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Introduction

Advances in technology have deeply changed the way securities are traded. New technolo-
gies have enabled exchanges to automate most - if not all - the steps involved in trading.
This has led on one side to dramatic cost reductions and on the other side has opened
a full set of new possibility for market participants. In parallel to automation on the
exchange side, also brokers, hedge funds, proprietary trading firms and other market par-
ticipants have profited from the new technology for automating a variety of tasks, from
optimization of order execution to whole trading strategies (Hendershott et al., 2011). So
called algorithmic trading, that is the use of computer algorithms to automatically make
trading decisions and handle the order submission, is nowadays deemed to account for the
majority of trading in developed markets (Hendershott et al., 2011; Abergel et al., 2014;
Chaboud et al., 2014).

With progressive market automation, also larger amount of data have started to be
available. In particular, recent years have witnessed the increasing availability of high
frequency financial data, i.e. data where each event is recorded separately and times-
tamped to a high precision, typically microsecond or even nanosecond in some cases1.
This has opened new possibilities to exploit this information for research and trading
purposes, and it was crucial for the development of algorithmic trading. New methods
and techniques have been developed or borrowed from other disciplines, notably statisti-
cal physics, to handle and leverage these finer data. Several empirical studies (cfr. Cont
(2001); Chakraborti et al. (2009)) contributed to the individuation of a set of statistical
regularities and anomalies found in a large set of markets and assets and usually referred
to as stylized-facts. More recently, advances in pattern recognition and statistical learning
have been closely followed in particular by quantitative funds.

High frequency data display several peculiar properties, such as the irregular spacing in
time, the discreteness of price changes, the bid-ask bounce as well as the presence of strong
intraday seasonalities and persistent dynamics (Bauwens and Hautsch, 2009). Moreover,
when order book data are available, one faces also the challenge of dealing with a multitude
of event types, such as different kind of orders (limit orders, market orders, cancellations),
at various price levels.

One of the key features of high-frequency financial data is the irregular time spacing
between subsequent events. Since the seminal papers of Hasbrouck (1991) and Engle
and Russell (1998), the informational content of events time spacing has been widely
recognized. This has spurred the interest towards continuous time econometric models,
i.e. point processes based models, as opposed to discrete models used in evenly spaced time
series modeling (Bauwens and Hautsch, 2009). Among these models, Hawkes processes
have recently risen in popularity (Bacry et al., 2015), and one of the reasons of their success
is their straightforward application to cases where multiple event types are present. In
this thesis we present some novel applications of Hawkes processes to the domain of high-

1Note that high precision does not always translate to the same amount of accuracy.
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frequency financial data and propose an extension of the standard Hawkes framework
that is designed to deal with local external perturbations that produce a sudden increase
in the intensity of the process. All the methods and models that we present here are
in principle amenable to applications in fields different from finance, whenever a point
process description might be appropriate.

The rest of this thesis is organized as follows.

Chapter 1 Here we introduce in more detail the themes and research questions that
we address in this thesis. We provide some context and we highlight the most relevant
contributions.

Chapter 2 In this chapter we introduce more thoroughly Hawkes processes. We give
the main definitions and introduce their most relevant properties. We also outline the two
main estimation methods that we will use in application, namely Maximum Likelihood
and the non parametric estimation developed by Bacry and Muzy (2016).

Chapter 3 This chapter contains the first original contribution of this thesis. We use the
non parametric estimation method of Bacry and Muzy (2016) to study the high frequency
dynamics on two very liquid future contracts traded on the Eurex exchange. We examine
in particular the role played by the order size and we show that our approach can highlight
several features of the high-frequency dynamics.

Chapter 4 Here we confront the problem of local non-stationarities due to external
shocks, such as news announcements, that can greatly affect financial time series. We
focus on large but localized variations in the intensity of order submission - that we name
Intensity Bursts (IBs) - that can arise in correspondence of these events. We study this
phenomenon on Foreign Exchange (FX) market data, which are especially affected by
economic news announcements. We propose an extension of the Hawkes process that
allows for the presence of externally driven IBs and we show that it is able to capture
both the amplitude and time persistence of these IBs.

Chapter 5 In this final chapter we build on the work of Chapter 4 and we present a
Hawkes process based procedure for IBs detection. While in the previous work the time
and number of IBs were a priori fixed, here we devise an iterative procedure to identify
them. One important feature of our procedure is that it tests the presence of an IB against
a standard Hawkes process background. Since Hawkes processes naturally produce burst
in the intensity, this allows to separate burst that cannot be explained solely by the Hawkes
process from the others.

The last three chapters contain the original contributions of this thesis. Each of them
is self-contained and in principle can be read separately.
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Chapter 1

Presented research

In this thesis we explore some applications of Hawkes point processes to the modeling of
high frequency financial data. Hawkes processes were first introduced by Hawkes (1971)
who was in search of a model for earthquake aftershocks occurrences (Linger, 2009). He
proposed a multivariate point process model where the intensity function1 has the form

λit = µi +

D∑
j=1

∫ t

−∞
φij(t− s)dN j

s

where µ is a vector of constant background intensities (Poisson component) and φ(t) is a
matrix of nonnegative functions called the kernel of the process, that is responsible for the
characteristic self- and cross- exciting behavior of the process. Indeed the intensity of the
Hawkes process depends on the past history of the process itself and the amplitude and
persitence of the memory on past events is regulated by the kernels φij(t). In Figure 1.1
a realization of a univariate Hawkes process with kernel function φ(t) = αe−βt is reported
together with the corresponding intensity function to demonstrate the self-exciting behav-
ior of the process. When an event occurs, the intensity has a positive jump and in turn
this increases the likelihood of new events, creating a cascade effect. A more thorough
introduction will be given in Chapter 2.

Hawkes processes have recently attracted a lot of attention in finance for several reasons.
First, with the availability of data with increasingly fine time resolution, the time arrival
of events has started to be recognized as an important source of information. This is in
contrast with previous works where all analysis where conduced in event time as opposed
to physical time. While this was a obliged choice when only evenly sampled data were
available, and it often simplifies the analysis, now models that take into account the
full time information are increasingly popular and Hawkes processes have been found to
reproduce well the event time clustering typically found in financial order flow data. The
second reason of Hawkes process success lies in the straightforward interpretation of model
results. Indeed, as will be detailed in the next chapter, the kernels φij directly specify
how the occurrence of an event of type j influence the successive occurrence of a type
i event. Moreover, the integral of the kernels is a measure of the average number of
type j event triggered by a type i event. Furthermore, the relative importance of the
feedback mechanism, as measured by the kernel integrals, and of the baseline intensities
µi can be used to compare the different strengths of endogenous and exogenous factors

1The intensity function can be heuristically defined as λt = lim∆→0+ ∆−1E [Nt+∆ −Nt|Ft], where Nt =∑
m≥1 1tm≤t denotes the counting process, 1 is the indicator function, and Ft represents the information

available at time t.
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Figure 1.1: Example of a realization of a one dimensional Hawkes process. The blue triangles
represent the arrival times of events, while the black line is the intensity λt of the process. Here
we took the kernel φ(t) to be of the form φ(t) = αe−βt, with α = 3 and β = 4. The baseline
intensity µ is equal to 1. This image illustrates the self-exciting behavior of the Hawkes process:
every time one event arrive the intensity jumps thus increasing the likelihood of new events. This
in turn generates events clustering as it is visible from the plot.

in the process dynamics. Finally, Hawkes processes lend themselves very naturally to
multivariate applications. All these characteristics make Hawkes processes an appealing
model when one’s interest is in the study of mutual influence relationships between different
types of events within a system. Additionally, the increasing availability of computational
power along with the development of estimation techniques capable of dealing with large
dimensions has made this kind of application even more appealing.

In this thesis we develop the Hawkes process framework along two main lines. The
first leverages recent developments in non-parametric estimation of multivariate Hawkes
processes to gain new insights on the high frequency order book dynamics and in particular
on the role played by order size. The second line is instead concerned with the necessity
to account for external localized perturbation of the dynamics such as those generated
by news announcements. Before describing these points in more detail in the following,
let us remark once again that although in this thesis the focus is on financial data, the
methodologies proposed have in principle a much wider scope.

1.1 Analysis of order book dynamics

More than half of the world’s financial market are nowadays operated fully electronically
via a Limit Order Book (LOB) (Gould et al., 2013; Parlour and Seppi, 2008). Thus,
understanding order book dynamics is of great importance for practitioners, researchers
and regulators alike. Indeed, this understanding is needed to decide what actions to take in
a given market situation (Harris and Hasbrouck, 1996), to design optimal order execution
strategies (Obizhaeva and Wang, 2013), to better control market impact of one’s trading
activity (Eisler et al., 2012), as well as for the design of better electronic trading algorithms
(Engle et al., 2006), and for monitoring market stability (Kirilenko et al., 2015).

Modeling LOBs is not an easy task. In fact, the interaction of a large number of hetero-



geneous agents gives rise to complicated global phenomena (Mitchell (2009); Gould et al.
(2013)). Works investigating LOBs have taken a number of different approaches. One one
side, perfect rationality models traditionally focus on the strategic behaviors of the single
agents and from those derive the equilibrium relations (Kyle, 1985; Glosten and Milgrom,
1985; Parlour, 1998; Foucault, 1999; Almgren and Chriss, 2001; Roşu, 2009). On another
extreme, zero-intelligence models (Bouchaud et al., 2002; Farmer et al., 2004, 2005; Cont
et al., 2010; Toke, 2011) model the aggregate order flow with a given stochastic process,
disregarding any strategic behavior. While both approaches are somewhat extreme and
often too simplified, they can nevertheless provide insights on trading strategies and on
the origin of statistical regularities observed in real data. Zero-intelligence models have
also the advantage that the parameters of the stochastic processes governing the order flow
can be estimated from real data and thus the statistical properties of these models can be
compared with those of real LOBs. In contrast, perfect rationality models are often build
on a series of assumptions necessary to determine the value of unobserved parameters,
making it difficult to directly compare them in a statistically sound manner to real LOBs.

Most of the earlier zero-intelligence models assume that order flows are driven by Pois-
son processes. Although this assumption is in contrast with empirical observations, its
simplicity makes the models tractable, thus allowing to derive testable formulas. Indeed,
one of the empirical evidences on which most authors agree is that the order flow appears
to depend both on its past history and on the present state of the book (Biais et al.,
1995; Ellul et al., 2003; Hall and Hautsch, 2006; Hollifield et al., 2004; Lo and Sapp, 2010).
Hence, a series of models that try to allow for dependence in the order flow were proposed.
Zhao (2010) and Toke (2011) replaced Poisson processes with Hawkes processes to account
for the empirically observed clustering of order arrivals. Abergel and Jedidi (2015) have
studied the long time behavior of a Hawkes process driven LOB, building on their previous
work (Abergel and Jedidi, 2013) where order flows were assumed to be driven by Poisson
processes instead. They show that this Hawkes-driven order book is ergodic and leads to
a diffusive behavior of the price at large time scales. Huang et al. (2015), while keeping
the assumption of Poisson driven order flow, condition the Poisson rate on the state of
the book and derive the limiting behavior of their model. Toke and Yoshida (2016) also
recently proposed an order book simulator where order flow intensities depends on the
available volume in the books and also on the spread.

All these works aim at the still open challenge of devising tractable yet sufficiently rich
models that are able to closely reproduce the observed LOBs behavior. This is of great
interest not only to get a deeper understanding of markets, but also for practical reasons
such as building reliable market simulators as well as tools for transaction cost analysis
and risk management. One further simplification that it is usually made in most zero
intelligence models is to consider the order size as constant or as a iid random variable.

Our contribution. In the work presented in Chapter 3, we abandon this simplifica-
tion and we show how multivariate Hawkes processes in combination with a recent non-
parametric estimation procedure (outlined in Section 2.3.2) can be successfully used to
investigate the role of the order size in the high frequency order book dynamics. Hawkes
processes are naturally suited to describe mutual interaction between different event types
(e.g. limit orders, market orders, cancellations). We further incorporate dependence on
the order size by increasing the model dimension. Doing so has the advantage that it
allows to analyze in a fairly general way the dependence on a mark, in this case the order
size, with the already available tools developed for multivariate point process. Moreover,
our approach can be easily generalized to variables other than the order size. This is of
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Figure 1.2: Example of the application of Hawkes processes and non-parametric estimation to
high frequency data on the DAX future contract (from the work presented in Chapter 3). This
figure shows estimated Hawkes kernels that describe the exciting effect of a large limit order
being posted on the ask side on other order types. Order types are denoted L for limits, C for
cancellations and T for marketable orders (trades). The side of the order is labeled a for ask and
b for bid. Finally, order sizes are divided into four groups with 1 being the smallest size and 4
the largest one. The figure on the left shows the effect of a large limit order on the ask side, the
one the right shows the effect on the bid side.

great importance as one of the challenges of LOBs modeling is precisely in understanding
the role played by different variables in order to build parsimonious yet realistic models.

Our approach shows that mutual influences between orders are size-dependent, and
that the order size is a relevant variable that needs to be taken into account for a faithful
description of the order book dynamics. We are also able to identify several characteristics
of the high-frequency dynamics, such as the typical reaction times as well as signatures of
some common trading strategies like order splitting and high-frequency market making.

This is made possible by taking a non-parametric approach, that allows us to signifi-
cantly limit assumptions on the shape of the kernels. In Figure 1.2 we anticipate some of
the results of Chapter 3 and we plot the estimated Hawkes kernels that describe the effect
of a large limit order arriving at the best ask. Each kernel φ(X → Y )(t) determines the
increase in the intensity of type Y events after t seconds from the occurrence of a type
X event. By comparing the different kernels, we note a very strong and time-localized
influence on smaller limit orders on same side (red triangles) and also a analogue effect on
cancellation (orange diamonds) and trades (green pentagons) on the opposite side. It has
been often argued that a large volume order carries more information. Following this rea-
soning, a large limit order on the ask may thus shift perceived fair price towards that side,
thus triggering other limits on the same side and rush to catch the outstanding limits on
the opposite side before they are canceled. We also remark that the estimated kernels are
not positive on the entire domain, thus indicating that inhibition effects are also present.

In fact, we show that the use of the recent non-parametric estimation method developed
by (Bacry and Muzy, 2016) is suitable also to analyze systems where moderate inhibition
effects exist. This is possible despite the fact that standard Hawkes specification does not
allow for inhibition. We furthermore provide a new result relating the presence of inhibition
effects with negative kernels obtained with non-parametric estimation in Section 3.2.



1.2 Local non-stationarities

Several systems are characterized by the presence of discontinuities or “large” variations
in some variables taking place in a short time interval, variously referred to as anomalies,
outliers, jumps etc. depending on the application domain (Chandola et al., 2009). Fi-
nancial markets are an emblematic example of such a system. Indeed, financial markets
are subject to both internal feedback mechanisms and to external perturbations (political
decisions, breaking news, regulation changes, evolving technology, etc.). Both these forces
can determine sudden variation in some variables - most notably prices - as well as more
persistent shift in their dynamics.

The detection and modelization of such “anomalies” is important for several reasons.
Correct pricing of derivatives and other products requires that the underling stochastic
model of price and volatility dynamics correctly deals with the presence of jumps. Dealing
with surprise elements is also of fundamental importance for risk managers, as these events
can greatly affect performances. Regulators are interested in detecting market abuse (e.g.
insider trading cases) and monitor systemic risk. Finally, at a more fundamental level,
jumps are related to the way financial markets process information. Discerning between
exogenously triggered jumps and endogenous one is thus of both practical and theoretical
importance as it related to the old yet always actual question on what causes prices to
move (Shiller, 1981).

Pronounced variations in the rate of order arrivals (or price changes) are also often
observed in financial markets. The rate of trading is indeed highly non-homogeneous. At
microscopic scale, bursts of activity are intervaled by windows of lower activity, and this
behavior is not well reproduced by Poisson models. At the daily level, it is well known
that activity follows a roughly u-shaped pattern dictated by typical working hours and
some scheduled event (such as the spike observed in European markets in correspondence
of the opening of North-American ones).

Hawkes processes are increasingly used in finance to model the arrival of orders as they
reproduce well the burstiness of intensity observed at short time scales thanks to their
self-exciting specification. However, the standard and most widely used form of Hawkes
processes considers a constant baseline intensity µ. This specification cannot therefore
reproduce typical activity patterns such as the u-shaped daily pattern. This obstacle
can be overcome either by introducing varying baseline intensities (typically piece wise
constant or linearly varying) or by rescaling the original durations.

Other types of non-stationarities that have localized yet dramatic effect on the dynamics,
such as external perturbation like news releases, have instead been largely ignored in these
models as well as in other popular frameworks such as the Autoregressive Conditional
Duration models.

Our contribution I. In the work presented in Chapter 4 we propose a Hawkes process
featuring external shocks,

λt = µ+

∫ t

−∞
φ(t− s)dNs +

∫ t

−∞
φN (t− s)dN ext

s

where φ(t) is the endogenous self-exciting kernel and φN (t) is an exogenous kernel that
accounts for the external perturbation. We show that this model can describe nicely
the observed activity pattern in FX markets around economic announcements. Since
these announcements are scheduled in advance and their release time is known to market
participants, we also explore anticipation effects that could arise. Indeed, we find that the
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Figure 1.3: Actual and simulated activity from our calibrated model measured as events per 1
min for EUR/USD on Friday April 06, when the figure on US change in non-farm payrolls was
released at 13:30. The dashed vertical line corresponds to the time of the announcement. The
figure is a zoom on the 30 minute window around the news, while calibration was performed on
a 3 hours window centered around the release time. Results from simulation of the models with
and without the non causal term are compared. The dotted and dashed-dotted lines are one
standard deviation confidence intervals obtained from simulations of the calibrated model of the
causal-only and non-causal model, respectively. The anticipation effect is clearly visible on the
actual data and is nicely captured by our model.

description of the activity pattern can be further improved by allowing also a non-causal,
i.e. anticipating term.

In Figure 1.3 we show simulations from our calibrated model with and without the non-
causal term in the case of the release of the latest figure on the variation in the number
of paid workers in the US (Non-Farm Payrolls). This is a highly anticipated release that
has often a significant impact on the market. We note that the model captures nicely the
behavior of the mid-quote change intensity and that the addition of a non-causal term is a
valuable addition in this case, reflecting the fact that operators position themselves before
the release.

Our contribution II. In the work discussed in Chapter 5 we build on our previous
work and we propose an iterative procedure that allows us to detect both the number
and the locations of these sudden and dramatic increases in the intensity - that we named
Intensity Bursts (IBs) - which are not compatible with the standard Hawkes dynamics.
This overcomes two limitations that were imposed in the previous work, namely that the
number and arrival time of the IB events were assumed to be known, i.e. the process N ext

t

was assumed to be known in advance. The new procedure thus yields a better fit to the
data as compared to the previous model as the IB arrival time is now a model parameter
that can be finely tuned. More importantly, it widens the scope of the model, as it can now
be used as a burst detection tool. To demonstrate this, in Figure 1.4 we show the results
of our procedure in a significant case. We applied our model to the intensity of mid-price
changes in the EUR/USD cross during the testimony of the then Federal Reserve chairman
Ben Bernake before the US House Budget Committee. Our procedure detects two IBs,
one a few minutes before the scheduled start of the testimony and another during one of
Mr Bernake’s answers when he made a comment interpreted as dovish by the markets.
Our procedure allows to precisely identify the occurrence time of the IB and also quantify
its impact through model parameters.
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Figure 1.4: Market activity measured in mid price changes per unit time on the EUR/USD
cross on 02 February 2012 during Federal Reserve then chairman Ben Bernake testimony before
US House Budget Committee. The testimony was scheduled to start at 15:00 UTC (dotted line)
and the blue line represents the actual marked activity. The red line is the average from 100
simulations from the model of Chapter 5, where both the time and number of intensity burst
as well as their amplitude and persistence were estimated from the data. The red dotted lines
represent the 95% confidence intervals obtained from the simulations. The dashed vertical lines
indicate the time locations of the bursts detected by our model. We note that activity is found
to increase significantly a first time a few minutes before the beginning of the testimony. Around
the time marked by the second dashed line Bernake commented on the need to avoid too drastic
spending cuts (“[. . . ] I think that as long as there’s a credible, strong plan over time..and we
move into that plan that we’ll achieve most of the objectives of fiscal sustainability but we need
to at least avoid doing harm.[. . . ]”2.

Furthermore, the use of standard Hawkes process as base model consents to separate
genuine external perturbations to the system from burst generated by internal feedback
mechanisms which are already explained by Hawkes processes. We tested our procedure on
FX market data and we found a large number of IBs. Some of them are specific to a single
currency cross, while a significant part is found simultaneously on two or three crosses.
Some of these bursts are found to be temporally related to price jumps and macroeconomic
announcements. Interestingly, a significant fraction of IBs appears instead to be unrelated
with price jumps and news, opening the question of the possible market events associated
to them.

Finally, these works also contribute to the debate over the degree of endogenous vs
exogenous influence on financial markets. In some of the recent literature (Filimonov and
Sornette (2012); Hardiman et al. (2013)), the cluster structure of Hawkes processes has
been used to assess the relative importance of endogenous and exogenous mechanisms. Our
works show that properly accounting for localized external shocks is extremely important
if one wishes to use Hawkes processes for such purpose. Indeed, we show that calibrating
standard Hawkes models on data where localized external perturbations are present leads
to severe overestimation of the branching ratio, which is the main quantity of interest in
this kind of studies.

2See e.g. http://www.reuters.com/article/us-usa-fed-bernanke-qa-idUSTRE8111K020120202 or
https://www.c-span.org/video/?304151-1/2012-economic-outlook for the full testimony video.

http://www.reuters.com/article/us-usa-fed-bernanke-qa-idUSTRE8111K020120202
https://www.c-span.org/video/?304151-1/2012-economic-outlook




Chapter 2

Hawkes processes

In this chapter we introduce the family of Hawkes point processes which constitutes the
main tool used this thesis and we review its main properties. The main references for this
chapter are Daley and Vere-Jones (2003, 2008); Cont and Tankov (2004); Bauwens and
Hautsch (2009), and Bacry et al. (2015).

2.1 Point processes

A Point process on the real line is a stochastic process with some distinctive characteristics.

Definition 2.1.1. Lets consider an interval I on the real line, without loss of generality
we take I = [0, T ], T ⊂ R+

0 . A simple, non-explosive point process on the interval [0, T ] is
a sequence {tm}m∈N of random variables, tm ∈ T , such that

I. Pr(0 < t1 < t2 < ...) = 1

II. Pr(tm < tm+1, tm <∞) = Pr(tm <∞) for m ≥ 0

III. Pr(# tm ∈ T <∞) = 1, ∀ T ⊂ R

A point process is thus an increasing sequence of real-valued random variables. Fur-
thermore, we call it simple if the realization are distinct as long as they are finite. i.e, no
simultaneous events occurs (property (II) ). The last property assures that the number of
events in every finite interval is always finite, i.e. the point process is non-explosive.

The waiting times

xm = tm − tm−1 (2.1)

are called the durations of the point process {tm}m∈N. It is clear that the starting point
t0 and the durations {xm}{m=1,2,...} completely specify the path of the point process {tm}.
Their knowledge is thus equivalent to that of the times of the realizations of the process.

To every point process it is associated a counting process Nt defined by:

Definition 2.1.2. Let {tm}i∈N be a simple point process, the associated counting process
Nt is the right-continuous function given by Nt =

∑
m≥1 1tm≤t. Where 1 is the indicator

function: 1A = 1 if t ∈ A and 1A = 0 if t /∈ A. Nt is itself a stochastic cadlag1 process
with piecewise constant trajectories and unit increments.

1A cadlag function (from the french ”continue à droite, limite à gauche) is function defined on the real
numbers (or a subset of them) that is everywhere right-continuous and for which the left limit f(t−) exists
∀t.
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Nt is the total number of events occurred up to time t. Since there is a one-to-one
correspondence between a point process and the associated counting process, a point
process can be uniquely represented by a counting process. In fact, the notation Nt is
often used to indicate a point process.

From Daley and Vere-Jones (2003) a point process is stationary according to the follow-
ing definition:

Definition 2.1.3. A point process is stationary when for every r = 1, 2, ... and all bounded
Borel subsets Ai, ..., Ar of the real line, the joint distribution of

{N(A1 + t), ..., N(Ar + t)}

does not depend on t (−∞ < t <∞).

2.1.1 Marked and multivariate point processes

Often, it is desirable to associate another random variable to each realization of a point
process. For example, if we are observing the times at which transactions on a certain
asset take place, we can associate to each of them the price paid by the buyer. In this
case the process is said a marked point process.

Definition 2.1.4. A marked point process in the interval T ⊂ R and with marks in the
space K is a point process {(ti, ki)} on T ×K with the additional property that the ground
process, i.e. the process without marks, is itself a point process on T .

We observe that the marks need not to be scalars, they can as well be vector-valued.
For instance, with reference to the previous example, we can observe the price paid P
together with the amount traded V , the realization of the point process have thus the
form (ti, Pi, Vi).

In many cases it is also interesting to study the interdependence of different point pro-
cesses, this lead to the concept of multivariate point process, which is a special case of a
marked point process:

Definition 2.1.5. A multivariate point process is a marked point process {(ti,Wi)}with
marks in a finite set M = {1, ...,M}.

In this case the marks are labels of the type of event, for example if we are observing
the transactions on two different stocks, say A and B, we have M = {A,B}. In the
multivariate case we can identify the individual processes as N i

t =
∑

i≥1 1{ti≤t}1{Wi=m}

and the total process as Nt =
∑M

i=1N
i
t . Although a multivariate point process is a special

case of a marked point process, there is a clear conceptual difference between the finite-
valued marks case and the infinite-valued case that justifies the distinction. In the first
case we are interested in the relations between different point processes, in the second case
we are dealing with a single component to which we associate a (possibly vector-valued)
random variable. Indeed, we can have multivariate point process with associated marks.
Continuing with the two stocks example, we can associate to each realization tAi or tBj the

corresponding price paid PAi and PBj and get a multivariate marked point process.

2.1.2 Filtrations and History

If we interpret the index t of a stochastic process as a time variable, we introduce a dynamic
aspect which require us to properly define the notions of information and predictability



(Cont and Tankov, 2004). As time passes, more information (e.g the realizations of the
process) is revealed. Quantities that are random at time t = 0 may become predictable
as more information is released. To take into account this dynamic aspect, the concept of
filtration is introduced:

Definition 2.1.6. Given a probability space (Ω,F ,P), a filtration or information flow on
(Ω,F ,P) is an increasing family of σ-algebras2

(Ft) : ∀ t ≥ s ≥ 0, Fs ⊆ Ft ⊆ F (2.2)

Ft is interpreted as the information known at time t, which increase with time. In
the case when the past realizations of the process are the only information available, the
filtration is called the natural filtration or history and denoted Ht. Given Ft it is possible
to distinguish quantities that are known from those that are still random at t.

A stochastic process Xt is said to be Ft-adapted or nonanticipating if its random value
is revealed by Ft (i.e. it is Ft-measurable). A Ft-predictable process is a process for which
its value at t is known given Ft− , that is, it is Ft−-measurable. A predictable process
is also adapted, but the contrary is not true. In particular an adapted left-continuous
process is predictable.

2.1.3 Compensator and Conditional Intensity

In martingale-based point process theory, an important concept is that of compensator.
This, in turn, lead to the introduction of the conditional intensity function, which is of
crucial importance in the definition of many point processes including Hawkes processes.
In the exposition, we will follow mainly Bauwens and Hautsch (2009). Before introducing
these notions we first recall the definition of martingale:

Definition 2.1.7. Let (Ω,F ,P) be a filtered probability space with filtration Ft. A stochas-
tic right-continuous process Xt on [0, T ] is an Ft-martingale if

I. Xt is nonanticipating with respect to Ft
II. ∀ t ∈ [0, T ], E [Xt] <∞

III. ∀ s > t, E [Xs|Ft] = Xt

If property (III) is substituted by

IV. ∀ s > t, E [Xs|Ft] ≥ Xt

then the process is said a submartingale.

From definition 2.1.7, it is clear that a non-explosive counting process Nt is a sub-
martingale. As such, it can be decomposed in a zero-mean martingale Mt and a unique
Ft-predictable process, Lt, called the compensator of Nt, namely

Nt = Mt + Lt (2.3)

2A σ-algebra F on a space Ω is a family of subset of Ω such that:

• Ω ∈ F
• If A ∈ F , then Ac ∈ F
• If {Ai}i∈N ∈ F is a numerable sequence of disjoint subsets of Ω, then A =

⋃∞
i=1 Ai ∈ F



This decomposition is known as the Doob-Meyer decomposition. Now, since

E [Mt|Ft] = 0, (2.4)

it follows that

E [Nt|Ft] = E [Lt|Ft] . (2.5)

The compensator is then identifiable as the local conditional mean of Nt. Let λt be a
scalar, positive, Ft-predictable process. Then, λt is called the Ft-conditional intensity of
Nt if

Lt =

∫ t

0
λudu. (2.6)

From (2.5), λt can also be defined by the relation

E [Ns −Nt|Ft] = E
[∫ s

t
λudu | Ft

]
(2.7)

that must hold for all t, s such that 0 ≤ t ≤ s. It is possible to obtain a more intuitive
interpretation of λt letting s→ t in the previous equation

λt+ = lim
s→t+

λs = lim
s→t+

1

s− tE [Ns −Nt | Ft] (2.8)

Then, λ(t|Ft) is interpreted as the instantaneous expected arrival rate conditional on the
available information. In case the point process Nt is stationary, then Λ := E [dNt] /dt =
E [λt] is constant.

For a multivariate point process we have a conditional intensity function λit for each
subprocess, and the total intensity of the ground process is λt =

∑M
i=1 λ

i
t.

2.1.4 Representations of a Point Process

We conclude this section by examining the problem of how to specify the properties of a
point process, a question that is of great importance to build point process models of real
phenomena. We have seen that to a point process we can uniquely associate a counting
process, the process of its durations and a conditional intensity function. Thus, to specify
the characteristics of a point process we can set the properties of one of the aforementioned
associated processes, this lead to the counting representation, the duration representation
and the intensity representation respectively.

The well known Poisson process can be defined following each of the possible represen-
tations. In fact, for a Poisson process we have:

Counting representation The Poisson process is the one for which the counting pro-
cess has independent increments and the number of events in each time interval τ follows
a Poisson distribution

Pr (Nt+τ −Nt = k) = e−λτ
(λτ)k

k!
.

Duration representation Let {xi}i≥1 be independent exponentially distributed ran-
dom variables with parameter λ, the Poisson process {tm} is then defined by tm =∑m

k=1 xk. That is, a process with independent exponential durations is a Poisson pro-
cess.



Intensity representation The Poisson process is defined as the point process with
constant conditional intensity λt = λ.

The discrete nature of duration models cause them to be unsuitable when the informa-
tion set has to be updated within a duration spell as is the case for multivariate processes,
for example because of an event in other related point process has happened. On the
opposite side, intensity based models lend themselves perfectly to the multivariate case,
as the total intensity is simply the sum of each component intensity and it is easy to make
each component depend on the realizations of other-type events.

2.2 The Hawkes process

Hawkes processes belong to the class of self-exciting processes, characterized by the fact
that the intensity is determined by a a weighted function of the time distance to previous
points of the process (Bauwens and Hautsch, 2009). They were first introduced by Hawkes
(1971) in the field of seismology. Since then, Hawkes processes have found application in
very diverse fields such as seismology (Ogata, 1988), genomics (Reynaud-Bouret et al.,
2010), neurophysiology (Pierre Bremaud (1996); Chornoboy et al. (1988)) as well as in
works on the spread of crime and violence (Lewis et al., 2012; Mohler et al., 2011) and
on social network dynamics (Crane and Sornette, 2008; Blundell et al., 2012; Zhou et al.,
2013).

2.2.1 Definition

Definition 2.2.1. A D-variate Hawkes process is a point process whose conditional in-
tensity vector λt = {λit}i=1,...,D has the form

λit = µi +
D∑
j=1

∫
φ(t− s)dNs (2.9)

where µ = {µi}i=1,...,D is a vector of baseline intensities and Φ(t) = {φij(t)}i,j=1,...,D is
a matrix valued function called the kernel of the process. Furthermore, the components
φij(t) are such that

• φij(t) ≥ 0 ∀ 1 ≤ i, j ≤ D;

• φij(t) = 0 ∀ t < 0;

•
∫
|φij(t)|dt <∞

The linear structure of the intensity (2.9) allows one to map the Hawkes process exactly
onto a cluster process (Hawkes and Oakes, 1974), where the process consists of a superpo-
sition of random clusters, each of which starts with a single immigrant, generated from a
homogeneous Poisson process with intensity µ. Specifically the following is an equivalent
definition of a Hawkes process.

Definition 2.2.2. Let D denote a positive integer and let [0, T ] with 0 < T ≤ ∞ be a
time interval. Then, the sequence of events {(tm, km)} generated according to the following
procedure is equivalent to the process (2.9).

1. For each component 1 ≤ i ≤ D, the points that form the cluster centers ( immigrants)
are generated by Poisson processes with rate µi.



2. For each component 1 ≤ j ≤ D, each immigrant event (t
(0)
m , j) generates a cluster Cm

which consists of events of generation g = 0, 1, . . . that obey the following branching
structure:

(a) (t
(0)
m , j) belongs to generation 0.

(b) Recursively, for each component j the event (t
(g)
k , j) of generation g gives rise to

D independent non-homogeneous Poisson process with intensity function φij(t)
each with offspring in generation g + 1 of component i.

(c) The cluster Cm,j is the union of all the offspring of (t
(0)
m , j).

3. The union of all clusters forms the Hawkes point process N.

Although the Hawkes process is well defined for each Φ(t) that respects the conditions
in Definition 2.2.1, some constraint has to be imposed on Φ for the process to be stable.
The following Proposition (Hawkes, 1971) gives the condition for stationarity.

Proposition 2.2.1. (Stationarity) If the kernel matrix Φ(t) is such that the spectral radius
of the matrix ‖Φ‖ = {‖φij‖ is smaller than one, then the associated counting process has
stationary increments and the intensity λt is asymptotically stationary.

2.2.2 Properties

Thanks to the linear nature of (2.9), many properties can be derived analytically. All
the properties below are derived under the assumption that the stationarity condition of
Proposition 2.2.1 is respected.

First and second order properties are of particular relevance for the Hawkes process as
it turns out that the knowledge of these is sufficient for the compete characterization of
the process (Bacry and Muzy, 2016).

These properties are conveniently expressed in terms of the matrix Ψ(t) defied as

Definition 2.2.3. For a Hawkes process with stationary increments, the function Ψ(t) is
defined as the causal solution of

Φ(t) + Ψ(t) ∗ Φ(t) = Ψ(t) (2.10)

which is given (Bacry and Muzy, 2016) by

Ψ(t) =

∞∑
n=0

Φ(t)(∗n) (2.11)

where Φ(t)(∗n) denotes convolution with itself n times. In Laplace domain (2.11) reads

Ψ̂(z) = (I− Ψ̂(z))−1 − I (2.12)

where the two sided definition of the Laplace transform

f̂(z) =

∫ +∞

−∞
f(t)eztdt (2.13)

was used.

We can now state first and second order properties, we refer to Bacry and Muzy (2016)
for the proofs.



Proposition 2.2.2. Given a stationary Hawkes process with intensity λt

• First order: the average intensity Λ = E [dNt] /dt is given by

Λ = (I− ‖Φ‖)−1µ = (I + Ψ̂(0))µ (2.14)

• Second order: the infinitesimal covariance matrix

νij(t− t′) =
E
[
dN i

tdN
j
t′

]
− E

[
dN i

t

]
E
[
dN j

t′

]
dtdt′

(2.15)

is given in Laplace domain by

ν̂ij(z) = (I− Ψ̂(−z))Σ(I− Ψ̂T (z)) (2.16)

where Σ is a diagonal matrix with entries Σii = Λi.

As mentioned before, the knowledge of first and second order properties is enough to
fully characterize a Hawkes process. Before presenting this result, which was proved in
Bacry and Muzy (2016), we introduce an equivalent specification of the second order
properties.

Definition 2.2.4. Let νij(t) represent the covariance density of a Hawkes process. The
conditional law matrix g(t) is defined as

gij(t) =
E
[
dN i

t |dN j
0 = 1

]
dt

− Λi, ∀ t > 0 (2.17)

and it is related to the covariance density through the relation

ν(t) = ΣgT (t). (2.18)

We can now state the result of Bacry and Muzy (2016).

Theorem 1. Given a Hawkes process defined by (2.9) which satisfies the stationarity
condition, the matrix function χ(t) = Φ(t) is the unique solution of the Wiener-Hopf
equation

g(t) = χ(t) + χ(t) ∗ g(t) ∀ t > 0 (2.19)

such that the components of χ(t) are causal and χij ∈ Li for all i, j.

Thus, for given Λ and g(t), there exists at most one Hawkes process compatible with
them. Note however that such a process is not always guaranteed to exist. This result
also represent the starting point for nonparameric estimation of the interaction kernel as
detailed in Section 2.3.2 below.

Although in this thesis we will not make use of them, it is worth noting that expression
for higher order properties also exist. Indeed, Jovanović et al. (2015) have derived a
combinatorial procedure for obtaining cumulants of arbitrary order of a Hawkes process.



2.2.3 Interpretation

One of the key strengths of Hawkes processes is their convenient interpretability. Following
the culstering representation of Definition 2.2.2, one can express the total number of events
of type i, N i

t as

N i
t = N i←0

t +
D∑
j=1

N i←j
t = N i←0

t +
D∑
j=1

N i←j∗
t (2.20)

where

• N i←0
t are immigrants events (exogenous)

• N i←j
t are events of type i directly triggered by a type j event

• N i←j∗
t are events of type i directly or indirectly triggered by a type j event. I.e. the

oldest ancestor is a type j event.

These quantities are related to the process kernel and baseline intensity by the following
proposition .

Proposition 2.2.3. Given a stationary D-variate Hawkes process with counting process
Nt , the following relations hold

E
[
dN i←0

t

]
= µidt (2.21)

E
[
dN i←j

t

]
= φ̂ij(0)Λjdt (2.22)

E
[
dN i←j∗

t

]
= ψ̂ij(0)µjdt (2.23)

Hence, these quantities can be used in application to estimate the average fraction of
events of a certain type triggered directly or indirectly by events of another type.

2.3 Estimation methods

The availability of estimation methods is of paramount importance for practical applica-
tion of a model. Several parametric and non-parametric estimation techniques have been
developed for Hawkes process. In the next two sections we describe the Maximum Likeli-
hood method for Hawkes processes and the non-parametric estimation technique of Bacry
and Muzy (2016), which are the two estimation approach we took in the works presented
in this thesis.

2.3.1 Parametric estimation: Maximum Likelihood

For point process models that are specified via the conditional intensity, the likelihood
function has a fairly simple expression (Rubin, 1972). This makes maximum likelihood
inference a popular choice for these models.

Suppose we are observing a point process in the interval [0, T ]. Following Bowsher
(2002), we denote λ∗t = λ(t|H(−∞,t]) the complete conditional intensity of the process,
that is conditioned on the whole past history. We indicate with λt = λ(t|H(0,t]) the
intensity conditional on the sole information from the observation interval [0, t]. Then,
from Ogata (1978), the exact log-likelihood on the interval [0, T ] for a simple univariate
stationary point process with intensity λt is



lnL (θ;Nt) = −
∫ T

0
(λθ(s)ds+

∫ T

0
lnλθ(s)dNs, (2.24)

where θ denotes the parameters vector. Ogata (1978) defines also a theoretical log-
likelihood under the information from the infinite past

lnL∗ (θ;Nt) = −
∫ T

0
λ∗θ(s)ds+

∫ T

0
lnλ∗θ(s)dNs. (2.25)

Ogata (1978) proves, under assumptions that are verified for Hawkes processes, some
proprieties of the maximum likelihood estimator θ̂T obtained by maximizing (2.24) with
respect to θ. In particular, θ̂T is found to be:

• Consistent, i.e. θ̂T converges to the true value θ0 as T →∞:

∀ε > 0, lim
T→∞

P
[
|θ̂T − θ0| > ε

]
= 0 (2.26)

• Asymptotically normal, i.e.:

√
T (θ̂T − θ0)→ N (0, I−1(θ0)) (2.27)

with

I−1(θ) = E

[
1

λ∗θ0(t)

∂λ∗θ0(t)

∂θi

∂λ∗θ0(t)

∂θj

]
= −E

[
1

T

∂2lnL∗T (θ0)

∂θi∂θj

]
(2.28)

• Asymptotically efficient, the following asymptotic relation exists between the Hessian
of the likelihood function and the information matrix I(θ0):

− E
[

1

T

∂2lnLT (θ0)

∂θi∂θj

]
→ Iij(θ0) (2.29)

so the variance of the estimator reaches asymptotically the lower bound I(θ0)−1.

These are essentially the standard asymptotic properties of maximum likelihood esti-
mators, however there is an important difference: it is the complete intensity λ∗(t) that
enters (2.28), and not λt. Hence is not true in general that

Iij(θ) = −E
[

1

T

∂2lnLT (θ0)

∂θi∂θj

]
,

albeit the convergence result (2.29) supports the use of the Hessian matrix

1

T

∂2lnLT (θ̂)

∂θi∂θj

to estimate Iij(θ0) (Bowsher, 2002).

As for the multivariate case, the log-likelihood can be computed as the sum of the
likelihood of each coordinate:

lnL(θ; {tm}m=1,...,N(T )) =
D∑
i=1

lnLi(θ; {tm}) = −
D∑
i=1

∫ T

0
λitdT +

D∑
i=1

∫ T

0
lnλitdN

i
t (2.30)



In the particular case that the components of the intensity λit have no parameters in com-
mon, the maximization can be performed independently for each component. Differently
from the simple univariate case, however, results on the proprieties of the ML estimators
in the multivariate case do not exist at present.

In the case of Hawkes processes, where the intensity depends on the previous history of
the process, the last term on the right hand side hides a double summation that makes
the computational complexity of the expression grow as O(DN2), where N is the number
of events in the interval. This constitutes an obstacle to applications on large samples.
However, for the particular case of a Hawkes process with kernel given by a sum of P
exponentials of the form

φ(t) =
P∑
q=1

αqe
−βqt, (2.31)

Ogata (1981) shown that the log likelihood can be computed recursively reducing compu-
tational complexity to O(DN). In fact, we have

lnL =− µT −
P∑
q=1

∑
tm

αq
βq

(
1− e−βq(T−tm)

)

+

N∑
i=1

ln

µ+

P∑
j=1

i−1∑
k=1

αje
−βq(tm−tk)

, (2.32)

where N denotes the number of events in the interval [0, T ]. Now, setting

Rq(m) =

i−1∑
k=1

e−βq(tm−tk)

= e−βq(tm−tm−1)
m−1∑
k=1

e−βq(tm−1−tk)

= e−βq(tm−tm−1)

(
1 +

i−2∑
k=1

e−βq(tm−1−tk)

)
= e−βq(tm−tm−1) (1 +Rj(m− 1)) (2.33)

the log likelihood expression (2.32) can be rewritten as:

lnL =− µT −
P∑
q=1

∑
tm

αq
βq

(
1− e−βq(T−tm)

)

+

N∑
m=1

ln

µ+

P∑
q=1

αqRq(m)

 (2.34)

with Rj(1) = 0, ∀j.
In the case where the point process is a multivariate Hawkes process, analogous expres-

sion and recursive formulae for the log-likelihood can be obtained. The drastic compu-
tational cost reduction allowed by the choice of exponential kernel is the main reason of
their widespread use in parametric application of Hawkes processes.

We conclude by noting that another parametric approach using the Generalized Method
of Moments was recently proposed by Da Fonseca and Zaatour (2014). Also anapproach



based on a least square cost function has been used in some applications (Reynaud-Bouret
et al., 2013).

2.3.2 Non parametric estimation using Wiener-Hopf equation

In Bacry and Muzy (2016) and Bacry et al. (2016) a novel non-parametric estimation
method for multivariate Hawkes process was presented. It has been shown that the method
works well when large amounts of data are available and the kernel is non-localized, which
is typically the case in high-frequency finance applications. This methodology leverages
the fact, highlighted in Section 2.2.2, that a stationary multivariate Hawkes process is
completely specified by its first- and second-order properties. In fact, the kernel Φ and
the baseline intensity µ are related to the average intensity Λ and to the conditional law
g(t) through equations (2.14) and (2.19).

Hence, the method proposed by Bacry and Muzy (2016) goes as follows.

1. Empirical estimation of the average intensity Λ and of the conditional laws g(t).
Estimation is performed by replacing expectations in the definitions with empirical
averages. The estimation of Λ is thus straightforward as it is simply given by

Λi =
N i
T

T

where N i
T is the total number of type i event observed in the time interval T .

Estimation of g is akin to the estimation of a conditional probability density, though
it does not integrate to 1. Therefore kernel density estimation techniques can be
used:

ĝij∗ = ĝij(t) + Λi =
1

Jh

J∑
m=1

∫ T

0
dN i

uK

(
u− tjm − t

h

)
(2.35)

where J is the number of events of type j in the observation interval T and K is a
suitably chosen kernel function. This requires to set the bandwidth parameter h in
advance. In Bacry and Muzy (2016) the choice of the bandwidth parameter as well as
the estimation error is discussed. For financial data, which often present long-range
dependencies, Bacry et al. (2016) propose a different scheme for the estimation of g
which relies on a lin-log grid. More precisely, a time grid {Tl} is chosen such that
the approximations

gij∗ (
Tl + Tl+1

2
) ≈ 1

Tl+1 − Tl

∫ Tl+1

Tl

gij∗ (s)ds

∫ Tl+1

Tl

gij∗ (s)ds ≈ 1

J

J∑
k=1

J∑
k′=1

1
tik−t

j

k′∈[Tl,Tl+1]

hold. Then, gij∗ (
Tl+Tl+1

2 ) is approximated by

ĝij∗ (
Tl + Tl+1

2
) =

1

Tl+1 − Tl
1

J

J∑
k=1

J∑
k′=1

1
tik−t

j

k′∈[Tl,Tl+1]
(2.36)

and finally a linear interpolation is taken between the points
Tl+Tl+1

2 . The choice of
the grid for typical financial applications is discussed in depth in Bacry et al. (2016).



2. Numerically solve the Wiener-Hopf system (2.19) using the empirical estimates in
place of Λ and g. In Bacry and Muzy (2016) the authors propose the use of the
Nystrom method. Fixing a set of {tk}1≤k≤Q quadrature points along with a set of
quadrature weights {wk}1≤k≤Q, each component of the system (2.19) is replaced by
its discretized version

ĝij(tn) = φij(tn) +

D∑
l=1

Q∑
k=1

wkĝ
il(tn − tk)φlj(tk), ∀n ∈ [0, Q] (2.37)

by inverting the so obtained QD2 linear system one recovers the values of the kernels
at the quadrature points. Values for other points can then be obtained for example
by linear interpolation. Bacry and Muzy (2016) show that Gaussian quadrature
works well for a variety of cases. When power-law kernels are present, Bacry et al.
(2016) suggest the use of a different quadrature scheme in the same spirit of the grid
used for g.

3. Finally the values of µ can be recovered from (2.14) using the empirical estimated
of Λ and the numerical integrals of the kernels obtained from the previous step.

We remark that (2.19) has at most one solution even if g(t) is not generated by a Hawkes
process. More precisely the following result holds (cf. Jaisson (2015) p. 142)

Theorem 2. If g ∈ L1 is the conditional law of a point process, then Equation (2.19)
has one and only one solution in L1.

Hence, it is reasonable to look for a solution of (2.19) when g(t) is estimated on empirical
data, which is the case of interest in applications.

One of the work presented in this thesis (Chapter 3) makes use of this method and
demonstrates its usefulness. There we discuss more in depth the procedure as well as
some consequence of the result 2 with respect to inhibition effects and negative valued
kernels.

We conclude by mentioning that the one presented here is not the only non-parametric
method available for Hakes processes estimation. Indeed, the first method, based on
a probabilistic interpretation of the kernel, was proposed by Lewis and Mohler (2011).
Reynaud-Bouret et al. (2010) proposed instead a method based on the mimimization of
a contrast function. This method is actually shown Bacry et al. (2015) to be very closely
related to the one presented here.

2.4 Hawkes processes in finance

Several are the works that feature the use of Hawkes point processes found in the financial
markets literature. Areas of application include volatility modeling, high frequency price
models, price impact and optimal execution as well as order book models. Here we propose
a brief, non-exhaustive overview and we refer to Bauwens and Hautsch (2009) and Bacry
et al. (2015) for a thorough review.

One of the first applications of Hawkes processes to financial data is that of Bowsher
(2007), who proposed to use Hawkes processes to model volatility clustering, building on
the observation that volatility at the transaction level can be related to the number of
events (trades, mid-price changes) that occur in a given time interval. He calibrated a one
dimensional Hawkes process on intraday equity data, and he also accounted for intraday
patterns and overnight effects by introducing additional parameters in the model.



In references (Filimonov and Sornette (2012); Hardiman et al. (2013); Hardiman and
Bouchaud (2014); Filimonov and Sornette (2015)), authors used univariate Hawkes pro-
cesses to assess the level of endogeneity and the stability of markets. Filimonov and
Sornette (2012) noted that the branching ratio n =

∫∞
0 φ(t)dt could be used as a measure

of the market “reflexivity”, that is the prevalence of internal feedback mechanism over the
flow of external information. In fact, in a univariate Hawkes process, n can be directly
interpreted as the fraction of events due to the self-exciting (endogenous) mechanism. The
works of the two groups diverge on several methodological points and therefore do not fully
agree on the conclusions, in particular on the degree to which financial market are close
to critical (n ≈ 1). In their first work on the topic, Filimonov and Sornette found that
markets have become increasingly “critical” in the last decade. Hardiman et al. contested
this claim and instead asserted that the degree of endogeneity has remained relatively
stable. In their more recent work, Filimonov and Sornette pointed out several pitfalls in
the estimation procedure of Hawkes processes that can lead to biased results.

Bacry et al. (2013) devised a two dimensional Hawkes model to describe up and down
price variations. Within this framework they derived a close form expression for the
signature plot3 and estimating the model on high frequency data. They showed that it
reproduces well the scaling behavior of the signature plot, which is known to strongly
increase for τ → 0. Jaisson et al. (2015) showed that a modified version of the model of
Bacry et al. (2013) converges at large scale towards a Heston price model, thus suggesting a
path towards a unified model of the price that could describe both microstructural (mean-
reverting) and diffusive (volatility clustering) stylized facts. Starting from the work of
Bacry et al. (2013), Zheng et al. (2014) further refined the model by introducing bid-ask
dependence. They achieved this by imposing some constraint on the Hawkes intensities
in order to prevent the ask price to fall below the bid price. They developed a theoretical
framework for such constrained Hawkes processes and proved several properties including
a diffusive limit for the mid-price. By calibrating their model to financial data, they
showed that it reproduces some features of the signature plot.

Hawkes-based market impact (Bouchaud, 2010) models have also been proposed. Bacry
and Muzy (2014) presented a four-dimensional Hawkes model where two dimensions ac-
count for upward and downward mid-price moves and the remaining two model the buying
and selling market order flow. The authors calibrated the model on high-frequency data
using the non-parametric technique described in Section 2.3.2 and, among other things,
showed that the impact of market orders on the price is mainly diagonal, i.e. buy (sell)
market orders mainly triggers upward (downward) price moves. In Bacry et al. (2015) the
authors introduced a class of models, named Hawkes Impact Models, where the intensities
of upward and downward price moves are modeled as:

λ+
t = µ+

∫ t

−∞
φ(s)dN−s +

∫ t

t0

f(rs)g
+(s− t0)ds

λ−t = µ+

∫ t

−∞
φ(s)dN+

s +

∫ t

t0

f(rs)g
−(s− t0)ds

with N+
t (N−t ) indicating the total number of upward (downward) price moves up to time

t, and where rt is the rate of (buying) orders from a meta-order strategy that starts at

3 The signature plot is defined as the quadratic variation of the mid-price Pt at a scale τ

C(τ) =
1

T

T/τ∑
i=0

(P(i+1)τ − Piτ )2.



t0. Furthermore, f(rt)dt specifies the infinitesimal impact of a buy order of volume rtdt,
and g+ and g− are the impact kernel and the cross impact kernel respectively. Moreover
the mean reverting behavior of the high-frequency price is encoded by the anti-diagonal
Hawkes matrix (φ++ = φ−− = 0, and φ+− = φ−+ = φ). Within this model, the authors
derived analytical formulae for the market impact curve and demonstrated that this simple
model can reproduce the typical shape of the impact curve as measured from real meta-
orders data.

Hewlett (2006) employed Hawkes processes to study the problem of optimal liquidation
strategies, i.e. how to optimally execute a large order in order to minimize its impact on
prices and thus the cost paid by the sender. He modeled the occurrence of buy and sell
market orders on FX markets as a bivariate Hawkes process. He found self-excitation to
be preponderant, with cross excitation between buy and sell orders being negligible. The
author derived the expression of the expected future trade imbalance within the model.
This, within a linear price impact model, allows one to determine the expected future
price returns and the associated risk. By maximizing a mean-variance utility objective
function, he demonstrated that it is possible to devise an optimal liquidation strategy.
More recently, also Alfonsi and Blanc (2016) used Hawkes processes in the domain of
optimal execution. They provided closed-form expressions for liquidation strategies when
the flow of market orders is modeled by a two dimensional Hawkes process featuring a
symmetric exponential kernel matrix.

Hawkes processes have also attracted interest as models for the order book dynamics.
Large (2007) proposed to measure order book resiliency, i.e. the degree to which liquidity
return after been consumed by a large trade, using the response kernel Gij(t) defined as

Gij(t)dt = E
[
dN i

t |Fo, dN j
0 = 1

]
− E

[
dN i

t |F0

]
.

Large proved that Gij is related to the Hawkes kernel matrix through the relation (2.10)
that gives the definition of Ψ(t). He calibrated a 10 dimensional Hawkes process with
exponential kernels to level-1 order book data (market an limit orders that move the mid
price, market an limit orders that do not move the mid price and cancellations) from the
London Stock Exchange and he found that in over 60 percent of the cases the order book
does not replenish after a large trade. He also showed that, when replenishment does
occur, it is rather fast.

Bacry et al. (2016) performed a similar study of level-1 order book dynamics. They in-
vestigated mutual interactions between orders that move the mid price and limit, market
and cancel orders that do not with a 8-dimensional Hawkes process. Differently from pre-
vious studies, they used the non-parametric estimation method exposed in Section 2.3.2 to
perform the estimation. This allowed them to relax the constraint imposed by a particular
choice of the kernel shape. They found that events mainly trigger other events of the same
type, i.e. the kernel norm matrix has strong diagonal terms. One exception is constituted
by orders that move the price, indeed the authors confirmed the observation that a price
change at time t mostly triggers future price changes in the opposite direction.

A full Hawkes-driven order book model was proposed by Toke (2011), who generalized
the zero intelligence, Poisson driven model of Smith et al. (2003). He found that the use
of Hawkes processes instead of homogeneous Poisson processes greatly improve the fit to
empirical data. Besides, he evidenced a market making behavior where new limit orders
are submitted following the arrival of market orders across several markets. His study
suggests that in a first approximation marker makers react to liquidity takers, whereas
these act in a more independent manner. Muni Toke and Pomponio (2011) studied the
dynamics of market orders that hit levels beyond the best available quote (trade-troughs).



They modeled the occurrence of trade-trough with a bivariate Hawkes process and found
confirmation that, as for the full market order flow, the main effect is the the self-exciting
one. In a theoretical work, Abergel and Jedidi (2015) investigated the scaling limits of
a Hawkes-driven order book model. By leveraging the fact that Hawkes processes with
exponential kernels possess the Markov property, they show that such Hawkes-driven order
book is ergodic and that the price at long time scales is diffusive.

We finally mention the works of Bormetti et al. (2015), who studied the simultaneous
occurrence of price jumps in a pool of 20 Italian stocks. They model the time arrivals of
these co-jumps with a one dimensional Hawkes process and they assume that each stock
price has then a probability pi to jump each time a co-jump occurs. Finally, for each
stock, a different one dimensional Hawkes process is used to describe the occurrence of
idiosyncratic price jumps. The authors calibrated their model on the empirical data and
showed that it nicely captures both the time clustering of jumps and the occurrence of
synchronized co-jumps.





Chapter 3

The role of volume in orderbook
dynamics

3.1 Introduction

Modeling the order book is a complicated task. Indeed, even in the simplest setting, mul-
tiple types of orders (limit orders, market orders, cancellations) arrive on the market at
random times, and each one has a label that specifies the quantity to be negotiated (called
the volume) and the price. Several are the challenges for a mathematical description of
this system. First, the arrival times of the orders are not well described by a Poisson
process (see for example Chakraborti et al. (2011) and references therein). In fact, the
time durations between events are not independent but display strong correlations. More-
over, also the sequence of volumes presents nontrivial correlations (Gould et al., 2013).
Furthermore, the interplay between them is relevant and need to be considered for a deep
understanding of the system. Finally, the existence of different types of events that could
influence each other increases further the complexity of the problem.

Understanding the order book dynamics is of great importance for several reasons rang-
ing from optimization of execution strategies, to market design and regulation as well as
for development of trading strategies and their risk management. Different approaches
have been developed to gain a better understanding of order book dynamics. On stream
of literature (Glosten and Milgrom, 1985; Kyle, 1985; Roşu, 2009) does so by modeling
the behavior of individual traders. Another stream (Challet and Stinchcombe, 2001; Cont
et al., 2010; Abergel and Jedidi, 2015) models the order flow with a random process and
explores the resulting dynamics. Others (Hasbrouck, 1988; Biais et al., 1995; Bessem-
binder et al., 2009) focus on a more empirical analysis of the market data. We refer to
Parlour and Seppi (2008) and Gould et al. (2013) for a more comprehensive review of the
literature.

In this work we are interested in exploring the effects of order size on the high-frequency
order book dynamics. We accomplish this goal by using the non-parametric estimation
procedure for multivariate self-exciting Hawkes point processes developed by (Bacry and
Muzy, 2016), which was introduced in Section 2.3.2. Two are the main contributions of
our work. First, we show that the order size is an important variable in the modeling of
the order book dynamics. Indeed, we show that the impact on the dynamics of an order
depends strongly on its size and in particular we find that large orders have a stronger
and more persistent effect than small ones. This is in accordance with the notion that
larger orders carry more information as was noted also in the pioneering works of Easley
and O’hara (1987) and Hasbrouck (1988). Our work relates also to the work of Biais et al.
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(1995), who first observed a “diagonal effect”, namely that orders of a specific type are
more likely to be observed just after orders of the same type. By including volume into
the analysis, we find that this effect is markedly stronger for same-type same-size orders.
Moreover, we find that size and time dependence are not easily separable. In fact, our
study provides evidence that simple multiplicative models that separate size dependence
effects from time dependence ones are not fit to describe faithfully empirical observations.
Second, we demonstrate the effectiveness of the nonparametric Hawkes processes approach
as a tool to investigate the high-frequency dynamics on modern electronic order-driven
markets. Thanks to this approach, we are able to identify typical reaction times, order
size effects, as well as signatures of several trading strategies.

In the following we discuss the advantages of the Hawkes processes framework over com-
peting approaches for the analysis on the system at hand. To frame the problem of our
interest, let us first consider just one type of event, say the occurrence of a transaction.
From a statistical perspective, the observation of transactions and the corresponding vol-
umes represents the realization of a marked point process (ti, vi). Since we are interested
in the effects of order size on the dynamics and vice-versa, we cannot model the volume as
an independent mark process, but instead we need to consider their interdependence. This
two-way feedback mechanism between marks and the underlying point process represents
a challenge for modelers.

Some models for this system have been proposed in the Autoregressive Conditional
Duration framework (Engle and Russell, 1998; Bauwens et al., 2004; Pacurar, 2008). These
models describe the point process using a duration representation. The i-th duration di
of a point process is defined as di = ti − ti−1. ACD models can be summarized as follows

di = ψiεi, εi ∼ i.i.d.(1, σ2
ε )

ψi ≡ E [di|Fi; θd]
(3.1)

where θd is a set of parameters to be estimated. A parametric form has to be specified
for ψ. When marks enter the picture, indicating with di the i-th duration and with xi the
relative mark, the data generating process can be written

(dt, xi) ∼ f(di, xi|Fi) (3.2)

where f is the joint distribution of the i-th duration and mark conditional on all the
available information Fi. As was pointed out in Engle (2000), this joint density can be
rewritten as

(di, xi) ∼ f(di, xi|Fi) = g(di|Fi) · h(xi|di,Fi) (3.3)

A possible way to construct a model is thus to specify f or g and h as well as the
distribution of the error terms. This approach has been followed for example in Manganelli
(2005). In this stream of literature, the event process is described using Engle’s and
Russels’ ACD models. Then, a model has to be specified for each mark’s conditional
distribution.

These models allow for a lot of flexibility, however, they also presents some significant
limitations. In fact, parameters do not have a clear interpretation so that the excitement
structure is not easy to recover. More important, these models are strongly parametric and
the choice of the error distribution can have a large influence on the model performance
(Allen et al., 2009). More generally, a strong structure is imposed a priori with the
selection of the functional form for g and h. Finally, a severe limitation of ACD models
for our purposes is that duration based approaches are not easily generalized to multiple
dimensions. Therefore, it is hard to extend these models to describe the whole order book
dynamics.



Intensity-based approaches are on the contrary much more amenable to extension to mul-
tiple dimensions. Among intensity based models, Hawkes self-exciting processes (Hawkes,
1971) have been applied successfully in finance to model the irregular arrival in time of a
number of event types (trades, quotes, etc.), see for instance Bowsher (2007); Bacry et al.
(2013); Filimonov and Sornette (2015); Bormetti et al. (2015); Hardiman et al. (2013);
Bauwens and Hautsch (2009); Rambaldi et al. (2015) and Bacry et al. (2015) for a recent
review.

A simple way to incorporate volumes v in the dynamics is to assume that they are
independent from the underlying point process and that the dependence on the volume
factorizes,

λt = µ+

∫ t

−∞
f(vs)φ(t− s)dNs, (3.4)

As shown by Bacry et al. (2016), the estimation of this model does not pose particular
difficulties. However the predictions of this model are at odds with empirical data.

This evidence motivates our work and the development of a model that takes into
account the complex dependence between time and volume. In the univariate case, the
most general Hawkes model specification is

λt = µ+

∫ t

−∞
φ(t− s; vs)dNs (3.5)

where the kernel φ depends on the time distance to previous events as well as on their
marks1. The interdependence structure of the time t and the mark process vt of the
kernel is very difficult to estimate directly. A simple workaround consists in considering
the volume process vt as the superposition of D unmarked point processes, each of which
corresponds to one of the possible D values {V i}1≤i≤D that vt can take. One can then
consider the D multivariate Hawkes process defined by (2.9), where λi represents the
intensity process for the events associated to the value V i. The so-obtained model is an
equivalent representation of the original process.

This approach is convenient as it allows to treat the case of dependent mark with the
already available tools developed for multivariate point process. For a mark variable that
can take an infinite number of values, some sort of binning is necessary in order to map
the marked process to a multivariate one2.

In this application we follow this approach and we use the non-parametric estimation
method described in Section 2.3.2 to estimate the kernels and the baseline intensities from
empirical data. We start by applying this model to unsigned trades, then by increasing
the total dimension of the model we extend the study to signed trades (i.e. differentiating
between buyer initiated transactions and seller initiated ones), and finally to the whole
first level of the order book.

In the next section we discuss some details of the estimation procedure. In Section 3.3
we describe our dataset and some of its empirical properties. Section 3.4 contains the
empirical results on trades when volume is taken into account. Section 3.5 extends our
Hawkes based analytical tool to the first level of the order book by including also limit

1Note that in the case of volume we furthermore require that

φ(t, v1 + v2) = lim
∆t→0

φ(t, v1) + φ(t+ ∆t, v2). (3.6)

That is in the limit where two events become indistinguishable in time, their effect must be the same of
the combined event.

2Let us point out that the two approaches are strictly equivalent in the limit of infinitely many bins.



orders and cancellations, and accounting for order size. Finally, in Section 3.6 we present
our conclusions.

3.2 Kernel estimation procedure and inhibition effects

The main features of the non-parametric estimation technique we use were already pre-
sented in Section 2.3.2. As remarked in Bacry et al. (2016) some care is needed in the
choice of the grid for the empirical estimation of g(t) and of the quadrature scheme, since,
in typical application to financial data, its mass is found to span many orders of magni-
tude in t. Moreover, rapid variation is observed at short lags (a few microseconds on today
exchanges), while a much slower one is present at higher lags (of the order of one minute).
Thus, it is important to have a finer grid around 0 in order to capture the behaviour of g.

To accomplish these goals, we follow Bacry et al. (2016) and use a grid with dense,
linearly spaced intervals at short lags followed by log-spaced intervals at larger lags. The
same type of grid is used also in the numerical solution of the Wiener-Hopf system (2.19).

Specifically, we can summarize our procedure as follows

Algorithm 3.2.1. Non-parametric estimation of Hawkes kernels

1. For each day of trading, the times and volumes of orders are extracted.

2. Each event is assigned to a component of the multivariate process according to its
volume.

3. The conditional law

gij(t) =
E
[
dN i

t |dN j
0 = 1

]
dt

− Λi, ∀ t > 0

is estimated using empirical means. For this estimation a linear-log binning is used,
with edges:

[0, δlin, 2δlin, 3δlin, hmin, e
δlog , e2δlog , e3δlog , . . . , hmax]

where δlin, hmin and δlog are user-defined parameters. In this work we fixed hmin =
10−3s and hmax = 2 · 104s. δlin and δlog are chosen so to have 50 bins in the linear
part and 1500 bins in the log-spaced part.

4. The kernels are then estimated by solving the integral equation (2.19). Again a lin-
log quadrature scheme similar to the one above is used. All kernels are estimated on
the domain [0, xmax] and the quadrature points are

[0, εlin, 2εlin, 3εlin, xmin, e
εlog , e2εlog , e3εlog , . . . , xmax]

again, εlin, xmin, εlog and xmax are user-defined parameters. We choose xmin = 0.5 ·
10−3s and xmax = 0.5s. εlin and εlog are chosen so to have 80 bins in the linear part
and 80 bins in the log-spaced part.

5. Finally the baseline intensities µi are recovered by solving for µ the stationarity
condition

Λ = (I− ‖Φ‖)−1µ



———–
The linear Hawkes process (2.9) allows for self- and cross-excitation but not for inhi-

bition. In fact, the non-negativity of the kernels implies that the occurrence of an event
never causes a decrease in the intensity3. However, in real systems such as the order book
we can expect the presence of inhibitory effects alongside exciting ones.

A proper account for inhibition in a Hawkes processes framework requires to abandon
the linear specification (2.9) in favor of nonlinear formulations that ensure the positiveness
of the intensity, while at the same time allowing the presence of negative valued kernels
and thus inhibitory effects (Brémaud and Massoulié (1996); Sornette and Ouillon (2005);
Bowsher (2007); Zheng et al. (2014)). This comes however at the expenses of mathematical
tractability.

An interesting case for practical application, discussed in Brémaud and Massoulié (1996);
Reynaud-Bouret et al. (2010) and Hansen et al. (2015) is

λt =

(
µ+

∫ t

−∞
φ(t− s)dNs

)+

(3.7)

where (x)+ = x if x ≥ 0 and (x)+ = 0 otherwise. This case is relevant because if

P
[
µ+

∫ t
−∞ φ(t− s)dNs < 0

]
is negligible, then it is almost equivalent to the linear case.

If this requirement is met, then the non-parametric estimation procedures developed in
Bacry and Muzy (2016) and Hansen et al. (2015) have been shown to lead to reliable results
even in presence of moderate inhibition. On the contrary, the non-parametric approach
developed in Lewis and Mohler (2011) leverages a probabilistic interpretation of the kernel
and therefore leads always to non-negative estimates that rule out inhibition.

When we consider the nonparametric estimation method of Equation 2.19, it is impor-
tant to stress that the solution φ of the equation above is not guaranteed to be positive.
Moreover it is possible to show that the negativity of the conditional law g implies the
negativity of the kernel φ. More precisely,

Proposition 3.2.1. Let g(t) and φ(t) be two matrices of functions in L1 that satisfies

g(t) = φ(t) + φ ∗ g(t) ∀ t > 0

elementwise. Moreover, let the following assumptions hold:

1. g(t) is bounded;

2. the spectral radius of the matrix ||φ||1 = {‖φij(t)‖1} is less than one;

3. φij(t) is a causal function, i.e. φij(t) = 0 ∀ t < 0, ∀i, j;

Then, if at least one entry of every column or row of g take on negative values for some
t > 0, then also some elements of φ take on negative values.

Proof. See 3.A.

Assumptions 1-3 basically require that φ(t) possesses the characteristics for being the
kernel of a stationary Hawkes process and g(t) those for being a conditional law. Note
in particular that condition 2 was shown by Brémaud and Massoulié (1996) to hold as a
stability condition even when λt is a nonlinear positive Lipschitz function of φ ∗ dN and
where the kernels can take negative values.

3This also implies that in a linear Hawkes process framework there cannot be a minimum time separation
between events as there is always a positive probability of a new event arrival.



Whenever some inhibition effect is present, the conditional laws (2.17) will take nega-
tive values. In fact, we would have that the expected arrival rate of type i event given
that event j has occurred is lower than the unconditional rate Λi. Therefore, the above
proposition suggests that if some inhibition effect is present, then with our procedure we
should see some (at least partially) negative kernel. We will actually encounter some of
them, particularly in section 3.5.

3.3 Data and main statistics

In this Section we describe our dataset and we provide an empirical analysis of its main
characteristics.

3.3.1 Data

In this paper we use level-I order book data provided by QuantHouse EUROPE/ASIA
(http://www.quanthouse.com) for two future contracts, namely the German Bund Future
and the DAX Future4. The data span the period from July 2013 to November 2014.

The dataset consists of snapshots of the first level of the order book, each with a times-
tamp indicating the record time. For each day, a line is added by the market every time a
change in the first level of the order book is registered. Outstanding quantities at the best
quotes as well as the corresponding prices and the number of proposals are specified for
each line. In the cases where the change in the book is determined by the occurrence of
a trade, two lines are added with the same timestamp, the first one with the state of the
first level immediately before the trade together with the trade details (size, side, price),
and the other with the state of the first order book level immediately after the trade.
Timestamps are provided by the market itself with microsecond precision.

By comparing consecutive lines, we can then precisely infer the type of event that led
to the change, i.e. market order, limit order or cancellation using the quantity and price
information available in the dataset. For instance, if the available quantity at the best ask
increases or a new best ask is generated inside the spread, we can say that a limit order
has arrived that determined the change. Thanks to the additional line present when a
trade occurs, we can also discriminate between a quantity decrease or price move due to
a trade from that due to a cancellation. For example, if the available quantity at the best
ask decreases and no trade line was recorded, we ascribe the effect to a cancel order.

We process the whole dataset to extract limit order, cancel order and trade events. We
remark once again that we consider only orders at the best quotes (first level of the order
book). It is important also to remark that we treat multiple orders that happen at the
same time and on the same side of the order book as a single event (for instance a market
order that hits two limit orders present in the book at the same price is regarded as a single
trade). It is still possible to have two simultaneous events on opposite side of the book,
i.e. one at the ask and one at the bid. This occurrence is however very rare thanks to the
fine time resolution of the dataset, resulting in a ratio of less than 0.2% of simultaneous
events to the total number of events.

3.3.2 Empirical properties of durations and volumes

Figure 3.1 shows the histograms of all inter-event times (right panel) and of inter-trades
times alone (left panel). We never observe events closer than about 10µs, and this may

4This is the same dataset used in Bacry et al. (2016)
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Figure 3.1: Histograms of the inter-event times. All events (left) and only trades (right). Main
plots use log-spaced bins, while the inset show equally spaced histograms for short durations.
Data refer to the Bund future, no significant difference is observed for DAX future data.

be a minimum technical delay due to data processing. For trades alone, the minimum
observed time distance is larger, at about 50µs, possibly due to longer processing time
needed in case of transactions.

In the duration distributions, we note a major peak around 30µs when all events are
considered and around 70 − 100µs when only trades are taken into account. There is a
second noticeable peak between 200 and 300µs for all events and around 300− 400µs for
trades. Finally, even quite far in the tail, small peaks are visible. Those might be the
results of order splitting and automatic trading.

Figure 3.2 shows the empirical distribution of the trade sizes, measured in number of
contracts, for the DAX and Bund futures. A positive sign indicates buyer initiated trans-
action while a negative sign stands for seller initiated ones. For both assets we note sharp
peaks in correspondence of “round” order sizes such as 1, 50, 100. In the DAX future
market, transactions of size above 100 contracts are very infrequent, while in the Bund
Future market volumes of 1000 contracts are not uncommon. This difference is probably
due to the fact that the Bund belongs to the class of the so called “large-tick” assets, while
the DAX future is considered a “small tick” one. That is, in the former case, the spread is
almost always equal to one tick, thus resulting in fewer price changes and larger available
volumes at the best quotes (Eisler et al., 2012).

We also examined serial correlations in the trade sizes both in trade time and in real
(continuous time). We find that autocorrelation in trade time is very small, and that in
real time can be almost entirely explained by correlation in the number of transactions.

3.3.3 High frequency characteristics of Eurex market

The 300µs peak observed in the duration distribution is likely related to technical char-
acteristics of the Eurex market. In particular, on the exchange website is reported that

“For futures orders Eurex Exchange currently offers customers (daily) average roundtrip
times as low as 0.2-0.35 milliseconds in co-location”5.

5From http://www.eurexchange.com/exchange-en/technology/co-location-services visited on 7
May 2015.

http://www.eurexchange.com/exchange-en/technology/co-location-services
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Figure 3.2: Empirical distribution of the trade volumes for the Bund (left) and DAX (right)
futures. The inset shows the distribution in log-log scale where buy and sell are aggregated.

This means that the minimum time it takes for an agent to react to an event on the
market is around 300µs, and explains the bump we see in the duration distribution. As
a consequence, no direct causal relationship can hold between events that are closer than
this timescale, except if they are the result of the same agent’s actions. We need to keep
this fact in mind when analyzing the result of our study in the next sections.

3.4 Mapping Traded volume to multivariate Hawkes pro-
cesses

We first apply the multivariate Hawkes framework to the series of trades, thus disregard-
ing other types of order book events. We map trades of different sizes to separate the
components of a multivariate Hawkes point process. To keep the total dimension of the
resulting multivariate process manageable, we divide the range of order sizes into a small
number of bins (six). Once each transaction has been assigned to a component of the mul-
tivariate Hawkes process, we use the non-parametric estimation method described before
to determine the kernels and baseline intensities of the Hawkes process. The whole trading
day was used (from 8am to 10pm) without taking into account intraday seasonality (the
results do not change dramatically by restricting the analysis to the most active hours see
3.B).

3.4.1 Unsigned Trades

We begin by considering unsigned trades, i.e. we do not distinguish between buyer initiated
trades and seller initiated ones. We fix as many bins for the unsigned volume as component
of our multivariate Hawkes model. Then we assign each transaction to a component based
on the bin in which its volume falls. In Table 3.1 we report the bin choice as well as the
average number of events per day in each bin for the Bund and DAX futures respectively.
We note the overwhelming prevalence of size one trades in the case of the DAX future,
where they represent more than 60% of the total.



Volume
(contracts)

Avg. N Fraction (%) Volume
(contracts)

Avg. N Fraction (%)

B1 1 11049 31.3 1 28140 64.5
B2 2 4979 14.1 2 7308 16.8
B3 3 2169 6.2 3 2753 6.3
B4 (3, 7] 5571 15.8 (3, 5] 2959 6.8
B5 (7, 20] 5619 15.9 (5, 10] 1700 3.9
B6 (20,∞) 5876 16.7 (10,∞) 735 1.7

Table 3.1: Bund (left) and DAX (right) Future: Binning scheme and average number N of
events per day in each bin in the six dimensional case

Conditional laws The first step of the procedure is the estimation of the conditional
laws gij(t). In the left panels of Figure 3.3 we plot the diagonal conditional laws estimates
gii(t) for the Bund and DAX futures. These functions attain their largest values at very
short lags. In particular, we note two main peaks, the first around 100 µs and the second
around 300 µs. We also note that this second peak tends to become more relevant for
larger volumes. Another interesting feature that emerges is the presence of several sharp
peaks at “round” time values (0.1 s, 1 s, ...). These peaks are more evident for the smallest
volumes and they are likely the result of automatic trading and order splitting. For lags
larger than about one second the diagonal conditional laws show a power law decay with
exponents smaller than one. The right panels of the same figures show instead the terms
g6j(t), i.e. those that measure the effect of the different volumes on large trades. At short
lags we again note the two major peaks described before. Here we note how the second
peak is more pronounced when large-large trades are involved. We will comment more on
this when examining the kernels.

Kernels shape Once the conditional laws have been estimated, we solve the Wiener-
Hopf system (2.19) for the kernels. A total of 36 kernels are estimated non parametrically
and each function φij(t) is estimated for values of t up to 0.5s. Beyond this value the
estimation becomes very noisy. Given their number, in examining them, we focus on
those contributing to the intensity of the smallest and largest bins. In Figure 3.4 we plot
the functions φ1j and φ6j for the Bund and the DAX futures. To begin with, we remark
that taking the volume of the trades into account does add new information. Indeed, the
shapes of the kernels involving different sizes are markedly distinct. This has the important
consequence that models where the time dependence is separated from size dependence
appear to be inadequate.

We now examine the most relevant facts that emerge from the analysis of Figure 3.4.
First, we note that the influence of large trades is more intense and more persistent at
longer time scales. It thus takes more time for the market to forget about a large trade
than it takes for a small one. This can be linked to the fact that the execution of a large
trade is more informative for the rest of the market than that of a small one. This is even
more relevant in the DAX case where large trades are particularly rare.

Second, we observe sharp peaks located around 300µs in the right figures, i.e. those
depicting the influence over large trades. These peaks are visible also in the left plots,
albeit they are not the main ones there. In light of Section 3.3.3, we interpret these peaks
as corresponding to the market reaction to some trader’s action. This is consistent with



10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105

t (s)

10−2

10−1

100

101

102

103

104
C

on
di

tio
na

ll
aw

g11(t)

g22(t)

g33(t)

g44(t)

g55(t)

g66(t)

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105

t (s)

10−1

100

101

102

103

C
on

di
tio

na
ll

aw

g61(t)

g62(t)

g63(t)

g64(t)

g65(t)

g66(t)

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105

t (s)

10−2

10−1

100

101

102

103

104

C
on

di
tio

na
ll

aw

g11(t)

g22(t)

g33(t)

g44(t)

g55(t)

g66(t)

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105

t (s)

10−2

10−1

100

101

102

103

C
on

di
tio

na
ll

aw

g61(t)

g62(t)

g63(t)

g64(t)

g65(t)

g66(t)

Figure 3.3: Conditional law estimates. Left column: diagonal terms. Right: the row corre-
sponding to largest volumes. Figures on top refers to the Bund future, those at the bottom to
the DAX future.

the fact that the 300µs peaks are more significant when large trades are involved. Indeed,
a single agent does not typically execute several large order one after the other, and we
know that at least the reaction time is needed for an interaction.

The large peaks found on the left figures at 100µs are instead likely the result of order
splitting, i.e. the same trader executing several consecutive orders. Actually, we also
found the peak at 100µs to be stronger in small size diagonal term φ11, φ22, which further
corroborate the role played by order splitting as traders do not change the size too much
when splitting.

Kernels norms To complete the analysis of the kernel matrix, we report in Table 3.2
the norms nij =

∫∞
0 φij(t)dt of the kernels together with the rescaled norms ñij =

Λj
Λi
nij =

1 − µi
Λi

. It is important to underline the different meaning of these two quantities. The

norm nij is the average number of events of type i triggered by one event of type j.Thus,
the larger this number is, the bigger is the influence of events of type j on events of type i.
The rescaled norms represent instead the fraction of the average intensity Λi attributable
to excitation from component j. The former is useful to understand what component i is
more affected by the arrival of an event j (reading by column) and also how many events
of type i are expected after an event of type j (reading by row). The latter instead tells us
how much of the activity of component i is explained by component j (reading by row).
The comparison of the two matrices is particularly relevant when the components have
very heterogeneous average intensities. In the same spirit of Biais et al. (1995), the largest
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Figure 3.4: Kernel estimates. Figures at the top refers to the Bund, while those at the bottom
to the DAX. Left hand side figures: influence on smallest volume. Right hand side: the row
corresponding to largest volumes.

three values of each column of the kernel norm matrix are reported in bold face to help
visualizing the structure of the matrix. For the rescaled norm matrix, we instead highlight
in bold face the largest three values in each row.

In the case of the Bund, the two matrices appear quite similar since, by construction,
the average intensities are almost equal across all the components. We observe that self-
excitation is preponderant, followed in importance by the excitation from large volumes.
The components of the DAX model have instead very different average intensities, with the
first component largely dominating. It appears that for this small-tick asset the unusual
occurrence of a large trade has a dramatic impact on the activity. However, the scarcity of
such large orders is such that when we consider the fraction of each intensity attributable
to excitation from other components, size one trades clearly make up the largest amount.

Baseline intensities Lastly, we examine the contribution of the baseline intensities
µi. In Table 3.3 we report the ratio between the exogenous intensity µi and the average
intensity Λi for each bin. Since the kernels are estimated only up to t = 0.5s, the norms
can be underestimated, because the contribution from the tail is disregarded. With this
in mind, for both assets it appears nevertheless that large trades are more exogenously
driven than the others. The exogenous fractions µi/Λi for the DAX are higher than
those obtained for the Bund, with all but size one trades having exogenous components
accounting for 40-50% of the average intensity.



Bund

≤ 1 ≤ 2 ≤ 3 ≤ 7 ≤ 20 > 20

≤ 1 0.46 0.10 0.09 0.08 0.08 0.16
≤ 2 0.04 0.36 0.08 0.07 0.07 0.11
≤ 3 0.02 0.04 0.20 0.05 0.04 0.06
≤ 7 0.03 0.07 0.11 0.29 0.12 0.17
≤ 20 0.02 0.05 0.07 0.09 0.27 0.20
> 20 0.02 0.03 0.03 0.04 0.09 0.22

≤ 1 ≤ 2 ≤ 3 ≤ 7 ≤ 20 > 20

≤ 1 0.46 0.05 0.02 0.04 0.04 0.08
≤ 2 0.09 0.36 0.04 0.08 0.08 0.13
≤ 3 0.08 0.08 0.20 0.14 0.11 0.16
≤ 7 0.06 0.06 0.04 0.29 0.13 0.18
≤ 20 0.04 0.05 0.03 0.09 0.27 0.21
> 20 0.03 0.02 0.01 0.04 0.09 0.22

DAX

≤ 1 ≤ 2 ≤ 3 ≤ 5 ≤ 10 > 10

≤ 1 0.41 0.36 0.38 0.44 0.61 1.27
≤ 2 0.07 0.18 0.14 0.15 0.19 0.33
≤ 3 0.02 0.04 0.08 0.06 0.07 0.11
≤ 5 0.02 0.04 0.05 0.10 0.08 0.12
≤ 10 0.01 0.02 0.03 0.04 0.07 0.09
> 10 0.01 0.01 0.01 0.02 0.03 0.08

≤ 1 ≤ 2 ≤ 3 ≤ 5 ≤ 10 > 10

≤ 1 0.41 0.09 0.04 0.05 0.04 0.03
≤ 2 0.26 0.18 0.05 0.06 0.05 0.03
≤ 3 0.22 0.11 0.08 0.06 0.04 0.03
≤ 5 0.20 0.09 0.04 0.10 0.04 0.03
≤ 10 0.20 0.08 0.05 0.06 0.07 0.04
> 10 0.23 0.08 0.04 0.08 0.07 0.08

Table 3.2: Kernel norm matrices in the unsigned trades case. For each asset we report in the
top panel the kernel norms nij =

∫∞
0
φij(t)dt and in the bottom panel the rescaled kernel norms

ñij =
Λj
Λi
nij . To highlight the structure, the largest three values in each column (row) of the

upper (lower) panel are in bold face.



Bund

Bin 1 2 3 (3, 7] (7, 20] > 20

Ri = µi
Λi

31.62 % 22.58 % 23.76 % 23.63 % 31.06 % 58.93 %

DAX

Bin 1 2 3 (3, 5] (5, 10] > 10

Ri = µi
Λi

34.44 % 36.98 % 45.84 % 49.81 % 49.79 % 42.14 %

Table 3.3: Ratios µi/Λi for the two assets examined. All values in percent.

Volumes (contracts) Avg. N events Fraction (%) Avg. N events Fraction (%)

S1 1 5678 16.10 14066 32.24
S2 (1, 3] 3558 10.09 5047 11.57
S3 (3, 10] 4132 11.72 2340 5.37
S4 (10,∞) 4397 12.47 376 0.86
B1 1 5371 15.23 14082 32.28
B2 (1, 3] 3591 10.18 5019 11.50
B3 (3, 10] 4152 11.77 2322 5.32
B4 (10,∞) 4384 12.43 370 0.85

Table 3.4: Bund (left) and DAX (right) Future: Binning scheme and average number of events
per day in each bin in the signed case.

3.4.2 Signed Trades

We now take the “sign” of the transaction into account. If a market order hits the ask
side of the book we label it as a buy trade, while if it hits the bid side we call it a sell
trade. To analyze the interaction between different order sizes, we proceed as before by
binning the trades according to their volume. To keep the overall dimension of the model
manageable we use four bins of volume for each side (buy/sell). The binning schemes for
the two assets examined are detailed in Table 3.4.

In Figure 3.5 we plot the kernels for the sell components obtained on Bund (top 4 panels)
and DAX (bottom 4 panels) data, the results on the buy components are almost exactly
symmetrical and thus not shown. We again observe two main peaks at 100µs and 300µs
respectively, with the latter being more relevant when large trades are involved. Now
that trade sign is taken into account we immediately notice that short term influence is
almost entirely due to same-sign trades, in line with the hypothesis that is the result of
order splitting. Excitation from opposite side trades is negligible, except for the largest
ones that show some influence around the millisecond timescale. In the DAX figures, the
excitation from large trades of opposite sign over larger trades is even more evident and
the cross excitement starts to become relevant around time lags of 0.5 milliseconds. A
possible explanation is that at this timescale, enough time has passed for the sign of the
order to become less relevant thus the contribution is towards a general increase in activity
rather than targeting specifically more buying or selling.

In Table 3.5 we report the kernel norms for the Bund and the DAX. We can divide
the matrix into the four sectors sell-sell, sell-buy, buy-sell and buy-buy. The two same-
sign blocks and the two opposite-sign blocks appear identical to each other as we would



expect, i.e the buy-sell symmetry is respected. Moreover, opposite-sign trades provide
almost no contribution, with the notable exception of the column of largest size trades. In
the Bund case, we find the same-sign blocks to be almost perfectly symmetric. Indeed, the
asymmetry observed in the unsigned case, that is that large trades influence small ones
more than the other way round, is now found to be due to excitation from opposite-sign
large trades. In DAX future instead, each of the four main blocks is markedly asymmetric,
with influence of large trades being more pronounced. As already noted this is related to
the much lower frequency of large orders.

Finally, we mention that the baseline intensities confirm what emerged for the unsigned
case, namely that a significant fraction of the trades is of exogenous origin and this fraction
is larger for big trades.
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Figure 3.5: Estimated kernels relative to the four sell components in the signed trades model.
Top four panels refer to the Bund, bottom four to the DAX.



Bund

S1 S2 S3 S4 B1 B2 B3 B4

S1 0.44 0.09 0.05 0.06 0.02 0.01 0.02 0.08
S2 0.06 0.34 0.09 0.06 0.00 0.02 0.02 0.08
S3 0.04 0.10 0.30 0.11 0.00 0.01 0.04 0.12
S4 0.03 0.06 0.10 0.24 -0.00 -0.01 0.00 0.08

B1 0.02 0.01 0.02 0.07 0.43 0.09 0.06 0.06
B2 0.00 0.02 0.03 0.08 0.06 0.34 0.09 0.07
B3 0.00 0.01 0.04 0.12 0.04 0.09 0.30 0.12
B4 0.00 -0.01 -0.00 0.08 0.03 0.06 0.10 0.25

S1 S2 S3 S4 B1 B2 B3 B4

S1 0.44 0.06 0.04 0.04 0.01 0.01 0.01 0.06
S2 0.09 0.34 0.10 0.08 0.00 0.02 0.03 0.10
S3 0.06 0.08 0.30 0.12 0.00 0.01 0.04 0.13
S4 0.04 0.05 0.10 0.24 -0.00 -0.00 0.00 0.08

B1 0.02 0.01 0.02 0.06 0.43 0.06 0.04 0.05
B2 0.01 0.02 0.03 0.10 0.08 0.34 0.11 0.08
B3 0.00 0.01 0.04 0.13 0.05 0.08 0.30 0.12
B4 0.00 -0.00 -0.00 0.08 0.03 0.05 0.10 0.25

DAX

S1 S2 S3 S4 B1 B2 B3 B4

S1 0.34 0.28 0.36 0.86 0.07 0.08 0.14 0.43
S2 0.07 0.19 0.17 0.29 0.01 0.04 0.06 0.15
S3 0.03 0.06 0.12 0.16 0.00 0.00 0.02 0.05
S4 0.01 0.01 0.02 0.08 -0.00 -0.00 -0.00 0.01

B1 0.07 0.08 0.14 0.46 0.34 0.28 0.36 0.82
B2 0.01 0.03 0.06 0.15 0.07 0.18 0.17 0.28
B3 0.00 0.00 0.01 0.05 0.03 0.06 0.12 0.17
B4 -0.00 -0.00 -0.00 0.01 0.01 0.01 0.02 0.06

S1 S2 S3 S4 B1 B2 B3 B4

S1 0.34 0.10 0.06 0.02 0.07 0.03 0.02 0.01
S2 0.20 0.19 0.08 0.02 0.04 0.03 0.03 0.01
S3 0.18 0.12 0.12 0.02 0.01 0.01 0.02 0.01
S4 0.22 0.15 0.15 0.08 -0.01 -0.02 -0.00 0.01

B1 0.07 0.03 0.02 0.01 0.34 0.10 0.06 0.02
B2 0.04 0.03 0.03 0.01 0.21 0.18 0.08 0.02
B3 0.02 0.01 0.01 0.01 0.19 0.12 0.12 0.03
B4 -0.02 -0.01 -0.00 0.01 0.25 0.13 0.15 0.06

Table 3.5: Kernel norm matrices in the signed trades case. For each asset we report in the top
panel the kernel norms nij =

∫∞
0
φij(t)dt and in the bottom panel the rescaled kernel norms

ñij =
Λj
Λi
nij . To highlight the structure, the largest three values in each column (row) of the

upper (lower) panel are in bold face.



Bund

La1 La2 La3 La4 Ca1 Ca2 Ca3 Ca4 T a1 T a2 T a3 T a4
mil 11.46 15.24 12.22 4.41 10.61 13.33 10.05 3.66 1.80 1.24 1.44 1.53
% 6.60 8.78 7.04 2.54 6.11 7.68 5.79 2.11 1.04 0.71 0.83 0.88

Lb1 Lb2 Lb3 Lb4 Cb1 Cb2 Cb3 Cb4 T b1 T b2 T b3 T b4
mil 11.49 15.24 12.19 4.28 10.64 13.30 9.92 3.50 1.88 1.22 1.43 1.53
% 6.62 8.78 7.02 2.47 6.13 7.66 5.71 2.02 1.08 0.70 0.82 0.88

DAX

La1 La2 La3 La4 Ca1 Ca2 Ca3 Ca4 T a1 T a2 T a3 T a4
mil 29.07 3.84 0.71 0.05 30.29 2.45 2.53 0.76 5.14 1.82 0.82 0.13
% 18.80 2.48 0.46 0.03 19.59 1.58 1.64 0.49 3.32 1.18 0.53 0.08

Lb1 Lb2 Lb3 Lb4 Cb1 Cb2 Cb3 Cb4 T b1 T b2 T b3 T b4
mil 28.88 3.81 0.71 0.06 29.95 2.41 2.51 0.76 5.12 1.82 0.83 0.13
% 18.68 2.46 0.46 0.04 19.37 1.56 1.62 0.49 3.31 1.18 0.54 0.08

Table 3.6: Total number of events in our database, divided by type and size.

3.5 Level one order book with volume

In this section we extend the model beyond trades including a total of three types of events,
namely limit orders, cancellations, and trades. For each one, we differentiate between ask
and bid side and we consider four bins of volume with edges at 1, 3, and 10 contracts. The
resulting Hawkes model has thus 24 components, and 576 kernels. The total number of
events recorded in each component is detailed in Table 3.6 for both assets. We use the same
estimation procedure as before to recover the kernels and the baseline intensities. Finally,
we indicate with Lxi (x ∈ {a, b}, i = 1, .., 4) the limit order events at the ask (x = a) or at
the bid (x = b) with volume in bin i. Similar notation is used for cancellations (Cxi ) and
trades (T xi ).

3.5.1 Kernel norms

We start our analysis by examining the matrix of the norms ‖φij‖1, that give us a summary
of the main mutual influences detected in the order book with our procedure. Since we find
the bid/ask symmetry to be fairly well respected, we plot only the quadrants Ask→Ask
and Bid→Ask in order to improve readability.

We first examine the detected relationship between same side orders. In Table 3.7 we
report the ask/ask quadrant for the Bund and Dax futures, whereas the rescaled kernel
matrices are reported in Table 3.12. We stress once again that in the case of the DAX the
four volume components have very different average intensities. As a result, the normalized
norms matrix looks very different from the original norm matrix. We note that diagonal
terms, corresponding to self excitation, play an important role in the dynamics. This was
first observed in Biais et al. (1995) (”diagonal effect”). In particular, these authors find
that the conditional probability than a certain type of order is observed after the same
type of order just occurred is higher than its unconditional probability. Also in Bacry
et al. (2016) diagonal terms (limit/limit, cancel/cancel, trade/trade) were found to be
important. By adding order size to the analysis, we determine that this interaction is
stronger for same size orders.



Bund

La1 La2 La3 La4 Ca1 Ca2 Ca3 Ca4 T a1 T a2 T a3 T a4

La1 0.25 0.10 0.11 0.17 0.13 -0.02 -0.03 -0.02 0.03 0.02 0.02 -0.04
La2 0.14 0.24 0.18 0.26 -0.04 0.18 -0.05 -0.03 -0.00 0.03 0.02 -0.02
La3 0.06 0.10 0.31 0.18 -0.01 -0.02 0.18 0.03 0.02 0.05 0.09 0.14
La4 0.02 0.03 0.04 0.20 -0.00 -0.01 0.00 0.11 0.00 0.01 0.02 0.09

Ca1 0.17 -0.02 -0.01 -0.07 0.25 0.14 0.13 0.15 0.02 0.04 0.08 0.29
Ca2 -0.05 0.17 -0.05 -0.07 0.14 0.25 0.18 0.21 0.00 -0.02 0.02 0.11
Ca3 -0.03 -0.03 0.22 -0.02 0.06 0.09 0.25 0.15 -0.03 -0.00 0.00 0.15
Ca4 -0.01 -0.01 -0.01 0.15 0.01 0.01 0.03 0.24 0.00 0.02 0.04 0.13

T a1 0.00 -0.00 0.00 0.01 0.00 0.01 0.00 -0.01 0.41 0.10 0.06 0.05
T a2 -0.00 0.00 0.00 0.00 0.00 0.01 0.00 -0.00 0.06 0.36 0.08 0.05
T a3 -0.00 -0.00 0.01 0.01 0.00 0.01 0.00 -0.01 0.04 0.08 0.30 0.10
T a4 0.00 -0.00 0.00 0.03 0.01 0.02 0.00 -0.01 0.03 0.05 0.10 0.22

DAX

La1 La2 La3 La4 Ca1 Ca2 Ca3 Ca4 T a1 T a2 T a3 T a4

La1 0.34 0.06 -0.11 -0.16 0.14 0.11 0.44 0.26 0.06 0.07 0.14 0.50
La2 0.01 0.23 0.08 0.04 -0.00 0.13 0.04 0.04 0.01 0.03 0.07 0.22
La3 0.00 0.01 0.24 0.06 -0.00 -0.00 0.02 0.01 0.00 0.01 0.02 0.06
La4 0.00 0.00 0.00 0.13 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00

Ca1 0.18 -0.14 -0.28 -0.39 0.36 0.25 0.52 0.69 0.21 0.51 0.37 -1.63
Ca2 0.00 0.23 0.05 -0.03 0.01 0.16 0.00 0.01 0.00 0.00 0.01 -0.02
Ca3 0.02 0.02 0.16 -0.07 -0.00 0.02 0.27 -0.03 0.01 0.01 0.00 -0.04
Ca4 0.00 0.01 0.03 0.14 0.00 0.01 -0.00 0.26 0.00 0.00 0.01 -0.02

T a1 0.02 0.02 0.05 0.10 -0.02 0.01 -0.01 -0.02 0.31 0.23 0.29 0.68
T a2 0.00 0.03 0.04 0.10 -0.01 -0.00 -0.01 -0.02 0.06 0.15 0.12 0.22
T a3 0.00 0.00 0.04 0.07 -0.00 -0.00 -0.00 0.00 0.03 0.05 0.11 0.13
T a4 -0.00 -0.00 -0.00 0.06 -0.00 -0.00 0.00 0.00 0.01 0.01 0.02 0.06

Table 3.7: Ask-Ask quadrant of the kernel norm matrices for the order book case. To highlight
the structure, the largest four values in each column are in bold face.



Another feature, more visible for the Bund, concerns the blocks Lxi → Cxj and Cxi → Lxj .
They describe the influence of cancellations on limits on the same side of the book (and
vice-versa), and present positive diagonal terms and slightly negative and mostly negligible
off diagonal terms. This means that excitation is found only between orders of the same
(or similar) size. The presence of strong excitation between orders of the same size appears
very reasonable. Indeed, one can only cancel orders that he placed before. The fact that
the same structure is found in both the blocks Lx → Cx and Cx → Lx suggests that these
blocks reflect repositioning of limit orders, for example because the price has moved.

We already discussed in the previous section the structure of the trade-trade interaction.
Here we note that trades appear to be mostly influenced by other trades with very little
excitation from other types of orders. This is somewhat expected, since market orders have
been found in different studies (Toke, 2015) to trigger limit orders. Trades, especially large
ones appear to have also a significant effect on cancellations. We will discuss in more detail
the effects of trades in Section 3.5.3.

Table 3.8 shows instead the quadrant ask/bid of the estimated kernel matrix. The
rescaled version is instead reported in Table 3.13. First, we observe that trades, par-
ticularly large ones, influence significantly limit orders on the opposite side of the book.
Values of the kernel norms T x4 → Ly (x 6= y) are in fact far higher than those for small
trades T x1 → Ly, with T x2 → Ly and T x1 → Ly taking values in between. This is more
evident in the case of the DAX. The DAX is a case of a small-tick asset, so large trades are
more likely to move the midprice. As a consequence, new bid limit orders are submitted
in order to follow the price move upwards and vice-versa.

Finally, we note the mutual influence between limit and cancel orders on opposite side
of the book and the inhibitory effect Lxi → Lyj and Cxi → Cyj (x 6= y), i.e. between the
same order type on opposite side of the order book. This can be linked to a fair price view,
in the sense that when the flow of limit orders is more intense on side x it means that the
“fair price” is closer to side y, and thus the flow of limit orders on side y decreases.

The norm matrix provides a summary of the mutual influence structure, however, to
complete the analysis it is important to look at the precise shape of the kernels which
add noteworthy information. In the following, we will examine the shape of the kernels
focusing in particular on the effect of the different order sizes.

3.5.2 Effects of limit orders and cancellations

To identify the main effect of the arrival of an event of type Zxj (e.g. limit, cancel, trade
with size j), we plot all the kernels φ(Zxj → ·) i.e. we plot along one column of the kernel
matrix. To improve readability we separate the effect on the same side of the book from
those on the opposite side.

In Figure 3.6 we plot the kernels that describe the influence of a small and respectively
a large limit order on the DAX future. Let us look first at the left column of the figure,
that shows the influence on the same side of the book. We notice immediately that both
a small and a large limit order trigger mainly small limit orders. However, while the
small/small kernel attains high values already at very short time scales (below 300µs),
the large/small one is negligible until that scale. This is a feature we already noticed
in Section 3.4 and suggests that when a large order arrives, what follows is mainly the
reaction of the market to the new information, and it takes some time to react. While the
reaction part is present also for small orders, here a significant part seems to be the result
of the same trader executing a series of orders at very short distances.

Small limit orders also trigger cancellations of the same size on both sides of the book.
This may be the result of traders repositioning their limit orders because e.g. the midprice



Bund

Lb1 Lb2 Lb3 Lb4 Cb1 Cb2 Cb3 Cb4 T b1 T b2 T b3 T b4

La1 0.01 0.01 -0.02 -0.06 0.04 0.00 0.02 0.08 0.07 0.02 0.05 0.35
La2 -0.02 -0.02 -0.04 -0.09 0.02 0.09 0.04 0.15 0.01 0.07 0.06 0.59
La3 -0.02 -0.02 -0.03 -0.07 0.03 0.02 0.05 0.06 0.02 0.08 0.22 0.68
La4 -0.00 -0.00 -0.01 -0.01 0.01 0.02 0.01 0.03 0.02 0.03 0.07 0.45

Ca1 0.04 0.03 0.02 0.10 0.00 -0.02 -0.01 -0.03 -0.01 -0.02 -0.03 -0.07
Ca2 0.04 0.11 0.04 0.11 -0.01 -0.02 -0.02 -0.03 -0.05 -0.04 -0.05 -0.10
Ca3 0.03 0.06 0.07 0.14 -0.01 -0.02 -0.03 -0.02 -0.04 -0.03 -0.01 -0.10
Ca4 0.02 0.03 0.03 0.08 -0.00 -0.01 -0.01 0.01 -0.00 0.01 0.03 0.02

T a1 0.00 0.00 -0.00 -0.01 0.00 -0.00 -0.00 0.01 0.01 0.00 0.01 0.06
T a2 -0.00 0.00 -0.00 -0.01 0.00 -0.00 -0.00 0.00 0.00 0.02 0.02 0.07
T a3 -0.00 0.00 -0.00 -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.02 0.09
T a4 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 0.00 -0.00 -0.01 -0.01 0.05

DAX

Lb1 Lb2 Lb3 Lb4 Cb1 Cb2 Cb3 Cb4 T b1 T b2 T b3 T b4

La1 -0.07 -0.20 -0.35 -0.80 0.13 0.23 0.28 0.26 0.34 0.54 1.12 2.15
La2 -0.01 0.00 -0.03 -0.02 0.00 0.05 0.03 0.09 0.06 0.18 0.32 0.61
La3 0.00 -0.00 0.00 0.02 -0.00 0.00 0.01 0.01 0.01 0.03 0.08 0.10
La4 0.00 -0.00 -0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Ca1 0.22 0.40 0.67 1.31 -0.02 -0.11 -0.11 -0.14 -0.10 -0.09 -0.25 -0.96
Ca2 0.01 0.03 0.04 0.08 -0.01 0.01 -0.00 -0.00 0.01 0.03 0.01 -0.02
Ca3 0.01 0.01 0.02 -0.00 -0.00 0.01 0.01 -0.01 0.02 0.04 0.02 -0.07
Ca4 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.01 0.01 -0.01

T a1 0.03 0.06 0.10 0.26 -0.01 0.00 -0.02 -0.02 0.04 0.05 0.09 0.29
T a2 0.01 0.05 0.08 0.23 -0.01 -0.01 -0.01 -0.01 0.01 0.02 0.03 0.09
T a3 0.00 0.01 0.04 0.11 -0.00 -0.00 -0.00 -0.00 0.00 0.00 0.01 0.03
T a4 0.00 0.00 0.00 0.01 0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 0.01

Table 3.8: Ask-Bid quadrant of the kernel norm matrices for the order book case. To highlight
the structure, the largest four values in each column are in bold face.



has shifted. Note that the La1 → Cb1 kernel features high values also before the 300µs
reaction time, unlike the La1 → Ca1 kernel. This is probably due to the fact that if a trader
decides to change side on the book then he will almost simultaneously place a new limit
order on one side and cancel his previous one on the other.

A large limit order also triggers many cancellations and, to a lesser extent, trades on the
opposite side. A possible reading is the following. A large limit order on ask side conveys
the information that the “fair price” is actually closer to the bid side. Then agents rush to
cancel their outstanding limit order at the bid, but some get caught by fast traders that
place market orders at the bid to take advantage of the situation.

Effect of cancellations, reported in Figure 3.7 follow the same lines, albeit the effect on
trades is negligible. Similar considerations hold also in the Bund case, the main difference
being that in the DAX case the occurrence of a large order (in our binning scheme) is a
much rare event and thus has more dramatic consequences.
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Figure 3.6: DAX future: kernels describing the influence of a small (top) and large (bottom)
limit order on other events. The left column refers to same side of the book, the right side to
the opposite one.

3.5.3 Effects of Trades

We now look at the effect of trades on other events. In Figures 3.8 and 3.9 the relative
kernels are plotted for the DAX and the Bund futures, respectively. As we already pointed
out, below the market reaction time we note the effect of order splitting, that manifests
itself in the large positive values of the small-trade/small-trade kernel. In the case of the
DAX this effect is absent for large trades, since there is no point in executing two or more
large orders one immediately after the other. In the Bund case, where a 10 contracts order
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Figure 3.7: DAX future: kernels describing the influence of a small (top) and a large (bottom)
cancel order on other events. The left column refers to same side of the book, the right side to
the opposite one.

is still not so large we note some excitation from large trades to small ones at the shortest
time scale.

Another feature that emerges concerns the kernels T a → Ca1 . For both assets, these
kernels are negative before the market reaction time, then they assume very large positive
values around 300µs and then around 1ms they revert to zero or to negative values in the
case of large trades. We can give the following reading of this effect. When a large trade
arrives, it will likely eat up a significant part of the outstanding liquidity. Of course, those
limit orders that have been matched cannot be canceled anymore. Thus, the negative
values of this kernel before the market reaction time are explained by this mechanical
effect. The reaction of market participants with a market making strategy to a large trade
is then to cancel their outstanding limit orders on the side hit by the trade, and to place
limit orders on the opposite side. This is a consequence of the fact that a trade at the ask
signals that the “true price” is closer to that side, and thus liquidity must adapt to the
new situation. We remark again that the effect of large trades on liquidity is both more
intense (compare the different y-scales of the figures) and much more persistent in time.

3.5.4 Baseline intensities

We complete the analysis of the order book section by examining the exogeneity of the
different types and sizes of orders, measured by the baseline intensities µi, we present the
ratios µi/Λi in Table 3.9.

We can make three kind of considerations. The first concerns the degree of exogeneity
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Figure 3.8: DAX future: kernels describing the influence of a small (top) and a large (bottom)
trade on other events. The left column refers to same side of the book, the right side to the
opposite one.

of the different types of orders. Trades are the most exogenous, followed by limit orders.
It is no surprise that the cancellations activity can be in large part explained by cross and
self excitation, since cancel orders are mostly the reaction to some event. It is interesting
to compare the ratios µi/Λi we obtained when examining trades alone with those of the
full order book model. From Table 3.10 we note that, when including all the other orders
into the picture the fraction of intensity explained by the baseline intensity decreases,
albeit not dramatically. In fact, market orders have been shown to lead limit and cancels
rather than be driven. Moreover, we have seen that most of the cross excitation comes
from other trades, thus no big difference is expected between the full order book case and
the trade-only case. Nevertheless, some trade activity is explained by the other events
notably by large limit orders as we pointed out in the previous section.

The second consideration regards the effect of the order size. In line with the analysis
conduced so far, we find large orders to be more exogenous than small ones. It is reasonable
to assume that when a trader places a large order is because she has an “independent”
reason to do so, either a clear view on the underling asset or a necessity to execute a
large quantity immediately, rather than because she is following the market or engaging
in market making.

Finally, we observe that the ratios µi/Λi for large orders on the DAX are much higher
than those on the Bund (see Tables 3.9 and 3.10). This is mostly a consequence of the
different volume distributions in the two assets. On the DAX future, orders larger than
10 are much more unusual, and perceived as big, than they are on the Bund.
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Figure 3.9: Bund future: kernels describing the influence of a small (top) and a large (bottom)
trade on other events. The left column refers to same side of the book, the right side to the
opposite one.

Bund

La1 La2 La3 La4 Ca1 Ca2 Ca3 Ca4 T a1 T a2 T a3 T a4
20.6 16.8 13.0 16.5 9.0 16.5 13.3 7.8 27.3 16.8 17.4 36.8

Lb1 Lb2 Lb3 Lb4 Cb1 Cb2 Cb3 Cb4 T b1 T b2 T b3 T b4
19.9 16.5 13.1 17.1 8.0 16.5 13.3 7.6 29.2 17.0 18.0 36.4

DAX

La1 La2 La3 La4 Ca1 Ca2 Ca3 Ca4 T a1 T a2 T a3 T a4
19.9 19.1 33.7 72.3 10.7 10.8 16.4 18.5 27.2 30.5 44.8 50.6

Lb1 Lb2 Lb3 Lb4 Cb1 Cb2 Cb3 Cb4 T b1 T b2 T b3 T b4
20.1 20.0 35.0 71.2 11.0 11.5 16.4 18.4 26.7 30.5 44.8 49.6

Table 3.9: Ratios µi
Λi

expressed in percent.



Bund

T a1 T a2 T a3 T a4 T b1 T b2 T b3 T b4
4.3 4.3 6.6 10.7 2.4 3.6 5.6 10.4

DAX

T a1 T a2 T a3 T a4 T b1 T b2 T b3 T b4
5.5 7.3 4.0 7.5 5.7 6.8 2.8 6.6

Table 3.10: Difference in the ratios µi
Λi

(expressed in percent) between the signed trade only
case examined in Section 3.4 and the full order book case.



3.6 Conclusions

In this paper we showed the effectiveness of multivariate Hawkes processes coupled with
non-parametric kernel estimation as a toolkit for the analysis of high frequency order book
dynamics when the effect of some variable besides the time and type of orders is of interest.
We examined in particular the role played by the order size and we have shown that a
simple multiplicative model, where time and size are factored, is not able to capture the
complex interplay between these variables. On the contrary, our approach has proved to
be capable of highlighting several features of the dynamics, from typical reaction time
to complex interaction between different order types. Of course, while the methodology
is completely general, the features we highlighted pertain to the particular market and
instrument that we examined and may in principle be different in other markets.

There are two main strengths of our approach as compared to the existing ones. First,
Hawkes processes are point processes easily applicable in multiple dimensions and in this
paper we have exploited this property by considering different types of orders (limit orders,
cancellations, and trades) and different volume size. Second, we used a non parametric
estimation method that limits the constraint imposed by traditional parametric models.

When volume is not considered we recovered many of the results of Bacry et al. (2016)
for limit order book dynamics. Moreover by using the multivariate approach we were
able to separate contribution from different order sizes. The different impact of large
orders clearly emerge from our analysis, as well as the longer persistence of their effect.
Our work thus shows that the role of order size needs to be taken into account for a
complete understanding of the order book dynamics. Our study still leave out some
relevant information such as the size of the queue and the dynamics of the price and this
will be the objective of future works.

We conclude by noting that our methodology is well suited to the application to different
systems where the interaction of different event types as well as their marks are relevant.

Appendix

3.A Proofs

Here we report the proof of Proposition 3.2.1.

Proof. Let us suppose that φ(t) ≥ 0 for all t ≥ 0, meaning that all the elements are
positive functions. Define, for every t ≥ 0, S−kj = {s ∈ R+ : gkj(t − s) < 0} 6= ∅ and

S+
kj = {s ∈ R+ : gkj(t− s) ≥ 0}.
Then we rewrite the integral equation (2.19) as:

gij(t) = φij(t) +
∑
k

∫ ∞
0

gkj(t− s)φik(s)ds

= φij(t) +
∑
k

∫
S+
kj

gkj(t− s)φik(s)ds+
∑
k

∫
S−kj

gkj(t− s)φik(s)ds
(3.8)

Rearranging the terms we get:

gij(t)−
∑
k

∫
S−kj

gkj(t− s)φik(s)ds = φij(t) +
∑
k

∫
S+
kj

gkj(t− s)φik(s)ds (3.9)



The right hand side is always positive, so for the equation to hold we need, for all t such
that gij(t) < 0:

gij(t) ≥
∑
k

∫
S−kj

gkj(t− s)φik(s)ds (3.10)

Let us define
mkj = inf

R+
gkj(t) (3.11)

and
mj = min

k
mkj (3.12)

Now we can write

gij(t) ≥
∑
k

∫
S−kj

gkj(t− s)φik(s)ds ≥
∑
k

mkj

∫
S−kj

φik(s)ds ≥ mj

∑
k

∫
S−kj

φik(s)ds (3.13)

if we take this equation for the component (i∗, j) such that mj = mi∗j , that is the g that
reaches the lowest value on the column j, we find that the above conditions requires∑

k

∫
S−kj

φi
∗k(s) ≥ 1⇒

∑
k

∫ ∞
0

φi
∗k(s) =

∑
k

‖φi∗k‖1 ≥ 1 (3.14)

since the φ are positive and causal functions. If the matrix g(t) has at least one entry on
every column (or row) wich takes negative values, then the minimum row (column) sum
of φ̂0, r (c) must be greater than one. This implies that also the spectral radius, ρ, of φ̂0

is greater than one (see Minc (1988) pp. 24-25).

3.B Robustness checks

In this appendix we briefly discuss two possible issues that can arise when dealing with
real data, namely the effects of finite time resolution and those of the intraday activity
pattern. We find that none of these issues appears to significantly influence the results of
our analysis.

Timestamps randomization As noted in the main text, in our data we never observe
two trades closer in time than 50 µs. This could be the result of some technical time
required to process the order and write the data in the database. For changes in the
best quote the minimum time difference observed is 10 µs, despite the timestamps being
recorded with microsecond precision. So there is the possibility that actual events are
sometimes closer in time to each other than they result from the database.

We check the outcome of the non-parametric estimation also with randomized data. To
randomize the data, we first round all the trades timestamps to the nearest 10µs. Then,
we subtract to them a random number uniformly distributed in [0, 50)µs. The effect of
randomization on short durations are shown in Figure 3.10.

The estimation parameters are the same as those used in Section 3.4. In Table 3.11 (top)
the rescaled kernels norms are presented, we note that the outcome is almost identical to
the non randomized case (see Table. 3.2). We find also that the shape of the obtained
kernels is essentially the same, except that the peaks at 100 and 300µs are broader as
a result of the broader distribution of the inter event times due to randomization. We
conclude that the time resolution of our data is fine enough not to pose noticeable problem
to the estimation procedure and we therefore prefer to use the original timestamps.
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Figure 3.10: Bund future: Inter events distribution before (left) and after (right) randomiza-
tion.

Intraday Seasonality In principle intraday non stationarities could pose a problem
for estimation. To check for daily-pattern effects on the estimation procedure we repeat
the estimation on trade events comprised between 11:00 and 17:00 Frankfurt time. We
consider the same six bins of volume as specified in Table 3.1. The matrix of the norms is
reproduced in Table 3.11 (bottom). We also computed the relative differences

nij − n′ij
nij

Where, nij is the rescaled norm of φij estimated on the whole period (08:00-22:00), while n′

is the analogous quantity estimated on the restricted period. We find that the differences
are of the order of a few percent, with the highest differences (about 10%) appearing on
the smallest norms where we also have the highest estimation error. We therefore conclude
that our main results are robust also with respect to seasonality effects. This can be linked
to the fact that our study focuses only on the very short time scale dynamics (we estimate
the kernels only up to 0.5s).

3.C Rescaled kernel matrices for the first level of the order book



Bund Randomized

≤ 1 ≤ 2 ≤ 3 ≤ 7 ≤ 20 > 20

≤ 1 0.52 0.05 0.02 0.04 0.04 0.09
≤ 2 0.10 0.40 0.04 0.08 0.08 0.13
≤ 3 0.08 0.08 0.24 0.14 0.11 0.15
≤ 7 0.06 0.06 0.05 0.32 0.13 0.18
≤ 20 0.04 0.04 0.02 0.09 0.29 0.22
> 20 0.03 0.02 0.01 0.04 0.09 0.24

Bund 11-17

≤ 1 ≤ 2 ≤ 3 ≤ 7 ≤ 20 > 20

≤ 1 0.52 0.04 0.01 0.03 0.04 0.09
≤ 2 0.08 0.39 0.04 0.07 0.08 0.14
≤ 3 0.07 0.08 0.24 0.14 0.11 0.15
≤ 7 0.06 0.06 0.05 0.31 0.14 0.19
≤ 20 0.04 0.04 0.03 0.09 0.28 0.23
> 20 0.03 0.02 0.01 0.04 0.09 0.24

Table 3.11: Bund future: rescaled kernel norms for the six dimensional case. Results from
randomized data (top), and results form trades occurred only between 11:00 and 17:00 local
time (bottom). The three largest values in each row are highlighted in bold face.



Bund

La1 La2 La3 La4 Ca1 Ca2 Ca3 Ca4 T a1 T a2 T a3 T a4

La1 0.25 0.14 0.12 0.07 0.12 -0.02 -0.03 -0.01 0.00 0.00 0.00 -0.01
La2 0.10 0.24 0.14 0.08 -0.03 0.16 -0.03 -0.01 -0.00 0.00 0.00 -0.00
La3 0.06 0.12 0.31 0.07 -0.01 -0.02 0.15 0.01 0.00 0.00 0.01 0.02
La4 0.05 0.10 0.11 0.20 -0.01 -0.02 0.00 0.09 0.00 0.00 0.01 0.03

Ca1 0.18 -0.03 -0.01 -0.03 0.25 0.17 0.13 0.05 0.00 0.00 0.01 0.04
Ca2 -0.04 0.19 -0.05 -0.02 0.11 0.25 0.14 0.06 0.00 -0.00 0.00 0.01
Ca3 -0.04 -0.05 0.27 -0.01 0.06 0.12 0.25 0.05 -0.01 -0.00 0.00 0.02
Ca4 -0.04 -0.03 -0.02 0.18 0.03 0.05 0.08 0.24 0.00 0.01 0.01 0.05

T a1 0.02 -0.00 0.01 0.02 0.01 0.04 0.01 -0.01 0.41 0.07 0.04 0.04
T a2 -0.01 0.03 0.01 0.02 0.01 0.07 0.02 -0.01 0.09 0.36 0.09 0.06
T a3 -0.01 -0.02 0.09 0.04 0.03 0.10 0.00 -0.03 0.05 0.07 0.30 0.10
T a4 0.00 -0.03 0.02 0.09 0.04 0.16 0.02 -0.03 0.03 0.04 0.09 0.22

DAX

La1 La2 La3 La4 Ca1 Ca2 Ca3 Ca4 T a1 T a2 T a3 T a4

La1 0.34 0.01 -0.00 -0.00 0.14 0.01 0.04 0.01 0.01 0.00 0.00 0.00
La2 0.10 0.23 0.02 0.00 -0.01 0.08 0.02 0.01 0.01 0.01 0.01 0.01
La3 0.04 0.06 0.24 0.01 -0.03 -0.01 0.07 0.01 0.03 0.02 0.02 0.01
La4 0.03 0.00 0.01 0.13 -0.05 -0.01 0.00 0.02 -0.00 0.01 -0.00 -0.00

Ca1 0.17 -0.02 -0.01 -0.00 0.36 0.02 0.04 0.02 0.04 0.03 0.01 -0.01
Ca2 0.00 0.37 0.02 -0.00 0.09 0.16 0.00 0.00 0.00 0.00 0.00 -0.00
Ca3 0.26 0.04 0.05 -0.00 -0.04 0.02 0.27 -0.01 0.02 0.01 0.00 -0.00
Ca4 0.16 0.06 0.03 0.02 0.07 0.03 -0.01 0.26 0.02 0.01 0.01 -0.00

T a1 0.12 0.01 0.01 0.00 -0.13 0.01 -0.00 -0.00 0.31 0.08 0.05 0.02
T a2 0.04 0.07 0.02 0.00 -0.12 -0.00 -0.01 -0.01 0.16 0.15 0.06 0.02
T a3 0.01 0.01 0.04 0.01 -0.12 -0.01 -0.01 0.00 0.17 0.10 0.11 0.02
T a4 -0.00 -0.03 -0.01 0.04 -0.21 -0.00 0.01 0.03 0.27 0.15 0.15 0.06

Table 3.12: Ask-Ask quadrant of the rescaled kernel norm matrices for the order book case.
To highlight the structure, the largest four values in each row are in bold face.



Bund

Lb1 Lb2 Lb3 Lb4 Cb1 Cb2 Cb3 Cb4 T b1 T b2 T b3 T b4

La1 0.01 0.01 -0.02 -0.02 0.04 0.00 0.01 0.02 0.01 0.00 0.01 0.05
La2 -0.02 -0.02 -0.03 -0.03 0.01 0.08 0.03 0.03 0.00 0.01 0.01 0.06
La3 -0.02 -0.02 -0.03 -0.03 0.03 0.02 0.04 0.02 0.00 0.01 0.03 0.08
La4 -0.01 -0.02 -0.02 -0.01 0.02 0.07 0.02 0.02 0.01 0.01 0.02 0.15

Ca1 0.05 0.04 0.02 0.04 0.00 -0.02 -0.01 -0.01 -0.00 -0.00 -0.00 -0.01
Ca2 0.03 0.13 0.04 0.04 -0.01 -0.02 -0.01 -0.01 -0.01 -0.00 -0.01 -0.01
Ca3 0.03 0.09 0.09 0.06 -0.01 -0.03 -0.03 -0.01 -0.01 -0.00 -0.00 -0.02
Ca4 0.06 0.10 0.10 0.10 -0.01 -0.03 -0.03 0.01 -0.00 0.00 0.01 0.01

T a1 0.01 0.00 -0.02 -0.02 0.02 -0.03 -0.01 0.01 0.01 0.00 0.01 0.05
T a2 -0.01 0.02 -0.03 -0.03 0.01 -0.02 -0.00 0.01 0.00 0.02 0.02 0.08
T a3 -0.02 0.01 -0.01 -0.02 0.01 -0.05 0.01 0.01 0.00 0.00 0.02 0.10
T a4 -0.03 -0.01 -0.04 -0.01 0.01 -0.02 0.00 0.01 -0.00 -0.01 -0.01 0.05

DAX

Lb1 Lb2 Lb3 Lb4 Cb1 Cb2 Cb3 Cb4 T b1 T b2 T b3 T b4

La1 -0.07 -0.03 -0.01 -0.00 0.14 0.02 0.02 0.01 0.06 0.03 0.03 0.01
La2 -0.04 0.00 -0.01 -0.00 0.00 0.03 0.02 0.02 0.07 0.08 0.07 0.02
La3 0.04 -0.01 0.00 0.00 -0.14 0.01 0.02 0.01 0.07 0.08 0.08 0.02
La4 0.07 -0.01 -0.00 0.00 -0.10 0.00 0.02 0.01 0.05 0.02 0.03 0.02

Ca1 0.21 0.05 0.02 0.00 -0.02 -0.01 -0.01 -0.00 -0.02 -0.01 -0.01 -0.00
Ca2 0.17 0.05 0.01 0.00 -0.08 0.01 -0.00 -0.00 0.02 0.02 0.00 -0.00
Ca3 0.12 0.01 0.01 -0.00 -0.02 0.01 0.01 -0.00 0.04 0.03 0.01 -0.00
Ca4 0.09 0.01 0.01 0.00 0.04 0.01 -0.01 0.00 0.00 0.02 0.01 -0.00

T a1 0.17 0.04 0.02 0.00 -0.06 0.00 -0.01 -0.00 0.04 0.02 0.01 0.01
T a2 0.22 0.10 0.04 0.01 -0.09 -0.01 -0.02 -0.01 0.03 0.02 0.01 0.01
T a3 0.13 0.06 0.04 0.01 -0.05 -0.01 -0.01 -0.00 0.01 0.00 0.01 0.01
T a4 0.01 0.00 0.01 0.01 0.03 -0.01 -0.01 -0.00 0.00 -0.01 0.00 0.01

Table 3.13: Ask-Bid quadrant of the rescaled kernel norm matrices for the order book case. To
highlight the structure, the largest four values in each row are in bold face.





Chapter 4

Hawkes processes with local
non-stationarities (I)

4.1 Intoduction

Complex system dynamics is characterized by a subtle interplay between endogenous and
exogenous effects. Financial markets are, in this respect, paradigmatic. The dynamics
of asset prices, in fact, is affected by the arrival of exogenous news, which modifies the
valuation of the fair price of the asset, and by the arrival of endogenously generated events
(e.g. trades, orders, and price changes) in reaction to past events (Engle and Ng, 1993; Birz
and Lott, 2011; Groß-Klußmann and Hautsch, 2011). Disentangling and quantifying the
relative importance of these two drivers have been debated widely in the last half century,
since the formalization of the Efficient Market Hypothesis. There is a growing empirical
evidence that a significant fraction of market activity1 and volatility is explained by the
endogenously generated trading activity. For example, large price movements (jumps) are
only partly explained by public news (Cutler et al., 1989; Joulin et al., 2008).

The debate about the endogenous and exogenous component of price dynamics has
recently received a new impulse thanks to the application of Hawkes processes to the
modeling of financial data (Hewlett, 2006; Bowsher, 2007; Bauwens and Hautsch, 2009;
Embrechts et al., 2011; Toke, 2011; Bacry et al., 2013, 2012; Bormetti et al., 2015). Hawkes
processes Hawkes (1971), originally introduced in seismology, describe a point (counting)
process where the intensity is not constant but depends on the past history of the counting
process, weighted by a suitably chosen kernel. Due to the natural interpretation of a
Hawkes process as a branching process, in terms of immigrant baseline events and offspring
events, it is direct to interpret the integral of the kernel as the fraction of the activity due
to the endogenous self excitation. The empirical analysis on equity and future data has
indicated (Filimonov and Sornette (2012); Hardiman et al. (2013); Filimonov and Sornette
(2015); Hardiman and Bouchaud (2014)) that, according to Hawkes modeling, a very large
fraction of the market activity is explained by the endogenous component. Markets seem
to be very close to a “critical” state where all the dynamics is endogenously generated
(see Filimonov and Sornette (2012); Hardiman et al. (2013) for more details).

However, in some situations the arrival of exogenous news has typically a very large
impact on the trading activity. An example, which is the one investigated in the present
paper, is the impact of macroeconomic news on foreign exchange (FX) markets. This

1In this paper we will use the term market activity to describe the rate of price changes per unit time,
irrespectively on the size, similarly to what investigated in Filimonov and Sornette (2012); Hardiman et al.
(2013)
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large impact is due to the fact that macroeconomic news (unemployment rate, GDP data,
central banks intervention, etc.) affects significantly the valuation of the economy of a
country and therefore of its currency. Moreover these announcements are scheduled in
advance and are monitored with great attention by FX market participants.

The impact of exogenous news on asset prices has been investigated by a number of au-
thors starting with the pioneering work of Cutler et al. (1989). In Mitchell and Mulherin
(1994) authors analysed the connection between the daily number of news announce-
ments reported by Dow Jones & Company and aggregate measures of market activity
such as trading volume and market returns. Avellaneda and Lipkin (2003) studied the
phenomenon of stock pinning observed at the expiration date of the corresponding op-
tions. Joulin et al. (2008) and Groß-Klußmann and Hautsch (2011) explored the role of
news in high-frequency volatility and order book dynamics. A more extensive survey of
the literature on news impact can be found in Lillo et al. (2015).

The effects of scheduled macroeconomic announcements on the FX market have been the
object of several works. Ederington and Lee (1993) found that this sort of announcements
is responsible for a large part of the volatility pattern observed in these markets. Andersen
and Bollerslev (1998) provided a characterization of the volatility in the DM/USD rate,
separating contributions of intraday activity patterns, macroeconomic announcements,
and volatility persistence. More recently, Bauwens et al. (Bauwens et al., 2005) have a in-
vestigated volatility dynamics around news announcements on high-frequency EUR/USD
data in the framework of ARCH-type models. These works focus either on large time
horizons or choose a discrete time setting.

In this paper we focus on modeling the dynamic evolution in physical (continuous) time
of market activity before and after a macroeconomic news announcement. We consider
the rate of change in the best quotes as a proxy of market activity, and we take a point
process perspective. Our main original contribution is a Hawkes model of the FX market
activity where one of the kernels describes the (causal and possibly non-causal) effect of
the macro news on the market activity. The model has thus two Hawkes kernels, one for
the endogenous and one for the exogenous component. We find that the description of
the market activity improves significantly when one introduces the exogenous kernel. It
is important to stress that most of the work done so far concerning Hawkes processes in
financial data has considered stationary processes. In fact, when non stationarities are
present (e.g. the intraday pattern), one typically tries to remove them, for example by de-
seasonalizing the data. However in some cases, non stationarities are important and bring
relevant economic information that one wants to model. The example considered in this
paper is the market activity around macro announcements. Our approach demonstrates
how it is possible to reconcile non stationarities like news announcements in the Hawkes-
processes framework, that has proven to be a versatile tool for modeling of high-frequency
market dynamics in physical time.

The paper is organized as follows. In Section 4.2 we present our dataset of prices
and news and the main variables introduced to characterize the news. In Section 4.3 we
show how Hawkes models are able to describe the dynamics of FX rates when only the
endogenous component is considered. Section 4.4 presents our modeling approach, where
a new component of the Hawkes process is added, taking into account the effect of macro
news. In Section 4.5 we present an extension of the model where a non-causal kernel is
added, taking into account the fact that the existence of the announcement (but not its
content) is known in advance. Finally, in Section 4.6 we present our conclusions.



# of days Events per Avg. quote
day (Avg.) duration (s)

Small tick size

EUR/USD 190 58,902 0.55
EUR/JPY 190 34,857 0.91
USD/JPY 190 24,477 1.32

Large tick size

EUR/USD 60 20,229 1.60
EUR/JPY 60 19,012 1.70
USD/JPY 60 7244 4.47

Table 4.1: Summary statistics for the FX dataset during London core trading hours (07:30-
16:30), before and after the tick size increase. Events refer to cases when either the bid or the
ask change (with a time resolution of 100ms).

4.2 Data

We investigated EBS live data from January 1, 2012 to December 18, 2012, a total of
353 days, for three pairs of currencies, namely EUR/USD, EUR/JPY and USD/JPY. The
time resolution of the database is 100ms and we used the ebsMarketReferenceTime as the
reference time. Since the time discretization might affect the estimation of the Hawkes
process, as customary done, we randomize the times by subtracting from each time stamp
expressed in second a random number uniformly distributed in (0,0.1] s.

We filter the data by considering the events where either the best ask or the the best bid
change. Although FX trading is active 24h a day 7 days a week, the activity on Saturdays
and Sundays recorded in our dataset is almost negligible and therefore we excluded them.
This left us with 250 days. FX trading activity displays an high intraday seasonality
and therefore we decided to restrict our work to London core trading hours (07:30-16:30),
where the highest activity is observed. Table 4.1 shows the number of bid or ask changes
observed during the London core trading hours for the three rates. Notice that we have
divided the sample in two, depending on the tick size2. In fact EBS increased the tick size
of a factor five on September 23, 2012 and, as it can be seen from the Table, this fact has
reduced the number of best quote changes by a factor two or three, depending on the rate.

The FX market is strongly affected by macro announcements. In this paper we are
interested in modeling the price dynamics around these announcements. In particular here
we focus on announcements whose publishing is scheduled well in advance, such as Central
Banks rate decisions or announcements of unemployment or GDP data. We obtained the
list of all economic announcements of 2012 from the website www.dailyfx.com. The news
data report date and time of the news release, the currency which is most affected by the
news, a brief description of the news, an estimate of the importance (high, medium, low),
and, where available, the expected (Forecast) and actual value. The Forecast value is an
average of analysts’ expectations. Not all the news in the dataset concern the publication
of an indicator which can be quantified by a number. An example are press conferences of
central banks’ governors. Since there is no numeric value associated to them, there is not
any forecast either. Since we treat only the EUR/USD, EUR/JPY and USD/JPY rates,
we retained only the news that are linked to one of these currencies. In addition, in this
work we consider only news that are rated Medium or High importance, so we discarded

2The tick size is the discretization step of price.



those rated Low. Quite often, related indicators are announced at the same time. Since
we are concerned with the impact of a news before and after its announcement, we kept
only the most relevant news for each distinct time. The total of the news retained after
this selection is 723. The totals divided per currency and importance are reported in Table
4.2. The much smaller number of JPY news is due to the fact that we focus on London
core trading hours, and most JPY news are released outside this time interval.

HIGH MEDIUM TOTAL

EUR 130 293 423
USD 107 186 293
JPY 1 6 7

TOTAL 238 485 723

Table 4.2: Number of news affecting each currency disaggregated by importance.

4.2.1 Intensity bursts and news surprise

In order to characterize the news, we introduce two additional metrics. The first one
measures how much the news has impacted the trading activity, while the second one
measures the degree of surprise of the news, i.e. the difference between the forecast and
the actual value.

To be more specific, for each one minute interval i we compute the number Ni of changes
in any of the best quotes, and we compare it with the Simple Moving Average (An) of the
same quantity over the previous n one minute intervals. Since the events in minute i do
not enter in the calculation of An(i), we consider it as a measure of the expected activity
for the interval i. Similarly to what is done in price jumps detection Joulin et al. (2008);
Bormetti et al. (2015), we define the impact θi as the ratio between the observed number
of events at i and the expected number of events according to the Simple Moving Average
An, namely

θi =
Ni

An(i)
(4.1)

We shall use the quantity θi for two purposes. First we use it to identify “jumps” in the
market activity and to answer the question of how frequently a high activity is associated
with a recent news. Second we shall use is to answer the reverse question, i.e. how large is
θi after a macro news and to classify news according to their effect on the trading activity.

The second metric measures the difference between expectations and actual values an-
nounced by the news. For this reason we call it “surprise” of the news. To compute it,
we can only consider news for which the Forecast value is given. In the end, starting with
723 news, we are left with a total of 559 news or about 77% of the original sample.

For each news we have the Actual and the Forecast value, which we denote IA and IF
respectively. The measures of surprise that we use are the absolute surprise

Sabs = |IA − IF |, (4.2)

and the relative surprise

Srel =
|IA − IF |

IF
× 100. (4.3)
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Figure 4.1: Scatterplot of θ against our measure of news surprise S (black circles, left y axis).
The figure refers to EUR/USD data for θ. The red square line (right y axis) is an estimation of
P (θ > 1|S). For reference, when S = 0 this probability is 0.73

In principle one could distinguish between “good news” and “bad news”, i.e. if the indica-
tor was better or worse than expected. However this is difficult to do in an unsupervised
way, since a positive increment is good or bad depending on the type of news. Therefore
we chose to use the absolute value of the difference. The choice between the absolute and
the relative surprise is not immediate. On one hand, in fact, indicators span a wide range
of values, some are of the order of unity other are given in thousands or in percentage
and hence the most reasonable choice seems the relative surprise. On the other hand, for
some indicators, such as unemployment rate, that are given in percentage, even a small
absolute change might be significant. For these reasons we use the absolute surprise for
indicators given in percentage and the relative surprise in all other cases. In the following,
the notation S denotes this combined measure.

The correlation between surprise and θ is surprisingly low and the scatterplot is very
noisy3. By restricting to Medium and High importance news, the Spearman correlation
coefficient between surprise and θ is 0.34 and different from zero in a statistically significant
way. This effect comes mainly from the High importance news, for which the Spearman
correlation raises to 0.62. Figure 4.1 shows the scatterplot of θ vs. the surprise for
EUR/USD for Medium and High importance news. This relation is confirmed by P (θ >
1|S), which is the probability that θ is larger than one conditional to a given value of the
surprise (see Figure 4.1). We observe that this probability is systematically larger than
1/2, indicating that news trigger an increase in activity and this increase depends on the
surprise of the news. For EUR/USD and EUR/JPY we obtain an almost monotone trend,
while USD/JPY presents a noisier pattern. It seems that even this very simple measure of
surprise, that does not take into account the specificity of each indicator, is nevertheless
able to capture some relevant information.

4.3 Hawkes models of FX market activity

In this Section we present the baseline model for market activity. It consists of a Hawkes
process with a constant baseline intensity and a self-excitation mechanism describing the
endogenous effect Filimonov and Sornette (2012); Hardiman et al. (2013). In the next

3One could try to reduce this noise by normalizing the surprise indicator by the historical standard
deviation, thus taking into account the typical uncertainty of the surprise of each news. This however
would require much longer time series in order to have enough observations for each type of news.



Section we will introduce also an exogenous news term. Here we consider a univariate
Hawkes process

λt = µ+

∫ t

−∞
φ(t− s)dNs (4.4)

As a consequence of Proposition 2.2.1, the process is stationary if n ≡
∫∞

0 φ(τ)dτ < 1.
As described in Brémaud and Massoulié (2001); Hardiman et al. (2013), the process can
however be stationary in the critical case n = 1 if µ = 0. If n < 1, from (2.14), it follows
that n is related to µ through the relation

Λ ≡ E [λt] =
µ

1− n. (4.5)

The quantity n is the fraction of the average rate explained by the self-exciting mechanism.
The Hawkes process is characterized by the functional form of the kernel φ(t). In

empirical applications, one can choose a priori a functional form for the kernel, dependent
on some parameters, and then use maximum likelihood method to determine the best
fitting parameters’ values 4.

In our application, for the endogenous kernel we use either a double exponential5 or a
power-law decaying kernel. The double exponential kernel φDE(t) is defined as

φDE(t) = αAe
−βAt + αBe

−βBt, (4.6)

where αq and βq (q = A,B) are the constant parameters of the model. Here two different
time scales are present and their relative weight is controlled by the amplitudes α. For
definiteness we choose βA ≥ βB, i.e. the A subscript refers to the shorter time scale and
B to the longer one.

The power-law kernel we use is in fact not a truly power-law decaying function, but
instead, for computational reasons, we use an exponential sum that carefully approximates
a function with a power law tail. In particular we adopt the same specification of Hardiman
et al. (2013), which reads

φPL(t) =
n

Z
{
M−1∑
k=0

(ak)
−pe
− t
ak − Se−

t
a−1 } (4.7)

where
ak = τ0m

k. (4.8)

The parameters are n, p and τ0. M is the number of exponential terms and m is a scale
parameter. We fix M = 15 and m = 5 as in Hardiman et al. (2013). The parameter
m controls how well a single exponential approximates the power law. If one wishes the
approximation to be valid over many orders of magnitude, high values of m and M are
necessary. Z and S are constants such that φPL(0) = 0 and

∫∞
0 φPL(t)dt = n. This kernel

has a smooth cut-off at short lags, provided by the negative exponential, whose time
scale is regulated by τ0 once m is fixed. This approximated power law kernel presents an
exponential cut-off at large t. This difference with respect to a true power law is however
irrelevant, in fact, for our choice of M and m, it manifests itself only for t larger than
≈ 109s, a value much larger than the duration of a trading day. This approximation of
the power law in terms of an exponential sum allows the log-likelihood to be computed
recursively, reducing the computational cost form O(N2) to O(N), where N is the sample
size. This is particularly relevant given the large number of data available.

4Another parametric method was recently proposed in Da Fonseca and Zaatour (2014).
5We have also considered the single exponential case. In agreement with the results of Hardiman et al.

(2013) for other financial assets, we find that FX data are very poorly described by Hawkes processes with
a single exponential kernel.
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Figure 4.2: Comparison of the distribution of the residuals from the double exponential and
power low model against the theoretical exponential distribution. Top: lin-lin scale. Bottom:
log-log scale. The residuals from all the separate days and for all the three pairs are pooled
together.

4.3.1 Results

We estimated the best parameters for each day (i.e. the 9-hour window from 07:30 to
16:30 UTC) separately by maximizing the log-likelihood. In this way we obtain a set of
optimal parameters for each day.

In order to compare the performance of the two kernels we studied the distribution of
the residuals. In fact the time change theorem Bauwens and Hautsch (2009) states that
if the true data generating process is a point process with intensity λ, then the residuals

Λi =

∫ ti+1

ti

λ(s)ds

are independent and identically distributed with a standard exponential distribution. In
Figure 4.2 we compare by means of a quantile-quantile plot the empirical distribution
of the residuals of both the double-exponential kernel and the power-law kernel against
the standard exponential distribution. We find that the power-law kernel performs better
than the double exponential. In fact, both the right tail and the left tail of the residual
distribution for the power law kernel are closer to the theoretical one than the one for
the exponential kernel. An analysis of the log-log plot in Figure 4.2 indicates that the
major discrepancies occur for the left tail of the distribution, which corresponds to the
residuals computed on short durations. The duration distribution of the data is peaked
around 100 ms even after the randomization procedure. The double exponential kernel
that presents its maximum at t = 0 is not able to reproduce this feature, while the power
law kernel, which is equipped with an exponential cutoff at short lags performs better.
To support the conclusions drawn from the QQ-plot we mention that we performed a test
of exponentiality on the residuals, namely the Excess Dispersion (ED) test of Engle and
Russell (1998). The test was performed on each day separately for the three currency
pairs. The null hypothesis of the residuals being exponentially distributed was rejected
at the 5% level in 92.8% of the days for the DE kernel and only in 42.2 % of the days
for the PL kernel (aggregating across the pairs). To conclude the comparison between the
two kernels, we stress that also likelihood values are consistently higher for the power law
kernel, thus favouring this choice.

We now turn to the analysis of the values obtained for the parameters. We report the
results from the power law kernel. Figure 4.3 shows the time series of parameters estimated
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Figure 4.3: Time series of the Hawkes model parameters for EUR/USD. Market activity in
events per second is also shown. The dotted line signals the tick size increase.

on EUR/USD data. Trading activity measured in events per second is also shown. In
Table 4.3 we report the average value of the parameters obtained with the power law
kernel before and after the tick increase for all the three pairs. The uncertainties on the
values, as estimated from the Hessian of the log-likelihood, are about 10% on µ, 2% on n
and τ0, and about 1% on p.

Before tick increase

EUR/USD EUR/JPY USD/JPY

activity (events/s) 1.82 (20) 1.08 (28) 0.76 (31)
µ (s−1) 0.24 (35) 0.17 (44) 0.12 (36)
n 0.87 (6) 0.86 (9) 0.84 (6)
τ0 (s−1) 0.24 (8) 0.20 (11) 0.21 (7)
p 1.51 (6) 1.46 (10) 1.52 (7)

After tick increase

EUR/USD EUR/JPY USD/JPY

activity (events/s) 0.62 (15) 0.59 (18) 0.22 (26)
µ (s−1) 0.08 (31) 0.08 (32) 0.03 (36)
n 0.90 (7) 0.91 (7) 0.95 (8)
τ0 (s−1) 0.21 (4) 0.22 (16) 0.18 (4)
p 1.29 (3) 1.26 (3) 1.22 (3)

Table 4.3: Average values of the parameters before and after the tick size increase. Standard
deviations across the sample expressed in percent is also reported in parentheses.

We note that the periods before and after the tick increase are very different. This is
true also for the other pairs. After the tick increase the number of quote changes per
second drops sharply as expected. In fact, after the increase a change in a quote implies
a larger movement in the posted price. This drop is mirrored by a drop in the baseline
intensity µ. The parameter p controlling the power law decay decreases sharply after the
tick increase, indicating an increase of the number of long durations, in accordance with
what is observed in the data. The criticality parameter n is quite close to 1 and relatively
insensitive to the tick size change.



Overall, the Hawkes model equipped with the power law kernel provides a pretty good
description of the empirical data. In line with Hardiman et al. (2013), we find that a large
part of the activity is explained by the self-exciting mechanism (n close to 1) and hence
appears to be endogenously generated.

4.4 Modeling market activity around macro news

We now present the main original contribution of this paper, namely an extension of the
Hawkes model including a news-related (exogenous) term. The model aims at reproducing
in a Hawkes framework the impact of news arrival on market activity. It is important to
note that the news process is considered as given, that is, the model is not meant to
describe the news process itself. The news process is completely deterministic in this
context. As we said, this is actually also the real case in FX market, where the news and
the forecast value, when available, are announced at predetermined times.

Let Nnews
t be the counting process describing the arrival of a news. In order to avoid

confusion with the times {ti}i∈N of arrival of the market activity process, we indicate with
{zj}j∈N the arrival time of the j-th news. The intensity of the market activity counting
process is then

λt = µ+

∫ t

−∞
φ(t− s)dNs +

∫ t

−∞
φN (t− s)dNnews

s

= µ+
∑
ti<t

φ(t− ti) +
∑
zj<t

φN (t− zj)
(4.9)

where φ(t) is the endogenous self-exciting kernel and φN (t) is the exogenous kernel that
accounts for the news-induced excitement.

The condition for stationarity is obtained by taking the unconditional expectation on
both side of (4.9),

Λ = µ+

∫ t

−∞
φ(t− s)E [dN(s)] +

∫ t

−∞
φN (t− s)E [dNnews(s)] =

= µ+

∫ t

−∞
φ(t− s)E [λ(s)] ds+

∫ t

−∞
φN (t− s)E [λN (s)] ds =

= µ+ Λ

∫ t

−∞
φ(t− s)ds+ ΛN

∫ t

−∞
φN (t− s)ds =

= µ+ Λ

∫ ∞
0

φ(τ)dτ + ΛN

∫ ∞
0

φN (τ)dτ

(4.10)

where ΛN ≡ E [λN (t)] is the average intensity of the news process. Solving for Λ, we
finally get

Λ =
µ+ ΛN

∫∞
0 φN (τ)dτ

1−
∫∞

0 φ(τ)dτ
. (4.11)

Provided that ΛN exists and is finite, the condition of stationarity is thus the same as
in the pure self-exciting case, namely

∫∞
0 φ(τ)dτ < 1. In particular, it is not necessary

that also
∫∞

0 φN (τ)dτ < 1 in order to have stationarity of market activity. As we will see
below, in real data

∫∞
0 φN (τ)dτ � 1.

In order to test the model of Eq. (4.9) it is necessary to specify the functional form of
φ(t) and φN (t). As we have seen above, the double exponential kernel and the quasi-power
law kernel give good results for the endogenous component, hence we adopted these forms



also here. For the exogenous kernel φN we chose a single exponential specification of the
type

φN (t) = αNe
−βN t. (4.12)

Here, αN gives the magnitude and βN fixes the time scale. Moreover, it seems reasonable,
at least as a first approximation, that the news impact could be described by a single
timescale.

Both by using the double exponential φDE(t) and the quasi-power law kernel φPL(t)
the expression for the log-likelihood can be analytically derived. In the former case we
estimate 7 parameters, while in the latter case this number is equal to 6.

We estimated and tested our model on the series of best quote changes for the three cur-
rency pairs in our database. In each day there are on average three news announcements,
and we calibrated the model on a window where only one news is present. Therefore we
selected those news events that are “isolated”, i.e. there is no other news in a three hour
window centered at the time of the news. In this way the news event happens always at
t = 5400 s, i.e. at the median point of the window. We then estimated the parameters
of the model in each window as described in Appendix A. Notice that it is immediate to
extend our modeling to the case where more than one news is present in the investigated
time interval. In the following we focus on windows with only one news mostly for the
sake of presentation clarity.

Since we are considering only High and Medium importance news, this filtering proce-
dure returns a total of 266 isolated news. The news are the same for all the pairs. The
average number of quote changes in each window is 17, 579 for EUR/USD, 11, 199 for
EUR/JPY, and 7, 322 for USD/JPY.

4.4.1 Comparison of models with and without news

In order to visualize the difference between the model with and without the news compo-
nent, we present here calibrated numerical simulations of the two models and we compare
them with the real data. In Figure 4.4 (left) we consider an important news, namely,
the release of US change in non-farm payrolls which turned out to be much lower than
expected. The model without the news term fails to reproduce the trend of activity after
the news. On the contrary, the model of Eq. (4.9) with the endogenous power law kernel
seems to reproduce pretty well both the magnitude and the temporal decay of the news
impact. The model with the double exponential kernel overestimates the impact immedi-
ately after the news arrival. Moreover, it is possible to note that the models without the
news term significantly overestimates the activity before the news. This is because they
attribute the extra activity due to the news to the self-exciting mechanism, thus increasing
the overall activity instead of concentrating it in correspondence of the news.

Figure 4.4 (right) refers instead to the effects of the announcement of the Euro-Zone
industrial new orders figures on USD/JPY. The figures were in line with expectations
and the news had a scarce impact. Again, the model behaves nicely, in that it correctly
captures the absence of impact in this case.

We compared the performance of the model with and without the news term across
the whole set of news we examined. For each of the 266 news examined and for each
currency pair, we simulated the two models 25 times. We then count the number of events
produced by each model’s simulation in the 5 minutes that follow the news announcement.
In the top panel of Figure 4.5 we plot the ratio between the mean of the simulated counts
and the observed (real) counts <Nsim>

Nreal
in the 5 minute window that follows the news.

The abscissa is the rank of the news in terms of its impact θ in ascending order. We
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Figure 4.4: Actual and simulated activity around two macronews, namely EUR/USD rate
around US change in non-farm payrolls on April 6 (left) and USD/JPY around Euro-Zone In-
dustrial New Orders data on January 5 (right). The dashed line corresponds to the time of
the announcement. Results from simulations of the models without news are also shown for
comparison. For each model we run 100 simulations and we plot the average with one standard
deviation confidence bands. Confidence bands are omitted in the top panel for improving read-
ability. Parameter estimates were { αDE

N = 3.2, βDE
N = 1.6 · 10−2, αPL

N = 1.45, βPL
N = 8.2 · 10−4

} for the first news and { αDE
N = 3.0, βDE

N = 7.0, αPL
N = 2.72, βPL

N = 7.0 } for the second one
(all values in s−1).
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Figure 4.5: Ratio between mean of simulated counts and real counts in the 5 minutes window
that follows (left panel) or precedes (right panel) the news plotted as a function of news’ impact
rank. Simulations were repeated 25 times for each news. All 266 news in our sample are
considered. The figure shown refers to EUR/USD pair. A one standard deviation confidence
interval is also plotted.

observe that the two models are essentially equivalent for low impact news, whereas the
model with the news term performs increasingly better as the impact grows. In fact, the
model without the news term systematically underestimate the number of events after
high impact news, since the self-exciting endogenous mechanism is unable to reproduce
such a sudden increase in activity. It is worth noting that the model with the news term
does not artificially introduce a news effect when the news had little impact. For reference
we also show in the bottom panel of Figure 4.5 the above ratio computed in the 5 minutes
that precede the news. We observe that the two models produces almost identical outputs
in this case.

These considerations are reinforced by observing Figure 4.6. The plot is built as follows:
for each of the two models and for every news in the sample we divide the 3 hours window
in bins of 5 minutes, and compute <Nsim>

Nreal
in each bin. We also divide the news in four

groups based on quartiles of the impact θ, labeled as “Very Low”, “Low”, “High”,and
“Very High”. We then take the average of the ratio across all news in the same group
for each 5 minutes bin. In this way we measure the averave behavior predicted by the
models as a function of time distance from the news announcement. Also in this plot
we observe that the models behave in the same way for very low impact news. However,
as soon as the news has a significant impact, the model without the news term strongly
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Figure 4.6: Ratio between mean of simulated counts and real counts computed in 5 minutes
bin. Results form each bin are averaged across all the news in the same group of impact θ. The
plot refers to EUR/USD data.

underestimates the activity that follows the news. Moreover, for very high impact news
the model without the news term also systematically overestimate the activity before the
news. This is because, without the exogenous kernel, the extra activity due to the news is
attributed to the endogenous mechanism and thus it is spread over the full time interval.
The result of this comparison indicates that the model with the news term performs much
better than the one without it when the news had a sizable impact. When the news
produced little or no impact, the two models are essentially equivalent.

In our model the total intensity λt is the sum of three contributions: the baseline
intensity µ, the endogenous component

∫
φ(t − s)dNs, and the exogenous component∫

φN (t − s)dNnews
s . We can therefore analyse how the contribution of each term varies

over time around the news announcement. The top panel of Figure 4.7 shows the fraction
of the intensity coming from each component as a function of time for an important news.
After the news release, the contribution of the exogenous term rises quickly, while the
weight of the endogenous one decreases. Also the contribution of the baseline intensity
becomes negligible immediately after the announcement. The exogenous contribution
then slowly decays towards zero and the endogenous and the baseline components regain
their pre-news level. It is interesting to contrast these figures with the middle panel of
Figure 4.7, where the contributions to λt for the same news are shown for the model
without the news term. The increment of activity after the news is now attributed to
the endogenous component. The contribution of the baseline intensity has a similar trend
in the two cases, though we note that its contribution before the news is higher in the
model with the exogenous term. Finally, the bottom panel of figure 4.7 shows the same
decomposition for a low impact news. It is possible to appreciate how, in this case, the
exogenous component decays much faster and has a marginal role.



Figure 4.7: Components of the intensity λt as a function of time. The components sum to
one and the curves are smoothed by using a simple moving average over 100 s. The top and
middle panel refer to EUR/JPY, in correspondence of the announcement of the high importance
and surprise news of US new jobs data on November 2 at 12:30. In the top (middle) panel we
consider Hawkes model with (without) the exogenous news term. The bottom panel refers to
EUR/USD during a medium importance news, namely the announcement of US new home sales
data on September 26 at 14:00.
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Figure 4.8: Estimated probability density function of αN , βN , and αN/βN for the three rates.
The scale of the x axis is logarithmic, hence values of αN and of the ratio αN/βN exactly equal
to zero are not plotted. Their number is reported in Table 4.4.

Number of news with αN = 0 θ
EUR/USD 10 0.70
EUR/JPY 13 0.69
USD/JPY 13 0.59

Table 4.4: Number of αN found exactly equal to zero for each pair. The average value of the
corresponding θ, θ, is also reported. We require αN to be equal or greater then zero, and enforce
this in the optimization. Hence, values equal to zero are found on the boundary of the searchable
region.

4.4.2 Regression results

The regression of the model on the real data gives a set of parameters of the endogenous
and exogenous kernel for each investigated news and exchange rate.

Figure 4.8 shows the distribution of the parameters αN , βN , and αN/βN for the three
rates. Remarkably, the distributions are very similar across rates. It is worth mentioning
that the figure does not show a delta peak in the distribution of αN at the value zero.
Their number along with the corresponding average impact is detailed in Table 4.4. We
note that the news-related parameters have a very broad distribution. This is due both to
the very different effects that news produce and to the uncertainty in the estimation. As a
matter of fact, uncertainty on the news-related parameters, calculated from the inverse of
the Hessian matrix, is very high, with averages of about 50% for both parameters. Finally,
it is worth noticing that the distribution of αN/βN has most of its mass for values much
larger than 1.

We now consider the problem of quantifying how much we improve the description of
the data when we use the model with the exogenous term as compared to the performance
of the simple model with only the endogenous factor. This is a typical problem of model
selection (Claeskens and Hjort, 2008). Since we can compute the maximum likelihood
and the number of parameters is different in the two models, we made use of the Akaike
information Criterion (AIC) (Akaike, 1974) defined as

AIC = 2k − 2 lnL. (4.13)

To corroborate our results we computed also the Bayesian Information Criterion (BIC)
(Schwarz, 1978)

BIC = k lnn− 2 lnL (4.14)

where n represents the sample size. BIC thus generally penalizes more the introduction
into the model of new free parameters than AIC does. The model with the lowest value of
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Figure 4.9: Distribution of the difference in AIC and BIC scores, AICNews − AIC no News and
BICNews − BIC no News, between the model with the news term and the one without it. Top:
distributions for high impact news, θ > θmedian, and low impact news, θ ≤ θmedian. Bottom:
distributions for high surprise news S > Smedian, and low surprise news, S ≤ Smedian. All
the currency pairs are aggregated. Median values of θ for each pair are calculated before the
aggregation.

AIC or BIC is the one to be selected. Given a set of models {i = 1, 2, ..,M} the relative
likelihood RL of model i with respect to the best model in the set, for which AIC = AICmin,
is

RL = exp

(
AICmin −AICi

2

)
. (4.15)

AIC scores for the models with the power law endogenous kernel are always better than
those for the models with the double exponential kernel. This is true as well for the BIC
scores. Hence, in the following we compare the results of the models with the power
law endogenous kernel that differ for the presence of the news term. Figure 4.9 shows
the distribution of the difference in AIC and BIC scores between the model with the
news term and the one without it, namely AICNews−AICno News, and BICNews−BICno News.
The distribution is calculated separately for low impact and high impact news, and for
high surprise and low surprise news. The figure is obtained pooling the values from all
currency pairs. For AIC, only a small fraction of the differences are positive, meaning that
the model with the news term is almost always better. However, for low-impact and low
surprise news, there is a sharp peak around zero. A difference in AIC scores exactly equal
to 4 corresponds to the case when the two models have the same likelihood, and hence
the model with more parameters is penalized by a factor two times the number of extra
parameters (which is two). Hence values around 4 mean that the models are essentially
equivalent. As noted before, BIC penalizes more the extra parameters, so there is a larger
portion of positive differences. However, for high-impact and high-surprise news the bulk
of the distribution is on negative values. Indeed, negative differences attain even very
large absolute values (as much as 260).

Looking at the average relative likelihoods RL for the two groups we obtain

Indicator High Low

θ 5.6 · 10−8 1.0 · 10−1

S 1.5 · 10−7 1.3 · 10−3

This means that for high impact news the model without the news term is about 10−8

times as probable as the model with the news term to minimize the information loss, i.e.
the model with the news component is much better. Unsurprisingly, for low impact news



the difference between the models reduces, albeit AIC still favours the model with the
news term.

As a final investigation we consider how the endogenous term parameters are influenced
by the presence of the news term. For both models with the news term and the one without
it, we consider separately the distribution of the parameters for news with θ ≤ θmedian

(“Low”) and those with θ > θmedian (“High”).

We find that the parameter that exhibits the most relevant difference when the news
term is included is n. For high impact news n takes lower values in the model that includes
the news term. In fact, an important part of the activity is now explained by the news
term, whereas, in the previous model, it was attributed to the endogenous term. The
baseline intensity µ has instead higher values in the model with the news term. This is
at first sight somewhat surprising, since one could expect that without the news term
a higher part of the observed intensity is attributed to the baseline intensity µ. The
introduction of the news term impacts on n, reducing its value when the contribution of
the news is significant (i.e. when the news term explains a large part of the activity which
was previously attributed to the endogenous mechanism). Thus, also the contribution of
the endogenous component to the average intensity Λ is lowered. On the other hand, the

exogenous component contributes to Λ with
ΛN ·

αN
βN

1−n . In our case, ΛN = 1/5400. What we
observe is that this contribution is not enough to compensate for the lower values of n, and
hence a higher µ is needed to maintain the same value of Λ. The tail of the endogenous
kernel is estimated to decay faster to zero in presence of the news term and for high impact
news. Instead, for low impact news, both models give about the same values. Finally, the
values of τ0 are not very sensitive to the presence of the news term.

In conclusion, the endogenous parameters are influenced by the presence of the news
term. In particular, after the news an important fraction of the intensity is now attributed
to the news term. We note that the value of n estimated with the news term may be
underestimated when no news are present (e.g. before the announcement) and this in
turn leads to higher values of µ to compensate. This result is due to the fact that we
employ constant parameters, while it might be that the “right” values of n before and
after a news are different. As we have seen, on average a large fraction of activity (≈ 0.9)
is explained by the endogenous term.

4.4.3 Relation between the kernel parameters and the properties of the
news.

In this Section we investigate how the parameters estimated by the Hawkes process with
the exogenous news term are correlated with other measures of the effect of the news on
the market activity, namely the jump parameter θ and the news surprise S (see Section
4.2.1).

We study which parameter of the news kernel is mostly affected when a news with high
impact arrives. To this end, for each rate we split the sample of news in two subsamples,
the first corresponding with news with θ > θmedian and the second with θ < θmedian. For
each of the three parameters αN , βN , and αN/βN we perform a t-test of the hypothesis
that the means for each parameter are the same for high and low impact news. The results
are summarized in Table 4.5. We observe that, while we cannot reject the hypothesis that
αN and βN individually have the same mean in the two samples, the ratio αN/βN has
different sample mean for large and small θ. The behaviour is similar for all the rates.
This means that, even when a news has a large impact, the type of response of the kernel
can affect either the amplitude or the time decay of the kernel (or both), but not in a



parameter t df p−value

EUR/USD
αN -0.11 238.28 9.1·10−1

βN -1.27 144.30 2.1·10−1

αN
βN

3.95 181.06 1.1·10−4

EUR/JPY
αN -1.05 133.28 3.0·10−1

βN -1.50 132.00 1.35·10−1

αN
βN

4.75 157.13 4.5·10−6

USD/JPY
αN -1.32 133.81 1.9·10−1

βN -1.65 132.00 1.0·10−1

αN
βN

3.24 166.21 1.4·10−3

Table 4.5: Results of the t-test of the hypothesis that the parameters for high impact and low
impact news have the same mean. The test is two sided and the Welch approximation is used
for the degrees of freedom (df) to account for unequal variances in the two samples. We report
the value of the t-statistic along with the computed p−value.

systematic way. The ratio between these quantities instead shows very different results
for high and low impact news.

Finally, we examine the relation between the values of the parameters and the surprise
indicator S defined in Section 4.2.1. To this end, we restricted the analysis to the news
for which it was possible to calculate a surprise value, removing thus those for which
the Forecast and Actual fields are not available. This left us with 213 news. Since our
measure of surprise is pretty rough, we divided the sample in two subsamples, one of High
Importance and one of Medium Importance news. As for θ, we further divided each of
subsamples in two groups, one with a surprise value above and one below the sample
median. For the rate EUR/USD a clear picture emerges. The rates αN and βN are not
statistically different in the two groups, both for High and for Medium importance news.
On the contrary, for High Importance news the ratio αN/βN is significantly larger for
large surprise news as compared with small surprise news, while this effect is less evident
for Medium importance news (p-values around of 10%). To illustrate the effect on High
importance news, we divided the news and the corresponding estimated parameters into
four groups based on the surprise value. The intervals are delimited by the quartiles of S.
Figure 4.10 shows the probability distribution of the ratio αN/βN in the four quartiles,
showing that higher surprise news correspond to higher value of the ratio. Similar results
are observed for the other rates. In conclusion, even with our simple measure S, different
levels of surprise give rise to different kernel ratio distributions.
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Figure 4.10: Estimated probability density function of the news parameter ratio αN/βN for
four different groups formed on news surprise. Q1 indicates the fist quartiles of surprise, Q2 the
second and so on. Also the total distribution is plotted for comparison. The rate is EUR/USD
and we considered only High importance news.

4.5 A Hawkes process with a non causal kernel

The announcement of the macroeconomic news we are considering in our analysis is known
in advance to market participants. Therefore it is natural to ask whether the point process
describing the market activity is affected by the news arrival before its announcement. In
terms of stochastic processes this implies the presence of a non-causal kernel, in the sense
that the (pre-announced) news arrival affects the intensity at earlier times.

To consider this effect, we modify the model by introducing a non-causal term in the
exogenous component of the intensity. Namely, the news kernel φN (t) is now given by the
sum of a causal and a non-causal term

φN (t) = Θ(t)φC
N (t) + Θ(−t)φNC

N (t) (4.16)

where Θ(t) denotes the Heaviside step function and we assume Θ(0) = 0. The intensity
function now reads

λt = µ+

∫ t

−∞
φ(t− s)dNs +

∫ +∞

−∞
φN (t− s)dNnews

s =

= µ+
∑
ti<t

φ(t− ti) +
∑
zj

φN (t− zj) =

= µ+
∑
ti<t

φ(t− ti) +
∑
zj<t

φC
N (t− zj) +

∑
zj>t

φNC
N (t− zj)

(4.17)

We chose an exponential specification also for the non-causal term, so that φN (t) is now
written as:

φN (t) = Θ(t)αC
Ne
−βC

N t + Θ(−t)αNC
N eβ

NC
N t (4.18)

with αC
N , αNC

N ≥ 0, and βC
N , βNC

N > 0.
The stationarity condition now reads

Λ =
µ+ ΛN

[∫∞
0 φC

N (τ)dτ +
∫ 0
−∞ φ

NC
N (τ)dτ

]
1−

∫∞
0 φ(τ)dτ

. (4.19)



As before, provided that ΛN exists and is finite, the condition of stationarity is thus the
same of the self-exciting only case, namely

∫∞
0 φ(τ)dτ < 1.

We re-estimated the parameters of the model with the non-causal term on the same
dataset used for the causal-only model. In Figure 4.11 we show simulations of the causal-
only and non-causal models compared against the real data for an important news. We also
add one standard deviation confidence intervals obtained by performing a large number of
simulations of the model. We note that, especially by looking at the zoomed time series
(bottom panel), before the announcement the confidence bands of the two models almost
do not overlap, and the non-causal model reproduces quite well the news-anticipation
effect when it is present, whereas the causal-only model misses completely this feature of
the data.
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Figure 4.11: Actual and simulated activity measured as events per 1 min for EUR/USD on
Friday April 06, when an important figure on US change in non-farm payrolls was released at
13:30. The figure produced an impact θ ≈ 13 and was much worse than expected (Surprise
=44). The dashed vertical line corresponds to the time of the announcement. The bottom panel
is a zoom of the top panel in a 30 minute window around the news. Results from simulation of
the models with and without the non causal term are compared. The dotted and dashed-dotted
lines are one standard deviation confidence intervals obtained from simulations of the calibrated
model of the causal-only and non-causal model, respectively. Parameters estimates for the non
causal term are αNC

N = 0.3, βNC
N = 3.0 · 10−3 (all values in s−1).

We then compare the extended model with the causal-only one via AIC and BIC. Figure
4.12 shows the distribution of the differences AICNC − AICC and BICNC − BICC. Results
from all currency pairs are pooled together. As the relatively large number of news for
which αNC

N = 0 suggests, the news-anticipation effect is often very small or absent. In these
cases, the extended model with the non-causal term reduces in practice to the causal-only
model. Hence, the extra parameters do not carry any benefit in these situation, and this is
reflected in the information criteria scores. On the other hand, when the news anticipation
effect is relevant, the improvement of the extended model is significant and AIC and BIC
scores strongly favour the introduction of the non-causal term. Moreover the parameters
of the causal news kernel are essentially unchanged by the introduction of the non-causal
kernel.

Overall it seems that adding the non-causal term results in an improved description
of the real data, albeit in some cases we simply recover the performance of the already
discussed causal-only model.
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Figure 4.12: Estimated probability density function of the differences in AIC and BIC scores
between the extended model with the non-causal term and the causal-only model. Differences
from all three currency pairs are aggregated.

4.6 Conclusions

In this paper we have introduced a Hawkes process approach to the description of foreign
exchange rate dynamics around the announcement of macroeconomic news. These news
are very important and might affect in a significant way the trading activity in a time
window around the announcement. We have first considered the unconditional Hawkes
modeling, i.e. we have neglected the role of news. We found that, as seen in other asset
classes, foreign exchange markets are very close to criticality, as measured by the integral of
the kernel n. Moreover, while the parameters of the kernel show an abrupt change around
the change of the tick size, the criticality parameter n seems to be pretty insensitive
to it. We then considered our main original contribution, namely the introduction of a
kernel describing the effect of macro news on the trading activity. Since announcements
are known in advance, we have also considered the possible presence of a non causal
kernel, describing how the market prepares itself to the news. In both cases we have
shown that the model with the news kernel(s) outperforms the simple Hawkes model
with only endogenous kernel. We also noted that, once the news term is introduced, the
estimate of the criticality parameter n is smaller. This suggests that in the presence of
localized exogenous excitations a Hawkes model which does not consider news-triggered
non stationarity could overestimate n. Moreover, even if the non-causal part only helps in
a fraction of cases, from the practical point of view of a market maker (or anyone trading
around news) being able to gauge the market activity and liquidity at those particular
points is very important and there is a premium to be able to get that estimate right (or
big cost to getting it wrong). Finally, we have also explored the role of the surprise of the
news with respect to forecasted value on the parameters of the kernel.

Despite being focused on financial market data, the approach presented in this paper
could be useful in the analysis and modeling of other complex systems. In fact the presence
of exogenous and endogenous drivers of the activity is ubiquitous in other systems moni-
tored in continuous time. Describing the different source of excitation as correlated point
processes is in general quite complicated, and the Hawkes approach proposed here could
be a useful method to model, fit, and evaluate the relative importance the two drivers of



a generic stochastic dynamics.
In the next Chapter we improve on this work by introducing a procedure that allows us

to estimate also the intensity burst location, thus widening the possible application domain
beyond scheduled announcements. There we deal also with the presence of multiple bursts
in the same window.





Chapter 5

Hawkes processes with local
non-stationarities (II)

5.1 Introduction

The detection of anomalous dynamics and regime changes is an important problem which
has a wide range of applications in many systems from risk management to preventing
of fraud. Financial markets are emblematic in this respect. Market participants, and
particularly those who act as intermediaries, need to be resilient to sudden changes in
market conditions that can arise endogenously or when a new piece of information be-
comes available. However, the identification of anomalous dynamics might be challenging,
especially when the “normal” dynamics is complex, possibly with non-linear and/or long
range correlations. In finance, for example, a large amount of research has been devoted
to the detection and characterization of “anomalous” price changes. Given an underlying
price dynamics described by a continuous semimartingale, the problem is to test for the
presence of price discontinuities (jumps - see for example Andersen et al. (2007); Lee and
Mykland (2008); Bollerslev et al. (2009); Aı̈t-Sahalia et al. (2009) to cite only a few).

In many real systems the observed time series is described by a point process. Examples
include the arrival of phone calls, email, tweets, customers, queries, etc., and of course
also financial time series, since at the smallest time scale the change in price is generically
described by a (marked) point process. To the best of our knowledge the identification of
anomalous changes in the intensity of a point process has remained relatively unexplored,
especially when the “normal” dynamics presents correlations and bursts of activity. In this
chapter we propose a method for tackling this problem. Specifically, we aim at identifying
abrupt increases of the intensity of a otherwise stationary, yet correlated and bursty, point
process, and where these increases relaxes back to the normal state after a certain period
of time. We will call such events intensity bursts (IBs). Detecting IBs might be important
to identify anomalous activities in the system, detect the arrival of external perturbations,
analyze the contagion effects and lead-lag relations in different co-evolving systems.

We propose a parametric model-based approach for the detection of intensity bursts,
which relies on the Hawkes process (Hawkes, 1971). Being closely related to branching
processes (Harris, 2002), the Hawkes model combines in a very natural way external (ex-
ogenous) influence on the system with internal (endogenous) self-excited dynamics. Here
the probability of arrival of a new event is given by the combination of a baseline probabil-
ity and a contribution from all the former generated events. In natural and socio-economic
systems, Hawkes processes have become a very popular tool due to their flexibility and,
at the same time, the simplicity of the calibration procedure. They have been applied in a
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variety of research domains such as seismology (Ogata, 1988), genomics (Reynaud-Bouret
et al., 2010), neurophysiology (Pierre Bremaud (1996); Chornoboy et al. (1988)) as well
as in works on the spread of crime and violence (Lewis et al., 2012; Mohler et al., 2011)
and on social network dynamics (Crane and Sornette, 2008; Blundell et al., 2012; Zhou
et al., 2013). Within the domain of financial applications, the Hawkes process has become
a widespread model for the dynamics of high-frequency price changes and order book evo-
lution (Bacry et al., 2013; Bormetti et al., 2015; Hardiman et al., 2013; Filimonov and
Sornette, 2012; Bowsher, 2007; Embrechts et al., 2011; Blanc et al., 2015) and also was
extended to the modeling of the price shocks on a daily scale (see for instance Bauwens
and Hautsch (2009) and Bacry et al. (2015) for a review).

We choose to model the “normal” dynamics of the point process with a Hawkes process,
so that correlations and bursts are present. On top of this we assume that in the process
there are few IBs that locally perturb the counting dynamics and, via the excitation
mechanism of the Hawkes process, affect also the “normal” dynamics. In this setting, the
parameters of the model and the location of the IBs are not known and must be inferred
from the data.

In Rambaldi et al. (2015) two of us have considered the related but much simpler prob-
lem of inferring the parameters of the model when the location of the IBs is known. The
considered example was the arrival of scheduled macro-economic announcements in finan-
cial markets. These events have a major and dramatic impact on both price and trading
activity and cannot be described within the classical Hawkes model, but the their timing
is known in advance. In the general case, the occurrence and timing of IBs are not known.
The major limitation of Rambaldi et al. (2015) is precisely the assumption that the oc-
currence time of the IBs is known, which prevents the study of unexpected (surprise) IBs.
Interestingly, even when the expected time is known in advance, a delay or anticipation
of the actual arrival of the external event can bias the procedure.

In the present work, instead, we consider the general case when both IBs arrival times
and the total number of IBs are unknown. We propose an efficient and robust procedure
of estimation from the empirical data, and we also suggest a hypothesis test that distin-
guishes the genuine intensity burst from a statistical fluctuation that could be equally well
explained within a standard self-excited dynamics. We validate our procedure and show
that it is capable of reliably identifying sudden increases in the event rate with a rela-
tively low false positive rate. Furthermore, being a model-based, our approach allows to
estimate parameters of the intensity burst together with the properties of the underlying
self-excited process, and use it for classification of the anomalous activity.

We apply our approach to the analysis of high-frequency financial data from a major FX
market. We identify a large number of IBs and we compare them with price jumps and
macro-economic announcements. Interestingly, we find a large number of IBs which are
not explained (in terms of time proximity) by neither of these two possible causes. This
is noteworthy, since it signals the presence of different market anomalies and we propose
possible explanations for them.

We foresee several major directions along which our method could be useful. First, the
detection of an anomalous an unexpected market activity is essential for monitoring liquid-
ity and for intra-day risk management applications. Moreover, the analysis of the historic
data is essential for forensic investigations and detection of fraud and market manipula-
tions. Besides, our method is relevant even when the analysis of the intensity burst itself
is not the primary interest, and the focus is on describing the underlying process. Indeed,
the procedure we propose mitigates Hawkes process tendency to overestimate the degree
of self-excitation when burst-like non-stationarities are present. Finally, we stress that



the potential range of applications spans well beyond the financial markets. For example
our burst detection method could be of great importance in the analysis of social media
dynamics such as YouTube views (Crane and Sornette, 2008) or twitter posts (MacKinlay,
2015), or even in the analysis of data of social conflicts and unrest (Donnay and Filimonov,
2014).

The remaining of the chapter is structured as follows. We start with the description
of the Hawkes model that contains exogenous intensity bursts in Section 5.2. Section 5.3
presents the methodology for the statistical identification of intensity bursts. We test and
validate our procedure on synthetic data in Section 5.4. Section 5.5 presents an application
of our methodology on real financial data. We conclude in Section 5.6.

5.2 Hawkes process with an exogenous intensity burst

A univariate point process is a sequence of events that occurred at random times ti and that
is described by the corresponding counting process Nt =

∑
1ti<t, where 1A is the indicator

function of the set A. The most known example of point process is the homogeneous Pois-
son process, where the intensity of the events is constant λt = lim∆→0 ∆−1E [Nt+∆ −Nt] =
µ.

Hawkes (1971) extended the Poisson process to account for self-excitation in the system
by modeling the intensity conditional on the history of the process Ft = {ti : t < t}:
λt|Ft = lim∆→0 ∆−1E [Nt+∆ −Nt|Ft]. In the standard univariate Hawkes model, this
intensity reads

λt|Ft = µ+

∫ t

−∞
φ(t− s)dNs = µ+

∑
ti<t

φ(t− ti), (5.1)

where the first part (µ) gives the so-called baseline intensity of the classical exogenous
Poisson process and the second one describes the explicit endogenous impact of the past
events on the future. Here φ(t), called the memory kernel, is a non-negative function that
specifies how past events contribute to the generation probability of future events and thus
φ(t) controls the amplitude of the feedback mechanism.

The linear structure of the intensity (5.1) allows one to map the Hawkes process exactly
onto a cluster process (Hawkes and Oakes, 1974), where the process consists of a super-
position of random clusters, each of which starts with a single immigrant, generated from
a homogeneous Poisson process with intensity µ. In turn the immigrants generate their
offspring according to an inhomogeneous Poisson process with intensity φ(t), and these
next-order events generate their own offspring with the same mechanism. Theoretically,
such construction could be well-described using the theory of branching processes (Daley
and Vere-Jones, 2008), and from a practical perspective such representation allows to per-
form efficient numerical simulation of the Hawkes process (Møller and Rasmussen, 2005).
The branching context also provides an intuitive constraint on the kernel φ(t) that ensures
the stability and stationarity of the system. The average number of offsprings generated
by a single event is n =

∫∞
0 φ(t), called a branching ratio. For the process to be stable, this

quantity has to be smaller than 1 (n < 1). The condition n = 1 corresponds to a tipping
point and the system with n > 1 will exhibit exploding dynamics with total population
increasing to infinity with probability one.

In Rambaldi et al. (2015) authors have further extended the Hawkes model.Instead of
insisting that all immigrants arrive at random times following a homogeneous Poisson
process, authors have proposed that some external events could have significantly affect
the evolution of the system. Such external events can locally give rise to much more



immigrants than under the sole baseline intensity. This was modeled via a separate term
in the intensity expression:

λt = µ+
M∑
j=1

φjS(t− zj) +
∑
ti<t

φ(t− ti) (5.2)

Here the second term describes the impact of M exogenous events arriving at times zj ,
that are assumed to be deterministic and known. These special exogenous events increase
the rate of immigrants arrival via the memory kernels φjS(t). The system further reacts in
a regular way via the kernel φ(t) thus amplifying the effect of the external events.

Effectively, these special exogenous events and their clusters introduce Intensity Bursts
(IBs) into the system. For example, within the modeling of socio-economic systems, such
intensity bursts could correspond to the reaction of the system to major events, such as
elections, referendums and other political events, regulatory changes or even announce-
ments of the news related to a particular sector or company.

The expected number of new immigrants generated by a single exogenous IB is

fj =

∫ +∞

0
φjS(s)ds, (5.3)

and we will refer to this quantity as the fertility of the j-th IB. In contrast to the branching
ratio n of the whole system, there are no restrictions on this parameter, except that the
integral in (5.3) should converge. Moreover, we will be interested in cases when the
exogenous event represent a “burst”, and thus its fertility is much larger than of a regular
event: fj � 1. The immigrants directly triggered by the IB will produce their own
offsprings according to the memory kernel φ(t) and thus the expected total number of
events in each exogenous cluster is given by

Sj = fj + fj
n

1− n =
fj

1− n (5.4)

Finally, in order to fully specify the model, we need to define the functional form of
memory kernels. There is no unique specification and the shape of the memory kernel
will vary from one application to another. Within the domain of modeling the high-
frequency financial data, which is the application discussed in this work, the question
whether the kernel φ(t) should be short- or long-memoried is rather controversial. Some
works show empirical support for the power law decaying functions (see e.g. Hardiman
et al. (2013); Bacry and Muzy (2016)), while other works suggest use of sum of a few
exponential functions (Lallouache and Challet, 2016; Martins and Hendricks, 2016) and
point out dangers of using long-memory kernels on non-stationary data (Filimonov and
Sornette, 2015).

For our purposes we will follow the original work of Rambaldi et al. (2015) and adopt
an approximation of the power-law kernel via a sum of exponentials that was originally
suggested in (Hardiman et al., 2013):

φ(t) =
n

Z

{
K−1∑
k=0

(τ0m
k)−pe

− t

τ0m
k − Se−

tm
τ0

}
. (5.5)

It approximates a power law decay with exponent p and it also features an exponential
cutoff at short time scales. The parameter τ0 controls the position of the maximum and
n is the branching ratio. Further, m = 5, K = 15 and values of S,Z are fixed such



that φ(0) = 0 and
∫∞

0 φ(s)ds = n. This kernel specification has been shown (Rambaldi
et al. (2015), Hardiman et al. (2013)) to be well suited to model financial data. Moreover,
the slow decay of the kernel creates relatively strong point clustering and long range
dependencies between counts of the process. This allows us to test our procedure in a
somewhat harsher environment, as it makes more difficult to separate genuine external
IBs from endogenously generated bursts.

Finally, for the memory kernel φS(t) of the IB we will follow Rambaldi et al. (2015) and
adopt the exponential specification:

φS(t) = αe−
(t−z)
τ 1t>z (5.6)

where α > 0 and τ > 0 are parameters. In this case we have f = ατ . This specification
reflects the idea that an external event has a very strong immediate impact and also some
time persistence, and finally its effects fades completely. Nevertheless, in other domains
different specification of φS could be more appropriate, and our procedure could be easily
adapted to them.

5.3 Identification of the intensity bursts

In the original work of Rambaldi et al. (2015), the times of the IBs {zj} as well as their
number M were assumed to be known. Here we extend the framework to define a rigorous
procedure of the detection of both the number and the timestamps of the exogenous
shocks.

5.3.1 Identification of a single IB

For clarity, let us start with the case where we assume that at most one IB is present, but
we do not know its occurrence time. In this case our model reads

λt = µ+
∑
ti<t

φ(t− ti) + φS(t− z) (5.7)

and now z is a parameter of the model.

In general, once the Hawkes model is specified, we can apply a range of methods in
order to calibrate the model on the observed data and estimate its parameters. Such
methods include maximum likelihood estimation (Rubin, 1972; Ogata, 1978; Ozaki, 1979)
and method of moments (Da Fonseca and Zaatour, 2014). A range of non-parametric
tools (Bacry et al., 2012; Bacry and Muzy, 2016; Lewis and Mohler, 2011; Kirchner, 2015)
are also available, these are however mostly limited to the classical Hawkes specification
(5.1). Within the parametric estimators the Maximum Likelihood Estimator is considered
to be the de-facto standard for the Hawkes process family. Given the functional form of
the intensity (5.7) and the observations FT in the interval [0, T ] one can maximize the
log-likelihood

logL(θ|Ft) = −
∫ T

0
λsds+

∫ T

0
log λsdNs (5.8)

in order to obtain the vector of parameters θ, which includes the time z of the IB and
parameters of the kernel φS that defines the fertility f . However, a-priori we do not know
if the realization contains any IBs. Thus, we need to decide whether the identified burst
in activity is indeed genuine or could be attributed to the endogenous mechanism alone.
For this we will test if the extension of the model from a simple Hawkes process (5.1) to



a model with a shock (5.7) improves the description of the data. A natural approach here
is to compare the likelihood of model (5.7) evaluated at the optimal parameter with the
corresponding best fit from a Hawkes model without IBs.

Ogata (1978) proved under certain regularity assumptions that the maximum likelihood
estimate for a simple, stationary, univariate point process is consistent and asymptoti-
cally normal as the sample size tends to infinity. Moreover, he also established that the
likelihood ratio test of a simple null hypothesis possesses the standard χ2 distribution.
Therefore, as suggested also in Gresnigt and Franses (2015), likelihood tests such as the
Likelihood Ratio (LR) test and the Lagrange Multipliers (LM) test can in general be used
to discriminate between different Hawkes specification.

However, our case presents some difficulties that make such tests not readily applicable.
Our situation is akin to that found in regime shift problems when the change point in
unknown. Moreover, some of the parameters are not identified under the null hypothesis
that no IB is present. Indeed, the model with the IB term described by (5.6) reduces to
the null model when α = 0. Hence, τ and z are not identified under the null. One can also
argue that the reduction to the null is not unique, since the effect of the IB is removed
also for z ≥ T , or τ → 0, or z < 0 and τ → ∞. As discussed in (Andrews, 1993; Davies,
1977, 1987; Hansen, 1996) the standard asymptotic theory of LR does not apply in these
cases and other approaches have to be taken.

One stream of literature deals with this problem through the so called “sup” class of
tests (see Lange and Rahbek (2009) for a survey), which rely on simulations of the LR
distribution under the null to compute the appropriate p-values.

Another approach (Wong and Li, 2001) uses information criteria for model selection.
The most widely employed are Akaike information criterion

AIC = 2k − 2 logL (5.9)

where k denotes the number of estimated parameters, and the Schwartz (or Bayesian)
information criterion (BIC)

BIC = k logN − 2 logL (5.10)

which penalizes more heavily extra parameters if, as in our case, the sample size N > 7
(i.e. logN > 2). In this work we follow this second approach, and will document that the
BIC performs well in our test (see Section 5.4).

We can summarize our procedure for the identification of a single IB as follows:

1. the null model (Hawkes model without any IB term (5.1)) is estimated using the
Maximum Likelihood Estimator.

2. the alternative (extended) model (5.7) is estimated with the constraint of z ∈ [0, T ]

3. the score ∆BIC = BIC1 − BIC0 is evaluated. If ∆BIC < 0 then the null model is
rejected and we accept the extended model. Otherwise we retain the null model of
no exogenous bursts.

Here we have denoted with BICM the score of the model withM IBs. In case of exponential
memory kernel of IB (5.6) the difference in numbers of parameters of null and alternative
model is 3 and thus ∆BIC = 3 logN − 2(logL1 − logL0). We refer to Appendix 5.A for
more details on likelihood optimization.



5.3.2 Identification of multiple IBs: pre-identification

We now discuss the extension of our procedure to the case of more than one IB in the
window [0, T ], i.e. the model (5.2), where zj are parameters of the model and also the
total number of IBs M has to be determined. Because of the numerical complexity of the
problem, often noisy data, and the curse of dimensionality, straightforward estimation of
the full model (5.2) leads to an optimization of a multi-variate cost-function with multiple
local extrema. In order to efficiently estimate the parameters zj in (5.7) it is useful to

restrict the search space for each zj to some interval [zj1, z
j
2] ⊂ [0, T ]. Doing so significantly

improves the convergence and reduces the number of local minima. Moreover, it allows us
to focus on one IB at a time and thus to increase sequentially the size of the model.

The problem we address in this section is thus how to efficiently and reliably reduce
the search space for z via pre-identification. The following section discusses the complete
procedure.

We adapt the method, originally proposed by Almgren (2012), for detection of price
jumps in high-frequency data to a point process setting. Following his work we define the
exponential averaging functions uL(t;κ) and uR(t;κ) as

uL(t;κ) =
1

κ

∫ t

−∞
e−

(t−s)
κ dNs =

1

κ

∑
tj<t

e−
(t−tj)

κ (5.11)

uR(t;κ) =
1

κ

∫ +∞

t
e−

(s−t)
κ dNs =

1

κ

∑
tj>t

e−
(tj−t)
κ , (5.12)

where κ is a parameter of the method.

The functions uL(t;κ) and uR(t;κ) provide a local estimate of the rate of the process.
The first one considers only the past, while the second one considers only the future.
Indeed in real time analysis it is impossible to calculate uR(t;κ). However, here we are
interested in ex-post analysis of the historic data, so this limitation does not pose any
problems. The strong sudden jump in activity (IB) at time t will dramatically increase
uR(t;κ) and will not contribute to uL(t;κ), thus we can consider the difference

∆(t;κ) = uR(t;κ)− uL(t;κ) (5.13)

in order to identify the times of jumps. An example is provided in Figure 5.1, where
the function ∆(t, κ) is shown for different values of κ. The choice of κ will be discussed
in Section 5.4.3. High values of ∆ correspond to abrupt changes in the intensity of the
process and thus provide a way to identify probable IB locations1.

As candidates for the IB times z̄j we select the local maxima of ∆(t;κ) over the set of
the event times {ti}. Moreover, we rank them from the most to the least relevant one,
according to the value of ∆ at the maximum. We start with the global maximum

z̄1 = arg max
t∈{ti}

∆(t;κ), (5.14)

1For this purpose it is particularly efficient to evaluate ∆(t;κ) only at the event times. In fact, the
recursive relations

κuL(ti) = e−
ti−ti−1

κ (1 + κuL(ti−1))

κuR(ti) = e−
ti+1−ti

κ (1 + κuR(ti+1))

hold.



Figure 5.1: Simulation of a Hawkes process with two IBs (top panel) and the corresponding
functions ∆(t;κ) for different choices of κ (bottom panel).

which defines a window W1 = [z̄1− w
2 , z̄1 + w

2 ] of size w around z̄1 where the optimal value
of z1 will be searched using the maximum likelihood estimator. Further we exclude all
events which are closer than w to z̄1 and look for next local extremum:

z̄2 = arg max
t∈{ti:|ti−z̄1|>w}

∆(t;κ), (5.15)

which defines another window W2 = [z̄2 − w
2 , z̄2 + w

2 ]. The exclusion is important in order
to select distinct maxima of the function ∆: as it is seen from Figure 5.1, the function ∆
is rather persistent and if this precaution is not taken, then the second-to-best maximum
will be most likely selected next to the global maximum. The procedure is repeated as
many times as necessary to find the candidate times

z̄k = arg max
t∈{ti:|ti−z̄1|>w,|ti−z̄2|>w,...,|ti−z̄k−1|>w}

∆(t;κ) (5.16)

and corresponding windows Wk = [z̄k − w
2 , z̄k + w

2 ]

5.3.3 Identification of multiple IBs: estimation

Once a ranking of the windows Wj has been determined, we apply an iterative procedure
to determine the optimal parameters of the model (5.2) as well as the total number M of
IBs. First, we estimate the model with M = 0, that is a standard Hawkes model. Then, we
estimate the model with M = 1 and z1 ∈ W1. At this point we use the BIC (or another
model selection criterion) to decide whether to accept or reject the enlarged model. If
the IB is not accepted, the procedure stops and the null model with M = 0 is selected.
Otherwise, the model is extended to the case M = 2 and an additional IB term is added.
The optimal value of z2 is estimated within the window W2, while keeping the value of z1



fixed, and all the other parameters are optimized over again. The information criterion
is again used to compare the penalized likelihood of the M = 2 model to that of the
case M = 1: then the new extended version is either accepted or rejected. The iterative
procedure stops when the addition of the Mk+1 IB does not improve the likelihood of the
model significantly over the model Mk.

We can summarize our complete procedure as follows:

1. Given a realization {t1, t2, . . . , tN}, we select values for κ and w.

2. We determine a ranking of the candidate IB locations W1,W2, . . . .

3. We estimate a standard Hawkes model on the data (M = 0)

4. We add to the model one IB at a time

• If BICM=k+1 < BICM=k the candidate IB zk+1 is added to the model and the
next is examined,

• Else if BICM=k+1 > BICM=k the procedure stops and we consider M = k as
the final number of IBs.

We note that this procedure relies on the ranking provided by the pre-identification
procedure. Stopping criteria that rely less on the pre-identification procedure can also be
considered. For example, instead of stopping at the first failure, additional IBs can be
considered before exiting the loop. Again, we refer to Appendix 5.A for details on the
optimization procedure.

5.4 Numerical simulations and model validation

In order to validate our procedure, we performed extensive numerical simulations. First,
we examined the rate of false positives produced by our procedure. Then we tested its
statistical power. Finally, we studied how discrimination works in the case where two IBs
are present in the window. Since even in the case of the standard Hawkes process (5.1),
bias and variance of the estimations of the parameters depend on the values of parameters
themselves, we test various combinations of the parameters on various sample sizes in
order to get a broad view on the efficiency of the detection procedure.

5.4.1 Absence of exogenous shocks

In order to study the rate of false positive detection we performed a Monte-Carlo simula-
tions of a Hawkes process (5.1) with the endogenous kernel (5.5) and without any IB. The
parameters are p = 2.0, τ0 = 0.1, and n = {0.3, 0.5, 0.7, 0.9}. We simulate 1000 realiza-
tions for each parameter set. Because the power of the statistical test strongly depends on
the sample size, in our simulations we keep the expected sample size E [N ] = µT/(1− n)
constant by fixing simulation horizon T = 3, 600 and varying the baseline intensity µ. We
perform tests with sample sizes of approximately 1,000, 2,000, 5,000, and 10,000 events.

In each simulation we apply our procedure and check whether or not the extended model
(5.7) is preferred over the standard Hawkes model. In general we found that AIC performs
much worse than BIC, especially for high values of n. The rates of false positives, expressed
in percent, resulting from the BIC are summarized in Table 5.1. As it is seen from the
table, even for moderate sample sizes (1000 events) and very strong self-excitation of the
underlying process (n ∼ 0.9) the rate of false positives is around 1%, and in general the



n
size 0.3 0.5 0.7 0.9

1000 0.7 0.5 1.3 1.0
2000 0.4 0.4 0.7 0.6
5000 0.0 0.3 0.2 0.2
10000 0.1 0.0 0.3 0.2

Table 5.1: Percentage of false positives using Bayesian Information Criterion when the simu-
lated model has no IBs. All values expressed in percent (%).

specificity of the method is close to 100%. This is further illustrated by the Figure 5.2
that presents the distribution of the observed scores ∆BIC.
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Figure 5.2: Distribution of the differences ∆BIC between the null model where no IB term
is present and the complete model with a single IB estimated on simulations where no IB is
present. For differences smaller than zero the null model is rejected.

5.4.2 Single IB with approximately known location

We now consider numerical simulations when one IB is present. Here we present results
of simulations with parameters p = 2.0, τ0 = 0.1, n = {0.3, 0.5, 0.7, 0.9}. The simulation
window is [0, T ] where T = 3, 600. An IB is simulated at z = T/2, and 35 different
combinations of IB parameters (f, τ) are considered (see below for details). As before, we
vary the value of µ in order to keep the expected sample size

µ+ f(1− e z−Tτ )

1− n T (5.17)

approximately constant. We performed two sets of simulations with average sample sizes
5,000 and 10,000 respectively. Since the primary concern of this experiment is the rate of
false negatives resulting from our procedure and our choice of the BIC selection criterion,
here we ignore the pre-identification routine and we will address the complete procedure
in the next sections. Thus we limit the search space for z to a window of size 100 centered
around the true position of the IB: [T2 − 50, T2 + 50].

We report the results of the test in Appendix 5.B. Table 5.14 presents the percentage of
correctly detected IBs for different values of the branching ratio n for the sample size of
5,000. Our results show that there is a region corresponding to low values of the fertility
f and high values of the relaxation time τ of the IB (i.e. small values of α = f/τ), where



the addition of the IB term does not contribute significantly to the improvement of the
likelihood and therefore the extended model is rejected.

Hawkes processes naturally produce clusters of events through the self-exciting mech-
anism. The average size of a cluster is given by 1

1−n (see e.g. Møller and Rasmussen
(2005)) and its variance is n

(1−n)3 . Hence, if an exogenous IB produces an events cascade

of similar size to the ones generated endogenously, then our procedure will not identify it
as an IB. This is actually a desired feature since we want to identify IBs that are not com-
patible with the endogenous dynamics. Moreover, this also suggests that for high values
of the branching ratio n it becomes more difficult to distinguish between an endogenously
generated burst of events and an exogenous one. At the same time, the total number of
events triggered by the IB (5.4) is an increasing function of n, and this explains why the
detectable region is bigger for higher values of n.

5.4.3 Pre-identification

The efficiency of the pre-identification algorithm depends on the choice of the “smoothing
parameter” κ. When κ is small, the approximation of the local intensity will be noisy and
will result in detection of many local maxima. On the other hand, large values of κ result
in averaging out most of the intensity fluctuations and leaving only big IBs to stand out,
but potentially missing medium scale ones.

In order to test the effect of the choice of κ, we simulate the model (5.7) with different
combinations of the parameters (α, τ) and then apply our pre-identification algorithm with
various values of κ. Results are reported in Appendix 5.B, where Figure 5.11 presents the
Root Mean Squared Error on the detected IB location relative to the average distance
between events δ = T/N as a function of the ratio κ/τ .

Naturally, for small values of α, when detection of the exogenous IB is difficult, error
of the estimation of z could be very large. However, we observe that for relatively high
values of α the error drops to the value comparable with inter-event interval δ, and the
best performance is attained when κ is of the same order of magnitude of τ . When κ is
much larger than τ the performance deteriorates also for high values of α. This suggests
that if the typical relaxation time of the IB is known then the best choice is to select κ
to be of the same order. Alternative but more complicated way could be to employ the
multi-scale analysis for multiple values of κ in a spirit of the original paper (Almgren,
2012). However, given that (i) our method is parametric and pre-identification is followed
by the maximum likelihood estimation and (ii) due to stochastic nature of the Hawkes
process (5.2), the peak of local intensity does not necessarily coincides with the start time
z and can be delayed depending on the kernel φ(t), we consider the multi-scale approach
to be an over-complication.

5.4.4 Single IB detection with the complete procedure

We now test our complete procedure in the case where one IB is present. We follow the
same procedure as in Section 5.4.2. However, now we do not impose the search space for
z, applying the pre-identification method instead. We set κ = 100 and we set the search
window size in (5.14)–(5.16) to w = 300, i.e. while doing maximum likelihood estimation,
we perform a constrained search for zj in windows Wj = [z̄ − 150, z̄ + 150]. We consider
the actual IB to be correctly identified by our procedure when one of the detected IBs is
within a tolerance of 60 time units from its occurrence time. This includes also the cases
where the actual IB is not the first one to be detected.



Table 5.2 reports the percentage of correctly classified IBs (true positives) for the dif-
ferent combinations of n, f = ατ , and τ . The performance of the method is shown to be
comparable with the case where the correct search interval for z was known in advance
(compare with Table 5.14), indicating that the pre-identification algorithm works fairly
well in most cases. The lower rate of correct detections are found unsurprisingly for high
values of τ and small values of f , i.e. small values of α. In these cases, the immediate
shock to the intensity by the IB is smaller and the cumulative effect of the IB is more
diluted over time, which makes it harder to localize.

n = 0.3

f τ

10 50 100 500 1000

50 76 16 4 0 0
75 94 65 27 0 0
100 99 96 71 2 0
250 100 100 100 72 12
500 100 100 100 100 88
750 100 100 100 100 100
1000 100 100 100 100 100

n = 0.5

f τ

10 50 100 500 1000

50 69 17 4 0 0
75 95 74 30 0 0
100 100 98 79 0 0
250 100 100 100 78 16
500 100 100 100 100 89
750 100 100 100 100 98
1000 100 100 100 100 100

n = 0.7

f τ

10 50 100 500 1000

50 62 35 13 0 0
75 97 86 50 0 0
100 96 98 84 4 0
250 100 100 100 88 32
500 100 100 100 100 89
750 100 99 100 100 98
1000 98 99 99 98 100

n = 0.9

f τ

10 50 100 500 1000

50 9 28 18 2 0
75 26 64 56 5 0
100 55 83 79 15 2
250 99 100 100 72 39
500 97 100 99 98 78
750 100 95 97 96 90
1000 96 98 89 100 97

Table 5.2: Percentage of correctly classified IBs for different combinations of the true IB pa-
rameters (α, τ) expressed in terms of f = ατ and τ . The results refer to a sample size of roughly
5,000 events.

Further we need to explore the rate of false positives, i.e. the cases when more than one
IB is detected in these simulations. Table 5.3 reports the number and the percentage of
false positive identifications as a function of the branching ratio n. As it is seen, the number
of cases where more than one IB is detected is however limited and concerns mainly the
simulation of high values of n: n = 0.7 and especially n = 0.9, which is expected, since in
these cases fluctuations of the intensity of the background Hawkes process are very strong
and the probability of spontaneously generating a cluster which might me classified as IB
is high. So reliable detection here requires sufficiently long time series, which ensures the
efficient estimation of parameters of the Hawkes process when n is high.

Next, we examine the error on the estimation of the IB starting time z. In Table 5.4 we
report the ratio between the root mean squared error RMSE[(z − ẑ)2] and the average
inter event time δ = T/N . As before, the results are much better when the parameter
α = f/τ is large, while the performance deteriorates for small α and comparatively high
τ albeit still remaining satisfactory.

In our procedure, we use the pre-identification algorithm discussed above to come up
with a first guess of the IB location zg. It is worth comparing this initial guess with the



Sample size = 5000

n = 0.3 n = 0.5 n = 0.7 n = 0.9

Total FP 1 3 12 63
Worst case incidence (%) 0 0 2 18

Sample size = 10000

Total FP 0 0 9 37
Worst case incidence (%) 0 0 4 14

Table 5.3: Total number of false positives and percentage of false positives in the worst case
resulting from our procedure applied on simulations where one IB is present. The worst case for
a given value of n is the single combination (f, τ) where the most false positives are recorded.

final estimate ẑ provided by our procedure. We consider the differences:

|zg − z| − |ẑ − z|
δ

where z represents the true IB location, for the correctly classified IB. We observe that in
91% of the cases the final estimate is not worse than the pre-estimaed guess (i.e. as close
or closer to the true value). Moreover, when our method improves on the pre-identification
method, the improvement is on average more than twice the average error when our method
does not improve. In other words, the maximum likelihood optimization of the location
parameter z appears to be worthwhile to do, even in such cases when the exogenous
kernel (5.6) is strictly decaying and has maximum at (which leads to the expected peak
of the intensity to be at t = z). In more complicated case when the peak of the reaction
is delayed the optimization step will be essential.

In Appendix 5.C, Tables 5.17, 5.18, 5.19, and 5.20 report the relative mean squared
errors on the IB parameters. For IBs in the detectable region the MSE is typically of the
order of 10% for considered sample sizes.

Finally, it is worth mentioning that our procedure can be useful even in cases when the
detection of the IB is not the main objective, but one is interested in the parameters of
the base Hawkes model, such as the branching ratio n. It is known that the presence of
non-stationarities and bursts dramatically inflate the branching ratio estimated under the
assumption of stationarity (i.e. within the model (5.1)). This problem has been discussed
already in Filimonov and Sornette (2015) and Rambaldi et al. (2015) and here we illustrate
it with the Table 5.15 where we compare the values of n obtained from the base Hawkes
model and from the best model selected by our procedure when one IB is present. Indeed
in case of an intensity burst, the base model overestimates the branching ratio up to the
critical level of 1 even for small values of the actual branching ratio (n = 0.3). In contrast,
properly accounting for such exogenous event via the extended model (5.7) allows us to
recover the correct value in all cases.

5.4.5 Iterative procedure of IB detection

In order to assess the performance of our procedure in the case when multiple IBs are
present, we examine eight scenarios where two IBs occur in the same T = 3, 600 time
window. Specifically, we consider two kinds of IBs, one that we name “Small” (S) with
parameters (α = 1.0, τ = 350) and another that we name “Large” (L) with parameters
(α = 1.5, τ = 700). The distance between the IBs is also relevant, thus we test separately
a configuration where the IBs are close (C), namely z2− z1 = 350 units of time apart, and



n = 0.3

f τ

10 50 100 500 1000

50 3.1
75 0.6 15.4
100 0.5 5.3 21.0
250 0.2 1.3 3.0 22.8
500 0.1 0.4 1.1 9.9 26.2
750 0.0 0.3 0.6 6.6 18.7
1000 0.0 0.2 0.3 4.4 13.0

n = 0.5

f τ

10 50 100 500 1000

50 1.9
75 0.7 12.3
100 0.5 5.2 16.1
250 0.1 0.9 2.5 26.0
500 0.1 0.5 1.2 7.8 29.8
750 0.0 0.2 0.6 5.1 15.0
1000 0.0 0.1 0.5 2.9 7.9

n = 0.7

f τ

10 50 100 500 1000

50 1.6
75 1.2 7.1 17.1
100 0.4 3.5 10.7
250 0.2 1.0 2.6 27.9
500 0.1 0.4 0.6 8.5 17.0
750 0.0 0.3 0.5 3.6 13.7
1000 0.0 0.2 0.3 1.9 4.5

n = 0.9

f τ

10 50 100 500 1000

50
75 5.6 14.6
100 0.5 2.9 13.4
250 0.3 0.9 3.9 23.0
500 0.1 1.0 0.8 9.9 20.0
750 0.0 0.4 0.8 4.4 16.1
1000 0.0 0.4 1.0 8.1 10.4

Table 5.4: Ratio between the root mean squared error on the IB location parameter z and
the average inter-event time T/N . The results shown are for a sample size of roughly 5,000
events. The error is computed only for cases where the IB is detected at least on 50 out of 100
simulations.

a second one where the IBs are far (F) apart, namely z2 − z1 = 1, 400 units. These eight
scenarios are summarized in Table 5.5.

We simulate 100 realizations for each scenario, for four different values of the endogenous
parameter n, namely n = (0.3, 0.5, 0.7, 0.9); other endogenous parameters are fixed as in
the other experiments to τ0 = 0.1 and p = 2.0 and parameter µ is adjusted so to keep the
expected sample size equal to 10,000 events. Table 5.6 presents the result of this test for
the case n = 0.7, while the other cases are reported in Table 5.16.

Our results show that for intermediate values of n, our procedure attains very good
results. As it is seen from the Table 5.6, in most of situations rate of true positives exceed
90–95% with a reasonably low numbers of false positive and false negative detections.
The acceptance of more than two IBs in the test (false positive detection) has a maximum
value below 10% and affecting almost exclusively the n = 0.9 case. And as expected, the
probability of false negative increases with the decrease of size of the IB.

The most challenging scenarios for the identification are unsurprisingly those where a
small IB follows a bigger one and thus gets overshadowed by the latter. This is especially
pronounced when the IBs are close (CLS): in these cases the true positive rate is about
50% in case of n = 0.7, and similar in the case when small IB is followed by the small
IB (CSS). Further, large values of the branching ratio are more difficult to handle, as we
have already noted: when n approaches the critical value of 1, the variance of the cluster
size becomes very large, thus making it extremely difficult to differentiate between an
endogenously generated burst in intensity and an exogenously generated one.

The relative mean squared error on the IB parameters is generally under 10% for n =
(0.3, 0.5, 0.7). Errors on τ tend to be larger than those on α, especially on small IBs



α1 τ1 z1 α2 τ2 z2

CSS 1.0 350 1625 1.0 350 1975
CSL 1.0 350 1625 1.5 700 1975
CLS 1.5 700 1625 1.0 350 1975
CLL 1.5 700 1625 1.5 700 1975
FSS 1.0 350 1100 1.0 350 2500
FSL 1.0 350 1100 1.5 700 2500
FLS 1.5 700 1100 1.0 350 2500
FLL 1.5 700 1100 1.5 700 2500

Table 5.5: Summary of the eight tested scenarios for cases with two IBs. C stands for close, F
for far, L for large, and S for small (see text for details).

n = 0.7

CLL CLS CSL CSS FLL FLS FSL FSS

First correct 100 100 97 100 98 98 91 91
Second correct 96 50 100 56 98 90 98 90
Both correct 96 50 97 56 98 90 91 88
No shock detected 0 0 0 0 2 2 2 6
More than two 1 0 0 1 0 0 0 0

Table 5.6: Results of the tests on simulation with two IBs for the n = 0.7 case. All quantities
are expressed in percent. Parameters of simulations are presented in Table 5.5.

following a large one where error on τ can be above 60%. Errors rise significantly for the
case of n = 0.9, where values of more than 30% on α are not uncommon.

From the above tests we have validated our procedure and confirmed that the method
is capable of obtaining meaningful results, provided that the underlying process is not too
close to being critical (i.e. n =

∫∞
0 φ(t)dt is sufficiently smaller than one). Naturally the

quality of detection and estimation of parameters increases with the increase of amplitude
and distance between shocks.

5.4.6 Misspecification of the endogenous kernel

Finally, we address an important practical aspect of the model error. In real life we do not
know a priori what functional dependence of the kernels is the best to describe the dynam-
ics of the system. As it was mentioned above, the discussion about the specification of the
kernel of the Hawkes model (5.1) is still open, and for example in financial applications
along with approximate power law kernel (5.5) a short-memoried exponential alternatives
are considered and advocated. The question of the statistical tests for selecting the best
candidate as well as the question of non-parametric estimation of the kernel are well be-
yond the scope of the present work. Here we will address this problem by considering the
estimation error in case when the memory kernel is wrongly specified.

For this we simulate the process with a different endogenous kernel (namely — exponen-
tial and double exponential), while performing estimations using the same methodology as
before that uses the φ(t) in the form of 5.5. We conduced both experiments where no IBs
is present and where one IB is present. Detailed results are presented in Appendix 5.D.
Overall our results are in line with those of Section 5.4.2 and 5.4.4, and show that our



procedure is fairly robust with respect to the kernel misspecification: as long as the exact
parameters of the underlying Hawkes process is not in the main focus of attention, the
exogenous IBs could be identified reliably even when the background process is not well
specified. This is an important argument, as it relaxes the efforts needed for the practical
application of the procedure.

5.5 Application to high-frequency FX data

We apply our methodology to study intensity bursts in the spot Foreign Exchange (FX)
markets. Currency market is a complex decentralized system of trading platforms and
venues, with co-existing Electronic Communication Networks (ECNs), that operate in
a similar way to regular stock exchanges, and OTC dealing over the terminal chats or
even voice calls. At the center of the market system there exist two inter-dealer electronic
platforms: Electronic Broking Services (EBS) and Reuters. They are used by major banks
and brokers as a source of interbank liquidity and also as a trading platform for large HFT
players. Both platforms have a high requirement for the lot size to be at least one million
units. Smaller market participants and retail clients operate on alternative trading venues,
such as ECNs, or via brokers. EBS is the main venue for all the USD, EUR, CHF and JPY
crosses, while Reuters is a main platform for trading of all the crosses for Commonwealth
currencies and Scandinavian currencies (Golub et al., 2013).

5.5.1 Descriptive statistics

In our work we will analyze tick data from the EBS Live data feed for three currency pairs,
namely EURUSD, EURJPY and USDJPY. EURUSD is by far the most liquid currency
pair in the world with the average daily turnover of 1,289 billions of USD in 2013 according
to the BIS triennial survey (Bank for International Settlements, 2013), with the second
one being USDJPY with the turnover of 978 billions. EURJPY is also among the most
actively traded contracts with the average daily turnover of 147 billions of USD (having
only USDGBP, USDAUD, USDCAD and USDCHF before).

Our dataset spans the period from January 1, 2012 to December 18, 2012. FX markets
are active 24 hours a day and in principle operate also 7 days a week; activity during
weekends is however negligible. EBS Live is a premium feed which provides snapshot of
the order book every 100 milliseconds (in contrast to a regular feed with quotes every 250
ms). We construct the point process of the events when either of best bid or best ask
price changes. The dynamics of such process has been used as a proxy of high frequency
volatility and has been modeled with Hawkes processes by several papers (Filimonov
and Sornette (2012); Hardiman et al. (2013); Rambaldi et al. (2015)). The limitation
of the time resolution of 100ms and absence of records within these sub-intervals might
cause bias in the calibration of the point process. The implications of such coarse time
resolution on the Hawkes process fitting was discussed in (Lallouache and Challet, 2016).
To address this issue we use the same randomization procedure of (Filimonov and Sornette,
2012; Rambaldi et al., 2015), namely we subtract from each timestamp a random number
uniformly distributed in the interval [0, 0.1)s.

Our proposed methodology is explicitly designed to detect and model localized “shock-
like” non-stationarities (IBs) within the Hawkes process framework. However, the method-
ology is susceptible to other forms of non-stationarity, such as regime shifts or slow changes
in base intensity (e.g. day-to-day fluctuations or time-of-day effects). In order to limit
the side effects from such dynamics, we limit the window size of the analysis to one hour.



# shocks Shocks per window Fraction no shock Max shocks

EURJPY 792 0.51 0.61 5
EURUSD 720 0.46 0.63 4
USDJPY 558 0.36 0.70 3

Table 5.7: Total number of IBs detected for the three currency pairs, average number of IBs
per window, fraction of windows with no IB and maximum number of IBs detected in a single
window.

Specifically, from the best quote change time series, we extract windows of one hour start-
ing at 00:20:00 UTC of Jan 01 2012. We keep only those windows where a sufficient
number of events is present, namely those with at least 2,000 events. Furthermore, since
we want to compare results across the three pairs, we retain only windows for which enough
events are present in all pairs. This leaves us with 1,551 windows for each currency pair
and in the following we will always refer to this subset of the original data. On average,
we have 6,394 events per window in the case of the EURUSD pair and 4,169 and 3,187
for EURJPY and USDJPY cases respectively. We apply our complete procedure using
κ = 100 and w = 300.

The total number of IBs detected for each currency pair is summarized in Table 5.7. On
average we find about 0.3–0.5 IBs per window. We note however that even by selecting
small windows on just one hour, we detect a certain number of IBs with very long (much
larger than one hour) decay times τ . Most of them are found in the intervals 06:30 - 08:00
and 12:00 - 15:00. The first interval corresponds to the beginning of the European session
on the FX market (07:00 London time) and to the opening of European stock markets
(08:00 London time). The second one instead is when the American session begins (12:00
London time) and US stock markets open (14:30 London Time)2. Thus, these shocks
appear to capture mostly time-of-day effects, so we have decided to remove them from the
analysis. Specifically, we disregard bursts with τ > 5400s, since the decay time is much
longer than the detection time (this amounts to less than 10% of detected IBs).

Figure 5.3 presents the distribution of the estimated IB parameters α and τ , together
with the corresponding fertility f and fertility normalized by the total number of events in
the estimation window (f/N). As it is seen, the parameters ranges have very broad ranges
reflecting the diversity of the shocks that we encounter. The shapes of the distributions for
all currency pairs are similar. It is interesting to note, that the distributions of normalized
fertilities are remarkably close among all currency pairs, as well as the distributions of the
relaxation time τ . Here one can read the typical values of 200–400s for τ and 1%-4% of
the total sample size (N) for f .

5.5.2 Simultaneous bursts in several markets

Here we consider IBs that are common between currency pairs, which we defined as events
whose estimated starting time z is located within a tolerance window of 60s. If we consider
simultaneous shocks in all three markets at the same time, they will constitute 15–20% of
all detected IBs. However, this figure increases significantly if we consider only two pairs
as presented in Table 5.8. Since we perform the calibration of the model independently on

2Note also that daylight saving times are not synchronized between Europe and North America so there
are some weeks of the year when US markets open at 13:30 London time.
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Figure 5.3: Density of the estimated IB parameters across the three currency pairs.

# common % pair 1 % pair 2

EURJPY/USDJPY 252 31.82 45.16
EURUSD/EURJPY 324 45.00 40.91
EURUSD/USDJPY 161 22.36 28.85

Table 5.8: Common IBs between two currency pairs: total number and a fraction of the detected
IBs for each pair.

all three FX pairs3, the detection of a large number of common IBs could be considered as
a sanity check for the procedure and an indirect evidence that the detected IBs are genuine
events. Indeed, in our analysis any two FX rates share one currency in common, hence
it is natural to expect that they would react to common drivers. Moreover, all three FX
pairs are linked in a triangular fashion and thus are attractive for high-frequency traders
who arbitrage away a possible transient mispricing between rates.

It is interesting to look at the difference in the estimated initial times z in the case
of common IBs. In Figure 5.4 we plot the histogram of the time delay of the IBs in
EURJPY and USDJPY relative to the shock in EURUSD in case when all three pairs
have a common shock. We observe that the distribution is quite broad; however, in both
cases the peak of the density is found between 0 and 500ms. This suggests that many
times EURUSD is the leading pair for an intensity burst, which seems reasonable since it

3A small bias however could be introduced by the fact that we perform our analysis on a set of windows
with at least 2,000 events in all three pairs.
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Figure 5.4: Histogram of the differences in detected IB times in the three rates for IBs common
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Figure 5.5: Histogram of the differences in detected IB times in two rates for IBs common to
two pairs. The bin size is 1s.

is by far the most liquid and important currency cross. Performing a bootstrap test on
the one-sided t-statistic under the null zxxxyyy − zEURUSD <= 0 we obtain t-statisitics
(p-values) 0.59 (0.28) and -0.72 (0.77) for EURJPY and USDJPY respectively. If we focus
on close matches with absolute difference smaller than 5 seconds, we obtain t-statistics (p-
values) 2.07 (0.02) and 2.24 (0.02) respectively. In Figure 5.5 we plot analogous histograms
for the common IBs between two pairs. Again, we note that EURUSD appears to lead
both the other crosses. Instead, a clear leader does not emerge between EURJPY and
USDJPY.

Figure 5.6 presents the distribution of the normalized fertilities f/N for IBs that are (1)
common to all three pairs, (2) common to only two pairs, and (3) detected in a single pair
only. While the distributions in the cases (1) and (2) are very close to each other, one can
see that the distribution for the third case has much heavier right tail implying that the
IBs common to all three pairs have markedly higher fertility. This is confirmed by t-test
results in Table 5.9, while the difference between idiosyncratic IBs and those common to
exactly two pairs is not as significant. At the same time Kolmogorov-Smirnov tests are
significant at the 1% level in all cases (including the test for the equality of distributions
of (1) and (2)).
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Figure 5.6: Distribution of the ratio f/N for IBs detected simultaneously on all three pairs
(solid line) on exactly two pairs (dashed line) and for idiosyncratic IBs (dotted line).

t-statistic p-value KS-statistic p-value

2 vs 1 0.66 0.51 0.094 0.0011
3 vs 1 8.1 2e-15 0.3 1.3e-21
3 vs 2 7.3 8.1e-13 0.27 2.1e-16

Table 5.9: Results of Welch’s t-test for equality of the means and Kolmogorov-Smirnov test for
the null hypothesis that the samples come from the same distribution for fertility values of IBs
common to all three pairs, to only two pairs and found in a single pair.

5.5.3 Intensity bursts and scheduled announcements

FX markets are usually very sensitive to economic announcements such as interest rate de-
cisions, reports on the inflation, GDP and employment data, etc. Most of these announce-
ments are scheduled in advance and market participants prepare for them to account for
the uncertainty in the reported numbers. Here we study how the activity responds to such
announcements.

We use a list of scheduled economic announcements retrieved from the website www.dailyfx.com.
The dataset consists of economic data releases such as inflation, GDP and employment
readings, as well as rate decisions communications and press conferences by central banks,
for a total of 3,352 separate events. We focus on those intensity bursts that occur within
60s interval of a planned announcement time in the dataset. Such window size is a good
proxy in most of cases, though not always: for example the FOMC rate decision is reported
orally by the Chair of the Board of Governors of the Federal Reserve System, and the ac-
tual figure of the target interest rate can be pronounced several minutes after the start of
the press conference (see for example the reaction time for the fixed income markets in
Table 3 of Almgren (2012)).

In Table 5.10 we report the descriptive statistics of the IBs corresponding to scheduled
announcements. We find that about 10% of the announcements correspond to a detected
IB and conversely about 20% of the detected IBs are related to an economic announcement.
The database of www.dailyfx.com also provides a suggestion for the currency most affected
by the announcement and an indication of the typical importance of that announcement
in a three level scale (Low, Medium, High). Using these indications, we unsurprisingly
find that high-importance announcements have a markedly higher detection rate of above
25%, while figures for low-importance ones are around 2%.

Within detected IBs that match scheduled announcements, we note the prevalence of
announcements related to the US economy. To check for over- and under- representation



# matches % news detected % IBs related to news

EURUSD 118 10.35 16.39
EURJPY 137 12.02 17.30
USDJPY 121 10.61 21.68

Table 5.10: Number of detected IBs that match a scheduled announcement within a 60s interval.
The fraction of announcements in the database that triggered an IB according to our procedure
is also reported.
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Figure 5.7: Histogram of the time differences between the detected IB time resulting from our
procedure and the scheduled release time of economic announcements for which a match was
found.

of the subpopulations we performed an hypergeometric test. We find that USD-related
announcements are heavily over represented compared to a random matching (p-values
lower than 10−12), while all the other geographic origins are under represented. We remark
that this test does not take into account the time-of-day distribution of the announcements.
For example, most announcements concerning JPY are released between 23:00 and 8:00
London time, while our test assumes the same probabilities irrespectively of the time of
day. It appears nevertheless that, at least for these currency pairs, US-related economic
announcements are far more likely to result in an IB compared to announcements on other
countries/currency.

It is interesting to note that the shock in market activity (an intensity burst) does
not always follow the scheduled announcement, but sometimes precede it. Figure 5.7
shows the distribution of the time difference between the estimated IB starting time z and
the scheduled release time for the announcement for which a match was identified. We
observe the peak of the density within a first second after the announce time with a few
cases of lags more than several cases. However, there exist a substantial number of IBs
that have started well before the announcement time, indicating the preparation of the
market participants (presumably, market makers specifically) for the upcoming release. In
the following section we will observe such anticipation in the dynamics of the spread that
reflect the risk perception of the market makers.

5.5.4 Intensity bursts and spread dynamics

Bid-ask spread is an important metric of the trading costs and the liquidity of the mar-
ket. Being set up usually by a market makers it often reflects their anticipation of the
uncertainty in price moves. FX traders know that right before an important announce-
ment liquidity often “evaporates” from the order book leaving a wide spread and a small



−30 −20 −10 0 10 20 30

∆t(s)

1.0

1.5

2.0

2.5
N

or
m

al
iz

ed
S

pr
ea

d

EURJPY

−30 −20 −10 0 10 20 30

∆t(s)

1.0

1.2

1.4

1.6

1.8

EURUSD

−30 −20 −10 0 10 20 30

∆t(s)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

USDJPY

−30 −20 −10 0 10 20 30

∆t(s)

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

S
pr

ea
d

EURJPY

−30 −20 −10 0 10 20 30

∆t(s)

0.85

0.90

0.95

1.00

1.05

1.10

EURUSD

−30 −20 −10 0 10 20 30

∆t(s)

0.85

0.90

0.95

1.00

1.05

1.10

USDJPY

Figure 5.8: Dynamics of the average spread around the detected IBs. Detected IBs matching
(not matching) a scheduled announcement are considered in the top (bottom) panels. The dotted
lines represents 5 and 95 percentiles obtained on 5000 random intervals which are at least 15
min far from an IB.

amount of limit orders in the first levels, as no one wants to be affected by the possible
adverse price move. Here we provide a quantitative analysis for such cases.

We consider the bid-ask spread dynamics in the windows of 2 minutes before and after
the detected IBs (i.e. in window [z − 120, z + 120]). In order to aggregate data from
a different periods with potentially different market conditions we normalize the spread
values by the average value of the spread in a 3 minutes window ending 5 minutes before
the detected IB (i.e. [z − 480, z − 300]). Taking all the normalized spread series for each
FX pair, we finally compute an evenly spaced time series by averaging the values in 500ms
bins.

Figure 5.8 presents the average spread dynamics separately for IBs that match scheduled
announcements (top panel) and IBs that do not (bottom panel). We see that in case of
announcements, the spread is persistently increasing towards the detected starting time of
IB (as it was discussed in previous section, often this time lies within a few seconds around
the announcement times), and sharply drops right after with a following decrease. Such
dynamics is rather long-lasting (of the order of tens of seconds) and appear to be statisti-
cally significantly different compared to the spread dynamics without any announcements
and shocks (plotted in dashed line in Figure 5.8).

In contrast, the spread dynamics in case of unexpected IB does not appear to be signifi-
cantly different from the average dynamics obtained on random intervals. We can though
note that a few seconds right before the IB the spread tends to drop and widen right
after the IB. The most pronounced this pattern is in the USDJPY currency pair. This
observation suggests that market is not able to anticipate the arrival of these type of IBs.
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Figure 5.9: Kernel density estimation of the distribution of the absolute normalized returns |ri|
σloc

during an IB. For comparison also the folded Normal distribution and the empirical distribution
from a control group of 1,000 randomly chosen 1 minute returns are shown.

EURJPY EURUSD USDJPY

mean std kurt mean std kurt mean std kurt

r1 3.97 4.50 19.60 4.38 4.45 22.80 5.26 8.36 28.74
r5 2.72 2.50 18.95 3.10 2.59 6.26 3.67 4.62 22.91
rτ 2.78 2.48 16.64 3.08 2.41 3.87 3.87 4.27 16.94
folded normal 0.80 0.60 0.87 0.80 0.60 0.87 0.80 0.60 0.87

Table 5.11: Mean, standard deviation, and excess kurtosis of the empirical distributions of the
absolute normalized returns |ri|

σloc
during an IB. Theoretical values of the standard folded normal

distribution are also reported for comparison.

5.5.5 Intensity bursts and price jumps

The second explanation of IBs is related to price jumps, since these could provide a possible
mechanism that triggers IBs, particularly when the price jump is due to or associated with
lack of liquidity. Vice versa the IBs might be a consequence of the activity of market-
makers searching for a stable price level under the uncertainty of the future price moves,
and a price shock or an established trend could be a resolution of such uncertainty.

To motivate the analysis of the relation between IBs and large price movements, in
Figure 5.9 we plot the density estimation of the distribution of the absolute normalized
returns associated with detected IBs. We consider three time scales for returns, one
minute, five minutes, and τ minutes (see below for details). The corresponding empirical
means and standard deviations as well as excess kurtosis are reported in Table 5.11. We
also compare it with a control distribution obtained from the random sample. It is clear
that the conditional distribution has much heavier tail with a large probabilities of extreme
returns. The main conclusion is that IBs are often statistically associated with large price
movements, thus it is important to consider the relation between IBs and jumps.

There is a vast econometric literature on price jumps and their detection (Andersen et al.
(2007); Lee and Mykland (2008); Bollerslev et al. (2009); Aı̈t-Sahalia et al. (2009) to name
only a few), we refer to Bormetti et al. (2015) for literature survey and discussion about
modeling co-jumps within the Hawkes process framework. Here, we are mostly interested
in intraday abnormal returns on the same lines as Lee and Mykland (2008) and Joulin
et al. (2008). More specifically we consider the series of absolute midprice log-returns
|ri| = | log(Pi/Pi−1)| on a given time scale and we say that the ith return ri is a θσ-jump



EURJPY EURUSD USDJPY

θ = 3 θ = 4 θ = 5 θ = 3 θ = 4 θ = 5 θ = 3 θ = 4 θ = 5

r1 0.46 0.33 0.24 0.54 0.40 0.31 0.53 0.40 0.29
r5 0.34 0.20 0.12 0.41 0.26 0.18 0.40 0.28 0.20
rτ 0.35 0.23 0.13 0.43 0.26 0.17 0.48 0.37 0.25

Table 5.12: Fraction of times a price jump as defined in (5.18) is found in correspondence of
an IB. Results for different return horizons and three values of the threshold θ are reported.

if the volatility-normalized return is larger than a certain fixed threshold θ:

|ri|
σloc

> θ (5.18)

where σloc is an estimate of the local volatility at time ti. Here we have employed the
Realized Bipower Variation (Lee and Mykland, 2008):

σ2
RBV(ti) =

1

K − 2

i−1∑
j=i−K+2

∣∣∣∣log

(
P (tj)

P (tj−1)

)∣∣∣∣ ∣∣∣∣log

(
P (tj−1)

P (tj−2)

)∣∣∣∣ (5.19)

using one minute returns (ti− ti−1 = 60s) on a K = 120 minutes window. This estimator
has the advantage of being relatively robust to presence of the tail events within the
estimation window. However, we found other estimators such as the Realized Variance to
yield substantially similar results for our purposes.

We estimate the probability of observing a price jump given the presence of an IB at time
z. For this we analyze price dynamics around z on three time scales: 1 minute (computing
return r1 between z − 10s and z + 50s), 5 minutes (r5 is computed between z − 50s and
z+250s) and a time-scale which is defined by the relaxation time τ of the IB (we calculate
return rτ between z − τ

6 and z + 5τ
6 ). For the definition of the θσ-jumps (5.18) we use

a suitably rescaled volatility (5.19) which is originally calculated on 1 minute intervals:
namely we use σloc,1 = σloc, σloc,5 =

√
5σloc and σloc,τ =

√
τσloc respectively.

Our results are reported in Table 5.12, which presents the fraction of times where a price
jump (5.18) is observed when an IB is detected by our procedure. It is seen that a large
fraction of IBs is accompanied by significant price moves: for example 25%–30% of all IBs
are accompanied with 5σ-jumps on 1 minute time scale, and often these price moves do
not immediately mean-revert: 12%–20% of 5-minute returns exceed 5σ threshold.

We have also explored what indications can the model parameters give on the likelihood
that an IB is accompanied by a price jump. For this we have performed a logistic-regression
analysis, presented in 5.E. We found that the probability of obtaining a price jump simul-
taneously with an IB is controlled mostly by the amplitude α of the IB. Surprisingly, the
relaxation time τ does not seem to be a significant contributor, while adding the branching
ratio n as regressor improves the performance of the classifier. Overall, the classifier using
both α and n is quite reliable if it predicts the presence of a jump, while it suffers of a
high false negative rate.

So far we have investigated the presence of a price jump given a nearby IB. Now we
consider the reverse question, namely whether the price jumps are accompanied by an
intensity shocks. We again consider absolute one minute returns normalized by the local
volatility estimated using Eq. (5.19). Table 5.13 shows the fraction of these jumps that
match an IB within ±5 min. Depending on threshold level θ, from 20 to 40% of all price
jumps correspond to an IB as detected by our procedure.



EURJPY EURUSD USDJPY

θ = 3 0.23 0.22 0.18
θ = 4 0.32 0.33 0.26
θ = 5 0.42 0.44 0.34

Table 5.13: Fraction of price jumps that match an IB within ±5 min.
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Figure 5.10: Mean normalized activity pattern around price jumps for jumps that match (do
not match) with activity IBs detected by our procedure. The window is centered on price jump
locations and is 1h wide. Before averaging, the activity is normalized by the mean activity in the
first 10 minutes of the window. Top panels correspond to 3 < θ < 5, bottom panels - to θ ≥ 5.

Figure 5.10 presents the average activity around the price jumps for jumps that match
an IB and for those that do not. We note that on average price jumps are associated with
an increase of activity, though clearly not all of these activity spikes were identified as
IB by our procedure (black lines in Figure): those activity spikes were not significantly
different from the background endogenous process in terms of magnitude. Furthermore,
the relaxation of activity after the price jump appears to be much faster for price jumps
without IB that for those associated with an IB. It is interesting to note, that activity
increases towards the price jumps on average in all cases. This suggests that most of
detected price shocks are not exogenous, but either endogenously generated by the feed-
back mechanisms of the system, or anticipated exogenous shocks such as scheduled macro
economical announcements.

One important result of our empirical analysis is that a significant fraction of IBs are not
associated to macroeconomic news and jumps. These abrupt increases in high frequency
volatility appear to be endogenously generated and not related to large price movements.
Despite the fact that a full understanding of these phenomena is beyond the scope of this
work, it is interesting to present a possible explanation for them, even if based on visual
inspection of selected cases.

By looking at the bid-ask dynamics around these IBs not associated to price jumps
or news we observe that, while before the start of the detected IB the midprice changes
are relatively rare on the considered time scale, after it there is an intense readjustment
process of best quotes, without a significant net price movement. This quote flickering is



frequently observed in many other IBs not associated to news or price jumps. Although
we do not have a full explanation of this behavior, we note that it resembles a known
strategy used by High Frequency Traders termed quote stuffing and consisting in flooding
the market with huge numbers of orders and cancellations in rapid succession.

5.6 Conclusions

In this chapter we presented a novel procedure to detect intensity bursts in activity of a
point process within a Hawkes processes framework. The ability to separate genuine ex-
ternal perturbation to the system from bursts generated by internal feedback mechanisms
and correlations is a key feature of our procedure. From extensive numerical tests on both
synthetic and real data we find that our procedure can be very effective in identifying
sudden and short lived increases in activity that are not compatible with the endogenous
or ”normal” dynamics.

We applied the method to high frequency financial data describing the midprice dy-
namics in FX markets. We found a large number of IBs, both idiosyncratic to a specific
rates and common to the three rates. Some of the IBs can be temporally related to price
jumps and macroeconomic announcements. In the latter case we were able to compare the
scheduled timing of the news with the inferred time of the start of the IB. In the former
case we found that a large fraction of large jumps are associated with IBs. Interestingly
a significant fraction of IBs appear to be unrelated with jumps and news, opening the
question of the possible market events associated to them.

As a final remark we observe that the extension of the Hawkes model for incorporation
of the explicit impact of IBs can be very relevant for mitigating the bias in the estimation
of the branching ratio n in systems where exogenous shocks might be present. Indeed,
we showed that when such shocks are not properly accounted for, conclusions based on
standard Hawkes models can severely overestimate the branching ratio.

In conclusion, we stress that, although our methodology was developed with financial
applications in mind, it can be applied wherever the dynamics is naturally bursty and
correlated and the influence of sudden external shocks is relevant. Examples include
tweets, email, web clicks, arrival of customers and many others.

Appendix

5.A Details of likelihood optimization

The log-likelihood (5.8) for model (5.2) with endogenous kernel of the form φ(t) = nh(t)
and exogenous kernels of the form φS(t) = αq(t) and given the observations {ti}i=1,...,N ∈
[0, T ] reads

logL(µ, n, ψ, {αk, zk, ξk}k=1,...,M ) =− µT − nH1(ψ)−
M∑
k=1

αkK1(zk, ξk)

+
∑
ti

log

(
µ+ nH2(ψ; ti) +

M∑
k=1

αkK2(zk, ξk; ti)

)
(5.20)

where µ is the baseline intensity parameter, (n, ψ) denotes the endogenous kernel pa-
rameters, (αk, zk, ξk) are the parameters of the k-th IB, M is the total number of IBs,



and

H1 =
∑
ti

(
h̃(T − ti)− h̃(0)

)
(5.21)

H2 =
∑
tj<ti

h(ti − tj) (5.22)

K1(k) = q̃(T − zk)− q̃(0) (5.23)

K2(k; ti) = q(ti − zk) (5.24)

with g̃ denoting the antiderivative of the function g. We note that model (5.1) is recovered
when M = 0. As noted in Filimonov and Sornette (2015), in the optimization of (5.20),
one parameter can be obtained from the relation

n
∂ logL
∂n

+ µ
∂ logL
∂µ

+
∑
k

fk
∂ logL
∂αk

= −µT − nH1 −
M∑
k=1

αkK1(zk, ξk) +N (5.25)

which holds at the optimum. Hence, finding the maximum of (5.20) is equivalent to
minimize

G(n, ψ, {αk, zk, ξk}k=1,...,M ) =−
∑
ti

log

[
N

T
+ n

(
H2(ψ; ti)−

H1(ψ)

T

)

+
M∑
k=1

αk

(
K2(zk, ξk; ti)−

K1(zk, ξk)

T

)] (5.26)

When M = 0 we perform the optimization using standard optimizers such as the L-
BFGS-B method (Byrd et al., 1995). Since G is usually not convex, multiple starting
points are tried in order to improve the chances of finding the global optimum (Filimonov
and Sornette, 2015).

When adding one IB term we use a subordination procedure to perform the optimization
in a similar spirit to Filimonov and Sornette (2015). Specifically, we proceed as follows.
Let us indicate with θ1 all the parameters of the model except the IB location z1. Then,
we separate the optimization into the two step

θ̂1 = arg min
θ1

S(θ1) (5.27)

with
S(θ1) = min

z1∈{ti∈W1}
G(θ1, z1) (5.28)

Using the guess z̄1 from the pre-estimation procedure, we minimize G with respect
to θ1 while keeping fixed z1 = z̄1. Then in step (5.28) we update the estimate of z1

while keeping θ1 fixed. We perform the optimization (5.27) using standard quasi-newton
algorithms, while the optimization with respect to the IB location z1 can be performed
with a direct search over the values ti ∈W1, as repeated evaluation of (5.26) for different
values of z1 is very cheap computationally.

When we add another IB to the model we proceed in a similar fashion. We optimize again
all the parameters except the first IB location and we separate as before the optimization
over z2 from the one over the other parameters θ2.

5.B Appendix to Section 5.4

5.C Errors on IB parameters



n = 0.3

f τ

10 50 100 500 1000

50 92 18 5 0 0
75 100 66 27 0 0
100 100 98 75 2 0
250 100 100 100 86 22
500 100 100 100 100 100
750 100 100 100 100 100
1000 100 100 100 100 100

n = 0.5

f τ

10 50 100 500 1000

50 92 22 4 0 0
75 100 83 35 0 0
100 100 100 82 0 0
250 100 100 100 100 26
500 100 100 100 100 100
750 100 100 100 100 100
1000 100 100 100 100 100

n = 0.7

f τ

10 50 100 500 1000

50 71 44 14 0 0
75 99 92 62 0 0
100 100 100 93 9 0
250 100 100 100 100 64
500 100 100 100 100 100
750 100 100 100 100 100
1000 100 99 100 100 100

n = 0.9

f τ

10 50 100 500 1000

50 14 57 54 2 1
75 29 93 90 17 2
100 57 100 100 62 16
250 99 100 100 100 100
500 99 98 99 100 100
750 100 98 99 100 100
1000 98 99 97 97 99

Table 5.14: Percentage of correctly classified IBs for different combinations of the true IB
parameters (f, τ). In this experiment we do not use the pre-identification algorithm to limit the
search space for the IB location but instead we directly provide the correct search interval. The
results refer to a sample size of roughly 5,000 events.
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Figure 5.11: Root Mean Squared Error on the IB location z relative to the typical inter-event
time δ = T
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as a function of κ

τ
. In the above figures T = 3, 600, roughly 5, 000 events, and

n = 0.7. 100 simulations were performed for each combination (α, τ).



n = 0.3

f τ

10 50 100 500 1000

50 0.34 0.31 0.30 0.30 0.30
75 0.37 0.32 0.32 0.30 0.30
100 0.42 0.35 0.33 0.31 0.30
250 0.64 0.66 0.60 0.33 0.31
500 0.74 0.92 0.93 0.65 0.42
750 0.77 0.98 1.00 0.95 0.71
1000 0.78 0.99 1.00 1.00 0.95

n = 0.3

f τ

10 50 100 500 1000

50 0.30 0.31 0.30 0.30 0.30
75 0.30 0.30 0.31 0.30 0.30
100 0.30 0.30 0.30 0.31 0.30
250 0.30 0.29 0.30 0.30 0.30
500 0.30 0.30 0.30 0.30 0.30
750 0.30 0.30 0.29 0.30 0.30
1000 0.30 0.30 0.30 0.29 0.29

n = 0.7

f τ

10 50 100 500 1000

50 0.71 0.70 0.70 0.69 0.69
75 0.72 0.71 0.70 0.69 0.69
100 0.73 0.72 0.71 0.70 0.69
250 0.77 0.78 0.77 0.72 0.70
500 0.83 0.85 0.86 0.80 0.75
750 0.87 0.90 0.91 0.89 0.82
1000 0.91 0.93 0.94 0.95 0.90

n = 0.7

f τ

10 50 100 500 1000

50 0.70 0.69 0.70 0.69 0.69
75 0.69 0.69 0.69 0.69 0.69
100 0.69 0.69 0.69 0.70 0.69
250 0.69 0.69 0.69 0.69 0.69
500 0.69 0.69 0.69 0.69 0.69
750 0.69 0.69 0.69 0.69 0.69
1000 0.70 0.70 0.69 0.70 0.69

Table 5.15: Average values of the branching ratio n of the endogenous kernel, obtained from
the base Hawkes model (left) and from the best model selected by our procedure (right) when
the simulated time series has a IB with parameters (f, τ). Here we present the case where the
true values are n = 0.3 (top) and n = 0.7 (bottom).



n = 0.3

CLL CLS CSL CSS FLL FLS FSL FSS

First correct 99 100 97 93 78 100 87 73
Second correct 99 39 100 48 78 79 100 66
Both correct 98 39 97 42 78 79 87 63
No shock detected 0 0 0 0 22 0 0 24
More than two 0 0 1 0 0 0 0 0

n = 0.5

CLL CLS CSL CSS FLL FLS FSL FSS

First correct 100 100 97 97 97 99 90 86
Second correct 98 49 100 49 97 86 99 85
Both correct 98 49 97 47 97 86 90 81
No shock detected 0 0 0 0 3 1 1 10
More than two 0 0 0 0 0 0 0 0

n = 0.9

CLL CLS CSL CSS FLL FLS FSL FSS

First correct 78 94 76 93 64 86 68 92
Second correct 62 39 94 80 53 65 92 90
Both correct 61 39 73 74 52 65 68 86
No shock detected 21 5 3 0 35 12 8 4
More than two 3 0 6 7 5 2 4 5

Table 5.16: Results of the tests on simulation with two IBs for the n = 0.3, n = 0.5, and
n = 0.9 cases. All quantities are expressed in percent. C stands for close, F for far, L for large,
and S for small (see main text for details).



n = 0.3

f τ

10 50 100 500 1000

50 33.7
75 24.9 49.8
100 22.8 29.1 30.8
250 12.3 13.0 16.7 24.1
500 8.3 8.6 10.2 15.0 20.1
750 6.5 7.9 8.5 9.1 13.2
1000 6.0 7.0 5.8 7.4 10.3

n = 0.5

f τ

10 50 100 500 1000

50 43.3
75 29.5 40.5
100 24.1 30.8 43.8
250 14.5 13.7 15.6 20.8
500 9.8 10.2 11.6 13.2 15.8
750 8.5 7.9 8.4 11.1 13.9
1000 6.2 7.7 7.7 9.1 9.4

n = 0.7

f τ

10 50 100 500 1000

50 62.8
75 37.1 38.8 70.0
100 29.0 31.4 42.9
250 18.5 17.5 17.5 22.0
500 12.6 13.6 12.8 12.7 16.3
750 10.6 11.1 12.0 9.5 12.5
1000 7.4 11.0 11.1 9.1 8.6

n = 0.9

f τ

10 50 100 500 1000

50
75 101.8 66.8
100 53.9 56.3 30.3
250 32.5 27.6 20.3 41.2
500 24.0 29.8 22.7 12.5 16.1
750 18.9 23.9 18.0 12.1 10.6
1000 9.3 17.0 18.1 12.5 12.2

Table 5.17: Relative Root Mean Squared Error (%) on the α parameter obtained with our
procedure on simulations where a single IB is present. One hundred simulation were generated
for each combination of n, f , and τ . The MSE is shown only for cases where the IB was detected
in at least 50 out of 100 repetitions. These tables refers to a sample size of approximately 5000
events.

5.D Kernel misspecification

In this section we present the result obtained by our procedure when the endogenous
kernel φ(t) used to generate the data differs from the one used in the estimation.

In particular we run simulations with a single exponential kernel

φSE = nbe−bt (5.29)

and a double exponential kernel

φDE = n
(
abAe

−bAt + (1− a)bBe
−bBt

)
. (5.30)

The test procedure is exactly the same as outlined in Sections 5.4.2 and 5.4.4. The result
presented are for a target sample size of 10,000. In the following, SE1 (SE2) will denote
simulations with the single exponential as kernel and parameter b = 0.1 (b = 1), while DE
will denote simulations with the double exponential kernel and parameters a = 0.7, bA = 2,
and bB = 0.1.

In Table 5.21 we present the rate of false positives for simulations where no IB is present,
while in Tables 5.22, 5.23, 5.24 the rate of correctly classified IBs for the SE1, SE2 and
DE cases respectively. Our procedure of the IB identification appears to be robust with
respect to miss-specifications of the model.



n = 0.3

f τ

10 50 100 500 1000

50
75 27.4
100 26.6 38.8
250 12.7 18.0 19.1
500 8.4 9.7 11.2 19.1
750 7.0 8.1 8.4 12.0 16.8
1000 5.9 6.6 7.3 10.6 13.7

n = 0.5

f τ

10 50 100 500 1000

50
75 33.9
100 23.6 50.6
250 12.5 15.6 19.3
500 10.8 12.2 12.9 19.6 29.1
750 7.8 7.8 9.6 11.8 17.8
1000 6.0 7.5 8.8 10.1 14.1

n = 0.7

f τ

10 50 100 500 1000

50
75 40.4
100 35.9 42.6
250 16.0 22.5 26.0
500 12.2 13.1 13.0 17.9 24.9
750 11.2 11.7 11.4 11.9 15.4
1000 7.4 10.3 10.3 10.7 11.3

n = 0.9

f τ

10 50 100 500 1000

50
75
100 49.3
250 29.2 37.8 26.6 30.6
500 17.1 24.3 19.0 16.3 18.7
750 16.7 23.4 17.0 11.2 16.2
1000 8.9 17.0 15.3 11.5 11.7

Table 5.18: Relative Root Mean Squared Error (%) on the α parameter obtained with our
procedure on simulations where a single IB is present. One hundred simulation were generated
for each combination of n, f , and τ . The MSE is shown only for cases where the IB was detected
in at least 50 out of 100 repetitions. These tables refers to a sample size of approximately 10000
events.



n = 0.3

f τ

10 50 100 500 1000

50 44.9
75 23.9 67.4
100 23.1 31.6 59.1
250 11.2 15.0 15.1 28.2
500 7.1 7.4 9.9 18.9 31.5
750 5.7 6.0 7.3 11.7 20.4
1000 4.4 5.4 5.7 8.6 15.2

n = 0.5

f τ

10 50 100 500 1000

50 39.9
75 23.1 55.7
100 17.7 38.8 54.5
250 11.9 13.8 16.8 29.8
500 7.5 8.6 8.8 16.5 32.0
750 6.2 5.8 7.4 11.6 19.1
1000 4.5 4.7 5.2 9.3 13.9

n = 0.7

f τ

10 50 100 500 1000

50 44.4
75 36.9 33.4 44.1
100 18.7 29.4 36.5
250 12.8 13.3 14.8 34.0
500 9.4 8.1 9.8 14.4 28.3
750 6.3 6.1 6.6 8.7 18.5
1000 5.7 4.9 5.7 6.8 11.4

n = 0.9

f τ

10 50 100 500 1000

50
75 27.0 35.3
100 26.1 23.1 26.6
250 17.7 11.9 13.8 29.6
500 15.2 12.2 9.4 10.5 24.6
750 11.5 7.7 7.2 7.1 17.3
1000 13.8 10.7 6.3 6.9 17.2

Table 5.19: Relative Root Mean Squared Error (%) on the τ parameter obtained with our
procedure on simulations where a single IB is present. One hundred simulation were generated
for each combination of n, f , and τ . The MSE is shown only for cases where the IB was detected
in at least 50 out of 100 repetitions. These tables refers to a sample size of approximately 5000
events.



n = 0.3

f τ

10 50 100 500 1000

50
75 52.1
100 30.2 47.1
250 11.9 15.9 26.7
500 7.8 9.8 12.8 30.0
750 5.6 8.2 9.0 18.1 30.4
1000 5.0 5.6 6.5 12.0 23.2

n = 0.5

f τ

10 50 100 500 1000

50
75 41.3
100 25.2 35.2
250 11.4 18.2 22.8
500 7.5 10.1 11.8 26.2 37.9
750 6.8 6.9 9.1 14.2 33.6
1000 5.1 5.9 7.4 12.4 22.1

n = 0.7

f τ

10 50 100 500 1000

50
75 39.7
100 29.5 50.0
250 13.8 16.4 18.8
500 7.4 11.0 11.7 22.0 34.0
750 7.8 7.5 8.3 14.0 21.4
1000 6.6 6.3 6.6 10.7 17.7

n = 0.9

f τ

10 50 100 500 1000

50
75
100 26.1
250 19.3 17.3 17.6 28.6
500 13.2 11.0 11.8 15.0 28.1
750 10.4 8.5 7.3 11.4 23.2
1000 14.0 7.4 6.0 6.2 16.8

Table 5.20: Relative Root Mean Squared Error (%) on the τ parameter obtained with our
procedure on simulations where a single IB is present. One hundred simulation were generated
for each combination of n, f , and τ . The MSE is shown only for cases where the IB was detected
in at least 50 out of 100 repetitions. These tables refers to a sample size of approximately 10000
events.

DE SE1 SE2
n 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9

FPR 0.0 0.0 0.5 0.8 0.1 0.0 0.0 0.5 0.0 0.1 0.2 0.2

Table 5.21: Percentage of false positive using Bayesian Information Criterion when the simu-
lated model has no IBs. 1000 simulations where performed in each case. All values expressed in
percent (%).



n = 0.3

f τ

10 50 100 500 1000

50 0 0 0 0 0
75 0 0 0 0 0
100 0 0 0 0 0
250 95 11 0 0 0
500 100 100 100 0 0
750 100 100 100 0 0
1000 100 100 100 37 0

n = 0.5

f τ

10 50 100 500 1000

50 0 0 0 0 0
75 0 0 0 0 0
100 1 0 0 0 0
250 100 81 21 0 0
500 100 100 100 1 0
750 100 100 100 49 0
1000 100 100 100 99 5

n = 0.7

f τ

10 50 100 500 1000

50 1 1 0 0 0
75 14 1 0 0 0
100 41 5 1 0 0
250 100 100 90 1 0
500 100 100 100 64 2
750 100 100 100 100 35
1000 100 100 100 100 84

n = 0.9

f τ

10 50 100 500 1000

50 38 8 1 0 0
75 84 11 5 0 0
100 97 44 11 0 0
250 100 99 97 8 2
500 100 100 98 71 14
750 97 96 93 90 47
1000 98 98 97 92 67

Table 5.22: Percentage of correctly classified IBs for different combinations of the true IB
parameters (α, τ) expressed in terms of f = ατ and τ . The results refer to the case SE1 and 100
simulations for each case where performed.

5.E Price jumps classification

We now investigate whether the IB parameters α and τ are good predictors for the pres-
ence of a price jump. To this end we fix θ = 4 and we consider a logistic model where the
dependent variable is the classification jump/no jump (mapped to {1, 0} ) and the regres-
sors are the estimates of α and τ or α and the branching ratio n. For each currency pair,
we fit the logistic model on a randomly chosen subsample of about 70% of the detected
IBs (later we will perform an out of sample analysis with the remaining 30%). In Table
5.25 we report the obtained coefficients as well as their standard errors for EURUSD. The
results for the other pairs are very similar. We note immediately that the τ parameter
does not appear to bring any contribution to the classification and indeed Akaike criterion
selects the model with only α as regressor. When the variable n is used in place of τ as a
regressor we obtain a significant coefficient for n, indeed we find that this model is favored
by AIC over the oneusing only α for all three pairs.

In Table 5.26 we report some performance metrics obtained by using the fitted models
to predict the presence of jump in price on the remaining 30% of the sample, using 0.5 as
threshold to predict a price jump. Overall, the prediction yielded has fairly high accuracy
and precision but suffer from a high false negative rates. For completeness, in Figure 5.12
we plot the ROC curves obtained on the test samples. Overall, the classifier based on the
parameters α and n of IB is quite reliable if it predicts the presence of a jumps, while it
can lead to significant errors if it predicts that the jump is not there.



n = 0.3

f τ

10 50 100 500 1000

50 0 0 0 0 0
75 0 0 0 0 0
100 0 0 0 0 0
250 95 18 0 0 0
500 100 100 100 0 0
750 100 100 100 1 0
1000 100 100 100 57 0

n = 0.5

f τ

10 50 100 500 1000

50 0 0 0 0 0
75 1 0 0 0 0
100 1 0 0 0 0
250 100 92 40 0 0
500 100 100 100 6 1
750 100 100 100 67 1
1000 100 100 100 100 13

n = 0.7

f τ

10 50 100 500 1000

50 8 1 0 0 0
75 23 1 0 0 0
100 58 11 2 0 0
250 100 100 92 3 0
500 100 100 100 79 8
750 100 100 100 99 60
1000 100 100 100 100 91

n = 0.9

f τ

10 50 100 500 1000

50 5 0 0 0 0
75 22 2 1 0 0
100 65 6 2 1 0
250 100 84 63 19 3
500 100 99 98 93 57
750 95 95 98 97 78
1000 94 90 94 89 88

Table 5.23: Percentage of correctly classified IBs for different combinations of the true IB
parameters (α, τ) expressed in terms of f = ατ and τ . The results refer to the case SE2 and 100
simulations for each case where performed.
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Figure 5.12: ROC curves for the logit classifier that uses α and n to predict whether a price
jump (θ = 4) will be present together with the IB.



n = 0.3

f τ

10 50 100 500 1000

50 0 0 0 0 0
75 0 0 0 0 0
100 0 0 0 0 0
250 92 17 0 0 0
500 100 96 97 0 0
750 100 99 98 0 0
1000 100 100 100 53 0

n = 0.5

f τ

10 50 100 500 1000

50 0 0 0 0 0
75 0 0 0 0 0
100 1 0 0 0 0
250 100 92 42 0 0
500 100 100 100 4 0
750 100 100 100 59 1
1000 100 100 100 99 13

n = 0.7

f τ

10 50 100 500 1000

50 6 0 0 0 0
75 27 5 0 0 0
100 61 21 5 0 0
250 100 100 94 1 0
500 100 100 100 63 4
750 100 100 100 100 45
1000 100 100 100 100 91

n = 0.9

f τ

10 50 100 500 1000

50 14 0 1 0 0
75 45 4 0 0 0
100 87 22 1 0 0
250 100 98 83 1 0
500 100 100 100 56 4
750 96 96 98 91 50
1000 87 96 93 91 77

Table 5.24: Percentage of correctly classified IBs for different combinations of the true IB
parameters (α, τ) expressed in terms of f = ατ and τ . The results refer to the case DE and 100
simulations for each case where performed.

coef std err z P>|z| [95.0% Conf. Int.]

constant -3.2572 0.352 -9.254 0.000 -3.947 -2.567
α 1.8699 0.247 7.557 0.000 1.385 2.355
τ 0.0001 0.000 0.893 0.372 -0.000 0.000

constant -10.4279 1.685 -6.187 0.000 -13.731 -7.125
α 2.1019 0.251 8.374 0.000 1.610 2.594
n 10.0643 2.221 4.532 0.000 5.711 14.417

Table 5.25: Obtained parameters value and associated errors when α and τ (top) or α and n
(bottom) are used as regressors. Results shown are for the EURUSD pair.

EURJPY EURUSD USDJPY

TPR 0.33 0.40 0.46
TNR 0.96 0.89 0.94
Precision 0.75 0.63 0.85
Accuracy 0.79 0.74 0.73

Table 5.26: Out of sample performance metrics for the logistic model with α and n as regres-
sors. True Positive Rate (TPR), True Negative Rate (TNR), Precision (True Positives/Predicted
Positives) and Accuracy are reported.





Conclusions

In this thesis we presented some new applications of Hawkes point processes to high-
frequency financial data. In the work of Chapter 3, we analyzed high frequency interactions
between different order types and sizes. Our approach leveraged existing non-parametric
estimation method developed for multivariate Hawkes processes to include the order size
in the model by enlarging the dimension of the process. We found that the order size is
an important variable to consider for a faithful modeling of the order book dynamics. We
also confirmed previous findings and conjectures indicating that self-excitation observed
in models that do not consider the order size is chiefly due to same size excitation. Fur-
thermore, we observe a more dramatic and persistent impact of large orders, particularly
on assets where they are relatively rare, in line with the idea that they carry more infor-
mation. We also obtained a new theoretical result which affirm that the non-parametric
estimation method of Bacry and Muzy (2016) will find negative-valued kernels whenever
inhibition effects are present in the system. The possibility of investigating moderate inhi-
bition effects alongside exciting with the aforementioned method further widens the scope
and power of Hawkes processes analysis.

In the other two original works presented in Chapters 4 and 5, we tackled the modeling
and detection of local non-stationarities in a Hawkes process framework. These works
were originally inspired by the need to account for external punctual events like news
announcements that can have a temporary but very significant effect on the order flow
intensity, which in turn is related to volatility. We first developed an extension of the
standard Hawkes model that is able to deal with cases where the occurrence time of the
external event is known in advance. We showed that our model is able to reproduce very
well both the magnitude and the time persistence of these news-driven intensity bursts
and also to capture anticipation effects due to the fact that the announcement is scheduled
in advance.

In our last work we devised a procedure that allows to apply the previous model also
to cases where both the occurrence times and the number of burst is unknown, thus
opening its use as an anomalies detection tool. We tested our procedure on FX data
and we found that a large number of Intensity Bursts occurs, a sizable fraction of which
are found simultaneously on different currency crosses. Although a significant part of
them is related to scheduled economic announcements and price jumps, there is another
relevant part which appears to be unrelated to either of those. Despite the lacking of a
full understanding of these phenomena at the moment, preliminary investigations suggest
that they could be related at least in some instances to high frequency strategies where
a great number of orders and cancellations is submitted to the market (quote stuffing).
We believe our methodology could be a valuable addition to the already available tools
for anomaly detection, which is a central theme for market regulators as well as for risk
managers.

Finally, we stress that the range of possible applications of the presented methodolo-
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gies extends beyond financial ones. Indeed, all the methods we exposed are in principle
amenable to be used whenever a point process description of the system is appropriate
and mutual or self interaction are relevant.
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Jovanović, S., J. Hertz, and S. Rotter (2015). Cumulants of Hawkes point processes.
Physical Review E 91, 042802.

Kirchner, M. (2015). An estimation procedure for the Hawkes process. arXiv:1509.02017 .

Kirilenko, A. A., A. S. Kyle, M. Samadi, and T. Tuzun (2015). The flash crash: The
impact of high frequency trading on an electronic market. Available at SSRN 1686004 .

Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica, 1315–1335.

Lallouache, M. and D. Challet (2016). The limits of statistical significance of Hawkes
processes fitted to financial data. Quantitative Finance 16 (1), 1–11.

Lange, T. and A. Rahbek (2009). An Introduction to Regime Switching Time Series Mod-
els. In Handbook of Financial Time Series, pp. 871–887. Berlin, Heidelberg: Springer
Berlin Heidelberg.

Large, J. (2007). Measuring the resiliency of an electronic limit order book. Journal of
Financial Markets 10 (1), 1–25.

Lee, S. S. and P. A. Mykland (2008). Jumps in Financial Markets: A New Nonparametric
Test and Jump Dynamics. Review of Financial Studies 21 (6), 2535–2563.

Lewis, E. and G. Mohler (2011). A nonparametric em algorithm for multiscale hawkes
processes. Joint Satistical Meetings 2011 .



Lewis, E., G. Mohler, P. J. Brantingham, and A. L. Bertozzi (2012). Self-exciting point
process models of civilian deaths in iraq. Security Journal 25 (3), 244–264.
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