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Introduction

The study of special holonomy originated with Berger’s classification of the
possible holonomy groups of non-locally symmetric Riemannian manifolds.
We are interested in the special holonomy groups, i.e. all of the groups in
Berger’s list except U(n) and SO(n). More generally, we relax the holonomy
condition and consider, for G a special holonomy group, G-structures that
are not necessarily integrable. The resulting theory is often referred to as
“special geometry”. Integrability is replaced by the vanishing of part of the
intrinsic torsion; the part that is required to vanish determines the type of
special geometry. Manifolds with weak holonomy and hypersurfaces inside
manifolds with special holonomy fall into the category of special geometries.

All special holonomy groups except Sp(n)Sp(1) arise as the stabilizer of
a point in a spin representation; accordingly, one can view a G-structure as
a pair (P,1), where P is a spin structure and v is a spinor, and a type of
special geometry is characterized by conditions on V. Alternatively, one
can view G as the stabilizer in GL(n,R) of an exterior form on R", and
identify a G-structure with a differential form ¢; a type of special geometry
is then characterized by conditions on Vi, which is typically determined
by dy. To be precise, more than one form is needed for some G, but the
same principle holds. Notice that reduced holonomy is characterized by the
vanishing of Vi or V.

We are primarily interested in dimensions less than eight. What sets
them apart from the general case is the fact that the spin representation is
transitive on the sphere; in the language of forms, this correponds to the fact
that the defining forms are stable in the sense of Hitchin. This means that
a small deformation of the defining form, or spinor, still defines a structure
of the same type, although the intrinsic torsion conditions may not be pre-
served. When the structure is not defined by a single form, but two or more,
arbitrary deformations no longer preserve the structure type, leading to tech-
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nical difficulties in the study of one-parameter families of G-structures. The
fact that, as we will see, one can work around these difficulties seems to be
related to the fact that these deformations can be viewed as those of the pair

(P, ).

Having introduced the general language and background, we can give
more specific motivation for our work. The first piece of motivation is
Hitchin’s study of some special geometries defined by stable forms, which
we reinterpret using spinors, borrowing terminology from [6]. These are
structures defined by a generalized Killing spinor, i.e. a spinor satisfying

V= SAX) 9

where A is a symmetric endomorphism of the tangent bundle and - is Clifford
multiplication. The G-structure defined by a generalized Killing spinor is a
half-flat SU(3)-structure in six dimensions, and a cocalibrated Ga-structure
in seven dimensions. In general, if M has a parallel spinor v, then the
restriction of ¥ to a hypersurface in M is a generalized Killing spinor. We say
that a Riemannian spin manifold M with a generalized Killing spinor 1 has
the embedding property if the converse holds, i.e. if M can be isometrically
embedded as a hypersurface in a Riemannian spin manifold M in such a
way that 1 extends to a parallel spinor on M. In [25], Hitchin proved that
compact half-flat and cocalibrated manifolds have the embedding property,
and in these cases the geometry of M is locally determined by the geometry
of M. In [6], Béar, Gauduchon and Moroianu proved an analogous result in
arbitrary dimension, but with the hypothesis that VA is totally symmetric,
generalizing a result of Friedrich regarding surfaces [19].

Another source of motivation is the study of invariant geometric struc-
tures on nilmanifolds. Nilmanifolds of dimension up to 7 are completely
classified, and there is some interest in classifying those which admit certain
types of invariant structures. For example, symplectic or complex structures
on 6-dimensional nilmanifolds were listed by Salamon in [32]; on the other
hand, half-flat nilmanifolds escape full classification to this day, though clas-
sifications have been carried out by Chiossi-Swann [16] and Chiossi-Fino [14]
for half-flat structures satisfying additional conditions.

The last piece of motivation is the search for explicit metrics. The above
mentioned theory of Hitchin can be effectively used to construct explicit met-
rics with holonomy Gy or Spin(7), starting from a half-flat 6-manifold or a
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cocalibrated Go 7-manifold, respectively. However, the resulting manifold is
not compact, nor is the metric in general complete. Another technique to
construct explicit special metrics was introduced by Salamon in [31]. The
idea is to start with a G-structure, and look for invariant special geometries
on the total space of an associated vector bundle; this is achieved by writing
down a “dictionary” of invariant forms on the vector bundle. This dictio-
nary does not depend on the base manifold, but only on the fibre and tangent
space as representations of GG; however, the action of d does depend on the
geometry of the manifold. This technique, in contrast to the other one we
mentioned, can be quite effective when looking for complete metrics: indeed,
the first explicit examples of complete Go-holonomy metrics were obtained
in this way.

We now summarize the contents of this thesis. In Chapter 1 we explain
in detail the background that we sketched at the beginning of this intro-
duction; no new results appear in this chapter. We explain how in low
dimensions, a spinor ¢ on a Riemannian manifold M defines a G-structure
whose intrinsic torsion can be identified with Vi (Proposition 1.35). In
higher dimensions, the stabilizer of a spinor may vary from point to point: in
general, for this result to hold one must require the spinor to lie in the same
Spin(n)-orbit at each point (Proposition 1.9). We then illustrate the well-
known case of Killing spinors, which can be regarded as generalized Killing
spinors with A a constant multiple of the identity. Complete Riemannian
manifolds admitting a Killing spinor are classified [5], and they trivially sat-
isfy the Bar-Gauduchon-Morianu theorem: indeed, in this case M is the cone
on M (Theorem 2.22). We also introduce almost-contact metric structures,
the odd-dimensional Nijenhuis tensor and Sasaki structures, motivated by
the fact that a generalized Killing spinor in dimension 5 defines an almost-
contact metric structure.

In Chapter 2 we study the local geometry of hypersurfaces inside spin
Riemannian manifolds M admitting a parallel spinor, as well as abstract
G-structures defined by a generalized Killing spinor. We show that the latter
are characterized by the condition that their intrinsic torsion is a section of a
vector bundle isomorphic to Sym(7'M) (Theorem 2.6). More specifically, for
a hypersurface in M as above, the intrinsic torsion of the G-structure induced
by the integrable structure on M can be identified with the Weingarten ten-
sor (Theorem 2.7). Then, we proceed to study the particular case of “hypo”
structures, namely SU(2)-structures defined by a generalized Killing spinor

9



on a 5-manifold. By construction, hypo structures generalize Einstein-Sasaki
structures; more generally, by a theorem of Friedrich and Kim, n-Einstein-
Sasaki manifolds carry a generalized Killing spinor (Theorem 1.28), thereby
defining a hypo SU(2)-structure, which however is not in general compatible
with the Sasaki U(2)-structure. Having identified the Nijenhuis tensor, we
prove that compatibility between hypo and Sasaki structures can only oc-
cur if the metric is Einstein (see Corollary 2.11, that also characterizes hypo
structures which are quasi-Sasakian).

In six dimensions, the existence of a parallel spinor means that the holonomy
is contained in SU(3); in other words, parallel spinors correspond to Calabi-
Yau geometry. However, the 6-manifolds we consider need not be compact, or
simply-connected, and for this reason we shall avoid the term Calabi-Yau. We
consider hypo structures on hypersurfaces M inside SU(3)-holonomy mani-
folds M; we show how the curvature of M at points of M is determined by
the intrinsic torsion of the hypo structure (i.e. the Weingarten tensor) and
the curvature of M (Proposition 2.20). Whilst relations of this type exist for
general hypersurfaces (namely, the Gauss and Codazzi-Mainardi equations),
in this special case the relation is pointwise. This suggests that like in di-
mensions 6 and 7, one should be able to reconstruct the SU(3)-holonomy
manifold from the hypersurface; this idea will be the basis for the discus-
sion of the embedding property in Chapter 5. A review of known results
about the embedding property in any dimension follows. In particular, we
prove that a generalized Killing spinor in dimension 6 characterizes half-flat
SU(3)-structures (Proposition 2.30), so that Hitchin’s embedding theorem
applies. In fact, we shall define half-flat structures using generalized Killing
spinors, and then use Proposition 2.30 to prove consistency with the standard
definition.

Chapter 3 is independent of Chapter 2; it is aimed at understanding
Salamon’s “dictionary” technique from a theoretical point of view. We have
explained that special geometries can be defined using differential forms;
finding special geometries on a manifold is a problem of solving a system of
PDE on the space of differential forms. This problem is made tractable by
restricting to a space of invariant forms, as we explained. We did not, how-
ever, explain the meaning of “invariant”; in fact, invariance is not explicitly
mentioned in [31], and one of the goals of Chapter 3 is to define this notion.
We start with a G-structure P on a manifold M, and look for a space of
forms on an associated vector bundle. The choice of a connection makes the
pullback of P to the bundle into a G-structure; the action on P of its gauge
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group yields an action on this G-structure. In Theorem 3.4 we characterize
the algebra of forms invariant under this action. It turns out that this algebra
is useless from our point of view, because it is not d-closed. We address this
issue by considering the subalgebra of invariant parallel forms, where parallel
means as sections of a bundle over M; this subalgebra corresponds to Sala-
mon’s dictionary. In Theorem 3.8, we prove that it is d-closed provided that
the connection on P has parallel torsion. An important example is when M
is a homogeneous space: the canonical connection of the second kind has par-
allel torsion, and invariant parallel forms coincide with left-invariant forms.
In Theorem 3.12 we prove that the algebra of invariant parallel forms is
finitely generated over the algebra of invariant parallel functions; this at-
tractive property enables us to convert the system of PDE defining a special
geometry into a system of PDE on this algebra of functions. By our charac-
terization, these functions can be identified with G-invariant functions on the
fibre. In particular, when the fibre has a one-dimensional section (namely, a
submanifold intersecting each orbit), these PDE are really ODE.

In applications, one needs to compute a family of generators for the algebra
of invariant parallel forms, and the action of d on them. To achieve this,
it is convenient to go back to the notion of dictionary: the philosophy is to
define an “alphabet” of invariant, parallel forms, and write each generator
as a “word” in that alphabet; this makes things simpler, because in general
there are many more independent words than letters. Having produced a list
of independent words, one can use Theorem 3.12 to determine whether any
generators are missing.

The letters of the alphabet are forms taking values in a vector bundle, for
which the usual d is not defined; however, using the pullback connection one
can define the exterior covariant derivative D. By construction, in order to
compute the action of d, it is sufficient to compute the action of D on the
alphabet. In Lemma 3.23 we give an explicit formula for D, in the case of a
homogeneous space.

In Chapter 4 we apply the techniques of Chapter 3 to produce invariant
special geometries. In all cases considered here, the base manifold is a homo-
geneous space; as we mentioned, invariance then means invariance under a
global action. The algebra of invariant forms can be used to classify special
geometries invariant under this action.

We start with the cotangent bundle on the two-sphere, on which Eguchi
and Hanson constructed an SO(3)-invariant hyperkéhler structure [18]; af-
ter giving a characterization of hyperkahler 4-manifolds in terms of differ-
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ential forms (Lemma 4.2), we write down this structure in our language.
We then apply a technique of Apostolov and Salamon [3] to produce a new
Go-holonomy metric on 7*S? x R, viewed as a three-dimensional bundle over
the hyperkéhler four-manifold.
The following example is the bundle of anti-selfdual two-forms on the four-
sphere, on which Bryant and Salamon constructed an SO(5)-invariant com-
plete Go-holonomy metric [13], which we write down in our language. The
sphere bundle inside this vector bundle is the twistor space CP* over S* [4];
invariant forms on CP? are obtained by restricting invariant forms on the vec-
tor bundle (Theorem 4.8). We prove that the standard Ké&hler structure on
CP?® has no invariant SU(3) reduction; indeed, no invariant SU(3)-structure
on CP? is a complex structure (Theorem 4.11). On the other hand, invari-
ant SU(3)-structures exist, and consistent with the existence of Gy-holonomy
metrics on the 7-dimensional bundle, they are half-flat (Theorem 4.9). One
of them is nearly-Kahler; its underlying almost complex structure was stud-
ied in [17]. This nearly-Kéahler structure gives rise to a conical Ga-holonomy
metric on the 7-dimensional bundle which we write down explicitly.
Chapter 5 is independent of Chapter 3, and uses little of Chapter 4;
it deals with hypo geometry, i.e. the geometry defined by a generalized
Killing spinor in five dimensions. In Proposition 5.7 we characterize hypo
SU(2)-structures using differential forms. We go on to discuss the embedding
property for compact hypo manifolds. Roughly speaking, one can think of
hypo manifolds as Riemannian manifolds (M, g5) such that gs = g5+ d6? is a
half-flat metric on M x S*. By Hitchin’s theorem, there exists a Gy-holonomy
metric g7 on M x S x (a,b), and because gg is S*-invariant, so is g;. One can
then take the quotient to obtain a metric on M x (a,b), which has holonomy
SU(3) provided that the S! orbits have constant length (see e.g. [3]). This
condition turns out to hold for a large class of hypo manifolds, but the
proof is more complicated than one might expect. Our strategy is based on
Hitchin’s: suppose that M x (a,b) has an integrable SU(3)-structure. Then,
each M x {t} has an induced hypo structure; in other words, we obtain a
one-parameter family of hypo structures on M. The embedding property
translates into the existence of integral lines for a flow on the space of defor-
mations of the starting hypo structure.
This space of deformations is defined in terms of forms, because if we were
working with spinors, we would have to allow deformations of the spin struc-
ture, which are more complicated to handle; the drawback of this choice is
that at least three forms are needed to define an SU(2)-structure. As we
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have mentioned, when more than a single form is needed, deformations have
to satisfy compatibility conditions; so, it is not automatic that the space of
deformations of a hypo structure is smooth. However, if it is, we prove that
the embedding property holds (Theorem 5.20).

This result is consistent with Proposition 2.20, because as in the half-flat
case, if M is a compact hypersurface in M, then the structure on M X (a,b)
given by the flow coincides with the pulled-back structure relative to the
geodesic embedding of M x (a,b) in a tubular neighbourhood of M, up to
restricting (a,b). Thus, the geometry of M determines the geometry of M
in an explicit way.

In the proof of the embedding theorem, SU(2) is viewed as the intersection of
two copies of SL(2, C); this partly motivates a digression on the intrinsic tor-
sion of SL(2, C)-structures. While this is not a special geometry in our sense,
it shares an important feature with special geometries: an SL(2, C)-structure
can be defined using two differential forms w and ¢, and the intrinsic torsion
is determined by dw and di) (Proposition 5.16). In Theorem 5.17 we consider
the almost contact structure underlying an SL(2, C)-structure, relating the
Nijenhuis tensor of the former to the intrinsic torsion of the latter.

We then give a complete classification of invariant hypo structures on nil-
manifolds (Theorem 5.22). This is one on the main results of this thesis; we
recall that the analogous problem in six dimensions is still open.

In Proposition 5.29 we argue that in the nilmanifold case, the hypothesis of
Theorem 5.20 applies for almost every hypo structure.
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Chapter 1

Spinors, G-structures and
intrinsic torsion

The purpose of this chapter is to introduce the language and background for
the rest of the thesis; it concerns G-structures defined by spinors and their
intrinsic torsion.

The first section is purely algebraic; it contains some basic facts in the
theory of Clifford algebras and spinor representations, as well as the defini-
tion of the groups Spin(n).

In the second section we apply these notions to define spinors (sections of
spinor bundles). We introduce G-structures, and show how spinors, or ten-
sors, may be used to define them. We also introduce holonomy, and state
Berger’s classification theorem.

In the third section we consider the simplest case of structures defined by
a spinor, i.e. the one in which the spinor is parallel with respect to the
Levi-Civita connection, so that the structure is integrable. This situation is
more special than the one considered in Berger’s theorem, and only three
possibilities arise: exceptional holonomy, hyperkahler geometry, or Calabi-
Yau geometry. We give some basic results on the first two, leaving the third
to be discussed in Chapter 2.

The fourth section deals with the next simplest case: structures defined by a
Killing spinor, which are also classified. Reflecting the fact that the cone on
a manifold with a Killing spinor has a parallel spinor, we also have three pos-
sibilities here: nearly-Kahler and nearly-parallel G, geometry, corresponding
to exceptional holonomy on the cone; 3-Sasaki geometry, corresponding to
hyperkédhler geometry on the cone; Einstein-Sasaki geometry, corresponding
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to Calabi-Yau geometry on the cone. Spheres with the standard metric also
carry Killing spinors, but they are somehow a “degenerate” case, because the
cone is flat space, which is reducible.

Motivated by the classification of Killing spinors, in the fifth section we define
Sasaki structures, and more generally, almost contact structures. In Chap-
ters 2 and 5 we shall study a generalization of n-Einstein-Sasaki structures;
in the fifth section we give some definitions motivated by the need to relate
this new type of geometry to the known ones.

In the sixth section we compute explicitly the spinor representations in di-
mension 5, 6, and 7. We exploit the fact that we are only interested in these
dimensions to give an ad hoc construction of these representations, based on
the action of SU(4) = Spin(6) on self-dual 2-forms on C*.

In the seventh section we define intrinsic torsion, and some related language.
In particular we prove that the intrinsic torsion of a G-structure defined by a
spinor ¥ can be identified with Vi), where V is the Levi-Civita connection.
The same holds if ¢ is a tensor, or an r-tuple of forms, and G is a subgroup

of SO(n).

1.1 Spinor algebra

Spinors over a manifold M are geometrical entities which arise as sections
of a vector bundle over M with structure group Spin(n). Whilst Spin(n)
is the non-trivial double covering of SO(n), i.e. its universal covering, the
representation we need is not the pullback of a representation of SO(n).
Indeed, it is the restriction of the representation of an algebra, called the
Clifford algebra, which also contains R™, with the consequence that one can
“multiply” a spinor by a vector. We shall explain the construction of Clifford
algebras, without giving the details, for which we refer to [28] or [7].

Let V' be an n-dimensional vector space over k = R, C with a fixed sym-
metric bilinear form ( ,), which we assume to be positive-definite for £ = R
and non-degenerate for k = C.

Definition 1.1. An algebra CI(V) is said to satisfy the Clifford algebra
universal property for V if any linear map f : V — A into an associative
k-algebra with unit such that

F0) - f(0) = —(w,0)1 YoeV
extends uniquely to a k-algebra homomorphism Cl(V) — A.
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It is clear that two algebras satisfying this property are isomorphic. To
prove that such algebras exist, consider the tensor algebra 7 (V'), and let 7
be the ideal generated by elements of the form v ® v + (v,v)1. Then

is easily seen to satisfy Definition 1.1; it is called the Clifford algebra of
V. One can also check that the inclusion V' — 7 (V') induces an inclusion
V — CI(V). Hence, every element of O(V) induces a map V — ClL(V)
satisfying the universal property, and therefore induces an automorphism
of CI(V). Moreover, any action of CI(V) on a vector space ¥ induces by
restriction a bilinear map V ® ¥ — X, known as Clifford multiplication.
Now let v be the automorphism of CI(V) induced by —1 : V' — V; then
a? =1 and CI(V) splits as

ClV) = CI°(V) @ CIY(V)

where C1°(V) is the 1 eigenspace and C1' (V) is the —1 eigenspace. This gives
Cl(V) a Zy grading, or in other words, a superalgebra structure.

Definition 1.2. The group Pin(V) is the subgroup of Cl(V') generated by
unit elements of V. The group Spin(V') is defined by

Spin(V) = Pin(V) N CI°(V) .

We write Spin(n) for Spin(R™) where V' = R™ with the standard metric;
we can now state this fundamental result:

Theorem 1.3. There is a short exact sequence
0 — Zy — Spin(n) Ad, SO(n) — 0,

where
Ad(g)-v=gvg', veR".

It follows that a representation of Spin(n) descends to a representation
of SO(n) if and only if —1 acts as the identity.

Remark. The derivative of Ad acts in the following way:

Ad, : spin(n) — so(n) = A*(R"™)

eie; — 4e' Ne
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where ]
eiAejzi(ei(@ej—ej@ei) . (1.1)
Other choices of the coefficients also appear in the literature.

Having defined Spin(n), we need not consider the case k = R any longer;
from now on, let kK = C and V' = C" with the standard basis ey, ..., e,. This
case is made simpler by the existence of an element w of CI(V) called the
complex volume element, defined by

w :i[%l]el---en ,
satisfying w? = 1.

There is a classification of the algebras C1(V'), from which the following
follows:

Theorem 1.4. Every representation of CL(V') is completely reducible. If n is
even, then all irreducible representations of CL(V') are equivalent, and if n is
odd, there are exactly two inequivalent irreducible representations of C1(V).
The complex dimension of an irreducible C1(V)-module is 2"/2.

Remark. In the case of n odd, w is central and therefore every Cl(V')-module
splits into the +1 and —1 eigenspaces of w, so that on every irreducible
representation, w acts as either the identity or minus the identity; Theo-
rem 1.4 asserts that this is all that distinguishes two inequivalent irreducible
representations. As a(w) = —w, these representations give one another by
composing with a.

Now write C* = C" ! @ C, where C"! is spanned by e;,...,e,_;. The
map
C*1lse —epe; €Ct

is an isometry and extends to an isomorphism
cyc ) = a’en) . (1.2)
From this fact and Theorem 1.4, it easily follows:

Corollary 1.5. Let X be an irreducible representation of CI(V'); restrict it
to a representation (X, p) of CI°(V). Then the equivalence class of (X, p)
is independent of . If n is odd, (3,p) is also irreducible. If n is even,
(X3, p) splits up into two inequivalent irreducible representations, which are
interchanged by Clifford multiplication by any v € V.
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For n odd, let 3,, be the irreducible representation of ClI(V') on which w
acts as the identity. For n even, let 3, be the irreducible representation of
Cl(V): under the isomorphism (1.2), using Corollary 1.5 we see that

S, =Y e

where ¥ is a C1°(V)-module on which the complex volume form of C1(C"~!)

acts as +1. By construction, 3 pulls back to X,,_; for n even and 3, pulls
back to 3,1 for n odd. Explicitly, CI(C"!) acts on %,, by

XOop=e,- X 0. (1.3)
Consider the sequence of inclusions
Spin(n) C CI°(R™) c CI(R") C CI(C");
the representation I, restricts to
A, : Spin(n) — GL¢(%,) .

By Corollary 1.5, A,, does not depend on the choice of ¥; it is called the
complex spinor representation. Moreover if n is odd, (X,, A,) is irreducible;
if n is even, ¥, splits up into two inequivalent irreducible representations
(X5 AF) and (X, A,;), where the complex volume form of C1(C"™!) acts as
+1 on ©F.

Remark. Clifford multiplication can be pulled back to 7 (V'), and in particular
to A(V); explicitly,

eil/\.../\eip.w:eil.....eip.¢'

So, there are two actions of A?(V') on the space of spinors: Clifford multipli-
cation -, and the infinitesimal action Ad;" of so(V'). We have

eij . 1/] = 4Ad;1(€”)w .

1.2 (G-structures and holonomy

In this section we explain how spinors can be used to define G-structures; we
introduce holonomy and we state Berger’s classification theorem.
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We assume the reader is familiar with the notion of principal bundle.
We recall that if p: H — G is a group homomorphism and P is a principal
bundle over M with fibre GG, a reduction of P to H via p is a principal bundle
Py over M with fibre H with a map f: Py — P such that

L ~p
M
commutes, and such that R,u) o f = f o Ry,.

Fix an n-dimensional manifold M; the bundle of frames is a principal GL(n, R)-
bundle PGL(n,R)-

Py

Definition 1.6. A spin structure on M is a reduction to Spin(n) of the
bundle of frames Pgr,nr) via

Ad : Spin(n) — SO(n) < GL(n,R) ,
where Ad is the map defined in Theorem 1.3.

The obstruction to the existence of a spin structure on an orientable M
is a topological invariant called the second Stiefel-Whitney class, which is an
element wy of H%(M,Zs) (see e.g. [24]); an orientable manifold with wy = 0
is called spin.

Remark. Any principal bundle P with fibre Spin(n) determines a Pso(,) bun-
dle such that P is a reduction of Pso(n); if P is a reduction of Pgp,n k), then
so is Pso(n). Hence, a spin structure determines a metric and orientation.

Now assume M has a spin structure P; for any Spin(n)-module V', we
denote by V the vector bundle P Xgpinn) V. Recall the definition of 3, from
Section 1.1; then X, is a complex vector bundle called the complex spinor
bundle and its sections are called spinors. One can also define the complex
Clifford bundle

CI(M) =P XSpin(n) Cl((C'”) s

where Spin(n) acts on Cl(C") via Ad. Note that ¥, is not a representation
of SO(n), but CI(C") is; therefore one could in theory define CI(M) using

the SO(n)-bundle of frames, but not X.
Since the map ClI(C") ® ¥,, — ¥, is Spin(n)-equivariant, a map

Cl(M) @Y, — Xy
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is induced; this gives X, a structure of Cl(A/)-module. Since the map
7(R") — CI(R") — Cl(C")

is also equivariant, a map 7 (R") ® 3,, — %, is induced, called Clifford mul-
tiplication and denoted by -; the same holds for 7 ((R™)*). It will sometimes
be useful to view Clifford multiplication as a 1-form C in Q'(M,EndX,,).
The notation here is that if V is a vector bundle over M,

A(M,V) = N(M) @ V
denotes the bundle of V-valued p-forms, and QP (M, V) the space of its sec-

tions.

Our interest in spinors descends from the fact that they can be used to
define certain types of G-structures, as we now explain. Recall this standard
definition:

Definition 1.7. For G a subgroup of GL(n,R), a G-structure on M is a
reduction to G of the GL(n,R)-bundle of frames.

Now let Pk be a principal bundle over M with fibre K and let V be a
K-module (either real or complex). Fix 1 in V' with stabilizer G. Then the
following important, though trivial, result holds:

Proposition 1.8. The sections n of
Pg xg (Kno) C V.,

where Kngy is the orbit of ny, are in one-to-one correspondence with the re-
ductions Pg of Pk to G. This correspondence, which depends on the choice
of no, is determined by the condition that for any section s of Pg,

n= [8,770] .

We think of such an 7 as a section of V which satisfies the algebraic
condition of being a section of the subbundle Py X (K71p).

If A : G — K is a homomorphism, then any principal bundle Pg with
fibre G determines a principal bundle Px with fibre K by

Py = FPg xqg K,
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where G acts on K via \; Py is called the A-extension of Pg.

Now suppose that G is a subgroup of Spin(n) which does not contain —1, e.g.
G = Gy, SU(3), SU(2) in dimension 7, 6, 5 respectively; then Ad is injective
on G, which can therefore be viewed as a subgroup of SO(n). In this case
a G-structure Pg determines a spin structure by extension, and Py can be
viewed as a reduction to G of this spin structure. Conversely, a reduction to
G of a spin structure on M can be viewed as a G-structure. In conclusion,
when considering groups G of this kind we can assume that M has a spin
structure P and interpret G-structures as reductions of P. As a consequence:

Proposition 1.9. If G s the stabilizer of vy € X,, then G-structures on
M are in one-to-one correspondence with pairs (P,1)), where P is a spin
structure and v a spinor taking values in P Xgpinny (Spin(n)iy).

Proof. By construction, —1 does not lie in G and we can apply the above
argument. Proposition 1.8 concludes the proof. O]

Recall that if P is a principal bundle on M with fibre G, a connection on P
is an invariant distribution H such that TP = H & ker 7, where 7 : P — M
is the projection; then one can define parallel transport, and the covariant
derivative

V:T(TM®V) — (V)

for any G-module V', where I' means “sections of”. Any spin structure P
carries a canonical connection called the Levi-Civita connection; all the prin-
cipal bundles we consider in this chapter are reductions i : P; — P of a spin
structure, and unless otherwise stated, covariant derivative will be taken with
respect to the Levi-Civita connection. However, this only makes sense when
V' is a Spin(n)-module. We say that the Levi-Civita connection H reduces
to P, G if

TPs;=Hg ®kerm, , where Hg =i, (H) .

In that case, the G-structure Py is called integrable. Since Hg is a connection
on Py, one can then define V for any G-module V.

Definition 1.10. The Levi-Civita connection is said to have holonomy G,
where G is a subgroup of SO(n,R), if P has an integrable reduction to G,
which admits no integrable reductions in turn.
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By definition, the holonomy group G is a subgroup of SO(n,R) defined
only up to conjugation; uniqueness up to conjugation follows from integrable
structures being closed under parallel transport, and the SO(n)-invariance of
the concept of parallel transport.

We say that a Riemannian manifold is irreducible if it is not locally a Rie-
mannian product. We say that it is locally symmetric if VR = 0, where R is
the curvature tensor.

Theorem 1.11 (Berger’s Theorem). Let M be an oriented simply-connected
n-dimensional Riemannian manifold which is irreducible and not locally sym-
metric. Then its holonomy group must equal one of SO(n), U(3), SU(3),

Sp(3)Sp(1), Sp(%), G, Spin(7).

This theorem was first proved in [8]; a different proof can be found in
[29]. To be historically correct, Berger’s list also contained Spin(9), which
was later proved to only appear as the holonomy group of locally symmetric
spaces.

1.3 Parallel spinors

In the language of Proposition 1.8, we say that 7 is parallel if Vi = 0. Quite
unsurprisingly, a G-structure defined by a parallel 7 is integrable; we shall
prove a stronger result in Section 1.7. Moreover, a tensor 1 which is parallel
with respect to any connection always satisfies the condition of Proposition
1.8, and therefore defines a G-structure.

In particular, G-structures defined by a parallel spinor are classified [33, 24]:

Theorem 1.12. Let M be an n-dimensional simply connected, irreducible
Riemannian spin manifold. Then M carries a parallel spinor if and only if
its holonomy group is one of:

n | holonomy
7 G2

8 | Spin(7)
2m | SU(m)
4m | Sp(m)

Sketch of proof. The proof is based on Berger’s theorem, which applies for
the following reason: the existence of a parallel spinor implies Ricci-flatness,
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and a Ricci-flat manifold can only be locally symmetric if it is flat, which is
contrary to the hypothesis. Therefore, Berger’s theorem provides a list of the
possible holonomy groups; the possibilities of U(m), SO(m) and Sp(m)Sp(1)
are ruled out by the lack of fixed points for their action on ¥,,. m

We now list some basic facts about each geometry appearing in Theorem
1.12, except Calabi-Yau geometry, which will be discussed in Chapter 2; we
refer to [31] for proofs and details.

We start with Gs.

Definition 1.13. Let ¢y € A3(R"7)* be defined by
0o = 2T 4 P PO 4 o135 M6 _ 286 _ 245 (1.4)
where e!, ..., e” is the standard basis of (R7)*, with the convention that
etIn — % AL LA e
Let GL(7,R) act on A3(R")* in the usual way. We define Gy = Stab(ipy).
The following is well known (see e.g. [12]):

Proposition 1.14. Gy is a connected, simply connected, closed subgroup of

SO(7).

Clearly Gy, as a closed subgroup of SO(7), is compact; indeed, this argu-
ment works for all holonomy groups.
Proposition 1.8 gives a one-to-one correspondence between Go-structures on a
manifold and three-forms which pointwise “look like ¢q”. It should be noted
that the representation of Gy on R” we are considering is the same that ap-
pears in Berger’s theorem. So in dimension 7, in the hypotheses of Theorem
1.12, a parallel spinor determines a parallel 3-form of correct algebraic type
and vice versa.

Theorem 1.15 (Fernandez-Grey). Let ¢ define a Go-structure. Then Vi
15 determined by dp and d * ¢; in particular,

Vp=0 <= dp=0,dxp=0.
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Notice that the conditions V¢ = 0 and d * ¢ = 0 are not linear in ¢,
because V as well as the Hodge operator depend on the metric, which in
turn depends on ¢; for this reason, finding explicit Gy holonomy metrics is
not an easy task.

We now turn our attention to Spin(7). With notation from Section 1.6,
define a real 4-form on V' by

1
Q) =Re Up123 — 5(11)12 + w34 + U}56 + U)78>2 )

then Spin(7) fixes 2. More precisely, the spinor representation determines
an inclusion Spin(7) < SO(8) such that Spin(7) = Stab Q. Moreover, Spin(7)
acts transitively on the sphere, with stabilizer Go; this can be viewed as a
consequence of the fact that relative to the decomposition R® = R” @ R,

Q= xp+ e Ao
up to a change of basis. We have the following (see [31]):

Theorem 1.16. Let Q define a Spin(7)-structure. Then VS = 0 if and only
if dQ = 0.

We recall that Sp(n) is the group of invertible n by n quaternionic ma-
trices; holonomy Sp(n) corresponds to hyperkahler geometry:

Definition 1.17. A hyperkdhler structure on a Riemannian manifold (M, g)
is a triple of complex structures Jy, Jo, J3 such that J3 = J;Jy and (M, g, J;)
is Kahler for all .

It follows from the definition that J3 = —JyJy; cyclic permutations of this
equation also hold. Let w; be the Kahler form relative to J;; then wq, ws, ws
are clearly closed. The converse also holds: if one has a metric g and almost
complex structures J; with J3 = J;.Jo such that (g, J;) is an almost-Kéhler
structure, then M is hyperkéhler [31].

Proposition 1.18. A Riemannian manifold (M, g) has holonomy contained
in Sp(n) if and only if it admits a hyperkdhler structure.

Proof. A triple Ji, Js, J3 as in Definition 1.17 corresponds to a quater-
nionic structure on the tangent bundle, which in turn corresponds to an
Sp(n)-structure. The condition of (M, g, J;) being Kéhler can be stated as
VJ; =0, which is equivalent to the integrability of the Sp(n)-structure. O
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1.4 Killing spinors
Fix a spin structure P on M such that the induced metric on M is complete.
Definition 1.19. A Killing spinor is a spinor ¥ such that
VxU=\X VU
for some constant A, called the Killing constant of .

Killing spinors with Killing constant A are parallel with respect to the
modified connection V = V — AC; Therefore, Killing spinors have constant
norm and they define G-structures. Moreover, Killing spinors with a given
Killing constant form a finite-dimensional vector space. The following is well
known [7]:

Theorem 1.20. Let M have a non-trivial Killing spinor. Then M 1is Ein-
stein with scalar curvature 4n(n — 1)A\2.

It follows that if there exists a non-trivial Killing spinor on M with Killing
constant A, then every Killing spinor has Killing constant £\. There are three
cases:

e A\ =0: 9 is a parallel spinor.
e A R\ {0}: ¢ is called a real Killing spinor.
e A c iR\ {0}: ¢ is called an imaginary Killing spinor.

So, parallel spinors only exist on Ricci-flat manifolds, as previously remarked.
By Theorem 1.20 and Myers’ theorem, non-trivial real Killing spinors only
exist on compact, positive-scalar-curvature M. On the other hand, non-
trivial imaginary Killing spinors only exist on non-compact, negative-scalar-
curvature M.

Remark. In even dimension, let ¢ = ¢t + ¢~ be a Killing spinor; then
le/)Jr:)\X'w_? VX1/)_:)\X'¢+7

because Clifford multiplication by a vector swaps X and X, . Therefore,
YT — ) is a distinct Killing spinor with Killing constant —\. In general, for
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any nonzero real constant & one can replace Pso(,)y with the bundle £ Pso(y),
defined as

(kPSO(n))a: = {ku R — T.M | u e (PSO(n))a:} ;

this amounts to rescaling the metric, as well as changing the orientation if
k < 0 and n is odd. Now, if one identifies the spinor [s, ¥g] with [ks, 1], Vx ¥
remains unchanged, but X - ¥ is divided by k; hence, the Killing constant of
[ks, 1] is KA. In other words, one can always adjust things to normalize the
Killing constant.

There is a classification of manifolds carrying real Killing spinors, which
was completed in [5]. In order to explain the classification, we need to recall
two definitions:

Definition 1.21. A nearly Kdhler structure on a Riemannian manifold is a
compatible almost complex structure J such that (VxJ)X =0, but V.J # 0.

With slight abuse of notation, we shall say that a Riemannian manifold
M is nearly Kahler if it admits a compatible nearly Kahler structure. With
a similar abuse of notation, we shall provisionally define Sasaki and 3-Sasaki
manifolds using cones (for a more precise definition, see Section 1.5). If
(M, g) is a Riemannian manifold and I is an interval, we define the warped
product

M Xf I
as the Riemannian manifold
(M, f(r)’g+dr?)
where 7 is the coordinate on I. We write R™ for the interval (0, +00).

Definition 1.22. A Riemannian manifold M is Sasaki if M x,R™ is Kéhler;
if M is also Einstein, it is called Einstein-Sasaki.

Definition 1.23. A Riemannian manifold M is 3-Sasaki if M x, RT is
hyperkéahler.

Definition 1.24. A Go-structure is nearly-parallel if dp = * .
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Now suppose M is simply connected; let the space of spinors with Killing
constant 1/2 have dimension p and the space of spinors with Killing constant
—1/2 have dimension ¢. The only possibilities are listed in the following table
(where m > 1):

n D, q geometry

n on/2 oln/2l | gn

6 1,1 nearly-Kahler

7 1,0 nearly-parallel G
dm+11]1,1 Einstein-Sasaki
dm +3 12,0 Einstein-Sasaki
dm + 3 | m,0 3-Sasaki

The next-to-last line of the table, for instance, should be read as follows: if
M has dimension 4m + 3, then M is Einstein-Sasaki if and only if p > 2.
This is consistent with the fact that 3-Sasaki manifolds and odd-dimensional
spheres are Einstein-Sasaki.

It may be worth mentioning that Einstein-Sasaki manifolds, as well as
6-dimensional nearly-Kahler manifolds, are known to have scalar curvature
equal to n(n — 1); this can be seen as a consequence of the classification and
Theorem 1.20, because we are assuming the Killing constant to be +1/2.
On the other hand if one has a non-trivial space of real Killing spinors with
A # £1/2, one may rescale the metric and then apply the classification.

1.5 Sasaki structures

The definition of Sasaki geometry we have given is not very satisfactory for
two reasons: first, it is rather unnatural to define a property of a Riemannian
manifold M in terms of a property of a different Riemannian manifold, in this
case M x,RT; second, we have defined as a property of the metric what is re-
ally the property of a G-structure. Sasaki structures are the odd-dimensional
equivalent of Kahler structures, in the same sense that contact structures are
the odd-dimensional equivalent of symplectic structures. In this section we
give the precise definition of Sasaki structures; we also introduce some related
facts and notation which will be used in the sequel.

An almost contact metric structure on a manifold M of dimension 2m+ 1
is a U(m)-structure. As

U(m) = Sp(m,R) nSO(2m + 1) ,
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we shall think of an almost contact metric structure as a triple (g, o, w), where
g is a Riemannian metric, o is a unit 1-form and w is a 2-form with norm
/m/2, such that w™ is nowhere-vanishing and asw = 0, where 4 denotes
interior product. Locally, this implies the existence of a basis e!,...,e"
(where n = 2m + 1) such that

a:en’ w2612+‘__+€n72,n71‘

An almost contact metric structure is contact if da = —2w. A contact
metric structure is K-contact if the dual vector to o, which we denote by &,
is a Killing vector field. The following is well known

Proposition 1.25. An almost contact metric structure is K-contact if and
only if Va = —2w.

The condition in Proposition 1.25 means (Vya)Y = —2w(X,Y).
To an almost contact metric structure, much like to a almost-hermitian struc-
ture, one can associate the Nijenhuis tensor, which is a tensor of type (2,1).
Since U(2) is a subgroup of U(3), an almost contact metric structure on M
defines an almost-hermitian structure on the product M x R; then the Ni-
jenhuis tensors of M and M x R can be identified. If we define a T'M-valued
1-form J by
g(l(X)v ) =X w,

N is characterized by
N(X,)Y) = (Vyx )Y = (Vyy )X + (VxJ)(JY) — (Vy ) (JX)+
—a(Y)Vxé+a(X)Vyé (1.5)

An almost contact metric structure is normal if N vanishes, i.e. the induced
almost complex structure on M x R is integrable.

An almost contact metric structure is quasi-Sasaki if N vanishes and w is
closed. A quasi-Sasaki structure is Sasaki if it is contact. Sasaki manifolds
are K-contact, and can be characterized in the following way:

Theorem 1.26. An almost contact metric structure is Sasaki if and only if
Vxw=g(X,anb), (1.6)

where 6 is the solder form.
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An almost contact metric structure is n-Einstein if
Ric=aa®a+byg,

where a and b are functions. There are two well-known constraints on ¢ and
b: their sum must equal n — 1, and we have the following:

Theorem 1.27. If M s a K-contact n-Einstein manifold of dimension
greater than 3, then a and b are constants.

The following characterization was proved in [20];

Theorem 1.28 (Friedrich-Kim). Let M be a simply connected Sasaki man-
ifold. There exists a spinor ¢ satisfying

Vxtp =AX -t +pa(X)a-¢

for some constants X\, pu if and only of M is n-FEinstein.

1.6 Explicit spinor representations

In this section we give explicit formulae for the spinor representations. We
shall start with the 6-dimensional case, which is quite central in the thesis.
For this reason, we shall be detailed.

In dimension 6, Spin(6) = SU(4); setting V = C*, the spin representation
is V@ V. We recall the construction of Ad : SU(4) — SO(6) given in [1]. Let
V be a 8-dimensional real vector space with a fixed SU(4)-module structure;
in other words, we fix a metric, an almost complex structure and a complex
form on V of type (4,0). The space of complex 1-forms ¥ = ALV*, splits up
as V10 @ VOl Fix a basis ug, u1, ug, us of V1% and take the conjugate basis
Uy, Us, Ug, uy of VO so that the complex volume form is o123, and Ty, = Up4.
The hermitian product and the complex volume form on V' define the Hodge
duality *, which is an antilinear automorphism of A*°V. The space of self-
dual forms W is a real 6-dimensional SU(4)-module spanned by

Ug1 + Usa3 Up2 + U3z , Up3 + U2 ,

Z'(U01 - U23) ) Z'(Uoz - U31) ) Z'(Uozs - U12) .

Let T be (W + W) N AZV*. The action of SU(4) on T preserves the metric
and the orientation of T, therefore giving a map SU(4) — SO(6), which
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being injective at the Lie algebra level is a covering map. By the simply
connectedness of SU(4), we conclude that Spin(6) = SU(4) and this map
coincides with Ad. Explicitly, write

ug =w' +iw?, u=wd+iw', w=w+iwt, us=w"+iw®;

then 7' is spanned by

1
e = w4+ w®? + W + W g = w + w? — W — 5T
es = w' + w2 4+ w4 W s = w'S + w? — ™ — ™
es = w7 + w2 + w® +wh eg = w'S 4+ w2 — w3 —

We define
2 Ve @ ARV ARV

by extending the usual interior product
3 V@ APV APV

linearly. Using the (antilinear) isomorphism ALV* 2 Vi given by the her-
mitian metric, we obtain a map

TR — X, where w - ¢ = ¢puw ,

which is R-linear in the first variable and C-linear in the second variable.
Note that

W-p=prw =010 =¢rw=w- ¢ ;

therefore - preserves the real structure of ¥ (i.e. conjugation). Moreover,
since elements of T have type (2,0) + (0,2), - interchanges V%! and V10,
If viewed as a one-form taking values in End¢(X), with respect to the basis

Ug, - - - , w7 the Clifford multiplication form C' reads (g 6‘), where
0 —el —je? —e3 —jet —e® —ieb
A el + ie? 0 —e® 414 et —iet |
e3 +iet e’ —iel 0 —el +ie? | 7
ed+ieS —ed +iet el —ie? 0

in particular A is skew-symmetric and satisfies
AW)A(w) + A(w)A(v) = —2(v, w)T
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for all v,w € T. Hence - extends to a representation of Cl(T"); by dimension
count and by Theorem 1.4, it can be identified with the spinor representation.
The fact that Clifford multiplication commutes with conjugation corresponds
to the fact that in dimension 6 the spinor representation is real. It is easy
to see that the complex volume form acts as +1 on V1? and as —1 on V%1,

implying
V=35, Vol =3¢

From (1.3), we deduce that 35 = V1 with Clifford action given by

ie’ —et —ied  e? 4 el 0
et —ied —ie® 0 e? +iel
—e? + et 0 —ie® et el
0 —e? 4ie! —et+ie?  ied

We also have ¥; = X. Indeed, let J be the complex structure on V', and
let e7 act on ¥ as —J. Using (1.3), we find the following Clifford form with
respect to the basis ug, ..., ur:

—ie"1ld  iA
A de’ld

where A is the same as before. Again, Clifford multiplication commutes with
conjugation, so the spinor representation is real (in fact, this holds in all
dimensions n such that n = 6,7,8 mod 8).

For completeness’ sake, we give general formulae for the spinor representa-
tion in arbitrary dimension. Let vg = (§) and vy = (9); a basis ug, . . ., ugm_1
of ¥, = (C*)®™ is given by

Uk = Vg, ; @+ @ Vg 5 where k= E a2" .
0<r<k

We think of the a, as elements of Z/27Z. The Clifford algebra Cl(2m) acts
irreducibly on 2, by

— aj—1++a
62]' S U = _(_1> j—1 Ovam—l ® e ® Uaj ® Ulfajfl X Uaj,Q ® e ® Uao

. o
€2j—1 S U = Z(_l)aj 2 aovam_1 ® . ® Uaj ® ,Ul—a]‘,1 ® fU(Ij72 ® e ® Uao
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It is easy to see that w - uy = (—1)*m—1F"T%0q,: the complex volume form of
C?™1 acts as w, showing that

S5 = spanf{uy, | am-1 + -+ +ag=0 mod 2},
Yo = span{ug | apm-1+---+a1 =1 mod 2},

and it is obvious that Clifford multiplication by e; maps YE to X .

2m

Now consider Cl(2m + 1); let ¥s,,11 = Yo, and denote the Clifford
multiplication of Cl(2m) by ®. Then the action of Cl(2m + 1) on g, 41 is
given by

Comal - Uk = (_1)am71+"'+00<_i) U,

€j - Up = —Capy1 - €5 O Uy, 7=0,...,2m

This representation is consistent with (1.3); moreover, w acts as the identity,
as required in the definition of ¥, 1.

1.7 Intrinsic torsion

In this section we introduce the intrinsic torsion of a G-structure; for G-
structures defined by a spinor 1, we prove that the intrinsic torsion can be
identified with V1. We recall the following [26]:

Definition 1.29. If P is a principal bundle on M with fibre GG, and
p:G— GL(V)

is a representation of GG, a pseudotensorial p-form of type (p,V) is a p-form
a € Q(P,V) such that for all g € G one has

Rya = p(g a .

A tensorial form is a pseudotensorial form « such that X« vanishes for all
vertical X.

In this language, a connection form on P is a g-valued pseudotensorial 1-

form which extends the canonical isomorphism ker 7, = (Pxg). A connection
form w defines a connection H = ker w, and vice versa.

Proposition 1.30. The space of tensorial p-forms of type (p, V') can be iden-
tified with QP(M,V).
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Proof. Let o be a tensorial form; let u € P, X;,...,X, € T,P. An element
ain QP(M, P xg V) is defined by

er(u)<7r*X1a s 77T*Xp) = [U, Oéu(Xl, - ,Xp)]
For details, we refer to [26]. =

In the sequel we shall always write « for the tensorial form and « for
the corresponding element of QP(M, V). When P is a reduction of the frame
bundle, so that e.g. T'=TM, to a tensorial p-form « one can also associate
a tensorial (i.e. equivariant) map

a:P—-NT"QV .

We shall not adhere to this convention when dealing with tensors, spinors or
R-valued forms (e.g. we write ¢ for spinors instead of v).
Now let (V, p) be a G-module.

Definition 1.31. Fix a connection on P. For a a pseudotensorial form, the
exterior covariant derivative of o is Da, given by:

Da(Xy,...,X,) =da(mty Xy, ..., muX,),
where 7y : T'P — H is the projection.

Using the identification between tensorial p-forms and V-valued p-forms,
we can interpret D as an operator

D:QP(M,V) — QM V) .

For O-forms, D coincides with V as defined by parallel transport. Explicitly,
if h is a V-valued function and s a local section of P, for the section [s, h] of
V we have

Vs, h] = [s,dh + s*wh] ,
where w acts on h by the infinitesimal action g — End(V'). For instance, if

G = Spin(n), V = %, we get

Vit = X(0) + 3w(X) ¢

A more general formula holds, which will be needed in the sequel:
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Proposition 1.32. If w is a connection form on P and « s a tensorial
p-form, then with respect to the connection determined by w,

Da=da+wAa,
where the wedge implies contracting g &V — V by the infinitesimal action.

Proof. Let p be the representation G — GL(V). One has to prove that for
all Xo,..., X, inT,P,

Da(Xy,...,X,) =da(Xo,...,Xp) + (wAa)(Xo, ..., Xp) .

This equation being linear, one has to consider two cases: if all the X;’s
are horizontal, (w A a)(Xo, ..., X,) vanishes and the equation is satisfied; if
Xy is vertical, we can extend the X, so that X, = A* is the fundamental
vector field corresponding to A € g and Xj,..., X, are invariant. Then the
left-hand side vanishes, and using the fact that o horizontal and w vertical,
the right-hand side becomes

219 <A*a(X1,...,Xp) +§p:(—1)ia([A*,Xi], . ,Xp)) +
1121 .
+ mp*(w(fl )pla(Xy, ..., X,) =

1

p(A*a(Xl, o Xp) + o p(A)a(Xy, ... ,Xp))

because the X;’s are invariant and therefore [A*, X;] = 0. On the other hand,
if a; is the one-parameter subgroup of G generated by A, using the invariance
of the X; one finds

A (a(Xy, ..., Xp)) =
1
hmg (Ogay (X1y -, Xp) — (X, .., X)) =

t—0
1 .
113(}; (R:a)e(X1,..., Xp) — (X1, X)) =
1 _
lim — (p(at 1)(ax(X1, e X)) — (X, ,Xp)) =

t—0 t
— pe(A)ay(Xyq,....X,) O
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Now let P be a reduction to GG of the bundle of frames; in our language,
this includes the spin bundle. Let T'= R"™ with the G-action induced by the
standard action of GL(n,R); then T'= T'M. The tensorial map

0:P— (T)®@T = GL(T)

given by the identity corresponds to a T-valued tensorial 1-form 6 on P,
called the canonical form, or solder form.

Definition 1.33. The torsion of a connection is © = D6.
So © is a T-valued tensorial 2-form; it is well known that
20(X,Y)=VxY - VyX - [X,Y].

Fix a connection form wy. Any connection form w is a pseudotensorial 1-form
taking values in g; as such, using wy it can be identified with a tensorial map

W:P—(goT)®g=EndgdT"®g¢;

accordingly, @ decomposes as 1 + &, where 1 is the identity of Endg, and
¢ = w —wy. Now consider the skew-symmetrization map 0:

T"2g—->T"T T — N*T*®T.
An exact sequence is induced:
0— g —>T*®giA2T*®T—>Coker8—>0,
where the first prolongation gt is defined as the kernel of . Then
Doé=0-0,. (1.7)

Definition 1.34. The intrinsic torsion of P is the image [©] of © in Coker 0,
where © is the torsion of any connection on P.

Some remarks:

e Well-definedness follows from (1.7).

e Suppose [O] = 0; then © = ¢, and w — ¢ is torsion-free. This means
that the intrinsic torsion of P is zero if and only if P admits a torsion-
free connection.
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e Two connection forms w and wy have the same torsion if and only if £
lies in g,

e If g =s0(n), 0 is the inverse of

AN ANT QT — TF @ AT

Qe — e @ — el @t —eF el

In particular, 0 is an isomorphism, and by the above remarks, this gives
the existence and uniqueness of the Levi-Civita connection.

o If g C s0(n), then A induces an isomorphism
5\:COke1"8—>T*®gl

where g+ is the orthogonal complement of g in so(n). For an element
v of T* ® s0(n), let v+ be the projection on T* @ g*; then

A[B] = (A\O)*. (1.8)

Now let P be the spin bundle of M, and let 1y be as in Proposition 1.8
(e.g. a spinor), with an action p : Spin(n) — GL¢o(V). It is well known
that V' has an inner product preserved by Spin(n). The infinitesimal action
of Spin(n) on 1y gives a map

p« i spin(n) = T, V=V

with kernel h. Using the fact that p preserves an inner product, we see that
on restricting to h+ we get an inclusion

In a later section we shall look at some significant cases where p, is an
isomorphism, but we do not assume this to hold for the moment.

Let w be a connection form on Py, which we extend to P; let wy be the
Levi-Civita connection form on P.

Proposition 1.35. The map p. o\ is injective, and the intrinsic torsion
satisfies R
Px A [@] = —V()ﬂ-
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Proof. Let s be a section of Py; then
Von = Von =V = [s,s" (wo — w) - o] = [, =57 - mo]

From ©y = 0 and (1.7), it follows that

Hence, by (1.8), A\[O] = EL . But

p & =p & =1[5,5€ m] = —Von O

Proposition 1.35 asserts that the intrinsic torsion of the G-structure de-
fined by a tensor or spinor n can be identified with the covariant derivative
of n. If one is only interested in tensors, one can replace the spin structure
with the bundle of orthonormal frames.
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Chapter 2

Some hypersurface geometry

In this chapter we study the local geometry of hypersurfaces inside Rie-
mannian spin manifolds with a parallel spinor.

The first section begins with the equations of Gauss and Codazzi-Mainardi;
we formulate them in an abstract form, which will be useful later to compute
the curvature of the connection defined in the second section. We intro-
duce generalized Killing spinors, and prove that the restriction of a parallel
spinor to a hypersurface is a generalized Killing spinor. We characterize
G-structures defined by a generalized Killing spinor in terms of intrinsic tor-
sion. Putting these two facts together, we prove that the intrinsic torsion
of the G-structure induced on the hypersurface of a manifold with a par-
allel spinor can be identified with the Weingarten tensor. As an example,
we illustrate the well-known case of cocalibrated Gy hypersurfaces inside
Spin(7)-holonomy manifolds.

In the second section we define hypo structures on 5-manifolds, and introduce
a canonical connection on these structures, called the hypo connection. We
show that hypo is a generalization of Einstein-Sasaki, and all hypo Sasaki
structures are Einstein.

The third section consists in an example of a hypo 5-manifold, whose curva-
ture we compute. We write down explicitly an integrable SU(3)-structure on
a 6-manifold which contains this 5-manifold as a hypersurface.

In the fourth section we study the intrinsic torsion of hypo and half-flat man-
ifolds.

In the fifth section we study the Levi-Civita curvature of hypo and half-flat
manifolds. We exploit the fact that su(3) contains no simple forms to prove
that the curvature of an SU(3)-holonomy manifold is pointwise determined
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by the curvature and intrinsic torsion of a hypo hypersurface. In the opposite
direction, we show how the curvature of the 6-manifold and the Levi-Civita
curvature of the hypersurface determine the curvature of the hypo connec-
tion.

In the sixth section, we discuss the embedding property in general.

The last section provides a bridge with Chapters 3 and 4: we show how
SU(3)-structures on a 6-manifold can be defined using forms, and character-
ize generalized Killing spinors in terms of the forms they define through this
correspondence. From the point of view of Chapter 2, this completes the
proof that 6-dimensional manifolds with a generalized Killing spinor have
the embedding property, reducing this fact to a theorem of Hitchin. From
the point of view of Chapter 3, this result motivates the study of structures
defined by differential forms.

2.1 Generalized Killing spinors and hyper-
surfaces

In this section we introduce generalized Killing spinors, which appear natu-
rally on hypersurfaces of Riemannian manifolds with a parallel spinor. We
study the G-structures defined by a generalized Killing spinor, showing that
they are characterized by the condition that their intrinsic torsion lies in
Sym(TM).
We shall start by explaining how one can modify a given connection (e.g.
the Levi-Civita one) to obtain a connection of prescribed holonomy; this con-
struction will be applied to introduce a canonical connection on the structure
defined by a spinor, and also to characterize the Levi-Civita connection on a
hypersurface in M in terms of the Levi-Civita connection on M. In particu-
lar, we give formulae for the curvature which, applied in the latter case, give
the Gauss and Codazzi-Mainardi equations.

Let Pg be a G-structure, G < SO(n); let w be a connection form on the
bundle of orthonormal frames. Under the adjoint action of G,

so(n) =gdg;

for any so(n)-valued form o, we write a = [a]y + [a]
exception of w, for which we write w = wy + wt.

g accordingly, with the
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Proposition 2.1. The restriction to Pg of wy is a connection form. The
curvatures of w and wy are related by

1
Q= Q4+ Dgw* + E[wL,wL]

where Dy is exterior covariant differentiation with respect to wy.

Proof. Follows from the structure equation
1
Q=dw+ §[w, B)

and Proposition 1.32. O]

Remark. By (1.7), wh (or more precisely, its image under the isomorphism
d) is the difference of the torsions. In particular if w® is zero on Pg, it
means that w reduces to Pg, i.e. its holonomy is contained in G. If w is the
Levi-Civita connection, dw™ is the torsion of wy.

€1

Remark. Since g is a G-module, Dgw" lies in w™, so the formula for the

curvature in Proposition 2.1 can be rewritten:

90 = 0 + 5t (2.)

Qe = Dy + %[WL, W] (2.2)

gJ_

Now let (M, g) be an (n + 1)-dimensional Riemannian manifold and let
1t : M — M be an oriented hypersurface; assume M is oriented and spin.
The unit normal vector v, as a section of i*T'(M), induces a map 7, from the

frame bundle F' of M to the pullback i*F of the frame bundle of M:
(€1, . en) = (€1, ..., 0xbpn, V) .

The bundle map 7, gives a reduction of *F to F relative to the inclusion

GL(n,R) 5 A — (A 0

0 1) € GL(n+ 1,R) ; (2.3)

we may also think of this reduction as determined by v in the sense of Propo-
sition 1.8.

The same construction can be carried out using the bundles of oriented frames
(provided v is chosen with the correct sign).
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Proposition 2.2. Let P be a reduction of F to G. Then one has the following
diagram:

P—P
L,
F—>F
where P = 75" (i,(F)), and P is a reduction of F to G N GL(n,R).
Proof. Obvious. O

From now on, P will be a spin structure on M and P the induced spin
structure on M. Denote by A the T'M-valued form on M defined by

VxY =VxY + g(A(X),Y)v;

then A = —Vv; moreover, A is symmetric, i.e. it is a section of Sym(7T'M).
We shall refer to A as the Weingarten form. In the language of Proposition
2.1, A is the component in so(n)t of the connection form, and one has a

decomposition
v f[w —A
w={, o /-

Setting A® = €'(A), equation (2.1) gives the classical Gauss’ equation:

Proposition 2.3. If A is the Weingarten form,

[i5s0(m) = Qean) + D AN A @ €Y (2.4)

/L'7j

Now write X for ¥, and X for ¥, ,1; by the remarks in Section 1.1, we
can identify ¥ with #*X if n is odd and with *X% if n is even. We write -
for Clifford multiplication on ¥,,.; and ® for Clifford multiplication on 3,,.
On the spinor bundle the following holds:

Vit =Vt — v A(X) 4

This motivates the following generalization of Definition 1.19, due to Bar,
Gauduchon and Moroianu [6]:
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Definition 2.4. A spinor 1 is a generalized Killing spinor if there exists a
section A of Sym(7T'M) such that

V= JAX) v

Generalized Killing spinors with the additional property that the trace of
A is constant arise naturally in the study of the Dirac operator [20]; however
in the study of hypersurfaces this additional condition plays no evident role,
and for this reason we opt for the terminology in [6].
The following is now a straightforward consequence of (1.3):

Proposition 2.5. If 1 is a parallel spinor on M, then its restriction to M
is a generalized Killing spinor, and A is the Weingarten form.

Remark. The coefficient 1/2 in Definition 2.4 is not only motivated by the
fact that it allows to identify A with W, but it actually simplifies some
formulae.

A generalized Killing spinor is parallel with respect to the covariant deriv-
ative Vx — %Q (A(X)); therefore, Proposition 1.9 is satisfied, and the spinor
defines a G-structure with G < SO(n). From Proposition 1.35, one immedi-
ately proves:

Theorem 2.6. The G-structure on M defined by a spinor i satisfies

. 1

for some section A of Sym(TM) if and only if ¢ is a generalized Killing
spinor.

This theorem characterizes geometries defined by a generalized Killing
spinor by their intrinsic torsion, which takes values in Sym(7TM).

Now consider a parallel spinor v» on M; we know from section 1.3 that
1 defines an integrable structure on M. The restriction of ¥ to M is a
generalized Killing spinor, and therefore defines a G-structure Pg. On the
other hand, by Proposition 2.2, the integrable structure on M also induces
a G-structure on M; it can be easily verified that these structures are the
same. We can then restate Theorem 2.6 as follows:
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Theorem 2.7. If M has a parallel spinor v, then the intrinsic torsion of
Pg satisfies
. 1
pA 18] = —5v- At

We next give an example of Theorem 2.7 for 7-dimensional M; the cases
of dimension 5 and 6 will be treated in Section 2.4. Let M be 8-dimensional,
with an integrable Spin(7)-structure, and let i : M — M be an oriented
hypersurface. By Proposition 2.2, a Go-structure is induced on M; Theorem
2.7 asserts that its intrinsic torsion lies in Sym(7"). In order to reinterpret
this fact, we recall that a Spin(7)-structure is defined by a 4-form Q, and a

Go-structure is defined by a 3-form ¢. In our setup, they are linked by
xp =1"C);

then ¢ is closed because, by Theorem 1.16, d{2 = 0.
The intrinsic torsion of a Go-structure takes values in

Theorem 1.15 can be reformulated by saying that the component RS2 T*
is determined by dy, whereas the component g, & 7™ is determined by d * (;
these components have non-zero intersection because dy and d * ¢ are not
independent. In conclusion, d * ¢ = 0 forces the intrinsic torsion to take
values in R & SZ.

2.2 Five dimensions

We study 5-dimensional manifolds M with a spin structure P and a gener-
alized Killing spinor ¢. The stabilizer of a non-zero element of 5 is SU(2),
so 1 defines an SU(2)-structure Psy(a). We shall call Pyy(2) a hypo structure
on M, and hypo connection the connection on Psy(2) defined in Proposition
2.1.

Let ei,...,e5 be a basis of T = R, and e, ..., e’ the dual basis of T*.
Under the action of SO(4), and consequently of SU(2):

T = (61,...764> S <65>
which we write

T=ANoR.
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Consistently, we write A* for A¥(A!). A basis of A>T* is given by

wy = ' 4 ¢ wy = 13 4 22 ws = el 4 2
oy = €2 — 34 gy = e!3 — 12 o5 = et — 2

v =€5 fori=1...4

We identify AT with so(5) so that e.g.

e}

N | =

V1 =

v O O O
S OO OO
S OO OO
S OO OO
o O OO

As an SO(4)-module, so(5) splits as
s0(5) = su(2), @su(2)_ oA,

and the basis we have given respects this splitting, in the sense that

EU(2)+ = (wl,wg,w3> = Ai
511(2), = <O'1,0'2,0'3> = A%
A2 (vy, )

Let o, w', v* be the dual basis of s0(5)*.

On any SO(5)-module, we define an endomorphism J by the action of
2w;. In particular, J is an almost complex structure on A! with Jv; = v,,
Jug = vy, and acts in a similar fashion on T, T™, consistently with the
notation of Section 1.5.

Now consider the action of so(5) on X5 induced by the action of spin(5); if
viewed as an element of s0(5)* ® End(X5), in terms of the basis uy, ..., ug of
Y5 from Section 1.6, this action is given by:

—2f w! —v3 4+ vt vl =i 2w+ 2iWB
L o* 40t 2t =202 —2i0% —ul4iv?
-1+
Ad," = 1 ot —iv? 202 — 208 % ol it (2.5)
20% +2iw? vl 4 i0? V¥ + it 21 w!

Let 1y = ug. If one writes

SU(2),SU(2)_ = SO(4) < SO(5) ,
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the stabilizer of 1y is SU(2)_; we shall write simply SU(2) when there is no
ambiguity.
By looking at the first column of (2.5), and using p,w’ = %A - 1)g, we deduce

Proposition 2.8. If w is the Levi-Civita connection form and weyo) s the
hypo connection form, then w — wey) is given by

4
wl:—A5®w1—22Ai®JUi (2.6)
i=1

where A¥(X) = ek (A(X)).

Remark. This formula is consistent with Theorem 2.6. Indeed, from (2.5),
we see that

1
(A wh)yy = 3 (iA%ug + (—A® + iA Yus + (A" — iA%)uy) .
On the other hand, from the formulae in Section 1.6,
A ipy = iA%u + (—A* +iA Yug + (A" —iA% ), .

Since —Ow™ is the torsion of the hypo connection, we obtain the expected
result.

Hypo structures are SU(2)-structures on a 5-manifold; as such, it is quite
natural to ask what sort of U(2)-structures are induced by extension, i.e.
what the underlying almost contact metric structures are like. For the next
results, we refer the reader back to the definitions in Section 1.5.

Theorem 2.9. The Nijenhuis tensor of a hypo manifold is
N(X,)Y)=a(X)(AJY) = (JA)Y) .
Proof. Omitting summation over ¢ = 1,...,4, we have
g(VL)Y, Z) =2v(Y, Z)A" VE=A"® Je; ;
therefore (1.5) yields

g(N(X,Y),Z) = 2[A"(JX)v;(Y, Z) — A(JY )0y (X, Z) + A (X)wi(JY, Z)+
— AWV)i(JX, 2)] + a(V)A(X,JZ) — a(X)A(Y, JZ)
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For XY, Z € ker a:

g(N(&,Y), Z) = A(JY, Z) — A(Y, J Z)

g(N(&Y),§) = A(JY,§)
G(IN(X,Y), &) = A(JX,Y) — A(JY, X) + A(X, JY) — A(Y, JX)

proving the theorem by the symmetry of A. ]

Lemma 2.10. A hypo structure on M is contact if and only if

—1+a as 0 0 0

Qo —1—a 0 0 0

A= 0 0 —1—|—a3 ay 0
0 0 Ay —1—a3 0

0 0 0 0 as

where the a; are functions on M. It is K-contact if and only if in addition
as = ayg = 0.

Proof. The proof follows immediately from Vo = A* @ Je! and the remarks
in Section 1.5. O

Remark. We can restate the first part of Lemma 2.10 as follows: a hypo
structure is contact if and only if

wi (X, AY) + wi(AX,Y) = —2w,(X,Y) VX,V .

For M a hypersurface in a holonomy SU(3) 6-manifold, we recover the con-
dition on the Weingarten tensor characterizing contact hypersurfaces of a
Kéhler manifold found by Okumura [10].

We can now characterize hypo SU(2)-structures which are reductions of
Sasaki or quasi-Sasakian U(2)-structures:

Corollary 2.11. A hypo structure is quasi-Sasakian if and only if A com-
mutes with J. A hypo structure is Sasaki if and only if A = —id; a Sasaki
SU(2)-structure is hypo if and only if it is Einstein.

Proof. The first statement is an immediate consequence of Theorem 2.9.
From Lemma 2.10, it follows that a hypo structure is Sasaki if and only if

A=—-id4+aa®¢
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for some function a; we must prove that this condition implies a = —1.
We have

R(X7 é)w = vaﬁw - ngXw — V[X,g]l/J =

:%((Xa)ng (a+1)Vx{—al - X) ¢, (2.7)

and on the other hand (see e.g. [7]):

5
—RIC ¢:Zez Reza ’
=1

where e; is a local orthonormal basis. Using (2.7), we find

5

Ric(€) - = ((Bia)e; - §+ (a+ e - V& —al) - ).

i=1

By Proposition 1.25, the middle summand acts on ¢ like a multiple of wy,
and therefore trivially. On the other hand, every Sasaki 5-manifold satisfies
Ric(&) = 4¢ [10], so the first summand has to vanish and a = —1. O

Remark. Recall Friedrich and Kim’s characterization of n-Einstein-Sasaki
structures (Theorem 1.28). Our result is more special because we only con-
sider spinors which are preserved by the U(2)-structure; in the proof of Corol-
lary 2.11, this hypothesis appears in the form w; - » = 0. We conclude that
while a quasi-Sasakian Killing spinor defines both a hypo and an n-Einstein-
Sasaki structure, these two structures are not compatible, unless the metric
is Einstein. They are nonetheless related, suggesting that hypo geometry
may be used to study n-Einstein-Sasaki geometry.

We conclude this section by giving an explicit formula which will be useful
later.

Lemma 2.12. The curvature €0 of the Levi-Civita connection is related to
the curvature g2y of the hypo connection by

[Q]su@) = qu(2) + (Al A A2 - A3 A A4) ® o1+
+ (AN - ANAD Qo+ (ANAT - AN A @03 (2.8)
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Proof. Using (2.6) and [v;, v;] = 1€, a straightforward calculation yields

1 . . . . .
5[&,&] =—Y ANAQu+Y ANV (Je AT,

1,J

In particular

1
§[wl, wHewey. = (AP A A2 — AP AN AYoy + (AP A AP — AY A A op+
+ (A' AN AT — A2 A Aoy
and (2.1) proves the Lemma. O

2.3 An example

Consider the 5-manifold M = T? x N, where T? = R*/Z? is the torus and
N = H/T is a discrete compact quotient of the 3-dimensional Heisenberg
group; M has a global basis of 1-forms e, ..., e°, with e!,..., e closed and
de® = e'2. We view it as an {e}-structure, which we extend to a hypo
SU(2)-structure. A standard formula shows that the Levi-Civita connection
form is

Weos) = ° @ e+ 2 @e® —el @
so clearly

We(2) = 565 ®op .

By Equation 2.5, M is hypo and

S

I
o o o owe
o O ow~ o
coooo
coocoo
cooco

N[

The hypo curvature is clearly
L 1o
Qsuz) = ¢ ® oy .
The Levi-Civita curvature is

3 1 1
aofs) = 5612 ®el? — 5615 ® el® — 5625 ® 2 .
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In particular

3
[Q]su(Q) = 1612 Koy,

consistently with Lemma 2.12.

Remark. In this example, the curvature tensor is not symmetric. In general,
one has the first Bianchi identity

Dsu(2)® = qu(2) NGO )

when the left-hand side is zero, e.g. when the hypo structure is integrable,
it follows that the curvature tensor is symmetric.

Now let M = M X (—o00,2/3), with ¢ a coordinate on (—o0,2/3), and
define an {e}-structure by

3 1/3 3 1/3 3 ~1/3
(_§t+1> e, <_§t+1) €9, €3, €4, (—§t+1) es, dt ;

we claim that the SU(3)-structure obtained by extension is integrable. In
fact, in Chapter 5 we shall introduce a general technique to produce inte-
grable SU(3)-structures of this kind; for the moment, we simply write down
the curvature form:

qu(?)) — 2(612—656)®(612—656)—(615—662)®(615—€62)—(616—625)®(€16—625)

This equation tells us that the holonomy is SU(2) < SU(3). Moreover, it is
consistent with the Gauss equation, giving

(6 Qeu(s) so(s) = 212 @ e12 — 15 @ 15 — 25 g 2

2.4 Intrinsic torsion for G = SU(2),SU(3)

We study the intrinsic torsion of SU(2)-structures on 5-manifolds and SU(3)-
structures on 6-manifolds. The intrinsic torsion of an SU(2)-structure takes
values in the SU(2)-module T* ® su(2)1; we want to decompose this space
into irreducible components. First, we list some well-known facts:

e Over C, for each k > 0, there is a unique (k+1)-dimensional irreducible

SU(2)-module V*.
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e For k even, V¥ is the complexification of an irreducible real represen-
tation of SU(2).

e For k odd, V¥ @ V* is the complexification of an irreducible real rep-
resentation of SU(2).

e For h<k VFEVh=Vkhlg...qVkth
o SHVF) =VHgVAhig .
o N2(VF)=VH*2gVtg .

So the 3-dimensional SU(2)-module su(2) is isomorphic to V? and A' is
isomorphic to V3. Recall that we identify su(2) with su(2)_; therefore, su(2),
is a trivial representation.

Proposition 2.13. The intrinsic torsion of an SU(2)-structure takes values
in the SU(2)-module
TR @ 4N @ 4A” .

By Theorem 2.6, hypo SU(2)-structures are characterized by the condition
that their intrinsic torsion lie in Sym(7"). By the above remarks, we conclude:

Proposition 2.14. The intrinsic torsion of a hypo structure takes values in
the SU(2)-module
ReA @37 .

We now turn to SU(3)-structures. Let (7, J,w) be a 6-dimensional vector
space with a U(n)-structure; on Te = T1o @ Ty, J acts as ¢ & —i. We say
that an element a of AZT has type (p, q) if

XlJ ..._JXP_HJO( =0 VXl,...7Xp+1 € Tl?g
X1_| ..._IXqul_lOé =0 VXZ',...,Xq+1 € TO,l

We denote AP? the space of forms of type (p,q); each of these spaces is
a U(n)-module. There is a natural real structure on ALT, induced by the
conjugation on T¢, which swaps AP? and A9P. We use this real structure to
define real spaces [AP9], [APP] such that

A@ A= WG T, ptag
APP = [APP] R C .
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Consider the natural map AP~1971 — AP9 given by wedging with w; we
denote its cokernel by Af9. Then A§? is irreducible, not only as a U(n)-
module, but also as a SU(n)-module. The Lie algebra su(3) is isomorphic to
[Ag].

Proposition 2.15. The intrinsic torsion of an SU(3)-structure takes values
in the SU(3)-module

Wi S Wy B W5 P W, S Ws
where
W = 2R, W, 2 2[Ag] Ws = [Ag'] W, = 2A"

We define an SU(3)-structure to be half-flat if it is defined by a generalized
Killing spinor. This is not the classical definition, but we shall prove equiv-
alence in Section 2.7. For the moment, we recall that as an SU(3)-module,
AJ' 2 829 the same argument as before gives

Proposition 2.16. The intrinsic torsion of a half-flat structure takes values
in the SU(3)-module
Wr @ Wy ®@Ws |

where Wy is a submodule of Wy = 2R isomorphic to R, and W, is a sub-
module of W, = 2[Ay"] isomorphic to [Ay'].

For more details on the intrinsic torsion of SU(3)-structures, see [22, 15].

2.5 SU(3)-holonomy manifolds, hypersurfaces,
curvature

We compute the curvature of a generic hypo manifold M. If M arises as
a hypersurface in a SU(3)-holonomy manifold, we relate the curvature of
M to the curvature of the SU(3)-holonomy manifold which contains M as
a hypersurface. We know from Equations 2.1 and the identification of the
intrinsic torsion with the Weingarten form that the curvature and intrinsic
torsion of M determine the curvature of M, as sections of a bundle over
M. In this special case, we prove that this dependence is pointwise; in other
words, we are dealing with a bundle map. For details on the general theory
of SU(n)-holonomy manifolds, we refer to [31].
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Let M be a 5-manifold with a SO(4)-structure Pso(s). Eventually, we will
assume Pso(s) to be obtained from a hypo structure by extension, but we do
not need this hypothesis for the moment. Extend Pso) to a bundle Psos)
with fibre SO(5), and consider the Levi-Civita connection form w on Psos);
the curvature form is Dw, corresponding to a map

R:P— ANT*®s0(5) .
Following the notation of [26], we set R = 2Dw, so that
E(Xa Y) = [VXa VY] - V[X,Y] .

By the first Bianchi identity, R really takes values in the kernel R of the
natural map

a: SP(A*T*) — AT
having identified so(5) with A?T™. Recall that the Ricci tensor, taking values
in Ric = S?T™*, is defined by the contraction

m = Zﬁ<ei> “ '761') )

it is customary to write Ric = Ricg +R, separating the traceless part. Ac-
cordingly, we have an exact sequence of SO(5)-modules

0 — Weyl - R — Ricg®R — 0.

Now restrict the curvature to a tensorial form on Pgsory; then R is to be
viewed as an SO(4)-module.

Write T'= R @ A', where A! represents the standard 4-dimensional rep-
resentation of SO(4); we shall write A* for A*(A') and S? for S?(A'). Recall
that irreducible 8-dimensional modules K are defined by the exact sequence

of SO(4)-modules:
0—> Ky —>AN@AL —-A'—0.
Let W4 be the irreducible 5-dimensional module given by SZ(A%).

Proposition 2.17. The components of the Levi-Civita curvature of a five-
manifold with an SO(4)-structure take values in

Ricc=R®A' @ S3, Weyl=S; oW, e W_ oK, K_ .
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Proof. Clearly, Ric = 2R & A' @ S2, proving the first equation. From
NPT 2 AN @A e A2
it follows:

SPNT*)=3R®Sg @ S3(A2) D SE(A2) A '@ A2 O A A2 A2 A% =
=3R@2M' @25 oW, o W_0 K, ® K_

On the other hand A*T* =2 T* = R @ A, so by Schur’s lemma
R=2ReAN o25iaW, o W_ K, & K_. O

From the remarks of Section 2.4, it is easy to deduce that as SU(2)-modules,
AY, A%, W_ and K_ are irreducible, and W, K, A% are trivial. We imme-
diately conclude:

Corollary 2.18. As SU(2)-modules,
Rico=R®A' @372, Weyl=5R®3AN2OW_@2A'® K_ .

Now suppose M is a hypersurface in a holonomy SU(3) manifold M; we
want to relate the curvature of M to the curvature of M. For simplicity’s
sake, we do not refer explicitly to the principal bundles, but we have the
diagram of Proposition 2.2 in mind.

Let T = RS we write AP for APT. Define the exterior powers AP as usual
and the symmetric powers S”? in the same way. Write

[S*]=Ba[A'] ®R;
then Roy = B. We shall compute Rey as an SU(2)-module, and more
importantly, prove that the normal part of the curvature is pointwise deter-

mined by the tangential part. Both tasks require the following:

Lemma 2.19. The projection A*(T) — A*(T) is injective on su(3); its im-
age, as an SU(2)-module, is

su(3) = RO A @A .
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Proof. As SU(2)-modules, we can write
AMT)=NT)oToR;

the kernel of the projection is therefore T"® R. So, its restriction is injective
on su(3) C A?(T) if and only if

suB)N(T'®R)=0.

Since su(3) = [Ay'] contains no simple forms, injectivity holds.
The second part of the Lemma is straightforward. ]

Remark. An analogous result holds for g, and spin(7), which also contain no
simple forms. A similar property was considered by Reyes-Carrién in [30] in
the context of complexes of differential operators.

We can now prove:

Proposition 2.20. The curvature of a 6-manifold M with holonomy SU(3)
takes values in a space which as an SU(2)-module is

Roy =W_dK_®3\> AN aR.

If M is a hypersurface in M, the curvature of M at a point of M is deter-
mined by the tangential curvature at that point.

Recall that the tangential curvature at x is ([i5$]s0(5))2; in terms of Rie-
mann tensors, this means that all components with one or more normal
indices are discarded. Once again, we stress the fact that this statement is
pointwise, i.e. no derivatives are involved, unlike in (2.2).

Proof. Using Lemma 2.19 and SZ(A') = 3A2,
S?(su(3)) =3R®W_ B 2A' ®4A” @ K_;
The image of S%(su(3)) through a is R @ su(3) (see [31]); Lemma 2.19 gives

the first statement.
The second statement is also a straightforward consequence of Lemma 2.19.

[
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The relevance of this result comes from the fact that by the Gauss equa-
tion (2.4), the tangential part of the curvature of M is algebraically deter-
mined by the Weingarten form and the curvature of M. So, the relation
between the curvature of M, the curvature of M and the Weingarten form is
purely algebraic. That is to say, given a hypo manifold M which can be em-
bedded in a SU(3)-holonomy 6-manifold M, we can compute the curvature
of M along M without having to compute derivatives.

Remark. We do not make a distinction between Ric and Weyl for the Levi-
Civita connection on M because we are assuming SU(3) holonomy, and so the
curvature only consists of the Weyl tensor, or, more precisely, the Bochner
tensor [31].

So far in this section, we have only used the Levi-Civita connection on
M. For an embedded M, we can also use the Gauss equation to compute the
hypo curvature (namely, the curvature of the hypo connection). Whilst the
hypo connection depends on the SU(2)-structure, the hypo curvature only
depends on the Riemannian metrics:

Proposition 2.21. The hypo curvature of M is given by
qu(?) = 2[950(5)]511(2) - [Z;Q]su(Q) .
Proof. Let wgo(s) be the Riemannian connection induced by w. The tangential

curvature of w is related to the curvature of wee(s) by Gauss’ equation (2.4),
which upon restriction to su(2)_ gives

[Z;Q]su(Z) - [950(5)]5u(2) + (Al A A% — A3 VAN A4)0'1+
+ (A' A AP — AT A AB) oy + (AT A AT — A% A AP)os

Comparing this equation with Lemma 2.12 completes the proof. O
Let us check this result in the example of Section 2.3. Indeed, we have
[P 3 19 - 12
Qouz) = 2¢ D01, [Qeos)lourz) = 1€ ®0o1, [6,Qu@)lue =€° @01,

so Proposition 2.21 clearly holds.
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2.6 Embedding as hypersurfaces

So far we have seen that if M is an immersed hypersurface in M, where
M has a spin structure P and a parallel spinor 1), then a spin structure P
and a spinor ¢ are induced on M; since 1 is a generalized Killing spinor,
we have formulae for the curvature of the induced metric, and the intrinsic
torsion of the structure defined by . We now consider the inverse problem:
fix (M, Py, A), where M is a compact manifold, P is a spin structure, v is
a spinor and A is a symmetric tensor as in Definition 2.4. Is it possible to
embed M as a hypersurface in a spin manifold M with a spin structure P and
a parallel spinor ), such that 1 is the restriction of 9 and P is induced by
P? We shall say that (M, P, A) has the embedding property if the answer
is positive.

Remark. The reason for looking at embeddings rather than immersions is
that with this condition, for compact M, one can replace M with a tubular
neighbourhood of M in M, which topologically is just M x (a,b). Indeed,
what we aim at is a recipe to construct a metric on M X (a,b) which gives
the required embedding. To this end, it seems essential that M be compact:
otherwise, the interval (a,b) where the metric on M is defined might shrink
to zero when one goes to infinity along M.

The case of Killing spinors is settled by the following result [5]:

Theorem 2.22 (Bryant, Bér). If ¢ is a Killing spinor, then (M, P,, A)
has the embedding property. In particular if A= —1/2Id, M = M x, R*.

There is a converse to the second statement: if M is the cone over M,
then a parallel spinor on M restricts to a Killing spinor with Killing constant
—1/2 on M. However, this is obvious from the identification of A with the
Weingarten form W.

Theorem 2.23 (Biar-Gauduchon-Moroianu). If VA is totally symmetric,
then (M, P,v, A) has the embedding property.

In dimension 2, VA is always symmetric, and one recovers the following
theorem [19]:

Theorem 2.24 (Friedrich). Every two-dimensional (M, P,1, A) has the em-
bedding property.
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However, in this case the geometry of M is trivial, because by Theorem
1.12 a parallel spinor gives flatness in dimension 3. A more recent result is
the following [25]:

Theorem 2.25 (Hitchin). Every siz- or seven-dimensional (M, P,, A) has
the embedding property.

In the case of dimension 6, the holonomy of M is contained in G,. Indeed,
we know that the spinor representation in dimension 7 is real, so that a
parallel spinor may be assumed to be real; since the stabilizer of a real spinor
is Gg, a parallel spinor defines an integrable G, structure. One might also
view this fact as a consequence of Theorem 1.12: the holonomy of M must
be one of G, SU(3), Sp(2), Sp(1), {e}, and all of these are subgroups of Go.
Similarly, if M has dimension 7 then M has holonomy Spin(7).

Theorem 2.22 can be generalized in another direction, not related to the
embedding property; this result was proved by Bilal and Metzger in the
6-dimensional nearly-Kéhler case [9, 2]:

Theorem 2.26. Let (M, P,v)) be a manifold with a Killing spinor, and
Killing constant equal to —1/2. Then M = M Xgn) (0,7) also has a Killing
spinor with Killing constant equal to —1/2.

Proof. Take the cone M x, RY, and then the product with R, to define a

Y )
metric h on M x R, X ]R;/F , which then admits a parallel spinor by Theorem

2.22. Consider the inclusion
waR;CRXR:C;
then 6 — €% defines an embedding
j:Mx(0,m) = M xR xR"

and h pulls back to a metric j*h on M. Consequently, the parallel spinor
restricts to a generalized Killing spinor ¢ on M. Writing x + iy = pe®®,

h = y*g + da* + dy* = (sin® 0)p*g + dp* .

This clearly shows that j*h is indeed the warped product metric, and that h
is the conical metric over j*h, i.e. the Weingarten tensor of M is minus the
identity, where the minus sign is a consequence of v = —0/0,. Therefore v
is a Killing spinor with Killing constant equal to —1/2. O]
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2.7 Half-flat geometry

Let us return to SU(3)-structures in dimension 6. In this section we show
that these structures can be defined using differential forms; in particular, we
study structures defined by a generalized Killing spinor, that we call half-flat.
We shall prove that this definition matches with the standard definition.
Let T = RS with the action of Spin(6) = SU(4) given in Section 1.6. We
write AP for AP?(V*), where V is the 8-dimensional space with an SU(4)
action we used to define the spinor representation. We have seen that

Eér — Al,O oY A0’3 ’ Eg — AO,l ~ A3,0 )
Therefore
Eg— ® E+ — AQ,O D 52,0
St = Ay @R

Now, we have
R, p=20,6
[A%2°], p=1,5

NPT =
[A(I)J] ) p=24
2[5%°], p=3
Therefore, as Spin(6)-modules,
e ® X =ANT .

To compute explicitly this isomorphism, it helps to consider eigenvalues and
eigenspaces for the Clifford multiplication.

Lemma 2.27. For a real spinor 1, the space of two-forms whose Clifford
action has eigenvalues —3i and i, with corresponding eigenspaces (1) and
Y, is one-dimensional.

By a real spinor we mean a spinor of the form 1 + ¢, with ¥ in ©F;
Lemma 2.27 also holds for chiral spinors (i.e. elements of X7 U X 7). On the
other hand, a two-form does not determine a real spinor uniquely, but only
up to the action of the complex structure on V', corresponding to the fact
that a two-form by itself is not sufficient to reduce from SO(5) to SU(3).
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Lemma 2.28. For a real spinor 1, the space of three-forms whose Clifford
action has eigenvalues —4 and 0, with corresponding eigenspaces () and 1+,
15 one-dimensional.

Proposition 2.29. A spinor ¢ defines differential forms (w,¥™) character-
1zed up to multiple by

W¢:—3Z¢a ¢+¢:—4¢7
w- ¢ =id;, YTp=0 Ve,
Let u be a frame such that u*y) = ug; then
ww = e 4 M e Wt = 135 _ M6 _ 25 _ 236 (2.9)

Now fix a generalized Killing spinor ¢). In analogy with Section 2.2, we
define the half-flat connection, which is a connection on the SU(3)-structure.
Explicitly, the Levi-Civita connection differs from the hypo connection by

wJ_: (Al®(—635+€46)+A2®(—636—645)+A3®(615—€26)+

—|—A4 ® (616 + 625) + A5 ® (—613 + 624) + AG ® (—614 _ 623))

-

Recall that we defined a half-flat SU(3)-structure as the structure defined
on a 6-manifold by a generalized Killing spinor. However, we can think of an
SU(3)-structure as defined by forms (w, ™) which in a frame look like (2.9);
half-flatness can then be characterized in these terms:

Proposition 2.30. An SU(3)-structure is half-flat if and only if w* and ™+
are closed.

Proof. By Proposition 2.16 and [15], each condition means that the intrinsic
torsion is forced to lie in an SU(3)-module isomorphic to

R [Ay'] @ [A5'] -

A priori these isomorphic modules need not coincide; however, they have to
coincide if one of them is contained in the other one. It is therefore sufficient
to prove the “only if” part of the statement.

Now consider a half-flat structure; using the explicit formula for w™, it is
easy to check that ¢+ and w? have to be closed. O]
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Chapter 3

Invariant differential forms

In this chapter we study invariant differential forms on an associated vector
bundle P xg V', where P is a G-structure and V' a representation of G.

In the first section, we introduce the gauge group of P and we compute
its action on the manifold P x5 V. We conclude that the space of forms
which are invariant under this action is not interesting to us, because it does
not reflect the geometry of the base manifold.

In the second section, we define another action of the gauge group; compared
with the first one, this action is less natural, because it depends on the choice
of a connection on P. However, the resulting space of invariant forms is geo-
metrically more interesting.

Using the algebra of invariant forms, we can define invariant G-structures; to
impose intrinsic torsion conditions we must be able to compute the action of
the exterior derivative d on these forms. Unfortunately, the space of invariant
forms is not closed under d. In the third section we solve this problem by
imposing parallelism conditions: we assume that the connection has parallel
torsion, and we consider the algebra of invariant parallel forms.

In the fourth section we study this algebra as a module over the algebra
of invariant parallel functions. If G is compact and connected, this module
is finitely generated; we provide an effective characterization of systems of
generators.

In the fifth section, we specialize these results to the case V' = so(3), obtain-
ing more explicit formulae.

Our characterization of systems of generators is thus far not constructive,
and it does not help to compute the action of d; in the sixth section we
discuss a technique to produce generators, and compute the action of d on
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them.
The seventh section is devoted to the particular case of homogeneous spaces.

3.1 The gauge group

Let P be a G-structure on M. Consider the bundle G = P x5 G, where G
acts on itself by conjugation; the space G of its sections is called the gauge
group of P. Indeed, the bundle map
GxG—G
[u, g] x [u, h] — [u, gh]

induces a group structure on G. Now let (V, py/) be a G-module, and let X
be the total space of the vector bundle

V=PxegV;
then we have a bundle map
GxV -V (3.1)
[u, g] x [u,v] = [u, gv]
which is easily seen to be well-defined; in this way, G acts on X as a group
of diffeomorphisms. Whilst we are ultimately interested in the geometry
of X, we shall reserve the notation with the underscore for bundles on M

constructed from P, because eventually everything will be expressed in terms
of bundles on M.

Remark. The construction of V., and the action of G on it, generalizes to
arbitrary manifolds with a GG action, finite-dimensional or not.

We must define the action of G on Q(X); there are at least two possible
choices:

1. The action induced by the action on X in the following way:

go=(g")a, geg, acQX). (3.3)
2. The action induced by the action on I'(P x V):
[u, g](u, v) = (ug,v) . (3.4)
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To see how this induces an action on Q(X), let 7 : X — M be the
projection; then the pullback to X of P is

TP=PxV,

with principal H action given by (Rp,pv(h™')). As we shall see, by
choosing a connection on P we can make 7* P into a G-structure on X.
Then, an action on I'(7*P) gives an action on Q(X).

Whilst (3.3) seems the more natural action to consider, it is also the least
interesting from our point of view. We shall spend the rest of this section
explaining why. Consider the map

TPXxTV xTG——TX

| |

PxV xG X

given by

((w; '), (v30"), (9:9")) — ([u, gvl; [/, gv’ + g'v])

i |

(u,v,9) [u, gv]

Our notation is that, say, an element u’ of T, P is denoted (u;u’); for the
moment, we think of TX as determined by regarding X as a quotient of
P x V. Clearly, the map on the top row is the derivative of the map on
the bottom row. To compute the action of G on T'X, we proceed as follows.
Take a curve in X and lift it to a curve (uz, v;) in P x V. Consider a generic
element g of G; we view g as a map M — G which defines a curve (uy, g;) in

P x G by
[utagt] =g (ﬂ'([utavt})) ’

that one might also view as a section of the pullback of G to the interval on
which our curves are defined. The above diagram shows that g acts by

([Uo, vol; [UB, Ué]) - ([on Govo; [uf)a 90”6 + 967}0]) (3.5)
Now take a section s of T'X and write

s(x) = ([uo, vo); [ug, vp])  for some x = [ug, v}, v # 0 .

63



Choose g such that gy = e, and suppose that s is invariant under g; then
govo = vo. Hence, a section of TX invariant under all of G can only exist
if the (infinitesimal) action of G on V is trivial. In general, in order to
have invariant sections, one would have to restrict G. A valid option would
be to consider parallel elements of G, i.e. sections of G which locally have
the form [u,g] where ¢ is a constant and wu is horizontal with respect to
some connection. However, it is not hard to check that with this choice, the
pullback of a form on M is invariant; moreover, with a little bit of work one
can prove that the space of invariant forms is simply

QM) @ QV)E .

This space is not interesting because it does not quite reflect the geometry
of the situation: indeed, this space can be defined for an arbitrary princi-
pal bundle P and not only for G-structures. From our point of view, this
means losing significant information, i.e. the fact that the gauge group acts
infinitesimally on the manifold, beside acting on the fibre.

3.2 Gauge-invariant forms

The conclusion of Section 3.1 was that we are not interested in action (3.3);
for the rest of this chapter, the action of the gauge group will be (3.4).

In order to define this action, we have to make 7* P into a G-structure on X,
i.e. determine an isomorphism

M TXZr"Pxg(ToV),
where T" = R", so that T = T'M. Such an identification will give an inclusion
T TM=71"PxgT Cn*"Pxg(T®V)=TX,;

so having a G-structure on 7* P is essentially the same as having a notion of
horizontal lift for sections of V. Now fix a connection on P, with connection
form w; this choice determines an isomorphism A as above which we now
describe explicitly. Let 6 be the solder form on P, taking values in T". Define

AMT(PxV)—=mPx(TaV)
(u, v; 0/, 0") = (([u, v], w), (0 (), wu(u)v +0'))
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Since the solder form and the connection form are pseudotensorial, A is
G-equivariant:

A (ug, g7 v; (Ry)wtt', g7 10') =
(([ug. g7"v],ug). (Bg0)u(w), (Rpw)u(u)g™ v + g7 ') =
= gA(u,v;u’ ") .
Therefore A induces a map TX — 7P x (T @ V). Moreover, a section
[u,v] of ™ P x (T'& V) is a section of 7*P x T, if and only if, restricting to
every curve [u(t),v(t)], one has w,(u')v +v" = 0. This is exactly the same
thing as saying that V[u,v] = 0; in other words, A preserves the notion of

horizontality. In conclusion, A is the required isomorphism; in particular, it
induces an isomorphism

MAX)ZEaT'PxgAN(TaV), (3.6)

the notation being that for a vector space W, A*W is the exterior algebra
on W*, which we also denote AW™*.

Remark. The gauge group G acts on P on the right by
ulu, g = ug
and this is consistent with its action on V/, i.e.
[u, gl[u, v] = [u[u, g],v] .
The action of G on a form on M can be written
[u, gllu, o] = [ug,a] , a€ AT .

More generally, if we consider a W-valued pseudotensorial form a on M, we
can use the connection to write it as an equivariant map

a:P o NTRNgo W ;

the gauge group acts on « in the usual way.

By way of example, we can now prove the following:
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Proposition 3.1. The connection form w is G-invariant.
Proof. As a map on P, @ is constant; this implies G-invariance. n

We now express 2(X) as the space of sections of a bundle over M. Let
R = C*(V,G) be the space of G-valued functions on V; G acts on the left
on R by

(grv =g(r(g~"v)) -
Consider the map u: R, — I'(X,, 7*P) given by

N([uv T])[uﬂ,] = ([uuv]vurO))) ;

to check well-definedness, one needs ,u([u, r}) = u([ug, g_lr]), which follows
immediately from the definition of the action on R. For every open U C M,
1 induces a map

py DU, R) — T'(7 *(U), 7*P) .

By (3.1), the gauge group acts on sections of R.
Lemma 3.2. The maps puy are G-equivariant isomorphisms.

Proof. The only non-obvious part of the statement is equivariance. We can
work on a fibre X,; the action of [u, g] on R satisfies

p([, gl 1), gy = ([0 g0), ugr(v)) .
On the other hand, we have
p.11) oy = (far(@). 7= @)0),ur(v))
so the action of [u, g] on sections of 7* P is given by
[ur(v), 7= (v)gr ()] ([ur(v),r = ()v], ur(v)) = ([ugr(v),r~ (v)v], ugr(v)) ,
clearly showing that p is equivariant. O

We establish the following notation: if f is a map defined on V', then

(9" v = flgv) ;
we define a left G action on C*°(V') by

gf =g ")f.

66



Using
QV)=C®(V)e AV, (3.7)

we can extend this action to (V). Equivalently, we can use the pullback
and set

ga= (9 ")a.

Here, we are regarding V' as a manifold: the space (V') represents the space
of sections of a (trivial) bundle on V. However, to avoid ambiguity we shall
not call this bundle A(V).

Proposition 3.3. The maps py induce isomorphisms

D(TX)=T(C=(V)® (T®V))
Q(X) 2 T(AT @ Q(V))

Proof. Represent a section of 7P over X, by [u,r]. Smooth functions on X
can be identified with sections of C*°(V'). We have a pairing

[(Xe, mP %o (T V) x (C2(V) & (T" 0 V")) = (CF(V))s

[[u, ], (w & V)] x [u, f & (n® ] — [u, f(rw) + fE(rv")]

This pairing is the bundle version of the pairing
(ToeV)x (T"a V") —-R.
Using (3.7), (3.9) follows. Equation 3.8 is proved in a similar manner. [

Now identify A*T' ® Q(V') with the space Q(V, A*T") of A*T-valued forms
on V.

Theorem 3.4. Under the identification (5.9), the action of G on Q(X) is
given by

[u, gl[u, o @ B] = [u, ga @ g3] .

In particular, the space of invariant forms is

QX)7 = C®(M) @r UV, AT .
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Proof. By construction,

[, g][u, @ @ B] = [ug,a @ B] = [u, go @ ] ,

proving the first part of the theorem. As a consequence, the space of invariant
forms is

D(P % (QV,A'T)%)) .

On the other hand, Q(V, A*T)% is a trivial bundle, because by construction
the structure group G acts trivially on its fibre. Therefore

D(QV,A™T)®) = C%(M) @z QV.A'T)7
concluding the proof. O

The space of invariant forms we have found does not have the desirable
property of being closed under d. Indeed, it contains all functions on M, but
it does not contain all exact forms on M. In the next section we shall see
that imposing appropriate conditions on w, the space of parallel invariant
forms is d-closed.

3.3 Closure under d

We have seen that the algebra of invariant forms is not closed under d. We
can work around this problem by discarding the C*°(M) factor, and consider

QV,A'T)¢ 21 Q(V,A*T)% C Q(X)9 .

In this section we prove that this subalgebra of (X)) is indeed closed under
d, provided that the torsion of w is parallel.
First, we characterize this subalgebra as follows:

Lemma 3.5. A G-invariant form on X lies in Q(V, A*T)C if and only if it
is parallel as a section of Q(V, A*T).

Proof. A section of Q(V, A*T') can locally be written [s, a], where s is a section
of P and « takes values in Q(V, A*T"). Then,

Vis,a] = [s,da+ s*wa] = [s,da] ,

because « is G-invariant. Therefore [s, o] is parallel if and only if « is con-
stant. [
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Remark. The curvature form 2 cannot be expected to lie in Q(V, A*T)¢. For
instance, if P is the bundle of orthonormal frames and w is the Levi-Civita
connection, then the curvature can lie in Q(V, A*T)% only if M is locally
symmetric.

Proposition 3.6. Let W be a G-module, and let the torsion of w satisfy
VO =0.
Immerse (N*T @ W)€ into Q(M,W). Then (AT @ W)% is D-closed.

Proof. Let @ be an element of (A*T'®@ W)Y, By Lemma 3.5, Va = 0. At
each point, Da is determined by the torsion and Va in a G-equivariant way;
the statement follows. ]

We can identify Q(X) with Q(M,Q(V)). So, we identify C*(M) with
sections of C*(V), and Q'(M) with

L(QYV)) @ QY (M, C=(V)) .

We define the covariant derivative

L(C=(V)) — QY (M, C>(V))

in the usual way. The standard operator
d:C™(V)— QYV)
is G-equivariant, and it therefore induces a bundle map d.
Lemma 3.7. The map d : C*°(X) — QY(X) satisfies
dh = dh + Vh (3.10)

where h is a section of C>(V).

Proof. Tt is sufficient to prove the statement at a point [u, v] of X; let s be a
local section of P with u = s(x) for some z in M, and write h = [s, f]. We
must evaluate both sides of (3.10) on a vector

[u,w] € Ty X, weTaoV.
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Suppose first that w lies in V. Let o be a curve on V' with

then & = [u, 0] is a curve on X satisfying
0, (0) = [u,w] .

Clearly, we have
0,(6*h)(0) = df,(w) ,

so (3.10) holds in this case.
Now let w lie in T". Take a curve o(t) on M satisfying

c0)=z, o(0)=u,w]eT,M;

then & = [0*s,v] is a curve on X. We have

Mu,v;8',0) = (([u,v],u), (w,wu(s/)v)) , s =0(c"5)(0);

this implies

07 (0) = [u, w] + [u,w,(s)v] € T*TM & ker,, ,

which means that

(6" h)(0) = dhyyy ([u,w]) + dhjy, ([u,wu(s')v]) )

From the general formula for the covariant derivative:

(3.11)

Vi [s, f1 = [u, uul f + (S*W)([ua w])ﬂ - [u’ Ol f1+ [u7wu(5/)ﬂ ’

(3.12)

where Op, ] f is the derivative along [u,w] of f: M — C*(V'). By construc-

tion,

) f(v) = 0rf (0)(0) = 8i(67h)(0) ;

substituting (3.11) into (3.12) and using the fact that the infinitesimal action
of g on C*(V) is minus the derivation, we conclude that (3.10) also holds at

horizontal vectors [u, w].

We can now prove the following:
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Theorem 3.8. Ifw has parallel torsion, the space Q(V, A*T) is a differential
graded subalgebra of Q(X).

Proof. We extend (3.10) to differential forms. Like for functions, we have
bundle maps
d:QIV) — QI (V)

and differential operators

D QP(M,Q4(V)) — QP (M, Q4(V)) ;

we combine them into a differential operator

d: D(Q(M. (V) — D(Q(M. (V)
given by .
doa = da+ (1)’ Da,

where p is the degree on « as a form on M. This operator satisfies the
Leibnitz rule, and by Lemma 3.7 it agrees with d on functions; therefore,
d=d.

Since the differential operator d on Q(V') is G-equivariant, d maps invariant
forms to invariant forms. By Proposition 3.6, applied to W = Q(V), the
same holds for D. [

3.4 Invariant forms on a vector space

By Theorem 3.4, the problem of determining Q(X)Y is reduced to deter-
mining the space of G-invariant A*T-valued differential forms on V. In this
section we discuss this problem in a quite general form: we only assume that
G is compact and connected.

We rewrite Q(V, A*T') as
F={a: V-5, S=NTAV.

Let F¢ be the space of G-equivariant elements of F; we view F¢ as a
C*(V)%module. For every subspace W of F and v in V, we set

W, ={al)|aeW}.
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Lemma 3.9. Let W be a finitely generated submodule of F€, such that
W,=F%, YweV.
Then W = FC.

Proof. We construct elements wy, ...wy, of W such that for all v in V, the
non-zero w;(v) constitute a basis of W,; we shall then prove that wy, ..., wy
generate F¢. Let wy, ..., w; be any set of generators of W. Consider the set

U= {v eV |wg(v) is linearly dependent on w;(v),..., we_1(v)} ;

let f be a smooth function on V with f=1(0) = U. For instance, we can
take f to be the distance between wy(v) and the vector space spanned by
wi(v), ..., wg_1(v). Now define

4(z) = /G flgz)e

where g is the Haar measure on G. Clearly, ¢ is a G-invariant function with
g 1(0) = U. Thus, we have obtained elements

Wy, ..., Wg_1,qwg € W

such that at each v, the last element is either zero or linearly independent
of wy, ..., wg_q. Iterating this procedure for wy_1,...,ws, we find elements
with the required property.

At each v, since w; (v), ..., w(v) is a basis of F&, we can choose a dual basis
wi(v),...,wi(v). The w} can be extended to smooth, equivariant maps
V — S*. Then, for every a in FY, we have

k
a(v) =Y wi (v)(a(v))wi(v)
i=1
ie. a = > wi(a)w;. By construction, the wa are smooth invariant func-
tions; so, « is linearly dependent on the w;. O

We write H < GG if H is a closed subgroup of G. We say that V has a
finite number of orbit types if

{Stab(v) | v € V'}

contains a finite number of conjugacy classes. The following is well known
(see [11]):
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Lemma 3.10. An orthogonal representation of a compact group has a finite
number of orbit types.

We shall also need the following;:

Theorem 3.11. Let M and N be manifolds on which a compact Lie group
G acts, and let A be a closed invariant subspace of M. Then every smooth
equivariant map ¢ : A — N can be extended to a smooth equivariant map
¢: M — N.

Proof. By a theorem of Tietze-Gleason, we can extend ¢ to a continuous
equivariant gz~5 : M — N. By Bredon’s Smooth Approximation Theorem,
we can approximate gz~5 with a smooth ¢ which on A coincides with ¢, and
therefore ¢. For details, we refer to [11]. O

We can now prove the main theorem of this section:

Theorem 3.12. F¢ is finitely generated. Let W be a finitely generated
submodule of FC; then W coincides with all of F€ if and only if

W, = S5bvyy e V. (3.13)

Proof. Let W be a finitely generated submodule of F¢ satisfying (3.13). Let
a:V — S be invariant; clearly, a(v) is fixed by Stab(v). So,

Wv g FS g SStab(v) ’

and by hypothesis equality holds. By Lemma 3.9, W = F¢ which is there-
fore finitely generated. Therefore, to prove the theorem we must construct a
finitely generated W satisfying (3.13).

Choose a group H which is the stabilizer of a point of V', and let sq,..., sk
be a basis of S™. For each s;, we shall construct an equivariant map

5,: V=S

such that 3;(v) is a non-zero multiple of s; at each v with stabilizer H. By
equivariance, it will follow that 5;(v),...,8(v) is a basis of S5%P? for all v
with stabilizer conjugate to H. By Lemma 3.10, it is sufficient to consider
a finite number of H; thus, we obtain a finite collection of equivariant maps
from V' to S, which generate a module W with the required properties. It
only remains to construct the s;.
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Observe first that since G is compact, the number of K < G which have
the same Lie algebra as H is finite. For every such K containing H, choose
an element g € K \ H. At each point v of V¥ consider the map

g/f) — End(V)

induced by the infinitesimal action of GG; this map is injective if and only if
Stabv has the same Lie algebra as H. Therefore we can define a smooth
function f on V¥ satisfying

f(v) >0 if Stabwv has the same Lie algebra as H ,
f(v) =0 otherwise.

Now consider the function on V7

f)y=re) I lox) =l ;
e=b

by construction, fﬁl(()) is the subset of V# where the stabilizer is bigger
than H. So, we can set

5. VIsu— fu)sie S,

which extends to an equivariant map on GV#. Since GV is closed, we can

apply Theorem 3.11 to extend S; to an equivariant map defined on all of
V. m

When checking the criterion of Theorem 3.12, it may be useful to separate
forms by degree. More precisely, we say that a form in F has bidegree (p, q)
if it takes values in

Sy = AT @ ATV ;

we denote F,, the space of forms of bidegree (p,q). We have thus made F
into a bigraded vector space. As the S,, are G-stable, Theorem 3.12 still
holds if one replaces (3.13) with

W N Fpe)e = (S,0)"" YoeV .
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3.5 The fibre so(3)

In this section we give a more explicit version of Theorem 3.12 for the case
V = s0(3), where either G = SO(3) acting through the adjoint representa-
tion, or there exists an epimorphism

p: G — SO(3)

such that the action of G on s0(3) is induced by the adjoint representation. In
fact, the latter case includes the former, setting p equal to the identity. We set
K = kerp, so that G/K = SO(3). Given a G-module Y, this identification
makes Y% into an SO(3)-module.

Theorem 3.13. IfV = s0(3), the space of G-invariant forms F€ is a finitely
generated C>(V)%-module. With notation from Section 2.4, write

(APTHE 2B V0 & - @mb V.

Let aq, ..., q, be elements of fgq; then oy, ..., a, generate fgq if and only

iof for allv in'V

mg U:O,QZO,S
. mh v=0,¢=1,2
dim(ay(v), ..., an(v)) = ;23 P ’ =

mh+ - +mh, v#0,¢=0,3

mg 4+ 3mh +---+3mb, v#£0, ¢=1,2

Before proving the theorem, we remark that the m?, can be computed
explicitly with the techniques explained in Section 2.4, which makes this
theorem an effective criterion to determine whether a given family of invariant
forms is a basis.
Proof. We view invariant forms of bidegree (p, ¢) as invariant maps

V— 8,,=ANT"®AN(s0(3))" .

Since K acts trivially on s0(3), such maps are bound to take values in

7 = (N’T*)* @ N(s0(3))" .
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By Theorem 3.12, it suffices to compute the dimension of Z5%*(*) Now, non-
zero points of s0(3) have stabilizer U(1), whereas zero has stabilizer SO(3).
By construction, we have

(APTHE =2mbV0 g ...
(AT @ Al(so(3))  2mhV' o . ..
(APT*)X @ A*(s0(3))* 2 mbV @...
(AT @ A3 (s0(3))" = mkV

where the dots represent SO(3)-modules with no fixed points; so the dimen-
sion of Z5°G) is either m} or m}, depending on q.

To compute the dimension of ZV™M, observe first that every V?* contains
exactly one one-dimensional trivial U(1)-module. So every non-trivial, ir-
reducible component of Z, on tensoring with V2, gives rise to a three-
dimensional trivial U(1)-module; on the other hand, V° ® V? only contains
a one-dimensional trivial U(1)-module. O

Remark. The adjoint representation of SO(3) is polar; in particular, the space
of invariant functions can be identified with the space of smooth functions
on the half-line [0, 400).

3.6 Constructing invariant forms

Theorem 3.12 does not completely solve the problem of computing the alge-
bra of invariant forms. Even when the need to compute stabilizers poses no
problem, as in the case of G = SO(3), one still needs to determine the action
of d. We know from Section 3.3 that if w has parallel torsion, d maps invari-
ant forms to invariant forms, thereby making F¢ into a differential graded
algebra; the action of d depends on the geometry of M - which is precisely
what makes this space of forms interesting from our point of view. In this
section we illustrate a technique to produce elements of F, and to determine
how d acts on them.

Fix a G-invariant metric on V. We consider invariant 7*V -valued forms,
among which we can find some canonical elements. As an obvious extension

of Theorem 3.4, we find
QUX, V) =ZCMRF, F=QV,ANTeV)¢
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Let i : V* — A*T™* be a non-zero, G-equivariant map for some k. In applica-
tions, ¢ will factor through a G-equivariant metric V* — V', and moreover V'
will be irreducible, forcing 7 to be injective; however, we shall not need these
hypotheses for the moment. The corresponding element

c € AkT* RV

gives a constant element of F, also denoted ¢;. Geometrically, one can inter-
pret ¢; as the pullback of the section of A*(M,V) defined by i. The identity
map a: V — V also lies in F.

Recall that in order to view 7*P as a G-structure, we had to fix a con-
nection, which we are assuming to have parallel torsion; let D be the corre-
sponding exterior covariant differential. By Proposition 3.6, F is D-closed.
It is quite obvious that D satisfies the Leibnitz rule, which we state in the
bilinear case:

Proposition 3.14. Let f : V@V — V be a linear, G-equivariant map.
Then the induced map o .
i i FQF —-F
satisfies
Df*(Oél X CYQ) = f*(DOél X Oég) -+ (—1)dega1f*<041 X DO(Q) s

for every aq, as in F.

Now consider the space Hom(7, V'), where

T=FHve

r>0

We think of multilinear maps V" — V as elements of Hom(7,V) by ex-
tending to zero. In particular, Hom(7, V') has a canonical element given by
the identity V' — V. Using the metric,

Hom(V®', V) =y

and therefore Hom(7,V) = @,.,V®" which gives Hom(7,V) an algebra
structure (without unit); explicitly, if a has degree p,

(o B)(v1, .5 0n) = (1, ..., V) B(Vpg1, Un—1) - Up -
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However, there is a choice involved in this definition, because one could
replace v; with v,(;), o being a permutation of 1,...,n. We shall loosely
say that some elements of Hom(7, V) generate Hom(7, V)% if a basis of the
latter can be obtained from the given elements through multiplications, with
respect to any of this algebra structures.

If f € Hom(7,V)%, then f, maps r-tuples of invariant elements to invariant
elements. Now let A be the smallest subspace of F satisfying the following
conditions:

e A contains D"a for all n > 0, where D" = Do ---0 D n times;
e A contains D"¢; for all n > 0, and all equivariant ¢ : V* — AFT™;

o A contains f,(a1 ® - -+ ® ay) for every p-tuple (ay, ..., a,) of elements
of A and every G-invariant multilinear f : V®" — V.

Remark. When checking the last condition, it suffices to consider a set of
generators of Hom(7, V)¢,
The metric V ® V' — R induces a map

FXF—F;

let A be the subalgebra of F generated by the image of A under -.

Remark. There would nothing to be gained in considering all of the multi-
linear maps in Hom(7, R)% rather than just -, because of the definition of

A.
Proposition 3.15. A is a differential graded subalgebra of F¢.

Proof. The generators a and ¢; are clearly G-invariant. The maps f, (with
notation from Proposition 3.14) and D preserve invariance, so G acts trivially
on A. Since the map - is equivariant, it follows that A is contained in FC.
The fact that A is stable under d follows from the Leibnitz rule

d(oq . (1/2) = Da1 c Qg + (_1)dega1a1 . DOZQ . ]

Remark. In general, one cannot hope that F¢ = A. For instance, if there
is no equivariant ¢ with k£ = 1, all 1-forms in A vanish at the zero section,
whereas the same need not hold for F¢. However, in many cases this is the
only thing that goes wrong, and we can work around this problem dividing
by suitable elements of C>(V)¢.
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Remark. The vector bundle A¥(X) has a tautological section, induced by the
map ¢: this section is actually a - ¢;. In fact, write ¢ for ¢; and let s be a
local section of P; then a choice of an orthonormal basis on V gives a local

orthonormal basis ey, ..., e, of X, so that the generic element of X has the
form (z; a’e;), where summation over j = 1,...,n is implied. Then

Ua;ate;) = a’ @e; and Clasaie;) = i) @e;, (3.14)
so that

(Cl ' C)(a:;ajej) = aj ® Z(ej) = Z(ajej) :

We can define the bidegree of an element of F just like we did for elements
of F; it is clear that ¢; has bidegree (k,0). Let b = Da. We immediately
conclude:

Lemma 3.16. As an element of F, b has bidegree (0,1). At a point © in X,
the linear maps

(ci)w : AM(T,X) — X, C AS(TFM) (3.15)
by ToX — X, (3.16)
are onto.
Remark. A canonical element of Q°(X)% is the function a - a. We have
dla-a)=2a-b.

Example 3.16.1. Suppose that G is the trivial group; applying our tech-
nique yields:

A={a € F%|dega #1ora0)=0}.

Indeed, we know that

FO=F2QV,AT)=QV)®@ AT ;

in particular, ]-"cho is the space of functions on V. Take a basis ey, ..., e, of
V and a basis a!,...,a™ of T*. Define maps
wi VS =T

by wij(ek) = 0k, which of course are equivariant with respect to the action
of the trivial group. By construction, e;; = e,,, is in A. Hence,

a- e = akey - ae; = a'a’
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is in 4. On the other hand, write b = b*e;, a = a”e;, and define endomor-
phisms f;; by fij(ex) = dixe;, . By construction, A contains (fij)«b for all i,
and A contains

a- (fij)b=a"ey - bie; = alb’ .
By Lemma 3.16, at each point the 1-forms (%), span V*.
By using Taylor series, one sees immediately that every degree 1 element of
F which vanishes at the origin of V' belongs to the C*°(V')-module generated
by {a’a’,;a’b'}, and therefore to A. On the other hand if one looks at, say,
two-forms, one finds that

eij-ekj:oz 3 eij-bkj:oz /\b, bl]bkj:b 3

and a similar result holds for all p-forms, p > 1.

Thus, we have proved our claim that A is strictly contained in F¢. However,
it is clear that by allowing division by a - a we obtain the full algebra of
invariant forms.

By the Leibnitz rule, in order to compute the action of d on A it is
sufficient to compute Db and D¢;. We have the following:

Lemma 3.17. We have
Db=QANa,

where contraction g @ V. — V is implied. If w is torsion-free, then Dc; = 0,
and as a consequence,
da-¢)="b-¢.

Proof. Since Db is D?a, by a general formula Db = Q A a, even though
might not lie in F¢.
Now assume w is torsion-free, and let 8 be the solder form. By construction,

C; = 271(9’{) s

where contraction T® ---® T — A*T is implied, and by hypothesis D = 0;
the Leibnitz rule gives D¢; = 0. [

3.7 Homogeneous spaces

In this section we consider the particular case of a homogeneous space

M =G/H ;
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we view G as a principal bundle P over M with fibre H. In this case, we can
define a stronger notion of invariance, using the left action of GG on itself. This
has the consequence of eliminating the factor C*°(M) appearing in Theorem
3.4, because left-invariant functions on M are constant; in other words, the
space of invariant forms is simply F. It is clear that d preserves left-
invariance, i.e. F¥ is d-closed. In general, we cannot assume the existence
of an invariant torsion-free connection, in order to apply Lemma 3.17; on the
other hand, all the calculations needed to determine the action of d reduce
to simple calculations on a Lie algebra.
We begin this discussion with a general remark of topological nature.

Theorem 3.18. If GG is a connected, compact group acting on X, the inclu-
sion Q(X)Y — Q(X) induces an isomorphism in cohomology.

For the proof, we refer to [23]. In the present setup, Theorem 3.18 tells us
that 7 has the same cohomology as X and therefore G/H, provided G is
compact and connected. This is related to the fact that while the definition of
FH only depends on H and V/, the action of d depends on the local geometry
of G/H.

Remark. Another possibility is to fix a H-stable submanifold j : N — V,
and consider the manifold
M =G X g N .

Suppose that every invariant form on N can be extended to an invariant
form on V; then Theorem 3.18 implies that the cohomology of N coincides
with the cohomology of j*(FH).

We shall now restate some well-known results on homogeneous spaces in
a language that suits our needs; for details, we refer to [26]. We essentially
retain the notation from the last sections, except that the fibre of P is now
called H instead of G: so, we fix a H-module V and set X = G xy V. Let

T =g/b.

Proposition 3.19. Let (W, pw) be a H-module. The restriction to the
identity defines an isomorphism from the space of G-invariant W -valued
pseudotensorial forms on P to the space

(AT @ h) W)T.
Similarly, invariant tensorial forms are identified with

(AT @ W) .
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Proof. Let w be a G-invariant W-valued pseudotensorial p-form on P, i.e.
an element of

{we NG W) | Rw=pw(h )owVheH, Liw=wVgeG}.

From Ad(g) = Ly o R,-1, it follows that Ad(h)*w = pw(h) ow for all h in
H. This means that w, is H-equivariant as a map from APg to W, namely
H-invariant as an element of APg* @ W.

Vice versa, let w, : APg — W be H-equivariant. Define a form w on P
by w, = Lj-we; then w is clearly G-invariant and pseudotensorial at the
identity, and consequently pseudotensorial everywhere.

The second assertion follows from the fact that a G-invariant pseudotensorial
form is tensorial if and only if it is at the identity:. O]

Corollary 3.20. The space of G-invariant connections on P can be identified
with
{m|hpe&m=g,[h,m Cm}.
The corresponding operator D from invariant pseudotensorial p-forms to in-
variant tensorial p + 1-forms can be expressed as
D(Apg*®W)H—>(Ap+lg*®W>H
a®w — do|ppripgs @ W

Proof. By Proposition 3.19, the connection form corresponds to a H-invariant
element 1, of Hom(g, h) = g* ® b, and by the definition of a connection form
T, must restrict to the identity on h. The kernel m of m, (which corresponds
to the distribution of horizontal spaces and determines ) must then be

H-invariant, and consequently h-invariant. The converse is proved in the
same way. O

Remark. 1f « is tensorial, by Proposition 1.32 we can write
Da@w)=da®@w+ (—1)PaAmy-w,
where 7y is the connection form.
Now fix a connection m, and identify 7" with m. We write
(X, Y] = [X,V]g + [X, Y]m,

according to the splitting g = b + m. In the language of Proposition 3.19,
the canonical form is the projection 7, : ¢ — m. From this and Corollary
3.20, one easily proves:
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Theorem 3.21. On G/H with the connection determined by m, let © be the
torsion and R the curvature tensor. Then

e O(X,Y) = —1[X,Y]n for all XY inm.

o R(X,Y)Z = —[[X,Y]y, Z] for all X,Y,Z inm.
e VO =0

e VR=0

Remark. Theorem 3.21 shows that a torsion-free m exists if and only if G/H
is a symmetric space. It also shows that we can apply Theorem 3.8, which
in this case reduces to the trivial remark that the space of G-invariant forms
on X is closed under d.

We can now apply these results to the study of invariant forms on X. As
usual, let 7 : X — M be the projection; then the pullback to X of P is

TP=GxV,

with principal H action given by (Ry, py/(h™1)). The tangent space of 7* P on
{e} x Vis g@® V and its vertical subspace is h x {0}; the horizontal subspace
with respect to the pullback of the connection induced by m is m & V, the
connection form being given by the projection. The analogue of Proposition
3.19 is:

Proposition 3.22. The restriction to {e} x V' defines an isomorphism from
the space of G-invariant W -valued tensorial forms on w* P to the space

{a: VAN TaV)W |« is H-equivariant}
and the space of invariant tensorial forms is identified with
QV,AT* @ W) (3.17)
In particular,
QX)C = Q(V, AT

Proof. The first statement is completely analogous to Proposition 3.19. The
second statement follows from the fact that under the action of H one has a
decomposition
AMToV) = Y ANT oAV,
h>0,k>0

and every invariant « splits into invariant components accordingly. ]
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Q%(X)% consists of H-invariant functions on V, which is typically infinite
dimensional as a vector space, and so is QP(X)%, which we view as a free
Q°(X)%-module.

The analogue of the formula in Corollary 3.20 is slightly more complicated:
consider the maps

QP (V, Am*) > a — da € QPTH(V, Am*)
PV,Am") > a —doa € QP(V,Ag")

the second of which is induced by d : A*m* — AF*lg*. We can replace
Lemma 3.17 with the following:

Lemma 3.23. Let a ® w be an element of QP(V, Am* @ W)H | where a is a
p-form taking values in Am* and w is a W-valued function. Then

Da®w)=dla®@w)+ (-1)’(doa) w+ Ty Ao w .

Proof. Follows from the general formula of Proposition 1.32 and the fact that
the connection form is my,. O

Remark. If G/H is symmetric, Lemma 3.17 completely determines the action
of d on A: the ¢; are D-closed, and Db is determined by the curvature (which
can be computed using Theorem 3.21). However, in Section 4.6 we shall
consider a symmetric space for which A is strictly contained in F¢; in order
to compute the action of d on forms not lying in A, we shall need Lemma
3.23.

84



Chapter 4

Explicit invariant metrics

In this chapter we apply the results of Chapter 3 to construct invariant special
geometries explicitly.

In the first section, we compute the algebra of SO(3)-invariant forms on
T*S%. We give a simple characterization in terms of forms of hyperkihler
structures in four dimensions, and use it to construct the celebrated Eguchi-
Hanson metric on 7*S?.

In the second section, we describe a technique of Apostolov and Salamon to
produce Gy-holonomy metrics, starting from a hyperkahler 4-manifold. We
apply this technique to the hyperkihler structure on 7%S? to produce a new
Gy-holonomy metric on 7%S? x R.

The third section is preparatory to the study of the remaining examples,
where the fibre equals s0(3). As opposed to the similarly named section of
Chapter 3, this one is concerned with the construction of A. In particular
we show that in this case, the space of “letters” A forms a Lie superalgebra.
In the fourth section we consider another example related to holonomy Go:
the bundle A%2.S* with the natural action of SO(5). Again, we compute the
algebra of invariant forms; this time, the complete Go-holonomy metric that
we write down is well known.

In the fifth section, we look at CP? as a subbundle of A%S*, corresponding
to the twistor fibration. One can think of A%2.S* as a blow-up of the cone
over CP?; one of the Go-holonomy metrics of A2S* is compatible with this
description, yielding a nearly-Kéhler structure on CP?. Other non-conical
Ga-holonomy metrics induce half-flat structures on CP?. What we prove in
this section is that all invariant SU(3)-structures are half-flat, and essentially
only one of them is nearly-Kahler. Having discovered that the underlying
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almost complex structure is never integrable, we write down a more general
family of invariant almost-hermitian structures which does contain complex
(in fact, Kéhler) structures.

In the sixth section we study the total space of the vector bundle

28—233; Xso(3) 50(3) ,

motivated by quaternionic geometry.

4.1 The Eguchi-Hanson metric on 7*S5?

In this section we construct a hyperkihler structure on 7*S?, invariant under
the global action of SO(3).

In the language of Section 3.7, we set
G = S0O(3), H =850(2), V = (s0(3)/s0(2))" .

Clearly, G/H = 5% and X = T*S?. Let ey, eq, €3 be a basis of s0(3) reflecting
the splitting

50(3) =s0(2) DR?;

the dual basis e!, €2, €3 of 50(3)* may be assumed to satisfy
de' = e* de* = e de® = e .

As an SO(2)-module, V' = (R?)* = R?. The adjoint action of ¢; defines an al-
most complex structure J on V' with Jey = —e3; the space of SO(2)-invariant
maps 7 — V is generated by the identity and J. The corresponding
maps V ® V. — V are the inner product - and the determinant o, where
o(X,)Y)=JX" Y.

Let i : V* — AY(R?)* be the identity, and let ¢ be the corresponding element
of QY(X)%. For short, we shall write, for example, ab for a - b. Recall the
differential graded algebra A constructed in Section 3.6. In this case, we find
that A = F# and more precisely:
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Theorem 4.1. The space of invariant forms Q(T*S?)3°G) coincides with A.
A basis over the algebra of invariant functions is

Degree | Rank | Basis

1

ab,ac,o(a,b),o(a,c)

be,a(b,b),o(b,c),o(c,c),ab A ac,o(a,b) A o(a,c)

ab A o(c,c),o(a,b) No(c,c),ac ANa(b,b),o(a,c) Ao(b,b)
bc?

= w N = O
el N

Proof. We apply Theorem 3.12. Let W C F be the algebra generated by
the forms appearing in the table. Recall that for v in V', W, is defined as
the image of {v} X W in A*V ® A*R? under evaluation. Now, we have to
compute

dim(AP(V @ R?)*)Stab) =y c v .
For v # 0, Stab(v) is trivial and this dimension is (;t), which is also the
dimension of

WP ={aeW,|dega =p} .
On the other hand, Stab(0) = SO(2), and

4
3

I

1
dim (A?(V @ R?)")>® = {0,
4

=T~ T
I
N = O

Y

which coincide with the dimension of W{. In conclusion, by dimension count

Wp = (AP(V @ Rz)*)swb(v)

YoeV . [

All we need in order to compute the exterior derivative of elements of A
is a formula for Dc and a formula for Db. First, we must fix a connection; we
take R? as the horizontal space, so that the connection form is ¥ = e' ® e;.
By Proposition 3.20 (or Theorem 3.21), the curvature is

UV=eBRe;
we can write e?* = —20(c, ¢), so
Db=V.q= —%cr(c,c) Ja . (4.1)
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On the other hand, Dc = 0 by Lemma 3.17.

We now use the algebra of invariant forms to construct a hyperkéahler
structure on 7%S?, whose underlying metric is known as the Eguchi-Hanson
metric [18]. We shall need the following:

Lemma 4.2. Given symplectic 2-forms w1, ws, wz on a 4-manifold M sat-
isfying

W; A Wy = 51']"/
for some volume form v, define endomorphisms Jy, Jo, J3 of TM by

JgXJ Wy = X_lu)l (42)

and its cyclic permutations. This establishes a one-to-one correspondence
between triplets (w1, ws,ws) of this kind satisfying

ws (X, JgX) >0
and hyperkdahler structures on M.

Remark. From the proof of Lemma 4.2, it will follow that ws(X, J5X) > 0 if
and only if, say, wy(X, J;1X) > 0.

Proof. Suppose we have w; as in the hypothesis, and define J; accordingly;
we have to show that J; = JiJy and (w;, J;) defines a Kéhler structure, the
corresponding metric not depending on 7. Observe that

w1 (X, J3X) = wa(J3X, 3X) =0,
and the same holds for w,. Fix a vector field X, rescaled so that
wy(X, J5X)=1.
Then
0=J3X X (wAws) = = (Xaw) A (SXows)+ (BXsw) A (Xows) 4wy,
and the same holds for ws; consequently we have

w1 = (XJ wl) N (JgXJ(.Ug) -+ (X_I CL)3) A (JgXJ wl)

wy = (Xowy) A (J3Xaws) + (Xaws) A (J3Xaws) (4.3)
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Applying (4.2) to a vector field Z, we conclude
w3(X, Z)J5X — (w3( X, Z) +w3(X, J32)) I3 X +ws(J3X, J3Z)X =0 (4.4)
From (4.3) we also get

0= w1 A\ wy = (X_Ju)3> A <J3X_ICU1) VAN (X_ICUQ) VAN (JgXJWg) =
= (Xows) A (J2Xows) A (Xow) A (JsXows) (4.5)

Now, since
0 7& wg = 2(X4w2) N (JgXJWg) A (XJu}g) A (JgXJLdQ) s

we discover that on writing J2X as a linear combination of J3X and X in

accordance with (4.4), the J3X component is zero, i.e. J2X is a multiple of

X. From w? = w2, we deduce

(Xle) A (JgX_I W3) VAN (X_I W3) VAN (J3XJCU1) =
= (X_l CL)Q) A (JgXJ L(J3) A (XJ w;;) A\ (J;J,XJ wg)
which tells us that J;X = —X. So J3 is an almost complex structure;

moreover, by (4.4)
UJ3(X, Z) = LU3(J3X, J3Z) .

The same argument applies to w; and wy as well; the conclusion is that (w;, J;)
are almost-Kahler structures. Moreover, J3 = J;.J5, because

J2J1J3XJW1 = J1J3X_Jw3 = J3X_Jw2 = Xle .
It remains to check that the three Kahler metrics coincide. Indeed, by (4.2)
wl(X, J1Y) = —wl(J1Y, X) = W3<J2J1Yv, X) = a)g(X, JgY) s

and the same holds for wy. By a result mentioned in Section 1.3, (w;, J;) is a
hyperkéhler structure on M.

Conversely, if M is hyperkéhler, then to each complex structure J; there
corresponds a Kéhler form w;; then w? equals twice the volume form for all
i. We need to check that (4.2) holds. Define J by X jw; = JX jwy and let
g be the Riemannian metric; then

g(J1X7Y) = g(JZJXv Y) )
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so J; = JoJ. Since J; = JyJ3, we conclude that J = Js.
It remains to prove that, say, w; A wy = 0. Observe first that

w1 (X, J3X) = wo(J3X, J3X) =0,
and the same holds for wsy. Therefore,
XX 3 (w1 Aws) = (Xowy) A (J3X awy) — (J3Xwr) A (X ows)
and both summands clearly vanish, proving that w; A wy vanishes. O]

At this point, we know what to look for and we know where to look; we
find the following:

Theorem 4.3. The total space of T*S? has a hyperkihler structure defined
as follows:

wy = be
1 1
w2 = 5(&@ + k)_1/20-<b7 b) B E(aa + k?)l/20'(0, C) (46)

ws = oa(b,c)
where k 1s any positive constant.

Proof. We know that Dc = 0; in particular, o(c, ¢) is closed. From Proposi-
tion 3.14 and (4.1)

Do (b, c) = —%a(a(c, ¢)Ja,c) =0
because A*(R?) = 0. The same argument (or d*> = 0) gives d(bc) = 0. Now
do(b,b) = —o(o(c,c) Ja,b) = —c(c,c) o(Ja,b) = a(c,c)ab,
so it is easy to check that all the w; are closed. It is also easy to check that
wi Awj = 6;; bc* . (4.7)

Since Jy acts as J vertically, and as —J horizontally, wy (X, J2X) > 0 and
Lemma 4.2 concludes the proof. m
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4.2 T*S? xR

We construct an integrable Go-structure on 7*S? x R using the algebra of
invariant forms on T7*S?, its hyperkahler structure defined in (4.6) and a
technique introduced by Apostolov and Salamon in [3, p.11].

The general idea of this technique is the following. Start with a hyperkéhler
manifold M with defining two-forms wy, wy, ws; suppose that [wi] and [wy]
are integral classes. Take a U(1) bundle with Chern class [w], and choose a
connection form ¢ on this bundle such that d§¢ = w;. On the 5-manifold thus
obtained, take a U(1) bundle with Chern class [—ws|, and choose a connection
form 7 such that dn = —wy. Then take the product with R*, with coordinate
t. Define a 3-form on the resulting 7-manifold by

o =tw An+tog AE+tus Adt+dt AEAT
setting

UAJZ' = thi
e =t"ln S =t71¢ e’ = t3dt

we can write
C=0"ANS +OPNLE F D3N -
since our convention is that the hyperkahler two-forms are self-dual (as op-

posed to anti-self-dual), this is equivalent to (1.4). Since the volume form
relative to the metric induced by ¢ is 2&; A &; A €57,

1
*¢:®1A667+@2A675+c&3/\656—5&)1/\@1.

Then both ¢ and * ¢ are automatically closed; therefore, the Gy-structure is
integrable.

Let M = T*S? with the Eguchi-Hanson hyperkahler structure; we shall
write the resulting Go-structure explicitly. Let H be the space of quaternions;
identify S® with the unit quaternions, and let

S2=ImHNS>.

By the standard scalar product on ImH = R3, i.e. (p,q) = Re pg, one can
identify ImH with its dual, and 7'S? with 7*S2. Define the Hopf fibration
by

S% 3 q— m(q) =qiqg € S*.
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Even though 7'S? is not trivial, 7*7'S? is; in fact Ty()S* has {gjq, gkq} as
an oriented orthonormal basis, and so the circle subbundle has fibre

{Gjewq, 0 e R}
at gig € S%. Let s : S — T*S? be defined by
s(q) = (Tiq: 7jq) ;
setting B = 7*1*S?, the following diagram commutes but for the upper
triangle (i.e. m # somp):
B T T*S2
lm% lm (4.8)
SS _ T 52

It follows that s is the standard two-to-one covering from the circle subbundle
of the tautological bundle on CP' = S? to the circle subbundle of 752, In
particular, s*aa = 1.

Consider the 1-form on S? given by

B =—2s"0(a,b),

where

do(a,b) = o(b,b) — %aaa(c, o).

We have s*aa = 1, and s*o(b,b) = 0 because o(b,b) has bidegree (0,2)
(Lemma 3.16) and at a point ¢, the projection of s,,(7,5?) on the vertical
space at s(q) is one-dimensional. Since o(c,c) is the pullback of a form on
S?, which we denote in the same way, and the lower triangle in diagram (4.8)
commutes, one obtains

df = s*o(c,c) =n"o(c,c) . (4.9)

Now, B is a subbundle of 7%S%, but 3 is not a section of B: if it were, it would
kill both horizontal (being the pullback of o(a, b)) and vertical vectors (being
a section of B). So the line bundle L generated by [ gives a decomposition
T*S3® = B @ L, meaning that as a manifold,

T*S* =B xR;
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call y the standard coordinate on R. More precisely, let p, be an element of
B,; the identification is given by

B xR 3 (pg,y) i>,Ogc+yﬁgceT*S3.

The Apostolov-Salamon construction gives a Go-holonomy metric on the
7-manifold 7% 5% x R*, diffeomorphic to S% xR*. Indeed, let ¢ be the standard
coordinate on R™, and define

E=ac+dy

on T%S?% x R; then

On T*S53, which we might view as a circle bundle over T*S? x R, define a
connection form

2h — \/2(k + aa)

n=hnyB+n"go(a,b), where ¢ = ,
aa
and h is an arbitrary, non-zero real constant; then, using
1
ab A o(a,b) = aa No(b,b),

we find

]' /

dn=h— jeag o(e,c)+ (g'aa+ g)o(b,b) = —ws . (4.11)

Now define

o =tw An+twop AE+ s Adt+dt ANEAT

from the above discussion, it follows that dp = 0 and d * ¢ = 0.

Remark. A straightforward calculation shows that 7 is singular at aa = 0
unless k = h?%, and non-vanishing at aa = oo.
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4.3 The fibre s0(3) (continued)

In Sections 4.4 and 4.6 we shall consider examples which fit in the general
scheme of Section 3.5: the fibre V' is s0(3), and there exists an epimorphism

p: G — SO(3)

such that the action of G on s0(3) is induced by the adjoint representation.
In this section we show that in this setup the construction of A has a natural
interpretation in terms of the Lie algebra structure of so(3). The language
introduced in this section will prove convenient in the sequel, when computing

A

The SO(3)-invariant metric on s0(3) is
(X)) = —tr(XTY) . (4.12)
As we pointed out in Section 3.5, Q°(X)% consists of functions of aa.

Lemma 4.4. Let SO(3) act on s0(3) by the adjoint representation. Then
Hom(7 (s0(3)),50(3))5°®) is generated by the Lie bracket

] :50(3) ®s0(3) — s0(3) .

Proof. Follows from the fact that Hom (7 (so(3)), R)*°® is generated by the
metric and the determinant. O

We shall write [«, 5] for [,].(a ® B); this is a Lie superalgebra structure
on A. This means that the usual properties defining a Lie algebra hold,
provided that one changes the sign whenever an odd element is moved past
another odd element. For instance, if a has degree p and (3 has degree ¢ then

[, 8] + (=1)"™[B, 0] = 0;

we shall say that  and § anticommute up to Quillen’s law. However, one
can only write equations up to Quillen’s law unambiguously when symbols
occur exactly once in both sides of an equation.

On the other hand, for every choice of V, A is a Z-graded differential space
with differential given by D. In our case, Lemma 4.4 immediately gives:

Proposition 4.5. For V = s0(3), A is the Z-graded differential Lie algebra
generated by a and the c¢;.
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Remark. By a general property of the Lie bracket on 50(3), the following
hold in A up to Quillen’s law:

(o, 5], 7]
[, [, 7]

fla-7y) —a(B-7)
pla-7y) = (o B)y

Before going on to studying concrete examples, we conclude this section
by establishing more notation. We define

0<a7677> = [Oé,ﬂ] Y=o [677] :

For {ay, as, a3} C {a,b,c} we write cyasag for o(aq, ag, az), and ajay for
a1 - ag. Also, we shall omit the wedge symbol when only a, b, ¢ are involved.

4.4 A G, metric on A% S?

In this section we show how the algebra of invariant forms can be used
to define one of the first examples of complete Gy-holonomy metrics to be
discovered [13].

By definition, A2 S* is the bundle of anti-self-dual forms on S*, given by

Psow Xsow) A% (RY) .

Here, Pso(q) is the standard SO(4)-structure on S*, and A? (R?) is spanned
by
oy = el? B gy = e 12 gy = M _ 23

where e!,... e! is the standard basis of (R*)*. We identify S* with the
homogenous space G/H, where G = SO(5), H = SO(4); write

s0(4) = s50(3) B so(3)_,
and let V' =s0(3)_. As SO(4)-modules,
s0(3)_ = A2 (RY), (4.13)

giving

X 2 A2S5%,
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We use (4.13) to define a V-valued form c.

Define a basis on s0(5) using the one we gave in Section 2.2, replacing
v; with w; = 2wv;; this basis is then orthogonal with respect to the metric
(4.12). We identify (w;,wq, w3, ws) with R* and consider the connection

form 1) given by projection on R*. The curvature is a map
R: A’R* — s0(4) ,
given explicitly by R(w;,w;) = —2€’ A ¢/, and the curvature form is:
W (w;, wy) = —e ANel .
This means that W acts on V' in the same way as —c. In particular,

Db = [—c¢,a] = [a,c] .

Theorem 4.6. The space of invariant forms Q(A% $*)5°C) coincides with A.

A basis over the algebra of invariant functions is

=
)
S
o

Basis

1

ab

ac, abb

be, abe, bbb, ab ac
cc, bbe, ab be, ab abe
ab cc, ac bbb

abb cc

bbb cc

Degree

N O Uk W= O
== DN R RN =

Proof. In the language of Theorem 3.13, K = SO(3),, so

R p=0,4
WERY) =40 p=13
A p=
Hence, the only non-zero mb, are
my =1, m; =1, my=1.

Applying Theorem 3.13, we find that the list in the table is complete.
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Remark. Through (4.13), the scalar product (4.12) yields
aAB=—2a,s)e®*.
So when one uses an orthonormal basis as in (3.14), one has
i(e;) Ni(ej) = %5@- cc (4.14)
where —cc is the volume form. As a consequence, if « is in QP(X, X) then
3cNa-c=alcc.

The following relations also hold:

3a-cNfB-c=a-[Ncc
3(b,0, ) A (b ) = (=1)*Ebbb A (- 7)
ac abb = aa(bbc) — 2ab abe

ac bbc = — be abec = %cc abb

It is now easy to compute the action of d on the space of invariant forms
(see Table 4.1). In particular, we see that H*(Q(X)) has dimension 1, with
generator cc. This is consistent with Theorem 3.18, which in this case implies
that the cohomology of Q(X)% is the same as the cohomology of S*.

The following is now straightforward:

Theorem 4.7. There is a complete Gy holonomy metric on A%2.S* defined by
the 3-form

1
¢ =ube + auflbbb

1 1/4
= = 1 )
U <6aa+ )

4.5 SU(3)-structures on CP’

where

Retaining notation from the last section, in this section we show that CP? is
a hypersurface in X, so that A restricts to an algebra of invariant forms on
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Table 4.1: Action of d on Q(A2 54)300)

dega | o da
0 aa 2ab
1| ab 0
2 |ac bc
abb bbb + 2 ab ac — 2 aa be
3| be 0
abc bbc — %aa cc
bbb 6 ab bc
abac | —ab be
4| cc 0
bbc %ab cc
abbc |0
ab abc —%ac bbb + %aa ab cc
5labce |0
ac bbb | 0
6 | abb cc | bbb cc
7106bbcc |0

CP?. We use this algebra to construct a two-parameter family of invariant
half-flat structures on CP?, proving that one of these SU(3)-structures is
nearly-Kéhler, but none of them is Kahler. As we shall explain, this is
consistent with the existence of an invariant Kahler structure on CP?, but it
implies that this structure does not admit an invariant reduction to SU(3).

The action of the group SO(4) on so(3)_ is induced by the action of
Sp(1)_ on sp(1)_ given by ¢q(p) = qpg; so, the two-sphere in s0(3)_ with
respect to the metric (4.12) can be identified with

SO(4) o Sp(1)+ x Sp(1)-
U@2)  Sp()y xU(1) °
where U(2) is the stabilizer of o;. Hence the twistor space SO(4)/U(2) of the
four-sphere is the sphere subbundle of X with respect to its metric (i.e. the
hypersurface of X defined by aa = 1), and it can clearly be identified with
SO() ., Sp(2)
U@2)  Sp(1)+ x U(1)

~ CP3 .
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Consider the restriction of the algebra A to CP?.

Theorem 4.8. The space of invariant forms Q(CP?)S°®) is the restriction
of Q(X)SO(5). A basis over R is given by:

Degree | Dimension | Basis
1

ac, abb
be, abe
cc, bbe

SOl W N~ O
— O N NN O

abb cc

Proof. We show that every invariant a on CP? is the restriction of an in-
variant form on X. Indeed, X is the cone on CP?; consequently, « is the
restriction of a form defined on X minus the zero section, which we also
denote by a. Then, aa « is an invariant form on X which coincides with «
on CP?.

The table of generators is then obtained from the table in Theorem 4.6,
observing that ab and bbb are zero on CP?, because

2ab=d(aa), bbb=3ababb .

These elements are generators over C*°(aa) by construction, and therefore
over R because aa = 1 on CP?. O

Recall from Section 2.7 that an SU(3)-structure on a 6-manifold is defined
by a non-degenerate 2-form w and a 3-form " which is the real part of a
decomposable form 1" + 1), satisfying the compatibility relations

wAYT =0
2 4.15
YTAYT = 5w )

3

We say that an SU(3)-structure is nearly-Kdhler if
dw =3

w=30 (4.16)

™ = 2w

This means that the underlying U(3)-structure is nearly-Kéhler in the sense
of Definition 1.21.
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Table 4.2: Action of d on Q(CP?)S0®)

dega | da
0| aa 0
2| ac be
abb —2bc
3| be 0
abc bbc — %cc
4| cc 0
bbc 0
6| abbcc |0

Theorem 4.9. Fore = +1, we can define a two-parameter family of half-flat
structures on CP? by

w= Nac + epabb , Pt = X\/2u be Y~ = —eX/2u abe .

where A\, > 0. Fore=—1, A = %, W= %, this structure is nearly-Kdahler.

Proof. Tt is easy to check that ¢t + i)~ is decomposable; the fact that
(w, T, ¢7) satisfy (4.15) for all choices of parameters is a consequence of
the remark following Theorem 4.6.

The rest of the statement follows from Table 4.2. m

Remark. By Theorem 4.8, this family of SU(3)-structures is essentially com-
plete: every invariant SU(3)-structure on CP? belongs to this family up to
changing the sign of w and rotating ¢ and ¢~.

Applying Theorem 2.22, we obtain:

Corollary 4.10. There is an integrable Gy-structure on A2.S* minus the zero
section, defined by the 3-form

1 1
Y =aaab ac — Eaa2 bbb + Zaa?’ be .

It is well known that CP* has an invariant Kihler U(3)-structure. One
might wonder whether this U(3)-structure can be reduced to an invariant
SU(3)-structure. The answer is no; for aesthetic reasons, we prove it without
directly using Theorem 4.9:
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Theorem 4.11. All SO(5)-invariant SU(3)-structures on CP® are half-flat.
Thewr underlying almost complex structures are not integrable.

Proof. From table 4.2, it is clear that the 4-form w? has to be closed. On the
two-dimensional space of invariant 3-forms on CP?, d has a one-dimensional
kernel. This means that every invariant SU(3)-structure, up to rotating "
and 1, satisfies

dyt =0, dy~ #0.
So, all invariant SU(3)-structures are half-flat.
Consider the real 3-form
=" i)
a priori d¥ has type (3,1) + (2, 2), but being purely imaginary it is bound to
have type (2,2). Since d¥ # 0, it follows that the almost complex structure
is not integrable. O

So, in order to express the invariant Kihler metric on CP? in our language,
we have to consider almost-hermitian structures, i.e. replace the 3-form ™
with an almost complex structure J. An almost complex structure .J on CP?
induces endomorphisms of A and A, both of which will be denoted J and
defined as

J(a)( Xy, ..., Xp) =a(=JXq,...,—JX,) .

Having fixed a connection on S*, the tangent space of X splits as
T.X = Tﬁ(m)M @ ker 7,y

Consider the natural invariant map SO(4)/U(2) — End(R*) which maps the
identity to the almost complex structure on R* given by

€1 — €9, €3 — —€4 .
This induces a map

SO(4)/U(2) — End(R*) = End(T'S*) ;

an almost complex structure J, is thus defined on T ()M, which depends
on x as well as 7(z). Define an almost complex structure J, on ker m,, by
imposing the condition

Job = —la,b] .
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Proposition 4.12. For ¢ = +1, we can define a two-parameter family of
invariant almost-hermitian structures (w, J) by

w = Aac+ epabd , J=J,Del,.

For e = —1, this almost-hermitian structure has a half-flat reduction to
SU(3). Fore =1, A =1 = 2u, we get the standard Kahler structure of
CP°.

Proof. We start by showing that (w, J) is an almost-hermitian structure; we
have

Jabb = J([a,b] - b) = J|a,b] - Jb = —b - [a,b] = abb .

Moreover, the tautological 2-form ac is J-invariant; so, w is J-invariant.
Recall that with our convention,

g(JX,Y)=2w(X,Y);

positive definiteness of ¢ implies that w(X, JX) must be greater than zero
for all X. By construction, if u is a frame at € S%, then

o[, €1] = [u, ea] o[, €3] = —[u, e4] .
On the other hand, acp,s,) = [u, 01], so
ac(X,JX) >0
for all X. The same holds for eabb = —Jb - b, and any linear combination

of the two with non-negative coefficients. It follows that (w, J) is an almost-
hermitian structure.
Now,

dw = (A — 2ep)be

so for e = 1, A = 2u, the almost-hermitian structure is almost-Kahler. If
we normalize to A = 1, the metric induced on the fibre SO(4)/U(2) is the
standard metric on the sphere, and we obtain the standard Kéahler metric on
CP? (see [4]).

Now set € = —1; we must check that )™ + i1y, as defined in Theorem
4.9, has type (3,0) with respect to J. It is sufficient to do so at a generic
point of CP?, which we write as [u, o;]. Write

b[uﬁl]:b1®01+b2®02+53®03,
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and do the same for c. Then
(er + Z"lbi)[uyal] = <b2 — Zbg) A (C2 -+ 7203) s
which by construction has type (3,0). O

The almost-hermitian structures with e = —1 were introduced in [17].

Remark. For e = 1, we can still write

W 4T = A/2u(be — i eabe) = A\\/2u(b+ i Jb) - ¢ ;

by construction b+ ¢ Jb has type (1,0) and ¢ has type (2,0) + (0,2). When
e = —1, the component of type (0,2) gives no contribution to ™ + b,
which therefore has type (3,0). However, when ¢ = 1, it is the component of
type (2,0) that gives no contribution, so )™ + 4~ has type (1,2) and we do
not have a reduction to SU(3).

4.6 SU(3)/S0(3)

So far, we have only seen examples where the algebra A more or less coincides
with the algebra of invariant forms. In this section we consider an example for
which this fact does not hold. This is because the generators we considered
were constant equivariant maps

G VoANTaV)V;
while this simplifies computations considerably (for instance, for symmetric
spaces we were able to conclude that the ¢; are D-closed), it means leaving
out all non-constant linear equivariant maps. These non-constant maps turn

out to be necessary in the example to follow.

We set
G = SU(3), H =S0(3), V =s0(3) .
Let eq,...,es be an orthonormal basis of su(3) reflecting the splitting
su(3) =so0(3) T ;
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the dual basis €', ..., e® of su(3)* may be assumed to satisfy

de' — o2 _ 15 4 9 67 de? — 13 4 (46 _ 5T _ (/3058

Qe = o2 _ AT | \f3p88 36 gt _ 15 26 L 3T /338

de® = —eM 4 ¥ 4 &% 4 V3%, deb = —2¢'" 4 2 — 3,

deT = 266 — (% _ 34 ded — —/3e2 4 /363
The lack of components in A%s0(3)* in de?, ..., de® shows that SU(3)/SO(3)
is a symmetric space. It is known that SU(3)/SO(3) is not homeomorphic to

S5, even though it has the same real cohomology as the sphere [23].
For k = 2,3, we have equivariant maps

po V5 — NPT
defined as follows: i is the composition
50(3)* L A2u(3)" 22 A2T*
and 73 is the composition
Ve AT = APTT

Let B = ¢;,, and 8= ¢is. 1t is clear that the algebra A contains no elements
of bidegree (1,0); however, by Theorem 3.13, Fjo does contain invariant
elements. We solve this problem by replacing A with a bigger subspace B of
F.
As a representation of SO(3), T is irreducible, i.e. T = V4. Consider the
bilinear map
iQ/\iQCV@V—)A4T*:T*,

inducing an equivariant map

e:V-oT'VcTaV)eV.

Not being constant, € is not an element of A; it is, however, an element of
F. Define B as the differential Lie superalgebra generated by a, 3, B and €
in other words, B is the smallest subspace of F satisfying

e I3 contains D"a for all n > 0, where D" = Do ---0 D n times;
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e I3 contains D"¢; for all n > 0, and all equivariant 7 : V* — AFT*:
e B contains D"¢ for all n > 0;
e Bis closed under [,].

The meaning of this definition is that we enlarged A, adding the generator
€. Notice that e vanishes at the zero section.

We set v = De; we shall see that v has bidegree (1, 1) and is nowhere zero
on all of V. By Theorem 3.13, the dimension of F,, at a point v is given by
the following table, where e.g. 0/1 means 0 at v =0 and 1 at v # 0:

p\g | 0,3 1,2
0,5|1/1]0/1
1,4]0/1|0/3
2,310/21/6

Theorem 4.13. The algebra B generated by the image of B under - coincides
with FC.

Proof. Tt is clear that the forms of Table 4.3 belong to B; we must check that
they satisfy the hypotheses of Theorem 3.13. This follows from two facts:
these forms are independent, and 7 is a nowhere-vanishing form of bidegree
(1,1); both can be proved writing down € and v explicitly.

Let v1,v2,v3 be a basis of V', where v; = e; as an element of s0(3). Write

a=a Qv +a@vs+as Qs ;
then
€ = (—4a168 —2\/§a2 et —2\/§a3 e5> R v+
+ <—2\/§ale4+a2(268—2\/§e7) —2\/§a3€6) @ vat

+ (—2\/5(1165—2\/§ageﬁ+a3(2\/§e7+268)) ® v .

Similarly, writing
b=0by Qv+ by ®vy+ b3 Qv ,
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from Lemma 3.23 we obtain:

Y= <4b1/\68—2\/§b2/\64—2\/§b3/\65> & v+
+ (—2\/§b1 Aer —2v3by AeT + 20y A e — 2\/§b3/\e6> ® vo+

+ (—2\/§b1 Ae® —2v3by Aeb +2b3 A (e® + \/567)> ® vs

The rest of the proof is a straightforward computation. O

Remark. The generators appearing in Table 4.3 were chosen arbitrarily. We
give a list of those forms consisting of a single “piece” which were omitted,
and their equivalents in terms of the generators.

ay = be afe =0 Be = a3 by =10

aby = —%bbe BB=0 afy=—ble b3 = %ﬁ’y

- 1 ~ 1
abf = — bfe  fy=0 afy=_Bey yy=12005 bby=0

Remark. By definition Da = b and De = ~; since SU(3)/SO(3) is symmetric,
DB = 0. The curvature is 3: so, Db = —[a, 5] and Dy = —[e, f]. This is

essentially all one needs to know in order to determine the action of d on B.

We shall not give applications of Theorem 4.13. However, one could
in theory try to repeat what we did in Section 4.5: restrict to the hy-
persurface {aa = 1}, and classify invariant Go-structures on the resulting
7-manifold. In Table 4.5 we give the restricted action of d on the hypersur-
face {aa = 1}. By looking at the table, it is easy to see that cocalibrated
structures exist; by Theorem 2.25, they can be used to produce integrable
invariant Spin(7)-structures on an open set of X. One might also try to con-
struct such a structure directly, by producing a closed 4-form with stabilizer
Spin(7). This would be more difficult: while the space of closed 4-forms is
easy to identify (see Table 4.4), the form defining Spin(7) is not stable, unlike
the G case.
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Table 4.3: Invariant forms on X

j=v)
&
=
=

Basis

1

ae

ab

af3, aee
be, abe, ab ae
abb

(e, ece

b3, abp, bee, aye, ae be, ae abe
bbe, abb ae, ab be

bbb

(Bee

0B, bBe, yee, ab Be, ab ece, ae abp
bb3, bey, ae bbe, be be, a3 abb, ace abb
bbb ae

50

fey, ab fee, ae By

bbi, ab B, abbfe, abyee, ae bb(, abb ece
a3 bbb, aee bbb

ab B3
abb (ee, Be bbe, be By
bbb eee, e bbb

B3 abb
bbb [ee

TU IR OLIW R TN W s O RN WERORFEDND WO - NDO o

Wl W NI WNRR|WN R OIWN R OWN R~ OIN - O~ OO

= RN WRFR N WO FHF WO N WK

bbb 33
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Table 4.4: Action of d on 4-forms

« da

(Gee —2Bey

By 0 N N

bBe —%aa 66 — 4bbj

yee 0

abfBe | —ab By

abeece | —3abyee

acabf | —2aebbf + 8aabbj + Laa® B3 + 4abbfe
w3 | §Bey

bey 0

aebbe |0

be be 0

af3 abb %aa Bey + %abﬁee+ %aﬁ bbb
aee abb | 2aee bbb

bbb ae —%ab Yee

Table 4.5: Action of d on {aa =1}

plq|«a do
310 pe By
€ee 3 yee
21160 0
abl bbs + 1—1256(—:
bee 0
acbe | 2bebe
12| bbe 1—12/)/66
410 | Pee —2 Bery
31|06y 0
bBe | -5 BB — 4bb3
yee 0
aeabf | —2aebbB + 8bb3 + 1 33
212 |bebe |0
bbi % Bey
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Chapter 5

Hypo manifolds

In this chapter, we continue the study of SU(2)-structures on 5-manifolds we
began in Chapter 2, using a language closer to that of Chapters 3 and 4.
Indeed, in the first section we show how SU(2)-structures on a 5-manifold
can be defined using differential forms, and how these forms are related to
the differential forms defining SU(3)-structures on a 6-manifold.
Recall that a hypo structure is an SU(2)-structure on a 5-manifold defined
by a generalized Killing spinor, generalizing the notion of Einstein-Sasaki
structure. In the second section, we express the intrinsic torsion of an
SU(2)-structure in terms of the defining forms, and we use this result to char-
acterize hypo and Einstein-Sasaki structures in terms of differential forms.
After that, we temporarily turn our attention to SL(2, C)-structures: the
third section is centred on algebraic preliminaries for the discussion of the
embedding property, whereas the fourth section is devoted to the study of
the intrinsic torsion of SL(2, C)-structures.
In the fifth section, we discuss the embedding property for hypo manifolds.
We introduce the space of deformations of a hypo structure, and define reg-
ularly hypo structures. We then prove the embedding theorem for regularly
hypo structures.
In the sixth section we provide examples of hypo structures; indeed, we give
a complete list of the 5-dimensional nilmanifolds which admit an invariant
hypo structure. Notice that the analogous problem in dimension 6 is still
open, although of the 34 isomorphism classes of 6-dimensional nilmanifolds,
12 are known to admit invariant half-flat structures ([16, 14]), and we have
been able to produce 11 more.
In the seventh section, we give an example of a regularly hypo manifold
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which does not satisfy the hypothesis of the Bar-Gauduchon-Moroianu the-
orem (Theorem 2.23), showing that our embedding theorem is independent
of that result.

In the appendix, we state some results in analysis which were used in the
proof of the embedding theorem.

5.1 SU(2)-structures and hypo hypersurfaces

In this section we show how SU(2)-structures, and hypo structures in particu-
lar, can be defined using differential forms; in this language we repeat the con-
struction described in Section 2.1. Namely, we use forms to show that SU(2)-
structures arise naturally on hypersurfaces of 6-manifolds endowed with an
SU(3)-structure (see Proposition 2.2), and that if the SU(3)-structure is in-
tegrable, the corresponding SU(2)-structure is hypo (see Proposition 2.5).
A particular case is when the 6-manifold is a cone on the 5-manifold; in
that case, the metric induced on the latter is Einstein-Sasaki. In fact, hypo
structures generalize Einstein-Sasaki structures: the former are defined by a
generalized Killing spinor, and the latter by a Killing spinor.

In the proof of Lemma 4.2, we established conditions which a triplet (wy, ws, ws)
of 2-forms on a 4-manifold must satisfy in order to define an SU(2)-structure.
A similar result holds in dimension 5:

Proposition 5.1. SU(2)-structures on a 5-manifold are in one-to-one cor-
respondence with quadruplets (o, wy,ws,ws), where a is a 1-form and w; are
2-forms, satisfying:

wi Aw; = ;v (5.1)

for some 4-form v with v A a # 0, and
Xiw=Y.iw — W3(X,Y)ZO (52)

Equivalently, an SU(2)-structure can be defined by a 1-form o, a 2-form w;
and a complex 2-form ®, corresponding to wy + iws, such that

aAwi#0 wiA®=0 (5.3)
P* =0 Wi =dND

and ® is (2,0) with respect to w;.
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Remark. If we start with an SO(5)-structure, we can understand a reduction
to SU(2) as follows. The form « defines a splitting R> = R®R?; a metric and
an orientation is induced on R*. The eigenspace decomposition relative to
the Hodge star gives A’R* = A2 @ A?, which corresponds to writing SO(4)
as SU(2);4SU(2)_. The choice of a basis wi,ws,ws of A7, corresponding to
(5.1), reduces then SO(4) to SU(2)_. Since A% has a natural orientation, one
can always assume that wy, wo, w3 be a positively oriented, orthogonal basis of
this space, so that the map R*® 5 (a') — (a'w;) € A% is SU(2)_-equivariant;
this assumption corresponds to (5.2).

By (a,w;) we shall mean a quadruplet (o, w;,ws,ws) satisfying Proposi-
tion 5.1 and the orientation condition, and for a form w on a manifold M,
we define

W={XeTM|X,iw=0}.
Before proving Proposition 5.1, it is convenient to prove the following.
Proposition 5.2. For (a,w;) as above, we have w) =v°, i = 1,2, 3.

Proof. Define (3; and ~; by the condition that w; = a A 3; + v;, with 3? and
7Y containing v°. Then by (5.1),

aABiAvi+yi=v.
Take a non-zero X in v°; then
OZXJ<C¥/\6i/\%;) = (X_IOé)ﬁi/\"}/Z’,

and so 3; Ay; = 0. On the other hand, 0 # a A v = a A 42 shows that ;
is non-degenerate on o, and therefore 3; = 0. Thus w) D v°; the opposite

inclusion follows from v = w?. O
Corollary 5.3. Given («,w;) as above, one can always find a basis e*,. .., e°
of forms on M such that
a=e wy = e'? + (5.5)
wy = e 62y = M 4 P :

Moreover, one may require that (for erample) €' equal a fived unit form
orthogonal to «.
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A consequence of the corollary itself is that a global nowhere vanishing
1-form in ot exists only if M is parallelizable; in general, (5.5) can only be
used locally.

Proof of Proposition 5.1. It is sufficient to show that if !, ..., e® is the stan-
dard basis of (R°)* and (o, w;) are as in (5.5), the stabilizers of o, wq, wp and
ws have intersection SU(2). In fact, if A € GL(5,R) preserves these forms,
it must preserve the splitting R® = a® @ v°, so that

A= (ﬁ (1)) BeGL4R).

On the other hand, such an A preserves w, ws,ws if and only if B preserves
the standard hyperkéhler structure on R?*, i.e. B lies in Sp(1) = SU(2). O

Remark. One has to fix a choice of reference forms on R® in order to actually
identify an SU(2)-structure with a quadruplet of forms («,w;), or a triplet
(cv,wq, @); we shall henceforth use (5.5) to do so, and associate to a frame u
forms (a, w;) such that u*a = €3, and so on.

Remark. In the proof of Proposition 5.1 we have used the fact that an SU(2)-
structure on M defines an orthogonal splitting TM = 0v° @ .

Proposition 5.4. Leti: M — N be an immersion of an oriented 5-manifold
into a 6-manifold. Then an SU(3)-structure on N defines an SU(2)-structure
on M in a natural way. Conversely, an SU(2)-structure on M defines an
SU(3)-structure on M x R in a natural way.

Proof. The SU(3)-structure on N defines a non-degenerate 2-form w and a
complex 3-form ¥ with stabilizer SL(3, C). Since both M and N are oriented,
the normal bundle to M has a canonical unit section, which using the metric
lifts to a section V' of ¢*T'N. Define forms on M by a = V_iw, & =V,
w1 = i*w. Choose a local basis of 1-forms on N such that V is dual to —e®
and

w=eZ+eM el U= (e +ie?) A(e* +iet) A(e® +ie%) ;s (5.6)

then i*e!, ... i*ed satisfy (5.5).
Vice versa, given an SU(2)-structure on M, an SU(3)-structure on M x R is
defined by (w, ¥) given by

w=w +aAdt, U=0>A (a+1idt), (5.7)

where t is a coordinate on R. O
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In this chapter we study SU(2)-structures satisfying
dwy =0, dlaNwy) =0, dlaANws) =0. (5.8)

Remark. If (o, w;) satisfies (5.8), then the SU(2)-structures obtained rotat-
ing wy and ws also satisfy (5.8); moreover, they induce the same metric.
This is akin to the case of integrable (i.e. Calabi-Yau) SU(n)-structures on
2n-dimensional manifolds, where multiplying the holomorphic n-form by e
gives a different integrable structure corresponding to the same metric.

We shall show in the next section that these SU(2)-structures coincide
with hypo structures are defined Section 2.2. For the moment, we state their
most important property:

Proposition 5.5. Leti: M — M be an immersion of an oriented 5-manifold
in a 6-manifold with an integrable SU(3)-structure. Then the SU(2)-structure
induced on M satisfies (5.8).

Proof. From (5.5) and (5.6) it follows that *U = i® A «; recall also that
w = i*w. Since ¥ and w are closed, and ¢* commutes with d, (5.8) holds. [

By construction, Equations 5.8 are exactly the conditions one obtains on
the SU(2)-structure induced on a hypersurface in a 6-dimensional manifold
with a parallel spinor; it is therefore not surprising that these structures are
characterized by the existence of a generalized Killing spinor, as we shall
prove in the next section.

5.2 Differential forms versus spinors

Fix a 5-manifold M. By Proposition 1.9, SU(2)-structures on M are in
one-to-one correspondence with pairs (Pspin(s), ), Where Pepins) is a spin
structure on M and v is a unit spinor; explicitly, one has

Y= [S;UO]

for every local section s of Pgy(z). On the other hand, SU(2)-structures are in
one-to-one correspondence with quadruplets (o, w;), as stated in Proposition
5.1. We shall compare properties of ¢ with properties of (a,w;).

Fix an SU(2)-structure Psy(a) on M; let 1) be the defining spinor and (a, w;)
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the defining forms. In Section 2.4, we saw that the intrinsic torsion of an
SU(2)-structure takes values in

TR @ 4A' @ 4% . (5.9)

Clearly, if Psy(2) is defined by («,w;), its intrinsic torsion can be expressed
in terms of Va, Vw;. It turns out that it is sufficient to consider the exterior
derivative, rather than the covariant derivative:

Proposition 5.6. Write
da:a/\ﬁ—i—Zfiwi—i-w’,
dw; :%/\wi—i-Zfijoz/\wj—i-oz/\ai_.
then f! = \oy; + g where g] = —g5 and according to the splitting (5.9) the
intrinsic torsion can be written
[O](w) = ((f5 A g)), (B, u™y), (w'w™,u'o;)) .
We can now prove that the two definitions of hypo structures we have
given are equivalent.
Proposition 5.7. Equation 5.8 holds if and only if ¢ is a generalized Killing
SpInor.
Proof. By Proposition 5.6, each condition means that the intrinsic torsion is
forced to lie in a SU(2)-module isomorphic to
2R® A" @372 .

A priori these isomorphic modules need not coincide; however, they have to
coincide if one of them is contained in the other one. It is therefore sufficient
to prove the “if” part of the statement.
Let ¢ be a generalized Killing spinor. By (2.6), for the Levi-Civita con-

nection we have

Va=A'®e? — A2+ A3pe!l —Al®ed

V= -A'@vl —A?2 @0 — A2 @03 — At @o?

Vwy=-A°Quws — Al @1t — A2 03+ A3@0% + A* @0t

Vws =A% Quws + Al @13 — A2 0t — A3 @0t + A @ 02
Using the symmetry of A, we conclude that wy, wy A and w3 A av are closed.

[]
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A special case is when % is a Killing spinor, i.e. the underlying U(2)-
structure is Einstein-Sasaki. The results on Einstein-Sasaki manifolds that
were proved with spinors in Chapter 1 can also be derived using differential
forms:

Lemma 5.8. The conical SU(3)-structure on N = M xR induced by Psy(a),
defined by

w=tw; +taAdt, U =20 A (ta + idt) , (5.10)
is integrable if and only if
doo = —2wy , d® = -3ia NP . (5.11)

Proof. The SU(3)-structure is integrable if and only if w and W are closed; a
straightforward calculation completes the proof. ]

From the proof of Proposition 5.7, we see that (5.11) is equivalent to
1
A=—-1d.
2

As a consequence, we have the following characterization:
Proposition 5.9. The following are equivalent:
1. The almost contact structure underlying Psu(2) 1s Einstein-Sasaki,
2. 1 is a Killing spinor with Killing constant —1/2;
3. (5.11) holds;
4. the SU(3)-structure on M x R, given by (5.10) is integrable.

Remark. If (M, g) is a Riemannian 5-manifold, and the cone M x, R, has
holonomy SU(3), then M has an Einstein-Sasaki structure: indeed, one can
choose an integrable SU(3)-structure on M x Ry; this will be conical in
the sense of (5.10), as it is preserved by parallel transport with respect to
the Levi-Civita connection, and an SU(2)-structure satisfying (5.11) is thus
defined on M (not uniquely).

Remark. Proposition 5.9 shows that Einstein-Sasaki 5-manifolds are the ana-
logue of nearly-Kahler 6-manifolds; this analogy will be carried further in
Section 5.5.
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Having proved Proposition 5.7, we shall not need to consider spinors
anymore. In particular, we drop the convention that the letter v represents a
spinor and the letter A represents a symmetric endomorphism of the tangent
bundle.

5.3 Stable forms and SL(2,C) structures

One can think of SU(2)-structures on 5-manifolds as the 5-dimensional ana-
logue of the more popular SU(3)-structures on 6-manifolds, or as the sort of
structures which are defined by spinors in dimension 5. However, one could
also introduce SU(2) structures from a theory of stable forms. From this point
of view, it is natural to see SU(2) as the intersection of two copies of SL(2, C);
it turns out that some of the structure coming from the SU(2)-structure is
already present in the SL(2, C) case, which is why we devote this section to
the study of SL(2, C)-structures, in preparation for the proof of the evolution
theorem.
Let T be a real vector space of dimension 5. The set

{we A*T* | w* #0}

is clearly open in A2T™, as well as stable under GL(5, R). Its elements can be
interpreted as pairs (L, o) where L is a line in T and o is a non-degenerate
two-form on 7'/ L. Since the action of GL(5,R) on such pairs (L, o) is clearly
transitive, the space defined above consists of a single GL(5,R) orbit. In the
terminology of Hitchin, we shall call these elements stable 2-forms.
Using the non-degenerate pairing A?T ® A3T — R defined by any volume
form, we see that A3T = A2T™* as GL(5,R)-modules. Hence, A3T* also has
a unique open orbit, whose elements will be called stable 3-forms.
Now fix an orientation on 7" and consider the isomorphism

A:AN"T* = N"T @ AN°T*, n=0,...,5.

Although we shall not fix an isomorphism A®T* = R, we think of elements
of T ® A°T™, for instance, as vectors whose length depends on the choice
of a volume form, and write formulas accordingly. We have a natural map

X : A’°T* — T ® A°T* defined by



interchanging 7" with T* and composing with A, a map « : A3T* — T*QA°T™*
is induced; explicitly,

a(y) = A((A¥)*) .
Note that X (w) spans (w?)?, and therefore w°, by Proposition 5.2. By duality,
this shows that

a(@) A =0. (5.12)
Now define a map V?: A*T* x A3T* — (A°T*)? by
Viw,¥) = a(¥)(X () 1 (5.13)

then V?(w, ) = w?(Ay A Av), showing that V2 # 0 forces w and v to be

stable. If V?(w,v) admits a “square root” in A°T*, we write V?(w,v) > 0

and we define V(w, ) as the positively oriented square root of VZ(w, ).
Wherever V2 > 0, we have a splitting

T=(X(w))®a(). (5.14)

More, the pair (w, ) defines a one-form « and a vector X with a(X) =1 by

o = Viw¥) a(t) | X = V(w, )X |
We can then restate Proposition 5.1 in the following way:
Proposition 5.10. An SL(2,C) structure is a pair (w,1)) with

Viw, ) >0, wAY=0.
An SU(2)-structure is a triple (w, v, 13) such that
a(ih2) = a(ys) , wAPs=0=wAs3, (X)) Ay =0.

and V(w, 1), which in this hypothesis equals V (w,13), is non-zero.

Proof. Identify R®> with C? ® R; this determines an action of SL(2, C) on R5.
An SL(2,C) structure on T' defines, uniquely up to SL(2,C) action, a basis
of 1-forms €', ..., e’ which determine a pair (w,) by

w:612+6347 77/}26135-}-6425.

Conversely, given (w, 1)), the splitting (5.14) reduces the structure group to
GL(4,R); to reduce to SL(2,C), we need a simple, non-degenerate complex
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two-form.
Observe that

ViHw,¥) = w? A (), (5.15)
and using A A X (w) = A(X (w)a1), we see that the dual equation
Viw,¥) = X(w)a Ay (5.16)

also holds.
By construction, the restriction of w to o is non-degenerate, and so is X 1.
By (5.12), ¥ = a A (X J1)); consequently, w A ¢ = 0 implies (X 19) Aw = 0.
We show that
w? = (XJv)?. (5.17)

Indeed, using (5.16):
(Xo9)? =V Hw, ) X (w,9)1 (X (w)a A ) = X (w,¢) 2 V(w, ) .

Hence, w + (X 1) is a non-degenerate complex 2-form whose square van-
ishes, and therefore simple.

To prove the second assertion, set w; = X (w)i1; for ¢ = 2,3, and set
a = V(w,¥;) ta(1;), not depending on ¢ = 2,3. Then by (5.17) Proposition
5.1 is satisfied. O

The differential of V' at a point is an element of
(A*T* @ A3T*)* @ A°T* = (A*T & A°T) @ A°T* = N¥T* @ A*T* .

Note also that X (w) only depends on w?, so it makes sense to define X on
4-forms; in order to make subsequent formulae simpler, we set X (v) = 2 A(v).
Therefore, given a 3-form 1 and a 4-form v one can define V (¢, v), X (¢, v)
and «(1,v) as above; the differential of V' in this sense is an element of
T* @ A?T*. The following Lemma will be needed in Section 5.5:

Lemma 5.11. Set & = a(w, V) Aw, 1 = X (w,h)31); then
AV (0,0) = O NT+P A (5.18)
Now set 1 = X (4, v)20; then

AVipw)($,0) = A d+a(i,v) Ao . (5.19)
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Proof. Differentiating (5.15) with respect to w,
2V (w,¢)dVip ) (0,0) =2w Ao Aa(y) ,

SO
AViw)(0,0) =w Ao Aa(w, ) .

Similarly, from (5.16) we obtain

AViw)(0,0) = X(¢,v)ap A ¢,

and (5.18) is obtained by summing the two equations.
The proof of (5.19) is completely analogous. O

5.4 Geometry of SL(2, C)-structures

In this section we study the intrinsic torsion of SL(2, C)-structures; in partic-
ular, we characterize the intrinsic torsion of SL(2, C)-structures on M such
that the underlying almost contact structure is normal, i.e. the product com-
plex structure on M x S is integrable. The results of this section will not
be used in the rest of this chapter.

Let T be a 5-dimensional, oriented real vector space with an SL(2,C) struc-
ture (w, ).

Proposition 5.12. Let i : M — N be an immersion of an oriented 5-
manifold into a 6-manifold; with a section V' of i*T'N which is transverse
to TM at each point. Then the choice of V' defines a bijection between the
SL(3, C)-structures on i*T'N and the SL(2,C)-structures on M compatible
with its orientation.

Proof. An SL(3, C)-structure on *T'N is identified by a real positive stable
3-form ¢, whereas an SL(2, C)-structure on T'N is identified by a pair (w, ¢)
as above plus an orientation. Let €% be the form dual to V, i.e. the section
of i*A'N defined by (V) =1, €%|rar = 0. Given ¢, set

w= -Vt ¢ =iyt

Conversely, given (w, @), write T = ¢ —w A €5. Tt is easy to check that this
establishes a bijection. ]
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Write 7" as in (5.14). Algebraically, the choice of V' in Proposition 5.12
corresponds to the choice of a complex structure on X (w) @ R; using the
complex structure on a(v)?; this choice determines a complex structure on
T & R. We shall show that there is a well-defined notion of forms of type
(p,q) on T which does not depend on this choice. To this effect, let (W, J)
be a vector space with a complex structure.

Lemma 5.13. If © € AP?W, then ©° is J-stable.

Proof. Take V € ©% then by definition V160 = 0. The forms (V +iJV)10
and (V' —iJV)1© are respectively of type (p,q— 1) and (p—1, q); since their
sum is 2V 10 = 0, they must both vanish, implying JV .0 = 0. O]

As a consequence, a form on T' C T @ R is of pure type if and only if it is
zero on (X (w)) and it is of pure type on a(1)°. We shall therefore declare a
complex form on T to have type (p, q) if it is zero on (X (w)) and it has type

(P, q) on a(e)’.

Proposition 5.14. Let M have an SL(2,C) structure (o, wy,ws). Then the
almost complex structure of the induced SL(3,C)-structure on M x S' is
integrable if and only if

da ANw; =0, da ANwy =0, dwsy + idw; € A*t |
Proof. By Proposition 5.12, the defining (3, 0)-form on M x S is
U = (wy +iwq) A (a+1idf) .
Thus, integrability is equivalent to d¥ being of type (3,1). This implies
0= (a+1idf) Nd¥ = (o +idf) N (wa +iwy) A da
50 (w2 + twy) A da = 0 and
dV = (dwy + idwy) A (a +idf) . (5.20)

Hence d¥ being of type (3, 1) implies that (dws+idw;) must be of type (2, 1).
Conversely, if (5.20) holds and (dws + idw;) is of type (2,1), then d¥ is of
type (3,1). O

Remark. An SL(2,C)-structure induces an almost-contact structure by ex-
tension. The integrability of the SL(3, C)-structure on M x S! is equivalent
to this almost contact structure being normal (see Section 1.5).
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Now consider the skew-symmetrization map 0:
sli2,C) T - TRT* T — T ® N*T*.
An exact sequence is induced:
0—sl(2,C)Y = 5[(2,C)@T* — T @ A*T* — Cokerd — 0 .
Since sl(2, C) is a vector space over C, one has
sl(2,C) @r T* = 51(2,C) @c T¢ ;

it is therefore equivalent to consider the complexification of 0, which is a
map
dc : 51(2,C) ®@¢ Tg: — Te @ N°T¢ .

Lemma 5.15. The kernel of Oc is the subspace of s1(2,C) @ ALYOT* given by

{(‘é _ba>®(1 o)+(_ba _db)@@(o 1)|a,b,c,d€©}.

Proof. Consider T'® R = C?; the action of s[(2,C) on T @ R is C-linear.
Relative to the action on (T'® R)¢, we have

s[(2,C) @ T C sl(2,C) @ AT @ R)* ©sl(2,C) @ A>T @ R)* .

Since the restriction of Oc to the second component is injective, and by
Lemma 5.13 AY(T @ R)* = AT, the first assertion is proved.
Now write the generic element of s[(2,C) @ AMT™* as

a1 1 b1 Do 0y .
(a21 —CLH) ® (0) + (b21 _bll) @ (]—) ’

evaluating on () A (9) proves the lemma. O

We conclude that Coker 0 has dimension 8 —304-50 = 28, i.e. the intrinsic
torsion of an SL(2, C)-structure takes values in a 28-dimensional space. We
can express the intrinsic torsion in terms of the defining forms, like in the
case of SU(2). Let SL(2,C) act on R® = C* & R; we are viewing C? as a real
vector space with an SL(2, C) action.

121



Proposition 5.16. The intrinsic torsion of an SL(2, C)-structure takes val-
ues in

4R @ 3C* @ 3[A"] .

For any SL(2, C)-structure (o, wy,ws) we can write

da=aAp+ flug+ fPus+ 71,
dwy =y Awp + A Awp + pa Aws +a A py.
dws = Yo N wy — pax A wy + Aa Aws + a A ps.

and the intrinsic torsion can be written

[@KU) = ((flv f27 >‘a M)? (U*ﬁv U'*’Yl: U*'72)7 (U*Tv U*pla U*pQ)) :

The condition of Proposition 5.14 kills all components but 7, vy, and vs;
moreover, it forces 1 + v = 0. Indeed, (w; + iws) A vy, has type (2,1), so

72/\w2+i71Aw1€A2’1 <= 72/\W2+71Aw2€./\2’1;

since the latter form is real, it follows that v; +v2 = 0. We can then restate
Proposition 5.14 as follows:

Theorem 5.17. An SL(2,C) structure is normal if and only if its intrinsic
torsion lies in C* @ [AM].

5.5 Evolution theory

We have seen that a hypersurface M inside a holonomy SU(3) 6-manifold M
is naturally endowed with a hypo structure Pgy2); hypo manifolds (M, Psy(2))
which occur this way are said to have the embedding property. In this section
we prove that a large class of compact hypo manifolds, called regularly hypo,
have the embedding property. We also show that the geometry of M can be
recovered (at least locally) from the geometry of M.

Fix a compact 5-dimensional manifold M; let BP be the space of exact
p-forms, ZP the space of closed p-forms, 2P the space of p-forms, and AP the
bundle of p-forms. We are now thinking of an SU(2)-structure as defined by
a quadruplet (w, 19,13, v), where (w, 19, 13) play the same role as in Propo-
sition 5.10, and v = w?/2. This is not unnatural, because an SU(3)-structure
on a 6-manifold is determined by a 3-form 1" and a 4-form w?, i.e. a section
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of A> ® A%, and the pullback of this bundle to a hypersurface splits up as
AN AN p Ao AL
Let (w, s, 13) define a hypo SU(2)-structure on M, and set

H = (w+ B%) x (o + B x (tbs + B) x (%&uﬂ) |

Let V be the space of SU(2) structures on M, composed of quadruples
(wi, 2, ¥3,0) in Q? @0 @ Q3 B Q! satisfying

{ a(tn) = a(s) X(w) = X(v)

)
5.21
wi A =0 = wi; N3 0= (X (w1)av2) N1)g (5:21)

and V%(wy,19) > 0. We can view all the 2 as Banach spaces, in such a
way that d : 7 — QP! is continuous (see the Appendix to this chapter). In
particular, V is a Banach space.

We view V as the preimage of the zero section under the smooth, continuous
map on sections B determined by the bundle map

B:NoNONoA - (MNaN)o(TRAN)DAN A @ (A°)?
(w1, 2,13, 0) = (a(2) — a(ts), X(w1) — X (v),
w1 A g, wi Az, (X (wi)aa) Aibs)

Lemma 5.18. The zero section is a reqular value for B. In particular, Vs
smooth and 3
T,V =kerB,, .

Proof. Since B is a bundle map, it is sufficient to show that zero is a regular
value for B (Proposition 5.31). We can therefore work on R®. Let z =
(w1, 9,13, v) with B(z) = 0; define

a = a(w, ), wy = X (wi, )11y , ws = X(wi,¥3)31s .

We must show that B,, is surjective. In the tangent space at x, consider the
13-dimensional subspace

W= <{(070,6Aw3,0) | B€ (R%)*},{(0,0,0,v1(a Awd)) | ve R},

(w2,0,0,0), (ws3,0,0,0), (0,0, A wo, 0)> :
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we claim that B, is injective on W. We have

a(ws A B) =cB® (BAw]) ,

where c is a constant which depends on the conventions. Now, replace 3 with
a curve 3(t) with 3(0) = a. At t =0, we have

da(wsAB)=cB @ (ahw])+ca® (B Awj).

For (' ranging in at, the second summand vanishes and d;a(ws A 3) spans
at ® A®. On the other hand, setting ' = a, we find

da(ws AB) =2ca® (aAwj),
so B, is injective on

({(0,0,8Aws,0) | B € (R*)"}) ;

it is now easy to see that B,, is injective on all of W. By a dimension count,
it is also surjective. O]

Remark. It is certainly not surprising that V is smooth, but the identification
of its tangent bundle will be a crucial point in the proof of Theorem 5.20.

We consider the space of deformations of (w, s, 13)
V=VNH.

This space of deformations of a hypo structure consists in the space of
SU(2)-structures whose defining forms are in the same cohomology class as
those defining the given structure; by construction, these deformed structures
are also hypo.

Definition 5.19. An SU(2)-structure P in V is regularly hypo if in a neigh-
bourhood of P, V is a smooth immersed submanifold of Q2 @ Q? @ Q3 @ O*.

Remark. Since V is the zero locus of B, to determine whether a given hypo
structure P is regularly hypo, one has to look at the restriction of B, to 'H;
incidentally, the v component plays a tautological role and may be neglected
in this calculations. Since the map B is polynomial, we expect most points of
'H to be regularly hypo. We shall make this argument rigorous when treating
the case of nilmanifolds.
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Note that from (5.13), it is obvious that VZ(wy, 1) = VZ(¢3,v) on V.
We recall that X (wi) = X (v) is equivalent to v = Jw;.
In order to apply Hitchin’s technique, we consider the skew-symmetric form
on B? x B3 x B® x B* defined by

<(w7¢27 ¢3a U)’ (dﬁ7 d7_27 d7-37 d7)> - / <w A Y= (AN ﬁ - 77[}2 N Ty — 77[}3 A TQ) .
M

Then (,) makes H into a symplectic manifold.

A point of V defines a hypo structure on M; in particular, it defines forms

a, wy and ws.

Theorem 5.20. Let P be a reqularly hypo SU(2)-structure on a compact
manifold M, and define V' as above, so that P € V. Define H : H — R by

H(W,Tﬁz,%,v) = /J\;(V(w,wz) — V(¢3,U)) .

Then the integral curve through P of the Hamiltonian flow of H is contained
in V, when restricted to an interval (a,b). This curve gives rise to a one-
parameter family of hypo structures (w(t), ¥q(t), ¥3(t)) satisfying

Ow = —do
8,5@/)2 = —du}g (522)
Ops = duwo
for all t € (a,b); moreover
Q=aANdt+w

U = (wq + iws) A (o + idt)

defines an integrable SU(3)-structure on M x (a,b).

Conversely, if M is a 6-manifold with an integrable SU(3)-structure and i :
M — M s a compact embedded hypersurface with the induced hypo structure,
then i can be extended to an embedding i : M X (a,b) — M such that the
integrable SU(3)-structure defined above coincides with the pullback of the
SU(3)-structure on M.

Proof. Suppose that P is regularly hypo. For brevity’s sake, on 'H we define

ay = afwr,vs), az=a(Ps,v), wr=X(wi,¥2)a1, ws=X(P3,v)av3.
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Then by Lemma 5.11,

dH(Wl 2,3,v) (dﬁv dTQ? dT37 d7> =

:/ (e Awy ANdf +wo Ndmy — w3 ANdrs — ag ANdy) =
M

= / (dag ANwy A B — dway A Ty + dws A T3 — dag A 7y) by Stokes’ theorem.
M
(5.23)

Using the non-degeneracy of (), one can define the skew gradient Xy by
(Xp,-)=dH ;

then
(X)) (02.5.0) = (—dag, —dws, dwz, —wi A das) . (5.24)

Let (w(t),a(t),13(t),v(t)) be an integral curve through P for Xy in H. The
condition V2 > 0 is open, and therefore holds on the curve when restricting
to some interval (a,b). We shall prove that Xy is tangent to V; by the
smoothness of V and the uniqueness of integral curves for a vector field on a
smooth manifold, it will follow that the curve lies in V.

For any vector field X on M, consider the functional on V defined by

ux(w,¢2,¢3,v):/M((XJw)/\U—i-(XJwg)/\w;;) .

It is easy to see that px vanishes at ¢ = 0 for all X. Since the group of
diffeomorphisms homotopic to the identity Diff’(M) acts on H, X induces a
vector field X on H such that

X(W7¢27¢37U) = (EXw7 EX’l?D27 EXwZ'); EX/U) .
We claim that p is the moment map with respect to the action of Diff’(M),
ie.

dux(Y)=(X,Y) VY eTH. (5.25)
Since H is Diff’(M)-invariant, it will follow that

0=XH=dH(X)=(Xy,X) = —dpx(Xu) = —Xnupx .
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Therefore, px is identically zero on our curve. Take X = f X (w, 1), where
f is a function on M; then

Oz,uXZ/ Jwr A3,
M

which holds for all f; therefore ws A 13 = 0 for all £.
To prove our claim that X is tangent to 7'V, we assume that (wy, 12, Y3, V)
lies in V at t and we show that the derivative of

t— B(wl(t), ¢2(t)7 %03(75)7 U<t))

vanishes at ¢. By construction, Hamilton’s equations hold:

Oy = —das Ophy = —dws
&U = —Ww1 N dag 3tw3 = de

implying

8t(w1 /\7702) = —dOZg /\’@Z)Q — W1 /\dwg = —Ozg/\dwg +dw1 /\(.dg =0

because a3 A1y and wy Aws vanish identically on V. Similar arguments show
that 9;(wiAY3) = 0 and d,w? = 2 dyv, which is equivalent to 9, X (wy) = 9, X (v).
It remains to prove

Orrg = Oharg . (5.26)

We shall make this follow from
at(a(¢2> A ¢3) =0 ) atv2(w7 ¢2) = 8tv2(¢37 U) ;

indeed, at points of V, the first equation gives

0= @ (OZ(@DQ) A 05(77/)3> A w3) = (@ (&(¢2) - Oé(iﬂg))) A 04(1/)3) Nwsg —
0= (O ((tha) — au(th3))) A ex(1bs)

by the non-degeneracy of 1)3. On the other hand, the second equation gives

0= 0 (a(2) — a(13)) (X (w1)) + a(t) ((X (w1) — X(v))) =
= 5t(04(¢2) - a(%)) (X(wl))
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because 0; X, = 0;X3; Equation 5.26 clearly follows. Moreover, since we are
working at points of V, it is sufficient to prove

8t(042 A wg) = O s &gV(w, wg) = 6,5V(¢3, ’U) .
Observe that at points of V, along the curve

at/(Xle)/\U:/ ((X_natwl)/\v+(XJw1)/\8tw1/\w1):
M M

= / Xi(Owi Av)=0. (5.27)
M
Now choose any 1-form (; by the non-degeneracy of ws, one has

B=Xlws+ fay

for some vector field X and some function f, and we can assume that
as(X) = 0. Using

(XJ¢2)A¢3 = (XJO(Q) /\Wg/\¢3 —042/\ (XJWQ) /\¢3 s

we find

0=0ux = / BN Oz A 13)
M
for all 3; therefore 0;(as A 103) = 0. By (5.18) and (5.19),

QtV(wl, 77[)2) = (9 A w1 VAN 8tw1 + woy N 8¢2 = —Q9 A w1 VAN dag — Wo N du)g
8tV(”Lp3, U) =g N\ 8tv + ws A 8'(#3 = —az3 ANw A dOéz + w3z A du)g

At points of V, as A ag = 0 and wy A ws = 0, proving that

OV (w, 1) = 0V (¢3,0) .

As we observed, (5.26) must then hold.
To conclude the proof that the curve is contained in V), there only remains
to prove (5.25). Let Y = (df3, drs, d73,d7); then

duX(Y):/M((XJw)/\dfy—(Xw)/\dﬁ+(XJwQ)/\drng(XJwg)/\drg):
_ /M (A(X2w) Ay — d(Xo0) A B — d(Xaths) A 7s — d(Xtbs) A7) =

:/ (EXwA7—£XUAﬁ—£X¢2ATg—,Cxwg/\TQ):<X,Y> (528)
M
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Since a point of V defines a hypo structure on M, the curve defines a one-
parameter family of hypo structures. Moreover v(t) = w?(t)/2 and Hamil-
ton’s equations are equivalent to (5.22). To prove that the SU(3)-structure
on M X (a,b) is integrable, set & = wy + iws. Then dP = i0,(P A a), and

dQY=da Ndt+dt N Ow =0
dV = d® A (o +idt) + @ AN da+ idt NOy(P A a) =0

proving the first part of the theorem.

On the other hand, the right-hand sides are zero if and only if (5.22) hold.
Therefore, if M arises as a hypersurface in M, we can use the exponential
mapping to embed M X (a,b) in M so that J; is a unit vector orthogonal
to M, and the hypo structures induced on M x {t} will evolve according to
(5.22). This proves the second part of the theorem. ]

Remark. A hypo structure is Einstein-Sasaki if and only if the components
(5.10) satisfy (5.22); similarly, nearly-Kéahler half-flat structures are charac-
terized by the evolution being conical [25]. In this sense, evolution theory is
a generalization of the construction of a manifold with a parallel spinor as
the cone on a manifold with a Killing spinor, where the cone is replaced by
more complicated evolution equations and the Killing spinor by a generalized
Killing spinor.

5.6 Hypo nilmanifolds: The classification

It is well known that nilmanifolds do not admit Einstein-Sasaki structures;
in fact, Einstein-Sasaki manifolds have finite fundamental group, and there-
fore by = 0, which cannot occur for nilmanifolds. Not surprisingly, most
5-nilmanifolds do admit (invariant) hypo structures. Indeed, consider

M =T\G,

where G is a 5-dimensional nilpotent group, I' a discrete subgroup of G and
M is compact; an invariant structure on the nilmanifold M is a structure
which pulls back to a left-invariant structure on G. With this setting in
mind, we define:

Definition 5.21. A hypo structure on g is a quadruplet («,w;) of forms on
g satisfying Proposition 5.1 and Equation 5.8.
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Borrowing notation from [32], we represent Lie algebras using symbolic
expressions such as (0,0, 0,0, 12), which represents a Lie algebra with a basis
el,..., e’ such that de! =0 for i = 1,...,4, and de’® = e'%.

Theorem 5.22. The nilpotent 5-dimensional Lie algebras not admitting a
hypo structure are (0,0,12,13,23), (0,0,0,12,14) and (0,0,12,13,14 + 23).

Using the classification of five-dimensional nilpotent Lie algebras, the
theorem is equivalent to the following table:

g | step | by | Admits hypo

0,0,12,13,14 4 23 31 3 no
0,0,12,13,14 31 3 yes
0,0,12,13,23 20 3 no
0,0,0,12,14 2| 4 no
0,0,0,12,13+ 24 2| 4 yes
0,0,0,12,13 21 6 yes
0,0,0,0,12 + 34 115 yes
0,0,0,0,12 107 yes
0,0,0,0,0 0110 yes

Remark. Any hypo nilmanifold I'\G provides an example of a compact hypo
manifold with b; > 0. Moreover the pullback hypo structure on the nilpotent
group G gives an example of a non-compact complete hypo manifold.

We start with a list of examples of hypo structures on nilpotent Lie alge-
bras which do admit such structures; we shall then prove that any nilpotent
Lie algebra with a hypo structure must be one of these. Theorem 5.22 will
then follow from the classification of nilpotent Lie algebras, which is not
otherwise used.

e (0,0,12,13,14) has a hypo structure given by

o= 61 Wy = 625 + 643 Wy = (—324 + 635 w3 = 623 + 654

e (0,0,0,12,13+24) has a one-parameter family of hypo structures given
by

a=c +é° wy = e A(—ce® —e?) +e*

wy = e e N (—ce? —e?) wy = e® 4 (—ce® — ) A e?
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e (0,0,0,12,13) has a hypo structure given by

a=c¢'  w=e¥ e wy=e2 et wy3=eM e

Taking the product of this nilmanifold with a circle, one obtains the
half-flat symplectic structure studied by Giovannini in [21].

e (0,0,0,0,12 4 34) has hypo structures given by

o = 65 Wy = e12 + 634 Wy = 613 + 642 Wy = 614 4 623

o=¢ wy = el — 3 wy = '3 — 12 wy = elh — 23

These structures arise as circle bundles over the hyperkéahler torus.

e (0,0,0,0,12) has hypo structures given by

o= el wi =P e = eB e =2 e

a = 65 Wy = 612 + 634 Wy = 613 + 642 w3 = 614 4 623

a=e—e w=et+e® w=el+e wy=e" et

e Every SU(2)-structure on (0,0,0,0,0) is hypo.

The rest of this section consists of the proof of the theorem. Suppose g
is a non-trivial nilpotent Lie algebra carrying a hypo structure. Since g is
nilpotent, one can fix a filtration of vector spaces V*, dim V* = i, such that

VicVic.-..cVi=g" d(V')cAV.

This filtration can be chosen so that V* = ker d for some 4; in particular, one
has V2 C kerd C V*. Note that the first Betti number b; is the dimension
of kerd.

It is convenient to distinguish three cases, according to whether « lies in
VA (VHE or neither.

5.6.1 First case

We first consider the case when « is in V4.

Theorem 5.23. If o is in V4, then g is either (0,0,0,0,12), (0,0,0,12,13),
or (0,0,12,13, 14).
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Proof. Fix a unit €® in (V*)* and apply Corollary 5.3 to obtain a coframe
el,..., e’ such that

a=e wy = e® + e wy = e 4 ¥ w3 = e +
From dw; = 0, it follows that
2 Ade® —de*t = de* NeP (5.29)

since the left-hand side lies in A3V* and the right-hand side lies in €3 A A2V,
both must vanish and de? = 0. Using the fact that o A w, and o A ws are
closed, we obtain:

0=de'? + de'* Ae® + e Aded

0=de'® —de® Ne® — el Ade®
Therefore e'? and e'* are closed; since e? is closed as well, we get

0=e"Ade, 0=e®Ande. (5.30)
Suppose first that e! is not in V3. By dimension count, {(e3, e*) has non-
zero intersection with V3, and we can therefore rotate e and e to get a
different hypo structure with €3 € V3; then de'® = 0 implies that e? is closed
and e3 A de! = 0. Similarly, de? is a multiple of de', for if one were to rotate
e* and e! in order to have e* € V3, then e* would become closed. It follows
that e is closed; then (5.29) becomes

2 Nde® =0,

showing that, because of (5.30), up to a constant de® equals e'?, which is
therefore closed. Thus, all 2-forms on V* are closed, implying that V* is
trivial as a Lie algebra; consequently, g = (0,0, 0,0, 12).

Assume now that e' is in V3; we can rotate e and e* to get €® in V3, e*
in (V3)%. From de'* = 0 we find that e! is closed and de* Ae! = 0. Wedging
the left-hand side of (5.29) with e! and using de'® = 0, we see that

e?Nde® =e' NdeP = e Nde? —ePB Adet = Ade! =0

Together with (5.30), this implies that de® is in (e'2, e!3 e!*). Now consider
the endomorphism f of at defined by e! A f(n) = dn; its matrix with respect
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to {e2,e®, e, e’} is strictly upper triangular. Its Jordan canonical form is
therefore one of

0000 0000 0100
0000 0010 0010
ooo01]l’looo 1] % looo 1]
0000 0000 0000

giving g = (0,0,0,0,12), (0,0,0,12,13), or (0,0,12,13,14) respectively. [

5.6.2 Second case

The key tool to classify the remaining hypo structures is the following Lemma,
which shows that « is orthogonal to V* if and only if ws, ws are closed and
by = 4.

Lemma 5.24. Let a ¢ V. Then

1. If all w; are closed, o is orthogonal to V2.

2. If a is orthogonal to V*, V* =kerd. In particular, all w; are closed.

Proof. Let € be a unit form in (V*)*. By hypothesis, a = a e® + n where 1
is in V* and a # 0. To prove the first statement, suppose 7 is non-zero and
let e* be a unit form in (e®,n) orthogonal to .. Using Corollary 5.3 we can
write

wy = e'? 4 34 Wy = el 4 B2 wy = eM 4 B
The space (e!,e?,e3) is orthogonal to e
whereas e* is not. Since w; is closed,

® and is therefore contained in V*,

e* Nde' — de? = de* Nt (5.31)

both sides must then vanish, and so €? is closed; applying the same argument
to wy and wy (which are closed by hypothesis) one finds that e! and e? are also
closed. From (5.31) and its analogues obtained using we and ws, it follows
that de* A (e!,e?,¢e®) is trivial. Hence e* is closed and is therefore in V*
which is absurd.

To prove the second assertion, let n = 0, i.e. a = €5 (up to sign). From (5.8),
it follows that wy and ws are closed. Pick a unit e* in (V3)tNV*, and define
e, e? e? so as to obtain (5.5); then (e!,e?, e3) = V3. The same argument as

above gives V4 = ker d. O
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It is now easy to prove:

Theorem 5.25. If o is orthogonal to V4, then g is either (0,0,0,0,12) or
(0,0,0,0,12 + 34).

Proof. By Lemma 5.24, V* = kerd. Then either da is simple, and one can
choose a basis e!,...,e* of V* such that da = e'2, or it is not simple, and
one can choose a basis such that do = e'? 4 €34, O

5.6.3 Third case

The last case is the one with « neither in V* nor in (V4)t. Lemma 5.24
suggests that the span of dw, and dws is relevant to the classification of hypo
structures; we shall use the dimension of {dw,, dws) NA3V* to distinguish two
subcases. In fact, we shall prove that this dimension can only be 1 or 2.

Theorem 5.26. If « is neither in V* nor in (VYL and dws, dws are in
A3V then g = (0,0,0,0,12).

Proof. Let a4+ be a generator of (V4)* with v in o, and let k£ be the norm
of v; then o — k=27 lies in V4. Consider now the hypo structure obtained
multiplying o by k. Let e* = —k~!5 and define

_1 4 _1 _ 4N .
77—2(a+6), 5—2(04 €>7

then ¢ generates (V*) and 7 is in V*.
Using Corollary 5.3 we can write

Wy = 612 4 634 Wy = 613 4 642 w3 = 614 4 623

The space (e!, €2, e?), being orthogonal to both e* and «, is orthogonal to &,
and is therefore contained in V*4; on the other hand e* is not in V*. Since w;
is closed,

e* Nde' — de™ = de* Net (5.32)
both sides must then vanish, and so e? is closed. Similarly, write
dwy = de™® + de* N e? —n A de? + € A de?

dws = de*® —de* N et +n Adet — € N de
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So far we have only used the fact that « is orthogonal to V4. Writing
A3g" = N3V @ £ A NPV
the hypotheses on dws, dws imply that e* and e! are closed. By (5.8),

0 =d(wsa) =d(Ee® AN (n+&) —2e2AnAE) (5.33)
0=d(wsa) =d(Ee*®An+E&)+2e' AnpAEg) (5.34)

Relative to A*g* = £ A A3V* @ A*V4, the first components give e! A dn = 0,
e? A\ dn = 0; using this, the second components give

(e —2e* An)AdE=0
(P +2e' An)AdE=0

The left-hand side of (5.32) gives
e Ndnp = e® NdE . (5.35)

Wedging by e!, e? we see that d Ae!® and d€ A e? are zero, so our equations
reduce to

(e2An)ANdE=0, (e*An)AdE=0.

Therefore, d¢ lies in {e'? e* A n). Suppose that 7 is not closed; then dn is a
non-zero multiple of e!2, so d* = 0 implies that d¢ must also be a multiple of
e'?. Then (5.35) implies that e* is closed, which is absurd because e* cannot
be in V4,

Thus, 7 is closed and from (5.35) we must have d¢ = e* An up to a constant,
which we can take to be 1 by introducing a global scale factor. The basis
{e3,n,e', €2, e} reveals g to be (0,0,0,0,12). O

Suppose now that the dimension of (dws, dws) N A3V* is one; then up to
rotating wy, and ws we can assume that, say, dws is in A*V*. The following

Lemma shows that this can always be done.

Lemma 5.27. If « is neither in V* nor in (V)L up to rotating wy and ws
we can always assume that dwy is in A3V*2.
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Proof. Suppose dw, is not in A®V*; then «a cannot be orthogonal to V4,
because otherwise wy would be in A2V%. We can then proceed as in the proof
of Theorem 5.26. If de! and de? are linearly dependent, by rotating w, and
w3 one can construct a hypo structure with dw, in A3V*; assume that they

are independent.
Consider the bilinear form B on V* defined by

B(a,B)e Anp=anp;

its signature is (+, 4+, +, —, —, —). By the classification of four-dimensional
Lie algebras, V* = (0,0,12,13); an explicit computation then shows that
space Zs of closed 2-forms has dimension 4 and the signature of B on Z is
(0,0,4, —).

On the other hand, the components of (5.33), (5.34) containing £ give

dle®+2nne*) =0, d2e' Am+e*) =0,

giving a two-dimensional subspace in Z, on which B is positive definite,
which is absurd. O

Theorem 5.28. Let o ¢ V4. If dws is not in A3V, then
g=1(0,0,0,12,13 4+ 24) .

Proof. Since dws is not in A3V*, o cannot be orthogonal to V*, because
otherwise ws would be in A2V4. We can then proceed as in the proof of
Theorem 5.26; in fact, everything applies verbatim until the conclusion that
e! and e? are closed, as in the present case e? is closed but e! is not. Equations
5.33 and 5.34 also hold; the vanishing of the £ A A3V* component of (5.34)
shows that d(1 An)=0. This implies that dn = k de' for some constant k, for
if one were to rotate n and e! in order to have n € V3, then n would become
closed. Rewrite (5.32), (5.33) and (5.34) as

(ke* —e*) Ade' —e* ANdE =0 (5.36)

de' N (2ke* +¢€*) =0 (5.37)

(e —2e2An)AdE=0 (5.38)

ke® Nde' + (e* +2e' An) NdE =0 (5.39)

Wedging (5.36) with e® shows that de! A e* = 0; wedging with e? shows
that dé A e?® = 0; (5.39) is therefore equivalent to dé A e! An = 0. From
d(e! An) =0 and (5.37), we find that up to a non-zero multiple

de' = 2ke* +e*)A(n—ke').
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Then from (5.36) we get
dee{eNn—ke))y @ ANV (5.40)

write d€ = 01 + 05 accordingly and note that o; cannot be zero, as in that
case (5.36) would imply (2k% + 1) €** = 0. From (5.40) and (5.39), we know
that oy must be in € A (e!,n); let

oy =cre® AN(n—ke')+cye®t.
If ¢y is zero, (5.38) implies that d€ = de! up to a multiple. So (e!, &) has non-
zero intersection with ker d C V*, contradicting the fact that (e', ¢) intersects
V4in (e') and de' # 0.
Hence ¢, is not zero, and since o is closed, 0o must be closed as well; therefore
de! A e =0, implying k = 0. We can then rescale everything so that, using
(5.36) and (5.38),

dn=20, de* =2¢e3 A, dé =2e’n+e +c e A

Relative to the basis {—217,e?, —e* — & €* e, e'} we see that

g=1(0,0,0,12,13 + 24) . O

5.7 Hypo nilmanifolds: Examples

The constructions of Section 5.5 also work for hypo structures on a Lie al-
gebra g, if one replaces (M) with A*g, Diff(M) with the space of inner
automorphisms of g, and so on. The space of deformations is then a finite-
dimensional, algebraic variety; therefore, it is smooth on a Zariski-open set.
Since Zariski-open sets are dense, we conclude:

Proposition 5.29. The space of deformations of a hypo structure on g is
almost everywhere smooth.
In other words, almost every hypo manifolds is regularly hypo.

Remark. Lacking an estimate on the interval where evolution equations can
be solved, being able to approximate a hypo structure with regularly hypo
structures does not help to extend the evolution theorem.
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We now give an example of a regularly hypo structure not satisfying the
hypotheses of Theorem 2.23, proving that Theorem 5.20 is in some sense
more general. Consider g = (0,0,0,12,13 4 24), with

a=e' 468, W=t =21 eP . =B
We have

B2 — <€12’ SEN 624> 7 B3 — <e123’ 12 23 125 _ 6134> _
Write

34 25 12 13 24
wp =€ +e7 +xe +LIZ’2(€ +e )

142 135 542 123 124 234 125 134
Py = M2 4 13 1 P2 ppre!? opy e 4 ps e opy (e — ')

¢3 — 6145 4 6123 + 6523 + ¢ 6123 + 0 6124 4 s 6234 + Q4(€125 . 6134)

V= —-wi \Nw
5 1 1

A straightforward calculation gives
V={q =-p—p+a° ¢2=p1—2paqu, g3 = —DPa, G4 =D3} ,

which is clearly smooth. So, all of the hypo structures in V are regularly
hypo. Moreover, observe that the dimension of V' is 6, which is half the di-
mension of H; it is not hard to check that V is Lagrangian in H.

Lastly, we compute the intrinsic torsion A : Psyy — Sym(R®). For conve-
nience, we work on a left-invariant reduction of Psy) to the trivial group
{e}, i.e. with a global frame; then the connection form can be written

0 0 6 0 6
0O 0 0 ¢ —¢
—¢* 0 0 -0 o |,
0 -6+ 0t 0 -0
—¢* ¢ 0 6 0

where 0% is the k-th component of the solder form. Using the formulae
appearing in the proof of Proposition 5.7, the restriction of A to Py is

o 0 0 0 -1

o 0 —-10 0
A=l0 -1 0 0 0
o 0 0 0 0
-1 0 0 0 0



and the tensorial 1-form given by its exterior covariant differential is

—20% 65— 01 0 62 0

9> — o 0 0 —o! 0
DA = 0 0 0 0* 0 —6° |
62 —6! 6* 0 0
0 0 0*—0> 0 203

so VA as a tensor taking values in 7" @ T* ® T™ is not totally symmetric.

We conclude this section by solving the evolution equations in one exam-
ple.

Example 5.29.1. Let g = (0,0,0,0,12 + 34), with
a=eé, Wy = e 4 M wy = 13 4 2 wy = e 4 e .
The evolution equations are solved by
o= (1—2t)71/2e wy = (1 —2t)2(e!? + &)
wo = (1 — 20)12(e13 4 ¢22) w = (1 — 20)12(el 4 &)
and the Calabi-Yau structure is
w=(1-2t)"Y2 Ndt + (1 —2t)2(e!? + )
U = (e + (1 — 26)Y%dt) A (¢! +ie?) A (€2 + ie?)

Appendix

In this appendix we give some details on the theory of infinite-dimensional
manifolds which were used in the proof of Theorem 5.20. Our discussion is
based on [27].

Infinite-dimensional manifolds are defined using atlases, like in the finite-
dimensional case; however, charts are required to take values in a topological
vector space admitting a Banach structure. In particular, the tangent space
at a point can be viewed as a Banach space. A closed subspace E of a Banach
space F' is said to split if it admits a closed complement £’ C F, such that
the natural linear isomorphism F @ E’ = F' is a homeomorphism. A smooth
map f: M — N is a submersion at x € M if (f,), is surjective and ker(f,),
splits. We say that y € N is a regular value for f if f is a submersion at all
z in f~'(y). As a consequence of the implicit mapping theorem, we get:
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Theorem 5.30. Let f : M — N be smooth. If y is a regular value for f,
then f~1(y) is a submanifold of M.

Remark. By a submanifold of M we mean a subset X C M such that each
x € X belongs to a chart ¢ : U — V} x V5, where V; C E; is an open set in a
Banach space, and

d(XNU) =V x{as},
where as is some point of V5.

Now consider a finite-dimensional, compact manifold M, and fix a Rie-
mannian structure Po(,). For every O(n)-module V', we can define a count-
able family of norms on I'(V), by taking the L* norms of

a,Va,VVa,...

and combine them into a single norm

lall =27V all, -

neN

This gives a Banach structure to I'(V/). In particular, the spaces QP(M) are
Banach spaces and
d: QP (M) — QPYY(M)

is continuous.
The following elementary result was used in the proof of Lemma 5.18:

Proposition 5.31. If f : V. — W is smooth and O(n)-equivariant, then
f:T() — (W) is smooth. Moreover, if 0 is a regular value for f, then

the zero section is a reqular value for f.

Proof. Continuity and smoothness of f are obvious. Fix a section a of V.
with f(a(z)) =0 for all z in M; define vector bundles on M by

K, =ker(fi)a() I'=Tm (fs)a() -

By construction,
['(K) = ker(f)sa D(I) = Im (f)sa -
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We must show that I'(K) C ['(V) splits and I'(I) = T'(W). Since 0 is a
regular value for f, we can choose a linear map s : W — V such that
(fi)z © g is the identity for all x. Then,

()08 =1d: T(W) — (W),

so the sequence
0—-INK)—-TV)—->TW)—0

splits, which is what we had to prove. O

141



142



Bibliography

1]

2]

3]

[4]

[9]

[10]

E. Abbena, S. Garbiero, and S. Salamon. Hermitian geometry on the
Iwasawa manifold. Boll. Un. Mat. Ital, B(11B):231249, 1997.

B. S. Acharya, F. Denef, C. Hofman, and N. Lambert. Freund-Rubin
revisited. hep-th/0308046.

V. Apostolov and S. Salamon. Kéhler reduction of metrics with
holonomy Gy. Comm. Math. Phys., 246:43-61, 2004.

M.F. Atiyah, N.J. Hitchin, and .M. Singer. Self-duality in four-
dimensional Riemannian geometry. Proc. Roy. Soc. Lond, A362:425461,
1978.

C. Bar. Real Killing spinors and holonomy. Comm. Math. Phys.,
154(3):509-521, 1993.

C. Bar, P. Gauduchon, and A. Moroianu. Generalized cylinders in semi-
Riemannian and spin geometry. DG /0303095, 2003.

H. Baum, T. Friedrich, R. Grunewald, and 1. Kath. Twistor and Killing
spinors on Riemannian manifolds. Number 108 in Seminarbericht.
Humboldt-Universitat Berlin, 1990.

M. Berger. Sur les groupes d’holonomie des variétés a connexion affine et
des variétés riemanniennes. Bull. Soc. Math. France, 83:279-330, 1955.

A. Bilal and S. Metzger. Compact weak Go-manifolds with conical sin-
gularities. Nucl. Phys. B, 663:343, 2003.

D. E. Blair. Riemannian Geometry of Contact and Symplectic Mani-
folds. Birkhauser, 2002.

143



[11]

[12]

[13]

[14]

[15]

[18]

[19]

[20]

[21]

22]

23]

[24]

G. E. Bredon. Introduction to compact transformation groups. Num-
ber 46 in Pure and Applied Mathematics. Academic Press, 1972.

R. Bryant. Metrics with exceptional holonomy. Annals of Mathematics,
126:525-576, 1987.

R. Bryant and S. Salamon. On the construction of some complete metrics
with exceptional holonomy. Duke Math. J., 58:829-850, 1989.

S. Chiossi and A. Fino. Conformally parallel GGy structures on a class of
solvmanifolds. DG/0409137.

S. Chiossi and S. Salamon. The intrinsic torsion of SU(3) and G, struc-
tures. In Differential Geometry, Valencia 2001, pages 115-133. World
Scientific, 2002.

S. Chiossi and A. Swann. Ga-structures with torsion from half-integrable
nilmanifolds. DG/0404554.

J. Eells and S. Salamon. Twistorial construction of harmonic maps of

surfaces into four-manifolds. Annali della Scuola Normale Superiore di
Pisa, XII(4), 1985.

T. Eguchi and A. J. Hanson. Asymptotically flat selfdual solutions to
Euclidean gravity. Phys. Lett. B, 74(249), 1978.

T. Friedrich. On the spinor representation of surfaces in Euclidean 3-
space. J.Geom.Phys., 28:143, 1998.

T. Friedrich and E. C. Kim. The Einstein-Dirac equation on Riemannian
spin manifolds. J. Geom. Phys., 33:128, 2000.

D. Giovannini. Special structures and symplectic geometry. PhD thesis,
Universita degli studi di Torino, 2003.

A. Gray and L. Hervella. The sixteen classes of almost Hermitian man-
ifolds. Ann. Mat. Pura e Appl., 282:1-21, 1980.

W. H. Greub, S. Halperin, and R. Vanstone. Connections, curvature
and cohomology, volume 2. New York : Academic Press, 1972.

N. Hitchin. Harmonic spinors. Advances in Math., 14:1-55, 1974.

144



[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]

33]

N. Hitchin. Stable forms and special metrics. In Global Differential
Geometry: The Mathematical Legacy of Alfred Gray, volume 288 of Con-
temp. Math., pages 70-89. American Math. Soc., 2001.

S. Kobayashi and K. Nomizu. Foundations of differential geometry.
Interscience Publishers, 1963.

S. Lang. Fundamentals of differential geometry. Number 191 in Gradu-
ate texts in mathematics. New York : Springer-Verlag, 1999.

H. B. Lawson and M. L. Michelson. Spin Geometry. Princeton University
Press, 1989.

C. Olmos. A geometric proof of the Berger holonomy theorem. Annals
of Math., 161:579-588, 2005.

R. Reyes-Carrion. A generalization of the notion of instanton. Differ-
ential Geometry and its Applications, 8:1-20, 1998.

S. M. Salamon. Riemannian geometry and holonomy groups, volume 201
of Pitman Research Notes in Mathematics. Longman, Harlow, 1989.

S. M. Salamon. Complex structures on nilpotent Lie algebras. Journal
of pure and applied algebra, 157:311-333, 2001.

M. Y. Wang. Parallel spinors and parallel forms. Ann Global Anal.
Geom., 7:59-68, 1989.

145



