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Introduction

Mathematicians have been studying continued fractions long before the modern
theory of dynamical systems emerged. To this day, they remain one of the few
models for which a comprehensive statistical analysis is available, including er-
godicity, invariant measures and the decay of correlation functions.

The relevance of this model is not limited to the field of dynamical systems, but
extends to number theory, information theory and the theory of algorithms.
As a tool for representing real numbers, continued fraction expansions are ideal
to study diophantine approximation problems, they are more economical in
terms of length than the decimal expansion, and aren’t basis-dependent.
However, the major drawback of being hardly suited for computation (even
simple operations like the sum and product become complex in this represen-
tation) is probably the reason why the literature describing the applications of
continued fractions to engineering is so sparse.

Recently there has been an increasing interest in describing the behavior of
families of dynamical systems at the boundary of chaoticity (a widely known
example is the extensive study on the bifurcations of the logistic map). In this
context interesting phenomena of phase transitions, self-similarity and fractal
sets often arise.

The first part of my research concerns a-continued fractions for « € [0,1], a
one-parameter family of interval maps giving rise to a whole class of continued
fraction expansions. Just as the classical continued fractions can be viewed as
an acceleration of the Euclidean division algorithm, a-continued fractions are
obtained imposing the condition that the remainder in the Euclidean division
should belong to the interval [a — 1, ).

This allows to gain a wider perspective, bridging the gap between Gauss’s classi-
cal continued fraction algorithm (o = 1) and the expansion based on the nearest
integer approximation (a = 1/2), which has a faster convergence and a higher
entropy; and more interestingly, between the latter and the by-excess algorithm
(a = 0), whose properties are markedly different: it is slower, and doesn’t admit
a finite invariant density, due to the presence of a parabolic fixed point.

It is then natural to investigate how this transition occurs, in particular by
studying the statistical stability of the family of the invariant densities as a
function of the parameter a. In §2.1 we prove that this family is in fact conti-
nuous in the L' norm.

Moreover, the explicit expression of the invariant densities can be used to com-
pute the entropy h(a) of the system, which is related both to the complexity
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of the corresponding algorithm® and to the rate of information creation of the
system regarded as an information source [3] [14].

Unfortunately, in the general case there exists no purely mechanical algorithm
for finding the invariant density; a general approach, introduced by Rohlin [19]
and known as the Natural Fxtension method, involves finding a two-dimensional
transformation T of which the initial map T is a factor, and a suitable domain
where T is invertible. The density of T is then derived from the density of T'
simply by projecting on the first coordinate.

One of my main results is the expression of the natural extensions for all values
of the parameter a in the sequence {< }. The shape of the domain of the natural
extensions in this case is much more complex than expected, and the density is
given by a long recursive formula.

Moreover, the result on L'-continuity of the densities enables us to answer in
the affirmative to a conjecture of Cassa [6] stating that the entropy vanishes
when a — 0.

Our numerical study of the entropy map also reveals a surprisingly rich self-
similar structure, resembling a devil’s staircase, which is still unexplained. In
particular, contrarily to our expectations the entropy doesn’t seem to be mono-
tonic in any neighborhood of the origin?. Numerical evidence also suggests the
existence of countably many phase transitions or discontinuities of h'(a), in
addition to the known discontinuity when « is equal to the Golden number.

The second part of the thesis was originally conceived in close relation to the
first, and stemmed from the study of some recent applications of continued frac-
tions to the design of space-time codes for wireless channels.

The wide diffusion of wireless communications has led to a growing demand for
an increase in the capacity and reliability of digital transmission systems over
fading channels.

The presence of fading effects, that is unpredictable perturbations and attenua-
tions of the signal depending on the environment, causes a considerable loss in
the capacity of these channels compared to the classical Additive White Gaus-
sian Noise model. The use of coding together with multiple transmit and receive
antennas can greatly reduce this loss without requiring any increase in the total
transmitted power. Even though fading hinders transmission, its randomness
can be seen as an advantage, and its negative effects can be reduced by in-
creasing the number of independent transmit-receive paths or diversity of the
system.

In a MIMO setting with M transmit antennas and N receive antennas, an
information message v is encoded in an M x T matrix or space-time block
B(u) = (b;j), where b;; is the signal emitted by antenna i at time j € {1,...,T},
and T is the duration of the signal.

The maximum rate of transmission that can be achieved using space-time blocks
is of min(M, N') symbols per channel use; the diversity is equal to M R, where
R is the minimum rank of the matrices B(u), and ought to be maximized. In
the case of full diversity, the dominant term in the union bound estimate for the
error probability is the coding gain A, where A = min,, det(B(u)B(u)¥).

'More precisely, for a € (0,1] the average length of the continued fraction expansion of a

rational number % is h(a)log q; when o = 0 the complexity is of the order of log? g, see [23].

2This has been very recently proved by Nakada and Natsui (personal communication).
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In [10] and [11], the problem of maximizing the coding gain for a class of full-
rank MIMO codes called Threaded Algebraic Space-Time Codes or “TAST” is
shown to be related to the diophantine approximation of complex numbers by
algebraic numbers. Some bounds for the code performance are derived from a
generalization of Liouville’s Theorem. In particular, finding suitable algebraic
numbers which have the worst order of approximation by rationals, that is, such
that the elements in their continued fraction expansions are small, is the key to
optimizing the code design.

This relation is not as surprising as it might appear at a first glance: in fact,

“It is an interesting approach to see the design of space-time en-
coding as searching irrational numbers the “furthest” from rational
approximations. On the other hand, the decoding process is equiva-
lent to searching rational integers the closest to irrational numbers;
and both, encoding and decoding, can be approached by the same
algorithm (Sphere Decoder) of searching nonzero short vectors in a
given lattice.” [10]

Another application, described in [21], involves differential diagonal space-time
coding, a design in which the information bits are encoded in the phase differen-
ces between one transmitted symbol and the next. In the 2-antenna case, code
optimization turns out to be equivalent to finding an integer u such that the
continued fraction expansion of ¢ has the smallest possible elements, where L is
the cardinality of the signal set. In particular, quotients of Fibonacci numbers,
which approximate the Golden number and have continued fraction elements
all equal to 1, are a good choice.

Both TAST codes and diagonal space-time codes achieve full diversity; however,
diagonal designs do not make full use of the antenna capacity; in fact, the
transmit antennas are only used to ensure maximum diversity, while the rate of
transmission is low, only one symbol per channel use.

TAST codes represent an improvement over diagonal codes, because they are
full-rate; however, the major shortcoming of these codes is that the minimum
determinant vanishes as the size of the signal set or “constellation” grows to
infinity.

A new type of designs, based on suitable subsets of division algebras, solves this
problem: in fact the minimum determinant, corresponding to the minimum of
the reduced norm in a maximal order, is stable.

In the 2 x 2 case, one of the best schemes known up to date is Belfiore, Rekaya
and Viterbo’s Golden Code G (2005), a design based on a quaternion algebra
containing the field Q(i,#), where € is the Golden number. This code is full-rate
and full-rank, and its cubic shaping is convenient for energy efficiency reasons
and makes the decoding process faster.

It is possible to build longer, 2 x 2L block codes using the Golden Code as the
base alphabet; in particular, the structure of its ideals and quotients can be
exploited to increase the minimum determinant, which can be written as a sum
involving the determinants of the smaller blocks, and mixed terms of the form

- 3 ~
HXinH , where X — X is an involution, and || || is the Frobenius norm.
F

Thus the description of the lattice structure is not sufficient to obtain a good
estimate of the coding gain, and the multiplicative structure plays an important
role.
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In §6.5, we consider block codes based on the cosets of a left ideal of G of index
4. In this simple case, the estimates of the mixed terms in the expression of the
minimum determinant can be carried out in full detail, at least for short codes.
When considering ideals of greater index, however, the approach based on direct
computation of the codeword weights becomes impractical. Using two-sided
ideals it is possible to obtain global estimates, as they are invariant with respect
to involution and multiplication. Moreover, it is preferable to choose ideals
whose index is a power of two, since binary partition schemes are simpler and
better suited to digital data storage.

In §6.6.2, we describe the structure of the two-sided ideals of G whose index is a
power of two and of the respective quotients, which turn out to be matrix rings
over Fyn +ulFyn , where u? = 0. This structure can be exploited directly to build
simple lifts of repetition codes on the quotient. The simulation results for the
transmission chain using these codes show that they perform better than the
uncoded case and confirm the expectations based on the estimates of the mixed
terms.

In §6.8, we introduce some designs which improve the performance of the Golden
Code in the slow-fading setting. When the channel changes so slowly that it
can be considered constant for long time lapses, the ergodicity assumption must
be dropped and the diversity of the system is reduced, leading to a performance
loss.

To compensate for this loss, we combine a modulation scheme for the quotient
ring G/2G with an error-correcting code (a shortened Reed-Solomon code) to
increase the minimum Hamming weight of the code. Performance simulations
show that in the 4-QAM case, corresponding to a single signal point per coset,
these codes achieve a remarkable gain with respect to the uncoded Golden Code
at the same spectral efficiency, that is at the same bit-rate per channel use.
These codes can be extended to the case of 16-QAM modulation with multiple
points per coset, although the gain in this case is somewhat smaller, being
limited by the minimum distance in the ideal.
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a-continued fractions






Introduction

Let a € [0,1]. We will consider the one-parameter family of maps T, : I, — I,
where I, = [@ — 1, a], defined by

R

These dynamical systems generalize the Gauss map (o = 1) and the nearest
integer continued fraction map (o = %), they were introduced by H. Nakada
[16]. For all a € (0,1] these maps are expanding, and even though in gen-
eral they aren’t Markovian nor have finite range structure, it can be shown
that they admit a unique absolutely continuous invariant probability measure
dite = po(z)dz (for a detailed proof in this particular case see for example [3]).
Nakada computed the invariant densities p, for % < a <1 by finding an explicit
representation of their natural extensions. The maps p, turn out to be piece-
wise finite sums of linear fractional functions. The case v2 — 1 < a < % was
later studied by Moussa, Cassa and Marmi [15] for a slightly different version
of the maps, that is M,(z) : [0, max(a,1 — a)] = [0,max(a,1 — a)] defined as

follows: )

Ma(e) = ‘ S41-q @)
Notice that for a given «, M, is a factor of T,: in fact T, o h = h o M, where
h : z — |z|is the absolute value. Since all the corresponding results for the maps
M, can be derived through this semiconjugacy, in the following paragraphs we
will focus on the maps 7.
Cassa found the invariant density for v/2 — 1 < a < % using an alternative
method to the natural extension, which involves counting the poles of a mero-
morphic function [6]; like the natural extension, this method doesn’t provide an
algorithm to find the density, but only a means to verify that a certain candidate
is valid. In §3.2, we include the natural extension for the maps T, for this case.

It can be shown [8] that the Kolmogorov-Sinai entropy with respect to the
unique absolutely continuous invariant measure pu,, of the T, is given by Rohlin’s
formula:

T = [ togIT o)

Actually, Rohlin’s formula applies also to the M,, and h(T,) = h(M,). For
V2 —1 < a < 1, the entropy can be computed explicitly from the expression of
the invariant densities [16], [15]:

71'2
612? forv/2—1<a<gyg

In particular, the entropy is constant when v/2 — 1 < o < ¢ and its derivative
has a discontinuity (phase transition) in o = g.

The case o = 0 requires a separate discussion; in fact, due to the presence of
an indifferent fixed point, Ty doesn’t admit a finite invariant density, although
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it is invariant with respect to the infinite measure dug = ﬁ_—mx. Therefore the
entropy of Ty can only be defined in Krengel’s sense, that is up to multiplication
by a constant (see Thaler [22] for a study of the general one-dimensional case).

Following Thaler, for any subset A of [0, 1] with 0 < pp(A4) < oo we can define
h(To, po) = po(A)h((To)a)

where h((Tp)4) is the entropy of the first return map of Ty on A with respect

to the normalized induced measure g4 = %. This quantity is well-defined

since the product h(Ty, po) doesn’t depend on the choice of A, and it has been
7|'2

computed exactly: h(To,p0) = 335.5 [23]. Since this is a finite value, for a
sequence Ay of subsets whose Lebesgue measure tends to 1 we would have

h((To)a,) = m — 0. In this restricted sense we can say that “the

entropy of Ty is 0”. Expression (3) suggests the notion that the dynamical
systems T, are somehow related and have a common origin; actually for % <
a < g their natural extensions are all isomorphic. In fact, C. Kraaikamp proved
that for these values of a the natural extensions are invertible Bernoulli shifts,
and so having the same entropy is a sufficient condition for isomorphism [12].
Moreover, a recent result by R. Natsui [17] shows that the natural extensions
of the Farey maps associated to the T, are all isomorphic when % <a<l.

It is well-known that the maps T} and Ty descend from the geodesic flow on
the unit tangent bundle of the modular surface PSL(2,Z)\PSL(2,R) [21], [10].
Indeed we can represent this flow as a suspension flow over the natural extension
of these maps and deduce in this way the invariant probability measures from the
normalized Haar measure on PSL(2,Z)\PSL(2,R). It is natural to conjecture
that the same happens for all the maps T, a € [0,1]. If this were true, one
could (at least in principle) apply Abramov’s formula to compute the entropies
h(«) from the entropy of the geodesic flow.

We now summarize briefly the contents of the various sections of Part I.

In §1, we introduce a-continued fraction expansions and their basic properties,
and remarking that for a € [}, 1), the sequence of a-convergence can be seen as
an acceleration of the sequence of standard (Gauss) convergents. We also recall
how the exactness (and therefore ergodicity) of the system follows from the fact
that the cylinder sets generate the Borel o-algebra [16]. Finally, we remark how
Rohlin’s formula for the entropy holds in this case.

In §2.1 we prove that the entropy h(a) of T, is continuous in & when a € (0, 1]
and that h(a) — 0 as a — 0, as it had been conjectured by Cassa [6]. This result
follows from the fact that the invariant densities are a continuous family in the
L' norm with respect to a, and is based on a uniform version of the Lasota-
Yorke inequality for the Perron-Frobenius operator of Ty, following M. Viana’s
approach [24]; in the uniform case, however, a further difficulty arises from the
existence of arbitrarily small cylinders containing the endpoints, requiring ad
hoc estimates.

In §2.2 we analyse the results of numerical simulations for the entropy obtained
through Birkhoff sums, which suggest that the entropy function has a complex
self-similar structure.

In §3.1, the notion of natural extension is introduced, following Schweiger [20].
Finally, in §3.3 we compute the natural extension and the invariant densities of

the T, for the sequence {a = %}TGN'



Chapter 1

a-continued fractions

In this chapter we introduce a family of piecewise monotonic maps of the interval
which generalize the Gauss map, and give rise to a class of continued fraction
approximations.

1.1 «-expansions

For a € [0,1], let I, = [ — 1,). Consider the maps Ty, : I, — I, defined as
follows [16]:

where [z], = [z + 1 — a]. It is convenient to assume that 7, (0) = 0.

Remark 1.1. When a = 1, T,, is the Gauss map; for o = 2, it is the nearest

27
integer continued fraction map.

Figure 1.1: Graph of T, when a = % and a = 0.7 respectively.

The graph of T,, can also be obtained by intersecting the union of the sequence
of hyperbolae {|%| — n} ,n € N the square [@ — 1,a — 1] x [a, a] (see Figure



12 a-continued fractions

I

Figure 1.2: The graph of the map T, is obtained by intersecting a family of hyperbolae
with the square [ — 1, — 1] X [o, ]

1.2). By moving the square along the diagonal, we obtain the whole family of
a-continued fraction maps.

The maps T, are related to the following symbolic dynamics: for « fixed, and
x # 0, let

a(z) = { L

xr

+1—a},

() = sign(x),

and define a(0) = oo, €(0) = 1.
For any =z € I, let zy = z, x,, = T2 (z), when n > 1, and

an = a(Tn-1),
en = €(Tp_1)
Thus we obtain inductively a continued fraction expansion associated to Tl,:

Vn > 1,
€1

€2

a; +
€3
as +
. €n
ap + Tp,

For the sake of simplicity, we will denote this expression by

T = [(51,a1), (52,a2), B (Enaan)an]
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The resulting expansion is infinite, of the form [(e1, a1), (€2, az2), ..., (En,an),...]
when z is irrational; when z is rational, the expansion is finite with length n,
where n is the minimum index such that x, = 0.

By truncating the expansion to the n-th step, we obtain the a-convergents of
z, that is the reduced fraction

Dn €1
— = [(517a1)7(527a2)7---7(5naan)] = )
qn €2
a; + ——
) En

Gnp
with the convention that p_y =1, g—1 =0, pp =0, qo = 1.

Remark 1.2. We observe once and for all that the sequences {a,}, {e,}, {zn},
{pn}, {gn} are a function of the parameter & and the starting point . We will
omit this dependence unless necessary, in order to simplify notation.

The following recursive relations among the convergents are easily proved by
induction:

Pn = GpPn—1 + EnPn—2

(L.1)
n = @nQn—1 + EnQn—2
Observe that
Prt1@n = Gut1Pn = —€n(PnGn—1 — qnPn—1)
and so, since pogq1 — q1go = —p1 = —€1,
Pndn+1 — Pnt1qn = €1€2 - 'En(_]-)nila |ann+1 - pn+1Qn| =1 (12)
Then, always by induction, we find
TpPn
= Dn + nPn—1 (13)
Gn + TnGn—1
for n > 0. In fact, the basis of the induction is trivially % = £ and
supposing that the relation (1.3) holds for some n > 0, using the recursive
formulas (1.1) and the relation z,11 = = — a4, we get

Pn(l = En410n41%0) + Ent1ZnPnt1  PnTntl + Pntl
qn(l - 8n—&—la'n—i-ﬂﬂn) + Ent1Tnlnt1 InTn+1 + qnt1

xTr =

Now consider
Bn = |Qn$ - pn| (1'4)

There are three useful alternative expression for this quantity: first, from the
relations (1.3) and (1.2), we find

Zn(¢nPn—1 — Pndn—1)

Bn =
" n + Tndn-1

From equation (1.3), we can derive

< Pn — Zqn >
Tp=—|—"7--—"]),
Pn—1 —TGqn-1
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so we have

i=0
But equations (1.5) and (1.6) also imply
1
Bn _ Bn—i—l _ (17)

B |20 41] B On+1 + Tnt1qn

From (1.7), we obtain an estimate of the rate of convergence of the = to z: if
Ty >0,

1 n n 1 1
______<P_&:ﬁ: < (1.8)
qn(qn+1 + aqn) n n n (q'n+1 + $n+1Qn) ndn+1

while for z,, <0,
n 1 1
<le-Prl< < (1.9)
dndn+1 Gn Qn(Qn-H - (1 - a)Qn) AGnGn+1

When a € [£,1), the a-convergents turn out to be a subsequence of the standard
continued fraction convergents [4]. In this sense, a-continued fractions can be
seen as an “acceleration” of 1-continued fractions:

Lemma 1.3. Fiz o € [%,1). Let x € R\ Q, and denote by % the standard

continued fraction convergents of x, and by % its a-convergents. Then

Pn _ Pran)
tn Qr.n)

where ko, : N — N is defined inductively as follows:

ka(_l) = -1,

|
—

ka(n)+1 ifepsr =

““+”={mmma s =

|
|
—

Moreover, if ka(n + 1) = ko(n) + 2 we have
Thio(nt1) = Thoin)+2 = Qg (n)+1 T Thy (n)-

When « € (0, 1), this lemma doesn’t hold any longer, and sequences of the form

{%, e Z:’:: }, such that Z:Jj: is not a standard convergent for i = 0,...,k,
app]ear. Thése correspond to ;equences of length k of digits “(2,—1)”, called
desingularization sequences.

Now suppose that we know the standard continued fraction expansion z =
(w1, w2, ws,...) of an irrational number, and we want to derive its a-expansion
x = [(e1,a1), (e2,a2), (€3,0a3),...]. We do not know whether there exists a con-
cise formula expressing this relation; however, it is not hard to define a step-by-
step algorithm to pass from one expansion to the other.

The content of the following lemma is the same (although with different nota-

tions) of Theorem 7 in [15].
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Lemma 1.4. Fix a € [0, %), and let € [a—1,a) be an irrational number with
standard continued fraction expansion r = wo + (wy,ws,...), we € {0,—1}. Let
% be the standard convergents of x, and p_: its a-convergents.

Then there ezist two subsequences {n;} and {n} such that

Pr; _ Do,

An; Qn,,
More precisely, we define the following algorithm:
1.5 (One step of a-expansion). 1. FIRST STEP:

o If € (0,), then define e; = 1 and |z9| = = = (w1, w2,...). Obvi-
ously g—g = % =0.

o If z € [@—1,0), define e = —1 and |zo| = —z. We distinguish two
cases:

- If wy = 1, using the well-known identity
1 1
1— =
b+y 1
b—1+y

for b> 2 and y € (0,1), we find —z = (ws + 1, w3, ...).
- If wy > 1, from the identity

1_—1:(9’2)’(_1’2‘),’” ,(—1,2)/,—?), b>1
TL+Z n—1
we get a; = = Q-1 = 2,80 = =€y, = =1, |Tw,—1]| =
(wy + 1, ws, . ),%:ﬁfori:l,...,wl 1, and
Py _ w1 _~
qu, -1 wi +1 wr Q1

2. INDUCTIVE STEP:
Now suppose that we have found the first n digits of the a-expansion, such
that Z—" = Le for some k > 0:

T Qk
€1
T = , such that
€
a; + 2
. En
ay + o ——————
an, + Ent1 |Tn]
|z, | = (w,i?l,wk+2,wk+3, ..) €(0,1—a), w,(;i)l € {wgt1, wpr1 + 1}
Then

o If T(Jz,|) < @, we have

n
En42 = ]-; Apt1 = w](ﬁ_)la
Pnv1 _ Prpa
nt1 Qrt1

s |Tns1] = (Wit Whys, ) (1.10)
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o If T(|z,]) > a,

n .
Ent2 = —1, Gpy1 = w,(H_)l +1, ifwgya =1
n

Ent2 =" = 5n+wk+3 = _]-7 (p41 = w](c-i-)l + ]-,
An42 = "' = Ondwpqo = 2 if W42 Z 2:
Pnt+i iPkJrl + P V1<i< Whis — 1 Prtwy o _ Pk+2

- s =t = 9 - )
In+i 1Qr+1 + Qk Intwys  Qrt2

|$n+u)k+2| = (wk+3 + 1awk+4a"') (111)

Proof. It is clear that equations (1.10) and (1.11) imply the existence of the two
identical sequences Zﬁ, g"’“ by induction, where the basis of the induction is
n; Quy,

given by the first step in the algorithm.

We have a,41 = [

-I-l—a],andso

N
= w”, & wl) + ! +tl-a<w +16 T(z.]) <

anp1 = Wiy € w . a <w T, a

W2 +

Whyg + -

Clearly in this case €,42 = 1, and the remainder |x,| is equal to T(|zy]);
otherwise we have a1 = w,(ci)l +1 and g,42 = —1.

Observe that since the recursive relations defining the p; and the ¢; have the
same form, it is sufficient to prove the statements above for the p;.

When T'(|z,|) < a, we distinguish two cases:

e If £,,1 = 1, by inductive hypothesis g:—: = %, and w,(;j_)l = Wpga1-
Then
Pntl = Gni1Pn + EngiPn—1 = w,(gi)lpk + Pr—1 = Pry1
o Ife,y =—1, w,(fi_)l = w1 + 1, again by inductive hypothesis

P4 _ pnfw,(c")

Qr—1 - q )

n—w,

Pt = Pl (1) = Y = 1)Piy + Pes = P — P,
= Pnt1 = (Wrg1 + 1) P — Py + Py = wp1 Py + Py = Pry

When T'(|z,|) > a,

1
—w +1- |1~ - =

wk+3+...

1
= Qp+41 — (1 —)> = Qnt1 — |Tpgt]

- wigs + T2 (|2l

‘ 1

n
Wh42 +
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Then if wgo > 2, we have ‘wan‘ =1+ ik and since

1
Wi2—1+T2([2n

1 1
1> > > a,
T wWpao — 1+ T?(x,) ~ wiae + T2 (zn) —

we find

an+2=[ -|-1—a] =2, ent3 = -1,

Tn+1

and so on: it is easy to prove by induction that for 1 <i < wyyo — 1,

1 1
- 1 p > 1 a=a 3 = 2 £ ; = —].
Tn+i * Whyo — &+ T2(|wn|) > 1+ n4i41 y En4it2 ,
up to
1 14 1 1+ N 1
Zoaw | ey = Lt We3 + —————
Tntwy 4o T2(|znl) + Wi + -

which is true also when w49 = 1.
In conclusion,

Jn] = [l + 1,2, (2, )2, =), (2, =) [t ] (1.12)

-

Wy42—1

Again we distinguish two cases:

Pt Pra
qn—1 Qr—1"

e If £,,,1 = 1, then by inductive hypothesis w,(;j_)l = Wkt1,
Pnt1 = Gni1Pn + Ent1Pn—1 = (W1 + 1) Py + Pry1 = Pryr + P
o Ifg,,1 = —1, then w,(;j_)l = Wk+1 + 1,

Pt = P (M) 4 (M —1) = (w = 1)Py_y + Po_s = P — Py,
Prt1 = (Wry1 +2)Pp + Py — Py_y = (Wpyy + 1) Py + Py = Py + P

So in both cases we have p,+1 = Pry1 + Py, and

Pnt2 = Ant2Pn + EntoPn = 2(Pey1 + Pr) — P = 2Py + By
By induction we can prove that for 1 <i < wjyo — 1,

Pnti = iPpy1 + Py,
up to

Pntwips = Wei2Per1 + P = Pryo,

which completes the proof. [l
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1.2 Symbolic dynamics

1.6 (Cylinders of rank 1). Let a € (0,1]. The map T, is piecewise monotonic
and piecewise analytic on the countable partition P = {If}jzjmin U{L; }isir

where jmin = [| 2| +1—a],jln, = [ e

| t1- oz] and the elements of P are

called cylinders of rank 1:

1 1 1
I+: - s o 1, | | € 'min ]-7 ) I+ = FENE )
o <]+a ]—1+a] J € Ljmin +1,00) Jmin T\ Gmin + @ “

1 1 1
I = |- — i ir 1 I; = -1,—
iS [ i—1+a’ j+oz>’J€[J“m“Jr 00) Iy, [a i +a>

]mm

T, is monotone on each cylinder and we have

To(@) =3 =J, €IS, j €NN [jmin,0)
Ta(l'):_%_ja JL‘EI;,].GNO['I OO)

Jmin>

We also find that for o € (0,1), T, is ezpanding, that is [T/ ()] > 1 almost
everywhere': in fact for all z € I,

1.7 (Cylinders of rank n; full cylinders). Let P(") = \/;:01 T, '(P) be the
induced partition in monotonicity intervals of 7. Each cylinder I,S”) e P is
uniquely determined by the sequence

((.70 (77)7 50(77))7 B (jnfl(n)asnfl(n))

such that for all z € Ij”), Ti(z) € I3’} On each cylinder T2 is a Mobius

map T7(x) = g;”i‘g, where ( > € GL(2,7Z). We will say that a cylinder

Ve Pis full it TP(IM) = 1,.

1.3 The Perron-Frobenius operator

1.8 (Perron-Frobenius operator). Let V}; : Tg(Lgn)) — I,gn) be the inverse
branches of T, and Pr, the Perron-Frobenius operator associated with T,.

Then for every ¢ € L'(I,),

(Pro)@) = 3 il o @) (114)

On I,gn) we have the following bound:

I 1
@ @] e [T (Ta (@) - Th(@)]

IThe only value of a in which |T}, (z)| = 1 for any point is actually the Gauss map Ty, with
its fixed point x = 1. The by-excess map Tp, which we are not taking into account here, also
has a parabolic point, and is not expanding.

<Alm < am, (1.15)
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where /\,(7n) = XNjo(m) A n- Recall that for fi,..., f, € BV,

Jn—1(

Var(f ) < ZVar ) H sup | f;] (i)
i#k

and consequently

1 1
Var ———— =V < AW
2 (T @)] 150 [T (T (@) - To(Tu(@)) - Th@)] = 7

Finally, we state the following bounded distortion property, that we are going to
use several times in the sequel:

Proposition 1.9 (Bounded distortion). Ya > 0, 3Cy such that ¥Yn > 1,
VI( € P Yz, y e I,

| < O

Moreover, for all measurable set B C I, for all full cylinders L(,n) e pm

m(B)ym(Iy")

m(Vn(B)) Z Cl )

where m denotes the Lebesgue measure.

The proof of this statement follows a standard argument:

Proof. Observe that 3k > 0 such that VI; € P,Vz,y € I

Ta(z)
01| < kT - T
In fact, if z,y € I5 ,, then
T, (x) ‘ 1 v | =yl y
-1 =|= < ‘ ‘ r+y| <4
i mermn [
Let n > 1, I,S”) eP™, z,yc I,gn). Define A = = (1 — a)?: then
Y _
y T o)) y
1 1 o‘ -1 <
©8 ) (x) Z ©8 "(Ti(x) (x) ‘ -
<4Z ITi (y) — T (@ |—4Z|T’ —Ti(z)| <

< 4ZAH T (y) — T (z)| < 4Zx ﬂ =C, (1.16)
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Then ggg‘v’;‘ < e¥ = 0. Let I be a full cylinder: T7(1$™) = I,. Now

consider any measurable set B:

@ wldy  m(Vy(B)) sup [(T3)' ()]

m(B) _ Va(B) yely m(V,(B))
= Y S — <O—75
m(le) [ |(T2)(@)de — mI{™y inf [(T2)(z)| m(Ii™)
S zer{™
)
= m(V,(B)) > m(B) C (1.17)
which concludes the proof. O

1.4 Invariant measures

Sufficient conditions for the existence of absolutely continuous invariant mea-
sures (a.c.i.m.) for expanding maps have been extensively studied in the litera-
ture. A desirable property in most cases is the Markov property:

1.10 (Markov map). Let I be an interval, P a countable partition of I,
T : I — I such that the restriction of T" to each interval of the partition is
monotonic and C?. T is called a Markov map if the set 7* = |J -, T"(P) is
finite. B

In fact, a folklore theorem states that

Theorem 1.11. If T : I — I is Markov and expanding, then there exists a
unique invariant probability measure for f absolutely continuous with respect to
the Lebesgue measure.

Unfortunately, the Markov condition is not satisfied by the maps T, except for
a set of measure 0 in the parameter a. In fact

TOZ(P) = {[a -1, a]a [Toz(]- - a)aa]a [Ta(a)a a]}
The union {J,,5, T,/ (P) is finite only in the following cases:

a) In,m € N such that T"(«) = 0,7/*(1 — @) = 0, which happens if and
only if « is rational;

b) the sequences {T¢ (a)}ien e {T(1 —a)};en are periodic, that is « is alge-
braic of degree 2.

However, it can be proved [3] that for all « € (0, 1] the maps T}, admit a unique
absolutely continuous invariant probability measure p,, whose density p, is of
bounded variation (and therefore bounded). The proof follows a more general
framework, see the study by A. Broise [5]:

Theorem 1.12 (Bourdon, Daireaux, Vallée). Consider an interval map
T : I — I which is monotone and C? on each interval of a countable partition

P of I. Let L(,n) denote the open cylinders of rank n, and V,, the local inverse
of T on Lgn). Suppose that T satisfies the following properties:
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a) (Expansivity) sup sup |Vj’(x)| <1
J IGT(IJ')

b) (Strong expansivity) 3Ing, Iy < 1 such that sup sup [Vi(z)] <~
7o) zGT"O(I("O))
n n

¢) e > 0 such that VI; € P, Yz € T(I;),

V()| < c|V](2)]

d) (Quasi-Markov) Vn, inf m (T” (Ié”))) > 0, where m denotes the
M epn
Lebesgue measure.

Then T admits an invariant density of bounded variation.

We have already seen in equation (1.13) that the maps T, are expanding for all
a € [0,1], and strongly expanding for a € (0,1] (actually, we can take ng = 1
for a € (0,1), and ng = 2 for a = 1, see also equation (1.15)). Condition (c)
holds for all a, and can be checked directly.

Condition (d) follows trivially from the fact that since T, (P) is finite (actually
it has at most four elements), T*(P(™)) is also finite for each n, and the length of
its intervals must be bounded from below. However, there is no uniform bound
in a or n for these measures, as we will see in the sequel.

We also remark that a priori the invariant density might be discontinuous in
every point of the partition |J,, T2 (P) [3].

The uniqueness of the a.c.i.m. is a consequence of the ergodicity of the system:

1.13 (Ergodic system). A measure-preserving dynamical system (X, A, T, i)
is ergodic if for every measurable set A € A such that T='(4) = A4, u(A) =0
or 1.

1.14 (Exact endomorphism). A surjective measure-preserving dynamical
system (X, A, T, u) is said to be ezact if

ﬁ T"(A) = {X,0}  (mod 0) (1.18)

In particular, every invariant set is trivial and so the system is also ergodic.
For a proof of the following classical theorem, see for example [7]:

Theorem 1.15. Consider a dynamical system (X, T, A) and two measures 1,
w2 on (X, A) which are invariant for T. If both (X, T, A, u1) and (X, T, A, 2)
are ergodic, then either |1y = uo, or py and pe are singular with respect to each
other.

Because of the previous theorem, if T, is exact it admits at most one invariant
density absolutely continuous with respect to the Lebesgue measure. We remark
however that there is an infinite number of singular invariant measures for Ty,

(consider for example any linear combination of Dirac deltas in the fixed points
of T,).

Lemma 1.16 (Exactness). For all a € [0,1], the dynamical system (T, po)
is exact (and therefore ergodic).
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The proof of this Lemma for a € [%, 1] was given by H. Nakada ([16], Theorem
2) and his argument can be adapted to our case with slight changes.?

Let w; = (j;, ;) for brevity. The crucial property that we need in order to prove
Lemma 1.16 is the following:

Proposition 1.17. The family of the cylinder sets I,gn) = (wi,...,wy) € P™
such that TC’:(Lgn)) = I, generates the Borel sets.

Proof of Proposition 1.17. Consider the sets
E, = {(wla s 7wn) | Ta(wl) 7& IOMTz(wla‘*Q) 7& Ioza s aTorzL(wla cee 7wn) 7& IOZ}

and let M,, = m (Ul(n)eE L(]")). Consider the orbits of the endpoints with
respect to Ty :

a = (ar,az,as,...), a—1=(by,bs,b3,...)
Then E; = {(a1), (b1)}, and

E, ={(wi,...,wp) € pn) | (w2, ..., wn) € Ep_1 and wy = ay or by}
U{(01,02,...,an),(bl,bz,...,bn)}

In fact if wy ¢ {a1,b1}, we would have T, (wy) = I,; moreover, if (wa,...,w,) #
(az,...,ay), the monotonicity of T,, on (a;) implies that either (wo,...,w,) N
To(ay) = @, or (wa,...,w,) C Ty(ar). In this last case T (ay,wa,...,w,) =
T (wa,...,wy). So we get

M, <((1-a)?+a® )M, 1 +m((ar,...,a,) U (b1,...,b,)),

and since (1 — a)? + a? < 1 and m(ws,...,w,) vanishes as n — oo, we have
M,, — 0 as n — oo, that is, E = {z | Vn, Tg(I,sn) (x)) # I} has Lebesgue mea-
sure 0, where I,gn) (z) is the cylinder in P containing x. Then, recalling that T,
is non-singular, m (7T, "(E)) is also 0 for all n > 0, and so m (U, T, "(E)) = 0.
That is, for almost all = there is a subsequence {n;} such that T" (I} (z)) = I,
for all 7 € N. Then for almost all z, YU open neighborhood of z we can find n
and a full cylinder z € I,§") cU. O

Proof of Lemma 1.16. We have just proved that the full cylinders generate
the Borel sets. Then a sufficient and necessary condition for exactness, due to
Rohlin [19], is the following: 3C > 0 such that Vn, VI,sn) full cylinder of rank
n, VX C I,

a(T2(X)) < oL2X) (1.19)

Mo ([nn )

We recall that the T, satisfy the bounded distortion property: Then, recalling
that the density of u, with respect to the Lebesgue measure is bounded from
above and from below by constants, we get for some constant C,

pa(Vy(B)) > Zopa(Bpia )

that is, Rohlin’s characterization (1.19). O

2The fact that Ty is exact follows from a result of M. Thaler [22].
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1.5 Entropy

Knowing the invariant densities allows to compute the entropy of the system.
We briefly recall the relevant definitions:

1.18 (Entropy of a partition). Let (X, A, u) be a probability space, £ =
{Xi,...,X,} a finite measurable partition of X, that is X; € A Vi € N and
X =", Xi(mod0). H(&) = —> 1, uw(X;) + log u(X;) is called the entropy
of the partition &.

1.19. Given &y, ..., & partitions of X, and X' € &,..., X" € &, we denote by
\/f:1 & the partition {X'N---NX*}; given T : X — X measurable, we denote
by T~1(€) the partition {T~1(X;), X; € £}.

1.20 (Kolmogorov-Sinai entropy). Let (X, A, u,T) be a measurable dyna-
mical system, p an invariant probability measure for T', £ a finite partition of
X. The quantity

n—1

1 .
H(T) = lim —H( T"f)
n—oo N,

i=0

is called the entropy of T with respect to {. H(T) = sup; H¢(T'), where the sup

is taken over all finite partitions £ of X, is called the Kolmogorouv-Sinai entropy
of T.

A dynamical system’s entropy and information are deeply related, as can be
seen from the following

Theorem 1.21 (Shannon, Breiman, McMillan). Let (X, A, u,T) be a mea-
surable and ergodic dynamical system, & a finite partition of X. Given x € X,
let £"(x) be the element of \/?:_11 T~ which contains x. Then for p-almost
every x € X,

H(T) = Tim — log u(¢" (x)

Supposing the initial point 2 to be unknown to us, we may be interested in
the quantity of information provided to us by some initial segment of the sym-
bolic dynamics of . If £ = {Xy, - X} }, knowing the set £"(x) is equivalent to
knowing (for p-almost every x) the indices jo,...,jn—1 € {1,...,k} such that
T(z) € X;,. Intuitively, the smaller p(£7(z)) is, the better we have “located”
the point z in our space, and the more information we have obtained. This cor-
responds to the system having high entropy. The Shannon-Breiman-McMillan
Theorem then states that the entropy with respect to a partition represents the
“average information production rate” of the input obtained with the partition

¢.

The a-continued fraction maps belong to a class of interval transformations for
which an explicit formula for the entropy is available:

1.22 (AFU map). Let I be an interval, T : I — I which is piecewise C* with
respect to a countable partition P of I in subintervals {I;};>1, and such that
the following conditions hold:

|T”(I)|

a) Adler’s condition: 3K >0, @)

<KVzel
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b) Finite range: #{T(I;), j > 1} < o0;
c) Uniform expansivity: IN: |T'(z)| > A >1Vz el
The maps T, are AFU: we have seen that they are uniformly expanding in (2.1);

moreover they clearly have finite range, and (| ,((f))| = ﬁgx =2z < 2.

Theorem 1.23 (Rohlin’s formula). Let I be an interval, T : I — I an AFU
map, du = p(x)dx the a.c.i.m. for T. Then the Kolmogorov-Sinai entropy of T
is given by

h(T) = / log [T («)| du(x)

For Rohlin’s original proof we refer the reader to [19], while the proof in the
case of AFU maps can be found in [8].

Remark 1.24. We remark that the algorithm introduced in the proof of Lemma

1.4 to extract two identical subsequences ? = g"’“ from the 1-convergents and
n "

a-convergents respectively could be used to compute the entropy h(a) of T,. In
fact Birkhoff’s ergodic theorem implies that

h(a) = — lim —Zlog|T‘ = — lim —logﬁn 1

n—oo N n—oo N

where 3, is the product defined in equation (1.4). The estimates (1.8) and (1.9)
imply that

But since lim,, %log(cqn) = lim,, 00 %log(qn) for every constant ¢ > 0,

1
h(a) = lim —loggq,
n—oo M

In particular, even without knowing all the values of the a- convergents , the

entropy h(a) could be approximated simply with the limit - log Qnys requ1r1ng
only the knowledge of the 1-convergents.



Chapter 2

Statistical stability for
a-continued fractions

In the previous chapter we have described the dynamical properties of the system
(In,Ty) for a fixed value of the parameter a. We now wish to understand to
what extent these properties remain stable when « varies; in a sense, we wish
to study the behavior of the system under deterministic perturbations.

Several notions for the stability of a dynamical system have been introduced. In
the case of smooth systems, structural stability requires that the orbits should
be preserved up to homeomorphism; however, this notion is too strong for our
case.

We will adopt the point of view of Alves and Viana [2], and we will call a family
of interval maps {(I, ¢¢) }ter statistically stable if the SRB measures p; of the
maps ¢; are continuous in ¢ with respect to the L' norm.

It may be convenient to assume that the maps {¢;} are all defined on the same
interval; up to conjugation, at least locally, the maps T, can always be rescaled
to a suitable fixed interval.

2.1 Continuity of the entropy

We will denote the entropy of T, by h(a). The main goal of the present section
is the following

Theorem 2.1. The function a — h(«) is continuous in (0,1], and

lim h(a) =0

a—0t

Since in the case & > /2 — 1 the entropy has been computed exactly by Nakada
[16] and Marmi, Moussa, Cassa [15], we can restrict our study to the case
0<a<+v2-1.

To prove continuity we adopt the following approach: by means of a uniform
Lasota-Yorke-type inequality for the Perron-Frobenius operator, we prove that
the variations of the invariant densities are equibounded as « varies in some
neighborhood of any fixed @ > 0 (see Proposition 2.2 below). Our argument
follows quite closely [24], except that we have to deal with a further difficulty
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Figure 2.1: Graph of the map T, when o = 0.2

arising from the fact that the cylinders containing the endpoints a and a — 1
can be arbitrarily small. After translating the maps so that their interval of
definition does not depend on « around @&, we prove the L'-continuity of the
invariant densities p, using Helly’s Theorem (Lemma 2.5). Then the continuity
of the entropy follows from Rohlin’s formula.

2.1.1 Uniformly bounded variation of the invariant densi-
ties

Let @ € (0,/2 — 1] and € < @ be fixed, and choose o € [@ — &,@ + ]. In this
case, recalling the definitions in §1.2, we have j/ .., = 2, and for z € If,

1
T SA <AL, (2.1)
Ty ()] =

where

depend only on & and €. Moreover, we have that Var,+
2

1
[@—e,a+¢].
As we have seen in §1.4, for all a € (0, 1] the maps T}, admit a unique absolutely
continuous invariant probability measure p,, whose density p, is of bounded

variation (and therefore bounded). In addition, a result of R. Zweimiiller entails
that p, is bounded from below (see [25], Lemma 7):

Va € (0,\/5—1], AC > 0s.t Vo € Iy, palz) > C (2.3)
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Proposition 2.2. VYa € (0,v/2—1], ps is of bounded variation, and 3e, IK > 0
such that for all « € [@ —e,a + €], Var(p,) < K.

The main result we need in order to prove Proposition 2.2 is the following

Lemma 2.3 (Uniform version of the Lasota-Yorke inequality). Let &

be fized. Then there exist \g < 1, C, Ko > 0 such that Vn, Yo € BV (I),
Va € [@ —e,a + €],

\/I'ar (Pr. ) < C(X)" Varp + Ko / lp| da: (2.4)

Assuming Lemma 2.3 the Proposition then follows easily. Indeed it is enough
to recall that the Cesaro sums

1n—1 )
n=o 2 Pl
=0

of the sequence {P%a 1}en converge almost everywhere to the invariant density
pa of To. Both the variations and the L norms of the {p,} are uniformly
bounded:

Var p, < — ZVar(PJ ) ZKOm n
/pnd:n— Z/P] lde =m(lz) =1 VYn=

.70[

sup |pn| < Var pp, + <Ko+1 Vn,
I o

1
m(I,)
where K is the constant we found in Lemma 2.3. Then we also have Var p, <
Ky, sup|pa| < Ko + 1, which concludes the proof of Proposition 2.2.

Proof of Lemma 2.3. We have

n ¢ (Vy(2)
Vor (Phe) < 2 <Tnv?(5>> @) Va2, S

_ o) o] 2 @)
B> (;w @l T @y <y>D 29

S
For the last equality, observe that since V;, : T%(I\™) — I{™ is a homeomor-

. o _ o . .
phism, VarTg(I;n)) (—\(T;‘)’I ) V,,) = Varlr(’n) Ty The first term in expression
(2.5) can be estimated using (i):

1 1
Var ————— Var supi-l-Varisup <
SN Z<n PR Tl T Tl e '“0'>

< Z( Al Var<p+n)\ sup|<p|>
n

1§
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For the second term, we have 2 Zn Sup ()
n

(’1{1;(%‘ S 2 277 >\£7n) Sup[y(’") |<)0(y)

In conclusion, from equation (2.5) we get

Var (P}l ¢) (z) < A" Varp + Z(n + 2)/\,(7”) sup || (2.6)
) fo n I

We want to give an estimate of the sum in equation (2.6); recall that for ¢ € BV,

1

suplel < Varg+ ——coo [ Joldo (i)
) PAs m(Iy") tn)

i

However, equation (ii) doesn’t provide a global bound independent from n for

two reasons. In the first place, the lengths of the intervals I,gn) are not bounded
from below when the indices j;(n) grow to infinity. Furthermore, a difficulty
that arises only in the case of uniform continuity and that was not dealt with
in reference [24] is that the measures of the cylinders of rank n containing the
endpoints @ and & — 1 are not uniformly bounded from below in «, and require
a careful handling.

To overcome the first difficulty, following [24], we split the sum into two parts:
for n fixed, let k& be such that

)\n
>N < st 27)
>k
Since A\ doesn’t depend on «, neither does k. Define the set of “intervals with
bounded itineraries”

G(n) = {1y € P" | max(jo(n), .-, jn-1(n)) <k} (2.8)

To get rid of the measures of the cylinders containing the endpoints, we combine
them with full cylinders; the measures of the latter can be estimated using
Lagrange’s Theorem, since the derivatives are bounded under the hypothesis of
bounded itineraries. When combining intervals, we have to consider the sum of
the corresponding )\E,n) and make sure that it is smaller than 1. This requires

additional care when I\ 5 o — 1.

Remark 2.4. Let 7 = r(a) be such that

1 1 4
Upp1 < a < v, where ’UT=—§+§\/1+— (2.9)
r

(clearly r is bounded by 7(@)+1 in a small neighborhood of &@). Then T} (a—1) =
% € Iy fori =0,...,r—1and T2(a — 1) ¢ I;. Thus any cylin-
der with more than r consecutive digits “(2,—)” is empty, and the cylinder
((2,-),...,(2,—)) of rank r may be arbitrarily small when « varies. The cylin-

der (jmin,+) can be arbitrarily small too.

Consider the function ¢ : G(n) — G(n) which maps every nonempty cylinder
I,gn) in Ig(n) in the following way:

a. If (.71(77)75@(77)) = (jmina +) for some i then (]2(5)761(5)) = (jmin +1, +);
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b. If 3i such that
(Gi(m)sei(m), -+, Gier(m)s €i4r (M) = ((2,2)5(2,7), -5 (2, 7)),
then ((4i (&), €i(€)) - - - (irr(§),€i12(£))) = (2, 7). -5 (2,2), (3, )

c. Otherwise, (ji(€),&:(€)) = (ji(n), i(n))-

We want to show that there exists d, > 0, depending only on &, such that for
all £ € o(G(n)), m(&§) > d,. For this purpose, we group together the sequences
of consecutive digits (2, —), and obtain a new alphabet A = A4; U Ay, where

Al = {(35_)7"'7(k7_)}U{(jmin"‘ 17+)7"'v(k7+ }
AQ = {(27 _)v ((27_)7 (25 _))v T (\(Z _)v T (25 _)1}
Then each { € o(G(n)) can be seen as a sequence in A® = {(a1,-..,a5) €

A’la; € Ay = a;y1 € Ay} for some n > s > 2. Let T, be the first return map

on A; restricted to o(G(n)):

ilj(a:) =Ta(z) forz € (a) € Ay;
T(z)=Ti(x) ifJi:ze((2-),..,(2,2), ¢ (2-)..,(2-)
i+1

i

Let V, be the inverse branch of T relative to the cylinder (a). Observe that

V(ai,...,a,) € A%, T(ay,...,a,) = T(a,) (2.10)
This can be proved by induction on s: when s = 1 it is trivial; supposing that
the property (2.10) holds for all sequences of length s, we have

Ts+1 (ala e 7as+1) = fs+1 ((ala L) as) n ‘7&1 e ‘7&5 (as+1)> =
=T(T%(ay,...,as) N (ass1))

since T is injective on (ai, . . ., as); this is equal to T(T'(as)N(ass1)) by inductive

hypothesis.
o If a;p1 € Ay, we have a; € Ay and T(a,) = I: then T+ (ay, ..., as11) =

T(as+1).
o Ifasy € Ay, T(as) D (as+1). In fact for alli =0,...,r — 1,

T2 ) 2 =) =Ti (o= 1L,V (@) =

’_i,_/
~[Tia=1).0)2 [~537.0) 2 VCE -39 e
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Equation (2.10) provides a lower bound on the measures of the intervals in
a(G(n)):

3 <m(T(a) = m(T (. a,)) < mla, .., a,) sup [ (F7)

, and

M(a) = (max ((k +a+e)?,2+a+ 5)27”(&))) > sup ‘f'
in a neighborhood of @. Thus for all Ién) € o(G(n)),

by =

(n)
= 30 (@) <m(l;")

Returning to the sum in equation (2.6), and defining Tén) = U{L(,n) |0(L(7n)) =
IE(”)}, we find:

5 (A,S”)suprI)S T | T AW

(n) Z()
1§ eG(n) I 1M eo(G(n)) Te o (IS =1{™
We want to estimate \' = sup > )\5,"): each sum can be computed

cr(G(n)) O.(I;")):Ié")
distributively as a product of at most n factors A}, each of which corresponds
to one of the cases a),b), c) that we have listed in the definition of o:

o In the case a), we have A} = ;. 4+ \j...+1 < 2(@+¢)? < 1 (remark that

Jmin

jemin > 3 when a < vZ —1).

e In the case b), X = A5 + A\ 'hg = (1 — )21 ((1 —a)? + m) <
0.9. In fact, when o > % we have (1 — a)? + m < %; otherwise,

(l—a)2+m<%,andforaZmH,wehaver—l2();W—Q,and

1— a2\ 1 1
1— )20 = < < <
1-a) 1+a SW+a2D S Tt2a0r—1) -

< 1+«
— 3 —3a —4a?

<3
5
e In the case c), A, = \j;.

(The constants in the previous discussion are far from optimal, but they are
sufficient for our purposes.)
Then )\ < max (A”, () ”(a)“) = \" < 1. Note that X only depends on & and

not on a.
We can finally complete our estimate for the sum over I,S”) € G(n):

- 1
XY suplpl <At > Var o] + Tn)) /T(") ®
3

2o F(n)
1M ea(G(n)) s 18 €0 (G(n)) Te m(l
<A | Varg + Z ;(n)/ o | <A"Varp + & llell, (2.12)
m(Ig ) Tén) 6n

1{ €0 (G(n))
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On the other hand, for the sum over I,gn) ¢ G(n) we have the following estimate:

> ((n+2)A£7”> suplsol) <

(n)
1 ¢G(n) T

n—1
< S}Pl@lzz > (n+2)Xjom) - Njuapy - (2:13)

J>k 1=0 ji(n)=max{jo(n),....jn—-1(n)}=j

where in the third sum of expression (2.13) we take | to be the smallest integer
that realizes the maximum, to avoid counting the same sequences twice. Observe
that when we take the sum over jo(n),...,jn—1(n), since we are not taking into
account the signs ¢;(n), we are actually counting at most 2" distinct sequences.

> Ajo(m) *** Ajua(m) <

(jO(n)""yjnfl(n))
Ji(m)=j

<A |2 > Njo(m) = Njna(m) | <
(G0(n)y---sdi—1(1M)sd141(N) 5--sdn—1(n))

n—1 7
<N L2 D an | a2t

i=0 ji=2
izl

since Y 5° A\j < %2 < 2. Therefore

n—1

> ((n +2)A5) sup |<p|> < sup o] YD 202t <
Inn

I;")gG(n) j>k =0

< suplip| n(n +2)2"~" 3"\ < sup | n(n + 2)\"
T - T

where in the last inequality we have used the hypothesis (2.7) on k.
In conclusion, \gar(Pr}‘a ) is bounded by

. 1
o (0 4308 arg + (042 (55+0) lel )

and we recall that we have chosen d,, and X so that they do not depend on a.
Choose any X € (A, 1), and let K > 0, N € N be such that

Vn>1, (n2+3n+3)A" < KA" and Vn > N, K\" <

N | =

Let L(n) = (n +2) (i + n) K = 12nz1<xNL(n). For any n, we can perform

the Euclidean division n = ¢V + r for some ¢ > 0 and 0 <r < N. Then

Var (PY @) < KXY Var o + K el (2.14)
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More generally, we can show by induction on ¢ that
Var (PEYg) < (RAN)Var o + C()K |, (2.15)

where C(q) =1+ § + -+ + 5;=r < 2 for all ¢. In fact if (2.15) is true for some
q, recalling that the Perron-Frobenius operator Pr, preserves the L' norm, we
get

\/I'ar (P;ZH)NQO) < (F/_\N)q \/I'ar (PJJ{‘P) + C(Q)K ||Pﬁ<p||1 <

_ 1 N
< (RN Var + (0G0 + 35 ) K ol de <

< (XY™ Varp + C(q + DK |lpll, da
For 0 <r < N, Var (P}, ¢) <KX Var g + K ll¢ll,. In general, for n = gN +1r,
we obtain

Var (P, 9) < (RXY)" Var (P, ) + C@K llgl, <

2=

< (RINRX Varg + K (BXN)1 + (@) llglly, < 503 Varg + 3K gl

Now take \g > max (2%, 5\), so that 3+ < (Ag)"(Ao)N? = (Ao)". This concludes
N
the proof of Lemma 2.3. (|

2.1.2 L' continuity of the densities p, and continuity of
the entropy

Let @ € (0,v/2 — 1] be fixed. To study the L'-continuity property of the den-
sities p, (and the continuity of the entropy h(a)) it is convenient to work with
measures supported on the same interval. Thus we rescale the maps T, with
a in a neighborhood of @ to the interval [@ — 1, @] by applying the translation
Ta—a- Let Ag g =T q 0T 0 TC—:_la be the new maps:

|

Let in = If + @ — a be the translated versions of the intervals of the original

1
r—a+a«a

1
r—a+ «

Apalz) =

+1—a]+d—0z (2.16)

partition, and pn(z) = po 7.t (z) = p(x — @ + ) the invariant densities for
Agy,5- Clearly the bounds for the sup and the variation of p, are still valid for
Par:

Lemma 2.5. Let a € (0,v/2 —1] be fized, and let  be given by Proposition 2.2.
Then if {an} C [@ — e, & + €] is a monotone sequence converging to &, we have
- L' .

Pan, — Pa-

Proof. Since sup |pa, | < K, Var p,, < K Vn, we can apply the following theo-

rems:

Theorem 2.6 (Helly’s Theorem). Let {p,} be a sequence in BV (I) such
that:
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1. suplpa| < K1 Vi,
2. Varp, < K> Vn

Then there exists a subsequence p,, and a function p € BV (I) such that

1
Pry, — P, Pnp — p almost everywhere, and

sup |p| < K1, Varp < K»

Thus we can find a subsequence {fa,,, } converging in the L' norm and almost
everywhere to some function pe, such that sup |peo| < K, Varp,, < K. We
want to show that po, = pg: we observe that it is sufficient to show that pe, is
an invariant density for Az = As s = T, and then use the uniqueness of the
invariant density. To simplify notations, we will write ay, for an,, pr for pa, ,
and A, for Aank’c—,.

Our goal is to show that VB C I5, [ x5(4a(2))pe(z)dz = [ xB(T)pso (2)dz.
Observe that every xp(z) belongs to L!(I5) and so can be approximated arbi-
trarily well by compactly supported C'' functions with respect to the L' norm.
Then it will be sufficient to prove that V¢ € C' with compact support contained

in I,
‘ [ st prte = [ ot)puc(ryic

Observe that | [ ¢(As (7)) poc(2)dz — [ ©(2)poo (@)dz| < I+ +13, with Iy, 1,13
given below:

=0 (2.17)

I = \ [ otaa@npme@iz [ otaa@peis

- ‘ [ tasenmin - [ ewpm i
- ‘ [eemic - [ owpm i

which vanish as k& — oo. Finally, I, = [|¢(4a(2)) — ¢(Ar(2))] pr(z)dz is
bounded by K [ |o(Ak(z)) — ¢(Aa(z))| dz, and we need to show that

< ellog 195 = Pooll 1

< llepllog 1% = pooll g

/|<p(Ak(x)) — @(As(z))|dx — 0 when k — oo (2.18)

Recall that for z € J; +a-— ag,

= |:]—1+ak ]+ak +a— ak) Ak(x) =

~=atay —Jta-ay andforz € J ;= {—Hﬁa —j%a), As(@) = -5 —J.
We will examine in detail the case ap < a Vk , z < d — ak, the other cases can
be dealt with in a similar way. In this case, 0 < < a— ag, and if

J+ak J+a

]<m:N(k)’then_Tak+]+_a<ak a=3=l < o —a and so
1 1 1
e A< < +a— ay (2.19)
J—1+ag jt+a J+ag

Ingy = UjZN(k) J; o, contains the set in which condition (2.19) isn’t satisfied,

and its measure m(In()) = Z;’;N(k) vanishes when k& — oo.

1
(G—1+ar)(j+ou)
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Given €" > 0, choose k such that m(Iy) <€, and let k > k. Define

A e oXx—O0,————= |, 1N, = |————, a—
/ J—1+ag B ra) Jjta jt+ag )

~ 1
when 2 < j < N(k), and & = {d—l,—m)

Then we can split the integral (2.18) in three parts in the following way:

[ etee) - pta@nlde < [ o(au(e) — elds o)l drt

a—1
Iy w)

N(k)
[ lete@) - pa@) d:v) +y (

J

N(k)
+> (
j=3

The first integral in this expression is bounded by 2" ||¢||.,. Moreover, the
measures of the sets n;” tend uniformly to 0 when k — oo:

[ enta - e(aate) dx)

J

|d—ak|

Gra+ag =0

m(n; ) < la —ag|+

N(k)
= Z /_ oAk (@) = p(As(@)| dw < N(B)2]lll o Cr(@ — o)

Finally, m({;) < % +la—ai < % when k& > k, j < N(k), and for = € & s

< _HL& and z —a+ ap < —#;ak, therefore
1 1 _
[A4@) = As(a)| = |~ + T — | <

r r—a+aq
|O7—Oék|

T —ara SE el (+ G+ (220)

S|d—ak|+

Since ¢ is C! on a compact interval, it is also lipschitzian for some Lipschitz
constant L., and

z

N(F) :
> /7 lp(Ak(2)) — ¢(Aa(z))|dz < . m(&; )Ly |Ak(z) — As(z)| <

2
=
=
<
[l
o

Cs(1+ (G +1)3)

< j2 Lw|d—ak|§C4N(l_c)|d—ak|§C4 |(5L—Oék|

2

J

when £ is large. This establishes the claim that the third integral vanishes when

= = .. . K . 1
x < @— ay. In the case x > @ — ay, we have similar estimates: for j < Ja—arl’

\&—ak

we have
1 1 B 1
5 — < - t+ta—ap < ———
Jta  jHag J—1l+a

and we can define the intervals
1 1
6t = ( +a—ag

J j—1+a’ j—1+a
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We have m(&j‘) < Csla— agl, m(fy]'-") < %, and
|Ak(z) — Aa(2)| < C7j? |y — @ for z € v}

Finally, we leave it to the reader to check that the case @ < ay can be treated
in same way. Thus we can conclude that (2.18) holds.

Therefore we have shown that p., = pg. This is also true if we extract a
converging sub-subsequence from any subsequence of p,,, and so po, — Pa
both in L' and almost everywhere for n — oo. This completes the proof of
Lemma 2.5. O

The L'-continuity of the map a — p, is sufficient to prove that the entropy
map « — h(a) is also continuous. This is achieved by applying the following
lemma (for a proof see for example [1]) to Rohlin’s formula.

Lemma 2.7. Let {p,} be a sequence of functions in L'(I) such that
1 lpnlle < K Vn,

2. pn N p for some p € L*(I)
Then for any ¢ € L'(I),
Y(pn —p) =0

Applying Rohlin’s Formula for the entropy, we get for any o € [@ — &, @ + €]

[e3

@ 1
o) = [ o s n(@ds =2 [ Jloglo =+ all (o)

-1

Consider a sequence {a,} — @. Then

(o]

|log |z — & + an| pa, (z) — log|z| pa(x)|dz <
-1

h(@) - han) <2
<2 </Q1 |log|z — @ + an| (pa, (2) — pa(z)) |dz+

# [ |ttogla —a + ] = togla]) s ()] o
a—1

The second integral is bounded by 2(Ky + 1) fs_
and vanishes when n — oo because of the continuity of translation in L. If we
take pn, = Pa,, P = Pa, ¥(x) = |log|z|| in Lemma 2.7, we find that the first

integral also tends to 0. O

| Nog|z — &+ a,| — log|z|| dz

2.1.3 Behavior of the density and entropy when o — 0

In this section we will prove that the entropy has a limit as « — 0% and that
lim,_,o+ h(a) = 0.

The continuity of the entropy on the interval (0,2 — 1] followed from the
L'-continuity of the densities. The vanishing of the entropy as @ — 0 is a
consequence of the fact that the densities converge to the Dirac delta at the
parabolic fixed point of Ty as a — 0.
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Proposition 2.8. When a — 0, the invariant measures [i, of the translated
maps Aao : [—1,0] = [—1,0] converge in the sense of distributions to the Dirac
delta in —1.

From the previous Proposition the vanishing of the entropy follows easily:

Corollary 2.9. Let h(a) be the metric entropy of the map T, with respect to
the absolutely continuous invariant probability measure po. Then h(a) — 0 as
a — 0.

Proof of the Corollary. We compute the entropy of the T, through Rohlin’s
formula:

ha) =2 [ foglalld (2.21)
a—1

Observe that VE C (c1,0], ua(E) = ﬁua(E) < %g)m(E) Therefore if pq is

the density of pa, pa < % in (¢1,0]. Given g, let ¢ be such that |log|z|| <
e for © € [—1,¢k], and choose « small such that a — 1 < ¢, pa([ck,a]) =
fio ([6x,0]) < € and C(gg) < e. Then
Ck Cc1 [
) < [ loglelldpa+ [ oglelldua + [ oglall pade <
—1 Ck Cc1
< Nloglexl| + [log £ | aler, 1)) + = [log |z, - 0
>~ g |Ck g3 Mo ks €1 C(Ol) g 1
which concludes the proof. [l

To prove Proposition 2.8 we adopt the following strategy: we introduce the jump
transformations G, of the maps T, over the cylinder (2, —), whose derivatives
are strictly bounded away from 1 even when a — 0; we can then prove that their
densities ddL; are bounded from above and from below by uniform constants.
Using the relation between p, and the induced measure v,, we conclude that
for any measurable set B such that —1 ¢ B, jio(B) = pa(B + a) — 0 when
a — 0.

Proof of Proposition 2.8. Given v,.;1 < a < v, as in equation (2.9), and
0<y<r,let

Lo =1, \ (27 _)7 Lj = [cj+1acj) = ((27_)7- . -7(27_)) \ ((27_)7- R) (27 _)J)

~ v ~
~~

J Jj+1

for 1 <j<r. Thus I, = U0<].<T L; (mod 0). It is easy to prove by induction
. _ jfl 1 _ 1 . ]

that for r > j > 1, ¢; = Vi, 7 (_%-—a) =—-1+ p—— that is, —j]? <e¢ <

—7];.1, while ¢ = a, ¢,41 = a — 1. Let

Galr, =TI,

be the jump transformation associated to the return time 7(z) = j+ 1 <=
x € L;. Observe that 7 is bounded and therefore integrable with respect to f,.
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Then a result of R. Zweimuller ([26], Theorem 1.1) guarantees that G, admits
an invariant measure v, < [, such that for all measurable E,

pa(B) = o | S ({r > my 0T (B) (222
C(O[) n>0

where C(a) is a suitable normalization constant. Actually from equation (2.22)
it follows that v, (1) = va ({7 > 0}) < C(a)pa (1) is finite, and so by choosing
a suitable C'(a) we can take v, (I,) = 1. We will prove the following:

Lemma 2.10. There exists @ > 0 such that for 0 < a < @, the densities 1, of
v, are bounded from above and from below by constants that do not depend
on a: 3Cy s.t. C’O_1 <o <.

Proof of Lemma 2.10. In order to prove that ¢, is bounded from above, we
can proceed as in Lemma 2.3, and show that 3C’ such that for all a, Vo €
L'(I,), Vary, P% ¢ < C'. Since the outline of the proof is very similar to that
of Lemma, 2.3, we will only list the passages where the estimates are different,
and emphasize how in this case all the constants can be chosen uniform in «.
The cylinders of rank 1 for GG, are of the form

I]]'C’E = (j,k,E) = ((27_)7' . '5(27_)7 (k‘,E)), 0 < .7 <,
ﬁ_/

so they are also cylinders for T, although of different rank. On IJ'.“E, j>1we
have

1 . 4 1 1
= (Ti(z) - Ta 2= < < -
| = o)+ Tatorn)* <A = Gt < G <5
1 1
> — ,
‘Gloz(x) ~952(k+1)?
while on I}°, G':(x) =22 < ﬁ < 1, and so A = sup ‘GL,Q < 1 for all a.

Letting Q = U;ZO{I]{“’E}, and A\ = SUP ()
of equation (2.6) for the maps G,:

(Gl—n), , we can obtain the analogue

Var (P§_p) (z) < A" \gr o+ Z (n+2)A"Ms

up ool
M egm Y

n

and similarly to (2.7), we can choose h such that >, , %2 < 24’}1—71_2, and the set
of intervals with bounded itineraries B

G(n) = {Lgn) = ((j07k0750)7 RN (jnflaknflygnfl)) S Qn |
max(jo,- .., Jn—1) < h, max(ko,...,kn—1) < h}

Again we can define a function o : G(n) — G(n) that maps every cylinder I,gn) =

((jos k0,0, - -y (a1, kn—1,€n-1)) t0 I = (b, Kby €h)s- - (fa1s K116 1))
as follows:
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a. If (ji,ki,f‘:i) = (jajmina +)7 .7 <r-1 for some 7:7 then (];,ki,f‘:i) - (jajmin‘l'
L+);

b. If for some i, (j;, ki,ei) = (r,k,e) with (k,€) # (Jmin, +)s (Jmin + 1,+),
then (ji, ki, eb) = (r — 1, k,e);

c. If (jl) kzagi) € {(Ta jmina +)7 (rajmin + ]-7 +)a (T - lajmina ‘I')}a then
(]zlakéa ;) (’I"—l ]m1n+1;+)7

d. Otherwise, (j!,k},e}) = (ji, ki, e:)-

177
With this definition, the cylinders in o(G(n)) are all full, because as we have
seen in equation (2.11), for 0 < i <r —1,

i 1 €
THE) )2 rma) 2 U T
Y (ko) k>3

Then VIE(n) € o(G(n)),

(n) n\/ (n) 4\n (n) 1 1
1< I = I = I > =
<m(Ig™) sup [(Ga)|=mUI)OR" = mlI"™) 2 5 = G

which doesn’t depend on a. Again we need to estimate the supremum over
Ig(n) € d(G(n)) of the sums S A each of which is the product of n
(m)y_p(m)
o(I;")=I,
terms A}, that correspond to one of the cases a), b) c)d) we listed previously:
e In the case a), \; = )\;“““ + )\;“““H < s + —=— < 1 (observe that

= (Jmm 1) Jmin = 2
for & < v/2 =1, jmin > 3).

o In the case b), X\; = A} + A}y < e ((r+1)2 + ) < 1 when
a < Us;

o In the case ), A, = Mmin 4 M/mip 4 Mmintl 4 \Jmintl

<4(m+2 )(m+m) §fora<v2;

e In the case d), \j < A = 1.
Then X <\ = %, and as in equation (2.12), we find for a < vs,

Am
> (A sup|<p|> <Ny sup|<p| < A" Varp + —||<p||1

(n)
15 eG(n) I 1 ea(G(n)) T

For the sum over intervals with unbounded itineraries we proceed in a similar
way to (2.13):

n—1
(n) ko(n)  ykn—1(m)
Y A <SS > Ajatm) " Mmsam +
1§ ¢G(n) B0\ ==
maX( 0 (1) sdn—1(1))

n—1

ko(m)  ykn—1(n) 4 (n)
+ Z Mot = Nnion [ S22 = (2 22 A
(m)= z_ i>h 1=0 I*eQ
max(kom), kn—1(m)) !
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(This expression is redundant, but sufficient for our purpose.) Observe that

o] (o] 4
Z A%n)SQZZW (Zk2> < 8, and so

4
Z /\57") < —2n24” <A
1" ¢G(n) =h

Then we can prove relation (2.14) and complete our argument exactly like in
Lemma 2.3. Notice that all the constants involved are uniform in «.

To prove that the densities v, of v, are uniformly bounded from below, we
use a bounded distortion argument. We follow the same outline as in §1.9, but
with the advantage that in this case the derivatives are uniformly bounded from
above.

Since T, satisfies Adler’s condition (see definition 1.22),

K (here K =
()"
Tz
K' (see [25], Lemma 10). Then Vz,y belonging to the same cylinder Ij *© of rank
1 of G,

T
T | <

2), then there exists K’ i <

Ge) ||y | |GUECale) - Galy)
‘Ggw) ‘1‘ GOl G;(wH )G ‘S
2 Glci(g) "
< 36 EAGE |Ga(z) = Galy)] < K" |Go(x) = Galy)], and
B 8 B
<y (5) |Gz<y>—Gz(x>|5K”§(i) > \—(gggﬁg <c

where Cy does not depend on a. Letting W, : G*(I"™) — I{™ be the local
inverses of G, for every full cylinder I,S”) € P and for every measurable set

1@ ()ldy  m(Wy(B)) sup [(G7)'(y)]

m(B) _ Wa(B) P very” < ¢, Wy (B))
- > > 1
m(la) [ (GB) ()| dz m(I{™) inf |(Gn) ()] m (1)
) el
m(1,")

= m(Wy(B)) > m(B)

2.23
o (@)
Finally, we can show that the measure of the union S, of all full cylinders of
rank n is strictly greater than 0. In fact we have the following characterization:

e Q™ is not full = it has an initial segment of the orbit (with respect to
G.) of one of the endpoints « and a — 1 as its final segment. That is, if « =
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(a1,a2,as,...) and a—1 = (by,bs,bs,...), then there exists 1 < k < n such that
(n)

I,gn) = (Wiy.e s Wnok,G1y. ..y a) OF Iy = (w1,...,Wn_k,b1,...,b;). To prove
this, observe that if I,gn) doesn’t contain any initial segment of (a1, az,as,...)

v (by,bo,bs3,...), it is clearly full, and if every such segment (ai,...,ax) or
(b1, ...,by) is followed by wyr1 # ags1 or byyi respectively, then it is either full

or empty because G7 is monotone on each cylinder. Then

Va(sg) S Vo (U Ga(nk)(ala"'aak)> + Vo (U Ga(nk)(bla"'abk)> S

k=1 k=1

Z vol(ar,...,ar) + va(bi,. .., b))
k=1

since v, is G4-invariant. We have already shown that v, is bounded from below,
and so vo(ay, ... a) + vo(bi,...,b) < C'(m(ay,...,ax) +m(by,...,bg)).

In order to prove that v, (SS) < 1, we take advantage of the fact that the cylin-
ders containing the endpoints become arbitrarily small when « approaches 0.
Recall that (a1) = (jmin) = ([2 + 1 —«]), and consequently inf(,, |G} (z)| >
(jmin — 1)?, and since inf; |G’ (z)| > 4, from Lagrange’s theorem we get

1

m(ai,...,ax) < T 1 G —1)2

Since jmin — 00 as @ — 0, we can choose & such that Vo < &, m(ay,...,a;) <
L Similarly, recall from Remark 2.4 that for v,1; < a < v,, Where vy =

4kCr

w, we have (b1) = ((2,-),...,(2,-),(k,e)) for some k > 3, and re-
—_— ———

calling that T} (a — 1) = (Hha=l "o find

1—ic

. ' = in ; ! ! I (i) -
Gl =t 1 oy 2 e L a—arnap 2 a—rar

But @ > v, = 7 <’ +a=>1-ra< % < 3a, and so by taking &

small enough we can ensure that Vo < &, inf(;,) |G, (7)| > 4C" and consequently
m(by,...,b) < 7o Vk.

Then for a small enough, m(S5) < &> & < 557 = va(Sn) < 3 =

Va(Sn) > & = m(S,) > % > L. Taking the sum over all full cylinders

I,(,") in (2.23), we find that for all measurable B C I,

m(B)m(S,) _ m(B)
o - 3C,C"

m(G,"(B)) 2 m(G,"(B) N Sy) >

Now recall that the den51ty of v, is equal almost everywhere to the limit of the
Cesaro sums lim,,_,oo - m Z:L 01 PG 1, and so for a < @,

Vo (B) :nlgr;oﬁ /PO ldx—nlgl(}OEZm
i= 0B

and consequently we have v, (B) > ?:g(%), VB. U
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We can finally conclude the proof of Proposition 2.8. The following properties
hold:

o C(a) = 0o when a — 0. In fact when «a is small, C; ' < ddLn‘; < Cy for
some Cjp, and

Y%

—
I
(]
=

S
5

1 1 ¢
- 2 o) Z Vo(Ly) = @) kZ:OVa([a —1,c])

n>k

vV

1 < 1 ~ 1
> mZm([a—l,ck]) > Colla) (;k—-l—l —(r+1)a>

> m (10g (ﬁ) _ 1) (2.24)

since r < a%m < r + 1. Therefore the normalization constant C'(a) >
CLO (log (cﬂlﬂ) — 1) — oo when o — 0.
e Finally, VL, k > 0 finite, po(Lr) — 0 when a — 0. In fact we have

Va(L; Co Co Co 1 1
i) = 3 < o 3 mlLs) < s 1= ol < r =0

Consider now the translated versions A, o of the T,, with respect to & = 0, and
let ¢; = ¢; — « be the translated versions of the ¢; (we omit the dependence
on « for simplicity). Then we have fio((é,0]) — 0 for all finite k. Let f €
C>([—1,0]) be a test function: we want to show that Ve > 0, 3o’ such that
Va < o, ‘f?l f(x)dfia — f(—l)‘ < . Since f is uniformly continuous, 34 such
that V|z — 1] < 6, |f(z) — f(=1)] < &. Choose k so that &, < —1+ §. Then for
all @ such that fi,((éx,0]) < e,

‘ / Ol(f(w) 1))

Cr 0
< / F@) = F(=1)] dia + / 1 (@)] dfia+

—1

0
+ / FD)]djia < &+ (1l + 17 (=D 0

Ck

2.2 Numerical results

In this section we collect our numerical results on the entropy of Japanese
continued fractions. We already know that the function o — h(T,) is conti-
nuous in (0,1] and that in the case a > /2 — 1 the entropy has been com-
puted exactly by Nakada [16] and Marmi, Moussa, Cassa [15]. For values

IThe reader might be wondering whether the estimates of the densities of T}, in Paragraph
2.1.1 and the continuity of the entropy might be derived directly from Lemma 2.10. This would
follow from equation (2.24) if we possessed a suitable lower bound for % when o varies; but
we haven’t been able to provide such a bound except for small a. As for the continuity of
the entropy, the fact that h(Tw) and h(Gq) are related by the Generalized Abramov Formula
[26] suggests that proving the continuity of h(Ga) might be a valid alternative approach;
however, taking expansivity into account, we believe that the estimates necessary to prove
L!-continuity of the invariant densities of G, as in §2.1.2 would be far more taxing than for
Ta.
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Figure 2.2: The dependence on n of the standard deviation of the normally distributed
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Figure 2.3: The distribution of h(%,1000,z:) for 10000 random initial conditions.

The

average h(%,n, N) = 3.41711 must be compared to the exact value h(T%) =

7r2
m = 3418315971 P
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Figure 2.4: The entropy of the map T, at 4080 uniformly distributed values of a from
0 to 0.42. The estimated error is less than 2 - 1077,
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Figure 2.6: The entropy of the map T, at 1600 uniformly distributed values of a from
0.265 to 0.281. The estimated error is less than 1.5 - 107",
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Figure 2.7: The entropy of the map T, at 989 uniformly distributed values of « from
0.278 to 0.281. The estimated error is less than 4 - 10 °.
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2.075 /
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Figure 2.8: The entropy of the map T, at 1799 uniformly distributed values of a from
0.09 to 0.11. The estimated error is less than 2.5 - 10~ *.

of a in the interval (0,v/2 — 1] we have numerically computed the entropy
of the maps applying Birkhoff’s ergodic theorem and replacing the integral
WTy) = =2 [ | log|z| pa(z)dz in Rohlin’s formula with the Birkhoff averages

9 n—1 ]
ha,n,z) = - Zlog T ()]
7j=0

which converge to h(T,) for almost all choices of # € (. — 1, ). In order to get
rid of the dependence on the choice of an initial condition we have computed
h(a,n,z) for a large number N of uniformly distributed values of z; € (a —
1,a), k=1,...N, and we have taken the average on all the results:

N
1
h(a,n,N) = N Zh(a,n,xk) .
k=1

Unsurprisingly, it turns out that the values h(«,n, xy) are normally distributed
around their average h(a,n,N) (see Figure 2.2). We have also computed the
standard deviations of the normal distributions for values of n from 500 to
350000 (see Figure 2.3): a least squares fit suggests that they decay as 1/v/n
(we refer to A. Broise [5] for a general treatment of Central Limit Theorems
that may apply also to our maps).

In Figure 2.4 we see a graph of h(a,10*, N) at 4080 uniformly distributed ran-
dom values of a in the interval (0,12 — 1): the values of N range from 10° to
4 -10° increasing as « decreases so as to keep the standard deviation approxi-
mately constant. The estimated error for the entropy is less than 2 - 1074,

As a — 0 the entropy decreases (although non monotonically, see below) and
the graph exhibits a quite rich self-similar structure that we have just started
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to investigate: for example the entropy seems to be independent, of «v as a varies
in the intervals whose endpoints have Gauss continued fraction expansions of
the form [0,n,n — 1,1,7] and [0, 7] respectively, and to depend linearly on «
in the intervals ([n], [0, 7, 1]). Compare with Figure 2.6, where h(a, 10%,4 - 10°)
is computed at 1600 values of a € (0.264,0.281) and with Figure 2.8 where
h(a,10%,2-10%) is computed at 1799 values of a € (0.09,0.11).

Figure 2.5 is a graph of h(a,10%,4 - 10°) at 1314 uniformly distributed random
values of a in the interval (0.29,0.3): here the non-monotone character of the
function a — h(Ty,) is quite evident. A magnification of Figure 2.6 correspond-
ing to values a € (0.278,0.281), showed in Figure 2.7, suggests that the same
phenomenon occurs at the end of each of the plateaux exhibited in Figure 2.4.



Chapter 3

Natural Extensions

3.1 Fibred systems

Natural extensions were introduced by Rohlin [19] as a general method to pass
from a given endomorphism to an automorphism of which the first is a factor.
Nakada, Ito e Tanaka applied it to continued fractions [18] [16].

The main reference for this section is Schweiger’s book [20], whose approach is
based on the notion of fibred systems.

3.1 (Fibred system). Consider a set B, and an application T : B — B. (B,T)
is called a fibred system if there exists a finite or countable alphabet A, and a
surjective function k : B — A such that T),-1(,y is injective Va € A.

Let © = AN, 0 : £ — X the shift map. We define a representation function
¢ : B — X as follows: '
(p(x)); = k(T ")

Then we have the commuting diagram
BB
5| &
by — by
The elements of ¢(B) C ¥ are called admissible sequences.
3.2 (Cylinders). We call cylinders of rank 1 of the system (B,T') the sets
B, =k Yk}, k € A;

The cylinder of rank n associated to the block (ki,...,ky), ki € A is defined as
follows:

Blky, ... kn) = B(k)) NT'B(ks) N ...N T~ "' B(k,)
We will say that (ki,...,ky) is an admissible block if B(kq,... k) # &.

Proposition 3.3. Vn > 1, the following properties hold:
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G,) U B(kla"'aknaa):B(kla"'akn)
a€A

b) T~'Bky,....kn) = U Bla,ki, ... k)
acA

In the sequel we will assume that the following additional conditions are satis-
fied:

1. B C R and the o-algebra generated by cylinders is the o-algebra B(B) of
Borel sets of B;

2. T is measurable with respect to B(B);
3. V(ki,... kn), T‘B(k17j__7kn) is differentiable.

We will denote by Vi, ... r,) the local inverse of T|B(k and by W, . k)

its Jacobian with respect to the Lebesgue measure.

1’D~~~7kn),

3.4 (Dual system). Let (B, T') be a fibred system with respect to the alphabet
A, B# aset, T# : B x B¥ — B# such that:

a) Vx € B fixed, (B#,T#(x,-)) is a fibred system, whose alphabet is still 4;

b) Let B (x), k € A the cylinders of (B¥#, T#(x,-)). Then Vk € A, BY (z) #
& and

Vi, x is well-defined = Vv#

i (T$)B,ﬁ (x) is well-defined (3.1)

(B#,T#(x,-)) is called a dual system for (B,T) in z."
Let k#(x,y), y € B# be the representation function on (B#,T#(x,-)), with

V(fl’m,kn)(a:) the local inverse of T#(x,.)letl,..j,kn)(z), and with wilw,kn)(z‘)

its Jacobian with respect to the Lebesgue measure. Moreover we denote by B#
the o-algebra of Borel sets of B#.

3.5. We define the cylinders of B# with respect to = as follows:

#
B(kl’“'ykn

(@) = B (o) 0 (T#(z,) " BE, (Vi,2) ) 0
N (T#(x, -)’1T#(Vklaz, ')AB/i(V(kz,kl)m)) ne---
N (T#(m, )T TR (VT ) BE (V(knfl,...,kl)ﬂf))

Condition (3.1) ensures that if Vi, . x,)® is well-defined, Bﬁch___’kn)(a:) is non-

empty. Also remark that if y € Bﬁm,...,kn)(x)’

(T#(may) € B]i(vk1m)) N (T#(VM:U: ')_1B]?f3 (‘/(kz,h)x)) n--
N (T#(Vkli, _)71 ...T#(‘/(kn_27___7kl)x, .)7132: (‘/(kn_h.--,kl)x)) =

- Bﬁczw,kn)(Vklx)

I'We remark here that for the sake of our proofs we need a more general definition of dual
system than the one adopted in Schweiger [20], that is our dual map T# is dependent on z.
All the duality properties still hold, as we will show in the following pages.
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3.6 (Kernel). K : B x B#* — R is called a kernel if it is non-negative, mea-
surable and Y(z,y) € B x B# such that T-'{2}N B(k) # @, (T#(x,-)) " {y} N
ijE (z) # &, we have

K (2, Vi (@, y)wf (2,y) = K (Vi(@), y)ws (x) (3.2)
Proposition 3.7. Define
D(z) = {y €B* |¥n>0,ye Bl ()& T {z} N B(kn,.... k1) 7&@}
Then the following properties hold:
a) y € D(z) = Vk@) (Tz,y) € D(Tz)
b) y € D(z) = T#(z,y) € D(Vi(sy)(2))
¢) D(x) = Uy (BE (2) N V¥ (2, ) D (Vi)
Proof. a) Ify e Bﬁc17___7kn)(a:) N D(z), Vka) (Tz,y) € Bf(x) "
Vi (Tz,y) € D(Txz) & T " {Tx}N Blkn,...,k1,k(z)) # 2

)(Tx)

b) Ify € Bﬁﬂ,___,kn)(m) ﬂD(iL’), T#(CU, ) (]g2 )(Vk1 )

T#(CU,?J) S D(Vk(m’y) ((17)) <~ T_n_l{Vk(z,y)(a:)} n B(kn,...,kg) # [ =
T "{2} N\ Bk, kok)} 79 & y € D(x)

¢) Let y € D(x): then point (b) implies that T#(x,y) € D(Vi(y,) (), and
so D(z) C U, B;f(x) N T#(x,-) 1D(Vi(z)). But point (a) entails that
T#(x,y) € D(Vk(w7y) (z)), and so

VkTVk(m y)(x))(l'a ')T (z,y) = th y)( -)T#(a:,y) € D(TVk(a:,y) ())
= ye D)= DUB# ) NV# (x, ) D(Vi(z)) O

Remark 3.8. The statement (c) in Proposition 3.7 is equivalent to the defini-
tion of D(z). In fact, suppose that (c) holds: we can prove by induction on n
that

e (B, )@ ND@) = (T "{z}NBu, 1) £0  (33)

Forn = 1,y € B¥ki(z) = y € B¥ki(z) N V,f(:c,-)D(Vkl (x)). Therefore
D(Vi, (z)) # @, and Vi, (z) is well-defined.

Now suppose that (3.3) holds for n — 1, and consider y € Bﬁm“_’kn)(m) N D(x).
Then T#(x,y) € B(k2 kn)(Vkl(m)),T#(m,y) € D(Vi, (z)). For inductive hy-
pothesis, T~ {V}, (z )}OB(km___’kZ) #@ = T {a}NBy,, k) # 2. Onthe
other side, if T="{z} N B, . k) = 9, if there existed y € B# )( z)ND(z),
we would have T#(z,y) € D(Vkl(az)) and, recursively, (T#)? (V( Lreskii1)s y) €
D(Vigy,...ks) (), Vi = 1,...,n, that is D(Vig, . k,)(T)) # @ Vi = ,Ny 2
contradiction.
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Theorem 3.9. Let (B, T) be a fibred system, B¥ a set, T# : B x B# such that
(B#,T#(x,-)) is a dual fibred system Vo € B, and D(z) # @ Vx € B. Let

B={(z,y) |z € B, ye D)}
T:B — B, T: (z,y) — (T, Vk(x)(Ta:,y))
B={AeBxB*|ACB}

Then (B, T) is a fibred system and T is invertibile. Moreover if T is measurable
with respect to B and K : B x B# — R is a kernel, KIE s an invariant density

forT.
3.10 (Natural extension). (B,T) is called a natural extension of (B, T).

Proof of Theorem 3.9. The map T: (z,y) = (Vi) (z), T#(z,y)) is well defined
thanks to Proposition 3.7 (b), and it is an inverse of T":

TT(CU,y) = T(T:U,Vk#(#x) (vay)) = (Vrlc(z)Taj T#(va ) k(z )(T:U y) (a:,y)
TT(2,4) = T(Vig @) T*(@,9)) = @, Vi (0, )TH(@,0) = (2,9)

Remark that
1 1

rwE - )
From equation (3.2) it follows that
K(Tz, Vi, (Tz,y))wi ) (T2,y) = K (Vi) T(2), y)wi () (T ()

Then from the change of variable formula we find that YO C B,

wy (z) =

K(z,y)dxdy = /OK(Tu, V,jru) (Tu,v)) |T" (u)] w,f(u) (Tu,v)dudv =

T(0)
- / K (Vg T (), 0) iy (T () [T (0)| dudo = / K (u, v)dudv 0
Corollary 3.11. h(z fD(w (z,y)dy is an invariant density for T.

Proof. 1t is sufficient to consider the commuting diagram

&l

T
—

p+l
B ——

&l

m =
+
(I

3.2 Natural extensions for o € [y2 —1,1)

In this section we summarize the known results on the natural extensions and
invariant densities for a-continued fraction algorithms. For a € [,1) these
constructions are due to Nakada [16], while for o € [\/i -1, %) the invariant
densities have been found by Cassa [6], who did not employ the natural ex-
tension method, but another technique that involves counting the poles of a
meromorphic function. Here we translate his result into the language of natural

extensions, providing an independent proof.
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Theorem 3.12. Let a € [/2—1,1], and define the domain D, C R? as follows:

1. For a € (g,1),

s (s 52« ol o (520) ).

2. Forae [L.g],
o= (o1 5w (525 o)
J([252e) <o)

3. Fora € [V2—-1,%),
Dy = <[a—1, 210‘__;} x [0,1—g]> U

() s [ (520 )

Define T, : Do, — D,, as follows:

Talr,y) = (Ta(ff)’ m>

where k(z) = [|%| +1-al.

Then Ty, : Dy — Dy is well-defined and bijective, and is a representation of the
natural extension of T,. Moreover, T, preserves the density uf—z"y)g, where C,
s a suitable normalizing constant.

The vertical sections of the domain D, for x € I, correspond to the sets D(x)
defined in Proposition 3.7.

Corollary 3.13. Let g and G denote the Golden numbers @ and @ re-
spectively. Then the unique invariant density po, for Ty is given by the following
eTPTessions:

o fForg<a<l,

1 1 1
pa(z) = log(1 + ) (X[a_171;a](w)x +2 TX(z2.0) (w)x + 1)

o Fori<a<y,

() = — (1) — =+
Pall) = log G Mo, 222217 a1

1 1
X ) W P Wiie
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o For\v/2—1<a<ti

>~ 35

(1) = —— (1) — 4
Pall) = log G Mot 22 W a1

n 1 N 1 1 n () 1
X229\ 05 G+1 " 246G z+2) "X\ TG

This corollary follows easily from Theorem 3.12: since T, is a factor of T,
its invariant measure p,dz is simply the image measure of K(z, y)dmdy w1th
respect to the projection on the first coordinate, that is p,(x

fD () (1+xy)

Proof in the case o € (g,1). For the sake of simplicity, we will write T instead
of T, and T instead of T,.

In this case, we have k(a) = 1, and T(a) = =%, Let r = k(1 — ): then
E(T(a))=r—1:

k(T(a)):{ o +1—a]={ L —a]z{ L +1—a]—1:r—1

1-a 1-a
Moreover, we also have T?(a) = T'(a — 1):
1

T(a—l):l_a—rzl_a—(r—l)zTQ(a)

In order to show that T is bijective on the domain D,, we consider a partition
of D, into suitable rectangles, as shown in Figure 3.1. Their images are shown
in Figure 3.2. If we show that we can divide the domain D, into rectangles
where the components of T are monotonic, and that these are mapped into
distinct rectangles which cover the whole domain, we will prove at once that T'
is well-defined, one-to-one and onto.

For the sake of simplicity, we will not make any distinction between open and
closed intervals, since the natural extension and invariant density are defined
only modulo negligible sets. To be more precise, we should remark that if D, (x)
is the vertical section corresponding to z, the union of the boundaries of the
rectangles [, {2} x Dq(x) is still a set of measure 0.

Let £ =T?(a) = T(a —1). Then

T({a—era_ x o%) = [€, 0] x [%r_l%] (a)
For all b > r, we have
Similarly, for all h > r we find
T([ — x -0, —-) =la—1,a] x [%,l] (c)
h+ta' h—1+a 1+a "3 h+i'h
Moreover,
T([T_Ha aa_x{o,%_>:[§,a]><[ ;’ril] (d)
T([222 2| <o) — - x |5 (0
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|
|
I
|
|
|
|
| |
| |
| |
I |
I |
| |
I
1 l
l—a
a—1 0 == «Q

Figure 3.1: A simplified diagram showing the blocks (a)-(g) in the domain D, when
a € (g,1).

For2 <h <r -2,

T({ﬁﬁ] x [0,1]) —la—1,0] x {%HH (f)

(S N [ B

Thus T is bijective. Finally, the fact that K(x,y) is invariant for T can be
easily checked through the change of variables formula: the determinant of

the Jacobian for T is respectively m when z > 0 and >zzy=;7 When

1
z)—
2 < 0. Then for any A C D, if we put AT = An{z > 0} and A~ = An{z < 0},

we have

Finally,

1 1
K(z,y)dedy = — . dudv+
oy @)y = & </A 21t o)

/) <o (e Lo aree) 09

This concludes the proof. O

Proof in the case o € [%,g]. This proof is identical to the previous one, except

for the shape of the domain D,; we need to check again that T is well-defined,
one-to-one and onto.

In this case, we have a®? +a—1 < 0, so k(a) = 2 and k(a—1) = 2. Then T'(«)
=20 T(a—1) = 22=L Tt is easy to check that k(T(a)) =3, k(T(a — 1)) =
and T%(a) = T?(1 — a) = 352, Let £ = T*(a).

As in the previous case, we compute the images through T of a suitable partition
of the domain D, into rectangles, as shown in Figures 3.3 and 3.4:

2,
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1
)

1

2 ,,,,,,,,,
. ;

,,,,,,,, [,,,,,,(i,,,,,,,,,,,,,,,
e et il
b, c
a—1 & I?T“ Q

Figure 3.2: A simplified diagram showing the images with respect to T of the blocks
(a)-(g) in the domain D, when « € (g, 1).

g
1
2
I
a ib ic id i e i f i g
a—1 T (o) 0 T(a—1) a

Figure 3.3: A simplified diagram showing the blocks (a)-(g) in the domain D, when
[eAS [%, g].

7 (Ja-1555] x 01 -a) =@ - .0l [.4] (a)
T ([ 1@| x0.1-4)) = e - 1.8 x [5,1-4] (b)
(o« o) -

Observe that in equations (a) and (b), we have used the fact that ﬁ =g and
11 .

g = 1 — g respectively.

For h > 4, we have

(= amal s pal) e fmp] @
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9
1 T(a)
9 T
1- g : .
) UR T(e)
T(d),T(e)
a—1 T(a) £ T(a—1) «

Figure 3.4: A simplified diagram showing the images with respect to T of the blocks
(a)-(g) in the domain D, when a € [, g].

Similarly, for A > 3 we have

(RS R
Finally,
o (RE.) WH IO R
T([T(1 ~ a).0] x 0.9) = [T(@),] x [ 1= .5 ®
This completes the proof. 0

Also in this case we have k(o) = 2, k(a —

Proof in the case a € [ )
= T(a —1) = 2221 1t is easy to check that if

1) = 2. Then T(«) i
E(T(a — 1)) = r, then ( a)) =r — 1 and » > 4. Once again, we have
T?* () =T*(a — 1) ¢, Recalli = g, we have
— 1 1
T([ -1 ﬁ] ><[0,1—g]> =[T(x—1),a] x [5,9] (a)
For3<h<r-—1,
_ -1 -1 1 1
T(|lr=tra el <01-a) mle-velx [y o)

T(|—frpre-n| xbi-a) =l-rax L] ©

P (e 35] (010 3]

VN )
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(NI

T(a) a

Figure 3.5: A simplified diagram showing the blocks (a)-(1) in the domain D, when

ae[ﬂ—l,%).

For h > r +1,

"= vl (0r-av3])) -

1 1 1 !
=[a—1,a] x ({h—%’h—g]u {h+1—g’ﬁ]) (©
For h > r,

([ i) * (0100 [5a])) -

el ([ i) frma]) ©

Similarly, we have

r(ftgmo]) (o1 1) -

s ([ o[ ) @

T([re ] < 0al) mle-rax [ ] @
For3<h<r-—2,
T([ﬁm] x [0,g]> —la—1,0] x {}%QH )
Finally,
1RSSR

This completes the proof. [l
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3.3 Natural extension for a = %
g
) T(a)
1—g| TO
oo 1
Il s —" i
I R 7 N R R
() | T !
- to0
a—1 13 T(1—a) T() a

Figure 3.6: A simplified diagram showing the images with respect to T of the blocks

(a)-(1) in the domain D, when a € [V2 —1,1).

3.3 Natural extension for o = -

In the case a € (0,v/2 — 1], the structure of the domain D, of the natural
extension for T, seems to be much more intricate than for o > v/2 — 1. Here
we find the exact expression for D, and the invariant density of T, when «a €

%,T‘GN}.

The by-excess continued fraction map

; I/
0, \

\
H\H ,
\H‘

3.3.1

=~

0.4 0.6

Figure 3.7: Graph of the map Mp.
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Before stating our main theorem, we introduce some notations. In the following
paragraphs we will often refer to the by-excess continued fraction expansion of
a number, that is the expansion related to the map My(z) = —% + [% + 1],
My : [0,1] — [0, 1]. To simplify notations, we will omit the minus signs and use

brackets:

(ap,a1,as,...) = , a; € {2,3,4,...}

o
0 1

a — ———
012_"'

We will denote a non-integer remainder z > 1 by a semicolon:

1

(ao,ai,...,an;x) = a; € {2,3,4,...}

ag —

a; —

Ap — —
x
We also recall that the by-excess expansion of any real number y € (0,1) is
infinite, and that

y = (a1,az,as,...) €EQ=3Tis. t. Vj>i, a; =2

3.3.2 Reflection rules

We begin by making some preliminary observations on the relation between the
symbolic dynamics of the map My and the reflection map = +— 1 — z on [0, 1],
which reveal a sort of “duality”between the digit 2 and the digits greater than
2, and will prove very useful to construct a “dual”fibred system for T}, in the
sense of Schweiger [20].

Let = = {(a1,as,a3,...) € [0,1]. We would like to determine the by-excess
continued fraction expansion of 1 —z. Since the general solution to this problem
turns out to be quite complicated, we will only describe a single step of the
algorithm, that is, we will suppose to have computed the first i digits of the
expansion and the remainder:

l—z= ' z €10,1)

Cal—(1-2)
2:<h1,h2,h3,...>, h122

We want to determine the first digit of the remainder 1 — z. For reasons that
will become clear later, we will treat any sequence of the kind

2,2,...,2
—_———

n
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as a single digit.
We will make use of the following well-known identity (see for
that can be easily proved by induction on n:

1
1— —— —(2,2,...,2;y) WyeR
1 ——
n+—: n—1
y—1

There are three separate cases to consider:

e If hy,hy > 3, then from the identity (3.5) with n = hy and

example [15])

(3.5)

1 1 1
3 y h2_1_

1
hs —
we get
1—<h1,h2,h3,...>=<2,...,2;2+<h2—1,h3,...>>:
———
h1—2
=<2,...,2;3—(1—<h2—1,h3,...>)>
——
h1—2
We sum up our observations in the following
Rule 1. If Ay, hy > 3,
U= (hshos by )y = (2,...,2.3: !
1,102,183, --) — 3ty 4y 7(1—<h2—1,h3,...>)
hi1—2
OIfZ=<h1,2,...,2,h3,...> Withhl,h323,then
———
n
1—2z=(2 2;2+ L
B . - 1_<27 727h37 >
h172
n—1
We want to use the identity (3.5), with
1= ! = 2—(2 2,h )
O R U oS
S—— n—1
1 1
y  1—1(2,...,2,hs,...)
——

n—1
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Observe that

1
- 25---,2,h,... =
SRILAL n+(hs —1,hg,...)
n—1
- : =n+1—(1—(hs—1,hg,...))
1—(2,... 203, 5 —1,hy,...
S——
n—1

In conclusion, we find

Rule 2. If hl,hg Z 3,

1
1—(h1,2,...,2,hg,ha,...) =(2,...,2 3;
<1,,R/,—/, 3y 104, > <,R/,—/,n+ ’1—<h3—1,h4,...>>

n h1—2

e If 2=1(2,...,2,ha,...), ha > 3, then using again the identity (3.5) with
——

n

1 1
_ , — (hy — 1, hs, ...
VS ey -1 (T e
we find
1
1—(2,...,2,ho,h3,...) = -
(, y &y 112,103, > n+1+<h2—1,h3’>
1

" n+2—(1—(hy—1,h3,...)

Rule 3. If hy > 3,

1
1—(2,...,2 L) = 2;
<’ ,’h25h37 > <n+ ’1—<h2_17h37"'>>

n

Notice that we have taken into consideration all the possible cases. Also remark
that Rule 1 and Rule 2 guarantee that in the new digits h} a sequence of twos
is never followed by another.

Let a = 1, for a fixed r > 3. Observe that T, (a) = 0, and

—(r—i—1)

r—1

Ti(a—1)= <0 fori=0,...,7r—2 (3.6)

Let 3 be the fixed point for My corresponding to the branch r+1, and £ = +,8:

r

1- 1)2 -4

B:r+ (r+1) ={r+Lr+1l,r+1,r+1,...)

2

9 (3.7)
= =(r,r+1,r+1,r+1,...
¢ r—14++/(r+1)> -4 < )

Then

1-5=(2,...,2,3,2,...,2,3), 1-¢=1(2,...,2,3) (3.8)
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3.3.3 Domain of the natural extension

Let n > 1, and define
}{:-:: {(h17h27---ahn) hl € {27(272)7-"7(2727---72)}lJ {3747-"7T}7
N——
r—1
hoy.. o hn €42,(2,2),...,(2,2,...,2)}U{3,4,...,r,r + 1},
———

r—2

and such that h; = (2,...,2) = hj11 > 3}
——

S

H, = {(hl,h2,...,hn1)

hisho, ... he €12,(2,2),...,(2,2,...,2)}U
——

r—2

———

8§

U{3,4,...,r,r + 1}, and such that h; = (2,...,2) = hj11 > 3}
Moreover, for t = 2,3,...,r — 1 define

hi€{2,(2,2),...,(2,2,...,2}U{3,4,. ., r+1},
————

r—1—i

Hyzl = {(hlah2a"'ahn)

oy hn € {2,(2,2),...,(2,2,..., 2 U {3,4, .. .r,r+1},
————

r—2

——

S

and such that h; = (2,...,2) = hj11 > 3}

Also define

Hf = {(h, b, ha) € HY | hy > 3},
Ay = {(hi,ha,... hy) € Hy | hy >3},
HY = {(hi,hoy... hy) € HE | hy >3}, i=2,3,...,7r—1

Let V;(z) = == denote the inverse branches of My, and

Vis,...,2)@ = (V2oVao - 0Vr)(@)
W—/ M

s

Define

s

B = U GhoVioe o)1 -&1),

n=1 (h17h2,...7hn)6ﬁ:r
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and similarly

=) U GoVio-oli)(1-61),

=1 (hy,ha,...hn)EH,

B =] U (Vi,oVig ooV (1 =¢€,1)), i=2,...,r—1
n=L1(hy ho,...,hn)EHE

Finally, let £, B, D C R? be defined as follows:
) , — 1 . 1
|: Zla_u] X [OaMé_l(l_g)]>U<|:07;:| X[071_6]>7

|

r

Y

i

#=U(
p-U(
D=E\B

—_

;+
)[4 )o (b o).

Remark that we have omitted the dependence on r of the sets BT, B~, B!, E, D
for simplicity of notation.

I3
E

46 414 402

Figure 3.8: A computer simulation for the domain D when r = 5.

Theorem 3.14 (Natural extension for a = %) Let a = %, r > 3 be fized,
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and let D C R? be defined as in §3.3.3. Let k(z) = [|%| +1-— a], and

1
To(z,y) = |Ta(z), 77— 3.9
= (20 i) (39
Then Ty : D — D is well defined, one-to-one and onto, and it preserves the
density Ko (z,y) = ém, where Co = [}, mdmdy. In other words,

T, :D — D is a natural extension for T,.

Here the reader should remark that the domain D and the function & also
depend on a. In the following paragraphs, however, we will write T instead of
T, for the sake of simplicity.

To prove Theorem 3.14 we shall need the following two lemmas:

Lemma 3.15. Let 2 = (h1,ha,...,hn;y), where y > 2 is a real number and
n > 1. Then 1 — z is of the form <h'1,h'2,...,h;n; m% and

(hiyhay ... ho) € Hy = (Wi, hb, ... hl,) € Hif,
(h1yha,... hn) € H = (B, by, hyy) € Hy,

Lemma 3.16.
BTuU (1 - B_) =[1-p5] (mod 0) (3.10)

and their union is disjoint.

Proof of Lemma 3.15. Suppose that (hy, hs,...,hy) € H, . From the appli-
cation of the Rules 1-3, it is straightforward to check that after a suitable number
of steps in the algorithm we will obtain a remainder of the form % > 1.
We need to verify that at each step of the reflection algorithm described in
Paragraph 3.3.2 the newly introduced digits in the by-excess expansion are in
accordance with the definition of H,. We will consider separately the first step
and the ensuing ones. In the first step, we will have hy € {3,...,r,r + 1} or
h1 €42,(2,2),...,(2,2,...,2)}.
———

r—2
If hy > 3, ho > 3, applying Rule 1 we get
V= (oo, ) = (2.2, 2,3 ! (a)
15102, 1635 .- -) — 3 Ly aney by 71—<h2—1,h3,...>
h172

where hy —2<r —1.
Ifhy >3,h=(2,2,...,2), n <r —2, using Rule 2 we find
——

n

1

1= (hy,ho by, ..y =(2,...,2 - b
(hi,ha,hs, ... <, ) >”+3’1_<h3—1,h4,..->> (b)
h1—2

where 0 < h; —2<r—-1,n+3<r+1.
Lastly, for hy € (2,2,...,2), n <r —2, hy > 3, we have
————

n

1
1—(2,...,2,ha,h3,...) =(n+2; c
<H,—/ 2 ) < 1—(h2—1,h3,...>> ()

n
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where n 4+ 2 < r as needed. In all three cases we found an admissible initial
segment for H.

The subsequent steps can be treated in a similar way, although we have to take
into account the ways in which the remainder (h;11, hi12,...) from the original
sequence has been modified by the reflection rules. More precisely: if h;y1 > 3
it will be replaced by h;11 —1 € {2,3,...,r}; thus when h;;q1 — 1 > 3, applying
Rules 1 and 2, we will find

hiy1—3

as the next digit, with 1 < h;41 — 3 < r — 2, which is admissible for H;.
Moreover, when h;11 — 1 = 2 and h;;2 is a sequence of twos they will be
considered as a single digit, and it is possible to obtain the sequence

which gives the new digit » + 1 when we apply Rule 3. We have thus completed
the proof for (hy,ha,...,hy,) € H,, .

When switching the roles of H, and H,, , we can follow the same basic outline.
We briefly list the few differences that the reader can easily check for himself:
if (h1,ha,...,hy) € HY,

- in (a) and (b), we find by <r=h; —2<r—2
-in(e),n<r—1l=n+2<r+1

and so the reflected sequence is in accordance with the definition of H; . O

Before moving on to the next Lemma, we make a few observations.
First of all, notice that since the inverse branches V; : z + - of Mj are all
non-decreasing functions, from the by-excess expansions of a sequence of reals
we can obtain full knowledge of their ordering. In fact,

(hi,hay by, oy < (BY b, .. bl .00

s oy

T (3.11)

3i > 1s. t. Vj <i, hy = b} and h; > I}

Recalling the expansions of 5,1 — 3,£,1 — £ from equations (3.7) and (3.8), it
follows that B~ C [3,1 — &] and BT C [€,1 — 3], and moreover these are the
minimal intervals containing BT and B™: for example, the sequence

(VioVigroVigro---oVipy)(z), € (1 -§,1),

goes arbitrarily close to £ as the number of pre-images grows.
We also observe that if z € (1 — &, 1), its by-excess expansion must be of the
form
r=(2,2,...,2,hp, hyy1,. ), he >2
———

r—1
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Proof of Lemma 3.16. We first want to prove that B* and 1 — B~ are dis-
joint. Let x € B~ ; then there exists [ > 1 such that Mé(x) € (1-¢€1), M)(x) €
[8,1 =& Vj < 1. Observe that

ze(1—g,1):z=<2,...,2,3,...,2,...,2,3,2,...,2,...>, k>0
———— —— N

r—2 r—2 r—1
“ —~ )

k

Equivalently, for some i > 1 we have # = (hy, ha,...,h;,2,...,2,...), where
——

TLZ’I“—]., hz 237 (h17h2a"'7hi) eﬁi_a (h17h2a"'ahi71) 6H¢i1

Then from Lemma 3.15 we get

1
— = 4 I‘
1 T <1:---ahm71_<hi_1,2,_..,2,..->>’
N——

n

with (hf,...,h!),) € H}, and applying Rule 2 (or Rule 3 if h; = 3), we find

m? =

1—x:<h’1,...,h' 2 ...,2,n+3;z>, n+3>r+2, 0<h;—3<r—2
———

h;—3

Observe that (h,...,h!,,2,...,2) € H} ., (or to Hf, if h; —3 = 0), but
——
hi—3
clearly (Rf,...,h.,,2,...,2,n 4+ 3) does not belong to B* because it contains
——
h;—3
the forbidden digit n + 3. Since none of the iterates of 1 — z up to that point

belongs to (1 — ¢, 1), we find that 1 —x ¢ BT.

Next we want to show that BY U (1 — B™) = (£,1 — j3).
Let © = (hi,hs,...) € (§,1 — )\ B*. We must prove that for almost every
such £ we have 1 — 2z € B~. We have to consider two cases:

-Vn >1,(hi,...,hy) € HF, and so none of the iterates M *(x) belongs
to (1=¢,1)

- For some i, the by-excess expansion of x contains a forbidden digit h;: ei-
ther h; = (2,...,2),n>rorh; >r+1wheni=1or h; =(2,...,2),n >
———— ———

n

n
r—1or h; >r+2 when i > 1.

However, observe that since the first condition entails in particular that all the
elements h; in the by-excess expansion of z should be bounded, it is satisfied only
for a set of Lebesgue measure 0, and therefore it is negligible for our purposes
(equivalently, recall that Mj is ergodic).

Next, observe that x < 1—/ implies that the digit 2 cannot appear r consecutive
times in the initial segment of the by-excess expansion of z, and x > £ implies
hi < r. Let i be the minimum integer such that Vj < i, (hi,...,h;) € H;' and
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(hi,...,h;) ¢ H;" (we have just seen that i > 1). Then h; cannot be of the
form (2,...,2),n > r—1 because then (h;, hit1,...) > 1—¢ and x would belong

——
to BT. The only case left to consider is then h; > r + 2. Equivalently, one of
the iterates Mé_k, k> 0 of z is of the form (r +1,...,7+1,r +2,...) < S.
—_———
k
ApplyingLemmalwithnzi—k—l>1,i:<r+1,...,r+1,r+2,...>,we
—_———
k
get 1 —x = <h'1, ..,h;n,m% (hi,...,hl,) € H,.. Now observe that
6:7,_’_%_5 —1l=r—-pg= l Then y— 1>——1> :>1——>1 ¢, Now

ifh;n23,wehave (hl,...,h;n)eHm andl—xGB .Butlfh;n—( AR
s

we have hl,_, > 3 and <hm, W> is still greater than 1 — £, and again
1—x € B~ (observe that m > 1, otherwise 1—z = <h;n, W> >1-p6). O

3.3.4 Proof of Theorem 3.14

First of all, we observe that Lemma 2 implies that T is one-to-one on D. In
fact, suppose that T(z1,y1) = T(22,y2). Since ya € [0, 1], we must have k(z2) €
{k(z1) — 1, k(z1), k(z1) + 1}

- If k(x1) = k(x2) and sign(z) = sign(zs), then obviously 1 = za,y1 = ys.

- If k(xz1) = k(z2) and sign(z;) = —sign(x2), we find y; = —yo, which is
possible only for {y; = y» = 0}, a negligible set.

- Lastly, if 21 > 0,22 < 0 and k(z2) = k(z1) + 1, we get yo = 1 — y;. But
(mlayl) €D = hn E[O,g]u([£,1 _B]\B+) = Y2 € B~ U(l —f,l) =
(22,y2) ¢ D. Thus T is one-to-one (mod 0).

Then we can write 7(D \ B) = T(D) \ T(B). Now it is quite straightforward to
check that T(D) = D. In fact, recalling that

1 1
n+a’'n—1+a

{x>0|k(m):n}:<

}, n>r

{x>0]k(z)= =< } n>r
r+a’
1
{x <0 k(z)= ={ >, n>2
n—l-l-a nta
{x <0 k(z {a >
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1
T

3.3 Natural extension for o

=

<1
S

Figure 3.9: A simplified diagram showing the blocks (a)-(g) in the domain.

I~

e

Figure 3.10: A simplified diagram showing the images with respect to T of the blocks

(a)-(g)-
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T (|3 -5] * 01-8\5) = el ([g.1-8[\BY). 0
T([ e el < tor-ave) -
:[a_1,a]x([l,¥]\3—>, n=3...r (0

nn—14+¢

Here we observe that BT U [%,ﬁ] = B~ U [%,21?5] = BiU [%’L} for

i=2,3,...,r — 1. Also remark that the rectangles [— (:j) ) a] X [L

[a—1,a] x [%ﬂ’%] for n = 3,...,r both belong to B.

T({_ria’_r+11+a} x ([0,1—5]\3)) -
= <[a—1,0]>< ({%ﬁ] ﬂD))U

o (.0l % ([ Vo)) @

- R U
(Here we wanted to highlight the fact that BT N [r+1’ r+£] =g.)

7([-— ] < 1-gve) =

n—1+a n+a

—[a-1,0a] x ([%ﬁ} \Vn(B_)>, n>r+2 ()

T(L—ha’n_;m} X ([0,1—ﬂ]\3+)) _

1 1
=la—1,a] x <|:m’m:| Vn+—1(B+)>a n>r+1 (f)
where we set V,F(z) = 4.

T(L‘-Il-a’a] X ([Ovl—ﬁ]\B+)> -

~0alx (| \ D) @

To conclude the proof observe that

BU-B) =616 % V(B9 = | g g | \ Ve (B)

which together with (d) proves that T is onto.
The fact that K (z,y) is invariant for T' can be easily checked through the change
of variables formula, as we have already seen in equation 3.4.
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Remark 3.17. It is important to remark that it is still true that the boundary
of D has measure 0. In fact, as we have already seen, except for the points y
whose 0O-continued fraction digits are all less or equal to r + 1, which are a set
of measure 0, all the other points in the vertical sections D(z) belong to some
cylinder of My which is fully contained in D(z).

Roughly speaking, for almost all points in D(z) the “cutting process” described
in §3.3.3 ends after a finite time.

Therefore the boundary of D(z) is the union of a countable number of points,
and has measure 0.

3.3.5 Invariant densities and entropy for o = :

r

Since my 0Ty = Ty o, where 7 is simply the projection on the first coordinate,
the invariant density for T, is obtained by integrating K, (x,y) with respect to

the second coordinate. Given a sequence (hy, ha, ..., hy), define
1
a(hl,h2,...,hn)= ; >1
<h1,h2, ooy hing §>
1
b(hi,hay... hy) = >1

(hi,hay .. hy — 1)

Let

o] 1 1
¢+($):Z Z <w+b(h1,_..,hn)_w+a(h1,---,hn)>’

00 1 1
'(/J_(CU):Z . <x+b(h1,...,hn)_$+a(h17---7hn)>’

1 1
, (az+b(h1,...,hn) a x+a(h1,...,hn)>

fori=2,...,r — 1, and observe that

b1 1 1
1 Ay = T 1
o (1+zy) r+3 T+,
It follows that, for a suitable normalization constant c,,
Yala) _ 1 [§= 1
o= LIS (i@ [ ) ]+

C C —
@ o« \iz T e

X0 (i - ¢_<w>> +X[o,2)(®) (%_B - ¢+<w>>>

is an invariant density for T,.

Remark 3.18. Even in the case a = % the domain of the natural extension
seems too complicated to allow for a direct computation of the entropy. How-
ever, as far as Corollary 2.9 is concerned, it is probably possible to prove a much
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stronger result. In fact Nakada [16] showed that in the case of % < a <1, the
integral —2 [ log|z| fDa(m) K (z,y)dydr (where D, (x) are the vertical sec-

tions of the domain of the natural extension) is constant® and equal to %2. We
conjecture that the same should be true for 0 < a < %

Remark 3.19. One may ask whether the proof of Theorem 3.14 could be
adapted to the general case of a € (0,v/2 — 1) with relatively small changes. We
observe that our proof makes use of the fact that Th (1) =0 = Tt (L-1).

Also in the case & € [V/2—1, 1], as shown in [16] and [6], the construction of the
Natural Extension depends on the fact that the tails of the a-expansions of «a
and a— 1 coincide after one or two iterations (more precisely, T2(a) = Tp(a—1)
when a € [g,1], and T2(a) = T2(a — 1) when a € [V2 — 1,g]).

In the general case, one would need an explicit relation between the a-expansions
of o and of o — 1, which at present is not known.

2The theory of S-erpansions provides an explanation of this surprising fact, see [11].
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Introduction

Recently, the diffusion of wireless networks has led to the development of new
coding schemes in order to improve performances on fading channels; algebraic
number theory has proven to be an effective tool for their design.

Wireless transmission introduces new problems with respect to the classical
model of the Additive White Gaussian Noise (AWGN) channel: in fact the
electromagnetic signal, propagating along multiple paths, is affected by atte-
nuations, delays and frequency shifts, collectively called “fading”, that make
this channel much less reliable than the AWGN. The most effective strategy to
counterbalance fading is to introduce diversity in the transmission, that is to
send the same information through multiple independent channels. There are
several ways to increase diversity:

- in space, by receiving the same signal through multiple antennas, that
must be sufficiently spaced to ensure that the fadings on the different
paths are uncorrelated;

- in time, by receiving the same signal at sufficiently long time delays;

- in frequency, by transmitting the same signal over different frequencies.

However, the second method has the drawback of introducing heavy delays in
the communication, while the third entails a waste of the available bandwidth.
The use of multiple antennas both at the transmitter and at the receiver (Mul-
tiple Input, Multiple Output or MIMO) allows for a potential diversity of M N,
where M is the number of transmit antennas and N is the number of receive
antennas.

In general, the implementation of coding for wireless channels must take into
account the actual availability of resources (bandwidth, power, cost of the ap-
pliances) and answer three basic and often conflicting needs:

- increasing the rate of transmission,
- increasing diversity,
- keeping a low decoding complezity.

In the MIMO setting, the information vector u, belonging to a finite signal
subset or “constellation” S, is encoded in a space-time block, that is an M x T
matrix B(u), where M is the number of transmit antennas and 7' is the duration
of the signal.
In this context the fundamental parameters to assess the system performance
are the diversity gain n;éin (rk A(u,u')), and the coding gain

uFu'

g

1
— mi A !
To min (det A(u,u’))™,
where A(u,u’) = (B(u) — B(u"))(B(u) — B(u'))#, u,u’ € S, and Egs is the
average energy of the constellation.

In 2002 Belfiore, Damen and Tewfik [10] proposed a 2 x 2 full rate code which
guarantees maximum diversity, and their method can be extended to the higher-
dimensional case. Its major drawback, however, is that the coding gain vanishes
when the size of the constellation grows to infinity.
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In the 2-dimensional case, this problem has been solved by Belfiore, Rekaya and
Viterbo [5] with the Golden Code G, a full-rate, full-rank code whose minimum
determinant does not vanish when the size of the constellation tends to infinity.
This design is based on a principal ideal AOQ of a maximal order O in a quater-
nion algebra A of matrices over Q(7), containing as a maximal subfield the
number field K = Q(i,#), where 6 is the Golden number.?

Each information vector v € Z[i]* can be mapped to a matrix AB(u) in AQ.
A turns out to be a division ring, and the determinant of AB(u) is nothing but
its reduced norm, so that it is a nonzero Gaussian integer, modulo a normaliza-
tion constant. Therefore the minimum determinant is bounded from below by
a fixed constant dpmin = %, for any size of the constellation S C Z[i]*.

It can be shown that this is the best performance one can obtain from this
kind of construction using the field Q(i, ,/p), where p is a prime number, p =5
(mod 8).

Moreover, the design guarantees cubic shaping, which is convenient both for
energy efficiency and fast decoding: when vectorized, AQ is a rotated version
of the lattice Z[i]*, and allows for effective decoding using the Sphere Decoder
and the Viterbo-Boutros algorithm.

It is possible to obtain a further increase in the coding gain by using a suitable
subcode of the Golden Code, in the choice of which decoding complexity must
be taken into account.

Belfiore, Hong and Viterbo [4] have recently described a chain of nested left ide-
als of the form G, = GB* 1 < k < 4, such that the index [G, : Gpy1] between
two successive subcodes is 4, and the minimum determinant in Gy, is 2*Gmin.
Moreover, each ideal G is isometric to a well-known lattice; in particular, G, is
isometric to the Gosset lattice Eg.

A more general problem consists in building a block code X = (Xy,...,X}),
where each component X; is a Golden codeword. Choosing the X; € G in-
dependently, we obtain a very simple block code. For small sizes of the signal
constellation these subcodes already yield a performance gain with respect to
the “uncoded” Golden Code (that is, with respect to choosing X; € G indepen-
dently). However, this gain is cancelled out asymptotically by the loss of rate as
the size of the signal set grows to infinity [4], since an energy increase is required
to mantain the same spectral efficiency, or bit-rate per channel use.

A better performance is achieved when the X; are not chosen in an independent
fashion. For example it is possible to exploit the hierarchic structure of the
partition chain {Gy} previously described by combining two encoders: a trellis
encoder which outputs the cosets of G /G;, 1 < k <1 <4, and a lattice encoder
for G; (Trellis Coded Modulation). The Viterbi algorithm (soft decoding) can be
employed for the trellis decoding, in association with a Sphere Decoder in each
coset.

In the case of block codes, the coding gain is a power of

L L
A = min det X;XH | > mi det (X; X ) = A
i (S0 > gy e ()

3TFollowing the notation in [5], from now on we will denote the Golden number 1+2\/g by

the letter 6.




75

The expression A is difficult to handle because it contains mixed terms of the
~ 2 ~
form HXinHF, where X — X is an involution of G, and ||-||» is the Frobenius

norm. The codes in [4] are designed to maximize the approximate parameter A’
and so a priori they might be suboptimal; in §6.4.1 we treat the mixed terms.
In §6.5 we describe some simple block codes designs for L = 2,3 that are lifts
of linear codes over the quotient group G/G,. We describe the lattice structure
of G; and compute the minima of the Frobenius norms of the products over all
pairs of cosets; we use this information to select the codes with the best weight
enumerator polynomials in dimension 2 and 3.

When using ideals of G to build block codes, it is preferable to:

- choose ideals whose index is a power of two, in order to have a variety of
simple binary set partitioning schemes available;

- choose two-sided ideals, so that the quotient has a nice ring structure.

The ideals in [4] satisfied the first condition but not the second; in §6.6.2, we
show that (unfortunately) the only two-sided ideals of G whose index is a power
of two are the trivial ones, that is, the ideals of the form ¢G with ¢ € Z[i], and
le|” a power of two.

In particular, we study the quotient rings G/(1 +4)G and G/2G which turn out
to be isomorphic to the rings of 2 X 2 matrices over F» and Fs[i] respectively.
Unfortunately, only a very sparse literature is available on the subject of codes
over non-commutative rings, especially as far as efficient decoding algorithms
are concerned, and for the time being we have been unable to exploit the ring
structure directly for code construction, except in the simple case of the repe-
tition code over the cosets of (1 4 4)G. This basic construction provides a first
application of the criteria based on the estimate of the mixed terms, and our
performance simulations show that it can lead to up to 2.9dB of gain with re-
spect to the “uncoded” case.

However, it is still possible to take advantage of the structure of Fy-module of
the quotient; from the additive point of view, the quotient G /23 is indistinguish-
able from Fy54, for which a wide variety of error-correcting codes are available.
In §6.8, we combine a shortened Reed-Solomon code with the encoder of the
quotient ring to increase the minimum Hamming distance of the code. The
main advantage with respect to trellis codes is the relative ease of decoding.
Simulation results show that using 4-QAM constellations, that is using only
one lattice point per coset, we obtain a gain of up to 6 dB with respect to the
uncoded Golden Code at the same spectral efficiency, under the hypothesis that
the channel remains constant for the entire length of the block. This assumption
corresponds to the slow fading case, and may be considered realistic when the
block length does not exceed one hundred, leaving space for further improve-
ments. This construction can be extended to the 16-QAM case, yielding a gain
of up to 3.8 dB.






Chapter 4

Coding for wireless channels

4.1 The wireless channel model

4.1.1 The transmitter

noise

wl
source —— modulator —— channel — = demodulator —— receiver

R

fading

Figure 4.1: The various stages of transmission.

In the typical model, the source emits a binary vector w € {0,1}™. This infor-
mation is coded in such a way as to be optimized for transmission:

- first, the source encoder compresses the original message, removing any
redundancies;

- afterwards, the channel encoder embeds some redundancy in the message
in order to protect the information from the errors that may arise during
the transmission.

In the following paragraphs, we will not take the source encoder into account.

4.1.2 The modulator

The digital modulator associates an analog waveform x to the coded information
vector. In amplitude modulation, it is the amplitude of the wave which carries
the information, while in frequency modulation, information is stored in the
instantaneous frequencies of the wave.

First, the binary message is mapped into a point of a real or complex lattice A.
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The set of all possible emitted waveforms is a finite subset S C A, of cardinality
2™ called a signal constellation. The components of the lattice vector are used
to modulate a linear combination of basis waveforms.

In most cases it is best to choose the mapping {0,1}"™ — S in such a way that
nearest binary neighbors (with respect to the Hamming distance) correspond
to nearest neighbors in the lattice (with respect to the Euclidean distance). In
particular, the mapping is called a Gray mapping if the labellings of every pair
of adjacent lattice points have Hamming distance 1.

In the following chapters we will always consider Quadrature Amplitude Mo-
dulation or QAM; with this type of modulation, data is conveyed by changing
the amplitude of two orthogonal carrier waves. The amplitudes of the first
and second wave are respectively called the “in phase” component and the
“quadrature” component.

Figure 4.2 shows the representation of some widely used QAM constellations in
the in phase-quadrature plane. We can identify these constellations with subsets
of a Zli]-lattice shifted by 1 + 1. The minimum Euclidean distance between
two points will always be 1. We also report the average energy for each case,
which will be useful in the sequel:

Ei_gam =05, Es_gam = 1.5, (4.1)
Evg_gam =2.5, Ezs_gam =5 '

The number of information bits transmitted for each channel use is called the
spectral efficiency of the modulation scheme, and is measured in bpcu (bits per
channel use).

Clearly, increasing the cardinality or “size” of the constellation allows for a
growth in spectral efficiency, but corresponds to a greater average energy (or
equivalently, to a decrease in the minimum Euclidean distance).

4.1.3 The channel

In the AWGN case, across the channel the signal x is perturbed by a random
noise w, so that the received signal is y = x + w. With wireless transmission,
further complications appear compared to the AWGN model: the signal (an
electromagnetic wave) propagates along multiple paths, with reflection, refrac-
tion and scattering effects due to the presence of massive obstacles like houses
or mountains. In the case of mobile telephony, moreover, other relevant per-
turbations include the Doppler effect due to the relative motion between the
transmitter and the receiver, and the decrease in signal power when the dis-
tance from the transmitter antenna increases.

Thus the received signal is distorted not only by the noise, but also by attenu-
ations, delays and frequency shifts, collectively denoted by the term fading.
Since the fading effects depend on the particular environment in which transmis-
sion takes place, it is virtually impossible to determine their sum. In practice,
a good working approximation consists in assuming that the very great number
of propagation parameters can be modelled as independent random variables so
that the Central Limit Theorem holds.

In the case of a modulated signal, in general the different frequencies composing
the signal are subject to independent fadings and phase shifts (frequency selec-
tive fading); we only consider the case where the bandwidth range is narrow
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Figure 4.2: Some QAM (Quadrature Amplitude Modulation) constellations.

so that we can assume that the fading acts multiplicatively. In this case the
received signal y, seen as a point in R, is given by

y=Hzr+w (4.2)

where w is a complex Gaussian random variable of zero mean and variance %,
and H is a random diagonal matrix whose entries «; are independent random

variables with Rayleigh density':

2
ry={ 2¢ " 0sr<o 4.3
p(r) {0 "0 (4.3)

We also assume E[a?] = 1 Vi, so that 07 = L, and p(a;) = 20;e™°% .

The assumption that the «; are independent is reasonable when using an inter-
leaver, which permutes the codeword components so that fadings on adjacent
components can be considered uncorrelated.

Since we have supposed the fading matrix to be normalized, we can define the
signal-to-noise ratio or SNR ( as the ratio between the average signal power
(see §4.1.2) and the average noise power: ( = 2%.

4.1.4 Decoding

Now we suppose that the receiver knows the fading coefficients «; (perfect Chan-
nel State Information or CSI). In fact, when the fading varies slowly compared

IThe Rayleigh density is the distribution of the modulus of a complex Gaussian random
variable.
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to the duration of the signal, the information signal can be preceded by a se-
quence of pilot symbols, allowing the receiver to estimate the fading parameters.
The demodulator must recover from y an estimate & € S of the original signal.
Figure 4.3 provides an intuitive explanation of the fact that rotated lattices

0) d)

Figure 4.3: An example of the effect of rotation on the resistance to fading: figures a)-
c¢) show a 4-QAM constellation before and after fading, figures b)-d) show the rotated
case. In the first situation, with strong fading on the second coordinate, lattice points
can be easily confused. In the rotated case, the lattice points are easier to tell apart.

work better to contrast fading in two dimensions. In fact, rotating corresponds
to increasing the “algebraic dimension” of the lattice but entails no extra cost.
When the dimension of the lattice increases, the performance can approach that
of a Gaussian channel without fading; at the same time, however, decoding be-
comes more complex.

The points of S must be well-spaced in order to guarantee a low error probability
in the decoding; on the other side, the square norm ||x||2 represents the power
of the transmitted signal, and so the diameter of the constellation S should be
kept as small as possible. In theory, the most advantageous shape for S would
be a sphere; however, labelling the lattice points contained in a sphere turns out
to be too costly in terms of computations, and usually a cubic shape is preferred.
Thus, constellations carved from rotated Z™ lattices are a more desirable choice
than constellations coming from skew lattices.

Since the coefficients «; are known a posteriori, the received signal components

2
The Maximum Likelihood criterion (ML decoding) coincides with the minimum

yi = a;x; +w; can be modelled as Gaussian random variables A/ (aia:i, (&)2>
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Euclidean distance:

1 R
Iﬁ(y) = argmaxP(y|x) = argmax —————x¢€ ji=1 Ng —

zeS zeS (\/ﬁ%)n

n
= argminz (yj — aja:j)Q = argminz (y; — zj)2 (4.4)

z€H(S) =1

4.1.5 The Sphere Decoder

The search for the minimum in equation (4.4), that is the search for the closest
lattice point to a given received point in the deformed lattice H(S), becomes
too costly in terms of computation time when #S increases. For an efficient
and fast decoding, the Sphere Decoder may be used [18].

This algorithm exploits the fact that, when the dimension of the space grows,
the number of lattice points contained in a sphere becomes much smaller than
the number of points inside a cube of the same radius.

We consider here the case when A = M7Z™ is a real lattice with generator
matrix M. In the complex case A = MZ[i]", we can simply separate the real
and imaginary parts, obtaining a real lattice of dimension 2n.

The decoder examines only the points found inside a sphere of radius v/C' and
centered in the received point y. Let A’ = y — HA be the deformed lattice with
the origin translated to y:

min [ly — z[|” = min [|w|
z€HA weN'

We have x = Mv € A for some v € Z", y = HMp for some p € R", w =

HM(p—v) = HME. Then

Jw||” = ww = ¢"GE =" gij&i&; < C

i=1

where G is the Gram matrix associated to the lattice generator matrix HM.
The set {>_", g;;&:€; = C'} is an ellipsoid in the £ coordinates.

Applying Cholesky’s factorization, we can write G = R” R with R upper trian-
gular. Then

2
n

2
n n
. rigés
Ge=ReIP = (ra+ Y gy | =73 (& + —> <C
i=1 j=i+1 i=1 "
Choosing new coordinates v; = & + >_7_;,, 7+, we find the equation of an n-
dimensional ellipsoid centered in the origin whose axes are the carthesian axes.
The search is then conducted inside the boundaries of this ellipsoid [18].

When a lattice point is found inside, its distance to the center is compared to
V/C'; if it is smaller, the search radius is updated. If C' is too small and no lattice
points are found inside the ellipsoid, an erasure is declared and the search is
renewed with a bigger radius. Thus it is very important to get a good estimate
of C from the beginning. In general the choice of the initial radius v/C is based
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a) b)

Figure 4.4: The problem of enumerating the points of a skew lattice that fall inside
a sphere of given radius can be reduced to the problem of finding the points of a Z"
lattice inside an ellipsoid.

on the SNR. In practice, a good choice for C' might be the smallest of the fading
coefficients a;, which corresponds to the shortest of the axes of the ellipsoid.
One of the drawbacks of the Sphere Decoder algorithm in the presence of fading
is that H, and thus the lattice, vary with each received symbol, so that a new
Cholesky factorization has to be performed each time.

4.1.6 The union bound estimate

The problem of choosing a constellation S that minimizes the error probability
with respect to ML decoding is extremely complex. In general, the classical
union bound estimate holds, since S is a finite subset of the linear lattice A:

P.(S) < P(A) < ) Pz — 2 (4.5)
z'#x

In the previous equation, the pairwise error probability (PEP) P(x — z') de-
notes the probability that y is closer to 2’ than to z with respect to the Euclidean
metrics. The conditioned probability with respect to the channel yields [6]:

n
P(x —2'|H) = <Z|yz_al ;)2|§Z|yi—aix?|>=
i=1
n -
=P (Z i (s — z}) +wil” < Z |wi|2> =
i=1 i=1
:P(Zaf(ml +22az ,—1‘ w2<0>
i=1

Consider the random variable xy = -7 | a;(z; —2})w;: x is a linear combination
of the Gaussian random variables w; ~ N(0, 52), so it is also Gaussian with 0

' 2
mean and variance o = 82 3" a?(z; — 2})%. The PEP can thus be written
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as
1 - 2 2
P(x—)x’|H):P<x2§§ ai(xi—w2)>

Let A be the known quantity £ Y% | o?(z; — 2})?. Then

o 1 2 <1 —s2
P(XZA):/ e_za_Zdtz/ \/_ers

A 2ro A 271

Recalling the Gaussian tail function estimate

a2

L /00 efédt < 1677
Vo Ja -2

1 4 1 _(Zr b)) 1~ 3 ai(zi—a))?
Ple o | H) < se 57 = t¢ omim ofei—e)? = Lo ™0 500
2 2 2
Notice that in the last expression we can omit the sum over the indices ¢ such
that #; = z}. In order to obtain the unconditioned PEP, we average over the

fading coefficients a;:

we obtain

Pz —2') = /P(x = z' | H)play) - -play)day - - - da, <

< Zem i Dim e @imw) 0y plag)day - - - da,

1
2
Recalling that the a; are assumed to be independent and Rayleigh distributed
(see equation (4.3)) with E[a?] = 1, so that p(a;) = 20,6~ °% , we obtain

2 2
a?(z; —al)

n 00
Pz —2') < H </ e~ %N aie_a?dal) =
. 0
n 00 .2 1+(mi—z;)2 n 1
_ (/ e al( Ny >dai> _ H
=1 \’0

i=1 2 (1 + —(xi;z;))

If the signal-to-noise ratio is big enough, we can write

1

Pz —2') <= _—
(—=a) < 2 (x; — 2t)?

T FT)

Introducing the auxiliary functions
l(z,z") = #{i | ©; # z}}, dp(z,z') = H |z; — x|,
Tife';

we obtain
4N,

i —2)?

(487g)' )
(el )7

The dominant term in the union bound sum (4.5) is the one which achieves the
minimum L of [(z,z'), and is called the diversity of the system. The goal is
then to maximize L and, for maximum L, the product distance dp.

Clearly in general the error probability P.(S) increases when the size of the
constellation S increases.

-2 (4.6)

1
P(CU—):L”)S§ H @

J——
T;=x]
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4.2 Multiple antenna systems

Thanks to the increased diversity, the use of multiple antennas both at the
transmitter and at the receiver can make for a substantial gain in the reliability
of wireless communications. The main objective when designing MIMO schemes
is to achieve a tradeoff between transmission rate and diversity. At the opposite
ends of the spectrum, one can place the following behaviors:

- sending independent signals through each antenna simultaneously, getting
the maximum rate gain and no diversity gain;

- sending the same signal from all antennas, obtaining the maximum diver-
sity gain and no rate gain.

The maximum rate that can be attained using M transmit antennas and N
receive antennas is min{M, N}, while the maximum diversity is M N (corre-
sponding to the number of independent paths between transmit and receive
antennas).

As we will see, in some special cases, depending on the number of transmit and
receive antennas, it is possible to achieve both ends, full rate and full diversity,
without any loss, using tools from number theory.

4.2.1 Error probability and determinant criterion

We consider a system with M transmit antennas and N receive antennas. The
information vector u = (u,...,u;) belonging to a constellation C C Z[i]* is
coded into an M x T matrix, B(u) = (bm:), whose entries are in another con-
stellation S. by, is the symbol transmitted by the m-th antenna at the time
t € {1,...,T}. B(u) is called a space-time block. The signal received by the
antenna n at the time ¢ is

M
Ynt = Z hrmbme + W, (47)

m=1

Here we suppose that the fading coefficients hy,, between transmit antenna m
and receive antenna n stay constant for a time T' (quasi-static fading).

This assumption is realistic if the duration T of the block is smaller than the
coherence time of the channel, that is the time length for which the effects of
the Doppler shift on the channel can be ignored. If T is large, we say that
the channel is slow fading; this behavior may be caused by large obstructions
between transmitter and receiver.

For most practical applications, it has been estimated [2] that the coherence
time is greater than 0.01 seconds, so that 7' < 200 is a legitimate assumption.
Moreover, we suppose that there is perfect CSI at the receiver (coherent case).
As in the single antenna case, it is possible to estimate the error probability for
a pair of space-time blocks P,(B(u) — B(u')), and it turns out that

1
(a0 2)™

where 7 is the rank of the matrix B(u,u') = (B(u) — B(u'))(B(u) — B(u'))H,
A; are its nonzero eigenvalues, and Eg is the average energy of the constellation

P.(B(u) = B(u')) <

(4.8)
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used [24]. In order to minimize the error probability, then, the following criteria
must be adopted:

a) Maximize n;léin, r= n;léin, rk(B(u) — B(u')), called diversity gain ;

b) Maximize A = H;éin, (I, )\i)%, called coding gain.

Using the Gaussian tail estimate (4.8), we can compare two different coding
schemes at the same spectral efficiency by considering the ratio

(A1) /Es,
(A2)" /Es,»
This parameter, called asymptotic coding gain, yields a good estimate for high

SNR. When this ratio is favourable, the same word error probability can be
achieved at a lower SNR; this gain in SNR, measured in decibels, is equal to

101og; o Yas-

Yas = (4.9)

4.2.2 Channel capacity

In this section we briefly recall a few notions from information theory.
According to Shannon’s Channel Coding Theorem, each transmission channel H
with noise admits a cutoff rate or capacity C(H), that is a limit rate under which
reliable communication is possible. By reliable communication for a certain rate
R, we mean that the word error probability for a sequence of random codes of
length n and rate R in the Shannon ensemble goes to 0 as the code length n
tends to infinity.

Conversely, if the rate is greater than the cutoff rate, Shannon’s Theorem tells
us that any code will have a positive error probability.

Shannon’s result also implies that, roughly speaking, a code chosen at random
is very likely to be good; however, in practice random codes are not a good
solution because they would be too difficult to decode, and it is preferable to
focus on the problem of designing deterministic codes that come as close as
possible to the cutoff rate.

For a memoryless channel, the capacity is given by

C(H) = Hl)?X[(X,Y),

where I(X,Y") is the mutual information between the input X and the output
Y, and the maximum is taken over all the probability distributions of X .
When evaluating the capacity of multiple-antenna systems over fading channels,
it is important to distinguish between the high SNR regime and the low SNR
regime.

In the low SNR case, the most important parameter to consider is the diversity
advantage; we say that the diversity advantage of the system is d if the average
error probability decays like ﬁ.

If on the contrary the signal-to-noise ratio is high, the “number of degrees of
freedom” or independent fading paths available for transmission plays a more
important role. We say that a scheme has spatial multiplexing gain r if the
capacity of the channel is approximately r log(SNR). It has been shown by Fos-
chini [13] that the maximum spatial multiplexing gain attainable is min(M, N),
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where M is the number of transmit antennas and N is the number of receive
antennas.

Zheng and Tse [26] proved that there is a fundamental tradeoff between diver-
sity and spatial multiplexing; in fact for a block length L > M + N — 1, the
optimal diversity d(r) is given by d(r) = (M —r)(N —r). Intuitively, if  trans-
mit and receive antennas are used to increase multiplexing, only the remaining
M — r transmit and N — r receive antennas can provide diversity.

Achieving the diversity-multiplexing tradeoff is the key for optimizing transmis-
sion for both high and low SNR regimes.

Remark 4.1. The above discussion concerns channels for which the ergodicity
assumption holds, that is channels for which the fading components can be re-
garded as uncorrelated. In the non-ergodic case, which includes the slow fading
model, the definition of the capacity of the channel is more problematic.

Since there can be no time averaging for fading over long codewords, for any
given rate it might happen that the capacity of the channel at a certain time
doesn’t support that rate, and Shannon’s theorem is no longer valid. A more
fruitful approach consists in considering the capacity itself as a random variable,
depending on the instantaneous mutual information. We say that an informa-
tion outage occurs if the transmission rate exceeds the instantaneous capacity.
Thus instead of the capacity it is more useful to consider the outage probability
for a given spectral efficiency.



Chapter 5

Space-time codes and
continued fractions

5.1 Diagonal Space-Time Codes (DAST)

One coding scheme whose focus is on achieving maximum diversity from multiple
antenna systems, without increasing at all the capacity, is diagonal space-time
coding (DAST for short).
In this case, regardless of the number of receive antennas, the capacity is that
of an M x 1 system; the role of the transmit antennas is that of providing
independent fading paths.

5.1.1 Diagonal space-time codes and continued fractions

An interesting relation between MIMO codes and continued fractions is pre-
sented in [21].

We consider a system with 2 transmit and receive antennas. Each codeword is
a block of two 2 x 2 diagonal matrices belonging to the finite set

!
Vz{%z(% 779” ) lel,...,L}

where 7 = e’z is a primitive L-th root of unity, and w is a suitable integer. If
the data stream to transmit is the sequence {ly,ls,...}, l; € {1,..., L} Vi, the
transmitted blocks By, Bs, Bs, ... are defined as follows:

i—1
, 1 Vi,
Blz<v ) Bi=| k! Vi>2
. 11 v,
k=1

We consider the problem of obtaining the best tradeoff between maximizing the
diversity product

— M _ > M _ 1 _ ul —
dp(V) =  min  |det(Vi Vk)l_lrgnlgth n'| |1 —n"|=((u,L)
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and maximizing the size L of V. In particular we want to determine in an
efficient way the optimal parameter u that maximizes ((u, L) for a given L.
Observe that since

we have

27il

((u,L) = min ‘l—e L

2miul

‘l—e L

=4 min
1<I<L

|1—e”| = |1 —cosz —isinz| = V2 —2cosz = 2sin (g)’
1<I<L

. T\ . mlu
Sin (f) Sin (T) ‘ =
= i sin () sin ()

where the last expression ranges over the pairs (z,y) with z € Z, y = zu
(mod L), |z|,ly| < L, that is, (z,y) belongs to the subset A, . = A,z N((0, L) %
(0, L)) of the two-dimensional lattice

)

Aur = {(z,ux — 2L) | z,2 € Z} = M 77,
1 0
u=(u 1)

72\ 2
l=or) 572 i < L)< — i
< 24) 272 (x,yr)nelgul lzy| < ((u, L) < e (x,yr)nElgu,L |zy|,

where

Tt can be shown [21] that

that is, the behavior of the function ((u, L) is roughly similar to that of

u,L)= min |z
M( ’ ) (z,y)EAL L | y|
It is natural to ask whether the value v which maximizes u(u, L) also maximizes
((u, L). Unfortunately this is false in general.
The function p(u, L) turns out to be related to the approximations of ¥ by the
convergents of its continued fraction expansion:

Proposition 5.1. Let %, ’;’—i, R Z’—: = + be the convergents of +. Then

L)= mi —pL
plu, L) = min g |gu —piL|
Proof. Observe that
|2yl = |z(uz — 2L)],

For 0 < z < L, let [ be such that ¢ < z < ¢+1. Then the thesis is an easy
consequence of the fact that continued fraction convergents are “best approxi-
mations”: V(z,z) € Z2 with 0 < z < q, | % — §| >|x 2

w _p
7 T ql‘,andso

zL
w— =
T

L
> ‘u—pl—‘iﬂxu—zﬂzq?
a

zL
u— ?‘ > q |lqu — pr L

Remark that for z negative, the same argument works using —z, since there is
no condition on the sign of z. (|
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The following result [21] shows that, roughly speaking, the smaller the elements
of the continued fraction expansion of ¢ are, the better:

Proposition 5.2. Let ¥ =[0;a1,as2,...,a;], ¥ = [0;b1,b2,...,b,] with

max a; +1 < max b;
1<j<t 1<i<s

Then p(u, L) > p(w, L).

It is then natural to look to the sequence {F;} of the Fibonacci numbers as a
way to build “good rational numbers” , since, as is well-known,

Fy
Fn+1

=[0;1,1,...,1]
————
n
Indeed, it turns out that it is the sequence
Fy
Fn+2

=[0;1,...,1,2]
————
n—1
which realizes the maximum:

Proposition 5.3. We have

| max, w(u, Fr) = w(Fy2, Fy) = Fyn

Moreover, Shokrollahi conjectures that ((F,) = ((F,,—2, F,) also holds.

5.2 Threaded-Algebraic Space-Time Codes

Of course, the main drawback of using diagonal space-time codes consists in the
fact that the actual transmission rate is only one symbol per channel use.
Recently Damen and El Gamal [11] introduced a multi-antenna code design
(Threaded Algebraic Space-Time Codes, TAST for short) which allows for full
diversity, full rate of transmission and a polynomial complexity of decoding.
The problem of choosing the parameters in order to optimize performance of
these codes is related to diophantine approximations, and is still open.

Before describing these codes, we will introduce some useful algebraic tools that
will guarantee the full rate condition.

5.2.1 Algebraic lattices from totally real number fields

Let Q(f) be a number field of degree n over ), O its ring of integers, and
{wy,...,w,} a basis of integers.

It is well-known that there exist n embeddings o; : Q(f) — C, leaving Q fixed,
defined by o;(0) = 0;, where 6 = 6y,60-,...,60, are the conjugates of 6.

Let 1 be the number of embeddings of Q(#) whose image is contained in R, and
2rs the number of embeddings whose image contains some complex number (it
is clearly an even number since the complex roots of the minimal polynomial of
0 come in pairs of conjugates.) The pair (r1,r2) is called the signature of Q(6).
Q(0) is called totally real if r» = 0.

The embeddings o; provide a geometrical interpretation of Q(f) as a sublattice
of C": let o : Q(f) — R™ be the canonical embedding
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U(m) = (Ul (93), sy Oy (93), §R(U7‘1+1(m))7 S(O'T1+1(93))’ B §R(‘77‘1+T2 (93)), S(‘77‘1+T2 (93))

where we take only one embedding from each pair of complex conjugates.
Consider the matrix A = (a;;) € M,(R), with a;; = 0;(wj): its columns o(w;)
are linearly independent [23] and generate an algebraic lattice A(O) = AZ™.
The volume of the fundamental parallelotope of A(O) is

vol(A(0)) = 27 /|dy],

where dj, = (det A)? is the discriminant of the lattice.
It can be shown [18] that algebraic lattices from totally real number fields achieve
maximum diversity:

Theorem 5.4. The diversity of an algebraic lattice is L = ry + ry.

Thus in the totally real case, L =r; = n.

If I = (a) is a principal ideal of O, we define N(I) = |N(a)|. I has an integer
basis {awy,...,aw,}, and we can again consider the algebraic lattice A(I)
generated by A’ = (0;(awj)). In this case,

vol(A(T) = 2 "> N(D)/[di]

In order to compute the minimum of the product distance when & = A(O), it
is enough to consider the case u € A(O) \ {0}, v’ = 0, since A(O) is linear. If
w=(ur,...,u,)" € Z", we have

Au = (01 (me) N (me)) = (01(8),...,0n(s))"

for some algebraic integer s € . In this case the product distance coincides
with the algebraic norm of s over QQ:

n n

dp(u,0) = [T luil = [T lou(s)| = IN(s)|

i=1 i=1

But for any algebraic integer s # 0, we have N (s) € Z\{0}; therefore |N(s)| > 1,
and this construction ensures that for S C A the product distance doesn’t van-
ish [18].

Clearly dp can be increased by choosing a principal ideal I instead of O; how-
ever, in this case the number of lattice points available for a certain constellation
radius is smaller, since the volume of the fundamental parallelotope is bigger.
As we will see in §6, the same basic ideas we introduced here can be extended
to the non-commutative case, by considering a quaternion ring over Q(i) and
its maximal order instead of a number field with its ring of integers.

5.2.2 Threaded-Algebraic Space-Time Codes

Consider a system with M transmit antennas and N receive antennas, with
block length ' = M. Given L < M, let I; C {1,...,M} x {0,...,M — 1} be
defined as follows:

lj:{([t+j_1]M+]-7t)a0§t<M}7 ]-SJSL
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ll lg lg l4

Figure 5.1: A subdivision of a matrix into “threads” when M = 4.

where [ ]ar denotes the remainder (mod M).

Given K = kL, we consider a partition of the information vector u in intervals
of length k: v = (u™,...,u")). Each ul) is separately mapped to a vector
o7 (ut)) € SM and its components are assigned to the elements of B(u) corre-
sponding to the thread [;. If there are any entries in B(u) whose indices do not
belong to any thread, these are assigned the value 0.

The matrix B(u) is thus decomposed into threads, which behave like indepen-
dent codes, transparent to one another, each of which exploits all the space-time
diversity: at the time ¢, the thread I; transmits a symbol using the antenna
[t + 7 — 1]am + 1; the number of simultaneously active antennas at a given time
is L.

Observe that the diagonal space-time codes described in §5 are a special case of
TAST, corresponding to a single thread. The problem of coding is now reduced
to choosing the encoders v; in such a way that the resulting code B achieves
maximum diversity.

Define . .

() = ¢ Aul?,
where {1, ..., ¢} are complex numbers to be determined, and A is an M x M
matrix that maximizes

M
min  [[Iss
uFu', 1

s=A(u—u') "~

It can be shown that a good choice for A is the matrix defined in equation
(5.2.1) in Paragraph §5.2.1, constructed from a suitable number field Q(f) that
is a Galois extension of QQ of degree M.

We can take ¢, = 1,¢2 = q&ﬁ,...,q&L = gb%, where ¢ is an algebraic integer
such that Q(¢) D Q(f) and {1, ¢,...,¢" '} are linearly independent over Q(8).

Theorem 5.5. The TAST code built in this way has maximum diversity; more-
over, its coding gain d¢ is greater or equal to

m(L—1)

(14 |¢|+ Lv)y= ™ (5.1)

where m is the degree of Q(0) and v depends only on the initial constellation C.

The proof of Theorem 5.5 relies on the fact that det(B(u) — B(u')) is a poly-
nomial of degree L — 1 in ¢, whose coefficients are algebraic integers in Q(6);
then we can apply the following theorem on the simultaneous approximation of
algebraic numbers:
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Theorem 5.6 (Generalization of Liouville’s Theorem). Let ay,...,amn
be algebraic numbers, and let n be the degree of the smallest number field Q(0)
which contains them. Let p(X1,...,Xm) € Z[X1,...,Xm] be a polynomial of
degree less or equal to k, such that the mazimum modulus of its coefficients is
H. Then if p(ai,...,am) # 0, we have

1
rnk(]_ + Z:’;O |a—i|)(n71)an71 ’

|p(a1a"'aam)| Z

where r is such that ra; is an algebraic integer fori=1,...,m, and |a;| is the
maximum modulus of the conjugates of ;.

Unfortunately, a higher number of lattice points available means a better ap-
proximation and a smaller gain: the parameter v in equation (5.1) grows when
#C increases.

A slightly different problem from the one we have been addressing is how to
determine ¢ in such a way that dc(¢) decreases as slowly as possible when the
size of the constellation grows to infinity.

Theorem 5.6 suggests that {¢1,...,dr} ought to be chosen in such a way as to
be “badly approximated” by algebraic numbers. A different strategy consists
in choosing ¢ trascendental, for example ¢ = e with A algebraic. It can be
shown [11] that even in this case maximum diversity is achieved, thanks to the
following well-known theorem:

Theorem 5.7 (Lindemann). Let ay,...,q,, be distinct algebraic numbers,
and c1, ..., ¢y algebraic coefficients not all equal to zero. Then Y * | c;e® # 0.

For this choice of ¢, however, we have no bounds for the coding gain.

5.2.3 The 2-dimensional case

This special case of TAST codes was introduced by Damen, Tewfik and Belfiore
[10]. Again, there is a surprising relation between these codes and continued
fractions; in fact the coding gain turns out to be greater when the fundamental
parameter is “badly approximable” by continued fractions.

Consider the TAST code with M =T = 2, built from the matrix

= )

Let ¢ = § = €™, with X to be determined. Then for u = (u1,us, us,us) € Z[i]*,

_ 1 ur + dus Vé(us + pua)
B¢(U) - \/i < \/5(11,3 — ¢U4) ur — (;5’11,2 >

If we take as a constellation the whole lattice Z[i]*, the coding gain is

/ i 1
0 = inf ‘dtBB ‘_—— inf 2 _u2h — ud? 243
c(9) uez}zr']l‘i\{o} et(By é ) /2 uezl[£]14\{0} lui —u3d — u3e* + uid?|

Clearly if C C Z[i]*, the coding gain over C will in general be greater. In this
case a stronger result than Theorem 5.5 holds:
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Proposition 5.8. Suppose that one of the following is true:
a) ¢ is algebraic of degree greater or equal to 4 over Q(i);
b) ¢ is algebraic of degree 2 over Q(i) and ¢* € Q(i);
¢) ¢ is trascendental

Then the previous design achieves mazimum diversity over all the constellations
C carved from Z[i]*.

When the condition (a) or (c) hold, the determinant of B(u)B(u)* is a polyno-
mial of degree 3 in ¢, so the thesis follows from the fact that {1, ¢, ¢%, ¢} are
linearly independent over Q(i).

As for condition (b), it is enough to remark that the determinant can be written
in the form % ((uf — u3¢?) — ¢p(u3 —uip?)). If it were 0, since {1, ¢} is a free set
over Q(i) and ¢* € Q(i), we would have u? — u3¢? = u3 — ui¢? = 0; but ¢ is
not a square in Q(7), being algebraic of degree 2.

In general, given C, no criterion to maximize ¢ is known; in the case of 4-
QAM and 16-QAM constellations, computer simulations seem to suggest that
the values of ¢ that maximize the coding gain are ez and €52 respectively.
However, the computer search for the optimal parameters becomes extremely
complex when the size of the constellation increases; moreover, the parameters
found by computer search which give an optimal coding gain for one constella-
tion might work very poorly with another, so that a theoretical approach would
be preferable.

As a heuristic approach, one can observe that

2 2 .2 2 2,3
uy — U3¢ uj +uip

),

) )

dc < min mi 2wl
¢ < minmin([u} - uzé
and try to choose ¢ badly approximable by rational numbers, that is:

- ¢ algebraic of small degree and such that the moduli of the coefficients of
its minimum polynomial are small,

- ¢ trascendental such that the digits of its continued fraction expansion
are small.

In the case of ¢ trascendental, however, there is no lower bound available on
the decrease of the coding gain when the spectral efficiency grows.






Chapter 6

Algebraic space-time block
coded modulation

As we have seen, the main inconvenience of the 2 x 2 TAST code is the fact that
the minimum determinant vanishes when the size of the constellation tends to
infinity. This problem can be solved in an elegant manner by ensuring that the
block codewords belong to a division algebra. Moreover, in the two-dimensional
case the algebra can be chosen in such a way that the code will be isometric to
a rotated cubic lattice.

6.1 Quaternion Algebras

This section summarizes some basic facts about quaternion algebras that will
be useful later. Our main references are the books of Vignéras [25] and Reiner
[19].

6.1 (Quaternion algebras). Let K be a field. A quaternion algebra H of
center K is a central simple algebra of dimension 4 over K, such that there
exists a separable quadratic extension L of K, and an element v € K*, such
that

H =L Le, e? =7, er =o(r)e YrelL

where o is the non-trivial K-automorphism of L. L is called a mazimal subfield
of H. H will be denoted by the triple (L/K, o,7).

Quaternion algebras are a special case of cyclic algebras.
To obtain a representation of H as a K-module, consider a primitive element 4
such that L = K (i), and let j = e, k = ij = jo(i). Then

H={a+bi+cj+dk]|ab,c,de K} (6.1)

The following theorem gives a sufficient condition for a quaternion algebra to
be a division ring;:

Theorem 6.2. Let H = (L/K,o0,v) be a quaternion algebra. If v is not a
reduced norm of any element of L, then H is a skewfield.
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6.3 (Splitting fields). Let H be a central simple K-algebra. An extension
field E of K splits H, or is a splitting field for H, if

E®kg M= M(E)
In the case of division algebras, every maximal subfield is a splitting field:

Theorem 6.4. Let D be a skewfield with center K, with finite degree over K.
Then every mazximal subfield E of D contains K, and is a splitting field for D.

In the following paragraphs we will always consider a Dedekind domain R, its
quotient field K, and a quaternion algebra H over K.

6.5 (Lattices and orders). A full R-lattice or ideal in H is a finitely generated
R-submodule [ in H such that KT = H, where

i=1

kiEK,xiEI,TLEN}

An R-order © in ‘H is a full R-lattice which is also a subring of H with the same
unity element. A mazimal R-order is an order which is not properly contained
in any other order of .

For the following proposition see for example Reiner [19]:

Proposition 6.6. A subring of H containing a basis for H over K is an order
if and only if all its elements are integral over R.

Remark 6.7. The notion of order is a generalization of the notion of the ring
of integers for commutative extensions. However, in the non-commutative case
the set of elements which are integral over the base field might not be a ring.

6.8 (Properties of ideals). Given an ideal I of H, we can define the left order
and the right order of I as follows:

() ={zeH|IzCI},
O.(I)={zeH|xzI CI}

©;(I) and ©,(I) are orders. I is called
o two-sided if ©;(I) = 0,(I),
e normal if ©;() and ©,(I) are maximal,
o integral if I C ©;(I), I C ©,(1),
o principal if I = ©;(I)x = 20, (I) for some = € H
The inverse of I is the fractional ideal I~ = {z € H|IzI C I}.

The norm N(I) of an ideal I is the set of reduced norms of its elements, and it
is an ideal of R. If I = O is principal, N(I) = RN (z).
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6.2 Space-time codes from quaternion algebras

Theorem 6.2 provides a sufficient condition (albeit one that is not simple to
check) for building division algebras. For the applications to coding, in or-
der to ensure a uniform distribution of the average energy among the different
antennas, it is preferable to choose the generator v of the quaternion algebra
(L/K,o,7) such that |y| = 1.

6.2.1 The Alamouti Code

The first example of space-time code that can be interpreted in the framework
of quaternion algebras is the famous Alamouti Code [1]. This code is optimal
for the case of 2 transmit antennas and one receive antenna. In addition to
being full rate and full rank, its orthogonal structure allows for linear decoding.
Thanks to its simplicity of implementation and good performance, this code is
already integrated in the UMTS standard.

The Alamouti code can be derived from the skewfield H of Hamilton quater-
nions, which corresponds to choosing, following the notation in Definition 6.1,
the field of real numbers R as the base field K, the field of complex numbers C
as its quadratic extension L, and the element v = —1.

Since C is a maximal subfield of #, it follows from Theorem 6.4 that H ad-
mits a matrix representation as a subset of Ms(C). More precisely, H =
{a+bi+cj+dk|a,b,c,de R}, where

() () ()

Given an information vector u = (z1,72) = (a+bi,c+di) € C?, the transpose of
the corresponding Alamouti codeword for block length T' = 2 is the quaternion

t . .. _ a+ bi c+di \ _ T T
X _$1+w2‘]_a+bl+q+dk_<—(c—di) a—ib )\ -Ty T )’
where the overline denotes the complex conjugate. Remark that the columns of

each codeword
(1)
T2 I

are orthogonal with respect to the Hermitian product.

Moreover, if X is nonzero its determinant det(X) = |z1|° + |22]> > 0, so that
the full rank condition is always satisfied. Moreover, if the symbols z,z> belong
to a QAM constellation carved from Z[i], the minimum determinant will be in
Z and therefore |det(X)| > 1.

In the setting of §4.2.1, the received codeword is Y = HX + W:

(o) = b ) (20 72 ) () =
= ( hixy + hoxo + w1 —h1To + haTy + wo )

In order to recover X, it is convenient to consider the vector

2=(5)=(% =) () (%)
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That is, our system is equivalent to a transmission scheme with 2 receive anten-
nas and 2 transmit antennas, but with block length 7" = 1, and such that the
columns of the channel matrix

r_ hl h2
m=( )

are orthogonal. By multiplying on the left by (H')

(HNZ = (] + |haf) ( o > " ( v )

U2

H_ we obtain

where the components of the new noise vector (v1,v2) are still independent
random variables.

Thus the Alamouti Code admits a very simple decoding process, which consists
in applying a linear transformation followed by a single symbol ML detection.

6.3 The Golden Code

This code, introduced by Belfiore, Rekaya and Viterbo [5], is optimal for the
case of 2 transmit, and 2 receive antennas, and belongs to a class of n x n MIMO
codes called perfect codes [17]. These codes have been shown to exist only for
n = 2,3,4 and 6.

6.9 (Perfect code). A code is perfect if:
1. it is full rate using constellations carved from either Z[i] or Z[e3™];
2. its minimum determinant is nonzero, so that it is full rank;

3. the real lattice generated by the vectorized codewords is 727" or Agz,
where A, is the hexagonal lattice;

4. the symbols in the code matrix have the same average energy.

Consider the number field Q(7, ), where 8 = @ is the Golden number, and
its ring of integers Z[i, 6]. )
Ifz =a+ b0 € Q1,0), let o(x) = T be its canonical conjugate a + b, where

N(z) = 2% is the norm of z, and x € Z[i, 6] implies that N(z) € Z[i].

Consider the quaternion algebra .4, with center Q(i), and maximal subfield
Q(i,0):

where j2 =i, 2j = jz Vz € Q(i,6).

It can be shown [5] that i is not a norm in Q(4,6)/Q(i), so Theorem 6.2 implies

that A is a division algebra.
As a Q(i)-module, we have

A=Q() ® Qi) ®Q)j ® Qi)d7,
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From Theorem 6.4, it follows that Q(7, ) is a splitting field for 4, and so

Consequently, A admits a matrix representation as a subset of M(Q(7,6)),
where the inclusion is given by

xH<g 2),Va:e@(i,0), jH<Q é) (6.2)

7

Then A can be written in the form

1Ty Tq

A:H o ] , T, 2 eQ(i,&)} (6.3)

and every element of A has nonzero determinant N (x1) — (N (z2).

Remark 6.10. An alternative representation of A as a cyclic algebra can be
obtained by considering the field extension Q(v/7)/Q(i) and the quaternion al-
gebra A(Q(v/4)/Q(i),,5), where 7 is the canonical conjugacy in Q(v/i)/Q(4).
Thus

A' = Q(i)@Q(i)VieQ() faQii)Vif,  f*=5,  xf=fr(z) Vre QW)

The isomorphism ¢ : A — A" of Q(i)-algebras between the two representations
is given by ¢(v/5) = f, ¢(j) = Vi. It is sufficient to check that it is a ring
isomorphism, namely that

¢(j)p(V5) = Vif = —fVi=—¢(V5)e(j),

the other products between the generators being automatically preserved, since
their characteristic polynomials are the same.

The construction of A ensures that the first two conditions in Definition 6.9 are
satisfied. In order to have cubic shaping, we will take a suitable ideal of A.
Consider the order of A

O:H T ] o1, eZ(i,O)} (6.4)

1Ty  T1

and let
a=1+10, A:[g g] (6.5)

The Golden Code G = %A(’) is a rescaled version of the right principal ideal
AQO of O. Every codeword X € G is of the form

=

It is easy to verify that G is a two-sided ideal: in fact if w = wy + wej € O,
wy,we € Z[i, 0],

ala+b8) ale+ db) ]

qi(c+do) ala+ bd) (6.6)

a(w + wej) = wia + wej@ = (wy + iwsj)e,
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observing that aif =i +1 = @. But
& wy + waf = wy + i0waj (67)

is an homomorphism of Z[i]-modules that maps O into itself bijectively, therefore
aO = Oa. Moreover, if we neglect the normalization constant %, G is an
integral ideal because it is contained in O.

Remark 6.11. VIV € O\ {0}, |det(W)| > 1. Consequently, VX € G \ {0},
det ()] > .

Proof. Since A is a division algebra, N(xz;) —iN(z2) # 0 if (z1,22) # (0,0).
Moreover, when z1,zo € Z[i]|[0], N(z1) — iN(z2) € Z[i] and so its absolute

value is at least 1. If X = %W, |det(X)| = Wg—a)‘ |det(W)| = d‘it/gW

IN(a)| = |2 +i] = V5. O

, since

Remark 6.11 implies that the Golden Code G is full-rank and has non-vanishing
determinant. By construction, it is also full-rate, that is, each codeword trans-
mits four information symbols.!

6.3.1 Lattice representation of G

We follow the column convention for vectors, so that lattices have the form
A ={Mu|u € Z[i]"}. Two lattices A = {Mu} and A’ = {M'u} are equivalent
if there exist U unimodular with Gaussian integer entries and 7' unitary such
that M' = TMU.

Let a,b,c,d € C, and consider the linear mapping ¢ : A — C* that vectorizes

matrices:
¢<{ z ; ]) = (a,b,c,d) € C*

Obviously, the mapping ¢ preserves the norm: VA € A, ||A||; = [|¢(A)]]°.

The left multiplication function ly : A — A that maps W to YW induces a
linear mapping ¥; = ¢poly o ¢t : ¢(A) — #(A) that can be seen as a 4 x 4
complex matrix. Similarly, we can define the linear function Y, = ¢ory o ¢!,
where ry : W — WY is the multiplication on the right by Y.

Remark 6.12. If Y = [ vz ], then
Yy w
z 2z 0 0 z 0 y O
|y w 0 0 |0z 0 y
Y= 0 0 =z =z |’ Y. = z 0w O
0 0 y w 0 2z 0 w

Another useful mapping to consider is ®¢ : Z[i]* = #(0),

(I)O;u:(a’b’c’d)Hgb( ilc+df) a+bd

a+bd c+db ])

Tt has also been shown [12] that the Golden Code achieves the diversity-multiplexing gain
tradeoff (see §4.2.2).
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It is easy to check that

160 0
0 0 i if
%_oqla
160 0

Remark 6.13. The map R = %Aﬁbo sends Z[i]* to ¢(G). R is the unitary
matrix

1440 60— 0 0 a —ai 0 0

p_ L 0 0 —g+i 1+ |_ 1|0 0 a oa
RV 0 0 1+i0 6—i | /5|0 0 o —ai
1+40 60— 0 0 a —ai 0 0

Thus we have shown that the Golden Code has cubic shaping, since it is isometric
to Z[i]* with respect to the Frobenius norm.

Remark that the pre-images of the rotated canonical basis are

-1 _1fao0]_ A4

oo =7 G o=

1 _ L [-a o ]_©A

PUImEL _ai}_\/g (6.8)

51 ey — L[ 0 a]_iJ@A '
VB la 0 NV

10 —ai] —idA

PR =0 0 ]_ Vi

where ;
0 1 0
=17 6] e=[0 5]

are the matrix representations of j and 6 respectively (see equation (6.2)).

6.4 Golden Block Codes

We now consider the case of a slow fading channel, meaning that the channel
coefficients remain constant for a certain time frame L. We want to define a
block code of length L using the Golden Code as the “alphabet”, in order to
improve even further its performance.

As usual, we assume that the fading coefficients are known at the receiver. The
received signal is given by

Y=HX+W, X, Y, W e C>*2L, (6.9)

where the entries of H € C?>*2 are i.i.d. complex Gaussian random variables,
W is the Gaussian noise with i.i.d. entries of zero mean and variance Ny, and
the transmitted signal X = (X1,..., X1) belongs to a suitable subset S C G~.
As we have seen in equation (4.8), the pairwise error probability is given by

1

PX—X)<—,
==
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where Egs is the average energy of S and

Amin = min |det(XXH)|
XeS\{o0}

In order to minimize the PEP for a given SNR and average energy, we should
maximize Apin.
First of all, we would like to find an explicit formula for det(XX). Consider the
following involution of the cyclic algebra A (corresponding to the quaternionic
conjugate):

X:|::Tl $2} N )?:[ $_1—$2}

iTs T —iT3 T

Remark 6.14. VX € A,

XX = det(X)1 (6.10)
X+ X = (2, +77)1 = tr(X)1 (6.11)
det(X) = det(X) (6.12)

Recall the definition of the Frobenius norm of a matrix:

a b

T A B L e R s

Lemma 6.15. VX = (X;,...,X) € A%,
det(XX7) = det(X, X[+ ...+ X X)) =

. ~ 2
et (X1 + ... + [det (X1)]* + ijxi .
j>i

Proof. Foralli=1,...,L, let Q; = X;X: then

det(Xi X 4+ ...+ Xp X1 =det(Q1 + ... + Q)1 =

L L
=@+ QU@+ +QI=) QiQ; =) det(@)L+ Y Q:iQ;
i=1

ij=1 i#j
~ ~ ~ 2
We need to show that Q;Q; + Q;Q; = HXin - 1.
- 2 - -
But ||X||§J =tr(XXH), and therefore HXin = tr(XinXiHXjH), and

Q;Qi = )Z']Hijin{, QiQ; = Q;Q;
= QiQ; + Q;Q;i = tr(QiQ;)1 = tr(X; X, XX )1,

recalling that tr(AB) = tr(BA). O

6.4.1 Estimates of the Frobenius norm

Remark 6.16. If W € O, ||W||f; € 7.
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Proof. Let

_|:w1 w2

'L.w2 W :| , Wi =1 +7:81,’1U2:t2+i82, t17t2781782 EZ[H]

Then ||W||% = |w:i | + [@ |” + lws|* + 5. But wy = a+bd+i(c+df) for some
a,b,c,d € Z, and

lwi|” + [@1]” = (a + b0)? + (c + dB)? + (a + bO)? + (c + dF)* =
=20 +3b” +2ab+2¢* +3d* +2cd € Z

The same is true for |ws|* + [w2*. O

Remark 6.17. Let X,Y be two 2 x 2 complex-valued matrices. Then

X7 > 2|det(X)], (6.13)
~ 2
HXYHF > 2|det(X)| |det (V)| (6.14)
a b
Proof. If X = [ e d },then

XI5 = lal* + [b* + |ef* + |d” > 2(ad] + [be]) > 2]ad — be| = 2 |det(X))|
~ 2 ~
and HXYHF >2 ‘det(XY)‘ — 2 |det(X) det(Y)]. O

Remark 6.18. VIV € O\ {0}, [[W|3 > 2|det(W)| > 2. Moreover, the
minimum is actually achieved when W; = W, = 1.

~ 2
Remark 6.19. If X1, X € G \ {0}, |X2X1HF > 2

Proof. Let X; = %AWl,X2 = %AWQ, Wi, W5 € O. Then
~ 2 1 |~ ~ 2 |N(a)|2 — 21— 2 9
| = g [Wedam || = =52 [T | = S| 5,
H21F 25 112 e 25 e 50T e =
since W = Wng belongs to O. [l

From Remark 6.17, it follows that:

Lemma 6.20. Let X = (X,...,X1) € GL'. Then

2

L 2
det (XX > <Z|det(Xi)|> > w

i=1

where wr (X) = #{i € {1,..., L} | X; # 0} is the Hamming weight of the block
X.
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6.4.2 The product lattice

We can study the structures induced on Z[i]* by the map X X and by the
product (X,Y) — XY

—~

x = (R '¢)(¢~*Rx), (6.15)
xxy = (R™'¢)(¢~'Rx-¢~'Ry) (6.16)
Then recalling expression (6.8) for the lifts of the vectors of the canonical basis
{e1,es,e3,e4}, we get
€] =ieq, €y = —ie],€3 = —€3,64 = —€y

Table 6.1 lists all the products of the vectors of the canonical basis. For example
we have:

—1 A2 _ 1 —1 . T 1 . .
e xer = (R'¢) (?) — R+ DA - D) = (1 + e e

e ke —e3xey = \/Lg((l +i)e; —iez)

ey xey = —ey xe3 = %(el +(1—1i)ey)

—63*63264*64261*62262*61Z%('L‘el—EQ)

e % e3 —iez x ey — %((1 +i)es —iey)
€] xe4 = ey xe3z3 = 'L.e4>l<62 = —i63*61 = \/Lg(—ie:; +64)

ey ke = i62 *x ey = %(ieg + ('L + 1)64)

Table 6.1: The products {e; x €5}, i,5 € {1,2,3,4}.

Observe that with the definition (6.16), Z[i]* * Z[i]* C %Z[i]‘*. 2
in
F

In order to design a code with good minima of the Frobenius norms ‘|)~(in
Lemma 6.15, we need more information on the set of products P = {XY | X,V €
G}. Since G = G, this set is simply G?. More precisely, if X = %AW,
Y = \/igAW’ with W, W' € O, recalling that G is a two-sided ideal we have

~ 1 1 . 1

XY = EAWAWI — g142&-—1(1/1/')1/1/'1 — gAQW”WI,
where ¢ is the bijection defined in equation (6.7). The last expression ranges over
all W/, W" € O, so that P = £ A20%. But since 1 € O, we have O? = O and

P = \%Ag. With the notation of §6.3.1, we can say that ¢(P) = %AIRZ [i]* =
ZeRAIZL), where A) = R™' AR = R"TAR. A simple calculation yields

14+:7 —i 0 0
—1 1 0 0
0 0 1+ —i
0 0 -1 1
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The columns of A) are a reduced basis for the lattice 4)Z[i]%; we already know
from Remark 6.19 that the minimal norm in this lattice is 2.

6.4.3 A Golden partition chain
For k =1,...,4, we consider the left principal ideals of the Golden Code [4]

_ k _[if 6
G = {XB" | X € G}, B_{w w], (6.17)
The property that det(B) = 1 + i makes these subcodes an ideal choice for a
binary set partitioning.
We remark that the codes G, are obtained from the right principal ideal OB*
of O. Let
_ a+bd c+db
W= { i(c+df) a-+bd ] ©
Then the matrix Q) = %(BT)kAﬂI)o = (B,)*R maps u = (a,b,c,d) € Z[i]*
to ¢ (%AWB’“). QrZ[i]* is a sublattice of RZ[i]*, of the form RSyZ[i]*,

and S, = R™'Qr = R7Qr = R"(B,)*R is a generator matrix for the lattice
associated to G.

Lemma 6.21. Let X = (Xy,..., X)) with X1,..., X1, € G, k € {0,...,4}.
Then .
28N
det(XXH) > =

where N = wr(X) = #{i € {1,...,L}| X; # 0} is the Hamming weight of the
block X.

Proof. From Proposition 6.15 we get:

2
F

Aet(XXH) = [det(X))* + ...+ |det(X1) | + 3 [ %X
j>i
1 IPNE: ’NE: kT A k|2
= 5= (det(AWL B + ... + [det (AW, BY)| +;HB wiAaw.Bt| ) =
i>i
1
= == [N (a)[*|det B* (|det(W1)|2 Fo | det(W)]? + 2) -

k
G

(Idet(Wa)P” + .. + [det(W)[* +2) > % <N 2 w>

In the last estimate we have used Remark 6.17 and Remark 6.11. Observe that
in particular the Lemma holds for Gy = G, with & = 0. O

6.5 Coding with cosets: a first example

We will focus on the first of the left principal ideals in the chain (6.17), that is
Gi1 = GB. The quotient group G/G, is isomorphic to Zs X Zs; we will consider
block codes that are lifts of linear binary codes of length 2 and 3 over the
quotient. We will compute the minimum determinants among the pre-images of
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A

Ul

Lo—% Ly0) = Leozlit <

Ul Ul Ul
6—2>-00) = EA%oZl* - Rz

Ul Ul

G —2>(G) = =BASOLI' = RSZ[* - RPD?

Figure 6.1: A summary of the relations described below.

each binary codeword; these are related to the minima of the Frobenius norms
over the products of two cosets.

The lattice ¢(G;) is spanned by RS;, where R is the unitary matrix defined in
Remark 6.13, and

i —i 0 i
- 0 i i
S1 = 1 =1 0 i
-1 0 i i

This lattice is equivalent to the complex D7 lattice (see [8], Chapter 7.8): in
fact P, S1Uy; = Hy, where

1 0 0 0
1 14+i 0 0
=1y o 1 o
0 0 1 1+

is the generator matrix of D3, P; is a permutation, U; is integer unimodular:

1 00 0 0 0 0 —i
0010 0 —i 0 —i
P=lo 100l Y= i i o -
000 1 - —i 0 0

Then ¢(G,) = RS\ Z[i]* = RP;'D? = RP,D} C RZ[i]* is a rotated version of
the complex D? lattice, that is a subgroup of index 4 of RZ[i]*. The quotient
group G/G; is isomorphic to RZ[i]*/ D} & 7y X Zo.

- 2
We want to study the behavior of HXngHF when X, X5 belong to different

cosets of Gy in G. The map ¢ is a group isomorphism and so the images of
distinct cosets of G; in G are distinct cosets (as Z[i]-modules) of RS;Z[i]* in
RZIi]*, that is they are the images through R of the four cosets of S;Z[i]* in
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AU
Let {eq,...,es} denote the canonical basis of Z[i]; then

Coo = S1Z[i]* = (iez + ey, ie1 + e3,ez + eq, 1 + €3) (6.18)

To find the coset leaders, remark that e; and es do not belong to Cpy because
its nonzero vectors have squared norm greater or equal to 2. Moreover, it is
easy to check that e; — es ¢ Cop, €1 + e ¢ Coo and so e, es, e; + e belong to
different cosets of Coyg:

Co1 = Coo + ey,
Chio = Coo + €2,
Ci1 =Cyo +e1 +es

Therefore {RCOO = ¢(g1),R001 = ¢(g1) + Rel,RClo = ¢(g1) + REQ,R011 =
#(G1) + R(e; + es)} is a decomposition of RZ[i]* into cosets of RS, Z[i]*.

Thus the cosets of G; in G are:

A iA 1 ~
Cong = R Co1 = + —, Cio = - —, Ci1 = + — A—iA
00 =01 01 Gi \/5 10 =0 \/3 11 g1 \/5( ? )
, and _ _
Coo = R7'¢(G1) = (€1 — eq, 2 + e3,ie; + eq, ies — e3)

Unfortunately, the involution X X does not preserve cosets.

The sum of two vectors in Z[i]* with even squared norm has even squared norm:
if z = (21,22,23,24) and w = (wy, w2, w3, wy) are such that Z;l:l |zz|2 = 2n,
Z?:l |w;|> = 2m, then

4
Z |zi + wil” = 2n + 2m + 2R(wz)
i=1

The vectors with even squared norm form a sublattice of index 2 of Z[i]*; it
is easy to check that this is equal to Cpg U C11. We also observe that Cyy C
We want to find

2
i e — ; —1/ pay 4—1 2
cein_ XY = min (o7 (B0 Ry =
(X,Y)#(0,0) (2,y)#(0,0)
— : —1 ~ 2 . - 5
= xeCrBISI’IGCJ' (67 R)(Xy)|| - = xeor?l;leoj [|x = y]]
(z7y)¢(070) (m’y);é([)’o)

for each pair (i,7) € (Za X Z2)?.

Lemma 6.22. The minimum of the Frobenius norm over the products of the
cosets of Gy is

2 _ Ci,C;
win [TY]] = _in ey = M
X€C;,YEC; F  x€C;yeC; 5
(X,Y)#(0,0) (x,)#(0,0)

)
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where n(C;,C;) takes the following values:

Coo | Co1 | Cio | C1a
Coo| O 0 0 0
Coi| 0| 2|33 (6.19)
Cio| O 3 2 3
Ci1| O 3 3 2
Proof. The table in (6.19) is clearly symmetrical because H)?YHF =||XY| =
F

7]
F

- In the case X € Cqo,Y € C;, we can choose X =0 and Y # 0 so that the
product XY is 0.

2
- From Remarks 6.11 and 6.17 it follows that HXYHF > % for X,Y € G.

When X,Y are both in C;, i # 0, we can exhibit directly an element of
squared norm %:

- ) 1 . ~
€ xe] =iey ke = —5(e1 +iez) € Cor x Cor,

1
V5
-~ . 1 . =~

(61 + 62) * (61 + 62) = 2(62 — e1) * (61 + 62) = —(—61 + Ze2) € 011 * 011

V5
- When X E@,YECJ', i,j # 0,1 # j, xy is of the form

€y k ey = —ije] key = (—e1 —ieq) € Chp * Cho,

(Co +€;) *(c{ +e;) = (Co +€;) xcy +Cp xej + & xej,
where C0,06 € Cpo. Then (Eo + El) * C6 € Z[’L]4 x Cyp C \/Lgcoo and
Co*xej € 500 x ZJi]* C %500 C %(C’oo U C11) both have even squared
norm over 5, while €; * e; has odd norm over 5: therefore all the elements

in @ * C; have odd norm over 5. Since we know that it is greater or equal
to %, it is sufficient to exhibit an element of squared norm %:

- . 1. . ~
€ xey = zeé = —(ie; + (1 +1i)es) € Co1 *x Cyo,

V5

- ) 1 . ~
€ x(e] —ey) —ies x (€] —ey) = —=((1 —i)e; —ey) € Cor * Chy,

V5
1 . . ~
E(—’Lel — (Z + 1)e2) € Chg * 011,

which concludes the proof. [l

EQ * (e1 +62) =

6.5.1 Codes of length 2
For every (i, j) € (Za % Z2)? = 73, define

. ~ 2
ACinC) = _min_ 5 <|det(X1)|2 +|det(Xa)]” + HX2X1HF> (6.20)
(X17X2)7é(070)
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From Lemma 6.22, and recalling that

2 1
min |det(X)| = - min |det(X)| = 5 for i # 0,

X€Coo 5’ Xec;
it follows that d(C;,C;) takes the following values:
COO COl ClO Cll
Coo | 2 1 1 1
Chr| 1 | 4|5 |5 (6.21)
Co| 1 | 5] 4] 5
Cu| 1 | 5| 5 | 4

Let S be a subgroup of Zj3: then we can define two coset weight enumerator
functions as follows:

As(D)= > DN Ag(D)= > DG
(ij)€S (i,7)ES\{0}
Given a polynomial p(D) = ag +a1D + ...+ a, D™, we define
A(p) = min{i > 0 | a; # 0}
and we introduce the following order on the set of all polynomials:
p>Aqe k>0 : ai(p) =ai(q) fori =0,...,k—1, ar(p) > ar(q)

In pfa,rticular, we are interested in maximizing Apin (S) = A(As) and Amin (S) =
A(Ag) with respect to this order.

Linear codes induced by a permutation
Let o be any permutation of Zs X Zs, and consider the code of length 2
G, = {(Xl,XQ) €EgGxg | X, €C, X5 € Ca(i) for some ’L} (622)

In general, G, is not a linear code: given two words X = (X1, X32) € C; X Cy(3),
Y = (V1,Y2) € Cj x Cy(jy, we have X —Y € Ciyj X Co(s)40(j)- Therefore the
code is linear if and only if

o(i) +o(j) =o(i+j)  V(i,j) € (Z2x L2)? (6.23)

Thus a necessary condition for linearity is that (i) + 0(0) = o (i) for all 7, that
is 0(0) = 0. In this particular case it is also a sufficient condition: Vi,j # 0
such that ¢ # j, i+ j is equal to the only element k in {01,10,11}\ {7,}. Then
o(i)+o(j) =0c(k) =0(i + j).

Lemma 6.23. Consider the code G, defined in (6.22), such that o is a permu-
tation keeping O fized, and let S = {(i,0(i)) | i € Zo X Z2}. Then we have three
cases:

1. If 0 is the only fized point of o, As(D) = D* 4+ 3D®, As(D) = 3D°".
2. If o has two fized points, As(D) = D + D* + 2D3, Ag(D) = D* + 2D5.

3. If o is the identity (so that G, is the repetition code), As(D) = D*+3D*,
As(D) = 3D*.
The proof is straightforward from the table (6.21). Clearly the first case is the
best one with respect to the coding gain.
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Non linear codes induced by a permutation

Actually the study of the non linear case can be reduced to the linear one.
We know that in this case 0(0) # 0. Given X = (X1, X3) € C; x Co3y, ¥ =
(Y1,Y3) € Cj x Cy(jy, we have

det(X —V)(X —=Y)# =det((X; —V1)(X1 = Y1) + (X — V2) (X5 — V2)H) =

-~ 2
— |det (X, — V3)[? + |det(Xs — V3)[> + H(X2 — Vo) (X — Yl)HF,

where X1 — Y] € Ci+j, Xo—-Y; € Cg(i)+g(j).

We want to show that (i + j,0(i) + o(j)) is a permutation keeping 0 fixed (and
thus (X; — Y7, X — Y3) all belong to the same linear code as X,Y vary).

Let 7(i +j) = o(i) + 0(j): 7 is well-defined because the sum of two distinct
elements i,j € Zs X Z» is equal to the sum of the elements in Zoy x Zs \ {i,7}.
In fact if i + j = k 4+ m, either i +j = 0 and i = j,k = m, so that 7(i + j) =
20(i) = 20(k) =0, or {i,j,k,m} = Zy X Zo, and o(i) + o(j) = o(k) + o(m).
Moreover, T is surjective because it is the original permutation o shifted by
a(0): 7(5) = o(j) + ¢(0). And 7(0) = ¢(0) + o(0) = 0.

It follows that, from the point of view of the coding gain, our code is equivalent
to the linear code induced by 7.

Other linear codes of length 2

In the case of linear codes not induced by permutations, S contains at least two
points with the same first or second coordinate, of the form (i, j) and (i, k) or
(4,i) and (k,4). But then (0,t) or (#,0) belong to S for some ¢, and the coset
weight enumerator polynomial has Ay, = 1 (see table 6.21), so these codes
have a worse performance than those we analyzed in the previous paragraphs.

6.5.2 Codes of length 3

Let U = {(i,j,k) | i,j,k € Zax Zo}. For the sake of simplicity, we only consider
linear codes S C U{. Similarly to the case of length 2, for every (i,7,k) € U we
can define

d(C;,C;,Cy) = min 5 (|det(X)|2 + |det(V)[? + |det (2)]* +

X€eC;,YEC;,Z€Cy,
(X,Y,2)#(0,0,0)

~ 2 -~ 2 -~ 2
el 2+ 2]
F F F
and the coset weight enumerator polynomials
AS(D) — Z Dd(Ci,Cj,Ck), AS(D) — Z Dd(Ci,Cj,Ck)
(i,4,k)ES (i,5,k)es\{o0}
For a given dimension n of the code as an Fy-vector space, we search for the
best possible coset weight enumerator polynomial with respect to >a.
The 64 codewords (i,7,k) € U can be divided in several groups according to
d = d(C;,C;j,Ck). Let a,b,c € Zs X Zo be distinct and nonzero, and let 7 be a

permutation; we can summarize the different cases as in Table 6.5.2.
If S is equal to the whole space U, its coset weight, generator function is

As(D) =9D + D? +9D* + 18D° + 3D° + 18D'! 4+ 6D'?
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shape | # of codewords | d(C;,C;,Cy)
m(a, b, c) 6 d=14+1+14+3+34+3=12
7(a,a,b) 18 d=14+1+14+3+34+2=11
m(a,a,a) 3 d=14+1+142+242=9
(0, a,b) 18 d=14+1+0+3+04+0=5
(0, a,a) 9 d=14+1+0+2+0+0=4
(0,0, a) 9 d=1
0,0,0) 1 d=2

Table 6.2: A list of the codewords in U according to their shape.

Subgroups of order 4

In this case, it is clear that the code
S = {(00,00,00), (01,10,11), (10,11,01), (11,01,10)}
gives rise to the best possible coset weight enumerator polynomial, that is

AS(D) =D>+ 3D12, AS(D) = 3D12, A(S) =12

Subgroups of order 8

In this case S has dimension 3 as an Fy-vector space. We define the following
subspaces of dimension 4 over Fo: Ty = {(i,j, k) | i =0}, Jo = {(4,4,k) | 7 = 0},
Ko ={(i,j,k) | k= 0}.

Then Grassmann’s formula implies

6 > dim(Zg + S) = dim(S) + dim(Zy) — dim(SNZy) = 7 — dim(S N Zo)

Similarly, dim(S N J) > 1, dim(S N Kg) > 1. So, even in the best case when
dim(SNZp) = dim(SN Jp) = dim(S N Ky) = 1, we have at least three nonzero
codewords with one digit equal to zero, giving at best a term 3D® in the coset
weight enumerator polynomial.

Now consider the code S generated by (00,01, 10), (01,10, 00), (11, 11,01):

S = {(00,00,00), (00,01, 10), (01, 10,00), (11,11,01), (01, 11, 10),
(11,10, 11), (10,01,01), (10,00, 11)}

It is easy to check that
As(D) = D? +3D° + 3D" + D'?, AS) =5

This is the best case for dim(S) = 3. Suppose by contradiction that there exists
§', dim(8') = 3, such that Ags/(D) >a As(D). The term D? is always present
in a linear code, and we have already observed that the term 3D° cannot be
avoided. The only possibility would be to have (at least) one more word (a, b, ¢)
such that d(C,,Cs,C.) = 12.

Suppose we already have one such word (i, j, k), where 4, j, k are all distinct and
different from 00, and we want to add another, (a,b,c).
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e If we choose a = i, then since (a,b,c) # (4,7, k) we must choose (a,b,c) =
(i,k,j). But then (i,7,k) + (i,k,7) = (i,i,i) € §’, giving rise to the term
D? in Ag/(D), and thus As: <a As.

e Then necessarily a # i. Without loss of generality (since the order of
the digits is uninfluential) we can suppose a = j. Then (a,b,c) is ei-
ther (4,1,k) or (j,k,7). In the first case, (i,7,k) + (j,4,k) = (k,k,0) €
S', introducing the term D* in Ag/(D); but this is impossible because
As >a As by hypothesis. Then the only possibility we have left is that
(ivja k)7 (Ja kvi)v (ivja k) + (.77 kvl) = (kalaj) €S

Now we know that there is a nonzero element in Zo NS, of the form (0, a, b); we
have to discard the option (a,b) € {(j,%), (k,i), (i,7)} because in that case S’
would contain a codeword with two digits equal to 00 (in fact (4, j, k) + (0,7, k) =
(1,0,0), (j, ks )+(0, k,3) = (4,0,0), and (k, i, )+(0, 1, 1) = (k,0, 0) respectively).
On the other hand, if (a,b) € {(k,7), (i,k), (j,7)}, then the code would contain
the codeword (%,1,7) = (4,7, k)+(0,k, ), or (4,5,7) = (4, k,1)+(0,4,k),(k, k, k) =
(k,i,7) + (0,7,i) respectively, and again we would have As <a As.

Subgroups of order 16

We have dim(S) = 4. Grassmann’s formula implies
6 > dim(Zp + S) = dim(S) + dim(Zp) — dim(SNZp) =8 — dim(S N Zy)

and in the same fashion we find that dim(S N J) > 2, dim(S N Kp) > 2. Then
there are at least nine nonzero codewords with one digit equal to 00, and As(D)
contains at the least the term 9D5.

Consider the code generated by (00,01,10),(00,11,01),(11,01,00),(10,00,01):

S = {(00, 00, 00), (00,01, 10), (00,11, 01), (11,01, 00), (10,00, 01), (00, 10, 11),
(11,00, 10),(10,01,11),(11,10,01),(10,11,00), (01,01,01), (11,11, 11),
(10,10,10), (01,00, 11), (01,10, 00), (01,11,10)}
Its coset weight generator polynomial is
As(D) = D*> +9D° +3D° 4+ 3D"?

and A(S) = 5. Again, we want to show that this code is optimal under our
conditions, that is, that the presence of the term 3D? can’t be avoided.

We need to choose three elements in S N7y, without repeated digits; if the first
is (0,1, j), the second cannot be (0, j,7) because then (0, k, k) € S and As would
contain the term D*; it cannot be (0,i, k) or (0, k, ) because its sum with the
first element would give one codeword with two digits equal to 00. So the three
codewords have to be {(0,1,7),(0,4,k), (0,k,i)}.

Now let’s consider the three nonzero codewords in S N Jp: as in the previous
case, the choice of the first element determines the others and we can choose
either the triple {(i,0,7), (,0,k), (k,0,7)} or {(j,0,19), (¢,0,k), (k,0, ) }.

In the first case, (0,4,7) + (¢,0,7) = (4,4,0) € S, and As would include a term
D*, so this option must be discarded.

In the second case, (0,7,5) + (4,0,k) = (i,i,1), (0,7,k) + (4,0,%) = (4,4,7),
(0, k,4)+ (k,0,j) = (k,k, k), which proves that the term 3D? in the coset weight
enumerator polynomial can’t be avoided.
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Subgroups of order 32

Let’s consider the following subspaces of dimension 2 over Fy:
T=A{(,j,k)|i=k=0} J={04,k) |i=k=0}, K={(i,j,k)|i=j=0}

Since dim(S) = 5, Grassmann’s formula implies that SNZ, SN J, SN K have
dimension at least one. Then Ag contains the term D, and these codes are not
efficient from the point of view of the determinant.

6.6 Structure of the quotient rings of ¢

In this section we describe the structure of the two-sided ideals of G and of
the corresponding quotients. As we have seen, the multiplicative structure of
G plays an important role when computing the mixed terms in the minimum
determinant, and it is convenient for the quotient to have a ring structure.

In particular, we want to find all the two-sided ideals whose norm is a power of
1+1i; these can be especially useful to build a binary partition chain like the one
described in §6.4.3. Unfortunately, we will see that the only two-sided ideals
with this property are the trivial ones. We then analyze the structure of the
quotient rings, and find that they are rings of matrices over non-integral rings.

First of all, we need some further notions from non-commutative algebra; we
will see that the existence of two-sided ideals is related to the ramification of
primes over the base field. We will also show that O is a maximal order of A.

6.6.1 Ideals, valuations and maximal orders

6.24 (Prime ideals). Let © be an order, P a two-sided ideal of © (that is,
the left and right order of I coincide with ©). B is prime if it is nonzero and
VI, J integer two-sided ideals of ©, IJ C B =1 C P or J C P.

The proofs of the following theorems can be found in Reiner’s book [19]:

Theorem 6.25. The two-sided ideals of an order © form a free group generated
by the prime ideals.

Theorem 6.26. Let O be a maximal order in a quaternion algebra H. Then
the prime ideals of © coincide with the mazimal two-sided ideals of ©, and there
is a one-to-one correspondence between the prime ideals B in H and the prime
ideals P of R, given by P = RN*B.

Moreover, © /B is a simple algebra over the finite field R/P.

6.27 (Valuations and local fields). A wvaluation v of K is a positive real
function of K such that Vk,h € K,

1. vk)=0 k=0,
2. v(kh) = v(k)v(h),

3. v(k+ h) <wv(k) +v(h).
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v is non-archimedean if v(k + h) < max(v(k),v(h)) Yk,h € K; it is discrete if
v(K*) is an infinite cyclic group.

K can be endowed with a topology induced by v in the following way: a neigh-
borhood basis of a point k is given by the sets

Ucs(k)y={he K|v(h—k)<e}

K will be called complete if it is complete with respect to this topology.
If v is non archimedean, the set

R, ={ke K|uv(k) <1}

is a local ring, called the valuation ring of v. The quotient R, /P,, where P, is
the unique maximal ideal of R,, is called the field of residues of K.

K is a local field if it is complete with respect to a discrete valuation v and if
R, /P, is finite.

6.28 (Places). A place v of K is an immersion 4, : K — K, into a local field
K,. If v is non-archimedean, we say that it is a finite place; otherwise, that it
is an infinite place.

The finite places of K arise from discrete P-adic valuations of K, where P ranges
over the maximal ideals in the ring of integers R of K. (Recall that the ring
of integers in a number field is always a Dedekind domain, and so the maximal
ideals coincide with the prime ideals).

Here we recall a few well-known facts about ramification in commutative exten-
sions: let L be a separable extension of degree d of K, and P a prime ideal of
K. In general, P is not a prime in L, and admits a unique decomposition with
respect to the primes of L:

P =pi'ps’-pyr,
where p1, ..., p, are distinct and are called the primes over P.

Proposition 6.29. Let Oy, be the ring of integers of L: then for each p; over
P, Or/pi is a finite extension of the finite field R/P. The degree f; of this
extension is called the inertial degree of p; over P, and the following relation

holds: .
d=>ef;
i=1

6.30. We say that P
e is ramified if 3i such that e; > 1
e is totally ramified if r =1, e; =d, fi = 1, that is, P = p?,
o is unramified if e; =1Vi=1,...,r,
o splits completely if it is unramified and r = d, that is, f; =1Vi=1,...,r,

o isinertif f;=1Vi=1,...,r.
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6.31 (Ramified places). Let H be a quaternion algebra over K, and P a place
of K.

Consider the K-module Hp = H ®x Kp; Hp is isomorphic to a matrix algebra
M, (D) over a skew field D of center Kp and index mp over Kp; mp is called
the local index of H at P. We say that P is ramified in ‘H if mp > 1.

Given a maximal order ©, the set Ram (%) of ramified places of  is related to
a particular two-sided ideal of ©:

6.32 (Different and discriminant). Let © be an order. The set
0" ={z € H|tr(z®) C R}

is a two-sided ideal, called the dual of ©. Its inverse ® = (0*)~! is a two-sided
integral ideal, called the different of ©. If {wy,..., w4} is a basis of © as a free
R-module,

(n(®))? = Rdet(tr(w;w;))

The ideal n(®) of R is called the reduced discriminant of © and is denoted by
d(©).

Proposition 6.33. If ©,0' are two orders and ©' C O, then d(©') C d(O).

The notion of ramification for quaternion algebras is a generalization of the
notion of ramification for field extensions:

Theorem 6.34. Let © be a mazimal order in H. For each place P of K, let
mp be the local index of H at P, and let P be the prime ideal of © corresponding
to P (see Theorem 6.26). Then mp > 1 only for a finite number of places P,
and

ro=gpm, 2= J[ P!

PeRam(H)

Proposition 6.35. Let H be a quaternion algebra unramified at infinity.
A necessary and sufficient condition for an order © to be maximal is that

ae)= [ P

PeRam(H)\ oo

In the case of infinite places P, the P-adic completion can be R (real primes)
or C (complex primes). Complex primes are never ramified. [19]

Theorem 6.36. The two-sided ideals of a maximal order © form a commutative
group generated by the ideals of R and the ideals of reduced norm P, where P
varies over the prime ideals of R that are ramified in H.

Moreover, consider the normalizer N(©) = {z € H | 2 'Oz = ©} of ©. Then

N ~ . . .
ng)* = 7T, where m is the number of prime divisors of ©.

6.6.2 Structure of the quotient rings of ¢
Recall the definition of the division algebra A in (6.3):

A:H no o } Lo e@(w)}

12 I
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As we have seen in §6, O = Z[i, 8] @ Z[i, 6]j is a Z[i]-order of A, and the Golden
Code is (up to a scaling factor %) the ideal G = @O, where o = 1 +i6; we have
seen that it is a two-sided principal ideal.

G is also a prime ideal because of Theorem 6.26, since G NZ[i] = (2 +14) is a
prime ideal of Z[i].

Then ©/+/5G is a simple algebra over Z[i]/(2+ i) = Fs.

Observe that the prime ideals (2+ ) and (2 — i) of Z[i] are both ramified in A:
in fact

(241) = (a)?, and (2 —1i) = (a/)?, where o/ =1 —if
(Remark that o = i@, o' = —ifla’).
Proposition 6.37. O is a mazimal order.

Proof. In the case of O, the infinite primes are complex because Q(i) is complex.
Therefore the conditions of Proposition 6.35 are satisfied.
We can compute det(tr(w;w;)), for the basis {wn = 1,ws = 0, w3 = j,ws = 65}

of O:

1 6 5 6
9 0> 6j 0%
(wiwj)1<i j<a = [ TR
0j —j 0i —i

det(tr(w;wj)) = det

O O =N
OO W
[\
-~

Therefore d(O) = 5Z[i].

If O were strictly contained in another order ', d(O') would be strictly larger
than 5Z[i]. But we know from Proposition 6.35 that d(O") would be the product
of all ramified primes of #; in particular it should be contained in (2 + ¢) and
(2 —4). But then it would be contained in 5Z[i], a contradiction. Therefore O
is a maximal order, and G is a normal ideal. O

As a consequence of the fact that O is maximal, from Proposition 6.35 we also
learn that 2 4+ ¢ and 2 — ¢ are the only ramified primes in H.

Then Theorem 6.36 implies that the prime two-sided ideals of O are either of
the form pO, where p prime in Z[i], or belong to {aO,a’O}.

It follows that the only two-sided ideals of G whose norm is a power of 1+ are
the trivial ideals of the form (1 +4)*G.

The quotient ring G/(1 +i)G

Consider the prime ideal (1 4+ 7)O. Tt is easy to check that G and (1 +i)O are
coprime ideals, that is G + (1 4+ i)O = O and as a consequence, G N (1 +1i)O =
G(1+4)O = (14 1)G. Recall the following basic result:
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Theorem 6.38 (Third Isomorphism Theorem for rings). Let I and J be
tdeals in a ring R. Then

I _I+J
InJg J
Putting I =G and J = (1 +4)O, we get
6 o~ O (6.24)

1+4)G (1440

Ifrg : G — G/(14+i)G and 7o : O — O/(1+i)O are the canonical epimorphisms,
the ring isomorphism in (6.24) is simply given by ¢g(g) — do(9g).

Theorem 6.26 implies that O/(1+4)O is a simple algebra over Z[i]/(14 1) = Fy.
We denote the image of 2 € O through the canonical epimorphism O — O/(1+
i)O with [z].

Lemma 6.39. O/(1+i)O is isomorphic to the ring My(Fy) of 2 X 2 matrices
over [Fy .

Proof. Recall the following well-known lemma [14]:

Lemma 6.40. Let R be a ring with identity, I a proper ideal of R, M a free
R-module with basis X and w: M — M/IM the canonical epimorphism. Then
M/IM is a free R/I-module with basis 7(X) and |7(X)| = |X].

We know that O/(144)0O is a Z[i]-module; the lemma implies that it is also a free
Z[i]/(14i)-module, that is a vector space over F5, whose basis is {[1], [0], [1], [#4]}-
We define an homomorphism of Fy-vector spaces ¢ : O/(1 +i)O — M>(F2) by
specifying the images of the basis:

=1, o= (] 1), w@=(7 o). @D =w@Ee

It is one-to-one since ¢([1]), o([A]), ¢([4]), ¢([#7]) are linearly independent.
In order to prove that ¢ is also a ring homomorphism, it is sufficient to verify

that o(w;w;) = p(w;)e(w;) for all pairs of basis vectors w;, w;; the only non-
trivial cases are

@ =(7 1) = (1 o) = e+ = e,
P17 = 1= ([1]) = (0,

o) =+ 0y = o+ = (7 o)+ (1 §)=(5 1) =

= (3 o) (3 1) =wes 0

Remark 6.41. Clearly M»(F,) has no proper two-sided ideals; its only left
ideals are

%:{@ @:cme&}
n:{@ @:cme&},
L”::{<Z 8): mbeﬂ@},
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all of index 4.

Recall that G is isometric to v/5Z[i]*, and a canonical basis is given by
e =a, e = al, e3 = ayj, es =faj (6.25)

The corresponding elements of M (Fy) are

0 1 11 10 11
e1:<1 1)’ e2:<1 0)’ e3:<1 1>’ e4:<0 1> (6.26)

Remark that the Hamming weight of a word in G/(1 + i)G with respect to the
basis (6.26) is equal to the minimum Euclidean norm over all the lattice points
in the corresponding coset.
Tt is easy to check that the only invertible elements (the matrices with full rank)
are

ey, €, €3, €4, € + ey = ]]-7 e3 +ey = QO(.])

It is easy to see that their lifts to G of non-invertible elements have a higher
determinant:

Remark 6.42. If X € M,(F;) \ {0} is non-invertible,

min  |det(Y)]* > 2
YEG, [Y]=X
Proof. mg(Y") is non-invertible in G/(1 + ¢)G if and only if its determinant is
non-invertible in Z[i]/(1 + i), that is, det(Y) = YY € (1+14)\ {0} if X # 0,
since H is a division ring.
Then ‘det(f’Y)‘ — |det(V)]* > 2. O

The quotient ring G/2G

Again, G and 20 are coprime and so % = %

Lemma 6.43. O/20 is isomorphic to the ring Mx(F2[i]) of 2 x 2 matrices over
the ring Fy[i].

Proof. First of all, Lemma 6.40 implies that O/20 is a free Z[i]/2-module, that
is a free Fy [{]-module, of dimension 4. As in the previous case, we can construct
an explicit homomorphism of F; [i]-modules ¢ : O/20 — My (Fy[i]):
1+¢ 1 . 0 1 . .

1) e =({ g) e = o)

i ) )

o([1]) =1, mm:(

Again, it is easy to check that the images of the basis elements are linearly inde-
pendent and therefore ¢ is one-to-one. It is also surjective since the cardinalities
of the domain and codomain are the same.

Moreover, ¢ is a ring homomorphism:

S(LD? = i1 = 9(17%)), |
o) =o@+=(; 1) = ("7 Di

i

mmmwn=@+i§)=wm+mm u
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Remark 6.44. In order to find an explicit isomorphism between G/2G and
M>(Fy), consider the following diagram, where ¢ : O/20 — My (F,[i]) is the
mapping defined in Lemma 6.43:

V56 —— G/26 —2— 020 —2— My (Fs[i])

The basis {a, af,aj,adj} of V/5G as a Z[i]-module is also a basis of G/2G as
an [y [i]-module. The isomorphism ¢ is simply the composition of the inclusion
V5G — O and the quotient mod (1414)O. We can compute the images through
the isomorphism ¢ of the basis vectors: recalling that

a=14+i—i, ol =0—i, aj=(14+i—i0)j, obj=(0—-1i)j,

we get

. . 0 1 0 1 1 0
stai) =otro = (1 1) (¢ 5)=(i 1)
. . 11 0 1 i 1
otati) =otatro) = (1 o) (1 5) = (o 1)
Recall that there is a one-to-one correspondence between the ideals of G that

contain 2G and the ideals of G/2G. Therefore M5(FF5[i]) has only one proper
two-sided ideal, (1 + i) M (F2[d]).

Also in this case, the lifts Y of non-invertible elements in G will have non-
invertible determinant, that is |det V|* > 2.

In general, we know that O/(1+i)*O is a free Z[i]/(1+1)*- module of dimension
4 (see Lemma 6.40). The following proposition holds:

Proposition 6.45.

1. When k = 2n is even, % & Zoni].

2. When k = 2n + 1 is odd, (1%_[?),@ = (ygiﬁﬂ’ry) 2 Zion+1 @ Ziony, with

y? =2y — 2.
Proof.
1. When k = 2n, from the Third Isomorphism Theorem we get:

i) _ _ Zfx]  _ Z[z]/2" :Zzn[:v]zznm
(I+i)F ~ (@®+1,27) (a2 +1,27)/2n  2+1 7

2. When k =2n+1,

Z]i] Zlx]
2n(1+i) (241,271 +x))
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Putting y = 1 + z, this is isomorphic to

Zly] _ Zly]

(¥ =2y +2,2%y)  (y® — 2y + 2,27y, 2n+1)

since 2"t = 27(y? — 2y + 2) — 2"y(y — 2) € (y® — 2y + 2,2"y). We
have a surjective ring homomorphism from Z[y]/(y? — 2y + 2,27y, 2"+!)
t0 Zon+1® Zony: given a polynomial p(y) we can take the remainder (mod
(y? — 2y + 2))- a polynomial of degree 1 - and reduce the coefficients of 1
and y by 2"*! and 2" respectively.

This map is also surjective, since the two rings have the same cardinality:

(i) -

It can be proved by induction on k:

Remark 6.46.

ZhE) . [/ (i)
(L+4)%  (L+i)k/(1+i)ktt
= # (Z]/ (L +0)*) = # (Z6)/(1+ D) # (1 +)* /(1 + )4 =

= # (Z[/(1+0)") # (Z[)/ (1 +1))

since Z[i]/(1+14) = (1 +i)*/(1 4+ i)*¥*+ (where the ring isomorphism is
given by y +— y(1 +)F). O

We can find an explicit matrix representation of O/(14i)*O over Z[i]/(1+i)*Z]i]
also for k =3 and k = 4:

Lemma 6.47. 2 2 M (Z4[i)).

Proof. As in the previous cases, it is enough to find matrix representations of 8
and j such that 1,6, j,6; are linearly independent over Z4[i]:

o (i1 1 (01
“\ =i 2-i)0 17\ o

In fact

Since M>(Z4[i]) and % have the same cardinality because of Lemma 6.40, this
representation is a ring isomorphism. O

The same matrix representations of # and j can be used for £ = 3, recalling
that i =y — 1:

Proposition 6.48. m & My (Z4 & Zaly)), where y> = 2y — 2.
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Proof. The proof is similar to the previous one. We define

C(y-2 1 (0 1
9_<1+y —1+y>’ J_<y—1 0

Computing products mod (4, 2y), we get

6 = (‘”y ;) —0+1,

1+y
c_("l4+y y+2\ _ .5
0]_< -1 1-|-y>_](9 =

6.7 The repetition code

In this paragraph we want to illustrate with a simple example how the proper-
ties of the minimum determinant described in §6.4.1 influence the actual code
performance. We consider a block code of length 2, the lift of the repetition
code over the cosets of (1+1i)G: if #: G — G/(1+ )G is the projection on the
quotient ring, we define

C = {X = (Xl,X2) € 92 | 7T(X1) = 7T(X2)}

The fact that the codewords of Hamming weight 1 belong to the 0 coset ensures
that the A, for C is equal to the minimum square determinant in (1 + %),
which is 4: in fact, if 7(X;) = 7(X3) # 0, det(XX) = det(X;)? + det(X2)? +

~ 2
HX2X1HF > (|det(X1)| + |det(X5)[)*> > 4 because of Lemma 6.15 and Remark
6.1

A simple variation of the repetition scheme consists in choosing any bijection h
of G/(1+1i)G and defining

Cy = {X = (X1,X2) € g2 | 7T(X2) = h(ﬂ'(Xl))}

In the case of the repetition code, suppose that 7(X;) = 7(Xy) = C;. If C; is
an invertible element in M5 (Fy), then

@Cl = det(C’z)]l =1= e; + e

in the basis (6.26), and so the minimum determinant of a “lifted” codeword
X € 77 1(C;C;) is also 1, and the minimum of ||X||§J is 2.

If on the other side C; corresponds to a non-invertible, nonzero element in
M (Fy), then miny e & |det(X)| > 2 (see Remark 6.42). Thus in the first

case det(X XH) > 4, in the second det(X X ) > 8.
This remark suggests that it might be more convenient to consider a group
homomorphism h : Ms(IFs) — M, (IF5) which maps invertible elements into non-
invertible elements, raising the minimum determinant for C; # 0 to 9. Such
a function is not difficult to define: for example, recalling the definition of the
basis {e;, ez, e3,e4} in equation (6.26), we can take

h(e1) = ej+es+eq, h(ey) = eatestey, h(es) = e;+estes, hiey) = e +es+ey
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In the case of 4 — Q AM modulation, an exhaustive search on the 65536 points
in the finite lattice shows that Cj, is indeed better than C.2 The asymptotic
coding gain estimate is the same for both codes: using 4-QAM constellations,
the choice of a coset requires 4 information bits, while the choice of a point in
a given coset requires 4 more bits. Each codeword then carries 12 information
bits, yielding a spectral efficiency of 3 bpcu (bits per channel use).

Then we can compare these schemes with the uncoded Golden Code at 3 bpcu,
using 4-QAM constellations for the symbols a,c and BPSK (Binary Phase Shift
Keying) constellations, consisting of the two points {—3,1}, for the symbols
b,d in each Golden codeword. The average energy per symbol is Es = 0.5(0.5 +

0.25) = 0.375.
_V Amiml/E‘S,l _ 2/05 —15
Tas VAmin2/Es»  1/0.375 o

This computation gives a theoretical gain of at least 10log,,(1.5) dB = 1.7 dB.

Simulation results

Figure 6.2 shows the performance of the codes Cr4 and Cj, which gain 2.4 dB
and 2.9dB respectively over the uncoded scheme at 3 bpcu at the frame error
rate of 1073, supposing that the channel is constant for 2 time blocks.

6.8 Golden Reed-Solomon Codes

We now go back to the original problem stated in §6.4, that is, how to improve
the performance of the Golden Code in the slow fading setting, using block
codes over G. We would like to compensate the diversity loss due to the slow
changing of the channel with an increase of the Hamming distance of the code
over the alphabet G. We will combine the choice of a modulation scheme and
of a maximum-distance separable error-correcting code.

Remark 6.49. As we have seen in the previous sections, in addition to the
minimum Hamming distance, also the multiplicative structure and the mini-
mum number of non-invertible components have a significant influence on the
coding gain of a block code design. Thus, an optimal solution in order to keep
track of these parameters and take advantage of the ring structure would be to
consider error-correcting codes based on M, (F,[i]). However, such a project,
albeit interesting, would be difficult to implement, since at present very little
is known about codes over non-commutative rings, and no efficient decoding
algorithms are available.

2In fact we can compute the function
on@) = Y =qPetxx"
Xecy,
In the case of the repetition code, the first terms in the series are
Or4(q) = 1+ 66¢* +120¢° + 48¢° + 202¢'6 + ...
while for the function A just defined,
On(g) =1+ 24¢* +61¢% + 24¢° + 8¢'° + 74¢*2 + 58¢*% + 74¢™ +108¢'° + ...
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FER

—— Uncoded Golden Code at 3bpcu, channel constant for 2 blocks P

—8— Repetition code

—6— Variation on the repetition code
T T

6 8 10 12 14 16
SNR

Figure 6.2: Performance of the repetition code Cr4 and of the variation Cp, at 3 bpcu
compared with the uncoded Golden Code scheme with the same spectral efficiency.
The channel is supposed to be constant for 2 time blocks.

We also remark that in the case of codes over rings, a distinction must be made
between the rank (minimum number of generators as a module) and the free
rank (maximum rank of the free submodules of the code), so that in general the
number of codewords might be smaller than the power of the cardinality of the
ring to the rank of the code. In the case of non-commutative rings, the rank
might not even be well-defined.

We choose shortened Reed-Solomon codes instead because they are maximum
distance separable and their implementation is very simple; we will restrict our
attention to the additive structure, defining a group isomorphism between G/2G
and the finite field F256 .

6.8.1 The 4-QAM case

Using 4-QAM constellations (see Figure 4.2) to modulate each of the 4 symbols
a,b,c,d in a Golden codeword

X—i afa+b8) alc+df)
V5| ai(c+df) ala+b8) |’

give a total of 256 codewords, one in each coset of G/2G = Ms(FF5[i]). In this
case, simply by combining an (n, k, d) error correcting code with the quotient
G/2G, we can be sure to achieve minimum Hamming distance d. On the con-
trary, if we have more than one point per coset and consider the lifts of linear
codes on the quotient, we would get blocks of Hamming weight 1 that are lifts
of the codeword 0 in the error-correcting code.
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We consider an (n, k,d) Reed-Solomon code over Fas6. We recall that these
codes are maximum distance separable, that is k =n — 1 + d.

Each quadruple (a,b, ¢, d) of 4-QAM signals corresponds to 8 information bits;
each block of n Golden codewords will carry 8% information bits.

We describe in detail each step of the encoding and decoding procedure:

1. REED-SOLOMON ENCODING:

Each information byte can be seen as a binary polynomial of degree < 8, that
is, an element of the Galois Field Fa56. A random information message of k
bytes, seen as a vector U = (Uy,...,U;) € Fi is encoded into a codeword
V =(V,...,V,) € Fi4 using the RS(n, k,d) shortened code C.

In order to obtain the generator matrix for the shortened code C, we start with
the “long” code RS(255,255 —d + 1,d) [16]. As a generator polynomial we can
take

d—1
g(z) = H(a: —a)y=co+erz+ .. Fcgoxt 2L, ¢ € FoggVi

i=1

where « is a primitive element, that is a generator of the multiplicative group
Fis6. a is a root of an irreducible (primitive) polynomial p of degree 8.2 The
corresponding generator matrix is

[co 1 ¢ -+ 1 o - 0 0 OW

0 ¢ ¢ ¢ -+ 1 -+ 0 0 0

0 0 Co C1 Co 1 0 0 0
G =

L 0 PR ... ... CO Cl c2 PR 1_

Choosing only the rows whose first 255 — n components are equal to 0 and
deleting the null columns, we obtain the generator matrix G for the (n,k,d)
shortened Reed-Solomon code.*

2. FROM THE GALOIS FIELD Fy55 TO THE MATRIX RING Mo (Fo[i]):
We now have a vector in [F5s; we want to translate each component into an

element of M (Fy[i]).

3There are 16 primitive polynomials of degree 8. For this simulation T have arbitrarily
chosen p(z) = 2% + 2% + 2% + 2 + 1.
The coefficients of the generator polynomial g in the Galois Field Fa56 can be easily computed
using any symbolic manipulation software, such as Maple.

4In the case of a (4,2, 3) shortened Reed-Solomon code, the generator matrix is

o a4+ 1 0

G= 0 a3 o?+a 1

For our purposes, it is much better to obtain a systematic version of the code, that is one
that preserves the first k£ bits of the input. This equivalent version can be obtained simply by
performing the Gauss reduction algorithm over Fas6, yielding the matrix

1 0 l1+a+a2+a+at+a®+al+a” 1+a+a?

G = 0 1 a® +at+ab 1+a%2+ab+a

We remark that in order to speed up the computation of products over Fas6, a table storing
the conversions between the representation as a polynomial of degree less than 7 in a and the
representation as a power of a can be computed once and for all.
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We can represent the elements of M (F»[i]) as bytes, simply by vectorising each
matrix and separating real and imaginary parts: for example

<a+bi e+ fi

8
T T e @bede g € 0)

Since we are only working with the additive structure, we can identify Fa56 and
M (F5[i]), which are both Fy-vector spaces of dimension 8. According to our
simulation results, it seems that the choice of the linear identification has very
little influence on the code performance.

3. FROM THE MATRIX RING M (F:[i]) TO THE QUOTIENT RING G/2G:

For this step we make use of the isomorphism of F; [i]-modules p 0 ¢ : G/2G —
M5 (Fy[i]) described in Remark 6.44. In vectorized form, with respect to the
bases {«, af, aj,afj} and

60 G o o) GO}

this is given by the matrix

S S = O
O = S =
— O = =
S = O .

In practice, it is sufficient to send each matrix M € My (Fy[i]) to
ATH (M) = (R(a), 3(a), R(b), I(D), R(c), (), R(d), 3(d)),

with a,b,¢,d € Zs[i] = Z[i]/2Z[i]. Taking the corresponding coset leaders in
Z[i], we obtain the Golden codeword

1 [fala+b0) afc+df)
V5 \da(c+df) ala+bo)

4. GOLDEN CODE ENCODING:

For each of the n vector components, the symbols a,b,c,d € Zs[i]* are modulated
into four 4-QAM signals, and then encoded into a Golden codeword using the

(vectorized, real) generator matrix R of Remark 6.13. Thus we have obtained a
Golden block X = (X1, Xo,...,X,,) =&(V), where £ : Fi., — G™ is injective.

5. CHANNEL SIMULATION:

We suppose the channel matrix H to be constant during the transmission of
the n Golden codewords. This assumption can be considered realistic for a slow
fading channel if n < 100 (see §4.2.1). The received signal is

Y =HX+W,
where W is the Gaussian noise.

6. SOFT DECODING:
In a first phase, for each component ¢ = 1,...,n of the received vector Y and
for each modulated point Z(9), the Euclidean distance

. 2
i, j) = [HZD - v;
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t=0 t=1 t=2 t=3 t=4

Figure 6.3: A simplified diagram showing the trellis associated to the (4,2, 3)-Reed-
Solomon code.

is computed and stored in memory.
In a second phase, ML decoding or soft decoding is performed (see equation
(4.4)): we search for the minimum of the Euclidean distance

SN IHZ -V
=1

over all the images Z = £(V') of Reed-Solomon codewords. The Viterbi algo-
rithm over the trellis diagram for the RS code may be used for this search (for a
reference see for example [2]): if the generator matrix of the RS code is system-
atic, the partial distance Zle |HZ; — Y;||” can be obtained directly without
computing the whole Reed-Solomon codeword, and the points for which this
distance is too big can be discarded.

In the case of a RS(4,2,3) code, the dimensions k; of the state spaces Z; at time
t in the trellis as Fos6-vector spaces are respectively k1 = 1, ks = 2, k3 = 1,
ks = 0. By exchanging the fourth and second coordinate in the trellis, the
decoding process is reduced to finding

X = argmin min Z ||Yi—1'1U(i||2 +||Y2 +H72||2
Yg X:(Xl,X27X3,X4) i#2

over all the blocks X = ¢(V) arising from Reed-Solomon codewords (see figure
6.3).

Performance

In the 4-QAM case, the spectral efficiency of the Golden Reed-Solomon codes

is given by S bit i
its
e R N
2n channel uses n peu

From Proposition 6.20, we get a lower bound for A,: for a Golden Reed-
2
Solomon code of minimum Hamming distance d in G, Ay, > %. Thus we
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obtain an estimate of the asymptotic coding gain for these codes (see §4.2.1),
by comparing them with the uncoded Golden Code with the same spectral
efficiency. In the case of 2 bpcu, we can consider a BPSK constellation on the
real axis.

e 2 bpcu
If k = %, the spectral efficiency is 2bpcu. Comparing the 4-QAM, (n, k, d)
Golden-RS design (Es = 0.5) with the uncoded Golden Code using BPSK
(Es = 0.25), we get an asymptotic coding gain of:

Amin Es .
~ VAnini/Esn df05 d (6.27)

Tas = \ Amin,2/-Es,2 B 1/025 B 2

e 3 bpcu
If k = 3n, the spectral efficiency is 3 bpcu. Comparing the 4-QAM,
(n,k,d) Golden-RS design (Es = 0.5) with the uncoded Golden Code
using BPSK for the symbols a and ¢ and 4-QAM for the symbols b and d
(Es =0.5(0.54 0.25) = 0.375), we get an asymptotic coding gain of:

Amin E .
e = V 1/Es _ d/0.5 _ 3d (6.28)
\V Amin72/E‘$,2 1/0375 4

Simulation results

Figure 6.4 shows the performance comparison of the Golden-RS code (4,2,3)
with the uncoded scheme at the spectral efficiency of 2 bpcu.

Assuming the channel to be constant for 4 blocks, the Golden-RS code outper-
forms the uncoded scheme by 6.1 dB.

This gain is unexpectedly high compared with the theoretical coding gain (6.27)
for d = 3, which is 10log;, (4) dB = 1.7dB. The rough estimate (6.27) is based
on the worst possible occurrence, that of a codeword of Hamming weight 3 in
which all three non-zero components correspond to invertible elements in the
quotient.

However, we can verify empirically that in the 4-QAM case and with our choice
of the code, this event does not take place and in fact the actual value for Anin
found by computer search is y/34, giving a rough estimate for the gain of 4.6 dB,
which is much closer to the observed value.

This favorable behavior might be due to the fact that the chosen constella-
tion contains only one point in each coset, so that the codewords of Hamming
distance 3 are few.

The soft decoding method has the drawback of being slow, which makes it
unsuitable to use with longer Reed-Solomon codes. A faster (if suboptimal) soft
decoding algorithm, such as stack decoding, could make up for this loss of speed
while still retaining most of the coding gain.

Hard decoding case

In an early version of the algorithm described in §6.8.1 we replaced Step 6 with
the following steps:
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—— Golden-RS(4,2,3) With soft decoding
—=— Golden-RS (4,2,3) with hard decoding
—6— Uncoded Golden Code constant for 4 blocks at 2bpcu

6 9 12 15
SNR

Figure 6.4: Comparison between hard and soft decoding for the RS(4,2,3) code at 2
bpcu. The first method achieves a gain of only 1.1 dB over the uncoded case, compared
to the 6.1 dB of the second.

6. n SEPARATE SPHERE DECODERS:

We apply an 8-bit Sphere Decoder separately on each of the n received words
(Yy,...,Y,), obtaining the estimate (Xl, . ,Xn). The signal is then demodu-
lated, and we apply to each byte the inverse mappings of Steps 3 and 2 succes-
sively, obtaining a vector (Vl, ce Vn) in Fiy4.

7. REED-SOLOMON DECODING:

The received sequence (171, cee Vn) doesn’t necessarily belong to the RS code,
so we still need to perform RS decoding, yielding the estimate (Ul, R Uk)
Finally, we compute the error probability, comparing (Ul, ce Uk) with the ini-
tial message (Uy,...,U,) of Step 1, and record one word error whenever they
are different.

This “hard” decoding has the advantage of speed and allows to use longer Reed-
Solomon codes with high minimum distance. However it is highly suboptimal,
since it substitutes the decision on the Euclidean distance with poor partial
decisions on each coordinate. Performance simulations show that with this
method the coding gain is almost entirely cancelled out (see figure 6.4).

Simulation results:

e 2 bpcu: Figure 6.5 shows the performance comparison of the Golden-
RS codes with hard decoding with the uncoded scheme at the spectral
efficiency of 2 bpcu.

Assuming the channel to be constant for 4, 8 and 12 blocks respectively, the
(4,2,3), (8,4,5) and (12,6,7) Golden-RS codes outperform the uncoded
scheme at the same spectral efficiency by 1.1 dB, 1.7 dB and 2.8 dB at
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FER

—— Golden-RS(4,2,3)

—— Uncoded GC, constant for 4 blocks

—8— Golden—-RS(8,4,5)

—— Uncoded GC, constant for 8 blocks

—— Golden-RS(12,6,7)

—6— Uncoded GC constant for 12 blocks
T I

LI

6 9 12 15 18
SNR

Figure 6.5: Performance of (4,2,3), (8,4,5), and (12,6,7) Golden Reed-Solomon
codes with “hard decoding” at 2 bpcu compared with the uncoded Golden Code scheme
with the same spectral efficiency.

10
¥
i
107"
107
o
w
w
10°
—— Golden-RS(8,6,3) i
—9— Uncoded GC constant for 8 blocks
—&— Golden—-RS(16,12,5)
_,|| = Uncoded GC constant for 12 blocks
10 o~ Golden-RS(24,18,7)
—— Uncoded GC constant for 24 blocks 2
I I I

6 9 12 15 18
SNR

Figure 6.6: Performance of (8,6,3), (16,12,5), and (24, 18,7) Golden Reed-Solomon
codes with “hard decoding” at 3 bpcu compared with the uncoded Golden Code scheme
with the same spectral efficiency.
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the FER of 1073.

The Golden-RS schemes seem to be more robust on slow fading channels;
in fact the performances of the Golden-RS(n,k,d) codes on a channel
which is constant for n blocks remain almost unchanged (the variation
is less than 0.2dB) when n varies between 4 and 12, while the uncoded
Golden Code has a loss of almost 1.5 dB.

e 3 bpcu: Assuming the channel to be constant for 8, 16 and 24 blocks
respectively, the (8,6,3), (16,12,5) and (24, 18,7) Golden-RS codes gain
1.5 dB, 2.2 dB and 2.8 dB over the uncoded scheme at the FER of 1073
(see Figure 6.6).

Similarly to the previous case, the Golden-RS(n, k, d) codes lose less than
0.3dB when n varies between 8 and 24, while the Golden Code has a loss
of 1.1dB.

6.8.2 The 16-QAM case

If we use a 16-QAM constellation for each symbol a,b,c,d in a Golden code-
word, we have 16* = 2! = 65536 available Golden codewords. Recalling that
#(G/2G) = 256, we have 256 words for each of the 256 cosets of 2G in G.

In this case, the coding gain depends on the minimum Hamming distance inside
each coset in addition to the minimum Hamming distance in the quotient.

As in the 4-QAM case, we consider block codes which are lifts of Reed-Solomon
codes on the quotient G/2G. Intuitively, the minimum distance of the Reed-
Solomon code “protects” the cosets from being decoded wrongly; if this choice
is correct, the estimate for the right point in the coset is “protected” by the
minimum determinant in 2G.

We consider the lift of an (n, k, d) Reed-Solomon code C on the quotient. The to-
tal information bits transmitted are 8% +8n; they will be encoded into 8n+8n =
16n bits.

- The code C outputs 8n bits, which are used to encode the first two bits
of 4n 16-QAM constellations, that is the bits which identify one of the
four cosets of 2Z[i] in Z[i]; each byte corresponds to a different coset
configuration of (a,b, ¢, d) (see Figure 6.8).

- the other 8n bits, left uncoded, are used to choose the last two bits of each
16-QAM signal.

In total, we have 4n 16-QAM symbols, that is n Golden codewords X =
(X1,...,Xn). The resulting spectral efficiency is
8(k + n) bits 4(k +n)

= bpcu
2n channel uses n P

C acts as a code over G/2G = M,y (Fy[i]): if {Wo, Wy,...,Wass} are the coset
leaders of 2G in G, then Vj =i,...,n,

X; ZWji + Z;,  Z; € 2G, (le,...,W]'n) eC (629)

Clearly, if (Wj,,...,W;,) =0, then (Xi,...,X,) = (Z1,...,2Z,) € (2G)" and
for X # 0, det(XXH) > 16.
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k bytes

|

RS(n, k,d)

|

n bytes
[ [ [ |

I

2n bytes
OEOECOECE

— —

4n 16-QAM symbols =
n Golden codewords

7

n bytes
“uncoded”

Figure 6.7: The output of the Reed-Solomon code and the uncoded bits are “mingled”

before modulation.

If on the contrary (Wj,,...,W;,) # 0, then there are at least d components of X
which do not belong to 2G, and consequently are nonzero, so that det(XXH) >

d?. In conclusion, we have

Apin > min(16, d?)

(6.30)

With an error-correcting code of rate k = %, we obtain a spectral efficiency of

6 bpcu.

4/2.5

- If d > 4, we have 7,5 = s = 2.4, leading to an approximate gain of
3.8dB. Thus it does not seem worthwhile to use long codes with a high
minimum distance with this scheme.

-Ifd=3, vas = %—fg = 1.8, making for a gain of 2.5 dB.

1100 1000 | 1101 1001
o e o [ ]
0100 0000 | 0101 0001
[ ] O ] O
o ] o [
1110 1010 | 1111 1011
[ ] O [ ] O
0110 0010 | 0111 0011

Figure 6.8: The labelling of the 16-QAM constellation used for performance simula-
tions. The first and second bit identify one of the four cosets of 2Z[i] in Z[i] (drawn
in different shades of gray); the third and fourth bit identify one of the four points in

the coset. We remark that this type of labelling cannot be a Gray mapping.
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—8— Uncoded Golden Code at 6bpcu, channel constant for 4 blocks
—6— Golden—-RS(4,2,3) with 16-QAM
T T T T T

6 8 10 12 14 16 18
SNR

Figure 6.9: Performance of the (4,2, 3) Golden Reed-Solomon code with soft decoding
at 6 bpcu compared with the uncoded Golden Code scheme with the same spectral
efficiency.

Decoding

The soft decoding procedure for the 16-QAM case requires only a slight mo-
dification with respect to Step 6 illustrated in §6.8.1. In the first phase, for
each component ¢ = 1,...,n and for each coset leader W;, j = 0,...,255, we
determine the closest point in that coset to the received component Y;, that is

Z;; = argmin||Y; — H(Z + W;)|”
Z€e2G

Computing HZ and HWj separately allows to perform only 512 products in-
stead of 2562. The second phase can be performed as in the 4-QAM case, and
the search is limited to the “closest points” Z; ; +W; determined in the previous
phase:

N “ . 2
X = argmin Z HH(ZMI. +W;,) =Y
(Z131 A Wiy s Zon i + Wi ) i=1
over all the images (W;,,...,W;, ) of Reed-Solomon codewords.

Simulation results

In the 16-QAM case, the (4,2,3) Golden Reed-Solomon code achieves a gain
of 3.8dB over the uncoded scheme at 6 bpcu at the frame error rate of 1072,
supposing that the channel is constant for 4 time blocks (see figure 6.9).



Bibliography for Part I

[1] J.F. Alves, K. Oliveira, A. Tahzibi, “On the continuity of the SRB entropy
for endomorphisms”, J. Stat. Phys. vol. 123 n. 4 (2006)

[2] J.F. Alves, M. Viana, “Statistical stability for robust classes of maps with
non-uniform expansion”, Ergodic Theory Dynam. Systems 22 (2002) 1-32

[3] J. Bourdon, B. Daireaux, B. Vallée, “Dynamical analysis of a-Euclidean
algorithms”, J. Algorithms 44 (2002), 246-285

[4] W. Bosma, “Optimal continued fractions”, Indag. Math, A90, 1987, 353—
379

[5] A. Broise, “Transformations dilatantes de I'intervalle et théorémes limites”,
Astérisque 238 (1996) 5-1009.

[6] A. Cassa, “Dinamiche caotiche e misure invarianti”, Tesi di Laurea, Facolta
di Scienze Matematiche, Fisiche e Naturali, University of Florence, Italy,
1995

[7] 1. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic Theory, Springer-Verlag
1982

[8] M. Denker, G. Keller, M. Urbanski, “On the uniqueness of equilibrium
states for piecewise monotone mappings”, Studia Math. 97 (1990), 27-36

[9] E. Giusti, Minimal surfaces and functions of bounded variations, Birk&user
Verlag, Basel-Boston, 1984

[10] S. Katok, “Coding of closed geodesics after Gauss and Morse”, Geom.
Dedicata 63 (1996), no. 2, 123-145

[11] C. Kraaikamp, “A new class of continued fraction expansions”, Acta Arith.
57 (1991), no. 1, 1-39

[12] C. Kraaikamp, “Maximal S-expansions are Bernoulli shifts”, Bull. Soc.
Math. France, 121 no. 1 (1993), 117-131

[13] L. Luzzi, S. Marmi, “On the entropy of Japanese continued fractions”,
preprint, 2006 (to appear in Discr. Cont. Dyn. Syst.)

[14] L. Lhote, “Modélisation et approximation des sources”, Rapport de stage
de DEA de I’Université de Caen, 2002



134

Bibliography for Part I

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

P. Moussa, A. Cassa, S. Marmi, “Continued fractions and Brjuno func-
tions”, J. Comput. Appl. Math. 105 (1999), 403—415

H. Nakada, “Metrical theory for a class of continued fraction transforma-
tions and their natural extensions”, Tokyo J. Math. 4, 1981

R. Natsui, “On the isomorphism problem of a-Farey maps”, Nonlinearity
17 (2004), 2249-2266

H. Nakada, S. Ito, S. Tanaka, “On the invariant measure for the transfor-
mations associated with some real continued-fractions”, Keio Eng. Rep. 30
(1977), 159-175

V. Rohlin, “Exact endomorphisms of a Lebesgue space”, Amer. Math. Soc.
Transl. 39(2) (1964), 1-36

F. Schweiger, Ergodic theory of fibred systems and metric number theory,
Oxford Sci. Publ. Clarendon Press, Oxford, 1995

C. Series, “Symbolic dynamics for geodesic flows”, Acta Math. 146 (1981),
103-128

M. Thaler, “Transformations on [0,1] with infinite invariant measures”,
Israel J. of Math. 46, 1983

B. Vallée, “Dynamical analysis of a class of Euclidean algorithms”, Theoret.
Comput. Seci. 297 (2003), 447-486

M. Viana, Stochastic dynamics of deterministic systems, Instituto de
Matematica Pura e Applicada (IMPA), Rio de Janeiro, 1997

R. Zweimiller, “Ergodic structure and invariant densities of non-Markovian
interval maps with indifferent fixed points”, Nonlinearity 11 (1998), 1263
1276

R. Zweimiiller, “Invariant measures for generalized induced transforma-
tions”, Proc. AMS, 133 n.8, 2283-2295



Bibliography for Part 11

[1] S. Alamouti, “A Simple Transmit Diversity Technique for Wireless Com-
munications”, IEEE Journal on select areas in communications, vol 16, n.
8, 1998

[2] S. Benedetto, E. Biglieri, Principles of Digital Transmission with Wireless
Applications, Kluwer 1999

[3] E. Biglieri, Coding for wireless channels, Springer, 2005

[4] J-C. Belfiore, Y. Hong, E. Viterbo, “Golden Space-Time trellis coded mod-
ulation” | IEEE Trans. Inform. Theory, vol 53 n. 5, 2007

[5] J-C. Belfiore, G. Rekaya, E. Viterbo, “The Golden Code: a 2 x 2 full-rate
Space-Time Code with non-vanishing determinants”, IEEE Trans. Inform.
Theory, vol 51 n.4, 2005

[6] J. Boutros, E. Viterbo, C. Rastello, J.-C. Belfiore, “Good lattice constel-
lations for both Rayleigh fading and Gaussian channels.”, IEEE Trans.
Inform. Theory vol 42 n.2, 1996

[7] D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo, “Partitioning the
Golden Code: A framework to the design of Space-Time coded modula-
tion”, Canadian Workshop on Information Theory, 2005

[8] J. H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups, Springer-
Verlag 1999

[9] M. Damen, N. Beaulieu, “On two high-rate algebraic space-time codes”,
IEEFE Trans. Inform. Theory, vol. 49, pp. 1059 — 1063, 2003

[10] M. Damen, A. Tewfik, J-C. Belfiore, “A construction of a space-time code
based on number theory”, IEEE Trans. Inform. Theory, vol. 48 n. 3, 2002

[11] M. Damen, H. El Gamal, “Universal Space-Time Coding”, IEEE Trans.
Inform. Theory, vol 49 n. 5, 2003

[12] P. Elia, P. V. Kumar, S. A. Pawar, R. R. Kumar, B. S. Rajan, H. F.
Lu, “Diversity-multiplexing tradeoff analysis of a few algebraic space-time
constructions”, Proc. Allerton Conf. Comm. Control and Computing, 2004

[13] G. J. Foschini, “Layered space-time architecture for wireless communication
in a fading environment when using multi-element antennas”, Bell Labs
Technical Journal, vol 1, no. 2, pp. 41-59, 1996



136 Bibliography for Part IT

[14] T. W. Hungerford, Algebra, Springer-Verlag 1974
[15] D. A. Marcus, Number Fields, Springer-Verlag

[16] F. J. MacWilliams, N. J. Sloane, The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, 1978

[17] F. Oggier, G. Rekaya, J.-C. Belfiore, E. Viterbo, “Perfect Space-Time
Blocks Codes”, IEEE Trans. Inform. Theory, vol. 52 n.9, 2006

[18] F. Oggier, E. Viterbo, Algebraic number theory and code design for Rayleigh
fading channels, Now Publishers, 2004

[19] I. Reiner, Mazimal Orders, Clarendon Press, Oxford 2003

[20] G. Rekaya, “Nouvelles constructions algébriques de codes spatio-temporels
atteignant le compromis “multiplexage-diversité””, These de I’Ecole Na-
tionale Supérieure des Télécommunications, Paris, 2004

[21] A. Shokrollahi, “A note on double antenna diagonal space-time codes”,
http://mars.bell-labs.com/cm/ms/what/mars/papers/2ant/

[22] B.A. Sethuraman, B. S. Rajan, V. Shashidhar, “Full-Diversity, high-rate
Space-Time Block Codes from division algebras”, IEEE Trans. Inform.
Theory, vol. 49 n.10, 2003

[23] I. N. Stuart, D. O. Tall, Algebraic Number Theory, Chapman and Hall,
1979

[24] V. Tarokh, N. Seshadri, A. Calderbank, “Space-Time codes for high data
rate wireless communications: performance criterion and code construc-
tion”, IEEE Trans. Inform. Theory, vol 44 n. 2, 1998

[25] M-F. Vignéras, Arithmétique des Algébres de Quaternions, Lecture Notes
in Mathematics, Springer Verlag 1980

[26] L. Zheng, D. Tse, “Diversity and multiplexing: a fundamental tradeoff in
multiple antenna channels”, IEEE Trans. Inform. Theory, vol 49 (2003),
pp 1073-96



Index for Part I

137

Index for Part 1

a-continued fractions, 11 Rohlin’s formula, 23

a-convergents, 13
statistical stability, 25

Adler’s condition, 22, 39 structural stability, 25
admissible sequence, 47 symbolic dynamics, 12
AFU map, 22

Birkhoff averages, 45
bounded distortion, 18, 21
by-excess map, 3

continued fraction map
by-excess, 57
cylinder, 17
full, 18
of rank 1, 17

desingularization sequence, 14
dual system, 48

entropy
in Krengel’s sense, 10
Kolmogorov-Sinai, 22
of a partition, 22
with respect to a partition, 22
exact system, 20
expanding
uniformly, 17, 22

fibred system, 47
finite range, 22

Gauss map, 3
Helly’s theorem, 32
kernel, 49

Markov map, 19

natural extension, 47
nearest integer approximation, 3

Perron-Frobenius operator, 18
phase transition, 4, 9

quasi-markov, 20

representation function, 47
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Alamouti code, 97
amplitude modulation, 77

best approximation, 88

capacity, 85
channel
ergodic, 86
slow fading, 101
channel encoder, 77
coding gain, 73, 85
asymptotic, 85, 127
coherence time, 84
constellation, 78
size, T8
cutoff rate, 85

demodulator, 80
different, 115
discriminant

of a lattice, 90

of an order, 115
diversity, 73, 83
diversity advantage, 85
diversity gain, 73, 85

equivalent lattices, 100

fading, 73, 78

quasi-static, 84

slow, 84

frequency selective, 78
frequency modulation, 77

Golden Code, 5, 99
Gosset lattice, 74
Gray mapping, 78

Hamilton quaternions, 97

ideal, 96
integral, 96
normal, 96
principal, 96
two-sided, 96
interleaver, 79

left order, 96

local index, 115

maximal subfield, 95

maximum likelihood decoding, 80

MIMO channel, 73
modulation
quadrature amplitude, 78

number field
signature, 89
canonical embedding, 89
totally real, 89

order, 96

maximal, 96
outage, 86
outage probability, 86

pairwise error probability, 82
perfect CSI, 79

pilot symbols, 80

place, 114

product distance, 83

quaternion algebra, 95

ramified place, 115

rate, 4

Rayleigh density, 79
reliable communication, 85
right order, 96

set, partitioning, 75
signal-to-noise ratio, 79
soft decoding, 74
source encoder, 77
space-time block codes, 84
space-time code

coherent, 84

threaded algebraic, 89
spatial multiplexing gain, 85
spectral efficiency, 78
sphere decoder, 74, 81
splitting field, 96

thread, 91
trellis-coded modulation, 74

union bound, 82
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