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Preface

This thesis tracks my research path, which started right after my master’s de-
gree in mathematics, then developed in the 3-year period in which I attended
the Perfezionamento in Matematica per le tecnologie industriali at the Scuola
Normale Superiore (January 2009-December 2011) and in the subsequent
years (2012-present), within the stimulating and original research context
created by the collaboration between the mathematical finance group of the
SNS and LIST!.2 This collaboration was agreed in November 2011 with the
signing of a convention between the two parts, for a 36-month period (later
extended) starting from January 2012. The collaboration was signed with
the stated primary goals of cooperating in doing research work in common
interest areas, which were mainly—but not limited to—quantitative finance,
and the exchange of knowledge, both of technical and scientific nature, and
of academic and industrial interest. The SNS-LIST collaboration developed
within a quantitative finance research laboratory, named QuantLab?, created
by LIST within its Advanced Technology Direction. It is in this context that
I continued my research path, initially with a 12-month research associate
position? at SNS funded by LIST within the signed convention (January
2012—-January 2013), then being directly employed by LIST as quantitative
analyst to continue working on the QuantLab activities (May 2013-present).

Retracing my research activity from the beginning, in 2010 my first
work—made with my two master’s thesis advisors Stefano Galatolo and Giu-
lia Menconi—was published on the Journal of Nonlinear Science. It was an

ILIST S.p.A. (member of List Group) is a company developing innovative software
solutions for the financial industry, with its headquarters situated in Pisa. Web site:
www.list-group.com.

2In May 2011, the SNS organised the workshop L ’instabilita nei mercati finanziari: il
Flash Crash un anno dopo for a review of the scientific literature inspired by 6** May 2010
Flash Crash. It was during this workshop that LIST and the mathematical finance group
of the SNS found out the mutual interest in the subject of market instabilities and talked
about a possible collaboration to do research on this topic together.

3Web site: www.quantlab.it.

4 Assegno di ricerca.

1l


www.list-group.com
www.quantlab.it

PREFACE

evolution of my master’s thesis work and it was finally printed during the
second year of my Perfezionamento course. In this work we studied the
entropy—viewed as an ergodic theory concept—of different classes of dy-
namical systems, using an information theory approach.

During my Perfezionamento course, first under the guidance of my ad-
visor Stefano Marmi and then with the joint mentoring of S. M. and Fulvio
Corsi, the idea was born to employ the Shannon entropy as a tool to quan-
tify randomness in high frequency financial time series, i.e., as a means to
study market informational efficiency analysing high resolution market data.
There was some literature about using information theory tools to study
market efficiency, but the majority dealt with low frequency (daily) data
and those few works actually using high frequency data suffered—from our
viewpoint—ifrom serious shortcomings. We took on this problem with a com-
bined theoretical and empirical approach, which allowed me to learn a lot
of quantitative finance topics and to study in depth the pecularities of high
frequency time series, from the stylised facts of intraday price data to many
different mathematical approaches used to model them, and to the deep and
subtle market microstructure issues. This study was particularly important
for my scientific education, because it represented the bridge from genuine
mathematics and the fascinating world of quantitative finance.

Thanks to this study on market efficiency with high frequency financial
data, I was able to start building a valuable expertise made up both of
theoretical knowledge and practical competences, which was very useful in
my subsequent work within the SNS-LIST collaboration. Doing research in
QuantLab provided me with the double opportunity, on one side, to make
the most of the acquired knowledge and, on the other side, to widely deepen
it.

The main topic of the research developed in QuantLab was that of finan-
cial market systemic instabilities, which revealed to be a fertile research area
and—to me personally—a very interesting and stimulating one. The second
part of this thesis is made up of two articles written in this context.

The development of the research activity in QuantLab needed a consider-
able effort by the involved partners, requiring the engagement of people, the
transmission of knowledge between people with different backgrounds, the
building of new competences, the designing and realisation of the necessary
technological structures. All this was at its very beginning as I was finishing
my 3-year Perfezionamento course, so that the research in the QuantLab
context could be carried out only in the subsequent years.

I acknowledge LIST for the funding of the research associate position I
had at the Scuola Normale Superiore to collaborate in the research project
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Metriche di instabilita sistemica dei mercati. 1 also acknowledge the sup-
port of the research grant GR12CALCAG FEntropia di Shannon ed efficienza
informativa dei mercati finanziari at the Scuola Normale Superiore.

Throughout my long research path, I have had the privilege to work with
people who have taught me a lot from a scientific point of view and also with
whom I have spent many enjoyable moments. I am much obliged to my advi-
sor Stefano Marmi, for his wise guidance throughout my long and composite
research path. I am also grateful to my advisor Fulvio Corsi, for his precise
and valuable help. I am thankful to Fabrizio Lillo, for his valuable guid-
ance in a research area where I had a lot to learn. I warmly thank Giacomo
Bormetti, for the considerable amount of time we spent working together,
for his kind encouragement and for the many enjoyable daily moments we
shared.

Finally, I want to thank my parents, who, in their own way, kept en-
couraging me in difficult moments of my life. This thesis is dedicated to
them.

Lucio Maria Calcagnile

Pisa, July 2016






Abstract

In this thesis, we consider two topics in the field of high frequency financial
econometrics. The first one is the measurement of market efficiency from
high frequency data, within an information theory framework. The study
of this topic is performed with an analytical and empirical combined ap-
proach. The second topic is that of financial market systemic instabilities at
high frequency level and is analysed mainly with an empirical and modelling
approach.

In the first part of the thesis, we deal with the question of how market ef-
ficiency can be measured from high frequency data. Our interest is motivated
on one hand by the availability of high resolution data, that are an incredibly
rich information source about financial markets, and on the other hand by
some literature on the problem of efficiency measurement that suffers, in our
opinion, from serious methodological shortcomings. The process of incorpo-
rating the available information into prices does not occur instantaneously in
real markets. This gives rise to small inefficiencies, that are more present at
the intraday level (high frequency) than at the daily level (low frequency).

Analysing 1-minute and 5-minute price time series of 55 exchange traded
funds (ETFs) traded at the New York Stock Exchange (NYSE), we develop
a methodology to isolate true inefficiencies from other sources of regularities,
such as the intraday pattern, the volatility clustering and the microstructure
effects. Our tool to measure efficiency is the Shannon entropy. Since it
applies to finite-alphabet symbolic sources, we work with 2-symbol and 3-
symbol discretisations of the data.

In the 2-symbol discretisation, one symbol stands for the positive returns,
the other for the negative returns. The zero returns, corresponding to price
stationarity between consecutive records, are simply discarded. In the 2-
symbol discretisation, the intraday pattern and the volatility have no effect,
since they are modelled as multiplicative factors. Only the microstructure
effects affect the symbolisation. In a first analysis, we test the null hypoth-
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esis of the symbolised data being indistinguishable from white noise, i.e.,
uncorrelated data with maximum uncertainty and Shannon entropy equal to
1. Results show, as expected, that the hypothesis is not realistic and that
perfect efficiency is rejected in almost all cases. The entropy measurements,
however, provide us with a quantification of inefficiency. Data sampled at
the frequency of 5 minutes show a higher level of efficiency than those at the
1 minute frequency, confirming that the microstructure effects are greater at
higher frequencies.

Market microstructure gives rise to linear autocorrelation that have been
modelled in the literature as autoregressive moving average (ARMA) pro-
cesses. This motivates us to conduct an analytical study of the Shannon
entropy of these processes. We find analytical expressions for the Shannon
entropy of order two and three of the AR(1) and MA(1) cases. We also
prove a number of results about general properties of the probabilities of fi-
nite binary sequences derived from the AR(1) and MA(1) processes, that are
applicable and useful to obtain (at least partial) results about the entropies
of order greater than three. All this analytical work and the results about
the AR(1) and MA(1) Shannon entropy are original and we dedicate a sep-
arate chapter to this subject. We believe that these results and the whole
approach have their own interest and can be useful in other contexts as well.

Relying on the ARMA modelling of asset returns, we follow two ways.
For the series that are best fitted with an AR(1), an MA(1) or a simple white
noise process, we define a measure of inefficiency as the (suitably normalised)
difference between the Shannon entropy measured on the data and the the-
oretical value of the Shannon entropy of the corresponding process. For the
other series, which are best fitted with ARMA(p, ¢) models with p + ¢ > 1,
we define a measure of inefficiency as the (suitably normalised) difference
between 1 (the entropy of a white noise process) and the Shannon entropy of
the ARMA residuals. Results show that in some cases a large part of the ap-
parent inefficiency is explained by the linear dependence structure, while in
many other cases the ARMA residuals continue to contain some (nonlinear)
inefficiencies. We also rank the ETF's according to the measured inefficiency
and notice that the rankings are not very sensitive to the choice of the en-
tropy order. By rigorously testing the ARMA residuals for efficiency, we
reject the hypothesis of efficiency for the large majority of the ETFs.

We find a strong relationship between low entropy and high relative tick
size. This is explained by noting that an asset’s price with a large relative
tick size is subject to more predictable changes. We also notice an interesting
relation between the inefficiency of ETF's tracking the indices of countries,
with the ETFs of the Asian/Oceanic countries being very inefficient, the
ETFs tracking the indices of European countries showing a moderate amount
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of inefficiency and ETFs relative to American countries being among the
most efficient. The levels of detected inefficiency for the country ETFs can
be related to the opening time overlap between the country markets and the
NYSE, where the ETFs are exchanged with a trading dynamics that can or
cannot rely on a simultaneous evolution of the corresponding indices. We
hypothesise that those ETFs that track indices of markets that are closed
during the ETFs’ trading time are deliberately given a low price, since their
dynamics is only coarsely determined.

In a 3-symbol discretisation, one symbol represents a stability basin, en-
coding all returns in a neighbourhood of zero. Negative and positive returns
lying outside of this basin are encoded with the other two symbols. Previous
works working with a 3-symbol discretisation of data fix absolute thresholds
to define this basin. We argue that there are numerous problems in doing
so and, as a major enhancement with respect to such literature, we propose
a very flexible approach to the 3-symbol discretisation, which is also rather
general. We define the thresholds for the symbolisation to be the two ter-
tiles of the distribution of values taken by the time series. Such a definition
has many advantages, since, unlike a fixed-threshold symbolisation scheme,
it adapts to the distribution of the time series. This is important because
different assets have different distributions of returns and fixed thresholds
could introduce discrepancies in treating the different time series. Moreover,
the distribution of returns also varies with the sampling frequency, so that
a fixed symbolisation scheme for different frequencies appears inappropriate.
Finally, our flexible tertile symbolisation can be applied not only to the raw
return series, but also to series of processed returns whose values range on
different scales. Such are the cases of the returns filtered for the intraday
pattern, of the volatility-standardised returns and of the ARMA residuals.

Using the tertile symbolisation, we investigate to what degree the intraday
pattern, the volatility and the microstructure contribute to create regulari-
ties in the return time series. We follow a whitening procedure, starting from
the price returns, removing the intraday pattern, thus getting the deseason-
alised returns, then standardising them by the volatility, finally filtering the
standardised returns for the ARMA structure and getting the ARMA resid-
uals. We symbolise all these series with the dynamic tertile thresholds and
estimate the Shannon entropy of the symbolis series to measure their degree
of randomness.

Results show that, in the vast majority of cases, the raw return symbolised
series are the most predictable, with the removal of the intraday component
making the series more efficient. The most noteworthy results come however
from the standardisation step. The removal of the volatility is responsible for
the largest increase in the entropy, meaning that volatility gives the return
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series a huge amount of regularity. On average, this effect is larger (62%)
than the combined effect of the intraday (18%) and microstructure (20%)
regularity. This result convincingly demonstrates that, when studying the
randomness of a three-symbol discretised time series, the volatility must be
filtered out. Omitting this operation would give results that tell more on
the predictable character of the volatility than on, for example, market effi-
ciency. The last whitening step, consisting in removing the ARMA structure,
further contributes to move return series towards perfect efficiency. Overall,
our results show that much of the assets’ apparent inefficiency (that is, the
predictability of the raw return series) is due to three factors: the daily
seasonality, the volatility and the microstructure effects.

In the second part of the thesis we deal with the topic of abnormal high
frequency returns of asset prices® and systemic instabilities of financial mar-
kets. We also develop two different modelling approaches. Modelling the
dynamics of large movements in security prices is of paramount importance
for risk control, derivative pricing, trading and to understand the behaviour
of markets. Our interest for the topic is motivated by the importance of
understanding the consequences that the increase of algorithmic and high
frequency trading has on market stability, in a context of more and more in-
terconnected markets, where technological progress has deeply changed both
the way that trading is performed and the velocity of the spread of informa-
tion.

The purpose of this research is a deep understanding of the dynamics of
market instabilities, from many different viewpoints, with particular interest
in systemic events. We devote our attention to the study of their statisti-
cal properties, their historical evolution, their relation with macroeconomic
news, their autocorrelation and dependence properties, their modelling.

We identify the intraday times of abnormal returns by means of a jump
identification procedure based on the standardisation of one minute returns
by the intraday pattern and the local volatility. In a first work (Chapter 8),
we show that the dynamics of jumps of a portfolio of stocks deviates signif-
icantly from a collection of independent Poisson processes. The deviation
that we observe is twofold. On one side, by considering individual assets, we
find evidence of time clustering of jumps, clearly inconsistent with a Poisson
process. This means that the intensity of the point process describing jumps
depends on the past history of jumps and that a recent jump increases the
probability that another jump occurs. The second deviation from the Pois-

5We refer to abnormal returns of asset prices also as jumps or instabilities.
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son model is even more relevant, especially in a systemic context. We find a
strong evidence of a high level of synchronisation between the jumping times
of a portfolio of stocks. In other words, we find a large number of instances
where several stocks jump within the same one minute interval (which is
our maximum resolution). This evidence is absolutely incompatible with the
hypothesis of independence of the jump processes across assets.

In order to model the time clustering of jumps for individual assets we
propose the use of Hawkes processes, a class of self-exciting point processes,
which reveal to be very effective in describing the single asset jumping proper-
ties. However, the natural extension of the application of Hawkes processes to
describe the dynamics of jumps in a multi-asset framework, i.e., considering
multivariate Hawkes processes, is highly problematic due to the exponential
growth of the parameter number and, more importantly, it is inconsistent
with data. In fact, even considering just two stocks, we find that a bivariate
Hawkes model is unable to describe the high number of synchronous jumps
that we empirically observe in the data. This is due to the fact that the
kernel structure of Hawkes is more suited to model lagged jumps rather than
synchronous jumps. Our main contribution is the introduction of a Hawkes
factor model to describe systemic events. We postulate the presence of an
unobservable Hawkes process describing a market jump factor. When this
factor jump, each asset jumps with a given probability, which is different for
each stock. An asset can jump also by following an idiosyncratic Hawkes
process. We show how to estimate this model and how to discriminate be-
tween systemic and idiosyncratic jumps. Results from simulations of the
model show that it is able to reproduce the main features that characterise
the departure from a random behaviour of jumps, namely, the time cluster-
ing of jumps on individual stocks, the large number of simultaneous systemic
jumps and the time lagged cross-excitation between different stocks.

In a second work (Chapter 9), we analyse one-minute data of 140 stocks
for each year from 2001 to 2013, addressing other questions. Concerning the
evolution of the dynamics of market instabilities in the last years, our research
provides the empirical evidence that, while the total number of extreme price
movements has decreased along the years, the occurrence of systemic events
has significantly increased. This trend is more and more pronounced when
considering events of higher and higher level of systemicity. To identify the
possible causes of such events we compare their time occurrences with a
database of pre-scheduled macroeconomic announcements, which can be ex-
pected to have a market-level influence and to possibly explain market-wide
events. Unexpectedly, only a minor fraction (less than 40%) of events in-
volving a large fraction of assets has been preceded by the release of a macro
news. This evidence leaves room for the hypothesis that financial markets
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exhibit systemic instabilities due to some endogenous dynamics, resulting
from unstable market conditions such as a temporary lack of liquidity.
Finally, we provide the evidence that highly systemic instabilities have
the double effect of (i) increasing the probability that another systemic event
takes place in the near future and (ii) increasing the degree of systemicity of
short-term instabilities. In order to reproduce such empirical evidences, we
propose a model within the class of multivariate Hawkes processes, with mu-
tually exciting properties. We present a multidimensional-—yet parsimonious
in the number of parameters—Hawkes process which provides a realistic de-
scription of the market behaviour around systemic instability events.

Chapter 2 has a mathematical character and introduces the concepts of
information source and entropy in the context of dynamical systems and
random processes.

Chapter 3 presents and compares some methods to estimate the entropy of
dynamical systems, with a combined ergodic theory and information theory
approach. It is constituted by the publication (P1).

In Chapter 4 we develop the analytical study of the entropy of the AR(1)
and MA(1) processes, motivated by the study on market efficiency of Chapter
7. This is original content and constitutes part of the preprint (P4).

In Chapter 5 we review the application of information theory to gam-
bling and portfolio theory developed by Kelly. The presentation follows [1].
We also review the Efficient Market Hypothesis and some literature on the
measuring of market efficiency from real data.

In Chapter 6 we present the stylised facts of high frequency financial
data and the data cleaning procedures that we use to filter them out in the
analyses of Chapters 7, 8 and 9.

In Chapter 7 we develop our study of market efficiency measurement
using the Shannon entropy. We use both an analytical approach, using the
theoretical results obtained in Chapter 4, and a more empirical one. The
content of this chapter is original and constitutes—together with Chapter
4—the preprint (P4).

Chapter 8 contains our first work on market instabilities. It focuses on
methods for their detection and on the development of the Hawkes models
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for their modelling. This chapter also constitutes the publication (P2).

Chapter 9 is our second work on market instabilities, treating the topics
of the historical evolution of instabilities, their exogenous/endogenous origin,
the analyses about the systemicity levels and their modelling. It constitutes
the preprint (P3).
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Chapter 1

Introduction

Central theme of this thesis is the analysis of high frequency financial data.
In recent years, the wide availability of high resolution data has renewed
and stimulated the interest of researchers with a mathematical and physical
background towards the complex world of financial markets.

The mathematical study of financial markets has a long history and a
multitude of approaching methods. One that we find particularly fascinating
is the attempt to transport to financial markets some concepts from the
theory of dynamical systems. For example, in the late 1980s and especially
during the 1990s, some literature focused on the concept of chaos in financial
markets, i.e., the apparently random behaviour of markets as the result of
a nonlinear dynamics. See [2] for a literature review on the topic of chaos
in financial markets and [3, 4] for notable works on the subject. There is
also a sizeable amount of literature on the concept of entropy in finance,
which has been used as an important tool in portfolio selection [5, 6, 7],
asset pricing [8, 9, 10, 11], Efficient Market Hypothesis testing and market
efficiency measuring [12, 13, 14]. We investigate how entropy can be used to
quantify inefficiency, with the awareness that high frequency data, alongside
with the advantage of providing a much higher amount of information than
low frequency—daily, at most—data, also present serious challenges.

Another topic that, especially in recent years, has attracted the attention
of researchers is that of market instabilities. Recent crashes—the biggest and
most famous one being the 6" May 2010 Flash Crash—have posed several
questions about their nature, e.g., how frequently do they happen?, are they
occurring more and more frequently?, are their causes exogenous or endoge-
nous to the markets? We study detection techniques, correlation properties,
historical evolution, exogenous/endogenous origin, modelling possibilities.

In this thesis, we deal with the two aforementioned topics, namely the
problem of measuring the informational efficiency of markets and the study
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and modelling of market instabilities, in both cases with high frequency fi-
nancial data as our starting point.

1.1 Measuring the informational efficiency of
markets with the Shannon entropy

Financial markets are places where information plays a major role. The
agents in the market trade based on all the available information—public
and private—and it can also be said that the collective trading activity itself
generates new information. It is no surprise that, in this context of hid-
den and manifest information, information theory was applied. Information
theory has a precise beginning, identifiable in Claude Shannon’s ground-
breaking 1948 paper A Mathematical Theory of Communications, published
on the Bell System Technical Journal [15]. Though—as acknowledged by
Shannon himself in the beginning of his paper—a basis for a general the-
ory of communication was contained in the work of Nyquist and Hartley at
Bell Laboratories in the 1920s, it was Shannon’s unifying vision that revo-
lutionised communication, developing the first key concepts and inspiring a
multitude of research topics that we now define as the field of information
theory.

In his paper Shannon introduced four major concepts: the channel ca-
pacity, i.e., the concept that every communication channel has a speed limit,
measured in binary digits per second; the digital representation of data (the
term bit is used in his article for the first time), be it text, sound, image
or video; the concept of source coding, which deals with efficient represen-
tation of data and is now synonymous with data compression, based on the
removal of redundancy in the information to make the message smaller; the
quantification of the amount of information in a signal, called entropy. The
entropy of a source is essentially an average measure of the randomness of
its outputs. It represents the average amount of information that the source
transmits with each symbol, or, equivalently, the average amount of uncer-
tainty removed with the transmission of each symbol.

Soon after Shannon developed the entropy theory of information, many
attempts were made to give information a more intuitive meaning and prac-
tical applications. In his 1956 paper A New Interpretation of Information
Rate [16], Kelly proved that a gambler with side information could use some
of Shannon’s equations to achieve the highest possible return on his capital.
Presenting his idea as a system for betting on horse races, Kelly showed that
the gambler’s optimal policy is to maximise the expected logarithm of wealth
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and that this goal is achieved with the gambling scheme where bets on each
horse are proportional to the probability that each horse will win.! Kelly
also showed that the financial value of side information (i.e., the increase in
wealth that results from that information) is equal to the mutual informa-
tion between the horse race and the side information. The strong connection
between information theory and gambling on horse races was also extended
to the financial markets in the broader concept of portfolio selection, high-
lighting how striking the parallels between the theory of optimal investment
in the stock market and information theory are. In fact, gambling on horse
races can be viewed as a special case of portfolio selection, since placing bets
in a race with m horses corresponds to investing on m special stocks in the
market, where the final value of the stock for horse i is either 0 or the value
of the odds for horse 7. Both in the context of horse races and of a stationary
stock market, it has been shown that the growth rate of the wealth is a dual
of the entropy rate. The theory of growth optimal portfolios was introduced
by Kelly [16] and Latané [17] and generalized by Breiman [18]. Barron and
Cover [19] proved that the mutual information between some side informa-
tion and the stock market is an upper bound on the increase in the growth
rate.

A market is said to be informationally efficient if it is efficient in process-
ing the information. In an efficient market observed prices express a correct
evaluation of all available information. The concept of market efficiency was
first anticipated by Bachelier in 1900, who writes in his PhD dissertation
that “past, present and even discounted future events are reflected in market
price, but often show no apparent relation to price changes.” [20]. Modern
literature on market informational efficiency begins however in the 1960s,
with the independent works of Samuelson and Fama. The idea that asset
prices fully reflect all available information (the so-called Efficient Market
Hypothesis (EMH) was introduced in modern economics by Samuelson, with
his article [21]: Proof that properly anticipated prices fluctuate randomly.
Samuelson observed that “[i]f one could be sure that a price would rise, it
would have already risen.” It was Fama, though, the first to introduce the
term ‘efficient market’ [22]. In his seminal papers [23, 24, 22, 25] he was con-
cerned with the old debate between technical analysis (the use of patterns in
historical data to forecast future prices) and fundamental analysis (the use
of accounting and economic data to establish the assets’ fair prices).

Fama proposed three forms of the efficient market hypothesis, correspond-
ing to different information sets available to market agents. The weak form

IThis strategy is called Kelly criterion, Kelly betting, Kelly formula, proportional betting
or with similar expressions.
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says that prices fully reflect the information contained in past prices. The
semi-strong form maintains that prices fully reflect all publicly available in-
formation. The strong form asserts that market prices fully reflect any in-
formation, public and private.

Market efficiency implies the random character of prices (the more effi-
cient the market, the more random the sequence of price changes). A per-
fectly efficient market is one in which price changes are completely random
and unpredictable. This ideal situation is the result of many market par-
ticipants attempting to profit from their information. When investors try
to exploit even the smallest informational advantages at their disposal, their
actions have the effect of incorporating the information into market prices,
so that in the end the profit opportunities that first motivated the trades are
quickly eliminated.

A statistical description of the unforecastability of price changes is pro-
vided by the so-called random walk hypothesis (RWH), suggesting a model in
which prices evolve in a purely random manner. Much of the literature about
market efficiency revolved around the RWH and testing for the presence of
patterns in historical market data. A number of works testing data for the
RWH were published from the beginning of the 1960s to the beginning of
the 1990s, with general results supporting the RWH for daily data and only
occasional results of departure from randomness and rejection of the RWH
26].

Fama [25] summarises the early random walk literature, his own contri-
butions and other studies about the information contained in the historical
price time series and concludes that the results strongly support the weak
form of the EMH. The evidence accumulated in the 1960s and 1970s shows
that, while markets cannot be completely efficient in the strong form, there
is convincing support for the weak and semi-strong forms. Departures from
the EMH are commonly explained as consequences of over- or underreaction
to new information by the investors, when prices are temporarily pushed be-
yond the fair or rational market value and subsequently adjusted, with the
formation of patterns.

As pointed out by Campbell, Lo, MacKinlay [27], perfect informational
efficiency is an idealised condition which is never met in real markets. Inef-
ficiencies are always present in real markets and there is no point in investi-
gating the efficiency of markets in absolute terms. Rather than the absolute
view taken by the traditional literature on market efficiency, it is much more
interesting to study the notion of relative efficiency, that is, the degree of effi-
ciency of a market measured against the benchmark of an idealised perfectly
efficient market.

We stress that this is the point of view we take in this work. We shall
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investigate to what degree assets depart from the idealised perfect efficiency,
ranking them according to relative efficiency.

Relative efficiency was studied in [28, 29, 30, 13, 31, 12], where different
concepts and tools were used to measure the amount of randomness in the
historical return time series, namely, the algorithmic complexity, a variable-
order Markov model, the Shannon entropy, the Hurst exponent, the approx-
imate entropy. All these works have in common the procedure of translating
a data time series into a symbolic one, by assigning a symbol to a particular
behaviour of the price (for example, symbols 0, 1, 2 are given the meaning of
‘the price goes down’, ‘the price goes up’, ‘the price remains stable’ and the
return time series is translated into a sequence of Os, 1s and 2s). This is also
what we do in Chapters 4 and 7, investigating symbolisations of stochastic
processes and historical time series into 2 or 3 symbols. Like [13], we use the
Shannon entropy as a tool for measuring the randomness of the series.

In [28, 29, 30] the authors measure the relative efficiency of the return time
series by means of a 3-symbol discretisation, with one symbol representing
the price stability behaviour, defined as the absolute value of price returns—
or of price differences, in one case—being less than a threshold. A serious
shortcoming of their procedure, however, is that they do not normalise re-
turns for the volatility. In our opinion, much of the apparent inefficiency they
find in the series is essentially due to the persistency of volatility, which trans-
lates into the three symbols forming patterns (in periods of high volatility
the two symbols not representing price stability will be very frequent, while
the opposite will hold in periods of low volatility).

All the cited papers dealing with relative efficiency, with the exception
of [30], deal with daily data. Working instead with high frequency data
(i.e., intraday price records) is both very interesting and very challenging.
As long as the amount of information is concerned, intraday data obviously
provide a much richer source than daily data. Moreover, it is more natural
to investigate the presence of recurring patterns and inefficiencies at a high
frequency level, since at the daily level they tend to compensate. On the
other hand, we have to confront ourselves with new problems. The fact that
a security has different buy and sell prices and the fact that prices move on
a discrete grid are known as microstructure effects, since they depend on the
structure of the market and on the price formation mechanism. They are
sources of regularity in recorded price series—they add autocorrelation—and
can play a major role especially for low liquidity assets. These effects add
spurious regularity to the series, which must be properly discounted if one
wants to quantify the true efficiency.

The scientific literature has proposed a variety of approaches to the mod-
elling of microstructure. An interesting one is the modelling by means of
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the autoregressive-moving-average (ARMA) models. These models are able
to capture the return series autocorrelation due to the microstructure fea-
tures. The benchmark provided by the ARMA models can be used in two
different ways. One way is estimating the best model on the data and taking
the time series of residuals?, then analysing the residual time series to quan-
tify the remaining regularities. Another way to use the benchmark of the
autoregressive moving-average models is to compare the randomness of the
data time series with the theoretically calculated value of the randomness of
the ARMA models. We follow both approaches, developing an interesting
theoretical study about the Shannon entropy of ARMA models.

Our method to measure the assets’ efficiency is designed to discount all
known sources of regularity of high frequency data: the intraday pattern, the
long-term volatility and the microstructure effect. Only the inefficiency that
remains in the processed series, after these effects have been filtered out, can
be regarded as the true inefficiency.

1.2 Studying and modelling the properties of
market instabilities

Recent years have seen an unprecedented rise of the role that technology
plays in all aspects of human activities. Unavoidably, technology has heavily
entered the financial markets, to the extent that all major exchanges are now
trading exclusively using electronic platforms. This has profoundly changed
the way the trading activity is conducted in the market, from the old phone
conversation or click and trade on a screen to software programming. In algo-
rithmic trading, computer programs process a large amount of information—
from market data to political news and economic announcements—and out-
put trading instructions with no human intervention being required. Trading
algorithms include the search for arbitrage opportunities (for example, small
discrepancies in the exchange rates between three currencies), the search for
optimal splitting of large orders at the minimum cost, the implementation of
long-term strategies to maximise profits. An important class of algorithms is
devoted to the automatic parsing and interpretation of news releases, result-
ing in trading orders being generated before humans have even read the news
title. Electronic platforms and new technologies have facilitated the flourish-
ing of the so-called high frequency trading, which is nowadays a significant
fraction of all the trading activity in US and Europe electronic exchanges

2Residuals can be thought of as the term-by-term difference between the data and the
fitted model.



1.2. STUDYING AND MODELLING THE PROPERTIES OF MARKET
INSTABILITIES

(32].

It has been argued that high frequency trading is beneficial to the dis-
covery of the efficient price [33]. Arbitrage opportunities that may originate
under some circumstances are promptly exploited—and thus eliminated—by
algorithms that act as high frequency traders, resulting in a more efficient
price. On the other side, the ultra fast speed of information processing, order
placement and cancelling potentially allows large price movements to propa-
gate very rapidly through different assets and exchanges [34], and is believed
to be a means of contagion and the cause of an increased synchronisation
among different assets and different markets.

On 6™ May 2010, this synchronisation effect had its most spectacular
appearance in what is known as the Flash Crash. The crash started from a
rapid decline in the E-Mini S&P 500 market and in a very short time the
anomaly became systemic and the shock propagated towards ETF's, stock
indices and their components, and derivatives [35, 36]. The price of the Dow
Jones Industrial Average plunged by 9% in less than 5 minutes but recovered
the pre-shock level in the next 15 minutes of trading. The SEC reported that
such a swing was sparked by an algorithm executing a sell order placed by a
large mutual fund. Then high frequency traders, even though did not ignited
the event, caused a “hot potato” effect amplifying the crash. In the aftermath
of the crash, several studies have focused on events, evocatively named mins
flash crashes, concerned with the emergence of large price movements of an
asset in a very limited fraction of time and attributing their origin to the
interaction between several automatic algorithms [37] or to the unexpected
product of regulation framework and market fragmentation [38].

In recent years, it has been observed a growing tendency of the financial
markets to exhibit systemic instabilities, i.e., sudden large price movements
involving a great part of the market. Researchers have tried to answer the
following questions. Are these extreme price fluctuations driven by the re-
lease of price sensitive information? Or, on the contrary, are these events
an effect of any unrevealed endogenous dynamics? Many such events can-
not be associated with exogenous events such as news releases and it has
been suggested in literature that this susceptibility may be generated in an
endogenous way by the trading process itself. The Flash Crash has dramat-
ically shown how strongly interconnected different markets and asset classes
can become, especially during extreme events.

Scientific literature about discontinuities in asset prices has concentrated
mostly on the identification problem at the daily time scale, i.e., on trying to
answer the question of whether an extreme return occurred on a given day.
This topic, referred to as the jump identification problem in the econometric
literature, was extensively studied in theoretical works as well as in empirical
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analysis and applications to asset pricing. Significantly less research—and
mainly of empirical nature—has been devoted to the study of cojumps, i.e.,
large price movements occurring synchronously in two or more assets. In
literature, the modelling of discontinuities in the dynamics of asset prices is
commonly performed by means of a compound Poisson process, see e.g. [39].
While having the great advantage of being analytically tractable, Poisson
processes (as well as the more general Lévy processes) have independent in-
crements and thus cannot account for any kind of serial or cross-sectional
correlation. It is instead reasonable to presume that the jump component of
the price process has some clustering properties and that a better choice for
its modelling would be one that allows some dependence between the jump-
ing times. Moreover, considering the increased interconnection of electronic
markets, it is reasonable to expect some synchronisation between the jump-
ing times of different assets. This is particularly important when aiming to
describe and model events of systemic instabilities such as the Flash Crash,
for which using independent jump processes would clearly be inadequate.

A class of self-exciting point processes that are good candidates to well
describe the correlation properties of the jump time series is that of Hawkes
processes. These processes were introduced in seismology more than forty
years ago [40] and have been widely employed to model earthquake data
[41, 42]. In recent years, Hawkes processes have become popular also in math-
ematical finance and econometrics [43, 44, 45]. They have been effectively
used to address many different problems in high-frequency finance, such as
estimating the volatility from transaction data, devising optimal execution
strategies or modelling the dynamics of the order book.

A univariate Hawkes process is a point process whose intensity is the sum
of two components: the baseline intensity, responsible for the happening of
events unrelated to the history of the process up to the present time, and a
backward-looking kernel, which adds a further intensity for every past event
(more recent events give a higher contribution) and is responsible for the
generation of child events, i.e., events triggered by previous ones. A univari-
ate Hawkes process is thus a natural choice for trying to model a clustered
time series like the one of an asset price jumps. While the baseline intensity
could explain the exogenously generated jumps, the kernel could account for
the endogenous mechanisms of self-excitement and auto-triggering.

In a global perspective, considering market instability properties means
looking also at cross-asset dependencies and mutual excitement properties.
Since in a highly connected market large price movements in one asset can
propagate and thus be responsible of extreme returns in other assets, a model
describing global instabilities must necessarily possess inter-asset correlations
or some kind of multi-asset features.
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It is natural to consider multivariate Hawkes processes, multidimensional
point processes which possess, along with the self-exciting properties of stan-
dard univariate Hawkes processes, also cross-exciting properties for every
possible pair of processes. However, as we show in Chapter 8, they present
two notable downsides. Firstly, the number of parameters of a multivari-
ate Hawkes process grows quadratically with the dimension, i.e., an N-
dimensional Hawkes process has O(N?) parameters, and thus its estimation
becomes unfeasible for high dimensions. Secondly, but more importantly,
we find that even a 2-dimensional Hawkes model is not able to reproduce
the high number of synchronous jumps observed in empirical data. These
considerations led us to search for different approaches.

In a first work, Chapter 8, we investigate the one-asset and multiple-asset
jump clustering properties. After studying the performance of our jump
identification method and analysing some statistical properties of jumps of
individual stocks and of systemic jumps, we first compare the empirical data
with a Poisson benchmark and then develop the Hawkes modellisation of
the jump dynamics. Since, as said before, bivariate Hawkes processes fail
at describing the cojump properties of asset pairs, we develop a Hawkes
factor model, which postulates the presence of an unobservable point process
describing a market factor. When this factor jumps, each asset jumps with
a given probability. Each asset can jump also according to an idiosyncratic
point process. Both the factor process and the idiosyncratic processes are
modelled as Hawkes processes, in order to capture the time clustering of
jumps.

In a second work, Chapter 9, we propose a further deep study on sys-
temic instabilities, from different perspectives. First of all, we investigate
the historical evolution of systemic jumps in the years from 2001 to 2013,
answering the questions “How have systemic instability properties changed
in the last years?” and “Have markets become systemically more unstable?”.
Technology and market structure have evolved and continue evolving, thus
it is reasonable to hypothesise that also market systemic instabilities have
changed in some of their properties.

We then study to what extent systemic instabilities are due to macroe-
conomic news. Announcements about new interest rates, employment data,
industrial production and other economical/financial relevant news usually
cause an adjustment of markets to the new available information. This ad-
justment could be violent if the released information differs significantly from
the experts’ opinions or if it is unanticipated to some degree. However, not
all systemic instabilities can be associated with the release of macroeconomic
news and some of them can also have an endogenous origin, like the Flash
Crash.
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Finally, we study the relation of systemic instabilities with other systemic
instabilities. We do this in two ways. The first one consists in looking at
how the occurrence of a systemic event increases the probability that another
systemic event happens in a few minutes, based on the level of systemicity®
of the conditioning event. The second way consists in studying how systemic
events with a higher level of systemicity anticipate new events with high level
of systemicity.

In order to model the dipendencies among cojump multiplicities, we de-
sign a multivariate Hawkes process where each component is meant to ac-
count for the point process of a different cojump multiplicity. In other words,
we avoid modelling the single-asset jump processes and then looking at their
aggregated properties, instead we directly model the point processes of mul-
tiplicity 1, multiplicity 2, ..., multiplicity NV, where NV is the maximum mul-
tiplicity, i.e., the total number of assets. The idea supporting this approach
is what we observe on data, namely, the fact that a cojump event of a certain
multiplicity is generally followed by other events with a similar multiplicity
(multiplicity is highly autocorrelated). This accounts for both effects of (i)
highly systemic events triggering more new events and (ii) higher-multiplicity
events triggering other higher-multiplicity events. The parametrisation of the
multivariate Hawkes kernel is chosen in such a way that the exciting effect
of multiplicity ¢ on multiplicity j is highest for j =i and decreases as |i — j|
increases, i.e., the closest the two multiplicities, the highest the mutual excit-
ing effect, and the more distant the two multiplicities, the lowest the mutual
exciting effect.

3We call level of systemicity of a cojump the fraction of the market exhibiting a price
jump. Similarly, we talk of the multiplicity of a cojump event as the number of assets
involved in the collective jump. The two expressions differ in that the first one expresses
a relative magnitude, while the second one is an absolute number. However, unless their
relative/absolute character is crucial for what we say, we use them interchangeably.
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Chapter 2

Information sources and
entropy

2.1 Introduction

An information source or source is a mathematical model for a physical entity
that produces a succession of symbols called “outputs” in a random manner.
The space containing all the possible output symbols is called the alphabet of
the source and a source is essentially an assignment of a probability measure
to events consisting of sets of sequences of symbols from the alphabet. A nat-
ural definition for a source is then as a discrete-time finite-alphabet stochastic
process. However, it is often useful to explicitly treat the notion of time as
a transformation of sequences produced by the source. Thus in addiction to
the common random process model we shall also consider modelling sources
by dynamical systems as considered in ergodic theory.

A source is ergodic if, intuitively, its statistical features can be deduced
from a single typical realisation. In other words, if the source is ergodic,
observing many samples of a process is statistically equivalent to observing
a single sample, provided that it is typical, that is, it reflects the process’
properties. Ergodic theory is the mathematical study of the long-term av-
erage behaviour of systems. Historically, the idea of ergodicity came from
Boltzmann’s ergodic hypothesis in statistical mechanics, which states that
the average of a physical observable over all possible initial conditions (phase
space mean) should equal the long-term time average along a single orbit
(time mean). For an observable f on a system (X, u) with evolution law T,
the ergodic hypothesis can be expressed by

1 N-1
/fdu: lim — ) f(TFz) a. e
X k=0

N—ooo [V
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The systems for which the hypothesis holds are called ergodic.

The entropy of a source is essentially an average measure of the random-
ness of its outputs. It represents the average amount of information that the
source transmits with each symbol, or, equivalently, the average amount of
uncertainty removed with the transmission of each symbol.

2.2 Information sources

We can describe an information source using two mathematical models: A
random process and a dynamical system. The first is just a sequence of ran-
dom variables, the second a probability space together with a transformation
on the space. The two models are connected by considering a time shift to
be a transformation.

2.2.1 Random processes and sequence spaces

A discrete-time stochastic process is a sequence of random variables X1, Xo, X3, ...

defined on a probability space (X, X, ). In many cases it is useful to consider
bi-infinite sequences ..., X_1, Xy, X1, ..., and what we present for processes
with indices in N holds, with the straightforward generalisations, for pro-
cesses with indices in Z. For more details see Shields [46].

The process has alphabet A if every X; takes values in A. We shall only
be interested in finite-alphabet processes, so, from now on, “process” will
mean a discrete-time finite-alphabet process.

The finite sequence a,,, i1, - - -, 0y, Where a; € A for m < i < n, will be
denoted with a]',. The set of all strings a;), will be denoted with A7, except
for m = 1, when A" will be used.

The k-th order joint distribution of the process {X}} is the measure puy
on AF defined by

pi(ak) = Prob(X} = a¥), for every af € AF.

The distribution of the process is the set of joint distributions {pu : k& >
1}. The distribution of a process can also be defined by specifying the start
distribution p; and, for each £ > 2, the conditional distributions

Mk(a’f)

plaslaf~) = Prob(x, = a6t~ = ai~t) = )
,uk—l(al )

The distribution of a process is thus a family of probability distributions,
one for each k. The sequence, however, cannot be completely arbitrary, for

14
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implicit in the definition of process is that the following consistency condition
must hold for every k > 1,

paad) = 7 pra(af™), for every af € A", 1)

Af41 €A

A process is defined by its joint distributions and this means that the
particular space on which the measurable functions X, are defined is not
important. Given a process, there is a canonical way to define a probability
space and a sequence of random variables on it which realise the process. This
is the so-called Kolmogorov representation and it is based on the symbolic
sequences spaces. We briefly describe it here, referring the reader to Shields’
book [46] for a more detailed and formal presentation.

Let A be a finite set. We denote by AN the set of infinite sequences

r=(x;), xz; €A i>1

The cylinder determined by a!,, with a; € A for m < i < n, denoted by [a!" ],
is the subset of AN defined by

[a"] ={x e AN : 2, = a;, m <i<n}.

Let X' be the o-algebra generated by the cylinders. The elements of X
are called the Borel sets of AY. For every n > 1 the coordinate functions
X, : AV = A is defined by X,(z) = z,. The next theorem states that
every process with alphabet A can be thought of as the coordinate function
process {X,,} on the space AN endowed with the Borel sigma-algebra and a
probability measure.

Theorem 2.2.1 (Kolmogorov representation theorem). If {j} is a sequence
of measures for which the consistency conditions (2.1) hold, then there is a
unique Borel probability measure p on AN such that u([a¥]) = ur(a¥) for each
k and each a¥.

In other words, if {X,} is a process with finite alphabet A, there is a
unique Borel measure i on AN for which the sequence of coordinate functions
{X,} has the same distribution as {X,}.

For the proof, see Shields [46], p. 2.
A process is stationary if the joint distributions do not depend on the
choice of time origin, that is, if

Prob(X; = a;, m <i <n)=Prob(X;;; =a;, m <i<mn), (2.2)
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for all m, n and a]},. The intuitive idea of stationarity is that the mechanism
which generates the random variables does not change with time.

When the space of bi-infinite sequences A% is used, the definition of
cylinder extends straightforwardly to this setting and an analogue of Theo-
rem 2.2.1 holds for AZ. That is, if {u} is a family of measures for which
the conditions of consistency (2.1) and stationarity (2.2) hold, then there is a
unique Borel measure i on AZ such that pu([a¥]) = px(ak), for each k > 1 and
each a}. The projection of u on AY is obviously the Kolmogorov measure on
AN for the process defined by {u}.

2.2.2 Shift transformations

The shift is the transformation that rules the dynamics of sequence spaces.
The (left) shift is the map o : AY — AN defined by

(02)p = Tpy1, x€ AN n>1,
or, in symbolic form,
x = (x1,29,x3,...) = 0x = (T2, T3, Ty, ...).
Note that

o-_l[a::m] = [bgz—:-llh bi-‘rl =a;,m <1<,

so that the set map o~ ! takes a cylinder set onto a cylinder set. It follows
that 0! B is a Borel set for each Borel set B, which means that o is a Borel
measurable mapping.

The stationarity of the process translates into the condition u([al]) =
p((bth]) for all m, n and a?,, that is, u(B) = p(c~'B) for every cylinder
set B, which is equivalent to the condition that u(B) = u(c~'B) for every
Borel set B. This latter condition is usually summarised by saying that o
preserves the measure p or, alternatively, that p is o-invariant.

For stationary processes there are two canonical representations. One as
the Kolmogorov measure on AY, the other as the o-invariant extension to the
space A%. The latter model is called the bi-infinite Kolmogorov model of a
stationary process. Note that the shift o in the bi-infinite model is invertible.

2.2.3 Dynamical systems

Let X = (X, B, i) be a probability space and T' a measure-preserving trans-
formation, that is, a measurable T': X — X" such that

VBeB T '(B)eBeuT ' (B)) = u(B).
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Equivalently, the condition that 7" preserves the measure u is expressed by
saying that p is T-invariant.

Since the composition of measure-preserving transformations is still measure-
preserving, we can consider the iterates 7" : X — X.

Using the given definition, it is difficult to verify whether a given transfor-
mation is measure-preserving, for in general we have not explicit knowledge
of all the elements of B. It is sufficient, though, to explicitly know a semi-
algebra that generates B. A semi-algebra is a collection S of subsets of X
for which the following conditions hold:

(i) @ €S;
(ii) f A, Be Sthen ANB e S;
(iii) if A € S then X \ A = U | E; with E; € S for each ¢ and the E;’s

pairwise disjoint.

For example, if the space is the unit interval [0, 1], the collection of subin-
tervals is a semi-algebra. This follows from the following theorem (Walters
[47], p. 20).

Theorem 2.2.2. Let X} = (X1, By, 1) and Xy = (Xo, Bs, o) two probability
spaces and T : Xy — Xy a transformation. Let S be a semi-algebra that
generates By. If for each Ay € Sy it holds T™1(Ay) € By and u1 (T~ (Ay)) =
p2(As), then T is measure-preserving.

With some notation abuse, in the following we shall write T : X — X
(and similar) instead of the more correct T': X — X.

Isomorphism of measure-preserving transformations

In the study of measure-preserving transformations, it is very useful to intro-
duce a notion of isomorphism between them. Thanks to this notion, in many
cases it is possible to translate the study of a measure-preserving transfor-
mation of a given space to the shift transformation of a sequence space (see
Section 2.2.4).

Two isomorphic transformations both possess or do not possess some
properties (for instance, ergodicity, see Section 2.2.5) and for them we shall
find some invariant quantities (for instance, entropy, see Section 2.3.3).

Definition 2.2.1. Let (X1, By, 1) and (Xa, Bs, i9) be two probability spaces
with respective measure-preserving transformations

T12X1—>X1, T21X2—>X2.

17
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We say that Ty and Ty are isomorphic (or, more precisely, that the dynamical
systems (X1, By, 1, Th) and (Xa, Bs, o, T) are isomorphic), and we shall
write Ty ~ Ty, if there exist two sets My € By, My € By with uy(M;) = 1,
po(Ms) =1 such that

(i) TyMy C My, ToMy C My,
(ii) there exists an invertible measure-preserving transformation
¢ My — My  with ¢T1(x) = Top(x) Vo € My,
that is, such that the following diagram is commutative.

(M, 1) T (M, 1)

g g

(Ms, p2) L, (Ma, o)

(In the condition (ii), the set M;, i = 1,2, is meant to be endowed with the
o-algebra M; N B; = {M; N B| B € B;} and the restriction of the measure p;
to such o-algebra.)

We say that Ty is a factor of T if there exist My and My as before such
that (i) and (ii’) hold, where

(ii°) there ezists a (not necessarily invertible) measure-preserving transfor-
mation

¢ : M1 — M2 con (le(I) = T2¢(13) Vx € Ml.
In such a case, 11 is said to be an extension of T.

Observe that the relation of isomorphism between measure-preserving
transformations is an equivalence relation. Moreover, if T} ~ T5, then 17" ~
T3 for all n > 0.

Example. Let T be the transformation Tz = 22 on the unit circle
S with the Borel o-algebra and the Haar measure, and let U be defined
by Uz = 2x (mod 1) on [0,1) with the Borel o-algebra and the Lebesgue
measure. Let us consider the map ¢ : [0,1) — S! defined by ¢(z) = €*™*.
The map ¢ is bijective and measure-preserving (it is sufficient to verify it on
the intervals and use Theorem 2.2.2). Furthermore it holds ¢U = T'¢ and so
U~T.

18
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2.2.4 From dynamical systems to symbolic dynamics

We describe in these section a procedure to relate the study of a dynamical
system on a generic space to the study of a sequence space with the shift
transformation.

Let T be an invertible measure-preserving transformation of a probability
space (X, B, p) and let o« = {Ay,..., Ay} be a finite measurable partition of
X. We denote by §2 the product space {1,2,...,k}%, so that a point of 2 is
a bi-infinite sequence w = (w, )%, , where w,, € {1,2,...,k} for all n. On {2
the shift transformation o is defined as in Section 2.2.2.

We now show that there exist a o-invariant probability measure v on the
Borel o-algebra B({2) of {2 and a measure-preserving map ¢, : (X, B, u) —
(£2,B(12),v) such that ¢,T = 0¢,. For x € X define

Gar = (wp)>, Tz € A,,.

The n-th coordinate of ¢,z is the index of the element of o which contains
TMx.

It is thus defined an application ¢, : X — {2 and it obviously holds
0(pax) = ¢o(Tx), for all x € X. To see that ¢ is measurable, note that for
every cylinder set [w]], m < n, it holds

6 ) = T4,

Then for each cylinder set C'it holds ¢, ' (C') € B, and since cylinders generate
B(£2) it holds ¢, (B(2)) C B.
The map ¢, transports in a natural way the measure p on (2, B(12)):

v(E) o (¢ 'E)  for each measurable set E C 2.

Clearly ¢, : X — 2 is measure-preserving and from the map equality c¢, =
o1 it follows that o preserves v.
When the map T is not invertible, an analogue construction is possible
taking into consideration the space of symbolic sequences 27 = {1,2, ... k}.
The explained construction is very important and we base on it the com-
puter simulations we present in Section 3.6. Let us now establish some ter-
minology.

Definition 2.2.2. The sequence ¢, (x) is called the (o, T)-name of x. A
point x € X is called a-typical for T (or, simply, typical) if every sequence
WiWsy . . . Wy appears in the (o, T )-name of x with frequency u(Ay,, NT1A,, N
LoNTTHAL ).
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Note that, by Birkhoft’s Ergodic Theorem 2.2.5, almost every point of X
is a-typical for 7T

The map ¢, : X — (2 is not in general invertible, so it does not always
give an isomorphism between X and (2. In general, (2, B({2),v,0) is only
a factor or (X,B,u,T) (see Definition 2.2.1). Still, if the partition « is
generating (see Definition 2.2.3 below), then it is indeed an isomorphism, as
stated by Proposition 2.2.3, whose proof the reader can find in Petersen [48],
p. 274.

Definition 2.2.3. Let T be a transformation of the probability space (X, B, 1)
that preserves the measure p. A finite partition o = {Aq,..., A.} of X is
said to be generating if the sets of the form

A, NT A, N .nT-*b4g

i
generate the o-algebra B.

Proposition 2.2.3. The map ¢, is an isomorphism if and only if o is a
generating partition for T'.

2.2.5 Ergodicity

Let (X,B,u) be a probability space and let T : X — X be a measure-
preserving transformation. If T-'B = B for some B € B (in this case B is
said to be completely invariant), then also T~1(X \ B) = X\ B, and we could
study T considering the two transformations T'|p e T'|x\p. If 0 < p(B) < 1
this simplifies the study of 7. If, on the contrary, u(B) = 0 or u(X \ B) =0,
then considering the restrictions of 7' to B and to its complement does not
imply a significant simplification. From these considerations it emerges the
importance of studying those transformations that cannot be decomposed as
above. Non-decomposable transformations are called ergodic.

Definition 2.2.4. Let (X, B, 1) be a probability space. A measure-preserving
transformation T on (X, B, p) is said to be ergodic if the only measurable sets
that are completely invariant have either zero or full measure, that s, if

T'B=B, BeEB = puB)=0oruB)=1.

Ergodicity may be defined in many different though equivalent ways, some
of which we list in the next theorem. For its proof, see for example Walters
[47] or any textbook of ergodic theory.

Theorem 2.2.4. If T : X — X s a measure-preserving transformation of
the probability space (X, B, ), then the following properties are equivalent.
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(i) T is ergodic.
(ii) For every A € B with u(A) > 0 it holds p(UX T~ "A) = 1.

(i1i) For every A, B € B with u(A) > 0, u(B) > 0 there ezxist n > 0 such
that (T-"ANB) > 0.

(iv) If f € LY X, B, p) is T-invariant (that is, foT = f a. e.) then f is
constant almost everywhere.

(v) For every A, B € B it holds lim,,_, = Z;:ol w(T7ANB) = u(A)u(B).

One of the most important results in ergodic theory was proved by Birkhoff
in 1931 [49]. We state it in the setting of probability spaces, but it holds more
generally for o-finite measure spaces.

Theorem 2.2.5 (Ergodic Theorem, Birkhoff 1931). Let (X, B, i) be a prob-
ability space and T : X — X a measure-preserving transformation. Given
fe LYX,B,u), there exist f* € LY(X, B, 1) such that

f@) ﬂ%%%f(T@'(@) o e

Moreover f* is T-invariant (that is, f*oT = f* a. e.) and [, f*dp = [, fdu.

We remark that, if T is ergodic, from statement (iv) of Theorem 2.2.4
and from Birkhoff’s Ergodic Theorem it follows that f*(z) = [, f*du a. e.
From this remark the following corollary follows.

Corollary 2.2.6. Let (X, B, 1) be a probability measure and T : X — X a
measure-preserving transformation. Furthermore, let E € B. If T s ergodic

then
1 n—1

EZXE(TZ(QZ)) — u(E) a. e

In other words, if T 1s ergodic then the orbit of almost every point of X
enters the set E with asymptotic frequency equal to p(FE).

The following theorem asserts that ergodicity is invariant by isomorphism
(for the proof, see for example Walters [47]).

Theorem 2.2.7. Let (X1, By, p1) and (Xa, B, p2) two probability spaces with
measure-preserving transformations T; : X; — X;, (1 = 1,2). If Ty is iso-
morphic to Ty and T, is ergodic, then also T s ergodic.
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2.3 Entropy

2.3.1 Introduction

The concept of entropy was first introduced in thermodynamics by Clausius
in 1854. Shannon introduced it in information theory in 1948 and Kol-
mogorov in ergodic theory in 1958. In all these cases entropy is a measure of
randomness and disorder.

Claude Shannon based the mathematical study of information transmis-
sion on the two fundamental ideas: (1) the amount of information transmit-
ted is measured by the amount of uncertainty removed and (2) the uncer-
tainty of a transmission is proportional to the expected value of the logarithm
of the probability of the received symbol.

To be more clear, let us consider a source emitting sequences . .. zox 23 . . .,
where the a;’s are elements of a finite alphabet A = {ay, as, ..., ax}. Suppose
to receive symbol a; with probability p;, for each ¢+ = 1,... k. If each symbol
is transmitted independently of what has been previously transmitted, the
average amount of information transmitted per symbol can be measured by
the quantity

k
H=-Y p;log,p;
=1

(with the convention 0log,0 = 0). H is the expected information content
per symbol, when the information content of an event E is measured by
—log, P(E). That this is a reasonable choice comes from the fact that
the only measures of information of the form f(P(F)), with f : R —
[0, 00) continuous and additive on independent events (f(P(E) N Ey)) =
f(P(E,)P(Ey)) = f(P(Ey))+ f(P(E2))), are —log, P(E) for any r > 0. For
another justification of the definition of H see Khinchin [50]. It is common
to use the logarithm to base 2 to measure information in bits. Any other
base is of course allowed, as long as one changes the unit of measurement by
a constant factor. If some p;;, = 1 (and all others p; = 0), then there is no
uncertainty on what the source will transmit and in this case H = 0. On
the other hand, when all the symbols are equally likely to be transmitted
the uncertainty on the next symbol is maximum and in fact H attains its
maximum value when all the p;’s are equal to 1/k.

For a generic source, the probability of receiving a given symbol may
depend on what has been previously received. For example, if the source’s
output is English text, the probability of receiving a ‘u’ rises enormously im-
mediately after a ‘q” has been transmitted. These dependencies can be taken
into account when measuring information considering blocks of symbols.
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For each £ = 1,2,... let C; be the set of blocks of length &£ made up by
symbols of the alphabet A. If a block C' has a probability P(C') of being
received, the average information per symbol in a transmission of length k is

H, = —% > P(C)log, P(C). (2.3)

CeCy,

The entropy of the source is defined as the limit

h = lim —% > P(C)log, P(C) (2.4)

k—o00
CeCy

and it represents the average amount of information the source transmits with
each symbol. Equivalently, h measures the average amount of uncertainty
that a reader of the source has about the next symbol.

2.3.2 Entropy of a random process

Definition 2.3.1 (Entropy of a random variable). Let X be a finite-valued
random variable with distribution defined by p(x) = Prob(X = z), = € A.
The entropy of X is the expected value of the variable —log p(X), that is,

H(X) ==Y p(x)logp(x).

z€EA

The logarithm base is 2 and the convention Olog0O = 0 is used. If p
is the distribution of X, then H(p) may be used in place of H(X). For a
random vector (X7i,...,X,) with distribution p(z1,...,x,) = Prob(X; =

x1, ..., Xp = x,), we will use the notation
H(Xy,...,X,)=-— Z p(x1, ... xy) logp(xy, ..., x,).
T1,e0sTpy

Proposition 2.3.1. (a) Positivity. H(X) > 0, with equality if and only
if X is constant.

(b) Boundedness. If X has k values then H(X) < logk, with equality if
and only if each p(x) = 1/k.

(¢) Subadditivity. H(X,Y) < H(X) + H(Y), with equality if and only
if X and'Y are independent.
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Positivity is obvious since 0 < p(z) < 1, for all .
To prove boundedness, consider the function f defined on [0, 1] by

0 ift =0
ﬂw:{—ﬂ%tﬁ0<t§1

The function f is continuous, non-negative and convex. From Jensen’s in-
equality it follows that for all positive Ay, Ao, ..., A\x € [0, 1],

1< 1< 1 11 1
E;f@‘i) </f (E;)\z> :f<E) :—Eloggzzlogkz,

and so H(\) <logk. Clearly H(1/k,1/k,...,1/k) =logk.
For the proof of subadditivity, see Shields [46], Theorem 1.6.3.
We now define conditional entropy, which is of great importance.

Definition 2.3.2 (Conditional entropy of random variables). Let X and Y
be two random wvariables with joint distribution p(x,y) and conditional dis-
tributions p(x|y) = p(z,y)/p(y) along with its symmetrical. The conditional
entropy of X given Y is defined by

H(X|Y) ==Y plx,y)logp(zly).

It is very easy to prove the addition law
H(X,)Y)=H(Y)+ H(X|Y).

The previous unconditional inequalities extend to conditional entropy as
follows.

Proposition 2.3.2. (a) Positivity. H(X|Y) > 0, with equality if and
only if X is a function of Y.

(b) Boundedness. H(X|Y) < H(X), with equality if and only if X and
Y are independent.

(¢) Subadditivity. H((X,Y)|Z) < H(X|Z) + H(Y|Z), with equality if
and only if X andY are conditionally independent given Z.
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We can now define entropy for random processes. We state the definition
only for stationary processes, because throughout this thesis we shall never
deal with non-stationary ones.

Definition 2.3.3 (Entropy of a random process). Let X = {X;, Xs,...} be
a stationary random process with finite alphabet A and measure . The n-th
order entropy of X is

H,(p) = H(X{) == > p(a})log p(}).

TP EAn

The n-th order conditional entropy of X is

ha(p) = Ho(p) = Hyoy () = = Y pla))log p(za|2y™") = H(X, X7,

I?L eA?’L

The entropy rate or process entropy of X is

M) = H({X,}) = tim 2208

n—00 n

(2.5)

The limit in Equation (2.5) exist (see for example Shields [46], pp. 59-60).

The entropy rate of a process can be defined in an alternative way as
limit of conditional entropies, as stated in the following proposition. For its
proof we refer the reader to any textbook treating process entropy.

Proposition 2.3.3. For a random process as in Definition 2.5.3, it holds

h(p) = H({X,}) = lim ho(p) = lim H(X,| X", (2.6)

n—o0 n—oo

2.3.3 Entropy of a dynamical system

Let us consider a measure-preserving dynamical system (X, B, u, T'). A finite-
state stationary random process can be defined by specifying a finite mea-
surable partition o = {Ay, As, ..., A, } of X. Each point x € X determines
an infinite symbolic sequence which at time j has the symbol A; if TV € A;
(see Section 2.2.4).

Definition 2.3.4. The entropy of the partition v = {Ay, Ao, ..., A, } is the
quantity

Zu ) logy 1(A;). (2.7)
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A block of symbols A;,, A;,, ..., A;, starting from place of index j corre-
sponds to the entry of point 7%z into the set A, NT 1A, N...NT 1A, .
This set is an element of the partition af ! = aVvVT laV...vT*a, which
is the minimum common refinement of partitions o, T 'a, ..., T **la.

Definition 2.3.5. If o = {Ay,..., A} and 5 = {By,..., By} are two par-
titions, then

- T 'a is the partition {T1(Ay),..., T 1 (A,)},
- aV B is the partition {A;NB;:i=1,...,n;5=1,...,m},

- is a refinement of o (and we write B > «), if each Bj is, except
possibly for a zero-measure set, a subset of some A;.

With these definitions, the quantity H,, in Definition 2.3.3 is

1
—~H(aVvT av...vT "a)
n

and the entropy rate in Equation (2.5) is

1
h(a,T) = h,(a,T) = lim —H(aVT 'aV...vT " a).
n—oo M
Definition 2.3.6. The quantity h(a,T) is called the entropy of the trans-
formation 7" with respect to the partition .

The entropy of the transformation T is defined as the maximum uncer-
tainty over all the possible finite-state processes associated with T

h(T) = h,(T) = sup h(a. T). (2.8)

The number A(T) measures how much the transformation 7" ‘mixes’ the
space.

Clearly, h(T) is invariant in the class of isomorphism of T". More generally,
if S is a factor of T" then h(S) < h(T) (because each partition relative to the
system S determines a partition of the same entropy relative to 7', but not
necessarily viceversa).

A natural question, given a transformation 7', is whether there exist a
partition « such that

h(ce, T) = h(T).

In 1958 Kolmogorov ([51]) defined the entropy of T as h(a, T') when T has a
generating partition o and co otherwise. The definition given by Equation 2.8
was given by Sinai ([52]) and the equivalence between the two definitions is
known as the Kolmogorov-Sinai theorem.
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Theorem 2.3.4 (Kolmogorov-Sinai). If o is a generating partition for T,
then
hT) = h(a,T)

For the proof of the theorem we refer the reader to Petersen [48].
The existence of a generating partition for a dynamical system is assured
by the following theorem [53].

Theorem 2.3.5 (Krieger, 1970). For an ergodic dynamical system (X, B, u, T)
such that h,(T) < oo, there exists a finite generating partition c.

The identification of a generating partition is generally a challenging task.
In the following, we shall provide some examples of generating partitions in
specific cases.
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Chapter 3

Estimating entropy from
samples

When a process’ invariant measure is explicitly known, we could in principle
estimate the entropy by applying the definition. On the other hand, when
we are not given explicit knowledge of the measure, we are often not able
to know exactly the entropy of the process and the problem of entropy esti-
mation arises. A usual approach to this problem is considering long sample
sequences, which are looked at as parts of infinite typical sequences and thus
representing the statistical features of the system. To such samples several
entropy estimating algorithms can be applied.

In particular, we investigate a symbolic substitution method denominated
non-sequential recursive pair substitution (briefly, NSRPS) as a tool to esti-
mate entropy of an ergodic source. The entropy we deal with is the Shannon
entropy of finite-alphabet stationary stochastic processes, in particular those
that can be obtained as a symbolic model of a dynamical system.

The use of symbolic models of dynamical systems as a benchmark for this
kind of study is motivated by the following two important features.

e Dynamical systems can produce strings with many kinds of nontrivial
statistical features (slow decay of correlations, no Markov structure,
and so on).

e The dynamical /geometrical properties of the system under considera~
tion often allow the entropy of the system to be estimated (sometimes
rigorously calculated) by some other method (e.g., Lyapunov exponents
and geometrical properties of the invariant measure) whose results can
be compared with the estimation done by symbolic methods.

We shall compare the estimating algorithm suggested by the NSRPS
method with two others, which we shall call the empirical frequencies (briefly,
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EF) method and the return times (briefly, RT) method. We remark that
these three methods can be applied directly to the symbolic sequence with-
out having any other information on the source. For the ergodic transfor-
mations of the unit interval we shall also use another estimating algorithm
which does not apply to symbolic processes. This is the approximation of
the Lyapunov exponent, which converges very fast and will be considered as
a reference value for the entropy. We remark that the estimation of entropy
by this method uses some additional information on the system (the deriva-
tive of the map, which is calculated at each step of the dynamics, and the
dimension of the invariant measure). Each estimation algorithm is supported
by rigorous mathematical results, as it is shown in the following sections.

In Section 3.1 we formally present the NSRPS method and state the main
theorem about it. In Sections 3.2, 3.3 and 3.4 we give a review of rigorous
results supporting the estimation of entropy by the other methods we chose:
empirical frequencies, return times and Lyapunov exponent. In Section 3.5
we discuss the details of the implementation of the above methods and the
reasons of some arbitrary choice we could not avoid. In Section 3.6 we present
the experimental results, with some tables and figures.

3.1 Non-sequential recursive pair substitution

3.1.1 Introduction

The idea of applying recursive pair substitutions to symbolic sequences was
first proposed by Jiménez-Montano, Ebeling and others (see [54], [55], [56]),
but it was put into the formal context of probability theory and studied more
deeply by Grassberger [57] in 2002 and Benedetto, Caglioti, Gabrielli [58] in
2006.

We now briefly explain how the NSRPS method works.

Let us suppose to have a finite-state stationary source, that is a device
providing infinite sequences of symbols xgz1x5 ... where each x; is an element
of a finite alphabet A, in such a way that the probability of receiving a given
finite string does not vary with time. Given a sequence from such a source,
the NSRPS method prescribes to individuate the pair (or one of the pairs)
of symbols of maximal frequency and to substitute all its non-overlapping
occurrences with a new symbol o ¢ A. For example, given the sequence

011010111011000111011010011 ...,

taken from a source p for which £(01) is the highest among the probabilities
of symbol pairs, we substitute the pair 01 with the new symbol 2, thus
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obtaining
2122112100211212021 ... ..

In the case the pair to substitute is made up of two equal symbols, not all
the occurrences are to be substituted, but only the non-overlapping ones.
For example, given the sequence

00110100001010001000001100001 . . .,
we substitute the pair 00, obtaining
211012210120122011221 .. ..

Starting from a source p with alphabet A = {0, 1}, after the first substi-
tution we shall have a new source with alphabet A; = {0, 1,2} and a measure
(1 on the finite strings inherited from . We can then go on repeating the
steps, introducing new symbols 3,4, ... and obtaining new sources s, i3, . . ..

The main theorem about the NSRPS method (Theorem 3.1.3) says that
the entropy h of an ergodic source p, which is given by

M) = Jim S ) logy (e,

k—ro0
length(z)=k

can be calculated, in the limit for the number of substitutions N approaching
infinity, knowing only the probabilities according to uy of the individual
symbols and of the pairs in the new sources, after many substitutions. We
remark that the hypotheses of substituting at each step one of the pairs with
the maximum probability is a sufficient but not necessary condition for the
conclusion of the main theorem 3.1.3 to hold (see [58]).

Numerical results about the use of this method for the estimation of
the entropy of the English language were sketched by Grassberger in [57].
We show a first systematic comparison of this method with other classical
ones, by performing several experiments on artificial symbolic sequences con-
structed from dynamical systems.

3.1.2 Definitions and results on the NSRPS method

In this section we briefly recall from [58] definitions and main results on
the NSRPS method. We introduce the terms and the notations which are
fundamental to state the main theorem 3.1.3. We omit all the technical
details and the proofs, for which we refer to [58].

We recall from the introduction to the NSRPS method that the method
we study is applied to symbolic sequences which are supposed to come from
a finite-state stationary source.
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Let us call our finite alphabet A and denote with A* = UX A" the
collection of all finite words in the alphabet A. A word w € A* has length
lw| and, if |w| = k, it will also be indicated with w¥ = w ... wy.

Let z,y € A, a ¢ Aand A; = AU{a}.

Definition 3.1.1.

A pair substitution is a function G = Gg, : A* — A] which is defined by
recursively substituting all the non-overlapping occurrences of the pair xy.
More precisely, Gw is defined substituting in w the first occurrence from left
of xy with o and repeating this procedure to the end of the sequence.

We consider again the example sketched in the introduction and show
some general notation. Given the sequence

w = 011010111011000111011010011 € {0, 1}",
performing the substitution 01 +— 2 leads to
G2, (w) = 2122112100211212021 € {0, 1,2}*.

We indicate with £(A) the set of all the stationary ergodic measures
on AZ the only ones we shall deal with. If y € £(A) and w € A*, we
shall use the notation p(w) to indicate the p-measure of the cylinder set
[wy,...,wy] = NF_{X; = w;}, where the X;’s are the random variables
which describe the stochastic process.

The map G = G, naturally induces a map G = Gz, : E(A) — E(Ay),
as the following theorem shows. We indicate with #{s C r} the number of
occurrences of a subword s in a word r.

Theorem 3.1.1. [f u € E(A) and s € A, then the limit

_ oy B C Gt}
9 = B T G

exists and is constant p almost everywhere in w. Furthermore, the values
{Gu(s) }sear are the marginals of an ergodic measure on AL,

It is obvious that a pair substitution shortens the sequence it is applied to.
The following proposition gives an average quantification of this shortening.

Proposition 3.1.2. If x # y then

ef ;. n 1
i, X Nim

n0o |G(w?)] =71 = @) (u a. e inw).
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3.1. NON-SEQUENTIAL RECURSIVE PAIR SUBSTITUTION

If x =y then

def .. n 1
ZE = lim — = =
nooo |Gwp)] 1=, (=1)ku(zk)

(1 a. e inw),

where z¥ is the string made up of k symbols .

Recall from Definition 2.3.3 that, given u € £(A) and n > 1, the n-th
order entropy is

H,(p) == Y p(w)log, p(w),

lw|=n

the n-th order conditional entropy is

ha(pt) = Hppa (1) — Hi (),

and the Shannon entropy of the process p is

h(p) = lim h,(p) = lim H,(u)/n.

n—oo n—o0

3.1.3 The main theorem

Intuitively, after a pair substitution the information is more concentrated,
with respect to the original sequence. After several substitutions, the most
important blocks (the most frequent ones) are concentrated into symbols and
the value of the entropy can be well estimated by the entropy of short blocks
(Hj, with small k). This can be formulated in precise terms (see [58], Theorem
3.2 and Corollary 3.1.5) and suggests that a sequence of substitutions might
asymptotically transfer all the information to the distribution of the pairs
and individual symbols. This is precisely the content of the main theorem.
To state it, we define the following objects:

the alphabets Ay = Ay_1 U{ay} where ay ¢ Ay_; and Ag = A;

the maps Gy = GgY, : Ay, — Ay, where zy,yn € Ay_1;

- the maps between measures Gy = QQ?IJVVyN;

the measures uy = Gypun_1, with pg = pu;

the quantities Zy = Zkdyt and Zy = Zn ... Z).
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Theorem 3.1.3 ([58], Theorem 3.2). If

lim Zy = 400
N—o0

then "
B() = lim i)
—oo A

Theorem 3.1.4. If at each step N the pair xyyn s a pair with the maximum
frequency among all the pairs of symbols of Ax_1, then

lim Zy = +00.

N—00

Theorems 3.1.3 and 3.1.4 combined guarantee that, by performing at
each step the substitution of a pair with maximum probability, the entropy
of the original ergodic process is approximated by the 1-st order conditional
entropy, which takes into consideration only the distribution of the single
symbols and of the pairs of symbols. In this sense, through this method “the
ergodic process becomes 1-Markov in the limit”.

In practical utilisations of the above theorem we have access to the sta-
tistical properties of the source by measuring the empirical frequency of digit
sequences in the experimental data we have. Given a sequence x1xs ... T,
the empirical distribution of the (overlapping) k-blocks a¥ is defined naturally
by
#{ie[l,n—k+1]: 2" =ak}

n—k+1
and its empirical k-entropy is defined by

pi(atlat) = (3.1)

Hy(a}) = = > pe(w|a}) log, pr(wl|a?).
lw|=k

Let us call G the substitution operation on the maximal frequency pair
(if there are more than one string of maximal frequency, the lexicographic
order is used). By ergodicity, it is possible to rephrase the above theorem
into a statement which is more similar to what can be pratically done on
long strings coming from the source.

Corollary 3.1.5. If ju is ergodic, for almost every w € AN

— m lim Hy(G™M(wh)) — Hi(G™(wh))
h(p) = lim lim i :

where Zy(wh) = m is the shortening rate after n substitutions.
1
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3.2. EMPIRICAL FREQUENCIES (EF)

Proof. Let w be a typical realisation of the system. Since the system is er-
godic, limy_,o Hp(G™ (W) = Hy (i), hence lim;_, o HQ(G”(wll))—NHl(G"(wll_))

hi(pt,). Moreover, in the same way, when n is fixed and [ — oo, Z,(w}) — Z,
and the corollary follows from the above Theorem 3.1.3. ]

3.2 Empirical frequencies (EF)

To estimate entropy directly by the definition, a simple procedure consists
in determining the empirical distribution p; of the overlapping k-blocks and

taking Hip) a5 an estimate for h. If k is fixed and the length of the sample

k
sequence n tends to infinity, then % almost surely converges to %,

which tends to h as & — co. Theorem 3.2.1 below guarantees that these two
limits can be performed together with k(n) ~ log, n.

Given the sequence 125 . .. z,, the empirical distribution py(-|z7) of the
overlapping k-blocks is defined as in (3.1). The following holds.

Theorem 3.2.1. If u is an ergodic measure of entropy h > 0, if k(n) — oo

. logon
asn — oo and if k(n) < =5%=, then

: I~ n
nlg{)l() WHk(n)(xl) =h, a. s

The above theorem gives an indication about how in practice it is possible
to deal with the double limit in the estimation of entropy (length of the
sample, length of the blocks) reducing it to a single limit. For the proof and
further details see [46], Theorem I1.3.5 and Remark I1.3.6. We remark that
the same result holds for non-overlapping distributions. The reason why we
chose to consider the overlapping one is to enrich the statistic as much as
possible, as it will be explained in Section 3.5.

In practical applications it turns out that the empirical entropy is not the
best possible statistical estimator for the entropy. In cases when the length
of the sample is not large enough compared to the length of the blocks (see
Theorem 3.2.1 for the orders of magnitude), the empirical entropy tends to
underestimate the entropy. To correct this bias, some better estimators have
been defined in the literature, first by Miller [59] and then by Grassberger
with a furtherly improved estimator.

In our experiments we use the Grassberger estimator He, defined as fol-
lows (see [60] for details). Let us consider the sequence Gy, Go,... defined
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CHAPTER 3. ESTIMATING ENTROPY FROM SAMPLES

by
Gy, = —y—In2
Gy = 2—v—1In2
G2n+1 = GQn
Gonyo = Gy + #ﬂ (n>1),

where v = 0.577215... is Euler’s constant. For N points distributed ran-
domly and indipendently into M boxes, according to probabilities py, ..., pas,
the entropy H = —Zi]\il p; In p;, which is naively estimated by I—:Tnaive =
InN — % Zf\il n;Inn; (the n;’s being the observed occurrences; notice that
in the case of strings this corresponds to the empirical entropy), is better
estimated by

1 M
He=InN — N;niGm.

In our context, when estimating the entropy Hj, the set of boxes is the set
of possible strings of length k. This set has M = 2* elements in the case of
a binary alphabet. The occurrences of the k-blocks in the sample give the
various n;’s.

We end remarking that, while experimental examples contained in this
study are long artificial trajectories mostly coming from dynamical systems,
when working on short sequences (for instance, finite realisation of some
biophysical processes or experiments), surrogate analysis can be useful in
order to take into account fluctuations of entropy (see e.g. [61], [62]).

3.3 Return times (RT)

Ornstein and Weiss proved an interesting result which links entropy and the
so-called return times for ergodic processes. They showed in [63] that the
logarithm of the waiting time until the first n terms of a sequence x occur
again in x is almost surely asymptotic to nh.

Definition 3.3.1. Given a sequence x taken from an ergodic process, we
define the n-th return time as

Ry(z) =min{m > 1: 21} = 27}

Theorem 3.3.1. If i is an ergodic process with entropy h, then

1
lim —log, R,(x) =h, a. s.

n—oo 1,

For the original proof see [63], for an alternative one see [46], Theorem
IL.5.1.
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3.4. LYAPUNOV EXPONENT

3.4 Lyapunov exponent

If we are interested in the estimation of the entropy of a one dimensional
system a powerful tool is the Lyapunov exponent.

Let us consider a map 7' : [0,1] — [0,1] having an ergodic invariant
measure p. We define its Lyapunov exponent by

1
)\M:/ log, T"dpu.
0

Under some assumptions (see below) this quantity is related to the fractal
dimension HD(u) of v and the entropy h, of the system by the formula
HD(p) = i—" Hence, if we know HD(u) and estimate A, numerically, we
obtain an estimate for hy.

Let us give a precise statement for one dimensional systems (see [64] for
a generalisation to multidimensional systems). A map T : [0,1] — [0, 1] is
called piecewise monotonic if there is a sequence {Z;};en of disjoint open
subintervals of [0, 1] such that 7| is strictly monotone and continuous for
each 1.

Let us consider the set Ez = NMjenT *(UjenZ;), where all iterates of T
are in the open intervals. Let p be an invariant ergodic measure such that
pu(Ez) = 1. Let us consider its Lyapunov exponent )\, and its Kolmogorov-
Sinai entropy h,. Let us denote by HD(X) the Hausdorff dimension of a
subset X C [0, 1]. The Hausdorff dimension H D(u) of a measure p is defined
as the infimum HD(p) = inf,x)=1(H D(X)) of the dimension of full measure
sets.

Let us consider the p-variation of a function f : [0,1] — R on a subinterval
[a, b] defined by:

varfa’b](f) = sup{2|f(a:i1) —flx)P |meNa<zy<...<xp < b}.

We say that the derivative of a piecewise monotonic map has bounded p-
variation if there is a function g such that g(z) =0 on [0,1] \ Ez, g =T’ on

each Z; and vary, ,,(g) < oo.

Theorem 3.4.1 ([65]). Let T be a map on [0, 1] with finitely many monotonic
pieces and a derivative of bounded p-variation for some p > 0. If u is an
ergodic 1mvariant measure with Lyapunov exponent A\, > 0, then
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In many of the systems we will study we have that the invariant measure
1 we consider is absolutely continuous with respect to the Lebesgue measure
with a regular (bounded variation or continuous) density, hence HD(u) = 1.
The Lyapunov exponent will be then numerically estimated with a Birkhoff
average along a typical orbit of the system, hence giving

! " log, (T'(T"
hu — / 1Og2 T'du — lim Zz:l 0g2( ( (‘IO)))
0

n—00 n

for p-a.e. xp, by the Ergodic Theorem. Experimental results indicate that
this limit converges very fast and gives a very good estimation for h,,.

3.5 Computer simulations

Concerning the results of the computer simulations, some comments are due
on the way we implemented the entropy estimating algorithms.

e About empirical frequency estimation, in our simulations we could not
consider blocks much longer than 23 bits. This is because the algorithm
takes a time which grows exponentially in the length of the blocks
considered. The empirical distribution of blocks of various lengths was
calculated on the entire symbolic sequence. The values taken as entropy
estimates are those calculated by means of the estimator Hg (divided
by In2 to have the entropy expressed in bits). In all but three cases
they do not differ significantly (the differences being at most 1073) from
the ones calculated in the naive way and in the other three cases they
are actually better (the expanding map F, the logistic map A4 and the
Manneville map with exponent %)

e The return times method was performed by calculating the return times
of strings long up to log,n, where n is the length of the symbolic
sequences. Moreover, in order to have more reliable results, for every
binary sequence we considered not only the return times of the initial

strings #%, but also of x5t 252 299 and took the average
of their logarithms, hence what we measure is an average return time

indicator.

e In the implementation of the NSRPS method, at every step the substi-
tution with a new symbol of a pair with maximum probability was
performed, then we calculated the conditional entropy of order 1 and
the inverse of the mean shortening 7 estimating the entropy according
to Corollary 3.1.5.
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The implementation of the substitutions method did not show mean-
ingful computational constraints, since performing a pair substitution
requires a very short time. Nevertheless, there is one algorithmic ques-
tion to be answered: the identification of a stop condition.

For the estimation of the entropy with NSRPS, at the moment we have
not an analogous of Theorem 3.2.1, hence we have to find how many
substitutions it is convenient to made on a finite sample string. We
had to understand when to stop the substitutions before the sequence
becomes too short and consequently the statistics becomes too poor.
We chose to stop when the following condition has occurred:

StopCond: the substituted pair has frequency < 0.02.

The stop condition above is somewhat artificial and has no intrinsic
relation with the symbolic process. In all the cases we studied we knew
the true entropy or estimated it quite precisely by means of the Lya-
punov exponent, so that we could understand when the approximation
through the pair substitutions method was good. In all our processes,
for which we took symbolic samples long 15 millions bits, it seems that
few tens of pair substitutions are enough for the estimate to become
more or less constant when considering the first three decimal digits.
Obviously, when the process is independent or 1-Markov at most one
pair substitution is needed in order to have a very precise estimate of
the entropy. On the contrary, processes which have long memory prop-
erties need many pair substitutions. The stop condition we used does
not take into account the memory properties of the process, so that
it lets the algorithm performing unnecessary pair substitutions in low-
Markov cases and stops it before useful substitutions in long-memory
processes. Although a threshold lower than 0.02 in StopCond could
improve the estimates, the goal is to find some criterion, both user-
independent and sequence-dependent, which determines for each case
the most appropriate number of substitutions to perform.

3.6 Experiments

We now describe the transformations of the unit interval generating the sym-
bolic sequences to which we applied the entropy estimating algorithms.
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3.6.1 Maps

We considered a few maps of the interval, to which we applied the construc-
tion explained in Section 2.2.4 to obtain symbolic sequences.

Piecewise expanding maps

We considered a piecewise expanding map F, defined by

By s itz e |0,
2ol if e [1]

N

which is discontinuous in 3 and has two surjective branches (see Figure 3.1).
It holds E’(z) > k for all x, where k > 1is a constant. As it is well known (see
e.g. [66]), a map of this kind has a unique absolutely continuous invariant
measure with dimension 1. Moreover, Theorem 3.4.1 applies and we can
estimate the entropy by the Lyapunov exponent. A generating partition for
Eis {[0, 3, [5,1]} (see [67], Exercise 3.4).

We show the results of the entropy estimates in Table 3.1 and Figure 3.1.

map hLyap her hrr | hnsrps (Nsub)

E 0.8673 | 0.864 | 0.838 0.867 (17)

Table 3.1: Entropy estimates for the piecewise expanding map E. The values
Riyaps NEF, hrr and hysrps are the entropy estimates as Lyapunov expo-
nent or by empirical frequencies, return times, NSRPS, respectively. Ny, s
the number of pair substitutions executed when the stop condition StopCond
occurs.

The NSRPS method gives the best estimate. Though, the substitutions
themselves have no particular role, since the map seems to be 1-Markov (the
first value calculated with the substitutions algorithm is already very close
to the true entropy).

Lorenz-like maps

Another example of map with two non-surjective branches is a Lorenz-like
map (similar maps are involved in the study of the famous Lorenz system)

defined by
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PIECEWISE EXPANDING MAP
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Figure 3.1: Piecewise expanding map E and entropy estimates by means of
empirical frequencies, return times and NSRPS. The straight line corresponds
to the Lyapunov exponent value.

The derivative of L is uniformly greater than 1 for all z € [0,1] \ {3} and
L’(%i) = 400 (see Figure 3.2).

As for the previous piecewise expanding map FE, the Lorenz-like map L
has a unique absolutely continuous invariant measure with dimension 1 (see
[66]). Theorem 3.4.1 does not apply in this case because the derivative is not
bounded and hence has not p-bounded variation. However the usual relation
between entropy and Lyapunov exponent holds and can be recovered by [68].
Moreover, the natural partition {[0, 3[,[3, 1]} is generating (see again [67]).

In Table 3.2 and Figure 3.2 the results obtained for the map L are shown.

The Lorenz-like map L appears not to be 1-Markov. In fact, from the plot
relative to NSRPS in Figure 3.2 it can be noticed that the best value is not the
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map hLyap her hrr | hnsrps (Nsub)

L 0.7419 | 0.765 | 0.723 0.748 (17)

Table 3.2: Entropy estimates for the Lorenz-like map L. Ny is the number
of pair substitutions executed when the stop condition StopCond occurs.

LORENZ-LIKE MAP

o 1 [ ©0 0 o0 o
6666060000000 0600

Figure 3.2: Lorenz-like map L and entropy estimates by means of empirical
frequencies, return times and NSRPS. The straight line corresponds to the
Lyapunov exponent value.

first estimated, that is simply the 1-st order conditional entropy h;. Instead,
there are pair substitutions that significantly improve the approximation of
the entropy. These substitutions are those which condense more information
than others. Furthermore, this is one of the cases in which a few more pair
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substitutions after condition StopCond occurs give a better estimate.

Logistic maps

The logistic maps are of the form
Mz =X x(l—x), 1<A<A4

We took A = 4, 3.8 and 3.6 (the graph of Azg is shown in Figure 3.3
(map)). For all these three maps, the partition {[0,1[,[3,1]} is generating
(see [67]).

For A = 4 there is a unique invariant measure, which is ergodic and
absolutely continuous with respect to Lebesgue and whose density is p(z) =

L__ Furthermore, the dynamical system ([0, 1], B([0, 1]), p(z)dz, A4) is

my/ x(1—1x)

isomorphic to the shift on the Bernoulli process with alphabet {0,1} and
parameter % Thus, for the entropy it holds h(Ay) = 1.

About the maps A3z g and A3 g we remark that the assumptions of Theorem
3.4.1 still hold and the dimension of the invariant measure is estimated to be
very close to 1 (see [69]). Hence we assume to be reasonable to estimate the
entropy by the Lyapunov exponent.

In Table 3.3 we summarise the final entropy estimates obtained with the
four methods for the three logistic maps, while in Figure 3.3 we show in
graphical form the complete results for the map Asg.

map hLyap her hwr | hnsrps (Nsub
Ayg 1 1.0000 | 1.000 | 0.959 1.000 (17
Asg 10.6234 | 0.652 | 0.610 0.628 (18

(18

)
)
)
)

Asg | 0.2646 | 0.348 | 0.314 0.269

Table 3.3: Entropy estimates for the logistic maps Ay. Ngy is the number of
pair substitutions executed when the stop condition StopCond occurs.

For the map A4 the NSRPS method does not require any substitution
to correctly estimate the entropy up to the sixth decimal digit. This is no
surprise, since the symbolic process associated with A, is independent.

Instead, for the map Asg it happens that, similarly to the NSRPS case
of the map L (see Figure 3.2), there are pair substitutions which are more
important than others in approximating the value of the entropy, as it can
be noticed in Figure 3.3.
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LOGISTIC MAP
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Figure 3.3: Logistic map for A = 3.8 and entropy estimates by means of
empirical frequencies, return times and NSRPS. The straight line corresponds
to the Lyapunov exponent value.

The entropy estimating algorithms give for the map As¢ results that are
qualitatively similar to those of Ajsg.

Manneville-Pomeau maps

Manneville maps exhibit dynamics with long range correlations. They are
defined by
M,z =z +2° (mod 1), 2 € R".

Such maps have great interest in physics and possess different charac-
teristics as the exponent z varies. We focused our attention on the values
1 < z < 2, for which the maps admit a unique absolutely continuous invari-
ant probability measure (with unbounded density). For these parameters,
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the system has power law decay of correlations, and the rate is slower and
slower as z approaches 2 (see e.g. [66], section 3). In this case the system
has “long memory” and to estimate entropy by the empirical frequencies we
would need long blocks. For z > 2 the absolutely continuous invariant mea-
sure is no longer finite. We also remark that since those maps have bounded
variation derivative, in the cases where the absolutely continuous invariant
measure is finite we can again estimate the entropy by the Lyapunov expo-
nent. We took values of z which go very close to 2: z; = %, 2y = %, 23 = 1—85,
2 = 3 25 = B 25 = 2T (see the plot of M., in Figure 3.4). For all
1 <4 <6 it holds M (x) > 1 for all z €]0,1] and M (0") = 1. For these
maps the natural partitions {[0, ¢;[, [¢;, 1]}, where ¢; €]0, 1] is that value such
that M., (c;) =1 and M,,(c;) = 0, are obviously generating.

The presence in 0 of an indifferent fixed point is the main responsible
for the peculiar behaviour of the Manneville maps. When, starting from
a random point z, after a certain number 7 of iterations the point Mz
happens to be very close to 0, the subsequent iterations remain very close to
0 for a long time. This fact translates in having many consecutive zeros in
the binary symbolic sequence associated with the orbit of xy. These strings
of zeros can be long even hundreds of thousands of bits or more. The closer
to 2 is the exponent z, the longer and more frequent these strings.

In carrying out the simulations for the Manneville maps and commenting
their results, one cannot ignore the peculiarities of these maps. It turns out
that the symbolic sequences we generated are too short to reflect the general
characteristics of the maps. If in a sequence of 15 millions bits there happen
to be groups of consecutive zeros that are hundreds of thousands of bits
long, then the results obtained from such a sequence cannot be completely
reliable. The usual approach to this problem is considering many sequences,
generated from different initial random points, and taking the averages of
the estimates. For the map M,, we considered 2: sequences, with 1 <17 < 6.
Still, the values obtained from the various sequences are quite different, so
that we cannot consider completely reliable the averages as well.

Bearing in mind these considerations, we report in graphic form the re-

. 31 . .
sults for the Manneville map M,, = z + 21 (mod 1) (see Figure 3.4), while
the results for all the six Manneville maps considered are shown in Table 3.4.

For each Manneville map that we studied (except for M %), the entropy
estimates obtained through the NSRPS method were clearly the closest to
the true entropy (which we assumed to be equal to the average Lyapunov

exponent), although they were not as close as for the other maps or processes
(see Section 3.6.2).
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map hLyap her hrr | hxsres (Nsub)
Ms |0.811|0.816 | 0.821 0.813 (18)
Mz 1 0.519 | 0.529 | 0.558 0.511 (20)
Mis | 0.314 | 0.344 | 0.442 0.322 (19)
Ms | 0.228 | 0.247 | 0.444 0.226 (21)

(21)

(21)

M% 0.175 | 0.237 | 0.400 0.216 (21

M% 0.168 | 0.217 | 0.358 0.196

21

Table 3.4: Entropy estimates for the Manneville maps M,,. N, ts the aver-
age number of pair substitutions executed when the stop condition StopCond
occurs.

A skew product

We consider an example of a two dimensional system having long range
correlations which is quite different from the Manneville map. Let us consider
the following map S : [0, 1]* — [0, 1]* defined by

S(z,y) = (Ex,y + a¢(r) mod 1)

{1ﬁle . . . .
where: ¢(x) = . ? , a is a diophantine irrational and FE is the
Oif v <3

one dimensional piecewise expanding map considered in Section 3.6.1. In the
system the z coordinate is subjected to a chaotic transformation, while the
y is rotated according to the value of z. Such systems preserve an absolutely
continuous invariant measure and are mixing. Some estimations for the decay
of correlations are given in [70].

We partitioned the unit square in four equal squares ()1, . .., (4 having a
common vertex at (3, 3).

The entropy of S with respect to the partition {Q1, ..., Q4} is the same as
the entropy of E. Indeed, the rotation has zero entropy and a symbolic orbit
for the two dimensional system can be constructed by the information given
by its symbolic orbit for the one dimensional map E and the information
relative to the rotation part. Although the entropy is the same, its estimation
is much more complicated, as the experiments show.

In Figure 3.5 we consider the case where a = HT\@ is the golden ratio.
The empirical frequencies and the substitutions seem to converge to a value

which is slightly greater than the true entropy. The return time instead seems
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Figure 3.4: Manneuville map with z = i’—é and entropy estimates by means of
empirical frequencies, return times and NSRPS. The straight line corresponds

to the Lyapunov exponent value.

to better approximate the entropy in this case.

3.6.2 Renewal processes

Apart from the symbolic sequences obtained from ergodic transformations of
the unit interval, we considered sequences taken from the so-called renewal
processes.

A renewal process is a stationary process with alphabet {0, 1} for which
the distances between consecutive ones are independent and identically dis-
tributed random variables. When a symbol ‘1’ occurs, the sequence forgets
all its past and the probability of having the next ‘1’ after j bits is p;, where
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Figure 3.5: Results for the skew product S: entropy estimates by means of
empirical frequencies, return times and NSRPS. The straight line corresponds
to the entropy value.

ngjglandzjilpjzl.

We considered such renewal processes, with p; = ps = ... = por = 2%,

5 < k <9, which we shall indicate with RPsx.

For these renewal processes, the value of their entropy can be calculated
exactly. We recall in fact that the entropy of a process is the number of bits
per symbol that are necessary to describe the process itself. The quantity
C=-> ; pjlog, pj represents the number of bits that one needs to describe
the process of the jumps between consecutive ones. In other words, C' is the
entropy of a random variable which describes the length of the jumps. If n is
large, with n jumps (nC' bits) we describe a sequence long about n.L symbols,
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where L is the average length of the jumps. Thus,

nsoo nC =255 P 1082 D)

nL ijl JP;
In our cases, where p; = ... = pyr = 2% and p; = 0 for j > 2%, we have
2k
h(RPy) = ———.

In Table 3.5 we show the results of the entropy estimates for the renewal
processes RP,: and those of RP;, are also plotted in Figure 3.6.

map h| hgr| hrr | hxsres (Nsub
RP3s |0.303030 | 0.321 | 0.272 | 0.303067 (11
RPsy |0.184615 | 0.196 | 0.153 | 0.184793 (22
RPsg | 0.108527 | 0.115 | 0.110 | 0.108498 (25
(
(

RPys6 | 0.062257 | 0.066 | 0.055 | 0.062239 (18
RPs15 1 0.035088 | 0.037 | 0.039 | 0.035112 (16

)
)
)
)
)
)

Table 3.5: Entropy estimates for the renewal processes RPyx. Ny is the
number of pair substitutions executed when the stop condition StopCond oc-
curs.

For this process, the substitutions method gives an excellent approxima-
tion of the entropy already after five pair substitutions. After these substitu-
tions all the memory of the process has been transferred to the distribution
of the pairs, so that the sequence has become 1-Markov.

3.7 Conclusions

The performance of the three symbolic methods is summarised in Figure 3.7.
NSRPS results to be the method that best approximates the entropy value.
To this aim, it is a fast and light computational tool that may be used also for
systems having low entropy or long range correlations where other statistical
methods fail.

We showed for the first time a comparison in entropy estimation among
NSRPS and other well-known methods. The results also open some further
questions about NSRPS:
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RENEWAL PROCESS

08

06

uuuuuuuuuuuuuuuuuuuuuuu

© 6500000000000 0000000O0O0O0

Figure 3.6: Results for the renewal process RPsy: entropy estimates by means
of empirical frequencies, return times and NSRPS. The straight line corre-
sponds to the entropy value.

e How to prove an analogous of Theorem 3.2.1 for NSRPS giving a suf-
ficient number of substitutions in function of the length of the string?

e Are there other meaningful substitution methods (different from the
recipe given in Theorem 3.1.4) that may be proved to be (at least)
sufficient for Theorem 3.1.3 to hold?

e Can the joint use of NSRPS and Lyapunov exponent (which are both
fast converging and fastly computable) together with Theorem 3.4.1
give a particularly good method to numerically estimate the Hausdorff
dimension of an attractor?

e Concerning the applications of NSRPS to non-artificial processes, such
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Figure 3.7: Entropy estimates for the maps E, L, Asg, M%l, S and the
renewal process RPss: symbol U1 refers to the NSRPS value under StopCond
condition; B refers to the EF value and o refers to the RT method. Straight
lines show the entropy values (for the maps they are the estimated Lyapunov
exponents).

as literary texts, biological sequences (DNA, proteins) and time series
in general, what interesting features of the driving dynamics may be
extracted?

e NSRPS method might be the core of some data compression algorithm
(see [71]). This should pave the way to some investigations towards
its compression capabilities in comparison with other well-known algo-
rithms. We remark that data compression procedures have also been
successfully used as entropy estimators (see e.g. [72] and [73]).
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Chapter 4

Entropy of the AR(1) and
MA (1) processes

In Chapter 3 we have studied the entropy of some nonlinear deterministic
dynamical systems, while now we devote our attention to two linear stochastic
dynamical systems.

In this chapter we study from an analytical point of view the Shannon
entropy of suitably discretised versions of the AR(1) and MA(1) processes.
We start with the usual definitions of these processes and then translate them
from continuous to discrete symbolic phase state, by using two symbols to
play the roles of negative real values and positive real values. This is a rather
coarse discretisation, but it has the advantage of being by far the most simple
one to treat analytically.

We eventually find analytical expressions for the entropies Hy, Hs, ho, hg.
The techniques used to derive these results cannot be immediately extended
to obtain analytical forms of Shannon entropies Hy and hj of higher order,
that is, with &£ > 3. Other tools, in addition to the ones we use, seem to be
needed in order to derive further results.

The theoretical study reported in this chapter is motivated by the study of
high-frequency financial time series of Chapter 7. In that context, the AR(1)
and the MA(1) processes are often used to describe and model the time series
of price returns of financial assets. The theoretical approach adopted in this
chapter to finding the Shannon entropy of these processes and the results we
find can help in empirical analyses where such processes are employed.
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CHAPTER 4. ENTROPY OF THE AR(1) AND MA(1) PROCESSES

4.1 The AR(1) and MA(1) processes

The building blocks of the AR(1) and MA(1) processes (or, in general, of all
ARMA (p, ¢) models) are random variables {¢, },c7 constituting a white noise
process, that is, a sequence of random variables such that the following three
conditions hold:

(i) Ele) = 0, for each ¢;
(ii) Varle] = o2
(iii) Covles, €] = 0, for all s # ¢.

This is the standard definition of white noise process and much theory on
linear stochastic models is developed making no further assumption. How-
ever, to obtain analytical results we crucially use properties of a Gaussian
white noise, which do not hold for general white noise processes. From now
on, in this chapter, we indicate with {¢}; a Gaussian white noise process,
that is, we assume

€ are i.i.d. N(0,0?). (4.1)

4.1.1 The AR(1) process

Let {€:}1ez be a Gaussian white noise process as defined by (4.1). For ¢ € R,
the autoregressive process of order 1 is defined by!

Xt = ¢Xt—1 + €¢. (42)

In what follows we shall consider only values of the autoregressive parameter
¢ for which the AR(1) process defined by (4.2) is stationary, which happens
for |p| < 1.

By recursive substitution, the random variable X; may be expressed as a
linear combination of infinite past white noise terms, that is,

Xt =€ + ¢6t71 + ¢26t72 + ... = Z ¢i€t,i. (43)
1=0

This definition is referred to as the MA(oco) form of the AR(1) process.

LA more general definition would include a mean constant term to be added to the
right-hand side of Equation (4.2). However, we do not intend to make a presentation of
the most general AR(1) process and just define the process in the form we treat it.
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4.1. THE AR(1) AND MA(1) PROCESSES

From the stationarity of {X;}; and the expressions (4.2) and (4.3) it
follows that

{ E[X] =0
Var[X;] = ZioE[(b%EiJ = Z?io ¢¥o? = % ’

so that the unconditional distribution of X; is N (0, 1f12). If we were told
the value of X;_q, for some ¢, we would have

Eia[Xi]  =¢Xia
Var; 1[X;] = o? ’

where with E;_; and Var;_; we denote the conditional expectation and con-
ditional variance E[-]X;_1] and Var[-|X;_1]. The conditional distribution of
X, given the knowledge of X;_ 1, is thus N (¢pX;_1,0?).

It is convenient to find also the conditional distribution of X;, given the
knowledge of X; ;. This will be useful when calculating entropies in Sec-
tion 4.2.2. By partial substitution we have X; = ¢, + ¢e_1 + ¢*¢ o+ ... +
¢ te_i1+¢"X,_; and thus the conditional distribution is /\/'(gbiXt_i, 11__—22;02) )

4.1.2 The MA(1) process

Let {€ }iez be a Gaussian white noise process as before. Given 0 € R, the
moving average process of order 1 with parameter 6 is defined by?

Xt = €¢ + 06,5_1. (44)

The MA(1) process is stationary for all values of the parameter § € R, and
what we will say and the results we will obtain about this process hold for
all possible values of #. However, in the applications we are concerned only
with values |#] < 1. For these values the MA(1) process is invertible and it
can be expressed in an AR(co) form, so that Equation (4.4) is equivalent to

Xi=0Xi 1 — X, 0+ 00X 35— tea=) (-1)T0X,+e  (45)

=1

The random variable X; has unconditional distribution A(0, (1 + 6%)0?)

and conditional distribution, given the knowledge of X;_y, V(12 Xi—1, (1+19j;;94 a?)).

2As in the case of the AR(1) process, this is not the most general definition of the
MA(1) process, but it is the one we shall work with.
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CHAPTER 4. ENTROPY OF THE AR(1) AND MA(1) PROCESSES

4.2 The Shannon entropy of the processes AR(1)
and MA(1)

We recall from Definition 2.3.3 that, for a finite-state random process {S;}
with measure p (we shall refer to this object also as the source p), the k-th
order Shannon entropy is

Hy(u) = H(SY) = = ) p(s})log u(st), (4.6)

sheAk

where A is the finite alphabet of random variables S;, and the k-th order
conditional entropy is

T () = Hyo(p) — Hea () = — D palsh) log pu(si|s} ).

sIfEAk

Moreover, we recall that the quantities H‘“k(“ ) and hi (1) converge, as k — oo,

to a common value h(u), which is called the entropy rate of p.

In order to talk about the Shannon entropy of the processes AR(1) and
MA (1), whose phase space is continuous, we need some kind of discretisation.
Among the infinitely many possible discretisations, we choose the simplest
one which is not trivial. If {X;}; is an AR(1) or an MA(1) process as defined
in Sections 4.1.1 and 4.1.2, we define the binary symbolisation

B 0 itX, <0

The symbolisation (4.7) is almost always defined, since the case X; = 0
has obviously measure zero. In probabilistic terms, there would not be any
difference between the given definition and one where the equality to zero
is assigned to either symbol 0 or 1. The symbolisation (4.7) thus defines a
binary process {s; }, which will be the object we shall be studying throughout
this section. This finite-state process has a measure p inherited from and
depending on the original process X;. When we want to specify to which

process we are referring to, we shall use the notations H ,’3 R(l), H ,iV[ A(l), h?R(l)

hkMA(l) BAR(L)  pMA(1)

To calculate the Shannon entropies of the discretised AR(1) and MA(1)
processes, we exploit some properties of symmetry that they possess. We
start with proving a result about the parity of the entropies as functions of
the parameters ¢ and 6.

9

Proposition 4.2.1. The entropy Hy, is an even function of the parameter ¢
or 0, for all k =1,2,.... Moreover, also hy, for all k = 1,2,..., and h are
even functions. In formulas, it holds
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4.2. THE SHANNON ENTROPY OF THE PROCESSES AR(1) AND
MA(1)

(i) B (g) = B (=g),
(i) H " (0) = H'V(-0),
(iii) hie™V(9) = hp ™M (—¢),
(iv) hy "V (0) = b (-0),
forallk=1,2,..., and

(v) hARD)(¢) = hARMD) (—g),
(vi) WMAD(9) = pMAM) (—g).

Proof. First note that, if {¢;}; is a Gaussian white noise, then also {€,}; =
{(—=1)¢;}; is a Gaussian white noise and it is indeed the same process as {¢; }
since a Gaussian random variable ¢; has the same distribution as its opposite
—¢;. The AR(1) process defined by X] = —¢X]_; + €, has the MA(c0) form
(see Equation (4.3))

Xi= Z(—qﬁ)ie;_i = Z(_l)%i(_l)t_iet—i = Z(—l)tqbiet_i.
=0 i=0 i=0

Thus we have X| = (—1)'X,, for all ¢. This relation between the two
continuous-state processes {X,} and {X;} translates into an analogous one
for the binary processes S’ = {s,}; and S = {s;}; defined by discretisation
as in (4.7). This means that a single realisation of the process {X;}; (or,
equivalently, of the process {¢;};) produces two binary sequences s and s for
which it holds s; = sj for even ¢ and s; = —s; for odd t. We therefore have a
bijective correspondence between realisations of {s;} and of {s;} which also
preserves the measure, that is, it holds

ps(si) = per(syt), forall k and all t; < ... <t. (4.8)

The following diagram provides a picture of the process isomorphism:

(X} — {X}}
| d
(s} —— {si}

From Equation (4.8) it follows that H:R(l)(@ = H,?R(l)(—@, which means
that (i) is proved.
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Equality (ii) is proved in the very same way as for (i), by noting that
the MA(1) process defined by X = ¢, — ¢;_,, with €, = (—1)¢, for all ¢, is
isomorphic to that defined by X; = ¢, — O¢;_1.

Finally, (iii) and (v) follow immediately from (i), and (iv) and (vi) follow
immediately from (ii). O

Proposition 4.2.1 tells us that it suffices to calculate the entropies of the
AR(1) and the MA(1) processes only for ¢ > 0 and for § > 0. We now
state and prove a result which derives from the symmetry of the normal
distribution.

Proposition 4.2.2. Let y be the measure of an AR(1) or an MA(1) process
discretised as in (4.7). Let s¥ € {0,1}* be a binary string of length k and 5%
its complementary string defined by 5;, =1 —s;, for each i =1,...,k. Then
it holds p(s) = p(s).

Proof. If {e:}+ is a Gaussian white noise process defining the process {X;}
(either AR(1) or MA(1)), the white noise € = {—¢;}; defines the process X =
{—=X:}:. This is actually isomorphic to the process X itself, since the random
variables ¢; have the same distributions as their opposites. The processes S
and S, discretised versions of the processes X and X, are therefore isomorphic
and the thesis follows. O

Finally, the last property that we need is the time-reversibility of station-
ary Gaussian linear models, which is the content of the next theorem. We
first give the formal definition of time-reversibility.

Definition 4.2.1. A stationary process is time-reversible if, for every n and
every ty, ..., t,, the vectors {Xy,, ..., X4, } and {Xy,, ..., Xs, } have the same
joint probability distribution.

Theorem 4.2.3. Stationary ARMA processes built from a Gaussian white
noise are time-reversible.

For the proof see [74]. What we are interested in is the following specifi-
cation to the AR(1) and MA(1) cases.

Corollary 4.2.4. Let p be the measure of an AR(1) or an MA(1) process
discretised as in (4.7). Then for every binary string si...s, € {0,1}* it
holds pu(sy ... Sk) = p1(Sk - - S1)-
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4.2. THE SHANNON ENTROPY OF THE PROCESSES AR(1) AND
MA(1)

4.2.1 A geometric characterisation of the Shannon en-
. AR(1)
tropies H,

In this section we give a general characterisation of the Shannon entropies
H,fR(l), for all k = 1,2,..., in terms of the entropy of some partition of the
unit sphere S¥7! = {x € R*|||x|| = 1}. In principle, the same path can
be followed to obtain an analogous general characterisation for the entropies
H,iw A, However, this does not seem to be feasible, since for the process
MA(1) the general formulas for the conditional distributions of X}, given
X1, Xo, ..., Xk_1, are not as simple as the ones for the process AR(1), which

is Markov.

Let s € {0,1}* be one of the 2% binary strings of length k. According to
the symbolisation (4.7), it corresponds to the event {X; € I1,..., X} € I},
where [; = (—00,0) if s; = 0 and I; = (0, 00) if s; = 1. For the process AR(1)
we have

X, ~ N (o, ﬁ)
X2 ~ N(¢X1,O’2)

Xk ~ N(@Xk_l,()'z)

and therefore

2
_ ;62< 1"¢z>/ 1 -3(Zapny
7 e 7 2mo
1 71<Xk_¢Xk71>2
/ e ? 7 ka dX2 dX1 (49)
2ro
k

Let us now consider the normalising linear transformation

Vi = =X,
V102
Y, — le—g)ﬁ
2 , (4.10)
Y, = Xy =0 Xp—1
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described in matrix form by ¥ = A,X, with

JI—4# 0 0 0 0

—6 1 0 0 0

A¢_l 0 6 1 0 0
p :

0 0 0 .. 1 0

0 0 0 ... —¢ 1

The random variables Y; are A (0, 1) and Equation (4.9) can be written

1 1
(st = [ e TR, (11)
T2

I/

where I = Ay(Lh x Iy x ... x Ii;). The integral in Equation (4.11) is equal
to the fraction of k-dimensional solid angle determined by the cone I’; or,
equivalently, to the fraction of hypersphere %, being A the Lebesgue
measure.

The 2* solid angles of the form I’, corresponding to the strings of k binary
symbols, are those that result from sectioning the k-dimensional Fuclidean

space with the hyperplanes my, mo, 73, ..., T of equations

T+ ¢k_2$2 + ¢k_3$3 + ...+ gbxk_l + 1 = 0.

The problem of calculating the measures p(sy) of Equation (4.6) has thus
been translated into a purely geometric problem: calculating the solid angles
in R* cut by the hyperplanes 7;, i = 1,..., k. The entropy of Equation (4.6)
is thus nothing else that the entropy of the partition of S*~! determined by
the hyperplanes ;.
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4.2.2 Calculating the entropies Hj

At least for the AR(1) process, the characterisation given in Section 4.2.1 is
very general. Though it can be exploited to calculate the entropies through
the calculation of the solid angles for & = 2, 3, there seem to exist no general
formula for calculating the solid angles in R¥ determined by k hyperplanes,
for k > 4. However, the symmetries of the problem, presented in Proposition
4.2.2 and Corollary 4.2.4, allow to considerably reduce the number of degrees
of freedom of the problem even when k£ > 4. We now find the entropies Hy,
for k£ = 1,2,3, both for the AR(1) and the MA(1) processes. Thanks to
Proposition 4.2.1, we can restrict our attention to values of the parameters
¢ >0and @ > 0.

k=1 When k£ = 1 we must find the measures p(0) and p(1). Since
the random variables of the process (either the AR(1) or the MA(1)) have
a symmetrical distribution we simply have ;(0) = p(1) = . Therefore, for
the 1st order entropy we have Hy = —u(0)log, 1(0) — p(1)logy p(1) = 1.

k =2 We deal with the case £ = 2 by proving a general result, which
is very useful also for the case k = 3. To establish some notation, if a = a!
and b = b are two finite binary strings, let us denote by a ' b the cylinder
set defined by {S! = o'} N {S" = b"}. We prove the following two
propositions for the processes AR(1) and MA(1).

Proposition 4.2.5. Let u be the measure of the discretised AR(1) process.
Then it holds

w(0-0) = % arccos(—¢' ), (4.12)
w(0-1) = L arccos(¢'). (4.13)
2m

Proposition 4.2.6. Let p be the measure of the discretised MA(1) process.
Then it holds

1(00) = % arccos (— . _592) : (4.14)
1 6
w(01) = 5, arccos (1 n 62) ) (4.15)
and ‘
pi(s1 - s2) = p(s1)u(s2), (4.16)
foriv>1.
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Note that these results suffice for calculating the entropies H,, since we
just take ¢ = 0 in Proposition 4.2.5 and, furthermore, by Proposition 4.2.2, for
both processes AR(1) and MA(1) we have p(10) = p(01) and p(11) = u(00).

Proof of Proposition 4.2.5. The quantities p(0-0) and p(0-*1) are the prob-
abilities of the events {X; < 0} N{X;2 < 0} and {X; < 0}N{X;;2 > 0}, re-
spectively. Recall from Section 4.1.1 that X, o[ X1 ~ N (¢ X7, %02).
Thus, proceeding as in Section 4.2.1, we are left with calculating the mea-
suresfl)f the subsets of S! cut by the lines in R? given by equations x; = 0 and
¢7' . . . .
mxl + x5 = 0. Equalities (4.12) and (4.13) follow immediately. [
Proof of Proposition 4.2.6. Just as in Proposition 4.2.5, ©(00) and p(01)
are the probabilities of the events {X; < 0} N {Xy < 0} and {X; <
0} N {X2 > 0}, respectively. Since the conditional distribution of X»|X;
is N(lfggXl, (1+19f;§9402)), we have that 1(00) and p(01) are the relative
measures of the subsets of S! cut by the lines of equations z; = 0 and
ﬁxl + x5 = 0. Expressions (4.14) and (4.15) follow straightforwardly.
Finally, equality (4.16) is easily proved by noting that the conditional
distribution of a random variable X, given X;_; with ¢ > 2, is the same as its

unconditional distribution because X; and X;_; (i > 2) are independent. [

For the AR(1) process we thus have

Hy ™V (1) = —241(00) log, 12(00) — 244(01) log, 12(01),

where

1(00) = % arccos(—a),

w(01) = % arccos(o).

For the MA(1) process we have
Hy" (1) = =2(00) logy 1(00) — 21(01) logy 1(01),
with 1£(00) and p(01) given by Equations (4.14) and (4.15).
k =3 We could find the quantities p(s1s2s3), with s; € {0,1} for i =
1,2,3, by using the formula to calculate the solid angles in R3 cut by the
hyperplanes of which we have the equations. However, it is much simpler

and much more instructive to exploit the symmetry properties affirmed by
Proposition 4.2.2 and Corollary 4.2.4. This method can be applied also to
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strings of length greater than 3, and though in this cases it does not seem
sufficient to completely determine all the measures pu(s), still it allows to
obtain partial results that we do not detail. Since no general formula is
known for the solid angle in the k-dimensional Euclidean space with k > 3,
using the symmetry properties of the measures of the strings is the only way
that we have found to partially explore higher-dimensional settings.

Initially, we let p indicate the measure of either process, AR(1) or MA(1).
By Proposition 4.2.2 we have 1(100) = p(011), ©(101) = ©(010), u(110) =
p(001), wu(111) = w(000). Furthermore, by Corollary 4.2.4 we also have
©(001) = p(100). The symmetries thus reduce the number of unknown
quantities from 2% = 8 to three. Now note that we have the following three
independent relations:

1(000) + 2(001) = 1(00),
£1(010) + 14(011) = p(01), (4.17)
£(000) + 12(010) = (0 - 0).

Since p(00), p(01), p(0-0) are determined for the AR(1) and MA(1) processes

in Propositions 4.2.5 and 4.2.6, we can solve the system (4.17).
For the AR(1) process we finally have

Hy ™ (1) = —241(000) log, 41(000) —441(001) log, 1(001) —241(010) log, 41(010),

where

1(000) = % arccos(—g) — 4i arccos(¢?),

™

1
1(001) = . arccos(¢?),

1(010) = % arccos(¢) — i arccos(¢?).

For the MA(1) process we have
H™ (1) = =241(000) log, 11(000) —42(001) log, 11(001)—244(010) logy 41(010),

where

1 0 1
©1(000) = 5, arccos (— ) -3

7T 1462
1
001) = =
p(001) = <,
1 0 1
1(010) = 5, arccos (1 n 92> -3
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Figure 4.1: Theoretical Shannon entropies H, %, %, together with condi-

tional entropies hy = Hy — Hy, hy = H3 — Ho, of the AR(1) (left) and MA(1)
(right) processes, as functions of the autoregressive parameter 0 < ¢ < 1 and
of the moving average parameter 0 < 6 < 1, respectively.

In Figure 4.1 we graph the theoretical entropies Hi, %, % and the
conditional entropies hy = Hy — Hy, hs = H3 — H, as calculated above, for
positive values of the autoregressive parameter ¢ and the moving average
parameter 6. It is interesting to note that in the AR(1) case the conditional
entropies hy and hz go to 0 as ¢ approaches 1, while in the MA(1) process

they converge to values of about 0.918 and 0.907, respectively.
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Chapter 5

Gambling, portfolio theory and
market efficiency

At first sight, information theory seems to be unrelated to gambling and
portfolio theory. But in fact there is strong duality between the growth rate
of investment in a horse race and the entropy rate of the horse race. Indeed,
the sum of the growth rate and the entropy rate is a constant. The horse
race can be seen as a special case of investment in the stock market and the
connection extends to a duality between the growth rate of wealth in the
stock market and the entropy rate of the market.

5.1 Gambling

Assume that m horses run in a race, with horse ¢ having probability p; of
winning the race. If horse ¢ wins, the payoff is o; for 1 (that is, an investment
of 1 dollar on horse 7 results in o; dollars if horse ¢ wins and 0 dollars if horse
i loses). An equivalent way of expressing an a-for-1 odd is saying that it
is b-to-1 with b = a — 1. For example, fair odds on a coin flip are 2-for-1
or 1-to-1 (even odds). Assume that a gambler distributes his entire wealth
across the horses, with b; denoting the fraction of his wealth invested in horse
i. Thus of course b; > 0 for all 7 and ) b; = 1. If the race is won by horse 1,
the gambler will have multiplied his wealth by a factor b;o;.

The wealth at the end of the race is a random variable, and the gambler
wishes to “maximise” its value. Assume that the gambler repeatedly reinvest
his money in a sequence of races. Then, after n races, the gambler’s wealth
is

S, =[] 5(x0). (5.1)
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where S(X) = b(X)o(X) is the factor by which the gambler’s wealth is
multiplied when horse X wins.

Definition 5.1.1. The doubling rate of a horse race is

W(b,p) = E(log S(X Z pr log(boy).

Theorem 5.1.1. Let the race winners Xi,..., X, be i.i.d. p(x). Then the
wealth of the gambler using betting strategy b grows exponentially at rate

W (b, p), that is,
1
- log S,, — W (b, p).

The proof is an easy application of the weak law of large numbers to the
i.i.d. random variables log S(X;), i =1,2,....

Definition 5.1.2. The optimum doubling rate W*(p) is the mazimum dou-
bling rate over all choices of the portfolio b:

W*(p) = max W(b,p) = N bér&ai(bi:l ;pi log(b;0;).

The maximisation of W (b, p) as a function of b, subject to the constraint
> b; = 1, is performed by studying the functional

= Zpi log(bzoz) + Azbza

where )\ is a Lagrange multiplier. One finds that b = p is a stationary point
of the function J(b) with A = —1. That it is actually a maximum is the
content of the next theorem.

Theorem 5.1.2 (Proportional gambling is log-optimal). The optimum dou-

bling rate is given by
= Zpi logo; — H(p)
and is achieved by the proportional gambling scheme b* = p.

Proof. Rewriting the function W (b, p) in a suitable way, it holds

= pilog < pzoz)

bi
= sz‘ logo; — H(p) + Zpi 10%(;)
<) pilogo; — H(p),

with equality if and only if b = p. m
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Proportional gambling (that is, betting on each horse in proportion to its
probability of winning) is known as Kelly gambling ([16]).

A special case is when the odds are m-for-1 on each horse, in which case
the odds are fair with respect to the uniform distribution and the optimum
doubling rate is given by the following corollary.

Corollary 5.1.3 (Conservation theorem). For uniform fair odds, the sum of
the doubling rate and the entropy rate is a constant. In particular, it holds

W*(p) + H(p) = logm.

Corollary 5.1.3 expresses the duality between the doubling rate and the
entropy rate of a horse race. Every bit of entropy decrease doubles the
gambler’s wealth. Low entropy races are the most profitable.

5.1.1 Dependent horse races and entropy rate

Assume now that many races take place and that there is some dependence
among them, so that the gambler can use the results of previous races to
determine his strategy for the next one. The sequence {X;} of horse race
winners forms a stochastic process and the optimal doubling rate for uniform
fair odds is

W*(Xk’Xk_l,...,X1> =K max E[lOgS(Xk)le_l,,Xl]

b(:|Xk—1,...,X1)
= logm — H(Xk|Xk_1, e ,Xl),

which is achieved by b*(xg|xg_1,...,21) = p(zk|zr_1, ..., 21).
After n races, the gambler’s wealth is as in (5.1) and the exponent in the
growth rate (assuming m-for-1 odds) is

E[log S,,] ZElogS
n
i=1
H(Xq,...,X,
=logm — ( l’n’ )

For a sequence of races forming a stationary process {X;} with entropy rate
h({X;}), taking the limit for n — oo in (5.2) yields lim, o ~E[log(S,)] +
h({X}) = logm, which is again the result that the sum of the doubling rate
and the entropy rate is a constant.
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5.2 Information theory and portfolio theory

A stock market may be represented as a vector of stocks X = (Xi,..., X;),
with X; > 0,7 =1,..., m, where X; is the ratio between the price at the end
of the day and the price at the beginning of the day. For example, X; = 1.03
means that the price of stock ¢ went up 3 percent that day. A portfolio
b = (by,...,by), with b; > 0, > b; = 1, is an allocation of wealth across the
stocks, where b; is the fraction of the total wealth invested in stock i. The
ratio of the wealth at the end of the day to the wealth at the beginning of
the day is S =b?X =Y b, X;. The goal is to maximise S in some sense.

Definition 5.2.1. The growth rate of a stock market portfolio b with respect
to a stock market X ~ F(x) is defined as
W(b, F) = / log(b”x) dF(x) = E[log(b" X)].

If the logarithm is to base 2, the growth rate is also called the doubling rate.
Definition 5.2.2. The optimal growth rate W*(F) is

W*(F) = mS,XW(b,F), (5.3)

where the mazimum is over all possible portfolios b, with b; >0, > . b; = 1.
A portfolio that achieves the mazximum in Equation 5.3 is called a log-
optimal portfolio or growth optimal portfolio.

Theorem 5.2.1. Let Xy,...,X,, be i.i.d. ~ F(x). Let
i=1
be the wealth after n days using the constant rebalanced portfolio b*. Then

1
—log S — W™ with probability 1.
n

The proof easily follows from the strong law of large numbers.

As a counterpart to Kelly proportional gambling, where one invests in
proportions that remain unchanged in expected value after the investment
period, in the context of portfolio theory it can be proved (see [1], Theorem
16.2.1 and consequences) that the expected proportion of wealth in each stock
under the log-optimal portfolio is unchanged from day to day. In formulas,
being b* the allocation of wealth at the beginning of the day, the proportion
of wealth at the end of the day is gTX;(, whose expected value is b;.
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5.2.1 Duality between the growth rate and the entropy
rate of a market

We now want to show a strong formal analogy between the growth rate and

the entropy rate of a stochastic market process. Let {X,,} = (X1, X5,...) be

a vector-valued stochastic process, with X; > 0, representing the most gen-

eral time-dependent market process. We also consider investment strategies
that depend on the past values of the market in a causal fashion.

Definition 5.2.3. A causal portfolio strateqy is a sequence of mappings b; :
R™Y — B={b € R™|b; > 0,5 b; = 1}, with the interpretation that
portfolio by(xq,...,%x;_1) is used on day i.

Let .
H (Xy,...,X;1X,).
=1

The objective is to maximise E[log S,] over all causal portfolio strategies
{b;(-)}. Tt holds

n

max E[log S,| = Z max  E[log(b!X;)]

bi,....bn Py b (X1,....Xi-1)

where b} is the log-optimal portfolio for the conditional distribution of X;
given the past values of the stock market. In other words, b} (xy,...,X;_1)
is the portfolio that achieves the conditional maximum, which is denoted by

mng[log(bTXi)KXl, o Xm1) = (X, X))
= W*(X2|X1, ce aXi—l)-

Taking the expectation over the past, we get the conditional optimal growth
rate

W*(XZ|X1, C ;Xz‘—l) = E[mté)%XEDOg(bTXz”Xl, e 7Xi—1]] s

where the maximum is over all portfolio-valued functions b defined on X, ..., X;_;.
Thus, the highest expected log return is achieved by using the conditional
log-optimal portfolio at each step. Let

W*(Xy,...,X,) = Jmax E[log S,],

.....
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where the maximum is over all causal portfolio strategies. Then, since
log S =" logbTX;, we have the following chain rule for W*:

WXy, X)) =) WXy, X)),

=1

This chain rule is formally the same as the chain rule for the entropy H (see
Section 2.3.2). In some way, W can be seen as the dual of H. In particular,
conditioning reduces H but increases W. We now extend the formal analogy
between W and H by defining the counterpart of the entropy rate for time-
dependent stochastic processes.

Definition 5.2.4. The growth rate WZ is defined as

W i W X)

n—oo n

(5.4)

iof the limit exists.

Theorem 5.2.2. For a stationary market (Xq,Xa, .. .), the growth rate exists
and is equal to

The existence of the limit in Equation (5.4) and the equality (5.5), ex-
pressing the growth rate in the conditional form, are proved in the same way
as for the entropy rate.

We end this section by noting that the horse race treated in Section 5.1 is
a special case of a stock market, in which there are m stocks corresponding
to the m horses in the race. At the end of the race, the value of the stock for
horse i is either 0 or o;, the value of the odds for horse 7. Thus, X is nonzero
only in the component corresponding to the winning horse. In this case, the
log-optimal portfolio is proportional betting (known as Kelly gambling, see
Section 5.1), and in the case of uniform fair odds (that is, o; = m, for all 7)
it holds

W* =logm — H(X).

In the case of a sequence of correlated horse races, the optimal portfolio is
conditional proportional betting and the asymptotic growth rate is

W5 =logm — h({X}),
where h({X}) =lim 2 H(X,,..., X,) if the limit exists.
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5.3 Market efficiency

A market is said to be informationally efficient if it is efficient in processing
the information. In an efficient market observed prices express a correct
evaluation of all available information.

5.3.1 A brief history

The concept of market efficiency was first anticipated by Bachelier in 1900,
who writes in his PhD dissertation that “past, present and even discounted
future events are reflected in market price, but often show no apparent rela-
tion to price changes.” [20]. Modern literature on market informational effi-
ciency begins however in the 1960s, with the independent works of Samuelson
and Fama. The idea that asset prices fully reflect all available information
(the so-called Efficient Market Hypothesis (EMH) was introduced in modern
economics by Samuelson, with his article [21]: Proof that properly anticipated
prices fluctuate randomly. Samuelson observed that “[i]f one could be sure
that a price would rise, it would have already risen.” It was Fama, though,
the first to introduce the term ‘efficient market’ [22]. In his seminal pa-
pers [23, 24, 22, 25] he was concerned with the old debate between technical
analysis (the use of patterns in historical data to forecast future prices) and
fundamental analysis (the use of accounting and economic data to establish
the assets’ fair prices).

5.3.2 The random walk hypothesis

Market efficiency implies the random character of prices (the more efficient
the market, the more random the sequence of price changes). A perfectly
efficient market is one in which price changes are completely random and
unpredictable. This ideal situation is the result of many market participants
attempting to profit from their information. When investors try to exploit
even the smallest informational advantages at their disposal, their actions
have the effect of incorporating the information into market prices, so that
in the end the profit opportunities that first motivated the trades are quickly
eliminated. In an idealised frictionless market with costless trading this oc-
curs instantaneously and prices always fully reflect all available information.
In mathematical terms, prices follow martingales.

A statistical description of the unforecastability of price changes is pro-
vided by the so-called random walk hypothesis (RWH), suggesting a model
in which prices evolve in a purely random manner according to some spec-
ifications. Much of the literature about market efficiency revolved around
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the RWH and many tests were developed in order to see if it could provide
a satisfying model for market data. One of the first tests of the RWH was
developed in [75], where the frequencies of same-sign and opposite-sign con-
secutive returns were compared. A number of works testing data for the
RWH were published from the beginning of the 1960s to the beginning of
the 1990s, with general results supporting the RWH for daily data and only
occasional results of departure from randomness and rejection of the RWH.
See [26] for a survey on the topic.

5.3.3 Efficient Market Hypothesis: the weak, the sem:-
strong and the strong form

Fama proposed three forms of the efficient market hypothesis, corresponding
to different information sets available to market agents. The weak form says
that prices fully reflect the information contained in past prices. The semi-
strong form maintains that prices fully reflect all publicly available informa-
tion. The strong form asserts that market prices fully reflect any information,
public and private.

Fama [25] summarises the early random walk literature, his own contribu-
tions and other studies about the information contained in the historical price
time series and concludes that the results strongly support the weak form
of the EMH. Studies of the semi-strong form of the EMH are tests about
the speed of adjustment of prices to new information, such as stock splits
and earnings announcements. When this announcements happen, the mar-
ket appears to anticipate the information with most of the price adjustment
occurring before the news is released and a remaining rapid and accurate
adjustment happening shortly after. The evidence accumulated in the 1960s
and 1970s shows that, while markets cannot be completely efficient in the
strong form, there is convincing support for the weak and semi-strong forms.
Departures from the EMH are commonly explained as consequences of over-
or underreaction to new information by the investors, when prices are tem-
porarily pushed beyond the fair or rational market value and subsequently
adjusted with the formation of patterns.

5.3.4 Refutability of the EMH

The possibility of testing data for efficiency remains however somewhat elu-
sive. Fama also demonstrated that the notion of market efficiency could not
be rejected without an accompanying rejection of the model assumed for
normal returns (e.g., the price formation mechanism). He emphasises that
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the hypothesis of market efficiency must be tested in the context of expected
returns and it thus depends on the benchmark choice. The so-called joint
hypothesis problem states that when a model yields a return significantly
different from the actual return, one can not be certain if the market is inef-
ficient or if there exists an imperfection in the model. Researchers can only
modify their models by adding different factors to eliminate the anomalies,
in the hope of fully explaining the return within the model. Therefore the
notion of market efficiency is not a well-posed and empirically refutable hy-
pothesis. To make it operational, one must specify additional structure, e.g.,
investors’ preferences, information structure, etc. But then a test of market
efficiency becomes a test of several auxiliary hypotheses as well, and a rejec-
tion of such a joint hypothesis tells us little about which aspect of the joint
hypothesis is inconsistent with the data.

5.3.5 Relative efficiency

As pointed out by Campbell, Lo, MacKinlay [27], perfect informational ef-
ficiency is an idealised condition which is never met in real markets. Ineffi-
ciencies are always present in real markets and therefore there is little point
in investigating the efficiency of markets in absolute terms. Rather than the
all-or-nothing view taken by much of the traditional literature on market
efficiency, it would be much more interesting to study the notion of relative
efficiency, that is, the degree of efficiency of one market measured against
another. The idealised perfectly efficient market may be regarded as a useful
benchmark for measuring relative efficiency.

We stress that this is the point of view we take in this work. We shall

investigate to what degree assets depart from the idealised perfect efficiency,
ranking them according to relative efficiency.

5.4 Literature review on measuring market
efficiency

In this section we review some recent studies that deal with measuring the
informational efficiency of financial markets. Market efficiency is not a matter
that is to be studied only in absolute terms. Markets which are not efficient
may display different levels of inefficiency. The presented studies provide
different instruments to quantify the efficiency level of a market.
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5.4.1 Measuring market efficiency with the Lempel-
Ziv compression index

Relative efficiency of financial markets was investigated by Giglio and coau-
thors in the work [28]. The authors particularly stress the fact that the
efficient market is an idealised concept that is unattainable, but that serves
as a benchmark for measuring relative efficiency. They make use of the
algorithmic complexity theory, which provides a connection between the ef-
ficient market hypothesis and the unpredictable character of asset returns,
because a time series that has a large amount of non-redundant information
(such as that of the idealised efficient market) exhibits statistical features
that are almost indistinguishable from those observed in a random time se-
ries. Measurements of the deviation from randomness determined in terms
of algorithmic complexity provide a tool to assess the relative efficiency of a
financial market. The more algorithmically complex is a time series from a
given market, the more efficient that market.

The algorithmic complexity of a string is defined (in Kolmogorov’s formu-
lation) as the length of the shortest computer program that can produce the
string. A practical problem of this definition is that determining the short-
est program is not computable. In 1976, Lempel and Ziv propose in [76] a
measure of the complexity of a string that does not rely on the shortest algo-
rithm. In 1987, Kaspar and Schuster (see [77]) provide an easily calculable
measure of the Lempel-Ziv index, which we now briefly explain.

The goal is to build a given string, by making a series of elementary
operations consisting in either inserting a new digit or copying the digit from
a word contained in the part of the string that has been already constructed.
Assume that a given string S = s1...s, has been reconstructed by the
program up to the digit s, and that s, has been newly inserted. In order
to check whether the remaining substring s,.1 ..., can be reconstructed
by simple copying operations or whether new digits must be inserted, one
proceeds as follows. One first checks whether s,.; is in the vocabulary of
S1...S8., that is, the set of words of the substring s;...s, in which it is
divided by the points where newly inserted digits are. If this is the case, one
checks whether s,,1s,,9 is contained in the vocabulary of s;...s,,1; and so
on until s,41...5,.x becomes so large that it can no longer be obtained by
copying a word from the vocabulary of s;...s,14_1 and one has to insert a
new digit. The Lempel-Ziv complexity index of the string S is defined as
the number ¢ of the steps required to construct S, that is, the number of
the newly inserted digits (plus one, if the last copy step is not followed by
inserting a digit).

Let us show how the Lempel-Ziv index is calculated for some simple
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strings. For the string made up of only zeros, S = 0000000000, one inserts
the first digit and then proceeds with copying previously occurred words.
Thus, ¢ = 2. For the string 7' = 0101010101, one inserts the first digit, then
inserts the second digit, and then proceeds with the copying operation until
the end of the strings. In this case, ¢ = 3. For the string U = 0110001001,
one inserts the first digit (0), then inserts the second digit (1), then further
inserts 10 and 001, and finally copies 001. Thus, in this case, ¢ = 5. We note
that these complexity indices reflect the intuition that the string S is the less
complex of the three and the string U the most complex one.

It has been shown in [76] that for almost all random strings the complexity
index of the initial n-character string, ¢(n), asymptotically grows when n —
oo as p(n) = =2, that is, it holds

" logyn’

One may thus compute a finite normalised complexity index LZ = % to

get the complexity of a string relative to that of a random one. Note however
that the LZ index is not an absolute measure of complexity, nor is it ranged
between zero and one.

The dataset studied by Giglio and coauthors is made up of seven years
of daily data from July 2000 to July 2007, for a total amount of 2000 ob-
servations, for 36 stock exchange indices and 20 US Dollar exchange rates.
Analyses are performed with the returns of the raw series, which are coded
as ternary strings as follows. Assuming a stability basin b around zero, the
return time series r; is coded into the symbolic sequence s; defined by

0 lthS—b
sp =14 2 if —b<r,<b . (5.6)
1 lthZb

Following Shmilovici et al. [29], the authors take b = 0.0025 and argue that
some experiments on changing the value of b seem to show that results do
not alter too much. Nonetheless, they point out that more research is needed
to consider a more sophisticated analysis in the choice of b.

Given a symbolic sequence of length 2000, the authors consider sliding
time windows, each of width 1000, calculate the LZ index for every window
and get the average value. If a time series is autocorrelated, then it will
present more patterns and will have lower complexity than an independent
one. Their measure of relative efficiency is the proportion of windows on
which the LZ index is above 1. For a pseudo-random sequence they find
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that the LZ = 1 threshold is surpassed 98.8% of the time. This leads to
saying that the sequence is 98.8% efficient.

Results of this analysis on the 36 stock exchange indices lead to ranking
them according to efficiency. For instance, the S&P 500 index (USA) is found
to be the most efficient, with an average score of 99.1%, followed by the DAX
30 (Germany) and the Nikkei 225 (Japan) with scores of 98.4% and 98.2%,
respectively. The other indices with an efficiency score above 90% are the
All Ordinaries (Australia, 97.8%), the ATX (Austria, 97.4%), the Dow Jones
(USA, 95.4%), the Korea Composite (South Korea, 94.9%), the Tel Aviv
100 (Israel, 92.9%), the Hang Seng (Hong Kong, 91.5%), the Straits Times
(Singapore, 90.3%). In the last five positions the following indices are ranked:
Shanghai Composite (China, 49.5%), Philippines (Philippines, 43.1%), Lima
General (Peru, 37.9%), Karachi 100 (Pakistan, 23.7%), Colombo SE (Sri
Lanka, 10.5%).

Among the US Dollar exchange rates, the first six in the ranking all show
an efficiency score above 99%. They are the exchange rates with the UK
Pound Sterling, the Swedish Krona, the Norwegian Krone, the Euro, the New
Zealand Dollar, the Swiss Franc. On the other end of the ranking, the five
exchange rates showing the minimum efficiency scores are the Indian Rupee
(43.54%), the Colombian Peso (21.98%), the Taiwan New Dollar (21.17%),
the Chinese Yuan (17.94%), the Sri Lanka Rupee (11.84%).

A general consideration on the efficiency scores and the rankings is that
the indices and the exchange rates of developed markets are top ranked,
showing a great amount of informational efficiency. On the other hand, the
last positions of the rankings are occupied by indices and exchange rates of
emerging markets, which show the greatest amount of inefficiency.

We remark that we share Giglio and coauthors’ idea of measuring relative
efficiency, instead of studying efficiency in absolute terms. This is precisely
the point of view we take in the study presented in Chapter 7. We also share
with them the approach of coding return series into symbolic ones, in order to
study the presence of patterns and inefficiencies. However, we use a different
tool to measure efficiency and, what is more important, we investigate high-
frequency data rather than daily data, so that the amount of information at
our disposal is much larger. We also argue that the redundancy of symbolised
return series may be greatly affected by the long-memory properties of the
volatility. A ternary symbolisation of returns like the one performed by Giglio
and coauthors, which has a stability basin for the central symbol fixed in an
absolute way, with no adjustment to take volatility dynamics into account,
can give rise to spurious inefficiencies. Searching for true inefficiencies, all
factors that are known to possess autocorrelation and memory properties
must be filtered out from the time series one works with.
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5.4.2 Measuring market efficiency with a Variable Or-
der Markov model

Interesting studies on the weak form of the Efficient Market Hypothesis have
been conducted by Shmilovici with other authors ([29], [30]), who make use
of a Variable Order Markov model to detect the recurring patterns in return
time series. The return series are symbolised and then checked for com-
pressibility above random. The authors also study the predictability of the
symbolic series and the profitability of some trading strategies suggested by
high predictability. The starting point is the consideration that in an efficient
market compression of the time series is not possible, because there are no
patters and the complexity of the series is high.

In [29] the authors use Rissanen’s context tree algorithm [78], a univer-
sal coding method, for measuring the complexity of a time series. In [30] a
slightly modified version of the algorithm is used, to smooth observed em-
pirical probabilities in order to account also for events of zero frequency.
However, the two versions of the algorithm are conceptually the same and
we briefly explain how it works in its original formulation.

The VOM model represents a collection of statistically significant patterns
in symbolic sequences by a parsed tree. Each node in the tree contains the
conditional distribution of symbols, given a pattern that is represented by the
branch (path) from the root to the node. The branches are not necessarily
equal in length, what makes the algorithm particularly effective for predicting
short series. Let A be a finite alphabet of symbols. For example, A =
{0, 1,2}, representing time series behaviour of decrease, stability and increase.
Given a finite sequence o} = oy...0,, with o; € A, the VOM algorithm
generates a conditional probability distribution P(o|s) for a symbol o € A
given a context s € A*, where A* is the set of finite A-sequences of any
length. VOM models attempt to estimate conditional distributions of the
form P(o|s), where the context length |s| depends on the available statistics.

The VOM learning algorithm includes three phases: counting, smoothing,
context selection. In the counting phase, an initial context tree is built with
a maximal depth (that is, the contexts’ length) D. The tree has a root node,
from which the branches are developed. A branch from the root to a node
represents a context that appears in the training set in a reversed order. Each
node has at most |A| children and contains |A| counters of symbols N,(s),
o € A, given the context s. The tree is constructed as follows. The symbolic
sequence is parsed one symbol at a time and, for every symbol o;, its D-sized
context 02:113 defines a path in the tree, which is constructed if it does not
yet exist. The counts of o; at each node of the path are incremented by one.
The second phase of the VOM construction is to use the counts N,(s) for
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generating the predictor p(a|s). The following equation is used to smooth
the probability to account also for events of zero frequency:

1
]5(0|S> _ \A\ 2 + NO’(S) '
2 +ZU’6A NU’(S)

In the third phase, the size of the tree is reduced by recursively eliminating the
leaves that do not contribute significant additional information with respect
to their parent node. We refer the reader to the cited articles for the details.

Once the VOM tree is constructed, it is used to predict the next symbol
in a series, looking for the one that maximises the likelihood P(c]s), given
the context s.

The time series data used in study [29] are daily returns for 13 national
stock market indices and for the 25 stocks of the TA25 index of Tel Aviv
Stock Exchange. Returns are discretised to binary (positive or negative)
or ternary (positive, stable, negative) series, where stable means a change
smaller than 0.25%. In study [30], the authors use high-frequency data:
tick-by-tick bid prices of 12 currency pairs for the year 2002 are sampled
at frequencies of 1, 5, 10, 15, 20, 25, 30 minutes. The difference series
are quantised to ternary-symbols series, such that an increase (respectively,
decrease) of 3 pips (i.e. 0.0003) or more is coded by symbol ‘1" (respectively,
‘3") and any change smaller than 2 pips is coded by the stability symbol ‘2’.

Since temporal patterns can be of short duration, a VOM model is con-
structed for each temporal (sliding) window of 50, 75, 100 symbols. For each
fixed window length, final results are averages over all the sliding windows.
As long as the compressibility of the series is concerned, a compression coef-
ficient is computed for each sequence, by dividing the stochastic complexity
(as measured by the context-tree algorithm) by the number of bits needed for
the original representation of the sequence (e.g. 75 bits for a binary sequence
of length 75). Then a compression threshold -~ is fixed and a null hypothesis
that the sequence be random is rejected if the number of windows showing
compressibility higher than ~ is greater than the number that is expected
for a random sequence, at 90% confidence levels. Values of v considered are
0.86, 0.88, 0.9.

Results of the analysis in [29] reveal that significant compressibility is
detected in ten out of the thirteen international stock index series. The au-
thors stress that it is mostly for small volume markets, like the Brazilian, the
Swiss and the Belgian, that the Efficient Market Hypothesis is rejected. By
contrast, indices such as the AEX (Netherlands) and the HSI (Hong Kong)
demonstrate no statistically significant compression. The authors also em-
phasise that, since stock indices are a weighing of stocks, inefficiencies in
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single stocks may be masked in the process. This is why they test each
individual stock in the TA25 index. It is found that 8% of the stocks are
incompressible for all the sliding windows lengths and all the compression
threshold checked; 36% of the stocks are compressible only for some sliding
windows lengths and compression thresholds; 56% of the stocks are compress-
ible for all the sliding windows lengths and all the compression thresholds.
In the overall picture, the Tel Aviv Stock Exchange is found to be efficient
most of the time (about 83%-96% of the trading days), but with periods of
inefficiency for some stocks.

We want to attract the attention of the reader on two further results that
the authors find and report without much commenting. The first one is that
windows of lengths 50 and 75 demonstrate higher compressibility than those
of length 100, indicating a short-term effect of 2-3 months in length. The
second one is that the percentage of windows that are compressible beyond
random is higher for the ternary series representation. We argue that both
these effects can be due to the memory properties of the volatility, which the
authors do not take into account in handling data. A ternary discretisation
with fixed thresholds incorporates some predictability in periods of high or
low volatility, even under the null assumption of no correlation among the
returns, because during such periods returns have different distributions.
Any discretisation of returns into more than two symbols must take volatility
issues into account.

In [30], the analysis of the compressibility of the series shows that the
Efficient Market Hypothesis is rejected in 248 experiments out of 252 (a
different experiment is conducted for each combination of the 12 currency
pairs, the 3 window lengths and the 7 sampling frequencies). An analysis of
predictability of the series similarly shows that higher frequency series are
more predictable that lower frequency series, confirming that the presence
of patterns is higher at higher frequencies. Finally, the Efficient Market Hy-
pothesis is tested as the absence of profitable opportunities, according to the
definition of efficiency given by Jensen. Taking this point of view, predictable
patterns invalidate the Efficient Market Hypothesis only if they produce ex-
cess returns that are consistently large enough to cover for transaction costs
that are associated with trading operations. The authors develop and simu-
late some trading strategies to investigate this issue. Results show that the
strategies generate too many transactions, leading to net losses in almost all
experiments. Only in very few cases the strategies result in a net profit, that
is however very small. In conclusion, theoretical market’s inefficiencies are
largely present, but they are not practical inefficiencies, since they are not
exploitable to make profit. In other words, statistically significant anomalies
are not economically significant.
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We remark that the analyses of series compressibility conducted in [29]
and [30] would fit well in the study of relative efficiency. Although the au-
thors are only interested in rejecting or not rejecting the null hypothesis of
randomness, their procedure leads to a concrete quantification of the ran-
domness of the series, which could be used to rank assets by efficiency. We
also emphasise that the 2009 study is the first, to the best of our knowledge,
to approach the relative efficiency problem using high-frequency data. How-
ever, we believe that the results may be significantly affected by the fact that
the ternary symbolisations employed in the two studies ignore the predictable
character of seasonalities (for high-frequency data) and of volatility. Espe-
cially when searching for redundancies in time series, they must be taken into
account and filtered out in order to avoid spurious predictability. When we
deal with ternary discretisations of high-frequency returns in Chapter 7, we
will pay great attention to the removal of intraday patterns and long-term
volatility.

5.4.3 Measuring market efficiency with the Shannon
entropy

Relative efficiency is studied by Risso in [13], where the quantification of
informational efficiency is a means to compare the emerging markets with
the developed markets. Efficiency is once again measured as closeness of
symbolised time series to perfect randomness.

The evaluation of randomness is pursued by means of the Shannon en-
tropy of binarised time series. In particular, given a sequence of returns {r;},
a symbolic sequence {s;} is defined by

5, — 0 if?"t<77
t 1 ifrt>f’

where 7 is the average return. The entropy of words of length k is calculated
as

=—— Z s) log, yi(s) (5.7)

Hk

where p(s) is the observed frequency of word s and Ny is the number of
observed sequences with non-zero frequency. The latter is a punishment in
the entropy for frequencies equal to zero. It turns out that the values of
entropies Hy, for k = 1,2,..., calculated according to definition 5.7, reach
a minimum value in correspondence of some k. In the empirical analyses,
typical values of k are around 10. The value Hj is taken as measure of the
efficiency of the series.

80



5.4. LITERATURE REVIEW ON MEASURING MARKET
EFFICIENCY

The dataset is made up of daily data of stock market indices for 20 dif-
ferent countries, covering the period from 1st July 1997 to 14th December
2007. The twenty countries are ranked by value of relative efficiency. Re-
sults show that three Asian markets take the first positions as the most effi-
cient. The stock markets of Taiwan (market index: TSEC), Japan (NIKKEI)
and Singapore (Straits Times) are indeed important financial centres in the
world. In the last four positions as the most inefficient markets there are
three ex-socialist countries (Czech Republic, Russia and Slovenia) and the
only African stock market (Egypt). The last results seem to support the
hypothesis that the emerging stock markets are more inefficient than the de-
veloped markets. In particular, the ex-socialist countries have not achieved
levels of efficiency similar to the more developed European markets. A clear
difference in the efficiency level is found between Western Europe markets
(UK, Germany, Austria, Holland, Switzerland) and Eastern Europe markets
(Czech Republic, Russia, Slovenia).

We remark once more that ranking different assets by informational effi-
ciency will also be the goal of our approach. In our study of market efficiency
in Chapter 7, we shall use precisely the Shannon entropy as a means for mea-
suring departure of symbolised return series from randomness, even though
our entropy estimators are different. These similarities make the study [13]
the closest to ours, as long as the goal and the basic means for measuring
the presence of patterns in symbolic time series are concerned. However, we
will deal with high-frequency data and this will be a major enhancement for
the study of market efficiency.

5.4.4 Measuring market efficiency with the Hurst ex-
ponent and the Approximate Entropy

We briefly mention two other ways that have been followed in literature to
measure relative efficiency. References are [31] and [12].

In [31] the authors stress that the analyses that focus on single measures
of efficiency should be looked with care. They employ a rolling windows
approach to show that efficiency seems to evolve over time. They use the
median Hurst exponent (we refer to the paper for the details) as measure of
efficiency to compare the relative efficiency of different markets. The empir-
ical analysis is conducted on the indices of 13 equity markets (11 emerging
markets, plus the US and Japan, which are included for comparison pur-
poses), for which daily closing prices from January 1992 through December
2002 are used. Logarithmic returns ln]% are calculated and corrected to
eliminate short-range dependencies. This is performed by estimating the
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Hurst exponent on AR(1) and GARCH(1,1) adjusted time series instead of
using the true observed time series. Countries are ranked using median Hurst
exponent values measures for efficiency. Results show that inefficiencies are
more significant for Asian countries than for Latin American countries, while
US and Japan rank as the most efficient ones. The authors also find a posi-
tive relationship between market capitalisation and efficiency and an inverse
relationship between trading costs and their measures of market efficiency,
which suggest that market microstructure variables may play a role in effi-
ciency results.

In [12] the authors use the Approximate Entropy (ApEn) to quantify
the randomness in the time series and to study the market efficiency of the
global foreign exchange markets. The data used are volatility-normalised
return series of daily foreign exchange rates for 17 countries from 1984 to
1998 and from 1999 to 2004, before and after the Asian crisis, respectively.
The Approximate Entropy of a time series x = (x1,...,2zy) is defined by

ApEn(x,m,r) = ®™(x,r) — ™ (x,7),
where m is the embedding dimension and r the tolerance in similarity. The
function ®™(x,r) is given by
1 sz:H Bi(x,r)
= - n——
N—-—m+1 4 N—-m+1’

" (x,7)

where B;(x,r) is the number of pairs (4, j) for which maxg_1, . (|Zitk—1 —
Zjik—1) < r. The ApEn value compares the relative magnitude between
repeated pattern occurrences for the embedding dimensions m and m + 1.
The ApEn is large when the time series data have a high degree of randomness
and is small for the time series with a low degree of randomness, which makes
it a suitable tool to measure market efficiency. Parameter values considered
in [12] are m = 2 and 7 equal to the 20% of the standard deviation of the
time series. Values of Approximate Entropy on different time series are used
to rank the corresponding markets by efficiency. Results show higher market
efficiency for European and North American foreign exchange market than
for African and Asian ones except Japan.
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Chapter 6

High frequency data

When dealing with financial time series, high frequency data indicate datasets
of asset prices recorded more often than daily. The more prices a day, the
higher is the frequency of the observations. In this chapter we describe
the data used for our analyses, as well as all the preliminary procedures
conducted in order to have clean data to work with. Procedures and tech-
niques explained in Section 6.2 constitute an essential part in the handling
of high-frequency data, which are somewhat more difficult to treat than low-
frequency data, for they carry, along with more information, more errors and
more features of seasonal behaviour.

High-frequency data have many advantages but they also present some
challenges. On the plus side, the additional price observations allow us to
learn more about how prices react to information. Moreover, it is more
natural to investigate the presence of inefficiencies, recurring patterns and
extreme events at a high frequency level, since they tend to compensate
at a daily level. More observations also enable us to estimate and forecast
volatility more accurately. On the other hand, they are much noisier than
low-frequency data, since microstructure effects (such as the spread between
buying and selling prices) become more important and in fact play a major
role. They also present typical intraday patterns in trading behaviour that
have to be taken into account and properly modelled. Finally, there is the
problem that high-frequency data are not completely regular, since they may
lack some observations in periods of low liquidity.

6.1 Stylised facts for intraday returns

Intraday returns have stylised facts that are similar to but distinct from
those of daily returns. We briefly present the most important ones, which
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are about (i) the distribution of intraday returns, (ii) the autocorrelations of
intraday returns, (iii) the autocorrelations of intraday absolute returns, (iv)
the intraday volatility pattern. We refer the reader to [79] for a thorough
presentation.

(i) The distribution of intraday returns is leptokurtic and more so than
for daily returns. Intraday returns have a fat-tailed distribution, whose
kurtosis increases as the frequency of price observations increases. The
distributions of high-frequency returns often show a sharp spike at zero,
which reflects the feasible set of discrete prices.

(ii) More dependence might be anticipated in intraday returns than in daily
returns for two reasons. First, bidask bounce in transaction prices
will show most clearly at higher frequencies. Second, the exploitation
of any dependence is more difficult when expected profits per trade
decline as data frequency increases, but costs do not. The magnitude
of observed dependence is, however, often very small. It is a stylised fact
that intraday returns from traded assets are almost uncorrelated, with
any important dependence usually restricted to a negative correlation
between consecutive returns.

(iii) There is substantial positive dependence among intraday absolute re-
turns, which occurs at many low lags and also among returns separated
by an integer number of days. There is a periodic behaviour of the in-
traday volatility, visible in the autocorrelations of absolute returns.

(iv) The volatility is usually highest around the opening and the closing
of the market. The average level of volatility depends on the time
of day, with a significant intraday variation. There are short bursts
of high volatility in intraday prices that follow major macroeconomic
announcements.

6.2 Cleaning and whitening

6.2.1 Outliers

Anomalous values that may be present in recorded data, for example because
of errors of transmission, are often referred to as outliers. To detect and re-
move them from high-frequency data, we use the cleaning algorithm proposed
by Brownlees and Gallo in [80]. The algorithm was developed to identify the
price records at tick-by-tick level which are too distant from a mean value
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calculated in their neighbourhood. More precisely, a price observation p; is
regarded as anomalous and removed if

lpi — pi(k)| > csi(k) + 7, (6.1)

where p;(k) and s;(k) denote respectively the J-trimmed sample mean and
sample standard deviation of the closest k£ observations around i, ¢ is a con-
stant which amplifies the standard deviation and + is a granularity parameter
useful in the case of k equal prices producing a zero variance. Although the
algorithm was originally developed for tick-by-tick prices, we use it also with
1l-minute data.

6.2.2 Stock splits

A forward stock split (or, simply, a stock split) is an operation consisting
in an increase of the number of shares of a company and in a simultaneous
adjustment of the price so that the market capitalisation of the company
remains the same. A reverse stock split (also called a stock merge) is the
opposite operation, leading to a decrease of the number of shares and to
a corresponding increase of the price. A split is m-for-n if m new shares
are released for every n old ones, with a simultaneous price change from p
to p. Splits must be identified and removed before any analysis on price
returns, since they appear as huge returns and leaving them would greatly
compromise the results.

In handling the data for the analyses of Chapters 7 and 8, we identify
stock splits in correspondence of price returns for which it holds

7| > 0.2.

This would detect, for example, a 3-for-2 split or a 4-for-5 merge.

6.2.3 Intraday patterns

We filter out the intraday volatility pattern from returns by means of a simple
model with intraday volatility factors. Returns at intraday time ¢ are rescaled
by a factor (;, which is calculated as the average, over all days, of adjusted
absolute returns at time ¢. More precisely, if R4, is the raw return of day d
and intraday time ¢, we define the rescaled return

. R
Ry, = =2, (6.2)
G
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where

1 | R 4]

Ct B Ndays

(6.3)

St

d/

with Ngays indicating the number of days in the sample and sy the standard
deviation of absolute intraday returns of day d'.

Throughout this thesis we shall refer to the rescaled returns R defined by
Equation (6.2) as deseasonalised returns.

6.2.4 Heteroskedasticity

To remove the heteroskedasticity from the (deseasonalised) return series, we
estimate the time series of local volatility o, and define the standardised
returns by

Ry
Ty = p (6.4)
The series of standardised returns are the arrival point of the preliminary
data-cleaning procedures and represent the main object that we shall study.
For estimating the local volatility, we use the realised absolute variation
and the realised bipower variation (see [81, 82]). Let the logarithmic prices

p(t) be generated by a process
dp(t) = p(t) dt + o(t) dW (), (6.5)

with () a finite variation process, o(t) a cadlag volatility process, W (t) a
standard Brownian motion. Let the interval [0, t] be divided into subintervals
of the same length ¢ and denote by r; the return p(id) — p((¢ — 1)d). Then
the following probability limits hold for the realised absolute variation and
the realised bipower variation:

[t/9]

p—1 —
o > Il = i [ o).
[t/0]-1 ¢
p—lim S Inllrial = 2 / o*(s)ds, (6.6)

=1

where i1 = E(|u|) = ﬁ ~ 0.797885, u ~ N(0, 1).
Our estimators of local volatility based on these quantities are defined by
the exponentially weighted moving averages

a-abs,t - :U’l_la Z(l - a)i_1|rt—i| (67)

1>0
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and A
Gy = i1 ey (1= ) reil|reial, (6.8)

>0

where « is the parameter of the exponential averages to be specified.
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Chapter 7

The informational efficiency of
financial markets

Throughout this chapter we estimate entropies by using the empirical distri-
butions of finite strings in symbolic samples, as defined by Equation (3.1).
Following Section 3.2, we shall be concerned with the estimation of the en-
tropies Hj and hg, with £ = 1,2,...,log,n, where n is the length of the
series. For values of k greater than log, n the statistics provided by the se-
ries is too poor and the entropies Hj are underestimated. For the sake of
uniformity in presenting the results, we shall actually choose few values for
the order k, typically 2, 3, 6, 10.

As we shall see in Section 7.2 (Table 7.3), there will be cases where the
different symbols of the alphabet appear in the series with significantly differ-
ent frequencies. Since what we want to measure are the correlations among
consecutive symbols, we want to filter out the difference in the frequencies of
single symbols. Put another way, we want to measure the degree of random-
ness of the series, given that symbols appear in the series with the observed
frequencies. To this aim, the entropies we shall calculate are

Since the Shannon entropy deals with finite-alphabet information sources,
a symbolisation of the returns is needed before being able to perform any
analysis of entropy estimation. To be precise, we must say that of course
return values are already discrete, since prices move on a discrete grid. How-
ever, what we intend to study by means of the Shannon entropy is the degree
of randomness in the time sequence of few coarsely identified behaviours of
the price. Indeed, we shall be interested only in symbolisations into 2 or 3
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symbols, each representing a notable behaviour, such as “the price goes up”,
“the price is stationary”, “the price goes down”.

7.1 ETF data

For our study we took high-frequency historical data of 55 Exchange Traded
Funds traded at the New York Stock Exchange. In Section 7.1.1 we briefly
explain what Exchange Traded Funds are, while in Section 7.1.2 we describe
the data used in this study.

7.1.1 Exchange Traded Funds

An Exchange Traded Fund (ETF) is an investment whose performance is
based on an index (or, less commonly, on other underlying assets). For
example, the OIH is an oil ETF that follows the OSX oil index. It is a mini-
portfolio of oil industry equities. Therefore, if the OSX goes up, generally so
does the OIH. Purchasing shares of an ETF is like purchasing shares of all
the equities that constitute the corresponding index, but with the advantage
of purchasing just one product instead of many, each in the right proportion.
An ETF is in fact a mini-portfolio, not a basket of stocks. Like equities,
ETF's are traded on an exchange and during market hours. They can also be
sold short or on margin. The goal of an ETF is to mimic its corresponding
index and to yield the same return on investment. Exceptions to this rule
are inverse ETFs and leveraged ETF's.

An inverse exchange traded fund is created by using various assets and
derivatives (like options) in order to create profits when the underlying index
declines in value. It is basically an index ETF that gains value when the
correlating index falls. For example, the Short DOW 30 ETF profits when
the Dow Jones Industrial Average index goes down.

Leveraged ETFs aim at outperforming the index or commodity they track.
A leveraged ETF wants to provide 2-3 times the return of the correlating
asset. So if the tracked index rises 1%, a 2x leveraged ETF wants to create
a 2% return on investment. Leveraged ETFs are designed to include the
securities in the underlying index, but also include derivatives of the securities
and the index itself. These derivatives include, but are not limited to, options,
forward contracts, swaps and futures.

There are also inverse leveraged ETF's, which offer multiple positive return
if an index declines in value. They work the same as normal inverse ETFs,
they are just designed for multiple returns.
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7.1.2 Dataset

In Table 7.1 we present the list of the ETFs studied, along with the asset
tracked by each one.

The ETFs studied include market ETFs, country ETFs, commodity ETF's
and industry ETFs. The Select Sector SPDRs are ETFs that divide the S&P
500 into nine sectors.

The data used in this study cover a period of about forty months, from
the 13th July 2006 to the 1st December 2009. We use closing prices at the
sampling frequency of 1 minute, and a resampling of the same data at a
5-minute frequency. In the former case we have the advantage of using the
greatest possible amount of price data that is available to us, but this goes
to the detriment of the regularity of the price series, since the 1-minute series
present a number of missing observations depending on the level of liquidity.
In the latter case, instead, we use less information but the series are more
regular. So, the choice of the frequency to work with is a tradeoff between
amount of information and regularity of the data. From the point of view of
information theory, the best is of course to use as much data as possible, and
this is what we shall predominantly do in the analyses. In order to assess to
what extent results depend on the chosen frequency or on the regularity of
the series, in some cases we shall perform the analyses on the 5-minute data
as well. In Table 7.2 we report the number of available price observations
for the 55 ETFs. The number of days in the data sample is 854 for the vast
majority of the ETFs, with six exceptions: 853 for EWU and RTH, 851 for
EWW and MDY, 850 for RKH, 849 for EFA.

7.1.3 Data cleaning

We now outline the steps of the data cleaning procedure and establish some
terminology. We then detail below on the single steps.

Starting from 1-minute closing prices, we first remove outliers (see Section
6.2.1) and then calculate logarithmic returns

R —In-2
Pi—1

We then search for possible stock splits (see Section 6.2.2), in order to remove
the huge returns in correspondence of them. Throughout this chapter, we
shall be referring to returns cleaned for possible splits, but not yet processed
in any other way, as raw returns. Then, the procedure of filtering out the
daily seasonalities, by the removal of the intraday pattern as explained in
Section 6.2.3, leads to what we refer to as deseasonalised returns. Finally,

91



CHAPTER 7. THE INFORMATIONAL EFFICIENCY OF FINANCIAL
MARKETS

ticker name ETF provider? asset tracked lev./inv.
DIA DIAMONDS Trust Series 1 St. Str. Gl. Adv. | Dow Jones Industrial Average Index
DXD ProShares UltraShort Dow30 ProShares Dow Jones Industrial Average Index -2x
EEM iShares MSCI Emerging Markets iShares MSCI Emerging Markets Index
Index Fund
EFA iShares MSCI EAFE Index iShares MSCI EAFE Index
EWA iShares MSCI Australia Index iShares MSCI Australia Index
EWG iShares MSCI Germany Index iShares MSCI Germany Index
EWH iShares MSCI Hong Kong Index iShares MSCI Hong Kong Index
EWJ iShares MSCI Japan Index iShares MSCI Japan Index
EWM iShares MSCI Malaysia Index iShares MSCI Malaysia Index
EWS iShares MSCI Singapore Index iShares MSCI Singapore Index
EWT iShares MSCI Taiwan Index iShares MSCI Taiwan Index
EWU iShares MSCI United Kingdom In- iShares MSCI United Kingdom Index
dex
EWW iShares MSCI Mexico Investable iShares MSCI Mexico Investable Market In-
Market Index dex
EWY iShares MSCI South Korea Index iShares MSCI South Korea Index
EWZ iShares MSCI Brazil Index iShares MSCI Brazil Index
FXI iShares FTSE China 25 Index iShares FTSE China 25 Index
GDX Market Vectors Gold Miners Van Eck AMEX Gold Miners Index
GLD SPDR Gold Shares St. Str. Gl. Mkts.| Gold Bullion
IBB iShares Nasdaq Biotechnology In- iShares NASDAQ Biotechnology Index
dex
ICF iShares Cohen & Steers Realty Ma- iShares Cohen & Steers Realty Majors Index
jors Index
1JH iShares S&P MidCap 400 Index iShares S&P MidCap 400 Index
IJR iShares S&P SmallCap 600 Index iShares S&P SmallCap 600 Index
IVE iShares S&P 500 Value Index iShares S&P 500 Value Index
Ivv iShares S&P 500 Index iShares S&P 500 Index
IVW iShares S&P 500 Growth Index iShares S&P 500 Growth Index
IWD iShares Russell 1000 Value Index iShares Russell 1000 Value Index
IWF iShares Russell 1000 Growth Index iShares Russell 1000 Growth Index
IWM iShares Russell 2000 Index iShares Russell 2000 Index
IWN iShares Russell 2000 Value Index iShares Russell 2000 Value Index
IWO iShares Russell 2000 Growth Index iShares Russell 2000 Growth Index
IYR iShares Dow Jones U.S. Real Estate iShares Dow Jones U.S. Real Estate Index
Index
MDY SPDR S&P MidCap 400 St. Str. Gl. Adv. | S&P MidCap 400 Index
MZZ ProShares UltraShort MidCap400 ProShares S&P MidCap 400 Index -2x
PHO PowerShares Water Resources PowerShares NASDAQ OMX US Water Index
QID ProShares UltraShort QQQ ProShares NASDAQ-100 Index -2x
QLD ProShares Ultra QQQ ProShares NASDAQ-100 Index 2x
QQQQ | PowerShares QQQ PowerShares NASDAQ-100 Index
RKH Market Vectors Bank and Broker- Van Eck Market Vectors US Listed Bank and
age Brokerage 25 Index
RTH Market Vectors Retail Van Eck Market Vectors US Listed Retail 25
Index
SDS ProShares UltraShort S&P500 ProShares S&P 500 Index -2x
SLV iShares Silver Trust iShares price of Silver
SPY SPDR S&P 500 St. Str. Gl. Adv. | S&P 500 Index
SSO ProShares Ultra S&P500 ProShares S&P 500 Index 2x
TIP iShares Barclays TIPS Bond iShares Barclays U.S. Treasury Inflation Pro-
tected Securities Index (Series-L)
USsoO United States Oil United States price of West Texas Intermediate
Commodity light, sweet crude oil
Funds LLP
VWO Vanguard MSCI Emerging Markets Vanguard MSCI Emerging Markets Index
XHB SPDR S&P Home Builders St. Str. Gl. Adv. | S&P Homebuilders Select Industry
Index
XLB Materials Select Sector SPDR St. Str. Gl. Adv. | Materials Select Sector Index
XLE Energy Select Sector SPDR St. Str. Gl. Adv. | Energy Select Sector Index
XLF Financial Select Sector SPDR St. Str. Gl. Adv. | Financial Select Sector Index
XLI Industrial Select Sector SPDR St. Str. Gl. Adv. | Industrial Select Sector Index
XLK Technology Select Sector SPDR St. Str. Gl. Adv. | Technology Select Sector Index
XLP Consumer Staples Select Sector St. Str. Gl. Adv. | Consumer Staples Select Sector Index
SPDR
XLU Utilities Select Sector SPDR St. Str. Gl. Adv. | Utilities Select Sector Index
XLV Health Care Select Sector SPDR St. Str. Gl. Adv. | Health Care Select Sector Index
XLY Consumer Discretionary Select Sec- St. Str. Gl. Adv. | Consumer Discretionary Select Sector
tor SPDR Index
Table 7.1: List of ETFs, with provider, tracked asset and possible leverage

or inverse feature. A “2x” leveraged ETF is one which seeks to provide 2
times the daily performance of the tracked index, with “-2x” standing for 2
times the inverse of the daily performance. *St. Str. Gl. Adv. = State Street

Global Advisors, St. Str. Gl. Mkts. = State Street Global Markets.
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ETF

1-minute observations

5-minute observations

DIA
DXD
EEM
EFA
EWA
EWG
EWH
EWJ
EWM
EWS
EWT
EWU
EWW
EWY
EWZ
FXI
GDX
GLD
IBB
ICF
1JH
LJR
IVE
IVV
IVW
IWD
IWF
IWM
TWN
IWO
IYR
MDY
MZZ
PHO
QID
QLD
QQQRQ
RKH
RTH
SDS
SLV
SPY
SSO
TIP
USO
XHB
XLB
XLE
XLF
XLI
XLK
XLP
XLU
XLV
XLY

328243 (98.81%)
276498 (83.23%)
329574 (99.21%)
327608 (99.20%)
250225 (75.32%)
192693 (58.00%)
273999 (82.48%)
307276 (92.50%)
213888 (64.38%)
251315 (75.65%)
206362 (89.21%)
125763 (37.90%)
309977 (93.64%)
288868 (86.95%)
328035 (98.74%)
317549 (95.59%)
280744 (84.51%)
325293 (97.92%)
218702 (65.83%)
278878 (83.95%)
208636 (62.80%)
277711 (83.60%)
224241 (67.50%)
302419 (91.03%)
239155 (71.99%)
293429 (88.33%)
300553 (90.47%)
330785 (99.57%)
291552 (87.76%)
290830 (87.55%)
313139 (94.26%)
321856 (97.23%)
172022 (51.78%)
164836 (49.62%)
324741 (97.75%)
299218 (90.07%)
330694 (99.54%)
246159 (74.45%)
283523 (85.45%)
302133 (90.95%)
251230 (75.62%)
330781 (99.57%)
255237 (76.83%)
190454 (57.33%)
312469 (94.06%)
255791 (77.00%)
306421 (92.24%)
330192 (99.39%)
325164 (97.88%)
287595 (86.57%)
282942 (85.17%)
253028 (76.17%)
298217 (89.77%)
265267 (79.85%)
276167 (83.13%)

65497 (99.60%)
63160 (96.05%)
65414 (99.48%)
65035 (99.48%)
64266 (97.73%)
61246 (93.14%)
64911 (98.71%)
65401 (99.46%)
61752 (93.91%)
64113 (97.50%)
65143 (99.06%)
53109 (80.86%)
64921 (99.08%)
64922 (98.73%)
65389 (99.44%)
65258 (99.24%)
64605 (98.25%)
65483 (99.58%)
62490 (95.03%)
64651 (98.32%)
62956 (95.74%)
65016 (98.87%)
63684 (96.85%)
65330 (99.35%)
64142 (97.54%)
65285 (99.28%)
65310 (99.32%)
65508 (99.62%)
65127 (99.04%)
65111 (99.02%)
65114 (99.02%)
65087 (99.33%)
58381 (88.78%)
59896 (91.09%)
65335 (99.36%)
64862 (98.64%)
65483 (99.58%)
61953 (94.66%)
64630 (98.40%)
64599 (98.24%)
64052 (97.41%)
65502 (99.61%)
61252 (93.15%)
61374 (93.33%)
65243 (99.22%)
63412 (96.43%)
65040 (98.91%)
65404 (99.46%)
65276 (99.27%)
64975 (98.81%)
65095 (98.99%)
64589 (98.22%)
65011 (98.86%)
64688 (98.37%)
64726 (98.43%)

Table 7.2: Number of observations in the price series at frequencies of 1

minute and 5 minutes, both in absolute and relative terms.
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we normalise the deseasonalised returns by the volatility (see Section 6.2.4),
thus obtaining the standardised returns.

Outliers

We search for anomalous values in recorded price data by means of the algo-
rithm of Brownlees and Gallo presented in Section 6.2.1. Parameter values
are set equal to k = 20, § = 10%, ¢ = 5, v = 0.05. Results of this outlier
detection procedure lead to the removal of a number of 1-minute observations
ranging from 9 to 310 across the 55 ETFs. Their distribution with respect to
the time of the day shows that these observations occur for the great major-
ity at the very beginning and at the very end of the trading day, suggesting
that the algorithm spuriously identifies as outliers some genuine observations
where high variability is physiological. However, the number of 1-minute ob-
servations detected as outliers is so limited (about one every three days in the
worst case) that even spurious removal has negligible impact on the results.

Splits

The search for possible stock splits is performed as outlined in Section 6.2.2.
We detect four splits in our data: two 3-for-1 splits in the ETFs EEM and
FXI, and one 10-for-1 split in SLV, all occurring at minute 11:10 of 17th July
2008; the fourth one is a stock merge with no clear ratio in the RTH ETF,
occurring at 11:00 of 18th June 2009, corresponding to a price change from
about 6 dollars to about 77 dollars.

Intraday pattern

We filter out the daily seasonalities from the raw returns by means of the
model presented in Section 6.2.3. As an example, we report in Figure 7.1 the
intraday volatility profile of the DIA 1-minute return series.

Heteroskedasticity

The distributions of high-frequency returns often show a sharp spike at zero,
due to the discreteness of the set of prices. We find these two facts in our
data. Filtering out the heteroskedasticity by means of Equation (6.4), with
the volatility estimated by Equation (6.7), considerably reduces the excess
kurtosis of the returns distribution for all the ETF's, thus proving to be an
effective method. For instance, for the FXI ETF the excess kurtosis of 1-
minute returns equals 11.87 before removing the heteroskedasticity and 0.88
after doing it. Figure 7.2 shows the histograms of FXI intraday 1-minute
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Figure 7.1: Intraday volatility profile of 1-minute returns of the DIA ETF.

returns, the intraday pattern being already removed, before and after the
removal of heteroskedasticity by means of Equation (6.4). As can be seen
in the figures, there is a spike at 0 representing the great number of zero
returns.

7.2 Binary alphabet

7.2.1 Discretising returns

The simplest symbolisation of price returns is the one which distinguishes
only the two cases of positive and negative return, corresponding to the two
behaviours of price moving up and moving down, respectively. Stationarity
of price can not be included in either of the two behaviours as long as the
symbolisation is defined in a symmetrical way. This point highlights the fact
that returns are distributed on a discrete set of values. If they were instead
distributed on a continuous set of values, taken according to an absolutely
continuous distribution, the probability of taking a precise value would be
zero, thus negligible in practical cases.

If {r;}; is the time series of non-zero returns, we define the 2-symbol
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Figure 7.2: Histograms of 1-minute returns of the FXI ETF, before (left)
and after (right) removing the heteroskedasticity. The intraday pattern has
already been filtered out in both series.
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In Table 7.3 we report the number of the two symbols ‘0’ and ‘1’ in the
ETF return series symbolised according to symbolisation (7.2). Ten ETFs
exhibit a difference in the number of the two symbols, which is statistically
significant at the 1% significance level when a null model is assumed in which
at each time instant prices have the same probability of moving up and
moving down. Under such assumptions, the number of either upward and
downward movements of the price has a binomial distribution.

The simplest null hypothesis to check consists in the returns being inde-
pendent, that is, indistinguishable from strong white noise. For such a model,
the Shannon entropy of the process symbolised according to (7.2) equals one,
since all the strings s* have the same probability pu(s}) = Hle 1(si) = 5
and the uncertainty is maximum. We stress that the assumption of inde-
pendence is not realistic, since intraday returns are known to possess some
features of correlation, mainly due to microstructure effects. However, this
first analysis allows to measure to what degree the ETF series of symbolised
non-zero returns depart from complete randomness. To put it another way,
it provides an average quantification of how much the sign of the returns is
predictable.

We test this hypothesis by comparing the entropy of the ETF return
series and the entropy of a white noise process with independent Gaussian
innovations. The former is of course the entropy of a single realisation (the
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ETF negative 1-min r | positive 1-min ret negative 5-min ret | positive 5-min ret
DIA 147229 (49.84%) 148163 (50.16%) 31193 (49.79%) 31457 (50.21%)
DXD 128403 (49.99%) 128454 (50.01%) 30530 (50.06%) 30462 (49.94%)
EEM 143965 (49.61%) | 146212 (50.39%) 30645 (49.29%) 31525 (50.71%)
EFA 136687 (49.75%) | 138083 (50.25%) 29936 (49.60%) 30419 (50.40%)
EWA 91641 (49.91%) 91962 (50.09%) 26932 (49.59%) 27376 (50.41%)
EWG 68745 (49.61%) 69819 (50.39%) 25099 (49.16%) 25956 (50.84%)
EWH 88689 (49.97%) 88792 (50.03%) 25504 (49.79%) 25720 (50.21%)
EWJ 89201 (50.07%) 88943 (49.93%) 23583 (49.86%) 23715 (50.14%)
EWM 59347 (49.76%) 59918 (50.24%) 21354 (49.43%) 21845 (50.57%)
EWS 73803 (49.92%) 74028 (50.08%) 23376 (49.60%) 23749 (50.40%)
EWT 89682 (49.97%) 89796 (50.03%) 24732 (49.77%) 24965 (50.23%)
EWU 46786 (49.93%) 46915 (50.07%) 22403 (49.88%) 22510 (50.12%)
EWW 127767 (50.07%) 127398 (49.93%) 29984 (49.98%) 30006 (50.02%)
EWY 117983 (49.87%) 118594 (50.13%) 29416 (49.57%) 29928 (50.43%)
EWZ 146076 (49.69%) | 147908 (50.31%) 30861 (49.44%) 31562 (50.56%)
FXI 142538 (49.78%) 143791 (50.22%) 30939 (49.46%) 31609 (50.54%)
GDX 125416 (50.05%) 125179 (49.95%) 30850 (50.13%) 30687 (49.87%)
GLD 143987 (49.75%) | 145424 (50.25%) 30773 (49.69%) 31152 (50.31%)
IBB 96749 (50.08%) 96446 (49.92%) 29466 (49.79%) 29713 (50.21%)
ICF 126453 (49.96%) 126646 (50.04%) 30910 (49.97%) 30949 (50.03%)
IJH 95337 (49.74%) 96324 (50.26%) 30047 (49.65%) 30465 (50.35%)
IJR 121864 (49.85%) 122588 (50.15%) 30438 (49.60%) 30928 (50.40%)
IVE 98649 (49.99%) 98680 (50.01%) 29731 (49.89%) 29867 (50.11%)
Ivv 137548 (49.92%) 138016 (50.08%) 31272 (49.84%) 31478 (50.16%)
VW 102972 (49.83%) 103664 (50.17%) 29584 (49.80%) 29821 (50.20%)
IWD 127387 (50.00%) 127382 (50.00%) 30500 (49.90%) 30623 (50.10%)
IWF 123566 (49.78%) 124655 (50.22%) 29797 (49.70%) 30158 (50.30%)
IWM 145131 (49.79%) 146334 (50.21%) 30908 (49.69%) 31291 (50.31%)
IWN 129162 (49.88%) 129777 (50.12%) 30716 (49.61%) 31193 (50.39%)
IWO 128803 (49.74%) | 130171 (50.26%) 30909 (49.86%) 31079 (50.14%)
IYR 137814 (50.03%) 137646 (49.97%) 30887 (49.92%) 30990 (50.08%)
MDY 147600 (49.77%) 148983 (50.23%) 31168 (49.48%) 31819 (50.52%)
MZZ 81551 (50.11%) 81179 (49.89%) 28481 (50.35%) 28080 (49.65%)
PHO 67273 (49.72%) 68019 (50.28%) 26724 (49.47%) 27297 (50.53%)
QID 150071 (50.09%) 149533 (49.91%) 31609 (50.10%) 31487 (49.90%)
QLD 139639 (49.63%) | 141716 (50.37%) 31519 (49.94%) 31598 (50.06%)
QQQA 140048 (49.81%) 141141 (50.19%) 30368 (49.87%) 30523 (50.13%)
RKH 115708 (50.23%) 114637 (49.77%) 30159 (50.33%) 29769 (49.67%)
RTH 94231 (49.88%) 94683 (50.12%) 26214 (50.28%) 25921 (49.72%)
SDS 140510 (49.96%) 140740 (50.04%) 31313 (50.07%) 31230 (49.93%)
SLV 110158 (49.61%) | 111891 (50.39%) 29885 (49.43%) 30569 (50.57%)
SPY 150017 (49.89%) 150698 (50.11%) 31376 (49.78%) 31649 (50.22%)
SSO 118571 (49.85%) 119300 (50.15%) 29536 (49.85%) 29718 (50.15%)
TIP 81407 (49.36%) 83517 (50.64%) 27780 (49.26%) 28612 (50.74%)
USO 139722 (49.91%) 140246 (50.09%) 30851 (49.60%) 31346 (50.40%)
XHB 102953 (50.25%) 101927 (49.75%) 29155 (50.59%) 28475 (49.41%)
XLB 121761 (49.79%) 122788 (50.21%) 29421 (49.67%) 29815 (50.33%)
XLE 146881 (49.66%) | 148876 (50.34%) 30955 (49.48%) 31607 (50.52%)
XLF 124317 (50.21%) 123291 (49.79%) 28938 (50.25%) 28646 (49.75%)
XLI 108042 (50.02%) 107957 (49.98%) 28508 (49.95%) 28566 (50.05%)
XLK 103627 (49.87%) 104160 (50.13%) 27995 (49.81%) 28208 (50.19%)
XLP 89120 (49.97%) 89211 (50.03%) 26559 (49.62%) 26961 (50.38%)
XLU 111554 (49.92%) 111901 (50.08%) 28330 (49.80%) 28553 (50.20%)
XLV 96419 (49.91%) 96754 (50.09%) 27511 (49.65%) 27897 (50.35%)
XLY 102484 (50.03%) 102359 (49.97%) 28201 (49.83%) 28391 (50.17%)

Table 7.3: Number of symbols ‘0’ and ‘1" in the ETF return series symbol-
ised according to (7.2). Bold values indicate return series where statistically
significant asymmetry is found in the number of the two symbols (at 99%
confidence level).
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time series), while the latter is the entropy estimated on a Monte Carlo
simulation of 1000 realisations, each of which having the same length of the
ETF time series to be compared with. Indicating with hy, the estimators of
the rescaled entropies hy, of Equation (7.1), we check whether it holds or not
that

iLETF € [EZVN,O.ES%’ ;LZVN,QQB%]’ (73>

where EZVN’x% denotes the z-th percentile of the white noise Monte Carlo
simulation. It turns out that the efficiency hypothesis of the ETF return
series being indistinguishable from white noise is rejected for the great ma-
jority of the ETFs, as expected. There are however few cases for which this
basic test fails to reject the efficiency hypothesis. We note that there is some
dependence of the results on the order &k of the considered entropies. For
k = 2, property (7.3) does not hold for ETFs IYR, XHB, XLB; for k = 3 it is
violated by ETFs MZZ, RKH, XLB; for £ = 6 it does not hold only for RKH;
for k = 10 exceptions to (7.3) are EWZ, IBB, IYR, MZZ, XLE. In Figure 7.3
we show the order 10 entropies AT with confidence bands of 99%. Looking
at the top picture, we see that there is a number of ETF's quite close to the
efficiency level of 1, although just five of them are not statistically distin-
guishable from perfectly efficient white noise. There is however a remarkable
number of ETFs which are very far from the condition of efficiency. In what
follows we shall analyse to what extent this is attributable to microstructure
effects that can be modelled and consequently how much of this inefficiency
remains after filtering out the predictability due to microstructural depen-
dence.

By repeating the basic test (7.3) with the 5-minute return series (bottom
graph in Figure 7.3), we see how a lower sampling frequency makes the return
series more efficient. Of course this is expected, since many inefficiencies
must be imputable to microstructure effects, which are greater at higher
frequencies. However, we still see that there are a number of ETFs (namely,
EWJ, EWM, EWS, EWT, EWU, TIP) that, compared with others, maintain
a large degree of inefficiency. It is also notable that in two cases (PHO and
RTH) a relatively low entropy in the 1-minute return series corresponds to
a relatively high entropy in the 5-minute return series. In these two cases
it appears that the sole change in the frequency of the observations removes
almost all the inefficiency. This contrasts with other cases of comparable
low entropy for the 1-minute return series, such as EWU, which exhibit the
same feature of having a relatively low entropy in the 5-minute return series
as well. We point out that this should be considered as evidence of the fact
that equally inefficient series may have different causes at the origins of their
inefficiencies.
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Figure 7.3: Estimated hEFF values (circles) of the 55 ETFs, with 99% confi-
dence bands obtained from Monte Carlo simulations of a white noise process
of the same length of the ETFs 1-minute (top) and 5-minute (bottom) return
series.

7.2.2 Modelling return series as AR(1) or MA(1) pro-
cesses

As already anticipated in Section 7.2.1, the fact that intraday return series
generally show significant departure from perfect randomness is expected,
since it is a stylised fact (see, for example, [79]) that intraday returns possess

99



CHAPTER 7. THE INFORMATIONAL EFFICIENCY OF FINANCIAL
MARKETS

some significant correlation, at least at the first lag. One source of this corre-
lation is the bid-ask bounce in transaction prices, which shows most clearly
at higher frequencies. The bouncing prices are responsible for a negative
autocorrelation at the first lag.

A possible model to theoretically explain this stylised fact is the following.
Market (logarithmic) prices p; are supposed to differ from the latent efficient
(or rational or fundamental) prices pj by temporary pricing errors u;, so that
it holds

pe=p; + (7.4)
The market returns
TE=T] 4+ U — U (7.5)

are therefore the sum of two terms. The first is represented by the rational
returns r;, which are the rational response to fundamental information and
are assumed to be white noise from the theory of efficient markets. Let

o? indicate their variance, that is, assume that r} big (0,0?). The second
component is u; — uy—1. Depending on the structure imposed on the pricing
error component u;, many structural models for microstructure effects can
be recovered. In the simplest case, {u;} is an i.i.d. noise process independent
of the price process. Let n? indicate the variance of random variables u,. The
observed returns process is then MA(1) with E[r;] = 0 and autocovariance
function given by

o? + 2n? for =0
Elriry] =< —n? forT =1
0 for v > 2

If the pricing errors u; are assumed to follow instead an AR(1) process,
then the returns process is ARMA(1, 1), with more complex autocorrelation
structure.

Some empirical high-frequency data indeed show a typical MA(1) struc-
ture in the autocorrelation of returns, although others do not. In many
cases, returns exhibit significant autocorrelation also at lags greater than 1
(see Figure 7.5). A typical picture is one where the autocorrelation function
shows an alternating sign, decreasing in absolute size as the lag gets larger
(see the top right and bottom left panels of Figure 7.5; see also [83]). In [83],
the authors propose a simple model to capture this alternating-sign higher
order dependence, which resembles an AR(1) model and is slightly more
complicated. Motivated by this similarity and by the fact that the procedure
in Section 7.2.3 identifies the AR(1) model as the best ARMA(p, ¢) model
for some return series, we regard the AR(1) model as a good compromise
between effectiveness and simplicity.
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For these two simple return models (the AR(1) and the MA(1)), we devel-
oped in Chapter 4 an analytical approach to determine the theoretical values
of their Shannon entropies. In this section, we take the ETFs whose non-zero
return series are indeed well described by an AR(1) or an MA(1) process and
we provide a quantification of their inefficiency as the degree to which the
entropy measured on the empirical series differs from the theoretical one.

More precisely, our procedure is the following. We first estimate the best
ARMA (p, q) model for each one of the non-zero return series (see Section
7.2.3 for the details of the estimate procedure and the results on all the ETF
series). Then, for those series whose estimated parameters p and ¢ are such
that p + ¢ < 1—that is, for the series whose best ARMA estimate is an
AR(1), an MA(1) or just a white noise process—we can easily calculate the
theoretical values hi" and A" of the entropies hy and hz. They just equal 1
in the case of the white noise process, while for the AR(1) and the MA(1)
processes can be obtained by applying the formulas derived in Section 4.2.2.
Finally, for each of these series we compute the inefficiency scores I, and I3

defined by
th _ pETF
I, = M, k=23, (7.6)
Ok

where AETF is the conditional entropy of order k measured on the binarised
return series and oy is the standard deviation of the estimator Hk on Monte
Carlo realisations of the estimated process with the same length as the ETF’s
return series. The scores I, measure how much the empirical series depart
from being a pure AR(1), MA(1) or white noise process. Making the basic
assumption that a perfectly efficient ETF should perfectly follow one of these
processes (the linear ARMA dependencies being due only to microstructure
features), the scores I}, indeed provide a measure of the amount of inefficiency
present in the empirical return series.

In Figure 7.4 we show the comparison between the entropy hs of the ETF
return series and the theoretical value of h3—given by the formulas obtained
in Chapter 4—of the processes AR(1), MA(1) or white noise, which best fit
the return series. We notice that, as can be expected, the theoretical entropy
values are always higher than the return series entropy, meaning that the
return series are less efficient than the corresponding AR(1), MA(1) or white
noise processes. The difference between the two values provides us with a
quantification of the inefficiency of the return series against their benchmark.

In Table 7.4 we report the inefficiency rankings as determined by the

inefficiency scores (7.6). As the 17 ETFs treated here are a subset of the
55 ETFs for which we determine in Table 7.6 other rankings, according to
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Figure 7.4: The entropy hs of the non-zero 1-minute return series and the
theoretical values of the hy entropy of the corresponding best fitting AR(1),
MA(1) or white noise models, for the 17 ETFs well described by one of these
models.

a different score of inefficiency, we report in parentheses this latter ranking
for comparison purposes. We notice that, although the two approaches differ
to a certain degree for the most inefficient ETFs (top and central rankings),
they give quite stable results for the most efficient ones (bottom rankings).

7.2.3 Modelling return series as ARMA(p, ¢) processes

In Section 7.2.2 we showed how a simple model for the efficient and the ob-
served price implies that returns follow an MA(1) process. As already antici-
pated, the same model can explain more complex autocorrelation structures,
by changing the structure of the pricing error component u; in Equations
(7.4) and (7.5). We now change perspective and adopt an approach which
is data-driven. In this section we make no a priori assumption and start
from the empirical autocorrelation functions of the ETF data, which show
different scenarios.

In Figure 7.5 we show the sample autocorrelation of the series made up of
non-zero l-minute returns. At the top left we see a case (the ETF SLV) where
significant autocorrelation is present at the lag 1 and almost at no other lag,
which is the typical structure of a MA(1) process. At the top right the ETF
EWA shows a situation where the autocorrelation is significant at the first
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ETF Is | rank Is | rank
IWM 81.035 1 9) 65.330 1
IWO 43.994 2 (4) 38.037 2
MDY 41.642 4 (12) 30.622 3
EWA 43.527 3 (1) 29.653 4
PHO 40.688 5 (10 26.298 5
IWN 27.514 8 (8 20.956 6
GLD 27.258 9 (5 19.355 7
XLV 28.054 7 (7 19.274 8
SLV 28.914 6 (14 19.192 9

)

)

)

)

)
IVE || 23.009 | 11  (6) || 17.939 | 10
EWY || 25015 | 10 (2) || 17.012 | 11
EEM || 18109 | 13 (11) | 13.342 | 12
EFA || 19.589 | 12 ) || 13.131 13
FXI || 11.726 | 14 )

)

)

)
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Table 7.4: Inefficiency scores Iy, for £ = 2,3, and corresponding rankings
of the 17 ETFs well described by AR(1), MA(1) or white noise model (first
means most inefficient). Rankings in parentheses refer to relative positions
in Table 7.6.

lag, which is the dominant part, but also at lags 2 and 3, with an alternating
sign and a decreasing absolute value which are typical of an AR(1) process
with negative parameter. The ETF EWM at the bottom left of the figure
has some features which recall those of EWA| such as the alternating sign
and the decreasing absolute value, yet the situation is more complicated.
The autocorrelation function is in fact statistically significant for many lags
(from 1 to 11). Furthermore, since the decay does not look exponential, one
single autoregressive parameter should not suffice to describe the dynamics of
returns. Finally, at the bottom right we report a case (the ETF SPY) where
some negative autocorrelation is significant at many lags, but there is no
clear structure in the autocorrelation function. The four scenarios depicted
here do not cover all the behaviours of the autocorrelation function of the 55
ETFs. However they provide a picture of how different the autocorrelation
functions of different assets can be.

For these reasons, we do not assume any a priori model and instead
we look for the best linear ARMA(p, ¢) model that describes the data. Of
course there does not exist a model that is the best in fitting the data,
since by augmenting the number of parameters of the model we can describe
them better and better, increasing the likelihood. However this may result
in overfitting and therefore what one seeks is a compromise between good
description of the data and the complexity of the model, that is, the number
of parameters. There is no unique way to do this, and two possibilities are
using the Akaike Information Criterion (AIC), developed by Akaike ([84]),
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Figure 7.5: Autocorrelation functions of non-zero 1-minute returns for the
ETFs SLV, EWA, EWM, SPY. Dotted lines indicate significance levels given

by j:%, where L is the length of the series.

and the Bayesian Information Criterion (BIC), developed by Schwarz ([85]).
They are both based on the likelihood and have a penalty term to weigh
the complexity of the model in terms of the number of parameters to be

estimated. Given an observed time series x1, ..., z, of length n and a model
with m parameters aq, ..., a,,, they are defined by

AIC = —2log(L) + 2m, (7.7)

BIC = —2log(L) + mlog(n), (7.8)

where L = L(ay,...,an|z1, ..., 2,) = P(xy, ..., xy|aq, ..., qp) is the like-

lihood of the parameters, given the data x;. The best model, according to
either of the two information criteria, is the one for which the quantity (7.7)
or (7.8) attains its minimum value. The penalty term in the BIC is larger
than that in the AIC. In selecting the best ARMA(p, ¢) model to fit our data
we shall use the BIC, in order to strongly penalise complex models with a
large number of parameters.

In Table 7.5 we report, for every ETF, the AR and MA orders p and
q, such that the series of non-zero l-minute returns is best fitted with an
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ARMA (p, q) model, where best means that the model is the one that min-
imises the quantity (7.8). As we can see, the return series of the ETFs whose
autocorrelations are represented in Figure 7.5 are best fitted with different
models: SLV with an MA(1) model, EWA with an AR(1) model, EWM with
an ARMA(3,2) model, SPY with an ARMA(2,4) model. There are 13 out

ETF p | q ETF p | q ETF p | q ETF p | q ETF | p | ¢q
DIA 0|4 || EWU 2 (1 IVE 0|1 PHO 1(0f( USO | 3| 2
DXD 0|41 EWW [ 1| 2] IVV 1|3 QID 2| 2| XHB | 2|0
EEM 1| 0| EWY 1]0]| IVW 211 QLD 2|14 XLB |00
EFA 11| 0| EWZ 2 (1 IWD 113 QRQAQ | 0 | 4 || XLE | 0| 2
EWA 1|0 || FXI 10| IWF 2 | 2 || RKH 00| XLF | 1|1
EWG | 2 |1 GDX 12| IWM | 0| 0| RTH 311 XLI 2|2
EWH | 1| 2 GLD 110 | IWN 110 SDS 13| XLK | 2| 2
EWJ 3| 2| IBB 02| IWO 110 SLV 0|1 XLP | 2|1
EWM | 3 | 2 ICF 01| 3] IYR 01| 2 SPY 2|4 XLU | 0| 2
EWS 3| 2 IJH 04| MDY |0 ]| O SSO 1|1 XLV [ 1]0
EWT | 3 | 2 IJR 5 (1 MZZ 0|1 TIP 111 XLY [ 0] 2

Table 7.5: AR and MA orders p and ¢ resulting from the minimisation of the
BIC (7.8) among all models ARMA(p, ¢) with p+ ¢ <8.

of the 55 series that are best fitted either with an AR(1) model or an MA(1)
model, plus other 4 that are best fitted with a simple white noise process.
We stress that for these 17 cases we know what the corresponding entropies
Hy, Hs, ho, hz of the binary symbolisation should be, since for a white noise
process they equal 1 and for the AR(1) and the MA(1) models they are given
by the analytical results obtained in Chapter 4. However, we now want to
perform a hypothesis test to assess whether there are further dependencies
other than the linear ARMA structure. If all the amount of predictability of
the series is due to their linear ARMA structure, once it is filtered out there
would remain no other dependence and the series of residuals should not be
distinguishable from white noise. Figure 7.6 shows how the ARMA residuals
no longer contain the significant autocorrelation detected in returns. In order
to measure how much inefficiency is there in the return series that is not due
to the ARMA structure, we analyse the residuals of the ARMA estimates of
the series, symbolise them according to (7.2) and then compare the entropy
of the symbolised series with the values obtained by a Monte Carlo simu-
lation of a white noise process. Before showing the results of this test, we
first show in Figure 7.7 the comparison between the entropy 52, defined by
Equations (7.1), of the return series and of their ARMA residuals. We stress
that the same qualitative picture that we are about to describe is valid also
for the entropies hy, with k # 2. It is interesting to note how different the
behaviour of the various ETFs is. Some ETFs already have a high entropy
in the return series, so that taking the ARMA residuals does not lead to a
noticeable increase in the entropy value. Others, that have a relatively low
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Figure 7.6: Autocorrelation of the series of non-zero 1-minute returns (top)
and of their ARMA(p, q) residuals (bottom) for the ETFs SLV (left) and
EWM (right). The values of (p,q) are (0,1) for SLV and (3,2) for EWM.

entropy, show a significant increase in the value of the entropy when ARMA
residuals are considered in place of returns. However, there are cases where
the inefficiency of the return series vanishes almost completely when taking
the ARMA residuals, such as for PHO, SLV, TIP. For these ETFs it seems
that a large part of the apparent inefficiency is embodied and explained by
the linear dependence structure of ARMA models. For many other cases,
instead, the ARMA residuals continue to contain some (nonlinear) inefficien-
cies.

We now go back to the hypothesis test we mentioned earlier, to see
whether the residuals of ARMA estimates are distinguishable from white
noise. Analogously to what we did in Section 7.2.1, we check the condition

iLll;es € [ﬁlNN,O.S%) }ALZVN,QQﬁ%]? (79>

where izifs denotes the estimated entropy of the series of ARMA residuals. It
turns out that even considering the ARMA residuals of return series we reject
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Figure 7.7: The entropy hy of the non-zero l-minute return series and of
the corresponding series of ARMA(p, ¢) residuals, where p and ¢ are those of
Table 7.5, for the 55 ETFs.

the hypothesis of efficiency for the large majority of the ETFs. The cases
where the test does not reject the efficiency hypothesis are the following. For
k=2, GDX, MZZ, XHB, XLB; for k = 3, IBB, MZZ, XHB, XLB; for k = 6,
IBB, XHB, XLE; for £ = 10, EWZ, FXI, GDX, IBB, ICF, IYR, XHB, XLE,
XLY. Referring to the results found in Section 7.2.1, we note that the cases
for which the efficiency was rejected already analysing the entropy of the
return series are cases where it is also rejected after filtering out the linear
part, as one would expect. There are however a few exceptions (IYR for
k =2, RKH for k = 3,6, MZZ for k = 10).

We argue that the predictability that remains in a series after removing
the amount due to the linear component, that is, after taking the residuals
of ARMA estimates, constitutes nonlinear inefficiency proper to that asset.
It is interesting to quantify these inefficiencies and rank the ETFs according
to their measures. We perform this by measuring how faraway the entropy
of the residuals is from the value 1 of pure white noise. In particular, for
each ETF we define the following measure of inefficiency:
1 — hes

WN
O

[ = (7.10)

where o)¥N is the standard deviation of the estimator hi on a white noise pro-

cess of the same length as the ETF’s return series. A perfectly efficient series
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has values of I} equal to 0. The farther from 0 the value of I, the greater
the inefficiency. Results are reported in Table 7.6, for £ = 2,3,6,10. Note
that varying k the ranking positions are quite stable for the most inefficient
ETFs (those in the first nine positions). Many other ETFs display different
degrees of variability, ranging from differences across the four rankings of at
most one position to differences of eleven places.

We do not know what the reasons of the inefficiencies and the mechanisms
generating them are. They may have origin in technical details of how the
trading of that particular asset is regulated by the rules of the market, or in
the particular strategies adopted by market makers, or also in microstructure
details (such as the relative tick size) that may have different impact on
different assets. Inefficiencies may also have a more fundamental origin, that
is, they may be due to the economics of the asset and of other financial assets
related to it.

Investigating the relationship between entropy and the relative tick size
we find interesting results. Note that for our ETF data looking at the relative
tick size (that is, the ratio between the minimum possible price variation and
the price) is equivalent to looking at the price, since the absolute tick size is
equal for all the 55 ETFs. It clearly emerges from the scatter plots in Figure
7.8 that the five most inefficient ETFs are those with the lowest price. A
possible interpretation of this lies in the fact that an asset’s price with a
large relative tick size is subject to more predictable price changes. If we
think of the rational price moving on a continuous scale, a change in the
observed price means that the rational price has passed a tick level. Now, for
an asset with a low price (or, equivalently, with a large relative tick size) it
would be much more difficult to cross another tick level in the same direction
than it is for an asset with a large price (that is, with a small relative tick
size). Thus, most probably the observed price either moves backward or
remains constant. Recall that, in the symbolisation we are considering, the
stationarity of observed price (corresponding to a zero return) is ignored and
simply discarded. With this considerations in mind, it is reasonable to expect
the price of an asset with a large relative tick size to show some oscillating
behaviour producing a more predictable symbolic sequence.

Another consideration on the rankings of Table 7.6 is one which concen-
trates on the ETFs which track a country index, in particular those from
EWA to EWZ in Table 7.1. We notice that the most inefficient ETFs are
those relative to the Asian countries (such as Japan, Malaysia, Singapore,
Taiwan, Hong Kong) and to Australia. The ETFs tracking the indices of
Germany and United Kingdom, though quite inefficient as well, are not in
the very first places, lying behind the group of Asian countries. Finally, ETFs
relative to Mexican and Brazilian indices are much behind in the inefficiency
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ETF 15°° | rank 13 | rank 15 | rank 1ig® | rank
EWJ 4933.980 1 2807.921 1 1177.880 1 318.380 1
EWM 1505.712 3 1132.796 2 510.979 2 147.319 2
EWS 1495.015 4 1105.510 3 445.117 3 119.970 3
EWT 1911.672 2 1053.470 4 427.720 4 110.355 4
RTH 1307.800 5 790.725 5 328.179 5 94.070 5
EWH 737.441 6 546.053 6 228.858 6 70.411 6
EWA 417.549 7 292.831 7 118.729 7 36.094 7
IWF 271.103 9 207.461 9 83.385 8 23.151 8
EWG 371.408 8 212.230 8 81.883 9 23.147 9
IWD 214.192 13 166.222 11 69.487 10 20.591 10
EWU 208.818 15 152.508 14 55.773 14 16.896 11
IVW 256.876 10 155.098 13 56.317 13 16.794 12
XLP 232.995 11 172.684 10 66.368 11 16.750 13
EWY 213.702 14 156.279 12 57.306 12 15.309 14
TIP 187.414 16 108.947 16 48.645 16 13.820 15
QQQQ 98.620 27 81.404 22 39.632 20 13.484 16
XLF 214.455 12 122.775 15 48.263 17 13.475 17
DIA 156.796 18 104.936 17 49.220 15 13.401 18
Ivv 113.026 20 79.714 23 42.456 19 13.142 19
SPY 95.455 28 75.835 25 45.118 18 12.925 20
USO 106.876 23 70.114 26 34.931 24 11.419 21
GLD 106.747 24 81.771 21 34.481 25 10.763 22
IVE 100.316 26 76.238 24 35.123 23 10.693 23
IWM 81.035 31 65.330 29 30.048 27 10.258 24
EFA 186.516 17 104.336 18 38.174 21 9.839 25
XLK 113.568 19 89.810 19 36.301 22 9.646 26
SDS 52.276 37 47.967 35 29.521 28 8.911 27
IJR 113.007 21 63.456 30 28.002 29 8.881 28
EWW 102.933 25 85.422 20 33.454 26 8.665 29
XLU 67.310 33 48.481 34 26.354 32 7.975 30
DXD 52.030 38 48.874 33 24.541 34 7.344 31
IWO 107.853 22 62.741 31 25.647 33 7.327 32
XLV 95.166 29 68.339 28 27.939 30 7.320 33
IWN 93.928 30 68.919 27 27.043 31 7.275 34
XLI 66.079 34 51.481 32 21.970 35 7.262 35
QLD 23.058 43 23.942 43 15.057 40 7.062 36
SSO 21.837 44 23.412 44 16.504 38 6.430 37
IJH 57.385 36 43.514 37 18.616 36 6.090 38
SLV 28.499 42 19.818 45 10.301 44 5.525 39
QID 38.927 40 32.219 39 17.209 37 5.203 40
PHO 67.431 32 40.896 38 16.414 39 5.196 41
MDY 42.881 39 28.769 40 14.460 42 4.976 42
EEM 60.268 35 45.020 36 14.625 41 4.530 43
MZZ -1.888 54 0.130 54 3.503 50 3.358 44
XLB 2.133 52 2.285 52 5.464 47 2.800 45
RKH 4.666 49 3.995 51 2.763 52 2.543 46
XHB -2.395 55 0.067 55 -0.129 55 2.320 47
XLY 12.893 46 11.997 47 10.748 43 1.943 48
IYR 2.885 51 8.558 48 4.722 48 1.715 49
FXI 36.978 41 26.709 41 9.662 46 1.558 50
ICF 11.986 47 26.368 42 10.106 45 1.364 51
GDX 1.047 53 4.637 49 3.174 51 0.614 52
IBB 4.424 50 1.568 53 1.220 54 -0.372 53
EWZ 17.015 45 14.064 46 4.359 49 -0.747 54
XLE 4.929 48 4.279 50 1.440 53 -1.457 55

Table 7.6: Inefficiency scores I;*, for k = 2, 3,6, 10, and corresponding inef-
ficiency rankings of the 55 ETFs (first means most inefficient).
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Figure 7.8: Scatter plots in log-log scale showing the relation between ineffi-
ciency (scores [3%, I3 It I78%) and median price of 51 ETFs (the four ETFs
with a detected split/merge are omitted). The graphed scores I, = I}** + 5

are shifted versions of the inefficiency scores I;*° in order to be positive for
the logarithmic plot.

rankings, with the latter being among the most efficient ETFs. An exception
to this classification is the ETF tracking the index of South Korea, which is
not ranked in the group of ETFs of the other Asian countries. Apart from
this exception, it can be argued that the levels of detected inefficiency follow
the time distances from the New York time. In Figure 7.9 we show the re-
lationship between inefficiency and opening time overlap of the NYSE with
the country markets, for the mentioned country ETFs. The markets of the
Asian countries of Japan, Malaysia, Singapore, Taiwan, Hong Kong, as well
as the Australian market, are closed when the corresponding ETFs are being
traded at the New York Stock Exchange. Therefore these assets are traded
while the tracked index has no dynamics. There is instead some time overlap
in the opening times of the New York Stock Exchange and of European mar-
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Figure 7.9: Relationship between inefficiency and opening time overlap of
the NYSE with the country markets, for the country ETFs from EWA to
EWZ in Table 7.1. The graphed score I7, = I}’ +5 is a shifted version of the
inefficiency score Ii’, in order to be positive for the logarithmic plot. The
opening time overlap on the x axis is the time when both the NYSE and the
country market are simultaneously open, divided by the NYSE opening time

(6.5 hours).

kets, while there is great overlap of the former with the markets of Mexico
and Brazil. The trading dynamics of the ETFs on these last two countries
can therefore rely on a simultaneous evolution of the corresponding indices.
We remark that, if the two mechanisms that we propose as possible expla-
nations to what we observe in the inefficiency rankings are legitimate, it may
well be that the two things are related. It may be that those ETFs that track
indices of markets that are closed during the ETFs’ trading time are delib-
erately given a low price, since their dynamics is only coarsely determined.
However, we could not find any founded indication in this respect.

7.3 Ternary alphabet

As we point out in Section 7.2, a symmetrical binary discretisation of returns
that takes into account all the information does not exist. The most natural
one is defined by (7.2), but it ignores all the zero returns, which correspond
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to intervals of price stationarity. This waste of information is larger as one
moves to higher frequencies, since the probability of observing a price change
in a fixed interval decreases with the decreasing of the interval length. In our
data, at frequencies of 1 and 5 minutes the amount of zero returns is huge.
In Section 7.2 we showed how much information on market efficiency can be
extracted even ignoring the zero returns. In this section we instead use all
the returns.

The idea of ternary-alphabet discretisations of returns is that a symbol
represents a stability basin, encoding all returns in a neighbourhood of zero.
Negative and positive returns lying outside of this basin are encoded with the
two other symbols. In the papers [29] and [28], the three-symbol discretisa-
tion of returns is performed as defined in (5.6), with a threshold b = 0.0025.
In [30], high-frequency exchange rates differences are discretised in a similar
fashion with a threshold equal to three pips (i.e. b = 0.0003). We argue that
there are numerous problems in fixing an absolute threshold in these discreti-
sations. The main objection is that a fixed symbolisation scheme does not
take into account the heteroskedasticity of the series. Time series of returns
are known to display periods of different volatility, that is, periods with dif-
ferent average absolute size. We believe that, in such contexts, a ternary
discretisation of returns should possess a character of variability, in order to
consistently adapt to the volatility dynamics. The risk in not doing so is that
the memory properties of the volatility are encoded in the symbolised series
and spurious dependencies are introduced.

There are also other reasons that make fixed-threshold ternary symboli-
sations inadequate. First of all, different assets have different distributions
of returns (or rates differences in the case of currency exchanges), so that
a fixed neighbourhood of zero includes portions of the return distributions
which are different across the assets. This introduces discrepancies in treat-
ing the time series that can potentially affect the results of the analyses.
Secondly, the distribution of returns also varies as the sampling frequency
varies, so that choosing a fixed symbolisation scheme for different frequencies
(as in [30]) appears inappropriate. Finally, the three-symbol discretisation
can be applied not only to the raw returns, but also to returns filtered for
the intraday pattern as defined by (6.2) or to standardised returns as defined
by (6.4). These latter two series, as well as other possible series obtained
by processing the returns in some other way, range on different scales and
therefore the ternary symbolisations with fixed thresholds are not the proper
way to deal with their discretisation.

Concerning the three-symbol discretisations of time series, we propose a
more flexible approach, which is also rather general. We define the thresholds
for the symbolisation to be the two tertiles of the distribution of values taken
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by the time series. More formally, if {rq,...,ry} is the time series, we define
its tertile-symbolised series by

0 if T < 191
=4 1 i <r <y, (7.11)
2 if Ty > '192

where ¢; and 15 denote the two tertiles of the empirical distribution of the
time series {r;}.

7.3.1 The impact of intraday patterns and volatility on
market efficiency measures

As already pointed out, a three-symbol discretisation of returns, with one
symbol encoding returns in a stability basin around zero, embeds to some
degree the intraday pattern and the volatility into the symbolic series. Thus,
when these components are not properly filtered out, the symbolic series will
possess a certain amount of predictability due to the memory and regularity
properties of these factors. We now proceed with a quantitative study in this
respect.

As outlined in Section 7.1.3, the whitening procedure that we apply to
the series of logarithmic returns R; starts with removing the intraday pat-
tern, getting the deseasonalised returns R,, and continues with removing the
volatility, getting the standardised returns r;. We further treat the standard-
ised returns to remove any ARMA component that may be due to microstruc-
ture factors, thus getting also a series of ARMA residuals ¢;. We symbolise
all these series with tertile thresholds as in (7.11) and estimate the Shannon
entropy of the symbolic series to measure their degree of randomness. By
doing so, we can assess to what degree the intraday pattern, the volatility
and the microstructure contribute to create regularities in the return time
series.

We show in Figure 7.10 the values of the Shannon entropy hs for the
l-minute and 5-minute series of raw returns R,, deseasonalised returns R,
standardised returns r; and ARMA(p, ) residuals of standardised returns,
where p and ¢ are the ones that minimise the Bayesian Information Criterion
value, given by Equation (7.8), among all the models ARMA(p, ¢) with p+q <
5. Similar features to those discussed below also hold for results obtained
with the entropies hg, with k < 10 and k # 8.

For five 1-minute series (ETFs EWH, EWJ, EWM, EWS, EWT) it hap-
pens that the proportion of zero returns is so large that the two tertile thresh-
olds ¥, and ¥, are equal to zero. The corresponding symbolic series thus have
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Figure 7.10: The entropy hs of the 1-minute (top) and 5-minute (bottom)
series of raw returns, deseasonalised returns, standardised returns, ARMA
residuals, for the ETFs. Results for the ETFs EWH, EWJ, EWM, EWS,

EWT are considered for the 5-minute series only.

an unbalanced number of the three symbols. In order to avoid comparing
series with balanced distributions of symbols with series with unbalanced
distributions, we ignore the results on the latter. We instead report results
for all 5-minute series, since at this frequency the tertiles of the return dis-
tributions never happen to equal zero.
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Concerning the results reported in Figure 7.10, we notice that in the vast
majority of cases the symbolised series of the raw returns are the most pre-
dictable, as is expected since they still carry all the regularities of the intra-
day pattern and the correlation due to the volatility and the microstructure.
However, there are cases (DIA, ICF, RTH for the 1-minute series; EWM,
RTH for the 5-minute series) in which removing the intraday pattern from
the raw returns leads to series of lower entropy. This may seem to be not
possible, but note that the tertile values 1J; and 95 defining the symbolisation
of the series change in an unpredictable manner when passing from the raw
return series R; to the deseasonalised fit.

The most noteworthy results of the entropy estimates reported in the two
graphs of Figure 7.10, however, are those regarding the standardisation of
the returns by the volatility. In almost all the cases, it can be seen that the
passage from the deseasonalised returns to the standardised ones is respon-
sible for the largest increase in the entropy. Averaging across all the ETFs,
a percentage of around 18% of the entropy increase obtained with the three
whitening procedures is attributable to the removal of the intraday pattern,
while about 62% is due to the standardisation for the volatility and 20% is
the entropy gain given by the removal of correlations due to microstructure
effects. This means that the removal of the volatility from the return se-
ries increases their randomness more than the other two procedures taken
alone. Put another way, the volatility gives the return series a huge amount
of predictability and it does so much more, on average, than the daily sea-
sonality and the microstructure effects. This result should be regarded as
a convincing demonstration of the fact that, when studying the randomness
of a three-symbol discretised time series, the volatility must be filtered out.
Omitting this operation would give results that tell more on the predictable
character of the volatility than on, for example, market efficiency.

The last refinement that we do on standardised return series is the removal
of dependence structures due to market microstructure effects. As we did in
Section 7.2 when dealing with two-symbol discretisations, we perform it by
taking the residuals of the ARMA(p, ¢) model that best describes the series
of the standardised returns r;. This last procedure has the general effect of
removing some remaining predictability, further contributing to move return
series towards perfect efficiency. We note however that this is not always the
case: the entropy of the ARMA residuals is lower than that of standardised
returns for the 1-minute series of IYR, MZZ, QLD, RKH, XLY and for the
5-minute series of EWY, GDX, ICF, IJH, IVE, IWM, QLD, XLI, XLU.
We think that this counterintuitive behaviour might be caused by the large
amount of zero returns present in the data, in correspondence of which some
spurious randomness is introduced by taking the ARMA residuals.
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Overall, the results shown in Figure 7.10 clearly indicate that much of the
apparent inefficiency (that is, the predictability of the raw return series) is
due to three factors: the daily seasonality, the volatility and the microstruc-
ture effects. For example, note in the 1-minute picture of Figure 7.10 how
four of the most apparently inefficient ETFs (namely, EFA, IWF, IYR, RKH)
see their predictability almost vanish after their series are filtered for these
three factors.

We remark that, although the daily seasonality and the microstructure
effects are characteristic of high-frequency time series, the memory properties
of the volatility play a major role also in low-frequency (for example, daily)
data. Therefore, we conclude that studies on measuring relative efficiency as
randomness of symbolised return series should carefully deal with the issue
of removing the volatility, for failing to do so would heavily affect the results,
in fact invalidating them.

Our three-step procedure aims at removing from the return series all the
predictability that is imputable to factors having their own dynamics that
can be modelled. What remains in the filtered series that separates them
from being purely random is what we assess as the true inefficiency of the
assets. It may be due to other features of the market that we do not take
into account or to more fundamental aspects.

7.4 Conclusions

In this chapter we study how relative market efficiency can be measured from
high frequency data, filtering out all the known sources of regularity, such
as the intraday pattern, the persistence of volatility and the microstructure
effects. To this aim we employ the Shannon entropy as tool to measure the
randomness degree of binary and ternary symbolised time series of 55 ETFs.

Using the analytical study of the entropy of the AR(1) and MA(1) pro-
cesses conducted in Chapter 4, we develop an original theoretical approach
to discount microstructure effects from the measuring of efficiency of return
time series which exhibit simple autocorrelation structures. A very interest-
ing topic for future work is the extension of the analytical results found in
Chapter 4 to higher entropy orders and to more complex ARMA processes.

A more empirical approach, in which we choose the ARMA(p, q) pro-
cess that best describes each time series, allows us to filter out the linear
microstructure effects for all the ETFs and to measure residual regularities.
Results show that in some cases a large part of the regularities is explained
by the linear dependence structure, while in other cases the ARMA residuals
still contain some (nonlinear) regularities. By rigorously testing the ARMA
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residuals for efficiency, we reject the hypothesis of efficiency for the large
majority of the ETFs. We also rank the ETFs according to an inefficiency
score and find that the rankings are not very sensitive to the choice of the
entropy order.

We find a strong relationship between low entropy and high relative tick
size. This is explained by noting that an asset’s price with a large relative
tick size is subject to more predictable changes. We also notice that the
inefficiency scores for the country ETFs can be related to the opening time
overlap between the country markets and the NYSE, where the ETFs are
exchanged. We hypothesise that those ETFs that track indices of markets
that are closed during the ETFs’ trading time are deliberately given a low
price, since their dynamics cannot rely on a simultaneous evolution of the
corresponding indices.

With the 3-symbol discretisation, we find that the removal of the volatility
is responsible for the largest amount of regularity in the return series. This
effect amounts to the 62% of the total entropy gain and thus it is larger, on
average, than the combined effect of the intraday (18%) and microstructure
(20%) regularity. This result convincingly demonstrates that, when studying
the randomness of a three-symbol discretised time series, the volatility must
be filtered out. Omitting this operation would give results that tell more
on the predictable character of the volatility than on, for example, market
efficiency.
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Chapter 8

Modelling systemic price
cojumps with Hawkes factor
models

8.1 Introduction

Modelling the dynamics of large movements in security prices is of paramount
importance for risk control, derivative pricing, trading, and to understand
the behaviour of markets. The importance of understanding the dynamics
of abnormal returns, together with the recent wide availability of ultra-high
frequency data for a broad range of assets, has spurred the growth of a
large body of literature on their estimation and modelling. The mainstream
contribution to this field of research typically deals with the identification
problem at the daily time scale, i.e. answering the question whether on a
given day an extreme return occurred. An incomplete list of recent studies
on this topic, which is usually addressed in the econometric literature as
jump identification problem, includes theoretical work with a nonparametric
approach [86, 87, 88, 89, 90, 91, 92, 93|, as well as empirical analysis [94, 95,
96, 97, 98, 99|, and applications to asset pricing [100, 101, 102, 103, 104].
General reviews on jumps are [39] and [105]. Significantly less research has
been devoted to the study of events happening synchronously in two or more
stock prices. The investigation of such events, usually referred to as cojumps,
is mainly of empirical nature, see e.g. [106, 107, 108, 109]; relevant exceptions
dealing with cojump estimation and modelling are the papers of [110, 111]
and [112].

Taking a complementary, yet different, perspective, in this study we want
to explicitly identify the intraday times of abnormal returns. Thus, we resort
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on an identification approach based on the standardisation of high frequency
returns, in a similar spirit to [96, 113, 114]. We continue to generically refer
to such extreme events as jumps and cojumps. Contrary to other types
of jump tests (such as those based on multipower variations or multiscale
power variations), intraday tests enable to identify the exact intraday time
of a jump, as well as the number of jumps within a given trading day.

The modelling of a discontinuous component in asset price dynamics is
commonly performed in the literature by a compound Poisson process, see
e.g. [39]. Poisson jump processes have the great advantage of being analyt-
ically tractable. However, Poisson jumps (as well as the more general Lévy
processes) have independent increments and thus they do not allow for any
type of serial and cross-sectional dependence. Instead, one might argue that
the jump component of the price process could be better described by a pro-
cess where jumps are clustered in time. The same objection emerges when
one considers many assets. Markets are nowadays more and more intercon-
nected and it is a priori reasonable to expect that some sort of synchronisation
between the jumping times of different assets is present.

This synchronisation effect had its most spectacular appearance during
the May 6, 2010 Flash Crash. According to the SEC-CFTC, the crash started
from a rapid price decline in the E-Mini S&P 500 market [35, 36]. However in
a very short time the price drop propagated towards ETFs, stock indices and
their components, and derivatives. For example, the Dow Jones Industrial
Average plunged about nine percent, only to recover those losses within min-
utes. The contagion effect can be extremely rapid in liquid markets [115, 116]
and leads to a strongly synchronised discontinuous movement of the price of
many assets. This type of systemic events can not be described by a model
where price jumps follow independent processes.

In this work we show that indeed the dynamics of jumps of a portfolio
of stocks deviates significantly from a collection of independent Poisson pro-
cesses. The deviation that we observe is twofold. On one side, by considering
individual assets, we find evidence of time clustering of jumps, clearly incon-
sistent with a Poisson process. This means that the intensity of the point
process describing jumps depends on the past history of jumps, and a recent
jump increases the probability that another jump occurs.

The second deviation from the Poisson model is probably more important,
especially in a systemic context. We find a strong evidence of a high level
of synchronisation between the jumping times of a portfolio of stocks. In
other words, we find a large number of instances where several stocks (up to
20, the size of our set) jump within the same one minute interval (which is
our maximum resolution). This evidence is absolutely incompatible with the
hypothesis of independence of the jump processes across assets.
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Taking together these empirical deviations from the independent Poisson
model, there is a need of a suitable modelling of the multi-asset jump process
and this is the main methodological contribution of this work. In order to
model the time clustering of jumps for individual assets we propose the use
of a class of self-exciting point processes, termed Hawkes processes. These
processes were introduced more than forty years ago [40], and have been
widely employed to model earthquake data [117, 41, 42]. In the last years,
Hawkes processes have experienced an increasing popularity in mathemati-
cal finance and econometrics. One of the first applications to financial time
series is due to [43], and a wide literature review in this context is collected
in [44]. Among more recent developments not covered by the latter reference
we mention [118] where these processes are applied to the order flow in a
continuous double auction market, [119] for the modelling of trades-through
orders in a limit order book, [120] where Hawkes processes are used to intro-
duce a new stochastic model for the variation of tick-by-tick asset price both
in one and two dimension able to reproduce the strong microscopic mean
reversion and the Epps effect, and [121], which introduces a measure of the
market activity providing a direct access to the level of its endogeneity and
as a potential predictor of market microinstabilities (a critical review of this
paper is given in [122]). Finally, [123] discusses an innovative approach to
foreign exchange market in which the high frequency price dynamics is af-
fected by a self exciting mechanism and an exogenous component, generated
by the pre-announced arrival of macroeconomic news.

In this study we use Hawkes processes for modelling the dynamics of
jumps of individual assets and we show that they describe well the time clus-
tering of jumps. However the direct extension of the application of Hawkes
processes to describe the dynamics of jumps in a multi-asset framework is
highly problematic and inconsistent with data. In fact, from a methodologi-
cal point of view, even by using a simple two parameter kernel (for example,
exponential) of the process, the number of parameters to estimate a Hawkes
process on N assets is N(2N + 1) ~ O(N?), which is clearly too high. More-
over, even when we consider N = 2 stocks, we empirically find that a bivariate
Hawkes model is unable to describe the empirical data, especially to repli-
cate the high number of synchronous jumps that we observe. This is due to
the fact that the kernel structure of Hawkes is more suited to model lagged
jumps rather than synchronous jumps.

For this reason, the main methodological contribution of this study is
the introduction of Hawkes factor models to describe systemic cojumps. We
postulate the presence of an unobservable point process describing a market
factor. When this factor jumps, each asset jumps with a given probability,
which is different for each stock. In general, an asset can jump also by
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following an idiosyncratic point process. In order to capture also the time
clustering of jumps, we model the point processes as Hawkes processes. We
show how to estimate this model and discriminate between systemic and
idiosyncratic jumps. We show that the model is able to reproduce both
the longitudinal and the cross sectional properties of the multi-asset jump
process.

Recent approaches sharing some aspects with the present study are dis-
cussed in [112, 124] and [109]. The former design a model of asset returns
able to capture periods of crisis characterised by contagion and consider it
to solve the problem of optimal investment-consumption for a log-utility in-
vestor. The jump diffusion component of the dynamics is described in terms
of a class of multi-dimensional Hawkes models and the authors discuss an
estimation methodology based on the Generalised Method of Moments. Not
surprisingly, when they estimate the model on real data they face the prob-
lem of the curse of dimensionality and limit most of the study to the two asset
case. Our one factor approach solves the calibration issue in a natural way
and therefore represents a viable alternative to their model. By using data
sampled at a frequency of eleven minutes the authors of [109] find empiri-
cal support to the hypothesis that stocks tend to be involved in systematic
cojumps !, rejecting an assumption of independence in jump arrival times
among stocks. We find strong evidence of this result also at the frequency of
one minute and furthermore we extensively investigate the properties of self
and mutual excitation possessed by the jumps series of different stocks.

This chapter is organised as follows. In Section 8.2 we present our dataset
and in Section 8.3 we summarise our jump detection method (detailed in
Section 6.2). The identification of jumps is a delicate topic and therefore we
are careful in using a robust identification method in order to minimise the
number of false positives. In Section 8.4 we provide empirical evidence of
the large number of systemic cojumps and we describe some simple statis-
tical properties. In Section 8.5 we present the statistics we use to test our
models in their ability of reproducing the multiple jumps of a single stock
in a given time window and the cross jumps, i.e. the occurrences of jumps
in two different stocks in a given time window. Section 8.6 discusses how
Hawkes processes fit the jump process in a univariate and in a multivariate
setting. In Section 8.7 we present the Hawkes factor model approach, show-
ing how to estimate it and the results obtained in the investigated dataset. In
Section 8.8 we detail a robustness analysis performed on our Hawkes factor

From a terminological viewpoint, authors of [109] define a systematic cojump as an
instance when one stock and a market index jump at the same time. In this work we use
the term systemic cojump to indicate a sizeable number of stocks jumping simultaneously.
In Section 8.7 we show how to identify systemic cojumps in a self consistent way.
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model, investigating the dependence of its performances on the temporal and
cross-sectional dimensions of the dataset, as well as on the specific market.
Finally, in Section 8.9 we draw some conclusions.

8.2 Data description and data handling

The analyses reported in this work are performed on tick-by-tick transaction
data for the period from 5th March 2012 to 9th July 2012 that have been
made available to us by LIST S.p.A.2. In this work we investigate 20 among
the most liquid stocks of the FTSE MIB index of the Italian stock exchange
Borsa Italiana. We sample prices at a frequency of one minute, taking the last
executed price, to obtain 1-minute logarithmic returns. The total number of
days in the period is 88, with 505 intraday returns each day.

In Table 8.1 we list the twenty stocks, along with the ISIN code and the
average number of trades per day. From the last column we see that the
assets are characterised by a certain level of heterogeneity, since the trade
activity varies between 2.8 and 27.4 thousand transactions per day. A low
level of activity implies in general a higher probability for the absence of
transactions inside a given sampling interval, and this effect has important
implications for the methodology that we use for the detection of jumps.

The process from tick-by-tick data to jump identification can be sum-
marised as follows. First, anomalous values in tick-by-tick price data are
detected and removed. The algorithm for the outliers detection that we use
is due to Brownlees and Gallo [80] and it is explained in Section 6.2.1. We
take k = 60, § = 10%, ¢ = 3, v = 0.05, where the parameters have the mean-
ing of Section 6.2.1. We find no outliers at all for 13 stocks and few units for
the other 7, for the vast majority concentrated on the very first minute of the
day. Removing outliers can in principle introduce a distortion in the analy-
sis. However, the number of anomalous prices that we identify is extremely
low, and the probability of an actual distortion of returns, computed at the
minute level, is negligible. Cleaned prices are then sampled at a frequency
of one minute and logarithmic returns are calculated carrying forward to the
next sampling instant the last price observed within the sampling window.

In the identification of jumps, an important care should be devoted to the
way in which intervals without trades are treated. In fact, jump detection
methods typically compare returns with local volatility. In periods of low
liquidity (or missing observations) one risks to underestimate volatility and
to identify relatively small price returns as jumps. There are two different
situations which lead to having no price observations in a given time interval.

2w list-group.com
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’ Company ‘ ISIN code ‘ trades per day (x10%) ‘
Assicurazioni Generali 170000062072 7.5
Mediobanca, 170000062957 3.6
Banca Popolare di Milano IT0000064482 4.9
Saipem IT0000068525 5.4
Intesa Sanpaolo I'T0000072618 18.1
Mediaset 1T0001063210 3.1
Banca Monte dei Paschi di Siena | IT0001334587 9.2
Fiat 1T0001976403 9.6
Enel IT0003128367 10.7
Eni 1T0003132476 10.4
UBI Banca 1T0003487029 3.0
Telecom Italia 170003497168 6.3
Finmeccanica 1T0003856405 4.7
Prysmian IT0004176001 2.8
Banco Popolare I'T0004231566 4.2
Pirelli & C. 1T0004623051 4.6
Fiat Industrial 1T0004644743 5.1
UniCredit 1T0004781412 27.4
Tenaris S.A. LU0156801721 3.3
STMicroelectronics N.V. NL0000226223 4.3

Table 8.1: List of the twenty investigated stocks, with the ISIN code and the
average number of transactions per day.

The first one occurs in correspondence of volatility auction phases. Ac-
cording to the rules of the market [125, 126], whenever the price exits a
reference interval, reaching too high or too low levels, the continuous double
auction phase of the exchange is suspended and a volatility auction starts.
In such a phase we consider the related returns as not available. We do not
have direct information on volatility auctions, but we infer their presence
from market data. Since the investigated stocks are among the most liquid
ones, we are reasonably sure to be able to distinguish volatility auction phases
from continuous double auction phases of low liquidity. For more details, see
the discussion in Section 8.10.

The second mechanism for missing price observations is when the stock
is available for trades, but still there are no transactions in that particular
minute. There are several ways to treat these cases. To fix the notation, let ¢
and 7+ 1 label two consecutive sampling instants between which no trade has
been made. The most common way to deal with the missing observation of
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the price between times ¢ and i+ 1 is to bring forward the last recorded price.
This means setting the price p;11 = p; and the log-return r;;; = 0. Sampling
intervals with no transactions in them are therefore given a zero return. This
is our first method of dealing with Missing Observations, which we call MO1.
An alternative method of treating minutes with no transactions is simply to
consider the corresponding returns as not available data (r;1; = NA), thus
avoiding to give them a numerical value. The next available return will be at
the first sampling time after the next available observation. It can be defined
as the usual difference of the sampled logarithmic prices after and before
the missing observations (method MO2) or as this quantity rescaled by the
square root of the time between the two sampling times (MO3). For instance,
for the price series pg, p1, —, —, P4, p5s We construct the following three return
series:

MO1 logg—(l), 0, 0, logg—;‘,logg—i;
MO2 log Z—;, NA,NA, log ;’—‘1‘, log ;’—Z;
MO3 log g—é,NA,NA, \/Lglog i—‘l‘,log i—i.

The reason for the rescaling of the return in method MO3 is that we do not
want to identify as a jump a price change that is compatible with a diffusive
random movement of the efficient price.

Once the returns are defined according to one of the three possible method-
ologies discussed above, they are checked in order to eliminate possible large
values due to stock splits or merges. We check for the presence of stock
splits in our data through the detection of returns greater than 0.2 in abso-
lute value. This would detect, for example, a 3-for-2 split or a 4-for-5 merge.
In our data we do not find any such return.

The last step to perform is the removal of daily seasonalities, by filtering
out the intraday pattern from raw returns. As it is well known, intraday
returns show significant seasonal behaviour, as the dynamics of markets is
greatly variable during the day. Opening and closing periods generally show
a higher volatility than the rest of the day, since traders are more active
during these phases. If these daily seasonalities are not properly filtered out,
spurious jump detection may happen in correspondence of these periods. We
describe the details of how we deal with this issue in Section 8.2.1.

8.2.1 Intraday pattern

We show in Figure 8.1 the intraday volatility pattern (that is, the factors
;) for Monte dei Paschi di Siena. We notice that, although the profile is
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somewhat noisy because of the relatively small number of days on which the
average pattern is calculated, a clear change in average intraday volatility is
identifiable around time 15:30, that is, when the New York Stock Exchange
opens.

0.01 4
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0.005

O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
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Figure 8.1: The intraday volatility pattern of Monte dei Paschi di Siena.

8.3 Jump identification

After performing the data cleaning procedures explained in Section 8.2, we
proceed with the detection of jumps. Following a standard approach, as
adopted also in [127], we estimate the local volatility o and then test whether
the ratio between absolute returns and local volatility is above a given thresh-
old, that is, if

Il > 4. (8.1)

o
In order to make a good choice for 8, we performed a sensitivity analysis of
the jump detection method with respect to 8, as we will explain in details
in Section 8.4.2. Since modelling the dynamics of jumps asks for a well-
populated dataset and at the same time we want to minimise the contribution
coming from the continuous diffusive component of the process, in this work
we choose # = 4 as a reasonable trade-off.

The return series in Equation (8.1) are obtained from historical prices
as reported in Section 8.2, while in order to estimate the local volatility we
can follow several strategies available in literature. We base our approach
on the realised absolute variation and the realised bipower variation, whose
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asymptotic theory is treated for example in [82]. Our estimators of local
volatility based on these quantities are defined by the exponentially weighted
moving averages

a-abs,t = M;l& Z(l - a)iil‘rt*il (82)
>0
and
~2 =2 1 _ 1—1 ) ) 8 3
Gy =ty > (1= a) Mrillreial, (8.3)
>0

where p = \/E ~ (.797885 and the parameter of the exponential averages

K
is a = MLH, with M = 60, which corresponds to a half-life time of nearly
21 minutes. In order to avoid biased estimates due to the presence of jumps
in past returns, we actually use modified versions of the estimators (8.2)
and (8.3) that use only returns where no jump is detected. In fact the
presence of a jump in the estimation window leads to an overestimation of
the volatility.

The asymptotic result (6.6) continues to hold when a jump component
is added to the continuous process (6.5). However, for finite §, price jumps
are a source of bias in estimation of volatility through the realised bipower
variation. A solution to this problem is to use the threshold bipower variation
(see [92]), which takes into account only returns smaller than a certain thresh-
old. We follow this idea and estimate volatility through returns which are not
identified as jumps, that is, returns whose absolute value is not larger than
4 times the local volatility. Using exponentially weighted moving averages
instead of flat ones, our estimators are recursively defined by the equations

&abs,t = M;la‘rt’| + (1 - a)a—abs,tfla

where t' is such that ¢/ <t —1, vl < 4 and Ulr—” > 4 for each t' < 7 < t,

abs,t/ abs, T
and

Gy = iy ofrerlre] + (1 — a)dpy, s,

where ¢ and ¢ are such that ¢/ <t/ < ¢ —1, &zt—”l < 4, ;:4' < 4 and
v,t!/ v,/

Il S 4 for each t” < 7 < t' and for each ¢/ < 7 < t. The value taken for the

Gbv,r
parameter of the exponentially weighted moving average is o = with
M = 60, corresponding to a half-life time of nearly 21 minutes.

Since we construct three series of returns (which differ only in corre-
spondence and proximity of missing observations), for each one we obtain
the volatility estimates 7,5 and d},,, we have six volatility-normalised series
{;—tt}, each of which with its own set of detected jumps. In order not to be

sensitive to the choice of how to treat missing observations nor to the choice

2
M+1>
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of volatility estimation, we take as final series of jumps the intersection of
the six sets of jumps. This should also minimise spurious jump detection, as
suggested in [114].

8.3.1 Performance of the jump detection methods on
simulated data

In Section 8.4 we discuss the results that we have found about identified
jumps. Preliminarily, we conduct a simulation study to assess the effective-
ness of our entire procedure from data cleaning to jump detection. The usual
approach is to assume the observed log-price p(t)® as coming from the sum

p(t) = X (t) + e(t) (8.4)
of an efficient log-price X (¢), following a simple jump diffusion model
dX(t) = p(t)dt + o(t) AW (t) + k(t) dJ(t), (8.5)

where the three terms on the right hand side are the drift, diffusion and jump
components, and a microstructure noise ¢; ~ i.i.d. N'(0,7?). Following Fan
and Wang [88], for the dynamics of the volatility o(t) we take the Geometric
Ornstein-Uhlenbeck model

dlogo?(t) = —(0.6802 + 0.11og o(t)) dt + 0.25 dW'(t), (8.6)

with correlation between the Wiener processes W(t) and W'(t) equal to -
0.62. Simulating model of Equations (8.4) and (8.5) we fix the drift term p
equal to 0, and the microstructure noise standard deviation n to 107°d¢. As
far as the process J(t) is concerned, we set its rate equal to three jumps per
day, and the size k as a multiple of the spot volatility bootstrapped from
the sample of the empirical data. Using the Euler discretisation scheme we
obtain simulated high-frequency log-prices from the model at a frequency of
one minute, which corresponds to the sampling frequency of our data. The
time convention that we adopt fixes the one day horizon equal to one, so we
have dt = 1/1440. We simulate data for a period 50 times longer than that
of the sample data, that is, 88 x 50 = 4400 days. We preliminarily draw a
Monte Carlo simulation of the process (8.6) and then we rescale it by adding
the intraday volatility pattern. The seasonal volatility is used in (8.5) to
generate one realisation of the process X (¢). Finally, for each day we discard

3In this chapter we express the time dependence among parenthesis when we are dealing
with continuous time variables, whilst we use indices for discrete time models and sampled
data.
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some observations in order to reproduce the observed intertrade times, thus
introducing artificial missing observations to investigate the role of methods
MO1, MO2, MO3 of Section 8.2 in the jump detection. This operation is
performed through a random sampling from the empirical distribution of the
intertrade times.

Table 8.2 shows the performance of our jump detection procedure for
simulations calibrated on two stocks: Intesa Sanpaolo, the second most lig-
uid stock among our data, and Banco Popolare, which has a much lower
liquidity. The performance is presented in terms of size and power of the
test, for the jump series coming from methods MO1, MO2, MO3, with the
two different estimates of volatility d,ps and dy,,. In the last column and row
we report the intersections between the different methods. Simulations cali-
brated on Intesa Sanpaolo show small differences among the three methods
of dealing with the missing observations in sampled data. This is expected,
since there are relatively few points in which the corresponding return series
differ. Also the intersection of jumps detected in methods MO1, MO2, MO3
has performances comparable to those of each of the three methods.

A benchmark simulation calibrated on the stock Banco Popolare shows
instead a very different picture, namely it highlights the significance of the
way of filling the missing observations for a stock of low liquidity. If such
missing observations are filled with zeroes (method MO1), volatility estimates
from past returns are lower than for methods MO2 and MO3. This translates
into detecting many more jumps, both true and spurious. In absolute terms,
average counts of right and false positives are respectively 189 and 143 for
method MO1, 146 and 45 for method MO2, 147 and 10 for method MO3,
134 and 7 for the intersection of all methods. Thus, results of this simulation
clearly show that taking the intersection of jumps detected in methods MO1,
MO2, MO3 drastically reduces the number of false positives, although this
is accompanied also with a significant reduction of right positives. Taking
a conservative point of view, we are ready to miss the detection of some
true jumps as long as this procedure allows minimising false positive hits.
This simulation also demonstrates in a very clear way how the method MO3
is effective in detecting much fewer false positives than method MO?2, still
detecting the same amount of true jumps.
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MO1 MO2 MO3 mMOLMOQ,MO:S
Size Power Size Power Size Power Size Power

Tabs | 0.036% | 63.1% | 0.033% | 62.5% | 0.029% | 62.7% | 0.028% | 62.1%
Obe | 0.039% | 63.4% | 0.037% | 62.7% | 0.033% | 62.7% | 0.032% | 62.3%
Nabope | 0-031% | 61.6% | 0.029% | 61.0% | 0.026% | 61.0% | 0.025% | 60.6%

MO1 MO2 MO3 ﬂMoLMoz,MOs
Size Power Size Power Size Power Size Power

Oabs 0.369% | 72.9% | 0.110% | 56.4% | 0.027% | 58.0% | 0.019% | 52.3%
Obv 0.390% | 74.7% | 0.135% | 59.7% | 0.031% | 58.3% | 0.025% | 55.1%

Mabso | 0-324% | 71.7% | 0.102% | 55.2% | 0.023% | 55.8% | 0.016% | 50.9%

Table 8.2: Size and power of the jump tests, determined on a simulation cal-
ibrated on real data of Intesa Sanpaolo (top) and Banco Popolare (bottom).
The size is the ratio between the number of false positives and the number
of minutes when the jump is not present. The power is one minus the ratio
between the number of false negatives and the number of real jumps.

8.4 Basic statistics of jumps of individual stocks
and of systemic jumps

In this section we present some basic statistical properties of detected jumps.
In particular we will consider the restricted set of jumps identified simulta-
neously by all methods, in order to minimise the number of false positives.
We then consider some simple statistical characterisation of cojumps, i.e. in-
stances in which the prices of at least two stocks jump in the same minute.

8.4.1 Jumps of individual stocks

In the previous sections we have introduced several methods to identify jumps
in price time series. By using Monte Carlo simulations of a realistic model
of price dynamics, we have shown also that different methods display differ-
ent ability to identify jumps correctly, both in terms of false positives and
in terms of false negatives. The use of the intersection among the differ-
ent methods improves significantly the identification procedure, at least on
simulated data.

Table 8.3 shows the number of jumps for the stock Monte dei Paschi di
Siena, detected with the six different methods. For this specific stock, the

132



8.4. BASIC STATISTICS OF JUMPS OF INDIVIDUAL STOCKS AND
OF SYSTEMIC JUMPS

number of jumps ranges from 200 to 281, showing a significant dependence
on the used method. The table shows also the size of the intersection of the
sets of detected jumps. When one considers jumps detected by all methods
the number of jumps falls to 178. This is the restricted set of events that we
will consider. We notice that, in this case, by estimating the volatility as &5
we find more jumps than when using 6y, regardless of what the method of
treating missing observation is. However this is not always the case. For the
stock Intesa Sanpaolo it is the other way round: more jumps are detected
when we estimate local volatility by &y, than when we use 7,5, in methods
MO1, MO2 and MO3. It is not clear to us whether there are features of
the return series (such as quantity and position of the missing observations)
which are systematically responsible for the first or the second scenario to
happen.

MO1 MO2 MO3 ﬂMOl,MOZ MO3
Gube | 281 228 217 205
6. | 260 208 200 190
Mabsoe | 239 196 186 178

Table 8.3: Summary table of the number of detected jumps by using different
methods and their intersection. The investigated stock is Monte dei Paschi
di Siena.

We extend this analysis to the whole set of 20 stocks. In Table 8.4 we
report simple statistics about the jumps identified on the 20 stocks by using
the intersection of the six methods. The number of jumps detected in the 88
days of our sample varies between 59 and 188 across the twenty stocks (that
is, between 0.67 and 2.14 jumps per day per stock), with an overall average
value of 108, corresponding to 1.23 jumps per day per stock *.

Five stocks show a statistically significant difference in the number of
positive and negative jumps (at 10% significance level), when one assumes a
null model in which stocks have the same probability of jumping up and down.
In such a model, the number of jumps in either direction has a binomial
distribution. Interestingly, in all five cases the number of negative jumps is
greater than that of positive jumps. Statistically significant asymmetry in the
jumping direction is also found in the overall jump count (at 1% significance

41t is worth noticing that in a recent study [127] authors found more than seven jumps
per stock per day when investigating a relatively large set of US stocks. However several
reasons might account for this difference, for instance we adopt the intersection of qualita-
tively different estimators for the realised volatility while they use only one method, they
do not detail the data cleaning procedure, and they investigate a much larger universe of
stocks.
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level). The twenty stocks have also variable proportions of “single jumps”,
that is, jumps that do not occur simultaneously to jumps of other stocks, with
two having even a greater number of cojumps than single jumps. Indeed, the
complementary proportion of cojumps attains relatively high values, among
16% and 57%, suggesting that the cojumps play a relevant role in jumps’
behaviour and motivating further analyses in this respect.

’ ISIN H jumps H jumps up ‘ jumps down H single jumps ‘ cojumps ‘
IT0000062072 103 48 (47%) 55 (53%) 53 (51%) | 50 (49%)
IT0000062957 63 29 (46%) 34 (54%) 38 (60%) | 25 (40%)
IT0000064482 121 60 (50%) 61 (50%) 97 (80%) | 24 (20%)
IT0000068525 93 46 (49%) 47 (51%) 56 (60%) | 37 (40%)
IT0000072618 127 67 (53%) 60 (47%) 55 (43%) | 72 (57%)
IT0001063210 59 28 (47%) 31 (53%) 44 (75%) | 15 (25%)
IT0001334587 178 73 (41%) | 105 (59%) 150 (84%) | 28 (16%)
IT0001976403 123 61 (50%) 62 (50%) 76 (62%) | 47 (38%)
IT0003128367 188 81 (43%) | 107 (57%) 107 (57%) | 81 (43%)
IT0003132476 155 66 (43%) 89 (57%) 95 (61%) | 60 (39%)
IT0003487029 70 28 (40%) 42 (60%) 41 (59%) | 29 (41%)
IT0003497168 129 74 (57%) 55 (43%) 79 (61%) | 50 (39%)
IT0003856405 95 50 (53%) 45 (47%) 74 (78%) | 21 (22%)
IT0004176001 74 41 (55%) 33 (45%) 46 (62%) | 28 (38%)
IT0004231566 103 50 (49%) 53 (51%) 72 (70%) | 31 (30%)
1T0004623051 115 47 (41%) 68 (59%) 85 (74%) | 30 (26%)
1T0004644743 100 51 (51%) 49 (49%) 65 (65%) | 35 (35%)
IT0004781412 118 49 (42%) 69 (58%) 57 (48%) | 61 (52%)
LU0156801721 59 27 (46%) 32 (54%) 32 (54%) | 27 (46%)
NL0000226223 86 39 (45%) 47 (55%) 51 (59%) | 35 (41%)

| total | 2159 | 1015 | 1144 | \ |

[ average [ 108.0 [ 50.8 (47%) [ 57.2 (53%) | \ |

Table 8.4: Number of detected jumps for the twenty stocks, with direction
and cojumping information. Bold values are inconsistent (at 10% significance
level for single stocks, at 1% significance level for the total counts) with a null
assumption of equal probability of jumping up and jumping down. Single
jumps occur at a time when no other stock jumps, while cojumps occur
simultaneously with jumps in other stocks.

We investigate the distribution of jumps during the trading day. The left
panel of Figure 8.2 shows the histogram of the time of the day when a jump
occurs. The figure is obtained by including all the jumps of the 20 stocks, but
we count only once a minute where multiple stocks jump simultaneously. We
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observe that there is no clear periodicity in the number of jumps, indicating
that our intraday pattern removal is quite effective. Moreover, apart a spike
observed at the beginning of the day, there is no evidence of minutes of the
day when it is more likely that one stock jumps.

8.4.2 Systemic jumps

Frequency

T

0 250 500 0 2 500

Minute of trading day Minute of trading day

Figure 8.2: Left panel: intraday distribution of the time of the day when a
jump occurs. The x axis is the number of minutes from the beginning of the
trading day. Notice that if more than one stock jump in a given minute, we
count the minute only once in the histogram. This is done in order to avoid
to count N times an event when NV stocks jump simultaneously. Right panel:
same figure as the left panel, but considering only cojumps of more than 5
stocks.

The main topic of this chapter is systemic cojumps, i.e. minutes when the
price of a (possibly large) number of stocks displays a jump. For this reason
it is important to investigate how frequently cojumps occur and to compare
the observed statistics with those expected under some null hypotheses.

We start with some simple visualisation of the occurrences of multiple
cojumps. Figure 8.3 shows the dynamics of the number of cojumps, indicat-
ing also the number of stocks that display a jump in a given minute. We
notice that there are several occurrences where more than 8 stocks jump si-
multaneously (big circles). For example, we observe one case each when 10,
12, 13, 15, 16, 17, and 20 stocks jump simultaneously. Also the number of
cases where more than 3 stocks jump (medium-sized circles) is quite high.
For example, we observe 22 cases with 4 stocks, 15 cases with 5, 2 cases with
6, 4 cases with 7, 5 cases with 8, 3 with 9, and 2 with 11. Finally, there is
a significant background of cases where two (136) or three (44) stocks jump
simultaneously. Thus multiple stock cojumps are relatively frequent.
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By considering all the 240 events in which multiple stocks jump, we find
only 7 cases in which not all the jumping stocks follow the same direction.
There are 6 cases in which 2 stocks jump in opposite direction and 1 case
in which two stocks jump down and one stock jumps up. The fact that
when several stocks simultaneously jump they all move in the same direction
suggests that a single common factor explains the jumping probability. In
Section 8.7 we will develop this idea more formally by introducing models
that capture this important feature of real data.

It is worth noticing that the Figure 8.3 also indicates that there are no
specific times of the day (for example corresponding to pre-announced news
or opening of other markets) where the systemic cojumps are more frequent.
This qualitative statement can be made more precise by drawing the his-
togram of the time of the day when a systemic cojump with more than 5
stocks jumping simultaneously (see right panel of Figure 8.2). Therefore
systemic jumps do not occur at preferential moments of the trading day.
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Figure 8.3: Time series of the cojumps observed in the set of 20 investigated
stocks. The horizontal axis is the time of the day and the vertical axis is
the day. The size of the circle codes the number of stocks simultaneously
jumping in a given minute.

In order to compare the pattern observed in Figure 8.3 for the systemic
cojumps with a null hypothesis, we perform a bootstrap analysis. Specifically,
we construct a bootstrap replica independently for each stock. Therefore our
replicas are consistent with a model of 20 independent but not identical

136



8.5. A MULTI-SCALE STATISTICAL TEST BASED ON MULTIPLE
JUMPS AND CROSS JUMPS DETECTION

Poisson processes for the jumps. In the next section we will use this model
as the simplest benchmark model. In the left panel of Figure 8.4 we show
the analogous of Figure 8.3 for one of the bootstrap replicas of the real data.
As it can be seen, in this replica there are no cases where more than three
stocks jump simultaneously, a result that is clearly inconsistent with the real
data. To be more quantitative, in the right panel of Figure 8.4 we show the
histogram of the number of stocks jumping in a minute (in which at least
one stock jumps) for real data (solid line). We compare it with the curve
obtained by taking the 0.01% confidence interval from bootstrap analysis. It
can be seen that already the observed number of cojumps of two stocks is
incompatible with the one observed in bootstrap test at the 0.01% confidence.
Moreover in 10,000 bootstrap replicas we never observe a cojump with more
than 4 stocks (observed only once) while in real data we have several cases
with the price of many stocks simultaneously jumping. Since the focus of our
analysis relies on the deviation from the null hypothesis of independence, we
investigate if the results in Figure 8.4 are sensitive to the particular choice
of the jump threshold 6 by exploring the range from 4 to 8. In Figure 8.5
we show, for several values of 6, the cumulative versions of the distributions
present in the right panel of Figure 8.4. We find that, while the number
of detected jumps obviously varies in size, the Poisson null is systematically
rejected for all the explored values.

In conclusion, our descriptive analysis shows that (i) jumps are relatively
frequent, even when one considers relatively strict detection criteria, (ii) there
is a large number of cojumps, i.e. minutes when a sizeable number of stocks
(up to 20!) simultaneously jump, (iii) these cojumps show no clear timing
inside the day, and, more important, (iv) they are absolutely not compatible
with a null model of independent but not identical Poisson processes. In
Section 8.7 we will introduce models able to describe the jump dynamics of
a set of stocks and we will keep the jump threshold # = 4 for the rest of our
analysis to preserve the quality of the statistics.

8.5 A multi-scale statistical test based on mul-
tiple jumps and cross jumps detection

The empirical observation of a large number of cojumps requires a rigorous
statistical test to compare the observed behaviour of jumps with the pre-
diction of multivariate point processes. The main problem in working with
jumps is that their number is relatively small, and therefore the statistics
must be suited to work on small samples. Moreover, we want to use a multi-
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Figure 8.4: Left panel. Time series of the cojumps observed in a bootstrap
replica of the real data preserving the jump intensity of each stock. The
horizontal axis is the time of the day and the vertical axis is the day. The
size of the circle codes the number of stocks simultaneously jumping in a given
minute under the same convention of Figure 8.3. Right panel. Histogram
of the number of stocks simultaneously cojumping in a minute (solid line).
For comparison the dashed line shows the 0.01% confidence interval for the
counts under the null hypothesis of independent but not identical Poisson
processes.

scale statistical test, i.e. a test that is able to identify deviations from models
at different time scales. If the observation time is much larger than the
correlation time of the process and we only focus on the counting of events
disregarding the interarrival times, then a correlated point process is undis-
tinguishable from a Poisson process. Therefore we use a test that considers
simultaneously different time scales. Finally, even if the main topic of this
chapter is cojumps of different stocks, we are also interested in investigating
deviation from a Poisson behaviour at the individual stock level. Therefore
we shall introduce two related statistics, one for consecutive jumps of the
same asset and one for jumps of different stocks occurring at close times.

Since the distributional and time correlation analysis is unfeasible with
small samples of jumps we will consider the following statistics that measures
the frequency of multiple jumps occurring in the same time windows.

Specifically, when considering individual stocks, we define a multiple jump
(MJ) as an event which occurs when at least two jumps of the same stock
price are observed inside a time window of a fixed length w. Let us call s; the
number of jumps inside the i-th window. An estimator of the MJ probability
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Number of cojumping stocks

Figure 8.5: Cumulative distribution of the number of stocks simultaneously
cojumping in a minute as a function of the jump threshold #, in the range
from 4 to 6; dashed lines correspond to the 0.01% confidence interval for the
cumulatives, under the Poisson null hypothesis. Since the finite size of our
sample (88 days) worsens the quality of the statistics, we omit the results for
0 larger than 6.

in a window of length w over a sampling period of length N is given by

L%
AMJ:M 8.7
T o

where 14 is the indicator function of the event A, and the symbol | N/w|
corresponds to the integer part of the ratio N/w.

The same idea can be extended to capture also the cross sectional clus-
tering of jumps, in particular the evidence of a large number of simultaneous
jumps of different stocks. The second notion which we will work with is
therefore that of cross jumps (CJ) between two stocks defined when both
stocks jump at least once inside a given time window of fixed length w. With
the same notation as before, the estimator of the CJ probability between
stock [ and k is given by

B
~CJ i=1 3521 szl

- . (8.8)

b 3]
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Our statistical procedure consists in estimating these quantities in real
data and compare them, at each time scale, with the 99% and 95% confidence
bands of the tested model obtained analytically (when possible) or via Monte
Carlo simulations. It should be noted that, since the number of windows that
we are considering is greater than one, we are indeed performing a multiple
hypothesis test and we have to correct the significance level accordingly.
Among the possible approaches discussed in literature, we decide to adopt
the most conservative one, namely the Bonferroni correction. This correction
amounts to divide the significance level of the single hypothesis by the total
number of tested hypotheses in order to achieve a global significance at least
of the pre-fixed level. Therefore when the empirical points of pM’ and p$?
fall inside the confidence bands of a given model we cannot reject the null
hypothesis with the given confidence level.

8.5.1 A benchmark case: the Poisson model

In order to show how our testing procedure works, we consider here an im-
portant benchmark case, in which the jumps of each stock are described by
an independent Poisson process. Under this model, the mean and variance
of both previous estimators can be computed. For the MJ estimator we have

Puwx — Dapx
=]

where p,, = P({s > 2}) = 1 — e (1 — M\w), and X is the intensity of the
Poisson process.
Analogously for the CJ estimator, we obtain

Elpn’] = pur,  Var[py’] =

w

2 2
qwaAl qw7)‘k - qu},)\l q’w7>\k

kel ’

E[ng] = Gu, Q) Var[ng] =

where ¢, ), = P({s' > 1}) =1 — ¥,

Since both quantities in Equation (8.7) and (8.8) correspond to the sum
of a large number of indicator functions, the Central Limit Theorem implies
that their distribution is well approximated by a Normal law whose p-values
are readily available, allowing the analytical computation of the confidence
bands. As usual, the value of the intensity of the Poisson process given by
the maximum likelihood estimator is A = #jumps/N.

In Figure 8.6 we show the result of our test on the Italian asset Assicu-
razioni Generali, for which A = 2.4x 1073 min~!. The filled circles correspond
to the empirical values of the estimator, the solid line to the theoretical mean,
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Figure 8.6: MJ probability test under Poisson null for the Italian asset Assi-
curazioni Generali.

while the dashed and dotted lines establish the boundaries of the 99% and
95% confidence bands, respectively, adjusted with the Bonferroni correction.
The figure shows that the Poisson model is rejected for both levels. In our
data sample this is the typical situation, which occurs for 18 stocks out of
20 (the two exceptions are represented by the assets Mediobanca and Fin-
meccanica). We therefore conclude that there is a strong evidence of time
clustering of jumps and violation of the univariate Poisson model.

8.6 Modelling jumps with Hawkes processes

At this stage, the natural step to proceed is to assume a more sophisticated
model for the jump process, and to test it as an alternative hypothesis. The
Poisson hypothesis can be relaxed in several respects: among the possible
alternatives we can weaken the assumption of identically and independently
distributed waiting times, for example modelling them either as Markov pro-
cesses or as realisations of a time inhomogeneous Poisson process. For in-
stance the extension of the Poisson process that we consider in this study is
the class of point processes known has Hawkes processes, where the intensity
is itself stochastic and tends to increase when a new jump arrives.
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8.6.1 Univariate case

In this section we provide the main results needed for the remaining of the
chapter, but for a complete mathematical treatment of Hawkes and more gen-
eral point processes we refer the reader to the comprehensive textbook [128].

A univariate point process N () ° is called a Hawkes process if it is a linear
self-exciting process, defined by the intensity

I(t) = () + / t v(t —u)dN(u) = A(t) + Y _v(t —t;) (8.9)

- t;<t

where X is a deterministic function called the base intensity, v is a positive
decreasing weight function, and ¢; are the jumping times. The most common
parametrisation of v is given by v(t) = Zle aje it for t > 0, where a;; > 0
are scale parameters, 3; > 0 control the strength of decay, and the positive
integer P is the order of the process. A particular advantage of the linear
Hawkes process of order P = 1 is that the log-likelihood function can be
computed as

L(tr,.. . 1)

(1-— t——z (1—e" Altn—t:) —i—Zln)ﬂ—aR

where the R function satisfies the recursion R; = e #ti~%-1)(1 4+ R;_;) for
i > 2 and Ry = 0. In Ref. [40] it is shown that the stationarity of the
process is guaranteed when fooo v(s)ds < 1, which in our case reduces to the
requirement «/f < 1. If stationarity holds and under the further constraint
that the base intensity is constant, the expected number of jumps in an
arbitrary time interval of length T' is given by AT/(1 — «/f). The latter
observation will be useful for the calibration of the factor models that we
will discuss in Section 8.7. The characterisation of the asymptotic properties
of the the maximum likelihood estimator of the Hawkes process parameters
that we employ in this study has been provided in [129] and [130], while the
simulation algorithm we use is based on the procedure discussed in [131],
which directly derives from the Shedler-Lewis thinning algorithm, [132].

We estimate the Hawkes processes on the univariate series of jumps of the
investigated stocks. In Table 8.5 we report the parameters values with the
associated errors and significance values for Generali and Intesa Sanpaolo. All
the values are statistically significant. We then test the Hawkes model in its

°If {t;}i=1,... n represents the random sequence of increasing event times 0 < t1 < ... <
t, associated with the point process, then N(t) = .., 1¢,<¢ defines the right continuous
counting function. In what follows we will refer equivalently to the process and its counting
function.
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Figure 8.7: MJ probability test under Hawkes null for the assets Assicurazioni
Generali (left) and Intesa Sanpaolo (right).

Assicurazioni Generali | Intesa Sanpaolo

(min™") | (2.14£0.2) x 1073 *** | (2.5 £0.2) x 1073 ***
(min™') | (3.1£1.3) x 1072~ (5.9£2.1) x 1072 **
(min™') | (25£0.9) x 1071 | (4.341.2) x 1071 =

Table 8.5: List of the parameters of the one dimensional Hawkes processes.
Significance codes: pPyawe < 0.001 7 0.001 < peae < 0.01 7. 0.01 <
DPyalue < 0.05 ") and pPyajue > 0.05 © .

ability of reproducing the MJ probability at different time scales. The left and
right plots in Figure 8.7 are obtained after the calibration of a one dimensional
Hawkes process on the jump time series of the assets Assicurazioni Generali
and Intesa Sanpaolo, respectively. The figure shows that we can not reject
the null both at 1% and at 5% significance levels (obtained from Ny;c = 10%
Monte Carlo simulations). The result holds both for short window lengths
and for longer horizons, an example of the former case is given by Generali
for time windows ranging from one minute up to half an hour, while for the
latter case we consider Intesa Sanpaolo with horizons running up to one day.
In the sections which follow we present the result of the statistical tests only
for short horizons, since they usually correspond to the time scales where the
most interesting effects take place. However, an analysis extended to longer
horizons would have been equally effective.

We therefore conclude that univariate Hawkes processes are able to cap-
ture the empirical dynamics and time clustering of jumps for individual
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stocks.

8.6.2 Bivariate case
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Figure 8.8: CJ probability test under independent Hawkes null for the pair
of Italian assets Generali - Intesa Sanpaolo.

Are independent Hawkes processes able to describe the empirical be-
haviour of CJ probabilities? In order to answer this question, we compute
the estimator (8.8) on each pair of assets and in Figure 8.8 we show an ex-
ample of the results from the test computed on the pair Generali - Intesa
Sanpaolo. The figure shows that the independent Hawkes process miserably
fails in describing the CJ probability at all time scales. This is clearly due,
at least in part, to a lack of coupling between the two processes. In order to
capture such a dependence we calibrate a bivariate Hawkes process.

A K-dimensional Hawkes process is a linear self-exciting process defined
by the multivariate intensity I(t) = (I'(t),...,1%(t))’, where the k-type
intensity with an exponential kernel of order one is given by

K
IF(t) = A*(t) + Z Z upme” Hem (="
m=1t"<t

All the parameters which appear in the above expression are strictly positive,
and the stationarity of the process is guaranteed if the spectral radius of the
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matrix I' = (a’“—m is strictly smaller than one. The parameters ayy

Brm ) kym=1,....K
and Sy are responsible for the self-exciting property of the point process,

while the remaining 2K (K — 1) oy, and g, capture the cross exciting
effect of a jump in the stock m on the process of the asset k. When K =
2 the number of free parameters is equal to ten, and the maximisation of
the likelihood becomes less trivial than the univariate case. To maximise
the likelihood, we initialise the parameters with the values suggested by the
one dimensional calibration, and we constrain their value to remain strictly
positive. We preliminarily perform Ny,, = 100 searches of the maximum
with the simulated annealing algorithm, then, with the optimal candidate
supplied by the stochastic search, we initialise the deterministic search via
conjugate gradient.

AL (min™t) | (2.04£0.1) x 1072 = | A2 (min~!) | (2.3 £0.2) x 1073 ==
app (min™') | (1.6 40.9) x 1072 * | agy (min™') | (4.540.1) x 1074 ***
arp (min™') | (14 £0.1) x 1074 ** | agp (min™') | (3.4 4 1.3) x 1072 **
Bii (min™) | (3.7+£1.6) x 1071 * | By (min~t) | (7.0 18 ) x 107!
B2 (min~1') | (3.2+£3.4) x 1071 Bao (min~1) | (4.9 £1.6) x 1071 ==

Table 8.6: List of the parameters of the bivariate Hawkes process for
Generali and Intesa Sanpaolo (labelled with the indices 1 and 2, respec-
tively). Significance codes: pyae < 0.001 ' 0.001 < pyape < 0.01
0.01 < poatne < 0.05 7 and pyaje > 0.05 “ .

In Table 8.6 we present the results of the calibration of a bi-dimensional
Hawkes on the joint jumps process of Generali-Intesa. We then use Monte
Carlo simulations to compute confidence bands for CJ probability as shown in
Figure 8.9. It is clear from the figure that bivariate exponential Hawkes fails
to describe the cross sectional clustering of jumps observed in real data. This
might be due to several facts: the value of the cross exciting constants a5 and
(a1 is at least of one order of magnitude smaller than that of the constants a4
and asy. Moreover, the time constants 312 and (57 associated with the cross
excitations are poorly statistically significant. One possible reason could
be the unreliability of the parameters since the optimisation procedure is
performed in a high dimensional space on a strongly non-linear objective
function. However, in this respect, we perform numerous experiments in a
Monte Carlo framework. One test is the simulation of a bivariate Hawkes
process, whose parameters are chosen equal to the values of Table 8.6. On
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Figure 8.9: CJ probability test under bivariate Hawkes null for Generali -
Intesa Sanpaolo.

each random realisation, we apply the above optimisation scheme and record
the optimal values. With a statistics of 10? values per parameter, we measure
no significant bias induced by the multidimensional maximisation procedure.
Moreover, we simulate 10% independent pairs of univariate Hawkes of length
44440 minutes, whose parameters are given in Table 8.5. We then perform
the ten dimensional optimisation on each copy, and find a confirmation of
the tendency of the cross-exciting constants to significantly decrease. In light
of these numerical evidences, we tend to marginalise the role played by the
optimisation scheme. Finally, we believe that the main reason why Hawkes
processes fail to describe the cross-sectional dependence is that they are not
designed by construction to capture synchronous effects, which in the case
under our consideration seem to dominate the dependence between jumps.

8.7 A factor model approach to systemic jumps

In this section we abandon the idea of an N dimensional point process, and
we develop a different approach, which we will refer to as a jump factor
model. The intuition which drives the modelling is that a stock jumps both
because it is triggered by jumps of a market common factor and because of
an idiosyncratic term.

The first issue that we want to clarify is if, even in a Poisson framework,
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the factor mechanism is able to describe the empirical dependence structure.
Then we will propose a scalable model, which ideally should be effective and
also sufficiently simple and robust.

8.7.1 Bivariate Poisson factor model

In order to illustrate the main idea, we start with a toy model which enlight-
ens the role of the market factor and clarifies the mechanism which generates
the dependence structure. However, this is an unrealistic model, where the
behaviour of the assets is completely determined by the evolution of the
factor process.

We assume that there is one unobserved market factor point process.
When the factor jumps, the stock S; jumps with probability p; and the
stock S, jumps with probability ps. If the factor does not jump, neither the
first nor the second stock can jump. Obviously the converse is not true. If
the market factor is described by a Poisson process of intensity Az, then the
expected number of factor’s jumps over the period T is given by AgT. In
order to fix the free parameters of the model, A, p1, and py, we use the
following relations

p1 AFT =ng,
p2 AT =no,
p1p2 AT =ma, (8.10)

where n; and ns are the observed number of jumps of the stock S; and S,,
respectively, while nis represents the observed number of cojumps among
S1 and Sy within the one minute sampling interval. The first two equations
thus require that the expected number of jumps of the single assets matches
the realised values. The latter relation guarantees that, on average, the
realised number of cojumps among the assets corresponds to the theoretical
expectation. The system of Equations (8.10) can be inverted and provides a
direct way to express the parameters of the model in terms of the observable
quantities T', ny, ny, and nqs:
N2 1 N2 12

)‘F_ s Pr=—, and P2 =—.
n12T %) n

In Figure 8.10 we show the result of the test of the cojumps estimator
ST against a null represented by the Poisson factor model that we have
just described. The time period that we consider corresponds to the usual
interval of 88 days, during which Generali and Intesa Sanpaolo jump 103 and
127 times, respectively, while the realised number of cojumps nis is equal to
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Figure 8.10: CJ probability test under Poisson factor null for Generali -
Intesa Sanpaolo.

26. From these values we obtain a Poisson intensity equal to Ay = 1.1 x 1072
per minute, and probabilities p; = 0.20 and py; = 0.25. The confidence
intervals for the null are estimated drawing Nyc = 10* paths from the
Poisson factor process, and then thinning each realisation with Bernoulli
variables of probability p; and ps.

The results provided by this simple model are very satisfactory and should
convince the reader that the proposed mechanism is adequate to capture the
cross dependence between jumps. However, the model is quite unrealistic in
several respects: (i) the assets can not jump independently of the factor, (ii)
the Poisson nature of the process leads to a severe underestimation of the
realised number of multiple jumps of the same stock, and (iii) the approach
has not a straightforward extension to an arbitrary number of assets. In
order to amend all these drawbacks, in the next section we will discuss a more
general and flexible model, rooted on the factor idea, but able to achieve a
higher level of realism and scalability.

8.7.2 N dimensional Hawkes factor model with idiosyn-
cratic components

We now consider a set of N assets. With respect to the previous model, we
need to introduce explicitly a proxy of the common factor process. The naif
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idea of a proxy of the factor based on those events when a cojump among
all the N stocks happens realistically does not work. In the data sample
of twenty stocks that we consider in the current study, we experience just
a single event when all the stocks jump simultaneously. The proxy that
we propose is characterised by a counting function which increases by one
unit whenever we detect a cojump which involves a group of assets whose
number J conflicts with the null of independence. We therefore need to
identify the threshold value J compatible with independence. In general
it will be time dependent, .J;, and will vary between one and N. In order
to detect J we propose a rigorous statistical methodology. However, we
preliminarily want to convince the reader that the range of variability of .J
for the case under study N = 20 is quite narrow. First of all, we can exclude
the case J = 1, since otherwise we would consider every jump that occurs
on the market as potentially systemic. On the other side, if we fix J, by
definition then we would consider the events which involve J < .J jumps as
likely occurrences. As shown by the bootstrap experiment in Section 8.4.2,
the probability associated with events involving more than two stocks is
extremely low, and this would fix J = 3. However, the null represented by
the bootstrapped data is too extreme, since it does not take into account any
effect of self excitation. Heuristically, we conclude that J ~ 4.

We now present a rigorous procedure that supports the above heuristic
argument. To each stock in our sample we associate a finite number of
event times {t;}, where s = 1,...,N and i = 1,...,n, label the assets
and the asset idiosyncratic jumps, respectively. In equivalent terms, each
asset is characterised by a counting function N*(t), and n, = N*(T) is the
observed number of jumps of the stock s. According to the procedure of
jumps’ identification, the ¢;’s are measured in minutes and take only integer
values running from one to 7. A counting process N*(t) is associated with
an intensity function I°(¢) defined by

P (N*(t) has a jump in [t,t + At]|F;) = I°(t)At,

for At — 0%, where P stands for the probability and F; corresponds to the
history of the process up to present time t. We then assume that the counting
processes which describe our assets correspond to N independent univariate
Hawkes processes and we estimate the parameters which characterise the
intensities I*(¢) for s = 1,..., N via maximum likelihood. We fix At equal
to one minute and via Equation (8.9), for each t = 1,...,T, we can compute
the vector of probabilities 7, = (7}, ... 7N) = (I}At, ..., INAt)". We test if
the number of jumps that we observe at time t is compatible with the cross
independence among the processes. Under the null hypothesis, the discrete
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probability of the event J; = j reads

P(J;=j) = Z mh H (1—m)) .

1<lhi<..<lj<N ke{l,....N}\{l1,....l;}

Since we repeat the test T' times, we adjust the significance level with the
Bonferroni’s correction. If at time ¢ we reject the null, we attribute the event
to a systemic shock, and we remove it from the set {¢{}. The procedure has
to be iterated as many times as required in order to remove all the systemic
jumps.

The advantages of the above procedure are manifold. Specifically, the

set of events {tI'} with i = 1,..., np identifies the ny jumps of the common
factor, but not less important each reduced set {t5}i—1, . = {t{ izt 0. \
{tf}jzlv__’nF CA{t’}izr, o, for s =1,... N corresponds in a natural way to

the set of the n jumps of the s-th idiosyncratic component. The latter result
represents a second major improvement with respect to the bivariate model.
Moreover, the entire procedure is easy scalable, since it does not depend
critically on the dimension of the portfolio. Last but not least, we are not
a priori fixing the nature of the point processes which describe the factor
and the idiosyncratic components. We can apply the log-likelihood approach
described in 8.6 to the univariate sequence of the event times, fix the value
of the parameters of the factor, Arp, ap and SBr, and of the idiosyncratic
components, \,, oy and [,, for s = 1,..., N, estimate the associated p-
values, and, eventually, if it is the case, reject the Hawkes process in favour
of the Poisson description.

To sum up, the multivariate model describes the extreme events which
occur in a portfolio of stocks as a superposition of systemic shocks, propa-
gating to the s-th asset with probability ps, and jumps specific of the single

assets. In order to estimate the vector of probabilities p = (p1,...,py)’, we
replace the system of equations given by (8.10), with the new relations
Ar ,
pr————5 1 = nip—ny,
1-— O[F/ﬁp !
AF ,

PN mT nN — Ny,
where AI'T'/(1 — ar/Br) corresponds the average number of factor’s jumps.
The above equations force the expected number of cojumps among the factor
and the s-th stock to balance the realised number of shocks.

We test our model on the data set of twenty stocks analysed in the first
part of this chapter, and we show in Figure 8.11 the results of the tests
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Figure 8.11: From the top left clockwise: MJ probability test under N
factor model null for the asset Generali; CJ probability test for the pairs
Generali-Mediobanca, Generali-Banca Popolare Milano, and Generali-Intesa
Sanpaolo.

performed over the assets Generali, Mediobanca, Banca Popolare di Milano,
and Intesa Sanpaolo. The plots clearly show the ability to capture both the
self and the cross dependence among jumps, which is a remarkable feature
of a factor model easy to implement and calibrate on the data. Moreover, by
construction, the model is genuinely scalable, and this fact makes it a viable
alternative to more sophisticated but computationally complex models. In
Table 8.7 we present the value of the parameters of the common factor, with
the associated standard errors and p-values. From the measured confidence
for the scale and decay length we can reject the null hypothesis of a Poisson
model for the factor. In Table 8.8 we report the remaining parameters for
the idiosyncratic components.

It is important to notice that we have performed a Monte Carlo exper-
iment by drawing Njy;c = 10 scenarios with the values given in Tables 8.7
and 8.8 and we have then re-estimated the parameters on each copy. This
experiment has shown that the entire procedure is quite robust, but the com-
parison with the process N/°, which is known in the artificial Monte Carlo
framework, evidences a systematic underestimation of the number of jumps
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of the common factor. The misidentification is due to the fact that even
when the factor jumps, there is always a small, but finite, probability that
only a small number of assets below the detectability threshold jumps too.
In this case, our methodology does not detect a systemic event. The mis-
identification probability depends on the true values of (p1,...,py), and for
those fixed in the Monte Carlo experiment, it amounts approximately to
7.5%. Nonetheless, the bias reduces when the number of assets increases,
and tends to zero for N — oo.

Hawkes factor

Ar | (204+0.2) x 1073, p-value: < 0.001
ar | (4.9+1.9) x 1072, p-value: 0.0105
Br | (3.3+£1.1) x 107!, p-value: 0.0021

Table 8.7: List of the parameters of the common factor process.

8.8 Robustness analysis

In this section we provide an extension of the study conducted on the FTSE
MIB data, by addressing some questions about the robustness of our Hawkes
one factor model with idiosyncratic components and its ability to well de-
scribe different market settings. In particular, we aim at answering the fol-
lowing questions. Does the model provide a good description of the jump
clustering properties (both in time and cross sectional perspective) also in
different markets? Is the model equally effective when a larger number of
stocks is investigated? How does the model behave when wider ranges of
time are considered?

As performance measures to assess the ability of our model to reproduce
the observed MJ and CJ features, we use two kinds of statistical tests: simple
ones, where for each window length w (the range of w is 1-30 minutes) we
perform a hypothesis test separately and independently from other window
lengths, and multiple ones, where we require that for every window length the
observed quantity lies within the confidence bands. Thus, the null hypothesis
underlying the multiple test is not rejected if all the points representing
the observed quantities (please refer to Figure 8.13) lie inside the confidence
bands of the simulated model. In the multiple tests we calculate the rejection
regions for the various window lengths taking into account the Bonferroni
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Number of cojumping stocks

Figure 8.12: Histogram of the number of stocks simultaneously cojumping
in a minute (solid line) for the twenty most liquid assets of the Russell 3000
index during year 2013. For comparison the dashed line shows the 0.01%
confidence interval for the counts under the null hypothesis of independent
but not identical Poisson processes.

correction, that is, by dividing the preset significance level by the number of
the tested window lengths.

In the first row of Table 8.9, we present the results of the above mentioned
statistical tests for the FTSE data. We see that 19 out of the 20 stocks and
172 out of the 190 pairs of stocks pass the multiple tests for the MJ and the
CJ performed with a 99% confidence level with window lengths equal to 5,
10, 15, 20, 25, 30 minutes. The simple tests performed at different window
lengths w show generally good results, with the best ones at higher values
of w and the greatest number of exceptions occurring at small values. More
precisely, the largest fraction of rejections occurs for window lengths shorter
than 10 minutes, where the observed number of MJ and CJ is higher than
that predicted under the null hypothesis. This indicates that, although the
clustering of jumps is generally well captured, at very small time scales the
model underestimates the real MJ and CJ frequency.

In order to test our model on a different market, we carry out the same
analysis on a dataset formed by the most liquid stocks of the Russell 3000
index during the year 2013. The first analysis is done keeping the number
of assets equal to 20 and the length of the time series approximately equal
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to that of the FTSE MIB data (we take the first 114 days of the year).®
The goal is to see if a different market exhibits analogous properties to those
observed in the Italian market. As far as the jump distributional properties
are concerned, we report in Figure 8.12 the same analysis presented in the
right panel of Figure 8.4. We indeed get comparable results and the observed
number of stocks jumping in the same minute strongly rejects the null model
of twenty independent Poisson processes. We also confirm the tendency of
the jumps to cluster in time rejecting the null of a Poisson process in favour
of a self-exciting process for all the stocks in our sample.

Then, we test the sensitivity of our model to the jump threshold 6 looking
at the parameter estimates of the factor model for values of 6 larger than
4. As 6 increases the number of detected events rapidly decreases and thus
the self-exciting features of the jump processes diminish. For 6 = 5 the
null of a Poisson process is not rejected for both the factor and 18 out of
the 20 idiosyncratic components. Moving to § = 6 we cannot reject the
Poisson null for any of the idiosyncratic jump point processes. However, the
cross-exciting features still persist, strongly rejecting a model of independent
Poisson processes, and we conclude that the most adequate description of
our datasets corresponds to a factor model where both the factor and the
idiosyncratic components are Poisson processes.

The top left and top right panels in Figure 8.13, analogous to Figure 8.6
and Figure 8.7, show that MJ for Citigroup is well explained by a Hawkes
process, while a Poisson process clearly fails. The bottom left and bottom
right panels refer instead to our Hawkes one factor model and show that
it is able to capture the MJ and CJ properties for Citigroup and the pair
Citigroup-Pfizer. We report a detailed summary for the entire data set of
twenty Russell 3000 assets in the second row of Table 8.9. The numeri-
cal results confirm that our factor model is adequate to describe the jump
behaviour not only for Italian assets but also for the US market.

In order to investigate the sensitivity of the Hawkes factor model when
the number of assets grows we estimate it on samples of increasing size. As
more and more stocks are included in the analysis, we expect the description
of the system based on a single factor driving the whole market to become less
and less adequate. In the second column of Table 8.10 we report the fraction
of total variance explained by the first eigenvalue of the jump covariance
matrix and we indeed observe that it decreases from 12.53% for N = 20 to
7.72% for N = 60. Consistently with this, we see that the performance of the

6The list of the twenty company tickers sorted in decreasing order of liquidity is: C,
PFE, JPM, WFC, T, KO, MRK, FCX, CVX, F, AIG, MO, EMC, HPQ, CAT, HD, WMT,
DIS, SLB, PG.
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Figure 8.13: (Top left) Observed MJ values in relation to Poisson confidence
bands. (Top right) Observed MJ values in relation to the one-dimensional
Hawkes confidence bands. (Bottom left and bottom right) Observed MJ and
CJ frequencies in relation to the Hawkes one factor model with idiosyncratic
components. We perform MJ test for the asset Citigroup, while the CJ test
refers to the pair Citigroup-Pfizer.

model in reproducing the MJ and CJ features tends to worsen as NV increases,
although only slightly so that reasonably good results are maintained for N
up to 60.

Concerning the sensitivity to the length of the time series, Table 8.9 (rows
2-7) details the results of the MJ and CJ tests for the Russell 3000 dataset
when T increases from 44346 minutes (nearly 5 months) up to one trading
year. The performance of the CJ tests are overall quite good, slightly wors-
ening for the shortest time windows. The behaviour of the MJ tests is more
puzzling, since the test fails more frequently in particular for window lengths
smaller than or equal to five minutes. As a first possible explanation we
investigated the impact of non-stationarity of the model parameters on the
statistical tests. Generating three four-month periods with different param-
eters,” gluing them together, and finally performing a single estimate on the

"The parameters are obtained by estimating the model on the three periods separately.
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whole period, we nevertheless found that the MJ and CJ tests had an almost
100% positive outcome. Thus, we tend to exclude the non-stationarity as
the main responsible for the worsening of our model performances. Since the
one factor model fails more frequently for very short time windows while for
windows larger than ten minutes it is always successful, we hypothesize that
the single exponential specification of the process kernel may be inadequate
at the shortest time scales. When T increases the statistical uncertainty
associated with the model parameters decreases and we are able to better
discriminate the model adequacy. As a future development we plan to extend
our analysis to more complex kernel specifications.

In summary, the robustness analysis shows that the proposed model is
robust to different datasets, to changes in the jump threshold parameter
and to the increase of the number of assets, while some mild misspecifications
arise when widening the time range of the analysed time series. Moreover,
this robustness analysis confirms that the proposed Hawkes factor model
outperforms competitor Poisson models and provides a much more realistic
description of the collective jump dynamics.

8.9 Conclusions and perspectives

The detection techniques that we develop in Sections 8.2 and 8.3 show that
a large number of jumps is present in financial time series. Even though the
identification process of the extreme events suffers from some dependence on
the details of the detection method, we believe that the idea of intersecting
the different methodologies partially amends this drawback. Relying on the
correct identification of jumps, we find that, as far as individual stocks are
concerned, jumps are clearly not described by a Poisson process. The evi-
dence of time clustering can be accounted for and modelled by means of linear
self-exciting Hawkes processes. Moving to a cross-sectional perspective, we
identify a significant number of systemic events, especially simultaneous cross
jumps, that can not be reduced to a purely random effect. We have provided
quantitative arguments against the idea of modelling this effect in terms of
multidimensional Hawkes processes. The simultaneity of events is not cap-
tured by this class of point processes, and the increase of dimensionality of
the parameters space associated with the multivariate model is discouraging.
In Section 8.7.2 we propose a one factor model which is able to describe the
main features that characterise the departure from a random behaviour of
jumps, namely, the time clustering of jumps on individual stocks, the large
number of simultaneous systemic jumps, and the time lagged cross excitation
between different stocks.
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T | MJ (multiple) MJ (simple) CJ (multiple) CJ (simple)

w=2 3 4 5 10 15 20 w = 2 3 4 5 10 15 20
44440 19 10 17 16 16 18 19 20 172 155 152 156 155 160 163 175 177
44346 19 11 18 17 18 20 20 20 183 164 176 176 180 178 182 186 186
04849 17 7 9 10 10 20 20 20 186 138 165 168 181 181 184 187 186
65352 18 7T 6 11 9 19 20 20 186 158 174 173 179 182 183 187 186
75855 14 4 3 6 4 20 20 20 186 151 168 171 179 181 185 187 187
86358 13 3 2 7 3 20 19 20 185 149 164 170 176 178 185 188 186
96861 7 3 2 4 2 19 20 20 188 154 170 177 181 185 188 188 188

Table 8.9: (First row) Number of successful tests for the FTSE MIB data set. (Rows 2-7) Test results for the 20
most liquid stocks of the Russell 3000 Index data set, year 2013, for 7" regularly increasing from 44346 minutes (114
trading days) to 96861 (one trading year). We perform the MJ multiple tests on time windows of length equal to 5,
10, 15, 20, 25, and 30 minutes.

N | 1 PC | MJ (multiple)(%) MJ (simple)(%) CJ (multiple)(%) CJ (simple)(%)

w=2 3 4 5 10 15 20 w=1 2 3 4 5 10 15 20
20 | 12.53 % 95 55 90 85 90 100 100 100 96 86 92 93 95 94 96 98 98
30 | 10.16 % 90 43 67 70 90 100 100 100 93 74 8 87 8 87 94 96 95
40 | 9.01 % 90 45 65 73 83 97 95 100 91 61 80 81 81 8 91 95 95
50| 8.33% 86 44 56 72 78 96 94 100 89 52 71 76 77 80 91 95 94
60| 7.72% 87 45 57 67 72 95 95 100 89 51 69 74 75 79 91 94 94

Table 8.10: Test results for the most liquid stocks of the Russell 3000 Index data set, year 2013, for T" = 44346 and
N equal to 20, 30, 40, 50, and 60. We perform the MJ multiple tests on time windows of length equal to 5, 10,
15, 20, 25, and 30 minutes. The second column refers to the fraction of the total variance explained by the first
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The robustness analysis detailed in Section 8.8 investigates the depen-
dence of the results on the temporal and cross-sectional dimensions of the
dataset, and on the specific market. We conclude that our model applies
equally effectively to both the Italian and US markets and it is thus robust
to different datasets. It performs well when the number of assets increases
(up to 60 investigated assets), while some mild misspecifications arise widen-
ing the time range of the analysed time series. We hypothesize that a refined
specification of the process kernel may further improve the performances of
our factor model at the shortest time scales. We leave the answer to this
interesting research question to future developments.

In order to capture possible contagion effects among distinct asset classes,
an interesting development of the present study is the extension to a mixed
portfolio with different but related securities, such as equities, futures, op-
tions and other derivative products. A second extension of this work is the
study of the properties of cross jumps for a given group of securities in dif-
ferent periods, to assess for example whether changes in the regulations of a
market have an impact on the frequency of systemic events.

Moving from a descriptive point of view to one that investigates the origin
of the behaviour of jumps and cojumps, the research direction we consider
more promising is the study of the order book in proximity of extreme sys-
temic events, that is, cojumps involving a large number of assets. The per-
spective to take should be to explore the cross direction at a fixed time, more
than the time direction for a single asset. The bid-ask spread, the depth of
the book, the asymmetry of buy and sell volumes are all quantities whose
dynamics may reveal interesting features related to systemic events.

The high level of synchronisation between the jumps of different assets
that we empirically observe in our data calls for possible explanations. Even
if our work is mainly methodological, we believe that some comments are
needed in order to explain this fact observed in (modern) financial markets.
Financial markets are becoming increasingly interconnected at a high speed
due to several reasons, first of all the increased automation of the trading
process and of the information processing. High frequency trading strategies,
statistical arbitrageurs, hedging strategies could be partly responsible of the
large number of cojumps we observe in our sample. Certainly, we believe, a
proper modelling of the jump process in a systemic context is important for
regulators and for investors in order to assess in a reliable way the level of
risk of a market or of a large portfolio of assets.
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8.10 Appendix: Volatility auctions

According to the rules stated in Rules of the markets organised and man-
aged by Borsa Italiana S.p.A. and Instructions accompanying the Rules of
the markets organised and managed by Borsa Italiana S.p.A. ([125, 126]),
whenever a stock’s price gets too far from a reference value, Borsa Italiana
is obliged to start a volatility auction phase. During this phase, which has
a duration between 10 and 11 minutes, trades are suspended and a new ref-
erence value for the price is sought. Possibly, if no valid price is reached
during the volatility auction phase, another such phase starts immediately
after the first one and so on. We treat all intertrade times of at least ten
minutes as volatility auction periods (the distributions of intertrade times
shown in Figure 8.14 suggest this is correct) and consider as not available
the returns at the sampling times falling in these periods. In Figure 8.14 we
report the empirical distributions of the intertrade times for the assets Fiat
and Telecom Italia. In both histograms we can easily recognize the presence
of volatility auctions, which manifest in terms of the peaks appearing on the
far right tail in correspondence of intertrade times close to the multiples of
eleven minutes.
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Figure 8.14: The distributions of intertrade times for stocks Fiat (left panel)
and Telecom Italia (right panel).
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Chapter 9

Collective synchronization and
high frequency systemic
instabilities in financial markets

9.1 Introduction

Quoting from Michael Lewis’ Flash Boys “The world clings to its old mental
picture of the stock market because it’s comforting” [133]. But trading ac-
tivity has profoundly changed from the old phone conversation or click and
trade on a screen to software programming. Market statistics confirm that
automated algorithms carry out a significant fraction of the trading activity
on US and Europe electronic exchanges [134, 32]. As algos feed on finan-
cial and news data, the speed of information processing has dramatically
increased and potentially allows large price movements to propagate very
rapidly through different assets and exchanges [34].

The synchronization effect had its most spectacular appearance during
the May 6th, 2010 Flash Crash. The crash started from a rapid price decline
in the E-Mini S&P 500 market and in a very short time the anomaly became
systemic and the shock propagated towards ETFs, stock indices and their
components, and derivatives [35, 36]. The price of the Dow Jones Industrial
Average plunged by 9% in less than 5 minutes but recovered the pre-shock
level in the next 15 minutes of trading. The SEC reported that such a
swing was sparked by an algorithm executing a sell order placed by a large
mutual fund. Then high frequency traders, even though did not ignited the
event, caused a “hot potato” effect amplifying the crash. In the aftermath
of the crash, several studies have focused on events, evocatively named Mini
Flash Crashes, concerned with the emergence of large price movements of an
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asset in a very limited fraction of time and attributing their origin to the
interaction between several automatic algorithms [37] or to the unexpected
product of regulation framework and market fragmentation [38].

The Flash Crash, however, has also dramatically shown how strongly
interconnected different markets and asset classes can become, especially
during extreme events. In this chapter, by taking a different, yet comple-
mentary approach to the above literature, (i) we identify nonparametrically
one-minute extreme events as over-threshold movements, studying how the
frequency of collective instabilities at high frequency has changed in the last
years, and (ii) we use Hawkes processes [40] to model parametrically the
dynamics of these events and their mutual cross-excitation. Our approach
shares some similarities with previous works employing non-parametric tests
to identify extreme movements, see [135, 96, 113, 136, 114]. We perform
our analysis on a yearly basis from 2001 to 2013 on a data sample of highly
liquid US equities and we identify extreme events affecting a sizable fraction
of the investigated assets. Remarkably, very little research has been devoted
to the investigation of this kind of systemic events. Few noticeable excep-
tions are [103], who aim at the identification of common large movements
between the market portfolio and individual stocks, and [109], who investi-
gate the tendency of large movements to arrive simultaneously. A very recent
non-parametric test of the occurrence of simultaneous jumps across multiple
assets is discussed in [137]. Our research provides the empirical evidence that,
while the total number of extreme movements has decreased along years, the
occurrence of systemic events has significantly increased. As a terminology
clarification, we prefer the use of the term systemic rather than systematic,
since the latter has been used in the literature (see e.g. [109]) to define events
where assets jump together with a market index, while the events we look at
not necessarily imply this.

To identify the possible causes of such events we compare their time oc-
currences with a database of pre-scheduled macroeconomic announcements.
Since macroeconomic news can be expected to have a market-level influence,
they represent a natural candidate to explain market-wide events. For in-
stance, literature has recognised the peculiar role played by Federal Open
Market Committee (FOMC) meetings deciding the interest rate level [138,
139]. However, unexpectedly, only a minor fraction (less than 40%) of events
involving a large fraction of assets has been preceded by the release of a
macro news. This evidence opens the route to the more intriguing hypothe-
sis that a genuinely endogenous dynamics is taking place. To the best of our
knowledge, the association between extreme equity price movements and the
news arrival has been previously investigated in [113, 140], finding a positive
association, but the results have been challenged in [141]. Table 11 in [109]
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suggests the existence of a particularly strong relationship between FOMC
announcements and the arrival of a systemic event (defined as an event when
the market index jumps). However, none of the previous works performs an
analysis of the association between news and extreme movements conditional
on the level of systemicity of the event.

Finally, we show that when an event affecting a significant fraction of
assets occurs, the probability of a novel extreme event in the subsequent
minutes increases. More interestingly, there is a clear evidence that the more
systemic the conditioning event is, the larger the expected number of as-
sets swinging synchronously in the immediate future will be. In order to
reproduce such empirical evidences, we propose a model within the class of
mutually exciting point processes, termed Hawkes processes [40] which in
recent years have experienced an increasing popularity in mathematical fi-
nance and econometrics [43, 44, 118, 119, 121, 120, 122, 123, 45]. We present
a multidimensional, yet parsimonious, Hawkes process capturing with re-
markable realism the cross-excitation which affects extreme events identified
non-parametrically as over-threshold returns.

9.2 Data

9.2.1 Financial data

We conduct our analysis on price time series of financial stocks belonging
to the Russell 3000 Index, traded in the US equity markets (mostly NYSE
and NASDAQ). We consider the thirteen years from 2001 to 2013 and for
each year we select 140 highly liquid stocks. More explicitly, we take the 140
stocks with the highest percentage of minutes in which at least one trade was
made. The 140th selected asset of each year has such a percentage equal to
93% for 2001, 96% for 2002, between 97% and 98.5% for the years 2003-2005,
and always greater than 99% for the years from 2006 onwards. We use 1-
minute closing price data during the regular US trading session, i.e. from 9:30
a.m. to 4:00 p.m and, as explained in Section 9.7, we remove the intraday
pattern of volatility, which is a local measure of the diffusion rate of price.

9.2.2 News data

We use macroeconomic news data provided by Econoday, Inc. www. econoday.
com. We consider the 42 most important news categories, which are classified
into two large groups according to their capacity of influencing the financial
markets: the Market Moving Indicator group and the Merit Extra Attention
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group. Since we are concerned with matching news with market extreme
events, we consider only the 27 categories whose announcement times occur
during the trading session. The number of total news announcements ranges
from around 150 in the first years to around 260 in the last years, for a total
of 2,888 news. See Section 9.7 for more details.

9.3 Methods

9.3.1 Identification of extreme events

In order to detect extreme variations of the stock prices P;, we compare price
returns (defined as r;, = In P,/P, ;) with an estimate of the historical spot
volatility, which sets the scale of local price fluctuations. Specifically, we
calculate a volatility time series 0; as an exponential-moving-average version
of the bipower variation (see [135, 82, 92]) of the return time series and we
finally say that an extreme return occurs when

]
— >0, 9.1

. 0.1)
for a certain threshold #. In our main analyses we take 8 = 4, but we also
investigate higher values of the threshold, namely 8 = 6, 8, 10, in some of
our descriptive statistics.

9.4 Results

The main objective of this study is the modeling of the dynamics of syn-
chronous large price variations at high frequency. We say that a stock jumps
in a given one minute interval if condition of Equation 9.1 is observed for a
given . Here we are mostly interested in cojumps, i.e. the simultaneous (in-
side the minute) occurrence of jumps for a subset of M stocks. The quantity
M is termed the multiplicity of the cojump, and it gives a measure of the
systemic nature of the event. In the following we consider three questions:
(i) how has the high frequency instability changed in the last fifteen years?
(ii) what fraction of the systemic instabilities can be attributed to macroe-
conomic news? (iii) how can we model the short term dynamics of market
instabilities?

164



9.4. RESULTS

2< M <5 - 6<M<I0 11 < M <20 20< M <40 ® 41<M<80 ® 81<M <140

4PM |
3PM |
2 PM
1 PM
loaM [

1AM fo- ©

10 AM

9 AM
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 9.1: Time series of the cojumps detected for the dataset of 140 selected
highly liquid stocks of the Russell 3000 Index during year 2001 (left panel)
and 2013 (right panel). The size of the circles increases with the multiplicity
of the cojump event.

9.4.1 Historical dynamics of jumps and cojumps

A visual representation of how instability of financial markets has changed
in the last years is shown in Figure 9.1, which compares the dynamics of
0 = 4 cojumps in 2001 (left panel) and 2013 (right panel). The horizontal
axis represents the trading day and the vertical axis indicates the hour of
the day. The presence of a circle indicates the occurrence of a cojump and
the color codifies the number of stocks simultaneously cojumping (i.e. the
multiplicity). In 2001 there were many cojumps with low multiplicity and
the high multiplicity cojumps are concentrated mostly at specific hours of the
day (10 a.m. and 2:15 p.m.) corresponding to the release of important macro
announcements, such as, for example, the FOMC announcements. On the
contrary, in 2013 we observe less low multiplicity cojumps and many more
high multiplicity cojumps, which are quite scattered during the day. This is
an indication that modern financial markets have become more systemically
unstable and that these instabilities are less related to macro news. In the
following we show that this is the case with more quantitative analyses.
First, in the top left panel of Figure 9.2 we show the frequency of jumps
per minute in each year, considering different values of #. We observe that
for all #s the number of jumps has actually decreased over time. The different
lines are quite parallel one to each other (especially for # > 6) indicating that
the tails of the one minute return distribution remained quite stable. A com-
pletely different pattern emerges when we consider the dynamics of cojumps.
The top right panel of Figure 9.2 shows the frequency of cojumps of differ-
ent multiplicity (normalised to its value in 2001). While the frequency of
cojumps with any multiplicity (M > 2) has slightly declined, the frequency

165



CHAPTER 9. COLLECTIVE SYNCHRONIZATION AND HIGH
FREQUENCY SYSTEMIC INSTABILITIES IN FINANCIAL MARKETS

5 T T T T T T T T T T T T T T
= 10 - —= M>2 M > 30 2 g
£ . b -e- M>10 --& M >60 P g
k= 5% L i 4
— 0--9 =} 7 v
= 4 F e 1 g ¢ \
=1 - = ] h
E e o--® E A “‘
% ®--0--0..¢ e 51 ki ‘-\_\ i .
=i [ = I 3 o
S 3t "m-"\ . i % f 4 A
E et N [
£ - 0=14 =8 Mg F P S *--0-e. "1
= 8- 0=6 - =10 e P e ® a0~ -
9 | | | | | | | 0 ,ﬂt-ﬁﬁ"_._,—._,—.—’—._’—._,
2001 2003 2005 2007 2009 2011 2013 2001 2003 2005 2007 2009 2011 2013
Year Year
T T T T T T : 0 . et
- 0=4 . : x 2001 © 2009
= .| -e-0=6 ol 2o e 2003
X 2 0—38 ; M I o 2005 201}
5 e 0 —10 ile 2t $ % §§§§§§ a 2007 2013 |
g [ ] i a #eQ
E i i ©
Z g fle
el ] 2 L0
E Sy
S 4T
o -6
1
0 -6 :
2001 2003 2005 2007 2009 2011 2013 1
Year Multiplicity (M)

Figure 9.2: Top left panel: Semi-log plots of the total number of minutes
where we detect at least one jump among the 140 selected assets of the
Russell 3000 Index. Curves correspond to four different levels of the threshold
parameter 6. Top right panel: For 6 = 4, yearly time evolution of the
fraction of minutes with at least one event of multiplicity larger than or
equal to 2, 10, 30, 60. All values are normalised by the corresponding 2001
values. Bottom left panel: Yearly evolution of the percentage fraction of
cojumps with multiplicity at least equal to 30 for four different values of 6.
Bottom right panel: Log-log plots of the Complementary of the Cumulative
Distribution Function of the cojump multiplicity for seven different years.
The panel reports the empirical evidence for a portfolio of 140 stocks, while
the inset details results of the same analysis conducted with 700 liquid assets
from Russell 3000 during years 2011 and 2012.
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of high multiplicity cojumps has become in recent years up to 10 times more
frequent than its value in 2001. The result is essentially unchanged when
fixing the minimal multiplicity (e.g. M > 30) and computing the number of
cojumps for different values of 6 (bottom left panel of Figure 9.2). Clearly
larger fluctuations are observed for larger values of M. The increase of fre-
quency of high multiplicity events is not due to the fact that markets have
become faster. In Section 9.8 we show the fraction of cojumps with M > 30
and M > 60 at 1,...,5 minutes. It is clear that the variability with the
time window defining the event is much smaller than the secular variability
of the events. In fact the fraction of 1-min cojumps with M > 30 in 2013
is significantly larger than the fraction of 5-min cojumps with M > 30 in
2001. The same is true for cojumps with M > 60. Therefore, the increase in
synchronization is a genuine phenomenon, not explained by the increase in
market speed.

Finally, the bottom right panel of Figure 9.2 shows the distribution func-
tion of the cojump multiplicity for different years. Despite some variation is
observed across the years, a clear power law tail behavior is evident. This
means that the probability of systemic cojumps is quite large. Consistently
with the observations above, the tail is thicker in recent years (even if in 2013
we observe a slightly thinner tail). It is important to notice that the bend-
ing of the distributions for large multiplicity is very likely due to the finite
support of the distribution. Clearly for a set of N stocks the multiplicity
cannot be larger than N, thus the distribution function is zero at M = N.
To show the role of the finite support, in the inset we show the multiplicity
distribution function for a larger set of 700 highly liquid assets. In this case
the power law region extends for a wider range and close to M = 700 we
observe the expected bending of the function. The tail exponent of these
distributions is close to 1.5 (similarly to what observed in [127]).

In conclusion, at the beginning of 2000’s individual jumps were more fre-
quent and high frequency systemic instabilities, i.e. high multiplicity jumps,
were rare and mostly concentrated on macro-news announcements. In recent
years, on the contrary, markets display often systemic cojumps and these are
scattered across the trading day.

9.4.2 Systemic cojumps and macroeconomic news

The second question is which fraction of these systemic cojumps has an
exogenous or an endogenous origin. To answer this question we study how
frequently a systemic cojump is preceded by a scheduled macroeconomic
news. It is in fact unlikely that stock idiosyncratic news affect the whole
market. We measure how frequently a systemic cojump with multiplicity
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Figure 9.3: Top panel: Fraction of cojumps in 2012 with multiplicity larger
than or equal to the value reported on the x axis for which a news occurred
in the last 1, 5, 10, and 15 minutes. Bottom panel: Fraction of cojumps for
different multiplicities M for which we observe at least one news in a time
window of five minutes preceding the jump event.

larger than M is preceded by a macronews in the last 7 = 1,5, 10, 15 minutes.
The top graph of Figure 9.3 shows that only 40% of the high multiplicity
cojumps are preceded by a macronews in the previous 15 minutes. Notice
that the fractions of news-triggered systemic events in the 5, 10, and 15
minutes time windows are very close one to each other, indicating that if a
macronews triggers a systemic cojump, this will typically happen within 5
minutes from the news.

For a historical perspective, the bottom graph of Figure 9.3 shows that
the fraction of systemic cojumps triggered by macroeconomic news is quite
constant across the years and, even for large M, clearly below 50%. Thus
our empirical analysis shows that a relevant portion of systemic cojumps is
not associated with scheduled macroeconomic announcements. Idiosyncratic
company-specific news may play a role, but plausibly only for those events
which involve a very limited number of assets. For high multiplicity cojump
events, endogenous mechanisms are likely to play a determinant role.
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9.5 Model

9.5.1 Hawkes process for multiplicity vector

The empirical evidence of the previous section suggests that a large fraction
of the dynamics of the systemic cojumps is unrelated to macro news and
is likely endogenously generated. Moreover, as observed for example in the
2010 Flash Crash, market instabilities tend to propagate quickly to other
assets, markets, or asset classes. Thus it is important to model the self- and
cross-dependence of instabilities, considering both synchronous and lagged
dependence, by studying whether and how systemic instabilities trigger other
instabilities in the short run.

However the estimation of the interaction among a set of 140 variables is
extremely challenging and some sort of filtering is needed. A first step in this
direction was taken in [135] where we modeled the multivariate point process
describing the jumps with a Hawkes factor model. Each stock is represented
by a point process, each count being a jump. The coupling between the
stocks is given by a one factor model structure, i.e. the intensity is the sum
of the intensity of a factor and the intensity of an idiosyncratic term. Finally
in order to capture the temporal clustering of events we assumed that both
the factor and the idiosyncratic term follow a Hawkes process.

As shown in [135] this type of modeling is very effective (and parsimo-
nious) in describing the pairwise properties of cojumps, i.e. the probability
that two stocks jump in the same time interval. However when considering
cojumps of M > 2 stocks, the model shows its weakness. An important
indication is given by the distribution of multiplicities. It is possible to show
that in the large N limit, the factor model of [135] predicts a multiplicity dis-
tribution with Gaussian tails, at odds with the power law behavior observed
empirically in the bottom right panel of Figure 9.2. Moreover the multiplic-
ity of a systemic cojump is independent from the multiplicity of previous
systemic cojumps, while the right panel of Figure 9.1 shows clear temporal
clusters of high multiplicity cojumps.

For these reasons, in this chapter we propose a new modeling approach
which preserves the parsimony and is able to overcome the problems of the
model of [135]. The idea is to model directly the vector of multiplicities,
losing information on the identity of the cojumping stocks.

Specifically, we consider an N-dimensional point process characterised by
the vector of intensities A;. An event in the i-component at time ¢ means
that at this time a systemic cojump of multiplicity ¢ has occurred. Under this
modeling assumption we know the total number of assets which have jumped,
but we can no longer identify which companies among the N possible ones
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have moved. To model the self- and cross-excitation of cojumps we use an
N-dimensional Hawkes process with exponential kernels (see Section 9.9 for
the definition and the most relevant features). In general, the model depends
parametrically on the baseline intensity vector p, and on the N x N matrices
a;; and f3;; of parameters characterizing the kernels. In order to reduce the
dimension of the estimation problem from N + 2N? to a more manageable
number of unknowns, we proceed as follows. Since an important goal of
our model is the ability to reproduce the empirical stationary distribution
of the multiplicity vector, we assume p = nE[A;], where 0 < n < 1, and
E[A;] proportional to the observed multiplicity frequencies. Interestingly, it
is possible to show that 1 — 7 is the spectral radius of the kernel matrix
and therefore it measures the fraction of intensity explained by the self- and
cross-excitation, while n is the fraction explained by the baseline intensity.
We assume that all the parameters 3;; which characterize the decay time
of the self- and cross-excitations are equal to a constant value §. Finally,
we hypothesize that, for fixed ¢ = 1,..., N, the largest intensity shock is
ascribable to the self-exciting term «;;, while the cross-exciting effects as a
function of the distance |i — j| between multiplicities decrease hyperbolically
with a tail exponent . This means that cojumps of a given multiplicity
excite with higher probability cojumps with similar multiplicity. To sum up,
the model is completely specified in terms of three parameters, n, 8, and v,
and the empirical expected number of events with fixed multiplicity.

9.5.2 Model results

We apply the model to the dataset of 140 stocks in 2013. For the complete
analysis on all years from 2001 to 2012 see Section 9.9. In order to calibrate
and test the model we make use of two quantities, fT(l)(M ;J) and fT(Q)(M )
defined in Section 9.9. The first one is the probability, conditional on the
realization at time ¢ of an event with multiplicity at least M, of a cojump with
multiplicity at least J in the interval (¢,¢ + 7]. It measures how frequently
a systemic cojump triggers other systemic cojumps in the short run. The
second quantity is the average multiplicity of the cojumps inside a time
interval of length 7 after a cojump of multiplicity larger than or equal to
M. Tt therefore measures the typical cojump multiplicity triggered by a
cojump of multiplicity at least M. We consider here the case 7 = 5 minutes.

We use the fT(l)(M; J) with J = 10 and fT(Q)(M) to calibrate the model
(see Section 9.9 for details) and we test it on fT(l)(M; J) with J = 30 and
J = 60. The estimated parameters are n = 0.15, § = 0.6, v = 2.65. Thus
85% of the cojump activity is explained by the excitation mechanism and only
15% can be attributed to the baseline intensity. The typical timescale of the
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Figure 9.4: Top left panel: Probability that a cojump with multiplicity larger
than or equal to 10 occurs in a 7 = 5 minute interval following a cojump
at time ¢ with multiplicity M; > M. Plots are obtained from historical
and simulated data. The error bars represent standard errors. Top right
and bottom left panels: Threshold 10 replaced by 30 and 60, respectively.
Bottom right panel: Expected amplitude of the cojumps in a 7 = 5 minute
interval following a cojump with multiplicity M, > M.
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memory is 1/8 ~ 1.67 minutes and the relatively low value of ~ indicates
a strong cross-excitation between different multiplicities. As expected, the
model effectively reproduces the stationary distribution of the multiplicities
observed in empirical data (see Figure 9.8 in Section 9.9). Figure 9.4 reports
the quantities ff(l)(]\/[ ;J) and fT(Q)(M ) in real and simulated data. The solid
line corresponds to the empirical probabilities, the dotted line to the results
from the Hawkes model, and as a benchmark case we also show the result
of a shuffling experiment on the multiplicity time series (dashed line). It
is evident that dropping the lagged correlations we obtain an unrealistic
description of the multiplicity process. The Hawkes model, on the contrary,
fits well the empirical data and therefore adequately describes the cross-
excitation mechanism between systemic cojumps. Some discrepancies are
observable for J = 60, but the general shape of the curve and its level are
well reproduced and the Hawkes model is a huge improvement with respect
to the benchmark case. This evidence confirms that the larger is the value
of the conditioning multiplicity the greater is the probability that in the
subsequent minutes an event with large multiplicity happens.

9.6 Discussion

By investigating a portfolio of highly liquid stocks, our research enlightens
a remarkable evidence: Since 2001 the total number of extreme events has
remarkably diminished, but the number of occurrences where a sizable frac-
tion of assets jump together has increased. This trend is more and more
pronounced as we consider events of higher and higher multiplicity. This
evidence is a clear mark that markets are nowadays more and more inter-
connected and a strong synchronization between jumps of different assets is
present.

What are the factors responsible for the appearance of extreme move-
ments? The cause can be either exogenous or endogenous. The former case
is linked to the release of macro-economic news impacting the price dynam-
ics, while the latter may result from unstable market conditions, such as a
temporary lack of liquidity. Quite unexpectedly, only a minor fraction (up
to 40%) of the cojumps involving a large number of assets can be attributed
to exogenous news. The remaining 60% suggests that a more intriguing en-
dogenous mechanism is taking place. Why has the synchronization among
different assets increased through the recent years? We hypothesize that a
major role is played by the dramatic increase of algorithmic trading. Thanks
to the technological innovation, faster information processing is responsible
for the more rapid propagation of large price movements through different
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assets. We also provide the evidence that highly systemic instabilities have
the double effect of (i) increasing the probability that another systemic event
takes place in the near future and (ii) increasing the degree of systemicity of
short-term instabilities.

The low timescale of the memory of the exciting effects and the strong
persistence of the cross-excitation among different multiplicities support the
idea that, to achieve an accurate description of high frequency price dynam-
ics, we should abandon conventional modeling assumptions. Coherently, we
propose an innovative approach to the collective behavior of assets’ prices
based on the Hawkes description of the multiplicity process. Our model well
describes the short term dynamics of systemic instabilities while preserving
a remarkable parsimony in the number of parameters. Thus, it provides a re-
alistic description of the market behavior which is of prime importance from
several perspectives, from trading to risk control, and market designing.

9.7 Appendix A: Data

9.7.1 Market data

Data are provided by Kibot, www.kibot.com. We consider the thirteen years
from 2001 to 2013 and for each year we select 140 highly liquid stocks in the
Russell 3000 index. We exclude American Depositary Receipts, which are
negotiable instruments representing ownership in non-US companies, since
their dynamics is heavily influenced by their primary market and thus shows
a peculiar intraday pattern. We use 1-minute closing price data during the
regular US trading session, i.e. from 9:30 a.m. to 4:00 p.m. We discard
early-closing days (typically, the eves of Independence Day, Thanksgiving
and Christmas). Data are adjusted for splits and dividends.

Intraday returns are first filtered for the average intraday pattern, since
price fluctuations are known to exhibit significant differences in absolute size
depending on the time of the day, showing a typical U shape with larger
movements at the beginning and at the end of the trading day. Returns at
intraday time ¢ are rescaled by a factor (;, which is calculated as the average,
over all days, of adjusted absolute returns at time ¢. More precisely, if 74, is
the raw return of day d and intraday time t, we define the rescaled return

= Tdt
dt = ——
G
where
1 |7 4]
G =
Ndays o Sa’
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with Ngays indicating the number of days in the sample and sy the standard
deviation of absolute intraday returns of day d’. Scaled returns no longer
possess any daily regularities and can thus be considered a unique time series
with no periodic structure. For more details please refer to [135].

9.7.2 News data

The macronews dataset is provided by Econoday, Inc., www.econoday. com.
Table 9.1 shows the number of news announcements, organised by year and
news category.

9.8 Appendix B: Dependence of systemic co-
jumps on time scale detection
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Figure 9.5: Yearly time evolution of the fraction of cojumps with multiplicity
M > 30 (left) or M > 60 (right) over the total number of cojumps (M > 1)
for # = 4 and different time horizons, namely 1,2, 3,4, 5,10, 15 minutes.

This study mostly considers one minute (co)jumps. However one minute
in 2013 is not equivalent to one minute in 2001 in terms of market activity.
Hence it is important to test whether the increase in number of high multi-
plicity cojumps is due to the fact that in older years synchronization occurred
on a time scale longer than one minute. To test this possibility we have re-
peated the analysis varying the time scale for jump detection from one to
five minutes. Analyses on the dynamics of cross-correlation between stocks
data suggested us that the time scale over which stocks become correlated
has decreased by a factor approximately equal to five from 2001 to 2013.
Moreover, since at high sampling frequencies microstructure noise may be a
source of bias and dominate the results, we take into account the findings of
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[142] and, similarly to [143], we consider also sampling frequencies up to 15
minutes.

Figure 9.5 shows the yearly time evolution of the fraction of cojumps
with multiplicity M > 30 (left) or M > 60 (right) over the total number of
cojumps (M > 1) for = 4 and different time scales, namely 1,2, 3,4, 5,10, 15
minutes. Except for the first two years, no clear sorting of this fraction with
the time scale is detectable, while the global secular trend has a much larger
variability. This is particularly evident for the M > 60 case. Hence the
number of high multiplicity one minute cojumps in 2013 is much higher than
the number of high multiplicity five minute cojumps in 2001, indicating that
the increased speed of market activity is a minor cause of the increase of
high multiplicity systemic cojumps in recent years. We also note that this
increase is also evident at sampling frequencies of 10 and 15 minutes, which
gives robustness to the results by providing the evidence that the increase
of systemic cojumps is not due to microstructure noise. Finally, it is worth
to point out that the fraction of cojumps with multiplicity equal to or larger
than 30 reaches its maximum in 2008. When conditioning to events with even
more extreme cojump events — with multiplicity equal to or larger than 60 —
a second peak appears in 2011. Then, these results seem to suggest — maybe
quite expectedly — the emergence of a tighter collective market dynamics
during the sub-prime mortgage crisis and the collapse of Lehman Brothers
in 2008, and the rise of the sovereign debt crisis in 2011.

9.9 Appendix C: Model

In this study we model the point process describing the cojumps of k stocks
(independently from their identity) as the k-th component of a multivariate
Hawkes process. These processes were introduced in the early Seventies [40],
and have been widely employed to model earthquake data [117, 41, 42]. For a
complete overview of the properties of Hawkes processes please refer to [128,
44], while for a review of their recent applications in a financial context
see [45]. Here we detail how we build and estimate the model.

9.9.1 Multivariate Hawkes point processes

An N-dimensional Hawkes process is a point process characterised by the

vector of intensities \; := (/\tl7 AN )T, where the i-type intensity satisfies
the relation
YY)
J=1 4l <t
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where 1! and V; are positive deterministic functions for all 4,57 = 1,..., N.

The set {ti} corresponds to the random sequence of increasing events asso-
ciated with the j-component of the N-dimensional point process. If p; = p'
is a constant and the kernel function V; reduces identically to zero, then the
Hawkes point process describing the i-component reduces to a Poisson pro-
cess with constant intensity p’. On the contrary, if the kernel is positive, each
time an event occurs for any component of the multidimensional process, the
intensity A increases by a positive amount.

9.9.2 Choice of the parametrization

As in most high-dimensional problems, the estimation of multivariate Hawkes
processes is problematic because of the large number of parameters. In order
to overcome the curse of dimensionality problem, in this study we choose a
quite rigid parametrization of the kernel matrix, reducing significantly the
number of free parameters. We also propose a method to estimate the model
on data.

First of all, we assume that the vector p := (utl, T )T does not depend
on time. Second, we consider the most common parametrization of the kernel
in terms of exponential functions

vi(t — t) = aije_ﬁ”(t_ti) :

with a;; > 0 and 3;; > 0 for all 4,j. The parameter o;; fixes the scale of
the intensity process A and provides the deterministic amount by which the
J-type event at ti shocks the intensity of the i-type process. The parameter
Bi; describes the inverse of the time needed by the process ¢ to lose memory
of a count of process j.

The process is stationary if the spectral radius (i.e. the absolute value of
the largest eigenvalue) of the matrix I' of elements

Q5
.. =Y
Y By
is strictly smaller than one. In this case the unconditional expected intensities
of the process reads

EA] = (Iy - ) u, (9.2)

where Iy is the N-dimensional identity matrix.
We make the following further assumptions:

e We assume that all the 3;; are equal to a constant value 8 > 0. This
means that there is only one time scale characterizing the decay of the
kernels.
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e We impose the condition that p = nE[A;], with 0 < n < 1. This
means that the distribution of multiplicity in the observed process is
the same as the distribution of the multiplicity in the baseline (or ances-
tor) process. In other words, the cross-excitation between the different
components of the Hawkes process does not change the unconditional
law of multiplicity. Notice that this assumption implies that

TE[N] =1 —nE[A],
i.e. E[A] (or ) is the eigenvector of I' with eigenvalue 1 — 17 .

e The generic matrix element I';; describing the intensity of the excitation
of variable j on variable ¢ is the product of a term D;; which depends
on the excited variable and a term o(|i — j|) which depends on the
absolute difference of the two multiplicities. Therefore we can rewrite
I' = DX, where D is a diagonal matrix of elements

(1 —n)u'
S¥ wo(li— )

and X;; = o(|i — j]).
e Finally, we parametrize the matrix X' as
Lij=olli=Jgl) = (i=Jjl+1)7

This hyperbolic decay is chosen to model with only one parameter
the strong cross-excitation between two very different multiplicities.

The model is therefore parametrised by the vector o and the three parameters
n, v, and (.

Before presenting the estimation procedure, we discuss some properties of
the model. As all the entries of I" are strictly positive, the Perron-Frobenius
Theorem applies. Then, there exists only one eigenvector with all strictly
positive components, and the associated eigenvalue is the spectral radius.
Since E[\]] > 0 for all ¢ = 1,..., N, we conclude that the spectral radius
is 1 — n. Incidentally, we notice that all the eigenvalues of I" are real. This
property readily follows from observing that I' is the product of two symmet-
ric matrices, and D is diagonal and positive definite. Indeed, denoting with
VD the square root of the matrix D, I' is similar to \/E_IDE\/E, which
is by construction symmetric. Moreover, if I' is diagonal dominant, i.e. if
T > Z#i IT'ij| for i = 1,..., N, the eigenvalues are also strictly positive.
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9.9.3 Estimation of the model parameters

A rigorous estimation of our model’s parameters through likelihood maxi-
mization poses several computational problems. We instead propose a heuris-
tic and robust calibration procedure based on moments. In particular we
consider the following two conditional expectations, whose values on real
and simulated data are graphed in Figure 9.4:

FO(M; ) = P[at' € (tt+7] 8.6 My > J‘Mt > M} . (9.3)

FOM) =E [Mt/

M, > M, 3t € (tt+7] st My > 0} L (94)

The first quantity, ff(l) (M; J), is the probability of observing a systemic event
with multiplicity at least J inside a time interval of length 7 after a cojump of
multiplicity M; larger than or equal to M. It therefore measures the proba-
bility that a cojump of multiplicity at least M triggers a systemic cojump (J
fixes the threshold for a systemic cojump). The second quantity, fT(Q)(M ), is
the average multiplicity of the cojumps inside a time interval of length 7 after
a cojump of multiplicity M, larger than or equal to M. It therefore measures
the typical cojump multiplicity triggered by a cojump of multiplicity at least
M

We use [V (M; J) (for fixed J and 7) and £ (M) (for fixed 7) to estimate
via a weighted least squares approach the three model parameters 7, v, and
B. Since we are not able to compute analytically the moments of le)(M . J)
and f (M) from the model, we perform Monte Carlo simulations with fixed
parameters. Specifically, given a multiplicity M, let the data and the model
conditional expectations of any of the quantity in Equations (9.3) and (9.4)
be represented by their average values aq(M), an (M) and standard errors
da(M), 6y (M). Then, for the expectation £ (1 = 1,2) we construct the loss
function

2 (aq — am)z
X(z) = Z 2 D) ) (95>
= 05 + 02

where the sum is taken over a set of multiplicities S. We then construct
the total loss function X%l) + 0.5)(%2) and we search for the model parameters
which minimize the loss function. Given the small number of parameters
we explore a large region of the three-dimensional space of parameters on a
0.05-spaced grid.
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Figure 9.6: Left panel: Logarithmic entries of the matrix I';; := «;;/0;; for
Bij =B =06 forall 7,57 =1,...,140, n = 0.15, and v = 2.65. Right panel:
Linear plot of the diagonal entries of I' as a function of the multiplicity .

9.9.4 Results for the investigated dataset

As an example of the estimation procedure and to discuss the properties of
the fitted model, we consider in detail the case of N = 140 highly liquid assets
of the Russell 3000 Index in 2013. The same set is used also in Figure 9.4.
We fix J = 10 in Equation (9.3), 7 = 5 in Equations (9.3) and (9.4), S =
{5,10,15,...,65,70} and look for the parameters that minimise the total loss
function. Following this approach, we find a clear minimum corresponding
to the values n = 0.15, 8 = 0.6, v = 2.65.

The left panel of Figure 9.6 reports the logarithmic value of 140 x 140
entries of the I" matrix. Coherently with the definitions given above, I';; for
fixed 7, is the impact of past events with multiplicity 7 on the multiplicity
1. The largest value corresponds to the diagonal term I';; = D;; and quan-
tifies the shock of the intensity due to a self-exciting effect. Then, moving
away from the I';;, the kernel matrix decreases symmetrically along the row
according to a hyperbolic scaling with tail index v = 2.65. The parameter n
rescales the level of the main diagonal of the matrix I', reported in the right
panel of Figure 9.6, and determines the degree of stationarity of the process.
In Figure 9.7 we plot the complete spectrum of the matrix I'. As expected,
the largest value corresponds to 1 —n = 0.85, while the positive definiteness
of all the eigenvalues follows from the evidence, verified numerically, that the
matrix is diagonal dominant. More specifically, for the chosen values of 7,
B, and v the matrix I' is determined uniquely through the specification of
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Figure 9.7: Eigenvalue spectrum of the matrix I". The spectral radius p(I")
corresponds to 1 — 7. Since = 0.15, and more generally for 0 < n < 1, the
multidimensional Hawkes process describing the stochastic evolution of the
multiplicity remains stationary. For the chosen parameter values, we verified
numerically that I' satisfies the diagonal dominant condition and so all its
eigenvalues are strictly positive.

the vector of expected intensities, E[A;]. In our numerical experiment we
replace the vector of expected intensities multiplied by the length of the time
series, i.e. 96,861, with the empirical frequencies observed for the 140 assets
from the Russell 3000 Index in 2013. Figure 9.8 conveys this information
in terms of the Complementary of the Cumulative Distribution Function of
the cojump multiplicities associated with the empirical data (bold line). We
also report the same quantity measured from a synthetic time series corre-
sponding to a Monte Carlo simulation of the 140-dimensional Hawkes process
(dashed line).

9.9.5 Model results for the years 2001-2012

As supplement to the model results for the year 2013 presented in Section
9.5.2, we present here a complete view of our model’s behaviour for the years
2001-2012. Figures 9.9-9.20 show the analogous of Figure 9.4 for the twelve
years. Values of fT(l)(M ;J) equal to 0 or 1 have a standard error equal
to 0 since they are the average of all zero or all one values, respectively.
Values with undefined standard error appear in correspondence of points
where the empirical conditioning selects only one event. Our model provides
a good description of the empirical multiplicity dependence structure for
some years, although for some others it does not accurately reproduce the
empirical multiplicity dependencies. We note that our model is nonetheless
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Figure 9.8: Log-log plot of the Complementary of the Cumulative Distri-
bution Function of the cojump multiplicities. The bold line corresponds to
the empirical distribution measured from the Russell 3000 data sample, 140
assets, during year 2013. The dashed line is the distribution obtained from
a simulation of the multidimensional Hawkes process. The total number of
minutes drawn from the simulation coincides with the length of the empirical
time series and is equal to 96861.

a major improvement with respect to the shuffling benchmark for all years,
and that it is always able to reproduce the multiplicity dependencies to a
certain extent.
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Figure 9.9: Analogous of Figure 9.4. Results of the model for the 2001 data.
Estimated parameters are: n = 0.1, 8 = 0.55, v = 2.8.
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Figure 9.10: Analogous of Figure 9.4. Results of the model for the 2002

data. Estimated parameters are: n = 0.25, 8§ = 0.7, v = 2.8. Circles filled
with a black dot correspond to single-event measurements for which standard

deviation is not defined.
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Figure 9.11: Analogous of Figure 9.4. Results of the model for the 2003
data. Estimated parameters are: n = 0.1, § = 0.45, v = 2.5. Circles filled
with a black dot correspond to single-event measurements for which standard
deviation is not defined.
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Figure 9.12: Analogous of Figure 9.4. Results of the model for the 2004
data. Estimated parameters are: n = 0.2, § = 0.7, v = 2.55. Circles filled
with a black dot correspond to single-event measurements for which standard
deviation is not defined.
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Figure 9.13: Analogous of Figure 9.4. Results of the model for the 2005

data. Estimated parameters are: n = 0.25, § = 0.65, v = 2.6. Circles filled
with a black dot correspond to single-event measurements for which standard

deviation is not defined.
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Figure 9.14: Analogous of Figure 9.4. Results of the model for the 2006

data. Estimated parameters are: n = 0.25, § = 0.5, v = 2.8. Circles filled
with a black dot correspond to single-event measurements for which standard
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Figure 9.15: Analogous of Figure 9.4. Results of the model for the 2007 data.
Estimated parameters are: n = 0.1, 8 = 0.65, v = 2.65.
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Figure 9.16: Analogous of Figure 9.4. Results of the model for the 2008

data. Estimated parameters are: n = 0.25, § = 0.55, 7 = 2.8. Circles filled
with a black dot correspond to single-event measurements for which standard

deviation is not defined.
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Figure 9.17: Analogous of Figure 9.4. Results of the model for the 2009 data.
Estimated parameters are: n = 0.15, § = 0.45, v = 2.6.
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Figure 9.18: Analogous of Figure 9.4. Results of the model for the 2010 data

Estimated parameters are: n = 0.25, f = 0.5, v = 2.5.
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Figure 9.19: Analogous of Figure 9.4. Results of the model for the 2011
data. Estimated parameters are: n = 0.25, 5 = 0.75, v = 2.6. Circles filled
with a black dot correspond to single-event measurements for which standard
deviation is not defined.
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Figure 9.20: Analogous of Figure 9.4. Results of the model for the 2012 data.
Estimated parameters are: n = 0.15, 5 = 0.5, v = 2.65.
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