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Introdu
tionMathemati
ians have been studying 
ontinued fra
tions long before the moderntheory of dynami
al systems emerged. To this day, they remain one of the fewmodels for whi
h a 
omprehensive statisti
al analysis is available, in
luding er-godi
ity, invariant measures and the de
ay of 
orrelation fun
tions.The relevan
e of this model is not limited to the �eld of dynami
al systems, butextends to number theory, information theory and the theory of algorithms.As a tool for representing real numbers, 
ontinued fra
tion expansions are idealto study diophantine approximation problems, they are more e
onomi
al interms of length than the de
imal expansion, and aren't basis-dependent.However, the major drawba
k of being hardly suited for 
omputation (evensimple operations like the sum and produ
t be
ome 
omplex in this represen-tation) is probably the reason why the literature des
ribing the appli
ations of
ontinued fra
tions to engineering is so sparse.Re
ently there has been an in
reasing interest in des
ribing the behavior offamilies of dynami
al systems at the boundary of 
haoti
ity (a widely knownexample is the extensive study on the bifur
ations of the logisti
 map). In this
ontext interesting phenomena of phase transitions, self-similarity and fra
talsets often arise.The �rst part of my resear
h 
on
erns �-
ontinued fra
tions for � 2 [0; 1℄, aone-parameter family of interval maps giving rise to a whole 
lass of 
ontinuedfra
tion expansions. Just as the 
lassi
al 
ontinued fra
tions 
an be viewed asan a

eleration of the Eu
lidean division algorithm, �-
ontinued fra
tions areobtained imposing the 
ondition that the remainder in the Eu
lidean divisionshould belong to the interval [�� 1; �).This allows to gain a wider perspe
tive, bridging the gap between Gauss's 
lassi-
al 
ontinued fra
tion algorithm (� = 1) and the expansion based on the nearestinteger approximation (� = 1=2), whi
h has a faster 
onvergen
e and a higherentropy; and more interestingly, between the latter and the by-ex
ess algorithm(� = 0), whose properties are markedly di�erent: it is slower, and doesn't admita �nite invariant density, due to the presen
e of a paraboli
 �xed point.It is then natural to investigate how this transition o

urs, in parti
ular bystudying the statisti
al stability of the family of the invariant densities as afun
tion of the parameter �. In x2.1 we prove that this family is in fa
t 
onti-nuous in the L1 norm.Moreover, the expli
it expression of the invariant densities 
an be used to 
om-pute the entropy h(�) of the system, whi
h is related both to the 
omplexity



4 Introdu
tionof the 
orresponding algorithm1 and to the rate of information 
reation of thesystem regarded as an information sour
e [3℄ [14℄.Unfortunately, in the general 
ase there exists no purely me
hani
al algorithmfor �nding the invariant density; a general approa
h, introdu
ed by Rohlin [19℄and known as the Natural Extension method, involves �nding a two-dimensionaltransformation T of whi
h the initial map T is a fa
tor, and a suitable domainwhere T is invertible. The density of T is then derived from the density of Tsimply by proje
ting on the �rst 
oordinate.One of my main results is the expression of the natural extensions for all valuesof the parameter � in the sequen
e � 1n	. The shape of the domain of the naturalextensions in this 
ase is mu
h more 
omplex than expe
ted, and the density isgiven by a long re
ursive formula.Moreover, the result on L1-
ontinuity of the densities enables us to answer inthe aÆrmative to a 
onje
ture of Cassa [6℄ stating that the entropy vanisheswhen �! 0.Our numeri
al study of the entropy map also reveals a surprisingly ri
h self-similar stru
ture, resembling a devil's stair
ase, whi
h is still unexplained. Inparti
ular, 
ontrarily to our expe
tations the entropy doesn't seem to be mono-toni
 in any neighborhood of the origin2. Numeri
al eviden
e also suggests theexisten
e of 
ountably many phase transitions or dis
ontinuities of h0(�), inaddition to the known dis
ontinuity when � is equal to the Golden number.The se
ond part of the thesis was originally 
on
eived in 
lose relation to the�rst, and stemmed from the study of some re
ent appli
ations of 
ontinued fra
-tions to the design of spa
e-time 
odes for wireless 
hannels.The wide di�usion of wireless 
ommuni
ations has led to a growing demand foran in
rease in the 
apa
ity and reliability of digital transmission systems overfading 
hannels.The presen
e of fading e�e
ts, that is unpredi
table perturbations and attenua-tions of the signal depending on the environment, 
auses a 
onsiderable loss inthe 
apa
ity of these 
hannels 
ompared to the 
lassi
al Additive White Gaus-sian Noise model. The use of 
oding together with multiple transmit and re
eiveantennas 
an greatly redu
e this loss without requiring any in
rease in the totaltransmitted power. Even though fading hinders transmission, its randomness
an be seen as an advantage, and its negative e�e
ts 
an be redu
ed by in-
reasing the number of independent transmit-re
eive paths or diversity of thesystem.In a MIMO setting with M transmit antennas and N re
eive antennas, aninformation message u is en
oded in an M � T matrix or spa
e-time blo
kB(u) = (bij), where bij is the signal emitted by antenna i at time j 2 f1; : : : ; Tg,and T is the duration of the signal.The maximum rate of transmission that 
an be a
hieved using spa
e-time blo
ksis of min(M;N) symbols per 
hannel use; the diversity is equal to MR, whereR is the minimum rank of the matri
es B(u), and ought to be maximized. Inthe 
ase of full diversity, the dominant term in the union bound estimate for theerror probability is the 
oding gain � 1M , where � = minu det(B(u)B(u)H ).1More pre
isely, for � 2 (0; 1℄ the average length of the 
ontinued fra
tion expansion of arational number pq is h(�) log q; when � = 0 the 
omplexity is of the order of log2 q, see [23℄.2This has been very re
ently proved by Nakada and Natsui (personal 
ommuni
ation).



Introdu
tion 5In [10℄ and [11℄, the problem of maximizing the 
oding gain for a 
lass of full-rank MIMO 
odes 
alled Threaded Algebrai
 Spa
e-Time Codes or \TAST" isshown to be related to the diophantine approximation of 
omplex numbers byalgebrai
 numbers. Some bounds for the 
ode performan
e are derived from ageneralization of Liouville's Theorem. In parti
ular, �nding suitable algebrai
numbers whi
h have the worst order of approximation by rationals, that is, su
hthat the elements in their 
ontinued fra
tion expansions are small, is the key tooptimizing the 
ode design.This relation is not as surprising as it might appear at a �rst glan
e: in fa
t,\It is an interesting approa
h to see the design of spa
e-time en-
oding as sear
hing irrational numbers the \furthest" from rationalapproximations. On the other hand, the de
oding pro
ess is equiva-lent to sear
hing rational integers the 
losest to irrational numbers;and both, en
oding and de
oding, 
an be approa
hed by the samealgorithm (Sphere De
oder) of sear
hing nonzero short ve
tors in agiven latti
e." [10℄Another appli
ation, des
ribed in [21℄, involves di�erential diagonal spa
e-time
oding, a design in whi
h the information bits are en
oded in the phase differen-
es between one transmitted symbol and the next. In the 2-antenna 
ase, 
odeoptimization turns out to be equivalent to �nding an integer u su
h that the
ontinued fra
tion expansion of uL has the smallest possible elements, where L isthe 
ardinality of the signal set. In parti
ular, quotients of Fibona

i numbers,whi
h approximate the Golden number and have 
ontinued fra
tion elementsall equal to 1, are a good 
hoi
e.Both TAST 
odes and diagonal spa
e-time 
odes a
hieve full diversity; however,diagonal designs do not make full use of the antenna 
apa
ity; in fa
t, thetransmit antennas are only used to ensure maximum diversity, while the rate oftransmission is low, only one symbol per 
hannel use.TAST 
odes represent an improvement over diagonal 
odes, be
ause they arefull-rate; however, the major short
oming of these 
odes is that the minimumdeterminant vanishes as the size of the signal set or \
onstellation" grows toin�nity.A new type of designs, based on suitable subsets of division algebras, solves thisproblem: in fa
t the minimum determinant, 
orresponding to the minimum ofthe redu
ed norm in a maximal order, is stable.In the 2� 2 
ase, one of the best s
hemes known up to date is Bel�ore, Rekayaand Viterbo's Golden Code G (2005), a design based on a quaternion algebra
ontaining the �eld Q(i; �), where � is the Golden number. This 
ode is full-rateand full-rank, and its 
ubi
 shaping is 
onvenient for energy eÆ
ien
y reasonsand makes the de
oding pro
ess faster.It is possible to build longer, 2� 2L blo
k 
odes using the Golden Code as thebase alphabet; in parti
ular, the stru
ture of its ideals and quotients 
an beexploited to in
rease the minimum determinant, whi
h 
an be written as a suminvolving the determinants of the smaller blo
ks, and mixed terms of the form


 eXiXj


2F , where X ! eX is an involution, and k kF is the Frobenius norm.Thus the des
ription of the latti
e stru
ture is not suÆ
ient to obtain a goodestimate of the 
oding gain, and the multipli
ative stru
ture plays an importantrole.



6 Introdu
tionIn x6.5, we 
onsider blo
k 
odes based on the 
osets of a left ideal of G of index4. In this simple 
ase, the estimates of the mixed terms in the expression of theminimum determinant 
an be 
arried out in full detail, at least for short 
odes.When 
onsidering ideals of greater index, however, the approa
h based on dire
t
omputation of the 
odeword weights be
omes impra
ti
al. Using two-sidedideals it is possible to obtain global estimates, as they are invariant with respe
tto involution and multipli
ation. Moreover, it is preferable to 
hoose idealswhose index is a power of two, sin
e binary partition s
hemes are simpler andbetter suited to digital data storage.In x6.6.2, we des
ribe the stru
ture of the two-sided ideals of G whose index is apower of two and of the respe
tive quotients, whi
h turn out to be matrix ringsover F2n +uF2n , where u2 = 0. This stru
ture 
an be exploited dire
tly to buildsimple lifts of repetition 
odes on the quotient. The simulation results for thetransmission 
hain using these 
odes show that they perform better than theun
oded 
ase and 
on�rm the expe
tations based on the estimates of the mixedterms.In x6.8, we introdu
e some designs whi
h improve the performan
e of the GoldenCode in the slow-fading setting. When the 
hannel 
hanges so slowly that it
an be 
onsidered 
onstant for long time lapses, the ergodi
ity assumption mustbe dropped and the diversity of the system is redu
ed, leading to a performan
eloss.To 
ompensate for this loss, we 
ombine a modulation s
heme for the quotientring G=2G with an error-
orre
ting 
ode (a shortened Reed-Solomon 
ode) toin
rease the minimum Hamming weight of the 
ode. Performan
e simulationsshow that in the 4-QAM 
ase, 
orresponding to a single signal point per 
oset,these 
odes a
hieve a remarkable gain with respe
t to the un
oded Golden Codeat the same spe
tral eÆ
ien
y, that is at the same bit-rate per 
hannel use.These 
odes 
an be extended to the 
ase of 16-QAM modulation with multiplepoints per 
oset, although the gain in this 
ase is somewhat smaller, beinglimited by the minimum distan
e in the ideal.



Part I�-
ontinued fra
tions





9Introdu
tionLet � 2 [0; 1℄. We will 
onsider the one-parameter family of maps T� : I� ! I�,where I� = [�� 1; �℄; de�ned byT�(x) = ���� 1x ����� ����� 1x ����+ 1� �� (1)These dynami
al systems generalize the Gauss map (� = 1) and the nearestinteger 
ontinued fra
tion map (� = 12 ); they were introdu
ed by H. Nakada[16℄. For all � 2 (0; 1℄ these maps are expanding, and even though in gen-eral they aren't Markovian nor have �nite range stru
ture, it 
an be shownthat they admit a unique absolutely 
ontinuous invariant probability measured�� = ��(x)dx (for a detailed proof in this parti
ular 
ase see for example [3℄).Nakada 
omputed the invariant densities �� for 12 � � � 1 by �nding an expli
itrepresentation of their natural extensions. The maps �� turn out to be pie
e-wise �nite sums of linear fra
tional fun
tions. The 
ase p2 � 1 � � � 12 waslater studied by Moussa, Cassa and Marmi [15℄ for a slightly di�erent versionof the maps, that is M�(x) : [0;max(�; 1 � �)℄ ! [0;max(�; 1 � �)℄ de�ned asfollows: M�(x) = ���� 1x � �1x + 1� ������ (2)Noti
e that for a given �, M� is a fa
tor of T�: in fa
t T� Æ h = h ÆM�, whereh : x 7! jxj is the absolute value. Sin
e all the 
orresponding results for the mapsM� 
an be derived through this semi
onjuga
y, in the following paragraphs wewill fo
us on the maps T�.Cassa found the invariant density for p2 � 1 � � � 12 using an alternativemethod to the natural extension, whi
h involves 
ounting the poles of a mero-morphi
 fun
tion [6℄; like the natural extension, this method doesn't provide analgorithm to �nd the density, but only a means to verify that a 
ertain 
andidateis valid. In x3.2, we in
lude the natural extension for the maps T� for this 
ase.It 
an be shown [8℄ that the Kolmogorov-Sinai entropy with respe
t to theunique absolutely 
ontinuous invariant measure �� of the T� is given by Rohlin'sformula: h(T�) = Z ���1 log jT 0�(x)jd��(x)A
tually, Rohlin's formula applies also to the M�, and h(T�) = h(M�). Forp2� 1 � � � 1, the entropy 
an be 
omputed expli
itly from the expression ofthe invariant densities [16℄, [15℄:h(T�) = ( �26 log(1+�) for g < � � 1�26 logG for p2� 1 � � � g (3)In parti
ular, the entropy is 
onstant when p2� 1 � � � g and its derivativehas a dis
ontinuity (phase transition) in � = g.The 
ase � = 0 requires a separate dis
ussion; in fa
t, due to the presen
e ofan indi�erent �xed point, T0 doesn't admit a �nite invariant density, although



10it is invariant with respe
t to the in�nite measure d�0 = dx1+x . Therefore theentropy of T0 
an only be de�ned in Krengel's sense, that is up to multipli
ationby a 
onstant (see Thaler [22℄ for a study of the general one-dimensional 
ase).Following Thaler, for any subset A of [0; 1℄ with 0 < �0(A) <1 we 
an de�neh(T0; �0) + �0(A)h((T0)A)where h((T0)A) is the entropy of the �rst return map of T0 on A with respe
tto the normalized indu
ed measure �A = �0�0(A) . This quantity is well-de�nedsin
e the produ
t h(T0; �0) doesn't depend on the 
hoi
e of A, and it has been
omputed exa
tly: h(T0; �0) = �23 log 2 [23℄. Sin
e this is a �nite value, for asequen
e Ak of subsets whose Lebesgue measure tends to 1 we would haveh((T0)Ak ) = �2(3 log 2)�0(Ak) ! 0. In this restri
ted sense we 
an say that \theentropy of T0 is 0". Expression (3) suggests the notion that the dynami
alsystems T� are somehow related and have a 
ommon origin; a
tually for 12 �� � g their natural extensions are all isomorphi
. In fa
t, C. Kraaikamp provedthat for these values of � the natural extensions are invertible Bernoulli shifts,and so having the same entropy is a suÆ
ient 
ondition for isomorphism [12℄.Moreover, a re
ent result by R. Natsui [17℄ shows that the natural extensionsof the Farey maps asso
iated to the T� are all isomorphi
 when 12 � � � 1.It is well-known that the maps T1 and T0 des
end from the geodesi
 
ow onthe unit tangent bundle of the modular surfa
e PSL(2;Z)nPSL(2;R) [21℄, [10℄.Indeed we 
an represent this 
ow as a suspension 
ow over the natural extensionof these maps and dedu
e in this way the invariant probability measures from thenormalized Haar measure on PSL(2;Z)nPSL(2;R). It is natural to 
onje
turethat the same happens for all the maps T�; � 2 [0; 1℄. If this were true, one
ould (at least in prin
iple) apply Abramov's formula to 
ompute the entropiesh(�) from the entropy of the geodesi
 
ow.We now summarize brie
y the 
ontents of the various se
tions of Part I.In x1, we introdu
e �-
ontinued fra
tion expansions and their basi
 properties,and remarking that for � 2 � 12 ; 1�, the sequen
e of �-
onvergen
e 
an be seen asan a

eleration of the sequen
e of standard (Gauss) 
onvergents. We also re
allhow the exa
tness (and therefore ergodi
ity) of the system follows from the fa
tthat the 
ylinder sets generate the Borel �-algebra [16℄. Finally, we remark howRohlin's formula for the entropy holds in this 
ase.In x2.1 we prove that the entropy h(�) of T� is 
ontinuous in � when � 2 (0; 1℄and that h(�)! 0 as �! 0, as it had been 
onje
tured by Cassa [6℄. This resultfollows from the fa
t that the invariant densities are a 
ontinuous family in theL1 norm with respe
t to �, and is based on a uniform version of the Lasota-Yorke inequality for the Perron-Frobenius operator of T�, following M. Viana'sapproa
h [24℄; in the uniform 
ase, however, a further diÆ
ulty arises from theexisten
e of arbitrarily small 
ylinders 
ontaining the endpoints, requiring adho
 estimates.In x2.2 we analyse the results of numeri
al simulations for the entropy obtainedthrough Birkho� sums, whi
h suggest that the entropy fun
tion has a 
omplexself-similar stru
ture.In x3.1, the notion of natural extension is introdu
ed, following S
hweiger [20℄.Finally, in x3.3 we 
ompute the natural extension and the invariant densities ofthe T� for the sequen
e �� = 1r	r2N.



Chapter 1�-
ontinued fra
tionsIn this 
hapter we introdu
e a family of pie
ewise monotoni
 maps of the intervalwhi
h generalize the Gauss map, and give rise to a 
lass of 
ontinued fra
tionapproximations.1.1 �-expansionsFor � 2 [0; 1℄, let I� = [� � 1; �). Consider the maps T� : I� ! I� de�ned asfollows [16℄: T�(x) = ���� 1x ����� ����� 1x ������ ;where [x℄� + [x+ 1� �℄. It is 
onvenient to assume that T�(0) = 0.Remark 1.1. When � = 1, T� is the Gauss map; for � = 12 , it is the nearestinteger 
ontinued fra
tion map.
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Figure 1.1: Graph of T� when � = 12 and � = 0:7 respe
tively.The graph of T� 
an also be obtained by interse
ting the union of the sequen
eof hyperbolae ��� 1x ��� n	 ; n 2 N the square [� � 1; � � 1℄ � [�; �℄ (see Figure



12 �-
ontinued fra
tions
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Figure 1.2: The graph of the map T� is obtained by interse
ting a family of hyperbolaewith the square [�� 1; �� 1℄ � [�; �℄.1.2). By moving the square along the diagonal, we obtain the whole family of�-
ontinued fra
tion maps.The maps T� are related to the following symboli
 dynami
s : for � �xed, andx 6= 0, let 8><>:a(x) = �����1x ����+ 1� �� ;"(x) = sign(x);and de�ne a(0) =1, "(0) = 1.For any x 2 I�, let x0 = x; xn = Tn� (x), when n � 1, and(an = a(xn�1);"n = "(xn�1)Thus we obtain indu
tively a 
ontinued fra
tion expansion asso
iated to T�:8n � 1, x = "1a1 + "2a2 + "3. . . + "nan + xnFor the sake of simpli
ity, we will denote this expression byx = [("1; a1); ("2; a2); : : : ; ("n; an);xn℄



1.1 �-expansions 13The resulting expansion is in�nite, of the form [("1; a1); ("2; a2); : : : ; ("n; an); : : :℄when x is irrational; when x is rational, the expansion is �nite with length n,where n is the minimum index su
h that xn = 0.By trun
ating the expansion to the n-th step, we obtain the �-
onvergents ofx, that is the redu
ed fra
tionpnqn = [("1; a1); ("2; a2); : : : ; ("n; an)℄ = "1a1 + "2. . . + "nan;with the 
onvention that p�1 = 1; q�1 = 0; p0 = 0; q0 = 1.Remark 1.2. We observe on
e and for all that the sequen
es fang, f"ng, fxng,fpng, fqng are a fun
tion of the parameter � and the starting point x. We willomit this dependen
e unless ne
essary, in order to simplify notation.The following re
ursive relations among the 
onvergents are easily proved byindu
tion: pn = anpn�1 + "npn�2qn = anqn�1 + "nqn�2 (1.1)Observe that pn+1qn � qn+1pn = �"n(pnqn�1 � qnpn�1)and so, sin
e p0q1 � q1q0 = �p1 = �"1,pnqn+1 � pn+1qn = "1"2 � � � "n(�1)n�1; jpnqn+1 � pn+1qnj = 1 (1.2)Then, always by indu
tion, we �ndx = pn + xnpn�1qn + xnqn�1 (1.3)for n � 0. In fa
t, the basis of the indu
tion is trivially p0+x0p�1q0+x0q�1 = x01 , andsupposing that the relation (1.3) holds for some n � 0, using the re
ursiveformulas (1.1) and the relation xn+1 = "n+1xn � an+1, we getx = pn(1� "n+1an+1xn) + "n+1xnpn+1qn(1� "n+1an+1xn) + "n+1xnqn+1 = pnxn+1 + pn+1qnxn+1 + qn+1Now 
onsider �n = jqnx� pnj (1.4)There are three useful alternative expression for this quantity: �rst, from therelations (1.3) and (1.2), we �nd�n = ����xn(qnpn�1 � pnqn�1)qn + xnqn�1 ���� = jxnjqn + xnqn�1 (1.5)From equation (1.3), we 
an derivexn = �� pn � xqnpn�1 � xqn�1� ;



14 �-
ontinued fra
tionsso we have �n = ����� nYi=0xi����� (1.6)But equations (1.5) and (1.6) also imply�n = �n+1jxn+1j = 1qn+1 + xn+1qn (1.7)From (1:7), we obtain an estimate of the rate of 
onvergen
e of the pnqn to x: ifxn � 0, 1qn(qn+1 + �qn) < ����x� pnqn ���� = �nqn = 1qn(qn+1 + xn+1qn) < 1qnqn+1 (1.8)while for xn < 0,1qnqn+1 < ����x� pnqn ���� < 1qn(qn+1 � (1� �)qn) < 1�qnqn+1 (1.9)When � 2 �12 ; 1�, the �-
onvergents turn out to be a subsequen
e of the standard
ontinued fra
tion 
onvergents [4℄. In this sense, �-
ontinued fra
tions 
an beseen as an \a

eleration" of 1-
ontinued fra
tions:Lemma 1.3. Fix � 2 �12 ; 1�. Let x 2 R n Q, and denote by PnQn the standard
ontinued fra
tion 
onvergents of x, and by pnqn its �-
onvergents. Thenpnqn = Pk�(n)Qk�(n) ;where k� : N ! N is de�ned indu
tively as follows:k�(�1) = �1;k�(n+ 1) = (k�(n) + 1 if "n+1 = 1k�(n) + 2 if "n+1 = �1.Moreover, if k�(n+ 1) = k�(n) + 2 we haveqk�(n+1) = qk�(n)+2 = qk�(n)+1 + qk�(n):When � 2 �0; 12�, this lemma doesn't hold any longer, and sequen
es of the formnpnjqnj ; : : : ; pnj+kqnj+k o, su
h that pnj+iqnj+i is not a standard 
onvergent for i = 0; : : : ; k,appear. These 
orrespond to sequen
es of length k of digits \(2;�1)", 
alleddesingularization sequen
es.Now suppose that we know the standard 
ontinued fra
tion expansion x =(w1; w2; w3; : : :) of an irrational number, and we want to derive its �-expansionx = [("1; a1); ("2; a2); ("3; a3); : : :℄. We do not know whether there exists a 
on-
ise formula expressing this relation; however, it is not hard to de�ne a step-by-step algorithm to pass from one expansion to the other.The 
ontent of the following lemma is the same (although with di�erent nota-tions) of Theorem 7 in [15℄.



1.1 �-expansions 15Lemma 1.4. Fix � 2 �0; 12�, and let x 2 [��1; �) be an irrational number withstandard 
ontinued fra
tion expansion x = w0+(w1; w2; : : :), w0 2 f0;�1g. LetPnQn be the standard 
onvergents of x, and pnqn its �-
onvergents.Then there exist two subsequen
es fnjg and fnkg su
h thatpnjqnj = PnkQnkMore pre
isely, we de�ne the following algorithm:1.5 (One step of �-expansion). 1. First step:� If x 2 (0; �), then de�ne "1 = 1 and jx0j = x = (w1; w2; : : :). Obvi-ously p0q0 = P0Q0 = 0.� If x 2 [� � 1; 0), de�ne "1 = �1 and jx0j = �x. We distinguish two
ases:- If w1 = 1, using the well-known identity1� 1b+ y = 11 + 1b� 1 + yfor b � 2 and y 2 (0; 1), we �nd �x = (w2 + 1; w3; : : :).- If w1 > 1, from the identity1� 1n+ 1b = ((1; 2); (�1; 2); : : : ; (�1; 2)| {z }n�1 ;� 1b+ 1); b � 1we get a1 = : : : = aw1�1 = 2, "2 = : : : = "w1 = �1, jxw1�1j =(w2 + 1; w3; : : :); piqi = ii+1 for i = 1; : : : ; w1 � 1, andpw1�1qw1�1 = w1w1 + 1 = 1� 1w1 = P1Q12. Indu
tive step:Now suppose that we have found the �rst n digits of the �-expansion, su
hthat pnqn = PkQk for some k � 0:x = "1a1 + "2a2 + .. . + "nan + "n+1 jxnj; su
h thatjxnj = (w(n)k+1; wk+2; wk+3; : : :) 2 (0; 1� �); w(n)k+1 2 fwk+1; wk+1 + 1gThen� If T (jxnj) < �, we have"n+2 = 1; an+1 = w(n)k+1;pn+1qn+1 = Pk+1Qk+1 ; jxn+1j = (wk+2; wk+3; : : :) (1.10)



16 �-
ontinued fra
tions� If T (jxnj) � �,"n+2 = �1; an+1 = w(n)k+1 + 1; if wk+2 = 1"n+2 = � � � = "n+wk+3 = �1; an+1 = w(n)k+1 + 1;an+2 = � � � = an+wk+2 = 2 if wk+2 � 2;pn+iqn+i = iPk+1 + PkiQk+1 +Qk 81 � i � wk+2 � 1; pn+wk+2qn+wk+2 = Pk+2Qk+2 ;��xn+wk+2 �� = (wk+3 + 1; wk+4; : : :) (1.11)Proof. It is 
lear that equations (1.10) and (1.11) imply the existen
e of the twoidenti
al sequen
es pnjqnj , PnkQnk by indu
tion, where the basis of the indu
tion isgiven by the �rst step in the algorithm.We have an+1 = h��� 1xn ���+ 1� �i, and soan+1 = w(n)k+1 , w(n)k+1 + 1wk+2 + 1wk+3 + � � �+ 1� � < w(n)k+1 + 1, T (jxnj) < �Clearly in this 
ase "n+2 = 1, and the remainder jxn+1j is equal to T (jxnj);otherwise we have an+1 = w(n)k+1 + 1 and "n+2 = �1.Observe that sin
e the re
ursive relations de�ning the pi and the qi have thesame form, it is suÆ
ient to prove the statements above for the pi.When T (jxnj) < �, we distinguish two 
ases:� If "n+1 = 1, by indu
tive hypothesis pn�1qn�1 = Pk�1Qk�1 , and w(n)k+1 = wk+1.Then pn+1 = an+1pn + "n+1pn�1 = w(n)k+1Pk + Pk�1 = Pk+1� If "n+1 = �1, w(n)k+1 = wk+1 + 1, again by indu
tive hypothesisPk�1Qk�1 = pn�w(n)kqn�w(n)k ;pn�1 = p(n�w(n)k )+(w(n)k �1) = (w(n)k � 1)Pk�1 + Pk�2 = Pk � Pk�1;) pn+1 = (wk+1 + 1)Pk � Pk + Pk�1 = wk+1Pk + Pk�1 = Pk+1When T (jxnj) � �,���� 1xn ���� = w(n)k+1 + 1�0BB�1� 1wk+2 + 1wk+3 + � � �1CCA == an+1 ��1� 1wk+2 + T 2(jxnj)� = an+1 � jxn+1j



1.1 �-expansions 17Then if wk+2 � 2, we have ��� 1xn+1 ��� = 1 + 1wk+2�1+T 2(jxnj) , and sin
e1 � 1wk+2 � 1 + T 2(xn) > 1wk+2 + T 2(xn) � �;we �nd an+2 = ����� 1xn+1 ����+ 1� �� = 2; "n+3 = �1;and so on: it is easy to prove by indu
tion that for 1 � i � wk+2 � 1,���� 1xn+i ���� = 1 + 1wk+2 � i+ T 2(jxnj) � 1 + �) an+i+1 = 2; "n+i+2 = �1;up to���� 1xn+wk+2 ���� = 1 + 1T 2(jxnj) = 1 + wk+3 + 1wk+4 + � � �whi
h is true also when wk+2 = 1.In 
on
lusion,jxnj = [(w(n)k+1 + 1;�); (2;�)(2;�); : : : ; (2;�)| {z }wk+2�1 ; ��xn+wk+2 ��℄ (1.12)Again we distinguish two 
ases:� If "n+1 = 1, then by indu
tive hypothesis w(n)k+1 = wk+1; pn�1qn�1 = Pk�1Qk�1 .pn+1 = an+1pn + "n+1pn�1 = (wk+1 + 1)Pk + Pk+1 = Pk+1 + Pk� If "n+1 = �1, then w(n)k+1 = wk+1 + 1,pn�1 = p(n�w(n)k )+(w(n)k �1) = (w(n)k � 1)Pk�1 + Pk�2 = Pk � Pk�1;pn+1 = (wk+1 + 2)Pk + Pk � Pk�1 = (wk+1 + 1)Pk + Pk�1 = Pk+1 + PkSo in both 
ases we have pn+1 = Pk+1 + Pk, andpn+2 = an+2pn + "n+2pn = 2(Pk+1 + Pk)� Pk = 2Pk+1 + PkBy indu
tion we 
an prove that for 1 � i � wk+2 � 1,pn+i = iPk+1 + Pk ;up to pn+wk+2 = wk+2Pk+1 + Pk = Pk+2;whi
h 
ompletes the proof.



18 �-
ontinued fra
tions1.2 Symboli
 dynami
s1.6 (Cylinders of rank 1). Let � 2 (0; 1℄. The map T� is pie
ewise monotoni
and pie
ewise analyti
 on the 
ountable partition P = fI+j gj�jmin [fI�j gj�j0min ,where jmin = ��� 1� ��+ 1� ��,j0min = h��� 11�� ���+ 1� �i and the elements of P are
alled 
ylinders of rank 1:I+j + � 1j + �; 1j � 1 + �� ; j 2 [jmin + 1;1); I+jmin + � 1jmin + �; �� ;I�j + �� 1j � 1 + �;� 1j + �� ; j 2 [j0min + 1;1); I�j0min + ��� 1;� 1j0min + ��T� is monotone on ea
h 
ylinder and we have� T�(x) = 1x � j; x 2 I+j ; j 2 N \ [jmin;1)T�(x) = � 1x � j; x 2 I�j ; j 2 N \ [j0min;1)We also �nd that for � 2 (0; 1), T� is expanding, that is jT 0�(x)j > 1 almosteverywhere1: in fa
t for all x 2 I�,1jT 0�(x)j � � = (1� �) < 1 (1.13)1.7 (Cylinders of rank n; full 
ylinders). Let P(n) = Wn�1i=0 T�i� (P) be theindu
ed partition in monotoni
ity intervals of Tn� . Ea
h 
ylinder I(n)� 2 P(n) isuniquely determined by the sequen
e((j0(�); "0(�)); : : : ; (jn�1(�); "n�1(�))su
h that for all x 2 I(n)� ; T i�(x) 2 I"i(�)ji(�) . On ea
h 
ylinder Tn� is a M�obiusmap Tn� (x) = ax+b
x+d , where � a b
 d � 2 GL(2;Z). We will say that a 
ylinderI(n)� 2 P is full if Tn� (I(n)� ) = I�.1.3 The Perron-Frobenius operator1.8 (Perron-Frobenius operator). Let V� : Tn� (I(n)� ) ! I(n)� be the inversebran
hes of Tn� , and PT� the Perron-Frobenius operator asso
iated with T�.Then for every ' 2 L1(I�),(PnT�')(x) = XI(n)� 2Pn ' (V�(x))j(Tn� )0 (V�(x))j�Tn� (I(n)� )(x) (1.14)On I(n)� we have the following bound:supI(n)� 1��(Tn� )0 (x)�� = supI(n)� 1��T 0� �Tn�1� (x)� � � �T 0�(x)�� � �(n)� � �n; (1.15)1The only value of � in whi
h jT 0�(x)j = 1 for any point is a
tually the Gauss map T1, withits �xed point x = 1. The by-ex
ess map T0, whi
h we are not taking into a

ount here, alsohas a paraboli
 point, and is not expanding.



1.3 The Perron-Frobenius operator 19where �(n)� + �j0(�) � � ��jn�1(�). Re
all that for f1; : : : ; fn 2 BV ,Var(f1 � � � fn) � nXk=1Var(fk)Yi 6=k sup jfij (i)and 
onsequentlyVarI(n)� 1��(Tn� )0 (x)�� = VarI(n)� 1��T 0� �Tn�1� (x)� � � �T 0�(T�(x)) � T 0�(x)�� � n�(n)�Finally, we state the following bounded distortion property, that we are going touse several times in the sequel:Proposition 1.9 (Bounded distortion). 8� > 0, 9C1 su
h that 8n � 1,8I(n)� 2 P(n);8x; y 2 I(n)� , ���� (Tn� )0(y)(Tn� )0(x) ���� � C1Moreover, for all measurable set B � I�, for all full 
ylinders I(n)� 2 P(n),m(V�(B)) � m(B)m(I(n)� )C1 ;where m denotes the Lebesgue measure.The proof of this statement follows a standard argument:Proof. Observe that 9k > 0 su
h that 8I"j 2 P ;8x; y 2 I"j ,����T 0�(x)T 0�(y) � 1���� � k jT�(x)� T�(y)jIn fa
t, if x; y 2 I"j;�, then����T 0�(x)T 0�(y) � 1���� 1jT�(x) � T�(y)j = ����y2x2 � 1���� jxyjjx� yj � ���yx ��� jx+ yj � 4Let n � 1; I(n)� 2 P(n), x; y 2 I(n)� . De�ne � = sup ��� 1T 0� ��� = (1� �)2: thenlog ���� (Tn� )0(y)(Tn� )0(x) ���� = n�1Xi=0 log ����T 0�(T i�(y))T 0�(T i�(x) ���� � n�1Xi=0 ����T 0�(T i�(y))T 0�(T i�(x)) � 1���� �� 4 n�1Xi=0 ��T i+1� (y)� T i+1� (x)�� = 4 nXi=1 ��T i�(y)� T i�(x)�� �� 4 nXi=1 �n�i jTn� (y)� Tn� (x)j � 4 1Xi=0 �i = 41� (1� �)2 = C2 (1.16)



20 �-
ontinued fra
tionsThen ��� (Tn� )0(y)(Tn� )0(x) ��� � eC2 = C1. Let I(n)� be a full 
ylinder: Tn� (I(n)� ) = I�. Now
onsider any measurable set B:m(B)m(I�) = RV�(B) j(Tn� )0(y)j dyRI(n)� j(Tn� )0(x)j dx � m(V�(B)) supy2I(n)� j(Tn� )0(y)jm(I(n)� ) infx2I(n)� j(Tn� )0(x)j � C1m(V�(B))m(I(n)� )) m(V�(B)) � m(B)m(I(n)� )C1 (1.17)whi
h 
on
ludes the proof.1.4 Invariant measuresSuÆ
ient 
onditions for the existen
e of absolutely 
ontinuous invariant mea-sures (a.
.i.m.) for expanding maps have been extensively studied in the litera-ture. A desirable property in most 
ases is the Markov property :1.10 (Markov map). Let I be an interval, P a 
ountable partition of I ,T : I ! I su
h that the restri
tion of T to ea
h interval of the partition ismonotoni
 and C2. T is 
alled a Markov map if the set I� + Sn�1 Tn(P) is�nite.In fa
t, a folklore theorem states thatTheorem 1.11. If T : I ! I is Markov and expanding, then there exists aunique invariant probability measure for f absolutely 
ontinuous with respe
t tothe Lebesgue measure.Unfortunately, the Markov 
ondition is not satis�ed by the maps T� ex
ept fora set of measure 0 in the parameter �. In fa
tT�(P) = f[�� 1; �℄; [T�(1� �); �℄; [T�(�); �℄gThe union Sn�1 Tn� (P) is �nite only in the following 
ases:a) 9n;m 2 N su
h that Tn� (�) = 0; Tm� (1 � �) = 0; whi
h happens if andonly if � is rational ;b) the sequen
es fT i�(�)gi2N e fT i�(1��)gi2N are periodi
, that is � is alge-brai
 of degree 2.However, it 
an be proved [3℄ that for all � 2 (0; 1℄ the maps T� admit a uniqueabsolutely 
ontinuous invariant probability measure ��, whose density �� is ofbounded variation (and therefore bounded). The proof follows a more generalframework, see the study by A. Broise [5℄:Theorem 1.12 (Bourdon, Daireaux, Vall�ee). Consider an interval mapT : I ! I whi
h is monotone and C2 on ea
h interval of a 
ountable partitionP of I. Let I(n)� denote the open 
ylinders of rank n, and V� the lo
al inverseof T on I(n)� . Suppose that T satis�es the following properties:



1.4 Invariant measures 21a) (Expansivity) supj supx2T (Ij) ��V 0j (x)�� � 1b) (Strong expansivity) 9n0, 9
 < 1 su
h that supI(n0)� supx2Tn0 (I(n0)� ) ��V 0�(x)�� < 

) 9
 > 0 su
h that 8Ij 2 P ; 8x 2 T (Ij), ��V 00j (x)�� � 
 ��V 0j (x)��d) (Quasi-Markov) 8n, infI(n)� 2Pnm�Tn �I(n)� �� > 0, where m denotes theLebesgue measure.Then T admits an invariant density of bounded variation.We have already seen in equation (1.13) that the maps T� are expanding for all� 2 [0; 1℄, and strongly expanding for � 2 (0; 1℄ (a
tually, we 
an take n0 = 1for � 2 (0; 1), and n0 = 2 for � = 1, see also equation (1.15)). Condition (
)holds for all �, and 
an be 
he
ked dire
tly.Condition (d) follows trivially from the fa
t that sin
e T�(P) is �nite (a
tuallyit has at most four elements), Tn� (P(n)) is also �nite for ea
h n, and the length ofits intervals must be bounded from below. However, there is no uniform boundin � or n for these measures, as we will see in the sequel.We also remark that a priori the invariant density might be dis
ontinuous inevery point of the partition Sn Tn� (P) [3℄.The uniqueness of the a.
.i.m. is a 
onsequen
e of the ergodi
ity of the system:1.13 (Ergodi
 system). A measure-preserving dynami
al system (X;A; T; �)is ergodi
 if for every measurable set A 2 A su
h that T�1(A) = A, �(A) = 0or 1.1.14 (Exa
t endomorphism). A surje
tive measure-preserving dynami
alsystem (X;A; T; �) is said to be exa
t if1\n=0T�n(A) = fX; ;g (mod 0) (1.18)In parti
ular, every invariant set is trivial and so the system is also ergodi
.For a proof of the following 
lassi
al theorem, see for example [7℄:Theorem 1.15. Consider a dynami
al system (X;T;A) and two measures �1,�2 on (X;A) whi
h are invariant for T . If both (X;T;A; �1) and (X;T;A; �2)are ergodi
, then either �1 = �2, or �1 and �2 are singular with respe
t to ea
hother.Be
ause of the previous theorem, if T� is exa
t it admits at most one invariantdensity absolutely 
ontinuous with respe
t to the Lebesgue measure. We remarkhowever that there is an in�nite number of singular invariant measures for T�(
onsider for example any linear 
ombination of Dira
 deltas in the �xed pointsof T�).Lemma 1.16 (Exa
tness). For all � 2 [0; 1℄, the dynami
al system (T�; ��)is exa
t (and therefore ergodi
).



22 �-
ontinued fra
tionsThe proof of this Lemma for � 2 � 12 ; 1� was given by H. Nakada ([16℄, Theorem2) and his argument 
an be adapted to our 
ase with slight 
hanges.2Let !i = (ji; "i) for brevity. The 
ru
ial property that we need in order to proveLemma 1.16 is the following:Proposition 1.17. The family of the 
ylinder sets I(n)� = (!1; : : : ; !n) 2 P(n)su
h that Tn� (I(n)� ) = I� generates the Borel sets.Proof of Proposition 1.17. Consider the setsEn = f(!1; : : : ; !n) j T�(!1) 6= I�; T 2�(!1; !2) 6= I�; : : : ; Tn� (!1; : : : ; !n) 6= I�gand let Mn = m�SI(n)� 2En I(n)� �. Consider the orbits of the endpoints withrespe
t to T�: � = (a1; a2; a3; : : :); �� 1 = (b1; b2; b3; : : :)Then E1 = f(a1); (b1)g, andEn = f(!1; : : : ; !n) 2 P(n) j (!2; : : : ; !n) 2 En�1 and !1 = a1 or b1g[ f(a1; a2; : : : ; an); (b1; b2; : : : ; bn)gIn fa
t if !1 =2 fa1; b1g, we would have T�(!1) = I�; moreover, if (!2; : : : ; !n) 6=(a2; : : : ; an), the monotoni
ity of T� on (a1) implies that either (!2; : : : ; !n) \T�(a1) = ?, or (!2; : : : ; !n) � T�(a1). In this last 
ase Tn� (a1; !2; : : : ; !n) =Tn�1� (!2; : : : ; !n). So we getMn � ((1� �)2 + �2)Mn�1 +m((a1; : : : ; an) [ (b1; : : : ; bn));and sin
e (1 � �)2 + �2 < 1 and m(w1; : : : ; wn) vanishes as n ! 1, we haveMn ! 0 as n!1, that is, E = fx j 8n; Tn� (I(n)� (x)) 6= I�g has Lebesgue mea-sure 0, where I(n)� (x) is the 
ylinder in P(n) 
ontaining x. Then, re
alling that T�is non-singular, m(T�n� (E)) is also 0 for all n � 0, and so m (Sn T�n� (E)) = 0.That is, for almost all x there is a subsequen
e fnig su
h that Tni(Ini� (x)) = I�for all i 2 N. Then for almost all x, 8U open neighborhood of x we 
an �nd nand a full 
ylinder x 2 I(n)� � U .Proof of Lemma 1.16. We have just proved that the full 
ylinders generatethe Borel sets. Then a suÆ
ient and ne
essary 
ondition for exa
tness, due toRohlin [19℄, is the following: 9C > 0 su
h that 8n; 8I(n)� full 
ylinder of rankn, 8X � I(n)� , ��(Tn� (X)) � C ��(X)��(I(n)� ) (1.19)We re
all that the T� satisfy the bounded distortion property: Then, re
allingthat the density of �� with respe
t to the Lebesgue measure is bounded fromabove and from below by 
onstants, we get for some 
onstant C,��(V�(B)) � 1C��(B)��(I(n)� );that is, Rohlin's 
hara
terization (1.19).2The fa
t that T0 is exa
t follows from a result of M. Thaler [22℄.



1.5 Entropy 231.5 EntropyKnowing the invariant densities allows to 
ompute the entropy of the system.We brie
y re
all the relevant de�nitions:1.18 (Entropy of a partition). Let (X;A; �) be a probability spa
e, � =fX1; : : : ; Xng a �nite measurable partition of X , that is Xi 2 A 8i 2 N andX = Fni=1Xi(mod 0). H(�) = �Pni=1 �(Xi) + log�(Xi) is 
alled the entropyof the partition �.1.19. Given �1; : : : ; �k partitions of X , and X1 2 �1; : : : ; Xk 2 �k, we denote byWki=1 �i the partition fX1 \ � � � \Xkg; given T : X ! X measurable, we denoteby T�1(�) the partition fT�1(Xi); Xi 2 �g.1.20 (Kolmogorov-Sinai entropy). Let (X;A; �; T ) be a measurable dyna-mi
al system, � an invariant probability measure for T , � a �nite partition ofX . The quantity H�(T ) = limn!1 1nH  n�1_i=0 T�i�!is 
alled the entropy of T with respe
t to �. H(T ) = sup�H�(T ), where the supis taken over all �nite partitions � of X , is 
alled the Kolmogorov-Sinai entropyof T .A dynami
al system's entropy and information are deeply related, as 
an beseen from the followingTheorem 1.21 (Shannon, Breiman, M
Millan). Let (X;A; �; T ) be a mea-surable and ergodi
 dynami
al system, � a �nite partition of X. Given x 2 X,let �n(x) be the element of Wn�1i=1 T�i� whi
h 
ontains x. Then for �-almostevery x 2 X, H�(T ) = limn!1� 1n log�(�n(x))Supposing the initial point x to be unknown to us, we may be interested inthe quantity of information provided to us by some initial segment of the sym-boli
 dynami
s of x. If � = fX1; � � �Xkg, knowing the set �n(x) is equivalent toknowing (for �-almost every x) the indi
es j0; : : : ; jn�1 2 f1; : : : ; kg su
h thatT i(x) 2 Xji . Intuitively, the smaller �(�n(x)) is, the better we have \lo
ated"the point x in our spa
e, and the more information we have obtained. This 
or-responds to the system having high entropy. The Shannon-Breiman-M
MillanTheorem then states that the entropy with respe
t to a partition represents the\average information produ
tion rate" of the input obtained with the partition�.The �-
ontinued fra
tion maps belong to a 
lass of interval transformations forwhi
h an expli
it formula for the entropy is available:1.22 (AFU map). Let I be an interval, T : I ! I whi
h is pie
ewise C2 withrespe
t to a 
ountable partition P of I in subintervals fIjgj�1, and su
h thatthe following 
onditions hold:a) Adler's 
ondition: 9K > 0; jT 00(x)j(T 0(x))2 < K 8x 2 I ;



24 �-
ontinued fra
tionsb) Finite range: #fT (Ij); j � 1g <1;
) Uniform expansivity: 9� : jT 0(x)j � � > 1 8x 2 IThe maps T� are AFU: we have seen that they are uniformly expanding in (2.1);moreover they 
learly have �nite range, and jT 00� (x)j(T 0�(x))2 = 2jxj3 x4 = 2 jxj < 2.Theorem 1.23 (Rohlin's formula). Let I be an interval, T : I ! I an AFUmap, d� = �(x)dx the a.
.i.m. for T . Then the Kolmogorov-Sinai entropy of Tis given by h�(T ) = ZI log jT 0(x)j d�(x)For Rohlin's original proof we refer the reader to [19℄, while the proof in the
ase of AFU maps 
an be found in [8℄.Remark 1.24. We remark that the algorithm introdu
ed in the proof of Lemma1.4 to extra
t two identi
al subsequen
es pnjqnj = PnkQnk from the 1-
onvergents and�-
onvergents respe
tively 
ould be used to 
ompute the entropy h(�) of T�. Infa
t Birkho�'s ergodi
 theorem implies thath(�) = � limn!1 1n nXi=0 log ��T i�(x)�� = � limn!1 1n log�n�1;where �n is the produ
t de�ned in equation (1.4). The estimates (1.8) and (1.9)imply that 1(1 + �)qn < �n�1 < 1�qnBut sin
e limn!1 1n log(
qn) = limn!1 1n log(qn) for every 
onstant 
 > 0,h(�) = limn!1 1n log qnIn parti
ular, even without knowing all the values of the �-
onvergents pnqn , theentropy h(�) 
ould be approximated simply with the limit 1nk logQnk , requiringonly the knowledge of the 1-
onvergents.



Chapter 2Statisti
al stability for�-
ontinued fra
tionsIn the previous 
hapter we have des
ribed the dynami
al properties of the system(I�; T�) for a �xed value of the parameter �. We now wish to understand towhat extent these properties remain stable when � varies; in a sense, we wishto study the behavior of the system under deterministi
 perturbations.Several notions for the stability of a dynami
al system have been introdu
ed. Inthe 
ase of smooth systems, stru
tural stability requires that the orbits shouldbe preserved up to homeomorphism; however, this notion is too strong for our
ase.We will adopt the point of view of Alves and Viana [2℄, and we will 
all a familyof interval maps f(I; �t)gt2R statisti
ally stable if the SRB measures �t of themaps �t are 
ontinuous in t with respe
t to the L1 norm.It may be 
onvenient to assume that the maps f�tg are all de�ned on the sameinterval; up to 
onjugation, at least lo
ally, the maps T� 
an always be res
aledto a suitable �xed interval.2.1 Continuity of the entropyWe will denote the entropy of T� by h(�). The main goal of the present se
tionis the followingTheorem 2.1. The fun
tion �! h(�) is 
ontinuous in (0; 1℄, andlim�!0+ h(�) = 0Sin
e in the 
ase � � p2�1 the entropy has been 
omputed exa
tly by Nakada[16℄ and Marmi, Moussa, Cassa [15℄, we 
an restri
t our study to the 
ase0 < � � p2� 1.To prove 
ontinuity we adopt the following approa
h: by means of a uniformLasota-Yorke-type inequality for the Perron-Frobenius operator, we prove thatthe variations of the invariant densities are equibounded as � varies in someneighborhood of any �xed �� > 0 (see Proposition 2.2 below). Our argumentfollows quite 
losely [24℄, ex
ept that we have to deal with a further diÆ
ulty
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Figure 2.1: Graph of the map T� when � = 0:2arising from the fa
t that the 
ylinders 
ontaining the endpoints � and � � 1
an be arbitrarily small. After translating the maps so that their interval ofde�nition does not depend on � around ��, we prove the L1-
ontinuity of theinvariant densities �� using Helly's Theorem (Lemma 2.5). Then the 
ontinuityof the entropy follows from Rohlin's formula.2.1.1 Uniformly bounded variation of the invariant densi-tiesLet �� 2 (0;p2 � 1℄ and " < �� be �xed, and 
hoose � 2 [�� � "; �� + "℄. In this
ase, re
alling the de�nitions in x1.2, we have j0min = 2, and for x 2 I�j ,1jT 0�(x)j � �j � � < 1; (2.1)where � = (1� ��+ ")2; �j = 1(j � 1 + ��� ")2 ; j > 2; �2 = � (2.2)depend only on �� and ". Moreover, we have that VarI�j ��� 1T 0�(x) ��� � �j 8� 2[��� "; ��+ "℄.As we have seen in x1.4, for all � 2 (0; 1℄ the maps T� admit a unique absolutely
ontinuous invariant probability measure ��, whose density �� is of boundedvariation (and therefore bounded). In addition, a result of R. Zweim�uller entailsthat �� is bounded from below (see [25℄, Lemma 7):8� 2 (0;p2� 1℄; 9C > 0 s.t 8x 2 I�; ��(x) � C (2.3)



2.1 Continuity of the entropy 27Proposition 2.2. 8�� 2 (0;p2�1℄, ��� is of bounded variation, and 9", 9K > 0su
h that for all � 2 [��� "; ��+ "℄, Var(��) < K.The main result we need in order to prove Proposition 2.2 is the followingLemma 2.3 (Uniform version of the Lasota-Yorke inequality). Let ��be �xed. Then there exist �0 < 1, C;K0 > 0 su
h that 8n, 8' 2 BV (I),8� 2 [��� "; ��+ "℄,VarI� �PnT�'� � C(�0)nVar'+K0 ZI� j'j dx (2.4)Assuming Lemma 2.3 the Proposition then follows easily. Indeed it is enoughto re
all that the Cesaro sums �n = 1n n�1Xj=0 P jT�1of the sequen
e fP jT�1gj2N 
onverge almost everywhere to the invariant density�� of T�. Both the variations and the L1 norms of the f�ng are uniformlybounded: Var �n � 1n n�1Xj=0 Var�P jT�1� � 1n n�1Xj=0K0m(I�) = K0 8nZI� �ndx = 1n n�1Xj=0 ZI� P jT�1dx = m(I��) = 1 8n)supI� j�nj � VarI� �n + 1m(I�) � K0 + 1 8n;where K0 is the 
onstant we found in Lemma 2.3. Then we also have Var �� �K0; sup j��j � K0 + 1, whi
h 
on
ludes the proof of Proposition 2.2.Proof of Lemma 2.3. We haveVar �PnT�'� �X�  VarTn� (I(n)� ) ' (V�(x))j(Tn� )0 (V�(x))j + 2 supTn� (I(n)� ) ���� ' (V�(x))(Tn� )0 (V�(x)) ����! ==X�  VarI(n)� '(y)j(Tn� )0(y)j + 2 supI(n)� ���� ' (y)(Tn� )0 (y) ����! (2.5)For the last equality, observe that sin
e V� : Tn� (I(n)� ) ! I(n)� is a homeomor-phism, VarTn� (I(n)� ) � 'j(Tn� )0j Æ V�� = VarI(n)� 'j(Tn� )0j . The �rst term in expression(2.5) 
an be estimated using (i):X� VarI(n)� '(y)j(Tn� )0(y)j �X�  VarI(n)� ' supI(n)� 1j(Tn� )0(y)j +VarI(n)� 1j(Tn� )0(y)j supI(n)� j'j! ��X�  �(n)� VarI(n)� '+ n�(n)� supI(n)� j'j!



28 Statisti
al stability for �-
ontinued fra
tionsFor the se
ond term, we have 2P� supI(n)� ��� '(y)(Tn� )0(y) ��� � 2P� �(n)� supI(n)� j'(y)j.In 
on
lusion, from equation (2.5) we getVar �PnT�'� (x) � �nVarI� '+X� (n+ 2)�(n)� supI(n)� j'j (2.6)We want to give an estimate of the sum in equation (2.6); re
all that for ' 2 BV ,supI(n)� j'j � VarI(n)� '+ 1m(I(n)� ) ZI(n)� j'j dx (ii)However, equation (ii) doesn't provide a global bound independent from � fortwo reasons. In the �rst pla
e, the lengths of the intervals I(n)� are not boundedfrom below when the indi
es ji(�) grow to in�nity. Furthermore, a diÆ
ultythat arises only in the 
ase of uniform 
ontinuity and that was not dealt within referen
e [24℄ is that the measures of the 
ylinders of rank n 
ontaining theendpoints �� and ��� 1 are not uniformly bounded from below in �, and requirea 
areful handling.To over
ome the �rst diÆ
ulty, following [24℄, we split the sum into two parts:for n �xed, let k be su
h that Xj>k �j � �n22n�1 (2.7)Sin
e � doesn't depend on �, neither does k. De�ne the set of \intervals withbounded itineraries"G(n) = fI(n)� 2 Pn j max(j0(�); : : : ; jn�1(�)) � kg (2.8)To get rid of the measures of the 
ylinders 
ontaining the endpoints, we 
ombinethem with full 
ylinders; the measures of the latter 
an be estimated usingLagrange's Theorem, sin
e the derivatives are bounded under the hypothesis ofbounded itineraries. When 
ombining intervals, we have to 
onsider the sum ofthe 
orresponding �(n)v and make sure that it is smaller than 1. This requiresadditional 
are when I(n)� 3 �� 1.Remark 2.4. Let r = r(�) be su
h thatvr+1 � � < vr; where vr = �12 + 12r1 + 4r (2.9)(
learly r is bounded by r(��)+1 in a small neighborhood of ��). Then T i�(��1) =(i+1)��11�i� 2 I�2 for i = 0; : : : ; r � 1 and T r�(� � 1) =2 I�2 . Thus any 
ylin-der with more than r 
onse
utive digits \(2;�)" is empty, and the 
ylinder((2;�); : : : ; (2;�)) of rank r may be arbitrarily small when � varies. The 
ylin-der (jmin;+) 
an be arbitrarily small too.Consider the fun
tion � : G(n) ! G(n) whi
h maps every nonempty 
ylinderI(n)� in I(n)� in the following way:a. If (ji(�); "i(�)) = (jmin;+) for some i, then (ji(�); �i(�)) = (jmin + 1;+);



2.1 Continuity of the entropy 29b. If 9i su
h that((ji(�); "i(�)); : : : ; (ji+r(�); "i+r(�))) = ((2;�); (2;�); : : : ; (2;�));then ((ji(�); "i(�)); : : : ; (ji+r(�); "i+r(�))) = ((2;�); : : : ; (2;�); (3;�));
. Otherwise, (ji(�); "i(�)) = (ji(�); "i(�)).We want to show that there exists Æn > 0, depending only on ��, su
h that forall � 2 �(G(n)), m(�) � Æn. For this purpose, we group together the sequen
esof 
onse
utive digits (2;�), and obtain a new alphabet A = A1 [ A2, whereA1 = f(3;�); : : : ; (k;�)g [ f(jmin + 1;+); : : : ; (k;+)gA2 = f(2;�); ((2;�); (2;�)); : : : ; ((2;�); : : : ; (2;�))| {z }r�1 gThen ea
h � 2 �(G(n)) 
an be seen as a sequen
e in A0s = f(a1; : : : ; as) 2As j ai 2 A2 ) ai+1 2 A1g for some n � s � nr . Let fT� be the �rst return mapon A1 restri
ted to �(G(n)):eT (x) = T�(x) for x 2 (a) 2 A1;eT (x) = T i�(x) if 9i : x 2 ((2;�); : : : ; (2;�))| {z }i ; x =2 ((2;�); : : : ; (2;�))| {z }i+1Let eVa be the inverse bran
h of eT relative to the 
ylinder (a). Observe that8(a1; : : : ; as) 2 A0s; eT s(a1; : : : ; as) = eT (as) (2.10)This 
an be proved by indu
tion on s: when s = 1 it is trivial; supposing thatthe property (2.10) holds for all sequen
es of length s, we haveeT s+1(a1; : : : ; as+1) = eT s+1 �(a1; : : : ; as) \ eVa1 � � � eVas(as+1)� == eT ( eT s(a1; : : : ; as) \ (as+1))sin
e eT s is inje
tive on (a1; : : : ; as); this is equal to eT ( eT (as)\(as+1)) by indu
tivehypothesis.� If as+1 2 A2, we have as 2 A1 and eT (as) = I : then eT s+1(a1; : : : ; as+1) =eT (as+1).� If as+1 2 A1, eT (as) � (as+1). In fa
t for all i = 0; : : : ; r � 1,T i�((2;�); : : : ; (2;�)| {z }i ) = T i� �h�� 1; V i(2;�)(�)�� == [T i�(� � 1); �) � �� 12 + �; �� � [a2A1(a) � ��13 ; 0� (2.11)



30 Statisti
al stability for �-
ontinued fra
tionsEquation (2.10) provides a lower bound on the measures of the intervals in�(G(n)):13 � m( eT (as)) = m( eT s(a1; : : : ; as)) � m(a1; : : : ; as) sup ���( eT s)0��� ; andM(��) + �max�(k + �+ ")2; (2 + �+ ")2r(��)�� � sup ��� eT 0���in a neighborhood of ��. Thus for all I(n)� 2 �(G(n)),Æn + 13M(��)n � m(I(n)� )Returning to the sum in equation (2.6), and de�ning I(n)� = SfI(n)� j�(I(n)� ) =I(n)� g, we �nd:XI(n)� 2G(n) �(n)� supI(n)� j'j! � XI(n)� 2�(G(n)) supI(n)� j'j0B� X�(I(n)� )=I(n)� �(n)� 1CAWe want to estimate �0 = sup�(G(n)) P�(I(n)� )=I(n)� �(n)� : ea
h sum 
an be 
omputeddistributively as a produ
t of at most n fa
tors �0i, ea
h of whi
h 
orrespondsto one of the 
ases a), b), 
) that we have listed in the de�nition of �:� In the 
ase a), we have �0i = �jmin +�jmin+1 � 2(��+ ")2 < 12 (remark thatjmin � 3 when � � p2� 1).� In the 
ase b), �0i = �r2 + �r�12 �3 = (1 � �)2(r�1) �(1� �)2 + 1(2+�)2� <0:9. In fa
t, when � > 15 we have (1 � �)2 + 1(2+�)2 < 910 ; otherwise,(1� �)2 + 1(2+�)2 < 54 ; and for � � �r+1, we have r � 1 � 1�2+� � 2, and(1� �)2(r�1) = �1� �21 + � �2(r�1) � 1(1 + �)2(r�1) � 11 + 2�(r � 1) �� 1 + �3� 3�� 4�2 < 35� In the 
ase 
), �0i = �ji .(The 
onstants in the previous dis
ussion are far from optimal, but they aresuÆ
ient for our purposes.)Then �0 � max��n; � 910� nr(��)+1� = ~�n < 1. Note that ~� only depends on �� andnot on �.We 
an �nally 
omplete our estimate for the sum over I(n)� 2 G(n):�0 XI(n)� 2�(G(n)) supI(n)� j'j � ~�n XI(n)� 2�(G(n))0�VarI(n)� j'j+ 1m(I (n)� ) ZI(n)� '1A �� ~�n0B�Var'+ XI(n)� 2�(G(n)) 1m(I(n)� ) ZI(n)� '1CA � ~�nVar'+ ~�nÆn k'k1 (2.12)



2.1 Continuity of the entropy 31On the other hand, for the sum over I(n)� =2 G(n) we have the following estimate:XI(n)� =2G(n) (n+ 2)�(n)� supI(n)� j'j! �� supI� j'jXj>k n�1Xl=0 Xjl(�)=maxfj0(�);:::;jn�1(�)g=j(n+ 2)�j0(�) � � ��jn�1(�) (2.13)where in the third sum of expression (2.13) we take l to be the smallest integerthat realizes the maximum, to avoid 
ounting the same sequen
es twi
e. Observethat when we take the sum over j0(�); : : : ; jn�1(�), sin
e we are not taking intoa

ount the signs "i(�), we are a
tually 
ounting at most 2n distin
t sequen
es.X(j0(�);:::;jn�1(�))jl(�)=j �j0(�) � � ��jn�1(�) �� �j 0�2 X(j0(�);:::;jl�1(�);jl+1(�);:::;jn�1(�))�j0(�) � � ��jn�1(�)1A �� �j 0B�2 n�1Yi=0i 6=l jXji=2 4�ji1CA � �j22n�1sin
e P12 �j � �26 � 2. ThereforeXI(n)� =2G(n) (n+ 2)�(n)� supI(n)� j'j! � supI� j'jXj>k n�1Xl=0 (n+ 2)�j22n�1 �� supI� j'j n(n+ 2)22n�1Xj>k �j � supI� j'jn(n+ 2)�nwhere in the last inequality we have used the hypothesis (2.7) on k.In 
on
lusion, VarI� (PnT�') is bounded by~�n�(n2 + 3n+ 3)VarI� '+ (n+ 2)� 1Æn + n� k'k1�and we re
all that we have 
hosen Æn and ~� so that they do not depend on �.Choose any �� 2 (~�; 1), and let K > 0; N 2 N be su
h that8n � 1; (n2 + 3n+ 3)~�n � K��n and 8n � N; K��n � 12Let L(n) = (n + 2)� 1Æn + n� ��n, K̂ = max1�n�N L(n). For any n, we 
an performthe Eu
lidean division n = qN + r for some q � 0 and 0 � r < N . ThenVarI� �PNT�'� � K��N VarI� '+ K̂ k'k1 (2.14)



32 Statisti
al stability for �-
ontinued fra
tionsMore generally, we 
an show by indu
tion on q thatVarI� �P qNT� '� � (K�N )q VarI� '+ C(q)K̂ k'k1 (2.15)where C(q) = 1 + 12 + � � �+ 12q�1 < 2 for all q. In fa
t if (2.15) is true for someq, re
alling that the Perron-Frobenius operator PT� preserves the L1 norm, weget VarI� �P (q+1)NT� '� � (K��N )q VarI� �PNT�'�+ C(q)K̂ 

PNT�'

1 �� (K��N )q+1 VarI� '+�C(q) + 12q� K̂ k'k1 dx �� (K��N )q+1 VarI� '+ C(q + 1)K̂ k'k1 dxFor 0 � r < N , Var �P rT�'� � K��r Var'+ K̂ k'k1. In general, for n = qN + r,we obtainVarI� �PnT�'� � (K��N )q VarI� �P rT�'�+ C(q)K̂ k'k1 �� (K��N )qK��r VarI� '+ K̂ �(K��N )q + C(q)� k'k1 � K2q ��r VarI� '+ 3K̂ k'k1Now take �0 � max� 12 1N ; ���, so that ��r2q � (�0)r(�0)Nq = (�0)n. This 
on
ludesthe proof of Lemma 2.3.2.1.2 L1 
ontinuity of the densities �� and 
ontinuity ofthe entropyLet �� 2 (0;p2 � 1℄ be �xed. To study the L1-
ontinuity property of the den-sities �� (and the 
ontinuity of the entropy h(�)) it is 
onvenient to work withmeasures supported on the same interval. Thus we res
ale the maps T� with� in a neighborhood of �� to the interval [�� � 1; ��℄ by applying the translation�����. Let A�;�� = ����� Æ T� Æ ��1���� be the new maps:A�;��(x) = ���� 1x� ��+ � ����� ����� 1x� ��+ � ����+ 1� ��+ ��� � (2.16)Let J�j = I�j + ��� � be the translated versions of the intervals of the originalpartition, and ~��(x) = � Æ ��1����(x) = �(x � �� + �) the invariant densities forA�;��. Clearly the bounds for the sup and the variation of �� are still valid for~��.Lemma 2.5. Let �� 2 (0;p2�1℄ be �xed, and let " be given by Proposition 2.2.Then if f�ng � [��� "; ��+ "℄ is a monotone sequen
e 
onverging to ��, we have~��n L1��! ~���.Proof. Sin
e sup j~��n j � K, Var ~��n � K 8n, we 
an apply the following theo-rem:Theorem 2.6 (Helly's Theorem). Let f�ng be a sequen
e in BV (I) su
hthat:



2.1 Continuity of the entropy 331. sup j�nj � K1 8n,2. Var �n � K2 8nThen there exists a subsequen
e �nk and a fun
tion � 2 BV (I) su
h that�nk L1��! �, �nk ! � almost everywhere, andsup j�j � K1; Var � � K2Thus we 
an �nd a subsequen
e f~��nk g 
onverging in the L1 norm and almosteverywhere to some fun
tion �1 su
h that sup j�1j � K, Var �1 � K. Wewant to show that �1 = ~���: we observe that it is suÆ
ient to show that �1 isan invariant density for A�� = A��;�� = T��, and then use the uniqueness of theinvariant density. To simplify notations, we will write �k for �nk , ~�k for ~��nk ,and Ak for A�nk ;��.Our goal is to show that 8B � I��, R �B(A��(x))�1(x)dx = R �B(x)�1(x)dx.Observe that every �B(x) belongs to L1(I��) and so 
an be approximated arbi-trarily well by 
ompa
tly supported C1 fun
tions with respe
t to the L1 norm.Then it will be suÆ
ient to prove that 8' 2 C1 with 
ompa
t support 
ontainedin I��, ����Z ' (A��(x)) �1(x)dx � Z '(x)�1(x)dx���� = 0 (2.17)Observe that ��R '(A��(x))�1(x)dx � R '(x)�1(x)dx�� � I1+I2+I3, with I1,I2,I3given below:I1 = ����Z '(A��(x))�1(x)dx � Z '(A��(x))~�k(x)dx���� � k'k1 k~�k � �1kL1I3 = ����Z '(Ak(x))~�k(x)dx � Z '(x)�1(x)dx���� == ����Z '(x)~�k(x)dx � Z '(x)�1(x)dx���� � k'k1 k~�k � �1kL1whi
h vanish as k ! 1. Finally, I2 = R j'(A��(x)) � '(Ak(x))j ~�k(x)dx isbounded by K R j'(Ak(x)) � '(A��(x))j dx, and we need to show thatZ j'(Ak(x))� '(A��(x))j dx! 0 when k !1 (2.18)Re
all that for x 2 J�j;�k = h �1j�1+�k + ��� �k;� 1j+�k + ��� �k�, Ak(x) =� 1x���+�k � j + ��� �k, and for x 2 J�j;�� = h� 1j�1+� ;� 1j+��, A��(x) = � 1x � j.We will examine in detail the 
ase �k < �� 8k , x < ��� �k; the other 
ases 
anbe dealt with in a similar way. In this 
ase, 0 < 1j+�k � 1j+�� < �� � �k, and ifj < 1p����k = N(k), then � 1j�1+�k + 1j+�� < �k����1j2 < �k � �� and so� 1j � 1 + �k + ��� �k < � 1j + �� < � 1j + �k + ��� �k (2.19)IN(k) = Sj�N(k) J�j;�k 
ontains the set in whi
h 
ondition (2.19) isn't satis�ed,and its measure m(IN(k)) = P1j=N(k) ��� 1(j�1+�k)(j+�k) ��� vanishes when k ! 1.



34 Statisti
al stability for �-
ontinued fra
tionsGiven "00 > 0, 
hoose �k su
h that m(IN(�k)) < "00, and let k � �k. De�ne��j = �� 1j � 1 + �k + ��� �k;� 1j + ��� ; ��j = �� 1j + ��;� 1j + �k + ��� �k�when 2 < j � N(�k); and ��2 = ���� 1;� 12 + �k�Then we 
an split the integral (2.18) in three parts in the following way:Z �����1 j'(Ak(x)) � '(A��(x))j dx � ZIN(�k) j'(Ak(x)) � '(A��(x))j dx++N(�k)Xj=3  Z��j j'(Ak(x)) � '(A��(x))j dx!+N(�k)Xj=2  Z��j j'(Ak(x)) � '(A��(x))j dx!The �rst integral in this expression is bounded by 2"00 k'k1. Moreover, themeasures of the sets ��j tend uniformly to 0 when k !1:m(��j ) � j��� �kj+ j��� �kj(j + ��)(j + �k) � C1(��� �k)) N(�k)Xj=3 Z��j j'(Ak(x)) � '(A��(x))j dx � N(�k)2 k'k1 C1(��� �k)Finally, m(��j ) � C2j2 + j��� �kj � C3j2 when k � �k; j < N(�k), and for x 2 ��j ,x � � 1j+�� and x� ��+ �k < � 1j+�k , thereforejAk(x) �A��(x)j = ����� 1x + 1x� ��+ �k � ��+ �k���� �� j��� �kj+ j��� �kjjx(x� ��+ �k)j � j��� �kj (1 + (j + 1)2) (2.20)Sin
e ' is C1 on a 
ompa
t interval, it is also lips
hitzian for some Lips
hitz
onstant L', andN(�k)Xj=2 Z��j j'(Ak(x)) � '(A��(x))j dx � N(�k)Xj=2 m(��j )L' jAk(x) �A��(x)j �� N(�k)Xj=2 C3(1 + (j + 1)2)j2 L' j��� �kj � C4N(�k) j��� �kj � C4pj��� �kjwhen k is large. This establishes the 
laim that the third integral vanishes whenx < ����k. In the 
ase x > ����k we have similar estimates: for j < 1pj����kj ,we have 1j + �� < 1j + �k + ��� �k < 1j � 1 + ��and we 
an de�ne the intervals
+j = � 1j + �k + ��� �k; 1j � 1 + ��� ; Æ+j = � 1j � 1 + ��; 1j � 1 + �k + ��� �k�



2.1 Continuity of the entropy 35We have m(Æ+j ) � C5 j��� �kj, m(
+j ) � C5j2 , andjAk(x) �A��(x)j � C7j2 j�k � ��j for x 2 
+jFinally, we leave it to the reader to 
he
k that the 
ase �� < �k 
an be treatedin same way. Thus we 
an 
on
lude that (2.18) holds.Therefore we have shown that �1 = ~���. This is also true if we extra
t a
onverging sub-subsequen
e from any subsequen
e of ~��n , and so ~��n ! ~���both in L1 and almost everywhere for n ! 1. This 
ompletes the proof ofLemma 2.5.The L1-
ontinuity of the map � 7! �� is suÆ
ient to prove that the entropymap � 7! h(�) is also 
ontinuous. This is a
hieved by applying the followinglemma (for a proof see for example [1℄) to Rohlin's formula.Lemma 2.7. Let f�ng be a sequen
e of fun
tions in L1(I) su
h that1. k�nk1 � K 8n,2. �n L1��! � for some � 2 L1(I)Then for any  2 L1(I), Z  (�n � �)! 0Applying Rohlin's Formula for the entropy, we get for any � 2 [��� "; ��+ "℄h(�) = Z ���1 log 1(x � ��+ �)2 ~��(x)dx = 2 Z ���1 jlog jx� ��+ �jj ~��(x)dxConsider a sequen
e f�ng ! ��. Thenjh(��)� h(�n)j � 2 Z �����1 �� log jx� ��+ �nj ~��n(x) � log jxj ~���(x)��dx �� 2�Z �����1 �� log jx� ��+ �nj (~��n(x)� ~���(x)) ��dx++ Z �����1 �� (log jx� ��+ �nj � log jxj) ~���(x)��dx�The se
ond integral is bounded by 2(K0 +1) R �����1 jlog jx� ��+ �nj � log jxjj dxand vanishes when n!1 be
ause of the 
ontinuity of translation in L1. If wetake ~�n = ~��n , ~� = ~���,  (x) = jlog jxjj in Lemma 2.7, we �nd that the �rstintegral also tends to 0.2.1.3 Behavior of the density and entropy when �! 0In this se
tion we will prove that the entropy has a limit as � ! 0+ and thatlim�!0+ h(�) = 0.The 
ontinuity of the entropy on the interval (0;p2 � 1℄ followed from theL1-
ontinuity of the densities. The vanishing of the entropy as � ! 0 is a
onsequen
e of the fa
t that the densities 
onverge to the Dira
 delta at theparaboli
 �xed point of T0 as �! 0.



36 Statisti
al stability for �-
ontinued fra
tionsProposition 2.8. When � ! 0, the invariant measures ~�� of the translatedmaps A�;0 : [�1; 0℄! [�1; 0℄ 
onverge in the sense of distributions to the Dira
delta in �1.From the previous Proposition the vanishing of the entropy follows easily:Corollary 2.9. Let h(�) be the metri
 entropy of the map T� with respe
t tothe absolutely 
ontinuous invariant probability measure ��. Then h(�) ! 0 as�! 0.Proof of the Corollary. We 
ompute the entropy of the T� through Rohlin'sformula: h(�) = 2 Z ���1 jlog jxjj d�� (2.21)Observe that 8E � (
1; 0℄, ��(E) = 1C(�)��(E) � C0C(�)m(E). Therefore if �� isthe density of ��, �� < C0C(�) in (
1; 0℄. Given ", let 
k be su
h that jlog jxjj <" for x 2 [�1; 
k℄, and 
hoose � small su
h that � � 1 < 
k, ��([
k; �℄) =~��([~
k; 0℄) < " and C0C(�) < ". Thenh(�) � Z 
k��1 jlog jxjj d�� + Z 
1
k jlog jxjj d�� + Z �
1 jlog jxjj ��dx �� jlog j
kjj+ ����log 13 ������([
k; 
1℄) + C0C(�) klog jxjk1 ! 0whi
h 
on
ludes the proof.To prove Proposition 2.8 we adopt the following strategy: we introdu
e the jumptransformations G� of the maps T� over the 
ylinder (2;�), whose derivativesare stri
tly bounded away from 1 even when �! 0; we 
an then prove that theirdensities d��dx are bounded from above and from below by uniform 
onstants.Using the relation between �� and the indu
ed measure ��, we 
on
lude thatfor any measurable set B su
h that �1 =2 B, ~��(B) = ��(B + �) ! 0 when�! 0.Proof of Proposition 2.8. Given vr+1 � � < vr as in equation (2.9), and0 � j � r, letL0 = I� n (2;�); Lj = [
j+1; 
j) = ((2;�); : : : ; (2;�)| {z }j ) n ((2;�); : : : ; (2;�)| {z }j+1 )for 1 � j � r. Thus I� = S0�j�r Lj (mod 0). It is easy to prove by indu
tionthat for r � j � 1; 
j = V j�1(2;�) �� 12+�� = �1 + 1j+ 11+� , that is, � jj+1 < 
j �� j�1j , while 
0 = �; 
r+1 = �� 1. LetG�jLj = T j+1� jLjbe the jump transformation asso
iated to the return time �(x) = j + 1 ()x 2 Lj . Observe that � is bounded and therefore integrable with respe
t to ��.



2.1 Continuity of the entropy 37Then a result of R. Zweimuller ([26℄, Theorem 1.1) guarantees that G� admitsan invariant measure �� � �� su
h that for all measurable E,��(E) = 1C(�) 0�Xn�0 �� �f� > ng \ T�n� (E)�1A (2.22)where C(�) is a suitable normalization 
onstant. A
tually from equation (2.22)it follows that ��(I�) = ��(f� > 0g) � C(�)��(I�) is �nite, and so by 
hoosinga suitable C(�) we 
an take ��(I�) = 1. We will prove the following:Lemma 2.10. There exists ~� > 0 su
h that for 0 < � < ~�, the densities  � of�� are bounded from above and from below by 
onstants that do not dependon �: 9C0 s.t. C�10 �  � � C0.Proof of Lemma 2.10. In order to prove that  � is bounded from above, we
an pro
eed as in Lemma 2.3, and show that 9C 0 su
h that for all �, 8' 2L1(I�), VarI� PnG�' < C 0. Sin
e the outline of the proof is very similar to thatof Lemma 2.3, we will only list the passages where the estimates are di�erent,and emphasize how in this 
ase all the 
onstants 
an be 
hosen uniform in �.The 
ylinders of rank 1 for G� are of the formIk;"j = (j; k; ") + ((2;�); : : : ; (2;�)| {z }j ; (k; ")); 0 � j � r;so they are also 
ylinders for T�, although of di�erent rank. On Ik;"j ; j � 1 wehave���� 1G0�(x) ���� = (T j�(x) � � � T�(x)x)2 � �kj = 4(j + 2)2(k � 1)2 � 1(k � 1)2 � 14 ;���� 1G0�(x) ���� � 19j2(k + 1)2 ;while on Ik;"0 , ��� 1G0�(x) ��� = x2 < 1(k�1)2 � 14 , and so � = sup ��� 1G0� ��� < 14 for all �.Letting Q = Srj=0fIk;"j g, and �(n)� = supI(n)� ��� 1(Gn�)0 ���, we 
an obtain the analogueof equation (2.6) for the maps G�:Var �PnG�'� (x) � �n VarI� '+ XI(n)� 2Q(n)(n+ 2)�(n)� supI(n)� j'j ;and similarly to (2.7), we 
an 
hoose h su
h that Pi�h 1i2 � �n24n�2 , and the setof intervals with bounded itinerariesG(n) = fI(n)� = ((j0; k0; "0); : : : ; (jn�1; kn�1; "n�1)) 2 Qn jmax(j0; : : : ; jn�1) � h; max(k0; : : : ; kn�1) � hgAgain we 
an de�ne a fun
tion � : G(n)! G(n) that maps every 
ylinder I(n)� =((j0; k0; "0); : : : ; (jn�1; kn�1; "n�1)) to I(n)� = ((j00; k00; "00); : : : ; (j0n�1; k0n�1; "0n�1))as follows:



38 Statisti
al stability for �-
ontinued fra
tionsa. If (ji; ki; "i) = (j; jmin;+); j < r�1 for some i, then (j0i; k0i; "0i) = (j; jmin+1;+);b. If for some i, (ji; ki; "i) = (r; k; ") with (k; ") 6= (jmin;+); (jmin + 1;+),then (j0i; k0i; "0i) = (r � 1; k; ");
. If (ji; ki; "i) 2 f(r; jmin;+); (r; jmin + 1;+); (r � 1; jmin;+)g, then(j0i; k0i; "0i) = (r � 1; jmin + 1;+);d. Otherwise, (j0i; k0i; "0i) = (ji; ki; "i).With this de�nition, the 
ylinders in �(G(n)) are all full, be
ause as we haveseen in equation (2.11), for 0 � i � r � 1,T i�((2;�); : : : ; (2;�)| {z }i ) � �� 12 + �; �� � [(k;");k�3 I"kThen 8I(n)� 2 �(G(n)),1 � m(I(n)� ) sup�(G(n)) j(Gn�)0j = m(I(n)� )(9h4)n ) m(I(n)� ) � 1Æn = 1(9h4)n ;whi
h doesn't depend on �. Again we need to estimate the supremum overI(n)� 2 �(G(n)) of the sums P�(I(n)� )=I(n)� �(n)� , ea
h of whi
h is the produ
t of nterms �0i, that 
orrespond to one of the 
ases a), b), 
) d) we listed previously:� In the 
ase a), �0i = �jminj + �jmin+1j � 1(jmin�1)2 + 1j2min � 12 (observe thatfor � < p2� 1, jmin � 3).� In the 
ase b), �0i = �kr + �kr�1 � 4(k�1)2 � 1(r+1)2 + 1(r+2)2� � 12 when� < v2;� In the 
ase 
), �0i = �jminr + �jminr�1 + �jmin+1r + �jmin+1r�1< 4� 1(jmin�1)2 + 1j2min�� 1(r+1)2 + 1(r+2)2� < 12 for � < v2;� In the 
ase d), �0i < � = 14 .Then �0 � ~� = 12 , and as in equation (2.12), we �nd for � < v2,XI(n)� 2G(n) �(n)� supI(n)� j'j! � �0 XI(n)� 2�(G(n)) supI(n)� j'j � ~�n Var'+ ~�nÆn k'k1For the sum over intervals with unbounded itineraries we pro
eed in a similarway to (2.13):XI(n)� =2G(n)�(n)� �Xi�h n�1Xl=0 0BB� Xjl(�)=i+1=max(j0(�);:::;jn�1(�))�k0(�)j0(�) � � ��kn�1(�)jn�1(�)++ Xkl(�)=i=max(k0(�);:::;kn�1(�))�k0(�)j0(�) � � ��kn�1(�)jn�1(�)1CCA �Xi�h n�1Xl=0 4i2 0B�2 XIk;"j 2Q�(n)� 1CAn�1



2.1 Continuity of the entropy 39(This expression is redundant, but suÆ
ient for our purpose.) Observe thatXIk;"j 2Q�(n)� � 2 1Xj=0 1Xk=3 4(j + 2)2(k � 1)2 � 8 1X2 1k2!2 � 8; and soXI(n)� =2G(n)�(n)� �Xi�h 4i2n24n�4 � n�nThen we 
an prove relation (2.14) and 
omplete our argument exa
tly like inLemma 2.3. Noti
e that all the 
onstants involved are uniform in �.To prove that the densities  � of �� are uniformly bounded from below, weuse a bounded distortion argument. We follow the same outline as in x1.9, butwith the advantage that in this 
ase the derivatives are uniformly bounded fromabove.Sin
e T� satis�es Adler's 
ondition (see de�nition 1.22), ��� T 00�(T 0�)2 ��� < K (here K =2), then there existsK 0 independent of n and of � su
h that 8n > 0; ��� (Tn� )00((Tn� )0)2 ��� <K 0 (see [25℄, Lemma 10). Then 8x; y belonging to the same 
ylinder Ik;"j of rank1 of G�,����G0�(x)G0�(y) � 1���� = jG00�(�)j ���� x� yG0�(y) ���� = ����G00�(�)(G�(x) �G�(y))G0�(y)G0�(�) ���� �� 362 ���� G00�(�)(G0�(�))2 ���� jG�(x) �G�(y)j � K 00 jG�(x)�G�(y)j ; andlog ���� (Gn�)0(y)(Gn�)0(x) ���� � n�1Xi=0 ����G0�(Gi�(y))G0�(Gi�(x)) � 1���� � K 00 n�1Xi=0 ��Gi+1� (y)�Gi+1� (x)�� �� K 00 nXi=1 �14�n�i jGn�(y)�Gn�(x)j � K 00 1Xi=0 �14�i ) ���� (Gn�)0(y)(Gn�)0(x) ���� � C1where C1 does not depend on �. Letting W� : Gn�(I(n)� ) ! I(n)� be the lo
alinverses of Gn�, for every full 
ylinder I(n)� 2 P(n) and for every measurable setB,m(B)m(I�) = RW�(B) j(Gn�)0(y)j dyRI(n)� j(Gn�)0(x)j dx � m(W�(B)) supy2I(n)� j(Gn�)0(y)jm(I(n)� ) infx2I(n)� j(Gn�)0(x)j � C1m(W�(B))m(I(n)� )) m(W�(B)) � m(B)m(I(n)� )C1 (2.23)Finally, we 
an show that the measure of the union Sn of all full 
ylinders ofrank n is stri
tly greater than 0. In fa
t we have the following 
hara
terization:I(n)� 2 Q(n) is not full ) it has an initial segment of the orbit (with respe
t toG�) of one of the endpoints � and � � 1 as its �nal segment. That is, if � =



40 Statisti
al stability for �-
ontinued fra
tions(a1; a2; a3; : : :) and ��1 = (b1; b2; b3; : : :), then there exists 1 � k � n su
h thatI(n)� = (!1; : : : ; !n�k; a1; : : : ; ak) or I(n)� = (!1; : : : ; !n�k; b1; : : : ; bk). To provethis, observe that if I(n)� doesn't 
ontain any initial segment of (a1; a2; a3; : : :)or (b1; b2; b3; : : :), it is 
learly full, and if every su
h segment (a1; : : : ; ak) or(b1; : : : ; bk) is followed by !k+1 6= ak+1 or bk+1 respe
tively, then it is either fullor empty be
ause Gn� is monotone on ea
h 
ylinder. Then��(SCn) � �� n[k=1G�(n�k)� (a1; : : : ; ak)!+ �� n[k=1G�(n�k)� (b1; : : : ; bk)! �� nXk=1 (��(a1; : : : ; ak) + ��(b1; : : : ; bk))sin
e �� is G�-invariant. We have already shown that �� is bounded from below,and so ��(a1; : : : ; ak) + ��(b1; : : : ; bk) < C 0(m(a1; : : : ; ak) +m(b1; : : : ; bk)).In order to prove that ��(SCn ) < 1, we take advantage of the fa
t that the 
ylin-ders 
ontaining the endpoints be
ome arbitrarily small when � approa
hes 0.Re
all that (a1) = (jmin) = �� 1� + 1� ���, and 
onsequently inf(a1) jG0�(x)j �(jmin � 1)2, and sin
e infI� jG0�(x)j � 4, from Lagrange's theorem we getm(a1; : : : ; ak) � 14k�1(jmin � 1)2Sin
e jmin !1 as �! 0, we 
an 
hoose ~� su
h that 8� < ~�; m(a1; : : : ; ak) �14kC0 . Similarly, re
all from Remark 2.4 that for vr+1 � � < vr, where vr =�1+p1+4=r2 , we have (b1) = ((2;�); : : : ; (2;�)| {z }r ; (k; ")) for some k � 3, and re-
alling that T i�(�� 1) = (i+1)��11�i� , we �ndinf(b1) jG0�(x)j = inf(b1) rYi=0 1(T i�(x))2 � 1(k � 1)2 r�1Yi=0 (1� i�)2(1� (i+ 1)�)2 � 4(1� r�)2But � � vr+1 ) 1r+1 < �2 + � ) 1 � r� < �(2+�)1+� < 3�, and so by taking ~�small enough we 
an ensure that 8� < ~�; inf(b1) jG0�(x)j � 4C 0 and 
onsequentlym(b1; : : : ; bk) � 14kC0 8k.Then for � small enough, m(SCn) � 2C0 Pnk=1 14k � 23C0 ) ��(Sn) � 23 )��(Sn) � 13 ) m(Sn) > ��(Sn)C0 � 13C0 . Taking the sum over all full 
ylindersI(n)� in (2.23), we �nd that for all measurable B � I�,m(G�n� (B)) � m(G�n� (B) \ Sn) � m(B)m(Sn)C1 � m(B)3C1C 0Now re
all that the density of �� is equal almost everywhere to the limit of theCesaro sums limn!1 1nPn�1i=0 P iG�1, and so for � < ~�,��(B) = limn!1 1n n�1Xi=0 ZB P iG�1dx = limn!1 1n n�1Xi=0 m(G�n� (B))and 
onsequently we have ��(B) � m(B)3C1C0 8B.



2.2 Numeri
al results 41We 
an �nally 
on
lude the proof of Proposition 2.8. The following propertieshold:� C(�) ! 1 when � ! 0. In fa
t when � is small, C�10 � d��dm � C0 forsome C0, and1 = rXk=0 ��(Lk) = rXk=0 1C(�) Xn�k ��(Ln) = 1C(�) rXk=0 ��([�� 1; 
k℄) �� 1C0C(�) rXk=0m([�� 1; 
k℄) � 1C0C(�)  rXk=0 1k + 1 � (r + 1)�! �� 1C0C(�) �log� 1�2 + ��� 1� (2.24)sin
e r � 1�2+� � r + 1. Therefore the normalization 
onstant C(�) �1C0 �log� 1�2+��� 1�!1 when �! 0.� Finally, 8Lk; k � 0 �nite, ��(Lk)! 0 when �! 0. In fa
t we have��(Lk) =Xj�k ��(Lj)C(�) � C0C(�)Xj�km(Lj) � C0C(�) j1� 
kj � C0C(�) 1k ! 01Consider now the translated versions A�;0 of the T� with respe
t to �� = 0, andlet ~
j = 
j � � be the translated versions of the 
j (we omit the dependen
eon � for simpli
ity). Then we have ~��((~
k; 0℄) ! 0 for all �nite k. Let f 2C1([�1; 0℄) be a test fun
tion: we want to show that 8" > 0, 9�0 su
h that8� � �0; ���R 0�1 f(x)d~�� � f(�1)��� < ". Sin
e f is uniformly 
ontinuous, 9Æ su
hthat 8 jx� 1j < Æ, jf(x)� f(�1)j < ". Choose k so that ~
k < �1+ Æ. Then forall � su
h that ~��((~
k; 0℄) < ",����Z 0�1(f(x)� f(�1))d~������ � Z ~
k�1 jf(x)� f(�1)j d~�� + Z 0~
k jf(x)j d~��++ Z 0~
k jf(�1)j d~�� � "+ "(kfk1 + jf(�1)j)2.2 Numeri
al resultsIn this se
tion we 
olle
t our numeri
al results on the entropy of Japanese
ontinued fra
tions. We already know that the fun
tion � ! h(T�) is 
onti-nuous in (0; 1℄ and that in the 
ase � � p2 � 1 the entropy has been 
om-puted exa
tly by Nakada [16℄ and Marmi, Moussa, Cassa [15℄. For values1The reader might be wondering whether the estimates of the densities of T� in Paragraph2.1.1 and the 
ontinuity of the entropy might be derived dire
tly from Lemma 2.10. This wouldfollow from equation (2.24) if we possessed a suitable lower bound for d��dm when � varies; butwe haven't been able to provide su
h a bound ex
ept for small �. As for the 
ontinuity ofthe entropy, the fa
t that h(T�) and h(G�) are related by the Generalized Abramov Formula[26℄ suggests that proving the 
ontinuity of h(G�) might be a valid alternative approa
h;however, taking expansivity into a

ount, we believe that the estimates ne
essary to proveL1-
ontinuity of the invariant densities of G� as in x2.1.2 would be far more taxing than forT�.
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Figure 2.2: The dependen
e on n of the standard deviation of the normally distributedh( 12 ; n; xk) where n ranges from 500 to 350000 and N = 100.
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Figure 2.3: The distribution of h( 12 ; 1000; xk) for 10000 random initial 
onditions.The average h( 12 ; n; N) = 3:41711 must be 
ompared to the exa
t value h(T 12 ) =�26 logG = 3:418315971 : : :.
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Figure 2.4: The entropy of the map T� at 4080 uniformly distributed values of � from0 to 0:42. The estimated error is less than 2 � 10�4.
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Figure 2.5: The entropy of the map T� at 1314 uniformly distributed values of � from0:29 to 0:30. The estimated error is less than 1 � 10�4.
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Figure 2.6: The entropy of the map T� at 1600 uniformly distributed values of � from0:265 to 0:281. The estimated error is less than 1:5 � 10�4.
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Figure 2.7: The entropy of the map T� at 989 uniformly distributed values of � from0:278 to 0:281. The estimated error is less than 4 � 10�5.
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Figure 2.8: The entropy of the map T� at 1799 uniformly distributed values of � from0:09 to 0:11. The estimated error is less than 2:5 � 10�4.of � in the interval (0;p2 � 1℄ we have numeri
ally 
omputed the entropyof the maps applying Birkho�'s ergodi
 theorem and repla
ing the integralh(T�) = �2 R ���1 log jxj ��(x)dx in Rohlin's formula with the Birkho� averagesh(�; n; x) = � 2n n�1Xj=0 log ��T j�(x)��whi
h 
onverge to h(T�) for almost all 
hoi
es of x 2 (�� 1; �). In order to getrid of the dependen
e on the 
hoi
e of an initial 
ondition we have 
omputedh(�; n; xk) for a large number N of uniformly distributed values of xk 2 (� �1; �), k = 1; : : :N , and we have taken the average on all the results:h(�; n;N) = 1N NXk=1h(�; n; xk) :Unsurprisingly, it turns out that the values h(�; n; xk) are normally distributedaround their average h(�; n;N) (see Figure 2.2). We have also 
omputed thestandard deviations of the normal distributions for values of n from 500 to350000 (see Figure 2.3): a least squares �t suggests that they de
ay as 1=pn(we refer to A. Broise [5℄ for a general treatment of Central Limit Theoremsthat may apply also to our maps).In Figure 2.4 we see a graph of h(�; 104; N) at 4080 uniformly distributed ran-dom values of � in the interval (0;p2� 1): the values of N range from 105 to4 � 105 in
reasing as � de
reases so as to keep the standard deviation approxi-mately 
onstant. The estimated error for the entropy is less than 2 � 10�4.As � ! 0 the entropy de
reases (although non monotoni
ally, see below) andthe graph exhibits a quite ri
h self{similar stru
ture that we have just started
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al stability for �-
ontinued fra
tionsto investigate: for example the entropy seems to be independent of � as � variesin the intervals whose endpoints have Gauss 
ontinued fra
tion expansions ofthe form [0; n; n � 1; 1; �n℄ and [0; �n℄ respe
tively, and to depend linearly on �in the intervals ([�n℄; [0; n; 1℄). Compare with Figure 2.6, where h(�; 104; 4 � 105)is 
omputed at 1600 values of � 2 (0:264; 0:281) and with Figure 2.8 whereh(�; 104; 2 � 105) is 
omputed at 1799 values of � 2 (0:09; 0:11).Figure 2.5 is a graph of h(�; 104; 4 � 105) at 1314 uniformly distributed randomvalues of � in the interval (0:29; 0:3): here the non-monotone 
hara
ter of thefun
tion � 7! h(T�) is quite evident. A magni�
ation of Figure 2.6 
orrespond-ing to values � 2 (0:278; 0:281), showed in Figure 2.7, suggests that the samephenomenon o

urs at the end of ea
h of the plateaux exhibited in Figure 2.4.



Chapter 3Natural Extensions3.1 Fibred systemsNatural extensions were introdu
ed by Rohlin [19℄ as a general method to passfrom a given endomorphism to an automorphism of whi
h the �rst is a fa
tor.Nakada, Ito e Tanaka applied it to 
ontinued fra
tions [18℄ [16℄.The main referen
e for this se
tion is S
hweiger's book [20℄, whose approa
h isbased on the notion of �bred systems.3.1 (Fibred system). Consider a set B, and an appli
ation T : B ! B. (B; T )is 
alled a �bred system if there exists a �nite or 
ountable alphabet A, and asurje
tive fun
tion k : B ! A su
h that Tjk�1fag is inje
tive 8a 2 A.Let � = AN; � : � ! � the shift map. We de�ne a representation fun
tion� : B ! � as follows: (�(x))i = k(T i�1x)Then we have the 
ommuting diagramB T����! B�??y ??y�� ����!� �The elements of �(B) � � are 
alled admissible sequen
es.3.2 (Cylinders). We 
all 
ylinders of rank 1 of the system (B; T ) the setsBa = k�1f�kg; �k 2 A;The 
ylinder of rank n asso
iated to the blo
k (k1; : : : ; kn); ki 2 A is de�ned asfollows: B(k1; : : : ; kn) = B(k1) \ T�1B(k2) \ : : : \ T�n+1B(kn)We will say that (k1; : : : ; kn) is an admissible blo
k if B(k1; : : : ; kn) 6= ?.Proposition 3.3. 8n � 1, the following properties hold:



48 Natural Extensionsa) Sa2AB(k1; : : : ; kn; a) = B(k1; : : : ; kn)b) T�1B(k1; : : : ; kn) = Sa2AB(a; k1; : : : ; kn)In the sequel we will assume that the following additional 
onditions are satis-�ed:1. B � R and the �-algebra generated by 
ylinders is the �-algebra B(B) ofBorel sets of B;2. T is measurable with respe
t to B(B);3. 8(k1; : : : ; kn); Tj �B(k1;:::;kn) is di�erentiable.We will denote by V(k1;:::;kn) the lo
al inverse of Tj �B(k1;:::;kn), and by w(k1;:::;kn)its Ja
obian with respe
t to the Lebesgue measure.3.4 (Dual system). Let (B; T ) be a �bred system with respe
t to the alphabetA, B# a set, T# : B �B# ! B# su
h that:a) 8x 2 B �xed, (B#; T#(x; �)) is a �bred system, whose alphabet is still A;b) Let B#k (x); k 2 A the 
ylinders of (B#; T#(x; �)). Then 8k 2 A, B#k (x) 6=? andVk1x is well-de�ned ) V #k(x)(Tx)B#k1(x) is well-de�ned (3.1)(B#; T#(x; �)) is 
alled a dual system for (B; T ) in x.1Let k#(x; y); y 2 B# be the representation fun
tion on (B#; T#(x; �)), withV #(k1;:::;kn)(x) the lo
al inverse of T#(x; �)j �B#(k1 ;:::;kn)(x), and with w#(k1;:::;kn)(x)its Ja
obian with respe
t to the Lebesgue measure. Moreover we denote by B#the �-algebra of Borel sets of B#.3.5. We de�ne the 
ylinders of B# with respe
t to x as follows:B#(k1;:::;kn)(x) + B#k1(x) \ �T#(x; �)�1B#k2(Vk1x)�\\ �T#(x; �)�1T#(Vk1x; �)�1B#k3(V(k2 ;k1)x)� \ � � �� � � \ �T#(x; �)�1 � � �T#(V(kn�2;:::;k1)x; �)�1B#kn(V(kn�1;:::;k1)x)�Condition (3.1) ensures that if V(kn;:::;k1)x is well-de�ned, B#(k1;:::;kn)(x) is non-empty. Also remark that if y 2 B#(k1;:::;kn)(x),�T#(x; y) 2 B#k2(Vk1x)� \ �T#(Vk1x; �)�1B#k3(V(k2;k1)x)� \ � � �� � � \ �T#(Vk1x; �)�1 � � �T#(V(kn�2;:::;k1)x; �)�1B#kn(V(kn�1;:::;k1)x)� == B#(k2;:::;kn)(Vk1x)1We remark here that for the sake of our proofs we need a more general de�nition of dualsystem than the one adopted in S
hweiger [20℄, that is our dual map T# is dependent on x.All the duality properties still hold, as we will show in the following pages.



3.1 Fibred systems 493.6 (Kernel). K : B � B# ! R is 
alled a kernel if it is non-negative, mea-surable and 8(x; y) 2 B�B# su
h that T�1fxg\B(k) 6= ?, (T#(x; �))�1fyg\B#k (x) 6= ?, we haveK(x; V #k (x; y))w#k (x; y) = K(Vk(x); y)wk(x) (3.2)Proposition 3.7. De�neD(x) + ny 2 B# j8n > 0; y 2 B#(k1;:::;kn)(x), T�nfxg \B(kn; : : : ; k1) 6= ?oThen the following properties hold:a) y 2 D(x)) V #k(x)(Tx; y) 2 D(Tx)b) y 2 D(x)) T#(x; y) 2 D(Vk(x;y)(x))
) D(x) = Sk �B#k (x) \ V #k (x; �)D(Vk(x))�Proof. a) If y 2 B#(k1;:::;kn)(x) \D(x); V #k(x)(Tx; y) 2 B#(k(x);k1;:::;kn)(Tx),V #k(x)(Tx; y) 2 D(Tx) , T�n�1fTxg \ B(kn; : : : ; k1; k(x)) 6= ?b) If y 2 B#(k1;:::;kn)(x) \D(x); T#(x; y) 2 B#(k2;:::;kn)(Vk1x),T#(x; y) 2 D(Vk(x;y)(x)) , T�n�1fVk(x;y)(x)g \ B(kn;:::;k2) 6= ? ,T�nfxg \ B(kn;:::;k2;k1)g 6= ? , y 2 D(x)
) Let y 2 D(x): then point (b) implies that T#(x; y) 2 D(Vk(x;y)(x)), andso D(x) � Sk B#k (x) \ T#(x; �)�1D(Vk(x)). But point (a) entails thatT#(x; y) 2 D(Vk(x;y)(x)), and soV #k(Vk(x;y)(x))(x; �)T#(x; y) = V #k(x;y)(x; �)T#(x; y) 2 D(TVk(x;y)(x))) y 2 D(x) ) D(x) �[k B#k (x) \ V #k (x; �)D(Vk(x))Remark 3.8. The statement (
) in Proposition 3.7 is equivalent to the de�ni-tion of D(x). In fa
t, suppose that (
) holds: we 
an prove by indu
tion on nthat y 2 �B#(k1;:::;kn)(x) \D(x)�) �T�nfxg \ B(kn;:::;k1)� 6= ? (3.3)For n = 1, y 2 B#k1(x) ) y 2 B#k1(x) \ V #k1 (x; �)D(Vk1 (x)). ThereforeD(Vk1 (x)) 6= ?, and Vk1(x) is well-de�ned.Now suppose that (3.3) holds for n� 1, and 
onsider y 2 B#(k1;:::;kn)(x) \D(x).Then T#(x; y) 2 B#(k2;:::;kn)(Vk1(x)); T#(x; y) 2 D(Vk1 (x)). For indu
tive hy-pothesis, T�n+1fVk1(x)g\B(kn ;:::;k2) 6= ? ) T�nfxg\B(kn;:::;k1) 6= ?. On theother side, if T�nfxg\B(kn;:::;k1) = ?, if there existed y 2 B#(k1;:::;kn)(x)\D(x),we would have T#(x; y) 2 D(Vk1 (x)) and, re
ursively, (T#)i(V(k1;:::;ki�1); y) 2D(V(k1 ;:::;ki)(x)),8i = 1; : : : ; n, that is D(V(k1 ;:::;ki)(x)) 6= ? 8i = 1; : : : ; n, a
ontradi
tion.



50 Natural ExtensionsTheorem 3.9. Let (B; T ) be a �bred system, B# a set, T# : B�B# su
h that(B#; T#(x; �)) is a dual �bred system 8x 2 B, and D(x) 6= ? 8x 2 B. LetB = f(x; y) j x 2 B; y 2 D(x)gT : B ! B; T : (x; y) 7! (Tx; V #k(x)(Tx; y))B = �A 2 B � B# j A � B	Then (B; T ) is a �bred system and T is invertibile. Moreover if T is measurablewith respe
t to B and K : B�B# ! R is a kernel, KjB is an invariant densityfor T .3.10 (Natural extension). (B; T ) is 
alled a natural extension of (B; T ).Proof of Theorem 3.9. The map eT : (x; y) 7! (Vk(y)(x); T#(x; y)) is well de�nedthanks to Proposition 3.7 (b), and it is an inverse of T :eTT (x; y) = eT (Tx; V #k(x)(Tx; y)) = (Vk(x)Tx; T#(Tx; �)V #k(x)(Tx; y) = (x; y)T eT (x; y) = T (Vk(y)(x); T#(x; y)) = (x; V #k(x;y)(x; �)T#(x; y)) = (x; y)Remark that wk(x) = 1jT 0(Vk(x))j ) wk(Tx) = 1jT 0(x)jFrom equation (3.2) it follows thatK(Tx; V #k(x)(Tx; y))w#k(x)(Tx; y) = K(Vk(x)T (x); y)wk(x)(T (x))Then from the 
hange of variable formula we �nd that 8C � �B;Z �T (C)K(x; y)dxdy = ZC K(Tu; V #k(u)(Tu; v)) jT 0(u)jw#k(u)(Tu; v)dudv == ZCK(Vk(u)T (u); v)wk(u)(T (u)) jT 0(u)j dudv = ZCK(u; v)dudvCorollary 3.11. h(x) = RD(x)K(x; y)dy is an invariant density for T .Proof. It is suÆ
ient to 
onsider the 
ommuting diagramB T����! Bp+??y ??yp+B ����!T B3.2 Natural extensions for � 2 [p2� 1; 1)In this se
tion we summarize the known results on the natural extensions andinvariant densities for �-
ontinued fra
tion algorithms. For � 2 �12 ; 1� these
onstru
tions are due to Nakada [16℄, while for � 2 �p2� 1; 12� the invariantdensities have been found by Cassa [6℄, who did not employ the natural ex-tension method, but another te
hnique that involves 
ounting the poles of ameromorphi
 fun
tion. Here we translate his result into the language of naturalextensions, providing an independent proof.



3.2 Natural extensions for � 2 [p2� 1; 1) 51Theorem 3.12. Let � 2 [p2�1; 1℄, and de�ne the domain D� � R2 as follows:1. For � 2 (g; 1),D� + ���� 1; 1� �� �� �0; 12�� [ ��1� �� ; ��� [0; 1℄� ;2. For � 2 �12 ; g�,D� + ���� 1; 1� 2�� �� [0; 1� g℄� [ ��1� 2�� ; 2�� 11� � �� �0; 12��[[ ��2�� 11� � ; ��� [0; g℄�3. For � 2 �p2� 1; 12�,D� + ���� 1; 2�� 11� � �� [0; 1� g℄�[[ ��2�� 11� � ; 1� 2�� �� ([0; 1� g℄) [ �12 ; g�� [��1� 2�� ; ��� [0; g℄�De�ne T� : D� ! D� as follows:T�(x; y) = �T�(x); 1k(x) + sign(x)y�where k(x) = ��� 1x ��+ 1� ��.Then T� : D� ! D� is well-de�ned and bije
tive, and is a representation of thenatural extension of T�. Moreover, T� preserves the density C�(1+xy)2 , where C�is a suitable normalizing 
onstant.The verti
al se
tions of the domain D� for x 2 I� 
orrespond to the sets D(x)de�ned in Proposition 3.7.Corollary 3.13. Let g and G denote the Golden numbers p5�12 and p5+12 re-spe
tively. Then the unique invariant density �� for T� is given by the followingexpressions:� For g < � � 1,��(x) = 1log(1 + �) ��[��1; 1��� ℄(x) 1x + 2 + �( 1��� ;�)(x) 1x + 1�� For 12 < � � g,��(x) = 1logG ��[��1; 1�2�� ℄(x) 1x +G+ 1++ �( 1�2�� ; 2��11�� )(x) 1x + 2 + �[ 2��11�� ;�)(x) 1x +G�



52 Natural Extensions� For p2� 1 � � � 12 ,��(x) = 1logG ��[��1; 2��11�� )(x) 1x+G+ 1++�[ 2��11�� ; 1�2�� )� 1x+G+ 1 + 1x+G � 1x+ 2�+ �[ 1�2�� ;�)(x) 1x +G�This 
orollary follows easily from Theorem 3.12: sin
e T� is a fa
tor of T�,its invariant measure ��dx is simply the image measure of K(x; y)dxdy withrespe
t to the proje
tion on the �rst 
oordinate, that is ��(x) = RD�(x) dy(1+xy)2 .Proof in the 
ase � 2 (g; 1). For the sake of simpli
ity, we will write T insteadof T�, and T instead of T�.In this 
ase, we have k(�) = 1, and T (�) = 1��� . Let r = k(1 � �): thenk(T (�)) = r � 1:k(T (�)) = � �1� � + 1� �� = � 11� � � �� = � 11� � + 1� ��� 1 = r � 1Moreover, we also have T 2(�) = T (�� 1):T (�� 1) = 11� � � r = �1� � � (r � 1) = T 2(�)In order to show that T is bije
tive on the domain D�, we 
onsider a partitionof D� into suitable re
tangles, as shown in Figure 3.1. Their images are shownin Figure 3.2. If we show that we 
an divide the domain D� into re
tangleswhere the 
omponents of T are monotoni
, and that these are mapped intodistin
t re
tangles whi
h 
over the whole domain, we will prove at on
e that Tis well-de�ned, one-to-one and onto.For the sake of simpli
ity, we will not make any distin
tion between open and
losed intervals, sin
e the natural extension and invariant density are de�nedonly modulo negligible sets. To be more pre
ise, we should remark that if D�(x)is the verti
al se
tion 
orresponding to x, the union of the boundaries of there
tangles Sx2Ijfxg �D�(x) is still a set of measure 0.Let � = T 2(�) = T (�� 1). ThenT ���� 1; �1r + ��� �0; 12�� = [�; �℄ � �1r ; 1r � 12 � (a)For all h > r, we haveT �� �1h� 1 + �; �1h+ ��� �0; 12�� = [�� 1; �℄ � � 1h ; 1h� 12 � (b)Similarly, for all h � r we �ndT �� 1h+ � ; 1h� 1 + ��� �0; 12�� = [�� 1; �℄ � � 1h+ 12 ; 1h� (
)Moreover, T �� 1r � 1 + � ; 1� �� �� �0; 12�� = [�; �℄� � 1r � 12 ; 1r � 1� (d)T ��1� �� ; 1r � 2��� [0; 1℄� = [�� 1; �℄ � �1r ; 1r � 1� (e)
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Figure 3.1: A simpli�ed diagram showing the blo
ks (a)-(g) in the domain D� when� 2 (g; 1).For 2 � h � r � 2,T �� 1h+ � ; 1h� 1 + ��� [0; 1℄� = [�� 1; �℄ � � 1h+ 1 ; 1h� (f)Finally, T �� 12 + � ; ��� [0; 1℄� = �1� �� ; ��� �12 ; 1� (g)Thus T is bije
tive. Finally, the fa
t that K(x; y) is invariant for T 
an beeasily 
he
ked through the 
hange of variables formula: the determinant ofthe Ja
obian for T is respe
tively 1x2(k(x)+y)2 when x > 0 and 1x2(k(x)�y)2 whenx < 0. Then for any A � D�, if we put A+ = A\fx > 0g and A� = A\fx < 0g,we haveZT (A)K(x; y)dxdy = 1C� �ZA+ 1u2(1=u+ v)2 dudv++ ZA� 1u2(�1=u� v)2 dudv� = 1C� �ZA+ dudv(1 + uv)2 + ZA� dudv(1 + uv)2� (3.4)This 
on
ludes the proof.Proof in the 
ase � 2 �12 ; g�. This proof is identi
al to the previous one, ex
eptfor the shape of the domain D�; we need to 
he
k again that T is well-de�ned,one-to-one and onto.In this 
ase, we have �2+��1 � 0, so k(�) = 2 and k(��1) = 2. Then T (�) =1�2�� , T (�� 1) = 2��11�� . It is easy to 
he
k that k(T (�)) = 3, k(T (�� 1)) = 2,and T 2(�) = T 2(1� �) = 3�5�2��1 . Let � = T 2(�).As in the previous 
ase, we 
ompute the images through T of a suitable partitionof the domain D� into re
tangles, as shown in Figures 3.3 and 3.4:
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g

e
�� 1

dafb, 

12
1

� 1��� �Figure 3.2: A simpli�ed diagram showing the images with respe
t to T of the blo
ks(a)-(g) in the domain D� when � 2 (g; 1).
a b 
 d f ge0T (�) �T (�� 1)

12 g
1� g
�� 1Figure 3.3: A simpli�ed diagram showing the blo
ks (a)-(g) in the domain D� when� 2 � 12 ; g�. T ���� 1; �12 + ��� [0; 1� g℄� = [T (�� 1); �℄ � �12 ; g� (a)T �� �12 + �; T (�)�� [0; 1� g℄� = [�� 1; �℄� �13 ; 1� g� (b)T ��T (�); �13 + ��� �0; 12�� = [�; �℄ � �13 ; 25� (
)Observe that in equations (a) and (b), we have used the fa
t that 11+g = g and12+g = 1� g respe
tively.For h � 4, we haveT �� �1h� 1 + �; �1h+ ��� �0; 12�� = [�� 1; �℄ � � 1h+ 12 ; 1h� (d)
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�� 1 T (d); T (e)

T (g) T (f)T (a)
131� g 12 g

�
T (
)T (b)

T (�) T (�� 1)�Figure 3.4: A simpli�ed diagram showing the images with respe
t to T of the blo
ks(a)-(g) in the domain D� when � 2 � 12 ; g�.Similarly, for h � 3 we haveT �� 1h+ � ; 1h� 1 + ��� �0; 12�� = [�; 1� �℄ � � 1h+ 12 ; 1h� (e)Finally, T �� 12 + �; T (1� �)��� �0; 12� = [�; �℄� �25 ; 12� (f)T ([T (1� �); �℄ � [0; g℄) = [T (�); �℄� �1� g; 12� (g)This 
ompletes the proof.Proof in the 
ase � 2 �p2� 1; 12�. Also in this 
ase we have k(�) = 2, k(� �1) = 2. Then T (�) = 1�2�� , T (� � 1) = 2��11�� . It is easy to 
he
k that ifk(T (� � 1)) = r, then k(T (�)) = r � 1, and r � 4. On
e again, we haveT 2(�) = T 2(� � 1) = �. Re
alling that 11+g = g, we haveT ���� 1; �12 + ��� [0; 1� g℄� = [T (�� 1); �℄ � �12 ; g� (a)For 3 � h � r � 1,T �� �1h� 1 + �; �1h+ ��� [0; 1� g℄� = [�� 1; �℄ � � 1h ; 1h� 1 + g� (b)T �� �1r � 1 + �; T (�� 1)�� [0; 1� g℄� = [�� 1; �℄� �1r ; 1r � 1 + g� (
)T ��T (�� 1); �1r + ����[0; 1� g℄ [ �12 ; g��� == [�; �℄���1r ; 1r � 1 + g � [ � 1r � 12 ; 1r � g�� (d)
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g

cb f i la ge

T (α) α

1

2

hd

1 − g

α − 1 T (1 − α) 0Figure 3.5: A simpli�ed diagram showing the blo
ks (a)-(l) in the domain D� when� 2 �p2� 1; 12�.For h � r + 1,T �� �1h� 1 + �; �1h+ ����[0; 1� g℄ [ �12 ; g��� == [�� 1; �℄��� 1h� 12 ; 1h� g� [ � 1h+ 1� g ; 1h�� (e)For h � r,T �� 1h+ �; 1h� 1 + ����[0; 1� g℄ [ �12 ; g��� == [�� 1; �℄��� 1h+ 1� g ; 1h� [ � 1h+ g ; 1h+ 12 �� (f)Similarly, we haveT �� 1r � 1 + � ; T (�)����[0; 1� g℄ [ �12 ; g�� == [�; �℄ ��� 1r � 1 + g ; 1r � 12 � [ � 1r � g ; 1r � 1�� (g)T ��T (�); 1r � 2 + ��� [0; g℄� = [�� 1; �℄� � 1r � 1 + g ; 1r � 1� (h)For 3 � h � r � 2,T �� 1h+ �; 1h� 1 + ��� [0; g℄� = [�� 1; �℄ � � 1h+ g ; 1h� (i)Finally, T �� 12 + � ; ��� [0; g℄� = �1� 2�� ; ��� � 12 + g ; 12� (l)This 
ompletes the proof.
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T (a)T (l)T (b), T (i)T (h) 1r�1+g1r�1

1r
T (g)T (g)T (d)

T (f);T (e) T (�) ��� 1 � T (d)T (
)
12g

T (1� �)

1� g

Figure 3.6: A simpli�ed diagram showing the images with respe
t to T of the blo
ks(a)-(l) in the domain D� when � 2 �p2� 1; 12�.3.3 Natural extension for � = 1rIn the 
ase � 2 (0;p2 � 1℄, the stru
ture of the domain D� of the naturalextension for T� seems to be mu
h more intri
ate than for � > p2 � 1. Herewe �nd the exa
t expression for D� and the invariant density of T� when � 2� 1r ; r 2 N	.3.3.1 The by-ex
ess 
ontinued fra
tion map

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1Figure 3.7: Graph of the map M0.



58 Natural ExtensionsBefore stating our main theorem, we introdu
e some notations. In the followingparagraphs we will often refer to the by-ex
ess 
ontinued fra
tion expansion ofa number, that is the expansion related to the map M0(x) = � 1x + � 1x + 1�,M0 : [0; 1℄! [0; 1℄. To simplify notations, we will omit the minus signs and usebra
kets: ha0; a1; a2; : : :i + 1a0 � 1a1 � 1a2 � � � �; ai 2 f2; 3; 4; : : :gWe will denote a non-integer remainder x > 1 by a semi
olon:ha0; a1; : : : ; an;xi + 1a0 � 1a1 � . . . � 1an � 1x
; ai 2 f2; 3; 4; : : :g

We also re
all that the by-ex
ess expansion of any real number y 2 (0; 1) isin�nite, and thaty = ha1; a2; a3; : : :i 2 Q ) 9i s. t. 8j � i; aj = 23.3.2 Re
e
tion rulesWe begin by making some preliminary observations on the relation between thesymboli
 dynami
s of the map M0 and the re
e
tion map x 7! 1 � x on [0; 1℄,whi
h reveal a sort of \duality"between the digit 2 and the digits greater than2, and will prove very useful to 
onstru
t a \dual"�bred system for T� in thesense of S
hweiger [20℄.Let x = ha1; a2; a3; : : :i 2 [0; 1℄. We would like to determine the by-ex
ess
ontinued fra
tion expansion of 1�x. Sin
e the general solution to this problemturns out to be quite 
ompli
ated, we will only des
ribe a single step of thealgorithm, that is, we will suppose to have 
omputed the �rst i digits of theexpansion and the remainder:1� x = 1a01 � 1a02 � 1. . . � 1a0i � (1� z); z 2 [0; 1)
z = hh1; h2; h3; : : :i; hi � 2We want to determine the �rst digit of the remainder 1 � z. For reasons thatwill be
ome 
lear later, we will treat any sequen
e of the kind2; 2; : : : ; 2| {z }n



3.3 Natural extension for � = 1r 59as a single digit.We will make use of the following well-known identity (see for example [15℄)that 
an be easily proved by indu
tion on n:1� 1n+ 1y � 1 = h2; 2; : : : ; 2| {z }n�1 ; yi 8y 2 R (3.5)There are three separate 
ases to 
onsider:� If h1; h2 � 3, then from the identity (3.5) with n = h1 andy � 1 = � h2 � 1h3 � : : :! ; 1y = � 1h2 � 1� 1h3 � : : :we get 1� hh1; h2; h3; : : :i = 
 2; : : : ; 2| {z }h1�2 ; 2 + hh2 � 1; h3; : : :i� == 
 2; : : : ; 2| {z }h1�2 ; 3� �1� hh2 � 1; h3; : : :i��We sum up our observations in the followingRule 1. If h1; h2 � 3,1� hh1; h2; h3; : : :i = *2; : : : ; 2| {z }h1�2 ; 3; 1(1� hh2 � 1; h3; : : :i)+� If z = hh1; 2; : : : ; 2| {z }n ; h3; : : :i with h1; h3 � 3, then1� z = *2; : : : ; 2| {z }h1�2 ; 2 + 11� h2; : : : ; 2| {z }n�1 ; h3; : : :i+We want to use the identity (3.5), withy � 1 = � 1h2; : : : ; 2| {z }n ; h3; : : :i = �0�2� h2; : : : ; 2| {z }n�1 ; h3; : : :i1A ;� 1y = 11� h2; : : : ; 2| {z }n�1 ; h3; : : :i



60 Natural ExtensionsObserve that1� h2; : : : ; 2| {z }n�1 ; h3; : : :i = 1n+ hh3 � 1; h4; : : :i) 11� h2; : : : ; 2| {z }n�1 ; h3; : : :i = n+ 1� (1� hh3 � 1; h4; : : :i)In 
on
lusion, we �ndRule 2. If h1; h3 � 3,1� hh1; 2; : : : ; 2| {z }n ; h3; h4; : : :i = *2; : : : ; 2| {z }h1�2 ; n+ 3; 11� hh3 � 1; h4; : : :i+� If z = h2; : : : ; 2| {z }n ; h2; : : :i; h2 � 3, then using again the identity (3.5) withy = 1hh2; h3; : : :i ; 1y � 1 = hh2 � 1; h3; : : :iwe �nd 1� h2; : : : ; 2| {z }n ; h2; h3; : : :i = 1n+ 1 + hh2 � 1; h3; : : :i == 1n+ 2� (1� hh2 � 1; h3; : : :i)Rule 3. If h2 � 3,1� h2; : : : ; 2| {z }n ; h2; h3; : : :i = �n+ 2; 11� hh2 � 1; h3; : : :i�Noti
e that we have taken into 
onsideration all the possible 
ases. Also remarkthat Rule 1 and Rule 2 guarantee that in the new digits h0i a sequen
e of twosis never followed by another.Let � = 1r , for a �xed r � 3. Observe that T�(�) = 0, andT i�(�� 1) = �(r � i� 1)r � i � 0 for i = 0; : : : ; r � 2 (3.6)Let � be the �xed point forM0 
orresponding to the bran
h r+1, and � = 1r�� :� = r + 1�p(r + 1)2 � 42 = hr + 1; r + 1; r + 1; r + 1; : : :i� = 2r � 1 +p(r + 1)2 � 4 = hr; r + 1; r + 1; r + 1; : : :i (3.7)Then 1� � = h2; : : : ; 2| {z }r�1 ; 3; 2; : : : ; 2| {z }r�2 ; 3i; 1� � = h2; : : : ; 2| {z }r�2 ; 3i (3.8)



3.3 Natural extension for � = 1r 613.3.3 Domain of the natural extensionLet n � 1, and de�neH+n = ((h1; h2; : : : ; hn)�����h1 2 f2; (2; 2); : : : ; (2; 2; : : : ; 2| {z }r�1 )g [ f3; 4; : : : ; rg;h2; : : : ; hn 2 f2; (2; 2); : : : ; (2; 2; : : : ; 2| {z }r�2 )g [ f3; 4; : : : ; r; r + 1g;and su
h that hi = (2; : : : ; 2| {z }s )) hi+1 � 3)
H�n = ((h1; h2; : : : ; hn�1)�����h1; h2; : : : ; hn 2 f2; (2; 2); : : : ; (2; 2; : : : ; 2| {z }r�2 )g[[ f3; 4; : : : ; r; r + 1g; and su
h that hi = (2; : : : ; 2| {z }s )) hi+1 � 3)Moreover, for i = 2; 3; : : : ; r � 1 de�neH in = ((h1; h2; : : : ; hn)�����h1 2 f2; (2; 2); : : : ; (2; 2; : : : ; 2| {z }r�1�i )g [ f3; 4; : : : ; r + 1g;h2; : : : ; hn 2 f2; (2; 2); : : : ; (2; 2; : : : ; 2| {z }r�2 )g [ f3; 4; : : : ; r; r + 1g;and su
h that hi = (2; : : : ; 2| {z }s )) hi+1 � 3)Also de�nêH+n = �(h1; h2; : : : ; hn) 2 H+n j hn � 3	 ;Ĥ�n = �(h1; h2; : : : ; hn) 2 H�n j hn � 3	 ;Ĥ in = �(h1; h2; : : : ; hn) 2 H in j hn � 3	 ; i = 2; 3; : : : ; r � 1Let Vi(x) = 1i�x denote the inverse bran
hes of M0, andV�2; : : : ; 2| {z }s �(x) + (V2 Æ V2 Æ � � � Æ V2| {z }s )(x)De�neB+ = 1[n=1 [(h1;h2;:::;hn)2Ĥ+n (Vh1 Æ Vh2 Æ � � � Æ Vhn)((1� �; 1));



62 Natural Extensionsand similarlyB� = 1[n=1 [(h1;h2;:::;hn)2Ĥ�n (Vh1 Æ Vh2 Æ � � � Æ Vhn)((1� �; 1));Bi = 1[n=1 [(h1;h2;:::;hn)2Ĥin(Vh1 Æ Vh2 Æ � � � Æ Vhn)((1� �; 1)); i = 2; : : : ; r � 1Finally, let E;B;D � R2 be de�ned as follows:E = r�1[i=1 ��� ii+ 1 ;� (i� 1)i �� �0;M i�10 (1� �)�� [ ��0; 1r �� [0; 1� �℄� ;B = r�1[i=2 ��� ii+ 1 ;� (i� 1)i ��Bi� [ ���12 ; 0��B�� [��0; 1r��B+� ;D = E nBRemark that we have omitted the dependen
e on r of the sets B+; B�; Bi; E;Dfor simpli
ity of notation.

Figure 3.8: A 
omputer simulation for the domain D when r = 5.Theorem 3.14 (Natural extension for � = 1r ). Let � = 1r , r � 3 be �xed,



3.3 Natural extension for � = 1r 63and let D � R2 be de�ned as in x3.3.3. Let k(x) = ��� 1x ��+ 1� ��, andT�(x; y) = �T�(x); 1k(x) + sign(x)y� (3.9)Then T� : D ! D is well de�ned, one-to-one and onto, and it preserves thedensity K�(x; y) = 1C� 1(xy+1)2 , where C� = RD 1(xy+1)2 dxdy. In other words,T� : D ! D is a natural extension for T�.Here the reader should remark that the domain D and the fun
tion k alsodepend on �. In the following paragraphs, however, we will write T instead ofT� for the sake of simpli
ity.To prove Theorem 3.14 we shall need the following two lemmas:Lemma 3.15. Let z = hh1; h2; : : : ; hn; yi, where y > 2 is a real number andn � 1. Then 1� z is of the form Dh01; h02; : : : ; h0m; 11�1=(y�1)E, and(h1; h2; : : : ; hn) 2 H�n ) (h01; h02; : : : ; h0m) 2 H+m;(h1; h2; : : : ; hn) 2 H+n ) (h01; h02; : : : ; h0m) 2 H�mLemma 3.16. B+ [ �1�B�� = [�; 1� �℄ (mod 0) (3.10)and their union is disjoint.Proof of Lemma 3.15. Suppose that (h1; h2; : : : ; hn) 2 H�n . From the appli-
ation of the Rules 1-3, it is straightforward to 
he
k that after a suitable numberof steps in the algorithm we will obtain a remainder of the form 11�1=(y�1) > 1.We need to verify that at ea
h step of the re
e
tion algorithm des
ribed inParagraph 3.3.2 the newly introdu
ed digits in the by-ex
ess expansion are ina

ordan
e with the de�nition of H+n . We will 
onsider separately the �rst stepand the ensuing ones. In the �rst step, we will have h1 2 f3; : : : ; r; r + 1g orh1 2 f2; (2; 2); : : : ; (2; 2; : : : ; 2| {z }r�2 )g.If h1 � 3; h2 � 3, applying Rule 1 we get1� hh1; h2; h3; : : :i = *2; 2; : : : ; 2| {z }h1�2 ; 3; 11� hh2 � 1; h3; : : :i+ (a)where h1 � 2 � r � 1.If h1 � 3; h2 = (2; 2; : : : ; 2| {z }n ); n � r � 2, using Rule 2 we �nd1� hh1; h2; h3; : : :i = *2; : : : ; 2| {z }h1�2 ; n+ 3; 11� hh3 � 1; h4; : : :i+ (b)where 0 � h1 � 2 � r � 1; n+ 3 � r + 1.Lastly, for h1 2 (2; 2; : : : ; 2| {z }n ); n � r � 2; h2 � 3, we have1� h2; : : : ; 2| {z }n ; h2; h3; : : :i = �n+ 2; 11� hh2 � 1; h3; : : :i� (
)



64 Natural Extensionswhere n + 2 � r as needed. In all three 
ases we found an admissible initialsegment for H+m.The subsequent steps 
an be treated in a similar way, although we have to takeinto a

ount the ways in whi
h the remainder hhi+1; hi+2; : : :i from the originalsequen
e has been modi�ed by the re
e
tion rules. More pre
isely: if hi+1 � 3it will be repla
ed by hi+1� 1 2 f2; 3; : : : ; rg; thus when hi+1 � 1 � 3, applyingRules 1 and 2, we will �nd (2; : : : ; 2| {z }hi+1�3 )as the next digit, with 1 � hi+1 � 3 � r � 2, whi
h is admissible for H+n .Moreover, when hi+1 � 1 = 2 and hi+2 is a sequen
e of twos they will be
onsidered as a single digit, and it is possible to obtain the sequen
e(2; : : : ; 2| {z }r�1 )whi
h gives the new digit r+1 when we apply Rule 3. We have thus 
ompletedthe proof for (h1; h2; : : : ; hn) 2 H�n .When swit
hing the roles of H+n and H�n , we 
an follow the same basi
 outline.We brie
y list the few di�eren
es that the reader 
an easily 
he
k for himself:if (h1; h2; : : : ; hn) 2 H+n ,- in (a) and (b), we �nd h1 � r ) h1 � 2 � r � 2- in (
), n � r � 1) n+ 2 � r + 1and so the re
e
ted sequen
e is in a

ordan
e with the de�nition of H�n .Before moving on to the next Lemma, we make a few observations.First of all, noti
e that sin
e the inverse bran
hes Vi : x 7! 1i�x of M0 are allnon-de
reasing fun
tions, from the by-ex
ess expansions of a sequen
e of realswe 
an obtain full knowledge of their ordering. In fa
t,hh1; h2; : : : ; hn; : : :i < hh01; h02; : : : ; h0n; : : :im9i � 1 s. t. 8j < i; hj = h0j and hi > h0i (3.11)Re
alling the expansions of �; 1 � �; �; 1 � � from equations (3.7) and (3.8), itfollows that B� � [�; 1 � �℄ and B+ � [�; 1 � �℄, and moreover these are theminimal intervals 
ontaining B+ and B�: for example, the sequen
e(Vr Æ Vr+1 Æ Vr+1 Æ � � � Æ Vr+1)(x); x 2 (1� �; 1);goes arbitrarily 
lose to � as the number of pre-images grows.We also observe that if x 2 (1 � �; 1), its by-ex
ess expansion must be of theform x = h2; 2; : : : ; 2| {z }r�1 ; hr; hr+1; : : :i; hr � 2



3.3 Natural extension for � = 1r 65Proof of Lemma 3.16. We �rst want to prove that B+ and 1�B� are dis-joint. Let x 2 B�; then there exists l � 1 su
h thatM l0(x) 2 (1��; 1); M j0 (x) 2[�; 1� �℄ 8j < l. Observe thatz 2 (1� �; 1)) z = *2; : : : ; 2| {z }r�2 ; 3; : : : ; 2; : : : ; 2| {z }r�2 ; 3| {z }k ; 2; : : : ; 2| {z }r�1 ; : : :+ ; k � 0Equivalently, for some i � 1 we have x = hh1; h2; : : : ; hi; 2; : : : ; 2| {z }n ; : : :i, wheren � r � 1; hi � 3; (h1; h2; : : : ; hi) 2 Ĥ�i ; (h1; h2; : : : ; hi�1) 2 H�i�1Then from Lemma 3.15 we get1� x = 
h01; : : : ; h0m; 11� hhi � 1; 2; : : : ; 2| {z }n ; : : :i�;with (h01; : : : ; h0m) 2 H+m, and applying Rule 2 (or Rule 3 if hi = 3), we �nd1� x = *h01; : : : ; h0m; 2; : : : ; 2| {z }hi�3 ; n+ 3; z+ ; n+ 3 � r + 2; 0 � hi � 3 � r � 2Observe that (h01; : : : ; h0m; 2; : : : ; 2| {z }hi�3 ) 2 H+m+1 (or to H+m if hi � 3 = 0), but
learly (h01; : : : ; h0m; 2; : : : ; 2| {z }hi�3 ; n + 3) does not belong to B+ be
ause it 
ontainsthe forbidden digit n + 3. Sin
e none of the iterates of 1 � x up to that pointbelongs to (1� �; 1), we �nd that 1� x =2 B+:Next we want to show that B+ [ (1�B�) = (�; 1� �).Let x = hh1; h2; : : :i 2 (�; 1 � �) n B+. We must prove that for almost everysu
h x we have 1� x 2 B�. We have to 
onsider two 
ases:- 8n � 1; (h1; : : : ; hn) 2 H+n , and so none of the iterates Mn�10 (x) belongsto (1� �; 1)- For some i, the by-ex
ess expansion of x 
ontains a forbidden digit hi: ei-ther hi = (2; : : : ; 2| {z }n ); n � r or hi � r+1 when i = 1, or hi = (2; : : : ; 2| {z }n ); n �r � 1 or hi � r + 2 when i > 1.However, observe that sin
e the �rst 
ondition entails in parti
ular that all theelements hi in the by-ex
ess expansion of x should be bounded, it is satis�ed onlyfor a set of Lebesgue measure 0, and therefore it is negligible for our purposes(equivalently, re
all that M0 is ergodi
).Next, observe that x < 1�� implies that the digit 2 
annot appear r 
onse
utivetimes in the initial segment of the by-ex
ess expansion of x, and x > � impliesh1 � r. Let i be the minimum integer su
h that 8j < i; (h1; : : : ; hj) 2 H+j and



66 Natural Extensions(h1; : : : ; hi) =2 H+i (we have just seen that i > 1). Then hi 
annot be of theform (2; : : : ; 2| {z }n ); n � r�1 be
ause then hhi; hi+1; : : :i > 1�� and x would belongto B+. The only 
ase left to 
onsider is then hi � r + 2. Equivalently, one ofthe iterates M i�k0 ; k � 0 of x is of the form hr + 1; : : : ; r + 1| {z }k ; r + 2; : : :i < �.Applying Lemma 1 with n = i�k�1 > 1, 1y = 
 r + 1; : : : ; r + 1| {z }k ; r+2; : : : �, weget 1 � x = Dh01; : : : ; h0m; 11�1=(y�1)E ; (h01; : : : ; h0m) 2 H�m. Now observe that� = 1r+1�� ) 1��1 = r�� = 1� . Then y�1 > 1��1 > 1� ) 1� 1y�1 > 1��. Nowif h0m � 3, we have (h01; : : : ; h0m) 2 Ĥ�m and 1� x 2 B�. But if h0m = (2; : : : ; 2| {z }s ),we have h0m�1 � 3 and Dh0m; 11�1=(y�1)E is still greater than 1 � �, and again1�x 2 B� (observe thatm > 1, otherwise 1�x = Dh0m; 11�1=(y�1)E > 1��).3.3.4 Proof of Theorem 3.14First of all, we observe that Lemma 2 implies that T is one-to-one on D. Infa
t, suppose that T (x1; y1) = T (x2; y2). Sin
e y2 2 [0; 1℄, we must have k(x2) 2fk(x1)� 1; k(x1); k(x1) + 1g.- If k(x1) = k(x2) and sign(x1) = sign(x2), then obviously x1 = x2; y1 = y2.- If k(x1) = k(x2) and sign(x1) = � sign(x2), we �nd y1 = �y2, whi
h ispossible only for fy1 = y2 = 0g, a negligible set.- Lastly, if x1 > 0; x2 < 0 and k(x2) = k(x1) + 1, we get y2 = 1� y1. But(x1; y1) 2 D ) y1 2 [0; �℄ [ ([�; 1 � �℄ n B+) ) y2 2 B� [ (1 � �; 1) )(x2; y2) =2 D. Thus T is one-to-one (mod 0).Then we 
an write T (D nB) = T (D) nT (B). Now it is quite straightforward to
he
k that T (D) = D. In fa
t, re
alling thatfx > 0 j k(x) = ng = � 1n+ �; 1n� 1 + �� ; n > rfx > 0 j k(x) = rg = � 1r + �; �� ; n > rfx < 0 j k(x) = ng = �� 1n� 1 + �;� 1n+ �� ; n > 2fx < 0 j k(x) = 2g = ��� 1;� 12+ ��we �ndT ��� ii+ 1 ;� (i� 1)i �� ��0;M i�10 (1� �)� nBi�� == �� (i� 1)i ;� (i� 2)i� 1 ����12 ;M i�20 (1� �)� nBi�1� ; i = 2; : : : ; r � 1; (a)
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1�rr 0 1r
a 
 eb d g

�12 � 12+� 1r+�� 1r+�

12+�f

1� �1� �
M0(1� �)

Figure 3.9: A simpli�ed diagram showing the blo
ks (a)-(g) in the domain.
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)

T (f); T (e)T (d); T (g)
12

1r+�
12+�
1r+1

Figure 3.10: A simpli�ed diagram showing the images with respe
t to T of the blo
ks(a)-(g).



68 Natural ExtensionsT ���12 ;� 12 + ��� �[0; 1� �℄ nB��� = [0; �℄ � ��12 ; 1� �� nB+� ; (b)T ��� 1n� 1 + �;� 1n+ ��� �[0; 1� �℄ nB��� == [�� 1; �℄��� 1n; 1n� 1 + � � nB�� ; n = 3; : : : ; r (
)Here we observe that B+ [ h 1r ; 12+� i = B� [ h 1r ; 12+� i = Bi [ h 1r ; 12+� i fori = 2; 3; : : : ; r � 1. Also remark that the re
tangles h� (r�2)r�1 ; �i� h 12+� ; 12i and[�� 1; �℄� h 1n+� ; 1ni for n = 3; : : : ; r both belong to B.T ��� 1r + �;� 1r + 1 + ��� �[0; 1� �℄ nB��� == �[�� 1; 0℄��� 1r + 1 ; 1r + � � \D��[[ �[0; �℄��� 1r + 1 ; 1r + � � n Vr+1(B�)�� (d)(Here we wanted to highlight the fa
t that B+ \ h 1r+1 ; 1r+� i = ?.)T ��� 1n� 1 + �;� 1n+ ��� �[0; 1� �℄ nB��� == [�� 1; �℄��� 1n; 1n� 1 + � � n Vn(B�)� ; n � r + 2 (e)T �� 1n� 1 + �; 1n� 2 + ��� �[0; 1� �℄ nB+�� == [�� 1; �℄��� 1n� � ; 1n� 1� n V +n�1(B+)� ; n � r + 1 (f)where we set V +n (x) = 1n+x .T �� 1r + �; ��� �[0; 1� �℄ nB+�� == [0; �℄��� 1r + 1� � ; 1r� n V +r (B+)� (g)To 
on
lude the proof observe thatB+ [ (1�B�) = [�; 1� �℄) V +r (B+) = � 1r + 1� � ; 1r + � � n Vr+1(B�)whi
h together with (d) proves that T is onto.The fa
t thatK(x; y) is invariant for T 
an be easily 
he
ked through the 
hangeof variables formula, as we have already seen in equation 3.4.



3.3 Natural extension for � = 1r 69Remark 3.17. It is important to remark that it is still true that the boundaryof D has measure 0. In fa
t, as we have already seen, ex
ept for the points ywhose 0-
ontinued fra
tion digits are all less or equal to r + 1, whi
h are a setof measure 0, all the other points in the verti
al se
tions D(x) belong to some
ylinder of M0 whi
h is fully 
ontained in D(x).Roughly speaking, for almost all points in D(x) the \
utting pro
ess" des
ribedin x3.3.3 ends after a �nite time.Therefore the boundary of D(x) is the union of a 
ountable number of points,and has measure 0.3.3.5 Invariant densities and entropy for � = 1rSin
e �1ÆT� = T�Æ�1, where �1 is simply the proje
tion on the �rst 
oordinate,the invariant density for T� is obtained by integrating K�(x; y) with respe
t tothe se
ond 
oordinate. Given a sequen
e (h1; h2; : : : ; hn), de�nea(h1; h2; : : : ; hn) = 1Dh1; h2; : : : ; hn; 11��E > 1b(h1; h2; : : : ; hn) = 1hh1; h2; : : : ; hn � 1i > 1Let  +(x) = 1Xn=1 X(h1;:::;hn)2H+� 1x+ b(h1; : : : ; hn) � 1x+ a(h1; : : : ; hn)� ; �(x) = 1Xn=1 X(h1;:::;hn)2H�� 1x+ b(h1; : : : ; hn) � 1x+ a(h1; : : : ; hn)� ; i(x) = 1Xn=1 X(h1;:::;hn)2Hi � 1x+ b(h1; : : : ; hn) � 1x+ a(h1; : : : ; hn)�for i = 2; : : : ; r � 1, and observe thatZ ba 1(1 + xy)2 dy = 1x+ 1b � 1x+ 1aIt follows that, for a suitable normalization 
onstant 
�,�� =  �(x)
� = 1
� 0�r�1Xi=20��[� ii+1 ;� (i�1)i ℄(x)0� 1x+ 1Mi�10 (1��) �  i(x)1A1A++�[� 12 ;0℄(x) 1x+ 11�� �  �(x)!+ �[0; 1r ℄(x) 1x+ 11�� �  +(x)!!is an invariant density for T�.Remark 3.18. Even in the 
ase � = 1r the domain of the natural extensionseems too 
ompli
ated to allow for a dire
t 
omputation of the entropy. How-ever, as far as Corollary 2.9 is 
on
erned, it is probably possible to prove a mu
h



70 Natural Extensionsstronger result. In fa
t Nakada [16℄ showed that in the 
ase of 12 � � � 1, theintegral �2 R ���1 log jxj RD�(x)K(x; y)dydx (where D�(x) are the verti
al se
-tions of the domain of the natural extension) is 
onstant2 and equal to �26 . We
onje
ture that the same should be true for 0 < � < 12 .Remark 3.19. One may ask whether the proof of Theorem 3.14 
ould beadapted to the general 
ase of � 2 (0;p2�1) with relatively small 
hanges. Weobserve that our proof makes use of the fa
t that T 1r � 1r � = 0 = T r�11r � 1r � 1�.Also in the 
ase � 2 [p2�1; 1℄, as shown in [16℄ and [6℄, the 
onstru
tion of theNatural Extension depends on the fa
t that the tails of the �-expansions of �and ��1 
oin
ide after one or two iterations (more pre
isely, T 2�(�) = T�(��1)when � 2 [g; 1℄, and T 2�(�) = T 2�(� � 1) when � 2 [p2� 1; g℄).In the general 
ase, one would need an expli
it relation between the �-expansionsof � and of �� 1, whi
h at present is not known.

2The theory of S-expansions provides an explanation of this surprising fa
t, see [11℄.
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73Introdu
tionRe
ently, the di�usion of wireless networks has led to the development of new
oding s
hemes in order to improve performan
es on fading 
hannels; algebrai
number theory has proven to be an e�e
tive tool for their design.Wireless transmission introdu
es new problems with respe
t to the 
lassi
almodel of the Additive White Gaussian Noise (AWGN) 
hannel: in fa
t theele
tromagneti
 signal, propagating along multiple paths, is a�e
ted by atte-nuations, delays and frequen
y shifts, 
olle
tively 
alled \fading", that makethis 
hannel mu
h less reliable than the AWGN. The most e�e
tive strategy to
ounterbalan
e fading is to introdu
e diversity in the transmission, that is tosend the same information through multiple independent 
hannels. There areseveral ways to in
rease diversity:- in spa
e, by re
eiving the same signal through multiple antennas, thatmust be suÆ
iently spa
ed to ensure that the fadings on the di�erentpaths are un
orrelated;- in time, by re
eiving the same signal at suÆ
iently long time delays;- in frequen
y, by transmitting the same signal over di�erent frequen
ies.However, the se
ond method has the drawba
k of introdu
ing heavy delays inthe 
ommuni
ation, while the third entails a waste of the available bandwidth.The use of multiple antennas both at the transmitter and at the re
eiver (Mul-tiple Input, Multiple Output or MIMO) allows for a potential diversity of MN ,where M is the number of transmit antennas and N is the number of re
eiveantennas.In general, the implementation of 
oding for wireless 
hannels must take intoa

ount the a
tual availability of resour
es (bandwidth, power, 
ost of the ap-plian
es) and answer three basi
 and often 
on
i
ting needs:- in
reasing the rate of transmission,- in
reasing diversity,- keeping a low de
oding 
omplexity.In the MIMO setting, the information ve
tor u, belonging to a �nite signalsubset or \
onstellation" S, is en
oded in a spa
e-time blo
k, that is an M � Tmatrix B(u), whereM is the number of transmit antennas and T is the durationof the signal.In this 
ontext the fundamental parameters to assess the system performan
eare the diversity gain minu 6=u0 (rkA(u; u0)), and the 
oding gain1ES minu 6=u0 (detA(u; u0)) 1M ;where A(u; u0) = (B(u) � B(u0))(B(u) � B(u0))H , u; u0 2 S, and ES is theaverage energy of the 
onstellation.In 2002 Bel�ore, Damen and Tew�k [10℄ proposed a 2� 2 full rate 
ode whi
hguarantees maximum diversity, and their method 
an be extended to the higher-dimensional 
ase. Its major drawba
k, however, is that the 
oding gain vanisheswhen the size of the 
onstellation grows to in�nity.



74In the 2-dimensional 
ase, this problem has been solved by Bel�ore, Rekaya andViterbo [5℄ with the Golden Code G, a full-rate, full-rank 
ode whose minimumdeterminant does not vanish when the size of the 
onstellation tends to in�nity.This design is based on a prin
ipal ideal AO of a maximal order O in a quater-nion algebra A of matri
es over Q(i), 
ontaining as a maximal sub�eld thenumber �eld K = Q(i; �), where � is the Golden number.3Ea
h information ve
tor u 2 Z[i℄4 
an be mapped to a matrix AB(u) in AO.A turns out to be a division ring, and the determinant of AB(u) is nothing butits redu
ed norm, so that it is a nonzero Gaussian integer, modulo a normaliza-tion 
onstant. Therefore the minimum determinant is bounded from below bya �xed 
onstant Æmin = 15 , for any size of the 
onstellation S � Z[i℄4.It 
an be shown that this is the best performan
e one 
an obtain from thiskind of 
onstru
tion using the �eld Q(i;pp), where p is a prime number, p � 5(mod 8).Moreover, the design guarantees 
ubi
 shaping, whi
h is 
onvenient both forenergy eÆ
ien
y and fast de
oding: when ve
torized, AO is a rotated versionof the latti
e Z[i℄4, and allows for e�e
tive de
oding using the Sphere De
oderand the Viterbo-Boutros algorithm.It is possible to obtain a further in
rease in the 
oding gain by using a suitablesub
ode of the Golden Code, in the 
hoi
e of whi
h de
oding 
omplexity mustbe taken into a

ount.Bel�ore, Hong and Viterbo [4℄ have re
ently des
ribed a 
hain of nested left ide-als of the form Gk = GBk, 1 � k � 4, su
h that the index [Gk : Gk+1℄ betweentwo su

essive sub
odes is 4, and the minimum determinant in Gk is 2kÆmin.Moreover, ea
h ideal Gk is isometri
 to a well-known latti
e; in parti
ular, G2 isisometri
 to the Gosset latti
e E8 .A more general problem 
onsists in building a blo
k 
ode X = (X1; : : : ; XL),where ea
h 
omponent Xi is a Golden 
odeword. Choosing the Xi 2 Gk in-dependently, we obtain a very simple blo
k 
ode. For small sizes of the signal
onstellation these sub
odes already yield a performan
e gain with respe
t tothe \un
oded" Golden Code (that is, with respe
t to 
hoosing Xi 2 G indepen-dently). However, this gain is 
an
elled out asymptoti
ally by the loss of rate asthe size of the signal set grows to in�nity [4℄, sin
e an energy in
rease is requiredto mantain the same spe
tral eÆ
ien
y, or bit-rate per 
hannel use.A better performan
e is a
hieved when the Xi are not 
hosen in an independentfashion. For example it is possible to exploit the hierar
hi
 stru
ture of thepartition 
hain fGkg previously des
ribed by 
ombining two en
oders: a trellisen
oder whi
h outputs the 
osets of Gk=Gl, 1 � k < l � 4, and a latti
e en
oderfor Gl (Trellis Coded Modulation). The Viterbi algorithm (soft de
oding) 
an beemployed for the trellis de
oding, in asso
iation with a Sphere De
oder in ea
h
oset.In the 
ase of blo
k 
odes, the 
oding gain is a power of� = minX 6=0 det LXi=1 XiXHi ! � minX 6=0 LXi=1 det �XiXHi � = �03Following the notation in [5℄, from now on we will denote the Golden number 1+p52 bythe letter �.



75The expression � is diÆ
ult to handle be
ause it 
ontains mixed terms of theform 


 eXiXj


2F , where X 7! eX is an involution of G, and k�kF is the Frobeniusnorm. The 
odes in [4℄ are designed to maximize the approximate parameter �0and so a priori they might be suboptimal; in x6.4.1 we treat the mixed terms.In x6.5 we des
ribe some simple blo
k 
odes designs for L = 2; 3 that are liftsof linear 
odes over the quotient group G=G1. We des
ribe the latti
e stru
tureof G1 and 
ompute the minima of the Frobenius norms of the produ
ts over allpairs of 
osets; we use this information to sele
t the 
odes with the best weightenumerator polynomials in dimension 2 and 3.When using ideals of G to build blo
k 
odes, it is preferable to:- 
hoose ideals whose index is a power of two, in order to have a variety ofsimple binary set partitioning s
hemes available;- 
hoose two-sided ideals, so that the quotient has a ni
e ring stru
ture.The ideals in [4℄ satis�ed the �rst 
ondition but not the se
ond; in x6.6.2, weshow that (unfortunately) the only two-sided ideals of G whose index is a powerof two are the trivial ones, that is, the ideals of the form 
G with 
 2 Z[i℄, andj
j2 a power of two.In parti
ular, we study the quotient rings G=(1 + i)G and G=2G whi
h turn outto be isomorphi
 to the rings of 2 � 2 matri
es over F2 and F2 [i℄ respe
tively.Unfortunately, only a very sparse literature is available on the subje
t of 
odesover non-
ommutative rings, espe
ially as far as eÆ
ient de
oding algorithmsare 
on
erned, and for the time being we have been unable to exploit the ringstru
ture dire
tly for 
ode 
onstru
tion, ex
ept in the simple 
ase of the repe-tition 
ode over the 
osets of (1 + i)G. This basi
 
onstru
tion provides a �rstappli
ation of the 
riteria based on the estimate of the mixed terms, and ourperforman
e simulations show that it 
an lead to up to 2:9 dB of gain with re-spe
t to the \un
oded" 
ase.However, it is still possible to take advantage of the stru
ture of F2 -module ofthe quotient; from the additive point of view, the quotient G=2G is indistinguish-able from F256 , for whi
h a wide variety of error-
orre
ting 
odes are available.In x6.8, we 
ombine a shortened Reed-Solomon 
ode with the en
oder of thequotient ring to in
rease the minimum Hamming distan
e of the 
ode. Themain advantage with respe
t to trellis 
odes is the relative ease of de
oding.Simulation results show that using 4-QAM 
onstellations, that is using onlyone latti
e point per 
oset, we obtain a gain of up to 6 dB with respe
t to theun
oded Golden Code at the same spe
tral eÆ
ien
y, under the hypothesis thatthe 
hannel remains 
onstant for the entire length of the blo
k. This assumption
orresponds to the slow fading 
ase, and may be 
onsidered realisti
 when theblo
k length does not ex
eed one hundred, leaving spa
e for further improve-ments. This 
onstru
tion 
an be extended to the 16-QAM 
ase, yielding a gainof up to 3:8 dB.





Chapter 4Coding for wireless 
hannels4.1 The wireless 
hannel model4.1.1 The transmitter noisew
��sour
e u // modulator x // 
hannel y // demodulator û // re
eiverfadingR OO

Figure 4.1: The various stages of transmission.In the typi
al model, the sour
e emits a binary ve
tor u 2 f0; 1gm. This infor-mation is 
oded in su
h a way as to be optimized for transmission:- �rst, the sour
e en
oder 
ompresses the original message, removing anyredundan
ies;- afterwards, the 
hannel en
oder embeds some redundan
y in the messagein order to prote
t the information from the errors that may arise duringthe transmission.In the following paragraphs, we will not take the sour
e en
oder into a

ount.4.1.2 The modulatorThe digital modulator asso
iates an analog waveform x to the 
oded informationve
tor. In amplitude modulation, it is the amplitude of the wave whi
h 
arriesthe information, while in frequen
y modulation, information is stored in theinstantaneous frequen
ies of the wave.First, the binary message is mapped into a point of a real or 
omplex latti
e �.



78 Coding for wireless 
hannelsThe set of all possible emitted waveforms is a �nite subset S � �, of 
ardinality2m, 
alled a signal 
onstellation. The 
omponents of the latti
e ve
tor are usedto modulate a linear 
ombination of basis waveforms.In most 
ases it is best to 
hoose the mapping f0; 1gm ! S in su
h a way thatnearest binary neighbors (with respe
t to the Hamming distan
e) 
orrespondto nearest neighbors in the latti
e (with respe
t to the Eu
lidean distan
e). Inparti
ular, the mapping is 
alled a Gray mapping if the labellings of every pairof adja
ent latti
e points have Hamming distan
e 1.In the following 
hapters we will always 
onsider Quadrature Amplitude Mo-dulation or QAM; with this type of modulation, data is 
onveyed by 
hangingthe amplitude of two orthogonal 
arrier waves. The amplitudes of the �rstand se
ond wave are respe
tively 
alled the \in phase" 
omponent and the\quadrature" 
omponent.Figure 4.2 shows the representation of some widely used QAM 
onstellations inthe in phase-quadrature plane. We 
an identify these 
onstellations with subsetsof a Z[i℄-latti
e shifted by 12 + i 12 . The minimum Eu
lidean distan
e betweentwo points will always be 1. We also report the average energy for ea
h 
ase,whi
h will be useful in the sequel:E4�QAM = 0:5; E8�QAM = 1:5;E16�QAM = 2:5; E32�QAM = 5 (4.1)The number of information bits transmitted for ea
h 
hannel use is 
alled thespe
tral eÆ
ien
y of the modulation s
heme, and is measured in bp
u (bits per
hannel use).Clearly, in
reasing the 
ardinality or \size" of the 
onstellation allows for agrowth in spe
tral eÆ
ien
y, but 
orresponds to a greater average energy (orequivalently, to a de
rease in the minimum Eu
lidean distan
e).4.1.3 The 
hannelIn the AWGN 
ase, a
ross the 
hannel the signal x is perturbed by a randomnoise w, so that the re
eived signal is y = x + w. With wireless transmission,further 
ompli
ations appear 
ompared to the AWGN model: the signal (anele
tromagneti
 wave) propagates along multiple paths, with re
e
tion, refra
-tion and s
attering e�e
ts due to the presen
e of massive obsta
les like housesor mountains. In the 
ase of mobile telephony, moreover, other relevant per-turbations in
lude the Doppler e�e
t due to the relative motion between thetransmitter and the re
eiver, and the de
rease in signal power when the dis-tan
e from the transmitter antenna in
reases.Thus the re
eived signal is distorted not only by the noise, but also by attenu-ations, delays and frequen
y shifts, 
olle
tively denoted by the term fading.Sin
e the fading e�e
ts depend on the parti
ular environment in whi
h transmis-sion takes pla
e, it is virtually impossible to determine their sum. In pra
ti
e,a good working approximation 
onsists in assuming that the very great numberof propagation parameters 
an be modelled as independent random variables sothat the Central Limit Theorem holds.In the 
ase of a modulated signal, in general the di�erent frequen
ies 
omposingthe signal are subje
t to independent fadings and phase shifts (frequen
y sele
-tive fading); we only 
onsider the 
ase where the bandwidth range is narrow
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4−QAM 8−QAM

32−QAM
16−QAM

Figure 4.2: Some QAM (Quadrature Amplitude Modulation) 
onstellations.so that we 
an assume that the fading a
ts multipli
atively. In this 
ase there
eived signal y, seen as a point in Rn , is given byy = Hx+ w (4.2)where w is a 
omplex Gaussian random variable of zero mean and varian
e N02 ,and H is a random diagonal matrix whose entries �i are independent randomvariables with Rayleigh density1:p(r) = ( r�2 e� r22�2 0 � r <10 r < 0 (4.3)We also assume E [�2i ℄ = 1 8i, so that �2i = 12 , and p(�i) = 2�ie��2i .The assumption that the �i are independent is reasonable when using an inter-leaver, whi
h permutes the 
odeword 
omponents so that fadings on adja
ent
omponents 
an be 
onsidered un
orrelated.Sin
e we have supposed the fading matrix to be normalized, we 
an de�ne thesignal-to-noise ratio or SNR � as the ratio between the average signal power(see x4.1.2) and the average noise power: � = 2ESN0 .4.1.4 De
odingNow we suppose that the re
eiver knows the fading 
oeÆ
ients �i (perfe
t Chan-nel State Information or CSI). In fa
t, when the fading varies slowly 
ompared1The Rayleigh density is the distribution of the modulus of a 
omplex Gaussian randomvariable.



80 Coding for wireless 
hannelsto the duration of the signal, the information signal 
an be pre
eded by a se-quen
e of pilot symbols, allowing the re
eiver to estimate the fading parameters.The demodulator must re
over from y an estimate x̂ 2 S of the original signal.Figure 4.3 provides an intuitive explanation of the fa
t that rotated latti
es
a) b)

d)c)Figure 4.3: An example of the e�e
t of rotation on the resistan
e to fading: �gures a)-
) show a 4-QAM 
onstellation before and after fading, �gures b)-d) show the rotated
ase. In the �rst situation, with strong fading on the se
ond 
oordinate, latti
e points
an be easily 
onfused. In the rotated 
ase, the latti
e points are easier to tell apart.work better to 
ontrast fading in two dimensions. In fa
t, rotating 
orrespondsto in
reasing the \algebrai
 dimension" of the latti
e but entails no extra 
ost.When the dimension of the latti
e in
reases, the performan
e 
an approa
h thatof a Gaussian 
hannel without fading; at the same time, however, de
oding be-
omes more 
omplex.The points of S must be well-spa
ed in order to guarantee a low error probabilityin the de
oding; on the other side, the square norm kxk2 represents the powerof the transmitted signal, and so the diameter of the 
onstellation S should bekept as small as possible. In theory, the most advantageous shape for S wouldbe a sphere; however, labelling the latti
e points 
ontained in a sphere turns outto be too 
ostly in terms of 
omputations, and usually a 
ubi
 shape is preferred.Thus, 
onstellations 
arved from rotated Zn latti
es are a more desirable 
hoi
ethan 
onstellations 
oming from skew latti
es.Sin
e the 
oeÆ
ients �i are known a posteriori, the re
eived signal 
omponentsyi = �ixi+wi 
an be modelled as Gaussian random variables N ��ixi; �N02 �2�.The Maximum Likelihood 
riterion (ML de
oding) 
oin
ides with the minimum
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hannel model 81Eu
lidean distan
e:x̂(y) = argmaxx2S P (yjx) = argmaxx2S 1�p2�N02 �n e� nPj=1 2(yj��jxj)2N20 == argminx2S nXj=1 (yj � �jxj)2 = argminz2H(S) nXj=1 (yj � zj)2 (4.4)4.1.5 The Sphere De
oderThe sear
h for the minimum in equation (4.4), that is the sear
h for the 
losestlatti
e point to a given re
eived point in the deformed latti
e H(S), be
omestoo 
ostly in terms of 
omputation time when #S in
reases. For an eÆ
ientand fast de
oding, the Sphere De
oder may be used [18℄.This algorithm exploits the fa
t that, when the dimension of the spa
e grows,the number of latti
e points 
ontained in a sphere be
omes mu
h smaller thanthe number of points inside a 
ube of the same radius.We 
onsider here the 
ase when � = MZn is a real latti
e with generatormatrix M . In the 
omplex 
ase � = MZ[i℄n, we 
an simply separate the realand imaginary parts, obtaining a real latti
e of dimension 2n.The de
oder examines only the points found inside a sphere of radius pC and
entered in the re
eived point y. Let �0 = y�H� be the deformed latti
e withthe origin translated to y: minz2H� ky � zk2 = minw2�0 kwk2We have x = Mv 2 � for some v 2 Zn, y = HM� for some � 2 Rn , w =HM(�� v) = HM�. Thenkwk2 = wHw = �HG� = nXi=1 gij�i�j � Cwhere G is the Gram matrix asso
iated to the latti
e generator matrix HM .The set fPni=1 gij�i�j = Cg is an ellipsoid in the � 
oordinates.Applying Cholesky's fa
torization, we 
an write G = RHR with R upper trian-gular. Then�HG� = kR�k2 = nXi=10�rii + nXj=i+1 rij�j1A2 = r2ii  �i + nXi=1 rij�jrii !2 � CChoosing new 
oordinates �i = �i +Pnj=i+1 rijrii , we �nd the equation of an n-dimensional ellipsoid 
entered in the origin whose axes are the 
arthesian axes.The sear
h is then 
ondu
ted inside the boundaries of this ellipsoid [18℄.When a latti
e point is found inside, its distan
e to the 
enter is 
ompared topC ; if it is smaller, the sear
h radius is updated. If C is too small and no latti
epoints are found inside the ellipsoid, an erasure is de
lared and the sear
h isrenewed with a bigger radius. Thus it is very important to get a good estimateof C from the beginning. In general the 
hoi
e of the initial radius pC is based
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a) b)Figure 4.4: The problem of enumerating the points of a skew latti
e that fall insidea sphere of given radius 
an be redu
ed to the problem of �nding the points of a Znlatti
e inside an ellipsoid.on the SNR. In pra
ti
e, a good 
hoi
e for C might be the smallest of the fading
oeÆ
ients �i, whi
h 
orresponds to the shortest of the axes of the ellipsoid.One of the drawba
ks of the Sphere De
oder algorithm in the presen
e of fadingis that H , and thus the latti
e, vary with ea
h re
eived symbol, so that a newCholesky fa
torization has to be performed ea
h time.4.1.6 The union bound estimateThe problem of 
hoosing a 
onstellation S that minimizes the error probabilitywith respe
t to ML de
oding is extremely 
omplex. In general, the 
lassi
alunion bound estimate holds, sin
e S is a �nite subset of the linear latti
e �:Pe(S) � Pe(�) � Xx0 6=xP (x! x0) (4.5)In the previous equation, the pairwise error probability (PEP) P (x ! x0) de-notes the probability that y is 
loser to x0 than to x with respe
t to the Eu
lideanmetri
s. The 
onditioned probability with respe
t to the 
hannel yields [6℄:P (x! x0 jH) = P  nXi=1 ��yi � �i(x0i)2�� � nXi=1 ��yi � �ix2i ��! == P  nXi=1 j�i(xi � x0i) + wij2 � nXi=1 jwij2! == P  nXi=1 �2i (xi � x0i)2 + 2 nXi=1 �i(xi � x0i)wi � 0!Consider the random variable � =Pni=1 �i(xi�x0i)wi: � is a linear 
ombinationof the Gaussian random variables wi � N (0; N02 ), so it is also Gaussian with 0mean and varian
e �2 = N02 Pni=1 �2i (xi � x0i)2. The PEP 
an thus be written
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hannel model 83as P (x! x0 j H) = P  � � 12 nXi=1 �2i (xi � x0i)2!Let A be the known quantity 12Pni=1 �2i (xi � x0i)2. ThenP (� � A) = Z 1A 1p2�� e� t22�2 dt = Z 1A�2 1p2�e�s22 dsRe
alling the Gaussian tail fun
tion estimate1p2� Z 1a e� t22 dt � 12e�a22we obtainP (x! x0 j H) � 12e� A2�2 = 12e� (Pni=1 �2i (xi�x0i)2)24N0 Pni=1 �2i (xi�x0i)2 = 12e� 14N0 nPi=1�i(xi�x0i)2Noti
e that in the last expression we 
an omit the sum over the indi
es i su
hthat xi = x0i. In order to obtain the un
onditioned PEP, we average over thefading 
oeÆ
ients �i:P (x! x0) = Z P (x! x0 j H)p(�1) � � � p(�n)d�1 � � � d�n �� 12e� 14N0 Pni=1 �2i (xi�x0i)2p(�1) � � � p(�n)d�1 � � � d�nRe
alling that the �i are assumed to be independent and Rayleigh distributed(see equation (4.3)) with E [�2i ℄ = 1, so that p(�i) = 2�ie��2i , we obtainP (x! x0) � nYi=1�Z 10 e��2i (xi�x0i)24N0 �ie��2i d�i� == nYi=1 Z 10 �ie��2i�1+ (xi�x0i)24N0 �d�i! = nYi=1 12�1 + (xi�x0i)4N0 �If the signal-to-noise ratio is big enough, we 
an writeP (x! x0) � 12 Yxi 6=x0i 4N0(xi � x0i)2Introdu
ing the auxiliary fun
tionsl(x; x0) = #fi j xi 6= x0ig; dP (x; x0) = Yxi 6=x0i jxi � x0ij ;we obtain P (x! x0) � 12 Yxi=x0i 4N0(xi � x0i)2 = 12 (4N0)l(x;x0)(dP (x; x0))2 (4.6)The dominant term in the union bound sum (4.5) is the one whi
h a
hieves theminimum L of l(x; x0), and is 
alled the diversity of the system. The goal isthen to maximize L and, for maximum L, the produ
t distan
e dP .Clearly in general the error probability Pe(S) in
reases when the size of the
onstellation S in
reases.
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hannels4.2 Multiple antenna systemsThanks to the in
reased diversity, the use of multiple antennas both at thetransmitter and at the re
eiver 
an make for a substantial gain in the reliabilityof wireless 
ommuni
ations. The main obje
tive when designing MIMO s
hemesis to a
hieve a tradeo� between transmission rate and diversity. At the oppositeends of the spe
trum, one 
an pla
e the following behaviors:- sending independent signals through ea
h antenna simultaneously, gettingthe maximum rate gain and no diversity gain;- sending the same signal from all antennas, obtaining the maximum diver-sity gain and no rate gain.The maximum rate that 
an be attained using M transmit antennas and Nre
eive antennas is minfM;Ng, while the maximum diversity is MN (
orre-sponding to the number of independent paths between transmit and re
eiveantennas).As we will see, in some spe
ial 
ases, depending on the number of transmit andre
eive antennas, it is possible to a
hieve both ends, full rate and full diversity,without any loss, using tools from number theory.4.2.1 Error probability and determinant 
riterionWe 
onsider a system with M transmit antennas and N re
eive antennas. Theinformation ve
tor u = (u1; : : : ; uk) belonging to a 
onstellation C � Z[i℄k is
oded into an M � T matrix, B(u) = (bmt), whose entries are in another 
on-stellation S. bmt is the symbol transmitted by the m-th antenna at the timet 2 f1; : : : ; Tg. B(u) is 
alled a spa
e-time blo
k. The signal re
eived by theantenna n at the time t is ynt = MXm=1hnmbmt + wnt; (4.7)Here we suppose that the fading 
oeÆ
ients hnm between transmit antenna mand re
eive antenna n stay 
onstant for a time T (quasi-stati
 fading).This assumption is realisti
 if the duration T of the blo
k is smaller than the
oheren
e time of the 
hannel, that is the time length for whi
h the e�e
ts ofthe Doppler shift on the 
hannel 
an be ignored. If T is large, we say thatthe 
hannel is slow fading ; this behavior may be 
aused by large obstru
tionsbetween transmitter and re
eiver.For most pra
ti
al appli
ations, it has been estimated [2℄ that the 
oheren
etime is greater than 0:01 se
onds, so that T < 200 is a legitimate assumption.Moreover, we suppose that there is perfe
t CSI at the re
eiver (
oherent 
ase).As in the single antenna 
ase, it is possible to estimate the error probability fora pair of spa
e-time blo
ks Pe(B(u)! B(u0)), and it turns out thatPe(B(u)! B(u0)) � 1�(Qri=1 �i) 1r ESN0 �rN ; (4.8)where r is the rank of the matrix B(u; u0) = (B(u) � B(u0))(B(u) � B(u0))H ,�i are its nonzero eigenvalues, and ES is the average energy of the 
onstellation



4.2 Multiple antenna systems 85used [24℄. In order to minimize the error probability, then, the following 
riteriamust be adopted:a) Maximize minu 6=u0 r = minu 6=u0 rk(B(u)�B(u0)), 
alled diversity gain ;b) Maximize � = minu 6=u0 (Qni=1 �i) 1r , 
alled 
oding gain.Using the Gaussian tail estimate (4.8), we 
an 
ompare two di�erent 
odings
hemes at the same spe
tral eÆ
ien
y by 
onsidering the ratio
as = (�1) 1r =ES;1(�2) 1r =ES;2 (4.9)This parameter, 
alled asymptoti
 
oding gain, yields a good estimate for highSNR. When this ratio is favourable, the same word error probability 
an bea
hieved at a lower SNR; this gain in SNR, measured in de
ibels, is equal to10 log10 
as.4.2.2 Channel 
apa
ityIn this se
tion we brie
y re
all a few notions from information theory.A

ording to Shannon's Channel Coding Theorem, ea
h transmission 
hannelHwith noise admits a 
uto� rate or 
apa
ity C(H), that is a limit rate under whi
hreliable 
ommuni
ation is possible. By reliable 
ommuni
ation for a 
ertain rateR, we mean that the word error probability for a sequen
e of random 
odes oflength n and rate R in the Shannon ensemble goes to 0 as the 
ode length ntends to in�nity.Conversely, if the rate is greater than the 
uto� rate, Shannon's Theorem tellsus that any 
ode will have a positive error probability.Shannon's result also implies that, roughly speaking, a 
ode 
hosen at randomis very likely to be good; however, in pra
ti
e random 
odes are not a goodsolution be
ause they would be too diÆ
ult to de
ode, and it is preferable tofo
us on the problem of designing deterministi
 
odes that 
ome as 
lose aspossible to the 
uto� rate.For a memoryless 
hannel, the 
apa
ity is given byC(H) = maxX I(X;Y );where I(X;Y ) is the mutual information between the input X and the outputY , and the maximum is taken over all the probability distributions of X .When evaluating the 
apa
ity of multiple-antenna systems over fading 
hannels,it is important to distinguish between the high SNR regime and the low SNRregime.In the low SNR 
ase, the most important parameter to 
onsider is the diversityadvantage; we say that the diversity advantage of the system is d if the averageerror probability de
ays like 1SNRd .If on the 
ontrary the signal-to-noise ratio is high, the \number of degrees offreedom" or independent fading paths available for transmission plays a moreimportant role. We say that a s
heme has spatial multiplexing gain r if the
apa
ity of the 
hannel is approximately r log(SNR). It has been shown by Fos-
hini [13℄ that the maximum spatial multiplexing gain attainable is min(M;N),



86 Coding for wireless 
hannelswhere M is the number of transmit antennas and N is the number of re
eiveantennas.Zheng and Tse [26℄ proved that there is a fundamental tradeo� between diver-sity and spatial multiplexing; in fa
t for a blo
k length L � M + N � 1, theoptimal diversity d(r) is given by d(r) = (M � r)(N � r). Intuitively, if r trans-mit and re
eive antennas are used to in
rease multiplexing, only the remainingM � r transmit and N � r re
eive antennas 
an provide diversity.A
hieving the diversity-multiplexing tradeo� is the key for optimizing transmis-sion for both high and low SNR regimes.Remark 4.1. The above dis
ussion 
on
erns 
hannels for whi
h the ergodi
ityassumption holds, that is 
hannels for whi
h the fading 
omponents 
an be re-garded as un
orrelated. In the non-ergodi
 
ase, whi
h in
ludes the slow fadingmodel, the de�nition of the 
apa
ity of the 
hannel is more problemati
.Sin
e there 
an be no time averaging for fading over long 
odewords, for anygiven rate it might happen that the 
apa
ity of the 
hannel at a 
ertain timedoesn't support that rate, and Shannon's theorem is no longer valid. A morefruitful approa
h 
onsists in 
onsidering the 
apa
ity itself as a random variable,depending on the instantaneous mutual information. We say that an informa-tion outage o

urs if the transmission rate ex
eeds the instantaneous 
apa
ity.Thus instead of the 
apa
ity it is more useful to 
onsider the outage probabilityfor a given spe
tral eÆ
ien
y.



Chapter 5Spa
e-time 
odes and
ontinued fra
tions5.1 Diagonal Spa
e-Time Codes (DAST)One 
oding s
heme whose fo
us is on a
hieving maximum diversity frommultipleantenna systems, without in
reasing at all the 
apa
ity, is diagonal spa
e-time
oding (DAST for short).In this 
ase, regardless of the number of re
eive antennas, the 
apa
ity is thatof an M � 1 system; the role of the transmit antennas is that of providingindependent fading paths.5.1.1 Diagonal spa
e-time 
odes and 
ontinued fra
tionsAn interesting relation between MIMO 
odes and 
ontinued fra
tions is pre-sented in [21℄.We 
onsider a system with 2 transmit and re
eive antennas. Ea
h 
odeword isa blo
k of two 2� 2 diagonal matri
es belonging to the �nite setV = �Vl = � �l 00 �ul � ; l 2 1; : : : ; L�where � = e 2�iL is a primitive L-th root of unity, and u is a suitable integer. Ifthe data stream to transmit is the sequen
e fl1; l2; : : :g, li 2 f1; : : : ; Lg 8i, thetransmitted blo
ks B1; B2; B3; : : : are de�ned as follows:B1 = � IVl1 � ; Bi = 0BB� i�1Qk=1VlkiQk=1Vlk 1CCA 8i � 2We 
onsider the problem of obtaining the best tradeo� between maximizing thediversity produ
tdP (V) = min1�l<k�L jdet(Vl � Vk)j � min1�l�L ��1� �l�� ��1� �ul�� = �(u; L)



88 Spa
e-time 
odes and 
ontinued fra
tionsand maximizing the size L of V . In parti
ular we want to determine in aneÆ
ient way the optimal parameter u that maximizes �(u; L) for a given L.Observe that sin
e��1� eix�� = j1� 
osx� i sinxj = p2� 2 
osx = 2 sin�x2� ;we have�(u; L) = min1�l�L ���1� e 2�ilL ��� ���1� e 2�iulL ��� = 4 min1�l�L ����sin��lL � sin��luL ����� == 4min(x;y) ���sin��xL � sin��yL ���� ;where the last expression ranges over the pairs (x; y) with x 2 Z, y � xu(modL), jxj,jyj < L, that is, (x; y) belongs to the subset �u;L = �u;L\((0; L)�(0; L)) of the two-dimensional latti
e�u;L = f(x; ux� zL) j x; z 2 Zg=MZ2;where M = �1 0u L�It 
an be shown [21℄ that�1� �224� �22L2 min(x;y)2�u;L jxyj � �(u; L) � �22L2 min(x;y)2�u;L jxyj ;that is, the behavior of the fun
tion �(u; L) is roughly similar to that of�(u; L) = min(x;y)2�u;L jxyjIt is natural to ask whether the value u whi
h maximizes �(u; L) also maximizes�(u; L). Unfortunately this is false in general.The fun
tion �(u; L) turns out to be related to the approximations of uL by the
onvergents of its 
ontinued fra
tion expansion:Proposition 5.1. Let p1q1 ; p2q2 ; : : : ; ptqt = uL be the 
onvergents of uL . Then�(u; L) = min1�l�t�1 ql jqlu� plLjProof. Observe that jxyj = jx(ux� zL)j ;For 0 < x < L, let l be su
h that ql � x < ql+1. Then the thesis is an easy
onsequen
e of the fa
t that 
ontinued fra
tion 
onvergents are \best approxi-mations": 8(x; z) 2 Z2 with 0 < x � ql, �� uL � zx �� � ��� uL � plql ���, and so����u� zLx ���� � ����u� plLql ����) x jxu� zLj � q2l ����u� zLx ���� � ql jqlu� plLjRemark that for x negative, the same argument works using �x, sin
e there isno 
ondition on the sign of z.
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 Spa
e-Time Codes 89The following result [21℄ shows that, roughly speaking, the smaller the elementsof the 
ontinued fra
tion expansion of uL are, the better :Proposition 5.2. Let uL = [0; a1; a2; : : : ; at℄, wL = [0; b1; b2; : : : ; bs℄ withmax1�j�t aj + 1 < max1�i�s biThen �(u; L) > �(w;L).It is then natural to look to the sequen
e fFng of the Fibona

i numbers as away to build \good rational numbers" uL , sin
e, as is well-known,FnFn+1 = [0; 1; 1; : : : ; 1| {z }n ℄Indeed, it turns out that it is the sequen
eFnFn+2 = [0; 1; : : : ; 1; 2| {z }n�1 ℄whi
h realizes the maximum:Proposition 5.3. We havemax1�u<Fn �(u; Fn) = �(Fn�2; Fn) = Fn�2Moreover, Shokrollahi 
onje
tures that �(Fn) = �(Fn�2; Fn) also holds.5.2 Threaded-Algebrai
 Spa
e-Time CodesOf 
ourse, the main drawba
k of using diagonal spa
e-time 
odes 
onsists in thefa
t that the a
tual transmission rate is only one symbol per 
hannel use.Re
ently Damen and El Gamal [11℄ introdu
ed a multi-antenna 
ode design(Threaded Algebrai
 Spa
e-Time Codes , TAST for short) whi
h allows for fulldiversity, full rate of transmission and a polynomial 
omplexity of de
oding.The problem of 
hoosing the parameters in order to optimize performan
e ofthese 
odes is related to diophantine approximations, and is still open.Before des
ribing these 
odes, we will introdu
e some useful algebrai
 tools thatwill guarantee the full rate 
ondition.5.2.1 Algebrai
 latti
es from totally real number �eldsLet Q(�) be a number �eld of degree n over Q, O its ring of integers, andfw1; : : : ; wng a basis of integers.It is well-known that there exist n embeddings �i : Q(�) ! C , leaving Q �xed,de�ned by �i(�) = �i, where � = �1; �2; : : : ; �n are the 
onjugates of �.Let r1 be the number of embeddings of Q(�) whose image is 
ontained in R, and2r2 the number of embeddings whose image 
ontains some 
omplex number (itis 
learly an even number sin
e the 
omplex roots of the minimal polynomial of� 
ome in pairs of 
onjugates.) The pair (r1; r2) is 
alled the signature of Q(�).Q(�) is 
alled totally real if r2 = 0.The embeddings �i provide a geometri
al interpretation of Q(�) as a sublatti
eof C n : let � : Q(�) ! Rn be the 
anoni
al embedding



90 Spa
e-time 
odes and 
ontinued fra
tions�(x) = (�1(x); : : : ; �r1 (x);<(�r1+1(x));=(�r1+1(x)); : : : ;<(�r1+r2(x));=(�r1+r2(x))where we take only one embedding from ea
h pair of 
omplex 
onjugates.Consider the matrix A = (aij) 2 Mn(R), with aij = �i(wj): its 
olumns �(wj)are linearly independent [23℄ and generate an algebrai
 latti
e �(O) = AZn.The volume of the fundamental parallelotope of �(O) isvol(�(O)) = 2�r2pjdkj;where dk = (detA)2 is the dis
riminant of the latti
e.It 
an be shown [18℄ that algebrai
 latti
es from totally real number �elds a
hievemaximum diversity:Theorem 5.4. The diversity of an algebrai
 latti
e is L = r1 + r2.Thus in the totally real 
ase, L = r1 = n.If I = (�) is a prin
ipal ideal of O, we de�ne N(I) = jN(�)j. I has an integerbasis f�w1; : : : ; �wng, and we 
an again 
onsider the algebrai
 latti
e �(I)generated by A0 = (�i(�wj)). In this 
ase,vol(�(I)) = 2�r2N(I)pjdkjIn order to 
ompute the minimum of the produ
t distan
e when S = �(O), itis enough to 
onsider the 
ase u 2 �(O) n f0g; u0 = 0, sin
e �(O) is linear. Ifu = (u1; : : : ; un)t 2 Zn, we haveAu =  �1 nXi=1 uiwi! ; : : : ; �n nXi=1 uiwi!!t = (�1(s); : : : ; �n(s))tfor some algebrai
 integer s 2 O. In this 
ase the produ
t distan
e 
oin
ideswith the algebrai
 norm of s over Q:dP (u; 0) = nYi=1 juij = nYi=1 j�i(s)j = jN(s)jBut for any algebrai
 integer s 6= 0, we haveN(s) 2 Znf0g; therefore jN(s)j � 1,and this 
onstru
tion ensures that for S � � the produ
t distan
e doesn't van-ish [18℄.Clearly dP 
an be in
reased by 
hoosing a prin
ipal ideal I instead of O; how-ever, in this 
ase the number of latti
e points available for a 
ertain 
onstellationradius is smaller, sin
e the volume of the fundamental parallelotope is bigger.As we will see in x6, the same basi
 ideas we introdu
ed here 
an be extendedto the non-
ommutative 
ase, by 
onsidering a quaternion ring over Q(i) andits maximal order instead of a number �eld with its ring of integers.5.2.2 Threaded-Algebrai
 Spa
e-Time CodesConsider a system with M transmit antennas and N re
eive antennas, withblo
k length T = M . Given L � M , let lj � f1; : : : ;Mg � f0; : : : ;M � 1g bede�ned as follows:lj = f([t+ j � 1℄M + 1; t); 0 � t < Mg; 1 � j � L
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l1 l2 l3 l4Figure 5.1: A subdivision of a matrix into \threads" when M = 4.where [ ℄M denotes the remainder (modM).Given K = kL, we 
onsider a partition of the information ve
tor u in intervalsof length k: u = (u(1); : : : ; u(L)). Ea
h u(j) is separately mapped to a ve
tor
j(u(j)) 2 SM and its 
omponents are assigned to the elements of B(u) 
orre-sponding to the thread lj . If there are any entries in B(u) whose indi
es do notbelong to any thread, these are assigned the value 0.The matrix B(u) is thus de
omposed into threads, whi
h behave like indepen-dent 
odes, transparent to one another, ea
h of whi
h exploits all the spa
e-timediversity: at the time t, the thread lj transmits a symbol using the antenna[t+ j � 1℄M + 1; the number of simultaneously a
tive antennas at a given timeis L.Observe that the diagonal spa
e-time 
odes des
ribed in x5 are a spe
ial 
ase ofTAST, 
orresponding to a single thread. The problem of 
oding is now redu
edto 
hoosing the en
oders 
j in su
h a way that the resulting 
ode B a
hievesmaximum diversity.De�ne 
j(u(j)) = �jAu(j);where f�1; : : : ; �Lg are 
omplex numbers to be determined, and A is anM �Mmatrix that maximizes minu 6=u0;s=A(u�u0) MYi=1 jsj jIt 
an be shown that a good 
hoi
e for A is the matrix de�ned in equation(5.2.1) in Paragraph x5.2.1, 
onstru
ted from a suitable number �eld Q(�) thatis a Galois extension of Q of degree M .We 
an take �1 = 1; �2 = � 1M ; : : : ; �L = �L�1M , where � is an algebrai
 integersu
h that Q(�) � Q(�) and f1; �; : : : ; �L�1g are linearly independent over Q(�).Theorem 5.5. The TAST 
ode built in this way has maximum diversity; more-over, its 
oding gain ÆC is greater or equal to(1 + j�j+ L�)�m(L�1)M ; (5.1)where m is the degree of Q(�) and � depends only on the initial 
onstellation C.The proof of Theorem 5.5 relies on the fa
t that det(B(u) � B(u0)) is a poly-nomial of degree L � 1 in �, whose 
oeÆ
ients are algebrai
 integers in Q(�);then we 
an apply the following theorem on the simultaneous approximation ofalgebrai
 numbers :



92 Spa
e-time 
odes and 
ontinued fra
tionsTheorem 5.6 (Generalization of Liouville's Theorem). Let �1; : : : ; �mbe algebrai
 numbers, and let n be the degree of the smallest number �eld Q(�)whi
h 
ontains them. Let p(X1; : : : ; Xm) 2 Z[X1; : : : ; Xm℄ be a polynomial ofdegree less or equal to k, su
h that the maximum modulus of its 
oeÆ
ients isH. Then if p(�1; : : : ; �m) 6= 0, we havejp(�1; : : : ; �m)j � 1rnk(1 +Pmi=0 j�ij)(n�1)kHn�1 ;where r is su
h that r�i is an algebrai
 integer for i = 1; : : : ;m, and j�ij is themaximum modulus of the 
onjugates of �i.Unfortunately, a higher number of latti
e points available means a better ap-proximation and a smaller gain: the parameter � in equation (5.1) grows when#C in
reases.A slightly di�erent problem from the one we have been addressing is how todetermine � in su
h a way that ÆC(�) de
reases as slowly as possible when thesize of the 
onstellation grows to in�nity.Theorem 5.6 suggests that f�1; : : : ; �Lg ought to be 
hosen in su
h a way as tobe \badly approximated" by algebrai
 numbers. A di�erent strategy 
onsistsin 
hoosing � tras
endental, for example � = ei� with � algebrai
. It 
an beshown [11℄ that even in this 
ase maximum diversity is a
hieved, thanks to thefollowing well-known theorem:Theorem 5.7 (Lindemann). Let �1; : : : ; �m be distin
t algebrai
 numbers,and 
1; : : : ; 
m algebrai
 
oeÆ
ients not all equal to zero. Then Pmi=1 
ie�i 6= 0.For this 
hoi
e of �, however, we have no bounds for the 
oding gain.5.2.3 The 2-dimensional 
aseThis spe
ial 
ase of TAST 
odes was introdu
ed by Damen, Tew�k and Bel�ore[10℄. Again, there is a surprising relation between these 
odes and 
ontinuedfra
tions; in fa
t the 
oding gain turns out to be greater when the fundamentalparameter is \badly approximable" by 
ontinued fra
tions.Consider the TAST 
ode with M = T = 2, built from the matrixA� = 1p2 � 1 �1 �� �Let � = � = ei�, with � to be determined. Then for u = (u1; u2; u3; u4) 2 Z[i℄4,B�(u) = 1p2 � u1 + �u2 p�(u3 + �u4)p�(u3 � �u4) u1 � �u2 �If we take as a 
onstellation the whole latti
e Z[i℄4, the 
oding gain isÆC(�) = infu2Z[i℄4nf0gr���det(B�BH� )��� = 1p2r infu2Z[i℄4nf0g ju21 � u23�� u22�2 + u24�3jClearly if C � Z[i℄4, the 
oding gain over C will in general be greater. In this
ase a stronger result than Theorem 5.5 holds:
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 Spa
e-Time Codes 93Proposition 5.8. Suppose that one of the following is true:a) � is algebrai
 of degree greater or equal to 4 over Q(i);b) � is algebrai
 of degree 2 over Q(i) and �2 2 Q(i);
) � is tras
endentalThen the previous design a
hieves maximum diversity over all the 
onstellationsC 
arved from Z[i℄4.When the 
ondition (a) or (
) hold, the determinant of B(u)B(u)H is a polyno-mial of degree 3 in �, so the thesis follows from the fa
t that f1; �; �2; �3g arelinearly independent over Q(i).As for 
ondition (b), it is enough to remark that the determinant 
an be writtenin the form 12 ((u21�u22�2)��(u23�u24�2)). If it were 0, sin
e f1; �g is a free setover Q(i) and �2 2 Q(i), we would have u21 � u22�2 = u23 � u24�2 = 0; but � isnot a square in Q(i), being algebrai
 of degree 2.In general, given C, no 
riterion to maximize ÆC is known; in the 
ase of 4-QAM and 16-QAM 
onstellations, 
omputer simulations seem to suggest thatthe values of � that maximize the 
oding gain are e i2 and e0:521i respe
tively.However, the 
omputer sear
h for the optimal parameters be
omes extremely
omplex when the size of the 
onstellation in
reases; moreover, the parametersfound by 
omputer sear
h whi
h give an optimal 
oding gain for one 
onstella-tion might work very poorly with another, so that a theoreti
al approa
h wouldbe preferable.As a heuristi
 approa
h, one 
an observe thatÆC � minu 6=0 min(��u21 � u23��� ; ��u21 � u22�2�� ; ��u21 + u24�3��);and try to 
hoose � badly approximable by rational numbers, that is:- � algebrai
 of small degree and su
h that the moduli of the 
oeÆ
ients ofits minimum polynomial are small,- � tras
endental su
h that the digits of its 
ontinued fra
tion expansionare small.In the 
ase of � tras
endental, however, there is no lower bound available onthe de
rease of the 
oding gain when the spe
tral eÆ
ien
y grows.





Chapter 6Algebrai
 spa
e-time blo
k
oded modulationAs we have seen, the main in
onvenien
e of the 2�2 TAST 
ode is the fa
t thatthe minimum determinant vanishes when the size of the 
onstellation tends toin�nity. This problem 
an be solved in an elegant manner by ensuring that theblo
k 
odewords belong to a division algebra. Moreover, in the two-dimensional
ase the algebra 
an be 
hosen in su
h a way that the 
ode will be isometri
 toa rotated 
ubi
 latti
e.6.1 Quaternion AlgebrasThis se
tion summarizes some basi
 fa
ts about quaternion algebras that willbe useful later. Our main referen
es are the books of Vign�eras [25℄ and Reiner[19℄.6.1 (Quaternion algebras). Let K be a �eld. A quaternion algebra H of
enter K is a 
entral simple algebra of dimension 4 over K, su
h that thereexists a separable quadrati
 extension L of K, and an element 
 2 K�, su
hthat H = L� Le; e2 = 
; ex = �(x)e 8x 2 Lwhere � is the non-trivial K-automorphism of L. L is 
alled a maximal sub�eldof H. H will be denoted by the triple (L=K; �; 
).Quaternion algebras are a spe
ial 
ase of 
y
li
 algebras.To obtain a representation of H as a K-module, 
onsider a primitive element isu
h that L = K(i), and let j = e, k = ij = j�(i). ThenH = fa+ bi+ 
j + dk j a; b; 
; d 2 Kg (6.1)The following theorem gives a suÆ
ient 
ondition for a quaternion algebra tobe a division ring:Theorem 6.2. Let H = (L=K; �; 
) be a quaternion algebra. If 
 is not aredu
ed norm of any element of L, then H is a skew�eld.



96 Algebrai
 spa
e-time blo
k 
oded modulation6.3 (Splitting �elds). Let H be a 
entral simple K-algebra. An extension�eld E of K splits H, or is a splitting �eld for H, ifE 
K H �=Mr(E)In the 
ase of division algebras, every maximal sub�eld is a splitting �eld:Theorem 6.4. Let D be a skew�eld with 
enter K, with �nite degree over K.Then every maximal sub�eld E of D 
ontains K, and is a splitting �eld for D.In the following paragraphs we will always 
onsider a Dedekind domain R, itsquotient �eld K, and a quaternion algebra H over K.6.5 (Latti
es and orders). A full R-latti
e or ideal inH is a �nitely generatedR-submodule I in H su
h that KI = H, whereKI = ( nXi=1 kixi ��� ki 2 K; xi 2 I; n 2 N)An R-order � in H is a full R-latti
e whi
h is also a subring of H with the sameunity element. A maximal R-order is an order whi
h is not properly 
ontainedin any other order of H.For the following proposition see for example Reiner [19℄:Proposition 6.6. A subring of H 
ontaining a basis for H over K is an orderif and only if all its elements are integral over R.Remark 6.7. The notion of order is a generalization of the notion of the ringof integers for 
ommutative extensions. However, in the non-
ommutative 
asethe set of elements whi
h are integral over the base �eld might not be a ring.6.8 (Properties of ideals). Given an ideal I of H, we 
an de�ne the left orderand the right order of I as follows:�l(I) = fx 2 H j Ix � Ig;�r(I) = fx 2 H jxI � Ig�l(I) and �r(I) are orders. I is 
alled� two-sided if �l(I) = �r(I),� normal if �l(I) and �r(I) are maximal,� integral if I � �l(I), I � �r(I),� prin
ipal if I = �l(I)x = x�r(I) for some x 2 HThe inverse of I is the fra
tional ideal I�1 = fx 2 H j IxI � Ig.The norm N(I) of an ideal I is the set of redu
ed norms of its elements, and itis an ideal of R. If I = �x is prin
ipal, N(I) = RN(x).



6.2 Spa
e-time 
odes from quaternion algebras 976.2 Spa
e-time 
odes from quaternion algebrasTheorem 6.2 provides a suÆ
ient 
ondition (albeit one that is not simple to
he
k) for building division algebras. For the appli
ations to 
oding, in or-der to ensure a uniform distribution of the average energy among the di�erentantennas, it is preferable to 
hoose the generator 
 of the quaternion algebra(L=K; �; 
) su
h that j
j = 1.6.2.1 The Alamouti CodeThe �rst example of spa
e-time 
ode that 
an be interpreted in the frameworkof quaternion algebras is the famous Alamouti Code [1℄. This 
ode is optimalfor the 
ase of 2 transmit antennas and one re
eive antenna. In addition tobeing full rate and full rank, its orthogonal stru
ture allows for linear de
oding.Thanks to its simpli
ity of implementation and good performan
e, this 
ode isalready integrated in the UMTS standard.The Alamouti 
ode 
an be derived from the skew�eld H of Hamilton quater-nions, whi
h 
orresponds to 
hoosing, following the notation in De�nition 6.1,the �eld of real numbers R as the base �eld K, the �eld of 
omplex numbers Cas its quadrati
 extension L, and the element 
 = �1.Sin
e C is a maximal sub�eld of H, it follows from Theorem 6.4 that H ad-mits a matrix representation as a subset of M2(C ). More pre
isely, H =fa+ bi+ 
j+ dk j a; b; 
; d 2 Rg, wherei = � i 00 �i � ; j = � 0 1�1 0 � ; k = � 0 ii 0 �Given an information ve
tor u = (x1; x2) = (a+bi; 
+di) 2 C 2 , the transpose ofthe 
orresponding Alamouti 
odeword for blo
k length T = 2 is the quaternionXt = x1 + x2j = a+ bi+ 
j+ dk = � a+ bi 
+ di�(
� di) a� ib � = � x1 x2�x2 x1 � ;where the overline denotes the 
omplex 
onjugate. Remark that the 
olumns ofea
h 
odeword X = � x1 �x2x2 x1 �are orthogonal with respe
t to the Hermitian produ
t.Moreover, if X is nonzero its determinant det(X) = jx1j2 + jx2j2 > 0, so thatthe full rank 
ondition is always satis�ed. Moreover, if the symbols x1,x2 belongto a QAM 
onstellation 
arved from Z[i℄, the minimum determinant will be inZ and therefore jdet(X)j � 1.In the setting of x4.2.1, the re
eived 
odeword is Y = HX +W :� y1 y2 � = � h1 h2 �� x1 �x2x2 x1 �+ � w1 w2 � == � h1x1 + h2x2 + w1 �h1x2 + h2x1 + w2 �In order to re
over X , it is 
onvenient to 
onsider the ve
torZ = � y1y2 � = � h1 h2h2 �h1 �� x1x2 �+� w1w2 �



98 Algebrai
 spa
e-time blo
k 
oded modulationThat is, our system is equivalent to a transmission s
heme with 2 re
eive anten-nas and 2 transmit antennas, but with blo
k length T = 1, and su
h that the
olumns of the 
hannel matrixH 0 = � h1 h2h2 �h1 �are orthogonal. By multiplying on the left by (H 0)H , we obtain(H 0)HZ = (jh1j2 + jh2j2)� x1x2 �+� v1v2 �where the 
omponents of the new noise ve
tor (v1; v2) are still independentrandom variables.Thus the Alamouti Code admits a very simple de
oding pro
ess, whi
h 
onsistsin applying a linear transformation followed by a single symbol ML dete
tion.6.3 The Golden CodeThis 
ode, introdu
ed by Bel�ore, Rekaya and Viterbo [5℄, is optimal for the
ase of 2 transmit and 2 re
eive antennas, and belongs to a 
lass of n�nMIMO
odes 
alled perfe
t 
odes [17℄. These 
odes have been shown to exist only forn = 2; 3; 4 and 6.6.9 (Perfe
t 
ode). A 
ode is perfe
t if:1. it is full rate using 
onstellations 
arved from either Z[i℄ or Z[e 23�i℄;2. its minimum determinant is nonzero, so that it is full rank;3. the real latti
e generated by the ve
torized 
odewords is Z2n2 or An22 ,where A2 is the hexagonal latti
e;4. the symbols in the 
ode matrix have the same average energy.Consider the number �eld Q(i; �), where � = p5+12 is the Golden number, andits ring of integers Z[i; �℄.If x = a+ b� 2 Q(i; �), let �(x) = �x be its 
anoni
al 
onjugate a+ b��, where�� = 1� �; ��� = �1N(x) = x�x is the norm of x, and x 2 Z[i; �℄ implies that N(x) 2 Z[i℄.Consider the quaternion algebra A, with 
enter Q(i), and maximal sub�eldQ(i; �): A = Q(i; �) � Q(i; �)j = A(Q(i; �)=Q (i); �; i)where j2 = i, xj = j�x 8x 2 Q(i; �).It 
an be shown [5℄ that i is not a norm in Q(i; �)=Q (i), so Theorem 6.2 impliesthat A is a division algebra.As a Q(i)-module, we haveA = Q(i) � Q(i)� � Q(i)j � Q(i)�j;



6.3 The Golden Code 99From Theorem 6.4, it follows that Q(i; �) is a splitting �eld for A, and soQ(i; �) 
Q(i) A �=M2(Q(i; �))Consequently, A admits a matrix representation as a subset of M2(Q(i; �)),where the in
lusion is given byx 7! � x 00 �x � ; 8x 2 Q(i; �); j 7! � 0 1i 0 � (6.2)Then A 
an be written in the formA = �� x1 x2i�x2 x1 � ; x1; x2 2 Q(i; �)� (6.3)and every element of A has nonzero determinant N(x1)� iN(x2).Remark 6.10. An alternative representation of A as a 
y
li
 algebra 
an beobtained by 
onsidering the �eld extension Q(pi)=Q(i) and the quaternion al-gebra A(Q(pi)=Q(i); �; 5), where � is the 
anoni
al 
onjuga
y in Q(pi)=Q(i).ThusA0 = Q(i)�Q (i)pi�Q(i)f�Q (i)pif; f2 = 5; xf = f�(x) 8x 2 Q(pi)The isomorphism � : A 7! A0 of Q(i)-algebras between the two representationsis given by �(p5) = f , �(j) = pi. It is suÆ
ient to 
he
k that it is a ringisomorphism, namely that�(j)�(p5) = pif = �fpi = ��(p5)�(j);the other produ
ts between the generators being automati
ally preserved, sin
etheir 
hara
teristi
 polynomials are the same.The 
onstru
tion of A ensures that the �rst two 
onditions in De�nition 6.9 aresatis�ed. In order to have 
ubi
 shaping, we will take a suitable ideal of A.Consider the order of AO = �� x1 x2i�x2 x1 � ; x1; x2 2 Z(i; �)� (6.4)and let � = 1 + i��; A = � � 00 �� � ; (6.5)The Golden Code G = 1p5AO is a res
aled version of the right prin
ipal idealAO of O. Every 
odeword X 2 G is of the formX = 1p5 � �(a+ b�) �(
+ d�)��i(
+ d��) ��(a+ b��) � (6.6)It is easy to verify that G is a two-sided ideal : in fa
t if w = w1 + w2j 2 O,w1; w2 2 Z[i; �℄, �(w1 + w2j) = w1�+ w2j �� = (w1 + i�w2j)�;
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 spa
e-time blo
k 
oded modulationobserving that �i� = i� + 1 = ��. But� : w1 + w2j 7! w1 + i�w2j (6.7)is an homomorphism of Z[i℄-modules that mapsO into itself bije
tively, therefore�O = O�. Moreover, if we negle
t the normalization 
onstant 1p5 , G is anintegral ideal be
ause it is 
ontained in O.Remark 6.11. 8W 2 O n f0g, jdet(W )j � 1. Consequently, 8X 2 G n f0g,jdet(X)j � 1p5 .Proof. Sin
e A is a division algebra, N(x1) � iN(x2) 6= 0 if (x1; x2) 6= (0; 0).Moreover, when x1; x2 2 Z[i℄[�℄, N(x1) � iN(x2) 2 Z[i℄ and so its absolutevalue is at least 1. If X = Ap5W , jdet(X)j = jN(�)j5 jdet(W )j = ���detWp5 ���, sin
ejN(�)j = j2 + ij = p5.Remark 6.11 implies that the Golden Code G is full-rank and has non-vanishingdeterminant. By 
onstru
tion, it is also full-rate, that is, ea
h 
odeword trans-mits four information symbols.16.3.1 Latti
e representation of GWe follow the 
olumn 
onvention for ve
tors, so that latti
es have the form� = fMu ju 2 Z[i℄ng. Two latti
es � = fMug and �0 = fM 0ug are equivalentif there exist U unimodular with Gaussian integer entries and T unitary su
hthat M 0 = TMU .Let a; b; 
; d 2 C , and 
onsider the linear mapping � : A ! C 4 that ve
torizesmatri
es: ��� a 
b d �� = (a; b; 
; d) 2 C 4Obviously, the mapping � preserves the norm: 8A 2 A, kAk2F = k�(A)k2.The left multipli
ation fun
tion lY : A ! A that maps W to Y W indu
es alinear mapping Yl = � Æ lY Æ ��1 : �(A) ! �(A) that 
an be seen as a 4 � 4
omplex matrix. Similarly, we 
an de�ne the linear fun
tion Yr = � Æ rY Æ ��1,where rY :W 7!WY is the multipli
ation on the right by Y .Remark 6.12. If Y = � x zy w �, thenYl = 2664 x z 0 0y w 0 00 0 x z0 0 y w 3775 ; Yr = 2664 x 0 y 00 x 0 yz 0 w 00 z 0 w 3775Another useful mapping to 
onsider is �O : Z[i℄4! �(O),�O : u = (a; b; 
; d) 7! ��� a+ b� 
+ d�i(
+ d��) a+ b�� ��1It has also been shown [12℄ that the Golden Code a
hieves the diversity-multiplexing gaintradeo� (see x4.2.2).



6.4 Golden Blo
k Codes 101It is easy to 
he
k that �O = 2664 1 � 0 00 0 i i��0 0 1 �1 �� 0 0 3775Remark 6.13. The map R = 1p5Al�O sends Z[i℄4 to �(G). R is the unitarymatrixR = 1p5 2664 1 + i�� � � i 0 00 0 �� + i 1 + i��0 0 1 + i�� � � i1 + i� �� � i 0 0 3775 = 1p5 2664 � ���i 0 00 0 ��i �0 0 � ���i�� ��i 0 0 3775Thus we have shown that the Golden Code has 
ubi
 shaping, sin
e it is isometri
to Z[i℄4 with respe
t to the Frobenius norm.Remark that the pre-images of the rotated 
anoni
al basis are��1(Re1) = 1p5 � � 00 �� � = Ap5��1(Re2) = 1p5 � ���i 00 ��i � = �Ap5��1(Re3) = 1p5 � 0 ���i 0 � = iJ�Ap5��1(Re4) = 1p5 � 0 ���i� 0 � = �iJAp5 ; (6.8)
where J = � 0 1i 0 � ; � = � � 00 �� �are the matrix representations of j and � respe
tively (see equation (6.2)).6.4 Golden Blo
k CodesWe now 
onsider the 
ase of a slow fading 
hannel, meaning that the 
hannel
oeÆ
ients remain 
onstant for a 
ertain time frame L. We want to de�ne ablo
k 
ode of length L using the Golden Code as the \alphabet", in order toimprove even further its performan
e.As usual, we assume that the fading 
oeÆ
ients are known at the re
eiver. There
eived signal is given byY = HX+W; X;Y;W 2 C 2�2L ; (6.9)where the entries of H 2 C 2�2 are i.i.d. 
omplex Gaussian random variables,W is the Gaussian noise with i.i.d. entries of zero mean and varian
e N0, andthe transmitted signal X = (X1; : : : ; XL) belongs to a suitable subset S � GL.As we have seen in equation (4.8), the pairwise error probability is given byP (X 7! X 0) � 1�p�min N0ES �4 ;



102 Algebrai
 spa
e-time blo
k 
oded modulationwhere ES is the average energy of S and�min = minX2Snf0g ��det(XXH )��In order to minimize the PEP for a given SNR and average energy, we shouldmaximize �min.First of all, we would like to �nd an expli
it formula for det(XXH ). Consider thefollowing involution of the 
y
li
 algebra A (
orresponding to the quaternioni

onjugate): X = � x1 x2ix2 x1 � 7! eX = � x1 �x2�ix2 x1 �Remark 6.14. 8X 2 A,eXX = det(X)1 (6.10)eX +X = (x1 + x1)1 = tr(X)1 (6.11)det(X) = det( eX) (6.12)Re
all the de�nition of the Frobenius norm of a matrix:M = � a b
 d � ; a; b; 
; d 2 C ) kMkF =qjaj2 + jbj2 + j
j2 + jdj2Lemma 6.15. 8X = (X1; : : : ; XL) 2 AL,det(XXH ) = det(X1XH1 + : : :+XLXHL ) =jdet(X1)j2 + : : :+ jdet(XL)j2 +Xj>i 


 eXjXi


2FProof. For all i = 1; : : : ; L, let Qi = XiXHi : thendet(X1XH1 + : : :+XLXHL )1 = det(Q1 + : : :+QL)1 == ( eQ1 + : : :+ eQL)(Q1 + : : :+QL)1 = LXi;j=1 eQiQj = LXi=1 det(Qi)1+Xi 6=j eQiQjWe need to show that eQiQj + eQjQi = 


 eXjXi


2F 1.But kXk2F = tr(XXH), and therefore 


 eXjXi


2F = tr( eXjXiXHi eXHj ), andeQjQi = eXHj eXjXiXHi ; eQiQj = êQjQi) eQiQj + eQjQi = tr( eQiQj)1 = tr( eXjXiXHi eXHj )1;re
alling that tr(AB) = tr(BA).6.4.1 Estimates of the Frobenius normRemark 6.16. If W 2 O, kWk2F 2 Z.



6.4 Golden Blo
k Codes 103Proof. LetW = � w1 w2iw2 w1 � ; w1 = t1 + is1; w2 = t2 + is2; t1; t2; s1; s2 2 Z[�℄Then kWk2F = jw1j2+ jw1j2+ jw2j2+ �w22. But w1 = a+ b�+ i(
+ d�) for somea; b; 
; d 2 Z, andjw1j2 + jw1j2 = (a+ b�)2 + (
+ d�)2 + (a+ b��)2 + (
+ d��)2 == 2a2 + 3b2 + 2ab+ 2
2 + 3d2 + 2
d 2 ZThe same is true for jw2j2 + jw2j2.Remark 6.17. Let X;Y be two 2� 2 
omplex-valued matri
es. ThenkXk2F � 2 jdet(X)j ; (6.13)


 eXY 


2F � 2 jdet(X)j jdet(Y )j (6.14)Proof. If X = � a b
 d �, thenkXk2F = jaj2 + jbj2 + j
j2 + jdj2 � 2(jadj+ jb
j) � 2 jad� b
j = 2 jdet(X)jand 


 eXY 


2F � 2 ���det( eXY )��� = 2 jdet(X) det(Y )j.Remark 6.18. 8W 2 O n f0g; kWk2F � 2 jdet(W )j � 2. Moreover, theminimum is a
tually a
hieved when W1 =W2 = 1.Remark 6.19. If X1; X2 2 G n f0g, 


 eX2X1


2F � 25 .Proof. Let X1 = 1p5AW1; X2 = 1p5AW2, W1;W2 2 O. Then


 eX2X1


2F = 125 


fW2 eAAW1


2F = jN(�)j225 


fW2W1


2F = 15 


fW2W1


2F � 25 ;sin
e W = fW2W1 belongs to O.From Remark 6.17, it follows that:Lemma 6.20. Let X = (X1; : : : ; XL) 2 GL. Thendet(XXH ) �  LXi=1 jdet(Xi)j!2 � (wH (X))25 ;where wH (X) = #fi 2 f1; : : : ; Lg jXi 6= 0g is the Hamming weight of the blo
kX.
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 spa
e-time blo
k 
oded modulation6.4.2 The produ
t latti
eWe 
an study the stru
tures indu
ed on Z[i℄4 by the map X 7! eX and by theprodu
t (X;Y ) 7! XY .~x + (R�1�)(�̂�1Rx); (6.15)x � y + (R�1�)(��1Rx � ��1Ry) (6.16)Then re
alling expression (6.8) for the lifts of the ve
tors of the 
anoni
al basisfe1; e2; e3; e4g, we getee1 = ie2;ee2 = �ie1;ee3 = �e3;ee4 = �e4Table 6.1 lists all the produ
ts of the ve
tors of the 
anoni
al basis. For examplewe have:e1 � e1 = (R�1�)�A25 � = 15(R�1�)((1 + i)A� eA) = 1p5((1 + i)e1 � ie2)e1 � e1 = e3 � e4 = 1p5 ((1 + i)e1 � ie2)e2 � e2 = �e4 � e3 = 1p5 (e1 + (1� i)e2)�e3 � e3 = e4 � e4 = e1 � e2 = e2 � e1 = 1p5 (ie1 � e2)e1 � e3 = ie3 � e2 = 1p5 ((1 + i)e3 � ie4)e1 � e4 = e2 � e3 = ie4 � e2 = �ie3 � e1 = 1p5 (�ie3 + e4)e4 � e1 = ie2 � e4 = 1p5 (ie3 + (i+ 1)e4)Table 6.1: The produ
ts fei � ejg; i; j 2 f1; 2; 3; 4g.Observe that with the de�nition (6.16), Z[i℄4 �Z[i℄4 � 1p5Z[i℄4.In order to design a 
ode with good minima of the Frobenius norms 


 eXjXi


2F inLemma 6.15, we need more information on the set of produ
ts P = f eXY j X;Y 2Gg. Sin
e eG = G, this set is simply G2. More pre
isely, if eX = 1p5AW ,eY = 1p5AW 0 with W;W 0 2 O, re
alling that G is a two-sided ideal we haveeXY = 15AWAW 0 = 15A2��1(W )W 0 = 15A2W 00W 0;where � is the bije
tion de�ned in equation (6.7). The last expression ranges overall W 0;W 00 2 O, so that P = 15A2O2. But sin
e 1 2 O, we have O2 = O andP = 1p5AG. With the notation of x6.3.1, we 
an say that �(P) = 1p5AlRZ[i℄4 =1p5RA0lZ[i℄4, where A0l = R�1AlR = RHAlR. A simple 
al
ulation yieldsA0l = 2664 1 + i �i 0 0�i 1 0 00 0 1 + i �i0 0 �i 1 3775



6.5 Coding with 
osets: a �rst example 105The 
olumns of A0l are a redu
ed basis for the latti
e A0lZ[i℄4; we already knowfrom Remark 6.19 that the minimal norm in this latti
e is 2.6.4.3 A Golden partition 
hainFor k = 1; : : : ; 4, we 
onsider the left prin
ipal ideals of the Golden Code [4℄Gk = �XBk j X 2 G	 ; B = � i�� ��i� i� � ; (6.17)The property that det(B) = 1 + i makes these sub
odes an ideal 
hoi
e for abinary set partitioning.We remark that the 
odes Gk are obtained from the right prin
ipal ideal OBkof O. Let W = � a+ b� 
+ d�i(
+ d��) a+ b�� � 2 OThen the matrix Qk = 1p5 (Br)kAl�O = (Br)kR maps u = (a; b; 
; d) 2 Z[i℄4to �� 1p5AWBk�. QkZ[i℄4 is a sublatti
e of RZ[i℄4, of the form RSkZ[i℄4,and Sk = R�1Qk = RHQk = RH(Br)kR is a generator matrix for the latti
easso
iated to Gk.Lemma 6.21. Let X = (X1; : : : ; XL) with X1; : : : ; XL 2 Gk, k 2 f0; : : : ; 4g.Then det(XXH ) � 2kN25 ;where N = wH(X) = #fi 2 f1; : : : ; Lg jXi 6= 0g is the Hamming weight of theblo
k X.Proof. From Proposition 6.15 we get:det(XXH) = jdet(X1)j2 + : : :+ jdet(XL)j2 +Xj>i 


 eXjXi


2F == 125� ��det(AW1Bk)��2 + : : :+ ��det(AWLBk)��2 +Xj>i 


 eBkfWj eAAWiBk


2F � == 125 jN(�)j2 jdetBj2k �jdet(W1)j2 + : : :+ jdet(WL)j2 + 2� == 2k5 �jdet(W1)j2 + : : :+ jdet(WL)j2 + 2� � 2k5 �N + 2 � N(N � 1)2 �In the last estimate we have used Remark 6.17 and Remark 6.11. Observe thatin parti
ular the Lemma holds for G0 = G, with k = 0.6.5 Coding with 
osets: a �rst exampleWe will fo
us on the �rst of the left prin
ipal ideals in the 
hain (6.17), that isG1 = GB. The quotient group G=G1 is isomorphi
 to Z2� Z2; we will 
onsiderblo
k 
odes that are lifts of linear binary 
odes of length 2 and 3 over thequotient. We will 
ompute the minimum determinants among the pre-images of
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 spa
e-time blo
k 
oded modulationA1p5O� � // 1p5�(O) = 1p5�OZ[i℄4 � C 4G� � // �(G) = 1p5Al�OZ[i℄4 =� RZ[i℄4�
G1� � // �(G1) = 1p5BrAl�OZ[i℄4 = RS1Z[i℄4� = RP D 24Figure 6.1: A summary of the relations des
ribed below.ea
h binary 
odeword; these are related to the minima of the Frobenius normsover the produ
ts of two 
osets.The latti
e �(G1) is spanned by RS1, where R is the unitary matrix de�ned inRemark 6.13, and S1 = 2664 i �i 0 i�i 0 i i1 �1 0 i�1 0 i i 3775This latti
e is equivalent to the 
omplex D24 latti
e (see [8℄, Chapter 7.8): infa
t P1S1U1 = H1, whereH1 = 2664 1 0 0 01 1 + i 0 00 0 1 00 0 1 1 + i 3775is the generator matrix of D24, P1 is a permutation, U1 is integer unimodular:P1 = 2664 1 0 0 00 0 1 00 1 0 00 0 0 1 3775 ; U1 = 2664 0 0 0 �i0 �i 0 �ii i �i �i�i �i 0 0 3775Then �(G1) = RS1Z[i℄4 = RP�11 D24 = RP1D24 � RZ[i℄4 is a rotated version ofthe 
omplex D24 latti
e, that is a subgroup of index 4 of RZ[i℄4. The quotientgroup G=G1 is isomorphi
 to RZ[i℄4=D24 �= Z2�Z2.We want to study the behavior of 


 eX1X2


2F when X1; X2 belong to di�erent
osets of G1 in G. The map � is a group isomorphism and so the images ofdistin
t 
osets of G1 in G are distin
t 
osets (as Z[i℄-modules) of RS1Z[i℄4 inRZ[i℄4, that is they are the images through R of the four 
osets of S1Z[i℄4 in



6.5 Coding with 
osets: a �rst example 107Z[i℄4.Let fe1; : : : ; e4g denote the 
anoni
al basis of Z[i℄4; thenC00 + S1Z[i℄4 = (ie2 + e4; ie1 + e3; e2 + e4; e1 + e3) (6.18)To �nd the 
oset leaders, remark that e1 and e2 do not belong to C00 be
auseits nonzero ve
tors have squared norm greater or equal to 2. Moreover, it iseasy to 
he
k that e1 � e2 =2 C00; e1 + e2 =2 C00 and so e1; e2; e1 + e2 belong todi�erent 
osets of C00: C01 = C00 + e1;C10 = C00 + e2;C11 = C00 + e1 + e2Therefore fRC00 = �(G1); RC01 = �(G1) + Re1; RC10 = �(G1) + Re2; RC11 =�(G1) +R(e1 + e2)g is a de
omposition of RZ[i℄4 into 
osets of RS1Z[i℄4.Thus the 
osets of G1 in G are:C00 = G1; C01 = G1 + Ap5 ; C10 = G1 � i eAp5 ; C11 = G1 + 1p5(A� i eA), and eC00 + R�1�(eG1) = (e1 � e4; e2 + e3; ie1 + e4; ie2 � e3)Unfortunately, the involution X 7! eX does not preserve 
osets.The sum of two ve
tors in Z[i℄4 with even squared norm has even squared norm:if z = (z1; z2; z3; z4) and w = (w1; w2; w3; w4) are su
h that P4i=1 jzij2 = 2n,P4i=1 jwij2 = 2m, then4Xi=1 jzi + wij2 = 2n+ 2m+ 2<(wizi)The ve
tors with even squared norm form a sublatti
e of index 2 of Z[i℄4; itis easy to 
he
k that this is equal to C00 [ C11. We also observe that eC00 �C00 [ C11.We want to �ndminX2Ci; Y 2Cj(X;Y )6=(0;0) 


 eXY 


2F = minx2Ci; y2Cj(x;y)6=(0;0) 

��1(Rex)��1(Ry)

2F == minx2Ci; y2Cj(x;y)6=(0;0) 

(��1R)(exy)

2F = minx2Ci; y2Cj(x;y)6=(0;0) kex � yk2for ea
h pair (i; j) 2 (Z2�Z2)2.Lemma 6.22. The minimum of the Frobenius norm over the produ
ts of the
osets of G1 is minX2Ci;Y 2Cj(X;Y )6=(0;0) 


 eXY 


2F = minx2Ci;y2Cj(x;y)6=(0;0) kex � yk2 = n(Ci; Cj)5 ;
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 spa
e-time blo
k 
oded modulationwhere n(Ci; Cj) takes the following values:C00 C01 C10 C11C00 0 0 0 0C01 0 2 3 3C10 0 3 2 3C11 0 3 3 2 (6.19)Proof. The table in (6.19) is 
learly symmetri
al be
ause 


 eXY 


F = 



geXY 



F =


eY X


F .Let x = R�1�(X); y = R�1�(Y ).- In the 
ase X 2 C00,Y 2 Ci, we 
an 
hoose X = 0 and Y 6= 0 so that theprodu
t eXY is 0.- From Remarks 6.11 and 6.17 it follows that 


 eXY 


2F � 25 for X;Y 2 G.When X;Y are both in Ci, i 6= 0, we 
an exhibit dire
tly an element ofsquared norm 25 :ee1 � e1 = ie2 � e1 = 1p5(e1 + ie2) 2 eC01 � C01;ee2 � e2 = �ie1 � e2 = 1p5(�e1 � ie2) 2 eC10 � C10;(ee1 + ee2) � (e1 + e2) = i(e2 � e1) � (e1 + e2) = 1p5(�e1 + ie2) 2 eC11 � C11- When X 2 eCi,Y 2 Cj , i; j 6= 0, i 6= j, xy is of the form(e
0 + eei) � (
00 + ej) = (e
0 + eei) � 
00 + e
0 � ej + eei � ej ;where 
0; 
00 2 C00. Then (e
0 + eei) � 
00 2 Z[i℄4 � C00 � 1p5C00 ande
0 � ej 2 eC00 � Z[i℄4 � 1p5 eC00 � 1p5 (C00 [ C11) both have even squarednorm over 5, while eei � ej has odd norm over 5: therefore all the elementsin eCi �Cj have odd norm over 5. Sin
e we know that it is greater or equalto 25 , it is suÆ
ient to exhibit an element of squared norm 35 :ee1 � e2 = ie22 = 1p5(ie1 + (1 + i)e2) 2 eC01 �C10;ee1 � (e1 � e2) = ie2 � (e1 � e2) = 1p5((1� i)e1 � e2) 2 eC01 � C11;ee2 � (e1 + e2) = 1p5(�ie1 � (i+ 1)e2) 2 eC10 � C11;whi
h 
on
ludes the proof.6.5.1 Codes of length 2For every (i; j) 2 (Z2�Z2)2 �= Z42, de�ned(Ci; Cj) = minX12Ci;X22Cj ;(X1;X2)6=(0;0) 5�jdet(X1)j2 + jdet(X2)j2 + 


 eX2X1


2F� (6.20)



6.5 Coding with 
osets: a �rst example 109From Lemma 6.22, and re
alling thatminX2C00 jdet(X)j = 25 ; minX2Ci jdet(X)j = 15 for i 6= 0;it follows that d(Ci; Cj) takes the following values:C00 C01 C10 C11C00 2 1 1 1C01 1 4 5 5C10 1 5 4 5C11 1 5 5 4 (6.21)Let S be a subgroup of Z42: then we 
an de�ne two 
oset weight enumeratorfun
tions as follows:AS(D) = X(i;j)2SDd(Ci;Cj); ÂS(D) = X(i;j)2Snf0gDd(Ci;Cj)Given a polynomial p(D) = a0 + a1D + : : :+ anDn, we de�ne�(p) = minfi � 0 j ai 6= 0gand we introdu
e the following order on the set of all polynomials:p >� q , 9k � 0 : ai(p) = ai(q) for i = 0; : : : ; k � 1; ak(p) > ak(q)In parti
ular, we are interested in maximizing �min(S) = �(AS) and �̂min(S) =�(ÂS) with respe
t to this order.Linear 
odes indu
ed by a permutationLet � be any permutation of Z2�Z2, and 
onsider the 
ode of length 2G� = f(X1; X2) 2 G � G j X1 2 Ci; X2 2 C�(i) for some ig (6.22)In general, G� is not a linear 
ode: given two words X = (X1; X2) 2 Ci � C�(i),Y = (Y1; Y2) 2 Cj � C�(j), we have X � Y 2 Ci+j � C�(i)+�(j). Therefore the
ode is linear if and only if�(i) + �(j) = �(i+ j) 8(i; j) 2 (Z2�Z2)2 (6.23)Thus a ne
essary 
ondition for linearity is that �(i) + �(0) = �(i) for all i, thatis �(0) = 0. In this parti
ular 
ase it is also a suÆ
ient 
ondition: 8i; j 6= 0su
h that i 6= j, i+ j is equal to the only element k in f01; 10; 11g n fi; jg. Then�(i) + �(j) = �(k) = �(i+ j).Lemma 6.23. Consider the 
ode G� de�ned in (6.22), su
h that � is a permu-tation keeping 0 �xed, and let S = f(i; �(i)) j i 2 Z2�Z2g. Then we have three
ases:1. If 0 is the only �xed point of �, AS(D) = D2 + 3D5, ÂS(D) = 3D5.2. If � has two �xed points, AS(D) = D2 +D4 + 2D5, ÂS(D) = D4 + 2D5.3. If � is the identity (so that G� is the repetition 
ode), AS(D) = D2+3D4,ÂS(D) = 3D4.The proof is straightforward from the table (6.21). Clearly the �rst 
ase is thebest one with respe
t to the 
oding gain.
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e-time blo
k 
oded modulationNon linear 
odes indu
ed by a permutationA
tually the study of the non linear 
ase 
an be redu
ed to the linear one.We know that in this 
ase �(0) 6= 0. Given X = (X1; X2) 2 Ci � C�(i), Y =(Y1; Y2) 2 Cj � C�(j), we havedet(X � Y )(X � Y )H = det((X1 � Y1)(X1 � Y1)H + (X2 � Y2)(X2 � Y2)H) == jdet(X1 � Y1)j2 + jdet(X2 � Y2)j2 + 


( eX2 � eY2)(X1 � Y1)


2F ;where X1 � Y1 2 Ci+j , X2 � Y2 2 C�(i)+�(j).We want to show that (i+ j; �(i) + �(j)) is a permutation keeping 0 �xed (andthus (X1 � Y1; X2 � Y2) all belong to the same linear 
ode as X;Y vary).Let �(i + j) = �(i) + �(j): � is well-de�ned be
ause the sum of two distin
telements i; j 2 Z2� Z2 is equal to the sum of the elements in Z2� Z2 n fi; jg.In fa
t if i + j = k +m, either i + j = 0 and i = j; k = m, so that �(i + j) =2�(i) = 2�(k) = 0, or fi; j; k;mg = Z2�Z2, and �(i) + �(j) = �(k) + �(m).Moreover, � is surje
tive be
ause it is the original permutation � shifted by�(0): �(j) = �(j) + �(0). And �(0) = �(0) + �(0) = 0.It follows that, from the point of view of the 
oding gain, our 
ode is equivalentto the linear 
ode indu
ed by � .Other linear 
odes of length 2In the 
ase of linear 
odes not indu
ed by permutations, S 
ontains at least twopoints with the same �rst or se
ond 
oordinate, of the form (i; j) and (i; k) or(j; i) and (k; i). But then (0; t) or (t; 0) belong to S for some t, and the 
osetweight enumerator polynomial has �min = 1 (see table 6.21), so these 
odeshave a worse performan
e than those we analyzed in the previous paragraphs.6.5.2 Codes of length 3Let U = f(i; j; k) j i; j; k 2 Z2�Z2g. For the sake of simpli
ity, we only 
onsiderlinear 
odes S � U . Similarly to the 
ase of length 2, for every (i; j; k) 2 U we
an de�ned(Ci; Cj ; Ck) = minX2Ci;Y 2Cj ;Z2Ck(X;Y;Z)6=(0;0;0) 5�jdet(X)j2 + jdet(Y )j2 + jdet(Z)j2++ 


eY X


2F + 


 eZX


2F + 


 eZY 


2F� ;and the 
oset weight enumerator polynomialsAS(D) = X(i;j;k)2SDd(Ci;Cj ;Ck); ÂS(D) = X(i;j;k)2Snf0gDd(Ci;Cj ;Ck)For a given dimension n of the 
ode as an F2 -ve
tor spa
e, we sear
h for thebest possible 
oset weight enumerator polynomial with respe
t to >�.The 64 
odewords (i; j; k) 2 U 
an be divided in several groups a

ording tod = d(Ci; Cj ; Ck). Let a; b; 
 2 Z2� Z2 be distin
t and nonzero, and let � be apermutation; we 
an summarize the di�erent 
ases as in Table 6.5.2.If S is equal to the whole spa
e U , its 
oset weight generator fun
tion isAS(D) = 9D +D2 + 9D4 + 18D5 + 3D9 + 18D11 + 6D12



6.5 Coding with 
osets: a �rst example 111shape # of 
odewords d(Ci; Cj ; Ck)�(a; b; 
) 6 d = 1 + 1 + 1 + 3 + 3 + 3 = 12�(a; a; b) 18 d = 1 + 1 + 1 + 3 + 3 + 2 = 11�(a; a; a) 3 d = 1 + 1 + 1 + 2 + 2 + 2 = 9�(0; a; b) 18 d = 1 + 1 + 0 + 3 + 0 + 0 = 5�(0; a; a) 9 d = 1 + 1 + 0 + 2 + 0 + 0 = 4�(0; 0; a) 9 d = 1(0; 0; 0) 1 d = 2Table 6.2: A list of the 
odewords in U a

ording to their shape.Subgroups of order 4In this 
ase, it is 
lear that the 
odeS = f(00; 00; 00); (01; 10; 11); (10; 11; 01); (11; 01; 10)ggives rise to the best possible 
oset weight enumerator polynomial, that isAS(D) = D2 + 3D12; ÂS(D) = 3D12; �̂(S) = 12Subgroups of order 8In this 
ase S has dimension 3 as an F2 -ve
tor spa
e. We de�ne the followingsubspa
es of dimension 4 over F2 : I0 = f(i; j; k) j i = 0g, J0 = f(i; j; k) j j = 0g,K0 = f(i; j; k) j k = 0g.Then Grassmann's formula implies6 � dim(I0 + S) = dim(S) + dim(I0)� dim(S \ I0) = 7� dim(S \ I0)) dim(S \ I0) � 1Similarly, dim(S \ J0) � 1, dim(S \ K0) � 1. So, even in the best 
ase whendim(S \ I0) = dim(S \ J0) = dim(S \ K0) = 1, we have at least three nonzero
odewords with one digit equal to zero, giving at best a term 3D5 in the 
osetweight enumerator polynomial.Now 
onsider the 
ode S generated by (00; 01; 10); (01; 10; 00); (11; 11; 01):S = f(00; 00; 00); (00; 01; 10); (01; 10; 00); (11; 11; 01); (01; 11; 10);(11; 10; 11); (10; 01; 01); (10; 00; 11)gIt is easy to 
he
k thatAS(D) = D2 + 3D5 + 3D11 +D12; �̂(S) = 5This is the best 
ase for dim(S) = 3. Suppose by 
ontradi
tion that there existsS 0, dim(S 0) = 3, su
h that AS0(D) >� AS(D). The term D2 is always presentin a linear 
ode, and we have already observed that the term 3D5 
annot beavoided. The only possibility would be to have (at least) one more word (a; b; 
)su
h that d(Ca; Cb; C
) = 12.Suppose we already have one su
h word (i; j; k), where i; j; k are all distin
t anddi�erent from 00, and we want to add another, (a; b; 
).
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e-time blo
k 
oded modulation� If we 
hoose a = i, then sin
e (a; b; 
) 6= (i; j; k) we must 
hoose (a; b; 
) =(i; k; j). But then (i; j; k) + (i; k; j) = (i; i; i) 2 S 0, giving rise to the termD9 in AS0(D), and thus AS0 <� AS .� Then ne
essarily a 6= i. Without loss of generality (sin
e the order ofthe digits is unin
uential) we 
an suppose a = j. Then (a; b; 
) is ei-ther (j; i; k) or (j; k; i). In the �rst 
ase, (i; j; k) + (j; i; k) = (k; k; 0) 2S 0, introdu
ing the term D4 in AS0(D); but this is impossible be
auseAS0 >� AS by hypothesis. Then the only possibility we have left is that(i; j; k); (j; k; i); (i; j; k) + (j; k; i) = (k; i; j) 2 S 0.Now we know that there is a nonzero element in I0\S 0, of the form (0; a; b); wehave to dis
ard the option (a; b) 2 f(j; k); (k; i); (i; j)g be
ause in that 
ase S 0would 
ontain a 
odeword with two digits equal to 00 (in fa
t (i; j; k)+(0; j; k) =(i; 0; 0), (j; k; i)+(0; k; i) = (j; 0; 0), and (k; i; j)+(0; i; j) = (k; 0; 0) respe
tively).On the other hand, if (a; b) 2 f(k; j); (i; k); (j; i)g, then the 
ode would 
ontainthe 
odeword (i; i; i) = (i; j; k)+(0; k; j), or (j; j; j) = (j; k; i)+(0; i; k),(k; k; k) =(k; i; j) + (0; j; i) respe
tively, and again we would have AS0 <� AS .Subgroups of order 16We have dim(S) = 4. Grassmann's formula implies6 � dim(I0 + S) = dim(S) + dim(I0)� dim(S \ I0) = 8� dim(S \ I0)) dim(S \ I0) � 2;and in the same fashion we �nd that dim(S \ J0) � 2, dim(S \ K0) � 2. Thenthere are at least nine nonzero 
odewords with one digit equal to 00, and AS(D)
ontains at the least the term 9D5.Consider the 
ode generated by (00; 01; 10),(00; 11; 01),(11; 01; 00),(10; 00; 01):S = f(00; 00; 00); (00; 01; 10); (00; 11; 01); (11; 01; 00); (10; 00; 01); (00; 10; 11);(11; 00; 10); (10; 01; 11); (11; 10; 01); (10; 11; 00); (01; 01; 01); (11; 11; 11);(10; 10; 10); (01; 00; 11); (01; 10; 00); (01; 11; 10)gIts 
oset weight generator polynomial isAS(D) = D2 + 9D5 + 3D9 + 3D12and �̂(S) = 5. Again, we want to show that this 
ode is optimal under our
onditions, that is, that the presen
e of the term 3D9 
an't be avoided.We need to 
hoose three elements in S \ I0, without repeated digits; if the �rstis (0; i; j), the se
ond 
annot be (0; j; i) be
ause then (0; k; k) 2 S and AS would
ontain the term D4; it 
annot be (0; i; k) or (0; k; j) be
ause its sum with the�rst element would give one 
odeword with two digits equal to 00. So the three
odewords have to be f(0; i; j); (0; j; k); (0; k; i)g.Now let's 
onsider the three nonzero 
odewords in S \ J0: as in the previous
ase, the 
hoi
e of the �rst element determines the others and we 
an 
hooseeither the triple f(i; 0; j); (j; 0; k); (k; 0; i)g or f(j; 0; i); (i; 0; k); (k; 0; j)g.In the �rst 
ase, (0; i; j) + (i; 0; j) = (i; i; 0) 2 S, and AS would in
lude a termD4, so this option must be dis
arded.In the se
ond 
ase, (0; i; j) + (i; 0; k) = (i; i; i), (0; j; k) + (j; 0; i) = (j; j; j),(0; k; i)+(k; 0; j) = (k; k; k), whi
h proves that the term 3D9 in the 
oset weightenumerator polynomial 
an't be avoided.



6.6 Stru
ture of the quotient rings of G 113Subgroups of order 32Let's 
onsider the following subspa
es of dimension 2 over F2 :I = f(i; j; k) j j = k = 0g; J = f(i; j; k) j i = k = 0g; K = f(i; j; k) j i = j = 0gSin
e dim(S) = 5, Grassmann's formula implies that S \ I, S \ J , S \ K havedimension at least one. Then AS 
ontains the term D, and these 
odes are noteÆ
ient from the point of view of the determinant.6.6 Stru
ture of the quotient rings of GIn this se
tion we des
ribe the stru
ture of the two-sided ideals of G and ofthe 
orresponding quotients. As we have seen, the multipli
ative stru
ture ofG plays an important role when 
omputing the mixed terms in the minimumdeterminant, and it is 
onvenient for the quotient to have a ring stru
ture.In parti
ular, we want to �nd all the two-sided ideals whose norm is a power of1+ i; these 
an be espe
ially useful to build a binary partition 
hain like the onedes
ribed in x6.4.3. Unfortunately, we will see that the only two-sided idealswith this property are the trivial ones. We then analyze the stru
ture of thequotient rings, and �nd that they are rings of matri
es over non-integral rings.First of all, we need some further notions from non-
ommutative algebra; wewill see that the existen
e of two-sided ideals is related to the rami�
ation ofprimes over the base �eld. We will also show that O is a maximal order of A.6.6.1 Ideals, valuations and maximal orders6.24 (Prime ideals). Let � be an order, P a two-sided ideal of � (that is,the left and right order of I 
oin
ide with �). P is prime if it is nonzero and8I; J integer two-sided ideals of �, IJ � P) I � P or J � P.The proofs of the following theorems 
an be found in Reiner's book [19℄:Theorem 6.25. The two-sided ideals of an order � form a free group generatedby the prime ideals.Theorem 6.26. Let � be a maximal order in a quaternion algebra H. Thenthe prime ideals of � 
oin
ide with the maximal two-sided ideals of �, and thereis a one-to-one 
orresponden
e between the prime ideals P in H and the primeideals P of R, given by P = R \P.Moreover, �=P is a simple algebra over the �nite �eld R=P .6.27 (Valuations and lo
al �elds). A valuation v of K is a positive realfun
tion of K su
h that 8k; h 2 K,1. v(k) = 0, k = 0,2. v(kh) = v(k)v(h),3. v(k + h) � v(k) + v(h).
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e-time blo
k 
oded modulationv is non-ar
himedean if v(k + h) � max(v(k); v(h)) 8k; h 2 K; it is dis
rete ifv(K�) is an in�nite 
y
li
 group.K 
an be endowed with a topology indu
ed by v in the following way: a neigh-borhood basis of a point k is given by the setsU"(k) = fh 2 K j v(h� k) < "gK will be 
alled 
omplete if it is 
omplete with respe
t to this topology.If v is non ar
himedean, the setRv = fk 2 K j v(k) � 1gis a lo
al ring, 
alled the valuation ring of v. The quotient Rv=Pv, where Pv isthe unique maximal ideal of Rv, is 
alled the �eld of residues of K.K is a lo
al �eld if it is 
omplete with respe
t to a dis
rete valuation v and ifRv=Pv is �nite.6.28 (Pla
es). A pla
e v of K is an immersion iv : K ! Kv into a lo
al �eldKv. If v is non-ar
himedean, we say that it is a �nite pla
e; otherwise, that itis an in�nite pla
e.The �nite pla
es ofK arise from dis
rete P -adi
 valuations ofK, where P rangesover the maximal ideals in the ring of integers R of K. (Re
all that the ringof integers in a number �eld is always a Dedekind domain, and so the maximalideals 
oin
ide with the prime ideals).Here we re
all a few well-known fa
ts about rami�
ation in 
ommutative exten-sions: let L be a separable extension of degree d of K, and P a prime ideal ofK. In general, P is not a prime in L, and admits a unique de
omposition withrespe
t to the primes of L: P = pe11 pe22 � � � perr ;where p1; : : : ; pr are distin
t and are 
alled the primes over P .Proposition 6.29. Let OL be the ring of integers of L: then for ea
h pi overP , OL=pi is a �nite extension of the �nite �eld R=P . The degree fi of thisextension is 
alled the inertial degree of pi over P , and the following relationholds: d = rXi=1 eifi6.30. We say that P� is rami�ed if 9i su
h that ei > 1� is totally rami�ed if r = 1, e1 = d, f1 = 1, that is, P = pd,� is unrami�ed if ei = 1 8i = 1; : : : ; r,� splits 
ompletely if it is unrami�ed and r = d, that is, fi = 1 8i = 1; : : : ; r,� is inert if fi = 1 8i = 1; : : : ; r.
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ture of the quotient rings of G 1156.31 (Rami�ed pla
es). Let H be a quaternion algebra overK, and P a pla
eof K.Consider the K-module HP = H
K KP ; HP is isomorphi
 to a matrix algebraMr(D) over a skew �eld D of 
enter KP and index mP over KP ; mP is 
alledthe lo
al index of H at P . We say that P is rami�ed in H if mP > 1.Given a maximal order �, the set Ram(H) of rami�ed pla
es of H is related toa parti
ular two-sided ideal of �:6.32 (Di�erent and dis
riminant). Let � be an order. The set�� = fx 2 H j tr(x�) � Rgis a two-sided ideal, 
alled the dual of �. Its inverse D = (��)�1 is a two-sidedintegral ideal, 
alled the di�erent of �. If fw1; : : : ; w4g is a basis of � as a freeR-module, (n(D))2 = R det(tr(wiwj))The ideal n(D) of R is 
alled the redu
ed dis
riminant of � and is denoted byd(�).Proposition 6.33. If �;�0 are two orders and �0 ( �, then d(�0) ( d(�).The notion of rami�
ation for quaternion algebras is a generalization of thenotion of rami�
ation for �eld extensions:Theorem 6.34. Let � be a maximal order in H. For ea
h pla
e P of K, letmP be the lo
al index of H at P , and let P be the prime ideal of � 
orrespondingto P (see Theorem 6.26). Then mP > 1 only for a �nite number of pla
es P ,and P� = PmP ; D = YP2Ram(H)PmP�1Proposition 6.35. Let H be a quaternion algebra unrami�ed at in�nity.A ne
essary and suÆ
ient 
ondition for an order � to be maximal is thatd(�) = YP2Ram(H)n1PIn the 
ase of in�nite pla
es P , the P -adi
 
ompletion 
an be R (real primes)or C (
omplex primes). Complex primes are never rami�ed. [19℄Theorem 6.36. The two-sided ideals of a maximal order � form a 
ommutativegroup generated by the ideals of R and the ideals of redu
ed norm P , where Pvaries over the prime ideals of R that are rami�ed in H.Moreover, 
onsider the normalizer N(�) = fx 2 H j x�1�x = �g of �. ThenN(�)K��� �= Zm2 , where m is the number of prime divisors of D.6.6.2 Stru
ture of the quotient rings of GRe
all the de�nition of the division algebra A in (6.3):A = �� x1 x2i�x2 x1 � ; x1; x2 2 Q(i; �)�
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 spa
e-time blo
k 
oded modulationAs we have seen in x6, O = Z[i; �℄�Z[i; �℄j is a Z[i℄-order of A, and the GoldenCode is (up to a s
aling fa
tor 1p5 ) the ideal G = �O, where � = 1+ i��; we haveseen that it is a two-sided prin
ipal ideal.G is also a prime ideal be
ause of Theorem 6.26, sin
e G \ Z[i℄ = (2 + i) is aprime ideal of Z[i℄.Then O=p5G is a simple algebra over Z[i℄=(2+ i) �= F5 .Observe that the prime ideals (2+ i) and (2� i) of Z[i℄ are both rami�ed in A:in fa
t (2 + i) = (�)2; and (2� i) = (�0)2; where �0 = 1� i��(Remark that � = i���, �0 = �i�� ��0).Proposition 6.37. O is a maximal order.Proof. In the 
ase of O, the in�nite primes are 
omplex be
ause Q(i) is 
omplex.Therefore the 
onditions of Proposition 6.35 are satis�ed.We 
an 
ompute det(tr(wiwj)), for the basis fw1 = 1; w2 = �; w3 = j; w4 = �jgof O: (wiwj)1�i;j�4 = 0BB� 1 � j �j� �2 �j �2jj ��j i i���j �j �i �i 1CCAdet(tr(wiwj)) = det0BB� 2 1 0 01 3 0 00 0 2i i0 0 i �2i 1CCA = 25Therefore d(O) = 5Z[i℄.If O were stri
tly 
ontained in another order O0, d(O0) would be stri
tly largerthan 5Z[i℄. But we know from Proposition 6.35 that d(O0) would be the produ
tof all rami�ed primes of H; in parti
ular it should be 
ontained in (2 + i) and(2 � i). But then it would be 
ontained in 5Z[i℄, a 
ontradi
tion. Therefore Ois a maximal order, and G is a normal ideal.As a 
onsequen
e of the fa
t that O is maximal, from Proposition 6.35 we alsolearn that 2 + i and 2� i are the only rami�ed primes in H.Then Theorem 6.36 implies that the prime two-sided ideals of O are either ofthe form pO, where p prime in Z[i℄, or belong to f�O; �0Og.It follows that the only two-sided ideals of G whose norm is a power of 1+ i arethe trivial ideals of the form (1 + i)kG.The quotient ring G=(1 + i)GConsider the prime ideal (1 + i)O. It is easy to 
he
k that G and (1 + i)O are
oprime ideals, that is G + (1 + i)O = O and as a 
onsequen
e, G \ (1 + i)O =G(1 + i)O = (1 + i)G. Re
all the following basi
 result:



6.6 Stru
ture of the quotient rings of G 117Theorem 6.38 (Third Isomorphism Theorem for rings). Let I and J beideals in a ring R. Then II \ J �= I + JJPutting I = G and J = (1 + i)O, we getG(1 + i)G �= O(1 + i)O (6.24)If �G : G ! G=(1+i)G and �O : O ! O=(1+i)O are the 
anoni
al epimorphisms,the ring isomorphism in (6.24) is simply given by �G(g) 7! �O(g).Theorem 6.26 implies that O=(1+ i)O is a simple algebra over Z[i℄=(1+ i)�= F2 .We denote the image of x 2 O through the 
anoni
al epimorphism O ! O=(1+i)O with [x℄.Lemma 6.39. O=(1 + i)O is isomorphi
 to the ring M2(F2 ) of 2� 2 matri
esover F2 .Proof. Re
all the following well-known lemma [14℄:Lemma 6.40. Let R be a ring with identity, I a proper ideal of R, M a freeR-module with basis X and � :M !M=IM the 
anoni
al epimorphism. ThenM=IM is a free R=I-module with basis �(X) and j�(X)j = jX j.We know that O=(1+i)O is a Z[i℄-module; the lemma implies that it is also a freeZ[i℄=(1+i)-module, that is a ve
tor spa
e over F2 , whose basis is f[1℄; [�℄; [j℄; [�j℄g.We de�ne an homomorphism of F2 -ve
tor spa
es ' : O=(1 + i)O !M2(F2 ) byspe
ifying the images of the basis:'([1℄) = 1; '([�℄) = �0 11 1� ; '([j℄) = �0 11 0� ; '([�j℄) = '([�℄)'([j℄)It is one-to-one sin
e '([1℄); '([�℄); '([j℄); '([�j℄) are linearly independent.In order to prove that ' is also a ring homomorphism, it is suÆ
ient to verifythat '(wiwj) = '(wi)'(wj) for all pairs of basis ve
tors wi; wj ; the only non-trivial 
ases are'([�℄)2 = �0 11 1�2 = �1 11 0�2 = '([� + 1℄) = '([�2℄);'([j℄)2 = 1 = '([1℄) = '([i℄);'([��j℄) = '([(1 + �)j℄) = '([j + �j℄) = �0 11 0�+�1 01 1� = �1 10 1� == �0 11 0��0 11 1� = '([j℄)'([�℄)Remark 6.41. Clearly M2(F2 ) has no proper two-sided ideals; its only leftideals are I0 = ��0 a0 b� : a; b 2 F2� ;I1 = ��a ab b� : a; b 2 F2� ;I1 = ��a 0b 0� : a; b 2 F2� ;
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 spa
e-time blo
k 
oded modulationall of index 4.Re
all that G is isometri
 to p5Z[i℄4, and a 
anoni
al basis is given bye1 = �; e2 = ��; e3 = �j; e4 = ��j (6.25)The 
orresponding elements of M2(F2 ) aree1 = �0 11 1� ; e2 = �1 11 0� ; e3 = �1 01 1� ; e4 = �1 10 1� (6.26)Remark that the Hamming weight of a word in G=(1 + i)G with respe
t to thebasis (6.26) is equal to the minimum Eu
lidean norm over all the latti
e pointsin the 
orresponding 
oset.It is easy to 
he
k that the only invertible elements (the matri
es with full rank)are e1; e2; e3; e4; e1 + e2 = 1; e3 + e4 = '(j)It is easy to see that their lifts to G of non-invertible elements have a higherdeterminant:Remark 6.42. If X 2M2(F2 ) n f0g is non-invertible,minY 2G; [Y ℄=X jdet(Y )j2 � 2Proof. �G(Y ) is non-invertible in G=(1 + i)G if and only if its determinant isnon-invertible in Z[i℄=(1 + i), that is, det(Y ) = eY Y 2 (1 + i) n f0g if X 6= 0,sin
e H is a division ring.Then ���det(eY Y )��� = jdet(Y )j2 � 2.The quotient ring G=2GAgain, G and 2O are 
oprime and so G2G �= O2O .Lemma 6.43. O=2O is isomorphi
 to the ring M2(F2 [i℄) of 2�2 matri
es overthe ring F2 [i℄.Proof. First of all, Lemma 6.40 implies that O=2O is a free Z[i℄=2-module, thatis a free F2 [i℄-module, of dimension 4. As in the previous 
ase, we 
an 
onstru
tan expli
it homomorphism of F2 [i℄-modules � : O=2O !M2(F2 [i℄):�([1℄) = 1; �([�℄) = �1 + i 1i i� ; �([j℄) = �0 1i 0� ; �([�j℄) = �([�℄)�([j℄)Again, it is easy to 
he
k that the images of the basis elements are linearly inde-pendent and therefore � is one-to-one. It is also surje
tive sin
e the 
ardinalitiesof the domain and 
odomain are the same.Moreover, � is a ring homomorphism:�([j℄)2 = i1 = �([j2℄);�([�2℄) = �([� + 1℄) = �i 1i i+ 1� = �1 + i 1i 1�2 ;�([j℄)�([�℄) = � i i1 + i i� = �([(1 + �)j℄)



6.6 Stru
ture of the quotient rings of G 119Remark 6.44. In order to �nd an expli
it isomorphism between G=2G andM2(F2 ), 
onsider the following diagram, where � : O=2O ! M2(F2 [i℄) is themapping de�ned in Lemma 6.43:p5G �����! G=2G '����! O=2O �����!M2(F2 [i℄)The basis f�; ��; �j; ��jg of p5G as a Z[i℄-module is also a basis of G=2G asan F2 [i℄-module. The isomorphism ' is simply the 
omposition of the in
lusionp5G ! O and the quotient mod (1+ i)O. We 
an 
ompute the images throughthe isomorphism � of the basis ve
tors: re
alling that� = 1 + i� i�; �� = � � i; �j = (1 + i� i�)j; ��j = (� � i)j;we get �(�) = �(1 + i) + i�(�) = �0 i1 i��(��) = �(�) + �(i) = �1 1i 0��(�j) = �(�)�(j) = �0 i1 i��0 1i 0� = �1 01 1��(��j) = �(��)�(j) = �1 1i 0��0 1i 0� = �i 10 i�Re
all that there is a one-to-one 
orresponden
e between the ideals of G that
ontain 2G and the ideals of G=2G. Therefore M2(F2 [i℄) has only one propertwo-sided ideal, (1 + i)M2(F2 [i℄).Also in this 
ase, the lifts Y of non-invertible elements in G will have non-invertible determinant, that is jdetY j2 � 2.In general, we know that O=(1+i)kO is a free Z[i℄=(1+i)k- module of dimension4 (see Lemma 6.40). The following proposition holds:Proposition 6.45.1. When k = 2n is even, Z[i℄(1+i)k �= Z2n[i℄.2. When k = 2n + 1 is odd, Z[i℄(1+i)k = Z[y℄(y2�2y+2;2ny) �= Z2n+1 � Z2ny, withy2 = 2y � 2.Proof.1. When k = 2n, from the Third Isomorphism Theorem we get:Z[i℄(1 + i)k = Z[x℄(x2 + 1; 2n) �= Z[x℄=2n(x2 + 1; 2n)=2n = Z2n[x℄x2 + 1 = Z2n[i℄2. When k = 2n+ 1, Z[i℄2n(1 + i) �= Z[x℄(x2 + 1; 2n(1 + x))
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 spa
e-time blo
k 
oded modulationPutting y = 1 + x, this is isomorphi
 toZ[y℄(y2 � 2y + 2; 2ny) = Z[y℄(y2 � 2y + 2; 2ny; 2n+1)sin
e 2n+1 = 2n(y2 � 2y + 2) � 2ny(y � 2) 2 (y2 � 2y + 2; 2ny). Wehave a surje
tive ring homomorphism from Z[y℄=(y2� 2y + 2; 2ny; 2n+1)to Z2n+1�Z2ny: given a polynomial p(y) we 
an take the remainder (mod(y2 � 2y + 2))- a polynomial of degree 1 - and redu
e the 
oeÆ
ients of 1and y by 2n+1 and 2n respe
tively.This map is also surje
tive, sin
e the two rings have the same 
ardinality:Remark 6.46. #� Z[i℄(1 + i)k+1� = 2kIt 
an be proved by indu
tion on k:Z[i℄(1 + i)k �= Z[i℄=(1+ i)k+1(1 + i)k=(1 + i)k+1) # �Z[i℄=(1+ i)k+1� = # �Z[i℄=(1+ i)k+1�# �(1 + i)k=(1 + i)k+1� == # �Z[i℄=(1+ i)k+1�#(Z[i℄=(1+ i))sin
e Z[i℄=(1 + i) �= (1 + i)k=(1 + i)k+1 (where the ring isomorphism isgiven by y 7! y(1 + i)k).We 
an �nd an expli
it matrix representation ofO=(1+i)kO overZ[i℄=(1+i)kZ[i℄also for k = 3 and k = 4:Lemma 6.47. O4O �=M2(Z4[i℄).Proof. As in the previous 
ases, it is enough to �nd matrix representations of �and j su
h that 1; �; j; �j are linearly independent over Z4[i℄:� = �i� 1 1�i 2� i� ; j = �0 1i 0�In fa
t �2 = �i� 1 1�i 2� i� = � + 1;�j = � i i� 12i+ 1 �i � = j(1� �)Sin
e M2(Z4[i℄) and O4O have the same 
ardinality be
ause of Lemma 6.40, thisrepresentation is a ring isomorphism.The same matrix representations of � and j 
an be used for k = 3, re
allingthat i = y � 1:Proposition 6.48. O2(1+i)O �=M2(Z4�Z2[y℄), where y2 = 2y � 2.



6.7 The repetition 
ode 121Proof. The proof is similar to the previous one. We de�ne� = �y � 2 11 + y �1 + y� ; j = � 0 1y � 1 0�Computing produ
ts mod (4; 2y), we get�2 = ��1 + y 11 + y y� = � + 1;�j = ��1 + y y + 2�1 1 + y� = j��6.7 The repetition 
odeIn this paragraph we want to illustrate with a simple example how the proper-ties of the minimum determinant des
ribed in x6.4.1 in
uen
e the a
tual 
odeperforman
e. We 
onsider a blo
k 
ode of length 2, the lift of the repetition
ode over the 
osets of (1 + i)G: if � : G ! G=(1 + i)G is the proje
tion on thequotient ring, we de�neC = fX = (X1; X2) 2 G2 j �(X1) = �(X2)gThe fa
t that the 
odewords of Hamming weight 1 belong to the 0 
oset ensuresthat the �min for C is equal to the minimum square determinant in (1 + i)G,whi
h is 4: in fa
t, if �(X1) = �(X2) 6= 0, det(XXH ) = det(X1)2 + det(X2)2 +


 eX2X1


2F � (jdet(X1)j+ jdet(X2)j)2 � 4 be
ause of Lemma 6.15 and Remark6.17.A simple variation of the repetition s
heme 
onsists in 
hoosing any bije
tion hof G=(1 + i)G and de�ningCh = fX = (X1; X2) 2 G2 j �(X2) = h(�(X1))gIn the 
ase of the repetition 
ode, suppose that �(X1) = �(X2) = Ci. If Ci isan invertible element in M2(F2 ), theneCiCi = det(Ci)1 = 1 = e1 + e2in the basis (6.26), and so the minimum determinant of a \lifted" 
odewordX 2 ��1( eCiCi) is also 1, and the minimum of kXk2F is 2.If on the other side Ci 
orresponds to a non-invertible, nonzero element inM2(F2 ), then minX2��1( eCiCi) jdet(X)j � 2 (see Remark 6.42). Thus in the �rst
ase det(XXH) � 4, in the se
ond det(XXH) � 8.This remark suggests that it might be more 
onvenient to 
onsider a grouphomomorphism h :M2(F2 )!M2(F2 ) whi
h maps invertible elements into non-invertible elements, raising the minimum determinant for Ci 6= 0 to 9. Su
ha fun
tion is not diÆ
ult to de�ne: for example, re
alling the de�nition of thebasis fe1; e2; e3; e4g in equation (6.26), we 
an takeh(e1) = e1+e2+e4; h(e2) = e2+e3+e4; h(e3) = e1+e2+e3; h(e4) = e1+e3+e4



122 Algebrai
 spa
e-time blo
k 
oded modulationIn the 
ase of 4�QAM modulation, an exhaustive sear
h on the 65536 pointsin the �nite latti
e shows that Ch is indeed better than C.2 The asymptoti

oding gain estimate is the same for both 
odes: using 4-QAM 
onstellations,the 
hoi
e of a 
oset requires 4 information bits, while the 
hoi
e of a point ina given 
oset requires 4 more bits. Ea
h 
odeword then 
arries 12 informationbits, yielding a spe
tral eÆ
ien
y of 3 bp
u (bits per 
hannel use).Then we 
an 
ompare these s
hemes with the un
oded Golden Code at 3 bp
u,using 4-QAM 
onstellations for the symbols a; 
 and BPSK (Binary Phase ShiftKeying) 
onstellations, 
onsisting of the two points �� 12 ; 12	, for the symbolsb; d in ea
h Golden 
odeword. The average energy per symbol is ES = 0:5(0:5+0:25) = 0:375. 
as = p�min;1=ES;1p�min;2=ES;2 = 2=0:51=0:375 = 1:5;This 
omputation gives a theoreti
al gain of at least 10 log10(1:5) dB = 1:7 dB.Simulation resultsFigure 6.2 shows the performan
e of the 
odes CId and Ch, whi
h gain 2:4 dBand 2:9 dB respe
tively over the un
oded s
heme at 3 bp
u at the frame errorrate of 10�3, supposing that the 
hannel is 
onstant for 2 time blo
ks.6.8 Golden Reed-Solomon CodesWe now go ba
k to the original problem stated in x6.4, that is, how to improvethe performan
e of the Golden Code in the slow fading setting, using blo
k
odes over G. We would like to 
ompensate the diversity loss due to the slow
hanging of the 
hannel with an in
rease of the Hamming distan
e of the 
odeover the alphabet G. We will 
ombine the 
hoi
e of a modulation s
heme andof a maximum-distan
e separable error-
orre
ting 
ode.Remark 6.49. As we have seen in the previous se
tions, in addition to theminimum Hamming distan
e, also the multipli
ative stru
ture and the mini-mum number of non-invertible 
omponents have a signi�
ant in
uen
e on the
oding gain of a blo
k 
ode design. Thus, an optimal solution in order to keeptra
k of these parameters and take advantage of the ring stru
ture would be to
onsider error-
orre
ting 
odes based on M2(F2 [i℄). However, su
h a proje
t,albeit interesting, would be diÆ
ult to implement, sin
e at present very littleis known about 
odes over non-
ommutative rings, and no eÆ
ient de
odingalgorithms are available.2In fa
t we 
an 
ompute the fun
tion�h(q) = XX2Ch = qDet(XXH)In the 
ase of the repetition 
ode, the �rst terms in the series are�Id(q) = 1 + 66q4 + 120q8 + 48q10 + 202q16 + : : :while for the fun
tion h just de�ned,�h(q) = 1 + 24q4 + 61q8 + 24q9 + 8q10 + 74q12 + 58q13 + 74q14 + 108q16 + : : :
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Uncoded Golden Code at 3bpcu, channel constant for 2 blocks
Repetition code 
Variation on the repetition codeFigure 6.2: Performan
e of the repetition 
ode CId and of the variation Ch at 3 bp
u
ompared with the un
oded Golden Code s
heme with the same spe
tral eÆ
ien
y.The 
hannel is supposed to be 
onstant for 2 time blo
ks.We also remark that in the 
ase of 
odes over rings, a distin
tion must be madebetween the rank (minimum number of generators as a module) and the freerank (maximum rank of the free submodules of the 
ode), so that in general thenumber of 
odewords might be smaller than the power of the 
ardinality of thering to the rank of the 
ode. In the 
ase of non-
ommutative rings, the rankmight not even be well-de�ned.We 
hoose shortened Reed-Solomon 
odes instead be
ause they are maximumdistan
e separable and their implementation is very simple; we will restri
t ourattention to the additive stru
ture, de�ning a group isomorphism between G=2Gand the �nite �eld F256 :6.8.1 The 4-QAM 
aseUsing 4-QAM 
onstellations (see Figure 4.2) to modulate ea
h of the 4 symbolsa; b; 
; d in a Golden 
odewordX = 1p5 � �(a+ b�) �(
+ d�)��i(
+ d��) ��(a+ b��) � ;give a total of 256 
odewords, one in ea
h 
oset of G=2G �= M2(F2 [i℄). In this
ase, simply by 
ombining an (n; k; d) error 
orre
ting 
ode with the quotientG=2G, we 
an be sure to a
hieve minimum Hamming distan
e d. On the 
on-trary, if we have more than one point per 
oset and 
onsider the lifts of linear
odes on the quotient, we would get blo
ks of Hamming weight 1 that are liftsof the 
odeword 0 in the error-
orre
ting 
ode.



124 Algebrai
 spa
e-time blo
k 
oded modulationWe 
onsider an (n; k; d) Reed-Solomon 
ode over F256 . We re
all that these
odes are maximum distan
e separable, that is k = n� 1 + d.Ea
h quadruple (a; b; 
; d) of 4-QAM signals 
orresponds to 8 information bits;ea
h blo
k of n Golden 
odewords will 
arry 8k information bits.We des
ribe in detail ea
h step of the en
oding and de
oding pro
edure:1. Reed-Solomon en
oding:Ea
h information byte 
an be seen as a binary polynomial of degree � 8, thatis, an element of the Galois Field F256 . A random information message of kbytes, seen as a ve
tor U = (U1; : : : ; Uk) 2 Fk256 is en
oded into a 
odewordV = (V1; : : : ; Vn) 2 Fn256 using the RS(n; k; d) shortened 
ode C.In order to obtain the generator matrix for the shortened 
ode C, we start withthe \long" 
ode RS(255; 255� d+1; d) [16℄. As a generator polynomial we 
antake g(x) = d�1Yi=1(x� �i) = 
0 + 
1x+ : : :+ 
d�2xd�1 + xd�1; 
i 2 F2568iwhere � is a primitive element, that is a generator of the multipli
ative groupF�256 . � is a root of an irredu
ible (primitive) polynomial p of degree 8.3 The
orresponding generator matrix isG = 2666666664 
0 
1 
2 � � � 1 0 � � � 0 0 00 
0 
1 
2 � � � 1 � � � 0 0 00 0 
0 
1 
2 � � � 1 0 0 0... . . . . . . . . . ...... . . . . . . . . . ...0 � � � � � � � � � 
0 
1 
2 � � � 1
3777777775Choosing only the rows whose �rst 255 � n 
omponents are equal to 0 anddeleting the null 
olumns, we obtain the generator matrix G for the (n; k; d)shortened Reed-Solomon 
ode.42. From the Galois field F256 to the matrix ring M2(F2 [i℄):We now have a ve
tor in Fn256 ; we want to translate ea
h 
omponent into anelement of M2(F2 [i℄).3There are 16 primitive polynomials of degree 8. For this simulation I have arbitrarily
hosen p(x) = x8 + x6 + x5 + x+ 1.The 
oeÆ
ients of the generator polynomial g in the Galois Field F256 
an be easily 
omputedusing any symboli
 manipulation software, su
h as Maple.4In the 
ase of a (4; 2; 3) shortened Reed-Solomon 
ode, the generator matrix isG = � �3 �2 + � 1 00 �3 �2 + � 1 �For our purposes, it is mu
h better to obtain a systemati
 version of the 
ode, that is onethat preserves the �rst k bits of the input. This equivalent version 
an be obtained simply byperforming the Gauss redu
tion algorithm over F256 , yielding the matrixG = � 1 0 1 + �+ �2 + �3 + �4 + �5 + �6 + �7 1 + �+ �30 1 �3 + �4 + �6 1 + �2 + �6 + �7 �We remark that in order to speed up the 
omputation of produ
ts over F256 , a table storingthe 
onversions between the representation as a polynomial of degree less than 7 in � and therepresentation as a power of � 
an be 
omputed on
e and for all.
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an represent the elements of M2(F2 [i℄) as bytes, simply by ve
torising ea
hmatrix and separating real and imaginary parts: for example�a+ bi e+ fi
+ di g + hi� 7! (a; b; 
; d; e; f; g; h) 2 f0; 1g8Sin
e we are only working with the additive stru
ture, we 
an identify F256 andM2(F2 [i℄), whi
h are both F2 -ve
tor spa
es of dimension 8. A

ording to oursimulation results, it seems that the 
hoi
e of the linear identi�
ation has verylittle in
uen
e on the 
ode performan
e.3. From the matrix ring M2(F2 [i℄) to the quotient ring G=2G:For this step we make use of the isomorphism of F2 [i℄-modules ' Æ � : G=2G !M2(F2 [i℄) des
ribed in Remark 6.44. In ve
torized form, with respe
t to thebases f�; ��; �j; ��jg and��1 00 0� ; �0 01 0� ; �0 10 0� ; �0 00 1�� ;this is given by the matrix A = 0BB� 0 1 1 i1 i 1 0i 1 0 1i 0 1 i 1CCAIn pra
ti
e, it is suÆ
ient to send ea
h matrix M 2M2(F2 [i℄) toA�1(M) = (<(a);=(a);<(b);=(b);<(
);=(
);<(d);=(d));with a; b; 
; d 2 Z2[i℄ = Z[i℄=2Z[i℄. Taking the 
orresponding 
oset leaders inZ[i℄, we obtain the Golden 
odeword1p5 ��(a+ b�) �(
+ d�)i��(
+ d��) ��(a+ b��)�4. Golden Code en
oding:For ea
h of the n ve
tor 
omponents, the symbols a,b,
,d 2 Z2[i℄4 are modulatedinto four 4-QAM signals, and then en
oded into a Golden 
odeword using the(ve
torized, real) generator matrix R of Remark 6.13. Thus we have obtained aGolden blo
k X = (X1; X2; : : : ; Xn) = �(V), where � : Fn256 ! Gn is inje
tive.5. Channel simulation:We suppose the 
hannel matrix H to be 
onstant during the transmission ofthe n Golden 
odewords. This assumption 
an be 
onsidered realisti
 for a slowfading 
hannel if n < 100 (see x4.2.1). The re
eived signal isY = HX+W;where W is the Gaussian noise.6. Soft de
oding:In a �rst phase, for ea
h 
omponent i = 1; : : : ; n of the re
eived ve
tor Y andfor ea
h modulated point Z(j), the Eu
lidean distan
ed(i; j) = 


HZ(j) � Yi


2
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t=2 t=3 t=4t=0 t=1

Figure 6.3: A simpli�ed diagram showing the trellis asso
iated to the (4; 2; 3)-Reed-Solomon 
ode.is 
omputed and stored in memory.In a se
ond phase, ML de
oding or soft de
oding is performed (see equation(4.4)): we sear
h for the minimum of the Eu
lidean distan
enXi=1 kHZi � Yik2over all the images Z = �(V0) of Reed-Solomon 
odewords. The Viterbi algo-rithm over the trellis diagram for the RS 
ode may be used for this sear
h (for areferen
e see for example [2℄): if the generator matrix of the RS 
ode is system-ati
, the partial distan
e Pki=1 kHZi � Yik2 
an be obtained dire
tly without
omputing the whole Reed-Solomon 
odeword, and the points for whi
h thisdistan
e is too big 
an be dis
arded.In the 
ase of a RS(4,2,3) 
ode, the dimensions kt of the state spa
es Zt at timet in the trellis as F256 -ve
tor spa
es are respe
tively k1 = 1, k2 = 2, k3 = 1,k4 = 0. By ex
hanging the fourth and se
ond 
oordinate in the trellis, thede
oding pro
ess is redu
ed to �ndingX̂ = argminX2 0�0� minX=(X1;X2;X3;X4)Xi 6=2 kYi �HXik21A+ 

Y2 +HX2

21Aover all the blo
ks X = �(V) arising from Reed-Solomon 
odewords (see �gure6.3).Performan
eIn the 4-QAM 
ase, the spe
tral eÆ
ien
y of the Golden Reed-Solomon 
odesis given by 8k bits2n 
hannel uses = 4kn bp
uFrom Proposition 6.20, we get a lower bound for �min: for a Golden Reed-Solomon 
ode of minimum Hamming distan
e d in G, �min � d25 . Thus we
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oding gain for these 
odes (see x4.2.1),by 
omparing them with the un
oded Golden Code with the same spe
traleÆ
ien
y. In the 
ase of 2 bp
u, we 
an 
onsider a BPSK 
onstellation on thereal axis.� 2 bp
uIf k = n2 , the spe
tral eÆ
ien
y is 2bp
u. Comparing the 4-QAM, (n; k; d)Golden-RS design (ES = 0:5) with the un
oded Golden Code using BPSK(ES = 0:25), we get an asymptoti
 
oding gain of:
as = p�min;1=Es;1p�min;2=Es;2 = d=0:51=0:25 = d2 (6.27)� 3 bp
uIf k = 34n, the spe
tral eÆ
ien
y is 3 bp
u. Comparing the 4-QAM,(n; k; d) Golden-RS design (ES = 0:5) with the un
oded Golden Codeusing BPSK for the symbols a and 
 and 4-QAM for the symbols b and d(ES = 0:5(0:5 + 0:25) = 0:375), we get an asymptoti
 
oding gain of:
as = p�min;1=ES;1p�min;2=ES;2 = d=0:51=0:375 = 3d4 (6.28)Simulation resultsFigure 6.4 shows the performan
e 
omparison of the Golden-RS 
ode (4; 2; 3)with the un
oded s
heme at the spe
tral eÆ
ien
y of 2 bp
u.Assuming the 
hannel to be 
onstant for 4 blo
ks, the Golden-RS 
ode outper-forms the un
oded s
heme by 6:1 dB.This gain is unexpe
tedly high 
ompared with the theoreti
al 
oding gain (6.27)for d = 3, whi
h is 10 log10 �d2� dB = 1:7 dB. The rough estimate (6.27) is basedon the worst possible o

urren
e, that of a 
odeword of Hamming weight 3 inwhi
h all three non-zero 
omponents 
orrespond to invertible elements in thequotient.However, we 
an verify empiri
ally that in the 4-QAM 
ase and with our 
hoi
eof the 
ode, this event does not take pla
e and in fa
t the a
tual value for �minfound by 
omputer sear
h is p34, giving a rough estimate for the gain of 4:6 dB,whi
h is mu
h 
loser to the observed value.This favorable behavior might be due to the fa
t that the 
hosen 
onstella-tion 
ontains only one point in ea
h 
oset, so that the 
odewords of Hammingdistan
e 3 are few.The soft de
oding method has the drawba
k of being slow, whi
h makes itunsuitable to use with longer Reed-Solomon 
odes. A faster (if suboptimal) softde
oding algorithm, su
h as sta
k de
oding, 
ould make up for this loss of speedwhile still retaining most of the 
oding gain.Hard de
oding 
aseIn an early version of the algorithm des
ribed in x6.8.1 we repla
ed Step 6 withthe following steps:
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Golden−RS(4,2,3) with soft decoding
Golden−RS (4,2,3) with hard decoding
Uncoded Golden Code constant for 4 blocks at 2bpcuFigure 6.4: Comparison between hard and soft de
oding for the RS(4; 2; 3) 
ode at 2bp
u. The �rst method a
hieves a gain of only 1:1 dB over the un
oded 
ase, 
omparedto the 6:1 dB of the se
ond.6. n separate Sphere De
oders:We apply an 8-bit Sphere De
oder separately on ea
h of the n re
eived words(Y1; : : : ; Yn), obtaining the estimate (X̂1; : : : ; X̂n). The signal is then demodu-lated, and we apply to ea
h byte the inverse mappings of Steps 3 and 2 su

es-sively, obtaining a ve
tor (V̂1; : : : ; V̂n) in Fn256 .7. Reed-Solomon de
oding:The re
eived sequen
e (V̂1; : : : ; V̂n) doesn't ne
essarily belong to the RS 
ode,so we still need to perform RS de
oding, yielding the estimate (Û1; : : : ; Ûk).Finally, we 
ompute the error probability, 
omparing (Û1; : : : ; Ûk) with the ini-tial message (U1; : : : ; Un) of Step 1, and re
ord one word error whenever theyare di�erent.This \hard" de
oding has the advantage of speed and allows to use longer Reed-Solomon 
odes with high minimum distan
e. However it is highly suboptimal,sin
e it substitutes the de
ision on the Eu
lidean distan
e with poor partialde
isions on ea
h 
oordinate. Performan
e simulations show that with thismethod the 
oding gain is almost entirely 
an
elled out (see �gure 6.4).Simulation results:� 2 bp
u: Figure 6.5 shows the performan
e 
omparison of the Golden-RS 
odes with hard de
oding with the un
oded s
heme at the spe
traleÆ
ien
y of 2 bp
u.Assuming the 
hannel to be 
onstant for 4, 8 and 12 blo
ks respe
tively, the(4; 2; 3), (8; 4; 5) and (12; 6; 7) Golden-RS 
odes outperform the un
odeds
heme at the same spe
tral eÆ
ien
y by 1:1 dB, 1:7 dB and 2:8 dB at
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Uncoded GC, constant for 4 blocks
Golden−RS(8,4,5)
Uncoded GC, constant for 8 blocks
Golden−RS(12,6,7)
Uncoded GC constant for 12 blocksFigure 6.5: Performan
e of (4; 2; 3), (8; 4; 5), and (12; 6; 7) Golden Reed-Solomon
odes with \hard de
oding" at 2 bp
u 
ompared with the un
oded Golden Code s
hemewith the same spe
tral eÆ
ien
y.
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Golden−RS(8,6,3)
Uncoded GC constant for 8 blocks
Golden−RS(16,12,5)
Uncoded GC constant for 12 blocks
Golden−RS(24,18,7)
Uncoded GC constant for 24 blocksFigure 6.6: Performan
e of (8; 6; 3), (16; 12; 5), and (24; 18; 7) Golden Reed-Solomon
odes with \hard de
oding" at 3 bp
u 
ompared with the un
oded Golden Code s
hemewith the same spe
tral eÆ
ien
y.
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 spa
e-time blo
k 
oded modulationthe FER of 10�3.The Golden-RS s
hemes seem to be more robust on slow fading 
hannels;in fa
t the performan
es of the Golden-RS(n; k; d) 
odes on a 
hannelwhi
h is 
onstant for n blo
ks remain almost un
hanged (the variationis less than 0:2 dB) when n varies between 4 and 12, while the un
odedGolden Code has a loss of almost 1:5 dB.� 3 bp
u: Assuming the 
hannel to be 
onstant for 8, 16 and 24 blo
ksrespe
tively, the (8; 6; 3), (16; 12; 5) and (24; 18; 7) Golden-RS 
odes gain1:5 dB, 2:2 dB and 2:8 dB over the un
oded s
heme at the FER of 10�3(see Figure 6.6).Similarly to the previous 
ase, the Golden-RS(n; k; d) 
odes lose less than0:3 dB when n varies between 8 and 24, while the Golden Code has a lossof 1:1 dB.6.8.2 The 16-QAM 
aseIf we use a 16-QAM 
onstellation for ea
h symbol a; b; 
; d in a Golden 
ode-word, we have 164 = 216 = 65536 available Golden 
odewords. Re
alling that#(G=2G) = 256, we have 256 words for ea
h of the 256 
osets of 2G in G.In this 
ase, the 
oding gain depends on the minimum Hamming distan
e insideea
h 
oset in addition to the minimum Hamming distan
e in the quotient.As in the 4-QAM 
ase, we 
onsider blo
k 
odes whi
h are lifts of Reed-Solomon
odes on the quotient G=2G. Intuitively, the minimum distan
e of the Reed-Solomon 
ode \prote
ts" the 
osets from being de
oded wrongly; if this 
hoi
eis 
orre
t, the estimate for the right point in the 
oset is \prote
ted" by theminimum determinant in 2G.We 
onsider the lift of an (n; k; d) Reed-Solomon 
ode C on the quotient. The to-tal information bits transmitted are 8k+8n; they will be en
oded into 8n+8n =16n bits.- The 
ode C outputs 8n bits, whi
h are used to en
ode the �rst two bitsof 4n 16-QAM 
onstellations, that is the bits whi
h identify one of thefour 
osets of 2Z[i℄ in Z[i℄; ea
h byte 
orresponds to a di�erent 
oset
on�guration of (a; b; 
; d) (see Figure 6.8).- the other 8n bits, left un
oded, are used to 
hoose the last two bits of ea
h16-QAM signal.In total, we have 4n 16-QAM symbols, that is n Golden 
odewords X =(X1; : : : ; Xn). The resulting spe
tral eÆ
ien
y is8(k + n) bits2n 
hannel uses = 4(k + n)n bp
uC a
ts as a 
ode over G=2G �= M2(F2 [i℄): if fW0;W1; : : : ;W255g are the 
osetleaders of 2G in G, then 8j = i; : : : ; n,Xi =Wji + Zi; Zi 2 2G; (Wj1 ; : : : ;Wjn) 2 C (6.29)Clearly, if (Wj1 ; : : : ;Wjn) = 0, then (X1; : : : ; Xn) = (Z1; : : : ; Zn) 2 (2G)n andfor X 6= 0, det(XXH ) � 16.
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��RS(n; k; d)
��n bytes����

$$JJJJJJJJJJJ

n bytes\un
oded"����
zzttttttttt2n bytes��������^ ^ ^ ^4n 16-QAM symbols =n Golden 
odewordsFigure 6.7: The output of the Reed-Solomon 
ode and the un
oded bits are \mingled"before modulation.If on the 
ontrary (Wj1 ; : : : ;Wjn) 6= 0, then there are at least d 
omponents ofXwhi
h do not belong to 2G, and 
onsequently are nonzero, so that det(XXH ) �d2. In 
on
lusion, we have �min � min(16; d2) (6.30)With an error-
orre
ting 
ode of rate k = n2 , we obtain a spe
tral eÆ
ien
y of6 bp
u.- If d � 4, we have 
as = 4=2:51=1:5 = 2:4, leading to an approximate gain of3:8 dB. Thus it does not seem worthwhile to use long 
odes with a highminimum distan
e with this s
heme.- If d = 3, 
as = 3=2:51=1:5 = 1:8, making for a gain of 2:5 dB.

1100 1000

0100 0000

1101 1001

0101 0001

0110

10101110

0010

1111 1011

0111 0011Figure 6.8: The labelling of the 16-QAM 
onstellation used for performan
e simula-tions. The �rst and se
ond bit identify one of the four 
osets of 2Z[i℄ in Z[i℄ (drawnin di�erent shades of gray); the third and fourth bit identify one of the four points inthe 
oset. We remark that this type of labelling 
annot be a Gray mapping.
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Uncoded Golden Code at 6bpcu, channel constant for 4 blocks
Golden−RS(4,2,3) with 16−QAMFigure 6.9: Performan
e of the (4; 2; 3) Golden Reed-Solomon 
ode with soft de
odingat 6 bp
u 
ompared with the un
oded Golden Code s
heme with the same spe
traleÆ
ien
y.De
odingThe soft de
oding pro
edure for the 16-QAM 
ase requires only a slight mo-di�
ation with respe
t to Step 6 illustrated in x6.8.1. In the �rst phase, forea
h 
omponent i = 1; : : : ; n and for ea
h 
oset leader Wj , j = 0; : : : ; 255, wedetermine the 
losest point in that 
oset to the re
eived 
omponent Yi, that isẐi;j = argminZ22G kYi �H(Z +Wj)k2Computing HZ and HWj separately allows to perform only 512 produ
ts in-stead of 2562. The se
ond phase 
an be performed as in the 4-QAM 
ase, andthe sear
h is limited to the \
losest points" Ẑi;j+Wj determined in the previousphase: X̂ = argmin(Ẑ1;j1+Wj1 ;:::;Ẑn;jn+Wjn ) nXi=1 


H(Ẑi;ji +Wji )� Yi


2over all the images (Wj1 ; : : : ;Wjn) of Reed-Solomon 
odewords.Simulation resultsIn the 16-QAM 
ase, the (4; 2; 3) Golden Reed-Solomon 
ode a
hieves a gainof 3:8 dB over the un
oded s
heme at 6 bp
u at the frame error rate of 10�2,supposing that the 
hannel is 
onstant for 4 time blo
ks (see �gure 6.9).
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