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CHAPTER 1

Introduction

The object of this thesis is the automated computation of the rational (co)homology
of the moduli spaces of smooth marked Riemann surfaces Mg,n. This is achieved by
using a computer to generate a chain complex, known in advance to have the same
homology as Mg,n, and explicitly spell out the boundary operators in matrix form.
As an application, we compute the Betti numbers of some moduli spaces Mg,n.

Our original contribution is twofold. In Chapter 3, we develop algorithms for the
enumeration of fatgraphs and their automorphisms, and the computation of the
homology of the chain complex formed by fatgraphs of a given genus g and number
of boundary components n.

In Chapter 4, we describe a new practical parallel algorithm for performing Gauss-
ian elimination on arbitrary matrices with exact computations: projections indicate
that the size of the matrices involved in the Betti number computation can easily
exceed the computational power of a single computer, so it is necessary to distrib-
ute the work over several processing units. Experimental results prove that our
algorithm is in practice faster than freely available exact linear algebra codes.

An effective implementation of the fatgraph algorithms presented here is available
at http://code.google.com/p/fatghol. It has so far been used to compute the Betti
numbers of Mg,n for (2g + n) 6 6.

The Gaussian elimination code is likewise publicly available as open-source software
from http://code.google.com/p/rheinfall.

1. Fatgraphs and the homology of the moduli space of Riemann
surfaces

In the seminal papers [39] and [40], M. Kontsevich introduced “Graph Homology”
complexes that relate the stable homology groups of certain infinite-dimensional
Lie algebras to various other topological objects. In particular, the “associative
operad” variant of this construction results in a chain complex whose homology is
isomorphic to the (co)homology of the moduli space of smooth Riemann surfaces
Mg,n: the graded module underlying the complex is freely generated by the set
Rg,n of fatgraphs of genus g and number of boundary components n, endowed with
the differential defined by edge contraction.

A fatgraph1 is a multigraph enriched with the assignment, at each vertex v, of
a cyclic order of the edges incident to v. Such graphs can be “fattened” into a
Riemann surface, by gluing polygons along the fatgraph edges in such a way that

1Fatgraphs have appeared independently in many different areas of mathematics: several
equivalent definitions are known, with names such as “ribbon graphs”, “cyclic graphs”, “maps”,
“dessins d’enfants”, and “rotation systems”. See [42] for a comprehensive survey.
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2 1. INTRODUCTION

two adjacent edges on the polygon boundary are consecutive in the cyclic order
at the common endpoint. The resulting Riemann surface is naturally marked,
by choosing the marking points to be the centers of the polygons. There is thus
a functorial correspondence between fatgraphs and marked Riemann surfaces; a
fatgraph G is said to have genus g and n boundary components if it corresponds to
a punctured Riemann surface S ∈Mg,n.

Chapter 1 presents a construction of Kontsevich’ fatgraph complex, deriving it as
a relative of Harer’s arc-system complex [30, 31], and proves the isomorphism of
its homology with the rational (co)homology of Mg,n. The main ingredient of this
construction is a cell decomposition of Mg,n based on a theorem of Jenkins [37]
and Strebel [59]. This fatgraph complex is the same complex that one gets by
applying Kontsevich’ construction in the associative case; however, the proof given
here is specific to Mg,n and does not trivially extend to other cases. The techniques
devised by Kontsevich are instead suitable to further generalization to any “modular
operad” [18].

A construction of the graph complex, closely following Kontsevich’ original work,
has been detailed by Conant and Vogtmann in [11]; Hamilton and Lazarev gave a
new proof in [27]. Other graph homology complexes related to the (co)homology
of Mg,n have also been proposed; most relevant to the subject of this thesis is
the work by Godin [23], who constructed a variant complex that computes the
integral homology of mapping class groups of surfaces with boundary, and gives the
homology of Mg,n as a particular case. In the recent preprint [56], LaFountain and
Penner constructed a space which is homotopy equivalent to the Deligne-Mumford
compactification Mg,n and admits a cellularization indexed by suitably decorated
fatgraphs.

The fatgraph cellularization of the moduli space of smooth pointed Riemann sur-
faces and related topics have been extensively studied; the interested reader can find
comprehensive accounts of the subject in [1, Chapters XVIII and XIX] and [51].

2. Effective computation of the fatgraph complex

Chapter 3 is concerned with finding an effectively computable representation of
fatgraphs, and presenting algorithms to:

(1) compute automorphisms of any given fatgraph (Section 2);
(2) generate the set Rg,n of fatgraphs, given the genus g and number of bound-

ary components n (Section 3);
(3) compute the homology of the fatgraph complex Rg,n (Section 4).

Note that, in contrast with other computational approaches to fatgraphs (e.g., [57]),
which draw on the combinatorial definition of a fatgraph, our computer model of
fatgraphs is directly inspired by the topological definition, and the algorithm for
enumerating elements of Rg,n is likewise backed by a topological procedure.

Theorem 2.24 provides an effective way to compute the (co)homology of Mg,n. The
Betti numbers of Mg,n can be computed from the knowledge of the dimension of
chain spaces Wp of the fatgraph complex and the ranks of boundary operators Dp;
this computation is accomplished in the following stages:

I. Generate the basis set of W∗; by definition, the basis set is the set Rg,n of
oriented marked fatgraphs that correspond to surfaces in Mg,n.
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II. Work out the differential D : W∗ → W∗ explicitly as matrices D(p) map-
ping coordinates in the fatgraph basis of Wp into coordinates relative to
the fatgraph basis of Wp−1.

III. Compute the ranks of the matrices D(p).

Stage I needs just the pair g, n as input; its output is the set of orientable marked
fatgraphs belonging in Rg,n. By definition, marked fatgraphs are decorated abstract
fatgraphs, whose decoration is a simple combinatorial datum (namely, a bijection
of the set of boundary cycles with the set {1, . . . , n}): therefore, the problem can
be reduced to enumerating abstract fatgraphs. With a recursive algorithm, one can
construct trivalent Rg,n-fatgraphs from trivalent graphs in Rg−1,n and Rg−1,n+1.
All other graphs in Rg,n are obtained by contraction of non-loop edges.

The differential D has a simple geometrical definition: D(G) is a sum of graphs
G′, each gotten by contracting a non-loop edge of G. A simple implementation of
Stage II would just compare each contraction of a graph with p edges with any graph
with p−1 edges, and score a ±1 (depending on the orientation) in the corresponding
entry of the matrix D(p). However, this algorithm has quadratic complexity, and
the large number of graphs involved makes it very inefficient already for M0,5. The
simple observation that contraction of edges is defined on the topological fatgraph
underlying a marked fatgraph allows us to apply the naive algorithm to topological
fatgraphs only, which cuts complexity down by a factor O((n!)2). The resulting
matrix is then extended to marked fatgraphs by the action of graph automorphism
groups on the markings of boundary cycles. This is the variant detailed in Section 4.

Stage III is conceptually the simplest: by elementary linear algebra, the Betti
numbers can be computed from the rank of matrices D(p) and the dimension of
their domain space. The computational problem of determining the rank of a
matrix has been extensively studied; it should be noted, however, that this step
can actually be the most computationally burdening.

Explicit generators of the homology modules could be computed with a little variant
in the last step of the algorithm; however, this is not interesting in connection with
the homology of Mg,n, since expression of a fatgraph homology class in terms of the
“natural” algebro-geometric classes has proved to be a difficult problem [50, 33, 34],
and to-date lacks a general solution.

A implementation of the algorithms presented in this paper has been actually used
to compute the Betti numbers of all Mg,n with 2g+n 6 6. Results are summarized
in Table 1.1; see Section 5 for implementation-specific details and a discussion of
performance.

All the Betti numbers were already known; the output of the program corrobo-
rates computations previously published in the literature. The original sources are
scattered across a wide array of publications. For g > 1, the groups H1(Mg,n,Q)
are known from the works of Mumford [53] and Harer [29]; H2(Mg,n,Q) has been
computed also by Harer in [29]; a comprehensive statement with a new proof is
given by Arbarello and Cornalba in [2] (where a minor mistake in Harer’s state-
ment is corrected). The complete integral homology of M1,2 and M2,1 has been
published in Godin’s paper [23]. The homology of the M0,∗ spaces is computed in
[20, Corollary, 3.10]; see [46] for alternative approaches using results from [62] to
compute the Poincaré polynomial of M0,n. The Poincaré-Serre polynomial of M2,2

follows as a special case of Corollary III.2.2 in Tommasi’s thesis [61]; the results also
follows by combining [21, p. 22] with [32, Appendix A]. The rational cohomology
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b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

M0,3 1
M0,4 1 2
M0,5 1 5 6
M0,6 1 9 26 24
M1,1 1
M1,2 1
M1,3 1 1
M1,4 1 4 3
M2,1 1 1
M2,2 1 2 1
Table 1.1. Betti numbers of Mg,n for 2g+n 6 6. For readability, null values
have been omitted and the corresponding entry left blank.

of M1,4 is completely described (as a particular case) by Theorem 1 of [25]; it can
also be explicitly computed by using the tools developed by Getzler in [22]. In all
these cases, the numerical results agree with the values in Table 1.1.

The complete set of Betti numbers has apparently been completely computed for
just a few spaces, besides those presented in Table 1.1. The equivariant Serre
polynomials of Mg,n with 2g + n 6 7 are completely tabled in [19]. Only for
g = 0 and g = 1 is the Poincaré polynomial of Mg,n known for any n > 0; as
pointed out earlier, for M0,∗ the result is due to Getzler [20], but it can be derived
from other results as shown in [46]; a complete description of the cohomology of
M1,∗ is contained in the preprint [25] by Gorinov. The Betti numbers of M2,n

are well-known for n 6 2; for n = 1 see, e.g., Godin’s [23], but see also [46] for
alternative approaches; for n = 2, see [21, 32, 61]; O. Tommasi has announced
complete results for M2,3 and M2,4 but they have not been published yet. The
rational cohomology of M3,1 is given in [6] (which refines results from [19, 44]);
the one of M3,2 has been computed by Tommasi in [60]. No other computation of
Betti numbers of the spaces Mg,n is known to the author; an online public attempt
to gather information about the known Betti numbers of Mg,n is ongoing at [46].

Along with the computation, the entire family of fatgraphs Rg,n (with 2g + n 6 6)
has been computed, and for each fatgraph the isomorphism group is known. The full
list of fatgraphs and their isomorphisms is too long to reproduce here (see a sample
in Appendix C), but the data is publicly available at http://fatghol.googlecode.
com/download/list. A summary of the number of abstract and marked fatgraphs
is provided in Tables 3.2 and 3.3 in Chapter 3.

3. A novel parallel algorithm for exact Gaussian Elimination of general
sparse matrices

The algorithms presented in Chapter 3 reduce computation of the Betti number of
moduli spaces Mg,n to reckoning the rank (over Q) of some large sparse matrix with
integer entries. An effective method for computing this rank is given by Gaussian
Elimination.

The serial algorithm for Gaussian Elimination is well-known; it consists of a certain
number of iterations of the following two steps: a pivoting step followed by an
elimination step. Starting with the upper left entry, a non-zero element (pivot)

http://fatghol.googlecode.com/download/list
http://fatghol.googlecode.com/download/list


4. NOTATION 5

is searched for; once a pivot has been found, a permutation is applied so that the
pivot rests in the upper left corner of the “uneliminated” matrix. In the elimination
phase, all the elements in the leftmost column and below the pivot are set to zero
by summing to each row a suitable multiple of the pivot row. Then the procedure
is recursively applied to the portion of the matrix excluding the topmost row and
the leftmost column.

An enormous literature has been published on the subject of Gaussian Elimination,
that is outside the scope of this short introduction to survey. However, available
practical codes for exact matrix rank computation seem to be limited to the free
software library LinBox [14, 43], which does not offer any parallel distributed-
memory algorithm and is thus bound to usage on a single computer at a time.
Indeed, Gaussian Elimination algorithms with exact computations has been anal-
ysed in [16], and the authors concluded that “there remains to design a direct
parallel method suited to sparse matrices”.

Let us say that a matrix is in “block echelon form” iff each row starts with a number
of null entries that is not less than the number of null entries of the row directly
above. The “Rheinfall” algorithm presented here is based on the observation that
any sparse matrix can be put in a “block echelon form” with minimal computational
effort. One can then run elimination on each block of rows of the same length
independently (i.e., in parallel); a communication step is needed to re-order the
rows after elimination. The procedure ends when all blocks have been reduced to
a single row, i.e., the matrix has been put in row echelon form.

As can be seen from this cursory description, the “Rheinfall” algorithm distributes
the matrix data and the elimination work to an arbitrary number p of processors;
it can thus fully exploit the power of present-day massively parallel machines. No
collective communication takes place; however it is assumed that the communi-
cation fabric is able to route a message of arbitrary size2 from any processor to
any other. On the other hand, the algorithm requires frequent one-to-one commu-
nication among all processing units; the issue of distributing matrix data among
processors is thus crucial to minimizing the network traffic and for the overall per-
formance of the algorithm.

The “Rheinfall” algorithm has been developed and used to compute the rank of the
homology matrices arising from fatgraph complexes; however, it is of (potentially)
much wider application. The interesting question is then to determine the class of
matrices on which “Rheinfall” is efficient. A direct approach to this problem quickly
leads to the conclusion that the amount of work and communication performed by
the algorithm is strictly dependent on the nonzero pattern of the input matrix.
By using computational experiments, we can assess the performance of “Rheinfall”
on a large set of matrices, and give some complexity estimates. As it turns out,
“Rheinfall” is competitive with LinBox on a large subset of the test matrices, and
specifically outperforms it on the Mg,n homology ones.

4. Notation

Algorithms are listed in pseudo-code reminiscent of the Python language syntax (see
[65]); comments in the code listings are printed in italics font. The word “object”
is used to denote a kind of aggregate type in the computer programs: an object is
a tuple ‘(a1, a2, . . ., aN )’, where each of the slots ai can be independently assigned

2Actually, the maximum size of a message is a linear function of the length of a matrix row.
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a value; we write X.ai to denote the slot ai of object X. Object slots are mutable,
i.e., they can be assigned different values over the course of time. Appendix A gives
a complete recap of the notation used and the properties assumed of syntax, data
structures, and operators.

A great deal of Chapter 3 is concerned with finding computationally-effective rep-
resentations of topological objects; in general, we use boldface letters to denote the
computer analog of a mathematical object. For instance, the letter G always de-
notes a fatgraph, and G its corresponding computer representation as a Fatgraph
object.

Finally, if A is a category of which X, Y are objects, we use Eilenberg’s notation
A(X,Y ) for the Hom-set, instead of the more verbose HomA(X,Y ).



CHAPTER 2

The Fatgraph Chain Complex

This chapter recalls the main definitions and properties of fatgraphs, and the re-
lation of the fatgraph complex to the cohomology of Mg,n. These results are well-
known: a comprehensive exposition of the research connected with the topic of
this chapter can be found in Mondello’s [51]; the book by Lando and Zvonkin [42]
provides a broad survey of the applications of fatgraphs and an introduction ac-
cessible to readers without a background in Algebraic Geometry; a recent account
of the crucial Jenkins-Strebel theorem (together with applications to the triangula-
tions of the Teichmüller and moduli space of curves) can be read in Arbarello and
Cornalba’s paper [3].

1. Fatgraphs

“Fatgraphs” take their name from being usually depicted as graphs with thin bands
as edges, instead of 1-dimensional lines; they have also been called “ribbon graphs”
in Algebraic Geometry literature. Here, the two names will be used interchangeably.

Definition 2.1 (Topological definition of fatgraphs). A fatgraph is a finite CW-
complex of pure dimension 1, together with an assignment, for each vertex v, of a
cyclic ordering of the edges incident at v.

A morphism of fatgraphs is a cellular map f : G→ G′ such that, for each vertex v
of G′, the preimage f−1(V ) of a small neighborhood V of v is a small neighborhood
of a tree in G (i.e., f−1(V ) is a contractible connected graph).

Unless otherwise specified, we assume that all vertices of a fatgraph have valence
at least 3.

If G is a fatgraph, denote V (G), E(G) and L(G) the sets of vertices, unoriented
edges and oriented edges (equivalently called “legs” or “half-edges”).

1.1. Combinatorial description of fatgraphs. The following combinato-
rial description of a fatgraph will also be needed:

Definition 2.2 (Combinatorial definition of fatgraphs). A fatgraph is a 4-
tuple (L, σ0, σ1, σ2), comprised of a finite set L together with bijective maps
σ0, σ1, σ2 : L→ L such that:

» σ1 is a fixed-point free involution: σ2
1 = id, and

» σ0 ◦ σ2 = σ1.

Lemma 2.3. Definitions 2.1 and 2.2 are equivalent.

7
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Proof. To pass from the topological description to the combinatorial one, take
L to be the set of oriented edges of the CW-complex underlying a fatgraph. Define
σ1 : L→ L as the orientation reversal on edges. Define σ0 : L→ L by means of the
cyclic order at vertices: let L(v) be the subset of edges in L that end at a vertex v,
the cyclic order on edges incident at v induces a cyclic order on L(v). If x ∈ L(v)
then define σ0(x) as the successor to x in the cyclic order on L(v). Finally, define
σ2 : L→ L by means of σ2 = σ−1

0 σ1.

Vice versa, let Li be the set of orbits of the map σi. Take L0 to be the set of 0-cells;
for each {x+, x−} ∈ L1, glue a 1-cell to the 0-cells corresponding to the σ0-orbits
of x+ and x−. The cyclic order at each vertex is induced by the action of σ0. �

Any two of the maps σ0, σ1, σ2 determine the third, by means of the defining relation
σ0 ◦ σ2 = σ1; therefore, to give a ribbon graph, it is sufficient to specify only two
out of three maps.

In the combinatorial description, V (G) is the set L0 of orbits of σ0, E(G) is the set
L1 of orbits of σ1, and L(G) is plainly the set L.

1.2. Morphisms arising from contraction of an edge. Let G be a fat-
graph, and G′ be the CW-complex obtained by contracting an edge x ∈ E(G) to a
point. If x connects two distinct vertices (i.e., x is not a loop) then G′ inherits a
fatgraph structure from G: if (x < x1 < . . . < xk < x) and (x < x′1 < ... < x′h < x)
are the cyclic orders at endpoints of x, then the vertex formed by collapsing x is
endowed with the cyclic order (x1 < . . . < xk < x′1 < . . . < x′h).

Contraction morphisms play a major role in manipulation of ribbon graphs.

Lemma 2.4. Any morphism of fatgraphs is a composition of isomorphisms and
contractions of non-loop edges.

We can thus define functors V (−), E(−) and L(−) that take a morphism of graphs
to a map of their set of vertices, (unoriented) edges, and oriented edges.

1.3. From fatgraphs to Riemann surfaces. There is a functorial construc-
tion to build a closed oriented surface S(G) from a fatgraph G; this is usually
referred to as “thickening” or “fattening” in the literature.

Lemma 2.5. (1) There exists a functor S that associates to every fatgraph G a
punctured Riemann surface S(G), and to every morphism f : G→ G′ a continuous
map S(f) : S(G)→ S(G′). (2) The surface S(G) is naturally endowed with a trian-
gulation indexed by oriented edges of G. (3) The graph G is a deformation retract
of S(G).

Denote byB(G) the set L2 of orbits of σ2; in the topological description, its elements
are the support of 1-cycles in H1(G) that correspond under the retraction to small
loops around the punctures in S(G); they are called “boundary cycles” of G.

The assignment G 7→ B(G) extends to a functor B(−); by Lemma 2.4, for any
f : G1 → G2 the map B(f) : B(G1)→ B(G2) is a bijection.

The correspondence between fatgraphs and Riemann surfaces allows us to give the
following.
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Figure 2.1. Thickening of a fatgraph into a Riemann surface. Left column:
Starting fatgraph: the cyclic order at the vertices is given by the orientation of
the ambient euclidean plane. Middle column: Thickening of the fatgraph by
gluing topological disks along the boundary components. The border of a cells
is drawn as a dotted line; each topological disk has been given a different color.
Right column: The resulting Riemann surface with the embedded graph. Note
that the two starting graphs would be isomorphic when considered as ordinary
multigraphs; they are distinguished by the additional cyclic structure at the
vertices.

Definition 2.6. The number of boundary cycles of a graph G is given by n =
|B(G)|, and is equal to the puncture number of the Riemann surface S(G).

If S(G) has genus g and n punctures, then:

χ(G) = χ(S(G)) = 2− 2g − n = 2− 2g − |B(G)|, (1.1)

so we can define, for any fatgraph G, the genus g, as given by the above relation.

It is trivial to check the following.

Lemma 2.7. If G′ is obtained from G by contraction of a non-loop edge, then G
and G′ share the same genus and number of boundary cycles.

1.4. Complex analytic structure on S(G). We can give the topological
Riemann surface S(G) a complex analytic structure by means of the triangulation
in Lemma 2.5(2) and an analytic atlas, which depends on the perimeters p1, . . . ,
pn of boundary cycles b1, . . . , bn. (See [52] for details.)

Definition 2.8. A metric ` on a fatgraph G is an assignment of a real positive
number `x for each edge x ∈ E(G).

A metrized fatgraph (G, `) is a fatgraph G equipped with a metric `.

The perimeters p1, . . . , pn are determined by the metric data `, therefore the
complex analytic structure on S(G) actually depends on the metrized graph (G, `).
Let S(G, `) denote the Riemann surface S(G) endowed with this complex analytic
structure.

Lemma 2.9. If G, G′ are metrized fatgraphs and f is an isomorphism preserving
edge lengths, then S(f) is a complex analytic mapping.
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1.5. Marked fatgraphs.

Definition 2.10. A marked fatgraph is a fatgraph G endowed with a bijection
ν : B(G)→ {1, . . . , n}. The map ν is called the “marking” on G.

A morphism f : G1 → G2 of marked fatgraphs must preserve the numbering of
boundary cycles:

B(G1) B(G2)

{1, . . . , n}

f //

ν1 %%
ν2yy

(1.2)

By a slight abuse of language, we shall usually omit mention of the marking map ν
and just speak of “the marked fatgraph G”.

2. Moduli spaces of Riemann surfaces

Let us recap the main points of the construction of the moduli space of smooth
algebraic curves; the short summary given here tracks closely the first section of
[45], which has proofs and references.

Fix integers g, n > 0 such that 2−2g−n < 0. Let S be a Riemann surface of genus
g and P = {P1, . . . , Pn} a set of n points in S.

Let Diff(S, P ) be the group of diffeomorphisms of S that fix P pointwise; Diff0(S, P )
denotes the subgroup of diffeomorphisms homotopic to the identity mapping idS ;
let Diff+(S, P ) indicate the subgroup of orientation-preserving diffeomorphisms.

Every set P of marked points can be transformed into another chosen set P ′ (of the
same cardinality) by a diffeomorphism φ homotopic to the identity mapping idS .
Therefore, Diff+(S, P ) and Diff0(S, P ) depend only on n = |P | and not on P (see
[41]). Summing up:

Definition 2.11. Diff(S, n) is the group of orientation-preserving diffeomorphisms
that keep the n marked points fixed.

Diff0(S, n) is the group of diffeomorphisms of S which are homotopic to the identity
mapping idS and that keep the n marked points fixed.

Every complex structure on S determines a conformal structure; let Conf(S) be the
set of all conformal structures on S.

Definition 2.12. The Teichmüller space

Tg,n := Conf(S)/Diff0(S, n)

is the quotient of the set of all conformal metrics on S by the set of all diffeomor-
phisms homotopic to the identity and fixing the n marked points.

The Teichmüller space Tg,n is an analytic space and is homeomorphic to a convex
domain in C3g−3+n.

Definition 2.13. The mapping class group Γg,n is the set of connected components
of Diff+(S, n), the group of all diffeomorphisms that preserve orientation and fix
marked points:

Γg,n := Diff+(S, n)/Diff0(S, n).
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Definition 2.14. The topological space Mg,n := Tg,n/Γg,n is the moduli space of
(smooth) n-pointed algebraic curves of genus g. It parametrizes complex structures
on S, up to diffeomorphisms that: (1) are homotopic to the identity mapping on
S, (2) preserve the orientation of S, and (3) fix the n marked points.

Since Tg,n is an analytic variety and Γg,n acts discontinuously with finite stabilizers,
Mg,n inherits a structure of analytic orbifold of complex dimension 3g − 3 + n.

Since Tg,n is contractible, its equivariant (co)homology with rational coefficients is
isomorphic to the rational (co)homology of Mg,n (see [10, VII.7.7]):

H
Γg,n
∗ (Tg,n,Q) ∼= H∗(Mg,n,Q), H∗Γg,n

(Tg,n,Q) ∼= H∗(Mg,n,Q), (2.1)

One may instead consider equivalence classes of n-punctured surfaces S (i.e., with
n points removed) by bianalytic mappings that do not permute the punctures, and
repeat the same construction of the Teichmüller and the moduli space. By the
Riemann extension theorem, the two approaches turn out to yield the same result.

In the course of this chapter, we will make use of the description of Mg,n that best
fits in the context, often without explicit notice. In particular, we shall consider
the points P1, . . . , Pn as marked points or as punctures, interchangeably.

2.1. Quadratic differentials. If S is an n-punctured Riemann surface, then
S retracts onto a graph, however, this graph is not uniquely determined. We can
refine this correspondence: a theorem proved independently by J. A. Jenkins [37]
and K. Strebel [59] provides the key tool: the construction of fatgraphs from smooth
complex curves.

Definition 2.15. A quadratic differential q on a Riemann surface S is a (mero-
morphic) section of (T ∗S)⊗2.

The set of vectors in TzS on which q takes real non-negative values forms a real line
in TzS: therefore, they make up a foliation F on S \{poles of q}. The non-compact
leaves of F together with zeroes of q form the “critical locus” of q. Call F the
“horizontal” foliation associated with q.

Every quadratic differential q induces a metric (away from the critical locus) by
ds2 = |q(z)| · |dz|.

Theorem 2.16 (Jenkins, Strebel; [59, Theorem 23.2 and 23.5]). For any complex
analytic curve S with n marked points P1, . . . , Pn, and any assignment of real posi-
tive numbers p1, . . . , pn, there exists one and only one quadratic differential q such
that:

» q is holomorphic on S \ {P1, . . . , Pn};
» q has double poles at the marked points P1, . . . , Pn with second residue
−(p1/2π)2, . . . , −(pn/2π)2;

» the non-critical real trajectories of Fq are simple closed circles around xi;
» the complement of the critical locus is a collection of disks {Di}i=1,...,n,

each one centered at a pole Pi.

Furthermore, q has the following properties:

» every nonsingular closed leaf circling around Pi has length pi in the flat
metric induced by q.
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» the critical locus G of q is a graph embedded in S;
» the projective class of the collection of radii of disks {Di} equals the pro-

jective class [p1, . . . , pn];
» q depends continuously on S and (p1, . . . , pn).

2.2. The fatgraph cellularization of the moduli spaces of marked Rie-
mann surfaces. An embedding of a fatgraph G is an injective continuous map
ι : G→ S, that is, a homeomorphism of G onto ι(G) ⊆ S, such that the orientation
on S induces the cyclic order at the vertices of ι(G).

Definition 2.17. An embedded fatgraph is a fatgraph G endowed with a homeo-
morphism ι̃ between S(G) and the ambient surface S, modulo the action of Diff0(S).

There is an obvious action of Γg,n on the set R̃g,n of fatgraphs embedded into
n-marked Riemann surfaces of genus g.

If confusion is likely to arise, we shall speak of abstract fatgraphs, to mean the
topological and combinatorial objects defined in Definitions 2.1 and Definition 2.2,
as opposed to embedded fatgraphs as in Definition 2.17 above.

The critical graph G inherits a structure of embedded metrized fatgraph from the
ambient surface S: the length of an edge x is the one measured in the metric induced
by the quadratic differential. Furthermore, Jenkins-Strebel’s theory states that G
has a vertex of valence k+ 2 where q has a zero of order k, therefore, vertices of G
have valence > 3. Since the markings P1, . . . , Pn are ordered, G has an additional
structure of marked fatgraph.

Let G be a fatgraph (embedded or abstract) of genus g with n marked boundary
components. The set ∆(G) = {(G, `)} of metrics on G has an obvious structure of
topological cell; now glue these cells by stipulating that ∆(G′) is the face `x = 0 of
∆(G) when G′ is obtained from G by contraction of the edge x. The topological
spaces obtained by these gluing instructions are denoted Tcomb

g,n (when using embed-
ded fatgraphs), or Mcomb

g,n (when using abstract fatgraphs). The following theorem
clarifies their relation to the Teichmüller and the moduli space; details can be found,
e.g., in [51, Section 4.1].

Theorem 2.18. The thickening construction induces orbifold isomorphisms:

Tg,n × Rn ' Tcomb
g,n , Mg,n × Rn 'Mcomb

g,n ,

Call M(G) the cell in Mcomb
g,n corresponding to an abstract fatgraph G, and T (G̃)

the cell in Tcomb
g,n corresponding to an embedded fatgraph G̃.

The functorial action of Γg,n on R̃g,n induces an action on Tcomb
g,n , which permutes

cells T (G̃) by PL isomorphisms.

Lemma 2.19. Mcomb
g,n is the quotient space of Tcomb

g,n by the cellular action of the
mapping class group Γg,n; the projection homomorphism commutes with the iso-
morphisms in Theorem 2.18.

The action of Γg,n commutes with the face operators, so M(G) is a face of M(G′)
iff G′ is obtained from G by contraction of a non-loop edge.

Lemma 2.20. The isotropy group ΓG̃ of the cell T (G̃) ↪→ Tcomb
g,n is (isomorphic to)

the automorphism group AutG of the abstract fatgraph G underlying G̃.
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Proof. If a ∈ AutG, then S(a) is an automorphism of S(G, `) for any metric
`. If ` ∈ ∆(G) varies continuously, then so does S(a). Therefore, an element of
ΓG̃ ⊆ Γg,n is defined.

Conversely, let τ ∈ Γg,n fix the cell TG̃ setwise. If q is the Jenkins-Strebel quadratic
differential inducing the complex analytic structure corresponding to the metric
` ∈ T (G̃), then τ∗q defines a quadratic differential corresponding to a point in TG̃,
so it has critical graph G̃. But τ∗q has critical graph τ(G̃), since q has critical
graph G̃. Therefore, τ restricts to a fatgraph isomorphism, so a map ΓG̃ → AutG
is defined, which is clearly the inverse of the map AutG→ ΓG̃ defined above. �

3. Equivariant homology of Tg,n and the complex of fatgraphs

Definition 2.21. An orientation of a fatgraph G is an orientation of the vector
space QE(G), that is, the choice of an order of the edges of G, up to even permu-
tations.

Giving an orientation on G is the same as orienting the simplex ∆(G); respectively,
an orientation on G̃ is identified with an orientation of the cell T (G̃).

If G is a fatgraph with p edges, let WG :=
∧pQE(G) be the 1-dimensional vector

space generated by the wedge products x1∧ . . .∧xp of edges of G. Every f ∈ AutG
induces a map f : E(G)→ E(G) on the edges and thus a map f∗ : x1 ∧ . . . ∧ xp 7→
f(x1) ∧ . . . ∧ f(xp). Trivially, f∗(x1 ∧ . . . ∧ xp) = ±x1 ∧ . . . ∧ xp, depending on
whether f preserves or reverses the orientation of G.

Definition 2.22. A fatgraph G is orientable iff it has no orientation-reversing
automorphisms.

Form a differential complex of orientable fatgraphs as follows.

Definition 2.23. The complex (W∗, D) of orientable fatgraphs is defined by:

» Wp :=
⊕

GWG, whereG runs over orientable fatgraphs with (2g+n−1+p)
edges;

» D :=
∑p

1(−1)idi, where di : Wp →Wp−1 is given by:

di(x1 ∧ . . . ∧ xp) :=


x1 ∧ . . . ∧ x̂i ∧ . . . ∧ xp if xi is not a loop and

G/xi is orientable,

0 otherwise.

Call a fatgraph with one vertex only a clover ; the number of edges of a clover of
genus g with n boundary cycles is readily computed by (1.1):

mmin = 1− χ(G) = 2g + n− 1. (3.1)

On the other hand, the numberm of edges and the number l of vertices are maximal
when all vertices are 3-valent:

mmax = 6g + 3n− 6, lmax = 4g + 4n− 4 (3.2)

From equations (3.1) and (3.2) we see that W∗ is a finite complex of length 4g +
2n− 5, which is already predicted by the results of Harer on the equivariant spine
of Tg,n [30].

Every oriented fatgraph (G,ω) defines an element ωG ∈ WG by taking the wedge
product of edges of G in the order given by ω; conversely, any x1 ∧ . . . ∧ xp ∈ WG

defines an orientation on G by setting ω := x1 < . . . < xp.
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Theorem 2.24. The Γg,n-equivariant homology of Tg,n with rational coefficients
is computed by the complex of oriented fatgraphs (W∗, D), i.e., there exists an iso-
morphism:

H
Γg,n
∗ (Tg,n,Q) ∼= H∗(W∗, D).

Proof. The genus and number of boundary cycles will be fixed throughout,
so for brevity, set Γ := Γg,n, T := Tg,n and Tcomb := Tcomb

g,n .

By Theorem 2.18, we have:

HΓ
∗ (T,Q) = HΓ

∗ (Tcomb,Q).

Recall that HΓ
∗ (Tcomb,Q) can be defined as the homology of the double complex

P∗ ⊗ C∗(T
comb,Q), where P∗ is any projective resolution of Q over Q[Γ]. The

spectral sequence E1
pq := Hq(P∗ ⊗Γ Cp) = Hq(Γ, Cp) abuts to HΓ

p+q(T
comb) (see

[10, VII.5 and VII.7]).

The space Tcomb
g,n has, by definition, an equivariant cellularization with cells indexed

by embedded fatgraphs of genus g with n marked boundary components. Let
Xp be a set of representatives for the orbits of p-cells under the action of Γ. By
Lemma 2.19, Xp is in bijective correspondence with the set of abstract fatgraphs
having p edges, and the orientation of a cell translates directly to an orientation
of the corresponding graph. For each geometric simplex T (G̃) ⊆ Tcomb, let ΓG̃
be its isotropy group, and let QG̃ be the ΓG̃-module consisting of the Q-vector
space generated by an element ∆ on which ΓG̃ acts by the orientation character:
τ ·∆ = ±∆ depending on whether τ preserves or reverses the orientation of the cell
T (G̃). By Lemma 2.20, there is an isomorphism between ΓG̃ and AutG; if τ ∈ ΓG̃
reverses (resp. preserves) orientation of T (G̃), then the corresponding f ∈ AutG

reverses (resp. preserves) orientation on G. Therefore, QG̃ and WG are isomorphic
as AutG = ΓTG̃ modules.

Following [10, p. 173], let us decompose (as a Γ-module)

C∗(T
comb,Q) =

⊕
G∈Xp

WG;

then, by Shapiro’s lemma [10, III.6.2], we have:

Hq(Γ, Cp) ∼=
⊕
G∈Xp

Hq(ΓG̃,QG̃) ∼=
⊕
G∈Xp

Hq(AutG,WG).

Since AutG is finite and we take rational coefficients, then Hq(AutG,WG) = 0 if
q > 0 [10, III.10.2]. On the other hand, if G is orientable then AutG acts trivially
on WG, so:

H0(AutG,WG) =

{
0 if G has an orientation-reversing automorphism,
WG if G has no orientation-reversing automorphisms.

Let X ′p be the collection of all orientable fatgraphs with p edges. Substituting back
into the spectral sequence, we see that only one column survives:

E1
p,0 =

⊕
G∈X′p

WG = Wp, (3.3)

E1
p,q = 0 for all q > 0, (3.4)

In other words, E1
pq reduces to the complex (E1

∗,0, d
1).

Finally, we show that the differential d1 : E1
p,0 → E1

p−1,0 corresponds to the dif-
ferential D : Wp → Wp−1 under the isomorphism formula (3.3); this will end the
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proof. Indeed, we shall prove commutativity of the following diagram at the chain
level:

P∗ ⊗Wp

⊕
G∈X′p

P∗ ⊗WG

⊕
G′∈X′p−1

P∗ ⊗WG′ P∗ ⊗Wp−1

P∗ ⊗ Cp(Tcomb,Q) P∗ ⊗ Cp−1(Tcomb,Q)

idP ⊗D//

idP ⊗∂
//

θp

��
θp−1

��

(3.5)
which implies commutativity at the homology level:⊕

G∈X′p
H0(AutG,WG)

⊕
G′∈X′p−1

H0(AutG′,WG′)

H0(Γ, Cp(T
comb,Q)) H0(Γ, Cp−1(Tcomb,Q))

D //

d1=H0(Γ,∂)

//

∼=
��

∼=
��

whence the conclusion E1
∗,0
∼= (W∗, D).

The vertical maps θp, θp−1 in (3.5) are the chain isomorphisms underlying the Γ-
module decomposition Cp(Tcomb,Q) ∼=

⊕
G∈Xp

WG. Taking the boundary of a cell
T (G̃) ⊆ Tcomb commutes with the Γ-action: ∂T (τ · G̃) = τ · ∂T (G̃). Furthermore,
T (G̃′) is a cell in ∂T (G̃) iff G̃′ is obtained from G̃ by contraction of an edge; but
G̃′ is a contraction of G̃ iff the underlying abstract fatgraphs G′ and G stand in the
same relation. Thus, the Γ-complexes (C∗, ∂) and (W∗, D) are isomorphic by θ∗, so
diagram (3.5) commutes, as was to be proved. �



CHAPTER 3

Algorithms for graph homology

The objects of this Chapter 3 are finding an effectively computable representation
of fatgraphs (see Section 1), and presenting algorithms to:

(1) compute automorphisms of any given fatgraph (Section 2);
(2) generate the set Rg,n of fatgraphs, given the genus g and number of bound-

ary components n (Section 3);
(3) compute the homology of the fatgraph complex Rg,n (Section 4).

By Theorem 2.24, this is tantamount to computing the (co)homology with rational
coefficients of the moduli spaces Mg,n.

An effective computer implementation1 of the algorithm has been written as part of
the research. It is capable of computing the Betti numbers of Mg,n for (2g+n) 6 6
on commonly-available hardware. Experimental results from running the code are
discussed in Section 5.

1. Computer representation of Fatgraphs

Although the combinatorial definition of a fatgraph (cf. Lemma 2.3) lends itself to a
computer representation as a triple of permutations —as used, e.g., in [57, Section
2.4]—, the functions that are needed by the generation algorithms (see Section 3)
are rather topological in nature and thus suggest an approach more directly related
to the concrete realization of a fatgraph.

Definition 3.1. A Fatgraph object G is comprised of the following data:

» A list G.vertices of Vertex objects.
» A list G.edges of Edge objects.
» A set G.boundary_cycles of BoundaryCycle objects.
» An orientation G.orient.

The exact definition of the constituents of a Fatgraph object is the subject of the
following sections; informally, let us say that a Vertex is a cyclic list of edges and
that an Edge is a pair of vertices and incidence positions. A precise statement
about the correspondence of abstract fatgraphs and Fatgraph objects is made in
Section 1.5.

There is some redundancy in the data comprising a Fatgraph object: some of these
data are inter-dependent and cannot be specified arbitrarily. Actually, all data
comprising a Fatgraph object can be computed from the vertex list alone, as the
following sections show.

In what follows, the letters l, m and n shall denote the number of vertices, edges
and boundary cycles respectively:

1Code available for download from http://code.google.com/p/fatghol.
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» l = |V (G)| = size(G.vertices),
» m = |E(G)| = size(G.edges),
» n = |B(G)| = size(G.boundary_cycles).

Throughout this Chapter, we shall use the topological and the combinatorial def-
inition of a fatgraph equivalently, according to what best suits in context. The
symbols σ0, σ1 and σ2 stand for the structure maps in the combinatorial defini-
tion Definition 2.2.

For integers α and k, we use (α%k) to denote the smallest non-negative represen-
tative of α mod k .

1.1. Vertices. We can represent a fatgraph vertex by assigning labels2 to all
fatgraph vertices and mapping a vertex to the cyclically-invariant list of labels of
incident edges. Figure 3.1 gives an illustration.

Definition 3.2. A vertex together with a choice of an attached edge is called a
ciliated vertex. The chosen edge is called the cilium.

Definition 3.3. If v is a ciliated vertex and e is a half-edge attached to it, define
the attachment index of e at v as the index of edge e relative to the cilium at v: if
α is the attachment index of e at v, then σα0 takes the cilium at v onto e.

The attachment index at a vertex is unambiguously defined for all edges which are
not loops; the two half-edges comprising a loop have distinct attachment indices.
For brevity, in the following we shall slightly abuse the definition and speak of the
attachment index of an edge at a vertex.

Definition 3.4. A Vertex object v = Vertex(e1, . . ., ez) is a list of the labels e1,
. . . , ez of attached edges.

Two Vertex objects are considered equal if one is equal (as a sequence) to the other
rotated by a certain amount.

Example 3.5. Consider for example the fatgraph depicted in Figure 3.1: the edges
are given labels “0”, “1” and “2”, so the two vertices are represented by objects a =
Vertex(0,1,2) and b = Vertex(0,2,1), where the edge labels are listed starting with
the ciliated vertex and continue according to the cyclic order given at the vertex.

Note that the definition of Vertex objects as plain lists would correspond to ciliated
vertices in a fatgraph. For instance, if a different cilium were chosen in Figure 3.1,
we would have represented vertex a equivalently as Vertex(1,2,0) or Vertex(2,0,1).
In order to implement the cyclic behavior of fatgraph vertices, the requirement on
equality must be imposed; equality of Vertex objects can be tested by an algorithm
of quadratic complexity in the vertex valence.

If v is a vertex object, let us denote num_loops(v) the number of loops attached
to v. This is a vertex invariant and will be used in the computation of fatgraph
isomorphisms. Implementations of num_loops need only count the number of re-
peated edge labels in the list defining the Vertex object v.

2Labels can be drawn from any finite set. In actual computer implementations, two obvious
choices are to use the set of machine integers, or the set of Edge objects themselves (i.e., label
each fatgraph edge with the corresponding computer representation).
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1.2. Edges.

Definition 3.6. An Edge object e is an unordered pair of endpoints, so defined:
each endpoint corresponds to a 2-tuple (v, a), where v is a vertex, and a is the
index at which edge e appears within vertex v (the attachment index).

The notation Edge(〈endpoints〉) will be used for an Edge object comprising the
specified endpoints.

Figure 3.2 provides a graphical illustration of the representation of fatgraph edges
as Edge objects.

It is clear how an Edge object corresponds to a fatgraph edge: a fatgraph edge is
made of two half-edges, each of which is uniquely identified by a pair formed by the
end vertex v and the attachment index a. In the case of loops, the two ends will
have the form (v, a), (v, a′) where a and a′ are the two distinct attachment indices
at v.

Example 3.7. For instance, consider the fatgraph depicted in Figure 3.2, and label
the three edges with the natural numbers 0, 1, 2, starting with the bottom edge.
Then the two vertices are represented by a = Vertex(1,0,0) and b = Vertex(2,1,2).
Hence, the bottom edge e0 is represented as Edge( (a,1), (a,2) ) because its label
0 appears at positions 1 and 2 in the Vertex object a.

Given an Edge object e, the other_end(e, v, a) function returns the endpoint of e
opposite to (v, a).

1.2.1. Computation of the edge list. The edge list G.edges can be computed
from the list of vertices as follows.

The total number m of edges is computed from the sum of vertex valences, and
used to create a temporary array P of m lists (each one initially empty). We then
incrementally turn P into a list of edge endpoints (in the form (v, a) where v is a
vertex and a the attachment index) by just walking the list of vertices: P [k] is the
list [ (vk, 0), . . ., (vk, zk) ] where vk (of valence zk) is the k-th Vertex in G.vertices.
The list G.edges is just P recast into Edge objects. In pseudo-code:

1 m ← (1/2) ·
∑

v∈G.vertices valence(v)

2 P ← array of m empty lists
3 for v in G.vertices:
4 for (a, e) in enumerate(v):
5 append (v, a) to P [e]

6 wrap endpoints into "Edge" objects
7 G.edges ← [ Edge(p) for p in P ]

1.3. Boundary Cycles.

Definition 3.8. A BoundaryCycle object is a set of corners (see Figure 3.3).

A corner object C is a triple (vertex, incoming, outgoing), consisting of a vertex v
and two indices i = C.incoming, j = C.outgoing of consecutive edges (in the cyclic
order at v). In order to have a unique representation of any corner, we impose the
condition that either j = i+ 1, or i and j are, respectively, the ending and starting
indices of v (regarded as a list).
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Vertex(0,1,2) Vertex(0,2,1)1

0

2

a b

Figure 3.1. Representation of vertices as (cyclic) lists of edge labels; vertices
are identified by lowercase Latin letters; edge labels are depicted as roman
numerals on a yellow square background, sitting over the edge they label.
The representation of a vertex as a list is implicitly ciliated: here we use the
convention that the edge closest to the tail of the arrow is the ciliated one.

a

b

e  = Edge( (a,0), (b,1) )1

e  = Edge( (a,1), (a,2) )0

e  = Edge( (b,0), (b,2) )2

Figure 3.2. Representation of fatgraph edges. Each edge is identified with a
pair of endpoints, where an endpoint is a vertex together with an attachment
index. In the figure, letters a and b denote the vertices; attachment indices are
computed by assigning index 0 to the edge closest to the orientation arrow’s
tail.

(b,2,0)

(b,
1,2
)

(b,0,1)
(a,1,2)

(a,
0,1
)

(a,2,0) 1

0

2

a b
(a,1,2)

(a,
0,1
)

(a
,2
,0
)

a

Figure 3.3. Representation of fatgraph boundary cycles. Left: How the
boundary cycles are represented with corners: each boundary component is
identified with the set of triplets it encloses. Therefore the boundary cycles
for the graph are represented by the sets {(a, 0, 1), (b, 2, 0)}, {(a, 1, 2), (b, 1, 2)},
and {(a, 2, 0), (b, 0, 1)}. Right: Zoom around vertex a in the left picture, to
show the three corners identified with triples (a, i, j). The indices in the triple
are attachment indices, i.e., displacement relative from the ciliated edge (the
one closest to the arrow tail); they bear no relation to the labels on the edges
(numbers on the light yellow background in the left picture).
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Example 3.9. Corner objects are meant to represent the entity formed by a vertex
and two consecutive half-edges; attachment indices are used to distinguish between
the two ends of a looping edge. So, for instance, the corner formed by the vertex b
and edges 0 and 1 in Figure 3.3 is given by the triplet (b,2,0), as edge 1 is attached
at position 2 in the Vertex object b, and edge 0 is attached at position 0; the
normalization condition that C.outgoing be the successor of C.incoming in the
cyclic ordering at the vertex b dictates the order of the two edges in the corner.

The notation iaj is used in Appendix C to indicate corners; a boundary cycle is
denoted by (i0aj00 → i1aj11 → · · · → ikajkk ).

It is easy to convince oneself that a BoundaryCycle object corresponds to a bound-
ary cycle as defined in Section 1. Indeed, if (L, σ0, σ1, σ2) is a fatgraph, then the
boundary cycles are defined as the orbits of σ2 on the set L of half-edges; a (end-
point vertex, attachment index) pair uniquely identifies an half-edge and can thus
be substituted for it. For computational efficiency reasons, we add an additional
successor index to form the corner triple (v, i, j) so that the action of σ2 can be
computed from corner data alone, without any reference to the ambient fatgraph.3

Since distinct orbits are disjoint, two BoundaryCycle objects are either identi-
cal (they comprise the same corners) or have no intersection. In particular,
this representation based on corners distinguishes boundary cycles made of the
same edges: for instance, the boundary cycles of the fatgraph depicted in Fig-
ure 3.4 are represented by the disjoint set of corners {(v, 2, 3), (v, 4, 5), (v, 0, 1)}
and {(v, 1, 2), (v, 3, 4), (v, 5, 0)}.

1.3.1. Computation of boundary cycles. The procedure for computing the set
of boundary cycles of a given Fatgraph object G is listed in Algorithm 1. The
algorithm closely follows a geometrical procedure: starting with any corner, follow
its “outgoing” edge to its other endpoint, and repeat until we come back to the
starting corner. The list of corners so gathered is a boundary cycle. At each
iteration, the used corners are cleared out of the corners list by replacing them
with the special value used, so that they will not be picked up again in subsequent
iterations.

Lemma 3.10. For any Fatgraph object G representing a fatgraph G, the function
compute_boundary_cycles in Algorithm 1 has the following properties: 1) termi-
nates in finite time, and 2) returns a list of BoundaryCycle objects that represent
the boundary cycles of G.

Proof. The algorithm works on a temporary array corners: as it walks along
a boundary cycle (lines 24–30), corner triples are moved from the working array
to the triples list and replaced with the constant used; when we’re back to the
starting corner, a BoundaryCycle object b is constructed from the triples list and
appended to the result.

The corners variable is a list, the n-th item of which is (again) a list holding the cor-
ners around the n-th vertex (i.e., G.vertices[n]), in the order they are encountered
when winding around the vertex. By construction, corners[v][i] has the the form
(v, i, j) where j is the index following i in the cyclic order, i.e., (v, i, j) represents
the corner formed by the “incoming” i-th edge and the “outgoing” j-th edge.

3This is important in order to share the same corner objects across multiple BoundaryCycle
instances, which saves computer memory.
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Algorithm 1 Output the set of boundary cycles of a Fatgraph object G. Input
to the algorithm is a Fatgraph object G; the output is a list of BoundaryCycle
objects. The special constant used marks locations in the temporary array corners
whose contents has already been assigned to a boundary cycle.

1 def compute_boundary_cycles(G):
2 build working array of corners
3 corners ← [ [ (v, i, ((i+ 1) % |v|)) for i in 0, . . . , |v| − 1 ]
4 for v in G.vertices ]
5 result ← empty list
6 l0 ← 0
7 i0 ← 0
8 while True:
9 locate the first unused corner

10 for l in l0, . . ., size(corners)−1:
11 v ← G.vertices[l]
12 i ← first_index_not_used(corners[v], i0)
13 if i is not None:
14 exit “for” loop
15 if l = size(corners)−1 and i is None:
16 all corners used, mission accomplished
17 return result
18 else:
19 l0 ← l

20 i0 ← i

21 walk the boundary cycle and record corners
22 start ← (v, i)

23 triples ← empty list
24 while (v, i) 6= start or size(triples) = 0:
25 triples.append(corners[v][i])
26 j ← corners[v][i][2]
27 e ← v[j]
28 mark location as ‘‘used’’
29 corners[v][i] ← used
30 (v, i) ← other_end(e, v, j)
31 b ← BoundaryCycle(triples)
32 result.append(b)
33

34 def first_index_not_used(L):
35 for index, item in enumerate(L):
36 if item is not used:
37 return index
38 return None
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The starting corner for each walk along a boundary cycle is determined by scanning
the corners list (lines 10–14): loop over all indexes v, i in the corners list, and quit
looping as soon as corners[v][i] is not used (line 13). If all locations in the corners
list are used, then the all corners have been assigned to a boundary cycle and we
can return the result list to the caller. �

Example 3.11. Consider the fatgraph in Figure 3.3: it has two vertices a =
Vertex(0,1,2) and b = Vertex(0,2,1) with three incident edges each, so initially we
have corners[a] = [ (a,0,1), (a,1,2), (a,2,0) ] and corners[b] = [ (b,0,1), (b,1,2),
(b,2,0) ]. Start with the first available corner (a,0,1) and follow the edge attached
at position 1 to its other end (b,2); the corresponding corner corners[b][2] is (b,2,0).
Hence we continue the walk with edge 0 (attached at position 0 to vertex b), and
through its other end (a,0) we come back to the starting point. So, one boundary
cycle is formed by corners { (a,0,1), (b,2,0) }; the corners list now has the values
corners[a] = [ used, (a,1,2), (a,2,0) ] and corners[b] = [ (b,0,1), (a,1,2), used ].

1.4. Orientation. According to Definition 2.21, orientation is given by a total
order of the edges (which directly translates into an orientation of the associated
orbifold cell).

Definition 3.12. The orientation G.orient is a list that associates each edge with
its position according to the order given by the orientation. Two such lists are
equivalent if they differ by an even permutation.

If e1 and e2 are edges in a Fatgraph object G, then e1 precedes e2 if and only if
G.orient[e1] < G.orient[e2]; this links the fatgraph orientation from Definition 2.21
with the one above.

If a Fatgraph object is derived from another Fatgraph instance (e.g., when an edge
is contracted), the resulting graph must derive its orientation from the “parent”
graph, if we want the edge contraction to correspond to taking cell boundary in the
orbicomplex Mcomb

g,n .

When no orientation is given, the trivial one is (arbitrarily) chosen: edges are
ordered in the way they are listed in the G.edges list, i.e., G.orient[e] is the position
at which e appears in G.edges.

According to Definition 2.22, a fatgraph is orientable iff it has no orientation-
reversing automorphism. The author knows of no practical way to ascertain if
a fatgraph is orientable other than enumerating all automorphisms and checking if
any one of them reverses orientation:

1 def is_oriented(G):
2 for a in automorphisms(G):
3 if is_orientation_reversing(a):
4 return False
5 no orientation−reversing automorphism found, G is orientable
6 return True

1.5. A category of Fatgraph objects.
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1.5.1. Isomorphisms of Fatgraph objects. In this section, we shall only give the
definition of Fatgraph isomorphisms and prove the basic properties; the algorithmic
generation and treatment of Fatgraph isomorphisms is postponed to Section 2.

Definition 3.13. An isomorphism of Fatgraph objects G1 and G2 is a triple
f =(pv, rot, pe) where:

» pv is a permutation of the vertices: vertex v1 of G1 is sent to vertex pv[v]
of G2, and rotated by rot[v] places leftwards;

» pe is a permutation of the edge labels: edge e in G1 is mapped to edge
pe[e] in G2.

The adjacency relation must be preserved by isomorphism triples: if v1 and v2

are endpoint vertices of the edge e, then pv[v1] and pv[v2] must be the endpoint
vertices of edge pe[e] in G2.

Since a vertex in a Fatgraph instance is essentially the list of labels of edges attached
to that vertex, we can dually state this compatibility condition as requiring that,
for any vertex v in G1.vertices and any valid index j of an edge of v, we have:

G2.vertices[pv[v]][j+rot[v]] = pe[G1.vertices[v][j]] (1.1)

The above formula (1.1) makes the parallel between Fatgraph object isomorphisms
and fatgraph maps (in the sense of Definition 2.1) explicit.

Lemma 3.14. Let G1, G2 be fatgraphs, represented respectively by G1 and G2.
Every isomorphism of fatgraphs f : G1 → G2 lifts to a corresponding isomor-
phism f = (pv, rot, pe) on the computer representations. Conversely, every triple
(pv, rot, pe) representing an isomorphism between the Fatgraph instances induces
a (possibly trivial) fatgraph isomorphism between G1 and G2.

Proof. Every isomorphism f : G1 → G2 naturally induces bijective maps
fV : V (G1) → V (G2) and fE : E(G1) → E(G2) on vertices and edges. Given a
cilium on every vertex, f additionally determines, for each vertex v ∈ V (G), the
displacement frot(v) of the image of the cilium of v relative to the cilium of fV (v).
Similarly, fE determines a bijective mapping of edge labels, and is completely de-
termined by it. This is exactly the data collected in the triple (pv, rots, pe), and
the compatibility condition (1.1) holds by construction.

Conversely, assume we are given a triple (pv, rots, pe), representing an isomorphism
of Fatgraph instances. We can construct maps fV , fE as follows: fV sends a vertex
v ∈ G1 to the vertex corresponding to pv[v]; fE maps the cilium of v to the
edge attached to pv[v] at rot[v] positions away from the cilium; the compatibility
condition (1.1) guarantees that fE is globally well-defined. �

Example 3.15. Consider the fatgraph G in Figure 3.1 again; a Fatgraph object
G representing it has vertices a= Vertex(0,1,2), b= Vertex(0,2,1), and edges e0,
e1, e2. Picture G as embedded on the surface of a sphere, with the vertices on the
two poles; an obvious automorphism is the one induced by rotation of the sphere
along its axis: fE maps e0 7→ e1, e1 7→ e2, and e2 7→ e0, hence pe[e0]= e1, etc.
Correspondingly, we have that fV fixes the vertices but rotates the attachment
indices: pv[a]= a and pv[b]= b, but rot[a]= 1 and rot[b]= 1.

Exchanging the north and south poles of the sphere yields a different automor-
phism f ′ of the graph G: this time we have clearly f ′.pv[a]= b and pv[b]= a with
f ′.rot[a]= 0 and rot[b]= 0, but f ′.pe[e1]= e2, pe[e2]= e1, and pe[e0]= e0 by (1.1).
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Lemma 3.16. Let G1, G2 be Fatgraph objects, and η a bijective map between
G1.edges and G2.edges that preserves the incidence relation. Then there is a unique
Fatgraph isomorphism f that extends η (in the sense that f .pe = η).

Proof. Start constructing the Fatgraph morphism f by setting f .pe = η. If
e1, . . . , ezk are the edges incident to vk ∈ G1.vertices, then there is generally one
and only one endpoint v′k common to edges η(ek); define f .pv[vk] = v′k. There is
only one case in which this is not true, namely, if all edges share the same two
endpoints:4 in this case, however, there is still only one choice of f .pv[vk] such that
the cyclic order of edges at the source vertex matches the cyclic order of edges at
the target vertex. Finally, choose f .rot[vk] as the displacement between the cilium
at v′k and the image of the cilium of vk.

It is easy to check that eq. (1.1) holds, so f is a well-defined isomorphism. �

1.5.2. Contraction morphisms. Recall from the definition in Section 1.2 that
contraction produces a “child” fatgraph from a “parent” fatgraph and a chosen
regular (i.e., non-looping) edge.

The Fatgraph.contract method (see Algorithm 2) thus takes as input the “parent”
graph G and the edge e to contract, and produces as output the “child” fatgraph
G′. The contraction algorithm proceeds in the following way:

» The two end vertices of the edge e are fused into one: the list G′.vertices
is built by copying the list G.vertices, removing the two endpoints of e,
and adding the new vertex (resulting from the collapse of e) at the end.

» Deletion of an edge also affects the orientation: the orientation G′.orient
on the “child” fatgraph keeps the edges in the same order as they are in the
parent fatgraph. However, since G′.orient must be a permutation of the
edge indices, we need to renumber the edges and shift the higher-numbered
edges down one place.

» The “child” graph G′ is constructed from the list G′.vertices and the de-
rived orientationG′.orient; the list of “new” edges is constructed according
to the procedure given in Section 1.2.1.

Listing 2 summarizes the algorithm applied.

The vertex resulting from the contraction of e is formed as follows. Assume v1

and v2 are the endpoint vertices of the contracted edge. Fuse the endpoints of the
contracted edge as follows:

(1) Rotate the lists v1, v2 so that the given edge e appears last in v1 and first
in v2.

(2) Form the new vertex v by concatenating the two rotated lists (after ex-
punging e).

Note that this changes the attachment indices of all edges incident to v1 and v2,
therefore the edge list of G′ needs to be recomputed from the vertex list.

Example 3.17. Consider the fatgraph G on the left of Figure 3.5; assume we want
to contract the edge e1. According to the above recipe, the first step is to use
cyclic invariance to rewrite the vertices a and b in the form: a= Vertex(2,0,1) and
b= Vertex(1,0,2); then the two vertices are fused into one: a′= Vertex(2,0,0,2),
which is the only vertex of the contracted fatgraph G′.
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1

0

2

v

Figure 3.4. A fatgraph whose two boundary cycles are comprised of ex-
actly the same edges; however, they give rise to disjoint sets of corners:
{(v, 2, 3), (v, 4, 5), (v, 0, 1)} versus {(v, 1, 2), (v, 3, 4), (v, 5, 0)}.

Algorithm 2 Construct a new Fatgraph object G′ obtained by contracting the
edge e in G. The renumbering function s is the identity on numbers in the range
0, . . . , e − 1, and shifts numbers in range e + 1, . . . , m down by 1. Function
rotated(L, p) returns a copy of list L shifted leftwards by p places.

1 def contract(G, e):
2 let (v1, a1), (v2, a2) be the endpoints of e
3 V ′ ← [ Vertex(x for x in v if x 6= e)
4 for v in G.vertices if v 6= v1 and v 6= v2 ]
5 append the fused vertex at end of list V
6 v′ ← Vertex(rotated(v1, a1) + rotated(v2, a2))
7 V ′.append(v′)
8 ω′ ← [ s(G′.orient[x]) for x in G′.edges if x 6= e ]
9 return Fatgraph(vertices ← V ′; orient ← ω′)

(b,2,0)

(b,
1,2
)

(b,0,1)
(a,1,2)

(a,
0,1
)

(a,2,0) a be1

e0

e2

a'

e0

e2

(a',0,1)

(a',1,2)

(a',2,3)

(a',3,0)

Figure 3.5. Example of a contraction morphism. Contract edge e1 in the
“parent” fatgraph on the left to obtain the “child” fatgraph on the right. An-
notations show how the corners are changed by the contraction procedure.
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The “child” fatgraph G′ inherits an orientation from the “parent” fatgraph, which
might differ from its default orientation. Let α1, . . . , αh, . . . , αm be the edges of the
parent fatgraph G, with e = αh being contracted to create the “child” graph G′. If
αk(1) < αk(2) < . . . < αk(m) is the ordering on E(G) that induces the orientation
on G and h = k(j), then αk(1) < . . . < αk(j−1) < αk(j+1) < . . . < αk(m) descends
to a total order on the edges of G′ and induces the correct orientation.5

Orientation is represented in a Fatgraph object as a list, mapping edge labels to a
position in the total order; using the notation above, the orientation of G is given
by ω := k−1. The orientation on G′ is then given by ω′ defined as follows:

ω′(i) :=

{
ω(i) if ω(i) < h,
ω(i)− 1 if ω(i) > h.

Alternatively we can write:

ω′ = s ◦ ω, s(x) :=

{
x if x < h,
x− 1 if x > h.

This corresponds exactly to the assignment in Algorithm 2.

Example 3.18. Building upon Example 3.17, assume the orientation on G is ω =
(0 < 1 < 2), meaning that the edges ei are ordered in such a way that ei < ej iff
i < j. Let e′0, e′1 be the edges of the “child” fatgraph G′, with e′0 being the image
of e0, and e′1 the image of e2. So the orientation induced on G′ is e′0 < e′1, i.e.,
ω′ = (0 < 1).

The above discussion can be summarized in the following.

Lemma 3.19. If G and G′ represent fatgraphs G and G′, and G = contract(G′, e),
then G is obtained from G′ by contraction of the edge e represented by e.

The contract_boundary_cycle function. The boundary cycles of the “child”
Fatgraph objectG′ can also be computed from those ofG. The implementation (see
Listing 1) is quite straightforward: we copy the given list of corners and alter those
who refer to the two vertices that have been merged in the process of contracting
the specified edge.

Let v1 and v2 be the end vertices of the edge to be contracted, and a1, a2 be the
corresponding attachment indices. Let z1 and z2 be the valences of vertices v1, v2.
We build the list of corners of the boundary cycle in the “child” graph incrementally:
the b′ lists starts empty (line 6), and is then added corners as we run over them in
the loop between lines 7 and 26.

There are four distinct corners that are bounded by the edge e to be contracted;
denote them by C1, C2, C3, C4. These map onto two distinct corners C, C ′ after
contraction. Assume that C1 and C2 map to C: then C1 and C2 lie “on the same
side” of the contracted edge, i.e., any boundary cycle that includes C1 will include
also C2 and viceversa. (See Figure 3.6 for an illustration.) Since they both map
to the same corner C in the “child” graph, we only need to keep one: we choose to
keep (and transform) the corner that has the contracted edge at the second index
(lines 9–10); similarly for C3 and C4 in mapping to C ′ (lines 16–17).

4So there are only two vertices in total, and the corresponding fatgraph belongs in R0,m.
5That is to say, the orientation that corresponds to the orientation induced on the cell ∆(G′)

as a face of ∆(G).
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Algorithm 3 Return a new BoundaryCycle instance, image of b under the topo-
logical map that contracts the edge with index e.

1 def contract_boundary_cycle(G, b, e):
2 let (v1, a1), (v2, a2) be the endpoints of e
3 z1 ← valence(v1)
4 z2 ← valence(v2)
5 ‘‘child’’ boundary cycle b′ starts off as an empty list
6 b′ ← [ ]
7 for corner in b:
8 if corner[0] = v1:
9 if a1 = corner.incoming:

10 continue with next corner
11 else:
12 i1 ← (corner.incoming − a1 − 1) % z1

13 i2 ← (corner.outgoing − a1 − 1) % z1

14 append corner (v1, i1, i2) to b′

15 elif corner[0] = v2:
16 if a2 = corner.incoming:
17 continue with next corner
18 if a2 = corner.outgoing:
19 append (v1, z1 + z2 − 3, 0) to b′

20 else:
21 i1 ← z1 − 1 + ((corner.incoming − a2 − 1) % z2)
22 i2 ← z1 − 1 + ((corner.outgoing − a2 − 1) % z2)
23 append (v1, i1, i2) to b′

24 else:
25 keep corner unchanged
26 append corner to b′

27 return BoundaryCycle(b′)

ev1 v2
C1 C2

C3C4

v
C

C'
Figure 3.6. How corners are modified by edge contraction. Left: Four dis-
tinct corners are formed at the endpoints v1, v2 of edge e, which is to be con-
tracted: C1 = (v1, 0, 2), C2 = (v2, 0, 1), C3 = (v2, 1, 2), and C4 = (v1, 0, 1).
Edges are shown thickened, and (potentially) distinct boundary cycles are
drawn in different colors. Right: After contraction of e, corners C1 and C2

are fused into C = (v, 0, 1), and C3, C4 are fused into C′ = (v, 2, 3).
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Recall that, when contracting an edge with endpoints v1 and v2, the new vertex
is formed by concatenating two series of edges: (1) edges attached to the for-
mer v1, starting with the successor (in the cyclic order) of the contracted edge;
(2) edges attached to the former v2, starting with the successor of the contracted
edge. Therefore:

(1) The image of a corner rooted in vertex v1 will have its attachment indices
rotated leftwards by a1 + 1 positions: the successor of the contracted
edge has now attachment index 0 (lines 12–13). Note that the highest
attachment index belonging into this group is z1 − 2: position z1 − 1
would correspond to the contracted edge.

(2) The image of a corner rooted in vertex v2 has its attachment indices
rotated leftwards by a2 + 1 positions, and shifted up by z1 − 1 (lines 21–
22). As a special case, when the contracted edge is in second position we
need to map the corner to the corner having attachment index 0 in second
position (line 19).

Any other corner is copied with no alterations (line 26).

Worked out examples are provided in Figures 3.5 and 3.6.

1.5.3. The category of Fatgraph objects. We can now formally define a category
of Fatgraph objects and their morphisms.

Definition 3.20. R# is the category whose objects are Fatgraph objects, and
whose morphisms are compositions of Fatgraph isomorphisms (as defined in Sec-
tion 2) and edge contraction maps.

More precisely, ifG andG′ are isomorphic Fatgraph objects, then the morphism set
R#(G,G′) is defined as the set of Fatgraph isomorphisms in the sense of Section 2;
otherwise, let m and m′ be the number of edges of G, G′, and set k := m −
m′: each element in R#(G,G′) has the form a′ ◦ (π1 ◦ · · · ◦ πk) ◦ a where a,
a′ are automorphisms of G, G′ (respectively) and π1, . . . , πk are non-loop edge
contractions.

Theorem 3.21. There exists a functor K from the category R# of Fatgraph objects
to the category R of abstract fatgraphs, which is surjective and full.

Proof. Given a Fatgraph G, its constituent Vertex objects determine cyclic
sequences v0 = (e0

0, e
0
1, . . . , e

0
z0), . . . , vl = (el0, . . . , e

l
zl

), such that

{e0
0, . . . , e

0
z0 , e

1
0, . . . , e

l−1
zl−1

, el0, . . . , e
l
zl
} = {0, . . . ,m− 1}.

Fix a starting element for each of the cyclic sequences v0, . . . , vl. Then set:

L := {(e, i, v) : v = vj ∈ {v0, . . . , vl}, e = eji ∈ v},
and define maps σ0, σ1, σ2 : L→ L as follows:

» σ0 sends (e, i, vj) to (e′, i′, vj) where i′ = (i + 1)%zj and e′ = eji′ is the
successor of e in the cyclic order at vj ;

» σ1 maps (e, i, v) to the unique other triplet (e′, i′, v′) ∈ L such that e = e′;
» finally, σ2 is determined by the constraint σ0 ◦ σ2 = σ1.

Then K(G) = (L, σ0, σ1, σ2) is a fatgraph. Figure 3.7 provides a graphical illustra-
tion of the way a Fatgraph object is constructed out of such combinatorial data.
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Now let G be an abstract fatgraph; assuming G has m edges, assign to each edge a
“label”, i.e., pick a bijective map e : E(G)→ E, where E is an arbitrary finite set.
Each vertex v ∈ V (G) is thus decorated with a cyclic sequence of edge labels; the
set of which determines a Fatgraph object G; it is clear that G = K(G).

This proves that K is surjective; since every fatgraph morphism can be written as
a composition of isomorphisms and edge contractions (Lemma 2.4), it is also full.
It is clear that every edge contraction is the image of an edge contraction in the
corresponding Fatgraph objects, and the assertion for isomorphisms follows as a
corollary of Lemma 3.14. �

Definition 3.22. If G = K(G) then we say that the Fatgraph object G represents
the abstract fatgraph G.

It is clear from the construction above that there is a considerable amount of arbi-
trary choices to be made in constructing a representative Fatgraph; there are thus
many representatives for the same fatgraph, and different choices lead to equivalent
Fatgraph objects.

Lemma 3.23. Two distinct Fatgraph objects representing the same abstract fat-
graph are isomorphic.

Proof. Assume G1 and G2 both represent the same abstract fatgraph G =
K(G1) = K(G2). Let η1, η2 be the maps that send Edge objects in G1, G2 to
the corresponding edges in G; then η = η−1

1 ◦ η2 maps edges of G1 into edges of
G2 and respects the incidence relation, therefore it is the edge part of a Fatgraph
isomorphism by Lemma 3.16. �

Theorem 3.24. The categories R# and R are equivalent.

Proof. The functor K is surjective and full by Theorem 3.21; that it is also
faithful follows from the following argument. Any fatgraph morphism is a com-
position of edge contractions and isomorphisms. Any isomorphism determines, in
particular, a map on the set of edges, and there is one and only one Fatgraph iso-
morphism induced by this map (Lemma 3.16). Any edge contraction is uniquely
determined by the contracted edge: if f : G1 → G2 is the morphism contracting
edge e and Gi = K(Gi), then f , contraction of the Edge object e representing e,
is the sole morphism of G1 into G2 that maps onto f . �

2. Fatgraphs isomorphism and equality testing

The isomorphism problem on computer representations of fatgraphs consists in
finding out when two distinct Fatgraph instances represent isomorphic fatgraphs (in
the sense of Definition 2.1) or possibly the same fatgraph. Indeed, the procedure for
associating a Fatgraph instance to an abstract fatgraph (see Theorem 3.21) involves
labeling all edges, choosing a starting edge (cilium) on each vertex, and enumerating
all vertices in a certain order; for each choice we get a different Fatgraph instance
representing the same (abstract) fatgraph.

The general isomorphism problem for (ordinary) graphs is a well-known difficult
problem. However, the situation is much simpler for fatgraphs, because of the
following property.
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Lemma 3.25 (Rigidity Property). Let G1, G2 be connected fatgraphs, and f : G1 →
G2 an isomorphism. For any vertex v ∈ V (G1), and any edge x incident to v, f is
uniquely determined (up to homotopies fixing the vertices of Gi) by its restriction
to v and x.

In particular, an isomorphism of graphs with ciliated vertices is completely deter-
mined once the image w = f(v) of a vertex v is known, together with the displace-
ment (relative to the cyclic order at w) of the image of the cilium of v relative to
the cilium of the image vertex w.

Proof. Consider f as a CW-complex morphism: f = (f0, f1) where fi is a
continuous map on the set of i-dimensional cells.

Let U be a small open neighborhood of v ∈ V (G1). Given f |U , incrementally
construct a CW-morphism f ′ : G1 → G2 as follows. Each edge x′ incident to v can
be expressed as x′ = σα0 x for some 0 6 α <valence(v). Let w = f(v) and y = f(x),
and define:

f ′1(x) := y,

f ′0(v) := w,

f ′1(x′) := σα0 y = σα0 f
′
1(x) if x′ = σα0 x,

f ′0(v′α) := w′α,

where:

» v′α is the endpoint of x′ = σα0 x “opposite” to v,
» w′α is the endpoint of y′ = σα0 y “opposite” to w.

Then f ′ extends f on a closed set U ′ ) U , which contains the subgraph formed by
all edges attached to v and v′, and their endpoints. In addition:

» f ′1(x′) = f(x′) up to a homotopy fixing the endpoints since f commutes
with σ0,

» f ′0(vα) = f(vα) since f preserves adjacency.

By repeating the same construction about the vertices v′α and w′α, one can extend
f ′ to a CW-morphism that agrees with f on an closed set U ′′ such that U ′ is strictly
contained in the interior of U ′′.

Recursively, by connectedness, we can thus extend f ′ to agree with f (up to homo-
topy) over all of G1. �

2.1. Enumeration of Fatgraph isomorphisms. The stage is now set for
presenting the algorithm to enumerate the isomorphisms between any two given
Fatgraph objects. Pseudo-code is listed in Algorithm 4; as this procedure is quite
complex, a number of auxiliary functions have been used, whose purpose is ex-
plained in Section 2.1.1. Function isomorphisms, given two Fatgraph objects G1

and G2, returns a list of triples (pv, rot, pe), each of which determines an isomor-
phism. If there is no isomorphism connecting the two graphs, then the empty list
[ ] is returned.

By the rigidity Lemma 3.25, any fatgraph isomorphism is uniquely determined by
the mapping of a small neighborhood of any vertex. The overall strategy of the
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Figure 3.7. Construction of a fatgraph out of a set of Vertex instances: half-
edges tagged with the same (numeric) label are joined together to form an
edge.

Algorithm 4 Enumerate isomorphisms between two Fatgraph objects G1 and G2:
output of the algorithm is a list of triples (pv, rot, pe). If there is no isomorphism
connecting the two input fatgraphs, the empty list is returned.

1 def isomorphisms(G1, G2):
2 immediately rule out easy cases of no isomorphisms
3 if graphs invariants differ:
4 return [ ]
5 result ← [ ]
6 vs1 ← valence_spectrum(G1)
7 vs2 ← valence_spectrum(G2)
8 (valence, vertices) ← starting_vertices(G2)
9 v1 ← vs1[valence][0]

10 for v2 in compatible_vertices(v1, vertices):
11 for rot in 0, . . . ,valence:
12 Initialize pv, rots, pe as empty maps
13 pv[v1] ← v2

14 rots[v1] ← rot
15 extend_map(pe, v1, rotated(v2, rot))
16 if extension failed:
17 continue with next rot
18 breadth−first search to extend the mapping over corresponding vertices
19 nexts ← neighbors(pv, pe, G1, v1, G2, v2)
20 while size(pv) < G1.num_vertices:
21 neighborhood ← [ ]
22 for (v′1, v′2, r) in nexts:
23 (pv, rots, pe) ← extend_iso(pv, rots, pe, G1, v′1, r, G2, v′2)
24 if cannot extend:
25 exit “while” loop and continue with next rot
26 append neighbors(pv, pe, G1, v′1, G2, v′2) to neighborhood
27 nexts ← neighborhood
28 isomorphism found, record it
29 result.append((pv, rots, pe))
30 return result
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algorithm is thus to pick a pair of “compatible” vertices and try to extend the map
as in the proof of Lemma 3.25.

We wish to stress the difference with isomorphism of ordinary graphs: since an
isomorphism f is uniquely determined by any pair of corresponding vertices, the
initial choice of candidates v, f(v) either yields an isomorphism or it does not: there
is no backtracking involved.

Since the isomorphism computation is implemented as an exhaustive search, it
is worth doing a few simple checks to rule out cases of non-isomorphic graphs
(lines 3–4). One has to weigh the time taken to compute a graph invariant versus
the potential speedup obtained by not running the full scan of the search space;
experiments run using the Python code show that the following simple invariants
already provide some good speedup:

» the number of vertices, edges, boundary cycles;
» the total number of loops;
» the set of valences;
» the number of vertices of every given valence.

Since an isomorphism is uniquely determined by its restriction to any vertex, one
can restrict to considering just pairs of the form (v1,v2) where v1 is a chosen vertex
in G1. Then the algorithm tries all possible ways (rotations) of mapping v1 into a
compatible vertex v2 in G2. The body of the inner loop (line 11 onwards) mimics
the construction in the proof of Lemma 3.25.

The starting vertex v1 should be selected so to minimize the number of mapping
attempts performed; this is currently done by minimizing the product of valence
and number of vertices of that valence on G2 (line 8), and then picking a vertex of
the chosen valence in G1 as v1 (line 9).6

First, given the target vertex v2 and a rotation rot, a new triple (pv,rots,pe) is
created; pv is set to represent the initial mapping of v1 onto v2, rotated leftwards
by rot positions, and pe maps edges of v1 into corresponding edges of the rotated
v2. If this mapping is not possible (e.g., v1 has a loop and v2 does not, or not in a
corresponding position), then the attempt is aborted and execution continues from
line 11 with the next candidate rot.

The mapping defined by (pv,rots,pe) is then extended to neighbors of the vertices
already inserted. This entails a breadth-first search7 over pairs of corresponding
vertices, starting from v1 and v2. Note that, in this extension step, not only the
source and target vertices, but also the rotation to be applied is uniquely deter-
mined: chosen a vertex v′1 connected to v1 by an edge e, there is a unique rotation
r on v′2 such that pv[e] has the same attachment index to v′2 that e has to v1. If,
at any stage, the extension of the current triple (pv, rots, pe) fails, the triplet is
discarded and execution continues from line 11 with the next value of rot.

When the loop started at line 10 is over, execution reaches the end of the
isomorphisms function, and returns the (possibly empty) list of isomorphisms to
the caller.

6The checks already performed ensure that G1 and G2 have the same “valence spectrum”,
so G1 has at least one vertex of the chosen valence.

7The variables nexts and neighborhood play the role of the FIFO in the usual formulation
of breadth-first search: vertices are added to neighborhood during a loop, and the resulting list is
then orderly browsed (as nexts) in the next iteration.
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Algorithm 5 Enumerate the candidate extensions of the given pv and pe in the
neighborhood of input vertices v1 and v2.

1 def neighbors(pv, pe, G1, v1, G2, v2):
2 result ← [ ]
3 for each non-loop edge e attached to v1:
4 let (v′1, a1) be the endpoint of e distinct from v1

5 if v′1 already in pv domain:
6 continue with next e
7 let (v′2, a2) be the endpoint of e′=pe[e] distinct from v2

8 if v′2 already in pv image:
9 continue with next e

10 result.append((v′1,v′2, a1 − a2))
11 return result

Theorem 3.26. Given Fatgraph objects G1, G2, function isomorphisms returns
all Fatgraph isomorphisms from G1 to G2.

Proof. Given an isomorphism f : G1 → G2, restrict f to the starting ver-
tex v1: then f will be output when Algorithm 4 examines the pair v1, f(v1); since
Algorithm 4 performs an exhaustive search, f will not be missed.

Conversely, since equation (1.1) holds by construction for all the mappings returned
by isomorphisms, then each returned triple f =(pv, rots, pe) is an isomorphism. �

2.1.1. Auxiliary functions. Here is a brief description of the auxiliary functions
used in the listing of Algorithm 4 and 5. Apart from the neighbors function, they
are all straightforward to implement, so only a short specification of the behavior
is given, with no accompanying pseudo-code.

The neighbors function. A preliminary definition is necessary.

Definition 3.27. Define a candidate extension as a triplet (v′1, v′2, r), where:

» v′1 is a vertex in G1, connected to v1 by an edge e;
» v′2 is a vertex in G2, connected to v2 by edge e′ = pe[e];
» r is the rotation to be applied to v′2 so that edge e and e′ have the same

attachment index, i.e., they are incident at corresponding positions in v′1
and v′2.

Function neighbors lists candidate extensions that extend map pv in the neighbor-
hood of given input vertices v1 (in the domain fatgraph G1) and v2 (in the image
fatgraph G2). It outputs a list of triplets (v′1,v

′
2, r), each representing a candidate

extension.

A sketch of this routine is given in Algorithm 5. Two points are worth of notice:

(1) By the time neighbors is called (at lines 19 and 26 in Algorithm 4), the
map pe has already been extended over all edges incident to v1, so we can
safely set e′ =pe[e] in neighbors.

(2) Algorithm 4 only uses neighbors with the purpose of extending pv and pe,
so neighbors ignores vertices that are already in the domain or image of
pv.
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The valence_spectrum function. The auxiliary function valence_spectrum,
given a Fatgraph instance G, returns a mapping that associates to each valence z
the list Vz of vertices of G with valence z.

The starting_vertices function. For each pair (z, Vz) in the valence spectrum,
define its intensity as the product z · |Vz| (valence times the number of vertices with
that valence). The function starting_vertices takes as input a Fatgraph object G
and returns the pair (z, Vz) from the valence spectrum that minimizes intensity. In
case of ties, the pair with the largest z is chosen.

The compatible and compatible_vertices functions. Function compatible takes
a pair of vertices v1 and v2 as input, and returns boolean True iff v1 and v2 have
the same invariants. (This is used as a short-cut test to abandon a candidate
mapping before trying a full adjacency list extension, which is computationally
more expensive.) The sample code uses valence and number of loops as invariants.

The function compatible_vertices takes a vertex v and a list of vertices L, and
returns the list of vertices in L that are compatible with v (i.e., those which v
could be mapped to).

The extend_map and extend_iso functions. The extend_map function takes
as input a mapping pe and a pair of ciliated vertices v1 and v2, and alters pe to
map edges of v1 to corresponding edges of v2: the cilium to the cilium, and so on:
pe[σα0 (e)] = σα0 (pe[e]). If this extension is not possible, an error is signaled to the
caller.

The extend_iso function is passed a (pv, rots, pe) triplet, a vertex v′1 of G1, a
vertex v′2 of G2 and a rotation r; it alters the given (pv,rots,pe) triple by adding a
mapping of the vertex v′1 into vertex v′2 (and rotating the target vertex by r places
rightwards). If the extension is successful, it returns the extended map (pv, rot, pe);
otherwise, signals an error.

2.2. Operations with Fatgraph Isomorphisms.

Compare pull-back orientation. The compare_orientations function takes an
isomorphism triple (pv, rots, pe) and a pair of Fatgraph objects G1 , G2, and
returns +1 or −1 depending on whether the orientations of the target Fatgraph
pulls back to the orientation of the source Fatgraph via the given isomorphism.

Recall that for a Fatgraph object G, the orientation is represented by a map-
ping G.orient that associates an edge e with its position in the wedge prod-
uct that represents the orientation; therefore, the pull-back orientation accord-
ing to an isomorphism (pv, rots, pe) from G to G′ is simply given by the map
e 7→ G′.orient[pe[e]]. Thus, the comparison is done by constructing the permuta-
tion that maps G.orient[e] to G′.orient[pe[e]] and taking its sign (which has linear
complexity with respect to the number of edges).

The is_orientation_reversing function. Determining whether an automorphism
reverses orientation is crucial for knowing which fatgraphs are orientable. Func-
tion is_orientation_reversing takes a Fatgraph object and an isomorphism triple
(pv, rots, pe) as input, and returns boolean True iff the isomorphism reverses ori-
entation. This amounts to checking whether the given orientation and that of the
pull-back one agree, which can be done with the comparison method discussed
above.
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Algorithm 6 Function MgnGraphs returns all connected fatgraphs having pre-
scribed genus g and number of boundary cycles n. Actual output of the function is
a list R, whose k-th element R[k] is itself a list of graphs in Rg,n with m− k edges.

1 def MgnGraphs(g,n):
2 m ← 4g + 2n− 5 maximum number of edges
3 R ← array of m empty lists
4 R[0] ← MgnTrivalentGraphs(g,n) first item contains all 3−valent graphs
5 for k in 1, \ldots, m− 1:
6 Initialize R[k] as an empty list
7 for G in R[k − 1]:
8 for e in edge_orbits(G):
9 if e is a loop:

10 continue with next e
11 G′ ← contract(G, e)
12 if G′ not already in R[k]:
13 append G′ to R[k]

14 return R

Transforming boundary cycles under an isomorphism. The function trans-
form_boundary_cycle is used when comparing marked fatgraphs: as the marking
is a function on the boundary cycles, we need to know exactly which boundary cycle
of the target graph corresponds to a given boundary cycle in the source graph.

Recall that BoundaryCycle instances are defined as list of corners; function trans-
form_boundary_cycle takes a BoundaryCycle b and returns a new BoundaryCycle
object b′, obtained by transforming each corner according to a graph isomorphism.
Indeed, transform_boundary_cycle is straightforward loop over the corners mak-
ing up b: For each corner (v,i,j), a new one is constructed by transforming the
vertex according to map pv, and displacing indices i and j by the rotation amount
indicated by rot[v] (modulo the number of edges attached to v).

3. Generation of fatgraphs

Let MgnGraphs be the function which, given two integers g, n as input, returns
the collection of Rg,n graphs. Let us further stipulate that the output result will
be represented as a list R: the 0-th item in this list is the list of graphs with the
maximal number m of edges; the k-th item R[k] is the list of graphs having m− k
edges. There are algorithmic advantages in this subdivision, which are explained
below.

Graphs with the maximal number of edges are trivalent graphs; they are computed
by a separate function MgnTrivalentGraphs, described in Section 3.1.

We can then proceed to generate all graphs in Rg,n by contraction of regular edges:
through contracting one edge in trivalent graphs we get the list R[1] of all graphs
with m − 1 edges; contracting one edge of G ∈ R[1], we get G′ ∈ R[2] with m − 2
edges, and so on. Pseudo-code for MgnGraphs is shown in Algorithm 6. The loop
at lines 8–13 is the core of the function: contract edges of the fatgraph G (with
m−k+1 edges) to generate new fatgraphs with m−k edges. However, we need not
contract every edge of a fatgraph: if a ∈ AutG is an automorphism and e ∈ E(G)
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is an edge, then the contracted graphs G′ = G/e and G′′ = G/a(e) are isomorphic.
Hence, we can restrict the computation to only one representative edge per orbit of
the action induced by AutG on the set E(G); the edge_orbits function referenced
at line 8 should return a list of representative edges, one per each orbit of Aut(G)
on E(G).

Lines 12–13 add G′ to R[k] only if it is not already there. This is the most com-
putationally expensive part of the MgnGraphs function: we need to perform a
comparison between G′ and each element in R[k]; testing equality of two fatgraphs
requires computing if there are isomorphisms between the two, which can only be
done by attempting enumeration of such isomorphisms. (Fatgraph isomorphism is
discussed in detail in Section 2.)

If Nk is the number of elements in R[k] and Tiso is the average time needed to
determine if two graphs are isomorphic, then evaluating whether G′ is already
contained in R[k] takes O(Nk ·Tiso) time: thus, the subdivision of the output R into
lists, each one holding graphs with a specific number of edges, reduces the number
of fatgraph comparisons done in the innermost loop of MgnGraphs, resulting in a
substantial shortening of the total running time.

Note that the top-level function MgnGraphs is quite independent of the actual
implementation of the Fatgraph type of objects: all is needed here, is that we have
methods for enumerating edges of a Fatgraph object, contracting an edge, and
testing two graphs for isomorphism.

Lemma 3.28. If MgnTrivalentGraphs(g, n) returns the complete list of trivalent
fatgraphs in Rg,n, then the function MgnGraphs defined above returns the complete
set of fatgraphs Rg,n.

Proof. By the above dissection of the algorithm, all we need to prove is that
any fatgraph in Rg,n can be obtained by a chain of edge contractions from a trivalent
fatgraph. This follows immediately from the fact that any fatgraph vertex v of
valence z > 3 can be expanded (in several ways) into vertices v1, v2 of valences z1,
z2 such that z = (z1 − 1) + (z2 − 1), plus a connecting edge. �

3.1. Generation of Trivalent Fatgraphs. Generation of trivalent graphs
can be tackled by an inductive procedure: given a trivalent graph, a new edge is
added, which joins the midpoints of two existing edges. In order to determine which
graphs should be input to this “edge addition” procedure, one can follow the reverse
route, and ascertain how a trivalent graph is transformed by deletion of an edge.

Throughout this section, l and m stand for the number of vertices and edges of a
graph; it will be clear from the context, which exact graph they are invariants of.

3.1.1. Removal of edges. Let G ∈ Rg,n be a connected trivalent graph. Each
edge x ∈ E(G) falls into one of the following categories:

A) x is a loop: both endpoints of x are attached to a single vertex v, another
edge x′ joins v with a distinct vertex v′;

B) x joins two distinct vertices v, v′ ∈ V (G) and separates two distinct bound-
ary cycles β, β′ ∈ B(G);

C) x joins two distinct vertices v, v′ ∈ V (G) but belongs to only one boundary
cycle β ∈ B(G), within which it occurs twice (once for each orientation).
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Deletion of edge x requires different adjustments in order to get a trivalent graph
again in each of the three cases above; it also yields a different result in each case.

Case A): If x is a loop attached to v, then, after deletion of x, one needs to also
delete the loose edge x′ and the vertex v′ (that is, join the two other edges attached
to v′; see Figure 3.8, bottom row). The resulting fatgraph G′ has:

» two vertices less than G: v and v′ have been deleted;
» three edges less: x, x′ have been deleted and two other edges merged into

one;
» one boundary cycle less: the boundary cycle totally bounded by x has

been removed.

Therefore:

2− 2g′ = χ(G′) = l′ −m′ + n′

= (l − 2)− (m− 3) + (n− 1)

= l −m+ n = χ(G) = 2− 2g,

hence g = g′, and
G′ ∈ Rg,n−1. (A)

Case B): x joins distinct vertices v, v′ and separates distinct boundary cycles (see
Figure 3.8, top row). Delete x and merge the two edges attached to each of the
two vertices v and v′; in the process, the two boundary cycles β, β′ also merge
into one. The resulting fatgraph G′ is connected. Indeed, given any two vertices
u, u′ ∈ V (G′), there is a path (x1, . . . , xk) connecting u with u′ in G. If this
path passes through x, one can replace the occurrence of x with the perimeter —
excluding x— of one of the two boundary cycles β, β′ to get a path joining v and
v′ which avoids x, and thus projects to a path in G′. Again we see that G′ has:

» two vertices less than G: v and v′ have been deleted;
» three edges less: x has been deleted and four other edges merged into two,

pair by pair;
» one boundary cycle less: the boundary cycles β, β′ have been merged into

one.

Therefore g = g′, and
G′ ∈ Rg,n−1. (B)

Case C): x joins distinct vertices v, v′ but belongs into one boundary cycle β ∈ B(G)
only. Delete edge x and the two vertices v, v′, joining the attached edges two by
two as in case B). We distinguish two cases, depending on whether the resulting
fatgraph is connected.

C’) If the resulting fatgraphG′ is connected, then β ∈ B(G) has been split into
two distinct boundary cycles β′, β′′ ∈ B(G′). Indeed, write the boundary
cycle β as an ordered sequence of oriented edges: y0 → y1 → . . . →
yk → y0. Assume the y∗ appear in this sequence in the exact order they
are encountered when walking along β in the sense given by the fatgraph
orientation. The oriented edges yi are pairwise distinct: if yi and yj share
the same supporting edge, then yi and yj have opposite orientations. By
the initial assumption of case C), edge x must appear twice in the list: if x̄
and x denote the two orientations of x, then yi = x̄ and yj = x. Deleting
x from β is (from a homotopy point of view) the same as replacing yi = x̄
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with x̄ → x, and yj = x with x → x̄ when walking a boundary cycle.
Then we see that β splits into two disjoint cycles:

β′ = y0 → y1 → · · · → yi−1 → x̄→ x→ yj+1 → · · · → yk → y0,

β′′ = yi+1 → · · · → yj−1 → x→ x̄→ yi+1.

In this case, G′ has:
» two vertices less than G: v and v′ have been deleted;
» three edges less: x has been deleted and four other edges merged into

two, pair by pair;
» one boundary cycle more: the boundary cycle β has been split in the

pair β′, β′′.
Therefore g′ = g − 1 and n′ = n+ 1, so:

G′ ∈ Rg−1,n+1. (C’)

C”) G′ is a disconnected union of fatgraphs G′1 and G′2; for this statement
to hold unconditionally, we temporarily allow a single circle into the set
of connected fatgraphs (consider it a fatgraph with one closed edge and
no vertices) as the one and only element of R0,2. As will be shown in
Lemma 3.29, this is irrelevant for the MgnTrivalentGraphs algorithm.
Now:

l′1 + l′2 = l − 2, m′1 +m′2 = m− 3, n′1 + n′2 = n+ 1,

hence:

(2− 2g′1) + (2− 2g′2) = (l − 2)− (m− 3) + (n+ 1)

= (l −m+ n) + 2 = 4− 2g

So that g′1 + g′2 = g + 2, n′1 + n′2 = n+ 1, and:8

G′ = G′1 ⊗G′2 ∈ Rg′1,n′1 ⊗ Rg′2,n′2 . (C”)

3.1.2. Inverse construction. If x ∈ E(G) is an edge of a fatgraph G, denote x̄
and x the two opposite orientations of x.

In the following, let R′g,n be the set of fatgraphs with a selected oriented edge:

R′g,n := {(G, x̄) : G ∈ Rg,n, x̄ ∈ L(G)}.

Similarly, let R′′g,n be the set of fatgraphs with two chosen oriented edges:

R′′g,n := {(G, x̄, ȳ) : G ∈ Rg,n, x̄, ȳ ∈ L(G)}.

The following abbreviations are convenient:

R = ∪Rg,n, R′ = ∪R′g,n, R′′ = ∪R′′g,n.

Define the attachment of a new edge to a fatgraph in the following way. Given a
fatgraph G and an oriented edge x̄, we can create a new trivalent vertex v in the
midpoint of x, and attach a new edge to it, in such a way that the two halves of x
appear, in the cyclic order at v, in the same order induced by the orientation of x̄.
Figure 3.9 depicts the process.

We can now define maps that invert the constructions A), B), C’) and C”) defined
in the previous section.

8Here we use ⊗ to indicate juxtaposition of graphs: G1⊗G2 is the (non-connected) fatgraph
having two connected components G1 and G2.
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Figure 3.8. Graphical illustration of fatgraph edge removal. Top row: a
regular edge (crossed) is removed from an R0,4 graph; its endpoints are further
removed; the remaining edges are joined and the resulting graph is a trivalent
fatgraph in R0,3. Bottom row: a loop is removed from a trivalent R0,4 graph;
the stem together with its endpoints has to be removed as well; the remaining
edges are joined, and we end up with a trivalent fatgraph in R0,3.
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Figure 3.9. When adding a new vertex in the middle of an edge x, the cyclic
order depends on the oriented edge: the two orientations x̄ and x get two
inequivalent cyclic orders.
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Figure 3.10. Graphical illustration of maps p, q, rg,n. (1): p(G, x̄) attaches
a “slipknot” to edge x̄. (2): r2,5(G1, x̄, G2, ȳ) joins fatgraphs G1 and G2 with
a new edge. (3) and (4): it is shown how changing the orientation of an edge
can lead to different results in (3) q(G, x̄, ȳ) and (4) p(G, x, ȳ).
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Let pg,n : R′g,n−1 → Rg,n be the map that creates a fatgraph p(G, x̄) from a pair
(G, x̄) by attaching the loose end of a “slip knot”9 to the midpoint of x. The map
p : R′ → R defined by p|R′g,n := pg,n is ostensibly inverse to A).

To invert B) and C’), define a map q : R′′ → R that operates as follows:

» Given (G, x̄, ȳ) with x̄ 6= ȳ, the map q attaches a new edge to the midpoints
of x and y; again the cyclic order on the new midpoint vertices is chosen
such that the two halves of x and y appear in the order induced by the
orientations x̄, ȳ.

» When x̄ = ȳ, let us further stipulate that the construction of q(G, x̄, x̄)
happens in two steps:
(1) a new trivalent vertex is created in the midpoint of x ∈ E(G) and a

new edge ξ is attached to it,
(2) create a new trivalent vertex in the middle of the half-edge which

comes first in the ordering induced by the orientation x̄; attach the
loose end of the new edge ξ to this new vertex.

It is clear that the above steps give an unambiguous definition of q in
all cases where x̄ and ȳ are orientations of the same edge of G, that is,
(G, x̄, x̄), (G, x̄, x), (G, x, x̄), and (G, x, x).

Ostensibly, q inverts the edge removal in cases B) and C’): the former applies when
a graph G ∈ Rg,n is sent to q(G) ∈ Rg,n+1, the latter when G ∈ Rg,n is sent to
q(G) ∈ Rg+1,n−1.

Finally, to invert C”), let us define

rg,n :
⊕

g′1+g′2=g+2

n′1+n′2=n

R′g′1,n′1
× R′g′2,n′2

→ R.

From (G′, x̄′, G′′, x̄′′), construct a new fatgraph by bridging G′ and G′′ with a new
edge, whose endpoints are in the midpoints of x′ and x′′; again, stipulate that the
cyclic order on the new vertices is chosen such that the two halves of x′, x′′ appear
in the order induced by the orientations x̄′, x̄′′.

Summing up, any fatgraph G ∈ Rg,n belongs to the image of one of the above maps
p, q, and r. There is considerable overlap among the different image sets: in fact,
one can prove that r is superfluous.

Lemma 3.29. Any fatgraph obtained by inverting construction C”) lies in the image
of maps p and q.

Proof. Assume, on the contrary, that G lies in the image of r only. Then,
deletion of any edge x from G yields a disconnected graph G′⊗G′′. Both subgraphs
G′ and G′′ enjoy the same property, namely, that deletion of any edge disconnects:
otherwise, if the removal of y ∈ E(G′) does not disconnect G′, then neither does
it disconnect G = rg,n(G′, G′′), contrary to the initial assumption. As long as G′
or G′′ has more than 3 edges, we can delete another edge; by recursively repeating
the process, we end up with a fatgraph G∗ with l∗ 6 3 edges, which is again
disconnected by removal of any edge. Since G∗ is trivalent, 3 ·m∗ = 2 · l∗, therefore
G∗ must have exactly 3 edges and 2 vertices. But all such fatgraphs belong to R0,3

or R1,1, and it is readily checked that there is no way to add an edge such that the
required property holds, that any deletion disconnects. �

9A single 3-valent vertex with one loop attached and a regular edge with one loose end.
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3.1.3. The MgnTrivalentGraphs algorithm. The stage is now set for implement-
ing the recursive generation of trivalent graphs. Pseudo-code is listed in Algo-
rithm 7.

Lemma 3.30. MgnTrivalentGraphs(g, n) generates all trivalent fatgraphs for each
given g, n. Only one representative per isomorphism class is returned.

Proof. The function call MgnTrivalentGraphs(g, n) recursively calls itself to
enumerate trivalent graphs of Rg,n−1 and Rg−1,n+1. In particular, MgnTrivalent-
Graphs must:

» provide the full set of fatgraphs R0,3 and R1,1 as induction base.
» return the empty set when called with an invalid (g, n) pair;

The general case is then quite straightforward: (1) apply maps p, q to every fatgraph
in Rg,n−1, and q to every fatgraph in Rg−1,n+1; (2) discard all graphs that do not
belong to Rg,n; and (3) take only one graph per isomorphism class into the result
set.

To invert construction A), map p is applied to all fatgraphs G ∈ Rg,n−1; if a ∈
AutG, then p(a(G), a(x)) = p(G, x), therefore we can limit ourselves to one pair
(G, x) per orbit of the automorphism group, saving a few computational cycles.
Similarly, since q is a function of (G, x̄, ȳ), which is by construction invariant under
AutG, we can again restrict to considering only one (G, x̄, ȳ) per AutG-orbit; this
is computed by the edge_pair_orbits(G) function. �

Note that there is no way to tell from G if fatgraphs p(G, x) and q(G, x, y) belong
to Rg,n: one needs to check g and n before adding the resulting fatgraph to the
result set R.

The selection of only one representative fatgraph per isomorphism class can be done
by removing duplicates from the collection of generated graphs in the end, or by
running the isomorphism test before adding each graph to the working list R. The
computational complexity is quadratic in the number of generated graphs in both
cases, but the latter option requires less memory. In any case, this isomorphism
test is the most computationally intensive part of MgnTrivalentGraphs.

For an expanded discussion of the size of the result set R, and a comparison
with other generation algorithms, see Appendix B. It would be interesting to re-
implement the trivalent generation algorithm using the technique outlined in [47],
and compare it with the current (rather naive) algorithm.

3.1.4. Implementing maps p(G, x) and q(G, x, y). Implementation of both func-
tions is straightforward and pseudo-code is therefore omitted;10 the only question is
how to represent the “oriented edges” that appear in the signature of maps p and q.

In both p and q, the oriented edge x̄ or x is used to determine how to attach a new
edge to the midpoint of the target (unoriented) edge x. We can thus represent an
oriented edge as a pair (e, s) formed by a Fatgraph edge e and a “side” s: valid
values for s are +1 and −1, interpreted as follows. The parameter s controls which
of the two inequivalent cyclic orders the new trivalent vertex will be given. Let
a, b, c be the edges attached to the new vertex in the middle of e, where a,b are
the two halves of e. If s is +1, then the new trivalent vertex will have the cyclic
order a < b < c < a; if s1 is −1, then the edges a and b are swapped and the new
trivalent vertex gets the cyclic order b < a < c < b instead.

10The interested reader is referred to the publicly-available code at http://fatghol.googlecode.
com for details.

http://fatghol.googlecode.com
http://fatghol.googlecode.com
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Algorithm 7 Return a list of all connected trivalent fatgraphs with prescribed
genus g and number of boundary cycles n. A fatgraph if “admissible” iff it has the
prescribed genus g and number of boundary cycles n.

1 def MgnTrivalentGraphs(g, n):
2 avoid infinite recursion in later statements
3 if n= 0 or (g, n) < (0, 3):
4 return empty list
5

6 Induction base: M0,3 and M1,1

7 if (g, n) = (0, 3):
8 return list of fatgraphs in R0,3

9 elif (g, n) = (1, 1):
10 return list of fatgraphs in R1,1

11

12 general case
13 else:
14 R ← empty list
15

16 case A): hang a circle to all edges of graphs in Mg,n−1

17 for G in MgnTrivalentGraphs(g, n− 1):
18 for x in edge_orbits(G):
19 add p(G, x̄) to R if admissible
20 add p(G, x) to R if admissible
21

22 case B): bridge all edges of a single graph in Mg,n−1

23 for G in MgnTrivalentGraphs(g, n− 1):
24 for (x, y) in edge_pair_orbits(G):
25 add q(G, x, y) to R if admissible
26 add q(G, x, ȳ)) to R if admissible
27 add q(G, x̄, y) to R if admissible
28 add q(G, x̄, ȳ) to R if admissible
29

30 case C’): bridge all edges of a single graph in Mg−1,n+1

31 for G in MgnTrivalentGraphs(g − 1, n+ 1):
32 for (x, y) in edge_pair_orbits(G):
33 add q(G, x, y) to R if admissible
34 add q(G, x, ȳ) to R if admissible
35 add q(G, x̄, y) to R if admissible
36 add q(G, x̄, ȳ) to R if admissible
37

38 remove isomorphs from R
39 return R
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4. The homology complex of marked fatgraphs

Betti numbers of a complex (W∗, D∗) can be reckoned (via a little linear algebra)
from the matrix form D(k) of the boundary operators Dk. Indeed, given that bk :=
dimHk(W,D) and Hk(W,D) := Zk(W,D)/Bk(W,D) = KerDk/Dk−1(Wk−1), by
the rank-nullity theorem we have dim KerDk = dimWk − rankD(k) hence bk =
dim KerDk − dimDk−1(Wk−1) = dimWk − rankD(k) − rankD(k−1).

In order to compute the matrix D(k), we need to compute the coordinate vector of
Dkx

(k)
j for all vectors x(k)

j in a basis ofWk. If (W∗, D∗) is the fatgraph complex, then
the basis vectors x(k)

j are marked fatgraphs with k edges, and the differential Dk is
defined as an alternating sum of edge contractions. Therefore, in order to compute
the coordinate vector of Dkx

(k)
j , one has to find the unique fatgraph x(k−1)

h which
is isomorphic to a given contraction of x(k)

j and score a ±1 coefficient depending on
whether orientations agree or not.

Although this approach works perfectly, it is inefficient in practice. Indeed, lookups
into the basis set {x(k−1)

h=1,...,N} of Wk−1 require on average O(N2) isomorphism
checks. Still, we can take a shortcut: if two topological fatgraphs G and G′ are
not isomorphic, so are any two marked fatgraphs (G, ν) and (G′, ν′). Indeed, rear-
range the rows and columns of the boundary operator matrix D(k) so that marked
fatgraphs (G, ν) over the same topological fatgraph G correspond to a block of
consecutive indices. Then there is a rectangular portion of D(k) that is uniquely
determined by a pair of topological fatgraphs G and G′. The main function for
computing the boundary operator matrix can thus loop over pairs of topological
fatgraphs, and delegate computing the each rectangular block to specialized code.
There are n!/|AutG| marked fatgraphs per given topological fatgraph G, so this
approach can cut running time down by O((n!)2).

The generation of inequivalent marked fatgraphs (over the same topological fat-
graph G) can be reduced to the (computationally easier) combinatorial problem of
finding cosets of a subgroup of the symmetric group Sn. In addition, the list of
isomorphisms between G and G′ can be cached and re-used for comparing all pairs
of marked fatgraphs (G, ν), (G′, ν′). This strategy is implemented by two linked
algorithms:

(1) MarkedFatgraphPool: Generate all inequivalent markings of a given topo-
logical fatgraph G.

(2) compute_block: Given topological fatgraphs G and G′, compute the rect-
angular block of a boundary operator matrix whose entries correspond to
coordinates of D(G, ν) w.r.t. (G′, ν′).

4.1. Generation of inequivalent marked fatgraphs. For any marked fat-
graph (G, ν), denote [G, ν] its isomorphism class; recall that B(−) is the functor
associating a fatgraph with the set of its boundary cycles. Let N(G) be the sets of
all markings over G and Ñ(G) the set of isomorphism classes thereof:

N(G) := { (G, ν) | ν : B(G)→ {1, . . . , n} },

Ñ(G) := { [G, ν] | ν : B(G)→ {1, . . . , n} }.
Let (G, ν̄) be a chosen marked fatgraph. Define a group homomorphism:

Φ : Aut(G) 3 a 7−→ ν̄ ◦B(a) ◦ ν̄−1 ∈ Sn. (4.1)

The set P = Φ(AutG) is a subgroup of Sn.
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Lemma 3.31. The marked fatgraphs (G, ν̄) and (G, σν̄) are isomorphic if and only
if σ ∈ P .

Proof. Let σ ∈ P , then σ−1 ∈ P and there exists a ∈ AutG such that:

σ−1 = ν̄ ◦B(a) ◦ ν̄−1,

whence:
(σ ◦ ν̄) ◦B(a) ◦ ν̄−1 = id,

therefore a induces a marked fatgraph isomorphism between (G, ν̄) and (G, σ ◦ ν̄).

Conversely, let ν̂ = σν̄ and assume (G, ν̄) and (G, ν̂) are isomorphic as marked
fatgraphs: then there exists a ∈ AutG such that ν̂ ◦ B(a) ◦ ν̄−1 is the identity.
Given any ν̄ ◦B(a′) ◦ ν̄−1 ∈ P we have:

P 3 ν̄ ◦B(a′) ◦ ν̄−1 = ν̄ ◦ (ν̂−1 ◦ ν̂) ◦B(a) ◦B(a)−1 ◦B(a′) ◦ ν̄−1

= (ν̄ ◦ ν̂−1) ◦ ν̂ ◦B(a) ◦ (ν̄−1 ◦ ν̄) ◦B(a−1) ◦B(a′) ◦ ν̄−1

= σ−1 ◦ (ν̂ ◦B(a) ◦ ν̄−1) ◦ ν̄ ◦B(a−1 ◦ a′) ◦ ν̄−1

= σ−1 ◦
(
ν̄ ◦B(a−1 ◦ a′) ◦ ν̄−1

)
∈ σ−1P,

therefore P = σ−1P , so σ ∈ P . �

Define a transitive action of Sn over N(G) by σ · (G, ν) := (G, σν); this descends
to a transitive action of Sn on Ñ(G). By the previous Lemma, P is the stabilizer
of [G, ν̄] in Ñ(G).

Lemma 3.32. The action of Sn on Ñ(G) induces a bijective correspondence be-
tween isomorphism classes of marked fatgraphs and cosets of P in Sn.

Proof. Given isomorphic marked fatgraphs (G, ν) and (G, ν′), let σ, σ′ ∈ Sn

be such that ν = σ◦ν̄ and ν′ = σ′◦ν̄. By definition of marked fatgraph isomorphism,
there is a ∈ AutG such that the following diagram commutes:

B(G) B(G)

{1, . . . , n}

B(a) //

σ◦ν̄=ν %% ν′=σ′◦ν̄yy

Hence commutativity of another diagram follows:

B(G) B(G)

{1, . . . , n} {1, . . . , n}

B(a) //

ν̄

��
ν̄

��
σ−1σ′oo

Thus (G, ν̄) is isomorphic to (G, σ−1σ′ ◦ ν̄); therefore σ−1σ′ ∈ P , hence σ′ ∈ σP ,
i.e., σ and σ′ belong into the same coset of P .

Conversely, let τ, τ ′ ∈ σP ; explicitly:
τ = σ ◦ ν̄ ◦B(a) ◦ ν̄−1, τ ′ = σ ◦ ν̄ ◦B(a′) ◦ ν̄−1.

Set ν = τ ◦ ν̄, ν′ = τ ′ ◦ ν̄; substituting back the definition of τ , we have:

ν = σ ◦ ν̄ ◦B(a) ◦ ν̄−1 ◦ ν̄ = σ ◦ ν̄ ◦B(a),
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whence ν̄ = σ−1 ◦ ν ◦B(a)−1, and:

ν′ = σ ◦ ν̄ ◦B(a′) = σ ◦
(
σ−1 ◦ ν ◦B(a)−1

)
◦B(a′) = ν ◦B(a−1 ◦ a′),

therefore a−1◦a′ is an isomorphism between the marked fatgraphs (G, ν) and (G, ν′).
�

The following is an easy corollary of the transitivity of the action of Sn on Ñ(G).

Lemma 3.33. Given any marking ν on the fatgraph G, there exist σ ∈ Sn and
a ∈ AutG such that: ν = σ ◦ ν̄ ◦ a.

Proof. By Lemma 3.32, there exists σ ∈ Sn such that [G, ν] = [G, σ ◦ ν̄], i.e.,
(G, ν) is isomorphic to (G, σ ◦ ν̄). If a ∈ AutG is this fatgraph isomorphism, then
the following diagram commutes:

B(G) B(G)

{1, . . . , n}

B(a) //

ν
%% σ◦ν̄yy

Therefore ν = σ ◦ ν̄ ◦B(a). �

The MarkedFatgraphPool algorithm. Given a fatgraph G and a Fatgraph ob-
ject G representing it, let us stipulate that ν̄ be the marking on G that enu-
merates boundary cycles of G in the order they are returned by the function
compute_boundary_cycles(G). By Lemma 3.33, every (G, ν(j)) can then be ex-
pressed (up to isomorphism) as (G, σ(j)◦ ν̄) with σ(j) ∈ Sn. The set {σ(j)} enumer-
ates all distinct isomorphism classes of marked fatgraphs over G iff {σ(j)P} runs
over all distinct cosets of P in Sn (by Lemma 3.32).

The MarkedFatgraphPool function computes the set Ñ(G) of isomorphism classes
[G, ν].

Theorem 3.34. Given a Fatgraph G as input, MarkedFatgraphPool(G), as com-
puted by Algorithm 8, outputs a tuple (graph, P , A, markings, orientable), whose
components are defined as follows:

» The graph item is the underlying Fatgraph object G.
» The P slot holds a list of all elements in the group P = Φ(AutG).
» A stores a corresponding set of pre-image representatives (each element

is an automorphism of G): permutation P [i] is induced by automorphism
A[i], i.e., if π = P [i] and a = A[i] then π = Φ(a).

» The markings item holds the list {σ(j)} of distinct cosets of P (represent-
ing inequivalent markings).

» orientable is a boolean value indicating whether any (G, ν) in the pool is
orientable.11

We need a separate boolean variable to record the orientability of the family of
marked fatgraphs N(G) = {(G, ν)}, because the automorphism group of a marked
fatgraph Aut(G, ν) can be a proper subgroup of AutG: hence, (G, ν) can be ori-
entable even if G is not.

11It is an immediate corollary of Lemma 3.33 that if one marked fatgraph (G, ν∗) has an
orientation-reversing automorphisms, then every marked fatgraph (G, ν) over the same topological
fatgraph G has an orientation-reversing automorphism.
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Algorithm 8 Compute the distinct markings of a given fatgraph. Input to the
algorithm is a Fatgraph object G; final result is a tuple (G, P , A, markings, ori-
entable) which represents the set Ñ(G) of isomorphism classes of marked fatgraphs.

1 def phi(a, G):
2 π ← array of n elements
3 for src_index, src_cycle in enumerate(G.boundary_cycles):
4 dst_cycle ← a.transform_boundary_cycle(src_cycle)
5 if dst_cycle not in G.boundary_cycles:
6 abort and signal error to caller
7 else:
8 dst_index ← index of dst_cycle in G.boundary_cycles
9 π[src_index] ← dst_index

10 return π
11

12 def MarkedFatgraphPool(G):
13 P ← empty list
14 A ← empty list
15 assume (G, ν) is orientable until we have counter−evidence
16 orientable ← True
17 step (1): loop over AutG

18 for a in G.automorphisms():
19 try:
20 π ← phi(a, G)
21 except phi failed:
22 continue with next a
23 if permutation π is identity:
24 found a new automorphism:
25 − does it reverse orientation?
26 if a.is_orientation_reversing():
27 orientable ← False
28 − does it define a new marking?
29 if π not in P:
30 append π to P
31 append a to A
32 step (2): enumerate cosets of P
33 markings ← [ ]
34 for σ in Sn:
35 for π in P :
36 if π ◦ σ in markings:
37 continue with next σ
38 add σ to markings
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Proof. Generation of all inequivalent markings over G is a direct application
of Lemma 3.32, performed in two steps:

(1) In the first step: for each automorphism a ∈ AutG, compute the permu-
tation Φ(a) it induces on the set of boundary components and form the
subgroup P . The subgroup P and the associated set of automorphisms
A ⊆ AutG are stored in variables P and A.

(2) In the second step: compute cosets of P by exhaustive enumeration. They
are recast into the list {σ(j)}, which is stored into the markings variable.

As an important by-product of the computation, the automorphism group Aut(G, ν̄)
is computed, and used to determine if the marked fatgraphs in the pool are ori-
entable.

The auxiliary function phi computes the permutation Φ(a) = ν̄ ◦ B(a) ◦ ν̄−1. A
permutation π is created and returned; it is represented by an array with n slots,
which is initially empty and is then stepwise constructed by iterating over boundary
cycles. Indeed, the boundary cycle src_cycle is transformed according to B(a)
and its position in the list of boundary cycles of G is then looked up. Note that
this lookup may fail: there are in fact cases, in which the Fatgraph.isomorphisms
algorithm finds a valid mapping, that however does not preserve the markings on
boundary cycles; such failures need to be dealt with by rejecting a.

Step (1) of the computation is performed in lines 18–27:

» Computation of the permutation π (induced by a on the boundary cycles
of G) may fail; if this happens, the algorithm ignores a and proceeds with
another automorphism.

» If a preserves the boundary cycles, then it induces an automorphism of
the marked graph and we need to test whether it preserves or reverses
orientation.

» There are |Ker Φ| distinct automorphisms inducing the same permutation
on boundary cycles: if π is already in P , discard it and continue with the
next a.

By Lemma 3.32, there are as many distinct markings as there are cosets of P in
Sn. Step (2) of the algorithm proceeds by simply enumerating all permutations
in Sn, with marking initially set to the empty list; for each permutation σ a test
is made as to whether σP intersects the list markings (lines 35–37); if it does not,
then the marking induced by σ is added to the list.

�

A constructive version of Lemma 3.33 can now be implemented: the following
function index_and_aut, given a Fatgraph object G and a marking, returns the
permutation (by index number j in G.markings) and fatgraph automorphism a =
G.A[i] such that the topological fatgraph G decorated with marking is isomorphic
(through a) to the same graph decorated with G.markings[j].

1 def index_and_aut(G, marking):
2 for (i, π) in enumerate(G.P ):
3 τ ← σ ◦ π
4 if τ in G.markings:
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5 j ← index of τ in G.markings
6 return (j,G.A[i])

7 else:
8 continue with next π

The algorithm enumerates all permutations π ∈ P , and compares σ ◦ π to every
element of G.markings: by Lemma 3.32, we know that one must match.

4.2. Computing boundary operator matrix blocks. The differential
D(G, ν) is computed by summing contractions of regular edges in G (with alternat-
ing signs); likewise, the matrix block corresponding to coordinates of the families of
marked fatgraphs {(G, ν)} and {(G′, ν′)} can be decomposed into a sum of blocks,
each block representing the coordinates of {(G/e, ν)}e∈E(G) projected on the linear
span of {(G′, ν′)}.

More precisely, given any two fatgraphs G1 (with m edges) and G2 (with m − 1
edges), let X1, X2 ⊆ Rg,n be the linear span of N(G1) and N(G2) respectively, and
denote by prX2

the linear projection on subspace X2. Recall that, for any fatgraph
G, we have D(G) =

∑
±d(e)(G), where the sum is taken over all regular edges e of

G, and d(e) is the contraction of edge e.

Let G be the fatgraph obtained by contracting the chosen edge e in G1. If G2 and
G are isomorphic, then the three graphs are related by the following diagram of
fatgraph morphisms, where f1 is the contraction map and f2 is a fatgraph isomor-
phism:

G1

G G2

f1

��

f2

∼ //

(4.2)

The above diagram (4.2) functorially induces a diagram on the set of boundary
cycles:

B(G1) {1, . . . , n}

B(G) B(G2)

B(f1) =

��

B(f2)

∼ //

ν1 //

ν

99
ν2

OO
(4.3)

Diagram (4.3) commutes iff f1, f2 can be extended to morphisms of marked fat-
graphs f̂1 : (G1, ν1)→ (G, ν) and f̂2 : (G, ν)→ (G2, ν2).

Now choose Fatgraph objects G1, G, G2 representing G1, G, G2.

Let ν̄1, ν̄, ν̄2 be the markings on G1, G, G2 that enumerate boundary cycles in the
order they are returned by the function compute_boundary_cycle applied to G1,
G, G2 respectively. Define φ1, φ2 ∈ Sn by:

φ1 := ν̄ ◦B(f1) ◦ ν̄−1
1 , φ2 := ν̄2 ◦B(f2) ◦ ν̄−1. (4.4)

Lemma 3.35. Given any marking ν1 on G1, choose σ1 ∈ Sn such that ν1 = σ1 ◦ ν̄1

and define:
ν2 := σ1 ◦ φ−1

1 ◦ φ
−1
2 ◦ ν̄2, (4.5)

Then ν2 is the unique marking on G2 such that diagram (4.3) commutes.
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Proof. Let σ2 := σ1 ◦ φ−1
1 ◦ φ−1

2 . We need to prove that the external square
in diagram (4.3) is commutative; indeed, we have:

σ2 = σ1 ◦ (ν̄1 ◦B(f1)−1 ◦ ν̄−1) ◦ (ν̄ ◦B(f2)−1 ◦ ν̄2)

= σ1ν̄1 ◦B(f2 ◦ f1)−1 ◦ ν̄−1
2 ,

so that:

ν2 ◦B(f2) ◦B(f1) = σ2 ◦ ν2 ◦B(f2 ◦ f1)

= σ1ν̄1 ◦B(f2 ◦ f1)−1 ◦ ν̄−1
2 ◦ ν2 ◦B(f2 ◦ f1)

= σ1 ◦ ν̄1 = ν1.

The uniqueness assertion is of immediate proof, since maps B(f1) and B(f2) are
invertible. �

Let p1, p2 be the MarkedFatgraphPool output corresponding to G1, G2, and
let {ν(j)

1 }j=1,...,N1
, {ν(k)

2 }k=1,...,N2
be the enumeration of fatgraph markings cor-

responding to items in the lists p1.markings and p2.markings respectively.

Lemma 3.36. For any regular edge e of G1, and any choice of j ∈ {1, . . . , N1},
there exist unique k ∈ {1, . . . , N2} and s ∈ {−1, 0,+1} such that:

prX2

(
d(e)[G1, ν

(j)
1 ]
)

= s · [G2, ν
(k)
2 ]. (4.6)

Proof. If G2 and G = G1/e are not isomorphic, then, for any marking ν1,
d(G1, ν1) has no component in the subspace X2 = {(G2, ν2)}, so the assertion is
true with s = 0.

Otherwise, by Lemma 3.35, given ν1 = ν
(j)
1 there is a unique ν2 such that s can be

non-null; by Lemma 3.33, there exist ν(k)
2 := σ

(k)
2 ◦ ν̄2 and a ∈ AutG such that:

(1) the marked fatgraph (G2, ν
(k)
2 ) is a representative of the isomorphism class

[G2, ν2];
(2) a gives the isomorphism between marked fatgraphs (G2, ν2) and (G2, ν

(k)
2 );

(3) ν(k)
2 is the marking on G2 represented by k-th item in list p2.markings.

The coefficient s must then be ±1 since both (G2, ν
(k)
2 ) and d(e)(G1, ν

(j)
1 ) are (iso-

morphic to) elements in the basis of X2. �

Theorem 3.37. Given MarkedFatgraphPool objects p1, p2, and a chosen edge e
of G1, the function compute_block in Algorithm 9 returns the set S of all triplets
(j, k, s) with s = ±1 such that:

prX2

(
d(e)[G1, ν

(j)
1 ]
)

= s · [G2, ν
(k)
2 ]. (4.7)

Proof. The algorithm closely follows the computation done before
Lemma 3.35 and in the proof of Lemma 3.36.

If G2 and G = G1/e are not isomorphic, then d(e)[G1, ν1] has no component in
the subspace X2 generated by {[G2, ν2]}, whatever the marking ν1. The assertion
is thus satisfied by S = ∅, i.e., an empty list of triplets (j, k, s) (lines 5–6 in
Algorithm 9).

If G2 is isomorphic to G = G1/e through f2, then Lemma 3.35 provides the explicit
formula ν(k)

2 = σ
(j)
1 ◦ φ

−1
1 ◦ φ

−1
2 ◦ ν̄2, where σ

(j)
1 = ν

(j)
1 ◦ ν̄−1

1 .
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Algorithm 9 Return the set S of triplets (j, k, s) such that eq. (4.7) holds for
(G1, ν

(j)
1 ) and (G2, ν

(k)
2 ) obtained by contracting e in all marked graphs in p1 and

projecting onto graphs in the p2 family.

1 def compute_block(p1, e, p2):
2 G1 ← p1.graph
3 G2 ← p2.graph
4 G ← contract(G1, e)
5 if G and G2 are not isomorphic:
6 return empty list
7 else:
8 result ← empty list
9 f2 ← first isomorphism computed by Fatgraph.isomorphisms(G, G2)

10 φ−1
1 ← compute_phi1_inv(G, G1, e)

11 φ−1
2 ← compute_phi2_inv(G, G2, f2)

12 for (j, σ) in enumerate(p1.markings):
13 (k,a) ← index_and_aut(p2, σ ◦ φ−1

1 ◦ φ
−1
2 )

14 p ← G1.orient[e]
15 s ← (−1)p ∗ compare_orientations(f2) ∗ compare_orientations(a)
16 append (j, k, s) to result
17 return result
18

19 def compute_phi1_inv(G, G1, e):
20 τ ← empty array of n elements
21 for i, b in enumerate(G1.boundary_cycles):
22 b′ ← contract_boundary_cycle(G1, b, e)
23 i′ ← index of b′ in G.boundary_cycles
24 τ [i′] ← i

25 return τ
26

27 def compute_phi2_inv(G, G2, f2):
28 τ ′ ← empty array of n elements
29 for i, b in enumerate(G2.boundary_cycles):
30 b′ ← transform_boundary_cycle(f2, b)
31 i′ ← index of b′ in G.boundary_cycles
32 τ ′[i′] ← i

33 return τ ′
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By assumption, ν̄1 numbers the boundary cycles on G1 in the order they are re-
turned by running function compute_boundary_cycles on G1, so σ

(j)
1 is the per-

mutation corresponding to the j-th element in p1.markings.

The map φ1 is easy to compute: again, given that both ν̄ and ν̄1 number the bound-
ary cycles ofG andG1 in the order they are returned by compute_boundary_cycles,
the auxiliary function compute_phi1_inv incrementally builds the result by loop-
ing over G1.boundary_cycles, contracting the target edge, and mapping the corre-
sponding indices.

Computation of the map φ2 depends on the isomorphism f2; however, two different
choices for f2 will not change the outcome of the algorithm: in the final loop at
lines 12–16, only the sign of f2 is used, and the sign is constant across all isomor-
phisms having the same source and target fatgraphs (iff they are both orientable).
Computation of φ−1

2 (in the auxiliary function compute_phi2_inv) is done in the
same way as the computation of φ−1

1 , except we transform b to b′ by means of
transform_boundary_cycle(f2, −), i.e., B(f2).

Finally, for every marking σ
(j)
1 in p1.markings (representing ν

(j)
1 ), we know by

Lemma 3.36 that there is a unique index k and a ∈ AutG2 such that: σ(j)
1 ◦φ

−1
1 ◦φ

−1
2

is the k-th item σ
(k)
2 in p2.markings (representing ν(k)

2 ), and such that the following
chain:

G1 G G2 G2
f1

//
f2

' //
a

' //

extends to a marked fatgraph morphism:

(G1, ν
(j)
1 ) (G, ν) (G2, ν2) (G2, ν

(k)
2 ).

f̂1

//
f̂2

' //
â

' //

The sign s is then obtained by comparing the orientation ω2 of (G2, ν
(k)
2 ) with the

push-forward orientation (a ◦ f2 ◦ f1)∗ω1, where ω1 is the orientation on (G1, ν
(j)
1 ),

and multiplying by the alternating sign from the homology differential. There are
four components that make up s:

» the sign given by the contraction f1: this is +1 by definition since the
“child” fatgraph G inherits the orientation from the “parent” fatgraph G1;

» the sign given by the isomorphism f2: this is obtained by comparing
(f2)∗ω with ω2, which is implemented for a generic isomorphism by the
function compare_orientations;

» the sign of the automorphism a of G2 which transforms the push-forward
marking into the chosen representative in the same orbit: this again can
be computed by comparing (a)∗ω2 with ω2 and only depends on the action
of a on edges of G2;

» the alternating sign from the homology differential, which only depends
on the position p of edge e within the order ω1.

The product of the three non-trivial components is returned as the sign s. �

4.3. Matrix form of the differential D. In Algorithm 10, the function
compute_boundary_operators computes the matrix form D(m) of the differential
D restricted to the linear space generated by fatgraphs with m edges.

Input to the function are the number m and the list of graphs, divided by number
of fatgraph edges: graphs[m] is the list of fatgraphs with m edges.
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Algorithm 10 Compute the boundary operator matrix, block by block.

1 def compute_boundary_operator(m, graphs):
2 N1 ← number of graphs with m edges
3 N2 ← number of graphs with m− 1 edges
4 D(m) ← N1 ×N2 matrix, initially null
5 j0 ← 0
6 for G1 in graphs[m]:
7 p1 ← MarkedFatgraphPool(G1)
8 k0 ← 0
9 for G2 in graphs[m−1]:

10 p2 ← MarkedFatgraphPool(G2)
11 for e in G1.edges:
12 if e is a loop:
13 continue with next e
14 for (j, k, s) in compute_block(p1, e, p2):
15 add s to entry D(m)[k + k0, j + j0]

16 increment k0 by the number of inequivalent markings in p2

17 increment j0 by the number of inequivalent markings in p1

18 return D(m)

The output matrix D(m) is constructed incrementally: it starts with all entries set
to 0, and is then populated blockwise. Indeed, for every pair ofMarkedFatgraphPool
objects p1 (from a graph with m edges) and p2 (with m− 1 edges), and every non-
loop edge e, the rectangular matrix block whose upper-left corner is at indices j0, k0

is summed the block resulting from compute_block(p1, e, p2).

5. Experimental results

An implementation12 of the algorithms presented in this paper has been actually
used to compute the Betti numbers of all Mg,n with 2g + n 6 6. The results
are summarized in Table 3.1. All the Betti numbers were already known in the
literature; Section 2 in the “Introduction” chapter provides references. In all these
cases, published results agree with the values in Table 3.1.

An internal verification step in the code computes the classical and virtual Euler
characteristics of the fatgraph complex; the values computed by the Python pro-
gram match those published in [28, 8, 7], where they are derived by theoretical
means.

Along with the computation, the entire family of fatgraphs Rg,n (with 2g + n 6 6)
has been computed, and for each fatgraph the isomorphism group is known. The
full list of fatgraphs and their isomorphisms is too long to print here, but the data
is publicly available at http://fatghol.googlecode.com/download/list. Tables 3.2
and 3.3 provide a numerical summary of the results.

12Written in the Python programming language (see [12, 65]). Code is publicly available at
http://code.google.com/p/fatghol.

http://fatghol.googlecode.com/download/list
http://code.google.com/p/fatghol
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b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

M0,3 1
M0,4 1 2
M0,5 1 5 6
M0,6 1 9 26 24
M1,1 1
M1,2 1
M1,3 1 1
M1,4 1 4 3
M2,1 1 1
M2,2 1 2 1
Table 3.1. Betti numbers of Mg,n for 2g+n 6 6. For readability, null values
have been omitted and the corresponding entry left blank.

No. of edges: 12 11 10 9 8 7 6 5 4 3 2 Total

g = 0, n = 3 2 1 3
g = 0, n = 4 6 6 7 6 25
g = 0, n = 5 26 26 72 103 65 21 313
g = 0, n = 6 191 191 866 1813 1959 1227 418 76 6741
g = 1, n = 1 1 1 2
g = 1, n = 2 5 5 8 8 26
g = 1, n = 3 46 46 162 256 198 72 780
g = 1, n = 4 669 669 3442 7850 9568 6752 2696 562 32208
g = 2, n = 1 9 9 29 52 45 21 165
g = 2, n = 2 368 368 2005 4931 6543 5094 2279 546 22134

Table 3.2. Number of distinct abstract fatgraphs with the given genus g and
number of boundary cycles n. For readability, null values have been omitted
and the corresponding entry left blank.

5.1. Performance. Table 3.4 gives a summary of the running times obtained
on the idhydra.uzh.ch cluster at the University of Zurich; Figure 3.11 provides a
graphical representation of the same data. The computational demands of the code
are such that the homology of Mg,n can actually be computed on desktop-class
hardware for 2g + n < 6.

The scatter plot in Figure 3.11 shows that the time spent in computation of the
D(m) matrix ranks done in Stage III can become the dominant contribution to the
total running time as the number of fatgraphs increases. This highlights a limitation
of the program: the large number of fatgraphs in the Kontsevich complex might
turn out to be a challenge for today’s sparse linear algebra software.

However, the set of fatgraphs for a given (g, n) pair has to be generated prior to
computing the matricesD(m): a very large set of graphs can exhaust the computer’s
memory long before computation time becomes a blocking issue.

6. Application to other fatgraph complexes

In [23], V. Godin defined a “bordered fatgraph complex”, which computes the inte-
gral homology of the moduli spaces of Riemann surfaces with boundaries. Godin’s
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No. of
edges M0,3 M0,4 M0,5 M0,6 M1,1 M1,2 M1,3 M1,4 M2,1 M2,2

12 122880 14944 713
11 616320 81504 3983
10 1274688 185760 9681
9 2240 1359840 236 227564 9 12927
8 8160 862290 918 160128 28 10077
7 11280 294480 1440 63756 43 4519
6 64 7260 49800 9 1112 13000 39 1057
5 144 2112 3024 15 408 1008 20 97
4 99 210 10 54 3
3 4 20 1 3
2 3 1

Total 7 327 31262 4583322 2 37 4168 747664 142 43054
Table 3.3. Number of distinct orientable marked fatgraphs in the Penner-
Kontsevich complex of each of the indicated Mg,n spaces. For readability, null
values have been omitted and the corresponding entry left blank.

Time (s): Stage I Stage II Stage III Total

M0,3 < 4ms < 4ms 0.03 0.12
M0,4 0.05 0.09 < 4ms 0.29
M0,5 4.78 21.91 1.85 29.43
M0,6 2542.56 16011.70 179157.39 233007.06
M1,1 < 4ms < 4ms 0.010 0.128
M1,2 0.05 0.08 < 4ms 0.27
M1,3 40.56 136.88 < 4ms 174.75
M1,4 82486.51 336633.75 4872.69 424615.85
M2,1 2.39 4.76 < 4ms 7.39
M2,2 43402.18 181091.11 5.57 224694.61

Table 3.4. Total CPU time (seconds) used by the Betti numbers computa-
tion for the indicated Mg,n spaces. The C++ library LinBox [43, 14] was
used for the rank computations in Stage III. Running time was sampled on the
idhydra.uzh.ch computer of the University of Zurich, equipped with 480GB
of RAM and 48 Intel Xeon CPU cores model X7542 running at 2.67GHz;
Python version 2.6.0 installed on the SUSE Linux Enterprise Server 11 64-bits
operating system was used to execute the program. The system timer has a
resolution of 4ms. The “Total” column does not just report the sum of the
three stages, but also accounts for the time the program spent in I/O and
memory management.
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Figure 3.11. Scatter plot of the data in Table 3.4. Both axes use log-scale.
Note how Stage III (computation of the boundary operators rank) becomes
the dominant task as the number of marked fatgraphs increases.

fatgraphs extend the abstract fatgraph by requiring that a leaf (i.e., a univalent
vertex), and only one, is present in each boundary cycle. The bordered fatgraph
complex is then constructed exactly as the fatgraph complex presented here, with
the proviso that an edge ending in a univalent vertex is never contracted: hence,
the differential D is given by the sum of contraction of non-loop non-leaf edges.

The algorithms of this paper can easily be adapted to compute the homology of
Godin’s bordered fatgraph complex: after generating the family of marked fat-
graphs of a given (g, n) pair, we decorate each marked fatgraph with leaves; com-
pute the matrix form of the differential D and then reduce it to Smith normal form
to reckon the integral homology modules of the moduli space of bordered surfaces.

There is no need for checking duplicates in the set of bordered fatgraphs so gen-
erated,13 therefore the decoration step can be implemented efficiently. A shortcut
can also be taken in computing the matrix D: since leaf edges are never contracted,
the differential on bordered fatgraphs can be deduced easily from the differential
on marked fatgraphs. However, the number of bordered fatgraphs is much larger
than the number of marked fatgraphs;14 this means that the final linear algebra

13If two “bordered fatgraphs” were isomorphic, they would remain such if we remove the
leaves and the edge supporting them, which would give us isomorphic marked fatgraphs

14A leaf may be regarded as a choice of an edge or a vertex along a boundary cycle; if there
are pi vertices (counted with multiplicities) and qi edges along the i-th boundary cycle, then the
number of ways we could possibly add leaves to a marked fatgraph G is r1r2 · · · rn, with ri = pi+qi
so that:

r1 + r2 + · · ·+ rn =
∑
i

pi +
∑
i

qi =
∑

v∈V (G)

zv + 2m = 4m,

where m is the total number of edges and zv is the valence of vertex v.
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computations require even more computational resources than they do for Mg,n

computations.

7. Future development directions

There are a number of directions in which the current algorithms and code could
be improved.

As already noted, the generation algorithms produce quite a number of duplicates,
that have to be removed using a quadratic-complexity procedure. A variant of
the “isomorph-free generation” algorithm of McKay [47] could replace the naive
MgnTrivalentGraphs code; the question of which algorithm would be faster has
probably to be sorted out empirically, the critical performance factor being the
number of times the “isomorphism” test is invoked.

Another approach would be to turn the generation procedure “upside down”: instead
of starting with trivalent graphs and contracting edges, one could start with (g, n)-
fatgraphs with one vertex and expand those until the whole set of fatgraphs is
generated. This would have the advantage that the chromatic fatgraph polynomial
of Bollobás and Riordan [9] is available as an invariant to speed up the isomorphism
procedure. On the other hand, the number of fatgraphs generated this way seems
consistently larger than the number of fatgraphs generated with the procedure
adopted here (see Section 2 in Appendix B).

So far, the major obstacle to applying the algorithms of this paper to a wider range
of moduli spaces has been the large number of fatgraphs involved: it affects both the
total run time and memory consumption of the code. Most algorithms described
here lend themselves naturally to parallelization, so it would be possible to rewrite
the program to exploit several processors and distributed memory, which could solve
both issues. However, the number of generated fatgraphs grows super-exponentially
in the asymptotic limit [4, 5], so any implementation of the algorithms outlined
here will soon hit the limit of any present-day computing device. The question
remains open, whether more significant result could be obtained before hitting the
limits of today’s computers.



CHAPTER 4

A novel parallel algorithm for exact Gaussian
Elimination of general sparse matrices

The algorithm presented in Chapter 3 reduces computation of the Betti number of
moduli spaces Mg,n to reckoning the rank (over Q) of some large sparse matrix with
integer entries. An effective method for computing this rank is given by Gaussian
Elimination.

Here we describe a new algorithm for Gaussian Elimination (nicknamed “Rheinfall”);
it was specifically developed for computing the rank of fatgraph homology matrices,
but, being a variant of the most general Gaussian Elimination procedure, has wider
applicability.

The “Rheinfall” algorithm is, in essence, a rearrangement of the operations in the
usual Gaussian Elimination with Partial Pivoting (GEPP) procedure; in contrast
to GEPP, the “Rheinfall” algorithm presented here naturally allows a parallel for-
mulation both in the message-passing/distributed-memory paradigm and in the
threaded/shared-memory one. However, the “Rheinfall” algorithm degrades grace-
fully to sequential execution when run on a single compute node, and experiments
have shown that it can yield better performance than GEPP on certain classes of
matrices.

A sample implementation of the code is available at http://rheinfall.googlecode.
com; examples and performance data given in the text have been measured us-
ing that program for computing the rank of integer matrices (using machine-size
integers as the entry type).

Any Gaussian Elimination algorithm can be applied equally well column- or row-
wise; here we take the row-oriented approach.

This chapter features a large number of figures and tables, that are placed at the
end of the chapter rather than being interspersed through the text.

1. Description of the algorithm

Let A = (aij |i = 0, . . . , n − 1; j = 0, . . . ,m − 1) be a n ×m matrix with entries in
a “sufficiently good”1 ring k.

Definition 4.1. Given a matrix A, define zi := min{j|aij 6= 0}, i.e., zi is the
column index of the first non-zero entry in the i-th row of A; for a null row, define
zi := m. We say that the i-th row of A starts at column zi.

The matrix A is in block echelon form iff zi > zi−1 for all i = 1, . . . , n− 1.

The matrix A is in row echelon form iff, for all i, either zi > zi−1 or zi−1 = zi = m.

1By “sufficiently good” we mean that it has enough properties to meaningfully define a Gauss-
ian Elimination procedure: for instance, a field or a Bézout domain.

58

http://rheinfall.googlecode.com
http://rheinfall.googlecode.com
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Every matrix can be put into block echelon form by a permutation of the rows.
We shall show that the code in Algorithm 11 can be used to transform any given
matrix into row echelon form.

The “Rheinfall” algorithm is most easily described using a Bulk Synchronous Parallel
(BSP) model [64]; we show in Sections 1.1 and 1.2 how it can be adapted to popular
implementation paradigms.

For reducing the n ×m matrix A to row echelon form, create m Processing Units
P [0], . . . , P [m−1], one for each matrix column: Processing Unit P [c] handles rows
starting at column c.

Each Processing Unit P [c] maintains some internal state variables:

uc Holds either a matrix row, or (initially) the special value nil. By
construction, uc[c] 6= 0 and uc[j] = 0 for all j < c.

Qc A collection of rows on which to perform elimination. An incoming
Row message (with payload a matrix row r) triggers the addition of r
to Qc; likewise, when r is modified by elimination, it is removed from
Qc. No assumption is done on the data structure underlying Qc, other
than it allows addition and removal of rows; in particular, Qc need not
preserve the order in which rows have been added to it.

output[c] The contribution of this PU to the global result: its actual form varies
with the specifics of what is being computed by the algorithm. For
reducing a matrix to row echelon form, output is a matrix row; other
variants are discussed in Sections 2.1 and 2.2.

During each BSP superstep, Processing Unit P [c] orderly performs the tasks be-
low, independently from other Processing Units (PUs). PUs communicate only by
exchanging Row messages: the content of a Row message is a matrix row r.

(1) Chooses a pivot row uc among the rows available in block Qc.
(2) Performs elimination on all the rows in Qc using the chosen pivot row.
(3) Sends the modified rows to other PUs: if row r′ (gotten by elimination of

row r with the pivot row uc) starts at column c′, send it to PU P [c′].

When all processing is done, the output of each P [c] is made available to a “master”
process, which assembles the global result.

Example 4.2. A worked out example might clarify how the Rheinfall algorithm
performs Gaussian Elimination.

(a) Assume we are given the following input matrix (for readability, zeroes
have been omitted and the corresponding entry left blank):

A =


1 2 1

1
2 2

3 1 1
1 1 5


(b) The matrix is permuted so that All rows having the first nonzero in the

same column are arranged into a block of consecutive indices:

R0A =


1 2 1
2 2

3 1 1
1 1 5

1

 (S0)
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Thus, rows the first two rows, r1 and r2, are sent to PU P [1], then r3 and
r4 are sent to P [2], and row r5 is assigned to P [4].

(c) PUs choose a pivot in each block (indicated with italic font in the follow-
ing):

R0A =


1 2 1
2 2

3 1 1
1 1 5

1

 (S1)

Note that pivoting is restricted to the block: there is no global search or
broadcast of pivot values.

(d) Elimination is now performed by each PU independently and concurrently:

E0R0A =


1 2 1
0 2 −4 −2

0 1 −3 −14
1 1 5

1

 (S2)

Note that P [4] does not perform any work since it has only one row in its
block.

(e) Eliminated rows are sent to the PU assigned to their new starting column
and the process is performed again from step (S1).

R1E0R0A =


1 2 1

1 1 5
1 −3 −14
2 −4 −2

1

 (S1’)

In the above example, note that the two eliminated rows have been sent
to PU P [3], that was previously empty.

Note that there is actually no separate reordering step (S0) for initially putting
the input matrix A into block echelon form: rows are distributed to Processing
Units as they are read. In a sense, rearrangement of the matrix is an artifact of the
textual representation: “Rheinfall” chops up the matrix and operates independently
on each block.

More generally, this is an invariant of the “Rheinfall” algorithm: by exchanging
rows among PUs after every round of elimination is done, the working matrix is
kept in block echelon form at all times. Indeed, let A(0) = A. After completion of
the k-th superstep we can define the working matrix A(k) by concatenating: the
pivot row u1 of P [1] (if not nil); the rows in Q1, in some order (e.g., in the relative
order they appeared originally in A); the pivot row (if any) of P [2]; then rows of
Q2 (if not empty); etc.

Lemma 4.3. A(k) is in block echelon form, and is gotten from A by elementary
row operations.

Proof. A(k) is in block echelon form by construction. Each row of A(k) is
either a pivot row or a linear combination of (at most) two rows of A(k−1); a
recursion argument proves the claim. �
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The eliminate function at line 17 in Algorithm 11 returns a sum of suitable multiples
of two rows so that the result row has a null entry in all columns j 6 c. The
actual definition of eliminate depends on the coefficient ring of A: for Gaussian
Elimination over a field, eliminate returns r − (r[c]/u[c])u; elimination over a ring
involves finding α, β such that αr[c] = βu[c] and then returning αr−βu. Note that
u[c] 6= 0 by construction.

Lemma 4.4. After at most m supersteps, each row r of the n×m input matrix A
has been modified to fall in either one of these two cases: (1) it is the pivot row
uc for some Processing Unit P [c], or (2) it has been completely eliminated, i.e.,
successive modifications have zeroed out all its entries.

Proof. If A is the null matrix, then all rows are null and they all fall into
case (2).

Otherwise, assume A has at least one nonzero row and proceed by induction on m.
If m = 1, then one row will be chosen as pivot, and the other ones will be zeroed
out by elimination after the first superstep.

If m > 1, let r1, . . . , rk be the rows of A with a nonzero entry in column 1; let
Ã be the submatrix formed by the rest of rows of A. In the first superstep, one
of them (say, r1) is chosen as pivot row u1, and the other ones are transformed
by the eliminate function into rows r′2, . . . , r′k having a zero in the first column.
By induction, every row of the (n − 1) × (m − 1) matrix Â formed by r′2, . . . , r′k
and Ã is modified into a pivot row or zeroed out in m − 1 steps. But Â(m−1) is
the lower-right submatrix of A(m), hence the claim holds for every row of A in m
steps. �

The following statement is now immediate.

Theorem 4.5. Algorithm 11 reduces any given n×m input matrix A to row echelon
form in (at most) m supersteps.

Proof. By Lemma 4.4, after m steps each row has either been selected as a
pivot row in some PU P [c], or it has been completely zeroed out by elimination.
Therefore each block of A(m) is comprised of just one row, i.e., A(m) is in row
echelon form. �

1.1. Distributed-memory variant. To increase efficiency in a distributed-
memory/Message Passing Interface (MPI) algorithm, we drop both the requirement
that communication happens as a separate substep after all elimination has been
performed, and the barrier synchronization after communication. The distributed
“Rheinfall” Gaussian Elimination algorithm comprises the parallel execution of the
same code by several stateful Processing Units, which continually perform elimina-
tion work and exchange messages.

So, the main problem becomes how to detect when all PUs have finished their work.
As in the BSP model, we assume that every Processing Unit can send messages to
every other PU. We extend the communication protocol by introducing End mes-
sages: End messages carry no payload and just signal a PU to finalize computations
and then stop execution. The Gaussian Elimination procedure is complete when
the End token leaves the last Processing Unit P [m].

In order to guarantee that the End message is the last message that a running PU
can receive, we make two assumptions on the message exchange system:
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(1) that messages sent from one PU to another arrive in the same order they
were sent, and

(2) that it is possible for a PU to wait until all the messages it has sent have
been delivered.

Both conditions are satisfied by MPI-compliant message passing systems.

A “master” process starts the P [1], . . . , P [m] Processing Units; feeds the initial
data to them; and collects the results at the end of processing, but is not otherwise
involved in the computation, and remains inactive while the PUs are running.

Theorem 4.6. Algorithm 11 reduces any given input matrix A to row echelon form
in finite time.

Proof. Lemma 4.4, which is the key ingredient in the proof of Theorem 4.5,
does not depend on the BSP assumptions. Therefore it still holds if we replace “in
at most m supersteps” with “in finite time” in the claim.

Hence, to prove the theorem we only need to show that the Master procedure in
Algorithm 11 terminates in finite time, i.e., that each PU receives an End message
in finite time.

This can easily be proved, again by induction on m: when m = 1, the Processing
Unit P [1] receives the End message from the Master process immediately after
startup. When m > 1, PU P [m] receives the End message in a finite time τ0 by
induction hypothesis. There are only a finite number of rows in block Qm and no
more rows can be delivered to it, since all PUs P [c] with c < m are now in done
state. Thus, P [m] finishes its processing in a finite time τ1 so the End token is sent
back to the Master in finite time τ0 + τ1. �

1.2. Shared-memory variant. In the shared-memory setting, Processing
Units are not realized as continuously-running agents, rather as “tasks” that are
scheduled on-demand when there is elimination work to be performed on a block
of columns.

We assume that the run-time system supports the following features:

» It is possible to atomically set the value of a variable.
» A mutex lock construct is available to avoid concurrent access to the same

variable by concurrently-executing threads.
» A compare-and-swap (CAS) operation is available.2

» It is possible to spawn function invocations as asynchronous tasks. A
task scheduler distributes tasks to the available processing resources and
will eventually run any scheduled task (provided each task terminates in
a finite amount of time); correctness of the “Rheinfall” algorithm is not
dependent on any order of execution of the scheduled tasks, i.e., the task
queue needs not be a FIFO.

» It is possible for an execution thread to wait until all tasks have been
executed.3

2Given three operands a, x, y, CAS atomically compares the value of memory location a

with the value x and, if they are equal, sets a to the new value y. Otherwise, the value stored at
a is unchanged. In any case, the value stored a prior to the CAS invocation is returned as result
of the operation.

3This feature can easily be implemented on top of the others, by atomically increasing a
counter each time a task is spawned, and atomically decreasing it each time a task finishes its
execution. The waiting task is woken up when the counter reaches 0.
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Algorithm 11 Reduce a matrix to row echelon form by Gaussian Elimination
(distributed-memory version). Top: Algorithm run by processing unit P [c]. Bot-
tom: Sketch of the “master” procedure. Input to the algorithm is an n×m matrix
A, represented as a list of rows ri. Row and column indices are 1-based.

1 def ProcessingUnit(c): [where c is a column index]
2 uc ← nil
3 Qc ← empty list
4 output[c] ← nil
5 state ← running
6 while state is running:
7 wait for messages to arrive
8 append Row messages to Qc
9 select best pivot row t from Qc

10 if uc is Nil:
11 uc ← t
12 remove t from Qc
13 else:
14 if t has better pivoting features than uc:
15 exchange uc and t
16 for each row r in Qc:
17 r′ ← eliminate(r,uc)
18 c′ ← first nonzero column of r′

19 send r′ to P [c′]

20 delete r from Qc
21 if received message End:
22 wait for all sent messages to arrive
23 output[c] ← uc
24 if c+ 1 < m:
25 send End to P [c+ 1]

26 else:
27 send End to Master
28 state ← done −− break out of the loop
29 return output[c]

1 def Master(A): [where A is an n×m matrix]
2 start a PU P [c] for each column c of A
3 for i in {1, . . . , n}:
4 c ← first nonzero column of ri
5 send ri to P [c]

6 send End message to P [1]

7 wait until P [m] sends out an End message
8 result ← collect output results from all PUs
9 return result
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Algorithm 12 Reduce a matrix to row echelon form by Gaussian Elimination
(shared-memory version). Input to the algorithm is an n×m matrix A, represented
as a list of rows ri. Row and column indices are 1-based.

1 def Master(A): [where A is an n×m matrix]
2 for c in {1, . . . ,m}:
3 InitProcessingUnit(c)
4 for i in {1, . . . , n}:
5 c ← first nonzero column of ri
6 SendRow(ri, c)
7 wait until all tasks are done
8 result ← collect output[c] from all PUs
9 return result

1 def SendRow(r, c): [where r is a matrix row and c is a column]
2 acquire lock Lc
3 add r to Qc
4 release lock Lc
5 status ← CAS(spawned[c], false, true)
6 if status is false: −− compare with old value of spawned[c]
7 spawn task ProcessingUnitTask(c)

1 def InitProcessingUnit(c): [where c is a column index]
2 uc ← nil
3 Qc ← empty list
4 output[c] ← nil
5 spawned[c] ← false

1 def ProcessingUnitTask(c): [where c is a column index]
2 B ← empty list
3 acquire lock Lc
4 swap contents of B and Qc
5 release lock Lc
6 select best pivot row t from B

7 if uc is Nil:
8 uc ← t

9 else:
10 if t has better pivoting features than u:
11 exchange u and t
12 for each row r in B:
13 r′ ← eliminate(r,u)
14 c′ ← first nonzero column of r′

15 SendRow(r′, c′)
16 output ← u
17 if Qc is not empty:
18 −− re−schedule self −−
19 spawn task ProcessingUnitTask(c)
20 else:
21 atomically set spawned[c] to false
22 return output
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All these features are easily available in modern systems; the source code freely
available at http://rheinfall.googlecode.com/ provides a sample C++ implementa-
tion on top of the Intel “Threading Building Blocks” library [35].

The definition of a Processing Unit P [c] is augmented with two more internal vari-
ables:

Lc A mutex lock object that protects modification of the block of rows
Qc: a section of code must acquire the lock prior to any modification.
If the lock is currently being held by another task, the task wishing
to acquire the lock shall wait until the lock is released.

spawned[c] A boolean flag that is true when a task to run ProcessingUnitTask(c)
has already been spawned; it serves as a guard for not spawning
two concurrent tasks operating as the same PU. Write accesses to
spawned[c] must exclude concurrent reads.

The “Rheinfall” algorithm is applied to a matrix by passing it as an argument to
the Master procedure of Algorithm 12. The Master process kick-starts PU P [c] for
all c = 1, . . . ,m such that there is at least one row starting at column c; then it
waits for all tasks to be finished before collecting the results.

Theorem 4.7. Algorithm 12 reduces any given input matrix A to row echelon form
in finite time.

Proof. As in the proof of Theorem 4.6, the validity of Lemmas 4.3 and 4.4
does not depend on the BSP model: we just need to prove that each matrix row
undergoes the elimination steps in finite time.

A ProcessingUnitTask is scheduled for each non-empty block in A’s block echelon
form (lines 4–6 inMaster of Algorithm 12). Since, by assumption, the task scheduler
will eventually execute any task, every row is either selected as pivot row or modified
by elimination and sent to a higher-column PU; a recursion argument proves the
thesis.

So we are left with proving that every instance of ProcessingUnitTask(c) completes
in finite time. The only operations that could block ProcessingUnitTask indefinitely
are the locking operations on lines 3, 15 (indirectly because of line 2 in SendRow).
If lock contention occurs, we prioritize contenders by stipulating that the task
associated with the lowest column index c wins.4 Since the number of rows processed
by a PU is finite, this guarantees that eventually every PU will get a chance to
acquire the lock and complete its tasks. �

1.3. Sequential execution. The “Rheinfall” algorithm can also be executed
sequentially. We shall not discuss this at length, as sequential execution is a de-
generate case of the shared-memory algorithm, where only one task is running at a
time, and the tasks scheduler strictly prioritizes tasks by ascending column index.
Of course, there is no need for locking in the sequential execution model, so the
locking operations can be left out.

4This requirement can be relaxed: the sample implementation uses TBB’s queuing_mutex
class [36], which guarantees that lock contenders are queued and will eventually be granted the
lock.

http://rheinfall.googlecode.com/


66 4. PARALLEL GAUSSIAN ELIMINATION

2. Applications

2.1. Computation of matrix rank. The Gaussian Elimination algorithm
can be easily adapted to compute the rank of a general (unsymmetric) sparse ma-
trix: one just needs to count the number of non-null rows of the row echelon form.

The output [c] variable is modified to hold an integer number: the result shall be 1
if at least one row has been assigned to PU P [c] (u 6= Nil) and 0 otherwise.

Procedure Master performs a sum-reduce when collecting results: replace line 8 in
Algorithm 11 and line 8 in Algorithm 12 with result← sum-reduce of output from
P [c], for c = 1, . . . ,m.

2.2. LUP factorization. We shall outline how Algorithm 11 can be modified
to produce a variant of the familiar LUP factorization. For the rest of this section
we assume that A has coefficients in a field and is square and full-rank.

It is useful to recast the Rheinfall algorithm in matrix multiplication language, to
highlight the small differences with the usual LU factorization by Gaussian Elimi-
nation. Let Π0 be the permutation matrix that reorders rows of A so that Π0A is in
block echelon form; this is where Rheinfall’s PUs start their work. We can write the
k-th elimination step as multiplication by a matrix Ek (which is itself a product
of elementary row operations matrices), and the ensuing communication step as
multiplication by a permutation matrix Πk+1 which rearranges the rows again into
block echelon form (with the proviso that the u row to be used for elimination of
other rows in the block comes first). In other words, after step k the matrix A has
been transformed to A(k) = EkΠk−1 · · ·E0Π0A.

Theorem 4.8. Given a square full-rank matrix A, the Rheinfall algorithm outputs
a factorization ΠA = LU , where:

» U = En−1Πn−1 · · ·E0Π0A is upper triangular;
» Π = Πn−1 · · ·Π0 is a permutation matrix;
» L = Πn−1 · · ·Π1 · E−1

0 Π−1
1 E−1

1 · · ·Π
−1
n−1E

−1
n−1 is lower unitriangular.

Proof. Clearly we have ΠA = LU with Π, L, U as given in the statement
of the theorem. By Theorem 4.5, we know that U is upper triangular, so we only
need to show that L is lower unit triangular.

To prove that L is lower unitriangular, consider the sequence of matrices recursively
defined by L0 = E−1

0 and Lk+1 = Πk+1LkΠ−1
k+1E

−1
k+1: we shall show by induction on

k that Lk has unit diagonal and its leading k× k submatrix is lower unitriangular.
The proof of this statement relies on two observations:

(1) At step k, Processing Unit P [k] has finished processing all its rows and
no new ones can arrive, so Πk fixes rows {0, . . . , k − 1}, and the leading
(k + 1)× (k + 1) submatrix of Ek is the identity matrix.

(2) The row used as pivot is the lowest-numbered one in a block, so Ek (hence
E−1
k ) is lower unitriangular.

The base case k = 0 is an immediate consequence of these two assertions.

When k > 0, by induction we have that Lk has unit diagonal and a leading k × k
lower unitriangular submatrix. Let πk+1 ∈ Sn be the permutation corresponding to
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the permutation matrix Πk+1: we then have (Πk+1LkΠ−1
k+1)i,j = (Lk)πk+1(i),πk+1(j).

In the course of elimination, rows only move towards higher-numbered PUs, so row
(k + 1) can only have been modified by linear combination with lower-numbered
rows; hence, (Lk)kl = 0 for l > k, and (Lk)lk = 0 for l < k. Thus the leading
(k + 1) × (k + 1) submatrix of Πk+1LkΠ−1

k+1 is lower unitriangular, and the same
holds for Lk+1 = Πk+1LkΠ−1

k+1 · E
−1
k+1. �

The LUP algorithm variant works by exchanging triplets (r, h, s) among PUs; every
PU stores one such triple (u, i, l), using u as pivot row. Each processing unit P [c]
receives a triple (r, h, s) and sends out (r′, h, s′), where:

» The r rows are initially the rows of Π0A; they are modified by successive
elimination steps as in Algorithm 11: r′ = r − αu with α = r[c]/u[c].

» h is the row index at which r originally appeared in Π0A; it is never
modified.

» The s rows start out as rows of the identity matrix: s = eh initially. Each
time an elimination step is performed on r, the corresponding operation
is performed on the s row: s′ = s+ αl.

When the last PU has terminated its job, the Master procedure collects triplets
(uc, ic, lc) from PUs and constructs:

» the upper triangular matrix U = (uc)c=1,...,n;
» a permutation π of the indices, mapping the initial row index ic into the

final index c (this corresponds to the Π permutation matrix);
» the lower triangular matrix L by assembling the rows lc after having per-

muted columns according to π.

3. Algorithm characteristics

The “Rheinfall” parallel algorithm operates closely like the sequential Gaussian
Elimination, its strength being chiefly that each processing unit can independently
perform elimination on a subset of the rows. However, the processing units are
(logically) completely independent processes, and it is thus quite difficult to rea-
son about their their collective performance and provide a detailed analysis of the
algorithmic complexity.

We take therefore and experimental and statistical approach. We begin by review-
ing some simple cases where the complexity can be worked out in detail.

3.1. Three examples of predictable performance. (1) Worst-case per-
formance is attained on the n× (n+ 1) matrix Λ(n) defined by:

Λ
(n)
ij =

{
1 if j = 0 or j = i+ 1,
0 otherwise.

It is clear that Λ(n) is already in block echelon form, comprising a single block
which is sent to Processing Unit P [0]: elimination using the first row as pivot row
produces the matrix Λ(n−1) as a result, which is then sent to P [1], and so on. Thus,
Rheinfall (any variant) collapses to sequential operation, and complete elimination
of Λ(n) requires n2/2 row operations and the exchange of O(n2) Row messages.
A different pivoting strategy can help prevent this collapse; see the discussion on
“weight pivoting” in Section 3.2 below.
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1 1 1 1 0 0 r0

3 1 1 0 0 0 r1

5 0 0 1 0 1 r2

7 1 1 1 0 0 r3

Figure 4.1. A block of rows to provide examples of different pivoting strate-
gies. Row r0 would be the pivot row chosen by the “no pivoting” strategy and
by threshold pivoting with γ = 1/2. Row r1 would be chosen as pivot row by
the “sparsity” pivoting strategy. Row r2 would instead be the choice done by
the “weight” pivoting strategy algorithm.

Note that only about (1/n) of the entries of Λ(n) are nonzero, which proves that
Rheinfall’s performance does not depend on the fill percentage of the input matrix.

(2) The matrix Λ̄(n) defined by Λ̄
(n)
ij = Λ

(n)
i,n−j (that is, we are flipping Λ(n) horizon-

tally) is already in row echelon form: hence its processing by Rheinfall requires no
row operations, and the algorithm terminates in the minimum required time. In the
distributed-memory / MPI case, this could still be a significant lapse of time (the
time required for the End token to travel from P [1] to P [m]), but in the shared-
memory and sequential execution case this means that a single iteration over PUs
concludes the processing. This suggests that an initial reordering of the matrix by
columns could speed up the elimination phase; what exact criterion to use for this
rearrangement in the general case is still unclear, and could be the subject of future
research.

(3) Finally, transposing Λ(n) gives a matrix V (n) which has a very different block
echelon form, consisting of a block with two lines starting at column 0, and n − 1
blocks with one line each. Therefore Rheinfall’s processing of V (n) requires only
n − 1 row operations; it still collapses to sequential execution, but this time only
one Row message is sent from one PU to the next one, so the total processing time
is only slightly larger than the one required by Λ̄(n).

3.2. Pivoting strategies. The key observation in Rheinfall is that all rows
assigned to a PU start at the same column. This implies that pivoting is restricted
to the rows in a block, but also that each PU may independently choose the row it
shall use for elimination.

This allows most arguments about GEPP to be ported almost verbatim to “Rhe-
infall”. The main difference with the usual column-scope partial pivoting is that
different pivot rows may be used at different times: when a new row with a better
pivoting entry arrives, it replaces the old one. This can lead to a sub-optimal pivot
being used for the early eliminations, before the “best” pivot row settles into place.
However, as it is very difficult to predict what rows will form the block Qc at a
certain stage of the algorithm, only experiments can tell when and where this is an
issue in practice.

Four different pivoting strategies have been evaluated in the sample Rheinfall im-
plementation. Figure 4.1 provides an example of what the different strategies would
select as pivot within a block of rows.

3.2.1. No pivoting. In this strategy, the first row to ever arrive to a PU P [c] is
used as the pivot row uc. In the sample implementation, this is the lowest-numbered
row that starts at column c. In the example in Figure 4.1, row r0 would be chosen
as pivot since it was the first to be inserted in the block.
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3.2.2. Sparsity pivoting. At each round of elimination performed on the block
Qc, the row with less nonzero entries is chosen as pivot. Ties are resolved by
choosing the row with the leading entry of smallest absolute value (if performing
elimination over the integers; on floating-point entries the largest entry should be
chosen to ensure numerical stability).

In the example in Figure 4.1, row r1 would be chosen as pivot: it has the same
number of entries as row r2, but the leading coefficient is smaller in value.

3.2.3. Weight pivoting. Define the weight W (r) of a matrix row r by W (r) :=∑
{1/j : r[j] 6= 0}. At each round of elimination, choose the row with the lowest

weight as the pivot row.

This is a variant of sparsity pivoting that has been developed to avoid the slowdown
caused by Λ(n)-like matrices (see example (1) in Section 3.1 above). Indeed, when
performing elimination on a Λ(n) matrix with weight pivoting, then the last row
Λ

(n)
n,∗ will be chosen as pivot row; elimination in P [1] then yields a matrix having

the same nonzero pattern as Λ̄(n−1) (see example (2) above), which is processed
very efficiently.

In the example in Figure 4.1, row r2 would be chosen as pivot; this shows that
weight-based pivoting tries to select rows whose nonzero entries are more dense in
the final segment of the row.

3.2.4. Threshold pivoting. Threshold pivoting interpolates between sparsity- or
weight-based pivoting and the choice of pivot row by the norm of the entry in leading
position (as usual in GEPP).

Fix γ ∈ [0, 1] and let Q+
c = Qc∪{uc} be the block of rows worked on by Processing

Unit P [c] at a certain point in time (including the current pivot row uc).

If A has integer entries, let b = min{|r[c]| : r ∈ Q+
c } and choose as pivot the row r

of minimum weight among those such that |r[c]| 6 b/γ.

If A has floating-point entries, then let b = max {|r[c]| : r ∈ Q+} and choose as
pivot the row r that minimizes weight among those such that |r[c]| > γ · b. This
guarantees that elements of L are bounded by γ−1.

In the example in Figure 4.1, row r0 would be chosen as pivot: it has the smallest
leading entry and no other row is within a factor of 2 from it.

3.3. Complexity estimates. In order to assess the impact of the four piv-
oting strategies described in section 3.2 above, we have run the sample Rheinfall
implementation on all matrices of the SIMC collection, counting the total number
of arithmetic operations performed by the rank-computing algorithm for each ma-
trix and pivoting strategy. Figure 4.2 shows a scatter plot of the total number of
arithmetic operations performed by the rank-computing Rheinfall algorithm, versus
the number of nonzero entries in any matrix of the SIMC collection; the complete
data is available in Section 2. This computational experiment also showed that
“Rheinfall” consistently fails on a certain percentage of the matrices in the SIMC
collection, either because the entries get too large (arithmetic complexity overflow)
or because of the growth of the fill-in (memory overflow); a more thorough theo-
retical assessment would be needed, but has not been carried out in the context of
the present research.
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Pivoting Strategy s20 s50 s80

No pivoting 1.1964 1.3853 2.0780
Sparsity 1.2198 1.4124 2.0780

Threshold 1.2198 1.4124 2.0780
Weight 1.2198 1.4124 2.0780

Table 4.1. Slopes of lines separating a certain percentage of the plot points
in Figure 4.2. The value of sP is such that a percentage P of points in the
scatter plot of Figure 4.2 lies below the line with slope sP .

An interesting pattern emerging in Figure 4.2 is that the points are arranged into
a roughly triangular shape. Let N be the number of nonzero entries and K be the
total number of arithmetic operations performed by the rank-computing Rheinfall
algorithm. The data in Table 4.1 shows that for 80% of the matrices in the SIMC
collection,

s20 · logN 6 logK, logK 6 s80 · logN.

Hence:

» K 6 c1 ·N2.08 for 80% of the SIMC matrices, and
» K 6 c2 ·N1.42 for 50% of the SIMC matrices,

independently of the chosen pivoting strategy; slightly sharper bounds can be given
for threshold pivoting and weight-based pivoting (the exact values are printed in
Table 4.1). Of course, how much these results extend to arbitrary integer-valued
sparse matrices depends on how much SIMC is a representative sample of the set
of “interesting” matrices.

While not a proof of the complexity characteristics of Rheinfall, this statistics shows
that Rheinfall is practically advantageous over traditional GEPP for a large number
of matrices.

3.4. Numerical stability. When γ = 1, threshold pivoting reduces to partial
pivoting (albeit restricted to block-scope), and one can repeat the error analysis
done in [24, Section 3.4.6, p. 115] almost verbatim. The main difference with the
usual column-scope partial pivoting is that different pivot rows may be used at
different times: when a new row with a better pivoting entry arrives, it replaces
the old one. This could result in the matrix growth factor being larger than with
GEPP; only numerical experiments can tell how much larger and whether this is an
issue in actual practice. However, no such numerical experiments have been carried
out, as this initial exploration of the Rheinfall algorithm has been driven by the
needs of homology computations over Q.

Still, the major source of instability when using the Rheinfall algorithm on matrices
with floating-point entries is its sensitivity to “compare to zero”: after elimination
has been performed on a row, the eliminating PU must determine the new starting
column (in order to forward it to the another PU). This requires scanning the initial
segment of the (modified) row to determine the column where the first nonzero lies.
Changes in the threshold ε > 0 under which a floating-point number is considered
zero can significantly alter the final outcome of Rheinfall processing.
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4. Sequential performance

The “Rheinfall” algorithm can of course be run on just one processor: processing
units execute a single step() pass (corresponding to lines 16–28 in Algorithm 11),
one after another; this continues until the last PU has switched to Done state.

4.1. Sample Implementation. A sample program has been written that
implements matrix rank computation and LU factorization with the variants of
Algorithm 11 described before. Source code is publicly available from http://code.
google.com/p/rheinfall.

The sample code is written in object-oriented style, using the C++ programming
language. Processing Units are implemented by a ProcessingUnit class, exposing
a step() method which performs a single pass of the main loop in procedure Pro-
cessingUnit (cf. lines 16–28 in Algorithm 11). A Processing Unit’s “inbox” Qc is
implemented as a list of rows. When a PU starts its step() procedure, it performs
elimination on all rows in Qc and immediately sends the modified rows to other
PUs for processing. As all PUs reside within the same OS process, communication
among PUs has virtually no cost: it is implemented by simply adding a row to
another PU’s “inbox” Qc.

In the sequential implementation, the main computation function consists of a loop
that calls each PU’s step() in turn, until all PUs have performed elimination.
Since P [c] can only receive rows from P [c′] if c′ < c, one pass is sufficient to run
the complete elimination procedure on any matrix.

The main program reads a file in LinBox’ SMS format [15], creates a PU for each
column, and dispatches rows directly to the responsible PU;5 after that, it calls
the main computation function. At the end of the computations, the total rank is
computed by summing the contributions of each PU.

4.2. Integer performance. In order to get a broad picture of Rheinfall’s
sequential performance, the rank-computation program has been tested an all the
integer matrices in the SIMC collection [15], and in particular on theMg,n homology
matrices which were the main driver for developing the “Rheinfall” algorithm. The
complete data is collected in Section 3, comparing the performance of the sample
Rheinfall implementation to the integer GEPP implementation provided by the free
software library LinBox [14, 43]; a summary plot is shown in Figure 4.3, showing
that “Rheinfall” outperforms LinBox in a large number of cases. Detailed results
for the Mg,n matrices and a selection of those for other matrices are shown in
Tables 4.2 and 4.3.

Results in Table 4.2 consistently show “Rheinfall” outperforms LinBox, by even
a couple order of magnitudes in the case of large matrices. Instead, results in
Table 4.3 show great variability: the relative speed of “Rheinfall” vs LinBox changes
by orders of magnitude in one or the other direction. The performance of both
algorithms varies significantly depending on the actual arrangement of nonzeroes in
the matrix being processed, with no apparent correlation to simple matrix features
like size, number of nonzeroes or fill percentage.

Table 4.4 shows the running time on the transposes of the test matrices. Both in
LinBox’s GEPP and in “Rheinfall”, the computation times for a matrix and its

5This implements the virtual “reordering step” needed to bring a matrix into block echelon
form.

http://code.google.com/p/rheinfall
http://code.google.com/p/rheinfall
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transpose could be as different as a few seconds versus several hours! However, the
variability in Rheinfall is greater, and looks like it cannot be explained by additional
arithmetic work alone; the examples discussed in Section 3.1 suggest that matrices
showing large variability might have one or more minors of the form Λ(k). More
investigation is needed to better understand how “Rheinfall” workload is determined
by the matrix nonzero pattern.

4.3. Floating-point performance. In order to assess the “Rheinfall” perfor-
mance in floating-point uses cases, the LU factorization program has been tested
on a subset of the test matrices used in [26]. Results are shown in Table 4.5, com-
paring the Mflop/s attained by the “Rheinfall” sample implementation with the
performance of SuperLU 4.2 on the same platform.

The most likely cause for the huge gap in performance between “Rheinfall” and
SuperLU lies in the strict row-orientation of “Rheinfall”: SuperLU uses block-
level operations, whereas Rheinfall only operates on rows one by one. In support
of this view, let us observe that the Mflop/s rate of the Rheinfall LU factorization
program is higher (sometimes approximately double) than the equivalent rate of
the Rheinfall rank-computation program. This can only be explained by the fact
that the LU computations require two row operations per cycle in a PU’s inner
loop, whereas the rank computation only performs one. However, row orientation
is a defining characteristic of the “Rheinfall” algorithm (as opposed to a feature of
its implementation) and cannot be circumvented. Considering also the “compare to
zero” issue outlined in Section 3.4, one must conclude that “Rheinfall” is generally
not suited for inexact computation.

5. Parallel performance and scalability: distributed-memory

The “Rheinfall” parallel algorithm operates closely like sequential Gaussian Elimina-
tion, its strength being chiefly that each processing unit can independently perform
elimination on a subset of the rows, and that communication can be completely
overlapped with computation (to the extent allowed by practical implementations).
However, the processing units are (logically) completely independent processes, re-
acting to each other’s messages; it is thus quite difficult to reason about their
collective performance.

5.1. Sample Implementation. The sample code presented in Section 4.1
can also be compiled with MPI [48, 49] support to run in a distributed-memory
environment.

In the distributed-memory implementation, the main computation function consists
of an inner loop that calls each PU’s step() in turn, until all PUs have performed
one round of elimination. Incoming messages from other MPI processes are then
received and dispatched to the destination PU. After that, PUs which have tran-
sitioned to End state are removed from the list (they are all concentrated in the
initial segment), and another pass is made. This outer loop repeats until there are
no more PUs in Running state.

Communication is effected using the MPI_Issend function: each PU maintains a
list of sent messages and checks at the end of an elimination cycle which ones have
been delivered and can be removed. Incoming messages are only received at the
end of the main inner loop, and dispatched to the appropriate PU.
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Because of the wayMPImessaging works, messages cannot be addressed to a specific
PU: a dedicated section in the rank-computing function (executed sequentially at
the end of the outer main loop) receives messages, inspects their content to find
the starting column, and then enqueues each message into the appropriate PU’s
“inbox” Qc.

5.2. Workload distribution. Since there is only a limited degree of paral-
lelism available on a single computing node, an issue arises on how to map Pro-
cessing Units to actual threads in the computer. The “Rheinfall” algorithm does
not impose any fixed scheme for mapping PUs to execution units. A column-cyclic
distribution pattern has been currently implemented, but the code is open for mod-
ification and experimentation of different schemes.

Processing units have not been implemented as separate continuously-running
threads; rather, each MPI process (rank) is assigned a number of PUs and steps
each of them in turn.

Let p be the number of MPI processes available, and m be the total number of
columns in the input matrix A. The input matrix is divided into vertical stripes,
each comprised of w adjacent columns. Stripes are assigned to MPI ranks in a cyclic
fashion: MPI process k (with 0 6 k < p) hosts the k-th, (k+ p)-th, (k+ 2p)-th, . . .
stripe; in other words, it owns processing units P [w ·(k+a ·p)+b] where a = 0, 1, . . .
and 0 6 b < w.

5.3. Experimental results. In order to assess the parallel performance and
scalability of the sample “Rheinfall” implementation, the rank-computation pro-
gram has been run on a small set of matrices (extracted from the larger SIMC [15]
collection; see Appendix D for details). The program has been run with a varying
number of MPI ranks, ranging from 16 to 256 in a geometric progression of ratio 2,
and different values of the stripe width parameter w, ranging from 1 to 4096 in a
geometric progression of ratio 4.

The plots in Figure 3.11 show that running time generally decreases with higher
w and larger number p of MPI ranks allocated to the computation, albeit not
regularly. This is particularly evident in the plot of running time versus stripe
width (Figure 3.11, bottom), which shows an alternation of performance increases
and decreases.

The following discussion and the examples in Section 3.1 suggest that the test
matrix that perform badly have a large minor of the form Λ(k). The evidence is
however not conclusive so this should be considered a working hypothesis; a more
detailed investigation is needed.

The w parameter influences communication in two different ways. On the one hand,
there is a lower bound mτ0/w on the time required to pass the End message from
P [0] to P [m], where τ0 is the minimal time required to send an End message across
the network, and we assume that communication between two PUs residing on the
same compute node is instantaneous. Indeed, since the End message is always sent
from one PU to the next one, then we only need to send one End message per
stripe. This could explain why the running time is almost the same for large p
when w = 1 in the good cases: the computation time decreases so much that the
running time is dominated by the time taken to pass the End message along.

The plots in Figure 4.4 highlight an additional cause: when the “Rheinfall” sample
implementation is run on identity N ×N matrices, we know from Section 3.1 that
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no elimination work is being performed, hence the total running time measures
the total communication time restricted to the End messages. However, the ratio
between the time spent receiving the MPI message and the time spent stepping the
PUs has to be taken into account:

» for a relatively small matrix (like the 104 × 104 identity matrix I10000),
the portion of the main loop spent in PU code is small, hence run times
tend to show the erratic behavior due to network jitter (this is visible in
the curves for high values of p and w);

» using a larger matrix (like the 107 × 107 identity matrix I10000000), the
main loop still spends a significant amount of time just calling the step()
method of each PU; hence, the run time decreases proportionally with the
number of MPI ranks p and stripe width w: the larger the values of either
one, the smaller the ratio of computation to communication time.

On the other hand, MPI messages are collected after every processing unit residing
on aMPI rank has performed a call to its step()method and the needed elimination
work; this leads to the risk that a single PU can slow down the entire MPI rank if it
gets many elimination operations to perform. An empirical test has been conducted
in the following way. The percentage of running time spent executing MPI calls has
been collected using the mpiP tool [66]; a selection of relevant data is available in
Table 4.14. The three call sites for which data is presented measure three different
aspects of communication and workload balance:

» The MPI_Recv figures measure the time spent in actual row data commu-
nication (the sending part uses MPI_Issend).

» The MPI_Iprobe calls are all done after all PUs have performed one round
of elimination: thus they measure the time a given MPI rank has to wait
for data to arrive.

» The MPI_Barrier is only entered after all PUs residing on a given MPI
rank have finished their job; it is thus a measure of workload imbalance.

Now, processing units corresponding to higher column indices naturally have more
work to do, since they get the rows at the end of the elimination chain, which
have accumulated fill-in. Because of the way PUs are distributed to MPI ranks,
a larger w means that the last MPI rank gets more PUs of the final segment: the
elimination work is thus more imbalanced. This is indeed reflected in the profile data
of Table 4.14: one can see that the maximum time spent in the final MPI_Barrier
increases with w and the number p of MPI ranks, and can even become 99% of the
time for some ranks when p = 256 and w = 4096.

Finally, a larger w speeds up delivery of Row messages from P [c] to P [c′] iff
(c′ − c)/w ≡ 0(mod p). Whether this is beneficial is highly dependent on the
structure of the input matrix; some internal regularity of the input data may result
on elimination work being concentrated on the same MPI rank, thus slowing down
the whole program. Indeed, the large percentages of time spent in MPI_Iprobe for
some values of p and w show that the matrix nonzero pattern plays a big role in
determining computation and communication in Rheinfall. Static analysis of the
entry distribution could help determine an assignment of PUs to MPI ranks that
keeps the work more balanced.
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6. Parallel performance and scalability: shared-memory

6.1. Sample Implementation. The sample code can also be compiled to-
gether with the Intel Threading Building Blocks (TBB) library to run on multi-core
shared-memory computers.

As in the distributed-memory variant, an implementation problem to be solved
is how to map Processing Units to actual threads in the computer; the solution
adopted is discussed in Section 6.2 below.

In all other aspects, the shared-memory implementation closely resembles the se-
quential one; in particular, communication costs are negligible since passing a Row
message amounts to just moving a pointer to a row object from one ProcessingUnit
instance to another.

6.1.1. OpenMP. An attempt has also been made at OpenMP-based paralleliza-
tion, which has distinctly different features than TBB.

In a shared-memory OpenMP setting, the sequential main loop is naïvely modified
by using an OpenMP “parallel for”: each thread would call the the step procedure
of a segment of w = m/p adjacent PUs.6 As in the sequential execution model,
message delivery costs are negligible. However, w caps the number of PUs that
can turn to done state in a single iteration: when P [c + w − 1] emits the End
message, P [c+w]’s step has already been run by another thread. This introduces
a significant delay in the processing of the End message by P [c+ w].

Experimental results show indeed that the delay so introduced can be quite substan-
tial, and that the single-node OpenMP implementation is slower than the sequential
one for low values of p, and becomes only marginally faster for higher values of p.

Therefore, no further mention of OpenMP will be done in the sequel.

6.2. Workload distribution. Processing units have not been implemented
as separate continuously-running threads; rather, the main computation function
starts a thread pool and enqueues one task to invoke each PU’s step() function; it
then waits for termination of those tasks and the ones spawned by them.

The sample implementation offers a “coarse grained” and “fine grained” variant: the
former corresponding exactly to Algorithm 12, the latter instead uses a separate
task for every elimination operation.

6.3. Experimental results. To evaluate the scalability of the “Rheinfall” al-
gorithm in the shared-memory variant, the sample implementation has been run on
the same set of matrices used for testing the MPI variant. Results for the “coarse
grained” variant are reported in Table 4.7 and plotted in Figure 4.7; correspond-
ing data for the “fine grained” variant are available in Table 4.11 and graphed in
Figure 4.9.

In contrast with the distributed memory approach, communication costs are negli-
gible and there is no issue of workload distribution in the algorithm itself: the Intel
TBB scheduler is responsible for managing the task queue that is created by the

6OpenMP offers several scheduling algorithms that partition the range in slightly different
ways. Their actual performance is very close and the differences in OpenMP scheduling algorithms
do not affect the following analysis of why OpenMP-based parallelization is not effective for
Rheinfall.
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algorithm. However, the plots in Figure 4.7 show the expected scalability behavior
up to a certain number of threads (variable with the actual matrix), and then the
performance stabilizes (in the good cases GL7d24 and IG5-18) or deteriorates (in
the case of the Mg,n homology matrices M0,6-D8, M0,6-D9 and M0,6-D10). The
outlook for the “fine grained” case is qualitatively similar, but the run times are
higher and scalability issues are even more relevant. This seems to indicate that the
actual computation time in the tasks is too small compared to the thread scheduling
overhead by TBB.

To test this hypothesis, we run the same rank-computing program on a set of
identity square matrices, with size ranging from 104 to 107; the run times are given
in Tables 4.9 and 4.13, and graphed in the IV quadrant of Figures 4.7 and 4.9. By
the discussion in Section 3.1, we know that “Rheinfall” performs no operations in
the case of a matrix which is already in row echelon form, hence the processing
time is entirely due to the thread scheduling; there is also no lock contention issue,
since there is no row movement. The plots show indeed that the performance is
irregular on the identity matrix, and that run time becomes larger as the number of
available threads increases. This again suggests that the number of threads should
be balanced with respect to the elimination work that has to be done; predicting
this “break even point”, however, looks like a non-trivial specific challenge and might
constitute the subject of future research.

One enhancement that could help the performance goal is the introduction of a
more flexible priority system in the Intel TBB library. As of this writing, TBB 4.0
only allows threads to be assigned priorities drawn from a limited discrete set (high-,
normal- or low-priority tasks), whereas tasks generated by the “Rheinfall” algorithm
naturally have an integer-based priority: tasks generated by rows of lower index
should run before tasks generated by higher-numbered ones, in order to streamline
the data flow.7

7. Conclusions and future work

The “Rheinfall” algorithm is basically a different way of arranging the operations of
classical Gaussian Elimination, with a naturally parallel and distributed-memory
formulation. It retains some important features from the sequential Gaussian Elim-
ination; namely, it can be applied to general sparse matrices, and is independent
of matrix entry type. Pivoting can be done in Rheinfall with strategies similar to
those used for GEPP; however, Rheinfall is not equally suited for exact and inexact
arithmetic.

Poor performance when compared to state-of-the-art algorithms and some inher-
ent instability due to the dependency on detection of nonzero entries suggest that
“Rheinfall” is not a convenient alternative for floating-point computations.

For exact arithmetic (e.g., integers), the situation is quite the opposite: up to our
knowledge, “Rheinfall” could be the first practical distributed-memory Gaussian
Elimination algorithm meeting the requirements of [16]. In addition, it is compet-
itive with existing implementations also when running sequentially.

An open question, especially when comparing “Rheinfall” with other Gaussian Elim-
ination implementations, concerns the growth of matrix entries: a more thorough
analysis is needed to assess the limitations of “Rheinfall” in this respect.

7Priorities could as well be drawn from the real interval [0, 1]: tasks generated from the
processing of row i are assigned priority i/n.
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The distributed-memory formulation of “Rheinfall” can easily be mapped on the
MPI model for parallel computations. An issue arises on how to map Rheinfall’s
Processing Units to actual MPI execution units; the simple column-cyclic distri-
bution discussed in this paper was found experimentally to have poor workload
balance. Since the workload distribution and the communication graph are both
determined by the matrix nonzero pattern, a promising future direction could be
to investigate the use of graph-based partitioning to determine the distribution of
PUs to MPI ranks.

As is often the case with practical implementations, there is still room for optimizing
and speeding up the code used for experiments: the current implementation focused
on ease of extensibility and re-use of standard C++ library features, but this came
at the expense of some performance.

At any rate, the discussion and computational experiments show that “Rheinfall”
completely met its goal of being a faster rank-computation algorithm for Stage III of
the graph homology computations on the moduli space of smooth pointed Riemann
surfaces.
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Figure 4.2. Scatter plot of the total number of arithmetic operations per-
formed in elimination (y-axis) vs. number of nonzero entries in a matrix (x-
axis). The small plot on the right shows the percentage (x-axis) of points in
the plot lying under the line of a given slope (y-axis). The three oblique dotted
lines mark the slopes such that 20%, 50%, and 80% of the SIMC matrices lie
below the line. (Matrices on which “Rheinfall” failed are considered to take
infinite time.)
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Matrix Rows Columns Nonzero Rheinfall LinBox

M0,3-D2 3 4 6 < 4ms < 4ms

M0,4-D3 20 99 156 < 4ms < 4ms
M0,4-D4 99 144 420 < 4ms < 4ms
M0,4-D5 144 64 264 < 4ms < 4ms

M0,5-D4 210 2112 3720 < 4ms < 4ms
M0,5-D5 2112 7260 23280 0.004 0.050
M0,5-D6 7260 11280 50760 0.032 0.640
M0,5-D7 11280 8160 46560 0.040 1.030
M0,5-D8 8160 2240 15360 0.007 0.130

M0,6-D5 3024 49800 95760 0.005 0.160
M0,6-D6 49800 294480 1020240 0.321 57.200
M0,6-D7 294480 862290 4162320 5.285 4362.610
M0,6-D8 862290 1395840 8498160 53.787 40709.120
M0,6-D9 1395840 1274688 9286560 71.050 94797.670
M0,6-D10 1274688 616320 5201280 99.694 38086.330
M0,6-D11 616320 122880 1175040 2.312 1144.300

M1,2-D3 3 10 10 < 4ms < 4ms
M1,2-D4 10 15 14 < 4ms < 4ms
M1,2-D5 15 9 16 < 4ms < 4ms

M1,3-D4 54 408 732 < 4ms < 4ms
M1,3-D5 408 1112 3720 < 4ms < 4ms
M1,3-D6 1112 1440 6636 0.003 0.010
M1,3-D7 1440 918 5166 0.002 0.010
M1,3-D8 918 236 1500 < 4ms < 4ms

M1,4-D5 1008 13000 28464 0.002 0.030
M1,4-D6 13000 63756 245808 0.078 3.530
M1,4-D7 63756 160128 841872 1.599 176.500
M1,4-D8 160128 227564 1482996 40.169 2125.450
M1,4-D9 227564 185760 1427700 61.862 2758.020
M1,4-D10 185760 81504 716352 6.818 656.350
M1,4-D11 81504 14944 146832 0.097 11.610

M2,1-D4 3 20 22 < 4ms < 4ms
M2,1-D5 20 39 122 < 4ms < 4ms
M2,1-D6 39 43 179 < 4ms < 4ms
M2,1-D7 43 28 136 < 4ms < 4ms
M2,1-D8 28 9 40 < 4ms < 4ms

M2,2-D5 97 1057 2451 < 4ms < 4ms
M2,2-D6 1057 4519 18573 0.012 0.040
M2,2-D7 4519 10077 56090 0.407 0.500
M2,2-D8 10077 12927 88343 2.880 2.230
M2,2-D9 12927 9681 77218 1.116 2.230
M2,2-D10 9681 3983 35738 0.059 0.540
M2,2-D11 3983 713 6888 0.003 0.030

Table 4.2. CPU times (in seconds) for computing the matrix rank of the
Mg,n homology matrices. The “Rheinfall” column reports times for the sample
C++ implementation. The “LinBox” column reports times for the GEPP
implementation in LinBox version 1.1.7. Results were obtained on the UZH
cluster “idhydra”, featuring 48 Intel Xeon CPUs X7542 @ 2.67GHz, running
64-bit SuSE Linux Enterprise Server 11; both programs were compiled with
GCC 4.3.4 with options -O2 -march=native.
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Figure 4.3. Scatter plot of the running time of the sequential Rheinfall vari-
ant and the three different rank-computation algorithms implemented in Lin-
Box. The y-axis reports run time in seconds (log-scale); the x-axis (log-scale)
shows the number of nonzero entries in each matrix.

Matrix Rows Columns Nonzero Fill% Rheinfall LinBox

olivermatrix.2 78661 737004 1494559 0.0026 2.68 115.76
Trec14 3159 15905 2872265 5.7166 116.86 136.56
GL7d24 21074 105054 593892 0.0268 95.42 61.14
IG5-18 47894 41550 1790490 0.0900 1322.63 45.95

Table 4.3. CPU times (in seconds) for computing the matrix rank of se-
lected integer matrices. The “Rheinfall” column reports times for the sample
C++ implementation. The “LinBox” column reports times for the GEPP im-
plementation in LinBox version 1.1.7. This is an extract from the table in
Section 3, which see for the test setting and the characteristics of the hardware
were it was run.

Matrix Rheinfall (T) Rheinfall LinBox (T) LinBox

M0,6-D8 No mem. 23.81 50479.54 36180.55
M0,6-D10 37.61 23378.86 26191.36 13879.62
olivermatrix.2 0.72 2.68 833.49 115.76
Trec14 No mem. 116.86 43.85 136.56
GL7d24 4.81 95.42 108.63 61.14
IG5-18 12303.41 1322.63 787.05 45.95

Table 4.4. CPU times (in seconds) for computing the matrix rank of selected
integer matrices and their transposes; the table compares running times of
the Rheinfall/C++ and GEPP LinBox 1.1.7 codes. The columns marked
with (T) report CPU times used for the transposed matrix; boldface font
marks the fastest execution on each table row. Computation of the transposes
of matrices “M0,6-D8” and “Trec14” exceeded the available 24 GB of RAM.
Hardware, compilation flags and running conditions as in Section 3.
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Matrix N nonzero fill% Rheinfall SuperLU

bbmat 38744 1771722 0.118 83.37 1756.84
g7jac200sc 59310 837936 0.023 87.69 1722.28
lhr71c 70304 1528092 0.030 No mem. 926.34
mark3jac140sc 64089 399735 0.009 92.67 1459.39
torso1 116158 8516500 0.063 97.01 1894.19
twotone 120750 1224224 0.008 91.62 1155.53

Table 4.5. Average Mflop/s attained in running LU factorization of square
N ×N matrices. The table compares the performance of the sample Rheinfal-
l/C++ LU factorization with SuperLU 4.2. The test matrices are a subset of
those used in [26]. Hardware, compilation flags and running conditions as in
Section 3.

Threads Run time (s)
GL7d24 IG5-18 M0,6-D8 M0,6-D9 M0,6-D10 M0,6-D11

1 83.407 755.613 23.580 43.585 38.964 1.360
2 50.399 423.672 19.767 36.105 34.182 0.923
3 35.431 301.947 15.146 28.434 25.168 0.831
4 25.573 242.840 12.129 23.588 22.568 0.629
6 17.081 167.310 8.323 17.713 19.249 0.329
8 12.147 135.343 9.840 20.978 24.715 1.064
12 9.402 185.682 25.686 51.051 63.390 2.185
16 8.950 136.516 20.273 46.687 54.476 1.997
24 9.006 150.430 23.403 87.307 63.764 0.387

Table 4.7. Performance data relative to the sample implementation of “Rhe-
infall” in the shared-memory “coarse grained” variant on the set of SIMC test
matrices.

Threads Run time (s)
I10000 I100000 I1000000 I10000000

1 0.004 0.053 0.635 6.608
2 0.003 0.027 0.275 2.837
3 0.002 0.022 0.222 2.295
4 0.002 0.019 0.195 1.944
6 0.002 0.017 0.169 1.686
8 0.002 0.089 0.828 8.437
12 0.011 0.131 1.974 19.243
16 0.015 0.149 1.208 14.660
24 0.021 0.153 1.507 13.352

Table 4.9. Performance data relative to the sample implementation of “Rhe-
infall” in the shared-memory “coarse grained” variant on a set of identity ma-
trices of varying size.
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Figure 4.4. Running time (in seconds, y-axis) of the sample implementation
of “Rheinfall” in the distributed-memory variant on identity square matrices
of size 104 (top row) and 107 (bottom row), plotted by number of MPI ranks
(left column) or stripe width (right column). Since no elimination work is
performed, this measures the performance of the underlying MPI messaging
system.
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Figure 4.5. Plot of the running time (in seconds, y-axis) of the sample “Rhe-
infall” distributed-memory implementation on three different matrices, versus
the number p of MPI ranks (x-axis); colored lines show different values of the
stripe width w. The three example matrices are (top to bottom): GL7d24
(SIMC group GL7), M0,6-D8 (group Mgn), Trec14 (group Kocay).
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Figure 4.6. Plot of the running time (in seconds, y-axis) of the sample “Rhe-
infall” distributed-memory implementation on three different matrices, versus
the stripe width w (x-axis); colored lines show different numbers of MPI ranks
p. The three example matrices are (top to bottom): GL7d24 (SIMC group
GL7), M0,6-D8 (group Mgn), Trec14 (group Kocay).
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Figure 4.7. Scalability and performance of the sample implementation of
“Rheinfall” in the shared-memory “coarse grained” variant.
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Figure 4.8. Performance of the sample implementation of “Rheinfall” in the
shared-memory “coarse grained” variant on identity matrices of different sizes.
Since no elimination work is performed, this measures the latency and overhead
of the underlying TBB library.
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Figure 4.9. Scalability and performance of the sample implementation of
“Rheinfall” in the shared-memory “fine grained” variant.
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Threads Run time (s)
GL7d24 IG5-18 M0,6-D8 M0,6-D9 M0,6-D10 M0,6-D11

1 115.572 1066.811 62.853 77.806 58.368 2.356
2 54.679 560.156 38.464 54.786 36.809 1.510
3 39.108 349.644 26.998 39.920 29.704 1.176
4 31.246 247.078 20.882 32.030 24.215 0.954
6 15.981 299.733 56.861 110.688 68.791 0.184
8 12.758 No data 15.740 30.705 24.962 1.244
12 12.103 214.365 23.690 54.310 60.609 3.324
16 8.780 236.029 30.979 76.448 69.706 5.081
24 10.476 251.333 31.115 99.841 65.100 2.532

Table 4.11. Performance data relative to the sample implementation of “Rhe-
infall” in the shared-memory “fine grained” variant on the set of SIMC test
matrices.

Threads Run time (s)
I10000 I100000 I1000000 I10000000

1 0.005 0.064 0.734 7.614
2 0.002 0.016 0.161 1.720
3 0.001 0.013 0.134 1.398
4 0.001 0.012 0.250 1.262
6 0.001 0.010 0.103 1.058
8 0.002 0.014 0.107 1.085
12 0.001 0.020 0.103 0.965
16 0.016 0.092 1.561 4.912
24 0.004 0.032 2.249 18.715

Table 4.13. Performance data relative to the sample implementation of “Rhe-
infall” in the shared-memory “fine grained” variant on a set of identity matrices
of varying size.
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Figure 4.10. Performance of the sample implementation of “Rheinfall” in
the shared-memory “fine grained” variant on identity matrices of different sizes.
Since no elimination work is performed, this measures the latency and overhead
of the underlying TBB library.
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Table 4.14. Percentage of running time spent in MPI communication for the
sample Rheinfall/C implementation on the matrices M0,6-Dk, with varying
number of MPI ranks and stripe width parameter w. Columns MPI_Recv,
MPI_Iprobe and MPI_Barrier report on the percentage of MPI time spent
spent servicing these calls; in these cases, the minimum is always very close
to zero, hence it is omitted from the table. Tests were executed on the UZH
cluster “Schroedinger”; see Table 4.3 for hardware details. The MPI layer was
provided by OpenMPI version 1.4.3, using the TCP/IP transport.



APPENDIX A

Pseudo-code notation

Blocks of code are marked by indentation (rather than delimited by specific key-
words).

The ‘def’ keyword is used to mark the beginning of a function definition.

The notation ‘for x in S’ is used to loop over all the items x in a set or se-
quence S; sometimes the notation ‘for x in a, . . . , b’ is used instead. The form
‘for i, x in enumerate(S)’ is used for keeping track of the iteration number when
looping over the elements of S: as x runs over the items in S, i orderly takes the
values 0, 1, . . . , up to |S| − 1.

1. Basic types

Numbers and basic data structures (arrays, lists, sets; see below) are considered
basic types, together with the logical constants True and False, and the special
value None.

2. Objects

The word “object” is used to denote a kind of aggregate type: an object is a tuple
‘(a1, a2, . . ., aN )’, where each of the slots ai can be independently assigned a value;
the values assigned to different ai’s need not be of the same type. We writeX.ai ← b
to mean that the slot ai of object X is assigned the value b. Unless otherwise noted,
object slots are mutable, i.e., they can be assigned different values over the course
of time.

An objects’ class is the tuple ‘(a1, . . ., aN )’ of slots names that defines the object;
the actual tuple of values is called an instance.1

3. Arrays, lists, sets

A few types of basic data structures are used in the code: arrays, lists and sets.
They are distinguished only for clarity, and we make no assumption that these are
primitive: for instance, each of these data structures could be implemented on top
of the “list” type defined here.

An “array” is a fixed-size collection of elements of the same type; the number and
type of elements stored in an array will be stated when the array is first created.

1Readers familiar with object-oriented programming will note that this is an over-simplified
version of the usual object-oriented definition of objects and classes; this originates in the fact
that the concrete implementation of the algorithms was done in object-oriented Python, but
object-orientation is by no means essential to the implementation.
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Items in an array can be accessed by position: if a is an array, then its k-th element
will be accessed as a[k]. Array elements can be mutated; we write a[k]← b to mean
that object b is stored into the k-th place of array a.

A “list” is a variable-size collection of objects. Two features distinguish lists from
arrays: (1) lists can grow and shrink in size, and (2) lists can store items of different
types. If l is a list with n elements, the notation l.append(x) will be used to mean
that x should be added as (n + 1)-th item in list l. Again, the square bracket
notation l[k] is used to denote the value stored in the k-th place in l, and l[k]← x
means that the k-th slot of l is mutated to the value x. The operator “+” stands
for concatenation when applied to lists.

A “set” is a mutable unordered collection of objects of the same type. The only
relevant difference with sets in the mathematical sense of the word is that set
variables are mutable: if s is a set, then s.add(x) will be used to specify that s
should be mutated into the set s ∪ {x}. No duplicates are admitted: if x ∈ s and
x = y, then s.add(y) does not alter s in any way.

The word “sequence” will be used to denote any one of the above three. When S is
a sequence, we define size(S) as the number of elements in S; if S is a list or array
object, valid indices into S range from 0 to size(S)−1.

3.1. List comprehensions. A special syntax is used to form a list when its
items can be gotten by applying a function or operation to the elements of another
sequence.

The notation ‘L ← [f(x) for x in S]’ makes L into the list formed by evaluating
function f on each element in S, analogously to the usual notation {f(x) : x ∈ S}
for sets.

As an extension, the expression ‘L ← [f(x) for x in S if P (x)]’ makes L into the
list of values of f over the set S′ of elements of S for which the predicate P (x) is
true: S′ = {x : x ∈ S ∧ P (x)}.

4. Operators

The “%” operator is used to take the remainder of integer division: for integers k
and n > 0, the expression (k % n) evaluates to the smallest non-negative residue
of k mod n.

The “+” operator normally denotes addition when applied to numbers, and con-
catenation when applied to lists.

Any other operator keeps it usual mathematical meaning.



APPENDIX B

Comparison of fatgraph generation methods

This section compares three different approaches to generating trivalent fatgraphs:
namely, we compare the MgnTrivalentGraphs algorithm described in Section 3.1.3
with two alternatives.1 Table B.1 presents a summary of results.

None of the suggested algorithms is capable of directly producing an isomorph-
free set of distinct fatgraphs; they all produce a larger set of fatgraphs that must
be reduced by taking only one representative per isomorphism class of fatgraphs.
Therefore, Table B.1 also reports the actual number of distinct fatgraphs for a given
g, n pair; not all counts are known: a cell is left empty when the corresponding count
has not yet been computed. From the results gathered so far, it is apparent that
all algorithms overestimate the actual number of fatgraphs.

g n N N+
1 N+

2 N3

0 3 2 − 15 5 760
0 4 6 84 630 1.072964× 1013

0 5 26 936 15 015 4.593811× 1024

0 6 191 8 892 306 306 6.326929× 1037

0 7 114 600 5 819 814 1.132261× 1052

1 1 1 − 15 5 760
1 2 5 114 630 1.072964× 1013

1 3 46 1 644 15 015 4.593811× 1024

1 4 669 24 156 306 306 6.326929× 1037

1 5 511 416 5 819 814 1.132261× 1052

2 1 9 6 336 15 015 4.593811× 1024

2 2 368 17 982 306 306 6.326929× 1037

2 3 606 144 5 819 814 1.132261× 1052

3 1 1 065 718 368† 5 819 814 1.132261× 1052

Table B.1. Number of (non-unique) trivalent fatgraphs generated according
to different algorithms. The N column reports the actual number of distinct
fatgraphs for the given g, n; empty cells mean the corresponding number has
not been computed. The N+

1 column lists upper bounds for the recursive gen-
eration algorithm MgnTrivalentGraphs (see Listing 7); values marked with the
“†” symbol are estimated using earlier values of N+

1 because the corresponding
values of N are not available. The N+

2 values bound from above the number
of fatgraphs generated by grafting binary trees into clovers. Finally, N3 is the
count of fatgraphs generated by enumerating pairs of permutations (as per
combinatorial definition of fatgraph).

1The author is aware of no other algorithm for generating the set of all fatgraphs. The
comparison here is taken with the solutions used in earlier attempts of implementation of the
FatGHoL software.
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In what follows, let N(g, n) := |Rg,n| be the number of distinct (g, n)-fatgraphs;
also define:

ξ(g, n) := 2g + n,

mmax(g, n) := 6g + 3n− 6 = 3ξ − 6,

mmin(g, n) := 2g + n− 1 = ξ − 1.

It is trivial to check that mmax and mmin are the maximum and minimum number
of edges that a (g, n)-fatgraph can have.

1. Generation by recursive edge addition

The algorithm MgnTrivalentGraphs described in Section 3.1.3 produces a (g, n)-
fatgraph by adding an edge to fatgraphs with lower (g, n); the procedure can then
be applied recursively.

Let N1(g, n) be the number of (non distinct) fatgraphs returned by function
MgnTrivalentGraphs(g,n). According to Section 3.1.3, this can be written as:

N1(g, n) = N1,A(g, n) +N1,B(g, n) +N1,C(g, n),

where N1,A, N1,B , N1,C are the numbers of fatgraphs constructed in cases A), B),
C’) of Algorithm 7.

In case A), we have 1 generated (g, n)-fatgraph per each pair formed by a (g, n−1)-
fatgraph and one of its oriented edges, modulo the action of the automorphism
group Aut(G). However, we do not know how to estimate the number of orbits
of this Aut(G)-action. Since the generic fatgraph only has one automorphism, an
upper bound can instead be given by considering all pairs formed by a fatgraph
and an oriented edge:

N1,A(g, n) 6 N+
1,A(g, n) := 2 ·mmax(g, n− 1) ·N(g, n− 1).

In case B), the algorithm generates one (g, n)-fatgraph per each triplet formed by
a (g, n − 1)-fatgraph and two oriented edges, not necessarily distinct (modulo the
action of AutG); a similar remark about the upper bound applies:

N1,B(g, n) 6 N+
1,B(g, n) := (2 ·mmax(g, n− 1))2 ·N(g, n− 1)

In case C’), the computation is exactly the same, except we apply the q construction
to fatgraphs belonging in Rg−1,n+1:

N1,C(g, n) 6 N+
1,C(g, n) := 4 ·mmax(g − 1, n+ 1)2 ·N(g − 1, n+ 1).

Table B.1 shows the upper bound given by:

N+
1 (g, n) := N+

1,A(g, n) +N+
1,B(g, n) +N+

1,C(g, n).

According to Table B.1, the MgnTrivalentGraphs algorithm outperforms the alter-
native procedures when 2g + n < 7, and apparently generates a much larger set
of fatgraphs when 2g + n > 7. However, the values were obtained using N+

1 (g, n)
instead of N(g, n) in recursive computations when the actual value of N(g, n) is
not known; therefore N+

1 (g, n) might grossly overestimate the number of graphs
considered by MgnTrivalentGraphs for 2g + n > 6. Further investigation is needed
to ascertain whether this is due to the algorithm of Section 2 being asymptotically
faster, or to the estimate for N1(g, n) being grossly imprecise when no data about
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the real number of trivalent fatgraphs in the recursion step is known. However, the
author conjectures that this estimate holds:

N1(g, n) 6 O(ξ3) ·N(g, n) (1.1)

2. Generation by insertion of binary trees

A different approach is the following:

» Generate all distinct (g, n)-fatgraphs with 1 vertex; each such fatgraph
has mmin(g, n) edges, hence the vertex has valence 2 ·mmin(g, n).

» Given any such fatgraph G0, build a trivalent (g, n)-fatgraph G by replac-
ing the vertex with a full binary tree on 2 ·mmin(g, n) leaves.

Call a fatgraph with only one vertex a clover. Let N ′2(g, n) be the number of distinct
(g, n)-clovers; we can estimate it as follows.

Lemma B.1. The number of isomorphic clovers is equal to the number of orbits of
the adjoint action of (12 . . . 2m) over the set of self-conjugate permutations {σ1 ∈
S2m : σ2

1 = id}.

Proof. Let G0 = (L;σ0, σ1, σ2) be a (g, n)-fatgraph given in combinatorial
form, where L = {1, . . . , 2m} and σi ∈ Sm. If G0 is a clover, then σ0 is a permuta-
tion formed by just one cycle; without loss of generality we may assume σ0 is the
rotation (12 . . . 2m). Let G′0 = (L;σ′0, σ

′
1, σ2) be another (g, n)-clover: by the same

reasoning we have σ′0 = σ0 = (12 . . .m); if f : G0 → G′0 is an isomorphism, then f
commutes with σ0 hence f = σj0 for some j|2m. Therefore, from σ1 ◦ f = f ◦ σ′1 we
get σ′1 = σ−j0 ◦ σ1 ◦ σj0. This proves the claim. �

Lemma B.2. Let L be a finite set of l = p·q elements. The number of permutations
of L which can be expressed as product of q disjoint p-cycles is:

C(p, q) =

q∏
i=1

p−1∏
j=1

(pi− j). (2.1)

Proof. Without loss of generality we can assume L = {1, . . . , pq}; let τ ∈ Spq

be a permutation composed of q disjoint p-cycles. We can give a “canonical” form
to τ if we order its cycles by stipulating that:

» a cycle (a1a2 . . . ap) is always written such that a1 = min ai;
» (a1a2 . . . ap) precedes (b1b2 . . . bp) iff min ai < min bi.

Now assume τ is written in this canonical form; then a1 = 1 and we have pq − 1
choices for the element a2 = τ(a1) following a1 in the cycle, pq − 2 choice for the
next element a3 = τ(a2), and so on until the final element ap of the first cycle.
Then starting element ap+1 of the second cycle has to be the minimum element of
L\{a1, a2, . . . , ap}, but we have (p−1)q−1 choices for ap+2 = τ(ap+1): an iterative
argument proves the assertion. �

Lemma B.3. The number of distinct self-conjugate permutations on a set of l
elements is given by (l − 1)!! := (l − 1) · (l − 3) · . . . · 1.

Proof. A self-conjugate permutation τ on a set L of l = 2m elements is the
product of m disjoint 2-cycles, and the the result follows from Lemma B.2. �



96 B. COMPARISON OF FATGRAPH GENERATION METHODS

Combining Lemma B.1 and B.3, we immediately get the following estimate:
(2m− 1)!!

2m
6 N ′2(g, n) 6 (2m− 1)!!, m = mmin(g, n),

where the upper bound comes from assuming that no two clovers can be transformed
one into the other by a rotation, and the lower bound comes from considering all
clovers as part of the same equivalence class.

In order to create a trivalent fatgraph from a clover, we replace the vertex with a
full binary tree with l = 2m leaves; equivalently, we identify the leaves of the tree
according to the same “gluing pattern” that identifies half-edges in the clover.

More precisely, let G0 = (L;σ0, σ1, σ2) be a clover, with L = {1, . . . , 2m} and
σ0 = (12 . . . 2m) as above. Let L′ be set of leaves of a chosen binary tree T and
f : L′ → L a bijection. Now τ := f−1 ◦ σ1 ◦ f is a fixed-point free involution on L′:
by identifying leaves of T according to τ , we get a trivalent fatgraph G, which we
say is obtained by plugging T into G0 (by means of f).

Given a permutation φ′ on L′, the map f ′ = f ◦ φ′ is a bijection and we have:

τ ′ = f ′
−1 ◦ σ1 ◦ f ′ = φ′

−1 ◦ (f−1 ◦ σ1 ◦ f) ◦ φ′ = φ′
−1 ◦ τ ◦ φ′,

which is an involution on L′ conjugate to τ . Conversely, if σ′1 = φ−1 ◦ σ1 ◦ φ is
conjugate to σ1, then f ′ = φ ◦ f : L′ → L is again a bijection, hence:

f−1 ◦ σ′1 ◦ f = (f−1 ◦ φ−1) ◦ σ1 ◦ (φ ◦ f) = f ′
−1 ◦ σ1 ◦ f ′,

which is the involution defining the attachment map of T to G0 by means of f ′.
Since any two involutions are conjugate, we can fix the map f once and for all
binary trees with the same number of leaves, and only let the involution σ1 (i.e.,
the clover G0) vary.

Therefore N2(g, n) = N ′2(g, n) ·Y (mmin(g, n)), where Y (l) is the count of full binary
trees with l leaves. The number Y (l) is given by the (l − 1)-th Catalan number:

Y (l) =
(2l − 2)!

(l − 1)! · l!
.

Hence from (2) we get:

N−2 (g, n) 6 N2(g, n) 6 N+
2 (g, n),

where:

N−2 (g, n) :=
1

2m
· (4m− 2)!

(2m− 2)!!(2m)!
,

N+
2 (g, n) :=

(4m− 2)!

(2m− 2)!!(2m)!
, (2.2)

m := mmin(g, n).

3. Generation from permutations

As in the previous section, represent a fatgraph G as (L;σ0, σ1, σ2) where L =
{1, . . . , 2m}. Here we count the number of trivalent fatgraphs that are generated
by naively constructing a fatgraph from its combinatorial definition.

If G is trivalent, then σ0 is a product of disjoint 3-cycles; by Lemma B.2, the number
of such σ0 is:

C(3, k) = (l − 1)(l − 2) · (l − 4)(l − 5) · . . . · 2 · 1, l = 2m = 3k (3.1)
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For each chosen σ0, each choice of a self-conjugate permutation σ1 gives rise to a
trivalent (g, n)-fatgraph; by Lemma B.3 there are exactly (2m − 1)!! such choices.
Therefore, we have:

N3(g, n) = (2m− 1)!! · C(3, 2m/3) = (2m− 1)!! · (2m− 1)(2m− 2)·
·(2m− 4)(2m− 5) · . . . · 2 · 1,

(3.2)

where m = mmax(g, n).



APPENDIX C

Fatgraphs of M0,4

This appendix is a complete catalog of all the fatgraphs with g = 0 and n = 4.
It is provided as an example of capabilities of the algorithms described in Chap-
ter 3, and as a demo of the features implemented in the software FatGHoL. Other
fatgraphs catalogs are available from the FatGHoL website at http://code.google.
com/p/fatghol/downloads/list.

There are a total of 21 undecorated fatgraphs in the Kontsevich graph complex of
M0,4, originating 327 marked ones.

In the following, we denote Gm,j the j-th graph in the set of undecorated fatgraphs
with m edges; the symbol G(k)

m,j denotes the k-th inequivalent marking of Gm,j .

Fatgraph vertices are marked with lowercase latin letters “a”, “b”, “c”, etc.; edges
are marked with an arabic numeral starting from “1”; boundary cycles are denoted
by lowercase greek letters “α”, “β”, etc.

Automorphisms are specified by their action on the set of vertices, edges, and
boundary cycles: for each automorphism Ak, a table line lists how it permutes
vertices, edges and boundary cycles relative to the identity morphism A0. The
automorphism table is printed only if the automorphism group is non-trivial.

Automorphisms that reverse the orientation of the unmarked fatgraph are indicated
with a “†” symbol in the automorphism table; those that reverse the orientation of
the marked fatgraphs are distinguished with a “‡” sign.

If a fatgraph is orientable, a “Markings” section lists all the inequivalent ways of
assigning distinct numbers {0, . . . , n − 1} to the boundary cycles; this is of course
a set of representatives for the orbits of Sn under the action of Aut(G).

A separate section lists the differential of marked fatgraphs; graphs with null dif-
ferential are omitted. If no marked fatgraph has a non-zero differential, the entire
section is dropped.

Boundary cycles are specified using a “sequence of corners” notation: each corner
is represented as Lp q where L is a latin letter indicating a vertex, and p, q are the
attachment indices of the incoming and outgoing edges, respectively. Attachment
indices match the Python representation of the vertex: e.g., if a=Vertex([0,0,1]),
the two legs of edge 0 have attachment indices 0 and 1, and the boundary cycle
enclosed by them is represented by the (single) corner a0 1.

1. Fatgraphs with 3 edges / 1 vertex

There are 2 unmarked fatgraphs in this section, originating 40 marked fatgraphs
(20 orientable, and 20 nonorientable).
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1.1. The Fatgraph G3,0 (8 orientable markings).

aa

0

aa

1

aa
2

Fatgraph([
Vertex([0, 0, 1, 1, 2, 2]),# a

])

1.1.1. Boundary cycles.

α = ( a0 1)

β = ( a1 2 → a3 4 → a5 0)

γ = ( a2 3)

δ = ( a4 5)

1.1.2. Automorphisms.

A0 a 0 1 2 α β γ δ
A1
‡ a 1 2 0 γ β δ α

A2
‡ a 2 0 1 δ β α γ

1.1.3. Markings.

G
(0)
3,0 G

(1)
3,0 G

(2)
3,0 G

(3)
3,0 G

(4)
3,0 G

(5)
3,0 G

(6)
3,0 G

(7)
3,0

α 0 0 0 0 0 0 1 1
β 1 1 2 2 3 3 0 0
γ 2 3 1 3 1 2 2 3
δ 3 2 3 1 2 1 3 2

1.2. The Fatgraph G3,1 (non-orientable, 12 orientable markings).

aa0 aa
1

aa
2

Fatgraph([
Vertex([1, 0, 0, 1, 2, 2]),# a

])
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1.2.1. Boundary cycles.

α = ( a2 3 → a0 1)

β = ( a1 2)

γ = ( a3 4 → a5 0)

δ = ( a4 5)

1.2.2. Automorphisms.

A0 a 0 1 2 α β γ δ
A1
†‡ a 2 1 0 γ δ α β

1.2.3. Markings.

G
(0)
3,1 G

(1)
3,1 G

(2)
3,1 G

(3)
3,1 G

(4)
3,1 G

(5)
3,1 G

(6)
3,1 G

(7)
3,1

α 0 0 0 0 0 0 1 1
β 1 1 2 2 3 3 0 0
γ 2 3 1 3 1 2 2 3
δ 3 2 3 1 2 1 3 2

G
(8)
3,1 G

(9)
3,1 G

(10)
3,1 G

(11)
3,1

α 1 1 2 2
β 2 3 0 1
γ 3 2 3 3
δ 0 0 1 0

2. Fatgraphs with 4 edges / 2 vertices

There are 6 unmarked fatgraphs in this section, originating 198 marked fatgraphs
(99 orientable, and 99 nonorientable).

2.1. The Fatgraph G4,0 (24 orientable markings).

aa

0

aa

1

a b
2
bb

3

Fatgraph([
Vertex([0, 0, 1, 1, 2]),# a
Vertex([3, 3, 2]), # b

])
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2.1.1. Boundary cycles.

α = ( a0 1)

β = ( a1 2 → b2 0 → a4 0 → a3 4 → b1 2)

γ = ( a2 3)

δ = ( b0 1)

2.1.2. Markings. Fatgraph G4,0 only has the identity automorphism, so the
marked fatgraphs G(0)

4,0 to G(24)
4,0 are formed by decorating boundary cycles of G4,0

with all permutations of (0, 1, 2, 3) in lexicographic order. See Section 5 “Markings
of fatgraphs with trivial automorphisms” for a complete table.

2.2. The Fatgraph G4,1 (12 orientable markings).

a b

0

aa
1

a b
2
bb

3 Fatgraph([
Vertex([1, 1, 2, 0]),# a
Vertex([0, 2, 3, 3]),# b

])

2.2.1. Boundary cycles.

α = ( a0 1)

β = ( a1 2 → a3 0 → b3 0 → b1 2)

γ = ( a2 3 → b0 1)

δ = ( b2 3)

2.2.2. Automorphisms.

A0 a b 0 1 2 3 α β γ δ
A1
‡ b a 2 3 0 1 δ β γ α

2.2.3. Markings.

G
(0)
4,1 G

(1)
4,1 G

(2)
4,1 G

(3)
4,1 G

(4)
4,1 G

(5)
4,1 G

(6)
4,1 G

(7)
4,1

α 0 0 0 0 0 0 1 1
β 1 1 2 2 3 3 0 0
γ 2 3 1 3 1 2 2 3
δ 3 2 3 1 2 1 3 2

G
(8)
4,1 G

(9)
4,1 G

(10)
4,1 G

(11)
4,1

α 1 1 2 2
β 2 3 0 1
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(continued.)
γ 0 0 1 0
δ 3 2 3 3

2.3. The Fatgraph G4,2 (24 orientable markings).

aa

0

aa

1

a b
2
bb

3

Fatgraph([
Vertex([0, 0, 1, 2, 1]),# a
Vertex([3, 3, 2]), # b

])

2.3.1. Boundary cycles.

α = ( a0 1)

β = ( a1 2 → a4 0)

γ = ( a2 3 → b2 0 → a3 4 → b1 2)

δ = ( b0 1)

2.3.2. Markings. Fatgraph G4,2 only has the identity automorphism, so the
marked fatgraphs G(0)

4,2 to G(24)
4,2 are formed by decorating boundary cycles of G4,2

with all permutations of (0, 1, 2, 3) in lexicographic order. See Section 5 “Markings
of fatgraphs with trivial automorphisms” for a complete table.

2.4. The Fatgraph G4,3 (non-orientable, 12 orientable markings).

a b
0

aa
1

a b

2

bb

3 Fatgraph([
Vertex([1, 1, 2, 0]),# a
Vertex([2, 0, 3, 3]),# b

])

2.4.1. Boundary cycles.

α = ( a0 1)

β = ( a1 2 → a3 0 → b0 1)

γ = ( a2 3 → b3 0 → b1 2)

δ = ( b2 3)
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2.4.2. Automorphisms.

A0 a b 0 1 2 3 α β γ δ
A1
†‡ b a 0 3 2 1 δ γ β α

2.4.3. Markings.

G
(0)
4,3 G

(1)
4,3 G

(2)
4,3 G

(3)
4,3 G

(4)
4,3 G

(5)
4,3 G

(6)
4,3 G

(7)
4,3

α 0 0 0 0 0 0 1 1
β 1 1 2 2 3 3 0 0
γ 2 3 1 3 1 2 2 3
δ 3 2 3 1 2 1 3 2

G
(8)
4,3 G

(9)
4,3 G

(10)
4,3 G

(11)
4,3

α 1 1 2 2
β 2 3 0 1
γ 0 0 1 0
δ 3 2 3 3

2.5. The Fatgraph G4,4 (24 orientable markings).

a b

0

a b
1

a b
2

aa

3

Fatgraph([
Vertex([1, 0, 2, 3, 3]),# a
Vertex([1, 2, 0]), # b

])

2.5.1. Boundary cycles.

α = ( b2 0 → a0 1)

β = ( a1 2 → b1 2)

γ = ( a2 3 → b0 1 → a4 0)

δ = ( a3 4)

2.5.2. Markings. Fatgraph G4,4 only has the identity automorphism, so the
marked fatgraphs G(0)

4,4 to G(24)
4,4 are formed by decorating boundary cycles of G4,4

with all permutations of (0, 1, 2, 3) in lexicographic order. See Section 5 “Markings
of fatgraphs with trivial automorphisms” for a complete table.
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2.6. The Fatgraph G4,5 (non-orientable, 3 orientable markings).

a b

0

a b

1

a b
2

a b

3 Fatgraph([
Vertex([1, 3, 2, 0]),# a
Vertex([0, 2, 3, 1]),# b

])

2.6.1. Boundary cycles.

α = ( a0 1 → b2 3)

β = ( a1 2 → b1 2)

γ = ( a2 3 → b0 1)

δ = ( a3 0 → b3 0)

2.6.2. Automorphisms.

A0 a b 0 1 2 3 α β γ δ
A1
†‡ a b 1 3 0 2 β γ δ α

A2
‡ a b 3 2 1 0 γ δ α β

A3
†‡ a b 2 0 3 1 δ α β γ

A4
‡ b a 1 0 3 2 γ β α δ

A5
†‡ b a 0 2 1 3 β α δ γ

A6
‡ b a 2 3 0 1 α δ γ β

A7
†‡ b a 3 1 2 0 δ γ β α

2.6.3. Markings.

G
(0)
4,5 G

(1)
4,5 G

(2)
4,5

α 0 0 0
β 1 1 2
γ 2 3 1
δ 3 2 3

3. Fatgraphs with 5 edges / 3 vertices

There are 7 unmarked fatgraphs in this section, originating 288 marked fatgraphs
(144 orientable, and 144 nonorientable).
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3.1. The Fatgraph G5,0 (24 orientable markings).

aa
0

a

b
1

bb
2

b

c

3

cc
4

Fatgraph([
Vertex([0, 1, 0]), # a
Vertex([1, 2, 2, 3]),# b
Vertex([4, 4, 3]), # c

])

3.1.1. Boundary cycles.

α = ( a1 2 → a0 1 → b2 3 → b3 0 → c1 2 → c2 0 → b0 1)

β = ( a2 0)

γ = ( b1 2)

δ = ( c0 1)

3.1.2. Markings. Fatgraph G5,0 only has the identity automorphism, so the
marked fatgraphs G(0)

5,0 to G(24)
5,0 are formed by decorating boundary cycles of G5,0

with all permutations of (0, 1, 2, 3) in lexicographic order. See Section 5 “Markings
of fatgraphs with trivial automorphisms” for a complete table.

3.1.3. Differentials.

D(G
(0)
5,0) = +G

(0)
4,0

D(G
(1)
5,0) = +G

(1)
4,0

D(G
(2)
5,0) = +G

(2)
4,0

D(G
(3)
5,0) = +G

(3)
4,0

D(G
(4)
5,0) = +G

(4)
4,0

D(G
(5)
5,0) = +G

(5)
4,0

D(G
(8)
5,0) = +G

(3)
4,0

D(G
(9)
5,0) = +G

(2)
4,0

D(G
(10)
5,0 ) = +G

(5)
4,0

D(G
(11)
5,0 ) = +G

(4)
4,0

D(G
(14)
5,0 ) = +G

(1)
4,0

D(G
(15)
5,0 ) = +G

(0)
4,0

D(G
(16)
5,0 ) = +G

(4)
4,0

D(G
(17)
5,0 ) = +G

(5)
4,0

D(G
(20)
5,0 ) = +G

(0)
4,0

D(G
(21)
5,0 ) = +G

(1)
4,0

D(G
(22)
5,0 ) = +G

(2)
4,0

D(G
(23)
5,0 ) = +G

(3)
4,0
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3.2. The Fatgraph G5,1 (24 orientable markings).

a

b

0

aa
1

a

b

2

b

c

3

cc
4

Fatgraph([
Vertex([1, 1, 2, 0]),# a
Vertex([0, 2, 3]), # b
Vertex([4, 4, 3]), # c

])

3.2.1. Boundary cycles.

α = ( a0 1)

β = ( a1 2 → c2 0 → a3 0 → c1 2 → b2 0 → b1 2)

γ = ( a2 3 → b0 1)

δ = ( c0 1)

3.2.2. Markings. Fatgraph G5,1 only has the identity automorphism, so the
marked fatgraphs G(0)

5,1 to G(24)
5,1 are formed by decorating boundary cycles of G5,1

with all permutations of (0, 1, 2, 3) in lexicographic order. See Section 5 “Markings
of fatgraphs with trivial automorphisms” for a complete table.

3.2.3. Differentials.

D(G
(0)
5,1) = +G

(0)
4,0 +G

(1)
4,0

D(G
(1)
5,1) = +G

(0)
4,0 +G

(1)
4,0

D(G
(2)
5,1) = +G

(2)
4,0 +G

(3)
4,0

D(G
(3)
5,1) = +G

(2)
4,0 +G

(3)
4,0

D(G
(4)
5,1) = +G

(4)
4,0 +G

(5)
4,0

D(G
(5)
5,1) = +G

(4)
4,0 +G

(5)
4,0

D(G
(8)
5,1) = +G

(2)
4,0 +G

(3)
4,0

D(G
(9)
5,1) = +G

(4)
4,0 +G

(5)
4,0

D(G
(11)
5,1 ) = +G

(0)
4,0 +G

(1)
4,0
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3.3. The Fatgraph G5,2 (12 orientable markings).

aa
0

a

b
1

bb
2

b

c

3

cc
4

Fatgraph([
Vertex([0, 1, 0]), # a
Vertex([1, 2, 3, 2]),# b
Vertex([4, 4, 3]), # c

])

3.3.1. Boundary cycles.

α = ( a1 2 → b3 0 → a0 1 → b0 1)

β = ( a2 0)

γ = ( b2 3 → c2 0 → c1 2 → b1 2)

δ = ( c0 1)

3.3.2. Automorphisms.

A0 a b c 0 1 2 3 4 α β γ δ
A1
‡ c b a 4 3 2 1 0 γ δ α β

3.3.3. Markings.

G
(0)
5,2 G

(1)
5,2 G

(2)
5,2 G

(3)
5,2 G

(4)
5,2 G

(5)
5,2 G

(6)
5,2 G

(7)
5,2

α 0 0 0 0 0 0 1 1
β 1 1 2 2 3 3 0 0
γ 2 3 1 3 1 2 2 3
δ 3 2 3 1 2 1 3 2

G
(8)
5,2 G

(9)
5,2 G

(10)
5,2 G

(11)
5,2

α 1 1 2 2
β 2 3 0 1
γ 3 2 3 3
δ 0 0 1 0
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3.4. The Fatgraph G5,3 (24 orientable markings).

a

b

0 aa
1

a

b

2

b

c

3

cc
4

Fatgraph([
Vertex([1, 1, 2, 0]),# a
Vertex([2, 0, 3]), # b
Vertex([4, 4, 3]), # c

])

3.4.1. Boundary cycles.

α = ( a0 1)

β = ( a1 2 → a3 0 → b0 1)

γ = ( a2 3 → b2 0 → c2 0 → c1 2 → b1 2)

δ = ( c0 1)

3.4.2. Markings. Fatgraph G5,3 only has the identity automorphism, so the
marked fatgraphs G(0)

5,3 to G(24)
5,3 are formed by decorating boundary cycles of G5,3

with all permutations of (0, 1, 2, 3) in lexicographic order. See Section 5 “Markings
of fatgraphs with trivial automorphisms” for a complete table.

3.4.3. Differentials.

D(G
(12)
5,3 ) = +G

(2)
4,0

D(G
(13)
5,3 ) = +G

(4)
4,0

D(G
(14)
5,3 ) = +G

(0)
4,0

D(G
(15)
5,3 ) = +G

(5)
4,0

D(G
(16)
5,3 ) = +G

(1)
4,0

D(G
(17)
5,3 ) = +G

(3)
4,0

D(G
(18)
5,3 ) = +G

(3)
4,0

D(G
(19)
5,3 ) = +G

(5)
4,0

D(G
(21)
5,3 ) = +G

(4)
4,0

D(G
(23)
5,3 ) = +G

(2)
4,0
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3.5. The Fatgraph G5,4 (24 orientable markings).

a

b 0

a

b
1

a

b

2 a

c

3

cc
4

Fatgraph([
Vertex([1, 0, 2, 3]),# a
Vertex([1, 2, 0]), # b
Vertex([4, 4, 3]), # c

])

3.5.1. Boundary cycles.

α = ( b2 0 → a0 1)

β = ( a1 2 → b1 2)

γ = ( a2 3 → a3 0 → b0 1 → c1 2 → c2 0)

δ = ( c0 1)

3.5.2. Markings. Fatgraph G5,4 only has the identity automorphism, so the
marked fatgraphs G(0)

5,4 to G(24)
5,4 are formed by decorating boundary cycles of G5,4

with all permutations of (0, 1, 2, 3) in lexicographic order. See Section 5 “Markings
of fatgraphs with trivial automorphisms” for a complete table.

3.5.3. Differentials.

D(G
(0)
5,4) = +G

(1)
4,0

D(G
(1)
5,4) = +G

(4)
4,0

D(G
(3)
5,4) = +G

(5)
4,0

D(G
(5)
5,4) = +G

(0)
4,0

D(G
(6)
5,4) = +G

(0)
4,0

D(G
(7)
5,4) = +G

(2)
4,0

D(G
(9)
5,4) = +G

(3)
4,0

D(G
(11)
5,4 ) = +G

(1)
4,0
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3.6. The Fatgraph G5,5 (24 orientable markings).

a

c 0

a

b 1

a

b

2

b

c

3

cc4

Fatgraph([
Vertex([1, 0, 2]), # a
Vertex([2, 3, 1]), # b
Vertex([0, 3, 4, 4]),# c

])

3.6.1. Boundary cycles.

α = ( a0 1 → c0 1 → b1 2)

β = ( a1 2 → c3 0 → c1 2 → b0 1)

γ = ( a2 0 → b2 0)

δ = ( c2 3)

3.6.2. Markings. Fatgraph G5,5 only has the identity automorphism, so the
marked fatgraphs G(0)

5,5 to G(24)
5,5 are formed by decorating boundary cycles of G5,5

with all permutations of (0, 1, 2, 3) in lexicographic order. See Section 5 “Markings
of fatgraphs with trivial automorphisms” for a complete table.

3.7. The Fatgraph G5,6 (12 orientable markings).

a

b

0

a

c

1

b

c

2
a

b

3 a

c 4

Fatgraph([
Vertex([1, 4, 3, 0]),# a
Vertex([0, 3, 2]), # b
Vertex([4, 1, 2]), # c

])

3.7.1. Boundary cycles.

α = ( a0 1 → c0 1)

β = ( a1 2 → c2 0 → b1 2)

γ = ( a2 3 → b0 1)

δ = ( a3 0 → b2 0 → c1 2)
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3.7.2. Automorphisms.

A0 a b c 0 1 2 3 4 α β γ δ
A1
‡ a c b 4 3 2 1 0 γ δ α β

3.7.3. Markings.

G
(0)
5,6 G

(1)
5,6 G

(2)
5,6 G

(3)
5,6 G

(4)
5,6 G

(5)
5,6 G

(6)
5,6 G

(7)
5,6

α 0 0 0 0 0 0 1 1
β 1 1 2 2 3 3 0 0
γ 2 3 1 3 1 2 2 3
δ 3 2 3 1 2 1 3 2

G
(8)
5,6 G

(9)
5,6 G

(10)
5,6 G

(11)
5,6

α 1 1 2 2
β 2 3 0 1
γ 3 2 3 3
δ 0 0 1 0

4. Fatgraphs with 6 edges / 4 vertices

There are 6 unmarked fatgraphs in this section, originating 128 marked fatgraphs
(64 orientable, and 64 nonorientable).

4.1. The Fatgraph G6,0 (non-orientable, 12 orientable markings).

b

c

0

aa
1

a

b2 b

c
3

c

d

4

dd

5

Fatgraph([
Vertex([1, 2, 1]),# a
Vertex([2, 3, 0]),# b
Vertex([0, 3, 4]),# c
Vertex([5, 5, 4]),# d

])
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4.1.1. Boundary cycles.

α = ( d2 0 → a1 2 → a0 1 → c2 0 → c1 2 → b2 0 → b0 1 → d1 2)

β = ( a2 0)

γ = ( c0 1 → b1 2)

δ = ( d0 1)

4.1.2. Automorphisms.

A0 a b c d 0 1 2 3 4 5 α β γ δ
A1
†‡ d c b a 3 5 4 0 2 1 α δ γ β

4.1.3. Markings.

G
(0)
6,0 G

(1)
6,0 G

(2)
6,0 G

(3)
6,0 G

(4)
6,0 G

(5)
6,0 G

(6)
6,0 G

(7)
6,0

α 0 0 0 1 1 1 2 2
β 1 1 2 0 0 2 0 0
γ 2 3 1 2 3 0 1 3
δ 3 2 3 3 2 3 3 1

G
(8)
6,0 G

(9)
6,0 G

(10)
6,0 G

(11)
6,0

α 2 3 3 3
β 1 0 0 1
γ 0 1 2 0
δ 3 2 1 2

4.1.4. Differentials.

D(G
(0)
6,0) = −G(6)

5,0

D(G
(4)
6,0) = +G

(6)
5,0

D(G
(6)
6,0) = −G(0)

5,0

D(G
(7)
6,0) = −G(1)

5,0

D(G
(8)
6,0) = +G

(1)
5,0

D(G
(10)
6,0 ) = +G

(0)
5,0
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4.2. The Fatgraph G6,1 (12 orientable markings).

b

c 0 aa
1

a

b2 b

c

3

c

d

4

dd

5

Fatgraph([
Vertex([1, 2, 1]),# a
Vertex([2, 3, 0]),# b
Vertex([3, 0, 4]),# c
Vertex([5, 5, 4]),# d

])

4.2.1. Boundary cycles.

α = ( a1 2 → b2 0 → a0 1 → c0 1 → b0 1)

β = ( a2 0)

γ = ( d2 0 → c2 0 → d1 2 → c1 2 → b1 2)

δ = ( d0 1)

4.2.2. Automorphisms.

A0 a b c d 0 1 2 3 4 5 α β γ δ
A1
‡ d c b a 0 5 4 3 2 1 γ δ α β

4.2.3. Markings.

G
(0)
6,1 G

(1)
6,1 G

(2)
6,1 G

(3)
6,1 G

(4)
6,1 G

(5)
6,1 G

(6)
6,1 G

(7)
6,1

α 0 0 0 0 0 0 1 1
β 1 1 2 2 3 3 0 0
γ 2 3 1 3 1 2 2 3
δ 3 2 3 1 2 1 3 2

G
(8)
6,1 G

(9)
6,1 G

(10)
6,1 G

(11)
6,1

α 1 1 2 2
β 2 3 0 1
γ 3 2 3 3
δ 0 0 1 0
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4.2.4. Differentials.

D(G
(0)
6,1) = −G(2)

5,0

D(G
(1)
6,1) = −G(3)

5,0

D(G
(2)
6,1) = +G

(3)
5,0

D(G
(4)
6,1) = +G

(2)
5,0

D(G
(6)
6,1) = −G(4)

5,0

D(G
(7)
6,1) = −G(5)

5,0

D(G
(8)
6,1) = +G

(5)
5,0

D(G
(10)
6,1 ) = +G

(4)
5,0

4.3. The Fatgraph G6,2 (8 orientable markings).

bb

0

aa
1

ac

2

b

c 3c

d

4

dd

5

Fatgraph([
Vertex([1, 2, 1]),# a
Vertex([3, 0, 0]),# b
Vertex([2, 3, 4]),# c
Vertex([5, 5, 4]),# d

])

4.3.1. Boundary cycles.

α = ( d2 0 → c0 1 → a1 2 → a0 1 → b0 1 → c1 2 → b2 0 → c2 0 → d1 2)

β = ( a2 0)

γ = ( b1 2)

δ = ( d0 1)

4.3.2. Automorphisms.

A0 a b c d 0 1 2 3 4 5 α β γ δ
A1
‡ b d c a 5 0 3 4 2 1 α γ δ β

A2
‡ d a c b 1 5 4 2 3 0 α δ β γ

4.3.3. Markings.

G
(0)
6,2 G

(1)
6,2 G

(2)
6,2 G

(3)
6,2 G

(4)
6,2 G

(5)
6,2 G

(6)
6,2 G

(7)
6,2

α 0 0 1 1 2 2 3 3
β 1 1 0 0 0 0 0 0
γ 2 3 2 3 1 3 1 2
δ 3 2 3 2 3 1 2 1



4. FATGRAPHS WITH 6 EDGES / 4 VERTICES 115

4.3.4. Differentials.

D(G
(0)
6,2) = +G

(0)
5,0

D(G
(1)
6,2) = +G

(1)
5,0

D(G
(2)
6,2) = +G

(2)
5,0

D(G
(3)
6,2) = +G

(3)
5,0

D(G
(4)
6,2) = +G

(4)
5,0

D(G
(5)
6,2) = +G

(5)
5,0

D(G
(6)
6,2) = +G

(6)
5,0

4.4. The Fatgraph G6,3 (24 orientable markings).

ac

0

a

b
1

a

b
2

b

c
3

c

d

4

dd

5

Fatgraph([
Vertex([1, 0, 2]),# a
Vertex([2, 3, 1]),# b
Vertex([0, 3, 4]),# c
Vertex([5, 5, 4]),# d

])

4.4.1. Boundary cycles.

α = ( a0 1 → c0 1 → b1 2)

β = ( d2 0 → a1 2 → c2 0 → c1 2 → b0 1 → d1 2)

γ = ( a2 0 → b2 0)

δ = ( d0 1)

4.4.2. Markings. Fatgraph G6,3 only has the identity automorphism, so the
marked fatgraphs G(0)

6,3 to G(24)
6,3 are formed by decorating boundary cycles of G6,3

with all permutations of (0, 1, 2, 3) in lexicographic order. See Section 5 “Markings
of fatgraphs with trivial automorphisms” for a complete table.

4.4.3. Differentials.

D(G
(0)
6,3) = +G

(2)
5,0

D(G
(2)
6,3) = +G

(4)
5,0

D(G
(4)
6,3) = +G

(6)
5,0

D(G
(6)
6,3) = +G

(0)
5,0

D(G
(8)
6,3) = +G

(5)
5,0

D(G
(12)
6,3 ) = +G

(1)
5,0

D(G
(14)
6,3 ) = +G

(3)
5,0



116 C. FATGRAPHS OF M0,4

4.5. The Fatgraph G6,4 (non-orientable, 6 orientable markings).

b

c

0

a

d

1

a

b2

c

d

3

b

c
4

a

d
5

Fatgraph([
Vertex([5, 2, 1]),# a
Vertex([2, 4, 0]),# b
Vertex([0, 4, 3]),# c
Vertex([5, 1, 3]),# d

])

4.5.1. Boundary cycles.

α = ( d2 0 → a0 1 → c1 2 → b0 1)

β = ( a1 2 → b2 0 → d1 2 → c2 0)

γ = ( a2 0 → d0 1)

δ = ( c0 1 → b1 2)

4.5.2. Automorphisms.

A0 a b c d 0 1 2 3 4 5 α β γ δ
A1
‡ b a d c 5 4 2 3 1 0 β α δ γ

A2
†‡ c d a b 1 0 3 2 5 4 α β δ γ

A3
†‡ d c b a 4 5 3 2 0 1 β α γ δ

4.5.3. Markings.

G
(0)
6,4 G

(1)
6,4 G

(2)
6,4 G

(3)
6,4 G

(4)
6,4 G

(5)
6,4

α 0 0 0 1 1 2
β 1 2 3 2 3 3
γ 2 1 1 0 0 0
δ 3 3 2 3 2 1
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4.6. The Fatgraph G6,5 (2 orientable markings).

ac 0 a

d
1

a

b
2

c

d

3

b

c

4

b

d

5

Fatgraph([
Vertex([1, 0, 2]),# a
Vertex([2, 4, 5]),# b
Vertex([4, 0, 3]),# c
Vertex([1, 5, 3]),# d

])

4.6.1. Boundary cycles.

α = ( d2 0 → a0 1 → c1 2)

β = ( a1 2 → c0 1 → b0 1)

γ = ( a2 0 → b2 0 → d0 1)

δ = ( c2 0 → d1 2 → b1 2)

4.6.2. Automorphisms.

A0 a b c d 0 1 2 3 4 5 α β γ δ
A1
‡ a d b c 2 0 1 4 5 3 β γ α δ

A2
‡ a c d b 1 2 0 5 3 4 γ α β δ

A3
‡ b d c a 4 2 5 0 3 1 β δ γ α

A4
‡ b a d c 5 4 2 3 1 0 δ γ β α

A5
‡ b c a d 2 5 4 1 0 3 γ β δ α

A6
‡ c d a b 0 4 3 2 1 5 β α δ γ

A7
‡ c b d a 3 0 4 1 5 2 α δ β γ

A8
‡ c a b d 4 3 0 5 2 1 δ β α γ

A9
‡ d c b a 5 1 3 2 4 0 γ δ α β

A10
‡ d a c b 3 5 1 4 0 2 δ α γ β

A11
‡ d b a c 1 3 5 0 2 4 α γ δ β

4.6.3. Markings.

G
(0)
6,5 G

(1)
6,5

α 0 0
β 1 1
γ 2 3
δ 3 2
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5. Markings of fatgraphs with trivial automorphisms

This section shows the numbering of marked fatgraphs when the base unmarked
fatgraph G has only the trivial automorphism.

G(0) G(1) G(2) G(3) G(4) G(5) G(6) G(7)

α 0 0 0 0 0 0 1 1
β 1 1 2 2 3 3 0 0
γ 2 3 1 3 1 2 2 3
δ 3 2 3 1 2 1 3 2

G(8) G(9) G(10) G(11) G(12) G(13) G(14) G(15)

α 1 1 1 1 2 2 2 2
β 2 2 3 3 0 0 1 1
γ 0 3 0 2 1 3 0 3
δ 3 0 2 0 3 1 3 0

G(16) G(17) G(18) G(19) G(20) G(21) G(22) G(23)

α 2 2 3 3 3 3 3 3
β 3 3 0 0 1 1 2 2
γ 0 1 1 2 0 2 0 1
δ 1 0 2 1 2 0 1 0



APPENDIX D

Rheinfall benchmark data

The Sparse Integer Matrices Collection [15] is an online compilation of integer
matrices from various sources, curated by Jean-Guillaume Dumas. It has been
used for benchmarking the performance and other characteristics of the “Rheinfall”
algorithm for Gaussian elimination (Chapter 4).

1. Features of the matrices in the SIMC collection

The following table recaps the main features of the matrices in the SIMC collection.
The matrices are grouped according to the original subdivision in the SIMC website.
Figures D.1 and D.2 provide a graphical depiction of the data in the table.

Matrix Rows Columns Nonzero Density%

BIBD

BIBD_22_8_231x319770 231 319770 8953560 12.1212
bibd.11.5 55 462 4620 18.1818
bibd.12.4 66 495 2970 9.0909
bibd.15.3 105 455 1365 2.8571
bibd.17.3 136 680 2040 2.2059
bibd.9.3 36 84 252 8.3333
bibd.9.5 36 126 1260 27.7778
bibd_12_5_66x792 66 792 7920 15.1515
bibd_13_6_78x1716 78 1716 25740 19.2308
bibd_14_7_91x3432 91 3432 72072 23.0769
bibd_15_7_105x6435 105 6435 135135 20.0000
bibd_16_8_120x12870 120 12870 360360 23.3333
bibd_17_4_136x2380 136 2380 14280 4.4118
bibd_17_8_136x24310 136 24310 680680 20.5882
bibd_18_9_153x48620 153 48620 1750320 23.5294
bibd_19_9_171x92378 171 92378 3325608 21.0526
bibd_20_10_190x184756 190 184756 8314020 23.6842
bibd_49_3_1176x18424 1176 18424 55272 0.2551
bibd_81_2_3240x3240 3240 3240 3240 0.0309
bibd_81_3_3240x85320 3240 85320 255960 0.0926

CAG

mat1916 1916 1916 195985 5.3387
mat364 364 364 13585 10.2531
mat72 72 72 1012 19.5216

Forest

TF10 99 107 622 5.8718
TF11 216 236 1607 3.1525
TF12 488 552 4231 1.5707
TF13 1121 1302 11185 0.7663

119
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Matrix Rows Columns Nonzero Density%

TF14 2644 3160 29862 0.3574
TF15 6334 7742 80057 0.1633
TF16 15437 19321 216173 0.0725
TF17 38132 48630 586218 0.0316
TF18 95368 123867 1597545 0.0135
TF19 241029 317955 4370721 5.703× 10−03

Franz

10164x1740 10164 1740 40424 0.2286
1280x2800 1280 2800 11520 0.3214
16728x7176 16728 7176 100368 0.0836
19588x4164 19588 4164 97508 0.1195
19588x4164bis 19588 4164 97508 0.1195
47104x30144bis 47104 30144 329728 0.0232
6784x5252 6784 5252 46528 0.1306
7382x2882 7382 2882 44056 0.2071
7576x3016 7576 3016 45456 0.1989
big1sparse 2240 768 5120 0.2976
big2sparse 4032 4480 21504 0.1190

G5

IG5-10 652 976 10273 1.6144
IG5-11 1227 1692 22110 1.0650
IG5-12 2296 2875 46260 0.7008
IG5-13 3994 4731 91209 0.4827
IG5-14 6735 7621 173337 0.3377
IG5-15 11369 11987 323509 0.2374
IG5-16 18846 18485 588326 0.1689
IG5-17 30162 27944 1035008 0.1228
IG5-18 47894 41550 1790490 0.0900
IG5-6 30 77 251 10.8658
IG5-7 62 150 549 5.9032
IG5-8 156 292 1711 3.7561
IG5-9 342 540 4570 2.4746

GL7d

GL7d10 1 60 8 13.3333
GL7d11 1019 60 1513 2.4746
GL7d12 8899 1019 37519 0.4137
GL7d13 47271 8899 356232 0.0847
GL7d14 171375 47271 1831183 0.0226
GL7d15 460261 171375 6080381 7.709× 10−03

GL7d23 105054 349443 2695430 7.342× 10−03

GL7d24 21074 105054 593892 0.0268
GL7d25 2798 21074 81671 0.1385
GL7d26 305 2798 7412 0.8685

Grobner

HFE18_96.in.sms 2372 4096 933343 9.6065
c8_mat11 4562 5761 2462970 9.3714
c8_mat11.I 4562 5761 2462970 9.3714
f855_mat9 2456 2511 171214 2.7763
f855_mat9.I 2456 2511 171214 2.7763
rkat7_mat5 694 738 38114 7.4416
robot24c1_mat5 404 302 15118 12.3910
robot24c1_mat5.J 302 404 15118 12.3910
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Matrix Rows Columns Nonzero Density%

Homology

D6-6 120576 23740 147240 5.144× 10−03

ch3-3.b1.18x9 18 9 36 22.2222
ch3-3.b2.6x18 6 18 18 16.6667
ch4-4.b1.72x16 72 16 144 12.5000
ch4-4.b2.96x72 96 72 288 4.1667
ch4-4.b3.24x96 24 96 96 4.1667
ch5-5.b1.200x25 200 25 400 8.0000
ch5-5.b2.600x200 600 200 1800 1.5000
ch5-5.b3.600x600 600 600 2400 0.6667
ch5-5.b4.120x600 120 600 600 0.8333
ch6-6.b1.450x36 450 36 900 5.5556
ch6-6.b2.2400x450 2400 450 7200 0.6667
ch6-6.b3.5400x2400 5400 2400 21600 0.1667
ch6-6.b4.4320x5400 4320 5400 21600 0.0926
ch6-6.b5.720x4320 720 4320 4320 0.1389
ch7-6.b1.630x42 630 42 1260 4.7619
ch7-6.b2.4200x630 4200 630 12600 0.4762
ch7-6.b3.12600x4200 12600 4200 50400 0.0952
ch7-6.b4.15120x12600 15120 12600 75600 0.0397
ch7-6.b5.5040x15120 5040 15120 30240 0.0397
ch7-7.b1.882x49 882 49 1764 4.0816
ch7-7.b2.7350x882 7350 882 22050 0.3401
ch7-7.b5.35280x52920 35280 52920 211680 0.0113
ch7-8.b1.1176x56 1176 56 2352 3.5714
ch7-8.b2.11760x1176 11760 1176 35280 0.2551
ch7-8.b3.58800x11760 58800 11760 235200 0.0340
ch7-8.b4.141120x58800 141120 58800 705600 8.503× 10−03

ch7-8.b5.141120x141120 141120 141120 846720 4.252× 10−03

ch7-9.b1.1512x63 1512 63 3024 3.1746
ch7-9.b2.17640x1512 17640 1512 52920 0.1984
ch7-9.b3.105840x17640 105840 17640 423360 0.0227
ch7-9.b4.317520x105840 317520 105840 1587600 4.724× 10−03

ch7-9.b5.423360x317520 423360 317520 2540160 1.890× 10−03

ch8-8.b1.1568x64 1568 64 3136 3.1250
ch8-8.b2.18816x1568 18816 1568 56448 0.1913
ch8-8.b3.117600x18816 117600 18816 470400 0.0213
ch8-8.b4.376320x117600 376320 117600 1881600 4.252× 10−03

ch8-8.b5.564480x376320 564480 376320 3386880 1.594× 10−03

cis.n4c6.b1.210x21 210 21 420 9.5238
cis.n4c6.b13.6300x25605 6300 25605 88200 0.0547
cis.n4c6.b14.920x6300 920 6300 13800 0.2381
cis.n4c6.b15.60x920 60 920 960 1.7391
cis.n4c6.b2.1330x210 1330 210 3990 1.4286
cis.n4c6.b3.5970x1330 5970 1330 23880 0.3008
cis.n4c6.b4.20058x5970 20058 5970 100290 0.0838
klein.b1.30x10 30 10 60 20.0000
klein.b2.20x30 20 30 60 10.0000
lutz30-23.b6.1716x3003 1716 3003 12012 0.2331
m133.b3.200200x200200 200200 200200 800800 1.998× 10−03

mk10.b1.630x45 630 45 1260 4.4444
mk10.b2.3150x630 3150 630 9450 0.4762
mk10.b3.4725x3150 4725 3150 18900 0.1270
mk10.b4.945x4725 945 4725 4725 0.1058
mk11.b1.990x55 990 55 1980 3.6364
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Matrix Rows Columns Nonzero Density%

mk11.b2.6930x990 6930 990 20790 0.3030
mk11.b3.17325x6930 17325 6930 69300 0.0577
mk11.b4.10395x17325 10395 17325 51975 0.0289
mk11.b4.9450x17325 9450 17325 47250 0.0289
mk12.b1.1485x66 1485 66 2970 3.0303
mk12.b2.13860x1485 13860 1485 41580 0.2020
mk12.b3.51975x13860 51975 13860 207900 0.0289
mk12.b4.62370x51975 62370 51975 311850 9.620× 10−03

mk12.b5.10395x62370 10395 62370 62370 9.620× 10−03

mk13.b5.135135x270270 135135 270270 810810 2.220× 10−03

mk9.b1.378x36 378 36 756 5.5556
mk9.b2.1260x378 1260 378 3780 0.7937
mk9.b3.945x1260 945 1260 3780 0.3175
n2c6.b1.105x15 105 15 210 13.3333
n2c6.b10.30x306 30 306 330 3.5948
n2c6.b2.455x105 455 105 1365 2.8571
n2c6.b3.1365x455 1365 455 5460 0.8791
n2c6.b4.3003x1365 3003 1365 15015 0.3663
n2c6.b5.4945x3003 4945 3003 29670 0.1998
n2c6.b6.5715x4945 5715 4945 40005 0.1416
n2c6.b7.3990x5715 3990 5715 31920 0.1400
n2c6.b8.1470x3990 1470 3990 13230 0.2256
n2c6.b9.306x1470 306 1470 3060 0.6803
n3c4.b1.15x6 15 6 30 33.3333
n3c4.b2.20x15 20 15 60 20.0000
n3c4.b3.15x20 15 20 60 20.0000
n3c4.b4.6x15 6 15 30 33.3333
n3c5.b1.45x10 45 10 90 20.0000
n3c5.b2.120x45 120 45 360 6.6667
n3c5.b3.210x120 210 120 840 3.3333
n3c5.b4.252x210 252 210 1260 2.3810
n3c5.b5.210x252 210 252 1260 2.3810
n3c5.b6.120x210 120 210 840 3.3333
n3c5.b7.30x120 30 120 240 6.6667
n3c6.b1.105x15 105 105 210 1.9048
n3c6.b10.675x2511 675 2511 7425 0.4381
n3c6.b11.60x675 60 675 720 1.7778
n3c6.b2.455x105 455 105 1365 2.8571
n3c6.b3.1365x455 1365 455 5460 0.8791
n3c6.b4.3003x1365 3003 1365 15015 0.3663
n3c6.b5.5005x3003 5005 3003 30030 0.1998
n3c6.b6.6435x5005 6435 5005 45045 0.1399
n3c6.b7.6435x6435 6435 6435 51480 0.1243
n3c6.b8.4935x6435 4935 6435 44415 0.1399
n3c6.b9.2511x4935 2511 4935 25110 0.2026
n4c5.b1.105x15 105 15 210 13.3333
n4c5.b10.120x630 120 630 1320 1.7460
n4c5.b11.10x120 10 120 120 10.0000
n4c5.b2.455x105 455 105 1365 2.8571
n4c5.b3.1350x455 1350 455 5400 0.8791
n4c5.b4.2852x1350 2852 1350 14260 0.3704
n4c5.b5.4340x2852 4340 2852 26040 0.2104
n4c5.b6.4735x4340 4735 4340 33145 0.1613
n4c5.b7.3635x4735 3635 4735 29080 0.1690
n4c5.b8.1895x3635 1895 3635 17055 0.2476
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Matrix Rows Columns Nonzero Density%

n4c5.b9.630x1895 630 1895 6300 0.5277
n4c6.b1.210x21 210 21 420 9.5238
n4c6.b10.132402x186558 132402 186558 1456422 5.896× 10−03

n4c6.b11.69235x132402 69235 132402 830820 9.063× 10−03

n4c6.b12.25605x69235 25605 69235 332865 0.0188
n4c6.b13.6300x25605 6300 25605 88200 0.0547
n4c6.b14.920x6300 920 6300 13800 0.2381
n4c6.b15.60x920 60 920 960 1.7391
n4c6.b2.1330x210 1330 210 3990 1.4286
n4c6.b3.5970x1330 5970 1330 23880 0.3008
n4c6.b4.20058x5970 20058 5970 100290 0.0838
n4c6.b5.51813x20058 51813 20058 310878 0.0299
n4c6.b6.104115x51813 104115 51813 728805 0.0135
n4c6.b7.163215x104115 163215 104115 1305720 7.684× 10−03

n4c6.b8.198895x163215 198895 163215 1790055 5.514× 10−03

n4c6.b9.186558x198895 186558 198895 1865580 5.028× 10−03

shar_te2.b1.17160x286 17160 286 34320 0.6993
shar_te2.b2.200200x17160 200200 17160 600600 0.0175
shar_te2.b3.200200x200200 200200 200200 800800 1.998× 10−03

Kocay

Trec10 106 478 8612 16.9969
Trec11 235 1138 35705 13.3512
Trec12 551 2726 151219 10.0677
Trec13 1301 6561 654517 7.6678
Trec14 3159 15905 2872265 5.7166
Trec4 2 3 3 50.0000
Trec5 3 7 12 57.1429
Trec6 6 15 40 44.4444
Trec7 11 36 147 37.1212
Trec8 23 84 549 28.4161
Trec9 47 201 2147 22.7268

Margulies

cat_ears_2_1 85 85 254 3.5156
cat_ears_2_4 1009 2689 7982 0.2942
cat_ears_3_1 204 181 542 1.4679
cat_ears_3_4 5226 13271 39592 0.0571
cat_ears_4_1 377 313 938 0.7949
cat_ears_4_4 19020 44448 132888 0.0157
flower_4_1 121 129 386 2.4729
flower_4_4 1837 5529 16466 0.1621
flower_5_1 211 201 602 1.4194
flower_5_4 5226 14721 43942 0.0571
flower_7_1 463 393 1178 0.6474
flower_7_4 27693 67593 202218 0.0108
flower_8_1 625 513 1538 0.4797
flower_8_4 55081 125361 375266 5.435× 10−03

kneser_10_4_1 349651 330751 992252 8.580× 10−04

kneser_6_2_1 601 676 2027 0.4989
kneser_8_3_1 15737 15681 47042 0.0191
wheel_3_1 21 25 74 14.0952
wheel_4_1 36 41 122 8.2656
wheel_5_1 57 61 182 5.2344
wheel_601 902103 723605 2170814 3.326× 10−04

wheel_6_1 83 85 254 3.6003
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Matrix Rows Columns Nonzero Density%

wheel_7_1 114 113 338 2.6238

Relat

rel3 12 5 18 30.0000
rel4 66 12 104 13.1313
rel5 340 35 656 5.5126
rel6 2340 157 5101 1.3885
rel7 21924 1045 50636 0.2210
rel8 345688 12347 821839 0.0193
relat3 12 5 24 40.0000
relat4 66 12 172 21.7172
relat5 340 35 1058 8.8908
relat6 2340 157 8108 2.2070
relat7 21924 1045 81355 0.3551
relat7b 21924 1045 81355 0.3551
relat8 345688 12347 1334038 0.0313

Smooshed

olivermatrix.1 9873 9621360 30002 3.158× 10−05

olivermatrix.2 78661 737004 1494559 2.578× 10−03

Taha

mat2_abtaha 37932 331 137228 1.0930
mat_abtaha 14596 209 51307 1.6819

diffGL6

D_10 163 341 2053 3.6936
D_6 469 201 2526 2.6796
D_7 636 470 5378 1.7991
D_8 544 637 6153 1.7756
D_9 340 545 4349 2.3470

diffSL6

D_10 460 816 7614 2.0285
D_11 169 461 2952 3.7890
D_5 434 115 1832 3.6706
D_6 970 435 6491 1.5383
D_7 1270 971 12714 1.0310
D_8 1132 1271 14966 1.0402
D_9 815 1133 12395 1.3423

2. Performance of different pivoting strategies

The following table lists the number of arithmetic operations performed by the
“Rheinfall” algorithm with each of the different pivoting strategies implemented.
Each column corresponds to a pivoting strategy as defined in Section 3.2; boldface
marks the minimum in each row. Figure D.3 gives a graphical summary of the
data in the table, color-coded by matrix group; a different view on the same data,
grouped by pivoting algorithm, has been printed and analyzed in Figure 4.2 in
Section 3.3.

The tests were run on the Swiss National Grid Infrastructure SMSCG [58] using
the GC3Pie framework [17]. In contrast with timing measurements, the count of
arithmetic operations only depends on the algorithm and is thus independent of
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Figure D.1. Size and density of SIMC matrices, color-coded by group. Each
matrix is represented by a dot, whose coordinates give the size of the matrix:
the x-axis plots the number of columns (log scale), and the y-axis reports the
number of rows (log scale). The radius of each colored disc is proportional to
the logarithm of the matrix density.

Figure D.2. Scatter plot of number of nonzero elements relative to matrix
size. A colored thread joins matrices belonging to the same SIMC group. Note
that both axes use log scale.
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Figure D.3. Scatter plot of the number of arithmetic operations relative to
number of nonzero elements, color-coded by matrix group. Note that both
axes use log scale.

the hardware where the program is run. For each matrix, a computational job was
spawned, which was allocated a maximum run time of 24 hours and 4GB maximum
memory usage.

For some matrices it was not possible to obtain the precise count; these cases have
been marked with one of the following labels:

Arith. ovf.:
During the elimination work, a matrix entry exceeded the maximum in-
teger number representable as a 64-bit machine integer.

No mem.:
The rank-computation program run out of memory before completion.

No data:
Some unknown error prevented the rank-computation program from com-
pleting; this includes the computational jobs that did not terminate within
24 hours.

Matrix No pivoting Sparsity Threshold Weight

BIBD

BIBD_22_8_231x319770 No data No data 1.6623× 1009 1.1291× 1009

bibd.11.5 191’030 No data 209’937 No data
bibd.12.4 153’849 153’849 No data No data
bibd.15.3 76’968 76’968 No data No data
bibd.17.3 147’963 147’963 No data 36’179
bibd.17.4 1.4479× 1006 1.4479× 1006 855’426 586’884
bibd.9.3 116 116 No data 469
bibd.9.5 No data No data 39’294 No data
bibd_12_5_66x792 384’962 416’165 564’994 278’516
bibd_13_6_78x1716 1.2677× 1006 1.2498× 1006 1.7685× 1006 1.3000× 1006

bibd_14_7_91x3432 3.4608× 1006 No data No data 4.2818× 1006
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Matrix No pivoting Sparsity Threshold Weight

bibd_15_7_105x6435 7.3755× 1006 7.4016× 1006 1.1690× 1007 No data
bibd_16_8_120x12870 1.8951× 1007 No data 3.3793× 1007 2.7751× 1007

bibd_17_4_136x2380 1.4479× 1006 No data 855’426 586’884
bibd_17_8_136x24310 4.0103× 1007 4.0685× 1007 7.1823× 1007 5.8319× 1007

bibd_18_9_153x48620 9.9416× 1007 No data 1.9710× 1008 1.7061× 1008

bibd_19_9_171x92378 2.0955× 1008 2.1453× 1008 4.1758× 1008 No data
bibd_20_10_190x184756 5.0389× 1008 5.2072× 1008 No data 1.0059× 1009

bibd_49_3_1176x18424 3.3598× 1007 3.3598× 1007 3.4545× 1006 2.7161× 1006

bibd_81_2_3240x3240 0 No data 0 0
bibd_81_3_3240x85320 4.2704× 1008 4.2704× 1008 2.6297× 1007 2.0469× 1007

CAG

mat1916 No mem. No data 6.6736× 1007 No data
mat364 No data 1.1223× 1006 1.0613× 1006 1.1039× 1006

mat72 39’011 15’075 16’197 15’166

Forest

TF10 No data 37’607 37’571 38’378
TF11 354’926 300’940 308’425 310’284
TF12 3.6427× 1006 2.7682× 1006 2.6969× 1006 2.4411× 1006

TF13 4.2777× 1007 No data 2.9516× 1007 No data
TF14 No data 2.5990× 1008 2.9553× 1008 2.6800× 1008

TF15 No data 3.1290× 1009 3.8309× 1009 No data
TF16 No mem. No mem. No mem. No mem.
TF17 No data No mem. No mem. No mem.
TF18 No data No mem. No mem. No mem.
TF19 No mem. No mem. No mem. No mem.

Franz

10164x1740 No data 1.2380× 1007 523’688 775’072
1280x2800 1.0291× 1006 1.0295× 1006 No data No data
16728x7176 No data 1.1485× 1007 4.5349× 1006 4.1465× 1006

19588x4164 No data 6.2470× 1007 1.6203× 1006 2.2060× 1006

19588x4164bis 5.5493× 1007 5.4429× 1007 1.6223× 1006 2.2246× 1006

47104x30144bis No data 6.9142× 1008 1.7558× 1008 1.0204× 1008

6784x5252 5.2780× 1007 8.6826× 1007 1.1200× 1007 No data
7382x2882 2.3057× 1007 No data 2.7179× 1006 2.3510× 1006

7576x3016 1.9337× 1007 1.8360× 1007 3.0515× 1006 4.0151× 1006

big1sparse No data 44’522 21’181 24’698
big2sparse 3.7355× 1007 2.7931× 1006 No data 2.1845× 1006

G5

IG5-10 Arith. ovf. Arith. ovf. Arith. ovf. Arith. ovf.
IG5-11 Arith. ovf. Arith. ovf. Arith. ovf. Arith. ovf.
IG5-12 Arith. ovf. Arith. ovf. Arith. ovf. Arith. ovf.
IG5-13 Arith. ovf. Arith. ovf. Arith. ovf. Arith. ovf.
IG5-14 Arith. ovf. Arith. ovf. Arith. ovf. Arith. ovf.
IG5-15 Arith. ovf. Arith. ovf. 4.9024× 1009 5.1063× 1009

IG5-16 Arith. ovf. Arith. ovf. Arith. ovf. Arith. ovf.
IG5-17 Arith. ovf. 5.9988× 1010 Arith. ovf. 5.8572× 1010

IG5-18 Arith. ovf. 1.9806× 1011 1.8419× 1011 Arith. ovf.
IG5-6 No data 058 058 058
IG5-7 269 367 297 367
IG5-8 98’284 71’071 64’371 70’076
IG5-9 889’074 643’236 583’278 607’248
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GL7d

GL7d10 0 0 0 0
GL7d11 653 333 292 339
GL7d12 1.4200× 1008 No data 8.1457× 1006 No data
GL7d13 3.4395× 1011 No mem. No mem. No mem.
GL7d16 Arith. ovf. No data No data No data
GL7d19 Arith. ovf. No data No data No data
GL7d20 No data No data Arith. ovf. Arith. ovf.
GL7d24 7.5005× 1010 1.3539× 1010 9.4151× 1009 1.4280× 1010

GL7d25 No data 9.4973× 1006 2.1761× 1007 1.7159× 1007

GL7d26 275’805 107’713 No data 228’923

Grobner

HFE18_96.in.sms 1.3859× 1009 1.2632× 1009 No data 1.2596× 1009

c8_mat11 No mem. No data No mem. No mem.
c8_mat11.I No mem. No mem. No mem. No mem.
f855_mat9 No data 3.3308× 1007 4.0252× 1007 3.6035× 1007

f855_mat9.I 3.3351× 1007 No data 4.0252× 1007 No data
rkat7_mat5 1.4933× 1007 No data No data 1.6028× 1007

robot24c1_mat5 Arith. ovf. Arith. ovf. Arith. ovf. Arith. ovf.
robot24c1_mat5.J No data No mem. 1.9902× 1007 No mem.

Homology

D6-6 1.8401× 1006 1.3160× 1006 No data No data
ch3-3.b1.18x9 74 74 72 80
ch3-3.b2.6x18 0 0 0 No data
ch4-4.b1.72x16 388 388 366 382
ch4-4.b2.96x72 No data 008 905 930
ch5-5.b1.200x25 132 No data 086 114
ch5-5.b2.600x200 13’596 13’596 13’596 13’596
ch5-5.b3.600x600 346’025 159’318 140’692 No data
ch5-5.b4.120x600 0 0 0 No data
ch6-6.b1.450x36 570 570 496 No data
ch6-6.b2.2400x450 No data 57’548 57’548 No data
ch6-6.b3.5400x2400 No data No data 464’054 464’614
ch6-6.b4.4320x5400 8.5019× 1008 8.7849× 1007 7.3530× 1007 1.1592× 1008

ch6-6.b5.720x4320 0 0 0 0
ch7-6.b1.630x42 599 599 510 563
ch7-6.b2.4200x630 No data 101’158 No data 101’158
ch7-6.b3.12600x4200 1.0515× 1006 No data 1.0486× 1006 1.0488× 1006

ch7-6.b4.15120x12600 4.6144× 1008 9.2025× 1007 8.0412× 1007 9.2349× 1007

ch7-6.b5.5040x15120 7.2952× 1006 7.2952× 1006 7.2952× 1006 No data
ch7-7.b1.882x49 026 026 No data 984
ch7-7.b2.7350x882 175’380 No data No data 175’380
ch7-7.b5.35280x52920 No data 1.9189× 1011 No data 2.1726× 1011

ch7-8.b1.1176x56 687 687 564 639
ch7-8.b2.11760x1176 278’622 278’622 278’622 278’622
ch7-8.b3.58800x11760 4.5886× 1006 4.5886× 1006 4.5886× 1006 4.5886× 1006

ch7-8.b4.141120x58800 5.7063× 1007 5.1903× 1007 4.8583× 1007 4.8329× 1007

ch7-9.b1.1512x63 582 582 442 528
ch7-9.b2.17640x1512 415’624 No data 415’624 415’624
ch7-9.b3.105840x17640 8.1713× 1006 No data No data No data
ch7-9.b4.317520x105840 1.0218× 1008 1.0072× 1008 No data No data
ch7-9.b5.423360x317520 No data 9.5007× 1010 6.2891× 1010 7.8621× 1010

ch8-8.b1.1568x64 884 884 No data 830
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ch8-8.b2.18816x1568 439’740 439’740 439’740 439’740
ch8-8.b3.117600x18816 8.8644× 1006 No data 8.8644× 1006 No data
ch8-8.b4.376320x117600 9.8690× 1007 9.8690× 1007 9.7491× 1007 9.7513× 1007

ch8-8.b5.564480x376320 No data 5.9845× 1010 3.0472× 1010 4.2815× 1010

cis.n4c6.b1.210x21 970 No data 970 970
cis.n4c6.b13.6300x25605 998’112 No data No data 1.0002× 1006

cis.n4c6.b14.920x6300 69’502 No data 69’493 No data
cis.n4c6.b15.60x920 60 60 60 60
cis.n4c6.b2.1330x210 18’240 18’240 No data No data
cis.n4c6.b3.5970x1330 164’220 No data 164’220 164’220
cis.n4c6.b4.20058x5970 918’830 No data 918’830 918’830
klein.b1.30x10 121 No data 115 121
klein.b2.20x30 110 110 No data 110
lutz30-23.b6.1716x3003 1.2249× 1008 9.7790× 1007 No data No data
m133.b3.200200x200200 No mem. No data No data No mem.
mk10.b1.630x45 826 826 626 No data
mk10.b2.3150x630 91’152 No data 91’152 No data
mk10.b3.4725x3150 1.5986× 1007 8.5148× 1006 5.6036× 1006 No data
mk10.b4.945x4725 0 0 No data 0
mk11.b1.990x55 No data 970 718 No data
mk11.b2.6930x990 No data 197’124 197’124 197’124
mk11.b3.17325x6930 3.3754× 1006 3.0171× 1006 2.6560× 1006 2.6967× 1006

mk11.b4.10395x17325 3.4682× 1009 6.5338× 1009 No data No data
mk11.b4.9450x17325 3.9372× 1009 2.9856× 1009 No data 2.8960× 1009

mk12.b1.1485x66 No data No data 577 765
mk12.b2.13860x1485 384’784 No data No data 384’784
mk12.b3.51975x13860 6.3085× 1006 6.3085× 1006 6.1795× 1006 6.1816× 1006

mk12.b4.62370x51975 No mem. 2.0674× 1011 1.4935× 1011 1.5892× 1011

mk12.b5.10395x62370 0 0 0 0
mk13.b5.135135x270270 No mem. No mem. No mem. No mem.
mk9.b1.378x36 306 306 154 240
mk9.b2.1260x378 37’010 37’010 37’010 No data
mk9.b3.945x1260 8.1207× 1006 5.2889× 1006 2.8486× 1006 5.5121× 1006

n2c6.b1.105x15 469 No data 469 469
n2c6.b10.30x306 80 80 80 80
n2c6.b2.455x105 824 824 824 No data
n2c6.b3.1365x455 34’034 No data No data 34’034
n2c6.b4.3003x1365 120’120 120’120 No data 120’120
n2c6.b5.4945x3003 297’089 296’949 No data 294’997
n2c6.b6.5715x4945 878’780 No data 646’170 708’290
n2c6.b7.3990x5715 1.7394× 1006 No data 1.5878× 1006 1.5430× 1006

n2c6.b8.1470x3990 100’366 100’141 97’926 No data
n2c6.b9.306x1470 13’182 13’182 13’182 13’182
n3c4.b1.15x6 55 55 No data 55
n3c4.b2.20x15 184 184 184 No data
n3c4.b3.15x20 215 215 215 215
n3c4.b4.6x15 86 86 No data No data
n3c5.b1.45x10 189 189 189 189
n3c5.b2.120x45 344 344 No data 344
n3c5.b3.210x120 284 284 284 284
n3c5.b4.252x210 560 560 560 560
n3c5.b5.210x252 980 No data No data No data
n3c5.b6.120x210 040 040 040 040
n3c5.b7.30x120 309 No data 309 309
n3c6.b1.105x15 455 455 455 No data
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n3c6.b10.675x2511 51’737 No data No data 50’216
n3c6.b11.60x675 66 66 66 66
n3c6.b2.455x105 824 824 No data No data
n3c6.b3.1365x455 34’034 34’034 No data No data
n3c6.b4.3003x1365 120’120 120’120 No data No data
n3c6.b5.5005x3003 285’285 285’285 285’285 No data
n3c6.b6.6435x5005 480’480 480’480 480’480 480’480
n3c6.b7.6435x6435 No data 588’588 588’588 588’588
n3c6.b8.4935x6435 No data No data 546’525 568’035
n3c6.b9.2511x4935 1.5025× 1006 989’665 770’889 777’099
n4c5.b1.105x15 No data No data 469 469
n4c5.b10.120x630 596 596 596 596
n4c5.b11.10x120 No data No data 0 No data
n4c5.b2.455x105 No data 824 824 No data
n4c5.b3.1350x455 33’772 33’772 33’772 No data
n4c5.b4.2852x1350 115’932 115’932 115’932 115’932
n4c5.b5.4340x2852 260’156 260’156 No data 255’521
n4c5.b6.4735x4340 380’009 379’582 No data 365’542
n4c5.b7.3635x4735 No data No data 334’518 328’146
n4c5.b8.1895x3635 176’637 No data 174’944 169’601
n4c5.b9.630x1895 44’936 44’936 45’014 43’968
n4c6.b1.210x21 970 970 970 No data
n4c6.b10.132402x186558 No data 3.9015× 1007 3.5139× 1007 3.7091× 1007

n4c6.b11.69235x132402 No data 2.1085× 1007 No data No data
n4c6.b12.25605x69235 No data 6.3680× 1006 6.2191× 1006 6.2240× 1006

n4c6.b13.6300x25605 998’112 998’112 1.0090× 1006 No data
n4c6.b14.920x6300 69’502 69’502 69’493 69’493
n4c6.b15.60x920 60 60 60 60
n4c6.b2.1330x210 18’240 18’240 18’240 18’240
n4c6.b3.5970x1330 164’220 No data 164’220 164’220
n4c6.b4.20058x5970 918’830 No data 918’830 No data
n4c6.b5.51813x20058 3.6217× 1006 3.6215× 1006 3.5710× 1006 No data
n4c6.b6.104115x51813 No data 1.0565× 1007 1.0182× 1007 1.0310× 1007

n4c6.b7.163215x104115 2.3279× 1007 2.3279× 1007 2.1753× 1007 2.2337× 1007

n4c6.b8.198895x163215 3.8373× 1007 3.8234× 1007 3.4786× 1007 3.6373× 1007

n4c6.b9.186558x198895 4.7002× 1007 4.6349× 1007 4.1629× 1007 4.3913× 1007

shar_te2.b1.17160x286 119’325 119’325 85’060 104’928
shar_te2.b2.200200x17160 4.2521× 1007 3.7335× 1007 No data No data

Kocay

Trec10 399’325 402’318 332’659 398’486
Trec11 5.9528× 1006 5.7429× 1006 No data No data
Trec12 1.1322× 1008 9.1119× 1007 8.2281× 1007 8.3029× 1007

Trec13 1.6610× 1009 No data 1.5590× 1009 No data
Trec14 2.2841× 1010 2.9927× 1010 2.9209× 1010 No data
Trec3 0 0 0 0
Trec4 1 No data 1 1
Trec5 No data 19 19 19
Trec6 130 136 130 No data
Trec7 532 505 505 505
Trec8 627 945 928 813
Trec9 35’351 No data 36’896 36’103

Margulies

cat_ears_2_1 706 344 310 330
cat_ears_2_4 247’722 221’138 221’668 208’555
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cat_ears_3_1 000 No data No data 215
cat_ears_3_4 2.5961× 1006 2.1563× 1006 2.2029× 1006 2.1660× 1006

cat_ears_4_1 612 383 181 369
cat_ears_4_4 1.9027× 1007 1.4150× 1007 1.5787× 1007 1.4054× 1007

flower_4_1 729 No data 495 No data
flower_4_4 3.3117× 1006 1.8387× 1006 1.3120× 1006 No data
flower_5_1 673 912 553 No data
flower_5_4 2.3196× 1007 1.1545× 1007 8.6861× 1006 1.0870× 1007

flower_7_1 141 No data 603 348
flower_7_4 No data 5.0832× 1008 3.5229× 1008 No data
flower_8_1 No data 507 10’301 548
flower_8_4 No data 2.0598× 1009 1.5801× 1009 1.8146× 1009

kneser_10_4_1 No data No data 1.1018× 1009 No data
kneser_6_2_1 141’909 65’058 64’532 64’192
kneser_8_3_1 No data 5.8170× 1006 8.0534× 1006 9.4021× 1006

wheel_3_1 No data No data 496 471
wheel_4_1 004 940 940 No data
wheel_5_1 674 600 597 617
wheel_601 7.3159× 1009 1.9754× 1010 7.1284× 1009 1.9844× 1010

wheel_6_1 413 128 048 191
wheel_7_1 334 828 683 946

Mgn

M0,3-D2 0 0 0 No data
M0,4-D3 0 0 No data 0
M0,4-D4 452 549 012 549
M0,4-D5 663 No data 653 No data
M0,5-D4 0 No data 0 0
M0,5-D5 No data 164’630 No data 164’630
M0,5-D6 No data 2.6830× 1006 1.7126× 1006 1.7049× 1006

M0,5-D7 4.4588× 1006 2.0491× 1006 No data 1.3293× 1006

M0,5-D8 176’792 176’792 63’027 No data
M0,6-D10 No data 4.4132× 1010 No data 1.9348× 1009

M0,6-D11 2.3607× 1007 2.3607× 1007 5.7557× 1006 No data
M0,6-D5 0 0 0 0
M0,6-D6 1.2495× 1007 No data 1.2495× 1007 No data
M0,6-D7 9.6351× 1008 3.2719× 1008 2.1239× 1008 2.5750× 1008

M0,6-D8 No data 3.5480× 1009 1.3787× 1009 1.6375× 1009

M0,6-D9 No data 1.0844× 1010 2.3271× 1009 2.7290× 1009

M1,2-D3 0 No data No data 0
M1,2-D4 4 No data 4 4
M1,2-D5 8 8 8 8
M1,3-D4 0 No data 0 0
M1,3-D5 37’892 No data No data No data
M1,3-D6 228’656 143’605 No data 124’049
M1,3-D7 132’080 63’092 42’576 48’560
M1,3-D8 320 No data No data No data
M1,4-D10 No data No data 1.7063× 1008 1.8067× 1008

M1,4-D11 1.5083× 1006 1.5083× 1006 No data No data
M1,4-D5 No data 0 0 No data
M1,4-D6 1.7332× 1007 8.0099× 1006 4.5990× 1006 4.5662× 1006

M1,4-D7 No data 2.2243× 1008 No data 1.0557× 1008

M1,4-D8 Arith. ovf. 1.7117× 1010 No data 5.7799× 1009

M1,4-D9 No data 1.7035× 1010 No data 2.8930× 1009

M2,1-D4 0 0 0 No data
M2,1-D5 722 557 534 557
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M2,1-D6 286 063 No data 114
M2,1-D7 755 768 989 808
M2,1-D8 90 90 No data No data
M2,2-D10 3.4248× 1007 5.7100× 1006 No data No data
M2,2-D11 47’487 47’487 26’666 29’019
M2,2-D5 No data 346 346 No data
M2,2-D6 No data 1.0674× 1006 1.1323× 1006 No data
M2,2-D7 7.4924× 1008 9.0328× 1007 3.4661× 1007 6.7032× 1007

M2,2-D8 6.6522× 1009 5.4543× 1008 3.1860× 1008 3.9807× 1008

M2,2-D9 2.3774× 1009 1.2261× 1008 9.7906× 1007 9.4398× 1007

Relat

rel3 35 35 35 35
rel4 224 224 224 215
rel5 230 775 335 No data
rel6 645’129 583’916 No data No data
rel7 3.1401× 1008 2.4799× 1008 4.7687× 1007 No data
rel8 No data 5.5958× 1011 2.7419× 1010 No data
rel9 No data Arith. ovf. No data No data
relat3 49 49 49 49
relat4 448 448 457 439
relat5 No data 888 650 486
relat6 923’954 724’414 460’639 No data
relat7 2.9076× 1008 2.6891× 1008 No data 5.0470× 1007

relat7b No data 2.6891× 1008 5.5258× 1007 5.0470× 1007

relat8 No data 4.1028× 1011 4.2837× 1010 4.1730× 1010

relat9 No data No data No data Arith. ovf.

SPG

08blocks 0 0 0 No data
EX1 3.8339× 1007 2.5907× 1007 1.9590× 1007 2.1236× 1007

EX2 3.7665× 1007 2.8047× 1007 2.3384× 1007 2.4631× 1007

EX3 2.5611× 1009 3.0573× 1009 3.4014× 1009 2.6785× 1009

EX4 2.8603× 1009 2.9172× 1009 3.4216× 1009 2.5813× 1009

EX5 2.7025× 1010 No data No data 4.7854× 1010

EX6 No data 5.3271× 1010 No mem. 3.9488× 1010

Smooshed

olivermatrix.1 6.2721× 1006 533’298 368’365 518’246
olivermatrix.2 3.2262× 1008 No data No data 3.0554× 1008

Taha

mat2_abtaha 204’728 192’744 190’097 No data

Trefethen

trefethen_150 938’010 No data 527’183 No data
trefethen_20 No data No data 858 No data
trefethen_200 1.8745× 1006 1.7976× 1006 1.1273× 1006 1.2708× 1006

trefethen_2000 No mem. No mem. 5.4902× 1008 2.0612× 1008

trefethen_20000 3.0268× 1011 7.0883× 1011 No mem. No mem.
trefethen_20000__19999_minor 3.0078× 1011 6.1316× 1011 No mem. No mem.
trefethen_200__199_minor 1.8429× 1006 1.7754× 1006 1.1140× 1006 1.2480× 1006

trefethen_20__19_minor 942 930 453 581
trefethen_300 6.4986× 1006 6.0418× 1006 No data 3.4885× 1006

trefethen_500 1.4487× 1007 2.0348× 1007 1.1111× 1007 1.0143× 1007

trefethen_700 No data No data 3.7381× 1007 3.1335× 1007
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3. Performance of different algorithms

The following table presents a comparison of the running times of the “Rheinfall”
algorithm and the three rank-computing algorithms provided by LinBox: “Black
Box” [63, 38], Sparse Elimination with Linear Pivoting (a GEPP implementation
using Markowitz pivoting [13]), and Sparse Elimination with No Pivoting.

The “Rheinfall” column reports execution time (in seconds) for the sample C++

implementation. The “LinBox” columns report times for the GEPP implementation
in LinBox version 1.1.7. Boldface font marks the best performer in each row.

The programs were run on the University of Zurich “Schroedinger” cluster, equipped
with Intel Xeon X5560 CPUs @ 2.8GHz and running 64-bit SLES 11.1 Linux; codes
were compiled with GCC 4.5.0 using options -O3 -march=native. Each computa-
tional job was allowed to use 24GB of memory maximum, and to run for 48 hours.

The system timer has a resolution of 4ms,1 but scheduling jitter makes the mea-
surements less accurate than that. However, we have not attempted an exact
measurements of the uncertainty, as the purpose of the test was to determine the
relative speed of the different algorithms and the performance differences are quite
evident for most matrices.

For some matrices it was not possible to obtain the precise count; these cases have
been marked with one of the following labels:

Arith. ovf.:
During the elimination work, a matrix entry exceeded the maximum in-
teger number representable as a 64-bit machine integer.

No mem.:
The rank-computation program run out of memory before completion.

No data, Error:
Some unknown error prevented the rank-computation program from com-
pleting; this includes the computational jobs that did not terminate within
the allotted time.

Matrix LinBox Rheinfall
Black Box Linear Pvt. No Pvt. Sparsity Pvt.

BIBD

BIBD_22_8_231x319770 11.670 12.560 7.660 5.428
bibd_13_6_78x1716 0.010 0.010 0.020 0.004
bibd_14_7_91x3432 0.040 0.030 0.020 0.008
bibd_15_7_105x6435 0.080 0.080 0.060 0.020
bibd_16_8_120x12870 0.240 0.290 0.160 0.056
bibd_17_4_136x2380 0.010 0.010 0.020 0.004
bibd_17_8_136x24310 0.500 0.610 0.320 0.164
bibd_18_9_153x48620 1.320 1.480 0.910 0.456
bibd_19_9_171x92378 3.060 3.540 2.040 1.272
bibd_20_10_190x184756 8.260 10.560 4.990 2.284
bibd_49_3_1176x18424 45.770 0.050 0.420 0.096

1See the Linux man page times(7) for an explanation.
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Matrix LinBox Rheinfall
Black Box Linear Pvt. No Pvt. Sparsity Pvt.

bibd_81_2_3240x3240 42.310 0.040 0.030 <4ms
bibd_81_3_3240x85320 1046.690 0.530 7.650 1.264

CAG

mat1916 16.980 0.300 3.060 No mem.
mat364 0.010 <4ms 0.030 0.008

Forest

TF11 <4ms <4ms 0.010 <4ms
TF12 0.030 0.030 0.050 0.012
TF13 0.840 0.490 0.600 0.064
TF14 5.360 7.990 7.760 0.820
TF15 42.840 117.410 97.850 17.505
TF16 377.590 1884.560 1276.740 No mem.
TF17 1932.390 No data 17056.550 No mem.
TF18 14392.000 No data No data No mem.
TF19 95106.390 No data No data No mem.

Franz

10164x1740 5.340 0.200 2.630 0.164
1280x2800 1.780 0.020 0.050 0.008
16728x7176 74.250 3.670 49.280 0.156
19588x4164 49.010 1.500 33.090 0.720
19588x4164bis 42.550 1.310 34.630 0.660
47104x30144bis 1120.790 69.800 3854.450 4.180
6784x5252 14.870 0.460 5.180 0.552
7382x2882 8.440 0.440 4.950 0.076
7576x3016 9.540 0.480 9.800 0.172
big1sparse 0.020 0.020 0.020 0.004
big2sparse 6.430 0.190 0.450 0.020

G5

IG5-10 0.020 0.020 0.100 Arith. ovf.
IG5-11 1.600 0.040 0.560 Arith. ovf.
IG5-12 5.580 0.120 3.930 Arith. ovf.
IG5-13 19.650 0.380 21.020 Arith. ovf.
IG5-14 69.260 1.440 81.950 Arith. ovf.
IG5-15 196.120 3.720 295.060 Arith. ovf.
IG5-16 537.300 9.320 1283.360 Arith. ovf.
IG5-17 1414.290 21.970 4572.660 375.167
IG5-18 3646.680 50.000 No data 1191.666
IG5-9 <4ms <4ms 0.010 0.004

GL7d

GL7d12 2.870 0.130 0.160 0.072
GL7d13 304.340 19.500 521.610 No mem.
GL7d14 8779.760 1815.540 No data Error
GL7d15 81012.570 No data No data Error
GL7d23 56805.370 4202.270 No data No mem.
GL7d24 3511.740 62.580 1754.050 143.369
GL7d25 85.690 0.240 0.970 0.056

Grobner

HFE18_96.in.sms 135.810 12.700 11.250 3.124
c8_mat11 550.190 54.540 62.860 No mem.
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c8_mat11.I 570.280 53.060 37.770 No mem.
f855_mat9 20.500 0.690 0.540 0.100
f855_mat9.I 20.130 0.660 2.040 0.104
rkat7_mat5 0.090 0.100 0.170 0.040
robot24c1_mat5 0.020 0.020 0.020 Arith. ovf.
robot24c1_mat5.J 0.020 0.020 0.070 No mem.

Homology

D6-6 2113.560 37.420 25.130 0.060
ch6-6.b2.2400x450 0.010 0.010 0.010 <4ms
ch6-6.b3.5400x2400 3.740 0.140 0.110 0.008
ch6-6.b4.4320x5400 8.310 0.280 0.410 0.504
ch6-6.b5.720x4320 <4ms 0.010 <4ms <4ms
ch7-6.b2.4200x630 0.030 0.030 0.020 0.004
ch7-6.b3.12600x4200 19.610 0.600 0.440 0.028
ch7-6.b4.15120x12600 109.900 2.150 1.730 0.976
ch7-6.b5.5040x15120 35.080 0.220 0.190 0.036
ch7-7.b2.7350x882 0.070 0.070 0.060 0.008
ch7-7.b5.35280x52920 1207.840 134.700 380.760 1441.114
ch7-8.b2.11760x1176 3.380 0.160 0.120 0.012
ch7-8.b3.58800x11760 376.610 21.160 14.760 0.172
ch7-8.b4.141120x58800 4979.530 313.210 201.600 1.216
ch7-8.b5.141120x141120 13726.270 918.070 1725.720 14986.761
ch7-9.b2.17640x1512 10.070 0.290 0.220 0.020
ch7-9.b3.105840x17640 998.390 52.730 36.800 0.256
ch7-9.b4.317520x105840 23764.940 1084.750 719.950 2.228
ch7-9.b5.423360x317520 112350.890 No data 5189.950 842.729
ch8-8.b2.18816x1568 12.720 0.310 0.240 0.020
ch8-8.b3.117600x18816 1198.760 76.920 44.420 0.296
ch8-8.b4.376320x117600 33862.820 1572.430 1004.160 3.212
ch8-8.b5.564480x376320 139770.720 No data 9345.920 650.113
cis.n4c6.b13.6300x25605 135.090 0.390 0.260 0.012
cis.n4c6.b14.920x6300 0.010 <4ms 0.010 <4ms
cis.n4c6.b3.5970x1330 2.220 0.060 0.050 0.008
cis.n4c6.b4.20058x5970 68.510 0.910 0.690 0.024
lutz30-23.b6.1716x3003 2.250 0.220 0.430 0.228
m133.b3.200200x200200 31480.910 No data No data No mem.
mk10.b2.3150x630 0.020 0.020 0.020 0.004
mk10.b3.4725x3150 4.620 0.180 0.110 0.076
mk10.b4.945x4725 0.010 <4ms 0.010 <4ms
mk11.b2.6930x990 0.080 0.080 0.060 0.008
mk11.b3.17325x6930 58.150 2.160 1.100 0.080
mk11.b4.10395x17325 95.250 5.620 32.870 47.603
mk11.b4.9450x17325 73.140 1.130 6.920 17.137
mk12.b2.13860x1485 7.220 0.250 0.170 0.020
mk12.b3.51975x13860 388.290 20.960 14.960 0.152
mk12.b4.62370x51975 2096.490 134.320 175.380 2121.453
mk12.b5.10395x62370 9802.160 0.740 0.620 0.012
mk13.b5.135135x270270 29762.450 7071.310 No data No mem.
mk9.b3.945x1260 0.010 0.020 0.040 0.016
n2c6.b3.1365x455 <4ms 0.010 <4ms <4ms
n2c6.b4.3003x1365 1.340 0.030 0.020 <4ms
n2c6.b5.4945x3003 5.550 0.140 0.080 0.008
n2c6.b6.5715x4945 11.850 0.320 0.130 0.008
n2c6.b7.3990x5715 10.240 0.170 0.090 0.008



136 D. RHEINFALL BENCHMARK DATA
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n2c6.b8.1470x3990 2.980 0.020 0.020 <4ms
n3c6.b10.675x2511 <4ms 0.010 <4ms <4ms
n3c6.b4.3003x1365 1.340 0.020 0.020 <4ms
n3c6.b5.5005x3003 5.360 0.090 0.080 0.004
n3c6.b6.6435x5005 13.250 0.160 0.130 0.004
n3c6.b7.6435x6435 19.050 0.190 0.150 0.008
n3c6.b8.4935x6435 16.840 0.200 0.110 0.008
n3c6.b9.2511x4935 6.420 0.090 0.040 0.008
n4c5.b4.2852x1350 1.260 0.040 0.020 <4ms
n4c5.b5.4340x2852 4.510 0.090 0.060 0.008
n4c5.b6.4735x4340 8.420 0.160 0.090 0.004
n4c5.b7.3635x4735 7.590 0.100 0.060 0.004
n4c5.b8.1895x3635 3.410 0.030 0.020 0.004
n4c5.b9.630x1895 0.010 <4ms <4ms <4ms
n4c6.b10.132402x186558 23799.010 410.290 228.890 0.468
n4c6.b11.69235x132402 7540.700 106.670 65.530 0.276
n4c6.b12.25605x69235 1669.380 10.870 5.550 0.068
n4c6.b13.6300x25605 153.410 0.370 0.260 0.012
n4c6.b14.920x6300 0.010 0.020 <4ms <4ms
n4c6.b3.5970x1330 2.220 0.060 0.050 0.008
n4c6.b4.20058x5970 66.460 1.380 0.710 0.028
n4c6.b5.51813x20058 659.500 22.490 16.050 0.088
n4c6.b6.104115x51813 3680.810 163.330 84.550 0.228
n4c6.b7.163215x104115 11833.480 363.790 232.310 0.412
n4c6.b8.198895x163215 25073.760 727.020 400.850 0.508
n4c6.b9.186558x198895 35794.070 961.120 395.730 0.604
shar_te2.b1.17160x286 0.040 0.040 0.030 0.012
shar_te2.b2.200200x17160 2102.770 136.620 66.460 1.988
shar_te2.b3.200200x200200 26275.470 No data No data Error

Kocay

Trec10 <4ms <4ms 0.010 <4ms
Trec11 0.030 0.030 0.110 0.012
Trec12 0.420 0.580 1.840 0.232
Trec13 116.470 8.640 28.850 5.820
Trec14 1249.860 137.750 564.810 107.679

Margulies

cat_ears_2_4 1.260 0.010 0.010 <4ms
cat_ears_3_4 33.790 0.380 0.240 0.012
cat_ears_4_4 582.930 7.320 4.660 0.088
flower_4_4 5.280 0.050 0.060 0.012
flower_5_4 43.140 0.440 0.560 0.048
flower_7_4 1312.790 21.190 48.740 3.144
flower_8_1 <4ms 0.010 <4ms <4ms
flower_8_4 4879.440 92.810 287.090 16.077
kneser_10_4_1 54558.460 2009.800 1552.360 3.896
kneser_8_3_1 77.030 1.860 1.510 0.044
wheel_601 No data No data 11215.570 Error

Relat

rel6 <4ms 0.010 0.010 0.008
rel7 7.120 0.690 1.330 2.128
rel8 1631.420 268.830 530.830 3610.130
relat3 <4ms <4ms <4ms Error
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relat4 <4ms <4ms <4ms Error
relat5 <4ms <4ms <4ms Error
relat6 0.010 0.010 0.010 Error
relat7 6.070 0.640 1.500 Error
relat7b 5.860 0.640 1.490 Error
relat8 2105.040 282.230 701.710 Error

Smooshed

olivermatrix.1 No data 0.680 0.410 Error
olivermatrix.2 88650.570 152.820 83.530 1.608

Taha

mat2_abtaha 0.190 0.340 0.280 0.028
mat_abtaha 0.050 0.050 0.040 0.012

diffGL6

D_10 <4ms <4ms 0.010 <4ms
D_6 <4ms <4ms 0.020 0.004
D_7 0.010 0.010 0.240 0.024
D_8 <4ms 0.010 0.250 0.024
D_9 0.010 <4ms 0.080 0.004

diffSL6

D_10 0.020 0.020 0.360 0.024
D_11 <4ms <4ms 0.010 0.004
D_6 0.020 0.020 0.310 0.024
D_7 0.070 0.070 2.720 0.260
D_8 0.880 0.090 2.890 0.272
D_9 0.040 0.050 1.780 0.140
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