ K2 ⊂ R2 , where K2 is the quadrilateral whose vertices are

Q1 =
(
0 , −3

5

)
, Q2 =

(
3
40 , −3

4

)
, Q3 =

(
0 , −4

5

)
, Q4 =

(− 1
40 , −3

4

)
,

see Fig. 6.2 . One feasible choice for K is

K =

(
−7/20 −1/20
1/40 −7/10

)

(which is identified by the points P and Q represented in Fig. 6.2) . For such a K we have
‖D−KN‖∞ = 27/40 and hence ‖GK‖∞ ≤ 3

1−27/40 = 120
13 ' 9.2308 .

Notice that, because the closed loop system is reachable and observable, then A + BKC is a
Schur matrix and the resulting dynamics is `∞–stable. ♣
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6.2 `∞/`∞ small–gain for practical stability of multi–input

systems

6.2.1 Practical stability analysis in `1 and mixed H∞/`1 analysis

In this section, the practical stability analysis for feedback systems is studied in the `1

functional space. We first introduce a generalized notion of `∞–gain for a static nonlinearity,
then we prove some practical stability results that are based on a small–gain condition in
terms of the `∞–gain of the operators forming the feedback system. These results can be
merged together with those from the analogous Section 5.3.1 , thus providing mixed H∞/`1

analysis tools.

For a given function ψ : Rn → Rm , let us introduce some quantities which will be useful for
our analysis. For Ω ⊆ Rn , let

E (Ω) := sup
x∈Ω

‖ψ(x)‖∞ .

We always assume that the function ψ is regular, namely that if Ω ⊂ Rn is bounded, then
E (Ω) < +∞ .
In the particular case of Ω = Qn(∆) , ∆ ≥ 0 , we use the notation

E (∆) := sup
x∈Qn(∆)

‖ψ(x)‖∞ .

The function E (∆) is non–decreasing with ∆ , we can hence define the right continuous
function

E +(∆) := lim
ε→0+

E (∆ + ε) .

Definition 32 For ∆ > 0 , let the generalized `∞–gain of the function ψ be defined by5

γe(∆) :=
E +(∆)
∆/2

.

Theorem 12 (Small–gain in `1: (X0,X1,Ω)–stability analysis) Let us consider a
linear system 




x(t + 1) = Fx(t) + Be(t)
y(t) = Cx(t)
x ∈ Rn, e ∈ Rm, y ∈ Rp,

where F is a Schur matrix. Let G(I) be the input/state operator associated to the system.
Assume that qe : Rp → Rm is such that the closed–loop dynamics

x(t + 1) = Fx(t) + Bqe

(
Cx(t)

)
(6.14)

is (X0, X1, Ω)–stable. Consider the function ψ := qe ◦ C : Rn → Rm and let ∆1 :=
2‖G(I)‖∞E (Ω) . Then,

5In the definition of γe , E +(∆) is divided by ∆/2 because x ∈ Qn(∆) ⇔ ‖x‖∞ ≤ ∆/2 .
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ı) ∀∆ > ∆1 , system (6.14) is
(
X0, X1, Qn(∆)

)
–stable.

Moreover, let γe(∆) be the generalized `∞–gain of the function ψ :

ıı) if
‖G(I)‖∞ · γe(∆1) < 1 , (6.15)

then it is well–defined

∆inf :=





max
{
∆ < ∆1 | ‖G(I)‖∞ · γe(∆) = 1

}
if{

∆ < ∆1 | ‖G(I)‖∞ · γe(∆) = 1
} 6= ∅

0 otherwise ,

(6.16)

and ∀∆? > ∆inf , system (6.14) is
(
X0, X1, Qn(∆?)

)
–stable.

Proof. The proof is given below, after some remarks and some preliminary results.

In Theorem 12 , the closed loop dynamics (6.14) is assumed to be (X0, X1,Ω)–stable and,
by taking advantage of a small–gain condition in the `1 space, a new stability property is
deduced, that is

(
X0, X1, Qn(∆?)

)
–stability. Compared with Theorem 9 in Section 5.3.1 ,

where practical stability properties can be asserted with no a priori assumptions on the
practical stability of the closed loop dynamics, Theorem 12 is a weaker result. Nevertheless,
the theorem can be used to supplement the practical stability analysis of a dynamics that
has been proved to be practically stable through some other techniques. For instance, the
combination of Theorem 12 with the analysis in H∞ leads to a mixed H∞/`1 analysis (see
Corollary 9 below and Example 29 in next Section 6.2.2) . Moreover, this result, when used
in the control synthesis perspective, gives rise to a special type of mixed H∞/`1 control
synthesis problem (whose exact formulation, and an example, is provided in Section 6.2.2) .
It is worth noting that, if Qn(∆?) ⊆ Ω , then the application of the theorem allows one to
improve the steady–state analysis (meaning that, according to the containment relation, the
convergence of the trajectories to within a smaller neighborhood of the equilibrium is proved) .
In general, this is not true. However, because system (6.14) is both (X0, X1, Ω)–stable and(
X0, X1, Qn(∆?)

)
–stable, then it is

(
X0, X1, Ω ∩ Qn(∆?)

)
–stable. As Ω ∩ Qn(∆?) ⊆ Ω ,

then the application of Theorem 12 can only improve the practical stability analysis. The
subsequent presentation and some examples further clarify the relevance of the contribution
brought by this theorem.
The proof of Theorem 12 is based on the following

Lemma 19 (Main tool) With the notation of Theorem 12 , consider x(0) ∈ Rn and its
evolution under the closed loop dynamics (6.14) . Let S ⊆ Rn be such that E (S) < +∞
and ∃ t̂ ≥ 0 such that ∀ t ≥ t̂ , x(t) ∈ S . Then, ∀∆ > 2‖G(I)‖∞E (S) , ∃ t1 ≥ 0 such that
∀ t ≥ t1 , x(t) ∈ Qn(∆) .

Proof. To prove the result it is sufficient to show that lim supt→+∞ ‖x(t)‖∞ ≤ ‖G(I)‖∞E (S) .
First notice that, for x(0) ∈ Rn and ~e :=

{
ψ

(
x(t)

)}
t∈N , it holds that

∀ t ≥ 0 and ∀ k ≥ 0 , x(t + k) = F kx(t) + (~g (I) ∗ σt~e )(k) ,
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where ~g (I) is the impulse response associated to system Σ(F,B, I) . Since ∀ t ≥ t̂ , x(t) ∈ S ,
then ∀ t ≥ t̂ , ‖e(t)‖∞ ≤ E (S) or, equivalently, ‖σt̂~e ‖∞ ≤ E (S) . Thus,

lim supt→+∞ ‖x(t)‖∞ = lim supk→+∞ ‖x(t̂ + k)‖∞ ≤
≤ lim supk→+∞

(‖F kx(t̂)‖∞ + ‖(~g (I) ∗ σt̂~e )(k)‖∞
) ≤

(a)

≤ ‖(~g (I) ∗ σt̂~e )‖∞ ≤
≤ ‖G(I)‖∞‖σt̂~e ‖∞ ≤
≤ ‖G(I)‖∞E (S) ,

where in inequality (a) we used the fact that, as F is a Schur matrix, then

lim
k→+∞

‖F kx(t̂)‖∞ = 0 .

To prove Theorem 12 we also need the following technical result:

Lemma 20 With the notation of Theorem 12 , for any fixed ∆1 ≥ 0 , consider the sequence
{∆k}k∈N\{0} defined by ∆k+1 := 2‖G(I)‖∞E +(∆k) . Then, ∀ m̂ ∈ N \ {0} , the following
property holds: ∀ ε′ > 0 , ∃ {εk}k=1,...,m̂ , with εk > 0 ∀ k = 1 . . . , m̂ , such that

∆m̂ < ∆+
m̂ < ∆m̂ + ε′ ,

where {
∆+

1 := ∆1 + ε1
∆+

k+1 := 2‖G(I)‖∞E (∆+
k ) + εk+1 (for 1 ≤ k < m̂) .

(6.17)

Proof. See in Appendix A.5.3 .

We are now ready for the proof of the theorem:
Proof of Theorem 12. To prove part ı , since the closed loop dynamics (6.14) is already
known to be (X0, X1, Ω)–stable, we have only to show that ∀x(0) ∈ X0 and ∀∆ > ∆1 ,
∃ t1 ≥ 0 such that ∀ t ≥ t1 , x(t) ∈ Qn(∆) . Such a property follows by the application of
Lemma 19 with S = Ω .

To prove part ıı , let us first show that ∆inf is well–defined. To this end, for ∆ ∈ [0,∆1] ,
consider

φ(∆) := 2‖G(I)‖∞E +(∆) . (6.18)

The following properties hold for φ : φ(∆) ≥ 0 and it is a non–decreasing and right contin-
uous function (because these properties hold for E + ) ; moreover, by definition,

φ(∆) < ∆ ⇐⇒ ‖G(I)‖∞ · γe(∆) < 1 , (6.19)

so that, by the small–gain assumption (6.15) , φ(∆1) < ∆1 . Hence, by Lemma 11 of Sec-
tion 4.1 , the sequence {∆k}k∈N\{0} defined by ∆k+1 := φ(∆k) is non–increasing. By equa-
tion (4.4) of Lemma 11 and relation (6.19) , it immediately follows that limk→+∞∆k = ∆inf ,
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with ∆inf as defined in equation (6.16) .
Now, let ∆? > ∆inf : to prove the

(
X0, X1, Qn(∆?)

)
–stability, we construct a sequence

{∆+
k }k=1,...,m̂ such that ∆+

m̂ < ∆? and, iterating Lemma 19 , we show that, ∀ k = 1, . . . , m̂ ,
any trajectory starting from X0 eventually remains confined within Qn(∆+

k ) . In detail, as
limk→+∞∆k = ∆inf , ∃ m̂ ∈ N such that ∆m̂ < ∆? . Let ε′ := ∆? − ∆m̂ : by Lemma 20 ,
∃ {εk}k=1,...,m̂ (with εk > 0 ∀ k = 1, . . . , m̂ ) such that

∆m̂ < ∆+
m̂ < ∆? ,

where the sequence {∆+
k }k=1,...,m̂ is defined in equation (6.17) . Applying Lemma 19 with

S = Qn(∆+
k ) , if ∃ tk ≥ 0 such that ∀ t ≥ tk , x(t) ∈ Qn(∆+

k ) , then ∃ tk+1 ≥ 0 such that
∀ t ≥ tk+1 , x(t) ∈ Qn(∆+

k+1) . Since in part ı we have shown that this is true for k = 1 , the
thesis follows by iterating the application of Lemma 19 .

Remark 28 If system (6.14) is (X0, Ω)–stable, then Theorem 12 states that the system is(
X0, X0, Qn(∆?)

)
–stable (for ∆? > ∆inf ). The reason why the weakest notion of

(
X0, X0,

Qn(∆?)
)
–stability is provided by Theorem 12

(
rather than

(
X0, Qn(∆?)

)
–stability, see Re-

mark 1 in Section 2.3.1
)

lies in the fact that this result is based only on the analysis of the
forced component of the state, hence providing information only on the asymptotic proper-
ties of the trajectories. Since the transient behavior is not taken into account, the positive
invariance of Qn(∆?) is not guaranteed.

Theorem 12 can be combined with the practical stability results presented so far. For instance,
Theorem 9 of Section 5.3.1 together with Theorem 12 yield a mixed H∞/`1 stability analysis
result:

Corollary 9 (Mixed H∞/`1 analysis) Under the assumptions of Theorem 9 , let ψ :=
qe ◦ C and G(I) be the input/state operator associated to system (5.14) . For r2

2 ≥ r2
i , let

E (r2
2) := E (EP,r2

2
) and

∆1 := inf
r2
2>r2

i

2‖G(I)‖∞E (r2
2) . (6.20)

Then,

ı) ∀ r2
1 > r2

i and ∀∆ > ∆1 , system (5.15) is
(EP,r2

1
, EP,r2

1
, Qn(∆)

)
–stable.

Moreover, let γe(∆) be the generalized `∞–gain of the function ψ :

ıı) if
‖G(I)‖∞ · γe(∆1) < 1 ,

then ∀∆? > ∆inf , system (5.15) is
(EP,r2

1
, EP,r2

1
, Qn(∆?)

)
–stable, where ∆inf is defined in

equation (6.16) .

Proof. Part ı : by Theorem 9.ıı , ∀ r2
1 ≥ r2

2 > r2
i , system (5.15) is

(EP,r2
1
, EP,r2

2

)
–stable.

Hence, by Theorem 12.ı , ∀∆ > 2‖G(I)‖∞E (r2
2) , system (5.15) is

(EP,r2
1
, EP,r2

1
, Qn(∆)

)
–stable.

Since this property holds ∀ r2
2 > r2

i , then the
(EP,r2

1
, EP,r2

1
, Qn(∆)

)
–stability is guaranteed

∀∆ > ∆1 .
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Part ıı is simply a restatement of Theorem 12.ıı suited to system (5.15) .

The combination of Theorem 12 with the analysis result in the case of uniformly bounded
qe (see Proposition 14 in Section 5.3.1) provides the following

Corollary 10 (Uniformly bounded qe ) Under the assumptions of Proposition 14 , let
ψ := qe ◦ C and denote by G(I) the input/state operator associated to system (5.14) , then
∀ r2 ≥ r2

i and ∀∆ > 2‖G(I)‖∞E0 , system (5.15) is
(EP,r2 , EP,r2 , Qn(∆)

)
–stable.

Proof. It is a direct consequence of Proposition 14 and of Theorem 12.ı : it is sufficient to
notice that ∀Ω ⊆ Rn , it holds that E (Ω) ≤ E0 . Indeed, ∀x ∈ Rn, ‖qe(Cx)‖2 ≤ E0 and
∀ z ∈ Rm, ‖z‖∞ ≤ ‖z‖2 .

As already noticed, Theorem 12 is a weaker result than Theorem 9 , because practical stability
properties are a priori assumed for the closed loop dynamics (6.14) . A stronger result can
be instead proved for single–input reachable systems. In this case, in fact, practical stability
properties are derived by a small–gain condition in `1 without a priori stability assumptions
on the closed loop dynamics. Moreover, the stronger notion of (X0, Ω)–stability is ensured.

Proposition 19 (Small–gain in `1 : (X0,Ω)–stability analysis of single–input rea-
chable systems) Let us consider a single–input linear system





x(t + 1) = Fx(t) + Be(t)

y(t) = Cx(t)

x ∈ Rn, e ∈ R , y ∈ Rp,

(6.21)

where the pair (F, B) is assumed to be in the controller form
(
see equation (3.1) in Sec-

tion 3.1.1
)
. Let zn − fnzn−1 − · · · − f2z − f1 be the characteristic polynomial of F and

suppose that f :=
∑n

i=1 |fi| < 1 . For a given qe : Rp → R , consider the control law

e(t) = qe

(
y(t)

)
:

the corresponding closed loop dynamics is

x(t + 1) = Fx(t) + Bqe

(
Cx(t)

)
. (6.22)

Let ψ := qe ◦C : Rn → R and denote by γe(∆) the generalized `∞–gain of the function ψ .
Then, the following properties hold for system (6.22) :

ı) ∀∆ > 0 such that
γe(∆)
1− f

≤ 1 ,

Qn(∆) is positively invariant;

ıı) if ∆0 > 0 is such that
γe(∆0)
1− f

< 1 , (6.23)
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then it is well–defined

∆inf :=

{
max

{
∆ < ∆0 | γe(∆)

1−f = 1
}

if
{
∆ < ∆0 | γe(∆)

1−f = 1
} 6= ∅

0 otherwise ,
(6.24)

and ∀∆? ∈ ]∆inf , ∆0] , the system is
(
Qn(∆0), Qn(∆?)

)
–stable.

Proof. For ∆ ≥ 0 , let φ(∆) := f∆ + 2E +(∆) . The following properties hold for φ :
φ(∆) ≥ 0 and it is a non–decreasing and right continuous function (it is a consequence of
f ≥ 0 and of the analogous properties of E + ) ; for f ∈ [0, 1[ ,

φ(∆) < ∆ ⇐⇒ γe(∆)
1− f

< 1 ; (6.25)

also, for ∆ > 0 , φ(∆) ≤ ∆ ⇔ γe(∆)
1−f ≤ 1 which is equivalent to

f
∆
2

+ E +(∆) ≤ ∆
2
⇐⇒ γe(∆)

1− f
≤ 1 . (6.26)

To prove part ı , let ∆ > 0 be such that γe(∆)
1−f ≤ 1 and x ∈ Qn(∆) : because the system is in

controller form, the positive invariance of Qn(∆) is guaranteed by showing that |x+
n| ≤ ∆

2(
see equation (3.4) in Section 3.1.1

)
. As x+

n =
∑n

i=1 fixi + ψ(x) , then

|x+
n| ≤ f‖x‖∞ + E (∆) ≤
≤ f‖x‖∞ + E +(∆) ≤
≤ f ∆

2 + E +(∆) ≤
≤ ∆

2 ,

where the last inequality holds thanks to (6.26) .

To prove part ıı , let ∆0 > 0 be such that the small–gain condition (6.23) holds. In this
case, we can apply Lemma 11 of Section 4.1 : hence, the sequence {∆k}k∈N defined by
∆k+1 := φ(∆k) is non–increasing and, as in the proof of Theorem 12.ıı , equation (4.4) and
relation (6.25) imply that limk→+∞∆k = ∆inf , with ∆inf as defined in equation (6.24) .
Let ∆? ∈ ]∆inf , ∆0] : by Lemma 11 , ∃ m̂ ∈ N such that ∆inf ≤ ∆m̂ < ∆? . Let us show
that, ∀∆ ∈ [∆inf , ∆0] , Qn(∆) is positively invariant. Indeed, φ(∆inf) = ∆inf and, again
by Lemma 11 , ∀∆ ∈ ]∆inf , ∆0] , φ(∆) < ∆: the positive invariance then follows by rela-
tion (6.26) and part ı . Now, to prove the

(
Qn(∆0), Qn(∆?)

)
–stability, it is sufficient to

show that, ∀ k = 0, . . . , m̂− 1 , system (6.22) is
(
Qn(∆k), Qn(∆k+1)

)
–stable. This property

holds true because ∀ k ∈ N , if x(0) ∈ Qn(∆k) , then x(n) ∈ Qn(∆k+1) . Let us prove this
fact: since the system is in controller form, it is sufficient to show that, ∀x ∈ Qn(∆k) ,
|x+

n| ≤ ∆k+1

2 . Following the same arguments used to prove part ı ,

|x+
n| ≤ f

∆k

2
+ E +(∆k) =

φ(∆k)
2

=
∆k+1

2
.
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Remark 29 In Proposition 19 , the `∞–norm of the input/state operator associated to sys-
tem (6.21) does not explicitly appear in the small–gain condition (6.23) . Nevertheless,
γe(∆0)
1−f < 1 is a small–gain condition in `1 because, by Proposition 17 in Section 6.1.1 ,

it holds that ‖G(I)‖∞ ≤ 1
1−f .

6.2.2 Practical stabilization of quantized input systems via `1–control: the

hypercubes technique seen as the control synthesis in `1

Let us illustrate how the theory on the small–gain in the functional space `1 can be prof-
itably used to address the practical stabilization problem for quantized input linear systems.
Consider a system {

x+ = Ax + Bu

x ∈ Rn, u ∈ U ⊂ Rm,
(6.27)

where the pair (A,B) is supposed to be stabilizable and U is an assigned quantized set. As
in Section 5.3.2 , suitable adjustments of the proposed arguments allow one to deal with the
case where also U can be chosen, nevertheless, the details of this problem are not discussed
here.
We search for a constant feedback matrix K ∈ Rm×n and an input quantizer qU : Rm → U
so that the control law u(x) = qU(Kx) practically stabilizes system (6.27) . As usual, with
the quantization error qe : Rm → Rm defined by qe(y) = qU(y) − y (see Definition 4 in
Section 2.1) , the closed–loop dynamics induced by u(x) is

x+ = (A + BK)x + Bqe(Kx) .

The practical stability analysis of this system can be done taking advantage of the results
presented in the previous section, it is sufficient to let F := A + BK , C := K and ψ :=
qe ◦K : Rn → Rm .
We propose two main solutions to the practical stabilization problem:

1. Control synthesis in H∞ and mixed H∞/`1 closed loop analysis.
The synthesis of the controller is done according to the small–gain theorem in H∞ (i.e.,
following Procedure 1) . This yields a practically stable closed loop dynamics that can
be analyzed with the mixed H∞/`1 tools (namely, through Corollary 9 or Corollary 10 ,
depending on the structure of U ) .

2. Mixed H∞/`1 control synthesis and mixed H∞/`1 closed loop analysis.
In view of Theorem 12 , the control synthesis step of Procedure 1 (i.e., step 2) can be
modified so as to guarantee that, not only the H∞–norm of the closed loop system is
below a desired threshold guaranteeing that the small–gain condition is met, but also
the `∞–gain of the corresponding input/state operator is minimized

(
so as to reduce

the size of the final hypercube Qn(∆?)
)
. Namely, step 2 is replaced with
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2. Mixed H∞/`1 control synthesis: let γ∞ ≤ 1
γe

, find K ∈ Rm×n such that

K = argmin
X ∈ Rm×n such that{

A + BX is Schur
‖GX‖∞ < γ∞

‖G(I)

X ‖∞ , (6.28)

where GX(z) = X(zI−A−BX)−1B and G(I)

X is the input/state operator of
the system Σ(A + BX, B, I) .

As in the former solution, the closed loop dynamics is then analyzed with the mixed
H∞/`1 tools.

In order to implement these solutions, one has to supplement the discussion on the imple-
mentation of the practical stabilization procedure presented in Section 5.3.2 with the aspects
related to the `1 theory. Specifically, the first solution requires the analysis of the `∞–gain
of the input/state operator associated to the closed loop dynamics and the analysis of the
function ψ (in particular, of its generalized `∞–gain) . For the second solution, it is also
necessary to solve problem (6.28) .
The analysis of the `∞–gain of the closed loop linear system has been extensively discussed
in Section 6.1.1 . Efficient numerical methods are also available (see [6, 58]) . Similarly to the
study of the external gain (see the implementation of step 1 of Procedure 1) , the analysis
of ψ is mainly a geometric issue that, in principle, can be done for any ψ (hence, for any
input quantizer) . However, for general input quantizers and large dimension of the input
space, this analysis may be quite involved. At the end of this section, in Example 28 , we
explicitly analyze ψ = qe ◦K when qe is the quantization error associated to a logarithmic
quantization of R . Finally, the one in equation (6.28) is a special kind of mixed H∞/`1

control problem. In this thesis, we do not go into the details of this issue and we let it as
an open point for further investigations. Here, we limit ourselves to mention that, in the
framework of multi–objective control, there is a certain amount of literature dealing with
mixed H∞/`1 control problems (see [23, 37, 121]) . Moreover, for the study of this problem,
one can make the most of the equivalence between the H∞ and the `1–norms of externally
positive SISO systems (see Lemma 18) . An associated open issue consists in the study of the
the mixed H∞/`1 control problem under the supplementary constraint that K is a feedback
gain ensuring external positivity properties for the closed loop dynamics.
Details on the implementation of the two solutions can be found in Example 29 at the end
of this section where a comparison between the two approaches is presented.

Both the stabilization methods that we proposed rely on the control synthesis in H∞ . Indeed,
in order to apply Theorem 12 , the closed loop dynamics must have a priori known practical
stability properties and Theorem 9 does provide them. In accordance with the corresponding
result on the practical stability analysis, the practical stabilization problem for single–input
reachable systems, instead, can be addressed entirely relying on `1 theory. This result
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is presented in Theorem 13 below and, not only it provides an interpretation in terms of
a control problem in `1 of the stabilization technique based on the analysis of controlled
invariant hypercubes presented in Theorem 6 of Section 4.1 , but it also extends that approach
to a wider class of controllers (rather than to the quantized deadbeat only) .
In detail, let us consider the practical stabilization problem for system (6.27) where m = 1
and the pair (A,B) is reachable. Without loss of generality, we assume that the system
is in controller form

(
see equation (3.1) of Section 3.1.1

)
. If K ∈ R1×n is such that the

matrix F := A + BK satisfies f :=
∑n

i=1 |fi| < 1 , where zn − fnzn−1 − · · · − f2z − f1 is
the characteristic polynomial of F , then the practical stability properties of the closed loop
dynamics arising from the control law u(x) = qU(Kx) (for some input quantizer qU : R→ U )
can be analyzed through Proposition 19 . However, this approach has a drawback: in fact, in
the small–gain condition γe(∆)

1−f < 1
(
see equation (6.23)

)
, the dependence on the control gain

K is not limited to the term concerned with the `∞–gain of the ideal closed loop dynamics(
i.e., 1

1−f

)
but also involves the parameter that takes the quantization error into account(

i.e., γe(∆)
)
. When qU is a nearest neighbor quantizer, it is possible to obtain a more

general practical stabilization result where the small–gain condition γe(∆)
1−f < 1 is replaced

by a similar condition but the dependence on K is restricted to the term taking the ideal
closed loop dynamics into account. To state the result, we refer to the definition of ρ(∆0) ,
M(∆0) and m(∆0) given in Section 3.1.1 .

Theorem 13 (Small–gain in `1 : (X0,Ω)–stabilization of single–input reachable
systems) Consider system (6.27) , assume A0

(
see equation (3.1) in Section 3.1.1

)
and that6

α :=
∑n

i=1 |ai| ≥ 1 . Let K ∈ R1×n be such that F := A + BK satisfies f :=
∑n

i=1 |fi| < 1 .
Consider ∆0 > 0 such that 




m(∆0) < −∆0

2
(α− 1)

M(∆0) >
∆0

2
(α− 1)

ρ(∆0) < (1− f)∆0 ,

(6.29a)

(6.29b)

(6.29c)

assume that7 U = U(∆0) and let qU : R→ U(∆0) be a nearest neighbor quantizer. Then it
is well–defined

∆inf(f) := max
{
∆ < ∆0 | ρ(∆) = (1− f)∆

}
(6.30)

and ∀∆? ∈ ]∆inf(f) , ∆0] , the control law u(x) = qU(Kx) is
(
Qn(∆0), Qn(∆?)

)
–stabilizing.

Proof. The proof is reported in Appendix A.5.4 . It is based on arguments similar to those
we used to prove Theorem 6 in Section 4.1 , as well as Theorem 12 and Proposition 19.ıı in
Section 6.2.1 .

In conditions (6.29) , f is the only term which is depending on the design parameter K .
Conditions (6.29a-b) are concerned with the structure of the quantized control set U . Thus,

6The case α < 1 is trivial because, by Lemma 28 in Appendix A.5.1 , the matrix A is Schur and u(t) ≡ 0

guarantees asymptotic stability.
7As far as the assumption U = U(∆0) is concerned, see the discussion in Remark 14 of Section 3.2.2 .
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similarly to the practical stabilization via the H∞–control, the analysis of the nonlinearity
due to the quantization error can be carried out apart from the problem of the design of the
control gain K . Namely, if the quantized control set U is assigned, the search of K so that
desired practical stability properties are ensured only consists of satisfying condition (6.29c)
or, in other words, of finding K such that 1

1−f , and hence the `∞–gain of the input/state
operator associated to system (6.21) , is sufficiently small.

Remark 30 (Optimality of the quantized deadbeat controller) Let ∆0 > 0 be such
that conditions (6.29) are satisfied for some f̂ ∈ [0, 1[ . For such a ∆0 , by equation (6.30) ,
∆inf(f) is an increasing function of f . Hence, the size of the final invariant hypercube within
which convergence is guaranteed by Theorem 13 , starting from Qn(∆0) , can be reduced by
choosing a control gain K making smaller the corresponding value of f . In this respect,
the optimal choice of K , i.e., the one minimizing ∆inf(f) , is the deadbeat controller K =
(−a1 − a2 · · · − an ) : in this case, in fact, f = 0 .

Let us clarify the relation between the small–gain condition γe(∆0)
1−f < 1 and conditions (6.29) .

Let ∆0 > 0 and assume that U = U(∆0) : because qU is a nearest neighbor quantizer and
∀x ∈ Qn(∆0) , |Kx| ≤ ‖K‖∞∆0

2 , it is straightforward to see that

E +(∆0) = max
{ρ(∆0)

2
, ‖K‖∞∆0

2
−M(∆0) , m(∆0) + ‖K‖∞∆0

2

}
.

This means that one condition in terms of E +(∆0) can be expressed as three conditions
involving ρ(∆0) , M(∆0) and m(∆0) . Hence, taking advantage of relation (6.25) ,

γe(∆0)
1− f

< 1 ⇐⇒ f∆0 + 2E +(∆0) < ∆0 ⇐⇒





m(∆0) < −∆0
2 (f + ‖K‖∞ − 1)

M(∆0) > ∆0
2 (f + ‖K‖∞ − 1)

ρ(∆0) < (1− f)∆0 .

Finally, as ∀ i = 1, . . . , n , ai = fi−Ki , then α ≤ f +‖K‖∞ so that the small–gain condition
γe(∆0)
1−f < 1 implies conditions (6.29) . In particular, the latter conditions are less restrictive

and the range of applicability of Theorem 13 is wider than the range of applicability of the
practical stabilization technique which is based on a direct application of Proposition 19 .

Example 28 (Analysis of ψ for logarithmic quantization of RRR ) Let qU : R→ U be
a logarithmic quantization of R with parameters (u0, θ) (see Definition 8 in Section 2.1) and
qe be the corresponding quantization error. Let K ∈ R1×n and ψ := qe ◦K : Rn → R :

ı) For a given Rn×n 3 P > 0 , the function E (r2
2) := E (EP,r2

2
) is continuous and, with

µ1 :=
√

r2KP−1K ′ ,

it holds that

E (r2
2) =





µ1 if µ1 < u0
2

max
{

u0
2 , γe

u0(θ+1)
2 θn(µ1) , |u0θ

n(µ1)+1 − µ1|
}

otherwise ,
(6.31)
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where γe := θ−1
θ+1 and n(µ) :=

⌊
logθ

2µ
u0(θ+1)

⌋
.

ıı) For ∆ ≥ 0 , the function E (∆) := E
(
Qn(∆)

)
is continuous and, with

µ2 := ‖K‖∞∆
2

,

it holds that

E (∆) =





µ2 if µ2 < u0
2

max
{

u0
2 , γe

u0(θ+1)
2 θn(µ2) , |u0θ

n(µ2)+1 − µ2|
}

otherwise .
(6.32)

The proofs of these facts are reported in Appendix A.5.4 . ♣

Example 29 Let us consider again the quantized input system studied in Example 22 of
Section 5.3.3 : 




x+ = Ax + Bu =

(
0 1
−1 5/2

)
x +

(
1
2

)
u

u ∈ U ⊂ R,

where U is a logarithmically quantized set with parameters (u0, θ) = (1 , 2) .
For the solution of the practical stabilization problem, three cases are considered: in cases 1
and 2 , we perform the control synthesis in H∞ followed by a mixed H∞/`1 analysis of the
resulting closed loop dynamics. Specifically, we consider the controllers designed in cases 1
and 2 of Example 22 and we supplement the closed loop analysis with the results based on the
small–gain in `1 (i.e., with Corollary 9) . In Case 3 instead, we perform a mixed H∞/`1

control synthesis followed by a mixed H∞/`1 analysis of the closed loop system.

Let K = (K1 K2 ) ∈ R1×2 be such that A + BK is Schur. As usual, we consider a control
law u(x) = qU(Kx) , where qU is a nearest neighbor quantizer. The transfer matrix G(I)

K (z)
of the closed loop system Σ(A + BK, B, I) can be easily computed to be

G(I)

K (z) =




1
z−(2+K1+2K2)

2
z−(2+K1+2K2)


 .

In particular, 2 + K1 + 2K2 is the only pole of the closed loop system. Therefore (see
Section 6.1.1) ,

‖G(I)

K ‖∞ =
2

1− |2 + K1 + 2K2| . (6.33)

Case 1: in case 1 of Example 22 , the control gain is K = ( 0.6645 − 1.3289 ) . This K has
been designed so that ‖GK‖∞ is close to γinf , where

γinf = inf
{ ‖GK‖∞ |K ∈ R1×2 is such that A + BK is Schur

}
= 2 . (6.34)
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Namely, we have chosen an “authoritative” controller: for such a K , we have ‖GK‖∞ =
2.0066 and ‖GK‖∞ · γe = 0.6687 . With

P =

(
0.7990 −0.9630
−0.9630 1.9992

)

and r2
i = 4.0579 , we have found that ∀ r2

1 ≥ r2
2 > r2

i , the resulting closed loop dynamics is(EP,r2
1
, EP,r2

2

)
–stable. The semi–axes of the final invariant ellipsoid EP,r2

i
are

{
s1 = 3.9170
s2 = 1.2655 .

Let us complete the analysis through the application of Corollary 9 to the closed loop system
(where, as usual, F = A + BK , C = K and ψ = qe ◦K ) .
Consider Corollary 9.ı : let us compute ∆1 = inf

r2
2>r2

i

2‖G(I)

K ‖∞E (r2
2) as in equation (6.20) .

By equation (6.33) , it holds that ‖G(I)

K ‖∞ = 2.0133 . As far as E (r2
2) is concerned, we

are in the right framework of Example 28 : in particular, because E (r2
2) is continuous and

non–decreasing, then inf
r2
2>r2

i

E (r2
2) = E (r2

i ) . Hence, by equation (6.31) ,

∆1 = 2‖G(I)

K ‖∞E (r2
i ) = 2.0133 .

In this case, it holds that ∆1 = ‖G(I)

K ‖∞ just because E (r2
i ) = 1/2 . We will see in next

cases 2 and 3 that, in general, this is not true.
Consider Corollary 9.ıı : let us check if the small–gain condition is satisfied. In Example 28 ,
we have shown that E (∆) is continuous, therefore E +(∆) = E (∆) and γe(∆) = E (∆)

∆/2 . By
equation (6.32) , one computes E (∆1) = 1/2 and γe(∆1) = 1/∆1 , hence

‖G(I)

K ‖∞ · γe(∆1) = 1 .

Thus, Corollary 9.ıı cannot be applied.
Final result: with u(x) = qU(Kx) , ∀ r2

1 > 4.0579 and ∀∆ > 2.0133 , the closed loop dynam-
ics is

(EP,r2
1
, EP,r2

1
, Q2(∆)

)
–stable.

In order to appreciate the contribution to the closed loop analysis brought by the application
of the `1 theory, let us compare the diameters of the final hypercube Q2(∆1) and of the
final invariant ellipsoid EP,r2

i
. The half diagonal of Q2(∆1) is ∆1/

√
2 = 1.4236 whereas

the largest semi–axis of EP,r2
i

is s1 = 3.917 . Fig. 6.3 provides a visual representation of
such an improvement. It is also reported the simulation of a closed loop trajectory that bears
evidence of the non–conservativeness of the obtained result. Notice that Q2(∆?) is not pos-
itively invariant but, eventually, the trajectories are guaranteed to remain confined therein
(see Remark 1 in Section 2.3.1) .

Case 2: in case 2 of Example 22 , the control gain is K = ( 0.5294 − 1.0588 ) . This K

has been designed so that ‖GK‖∞ · γe = 0.9 ( ‖GK‖∞ = 2.7 ), namely we have chosen a less
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Figure 6.3: Comparison between the final invariant ellipsoid EP,r2
i

and the final hypercube
Q2(∆1) in case 1 of Example 29 (control synthesis in H∞ and mixed H∞/`1 closed loop
analysis) . Representation of the trajectory starting from x(0) = (−2.48 3.57) .

“authoritative” controller. With

P =

(
0.3957 −0.7764
−0.7764 1.5638

)

and r2
i = 1.0420 · 104 , we have found that ∀ r2

1 ≥ r2
2 > r2

i , the resulting closed loop dynamics
is

(EP,r2
1
, EP,r2

2

)
–stable. The semi–axes of the final invariant ellipsoid EP,r2

i
are

{
s1 = 1126.8
s2 = 73.1 .

Let us complete the analysis by taking advantage of Corollary 9 . By equation (6.33) , it holds
that ‖G(I)

K ‖∞ = 3.4001 . With the same arguments of case 1 , the application of Corollary 9.ı
provides

∆1 = 2‖G(I)

K ‖∞E (r2
i ) = 153.0816 .

As for the application of Corollary 9.ıı , by equation (6.32) , one computes E (∆1) = 17.0424
and γe(∆1) = 0.2227 . Therefore,

‖G(I)

K ‖∞ · γe(∆1) = 0.7571 < 1

and the small–gain condition in `1 is met. In order to determine ∆inf

(
see equation (6.16)

)
,

according to Lemma 11 , we can follow an iterative procedure: the sequence defined by ∆k+1 =
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2‖G(I)

K ‖∞E (∆k)
(
see equation (6.18)

)
converges to

∆inf = 108.8029 .

Final result: with u(x) = qU(Kx) , ∀ r2
1 > 1.0420 · 104 and ∀∆? > 108.8029 , the closed loop

dynamics is
(EP,r2

1
, EP,r2

1
, Q2(∆?)

)
–stable.

Not only the final hypercube Q2(∆inf) is such that8 Q2(∆inf) ⊂ EP,r2
i
, but also the comparison

between the largest semi–axis s1 = 1126.8 of EP,r2
i

and the half diagonal ∆inf/
√

2 = 76.9353
of Q2(∆inf) gives evidence of the improvement to the stability analysis brought by the appli-
cation of the `1 theory.

Case 3: let us solve the problem through mixed H∞/`1 control synthesis.
In this example, problem (6.28) is equivalent to a simpler problem where GX(z) and G(I)

X (z)
can be replaced with a unique SISO operator. In fact: by equation (6.33) , ‖G(I)

K ‖∞ =
‖G(siso)

K ‖∞ , where G(siso)

K (z) := 2
z−(2+K1+2K2) , and GK(z) = −2

z−(2+K1+2K2) = −G(siso)

K (z) .
Therefore, the one in equation (6.28) is equivalent to the following problem: for γ∞ ≤ 1

γe
,

find K ∈ R1×2 such that

K = argmin
X ∈ R1×2 such that{

A + BX is Schur
‖G(siso)

X ‖∞ < γ∞

‖G(siso)

X ‖∞ . (6.35)

Furthermore, because the system is SISO, by Lemma 18 it holds that ‖G(siso)

X ‖∞ ≤ ‖G(siso)

X ‖∞ .
Hence, ∀ γ∞ > γinf = 2

(
see equation (6.34)

)
, the solution to problem (6.35) is given by

K = argmin
X ∈ R1×2 such that
A + BX is Schur

‖G(siso)

X ‖∞ .

According to equation (6.33) , a solution is K = ( 0 − 1 ) which yields

‖G(siso)

K ‖∞ = ‖G(siso)

K ‖∞ = 2 = γinf .

Actually, because it is a first order system, it holds that ‖G(siso)

K ‖∞ = ‖G(siso)

K ‖∞ for any
stabilizing K ∈ R1×2 .
For such a K , let us analyze the closed loop dynamics induced by u(x) = qU(Kx) . First,
according to the H∞ analysis we find that, with

P =

(
3.7165 −1.7587
−1.7587 2.0785

)

8This can be easily verified as Q2(∆) ⊂ EP,r2 ⇔ ∆2

4

(
P1,1 + P2,2 + 2|P2,1|

) ≤ r2 .
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Figure 6.4: Comparison between the final invariant ellipsoid EP,r2
i

and the final hypercube
Q2(∆inf) in case 3 of Example 29 (mixed H∞/`1 control synthesis and mixed H∞/`1 closed
loop analysis) . Representation of the trajectory starting from x(0) = (−2.48 3.57) .

and r2
i = 41.7306 , ∀ r2

1 ≥ r2
2 > r2

i , the closed loop system is
(EP,r2

1
, EP,r2

2

)
–stable. The

semi–axes of the final invariant ellipsoid EP,r2
i

are

{
s1 = 6.6017
s2 = 2.9371 .

The completion of the analysis with the `1 theory yields the following results:

∆1 = 2‖G(I)

K ‖∞E (r2
i ) = 7.1457 ;

the small–gain condition in `1 is satisfied because

‖G(I)

K ‖∞ · γe(∆1) = 0.5598 < 1 ;

finally, with the iterative method described in case 2 , we compute

∆inf = 2 .

Final result: with u(x) = qU(Kx) , ∀ r2
1 > 41.7306 and ∀∆? > 2 , the closed loop dynamics

is
(EP,r2

1
, EP,r2

1
, Q2(∆?)

)
–stable.

Also in this case, Q2(∆inf) ⊂ EP,r2
i
. The comparison between the largest semi–axis s1 =

6.6017 of EP,r2
i

and the half diagonal ∆inf/
√

2 =
√

2 of Q2(∆inf) gives further evidence of
the improvement brought by the application of the `1 theory. This is shown also in Fig. 6.4 .
In the figure, the simulation is reported of the closed loop trajectory corresponding to the same
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initial condition considered in case 1 : the comments we made to Fig. 6.3 are valid also for
this case.
Notice also that, compared with the previous cases, the mixed H∞/`1 control synthesis yields
the best stability result, that is the size of the final hypercube is minimized (even if there is only
a slight improvement with respect to case 1) . Actually, taking advantage of the fact that the
non–reachable dynamics of the system is vanishing and applying Theorem 3 of Section 3.1.2
to the first order system describing the reachable dynamics, it is not difficult to see that Q2(2)
is indeed the smallest ball in the infinity norm within which can be ultimately bounded the
trajectories of the system. ♣





Chapter 7

Performance vs complexity

In Section 2.4 , an analysis was presented on the mutual dependence between performance
of a closed loop system and complexity of the corresponding quantized controller. The no-
tion of complexity of a quantizer has been introduced with reference to the problem of the
control under communication constraints. If the plant can exchange information with the
controller through a finite rate (noiseless) communication channel (e.g., because the plant
and the controller are remotely located, see Fig. 7.1) , then the need rises for the encoding
of the variables into symbols suited for transmission over the channel. In order to reduce
performance deterioration, we want such an encoding to be so that transmission delays are
minimized. In this respect, as discussed at the end of Section 2.4 , suitable analysis tools
should take the statistics of the symbols to encode into account. The study of the relations
between performance and complexity in this probabilistic framework is indeed the subject of
this chapter.

We consider scalar linear systems and we analyze the dynamics of probability distributions
when the system is controlled by a static quantizer. The probabilistic notion of practical
stability considered in this chapter is the so called mean–square practical convergence. This
property amounts to ensuring that, for any initial distribution belonging to a specified class
P , the energy of the evolved distribution definitively stays below a desired threshold. Many
quantized control strategies achieving this target can be found in the literature [29, 131,
17, 39, 45, 108] , as well as in the previous chapters of this thesis. In this chapter, instead,
the focus is on providing the theoretical tools for the analysis of the achievable closed loop
performance according to the complexity of the quantizer. In such a probabilistic framework,
it is part of the problem to identify the suitable performance and complexity measures.
The study is developed so as to include the analysis of distributions with unbounded support.
There are two main reasons for this choice: first, it allows us to treat standard cases such as the
analysis of the evolution of Gaussian distributions; secondly, it makes the developed theory
ready for extensions to the case where also noise terms affecting the system are considered.
In fact, even under the assumption that the initial distribution has a bounded support, if the
presence of unbounded noise terms is included in the model (e.g., a Gaussian noise) , then

179
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the evolving distributions have an unbounded support. Taking distributions with unbounded
support into consideration poses interesting issues from both the theoretical and the practical
point of view. In fact, whatever the control goal, an essential requirement is that the energy
(i.e., the mean–square value) of the distributions remains bounded during the evolution. As it
has been clarified in [89] , when dealing with open loop unstable plants and distributions with
unbounded support, in order to keep bounded the energy, control laws taking infinite values
are necessary. Because we consider static controllers (as opposed to time–varying techniques
widely studied in the literature [123, 17, 125, 88, 89]) , infinite symbols are necessary to encode
the control values. This poses technical problems concerned with transmission delays caused
by the presence of arbitrarily long coding sequences, as well as theoretical questions on the
definition of a proper complexity measure for a controller (indeed, a cardinality function as
the one considered in Section 2.4 is no more meaningful) . The theoretical framework allowing
us to address these issues in a formal mathematical way is provided by the Information theory.
In particular, the measure of the coding complexity is a basic issue in Information theory and
its characterization is strictly related to the notion of entropy of a probability distribution.

Let us summarize the main contributions of this chapter. First, the complexity of a quantizer
is defined in terms of an entropy–like function H , the so called “coding complexity function”.
This function is defined through the solution of an infinite dimensional optimization problem
to which an explicit solution is not available. However, a detailed analysis of this function
is possible because a nice relation is proved between H and the Laplace transformation
of an easily computable function providing a geometric description of the quantizer. The
use of the Laplace transformation theory allows us to carry out the asymptotic analysis of
the coding complexity function for a wide range of quantizers. Secondly, a lower bound
on the achievable asymptotic value of the energy under an assigned quantization is found.
This result, which establishes a relation between steady–state performance and complexity,
is carried out by means of two Information theoretical inequalities: one that quantifies the
counteraction to the increase of entropy, due to open loop instability, that can be obtained
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Figure 7.1: The control scheme considered in this chapter.
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through a quantized controller; the other one that relates the energy to the entropy of a
distribution. As for the analysis of performance in the transient behavior, we first show
that if monotonic decrease of the energy is desired, then the complexity of the quantization
must be at least that of a logarithmic quantizer. In the case of logarithmic quantizations,
an asymptotic analysis of the relations between complexity and performance in the transient
behavior is then provided. Finally, the applicability of the developed tools is borne out by
their use to analyze performance and complexity for the class of so called nested quantizers,
introduced in Section 7.5 .
We remark that the case of scalar linear systems is considered because it already contains
the basic difficulties one encounters for more complex systems.

The chapter is organized as follows: in Section 7.1 , basic facts on the notion of entropy
in Information theory are recalled. The considered models as well as the parameters to
measure performance and complexity are defined in Section 7.2 . Subsequent Section 7.3 is
devoted to the analysis of the complexity measure function and includes the study of the
main quantizers considered in the previous chapters of the thesis. The relations between
complexity and performance are studied in Section 7.4 . In Section 7.5 , the analysis for
nested quantizers is presented.

Remark 31 (Notation) For the notation and terminology we refer to the homonymous
Section 1.5 in the introduction of the thesis, in particular to the paragraph “probability”.
Here, we stress that, differently from the usual convention in Information theory (where
logarithms are in the base 2 ), if not otherwise stated, the logarithms are in the base e .

7.1 The entropy in Information theory

Let us briefly recall some basic facts on the notion of entropy in Information theory. The
presentation is limited to the properties instrumental for the subsequent presentation, a more
comprehensive treatment can be found in [26, 52] .

Definition 33 Let X : Ω → X be a random variable taking values in a countable set X
and let X 3 x 7→ px ∈ [0 , 1] be its probability distribution. The discrete entropy of X is
defined by

H(X) :=
∑

x∈X
−px log px .

The entropy of a random variable only depends on its distribution, therefore, more in general,
for a distribution defined on a countable set X 3 x

pX7−→ px ∈ [0 , 1] , we let H(pX ) :=
−∑

x∈X px log px .
By a discrete random source we mean a sequence {Xi}i∈N\{0} of independent and identically
distributed random variables defined on some probability space Ω and taking values in a
finite set X . Let X 3 x 7→ px ∈ [0 , 1] be the probability distribution of any of the random
variables defining the process and denote by H(X) the discrete entropy of such a distribution:
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H(X) is referred to as the entropy of the source. We think of this process as the model for
a device generating symbols according to some statistics. This process is the subject of the
remaining part of this section.
We are interested in the following problem: suppose that another finite set of symbols A is
given and that strings of symbols drawn by the source are to be transformed (say, encoded)
into strings of symbols from the alphabet A . We want this transformation to be invertible
and so that the average length of the strings used to encode the symbols of the source is
minimized. This problem is one of the basic issues raising in communication theory, where
the symbols generated by some source

(
e.g., letters from the English alphabet or the elements

{Cu}u∈U considered in Section 2.4
)

are to be transmitted through a communication bus
capable of handling symbols from the alphabet A (

e.g., a digital communication channel
where A = {0, 1} )

. If only a finite number of symbols per unit of time can be transmitted
over the channel (namely, communication happens at a finite rate) , then the average length
of the strings has to be minimized to reduce transmission delays.
Let us introduce the formal definitions and the main result concerned with the described
problem.

Definition 34 Let A be a finite set and consider A∗ :=
⋃

n∈N\{0}An . The elements of A∗
are called strings of symbols in the alphabet A and are denoted by ā . For ā ∈ A∗ , there
exists a unique n ∈ N such that ā ∈ An : such an n is called the length of the string ā and
it is denoted by len(ā) .
Let X be a finite set. A map c : X → A∗ is called a code for the set of symbols X . The
elements of the set c(X ) are called codewords. For x̄ = (x1, . . . , xn) ∈ X ∗ , let c̄(x̄) :=(
c(x1), . . . , c(xn)

) ∈ A∗ . A code c is said to be uniquely decodable iff c̄ : X ∗ → A∗ is an
injective function.
Let X : Ω → X be a random variable and let X 3 x 7→ px ∈ [0 , 1] be its probability
distribution. For a given code c : X → A∗ , let the average length of the codewords be
E

[
len

(
c(X)

)]
=

∑
x∈X px · len

(
c(x)

)
.

Proposition 20 (Source coding theorem) Let X : Ω → X be a random variable taking
values in a finite set and let X 3 x 7→ px ∈ [0 , 1] be its probability distribution. If c : X →
A∗ is a decodable code, then

E
[
len

(
c(X)

)] ≥ H(X)
log(#A)

.

Moreover, if ∀x ∈ X , px > 0 , then there exists a decodable code c such that

E
[
len

(
c(X)

)] ≤ H(X)
log(#A)

+ 1 .

Proof. See, e.g., [26] or [52] .

Thus, except for the constant factor 1/ log(#A) , which could be incorporated in the defini-
tion of the entropy by taking the logarithm to the base #A , the entropy of X fixes a lower
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bound on the minimal achievable average length of the codewords. Such a lower bound can
be approached if the code is defined on X n (for sufficiently large n ) namely, if a so called
“block coding” of the source is done instead of considering the symbols one by one. In fact,
for n 6= 0 , consider

X(n) : Ω → X n

ω 7→ (
X1(ω) , . . . , Xn(ω)

)
.

Proposition 20, applied to the random variable X(n) , ensures the existence of a coding
c : X n → A∗ such that E

[
len

(
c(X(n))

)] ≤ H(X(n))
log(#A) + 1 . By the independence of the

{Xi}i∈N\{0} and standard properties of the entropy (see [26]) , it holds that E
[
len

(
c(X(n))

)] ≤
n H(X)

log(#A) + 1 . Thus, dividing by n both sides of the inequality, we have

L̄n :=
E

[
len

(
c(X(n))

)]

n
≤ H(X)

log(#A)
+

1
n

.

L̄n represents the minimal average length of the codewords per symbol of the source. Hence,
by coding sufficiently long blocks (i.e., for sufficiently large n ) , such a length can be made
as close as desired to the entropy of the source.
The code minimizing the average length of the codewords is the so called Huffman’s code
(see [52]) . It can be algorithmically constructed by the knowledge of the distribution of the
Xi’s and it is such that long codewords are assigned to the least probable symbols and vice
versa. Actually, for our purposes, it is enough to know the minimal average length of the
strings rather than the code achieving such a minimum. Thus, entropy of the source contains
all the relevant information.

We are now interested in counting the codewords needed to encode a discrete source. The
number of codewords needed to encode the random variable X(n) is (#X )n . However,
this number does not take the statistics of the symbols into account. A fair way to include
statistics in the count of the codewords is provided by the so called asymptotic equipartition
property. In details, let pX(n) be the distribution of X(n) : by the independence assumption,
it holds that

X n 3 (x1, . . . , xn) 7→ pX(n)

(
(x1, . . . , xn)

)
= Πn

i=1pxi .

In correspondence to the given process, consider the function

W : X → R+

x 7→ − log px

and the sequence of random variables
{
W (Xi)

}
i∈N\{0} . It holds that

E[W (Xi)] =
∑

x∈X
px ·W (x) = H(X) .

Consider the sequence of random variables
{
A

(n)
W

}
n∈N\{0} defined by A

(n)
W :=

∑n
i=1 W (Xi)

n .
By the weak law of the large numbers [50] , it holds that

lim
n→+∞A

(n)
W = E[W (Xi)] = H(X) ,
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where convergence is in probability. This limit can be equivalently expressed in the following
way: let

T (n)
ε :=

{
(x1, . . . , xn) ∈ X n

∣∣ ∣∣ 1
n

∑n
i=1 W (xi)−H(X)

∣∣ < ε
}

=

=
{

(x1, . . . , xn) ∈ X n
∣∣ e−n

(
H(X)+ε

)
< pX(n)

(
(x1, . . . , xn)

)
< e−n

(
H(X)−ε

)}
, (7.1)

then ∀ ε > 0 and ∀ δ > 0 , ∃ n̂ such that ∀n ≥ n̂ ,

pX(n)

(
T (n)

ε

)
> 1− δ .

Thus, for sufficiently large n , most of the sequences of length n drawn by the source belong
to the set T

(n)
ε : these sequences are referred to as typical. Moreover, equation (7.1) expresses

the fact that typical sequences are approximately equiprobable, say ∀ (x1, . . . , xn) ∈ T
(n)
ε ,

pX(n)

(
(x1, . . . , xn)

) ' e−nH(X) . These two properties yield

#T (n)
ε ' enH(X) . (7.2)

This means that, for sufficiently large n , the behavior of the discrete random source made
of the blocks of length n of the original process can be approximated by a sequence of inde-
pendent and uniformly distributed random variables taking values in a set made of enH(X)

symbols (this is a formulation of the “asymptotic equipartition property”) . Taking the n–th
root in both sides of equation (7.2) , we have

N̄n :=
n

√
#T

(n)
ε ' eH(X) ,

where N̄n represents the average number of codewords needed to encode each variable Xi

of the source.
Notice that, if the random variables Xi are not uniformly distributed, then H(X) <

log(#X ) (see [26]) and

# T
(n)
ε

#X n
' enH(X)

en log(#X )
→ 0 for n → +∞ .

That is, for large n , typical sequences are a negligible portion of the total number of sequences
drawn by the source but they account for most of the probability: this gives a further mo-
tivation to the choice of counting the codewords needed to encode a discrete source through
# T

(n)
ε instead of #X n .

To recap, the entropy H(X) of the source is a measure of the minimal average length of the
codewords among decodable codes of the source. Moreover, eH(X) represents, in the sense
of the asymptotic equipartition property, the average number of codewords needed to encode
each variable Xi .

Remark 32 We have considered the case of a source made of independent and identically
distributed random variables. Actually, analogous results can be proved for more general pro-
cesses as, for instance, Markovian sources (see [52]) . In particular, the asymptotic equipar-
tition property is based on the weak law of the large numbers, therefore it holds for a wide
variety of stochastic processes to which that law can be applied, such as ergodic processes.
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7.2 The measure of performance and complexity

Let us introduce the class of quantized systems considered in this chapter, then, for these
systems, we define the measures of performance and the notion of complexity of a quantizer.
With reference to the framework introduced in Section 2.4 , when analyzing the complexity of
a quantizer, what matters is not the knowledge of the function, but only to know the induced
partition. Therefore, in this chapter, quantizations keep up with locally finite partitions. We
limit ourselves to consider partitions of R made of intervals:

Definition 35 A partition of R of the type R =
⋃

k∈Z Ik which is locally finite and such
that ∀ k ∈ Z , Ik is an interval of nonzero length, is called a quantization of R .

A quantization of R is denoted by I = {Ik}k∈Z . In compliance with Definition 35 , all
along this chapter, by a quantizer we mean any function q : R→ U such that the induced
partition R =

⋃
u∈U{q−1(u)} is a quantization of1 R .

We consider a discrete time scalar linear system interconnected with a static feedback quan-
tizer u : R→ U ⊂ R , namely:

x+ = ϕ(x) := ax + u(x) , (7.3)

where |a| > 1 . Let X0 : Ω → R be a random variable (defined on some probability space
Ω ) representing the initial condition: Xt = ϕt(X0) represents the state of the process at
time t . The distribution of Xt is denoted by µt while its mean–square value (or energy) is
denoted by E(µt) :=

∫
R x2dµt (when µt is clear from the context, we also denote it by Et ) .

The initial distribution µ0 is supposed to belong to some class of probability distributions
P . We assume that P is closed under the dynamics ϕ (namely, µ0 ∈ P ⇒ µ1 ∈ P ) and
∀µ ∈ P , E(µ) < +∞ . A class of distributions P with these properties is referred to as
admissible. Examples of admissible classes P are

Pall := {µ ∈ Pr(R) | E(µ) < +∞} , (7.4)

or the space of probabilities that are absolutely continuous with respect to the Lebesgue
measure and having finite energy.

Definition 36 A quantized control law u : R → U is said to be E∞–converging iff the
closed loop dynamics (7.3) is such that ∀µ0 ∈ P , lim supt→+∞ Et ≤ E∞ . We say that u is
mean–square practically converging if it is E∞–converging for some E∞ .

The quantity E∞ represents a steady–state performance measure of the closed loop system.
We are interested in analyzing also the transient behavior of this kind of dynamics. To this

1The terminology and the notation used in this chapter is slightly different from that introduced in Chap-

ter 2 . In particular: since the elements of the considered partitions are intervals, they are more conveniently

denoted by Ik , instead of using the symbol C . Also the term quantizer is referred to a different notion from

that introduced in Definition 4 : in fact, U is not supposed to be a quantized set but the induced partition is

required to be locally finite (and made of intervals) .
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end we consider a parameter related with the decaying rate of the energy. More precisely, let
J0 := [−r0 , r0] ⊂ R , for some r0 > 0 , and Je := R \ J0 . We assume that ϕ is such that
ϕ(J0) ⊆ J0 . In this framework we introduce the following

Definition 37 Let µ ∈ Pr(R) , the external energy of µ is defined by Ee(µ) :=
∫
Je

x2dµ .

Clearly, if it happens that

∀µ0 ∈ P , lim
t→+∞ Ee(µt) = 0 ,

then the control law is E∞–converging for every E∞ ≥ r2
0 . In this context a way to measure

the transient behavior is through

Te := − sup
µ0∈P

lim sup
t→+∞

log Ee(µt)
t

(7.5)

which represents the worst case decaying rate of the external energy. Increasing positive
values of Te correspond to faster convergence towards zero of the external energy.

Before introducing a measure of complexity for a quantized controller, the following prelimi-
nary remark is needed. Since the system was supposed to be open loop unstable, if the class
P contains distributions having unbounded support, a necessary condition for the mean–
square practical convergence is that the quantizer u takes infinite values. In fact, if U is
a finite set, then the induced quantization contains unbounded elements

(
namely, the con-

troller u(x) saturates
)

and the energy diverges [89] . Therefore, we tacitly assume that any
quantization I = {Ik}k∈Z considered in this chapter is such that ∀ k ∈ Z , Ik is bounded.
The definition of a complexity function for a controller has been motivated in Section 2.4 with
reference to the coding problem. In Section 7.1 , the coding problem has been also related to
the minimization of transmission delays which is a crucial issue in control. Let us follow the
approach taken in Section 2.4 and let us show how the theory presented in Section 7.1 allows
us to fit it to the probabilistic setting considered in this chapter.
In Section 2.4 , the complexity function was defined by counting the number N(r) of control
values needed to deal with a system whose state belongs to a bounded set Br . Here, r may
be replaced by an energy value E and Br by the family of probability distributions whose
energy is not larger than E . In this case, however, the natural choice of replacing N with
the worst case number of control values needed to deal with these distributions is meaningless
because the considered family contains distributions having unbounded support, thus requir-
ing infinite control values. As we have illustrated in Section 7.1 , the count of the needed
control values may be more suitably done by taking the statistics into account as suggested
by the “source coding theorem” and by the “asymptotic equipartition property”. Therefore,
we define a coding complexity function H for system (7.3) , as well as the corresponding cod-
ing cardinality function N , as entropy–like functions associated to the quantization induced
by u .
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Definition 38 (Coding complexity function) Let I = {Ik}k∈Z be a quantization of R
such that ∀ k ∈ Z , Ik is bounded. Given a probability measure µ ∈ Pr(R) , let pµ,I ∈ Pr(Z)
be defined by pµ,I := {µ(Ik)}k∈Z . The coding complexity function H associated to I is
defined by

H : R+ → R+

E 7→ sup
µ∈Pr(R) :∫
R x2dµ=E

H(pµ,I) . (7.6)

Accordingly, the function N (E) := eH(E) represents the worst case average number of control
symbols necessary to encode a distribution having energy E and will be referred to as the
coding cardinality function.
The coding complexity function is well–defined under suitable assumptions on the quantiza-
tion I which are quite general and will be specified in next Section 7.3.1 .

Remark 33 The definition of a coding complexity function has been related to the effect of
transmission delays on the dynamics of the system caused by the presence of arbitrarily long
coding sequences. In this chapter, however, we do not consider delays and the presented anal-
ysis is quite theoretical. Namely, the coding and delay issue are the motivation to introduce
the considered measures of complexity but, at this stage, there is no code implementation.
Anyhow, the study of the coding complexity function has a central role in our analysis. In-
deed, not only this study is the first step towards the analysis in a more general case including
the effects of delays, but also it allows us to point out fundamental relations between the quan-
tization structure and the achievable performance in terms of the convergence rate Te and of
the minimal asymptotic value of the energy E∞ . These issues are illustrated in Section 7.4 .

7.3 The coding complexity function

7.3.1 Analysis

It is not apparent from Definition 38 how to analyze the properties of the coding complexity
function. In particular, the value of H(E) results from a maximization problem over a space
of probability distributions on R . We first show that the function H has an equivalent
definition involving a maximization problem over discrete probability measures only. For such
a problem an implicit solution can be found. Moreover, we introduce an easily computable
way to characterize the geometric structure of the quantization and we show that the relation
between the geometric structure of the quantization and the behavior of the coding complexity
function can be expressed in terms of a Laplace transformation. This is the fundamental step
which allows us to analyze the behavior of the coding complexity function associated to a
wide range of quantizers. A synthesis of the main results on the Laplace transformation is
given in Appendix A.6.1 .

For the sake of simplicity, we consider symmetric quantizations2, that is: let DI = {dk}k∈Z ,
2This assumption can be removed, see next Remark 35 .
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where dk := argmin
x∈Īk

|x| (namely, DI is the set containing 0 and the extremes of the intervals

Ik’s) , we assume that DI = −DI .
Since a quantization I is a locally finite partition, we can suppose that the elements of DI
are indexed so that ∀ k ∈ Z , dk < dk+1 and d0 = 0 . In particular, it holds that d−k = −dk .
The geometric structure of the quantization I is described by the following function:

Definition 39 Given a symmetric quantization I , the function

g(x) := #
(DI ∩ ] 0 ,

√
x ]

)

is referred to as the g–function associated to I .

It holds that ∀ k ∈ N and ∀x ∈ [d2
k , d2

k+1[ , g(x) = k . Also, as the Ik’s are bounded,

lim
x→+∞ g(x) = +∞ .

In order to ensure the existence of the coding complexity function, we restrict ourselves to
consider quantizers u whose induced quantization I is such that the growth of the dk’s is
at least monomial, namely

A1) ∃λ > 0 such that

lim
k→+∞

dk

kλ
= +∞ . (7.7)

Assumption A1 can be equivalently formulated in terms of the g–function whose growth
must be at most monomial (see Lemma 32 in Appendix A.6.2) :

A1) ∃ γ > 0 such that

lim
x→+∞

g(x)
xγ

= 0 . (7.8)

Such an assumption is a mild restriction, in fact all the typically encountered quantizers (such
as uniform and logarithmic ones) are included in our analysis.
Consider the following discrete version of the coding complexity function:

H : R+ → R+

E 7→ sup
p∈Pr(Z)∑
k d2

k
pk=E

H(p) . (7.9)

The main result on the analysis of the coding complexity function is provided by the following
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Theorem 14 (Properties of H ) For a symmetric quantization I satisfying A1 the fol-
lowing facts hold:

ı) H(E) = H(E) ;
ıı) The function H(E) is implicitly defined by the following system





H
(E(β)

)
= log

(
1 + 2βG(β)

)
+ β E(β)

E(β) = − d

dβ
log

(
1 + 2βG(β)

)

= −2
(
G(β) + βG′(β)

)

1 + 2βG(β)

β > 0 .

(7.10a)

(7.10b)

where G(s) is the Laplace transform of the g–function associated to I .
ııı) E(β) is a decreasing analytic function with

{
limβ→0+ E(β) = +∞
limβ→+∞ E(β) = 0 .

ıv) H is analytic and dH
dE = β . In particular, H(E) is an increasing function. Moreover,

{
limE→0+ H(E) = 0

limE→+∞H(E) = +∞ .

Proof. The proof is given below, after one preliminary result.

Remark 34 By Theorem 14.ııı , E(β) is an analytic and invertible function having non
zero derivative, therefore its inverse β(E) is analytic. Parts ıı and ııı of the theorem can
be hence rephrased by saying that E(β) is an analytic diffeomorphism from R+ to itself not
preserving the orientation and that, in the new coordinates, H is represented by the function

H̃(β) := H
(E(β)

)
= log

(
1 + 2βG(β)

)− 2
(
βG(β) + β2G′(β)

)

1 + 2βG(β)
. (7.11)

In order to prove the theorem we shall make use of some concepts borrowed from the statistical
mechanics:

Definition 40 Let I = {Ik}k∈Z be a quantization of R . Should the series
∑

k∈Z e−βd2
k

converge for some β ∈ R+ , then it defines a function Z(β) which is called the partition

function associated to I .

Proposition 21 (Representation of Z as a Laplace integral) Consider a symmetric
quantization I satisfying assumption A1. Then the partition function associated to I is
defined ∀β > 0 . Moreover, the right half–plane of convergence of the Laplace transform
G(s) of the g–function associated to I contains {s ∈ C |Re(s) > 0} and

Z(β) = 1 + 2βG(β) .
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6

-
E

H(E)

Figure 7.2: Typical behavior of the function H(E) .

Proof. Let Φ(β) :=
∑+∞

k=1 e−βd2
k , by the symmetry assumption

Z(β) = 1 + 2Φ(β) .

Assumption A1 in the form of equation (7.7) implies that ∃λ > 0 , M > 0 and kM > 0
such that ∀ k ≥ kM , dk ≥ Mkλ . In particular, e−βd2

k ≤ e−βM2k2λ
. Since ∀β > 0 , ∃ k̂ > 0

such that ∀ k ≥ k̂ , e−βM2k2λ ≤ 1
k2 and

∑+∞
k=1

1
k2 is convergent, then Φ(β) , and hence the

partition function, is defined on R+ .
By assumption A1 in the form of equation (7.8) , ∃ γ > 0 , ε > 0 and xε > 0 such that
∀x ≥ xε , g(x) ≤ εxγ . Hence, ∀β > 0 , G(β) =

∫ +∞
0 g(x)e−βxdx ≤ ∫ xε

0 g(x)e−βxdx +
ε
∫ +∞
xε

xγe−βxdx < +∞ .
Finally, let us show that Φ(β) = βG(β) . Indeed,

βG(β) = β
∫ +∞
0 g(x)e−βxdx = β

∑+∞
k=0

∫ d2
k+1

d2
k

g(x)e−βxdx =

= β
∑+∞

k=0 k
∫ d2

k+1

d2
k

e−βxdx =
∑+∞

k=0 k(e−βd2
k − e−βd2

k+1) .

Let us compute the partial sum of the latter series: SN :=
∑N−1

k=0 k(e−βd2
k − e−βd2

k+1) =∑N−1
k=1 e−βd2

k − (N − 1)e−βd2
N . Hence, Φ(β) − SN =

∑+∞
k=N e−βd2

k + (N − 1)e−βd2
N which

converges to 0 as N → +∞ thanks to the assumption on the growth of the dk’s.

Remark 35 A representation of Z(β) as a Laplace integral can be obtained also when the
set DI is not symmetric. To this aim call g+(x) the function introduced in Definition 39
and let g−(x) := #

(−DI ∩ ] 0 ,
√

x ]
)
: it is easy to see that Z(β) = 1+β

(
G−(β)+G+(β)

)
.

We are ready for the
Proof of Theorem 14. We first prove the properties of the function H (i.e., parts ıı – ıv )
as some of them are instrumental for the proof of part ı .

Proof of part ıı : the optimization problem in (7.9) can be solved via the use of Lagrange
multipliers. This yields that, for E > 0 , the maximizing probability measure results from
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the solution of the following system:





log pk + 1 + α + βd2
k = 0 , k ∈ Z

∑
k pk = 1

∑
k d2

kpk = E .

(7.12a)

(7.12b)

(7.12c)

Solving equation (7.12a) for pk , one gets pk = ce−βd2
k , with c not depending on k . Such a

constant is determined by imposing the normalization condition in equation (7.12b) . In this
way, an implicit solution for system (7.12) is

pk =
1

Z(β)
e−βd2

k (7.13)

(where the partition function is convergent thanks to Proposition 21) . The multiplier β ,
which is necessarily positive, is determined by equation (7.12c) , namely

∑
k∈Z d2

ke
−βd2

k

∑
k∈Z e−βd2

k

= E . (7.14)

This equation can be written in the form

E(β) = − d

dβ
logZ(β) = −Z

′(β)
Z(β)

. (7.15)

Let pmax(E) = {pk}k∈Z be the maximizing probability measure. By direct computation
(
i.e.,

plug the expression of the pk’s given in equation (7.13) in the definition of the entropy and
take advantage of equation (7.14)

)
, the corresponding value of the entropy is given by the

implicit expression
H

(
pmax(E)

)
= H

(E(β)
)

= logZ(β) + β E(β) . (7.16)

Using the representation of Z as a Laplace integral, equation (7.16) can be written as

H
(E(β)

)
= log

(
1 + 2βG(β)

)
+ β E(β)

and equation (7.15) as

E(β) = − d

dβ
log

(
1 + 2βG(β)

)
:

this concludes the proof of part ıı .

Proof of part ııı : by equation (7.10b) , the analyticity of E(β) is a consequence of the
analyticity of G(β) which follows by Theorem 18 in Appendix A.6.1 . Let us show that E(β)
is decreasing: by equation (7.15) we have d

dβE(β) = − d
dβ

Z′
Z = −(Z′′

Z − (Z
′
Z )2

)
= −(Z′′

Z −E2
)
.

Consider pmax(E) = {pk}k∈Z and let pDI be the probability measure on DI defined by
pDI (dk) := pk . Let D be a random variable taking values in DI and distributed according

to pDI : by equation (7.14) , E = E[D2] and Z′′
Z =

∑
i∈Z d4

i e−βd2
i

Z = E[D4] . Hence, d
dβE(β) =
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−(
E[D4]− (E[D2])2

)
= −Var[D2] < 0 .

Let us prove that limβ→0+ E(β) = +∞ . According to Proposition 21 , equation (7.15) can
be written as

E(β) = − 2Φ′(β)
1 + 2Φ(β)

,

where Φ(β) =
∑+∞

k=1 e−βd2
k . Also, Φ(β) = βG(β) and, by the “Final value theorem” (see

Theorem 20 in Appendix A.6.1) , limβ→0+ Φ(β) = +∞ . We have hence to prove that
limβ→0+ −Φ′(β)

Φ(β) = +∞ . Indeed, by assumption A1 in the form of equation (7.7) , ∃λ > 0

such that limk→+∞ dk

kλ = +∞ . Hence, ∀M > 0 , ∃ kM such that ∀ k ≥ kM , dk ≥ Mkλ .
Let S(β) :=

∑kM−1
k=1 d2

ke
−βd2

k , then

−Φ′(β)
Φ(β) =

S(β)+
∑+∞

k=kM
d2

ke−βd2
k

Φ(β) ≥

≥ S(β)+M2
∑+∞

k=kM
k2λe−βd2

k

Φ(β) ≥

≥ S(β)+M2k2λ
M

∑+∞
k=kM

e−βd2
k

Φ(β) =

=
(
S(β)−M2k2λ

M

∑kM−1

k=1 e−βd2
k

)
+M2k2λ

M Φ(β)

Φ(β) =

= S (β)+M2k2λ
M Φ(β)

Φ(β) ,

where S (β) := S(β) − M2k2λ
M

∑kM−1
k=1 e−βd2

k . S (β) is defined by a finite sum and has a
finite limit as β → 0+ , therefore

lim inf
β→0+

−Φ′(β)
Φ(β)

≥ lim
β→0+

S (β) + M2k2λ
M Φ(β)

Φ(β)
= M2k2λ

M .

Since M can be chosen so as to make M2k2λ
M arbitrarily large, the thesis follows.

Finally, let us show that limβ→+∞ E(β) = 0 . Consider the expression for E(β) given in
equation (7.10b) . By the “Initial value theorem” (see Theorem 19 in Appendix A.6.1) ,

lim
β→+∞

βG(β) = lim
x→0+

g(x) = 0 , (7.17)

therefore limβ→+∞G(β) = 0 . Also,

lim
β→+∞

βG′(β) = lim
β→+∞

βL[−xg(x)](β) = − lim
x→0+

xg(x) = 0 ,

where the first equality holds by Theorem 18 and the second one by Theorem 19 . These
limits, applied to equation (7.10b) , yield the result.

Proof of part ıv : we have already noticed in Remark 34 that part ııı implies the analyticity
of β(E) . It then follows that H(E) is analytic because H(E) = H̃

(
β(E)

)
and H̃(β)

(
see
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equation (7.11)
)

is analytic by Theorem 18 .
Using the expression for H̃(β) given in equation (7.16) ,

dH(E)
dE =

d H̃
(
β(E)

)

dE =
d H̃(β)

dβ
· dβ

dE =
Z ′
Z · dβ

dE + E dβ

dE + β
dE
dβ

· dβ

dE = β

because E = −Z′
Z

(
see equation (7.15)

)
.

By part ııı , limE→0+ H(E) = limβ→+∞H
(E(β)

)
and limE→+∞H(E) = limβ→0+ H

(E(β)
)
.

Let us compute these two limits.
By equations (7.11) and (7.17) ,

lim
β→+∞

H
(E(β)

)
= −2 lim

β→+∞
β2G′(β) .

Since G(β) = Φ(β)
β , then

β2G′(β) = βΦ′(β)− Φ(β)

and, again by equation (7.17) , limβ→+∞Φ(β) = 0 . It is hence sufficient to show that
limβ→+∞ βΦ′(β) = 0 . Indeed, βΦ′(β) = −∑+∞

k=1 βd2
ke
−βd2

k : this series is uniformly conver-
gent on [1 , +∞[ , thus3

lim
β→+∞

+∞∑

k=1

βd2
ke
−βd2

k =
+∞∑

k=1

lim
β→+∞

βd2
ke
−βd2

k = 0 .

To compute the last limit, let us use the expression for H
(E(β)

)
given in equation (7.10a) .

Since ∀β > 0 , βE(β) > 0 , it is sufficient to show that limβ→0+ log
(
1+2βG(β)

)
= +∞ . This

holds true because we have already shown in the proof of part ııı that limβ→0+ βG(β) = +∞ .

Proof of part ı : we first prove that H(E) ≥ H(E) by showing that ∀µ ∈ Pr(R) such that∫
R x2d µ = E , it holds that H(pµ,I) ≤ H(E) . Indeed, given such a µ , consider {pk}k∈Z =

pµ,I . Since E =
∫
R x2dµ =

∑
k∈Z

∫
Ik

x2dµ ≥ ∑
k∈Z d2

kpk := E ′ and H(E) is an increasing
function

(
thanks to part ıv

)
, then H(pµ,I) ≤ H(E ′) ≤ H(E) .

On the other hand, let p = {pk}k∈Z be such that
∑

k d2
kpk = E : it is easy to see that

∀ ε > 0 , ∃µε ∈ Pr(R) such that pµε,I = p and
∫
R x2dµε = E + ε . This implies that

∀ ε > 0 , H(E + ε) ≥ H(E) . Now, suppose by contradiction that H(E) = H(E) − δ with
δ > 0 : by the continuity of H(E) , ∃ ε > 0 such that H(E − ε) > H(E) − δ . Hence,
H(E) ≥ H(E − ε) > H(E)− δ which is a contradiction.

Remark 36 In the proof of part ıv of Theorem 14 , we have shown that limβ→+∞ β2G′(β) =
0 using tools from elementary analysis. An alternative proof of this equality can be obtained
by resorting to the theory of the Laplace transformation as follows: let g(x) be a function
defined for x > 0 , Dg(x) is said to be a generalized derivative of g(x) iff

for x > 0 , g(x) = lim
x→0+

g(x) +
∫ x

0
Dg(y)dy .

3An alternative way to show that limβ→+∞ β2G′(β) = 0 , based on the theory of the Laplace transforma-

tion, is provided in Remark 36 at the end of the proof of the theorem.
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It holds that (see [35] , Theorem 9.2 , page 41) if g(x) has the generalized derivative Dg(x)
and L[Dg](β) converges for some β > 0 , then G(β) converges too for such a β and

L[Dg](β) = βG(β)− lim
x→0+

g(x) . (7.18)

Hence,

− limβ→+∞ β2G′(β) = − limβ→+∞ β
(
βG′(β)

)
=

(a)
= limβ→+∞ β

(
βL[xg(x)](β)

)
=

(b)
= limβ→+∞ β

(L[
D

(
xg(x)

)]
(β) + limx→0+ xg(x)

)
=

= limβ→+∞ β
(L[

D
(
xg(x)

)]
(β)

)
=

(c)
= limx→0+ D

(
xg(x)

)
= 0 ,

where equality (a) holds by Theorem 18 , equality (b) by equation (7.18) and equality (c) by
the “Initial value theorem”.

The study of the function H(E) is aided by the tools provided by the Laplace transformation
theory. As it is shown in next Section 7.3.2 , this theory is particularly helpful to go into a
thorough analysis of the asymptotic behavior of H(E) as E → +∞ .

Proposition 22 (Monotony with respect to the g–function) Let I1 and I2 be two
quantizations of R . Denote by g1 and g2 the corresponding g–functions and by Hg1 and
Hg2 the respective complexity measure functions. If g1(x) ≥ g2(x) ∀x ≥ 0 , then Hg1(E) ≥
Hg2(E) ∀ E > 0 .

Proof. Denote by dk,i the elements of DIi . The assumption g1(x) ≥ g2(x) ∀x ≥ 0 is
equivalent to assume that dk,1 ≤ dk,2 ∀ k ≥ 0 . Therefore, for p ∈ Pr(Z) ,

∑
k d2

k,1pk ≤∑
k d2

k,2pk and
Hg2(E) = sup

p∈Pr(Z) :∑
k d2

k,2
pk=E

H(p)

≤ sup
p∈Pr(Z) :∑
k d2

k,1
pk≤E

H(p)

= Hg1(E) ,

where the last equality holds because, by Theorem 14.ıv , Hg1(E) is an increasing function.

7.3.2 Asymptotic behavior of H(E) : monomial and floating–point quan-

tizations

In this section we introduce two main classes of quantizers that extend the uniform and
the logarithmic quantizers defined in Section 2.1 . By taking advantage of Theorem 14 , we
analyze the asymptotic behavior of the corresponding coding complexity function.
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If DI = {± d1k
λ : k ∈ N} , d1 > 0 and λ > 0 , then

g(x) =
⌊( x

d2
1

)1/2λ⌋
. (7.19)

When λ = 1 , I is a uniform partition of R with step size d1 . More in general,

Definition 41 A quantization is referred to as monomial with parameters (λ, l) (with λ > 0
and l > 0 ) iff the corresponding g–function is such that

lim
x→+∞

g(x)
x1/2λ

= l .

Proposition 23 (Monomial quantizations) If the quantization I is monomial with pa-
rameters (λ, l) , then

lim
E→+∞

N (E)
E1/2λ

= c(λ, l) , (7.20)

where4 c(λ, l) := Γ
(

1
2λ

)
l
λ(2λ e)1/2λ . In particular,

lim
E→+∞

H(E)
log E =

1
2λ

.

Proof. Thanks to Theorem 14 , it is sufficient to prove that

lim
β→0+

eH
(
E(β)

)

E(β)1/2λ
= c(λ, l) .

According to the expression for H
(E(β)

)
given in equation (7.10) , we have to analyze the

behavior of G(β) and E(β) as β → 0+ . By Corollary 11 in Appendix A.6.1 ,

lim
β→0+

G(β)

l Γ
(

1
2λ + 1

)
β−

(
1
2λ

+1
) = 1 .

By Theorem 21.ıı we also have that

lim
β→0+

G′(β)

−l
(

1
2λ + 1

)
Γ
(

1
2λ + 1

)
β−

(
1
2λ

+2
) = 1 .

Thus
(
see equation (7.10b)

)
,

limβ→0+ βE(β) = limβ→0+ −2β
(
G(β)+βG′(β)

)
1+2βG(β) =

= −
(
1 + limβ→0+

βG′(β)
G(β)

)
=

= 1
2λ .

4See the definition of the function Γ(x) in Section 1.5 .
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To sum up,

limβ→0+
e
H
(
E(β)

)
E(β)1/2λ = limβ→0+

(
1+2βG(β)

)
eβE(β)

E(β)1/2λ =

= limβ→0+
2βG(β)e1/2λ

( 1
2λ

)1/2λβ−1/2λ =

= 2 l Γ
(

1
2λ + 1

)
(2λ e)1/2λ =

= c(λ, l) ,

where the last equality holds because Γ(x + 1) = xΓ(x) .

In the particular case of a uniform partition I with step size d1 , it holds that

for E → +∞ , N (E) ∼
√

2πe

d1

√
E .

We now introduce the class of floating–point quantizers as a generalization of the logarithmic
quantizers. Let θ > 1 , (n0,M) be a pair of positive integers and R 3 r0 > 0 . Consider a
symmetric quantization I such that [0 , r0] is partitioned into n0 intervals and ∀h ∈ N ,
[r0θ

h , r0θ
h+1] is partitioned into M intervals. For x ≥ r2

0 it holds that r0θ
ĥ−1 <

√
x ≤ r0θ

ĥ ,
where ĥ =

⌈
logθ

√
x

r0

⌉
. Hence, ∀x ≥ r2

0 ,

n0 + M
(⌈

logθ

√
x

r0

⌉− 1
)
≤ g(x) ≤ n0 + M

⌈
logθ

√
x

r0

⌉

and

lim
x→+∞

g(x)
(M/2) logθ x

= 1 .

Namely, the growth of the g–function is logarithmic and its asymptotic behavior only depends
on M and θ .
The case M = 1 corresponds to a logarithmic quantization. When θ ∈ N and r0 = θ−m for
some m ∈ N , notice the analogy between the described quantization and the one induced by
a floating–point representation of the real numbers in the basis θ .
More in general,

Definition 42 A quantization is referred to as floating–point with parameters (M, θ) (with
M > 0 and θ > 1) iff the corresponding g–function is such that

lim
x→+∞

g(x)
(M/2) logθ x

= 1 .

Remark 37 (Floating–point quantizations are logarithmic quantizations) Notice
that a quantization is floating–point with parameters (M, θ) if and only if it is floating–point
with parameters (1, θ1/M ) . In fact, (M/2) logθ x = (1/2) logθ1/M x .
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Proposition 24 (Floating–point quantizations) If the quantization I is floating–point
with parameters (M, θ) , then

lim
E→+∞

N (E)
log E =

M

log θ
. (7.21)

In particular,

lim
E→+∞

H(E)
log log E = 1 .

Proof. The proof follows similar arguments to those we used to prove Proposition 23 . The
details are reported in Appendix A.6.3 .

The theoretical interest of logarithmic quantizations has been repeatedly pointed out in
various parts of this thesis and, with reference to the small–gain theorems, has been discussed
in Example 3 of Section 2.3 as well as in Remark 24 of Section 5.3.2 . Let us linger over
logarithmic quantizations and let us analyze the controllers built on logarithmically quantized
sets proposed in the previous chapters.
If u(x) = qU(Kx) , where qU is a logarithmic quantization of R with parameters (u0, θ) ,
then the quantization induced by u(x) is floating–point with parameters (1, θ) . In fact,
it is straightforward to see that DI =

{
0 ,± u0

2|K|
} ∪ { ± u0(θ+1)

2|K| θh |h ∈ N}
. In particular,

the asymptotic behavior of the corresponding coding complexity function does not depend
on u0 and K . When K = −a

(
i.e., u(x) is a qdb–controller

)
, the closed loop dynamics

has the following properties (see case 2 of Example 4 in Section 2.3.1 and Fig. 2.7) : for
|x| ≥ u0(θ+1)

4θ := x0 , |ϕ(x)| ≤ σ|x| , where σ = |a| θ−1
θ+1 ; for |x| > x0 , |ϕ(x)| = σ|x| in

correspondence of the discontinuity points of ϕ . It is useful to summarize these properties
in the following

Definition 43 Consider system (7.3) , for σ ∈ ]0 , 1] and x0 > 0 , let θ := |a|+σ
|a|−σ and

xh := x0θ
h , h ∈ N .

ı) The quantized control law defined by

u(x) =





0 if x ∈ [0 , x0[

−sign(a)
(|a|+ σ

)
xh if x ∈ [xh , xh+1[

−u(−x) for x < 0

(7.22)

is referred to as a standard logarithmic quantizer of parameter σ .

ıı) A closed loop dynamics x+ = ϕ(x) as in equation (7.3) is said to be standard logarithmic

of parameter σ iff ∃x0 > 0 such that ∀x with |x| ≥ x0 , it holds that |ϕ(x)| ≤ σ|x| and for
|x| > x0 the set of the discontinuity points of ϕ(x) is

{± x0θ
h |h ∈ N \ {0}} .

By the definition it follows that, if ϕ is standard logarithmic of parameter σ , then




∀h ∈ N , limx→x+
h

ϕ(x) = − sign(a)σxh

∀h ≥ 1 , limx→x−h
ϕ(x) = sign(a)σxh

∀h ≥ 1 , |ϕ(xh)| = |ϕ(−xh)| = σxh .

(7.23)
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6

-
x

ϕ(x)

r r r
x0 x1 x2

y = σx

rrr

Figure 7.3: Closed loop dynamics generated by a standard logarithmic quantizer u(x) of
parameter σ = 7/10 ( a = 5/2 and, accordingly, θ ' 1.78 ).

The closed loop dynamics induced the control law in equation (7.22) is standard logarithmic of
parameter σ (see also Fig. 7.3) . More in general, any control law u(x) realizing a closed loop
dynamics which is standard logarithmic of parameter σ induces a floating–point quantization
of parameters (1, θ) , where θ = |a|+σ

|a|−σ . Accordingly, the corresponding coding cardinality
function N is such that,

for E → +∞ , N (E) ∼ 1
log θ

log E . (7.24)

The decrease of σ assures a faster convergence rate (i.e., a better transient behavior) , but it
produces the increase of the controller complexity (in fact, limσ→0+

1
log θ = +∞ ) : a detailed

quantitative analysis of this trade off is offered in Section 7.4.2 .

Remark 38 Notice the analogy between the notion of standard logarithmic dynamics of pa-
rameter σ and that of standard nonlinearity with natural external gain γe given in Defini-
tion 28 of Chapter 5.3 .

7.4 Performance vs complexity

In this section, we aim at highlighting relations between the behavior of the energy and the
complexity of the controller as measured by the function N .

7.4.1 Lower bound for the minimal asymptotic energy

Suppose that a quantization of the state space is assigned and that the designer is only
allowed to select the control values taken by the quantizer u within each element of the
quantization. In a mean–square practical convergence problem, the goal is to design u so
as to minimize E∞ (see Definition 36) . Because of quantization, it is not possible to obtain
arbitrarily small values for E∞ . In this section, a lower bound for E∞ is provided which
depends on the dynamics of the system through a, and on the assigned quantization through
the corresponding coding complexity function H .
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Definition 44 Let X be a random variable taking values in R : if the probability distribution
of X is absolutely continuous with respect to the Lebesgue measure and f is its density, the
differential entropy of X is defined by

h(X) := −
∫

R
f(x) log f(x)dx

(provided that the integral makes sense) .

The differential entropy of a random variable X is a measure of the dispersion of its density
(see [26]) . The increase of the dispersion caused by the unstable dynamics can be counter-
acted by control. However, the amount of contraction which can be obtained by a quantized
controller is bounded: this phenomenon can be quantified in terms of the following entropy
inequality

Lemma 21 Let Y = X + U where X is a continuous random variable having differential
entropy h(X) ∈ R and U is a discrete random variable. Then,

h(Y ) ≥ h(X)−H(U) .

Proof. See [46] .

This inequality, together with an Information theory inequality relating the differential en-
tropy to the energy of the distribution, yields a lower bound on the attainable asymptotic
value of the energy. Indeed we have the following

Theorem 15 (Lower bound for E∞ ) Consider the closed loop system (7.3) and let H be
the coding complexity function associated to the quantization induced by u (which is supposed
to satisfy A1) . If the distribution µ0 of X0 is absolutely continuous with respect to the
Lebesgue measure and h(X0) ∈ R , then

lim supt→+∞ E(µt) ≥ H−1(log |a|) .

In particular, if P contains any probability as µ0 above, then the closed loop system (7.3)
can not be E∞–stable for any E∞ < H−1(log |a|) .

Proof. Let Ut := u(Xt) , then
H(Ut) ≤ H(E(µt)

)
, (7.25)

in fact: u(x) takes a constant value, say uk , on each interval Ik , hence H(Ut) ≤ H(pµt,I)(
with equality if k1 6= k2 ⇒ uk1 6= uk2

)
and H(pµt,I) ≤ H(E(µt)

)
by definition of H .

By Xt = atX0 +
∑t−1

i=0 at−i−1Ui , it follows that

h(Xt) ≥ h(X0) + log |a|t −
t−1∑

i=0

H(E(µi)
)
, (7.26)
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in fact:

h(Xt)
(a)

≥ h(atX0)−H(
∑t−1

i=0 at−i−1Ui) ≥
(b)

≥ h(X0) + log |a|t −H(U0, . . . , Ut−1) ≥
(c)

≥ h(X0) + log |a|t −∑t−1
i=0 H(Ui) ≥

(d)

≥ h(X0) + log |a|t −∑t−1
i=0H

(E(µi)
)
,

where inequality (a) follows by Lemma 21 , inequalities (b–c) follow by standard properties of
the differential and of the discrete entropy (see [26]) , and inequality (d) follows by inequal-
ity (7.25) .
The variance of Xt is E(µt)−m2

t , where mt := E[Xt] . Since the Gaussian distribution max-
imizes the differential entropy among the distributions having the same variance (see [26]) ,
then h(Xt) ≤ 1

2 log
(
(2πe)(E(µt)−m2

t )
)

which, together with inequality (7.26) , yields

E(µt) ≥ e2h(X0)

2πe

|a|2t

e2
∑t−1

i=0 H
(
E(µi)

) + m2
t .

If lim supt→+∞ E(µt) < +∞ , then ∃ Ē such that ∀ t ∈ N , E(µt) ≤ Ē . Because H is an
increasing function, ∀ t ∈ N , H(E(µt)

) ≤ H(Ē) , hence

E(µt) ≥ e2h(X0)

2πe

( |a|2
e2H(Ē)

)t
+ m2

t .

Since the sequence {E(µt)}t∈N is bounded, then |a|2
e2H(Ē) ≤ 1 : by the monotonicity of H and

the fact that limE→0+ H(E) = 0 (see Theorem 14) , this is equivalent to Ē ≥ H−1(log |a|) .
As a consequence, ∀ ε > 0 , the sequence {E(µt)}t∈N cannot be definitively upper bounded
by H−1(log |a|)− ε : the thesis follows.

Remark 39 Because of quantization, even if E(µ0) > 0 is arbitrarily small (e.g., µ0 is
Gaussian with zero mean and arbitrarily small variance), the closed loop dynamics is so that
such a density spreads over and the energy increases at least up to H−1(log |a|) .

7.4.2 The transient behavior and its relations with the controller complex-

ity: the logarithmic regime

According to the framework in which the performance parameter Te was defined, let us
suppose that the closed loop dynamics x+ = ϕ(x) in equation (7.3) is so that ϕ(J0) ⊆ J0

for some J0 = [−r0 , r0] and that, with Je := R \ J0 ,

∀µ0 ∈ P , lim
t→+∞ Ee(µt) = 0 .

The monotonic convergence to zero of the external energy is a desired property as it guarantees
practical stability properties (rather than mere convergence) . We hence give the following
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Definition 45 Consider system (7.3) , an external energy value η > 0 is said to be ϕ–

invariant iff ∀µ0 ∈ Pr(R) such that Ee(µ0) ≤ η , it holds that Ee(µ1) ≤ η . The external
energy is said to be monotonically decreasing iff ∀µ0 ∈ Pr(R) such that 0 < Ee(µ0) < +∞ ,
it holds that Ee(µ1) < Ee(µ0) .

Clearly, the monotonic decrease of the external energy implies the ϕ–invariance of any η > 0 .

Lemma 22 Assume that ϕ(x) in equation (7.3) is such that ϕ(J0) ⊆ J0 .

ı) A necessary condition for the ϕ–invariance of a value η > 0 of the external energy is

∀x ∈ Je such that |x| ≥ √
η , |ϕ(x)| ≤ |x| .

ıı) A necessary condition for the monotonic decrease of the external energy is

∀x ∈ Je , |ϕ(x)| ≤ |x| .
ııı) A sufficient condition for the monotonic decrease of the external energy is

∃σ < 1 such that ∀x ∈ Je , |ϕ(x)| ≤ σ|x| ,
in this case Ee(µ1) ≤ σ2Ee(µ0) .

Proof. See in Appendix A.6.4 .

Remark 40 The external energy, and hence the performance parameter Te , has been defined
for closed loop dynamics ensuring that ϕ(J0) ⊆ J0 . This requirement is not restrictive. In
fact, similarly to Definition 45 , one may introduce the more general concept of ϕ–invariance
of the total energy as follows: an energy value η > 0 is said to be ϕ–invariant iff ∀µ0 ∈ Pr(R)
such that E(µ0) ≤ η , it holds that E(µ1) ≤ η . Then, following similar arguments to those
used to prove Lemma 22 , it is easy to show that a necessary condition for a total energy value
η > 0 to be ϕ–invariant is that ∀x such that |x| ≤ √

η , |ϕ(x)| ≤ √
η and ∀x such that

|x| ≥ √
η , |ϕ(x)| ≤ |x| . Namely, the interval [−√η ,

√
η] plays the role of J0 . In particular,

the property ϕ
(
[−√η ,

√
η]

) ⊆ [−√η ,
√

η] has to be guaranteed also in this (apparently) more
general case.

The main consequence of Lemma 22 , is that requiring the ϕ–invariance of a single value of
the external energy (and, a fortiori, requiring the monotonic decrease of the external energy)
entails that the controller complexity is at least that of a logarithmic controller. Indeed,

Theorem 16 (ϕ–invariance implies logarithmic complexity) Consider system (7.3) ,
assume that u(x) is such that ϕ(J0) ⊆ J0 for some J0 = [−r0 , r0] and that there exists a
value η > 0 of the external energy which is ϕ–invariant. Let N (E) be the coding cardinality
function associated to ϕ . Then

∀ E > 0 , N (E) ≥ Nsl(E) , (7.27)

where Nsl(E) is the coding cardinality function associated to a closed loop dynamics which is
standard logarithmic of parameter σ = 1 . In particular, ∃ E∗ > 0 and C > 0 such that

∀ E > E∗ , N (E) ≥ C log E . (7.28)
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Proof. Let x0 := max{r0,
√

η } : by Lemma 22.ı it holds that

if |x| ≥ x0 , then |ϕ(x)| ≤ |x| . (7.29)

For such an x0 and σ = 1 , let usl(x) be the control law in equation (7.22) . The resulting
closed loop dynamics is standard logarithmic of parameter σ = 1 . Denote by gsl(x) the g–
function associated to the quantization induced by usl(x) and by Nsl(E) the corresponding
coding cardinality function. Also, let g(x) be the g–function associated to the quantization
induced by u(x) : because ϕ(x) satisfies the property in equation (7.29) , it is easy to recog-
nize that ∀x ≥ 0 , gsl(x) ≤ g(x) . Therefore, inequality (7.27) follows by the monotonicity of
H(E) with respect to the g–function (see Proposition 23) .
The existence of E∗ > 0 and C > 0 such that inequality (7.28) holds is a consequence of
inequality (7.27) and of the fact that, by equation (7.24) , for E → +∞ , Nsl(E) ∼ 1

log θ log E .

The above theorem says that there is no control law u(x) which induces a coarser quantization
than a floating–point one and produces closed loop dynamics with monotonic decrease of the
energy. Actually, floating–point quantizations do indeed permit to obtain such behaviors.
This is the case, for instance, when ϕ(x) is standard logarithmic of parameter σ < 1 , in fact
the monotonic decrease is guaranteed by Lemma 22.ııı .

For standard logarithmic dynamics, a thorough analysis of the measure Te of performance
in the transient behavior is possible: this, together with the study of the relation between
Te and the behavior of N (E) , is the subject of the remaining part of this section.
First, recall that Te depends on the considered class of distributions P (

see equation (7.5)
)
.

Furthermore, Te depends on the parameter σ associated to the standard logarithmic dy-
namics: next Lemma 23 and Lemma 24 provide bounds for Te that allow us to catch the
main properties of such a dependence.

Lemma 23 (Lower bound for T e ) Consider system (7.3) , assume that ϕ(J0) ⊆ J0 for
some J0 = [−r0 , r0] and that ∃σ < 1 such that ∀x ∈ Je , |ϕ(x)| ≤ σ|x| . Let P be any
class of admissible distributions (see Section 7.2) , then

Te ≥ −2 log σ . (7.30)

Proof. By Lemma 22.ııı , Ee(µt) ≤ σ2Ee(µt−1) . Therefore, ∀µ0 ∈ P , Ee(µt) ≤ σ2tEe(µ0)
so that log Ee(µt)

t ≤ 2 log σ + log Ee(µ0)
t : the thesis follows.

In general, the lower bound provided by the lemma is conservative. For instance, in the
presence of a uniform partition of step size d1 , it is possible to design a control law u(x)
such that ∀x ∈ R , ϕ(x) ∈ J0 :=

[− |a|d1

2 , |a|d1

2

]
: in this case Te = +∞ . In the logarithmic

regime, instead, the following upper bound can be proved:

Lemma 24 (Upper bound for T e ) Consider system (7.3) , assume that ϕ(J0) ⊆ J0 for
some J0 = [−r0 , r0] and that ϕ(x) is standard logarithmic of parameter σ < 1 . Let
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m(σ) :=
⌈
− log |a|+σ

|a|−σ

σ
⌉

and P = Pall

(
see equation (7.4)

)
, then

Te ≤ 2m(σ) log
|a|+ σ

|a| − σ
. (7.31)

Proof. The proof is much more involved than the one for the lower bound and it is given in
Appendix A.6.4 .

Thus, under the assumptions of Lemma 24 ,

Te ≤ 2m(σ) log |a|+σ
|a|−σ < 2

(
− log |a|+σ

|a|−σ

σ + 1
)

log |a|+σ
|a|−σ =

= −2 log σ + 2 log |a|+σ
|a|−σ := f1(σ) ,

(7.32)

whereas, under the assumptions of Lemma 23 ,

Te ≥ −2 log σ := f2(σ) . (7.33)

Both f1(σ) and f2(σ) are invertible functions on an interval ]0 , σ0[ , for sufficiently small
σ0 > 0 . When both Lemma 23 and Lemma 24 hold, the behavior of Te for σ → 0+ is well
described by the function f2 and it is possible to establish a relation between Te and the
behavior of the coding cardinality function.

Theorem 17 (Asymptotic trade off between complexity and performance) Consi-
der a family of systems {

x+ = ϕσ(x) := ax + uσ(x)
}

σ∈ ]0 , 1[

of the type in equation (7.3) such that the following properties hold:

a) ∀σ ∈ ]0 , 1[ , ϕσ is standard logarithmic of parameter σ ;
b) ∃ J0 = [−r0 , r0] such that ∀σ ∈ ]0 , 1[ , ϕσ(J0) ⊆ J0 ;
c) ∀x ∈ Je and ∀σ ∈ ]0 , 1[ , |ϕσ(x)| ≤ σ|x| .
Consider the functions f1(σ) and f2(σ) defined in equations (7.32) and (7.33) , respectively.
Let P = Pall

(
see equation (7.4)

)
, denote by Te(σ) the measure of the transient behavior

for system x+ = ϕσ(x) and by Nσ(E) the coding cardinality function associated to the
quantization induced by uσ(x) . Then,

ı) f2(σ) ≤ Te(σ) < f1(σ) , with limσ→0+(f2 − f1)(σ) = 0 and limσ→0+
f1(σ)
f2(σ) = 1 ;

ıı) for E → +∞ , Nσ(E) ∼ C(σ) log E , where

C(σ) =
1

log |a|+σ
|a|−σ

(7.34)

is such that, with Ci(Te) := C
(
f−1

i (Te)
)
, i = 1 , 2 ,

C1

(Te(σ)
)

< C(σ) ≤ C2

(Te(σ)
)

(7.35)
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and

for Te → +∞ , C1(Te) ∼ C2(Te) ∼ |a|
2

eTe/2 .

In particular, if Te(σ) is an invertible function of σ , then
{

for E → +∞ , N (E) ∼ C(Te) log E
for Te → +∞ , C(Te) ∼ |a|

2 eTe/2 ,
(7.36)

where, with slight abuse of notation, we let C(Te) := C
(
σ(Te)

)
.

Proof. It is a consequence of the fact that ∀σ ∈ ]0 , 1[ , the hypotheses of both Lemma 23
and Lemma 24 hold for ϕσ . The details of the proof are reported in Appendix A.6.4 .

In brief, system (7.3) , when controlled so that the closed loop dynamics is standard loga-
rithmic, shows an asymptotic trade off between complexity and performance of the type in
equation (7.36) .

7.5 Example: analysis of performance and complexity for ne-

sted quantized control laws

The class of closed loop dynamics generated by nest–structured quantized control laws has
been studied in [45]. Let us analyze them in terms of the performance and complexity
parameters introduced so far.

Let the scalar dynamical system
x+ = ax + u

be such that a ∈ Z , |a| > 1 .
Consider a nest–structured quantized control law u : R → U defined as follows: let θ > 1
be in the form θ = 1 + ν

|a| for some ν ∈ N \ {0} and

u(x) :=





2
⌊

1−ax
2

⌋
if x ∈ [0 , θ]

θi · u(
x
θi

)
if x ∈ ]θi , θi+1] , i ∈ N \ {0}

−u(−x) if x < 0 .

As usual, denote by ϕ(x) := ax + u(x) the corresponding closed loop dynamics. Let Ji :=
[−θi , θi] , i ∈ N , and J−1 := ∅ : ϕ(x) is such that ϕ(J0) ⊆ J0 and

∀ i ≥ 1 , ϕ(Ji) ⊆ Ji−1 (7.37)

(see Fig. 7.4) .
With reference to the terminology introduced in Section 7.2 , we consider two classes of initial
distributions.
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Figure 7.4: The closed loop dynamics generated by u(x) when a = 3 and θ = 2 .

Case 1: P = Ppwc , where

Ppwc :=
{
µ ∈ Pr(R) | E(µ) < +∞ and µ = f(x)dx with f(x) =

∑+∞
i=0 αi ·χJi\Ji−1

(x)
}

,

namely, Ppwc is the set of probability distributions having finite energy and constant density
on Ji \ Ji−1 , ∀ i ∈ N .

Case 2: P = Pall

(
see equation (7.4)

)
.

Both classes are closed under the dynamics ϕ , therefore admissible.

7.5.1 Complexity analysis: N (E)

The controller complexity is represented by the coding cardinality function N (E) = eH(E)

associated to the quantization induced by u(x) . Such a quantization is floating–point with
parameters

(
M , θ

)
, where, by definition of θ ,

M =
⌈ν

2

⌉
=

⌈ |a|(θ − 1)
2

⌉
. (7.38)

Therefore, by Proposition 24 ,

for E → +∞ , N (E) ∼

⌈ |a|(θ−1)
2

⌉

log θ
log E . (7.39)

7.5.2 Performance analysis: E∞ and T e

In both cases of P = Ppwc and P = Pall , we compute the transient performance parameter
Te and analyze the steady–state performance by finding the minimal value for E∞ such that
the dynamics ϕ is E∞–converging. As for Te , with Je = R \ [−1 , 1] we are in the right
framework to define and analyze the behavior of the external energy.
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Case 1: µ ∈ Ppwc

For µ ∈ Ppwc we have

Proposition 25 For any initial distribution µ0 ∈ Ppwc and ∀ t ≥ 0 it holds that E(µt) ≥ 1
3

and
lim

t→+∞ E(µt) =
1
3

.

In particular, the closed loop dynamics x+ = ϕ(x) is E∞–converging if and only if E∞ ≥ 1
3 .

Moreover,
Te = log(θ2 + θ + 1) . (7.40)

In order to prove the proposition, it is useful to give an explicit representation of the Perron–
Frobenius operator associated to ϕ and describing the dynamics of the probability distribu-
tions µ ∈ Ppwc . Namely, to represent the linear operator F such that µt+1 = F(µt) .
Suppose that at time t the state of the process is distributed according to µt ∈ Ppwc : we use
the infinite vector p(t) := {pi(t)}i∈N , where pi(t) := µt(Ji\Ji−1) , to identify µt . In this case,
the Perron–Frobenius operator can be represented as an infinite matrix F := {Fi,j}(i,j)∈N2 ,
that is:

p(t + 1) = Fp(t) ,

where this notation means that ∀ i ∈ N , pi(t + 1) =
∑+∞

j=0 Fi,j pj(t) . Simple calculations
show that 




F0,0 = 1

F0,j = θ−j+1 if j ≥ 1

Fi,j = (θ − 1) θi−j if 1 ≤ i < j

Fi,j = 0 otherwise .

(7.41)

Let ~ζ := {ζi}i∈N , where
{

ζ0 = 1
3

ζi = θ2+θ+1
3 θ2(i−1) for i ≥ 1 .

(7.42)

For a distribution µ ∈ Ppwc represented by the probability vector p = {pi}i∈N , it is straight-
forward to see that

E(µ) = ~ζ · p :=
+∞∑

i=0

ζipi .

Given µ0 ∈ Ppwc , the energy E(µt) is shortly denoted by Et . The energy at time t + 1 is
given by the expression

Et+1 = ~ζ · Fp(t) .

Proof of Proposition 25. Let us start by analyzing the dependence of Et+1 from
Et and p(t) . Denote by ~e (i) the infinite vector such that5 e

(i)
j = δij , then Et+1 =

5Where δij =

{
1 if i = j

0 otherwise.
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~ζ · F ∑+∞
i=0 pi(t)~e (i) . Using equations (7.41) and (7.42) , a direct computation allows one

to show that

~ζ · F~e (i) =





1
3 for i = 0
1
3θ2(i−1) for i ≥ 1 .

We can hence explicitly write Et and Et+1 in the form

Et =
1
3

p0(t) +
θ2 + θ + 1

3

+∞∑

i=1

θ2(i−1)pi(t) (7.43)

and

Et+1 =
1
3

p0(t) +
1
3

+∞∑

i=1

θ2(i−1)pi(t) . (7.44)

Therefore, Et+1 − 1
3 p0(t) = 1

θ2+θ+1

(Et − 1
3p0(t)

)
and

Et+1 =
1

θ2 + θ + 1
Et +

(θ2 + θ)p0(t)
3(θ2 + θ + 1)

. (7.45)

Since θ > 1 , then ∀ i ≥ 1 , (θ2 + θ + 1) θ2(i−1) > 1 . Therefore, by equation (7.43) , Et ≥
1
3

∑+∞
i=0 pi(t) = 1

3 .
By equation (7.45) we immediately get

Et+1 − 1
3

=
Et − 1

3

θ2 + θ + 1
+

(θ2 + θ)
(
p0(t)− 1

)

3(θ2 + θ + 1)
.

As p0(t) − 1 ≤ 0 , then Et+1 − 1
3 ≤ 1

θ2+θ+1

(Et − 1
3

)
and, because Et − 1

3 ≥ 0 , it holds that
limt→+∞ Et = 1

3 .

Let us show that Te = log(θ2 + θ + 1) . Given µ0 ∈ Ppwc , the external energy Ee(µt) is
shortly denoted by Ee t . Notice that

Ee t = Et − ζ0p0(t) =
+∞∑

i=1

ζipi(0) (7.46)

thus
(
see equation (7.43)

)
,

Ee t =
θ2 + θ + 1

3

+∞∑

i=1

θ2(i−1)pi(t) . (7.47)

At time t + 1 ,

Ee t+1
(a)
= Et+1 − ζ0p0(t + 1)

(b)
= Et+1 − 1

3
(
p0(t) +

+∞∑

i=1

θ−i+1pi(t)
) (c)

=
1
3

+∞∑

i=1

(θ2(i−1) − θ−i+1)pi(t) ,
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where equality (a) follows by equation (7.46) , in equality (b) we used ζ0 = 1/3
(
see equa-

tion (7.42)
)

and the expression for F given in equation (7.41) , and equality (c) follows by
equation (7.44) . Thus

(
see equation (7.47)

)
,

Ee t+1 =
Ee t

θ2 + θ + 1
− 1

3

+∞∑

i=1

θ−i+1pi(t)

and Ee t+1 ≤ 1
θ2+θ+1

Ee t from which it immediately follows that

Te ≥ log(θ2 + θ + 1) .

To prove the equality, let us restrict to consider initial probability distributions µ0 ∈ Ppwc

having exponentially decaying masses. More precisely, let p(0) be such that pi(0) = (1−q)qi

for some q ∈ ]0 , 1[ . The energy of this type of distribution is

E0 = ~ζ · p(0) = (1−q)(θ2+θ+1)
3

(
1

θ2+θ+1
+

∑+∞
i=1 qiθ2(i−1)

)

and it is finite if and only if q < 1
θ2 .

Given such a probability distribution µ0 , the external energy at time t , which depends on
q , is denoted by Ee t(q) . The thesis is achieved by showing that

− sup
q∈ ] 0 , 1

θ2 [

lim sup
t→+∞

log Ee t(q)
t

= log(θ2 + θ + 1) .

To this aim, it is useful to introduce the following block decomposition: let p? := {pi}i∈N\{0}
and ~ζ? := {ζi}i∈N\{0} . For q ∈ ]0 , 1

θ2 [ ,

p(1) = Fp(0) = F
(

p0(0)
p?(0)

)
=

(
p0(1)

λ(q)p?(0)

)
,

where
λ(q) =

q(θ − 1)
θ − q

, (7.48)

and

p(t) = F tp(0) =

(
p0(t)

λ(q)tp?(0)

)
.

Therefore, Ee t = ~ζ? · p?(t) = λ(q)t~ζ? · p?(0) . Since ~ζ? · p?(0) does not depend on t we get

lim sup
t→+∞

log Ee t

t
= log λ(q) .

As
lim

q→ 1
θ2

λ(q) =
1

θ2 + θ + 1
(
see equation (7.48)

)
, the thesis follows.
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Case 2: µ ∈ Pall

For µ ∈ Pall we have

Proposition 26 It holds that

sup
µ0∈Pall

lim sup
t→+∞

E(µt) = 1 ,

in particular, the closed loop dynamics x+ = ϕ(x) is E∞–converging if and only if E∞ ≥ 1 .
Moreover,

Te ≥ log θ2

and if 1− a− ν is an even number,

Te = log θ2 . (7.49)

Proof. Let us start by proving the results on Te . For k ∈ N , let Lk := Jk \ Jk−1 . Namely,
L0 = J0 and, for k ≥ 1 , Lk = [−θk ,−θk−1[ ∪ ]θk−1 , θk] . Clearly, Li ∩ Lj = ∅ for i 6= j ,
and Je =

⋃
k≥1 Lk . Also, by equation (7.37) ,

{
if k ≤ t , ϕt(Lk) ⊆ J0

if k ≥ t + 1 , ϕt(Lk) ⊆ Jk−t .
(7.50)

For any given µ0 ∈ Pall , let
µδ

0 :=
∑

k∈N
µ0(Lk)δθk .

Let us show that µδ
0 ∈ Pall , in fact:

E(µ0) =
∫
R x2dµ0 =

∑
k∈N

∫
Lk

x2dµ0 ≥ 0 +
∑

k≥1 θ2(k−1)µ0(Lk) = 1
θ2

(E(µδ
0)− µ0(L0)

)
,

thus E(µδ
0) ≤ θ2E(µ0) + µ0(L0) < +∞ .

Let µ0 ∈ Pall , it holds that

Ee(µt) ≤ Ee(µδ
0)

θ2t
, (7.51)

in fact:
Ee(µt) =

∫
Je

x2dµt

=
∫
ϕ−t(Je)

(
ϕt(x)

)2
dµ0

=
∑

k≥1

∫
ϕ−t(Je)∩Lk

(
ϕt(x)

)2
dµ0

(a)
=

∑
k≥t+1

∫
ϕ−t(Je)∩Lk

(
ϕt(x)

)2
dµ0

(b)

≤ ∑
k≥t+1 θ2(k−t)µ0(Lk)

= 1
θ2t

(Ee(µδ
0)−

∑t
k=1 θ2kµ0(Lk)

)

≤ Ee(µδ
0)

θ2t ,
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where both equality (a) and inequality (b) follow by equation (7.50) . By inequality (7.51) ,

∀µ0 ∈ Pall , lim sup
t→+∞

log Ee(µt)
t

≤ log
1
θ2

and hence Te ≥ log θ2 .

Let us show that, when 1− a− ν is an even number, also the converse inequality holds. In
this case it holds that

∀ k ≥ 1 , ϕ(θk) = θk−1 . (7.52)

Similarly to the case P = Ppwc , let us restrict to consider initial probability distributions in
the form µ0 = q

1−q

∑
k≥1 qkδθk for some q ∈ ]0 , 1[ . The energy of this type of distribution

is E(µ0) = q
1−q

∑
k≥1(qθ

2)k and it is finite if and only if q < 1
θ2 . Given such a probability

distribution µ0 ,
Ee(µt) = q

1−q

∑
k≥t+1 qkθ2(k−t)

= (qθ)2

(1−q)(1−qθ2)
qt ,

where in the first equality we take advantage of equation (7.52) . Therefore,

lim supt→+∞
log Ee(µt)

t = log q

and
Te ≤ − sup

q∈ ] 0 , 1
θ2 [

lim sup
t→+∞

log Ee(µt)
t

= log θ2 .

Finally, let us prove that sup
µ0∈Pall

lim sup
t→+∞

E(µt) = 1 . For any µ0 ∈ Pall ,

E(µt) =
∫ 1

−1
x2dµt + Ee(µt) ≤ µt(J0) + Ee(µt) ≤ 1 + Ee(µt) .

By inequality (7.51) , limt→+∞ Ee(µt) = 0 , therefore sup
µ0∈Pall

lim sup
t→+∞

E(µt) ≤ 1 .

On the other hand let µ be the uniform distribution on J0 with unitary total mass. The
measure µ is ergodic for the closed loop dynamics x+ = ϕ(x) restricted to J0 (see [71]) ,
this means that

∀ ε > 0 and for µ–almost all x0 ∈ J0 , lim
t→+∞

∑t−1
i=0 χ[1−ε , 1]

(
ϕi(x0)

)

t
= ε .

That is, the frequency with which a trajectory starting from x0 visits the interval [1− ε , 1]
converges to ε . Hence, for such an x0 , µ0 = δx0 is such that lim supt→+∞ Et ≥ (1 − ε)2 .
This yields the result.

As it is expected, the worst case decaying rate of the external energy is smaller in the
general case (i.e., there are distributions, not belonging to Ppwc , whose external energy
has a decaying rate which is slower than the decaying rate of any µ0 ∈ Ppwc ) . Also the
steady–state performance are worst in the general case.
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Remark 41 In case 1 − a − ν is odd, because Ppwc ⊂ Pall , we can conclude that log θ2 ≤
Te ≤ log(θ2 + θ + 1) . As it will be clear in next Section 7.5.3 , this guarantees that the
asymptotic trade off between complexity and performance does not depend on the parity of
1− a− ν .

7.5.3 Performance vs complexity

Relation (7.39) compared with either (7.40) or (7.49) shows an asymptotic trade off between
complexity and performance of type

{
for E → +∞ , N (E) ∼ C(Te) log E
for Te → +∞ , C(Te) ∼ |a| eTe/2

Te
.

Notice that, in this case, Te → +∞ corresponds to θ → +∞ : thus, in order to improve
performance it is necessary to change both the parameters of the floating–point quantization(
see equation (7.38)

)
.





Conclusion

We have presented various results on the practical stabilization problem for linear systems
under arbitrarily assigned input and/or output quantization. Novel analysis techniques to
study controlled invariance have been proposed and particular attention has been turned
to optimality of the steady–state performance (i.e., in finding minimal invariant sets within
which the state of the system can be ultimately bounded) . The small–gain approach has
offered systematic tools for the control synthesis, those based on `1 theory are particularly
suitable to deal with quantized controls. We have then analyzed how the closed loop per-
formance changes as the complexity of the quantized controller varies. Information theory
provided us with suitable tools to carry out fundamental relations between performance and
complexity. Some directions of research which may be further explored are the following:

• For multi–input systems only input quantization has been considered in this thesis.
The extension of the small–gain approach to include quantized multi–input systems
under arbitrarily assigned quantized measurements is certainly a matter of primary
importance. More in general, in analogy with the framework proposed in [122] for
hybrid systems , we expect that the small–gain approach may offer the tools enabling
one to work out a systematic theory for the synthesis of practically stabilizing dynamic
controllers under assigned input and output quantization.

• In the case of multi–input systems, the control synthesis results based on `1 theory
need to be extended so that the design of the controller can be done with a pure `1

approach (whereas, in the present version, the control synthesis still relies on the H∞
theory) . Moreover, the proposed formulation of the control synthesis design in terms
of a mixed H∞/`1 control problem has been investigated through a simple example
only: we think that this is an interesting issue which deserves further investigations
especially for the class of positive systems where a special relation between the H∞
norm and the `∞–gain of the system holds.

• The proposed analysis of performance and complexity does not take transmission de-
lays into account. Under this simplifying assumption, controllers of increasingly high
complexity offer better and better performance. In practice, however, the deleterious
effects of delays increase with the complexity: there is hence a more involved trade off
between complexity and performance which is worth studying. To this end, a more
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in–depth analysis of the coding issue is needed and the proposed theoretical framework
has to be declined in a more practical context.

• Motivated by the spreading of technological applications involving complex and dis-
tributed systems, the most important research areas on quantized control have been
those related with the control under communication constraints. This appears to be
the predominant trend also for the close future: topics like networked and decentral-
ized control of distributed systems are the hub of the most recent developments (see,
e.g., [93, 20]) . In this context, there is still much insight to gain on the relation between
quantization and control/communication protocols. The integration of these issues with
those from the control under assigned quantization, such as the analysis presented in
Section 3.1.3 , opens up for interesting design problem to be further investigated.



Appendix A

Appendix

A.1 Appendix to Chapter 2

A.1.1 Appendix to Section 2.1

Proof of Lemma 1. ı) Proof of 1 ⇒ 2 : if ū was an accumulation point for U , then
ū ∈ U because U is closed, but ū is not isolated.
Proof of 2 ⇒ 3 : let S ⊂ Rm be a bounded set and consider S̄ , it is sufficient to prove that
the set L := S̄ ∩ U is finite. The set L is closed and bounded, therefore it is a compact set.
By contradiction, if L was made of infinite points, then an injective sequence l : N → L

could be defined and, because L is compact, it can be assumed that l is convergent. This
is a contradiction because, limn→+∞ l(n) = ` and the injectivity of l imply that ` is an
accumulation point for L , and hence for U .
Proof of 3 ⇒ 1 : this implication is trivial.

ıı) For u ∈ U , let d(u) := inf
v∈U\{u}

‖u− v‖2 . Because U is discrete, then ∀u ∈ U , d(u) > 0 .

By construction, the family
{B(u)

}
u∈U , where B(u) := {x ∈ Rm | ‖x − u‖2 < d(u)/2} , is

made of disjoint elements. Thus, it can be defined an injective function Q : U → Qm such
that Q(u) ∈ B(u) : this concludes the proof as it is well known that there exists a bijection
between Qm and N .

With reference to the discussion on the relations between locally finite partitions and the
partitions induced by a quantizer, consider the following case:

Example 30 Let us construct an example of quantizer qU : R2 → U ⊂ R2 such that ∀u ∈ U ,
u ∈ q−1

U (u) but the induced partition is not locally finite. Consider the following partition of
R2: let 




C0 :=
{
(y1, y2) ∈ R2 | y2 = 0

}

C1 :=
{
(y1, y2) ∈ R2 | y2 > 1

}

Cn :=
{
(y1, y2) ∈ R2 | 1

n < y2 ≤ 1
n−1

}
, N 3 n ≥ 2

C−n := −Cn , N 3 n ≥ 1 .
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The family {Ci}i∈Z defines a partition of R2 which is not locally finite because any neigh-
borhood of 0 intersects infinite elements of the partition. On the other hand, the map qU
defined by

qU(y) :=





(0, 0) if y ∈ C0

(1, 2) if y ∈ C1

(
n, 1

n−1

)
if y ∈ Cn , N 3 n ≥ 2

−qU(−y) if y ∈ C−n , N 3 n ≥ 1

is a quantizer inducing the partition {Ci}i∈Z and such that ∀u ∈ U , u ∈ q−1
U (u) . ♣

Proof of Lemma 3. Without loss of generality, we assume that y > 0 . For h ∈ Z , let
uh := u0θ

h ∈ U . Let us consider first the case in which y is equidistant from two control
values, say uh and uh+1 . In this case, y = yh := uh+uh+1

2 = u0(θ+1)
2 θh and, no matter

whether qU(yh) = uh or qU(yh) = uh+1 , it holds that

|qe(yh)|
|yh| =

(uh+1 − uh)/2
(uh + uh+1)/2

=
θ − 1
θ + 1

,

irrespective of h . If instead y belongs to the interior part of the interval q−1
U (uh) , that is

y ∈ ]yh−1 , yh[ , then qU(y) = uh and |qe(y)|
|y| = |uh−y|

|y| =
∣∣uh

y − 1
∣∣ . This function approaches

its supremum for y approaching the extremes of the interval q−1
U (uh) where |qe(yh−1)|

|yh−1| =
|qe(yh)|
|yh| = θ−1

θ+1 , irrespective of h .

A.1.2 Appendix to Section 2.3

With reference to Example 3 , let us prove the following

Lemma 25 Consider the scalar system

x(t + 1) = ax(t) + qU
(
Kx(t)

)
= (a + K)x(t) + qe

(
Kx(t)

)
, (A.1)

where |a| > 1 , qU : R → U is a nearest neighbor quantizer and U is a logarithmically
quantized set in the generalized sense with parameters (u0, θ) . The function V (x) = x2

is a Lyapunov function for system (A.1) , for any choice of the nearest neighbor quantizer
qU : R→ U , if and only if K ∈ R is such that inequality (2.5) is satisfied.

Proof. For x 6= 0 , it holds that

|x+| < |x| ⇔ ∣∣(a + K)x + qe(Kx)
∣∣ < |x| ⇔

∣∣∣(a + K) +
qe(Kx)

x

∣∣∣ < 1 .

By Lemma 3 , ∀x 6= 0 , it holds that |qe(Kx)|
|Kx| ≤ θ−1

θ+1 : this implies the sufficiency of condi-

tion (2.5) , indeed
∣∣∣(a + K) + qe(Kx)

x

∣∣∣ ≤ |a + K|+ |qe(Kx)|
|Kx| |K| ≤ |a + K|+ θ−1

θ+1 |K| .
Let us prove the necessity: let x be such that Kx is a discontinuity point for qe , namely
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Kx = u0(θ+1)
2 θh , then qe(Kx) = ±u0(θ−1)

2 θh (see also the proof of Lemma 3) . The sign
of qe(Kx) depends on the particular choice made in the definition of the nearest neighbor
quantizer for y = Kx ( Kx is equidistant from u0θ

h and u0θ
h+1 ) . Thus, for such an x ,∣∣∣(a + K) + qe(Kx)

x

∣∣∣ =
∣∣∣(a + K) + qe(Kx)

Kx K
∣∣∣ =

∣∣∣(a + K) ± θ−1
θ+1K

∣∣∣ (a)
= |a + K| + θ−1

θ+1 |K| , where

equality (a) holds if qU(Kx) has been defined so that sign (a + K) = sign
( qe(Kx)

Kx K
)
, the

thesis follows.

A.2 Appendix to Chapter 3

A.2.1 Appendix to Section 3.1.1

Example 8 : logarithmically quantized controls.

Let us prove that the one in equation (3.15) is the expression for ρ(∆) when U is a loga-
rithmically quantized set with parameters (u0, θ) . In fact: with the notation introduced in
Remark 5 , let uk := u0θ

k , k ∈ N . For k ≥ 1 , it holds that

uk − uk−1 = u0(θ − 1)θk−1 .

In particular, ∀ k ≥ 2 , uk − uk−1 > uk−1− uk−2 . This means that Kc = {0 , k1 , k1 + 1 , k1 +
2 · · · } . By definition, k1 is the smallest value of k ≥ 1 such that uk − uk−1 > u0 , that is

k1 =
⌊
logθ

θ
θ−1

⌋
+ 1 =

⌊
logθ

θ
θ−1 + 1

⌋
=

⌊
logθ

θ2

θ−1

⌋
.

Thus, for ∆ ∈ [
2u0
α+1 , 2u0θk1

α+1

[
, ρ(∆) = u0 ; instead, for ∆ ≥ 2u0θk1

α+1 = 2uk1
α+1 , ρ(∆) =

uk − uk−1 = u0
θ−1

θ θk , with k such that ∆ ∈ [
2uk
α+1 ,

2uk+1

α+1

[
, that is k =

⌊
logθ

( (α+1)∆
2u0

)⌋
.

A.2.2 Appendix to Section 3.1.3

Proof of Proposition 4. Let x̃m(τ) be the solution of
{

˙̃x(τ) = ax̃(τ) + u− w
2

x̃(0) = x0

and x̃M (τ) be the solution of the same system with +w
2 in place of −w

2 . For any integrable
function w̃ : [ 0 , T ] → I(w) , the solution x̃(τ) of system (3.29) is such that x̃m(τ) ≤ x̃(τ) ≤
x̃M (τ) , in fact:

x̃(τ)− x̃m(τ) =
∫ τ

0
ea(τ−s)

(
w̃(s) +

w
2

)
ds ≥ 0

because the integrand is positive. The other inequality is analogous. It is then sufficient to
show that ∀ τ ∈ [ 0 , T ] , x̃m(τ) ∈ I(∆) and x̃M (τ) ∈ I(∆) . Since x̃m(τ) is the solution of
the differential equation ˙̃x = ax̃ + u− w

2 and the right hand–side is not explicitly depending
on τ , then x̃m(τ) is a monotonic function. Hence, the desired property holds because, by
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q q

q q

q q

q q

q q

Xũ2

Xũ1

x
ũ1

xũ1
xũ2

−

∆

2 ∆

2

Figure A.1: Construction of Ũ in the proof of Proposition 7 .

assumption, both x̃m(0) ∈ I(∆) and x̃m(T ) ∈ I(∆) .
Similar arguments can be applied to x̃M (τ) .

Proof of Proposition 6. ı) It holds that

R
(a)

≥ 1
T

log2 `(∆, T )
(b)

≥ 1
T

log2 α +
1
T

log2

∆
∆− β(T ) · w =

a

log 2
+

1
T

log2

∆
∆− β(T ) · w ,

where inequality (a) follows by condition (3.33) and inequality (b) by inequality (3.38) .

ıı) Since T > 0 and a > 0 , then 2 ≤ ⌈
eaT

⌉ (c)

≤ `(∆, T ) ≤ 2RT
(
inequality (c) follows by

inequality (3.39)
)
, that is RT ≥ 1 .

ııı) Apply Proposition 6. ıı to the condition provided by Proposition 5. ıı .

To prove Proposition 7 , we first need the following result:

Lemma 26 ∀x ∈ R and ∀n ∈ N \ {0} ,
⌈

x
n

⌉
=

⌈ dxe
n

⌉
.

Proof. Any x ∈ R can be written as x = dxe − θx , with 0 ≤ θx < 1 . Then,

x

n
=
dxe
n
− θx

n
.

If dxe
n ∈ Z , then

⌈
x
n

⌉
=

⌈ dxe
n − θx

n

⌉
= dxe

n +
⌈− θx

n

⌉
= dxe

n + 0 .

If instead dxe
n 6∈ Z , since x

n < dxe
n , then the thesis follows by the fact that b dxen c < x

n . Let
us show that this inequality holds true: according to the Euclidean division, dxe = qn + r ,
with 1 ≤ r < n , hence b dxen c = bq + r

nc = q = dxe
n − r

n < dxe
n − θx

n = x
n .

Proof of Proposition 7. We show that the control set U defined by equation (3.42)
ensures the w–controlled invariance of I(∆) and that a control set Umin ⊂ εZ of minimal
cardinality between those ensuring the invariance of I(∆) is such that #Umin = #U . The
statement on the invariance of I(∆) under a control law of the type in equation (3.43) is a
consequence of the definition of Xu

(
see equation (3.35)

)
.

According to the notation introduced in equation (3.36) , consider the control set Ũ defined
by the following algorithm (see also Fig. A.1) :
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• Let Ũ := {ũ1} , where ũ1 is such that xũ1 = min xu ;{
u ∈ εZ
xu ≥ ∆

2

• While xũk
> −∆

2 ,

let Ũ := Ũ ∪ {ũk+1} , where ũk+1 is such that xũk+1
= min xu .{

u ∈ εZ
xu ≥ xũk

(A.2)

Let us show that Ũ = U and that it ensures the w–controlled invariance of I(∆) .
With u = −zε and z ∈ Z ,

xu ≥ ∆
2 ⇔ 1

α

(
∆
2 + βzε− βw

2

) ≥ ∆
2 ⇔ z ≥ 1

2ε

(
∆(α−1)

β + w
)
⇔ z ≥

⌈
1
2ε

(
∆(α−1)

β + w
)⌉

,

therefore, ũ1 = u1 . Moreover, if xũk
> −∆

2 , then

ũk+1 = ũk +
⌊

∆− βw
βε

⌋
· ε ,

in fact: by equation (3.36) , it holds that xu+zε = xu − β
αzε . Therefore, ũk+1 = ũk + hε ,

where h ∈ N is the largest integer such that β
αhε ≤ µ(Xũk

) = ∆−βw
α (µ stands for the

Lebesgue measure) . That is,

h =
⌊

∆− βw
βε

⌋
.

Notice that, since T ∈ T (∆) and a ≥ 0 , then ∆ ≥ β(ε + w) (see Proposition 5. ıı ) .
Therefore, h ≥ 1 and this guarantees that the algorithm (A.2) terminates in a finite number
of steps (in fact, ũk+1 > ũk so that xũk+1

< xũk
) .

To prove that Ũ = U , it remains to show that the cardinality of Ũ is equal to the right
hand–side of equation (3.41) . By equation (3.36) , it holds that xu+zε = xu − β

αzε . From
this equation and the construction of Ũ it follows that # Ũ = l , where l ∈ N is the smallest
integer such that

xũ1
− (l − 1)β

αhε ≤ −∆
2 ,

that is,

l = 1 +
⌈ α

2 (2xũ1
+ ∆)

hβε

⌉
.

To show the equality of l with the right hand–side of equation (3.41) , consider y :=
1
2ε

(
∆(α−1)

β + w
)

, then

ũ1 = u1 = −dyeε .
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Thus,

l = 1 +
⌈ α

2
(2xũ1

+∆)

hβε

⌉
(a)
= 1 +




α
2

(
2
(
− ∆

2α
+ β

α
dyeε+βw

2α

)
+∆

)

hβε




=

= 1 +
⌈

y+dye
h

⌉
(b)
= 1 +

⌈⌈
y+dye

⌉
h

⌉
= 1 +

⌈
2dye

h

⌉
=

= 1 +

⌈
2
⌈

1
2ε

(
∆(α−1)

β
+w

)⌉
⌊

∆−βw
βε

⌋

⌉
,

where equality (a) is obtained substituting xũ1
with the expression given in equation (3.36)

with ũ1 = −dyeε and equality (b) follows by Lemma 26 .
By construction, Ũ is such that the invariance condition (3.37) is satisfied (see also Fig. A.1) .

Finally, let us show that `(∆, T ) coincides with the expression in equation (3.41) . Assume
that Umin ⊂ εZ is a control set of minimal cardinality within the family of the control sets
U ⊆ εZ ensuring the w–controlled invariance of I(∆) : the thesis is achieved by showing that
#Umin = # Ũ . Suppose that the elements of Umin = {u(min)

1 , . . . , u
(min)
m } are ordered so that

x
u
(min)
1

> x
u
(min)
2

> · · · > x
u
(min)
m

.

By the invariance criterion (3.37) , it holds that x
u
(min)
1

≥ ∆
2 . Therefore, by definition of ũ1 ,

x
u
(min)
1

≥ xũ1 . This implies that x
u
(min)
2

≥ xũ2 , in fact: by definition of xũ2 , it is sufficient

to show that x
u
(min)
2

≥ xũ1
. This inequality holds because x

u
(min)
2

(c)

≥ x
u
(min)
1

≥ xũ1
, where

inequality (c) holds by the invariance criterion (3.37) . Iterating the same argument, one can
show that x

u
(min)
m

≥ xũm and hence xũm
≤ x

u
(min)
m

≤ −∆
2 : since by construction xũi

≤ −∆
2

only for i = # Ũ , then # Ũ = m = #Umin .

A.2.3 Appendix to Section 3.1.4

Proof of Proposition 10. ı) The semi–axes of the ellipse EP (S),ri(S) are ri(S)/
√

λmin

(
P (S)

)

and ri(S)/
√

λmax

(
P (S)

)
, then

Area (EP (S),ri) =
π r2

i (S)√
det P (S)

. (A.3)
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Let us show that ∀S > 0 , Area (EP (S),ri) ≥ π√
2

and that the equality holds if and only if
S = s1I . Indeed,

Area (EP (S),ri)
(a)
=

π

4

(
|s3|+

√
s2
3 + λmin(S)(s1 + s2)

)2(
s1 + λmin(S)

)

λ2
min(S)

√
s2
1 + s1s2 − s2

3

≥

(b)

≥ π

4
λmin(S)(s1 + s2)

(
s1 + λmin(S)

)

λ2
min(S)

√
s2
1 + s1s2

=

=
π

4

(
1 +

s1

λmin(S)

) √
1 +

s2

s1
≥

(c)

≥ π

4

(
1 +

s1

min{s1 , s2}
)√

1 +
s2

s1
≥

(d)

≥ π√
2

,

(A.4)

where equality (a) results from plugging in equation (A.3) the expressions for detP (S) ,
ri and R which can be obtained by equations (3.61) , (3.63) and (3.62a) , respectively;
inequality (b) follows by replacing the s3’s explicitly appearing in the right hand–side of
equality (a) with 0 ; inequality (c) holds because 1

λmin(S) is an increasing function of s2
3

(
see

equation (3.60)
)

and, for s3 = 0 , λmin(S) = min{s1 , s2} ; finally, inequality (d) follows by
the fact that in both cases s1 ≥ s2 or s2 ≥ s1 , the minimum of the expression in the right
hand–side of inequality (c) is achieved for s1 = s2 and it is equal to π√

2
.

Since inequality (b) is strict for s3 6= 0 and the chain of inequalities (A.4) becomes a chain
of equalities when s3 = 0 and s1 = s2 , the thesis follows.

ıı) Q2(1) ⊂ EP (S),ri(S) if and only if

∀x ∈ Q2(1) , s1x
2
1 + 2s3x1x2 + (s1 + s2)x2

2 ≤ r2
i (S) .

For |x1| ≤ 1
2 and |x2| ≤ 1

2 it holds that s1x
2
1 + 2s3x1x2 + (s1 + s2)x2

2 ≤ 2s1+2|s3|+s2

4 . We
have hence to show that

2s1 + 2|s3|+ s2

4
≤ r2

i (S) . (A.5)
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Indeed, inequality (A.5) holds if and only if

2s1 + 2|s3|+ s2 ≤

(
|s3|+

√
λ2

min(S) + s1s2

)2(
s1 + λmin(S)

)

λ2
min(S)

⇔ λ2
min(S)

(
2s1 + 2|s3|+ s2

) ≤ s1

(
s2
3 + λ2

min(S) + s1s2 + 2|s3|
√

λ2
min(S) + s1s2

)
+

+ λmin(S)
(
2s2

3 + λmin(S)(s1 + s2) + 2|s3|
√

λ2
min(S) + s1s2

)

⇔ 2λ2
min(S)|s3| ≤ s1

(
s2
3 + s1s2 + 2|s3|

√
λ2

min(S) + s1s2

)
+

+ λmin(S)
(
2s2

3 + 2|s3|
√

λ2
min(S) + s1s2

)
,

(A.6a)

(A.6b)

(A.6c)

where to write inequality (A.6a) we used the expression for R given in equation (3.62b)
and to write the second addendum in the right hand side of inequality (A.6b) we took
advantage of both the expressions for R given in equation (3.62)

(
in particular, the fact that

√
s2
3 + λmin(S)(s1 + s2) =

√
λ2

min(S) + s1s2

)
.

To conclude the proof, let us show that inequality (A.6c) holds true: in fact,

s1

(
s2
3 + s1s2 + 2|s3|

√
λ2

min(S) + s1s2

)
+ λmin(S)

(
2s2

3 + 2|s3|
√

λ2
min(S) + s1s2

)
≥

2λmin(S)|s3|
√

λ2
min(S) + s1s2 ≥
2λ2

min(S)|s3| .

The Proposition is proved.

A.2.4 Appendix to Section 3.2.1

Proof of Lemma 8. ı) It is enough to show that qU maps the extremes of the interval
Prn

(
AQn(∆)

)
to U(∆) . It holds that 0 ≤ qU

(
∆
2 α

) ≤ M(∆) , in fact: if u ∈ U and
u > M(∆) , then u > ∆

2 (α + 1) , so that
∣∣∆

2 α − u
∣∣ > ∆

2 ; but
∣∣∆

2 α − M(∆)
∣∣ ≤ ∆

2 by
definition of M(∆) and inequality (3.69b) . That is, ∆

2 α is closest to M(∆) than to any
other u ∈ U such that u > M(∆) and therefore qU

(
∆
2 α

) ≤ M(∆) . The other inequality
holds because ∆

2 α is not further from M(∆) than from 0 , in fact ∆
2 α ≥ ∆

2 .
Similarly, qU

(− ∆
2 α

) ≥ m(∆) .

ıı) We have to show that ∀ z ∈ N∆ , ∃u ∈ U such that |u − z| ≤ ρ(∆)
2 : this is obvious

for z ∈ [
m(∆)− ρ(∆)

2 , m(∆)
[ ∪ ]

M(∆) , M(∆) + ρ(∆)
2

]
; whilst for z ∈ [

m(∆) , M(∆)
]

the
property holds by definition of ρ(∆)

(
see equation (3.8) in Section 3.1.1

)
.

ııı) It easily follows by the definition of SM(∆) and Sm(∆) .
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A.3 Appendix to Chapter 4

A.3.1 Appendix to Section 4.1

Proof of Lemma 10.ı. By definition of k , x+
n = (Ax)n + qU

( − (Ax)n

)
, where qU is

a nearest neighbor quantizer. With reference to the partition R = Sm(∆) ∪ N∆ ∪ SM(∆)

defined in equation (3.70) of Section 3.2.1 , two cases can occur:

I) Suppose that −(Ax)n ∈ N∆ , then, by Lemma 8.ıı ,

|x+
n| =

∣∣(Ax)n + qU
(− (Ax)n

)∣∣ ≤ ρ(∆)
2 .

II) Suppose that −(Ax)n ∈ S∆ . If −(Ax)n ∈ Sm(∆) , then |x+
n| ≤ ‖x‖∞ − ϕ(∆) . In fact:

in this case, k(x) = m(∆) as it follows by Lemma 8. ııı that can be applied because, by
Lemma 8. ı , k(x) = qU

( − (Ax)n

) ∈ U(∆) . We then conclude as in part III of the proof of
Lemma 9 .
The case −(Ax)n ∈ SM(∆) is similar.

Proof of Lemma 11. Let us prove by induction that the sequence {∆k}k∈N is non–
increasing: ∆1 < ∆0 by assumption

(
in fact, φ takes values in the semi–open interval

[a,∆0[
)
. Let m ≥ 1 , suppose that ∆m ≤ ∆m−1 and, by contradiction, that ∆m+1 > ∆m .

The latter inequality is equivalent to φ(∆m) > φ(∆m−1) which, by the monotonicity of φ ,
implies ∆m ≥ ∆m−1 . Therefore, because of the inductive hypothesis, ∆m = ∆m−1 . As a
consequence, ∀ k ≥ m , ∆k = ∆m which contradicts the assumption ∆m+1 > ∆m .
As the sequence is monotonic, ∃∆inf := limk→+∞∆k . To prove the equality ∆inf =
max

{
∆ < ∆0 |φ(∆) = ∆

}
it is sufficient to show that

φ(∆inf) = ∆inf (A.7)

and
∀∆ ∈ ]∆inf , ∆0] , φ(∆) < ∆ . (A.8)

Equation (A.7) holds by the right continuity of φ ; if instead φ is not right continuous but it
takes a finite number of values for ∆ ∈ [a,∆0] , then equation (A.7) holds because ∃ m̂ ∈ N
such that ∆m̂ = limk→+∞∆k = ∆inf .
The property in (A.8) follows by showing that if ∆k+1 < ∆k (i.e., φ(∆k) < ∆k ) , then
∀∆ ∈ ]φ(∆k) , ∆k] it holds that φ(∆) < ∆: indeed, if it was φ(∆) ≥ ∆, then φ(∆) ≥ ∆ >

φ(∆k) , therefore ∆ > ∆k which is a contradiction.

Proof of Lemma 12. Let ∆′ ∈ [ρ(∆), ∆[ , m(∆′) < −∆′
2 (α − 1) ⇔ ∃u ∈ U such that

u ∈ I ′ :=
[− ∆′

2 (α+1) , −∆′
2 (α−1)

[ ⇔ U(∆′)∩ I ′ 6= ∅ ⇔ U(∆)∩ I ′ 6= ∅ , because ∆′ < ∆.
It holds that [m(∆) , M(∆)]∩ I ′ =

[
max

{
m(∆);−∆′

2 (α + 1)
}

, −∆′
2 (α− 1)

[ 6= ∅ : this is an
easy consequence of m(∆) < −∆

2 (α− 1) < −∆′
2 (α− 1) . By contradiction, if U(∆)∩ I ′ = ∅ ,

then m(∆) < −∆′
2 (α + 1) and I ′ ⊂ [m(∆) , M(∆)] : I ′ is a semi–open interval of length

∆′ , therefore ρ(∆) > ∆′ (
see the definition of ρ(∆) in equation (3.8) of Section 3.1.1

)
, but

∆′ ∈ [ρ(∆), ∆[ .
Similarly, M(∆′) > ∆′

2 (α− 1) .
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A.3.2 Appendix to Section 4.2.2

Let us represent the dynamic qdb–controller defined in equation (4.10) in the form of equa-
tion (2.9) . Let

W := Yn × Un−1 ,

the elements w ∈ W are denoted both by w = (~y, ~u) and by w = (w1, · · · , w2n−1) . Consider

k̃ : W × (N ∪ {−1}) → U

defined by

k̃
(
(~y, ~u), t

)
=

{
0 if t ≤ n− 2
(k ◦ ψ)(~y, ~u) if t ≥ n− 1 ,

and
γ : W ×Y × N → W

defined by
γ
(
w, y, t

)
=

(
w2, · · · , wn, y, wn+2, · · · , w2n−1, k̃(w, t− 1)

)
.

Finally,
k̄ : W ×Y × N → U(

w, y, t
) 7→ k̃

(
γ(w, y, t), t

)
.

In practice, w(t) =
(
~y (t− 1) , ~u (t− 1)

)
and k̃

(
w(t) , t− 1

)
= u(t− 1) .

A.4 Appendix to Chapter 5

A.4.1 Appendix to Section 5.3.2

Let us provide the details of the computations leading to the properties of the quantizers
that we have presented in Examples 19 , 20 and 21 of Section 5.3.2 .

Example 19 : logarithmic quantization of RRR.
Let us consider the function

γ(y) :=





|qe(y)|
|y| if y 6= 0

1 if y = 0 .

(see Fig. A.2) . We show that there exists an unbounded sequence {yh}h∈N such that ∀h ∈ N ,
γ(yh) = θ−1

θ+1 and if |y| > u0(θ+1)
2θ , then γ(y) ≤ θ−1

θ+1 : this proves that qe is standard with

natural external gain θ−1
θ+1 . We also show that if |y| < u0(θ+1)

2θ , then γ(y) > θ−1
θ+1 : this proves

that u0(θ+1)
2θ is the smallest value of %0 ensuring that the corresponding external gain is the

natural one.

Since qe(y) = qU(y)−y and qU is a nearest neighbor quantizer, then the following properties
hold for qe (see also Fig. 5.3 in Section 5.3.2) : the set J of the discontinuity points of qe is
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-yq q q

u0/2 u0 θu0 θ2u0

q q

u0(θ+1)

2

q

u0(θ+1)

2 θ

6γ(y)=
|qe(y)|
|y|

1

γe=
θ−1
θ+1

q

q

u0(θ+1)

2θ

Figure A.2: Logarithmic quantization of R , the behavior of γ(y) for θ = 1.8 .

made of the middle points between consecutive elements of U ; the function |qe| is continuous
and the set of its local maxima is exactly J . It holds that

J =
{
± u0

2

}
∪

{
± u0(θ + 1)

2
θh |h ∈ N

}
. (A.9)

Again by the definition of qU , it is easy to verify that the following properties hold (see also
the proof of Lemma 3 in Appendix A.1.1) : γ is a continuous function; ∀ y ∈ R , γ(y) ≤ 1 ; the
set of the local maxima of γ is J ∪ [−u0

2 , u0
2 ] . As γ is continuous, most of the information

we need about γ can be obtained by evaluating this function in correspondence of the local
maxima (the analysis can be restricted to y ≥ 0 because U is symmetric with respect to the
origin) . For y ∈ [

0 , u0
2

]
, γ(y) = 1 ; whereas for y = yh := u0(θ+1)

2 θh , |qe(y)| = u0(θ−1)
2 θh

and
γ(yh) =

|qe(yh)|
yh

=
θ − 1
θ + 1

(A.10)

irrespective of h . On the interval
[

u0
2 , u0

]
, γ(y) is decreasing, in fact γ(y) = u0−y

y . In

particular, γ
(

u0
2

)
= 1 , γ(u0) = 0 and γ(y) = θ−1

θ+1 if and only if y = u0(θ+1)
2θ . For y > u0 ,

γ(y) ≤ θ−1
θ+1 because γ is continuous and, in correspondence of the local maxima larger than

u0 , γ(y) = θ−1
θ+1 . All these facts yield the desired properties on qe and %0 .

As for E0 , since %0 ∈
]

u0
2 , u0

[
, it is immediate to check that max

|y|≤%0

|qe(y)| = u0
2 .

For later use, it is useful to explicitly write the relation γ(%0) = γe as

|qe(%0)|
%0

= γe . (A.11)

Example 20 : componentwise logarithmic quantization of R2R2R2.

With reference to the notation introduced in Example 20 , let us first prove that, for %0 ≥√
%2
01 + %2

02 , qe has %0–external gain γe(%0) . Consider y ∈ R2 such that ‖y‖2 > %0 ≥√
%2
01 + %2

02 . It holds that |y1| > %01 or |y2| > %02 . Let us divide the analysis in three cases:
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I) If |y1| > %01 and |y2| ≤ %02 , then %2
0 < y2

1 + y2
2 ≤ y2

1 + %2
02 and |y1| >

√
%2
0 − %2

02 .
Therefore,

‖qe(y)‖2

‖y‖2
=

√
‖qe(y)‖2

2

‖y‖2
2

=

√
|qe1(y1)|2 + |qe2(y2)|2

|y1|2 + |y2|2 ≤
√

γ2
e1|y1|2 + |y2|2
|y1|2 + |y2|2 := Ψ(y1, y2) ,

where the inequality holds because, in the computations done for Example 19 , we have shown
that for |y1| > %01 , |qe1(y1)| ≤ γe1|y1| and for |y2| ≤ %02 , |qe2(y2)| ≤ |y2| . It is easy to see
that, since γ2

e1 < 1 , then

sup


|y1| >

√
%2
0 − %2

02

|y2| ≤ %02

Ψ(y1, y2) = Ψ
(√

%2
0 − %2

02 , %02

)
,

therefore

sup


|y1| >

√
%2
0 − %2

02

|y2| ≤ %02

‖qe(y)‖2

‖y‖2
≤ Ψ

(√
%2
0 − %2

02 , %02

)
=

√
γ2

e1 +
(%02

%0

)2
(1− γ2

e1) .

II) Similarly, if |y1| ≤ %01 and |y2| > %02 , then |y2| >
√

%2
0 − %2

01 and

sup


|y1| ≤ %01

|y2| >
√

%2
0 − %2

01

‖qe(y)‖2

‖y‖2
≤

√
γ2

e2 +
(%01

%0

)2
(1− γ2

e2) .

III) Finally, if |y1| > %01 and |y2| > %02 , then

‖qe(y)‖2

‖y‖2
≤

√
γ2

e1|y1|2 + γ2
e2|y2|2

|y1|2 + |y2|2 ≤max {γe1 , γe2} .

To some up, as for i = 1, 2 , γei < 1 , then




√
γ2

e1 +
(%02

%0

)2(1− γ2
e1) > γe1

√
γ2

e2 +
(%01

%0

)2(1− γ2
e2) > γe2 .

(A.12)

Therefore, with γe(%0) defined as in equation (5.34) , it holds that ∀ y ∈ R2 such that
‖y‖2 > %0 , ‖qe(y)‖2 ≤ γe(%0)‖y‖2 . This proves that, for %0 ≥

√
%2
01 + %2

02 , qe has %0–
external gain γe(%0) .
By inequalities (A.12) , it holds in particular that γe(%0) >max {γe1 , γe2} . To complete the

proof of inequalities (5.36) , let us show that γe(%0) < 1 . This is again a consequence of the
fact that γei < 1 , in fact:

√
γ2

e1 + (%02/%0)2(1− γ2
e1) =

√
γ2

e1(%
2
0 − %2

02) + %2
02

%2
0

≤ 1
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and analogously,
√

γ2
e2 + (%01/%0)2(1− γ2

e2) < 1 .

Let us prove that relation (5.37) holds true. Namely, that for %0 =
√

%2
01 + %2

02 , the infimum
of the achievable values for γe(%0) given in equation (5.34) is

√
2

2 . In fact,

inf



u01 > 0
u02 > 0
θ1 > 1
θ2 > 1

γe

(√
%2
01 + %2

02

)
= inf




0 < γ2
e1 < 1

0 < γ2
e2 < 1

%0 > 0
%2
01 + %2

02 = %2
0

max
{√

γ2
e1%2

01+%2
02

%0
,

√
%2
01+γ2

e2%2
02

%0

}
:= Θ .

Also,

Θ2 = inf



0 < γ2
e1 < 1

0 < γ2
e2 < 1

%0 > 0
%2
01 + %2

02 = %2
0

max
{

γ2
e1%2

01+%2
02

%2
0

,
%2
01+γ2

e2%2
02

%2
0

}
:

let us show that Θ2 = 1
2 . Since, max {x1 , x2} ≥ x1+x2

2 , then

max
{

γ2
e1%

2
01 + %2

02

%2
0

,
%2
01 + γ2

e2%
2
02

%2
0

}
≥ %2

01(1 + γ2
e1) + %2

02(1 + γ2
e2)

2%2
0

:= Υ2 .

Therefore,

Θ2 ≥ inf



0 < γ2
e1 < 1

0 < γ2
e2 < 1

%0 > 0
%2
01 + %2

02 = %2
0

Υ2 ≥ inf



γ2
e1 > 0

γ2
e2 > 0

%0 > 0
%2
01 + %2

02 = %2
0

Υ2 ≥ inf



%0 > 0
%2
01 + %2

02 = %2
0

%2
01 + %2

02

2%2
0

=
1
2

.

It is then easy to see that it is possible to have γe arbitrarily close to
√

2
2 by choosing

u01 = u02 and θ1 = θ2 with θ1 sufficiently close to 1 .

As far as the absolute quantization error is concerned, let us show that for ‖y‖2 ≤ %0 it holds
that ‖qe(y)‖2 ≤ E0(%0) , where E0(%0) is defined by equations (5.34) and (5.35) . Indeed, we
have only to prove that equation (5.35) holds true, namely that

E0i(%0) := max
|yi|≤%0

|qei(yi)| = max
{

u0i

2
, γei

u0i(θi + 1)
2

θ
ni(%0)
i , |u0iθ

ni(%0)+1
i − %0|

}
. (A.13)

In fact, if ‖y‖2 ≤ %0 , then both |y1| ≤ %0 and |y2| ≤ %0 , therefore

‖qe(y)‖2 =
√
|qe1(y1)|2 + |qe2(y2)|2 ≤

√
E01(%0)2 + E02(%0)2 .
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Because of symmetry, we can restrict to 0 ≤ yi ≤ %0 . We have seen in the treatment of
Example 19 that |qei| is a continuous function and, for yi ≥ 0 , the set of its local maxima is

{ u0i

2

}
∪

{ u0i(θi + 1)
2

θh
i |h ∈ N

}

(
see equation (A.9)

)
. Since %0 > u0i

2 (in fact, %0 > %0i > u0i
2 ) and, for h1 > h2 , it holds

that
∣∣∣qei

(u0i(θi+1)
2 θh1

i

)∣∣∣ >
∣∣∣qei

(u0i(θi+1)
2 θh2

i

)∣∣∣ , then

max
yi∈[0 , %0]

|qei(yi)| =max
{∣∣∣qei

(u0i

2

)∣∣∣ ,
∣∣∣qei

(u0i(θi + 1)
2

θ
ni(%0)
i

)∣∣∣ ,
∣∣qei(%0)

∣∣
}

, (A.14)

where ni(%0) is the largest value of h ∈ Z such that u0i(θi+1)
2 θh

i ≤ %0

(
notice that for

h = −1 , u0i(θi+1)
2 θh

i = %0i < %0 , hence ni(%0) ≥ −1 : even if %0i is not a local max-
imum for |qei| , including also the case h = −1 allows us to give a unique formula for
E0i(%0)

)
. Let us show that the three quantities appearing in the maximization (A.14) are

exactly those appearing in the maximization (A.13) :
∣∣qei

(
u0i
2

)∣∣ = u0i
2 ; it is straightfor-

ward to see that ni(%0) =
⌊
logθi

2%0

u0i(θi+1)

⌋
, thus

∣∣∣qei

(
u0i(θi+1)

2 θ
ni(%0)
i

)∣∣∣ = γei
u0i(θi+1)

2 θ
ni(%0)
i(

this follows by equation (A.10) if ni(%0) ≥ 0 , and by equation (A.11) if ni(%0) = −1
)
.

To conclude the proof we have only to show that
∣∣qei(%0)

∣∣ = |u0iθ
ni(%0)+1
i − %0| . Indeed,

%0 ∈
[

u0i(θi+1)
2 θ

ni(%0)
i , u0i(θi+1)

2 θ
ni(%0)+1
i

]
and on this interval qei(y) = u0iθ

ni(%0)+1
i − y : the

desired property follows.

Finally, let us show that both γe(%0) and E0(%0) can be made arbitrarily small by prop-
erly choosing the parameters u0i and θi defining the quantized set U . Let us start by
noting that, following the above computations, it is immediate to see that, for i = 1, 2 ,
E0i(%0) ≤max

{
u0i
2 , γei

u0i(θi+1)
2 θ

ni(%0)+1
i

}
. Because by definition ni(%0) ≤ logθi

2%0

u0i(θi+1) ,

then γei
u0i(θi+1)

2 θ
ni(%0)+1
i ≤ γei%0θi , therefore

E0i(%0) ≤max
{u0i

2
, γei%0θi

}
. (A.15)

Let us fix %0 > 0 . One can first make γei arbitrarily close to 0 by choosing θi sufficiently
close to 1 . Then, also %0i

%0
can be made arbitrarily small by picking u0i sufficiently close to

0 . With these choices, according to equation (5.34) , γe(%0) can be made arbitrarily small.
The same holds for E0(%0) thanks to equation (A.15) .

Example 21 : the joint radial logarithmic quantization of R2R2R2.

• The input space partition: let us first give a quick description of the input space
partition induced by qU (see Fig. A.3) . This is the Voronoi partition generated by U (see
e.g., [94]) . With the notation introduced in Example 21 and in Definition 9 in Section 2.1 ,
∀ k = 0, . . . , N −1 and ∀h ∈ N , let ukh := `k∩ch and Vkh be the Voronoi region containing
ukh , that is

Vkh = {y ∈ R2 | qU(y) = ukh} .
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Figure A.3: Radial logarithmic quantization of R2 with N = 6 and θ = 2 . Full lines define
the input space partition induced by qU .

Since U is invariant under rotations of an angle 2π
N around the origin, we can limit ourselves

to consider the case k = 0 . It is easy to see that

V0h =
{
y ∈ R2 | − y1 tan(π/N) ≤ y2 ≤ y1 tan(π/N) and ζh ≤ y1 ≤ ζh+1

}
,

where

ζh :=





u0
2 if h = 0
u0(θ+1)

2 θh−1 if h ≥ 1 .

Therefore,

V0h =
{
y = (y1, y1 tanϕ) ∈ R2 | − π/N ≤ ϕ ≤ π/N and ζh ≤ y1 ≤ ζh+1

}
(A.16)

(see Fig. A.4) . By V0 we denote the Voronoi region containing u = 0 , that is

V0 := {y ∈ R2 | qU(y) = 0} = R2 \
(⋃

k=0,...,N−1 ; h∈N Vkh

)
.

V0 is a regular polyhedron centered in the origin, having N edges and the radius of the circle
inscribed into it is u0

2 . Hence, denoted by rc the radius of the circle circumscribed to V0 ,
we have

rc =
u0

2 cos(π/N)
. (A.17)

• Properties of qe : let us prove that qe is standard with the natural gain γe given in
equation (5.39) and that u0(θ+1)

2θ cos(π/N) is the smallest value of %0 ensuring that the correspond-
ing external gain is the natural one. To this end, let us start by analyzing the behavior of
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‖qe(y)‖2
‖y‖2 within Vkh . By the symmetry of U , there is no loss of generality in assuming k = 0 .

We hence consider u0h = (u0θ
h, 0) ∈ V0h , h ∈ N . Thanks to equation (A.16) ,

max
y∈V0h

‖qe(y)‖2

‖y‖2
= max

ϕ∈[− π
N

, π
N

]
max

y1∈[ζh , ζh+1]

‖qe(y1, y1 tanϕ)‖2

‖(y1, y1 tanϕ)‖2
.

For ϕ ∈ [− π
N , π

N

]
, let Γ2(ϕ) := max

y1∈[ζh , ζh+1]

‖qe(y1,y1 tan ϕ)‖22
‖(y1,y1 tan ϕ)‖22

, then

Γ2(ϕ) = max
y1∈[ζh , ζh+1]

(u0θh−y1)2+y2
1 tan2 ϕ

y2
1(1+tan2 ϕ)

=

= max
y1∈[ζh , ζh+1]

y2
1−2y1u0θh cos2 ϕ+u2

0θ2h cos2 ϕ

y2
1

=

= max
λ∈[1/ζh+1 , 1/ζh]

Ψϕ(λ) ,

where λ := 1
y1

and Ψϕ(λ) := (u2
0θ

2h cos2 ϕ)λ2−2(u0θ
h cos2 ϕ)λ+1 . For h ≥ 1 , it holds that

Ψϕ(1/ζh+1) = Ψϕ(1/ζh) = 1 − 4θ cos2 ϕ
(θ+1)2

. Moreover, u2
0θ

2h cos2 ϕ > 0 because |ϕ| ≤ π
N ≤ π

3 ,
therefore

Γ2(ϕ) = 1− 4θ cos2 ϕ

(θ + 1)2
.

Thus, ∀h ≥ 1 , we have

max
y∈V0h

‖qe(y)‖2

‖y‖2
=

√
max

ϕ∈[− π
N

, π
N

]
Γ2(ϕ) =

√
1− 4θ cos2(π/N)

(θ + 1)2
:= γe .

As for h = 0 , let

Ṽ00 :=
{
y ∈ R2 | − y1 tan(π/N) ≤ y2 ≤ y1 tan(π/N) and ζ̃0 ≤ y1 ≤ ζ1

} ⊂ V00 ,

where ζ̃0 := ζ1
θ = u0(θ+1)

2θ (see Fig. A.4) . By repeating the above computations, we have

max
y∈Ṽ00

‖qe(y)‖2

‖y‖2
= γe . (A.18)

To sum up, with
V :=

⋃

k=0,...,N−1 ; h≥1

Vkh

⋃ ⋃

k=0,...,N−1

Ṽk0 ,

it holds that
∀ y ∈ V ,

‖qe(y)‖2

‖y‖2
≤ γe .

Thus, with %0 equal to the radius of the circle circumscribed to R2 \V , we have proved that
qe has %0–external gain γe . As R2 \V is a regular polyhedron centered in the origin, having
N edges and the radius of the circle inscribed into it is ζ̃0 , then

%0 =
∥∥(

ζ̃0, ζ̃0 tan(π/N)
)∥∥

2
=

u0(θ + 1)
2θ cos(π/N)

.
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6y2

-y1
r r

u0 ζ1

r

ζ0

r r

ζ̃0

V00 \ Ṽ00 = W0i

Ṽ00
V01

W0e





%0

y2 = tan(π/N)y1

V0 I+

I−

Figure A.4: Visualization of the symbols intervening in the computations to prove the facts
concerned with Example 21 (the parameters are the same as in Fig. A.3) .

Indeed, we have also shown that
{
y(h)

}
h∈N\{0} , where y(h) :=

(
ζh, ζh tan(π/N)

)
, is an

unbounded sequence such that ‖qe(y(h))‖2
‖y(h)‖2 = γe . This proves that qe is standard with natural

gain γe . Moreover, resuming the computations leading to equation (A.18) , one sees that for
λ > 1

ζ̃0
and ϕ = π

N , Ψϕ(λ) > Ψϕ(1/ζ̃0) = γ2
e : this means that if y =

(
y1, y1 tan(π/N)

)

with ζ0 ≤ y1 < ζ̃0 , then ‖qe(y)‖2
‖y‖2 > γe . Therefore, if %0 <

∥∥(
ζ̃0, ζ̃0 tan(π/N)

)∥∥
2
, then the

%0–external gain of qe is strictly larger than γe .

Now, let us show that max
y∈B%0

‖qe(y)‖2 = E0 , where E0 is defined in equation (5.39) . Consider

the Voronoi region V0 containing u = 0 : by construction, V0 ⊂ B%0 . It holds that

max
y∈V0

‖qe(y)‖2 =
u0

2 cos(π/N)
, (A.19)

in fact: for y ∈ V0 , ‖qe(y)‖2 = ‖y‖2 , therefore max
y∈V0

‖qe(y)‖2 is equal to rc , the radius of

the circle circumscribed to V0 . Thus, equation (A.19) follows by equation (A.17) .
Let us evaluate max

y∈B%0\V0

‖qe(y)‖2 . Let W0 := B%0 ∩ (∪h∈NV0h) . As before, because of

symmetry,

max
y∈B%0\V0

‖qe(y)‖2 =max
y∈W0

‖qe(y)‖2 .

Also, W0 = W0i ∪ W0e , where W0i = V00 \ Ṽ00 and W0e = W0 ∩ V (see Fig. A.4) . For
y ∈ W0e it holds that

‖qe(y)‖2

(a)

≤ γe‖y‖2

(b)

≤ γe%0 =
u0

2θ

√
(θ − 1)2 + (1 + θ)2 tan2(π/N) , (A.20)
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where inequality (a) holds because W0e ⊂ V and inequality (b) because W0e ⊂ B%0 .
For y ∈ W0i , the maximum of ‖qe‖2 is achieved on the boundary of W0i . In fact: by the
definition of qU , the function ‖qe‖2 is continuous and its local maxima lie on the boundary
of the Voronoi regions; by construction, W0i does not contain any of these boundary points
into its interior. The only portion of the boundary of W0i which is not contained into the
already analyzed set V0 ∪W0e is made of the segments

I+ :=
{
y =

(
y1, y1 tan(π/N)

) ∈ R2 | u0
2 < y1 < ζ̃0

}

I− :=
{
y =

(
y1,−y1 tan(π/N)

) ∈ R2 | u0
2 < y1 < ζ̃0

}
.

(see Fig. A.4) . For y ∈ I± , it holds that

‖qe(y)‖2 =
∥∥(

u0 − y1,−y1 tan(π/N)
)∥∥

2
=

√(
1 + tan2(π/N)

)
y2
1 − 2u0y1 + u2

0 := f(y1) ,

then

sup
y1∈ ]

u0
2

, ζ̃0[

f(y1) = max
{
f(u0/2) , f(ζ̃0)

}
=

= max
{

u0
2 cos(π/N) , u0

2θ

√
(θ − 1)2 + (1 + θ)2 tan2(π/N)

}
.

This result, compared with those in equations (A.19) and (A.20) , yields the expression for
E0 given in equation (5.39) .

Finally, running again through the computations done to determine E0 , we immediately
realize that if u0

2θ

√
(θ − 1)2 + (1 + θ)2 tan2(π/N) > u0

2 cos(π/N) and %̃0 < %0 , then

max
y∈B%̃0

‖qe(y)‖2 < E0 .

Proof of Lemma 4 of Section 2.1. In the discussion of Example 21 , we have shown that
the quantization error associated to a radial logarithmic quantization of R2 is such that, for
h ≥ 1 ,

max
y∈V0h

‖qe(y)‖2

‖y‖2
=

√
1− 4θ cos2(π/N)

(θ + 1)2
. (A.21)

For a generalized radial logarithmic quantization of R2 , to prove Lemma 4 , it is sufficient
to replace h ≥ 1 with h ∈ Z both in the definition of V0h and in the computations leading
to equation (A.21) .

A.5 Appendix to Chapter 6

A.5.1 Appendix to Section 6.1.1

Proof of Proposition 15. Let ~u = {u(t)}t∈N ∈ `∞(Rm) , then ~yf(~u) = (~g ∗ ~u) , that is
yf(t) =

∑t−1
τ=0 g(t− τ)u(τ) . According to equation (5.11) , we have to show that

sup
~u∈`∞(Rm)\{~0}

‖~yf(~u)‖∞
‖~u‖∞ = max

i=1,...,q

+∞∑

τ=0

m∑

j=1

|gi,j(τ)| .
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Let ~u ∈ `∞(Rm) \ {~0} , denote by ~yf , for short, the corresponding output ~yf(~u) , then

‖~yf‖∞ = sup
t∈N

‖yf(t)‖∞ =

= sup
t∈N

max
i=1,...,q

|yf i(t)| =

= sup
t∈N

max
i=1,...,q

∣∣∑t−1
τ=0 e′ig(t− τ)u(τ)

∣∣ ≤

≤ sup
t∈N

max
i=1,...,q

∑t−1
τ=0 |e′ig(t− τ)u(τ)| =

= sup
t∈N

max
i=1,...,q

∑t−1
τ=0

∣∣ ∑m
j=1 gi,j(t− τ)uj(τ)

∣∣ ≤

≤ sup
t∈N

max
i=1,...,q

∑t−1
τ=0

∑m
j=1 |gi,j(t− τ)||uj(τ)| ≤

≤ sup
t∈N

max
i=1,...,q

[(
max

τ=0,...,t−1
max

j=1,...,m
|uj(τ)| )∑t−1

τ=0

∑m
j=1 |gi,j(τ + 1)|

]
=

= sup
t∈N

[(
max

τ=0,...,t−1
‖u(τ)‖∞

)
max

i=1,...,q

∑t
τ=0

∑m
j=1 |gi,j(τ)|

]
≤

≤ sup
t∈N

[(
max

τ=0,...,t−1
‖u(τ)‖∞

)
max

i=1,...,q

∑+∞
τ=0

∑m
j=1 |gi,j(τ)|

]
=

= ‖~u‖∞· max
i=1,...,q

∑+∞
τ=0

∑m
j=1 |gi,j(τ)| .

Thus,

sup
~u∈`∞(Rm)\{~0}

‖~yf(~u)‖∞
‖~u‖∞ ≤ max

i=1,...,q

+∞∑

τ=0

m∑

j=1

|gi,j(τ)| .

Vice versa, first notice that

max
i=1,...,q

+∞∑

τ=0

m∑

j=1

|gi,j(τ)| ≤
+∞∑

τ=0

max
i=1,...,q

m∑

j=1

|gi,j(τ)| = ‖~g‖1 < +∞

because the system is assumed to be BIBO–stable (see property 3 of Lemma 14) . For any
fixed T > 0 , let

ı̂ := argmax
i=1,...,q

T∑

τ=0

m∑

j=1

|gi,j(τ)| (A.22)

and consider ~u (T ) ∈ `∞(Rm) defined by

u(T )

j (t) :=

{
sign

(
gı̂,j(T − t)

)
if 0 ≤ t ≤ T − 1

0 if t ≥ T .

Denote by ~yf , for short, the corresponding output signal ~yf(~u (T )) , then ∀ i = 1, . . . , q ,

|yf i(T )| = ∣∣ ∑T−1
τ=0

∑m
j=1 gi,j(T − τ)u(T )

j (τ)
∣∣ ≤

≤ ∑T
τ=0

∑m
j=1 |gi,j(τ)| ≤

≤ ∑T
τ=0

∑m
j=1 |gı̂,j(τ)| =

= |yf ı̂(T )| ,
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therefore ‖~yf‖∞ ≥ ‖yf(T )‖∞ = |yf ı̂(T )| = max
i=1,...,q

∑T
τ=0

∑m
j=1 |gi,j(τ)| (

see equation (A.22)
)
.

Since ‖~u (T )‖∞ = 1 , then

∀T > 0 , sup
~u∈`∞(Rm)\{~0}

‖~yf(~u)‖∞
‖~u‖∞ ≥ ‖~yf(~u (T ))‖∞

‖~u (T )‖∞ ≥ max
i=1,...,q

T∑

τ=0

m∑

j=1

|gi,j(τ)| .

In other words,

∀T > 0 , sup
~u∈`∞(Rm)\{~0}

‖~yf(~u)‖∞
‖~u‖∞ ≥ ‖g(T )‖∞ ,

where g(T ) :=
∑T

τ=0

∑m
j=1 |gi,j(τ)| ∈ Rq . Since max

i=1,...,q

∑+∞
τ=0

∑m
j=1 |gi,j(τ)| < +∞ , then

there exists limT→+∞ g(T ) =
∑+∞

τ=0

∑m
j=1 |gi,j(τ)| and, by the continuity of the vector norm

‖ · ‖∞ in Rq , limT→+∞ ‖g(T )‖∞ = max
i=1,...,q

∑∞
τ=0

∑m
j=1 |gi,j(τ)| . Therefore,

sup
~u∈`∞(Rm)\{~0}

‖~yf(~u)‖∞
‖~u‖∞ ≥ max

i=1,...,q

∞∑

τ=0

m∑

j=1

|gi,j(τ)| : (A.23)

this concludes the proof.

Lemma 27 Let ` be a Banach space, denote its norm by ‖ · ‖∗ . Let Ψ : ` → ` be a linear
operator and assume that ‖Ψ‖∗ < 1 , where ‖Ψ‖∗ := sup

v∈`\{0}
‖Ψ(v)‖∗
‖v‖∗ . Then it is defined the

operator (I + Ψ)−1 , it holds that (I + Ψ)−1 =
∑+∞

i=0 (−Ψ)i and ‖(I + Ψ)−1‖∗ ≤ 1
1−‖Ψ‖∗ .

Proof. Since ‖Ψ‖∗ < 1 , then
∑+∞

i=0 ‖(−Ψ)i‖∗ ≤
∑+∞

i=0 ‖Ψ‖i∗ = 1
1−‖Ψ‖∗ < +∞ . Because

` is a Banach space, this ensures the existence of a bounded linear operator represented by∑+∞
i=0 (−Ψ)i and that

∥∥∑+∞
i=0 (−Ψ)i

∥∥
∗ ≤ 1

1−‖Ψ‖∗ . To see that
∑+∞

i=0 (−Ψ)i = (I + Ψ)−1 , it

is sufficient to notice that ∀ k ∈ N , one has (I + Ψ)
∑k

i=0(−Ψ)i = I + (−1)kΨk+1 : letting
k → +∞ , since limk→+∞ ‖Ψk‖∗ = 0 , then (I + Ψ)

∑+∞
i=0 (−Ψ)i = I as desired.

Lemma 28 Let p(z) := zn − ∑n
i=1 fiz

i−1 . If
∑n

i=1 |fi| < 1 and z∗ ∈ C is such that
p(z∗) = 0 , then |z∗| < 1 .

Proof. If p(z∗) = 0 and |z∗| ≥ 1 , then

|zn∗ | = |∑n
i=1 fiz

i−1∗ | ≤ ∑n
i=1 |fi||zi−1∗ | ≤ |zn−1∗ |∑n

i=1 |fi| .

Therefore,
∑n

i=1 |fi| ≥ |zn∗ |/|zn−1∗ | = |z∗| ≥ 1 , the thesis follows.

A.5.2 Appendix to Section 6.1.2

Lemma 29 Let L ∈ Cp×q , M ∈ Cq×p and λ ∈ C\{0} . Assume that both λIp+LM ∈ Cp×p

and λIq + ML ∈ Cq×q are invertible, then

M(λIp + LM)−1 = (λIq + ML)−1M .
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Proof. Indeed,

M = (λIq + ML)−1(λIq + ML)M =

= (λIq + ML)−1(λM + MLM) =

= (λIq + ML)−1M(λIp + LM) .

Multiplying the first and the last terms of the equality by (λIp + LM)−1 on the right, the
thesis follows.

A.5.3 Appendix to Section 6.2.1

Proof of Lemma 20. By induction on m̂ : for m̂ = 1 it is sufficient to take ε1 ∈ ]0, ε′[ .
Let us show that if the desired property holds for some m̂ ≥ 1 , then it holds for m̂+1 . Let
ε′ > 0 : by definition of E +(∆m̂) , ∃ ε̃ > 0 such that

∀ ε ∈ ]0, ε̃[ , E (∆m̂ + ε) < E +(∆m̂) +
ε′

4‖G(I)‖∞ .

For such a ε̃ , by the inductive assumption, ∃ {εk}k=1,...,m̂ (with εk > 0 ∀ k = 1 . . . , m̂ ) such
that ∆+

m̂ = ∆m̂ + ε with ε ∈ ]0, ε̃[ : we claim that these εk’s and εm̂+1 = ε′
2 ensure that

∆m̂+1 < ∆+
m̂+1 < ∆m̂+1 + ε′ . In fact:

∆+
m̂+1 = 2‖G(I)‖∞E (∆+

m̂) + εm̂+1 =

= 2‖G(I)‖∞E (∆m̂ + ε) + ε′
2 <

< 2‖G(I)‖∞
(
E +(∆m̂) + ε′

4‖G(I)‖∞
)

+ ε′
2 =

= 2‖G(I)‖∞E +(∆m̂) + ε′ =

= ∆m̂+1 + ε′ .

On the other hand,

∆+
m̂+1 = 2‖G(I)‖∞E (∆m̂ + ε) + ε′

2 ≥
≥ 2‖G(I)‖∞E +(∆m̂) + ε′

2 =

= ∆m̂+1 + ε′
2 >

> ∆m̂+1 .

A.5.4 Appendix to Section 6.2.2

Let us prove Theorem 13 . As in the proof of Theorem 6 in Section 4.1 , the core argument
is provided by a preliminary lemma yielding a partial practical stability result for the closed
loop dynamics.
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Lemma 30 (Main tool) Consider system (6.27) , assume A0 and that α ≥ 1 . Let K ∈
R1×n be such that F := A + BK satisfies f :=

∑n
i=1 |fi| < 1 . Consider the control law

u(x) = qU(Kx) , where qU : R→ U is a nearest neighbor quantizer. Let ∆ > 0 be such that
ρ(∆) < +∞ and inequalities (6.29a–b) hold.

ı) If x ∈ Qn(∆) and u(x) ∈ U(∆) , then x+ = Ax + Bk(x) is such that

|x+
n| ≤max

{
ρ(∆)

2
, ‖x‖∞ − ϕ(∆)

}
, (A.24)

where, as in equation (3.80) ,

ϕ(∆) := min
{
M(∆)− ∆

2 (α− 1) , −∆
2 (α− 1)−m(∆)

}
.

ıı) If ρ(∆) < (1 − f)∆ and ∀x ∈ Qn(∆) , u(x) ∈ U(∆) , then, ∀∆′ ∈ [ f∆ + ρ(∆) , ∆] ,
u(x) is

(
Qn(∆), Qn(∆′)

)
–stabilizing and u

(
Qn(∆′)

) ⊆ U(∆′) . In particular, ∀∆′ ∈ [ f∆ +
ρ(∆) ,∆ ] , Qn(∆′) is positively invariant.

Proof. The proof is similar to that of Lemma 9 in Section 3.2.2 (see also the proof of
Lemma 10 in Section 4.1 and in Appendix A.3.1) .

ı) Consider the quantization error qe = qU − I : R→ R , then

x+
n =

n∑

i=1

aixi + qU(Kx) =
n∑

i=1

fixi + qe(Kx) .

With reference to the partition R = Sm(∆) ∪ N∆ ∪ SM(∆) defined in equation (3.70) of
Section 3.2.1 , two cases can occur:

I) Suppose that Kx ∈ N∆ , then

|x+
n| =

∣∣∑n
i=1 fixi + qe(Kx)

∣∣ ≤
≤ ∣∣∑n

i=1 fixi

∣∣ +
∣∣qe(Kx)

∣∣ ≤
≤ f ∆

2 + ρ(∆)
2 ,

where the last inequality follows by the fact that x ∈ Qn(∆) and by Lemma 8.ıı in Sec-
tion 3.2.1.

II) Assume instead that Kx ∈ S∆ . If Kx ∈ SM(∆) , then qU(Kx) = M(∆) thanks
to Lemma 8.ııı that can be applied because we assumed that u(x) = qU(Kx) ∈ U(∆) .
Thus, x+

n =
∑n

i=1 aixi + M(∆) . Since −∑n
i=1 aixi =

∑n
i=1(−ai)xi ≤ α‖x‖∞ , then

x+
n ≥ −α‖x‖∞ + M(∆) . Thanks to inequalities (6.29a–b) and by definition of ϕ(∆) we

can write M(∆) = ∆
2 (α− 1) + ϕ(∆) + θ , with θ ≥ 0 . Hence,

x+
n ≥ −α‖x‖∞ + M(∆) = −α‖x‖∞ + ∆

2 (α− 1) + ϕ(∆) + θ ≥ −‖x‖∞ + ϕ(∆)

where the last inequality holds because (α − 1)
(

∆
2 − ‖x‖∞

)
+ θ ≥ 0 . On the other hand,

x+
n =

∑n
i=1 fixi+qe(Kx) <

∑n
i=1 fixi− ρ(∆)

2 by Lemma 8.ııı . Thus x+
n <

∑n
i=1 fixi− ρ(∆)

2 ≤∣∣∑n
i=1 fixi − ρ(∆)

2

∣∣ ≤ f ∆
2 + ρ(∆)

2 . Namely,

−‖x‖∞ + ϕ(∆) ≤ x+
n < f ∆

2 + ρ(∆)
2
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which implies |x+
n| ≤ max

{
f ∆

2 + ρ(∆)
2 , ‖x‖∞ −ϕ(∆)

}
: in fact, if −‖x‖∞ + ϕ(∆) ≥ 0 , then

|x+
n| ≤ f ∆

2 + ρ(∆)
2 ; if instead −‖x‖∞ + ϕ(∆) < 0 , then |x+

n| ≤ max
{

f ∆
2 + ρ(∆)

2 ,
∣∣− ‖x‖∞ +

ϕ(∆)
∣∣
}

= max
{
f ∆

2 + ρ(∆)
2 , ‖x‖∞ − ϕ(∆)

}
.

The case Kx ∈ Sm(∆) is similar.

ıı) It is a consequence of part ı and of the controller form of the system. In fact: ∀x ∈ Qn(∆) ,
inequality (A.24) holds; ϕ(∆) > 0 by inequalities (6.29a-b) , therefore inequality (A.24) im-
plies that ∀∆′ ∈ [ f∆ + ρ(∆) , ∆] , Qn(∆′) is positively invariant and, by Lemma 6 in Sec-
tion 3.1.1 , u

(
Qn(∆′)

) ⊆ U(∆′) . Moreover, because x+ = (x2, . . . , xn, x+
n) , inequality (A.24)

also implies that

∀x(0) ∈ Qn(∆) , ‖x(n)‖∞ ≤max
{
f ∆

2 + ρ(∆)
2 , ‖x(0)‖∞ − ϕ(∆)

}
:

since ϕ(∆) > 0 , the iteration of this argument yields the
(
Qn(∆), Qn(∆′)

)
–stability.

Proof of Theorem 13. Let
φ(∆) := f∆ + ρ(∆) :

with ∆̄ := 2u0
α+1

(
see equation (3.9) in Section 3.1.1

)
, φ : [∆̄, +∞[→ R . Actually, φ :

[∆̄,+∞[→ [∆̄, +∞[ and it is a non–decreasing and right continuous function. In fact: φ

is non–decreasing and right continuous because so is ρ and f ≥ 0 ; moreover, ∀∆ ≥ ∆̄ ,
φ(∆) ≥ ρ(∆) ≥ ∆̄

(
see equation (3.10)

)
. Notice that, for ∆ > ∆̄ ,

φ(∆) < ∆ ⇐⇒ ρ(∆) < (1− f)∆ . (A.25)

Because inequality (6.29c) holds, then the restriction of φ to the interval [∆̄, ∆0] satisfies the
hypotheses of Lemma 11 in Section 4.1 . Consider the sequence {∆k}k∈N defined by ∆k+1 :=
φ(∆k) : by Lemma 11 , it is a non–increasing sequence and, as in the proofs of Theorem 12.ıı
and Proposition 19.ıı , equation (4.4) and relation (A.25) imply that limk→+∞∆k = ∆inf(f) ,
with ∆inf(f) as defined in equation (6.30) .
Let ∆? ∈ ]∆inf(f) , ∆0] : by Lemma 11 , ∃ m̄ ∈ N such that ∆inf ≤ ∆m̄ < ∆? . We can hence
define m̂ := min {m̄ ∈ N |∆m̄ < ∆?} . We claim that ∀ k = 0, . . . , m̂− 1 , the hypotheses of
Lemma 30.ıı are satisfied with ∆ = ∆k .

The claim implies the thesis, in fact: by Lemma 30.ıı , ∀ k = 0, . . . , m̂ − 1 and ∀∆′ ∈
[∆k+1, ∆k] , Qn(∆′) is positively invariant, in particular so are both Qn(∆0) and Qn(∆?) ;
moreover ∀ k = 0, . . . , m̂− 1 , u(x) is

(
Qn(∆k), Qn(∆k+1)

)
–stabilizing, in particular u(x) is(

Qn(∆0), Qn(∆m̂)
)
–stabilizing and, because ∆m̂ < ∆? ,

(
Qn(∆0), Qn(∆?)

)
–stabilizing.

Let us prove the claim: inequality (6.29c) is satisfied by ∆k if and only if φ(∆k) < ∆k ,
namely ∆k+1 < ∆k . Let us show that for k ≤ m̂ − 1 , it holds that ∆k+1 < ∆k . This
is a consequence of the following two facts: first, by definition of m̂ , ∆k ≥ ∆? > ∆m̂ ;
secondly, if ∆h = ∆h+1 for some h ∈ N , then ∀ k ≥ h , ∆k = ∆h . Inequalities (6.29a-b) are
satisfied by ∆k , ∀ k ∈ N : by induction, for k = 0 they hold by assumption while for k ≥ 1 ,
since ∆k = f∆k−1 + ρ(∆k−1) ≥ ρ(∆k−1) , it follows by Lemma 12 of Section 4.1 . Finally,
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u
(
Qn(∆k)

) ⊆ U(∆k) : this holds for k = 0 as U = U(∆0) , while for k = 1, . . . , m̂ − 1 it
follows by recursive application of Lemma 30.ıı .

Let us provide the details of the computations allowing us to prove equations (6.31) and (6.32)
in Example 28 of Section 6.2.2 .

Example 28 : Analysis of ψ for logarithmic quantization of RRR .

Proof of ı : by definition,
E (r2

2) = sup
x∈E

P,r2
2

‖ψ(x)‖∞ =

= sup
x∈E

P,r2
2

∣∣qe(Kx)
∣∣ =

= sup
y∈R : |y|≤µ1

∣∣qe(y)
∣∣ ,

where µ1 := max
x∈E

P,r2
2

|Kx| .

From this relation, it immediately follows the continuity of E (r2
2) , in fact: µ1 is continuous

with respect to r2
2 and |qe| is continuous with respect to y (the latter holds because qe is

the quantization error associated to a nearest neighbor quantizer, see also Fig. 5.3) .
To complete the proof, it is sufficient to show that

max
x∈E

P,r2
2

|Kx| = r2

√
KP−1K ′ (A.26)

and that sup
y∈R : |y|≤µ1

∣∣qe(y)
∣∣ is equal to the right–hand side of equation (6.31) .

The one in equation (A.26) is a standard constrained maximization problem that can be
solved through the application of the Lagrange multipliers method. As EP,r2

2
is symmetric

with respect to the origin, then, with L(x, λ) := Kx + λ(x′Px − r2
2) , a value of x ∈ EP,r2

2

maximizing |Kx| is so that the following system is satisfied for some λ ∈ R :




∂L

∂x
= K + 2λx′P = 0

∂L

∂λ
= x′Px− r2

2 = 0 .

(A.27a)

(A.27b)

Equation (A.27a) implies that 2λx′Px = −Kx , then, using equation (A.27b) , 2λr2
2 = −Kx .

By equation (A.27a) , we can also come to 2λx = −P−1K ′ which combined with the former
expression yields (Kx)x = r2

2P
−1K ′ . Multiplying both sides of the latter expression by K ,

we find (Kx)2 = r2
2KP−1K ′ so that equation (A.26) follows.

Finally, the equivalence between sup
y∈R : |y|≤µ1

∣∣qe(y)
∣∣ and the right–hand side of equation (6.31)

is just a generalization of equation (5.35) including the case %0 ≤ u0(θ+1)
2θ . The proof can be

easily obtained following that of equation (5.35) given in Appendix A.4.1 .

Proof of ıı : it follows by the same arguments used to prove case ı . We have only to notice
that, by definition of ‖K‖∞ , µ2 := max

x∈Qn(∆)
|Kx| = ‖K‖∞∆

2 .
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A.6 Appendix to Chapter 7

A.6.1 Basic properties of the Laplace Transformation

We briefly recall the properties of the Laplace transformation that turns out to be useful
for our presentation. In the sequel, the real functions to which the Laplace transformation
is applied are tacitly assumed to be bounded on every finite interval. By s we denote a
complex–valued variable whereas β denote a real–valued variable. The real part of s is
denoted by Re(s) .

Let g(x) be a real function, the Laplace transform of g is defined by

G(s) :=
∫ +∞

0
g(x)e−sxdx .

The Laplace transform of g is also conveniently denoted by

L[g(x)](s) := G(s) .

Theorem 18 Let g(x) be a real function with Laplace transform G(s) converging on the
right half–plane {s ∈ C |Re(s) > σ∗} . Then G(s) is an analytic function in the interior of
the half–plane of convergence and its n–th derivative is G(n)(s) = (−1)nL[xng(x)](s) .

Proof. See [35] (Theorem 6.1 , page 26) .

Theorem 19 (Initial value theorem) Let g(x) be such that ∃ limx→0+ g(x) and ∃G(β)
for some β > 0 . Then

∃ lim
β→+∞

βG(β) = lim
x→0+

g(x) .

Proof. See [35] (Theorem 33.4 , page 226) .

Theorem 20 (Final value theorem) Let g(x) be such that ∃ limx→+∞ g(x) = g∞ ∈ R ∪
{±∞} and G is convergent on the right half–plane {s ∈ C |Re(s) > 0} . Then

∃ lim
β→0+

βG(β) = g∞ .

Proof. When g∞ ∈ R , see [35] (Theorem 34.3 , page 233) . Let us prove the case g∞ = +∞ :
∀M > 0 , ∃ x̂(M) such that ∀x ≥ x̂(M) , g(x) ≥ M . Hence, βG(β) = β

∫ +∞
0 e−βxg(x)dx =

β
∫ x̂(M)
0 e−βxg(x)dx + β

∫ +∞
x̂(M) e−βxg(x)dx ≥ βK(β) + Mβ

∫ +∞
x̂(M) e−βxdx , where K(β) :=

∫ x̂(M)
0 e−βxg(x)dx is a bounded function of β . Therefore, βG(β) ≥ βK(β) + Me−βx̂(M)

and lim infβ→0+ βG(β) ≥ M . Since M can be chosen arbitrarily large, the thesis follows.

Theorem 21 Let f and g be real functions with Laplace transforms F and G converg-
ing on the right half–plane {s ∈ C |Re(s) > 0} . Assume that ∀x ≥ 0 , g(x) ≥ 0 ,
limx→+∞ f(x) = limx→+∞ g(x) = +∞ and that

lim
x→+∞

f(x)
g(x)

= 1 ,
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then

ı) lim
β→0+

F (β)
G(β)

= 1 ;

ıı) lim
β→0+

F ′(β)
G′(β)

= 1 .

Proof. ı) Let M0 be such that ∀x ≥ M0 , g(x) > 0 . For x ≥ M0 we can write f(x) =
g(x) + h(x)g(x) with limx→+∞ h(x) = 0 . For any given ε > 0 , let M > M0 be such that
∀x ≥ M , |h(x)| ≤ ε .
F (s) = G(s) +

∫ M
0

(
f(x)− g(x)

)
e−sxdx +

∫ +∞
M h(x)g(x)e−sxdx .

Because for Re(s) > 0 , |e−sx| < 1 , then
∣∣ ∫ M

0

(
f(x)− g(x)

)
e−sxdx

∣∣ ≤ ∫ M
0 |f(x)− g(x)|dx =

K(ε) where K(ε) is a finite constant (thanks to the boundedness assumption on f and g )
not depending on s . Also,

∣∣ ∫ +∞
M h(x)g(x)e−sxdx

∣∣ ≤ ε
∫ +∞
M g(x)e−Re(s)xdx ≤ εG

(Re(s)
)
,

where in the last inequality we use the fact that g(x) ≥ 0 on [0 , M ] .

We hence have that
∣∣∣F (s)
G(s) − 1

∣∣∣ ≤ ε
G
(
Re(s)

)
|G(s)| + K(ε)

|G(s)| . Since for β > 0 , G(β) > 0 , then∣∣∣F (β)
G(β) − 1

∣∣∣ ≤ ε + K(ε)
G(β) . The thesis follows because, as a consequence of the “Final value

theorem”, it holds that limβ→0+ G(β) = +∞ .

ıı) lim
x→+∞

xf(x)
xg(x)

= 1 , the thesis then follows by part ı and Theorem 18 .

Corollary 11 If ∃λ > 0 such that limx→+∞
g(x)
Axλ = 1 , then G(s) exists for Re(s) > 0 and

lim
β→0+

G(β)
A Γ(λ + 1)β−(λ+1)

= 1 .

Proof. It is a particular case of Theorem 21.ı (see also [35], Theorem 34.1 – page 231).

Lemma 31 Let θ > 1 and

f(x) :=

{
0 if x ∈ [0 , 1]
logθ x if x > 1 ,

(A.28)

then

ı) lim
β→0+

F (β)

− log β
β

=
1

log θ
;

ıı) F ′(β) = −
(

F (β)
β + e−β

β2 log θ

)
, in particular lim

β→0+

F ′(β)
log β
β2

=
1

log θ
.

Proof. ı) For β > 0 ,

F (β) = 1
log θ

∫ +∞
1 e−βx log x dx = 1

β log θ

∫ +∞
1

e−βx

x dx =

= 1
β log θ

∫ +∞
β

e−y

y dy = 1
β log θ

[ ∫ 1
β

1
y dy +

∫ 1
β

e−y−1
y dy +

∫ +∞
1

e−y

y dy
]

=

= 1
β log θ [− log β + ψ(β) + c2] ,
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where c2 > 0 and limβ→0+ ψ(β) = c1 < 0 : the thesis follows.

ıı) By Theorem 18 , for β > 0 , F ′(β) = − 1
log θ

∫ +∞
1 e−βxx log x dx = − 1

β log θ

∫ +∞
1 e−βx(log x+

1) dx = −
(

F (β)
β + 1

β log θ

∫ +∞
1 e−βx dx

)
= −

(
F (β)

β + e−β

β2 log θ

)
.

A.6.2 Appendix to Section 7.3.1

The following Lemma provides a relation between the growth of g(x) and that of dk with k .

Lemma 32 Given a quantization I , there exists λ > 0 such that

limk→+∞ dk

kλ = +∞

if and only if there exists γ > 0 such that the corresponding g–function is such that

lim
x→+∞

g(x)
xγ

= 0 .

Proof. If λ > 0 is such that limk→+∞ dk

kλ = +∞ , then ∀M > 0 , ∃ kM such that ∀ k ≥ kM ,

dk ≥ Mkλ . (A.29)

Consider a quantization IM such that DIM
=

{ ± Mkλ | k ∈ N
}

and let gM be the
corresponding g–function. By inequality (A.29) and the definition of g–function, it holds that
∀x ≥ d2

kM
, g(x) ≤ gM (x) . Therefore, ∀M > 0 , lim supx→+∞

g(x)

x1/2λ ≤ limx→+∞
gM (x)

x1/2λ = 1
M2(

see equation (7.19)
)
. Namely, the thesis holds with γ = 1

2λ .

Vice versa, if γ > 0 is such that limx→+∞
g(x)
xγ = 0 , then ∀ ε > 0 , ∃xε such that ∀x ≥ xε ,

g(x) ≤ εxγ . In particular, since k = g(d2
k) and g is a non decreasing function, then

∀ k > g(xε) , d2
k > xε and hence k ≤ εd2γ

k . Namely, ∀ ε > 0 and ∀ k > g(xε) , dk

k1/2γ ≥ 1
ε1/2γ ,

therefore the thesis holds with λ = 1
2γ .

A.6.3 Appendix to Section 7.3.2

Proof of Proposition 24. We follow the arguments used to prove Proposition 23 . Let
f(x) be the function defined in equation (A.28) in Appendix A.6.1 : by assumption, the
g–function associated to I is such that limx→+∞

g(x)
(M/2)f(x) = 1 . Hence, by Lemma 31.ı and

Theorem 21.ı in Appendix A.6.1 ,

lim
β→0+

G(β)

−M log β
2β log θ

= 1 .
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Using the expression for βE(β) deriving from equation (7.10b) we get

limβ→0+
βE(β)

1
− log β

= limβ→0+

1+
βG′(β)
G(β)
1

log β

=

(a)
= limβ→0+

1−β

F (β)
β

+ e−β

2β2 log θ
F (β)
1

log β

=

= limβ→0+
−e−β log β
2βF (β) log θ =

(b)
= 1 ,

where equality (a) holds by Theorem 21 and Lemma 31.ıı , equality (b) follows by Lemma 31.ı .
To sum up,

limβ→0+
e
H
(
E(β)

)
log E(β) = limβ→0+

(
1+2βG(β)

)
eβE(β)

log E(β) =

= limβ→0+

−M
log θ

log β

− log(− log β)−log β = M
log θ .

A.6.4 Appendix to Section 7.4.2

Proof of Lemma 22. Proof of part ı : Suppose by contradiction that ∃ x̃ ∈ Je such that
|x̃| ≥ √

η and |ϕ(x̃)| > |x̃| . Consider µ0 = η
x̃2 δx̃ +

(
1 − η

x̃2

)
δ0 , then Ee(µ0) = η whereas

µ1 = η
x̃2 δϕ(x̃) +

(
1− η

x̃2

)
δϕ(0) and Ee(µ1) = η

x̃2 ϕ(x̃)2 > η .

Proof of part ıı : Suppose by contradiction that ∃ x̃ ∈ Je such that |ϕ(x̃)| > |x̃| . Consider
µ0 = δx̃ , then Ee(µ0) = x̃2 whereas µ1 = δϕ(x̃) and Ee(µ1) = ϕ(x̃)2 > x̃2 = Ee(µ0) .

Proof of part ııı : For any given µ0 ∈ Pr(R) , Ee(µ1) =
∫
ϕ−1(Je)

ϕ(x)2dµ0 ≤
∫
Je

ϕ(x)2dµ0 ≤
σ2

∫
Je

x2dµ0 = σ2Ee(µ0) , where the first inequality holds because, since ϕ(J0) ⊆ J0 , then
ϕ−1(Je) ⊆ Je .

Proof of Lemma 24. First notice that the class Pall is admissible: indeed, it is sufficient
to show that Pall is closed under the dynamics ϕ and this is an easy consequence of the fact
that ϕ is standard logarithmic.
Let x0 > 0 and θ = |a|+σ

|a|−σ be as in Definition 43.ıı . For ϕ as in the assumptions of the
lemma, we claim that it is possible to construct a sequence {yn}n∈N such that





∀n ∈ N , yn ∈ Je

∀n ∈ N , γnm(σ) < |yn| < x0θ
nm(σ)+1

for n ≥ 1 , ϕ(yn) = yn−1 ,

(A.30a)

(A.30b)

(A.30c)

where, for h ∈ N , γh = |a|−σ
|a| x0θ

h+1 + r0
|a| .

The thesis follows by the claim, in fact: consider µ0 := (1−q)
∑+∞

i=0 qiδyi , for some q ∈ ]0 , 1[ .
The energy of such a distribution is E(µ0) = (1−q)

∑+∞
i=0 qiy2

i < (1−q)(x0θ)2
∑+∞

i=0 (qθ2m(σ))i
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by inequality (A.30b) . Hence, if q ∈ ]0 , 1
θ2m(σ) [ , E(µ0) < +∞ . By equation (A.30c) ,

∀ i ∈ N and ∀ t ∈ N , µt(yi) ≥ µ0(yi+t) = (1− q)qi+t , (A.31)

therefore,
Ee(µt) =

∫
Je

x2dµt

≥ ∑+∞
i=0 y2

i µt(yi)

(a)

≥ (1− q)
∑+∞

i=0 qi+ty2
i

(b)
> (1− q)qt

∑+∞
i=0 qiγ2

im(σ)

(c)
> (1− q)

( |a|+σ
|a| x0

)2
qt

∑+∞
i=0 (qθ2m(σ))i

= 1−q
1−qθ2m(σ)

( |a|+σ
|a| x0

)2
qt ,

where inequality (a) follows by inequality (A.31) , inequality (b) by inequality (A.30b) and
inequality (c) holds because γh > |a|−σ

|a| x0θ
h+1 . Hence,

lim sup
t→+∞

log Ee(µt)
t

≥ log q

and
Te ≤ − sup

q∈ ] 0 , 1

θ2m(σ)
[

lim sup
t→+∞

log Ee(µt)
t

≤ log θ2m(σ) .

That is,

Te ≤ 2m(σ) log
|a|+ σ

|a| − σ
.

Let us prove the claim, namely, let us show the existence of a sequence {yn}n∈N satisfying the
conditions (A.30) . With xh := x0θ

h , since |ϕ(xh)| = σxh

(
see equation (7.23)

)
, ∃ ĥ ∈ N

such that ∀h ≥ ĥ , ϕ(xh) ∈ Je . Hence, provided that x0 is redefined as x0 := xĥ , we can
assume that ∀h ∈ N , |ϕ(xh)| > r0 . For h ∈ N , let

I+
h :=]γh , xh+1[ ,

where γh ∈ ]xh , xh+1[ is such that ϕ(γh) = sign(a)r0 . The existence of such a γh is
guaranteed by equation (7.23) and by the fact that |ϕ(xh)| > r0 (see Fig. A.5) . Moreover,
it is easy to figure out that γh = |a|−σ

|a| x0θ
h+1 + r0

|a| . Let

I−h := −I+
h .

Accordingly, 



if a > 0 , ϕ(I+
h ) = ]r0 , σxh+1[

if a < 0 ,

{
ϕ(I+

h ) = ]− σxh+1 , −r0[
ϕ(I−h ) = ]r0 , σxh+1[ .

(A.32a)

(A.32b)
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Figure A.5: Construction of the intervals I+
h ’s in the proof of Lemma 24 .

It holds that
if h ≥ m(σ) , then σxh+1 ≥ xh−m(σ)+1 . (A.33)

In fact: σxh+1 ≥ xh−m(σ)+1 ⇔ σx0θ
h+1 ≥ x0θ

h−m(σ)+1 ⇔ θm(σ) ≥ 1
σ ⇔ m(σ) ≥ − logθ σ

which is the case since m(σ) = d− logθ σe .
Conditions (A.32) and (A.33) imply that, for h ≥ m(σ) ,





if a > 0 , ϕ(I+
h ) ⊃ I+

h−m(σ)

if a < 0 ,

{
ϕ(I+

h ) ⊃ I−h−m(σ)

ϕ(I−h ) ⊃ I+
h−m(σ) .

(A.34a)

(A.34b)

We are now in the position to construct the desired sequence. Let us do it recursively: fix
any y0 ∈ I+

0 . In the case a > 0 , assume that ∀ i ≤ n , yi has been found which satisfies
the properties in equation (A.30) and yi ∈ I+

im(σ) , then yn+1 can be determined as follows:
yn ∈ I+

nm(σ) ⊂ ϕ
(
I+
(n+1)m(σ)

)
by equation (A.34a) , therefore ∃ yn+1 ∈ I+

(n+1)m(σ) such that
ϕ(yn+1) = yn . The case a < 0 is similar, in this case yi ∈ (−1)iI+

im(σ) , namely the sequence
is alternating.

Proof of Theorem 17. For any σ ∈ ]0 , 1[ , ϕσ satisfies the hypotheses of both Lemma 23
and Lemma 24 . Hence, part ı is a direct consequence of Lemma 23

(
and inequality (7.33)

)

and of Lemma 24
(
and inequality (7.32)

)
.

The fact that, for E → +∞ , Nσ(E) ∼ C(σ) log E , with C(σ) as in equation (7.34) , was
shown in equation (7.24) .
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Inequality (7.35) is a consequence of the inequality proved in part ı and of the fact that, on
an interval ]0 , σ0[ (for sufficiently small σ0 > 0 ) , C is a decreasing function of σ and both
f−1
1 and f−1

2 are decreasing functions of Te .
Let us show that limTe→+∞

C1(Te)
C2(Te)

= 1 :

limTe→+∞
C1(Te)
C2(Te)

= limTe→+∞
C
(
f−1
1 (Te)

)

C
(
f−1
2 (Te)

) =

=





limy→0+
C(y)

C
(
(f−1

2 ◦f1)(y)
) =

y := f−1
1 (Te)

(a)
= limy→0+

C(y)

C
(

y(|a|−y)
|a|+y

) =

(b)
= limy→0+

log
a2+2y|a|−y2

a2+y2

log
|a|+y
|a|−y

= 1 ,

where in equality (a) we used the expression of f1 given in equation (7.32) and the fact that,
by equation (7.33) , f−1

2 (Te) = e−Te/2 ; in equality (b) we used the expression of C given in
equation (7.34) .
Finally, for Te → +∞ , C2(Te) ∼ |a|

2 eTe/2 , because

C2(Te) = C
(
f−1
2 (Te)

)
=

1

log |a|+e−Te/2

|a|−e−Te/2

.
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