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IntrodutionMathematiians have been studying ontinued frations long before the moderntheory of dynamial systems emerged. To this day, they remain one of the fewmodels for whih a omprehensive statistial analysis is available, inluding er-godiity, invariant measures and the deay of orrelation funtions.The relevane of this model is not limited to the �eld of dynamial systems, butextends to number theory, information theory and the theory of algorithms.As a tool for representing real numbers, ontinued fration expansions are idealto study diophantine approximation problems, they are more eonomial interms of length than the deimal expansion, and aren't basis-dependent.However, the major drawbak of being hardly suited for omputation (evensimple operations like the sum and produt beome omplex in this represen-tation) is probably the reason why the literature desribing the appliations ofontinued frations to engineering is so sparse.Reently there has been an inreasing interest in desribing the behavior offamilies of dynamial systems at the boundary of haotiity (a widely knownexample is the extensive study on the bifurations of the logisti map). In thisontext interesting phenomena of phase transitions, self-similarity and fratalsets often arise.The �rst part of my researh onerns �-ontinued frations for � 2 [0; 1℄, aone-parameter family of interval maps giving rise to a whole lass of ontinuedfration expansions. Just as the lassial ontinued frations an be viewed asan aeleration of the Eulidean division algorithm, �-ontinued frations areobtained imposing the ondition that the remainder in the Eulidean divisionshould belong to the interval [�� 1; �).This allows to gain a wider perspetive, bridging the gap between Gauss's lassi-al ontinued fration algorithm (� = 1) and the expansion based on the nearestinteger approximation (� = 1=2), whih has a faster onvergene and a higherentropy; and more interestingly, between the latter and the by-exess algorithm(� = 0), whose properties are markedly di�erent: it is slower, and doesn't admita �nite invariant density, due to the presene of a paraboli �xed point.It is then natural to investigate how this transition ours, in partiular bystudying the statistial stability of the family of the invariant densities as afuntion of the parameter �. In x2.1 we prove that this family is in fat onti-nuous in the L1 norm.Moreover, the expliit expression of the invariant densities an be used to om-pute the entropy h(�) of the system, whih is related both to the omplexity



4 Introdutionof the orresponding algorithm1 and to the rate of information reation of thesystem regarded as an information soure [3℄ [14℄.Unfortunately, in the general ase there exists no purely mehanial algorithmfor �nding the invariant density; a general approah, introdued by Rohlin [19℄and known as the Natural Extension method, involves �nding a two-dimensionaltransformation T of whih the initial map T is a fator, and a suitable domainwhere T is invertible. The density of T is then derived from the density of Tsimply by projeting on the �rst oordinate.One of my main results is the expression of the natural extensions for all valuesof the parameter � in the sequene � 1n	. The shape of the domain of the naturalextensions in this ase is muh more omplex than expeted, and the density isgiven by a long reursive formula.Moreover, the result on L1-ontinuity of the densities enables us to answer inthe aÆrmative to a onjeture of Cassa [6℄ stating that the entropy vanisheswhen �! 0.Our numerial study of the entropy map also reveals a surprisingly rih self-similar struture, resembling a devil's stairase, whih is still unexplained. Inpartiular, ontrarily to our expetations the entropy doesn't seem to be mono-toni in any neighborhood of the origin2. Numerial evidene also suggests theexistene of ountably many phase transitions or disontinuities of h0(�), inaddition to the known disontinuity when � is equal to the Golden number.The seond part of the thesis was originally oneived in lose relation to the�rst, and stemmed from the study of some reent appliations of ontinued fra-tions to the design of spae-time odes for wireless hannels.The wide di�usion of wireless ommuniations has led to a growing demand foran inrease in the apaity and reliability of digital transmission systems overfading hannels.The presene of fading e�ets, that is unpreditable perturbations and attenua-tions of the signal depending on the environment, auses a onsiderable loss inthe apaity of these hannels ompared to the lassial Additive White Gaus-sian Noise model. The use of oding together with multiple transmit and reeiveantennas an greatly redue this loss without requiring any inrease in the totaltransmitted power. Even though fading hinders transmission, its randomnessan be seen as an advantage, and its negative e�ets an be redued by in-reasing the number of independent transmit-reeive paths or diversity of thesystem.In a MIMO setting with M transmit antennas and N reeive antennas, aninformation message u is enoded in an M � T matrix or spae-time blokB(u) = (bij), where bij is the signal emitted by antenna i at time j 2 f1; : : : ; Tg,and T is the duration of the signal.The maximum rate of transmission that an be ahieved using spae-time bloksis of min(M;N) symbols per hannel use; the diversity is equal to MR, whereR is the minimum rank of the matries B(u), and ought to be maximized. Inthe ase of full diversity, the dominant term in the union bound estimate for theerror probability is the oding gain � 1M , where � = minu det(B(u)B(u)H ).1More preisely, for � 2 (0; 1℄ the average length of the ontinued fration expansion of arational number pq is h(�) log q; when � = 0 the omplexity is of the order of log2 q, see [23℄.2This has been very reently proved by Nakada and Natsui (personal ommuniation).



Introdution 5In [10℄ and [11℄, the problem of maximizing the oding gain for a lass of full-rank MIMO odes alled Threaded Algebrai Spae-Time Codes or \TAST" isshown to be related to the diophantine approximation of omplex numbers byalgebrai numbers. Some bounds for the ode performane are derived from ageneralization of Liouville's Theorem. In partiular, �nding suitable algebrainumbers whih have the worst order of approximation by rationals, that is, suhthat the elements in their ontinued fration expansions are small, is the key tooptimizing the ode design.This relation is not as surprising as it might appear at a �rst glane: in fat,\It is an interesting approah to see the design of spae-time en-oding as searhing irrational numbers the \furthest" from rationalapproximations. On the other hand, the deoding proess is equiva-lent to searhing rational integers the losest to irrational numbers;and both, enoding and deoding, an be approahed by the samealgorithm (Sphere Deoder) of searhing nonzero short vetors in agiven lattie." [10℄Another appliation, desribed in [21℄, involves di�erential diagonal spae-timeoding, a design in whih the information bits are enoded in the phase differen-es between one transmitted symbol and the next. In the 2-antenna ase, odeoptimization turns out to be equivalent to �nding an integer u suh that theontinued fration expansion of uL has the smallest possible elements, where L isthe ardinality of the signal set. In partiular, quotients of Fibonai numbers,whih approximate the Golden number and have ontinued fration elementsall equal to 1, are a good hoie.Both TAST odes and diagonal spae-time odes ahieve full diversity; however,diagonal designs do not make full use of the antenna apaity; in fat, thetransmit antennas are only used to ensure maximum diversity, while the rate oftransmission is low, only one symbol per hannel use.TAST odes represent an improvement over diagonal odes, beause they arefull-rate; however, the major shortoming of these odes is that the minimumdeterminant vanishes as the size of the signal set or \onstellation" grows toin�nity.A new type of designs, based on suitable subsets of division algebras, solves thisproblem: in fat the minimum determinant, orresponding to the minimum ofthe redued norm in a maximal order, is stable.In the 2� 2 ase, one of the best shemes known up to date is Bel�ore, Rekayaand Viterbo's Golden Code G (2005), a design based on a quaternion algebraontaining the �eld Q(i; �), where � is the Golden number. This ode is full-rateand full-rank, and its ubi shaping is onvenient for energy eÆieny reasonsand makes the deoding proess faster.It is possible to build longer, 2� 2L blok odes using the Golden Code as thebase alphabet; in partiular, the struture of its ideals and quotients an beexploited to inrease the minimum determinant, whih an be written as a suminvolving the determinants of the smaller bloks, and mixed terms of the form eXiXj2F , where X ! eX is an involution, and k kF is the Frobenius norm.Thus the desription of the lattie struture is not suÆient to obtain a goodestimate of the oding gain, and the multipliative struture plays an importantrole.



6 IntrodutionIn x6.5, we onsider blok odes based on the osets of a left ideal of G of index4. In this simple ase, the estimates of the mixed terms in the expression of theminimum determinant an be arried out in full detail, at least for short odes.When onsidering ideals of greater index, however, the approah based on diretomputation of the odeword weights beomes impratial. Using two-sidedideals it is possible to obtain global estimates, as they are invariant with respetto involution and multipliation. Moreover, it is preferable to hoose idealswhose index is a power of two, sine binary partition shemes are simpler andbetter suited to digital data storage.In x6.6.2, we desribe the struture of the two-sided ideals of G whose index is apower of two and of the respetive quotients, whih turn out to be matrix ringsover F2n +uF2n , where u2 = 0. This struture an be exploited diretly to buildsimple lifts of repetition odes on the quotient. The simulation results for thetransmission hain using these odes show that they perform better than theunoded ase and on�rm the expetations based on the estimates of the mixedterms.In x6.8, we introdue some designs whih improve the performane of the GoldenCode in the slow-fading setting. When the hannel hanges so slowly that itan be onsidered onstant for long time lapses, the ergodiity assumption mustbe dropped and the diversity of the system is redued, leading to a performaneloss.To ompensate for this loss, we ombine a modulation sheme for the quotientring G=2G with an error-orreting ode (a shortened Reed-Solomon ode) toinrease the minimum Hamming weight of the ode. Performane simulationsshow that in the 4-QAM ase, orresponding to a single signal point per oset,these odes ahieve a remarkable gain with respet to the unoded Golden Codeat the same spetral eÆieny, that is at the same bit-rate per hannel use.These odes an be extended to the ase of 16-QAM modulation with multiplepoints per oset, although the gain in this ase is somewhat smaller, beinglimited by the minimum distane in the ideal.



Part I�-ontinued frations





9IntrodutionLet � 2 [0; 1℄. We will onsider the one-parameter family of maps T� : I� ! I�,where I� = [�� 1; �℄; de�ned byT�(x) = ���� 1x ����� ����� 1x ����+ 1� �� (1)These dynamial systems generalize the Gauss map (� = 1) and the nearestinteger ontinued fration map (� = 12 ); they were introdued by H. Nakada[16℄. For all � 2 (0; 1℄ these maps are expanding, and even though in gen-eral they aren't Markovian nor have �nite range struture, it an be shownthat they admit a unique absolutely ontinuous invariant probability measured�� = ��(x)dx (for a detailed proof in this partiular ase see for example [3℄).Nakada omputed the invariant densities �� for 12 � � � 1 by �nding an expliitrepresentation of their natural extensions. The maps �� turn out to be piee-wise �nite sums of linear frational funtions. The ase p2 � 1 � � � 12 waslater studied by Moussa, Cassa and Marmi [15℄ for a slightly di�erent versionof the maps, that is M�(x) : [0;max(�; 1 � �)℄ ! [0;max(�; 1 � �)℄ de�ned asfollows: M�(x) = ���� 1x � �1x + 1� ������ (2)Notie that for a given �, M� is a fator of T�: in fat T� Æ h = h ÆM�, whereh : x 7! jxj is the absolute value. Sine all the orresponding results for the mapsM� an be derived through this semionjugay, in the following paragraphs wewill fous on the maps T�.Cassa found the invariant density for p2 � 1 � � � 12 using an alternativemethod to the natural extension, whih involves ounting the poles of a mero-morphi funtion [6℄; like the natural extension, this method doesn't provide analgorithm to �nd the density, but only a means to verify that a ertain andidateis valid. In x3.2, we inlude the natural extension for the maps T� for this ase.It an be shown [8℄ that the Kolmogorov-Sinai entropy with respet to theunique absolutely ontinuous invariant measure �� of the T� is given by Rohlin'sformula: h(T�) = Z ���1 log jT 0�(x)jd��(x)Atually, Rohlin's formula applies also to the M�, and h(T�) = h(M�). Forp2� 1 � � � 1, the entropy an be omputed expliitly from the expression ofthe invariant densities [16℄, [15℄:h(T�) = ( �26 log(1+�) for g < � � 1�26 logG for p2� 1 � � � g (3)In partiular, the entropy is onstant when p2� 1 � � � g and its derivativehas a disontinuity (phase transition) in � = g.The ase � = 0 requires a separate disussion; in fat, due to the presene ofan indi�erent �xed point, T0 doesn't admit a �nite invariant density, although



10it is invariant with respet to the in�nite measure d�0 = dx1+x . Therefore theentropy of T0 an only be de�ned in Krengel's sense, that is up to multipliationby a onstant (see Thaler [22℄ for a study of the general one-dimensional ase).Following Thaler, for any subset A of [0; 1℄ with 0 < �0(A) <1 we an de�neh(T0; �0) + �0(A)h((T0)A)where h((T0)A) is the entropy of the �rst return map of T0 on A with respetto the normalized indued measure �A = �0�0(A) . This quantity is well-de�nedsine the produt h(T0; �0) doesn't depend on the hoie of A, and it has beenomputed exatly: h(T0; �0) = �23 log 2 [23℄. Sine this is a �nite value, for asequene Ak of subsets whose Lebesgue measure tends to 1 we would haveh((T0)Ak ) = �2(3 log 2)�0(Ak) ! 0. In this restrited sense we an say that \theentropy of T0 is 0". Expression (3) suggests the notion that the dynamialsystems T� are somehow related and have a ommon origin; atually for 12 �� � g their natural extensions are all isomorphi. In fat, C. Kraaikamp provedthat for these values of � the natural extensions are invertible Bernoulli shifts,and so having the same entropy is a suÆient ondition for isomorphism [12℄.Moreover, a reent result by R. Natsui [17℄ shows that the natural extensionsof the Farey maps assoiated to the T� are all isomorphi when 12 � � � 1.It is well-known that the maps T1 and T0 desend from the geodesi ow onthe unit tangent bundle of the modular surfae PSL(2;Z)nPSL(2;R) [21℄, [10℄.Indeed we an represent this ow as a suspension ow over the natural extensionof these maps and dedue in this way the invariant probability measures from thenormalized Haar measure on PSL(2;Z)nPSL(2;R). It is natural to onjeturethat the same happens for all the maps T�; � 2 [0; 1℄. If this were true, oneould (at least in priniple) apply Abramov's formula to ompute the entropiesh(�) from the entropy of the geodesi ow.We now summarize briey the ontents of the various setions of Part I.In x1, we introdue �-ontinued fration expansions and their basi properties,and remarking that for � 2 � 12 ; 1�, the sequene of �-onvergene an be seen asan aeleration of the sequene of standard (Gauss) onvergents. We also reallhow the exatness (and therefore ergodiity) of the system follows from the fatthat the ylinder sets generate the Borel �-algebra [16℄. Finally, we remark howRohlin's formula for the entropy holds in this ase.In x2.1 we prove that the entropy h(�) of T� is ontinuous in � when � 2 (0; 1℄and that h(�)! 0 as �! 0, as it had been onjetured by Cassa [6℄. This resultfollows from the fat that the invariant densities are a ontinuous family in theL1 norm with respet to �, and is based on a uniform version of the Lasota-Yorke inequality for the Perron-Frobenius operator of T�, following M. Viana'sapproah [24℄; in the uniform ase, however, a further diÆulty arises from theexistene of arbitrarily small ylinders ontaining the endpoints, requiring adho estimates.In x2.2 we analyse the results of numerial simulations for the entropy obtainedthrough Birkho� sums, whih suggest that the entropy funtion has a omplexself-similar struture.In x3.1, the notion of natural extension is introdued, following Shweiger [20℄.Finally, in x3.3 we ompute the natural extension and the invariant densities ofthe T� for the sequene �� = 1r	r2N.



Chapter 1�-ontinued frationsIn this hapter we introdue a family of pieewise monotoni maps of the intervalwhih generalize the Gauss map, and give rise to a lass of ontinued frationapproximations.1.1 �-expansionsFor � 2 [0; 1℄, let I� = [� � 1; �). Consider the maps T� : I� ! I� de�ned asfollows [16℄: T�(x) = ���� 1x ����� ����� 1x ������ ;where [x℄� + [x+ 1� �℄. It is onvenient to assume that T�(0) = 0.Remark 1.1. When � = 1, T� is the Gauss map; for � = 12 , it is the nearestinteger ontinued fration map.
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Figure 1.1: Graph of T� when � = 12 and � = 0:7 respetively.The graph of T� an also be obtained by interseting the union of the sequeneof hyperbolae ��� 1x ��� n	 ; n 2 N the square [� � 1; � � 1℄ � [�; �℄ (see Figure



12 �-ontinued frations
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Figure 1.2: The graph of the map T� is obtained by interseting a family of hyperbolaewith the square [�� 1; �� 1℄ � [�; �℄.1.2). By moving the square along the diagonal, we obtain the whole family of�-ontinued fration maps.The maps T� are related to the following symboli dynamis : for � �xed, andx 6= 0, let 8><>:a(x) = �����1x ����+ 1� �� ;"(x) = sign(x);and de�ne a(0) =1, "(0) = 1.For any x 2 I�, let x0 = x; xn = Tn� (x), when n � 1, and(an = a(xn�1);"n = "(xn�1)Thus we obtain indutively a ontinued fration expansion assoiated to T�:8n � 1, x = "1a1 + "2a2 + "3. . . + "nan + xnFor the sake of simpliity, we will denote this expression byx = [("1; a1); ("2; a2); : : : ; ("n; an);xn℄



1.1 �-expansions 13The resulting expansion is in�nite, of the form [("1; a1); ("2; a2); : : : ; ("n; an); : : :℄when x is irrational; when x is rational, the expansion is �nite with length n,where n is the minimum index suh that xn = 0.By trunating the expansion to the n-th step, we obtain the �-onvergents ofx, that is the redued frationpnqn = [("1; a1); ("2; a2); : : : ; ("n; an)℄ = "1a1 + "2. . . + "nan;with the onvention that p�1 = 1; q�1 = 0; p0 = 0; q0 = 1.Remark 1.2. We observe one and for all that the sequenes fang, f"ng, fxng,fpng, fqng are a funtion of the parameter � and the starting point x. We willomit this dependene unless neessary, in order to simplify notation.The following reursive relations among the onvergents are easily proved byindution: pn = anpn�1 + "npn�2qn = anqn�1 + "nqn�2 (1.1)Observe that pn+1qn � qn+1pn = �"n(pnqn�1 � qnpn�1)and so, sine p0q1 � q1q0 = �p1 = �"1,pnqn+1 � pn+1qn = "1"2 � � � "n(�1)n�1; jpnqn+1 � pn+1qnj = 1 (1.2)Then, always by indution, we �ndx = pn + xnpn�1qn + xnqn�1 (1.3)for n � 0. In fat, the basis of the indution is trivially p0+x0p�1q0+x0q�1 = x01 , andsupposing that the relation (1.3) holds for some n � 0, using the reursiveformulas (1.1) and the relation xn+1 = "n+1xn � an+1, we getx = pn(1� "n+1an+1xn) + "n+1xnpn+1qn(1� "n+1an+1xn) + "n+1xnqn+1 = pnxn+1 + pn+1qnxn+1 + qn+1Now onsider �n = jqnx� pnj (1.4)There are three useful alternative expression for this quantity: �rst, from therelations (1.3) and (1.2), we �nd�n = ����xn(qnpn�1 � pnqn�1)qn + xnqn�1 ���� = jxnjqn + xnqn�1 (1.5)From equation (1.3), we an derivexn = �� pn � xqnpn�1 � xqn�1� ;



14 �-ontinued frationsso we have �n = ����� nYi=0xi����� (1.6)But equations (1.5) and (1.6) also imply�n = �n+1jxn+1j = 1qn+1 + xn+1qn (1.7)From (1:7), we obtain an estimate of the rate of onvergene of the pnqn to x: ifxn � 0, 1qn(qn+1 + �qn) < ����x� pnqn ���� = �nqn = 1qn(qn+1 + xn+1qn) < 1qnqn+1 (1.8)while for xn < 0,1qnqn+1 < ����x� pnqn ���� < 1qn(qn+1 � (1� �)qn) < 1�qnqn+1 (1.9)When � 2 �12 ; 1�, the �-onvergents turn out to be a subsequene of the standardontinued fration onvergents [4℄. In this sense, �-ontinued frations an beseen as an \aeleration" of 1-ontinued frations:Lemma 1.3. Fix � 2 �12 ; 1�. Let x 2 R n Q, and denote by PnQn the standardontinued fration onvergents of x, and by pnqn its �-onvergents. Thenpnqn = Pk�(n)Qk�(n) ;where k� : N ! N is de�ned indutively as follows:k�(�1) = �1;k�(n+ 1) = (k�(n) + 1 if "n+1 = 1k�(n) + 2 if "n+1 = �1.Moreover, if k�(n+ 1) = k�(n) + 2 we haveqk�(n+1) = qk�(n)+2 = qk�(n)+1 + qk�(n):When � 2 �0; 12�, this lemma doesn't hold any longer, and sequenes of the formnpnjqnj ; : : : ; pnj+kqnj+k o, suh that pnj+iqnj+i is not a standard onvergent for i = 0; : : : ; k,appear. These orrespond to sequenes of length k of digits \(2;�1)", alleddesingularization sequenes.Now suppose that we know the standard ontinued fration expansion x =(w1; w2; w3; : : :) of an irrational number, and we want to derive its �-expansionx = [("1; a1); ("2; a2); ("3; a3); : : :℄. We do not know whether there exists a on-ise formula expressing this relation; however, it is not hard to de�ne a step-by-step algorithm to pass from one expansion to the other.The ontent of the following lemma is the same (although with di�erent nota-tions) of Theorem 7 in [15℄.



1.1 �-expansions 15Lemma 1.4. Fix � 2 �0; 12�, and let x 2 [��1; �) be an irrational number withstandard ontinued fration expansion x = w0+(w1; w2; : : :), w0 2 f0;�1g. LetPnQn be the standard onvergents of x, and pnqn its �-onvergents.Then there exist two subsequenes fnjg and fnkg suh thatpnjqnj = PnkQnkMore preisely, we de�ne the following algorithm:1.5 (One step of �-expansion). 1. First step:� If x 2 (0; �), then de�ne "1 = 1 and jx0j = x = (w1; w2; : : :). Obvi-ously p0q0 = P0Q0 = 0.� If x 2 [� � 1; 0), de�ne "1 = �1 and jx0j = �x. We distinguish twoases:- If w1 = 1, using the well-known identity1� 1b+ y = 11 + 1b� 1 + yfor b � 2 and y 2 (0; 1), we �nd �x = (w2 + 1; w3; : : :).- If w1 > 1, from the identity1� 1n+ 1b = ((1; 2); (�1; 2); : : : ; (�1; 2)| {z }n�1 ;� 1b+ 1); b � 1we get a1 = : : : = aw1�1 = 2, "2 = : : : = "w1 = �1, jxw1�1j =(w2 + 1; w3; : : :); piqi = ii+1 for i = 1; : : : ; w1 � 1, andpw1�1qw1�1 = w1w1 + 1 = 1� 1w1 = P1Q12. Indutive step:Now suppose that we have found the �rst n digits of the �-expansion, suhthat pnqn = PkQk for some k � 0:x = "1a1 + "2a2 + .. . + "nan + "n+1 jxnj; suh thatjxnj = (w(n)k+1; wk+2; wk+3; : : :) 2 (0; 1� �); w(n)k+1 2 fwk+1; wk+1 + 1gThen� If T (jxnj) < �, we have"n+2 = 1; an+1 = w(n)k+1;pn+1qn+1 = Pk+1Qk+1 ; jxn+1j = (wk+2; wk+3; : : :) (1.10)



16 �-ontinued frations� If T (jxnj) � �,"n+2 = �1; an+1 = w(n)k+1 + 1; if wk+2 = 1"n+2 = � � � = "n+wk+3 = �1; an+1 = w(n)k+1 + 1;an+2 = � � � = an+wk+2 = 2 if wk+2 � 2;pn+iqn+i = iPk+1 + PkiQk+1 +Qk 81 � i � wk+2 � 1; pn+wk+2qn+wk+2 = Pk+2Qk+2 ;��xn+wk+2 �� = (wk+3 + 1; wk+4; : : :) (1.11)Proof. It is lear that equations (1.10) and (1.11) imply the existene of the twoidential sequenes pnjqnj , PnkQnk by indution, where the basis of the indution isgiven by the �rst step in the algorithm.We have an+1 = h��� 1xn ���+ 1� �i, and soan+1 = w(n)k+1 , w(n)k+1 + 1wk+2 + 1wk+3 + � � �+ 1� � < w(n)k+1 + 1, T (jxnj) < �Clearly in this ase "n+2 = 1, and the remainder jxn+1j is equal to T (jxnj);otherwise we have an+1 = w(n)k+1 + 1 and "n+2 = �1.Observe that sine the reursive relations de�ning the pi and the qi have thesame form, it is suÆient to prove the statements above for the pi.When T (jxnj) < �, we distinguish two ases:� If "n+1 = 1, by indutive hypothesis pn�1qn�1 = Pk�1Qk�1 , and w(n)k+1 = wk+1.Then pn+1 = an+1pn + "n+1pn�1 = w(n)k+1Pk + Pk�1 = Pk+1� If "n+1 = �1, w(n)k+1 = wk+1 + 1, again by indutive hypothesisPk�1Qk�1 = pn�w(n)kqn�w(n)k ;pn�1 = p(n�w(n)k )+(w(n)k �1) = (w(n)k � 1)Pk�1 + Pk�2 = Pk � Pk�1;) pn+1 = (wk+1 + 1)Pk � Pk + Pk�1 = wk+1Pk + Pk�1 = Pk+1When T (jxnj) � �,���� 1xn ���� = w(n)k+1 + 1�0BB�1� 1wk+2 + 1wk+3 + � � �1CCA == an+1 ��1� 1wk+2 + T 2(jxnj)� = an+1 � jxn+1j



1.1 �-expansions 17Then if wk+2 � 2, we have ��� 1xn+1 ��� = 1 + 1wk+2�1+T 2(jxnj) , and sine1 � 1wk+2 � 1 + T 2(xn) > 1wk+2 + T 2(xn) � �;we �nd an+2 = ����� 1xn+1 ����+ 1� �� = 2; "n+3 = �1;and so on: it is easy to prove by indution that for 1 � i � wk+2 � 1,���� 1xn+i ���� = 1 + 1wk+2 � i+ T 2(jxnj) � 1 + �) an+i+1 = 2; "n+i+2 = �1;up to���� 1xn+wk+2 ���� = 1 + 1T 2(jxnj) = 1 + wk+3 + 1wk+4 + � � �whih is true also when wk+2 = 1.In onlusion,jxnj = [(w(n)k+1 + 1;�); (2;�)(2;�); : : : ; (2;�)| {z }wk+2�1 ; ��xn+wk+2 ��℄ (1.12)Again we distinguish two ases:� If "n+1 = 1, then by indutive hypothesis w(n)k+1 = wk+1; pn�1qn�1 = Pk�1Qk�1 .pn+1 = an+1pn + "n+1pn�1 = (wk+1 + 1)Pk + Pk+1 = Pk+1 + Pk� If "n+1 = �1, then w(n)k+1 = wk+1 + 1,pn�1 = p(n�w(n)k )+(w(n)k �1) = (w(n)k � 1)Pk�1 + Pk�2 = Pk � Pk�1;pn+1 = (wk+1 + 2)Pk + Pk � Pk�1 = (wk+1 + 1)Pk + Pk�1 = Pk+1 + PkSo in both ases we have pn+1 = Pk+1 + Pk, andpn+2 = an+2pn + "n+2pn = 2(Pk+1 + Pk)� Pk = 2Pk+1 + PkBy indution we an prove that for 1 � i � wk+2 � 1,pn+i = iPk+1 + Pk ;up to pn+wk+2 = wk+2Pk+1 + Pk = Pk+2;whih ompletes the proof.



18 �-ontinued frations1.2 Symboli dynamis1.6 (Cylinders of rank 1). Let � 2 (0; 1℄. The map T� is pieewise monotoniand pieewise analyti on the ountable partition P = fI+j gj�jmin [fI�j gj�j0min ,where jmin = ��� 1� ��+ 1� ��,j0min = h��� 11�� ���+ 1� �i and the elements of P arealled ylinders of rank 1:I+j + � 1j + �; 1j � 1 + �� ; j 2 [jmin + 1;1); I+jmin + � 1jmin + �; �� ;I�j + �� 1j � 1 + �;� 1j + �� ; j 2 [j0min + 1;1); I�j0min + ��� 1;� 1j0min + ��T� is monotone on eah ylinder and we have� T�(x) = 1x � j; x 2 I+j ; j 2 N \ [jmin;1)T�(x) = � 1x � j; x 2 I�j ; j 2 N \ [j0min;1)We also �nd that for � 2 (0; 1), T� is expanding, that is jT 0�(x)j > 1 almosteverywhere1: in fat for all x 2 I�,1jT 0�(x)j � � = (1� �) < 1 (1.13)1.7 (Cylinders of rank n; full ylinders). Let P(n) = Wn�1i=0 T�i� (P) be theindued partition in monotoniity intervals of Tn� . Eah ylinder I(n)� 2 P(n) isuniquely determined by the sequene((j0(�); "0(�)); : : : ; (jn�1(�); "n�1(�))suh that for all x 2 I(n)� ; T i�(x) 2 I"i(�)ji(�) . On eah ylinder Tn� is a M�obiusmap Tn� (x) = ax+bx+d , where � a b d � 2 GL(2;Z). We will say that a ylinderI(n)� 2 P is full if Tn� (I(n)� ) = I�.1.3 The Perron-Frobenius operator1.8 (Perron-Frobenius operator). Let V� : Tn� (I(n)� ) ! I(n)� be the inversebranhes of Tn� , and PT� the Perron-Frobenius operator assoiated with T�.Then for every ' 2 L1(I�),(PnT�')(x) = XI(n)� 2Pn ' (V�(x))j(Tn� )0 (V�(x))j�Tn� (I(n)� )(x) (1.14)On I(n)� we have the following bound:supI(n)� 1��(Tn� )0 (x)�� = supI(n)� 1��T 0� �Tn�1� (x)� � � �T 0�(x)�� � �(n)� � �n; (1.15)1The only value of � in whih jT 0�(x)j = 1 for any point is atually the Gauss map T1, withits �xed point x = 1. The by-exess map T0, whih we are not taking into aount here, alsohas a paraboli point, and is not expanding.



1.3 The Perron-Frobenius operator 19where �(n)� + �j0(�) � � ��jn�1(�). Reall that for f1; : : : ; fn 2 BV ,Var(f1 � � � fn) � nXk=1Var(fk)Yi 6=k sup jfij (i)and onsequentlyVarI(n)� 1��(Tn� )0 (x)�� = VarI(n)� 1��T 0� �Tn�1� (x)� � � �T 0�(T�(x)) � T 0�(x)�� � n�(n)�Finally, we state the following bounded distortion property, that we are going touse several times in the sequel:Proposition 1.9 (Bounded distortion). 8� > 0, 9C1 suh that 8n � 1,8I(n)� 2 P(n);8x; y 2 I(n)� , ���� (Tn� )0(y)(Tn� )0(x) ���� � C1Moreover, for all measurable set B � I�, for all full ylinders I(n)� 2 P(n),m(V�(B)) � m(B)m(I(n)� )C1 ;where m denotes the Lebesgue measure.The proof of this statement follows a standard argument:Proof. Observe that 9k > 0 suh that 8I"j 2 P ;8x; y 2 I"j ,����T 0�(x)T 0�(y) � 1���� � k jT�(x)� T�(y)jIn fat, if x; y 2 I"j;�, then����T 0�(x)T 0�(y) � 1���� 1jT�(x) � T�(y)j = ����y2x2 � 1���� jxyjjx� yj � ���yx ��� jx+ yj � 4Let n � 1; I(n)� 2 P(n), x; y 2 I(n)� . De�ne � = sup ��� 1T 0� ��� = (1� �)2: thenlog ���� (Tn� )0(y)(Tn� )0(x) ���� = n�1Xi=0 log ����T 0�(T i�(y))T 0�(T i�(x) ���� � n�1Xi=0 ����T 0�(T i�(y))T 0�(T i�(x)) � 1���� �� 4 n�1Xi=0 ��T i+1� (y)� T i+1� (x)�� = 4 nXi=1 ��T i�(y)� T i�(x)�� �� 4 nXi=1 �n�i jTn� (y)� Tn� (x)j � 4 1Xi=0 �i = 41� (1� �)2 = C2 (1.16)



20 �-ontinued frationsThen ��� (Tn� )0(y)(Tn� )0(x) ��� � eC2 = C1. Let I(n)� be a full ylinder: Tn� (I(n)� ) = I�. Nowonsider any measurable set B:m(B)m(I�) = RV�(B) j(Tn� )0(y)j dyRI(n)� j(Tn� )0(x)j dx � m(V�(B)) supy2I(n)� j(Tn� )0(y)jm(I(n)� ) infx2I(n)� j(Tn� )0(x)j � C1m(V�(B))m(I(n)� )) m(V�(B)) � m(B)m(I(n)� )C1 (1.17)whih onludes the proof.1.4 Invariant measuresSuÆient onditions for the existene of absolutely ontinuous invariant mea-sures (a..i.m.) for expanding maps have been extensively studied in the litera-ture. A desirable property in most ases is the Markov property :1.10 (Markov map). Let I be an interval, P a ountable partition of I ,T : I ! I suh that the restrition of T to eah interval of the partition ismonotoni and C2. T is alled a Markov map if the set I� + Sn�1 Tn(P) is�nite.In fat, a folklore theorem states thatTheorem 1.11. If T : I ! I is Markov and expanding, then there exists aunique invariant probability measure for f absolutely ontinuous with respet tothe Lebesgue measure.Unfortunately, the Markov ondition is not satis�ed by the maps T� exept fora set of measure 0 in the parameter �. In fatT�(P) = f[�� 1; �℄; [T�(1� �); �℄; [T�(�); �℄gThe union Sn�1 Tn� (P) is �nite only in the following ases:a) 9n;m 2 N suh that Tn� (�) = 0; Tm� (1 � �) = 0; whih happens if andonly if � is rational ;b) the sequenes fT i�(�)gi2N e fT i�(1��)gi2N are periodi, that is � is alge-brai of degree 2.However, it an be proved [3℄ that for all � 2 (0; 1℄ the maps T� admit a uniqueabsolutely ontinuous invariant probability measure ��, whose density �� is ofbounded variation (and therefore bounded). The proof follows a more generalframework, see the study by A. Broise [5℄:Theorem 1.12 (Bourdon, Daireaux, Vall�ee). Consider an interval mapT : I ! I whih is monotone and C2 on eah interval of a ountable partitionP of I. Let I(n)� denote the open ylinders of rank n, and V� the loal inverseof T on I(n)� . Suppose that T satis�es the following properties:



1.4 Invariant measures 21a) (Expansivity) supj supx2T (Ij) ��V 0j (x)�� � 1b) (Strong expansivity) 9n0, 9 < 1 suh that supI(n0)� supx2Tn0 (I(n0)� ) ��V 0�(x)�� < ) 9 > 0 suh that 8Ij 2 P ; 8x 2 T (Ij), ��V 00j (x)�� �  ��V 0j (x)��d) (Quasi-Markov) 8n, infI(n)� 2Pnm�Tn �I(n)� �� > 0, where m denotes theLebesgue measure.Then T admits an invariant density of bounded variation.We have already seen in equation (1.13) that the maps T� are expanding for all� 2 [0; 1℄, and strongly expanding for � 2 (0; 1℄ (atually, we an take n0 = 1for � 2 (0; 1), and n0 = 2 for � = 1, see also equation (1.15)). Condition ()holds for all �, and an be heked diretly.Condition (d) follows trivially from the fat that sine T�(P) is �nite (atuallyit has at most four elements), Tn� (P(n)) is also �nite for eah n, and the length ofits intervals must be bounded from below. However, there is no uniform boundin � or n for these measures, as we will see in the sequel.We also remark that a priori the invariant density might be disontinuous inevery point of the partition Sn Tn� (P) [3℄.The uniqueness of the a..i.m. is a onsequene of the ergodiity of the system:1.13 (Ergodi system). A measure-preserving dynamial system (X;A; T; �)is ergodi if for every measurable set A 2 A suh that T�1(A) = A, �(A) = 0or 1.1.14 (Exat endomorphism). A surjetive measure-preserving dynamialsystem (X;A; T; �) is said to be exat if1\n=0T�n(A) = fX; ;g (mod 0) (1.18)In partiular, every invariant set is trivial and so the system is also ergodi.For a proof of the following lassial theorem, see for example [7℄:Theorem 1.15. Consider a dynamial system (X;T;A) and two measures �1,�2 on (X;A) whih are invariant for T . If both (X;T;A; �1) and (X;T;A; �2)are ergodi, then either �1 = �2, or �1 and �2 are singular with respet to eahother.Beause of the previous theorem, if T� is exat it admits at most one invariantdensity absolutely ontinuous with respet to the Lebesgue measure. We remarkhowever that there is an in�nite number of singular invariant measures for T�(onsider for example any linear ombination of Dira deltas in the �xed pointsof T�).Lemma 1.16 (Exatness). For all � 2 [0; 1℄, the dynamial system (T�; ��)is exat (and therefore ergodi).



22 �-ontinued frationsThe proof of this Lemma for � 2 � 12 ; 1� was given by H. Nakada ([16℄, Theorem2) and his argument an be adapted to our ase with slight hanges.2Let !i = (ji; "i) for brevity. The ruial property that we need in order to proveLemma 1.16 is the following:Proposition 1.17. The family of the ylinder sets I(n)� = (!1; : : : ; !n) 2 P(n)suh that Tn� (I(n)� ) = I� generates the Borel sets.Proof of Proposition 1.17. Consider the setsEn = f(!1; : : : ; !n) j T�(!1) 6= I�; T 2�(!1; !2) 6= I�; : : : ; Tn� (!1; : : : ; !n) 6= I�gand let Mn = m�SI(n)� 2En I(n)� �. Consider the orbits of the endpoints withrespet to T�: � = (a1; a2; a3; : : :); �� 1 = (b1; b2; b3; : : :)Then E1 = f(a1); (b1)g, andEn = f(!1; : : : ; !n) 2 P(n) j (!2; : : : ; !n) 2 En�1 and !1 = a1 or b1g[ f(a1; a2; : : : ; an); (b1; b2; : : : ; bn)gIn fat if !1 =2 fa1; b1g, we would have T�(!1) = I�; moreover, if (!2; : : : ; !n) 6=(a2; : : : ; an), the monotoniity of T� on (a1) implies that either (!2; : : : ; !n) \T�(a1) = ?, or (!2; : : : ; !n) � T�(a1). In this last ase Tn� (a1; !2; : : : ; !n) =Tn�1� (!2; : : : ; !n). So we getMn � ((1� �)2 + �2)Mn�1 +m((a1; : : : ; an) [ (b1; : : : ; bn));and sine (1 � �)2 + �2 < 1 and m(w1; : : : ; wn) vanishes as n ! 1, we haveMn ! 0 as n!1, that is, E = fx j 8n; Tn� (I(n)� (x)) 6= I�g has Lebesgue mea-sure 0, where I(n)� (x) is the ylinder in P(n) ontaining x. Then, realling that T�is non-singular, m(T�n� (E)) is also 0 for all n � 0, and so m (Sn T�n� (E)) = 0.That is, for almost all x there is a subsequene fnig suh that Tni(Ini� (x)) = I�for all i 2 N. Then for almost all x, 8U open neighborhood of x we an �nd nand a full ylinder x 2 I(n)� � U .Proof of Lemma 1.16. We have just proved that the full ylinders generatethe Borel sets. Then a suÆient and neessary ondition for exatness, due toRohlin [19℄, is the following: 9C > 0 suh that 8n; 8I(n)� full ylinder of rankn, 8X � I(n)� , ��(Tn� (X)) � C ��(X)��(I(n)� ) (1.19)We reall that the T� satisfy the bounded distortion property: Then, reallingthat the density of �� with respet to the Lebesgue measure is bounded fromabove and from below by onstants, we get for some onstant C,��(V�(B)) � 1C��(B)��(I(n)� );that is, Rohlin's haraterization (1.19).2The fat that T0 is exat follows from a result of M. Thaler [22℄.



1.5 Entropy 231.5 EntropyKnowing the invariant densities allows to ompute the entropy of the system.We briey reall the relevant de�nitions:1.18 (Entropy of a partition). Let (X;A; �) be a probability spae, � =fX1; : : : ; Xng a �nite measurable partition of X , that is Xi 2 A 8i 2 N andX = Fni=1Xi(mod 0). H(�) = �Pni=1 �(Xi) + log�(Xi) is alled the entropyof the partition �.1.19. Given �1; : : : ; �k partitions of X , and X1 2 �1; : : : ; Xk 2 �k, we denote byWki=1 �i the partition fX1 \ � � � \Xkg; given T : X ! X measurable, we denoteby T�1(�) the partition fT�1(Xi); Xi 2 �g.1.20 (Kolmogorov-Sinai entropy). Let (X;A; �; T ) be a measurable dyna-mial system, � an invariant probability measure for T , � a �nite partition ofX . The quantity H�(T ) = limn!1 1nH  n�1_i=0 T�i�!is alled the entropy of T with respet to �. H(T ) = sup�H�(T ), where the supis taken over all �nite partitions � of X , is alled the Kolmogorov-Sinai entropyof T .A dynamial system's entropy and information are deeply related, as an beseen from the followingTheorem 1.21 (Shannon, Breiman, MMillan). Let (X;A; �; T ) be a mea-surable and ergodi dynamial system, � a �nite partition of X. Given x 2 X,let �n(x) be the element of Wn�1i=1 T�i� whih ontains x. Then for �-almostevery x 2 X, H�(T ) = limn!1� 1n log�(�n(x))Supposing the initial point x to be unknown to us, we may be interested inthe quantity of information provided to us by some initial segment of the sym-boli dynamis of x. If � = fX1; � � �Xkg, knowing the set �n(x) is equivalent toknowing (for �-almost every x) the indies j0; : : : ; jn�1 2 f1; : : : ; kg suh thatT i(x) 2 Xji . Intuitively, the smaller �(�n(x)) is, the better we have \loated"the point x in our spae, and the more information we have obtained. This or-responds to the system having high entropy. The Shannon-Breiman-MMillanTheorem then states that the entropy with respet to a partition represents the\average information prodution rate" of the input obtained with the partition�.The �-ontinued fration maps belong to a lass of interval transformations forwhih an expliit formula for the entropy is available:1.22 (AFU map). Let I be an interval, T : I ! I whih is pieewise C2 withrespet to a ountable partition P of I in subintervals fIjgj�1, and suh thatthe following onditions hold:a) Adler's ondition: 9K > 0; jT 00(x)j(T 0(x))2 < K 8x 2 I ;



24 �-ontinued frationsb) Finite range: #fT (Ij); j � 1g <1;) Uniform expansivity: 9� : jT 0(x)j � � > 1 8x 2 IThe maps T� are AFU: we have seen that they are uniformly expanding in (2.1);moreover they learly have �nite range, and jT 00� (x)j(T 0�(x))2 = 2jxj3 x4 = 2 jxj < 2.Theorem 1.23 (Rohlin's formula). Let I be an interval, T : I ! I an AFUmap, d� = �(x)dx the a..i.m. for T . Then the Kolmogorov-Sinai entropy of Tis given by h�(T ) = ZI log jT 0(x)j d�(x)For Rohlin's original proof we refer the reader to [19℄, while the proof in thease of AFU maps an be found in [8℄.Remark 1.24. We remark that the algorithm introdued in the proof of Lemma1.4 to extrat two idential subsequenes pnjqnj = PnkQnk from the 1-onvergents and�-onvergents respetively ould be used to ompute the entropy h(�) of T�. Infat Birkho�'s ergodi theorem implies thath(�) = � limn!1 1n nXi=0 log ��T i�(x)�� = � limn!1 1n log�n�1;where �n is the produt de�ned in equation (1.4). The estimates (1.8) and (1.9)imply that 1(1 + �)qn < �n�1 < 1�qnBut sine limn!1 1n log(qn) = limn!1 1n log(qn) for every onstant  > 0,h(�) = limn!1 1n log qnIn partiular, even without knowing all the values of the �-onvergents pnqn , theentropy h(�) ould be approximated simply with the limit 1nk logQnk , requiringonly the knowledge of the 1-onvergents.



Chapter 2Statistial stability for�-ontinued frationsIn the previous hapter we have desribed the dynamial properties of the system(I�; T�) for a �xed value of the parameter �. We now wish to understand towhat extent these properties remain stable when � varies; in a sense, we wishto study the behavior of the system under deterministi perturbations.Several notions for the stability of a dynamial system have been introdued. Inthe ase of smooth systems, strutural stability requires that the orbits shouldbe preserved up to homeomorphism; however, this notion is too strong for ourase.We will adopt the point of view of Alves and Viana [2℄, and we will all a familyof interval maps f(I; �t)gt2R statistially stable if the SRB measures �t of themaps �t are ontinuous in t with respet to the L1 norm.It may be onvenient to assume that the maps f�tg are all de�ned on the sameinterval; up to onjugation, at least loally, the maps T� an always be resaledto a suitable �xed interval.2.1 Continuity of the entropyWe will denote the entropy of T� by h(�). The main goal of the present setionis the followingTheorem 2.1. The funtion �! h(�) is ontinuous in (0; 1℄, andlim�!0+ h(�) = 0Sine in the ase � � p2�1 the entropy has been omputed exatly by Nakada[16℄ and Marmi, Moussa, Cassa [15℄, we an restrit our study to the ase0 < � � p2� 1.To prove ontinuity we adopt the following approah: by means of a uniformLasota-Yorke-type inequality for the Perron-Frobenius operator, we prove thatthe variations of the invariant densities are equibounded as � varies in someneighborhood of any �xed �� > 0 (see Proposition 2.2 below). Our argumentfollows quite losely [24℄, exept that we have to deal with a further diÆulty
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Figure 2.1: Graph of the map T� when � = 0:2arising from the fat that the ylinders ontaining the endpoints � and � � 1an be arbitrarily small. After translating the maps so that their interval ofde�nition does not depend on � around ��, we prove the L1-ontinuity of theinvariant densities �� using Helly's Theorem (Lemma 2.5). Then the ontinuityof the entropy follows from Rohlin's formula.2.1.1 Uniformly bounded variation of the invariant densi-tiesLet �� 2 (0;p2 � 1℄ and " < �� be �xed, and hoose � 2 [�� � "; �� + "℄. In thisase, realling the de�nitions in x1.2, we have j0min = 2, and for x 2 I�j ,1jT 0�(x)j � �j � � < 1; (2.1)where � = (1� ��+ ")2; �j = 1(j � 1 + ��� ")2 ; j > 2; �2 = � (2.2)depend only on �� and ". Moreover, we have that VarI�j ��� 1T 0�(x) ��� � �j 8� 2[��� "; ��+ "℄.As we have seen in x1.4, for all � 2 (0; 1℄ the maps T� admit a unique absolutelyontinuous invariant probability measure ��, whose density �� is of boundedvariation (and therefore bounded). In addition, a result of R. Zweim�uller entailsthat �� is bounded from below (see [25℄, Lemma 7):8� 2 (0;p2� 1℄; 9C > 0 s.t 8x 2 I�; ��(x) � C (2.3)



2.1 Continuity of the entropy 27Proposition 2.2. 8�� 2 (0;p2�1℄, ��� is of bounded variation, and 9", 9K > 0suh that for all � 2 [��� "; ��+ "℄, Var(��) < K.The main result we need in order to prove Proposition 2.2 is the followingLemma 2.3 (Uniform version of the Lasota-Yorke inequality). Let ��be �xed. Then there exist �0 < 1, C;K0 > 0 suh that 8n, 8' 2 BV (I),8� 2 [��� "; ��+ "℄,VarI� �PnT�'� � C(�0)nVar'+K0 ZI� j'j dx (2.4)Assuming Lemma 2.3 the Proposition then follows easily. Indeed it is enoughto reall that the Cesaro sums �n = 1n n�1Xj=0 P jT�1of the sequene fP jT�1gj2N onverge almost everywhere to the invariant density�� of T�. Both the variations and the L1 norms of the f�ng are uniformlybounded: Var �n � 1n n�1Xj=0 Var�P jT�1� � 1n n�1Xj=0K0m(I�) = K0 8nZI� �ndx = 1n n�1Xj=0 ZI� P jT�1dx = m(I��) = 1 8n)supI� j�nj � VarI� �n + 1m(I�) � K0 + 1 8n;where K0 is the onstant we found in Lemma 2.3. Then we also have Var �� �K0; sup j��j � K0 + 1, whih onludes the proof of Proposition 2.2.Proof of Lemma 2.3. We haveVar �PnT�'� �X�  VarTn� (I(n)� ) ' (V�(x))j(Tn� )0 (V�(x))j + 2 supTn� (I(n)� ) ���� ' (V�(x))(Tn� )0 (V�(x)) ����! ==X�  VarI(n)� '(y)j(Tn� )0(y)j + 2 supI(n)� ���� ' (y)(Tn� )0 (y) ����! (2.5)For the last equality, observe that sine V� : Tn� (I(n)� ) ! I(n)� is a homeomor-phism, VarTn� (I(n)� ) � 'j(Tn� )0j Æ V�� = VarI(n)� 'j(Tn� )0j . The �rst term in expression(2.5) an be estimated using (i):X� VarI(n)� '(y)j(Tn� )0(y)j �X�  VarI(n)� ' supI(n)� 1j(Tn� )0(y)j +VarI(n)� 1j(Tn� )0(y)j supI(n)� j'j! ��X�  �(n)� VarI(n)� '+ n�(n)� supI(n)� j'j!



28 Statistial stability for �-ontinued frationsFor the seond term, we have 2P� supI(n)� ��� '(y)(Tn� )0(y) ��� � 2P� �(n)� supI(n)� j'(y)j.In onlusion, from equation (2.5) we getVar �PnT�'� (x) � �nVarI� '+X� (n+ 2)�(n)� supI(n)� j'j (2.6)We want to give an estimate of the sum in equation (2.6); reall that for ' 2 BV ,supI(n)� j'j � VarI(n)� '+ 1m(I(n)� ) ZI(n)� j'j dx (ii)However, equation (ii) doesn't provide a global bound independent from � fortwo reasons. In the �rst plae, the lengths of the intervals I(n)� are not boundedfrom below when the indies ji(�) grow to in�nity. Furthermore, a diÆultythat arises only in the ase of uniform ontinuity and that was not dealt within referene [24℄ is that the measures of the ylinders of rank n ontaining theendpoints �� and ��� 1 are not uniformly bounded from below in �, and requirea areful handling.To overome the �rst diÆulty, following [24℄, we split the sum into two parts:for n �xed, let k be suh that Xj>k �j � �n22n�1 (2.7)Sine � doesn't depend on �, neither does k. De�ne the set of \intervals withbounded itineraries"G(n) = fI(n)� 2 Pn j max(j0(�); : : : ; jn�1(�)) � kg (2.8)To get rid of the measures of the ylinders ontaining the endpoints, we ombinethem with full ylinders; the measures of the latter an be estimated usingLagrange's Theorem, sine the derivatives are bounded under the hypothesis ofbounded itineraries. When ombining intervals, we have to onsider the sum ofthe orresponding �(n)v and make sure that it is smaller than 1. This requiresadditional are when I(n)� 3 �� 1.Remark 2.4. Let r = r(�) be suh thatvr+1 � � < vr; where vr = �12 + 12r1 + 4r (2.9)(learly r is bounded by r(��)+1 in a small neighborhood of ��). Then T i�(��1) =(i+1)��11�i� 2 I�2 for i = 0; : : : ; r � 1 and T r�(� � 1) =2 I�2 . Thus any ylin-der with more than r onseutive digits \(2;�)" is empty, and the ylinder((2;�); : : : ; (2;�)) of rank r may be arbitrarily small when � varies. The ylin-der (jmin;+) an be arbitrarily small too.Consider the funtion � : G(n) ! G(n) whih maps every nonempty ylinderI(n)� in I(n)� in the following way:a. If (ji(�); "i(�)) = (jmin;+) for some i, then (ji(�); �i(�)) = (jmin + 1;+);



2.1 Continuity of the entropy 29b. If 9i suh that((ji(�); "i(�)); : : : ; (ji+r(�); "i+r(�))) = ((2;�); (2;�); : : : ; (2;�));then ((ji(�); "i(�)); : : : ; (ji+r(�); "i+r(�))) = ((2;�); : : : ; (2;�); (3;�));. Otherwise, (ji(�); "i(�)) = (ji(�); "i(�)).We want to show that there exists Æn > 0, depending only on ��, suh that forall � 2 �(G(n)), m(�) � Æn. For this purpose, we group together the sequenesof onseutive digits (2;�), and obtain a new alphabet A = A1 [ A2, whereA1 = f(3;�); : : : ; (k;�)g [ f(jmin + 1;+); : : : ; (k;+)gA2 = f(2;�); ((2;�); (2;�)); : : : ; ((2;�); : : : ; (2;�))| {z }r�1 gThen eah � 2 �(G(n)) an be seen as a sequene in A0s = f(a1; : : : ; as) 2As j ai 2 A2 ) ai+1 2 A1g for some n � s � nr . Let fT� be the �rst return mapon A1 restrited to �(G(n)):eT (x) = T�(x) for x 2 (a) 2 A1;eT (x) = T i�(x) if 9i : x 2 ((2;�); : : : ; (2;�))| {z }i ; x =2 ((2;�); : : : ; (2;�))| {z }i+1Let eVa be the inverse branh of eT relative to the ylinder (a). Observe that8(a1; : : : ; as) 2 A0s; eT s(a1; : : : ; as) = eT (as) (2.10)This an be proved by indution on s: when s = 1 it is trivial; supposing thatthe property (2.10) holds for all sequenes of length s, we haveeT s+1(a1; : : : ; as+1) = eT s+1 �(a1; : : : ; as) \ eVa1 � � � eVas(as+1)� == eT ( eT s(a1; : : : ; as) \ (as+1))sine eT s is injetive on (a1; : : : ; as); this is equal to eT ( eT (as)\(as+1)) by indutivehypothesis.� If as+1 2 A2, we have as 2 A1 and eT (as) = I : then eT s+1(a1; : : : ; as+1) =eT (as+1).� If as+1 2 A1, eT (as) � (as+1). In fat for all i = 0; : : : ; r � 1,T i�((2;�); : : : ; (2;�)| {z }i ) = T i� �h�� 1; V i(2;�)(�)�� == [T i�(� � 1); �) � �� 12 + �; �� � [a2A1(a) � ��13 ; 0� (2.11)



30 Statistial stability for �-ontinued frationsEquation (2.10) provides a lower bound on the measures of the intervals in�(G(n)):13 � m( eT (as)) = m( eT s(a1; : : : ; as)) � m(a1; : : : ; as) sup ���( eT s)0��� ; andM(��) + �max�(k + �+ ")2; (2 + �+ ")2r(��)�� � sup ��� eT 0���in a neighborhood of ��. Thus for all I(n)� 2 �(G(n)),Æn + 13M(��)n � m(I(n)� )Returning to the sum in equation (2.6), and de�ning I(n)� = SfI(n)� j�(I(n)� ) =I(n)� g, we �nd:XI(n)� 2G(n) �(n)� supI(n)� j'j! � XI(n)� 2�(G(n)) supI(n)� j'j0B� X�(I(n)� )=I(n)� �(n)� 1CAWe want to estimate �0 = sup�(G(n)) P�(I(n)� )=I(n)� �(n)� : eah sum an be omputeddistributively as a produt of at most n fators �0i, eah of whih orrespondsto one of the ases a), b), ) that we have listed in the de�nition of �:� In the ase a), we have �0i = �jmin +�jmin+1 � 2(��+ ")2 < 12 (remark thatjmin � 3 when � � p2� 1).� In the ase b), �0i = �r2 + �r�12 �3 = (1 � �)2(r�1) �(1� �)2 + 1(2+�)2� <0:9. In fat, when � > 15 we have (1 � �)2 + 1(2+�)2 < 910 ; otherwise,(1� �)2 + 1(2+�)2 < 54 ; and for � � �r+1, we have r � 1 � 1�2+� � 2, and(1� �)2(r�1) = �1� �21 + � �2(r�1) � 1(1 + �)2(r�1) � 11 + 2�(r � 1) �� 1 + �3� 3�� 4�2 < 35� In the ase ), �0i = �ji .(The onstants in the previous disussion are far from optimal, but they aresuÆient for our purposes.)Then �0 � max��n; � 910� nr(��)+1� = ~�n < 1. Note that ~� only depends on �� andnot on �.We an �nally omplete our estimate for the sum over I(n)� 2 G(n):�0 XI(n)� 2�(G(n)) supI(n)� j'j � ~�n XI(n)� 2�(G(n))0�VarI(n)� j'j+ 1m(I (n)� ) ZI(n)� '1A �� ~�n0B�Var'+ XI(n)� 2�(G(n)) 1m(I(n)� ) ZI(n)� '1CA � ~�nVar'+ ~�nÆn k'k1 (2.12)



2.1 Continuity of the entropy 31On the other hand, for the sum over I(n)� =2 G(n) we have the following estimate:XI(n)� =2G(n) (n+ 2)�(n)� supI(n)� j'j! �� supI� j'jXj>k n�1Xl=0 Xjl(�)=maxfj0(�);:::;jn�1(�)g=j(n+ 2)�j0(�) � � ��jn�1(�) (2.13)where in the third sum of expression (2.13) we take l to be the smallest integerthat realizes the maximum, to avoid ounting the same sequenes twie. Observethat when we take the sum over j0(�); : : : ; jn�1(�), sine we are not taking intoaount the signs "i(�), we are atually ounting at most 2n distint sequenes.X(j0(�);:::;jn�1(�))jl(�)=j �j0(�) � � ��jn�1(�) �� �j 0�2 X(j0(�);:::;jl�1(�);jl+1(�);:::;jn�1(�))�j0(�) � � ��jn�1(�)1A �� �j 0B�2 n�1Yi=0i 6=l jXji=2 4�ji1CA � �j22n�1sine P12 �j � �26 � 2. ThereforeXI(n)� =2G(n) (n+ 2)�(n)� supI(n)� j'j! � supI� j'jXj>k n�1Xl=0 (n+ 2)�j22n�1 �� supI� j'j n(n+ 2)22n�1Xj>k �j � supI� j'jn(n+ 2)�nwhere in the last inequality we have used the hypothesis (2.7) on k.In onlusion, VarI� (PnT�') is bounded by~�n�(n2 + 3n+ 3)VarI� '+ (n+ 2)� 1Æn + n� k'k1�and we reall that we have hosen Æn and ~� so that they do not depend on �.Choose any �� 2 (~�; 1), and let K > 0; N 2 N be suh that8n � 1; (n2 + 3n+ 3)~�n � K��n and 8n � N; K��n � 12Let L(n) = (n + 2)� 1Æn + n� ��n, K̂ = max1�n�N L(n). For any n, we an performthe Eulidean division n = qN + r for some q � 0 and 0 � r < N . ThenVarI� �PNT�'� � K��N VarI� '+ K̂ k'k1 (2.14)



32 Statistial stability for �-ontinued frationsMore generally, we an show by indution on q thatVarI� �P qNT� '� � (K�N )q VarI� '+ C(q)K̂ k'k1 (2.15)where C(q) = 1 + 12 + � � �+ 12q�1 < 2 for all q. In fat if (2.15) is true for someq, realling that the Perron-Frobenius operator PT� preserves the L1 norm, weget VarI� �P (q+1)NT� '� � (K��N )q VarI� �PNT�'�+ C(q)K̂ PNT�'1 �� (K��N )q+1 VarI� '+�C(q) + 12q� K̂ k'k1 dx �� (K��N )q+1 VarI� '+ C(q + 1)K̂ k'k1 dxFor 0 � r < N , Var �P rT�'� � K��r Var'+ K̂ k'k1. In general, for n = qN + r,we obtainVarI� �PnT�'� � (K��N )q VarI� �P rT�'�+ C(q)K̂ k'k1 �� (K��N )qK��r VarI� '+ K̂ �(K��N )q + C(q)� k'k1 � K2q ��r VarI� '+ 3K̂ k'k1Now take �0 � max� 12 1N ; ���, so that ��r2q � (�0)r(�0)Nq = (�0)n. This onludesthe proof of Lemma 2.3.2.1.2 L1 ontinuity of the densities �� and ontinuity ofthe entropyLet �� 2 (0;p2 � 1℄ be �xed. To study the L1-ontinuity property of the den-sities �� (and the ontinuity of the entropy h(�)) it is onvenient to work withmeasures supported on the same interval. Thus we resale the maps T� with� in a neighborhood of �� to the interval [�� � 1; ��℄ by applying the translation�����. Let A�;�� = ����� Æ T� Æ ��1���� be the new maps:A�;��(x) = ���� 1x� ��+ � ����� ����� 1x� ��+ � ����+ 1� ��+ ��� � (2.16)Let J�j = I�j + ��� � be the translated versions of the intervals of the originalpartition, and ~��(x) = � Æ ��1����(x) = �(x � �� + �) the invariant densities forA�;��. Clearly the bounds for the sup and the variation of �� are still valid for~��.Lemma 2.5. Let �� 2 (0;p2�1℄ be �xed, and let " be given by Proposition 2.2.Then if f�ng � [��� "; ��+ "℄ is a monotone sequene onverging to ��, we have~��n L1��! ~���.Proof. Sine sup j~��n j � K, Var ~��n � K 8n, we an apply the following theo-rem:Theorem 2.6 (Helly's Theorem). Let f�ng be a sequene in BV (I) suhthat:



2.1 Continuity of the entropy 331. sup j�nj � K1 8n,2. Var �n � K2 8nThen there exists a subsequene �nk and a funtion � 2 BV (I) suh that�nk L1��! �, �nk ! � almost everywhere, andsup j�j � K1; Var � � K2Thus we an �nd a subsequene f~��nk g onverging in the L1 norm and almosteverywhere to some funtion �1 suh that sup j�1j � K, Var �1 � K. Wewant to show that �1 = ~���: we observe that it is suÆient to show that �1 isan invariant density for A�� = A��;�� = T��, and then use the uniqueness of theinvariant density. To simplify notations, we will write �k for �nk , ~�k for ~��nk ,and Ak for A�nk ;��.Our goal is to show that 8B � I��, R �B(A��(x))�1(x)dx = R �B(x)�1(x)dx.Observe that every �B(x) belongs to L1(I��) and so an be approximated arbi-trarily well by ompatly supported C1 funtions with respet to the L1 norm.Then it will be suÆient to prove that 8' 2 C1 with ompat support ontainedin I��, ����Z ' (A��(x)) �1(x)dx � Z '(x)�1(x)dx���� = 0 (2.17)Observe that ��R '(A��(x))�1(x)dx � R '(x)�1(x)dx�� � I1+I2+I3, with I1,I2,I3given below:I1 = ����Z '(A��(x))�1(x)dx � Z '(A��(x))~�k(x)dx���� � k'k1 k~�k � �1kL1I3 = ����Z '(Ak(x))~�k(x)dx � Z '(x)�1(x)dx���� == ����Z '(x)~�k(x)dx � Z '(x)�1(x)dx���� � k'k1 k~�k � �1kL1whih vanish as k ! 1. Finally, I2 = R j'(A��(x)) � '(Ak(x))j ~�k(x)dx isbounded by K R j'(Ak(x)) � '(A��(x))j dx, and we need to show thatZ j'(Ak(x))� '(A��(x))j dx! 0 when k !1 (2.18)Reall that for x 2 J�j;�k = h �1j�1+�k + ��� �k;� 1j+�k + ��� �k�, Ak(x) =� 1x���+�k � j + ��� �k, and for x 2 J�j;�� = h� 1j�1+� ;� 1j+��, A��(x) = � 1x � j.We will examine in detail the ase �k < �� 8k , x < ��� �k; the other ases anbe dealt with in a similar way. In this ase, 0 < 1j+�k � 1j+�� < �� � �k, and ifj < 1p����k = N(k), then � 1j�1+�k + 1j+�� < �k����1j2 < �k � �� and so� 1j � 1 + �k + ��� �k < � 1j + �� < � 1j + �k + ��� �k (2.19)IN(k) = Sj�N(k) J�j;�k ontains the set in whih ondition (2.19) isn't satis�ed,and its measure m(IN(k)) = P1j=N(k) ��� 1(j�1+�k)(j+�k) ��� vanishes when k ! 1.



34 Statistial stability for �-ontinued frationsGiven "00 > 0, hoose �k suh that m(IN(�k)) < "00, and let k � �k. De�ne��j = �� 1j � 1 + �k + ��� �k;� 1j + ��� ; ��j = �� 1j + ��;� 1j + �k + ��� �k�when 2 < j � N(�k); and ��2 = ���� 1;� 12 + �k�Then we an split the integral (2.18) in three parts in the following way:Z �����1 j'(Ak(x)) � '(A��(x))j dx � ZIN(�k) j'(Ak(x)) � '(A��(x))j dx++N(�k)Xj=3  Z��j j'(Ak(x)) � '(A��(x))j dx!+N(�k)Xj=2  Z��j j'(Ak(x)) � '(A��(x))j dx!The �rst integral in this expression is bounded by 2"00 k'k1. Moreover, themeasures of the sets ��j tend uniformly to 0 when k !1:m(��j ) � j��� �kj+ j��� �kj(j + ��)(j + �k) � C1(��� �k)) N(�k)Xj=3 Z��j j'(Ak(x)) � '(A��(x))j dx � N(�k)2 k'k1 C1(��� �k)Finally, m(��j ) � C2j2 + j��� �kj � C3j2 when k � �k; j < N(�k), and for x 2 ��j ,x � � 1j+�� and x� ��+ �k < � 1j+�k , thereforejAk(x) �A��(x)j = ����� 1x + 1x� ��+ �k � ��+ �k���� �� j��� �kj+ j��� �kjjx(x� ��+ �k)j � j��� �kj (1 + (j + 1)2) (2.20)Sine ' is C1 on a ompat interval, it is also lipshitzian for some Lipshitzonstant L', andN(�k)Xj=2 Z��j j'(Ak(x)) � '(A��(x))j dx � N(�k)Xj=2 m(��j )L' jAk(x) �A��(x)j �� N(�k)Xj=2 C3(1 + (j + 1)2)j2 L' j��� �kj � C4N(�k) j��� �kj � C4pj��� �kjwhen k is large. This establishes the laim that the third integral vanishes whenx < ����k. In the ase x > ����k we have similar estimates: for j < 1pj����kj ,we have 1j + �� < 1j + �k + ��� �k < 1j � 1 + ��and we an de�ne the intervals+j = � 1j + �k + ��� �k; 1j � 1 + ��� ; Æ+j = � 1j � 1 + ��; 1j � 1 + �k + ��� �k�



2.1 Continuity of the entropy 35We have m(Æ+j ) � C5 j��� �kj, m(+j ) � C5j2 , andjAk(x) �A��(x)j � C7j2 j�k � ��j for x 2 +jFinally, we leave it to the reader to hek that the ase �� < �k an be treatedin same way. Thus we an onlude that (2.18) holds.Therefore we have shown that �1 = ~���. This is also true if we extrat aonverging sub-subsequene from any subsequene of ~��n , and so ~��n ! ~���both in L1 and almost everywhere for n ! 1. This ompletes the proof ofLemma 2.5.The L1-ontinuity of the map � 7! �� is suÆient to prove that the entropymap � 7! h(�) is also ontinuous. This is ahieved by applying the followinglemma (for a proof see for example [1℄) to Rohlin's formula.Lemma 2.7. Let f�ng be a sequene of funtions in L1(I) suh that1. k�nk1 � K 8n,2. �n L1��! � for some � 2 L1(I)Then for any  2 L1(I), Z  (�n � �)! 0Applying Rohlin's Formula for the entropy, we get for any � 2 [��� "; ��+ "℄h(�) = Z ���1 log 1(x � ��+ �)2 ~��(x)dx = 2 Z ���1 jlog jx� ��+ �jj ~��(x)dxConsider a sequene f�ng ! ��. Thenjh(��)� h(�n)j � 2 Z �����1 �� log jx� ��+ �nj ~��n(x) � log jxj ~���(x)��dx �� 2�Z �����1 �� log jx� ��+ �nj (~��n(x)� ~���(x)) ��dx++ Z �����1 �� (log jx� ��+ �nj � log jxj) ~���(x)��dx�The seond integral is bounded by 2(K0 +1) R �����1 jlog jx� ��+ �nj � log jxjj dxand vanishes when n!1 beause of the ontinuity of translation in L1. If wetake ~�n = ~��n , ~� = ~���,  (x) = jlog jxjj in Lemma 2.7, we �nd that the �rstintegral also tends to 0.2.1.3 Behavior of the density and entropy when �! 0In this setion we will prove that the entropy has a limit as � ! 0+ and thatlim�!0+ h(�) = 0.The ontinuity of the entropy on the interval (0;p2 � 1℄ followed from theL1-ontinuity of the densities. The vanishing of the entropy as � ! 0 is aonsequene of the fat that the densities onverge to the Dira delta at theparaboli �xed point of T0 as �! 0.



36 Statistial stability for �-ontinued frationsProposition 2.8. When � ! 0, the invariant measures ~�� of the translatedmaps A�;0 : [�1; 0℄! [�1; 0℄ onverge in the sense of distributions to the Diradelta in �1.From the previous Proposition the vanishing of the entropy follows easily:Corollary 2.9. Let h(�) be the metri entropy of the map T� with respet tothe absolutely ontinuous invariant probability measure ��. Then h(�) ! 0 as�! 0.Proof of the Corollary. We ompute the entropy of the T� through Rohlin'sformula: h(�) = 2 Z ���1 jlog jxjj d�� (2.21)Observe that 8E � (1; 0℄, ��(E) = 1C(�)��(E) � C0C(�)m(E). Therefore if �� isthe density of ��, �� < C0C(�) in (1; 0℄. Given ", let k be suh that jlog jxjj <" for x 2 [�1; k℄, and hoose � small suh that � � 1 < k, ��([k; �℄) =~��([~k; 0℄) < " and C0C(�) < ". Thenh(�) � Z k��1 jlog jxjj d�� + Z 1k jlog jxjj d�� + Z �1 jlog jxjj ��dx �� jlog jkjj+ ����log 13 ������([k; 1℄) + C0C(�) klog jxjk1 ! 0whih onludes the proof.To prove Proposition 2.8 we adopt the following strategy: we introdue the jumptransformations G� of the maps T� over the ylinder (2;�), whose derivativesare stritly bounded away from 1 even when �! 0; we an then prove that theirdensities d��dx are bounded from above and from below by uniform onstants.Using the relation between �� and the indued measure ��, we onlude thatfor any measurable set B suh that �1 =2 B, ~��(B) = ��(B + �) ! 0 when�! 0.Proof of Proposition 2.8. Given vr+1 � � < vr as in equation (2.9), and0 � j � r, letL0 = I� n (2;�); Lj = [j+1; j) = ((2;�); : : : ; (2;�)| {z }j ) n ((2;�); : : : ; (2;�)| {z }j+1 )for 1 � j � r. Thus I� = S0�j�r Lj (mod 0). It is easy to prove by indutionthat for r � j � 1; j = V j�1(2;�) �� 12+�� = �1 + 1j+ 11+� , that is, � jj+1 < j �� j�1j , while 0 = �; r+1 = �� 1. LetG�jLj = T j+1� jLjbe the jump transformation assoiated to the return time �(x) = j + 1 ()x 2 Lj . Observe that � is bounded and therefore integrable with respet to ��.



2.1 Continuity of the entropy 37Then a result of R. Zweimuller ([26℄, Theorem 1.1) guarantees that G� admitsan invariant measure �� � �� suh that for all measurable E,��(E) = 1C(�) 0�Xn�0 �� �f� > ng \ T�n� (E)�1A (2.22)where C(�) is a suitable normalization onstant. Atually from equation (2.22)it follows that ��(I�) = ��(f� > 0g) � C(�)��(I�) is �nite, and so by hoosinga suitable C(�) we an take ��(I�) = 1. We will prove the following:Lemma 2.10. There exists ~� > 0 suh that for 0 < � < ~�, the densities  � of�� are bounded from above and from below by onstants that do not dependon �: 9C0 s.t. C�10 �  � � C0.Proof of Lemma 2.10. In order to prove that  � is bounded from above, wean proeed as in Lemma 2.3, and show that 9C 0 suh that for all �, 8' 2L1(I�), VarI� PnG�' < C 0. Sine the outline of the proof is very similar to thatof Lemma 2.3, we will only list the passages where the estimates are di�erent,and emphasize how in this ase all the onstants an be hosen uniform in �.The ylinders of rank 1 for G� are of the formIk;"j = (j; k; ") + ((2;�); : : : ; (2;�)| {z }j ; (k; ")); 0 � j � r;so they are also ylinders for T�, although of di�erent rank. On Ik;"j ; j � 1 wehave���� 1G0�(x) ���� = (T j�(x) � � � T�(x)x)2 � �kj = 4(j + 2)2(k � 1)2 � 1(k � 1)2 � 14 ;���� 1G0�(x) ���� � 19j2(k + 1)2 ;while on Ik;"0 , ��� 1G0�(x) ��� = x2 < 1(k�1)2 � 14 , and so � = sup ��� 1G0� ��� < 14 for all �.Letting Q = Srj=0fIk;"j g, and �(n)� = supI(n)� ��� 1(Gn�)0 ���, we an obtain the analogueof equation (2.6) for the maps G�:Var �PnG�'� (x) � �n VarI� '+ XI(n)� 2Q(n)(n+ 2)�(n)� supI(n)� j'j ;and similarly to (2.7), we an hoose h suh that Pi�h 1i2 � �n24n�2 , and the setof intervals with bounded itinerariesG(n) = fI(n)� = ((j0; k0; "0); : : : ; (jn�1; kn�1; "n�1)) 2 Qn jmax(j0; : : : ; jn�1) � h; max(k0; : : : ; kn�1) � hgAgain we an de�ne a funtion � : G(n)! G(n) that maps every ylinder I(n)� =((j0; k0; "0); : : : ; (jn�1; kn�1; "n�1)) to I(n)� = ((j00; k00; "00); : : : ; (j0n�1; k0n�1; "0n�1))as follows:



38 Statistial stability for �-ontinued frationsa. If (ji; ki; "i) = (j; jmin;+); j < r�1 for some i, then (j0i; k0i; "0i) = (j; jmin+1;+);b. If for some i, (ji; ki; "i) = (r; k; ") with (k; ") 6= (jmin;+); (jmin + 1;+),then (j0i; k0i; "0i) = (r � 1; k; ");. If (ji; ki; "i) 2 f(r; jmin;+); (r; jmin + 1;+); (r � 1; jmin;+)g, then(j0i; k0i; "0i) = (r � 1; jmin + 1;+);d. Otherwise, (j0i; k0i; "0i) = (ji; ki; "i).With this de�nition, the ylinders in �(G(n)) are all full, beause as we haveseen in equation (2.11), for 0 � i � r � 1,T i�((2;�); : : : ; (2;�)| {z }i ) � �� 12 + �; �� � [(k;");k�3 I"kThen 8I(n)� 2 �(G(n)),1 � m(I(n)� ) sup�(G(n)) j(Gn�)0j = m(I(n)� )(9h4)n ) m(I(n)� ) � 1Æn = 1(9h4)n ;whih doesn't depend on �. Again we need to estimate the supremum overI(n)� 2 �(G(n)) of the sums P�(I(n)� )=I(n)� �(n)� , eah of whih is the produt of nterms �0i, that orrespond to one of the ases a), b), ) d) we listed previously:� In the ase a), �0i = �jminj + �jmin+1j � 1(jmin�1)2 + 1j2min � 12 (observe thatfor � < p2� 1, jmin � 3).� In the ase b), �0i = �kr + �kr�1 � 4(k�1)2 � 1(r+1)2 + 1(r+2)2� � 12 when� < v2;� In the ase ), �0i = �jminr + �jminr�1 + �jmin+1r + �jmin+1r�1< 4� 1(jmin�1)2 + 1j2min�� 1(r+1)2 + 1(r+2)2� < 12 for � < v2;� In the ase d), �0i < � = 14 .Then �0 � ~� = 12 , and as in equation (2.12), we �nd for � < v2,XI(n)� 2G(n) �(n)� supI(n)� j'j! � �0 XI(n)� 2�(G(n)) supI(n)� j'j � ~�n Var'+ ~�nÆn k'k1For the sum over intervals with unbounded itineraries we proeed in a similarway to (2.13):XI(n)� =2G(n)�(n)� �Xi�h n�1Xl=0 0BB� Xjl(�)=i+1=max(j0(�);:::;jn�1(�))�k0(�)j0(�) � � ��kn�1(�)jn�1(�)++ Xkl(�)=i=max(k0(�);:::;kn�1(�))�k0(�)j0(�) � � ��kn�1(�)jn�1(�)1CCA �Xi�h n�1Xl=0 4i2 0B�2 XIk;"j 2Q�(n)� 1CAn�1



2.1 Continuity of the entropy 39(This expression is redundant, but suÆient for our purpose.) Observe thatXIk;"j 2Q�(n)� � 2 1Xj=0 1Xk=3 4(j + 2)2(k � 1)2 � 8 1X2 1k2!2 � 8; and soXI(n)� =2G(n)�(n)� �Xi�h 4i2n24n�4 � n�nThen we an prove relation (2.14) and omplete our argument exatly like inLemma 2.3. Notie that all the onstants involved are uniform in �.To prove that the densities  � of �� are uniformly bounded from below, weuse a bounded distortion argument. We follow the same outline as in x1.9, butwith the advantage that in this ase the derivatives are uniformly bounded fromabove.Sine T� satis�es Adler's ondition (see de�nition 1.22), ��� T 00�(T 0�)2 ��� < K (here K =2), then there existsK 0 independent of n and of � suh that 8n > 0; ��� (Tn� )00((Tn� )0)2 ��� <K 0 (see [25℄, Lemma 10). Then 8x; y belonging to the same ylinder Ik;"j of rank1 of G�,����G0�(x)G0�(y) � 1���� = jG00�(�)j ���� x� yG0�(y) ���� = ����G00�(�)(G�(x) �G�(y))G0�(y)G0�(�) ���� �� 362 ���� G00�(�)(G0�(�))2 ���� jG�(x) �G�(y)j � K 00 jG�(x)�G�(y)j ; andlog ���� (Gn�)0(y)(Gn�)0(x) ���� � n�1Xi=0 ����G0�(Gi�(y))G0�(Gi�(x)) � 1���� � K 00 n�1Xi=0 ��Gi+1� (y)�Gi+1� (x)�� �� K 00 nXi=1 �14�n�i jGn�(y)�Gn�(x)j � K 00 1Xi=0 �14�i ) ���� (Gn�)0(y)(Gn�)0(x) ���� � C1where C1 does not depend on �. Letting W� : Gn�(I(n)� ) ! I(n)� be the loalinverses of Gn�, for every full ylinder I(n)� 2 P(n) and for every measurable setB,m(B)m(I�) = RW�(B) j(Gn�)0(y)j dyRI(n)� j(Gn�)0(x)j dx � m(W�(B)) supy2I(n)� j(Gn�)0(y)jm(I(n)� ) infx2I(n)� j(Gn�)0(x)j � C1m(W�(B))m(I(n)� )) m(W�(B)) � m(B)m(I(n)� )C1 (2.23)Finally, we an show that the measure of the union Sn of all full ylinders ofrank n is stritly greater than 0. In fat we have the following haraterization:I(n)� 2 Q(n) is not full ) it has an initial segment of the orbit (with respet toG�) of one of the endpoints � and � � 1 as its �nal segment. That is, if � =



40 Statistial stability for �-ontinued frations(a1; a2; a3; : : :) and ��1 = (b1; b2; b3; : : :), then there exists 1 � k � n suh thatI(n)� = (!1; : : : ; !n�k; a1; : : : ; ak) or I(n)� = (!1; : : : ; !n�k; b1; : : : ; bk). To provethis, observe that if I(n)� doesn't ontain any initial segment of (a1; a2; a3; : : :)or (b1; b2; b3; : : :), it is learly full, and if every suh segment (a1; : : : ; ak) or(b1; : : : ; bk) is followed by !k+1 6= ak+1 or bk+1 respetively, then it is either fullor empty beause Gn� is monotone on eah ylinder. Then��(SCn) � �� n[k=1G�(n�k)� (a1; : : : ; ak)!+ �� n[k=1G�(n�k)� (b1; : : : ; bk)! �� nXk=1 (��(a1; : : : ; ak) + ��(b1; : : : ; bk))sine �� is G�-invariant. We have already shown that �� is bounded from below,and so ��(a1; : : : ; ak) + ��(b1; : : : ; bk) < C 0(m(a1; : : : ; ak) +m(b1; : : : ; bk)).In order to prove that ��(SCn ) < 1, we take advantage of the fat that the ylin-ders ontaining the endpoints beome arbitrarily small when � approahes 0.Reall that (a1) = (jmin) = �� 1� + 1� ���, and onsequently inf(a1) jG0�(x)j �(jmin � 1)2, and sine infI� jG0�(x)j � 4, from Lagrange's theorem we getm(a1; : : : ; ak) � 14k�1(jmin � 1)2Sine jmin !1 as �! 0, we an hoose ~� suh that 8� < ~�; m(a1; : : : ; ak) �14kC0 . Similarly, reall from Remark 2.4 that for vr+1 � � < vr, where vr =�1+p1+4=r2 , we have (b1) = ((2;�); : : : ; (2;�)| {z }r ; (k; ")) for some k � 3, and re-alling that T i�(�� 1) = (i+1)��11�i� , we �ndinf(b1) jG0�(x)j = inf(b1) rYi=0 1(T i�(x))2 � 1(k � 1)2 r�1Yi=0 (1� i�)2(1� (i+ 1)�)2 � 4(1� r�)2But � � vr+1 ) 1r+1 < �2 + � ) 1 � r� < �(2+�)1+� < 3�, and so by taking ~�small enough we an ensure that 8� < ~�; inf(b1) jG0�(x)j � 4C 0 and onsequentlym(b1; : : : ; bk) � 14kC0 8k.Then for � small enough, m(SCn) � 2C0 Pnk=1 14k � 23C0 ) ��(Sn) � 23 )��(Sn) � 13 ) m(Sn) > ��(Sn)C0 � 13C0 . Taking the sum over all full ylindersI(n)� in (2.23), we �nd that for all measurable B � I�,m(G�n� (B)) � m(G�n� (B) \ Sn) � m(B)m(Sn)C1 � m(B)3C1C 0Now reall that the density of �� is equal almost everywhere to the limit of theCesaro sums limn!1 1nPn�1i=0 P iG�1, and so for � < ~�,��(B) = limn!1 1n n�1Xi=0 ZB P iG�1dx = limn!1 1n n�1Xi=0 m(G�n� (B))and onsequently we have ��(B) � m(B)3C1C0 8B.



2.2 Numerial results 41We an �nally onlude the proof of Proposition 2.8. The following propertieshold:� C(�) ! 1 when � ! 0. In fat when � is small, C�10 � d��dm � C0 forsome C0, and1 = rXk=0 ��(Lk) = rXk=0 1C(�) Xn�k ��(Ln) = 1C(�) rXk=0 ��([�� 1; k℄) �� 1C0C(�) rXk=0m([�� 1; k℄) � 1C0C(�)  rXk=0 1k + 1 � (r + 1)�! �� 1C0C(�) �log� 1�2 + ��� 1� (2.24)sine r � 1�2+� � r + 1. Therefore the normalization onstant C(�) �1C0 �log� 1�2+��� 1�!1 when �! 0.� Finally, 8Lk; k � 0 �nite, ��(Lk)! 0 when �! 0. In fat we have��(Lk) =Xj�k ��(Lj)C(�) � C0C(�)Xj�km(Lj) � C0C(�) j1� kj � C0C(�) 1k ! 01Consider now the translated versions A�;0 of the T� with respet to �� = 0, andlet ~j = j � � be the translated versions of the j (we omit the dependeneon � for simpliity). Then we have ~��((~k; 0℄) ! 0 for all �nite k. Let f 2C1([�1; 0℄) be a test funtion: we want to show that 8" > 0, 9�0 suh that8� � �0; ���R 0�1 f(x)d~�� � f(�1)��� < ". Sine f is uniformly ontinuous, 9Æ suhthat 8 jx� 1j < Æ, jf(x)� f(�1)j < ". Choose k so that ~k < �1+ Æ. Then forall � suh that ~��((~k; 0℄) < ",����Z 0�1(f(x)� f(�1))d~������ � Z ~k�1 jf(x)� f(�1)j d~�� + Z 0~k jf(x)j d~��++ Z 0~k jf(�1)j d~�� � "+ "(kfk1 + jf(�1)j)2.2 Numerial resultsIn this setion we ollet our numerial results on the entropy of Japaneseontinued frations. We already know that the funtion � ! h(T�) is onti-nuous in (0; 1℄ and that in the ase � � p2 � 1 the entropy has been om-puted exatly by Nakada [16℄ and Marmi, Moussa, Cassa [15℄. For values1The reader might be wondering whether the estimates of the densities of T� in Paragraph2.1.1 and the ontinuity of the entropy might be derived diretly from Lemma 2.10. This wouldfollow from equation (2.24) if we possessed a suitable lower bound for d��dm when � varies; butwe haven't been able to provide suh a bound exept for small �. As for the ontinuity ofthe entropy, the fat that h(T�) and h(G�) are related by the Generalized Abramov Formula[26℄ suggests that proving the ontinuity of h(G�) might be a valid alternative approah;however, taking expansivity into aount, we believe that the estimates neessary to proveL1-ontinuity of the invariant densities of G� as in x2.1.2 would be far more taxing than forT�.
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Figure 2.2: The dependene on n of the standard deviation of the normally distributedh( 12 ; n; xk) where n ranges from 500 to 350000 and N = 100.
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Figure 2.3: The distribution of h( 12 ; 1000; xk) for 10000 random initial onditions.The average h( 12 ; n; N) = 3:41711 must be ompared to the exat value h(T 12 ) =�26 logG = 3:418315971 : : :.
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Figure 2.4: The entropy of the map T� at 4080 uniformly distributed values of � from0 to 0:42. The estimated error is less than 2 � 10�4.
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Figure 2.5: The entropy of the map T� at 1314 uniformly distributed values of � from0:29 to 0:30. The estimated error is less than 1 � 10�4.
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Figure 2.6: The entropy of the map T� at 1600 uniformly distributed values of � from0:265 to 0:281. The estimated error is less than 1:5 � 10�4.
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Figure 2.7: The entropy of the map T� at 989 uniformly distributed values of � from0:278 to 0:281. The estimated error is less than 4 � 10�5.
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Figure 2.8: The entropy of the map T� at 1799 uniformly distributed values of � from0:09 to 0:11. The estimated error is less than 2:5 � 10�4.of � in the interval (0;p2 � 1℄ we have numerially omputed the entropyof the maps applying Birkho�'s ergodi theorem and replaing the integralh(T�) = �2 R ���1 log jxj ��(x)dx in Rohlin's formula with the Birkho� averagesh(�; n; x) = � 2n n�1Xj=0 log ��T j�(x)��whih onverge to h(T�) for almost all hoies of x 2 (�� 1; �). In order to getrid of the dependene on the hoie of an initial ondition we have omputedh(�; n; xk) for a large number N of uniformly distributed values of xk 2 (� �1; �), k = 1; : : :N , and we have taken the average on all the results:h(�; n;N) = 1N NXk=1h(�; n; xk) :Unsurprisingly, it turns out that the values h(�; n; xk) are normally distributedaround their average h(�; n;N) (see Figure 2.2). We have also omputed thestandard deviations of the normal distributions for values of n from 500 to350000 (see Figure 2.3): a least squares �t suggests that they deay as 1=pn(we refer to A. Broise [5℄ for a general treatment of Central Limit Theoremsthat may apply also to our maps).In Figure 2.4 we see a graph of h(�; 104; N) at 4080 uniformly distributed ran-dom values of � in the interval (0;p2� 1): the values of N range from 105 to4 � 105 inreasing as � dereases so as to keep the standard deviation approxi-mately onstant. The estimated error for the entropy is less than 2 � 10�4.As � ! 0 the entropy dereases (although non monotonially, see below) andthe graph exhibits a quite rih self{similar struture that we have just started



46 Statistial stability for �-ontinued frationsto investigate: for example the entropy seems to be independent of � as � variesin the intervals whose endpoints have Gauss ontinued fration expansions ofthe form [0; n; n � 1; 1; �n℄ and [0; �n℄ respetively, and to depend linearly on �in the intervals ([�n℄; [0; n; 1℄). Compare with Figure 2.6, where h(�; 104; 4 � 105)is omputed at 1600 values of � 2 (0:264; 0:281) and with Figure 2.8 whereh(�; 104; 2 � 105) is omputed at 1799 values of � 2 (0:09; 0:11).Figure 2.5 is a graph of h(�; 104; 4 � 105) at 1314 uniformly distributed randomvalues of � in the interval (0:29; 0:3): here the non-monotone harater of thefuntion � 7! h(T�) is quite evident. A magni�ation of Figure 2.6 orrespond-ing to values � 2 (0:278; 0:281), showed in Figure 2.7, suggests that the samephenomenon ours at the end of eah of the plateaux exhibited in Figure 2.4.



Chapter 3Natural Extensions3.1 Fibred systemsNatural extensions were introdued by Rohlin [19℄ as a general method to passfrom a given endomorphism to an automorphism of whih the �rst is a fator.Nakada, Ito e Tanaka applied it to ontinued frations [18℄ [16℄.The main referene for this setion is Shweiger's book [20℄, whose approah isbased on the notion of �bred systems.3.1 (Fibred system). Consider a set B, and an appliation T : B ! B. (B; T )is alled a �bred system if there exists a �nite or ountable alphabet A, and asurjetive funtion k : B ! A suh that Tjk�1fag is injetive 8a 2 A.Let � = AN; � : � ! � the shift map. We de�ne a representation funtion� : B ! � as follows: (�(x))i = k(T i�1x)Then we have the ommuting diagramB T����! B�??y ??y�� ����!� �The elements of �(B) � � are alled admissible sequenes.3.2 (Cylinders). We all ylinders of rank 1 of the system (B; T ) the setsBa = k�1f�kg; �k 2 A;The ylinder of rank n assoiated to the blok (k1; : : : ; kn); ki 2 A is de�ned asfollows: B(k1; : : : ; kn) = B(k1) \ T�1B(k2) \ : : : \ T�n+1B(kn)We will say that (k1; : : : ; kn) is an admissible blok if B(k1; : : : ; kn) 6= ?.Proposition 3.3. 8n � 1, the following properties hold:



48 Natural Extensionsa) Sa2AB(k1; : : : ; kn; a) = B(k1; : : : ; kn)b) T�1B(k1; : : : ; kn) = Sa2AB(a; k1; : : : ; kn)In the sequel we will assume that the following additional onditions are satis-�ed:1. B � R and the �-algebra generated by ylinders is the �-algebra B(B) ofBorel sets of B;2. T is measurable with respet to B(B);3. 8(k1; : : : ; kn); Tj �B(k1;:::;kn) is di�erentiable.We will denote by V(k1;:::;kn) the loal inverse of Tj �B(k1;:::;kn), and by w(k1;:::;kn)its Jaobian with respet to the Lebesgue measure.3.4 (Dual system). Let (B; T ) be a �bred system with respet to the alphabetA, B# a set, T# : B �B# ! B# suh that:a) 8x 2 B �xed, (B#; T#(x; �)) is a �bred system, whose alphabet is still A;b) Let B#k (x); k 2 A the ylinders of (B#; T#(x; �)). Then 8k 2 A, B#k (x) 6=? andVk1x is well-de�ned ) V #k(x)(Tx)B#k1(x) is well-de�ned (3.1)(B#; T#(x; �)) is alled a dual system for (B; T ) in x.1Let k#(x; y); y 2 B# be the representation funtion on (B#; T#(x; �)), withV #(k1;:::;kn)(x) the loal inverse of T#(x; �)j �B#(k1 ;:::;kn)(x), and with w#(k1;:::;kn)(x)its Jaobian with respet to the Lebesgue measure. Moreover we denote by B#the �-algebra of Borel sets of B#.3.5. We de�ne the ylinders of B# with respet to x as follows:B#(k1;:::;kn)(x) + B#k1(x) \ �T#(x; �)�1B#k2(Vk1x)�\\ �T#(x; �)�1T#(Vk1x; �)�1B#k3(V(k2 ;k1)x)� \ � � �� � � \ �T#(x; �)�1 � � �T#(V(kn�2;:::;k1)x; �)�1B#kn(V(kn�1;:::;k1)x)�Condition (3.1) ensures that if V(kn;:::;k1)x is well-de�ned, B#(k1;:::;kn)(x) is non-empty. Also remark that if y 2 B#(k1;:::;kn)(x),�T#(x; y) 2 B#k2(Vk1x)� \ �T#(Vk1x; �)�1B#k3(V(k2;k1)x)� \ � � �� � � \ �T#(Vk1x; �)�1 � � �T#(V(kn�2;:::;k1)x; �)�1B#kn(V(kn�1;:::;k1)x)� == B#(k2;:::;kn)(Vk1x)1We remark here that for the sake of our proofs we need a more general de�nition of dualsystem than the one adopted in Shweiger [20℄, that is our dual map T# is dependent on x.All the duality properties still hold, as we will show in the following pages.



3.1 Fibred systems 493.6 (Kernel). K : B � B# ! R is alled a kernel if it is non-negative, mea-surable and 8(x; y) 2 B�B# suh that T�1fxg\B(k) 6= ?, (T#(x; �))�1fyg\B#k (x) 6= ?, we haveK(x; V #k (x; y))w#k (x; y) = K(Vk(x); y)wk(x) (3.2)Proposition 3.7. De�neD(x) + ny 2 B# j8n > 0; y 2 B#(k1;:::;kn)(x), T�nfxg \B(kn; : : : ; k1) 6= ?oThen the following properties hold:a) y 2 D(x)) V #k(x)(Tx; y) 2 D(Tx)b) y 2 D(x)) T#(x; y) 2 D(Vk(x;y)(x))) D(x) = Sk �B#k (x) \ V #k (x; �)D(Vk(x))�Proof. a) If y 2 B#(k1;:::;kn)(x) \D(x); V #k(x)(Tx; y) 2 B#(k(x);k1;:::;kn)(Tx),V #k(x)(Tx; y) 2 D(Tx) , T�n�1fTxg \ B(kn; : : : ; k1; k(x)) 6= ?b) If y 2 B#(k1;:::;kn)(x) \D(x); T#(x; y) 2 B#(k2;:::;kn)(Vk1x),T#(x; y) 2 D(Vk(x;y)(x)) , T�n�1fVk(x;y)(x)g \ B(kn;:::;k2) 6= ? ,T�nfxg \ B(kn;:::;k2;k1)g 6= ? , y 2 D(x)) Let y 2 D(x): then point (b) implies that T#(x; y) 2 D(Vk(x;y)(x)), andso D(x) � Sk B#k (x) \ T#(x; �)�1D(Vk(x)). But point (a) entails thatT#(x; y) 2 D(Vk(x;y)(x)), and soV #k(Vk(x;y)(x))(x; �)T#(x; y) = V #k(x;y)(x; �)T#(x; y) 2 D(TVk(x;y)(x))) y 2 D(x) ) D(x) �[k B#k (x) \ V #k (x; �)D(Vk(x))Remark 3.8. The statement () in Proposition 3.7 is equivalent to the de�ni-tion of D(x). In fat, suppose that () holds: we an prove by indution on nthat y 2 �B#(k1;:::;kn)(x) \D(x)�) �T�nfxg \ B(kn;:::;k1)� 6= ? (3.3)For n = 1, y 2 B#k1(x) ) y 2 B#k1(x) \ V #k1 (x; �)D(Vk1 (x)). ThereforeD(Vk1 (x)) 6= ?, and Vk1(x) is well-de�ned.Now suppose that (3.3) holds for n� 1, and onsider y 2 B#(k1;:::;kn)(x) \D(x).Then T#(x; y) 2 B#(k2;:::;kn)(Vk1(x)); T#(x; y) 2 D(Vk1 (x)). For indutive hy-pothesis, T�n+1fVk1(x)g\B(kn ;:::;k2) 6= ? ) T�nfxg\B(kn;:::;k1) 6= ?. On theother side, if T�nfxg\B(kn;:::;k1) = ?, if there existed y 2 B#(k1;:::;kn)(x)\D(x),we would have T#(x; y) 2 D(Vk1 (x)) and, reursively, (T#)i(V(k1;:::;ki�1); y) 2D(V(k1 ;:::;ki)(x)),8i = 1; : : : ; n, that is D(V(k1 ;:::;ki)(x)) 6= ? 8i = 1; : : : ; n, aontradition.



50 Natural ExtensionsTheorem 3.9. Let (B; T ) be a �bred system, B# a set, T# : B�B# suh that(B#; T#(x; �)) is a dual �bred system 8x 2 B, and D(x) 6= ? 8x 2 B. LetB = f(x; y) j x 2 B; y 2 D(x)gT : B ! B; T : (x; y) 7! (Tx; V #k(x)(Tx; y))B = �A 2 B � B# j A � B	Then (B; T ) is a �bred system and T is invertibile. Moreover if T is measurablewith respet to B and K : B�B# ! R is a kernel, KjB is an invariant densityfor T .3.10 (Natural extension). (B; T ) is alled a natural extension of (B; T ).Proof of Theorem 3.9. The map eT : (x; y) 7! (Vk(y)(x); T#(x; y)) is well de�nedthanks to Proposition 3.7 (b), and it is an inverse of T :eTT (x; y) = eT (Tx; V #k(x)(Tx; y)) = (Vk(x)Tx; T#(Tx; �)V #k(x)(Tx; y) = (x; y)T eT (x; y) = T (Vk(y)(x); T#(x; y)) = (x; V #k(x;y)(x; �)T#(x; y)) = (x; y)Remark that wk(x) = 1jT 0(Vk(x))j ) wk(Tx) = 1jT 0(x)jFrom equation (3.2) it follows thatK(Tx; V #k(x)(Tx; y))w#k(x)(Tx; y) = K(Vk(x)T (x); y)wk(x)(T (x))Then from the hange of variable formula we �nd that 8C � �B;Z �T (C)K(x; y)dxdy = ZC K(Tu; V #k(u)(Tu; v)) jT 0(u)jw#k(u)(Tu; v)dudv == ZCK(Vk(u)T (u); v)wk(u)(T (u)) jT 0(u)j dudv = ZCK(u; v)dudvCorollary 3.11. h(x) = RD(x)K(x; y)dy is an invariant density for T .Proof. It is suÆient to onsider the ommuting diagramB T����! Bp+??y ??yp+B ����!T B3.2 Natural extensions for � 2 [p2� 1; 1)In this setion we summarize the known results on the natural extensions andinvariant densities for �-ontinued fration algorithms. For � 2 �12 ; 1� theseonstrutions are due to Nakada [16℄, while for � 2 �p2� 1; 12� the invariantdensities have been found by Cassa [6℄, who did not employ the natural ex-tension method, but another tehnique that involves ounting the poles of ameromorphi funtion. Here we translate his result into the language of naturalextensions, providing an independent proof.



3.2 Natural extensions for � 2 [p2� 1; 1) 51Theorem 3.12. Let � 2 [p2�1; 1℄, and de�ne the domain D� � R2 as follows:1. For � 2 (g; 1),D� + ���� 1; 1� �� �� �0; 12�� [ ��1� �� ; ��� [0; 1℄� ;2. For � 2 �12 ; g�,D� + ���� 1; 1� 2�� �� [0; 1� g℄� [ ��1� 2�� ; 2�� 11� � �� �0; 12��[[ ��2�� 11� � ; ��� [0; g℄�3. For � 2 �p2� 1; 12�,D� + ���� 1; 2�� 11� � �� [0; 1� g℄�[[ ��2�� 11� � ; 1� 2�� �� ([0; 1� g℄) [ �12 ; g�� [��1� 2�� ; ��� [0; g℄�De�ne T� : D� ! D� as follows:T�(x; y) = �T�(x); 1k(x) + sign(x)y�where k(x) = ��� 1x ��+ 1� ��.Then T� : D� ! D� is well-de�ned and bijetive, and is a representation of thenatural extension of T�. Moreover, T� preserves the density C�(1+xy)2 , where C�is a suitable normalizing onstant.The vertial setions of the domain D� for x 2 I� orrespond to the sets D(x)de�ned in Proposition 3.7.Corollary 3.13. Let g and G denote the Golden numbers p5�12 and p5+12 re-spetively. Then the unique invariant density �� for T� is given by the followingexpressions:� For g < � � 1,��(x) = 1log(1 + �) ��[��1; 1��� ℄(x) 1x + 2 + �( 1��� ;�)(x) 1x + 1�� For 12 < � � g,��(x) = 1logG ��[��1; 1�2�� ℄(x) 1x +G+ 1++ �( 1�2�� ; 2��11�� )(x) 1x + 2 + �[ 2��11�� ;�)(x) 1x +G�



52 Natural Extensions� For p2� 1 � � � 12 ,��(x) = 1logG ��[��1; 2��11�� )(x) 1x+G+ 1++�[ 2��11�� ; 1�2�� )� 1x+G+ 1 + 1x+G � 1x+ 2�+ �[ 1�2�� ;�)(x) 1x +G�This orollary follows easily from Theorem 3.12: sine T� is a fator of T�,its invariant measure ��dx is simply the image measure of K(x; y)dxdy withrespet to the projetion on the �rst oordinate, that is ��(x) = RD�(x) dy(1+xy)2 .Proof in the ase � 2 (g; 1). For the sake of simpliity, we will write T insteadof T�, and T instead of T�.In this ase, we have k(�) = 1, and T (�) = 1��� . Let r = k(1 � �): thenk(T (�)) = r � 1:k(T (�)) = � �1� � + 1� �� = � 11� � � �� = � 11� � + 1� ��� 1 = r � 1Moreover, we also have T 2(�) = T (�� 1):T (�� 1) = 11� � � r = �1� � � (r � 1) = T 2(�)In order to show that T is bijetive on the domain D�, we onsider a partitionof D� into suitable retangles, as shown in Figure 3.1. Their images are shownin Figure 3.2. If we show that we an divide the domain D� into retangleswhere the omponents of T are monotoni, and that these are mapped intodistint retangles whih over the whole domain, we will prove at one that Tis well-de�ned, one-to-one and onto.For the sake of simpliity, we will not make any distintion between open andlosed intervals, sine the natural extension and invariant density are de�nedonly modulo negligible sets. To be more preise, we should remark that if D�(x)is the vertial setion orresponding to x, the union of the boundaries of theretangles Sx2Ijfxg �D�(x) is still a set of measure 0.Let � = T 2(�) = T (�� 1). ThenT ���� 1; �1r + ��� �0; 12�� = [�; �℄ � �1r ; 1r � 12 � (a)For all h > r, we haveT �� �1h� 1 + �; �1h+ ��� �0; 12�� = [�� 1; �℄ � � 1h ; 1h� 12 � (b)Similarly, for all h � r we �ndT �� 1h+ � ; 1h� 1 + ��� �0; 12�� = [�� 1; �℄ � � 1h+ 12 ; 1h� ()Moreover, T �� 1r � 1 + � ; 1� �� �� �0; 12�� = [�; �℄� � 1r � 12 ; 1r � 1� (d)T ��1� �� ; 1r � 2��� [0; 1℄� = [�� 1; �℄ � �1r ; 1r � 1� (e)
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 d e gfba

1

�� 1 0 1��� �
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Figure 3.1: A simpli�ed diagram showing the bloks (a)-(g) in the domain D� when� 2 (g; 1).For 2 � h � r � 2,T �� 1h+ � ; 1h� 1 + ��� [0; 1℄� = [�� 1; �℄ � � 1h+ 1 ; 1h� (f)Finally, T �� 12 + � ; ��� [0; 1℄� = �1� �� ; ��� �12 ; 1� (g)Thus T is bijetive. Finally, the fat that K(x; y) is invariant for T an beeasily heked through the hange of variables formula: the determinant ofthe Jaobian for T is respetively 1x2(k(x)+y)2 when x > 0 and 1x2(k(x)�y)2 whenx < 0. Then for any A � D�, if we put A+ = A\fx > 0g and A� = A\fx < 0g,we haveZT (A)K(x; y)dxdy = 1C� �ZA+ 1u2(1=u+ v)2 dudv++ ZA� 1u2(�1=u� v)2 dudv� = 1C� �ZA+ dudv(1 + uv)2 + ZA� dudv(1 + uv)2� (3.4)This onludes the proof.Proof in the ase � 2 �12 ; g�. This proof is idential to the previous one, exeptfor the shape of the domain D�; we need to hek again that T is well-de�ned,one-to-one and onto.In this ase, we have �2+��1 � 0, so k(�) = 2 and k(��1) = 2. Then T (�) =1�2�� , T (�� 1) = 2��11�� . It is easy to hek that k(T (�)) = 3, k(T (�� 1)) = 2,and T 2(�) = T 2(1� �) = 3�5�2��1 . Let � = T 2(�).As in the previous ase, we ompute the images through T of a suitable partitionof the domain D� into retangles, as shown in Figures 3.3 and 3.4:
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g

e
�� 1

dafb, 
12
1

� 1��� �Figure 3.2: A simpli�ed diagram showing the images with respet to T of the bloks(a)-(g) in the domain D� when � 2 (g; 1).
a b  d f ge0T (�) �T (�� 1)

12 g
1� g
�� 1Figure 3.3: A simpli�ed diagram showing the bloks (a)-(g) in the domain D� when� 2 � 12 ; g�. T ���� 1; �12 + ��� [0; 1� g℄� = [T (�� 1); �℄ � �12 ; g� (a)T �� �12 + �; T (�)�� [0; 1� g℄� = [�� 1; �℄� �13 ; 1� g� (b)T ��T (�); �13 + ��� �0; 12�� = [�; �℄ � �13 ; 25� ()Observe that in equations (a) and (b), we have used the fat that 11+g = g and12+g = 1� g respetively.For h � 4, we haveT �� �1h� 1 + �; �1h+ ��� �0; 12�� = [�� 1; �℄ � � 1h+ 12 ; 1h� (d)
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�� 1 T (d); T (e)

T (g) T (f)T (a)
131� g 12 g

�
T ()T (b)

T (�) T (�� 1)�Figure 3.4: A simpli�ed diagram showing the images with respet to T of the bloks(a)-(g) in the domain D� when � 2 � 12 ; g�.Similarly, for h � 3 we haveT �� 1h+ � ; 1h� 1 + ��� �0; 12�� = [�; 1� �℄ � � 1h+ 12 ; 1h� (e)Finally, T �� 12 + �; T (1� �)��� �0; 12� = [�; �℄� �25 ; 12� (f)T ([T (1� �); �℄ � [0; g℄) = [T (�); �℄� �1� g; 12� (g)This ompletes the proof.Proof in the ase � 2 �p2� 1; 12�. Also in this ase we have k(�) = 2, k(� �1) = 2. Then T (�) = 1�2�� , T (� � 1) = 2��11�� . It is easy to hek that ifk(T (� � 1)) = r, then k(T (�)) = r � 1, and r � 4. One again, we haveT 2(�) = T 2(� � 1) = �. Realling that 11+g = g, we haveT ���� 1; �12 + ��� [0; 1� g℄� = [T (�� 1); �℄ � �12 ; g� (a)For 3 � h � r � 1,T �� �1h� 1 + �; �1h+ ��� [0; 1� g℄� = [�� 1; �℄ � � 1h ; 1h� 1 + g� (b)T �� �1r � 1 + �; T (�� 1)�� [0; 1� g℄� = [�� 1; �℄� �1r ; 1r � 1 + g� ()T ��T (�� 1); �1r + ����[0; 1� g℄ [ �12 ; g��� == [�; �℄���1r ; 1r � 1 + g � [ � 1r � 12 ; 1r � g�� (d)
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1 − g

α − 1 T (1 − α) 0Figure 3.5: A simpli�ed diagram showing the bloks (a)-(l) in the domain D� when� 2 �p2� 1; 12�.For h � r + 1,T �� �1h� 1 + �; �1h+ ����[0; 1� g℄ [ �12 ; g��� == [�� 1; �℄��� 1h� 12 ; 1h� g� [ � 1h+ 1� g ; 1h�� (e)For h � r,T �� 1h+ �; 1h� 1 + ����[0; 1� g℄ [ �12 ; g��� == [�� 1; �℄��� 1h+ 1� g ; 1h� [ � 1h+ g ; 1h+ 12 �� (f)Similarly, we haveT �� 1r � 1 + � ; T (�)����[0; 1� g℄ [ �12 ; g�� == [�; �℄ ��� 1r � 1 + g ; 1r � 12 � [ � 1r � g ; 1r � 1�� (g)T ��T (�); 1r � 2 + ��� [0; g℄� = [�� 1; �℄� � 1r � 1 + g ; 1r � 1� (h)For 3 � h � r � 2,T �� 1h+ �; 1h� 1 + ��� [0; g℄� = [�� 1; �℄ � � 1h+ g ; 1h� (i)Finally, T �� 12 + � ; ��� [0; g℄� = �1� 2�� ; ��� � 12 + g ; 12� (l)This ompletes the proof.
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T (a)T (l)T (b), T (i)T (h) 1r�1+g1r�1
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12g
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Figure 3.6: A simpli�ed diagram showing the images with respet to T of the bloks(a)-(l) in the domain D� when � 2 �p2� 1; 12�.3.3 Natural extension for � = 1rIn the ase � 2 (0;p2 � 1℄, the struture of the domain D� of the naturalextension for T� seems to be muh more intriate than for � > p2 � 1. Herewe �nd the exat expression for D� and the invariant density of T� when � 2� 1r ; r 2 N	.3.3.1 The by-exess ontinued fration map
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58 Natural ExtensionsBefore stating our main theorem, we introdue some notations. In the followingparagraphs we will often refer to the by-exess ontinued fration expansion ofa number, that is the expansion related to the map M0(x) = � 1x + � 1x + 1�,M0 : [0; 1℄! [0; 1℄. To simplify notations, we will omit the minus signs and usebrakets: ha0; a1; a2; : : :i + 1a0 � 1a1 � 1a2 � � � �; ai 2 f2; 3; 4; : : :gWe will denote a non-integer remainder x > 1 by a semiolon:ha0; a1; : : : ; an;xi + 1a0 � 1a1 � . . . � 1an � 1x
; ai 2 f2; 3; 4; : : :g

We also reall that the by-exess expansion of any real number y 2 (0; 1) isin�nite, and thaty = ha1; a2; a3; : : :i 2 Q ) 9i s. t. 8j � i; aj = 23.3.2 Reetion rulesWe begin by making some preliminary observations on the relation between thesymboli dynamis of the map M0 and the reetion map x 7! 1 � x on [0; 1℄,whih reveal a sort of \duality"between the digit 2 and the digits greater than2, and will prove very useful to onstrut a \dual"�bred system for T� in thesense of Shweiger [20℄.Let x = ha1; a2; a3; : : :i 2 [0; 1℄. We would like to determine the by-exessontinued fration expansion of 1�x. Sine the general solution to this problemturns out to be quite ompliated, we will only desribe a single step of thealgorithm, that is, we will suppose to have omputed the �rst i digits of theexpansion and the remainder:1� x = 1a01 � 1a02 � 1. . . � 1a0i � (1� z); z 2 [0; 1)
z = hh1; h2; h3; : : :i; hi � 2We want to determine the �rst digit of the remainder 1 � z. For reasons thatwill beome lear later, we will treat any sequene of the kind2; 2; : : : ; 2| {z }n



3.3 Natural extension for � = 1r 59as a single digit.We will make use of the following well-known identity (see for example [15℄)that an be easily proved by indution on n:1� 1n+ 1y � 1 = h2; 2; : : : ; 2| {z }n�1 ; yi 8y 2 R (3.5)There are three separate ases to onsider:� If h1; h2 � 3, then from the identity (3.5) with n = h1 andy � 1 = � h2 � 1h3 � : : :! ; 1y = � 1h2 � 1� 1h3 � : : :we get 1� hh1; h2; h3; : : :i = 
 2; : : : ; 2| {z }h1�2 ; 2 + hh2 � 1; h3; : : :i� == 
 2; : : : ; 2| {z }h1�2 ; 3� �1� hh2 � 1; h3; : : :i��We sum up our observations in the followingRule 1. If h1; h2 � 3,1� hh1; h2; h3; : : :i = *2; : : : ; 2| {z }h1�2 ; 3; 1(1� hh2 � 1; h3; : : :i)+� If z = hh1; 2; : : : ; 2| {z }n ; h3; : : :i with h1; h3 � 3, then1� z = *2; : : : ; 2| {z }h1�2 ; 2 + 11� h2; : : : ; 2| {z }n�1 ; h3; : : :i+We want to use the identity (3.5), withy � 1 = � 1h2; : : : ; 2| {z }n ; h3; : : :i = �0�2� h2; : : : ; 2| {z }n�1 ; h3; : : :i1A ;� 1y = 11� h2; : : : ; 2| {z }n�1 ; h3; : : :i



60 Natural ExtensionsObserve that1� h2; : : : ; 2| {z }n�1 ; h3; : : :i = 1n+ hh3 � 1; h4; : : :i) 11� h2; : : : ; 2| {z }n�1 ; h3; : : :i = n+ 1� (1� hh3 � 1; h4; : : :i)In onlusion, we �ndRule 2. If h1; h3 � 3,1� hh1; 2; : : : ; 2| {z }n ; h3; h4; : : :i = *2; : : : ; 2| {z }h1�2 ; n+ 3; 11� hh3 � 1; h4; : : :i+� If z = h2; : : : ; 2| {z }n ; h2; : : :i; h2 � 3, then using again the identity (3.5) withy = 1hh2; h3; : : :i ; 1y � 1 = hh2 � 1; h3; : : :iwe �nd 1� h2; : : : ; 2| {z }n ; h2; h3; : : :i = 1n+ 1 + hh2 � 1; h3; : : :i == 1n+ 2� (1� hh2 � 1; h3; : : :i)Rule 3. If h2 � 3,1� h2; : : : ; 2| {z }n ; h2; h3; : : :i = �n+ 2; 11� hh2 � 1; h3; : : :i�Notie that we have taken into onsideration all the possible ases. Also remarkthat Rule 1 and Rule 2 guarantee that in the new digits h0i a sequene of twosis never followed by another.Let � = 1r , for a �xed r � 3. Observe that T�(�) = 0, andT i�(�� 1) = �(r � i� 1)r � i � 0 for i = 0; : : : ; r � 2 (3.6)Let � be the �xed point forM0 orresponding to the branh r+1, and � = 1r�� :� = r + 1�p(r + 1)2 � 42 = hr + 1; r + 1; r + 1; r + 1; : : :i� = 2r � 1 +p(r + 1)2 � 4 = hr; r + 1; r + 1; r + 1; : : :i (3.7)Then 1� � = h2; : : : ; 2| {z }r�1 ; 3; 2; : : : ; 2| {z }r�2 ; 3i; 1� � = h2; : : : ; 2| {z }r�2 ; 3i (3.8)



3.3 Natural extension for � = 1r 613.3.3 Domain of the natural extensionLet n � 1, and de�neH+n = ((h1; h2; : : : ; hn)�����h1 2 f2; (2; 2); : : : ; (2; 2; : : : ; 2| {z }r�1 )g [ f3; 4; : : : ; rg;h2; : : : ; hn 2 f2; (2; 2); : : : ; (2; 2; : : : ; 2| {z }r�2 )g [ f3; 4; : : : ; r; r + 1g;and suh that hi = (2; : : : ; 2| {z }s )) hi+1 � 3)
H�n = ((h1; h2; : : : ; hn�1)�����h1; h2; : : : ; hn 2 f2; (2; 2); : : : ; (2; 2; : : : ; 2| {z }r�2 )g[[ f3; 4; : : : ; r; r + 1g; and suh that hi = (2; : : : ; 2| {z }s )) hi+1 � 3)Moreover, for i = 2; 3; : : : ; r � 1 de�neH in = ((h1; h2; : : : ; hn)�����h1 2 f2; (2; 2); : : : ; (2; 2; : : : ; 2| {z }r�1�i )g [ f3; 4; : : : ; r + 1g;h2; : : : ; hn 2 f2; (2; 2); : : : ; (2; 2; : : : ; 2| {z }r�2 )g [ f3; 4; : : : ; r; r + 1g;and suh that hi = (2; : : : ; 2| {z }s )) hi+1 � 3)Also de�nêH+n = �(h1; h2; : : : ; hn) 2 H+n j hn � 3	 ;Ĥ�n = �(h1; h2; : : : ; hn) 2 H�n j hn � 3	 ;Ĥ in = �(h1; h2; : : : ; hn) 2 H in j hn � 3	 ; i = 2; 3; : : : ; r � 1Let Vi(x) = 1i�x denote the inverse branhes of M0, andV�2; : : : ; 2| {z }s �(x) + (V2 Æ V2 Æ � � � Æ V2| {z }s )(x)De�neB+ = 1[n=1 [(h1;h2;:::;hn)2Ĥ+n (Vh1 Æ Vh2 Æ � � � Æ Vhn)((1� �; 1));



62 Natural Extensionsand similarlyB� = 1[n=1 [(h1;h2;:::;hn)2Ĥ�n (Vh1 Æ Vh2 Æ � � � Æ Vhn)((1� �; 1));Bi = 1[n=1 [(h1;h2;:::;hn)2Ĥin(Vh1 Æ Vh2 Æ � � � Æ Vhn)((1� �; 1)); i = 2; : : : ; r � 1Finally, let E;B;D � R2 be de�ned as follows:E = r�1[i=1 ��� ii+ 1 ;� (i� 1)i �� �0;M i�10 (1� �)�� [ ��0; 1r �� [0; 1� �℄� ;B = r�1[i=2 ��� ii+ 1 ;� (i� 1)i ��Bi� [ ���12 ; 0��B�� [��0; 1r��B+� ;D = E nBRemark that we have omitted the dependene on r of the sets B+; B�; Bi; E;Dfor simpliity of notation.

Figure 3.8: A omputer simulation for the domain D when r = 5.Theorem 3.14 (Natural extension for � = 1r ). Let � = 1r , r � 3 be �xed,



3.3 Natural extension for � = 1r 63and let D � R2 be de�ned as in x3.3.3. Let k(x) = ��� 1x ��+ 1� ��, andT�(x; y) = �T�(x); 1k(x) + sign(x)y� (3.9)Then T� : D ! D is well de�ned, one-to-one and onto, and it preserves thedensity K�(x; y) = 1C� 1(xy+1)2 , where C� = RD 1(xy+1)2 dxdy. In other words,T� : D ! D is a natural extension for T�.Here the reader should remark that the domain D and the funtion k alsodepend on �. In the following paragraphs, however, we will write T instead ofT� for the sake of simpliity.To prove Theorem 3.14 we shall need the following two lemmas:Lemma 3.15. Let z = hh1; h2; : : : ; hn; yi, where y > 2 is a real number andn � 1. Then 1� z is of the form Dh01; h02; : : : ; h0m; 11�1=(y�1)E, and(h1; h2; : : : ; hn) 2 H�n ) (h01; h02; : : : ; h0m) 2 H+m;(h1; h2; : : : ; hn) 2 H+n ) (h01; h02; : : : ; h0m) 2 H�mLemma 3.16. B+ [ �1�B�� = [�; 1� �℄ (mod 0) (3.10)and their union is disjoint.Proof of Lemma 3.15. Suppose that (h1; h2; : : : ; hn) 2 H�n . From the appli-ation of the Rules 1-3, it is straightforward to hek that after a suitable numberof steps in the algorithm we will obtain a remainder of the form 11�1=(y�1) > 1.We need to verify that at eah step of the reetion algorithm desribed inParagraph 3.3.2 the newly introdued digits in the by-exess expansion are inaordane with the de�nition of H+n . We will onsider separately the �rst stepand the ensuing ones. In the �rst step, we will have h1 2 f3; : : : ; r; r + 1g orh1 2 f2; (2; 2); : : : ; (2; 2; : : : ; 2| {z }r�2 )g.If h1 � 3; h2 � 3, applying Rule 1 we get1� hh1; h2; h3; : : :i = *2; 2; : : : ; 2| {z }h1�2 ; 3; 11� hh2 � 1; h3; : : :i+ (a)where h1 � 2 � r � 1.If h1 � 3; h2 = (2; 2; : : : ; 2| {z }n ); n � r � 2, using Rule 2 we �nd1� hh1; h2; h3; : : :i = *2; : : : ; 2| {z }h1�2 ; n+ 3; 11� hh3 � 1; h4; : : :i+ (b)where 0 � h1 � 2 � r � 1; n+ 3 � r + 1.Lastly, for h1 2 (2; 2; : : : ; 2| {z }n ); n � r � 2; h2 � 3, we have1� h2; : : : ; 2| {z }n ; h2; h3; : : :i = �n+ 2; 11� hh2 � 1; h3; : : :i� ()



64 Natural Extensionswhere n + 2 � r as needed. In all three ases we found an admissible initialsegment for H+m.The subsequent steps an be treated in a similar way, although we have to takeinto aount the ways in whih the remainder hhi+1; hi+2; : : :i from the originalsequene has been modi�ed by the reetion rules. More preisely: if hi+1 � 3it will be replaed by hi+1� 1 2 f2; 3; : : : ; rg; thus when hi+1 � 1 � 3, applyingRules 1 and 2, we will �nd (2; : : : ; 2| {z }hi+1�3 )as the next digit, with 1 � hi+1 � 3 � r � 2, whih is admissible for H+n .Moreover, when hi+1 � 1 = 2 and hi+2 is a sequene of twos they will beonsidered as a single digit, and it is possible to obtain the sequene(2; : : : ; 2| {z }r�1 )whih gives the new digit r+1 when we apply Rule 3. We have thus ompletedthe proof for (h1; h2; : : : ; hn) 2 H�n .When swithing the roles of H+n and H�n , we an follow the same basi outline.We briey list the few di�erenes that the reader an easily hek for himself:if (h1; h2; : : : ; hn) 2 H+n ,- in (a) and (b), we �nd h1 � r ) h1 � 2 � r � 2- in (), n � r � 1) n+ 2 � r + 1and so the reeted sequene is in aordane with the de�nition of H�n .Before moving on to the next Lemma, we make a few observations.First of all, notie that sine the inverse branhes Vi : x 7! 1i�x of M0 are allnon-dereasing funtions, from the by-exess expansions of a sequene of realswe an obtain full knowledge of their ordering. In fat,hh1; h2; : : : ; hn; : : :i < hh01; h02; : : : ; h0n; : : :im9i � 1 s. t. 8j < i; hj = h0j and hi > h0i (3.11)Realling the expansions of �; 1 � �; �; 1 � � from equations (3.7) and (3.8), itfollows that B� � [�; 1 � �℄ and B+ � [�; 1 � �℄, and moreover these are theminimal intervals ontaining B+ and B�: for example, the sequene(Vr Æ Vr+1 Æ Vr+1 Æ � � � Æ Vr+1)(x); x 2 (1� �; 1);goes arbitrarily lose to � as the number of pre-images grows.We also observe that if x 2 (1 � �; 1), its by-exess expansion must be of theform x = h2; 2; : : : ; 2| {z }r�1 ; hr; hr+1; : : :i; hr � 2



3.3 Natural extension for � = 1r 65Proof of Lemma 3.16. We �rst want to prove that B+ and 1�B� are dis-joint. Let x 2 B�; then there exists l � 1 suh thatM l0(x) 2 (1��; 1); M j0 (x) 2[�; 1� �℄ 8j < l. Observe thatz 2 (1� �; 1)) z = *2; : : : ; 2| {z }r�2 ; 3; : : : ; 2; : : : ; 2| {z }r�2 ; 3| {z }k ; 2; : : : ; 2| {z }r�1 ; : : :+ ; k � 0Equivalently, for some i � 1 we have x = hh1; h2; : : : ; hi; 2; : : : ; 2| {z }n ; : : :i, wheren � r � 1; hi � 3; (h1; h2; : : : ; hi) 2 Ĥ�i ; (h1; h2; : : : ; hi�1) 2 H�i�1Then from Lemma 3.15 we get1� x = 
h01; : : : ; h0m; 11� hhi � 1; 2; : : : ; 2| {z }n ; : : :i�;with (h01; : : : ; h0m) 2 H+m, and applying Rule 2 (or Rule 3 if hi = 3), we �nd1� x = *h01; : : : ; h0m; 2; : : : ; 2| {z }hi�3 ; n+ 3; z+ ; n+ 3 � r + 2; 0 � hi � 3 � r � 2Observe that (h01; : : : ; h0m; 2; : : : ; 2| {z }hi�3 ) 2 H+m+1 (or to H+m if hi � 3 = 0), butlearly (h01; : : : ; h0m; 2; : : : ; 2| {z }hi�3 ; n + 3) does not belong to B+ beause it ontainsthe forbidden digit n + 3. Sine none of the iterates of 1 � x up to that pointbelongs to (1� �; 1), we �nd that 1� x =2 B+:Next we want to show that B+ [ (1�B�) = (�; 1� �).Let x = hh1; h2; : : :i 2 (�; 1 � �) n B+. We must prove that for almost everysuh x we have 1� x 2 B�. We have to onsider two ases:- 8n � 1; (h1; : : : ; hn) 2 H+n , and so none of the iterates Mn�10 (x) belongsto (1� �; 1)- For some i, the by-exess expansion of x ontains a forbidden digit hi: ei-ther hi = (2; : : : ; 2| {z }n ); n � r or hi � r+1 when i = 1, or hi = (2; : : : ; 2| {z }n ); n �r � 1 or hi � r + 2 when i > 1.However, observe that sine the �rst ondition entails in partiular that all theelements hi in the by-exess expansion of x should be bounded, it is satis�ed onlyfor a set of Lebesgue measure 0, and therefore it is negligible for our purposes(equivalently, reall that M0 is ergodi).Next, observe that x < 1�� implies that the digit 2 annot appear r onseutivetimes in the initial segment of the by-exess expansion of x, and x > � impliesh1 � r. Let i be the minimum integer suh that 8j < i; (h1; : : : ; hj) 2 H+j and



66 Natural Extensions(h1; : : : ; hi) =2 H+i (we have just seen that i > 1). Then hi annot be of theform (2; : : : ; 2| {z }n ); n � r�1 beause then hhi; hi+1; : : :i > 1�� and x would belongto B+. The only ase left to onsider is then hi � r + 2. Equivalently, one ofthe iterates M i�k0 ; k � 0 of x is of the form hr + 1; : : : ; r + 1| {z }k ; r + 2; : : :i < �.Applying Lemma 1 with n = i�k�1 > 1, 1y = 
 r + 1; : : : ; r + 1| {z }k ; r+2; : : : �, weget 1 � x = Dh01; : : : ; h0m; 11�1=(y�1)E ; (h01; : : : ; h0m) 2 H�m. Now observe that� = 1r+1�� ) 1��1 = r�� = 1� . Then y�1 > 1��1 > 1� ) 1� 1y�1 > 1��. Nowif h0m � 3, we have (h01; : : : ; h0m) 2 Ĥ�m and 1� x 2 B�. But if h0m = (2; : : : ; 2| {z }s ),we have h0m�1 � 3 and Dh0m; 11�1=(y�1)E is still greater than 1 � �, and again1�x 2 B� (observe thatm > 1, otherwise 1�x = Dh0m; 11�1=(y�1)E > 1��).3.3.4 Proof of Theorem 3.14First of all, we observe that Lemma 2 implies that T is one-to-one on D. Infat, suppose that T (x1; y1) = T (x2; y2). Sine y2 2 [0; 1℄, we must have k(x2) 2fk(x1)� 1; k(x1); k(x1) + 1g.- If k(x1) = k(x2) and sign(x1) = sign(x2), then obviously x1 = x2; y1 = y2.- If k(x1) = k(x2) and sign(x1) = � sign(x2), we �nd y1 = �y2, whih ispossible only for fy1 = y2 = 0g, a negligible set.- Lastly, if x1 > 0; x2 < 0 and k(x2) = k(x1) + 1, we get y2 = 1� y1. But(x1; y1) 2 D ) y1 2 [0; �℄ [ ([�; 1 � �℄ n B+) ) y2 2 B� [ (1 � �; 1) )(x2; y2) =2 D. Thus T is one-to-one (mod 0).Then we an write T (D nB) = T (D) nT (B). Now it is quite straightforward tohek that T (D) = D. In fat, realling thatfx > 0 j k(x) = ng = � 1n+ �; 1n� 1 + �� ; n > rfx > 0 j k(x) = rg = � 1r + �; �� ; n > rfx < 0 j k(x) = ng = �� 1n� 1 + �;� 1n+ �� ; n > 2fx < 0 j k(x) = 2g = ��� 1;� 12+ ��we �ndT ��� ii+ 1 ;� (i� 1)i �� ��0;M i�10 (1� �)� nBi�� == �� (i� 1)i ;� (i� 2)i� 1 ����12 ;M i�20 (1� �)� nBi�1� ; i = 2; : : : ; r � 1; (a)
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1�rr 0 1r
a  eb d g

�12 � 12+� 1r+�� 1r+�

12+�f

1� �1� �
M0(1� �)

Figure 3.9: A simpli�ed diagram showing the bloks (a)-(g) in the domain.

1�rr 1r
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0
T ()
T (a)

T (d)T (f); T (e)

T (b)
T ()

T (f); T (e)T (d); T (g)
12

1r+�
12+�
1r+1

Figure 3.10: A simpli�ed diagram showing the images with respet to T of the bloks(a)-(g).



68 Natural ExtensionsT ���12 ;� 12 + ��� �[0; 1� �℄ nB��� = [0; �℄ � ��12 ; 1� �� nB+� ; (b)T ��� 1n� 1 + �;� 1n+ ��� �[0; 1� �℄ nB��� == [�� 1; �℄��� 1n; 1n� 1 + � � nB�� ; n = 3; : : : ; r ()Here we observe that B+ [ h 1r ; 12+� i = B� [ h 1r ; 12+� i = Bi [ h 1r ; 12+� i fori = 2; 3; : : : ; r � 1. Also remark that the retangles h� (r�2)r�1 ; �i� h 12+� ; 12i and[�� 1; �℄� h 1n+� ; 1ni for n = 3; : : : ; r both belong to B.T ��� 1r + �;� 1r + 1 + ��� �[0; 1� �℄ nB��� == �[�� 1; 0℄��� 1r + 1 ; 1r + � � \D��[[ �[0; �℄��� 1r + 1 ; 1r + � � n Vr+1(B�)�� (d)(Here we wanted to highlight the fat that B+ \ h 1r+1 ; 1r+� i = ?.)T ��� 1n� 1 + �;� 1n+ ��� �[0; 1� �℄ nB��� == [�� 1; �℄��� 1n; 1n� 1 + � � n Vn(B�)� ; n � r + 2 (e)T �� 1n� 1 + �; 1n� 2 + ��� �[0; 1� �℄ nB+�� == [�� 1; �℄��� 1n� � ; 1n� 1� n V +n�1(B+)� ; n � r + 1 (f)where we set V +n (x) = 1n+x .T �� 1r + �; ��� �[0; 1� �℄ nB+�� == [0; �℄��� 1r + 1� � ; 1r� n V +r (B+)� (g)To onlude the proof observe thatB+ [ (1�B�) = [�; 1� �℄) V +r (B+) = � 1r + 1� � ; 1r + � � n Vr+1(B�)whih together with (d) proves that T is onto.The fat thatK(x; y) is invariant for T an be easily heked through the hangeof variables formula, as we have already seen in equation 3.4.



3.3 Natural extension for � = 1r 69Remark 3.17. It is important to remark that it is still true that the boundaryof D has measure 0. In fat, as we have already seen, exept for the points ywhose 0-ontinued fration digits are all less or equal to r + 1, whih are a setof measure 0, all the other points in the vertial setions D(x) belong to someylinder of M0 whih is fully ontained in D(x).Roughly speaking, for almost all points in D(x) the \utting proess" desribedin x3.3.3 ends after a �nite time.Therefore the boundary of D(x) is the union of a ountable number of points,and has measure 0.3.3.5 Invariant densities and entropy for � = 1rSine �1ÆT� = T�Æ�1, where �1 is simply the projetion on the �rst oordinate,the invariant density for T� is obtained by integrating K�(x; y) with respet tothe seond oordinate. Given a sequene (h1; h2; : : : ; hn), de�nea(h1; h2; : : : ; hn) = 1Dh1; h2; : : : ; hn; 11��E > 1b(h1; h2; : : : ; hn) = 1hh1; h2; : : : ; hn � 1i > 1Let  +(x) = 1Xn=1 X(h1;:::;hn)2H+� 1x+ b(h1; : : : ; hn) � 1x+ a(h1; : : : ; hn)� ; �(x) = 1Xn=1 X(h1;:::;hn)2H�� 1x+ b(h1; : : : ; hn) � 1x+ a(h1; : : : ; hn)� ; i(x) = 1Xn=1 X(h1;:::;hn)2Hi � 1x+ b(h1; : : : ; hn) � 1x+ a(h1; : : : ; hn)�for i = 2; : : : ; r � 1, and observe thatZ ba 1(1 + xy)2 dy = 1x+ 1b � 1x+ 1aIt follows that, for a suitable normalization onstant �,�� =  �(x)� = 1� 0�r�1Xi=20��[� ii+1 ;� (i�1)i ℄(x)0� 1x+ 1Mi�10 (1��) �  i(x)1A1A++�[� 12 ;0℄(x) 1x+ 11�� �  �(x)!+ �[0; 1r ℄(x) 1x+ 11�� �  +(x)!!is an invariant density for T�.Remark 3.18. Even in the ase � = 1r the domain of the natural extensionseems too ompliated to allow for a diret omputation of the entropy. How-ever, as far as Corollary 2.9 is onerned, it is probably possible to prove a muh



70 Natural Extensionsstronger result. In fat Nakada [16℄ showed that in the ase of 12 � � � 1, theintegral �2 R ���1 log jxj RD�(x)K(x; y)dydx (where D�(x) are the vertial se-tions of the domain of the natural extension) is onstant2 and equal to �26 . Weonjeture that the same should be true for 0 < � < 12 .Remark 3.19. One may ask whether the proof of Theorem 3.14 ould beadapted to the general ase of � 2 (0;p2�1) with relatively small hanges. Weobserve that our proof makes use of the fat that T 1r � 1r � = 0 = T r�11r � 1r � 1�.Also in the ase � 2 [p2�1; 1℄, as shown in [16℄ and [6℄, the onstrution of theNatural Extension depends on the fat that the tails of the �-expansions of �and ��1 oinide after one or two iterations (more preisely, T 2�(�) = T�(��1)when � 2 [g; 1℄, and T 2�(�) = T 2�(� � 1) when � 2 [p2� 1; g℄).In the general ase, one would need an expliit relation between the �-expansionsof � and of �� 1, whih at present is not known.

2The theory of S-expansions provides an explanation of this surprising fat, see [11℄.
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73IntrodutionReently, the di�usion of wireless networks has led to the development of newoding shemes in order to improve performanes on fading hannels; algebrainumber theory has proven to be an e�etive tool for their design.Wireless transmission introdues new problems with respet to the lassialmodel of the Additive White Gaussian Noise (AWGN) hannel: in fat theeletromagneti signal, propagating along multiple paths, is a�eted by atte-nuations, delays and frequeny shifts, olletively alled \fading", that makethis hannel muh less reliable than the AWGN. The most e�etive strategy toounterbalane fading is to introdue diversity in the transmission, that is tosend the same information through multiple independent hannels. There areseveral ways to inrease diversity:- in spae, by reeiving the same signal through multiple antennas, thatmust be suÆiently spaed to ensure that the fadings on the di�erentpaths are unorrelated;- in time, by reeiving the same signal at suÆiently long time delays;- in frequeny, by transmitting the same signal over di�erent frequenies.However, the seond method has the drawbak of introduing heavy delays inthe ommuniation, while the third entails a waste of the available bandwidth.The use of multiple antennas both at the transmitter and at the reeiver (Mul-tiple Input, Multiple Output or MIMO) allows for a potential diversity of MN ,where M is the number of transmit antennas and N is the number of reeiveantennas.In general, the implementation of oding for wireless hannels must take intoaount the atual availability of resoures (bandwidth, power, ost of the ap-plianes) and answer three basi and often oniting needs:- inreasing the rate of transmission,- inreasing diversity,- keeping a low deoding omplexity.In the MIMO setting, the information vetor u, belonging to a �nite signalsubset or \onstellation" S, is enoded in a spae-time blok, that is an M � Tmatrix B(u), whereM is the number of transmit antennas and T is the durationof the signal.In this ontext the fundamental parameters to assess the system performaneare the diversity gain minu 6=u0 (rkA(u; u0)), and the oding gain1ES minu 6=u0 (detA(u; u0)) 1M ;where A(u; u0) = (B(u) � B(u0))(B(u) � B(u0))H , u; u0 2 S, and ES is theaverage energy of the onstellation.In 2002 Bel�ore, Damen and Tew�k [10℄ proposed a 2� 2 full rate ode whihguarantees maximum diversity, and their method an be extended to the higher-dimensional ase. Its major drawbak, however, is that the oding gain vanisheswhen the size of the onstellation grows to in�nity.



74In the 2-dimensional ase, this problem has been solved by Bel�ore, Rekaya andViterbo [5℄ with the Golden Code G, a full-rate, full-rank ode whose minimumdeterminant does not vanish when the size of the onstellation tends to in�nity.This design is based on a prinipal ideal AO of a maximal order O in a quater-nion algebra A of matries over Q(i), ontaining as a maximal sub�eld thenumber �eld K = Q(i; �), where � is the Golden number.3Eah information vetor u 2 Z[i℄4 an be mapped to a matrix AB(u) in AO.A turns out to be a division ring, and the determinant of AB(u) is nothing butits redued norm, so that it is a nonzero Gaussian integer, modulo a normaliza-tion onstant. Therefore the minimum determinant is bounded from below bya �xed onstant Æmin = 15 , for any size of the onstellation S � Z[i℄4.It an be shown that this is the best performane one an obtain from thiskind of onstrution using the �eld Q(i;pp), where p is a prime number, p � 5(mod 8).Moreover, the design guarantees ubi shaping, whih is onvenient both forenergy eÆieny and fast deoding: when vetorized, AO is a rotated versionof the lattie Z[i℄4, and allows for e�etive deoding using the Sphere Deoderand the Viterbo-Boutros algorithm.It is possible to obtain a further inrease in the oding gain by using a suitablesubode of the Golden Code, in the hoie of whih deoding omplexity mustbe taken into aount.Bel�ore, Hong and Viterbo [4℄ have reently desribed a hain of nested left ide-als of the form Gk = GBk, 1 � k � 4, suh that the index [Gk : Gk+1℄ betweentwo suessive subodes is 4, and the minimum determinant in Gk is 2kÆmin.Moreover, eah ideal Gk is isometri to a well-known lattie; in partiular, G2 isisometri to the Gosset lattie E8 .A more general problem onsists in building a blok ode X = (X1; : : : ; XL),where eah omponent Xi is a Golden odeword. Choosing the Xi 2 Gk in-dependently, we obtain a very simple blok ode. For small sizes of the signalonstellation these subodes already yield a performane gain with respet tothe \unoded" Golden Code (that is, with respet to hoosing Xi 2 G indepen-dently). However, this gain is anelled out asymptotially by the loss of rate asthe size of the signal set grows to in�nity [4℄, sine an energy inrease is requiredto mantain the same spetral eÆieny, or bit-rate per hannel use.A better performane is ahieved when the Xi are not hosen in an independentfashion. For example it is possible to exploit the hierarhi struture of thepartition hain fGkg previously desribed by ombining two enoders: a trellisenoder whih outputs the osets of Gk=Gl, 1 � k < l � 4, and a lattie enoderfor Gl (Trellis Coded Modulation). The Viterbi algorithm (soft deoding) an beemployed for the trellis deoding, in assoiation with a Sphere Deoder in eahoset.In the ase of blok odes, the oding gain is a power of� = minX 6=0 det LXi=1 XiXHi ! � minX 6=0 LXi=1 det �XiXHi � = �03Following the notation in [5℄, from now on we will denote the Golden number 1+p52 bythe letter �.



75The expression � is diÆult to handle beause it ontains mixed terms of theform  eXiXj2F , where X 7! eX is an involution of G, and k�kF is the Frobeniusnorm. The odes in [4℄ are designed to maximize the approximate parameter �0and so a priori they might be suboptimal; in x6.4.1 we treat the mixed terms.In x6.5 we desribe some simple blok odes designs for L = 2; 3 that are liftsof linear odes over the quotient group G=G1. We desribe the lattie strutureof G1 and ompute the minima of the Frobenius norms of the produts over allpairs of osets; we use this information to selet the odes with the best weightenumerator polynomials in dimension 2 and 3.When using ideals of G to build blok odes, it is preferable to:- hoose ideals whose index is a power of two, in order to have a variety ofsimple binary set partitioning shemes available;- hoose two-sided ideals, so that the quotient has a nie ring struture.The ideals in [4℄ satis�ed the �rst ondition but not the seond; in x6.6.2, weshow that (unfortunately) the only two-sided ideals of G whose index is a powerof two are the trivial ones, that is, the ideals of the form G with  2 Z[i℄, andjj2 a power of two.In partiular, we study the quotient rings G=(1 + i)G and G=2G whih turn outto be isomorphi to the rings of 2 � 2 matries over F2 and F2 [i℄ respetively.Unfortunately, only a very sparse literature is available on the subjet of odesover non-ommutative rings, espeially as far as eÆient deoding algorithmsare onerned, and for the time being we have been unable to exploit the ringstruture diretly for ode onstrution, exept in the simple ase of the repe-tition ode over the osets of (1 + i)G. This basi onstrution provides a �rstappliation of the riteria based on the estimate of the mixed terms, and ourperformane simulations show that it an lead to up to 2:9 dB of gain with re-spet to the \unoded" ase.However, it is still possible to take advantage of the struture of F2 -module ofthe quotient; from the additive point of view, the quotient G=2G is indistinguish-able from F256 , for whih a wide variety of error-orreting odes are available.In x6.8, we ombine a shortened Reed-Solomon ode with the enoder of thequotient ring to inrease the minimum Hamming distane of the ode. Themain advantage with respet to trellis odes is the relative ease of deoding.Simulation results show that using 4-QAM onstellations, that is using onlyone lattie point per oset, we obtain a gain of up to 6 dB with respet to theunoded Golden Code at the same spetral eÆieny, under the hypothesis thatthe hannel remains onstant for the entire length of the blok. This assumptionorresponds to the slow fading ase, and may be onsidered realisti when theblok length does not exeed one hundred, leaving spae for further improve-ments. This onstrution an be extended to the 16-QAM ase, yielding a gainof up to 3:8 dB.





Chapter 4Coding for wireless hannels4.1 The wireless hannel model4.1.1 The transmitter noisew
��soure u // modulator x // hannel y // demodulator û // reeiverfadingR OO

Figure 4.1: The various stages of transmission.In the typial model, the soure emits a binary vetor u 2 f0; 1gm. This infor-mation is oded in suh a way as to be optimized for transmission:- �rst, the soure enoder ompresses the original message, removing anyredundanies;- afterwards, the hannel enoder embeds some redundany in the messagein order to protet the information from the errors that may arise duringthe transmission.In the following paragraphs, we will not take the soure enoder into aount.4.1.2 The modulatorThe digital modulator assoiates an analog waveform x to the oded informationvetor. In amplitude modulation, it is the amplitude of the wave whih arriesthe information, while in frequeny modulation, information is stored in theinstantaneous frequenies of the wave.First, the binary message is mapped into a point of a real or omplex lattie �.



78 Coding for wireless hannelsThe set of all possible emitted waveforms is a �nite subset S � �, of ardinality2m, alled a signal onstellation. The omponents of the lattie vetor are usedto modulate a linear ombination of basis waveforms.In most ases it is best to hoose the mapping f0; 1gm ! S in suh a way thatnearest binary neighbors (with respet to the Hamming distane) orrespondto nearest neighbors in the lattie (with respet to the Eulidean distane). Inpartiular, the mapping is alled a Gray mapping if the labellings of every pairof adjaent lattie points have Hamming distane 1.In the following hapters we will always onsider Quadrature Amplitude Mo-dulation or QAM; with this type of modulation, data is onveyed by hangingthe amplitude of two orthogonal arrier waves. The amplitudes of the �rstand seond wave are respetively alled the \in phase" omponent and the\quadrature" omponent.Figure 4.2 shows the representation of some widely used QAM onstellations inthe in phase-quadrature plane. We an identify these onstellations with subsetsof a Z[i℄-lattie shifted by 12 + i 12 . The minimum Eulidean distane betweentwo points will always be 1. We also report the average energy for eah ase,whih will be useful in the sequel:E4�QAM = 0:5; E8�QAM = 1:5;E16�QAM = 2:5; E32�QAM = 5 (4.1)The number of information bits transmitted for eah hannel use is alled thespetral eÆieny of the modulation sheme, and is measured in bpu (bits perhannel use).Clearly, inreasing the ardinality or \size" of the onstellation allows for agrowth in spetral eÆieny, but orresponds to a greater average energy (orequivalently, to a derease in the minimum Eulidean distane).4.1.3 The hannelIn the AWGN ase, aross the hannel the signal x is perturbed by a randomnoise w, so that the reeived signal is y = x + w. With wireless transmission,further ompliations appear ompared to the AWGN model: the signal (aneletromagneti wave) propagates along multiple paths, with reetion, refra-tion and sattering e�ets due to the presene of massive obstales like housesor mountains. In the ase of mobile telephony, moreover, other relevant per-turbations inlude the Doppler e�et due to the relative motion between thetransmitter and the reeiver, and the derease in signal power when the dis-tane from the transmitter antenna inreases.Thus the reeived signal is distorted not only by the noise, but also by attenu-ations, delays and frequeny shifts, olletively denoted by the term fading.Sine the fading e�ets depend on the partiular environment in whih transmis-sion takes plae, it is virtually impossible to determine their sum. In pratie,a good working approximation onsists in assuming that the very great numberof propagation parameters an be modelled as independent random variables sothat the Central Limit Theorem holds.In the ase of a modulated signal, in general the di�erent frequenies omposingthe signal are subjet to independent fadings and phase shifts (frequeny sele-tive fading); we only onsider the ase where the bandwidth range is narrow
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4−QAM 8−QAM
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Figure 4.2: Some QAM (Quadrature Amplitude Modulation) onstellations.so that we an assume that the fading ats multipliatively. In this ase thereeived signal y, seen as a point in Rn , is given byy = Hx+ w (4.2)where w is a omplex Gaussian random variable of zero mean and variane N02 ,and H is a random diagonal matrix whose entries �i are independent randomvariables with Rayleigh density1:p(r) = ( r�2 e� r22�2 0 � r <10 r < 0 (4.3)We also assume E [�2i ℄ = 1 8i, so that �2i = 12 , and p(�i) = 2�ie��2i .The assumption that the �i are independent is reasonable when using an inter-leaver, whih permutes the odeword omponents so that fadings on adjaentomponents an be onsidered unorrelated.Sine we have supposed the fading matrix to be normalized, we an de�ne thesignal-to-noise ratio or SNR � as the ratio between the average signal power(see x4.1.2) and the average noise power: � = 2ESN0 .4.1.4 DeodingNow we suppose that the reeiver knows the fading oeÆients �i (perfet Chan-nel State Information or CSI). In fat, when the fading varies slowly ompared1The Rayleigh density is the distribution of the modulus of a omplex Gaussian randomvariable.



80 Coding for wireless hannelsto the duration of the signal, the information signal an be preeded by a se-quene of pilot symbols, allowing the reeiver to estimate the fading parameters.The demodulator must reover from y an estimate x̂ 2 S of the original signal.Figure 4.3 provides an intuitive explanation of the fat that rotated latties
a) b)

d)c)Figure 4.3: An example of the e�et of rotation on the resistane to fading: �gures a)-) show a 4-QAM onstellation before and after fading, �gures b)-d) show the rotatedase. In the �rst situation, with strong fading on the seond oordinate, lattie pointsan be easily onfused. In the rotated ase, the lattie points are easier to tell apart.work better to ontrast fading in two dimensions. In fat, rotating orrespondsto inreasing the \algebrai dimension" of the lattie but entails no extra ost.When the dimension of the lattie inreases, the performane an approah thatof a Gaussian hannel without fading; at the same time, however, deoding be-omes more omplex.The points of S must be well-spaed in order to guarantee a low error probabilityin the deoding; on the other side, the square norm kxk2 represents the powerof the transmitted signal, and so the diameter of the onstellation S should bekept as small as possible. In theory, the most advantageous shape for S wouldbe a sphere; however, labelling the lattie points ontained in a sphere turns outto be too ostly in terms of omputations, and usually a ubi shape is preferred.Thus, onstellations arved from rotated Zn latties are a more desirable hoiethan onstellations oming from skew latties.Sine the oeÆients �i are known a posteriori, the reeived signal omponentsyi = �ixi+wi an be modelled as Gaussian random variables N ��ixi; �N02 �2�.The Maximum Likelihood riterion (ML deoding) oinides with the minimum



4.1 The wireless hannel model 81Eulidean distane:x̂(y) = argmaxx2S P (yjx) = argmaxx2S 1�p2�N02 �n e� nPj=1 2(yj��jxj)2N20 == argminx2S nXj=1 (yj � �jxj)2 = argminz2H(S) nXj=1 (yj � zj)2 (4.4)4.1.5 The Sphere DeoderThe searh for the minimum in equation (4.4), that is the searh for the losestlattie point to a given reeived point in the deformed lattie H(S), beomestoo ostly in terms of omputation time when #S inreases. For an eÆientand fast deoding, the Sphere Deoder may be used [18℄.This algorithm exploits the fat that, when the dimension of the spae grows,the number of lattie points ontained in a sphere beomes muh smaller thanthe number of points inside a ube of the same radius.We onsider here the ase when � = MZn is a real lattie with generatormatrix M . In the omplex ase � = MZ[i℄n, we an simply separate the realand imaginary parts, obtaining a real lattie of dimension 2n.The deoder examines only the points found inside a sphere of radius pC andentered in the reeived point y. Let �0 = y�H� be the deformed lattie withthe origin translated to y: minz2H� ky � zk2 = minw2�0 kwk2We have x = Mv 2 � for some v 2 Zn, y = HM� for some � 2 Rn , w =HM(�� v) = HM�. Thenkwk2 = wHw = �HG� = nXi=1 gij�i�j � Cwhere G is the Gram matrix assoiated to the lattie generator matrix HM .The set fPni=1 gij�i�j = Cg is an ellipsoid in the � oordinates.Applying Cholesky's fatorization, we an write G = RHR with R upper trian-gular. Then�HG� = kR�k2 = nXi=10�rii + nXj=i+1 rij�j1A2 = r2ii  �i + nXi=1 rij�jrii !2 � CChoosing new oordinates �i = �i +Pnj=i+1 rijrii , we �nd the equation of an n-dimensional ellipsoid entered in the origin whose axes are the arthesian axes.The searh is then onduted inside the boundaries of this ellipsoid [18℄.When a lattie point is found inside, its distane to the enter is ompared topC ; if it is smaller, the searh radius is updated. If C is too small and no lattiepoints are found inside the ellipsoid, an erasure is delared and the searh isrenewed with a bigger radius. Thus it is very important to get a good estimateof C from the beginning. In general the hoie of the initial radius pC is based
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a) b)Figure 4.4: The problem of enumerating the points of a skew lattie that fall insidea sphere of given radius an be redued to the problem of �nding the points of a Znlattie inside an ellipsoid.on the SNR. In pratie, a good hoie for C might be the smallest of the fadingoeÆients �i, whih orresponds to the shortest of the axes of the ellipsoid.One of the drawbaks of the Sphere Deoder algorithm in the presene of fadingis that H , and thus the lattie, vary with eah reeived symbol, so that a newCholesky fatorization has to be performed eah time.4.1.6 The union bound estimateThe problem of hoosing a onstellation S that minimizes the error probabilitywith respet to ML deoding is extremely omplex. In general, the lassialunion bound estimate holds, sine S is a �nite subset of the linear lattie �:Pe(S) � Pe(�) � Xx0 6=xP (x! x0) (4.5)In the previous equation, the pairwise error probability (PEP) P (x ! x0) de-notes the probability that y is loser to x0 than to x with respet to the Eulideanmetris. The onditioned probability with respet to the hannel yields [6℄:P (x! x0 jH) = P  nXi=1 ��yi � �i(x0i)2�� � nXi=1 ��yi � �ix2i ��! == P  nXi=1 j�i(xi � x0i) + wij2 � nXi=1 jwij2! == P  nXi=1 �2i (xi � x0i)2 + 2 nXi=1 �i(xi � x0i)wi � 0!Consider the random variable � =Pni=1 �i(xi�x0i)wi: � is a linear ombinationof the Gaussian random variables wi � N (0; N02 ), so it is also Gaussian with 0mean and variane �2 = N02 Pni=1 �2i (xi � x0i)2. The PEP an thus be written



4.1 The wireless hannel model 83as P (x! x0 j H) = P  � � 12 nXi=1 �2i (xi � x0i)2!Let A be the known quantity 12Pni=1 �2i (xi � x0i)2. ThenP (� � A) = Z 1A 1p2�� e� t22�2 dt = Z 1A�2 1p2�e�s22 dsRealling the Gaussian tail funtion estimate1p2� Z 1a e� t22 dt � 12e�a22we obtainP (x! x0 j H) � 12e� A2�2 = 12e� (Pni=1 �2i (xi�x0i)2)24N0 Pni=1 �2i (xi�x0i)2 = 12e� 14N0 nPi=1�i(xi�x0i)2Notie that in the last expression we an omit the sum over the indies i suhthat xi = x0i. In order to obtain the unonditioned PEP, we average over thefading oeÆients �i:P (x! x0) = Z P (x! x0 j H)p(�1) � � � p(�n)d�1 � � � d�n �� 12e� 14N0 Pni=1 �2i (xi�x0i)2p(�1) � � � p(�n)d�1 � � � d�nRealling that the �i are assumed to be independent and Rayleigh distributed(see equation (4.3)) with E [�2i ℄ = 1, so that p(�i) = 2�ie��2i , we obtainP (x! x0) � nYi=1�Z 10 e��2i (xi�x0i)24N0 �ie��2i d�i� == nYi=1 Z 10 �ie��2i�1+ (xi�x0i)24N0 �d�i! = nYi=1 12�1 + (xi�x0i)4N0 �If the signal-to-noise ratio is big enough, we an writeP (x! x0) � 12 Yxi 6=x0i 4N0(xi � x0i)2Introduing the auxiliary funtionsl(x; x0) = #fi j xi 6= x0ig; dP (x; x0) = Yxi 6=x0i jxi � x0ij ;we obtain P (x! x0) � 12 Yxi=x0i 4N0(xi � x0i)2 = 12 (4N0)l(x;x0)(dP (x; x0))2 (4.6)The dominant term in the union bound sum (4.5) is the one whih ahieves theminimum L of l(x; x0), and is alled the diversity of the system. The goal isthen to maximize L and, for maximum L, the produt distane dP .Clearly in general the error probability Pe(S) inreases when the size of theonstellation S inreases.



84 Coding for wireless hannels4.2 Multiple antenna systemsThanks to the inreased diversity, the use of multiple antennas both at thetransmitter and at the reeiver an make for a substantial gain in the reliabilityof wireless ommuniations. The main objetive when designing MIMO shemesis to ahieve a tradeo� between transmission rate and diversity. At the oppositeends of the spetrum, one an plae the following behaviors:- sending independent signals through eah antenna simultaneously, gettingthe maximum rate gain and no diversity gain;- sending the same signal from all antennas, obtaining the maximum diver-sity gain and no rate gain.The maximum rate that an be attained using M transmit antennas and Nreeive antennas is minfM;Ng, while the maximum diversity is MN (orre-sponding to the number of independent paths between transmit and reeiveantennas).As we will see, in some speial ases, depending on the number of transmit andreeive antennas, it is possible to ahieve both ends, full rate and full diversity,without any loss, using tools from number theory.4.2.1 Error probability and determinant riterionWe onsider a system with M transmit antennas and N reeive antennas. Theinformation vetor u = (u1; : : : ; uk) belonging to a onstellation C � Z[i℄k isoded into an M � T matrix, B(u) = (bmt), whose entries are in another on-stellation S. bmt is the symbol transmitted by the m-th antenna at the timet 2 f1; : : : ; Tg. B(u) is alled a spae-time blok. The signal reeived by theantenna n at the time t is ynt = MXm=1hnmbmt + wnt; (4.7)Here we suppose that the fading oeÆients hnm between transmit antenna mand reeive antenna n stay onstant for a time T (quasi-stati fading).This assumption is realisti if the duration T of the blok is smaller than theoherene time of the hannel, that is the time length for whih the e�ets ofthe Doppler shift on the hannel an be ignored. If T is large, we say thatthe hannel is slow fading ; this behavior may be aused by large obstrutionsbetween transmitter and reeiver.For most pratial appliations, it has been estimated [2℄ that the oherenetime is greater than 0:01 seonds, so that T < 200 is a legitimate assumption.Moreover, we suppose that there is perfet CSI at the reeiver (oherent ase).As in the single antenna ase, it is possible to estimate the error probability fora pair of spae-time bloks Pe(B(u)! B(u0)), and it turns out thatPe(B(u)! B(u0)) � 1�(Qri=1 �i) 1r ESN0 �rN ; (4.8)where r is the rank of the matrix B(u; u0) = (B(u) � B(u0))(B(u) � B(u0))H ,�i are its nonzero eigenvalues, and ES is the average energy of the onstellation



4.2 Multiple antenna systems 85used [24℄. In order to minimize the error probability, then, the following riteriamust be adopted:a) Maximize minu 6=u0 r = minu 6=u0 rk(B(u)�B(u0)), alled diversity gain ;b) Maximize � = minu 6=u0 (Qni=1 �i) 1r , alled oding gain.Using the Gaussian tail estimate (4.8), we an ompare two di�erent odingshemes at the same spetral eÆieny by onsidering the ratioas = (�1) 1r =ES;1(�2) 1r =ES;2 (4.9)This parameter, alled asymptoti oding gain, yields a good estimate for highSNR. When this ratio is favourable, the same word error probability an beahieved at a lower SNR; this gain in SNR, measured in deibels, is equal to10 log10 as.4.2.2 Channel apaityIn this setion we briey reall a few notions from information theory.Aording to Shannon's Channel Coding Theorem, eah transmission hannelHwith noise admits a uto� rate or apaity C(H), that is a limit rate under whihreliable ommuniation is possible. By reliable ommuniation for a ertain rateR, we mean that the word error probability for a sequene of random odes oflength n and rate R in the Shannon ensemble goes to 0 as the ode length ntends to in�nity.Conversely, if the rate is greater than the uto� rate, Shannon's Theorem tellsus that any ode will have a positive error probability.Shannon's result also implies that, roughly speaking, a ode hosen at randomis very likely to be good; however, in pratie random odes are not a goodsolution beause they would be too diÆult to deode, and it is preferable tofous on the problem of designing deterministi odes that ome as lose aspossible to the uto� rate.For a memoryless hannel, the apaity is given byC(H) = maxX I(X;Y );where I(X;Y ) is the mutual information between the input X and the outputY , and the maximum is taken over all the probability distributions of X .When evaluating the apaity of multiple-antenna systems over fading hannels,it is important to distinguish between the high SNR regime and the low SNRregime.In the low SNR ase, the most important parameter to onsider is the diversityadvantage; we say that the diversity advantage of the system is d if the averageerror probability deays like 1SNRd .If on the ontrary the signal-to-noise ratio is high, the \number of degrees offreedom" or independent fading paths available for transmission plays a moreimportant role. We say that a sheme has spatial multiplexing gain r if theapaity of the hannel is approximately r log(SNR). It has been shown by Fos-hini [13℄ that the maximum spatial multiplexing gain attainable is min(M;N),



86 Coding for wireless hannelswhere M is the number of transmit antennas and N is the number of reeiveantennas.Zheng and Tse [26℄ proved that there is a fundamental tradeo� between diver-sity and spatial multiplexing; in fat for a blok length L � M + N � 1, theoptimal diversity d(r) is given by d(r) = (M � r)(N � r). Intuitively, if r trans-mit and reeive antennas are used to inrease multiplexing, only the remainingM � r transmit and N � r reeive antennas an provide diversity.Ahieving the diversity-multiplexing tradeo� is the key for optimizing transmis-sion for both high and low SNR regimes.Remark 4.1. The above disussion onerns hannels for whih the ergodiityassumption holds, that is hannels for whih the fading omponents an be re-garded as unorrelated. In the non-ergodi ase, whih inludes the slow fadingmodel, the de�nition of the apaity of the hannel is more problemati.Sine there an be no time averaging for fading over long odewords, for anygiven rate it might happen that the apaity of the hannel at a ertain timedoesn't support that rate, and Shannon's theorem is no longer valid. A morefruitful approah onsists in onsidering the apaity itself as a random variable,depending on the instantaneous mutual information. We say that an informa-tion outage ours if the transmission rate exeeds the instantaneous apaity.Thus instead of the apaity it is more useful to onsider the outage probabilityfor a given spetral eÆieny.



Chapter 5Spae-time odes andontinued frations5.1 Diagonal Spae-Time Codes (DAST)One oding sheme whose fous is on ahieving maximum diversity frommultipleantenna systems, without inreasing at all the apaity, is diagonal spae-timeoding (DAST for short).In this ase, regardless of the number of reeive antennas, the apaity is thatof an M � 1 system; the role of the transmit antennas is that of providingindependent fading paths.5.1.1 Diagonal spae-time odes and ontinued frationsAn interesting relation between MIMO odes and ontinued frations is pre-sented in [21℄.We onsider a system with 2 transmit and reeive antennas. Eah odeword isa blok of two 2� 2 diagonal matries belonging to the �nite setV = �Vl = � �l 00 �ul � ; l 2 1; : : : ; L�where � = e 2�iL is a primitive L-th root of unity, and u is a suitable integer. Ifthe data stream to transmit is the sequene fl1; l2; : : :g, li 2 f1; : : : ; Lg 8i, thetransmitted bloks B1; B2; B3; : : : are de�ned as follows:B1 = � IVl1 � ; Bi = 0BB� i�1Qk=1VlkiQk=1Vlk 1CCA 8i � 2We onsider the problem of obtaining the best tradeo� between maximizing thediversity produtdP (V) = min1�l<k�L jdet(Vl � Vk)j � min1�l�L ��1� �l�� ��1� �ul�� = �(u; L)



88 Spae-time odes and ontinued frationsand maximizing the size L of V . In partiular we want to determine in aneÆient way the optimal parameter u that maximizes �(u; L) for a given L.Observe that sine��1� eix�� = j1� osx� i sinxj = p2� 2 osx = 2 sin�x2� ;we have�(u; L) = min1�l�L ���1� e 2�ilL ��� ���1� e 2�iulL ��� = 4 min1�l�L ����sin��lL � sin��luL ����� == 4min(x;y) ���sin��xL � sin��yL ���� ;where the last expression ranges over the pairs (x; y) with x 2 Z, y � xu(modL), jxj,jyj < L, that is, (x; y) belongs to the subset �u;L = �u;L\((0; L)�(0; L)) of the two-dimensional lattie�u;L = f(x; ux� zL) j x; z 2 Zg=MZ2;where M = �1 0u L�It an be shown [21℄ that�1� �224� �22L2 min(x;y)2�u;L jxyj � �(u; L) � �22L2 min(x;y)2�u;L jxyj ;that is, the behavior of the funtion �(u; L) is roughly similar to that of�(u; L) = min(x;y)2�u;L jxyjIt is natural to ask whether the value u whih maximizes �(u; L) also maximizes�(u; L). Unfortunately this is false in general.The funtion �(u; L) turns out to be related to the approximations of uL by theonvergents of its ontinued fration expansion:Proposition 5.1. Let p1q1 ; p2q2 ; : : : ; ptqt = uL be the onvergents of uL . Then�(u; L) = min1�l�t�1 ql jqlu� plLjProof. Observe that jxyj = jx(ux� zL)j ;For 0 < x < L, let l be suh that ql � x < ql+1. Then the thesis is an easyonsequene of the fat that ontinued fration onvergents are \best approxi-mations": 8(x; z) 2 Z2 with 0 < x � ql, �� uL � zx �� � ��� uL � plql ���, and so����u� zLx ���� � ����u� plLql ����) x jxu� zLj � q2l ����u� zLx ���� � ql jqlu� plLjRemark that for x negative, the same argument works using �x, sine there isno ondition on the sign of z.



5.2 Threaded-Algebrai Spae-Time Codes 89The following result [21℄ shows that, roughly speaking, the smaller the elementsof the ontinued fration expansion of uL are, the better :Proposition 5.2. Let uL = [0; a1; a2; : : : ; at℄, wL = [0; b1; b2; : : : ; bs℄ withmax1�j�t aj + 1 < max1�i�s biThen �(u; L) > �(w;L).It is then natural to look to the sequene fFng of the Fibonai numbers as away to build \good rational numbers" uL , sine, as is well-known,FnFn+1 = [0; 1; 1; : : : ; 1| {z }n ℄Indeed, it turns out that it is the sequeneFnFn+2 = [0; 1; : : : ; 1; 2| {z }n�1 ℄whih realizes the maximum:Proposition 5.3. We havemax1�u<Fn �(u; Fn) = �(Fn�2; Fn) = Fn�2Moreover, Shokrollahi onjetures that �(Fn) = �(Fn�2; Fn) also holds.5.2 Threaded-Algebrai Spae-Time CodesOf ourse, the main drawbak of using diagonal spae-time odes onsists in thefat that the atual transmission rate is only one symbol per hannel use.Reently Damen and El Gamal [11℄ introdued a multi-antenna ode design(Threaded Algebrai Spae-Time Codes , TAST for short) whih allows for fulldiversity, full rate of transmission and a polynomial omplexity of deoding.The problem of hoosing the parameters in order to optimize performane ofthese odes is related to diophantine approximations, and is still open.Before desribing these odes, we will introdue some useful algebrai tools thatwill guarantee the full rate ondition.5.2.1 Algebrai latties from totally real number �eldsLet Q(�) be a number �eld of degree n over Q, O its ring of integers, andfw1; : : : ; wng a basis of integers.It is well-known that there exist n embeddings �i : Q(�) ! C , leaving Q �xed,de�ned by �i(�) = �i, where � = �1; �2; : : : ; �n are the onjugates of �.Let r1 be the number of embeddings of Q(�) whose image is ontained in R, and2r2 the number of embeddings whose image ontains some omplex number (itis learly an even number sine the omplex roots of the minimal polynomial of� ome in pairs of onjugates.) The pair (r1; r2) is alled the signature of Q(�).Q(�) is alled totally real if r2 = 0.The embeddings �i provide a geometrial interpretation of Q(�) as a sublattieof C n : let � : Q(�) ! Rn be the anonial embedding



90 Spae-time odes and ontinued frations�(x) = (�1(x); : : : ; �r1 (x);<(�r1+1(x));=(�r1+1(x)); : : : ;<(�r1+r2(x));=(�r1+r2(x))where we take only one embedding from eah pair of omplex onjugates.Consider the matrix A = (aij) 2 Mn(R), with aij = �i(wj): its olumns �(wj)are linearly independent [23℄ and generate an algebrai lattie �(O) = AZn.The volume of the fundamental parallelotope of �(O) isvol(�(O)) = 2�r2pjdkj;where dk = (detA)2 is the disriminant of the lattie.It an be shown [18℄ that algebrai latties from totally real number �elds ahievemaximum diversity:Theorem 5.4. The diversity of an algebrai lattie is L = r1 + r2.Thus in the totally real ase, L = r1 = n.If I = (�) is a prinipal ideal of O, we de�ne N(I) = jN(�)j. I has an integerbasis f�w1; : : : ; �wng, and we an again onsider the algebrai lattie �(I)generated by A0 = (�i(�wj)). In this ase,vol(�(I)) = 2�r2N(I)pjdkjIn order to ompute the minimum of the produt distane when S = �(O), itis enough to onsider the ase u 2 �(O) n f0g; u0 = 0, sine �(O) is linear. Ifu = (u1; : : : ; un)t 2 Zn, we haveAu =  �1 nXi=1 uiwi! ; : : : ; �n nXi=1 uiwi!!t = (�1(s); : : : ; �n(s))tfor some algebrai integer s 2 O. In this ase the produt distane oinideswith the algebrai norm of s over Q:dP (u; 0) = nYi=1 juij = nYi=1 j�i(s)j = jN(s)jBut for any algebrai integer s 6= 0, we haveN(s) 2 Znf0g; therefore jN(s)j � 1,and this onstrution ensures that for S � � the produt distane doesn't van-ish [18℄.Clearly dP an be inreased by hoosing a prinipal ideal I instead of O; how-ever, in this ase the number of lattie points available for a ertain onstellationradius is smaller, sine the volume of the fundamental parallelotope is bigger.As we will see in x6, the same basi ideas we introdued here an be extendedto the non-ommutative ase, by onsidering a quaternion ring over Q(i) andits maximal order instead of a number �eld with its ring of integers.5.2.2 Threaded-Algebrai Spae-Time CodesConsider a system with M transmit antennas and N reeive antennas, withblok length T = M . Given L � M , let lj � f1; : : : ;Mg � f0; : : : ;M � 1g bede�ned as follows:lj = f([t+ j � 1℄M + 1; t); 0 � t < Mg; 1 � j � L



5.2 Threaded-Algebrai Spae-Time Codes 91
l1 l2 l3 l4Figure 5.1: A subdivision of a matrix into \threads" when M = 4.where [ ℄M denotes the remainder (modM).Given K = kL, we onsider a partition of the information vetor u in intervalsof length k: u = (u(1); : : : ; u(L)). Eah u(j) is separately mapped to a vetorj(u(j)) 2 SM and its omponents are assigned to the elements of B(u) orre-sponding to the thread lj . If there are any entries in B(u) whose indies do notbelong to any thread, these are assigned the value 0.The matrix B(u) is thus deomposed into threads, whih behave like indepen-dent odes, transparent to one another, eah of whih exploits all the spae-timediversity: at the time t, the thread lj transmits a symbol using the antenna[t+ j � 1℄M + 1; the number of simultaneously ative antennas at a given timeis L.Observe that the diagonal spae-time odes desribed in x5 are a speial ase ofTAST, orresponding to a single thread. The problem of oding is now reduedto hoosing the enoders j in suh a way that the resulting ode B ahievesmaximum diversity.De�ne j(u(j)) = �jAu(j);where f�1; : : : ; �Lg are omplex numbers to be determined, and A is anM �Mmatrix that maximizes minu 6=u0;s=A(u�u0) MYi=1 jsj jIt an be shown that a good hoie for A is the matrix de�ned in equation(5.2.1) in Paragraph x5.2.1, onstruted from a suitable number �eld Q(�) thatis a Galois extension of Q of degree M .We an take �1 = 1; �2 = � 1M ; : : : ; �L = �L�1M , where � is an algebrai integersuh that Q(�) � Q(�) and f1; �; : : : ; �L�1g are linearly independent over Q(�).Theorem 5.5. The TAST ode built in this way has maximum diversity; more-over, its oding gain ÆC is greater or equal to(1 + j�j+ L�)�m(L�1)M ; (5.1)where m is the degree of Q(�) and � depends only on the initial onstellation C.The proof of Theorem 5.5 relies on the fat that det(B(u) � B(u0)) is a poly-nomial of degree L � 1 in �, whose oeÆients are algebrai integers in Q(�);then we an apply the following theorem on the simultaneous approximation ofalgebrai numbers :



92 Spae-time odes and ontinued frationsTheorem 5.6 (Generalization of Liouville's Theorem). Let �1; : : : ; �mbe algebrai numbers, and let n be the degree of the smallest number �eld Q(�)whih ontains them. Let p(X1; : : : ; Xm) 2 Z[X1; : : : ; Xm℄ be a polynomial ofdegree less or equal to k, suh that the maximum modulus of its oeÆients isH. Then if p(�1; : : : ; �m) 6= 0, we havejp(�1; : : : ; �m)j � 1rnk(1 +Pmi=0 j�ij)(n�1)kHn�1 ;where r is suh that r�i is an algebrai integer for i = 1; : : : ;m, and j�ij is themaximum modulus of the onjugates of �i.Unfortunately, a higher number of lattie points available means a better ap-proximation and a smaller gain: the parameter � in equation (5.1) grows when#C inreases.A slightly di�erent problem from the one we have been addressing is how todetermine � in suh a way that ÆC(�) dereases as slowly as possible when thesize of the onstellation grows to in�nity.Theorem 5.6 suggests that f�1; : : : ; �Lg ought to be hosen in suh a way as tobe \badly approximated" by algebrai numbers. A di�erent strategy onsistsin hoosing � trasendental, for example � = ei� with � algebrai. It an beshown [11℄ that even in this ase maximum diversity is ahieved, thanks to thefollowing well-known theorem:Theorem 5.7 (Lindemann). Let �1; : : : ; �m be distint algebrai numbers,and 1; : : : ; m algebrai oeÆients not all equal to zero. Then Pmi=1 ie�i 6= 0.For this hoie of �, however, we have no bounds for the oding gain.5.2.3 The 2-dimensional aseThis speial ase of TAST odes was introdued by Damen, Tew�k and Bel�ore[10℄. Again, there is a surprising relation between these odes and ontinuedfrations; in fat the oding gain turns out to be greater when the fundamentalparameter is \badly approximable" by ontinued frations.Consider the TAST ode with M = T = 2, built from the matrixA� = 1p2 � 1 �1 �� �Let � = � = ei�, with � to be determined. Then for u = (u1; u2; u3; u4) 2 Z[i℄4,B�(u) = 1p2 � u1 + �u2 p�(u3 + �u4)p�(u3 � �u4) u1 � �u2 �If we take as a onstellation the whole lattie Z[i℄4, the oding gain isÆC(�) = infu2Z[i℄4nf0gr���det(B�BH� )��� = 1p2r infu2Z[i℄4nf0g ju21 � u23�� u22�2 + u24�3jClearly if C � Z[i℄4, the oding gain over C will in general be greater. In thisase a stronger result than Theorem 5.5 holds:



5.2 Threaded-Algebrai Spae-Time Codes 93Proposition 5.8. Suppose that one of the following is true:a) � is algebrai of degree greater or equal to 4 over Q(i);b) � is algebrai of degree 2 over Q(i) and �2 2 Q(i);) � is trasendentalThen the previous design ahieves maximum diversity over all the onstellationsC arved from Z[i℄4.When the ondition (a) or () hold, the determinant of B(u)B(u)H is a polyno-mial of degree 3 in �, so the thesis follows from the fat that f1; �; �2; �3g arelinearly independent over Q(i).As for ondition (b), it is enough to remark that the determinant an be writtenin the form 12 ((u21�u22�2)��(u23�u24�2)). If it were 0, sine f1; �g is a free setover Q(i) and �2 2 Q(i), we would have u21 � u22�2 = u23 � u24�2 = 0; but � isnot a square in Q(i), being algebrai of degree 2.In general, given C, no riterion to maximize ÆC is known; in the ase of 4-QAM and 16-QAM onstellations, omputer simulations seem to suggest thatthe values of � that maximize the oding gain are e i2 and e0:521i respetively.However, the omputer searh for the optimal parameters beomes extremelyomplex when the size of the onstellation inreases; moreover, the parametersfound by omputer searh whih give an optimal oding gain for one onstella-tion might work very poorly with another, so that a theoretial approah wouldbe preferable.As a heuristi approah, one an observe thatÆC � minu 6=0 min(��u21 � u23��� ; ��u21 � u22�2�� ; ��u21 + u24�3��);and try to hoose � badly approximable by rational numbers, that is:- � algebrai of small degree and suh that the moduli of the oeÆients ofits minimum polynomial are small,- � trasendental suh that the digits of its ontinued fration expansionare small.In the ase of � trasendental, however, there is no lower bound available onthe derease of the oding gain when the spetral eÆieny grows.





Chapter 6Algebrai spae-time blokoded modulationAs we have seen, the main inonveniene of the 2�2 TAST ode is the fat thatthe minimum determinant vanishes when the size of the onstellation tends toin�nity. This problem an be solved in an elegant manner by ensuring that theblok odewords belong to a division algebra. Moreover, in the two-dimensionalase the algebra an be hosen in suh a way that the ode will be isometri toa rotated ubi lattie.6.1 Quaternion AlgebrasThis setion summarizes some basi fats about quaternion algebras that willbe useful later. Our main referenes are the books of Vign�eras [25℄ and Reiner[19℄.6.1 (Quaternion algebras). Let K be a �eld. A quaternion algebra H ofenter K is a entral simple algebra of dimension 4 over K, suh that thereexists a separable quadrati extension L of K, and an element  2 K�, suhthat H = L� Le; e2 = ; ex = �(x)e 8x 2 Lwhere � is the non-trivial K-automorphism of L. L is alled a maximal sub�eldof H. H will be denoted by the triple (L=K; �; ).Quaternion algebras are a speial ase of yli algebras.To obtain a representation of H as a K-module, onsider a primitive element isuh that L = K(i), and let j = e, k = ij = j�(i). ThenH = fa+ bi+ j + dk j a; b; ; d 2 Kg (6.1)The following theorem gives a suÆient ondition for a quaternion algebra tobe a division ring:Theorem 6.2. Let H = (L=K; �; ) be a quaternion algebra. If  is not aredued norm of any element of L, then H is a skew�eld.



96 Algebrai spae-time blok oded modulation6.3 (Splitting �elds). Let H be a entral simple K-algebra. An extension�eld E of K splits H, or is a splitting �eld for H, ifE 
K H �=Mr(E)In the ase of division algebras, every maximal sub�eld is a splitting �eld:Theorem 6.4. Let D be a skew�eld with enter K, with �nite degree over K.Then every maximal sub�eld E of D ontains K, and is a splitting �eld for D.In the following paragraphs we will always onsider a Dedekind domain R, itsquotient �eld K, and a quaternion algebra H over K.6.5 (Latties and orders). A full R-lattie or ideal inH is a �nitely generatedR-submodule I in H suh that KI = H, whereKI = ( nXi=1 kixi ��� ki 2 K; xi 2 I; n 2 N)An R-order � in H is a full R-lattie whih is also a subring of H with the sameunity element. A maximal R-order is an order whih is not properly ontainedin any other order of H.For the following proposition see for example Reiner [19℄:Proposition 6.6. A subring of H ontaining a basis for H over K is an orderif and only if all its elements are integral over R.Remark 6.7. The notion of order is a generalization of the notion of the ringof integers for ommutative extensions. However, in the non-ommutative asethe set of elements whih are integral over the base �eld might not be a ring.6.8 (Properties of ideals). Given an ideal I of H, we an de�ne the left orderand the right order of I as follows:�l(I) = fx 2 H j Ix � Ig;�r(I) = fx 2 H jxI � Ig�l(I) and �r(I) are orders. I is alled� two-sided if �l(I) = �r(I),� normal if �l(I) and �r(I) are maximal,� integral if I � �l(I), I � �r(I),� prinipal if I = �l(I)x = x�r(I) for some x 2 HThe inverse of I is the frational ideal I�1 = fx 2 H j IxI � Ig.The norm N(I) of an ideal I is the set of redued norms of its elements, and itis an ideal of R. If I = �x is prinipal, N(I) = RN(x).



6.2 Spae-time odes from quaternion algebras 976.2 Spae-time odes from quaternion algebrasTheorem 6.2 provides a suÆient ondition (albeit one that is not simple tohek) for building division algebras. For the appliations to oding, in or-der to ensure a uniform distribution of the average energy among the di�erentantennas, it is preferable to hoose the generator  of the quaternion algebra(L=K; �; ) suh that jj = 1.6.2.1 The Alamouti CodeThe �rst example of spae-time ode that an be interpreted in the frameworkof quaternion algebras is the famous Alamouti Code [1℄. This ode is optimalfor the ase of 2 transmit antennas and one reeive antenna. In addition tobeing full rate and full rank, its orthogonal struture allows for linear deoding.Thanks to its simpliity of implementation and good performane, this ode isalready integrated in the UMTS standard.The Alamouti ode an be derived from the skew�eld H of Hamilton quater-nions, whih orresponds to hoosing, following the notation in De�nition 6.1,the �eld of real numbers R as the base �eld K, the �eld of omplex numbers Cas its quadrati extension L, and the element  = �1.Sine C is a maximal sub�eld of H, it follows from Theorem 6.4 that H ad-mits a matrix representation as a subset of M2(C ). More preisely, H =fa+ bi+ j+ dk j a; b; ; d 2 Rg, wherei = � i 00 �i � ; j = � 0 1�1 0 � ; k = � 0 ii 0 �Given an information vetor u = (x1; x2) = (a+bi; +di) 2 C 2 , the transpose ofthe orresponding Alamouti odeword for blok length T = 2 is the quaternionXt = x1 + x2j = a+ bi+ j+ dk = � a+ bi + di�(� di) a� ib � = � x1 x2�x2 x1 � ;where the overline denotes the omplex onjugate. Remark that the olumns ofeah odeword X = � x1 �x2x2 x1 �are orthogonal with respet to the Hermitian produt.Moreover, if X is nonzero its determinant det(X) = jx1j2 + jx2j2 > 0, so thatthe full rank ondition is always satis�ed. Moreover, if the symbols x1,x2 belongto a QAM onstellation arved from Z[i℄, the minimum determinant will be inZ and therefore jdet(X)j � 1.In the setting of x4.2.1, the reeived odeword is Y = HX +W :� y1 y2 � = � h1 h2 �� x1 �x2x2 x1 �+ � w1 w2 � == � h1x1 + h2x2 + w1 �h1x2 + h2x1 + w2 �In order to reover X , it is onvenient to onsider the vetorZ = � y1y2 � = � h1 h2h2 �h1 �� x1x2 �+� w1w2 �



98 Algebrai spae-time blok oded modulationThat is, our system is equivalent to a transmission sheme with 2 reeive anten-nas and 2 transmit antennas, but with blok length T = 1, and suh that theolumns of the hannel matrixH 0 = � h1 h2h2 �h1 �are orthogonal. By multiplying on the left by (H 0)H , we obtain(H 0)HZ = (jh1j2 + jh2j2)� x1x2 �+� v1v2 �where the omponents of the new noise vetor (v1; v2) are still independentrandom variables.Thus the Alamouti Code admits a very simple deoding proess, whih onsistsin applying a linear transformation followed by a single symbol ML detetion.6.3 The Golden CodeThis ode, introdued by Bel�ore, Rekaya and Viterbo [5℄, is optimal for thease of 2 transmit and 2 reeive antennas, and belongs to a lass of n�nMIMOodes alled perfet odes [17℄. These odes have been shown to exist only forn = 2; 3; 4 and 6.6.9 (Perfet ode). A ode is perfet if:1. it is full rate using onstellations arved from either Z[i℄ or Z[e 23�i℄;2. its minimum determinant is nonzero, so that it is full rank;3. the real lattie generated by the vetorized odewords is Z2n2 or An22 ,where A2 is the hexagonal lattie;4. the symbols in the ode matrix have the same average energy.Consider the number �eld Q(i; �), where � = p5+12 is the Golden number, andits ring of integers Z[i; �℄.If x = a+ b� 2 Q(i; �), let �(x) = �x be its anonial onjugate a+ b��, where�� = 1� �; ��� = �1N(x) = x�x is the norm of x, and x 2 Z[i; �℄ implies that N(x) 2 Z[i℄.Consider the quaternion algebra A, with enter Q(i), and maximal sub�eldQ(i; �): A = Q(i; �) � Q(i; �)j = A(Q(i; �)=Q (i); �; i)where j2 = i, xj = j�x 8x 2 Q(i; �).It an be shown [5℄ that i is not a norm in Q(i; �)=Q (i), so Theorem 6.2 impliesthat A is a division algebra.As a Q(i)-module, we haveA = Q(i) � Q(i)� � Q(i)j � Q(i)�j;



6.3 The Golden Code 99From Theorem 6.4, it follows that Q(i; �) is a splitting �eld for A, and soQ(i; �) 
Q(i) A �=M2(Q(i; �))Consequently, A admits a matrix representation as a subset of M2(Q(i; �)),where the inlusion is given byx 7! � x 00 �x � ; 8x 2 Q(i; �); j 7! � 0 1i 0 � (6.2)Then A an be written in the formA = �� x1 x2i�x2 x1 � ; x1; x2 2 Q(i; �)� (6.3)and every element of A has nonzero determinant N(x1)� iN(x2).Remark 6.10. An alternative representation of A as a yli algebra an beobtained by onsidering the �eld extension Q(pi)=Q(i) and the quaternion al-gebra A(Q(pi)=Q(i); �; 5), where � is the anonial onjugay in Q(pi)=Q(i).ThusA0 = Q(i)�Q (i)pi�Q(i)f�Q (i)pif; f2 = 5; xf = f�(x) 8x 2 Q(pi)The isomorphism � : A 7! A0 of Q(i)-algebras between the two representationsis given by �(p5) = f , �(j) = pi. It is suÆient to hek that it is a ringisomorphism, namely that�(j)�(p5) = pif = �fpi = ��(p5)�(j);the other produts between the generators being automatially preserved, sinetheir harateristi polynomials are the same.The onstrution of A ensures that the �rst two onditions in De�nition 6.9 aresatis�ed. In order to have ubi shaping, we will take a suitable ideal of A.Consider the order of AO = �� x1 x2i�x2 x1 � ; x1; x2 2 Z(i; �)� (6.4)and let � = 1 + i��; A = � � 00 �� � ; (6.5)The Golden Code G = 1p5AO is a resaled version of the right prinipal idealAO of O. Every odeword X 2 G is of the formX = 1p5 � �(a+ b�) �(+ d�)��i(+ d��) ��(a+ b��) � (6.6)It is easy to verify that G is a two-sided ideal : in fat if w = w1 + w2j 2 O,w1; w2 2 Z[i; �℄, �(w1 + w2j) = w1�+ w2j �� = (w1 + i�w2j)�;



100 Algebrai spae-time blok oded modulationobserving that �i� = i� + 1 = ��. But� : w1 + w2j 7! w1 + i�w2j (6.7)is an homomorphism of Z[i℄-modules that mapsO into itself bijetively, therefore�O = O�. Moreover, if we neglet the normalization onstant 1p5 , G is anintegral ideal beause it is ontained in O.Remark 6.11. 8W 2 O n f0g, jdet(W )j � 1. Consequently, 8X 2 G n f0g,jdet(X)j � 1p5 .Proof. Sine A is a division algebra, N(x1) � iN(x2) 6= 0 if (x1; x2) 6= (0; 0).Moreover, when x1; x2 2 Z[i℄[�℄, N(x1) � iN(x2) 2 Z[i℄ and so its absolutevalue is at least 1. If X = Ap5W , jdet(X)j = jN(�)j5 jdet(W )j = ���detWp5 ���, sinejN(�)j = j2 + ij = p5.Remark 6.11 implies that the Golden Code G is full-rank and has non-vanishingdeterminant. By onstrution, it is also full-rate, that is, eah odeword trans-mits four information symbols.16.3.1 Lattie representation of GWe follow the olumn onvention for vetors, so that latties have the form� = fMu ju 2 Z[i℄ng. Two latties � = fMug and �0 = fM 0ug are equivalentif there exist U unimodular with Gaussian integer entries and T unitary suhthat M 0 = TMU .Let a; b; ; d 2 C , and onsider the linear mapping � : A ! C 4 that vetorizesmatries: ��� a b d �� = (a; b; ; d) 2 C 4Obviously, the mapping � preserves the norm: 8A 2 A, kAk2F = k�(A)k2.The left multipliation funtion lY : A ! A that maps W to Y W indues alinear mapping Yl = � Æ lY Æ ��1 : �(A) ! �(A) that an be seen as a 4 � 4omplex matrix. Similarly, we an de�ne the linear funtion Yr = � Æ rY Æ ��1,where rY :W 7!WY is the multipliation on the right by Y .Remark 6.12. If Y = � x zy w �, thenYl = 2664 x z 0 0y w 0 00 0 x z0 0 y w 3775 ; Yr = 2664 x 0 y 00 x 0 yz 0 w 00 z 0 w 3775Another useful mapping to onsider is �O : Z[i℄4! �(O),�O : u = (a; b; ; d) 7! ��� a+ b� + d�i(+ d��) a+ b�� ��1It has also been shown [12℄ that the Golden Code ahieves the diversity-multiplexing gaintradeo� (see x4.2.2).



6.4 Golden Blok Codes 101It is easy to hek that �O = 2664 1 � 0 00 0 i i��0 0 1 �1 �� 0 0 3775Remark 6.13. The map R = 1p5Al�O sends Z[i℄4 to �(G). R is the unitarymatrixR = 1p5 2664 1 + i�� � � i 0 00 0 �� + i 1 + i��0 0 1 + i�� � � i1 + i� �� � i 0 0 3775 = 1p5 2664 � ���i 0 00 0 ��i �0 0 � ���i�� ��i 0 0 3775Thus we have shown that the Golden Code has ubi shaping, sine it is isometrito Z[i℄4 with respet to the Frobenius norm.Remark that the pre-images of the rotated anonial basis are��1(Re1) = 1p5 � � 00 �� � = Ap5��1(Re2) = 1p5 � ���i 00 ��i � = �Ap5��1(Re3) = 1p5 � 0 ���i 0 � = iJ�Ap5��1(Re4) = 1p5 � 0 ���i� 0 � = �iJAp5 ; (6.8)
where J = � 0 1i 0 � ; � = � � 00 �� �are the matrix representations of j and � respetively (see equation (6.2)).6.4 Golden Blok CodesWe now onsider the ase of a slow fading hannel, meaning that the hanneloeÆients remain onstant for a ertain time frame L. We want to de�ne ablok ode of length L using the Golden Code as the \alphabet", in order toimprove even further its performane.As usual, we assume that the fading oeÆients are known at the reeiver. Thereeived signal is given byY = HX+W; X;Y;W 2 C 2�2L ; (6.9)where the entries of H 2 C 2�2 are i.i.d. omplex Gaussian random variables,W is the Gaussian noise with i.i.d. entries of zero mean and variane N0, andthe transmitted signal X = (X1; : : : ; XL) belongs to a suitable subset S � GL.As we have seen in equation (4.8), the pairwise error probability is given byP (X 7! X 0) � 1�p�min N0ES �4 ;



102 Algebrai spae-time blok oded modulationwhere ES is the average energy of S and�min = minX2Snf0g ��det(XXH )��In order to minimize the PEP for a given SNR and average energy, we shouldmaximize �min.First of all, we would like to �nd an expliit formula for det(XXH ). Consider thefollowing involution of the yli algebra A (orresponding to the quaternionionjugate): X = � x1 x2ix2 x1 � 7! eX = � x1 �x2�ix2 x1 �Remark 6.14. 8X 2 A,eXX = det(X)1 (6.10)eX +X = (x1 + x1)1 = tr(X)1 (6.11)det(X) = det( eX) (6.12)Reall the de�nition of the Frobenius norm of a matrix:M = � a b d � ; a; b; ; d 2 C ) kMkF =qjaj2 + jbj2 + jj2 + jdj2Lemma 6.15. 8X = (X1; : : : ; XL) 2 AL,det(XXH ) = det(X1XH1 + : : :+XLXHL ) =jdet(X1)j2 + : : :+ jdet(XL)j2 +Xj>i  eXjXi2FProof. For all i = 1; : : : ; L, let Qi = XiXHi : thendet(X1XH1 + : : :+XLXHL )1 = det(Q1 + : : :+QL)1 == ( eQ1 + : : :+ eQL)(Q1 + : : :+QL)1 = LXi;j=1 eQiQj = LXi=1 det(Qi)1+Xi 6=j eQiQjWe need to show that eQiQj + eQjQi =  eXjXi2F 1.But kXk2F = tr(XXH), and therefore  eXjXi2F = tr( eXjXiXHi eXHj ), andeQjQi = eXHj eXjXiXHi ; eQiQj = êQjQi) eQiQj + eQjQi = tr( eQiQj)1 = tr( eXjXiXHi eXHj )1;realling that tr(AB) = tr(BA).6.4.1 Estimates of the Frobenius normRemark 6.16. If W 2 O, kWk2F 2 Z.



6.4 Golden Blok Codes 103Proof. LetW = � w1 w2iw2 w1 � ; w1 = t1 + is1; w2 = t2 + is2; t1; t2; s1; s2 2 Z[�℄Then kWk2F = jw1j2+ jw1j2+ jw2j2+ �w22. But w1 = a+ b�+ i(+ d�) for somea; b; ; d 2 Z, andjw1j2 + jw1j2 = (a+ b�)2 + (+ d�)2 + (a+ b��)2 + (+ d��)2 == 2a2 + 3b2 + 2ab+ 22 + 3d2 + 2d 2 ZThe same is true for jw2j2 + jw2j2.Remark 6.17. Let X;Y be two 2� 2 omplex-valued matries. ThenkXk2F � 2 jdet(X)j ; (6.13) eXY 2F � 2 jdet(X)j jdet(Y )j (6.14)Proof. If X = � a b d �, thenkXk2F = jaj2 + jbj2 + jj2 + jdj2 � 2(jadj+ jbj) � 2 jad� bj = 2 jdet(X)jand  eXY 2F � 2 ���det( eXY )��� = 2 jdet(X) det(Y )j.Remark 6.18. 8W 2 O n f0g; kWk2F � 2 jdet(W )j � 2. Moreover, theminimum is atually ahieved when W1 =W2 = 1.Remark 6.19. If X1; X2 2 G n f0g,  eX2X12F � 25 .Proof. Let X1 = 1p5AW1; X2 = 1p5AW2, W1;W2 2 O. Then eX2X12F = 125 fW2 eAAW12F = jN(�)j225 fW2W12F = 15 fW2W12F � 25 ;sine W = fW2W1 belongs to O.From Remark 6.17, it follows that:Lemma 6.20. Let X = (X1; : : : ; XL) 2 GL. Thendet(XXH ) �  LXi=1 jdet(Xi)j!2 � (wH (X))25 ;where wH (X) = #fi 2 f1; : : : ; Lg jXi 6= 0g is the Hamming weight of the blokX.



104 Algebrai spae-time blok oded modulation6.4.2 The produt lattieWe an study the strutures indued on Z[i℄4 by the map X 7! eX and by theprodut (X;Y ) 7! XY .~x + (R�1�)(�̂�1Rx); (6.15)x � y + (R�1�)(��1Rx � ��1Ry) (6.16)Then realling expression (6.8) for the lifts of the vetors of the anonial basisfe1; e2; e3; e4g, we getee1 = ie2;ee2 = �ie1;ee3 = �e3;ee4 = �e4Table 6.1 lists all the produts of the vetors of the anonial basis. For examplewe have:e1 � e1 = (R�1�)�A25 � = 15(R�1�)((1 + i)A� eA) = 1p5((1 + i)e1 � ie2)e1 � e1 = e3 � e4 = 1p5 ((1 + i)e1 � ie2)e2 � e2 = �e4 � e3 = 1p5 (e1 + (1� i)e2)�e3 � e3 = e4 � e4 = e1 � e2 = e2 � e1 = 1p5 (ie1 � e2)e1 � e3 = ie3 � e2 = 1p5 ((1 + i)e3 � ie4)e1 � e4 = e2 � e3 = ie4 � e2 = �ie3 � e1 = 1p5 (�ie3 + e4)e4 � e1 = ie2 � e4 = 1p5 (ie3 + (i+ 1)e4)Table 6.1: The produts fei � ejg; i; j 2 f1; 2; 3; 4g.Observe that with the de�nition (6.16), Z[i℄4 �Z[i℄4 � 1p5Z[i℄4.In order to design a ode with good minima of the Frobenius norms  eXjXi2F inLemma 6.15, we need more information on the set of produts P = f eXY j X;Y 2Gg. Sine eG = G, this set is simply G2. More preisely, if eX = 1p5AW ,eY = 1p5AW 0 with W;W 0 2 O, realling that G is a two-sided ideal we haveeXY = 15AWAW 0 = 15A2��1(W )W 0 = 15A2W 00W 0;where � is the bijetion de�ned in equation (6.7). The last expression ranges overall W 0;W 00 2 O, so that P = 15A2O2. But sine 1 2 O, we have O2 = O andP = 1p5AG. With the notation of x6.3.1, we an say that �(P) = 1p5AlRZ[i℄4 =1p5RA0lZ[i℄4, where A0l = R�1AlR = RHAlR. A simple alulation yieldsA0l = 2664 1 + i �i 0 0�i 1 0 00 0 1 + i �i0 0 �i 1 3775



6.5 Coding with osets: a �rst example 105The olumns of A0l are a redued basis for the lattie A0lZ[i℄4; we already knowfrom Remark 6.19 that the minimal norm in this lattie is 2.6.4.3 A Golden partition hainFor k = 1; : : : ; 4, we onsider the left prinipal ideals of the Golden Code [4℄Gk = �XBk j X 2 G	 ; B = � i�� ��i� i� � ; (6.17)The property that det(B) = 1 + i makes these subodes an ideal hoie for abinary set partitioning.We remark that the odes Gk are obtained from the right prinipal ideal OBkof O. Let W = � a+ b� + d�i(+ d��) a+ b�� � 2 OThen the matrix Qk = 1p5 (Br)kAl�O = (Br)kR maps u = (a; b; ; d) 2 Z[i℄4to �� 1p5AWBk�. QkZ[i℄4 is a sublattie of RZ[i℄4, of the form RSkZ[i℄4,and Sk = R�1Qk = RHQk = RH(Br)kR is a generator matrix for the lattieassoiated to Gk.Lemma 6.21. Let X = (X1; : : : ; XL) with X1; : : : ; XL 2 Gk, k 2 f0; : : : ; 4g.Then det(XXH ) � 2kN25 ;where N = wH(X) = #fi 2 f1; : : : ; Lg jXi 6= 0g is the Hamming weight of theblok X.Proof. From Proposition 6.15 we get:det(XXH) = jdet(X1)j2 + : : :+ jdet(XL)j2 +Xj>i  eXjXi2F == 125� ��det(AW1Bk)��2 + : : :+ ��det(AWLBk)��2 +Xj>i  eBkfWj eAAWiBk2F � == 125 jN(�)j2 jdetBj2k �jdet(W1)j2 + : : :+ jdet(WL)j2 + 2� == 2k5 �jdet(W1)j2 + : : :+ jdet(WL)j2 + 2� � 2k5 �N + 2 � N(N � 1)2 �In the last estimate we have used Remark 6.17 and Remark 6.11. Observe thatin partiular the Lemma holds for G0 = G, with k = 0.6.5 Coding with osets: a �rst exampleWe will fous on the �rst of the left prinipal ideals in the hain (6.17), that isG1 = GB. The quotient group G=G1 is isomorphi to Z2� Z2; we will onsiderblok odes that are lifts of linear binary odes of length 2 and 3 over thequotient. We will ompute the minimum determinants among the pre-images of



106 Algebrai spae-time blok oded modulationA1p5O� � // 1p5�(O) = 1p5�OZ[i℄4 � C 4G� � // �(G) = 1p5Al�OZ[i℄4 =� RZ[i℄4�
G1� � // �(G1) = 1p5BrAl�OZ[i℄4 = RS1Z[i℄4� = RP D 24Figure 6.1: A summary of the relations desribed below.eah binary odeword; these are related to the minima of the Frobenius normsover the produts of two osets.The lattie �(G1) is spanned by RS1, where R is the unitary matrix de�ned inRemark 6.13, and S1 = 2664 i �i 0 i�i 0 i i1 �1 0 i�1 0 i i 3775This lattie is equivalent to the omplex D24 lattie (see [8℄, Chapter 7.8): infat P1S1U1 = H1, whereH1 = 2664 1 0 0 01 1 + i 0 00 0 1 00 0 1 1 + i 3775is the generator matrix of D24, P1 is a permutation, U1 is integer unimodular:P1 = 2664 1 0 0 00 0 1 00 1 0 00 0 0 1 3775 ; U1 = 2664 0 0 0 �i0 �i 0 �ii i �i �i�i �i 0 0 3775Then �(G1) = RS1Z[i℄4 = RP�11 D24 = RP1D24 � RZ[i℄4 is a rotated version ofthe omplex D24 lattie, that is a subgroup of index 4 of RZ[i℄4. The quotientgroup G=G1 is isomorphi to RZ[i℄4=D24 �= Z2�Z2.We want to study the behavior of  eX1X22F when X1; X2 belong to di�erentosets of G1 in G. The map � is a group isomorphism and so the images ofdistint osets of G1 in G are distint osets (as Z[i℄-modules) of RS1Z[i℄4 inRZ[i℄4, that is they are the images through R of the four osets of S1Z[i℄4 in



6.5 Coding with osets: a �rst example 107Z[i℄4.Let fe1; : : : ; e4g denote the anonial basis of Z[i℄4; thenC00 + S1Z[i℄4 = (ie2 + e4; ie1 + e3; e2 + e4; e1 + e3) (6.18)To �nd the oset leaders, remark that e1 and e2 do not belong to C00 beauseits nonzero vetors have squared norm greater or equal to 2. Moreover, it iseasy to hek that e1 � e2 =2 C00; e1 + e2 =2 C00 and so e1; e2; e1 + e2 belong todi�erent osets of C00: C01 = C00 + e1;C10 = C00 + e2;C11 = C00 + e1 + e2Therefore fRC00 = �(G1); RC01 = �(G1) + Re1; RC10 = �(G1) + Re2; RC11 =�(G1) +R(e1 + e2)g is a deomposition of RZ[i℄4 into osets of RS1Z[i℄4.Thus the osets of G1 in G are:C00 = G1; C01 = G1 + Ap5 ; C10 = G1 � i eAp5 ; C11 = G1 + 1p5(A� i eA), and eC00 + R�1�(eG1) = (e1 � e4; e2 + e3; ie1 + e4; ie2 � e3)Unfortunately, the involution X 7! eX does not preserve osets.The sum of two vetors in Z[i℄4 with even squared norm has even squared norm:if z = (z1; z2; z3; z4) and w = (w1; w2; w3; w4) are suh that P4i=1 jzij2 = 2n,P4i=1 jwij2 = 2m, then4Xi=1 jzi + wij2 = 2n+ 2m+ 2<(wizi)The vetors with even squared norm form a sublattie of index 2 of Z[i℄4; itis easy to hek that this is equal to C00 [ C11. We also observe that eC00 �C00 [ C11.We want to �ndminX2Ci; Y 2Cj(X;Y )6=(0;0)  eXY 2F = minx2Ci; y2Cj(x;y)6=(0;0) ��1(Rex)��1(Ry)2F == minx2Ci; y2Cj(x;y)6=(0;0) (��1R)(exy)2F = minx2Ci; y2Cj(x;y)6=(0;0) kex � yk2for eah pair (i; j) 2 (Z2�Z2)2.Lemma 6.22. The minimum of the Frobenius norm over the produts of theosets of G1 is minX2Ci;Y 2Cj(X;Y )6=(0;0)  eXY 2F = minx2Ci;y2Cj(x;y)6=(0;0) kex � yk2 = n(Ci; Cj)5 ;



108 Algebrai spae-time blok oded modulationwhere n(Ci; Cj) takes the following values:C00 C01 C10 C11C00 0 0 0 0C01 0 2 3 3C10 0 3 2 3C11 0 3 3 2 (6.19)Proof. The table in (6.19) is learly symmetrial beause  eXY F = geXY F =eY XF .Let x = R�1�(X); y = R�1�(Y ).- In the ase X 2 C00,Y 2 Ci, we an hoose X = 0 and Y 6= 0 so that theprodut eXY is 0.- From Remarks 6.11 and 6.17 it follows that  eXY 2F � 25 for X;Y 2 G.When X;Y are both in Ci, i 6= 0, we an exhibit diretly an element ofsquared norm 25 :ee1 � e1 = ie2 � e1 = 1p5(e1 + ie2) 2 eC01 � C01;ee2 � e2 = �ie1 � e2 = 1p5(�e1 � ie2) 2 eC10 � C10;(ee1 + ee2) � (e1 + e2) = i(e2 � e1) � (e1 + e2) = 1p5(�e1 + ie2) 2 eC11 � C11- When X 2 eCi,Y 2 Cj , i; j 6= 0, i 6= j, xy is of the form(e0 + eei) � (00 + ej) = (e0 + eei) � 00 + e0 � ej + eei � ej ;where 0; 00 2 C00. Then (e0 + eei) � 00 2 Z[i℄4 � C00 � 1p5C00 ande0 � ej 2 eC00 � Z[i℄4 � 1p5 eC00 � 1p5 (C00 [ C11) both have even squarednorm over 5, while eei � ej has odd norm over 5: therefore all the elementsin eCi �Cj have odd norm over 5. Sine we know that it is greater or equalto 25 , it is suÆient to exhibit an element of squared norm 35 :ee1 � e2 = ie22 = 1p5(ie1 + (1 + i)e2) 2 eC01 �C10;ee1 � (e1 � e2) = ie2 � (e1 � e2) = 1p5((1� i)e1 � e2) 2 eC01 � C11;ee2 � (e1 + e2) = 1p5(�ie1 � (i+ 1)e2) 2 eC10 � C11;whih onludes the proof.6.5.1 Codes of length 2For every (i; j) 2 (Z2�Z2)2 �= Z42, de�ned(Ci; Cj) = minX12Ci;X22Cj ;(X1;X2)6=(0;0) 5�jdet(X1)j2 + jdet(X2)j2 +  eX2X12F� (6.20)



6.5 Coding with osets: a �rst example 109From Lemma 6.22, and realling thatminX2C00 jdet(X)j = 25 ; minX2Ci jdet(X)j = 15 for i 6= 0;it follows that d(Ci; Cj) takes the following values:C00 C01 C10 C11C00 2 1 1 1C01 1 4 5 5C10 1 5 4 5C11 1 5 5 4 (6.21)Let S be a subgroup of Z42: then we an de�ne two oset weight enumeratorfuntions as follows:AS(D) = X(i;j)2SDd(Ci;Cj); ÂS(D) = X(i;j)2Snf0gDd(Ci;Cj)Given a polynomial p(D) = a0 + a1D + : : :+ anDn, we de�ne�(p) = minfi � 0 j ai 6= 0gand we introdue the following order on the set of all polynomials:p >� q , 9k � 0 : ai(p) = ai(q) for i = 0; : : : ; k � 1; ak(p) > ak(q)In partiular, we are interested in maximizing �min(S) = �(AS) and �̂min(S) =�(ÂS) with respet to this order.Linear odes indued by a permutationLet � be any permutation of Z2�Z2, and onsider the ode of length 2G� = f(X1; X2) 2 G � G j X1 2 Ci; X2 2 C�(i) for some ig (6.22)In general, G� is not a linear ode: given two words X = (X1; X2) 2 Ci � C�(i),Y = (Y1; Y2) 2 Cj � C�(j), we have X � Y 2 Ci+j � C�(i)+�(j). Therefore theode is linear if and only if�(i) + �(j) = �(i+ j) 8(i; j) 2 (Z2�Z2)2 (6.23)Thus a neessary ondition for linearity is that �(i) + �(0) = �(i) for all i, thatis �(0) = 0. In this partiular ase it is also a suÆient ondition: 8i; j 6= 0suh that i 6= j, i+ j is equal to the only element k in f01; 10; 11g n fi; jg. Then�(i) + �(j) = �(k) = �(i+ j).Lemma 6.23. Consider the ode G� de�ned in (6.22), suh that � is a permu-tation keeping 0 �xed, and let S = f(i; �(i)) j i 2 Z2�Z2g. Then we have threeases:1. If 0 is the only �xed point of �, AS(D) = D2 + 3D5, ÂS(D) = 3D5.2. If � has two �xed points, AS(D) = D2 +D4 + 2D5, ÂS(D) = D4 + 2D5.3. If � is the identity (so that G� is the repetition ode), AS(D) = D2+3D4,ÂS(D) = 3D4.The proof is straightforward from the table (6.21). Clearly the �rst ase is thebest one with respet to the oding gain.



110 Algebrai spae-time blok oded modulationNon linear odes indued by a permutationAtually the study of the non linear ase an be redued to the linear one.We know that in this ase �(0) 6= 0. Given X = (X1; X2) 2 Ci � C�(i), Y =(Y1; Y2) 2 Cj � C�(j), we havedet(X � Y )(X � Y )H = det((X1 � Y1)(X1 � Y1)H + (X2 � Y2)(X2 � Y2)H) == jdet(X1 � Y1)j2 + jdet(X2 � Y2)j2 + ( eX2 � eY2)(X1 � Y1)2F ;where X1 � Y1 2 Ci+j , X2 � Y2 2 C�(i)+�(j).We want to show that (i+ j; �(i) + �(j)) is a permutation keeping 0 �xed (andthus (X1 � Y1; X2 � Y2) all belong to the same linear ode as X;Y vary).Let �(i + j) = �(i) + �(j): � is well-de�ned beause the sum of two distintelements i; j 2 Z2� Z2 is equal to the sum of the elements in Z2� Z2 n fi; jg.In fat if i + j = k +m, either i + j = 0 and i = j; k = m, so that �(i + j) =2�(i) = 2�(k) = 0, or fi; j; k;mg = Z2�Z2, and �(i) + �(j) = �(k) + �(m).Moreover, � is surjetive beause it is the original permutation � shifted by�(0): �(j) = �(j) + �(0). And �(0) = �(0) + �(0) = 0.It follows that, from the point of view of the oding gain, our ode is equivalentto the linear ode indued by � .Other linear odes of length 2In the ase of linear odes not indued by permutations, S ontains at least twopoints with the same �rst or seond oordinate, of the form (i; j) and (i; k) or(j; i) and (k; i). But then (0; t) or (t; 0) belong to S for some t, and the osetweight enumerator polynomial has �min = 1 (see table 6.21), so these odeshave a worse performane than those we analyzed in the previous paragraphs.6.5.2 Codes of length 3Let U = f(i; j; k) j i; j; k 2 Z2�Z2g. For the sake of simpliity, we only onsiderlinear odes S � U . Similarly to the ase of length 2, for every (i; j; k) 2 U wean de�ned(Ci; Cj ; Ck) = minX2Ci;Y 2Cj ;Z2Ck(X;Y;Z)6=(0;0;0) 5�jdet(X)j2 + jdet(Y )j2 + jdet(Z)j2++ eY X2F +  eZX2F +  eZY 2F� ;and the oset weight enumerator polynomialsAS(D) = X(i;j;k)2SDd(Ci;Cj ;Ck); ÂS(D) = X(i;j;k)2Snf0gDd(Ci;Cj ;Ck)For a given dimension n of the ode as an F2 -vetor spae, we searh for thebest possible oset weight enumerator polynomial with respet to >�.The 64 odewords (i; j; k) 2 U an be divided in several groups aording tod = d(Ci; Cj ; Ck). Let a; b;  2 Z2� Z2 be distint and nonzero, and let � be apermutation; we an summarize the di�erent ases as in Table 6.5.2.If S is equal to the whole spae U , its oset weight generator funtion isAS(D) = 9D +D2 + 9D4 + 18D5 + 3D9 + 18D11 + 6D12



6.5 Coding with osets: a �rst example 111shape # of odewords d(Ci; Cj ; Ck)�(a; b; ) 6 d = 1 + 1 + 1 + 3 + 3 + 3 = 12�(a; a; b) 18 d = 1 + 1 + 1 + 3 + 3 + 2 = 11�(a; a; a) 3 d = 1 + 1 + 1 + 2 + 2 + 2 = 9�(0; a; b) 18 d = 1 + 1 + 0 + 3 + 0 + 0 = 5�(0; a; a) 9 d = 1 + 1 + 0 + 2 + 0 + 0 = 4�(0; 0; a) 9 d = 1(0; 0; 0) 1 d = 2Table 6.2: A list of the odewords in U aording to their shape.Subgroups of order 4In this ase, it is lear that the odeS = f(00; 00; 00); (01; 10; 11); (10; 11; 01); (11; 01; 10)ggives rise to the best possible oset weight enumerator polynomial, that isAS(D) = D2 + 3D12; ÂS(D) = 3D12; �̂(S) = 12Subgroups of order 8In this ase S has dimension 3 as an F2 -vetor spae. We de�ne the followingsubspaes of dimension 4 over F2 : I0 = f(i; j; k) j i = 0g, J0 = f(i; j; k) j j = 0g,K0 = f(i; j; k) j k = 0g.Then Grassmann's formula implies6 � dim(I0 + S) = dim(S) + dim(I0)� dim(S \ I0) = 7� dim(S \ I0)) dim(S \ I0) � 1Similarly, dim(S \ J0) � 1, dim(S \ K0) � 1. So, even in the best ase whendim(S \ I0) = dim(S \ J0) = dim(S \ K0) = 1, we have at least three nonzeroodewords with one digit equal to zero, giving at best a term 3D5 in the osetweight enumerator polynomial.Now onsider the ode S generated by (00; 01; 10); (01; 10; 00); (11; 11; 01):S = f(00; 00; 00); (00; 01; 10); (01; 10; 00); (11; 11; 01); (01; 11; 10);(11; 10; 11); (10; 01; 01); (10; 00; 11)gIt is easy to hek thatAS(D) = D2 + 3D5 + 3D11 +D12; �̂(S) = 5This is the best ase for dim(S) = 3. Suppose by ontradition that there existsS 0, dim(S 0) = 3, suh that AS0(D) >� AS(D). The term D2 is always presentin a linear ode, and we have already observed that the term 3D5 annot beavoided. The only possibility would be to have (at least) one more word (a; b; )suh that d(Ca; Cb; C) = 12.Suppose we already have one suh word (i; j; k), where i; j; k are all distint anddi�erent from 00, and we want to add another, (a; b; ).



112 Algebrai spae-time blok oded modulation� If we hoose a = i, then sine (a; b; ) 6= (i; j; k) we must hoose (a; b; ) =(i; k; j). But then (i; j; k) + (i; k; j) = (i; i; i) 2 S 0, giving rise to the termD9 in AS0(D), and thus AS0 <� AS .� Then neessarily a 6= i. Without loss of generality (sine the order ofthe digits is uninuential) we an suppose a = j. Then (a; b; ) is ei-ther (j; i; k) or (j; k; i). In the �rst ase, (i; j; k) + (j; i; k) = (k; k; 0) 2S 0, introduing the term D4 in AS0(D); but this is impossible beauseAS0 >� AS by hypothesis. Then the only possibility we have left is that(i; j; k); (j; k; i); (i; j; k) + (j; k; i) = (k; i; j) 2 S 0.Now we know that there is a nonzero element in I0\S 0, of the form (0; a; b); wehave to disard the option (a; b) 2 f(j; k); (k; i); (i; j)g beause in that ase S 0would ontain a odeword with two digits equal to 00 (in fat (i; j; k)+(0; j; k) =(i; 0; 0), (j; k; i)+(0; k; i) = (j; 0; 0), and (k; i; j)+(0; i; j) = (k; 0; 0) respetively).On the other hand, if (a; b) 2 f(k; j); (i; k); (j; i)g, then the ode would ontainthe odeword (i; i; i) = (i; j; k)+(0; k; j), or (j; j; j) = (j; k; i)+(0; i; k),(k; k; k) =(k; i; j) + (0; j; i) respetively, and again we would have AS0 <� AS .Subgroups of order 16We have dim(S) = 4. Grassmann's formula implies6 � dim(I0 + S) = dim(S) + dim(I0)� dim(S \ I0) = 8� dim(S \ I0)) dim(S \ I0) � 2;and in the same fashion we �nd that dim(S \ J0) � 2, dim(S \ K0) � 2. Thenthere are at least nine nonzero odewords with one digit equal to 00, and AS(D)ontains at the least the term 9D5.Consider the ode generated by (00; 01; 10),(00; 11; 01),(11; 01; 00),(10; 00; 01):S = f(00; 00; 00); (00; 01; 10); (00; 11; 01); (11; 01; 00); (10; 00; 01); (00; 10; 11);(11; 00; 10); (10; 01; 11); (11; 10; 01); (10; 11; 00); (01; 01; 01); (11; 11; 11);(10; 10; 10); (01; 00; 11); (01; 10; 00); (01; 11; 10)gIts oset weight generator polynomial isAS(D) = D2 + 9D5 + 3D9 + 3D12and �̂(S) = 5. Again, we want to show that this ode is optimal under ouronditions, that is, that the presene of the term 3D9 an't be avoided.We need to hoose three elements in S \ I0, without repeated digits; if the �rstis (0; i; j), the seond annot be (0; j; i) beause then (0; k; k) 2 S and AS wouldontain the term D4; it annot be (0; i; k) or (0; k; j) beause its sum with the�rst element would give one odeword with two digits equal to 00. So the threeodewords have to be f(0; i; j); (0; j; k); (0; k; i)g.Now let's onsider the three nonzero odewords in S \ J0: as in the previousase, the hoie of the �rst element determines the others and we an hooseeither the triple f(i; 0; j); (j; 0; k); (k; 0; i)g or f(j; 0; i); (i; 0; k); (k; 0; j)g.In the �rst ase, (0; i; j) + (i; 0; j) = (i; i; 0) 2 S, and AS would inlude a termD4, so this option must be disarded.In the seond ase, (0; i; j) + (i; 0; k) = (i; i; i), (0; j; k) + (j; 0; i) = (j; j; j),(0; k; i)+(k; 0; j) = (k; k; k), whih proves that the term 3D9 in the oset weightenumerator polynomial an't be avoided.



6.6 Struture of the quotient rings of G 113Subgroups of order 32Let's onsider the following subspaes of dimension 2 over F2 :I = f(i; j; k) j j = k = 0g; J = f(i; j; k) j i = k = 0g; K = f(i; j; k) j i = j = 0gSine dim(S) = 5, Grassmann's formula implies that S \ I, S \ J , S \ K havedimension at least one. Then AS ontains the term D, and these odes are noteÆient from the point of view of the determinant.6.6 Struture of the quotient rings of GIn this setion we desribe the struture of the two-sided ideals of G and ofthe orresponding quotients. As we have seen, the multipliative struture ofG plays an important role when omputing the mixed terms in the minimumdeterminant, and it is onvenient for the quotient to have a ring struture.In partiular, we want to �nd all the two-sided ideals whose norm is a power of1+ i; these an be espeially useful to build a binary partition hain like the onedesribed in x6.4.3. Unfortunately, we will see that the only two-sided idealswith this property are the trivial ones. We then analyze the struture of thequotient rings, and �nd that they are rings of matries over non-integral rings.First of all, we need some further notions from non-ommutative algebra; wewill see that the existene of two-sided ideals is related to the rami�ation ofprimes over the base �eld. We will also show that O is a maximal order of A.6.6.1 Ideals, valuations and maximal orders6.24 (Prime ideals). Let � be an order, P a two-sided ideal of � (that is,the left and right order of I oinide with �). P is prime if it is nonzero and8I; J integer two-sided ideals of �, IJ � P) I � P or J � P.The proofs of the following theorems an be found in Reiner's book [19℄:Theorem 6.25. The two-sided ideals of an order � form a free group generatedby the prime ideals.Theorem 6.26. Let � be a maximal order in a quaternion algebra H. Thenthe prime ideals of � oinide with the maximal two-sided ideals of �, and thereis a one-to-one orrespondene between the prime ideals P in H and the primeideals P of R, given by P = R \P.Moreover, �=P is a simple algebra over the �nite �eld R=P .6.27 (Valuations and loal �elds). A valuation v of K is a positive realfuntion of K suh that 8k; h 2 K,1. v(k) = 0, k = 0,2. v(kh) = v(k)v(h),3. v(k + h) � v(k) + v(h).



114 Algebrai spae-time blok oded modulationv is non-arhimedean if v(k + h) � max(v(k); v(h)) 8k; h 2 K; it is disrete ifv(K�) is an in�nite yli group.K an be endowed with a topology indued by v in the following way: a neigh-borhood basis of a point k is given by the setsU"(k) = fh 2 K j v(h� k) < "gK will be alled omplete if it is omplete with respet to this topology.If v is non arhimedean, the setRv = fk 2 K j v(k) � 1gis a loal ring, alled the valuation ring of v. The quotient Rv=Pv, where Pv isthe unique maximal ideal of Rv, is alled the �eld of residues of K.K is a loal �eld if it is omplete with respet to a disrete valuation v and ifRv=Pv is �nite.6.28 (Plaes). A plae v of K is an immersion iv : K ! Kv into a loal �eldKv. If v is non-arhimedean, we say that it is a �nite plae; otherwise, that itis an in�nite plae.The �nite plaes ofK arise from disrete P -adi valuations ofK, where P rangesover the maximal ideals in the ring of integers R of K. (Reall that the ringof integers in a number �eld is always a Dedekind domain, and so the maximalideals oinide with the prime ideals).Here we reall a few well-known fats about rami�ation in ommutative exten-sions: let L be a separable extension of degree d of K, and P a prime ideal ofK. In general, P is not a prime in L, and admits a unique deomposition withrespet to the primes of L: P = pe11 pe22 � � � perr ;where p1; : : : ; pr are distint and are alled the primes over P .Proposition 6.29. Let OL be the ring of integers of L: then for eah pi overP , OL=pi is a �nite extension of the �nite �eld R=P . The degree fi of thisextension is alled the inertial degree of pi over P , and the following relationholds: d = rXi=1 eifi6.30. We say that P� is rami�ed if 9i suh that ei > 1� is totally rami�ed if r = 1, e1 = d, f1 = 1, that is, P = pd,� is unrami�ed if ei = 1 8i = 1; : : : ; r,� splits ompletely if it is unrami�ed and r = d, that is, fi = 1 8i = 1; : : : ; r,� is inert if fi = 1 8i = 1; : : : ; r.



6.6 Struture of the quotient rings of G 1156.31 (Rami�ed plaes). Let H be a quaternion algebra overK, and P a plaeof K.Consider the K-module HP = H
K KP ; HP is isomorphi to a matrix algebraMr(D) over a skew �eld D of enter KP and index mP over KP ; mP is alledthe loal index of H at P . We say that P is rami�ed in H if mP > 1.Given a maximal order �, the set Ram(H) of rami�ed plaes of H is related toa partiular two-sided ideal of �:6.32 (Di�erent and disriminant). Let � be an order. The set�� = fx 2 H j tr(x�) � Rgis a two-sided ideal, alled the dual of �. Its inverse D = (��)�1 is a two-sidedintegral ideal, alled the di�erent of �. If fw1; : : : ; w4g is a basis of � as a freeR-module, (n(D))2 = R det(tr(wiwj))The ideal n(D) of R is alled the redued disriminant of � and is denoted byd(�).Proposition 6.33. If �;�0 are two orders and �0 ( �, then d(�0) ( d(�).The notion of rami�ation for quaternion algebras is a generalization of thenotion of rami�ation for �eld extensions:Theorem 6.34. Let � be a maximal order in H. For eah plae P of K, letmP be the loal index of H at P , and let P be the prime ideal of � orrespondingto P (see Theorem 6.26). Then mP > 1 only for a �nite number of plaes P ,and P� = PmP ; D = YP2Ram(H)PmP�1Proposition 6.35. Let H be a quaternion algebra unrami�ed at in�nity.A neessary and suÆient ondition for an order � to be maximal is thatd(�) = YP2Ram(H)n1PIn the ase of in�nite plaes P , the P -adi ompletion an be R (real primes)or C (omplex primes). Complex primes are never rami�ed. [19℄Theorem 6.36. The two-sided ideals of a maximal order � form a ommutativegroup generated by the ideals of R and the ideals of redued norm P , where Pvaries over the prime ideals of R that are rami�ed in H.Moreover, onsider the normalizer N(�) = fx 2 H j x�1�x = �g of �. ThenN(�)K��� �= Zm2 , where m is the number of prime divisors of D.6.6.2 Struture of the quotient rings of GReall the de�nition of the division algebra A in (6.3):A = �� x1 x2i�x2 x1 � ; x1; x2 2 Q(i; �)�



116 Algebrai spae-time blok oded modulationAs we have seen in x6, O = Z[i; �℄�Z[i; �℄j is a Z[i℄-order of A, and the GoldenCode is (up to a saling fator 1p5 ) the ideal G = �O, where � = 1+ i��; we haveseen that it is a two-sided prinipal ideal.G is also a prime ideal beause of Theorem 6.26, sine G \ Z[i℄ = (2 + i) is aprime ideal of Z[i℄.Then O=p5G is a simple algebra over Z[i℄=(2+ i) �= F5 .Observe that the prime ideals (2+ i) and (2� i) of Z[i℄ are both rami�ed in A:in fat (2 + i) = (�)2; and (2� i) = (�0)2; where �0 = 1� i��(Remark that � = i���, �0 = �i�� ��0).Proposition 6.37. O is a maximal order.Proof. In the ase of O, the in�nite primes are omplex beause Q(i) is omplex.Therefore the onditions of Proposition 6.35 are satis�ed.We an ompute det(tr(wiwj)), for the basis fw1 = 1; w2 = �; w3 = j; w4 = �jgof O: (wiwj)1�i;j�4 = 0BB� 1 � j �j� �2 �j �2jj ��j i i���j �j �i �i 1CCAdet(tr(wiwj)) = det0BB� 2 1 0 01 3 0 00 0 2i i0 0 i �2i 1CCA = 25Therefore d(O) = 5Z[i℄.If O were stritly ontained in another order O0, d(O0) would be stritly largerthan 5Z[i℄. But we know from Proposition 6.35 that d(O0) would be the produtof all rami�ed primes of H; in partiular it should be ontained in (2 + i) and(2 � i). But then it would be ontained in 5Z[i℄, a ontradition. Therefore Ois a maximal order, and G is a normal ideal.As a onsequene of the fat that O is maximal, from Proposition 6.35 we alsolearn that 2 + i and 2� i are the only rami�ed primes in H.Then Theorem 6.36 implies that the prime two-sided ideals of O are either ofthe form pO, where p prime in Z[i℄, or belong to f�O; �0Og.It follows that the only two-sided ideals of G whose norm is a power of 1+ i arethe trivial ideals of the form (1 + i)kG.The quotient ring G=(1 + i)GConsider the prime ideal (1 + i)O. It is easy to hek that G and (1 + i)O areoprime ideals, that is G + (1 + i)O = O and as a onsequene, G \ (1 + i)O =G(1 + i)O = (1 + i)G. Reall the following basi result:



6.6 Struture of the quotient rings of G 117Theorem 6.38 (Third Isomorphism Theorem for rings). Let I and J beideals in a ring R. Then II \ J �= I + JJPutting I = G and J = (1 + i)O, we getG(1 + i)G �= O(1 + i)O (6.24)If �G : G ! G=(1+i)G and �O : O ! O=(1+i)O are the anonial epimorphisms,the ring isomorphism in (6.24) is simply given by �G(g) 7! �O(g).Theorem 6.26 implies that O=(1+ i)O is a simple algebra over Z[i℄=(1+ i)�= F2 .We denote the image of x 2 O through the anonial epimorphism O ! O=(1+i)O with [x℄.Lemma 6.39. O=(1 + i)O is isomorphi to the ring M2(F2 ) of 2� 2 matriesover F2 .Proof. Reall the following well-known lemma [14℄:Lemma 6.40. Let R be a ring with identity, I a proper ideal of R, M a freeR-module with basis X and � :M !M=IM the anonial epimorphism. ThenM=IM is a free R=I-module with basis �(X) and j�(X)j = jX j.We know that O=(1+i)O is a Z[i℄-module; the lemma implies that it is also a freeZ[i℄=(1+i)-module, that is a vetor spae over F2 , whose basis is f[1℄; [�℄; [j℄; [�j℄g.We de�ne an homomorphism of F2 -vetor spaes ' : O=(1 + i)O !M2(F2 ) byspeifying the images of the basis:'([1℄) = 1; '([�℄) = �0 11 1� ; '([j℄) = �0 11 0� ; '([�j℄) = '([�℄)'([j℄)It is one-to-one sine '([1℄); '([�℄); '([j℄); '([�j℄) are linearly independent.In order to prove that ' is also a ring homomorphism, it is suÆient to verifythat '(wiwj) = '(wi)'(wj) for all pairs of basis vetors wi; wj ; the only non-trivial ases are'([�℄)2 = �0 11 1�2 = �1 11 0�2 = '([� + 1℄) = '([�2℄);'([j℄)2 = 1 = '([1℄) = '([i℄);'([��j℄) = '([(1 + �)j℄) = '([j + �j℄) = �0 11 0�+�1 01 1� = �1 10 1� == �0 11 0��0 11 1� = '([j℄)'([�℄)Remark 6.41. Clearly M2(F2 ) has no proper two-sided ideals; its only leftideals are I0 = ��0 a0 b� : a; b 2 F2� ;I1 = ��a ab b� : a; b 2 F2� ;I1 = ��a 0b 0� : a; b 2 F2� ;



118 Algebrai spae-time blok oded modulationall of index 4.Reall that G is isometri to p5Z[i℄4, and a anonial basis is given bye1 = �; e2 = ��; e3 = �j; e4 = ��j (6.25)The orresponding elements of M2(F2 ) aree1 = �0 11 1� ; e2 = �1 11 0� ; e3 = �1 01 1� ; e4 = �1 10 1� (6.26)Remark that the Hamming weight of a word in G=(1 + i)G with respet to thebasis (6.26) is equal to the minimum Eulidean norm over all the lattie pointsin the orresponding oset.It is easy to hek that the only invertible elements (the matries with full rank)are e1; e2; e3; e4; e1 + e2 = 1; e3 + e4 = '(j)It is easy to see that their lifts to G of non-invertible elements have a higherdeterminant:Remark 6.42. If X 2M2(F2 ) n f0g is non-invertible,minY 2G; [Y ℄=X jdet(Y )j2 � 2Proof. �G(Y ) is non-invertible in G=(1 + i)G if and only if its determinant isnon-invertible in Z[i℄=(1 + i), that is, det(Y ) = eY Y 2 (1 + i) n f0g if X 6= 0,sine H is a division ring.Then ���det(eY Y )��� = jdet(Y )j2 � 2.The quotient ring G=2GAgain, G and 2O are oprime and so G2G �= O2O .Lemma 6.43. O=2O is isomorphi to the ring M2(F2 [i℄) of 2�2 matries overthe ring F2 [i℄.Proof. First of all, Lemma 6.40 implies that O=2O is a free Z[i℄=2-module, thatis a free F2 [i℄-module, of dimension 4. As in the previous ase, we an onstrutan expliit homomorphism of F2 [i℄-modules � : O=2O !M2(F2 [i℄):�([1℄) = 1; �([�℄) = �1 + i 1i i� ; �([j℄) = �0 1i 0� ; �([�j℄) = �([�℄)�([j℄)Again, it is easy to hek that the images of the basis elements are linearly inde-pendent and therefore � is one-to-one. It is also surjetive sine the ardinalitiesof the domain and odomain are the same.Moreover, � is a ring homomorphism:�([j℄)2 = i1 = �([j2℄);�([�2℄) = �([� + 1℄) = �i 1i i+ 1� = �1 + i 1i 1�2 ;�([j℄)�([�℄) = � i i1 + i i� = �([(1 + �)j℄)



6.6 Struture of the quotient rings of G 119Remark 6.44. In order to �nd an expliit isomorphism between G=2G andM2(F2 ), onsider the following diagram, where � : O=2O ! M2(F2 [i℄) is themapping de�ned in Lemma 6.43:p5G �����! G=2G '����! O=2O �����!M2(F2 [i℄)The basis f�; ��; �j; ��jg of p5G as a Z[i℄-module is also a basis of G=2G asan F2 [i℄-module. The isomorphism ' is simply the omposition of the inlusionp5G ! O and the quotient mod (1+ i)O. We an ompute the images throughthe isomorphism � of the basis vetors: realling that� = 1 + i� i�; �� = � � i; �j = (1 + i� i�)j; ��j = (� � i)j;we get �(�) = �(1 + i) + i�(�) = �0 i1 i��(��) = �(�) + �(i) = �1 1i 0��(�j) = �(�)�(j) = �0 i1 i��0 1i 0� = �1 01 1��(��j) = �(��)�(j) = �1 1i 0��0 1i 0� = �i 10 i�Reall that there is a one-to-one orrespondene between the ideals of G thatontain 2G and the ideals of G=2G. Therefore M2(F2 [i℄) has only one propertwo-sided ideal, (1 + i)M2(F2 [i℄).Also in this ase, the lifts Y of non-invertible elements in G will have non-invertible determinant, that is jdetY j2 � 2.In general, we know that O=(1+i)kO is a free Z[i℄=(1+i)k- module of dimension4 (see Lemma 6.40). The following proposition holds:Proposition 6.45.1. When k = 2n is even, Z[i℄(1+i)k �= Z2n[i℄.2. When k = 2n + 1 is odd, Z[i℄(1+i)k = Z[y℄(y2�2y+2;2ny) �= Z2n+1 � Z2ny, withy2 = 2y � 2.Proof.1. When k = 2n, from the Third Isomorphism Theorem we get:Z[i℄(1 + i)k = Z[x℄(x2 + 1; 2n) �= Z[x℄=2n(x2 + 1; 2n)=2n = Z2n[x℄x2 + 1 = Z2n[i℄2. When k = 2n+ 1, Z[i℄2n(1 + i) �= Z[x℄(x2 + 1; 2n(1 + x))



120 Algebrai spae-time blok oded modulationPutting y = 1 + x, this is isomorphi toZ[y℄(y2 � 2y + 2; 2ny) = Z[y℄(y2 � 2y + 2; 2ny; 2n+1)sine 2n+1 = 2n(y2 � 2y + 2) � 2ny(y � 2) 2 (y2 � 2y + 2; 2ny). Wehave a surjetive ring homomorphism from Z[y℄=(y2� 2y + 2; 2ny; 2n+1)to Z2n+1�Z2ny: given a polynomial p(y) we an take the remainder (mod(y2 � 2y + 2))- a polynomial of degree 1 - and redue the oeÆients of 1and y by 2n+1 and 2n respetively.This map is also surjetive, sine the two rings have the same ardinality:Remark 6.46. #� Z[i℄(1 + i)k+1� = 2kIt an be proved by indution on k:Z[i℄(1 + i)k �= Z[i℄=(1+ i)k+1(1 + i)k=(1 + i)k+1) # �Z[i℄=(1+ i)k+1� = # �Z[i℄=(1+ i)k+1�# �(1 + i)k=(1 + i)k+1� == # �Z[i℄=(1+ i)k+1�#(Z[i℄=(1+ i))sine Z[i℄=(1 + i) �= (1 + i)k=(1 + i)k+1 (where the ring isomorphism isgiven by y 7! y(1 + i)k).We an �nd an expliit matrix representation ofO=(1+i)kO overZ[i℄=(1+i)kZ[i℄also for k = 3 and k = 4:Lemma 6.47. O4O �=M2(Z4[i℄).Proof. As in the previous ases, it is enough to �nd matrix representations of �and j suh that 1; �; j; �j are linearly independent over Z4[i℄:� = �i� 1 1�i 2� i� ; j = �0 1i 0�In fat �2 = �i� 1 1�i 2� i� = � + 1;�j = � i i� 12i+ 1 �i � = j(1� �)Sine M2(Z4[i℄) and O4O have the same ardinality beause of Lemma 6.40, thisrepresentation is a ring isomorphism.The same matrix representations of � and j an be used for k = 3, reallingthat i = y � 1:Proposition 6.48. O2(1+i)O �=M2(Z4�Z2[y℄), where y2 = 2y � 2.



6.7 The repetition ode 121Proof. The proof is similar to the previous one. We de�ne� = �y � 2 11 + y �1 + y� ; j = � 0 1y � 1 0�Computing produts mod (4; 2y), we get�2 = ��1 + y 11 + y y� = � + 1;�j = ��1 + y y + 2�1 1 + y� = j��6.7 The repetition odeIn this paragraph we want to illustrate with a simple example how the proper-ties of the minimum determinant desribed in x6.4.1 inuene the atual odeperformane. We onsider a blok ode of length 2, the lift of the repetitionode over the osets of (1 + i)G: if � : G ! G=(1 + i)G is the projetion on thequotient ring, we de�neC = fX = (X1; X2) 2 G2 j �(X1) = �(X2)gThe fat that the odewords of Hamming weight 1 belong to the 0 oset ensuresthat the �min for C is equal to the minimum square determinant in (1 + i)G,whih is 4: in fat, if �(X1) = �(X2) 6= 0, det(XXH ) = det(X1)2 + det(X2)2 + eX2X12F � (jdet(X1)j+ jdet(X2)j)2 � 4 beause of Lemma 6.15 and Remark6.17.A simple variation of the repetition sheme onsists in hoosing any bijetion hof G=(1 + i)G and de�ningCh = fX = (X1; X2) 2 G2 j �(X2) = h(�(X1))gIn the ase of the repetition ode, suppose that �(X1) = �(X2) = Ci. If Ci isan invertible element in M2(F2 ), theneCiCi = det(Ci)1 = 1 = e1 + e2in the basis (6.26), and so the minimum determinant of a \lifted" odewordX 2 ��1( eCiCi) is also 1, and the minimum of kXk2F is 2.If on the other side Ci orresponds to a non-invertible, nonzero element inM2(F2 ), then minX2��1( eCiCi) jdet(X)j � 2 (see Remark 6.42). Thus in the �rstase det(XXH) � 4, in the seond det(XXH) � 8.This remark suggests that it might be more onvenient to onsider a grouphomomorphism h :M2(F2 )!M2(F2 ) whih maps invertible elements into non-invertible elements, raising the minimum determinant for Ci 6= 0 to 9. Suha funtion is not diÆult to de�ne: for example, realling the de�nition of thebasis fe1; e2; e3; e4g in equation (6.26), we an takeh(e1) = e1+e2+e4; h(e2) = e2+e3+e4; h(e3) = e1+e2+e3; h(e4) = e1+e3+e4



122 Algebrai spae-time blok oded modulationIn the ase of 4�QAM modulation, an exhaustive searh on the 65536 pointsin the �nite lattie shows that Ch is indeed better than C.2 The asymptotioding gain estimate is the same for both odes: using 4-QAM onstellations,the hoie of a oset requires 4 information bits, while the hoie of a point ina given oset requires 4 more bits. Eah odeword then arries 12 informationbits, yielding a spetral eÆieny of 3 bpu (bits per hannel use).Then we an ompare these shemes with the unoded Golden Code at 3 bpu,using 4-QAM onstellations for the symbols a;  and BPSK (Binary Phase ShiftKeying) onstellations, onsisting of the two points �� 12 ; 12	, for the symbolsb; d in eah Golden odeword. The average energy per symbol is ES = 0:5(0:5+0:25) = 0:375. as = p�min;1=ES;1p�min;2=ES;2 = 2=0:51=0:375 = 1:5;This omputation gives a theoretial gain of at least 10 log10(1:5) dB = 1:7 dB.Simulation resultsFigure 6.2 shows the performane of the odes CId and Ch, whih gain 2:4 dBand 2:9 dB respetively over the unoded sheme at 3 bpu at the frame errorrate of 10�3, supposing that the hannel is onstant for 2 time bloks.6.8 Golden Reed-Solomon CodesWe now go bak to the original problem stated in x6.4, that is, how to improvethe performane of the Golden Code in the slow fading setting, using blokodes over G. We would like to ompensate the diversity loss due to the slowhanging of the hannel with an inrease of the Hamming distane of the odeover the alphabet G. We will ombine the hoie of a modulation sheme andof a maximum-distane separable error-orreting ode.Remark 6.49. As we have seen in the previous setions, in addition to theminimum Hamming distane, also the multipliative struture and the mini-mum number of non-invertible omponents have a signi�ant inuene on theoding gain of a blok ode design. Thus, an optimal solution in order to keeptrak of these parameters and take advantage of the ring struture would be toonsider error-orreting odes based on M2(F2 [i℄). However, suh a projet,albeit interesting, would be diÆult to implement, sine at present very littleis known about odes over non-ommutative rings, and no eÆient deodingalgorithms are available.2In fat we an ompute the funtion�h(q) = XX2Ch = qDet(XXH)In the ase of the repetition ode, the �rst terms in the series are�Id(q) = 1 + 66q4 + 120q8 + 48q10 + 202q16 + : : :while for the funtion h just de�ned,�h(q) = 1 + 24q4 + 61q8 + 24q9 + 8q10 + 74q12 + 58q13 + 74q14 + 108q16 + : : :
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Uncoded Golden Code at 3bpcu, channel constant for 2 blocks
Repetition code 
Variation on the repetition codeFigure 6.2: Performane of the repetition ode CId and of the variation Ch at 3 bpuompared with the unoded Golden Code sheme with the same spetral eÆieny.The hannel is supposed to be onstant for 2 time bloks.We also remark that in the ase of odes over rings, a distintion must be madebetween the rank (minimum number of generators as a module) and the freerank (maximum rank of the free submodules of the ode), so that in general thenumber of odewords might be smaller than the power of the ardinality of thering to the rank of the ode. In the ase of non-ommutative rings, the rankmight not even be well-de�ned.We hoose shortened Reed-Solomon odes instead beause they are maximumdistane separable and their implementation is very simple; we will restrit ourattention to the additive struture, de�ning a group isomorphism between G=2Gand the �nite �eld F256 :6.8.1 The 4-QAM aseUsing 4-QAM onstellations (see Figure 4.2) to modulate eah of the 4 symbolsa; b; ; d in a Golden odewordX = 1p5 � �(a+ b�) �(+ d�)��i(+ d��) ��(a+ b��) � ;give a total of 256 odewords, one in eah oset of G=2G �= M2(F2 [i℄). In thisase, simply by ombining an (n; k; d) error orreting ode with the quotientG=2G, we an be sure to ahieve minimum Hamming distane d. On the on-trary, if we have more than one point per oset and onsider the lifts of linearodes on the quotient, we would get bloks of Hamming weight 1 that are liftsof the odeword 0 in the error-orreting ode.



124 Algebrai spae-time blok oded modulationWe onsider an (n; k; d) Reed-Solomon ode over F256 . We reall that theseodes are maximum distane separable, that is k = n� 1 + d.Eah quadruple (a; b; ; d) of 4-QAM signals orresponds to 8 information bits;eah blok of n Golden odewords will arry 8k information bits.We desribe in detail eah step of the enoding and deoding proedure:1. Reed-Solomon enoding:Eah information byte an be seen as a binary polynomial of degree � 8, thatis, an element of the Galois Field F256 . A random information message of kbytes, seen as a vetor U = (U1; : : : ; Uk) 2 Fk256 is enoded into a odewordV = (V1; : : : ; Vn) 2 Fn256 using the RS(n; k; d) shortened ode C.In order to obtain the generator matrix for the shortened ode C, we start withthe \long" ode RS(255; 255� d+1; d) [16℄. As a generator polynomial we antake g(x) = d�1Yi=1(x� �i) = 0 + 1x+ : : :+ d�2xd�1 + xd�1; i 2 F2568iwhere � is a primitive element, that is a generator of the multipliative groupF�256 . � is a root of an irreduible (primitive) polynomial p of degree 8.3 Theorresponding generator matrix isG = 2666666664 0 1 2 � � � 1 0 � � � 0 0 00 0 1 2 � � � 1 � � � 0 0 00 0 0 1 2 � � � 1 0 0 0... . . . . . . . . . ...... . . . . . . . . . ...0 � � � � � � � � � 0 1 2 � � � 1
3777777775Choosing only the rows whose �rst 255 � n omponents are equal to 0 anddeleting the null olumns, we obtain the generator matrix G for the (n; k; d)shortened Reed-Solomon ode.42. From the Galois field F256 to the matrix ring M2(F2 [i℄):We now have a vetor in Fn256 ; we want to translate eah omponent into anelement of M2(F2 [i℄).3There are 16 primitive polynomials of degree 8. For this simulation I have arbitrarilyhosen p(x) = x8 + x6 + x5 + x+ 1.The oeÆients of the generator polynomial g in the Galois Field F256 an be easily omputedusing any symboli manipulation software, suh as Maple.4In the ase of a (4; 2; 3) shortened Reed-Solomon ode, the generator matrix isG = � �3 �2 + � 1 00 �3 �2 + � 1 �For our purposes, it is muh better to obtain a systemati version of the ode, that is onethat preserves the �rst k bits of the input. This equivalent version an be obtained simply byperforming the Gauss redution algorithm over F256 , yielding the matrixG = � 1 0 1 + �+ �2 + �3 + �4 + �5 + �6 + �7 1 + �+ �30 1 �3 + �4 + �6 1 + �2 + �6 + �7 �We remark that in order to speed up the omputation of produts over F256 , a table storingthe onversions between the representation as a polynomial of degree less than 7 in � and therepresentation as a power of � an be omputed one and for all.



6.8 Golden Reed-Solomon Codes 125We an represent the elements of M2(F2 [i℄) as bytes, simply by vetorising eahmatrix and separating real and imaginary parts: for example�a+ bi e+ fi+ di g + hi� 7! (a; b; ; d; e; f; g; h) 2 f0; 1g8Sine we are only working with the additive struture, we an identify F256 andM2(F2 [i℄), whih are both F2 -vetor spaes of dimension 8. Aording to oursimulation results, it seems that the hoie of the linear identi�ation has verylittle inuene on the ode performane.3. From the matrix ring M2(F2 [i℄) to the quotient ring G=2G:For this step we make use of the isomorphism of F2 [i℄-modules ' Æ � : G=2G !M2(F2 [i℄) desribed in Remark 6.44. In vetorized form, with respet to thebases f�; ��; �j; ��jg and��1 00 0� ; �0 01 0� ; �0 10 0� ; �0 00 1�� ;this is given by the matrix A = 0BB� 0 1 1 i1 i 1 0i 1 0 1i 0 1 i 1CCAIn pratie, it is suÆient to send eah matrix M 2M2(F2 [i℄) toA�1(M) = (<(a);=(a);<(b);=(b);<();=();<(d);=(d));with a; b; ; d 2 Z2[i℄ = Z[i℄=2Z[i℄. Taking the orresponding oset leaders inZ[i℄, we obtain the Golden odeword1p5 ��(a+ b�) �(+ d�)i��(+ d��) ��(a+ b��)�4. Golden Code enoding:For eah of the n vetor omponents, the symbols a,b,,d 2 Z2[i℄4 are modulatedinto four 4-QAM signals, and then enoded into a Golden odeword using the(vetorized, real) generator matrix R of Remark 6.13. Thus we have obtained aGolden blok X = (X1; X2; : : : ; Xn) = �(V), where � : Fn256 ! Gn is injetive.5. Channel simulation:We suppose the hannel matrix H to be onstant during the transmission ofthe n Golden odewords. This assumption an be onsidered realisti for a slowfading hannel if n < 100 (see x4.2.1). The reeived signal isY = HX+W;where W is the Gaussian noise.6. Soft deoding:In a �rst phase, for eah omponent i = 1; : : : ; n of the reeived vetor Y andfor eah modulated point Z(j), the Eulidean distaned(i; j) = HZ(j) � Yi2
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t=2 t=3 t=4t=0 t=1

Figure 6.3: A simpli�ed diagram showing the trellis assoiated to the (4; 2; 3)-Reed-Solomon ode.is omputed and stored in memory.In a seond phase, ML deoding or soft deoding is performed (see equation(4.4)): we searh for the minimum of the Eulidean distanenXi=1 kHZi � Yik2over all the images Z = �(V0) of Reed-Solomon odewords. The Viterbi algo-rithm over the trellis diagram for the RS ode may be used for this searh (for areferene see for example [2℄): if the generator matrix of the RS ode is system-ati, the partial distane Pki=1 kHZi � Yik2 an be obtained diretly withoutomputing the whole Reed-Solomon odeword, and the points for whih thisdistane is too big an be disarded.In the ase of a RS(4,2,3) ode, the dimensions kt of the state spaes Zt at timet in the trellis as F256 -vetor spaes are respetively k1 = 1, k2 = 2, k3 = 1,k4 = 0. By exhanging the fourth and seond oordinate in the trellis, thedeoding proess is redued to �ndingX̂ = argminX2 0�0� minX=(X1;X2;X3;X4)Xi 6=2 kYi �HXik21A+ Y2 +HX221Aover all the bloks X = �(V) arising from Reed-Solomon odewords (see �gure6.3).PerformaneIn the 4-QAM ase, the spetral eÆieny of the Golden Reed-Solomon odesis given by 8k bits2n hannel uses = 4kn bpuFrom Proposition 6.20, we get a lower bound for �min: for a Golden Reed-Solomon ode of minimum Hamming distane d in G, �min � d25 . Thus we



6.8 Golden Reed-Solomon Codes 127obtain an estimate of the asymptoti oding gain for these odes (see x4.2.1),by omparing them with the unoded Golden Code with the same spetraleÆieny. In the ase of 2 bpu, we an onsider a BPSK onstellation on thereal axis.� 2 bpuIf k = n2 , the spetral eÆieny is 2bpu. Comparing the 4-QAM, (n; k; d)Golden-RS design (ES = 0:5) with the unoded Golden Code using BPSK(ES = 0:25), we get an asymptoti oding gain of:as = p�min;1=Es;1p�min;2=Es;2 = d=0:51=0:25 = d2 (6.27)� 3 bpuIf k = 34n, the spetral eÆieny is 3 bpu. Comparing the 4-QAM,(n; k; d) Golden-RS design (ES = 0:5) with the unoded Golden Codeusing BPSK for the symbols a and  and 4-QAM for the symbols b and d(ES = 0:5(0:5 + 0:25) = 0:375), we get an asymptoti oding gain of:as = p�min;1=ES;1p�min;2=ES;2 = d=0:51=0:375 = 3d4 (6.28)Simulation resultsFigure 6.4 shows the performane omparison of the Golden-RS ode (4; 2; 3)with the unoded sheme at the spetral eÆieny of 2 bpu.Assuming the hannel to be onstant for 4 bloks, the Golden-RS ode outper-forms the unoded sheme by 6:1 dB.This gain is unexpetedly high ompared with the theoretial oding gain (6.27)for d = 3, whih is 10 log10 �d2� dB = 1:7 dB. The rough estimate (6.27) is basedon the worst possible ourrene, that of a odeword of Hamming weight 3 inwhih all three non-zero omponents orrespond to invertible elements in thequotient.However, we an verify empirially that in the 4-QAM ase and with our hoieof the ode, this event does not take plae and in fat the atual value for �minfound by omputer searh is p34, giving a rough estimate for the gain of 4:6 dB,whih is muh loser to the observed value.This favorable behavior might be due to the fat that the hosen onstella-tion ontains only one point in eah oset, so that the odewords of Hammingdistane 3 are few.The soft deoding method has the drawbak of being slow, whih makes itunsuitable to use with longer Reed-Solomon odes. A faster (if suboptimal) softdeoding algorithm, suh as stak deoding, ould make up for this loss of speedwhile still retaining most of the oding gain.Hard deoding aseIn an early version of the algorithm desribed in x6.8.1 we replaed Step 6 withthe following steps:
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Golden−RS(4,2,3) with soft decoding
Golden−RS (4,2,3) with hard decoding
Uncoded Golden Code constant for 4 blocks at 2bpcuFigure 6.4: Comparison between hard and soft deoding for the RS(4; 2; 3) ode at 2bpu. The �rst method ahieves a gain of only 1:1 dB over the unoded ase, omparedto the 6:1 dB of the seond.6. n separate Sphere Deoders:We apply an 8-bit Sphere Deoder separately on eah of the n reeived words(Y1; : : : ; Yn), obtaining the estimate (X̂1; : : : ; X̂n). The signal is then demodu-lated, and we apply to eah byte the inverse mappings of Steps 3 and 2 sues-sively, obtaining a vetor (V̂1; : : : ; V̂n) in Fn256 .7. Reed-Solomon deoding:The reeived sequene (V̂1; : : : ; V̂n) doesn't neessarily belong to the RS ode,so we still need to perform RS deoding, yielding the estimate (Û1; : : : ; Ûk).Finally, we ompute the error probability, omparing (Û1; : : : ; Ûk) with the ini-tial message (U1; : : : ; Un) of Step 1, and reord one word error whenever theyare di�erent.This \hard" deoding has the advantage of speed and allows to use longer Reed-Solomon odes with high minimum distane. However it is highly suboptimal,sine it substitutes the deision on the Eulidean distane with poor partialdeisions on eah oordinate. Performane simulations show that with thismethod the oding gain is almost entirely anelled out (see �gure 6.4).Simulation results:� 2 bpu: Figure 6.5 shows the performane omparison of the Golden-RS odes with hard deoding with the unoded sheme at the spetraleÆieny of 2 bpu.Assuming the hannel to be onstant for 4, 8 and 12 bloks respetively, the(4; 2; 3), (8; 4; 5) and (12; 6; 7) Golden-RS odes outperform the unodedsheme at the same spetral eÆieny by 1:1 dB, 1:7 dB and 2:8 dB at
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Golden−RS(4,2,3)
Uncoded GC, constant for 4 blocks
Golden−RS(8,4,5)
Uncoded GC, constant for 8 blocks
Golden−RS(12,6,7)
Uncoded GC constant for 12 blocksFigure 6.5: Performane of (4; 2; 3), (8; 4; 5), and (12; 6; 7) Golden Reed-Solomonodes with \hard deoding" at 2 bpu ompared with the unoded Golden Code shemewith the same spetral eÆieny.
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Golden−RS(8,6,3)
Uncoded GC constant for 8 blocks
Golden−RS(16,12,5)
Uncoded GC constant for 12 blocks
Golden−RS(24,18,7)
Uncoded GC constant for 24 blocksFigure 6.6: Performane of (8; 6; 3), (16; 12; 5), and (24; 18; 7) Golden Reed-Solomonodes with \hard deoding" at 3 bpu ompared with the unoded Golden Code shemewith the same spetral eÆieny.



130 Algebrai spae-time blok oded modulationthe FER of 10�3.The Golden-RS shemes seem to be more robust on slow fading hannels;in fat the performanes of the Golden-RS(n; k; d) odes on a hannelwhih is onstant for n bloks remain almost unhanged (the variationis less than 0:2 dB) when n varies between 4 and 12, while the unodedGolden Code has a loss of almost 1:5 dB.� 3 bpu: Assuming the hannel to be onstant for 8, 16 and 24 bloksrespetively, the (8; 6; 3), (16; 12; 5) and (24; 18; 7) Golden-RS odes gain1:5 dB, 2:2 dB and 2:8 dB over the unoded sheme at the FER of 10�3(see Figure 6.6).Similarly to the previous ase, the Golden-RS(n; k; d) odes lose less than0:3 dB when n varies between 8 and 24, while the Golden Code has a lossof 1:1 dB.6.8.2 The 16-QAM aseIf we use a 16-QAM onstellation for eah symbol a; b; ; d in a Golden ode-word, we have 164 = 216 = 65536 available Golden odewords. Realling that#(G=2G) = 256, we have 256 words for eah of the 256 osets of 2G in G.In this ase, the oding gain depends on the minimum Hamming distane insideeah oset in addition to the minimum Hamming distane in the quotient.As in the 4-QAM ase, we onsider blok odes whih are lifts of Reed-Solomonodes on the quotient G=2G. Intuitively, the minimum distane of the Reed-Solomon ode \protets" the osets from being deoded wrongly; if this hoieis orret, the estimate for the right point in the oset is \proteted" by theminimum determinant in 2G.We onsider the lift of an (n; k; d) Reed-Solomon ode C on the quotient. The to-tal information bits transmitted are 8k+8n; they will be enoded into 8n+8n =16n bits.- The ode C outputs 8n bits, whih are used to enode the �rst two bitsof 4n 16-QAM onstellations, that is the bits whih identify one of thefour osets of 2Z[i℄ in Z[i℄; eah byte orresponds to a di�erent oseton�guration of (a; b; ; d) (see Figure 6.8).- the other 8n bits, left unoded, are used to hoose the last two bits of eah16-QAM signal.In total, we have 4n 16-QAM symbols, that is n Golden odewords X =(X1; : : : ; Xn). The resulting spetral eÆieny is8(k + n) bits2n hannel uses = 4(k + n)n bpuC ats as a ode over G=2G �= M2(F2 [i℄): if fW0;W1; : : : ;W255g are the osetleaders of 2G in G, then 8j = i; : : : ; n,Xi =Wji + Zi; Zi 2 2G; (Wj1 ; : : : ;Wjn) 2 C (6.29)Clearly, if (Wj1 ; : : : ;Wjn) = 0, then (X1; : : : ; Xn) = (Z1; : : : ; Zn) 2 (2G)n andfor X 6= 0, det(XXH ) � 16.
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zzttttttttt2n bytes��������^ ^ ^ ^4n 16-QAM symbols =n Golden odewordsFigure 6.7: The output of the Reed-Solomon ode and the unoded bits are \mingled"before modulation.If on the ontrary (Wj1 ; : : : ;Wjn) 6= 0, then there are at least d omponents ofXwhih do not belong to 2G, and onsequently are nonzero, so that det(XXH ) �d2. In onlusion, we have �min � min(16; d2) (6.30)With an error-orreting ode of rate k = n2 , we obtain a spetral eÆieny of6 bpu.- If d � 4, we have as = 4=2:51=1:5 = 2:4, leading to an approximate gain of3:8 dB. Thus it does not seem worthwhile to use long odes with a highminimum distane with this sheme.- If d = 3, as = 3=2:51=1:5 = 1:8, making for a gain of 2:5 dB.
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0111 0011Figure 6.8: The labelling of the 16-QAM onstellation used for performane simula-tions. The �rst and seond bit identify one of the four osets of 2Z[i℄ in Z[i℄ (drawnin di�erent shades of gray); the third and fourth bit identify one of the four points inthe oset. We remark that this type of labelling annot be a Gray mapping.
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