Scuola Normale Superiore

Computational techniques in Graph Homology of the Moduli Space of Curves

Candidato:
Riccardo Murri

Relatori:
Prof. Enrico Arbarello Dott. Domenico Fiorenza

A mio nonno Carlo.

Contents

List of Figures V
List of Tables vi
List of Algorithms vii
List of Acronyms viii
Chapter 1. Introduction 1

1. Fatgraphs and the homology of the moduli space of Riemann surfaces 1
2. Effective computation of the fatgraph complex 2
3. A novel parallel algorithm for exact Gaussian Elimination of general sparse matrices 4
4. Notation 5
Chapter 2. The Fatgraph Chain Complex 7
5. Fatgraphs 7
6. Moduli spaces of Riemann surfaces 10
7. Equivariant homology of $\mathcal{T}_{g, n}$ and the complex of fatgraphs 13
Chapter 3. Algorithms for graph homology 16
8. Computer representation of Fatgraphs 16
9. Fatgraphs isomorphism and equality testing 29
10. Generation of fatgraphs 35
11. The homology complex of marked fatgraphs 44
12. Experimental results 53
13. Application to other fatgraph complexes 54
14. Future development directions 57
Chapter 4. A novel parallel algorithm for exact Gaussian Elimination of general sparse matrices 58
15. Description of the algorithm 58
16. Applications 66
17. Algorithm characteristics 67
18. Sequential performance 71
19. Parallel performance and scalability: distributed-memory 72
20. Parallel performance and scalability: shared-memory 75
21. Conclusions and future work 76
Appendix A. Pseudo-code notation 91
22. Basic types 91
23. Objects 91
24. Arrays, lists, sets 91
25. Operators 92
Appendix B. Comparison of fatgraph generation methods 93
26. Generation by recursive edge addition 94
27. Generation by insertion of binary trees 95
28. Generation from permutations 96
Appendix C. Fatgraphs of $\mathcal{M}_{0,4}$ 98
29. Fatgraphs with 3 edges / 1 vertex 98
30. Fatgraphs with 4 edges $/ 2$ vertices 100
31. Fatgraphs with 5 edges $/ 3$ vertices 104
32. Fatgraphs with 6 edges / 4 vertices 111
33. Markings of fatgraphs with trivial automorphisms 118
Appendix D. Rheinfall benchmark data 119
34. Features of the matrices in the Sparse Integer Matrices Collection (SIMC) collection 119
35. Performance of different pivoting strategies 124
36. Performance of different algorithms 133
Bibliography 138
Acknowledgments 141

List of Figures

2.1 Thickening a fatgraph into a Riemann surface 9
3.1 Representation of fatgraph vertices 19
3.2 Representation of fatgraph edges 19
3.3 Representation of fatgraph boundary cycles 19
3.4 Boundary cycles comprised of the same edges 25
3.5 Example of a contraction morphism 25
3.6 How corners are modified by edge contraction 27
3.7 Construction of a fatgraph from Vertex instances 31
3.8 Fatgraph edge removal 39
3.9 Inequivalent cyclic orders when adding vertices 39
3.10 Graphical illustration of maps $p, q, r_{g, n}$ 40
3.11 Scatter plot of the data in Table 3.4 56
4.1 Examples of pivot row choice 68
4.2 Total number of arithmetic operations vs number of nonzero elements 78
4.3 Running time of "Rheinfall" and LinBox vs number of nonzero elements, for SIMC matrices 80
4.4 Running time of "Rheinfall" (distributed-memory) on identity matrices 82
4.5 Running time of "Rheinfall" (distributed-memory) on selected matrices, vs number of MPI ranks 83
4.6 Running time of "Rheinfall" (distributed-memory) on selected matrices, vs stripe width 84
4.7 Performance of "Rheinfall" on selected matrices (shared-memory "coarse grained" variant) 85
4.8 Performance of "Rheinfall" on identity matrices (shared-memory "coarse grained" variant) 86
4.9 Performance of "Rheinfall" on selected matrices (shared-memory "fine grained" variant) 87
4.10 Performance of "Rheinfall" on identity matrices (shared-memory "fine grained" variant) 89
D. 1 Size and density of SIMC matrices, color-coded by group 125
D. 2 Number of nonzero elements vs matrix size, for SIMC matrices 125
D. 3 Number of arithmetic operations $v s$ number of nonzero elements, for SIMC matrices 126

List of Tables

1.1 Betti numbers of $\mathcal{M}_{g, n}$ for $2 g+n \leqslant 6$ 4
3.1 Betti numbers of $\mathcal{M}_{g, n}$ for $2 g+n \leqslant 6$ 54
3.2 Number of distinct abstract fatgraphs 54
3.3 Number of distinct orientable marked fatgraphs 55
3.4 Total CPU time used for Betti numbers computation 55
4.1 Significant slopes coefficients in Figure 4.2 70
4.2 CPU times for computing rank of $\mathcal{M}_{g, n}$ homology matrices 79
4.3 CPU times for computing rank of selected integer matrices 80
4.4 CPU times for computing the rank of selected matrices and their transposes 80
4.5 Average Mflop/s for running LU factorization of square $N \times N$ matrices 81
4.7 Performance of "Rheinfall" on selected matrices (shared-memory "coarse grained" variant) 81
4.9 Performance of "Rheinfall" on selected matrices (shared-memory "coarse grained" variant) 81
4.11 Performance of "Rheinfall" on selected matrices (shared-memory "fine grained" variant) 88
4.13 Performance of "Rheinfall" on identity matrices (shared-memory "fine grained" variant) 88
4.14 Running time spent in MPI communication 90
B. 1 Number of trivalent fatgraphs generated by different algorithms 93

List of Algorithms

1 compute_boundary_cycles 21
2 contract 25
3 contract_boundary_cycle 27
4 isomorphisms 31
5 neighbors 33
6 MgnGraphs 35
7 MgnTrivalentGraphs 43
8 MarkedFatgraphPool 47
9 compute block 51
10 compute_boundary_operator 53
11 "Rheinfall" algorithm, distributed-memory version 63
12 "Rheinfall" algorithm, shared-memory version 64

List of Acronyms

BSP	Bulk Synchronous Parallel (see [64])
CPU	Central Processing Unit
FIFO	First In, First Out
GCC	GNU C Compiler
GEPP	Gaussian Elimination with Partial Pivoting
IP	Internet Protocol
MPI	Message Passing Interface (see [48, 49])
OS	Operating System
PU	Processing Unit
SIMC	Sparse Integer Matrices Collection (see [15])
SLES	SuSE Linux Enterprise Server
SMSCG	Swiss Multi-Science Computational Grid (see [58])
SMS	Sparse/Symbolic Matrix Storage (see [15])
TBB	Threading Building Blocks (see [35, 36])
TCP	Transmission Control Protocol
UZH	University of Zurich

CHAPTER 1

Introduction

The object of this thesis is the automated computation of the rational (co)homology of the moduli spaces of smooth marked Riemann surfaces $\mathcal{M}_{g, n}$. This is achieved by using a computer to generate a chain complex, known in advance to have the same homology as $\mathcal{M}_{g, n}$, and explicitly spell out the boundary operators in matrix form. As an application, we compute the Betti numbers of some moduli spaces $\mathcal{M}_{g, n}$.

Our original contribution is twofold. In Chapter 3, we develop algorithms for the enumeration of fatgraphs and their automorphisms, and the computation of the homology of the chain complex formed by fatgraphs of a given genus g and number of boundary components n.

In Chapter 4, we describe a new practical parallel algorithm for performing Gaussian elimination on arbitrary matrices with exact computations: projections indicate that the size of the matrices involved in the Betti number computation can easily exceed the computational power of a single computer, so it is necessary to distribute the work over several processing units. Experimental results prove that our algorithm is in practice faster than freely available exact linear algebra codes.

An effective implementation of the fatgraph algorithms presented here is available at http://code.google.com/p/fatghol. It has so far been used to compute the Betti numbers of $\mathcal{M}_{g, n}$ for $(2 g+n) \leqslant 6$.

The Gaussian elimination code is likewise publicly available as open-source software from http://code.google.com/p/rheinfall.

1. Fatgraphs and the homology of the moduli space of Riemann surfaces

In the seminal papers [39] and [40], M. Kontsevich introduced "Graph Homology" complexes that relate the stable homology groups of certain infinite-dimensional Lie algebras to various other topological objects. In particular, the "associative operad" variant of this construction results in a chain complex whose homology is isomorphic to the (co)homology of the moduli space of smooth Riemann surfaces $\mathcal{M}_{g, n}$: the graded module underlying the complex is freely generated by the set $\mathcal{R}_{g, n}$ of fatgraphs of genus g and number of boundary components n, endowed with the differential defined by edge contraction.

A fatgraph ${ }^{1}$ is a multigraph enriched with the assignment, at each vertex v, of a cyclic order of the edges incident to v. Such graphs can be "fattened" into a Riemann surface, by gluing polygons along the fatgraph edges in such a way that

[^0]two adjacent edges on the polygon boundary are consecutive in the cyclic order at the common endpoint. The resulting Riemann surface is naturally marked, by choosing the marking points to be the centers of the polygons. There is thus a functorial correspondence between fatgraphs and marked Riemann surfaces; a fatgraph G is said to have genus g and n boundary components if it corresponds to a punctured Riemann surface $S \in \mathcal{M}_{g, n}$.

Chapter 1 presents a construction of Kontsevich' fatgraph complex, deriving it as a relative of Harer's arc-system complex [30, 31], and proves the isomorphism of its homology with the rational (co)homology of $\mathcal{M}_{g, n}$. The main ingredient of this construction is a cell decomposition of $\mathcal{M}_{g, n}$ based on a theorem of Jenkins [37] and Strebel [59]. This fatgraph complex is the same complex that one gets by applying Kontsevich' construction in the associative case; however, the proof given here is specific to $\mathcal{M}_{g, n}$ and does not trivially extend to other cases. The techniques devised by Kontsevich are instead suitable to further generalization to any "modular operad" [18].

A construction of the graph complex, closely following Kontsevich' original work, has been detailed by Conant and Vogtmann in [11]; Hamilton and Lazarev gave a new proof in [27]. Other graph homology complexes related to the (co)homology of $\mathcal{M}_{g, n}$ have also been proposed; most relevant to the subject of this thesis is the work by Godin [23], who constructed a variant complex that computes the integral homology of mapping class groups of surfaces with boundary, and gives the homology of $\mathcal{M}_{g, n}$ as a particular case. In the recent preprint [56], LaFountain and Penner constructed a space which is homotopy equivalent to the Deligne-Mumford compactification $\overline{\mathcal{M}}_{g, n}$ and admits a cellularization indexed by suitably decorated fatgraphs.

The fatgraph cellularization of the moduli space of smooth pointed Riemann surfaces and related topics have been extensively studied; the interested reader can find comprehensive accounts of the subject in [1, Chapters XVIII and XIX] and [51].

2. Effective computation of the fatgraph complex

Chapter 3 is concerned with finding an effectively computable representation of fatgraphs, and presenting algorithms to:
(1) compute automorphisms of any given fatgraph (Section 2);
(2) generate the set $\mathcal{R}_{g, n}$ of fatgraphs, given the genus g and number of boundary components n (Section 3);
(3) compute the homology of the fatgraph complex $\mathcal{R}_{g, n}$ (Section 4).

Note that, in contrast with other computational approaches to fatgraphs (e.g., [57]), which draw on the combinatorial definition of a fatgraph, our computer model of fatgraphs is directly inspired by the topological definition, and the algorithm for enumerating elements of $\mathcal{R}_{g, n}$ is likewise backed by a topological procedure.

Theorem 2.24 provides an effective way to compute the (co)homology of $\mathcal{M}_{g, n}$. The Betti numbers of $\mathcal{M}_{g, n}$ can be computed from the knowledge of the dimension of chain spaces W_{p} of the fatgraph complex and the ranks of boundary operators D_{p}; this computation is accomplished in the following stages:
I. Generate the basis set of W_{*}; by definition, the basis set is the set $\mathcal{R}_{g, n}$ of oriented marked fatgraphs that correspond to surfaces in $\mathcal{M}_{g, n}$.
II. Work out the differential $D: W_{*} \rightarrow W_{*}$ explicitly as matrices $\boldsymbol{D}^{(p)}$ mapping coordinates in the fatgraph basis of W_{p} into coordinates relative to the fatgraph basis of W_{p-1}.
III. Compute the ranks of the matrices $\boldsymbol{D}^{(p)}$.

Stage I needs just the pair g, n as input; its output is the set of orientable marked fatgraphs belonging in $\mathcal{R}_{g, n}$. By definition, marked fatgraphs are decorated abstract fatgraphs, whose decoration is a simple combinatorial datum (namely, a bijection of the set of boundary cycles with the set $\{1, \ldots, n\})$: therefore, the problem can be reduced to enumerating abstract fatgraphs. With a recursive algorithm, one can construct trivalent $\mathcal{R}_{g, n}$-fatgraphs from trivalent graphs in $\mathcal{R}_{g-1, n}$ and $\mathcal{R}_{g-1, n+1}$. All other graphs in $\mathcal{R}_{g, n}$ are obtained by contraction of non-loop edges.

The differential D has a simple geometrical definition: $D(G)$ is a sum of graphs G^{\prime}, each gotten by contracting a non-loop edge of G. A simple implementation of Stage II would just compare each contraction of a graph with p edges with any graph with $p-1$ edges, and score a ± 1 (depending on the orientation) in the corresponding entry of the matrix $\boldsymbol{D}^{(p)}$. However, this algorithm has quadratic complexity, and the large number of graphs involved makes it very inefficient already for $\mathcal{M}_{0,5}$. The simple observation that contraction of edges is defined on the topological fatgraph underlying a marked fatgraph allows us to apply the naive algorithm to topological fatgraphs only, which cuts complexity down by a factor $O\left((n!)^{2}\right)$. The resulting matrix is then extended to marked fatgraphs by the action of graph automorphism groups on the markings of boundary cycles. This is the variant detailed in Section 4.

Stage III is conceptually the simplest: by elementary linear algebra, the Betti numbers can be computed from the rank of matrices $\boldsymbol{D}^{(p)}$ and the dimension of their domain space. The computational problem of determining the rank of a matrix has been extensively studied; it should be noted, however, that this step can actually be the most computationally burdening.

Explicit generators of the homology modules could be computed with a little variant in the last step of the algorithm; however, this is not interesting in connection with the homology of $\mathcal{M}_{g, n}$, since expression of a fatgraph homology class in terms of the "natural" algebro-geometric classes has proved to be a difficult problem [50, 33, 34], and to-date lacks a general solution.

A implementation of the algorithms presented in this paper has been actually used to compute the Betti numbers of all $\mathcal{M}_{g, n}$ with $2 g+n \leqslant 6$. Results are summarized in Table 1.1; see Section 5 for implementation-specific details and a discussion of performance.

All the Betti numbers were already known; the output of the program corroborates computations previously published in the literature. The original sources are scattered across a wide array of publications. For $g \geqslant 1$, the groups $H^{1}\left(\mathcal{M}_{g, n}, \mathbb{Q}\right)$ are known from the works of Mumford [53] and Harer [29]; $H^{2}\left(\mathcal{M}_{g, n}, \mathbb{Q}\right)$ has been computed also by Harer in [29]; a comprehensive statement with a new proof is given by Arbarello and Cornalba in [2] (where a minor mistake in Harer's statement is corrected). The complete integral homology of $\mathcal{M}_{1,2}$ and $\mathcal{M}_{2,1}$ has been published in Godin's paper [23]. The homology of the $\mathcal{M}_{0, *}$ spaces is computed in [20, Corollary, 3.10]; see [46] for alternative approaches using results from [62] to compute the Poincaré polynomial of $\mathcal{M}_{0, n}$. The Poincaré-Serre polynomial of $\mathcal{M}_{2,2}$ follows as a special case of Corollary III.2.2 in Tommasi's thesis [61]; the results also follows by combining [21, p. 22] with [32, Appendix A]. The rational cohomology

	b_{0}	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	b_{7}	b_{8}	b_{9}	b_{10}	b_{11}	b_{12}
$\mathcal{M}_{0,3}$	1												
$\mathcal{M}_{0,4}$	1	2											
$\mathcal{M}_{0,5}$	1	5	6										
$\mathcal{M}_{0,6}$	1	9	26	24									
$\mathcal{M}_{1,1}$	1												
$\mathcal{M}_{1,2}$	1												
$\mathcal{M}_{1,3}$	1			1									
$\mathcal{M}_{1,4}$	1			4	3								
$\mathcal{M}_{2,1}$	1		1										
$\mathcal{M}_{2,2}$	1		2		1								
TABLE 1.1. Betti numbers of $\mathcal{M}_{g, n}$ for $2 q+n \leqslant 6$. For readability, null values													

of $\mathcal{M}_{1,4}$ is completely described (as a particular case) by Theorem 1 of [25]; it can also be explicitly computed by using the tools developed by Getzler in [22]. In all these cases, the numerical results agree with the values in Table 1.1.

The complete set of Betti numbers has apparently been completely computed for just a few spaces, besides those presented in Table 1.1. The equivariant Serre polynomials of $\mathcal{M}_{g, n}$ with $2 g+n \leqslant 7$ are completely tabled in [19]. Only for $g=0$ and $g=1$ is the Poincaré polynomial of $\mathcal{M}_{g, n}$ known for any $n>0$; as pointed out earlier, for $\mathcal{M}_{0, *}$ the result is due to Getzler [20], but it can be derived from other results as shown in [46]; a complete description of the cohomology of $\mathcal{M}_{1, *}$ is contained in the preprint [25] by Gorinov. The Betti numbers of $\mathcal{M}_{2, n}$ are well-known for $n \leqslant 2$; for $n=1$ see, e.g., Godin's [23], but see also [46] for alternative approaches; for $n=2$, see $[21,32,61]$; O. Tommasi has announced complete results for $\mathcal{M}_{2,3}$ and $\mathcal{M}_{2,4}$ but they have not been published yet. The rational cohomology of $\mathcal{M}_{3,1}$ is given in [6] (which refines results from [19, 44]); the one of $\mathcal{M}_{3,2}$ has been computed by Tommasi in [60]. No other computation of Betti numbers of the spaces $\mathcal{M}_{g, n}$ is known to the author; an online public attempt to gather information about the known Betti numbers of $\mathcal{M}_{g, n}$ is ongoing at [46].

Along with the computation, the entire family of fatgraphs $\mathcal{R}_{g, n}$ (with $2 g+n \leqslant 6$) has been computed, and for each fatgraph the isomorphism group is known. The full list of fatgraphs and their isomorphisms is too long to reproduce here (see a sample in Appendix C), but the data is publicly available at http://fatghol.googlecode. com/download/list. A summary of the number of abstract and marked fatgraphs is provided in Tables 3.2 and 3.3 in Chapter 3.

3. A novel parallel algorithm for exact Gaussian Elimination of general sparse matrices

The algorithms presented in Chapter 3 reduce computation of the Betti number of moduli spaces $\mathcal{M}_{g, n}$ to reckoning the rank (over \mathbb{Q}) of some large sparse matrix with integer entries. An effective method for computing this rank is given by Gaussian Elimination.

The serial algorithm for Gaussian Elimination is well-known; it consists of a certain number of iterations of the following two steps: a pivoting step followed by an elimination step. Starting with the upper left entry, a non-zero element (pivot)
is searched for; once a pivot has been found, a permutation is applied so that the pivot rests in the upper left corner of the "uneliminated" matrix. In the elimination phase, all the elements in the leftmost column and below the pivot are set to zero by summing to each row a suitable multiple of the pivot row. Then the procedure is recursively applied to the portion of the matrix excluding the topmost row and the leftmost column.

An enormous literature has been published on the subject of Gaussian Elimination, that is outside the scope of this short introduction to survey. However, available practical codes for exact matrix rank computation seem to be limited to the free software library LinBox $[14,43]$, which does not offer any parallel distributedmemory algorithm and is thus bound to usage on a single computer at a time. Indeed, Gaussian Elimination algorithms with exact computations has been analysed in [16], and the authors concluded that "there remains to design a direct parallel method suited to sparse matrices".

Let us say that a matrix is in "block echelon form" iff each row starts with a number of null entries that is not less than the number of null entries of the row directly above. The "Rheinfall" algorithm presented here is based on the observation that any sparse matrix can be put in a "block echelon form" with minimal computational effort. One can then run elimination on each block of rows of the same length independently (i.e., in parallel); a communication step is needed to re-order the rows after elimination. The procedure ends when all blocks have been reduced to a single row, i.e., the matrix has been put in row echelon form.

As can be seen from this cursory description, the "Rheinfall" algorithm distributes the matrix data and the elimination work to an arbitrary number p of processors; it can thus fully exploit the power of present-day massively parallel machines. No collective communication takes place; however it is assumed that the communication fabric is able to route a message of arbitrary size ${ }^{2}$ from any processor to any other. On the other hand, the algorithm requires frequent one-to-one communication among all processing units; the issue of distributing matrix data among processors is thus crucial to minimizing the network traffic and for the overall performance of the algorithm.

The "Rheinfall" algorithm has been developed and used to compute the rank of the homology matrices arising from fatgraph complexes; however, it is of (potentially) much wider application. The interesting question is then to determine the class of matrices on which "Rheinfall" is efficient. A direct approach to this problem quickly leads to the conclusion that the amount of work and communication performed by the algorithm is strictly dependent on the nonzero pattern of the input matrix. By using computational experiments, we can assess the performance of "Rheinfall" on a large set of matrices, and give some complexity estimates. As it turns out, "Rheinfall" is competitive with LinBox on a large subset of the test matrices, and specifically outperforms it on the $\mathcal{M}_{g, n}$ homology ones.

4. Notation

Algorithms are listed in pseudo-code reminiscent of the Python language syntax (see [65]); comments in the code listings are printed in italics font. The word "object" is used to denote a kind of aggregate type in the computer programs: an object is a tuple ' $\left(a_{1}, a_{2}, \ldots, a_{N}\right)$ ', where each of the slots a_{i} can be independently assigned

[^1]a value; we write $X . a_{i}$ to denote the slot a_{i} of object X. Object slots are mutable, i.e., they can be assigned different values over the course of time. Appendix A gives a complete recap of the notation used and the properties assumed of syntax, data structures, and operators.

A great deal of Chapter 3 is concerned with finding computationally-effective representations of topological objects; in general, we use boldface letters to denote the computer analog of a mathematical object. For instance, the letter G always denotes a fatgraph, and \boldsymbol{G} its corresponding computer representation as a Fatgraph object.

Finally, if A is a category of which X, Y are objects, we use Eilenberg's notation $A(X, Y)$ for the Hom-set, instead of the more verbose $\operatorname{Hom}_{A}(X, Y)$.

CHAPTER 2

The Fatgraph Chain Complex

This chapter recalls the main definitions and properties of fatgraphs, and the relation of the fatgraph complex to the cohomology of $\mathcal{M}_{g, n}$. These results are wellknown: a comprehensive exposition of the research connected with the topic of this chapter can be found in Mondello's [51]; the book by Lando and Zvonkin [42] provides a broad survey of the applications of fatgraphs and an introduction accessible to readers without a background in Algebraic Geometry; a recent account of the crucial Jenkins-Strebel theorem (together with applications to the triangulations of the Teichmüller and moduli space of curves) can be read in Arbarello and Cornalba's paper [3].

1. Fatgraphs

"Fatgraphs" take their name from being usually depicted as graphs with thin bands as edges, instead of 1-dimensional lines; they have also been called "ribbon graphs" in Algebraic Geometry literature. Here, the two names will be used interchangeably.

Definition 2.1 (Topological definition of fatgraphs). A fatgraph is a finite CWcomplex of pure dimension 1, together with an assignment, for each vertex v, of a cyclic ordering of the edges incident at v.

A morphism of fatgraphs is a cellular map $f: G \rightarrow G^{\prime}$ such that, for each vertex v of G^{\prime}, the preimage $f^{-1}(V)$ of a small neighborhood V of v is a small neighborhood of a tree in G (i.e., $f^{-1}(V)$ is a contractible connected graph).

Unless otherwise specified, we assume that all vertices of a fatgraph have valence at least 3 .

If G is a fatgraph, denote $V(G), E(G)$ and $L(G)$ the sets of vertices, unoriented edges and oriented edges (equivalently called "legs" or "half-edges").
1.1. Combinatorial description of fatgraphs. The following combinatorial description of a fatgraph will also be needed:

Definition 2.2 (Combinatorial definition of fatgraphs). A fatgraph is a 4tuple $\left(L, \sigma_{0}, \sigma_{1}, \sigma_{2}\right)$, comprised of a finite set L together with bijective maps $\sigma_{0}, \sigma_{1}, \sigma_{2}: L \rightarrow L$ such that:
» σ_{1} is a fixed-point free involution: $\sigma_{1}^{2}=\mathrm{id}$, and
$» \sigma_{0} \circ \sigma_{2}=\sigma_{1}$.
Lemma 2.3. Definitions 2.1 and 2.2 are equivalent.

Proof. To pass from the topological description to the combinatorial one, take L to be the set of oriented edges of the CW-complex underlying a fatgraph. Define $\sigma_{1}: L \rightarrow L$ as the orientation reversal on edges. Define $\sigma_{0}: L \rightarrow L$ by means of the cyclic order at vertices: let $L(v)$ be the subset of edges in L that end at a vertex v, the cyclic order on edges incident at v induces a cyclic order on $L(v)$. If $x \in L(v)$ then define $\sigma_{0}(x)$ as the successor to x in the cyclic order on $L(v)$. Finally, define $\sigma_{2}: L \rightarrow L$ by means of $\sigma_{2}=\sigma_{0}^{-1} \sigma_{1}$.

Vice versa, let L_{i} be the set of orbits of the map σ_{i}. Take L_{0} to be the set of 0-cells; for each $\left\{x^{+}, x^{-}\right\} \in L_{1}$, glue a 1 -cell to the 0 -cells corresponding to the σ_{0}-orbits of x^{+}and x^{-}. The cyclic order at each vertex is induced by the action of σ_{0}.

Any two of the maps $\sigma_{0}, \sigma_{1}, \sigma_{2}$ determine the third, by means of the defining relation $\sigma_{0} \circ \sigma_{2}=\sigma_{1}$; therefore, to give a ribbon graph, it is sufficient to specify only two out of three maps.

In the combinatorial description, $V(G)$ is the set L_{0} of orbits of $\sigma_{0}, E(G)$ is the set L_{1} of orbits of σ_{1}, and $L(G)$ is plainly the set L.
1.2. Morphisms arising from contraction of an edge. Let G be a fatgraph, and G^{\prime} be the CW-complex obtained by contracting an edge $x \in E(G)$ to a point. If x connects two distinct vertices (i.e., x is not a loop) then G^{\prime} inherits a fatgraph structure from G : if $\left(x<x_{1}<\ldots<x_{k}<x\right)$ and $\left(x<x_{1}^{\prime}<\ldots<x_{h}^{\prime}<x\right)$ are the cyclic orders at endpoints of x, then the vertex formed by collapsing x is endowed with the cyclic order $\left(x_{1}<\ldots<x_{k}<x_{1}^{\prime}<\ldots<x_{h}^{\prime}\right)$.

Contraction morphisms play a major role in manipulation of ribbon graphs.
Lemma 2.4. Any morphism of fatgraphs is a composition of isomorphisms and contractions of non-loop edges.

We can thus define functors $V(-), E(-)$ and $L(-)$ that take a morphism of graphs to a map of their set of vertices, (unoriented) edges, and oriented edges.
1.3. From fatgraphs to Riemann surfaces. There is a functorial construction to build a closed oriented surface $S(G)$ from a fatgraph G; this is usually referred to as "thickening" or "fattening" in the literature.

Lemma 2.5. (1) There exists a functor S that associates to every fatgraph G a punctured Riemann surface $S(G)$, and to every morphism $f: G \rightarrow G^{\prime}$ a continuous map $S(f): S(G) \rightarrow S\left(G^{\prime}\right)$. (2) The surface $S(G)$ is naturally endowed with a triangulation indexed by oriented edges of G. (3) The graph G is a deformation retract of $S(G)$.

Denote by $B(G)$ the set L_{2} of orbits of σ_{2}; in the topological description, its elements are the support of 1-cycles in $H^{1}(G)$ that correspond under the retraction to small loops around the punctures in $S(G)$; they are called "boundary cycles" of G.

The assignment $G \mapsto B(G)$ extends to a functor $B(-)$; by Lemma 2.4, for any $f: G_{1} \rightarrow G_{2}$ the map $B(f): B\left(G_{1}\right) \rightarrow B\left(G_{2}\right)$ is a bijection.

The correspondence between fatgraphs and Riemann surfaces allows us to give the following.

Figure 2.1. Thickening of a fatgraph into a Riemann surface. Left column: Starting fatgraph: the cyclic order at the vertices is given by the orientation of the ambient euclidean plane. Middle column: Thickening of the fatgraph by gluing topological disks along the boundary components. The border of a cells is drawn as a dotted line; each topological disk has been given a different color. Right column: The resulting Riemann surface with the embedded graph. Note that the two starting graphs would be isomorphic when considered as ordinary multigraphs; they are distinguished by the additional cyclic structure at the vertices.

Definition 2.6. The number of boundary cycles of a graph G is given by $n=$ $|B(G)|$, and is equal to the puncture number of the Riemann surface $S(G)$.

If $S(G)$ has genus g and n punctures, then:

$$
\begin{equation*}
\chi(G)=\chi(S(G))=2-2 g-n=2-2 g-|B(G)| \tag{1.1}
\end{equation*}
$$

so we can define, for any fatgraph G, the genus g, as given by the above relation.

It is trivial to check the following.
Lemma 2.7. If G^{\prime} is obtained from G by contraction of a non-loop edge, then G and G^{\prime} share the same genus and number of boundary cycles.
1.4. Complex analytic structure on $S(G)$. We can give the topological Riemann surface $S(G)$ a complex analytic structure by means of the triangulation in Lemma 2.5(2) and an analytic atlas, which depends on the perimeters p_{1}, \ldots, p_{n} of boundary cycles b_{1}, \ldots, b_{n}. (See [52] for details.)

Definition 2.8. A metric ℓ on a fatgraph G is an assignment of a real positive number ℓ_{x} for each edge $x \in E(G)$.

A metrized fatgraph (G, ℓ) is a fatgraph G equipped with a metric ℓ.

The perimeters p_{1}, \ldots, p_{n} are determined by the metric data ℓ, therefore the complex analytic structure on $S(G)$ actually depends on the metrized graph (G, ℓ). Let $S(G, \ell)$ denote the Riemann surface $S(G)$ endowed with this complex analytic structure.

Lemma 2.9. If G, G^{\prime} are metrized fatgraphs and f is an isomorphism preserving edge lengths, then $S(f)$ is a complex analytic mapping.

1.5. Marked fatgraphs.

Definition 2.10. A marked fatgraph is a fatgraph G endowed with a bijection $\nu: B(G) \rightarrow\{1, \ldots, n\}$. The map ν is called the "marking" on G.

A morphism $f: G_{1} \rightarrow G_{2}$ of marked fatgraphs must preserve the numbering of boundary cycles:

By a slight abuse of language, we shall usually omit mention of the marking map ν and just speak of "the marked fatgraph G ".

2. Moduli spaces of Riemann surfaces

Let us recap the main points of the construction of the moduli space of smooth algebraic curves; the short summary given here tracks closely the first section of [45], which has proofs and references.

Fix integers $g, n \geqslant 0$ such that $2-2 g-n<0$. Let S be a Riemann surface of genus g and $P=\left\{P_{1}, \ldots, P_{n}\right\}$ a set of n points in S.

Let $\operatorname{Diff}(S, P)$ be the group of diffeomorphisms of S that fix P pointwise; $\operatorname{Diff}^{0}(S, P)$ denotes the subgroup of diffeomorphisms homotopic to the identity mapping id_{S}; let $\mathrm{Diff}^{+}(S, P)$ indicate the subgroup of orientation-preserving diffeomorphisms.

Every set P of marked points can be transformed into another chosen set P^{\prime} (of the same cardinality) by a diffeomorphism ϕ homotopic to the identity mapping id_{S}. Therefore, $\operatorname{Diff}^{+}(S, P)$ and $\operatorname{Diff}^{0}(S, P)$ depend only on $n=|P|$ and not on P (see [41]). Summing up:
Definition 2.11. $\operatorname{Diff}(S, n)$ is the group of orientation-preserving diffeomorphisms that keep the n marked points fixed.
$\operatorname{Diff}^{0}(S, n)$ is the group of diffeomorphisms of S which are homotopic to the identity mapping id_{S} and that keep the n marked points fixed.

Every complex structure on S determines a conformal structure; let $\operatorname{Conf}(S)$ be the set of all conformal structures on S.

Definition 2.12. The Teichmüller space

$$
\mathcal{T}_{g, n}:=\operatorname{Conf}(S) / \operatorname{Diff}^{0}(S, n)
$$

is the quotient of the set of all conformal metrics on S by the set of all diffeomorphisms homotopic to the identity and fixing the n marked points.

The Teichmüller space $\mathcal{T}_{g, n}$ is an analytic space and is homeomorphic to a convex domain in $\mathbb{C}^{3 g-3+n}$.

Definition 2.13. The mapping class group $\Gamma_{g, n}$ is the set of connected components of $\mathrm{Diff}^{+}(S, n)$, the group of all diffeomorphisms that preserve orientation and fix marked points:

$$
\Gamma_{g, n}:=\operatorname{Diff}^{+}(S, n) / \operatorname{Diff}^{0}(S, n)
$$

Definition 2.14. The topological space $\mathcal{M}_{g, n}:=\mathcal{T}_{g, n} / \Gamma_{g, n}$ is the moduli space of (smooth) n-pointed algebraic curves of genus g. It parametrizes complex structures on S, up to diffeomorphisms that: (1) are homotopic to the identity mapping on S, (2) preserve the orientation of S, and (3) fix the n marked points.

Since $\mathcal{T}_{g, n}$ is an analytic variety and $\Gamma_{g, n}$ acts discontinuously with finite stabilizers, $\mathcal{M}_{g, n}$ inherits a structure of analytic orbifold of complex dimension $3 g-3+n$.

Since $\mathcal{T}_{g, n}$ is contractible, its equivariant (co)homology with rational coefficients is isomorphic to the rational (co)homology of $\mathcal{M}_{g, n}$ (see [10, VII.7.7]):

$$
\begin{equation*}
H_{*}^{\Gamma_{g, n}}\left(\mathcal{T}_{g, n}, \mathbb{Q}\right) \cong H_{*}\left(\mathcal{M}_{g, n}, \mathbb{Q}\right), \quad H_{\Gamma_{g, n}}^{*}\left(\mathcal{T}_{g, n}, \mathbb{Q}\right) \cong H^{*}\left(\mathcal{M}_{g, n}, \mathbb{Q}\right) \tag{2.1}
\end{equation*}
$$

One may instead consider equivalence classes of n-punctured surfaces S (i.e., with n points removed) by bianalytic mappings that do not permute the punctures, and repeat the same construction of the Teichmüller and the moduli space. By the Riemann extension theorem, the two approaches turn out to yield the same result.

In the course of this chapter, we will make use of the description of $\mathcal{M}_{g, n}$ that best fits in the context, often without explicit notice. In particular, we shall consider the points P_{1}, \ldots, P_{n} as marked points or as punctures, interchangeably.
2.1. Quadratic differentials. If S is an n-punctured Riemann surface, then S retracts onto a graph, however, this graph is not uniquely determined. We can refine this correspondence: a theorem proved independently by J. A. Jenkins [37] and K. Strebel [59] provides the key tool: the construction of fatgraphs from smooth complex curves.

Definition 2.15. A quadratic differential q on a Riemann surface S is a (meromorphic) section of $\left(T^{*} S\right)^{\otimes 2}$.

The set of vectors in $T_{z} S$ on which q takes real non-negative values forms a real line in $T_{z} S$: therefore, they make up a foliation F on $S \backslash\{$ poles of $q\}$. The non-compact leaves of F together with zeroes of q form the "critical locus" of q. Call F the "horizontal" foliation associated with q.

Every quadratic differential q induces a metric (away from the critical locus) by $\mathrm{d} s^{2}=|q(z)| \cdot|\mathrm{d} z|$.

Theorem 2.16 (Jenkins, Strebel; [59, Theorem 23.2 and 23.5]). For any complex analytic curve S with n marked points P_{1}, \ldots, P_{n}, and any assignment of real positive numbers p_{1}, \ldots, p_{n}, there exists one and only one quadratic differential q such that:

```
»q is holomorphic on S\{\mp@subsup{P}{1}{},\ldots,\mp@subsup{P}{n}{}};
» q has double poles at the marked points }\mp@subsup{P}{1}{},\ldots,\mp@subsup{P}{n}{}\mathrm{ with second residue
    -( (p1/2\pi)}\mp@subsup{)}{}{2},\ldots,-(\mp@subsup{p}{n}{}/2\pi\mp@subsup{)}{}{2}
» the non-critical real trajectories of Fq}\mp@subsup{F}{q}{}\mathrm{ are simple closed circles around }\mp@subsup{x}{i}{}\mathrm{ ;
» the complement of the critical locus is a collection of disks {D 的质, ...,n,
    each one centered at a pole }\mp@subsup{P}{i}{}\mathrm{ .
```

Furthermore, q has the following properties:
» every nonsingular closed leaf circling around P_{i} has length p_{i} in the flat metric induced by q.
» the critical locus G of q is a graph embedded in S;
» the projective class of the collection of radii of disks $\left\{D_{i}\right\}$ equals the projective class $\left[p_{1}, \ldots, p_{n}\right]$;
$» q$ depends continuously on S and $\left(p_{1}, \ldots, p_{n}\right)$.
2.2. The fatgraph cellularization of the moduli spaces of marked Riemann surfaces. An embedding of a fatgraph G is an injective continuous map $\iota: G \rightarrow S$, that is, a homeomorphism of G onto $\iota(G) \subseteq S$, such that the orientation on S induces the cyclic order at the vertices of $\iota(G)$.
Definition 2.17. An embedded fatgraph is a fatgraph G endowed with a homeomorphism $\tilde{\iota}$ between $S(G)$ and the ambient surface S, modulo the action of $\operatorname{Diff}^{0}(S)$.

There is an obvious action of $\Gamma_{g, n}$ on the set $\widetilde{\mathcal{R}}_{g, n}$ of fatgraphs embedded into n-marked Riemann surfaces of genus g.

If confusion is likely to arise, we shall speak of abstract fatgraphs, to mean the topological and combinatorial objects defined in Definitions 2.1 and Definition 2.2, as opposed to embedded fatgraphs as in Definition 2.17 above.

The critical graph G inherits a structure of embedded metrized fatgraph from the ambient surface S : the length of an edge x is the one measured in the metric induced by the quadratic differential. Furthermore, Jenkins-Strebel's theory states that G has a vertex of valence $k+2$ where q has a zero of order k, therefore, vertices of G have valence $\geqslant 3$. Since the markings P_{1}, \ldots, P_{n} are ordered, G has an additional structure of marked fatgraph.

Let G be a fatgraph (embedded or abstract) of genus g with n marked boundary components. The set $\Delta(G)=\{(G, \ell)\}$ of metrics on G has an obvious structure of topological cell; now glue these cells by stipulating that $\Delta\left(G^{\prime}\right)$ is the face $\ell_{x}=0$ of $\Delta(G)$ when G^{\prime} is obtained from G by contraction of the edge x. The topological spaces obtained by these gluing instructions are denoted $\mathcal{T}_{g, n}^{\text {comb }}$ (when using embedded fatgraphs), or $\mathcal{M}_{g, n}^{\text {comb }}$ (when using abstract fatgraphs). The following theorem clarifies their relation to the Teichmüller and the moduli space; details can be found, e.g., in [51, Section 4.1].

Theorem 2.18. The thickening construction induces orbifold isomorphisms:

$$
\mathcal{T}_{g, n} \times \mathbb{R}^{n} \simeq \mathcal{T}_{g, n}^{\text {comb }}, \quad \mathcal{M}_{g, n} \times \mathbb{R}^{n} \simeq \mathcal{M}_{g, n}^{\text {comb }}
$$

Call $M(G)$ the cell in $\mathcal{M}_{g, n}^{\text {comb }}$ corresponding to an abstract fatgraph G, and $T(\tilde{G})$ the cell in $\mathcal{T}_{g, n}^{\text {comb }}$ corresponding to an embedded fatgraph \tilde{G}.
The functorial action of $\Gamma_{g, n}$ on $\widetilde{\mathcal{R}}_{g, n}$ induces an action on $\mathcal{T}_{g, n}^{\text {comb }}$, which permutes cells $T(\tilde{G})$ by PL isomorphisms.
Lemma 2.19. $\mathcal{M}_{g, n}^{\text {comb }}$ is the quotient space of $\mathcal{T}_{g, n}^{\text {comb }}$ by the cellular action of the mapping class group $\Gamma_{g, n}$; the projection homomorphism commutes with the isomorphisms in Theorem 2.18.

The action of $\Gamma_{g, n}$ commutes with the face operators, so $M(G)$ is a face of $M\left(G^{\prime}\right)$ iff G^{\prime} is obtained from G by contraction of a non-loop edge.

Lemma 2.20. The isotropy group $\Gamma_{\tilde{G}}$ of the cell $T(\tilde{G}) \hookrightarrow \mathcal{T}_{g, n}^{\text {comb }}$ is (isomorphic to) the automorphism group Aut G of the abstract fatgraph G underlying \tilde{G}.

Proof. If $a \in$ Aut G, then $S(a)$ is an automorphism of $S(G, \ell)$ for any metric ℓ. If $\ell \in \Delta(G)$ varies continuously, then so does $S(a)$. Therefore, an element of $\Gamma_{\tilde{G}} \subseteq \Gamma_{g, n}$ is defined.
Conversely, let $\tau \in \Gamma_{g, n}$ fix the cell $T \tilde{G}$ setwise. If q is the Jenkins-Strebel quadratic differential inducing the complex analytic structure corresponding to the metric $\ell \in T(\tilde{G})$, then $\tau^{*} q$ defines a quadratic differential corresponding to a point in $T \tilde{G}$, so it has critical graph \tilde{G}. But $\tau^{*} q$ has critical graph $\tau(\tilde{G})$, since q has critical graph \tilde{G}. Therefore, τ restricts to a fatgraph isomorphism, so a map $\Gamma_{\tilde{G}} \rightarrow$ Aut G is defined, which is clearly the inverse of the map Aut $G \rightarrow \Gamma_{\tilde{G}}$ defined above.

3. Equivariant homology of $\mathcal{T}_{g, n}$ and the complex of fatgraphs

Definition 2.21. An orientation of a fatgraph G is an orientation of the vector space $\mathbb{Q} E(G)$, that is, the choice of an order of the edges of G, up to even permutations.

Giving an orientation on G is the same as orienting the simplex $\Delta(G)$; respectively, an orientation on \tilde{G} is identified with an orientation of the cell $T(\tilde{G})$.
If G is a fatgraph with p edges, let $W_{G}:=\bigwedge^{p} \mathbb{Q} E(G)$ be the 1-dimensional vector space generated by the wedge products $x_{1} \wedge \ldots \wedge x_{p}$ of edges of G. Every $f \in$ Aut G induces a map $f: E(G) \rightarrow E(G)$ on the edges and thus a map $f_{*}: x_{1} \wedge \ldots \wedge x_{p} \mapsto$ $f\left(x_{1}\right) \wedge \ldots \wedge f\left(x_{p}\right)$. Trivially, $f_{*}\left(x_{1} \wedge \ldots \wedge x_{p}\right)= \pm x_{1} \wedge \ldots \wedge x_{p}$, depending on whether f preserves or reverses the orientation of G.
Definition 2.22. A fatgraph G is orientable iff it has no orientation-reversing automorphisms.

Form a differential complex of orientable fatgraphs as follows.
Definition 2.23. The complex $\left(W_{*}, D\right)$ of orientable fatgraphs is defined by:

$$
\begin{aligned}
& » W_{p}:=\bigoplus_{G} W_{G}, \text { where } G \text { runs over orientable fatgraphs with }(2 g+n-1+p) \\
& \text { edges; } \\
& \text { »D }:=\sum_{1}^{p}(-1)^{i} d_{i}, \text { where } d_{i}: W_{p} \rightarrow W_{p-1} \text { is given by: } \\
& d_{i}\left(x_{1} \wedge \ldots \wedge x_{p}\right):= \begin{cases}x_{1} \wedge \ldots \wedge \widehat{x_{i}} \wedge \ldots \wedge x_{p} & \text { if } x_{i} \text { is not a loop and } \\
& G / x_{i} \text { is orientable } \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Call a fatgraph with one vertex only a clover; the number of edges of a clover of genus g with n boundary cycles is readily computed by (1.1):

$$
\begin{equation*}
m_{\min }=1-\chi(G)=2 g+n-1 \tag{3.1}
\end{equation*}
$$

On the other hand, the number m of edges and the number l of vertices are maximal when all vertices are 3 -valent:

$$
\begin{equation*}
m_{\max }=6 g+3 n-6, \quad l_{\max }=4 g+4 n-4 \tag{3.2}
\end{equation*}
$$

From equations (3.1) and (3.2) we see that W_{*} is a finite complex of length $4 g+$ $2 n-5$, which is already predicted by the results of Harer on the equivariant spine of $\mathcal{T}_{g, n}[\mathbf{3 0}]$.
Every oriented fatgraph (G, ω) defines an element $\omega_{G} \in W_{G}$ by taking the wedge product of edges of G in the order given by ω; conversely, any $x_{1} \wedge \ldots \wedge x_{p} \in W_{G}$ defines an orientation on G by setting $\omega:=x_{1}<\ldots<x_{p}$.

Theorem 2.24. The $\Gamma_{g, n}$-equivariant homology of $\mathcal{T}_{g, n}$ with rational coefficients is computed by the complex of oriented fatgraphs $\left(W_{*}, D\right)$, i.e., there exists an isomorphism:

$$
H_{*}^{\Gamma_{g, n}}\left(\mathcal{T}_{g, n}, \mathbb{Q}\right) \cong H_{*}\left(W_{*}, D\right)
$$

Proof. The genus and number of boundary cycles will be fixed throughout, so for brevity, set $\Gamma:=\Gamma_{g, n}, \mathcal{T}:=\mathcal{T}_{g, n}$ and $\mathcal{T}^{\text {comb }}:=\mathcal{T}_{g, n}^{\text {comb }}$.

By Theorem 2.18, we have:

$$
H_{*}^{\Gamma}(\mathcal{T}, \mathbb{Q})=H_{*}^{\Gamma}\left(\mathcal{T}^{\mathrm{comb}}, \mathbb{Q}\right) .
$$

Recall that $H_{*}^{\Gamma}\left(\mathcal{T}^{\text {comb }}, \mathbb{Q}\right)$ can be defined as the homology of the double complex $P_{*} \otimes C_{*}\left(\mathcal{T}^{\text {comb }}, \mathbb{Q}\right)$, where P_{*} is any projective resolution of \mathbb{Q} over $\mathbb{Q}[\Gamma]$. The spectral sequence $E_{p q}^{1}:=H_{q}\left(P_{*} \otimes_{\Gamma} C_{p}\right)=H_{q}\left(\Gamma, C_{p}\right)$ abuts to $H_{p+q}^{\Gamma}\left(\mathcal{T}^{\mathrm{comb}}\right)$ (see [10, VII. 5 and VII.7]).

The space $\mathscr{T}_{g, n}^{\text {comb }}$ has, by definition, an equivariant cellularization with cells indexed by embedded fatgraphs of genus g with n marked boundary components. Let X_{p} be a set of representatives for the orbits of p-cells under the action of Γ. By Lemma 2.19, X_{p} is in bijective correspondence with the set of abstract fatgraphs having p edges, and the orientation of a cell translates directly to an orientation of the corresponding graph. For each geometric simplex $T(\tilde{G}) \subseteq \mathcal{T}^{\text {comb }}$, let $\Gamma_{\tilde{G}}$ be its isotropy group, and let $\mathbb{Q} \tilde{G}$ be the $\Gamma_{\tilde{G}}$-module consisting of the \mathbb{Q}-vector space generated by an element Δ on which $\Gamma_{\tilde{G}}$ acts by the orientation character: $\tau \cdot \Delta= \pm \Delta$ depending on whether τ preserves or reverses the orientation of the cell $T(\tilde{G})$. By Lemma 2.20, there is an isomorphism between $\Gamma_{\tilde{G}}$ and Aut G; if $\tau \in \Gamma_{\tilde{G}}$ reverses (resp. preserves) orientation of $T(\tilde{G})$, then the corresponding $f \in \operatorname{Aut} G$ reverses (resp. preserves) orientation on G. Therefore, $\mathbb{Q} \tilde{G}$ and W_{G} are isomorphic as Aut $G=\Gamma_{T \tilde{G}}$ modules.

Following [10, p. 173], let us decompose (as a Γ-module)

$$
C_{*}\left(\mathcal{T}^{\mathrm{comb}}, \mathbb{Q}\right)=\bigoplus_{G \in X_{p}} W_{G} ;
$$

then, by Shapiro's lemma [10, III.6.2], we have:

$$
H_{q}\left(\Gamma, C_{p}\right) \cong \bigoplus_{G \in X_{p}} H_{q}\left(\Gamma_{\tilde{G}}, \mathbb{Q} \tilde{G}\right) \cong \bigoplus_{G \in X_{p}} H_{q}\left(\operatorname{Aut} G, W_{G}\right)
$$

Since Aut G is finite and we take rational coefficients, then $H_{q}\left(\operatorname{Aut} G, W_{G}\right)=0$ if $q>0$ [10, III.10.2]. On the other hand, if G is orientable then Aut G acts trivially on W_{G}, so:

$$
H_{0}\left(\text { Aut } G, W_{G}\right)= \begin{cases}0 & \text { if } G \text { has an orientation-reversing automorphism } \\ W_{G} & \text { if } G \text { has no orientation-reversing automorphisms }\end{cases}
$$

Let X_{p}^{\prime} be the collection of all orientable fatgraphs with p edges. Substituting back into the spectral sequence, we see that only one column survives:

$$
\begin{align*}
E_{p, 0}^{1} & =\bigoplus_{G \in X_{p}^{\prime}} W_{G}=W_{p} \tag{3.3}\\
E_{p, q}^{1} & =0 \tag{3.4}
\end{align*} \quad \text { for all } q>0, ~ l
$$

In other words, $E_{p q}^{1}$ reduces to the complex $\left(E_{*, 0}^{1}, d^{1}\right)$.
Finally, we show that the differential $d^{1}: E_{p, 0}^{1} \rightarrow E_{p-1,0}^{1}$ corresponds to the differential $D: W_{p} \rightarrow W_{p-1}$ under the isomorphism formula (3.3); this will end the
proof. Indeed, we shall prove commutativity of the following diagram at the chain level:

which implies commutativity at the homology level:

whence the conclusion $E_{*, 0}^{1} \cong\left(W_{*}, D\right)$.
The vertical maps θ_{p}, θ_{p-1} in (3.5) are the chain isomorphisms underlying the Γ module decomposition $C_{p}\left(\mathcal{T}^{\text {comb }}, \mathbb{Q}\right) \cong \bigoplus_{G \in X_{p}} W_{G}$. Taking the boundary of a cell $T(\tilde{G}) \subseteq \mathcal{T}^{\text {comb }}$ commutes with the Γ-action: $\partial T(\tau \cdot \tilde{G})=\tau \cdot \partial T(\tilde{G})$. Furthermore, $T\left(\tilde{G}^{\prime}\right)$ is a cell in $\partial T(\tilde{G})$ iff \tilde{G}^{\prime} is obtained from \tilde{G} by contraction of an edge; but \tilde{G}^{\prime} is a contraction of \tilde{G} iff the underlying abstract fatgraphs G^{\prime} and G stand in the same relation. Thus, the Γ-complexes $\left(C_{*}, \partial\right)$ and $\left(W_{*}, D\right)$ are isomorphic by θ_{*}, so diagram (3.5) commutes, as was to be proved.

CHAPTER 3

Algorithms for graph homology

The objects of this Chapter 3 are finding an effectively computable representation of fatgraphs (see Section 1), and presenting algorithms to:
(1) compute automorphisms of any given fatgraph (Section 2);
(2) generate the set $\mathcal{R}_{g, n}$ of fatgraphs, given the genus g and number of boundary components n (Section 3);
(3) compute the homology of the fatgraph complex $\mathcal{R}_{g, n}$ (Section 4).

By Theorem 2.24, this is tantamount to computing the (co)homology with rational coefficients of the moduli spaces $\mathcal{M}_{g, n}$.

An effective computer implementation ${ }^{1}$ of the algorithm has been written as part of the research. It is capable of computing the Betti numbers of $\mathcal{M}_{g, n}$ for $(2 g+n) \leqslant 6$ on commonly-available hardware. Experimental results from running the code are discussed in Section 5.

1. Computer representation of Fatgraphs

Although the combinatorial definition of a fatgraph (cf. Lemma 2.3) lends itself to a computer representation as a triple of permutations -as used, e.g., in [57, Section $2.4]$-, the functions that are needed by the generation algorithms (see Section 3) are rather topological in nature and thus suggest an approach more directly related to the concrete realization of a fatgraph.

Definition 3.1. A Fatgraph object \boldsymbol{G} is comprised of the following data:
» A list \boldsymbol{G}.vertices of Vertex objects.
» A list G.edges of Edge objects.
» A set G.boundary_cycles of BoundaryCycle objects.
» An orientation \boldsymbol{G}.orient.
The exact definition of the constituents of a Fatgraph object is the subject of the following sections; informally, let us say that a Vertex is a cyclic list of edges and that an Edge is a pair of vertices and incidence positions. A precise statement about the correspondence of abstract fatgraphs and Fatgraph objects is made in Section 1.5.

There is some redundancy in the data comprising a Fatgraph object: some of these data are inter-dependent and cannot be specified arbitrarily. Actually, all data comprising a Fatgraph object can be computed from the vertex list alone, as the following sections show.

In what follows, the letters l, m and n shall denote the number of vertices, edges and boundary cycles respectively:

[^2]```
»l= |V(G)| = size(G.vertices),
»m= |E(G)|=size(\boldsymbol{G}.edges),
> n= |B(G)|=size(G.boundary_cycles).
```

Throughout this Chapter, we shall use the topological and the combinatorial definition of a fatgraph equivalently, according to what best suits in context. The symbols $\sigma_{0}, \sigma_{1}$ and $\sigma_{2}$ stand for the structure maps in the combinatorial definition Definition 2.2.

For integers $\alpha$ and $k$, we use ( $\alpha \% k$ ) to denote the smallest non-negative representative of $\alpha \bmod k$.
1.1. Vertices. We can represent a fatgraph vertex by assigning labels ${ }^{2}$ to all fatgraph vertices and mapping a vertex to the cyclically-invariant list of labels of incident edges. Figure 3.1 gives an illustration.

Definition 3.2. A vertex together with a choice of an attached edge is called a ciliated vertex. The chosen edge is called the cilium.

Definition 3.3. If $v$ is a ciliated vertex and $e$ is a half-edge attached to it, define the attachment index of $e$ at $v$ as the index of edge $e$ relative to the cilium at $v$ : if $\alpha$ is the attachment index of $e$ at $v$, then $\sigma_{0}^{\alpha}$ takes the cilium at $v$ onto $e$.

The attachment index at a vertex is unambiguously defined for all edges which are not loops; the two half-edges comprising a loop have distinct attachment indices. For brevity, in the following we shall slightly abuse the definition and speak of the attachment index of an edge at a vertex.

Definition 3.4. A Vertex object $\boldsymbol{v}=\operatorname{Vertex}\left(e_{1}, \ldots, e_{z}\right)$ is a list of the labels $e_{1}$, $\ldots, e_{z}$ of attached edges.

Two Vertex objects are considered equal if one is equal (as a sequence) to the other rotated by a certain amount.

Example 3.5. Consider for example the fatgraph depicted in Figure 3.1: the edges are given labels " 0 ", " 1 " and " 2 ", so the two vertices are represented by objects $\boldsymbol{a}=$ $\operatorname{Vertex}(0,1,2)$ and $\boldsymbol{b}=\operatorname{Vertex}(0,2,1)$, where the edge labels are listed starting with the ciliated vertex and continue according to the cyclic order given at the vertex.

Note that the definition of Vertex objects as plain lists would correspond to ciliated vertices in a fatgraph. For instance, if a different cilium were chosen in Figure 3.1, we would have represented vertex $\boldsymbol{a}$ equivalently as $\operatorname{Vertex}(1,2,0)$ or $\operatorname{Vertex}(2,0,1)$. In order to implement the cyclic behavior of fatgraph vertices, the requirement on equality must be imposed; equality of Vertex objects can be tested by an algorithm of quadratic complexity in the vertex valence.

If $\boldsymbol{v}$ is a vertex object, let us denote num_loops $(\boldsymbol{v})$ the number of loops attached to $\boldsymbol{v}$. This is a vertex invariant and will be used in the computation of fatgraph isomorphisms. Implementations of num_loops need only count the number of repeated edge labels in the list defining the Vertex object $\boldsymbol{v}$.

[^3]
### 1.2. Edges.

Definition 3.6. An Edge object $\boldsymbol{e}$ is an unordered pair of endpoints, so defined: each endpoint corresponds to a 2 -tuple $(\boldsymbol{v}, a)$, where $\boldsymbol{v}$ is a vertex, and $a$ is the index at which edge $\boldsymbol{e}$ appears within vertex $\boldsymbol{v}$ (the attachment index).

The notation Edge( $\langle$ endpoints $\rangle)$ will be used for an Edge object comprising the specified endpoints.

Figure 3.2 provides a graphical illustration of the representation of fatgraph edges as Edge objects.

It is clear how an Edge object corresponds to a fatgraph edge: a fatgraph edge is made of two half-edges, each of which is uniquely identified by a pair formed by the end vertex $\boldsymbol{v}$ and the attachment index $a$. In the case of loops, the two ends will have the form $(\boldsymbol{v}, a),\left(\boldsymbol{v}, a^{\prime}\right)$ where $a$ and $a^{\prime}$ are the two distinct attachment indices at $\boldsymbol{v}$.

Example 3.7. For instance, consider the fatgraph depicted in Figure 3.2, and label the three edges with the natural numbers $0,1,2$, starting with the bottom edge. Then the two vertices are represented by $\boldsymbol{a}=\operatorname{Vertex}(1,0,0)$ and $\boldsymbol{b}=\operatorname{Vertex}(2,1,2)$. Hence, the bottom edge $e_{0}$ is represented as $\operatorname{Edge}((\boldsymbol{a}, 1),(\boldsymbol{a}, 2))$ because its label 0 appears at positions 1 and 2 in the Vertex object $\boldsymbol{a}$.

Given an Edge object $\boldsymbol{e}$, the other_end $(\boldsymbol{e}, \boldsymbol{v}, a)$ function returns the endpoint of $\boldsymbol{e}$ opposite to ( $\boldsymbol{v}, a)$.
1.2.1. Computation of the edge list. The edge list G.edges can be computed from the list of vertices as follows.

The total number $m$ of edges is computed from the sum of vertex valences, and used to create a temporary array $P$ of $m$ lists (each one initially empty). We then incrementally turn $P$ into a list of edge endpoints (in the form $(\boldsymbol{v}, a)$ where $\boldsymbol{v}$ is a vertex and $a$ the attachment index) by just walking the list of vertices: $P[k]$ is the list $\left[\left(\boldsymbol{v}_{k}, 0\right), \ldots,\left(\boldsymbol{v}_{k}, z_{k}\right)\right]$ where $\boldsymbol{v}_{k}$ (of valence $\left.z_{k}\right)$ is the $k$-th Vertex in $\boldsymbol{G}$.vertices. The list $\boldsymbol{G}$.edges is just $P$ recast into Edge objects. In pseudo-code:

```
\(m \leftarrow(1 / 2) \cdot \sum_{\boldsymbol{v} \in \boldsymbol{G} . \text { vertices }}\) valence \((\boldsymbol{v})\)
\(P \leftarrow\) array of \(m\) empty lists
for \(\boldsymbol{v}\) in \(\boldsymbol{G}\).vertices:
 for \((a, e)\) in enumerate \((\boldsymbol{v})\) :
 append \((\boldsymbol{v}, a)\) to \(P[e]\)
 wrap endpoints into "Edge" objects
\(\boldsymbol{G}\). .edges \(\leftarrow[\operatorname{Edge}(p)\) for \(p\) in \(P]\)
```


### 1.3. Boundary Cycles.

Definition 3.8. A BoundaryCycle object is a set of corners (see Figure 3.3).
A corner object $\boldsymbol{C}$ is a triple (vertex, incoming, outgoing), consisting of a vertex $\boldsymbol{v}$ and two indices $i=\boldsymbol{C}$.incoming, $j=\boldsymbol{C}$.outgoing of consecutive edges (in the cyclic order at $\boldsymbol{v}$ ). In order to have a unique representation of any corner, we impose the condition that either $j=i+1$, or $i$ and $j$ are, respectively, the ending and starting indices of $\boldsymbol{v}$ (regarded as a list).


Figure 3.1. Representation of vertices as (cyclic) lists of edge labels; vertices are identified by lowercase Latin letters; edge labels are depicted as roman numerals on a yellow square background, sitting over the edge they label. The representation of a vertex as a list is implicitly ciliated: here we use the convention that the edge closest to the tail of the arrow is the ciliated one.


Figure 3.2. Representation of fatgraph edges. Each edge is identified with a pair of endpoints, where an endpoint is a vertex together with an attachment index. In the figure, letters $a$ and $b$ denote the vertices; attachment indices are computed by assigning index 0 to the edge closest to the orientation arrow's tail.


Figure 3.3. Representation of fatgraph boundary cycles. Left: How the boundary cycles are represented with corners: each boundary component is identified with the set of triplets it encloses. Therefore the boundary cycles for the graph are represented by the sets $\{(a, 0,1),(b, 2,0)\},\{(a, 1,2),(b, 1,2)\}$, and $\{(a, 2,0),(b, 0,1)\}$. Right: Zoom around vertex $a$ in the left picture, to show the three corners identified with triples $(a, i, j)$. The indices in the triple are attachment indices, i.e., displacement relative from the ciliated edge (the one closest to the arrow tail); they bear no relation to the labels on the edges (numbers on the light yellow background in the left picture).

Example 3.9. Corner objects are meant to represent the entity formed by a vertex and two consecutive half-edges; attachment indices are used to distinguish between the two ends of a looping edge. So, for instance, the corner formed by the vertex $b$ and edges 0 and 1 in Figure 3.3 is given by the triplet ( $\boldsymbol{b}, 2,0$ ), as edge 1 is attached at position 2 in the Vertex object $\boldsymbol{b}$, and edge 0 is attached at position 0 ; the normalization condition that $\boldsymbol{C}$.outgoing be the successor of $\boldsymbol{C}$.incoming in the cyclic ordering at the vertex $\boldsymbol{b}$ dictates the order of the two edges in the corner.

The notation ${ }^{i} \boldsymbol{a}^{j}$ is used in Appendix C to indicate corners; a boundary cycle is denoted by $\left({ }^{i_{0}} \boldsymbol{a}_{0}^{j_{0}} \rightarrow{ }^{i_{1}} \boldsymbol{a}_{1}^{j_{1}} \rightarrow \cdots \rightarrow{ }^{i_{k}} \boldsymbol{a}_{k}^{j_{k}}\right)$.

It is easy to convince oneself that a BoundaryCycle object corresponds to a boundary cycle as defined in Section 1. Indeed, if $\left(L, \sigma_{0}, \sigma_{1}, \sigma_{2}\right)$ is a fatgraph, then the boundary cycles are defined as the orbits of $\sigma_{2}$ on the set $L$ of half-edges; a (endpoint vertex, attachment index) pair uniquely identifies an half-edge and can thus be substituted for it. For computational efficiency reasons, we add an additional successor index to form the corner triple $(\boldsymbol{v}, i, j)$ so that the action of $\sigma_{2}$ can be computed from corner data alone, without any reference to the ambient fatgraph. ${ }^{3}$

Since distinct orbits are disjoint, two BoundaryCycle objects are either identical (they comprise the same corners) or have no intersection. In particular, this representation based on corners distinguishes boundary cycles made of the same edges: for instance, the boundary cycles of the fatgraph depicted in Figure 3.4 are represented by the disjoint set of corners $\{(\boldsymbol{v}, 2,3),(\boldsymbol{v}, 4,5),(\boldsymbol{v}, 0,1)\}$ and $\{(\boldsymbol{v}, 1,2),(\boldsymbol{v}, 3,4),(\boldsymbol{v}, 5,0)\}$.
1.3.1. Computation of boundary cycles. The procedure for computing the set of boundary cycles of a given Fatgraph object $\boldsymbol{G}$ is listed in Algorithm 1. The algorithm closely follows a geometrical procedure: starting with any corner, follow its "outgoing" edge to its other endpoint, and repeat until we come back to the starting corner. The list of corners so gathered is a boundary cycle. At each iteration, the used corners are cleared out of the corners list by replacing them with the special value USED, so that they will not be picked up again in subsequent iterations.

Lemma 3.10. For any Fatgraph object $\boldsymbol{G}$ representing a fatgraph $G$, the function compute_boundary_cycles in Algorithm 1 has the following properties: 1) terminates in finite time, and 2) returns a list of BoundaryCycle objects that represent the boundary cycles of $G$.

Proof. The algorithm works on a temporary array corners: as it walks along a boundary cycle (lines 24-30), corner triples are moved from the working array to the triples list and replaced with the constant USED; when we're back to the starting corner, a BoundaryCycle object $\boldsymbol{b}$ is constructed from the triples list and appended to the result.

The corners variable is a list, the $n$-th item of which is (again) a list holding the corners around the $n$-th vertex (i.e., $G$.vertices $[n]$ ), in the order they are encountered when winding around the vertex. By construction, corners $[\boldsymbol{v}][i]$ has the the form $(\boldsymbol{v}, i, j)$ where $j$ is the index following $i$ in the cyclic order, i.e., $(\boldsymbol{v}, i, j)$ represents the corner formed by the "incoming" $i$-th edge and the "outgoing" $j$-th edge.

[^4]```
Algorithm 1 Output the set of boundary cycles of a Fatgraph object G. Input
to the algorithm is a Fatgraph object \(\boldsymbol{G}\); the output is a list of BoundaryCycle
objects. The special constant USED marks locations in the temporary array corners
whose contents has already been assigned to a boundary cycle.
    def compute_boundary_cycles( \(\boldsymbol{G}\) ):
    build working array of corners
    corners \(\leftarrow[[(\boldsymbol{v}, i,((i+1) \%|\boldsymbol{v}|))\) for \(i\) in \(0, \ldots,|\boldsymbol{v}|-1]\)
            for \(\boldsymbol{v}\) in \(\boldsymbol{G}\).vertices ]
    result \(\leftarrow\) empty list
    \(l_{0} \leftarrow 0\)
    \(i_{0} \leftarrow 0\)
    while True:
        locate the first unused corner
        for \(l\) in \(l_{0}, \ldots, \operatorname{size}(\) corners \()-1\) :
            \(\boldsymbol{v} \leftarrow \boldsymbol{G}\).vertices[l]
            \(i \leftarrow\) first_index_not_used \(\left(\operatorname{corners}[\boldsymbol{v}], i_{0}\right)\)
            if \(i\) is not None:
                exit "for" loop
    if \(l=\operatorname{size}\) (corners) -1 and \(i\) is None:
            all corners used, mission accomplished
            return result
        else:
            \(l_{0} \leftarrow l\)
            \(i_{0} \leftarrow i\)
            walk the boundary cycle and record corners
    start \(\leftarrow(\boldsymbol{v}, i)\)
    triples \(\leftarrow\) empty list
    while \((\boldsymbol{v}, i) \neq\) start or size(triples \()=0\) :
        triples.append (corners \([\boldsymbol{v}][i])\)
        \(j \leftarrow\) corners \([v][i][2]\)
        \(e \leftarrow v[j]\)
            mark location as "used"
        corners \([\boldsymbol{v}][i] \leftarrow\) USED
        \((\boldsymbol{v}, i) \leftarrow\) other_end \((\boldsymbol{e}, \boldsymbol{v}, j)\)
        \(\boldsymbol{b} \leftarrow\) BoundaryCycle(triples)
    result.append (b)
    def first_index_not_used \((L)\) :
        for index, item in enumerate \((L)\) :
            if item is not USED:
                return index
    return None
```

The starting corner for each walk along a boundary cycle is determined by scanning the corners list (lines 10-14): loop over all indexes \boldsymbol{v}, i in the corners list, and quit looping as soon as corners $[\boldsymbol{v}][i]$ is not used (line 13). If all locations in the corners list are USED, then the all corners have been assigned to a boundary cycle and we can return the result list to the caller.

Example 3.11. Consider the fatgraph in Figure 3.3: it has two vertices $\boldsymbol{a}=$ $\operatorname{Vertex}(0,1,2)$ and $\boldsymbol{b}=\operatorname{Vertex}(0,2,1)$ with three incident edges each, so initially we have corners $[\boldsymbol{a}]=[(\boldsymbol{a}, 0,1),(\boldsymbol{a}, 1,2),(\boldsymbol{a}, 2,0)]$ and corners $[\boldsymbol{b}]=[(\boldsymbol{b}, 0,1),(\boldsymbol{b}, 1,2)$, $(\boldsymbol{b}, 2,0)]$. Start with the first available corner $(\boldsymbol{a}, 0,1)$ and follow the edge attached at position 1 to its other end ($\boldsymbol{b}, 2$); the corresponding corner corners $[\boldsymbol{b}][2]$ is $(\boldsymbol{b}, 2,0)$. Hence we continue the walk with edge 0 (attached at position 0 to vertex \boldsymbol{b}), and through its other end $(\boldsymbol{a}, 0)$ we come back to the starting point. So, one boundary cycle is formed by corners $\{(\boldsymbol{a}, 0,1),(\boldsymbol{b}, 2,0)\}$; the corners list now has the values corners $[\boldsymbol{a}]=[\operatorname{USED},(\boldsymbol{a}, 1,2),(\boldsymbol{a}, 2,0)]$ and corners $[\boldsymbol{b}]=[(\boldsymbol{b}, 0,1),(\boldsymbol{a}, 1,2)$, USED $]$.
1.4. Orientation. According to Definition 2.21, orientation is given by a total order of the edges (which directly translates into an orientation of the associated orbifold cell).

Definition 3.12. The orientation \boldsymbol{G}.orient is a list that associates each edge with its position according to the order given by the orientation. Two such lists are equivalent if they differ by an even permutation.

If \boldsymbol{e}_{1} and \boldsymbol{e}_{2} are edges in a Fatgraph object \boldsymbol{G}, then \boldsymbol{e}_{1} precedes \boldsymbol{e}_{2} if and only if \boldsymbol{G}.orient $\left[\boldsymbol{e}_{1}\right]<\boldsymbol{G}$.orient $\left[\boldsymbol{e}_{2}\right]$; this links the fatgraph orientation from Definition 2.21 with the one above.

If a Fatgraph object is derived from another Fatgraph instance (e.g., when an edge is contracted), the resulting graph must derive its orientation from the "parent" graph, if we want the edge contraction to correspond to taking cell boundary in the orbicomplex $\mathcal{M}_{g, n}^{\text {comb }}$.

When no orientation is given, the trivial one is (arbitrarily) chosen: edges are ordered in the way they are listed in the \boldsymbol{G}.edges list, i.e., \boldsymbol{G}.orient $[\boldsymbol{e}]$ is the position at which \boldsymbol{e} appears in G.edges.

According to Definition 2.22, a fatgraph is orientable iff it has no orientationreversing automorphism. The author knows of no practical way to ascertain if a fatgraph is orientable other than enumerating all automorphisms and checking if any one of them reverses orientation:

```
def is_oriented \((\boldsymbol{G})\) :
    for \(\boldsymbol{a}\) in automorphisms \((\boldsymbol{G})\) :
            if is_orientation_reversing \((\boldsymbol{a})\) :
                return False
            no orientation-reversing automorphism found, \(\boldsymbol{G}\) is orientable
    return True
```


1.5. A category of Fatgraph objects.

1.5.1. Isomorphisms of Fatgraph objects. In this section, we shall only give the definition of Fatgraph isomorphisms and prove the basic properties; the algorithmic generation and treatment of Fatgraph isomorphisms is postponed to Section 2.
Definition 3.13. An isomorphism of Fatgraph objects \boldsymbol{G}_{1} and \boldsymbol{G}_{2} is a triple $\boldsymbol{f}=(p v$, rot, pe $)$ where:
$» p v$ is a permutation of the vertices: vertex \boldsymbol{v}_{1} of \boldsymbol{G}_{1} is sent to vertex $p v[\boldsymbol{v}]$ of \boldsymbol{G}_{2}, and rotated by $\operatorname{rot}[\boldsymbol{v}]$ places leftwards;
» $p e$ is a permutation of the edge labels: edge \boldsymbol{e} in \boldsymbol{G}_{1} is mapped to edge $p e[\boldsymbol{e}]$ in \boldsymbol{G}_{2}.

The adjacency relation must be preserved by isomorphism triples: if \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are endpoint vertices of the edge \boldsymbol{e}, then $p v\left[\boldsymbol{v}_{1}\right]$ and $p v\left[\boldsymbol{v}_{2}\right]$ must be the endpoint vertices of edge $p e[\boldsymbol{e}]$ in \boldsymbol{G}_{2}.

Since a vertex in a Fatgraph instance is essentially the list of labels of edges attached to that vertex, we can dually state this compatibility condition as requiring that, for any vertex \boldsymbol{v} in \boldsymbol{G}_{1}.vertices and any valid index j of an edge of \boldsymbol{v}, we have:

$$
\begin{equation*}
\boldsymbol{G}_{2} \cdot \operatorname{vertices}[p v[\boldsymbol{v}]][j+\operatorname{rot}[\boldsymbol{v}]]=\operatorname{pe}\left[\boldsymbol{G}_{1} \cdot \operatorname{vertices}[\boldsymbol{v}][j]\right] \tag{1.1}
\end{equation*}
$$

The above formula (1.1) makes the parallel between Fatgraph object isomorphisms and fatgraph maps (in the sense of Definition 2.1) explicit.

Lemma 3.14. Let G_{1}, G_{2} be fatgraphs, represented respectively by \boldsymbol{G}_{1} and \boldsymbol{G}_{2}. Every isomorphism of fatgraphs $f: G_{1} \rightarrow G_{2}$ lifts to a corresponding isomorphism $\boldsymbol{f}=(p v$, rot, $p e)$ on the computer representations. Conversely, every triple ($p v$, rot, pe) representing an isomorphism between the Fatgraph instances induces a (possibly trivial) fatgraph isomorphism between G_{1} and G_{2}.

Proof. Every isomorphism $f: G_{1} \rightarrow G_{2}$ naturally induces bijective maps $f_{V}: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ and $f_{E}: E\left(G_{1}\right) \rightarrow E\left(G_{2}\right)$ on vertices and edges. Given a cilium on every vertex, f additionally determines, for each vertex $v \in V(G)$, the displacement $f_{\text {rot }}(v)$ of the image of the cilium of v relative to the cilium of $f_{V}(v)$. Similarly, f_{E} determines a bijective mapping of edge labels, and is completely determined by it. This is exactly the data collected in the triple ($p v$, rots, pe), and the compatibility condition (1.1) holds by construction.

Conversely, assume we are given a triple ($p v$, rots, $p e$), representing an isomorphism of Fatgraph instances. We can construct maps f_{V}, f_{E} as follows: f_{V} sends a vertex $\boldsymbol{v} \in \boldsymbol{G}_{1}$ to the vertex corresponding to $p v[\boldsymbol{v}] ; f_{E}$ maps the cilium of \boldsymbol{v} to the edge attached to $p v[\boldsymbol{v}]$ at $\operatorname{rot}[\boldsymbol{v}]$ positions away from the cilium; the compatibility condition (1.1) guarantees that f_{E} is globally well-defined.

Example 3.15. Consider the fatgraph G in Figure 3.1 again; a Fatgraph object \boldsymbol{G} representing it has vertices $\boldsymbol{a}=\operatorname{Vertex}(0,1,2), \boldsymbol{b}=\operatorname{Vertex}(0,2,1)$, and edges \boldsymbol{e}_{0}, $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$. Picture G as embedded on the surface of a sphere, with the vertices on the two poles; an obvious automorphism is the one induced by rotation of the sphere along its axis: f_{E} maps $\boldsymbol{e}_{0} \mapsto \boldsymbol{e}_{1}, \boldsymbol{e}_{1} \mapsto \boldsymbol{e}_{2}$, and $\boldsymbol{e}_{2} \mapsto \boldsymbol{e}_{0}$, hence pe $\left[\boldsymbol{e}_{0}\right]=\boldsymbol{e}_{1}$, etc. Correspondingly, we have that f_{V} fixes the vertices but rotates the attachment indices: $p v[\boldsymbol{a}]=\boldsymbol{a}$ and $p v[\boldsymbol{b}]=\boldsymbol{b}$, but $\operatorname{rot}[\boldsymbol{a}]=1$ and $\operatorname{rot}[\boldsymbol{b}]=1$.

Exchanging the north and south poles of the sphere yields a different automorphism f^{\prime} of the graph G : this time we have clearly $\boldsymbol{f}^{\prime} \cdot p v[\boldsymbol{a}]=\boldsymbol{b}$ and $p v[\boldsymbol{b}]=\boldsymbol{a}$ with $\boldsymbol{f}^{\prime} \cdot \operatorname{rot}[\boldsymbol{a}]=0$ and $\operatorname{rot}[\boldsymbol{b}]=0$, but $\boldsymbol{f}^{\prime} \cdot \operatorname{pe}\left[\boldsymbol{e}_{1}\right]=\boldsymbol{e}_{2}, \operatorname{pe}\left[\boldsymbol{e}_{2}\right]=\boldsymbol{e}_{1}$, and $\operatorname{pe}\left[\boldsymbol{e}_{0}\right]=\boldsymbol{e}_{0}$ by (1.1).

Lemma 3.16. Let $\boldsymbol{G}_{1}, \boldsymbol{G}_{2}$ be Fatgraph objects, and η a bijective map between \boldsymbol{G}_{1}.edges and \boldsymbol{G}_{2}.edges that preserves the incidence relation. Then there is a unique Fatgraph isomorphism \boldsymbol{f} that extends η (in the sense that $\boldsymbol{f} \cdot p \mathrm{pe}=\eta$).

Proof. Start constructing the Fatgraph morphism \boldsymbol{f} by setting \boldsymbol{f}.pe $=\eta$. If $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{z_{k}}$ are the edges incident to $\boldsymbol{v}_{k} \in \boldsymbol{G}_{1}$.vertices, then there is generally one and only one endpoint $\boldsymbol{v}_{k}^{\prime}$ common to edges $\eta\left(\boldsymbol{e}_{k}\right)$; define $\boldsymbol{f} \cdot p \mathrm{v}\left[\boldsymbol{v}_{k}\right]=\boldsymbol{v}_{k}^{\prime}$. There is only one case in which this is not true, namely, if all edges share the same two endpoints: ${ }^{4}$ in this case, however, there is still only one choice of $\boldsymbol{f} \cdot p v\left[\boldsymbol{v}_{k}\right]$ such that the cyclic order of edges at the source vertex matches the cyclic order of edges at the target vertex. Finally, choose $\boldsymbol{f} . \operatorname{rot}\left[\boldsymbol{v}_{k}\right]$ as the displacement between the cilium at $\boldsymbol{v}_{k}^{\prime}$ and the image of the cilium of \boldsymbol{v}_{k}.

It is easy to check that eq. (1.1) holds, so \boldsymbol{f} is a well-defined isomorphism.
1.5.2. Contraction morphisms. Recall from the definition in Section 1.2 that contraction produces a "child" fatgraph from a "parent" fatgraph and a chosen regular (i.e., non-looping) edge.

The Fatgraph.contract method (see Algorithm 2) thus takes as input the "parent" graph \boldsymbol{G} and the edge \boldsymbol{e} to contract, and produces as output the "child" fatgraph \boldsymbol{G}^{\prime}. The contraction algorithm proceeds in the following way:
» The two end vertices of the edge \boldsymbol{e} are fused into one: the list \boldsymbol{G}^{\prime}.vertices is built by copying the list \boldsymbol{G}. vertices, removing the two endpoints of \boldsymbol{e}, and adding the new vertex (resulting from the collapse of \boldsymbol{e}) at the end.
» Deletion of an edge also affects the orientation: the orientation \boldsymbol{G}^{\prime}.orient on the "child" fatgraph keeps the edges in the same order as they are in the parent fatgraph. However, since \boldsymbol{G}^{\prime}.orient must be a permutation of the edge indices, we need to renumber the edges and shift the higher-numbered edges down one place.
» The "child" graph \boldsymbol{G}^{\prime} is constructed from the list \boldsymbol{G}^{\prime}. vertices and the derived orientation \boldsymbol{G}^{\prime}. orient; the list of "new" edges is constructed according to the procedure given in Section 1.2.1.

Listing 2 summarizes the algorithm applied.
The vertex resulting from the contraction of \boldsymbol{e} is formed as follows. Assume \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are the endpoint vertices of the contracted edge. Fuse the endpoints of the contracted edge as follows:
(1) Rotate the lists $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ so that the given edge \boldsymbol{e} appears last in \boldsymbol{v}_{1} and first in \boldsymbol{v}_{2}.
(2) Form the new vertex \boldsymbol{v} by concatenating the two rotated lists (after expunging \boldsymbol{e}).

Note that this changes the attachment indices of all edges incident to \boldsymbol{v}_{1} and \boldsymbol{v}_{2}, therefore the edge list of G^{\prime} needs to be recomputed from the vertex list.

Example 3.17. Consider the fatgraph G on the left of Figure 3.5; assume we want to contract the edge \boldsymbol{e}_{1}. According to the above recipe, the first step is to use cyclic invariance to rewrite the vertices \boldsymbol{a} and \boldsymbol{b} in the form: $\boldsymbol{a}=\operatorname{Vertex}(2,0,1)$ and $\boldsymbol{b}=\operatorname{Vertex}(1,0,2)$; then the two vertices are fused into one: $\boldsymbol{a}^{\prime}=\operatorname{Vertex}(2,0,0,2)$, which is the only vertex of the contracted fatgraph G^{\prime}.

Figure 3.4. A fatgraph whose two boundary cycles are comprised of exactly the same edges; however, they give rise to disjoint sets of corners: $\{(\boldsymbol{v}, 2,3),(\boldsymbol{v}, 4,5),(\boldsymbol{v}, 0,1)\}$ versus $\{(\boldsymbol{v}, 1,2),(\boldsymbol{v}, 3,4),(\boldsymbol{v}, 5,0)\}$.

```
Algorithm 2 Construct a new Fatgraph object \(\boldsymbol{G}^{\prime}\) obtained by contracting the edge \(\boldsymbol{e}\) in \(\boldsymbol{G}\). The renumbering function \(s\) is the identity on numbers in the range \(0, \ldots, e-1\), and shifts numbers in range \(e+1, \ldots, m\) down by 1 . Function rotated \((L, p)\) returns a copy of list \(L\) shifted leftwards by \(p\) places.
```

```
def contract(\boldsymbol{G},\boldsymbol{e}):
```

def contract(\boldsymbol{G},\boldsymbol{e}):
let (\mp@subsup{\boldsymbol{v}}{1}{},\mp@subsup{a}{1}{}),(\mp@subsup{\boldsymbol{v}}{2}{},\mp@subsup{a}{2}{})\mathrm{ be the endpoints of }\boldsymbol{e}
let (\mp@subsup{\boldsymbol{v}}{1}{},\mp@subsup{a}{1}{}),(\mp@subsup{\boldsymbol{v}}{2}{},\mp@subsup{a}{2}{})\mathrm{ be the endpoints of }\boldsymbol{e}
V'\leftarrow[Vertex (x for x in v}\mathrm{ if }x\not=\boldsymbol{e}
V'\leftarrow[Vertex (x for x in v}\mathrm{ if }x\not=\boldsymbol{e}
for v}\mathrm{ in }\boldsymbol{G}\mathrm{ .vertices if }\boldsymbol{v}\not=\mp@subsup{\boldsymbol{v}}{1}{}\mathrm{ and }\boldsymbol{v}\not=\mp@subsup{\boldsymbol{v}}{2}{}
for v}\mathrm{ in }\boldsymbol{G}\mathrm{ .vertices if }\boldsymbol{v}\not=\mp@subsup{\boldsymbol{v}}{1}{}\mathrm{ and }\boldsymbol{v}\not=\mp@subsup{\boldsymbol{v}}{2}{}
append the fused vertex at end of list V
append the fused vertex at end of list V
\mp@subsup{\boldsymbol{v}}{}{\prime}}\leftarrow\operatorname{Vertex}(\operatorname{rotated}(\mp@subsup{\boldsymbol{v}}{1}{},\mp@subsup{a}{1}{})+\operatorname{rotated}(\mp@subsup{\boldsymbol{v}}{2}{},\mp@subsup{a}{2}{})
\mp@subsup{\boldsymbol{v}}{}{\prime}}\leftarrow\operatorname{Vertex}(\operatorname{rotated}(\mp@subsup{\boldsymbol{v}}{1}{},\mp@subsup{a}{1}{})+\operatorname{rotated}(\mp@subsup{\boldsymbol{v}}{2}{},\mp@subsup{a}{2}{})
V'.append(\mp@subsup{\boldsymbol{v}}{}{\prime})
V'.append(\mp@subsup{\boldsymbol{v}}{}{\prime})
\mp@subsup{\omega}{}{\prime}}\leftarrow[s(\mp@subsup{\boldsymbol{G}}{}{\prime}.\mathrm{ .orient [x]) for }x\mathrm{ in }\mp@subsup{\boldsymbol{G}}{}{\prime}.\mathrm{ .edges if }x\not=e
\mp@subsup{\omega}{}{\prime}}\leftarrow[s(\mp@subsup{\boldsymbol{G}}{}{\prime}.\mathrm{ .orient [x]) for }x\mathrm{ in }\mp@subsup{\boldsymbol{G}}{}{\prime}.\mathrm{ .edges if }x\not=e
return Fatgraph(vertices }\leftarrow\mp@subsup{V}{}{\prime}\mathrm{ ; orient }\leftarrow\mp@subsup{\omega}{}{\prime}

```
    return Fatgraph(vertices }\leftarrow\mp@subsup{V}{}{\prime}\mathrm{ ; orient }\leftarrow\mp@subsup{\omega}{}{\prime}
```


Figure 3.5. Example of a contraction morphism. Contract edge \boldsymbol{e}_{1} in the "parent" fatgraph on the left to obtain the "child" fatgraph on the right. Annotations show how the corners are changed by the contraction procedure.

The "child" fatgraph G^{\prime} inherits an orientation from the "parent" fatgraph, which might differ from its default orientation. Let $\alpha_{1}, \ldots, \alpha_{h}, \ldots, \alpha_{m}$ be the edges of the parent fatgraph G, with $e=\alpha_{h}$ being contracted to create the "child" graph G^{\prime}. If $\alpha_{k(1)}<\alpha_{k(2)}<\ldots<\alpha_{k(m)}$ is the ordering on $E(G)$ that induces the orientation on G and $h=k(j)$, then $\alpha_{k(1)}<\ldots<\alpha_{k(j-1)}<\alpha_{k(j+1)}<\ldots<\alpha_{k(m)}$ descends to a total order on the edges of G^{\prime} and induces the correct orientation. ${ }^{5}$

Orientation is represented in a Fatgraph object as a list, mapping edge labels to a position in the total order; using the notation above, the orientation of G is given by $\omega:=k^{-1}$. The orientation on G^{\prime} is then given by ω^{\prime} defined as follows:

$$
\omega^{\prime}(i):= \begin{cases}\omega(i) & \text { if } \omega(i)<h \\ \omega(i)-1 & \text { if } \omega(i)>h\end{cases}
$$

Alternatively we can write:

$$
\omega^{\prime}=s \circ \omega, \quad s(x):= \begin{cases}x & \text { if } x<h, \\ x-1 & \text { if } x>h .\end{cases}
$$

This corresponds exactly to the assignment in Algorithm 2.
Example 3.18. Building upon Example 3.17, assume the orientation on G is $\omega=$ $(0<1<2)$, meaning that the edges \boldsymbol{e}_{i} are ordered in such a way that $\boldsymbol{e}_{i}<\boldsymbol{e}_{j}$ iff $i<j$. Let $\boldsymbol{e}_{0}^{\prime}, \boldsymbol{e}_{1}^{\prime}$ be the edges of the "child" fatgraph G^{\prime}, with $\boldsymbol{e}_{0}^{\prime}$ being the image of \boldsymbol{e}_{0}, and $\boldsymbol{e}_{1}^{\prime}$ the image of \boldsymbol{e}_{2}. So the orientation induced on G^{\prime} is $\boldsymbol{e}_{0}^{\prime}<\boldsymbol{e}_{1}^{\prime}$, i.e., $\omega^{\prime}=(0<1)$.

The above discussion can be summarized in the following.
Lemma 3.19. If \boldsymbol{G} and \boldsymbol{G}^{\prime} represent fatgraphs G and G^{\prime}, and $\left.\boldsymbol{G}=\operatorname{contract(} \boldsymbol{G}^{\prime}, \boldsymbol{e}\right)$, then G is obtained from G^{\prime} by contraction of the edge e represented by \boldsymbol{e}.

The contract_boundary_cycle function. The boundary cycles of the "child" Fatgraph object $\overline{\boldsymbol{G}^{\prime}}$ can also be computed from those of \boldsymbol{G}. The implementation (see Listing 1) is quite straightforward: we copy the given list of corners and alter those who refer to the two vertices that have been merged in the process of contracting the specified edge.

Let \boldsymbol{v}_{1} and \boldsymbol{v}_{2} be the end vertices of the edge to be contracted, and a_{1}, a_{2} be the corresponding attachment indices. Let z_{1} and z_{2} be the valences of vertices $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$. We build the list of corners of the boundary cycle in the "child" graph incrementally: the \boldsymbol{b}^{\prime} lists starts empty (line 6), and is then added corners as we run over them in the loop between lines 7 and 26 .

There are four distinct corners that are bounded by the edge \boldsymbol{e} to be contracted; denote them by $\boldsymbol{C}_{1}, \boldsymbol{C}_{2}, \boldsymbol{C}_{3}, \boldsymbol{C}_{4}$. These map onto two distinct corners $\boldsymbol{C}, \boldsymbol{C}^{\prime}$ after contraction. Assume that \boldsymbol{C}_{1} and \boldsymbol{C}_{2} map to \boldsymbol{C} : then \boldsymbol{C}_{1} and \boldsymbol{C}_{2} lie "on the same side" of the contracted edge, i.e., any boundary cycle that includes \boldsymbol{C}_{1} will include also \boldsymbol{C}_{2} and viceversa. (See Figure 3.6 for an illustration.) Since they both map to the same corner \boldsymbol{C} in the "child" graph, we only need to keep one: we choose to keep (and transform) the corner that has the contracted edge at the second index (lines 9-10); similarly for \boldsymbol{C}_{3} and \boldsymbol{C}_{4} in mapping to \boldsymbol{C}^{\prime} (lines 16-17).

[^5]```
Algorithm 3 Return a new BoundaryCycle instance, image of \(\boldsymbol{b}\) under the topo-
logical map that contracts the edge with index \(\boldsymbol{e}\).
 def contract_boundary_cycle \((\boldsymbol{G}, \boldsymbol{b}, \boldsymbol{e})\) :
 let \(\left.\left(\boldsymbol{v}_{1}, a_{1}\right), \overline{\left(\boldsymbol{v}_{2}\right.}, a_{2}\right)\) be the endpoints of \(\boldsymbol{e}\)
 \(z_{1} \leftarrow\) valence \(\left(\boldsymbol{v}_{1}\right)\)
 \(z_{2} \leftarrow\) valence \(\left(\boldsymbol{v}_{2}\right)\)
 "child" boundary cycle \(\boldsymbol{b}^{\prime}\) starts off as an empty list
 \(\boldsymbol{b}^{\prime} \leftarrow[]\)
 for corner in \(\boldsymbol{b}\) :
 if corner \([0]=\boldsymbol{v}_{1}\) :
 if \(a_{1}=\) corner.incoming:
 continue with next corner
 else:
 \(i_{1} \leftarrow\left(\right.\) corner.incoming \(\left.-a_{1}-1\right) \% z_{1}\)
 \(i_{2} \leftarrow\) (corner.outgoing \(\left.-a_{1}-1\right) \% z_{1}\)
 append corner \(\left(\boldsymbol{v}_{1}, i_{1}, i_{2}\right)\) to \(\boldsymbol{b}^{\prime}\)
 elif corner \([0]=\boldsymbol{v}_{2}\) :
 if \(a_{2}=\) corner.incoming:
 continue with next corner
 if \(a_{2}=\) corner.outgoing:
 append \(\left(\boldsymbol{v}_{1}, z_{1}+z_{2}-3,0\right)\) to \(\boldsymbol{b}^{\prime}\)
 else:
 \(i_{1} \leftarrow z_{1}-1+\left(\left(\right.\right.\) corner.incoming \(\left.\left.-a_{2}-1\right) \% z_{2}\right)\)
 \(i_{2} \leftarrow z_{1}-1+\left(\left(\right.\right.\) corner.outgoing \(\left.\left.-a_{2}-1\right) \% z_{2}\right)\)
 append \(\left(v_{1}, i_{1}, i_{2}\right)\) to \(b^{\prime}\)
 else:
 keep corner unchanged
 append corner to \(\boldsymbol{b}^{\prime}\)
 return BoundaryCycle(\(\boldsymbol{b}^{\prime}\))
```



Figure 3.6. How corners are modified by edge contraction. Left: Four distinct corners are formed at the endpoints $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ of edge $\boldsymbol{e}$, which is to be contracted: $\boldsymbol{C}_{1}=\left(\boldsymbol{v}_{1}, 0,2\right), \boldsymbol{C}_{2}=\left(\boldsymbol{v}_{2}, 0,1\right), \boldsymbol{C}_{3}=\left(\boldsymbol{v}_{2}, 1,2\right)$, and $\boldsymbol{C}_{4}=\left(\boldsymbol{v}_{1}, 0,1\right)$. Edges are shown thickened, and (potentially) distinct boundary cycles are drawn in different colors. Right: After contraction of $\boldsymbol{e}$, corners $\boldsymbol{C}_{1}$ and $\boldsymbol{C}_{2}$ are fused into $C=(\boldsymbol{v}, 0,1)$, and $\boldsymbol{C}_{3}, \boldsymbol{C}_{4}$ are fused into $\boldsymbol{C}^{\prime}=(\boldsymbol{v}, 2,3)$.

Recall that, when contracting an edge with endpoints $\boldsymbol{v}_{1}$ and $\boldsymbol{v}_{2}$, the new vertex is formed by concatenating two series of edges: (1) edges attached to the former $\boldsymbol{v}_{1}$, starting with the successor (in the cyclic order) of the contracted edge; (2) edges attached to the former $\boldsymbol{v}_{2}$, starting with the successor of the contracted edge. Therefore:
(1) The image of a corner rooted in vertex $\boldsymbol{v}_{1}$ will have its attachment indices rotated leftwards by $a_{1}+1$ positions: the successor of the contracted edge has now attachment index 0 (lines 12-13). Note that the highest attachment index belonging into this group is $z_{1}-2$ : position $z_{1}-1$ would correspond to the contracted edge.
(2) The image of a corner rooted in vertex $\boldsymbol{v}_{2}$ has its attachment indices rotated leftwards by $a_{2}+1$ positions, and shifted up by $z_{1}-1$ (lines 2122 ). As a special case, when the contracted edge is in second position we need to map the corner to the corner having attachment index 0 in second position (line 19).

Any other corner is copied with no alterations (line 26).
Worked out examples are provided in Figures 3.5 and 3.6.
1.5.3. The category of Fatgraph objects. We can now formally define a category of Fatgraph objects and their morphisms.
Definition 3.20. $\mathcal{R}^{\#}$ is the category whose objects are Fatgraph objects, and whose morphisms are compositions of Fatgraph isomorphisms (as defined in Section 2) and edge contraction maps.

More precisely, if $\boldsymbol{G}$ and $\boldsymbol{G}^{\prime}$ are isomorphic Fatgraph objects, then the morphism set $\mathcal{R}^{\#}\left(\boldsymbol{G}, \boldsymbol{G}^{\prime}\right)$ is defined as the set of Fatgraph isomorphisms in the sense of Section 2; otherwise, let $m$ and $m^{\prime}$ be the number of edges of $\boldsymbol{G}, \boldsymbol{G}^{\prime}$, and set $k:=m-$ $m^{\prime}$ : each element in $\mathcal{R}^{\#}\left(\boldsymbol{G}, \boldsymbol{G}^{\prime}\right)$ has the form $\boldsymbol{a}^{\prime} \circ\left(\pi_{1} \circ \cdots \circ \pi_{k}\right) \circ \boldsymbol{a}$ where $\boldsymbol{a}$, $\boldsymbol{a}^{\prime}$ are automorphisms of $\boldsymbol{G}, \boldsymbol{G}^{\prime}$ (respectively) and $\pi_{1}, \ldots, \pi_{k}$ are non-loop edge contractions.

Theorem 3.21. There exists a functor $K$ from the category $\mathcal{R}^{\#}$ of Fatgraph objects to the category $\mathcal{R}$ of abstract fatgraphs, which is surjective and full.

Proof. Given a Fatgraph $\boldsymbol{G}$, its constituent Vertex objects determine cyclic sequences $v_{0}=\left(e_{0}^{0}, e_{1}^{0}, \ldots, e_{z_{0}}^{0}\right), \ldots, v_{l}=\left(e_{0}^{l}, \ldots, e_{z_{l}}^{l}\right)$, such that

$$
\left\{e_{0}^{0}, \ldots, e_{z_{0}}^{0}, e_{0}^{1}, \ldots, e_{z_{l-1}}^{l-1}, e_{0}^{l}, \ldots, e_{z_{l}}^{l}\right\}=\{0, \ldots, m-1\}
$$

Fix a starting element for each of the cyclic sequences $v_{0}, \ldots, v_{l}$. Then set:

$$
L:=\left\{(e, i, v): v=v_{j} \in\left\{v_{0}, \ldots, v_{l}\right\}, e=e_{i}^{j} \in v\right\}
$$

and define maps $\sigma_{0}, \sigma_{1}, \sigma_{2}: L \rightarrow L$ as follows:
» $\sigma_{0}$ sends $\left(e, i, v_{j}\right)$ to $\left(e^{\prime}, i^{\prime}, v_{j}\right)$ where $i^{\prime}=(i+1) \% z_{j}$ and $e^{\prime}=e_{i^{\prime}}^{j}$ is the successor of $e$ in the cyclic order at $v_{j}$;
$» \sigma_{1}$ maps $(e, i, v)$ to the unique other triplet $\left(e^{\prime}, i^{\prime}, v^{\prime}\right) \in L$ such that $e=e^{\prime}$;
$»$ finally, $\sigma_{2}$ is determined by the constraint $\sigma_{0} \circ \sigma_{2}=\sigma_{1}$.
Then $K(\boldsymbol{G})=\left(L, \sigma_{0}, \sigma_{1}, \sigma_{2}\right)$ is a fatgraph. Figure 3.7 provides a graphical illustration of the way a Fatgraph object is constructed out of such combinatorial data.

Now let $G$ be an abstract fatgraph; assuming $G$ has $m$ edges, assign to each edge a "label", i.e., pick a bijective map $e: E(G) \rightarrow E$, where $E$ is an arbitrary finite set. Each vertex $v \in V(G)$ is thus decorated with a cyclic sequence of edge labels; the set of which determines a Fatgraph object $\boldsymbol{G}$; it is clear that $G=K(\boldsymbol{G})$.

This proves that $K$ is surjective; since every fatgraph morphism can be written as a composition of isomorphisms and edge contractions (Lemma 2.4), it is also full. It is clear that every edge contraction is the image of an edge contraction in the corresponding Fatgraph objects, and the assertion for isomorphisms follows as a corollary of Lemma 3.14.

Definition 3.22. If $G=K(\boldsymbol{G})$ then we say that the Fatgraph object $\boldsymbol{G}$ represents the abstract fatgraph $G$.

It is clear from the construction above that there is a considerable amount of arbitrary choices to be made in constructing a representative Fatgraph; there are thus many representatives for the same fatgraph, and different choices lead to equivalent Fatgraph objects.

Lemma 3.23. Two distinct Fatgraph objects representing the same abstract fatgraph are isomorphic.

Proof. Assume $\boldsymbol{G}_{1}$ and $\boldsymbol{G}_{2}$ both represent the same abstract fatgraph $G=$ $K\left(\boldsymbol{G}_{1}\right)=K\left(\boldsymbol{G}_{2}\right)$. Let $\eta_{1}, \eta_{2}$ be the maps that send Edge objects in $\boldsymbol{G}_{1}, \boldsymbol{G}_{2}$ to the corresponding edges in $G$; then $\eta=\eta_{1}^{-1} \circ \eta_{2}$ maps edges of $\boldsymbol{G}_{1}$ into edges of $\boldsymbol{G}_{2}$ and respects the incidence relation, therefore it is the edge part of a Fatgraph isomorphism by Lemma 3.16.

Theorem 3.24. The categories $\mathcal{R}^{\#}$ and $\mathcal{R}$ are equivalent.

Proof. The functor $K$ is surjective and full by Theorem 3.21 ; that it is also faithful follows from the following argument. Any fatgraph morphism is a composition of edge contractions and isomorphisms. Any isomorphism determines, in particular, a map on the set of edges, and there is one and only one Fatgraph isomorphism induced by this map (Lemma 3.16). Any edge contraction is uniquely determined by the contracted edge: if $f: G_{1} \rightarrow G_{2}$ is the morphism contracting edge $e$ and $G_{i}=K\left(\boldsymbol{G}_{i}\right)$, then $\boldsymbol{f}$, contraction of the Edge object $\boldsymbol{e}$ representing $e$, is the sole morphism of $\boldsymbol{G}_{1}$ into $\boldsymbol{G}_{2}$ that maps onto $f$.

## 2. Fatgraphs isomorphism and equality testing

The isomorphism problem on computer representations of fatgraphs consists in finding out when two distinct Fatgraph instances represent isomorphic fatgraphs (in the sense of Definition 2.1) or possibly the same fatgraph. Indeed, the procedure for associating a Fatgraph instance to an abstract fatgraph (see Theorem 3.21) involves labeling all edges, choosing a starting edge (cilium) on each vertex, and enumerating all vertices in a certain order; for each choice we get a different Fatgraph instance representing the same (abstract) fatgraph.

The general isomorphism problem for (ordinary) graphs is a well-known difficult problem. However, the situation is much simpler for fatgraphs, because of the following property.

Lemma 3.25 (Rigidity Property). Let $G_{1}, G_{2}$ be connected fatgraphs, and $f: G_{1} \rightarrow$ $G_{2}$ an isomorphism. For any vertex $v \in V\left(G_{1}\right)$, and any edge $x$ incident to $v, f$ is uniquely determined (up to homotopies fixing the vertices of $G_{i}$ ) by its restriction to $v$ and $x$.

In particular, an isomorphism of graphs with ciliated vertices is completely determined once the image $w=f(v)$ of a vertex $v$ is known, together with the displacement (relative to the cyclic order at $w$ ) of the image of the cilium of $v$ relative to the cilium of the image vertex $w$.

Proof. Consider $f$ as a CW-complex morphism: $f=\left(f_{0}, f_{1}\right)$ where $f_{i}$ is a continuous map on the set of $i$-dimensional cells.

Let $U$ be a small open neighborhood of $v \in V\left(G_{1}\right)$. Given $\left.f\right|_{U}$, incrementally construct a CW-morphism $f^{\prime}: G_{1} \rightarrow G_{2}$ as follows. Each edge $x^{\prime}$ incident to $v$ can be expressed as $x^{\prime}=\sigma_{0}^{\alpha} x$ for some $0 \leqslant \alpha<\operatorname{valence}(v)$. Let $w=f(v)$ and $y=f(x)$, and define:

$$
\begin{aligned}
f_{1}^{\prime}(x) & :=y \\
f_{0}^{\prime}(v) & :=w \\
f_{1}^{\prime}\left(x^{\prime}\right) & :=\sigma_{0}^{\alpha} y=\sigma_{0}^{\alpha} f_{1}^{\prime}(x) \quad \text { if } x^{\prime}=\sigma_{0}^{\alpha} x \\
f_{0}^{\prime}\left(v_{\alpha}^{\prime}\right) & :=w_{\alpha}^{\prime}
\end{aligned}
$$

where:
$» v_{\alpha}^{\prime}$ is the endpoint of $x^{\prime}=\sigma_{0}^{\alpha} x$ "opposite" to $v$,
$» w_{\alpha}^{\prime}$ is the endpoint of $y^{\prime}=\sigma_{0}^{\alpha} y$ "opposite" to $w$.
Then $f^{\prime}$ extends $f$ on a closed set $U^{\prime} \supsetneq U$, which contains the subgraph formed by all edges attached to $v$ and $v^{\prime}$, and their endpoints. In addition:
» $f_{1}^{\prime}\left(x^{\prime}\right)=f\left(x^{\prime}\right)$ up to a homotopy fixing the endpoints since $f$ commutes with $\sigma_{0}$,
$» f_{0}^{\prime}\left(v_{\alpha}\right)=f\left(v_{\alpha}\right)$ since $f$ preserves adjacency.
By repeating the same construction about the vertices $v_{\alpha}^{\prime}$ and $w_{\alpha}^{\prime}$, one can extend $f^{\prime}$ to a CW-morphism that agrees with $f$ on an closed set $U^{\prime \prime}$ such that $U^{\prime}$ is strictly contained in the interior of $U^{\prime \prime}$.

Recursively, by connectedness, we can thus extend $f^{\prime}$ to agree with $f$ (up to homotopy) over all of $G_{1}$.
2.1. Enumeration of Fatgraph isomorphisms. The stage is now set for presenting the algorithm to enumerate the isomorphisms between any two given Fatgraph objects. Pseudo-code is listed in Algorithm 4; as this procedure is quite complex, a number of auxiliary functions have been used, whose purpose is explained in Section 2.1.1. Function isomorphisms, given two Fatgraph objects $\boldsymbol{G}_{1}$ and $\boldsymbol{G}_{2}$, returns a list of triples ( $p \boldsymbol{v}$, rot, pe), each of which determines an isomorphism. If there is no isomorphism connecting the two graphs, then the empty list [ ] is returned.

By the rigidity Lemma 3.25, any fatgraph isomorphism is uniquely determined by the mapping of a small neighborhood of any vertex. The overall strategy of the


Figure 3.7. Construction of a fatgraph out of a set of Vertex instances: halfedges tagged with the same (numeric) label are joined together to form an edge.

```
Algorithm 4 Enumerate isomorphisms between two Fatgraph objects \(\boldsymbol{G}_{1}\) and \(\boldsymbol{G}_{\boldsymbol{2}}\)
output of the algorithm is a list of triples (\(p v\), rot, pe). If there is no isomorphism
connecting the two input fatgraphs, the empty list is returned.
def isomorphisms \(\left(\boldsymbol{G}_{1}, \boldsymbol{G}_{2}\right)\) :
 immediately rule out easy cases of no isomorphisms
 if graphs invariants differ:
 return []
 result \(\leftarrow\) []
 vs1 \(\leftarrow\) valence_spectrum \(\left(\boldsymbol{G}_{1}\right)\)
 vs \(2 \leftarrow\) valence_spectrum \(\left(\boldsymbol{G}_{2}\right)\)
 (valence, vertices) \(\leftarrow\) starting_vertices \(\left(\boldsymbol{G}_{2}\right)\)
 \(\boldsymbol{v}_{1} \leftarrow\) vs1[valence][0]
 for \(\boldsymbol{v}_{2}\) in compatible_vertices(\(\boldsymbol{v}_{1}\), vertices):
 for rot in \(0, \ldots\), valence:
 Initialize \(p v\), rots, pe as empty maps
 \(p v\left[\boldsymbol{v}_{1}\right] \leftarrow \boldsymbol{v}_{2}\)
 \(\operatorname{rots}\left[\boldsymbol{v}_{1}\right] \leftarrow \operatorname{rot}\)
 extend_map \(\left(p e, \boldsymbol{v}_{1}, \operatorname{rotated}\left(\boldsymbol{v}_{2}, \operatorname{rot}\right)\right)\)
 if extension failed:
 continue with next rot
 breadth-first search to extend the mapping over corresponding vertices
 nexts \(\leftarrow\) neighbors \(\left(p v\right.\), pe, \(\left.\boldsymbol{G}_{1}, \boldsymbol{v}_{1}, \boldsymbol{G}_{2}, \boldsymbol{v}_{2}\right)\)
 while \(\operatorname{size}(p v)<\boldsymbol{G}_{1} . n u m \quad\) vertices:
 neighborhood \(\leftarrow[]\)
 for \(\left(\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}, r\right)\) in nexts:
 \((p v\), rots, \(p e) \leftarrow\) extend_iso \(\left(p v\right.\), rots, \(\left.p e, \boldsymbol{G}_{1}, \boldsymbol{v}_{1}^{\prime}, r, \boldsymbol{G}_{2}, \boldsymbol{v}_{2}^{\prime}\right)\)
 if cannot extend:
 exit "while" loop and continue with next rot
 append neighbors (pv, pe, \(\boldsymbol{G}_{1}, \boldsymbol{v}_{1}^{\prime}, \boldsymbol{G}_{2}, \boldsymbol{v}_{2}^{\prime}\)) to neighborhood
 nexts \(\leftarrow\) neighborhood
 isomorphism found, record it
 result.append((pv, rots, pe))
 return result
```

algorithm is thus to pick a pair of "compatible" vertices and try to extend the map as in the proof of Lemma 3.25.

We wish to stress the difference with isomorphism of ordinary graphs: since an isomorphism $f$ is uniquely determined by any pair of corresponding vertices, the initial choice of candidates $v, f(v)$ either yields an isomorphism or it does not: there is no backtracking involved.

Since the isomorphism computation is implemented as an exhaustive search, it is worth doing a few simple checks to rule out cases of non-isomorphic graphs (lines 3-4). One has to weigh the time taken to compute a graph invariant versus the potential speedup obtained by not running the full scan of the search space; experiments run using the Python code show that the following simple invariants already provide some good speedup:
» the number of vertices, edges, boundary cycles;
$»$ the total number of loops;
» the set of valences;
» the number of vertices of every given valence.
Since an isomorphism is uniquely determined by its restriction to any vertex, one can restrict to considering just pairs of the form $\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)$ where $\boldsymbol{v}_{1}$ is a chosen vertex in $\boldsymbol{G}_{1}$. Then the algorithm tries all possible ways (rotations) of mapping $\boldsymbol{v}_{1}$ into a compatible vertex $\boldsymbol{v}_{2}$ in $\boldsymbol{G}_{2}$. The body of the inner loop (line 11 onwards) mimics the construction in the proof of Lemma 3.25.

The starting vertex $\boldsymbol{v}_{1}$ should be selected so to minimize the number of mapping attempts performed; this is currently done by minimizing the product of valence and number of vertices of that valence on $\boldsymbol{G}_{2}$ (line 8), and then picking a vertex of the chosen valence in $\boldsymbol{G}_{1}$ as $\boldsymbol{v}_{1}$ (line 9). ${ }^{6}$

First, given the target vertex $\boldsymbol{v}_{2}$ and a rotation rot, a new triple ( $p v, r o t s, p e$ ) is created; $p v$ is set to represent the initial mapping of $\boldsymbol{v}_{1}$ onto $\boldsymbol{v}_{2}$, rotated leftwards by rot positions, and pe maps edges of $\boldsymbol{v}_{1}$ into corresponding edges of the rotated $\boldsymbol{v}_{2}$. If this mapping is not possible (e.g., $\boldsymbol{v}_{1}$ has a loop and $\boldsymbol{v}_{2}$ does not, or not in a corresponding position), then the attempt is aborted and execution continues from line 11 with the next candidate rot.

The mapping defined by ( $p v, r o t s, p e$ ) is then extended to neighbors of the vertices already inserted. This entails a breadth-first search ${ }^{7}$ over pairs of corresponding vertices, starting from $\boldsymbol{v}_{1}$ and $\boldsymbol{v}_{2}$. Note that, in this extension step, not only the source and target vertices, but also the rotation to be applied is uniquely determined: chosen a vertex $\boldsymbol{v}_{1}^{\prime}$ connected to $\boldsymbol{v}_{1}$ by an edge $\boldsymbol{e}$, there is a unique rotation $r$ on $\boldsymbol{v}_{2}^{\prime}$ such that $p v[\boldsymbol{e}]$ has the same attachment index to $\boldsymbol{v}_{2}^{\prime}$ that $\boldsymbol{e}$ has to $\boldsymbol{v}_{1}$. If, at any stage, the extension of the current triple ( $p v$, rots, pe) fails, the triplet is discarded and execution continues from line 11 with the next value of rot.

When the loop started at line 10 is over, execution reaches the end of the isomorphisms function, and returns the (possibly empty) list of isomorphisms to the caller.

[^6]```
Algorithm 5 Enumerate the candidate extensions of the given \(p v\) and \(p e\) in the
neighborhood of input vertices \(\boldsymbol{v}_{1}\) and \(\boldsymbol{v}_{2}\).
def neighbors \(\left(p v, p e, \boldsymbol{G}_{1}, \boldsymbol{v}_{1}, \boldsymbol{G}_{2}, \boldsymbol{v}_{2}\right)\) :
    result \(\leftarrow\) []
    for each non-loop edge \(\boldsymbol{e}\) attached to \(\boldsymbol{v}_{1}\) :
        let \(\left(\boldsymbol{v}_{1}^{\prime}, a_{1}\right)\) be the endpoint of \(\boldsymbol{e}\) distinct from \(\boldsymbol{v}_{1}\)
        if \(\boldsymbol{v}_{1}^{\prime}\) already in \(p v\) domain:
            continue with next \(\boldsymbol{e}\)
        let \(\left(\boldsymbol{v}_{2}^{\prime}, a_{2}\right)\) be the endpoint of \(\boldsymbol{e}^{\prime}=\mathrm{pe}[\boldsymbol{e}]\) distinct from \(\boldsymbol{v}_{2}\)
        if \(\boldsymbol{v}_{2}^{\prime}\) already in \(p v\) image:
            continue with next \(e\)
        result.append \(\left(\left(\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}, a_{1}-a_{2}\right)\right)\)
    return result
```

Theorem 3.26. Given Fatgraph objects $\boldsymbol{G}_{1}, \boldsymbol{G}_{2}$, function isomorphisms returns all Fatgraph isomorphisms from \boldsymbol{G}_{1} to \boldsymbol{G}_{2}.

Proof. Given an isomorphism $f: \boldsymbol{G}_{1} \rightarrow \boldsymbol{G}_{2}$, restrict f to the starting vertex \boldsymbol{v}_{1} : then f will be output when Algorithm 4 examines the pair $\boldsymbol{v}_{1}, f\left(\boldsymbol{v}_{1}\right)$; since Algorithm 4 performs an exhaustive search, f will not be missed.

Conversely, since equation (1.1) holds by construction for all the mappings returned by isomorphisms, then each returned triple $\boldsymbol{f}=(p v$, rots, pe) is an isomorphism.
2.1.1. Auxiliary functions. Here is a brief description of the auxiliary functions used in the listing of Algorithm 4 and 5. Apart from the neighbors function, they are all straightforward to implement, so only a short specification of the behavior is given, with no accompanying pseudo-code.

The neighbors function. A preliminary definition is necessary.
Definition 3.27. Define a candidate extension as a triplet $\left(\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}, r\right)$, where:

```
> \boldsymbol{v}
```

$» \boldsymbol{v}_{2}^{\prime}$ is a vertex in \boldsymbol{G}_{2}, connected to \boldsymbol{v}_{2} by edge $\boldsymbol{e}^{\prime}=p e[\boldsymbol{e}] ;$
$» r$ is the rotation to be applied to $\boldsymbol{v}_{2}^{\prime}$ so that edge \boldsymbol{e} and \boldsymbol{e}^{\prime} have the same attachment index, i.e., they are incident at corresponding positions in $\boldsymbol{v}_{1}^{\prime}$ and $\boldsymbol{v}_{2}^{\prime}$.

Function neighbors lists candidate extensions that extend map $p v$ in the neighborhood of given input vertices \boldsymbol{v}_{1} (in the domain fatgraph \boldsymbol{G}_{1}) and \boldsymbol{v}_{2} (in the image fatgraph $\left.\boldsymbol{G}_{2}\right)$. It outputs a list of triplets $\left(\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}, r\right)$, each representing a candidate extension.

A sketch of this routine is given in Algorithm 5. Two points are worth of notice:
(1) By the time neighbors is called (at lines 19 and 26 in Algorithm 4), the map pe has already been extended over all edges incident to \boldsymbol{v}_{1}, so we can safely set $\boldsymbol{e}^{\prime}=p e[\boldsymbol{e}]$ in neighbors.
(2) Algorithm 4 only uses neighbors with the purpose of extending $p v$ and $p e$, so neighbors ignores vertices that are already in the domain or image of pv.

The valence_spectrum function. The auxiliary function valence_spectrum, given a Fatgraph instance \boldsymbol{G}, returns a mapping that associates to each valence z the list V_{z} of vertices of \boldsymbol{G} with valence z.

The starting_vertices function. For each pair $\left(z, V_{z}\right)$ in the valence spectrum, define its intensity as the product $z \cdot\left|V_{z}\right|$ (valence times the number of vertices with that valence). The function starting_ vertices takes as input a Fatgraph object \boldsymbol{G} and returns the pair $\left(z, V_{z}\right)$ from the valence spectrum that minimizes intensity. In case of ties, the pair with the largest z is chosen.

The compatible and compatible vertices functions. Function compatible takes a pair of vertices \boldsymbol{v}_{1} and \boldsymbol{v}_{2} as input, and returns boolean True iff \boldsymbol{v}_{1} and \boldsymbol{v}_{2} have the same invariants. (This is used as a short-cut test to abandon a candidate mapping before trying a full adjacency list extension, which is computationally more expensive.) The sample code uses valence and number of loops as invariants.

The function compatible_vertices takes a vertex \boldsymbol{v} and a list of vertices L, and returns the list of vertices in L that are compatible with \boldsymbol{v} (i.e., those which \boldsymbol{v} could be mapped to).

The extend_map and extend_iso functions. The extend_map function takes as input a mapping pe and a pair of ciliated vertices \boldsymbol{v}_{1} and \boldsymbol{v}_{2}, and alters pe to map edges of \boldsymbol{v}_{1} to corresponding edges of \boldsymbol{v}_{2} : the cilium to the cilium, and so on: $p e\left[\sigma_{0}^{\alpha}(\boldsymbol{e})\right]=\sigma_{0}^{\alpha}(p e[\boldsymbol{e}])$. If this extension is not possible, an error is signaled to the caller.

The extend_iso function is passed a ($p v$, rots, pe) triplet, a vertex $\boldsymbol{v}_{1}^{\prime}$ of \boldsymbol{G}_{1}, a vertex $\boldsymbol{v}_{2}^{\prime}$ of \boldsymbol{G}_{2} and a rotation r; it alters the given ($p v, r o t s, p e$) triple by adding a mapping of the vertex $\boldsymbol{v}_{1}^{\prime}$ into vertex $\boldsymbol{v}_{2}^{\prime}$ (and rotating the target vertex by r places rightwards). If the extension is successful, it returns the extended map (pv, rot, pe); otherwise, signals an error.

2.2. Operations with Fatgraph Isomorphisms.

Compare pull-back orientation. The compare_orientations function takes an isomorphism triple ($p v$, rots, pe) and a pair of Fatgraph objects $\boldsymbol{G}_{1}, \boldsymbol{G}_{2}$, and returns +1 or -1 depending on whether the orientations of the target Fatgraph pulls back to the orientation of the source Fatgraph via the given isomorphism.

Recall that for a Fatgraph object \boldsymbol{G}, the orientation is represented by a mapping G.orient that associates an edge e with its position in the wedge product that represents the orientation; therefore, the pull-back orientation according to an isomorphism ($p v$, rots, $p e$) from \boldsymbol{G} to \boldsymbol{G}^{\prime} is simply given by the map $\boldsymbol{e} \mapsto \boldsymbol{G}^{\prime}$. orient $[p e[\boldsymbol{e}]]$. Thus, the comparison is done by constructing the permutation that maps \boldsymbol{G}.orient $[\boldsymbol{e}]$ to \boldsymbol{G}^{\prime}.orient $[p e[\boldsymbol{e}]]$ and taking its sign (which has linear complexity with respect to the number of edges).

The is_orientation_reversing function. Determining whether an automorphism reverses orientation is crucial for knowing which fatgraphs are orientable. Function is_orientation_reversing takes a Fatgraph object and an isomorphism triple ($p v$, rots, $p e$) as input, and returns boolean True iff the isomorphism reverses orientation. This amounts to checking whether the given orientation and that of the pull-back one agree, which can be done with the comparison method discussed above.

```
Algorithm 6 Function MgnGraphs returns all connected fatgraphs having pre-
scribed genus \(g\) and number of boundary cycles \(n\). Actual output of the function is
a list \(R\), whose \(k\)-th element \(R[k]\) is itself a list of graphs in \(\mathcal{R}_{g, n}\) with \(m-k\) edges.
def \(\boldsymbol{M g n G r a p h s}(g, n)\) :
    \(m \leftarrow 4 g+2 n-5\) maximum number of edges
    \(R \leftarrow\) array of \(m\) empty lists
    \(R[0] \leftarrow\) MgnTrivalentGraphs \((g, n)\) first item contains all 3-valent graphs
    for \(k\) in \(1, \backslash\) ldots, \(m-1\) :
        Initialize \(R[k]\) as an empty list
        for \(\boldsymbol{G}\) in \(R[k-1]\) :
            for \(\boldsymbol{e}\) in edge_orbits \((\boldsymbol{G})\) :
                if \(e\) is a loop:
                    continue with next \(\boldsymbol{e}\)
            \(\boldsymbol{G}^{\prime} \leftarrow \operatorname{contract}(\boldsymbol{G}, \boldsymbol{e})\)
            if \(\boldsymbol{G}^{\prime}\) not already in \(R[k]\) :
                append \(\boldsymbol{G}^{\prime}\) to \(R[k]\)
    return \(R\)
```

Transforming boundary cycles under an isomorphism. The function transform_boundary_cycle is used when comparing marked fatgraphs: as the marking is a function on the boundary cycles, we need to know exactly which boundary cycle of the target graph corresponds to a given boundary cycle in the source graph.

Recall that BoundaryCycle instances are defined as list of corners; function transform_boundary_cycle takes a BoundaryCycle \boldsymbol{b} and returns a new BoundaryCycle object \boldsymbol{b}^{\prime}, obtained by transforming each corner according to a graph isomorphism. Indeed, transform_boundary_cycle is straightforward loop over the corners making up \boldsymbol{b} : For each corner (\boldsymbol{v}, i, j), a new one is constructed by transforming the vertex according to map $p v$, and displacing indices i and j by the rotation amount indicated by rot $[\boldsymbol{v}]$ (modulo the number of edges attached to \boldsymbol{v}).

3. Generation of fatgraphs

Let MgnGraphs be the function which, given two integers g, n as input, returns the collection of $\mathcal{R}_{g, n}$ graphs. Let us further stipulate that the output result will be represented as a list R : the 0 -th item in this list is the list of graphs with the maximal number m of edges; the k-th item $R[k]$ is the list of graphs having $m-k$ edges. There are algorithmic advantages in this subdivision, which are explained below.

Graphs with the maximal number of edges are trivalent graphs; they are computed by a separate function MgnTrivalentGraphs, described in Section 3.1.

We can then proceed to generate all graphs in $\mathcal{R}_{g, n}$ by contraction of regular edges: through contracting one edge in trivalent graphs we get the list $R[1]$ of all graphs with $m-1$ edges; contracting one edge of $G \in R[1]$, we get $G^{\prime} \in R[2]$ with $m-2$ edges, and so on. Pseudo-code for MgnGraphs is shown in Algorithm 6. The loop at lines $8-13$ is the core of the function: contract edges of the fatgraph G (with $m-k+1$ edges) to generate new fatgraphs with $m-k$ edges. However, we need not contract every edge of a fatgraph: if $a \in$ Aut G is an automorphism and $e \in E(G)$
is an edge, then the contracted graphs $G^{\prime}=G / e$ and $G^{\prime \prime}=G / a(e)$ are isomorphic. Hence, we can restrict the computation to only one representative edge per orbit of the action induced by Aut G on the set $E(G)$; the edge_orbits function referenced at line 8 should return a list of representative edges, one per each orbit of $\operatorname{Aut}(G)$ on $E(G)$.

Lines $12-13$ add \boldsymbol{G}^{\prime} to $R[k]$ only if it not already there. This is the most computationally expensive part of the MgnGraphs function: we need to perform a comparison between \boldsymbol{G}^{\prime} and each element in $R[k]$; testing equality of two fatgraphs requires computing if there are isomorphisms between the two, which can only be done by attempting enumeration of such isomorphisms. (Fatgraph isomorphism is discussed in detail in Section 2.)

If N_{k} is the number of elements in $R[k]$ and $T_{\text {iso }}$ is the average time needed to determine if two graphs are isomorphic, then evaluating whether G^{\prime} is already contained in $R[k]$ takes $O\left(N_{k} \cdot T_{\text {iso }}\right)$ time: thus, the subdivision of the output R into lists, each one holding graphs with a specific number of edges, reduces the number of fatgraph comparisons done in the innermost loop of MgnGraphs, resulting in a substantial shortening of the total running time.

Note that the top-level function MgnGraphs is quite independent of the actual implementation of the Fatgraph type of objects: all is needed here, is that we have methods for enumerating edges of a Fatgraph object, contracting an edge, and testing two graphs for isomorphism.

Lemma 3.28. If MgnTrivalentGraphs (g, n) returns the complete list of trivalent fatgraphs in $\mathcal{R}_{g, n}$, then the function MgnGraphs defined above returns the complete set of fatgraphs $\mathcal{R}_{g, n}$.

Proof. By the above dissection of the algorithm, all we need to prove is that any fatgraph in $\mathcal{R}_{g, n}$ can be obtained by a chain of edge contractions from a trivalent fatgraph. This follows immediately from the fact that any fatgraph vertex v of valence $z \geqslant 3$ can be expanded (in several ways) into vertices v_{1}, v_{2} of valences z_{1}, z_{2} such that $z=\left(z_{1}-1\right)+\left(z_{2}-1\right)$, plus a connecting edge.
3.1. Generation of Trivalent Fatgraphs. Generation of trivalent graphs can be tackled by an inductive procedure: given a trivalent graph, a new edge is added, which joins the midpoints of two existing edges. In order to determine which graphs should be input to this "edge addition" procedure, one can follow the reverse route, and ascertain how a trivalent graph is transformed by deletion of an edge.

Throughout this section, l and m stand for the number of vertices and edges of a graph; it will be clear from the context, which exact graph they are invariants of.
3.1.1. Removal of edges. Let $G \in \mathcal{R}_{g, n}$ be a connected trivalent graph. Each edge $x \in E(G)$ falls into one of the following categories:
A) x is a loop: both endpoints of x are attached to a single vertex v, another edge x^{\prime} joins v with a distinct vertex v^{\prime};
B) x joins two distinct vertices $v, v^{\prime} \in V(G)$ and separates two distinct boundary cycles $\beta, \beta^{\prime} \in B(G)$;
C) x joins two distinct vertices $v, v^{\prime} \in V(G)$ but belongs to only one boundary cycle $\beta \in B(G)$, within which it occurs twice (once for each orientation).

Deletion of edge x requires different adjustments in order to get a trivalent graph again in each of the three cases above; it also yields a different result in each case.

Case A): If x is a loop attached to v, then, after deletion of x, one needs to also delete the loose edge x^{\prime} and the vertex v^{\prime} (that is, join the two other edges attached to v^{\prime}; see Figure 3.8, bottom row). The resulting fatgraph G^{\prime} has:
» two vertices less than $G: v$ and v^{\prime} have been deleted;
$»$ three edges less: x, x^{\prime} have been deleted and two other edges merged into one;
» one boundary cycle less: the boundary cycle totally bounded by x has been removed.

Therefore:

$$
\begin{aligned}
2-2 g^{\prime} & =\chi\left(G^{\prime}\right)=l^{\prime}-m^{\prime}+n^{\prime} \\
& =(l-2)-(m-3)+(n-1) \\
& =l-m+n=\chi(G)=2-2 g,
\end{aligned}
$$

hence $g=g^{\prime}$, and

$$
\begin{equation*}
G^{\prime} \in \mathcal{R}_{g, n-1} \tag{A}
\end{equation*}
$$

Case B): x joins distinct vertices v, v^{\prime} and separates distinct boundary cycles (see Figure 3.8, top row). Delete x and merge the two edges attached to each of the two vertices v and v^{\prime}; in the process, the two boundary cycles β, β^{\prime} also merge into one. The resulting fatgraph G^{\prime} is connected. Indeed, given any two vertices $u, u^{\prime} \in V\left(G^{\prime}\right)$, there is a path $\left(x_{1}, \ldots, x_{k}\right)$ connecting u with u^{\prime} in G. If this path passes through x, one can replace the occurrence of x with the perimeter excluding x - of one of the two boundary cycles β, β^{\prime} to get a path joining v and v^{\prime} which avoids x, and thus projects to a path in G^{\prime}. Again we see that G^{\prime} has:
» two vertices less than $G: v$ and v^{\prime} have been deleted;
$»$ three edges less: x has been deleted and four other edges merged into two, pair by pair;
» one boundary cycle less: the boundary cycles β, β^{\prime} have been merged into one.

Therefore $g=g^{\prime}$, and

$$
\begin{equation*}
G^{\prime} \in \mathcal{R}_{g, n-1} \tag{B}
\end{equation*}
$$

Case C): x joins distinct vertices v, v^{\prime} but belongs into one boundary cycle $\beta \in B(G)$ only. Delete edge x and the two vertices v, v^{\prime}, joining the attached edges two by two as in case B). We distinguish two cases, depending on whether the resulting fatgraph is connected.
C^{\prime}) If the resulting fatgraph G^{\prime} is connected, then $\beta \in B(G)$ has been split into two distinct boundary cycles $\beta^{\prime}, \beta^{\prime \prime} \in B\left(G^{\prime}\right)$. Indeed, write the boundary cycle β as an ordered sequence of oriented edges: $y_{0} \rightarrow y_{1} \rightarrow \ldots \rightarrow$ $y_{k} \rightarrow y_{0}$. Assume the y_{*} appear in this sequence in the exact order they are encountered when walking along β in the sense given by the fatgraph orientation. The oriented edges y_{i} are pairwise distinct: if y_{i} and y_{j} share the same supporting edge, then y_{i} and y_{j} have opposite orientations. By the initial assumption of case C), edge x must appear twice in the list: if \bar{x} and \underline{x} denote the two orientations of x, then $y_{i}=\bar{x}$ and $y_{j}=\underline{x}$. Deleting x from β is (from a homotopy point of view) the same as replacing $y_{i}=\bar{x}$
with $\bar{x} \rightarrow \underline{x}$, and $y_{j}=\underline{x}$ with $\underline{x} \rightarrow \bar{x}$ when walking a boundary cycle. Then we see that β splits into two disjoint cycles:

$$
\begin{aligned}
& \beta^{\prime}=y_{0} \rightarrow y_{1} \rightarrow \cdots \rightarrow y_{i-1} \rightarrow \bar{x} \rightarrow \underline{x} \rightarrow y_{j+1} \rightarrow \cdots \rightarrow y_{k} \rightarrow y_{0} \\
& \beta^{\prime \prime}=y_{i+1} \rightarrow \cdots \rightarrow y_{j-1} \rightarrow \underline{x} \rightarrow \bar{x} \rightarrow y_{i+1} .
\end{aligned}
$$

In this case, G^{\prime} has:
» two vertices less than $G: v$ and v^{\prime} have been deleted;
» three edges less: x has been deleted and four other edges merged into two, pair by pair;
» one boundary cycle more: the boundary cycle β has been split in the pair $\beta^{\prime}, \beta^{\prime \prime}$.
Therefore $g^{\prime}=g-1$ and $n^{\prime}=n+1$, so:

$$
\begin{equation*}
G^{\prime} \in \mathcal{R}_{g-1, n+1} . \tag{C'}
\end{equation*}
$$

$\left.C^{\prime \prime}\right) G^{\prime}$ is a disconnected union of fatgraphs G_{1}^{\prime} and G_{2}^{\prime}; for this statement to hold unconditionally, we temporarily allow a single circle into the set of connected fatgraphs (consider it a fatgraph with one closed edge and no vertices) as the one and only element of $\mathcal{R}_{0,2}$. As will be shown in Lemma 3.29, this is irrelevant for the MgnTrivalentGraphs algorithm. Now:

$$
l_{1}^{\prime}+l_{2}^{\prime}=l-2, \quad m_{1}^{\prime}+m_{2}^{\prime}=m-3, \quad n_{1}^{\prime}+n_{2}^{\prime}=n+1,
$$

hence:

$$
\begin{aligned}
\left(2-2 g_{1}^{\prime}\right)+\left(2-2 g_{2}^{\prime}\right) & =(l-2)-(m-3)+(n+1) \\
& =(l-m+n)+2=4-2 g
\end{aligned}
$$

So that $g_{1}^{\prime}+g_{2}^{\prime}=g+2, n_{1}^{\prime}+n_{2}^{\prime}=n+1$, and: ${ }^{8}$

$$
\begin{equation*}
G^{\prime}=G_{1}^{\prime} \otimes G_{2}^{\prime} \in \mathcal{R}_{g_{1}^{\prime}, n_{1}^{\prime}} \otimes \mathcal{R}_{g_{2}^{\prime}, n_{2}^{\prime}} \tag{C"}
\end{equation*}
$$

3.1.2. Inverse construction. If $x \in E(G)$ is an edge of a fatgraph G, denote \bar{x} and \underline{x} the two opposite orientations of x.

In the following, let $\mathcal{R}_{g, n}^{\prime}$ be the set of fatgraphs with a selected oriented edge:

$$
\mathcal{R}_{g, n}^{\prime}:=\left\{(G, \bar{x}): G \in \mathcal{R}_{g, n}, \bar{x} \in L(G)\right\} .
$$

Similarly, let $\mathcal{R}_{g, n}^{\prime \prime}$ be the set of fatgraphs with two chosen oriented edges:

$$
\mathcal{R}_{g, n}^{\prime \prime}:=\left\{(G, \bar{x}, \bar{y}): G \in \mathcal{R}_{g, n}, \bar{x}, \bar{y} \in L(G)\right\} .
$$

The following abbreviations are convenient:

$$
\mathcal{R}=\cup \mathcal{R}_{g, n}, \quad \mathcal{R}^{\prime}=\cup \mathcal{R}_{g, n}^{\prime}, \quad \mathcal{R}^{\prime \prime}=\cup \mathcal{R}_{g, n}^{\prime \prime}
$$

Define the attachment of a new edge to a fatgraph in the following way. Given a fatgraph G and an oriented edge \bar{x}, we can create a new trivalent vertex v in the midpoint of x, and attach a new edge to it, in such a way that the two halves of x appear, in the cyclic order at v, in the same order induced by the orientation of \bar{x}. Figure 3.9 depicts the process.

We can now define maps that invert the constructions A), B), C^{\prime}) and $C^{\prime \prime}$) defined in the previous section.

[^7]

Figure 3.8. Graphical illustration of fatgraph edge removal. Top row: a regular edge (crossed) is removed from an $\mathcal{R}_{0,4}$ graph; its endpoints are further removed; the remaining edges are joined and the resulting graph is a trivalent fatgraph in $\mathcal{R}_{0,3}$. Bottom row: a loop is removed from a trivalent $\mathcal{R}_{0,4}$ graph; the stem together with its endpoints has to be removed as well; the remaining edges are joined, and we end up with a trivalent fatgraph in $\mathcal{R}_{0,3}$.

Figure 3.9. When adding a new vertex in the middle of an edge x, the cyclic order depends on the oriented edge: the two orientations \bar{x} and \underline{x} get two inequivalent cyclic orders.

Figure 3.10. Graphical illustration of maps $p, q, r_{g, n}$. (1): $p(G, \bar{x})$ attaches a "slipknot" to edge \bar{x}. (2): $r_{2,5}\left(G_{1}, \bar{x}, G_{2}, \bar{y}\right)$ joins fatgraphs G_{1} and G_{2} with a new edge. (3) and (4): it is shown how changing the orientation of an edge can lead to different results in (3) $q(G, \bar{x}, \bar{y})$ and (4) $p(G, \underline{x}, \bar{y})$.

Let $p_{g, n}: \mathcal{R}_{g, n-1}^{\prime} \rightarrow \mathcal{R}_{g, n}$ be the map that creates a fatgraph $p(G, \bar{x})$ from a pair (G, \bar{x}) by attaching the loose end of a "slip knot" 9 to the midpoint of x. The map $p: \mathcal{R}^{\prime} \rightarrow \mathcal{R}$ defined by $\left.p\right|_{\mathcal{R}_{g, n}^{\prime}}:=p_{g, n}$ is ostensibly inverse to $\left.A\right)$.

To invert B) and C^{\prime}), define a map $q: \mathcal{R}^{\prime \prime} \rightarrow \mathcal{R}$ that operates as follows:
» Given (G, \bar{x}, \bar{y}) with $\bar{x} \neq \bar{y}$, the map q attaches a new edge to the midpoints of x and y; again the cyclic order on the new midpoint vertices is chosen such that the two halves of x and y appear in the order induced by the orientations \bar{x}, \bar{y}.
» When $\bar{x}=\bar{y}$, let us further stipulate that the construction of $q(G, \bar{x}, \bar{x})$ happens in two steps:
(1) a new trivalent vertex is created in the midpoint of $x \in E(G)$ and a new edge ξ is attached to it,
(2) create a new trivalent vertex in the middle of the half-edge which comes first in the ordering induced by the orientation \bar{x}; attach the loose end of the new edge ξ to this new vertex.
It is clear that the above steps give an unambiguous definition of q in all cases where \bar{x} and \bar{y} are orientations of the same edge of G, that is, $(G, \bar{x}, \bar{x}),(G, \bar{x}, \underline{x}),(G, \underline{x}, \bar{x})$, and $(G, \underline{x}, \underline{x})$.

Ostensibly, q inverts the edge removal in cases B) and C^{\prime}): the former applies when a graph $G \in \mathcal{R}_{g, n}$ is sent to $q(G) \in \mathcal{R}_{g, n+1}$, the latter when $G \in \mathcal{R}_{g, n}$ is sent to $q(G) \in \mathcal{R}_{g+1, n-1}$.

Finally, to invert $C^{\prime \prime}$), let us define

$$
r_{g, n}: \bigoplus_{\substack{g_{1}^{\prime}+g_{2}^{\prime}=g+2 \\ n_{1}^{\prime}+n_{2}^{\prime}=n}} \mathcal{R}_{g_{1}^{\prime}, n_{1}^{\prime}}^{\prime} \times \mathcal{R}_{g_{2}^{\prime}, n_{2}^{\prime}}^{\prime} \rightarrow \mathcal{R}
$$

From $\left(G^{\prime}, \bar{x}^{\prime}, G^{\prime \prime}, \bar{x}^{\prime \prime}\right)$, construct a new fatgraph by bridging G^{\prime} and $G^{\prime \prime}$ with a new edge, whose endpoints are in the midpoints of x^{\prime} and $x^{\prime \prime}$; again, stipulate that the cyclic order on the new vertices is chosen such that the two halves of $x^{\prime}, x^{\prime \prime}$ appear in the order induced by the orientations $\bar{x}^{\prime}, \bar{x}^{\prime \prime}$.

Summing up, any fatgraph $G \in \mathcal{R}_{g, n}$ belongs to the image of one of the above maps p, q, and r. There is considerable overlap among the different image sets: in fact, one can prove that r is superfluous.

Lemma 3.29. Any fatgraph obtained by inverting construction C") lies in the image of maps p and q.

Proof. Assume, on the contrary, that G lies in the image of r only. Then, deletion of any edge x from G yields a disconnected graph $G^{\prime} \otimes G^{\prime \prime}$. Both subgraphs G^{\prime} and $G^{\prime \prime}$ enjoy the same property, namely, that deletion of any edge disconnects: otherwise, if the removal of $y \in E\left(G^{\prime}\right)$ does not disconnect G^{\prime}, then neither does it disconnect $G=r_{g, n}\left(G^{\prime}, G^{\prime \prime}\right)$, contrary to the initial assumption. As long as G^{\prime} or $G^{\prime \prime}$ has more than 3 edges, we can delete another edge; by recursively repeating the process, we end up with a fatgraph G^{*} with $l^{*} \leqslant 3$ edges, which is again disconnected by removal of any edge. Since G^{*} is trivalent, $3 \cdot m^{*}=2 \cdot l^{*}$, therefore G^{*} must have exactly 3 edges and 2 vertices. But all such fatgraphs belong to $\mathcal{R}_{0,3}$ or $\mathcal{R}_{1,1}$, and it is readily checked that there is no way to add an edge such that the required property holds, that any deletion disconnects.

[^8]3.1.3. The MgnTrivalentGraphs algorithm. The stage is now set for implementing the recursive generation of trivalent graphs. Pseudo-code is listed in Algorithm 7.

Lemma 3.30. MgnTrivalentGraphs (g, n) generates all trivalent fatgraphs for each given g, n. Only one representative per isomorphism class is returned.

Proof. The function call MgnTrivalentGraphs (g, n) recursively calls itself to enumerate trivalent graphs of $\mathcal{R}_{g, n-1}$ and $\mathcal{R}_{g-1, n+1}$. In particular, MgnTrivalentGraphs must: » provide the full set of fatgraphs $\mathcal{R}_{0,3}$ and $\mathcal{R}_{1,1}$ as induction base.
» return the empty set when called with an invalid (g, n) pair;
The general case is then quite straightforward: (1) apply maps p, q to every fatgraph in $\mathcal{R}_{g, n-1}$, and q to every fatgraph in $\mathcal{R}_{g-1, n+1}$; (2) discard all graphs that do not belong to $\mathcal{R}_{g, n}$; and (3) take only one graph per isomorphism class into the result set.

To invert construction A), map p is applied to all fatgraphs $G \in \mathcal{R}_{g, n-1}$; if $a \in$ Aut G, then $p(a(G), a(x))=p(G, x)$, therefore we can limit ourselves to one pair (G, x) per orbit of the automorphism group, saving a few computational cycles. Similarly, since q is a function of (G, \bar{x}, \bar{y}), which is by construction invariant under Aut G, we can again restrict to considering only one (G, \bar{x}, \bar{y}) per Aut G-orbit; this is computed by the edge_pair_orbits (G) function.

Note that there is no way to tell from G if fatgraphs $p(G, x)$ and $q(G, x, y)$ belong to $\mathcal{R}_{g, n}$: one needs to check g and n before adding the resulting fatgraph to the result set R.

The selection of only one representative fatgraph per isomorphism class can be done by removing duplicates from the collection of generated graphs in the end, or by running the isomorphism test before adding each graph to the working list R. The computational complexity is quadratic in the number of generated graphs in both cases, but the latter option requires less memory. In any case, this isomorphism test is the most computationally intensive part of MgnTrivalentGraphs.

For an expanded discussion of the size of the result set R, and a comparison with other generation algorithms, see Appendix B. It would be interesting to reimplement the trivalent generation algorithm using the technique outlined in [47], and compare it with the current (rather naive) algorithm.
3.1.4. Implementing maps $p(G, x)$ and $q(G, x, y)$. Implementation of both functions is straightforward and pseudo-code is therefore omitted; ${ }^{10}$ the only question is how to represent the "oriented edges" that appear in the signature of maps p and q.

In both p and q, the oriented edge \bar{x} or \underline{x} is used to determine how to attach a new edge to the midpoint of the target (unoriented) edge x. We can thus represent an oriented edge as a pair (\boldsymbol{e}, s) formed by a Fatgraph edge \boldsymbol{e} and a "side" s : valid values for s are +1 and -1 , interpreted as follows. The parameter s controls which of the two inequivalent cyclic orders the new trivalent vertex will be given. Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ be the edges attached to the new vertex in the middle of \boldsymbol{e}, where $\boldsymbol{a}, \boldsymbol{b}$ are the two halves of \boldsymbol{e}. If s is +1 , then the new trivalent vertex will have the cyclic order $\boldsymbol{a}<\boldsymbol{b}<\boldsymbol{c}<\boldsymbol{a}$; if s_{1} is -1 , then the edges \boldsymbol{a} and \boldsymbol{b} are swapped and the new trivalent vertex gets the cyclic order $\boldsymbol{b}<\boldsymbol{a}<\boldsymbol{c}<\boldsymbol{b}$ instead.

[^9]```
Algorithm 7 Return a list of all connected trivalent fatgraphs with prescribed
genus \(g\) and number of boundary cycles \(n\). A fatgraph if "admissible" iff it has the
prescribed genus \(g\) and number of boundary cycles \(n\).
def \(\operatorname{MgnTrivalentGraphs}(g, n)\) :
 avoid infinite recursion in later statements
 if \(n=0\) or \((g, n)<(0,3)\) :
 return empty list
 Induction base: \(\mathcal{M}_{0,3}\) and \(\mathcal{M}_{1,1}\)
 if \((g, n)=(0,3)\) :
 return list of fatgraphs in \(\mathcal{R}_{0,3}\)
 elif \((g, n)=(1,1)\) :
 return list of fatgraphs in \(\mathcal{R}_{1,1}\)
 general case
 else:
 \(R \leftarrow\) empty list
 case A): hang a circle to all edges of graphs in \(M_{g, n-1}\)
 for \(G\) in MgnTrivalentGraphs \((g, n-1)\) :
 for \(x\) in edge_orbits \((G)\) :
 add \(p(G, \bar{x})\) to \(R\) if admissible
 add \(p(G, \underline{x})\) to \(R\) if admissible
 case B): bridge all edges of a single graph in \(M_{g, n-1}\)
 for \(G\) in \(\operatorname{MgnTrivalentGraphs}(g, n-1)\) :
 for \((x, y)\) in edge_pair_orbits \((G)\) :
 add \(q(G, \underline{x}, \underline{y})\) to \(R\) if admissible
 add \(q(G, \underline{x}, \bar{y}))\) to \(R\) if admissible
 add \(q(G, \bar{x}, \underline{y})\) to \(R\) if admissible
 add \(q(G, \bar{x}, \bar{y})\) to \(R\) if admissible
 case \(C^{\prime}\)): bridge all edges of a single graph in \(M_{g-1, n+1}\)
 for \(G\) in \(\operatorname{MgnTrivalentGraphs}(g-1, n+1)\) :
 for \((x, y)\) in edge_pair_orbits \((G)\) :
 add \(q(G, \underline{x}, \underline{y})\) to \(R\) if admissible
 add \(q(G, \underline{x}, \overline{\bar{y}})\) to \(R\) if admissible
 add \(q(G, \bar{x}, \underline{y})\) to \(R\) if admissible
 add \(q(G, \bar{x}, \bar{y})\) to \(R\) if admissible
 remove isomorphs from \(R\)
 return \(R\)
```


## 4. The homology complex of marked fatgraphs

Betti numbers of a complex $\left(W_{*}, D_{*}\right)$ can be reckoned (via a little linear algebra) from the matrix form $\boldsymbol{D}^{(k)}$ of the boundary operators $D_{k}$. Indeed, given that $b_{k}:=$ $\operatorname{dim} H_{k}(W, D)$ and $H_{k}(W, D):=Z_{k}(W, D) / B_{k}(W, D)=\operatorname{Ker} D_{k} / D_{k-1}\left(W_{k-1}\right)$, by the rank-nullity theorem we have $\operatorname{dim} \operatorname{Ker} D_{k}=\operatorname{dim} W_{k}-\operatorname{rank} \boldsymbol{D}^{(k)}$ hence $b_{k}=$ $\operatorname{dim} \operatorname{Ker} D_{k}-\operatorname{dim} D_{k-1}\left(W_{k-1}\right)=\operatorname{dim} W_{k}-\operatorname{rank} \boldsymbol{D}^{(k)}-\operatorname{rank} \boldsymbol{D}^{(k-1)}$.

In order to compute the matrix $\boldsymbol{D}^{(k)}$, we need to compute the coordinate vector of $D_{k} x_{j}^{(k)}$ for all vectors $x_{j}^{(k)}$ in a basis of $W_{k}$. If $\left(W_{*}, D_{*}\right)$ is the fatgraph complex, then the basis vectors $x_{j}^{(k)}$ are marked fatgraphs with $k$ edges, and the differential $D_{k}$ is defined as an alternating sum of edge contractions. Therefore, in order to compute the coordinate vector of $D_{k} x_{j}^{(k)}$, one has to find the unique fatgraph $x_{h}^{(k-1)}$ which is isomorphic to a given contraction of $x_{j}^{(k)}$ and score a $\pm 1$ coefficient depending on whether orientations agree or not.

Although this approach works perfectly, it is inefficient in practice. Indeed, lookups into the basis set $\left\{x_{h=1, \ldots, N}^{(k-1)}\right\}$ of $W_{k-1}$ require on average $O\left(N^{2}\right)$ isomorphism checks. Still, we can take a shortcut: if two topological fatgraphs $G$ and $G^{\prime}$ are not isomorphic, so are any two marked fatgraphs $(G, \nu)$ and ( $G^{\prime}, \nu^{\prime}$ ). Indeed, rearrange the rows and columns of the boundary operator matrix $\boldsymbol{D}^{(k)}$ so that marked fatgraphs $(G, \nu)$ over the same topological fatgraph $G$ correspond to a block of consecutive indices. Then there is a rectangular portion of $\boldsymbol{D}^{(k)}$ that is uniquely determined by a pair of topological fatgraphs $G$ and $G^{\prime}$. The main function for computing the boundary operator matrix can thus loop over pairs of topological fatgraphs, and delegate computing the each rectangular block to specialized code. There are $n!/ \mid$ Aut $G \mid$ marked fatgraphs per given topological fatgraph $G$, so this approach can cut running time down by $O\left((n!)^{2}\right)$.

The generation of inequivalent marked fatgraphs (over the same topological fatgraph $G$ ) can be reduced to the (computationally easier) combinatorial problem of finding cosets of a subgroup of the symmetric group $\mathfrak{S}_{n}$. In addition, the list of isomorphisms between $G$ and $G^{\prime}$ can be cached and re-used for comparing all pairs of marked fatgraphs $(G, \nu),\left(G^{\prime}, \nu^{\prime}\right)$. This strategy is implemented by two linked algorithms:
(1) MarkedFatgraphPool: Generate all inequivalent markings of a given topological fatgraph $G$.
(2) compute_block: Given topological fatgraphs $G$ and $G^{\prime}$, compute the rectangular block of a boundary operator matrix whose entries correspond to coordinates of $D(G, \nu)$ w.r.t. $\left(G^{\prime}, \nu^{\prime}\right)$.
4.1. Generation of inequivalent marked fatgraphs. For any marked fatgraph $(G, \nu)$, denote $[G, \nu]$ its isomorphism class; recall that $B(-)$ is the functor associating a fatgraph with the set of its boundary cycles. Let $N(G)$ be the sets of all markings over $G$ and $\tilde{N}(G)$ the set of isomorphism classes thereof:

$$
\begin{aligned}
& N(G):=\{(G, \nu) \mid \nu: B(G) \rightarrow\{1, \ldots, n\}\}, \\
& \tilde{N}(G):=\{[G, \nu] \mid \nu: B(G) \rightarrow\{1, \ldots, n\}\} .
\end{aligned}
$$

Let $(G, \bar{\nu})$ be a chosen marked fatgraph. Define a group homomorphism:

$$
\begin{equation*}
\Phi: \operatorname{Aut}(G) \ni a \longmapsto \bar{\nu} \circ B(a) \circ \bar{\nu}^{-1} \in \mathfrak{S}_{n} . \tag{4.1}
\end{equation*}
$$

The set $P=\Phi(\operatorname{Aut} G)$ is a subgroup of $\mathfrak{S}_{n}$.

Lemma 3.31. The marked fatgraphs $(G, \bar{\nu})$ and $(G, \sigma \bar{\nu})$ are isomorphic if and only if $\sigma \in P$.

Proof. Let $\sigma \in P$, then $\sigma^{-1} \in P$ and there exists $a \in$ Aut $G$ such that:

$$
\sigma^{-1}=\bar{\nu} \circ B(a) \circ \bar{\nu}^{-1}
$$

whence:

$$
(\sigma \circ \bar{\nu}) \circ B(a) \circ \bar{\nu}^{-1}=\mathrm{id},
$$

therefore $a$ induces a marked fatgraph isomorphism between $(G, \bar{\nu})$ and $(G, \sigma \circ \bar{\nu})$.
Conversely, let $\hat{\nu}=\sigma \bar{\nu}$ and assume $(G, \bar{\nu})$ and $(G, \hat{\nu})$ are isomorphic as marked fatgraphs: then there exists $a \in$ Aut $G$ such that $\hat{\nu} \circ B(a) \circ \bar{\nu}^{-1}$ is the identity. Given any $\bar{\nu} \circ B\left(a^{\prime}\right) \circ \bar{\nu}^{-1} \in P$ we have:

$$
\begin{aligned}
& P \ni \bar{\nu} \circ B\left(a^{\prime}\right) \circ \bar{\nu}^{-1}=\bar{\nu} \circ\left(\hat{\nu}^{-1} \circ \hat{\nu}\right) \circ B(a) \circ B(a)^{-1} \circ B\left(a^{\prime}\right) \circ \bar{\nu}^{-1} \\
& =\left(\bar{\nu} \circ \hat{\nu}^{-1}\right) \circ \hat{\nu} \circ B(a) \circ\left(\bar{\nu}^{-1} \circ \bar{\nu}\right) \circ B\left(a^{-1}\right) \circ B\left(a^{\prime}\right) \circ \bar{\nu}^{-1} \\
& =\sigma^{-1} \circ\left(\hat{\nu} \circ B(a) \circ \bar{\nu}^{-1}\right) \circ \bar{\nu} \circ B\left(a^{-1} \circ a^{\prime}\right) \circ \bar{\nu}^{-1} \\
& \\
& \quad=\sigma^{-1} \circ\left(\bar{\nu} \circ B\left(a^{-1} \circ a^{\prime}\right) \circ \bar{\nu}^{-1}\right) \in \sigma^{-1} P,
\end{aligned}
$$

therefore $P=\sigma^{-1} P$, so $\sigma \in P$.

Define a transitive action of $\mathfrak{S}_{n}$ over $N(G)$ by $\sigma \cdot(G, \nu):=(G, \sigma \nu)$; this descends to a transitive action of $\mathfrak{S}_{n}$ on $\tilde{N}(G)$. By the previous Lemma, $P$ is the stabilizer of $[G, \bar{\nu}]$ in $\tilde{N}(G)$.
Lemma 3.32. The action of $\mathfrak{S}_{n}$ on $\tilde{N}(G)$ induces a bijective correspondence between isomorphism classes of marked fatgraphs and cosets of $P$ in $\mathfrak{S}_{n}$.

Proof. Given isomorphic marked fatgraphs $(G, \nu)$ and $\left(G, \nu^{\prime}\right)$, let $\sigma, \sigma^{\prime} \in \mathfrak{S}_{n}$ be such that $\nu=\sigma \circ \bar{\nu}$ and $\nu^{\prime}=\sigma^{\prime} \circ \bar{\nu}$. By definition of marked fatgraph isomorphism, there is $a \in$ Aut $G$ such that the following diagram commutes:


Hence commutativity of another diagram follows:


Thus $(G, \bar{\nu})$ is isomorphic to $\left(G, \sigma^{-1} \sigma^{\prime} \circ \bar{\nu}\right)$; therefore $\sigma^{-1} \sigma^{\prime} \in P$, hence $\sigma^{\prime} \in \sigma P$, i.e., $\sigma$ and $\sigma^{\prime}$ belong into the same coset of $P$.

Conversely, let $\tau, \tau^{\prime} \in \sigma P$; explicitly:

$$
\tau=\sigma \circ \bar{\nu} \circ B(a) \circ \bar{\nu}^{-1}, \quad \tau^{\prime}=\sigma \circ \bar{\nu} \circ B\left(a^{\prime}\right) \circ \bar{\nu}^{-1}
$$

Set $\nu=\tau \circ \bar{\nu}, \nu^{\prime}=\tau^{\prime} \circ \bar{\nu}$; substituting back the definition of $\tau$, we have:

$$
\nu=\sigma \circ \bar{\nu} \circ B(a) \circ \bar{\nu}^{-1} \circ \bar{\nu}=\sigma \circ \bar{\nu} \circ B(a),
$$

whence $\bar{\nu}=\sigma^{-1} \circ \nu \circ B(a)^{-1}$, and:

$$
\nu^{\prime}=\sigma \circ \bar{\nu} \circ B\left(a^{\prime}\right)=\sigma \circ\left(\sigma^{-1} \circ \nu \circ B(a)^{-1}\right) \circ B\left(a^{\prime}\right)=\nu \circ B\left(a^{-1} \circ a^{\prime}\right),
$$

therefore $a^{-1} \circ a^{\prime}$ is an isomorphism between the marked fatgraphs $(G, \nu)$ and ( $G, \nu^{\prime}$ ).

The following is an easy corollary of the transitivity of the action of $\mathfrak{S}_{n}$ on $\tilde{N}(G)$.
Lemma 3.33. Given any marking $\nu$ on the fatgraph $G$, there exist $\sigma \in \mathfrak{S}_{n}$ and $a \in \operatorname{Aut} G$ such that: $\nu=\sigma \circ \bar{\nu} \circ a$.

Proof. By Lemma 3.32, there exists $\sigma \in \mathfrak{S}_{n}$ such that $[G, \nu]=[G, \sigma \circ \bar{\nu}]$, i.e., $(G, \nu)$ is isomorphic to $(G, \sigma \circ \bar{\nu})$. If $a \in$ Aut $G$ is this fatgraph isomorphism, then the following diagram commutes:


Therefore $\nu=\sigma \circ \bar{\nu} \circ B(a)$.

The MarkedFatgraphPool algorithm. Given a fatgraph $G$ and a Fatgraph object $G$ representing it, let us stipulate that $\bar{\nu}$ be the marking on $G$ that enumerates boundary cycles of $G$ in the order they are returned by the function compute_boundary_cycles $(\boldsymbol{G})$. By Lemma 3.33, every $\left(G, \nu^{(j)}\right)$ can then be expressed (up to isomorphism) as $\left(G, \sigma^{(j)} \circ \bar{\nu}\right)$ with $\sigma^{(j)} \in \mathfrak{S}_{n}$. The set $\left\{\sigma^{(j)}\right\}$ enumerates all distinct isomorphism classes of marked fatgraphs over $G$ iff $\left\{\sigma^{(j)} P\right\}$ runs over all distinct cosets of $P$ in $\mathfrak{S}_{n}$ (by Lemma 3.32).

The MarkedFatgraphPool function computes the set $\tilde{N}(G)$ of isomorphism classes $[G, \nu]$.
Theorem 3.34. Given a Fatgraph $\boldsymbol{G}$ as input, MarkedFatgraphPool $(\boldsymbol{G})$, as computed by Algorithm 8, outputs a tuple (graph, P, A, markings, orientable), whose components are defined as follows:
» The graph item is the underlying Fatgraph object $\boldsymbol{G}$.
» The $P$ slot holds a list of all elements in the group $P=\Phi(\operatorname{Aut} G)$.
» A stores a corresponding set of pre-image representatives (each element is an automorphism of $\boldsymbol{G}$ ): permutation $P[i]$ is induced by automorphism $A[i]$, i.e., if $\pi=P[i]$ and $a=A[i]$ then $\pi=\Phi(a)$.
» The markings item holds the list $\left\{\sigma^{(j)}\right\}$ of distinct cosets of $P$ (representing inequivalent markings).
» orientable is a boolean value indicating whether any ( $G, \nu$ ) in the pool is orientable. ${ }^{11}$

We need a separate boolean variable to record the orientability of the family of marked fatgraphs $N(G)=\{(G, \nu)\}$, because the automorphism group of a marked fatgraph $\operatorname{Aut}(G, \nu)$ can be a proper subgroup of Aut $G$ : hence, $(G, \nu)$ can be orientable even if $G$ is not.

[^10]```
Algorithm 8 Compute the distinct markings of a given fatgraph. Input to the
algorithm is a Fatgraph object \(\boldsymbol{G}\); final result is a tuple \((\boldsymbol{G}, P, A\), markings, ori-
entable) which represents the set \(\tilde{N}(G)\) of isomorphism classes of marked fatgraphs.
def \(\boldsymbol{p h i}(a, \boldsymbol{G})\) :
    \(\pi \leftarrow\) array of \(n\) elements
    for src_index, src_cycle in enumerate( \(\boldsymbol{G}\).boundary_cycles):
        dst_cycle \(\leftarrow a\). transform_boundary_cycle(src_cycle)
        if dst_cycle not in G.boundary_cycles:
        abort and signal error to caller
        else:
            \(d s t\) _index \(\leftarrow\) index of dst_cycle in \(\boldsymbol{G}\).boundary_cycles
            \(\pi\left[s r c \_i n d e x\right] \leftarrow d s t \_i n d e x\)
    return \(\pi\)
def MarkedFatgraphPool \((\boldsymbol{G})\) :
    \(P \leftarrow\) empty list
    \(A \leftarrow\) empty list
    assume \((G, \nu)\) is orientable until we have counter-evidence
    orientable \(\leftarrow\) True
    step (1): loop over Aut \(G\)
    for \(a\) in \(\boldsymbol{G}\).automorphisms():
        try:
            \(\pi \leftarrow \operatorname{phi}(a, \boldsymbol{G})\)
            except phi failed:
            continue with next \(a\)
            if permutation \(\pi\) is identity:
            found a new automorphism:
                - does it reverse orientation?
            if \(a\). is_orientation_reversing():
            orientable \(\leftarrow\) False
            - does it define a new marking?
        if \(\pi\) not in \(P\) :
            append \(\pi\) to \(P\)
            append \(a\) to \(A\)
    step (2): enumerate cosets of \(P\)
    markings \(\leftarrow[]\)
    for \(\sigma\) in \(\mathfrak{S}_{n}\) :
        for \(\pi\) in \(P\) :
            if \(\pi \circ \sigma\) in markings:
            continue with next \(\sigma\)
            add \(\sigma\) to markings
```

Proof. Generation of all inequivalent markings over G is a direct application of Lemma 3.32, performed in two steps:
(1) In the first step: for each automorphism $a \in \operatorname{Aut} G$, compute the permutation $\Phi(a)$ it induces on the set of boundary components and form the subgroup P. The subgroup P and the associated set of automorphisms $A \subseteq$ Aut G are stored in variables P and A.
(2) In the second step: compute cosets of P by exhaustive enumeration. They are recast into the list $\left\{\sigma^{(j)}\right\}$, which is stored into the markings variable.

As an important by-product of the computation, the automorphism group $\operatorname{Aut}(G, \bar{\nu})$ is computed, and used to determine if the marked fatgraphs in the pool are orientable.

The auxiliary function phi computes the permutation $\Phi(a)=\bar{\nu} \circ B(a) \circ \bar{\nu}^{-1}$. A permutation π is created and returned; it is represented by an array with n slots, which is initially empty and is then stepwise constructed by iterating over boundary cycles. Indeed, the boundary cycle src_cycle is transformed according to $B(a)$ and its position in the list of boundary cycles of \boldsymbol{G} is then looked up. Note that this lookup may fail: there are in fact cases, in which the Fatgraph.isomorphisms algorithm finds a valid mapping, that however does not preserve the markings on boundary cycles; such failures need to be dealt with by rejecting a.

Step (1) of the computation is performed in lines 18-27:
» Computation of the permutation π (induced by a on the boundary cycles of \boldsymbol{G}) may fail; if this happens, the algorithm ignores a and proceeds with another automorphism.
» If a preserves the boundary cycles, then it induces an automorphism of the marked graph and we need to test whether it preserves or reverses orientation.
» There are $|\operatorname{Ker} \Phi|$ distinct automorphisms inducing the same permutation on boundary cycles: if π is already in P, discard it and continue with the next a.

By Lemma 3.32, there are as many distinct markings as there are cosets of P in \mathfrak{S}_{n}. Step (2) of the algorithm proceeds by simply enumerating all permutations in \mathfrak{S}_{n}, with marking initially set to the empty list; for each permutation σ a test is made as to whether σP intersects the list markings (lines $35-37$); if it does not, then the marking induced by σ is added to the list.

A constructive version of Lemma 3.33 can now be implemented: the following function index_and_aut, given a Fatgraph object \boldsymbol{G} and a marking, returns the permutation (by index number j in \boldsymbol{G}.markings) and fatgraph automorphism $a=$ $\boldsymbol{G} . A[i]$ such that the topological fatgraph \boldsymbol{G} decorated with marking is isomorphic (through a) to the same graph decorated with \boldsymbol{G}.markings $[j]$.

```
def index_and_aut(G, marking):
    for (i,\pi) in enumerate(\boldsymbol{G.P}):
        \tau\leftarrow\sigma\circ\pi
        if }\tau\mathrm{ in G.markings:
```

```
    j}\leftarrow\mathrm{ index of }\tau\mathrm{ in G.markings
        return (j,\boldsymbol{G}.A[i])
else:
    continue with next \pi
```

The algorithm enumerates all permutations $\pi \in P$, and compares $\sigma \circ \pi$ to every element of G.markings: by Lemma 3.32, we know that one must match.
4.2. Computing boundary operator matrix blocks. The differential $D(G, \nu)$ is computed by summing contractions of regular edges in G (with alternating signs); likewise, the matrix block corresponding to coordinates of the families of marked fatgraphs $\{(G, \nu)\}$ and $\left\{\left(G^{\prime}, \nu^{\prime}\right)\right\}$ can be decomposed into a sum of blocks, each block representing the coordinates of $\{(G / e, \nu)\}_{e \in E(G)}$ projected on the linear span of $\left\{\left(G^{\prime}, \nu^{\prime}\right)\right\}$.

More precisely, given any two fatgraphs G_{1} (with m edges) and G_{2} (with $m-1$ edges), let $X_{1}, X_{2} \subseteq \mathscr{R}_{g, n}$ be the linear span of $N\left(G_{1}\right)$ and $N\left(G_{2}\right)$ respectively, and denote by $\mathrm{pr}_{X_{2}}$ the linear projection on subspace X_{2}. Recall that, for any fatgraph G, we have $D(G)=\sum \pm d^{(e)}(G)$, where the sum is taken over all regular edges e of G, and $d^{(e)}$ is the contraction of edge e.

Let G be the fatgraph obtained by contracting the chosen edge e in G_{1}. If G_{2} and G are isomorphic, then the three graphs are related by the following diagram of fatgraph morphisms, where f_{1} is the contraction map and f_{2} is a fatgraph isomorphism:

$$
\begin{gather*}
G_{1} \tag{4.2}\\
\stackrel{f_{1}}{\natural} \stackrel{\underset{f_{2}}{\sim}}{\sim} G_{2}
\end{gather*}
$$

The above diagram (4.2) functorially induces a diagram on the set of boundary cycles:

Diagram (4.3) commutes iff f_{1}, f_{2} can be extended to morphisms of marked fatgraphs $\hat{f}_{1}:\left(G_{1}, \nu_{1}\right) \rightarrow(G, \nu)$ and $\hat{f}_{2}:(G, \nu) \rightarrow\left(G_{2}, \nu_{2}\right)$.

Now choose Fatgraph objects $\boldsymbol{G}_{1}, \boldsymbol{G}, \boldsymbol{G}_{2}$ representing G_{1}, G, G_{2}.
Let $\bar{\nu}_{1}, \bar{\nu}, \bar{\nu}_{2}$ be the markings on G_{1}, G, G_{2} that enumerate boundary cycles in the order they are returned by the function compute_boundary_cycle applied to \boldsymbol{G}_{1}, $\boldsymbol{G}, \boldsymbol{G}_{2}$ respectively. Define $\phi_{1}, \phi_{2} \in \mathfrak{S}_{n}$ by:

$$
\begin{equation*}
\phi_{1}:=\bar{\nu} \circ B\left(f_{1}\right) \circ \bar{\nu}_{1}^{-1}, \quad \phi_{2}:=\bar{\nu}_{2} \circ B\left(f_{2}\right) \circ \bar{\nu}^{-1} . \tag{4.4}
\end{equation*}
$$

Lemma 3.35. Given any marking ν_{1} on G_{1}, choose $\sigma_{1} \in \mathfrak{S}_{n}$ such that $\nu_{1}=\sigma_{1} \circ \bar{\nu}_{1}$ and define:

$$
\begin{equation*}
\nu_{2}:=\sigma_{1} \circ \phi_{1}^{-1} \circ \phi_{2}^{-1} \circ \bar{\nu}_{2} \tag{4.5}
\end{equation*}
$$

Then ν_{2} is the unique marking on G_{2} such that diagram (4.3) commutes.

Proof. Let $\sigma_{2}:=\sigma_{1} \circ \phi_{1}^{-1} \circ \phi_{2}^{-1}$. We need to prove that the external square in diagram (4.3) is commutative; indeed, we have:

$$
\begin{aligned}
\sigma_{2}=\sigma_{1} \circ\left(\bar{\nu}_{1} \circ B\left(f_{1}\right)^{-1} \circ \bar{\nu}^{-1}\right) \circ\left(\bar{\nu} \circ B\left(f_{2}\right)^{-1} \circ \bar{\nu}_{2}\right) & \\
& =\sigma_{1} \bar{\nu}_{1} \circ B\left(f_{2} \circ f_{1}\right)^{-1} \circ \bar{\nu}_{2}^{-1}
\end{aligned}
$$

so that:

$$
\begin{aligned}
\nu_{2} \circ B\left(f_{2}\right) \circ B\left(f_{1}\right) & =\sigma_{2} \circ \nu_{2} \circ B\left(f_{2} \circ f_{1}\right) \\
& =\sigma_{1} \bar{\nu}_{1} \circ B\left(f_{2} \circ f_{1}\right)^{-1} \circ \bar{\nu}_{2}^{-1} \circ \nu_{2} \circ B\left(f_{2} \circ f_{1}\right)
\end{aligned}
$$

$$
=\sigma_{1} \circ \bar{\nu}_{1}=\nu_{1} .
$$

The uniqueness assertion is of immediate proof, since maps $B\left(f_{1}\right)$ and $B\left(f_{2}\right)$ are invertible.

Let $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ be the MarkedFatgraphPool output corresponding to $\boldsymbol{G}_{1}, \boldsymbol{G}_{2}$, and let $\left\{\nu_{1}^{(j)}\right\}_{j=1, \ldots, N_{1}},\left\{\nu_{2}^{(k)}\right\}_{k=1, \ldots, N_{2}}$ be the enumeration of fatgraph markings corresponding to items in the lists \boldsymbol{p}_{1}.markings and \boldsymbol{p}_{2}.markings respectively.

Lemma 3.36. For any regular edge e of G_{1}, and any choice of $j \in\left\{1, \ldots, N_{1}\right\}$, there exist unique $k \in\left\{1, \ldots, N_{2}\right\}$ and $s \in\{-1,0,+1\}$ such that:

$$
\begin{equation*}
\operatorname{pr}_{X_{2}}\left(d^{(e)}\left[G_{1}, \nu_{1}^{(j)}\right]\right)=s \cdot\left[G_{2}, \nu_{2}^{(k)}\right] . \tag{4.6}
\end{equation*}
$$

Proof. If G_{2} and $G=G_{1} / e$ are not isomorphic, then, for any marking ν_{1}, $d\left(G_{1}, \nu_{1}\right)$ has no component in the subspace $X_{2}=\left\{\left(G_{2}, \nu_{2}\right)\right\}$, so the assertion is true with $s=0$.
Otherwise, by Lemma 3.35, given $\nu_{1}=\nu_{1}^{(j)}$ there is a unique ν_{2} such that s can be non-null; by Lemma 3.33, there exist $\nu_{2}^{(k)}:=\sigma_{2}^{(k)} \circ \bar{\nu}_{2}$ and $a \in$ Aut G such that:
(1) the marked fatgraph $\left(G_{2}, \nu_{2}^{(k)}\right)$ is a representative of the isomorphism class $\left[G_{2}, \nu_{2}\right]$;
(2) a gives the isomorphism between marked fatgraphs $\left(G_{2}, \nu_{2}\right)$ and $\left(G_{2}, \nu_{2}^{(k)}\right)$;
(3) $\nu_{2}^{(k)}$ is the marking on G_{2} represented by k-th item in list \boldsymbol{p}_{2}.markings.

The coefficient s must then be ± 1 since both $\left(G_{2}, \nu_{2}^{(k)}\right)$ and $d^{(e)}\left(G_{1}, \nu_{1}^{(j)}\right)$ are (isomorphic to) elements in the basis of X_{2}.
Theorem 3.37. Given MarkedFatgraphPool objects $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$, and a chosen edge \boldsymbol{e} of \boldsymbol{G}_{1}, the function compute_block in Algorithm 9 returns the set S of all triplets (j, k, s) with $s= \pm 1$ such that:

$$
\begin{equation*}
\operatorname{pr}_{X_{2}}\left(d^{(e)}\left[G_{1}, \nu_{1}^{(j)}\right]\right)=s \cdot\left[G_{2}, \nu_{2}^{(k)}\right] . \tag{4.7}
\end{equation*}
$$

Proof. The algorithm closely follows the computation done before Lemma 3.35 and in the proof of Lemma 3.36.

If G_{2} and $G=G_{1} / e$ are not isomorphic, then $d^{(e)}\left[G_{1}, \nu_{1}\right]$ has no component in the subspace X_{2} generated by $\left\{\left[G_{2}, \nu_{2}\right]\right\}$, whatever the marking ν_{1}. The assertion is thus satisfied by $S=\varnothing$, i.e., an empty list of triplets (j, k, s) (lines $5-6$ in Algorithm 9).

If G_{2} is isomorphic to $G=G_{1} / e$ through f_{2}, then Lemma 3.35 provides the explicit formula $\nu_{2}^{(k)}=\sigma_{1}^{(j)} \circ \phi_{1}^{-1} \circ \phi_{2}^{-1} \circ \bar{\nu}_{2}$, where $\sigma_{1}^{(j)}=\nu_{1}^{(j)} \circ \bar{\nu}_{1}^{-1}$.

```
Algorithm 9 Return the set \(S\) of triplets ( \(j, k, s\) ) such that eq. (4.7) holds for
\(\left(G_{1}, \nu_{1}^{(j)}\right)\) and \(\left(G_{2}, \nu_{2}^{(k)}\right)\) obtained by contracting \(\boldsymbol{e}\) in all marked graphs in \(\boldsymbol{p}_{1}\) and
projecting onto graphs in the \(\boldsymbol{p}_{2}\) family.
```

```
def compute_block(p
```

def compute_block(p
G
G
G}\mp@subsup{\boldsymbol{T}}{2}{}\leftarrow\mp@subsup{\boldsymbol{p}}{2}{}.grap
G}\mp@subsup{\boldsymbol{T}}{2}{}\leftarrow\mp@subsup{\boldsymbol{p}}{2}{}.grap
G}\leftarrow\operatorname{contract(\mp@subsup{\boldsymbol{G}}{1}{},\boldsymbol{e})
G}\leftarrow\operatorname{contract(\mp@subsup{\boldsymbol{G}}{1}{},\boldsymbol{e})
if \boldsymbol{G}}\mathrm{ and }\mp@subsup{\boldsymbol{G}}{2}{}\mathrm{ are not isomorphic:
if \boldsymbol{G}}\mathrm{ and }\mp@subsup{\boldsymbol{G}}{2}{}\mathrm{ are not isomorphic:
return empty list
return empty list
else:
else:
result }\leftarrow\mathrm{ empty list
result }\leftarrow\mathrm{ empty list
\mp@subsup{\boldsymbol{f}}{2}{}\leftarrow\mathrm{ first isomorphism computed by Fatgraph.isomorphisms(G, 踣)}
\mp@subsup{\boldsymbol{f}}{2}{}\leftarrow\mathrm{ first isomorphism computed by Fatgraph.isomorphisms(G, 踣)}
\phi
\phi
\phi _ { 2 } ^ { - 1 } \leftarrow c o m p u t e _ p h i 2 _ i n v ~ (\boldsymbol { G } , \boldsymbol { G } _ { 2 } , \boldsymbol { f } _ { 2 })
\phi _ { 2 } ^ { - 1 } \leftarrow c o m p u t e _ p h i 2 _ i n v ~ (\boldsymbol { G } , \boldsymbol { G } _ { 2 } , \boldsymbol { f } _ { 2 })
for (j,\sigma) in enumerate((}\boldsymbol{p}\mathrm{ . markings):
for (j,\sigma) in enumerate((}\boldsymbol{p}\mathrm{ . markings):
(k,\boldsymbol{a})\leftarrow\mathrm{ index_and_aut (}\mp@subsup{\boldsymbol{p}}{2}{},\sigma\circ\mp@subsup{\phi}{1}{-1}\circ\mp@subsup{\phi}{2}{-1})
(k,\boldsymbol{a})\leftarrow\mathrm{ index_and_aut (}\mp@subsup{\boldsymbol{p}}{2}{},\sigma\circ\mp@subsup{\phi}{1}{-1}\circ\mp@subsup{\phi}{2}{-1})
p\leftarrow\mp@subsup{\boldsymbol{G}}{1}{}.\mathrm{ .orient [e]}
p\leftarrow\mp@subsup{\boldsymbol{G}}{1}{}.\mathrm{ .orient [e]}
s\leftarrow(-1\mp@subsup{)}{}{p}* compare_orientations(\mp@subsup{\boldsymbol{f}}{2}{})* compare_orientations(\boldsymbol{a})
s\leftarrow(-1\mp@subsup{)}{}{p}* compare_orientations(\mp@subsup{\boldsymbol{f}}{2}{})* compare_orientations(\boldsymbol{a})
append (j,k,s) to result
append (j,k,s) to result
return result
return result
def compute_phi1_inv(G,G,
def compute_phi1_inv(G,G,
\tau}\leftarrow\mathrm{ empty array of }n\mathrm{ elements
\tau}\leftarrow\mathrm{ empty array of }n\mathrm{ elements
for }i,\boldsymbol{b}\mathrm{ in enumerate((G)
for }i,\boldsymbol{b}\mathrm{ in enumerate((G)
\mp@subsup{\boldsymbol{b}}{}{\prime}}\leftarrow\mathrm{ contract_boundary_cycle((}\mp@subsup{\boldsymbol{G}}{1}{},\boldsymbol{b},\boldsymbol{e}
\mp@subsup{\boldsymbol{b}}{}{\prime}}\leftarrow\mathrm{ contract_boundary_cycle((}\mp@subsup{\boldsymbol{G}}{1}{},\boldsymbol{b},\boldsymbol{e}
i ^ { \prime } \leftarrow index of 列' in G.boundary_cycles
i ^ { \prime } \leftarrow index of 列' in G.boundary_cycles
\tau [i ^ { \prime }] \leftarrow i
\tau [i ^ { \prime }] \leftarrow i
return }
return }
def compute_phi2_inv(G, G
def compute_phi2_inv(G, G
\tau
\tau
for i,\boldsymbol{b}\mathrm{ in enumerate((G)}.\mathrm{ boundary_cycles):}
for i,\boldsymbol{b}\mathrm{ in enumerate((G)}.\mathrm{ boundary_cycles):}
\mp@subsup{\boldsymbol{b}}{}{\prime}}\leftarrow\mathrm{ transform_boundary_cycle((f2, b)
\mp@subsup{\boldsymbol{b}}{}{\prime}}\leftarrow\mathrm{ transform_boundary_cycle((f2, b)
i'}\leftarrow\mathrm{ index of }\mp@subsup{\boldsymbol{b}}{}{\prime}\mathrm{ in }\boldsymbol{G}\mathrm{ .boundary_cycles
i'}\leftarrow\mathrm{ index of }\mp@subsup{\boldsymbol{b}}{}{\prime}\mathrm{ in }\boldsymbol{G}\mathrm{ .boundary_cycles
\tau
\tau
return }\mp@subsup{\tau}{}{\prime

```
    return }\mp@subsup{\tau}{}{\prime
```

By assumption, $\bar{\nu}_{1}$ numbers the boundary cycles on G_{1} in the order they are returned by running function compute_boundary_cycles on \boldsymbol{G}_{1}, so $\sigma_{1}^{(j)}$ is the permutation corresponding to the j-th element in \boldsymbol{p}_{1}.markings.

The map ϕ_{1} is easy to compute: again, given that both $\bar{\nu}$ and $\bar{\nu}_{1}$ number the boundary cycles of G and G_{1} in the order they are returned by compute_boundary_cycles, the auxiliary function compute_phi1_inv incrementally builds the result by looping over \boldsymbol{G}_{1}.boundary_cycles, $\overline{\text { contracting the target edge, and mapping the corre- }}$ sponding indices.

Computation of the map ϕ_{2} depends on the isomorphism f_{2}; however, two different choices for f_{2} will not change the outcome of the algorithm: in the final loop at lines $12-16$, only the sign of f_{2} is used, and the sign is constant across all isomorphisms having the same source and target fatgraphs (iff they are both orientable). Computation of ϕ_{2}^{-1} (in the auxiliary function compute_phi2_inv) is done in the same way as the computation of ϕ_{1}^{-1}, except we transform \bar{b} to b^{\prime} by means of transform_boundary_cycle $\left(f_{2},-\right)$, i.e., $B\left(f_{2}\right)$.

Finally, for every marking $\sigma_{1}^{(j)}$ in \boldsymbol{p}_{1}.markings (representing $\nu_{1}^{(j)}$), we know by Lemma 3.36 that there is a unique index k and $a \in \operatorname{Aut} G_{2}$ such that: $\sigma_{1}^{(j)} \circ \phi_{1}^{-1} \circ \phi_{2}^{-1}$ is the k-th item $\sigma_{2}^{(k)}$ in \boldsymbol{p}_{2}.markings (representing $\nu_{2}^{(k)}$), and such that the following chain:

$$
G_{1} \underset{f_{1}}{ } \underset{f_{2}}{\simeq} G_{2} \xrightarrow[a]{\simeq} G_{2}
$$

extends to a marked fatgraph morphism:

$$
\left(G_{1}, \nu_{1}^{(j)}\right) \underset{\hat{f}_{1}}{\longrightarrow}(G, \nu) \xrightarrow[\hat{f}_{2}]{\simeq}\left(G_{2}, \nu_{2}\right) \xrightarrow[\hat{a}]{\simeq}\left(G_{2}, \nu_{2}^{(k)}\right) .
$$

The sign s is then obtained by comparing the orientation ω_{2} of $\left(G_{2}, \nu_{2}^{(k)}\right)$ with the push-forward orientation $\left(a \circ f_{2} \circ f_{1}\right)_{*} \omega_{1}$, where ω_{1} is the orientation on $\left(G_{1}, \nu_{1}^{(j)}\right)$, and multiplying by the alternating sign from the homology differential. There are four components that make up s :
» the sign given by the contraction f_{1} : this is +1 by definition since the "child" fatgraph G inherits the orientation from the "parent" fatgraph G_{1};
» the sign given by the isomorphism f_{2} : this is obtained by comparing $\left(f_{2}\right)_{*} \omega$ with ω_{2}, which is implemented for a generic isomorphism by the function compare_orientations;
» the sign of the automorphism a of G_{2} which transforms the push-forward marking into the chosen representative in the same orbit: this again can be computed by comparing $(a)_{*} \omega_{2}$ with ω_{2} and only depends on the action of a on edges of G_{2};
» the alternating sign from the homology differential, which only depends on the position p of edge e within the order ω_{1}.

The product of the three non-trivial components is returned as the sign s.
4.3. Matrix form of the differential D. In Algorithm 10, the function compute_boundary_operators computes the matrix form $\boldsymbol{D}^{(m)}$ of the differential D restricted to the linear space generated by fatgraphs with m edges.

Input to the function are the number m and the list of graphs, divided by number of fatgraph edges: graphs $[m]$ is the list of fatgraphs with m edges.

```
Algorithm 10 Compute the boundary operator matrix, block by block.
def compute_boundary_operator( \(m\), graphs):
    \(N_{1} \leftarrow\) number of graphs with \(m\) edges
    \(N_{2} \leftarrow\) number of graphs with \(m-1\) edges
    \(D^{(m)} \leftarrow N_{1} \times N_{2}\) matrix, initially null
    \(j_{0} \leftarrow 0\)
    for \(\boldsymbol{G}_{1}\) in graphs[m]:
        \(\boldsymbol{p}_{1} \leftarrow \operatorname{MarkedFatgraphPool}\left(\boldsymbol{G}_{1}\right)\)
        \(k_{0} \leftarrow 0\)
        for \(\boldsymbol{G}_{2}\) in graphs[m-1]:
            \(\boldsymbol{p}_{2} \leftarrow \operatorname{MarkedFatgraphPool}\left(\boldsymbol{G}_{2}\right)\)
        for \(\boldsymbol{e}\) in \(\boldsymbol{G}_{1}\).edges:
            if \(\boldsymbol{e}\) is a loop:
                    continue with next \(\boldsymbol{e}\)
            for \((j, k, s)\) in compute_block \(\left(\boldsymbol{p}_{1}, \boldsymbol{e}, \boldsymbol{p}_{2}\right)\) :
                add \(s\) to entry \(D^{(m)}\left[k+k_{0}, j+j_{0}\right]\)
        increment \(k_{0}\) by the number of inequivalent markings in \(\boldsymbol{p}_{2}\)
        increment \(j_{0}\) by the number of inequivalent markings in \(\boldsymbol{p}_{1}\)
    return \(D^{(m)}\)
```

The output matrix $\boldsymbol{D}^{(m)}$ is constructed incrementally: it starts with all entries set to 0 , and is then populated blockwise. Indeed, for every pair of MarkedFatgraphPool objects \boldsymbol{p}_{1} (from a graph with m edges) and \boldsymbol{p}_{2} (with $m-1$ edges), and every nonloop edge \boldsymbol{e}, the rectangular matrix block whose upper-left corner is at indices j_{0}, k_{0} is summed the block resulting from compute_block $\left(\boldsymbol{p} 1, \boldsymbol{e}, \boldsymbol{p}_{2}\right)$.

5. Experimental results

An implementation ${ }^{12}$ of the algorithms presented in this paper has been actually used to compute the Betti numbers of all $\mathcal{M}_{g, n}$ with $2 g+n \leqslant 6$. The results are summarized in Table 3.1. All the Betti numbers were already known in the literature; Section 2 in the "Introduction" chapter provides references. In all these cases, published results agree with the values in Table 3.1.

An internal verification step in the code computes the classical and virtual Euler characteristics of the fatgraph complex; the values computed by the Python program match those published in $[\mathbf{2 8}, \mathbf{8}, \mathbf{7}]$, where they are derived by theoretical means.

Along with the computation, the entire family of fatgraphs $\mathcal{R}_{g, n}$ (with $2 g+n \leqslant 6$) has been computed, and for each fatgraph the isomorphism group is known. The full list of fatgraphs and their isomorphisms is too long to print here, but the data is publicly available at http://fatghol.googlecode.com/download/list. Tables 3.2 and 3.3 provide a numerical summary of the results.

[^11]| | b_{0} | b_{1} | b_{2} | b_{3} | b_{4} | b_{5} | b_{6} | b_{7} | b_{8} | b_{9} | b_{10} | b_{11} | b_{12} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathcal{M}_{0,3}$ | 1 | | | | | | | | | | | | |
| $\mathcal{M}_{0,4}$ | 1 | 2 | | | | | | | | | | | |
| $\mathcal{M}_{0,5}$ | 1 | 5 | 6 | | | | | | | | | | |
| $\mathcal{M}_{0,6}$ | 1 | 9 | 26 | 24 | | | | | | | | | |
| $\mathcal{M}_{1,1}$ | 1 | | | | | | | | | | | | |
| $\mathcal{M}_{1,2}$ | 1 | | | | | | | | | | | | |
| $\mathcal{M}_{1,3}$ | 1 | | | 1 | | | | | | | | | |
| $\mathcal{M}_{1,4}$ | 1 | | | 4 | 3 | | | | | | | | |
| $\mathcal{M}_{2,1}$ | 1 | | 1 | | | | | | | | | | |
| $\mathcal{M}_{2,2}$ | 1 | | 2 | | | 1 | | | | | | | |

Table 3.1. Betti numbers of $\mathcal{M}_{g, n}$ for $2 g+n \leqslant 6$. For readability, null values have been omitted and the corresponding entry left blank.

No. of edges:	12	11	10	9	8	7	6	5	4	3	2	Total
$g=0, n=3$										2	1	3
$g=0, n=4$							6	6	7	6		25
$g=0, n=5$				26	26	72	103	65	21		313	
$g=0, n=6$	191	191	866	1813	1959	1227	418	76			6741	
$g=1, n=1$										1	1	2
$g=1, n=2$				46	46	162	256	5	8	8		26
$g=1, n=3$				46	72		780					
$g=1, n=4$	669	669	3442	7850	9568	6752	2696	562			32208	
$g=2, n=1$				9	9	29	52	45	21		165	
$g=2, n=2$	368	368	2005	4931	6543	5094	2279	546			22134	

Table 3.2. Number of distinct abstract fatgraphs with the given genus g and number of boundary cycles n. For readability, null values have been omitted and the corresponding entry left blank.
5.1. Performance. Table 3.4 gives a summary of the running times obtained on the idhydra.uzh.ch cluster at the University of Zurich; Figure 3.11 provides a graphical representation of the same data. The computational demands of the code are such that the homology of $\mathcal{M}_{g, n}$ can actually be computed on desktop-class hardware for $2 g+n<6$.

The scatter plot in Figure 3.11 shows that the time spent in computation of the $\boldsymbol{D}^{(m)}$ matrix ranks done in Stage III can become the dominant contribution to the total running time as the number of fatgraphs increases. This highlights a limitation of the program: the large number of fatgraphs in the Kontsevich complex might turn out to be a challenge for today's sparse linear algebra software.

However, the set of fatgraphs for a given (g, n) pair has to be generated prior to computing the matrices $\boldsymbol{D}^{(m)}$: a very large set of graphs can exhaust the computer's memory long before computation time becomes a blocking issue.

6. Application to other fatgraph complexes

In [23], V. Godin defined a "bordered fatgraph complex", which computes the integral homology of the moduli spaces of Riemann surfaces with boundaries. Godin's

No. of edges	$\mathcal{M}_{0,3}$	$\mathcal{M}_{0,4}$	$\mathcal{M}_{0,5}$	$\mathcal{M}_{0,6}$	$\mathcal{M}_{1,1}$	$\mathcal{M}_{1,2}$	$\mathcal{M}_{1,3}$	$\mathcal{M}_{1,4}$	$\mathcal{M}_{2,1}$	$\mathcal{M}_{2,2}$
12				122880				14944		713
11				616320				81504		3983
10				1274688				185760		9681
9			2240	1359840			236	227564	9	12927
8			8160	862290			918	160128	28	10077
7		64	11280	294480			1440	63756	43	4519
6		6260	49800		9	1112	13000	39	1057	
5		144	2112	3024		15	408	1008	20	97
4		99	210			10	54		3	
3	4	20			1	3				
2	3				1					
Total	7	327	31262	4583322	2	37	4168	747664	142	43054

Table 3.3. Number of distinct orientable marked fatgraphs in the PennerKontsevich complex of each of the indicated $\mathcal{M}_{g, n}$ spaces. For readability, null values have been omitted and the corresponding entry left blank.

Time (s):	Stage I	Stage II	Stage III	Total
$\mathcal{M}_{0,3}$	$<4 \mathrm{~ms}$	$<4 \mathrm{~ms}$	0.03	0.12
$\mathcal{M}_{0,4}$	0.05	0.09	$<4 \mathrm{~ms}$	0.29
$\mathcal{M}_{0,5}$	4.78	21.91	1.85	29.43
$\mathcal{M}_{0,6}$	2542.56	16011.70	179157.39	233007.06
$\mathcal{M}_{1,1}$	$<4 \mathrm{~ms}$	$<4 \mathrm{~ms}$	0.010	0.128
$\mathcal{M}_{1,2}$	0.05	0.08	$<4 \mathrm{~ms}$	0.27
$\mathcal{M}_{1,3}$	40.56	136.88	$<4 \mathrm{~ms}$	174.75
$\mathcal{M}_{1,4}$	82486.51	336633.75	4872.69	424615.85
$\mathcal{M}_{2,1}$	2.39	4.76	$<4 \mathrm{~ms}$	7.39
$\mathcal{M}_{2,2}$	43402.18	181091.11	5.57	224694.61

Table 3.4. Total CPU time (seconds) used by the Betti numbers computation for the indicated $\mathcal{M}_{g, n}$ spaces. The $\mathrm{C}++$ library LinBox [43, 14] was used for the rank computations in Stage III. Running time was sampled on the idhydra.uzh.ch computer of the University of Zurich, equipped with 480GB of RAM and 48 Intel Xeon CPU cores model X7542 running at 2.67 GHz ; Python version 2.6.0 installed on the SUSE Linux Enterprise Server 11 64-bits operating system was used to execute the program. The system timer has a resolution of 4 ms . The "Total" column does not just report the sum of the three stages, but also accounts for the time the program spent in I/O and memory management.

Figure 3.11. Scatter plot of the data in Table 3.4. Both axes use log-scale. Note how Stage III (computation of the boundary operators rank) becomes the dominant task as the number of marked fatgraphs increases.
fatgraphs extend the abstract fatgraph by requiring that a leaf (i.e., a univalent vertex), and only one, is present in each boundary cycle. The bordered fatgraph complex is then constructed exactly as the fatgraph complex presented here, with the proviso that an edge ending in a univalent vertex is never contracted: hence, the differential D is given by the sum of contraction of non-loop non-leaf edges.

The algorithms of this paper can easily be adapted to compute the homology of Godin's bordered fatgraph complex: after generating the family of marked fatgraphs of a given (g, n) pair, we decorate each marked fatgraph with leaves; compute the matrix form of the differential D and then reduce it to Smith normal form to reckon the integral homology modules of the moduli space of bordered surfaces.

There is no need for checking duplicates in the set of bordered fatgraphs so generated, ${ }^{13}$ therefore the decoration step can be implemented efficiently. A shortcut can also be taken in computing the matrix D : since leaf edges are never contracted, the differential on bordered fatgraphs can be deduced easily from the differential on marked fatgraphs. However, the number of bordered fatgraphs is much larger than the number of marked fatgraphs; ${ }^{14}$ this means that the final linear algebra

[^12]where m is the total number of edges and z_{v} is the valence of vertex v.
computations require even more computational resources than they do for $\mathcal{M}_{g, n}$ computations.

7. Future development directions

There are a number of directions in which the current algorithms and code could be improved.

As already noted, the generation algorithms produce quite a number of duplicates, that have to be removed using a quadratic-complexity procedure. A variant of the "isomorph-free generation" algorithm of McKay [47] could replace the naive MgnTrivalentGraphs code; the question of which algorithm would be faster has probably to be sorted out empirically, the critical performance factor being the number of times the "isomorphism" test is invoked.

Another approach would be to turn the generation procedure "upside down": instead of starting with trivalent graphs and contracting edges, one could start with (g, n) fatgraphs with one vertex and expand those until the whole set of fatgraphs is generated. This would have the advantage that the chromatic fatgraph polynomial of Bollobás and Riordan [9] is available as an invariant to speed up the isomorphism procedure. On the other hand, the number of fatgraphs generated this way seems consistently larger than the number of fatgraphs generated with the procedure adopted here (see Section 2 in Appendix B).

So far, the major obstacle to applying the algorithms of this paper to a wider range of moduli spaces has been the large number of fatgraphs involved: it affects both the total run time and memory consumption of the code. Most algorithms described here lend themselves naturally to parallelization, so it would be possible to rewrite the program to exploit several processors and distributed memory, which could solve both issues. However, the number of generated fatgraphs grows super-exponentially in the asymptotic limit $[4,5]$, so any implementation of the algorithms outlined here will soon hit the limit of any present-day computing device. The question remains open, whether more significant result could be obtained before hitting the limits of today's computers.

CHAPTER 4

A novel parallel algorithm for exact Gaussian Elimination of general sparse matrices

The algorithm presented in Chapter 3 reduces computation of the Betti number of moduli spaces $\mathcal{M}_{g, n}$ to reckoning the rank (over \mathbb{Q}) of some large sparse matrix with integer entries. An effective method for computing this rank is given by Gaussian Elimination.

Here we describe a new algorithm for Gaussian Elimination (nicknamed "Rheinfall"); it was specifically developed for computing the rank of fatgraph homology matrices, but, being a variant of the most general Gaussian Elimination procedure, has wider applicability.

The "Rheinfall" algorithm is, in essence, a rearrangement of the operations in the usual Gaussian Elimination with Partial Pivoting (GEPP) procedure; in contrast to GEPP, the "Rheinfall" algorithm presented here naturally allows a parallel formulation both in the message-passing/distributed-memory paradigm and in the threaded/shared-memory one. However, the "Rheinfall" algorithm degrades gracefully to sequential execution when run on a single compute node, and experiments have shown that it can yield better performance than GEPP on certain classes of matrices.

A sample implementation of the code is available at http://rheinfall.googlecode. com; examples and performance data given in the text have been measured using that program for computing the rank of integer matrices (using machine-size integers as the entry type).

Any Gaussian Elimination algorithm can be applied equally well column- or rowwise; here we take the row-oriented approach.

This chapter features a large number of figures and tables, that are placed at the end of the chapter rather than being interspersed through the text.

1. Description of the algorithm

Let $A=\left(a_{i j} \mid i=0, \ldots, n-1 ; j=0, \ldots, m-1\right)$ be a $n \times m$ matrix with entries in a "sufficiently good" ${ }^{1}$ ring \mathbb{k}.

Definition 4.1. Given a matrix A, define $z_{i}:=\min \left\{j \mid a_{i j} \neq 0\right\}$, i.e., z_{i} is the column index of the first non-zero entry in the i-th row of A; for a null row, define $z_{i}:=m$. We say that the i-th row of A starts at column z_{i}.

The matrix A is in block echelon form iff $z_{i} \geqslant z_{i-1}$ for all $i=1, \ldots, n-1$.
The matrix A is in row echelon form iff, for all i, either $z_{i}>z_{i-1}$ or $z_{i-1}=z_{i}=m$.

[^13]Every matrix can be put into block echelon form by a permutation of the rows. We shall show that the code in Algorithm 11 can be used to transform any given matrix into row echelon form.
The "Rheinfall" algorithm is most easily described using a Bulk Synchronous Parallel (BSP) model [64]; we show in Sections 1.1 and 1.2 how it can be adapted to popular implementation paradigms.
For reducing the $n \times m$ matrix A to row echelon form, create m Processing Units $P[0], \ldots, P[m-1]$, one for each matrix column: Processing Unit $P[c]$ handles rows starting at column c.
Each Processing Unit $P[c]$ maintains some internal state variables:
u_{c} Holds either a matrix row, or (initially) the special value NIL. By construction, $u_{c}[c] \neq 0$ and $u_{c}[j]=0$ for all $j<c$.
Q_{c} A collection of rows on which to perform elimination. An incoming Row message (with payload a matrix row r) triggers the addition of r to Q_{c}; likewise, when r is modified by elimination, it is removed from Q_{c}. No assumption is done on the data structure underlying Q_{c}, other than it allows addition and removal of rows; in particular, Q_{c} need not preserve the order in which rows have been added to it.
output $[c]$ The contribution of this PU to the global result: its actual form varies with the specifics of what is being computed by the algorithm. For reducing a matrix to row echelon form, output is a matrix row; other variants are discussed in Sections 2.1 and 2.2.
During each BSP superstep, Processing Unit $P[c]$ orderly performs the tasks below, independently from other Processing Units (PUs). PUs communicate only by exchanging Row messages: the content of a Row message is a matrix row r.
(1) Chooses a pivot row u_{c} among the rows available in block Q_{c}.
(2) Performs elimination on all the rows in Q_{c} using the chosen pivot row.
(3) Sends the modified rows to other PUs: if row r^{\prime} (gotten by elimination of row r with the pivot row u_{c}) starts at column c^{\prime}, send it to PU $P\left[c^{\prime}\right]$.

When all processing is done, the output of each $P[c]$ is made available to a "master" process, which assembles the global result.
Example 4.2. A worked out example might clarify how the Rheinfall algorithm performs Gaussian Elimination.
(a) Assume we are given the following input matrix (for readability, zeroes have been omitted and the corresponding entry left blank):

$$
A=\left(\begin{array}{lllll}
1 & & & 2 & 1 \\
& & & 1 & \\
2 & & 2 & & \\
& 3 & 1 & & 1 \\
& 1 & & 1 & 5
\end{array}\right)
$$

(b) The matrix is permuted so that All rows having the first nonzero in the same column are arranged into a block of consecutive indices:

$$
R_{0} A=\left(\begin{array}{lllll}
1 & & & 2 & 1 \tag{S0}\\
2 & & 2 & & \\
& 3 & 1 & & 1 \\
& 1 & & 1 & 5 \\
& & & 1 &
\end{array}\right)
$$

Thus, rows the first two rows, r_{1} and r_{2}, are sent to PU $P[1]$, then r_{3} and r_{4} are sent to $P[2]$, and row r_{5} is assigned to $P[4]$.
(c) PUs choose a pivot in each block (indicated with italic font in the following):

$$
R_{0} A=\left(\begin{array}{ccccc}
1 & & & 2 & 1 \tag{S1}\\
2 & & 2 & & \\
& 3 & 1 & & 1 \\
& 1 & & 1 & 5 \\
& & & 1 &
\end{array}\right)
$$

Note that pivoting is restricted to the block: there is no global search or broadcast of pivot values.
(d) Elimination is now performed by each PU independently and concurrently:

$$
E_{0} R_{0} A=\left(\begin{array}{ccccc}
1 & & & 2 & 1 \tag{S2}\\
0 & & 2 & -4 & -2 \\
& 0 & 1 & -3 & -14 \\
& 1 & & 1 & 5 \\
& & & 1 &
\end{array}\right)
$$

Note that $P[4]$ does not perform any work since it has only one row in its block.
(e) Eliminated rows are sent to the PU assigned to their new starting column and the process is performed again from step (S1).

$$
R_{1} E_{0} R_{0} A=\left(\begin{array}{ccccc}
1 & & & 2 & 1 \tag{S1’}\\
& 1 & & 1 & 5 \\
& & 1 & -3 & -14 \\
& & 2 & -4 & -2 \\
& & & 1 &
\end{array}\right)
$$

In the above example, note that the two eliminated rows have been sent to PU $P[3]$, that was previously empty.

Note that there is actually no separate reordering step (S0) for initially putting the input matrix A into block echelon form: rows are distributed to Processing Units as they are read. In a sense, rearrangement of the matrix is an artifact of the textual representation: "Rheinfall" chops up the matrix and operates independently on each block.

More generally, this is an invariant of the "Rheinfall" algorithm: by exchanging rows among PUs after every round of elimination is done, the working matrix is kept in block echelon form at all times. Indeed, let $A^{(0)}=A$. After completion of the k-th superstep we can define the working matrix $A^{(k)}$ by concatenating: the pivot row u_{1} of $P[1]$ (if not NIL); the rows in Q_{1}, in some order (e.g., in the relative order they appeared originally in A); the pivot row (if any) of $P[2]$; then rows of Q_{2} (if not empty); etc.
Lemma 4.3. $A^{(k)}$ is in block echelon form, and is gotten from A by elementary row operations.

Proof. $A^{(k)}$ is in block echelon form by construction. Each row of $A^{(k)}$ is either a pivot row or a linear combination of (at most) two rows of $A^{(k-1)}$; a recursion argument proves the claim.

The eliminate function at line 17 in Algorithm 11 returns a sum of suitable multiples of two rows so that the result row has a null entry in all columns $j \leqslant c$. The actual definition of eliminate depends on the coefficient ring of A : for Gaussian Elimination over a field, eliminate returns $r-(r[c] / u[c]) u$; elimination over a ring involves finding α, β such that $\alpha r[c]=\beta u[c]$ and then returning $\alpha r-\beta u$. Note that $u[c] \neq 0$ by construction.
Lemma 4.4. After at most m supersteps, each row r of the $n \times m$ input matrix A has been modified to fall in either one of these two cases: (1) it is the pivot row u_{c} for some Processing Unit $P[c]$, or (2) it has been completely eliminated, i.e., successive modifications have zeroed out all its entries.

Proof. If A is the null matrix, then all rows are null and they all fall into case (2).

Otherwise, assume A has at least one nonzero row and proceed by induction on m. If $m=1$, then one row will be chosen as pivot, and the other ones will be zeroed out by elimination after the first superstep.

If $m>1$, let r_{1}, \ldots, r_{k} be the rows of A with a nonzero entry in column 1 ; let \tilde{A} be the submatrix formed by the rest of rows of A. In the first superstep, one of them (say, r_{1}) is chosen as pivot row u_{1}, and the other ones are transformed by the eliminate function into rows $r_{2}^{\prime}, \ldots, r_{k}^{\prime}$ having a zero in the first column. By induction, every row of the $(n-1) \times(m-1)$ matrix \hat{A} formed by $r_{2}^{\prime}, \ldots, r_{k}^{\prime}$ and \tilde{A} is modified into a pivot row or zeroed out in $m-1$ steps. But $\hat{A}^{(m-1)}$ is the lower-right submatrix of $A^{(m)}$, hence the claim holds for every row of A in m steps.

The following statement is now immediate.
Theorem 4.5. Algorithm 11 reduces any given $n \times m$ input matrix A to row echelon form in (at most) m supersteps.

Proof. By Lemma 4.4, after m steps each row has either been selected as a pivot row in some PU $P[c]$, or it has been completely zeroed out by elimination. Therefore each block of $A^{(m)}$ is comprised of just one row, i.e., $A^{(m)}$ is in row echelon form.
1.1. Distributed-memory variant. To increase efficiency in a distributedmemory/Message Passing Interface (MPI) algorithm, we drop both the requirement that communication happens as a separate substep after all elimination has been performed, and the barrier synchronization after communication. The distributed "Rheinfall" Gaussian Elimination algorithm comprises the parallel execution of the same code by several stateful Processing Units, which continually perform elimination work and exchange messages.

So, the main problem becomes how to detect when all PUs have finished their work. As in the BSP model, we assume that every Processing Unit can send messages to every other PU. We extend the communication protocol by introducing End messages: End messages carry no payload and just signal a PU to finalize computations and then stop execution. The Gaussian Elimination procedure is complete when the End token leaves the last Processing Unit $P[m]$.
In order to guarantee that the End message is the last message that a running PU can receive, we make two assumptions on the message exchange system:
(1) that messages sent from one PU to another arrive in the same order they were sent, and
(2) that it is possible for a PU to wait until all the messages it has sent have been delivered.

Both conditions are satisfied by MPI-compliant message passing systems.
A "master" process starts the $P[1], \ldots, P[m]$ Processing Units; feeds the initial data to them; and collects the results at the end of processing, but is not otherwise involved in the computation, and remains inactive while the PUs are running.

Theorem 4.6. Algorithm 11 reduces any given input matrix A to row echelon form in finite time.

Proof. Lemma 4.4, which is the key ingredient in the proof of Theorem 4.5, does not depend on the BSP assumptions. Therefore it still holds if we replace "in at most m supersteps" with "in finite time" in the claim.

Hence, to prove the theorem we only need to show that the Master procedure in Algorithm 11 terminates in finite time, i.e., that each PU receives an End message in finite time.

This can easily be proved, again by induction on m : when $m=1$, the Processing Unit $P[1]$ receives the End message from the Master process immediately after startup. When $m>1$, PU $P[m]$ receives the End message in a finite time τ_{0} by induction hypothesis. There are only a finite number of rows in block Q_{m} and no more rows can be delivered to it, since all PUs $P[c]$ with $c<m$ are now in DONE state. Thus, $P[m]$ finishes its processing in a finite time τ_{1} so the End token is sent back to the Master in finite time $\tau_{0}+\tau_{1}$.
1.2. Shared-memory variant. In the shared-memory setting, Processing Units are not realized as continuously-running agents, rather as "tasks" that are scheduled on-demand when there is elimination work to be performed on a block of columns.

We assume that the run-time system supports the following features:
» It is possible to atomically set the value of a variable.
» A mutex lock construct is available to avoid concurrent access to the same variable by concurrently-executing threads.
» A compare-and-swap (CAS) operation is available. ${ }^{2}$
» It is possible to spawn function invocations as asynchronous tasks. A task scheduler distributes tasks to the available processing resources and will eventually run any scheduled task (provided each task terminates in a finite amount of time); correctness of the "Rheinfall" algorithm is not dependent on any order of execution of the scheduled tasks, i.e., the task queue needs not be a FIFO.
» It is possible for an execution thread to wait until all tasks have been executed. ${ }^{3}$

[^14]```
Algorithm 11 Reduce a matrix to row echelon form by Gaussian Elimination
(distributed-memory version). Top: Algorithm run by processing unit \(P[c]\). Bot-
tom: Sketch of the "master" procedure. Input to the algorithm is an \(n \times m\) matrix
\(A\), represented as a list of rows \(r_{i}\). Row and column indices are 1-based.
def ProcessingUnit(\(c\)): [where \(c\) is a column index]
 \(u_{c} \leftarrow\) NIL
 \(Q_{c} \leftarrow\) empty list
 output \([c] \leftarrow\) NIL
 state \(\leftarrow\) RUNNING
 while state is RUNNING:
 wait for messages to arrive
 append Row messages to \(Q_{c}\)
 select best pivot row \(t\) from \(Q_{c}\)
 if \(u_{c}\) is NiL:
 \(u_{c} \leftarrow t\)
 remove \(t\) from \(Q_{c}\)
 else:
 if \(t\) has better pivoting features than \(u_{c}\) :
 exchange \(u_{c}\) and \(t\)
 for each row \(r\) in \(Q_{c}\) :
 \(r^{\prime} \leftarrow \operatorname{eliminate}\left(r, u_{c}\right)\)
 \(c^{\prime} \leftarrow\) first nonzero column of \(r^{\prime}\)
 send \(r^{\prime}\) to \(P\left[c^{\prime}\right]\)
 delete \(r\) from \(Q_{c}\)
 if received message End:
 wait for all sent messages to arrive
 output \([c] \leftarrow u_{c}\)
 if \(c+1<m\) :
 send End to \(P[c+1]\)
 else:
 send End to Master
 state \(\leftarrow\) DONE -- break out of the loop
 return output [c]
def Master \((A)\) : [where \(A\) is an \(n \times m\) matrix]
 start a PU \(P[c]\) for each column \(c\) of \(A\)
 for \(i\) in \(\{1, \ldots, n\}\) :
 \(c \leftarrow\) first nonzero column of \(r_{i}\)
 send \(r_{i}\) to \(P[c]\)
 send End message to \(P[1]\)
 wait until \(P[m]\) sends out an End message
 result \(\leftarrow\) collect output results from all PUs
 return result
```

```
Algorithm 12 Reduce a matrix to row echelon form by Gaussian Elimination
(shared-memory version). Input to the algorithm is an \(n \times m\) matrix \(A\), represented
as a list of rows \(r_{i}\). Row and column indices are 1-based.
def Master \((A)\) : [where \(A\) is an \(n \times m\) matrix]
 for \(c\) in \(\{1, \ldots, m\}\) :
 InitProcessingUnit(c)
 for \(i\) in \(\{1, \ldots, n\}\) :
 \(c \leftarrow\) first nonzero column of \(r_{i}\)
 \(\operatorname{SendRow}\left(r_{i}, c\right)\)
 wait until all tasks are done
 result \(\leftarrow\) collect output \([c]\) from all PUs
 return result
def \(\boldsymbol{\operatorname { S e n d R o w }}(r, c)\) : [where \(r\) is a matrix row and \(c\) is a column]
 acquire lock \(L_{c}\)
 add \(r\) to \(Q_{c}\)
 release lock \(L_{c}\)
 status \(\leftarrow \mathrm{CAS}(\) spawned \([c]\), FALSE, TRUE)
 if status is FALSE: -- compare with old value of spawned[c]
 spawn task ProcessingUnitTask(c)
def InitProcessingUnit(c): [where \(c\) is a column index]
 \(u_{c} \leftarrow\) NIL
 \(Q_{c} \leftarrow\) empty list
 output \([c] \leftarrow\) NIL
 spawned \([c] \leftarrow\) FALSE
def ProcessingUnitTask(c): [where \(c\) is a column index]
 \(B \leftarrow\) empty list
 acquire lock \(L_{c}\)
 swap contents of \(B\) and \(Q_{c}\)
 release lock \(L_{c}\)
 select best pivot row \(t\) from \(B\)
 if \(u_{c}\) is NiL:
 \(u_{c} \leftarrow t\)
 else:
 if \(t\) has better pivoting features than \(u\) :
 exchange \(u\) and \(t\)
 for each row \(r\) in \(B\) :
 \(r^{\prime} \leftarrow\) eliminate \((r, u)\)
 \(c^{\prime} \leftarrow\) first nonzero column of \(r^{\prime}\)
 \(\operatorname{SendRow}\left(r^{\prime}, c^{\prime}\right)\)
 output \(\leftarrow u\)
 if \(Q_{c}\) is not empty:
 -- re-schedule self --
 spawn task ProcessingUnitTask(c)
 else:
 atomically set spawned \([c]\) to FALSE
 return output
```

All these features are easily available in modern systems; the source code freely available at http://rheinfall.googlecode.com/ provides a sample C++ implementation on top of the Intel "Threading Building Blocks" library [35].

The definition of a Processing Unit $P[c]$ is augmented with two more internal variables:
$L_{c} \quad$ A mutex lock object that protects modification of the block of rows $Q_{c}$ : a section of code must acquire the lock prior to any modification. If the lock is currently being held by another task, the task wishing to acquire the lock shall wait until the lock is released.
spawned $[c]$ A boolean flag that is TRUE when a task to run ProcessingUnitTask(c) has already been spawned; it serves as a guard for not spawning two concurrent tasks operating as the same PU. Write accesses to spawned $[c]$ must exclude concurrent reads.

The "Rheinfall" algorithm is applied to a matrix by passing it as an argument to the Master procedure of Algorithm 12. The Master process kick-starts PU $P[c]$ for all $c=1, \ldots, m$ such that there is at least one row starting at column $c$; then it waits for all tasks to be finished before collecting the results.

Theorem 4.7. Algorithm 12 reduces any given input matrix $A$ to row echelon form in finite time.

Proof. As in the proof of Theorem 4.6, the validity of Lemmas 4.3 and 4.4 does not depend on the BSP model: we just need to prove that each matrix row undergoes the elimination steps in finite time.

A ProcessingUnitTask is scheduled for each non-empty block in $A$ 's block echelon form (lines 4-6 in Master of Algorithm 12). Since, by assumption, the task scheduler will eventually execute any task, every row is either selected as pivot row or modified by elimination and sent to a higher-column PU ; a recursion argument proves the thesis.

So we are left with proving that every instance of ProcessingUnitTask (c) completes in finite time. The only operations that could block ProcessingUnitTask indefinitely are the locking operations on lines 3,15 (indirectly because of line 2 in SendRow). If lock contention occurs, we prioritize contenders by stipulating that the task associated with the lowest column index $c$ wins. ${ }^{4}$ Since the number of rows processed by a PU is finite, this guarantees that eventually every PU will get a chance to acquire the lock and complete its tasks.
1.3. Sequential execution. The "Rheinfall" algorithm can also be executed sequentially. We shall not discuss this at length, as sequential execution is a degenerate case of the shared-memory algorithm, where only one task is running at a time, and the tasks scheduler strictly prioritizes tasks by ascending column index. Of course, there is no need for locking in the sequential execution model, so the locking operations can be left out.

[^15]
## 2. Applications

2.1. Computation of matrix rank. The Gaussian Elimination algorithm can be easily adapted to compute the rank of a general (unsymmetric) sparse matrix: one just needs to count the number of non-null rows of the row echelon form.

The output $[c]$ variable is modified to hold an integer number: the result shall be 1 if at least one row has been assigned to PU $P[c](u \neq \mathrm{NIL})$ and 0 otherwise.

Procedure Master performs a sum-reduce when collecting results: replace line 8 in Algorithm 11 and line 8 in Algorithm 12 with result $\leftarrow$ sum-reduce of output from $P[c]$, for $c=1, \ldots, m$.
2.2. $L U P$ factorization. We shall outline how Algorithm 11 can be modified to produce a variant of the familiar $L U P$ factorization. For the rest of this section we assume that $A$ has coefficients in a field and is square and full-rank.

It is useful to recast the Rheinfall algorithm in matrix multiplication language, to highlight the small differences with the usual LU factorization by Gaussian Elimination. Let $\Pi_{0}$ be the permutation matrix that reorders rows of $A$ so that $\Pi_{0} A$ is in block echelon form; this is where Rheinfall's PUs start their work. We can write the $k$-th elimination step as multiplication by a matrix $E_{k}$ (which is itself a product of elementary row operations matrices), and the ensuing communication step as multiplication by a permutation matrix $\Pi_{k+1}$ which rearranges the rows again into block echelon form (with the proviso that the $u$ row to be used for elimination of other rows in the block comes first). In other words, after step $k$ the matrix $A$ has been transformed to $A^{(k)}=E_{k} \Pi_{k-1} \cdots E_{0} \Pi_{0} A$.
Theorem 4.8. Given a square full-rank matrix $A$, the Rheinfall algorithm outputs a factorization $\Pi A=L U$, where:

$$
\begin{aligned}
& » U=E_{n-1} \Pi_{n-1} \cdots E_{0} \Pi_{0} A \text { is upper triangular; } \\
& » \Pi=\Pi_{n-1} \cdots \Pi_{0} \text { is a permutation matrix; } \\
& » L=\Pi_{n-1} \cdots \Pi_{1} \cdot E_{0}^{-1} \Pi_{1}^{-1} E_{1}^{-1} \cdots \Pi_{n-1}^{-1} E_{n-1}^{-1} \text { is lower unitriangular. }
\end{aligned}
$$

Proof. Clearly we have $\Pi A=L U$ with $\Pi, L, U$ as given in the statement of the theorem. By Theorem 4.5, we know that $U$ is upper triangular, so we only need to show that $L$ is lower unit triangular.

To prove that $L$ is lower unitriangular, consider the sequence of matrices recursively defined by $L_{0}=E_{0}^{-1}$ and $L_{k+1}=\Pi_{k+1} L_{k} \Pi_{k+1}^{-1} E_{k+1}^{-1}$ : we shall show by induction on $k$ that $L_{k}$ has unit diagonal and its leading $k \times k$ submatrix is lower unitriangular. The proof of this statement relies on two observations:
(1) At step $k$, Processing Unit $P[k]$ has finished processing all its rows and no new ones can arrive, so $\Pi_{k}$ fixes rows $\{0, \ldots, k-1\}$, and the leading $(k+1) \times(k+1)$ submatrix of $E_{k}$ is the identity matrix.
(2) The row used as pivot is the lowest-numbered one in a block, so $E_{k}$ (hence $E_{k}^{-1}$ ) is lower unitriangular.

The base case $k=0$ is an immediate consequence of these two assertions.
When $k>0$, by induction we have that $L_{k}$ has unit diagonal and a leading $k \times k$ lower unitriangular submatrix. Let $\pi_{k+1} \in \mathfrak{S}_{n}$ be the permutation corresponding to
the permutation matrix $\Pi_{k+1}$ : we then have $\left(\Pi_{k+1} L_{k} \Pi_{k+1}^{-1}\right)_{i, j}=\left(L_{k}\right)_{\pi_{k+1}(i), \pi_{k+1}(j)}$. In the course of elimination, rows only move towards higher-numbered PUs, so row $(k+1)$ can only have been modified by linear combination with lower-numbered rows; hence, $\left(L_{k}\right)_{k l}=0$ for $l>k$, and $\left(L_{k}\right)_{l k}=0$ for $l<k$. Thus the leading $(k+1) \times(k+1)$ submatrix of $\Pi_{k+1} L_{k} \Pi_{k+1}^{-1}$ is lower unitriangular, and the same holds for $L_{k+1}=\Pi_{k+1} L_{k} \Pi_{k+1}^{-1} \cdot E_{k+1}^{-1}$.

The $L U P$ algorithm variant works by exchanging triplets $(r, h, s)$ among PUs; every PU stores one such triple ( $u, i, l$ ), using $u$ as pivot row. Each processing unit $P[c]$ receives a triple ( $r, h, s$ ) and sends out ( $r^{\prime}, h, s^{\prime}$ ), where:
» The $r$ rows are initially the rows of $\Pi_{0} A$; they are modified by successive elimination steps as in Algorithm 11: $r^{\prime}=r-\alpha u$ with $\alpha=r[c] / u[c]$.
$» h$ is the row index at which $r$ originally appeared in $\Pi_{0} A$; it is never modified.
» The $s$ rows start out as rows of the identity matrix: $s=e_{h}$ initially. Each time an elimination step is performed on $r$, the corresponding operation is performed on the $s$ row: $s^{\prime}=s+\alpha l$.

When the last PU has terminated its job, the Master procedure collects triplets $\left(u_{c}, i_{c}, l_{c}\right)$ from PUs and constructs:
» the upper triangular matrix $U=\left(u_{c}\right)_{c=1, \ldots, n}$;
» a permutation $\pi$ of the indices, mapping the initial row index $i_{c}$ into the final index $c$ (this corresponds to the $\Pi$ permutation matrix);
» the lower triangular matrix $L$ by assembling the rows $l_{c}$ after having permuted columns according to $\pi$.

## 3. Algorithm characteristics

The "Rheinfall" parallel algorithm operates closely like the sequential Gaussian Elimination, its strength being chiefly that each processing unit can independently perform elimination on a subset of the rows. However, the processing units are (logically) completely independent processes, and it is thus quite difficult to reason about their their collective performance and provide a detailed analysis of the algorithmic complexity.

We take therefore and experimental and statistical approach. We begin by reviewing some simple cases where the complexity can be worked out in detail.
3.1. Three examples of predictable performance. (1) Worst-case performance is attained on the $n \times(n+1)$ matrix $\Lambda^{(n)}$ defined by:

$$
\Lambda_{i j}^{(n)}= \begin{cases}1 & \text { if } j=0 \text { or } j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

It is clear that $\Lambda^{(n)}$ is already in block echelon form, comprising a single block which is sent to Processing Unit $P[0]$ : elimination using the first row as pivot row produces the matrix $\Lambda^{(n-1)}$ as a result, which is then sent to $P[1]$, and so on. Thus, Rheinfall (any variant) collapses to sequential operation, and complete elimination of $\Lambda^{(n)}$ requires $n^{2} / 2$ row operations and the exchange of $O\left(n^{2}\right)$ Row messages. A different pivoting strategy can help prevent this collapse; see the discussion on "weight pivoting" in Section 3.2 below.

| 1 | 1 | 1 | 1 | 0 | 0 | $r_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 1 | 0 | 0 | 0 | $r_{1}$ |
| 5 | 0 | 0 | 1 | 0 | 1 | $r_{2}$ |
| 7 | 1 | 1 | 1 | 0 | 0 | $r_{3}$ |

Figure 4.1. A block of rows to provide examples of different pivoting strategies. Row $r_{0}$ would be the pivot row chosen by the "no pivoting" strategy and by threshold pivoting with $\gamma=1 / 2$. Row $r_{1}$ would be chosen as pivot row by the "sparsity" pivoting strategy. Row $r_{2}$ would instead be the choice done by the "weight" pivoting strategy algorithm.

Note that only about $(1 / n)$ of the entries of $\Lambda^{(n)}$ are nonzero, which proves that Rheinfall's performance does not depend on the fill percentage of the input matrix.
(2) The matrix $\bar{\Lambda}^{(n)}$ defined by $\bar{\Lambda}_{i j}^{(n)}=\Lambda_{i, n-j}^{(n)}$ (that is, we are flipping $\Lambda^{(n)}$ horizontally) is already in row echelon form: hence its processing by Rheinfall requires no row operations, and the algorithm terminates in the minimum required time. In the distributed-memory / MPI case, this could still be a significant lapse of time (the time required for the End token to travel from $P[1]$ to $P[m]$ ), but in the sharedmemory and sequential execution case this means that a single iteration over PUs concludes the processing. This suggests that an initial reordering of the matrix by columns could speed up the elimination phase; what exact criterion to use for this rearrangement in the general case is still unclear, and could be the subject of future research.
(3) Finally, transposing $\Lambda^{(n)}$ gives a matrix $V^{(n)}$ which has a very different block echelon form, consisting of a block with two lines starting at column 0 , and $n-1$ blocks with one line each. Therefore Rheinfall's processing of $V^{(n)}$ requires only $n-1$ row operations; it still collapses to sequential execution, but this time only one Row message is sent from one PU to the next one, so the total processing time is only slightly larger than the one required by $\bar{\Lambda}^{(n)}$.
3.2. Pivoting strategies. The key observation in Rheinfall is that all rows assigned to a PU start at the same column. This implies that pivoting is restricted to the rows in a block, but also that each PU may independently choose the row it shall use for elimination.

This allows most arguments about GEPP to be ported almost verbatim to "Rheinfall". The main difference with the usual column-scope partial pivoting is that different pivot rows may be used at different times: when a new row with a better pivoting entry arrives, it replaces the old one. This can lead to a sub-optimal pivot being used for the early eliminations, before the "best" pivot row settles into place. However, as it is very difficult to predict what rows will form the block $Q_{c}$ at a certain stage of the algorithm, only experiments can tell when and where this is an issue in practice.

Four different pivoting strategies have been evaluated in the sample Rheinfall implementation. Figure 4.1 provides an example of what the different strategies would select as pivot within a block of rows.
3.2.1. No pivoting. In this strategy, the first row to ever arrive to a PU $P[c]$ is used as the pivot row $u_{c}$. In the sample implementation, this is the lowest-numbered row that starts at column $c$. In the example in Figure 4.1, row $r_{0}$ would be chosen as pivot since it was the first to be inserted in the block.
3.2.2. Sparsity pivoting. At each round of elimination performed on the block $Q_{c}$, the row with less nonzero entries is chosen as pivot. Ties are resolved by choosing the row with the leading entry of smallest absolute value (if performing elimination over the integers; on floating-point entries the largest entry should be chosen to ensure numerical stability).

In the example in Figure 4.1, row $r_{1}$ would be chosen as pivot: it has the same number of entries as row $r_{2}$, but the leading coefficient is smaller in value.
3.2.3. Weight pivoting. Define the weight $W(r)$ of a matrix row $r$ by $W(r):=$ $\sum\{1 / j: r[j] \neq 0\}$. At each round of elimination, choose the row with the lowest weight as the pivot row.

This is a variant of sparsity pivoting that has been developed to avoid the slowdown caused by $\Lambda^{(n)}$-like matrices (see example (1) in Section 3.1 above). Indeed, when performing elimination on a $\Lambda^{(n)}$ matrix with weight pivoting, then the last row $\Lambda_{n, *}^{(n)}$ will be chosen as pivot row; elimination in $P[1]$ then yields a matrix having the same nonzero pattern as $\bar{\Lambda}^{(n-1)}$ (see example (2) above), which is processed very efficiently.

In the example in Figure 4.1, row $r_{2}$ would be chosen as pivot; this shows that weight-based pivoting tries to select rows whose nonzero entries are more dense in the final segment of the row.
3.2.4. Threshold pivoting. Threshold pivoting interpolates between sparsity- or weight-based pivoting and the choice of pivot row by the norm of the entry in leading position (as usual in GEPP).

Fix $\gamma \in[0,1]$ and let $Q_{c}^{+}=Q_{c} \cup\left\{u_{c}\right\}$ be the block of rows worked on by Processing Unit $P[c]$ at a certain point in time (including the current pivot row $u_{c}$ ).

If $A$ has integer entries, let $b=\min \left\{|r[c]|: r \in Q_{c}^{+}\right\}$and choose as pivot the row $r$ of minimum weight among those such that $|r[c]| \leqslant b / \gamma$.

If $A$ has floating-point entries, then let $b=\max \left\{|r[c]|: r \in Q^{+}\right\}$and choose as pivot the row $r$ that minimizes weight among those such that $|r[c]| \geqslant \gamma \cdot b$. This guarantees that elements of $L$ are bounded by $\gamma^{-1}$.

In the example in Figure 4.1, row $r_{0}$ would be chosen as pivot: it has the smallest leading entry and no other row is within a factor of 2 from it.
3.3. Complexity estimates. In order to assess the impact of the four pivoting strategies described in section 3.2 above, we have run the sample Rheinfall implementation on all matrices of the SIMC collection, counting the total number of arithmetic operations performed by the rank-computing algorithm for each matrix and pivoting strategy. Figure 4.2 shows a scatter plot of the total number of arithmetic operations performed by the rank-computing Rheinfall algorithm, versus the number of nonzero entries in any matrix of the SIMC collection; the complete data is available in Section 2. This computational experiment also showed that "Rheinfall" consistently fails on a certain percentage of the matrices in the SIMC collection, either because the entries get too large (arithmetic complexity overflow) or because of the growth of the fill-in (memory overflow); a more thorough theoretical assessment would be needed, but has not been carried out in the context of the present research.

| Pivoting Strategy | $s_{20}$ | $s_{50}$ | $s_{80}$ |
| ---: | :--- | :--- | :--- |
| No pivoting | 1.1964 | 1.3853 | 2.0780 |
| Sparsity | 1.2198 | 1.4124 | 2.0780 |
| Threshold | 1.2198 | 1.4124 | 2.0780 |
| Weight | 1.2198 | 1.4124 | 2.0780 |

Table 4.1. Slopes of lines separating a certain percentage of the plot points in Figure 4.2. The value of $s_{P}$ is such that a percentage $P$ of points in the scatter plot of Figure 4.2 lies below the line with slope $s_{P}$.

An interesting pattern emerging in Figure 4.2 is that the points are arranged into a roughly triangular shape. Let $N$ be the number of nonzero entries and $K$ be the total number of arithmetic operations performed by the rank-computing Rheinfall algorithm. The data in Table 4.1 shows that for $80 \%$ of the matrices in the SIMC collection,

$$
s_{20} \cdot \log N \leqslant \log K, \quad \log K \leqslant s_{80} \cdot \log N
$$

Hence:
» $K \leqslant c_{1} \cdot N^{2.08}$ for $80 \%$ of the SIMC matrices, and
» $K \leqslant c_{2} \cdot N^{1.42}$ for $50 \%$ of the SIMC matrices,
independently of the chosen pivoting strategy; slightly sharper bounds can be given for threshold pivoting and weight-based pivoting (the exact values are printed in Table 4.1). Of course, how much these results extend to arbitrary integer-valued sparse matrices depends on how much SIMC is a representative sample of the set of "interesting" matrices.

While not a proof of the complexity characteristics of Rheinfall, this statistics shows that Rheinfall is practically advantageous over traditional GEPP for a large number of matrices.
3.4. Numerical stability. When $\gamma=1$, threshold pivoting reduces to partial pivoting (albeit restricted to block-scope), and one can repeat the error analysis done in [24, Section 3.4.6, p. 115] almost verbatim. The main difference with the usual column-scope partial pivoting is that different pivot rows may be used at different times: when a new row with a better pivoting entry arrives, it replaces the old one. This could result in the matrix growth factor being larger than with GEPP; only numerical experiments can tell how much larger and whether this is an issue in actual practice. However, no such numerical experiments have been carried out, as this initial exploration of the Rheinfall algorithm has been driven by the needs of homology computations over $\mathbb{Q}$.

Still, the major source of instability when using the Rheinfall algorithm on matrices with floating-point entries is its sensitivity to "compare to zero": after elimination has been performed on a row, the eliminating PU must determine the new starting column (in order to forward it to the another PU). This requires scanning the initial segment of the (modified) row to determine the column where the first nonzero lies. Changes in the threshold $\epsilon>0$ under which a floating-point number is considered zero can significantly alter the final outcome of Rheinfall processing.

## 4. Sequential performance

The "Rheinfall" algorithm can of course be run on just one processor: processing units execute a single step() pass (corresponding to lines 16-28 in Algorithm 11), one after another; this continues until the last PU has switched to Done state.
4.1. Sample Implementation. A sample program has been written that implements matrix rank computation and LU factorization with the variants of Algorithm 11 described before. Source code is publicly available from http://code. google.com/p/rheinfall.

The sample code is written in object-oriented style, using the C++ programming language. Processing Units are implemented by a ProcessingUnit class, exposing a step() method which performs a single pass of the main loop in procedure ProcessingUnit (cf. lines 16-28 in Algorithm 11). A Processing Unit's "inbox" $Q_{c}$ is implemented as a list of rows. When a PU starts its step() procedure, it performs elimination on all rows in $Q_{c}$ and immediately sends the modified rows to other PUs for processing. As all PUs reside within the same OS process, communication among PUs has virtually no cost: it is implemented by simply adding a row to another PU's "inbox" $Q_{c}$.

In the sequential implementation, the main computation function consists of a loop that calls each PU's step() in turn, until all PUs have performed elimination. Since $P[c]$ can only receive rows from $P\left[c^{\prime}\right]$ if $c^{\prime}<c$, one pass is sufficient to run the complete elimination procedure on any matrix.

The main program reads a file in LinBox' SMS format [15], creates a PU for each column, and dispatches rows directly to the responsible PU; ${ }^{5}$ after that, it calls the main computation function. At the end of the computations, the total rank is computed by summing the contributions of each PU.
4.2. Integer performance. In order to get a broad picture of Rheinfall's sequential performance, the rank-computation program has been tested an all the integer matrices in the SIMC collection [15], and in particular on the $\mathcal{N}_{g, n}$ homology matrices which were the main driver for developing the "Rheinfall" algorithm. The complete data is collected in Section 3, comparing the performance of the sample Rheinfall implementation to the integer GEPP implementation provided by the free software library LinBox [14, 43]; a summary plot is shown in Figure 4.3, showing that "Rheinfall" outperforms LinBox in a large number of cases. Detailed results for the $\mathcal{M}_{g, n}$ matrices and a selection of those for other matrices are shown in Tables 4.2 and 4.3.

Results in Table 4.2 consistently show "Rheinfall" outperforms LinBox, by even a couple order of magnitudes in the case of large matrices. Instead, results in Table 4.3 show great variability: the relative speed of "Rheinfall" vs LinBox changes by orders of magnitude in one or the other direction. The performance of both algorithms varies significantly depending on the actual arrangement of nonzeroes in the matrix being processed, with no apparent correlation to simple matrix features like size, number of nonzeroes or fill percentage.

Table 4.4 shows the running time on the transposes of the test matrices. Both in LINBox's GEPP and in "Rheinfall", the computation times for a matrix and its

[^16]transpose could be as different as a few seconds versus several hours! However, the variability in Rheinfall is greater, and looks like it cannot be explained by additional arithmetic work alone; the examples discussed in Section 3.1 suggest that matrices showing large variability might have one or more minors of the form $\Lambda^{(k)}$. More investigation is needed to better understand how "Rheinfall" workload is determined by the matrix nonzero pattern.
4.3. Floating-point performance. In order to assess the "Rheinfall" performance in floating-point uses cases, the LU factorization program has been tested on a subset of the test matrices used in [26]. Results are shown in Table 4.5, comparing the Mflop/s attained by the "Rheinfall" sample implementation with the performance of SUPERLU 4.2 on the same platform.

The most likely cause for the huge gap in performance between "Rheinfall" and SuperLU lies in the strict row-orientation of "Rheinfall": SuperLU uses blocklevel operations, whereas Rheinfall only operates on rows one by one. In support of this view, let us observe that the Mflop/s rate of the Rheinfall LU factorization program is higher (sometimes approximately double) than the equivalent rate of the Rheinfall rank-computation program. This can only be explained by the fact that the LU computations require two row operations per cycle in a PU's inner loop, whereas the rank computation only performs one. However, row orientation is a defining characteristic of the "Rheinfall" algorithm (as opposed to a feature of its implementation) and cannot be circumvented. Considering also the "compare to zero" issue outlined in Section 3.4, one must conclude that "Rheinfall" is generally not suited for inexact computation.

## 5. Parallel performance and scalability: distributed-memory

The "Rheinfall" parallel algorithm operates closely like sequential Gaussian Elimination, its strength being chiefly that each processing unit can independently perform elimination on a subset of the rows, and that communication can be completely overlapped with computation (to the extent allowed by practical implementations). However, the processing units are (logically) completely independent processes, reacting to each other's messages; it is thus quite difficult to reason about their collective performance.
5.1. Sample Implementation. The sample code presented in Section 4.1 can also be compiled with MPI $[48,49]$ support to run in a distributed-memory environment.

In the distributed-memory implementation, the main computation function consists of an inner loop that calls each PU's step() in turn, until all PUs have performed one round of elimination. Incoming messages from other MPI processes are then received and dispatched to the destination PU. After that, PUs which have transitioned to End state are removed from the list (they are all concentrated in the initial segment), and another pass is made. This outer loop repeats until there are no more PUs in Running state.

Communication is effected using the MPI_Issend function: each PU maintains a list of sent messages and checks at the end of an elimination cycle which ones have been delivered and can be removed. Incoming messages are only received at the end of the main inner loop, and dispatched to the appropriate PU.

Because of the way MPI messaging works, messages cannot be addressed to a specific PU : a dedicated section in the rank-computing function (executed sequentially at the end of the outer main loop) receives messages, inspects their content to find the starting column, and then enqueues each message into the appropriate PU's "inbox" $Q_{c}$.
5.2. Workload distribution. Since there is only a limited degree of parallelism available on a single computing node, an issue arises on how to map Processing Units to actual threads in the computer. The "Rheinfall" algorithm does not impose any fixed scheme for mapping PUs to execution units. A column-cyclic distribution pattern has been currently implemented, but the code is open for modification and experimentation of different schemes.

Processing units have not been implemented as separate continuously-running threads; rather, each MPI process (rank) is assigned a number of PUs and steps each of them in turn.

Let $p$ be the number of MPI processes available, and $m$ be the total number of columns in the input matrix $A$. The input matrix is divided into vertical stripes, each comprised of $w$ adjacent columns. Stripes are assigned to MPI ranks in a cyclic fashion: MPI process $k$ (with $0 \leqslant k<p$ ) hosts the $k$-th, $(k+p)$-th, $(k+2 p)$-th, $\ldots$ stripe; in other words, it owns processing units $P[w \cdot(k+a \cdot p)+b]$ where $a=0,1, \ldots$ and $0 \leqslant b<w$.
5.3. Experimental results. In order to assess the parallel performance and scalability of the sample "Rheinfall" implementation, the rank-computation program has been run on a small set of matrices (extracted from the larger SIMC [15] collection; see Appendix D for details). The program has been run with a varying number of MPI ranks, ranging from 16 to 256 in a geometric progression of ratio 2, and different values of the stripe width parameter $w$, ranging from 1 to 4096 in a geometric progression of ratio 4 .

The plots in Figure 3.11 show that running time generally decreases with higher $w$ and larger number $p$ of MPI ranks allocated to the computation, albeit not regularly. This is particularly evident in the plot of running time versus stripe width (Figure 3.11, bottom), which shows an alternation of performance increases and decreases.

The following discussion and the examples in Section 3.1 suggest that the test matrix that perform badly have a large minor of the form $\Lambda^{(k)}$. The evidence is however not conclusive so this should be considered a working hypothesis; a more detailed investigation is needed.

The $w$ parameter influences communication in two different ways. On the one hand, there is a lower bound $m \tau_{0} / w$ on the time required to pass the EnD message from $P[0]$ to $P[m]$, where $\tau_{0}$ is the minimal time required to send an End message across the network, and we assume that communication between two PUs residing on the same compute node is instantaneous. Indeed, since the EnD message is always sent from one PU to the next one, then we only need to send one End message per stripe. This could explain why the running time is almost the same for large $p$ when $w=1$ in the good cases: the computation time decreases so much that the running time is dominated by the time taken to pass the End message along.

The plots in Figure 4.4 highlight an additional cause: when the "Rheinfall" sample implementation is run on identity $N \times N$ matrices, we know from Section 3.1 that
no elimination work is being performed, hence the total running time measures the total communication time restricted to the End messages. However, the ratio between the time spent receiving the MPI message and the time spent stepping the PUs has to be taken into account:
» for a relatively small matrix (like the $10^{4} \times 10^{4}$ identity matrix I10000), the portion of the main loop spent in PU code is small, hence run times tend to show the erratic behavior due to network jitter (this is visible in the curves for high values of $p$ and $w$ );
» using a larger matrix (like the $10^{7} \times 10^{7}$ identity matrix I10000000), the main loop still spends a significant amount of time just calling the step() method of each PU; hence, the run time decreases proportionally with the number of MPI ranks $p$ and stripe width $w$ : the larger the values of either one, the smaller the ratio of computation to communication time.

On the other hand, MPI messages are collected after every processing unit residing on a MPI rank has performed a call to its step() method and the needed elimination work; this leads to the risk that a single PU can slow down the entire MPI rank if it gets many elimination operations to perform. An empirical test has been conducted in the following way. The percentage of running time spent executing MPI calls has been collected using the mpiP tool [66]; a selection of relevant data is available in Table 4.14. The three call sites for which data is presented measure three different aspects of communication and workload balance:
» The MPI_Recv figures measure the time spent in actual row data communication (the sending part uses MPI_Issend).
» The MPI_Iprobe calls are all done after all PUs have performed one round of elimination: thus they measure the time a given MPI rank has to wait for data to arrive.
» The MPI_Barrier is only entered after all PUs residing on a given MPI rank have finished their job; it is thus a measure of workload imbalance.

Now, processing units corresponding to higher column indices naturally have more work to do, since they get the rows at the end of the elimination chain, which have accumulated fill-in. Because of the way PUs are distributed to MPI ranks, a larger $w$ means that the last MPI rank gets more PUs of the final segment: the elimination work is thus more imbalanced. This is indeed reflected in the profile data of Table 4.14: one can see that the maximum time spent in the final MPI_Barrier increases with $w$ and the number $p$ of MPI ranks, and can even become $99 \%$ of the time for some ranks when $p=256$ and $w=4096$.

Finally, a larger $w$ speeds up delivery of Row messages from $P[c]$ to $P\left[c^{\prime}\right]$ iff $\left(c^{\prime}-c\right) / w \equiv 0(\bmod p)$. Whether this is beneficial is highly dependent on the structure of the input matrix; some internal regularity of the input data may result on elimination work being concentrated on the same MPI rank, thus slowing down the whole program. Indeed, the large percentages of time spent in MPI_Iprobe for some values of $p$ and $w$ show that the matrix nonzero pattern plays a big role in determining computation and communication in Rheinfall. Static analysis of the entry distribution could help determine an assignment of PUs to MPI ranks that keeps the work more balanced.

## 6. Parallel performance and scalability: shared-memory

6.1. Sample Implementation. The sample code can also be compiled together with the Intel Threading Building Blocks (TBB) library to run on multi-core shared-memory computers.

As in the distributed-memory variant, an implementation problem to be solved is how to map Processing Units to actual threads in the computer; the solution adopted is discussed in Section 6.2 below.

In all other aspects, the shared-memory implementation closely resembles the sequential one; in particular, communication costs are negligible since passing a Row message amounts to just moving a pointer to a row object from one ProcessingUnit instance to another.
6.1.1. OpenMP. An attempt has also been made at OpenMP-based parallelization, which has distinctly different features than TBB.

In a shared-memory OpenMP setting, the sequential main loop is naïvely modified by using an OpenMP "parallel for": each thread would call the the step procedure of a segment of $w=m / p$ adjacent PUs. ${ }^{6}$ As in the sequential execution model, message delivery costs are negligible. However, $w$ caps the number of PUs that can turn to done state in a single iteration: when $P[c+w-1]$ emits the End message, $P[c+w]$ 's step has already been run by another thread. This introduces a significant delay in the processing of the End message by $P[c+w]$.

Experimental results show indeed that the delay so introduced can be quite substantial, and that the single-node OpenMP implementation is slower than the sequential one for low values of $p$, and becomes only marginally faster for higher values of $p$.

Therefore, no further mention of OpenMP will be done in the sequel.
6.2. Workload distribution. Processing units have not been implemented as separate continuously-running threads; rather, the main computation function starts a thread pool and enqueues one task to invoke each PU's step() function; it then waits for termination of those tasks and the ones spawned by them.

The sample implementation offers a "coarse grained" and "fine grained" variant: the former corresponding exactly to Algorithm 12, the latter instead uses a separate task for every elimination operation.
6.3. Experimental results. To evaluate the scalability of the "Rheinfall" algorithm in the shared-memory variant, the sample implementation has been run on the same set of matrices used for testing the MPI variant. Results for the "coarse grained" variant are reported in Table 4.7 and plotted in Figure 4.7; corresponding data for the "fine grained" variant are available in Table 4.11 and graphed in Figure 4.9.

In contrast with the distributed memory approach, communication costs are negligible and there is no issue of workload distribution in the algorithm itself: the Intel TBB scheduler is responsible for managing the task queue that is created by the

[^17]algorithm. However, the plots in Figure 4.7 show the expected scalability behavior up to a certain number of threads (variable with the actual matrix), and then the performance stabilizes (in the good cases GL7d24 and IG5-18) or deteriorates (in the case of the $\mathcal{M}_{g, n}$ homology matrices M0,6-D8, M0,6-D9 and M0,6-D10). The outlook for the "fine grained" case is qualitatively similar, but the run times are higher and scalability issues are even more relevant. This seems to indicate that the actual computation time in the tasks is too small compared to the thread scheduling overhead by TBB.

To test this hypothesis, we run the same rank-computing program on a set of identity square matrices, with size ranging from $10^{4}$ to $10^{7}$; the run times are given in Tables 4.9 and 4.13, and graphed in the IV quadrant of Figures 4.7 and 4.9. By the discussion in Section 3.1, we know that "Rheinfall" performs no operations in the case of a matrix which is already in row echelon form, hence the processing time is entirely due to the thread scheduling; there is also no lock contention issue, since there is no row movement. The plots show indeed that the performance is irregular on the identity matrix, and that run time becomes larger as the number of available threads increases. This again suggests that the number of threads should be balanced with respect to the elimination work that has to be done; predicting this "break even point", however, looks like a non-trivial specific challenge and might constitute the subject of future research.

One enhancement that could help the performance goal is the introduction of a more flexible priority system in the Intel TBB library. As of this writing, TBB 4.0 only allows threads to be assigned priorities drawn from a limited discrete set (high-, normal- or low-priority tasks), whereas tasks generated by the "Rheinfall" algorithm naturally have an integer-based priority: tasks generated by rows of lower index should run before tasks generated by higher-numbered ones, in order to streamline the data flow. ${ }^{7}$

## 7. Conclusions and future work

The "Rheinfall" algorithm is basically a different way of arranging the operations of classical Gaussian Elimination, with a naturally parallel and distributed-memory formulation. It retains some important features from the sequential Gaussian Elimination; namely, it can be applied to general sparse matrices, and is independent of matrix entry type. Pivoting can be done in Rheinfall with strategies similar to those used for GEPP; however, Rheinfall is not equally suited for exact and inexact arithmetic.

Poor performance when compared to state-of-the-art algorithms and some inherent instability due to the dependency on detection of nonzero entries suggest that "Rheinfall" is not a convenient alternative for floating-point computations.

For exact arithmetic (e.g., integers), the situation is quite the opposite: up to our knowledge, "Rheinfall" could be the first practical distributed-memory Gaussian Elimination algorithm meeting the requirements of [16]. In addition, it is competitive with existing implementations also when running sequentially.

An open question, especially when comparing "Rheinfall" with other Gaussian Elimination implementations, concerns the growth of matrix entries: a more thorough analysis is needed to assess the limitations of "Rheinfall" in this respect.

[^18]The distributed-memory formulation of "Rheinfall" can easily be mapped on the MPI model for parallel computations. An issue arises on how to map Rheinfall's Processing Units to actual MPI execution units; the simple column-cyclic distribution discussed in this paper was found experimentally to have poor workload balance. Since the workload distribution and the communication graph are both determined by the matrix nonzero pattern, a promising future direction could be to investigate the use of graph-based partitioning to determine the distribution of PUs to MPI ranks.

As is often the case with practical implementations, there is still room for optimizing and speeding up the code used for experiments: the current implementation focused on ease of extensibility and re-use of standard C++ library features, but this came at the expense of some performance.

At any rate, the discussion and computational experiments show that "Rheinfall" completely met its goal of being a faster rank-computation algorithm for Stage III of the graph homology computations on the moduli space of smooth pointed Riemann surfaces.


Figure 4.2. Scatter plot of the total number of arithmetic operations performed in elimination ( $y$-axis) vs. number of nonzero entries in a matrix ( $x$ axis). The small plot on the right shows the percentage ( $x$-axis) of points in the plot lying under the line of a given slope ( $y$-axis). The three oblique dotted lines mark the slopes such that $20 \%, 50 \%$, and $80 \%$ of the SIMC matrices lie below the line. (Matrices on which "Rheinfall" failed are considered to take infinite time.)

| Matrix | Rows | Columns | Nonzero | Rheinfall | LinBox |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M0,3-D2 | 3 | 4 | 6 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M0,4-D3 | 20 | 99 | 156 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M0,4-D4 | 99 | 144 | 420 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M0,4-D5 | 144 | 64 | 264 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M0,5-D4 | 210 | 2112 | 3720 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M0,5-D5 | 2112 | 7260 | 23280 | 0.004 | 0.050 |
| M0,5-D6 | 7260 | 11280 | 50760 | 0.032 | 0.640 |
| M0,5-D7 | 11280 | 8160 | 46560 | 0.040 | 1.030 |
| M0,5-D8 | 8160 | 2240 | 15360 | 0.007 | 0.130 |
| M0,6-D5 | 3024 | 49800 | 95760 | 0.005 | 0.160 |
| M0,6-D6 | 49800 | 294480 | 1020240 | 0.321 | 57.200 |
| M0,6-D7 | 294480 | 862290 | 4162320 | 5.285 | 4362.610 |
| M0,6-D8 | 862290 | 1395840 | 8498160 | 53.787 | 40709.120 |
| M0,6-D9 | 1395840 | 1274688 | 9286560 | 71.050 | 94797.670 |
| M0,6-D10 | 1274688 | 616320 | 5201280 | 99.694 | 38086.330 |
| M0,6-D11 | 616320 | 122880 | 1175040 | 2.312 | 1144.300 |
| M1,2-D3 | 3 | 10 | 10 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M1,2-D4 | 10 | 15 | 14 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M1,2-D5 | 15 | 9 | 16 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M1,3-D4 | 54 | 408 | 732 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M1,3-D5 | 408 | 1112 | 3720 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M1,3-D6 | 1112 | 1440 | 6636 | 0.003 | 0.010 |
| M1,3-D7 | 1440 | 918 | 5166 | 0.002 | 0.010 |
| M1,3-D8 | 918 | 236 | 1500 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M1,4-D5 | 1008 | 13000 | 28464 | 0.002 | 0.030 |
| M1,4-D6 | 13000 | 63756 | 245808 | 0.078 | 3.530 |
| M1,4-D7 | 63756 | 160128 | 841872 | 1.599 | 176.500 |
| M1,4-D8 | 160128 | 227564 | 1482996 | 40.169 | 2125.450 |
| M1,4-D9 | 227564 | 185760 | 1427700 | 61.862 | 2758.020 |
| M1,4-D10 | 185760 | 81504 | 716352 | 6.818 | 656.350 |
| M1,4-D11 | 81504 | 14944 | 146832 | 0.097 | 11.610 |
| M2,1-D4 | 3 | 20 | 22 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M2,1-D5 | 20 | 39 | 122 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M2,1-D6 | 39 | 43 | 179 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M2,1-D7 | 43 | 28 | 136 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M2,1-D8 | 28 | 9 | 40 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M2,2-D5 | 97 | 1057 | 2451 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| M2,2-D6 | 1057 | 4519 | 18573 | 0.012 | 0.040 |
| M2,2-D7 | 4519 | 10077 | 56090 | 0.407 | 0.500 |
| M2,2-D8 | 10077 | 12927 | 88343 | 2.880 | 2.230 |
| M2,2-D9 | 12927 | 9681 | 77218 | 1.116 | 2.230 |
| M2,2-D10 | 9681 | 3983 | 35738 | 0.059 | 0.540 |
| M2,2-D11 | 3983 | 713 | 6888 | 0.003 | 0.030 |

Table 4.2. CPU times (in seconds) for computing the matrix rank of the $\mathcal{M}_{g, n}$ homology matrices. The "Rheinfall" column reports times for the sample C++ implementation. The "LinBox" column reports times for the GEPP implementation in LinBox version 1.1.7. Results were obtained on the UZH cluster "idhydra", featuring 48 Intel Xeon CPUs X7542 @ 2.67 GHz , running 64 -bit SuSE Linux Enterprise Server 11; both programs were compiled with GCC 4.3.4 with options -02 -march=native.


Figure 4.3. Scatter plot of the running time of the sequential Rheinfall variant and the three different rank-computation algorithms implemented in LinBox. The $y$-axis reports run time in seconds (log-scale); the $x$-axis (log-scale) shows the number of nonzero entries in each matrix.

| Matrix | Rows | Columns | Nonzero | Fill\% | Rheinfall | LinBox |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| olivermatrix.2 | 78661 | 737004 | 1494559 | 0.0026 | $\mathbf{2 . 6 8}$ | 115.76 |
| Trec14 | 3159 | 15905 | 2872265 | 5.7166 | $\mathbf{1 1 6 . 8 6}$ | 136.56 |
| GL7d24 | 21074 | 105054 | 593892 | 0.0268 | 95.42 | $\mathbf{6 1 . 1 4}$ |
| IG5-18 | 47894 | 41550 | 1790490 | 0.0900 | 1322.63 | $\mathbf{4 5 . 9 5}$ |

Table 4.3. CPU times (in seconds) for computing the matrix rank of selected integer matrices. The "Rheinfall" column reports times for the sample C++ implementation. The "LinBox" column reports times for the GEPP implementation in LinBox version 1.1.7. This is an extract from the table in Section 3, which see for the test setting and the characteristics of the hardware were it was run.

| Matrix | Rheinfall $(T)$ | Rheinfall | LinBox $(T)$ | LinBox |
| :--- | ---: | ---: | ---: | ---: |
| M0,6-D8 | No mem. | $\mathbf{2 3 . 8 1}$ | 50479.54 | 36180.55 |
| M0,6-D10 | $\mathbf{3 7 . 6 1}$ | 23378.86 | 26191.36 | 13879.62 |
| olivermatrix.2 | $\mathbf{0 . 7 2}$ | 2.68 | 833.49 | 115.76 |
| Trec14 | No mem. | 116.86 | $\mathbf{4 3 . 8 5}$ | 136.56 |
| GL7d24 | $\mathbf{4 . 8 1}$ | 95.42 | 108.63 | 61.14 |
| IG5-18 | 12303.41 | 1322.63 | 787.05 | $\mathbf{4 5 . 9 5}$ |

Table 4.4. CPU times (in seconds) for computing the matrix rank of selected integer matrices and their transposes; the table compares running times of the Rheinfall/C ++ and GEPP LinBox 1.1.7 codes. The columns marked with ( $T$ ) report CPU times used for the transposed matrix; boldface font marks the fastest execution on each table row. Computation of the transposes of matrices "M0,6-D8" and "Trec14" exceeded the available 24 GB of RAM. Hardware, compilation flags and running conditions as in Section 3.

| Matrix | $N$ | nonzero | fill\% | Rheinfall | SuperLU |
| :--- | ---: | ---: | ---: | :--- | ---: |
| bbmat | 38744 | 1771722 | 0.118 | 83.37 | $\mathbf{1 7 5 6 . 8 4}$ |
| g7jac200sc | 59310 | 837936 | 0.023 | 87.69 | $\mathbf{1 7 2 2 . 2 8}$ |
| lhr71c | 70304 | 1528092 | 0.030 | No mem. | $\mathbf{9 2 6 . 3 4}$ |
| mark3jac140sc | 64089 | 399735 | 0.009 | 92.67 | $\mathbf{1 4 5 9 . 3 9}$ |
| torso1 | 116158 | 8516500 | 0.063 | 97.01 | $\mathbf{1 8 9 4 . 1 9}$ |
| twotone | 120750 | 1224224 | 0.008 | 91.62 | $\mathbf{1 1 5 5 . 5 3}$ |

[^19]| Threads |  | Run time (s) |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | GL7d24 | IG5-18 | M0,6-D8 | M0,6-D9 | M0,6-D10 | M0,6-D11 |
| 1 | 83.407 | 755.613 | 23.580 | 43.585 | 38.964 | 1.360 |
| 2 | 50.399 | 423.672 | 19.767 | 36.105 | 34.182 | 0.923 |
| 3 | 35.431 | 301.947 | 15.146 | 28.434 | 25.168 | 0.831 |
| 4 | 25.573 | 242.840 | 12.129 | 23.588 | 22.568 | 0.629 |
| 6 | 17.081 | 167.310 | 8.323 | 17.713 | 19.249 | 0.329 |
| 8 | 12.147 | 135.343 | 9.840 | 20.978 | 24.715 | 1.064 |
| 12 | 9.402 | 185.682 | 25.686 | 51.051 | 63.390 | 2.185 |
| 16 | 8.950 | 136.516 | 20.273 | 46.687 | 54.476 | 1.997 |
| 24 | 9.006 | 150.430 | 23.403 | 87.307 | 63.764 | 0.387 |

Table 4.7. Performance data relative to the sample implementation of "Rheinfall" in the shared-memory "coarse grained" variant on the set of SIMC test matrices.

| Threads | Run time (s) |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  | I10000 | I100000 | I1000000 | I10000000 |
| 1 | 0.004 | 0.053 | 0.635 | 6.608 |
| 2 | 0.003 | 0.027 | 0.275 | 2.837 |
| 3 | 0.002 | 0.022 | 0.222 | 2.295 |
| 4 | 0.002 | 0.019 | 0.195 | 1.944 |
| 6 | 0.002 | 0.017 | 0.169 | 1.686 |
| 8 | 0.002 | 0.089 | 0.828 | 8.437 |
| 12 | 0.011 | 0.131 | 1.974 | 19.243 |
| 16 | 0.015 | 0.149 | 1.208 | 14.660 |
| 24 | 0.021 | 0.153 | 1.507 | 13.352 |

Table 4.9. Performance data relative to the sample implementation of "Rheinfall" in the shared-memory "coarse grained" variant on a set of identity matrices of varying size.


Figure 4.4. Running time (in seconds, $y$-axis) of the sample implementation of "Rheinfall" in the distributed-memory variant on identity square matrices of size $10^{4}$ (top row) and $10^{7}$ (bottom row), plotted by number of MPI ranks (left column) or stripe width (right column). Since no elimination work is performed, this measures the performance of the underlying MPI messaging system.


Figure 4.5. Plot of the running time (in seconds, $y$-axis) of the sample "Rheinfall" distributed-memory implementation on three different matrices, versus the number $p$ of MPI ranks ( $x$-axis); colored lines show different values of the stripe width $w$. The three example matrices are (top to bottom): GL7d24 (SIMC group GL7), M0,6-D8 (group Mgn), Trec14 (group Kocay).


Figure 4.6. Plot of the running time (in seconds, $y$-axis) of the sample "Rheinfall" distributed-memory implementation on three different matrices, versus the stripe width $w$ ( $x$-axis); colored lines show different numbers of MPI ranks $p$. The three example matrices are (top to bottom): GL7d24 (SIMC group GL7), M0,6-D8 (group Mgn), Trec14 (group Kocay).


Figure 4.7. Scalability and performance of the sample implementation of "Rheinfall" in the shared-memory "coarse grained" variant.


Figure 4.8. Performance of the sample implementation of "Rheinfall" in the shared-memory "coarse grained" variant on identity matrices of different sizes. Since no elimination work is performed, this measures the latency and overhead of the underlying TBB library.


Figure 4.9. Scalability and performance of the sample implementation of "Rheinfall" in the shared-memory "fine grained" variant.

| Threads | Run time (s) |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | GL7d24 | IG5-18 | M0,6-D8 | M0,6-D9 | M0,6-D10 | M0,6-D11 |
| 1 | 115.572 | 1066.811 | 62.853 | 77.806 | 58.368 | 2.356 |
| 2 | 54.679 | 560.156 | 38.464 | 54.786 | 36.809 | 1.510 |
| 3 | 39.108 | 349.644 | 26.998 | 39.920 | 29.704 | 1.176 |
| 4 | 31.246 | 247.078 | 20.882 | 32.030 | 24.215 | 0.954 |
| 6 | 15.981 | 299.733 | 56.861 | 110.688 | 68.791 | 0.184 |
| 8 | 12.758 | No data | 15.740 | 30.705 | 24.962 | 1.244 |
| 12 | 12.103 | 214.365 | 23.690 | 54.310 | 60.609 | 3.324 |
| 16 | 8.780 | 236.029 | 30.979 | 76.448 | 69.706 | 5.081 |
| 24 | 10.476 | 251.333 | 31.115 | 99.841 | 65.100 | 2.532 |

Table 4.11. Performance data relative to the sample implementation of "Rheinfall" in the shared-memory "fine grained" variant on the set of SIMC test matrices.

| Threads | Run time (s) |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  | I10000 | I100000 | I1000000 | I100000000 |
| 1 | 0.005 | 0.064 | 0.734 | 7.614 |
| 2 | 0.002 | 0.016 | 0.161 | 1.720 |
| 3 | 0.001 | 0.013 | 0.134 | 1.398 |
| 4 | 0.001 | 0.012 | 0.250 | 1.262 |
| 6 | 0.001 | 0.010 | 0.103 | 1.058 |
| 8 | 0.002 | 0.014 | 0.107 | 1.085 |
| 12 | 0.001 | 0.020 | 0.103 | 0.965 |
| 16 | 0.016 | 0.092 | 1.561 | 4.912 |
| 24 | 0.004 | 0.032 | 2.249 | 18.715 |

Table 4.13. Performance data relative to the sample implementation of "Rheinfall" in the shared-memory "fine grained" variant on a set of identity matrices of varying size.


Figure 4.10. Performance of the sample implementation of "Rheinfall" in the shared-memory "fine grained" variant on identity matrices of different sizes. Since no elimination work is performed, this measures the latency and overhead of the underlying TBB library.


Table 4.14. Percentage of running time spent in MPI communication for the sample Rheinfall/C implementation on the matrices $\mathrm{M} 0,6-\mathrm{D} k$, with varying number of MPI ranks and stripe width parameter $w$. Columns MPI_Recv, MPI_Iprobe and MPI_Barrier report on the percentage of MPI time spent spent servicing these calls; in these cases, the minimum is always very close to zero, hence it is omitted from the table. Tests were executed on the UZH cluster "Schroedinger"; see Table 4.3 for hardware details. The MPI layer was provided by OpenMPI version 1.4.3, using the TCP/IP transport.

## APPENDIX A

## Pseudo-code notation

Blocks of code are marked by indentation (rather than delimited by specific keywords).

The 'def' keyword is used to mark the beginning of a function definition.
The notation 'for $x$ in $S$ ' is used to loop over all the items $x$ in a set or sequence $S$; sometimes the notation 'for x in $a, \ldots, b$ ' is used instead. The form 'for $i, x$ in enumerate $(S)$ ' is used for keeping track of the iteration number when looping over the elements of $S$ : as $x$ runs over the items in $S, i$ orderly takes the values $0,1, \ldots$, up to $|S|-1$.

## 1. Basic types

Numbers and basic data structures (arrays, lists, sets; see below) are considered basic types, together with the logical constants True and False, and the special value None.

## 2. Objects

The word "object" is used to denote a kind of aggregate type: an object is a tuple ' $\left(a_{1}, a_{2}, \ldots, a_{N}\right)$ ', where each of the slots $a_{i}$ can be independently assigned a value; the values assigned to different $a_{i}$ 's need not be of the same type. We write $X . a_{i} \leftarrow b$ to mean that the slot $a_{i}$ of object $X$ is assigned the value $b$. Unless otherwise noted, object slots are mutable, i.e., they can be assigned different values over the course of time.

An objects' class is the tuple ' $\left(a_{1}, \ldots, a_{N}\right)$ ' of slots names that defines the object; the actual tuple of values is called an instance. ${ }^{1}$

## 3. Arrays, lists, sets

A few types of basic data structures are used in the code: arrays, lists and sets. They are distinguished only for clarity, and we make no assumption that these are primitive: for instance, each of these data structures could be implemented on top of the "list" type defined here.

An "array" is a fixed-size collection of elements of the same type; the number and type of elements stored in an array will be stated when the array is first created.

[^20]Items in an array can be accessed by position: if $a$ is an array, then its $k$-th element will be accessed as $a[k]$. Array elements can be mutated; we write $a[k] \leftarrow b$ to mean that object $b$ is stored into the $k$-th place of array $a$.

A "list" is a variable-size collection of objects. Two features distinguish lists from arrays: (1) lists can grow and shrink in size, and (2) lists can store items of different types. If $l$ is a list with $n$ elements, the notation $l$.append $(x)$ will be used to mean that $x$ should be added as $(n+1)$-th item in list $l$. Again, the square bracket notation $l[k]$ is used to denote the value stored in the $k$-th place in $l$, and $l[k] \leftarrow x$ means that the $k$-th slot of $l$ is mutated to the value $x$. The operator "+" stands for concatenation when applied to lists.

A "set" is a mutable unordered collection of objects of the same type. The only relevant difference with sets in the mathematical sense of the word is that set variables are mutable: if $s$ is a set, then $s$ add $(x)$ will be used to specify that $s$ should be mutated into the set $s \cup\{x\}$. No duplicates are admitted: if $x \in s$ and $x=y$, then $s \cdot a d d(y)$ does not alter $s$ in any way.

The word "sequence" will be used to denote any one of the above three. When $S$ is a sequence, we define $\operatorname{size}(S)$ as the number of elements in $S$; if $S$ is a list or array object, valid indices into $S$ range from 0 to $\operatorname{size}(S)-1$.
3.1. List comprehensions. A special syntax is used to form a list when its items can be gotten by applying a function or operation to the elements of another sequence.

The notation ' $L \leftarrow[f(x) \text { for } x \text { in } S]^{\prime}$ ' makes $L$ into the list formed by evaluating function $f$ on each element in $S$, analogously to the usual notation $\{f(x): x \in S\}$ for sets.

As an extension, the expression ' $L \leftarrow[f(x)$ for $x$ in $S$ if $P(x)]$ ' makes $L$ into the list of values of $f$ over the set $S^{\prime}$ of elements of $S$ for which the predicate $P(x)$ is true: $S^{\prime}=\{x: x \in S \wedge P(x)\}$.

## 4. Operators

The "\%" operator is used to take the remainder of integer division: for integers $k$ and $n>0$, the expression $(k \% n)$ evaluates to the smallest non-negative residue of $k \bmod n$.

The "+" operator normally denotes addition when applied to numbers, and concatenation when applied to lists.

Any other operator keeps it usual mathematical meaning.

## APPENDIX B

## Comparison of fatgraph generation methods

This section compares three different approaches to generating trivalent fatgraphs: namely, we compare the MgnTrivalentGraphs algorithm described in Section 3.1.3 with two alternatives. ${ }^{1}$ Table B. 1 presents a summary of results.

None of the suggested algorithms is capable of directly producing an isomorphfree set of distinct fatgraphs; they all produce a larger set of fatgraphs that must be reduced by taking only one representative per isomorphism class of fatgraphs. Therefore, Table B. 1 also reports the actual number of distinct fatgraphs for a given $g, n$ pair; not all counts are known: a cell is left empty when the corresponding count has not yet been computed. From the results gathered so far, it is apparent that all algorithms overestimate the actual number of fatgraphs.

| $g$ | $n$ | $N$ | $N_{1}^{+}$ | $N_{2}^{+}$ | $N_{3}$ |
| :--- | :--- | ---: | ---: | ---: | ---: |
| 0 | 3 | 2 | - | 15 | 5760 |
| 0 | 4 | 6 | 84 | 630 | $1.072964 \times 10^{13}$ |
| 0 | 5 | 26 | 936 | 15015 | $4.593811 \times 10^{24}$ |
| 0 | 6 | 191 | 8892 | 306306 | $6.326929 \times 10^{37}$ |
| 0 | 7 |  | 114600 | 5819814 | $1.132261 \times 10^{52}$ |
| 1 | 1 | 1 | - | 15 | 5760 |
| 1 | 2 | 5 | 114 | 630 | $1.072964 \times 10^{13}$ |
| 1 | 3 | 46 | 1644 | 15015 | $4.593811 \times 10^{24}$ |
| 1 | 4 | 669 | 24156 | 306306 | $6.326929 \times 10^{37}$ |
| 1 | 5 |  | 511416 | 5819814 | $1.132261 \times 10^{52}$ |
| 2 | 1 | 9 | 6336 | 15015 | $4.593811 \times 10^{24}$ |
| 2 | 2 | 368 | 17982 | 306306 | $6.326929 \times 10^{37}$ |
| 2 | 3 |  | 606144 | 5819814 | $1.132261 \times 10^{52}$ |
| 3 | 1 |  | $1065718368^{\dagger}$ | 5819814 | $1.132261 \times 10^{52}$ |

Table B.1. Number of (non-unique) trivalent fatgraphs generated according to different algorithms. The $N$ column reports the actual number of distinct fatgraphs for the given $g, n$; empty cells mean the corresponding number has not been computed. The $N_{1}^{+}$column lists upper bounds for the recursive generation algorithm MgnTrivalentGraphs (see Listing 7); values marked with the " $\dagger$ " symbol are estimated using earlier values of $N_{1}^{+}$because the corresponding values of $N$ are not available. The $N_{2}^{+}$values bound from above the number of fatgraphs generated by grafting binary trees into clovers. Finally, $N_{3}$ is the count of fatgraphs generated by enumerating pairs of permutations (as per combinatorial definition of fatgraph).

[^21]In what follows, let $N(g, n):=\left|\mathcal{R}_{g, n}\right|$ be the number of distinct $(g, n)$-fatgraphs; also define:

$$
\begin{aligned}
\xi(g, n) & :=2 g+n \\
m_{\max }(g, n) & :=6 g+3 n-6=3 \xi-6 \\
m_{\min }(g, n) & :=2 g+n-1=\xi-1
\end{aligned}
$$

It is trivial to check that $m_{\max }$ and $m_{\text {min }}$ are the maximum and minimum number of edges that a $(g, n)$-fatgraph can have.

## 1. Generation by recursive edge addition

The algorithm MgnTrivalentGraphs described in Section 3.1.3 produces a $(g, n)$ fatgraph by adding an edge to fatgraphs with lower $(g, n)$; the procedure can then be applied recursively.

Let $N_{1}(g, n)$ be the number of (non distinct) fatgraphs returned by function MgnTrivalentGraphs $(g, n)$. According to Section 3.1.3, this can be written as:

$$
N_{1}(g, n)=N_{1, A}(g, n)+N_{1, B}(g, n)+N_{1, C}(g, n)
$$

where $N_{1, A}, N_{1, B}, N_{1, C}$ are the numbers of fatgraphs constructed in cases $A$ ), B), $C^{\prime}$ ) of Algorithm 7.

In case $A$ ), we have 1 generated $(g, n)$-fatgraph per each pair formed by a $(g, n-1)$ fatgraph and one of its oriented edges, modulo the action of the automorphism group $\operatorname{Aut}(G)$. However, we do not know how to estimate the number of orbits of this $\operatorname{Aut}(G)$-action. Since the generic fatgraph only has one automorphism, an upper bound can instead be given by considering all pairs formed by a fatgraph and an oriented edge:

$$
N_{1, A}(g, n) \leqslant N_{1, A}^{+}(g, n):=2 \cdot m_{\max }(g, n-1) \cdot N(g, n-1)
$$

In case $B$ ), the algorithm generates one $(g, n)$-fatgraph per each triplet formed by a $(g, n-1)$-fatgraph and two oriented edges, not necessarily distinct (modulo the action of Aut $G$ ); a similar remark about the upper bound applies:

$$
N_{1, B}(g, n) \leqslant N_{1, B}^{+}(g, n):=\left(2 \cdot m_{\max }(g, n-1)\right)^{2} \cdot N(g, n-1)
$$

In case $C^{\prime}$ ), the computation is exactly the same, except we apply the $q$ construction to fatgraphs belonging in $\mathcal{R}_{g-1, n+1}$ :

$$
N_{1, C}(g, n) \leqslant N_{1, C}^{+}(g, n):=4 \cdot m_{\max }(g-1, n+1)^{2} \cdot N(g-1, n+1)
$$

Table B. 1 shows the upper bound given by:

$$
N_{1}^{+}(g, n):=N_{1, A}^{+}(g, n)+N_{1, B}^{+}(g, n)+N_{1, C}^{+}(g, n)
$$

According to Table B.1, the MgnTrivalentGraphs algorithm outperforms the alternative procedures when $2 g+n<7$, and apparently generates a much larger set of fatgraphs when $2 g+n>7$. However, the values were obtained using $N_{1}^{+}(g, n)$ instead of $N(g, n)$ in recursive computations when the actual value of $N(g, n)$ is not known; therefore $N_{1}^{+}(g, n)$ might grossly overestimate the number of graphs considered by MgnTrivalentGraphs for $2 g+n>6$. Further investigation is needed to ascertain whether this is due to the algorithm of Section 2 being asymptotically faster, or to the estimate for $N_{1}(g, n)$ being grossly imprecise when no data about
the real number of trivalent fatgraphs in the recursion step is known. However, the author conjectures that this estimate holds:

$$
\begin{equation*}
N_{1}(g, n) \leqslant O\left(\xi^{3}\right) \cdot N(g, n) \tag{1.1}
\end{equation*}
$$

## 2. Generation by insertion of binary trees

A different approach is the following:
» Generate all distinct $(g, n)$-fatgraphs with 1 vertex; each such fatgraph has $m_{\min }(g, n)$ edges, hence the vertex has valence $2 \cdot m_{\min }(g, n)$.
» Given any such fatgraph $G_{0}$, build a trivalent $(g, n)$-fatgraph $G$ by replacing the vertex with a full binary tree on $2 \cdot m_{\min }(g, n)$ leaves.

Call a fatgraph with only one vertex a clover. Let $N_{2}^{\prime}(g, n)$ be the number of distinct ( $g, n$ )-clovers; we can estimate it as follows.
Lemma B.1. The number of isomorphic clovers is equal to the number of orbits of the adjoint action of $(12 \ldots 2 m)$ over the set of self-conjugate permutations $\left\{\sigma_{1} \in\right.$ $\left.\mathfrak{S}_{2 m}: \sigma_{1}^{2}=\mathrm{id}\right\}$.

Proof. Let $G_{0}=\left(L ; \sigma_{0}, \sigma_{1}, \sigma_{2}\right)$ be a $(g, n)$-fatgraph given in combinatorial form, where $L=\{1, \ldots, 2 m\}$ and $\sigma_{i} \in \mathfrak{S}_{m}$. If $G_{0}$ is a clover, then $\sigma_{0}$ is a permutation formed by just one cycle; without loss of generality we may assume $\sigma_{0}$ is the rotation $(12 \ldots 2 m)$. Let $G_{0}^{\prime}=\left(L ; \sigma_{0}^{\prime}, \sigma_{1}^{\prime}, \sigma_{2}\right)$ be another $(g, n)$-clover: by the same reasoning we have $\sigma_{0}^{\prime}=\sigma_{0}=(12 \ldots m)$; if $f: G_{0} \rightarrow G_{0}^{\prime}$ is an isomorphism, then $f$ commutes with $\sigma_{0}$ hence $f=\sigma_{0}^{j}$ for some $j \mid 2 m$. Therefore, from $\sigma_{1} \circ f=f \circ \sigma_{1}^{\prime}$ we get $\sigma_{1}^{\prime}=\sigma_{0}^{-j} \circ \sigma_{1} \circ \sigma_{0}^{j}$. This proves the claim.

Lemma B.2. Let $L$ be a finite set of $l=p \cdot q$ elements. The number of permutations of $L$ which can be expressed as product of $q$ disjoint p-cycles is:

$$
\begin{equation*}
C(p, q)=\prod_{i=1}^{q} \prod_{j=1}^{p-1}(p i-j) \tag{2.1}
\end{equation*}
$$

Proof. Without loss of generality we can assume $L=\{1, \ldots, p q\}$; let $\tau \in \mathfrak{S}_{p q}$ be a permutation composed of $q$ disjoint $p$-cycles. We can give a "canonical" form to $\tau$ if we order its cycles by stipulating that:

$$
\begin{aligned}
& » \text { a cycle }\left(a_{1} a_{2} \ldots a_{p}\right) \text { is always written such that } a_{1}=\min a_{i} ; \\
& »\left(a_{1} a_{2} \ldots a_{p}\right) \text { precedes }\left(b_{1} b_{2} \ldots b_{p}\right) \text { iff } \min a_{i}<\min b_{i} .
\end{aligned}
$$

Now assume $\tau$ is written in this canonical form; then $a_{1}=1$ and we have $p q-1$ choices for the element $a_{2}=\tau\left(a_{1}\right)$ following $a_{1}$ in the cycle, $p q-2$ choice for the next element $a_{3}=\tau\left(a_{2}\right)$, and so on until the final element $a_{p}$ of the first cycle. Then starting element $a_{p+1}$ of the second cycle has to be the minimum element of $L \backslash\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$, but we have $(p-1) q-1$ choices for $a_{p+2}=\tau\left(a_{p+1}\right)$ : an iterative argument proves the assertion.
Lemma B.3. The number of distinct self-conjugate permutations on a set of $l$ elements is given by $(l-1)!!:=(l-1) \cdot(l-3) \cdot \ldots \cdot 1$.

Proof. A self-conjugate permutation $\tau$ on a set $L$ of $l=2 m$ elements is the product of $m$ disjoint 2-cycles, and the the result follows from Lemma B.2.

Combining Lemma B. 1 and B.3, we immediately get the following estimate:

$$
\frac{(2 m-1)!!}{2 m} \leqslant N_{2}^{\prime}(g, n) \leqslant(2 m-1)!!, \quad m=m_{\min }(g, n)
$$

where the upper bound comes from assuming that no two clovers can be transformed one into the other by a rotation, and the lower bound comes from considering all clovers as part of the same equivalence class.

In order to create a trivalent fatgraph from a clover, we replace the vertex with a full binary tree with $l=2 m$ leaves; equivalently, we identify the leaves of the tree according to the same "gluing pattern" that identifies half-edges in the clover.

More precisely, let $G_{0}=\left(L ; \sigma_{0}, \sigma_{1}, \sigma_{2}\right)$ be a clover, with $L=\{1, \ldots, 2 m\}$ and $\sigma_{0}=(12 \ldots 2 m)$ as above. Let $L^{\prime}$ be set of leaves of a chosen binary tree $T$ and $f: L^{\prime} \rightarrow L$ a bijection. Now $\tau:=f^{-1} \circ \sigma_{1} \circ f$ is a fixed-point free involution on $L^{\prime}$ : by identifying leaves of $T$ according to $\tau$, we get a trivalent fatgraph $G$, which we say is obtained by plugging $T$ into $G_{0}$ (by means of $f$ ).

Given a permutation $\phi^{\prime}$ on $L^{\prime}$, the map $f^{\prime}=f \circ \phi^{\prime}$ is a bijection and we have:

$$
\tau^{\prime}=f^{\prime-1} \circ \sigma_{1} \circ f^{\prime}=\phi^{\prime-1} \circ\left(f^{-1} \circ \sigma_{1} \circ f\right) \circ \phi^{\prime}=\phi^{\prime-1} \circ \tau \circ \phi^{\prime},
$$

which is an involution on $L^{\prime}$ conjugate to $\tau$. Conversely, if $\sigma_{1}^{\prime}=\phi^{-1} \circ \sigma_{1} \circ \phi$ is conjugate to $\sigma_{1}$, then $f^{\prime}=\phi \circ f: L^{\prime} \rightarrow L$ is again a bijection, hence:

$$
f^{-1} \circ \sigma_{1}^{\prime} \circ f=\left(f^{-1} \circ \phi^{-1}\right) \circ \sigma_{1} \circ(\phi \circ f)=f^{\prime-1} \circ \sigma_{1} \circ f^{\prime}
$$

which is the involution defining the attachment map of $T$ to $G_{0}$ by means of $f^{\prime}$. Since any two involutions are conjugate, we can fix the map $f$ once and for all binary trees with the same number of leaves, and only let the involution $\sigma_{1}$ (i.e., the clover $G_{0}$ ) vary.

Therefore $N_{2}(g, n)=N_{2}^{\prime}(g, n) \cdot Y\left(m_{\min }(g, n)\right)$, where $Y(l)$ is the count of full binary trees with $l$ leaves. The number $Y(l)$ is given by the $(l-1)$-th Catalan number:

$$
Y(l)=\frac{(2 l-2)!}{(l-1)!\cdot l!}
$$

Hence from (2) we get:

$$
N_{2}^{-}(g, n) \leqslant N_{2}(g, n) \leqslant N_{2}^{+}(g, n),
$$

where:

$$
\begin{align*}
N_{2}^{-}(g, n) & :=\frac{1}{2 m} \cdot \frac{(4 m-2)!}{(2 m-2)!!(2 m)!}, \\
N_{2}^{+}(g, n) & :=\frac{(4 m-2)!}{(2 m-2)!!(2 m)!},  \tag{2.2}\\
m & :=m_{\min }(g, n)
\end{align*}
$$

## 3. Generation from permutations

As in the previous section, represent a fatgraph $G$ as $\left(L ; \sigma_{0}, \sigma_{1}, \sigma_{2}\right)$ where $L=$ $\{1, \ldots, 2 m\}$. Here we count the number of trivalent fatgraphs that are generated by naively constructing a fatgraph from its combinatorial definition.

If $G$ is trivalent, then $\sigma_{0}$ is a product of disjoint 3-cycles; by Lemma B.2, the number of such $\sigma_{0}$ is:

$$
\begin{equation*}
C(3, k)=(l-1)(l-2) \cdot(l-4)(l-5) \cdot \ldots \cdot 2 \cdot 1, \quad l=2 m=3 k \tag{3.1}
\end{equation*}
$$

For each chosen $\sigma_{0}$, each choice of a self-conjugate permutation $\sigma_{1}$ gives rise to a trivalent $(g, n)$-fatgraph; by Lemma B. 3 there are exactly $(2 m-1)$ !! such choices. Therefore, we have:

$$
\begin{align*}
N_{3}(g, n)=(2 m-1)!!\cdot C(3,2 m / 3)= & (2 m-1)!!\cdot(2 m-1)(2 m-2) \\
& \cdot(2 m-4)(2 m-5) \cdot \ldots \cdot 2 \cdot 1, \tag{3.2}
\end{align*}
$$

where $m=m_{\max }(g, n)$.

## APPENDIX C

## Fatgraphs of $\mathcal{M}_{0,4}$

This appendix is a complete catalog of all the fatgraphs with $g=0$ and $n=4$. It is provided as an example of capabilities of the algorithms described in Chapter 3 , and as a demo of the features implemented in the software FatGHoL. Other fatgraphs catalogs are available from the FatGHoL website at http://code.google. com/p/fatghol/downloads/list.

There are a total of 21 undecorated fatgraphs in the Kontsevich graph complex of $\mathcal{M}_{0,4}$, originating 327 marked ones.

In the following, we denote $G_{m, j}$ the $j$-th graph in the set of undecorated fatgraphs with $m$ edges; the symbol $G_{m, j}^{(k)}$ denotes the $k$-th inequivalent marking of $G_{m, j}$.

Fatgraph vertices are marked with lowercase latin letters "a", "b", "c", etc.; edges are marked with an arabic numeral starting from " 1 "; boundary cycles are denoted by lowercase greek letters " $\alpha$ ", " $\beta$ ", etc.

Automorphisms are specified by their action on the set of vertices, edges, and boundary cycles: for each automorphism $A_{k}$, a table line lists how it permutes vertices, edges and boundary cycles relative to the identity morphism $A_{0}$. The automorphism table is printed only if the automorphism group is non-trivial.

Automorphisms that reverse the orientation of the unmarked fatgraph are indicated with a " $\dagger$ " symbol in the automorphism table; those that reverse the orientation of the marked fatgraphs are distinguished with a " $\ddagger$ " sign.

If a fatgraph is orientable, a "Markings" section lists all the inequivalent ways of assigning distinct numbers $\{0, \ldots, n-1\}$ to the boundary cycles; this is of course a set of representatives for the orbits of $\mathfrak{S}_{n}$ under the action of $\operatorname{Aut}(G)$.

A separate section lists the differential of marked fatgraphs; graphs with null differential are omitted. If no marked fatgraph has a non-zero differential, the entire section is dropped.

Boundary cycles are specified using a "sequence of corners" notation: each corner is represented as ${ }^{p} L^{q}$ where $L$ is a latin letter indicating a vertex, and $p, q$ are the attachment indices of the incoming and outgoing edges, respectively. Attachment indices match the Python representation of the vertex: e.g., if $a=\operatorname{Vertex}([0,0,1])$, the two legs of edge 0 have attachment indices 0 and 1 , and the boundary cycle enclosed by them is represented by the (single) corner ${ }^{0} a^{1}$.

## 1. Fatgraphs with 3 edges / 1 vertex

There are 2 unmarked fatgraphs in this section, originating 40 marked fatgraphs (20 orientable, and 20 nonorientable).
1.1. The Fatgraph $G_{3,0}$ (8 orientable markings).


```
Fatgraph([
 Vertex([0, 0, 1, 1, 2, 2]),# a
])
```

1.1.1. Boundary cycles.

$$
\begin{aligned}
\alpha & =\left({ }^{0} a^{1}\right) \\
\beta & =\left({ }^{1} a^{2} \rightarrow{ }^{3} a^{4} \rightarrow{ }^{5} a^{0}\right) \\
\gamma & =\left({ }^{2} a^{3}\right) \\
\delta & =\left({ }^{4} a^{5}\right)
\end{aligned}
$$

1.1.2. Automorphisms.

$$
\begin{array}{c|c|ccc|cccc}
A_{0} & \mathrm{a} & 0 & 1 & 2 & \alpha & \beta & \gamma & \delta \\
\hline A_{1}^{\ddagger} & \mathrm{a} & 1 & 2 & 0 & \gamma & \beta & \delta & \alpha \\
A_{2}^{\ddagger} & \mathrm{a} & 2 & 0 & 1 & \delta & \beta & \alpha & \gamma
\end{array}
$$

1.1.3. Markings.

|  | $G_{3,0}^{(0)}$ | $G_{3,0}^{(1)}$ | $G_{3,0}^{(2)}$ | $G_{3,0}^{(3)}$ | $G_{3,0}^{(4)}$ | $G_{3,0}^{(5)}$ | $G_{3,0}^{(6)}$ | $G_{3,0}^{(7)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| $\beta$ | 1 | 1 | 2 | 2 | 3 | 3 | 0 | 0 |
| $\gamma$ | 2 | 3 | 1 | 3 | 1 | 2 | 2 | 3 |
| $\delta$ | 3 | 2 | 3 | 1 | 2 | 1 | 3 | 2 |

1.2. The Fatgraph $G_{3,1}$ (non-orientable, 12 orientable markings).

```
Fatgraph([
 Vertex([1, 0, 0, 1, 2, 2]),# a
])
```

1.2.1. Boundary cycles.

$$
\begin{aligned}
\alpha & =\left({ }^{2} a^{3} \rightarrow{ }^{0} a^{1}\right) \\
\beta & =\left({ }^{1} a^{2}\right) \\
\gamma & =\left({ }^{3} a^{4} \rightarrow{ }^{5} a^{0}\right) \\
\delta & =\left({ }^{4} a^{5}\right)
\end{aligned}
$$

1.2.2. Automorphisms.

| $A_{0}$ | a | 0 | 1 | 2 | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1} \dagger \ddagger$ | a | 2 | 1 | 0 | $\gamma$ | $\delta$ | $\alpha$ | $\beta$ |

### 1.2.3. Markings.

|  | $G_{3,1}^{(0)}$ | $G_{3,1}^{(1)}$ | $G_{3,1}^{(2)}$ | $G_{3,1}^{(3)}$ | $G_{3,1}^{(4)}$ | $G_{3,1}^{(5)}$ | $G_{3,1}^{(6)}$ | $G_{3,1}^{(7)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| $\beta$ | 1 | 1 | 2 | 2 | 3 | 3 | 0 | 0 |
| $\gamma$ | 2 | 3 | 1 | 3 | 1 | 2 | 2 | 3 |
| $\delta$ | 3 | 2 | 3 | 1 | 2 | 1 | 3 | 2 |
|  | $G_{3,1}^{(8)}$ | $G_{3,1}^{(9)}$ | $G_{3,1}^{(10)}$ | $G_{3,1}^{(11)}$ |  |  |  |  |
| $\alpha$ | 1 | 1 | 2 | 2 |  |  |  |  |
| $\beta$ | 2 | 3 | 0 | 1 |  |  |  |  |
| $\gamma$ | 3 | 2 | 3 | 3 |  |  |  |  |
| $\delta$ | 0 | 0 | 1 | 0 |  |  |  |  |

## 2. Fatgraphs with 4 edges / 2 vertices

There are 6 unmarked fatgraphs in this section, originating 198 marked fatgraphs (99 orientable, and 99 nonorientable).
2.1. The Fatgraph $G_{4,0}$ (24 orientable markings).

2.1.1. Boundary cycles.

$$
\begin{aligned}
& \alpha=\left({ }^{0} a^{1}\right) \\
& \beta=\left({ }^{1} a^{2} \rightarrow{ }^{2} b^{0} \rightarrow{ }^{4} a^{0} \rightarrow{ }^{3} a^{4} \rightarrow{ }^{1} b^{2}\right) \\
& \gamma=\left({ }^{2} a^{3}\right) \\
& \delta=\left({ }^{0} b^{1}\right)
\end{aligned}
$$

2.1.2. Markings. Fatgraph $G_{4,0}$ only has the identity automorphism, so the marked fatgraphs $G_{4,0}^{(0)}$ to $G_{4,0}^{(24)}$ are formed by decorating boundary cycles of $G_{4,0}$ with all permutations of $(0,1,2,3)$ in lexicographic order. See Section 5 "Markings of fatgraphs with trivial automorphisms" for a complete table.
2.2. The Fatgraph $G_{4,1}$ (12 orientable markings).

2.2.1. Boundary cycles.

$$
\begin{aligned}
& \alpha=\left({ }^{0} a^{1}\right) \\
& \beta=\left({ }^{1} a^{2} \rightarrow{ }^{3} a^{0} \rightarrow{ }^{3} b^{0} \rightarrow{ }^{1} b^{2}\right) \\
& \gamma=\left({ }^{2} a^{3} \rightarrow{ }^{0} b^{1}\right) \\
& \delta=\left({ }^{2} b^{3}\right)
\end{aligned}
$$

```
Fatgraph([
```

Fatgraph([
Vertex([1, 1, 2, 0]),\# a
Vertex([0, 2, 3, 3]),\# b
])

```
])
```

2.2.2. Automorphisms.

| $A_{0}$ | a | b | 0 | 1 | 2 | 3 | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1}^{\ddagger}$ | b | a | 2 | 3 | 0 | 1 | $\delta$ | $\beta$ | $\gamma$ | $\alpha$ |

2.2.3. Markings.

|  | $G_{4,1}^{(0)}$ | $G_{4,1}^{(1)}$ | $G_{4,1}^{(2)}$ | $G_{4,1}^{(3)}$ | $G_{4,1}^{(4)}$ | $G_{4,1}^{(5)}$ | $G_{4,1}^{(6)}$ | $G_{4,1}^{(7)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| $\beta$ | 1 | 1 | 2 | 2 | 3 | 3 | 0 | 0 |
| $\gamma$ | 2 | 3 | 1 | 3 | 1 | 2 | 2 | 3 |
| $\delta$ | 3 | 2 | 3 | 1 | 2 | 1 | 3 | 2 |
|  | $G_{4,1}^{(8)}$ | $G_{4,1}^{(9)}$ | $G_{4,1}^{(10)}$ | $G_{4,1}^{(11)}$ |  |  |  |  |
| $\alpha$ | 1 | 1 | 2 | 2 |  |  |  |  |
| $\beta$ | 2 | 3 | 0 | 1 |  |  |  |  |

(continued.)

$\gamma |$|  |  |  |  |
| :--- | :--- | :--- | :--- |
| $\gamma$ | 0 | 0 | 1 |
| $\delta$ | 3 | 2 | 3 |

2.3. The Fatgraph $G_{4,2}$ (24 orientable markings).

Fatgraph([
Fatgraph([
Vertex([0, 0, 1, 2, 1]),\# a
Vertex([0, 0, 1, 2, 1]),\# a
Vertex([3, 3, 2]), \# b
Vertex([3, 3, 2]), \# b
])
])
2.3.1. Boundary cycles.

$$
\begin{aligned}
& \alpha=\left({ }^{0} a^{1}\right) \\
& \beta=\left({ }^{1} a^{2} \rightarrow{ }^{4} a^{0}\right) \\
& \gamma=\left({ }^{2} a^{3} \rightarrow{ }^{2} b^{0} \rightarrow{ }^{3} a^{4} \rightarrow{ }^{1} b^{2}\right) \\
& \delta=\left({ }^{0} b^{1}\right)
\end{aligned}
$$

2.3.2. Markings. Fatgraph $G_{4,2}$ only has the identity automorphism, so the marked fatgraphs $G_{4,2}^{(0)}$ to $G_{4,2}^{(24)}$ are formed by decorating boundary cycles of $G_{4,2}$ with all permutations of $(0,1,2,3)$ in lexicographic order. See Section 5 "Markings of fatgraphs with trivial automorphisms" for a complete table.
2.4. The Fatgraph $G_{4,3}$ (non-orientable, 12 orientable markings).

Fatgraph ([
Vertex ([1, 1, 2, 0]), \# a
Vertex([2, 0, 3, 3]), \# b
])
2.4.1. Boundary cycles.

$$
\begin{aligned}
& \alpha=\left({ }^{0} a^{1}\right) \\
& \beta=\left({ }^{1} a^{2} \rightarrow{ }^{3} a^{0} \rightarrow{ }^{0} b^{1}\right) \\
& \gamma=\left({ }^{2} a^{3} \rightarrow{ }^{3} b^{0} \rightarrow{ }^{0} b^{2}\right) \\
& \delta=\left({ }^{2} b^{3}\right)
\end{aligned}
$$

### 2.4.2. Automorphisms.

| $A_{0}$ | a | b | 0 | 1 | 2 | 3 | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1}{ }^{\dagger \ddagger}$ | b | a | 0 | 3 | 2 | 1 | $\delta$ | $\gamma$ | $\beta$ | $\alpha$ |

### 2.4.3. Markings.

|  | $G_{4,3}^{(0)}$ | $G_{4,3}^{(1)}$ | $G_{4,3}^{(2)}$ | $G_{4,3}^{(3)}$ | $G_{4,3}^{(4)}$ | $G_{4,3}^{(5)}$ | $G_{4,3}^{(6)}$ | $G_{4,3}^{(7)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| $\beta$ | 1 | 1 | 2 | 2 | 3 | 3 | 0 | 0 |
| $\gamma$ | 2 | 3 | 1 | 3 | 1 | 2 | 2 | 3 |
| $\delta$ | 3 | 2 | 3 | 1 | 2 | 1 | 3 | 2 |
|  | $G_{4,3}^{(8)}$ | $G_{4,3}^{(9)}$ | $G_{4,3}^{(10)}$ | $G_{4,3}^{(11)}$ |  |  |  |  |
| $\alpha$ | 1 | 1 | 2 | 2 |  |  |  |  |
| $\beta$ | 2 | 3 | 0 | 1 |  |  |  |  |
| $\gamma$ | 0 | 0 | 1 | 0 |  |  |  |  |
| $\delta$ | 3 | 2 | 3 | 3 |  |  |  |  |

2.5. The Fatgraph $G_{4,4}$ (24 orientable markings).


```
Fatgraph([
 Vertex([1, 0, 2, 3, 3]),# a
 Vertex([1, 2, 0]), # b
])
```

2.5.1. Boundary cycles.

$$
\begin{aligned}
\alpha & =\left({ }^{2} b^{0} \rightarrow{ }^{0} a^{1}\right) \\
\beta & =\left({ }^{1} a^{2} \rightarrow{ }^{1} b^{2}\right) \\
\gamma & =\left({ }^{2} a^{3} \rightarrow{ }^{0} b^{1} \rightarrow{ }^{4} a^{0}\right) \\
\delta & =\left({ }^{3} a^{4}\right)
\end{aligned}
$$

2.5.2. Markings. Fatgraph $G_{4,4}$ only has the identity automorphism, so the marked fatgraphs $G_{4,4}^{(0)}$ to $G_{4,4}^{(24)}$ are formed by decorating boundary cycles of $G_{4,4}$ with all permutations of $(0,1,2,3)$ in lexicographic order. See Section 5 "Markings of fatgraphs with trivial automorphisms" for a complete table.
2.6. The Fatgraph $G_{4,5}$ (non-orientable, 3 orientable markings).


```
Fatgraph([
 Vertex([1, 3, 2, 0]),# a
 Vertex([0, 2, 3, 1]),# b
])
```

2.6.1. Boundary cycles.

$$
\begin{aligned}
\alpha & =\left({ }^{0} a^{1} \rightarrow{ }^{2} b^{3}\right) \\
\beta & =\left({ }^{1} a^{2} \rightarrow{ }^{1} b^{2}\right) \\
\gamma & =\left({ }^{2} a^{3} \rightarrow{ }^{0} b^{1}\right) \\
\delta & =\left({ }^{3} a^{0} \rightarrow{ }^{3} b^{0}\right)
\end{aligned}
$$

2.6.2. Automorphisms.

| $A_{0}$ | a | b | 0 | 1 | 2 | 3 | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1} \dagger \ddagger$ | a | b | 1 | 3 | 0 | 2 | $\beta$ | $\gamma$ | $\delta$ | $\alpha$ |
| $A_{2} \ddagger$ | a | b | 3 | 2 | 1 | 0 | $\gamma$ | $\delta$ | $\alpha$ | $\beta$ |
| $A_{3}{ }^{\dagger \ddagger}$ | a | b | 2 | 0 | 3 | 1 | $\delta$ | $\alpha$ | $\beta$ | $\gamma$ |
| $A_{4}^{\ddagger}$ | b | a | 1 | 0 | 3 | 2 | $\gamma$ | $\beta$ | $\alpha$ | $\delta$ |
| $A_{5}^{\dagger \ddagger}$ | b | a | 0 | 2 | 1 | 3 | $\beta$ | $\alpha$ | $\delta$ | $\gamma$ |
| $A_{6}{ }^{\ddagger}$ | b | a | 2 | 3 | 0 | 1 | $\alpha$ | $\delta$ | $\gamma$ | $\beta$ |
| $A_{7}{ }^{\dagger \ddagger}$ | b | a | 3 | 1 | 2 | 0 | $\delta$ | $\gamma$ | $\beta$ | $\alpha$ |

2.6.3. Markings.

|  | $G_{4,5}^{(0)}$ | $G_{4,5}^{(1)}$ | $G_{4,5}^{(2)}$ |
| :---: | :---: | :---: | :---: |
| $\alpha$ | 0 | 0 | 0 |
| $\beta$ | 1 | 1 | 2 |
| $\gamma$ | 2 | 3 | 1 |
| $\delta$ | 3 | 2 | 3 |

3. Fatgraphs with 5 edges / 3 vertices

There are 7 unmarked fatgraphs in this section, originating 288 marked fatgraphs (144 orientable, and 144 nonorientable).
3.1. The Fatgraph $G_{5,0}$ (24 orientable markings).


```
Fatgraph([
 Vertex([0, 1, 0]), # a
 Vertex([1, 2, 2, 3]),# b
 Vertex([4, 4, 3]), # c
])
```

3.1.1. Boundary cycles.

$$
\begin{aligned}
& \alpha=\left({ }^{1} a^{2} \rightarrow{ }^{0} a^{1} \rightarrow{ }^{2} b^{3} \rightarrow{ }^{3} b^{0} \rightarrow{ }^{1} c^{2} \rightarrow{ }^{2} c^{0} \rightarrow{ }^{0} b^{1}\right) \\
& \beta=\left({ }^{2} a^{0}\right) \\
& \gamma=\left({ }^{1} b^{2}\right) \\
& \delta=\left({ }^{0} c^{1}\right)
\end{aligned}
$$

3.1.2. Markings. Fatgraph $G_{5,0}$ only has the identity automorphism, so the marked fatgraphs $G_{5,0}^{(0)}$ to $G_{5,0}^{(24)}$ are formed by decorating boundary cycles of $G_{5,0}$ with all permutations of $(0,1,2,3)$ in lexicographic order. See Section 5 "Markings of fatgraphs with trivial automorphisms" for a complete table.

### 3.1.3. Differentials.

$$
\begin{array}{ll}
D\left(G_{5,0}^{(0)}\right)=+G_{4,0}^{(0)} & D\left(G_{5,0}^{(11)}\right)=+G_{4,0}^{(4)} \\
D\left(G_{5,0}^{(1)}\right)=+G_{4,0}^{(1)} & D\left(G_{5,0}^{(14)}\right)=+G_{4,0}^{(1)} \\
D\left(G_{5,0}^{(2)}\right)=+G_{4,0}^{(2)} & D\left(G_{5,0}^{(15)}\right)=+G_{4,0}^{(0)} \\
D\left(G_{5,0}^{(3)}\right)=+G_{4,0}^{(3)} & D\left(G_{5,0}^{(16)}\right)=+G_{4,0}^{(4)} \\
D\left(G_{5,0}^{(4)}\right)=+G_{4,0}^{(4)} & D\left(G_{5,0}^{(17)}\right)=+G_{4,0}^{(5)} \\
D\left(G_{5,0}^{(5)}\right)=+G_{4,0}^{(5)} & D\left(G_{5,0}^{(20)}\right)=+G_{4,0}^{(0)} \\
D\left(G_{5,0}^{(8)}\right)=+G_{4,0}^{(3)} & D\left(G_{5,0}^{(21)}\right)=+G_{4,0}^{(1)} \\
D\left(G_{5,0}^{(9)}\right)=+G_{4,0}^{(2)} & D\left(G_{5,0}^{(22)}\right)=+G_{4,0}^{(2)} \\
D\left(G_{5,0}^{(10)}\right)=+G_{4,0}^{(5)} & D\left(G_{5,0}^{(23)}\right)=+G_{4,0}^{(3)}
\end{array}
$$

3.2. The Fatgraph $G_{5,1}$ (24 orientable markings).


```
Fatgraph([
 Vertex([1, 1, 2, 0]),# a
 Vertex([0, 2, 3]), # b
 Vertex([4, 4, 3]), # c
])
```

3.2.1. Boundary cycles.

$$
\begin{aligned}
& \alpha=\left({ }^{0} a^{1}\right) \\
& \beta=\left({ }^{1} a^{2} \rightarrow{ }^{2} c^{0} \rightarrow{ }^{3} a^{0} \rightarrow{ }^{1} c^{2} \rightarrow{ }^{2} b^{0} \rightarrow{ }^{1} b^{2}\right) \\
& \gamma=\left({ }^{2} a^{3} \rightarrow{ }^{0} b^{1}\right) \\
& \delta=\left({ }^{0} c^{1}\right)
\end{aligned}
$$

3.2.2. Markings. Fatgraph $G_{5,1}$ only has the identity automorphism, so the marked fatgraphs $G_{5,1}^{(0)}$ to $G_{5,1}^{(24)}$ are formed by decorating boundary cycles of $G_{5,1}$ with all permutations of $(0,1,2,3)$ in lexicographic order. See Section 5 "Markings of fatgraphs with trivial automorphisms" for a complete table.

### 3.2.3. Differentials.

$$
\begin{array}{ll}
D\left(G_{5,1}^{(0)}\right)=+G_{4,0}^{(0)}+G_{4,0}^{(1)} & D\left(G_{5,1}^{(5)}\right)=+G_{4,0}^{(4)}+G_{4,0}^{(5)} \\
D\left(G_{5,1}^{(1)}\right)=+G_{4,0}^{(0)}+G_{4,0}^{(1)} & D\left(G_{5,1}^{(8)}\right)=+G_{4,0}^{(2)}+G_{4,0}^{(3)} \\
D\left(G_{5,1}^{(2)}\right)=+G_{4,0}^{(2)}+G_{4,0}^{(3)} & D\left(G_{5,1}^{(9)}\right)=+G_{4,0}^{(4)}+G_{4,0}^{(5)} \\
D\left(G_{5,1}^{(3)}\right)=+G_{4,0}^{(2)}+G_{4,0}^{(3)} & D\left(G_{5,1}^{(11)}\right)=+G_{4,0}^{(0)}+G_{4,0}^{(1)} \\
D\left(G_{5,1}^{(4)}\right)=+G_{4,0}^{(4)}+G_{4,0}^{(5)} &
\end{array}
$$

3.3. The Fatgraph $G_{5,2}$ (12 orientable markings).


```
Fatgraph([
 Vertex([0, 1, 0]), # a
 Vertex([1, 2, 3, 2]),# b
 Vertex([4, 4, 3]), # c
])
```

3.3.1. Boundary cycles.

$$
\begin{aligned}
& \alpha=\left({ }^{1} a^{2} \rightarrow{ }^{3} b^{0} \rightarrow{ }^{0} a^{1} \rightarrow{ }^{0} b^{1}\right) \\
& \beta=\left({ }^{2} a^{0}\right) \\
& \gamma=\left({ }^{2} b^{3} \rightarrow{ }^{2} c^{0} \rightarrow{ }^{1} c^{2} \rightarrow{ }^{1} b^{2}\right) \\
& \delta=\left({ }^{0} c^{1}\right)
\end{aligned}
$$

3.3.2. Automorphisms.

| $A_{0}$ | a | b | c | 0 | 1 | 2 | 3 | 4 | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1}^{\ddagger}$ | c | b | a | 4 | 3 | 2 | 1 | 0 | $\gamma$ | $\delta$ | $\alpha$ | $\beta$ |

3.3.3. Markings.

|  | $G_{5,2}^{(0)}$ | $G_{5,2}^{(1)}$ | $G_{5,2}^{(2)}$ | $G_{5,2}^{(3)}$ | $G_{5,2}^{(4)}$ | $G_{5,2}^{(5)}$ | $G_{5,2}^{(6)}$ | $G_{5,2}^{(7)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| $\beta$ | 1 | 1 | 2 | 2 | 3 | 3 | 0 | 0 |
| $\gamma$ | 2 | 3 | 1 | 3 | 1 | 2 | 2 | 3 |
| $\delta$ | 3 | 2 | 3 | 1 | 2 | 1 | 3 | 2 |
|  | $G_{5,2}^{(8)}$ | $G_{5,2}^{(9)}$ | $G_{5,2}^{(10)}$ | $G_{5,2}^{(11)}$ |  |  |  |  |
| $\alpha$ | 1 | 1 | 2 | 2 |  |  |  |  |
| $\beta$ | 2 | 3 | 0 | 1 |  |  |  |  |
| $\gamma$ | 3 | 2 | 3 | 3 |  |  |  |  |
| $\delta$ | 0 | 0 | 1 | 0 |  |  |  |  |

3.4. The Fatgraph $G_{5,3}$ (24 orientable markings).


```
Fatgraph([
 Vertex([1, 1, 2, 0]),# a
 Vertex([2, 0, 3]), # b
 Vertex([4, 4, 3]), # c
])
```

3.4.1. Boundary cycles.

$$
\begin{aligned}
& \alpha=\left({ }^{0} a^{1}\right) \\
& \beta=\left({ }^{1} a^{2} \rightarrow{ }^{3} a^{0} \rightarrow{ }^{0} b^{1}\right) \\
& \gamma=\left({ }^{2} a^{3} \rightarrow{ }^{2} b^{0} \rightarrow{ }^{2} c^{0} \rightarrow{ }^{1} c^{2} \rightarrow{ }^{1} b^{2}\right) \\
& \delta=\left({ }^{0} c^{1}\right)
\end{aligned}
$$

3.4.2. Markings. Fatgraph $G_{5,3}$ only has the identity automorphism, so the marked fatgraphs $G_{5,3}^{(0)}$ to $G_{5,3}^{(24)}$ are formed by decorating boundary cycles of $G_{5,3}$ with all permutations of $(0,1,2,3)$ in lexicographic order. See Section 5 "Markings of fatgraphs with trivial automorphisms" for a complete table.

### 3.4.3. Differentials.

$$
\begin{array}{ll}
D\left(G_{5,3}^{(12)}\right)=+G_{4,0}^{(2)} & D\left(G_{5,3}^{(17)}\right)=+G_{4,0}^{(3)} \\
D\left(G_{5,3}^{(13)}\right)=+G_{4,0}^{(4)} & D\left(G_{5,3}^{(18)}\right)=+G_{4,0}^{(3)} \\
D\left(G_{5,3}^{(14)}\right)=+G_{4,0}^{(0)} & D\left(G_{5,3}^{(19)}\right)=+G_{4,0}^{(5)} \\
D\left(G_{5,3}^{(15)}\right)=+G_{4,0}^{(5)} & D\left(G_{5,3}^{(21)}\right)=+G_{4,0}^{(4)} \\
D\left(G_{5,3}^{(16)}\right)=+G_{4,0}^{(1)} & D\left(G_{5,3}^{(23)}\right)=+G_{4,0}^{(2)}
\end{array}
$$

3.5. The Fatgraph $G_{5,4}$ (24 orientable markings).


```
Fatgraph([
 Vertex([1, 0, 2, 3]),# a
 Vertex([1, 2, 0]), # b
 Vertex([4, 4, 3]), # c
])
```

3.5.1. Boundary cycles.

$$
\begin{aligned}
\alpha & =\left({ }^{2} b^{0} \rightarrow{ }^{0} a^{1}\right) \\
\beta & =\left({ }^{1} a^{2} \rightarrow{ }^{1} b^{2}\right) \\
\gamma & =\left({ }^{2} a^{3} \rightarrow{ }^{3} a^{0} \rightarrow{ }^{0} b^{1} \rightarrow{ }^{1} c^{2} \rightarrow{ }^{2} c^{0}\right) \\
\delta & =\left({ }^{0} c^{1}\right)
\end{aligned}
$$

3.5.2. Markings. Fatgraph $G_{5,4}$ only has the identity automorphism, so the marked fatgraphs $G_{5,4}^{(0)}$ to $G_{5,4}^{(24)}$ are formed by decorating boundary cycles of $G_{5,4}$ with all permutations of $(0,1,2,3)$ in lexicographic order. See Section 5 "Markings of fatgraphs with trivial automorphisms" for a complete table.

### 3.5.3. Differentials.

$$
\begin{array}{ll}
D\left(G_{5,4}^{(0)}\right)=+G_{4,0}^{(1)} & D\left(G_{5,4}^{(6)}\right)=+G_{4,0}^{(0)} \\
D\left(G_{5,4}^{(1)}\right)=+G_{4,0}^{(4)} & D\left(G_{5,4}^{(7)}\right)=+G_{4,0}^{(2)} \\
D\left(G_{5,4}^{(3)}\right)=+G_{4,0}^{(5)} & D\left(G_{5,4}^{(9)}\right)=+G_{4,0}^{(3)} \\
D\left(G_{5,4}^{(5)}\right)=+G_{4,0}^{(0)} & D\left(G_{5,4}^{(11)}\right)=+G_{4,0}^{(1)}
\end{array}
$$

3.6. The Fatgraph $G_{5,5}$ (24 orientable markings).


```
Fatgraph([
 Vertex([1, 0, 2]), # a
 Vertex([2, 3, 1]), # b
 Vertex([0, 3, 4, 4]),# c
])
```

3.6.1. Boundary cycles.

$$
\begin{aligned}
\alpha & =\left({ }^{0} a^{1} \rightarrow{ }^{0} c^{1} \rightarrow{ }^{1} b^{2}\right) \\
\beta & =\left({ }^{1} a^{2} \rightarrow{ }^{2} c^{0} \rightarrow{ }^{1} c^{2} \rightarrow{ }^{0} b^{1}\right) \\
\gamma & =\left({ }^{2} a^{0} \rightarrow{ }^{2} b^{0}\right) \\
\delta & =\left({ }^{2} c^{3}\right)
\end{aligned}
$$

3.6.2. Markings. Fatgraph $G_{5,5}$ only has the identity automorphism, so the marked fatgraphs $G_{5,5}^{(0)}$ to $G_{5,5}^{(24)}$ are formed by decorating boundary cycles of $G_{5,5}$ with all permutations of $(0,1,2,3)$ in lexicographic order. See Section 5 "Markings of fatgraphs with trivial automorphisms" for a complete table.
3.7. The Fatgraph $G_{5,6}$ (12 orientable markings).


```
Fatgraph([
 Vertex([1, 4, 3, 0]),# a
 Vertex([0, 3, 2]), # b
 Vertex([4, 1, 2]), # c
])
```

3.7.1. Boundary cycles.

$$
\begin{aligned}
\alpha & =\left({ }^{0} a^{1} \rightarrow{ }^{0} c^{1}\right) \\
\beta & =\left({ }^{1} a^{2} \rightarrow{ }^{2} c^{0} \rightarrow{ }^{0} b^{2}\right) \\
\gamma & =\left({ }^{2} a^{3} \rightarrow{ }^{0} b^{1}\right) \\
\delta & =\left({ }^{3} a^{0} \rightarrow{ }^{2} b^{0} \rightarrow{ }^{1} c^{2}\right)
\end{aligned}
$$

3.7.2. Automorphisms.

| $A_{0}$ | a | b | c | 0 | 1 | 2 | 3 | 4 | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1}^{\ddagger}$ | a | c | b | 4 | 3 | 2 | 1 | 0 | $\gamma$ | $\delta$ | $\alpha$ | $\beta$ |

3.7.3. Markings.

|  | $G_{5,6}^{(0)}$ | $G_{5,6}^{(1)}$ | $G_{5,6}^{(2)}$ | $G_{5,6}^{(3)}$ | $G_{5,6}^{(4)}$ | $G_{5,6}^{(5)}$ | $G_{5,6}^{(6)}$ | $G_{5,6}^{(7)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| $\beta$ | 1 | 1 | 2 | 2 | 3 | 3 | 0 | 0 |
| $\gamma$ | 2 | 3 | 1 | 3 | 1 | 2 | 2 | 3 |
| $\delta$ | 3 | 2 | 3 | 1 | 2 | 1 | 3 | 2 |
|  | $G_{5,6}^{(8)}$ | $G_{5,6}^{(9)}$ | $G_{5,6}^{(10)}$ | $G_{5,6}^{(11)}$ |  |  |  |  |
| $\alpha$ | 1 | 1 | 2 | 2 |  |  |  |  |
| $\beta$ | 2 | 3 | 0 | 1 |  |  |  |  |
| $\gamma$ | 3 | 2 | 3 | 3 |  |  |  |  |
| $\delta$ | 0 | 0 | 1 | 0 |  |  |  |  |

## 4. Fatgraphs with 6 edges / 4 vertices

There are 6 unmarked fatgraphs in this section, originating 128 marked fatgraphs (64 orientable, and 64 nonorientable).
4.1. The Fatgraph $G_{6,0}$ (non-orientable, 12 orientable markings).


Fatgraph (
Vertex ([1, 2, 1]), \# a
Vertex ([2, 3, 0]), \# b
Vertex ([0, 3, 4]), \# c
Vertex ([5, 5, 4]), \# d
])
4.1.1. Boundary cycles.

$$
\begin{aligned}
\alpha & =\left({ }^{2} d^{0} \rightarrow{ }^{1} a^{2} \rightarrow{ }^{0} a^{1} \rightarrow{ }^{2} c^{0} \rightarrow{ }^{1} c^{2} \rightarrow{ }^{2} b^{0} \rightarrow{ }^{0} b^{1} \rightarrow{ }^{1} d^{2}\right) \\
\beta & =\left({ }^{2} a^{0}\right) \\
\gamma & =\left({ }^{0} c^{1} \rightarrow{ }^{1} b^{2}\right) \\
\delta & =\left({ }^{0} d^{1}\right)
\end{aligned}
$$

### 4.1.2. Automorphisms.

| $A_{0}$ | a | b | c | d | 0 | 1 | 2 | 3 | 4 | 5 | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1}{ }^{\dagger \ddagger}$ | d | c | b | a | 3 | 5 | 4 | 0 | 2 | 1 | $\alpha$ | $\delta$ | $\gamma$ | $\beta$ |

4.1.3. Markings.

|  | $G_{6,0}^{(0)}$ | $G_{6,0}^{(1)}$ | $G_{6,0}^{(2)}$ | $G_{6,0}^{(3)}$ | $G_{6,0}^{(4)}$ | $G_{6,0}^{(5)}$ | $G_{6,0}^{(6)}$ | $G_{6,0}^{(7)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 |
| $\beta$ | 1 | 1 | 2 | 0 | 0 | 2 | 0 | 0 |
| $\gamma$ | 2 | 3 | 1 | 2 | 3 | 0 | 1 | 3 |
| $\delta$ | 3 | 2 | 3 | 3 | 2 | 3 | 3 | 1 |
|  | $G_{6,0}^{(8)}$ | $G_{6,0}^{(9)}$ | $G_{6,0}^{(10)}$ | $G_{6,0}^{(11)}$ |  |  |  |  |
| $\alpha$ | 2 | 3 | 3 | 3 |  |  |  |  |
| $\beta$ | 1 | 0 | 0 | 1 |  |  |  |  |
| $\gamma$ | 0 | 1 | 2 | 0 |  |  |  |  |
| $\delta$ | 3 | 2 | 1 | 2 |  |  |  |  |

4.1.4. Differentials.

$$
\begin{array}{ll}
D\left(G_{6,0}^{(0)}\right)=-G_{5,0}^{(6)} & D\left(G_{6,0}^{(7)}\right)=-G_{5,0}^{(1)} \\
D\left(G_{6,0}^{(4)}\right)=+G_{5,0}^{(6)} & D\left(G_{6,0}^{(8)}\right)=+G_{5,0}^{(1)} \\
D\left(G_{6,0}^{(6)}\right)=-G_{5,0}^{(0)} & D\left(G_{6,0}^{(10)}\right)=+G_{5,0}^{(0)}
\end{array}
$$

4.2. The Fatgraph $G_{6,1}$ (12 orientable markings).


```
Fatgraph([
 Vertex([1, 2, 1]),# a
 Vertex([2, 3, 0]),# b
 Vertex([3, 0, 4]),# c
 Vertex([5, 5, 4]),# d
])
```

4.2.1. Boundary cycles.

$$
\begin{aligned}
\alpha & =\left({ }^{1} a^{2} \rightarrow{ }^{2} b^{0} \rightarrow{ }^{0} a^{1} \rightarrow{ }^{0} c^{1} \rightarrow{ }^{0} b^{1}\right) \\
\beta & =\left({ }^{2} a^{0}\right) \\
\gamma & =\left({ }^{2} d^{0} \rightarrow{ }^{2} c^{0} \rightarrow{ }^{1} d^{2} \rightarrow{ }^{1} c^{2} \rightarrow{ }^{1} b^{2}\right) \\
\delta & =\left({ }^{0} d^{1}\right)
\end{aligned}
$$

4.2.2. Automorphisms.

| $A_{0}$ | a | b | c | d | 0 | 1 | 2 | 3 | 4 | 5 | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1}{ }^{\ddagger}$ | d | c | b | a | 0 | 5 | 4 | 3 | 2 | 1 | $\gamma$ | $\delta$ | $\alpha$ | $\beta$ |

4.2.3. Markings.

|  | $G_{6,1}^{(0)}$ | $G_{6,1}^{(1)}$ | $G_{6,1}^{(2)}$ | $G_{6,1}^{(3)}$ | $G_{6,1}^{(4)}$ | $G_{6,1}^{(5)}$ | $G_{6,1}^{(6)}$ | $G_{6,1}^{(7)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| $\beta$ | 1 | 1 | 2 | 2 | 3 | 3 | 0 | 0 |
| $\gamma$ | 2 | 3 | 1 | 3 | 1 | 2 | 2 | 3 |
| $\delta$ | 3 | 2 | 3 | 1 | 2 | 1 | 3 | 2 |
|  | $G_{6,1}^{(8)}$ | $G_{6,1}^{(9)}$ | $G_{6,1}^{(10)}$ | $G_{6,1}^{(11)}$ |  |  |  |  |
| $\alpha$ | 1 | 1 | 2 | 2 |  |  |  |  |
| $\beta$ | 2 | 3 | 0 | 1 |  |  |  |  |
| $\gamma$ | 3 | 2 | 3 | 3 |  |  |  |  |
| $\delta$ | 0 | 0 | 1 | 0 |  |  |  |  |

4.2.4. Differentials.

$$
\begin{array}{ll}
D\left(G_{6,1}^{(0)}\right)=-G_{5,0}^{(2)} & D\left(G_{6,1}^{(6)}\right)=-G_{5,0}^{(4)} \\
D\left(G_{6,1}^{(1)}\right)=-G_{5,0}^{(3)} & D\left(G_{6,1}^{(7)}\right)=-G_{5,0}^{(5)} \\
D\left(G_{6,1}^{(2)}\right)=+G_{5,0}^{(3)} & D\left(G_{6,1}^{(8)}\right)=+G_{5,0}^{(5)} \\
D\left(G_{6,1}^{(4)}\right)=+G_{5,0}^{(2)} & D\left(G_{6,1}^{(10)}\right)=+G_{5,0}^{(4)}
\end{array}
$$

4.3. The Fatgraph $G_{6,2}$ (8 orientable markings).


Fatgraph ([<br>Vertex ([1, 2, 1]),\# a<br>Vertex([3, 0, 0]), \# b<br>Vertex ([2, 3, 4]), \# c<br>Vertex ([5, 5, 4]), \# d ])

4.3.1. Boundary cycles.

$$
\begin{aligned}
\alpha & =\left({ }^{2} d^{0} \rightarrow{ }^{0} c^{1} \rightarrow{ }^{1} a^{2} \rightarrow{ }^{0} a^{1} \rightarrow{ }^{0} b^{1} \rightarrow{ }^{1} c^{2} \rightarrow{ }^{2} b^{0} \rightarrow{ }^{2} c^{0} \rightarrow{ }^{1} d^{2}\right) \\
\beta & =\left({ }^{2} a^{0}\right) \\
\gamma & =\left({ }^{1} b^{2}\right) \\
\delta & =\left({ }^{0} d^{1}\right)
\end{aligned}
$$

4.3.2. Automorphisms.

| $A_{0}$ | a | b | c | d | 0 | 1 | 2 | 3 | 4 | 5 | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1} \ddagger$ | b | d | c | a | 5 | 0 | 3 | 4 | 2 | 1 | $\alpha$ | $\gamma$ | $\delta$ | $\beta$ |
| $A_{2} \ddagger$ | d | a | c | b | 1 | 5 | 4 | 2 | 3 | 0 | $\alpha$ | $\delta$ | $\beta$ | $\gamma$ |

4.3.3. Markings.

|  | $G_{6,2}^{(0)}$ | $G_{6,2}^{(1)}$ | $G_{6,2}^{(2)}$ | $G_{6,2}^{(3)}$ | $G_{6,2}^{(4)}$ | $G_{6,2}^{(5)}$ | $G_{6,2}^{(6)}$ | $G_{6,2}^{(7)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 |
| $\beta$ | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\gamma$ | 2 | 3 | 2 | 3 | 1 | 3 | 1 | 2 |
| $\delta$ | 3 | 2 | 3 | 2 | 3 | 1 | 2 | 1 |

4.3.4. Differentials.

$$
\begin{array}{ll}
D\left(G_{6,2}^{(0)}\right)=+G_{5,0}^{(0)} & D\left(G_{6,2}^{(4)}\right)=+G_{5,0}^{(4)} \\
D\left(G_{6,2}^{(1)}\right)=+G_{5,0}^{(1)} & D\left(G_{6,2}^{(5)}\right)=+G_{5,0}^{(5)} \\
D\left(G_{6,2}^{(2)}\right)=+G_{5,0}^{(2)} & D\left(G_{6,2}^{(6)}\right)=+G_{5,0}^{(6)} \\
D\left(G_{6,2}^{(3)}\right)=+G_{5,0}^{(3)} &
\end{array}
$$

4.4. The Fatgraph $G_{6,3}$ (24 orientable markings).


```
Fatgraph([
 Vertex([1, 0, 2]),# a
 Vertex([2, 3, 1]),# b
 Vertex([0, 3, 4]),# c
 Vertex([5, 5, 4]),# d
])
```

4.4.1. Boundary cycles.

$$
\begin{aligned}
\alpha & =\left({ }^{0} a^{1} \rightarrow{ }^{0} c^{1} \rightarrow{ }^{1} b^{2}\right) \\
\beta & =\left({ }^{2} d^{0} \rightarrow{ }^{1} a^{2} \rightarrow{ }^{2} c^{0} \rightarrow{ }^{1} c^{2} \rightarrow{ }^{0} b^{1} \rightarrow{ }^{1} d^{2}\right) \\
\gamma & =\left({ }^{2} a^{0} \rightarrow{ }^{2} b^{0}\right) \\
\delta & =\left({ }^{0} d^{1}\right)
\end{aligned}
$$

4.4.2. Markings. Fatgraph $G_{6,3}$ only has the identity automorphism, so the marked fatgraphs $G_{6,3}^{(0)}$ to $G_{6,3}^{(24)}$ are formed by decorating boundary cycles of $G_{6,3}$ with all permutations of $(0,1,2,3)$ in lexicographic order. See Section 5 "Markings of fatgraphs with trivial automorphisms" for a complete table.

### 4.4.3. Differentials.

$$
\begin{array}{ll}
D\left(G_{6,3}^{(0)}\right)=+G_{5,0}^{(2)} & D\left(G_{6,3}^{(8)}\right)=+G_{5,0}^{(5)} \\
D\left(G_{6,3}^{(2)}\right)=+G_{5,0}^{(4)} & D\left(G_{6,3}^{(12)}\right)=+G_{5,0}^{(1)} \\
D\left(G_{6,3}^{(4)}\right)=+G_{5,0}^{(6)} & D\left(G_{6,3}^{(14)}\right)=+G_{5,0}^{(3)} \\
D\left(G_{6,3}^{(6)}\right)=+G_{5,0}^{(0)} &
\end{array}
$$

4.5. The Fatgraph $G_{6,4}$ (non-orientable, 6 orientable markings).


```
Fatgraph([
 Vertex([5, 2, 1]),# a
 Vertex([2, 4, 0]),# b
 Vertex([0, 4, 3]),# c
 Vertex([5, 1, 3]),# d
])
```

4.5.1. Boundary cycles.

$$
\begin{aligned}
\alpha & =\left({ }^{2} d^{0} \rightarrow{ }^{0} a^{1} \rightarrow{ }^{1} c^{2} \rightarrow{ }^{0} b^{1}\right) \\
\beta & =\left({ }^{1} a^{2} \rightarrow{ }^{2} b^{0} \rightarrow{ }^{1} d^{2} \rightarrow{ }^{2} c^{0}\right) \\
\gamma & =\left({ }^{2} a^{0} \rightarrow{ }^{0} d^{1}\right) \\
\delta & =\left({ }^{0} c^{1} \rightarrow{ }^{1} b^{2}\right)
\end{aligned}
$$

4.5.2. Automorphisms.

| $A_{0}$ | a | b | c | d | 0 | 1 | 2 | 3 | 4 | 5 | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}^{\ddagger}$ | b | a | d | c | 5 | 4 | 2 | 3 | 1 | 0 | $\beta$ | $\alpha$ | $\delta$ | $\gamma$ |
| $A_{2} \dagger \ddagger$ | c | d | a | b | 1 | 0 | 3 | 2 | 5 | 4 | $\alpha$ | $\beta$ | $\delta$ | $\gamma$ |
| $A_{3} \dagger \ddagger$ | d | c | b | a | 4 | 5 | 3 | 2 | 0 | 1 | $\beta$ | $\alpha$ | $\gamma$ | $\delta$ |

4.5.3. Markings.

|  | $G_{6,4}^{(0)}$ | $G_{6,4}^{(1)}$ | $G_{6,4}^{(2)}$ | $G_{6,4}^{(3)}$ | $G_{6,4}^{(4)}$ | $G_{6,4}^{(5)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 0 | 0 | 0 | 1 | 1 | 2 |
| $\beta$ | 1 | 2 | 3 | 2 | 3 | 3 |
| $\gamma$ | 2 | 1 | 1 | 0 | 0 | 0 |
| $\delta$ | 3 | 3 | 2 | 3 | 2 | 1 |

4.6. The Fatgraph $G_{6,5}$ (2 orientable markings).


```
Fatgraph([
 Vertex([1, 0, 2]),# a
 Vertex([2, 4, 5]),# b
 Vertex([4, 0, 3]),# c
 Vertex([1, 5, 3]),# d
])
```

4.6.1. Boundary cycles.

$$
\begin{aligned}
& \alpha=\left({ }^{2} d^{0} \rightarrow{ }^{0} a^{1} \rightarrow{ }^{1} c^{2}\right) \\
& \beta=\left({ }^{1} a^{2} \rightarrow{ }^{0} c^{1} \rightarrow{ }^{0} b^{1}\right) \\
& \gamma=\left({ }^{2} a^{0} \rightarrow{ }^{2} b^{0} \rightarrow{ }^{0} d^{1}\right) \\
& \delta=\left({ }^{2} c^{0} \rightarrow{ }^{1} d^{2} \rightarrow{ }^{1} b^{2}\right)
\end{aligned}
$$

4.6.2. Automorphisms.

| $A_{0}$ | a | b | c | d | 0 | 1 | 2 | 3 | 4 | 5 | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1} \ddagger$ | a | d | b | c | 2 | 0 | 1 | 4 | 5 | 3 | $\beta$ | $\gamma$ | $\alpha$ | $\delta$ |
| $A_{2}{ }^{\ddagger}$ | a | c | d | b | 1 | 2 | 0 | 5 | 3 | 4 | $\gamma$ | $\alpha$ | $\beta$ | $\delta$ |
| $A_{3}^{\ddagger}$ | b | d | c | a | 4 | 2 | 5 | 0 | 3 | 1 | $\beta$ | $\delta$ | $\gamma$ | $\alpha$ |
| $A_{4}^{\ddagger}$ | b | a | d | c | 5 | 4 | 2 | 3 | 1 | 0 | $\delta$ | $\gamma$ | $\beta$ | $\alpha$ |
| $A_{5}^{\ddagger}$ | b | c | a | d | 2 | 5 | 4 | 1 | 0 | 3 | $\gamma$ | $\beta$ | $\delta$ | $\alpha$ |
| $A_{6}{ }^{\ddagger}$ | c | d | a | b | 0 | 4 | 3 | 2 | 1 | 5 | $\beta$ | $\alpha$ | $\delta$ | $\gamma$ |
| $A_{7^{\ddagger}}$ | c | b | d | a | 3 | 0 | 4 | 1 | 5 | 2 | $\alpha$ | $\delta$ | $\beta$ | $\gamma$ |
| $A_{8}^{\ddagger}$ | c | a | b | d | 4 | 3 | 0 | 5 | 2 | 1 | $\delta$ | $\beta$ | $\alpha$ | $\gamma$ |
| $A_{9}{ }^{\ddagger}$ | d | c | b | a | 5 | 1 | 3 | 2 | 4 | 0 | $\gamma$ | $\delta$ | $\alpha$ | $\beta$ |
| $A_{10} \ddagger$ | d | a | c | b | 3 | 5 | 1 | 4 | 0 | 2 | $\delta$ | $\alpha$ | $\gamma$ | $\beta$ |
| $A_{11}{ }^{\ddagger}$ | d | b | a | c | 1 | 3 | 5 | 0 | 2 | 4 | $\alpha$ | $\gamma$ | $\delta$ | $\beta$ |

4.6.3. Markings.

|  | $G_{6,5}^{(0)}$ | $G_{6,5}^{(1)}$ |
| :---: | :---: | :---: |
| $\alpha$ | 0 | 0 |
| $\beta$ | 1 | 1 |
| $\gamma$ | 2 | 3 |
| $\delta$ | 3 | 2 |

## 5. Markings of fatgraphs with trivial automorphisms

This section shows the numbering of marked fatgraphs when the base unmarked fatgraph $G$ has only the trivial automorphism.

|  | $G^{(0)}$ | $G^{(1)}$ | $G^{(2)}$ | $G^{(3)}$ | $G^{(4)}$ | $G^{(5)}$ | $G^{(6)}$ | $G^{(7)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| $\beta$ | 1 | 1 | 2 | 2 | 3 | 3 | 0 | 0 |
| $\gamma$ | 2 | 3 | 1 | 3 | 1 | 2 | 2 | 3 |
| $\delta$ | 3 | 2 | 3 | 1 | 2 | 1 | 3 | 2 |
|  | $G^{(8)}$ | $G^{(9)}$ | $G^{(10)}$ | $G^{(11)}$ | $G^{(12)}$ | $G^{(13)}$ | $G^{(14)}$ | $G^{(15)}$ |
| $\alpha$ | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| $\beta$ | 2 | 2 | 3 | 3 | 0 | 0 | 1 | 1 |
| $\gamma$ | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 3 |
| $\delta$ | 3 | 0 | 2 | 0 | 3 | 1 | 3 | 0 |
|  | $G^{(16)}$ | $G^{(17)}$ | $G^{(18)}$ | $G^{(19)}$ | $G^{(20)}$ | $G^{(21)}$ | $G^{(22)}$ | $G^{(23)}$ |
| $\alpha$ | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 |
| $\beta$ | 3 | 3 | 0 | 0 | 1 | 1 | 2 | 2 |
| $\gamma$ | 0 | 1 | 1 | 2 | 0 | 2 | 0 | 1 |
| $\delta$ | 1 | 0 | 2 | 1 | 2 | 0 | 1 | 0 |

## APPENDIX D

## Rheinfall benchmark data

The Sparse Integer Matrices Collection [15] is an online compilation of integer matrices from various sources, curated by Jean-Guillaume Dumas. It has been used for benchmarking the performance and other characteristics of the "Rheinfall" algorithm for Gaussian elimination (Chapter 4).

## 1. Features of the matrices in the SIMC collection

The following table recaps the main features of the matrices in the SIMC collection. The matrices are grouped according to the original subdivision in the SIMC website. Figures D. 1 and D. 2 provide a graphical depiction of the data in the table.

| Matrix | Rows | Columns | Nonzero | Density\% |
| :---: | :---: | :---: | :---: | :---: |
| BIBD |  |  |  |  |
| BIBD_22_8_231x319770 | 231 | 319770 | 8953560 | 12.1212 |
| bibd.11.5 | 55 | 462 | 4620 | 18.1818 |
| bibd.12.4 | 66 | 495 | 2970 | 9.0909 |
| bibd.15.3 | 105 | 455 | 1365 | 2.8571 |
| bibd.17.3 | 136 | 680 | 2040 | 2.2059 |
| bibd.9.3 | 36 | 84 | 252 | 8.3333 |
| bibd.9.5 | 36 | 126 | 1260 | 27.7778 |
| bibd_12_5_66x792 | 66 | 792 | 7920 | 15.1515 |
| bibd_13_6_78x1716 | 78 | 1716 | 25740 | 19.2308 |
| bibd_14_7_91x3432 | 91 | 3432 | 72072 | 23.0769 |
| bibd_15_7_105x6435 | 105 | 6435 | 135135 | 20.0000 |
| bibd_16_8_120x12870 | 120 | 12870 | 360360 | 23.3333 |
| bibd_17_4_136x2380 | 136 | 2380 | 14280 | 4.4118 |
| bibd_17_8_136x24310 | 136 | 24310 | 680680 | 20.5882 |
| bibd_18_9_153x48620 | 153 | 48620 | 1750320 | 23.5294 |
| bibd_19_9_171x92378 | 171 | 92378 | 3325608 | 21.0526 |
| bibd_20_10_190x184756 | 190 | 184756 | 8314020 | 23.6842 |
| bibd_-49_3_-1176x18424 | 1176 | 18424 | 55272 | 0.2551 |
| bibd_81_2_3240x3240 | 3240 | 3240 | 3240 | 0.0309 |
| bibd_81_3_3240x85320 | 3240 | 85320 | 255960 | 0.0926 |
| CAG |  |  |  |  |
| mat1916 | 1916 | 1916 | 195985 | 5.3387 |
| mat364 | 364 | 364 | 13585 | 10.2531 |
| mat72 | 72 | 72 | 1012 | 19.5216 |
| Forest |  |  |  |  |
| TF10 | 99 | 107 | 622 | 5.8718 |
| TF11 | 216 | 236 | 1607 | 3.1525 |
| TF12 | 488 | 552 | 4231 | 1.5707 |
| TF13 | 1121 | 1302 | 11185 | 0.7663 |


| Matrix | Rows | Columns | Nonzero | Density\% |
| :---: | :---: | :---: | :---: | :---: |
| TF14 | 2644 | 3160 | 29862 | 0.3574 |
| TF15 | 6334 | 7742 | 80057 | 0.1633 |
| TF16 | 15437 | 19321 | 216173 | 0.0725 |
| TF17 | 38132 | 48630 | 586218 | 0.0316 |
| TF18 | 95368 | 123867 | 1597545 | 0.0135 |
| TF19 | 241029 | 317955 | 4370721 | $5.703 \times 10^{-03}$ |
| Franz |  |  |  |  |
| 10164x1740 | 10164 | 1740 | 40424 | 0.2286 |
| 1280x2800 | 1280 | 2800 | 11520 | 0.3214 |
| $16728 \times 7176$ | 16728 | 7176 | 100368 | 0.0836 |
| $19588 \times 4164$ | 19588 | 4164 | 97508 | 0.1195 |
| 19588x4164bis | 19588 | 4164 | 97508 | 0.1195 |
| 47104x30144bis | 47104 | 30144 | 329728 | 0.0232 |
| $6784 \times 5252$ | 6784 | 5252 | 46528 | 0.1306 |
| $7382 \times 2882$ | 7382 | 2882 | 44056 | 0.2071 |
| 7576x3016 | 7576 | 3016 | 45456 | 0.1989 |
| big1sparse | 2240 | 768 | 5120 | 0.2976 |
| big2sparse | 4032 | 4480 | 21504 | 0.1190 |
| G5 |  |  |  |  |
| IG5-10 | 652 | 976 | 10273 | 1.6144 |
| IG5-11 | 1227 | 1692 | 22110 | 1.0650 |
| IG5-12 | 2296 | 2875 | 46260 | 0.7008 |
| IG5-13 | 3994 | 4731 | 91209 | 0.4827 |
| IG5-14 | 6735 | 7621 | 173337 | 0.3377 |
| IG5-15 | 11369 | 11987 | 323509 | 0.2374 |
| IG5-16 | 18846 | 18485 | 588326 | 0.1689 |
| IG5-17 | 30162 | 27944 | 1035008 | 0.1228 |
| IG5-18 | 47894 | 41550 | 1790490 | 0.0900 |
| IG5-6 | 30 | 77 | 251 | 10.8658 |
| IG5-7 | 62 | 150 | 549 | 5.9032 |
| IG5-8 | 156 | 292 | 1711 | 3.7561 |
| IG5-9 | 342 | 540 | 4570 | 2.4746 |
| GL7d |  |  |  |  |
| GL7d10 | 1 | 60 | 8 | 13.3333 |
| GL7d11 | 1019 | 60 | 1513 | 2.4746 |
| GL7d12 | 8899 | 1019 | 37519 | 0.4137 |
| GL7d13 | 47271 | 8899 | 356232 | 0.0847 |
| GL7d14 | 171375 | 47271 | 1831183 | 0.0226 |
| GL7d15 | 460261 | 171375 | 6080381 | $7.709 \times 10^{-03}$ |
| GL7d23 | 105054 | 349443 | 2695430 | $7.342 \times 10^{-03}$ |
| GL7d24 | 21074 | 105054 | 593892 | 0.0268 |
| GL7d25 | 2798 | 21074 | 81671 | 0.1385 |
| GL7d26 | 305 | 2798 | 7412 | 0.8685 |
| Grobner |  |  |  |  |
| HFE18_96.in.sms | 2372 | 4096 | 933343 | 9.6065 |
| c8_mat11 | 4562 | 5761 | 2462970 | 9.3714 |
| c8_mat11.I | 4562 | 5761 | 2462970 | 9.3714 |
| f855_mat9 | 2456 | 2511 | 171214 | 2.7763 |
| f855_mat9.I | 2456 | 2511 | 171214 | 2.7763 |
| rkat $\overline{7}$ _mat5 | 694 | 738 | 38114 | 7.4416 |
| robot 24 c 1 _mat5 | 404 | 302 | 15118 | 12.3910 |
| robot24c1_mat5.J | 302 | 404 | 15118 | 12.3910 |


| Matrix | Rows | Columns | Nonzero | Density\% |
| :---: | :---: | :---: | :---: | :---: |
| Homology |  |  |  |  |
| D6-6 | 120576 | 23740 | 147240 | $5.144 \times 10^{-03}$ |
| ch3-3.b1.18x9 | 18 | 9 | 36 | 22.2222 |
| ch3-3.b2.6x18 | 6 | 18 | 18 | 16.6667 |
| ch4-4.b1.72x16 | 72 | 16 | 144 | 12.5000 |
| ch4-4.b2.96x72 | 96 | 72 | 288 | 4.1667 |
| ch4-4.b3.24x96 | 24 | 96 | 96 | 4.1667 |
| ch5-5.b1.200x25 | 200 | 25 | 400 | 8.0000 |
| ch5-5.b2.600x200 | 600 | 200 | 1800 | 1.5000 |
| ch5-5.b3.600x600 | 600 | 600 | 2400 | 0.6667 |
| ch5-5.b4.120x600 | 120 | 600 | 600 | 0.8333 |
| ch6-6.b1.450x36 | 450 | 36 | 900 | 5.5556 |
| ch6-6.b2.2400x450 | 2400 | 450 | 7200 | 0.6667 |
| ch6-6.b3.5400x2400 | 5400 | 2400 | 21600 | 0.1667 |
| ch6-6.b4.4320x5400 | 4320 | 5400 | 21600 | 0.0926 |
| ch6-6.b5.720x4320 | 720 | 4320 | 4320 | 0.1389 |
| ch7-6.b1.630x42 | 630 | 42 | 1260 | 4.7619 |
| ch7-6.b2.4200x630 | 4200 | 630 | 12600 | 0.4762 |
| ch7-6.b3.12600x4200 | 12600 | 4200 | 50400 | 0.0952 |
| ch7-6.b4.15120x12600 | 15120 | 12600 | 75600 | 0.0397 |
| ch7-6.b5.5040x15120 | 5040 | 15120 | 30240 | 0.0397 |
| ch7-7.b1.882x49 | 882 | 49 | 1764 | 4.0816 |
| ch7-7.b2.7350x882 | 7350 | 882 | 22050 | 0.3401 |
| ch7-7.b5.35280x52920 | 35280 | 52920 | 211680 | 0.0113 |
| ch7-8.b1.1176x56 | 1176 | 56 | 2352 | 3.5714 |
| ch7-8.b2.11760x1176 | 11760 | 1176 | 35280 | 0.2551 |
| ch7-8.b3.58800x11760 | 58800 | 11760 | 235200 | 0.0340 |
| ch7-8.b4.141120x58800 | 141120 | 58800 | 705600 | $8.503 \times 10^{-03}$ |
| ch7-8.b5.141120x141120 | 141120 | 141120 | 846720 | $4.252 \times 10^{-03}$ |
| ch7-9.b1.1512x63 | 1512 | 63 | 3024 | 3.1746 |
| ch7-9.b2.17640x1512 | 17640 | 1512 | 52920 | 0.1984 |
| ch7-9.b3.105840x17640 | 105840 | 17640 | 423360 | 0.0227 |
| ch7-9.b4.317520x105840 | 317520 | 105840 | 1587600 | $4.724 \times 10^{-03}$ |
| ch7-9.b5.423360x317520 | 423360 | 317520 | 2540160 | $1.890 \times 10^{-03}$ |
| ch8-8.b1.1568x64 | 1568 | 64 | 3136 | 3.1250 |
| ch8-8.b2.18816x1568 | 18816 | 1568 | 56448 | 0.1913 |
| ch8-8.b3.117600x18816 | 117600 | 18816 | 470400 | 0.0213 |
| ch8-8.b4.376320x117600 | 376320 | 117600 | 1881600 | $4.252 \times 10^{-03}$ |
| ch8-8.b5.564480x376320 | 564480 | 376320 | 3386880 | $1.594 \times 10^{-03}$ |
| cis.n4c6.b1.210x21 | 210 | 21 | 420 | 9.5238 |
| cis.n4c6.b13.6300x25605 | 6300 | 25605 | 88200 | 0.0547 |
| cis.n4c6.b14.920x6300 | 920 | 6300 | 13800 | 0.2381 |
| cis.n4c6.b15.60x920 | 60 | 920 | 960 | 1.7391 |
| cis.n4c6.b2.1330x210 | 1330 | 210 | 3990 | 1.4286 |
| cis.n4c6.b3.5970x1330 | 5970 | 1330 | 23880 | 0.3008 |
| cis.n4c6.b4.20058x5970 | 20058 | 5970 | 100290 | 0.0838 |
| klein.b1.30x10 | 30 | 10 | 60 | 20.0000 |
| klein.b2.20x30 | 20 | 30 | 60 | 10.0000 |
| lutz30-23.b6.1716x3003 | 1716 | 3003 | 12012 | 0.2331 |
| m133.b3.200200x200200 | 200200 | 200200 | 800800 | $1.998 \times 10^{-03}$ |
| mk10.b1.630x45 | 630 | 45 | 1260 | 4.4444 |
| mk10.b2.3150x630 | 3150 | 630 | 9450 | 0.4762 |
| mk10.b3.4725x3150 | 4725 | 3150 | 18900 | 0.1270 |
| mk10.b4.945x4725 | 945 | 4725 | 4725 | 0.1058 |
| mk11.b1.990x55 | 990 | 55 | 1980 | 3.6364 |


| Matrix | Rows | Columns | Nonzero | Density\% |
| :---: | :---: | :---: | :---: | :---: |
| mk11.b2.6930x990 | 6930 | 990 | 20790 | 0.3030 |
| mk11.b3.17325x6930 | 17325 | 6930 | 69300 | 0.0577 |
| mk11.b4.10395x17325 | 10395 | 17325 | 51975 | 0.0289 |
| mk11.b4.9450x17325 | 9450 | 17325 | 47250 | 0.0289 |
| mk12.b1.1485x66 | 1485 | 66 | 2970 | 3.0303 |
| mk12.b2.13860x1485 | 13860 | 1485 | 41580 | 0.2020 |
| mk12.b3.51975x13860 | 51975 | 13860 | 207900 | 0.0289 |
| mk12.b4.62370x51975 | 62370 | 51975 | 311850 | $9.620 \times 10^{-03}$ |
| mk12.b5.10395x62370 | 10395 | 62370 | 62370 | $9.620 \times 10^{-03}$ |
| mk13.b5.135135x270270 | 135135 | 270270 | 810810 | $2.220 \times 10^{-03}$ |
| mk9.b1.378x36 | 378 | 36 | 756 | 5.5556 |
| mk9.b2.1260x378 | 1260 | 378 | 3780 | 0.7937 |
| mk9.b3.945x1260 | 945 | 1260 | 3780 | 0.3175 |
| n2c6.b1.105x15 | 105 | 15 | 210 | 13.3333 |
| n2c6.b10.30x306 | 30 | 306 | 330 | 3.5948 |
| n2c6.b2.455x105 | 455 | 105 | 1365 | 2.8571 |
| n2c6.b3.1365x455 | 1365 | 455 | 5460 | 0.8791 |
| n2c6.b4.3003x1365 | 3003 | 1365 | 15015 | 0.3663 |
| n2c6.b5.4945x3003 | 4945 | 3003 | 29670 | 0.1998 |
| n2c6.b6.5715x4945 | 5715 | 4945 | 40005 | 0.1416 |
| n2c6.b7.3990x5715 | 3990 | 5715 | 31920 | 0.1400 |
| n2c6.b8.1470x3990 | 1470 | 3990 | 13230 | 0.2256 |
| n2c6.b9.306x1470 | 306 | 1470 | 3060 | 0.6803 |
| n3c4.b1.15x6 | 15 | 6 | 30 | 33.3333 |
| n3c4.b2.20x15 | 20 | 15 | 60 | 20.0000 |
| n3c4.b3.15x20 | 15 | 20 | 60 | 20.0000 |
| n3c4.b4.6x15 | 6 | 15 | 30 | 33.3333 |
| n3c5.b1.45x10 | 45 | 10 | 90 | 20.0000 |
| n3c5.b2.120x45 | 120 | 45 | 360 | 6.6667 |
| n3c5.b3.210x120 | 210 | 120 | 840 | 3.3333 |
| n3c5.b4.252x210 | 252 | 210 | 1260 | 2.3810 |
| n3c5.b5.210x252 | 210 | 252 | 1260 | 2.3810 |
| n3c5.b6.120x210 | 120 | 210 | 840 | 3.3333 |
| n3c5.b7.30x120 | 30 | 120 | 240 | 6.6667 |
| n3c6.b1.105x15 | 105 | 105 | 210 | 1.9048 |
| n3c6.b10.675x2511 | 675 | 2511 | 7425 | 0.4381 |
| n3c6.b11.60x675 | 60 | 675 | 720 | 1.7778 |
| n3c6.b2.455x105 | 455 | 105 | 1365 | 2.8571 |
| n3c6.b3.1365x455 | 1365 | 455 | 5460 | 0.8791 |
| n3c6.b4.3003x1365 | 3003 | 1365 | 15015 | 0.3663 |
| n3c6.b5.5005x3003 | 5005 | 3003 | 30030 | 0.1998 |
| n3c6.b6.6435x5005 | 6435 | 5005 | 45045 | 0.1399 |
| n3c6.b7.6435x6435 | 6435 | 6435 | 51480 | 0.1243 |
| n3c6.b8.4935x6435 | 4935 | 6435 | 44415 | 0.1399 |
| n3c6.b9.2511x4935 | 2511 | 4935 | 25110 | 0.2026 |
| n4c5.b1.105x15 | 105 | 15 | 210 | 13.3333 |
| n4c5.b10.120x630 | 120 | 630 | 1320 | 1.7460 |
| n4c5.b11.10x120 | 10 | 120 | 120 | 10.0000 |
| n4c5.b2.455x105 | 455 | 105 | 1365 | 2.8571 |
| n4c5.b3.1350x455 | 1350 | 455 | 5400 | 0.8791 |
| n4c5.b4.2852x1350 | 2852 | 1350 | 14260 | 0.3704 |
| n4c5.b5.4340x2852 | 4340 | 2852 | 26040 | 0.2104 |
| n4c5.b6.4735x4340 | 4735 | 4340 | 33145 | 0.1613 |
| n4c5.b7.3635x4735 | 3635 | 4735 | 29080 | 0.1690 |
| n4c5.b8.1895x3635 | 1895 | 3635 | 17055 | 0.2476 |


| Matrix | Rows | Columns | Nonzero | Density\% |
| :---: | :---: | :---: | :---: | :---: |
| n4c5.b9.630x1895 | 630 | 1895 | 6300 | 0.5277 |
| n4c6.b1.210x21 | 210 | 21 | 420 | 9.5238 |
| n4c6.b10.132402x186558 | 132402 | 186558 | 1456422 | $5.896 \times 10^{-03}$ |
| n4c6.b11.69235x132402 | 69235 | 132402 | 830820 | $9.063 \times 10^{-03}$ |
| n4c6.b12.25605x69235 | 25605 | 69235 | 332865 | 0.0188 |
| n4c6.b13.6300x25605 | 6300 | 25605 | 88200 | 0.0547 |
| n4c6.b14.920x6300 | 920 | 6300 | 13800 | 0.2381 |
| n4c6.b15.60x920 | 60 | 920 | 960 | 1.7391 |
| n4c6.b2.1330x210 | 1330 | 210 | 3990 | 1.4286 |
| n4c6.b3.5970x1330 | 5970 | 1330 | 23880 | 0.3008 |
| n4c6.b4.20058x5970 | 20058 | 5970 | 100290 | 0.0838 |
| n4c6.b5.51813x20058 | 51813 | 20058 | 310878 | 0.0299 |
| n4c6.b6.104115x51813 | 104115 | 51813 | 728805 | 0.0135 |
| n4c6.b7.163215x104115 | 163215 | 104115 | 1305720 | $7.684 \times 10^{-03}$ |
| n4c6.b8.198895x163215 | 198895 | 163215 | 1790055 | $5.514 \times 10^{-03}$ |
| n4c6.b9.186558x198895 | 186558 | 198895 | 1865580 | $5.028 \times 10^{-03}$ |
| shar_te2.b1.17160x286 | 17160 | 286 | 34320 | 0.6993 |
| shar_te2.b2.200200x17160 | 200200 | 17160 | 600600 | 0.0175 |
| shar_te2.b3.200200x200200 | 200200 | 200200 | 800800 | $1.998 \times 10^{-03}$ |
| Kocay |  |  |  |  |
| Trec10 | 106 | 478 | 8612 | 16.9969 |
| Trec11 | 235 | 1138 | 35705 | 13.3512 |
| Trec12 | 551 | 2726 | 151219 | 10.0677 |
| Trec13 | 1301 | 6561 | 654517 | 7.6678 |
| Trec14 | 3159 | 15905 | 2872265 | 5.7166 |
| Trec4 | 2 | 3 | 3 | 50.0000 |
| Trec5 | 3 | 7 | 12 | 57.1429 |
| Trec6 | 6 | 15 | 40 | 44.4444 |
| Trec7 | 11 | 36 | 147 | 37.1212 |
| Trec8 | 23 | 84 | 549 | 28.4161 |
| Trec9 | 47 | 201 | 2147 | 22.7268 |
| Margulies |  |  |  |  |
| cat_ears_2_1 | 85 | 85 | 254 | 3.5156 |
| cat_ears_2_4 | 1009 | 2689 | 7982 | 0.2942 |
| cat_ears_3_1 | 204 | 181 | 542 | 1.4679 |
| cat_ears_3_4 | 5226 | 13271 | 39592 | 0.0571 |
| cat_ears_4_1 | 377 | 313 | 938 | 0.7949 |
| cat_ears_4_4 | 19020 | 44448 | 132888 | 0.0157 |
| flower_4_1 | 121 | 129 | 386 | 2.4729 |
| flower_4_4 | 1837 | 5529 | 16466 | 0.1621 |
| flower_5_1 | 211 | 201 | 602 | 1.4194 |
| flower_5_4 | 5226 | 14721 | 43942 | 0.0571 |
| flower_7-1 | 463 | 393 | 1178 | 0.6474 |
| flower_7_4 | 27693 | 67593 | 202218 | 0.0108 |
| flower_8_1 | 625 | 513 | 1538 | 0.4797 |
| flower_8_4 | 55081 | 125361 | 375266 | $5.435 \times 10^{-03}$ |
| kneser - 10 - ${ }^{4}$ _ 1 | 349651 | 330751 | 992252 | $8.580 \times 10^{-04}$ |
| kneser_6_2_1 | 601 | 676 | 2027 | 0.4989 |
| kneser_8_3_1 | 15737 | 15681 | 47042 | 0.0191 |
| wheel_3_1 | 21 | 25 | 74 | 14.0952 |
| wheel_4_1 | 36 | 41 | 122 | 8.2656 |
| wheel_5_1 | 57 | 61 | 182 | 5.2344 |
| wheel_601 | 902103 | 723605 | 2170814 | $3.326 \times 10^{-04}$ |
| wheel_6_1 | 83 | 85 | 254 | 3.6003 |


| Matrix | Rows | Columns | Nonzero | Density\% |
| :---: | :---: | :---: | :---: | :---: |
| wheel_7_1 | 114 | 113 | 338 | 2.6238 |
| Relat |  |  |  |  |
| rel3 | 12 | 5 | 18 | 30.0000 |
| rel4 | 66 | 12 | 104 | 13.1313 |
| rel5 | 340 | 35 | 656 | 5.5126 |
| rel6 | 2340 | 157 | 5101 | 1.3885 |
| rel7 | 21924 | 1045 | 50636 | 0.2210 |
| rel8 | 345688 | 12347 | 821839 | 0.0193 |
| relat3 | 12 | 5 | 24 | 40.0000 |
| relat4 | 66 | 12 | 172 | 21.7172 |
| relat5 | 340 | 35 | 1058 | 8.8908 |
| relat6 | 2340 | 157 | 8108 | 2.2070 |
| relat7 | 21924 | 1045 | 81355 | 0.3551 |
| relat7b | 21924 | 1045 | 81355 | 0.3551 |
| relat8 | 345688 | 12347 | 1334038 | 0.0313 |
| Smooshed |  |  |  |  |
| olivermatrix. 1 | 9873 | 9621360 | 30002 | $3.158 \times 10^{-05}$ |
| olivermatrix. 2 | 78661 | 737004 | 1494559 | $2.578 \times 10^{-03}$ |
| Taha |  |  |  |  |
| mat2_abtaha | 37932 | 331 | 137228 | 1.0930 |
| mat_abtaha | 14596 | 209 | 51307 | 1.6819 |
| diffGL6 |  |  |  |  |
| D_10 | 163 | 341 | 2053 | 3.6936 |
| D_6 | 469 | 201 | 2526 | 2.6796 |
| D_7 | 636 | 470 | 5378 | 1.7991 |
| D_8 | 544 | 637 | 6153 | 1.7756 |
| D_9 | 340 | 545 | 4349 | 2.3470 |
| diffSL6 |  |  |  |  |
| D_10 | 460 | 816 | 7614 | 2.0285 |
| D_11 | 169 | 461 | 2952 | 3.7890 |
| D_5 | 434 | 115 | 1832 | 3.6706 |
| D_6 | 970 | 435 | 6491 | 1.5383 |
| D_7 | 1270 | 971 | 12714 | 1.0310 |
| D_8 | 1132 | 1271 | 14966 | 1.0402 |
| D_9 | 815 | 1133 | 12395 | 1.3423 |

## 2. Performance of different pivoting strategies

The following table lists the number of arithmetic operations performed by the "Rheinfall" algorithm with each of the different pivoting strategies implemented. Each column corresponds to a pivoting strategy as defined in Section 3.2; boldface marks the minimum in each row. Figure D. 3 gives a graphical summary of the data in the table, color-coded by matrix group; a different view on the same data, grouped by pivoting algorithm, has been printed and analyzed in Figure 4.2 in Section 3.3.

The tests were run on the Swiss National Grid Infrastructure SMSCG [58] using the GC3Pie framework [17]. In contrast with timing measurements, the count of arithmetic operations only depends on the algorithm and is thus independent of


Figure D.1. Size and density of SIMC matrices, color-coded by group. Each matrix is represented by a dot, whose coordinates give the size of the matrix: the $x$-axis plots the number of columns ( $\log$ scale), and the $y$-axis reports the number of rows (log scale). The radius of each colored disc is proportional to the logarithm of the matrix density.


Figure D.2. Scatter plot of number of nonzero elements relative to matrix size. A colored thread joins matrices belonging to the same SIMC group. Note that both axes use log scale.


Figure D.3. Scatter plot of the number of arithmetic operations relative to number of nonzero elements, color-coded by matrix group. Note that both axes use log scale.
the hardware where the program is run. For each matrix, a computational job was spawned, which was allocated a maximum run time of 24 hours and 4GB maximum memory usage.

For some matrices it was not possible to obtain the precise count; these cases have been marked with one of the following labels:

## Arith. ovf.:

During the elimination work, a matrix entry exceeded the maximum integer number representable as a 64 -bit machine integer.

## No mem.:

The rank-computation program run out of memory before completion.

## No data:

Some unknown error prevented the rank-computation program from completing; this includes the computational jobs that did not terminate within 24 hours.

| Matrix | No pivoting | Sparsity | Threshold | Weight |
| :---: | :---: | :---: | :---: | :---: |
| BIBD |  |  |  |  |
| BIBD_22_8_231x319770 | No data | No data | $1.6623 \times 10^{09}$ | $1.1291 \times 10^{09}$ |
| bibd. 11.5 | 191'030 | No data | 209'937 | No data |
| bibd.12.4 | 153'849 | 153'849 | No data | No data |
| bibd.15.3 | 76'968 | 76'968 | No data | No data |
| bibd.17.3 | 147 '963 | 147 '963 | No data | 36'179 |
| bibd.17.4 | $1.4479 \times 10^{06}$ | $1.4479 \times 10^{06}$ | 855'426 | 586'884 |
| bibd.9.3 | 116 | 116 | No data | 469 |
| bibd.9.5 | No data | No data | 39'294 | No data |
| bibd_12_5_66x792 | 384'962 | 416 '165 | 564'994 | 278'516 |
| bibd_13_6_78x1716 | $1.2677 \times 10^{06}$ | $1.2498 \times 10^{06}$ | $1.7685 \times 10^{06}$ | $1.3000 \times 10^{06}$ |
| bibd_14_7_91x3432 | $3.4608 \times 10^{06}$ | No data | No data | $4.2818 \times 10^{06}$ |


| Matrix | No pivoting | Sparsity | Threshold | Weight |
| :---: | :---: | :---: | :---: | :---: |
| bibd_15_7_105x6435 | $7.3755 \times 10^{06}$ | $7.4016 \times 10^{06}$ | $1.1690 \times 10^{07}$ | No data |
| bibd_16_8_120x12870 | $1.8951 \times 10^{07}$ | No data | $3.3793 \times 10^{07}$ | $2.7751 \times 10^{07}$ |
| bibd_-17-4_136x2380 | $1.4479 \times 10^{06}$ | No data | 855 ' 426 | 586'884 |
| bibd_17-8_136x24310 | $4.0103 \times 10^{07}$ | $4.0685 \times 10^{07}$ | $7.1823 \times 10^{07}$ | $5.8319 \times 10^{07}$ |
| bibd_18_-9_153x48620 | $9.9416 \times 10^{07}$ | No data | $1.9710 \times 10^{08}$ | $1.7061 \times 10^{08}$ |
| bibd_19_9_171x92378 | $2.0955 \times 10^{08}$ | $2.1453 \times 10^{08}$ | $4.1758 \times 10^{08}$ | No data |
| bibd_-20_10-190x184756 | $5.0389 \times 10^{08}$ | $5.2072 \times 10^{08}$ | No data | $1.0059 \times 10^{09}$ |
| bibd_-49_3_1176x18424 | $3.3598 \times 10^{07}$ | $3.3598 \times 10^{07}$ | $3.4545 \times 10^{06}$ | $2.7161 \times 10^{06}$ |
| bibd_-81_2_3240x3240 | 0 | No data | 0 | 0 |
| bibd_81_3_3240x85320 | $4.2704 \times 10^{08}$ | $4.2704 \times 10^{08}$ | $2.6297 \times 10^{07}$ | $2.0469 \times 10^{07}$ |
| CAG |  |  |  |  |
| mat1916 | No mem. | No data | $6.6736 \times 10^{07}$ | No data |
| mat364 | No data | $1.1223 \times 10^{06}$ | $1.0613 \times 10^{06}$ | $1.1039 \times 10^{06}$ |
| mat72 | 39'011 | 15’075 | 16'197 | 15 '166 |
| Forest |  |  |  |  |
| TF10 | No data | 37 '607 | 37'571 | $38^{\prime} 378$ |
| TF11 | $354 ' 926$ | 300'940 | 308'425 | 310'284 |
| TF12 | $3.6427 \times 10^{06}$ | $2.7682 \times 10^{06}$ | $2.6969 \times 10^{06}$ | $2.4411 \times 10^{06}$ |
| TF13 | $4.2777 \times 10^{07}$ | No data | $2.9516 \times 10^{07}$ | No data |
| TF14 | No data | $2.5990 \times 10^{08}$ | $2.9553 \times 10^{08}$ | $2.6800 \times 10^{08}$ |
| TF15 | No data | $3.1290 \times 10^{09}$ | $3.8309 \times 10^{09}$ | No data |
| TF16 | No mem. | No mem. | No mem. | No mem. |
| TF17 | No data | No mem. | No mem. | No mem. |
| TF18 | No data | No mem. | No mem. | No mem. |
| TF19 | No mem. | No mem. | No mem. | No mem. |
| Franz |  |  |  |  |
| 10164x1740 | No data | $1.2380 \times 10^{07}$ | 523'688 | 775 '072 |
| 1280x2800 | $1.0291 \times 10^{06}$ | $1.0295 \times 10^{06}$ | No data | No data |
| $16728 \times 7176$ | No data | $1.1485 \times 10^{07}$ | $4.5349 \times 10^{06}$ | $4.1465 \times 10^{06}$ |
| 19588x4164 | No data | $6.2470 \times 10^{07}$ | $1.6203 \times 10^{06}$ | $2.2060 \times 10^{06}$ |
| 19588x4164bis | $5.5493 \times 10^{07}$ | $5.4429 \times 10^{07}$ | $1.6223 \times 10^{06}$ | $2.2246 \times 10^{06}$ |
| 47104x30144bis | No data | $6.9142 \times 10^{08}$ | $1.7558 \times 10^{08}$ | $1.0204 \times 10^{08}$ |
| $6784 \times 5252$ | $5.2780 \times 10^{07}$ | $8.6826 \times 10^{07}$ | $1.1200 \times 10^{07}$ | No data |
| $7382 \times 2882$ | $2.3057 \times 10^{07}$ | No data | $2.7179 \times 10^{06}$ | $2.3510 \times 10^{06}$ |
| 7576x3016 | $1.9337 \times 10^{07}$ | $1.8360 \times 10^{07}$ | $3.0515 \times 10^{06}$ | $4.0151 \times 10^{06}$ |
| big1sparse | No data | $44^{\prime} 522$ | 21'181 | $24 \times 698$ |
| big2sparse | $3.7355 \times 10^{07}$ | $2.7931 \times 10^{06}$ | No data | $2.1845 \times 10^{06}$ |
| G5 |  |  |  |  |
| IG5-10 | Arith. ovf. | Arith. ovf. | Arith. ovf. | Arith. ovf. |
| IG5-11 | Arith. ovf. | Arith. ovf. | Arith. ovf. | Arith. ovf. |
| IG5-12 | Arith. ovf. | Arith. ovf. | Arith. ovf. | Arith. ovf. |
| IG5-13 | Arith. ovf. | Arith. ovf. | Arith. ovf. | Arith. ovf. |
| IG5-14 | Arith. ovf. | Arith. ovf. | Arith. ovf. | Arith. ovf. |
| IG5-15 | Arith. ovf. | Arith. ovf. | $4.9024 \times 10^{09}$ | $5.1063 \times 10^{09}$ |
| IG5-16 | Arith. ovf. | Arith. ovf. | Arith. ovf. | Arith. ovf. |
| IG5-17 | Arith. ovf. | $5.9988 \times 10^{10}$ | Arith. ovf. | $5.8572 \times 10^{10}$ |
| IG5-18 | Arith. ovf. | $1.9806 \times 10^{11}$ | $1.8419 \times 10^{11}$ | Arith. ovf. |
| IG5-6 | No data | 058 | 058 | 058 |
| IG5-7 | 269 | 367 | 297 | 367 |
| IG5-8 | 98'284 | 71 '071 | 64'371 | 70'076 |
| IG5-9 | 889'074 | $643 \times 236$ | 583'278 | 607'248 |


| Matrix | No pivoting | Sparsity | Threshold | Weight |
| :---: | :---: | :---: | :---: | :---: |
| GL7d |  |  |  |  |
| GL7d10 | 0 | 0 | 0 | 0 |
| GL7d11 | 653 | 333 | 292 | 339 |
| GL7d12 | $1.4200 \times 10^{08}$ | No data | $8.1457 \times 10^{06}$ | No data |
| GL7d13 | $3.4395 \times 10^{11}$ | No mem. | No mem. | No mem. |
| GL7d16 | Arith. ovf. | No data | No data | No data |
| GL7d19 | Arith. ovf. | No data | No data | No data |
| GL7d20 | No data | No data | Arith. ovf. | Arith. ovf. |
| GL7d24 | $7.5005 \times 10^{10}$ | $1.3539 \times 10^{10}$ | $9.4151 \times 10^{09}$ | $1.4280 \times 10^{10}$ |
| GL7d25 | No data | $9.4973 \times 10^{06}$ | $2.1761 \times 10^{07}$ | $1.7159 \times 10^{07}$ |
| GL7d26 | 275'805 | 107'713 | No data | 228 '923 |
| Grobner |  |  |  |  |
| HFE18_96.in.sms | $1.3859 \times 10^{09}$ | $1.2632 \times 10^{09}$ | No data | $1.2596 \times 10^{09}$ |
| c8_mat11 | No mem. | No data | No mem. | No mem. |
| c8_mat11.I | No mem. | No mem. | No mem. | No mem. |
| f855_mat9 | No data | $3.3308 \times 10^{07}$ | $4.0252 \times 10^{07}$ | $3.6035 \times 10^{07}$ |
| f855_mat9.I | $3.3351 \times 10^{07}$ | No data | $4.0252 \times 10^{07}$ | No data |
| rkat7_mat5 | $1.4933 \times 10^{07}$ | No data | No data | $1.6028 \times 10^{07}$ |
| robot 24 c 1 _mat5 | Arith. ovf. | Arith. ovf. | Arith. ovf. | Arith. ovf. |
| robot24c1_mat5.J | No data | No mem. | $1.9902 \times 10^{07}$ | No mem. |
| Homology |  |  |  |  |
| D6-6 | $1.8401 \times 10^{06}$ | $1.3160 \times 10^{06}$ | No data | No data |
| ch3-3.b1.18x9 | 74 | 74 | 72 | 80 |
| ch3-3.b2.6x18 | 0 | 0 | 0 | No data |
| ch4-4.b1.72x16 | 388 | 388 | 366 | 382 |
| ch4-4.b2.96x72 | No data | 008 | 905 | 930 |
| ch5-5.b1.200x25 | 132 | No data | 086 | 114 |
| ch5-5.b2.600x200 | 13'596 | 13'596 | 13'596 | 13'596 |
| ch5-5.b3.600x600 | 346 '025 | 159'318 | 140'692 | No data |
| ch5-5.b4.120x600 | 0 | 0 | 0 | No data |
| ch6-6.b1.450x36 | 570 | 570 | 496 | No data |
| ch6-6.b2.2400x450 | No data | 57'548 | 57'548 | No data |
| ch6-6.b3.5400x2400 | No data | No data | 464'054 | 464'614 |
| ch6-6.b4.4320x5400 | $8.5019 \times 10^{08}$ | $8.7849 \times 10^{07}$ | $7.3530 \times 10^{07}$ | $1.1592 \times 10^{08}$ |
| ch6-6.b5.720x4320 | 0 | 0 | 0 | 0 |
| ch7-6.b1.630x42 | 599 | 599 | 510 | 563 |
| ch7-6.b2.4200x630 | No data | 101'158 | No data | 101'158 |
| ch7-6.b3.12600x4200 | $1.0515 \times 10^{06}$ | No data | $1.0486 \times 10^{06}$ | $1.0488 \times 10^{06}$ |
| ch7-6.b4.15120x12600 | $4.6144 \times 10^{08}$ | $9.2025 \times 10^{07}$ | $8.0412 \times 10^{07}$ | $9.2349 \times 10^{07}$ |
| ch7-6.b5.5040x15120 | $7.2952 \times 10^{06}$ | $7.2952 \times 10^{06}$ | $7.2952 \times 10^{06}$ | No data |
| ch7-7.b1.882x49 | 026 | 026 | No data | 984 |
| ch7-7.b2.7350x882 | 175'380 | No data | No data | 175'380 |
| ch7-7.b5.35280x52920 | No data | $1.9189 \times 10^{11}$ | No data | $2.1726 \times 10^{11}$ |
| ch7-8.b1.1176x56 | 687 | 687 | 564 | 639 |
| ch7-8.b2.11760x1176 | 278'622 | 278'622 | 278'622 | 278'622 |
| ch7-8.b3.58800x11760 | $4.5886 \times 10^{06}$ | $4.5886 \times 10^{06}$ | $4.5886 \times 10^{06}$ | $4.5886 \times 10^{06}$ |
| ch7-8.b4.141120x58800 | $5.7063 \times 10^{07}$ | $5.1903 \times 10^{07}$ | $4.8583 \times 10^{07}$ | $4.8329 \times 10^{07}$ |
| ch7-9.b1.1512x63 | 582 | 582 | 442 | 528 |
| ch7-9.b2.17640x1512 | 415'624 | No data | 415'624 | 415'624 |
| ch7-9.b3.105840x17640 | $8.1713 \times 10^{06}$ | No data | No data | No data |
| ch7-9.b4.317520x105840 | $1.0218 \times 10^{08}$ | $1.0072 \times 10^{08}$ | No data | No data |
| ch7-9.b5.423360x317520 | No data | $9.5007 \times 10^{10}$ | $6.2891 \times 10^{10}$ | $7.8621 \times 10^{10}$ |
| ch8-8.b1.1568x64 | 884 | 884 | No data | 830 |


| Matrix | No pivoting | Sparsity | Threshold | Weight |
| :---: | :---: | :---: | :---: | :---: |
| ch8-8.b2.18816x1568 | 439'740 | 439'740 | 439'740 | 439'740 |
| ch8-8.b3.117600x18816 | $8.8644 \times 10^{06}$ | No data | $8.8644 \times 10^{06}$ | No data |
| ch8-8.b4.376320x117600 | $9.8690 \times 10^{07}$ | $9.8690 \times 10^{07}$ | $9.7491 \times 10^{07}$ | $9.7513 \times 10^{07}$ |
| ch8-8.b5.564480x376320 | No data | $5.9845 \times 10^{10}$ | $3.0472 \times 10^{10}$ | $4.2815 \times 10^{10}$ |
| cis.n4c6.b1.210x21 | 970 | No data | 970 | 970 |
| cis.n4c6.b13.6300x25605 | 998'112 | No data | No data | $1.0002 \times 10^{06}$ |
| cis.n4c6.b14.920x6300 | 69'502 | No data | 69'493 | No data |
| cis.n4c6.b15.60x920 | 60 | 60 | 60 | 60 |
| cis.n4c6.b2.1330x210 | 18'240 | 18'240 | No data | No data |
| cis.n4c6.b3.5970x1330 | 164'220 | No data | 164'220 | 164'220 |
| cis.n4c6.b4.20058x5970 | 918'830 | No data | 918'830 | 918'830 |
| klein.b1.30x10 | 121 | No data | 115 | 121 |
| klein.b2.20x30 | 110 | 110 | No data | 110 |
| lutz30-23.b6.1716x3003 | $1.2249 \times 10^{08}$ | $9.7790 \times 10^{07}$ | No data | No data |
| m133.b3.200200x200200 | No mem. | No data | No data | No mem. |
| mk10.b1.630x45 | 826 | 826 | 626 | No data |
| mk10.b2.3150x630 | $91{ }^{\prime} 152$ | No data | 91'152 | No data |
| mk10.b3.4725x3150 | $1.5986 \times 10^{07}$ | $8.5148 \times 10^{06}$ | $5.6036 \times 10^{06}$ | No data |
| mk10.b4.945x4725 | 0 | 0 | No data | 0 |
| mk11.b1.990x55 | No data | 970 | 718 | No data |
| mk11.b2.6930x990 | No data | 197'124 | $197{ }^{\prime} 124$ | 197'124 |
| mk11.b3.17325x6930 | $3.3754 \times 10^{06}$ | $3.0171 \times 10^{06}$ | $2.6560 \times 10^{06}$ | $2.6967 \times 10^{06}$ |
| mk11.b4.10395x17325 | $3.4682 \times 10^{09}$ | $6.5338 \times 10^{09}$ | No data | No data |
| mk11.b4.9450x17325 | $3.9372 \times 10^{09}$ | $2.9856 \times 10^{09}$ | No data | $2.8960 \times 10^{09}$ |
| mk12.b1.1485x66 | No data | No data | 577 | 765 |
| mk12.b2.13860x1485 | 384'784 | No data | No data | 384'784 |
| mk12.b3.51975x13860 | $6.3085 \times 10^{06}$ | $6.3085 \times 10^{06}$ | $6.1795 \times 10^{06}$ | $6.1816 \times 10^{06}$ |
| mk12.b4.62370x51975 | No mem. | $2.0674 \times 10^{11}$ | $1.4935 \times 10^{11}$ | $1.5892 \times 10^{11}$ |
| mk12.b5.10395x62370 | 0 | 0 | 0 | 0 |
| mk13.b5.135135x270270 | No mem. | No mem. | No mem. | No mem. |
| mk9.b1.378x36 | 306 | 306 | 154 | 240 |
| mk9.b2.1260x378 | 37'010 | 37'010 | 37'010 | No data |
| mk9.b3.945x1260 | $8.1207 \times 10^{06}$ | $5.2889 \times 10^{06}$ | $2.8486 \times 10^{06}$ | $5.5121 \times 10^{06}$ |
| n2c6.b1.105x15 | 469 | No data | 469 | 469 |
| n2c6.b10.30x306 | 80 | 80 | 80 | 80 |
| n2c6.b2.455x105 | 824 | 824 | 824 | No data |
| n2c6.b3.1365x455 | 34'034 | No data | No data | 34'034 |
| n2c6.b4.3003x1365 | 120'120 | 120'120 | No data | 120'120 |
| n2c6.b5.4945x3003 | 297 '089 | 296'949 | No data | 294'997 |
| n2c6.b6.5715x4945 | 878'780 | No data | 646'170 | 708'290 |
| n2c6.b7.3990x5715 | $1.7394 \times 10^{06}$ | No data | $1.5878 \times 10^{06}$ | $1.5430 \times 10^{06}$ |
| n2c6.b8.1470x3990 | 100'366 | 100'141 | 97'926 | No data |
| n2c6.b9.306x1470 | 13'182 | 13'182 | 13'182 | 13'182 |
| n3c4.b1.15x6 | 55 | 55 | No data | 55 |
| n3c4.b2.20x15 | 184 | 184 | 184 | No data |
| n3c4.b3.15x20 | 215 | 215 | 215 | 215 |
| n3c4.b4.6x15 | 86 | 86 | No data | No data |
| n3c5.b1.45x10 | 189 | 189 | 189 | 189 |
| n3c5.b2.120x45 | 344 | 344 | No data | 344 |
| n3c5.b3.210x120 | 284 | 284 | 284 | 284 |
| n3c5.b4.252x210 | 560 | 560 | 560 | 560 |
| n3c5.b5.210x252 | 980 | No data | No data | No data |
| n3c5.b6.120x210 | 040 | 040 | 040 | 040 |
| n3c5.b7.30x120 | 309 | No data | 309 | 309 |
| n3c6.b1.105x15 | 455 | 455 | 455 | No data |


| Matrix | No pivoting | Sparsity | Threshold | Weight |
| :---: | :---: | :---: | :---: | :---: |
| n3c6.b10.675x2511 | 51'737 | No data | No data | 50'216 |
| n3c6.b11.60x675 | 66 | 66 | 66 | 66 |
| n3c6.b2.455x105 | 824 | 824 | No data | No data |
| n3c6.b3.1365x455 | 34'034 | 34'034 | No data | No data |
| n3c6.b4.3003x1365 | 120'120 | 120'120 | No data | No data |
| n3c6.b5.5005x3003 | 285'285 | 285'285 | 285'285 | No data |
| n3c6.b6.6435x5005 | 480'480 | 480'480 | 480'480 | 480'480 |
| n3c6.b7.6435x6435 | No data | 588'588 | 588'588 | 588'588 |
| n3c6.b8.4935x6435 | No data | No data | 546'525 | 568 '035 |
| n3c6.b9.2511x4935 | $1.5025 \times 10^{06}$ | 989'665 | 770'889 | 777'099 |
| n4c5.b1.105x15 | No data | No data | 469 | 469 |
| n4c5.b10.120x630 | 596 | 596 | 596 | 596 |
| n4c5.b11.10x120 | No data | No data | 0 | No data |
| n4c5.b2.455x105 | No data | 824 | 824 | No data |
| n4c5.b3.1350x455 | 33'772 | 33'772 | 33'772 | No data |
| n4c5.b4.2852x1350 | 115'932 | 115'932 | 115'932 | 115'932 |
| n4c5.b5.4340x2852 | 260'156 | 260'156 | No data | 255'521 |
| n4c5.b6.4735x4340 | 380'009 | 379'582 | No data | 365'542 |
| n4c5.b7.3635x4735 | No data | No data | 334 '518 | 328 '146 |
| n4c5.b8.1895x3635 | 176 '637 | No data | 174'944 | 169'601 |
| n4c5.b9.630x1895 | 44 '936 | 44 '936 | $45 ’ 014$ | 43'968 |
| n4c6.b1.210x21 | 970 | 970 | 970 | No data |
| n4c6.b10.132402x186558 | No data | $3.9015 \times 10^{07}$ | $3.5139 \times 10^{07}$ | $3.7091 \times 10^{07}$ |
| n4c6.b11.69235x132402 | No data | $2.1085 \times 10^{07}$ | No data | No data |
| n4c6.b12.25605x69235 | No data | $6.3680 \times 10^{06}$ | $6.2191 \times 10^{06}$ | $6.2240 \times 10^{06}$ |
| n4c6.b13.6300x25605 | 998 '112 | 998 '112 | $1.0090 \times 10^{06}$ | No data |
| n4c6.b14.920x6300 | 69'502 | 69'502 | 69'493 | 69'493 |
| n4c6.b15.60x920 | 60 | 60 | 60 | 60 |
| n4c6.b2.1330x210 | 18'240 | 18'240 | 18'240 | 18'240 |
| n4c6.b3.5970x1330 | 164'220 | No data | 164'220 | 164'220 |
| n4c6.b4.20058x5970 | 918'830 | No data | 918'830 | No data |
| n4c6.b5.51813x20058 | $3.6217 \times 10^{06}$ | $3.6215 \times 10^{06}$ | $3.5710 \times 10^{06}$ | No data |
| n4c6.b6.104115x51813 | No data | $1.0565 \times 10^{07}$ | $1.0182 \times 10^{07}$ | $1.0310 \times 10^{07}$ |
| n4c6.b7.163215x104115 | $2.3279 \times 10^{07}$ | $2.3279 \times 10^{07}$ | $2.1753 \times 10^{07}$ | $2.2337 \times 10^{07}$ |
| n4c6.b8.198895x163215 | $3.8373 \times 10^{07}$ | $3.8234 \times 10^{07}$ | $3.4786 \times 10^{07}$ | $3.6373 \times 10^{07}$ |
| n4c6.b9.186558x198895 | $4.7002 \times 10^{07}$ | $4.6349 \times 10^{07}$ | $4.1629 \times 10^{07}$ | $4.3913 \times 10^{07}$ |
| shar_te2.b1.17160x286 | $119 \times 325$ | 119'325 | 85'060 | 104 '928 |
| shar_te2.b2.200200x17160 | $4.2521 \times 10^{07}$ | $3.7335 \times 10^{07}$ | No data | No data |
| Kocay |  |  |  |  |
| Trec10 | 399'325 | 402'318 | 332'659 | 398'486 |
| Trec11 | $5.9528 \times 10^{06}$ | $5.7429 \times 10^{06}$ | No data | No data |
| Trec12 | $1.1322 \times 10^{08}$ | $9.1119 \times 10^{07}$ | $8.2281 \times 10^{07}$ | $8.3029 \times 10^{07}$ |
| Trec13 | $1.6610 \times 10^{09}$ | No data | $1.5590 \times 10^{09}$ | No data |
| Trec14 | $2.2841 \times 10^{10}$ | $2.9927 \times 10^{10}$ | $2.9209 \times 10^{10}$ | No data |
| Trec3 | 0 | 0 | 0 | 0 |
| Trec4 | 1 | No data | 1 | 1 |
| Trec5 | No data | 19 | 19 | 19 |
| Trec6 | 130 | 136 | 130 | No data |
| Trec7 | 532 | 505 | 505 | 505 |
| Trec8 | 627 | 945 | 928 | 813 |
| Trec9 | 35'351 | No data | 36 '896 | $36^{\prime} 103$ |
| Margulies |  |  |  |  |
| cat_ears_2_1 | 706 | 344 | 310 | 330 |
| cat_ears_2_4 | 247 '722 | 221'138 | 221'668 | 208'555 |


| Matrix | No pivoting | Sparsity | Threshold | Weight |
| :---: | :---: | :---: | :---: | :---: |
| cat_ears_3_1 | 000 | No data | No data | 215 |
| cat_ears_3_4 | $2.5961 \times 10^{06}$ | $2.1563 \times 10^{06}$ | $2.2029 \times 10^{06}$ | $2.1660 \times 10^{06}$ |
| cat_ears_4_1 | 612 | 383 | 181 | 369 |
| cat_ears_4_4 | $1.9027 \times 10^{07}$ | $1.4150 \times 10^{07}$ | $1.5787 \times 10^{07}$ | $1.4054 \times 10^{07}$ |
| flower_4_1 | 729 | No data | 495 | No data |
| flower_4_4 | $3.3117 \times 10^{06}$ | $1.8387 \times 10^{06}$ | $1.3120 \times 10^{06}$ | No data |
| flower_5_1 | 673 | 912 | 553 | No data |
| flower_5_4 | $2.3196 \times 10^{07}$ | $1.1545 \times 10^{07}$ | $8.6861 \times 10^{06}$ | $1.0870 \times 10^{07}$ |
| flower_7_1 | 141 | No data | 603 | 348 |
| flower_7_4 | No data | $5.0832 \times 10^{08}$ | $3.5229 \times 10^{08}$ | No data |
| flower_8_1 | No data | 507 | 10'301 | 548 |
| flower_8_4 | No data | $2.0598 \times 10^{09}$ | $1.5801 \times 10^{09}$ | $1.8146 \times 10^{09}$ |
| kneser_10_4_1 | No data | No data | $1.1018 \times 10^{09}$ | No data |
| kneser_6_2_1 | 141'909 | 65'058 | 64'532 | 64'192 |
| kneser_8_3_1 | No data | $5.8170 \times 10^{06}$ | $8.0534 \times 10^{06}$ | $9.4021 \times 10^{06}$ |
| wheel_3_1 | No data | No data | 496 | 471 |
| wheel_4_1 | 004 | 940 | 940 | No data |
| wheel_5_1 | 674 | 600 | 597 | 617 |
| wheel_601 | $7.3159 \times 10^{09}$ | $1.9754 \times 10^{10}$ | $7.1284 \times 10^{09}$ | $1.9844 \times 10^{10}$ |
| wheel_6_1 | 413 | 128 | 048 | 191 |
| wheel_7_1 | 334 | 828 | 683 | 946 |
| Mgn |  |  |  |  |
| M0,3-D2 | 0 | 0 | 0 | No data |
| M0,4-D3 | 0 | 0 | No data | 0 |
| M0,4-D4 | 452 | 549 | 012 | 549 |
| M0,4-D5 | 663 | No data | 653 | No data |
| M0,5-D4 | 0 | No data | 0 | 0 |
| M0,5-D5 | No data | 164'630 | No data | 164'630 |
| M0,5-D6 | No data | $2.6830 \times 10^{06}$ | $1.7126 \times 10^{06}$ | $1.7049 \times 10^{06}$ |
| M0,5-D7 | $4.4588 \times 10^{06}$ | $2.0491 \times 10^{06}$ | No data | $1.3293 \times 10^{06}$ |
| M0,5-D8 | 176 '792 | $176{ }^{\prime} 792$ | 63'027 | No data |
| M0,6-D10 | No data | $4.4132 \times 10^{10}$ | No data | $1.9348 \times 10^{09}$ |
| M0,6-D11 | $2.3607 \times 10^{07}$ | $2.3607 \times 10^{07}$ | $5.7557 \times 10^{06}$ | No data |
| M0,6-D5 | 0 | 0 | 0 | 0 |
| M0,6-D6 | $1.2495 \times 10^{07}$ | No data | $1.2495 \times 10^{07}$ | No data |
| M0,6-D7 | $9.6351 \times 10^{08}$ | $3.2719 \times 10^{08}$ | $2.1239 \times 10^{08}$ | $2.5750 \times 10^{08}$ |
| M0,6-D8 | No data | $3.5480 \times 10^{09}$ | $1.3787 \times 10^{09}$ | $1.6375 \times 10^{09}$ |
| M0,6-D9 | No data | $1.0844 \times 10^{10}$ | $2.3271 \times 10^{09}$ | $2.7290 \times 10^{09}$ |
| M1,2-D3 | 0 | No data | No data | 0 |
| M1,2-D4 | 4 | No data | 4 | 4 |
| M1,2-D5 | 8 | 8 | 8 | 8 |
| M1,3-D4 | 0 | No data | 0 | 0 |
| M1,3-D5 | 37'892 | No data | No data | No data |
| M1,3-D6 | 228 '656 | 143 '605 | No data | $124 \times 049$ |
| M1,3-D7 | 132 '080 | 63'092 | 42'576 | 48'560 |
| M1,3-D8 | 320 | No data | No data | No data |
| M1,4-D10 | No data | No data | $1.7063 \times 10^{08}$ | $1.8067 \times 10^{08}$ |
| M1,4-D11 | $1.5083 \times 10^{06}$ | $1.5083 \times 10^{06}$ | No data | No data |
| M1,4-D5 | No data | 0 | 0 | No data |
| M1,4-D6 | $1.7332 \times 10^{07}$ | $8.0099 \times 10^{06}$ | $4.5990 \times 10^{06}$ | $4.5662 \times 10^{06}$ |
| M1,4-D7 | No data | $2.2243 \times 10^{08}$ | No data | $1.0557 \times 10^{08}$ |
| M1,4-D8 | Arith. ovf. | $1.7117 \times 10^{10}$ | No data | $5.7799 \times 10^{09}$ |
| M1,4-D9 | No data | $1.7035 \times 10^{10}$ | No data | $2.8930 \times 10^{09}$ |
| M2,1-D4 | 0 | 0 | 0 | No data |
| M2,1-D5 | 722 | 557 | 534 | 557 |


| Matrix | No pivoting | Sparsity | Threshold | Weight |
| :---: | :---: | :---: | :---: | :---: |
| M2,1-D6 | 286 | 063 | No data | 114 |
| M2,1-D7 | 755 | 768 | 989 | 808 |
| M2,1-D8 | 90 | 90 | No data | No data |
| M2,2-D10 | $3.4248 \times 10^{07}$ | $5.7100 \times 10^{06}$ | No data | No data |
| M2,2-D11 | $47^{\prime} 487$ | 47 '487 | 26'666 | 29 '019 |
| M2,2-D5 | No data | 346 | 346 | No data |
| M2,2-D6 | No data | $1.0674 \times 10^{06}$ | $1.1323 \times 10^{06}$ | No data |
| M2,2-D7 | $7.4924 \times 10^{08}$ | $9.0328 \times 10^{07}$ | $3.4661 \times 10^{07}$ | $6.7032 \times 10^{07}$ |
| M2,2-D8 | $6.6522 \times 10^{09}$ | $5.4543 \times 10^{08}$ | $3.1860 \times 10^{08}$ | $3.9807 \times 10^{08}$ |
| M2,2-D9 | $2.3774 \times 10^{09}$ | $1.2261 \times 10^{08}$ | $9.7906 \times 10^{07}$ | $9.4398 \times 10^{07}$ |
| Relat |  |  |  |  |
| rel3 | 35 | 35 | 35 | 35 |
| rel4 | 224 | 224 | 224 | 215 |
| rel5 | 230 | 775 | 335 | No data |
| rel6 | 645 '129 | 583'916 | No data | No data |
| rel7 | $3.1401 \times 10^{08}$ | $2.4799 \times 10^{08}$ | $4.7687 \times 10^{07}$ | No data |
| rel8 | No data | $5.5958 \times 10^{11}$ | $2.7419 \times 10^{10}$ | No data |
| rel9 | No data | Arith. ovf. | No data | No data |
| relat3 | 49 | 49 | 49 | 49 |
| relat4 | 448 | 448 | 457 | 439 |
| relat5 | No data | 888 | 650 | 486 |
| relat6 | 923'954 | 724'414 | 460'639 | No data |
| relat7 | $2.9076 \times 10^{08}$ | $2.6891 \times 10^{08}$ | No data | $5.0470 \times 10^{07}$ |
| relat7b | No data | $2.6891 \times 10^{08}$ | $5.5258 \times 10^{07}$ | $5.0470 \times 10^{07}$ |
| relat8 | No data | $4.1028 \times 10^{11}$ | $4.2837 \times 10^{10}$ | $4.1730 \times 10^{10}$ |
| relat9 | No data | No data | No data | Arith. ovf. |
| SPG |  |  |  |  |
| 08blocks | 0 | 0 | 0 | No data |
| EX1 | $3.8339 \times 10^{07}$ | $2.5907 \times 10^{07}$ | $1.9590 \times 10^{07}$ | $2.1236 \times 10^{07}$ |
| EX2 | $3.7665 \times 10^{07}$ | $2.8047 \times 10^{07}$ | $2.3384 \times 10^{07}$ | $2.4631 \times 10^{07}$ |
| EX3 | $2.5611 \times 10^{09}$ | $3.0573 \times 10^{09}$ | $3.4014 \times 10^{09}$ | $2.6785 \times 10^{09}$ |
| EX4 | $2.8603 \times 10^{09}$ | $2.9172 \times 10^{09}$ | $3.4216 \times 10^{09}$ | $2.5813 \times 10^{09}$ |
| EX5 | $2.7025 \times 10^{10}$ | No data | No data | $4.7854 \times 10^{10}$ |
| EX6 | No data | $5.3271 \times 10^{10}$ | No mem. | $3.9488 \times 10^{10}$ |
| Smooshed |  |  |  |  |
| olivermatrix. 1 | $6.2721 \times 10^{06}$ | 533'298 | 368'365 | 518'246 |
| olivermatrix. 2 | $3.2262 \times 10^{08}$ | No data | No data | $3.0554 \times 10^{08}$ |
| Taha |  |  |  |  |
| mat2_abtaha | 204'728 | 192'744 | 190’097 | No data |
| Trefethen |  |  |  |  |
| trefethen_150 | 938 '010 | No data | 527'183 | No data |
| trefethen_20 | No data | No data | 858 | No data |
| trefethen_200 | $1.8745 \times 10^{06}$ | $1.7976 \times 10^{06}$ | $1.1273 \times 10^{06}$ | $1.2708 \times 10^{06}$ |
| trefethen_2000 | No mem. | No mem. | $5.4902 \times 10^{08}$ | $2.0612 \times 10^{08}$ |
| trefethen_20000 | $3.0268 \times 10^{11}$ | $7.0883 \times 10^{11}$ | No mem. | No mem. |
| trefethen_20000__19999_minor | $3.0078 \times 10^{11}$ | $6.1316 \times 10^{11}$ | No mem. | No mem. |
| trefethen_200__199_minor | $1.8429 \times 10^{06}$ | $1.7754 \times 10^{06}$ | $1.1140 \times 10^{06}$ | $1.2480 \times 10^{06}$ |
| trefethen_20__19_minor | 942 | 930 | 453 | 581 |
| trefethen_300 | $6.4986 \times 10^{06}$ | $6.0418 \times 10^{06}$ | No data | $3.4885 \times 10^{06}$ |
| trefethen_500 | $1.4487 \times 10^{07}$ | $2.0348 \times 10^{07}$ | $1.1111 \times 10^{07}$ | $1.0143 \times 10^{07}$ |
| trefethen_700 | No data | No data | $3.7381 \times 10^{07}$ | $3.1335 \times 10^{07}$ |


| Matrix | No pivoting | Sparsity | Threshold | Weight |
| :--- | :--- | :--- | :--- | :--- |

## 3. Performance of different algorithms

The following table presents a comparison of the running times of the "Rheinfall" algorithm and the three rank-computing algorithms provided by LinBox: "Black Box" [63, 38], Sparse Elimination with Linear Pivoting (a GEPP implementation using Markowitz pivoting [13]), and Sparse Elimination with No Pivoting.

The "Rheinfall" column reports execution time (in seconds) for the sample C++ implementation. The "LinBox" columns report times for the GEPP implementation in LinBox version 1.1.7. Boldface font marks the best performer in each row.

The programs were run on the University of Zurich "Schroedinger" cluster, equipped with Intel Xeon X5560 CPUs @ 2.8 GHz and running 64 -bit SLES 11.1 Linux; codes were compiled with GCC 4.5.0 using options -03 -march=native. Each computational job was allowed to use 24 GB of memory maximum, and to run for 48 hours.

The system timer has a resolution of $4 \mathrm{~ms},{ }^{1}$ but scheduling jitter makes the measurements less accurate than that. However, we have not attempted an exact measurements of the uncertainty, as the purpose of the test was to determine the relative speed of the different algorithms and the performance differences are quite evident for most matrices.

For some matrices it was not possible to obtain the precise count; these cases have been marked with one of the following labels:

## Arith. ovf.:

During the elimination work, a matrix entry exceeded the maximum integer number representable as a 64 -bit machine integer.

## No mem.:

The rank-computation program run out of memory before completion.

## No data, Error:

Some unknown error prevented the rank-computation program from completing; this includes the computational jobs that did not terminate within the allotted time.

| Matrix | LinBox <br> Black Box <br> Linear Pvt. |  |  | No Pvt. |
| :--- | ---: | :---: | ---: | ---: | | Rheinfall |
| :---: |
| Sparsity Pvt. |


| Matrix | Black Box | LinBox <br> Linear Pvt | No Pvt. | Rheinfall |
| :---: | :---: | :---: | :---: | :---: |
| bibd_81_2_3240x3240 | 42.310 | 0.040 | 0.030 | $<4 \mathrm{~ms}$ |
| bibd_81_3_3240x85320 | 1046.690 | 0.530 | 7.650 | 1.264 |
| CAG |  |  |  |  |
| mat1916 | 16.980 | 0.300 | 3.060 | No mem. |
| mat364 | 0.010 | $<4 \mathrm{~ms}$ | 0.030 | 0.008 |
| Forest |  |  |  |  |
| TF11 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ | 0.010 | $<4 \mathrm{~ms}$ |
| TF12 | 0.030 | 0.030 | 0.050 | 0.012 |
| TF13 | 0.840 | 0.490 | 0.600 | 0.064 |
| TF14 | 5.360 | 7.990 | 7.760 | 0.820 |
| TF15 | 42.840 | 117.410 | 97.850 | 17.505 |
| TF16 | 377.590 | 1884.560 | 1276.740 | No mem. |
| TF17 | 1932.390 | No data | 17056.550 | No mem. |
| TF18 | 14392.000 | No data | No data | No mem. |
| TF19 | 95106.390 | No data | No data | No mem. |
| Franz |  |  |  |  |
| 10164x1740 | 5.340 | 0.200 | 2.630 | 0.164 |
| 1280x2800 | 1.780 | 0.020 | 0.050 | 0.008 |
| $16728 \times 7176$ | 74.250 | 3.670 | 49.280 | 0.156 |
| 19588x4164 | 49.010 | 1.500 | 33.090 | 0.720 |
| 19588x4164bis | 42.550 | 1.310 | 34.630 | 0.660 |
| 47104x30144bis | 1120.790 | 69.800 | 3854.450 | 4.180 |
| $6784 \times 5252$ | 14.870 | 0.460 | 5.180 | 0.552 |
| 7382x2882 | 8.440 | 0.440 | 4.950 | 0.076 |
| 7576x3016 | 9.540 | 0.480 | 9.800 | 0.172 |
| big1sparse | 0.020 | 0.020 | 0.020 | 0.004 |
| big2sparse | 6.430 | 0.190 | 0.450 | 0.020 |
| G5 |  |  |  |  |
| IG5-10 | 0.020 | 0.020 | 0.100 | Arith. ovf. |
| IG5-11 | 1.600 | 0.040 | 0.560 | Arith. ovf. |
| IG5-12 | 5.580 | 0.120 | 3.930 | Arith. ovf. |
| IG5-13 | 19.650 | 0.380 | 21.020 | Arith. ovf. |
| IG5-14 | 69.260 | 1.440 | 81.950 | Arith. ovf. |
| IG5-15 | 196.120 | 3.720 | 295.060 | Arith. ovf. |
| IG5-16 | 537.300 | 9.320 | 1283.360 | Arith. ovf. |
| IG5-17 | 1414.290 | 21.970 | 4572.660 | 375.167 |
| IG5-18 | 3646.680 | 50.000 | No data | 1191.666 |
| IG5-9 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ | 0.010 | 0.004 |
| GL7d |  |  |  |  |
| GL7d12 | 2.870 | 0.130 | 0.160 | 0.072 |
| GL7d13 | 304.340 | 19.500 | 521.610 | No mem. |
| GL7d14 | 8779.760 | 1815.540 | No data | Error |
| GL7d15 | 81012.570 | No data | No data | Error |
| GL7d23 | 56805.370 | 4202.270 | No data | No mem. |
| GL7d24 | 3511.740 | 62.580 | 1754.050 | 143.369 |
| GL7d25 | 85.690 | 0.240 | 0.970 | 0.056 |
| Grobner |  |  |  |  |
| HFE18_96.in.sms | 135.810 | 12.700 | 11.250 | 3.124 |
| c8_mat11 | 550.190 | 54.540 | 62.860 | No mem. |


| Matrix | LinBox |  |  | Rheinfall |
| :---: | :---: | :---: | :---: | :---: |
|  | Black Box | Linear Pvt. | No Pvt. | Sparsity Pvt. |
| c8_mat11.I | 570.280 | 53.060 | 37.770 | No mem. |
| f855 mat9 | 20.500 | 0.690 | 0.540 | 0.100 |
| f855_mat9.I | 20.130 | 0.660 | 2.040 | 0.104 |
| rkat7_mat5 | 0.090 | 0.100 | 0.170 | 0.040 |
| robot24c1_mat5 | 0.020 | 0.020 | 0.020 | Arith. ovf. |
| robot24c1_mat5.J | 0.020 | 0.020 | 0.070 | No mem. |
| Homology |  |  |  |  |
| D6-6 | 2113.560 | 37.420 | 25.130 | 0.060 |
| ch6-6.b2.2400x450 | 0.010 | 0.010 | 0.010 | $<4 \mathrm{~ms}$ |
| ch6-6.b3.5400x2400 | 3.740 | 0.140 | 0.110 | 0.008 |
| ch6-6.b4.4320x5400 | 8.310 | 0.280 | 0.410 | 0.504 |
| ch6-6.b5.720x4320 | $<4 \mathrm{~ms}$ | 0.010 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ |
| ch7-6.b2.4200x630 | 0.030 | 0.030 | 0.020 | 0.004 |
| ch7-6.b3.12600x4200 | 19.610 | 0.600 | 0.440 | 0.028 |
| ch7-6.b4.15120x12600 | 109.900 | 2.150 | 1.730 | 0.976 |
| ch7-6.b5.5040x15120 | 35.080 | 0.220 | 0.190 | 0.036 |
| ch7-7.b2.7350x882 | 0.070 | 0.070 | 0.060 | 0.008 |
| ch7-7.b5.35280x52920 | 1207.840 | 134.700 | 380.760 | 1441.114 |
| ch7-8.b2.11760x1176 | 3.380 | 0.160 | 0.120 | 0.012 |
| ch7-8.b3.58800x11760 | 376.610 | 21.160 | 14.760 | 0.172 |
| ch7-8.b4.141120x58800 | 4979.530 | 313.210 | 201.600 | 1.216 |
| ch7-8.b5.141120x141120 | 13726.270 | 918.070 | 1725.720 | 14986.761 |
| ch7-9.b2.17640x1512 | 10.070 | 0.290 | 0.220 | 0.020 |
| ch7-9.b3.105840x17640 | 998.390 | 52.730 | 36.800 | 0.256 |
| ch7-9.b4.317520x105840 | 23764.940 | 1084.750 | 719.950 | 2.228 |
| ch7-9.b5.423360x317520 | 112350.890 | No data | 5189.950 | 842.729 |
| ch8-8.b2.18816x1568 | 12.720 | 0.310 | 0.240 | 0.020 |
| ch8-8.b3.117600x18816 | 1198.760 | 76.920 | 44.420 | 0.296 |
| ch8-8.b4.376320x117600 | 33862.820 | 1572.430 | 1004.160 | 3.212 |
| ch8-8.b5.564480x376320 | 139770.720 | No data | 9345.920 | 650.113 |
| cis.n4c6.b13.6300x25605 | 135.090 | 0.390 | 0.260 | 0.012 |
| cis.n4c6.b14.920x6300 | 0.010 | $<4 \mathrm{~ms}$ | 0.010 | <4ms |
| cis.n4c6.b3.5970x1330 | 2.220 | 0.060 | 0.050 | 0.008 |
| cis.n4c6.b4.20058x5970 | 68.510 | 0.910 | 0.690 | 0.024 |
| lutz30-23.b6.1716x3003 | 2.250 | 0.220 | 0.430 | 0.228 |
| m133.b3.200200x200200 | 31480.910 | No data | No data | No mem. |
| mk10.b2.3150x630 | 0.020 | 0.020 | 0.020 | 0.004 |
| mk10.b3.4725x3150 | 4.620 | 0.180 | 0.110 | 0.076 |
| mk10.b4.945x4725 | 0.010 | $<4 \mathrm{~ms}$ | 0.010 | $<4 \mathrm{~ms}$ |
| mk11.b2.6930x990 | 0.080 | 0.080 | 0.060 | 0.008 |
| mk11.b3.17325x6930 | 58.150 | 2.160 | 1.100 | 0.080 |
| mk11.b4.10395x17325 | 95.250 | 5.620 | 32.870 | 47.603 |
| mk11.b4.9450x17325 | 73.140 | 1.130 | 6.920 | 17.137 |
| mk12.b2.13860x1485 | 7.220 | 0.250 | 0.170 | 0.020 |
| mk12.b3.51975x13860 | 388.290 | 20.960 | 14.960 | 0.152 |
| mk12.b4.62370x51975 | 2096.490 | 134.320 | 175.380 | 2121.453 |
| mk12.b5.10395x62370 | 9802.160 | 0.740 | 0.620 | 0.012 |
| mk13.b5.135135x270270 | 29762.450 | 7071.310 | No data | No mem. |
| mk9.b3.945x1260 | 0.010 | 0.020 | 0.040 | 0.016 |
| n2c6.b3.1365x455 | $<4 \mathrm{~ms}$ | 0.010 | $<4 \mathrm{~ms}$ | <4ms |
| n2c6.b4.3003x1365 | 1.340 | 0.030 | 0.020 | $<4 \mathrm{~ms}$ |
| n2c6.b5.4945x3003 | 5.550 | 0.140 | 0.080 | 0.008 |
| n2c6.b6.5715x4945 | 11.850 | 0.320 | 0.130 | 0.008 |
| n2c6.b7.3990x5715 | 10.240 | 0.170 | 0.090 | 0.008 |


| Matrix | LinBox <br> Linear Pvt. |  |  | No Pvt. |
| :--- | ---: | ---: | ---: | ---: | Sparsity Pvt. | Rheinfall |
| :--- |
| n2c6.b8.1470x3990 |
| n3c6.b10.675x2511 |
| n3c6.b4.3003x1365 |


| Matrix | LinBox |  |  | Rheinfall |
| :---: | :---: | :---: | :---: | :---: |
|  | Black Box | Linear Pvt. | No Pvt. | Sparsity Pvt. |
| relat4 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ | Error |
| relat5 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ | Error |
| relat6 | 0.010 | 0.010 | 0.010 | Error |
| relat7 | 6.070 | 0.640 | 1.500 | Error |
| relat7b | 5.860 | 0.640 | 1.490 | Error |
| relat8 | 2105.040 | 282.230 | 701.710 | Error |
| Smooshed |  |  |  |  |
| olivermatrix. 1 | No data | 0.680 | 0.410 | Error |
| olivermatrix. 2 | 88650.570 | 152.820 | 83.530 | 1.608 |
| Taha |  |  |  |  |
| mat2_abtaha | 0.190 | 0.340 | 0.280 | 0.028 |
| mat_abtaha | 0.050 | 0.050 | 0.040 | 0.012 |
| diffGL6 |  |  |  |  |
| D_10 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ | 0.010 | $<4 \mathrm{~ms}$ |
| D_6 | $<4 \mathrm{~ms}$ | $<4 \mathrm{~ms}$ | 0.020 | 0.004 |
| D_7 | 0.010 | 0.010 | 0.240 | 0.024 |
| D_8 | $<4 \mathrm{~ms}$ | 0.010 | 0.250 | 0.024 |
| D_9 | 0.010 | $<4 \mathrm{~ms}$ | 0.080 | 0.004 |
| diffSL6 |  |  |  |  |
| D_10 | 0.020 | 0.020 | 0.360 | 0.024 |
| D_11 | <4ms | $<4 \mathrm{~ms}$ | 0.010 | 0.004 |
| D_6 | 0.020 | 0.020 | 0.310 | 0.024 |
| D_7 | 0.070 | 0.070 | 2.720 | 0.260 |
| D_8 | 0.880 | 0.090 | 2.890 | 0.272 |
| D_9 | 0.040 | 0.050 | 1.780 | 0.140 |

## Bibliography

[1] E. Arbarello, M. Cornalba, and P. Griffiths. Geometry of Algebraic Curves vol. II, volume 268 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Heidelberg, 2011. with a contribution by J. Harris.
[2] Enrico Arbarello and Maurizio Cornalba. Divisors in the moduli spaces of curves. In Lizhen Ji, Scott Wolpert, and Shing-Tung Yau, editors, Geometry of Riemann surfaces and their moduli spaces, volume 14 of Surveys in Differential Geometry, pages 1-22. International Press, Sommerville, MA, 2009. Pre-print available online at: http://arxiv.org/abs/0810.5373v2.
[3] Enrico Arbarello and Maurizio Cornalba. Jenkins-Strebel differentials. Rend. Lincei Mat. Appl., 21:115-157, 2010.
[4] Edward A. Bender and E. Rodney Canfield. The asymptotic number of maps on a surface. J. Combin. Theory, Ser. A, 43(2):244-257, 1986.
[5] Edward A. Bender, Zhicheng Gao, and L. Bruce Richmond. The map asymptotics constant $t_{g}$. Electron. J. Combinatorics, 15, 2008.
[6] J. Bergström and O. Tommasi. The rational cohomology of $\bar{M}_{4}$. Mathematische Annalen, 338(1):207-239, 2007.
[7] G. Bini, G. Gaiffi, and M. Polito. A formula for the Euler characteristic of $\overline{\mathcal{M}}_{2, n}$. Mathematische Zeitschrift, 236(3):491-523, 2001.
[8] Gilberto Bini and John Harer. Euler characteristics of moduli spaces of curves. Journal of the European Mathematical Society, 13(2):487-512, 2011.
[9] Béla Bollobás and Oliver Riordan. A polynomial of graphs on surfaces. Math. Ann., 323(1):8196, 2002.
[10] Kenneth S. Brown. Cohomology of Groups. Number 87 in Graduate Texts in Mathematics. Springer-Verlag, 1982.
[11] James Conant and Karen Vogtmann. On a theorem of Kontsevich. Algebr. Geom. Topol., 3:1167-1224 (electronic), 2003.
[12] Wikipedia contributors. Python (programming language). Online article at: http://en. wikipedia.org/wiki/Python_(programming_language), July 2009.
[13] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Clarendon Press, Oxford, 1989.
[14] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen, B. D. Saunders, W. J. Turner, and G. Villard. LinBox: A Generic Library for Exact Linear Algebra. In A. Cohen, X.-S. Gao, and N. Takayama, editors, Mathematical Software: ICMS 2002 (Proceedings of the first International Congress of Mathematical Software, pages 40-50. World Scientific, 2002.
[15] Jean-Guillaume Dumas. The Sparse Integer Matrices Collection. http://ljk.imag.fr/membres/ Jean-Guillaume.Dumas/simc.html.
[16] Jean-Guillaume Dumas and Gilles Villard. Computing the rank of large sparse matrices over finite fields. In CASC'2002 Computer Algebra in Scientific Computing, pages 22-27. SpringerVerlag, 2002.
[17] GC3Pie website. http://gc3pie.googlecode.com/.
[18] E. Getzler and M. M. Kapranov. Modular operads. Compositio Math., 110(1):65-126, 1998.
[19] E. Getzler and E. Looijenga. The Hodge polynomial of $\bar{M}_{3,1}$. Arxiv preprint math. AG/9910174, 1999.
[20] Ezra Getzler. The moduli space of curves, volume 129 of Progr. Math., chapter Operads and moduli spaces of genus 0 Riemann surfaces, pages 199-230. Birkäuser, Boston, 1995. Pre-print available online at: http://arxiv.org/abs/alg-geom/9411004.
[21] Ezra Getzler. Topological recursion relations in genus 2. In Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), pages 73-106, River Edge, NJ, 1998. World Scientific Publishing. Pre-print available at: http://arXiv.org/abs/math/9801003.
[22] Ezra Getzler. Resolving mixed Hodge modules on configuration spaces. Duke Math. J., 96(1):175-203, 1999. Pre-print available online at: http://arxiv.org/abs/alg-geom/9611003.
[23] Véronique Godin. The unstable integral homology of the mapping class groups of a surface with boundary. Math. Ann., 337(1):15-60, 2007.
[24] G. Golub and C. Van Loan. Matrix Computation. Johns Hopkins University Press, 2nd edition, 1989.
[25] Alexei G. Gorinov. Rational cohomology of the moduli space of pointed genus 1 curves. Pre-print available online at: http://www.liv.ac.uk/~ gorinov/.
[26] Laura Grigori, James W. Demmel, and Xiaoye S. Li. Parallel symbolic factorization for sparse LU with static pivoting. SIAM J. Scientific Computing, 29(3):1289-1314, 2007.
[27] Alastair Hamilton and Andrey Lazarev. Characteristic classes of $A_{\infty}$-algebras, 2008.
[28] J. Harer and D. Zagier. The Euler characteristic of the moduli space of curves. Invent. Math., 85(3):457-485, 1986.
[29] John Harer. The second homology group of the mapping class group of an orientable surface. Invent. Math., 72(2):221-239, 1983.
[30] John L. Harer. The virtual cohomological dimension of the mapping class group of an orientable surface. Invent. Math., 84(1):157-176, 1986.
[31] John L. Harer. The cohomology of the moduli space of curves. In Theory of moduli (Montecatini Terme, 1985), pages 138-221. Springer, Berlin, 1988.
[32] Klaus Hulek and Orsola Tommasi. Cohomology of the second Voronoi compactification of $\mathcal{A}_{4}$, 2011. Pre-print available at: http://arxiv.org/abs/1103.6169.
[33] Kiyoshi Igusa. Combinatorial Miller-Morita-Mumford classes and Witten cycles. Algebr. Geom. Topol., 4:473-520, 2004.
[34] Kiyoshi Igusa. Graph cohomology and kontsevich cycles. Topology, 43:1469-1510, 2004.
[35] Intel Corp. Intel Threading Building Blocks for Open Source. http://threadingbuildingblocks. org/.
[36] Intel Corp. Intel Threading Building Blocks v4.0 Reference Manual, 2012. Available at: http://threadingbuildingblocks.org/uploads/81/91/Latest\ Open\ Source\% 20Documentation/Reference.pdf.
[37] J. A. Jenkins. On the existence of certain extremal metrics. Annals of Mathematics, 66:440453, 1957.
[38] Erich Kaltofen and B. David Saunders. On Wiedemann's method of solving sparse linear systems. In Harold F. Mattson, Teo Mora, and T. R. N. Rao, editors, Proceedings of the Applied Algebra, Algebraic Algorithms and Error-Correcting Codes 9th International Symposium, AAECC-9 New Orleans, LA, USA, volume 539 of Lecture Notes in Computer Science, Berlin / Heidelberg, October 7-11 1991. Springer-Verlag.
[39] Maxim Kontsevich. Formal (non)commutative symplectic geometry. In The Gel'fand Mathematical Seminars, 1990-1992, pages 173-187. Birkhäuser Boston, Boston, MA, 1993.
[40] Maxim Kontsevich. Feynman diagrams and low-dimensional topology. In First European Congress of Mathematics, Vol. II (Paris, 1992), pages 97-121. Birkhäuser, Basel, 1994.
[41] Samuil L. Krushkal'. Quasiconformal mappings and Riemann surfaces. V. H. Winston \& Sons, Washington, D.C., 1979. Edited by Irvin Kra [Irwin Kra], Translated from the Russian, A Halsted Press Book, Scripta Series in Mathematics, With a foreword by Lipman Bers.
[42] Sergei K. Lando and Alexander K. Zvonkin. Graphs on surfaces and their applications, volume 141 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, 2008.
[43] LinBox website. http://linalg.org/.
[44] E. Looijenga. Cohomology of $M_{3}$ and $M_{3}^{1}$. In Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), volume 150 of Contemp. Math, pages 205-228, 1993.
[45] Eduard Looijenga. Cellular decompositions of compactified moduli spaces of pointed curves. In The moduli space of curves (Texel Island, 1994), pages 369-400. Birkhäuser Boston, Boston, MA, 1995.
[46] MathOverflow question "Betti numbers of moduli spaces of smooth Riemann surfaces". http://mathoverflow.net/questions/38968/betti-numbers-of-moduli-spaces-of-smooth-riemann-surfaces, September 2010.
[47] Brendan D. McKay. Isomorph-Free Exhaustive Generation. Journal of Algorithms, 26(2):306324, 1998.
[48] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, 1994.
[49] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, 1996.
[50] Gabriele Mondello. Combinatorial classes on $\overline{\mathcal{M}}_{g, n}$ are tautological. Int. Math. Res. Not., 44:2329-2390, 2004.
[51] Gabriele Mondello. Riemann surfaces, ribbon graphs and combinatorial classes. In Athanase Papadopoulos, editor, Handbook of Teichmüller theory, volume 2, pages 151-216. European Mathematical Society, 2009.
[52] M. Mulase and M. Penkava. Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over $\overline{\mathbb{Q}}$. Asian J. Math., 2(4):875-919, 1998.
[53] David Mumford. Abelian quotients of the Teichmüller modular group. J. Analyse Math., 18:227-244, 1967.
[54] Riccardo Murri. A novel parallel algorithm for Gaussian Elimination of sparse unsymmetric matrices. In Roman Wyrzykowski, editor, Proceedings of the PPAM2011 Conference, volume 7203/7204 of Lecture Notes in Computer Science. Springer-Verlag, 2012. Pre-print available at: http://arxiv.org/abs/1105.4136.
[55] Riccardo Murri. Fatgraph algorithms and the homology of the kontsevich complex. Pre-print available online at: http://arxiv.org/abs/1202.1820, February 2012.
[56] R. C. Penner and Douglas J. LaFountain. Cell decomposition and odd cycles on compactified Riemann's moduli space. arXiv, 1112.3915, 2011. Available online at: http://arxiv.org/abs/ 1112.3915.
[57] Robert Clark Penner, Michael Knudsen, Carsten Wiuf, and Joergen Ellegaard Andersen. Fatgraph Models of Proteins. Proteins, 277:32, 2009.
[58] Swiss Multi-Science Computing Grid website. http://www.smscg.ch/.
[59] Kurt Strebel. Quadratic differentials. Springer-Verlag, Berlin, 1984.
[60] O. Tommasi. Rational cohomology of $M_{3,2}$. Compos. Math, 143(4):986-1002, 2007.
[61] Orsola Tommasi. Geometry of Discriminants and Cohomology of Moduli Spaces. PhD thesis, Radboud University Nijmegen, 2005. Available online at: http://webdoc.ubn.ru.nl/mono/t/ tommasi_o/geomofdia.pdf.
[62] Burt Totaro. Configuration spaces of algebraic varieties. Topology, 35(4):1057-1067, 1996.
[63] W.J. Turner. Black box linear algebra with the LINBOX library. PhD thesis, North Carolina State University, May 2002. Available online at http://repository.lib.ncsu.edu/ir/handle/ 1840.16/3025.
[64] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33:103-111, August 1990.
[65] Guido van Rossum et al. The Python 2.7 Language Reference. Online document at: http: //docs.python.org/2.7/reference/index.html, February 2012.
[66] J. Vetter and C. Chambreau. MPIP: Lightweight, Scalable MPI profiling. http://www.llnl. gov/CASC/mpiP, 2004.

## Acknowledgments

It is a pleasure to thank the many people who made this thesis possible.
I am specially indebted, and would like to express my gratitude, to my advisors Enrico Arbarello and Domenico Fiorenza, and to Gilberto Bini, for their constant encouragement and manifold support during the long preparation of this thesis.

Parallel software development and computational experiments require a large amount of processing power, which in this case was kindly donated by the Informatik Dienste of the University of Zurich, by the Organisch-Chemisches Institut (and particularly the "Theoretical Chemistry and Computational Grid Applications" research group led by Kim Baldridge), and the Swiss Multi-Science Computational Grid project (especially the "Grid Computing Competence Center" directed by Sergio Maffioletti); their support is here gratefully acknowledged. I am doubly indebted to Kim and Sergio for letting me work part-time in order to complete this thesis.

Parts of this thesis have already appeared publicly, in arXiv preprints [55] and in the PPAM2011 conference proceedings [54]; I would like to extend my gratitude to those who provided me with feedback. In particular, I would like to thank Professors Julian Hall and Olaf Schenk, for their interest and suggestions regarding the "Rheinfall" algorithm. I am grateful to Orsola Tommasi and Dan Petersen, who pointed out inaccuracies and suggested improvements in the expository chapter on $\mathcal{M}_{g, n}$ homology.

On a more personal note, I am deeply indebted to Marco and Deny for incessantly pushing me towards this goal despite my protests. Thanks to Valentina, for providing the safe harbor among the many changes that occurred in my life along these years. To all of you, thanks above all for your continued friendship. I also cannot overstate my gratitude to my family, for their love, patience, and guidance, and for letting me err in my own way.

Thanks to Agnese for always being there when it was needed. I would not have made it without you.

Writing this thesis took me much more time that was sane or reasonable, and many other people have supported and encouraged me over the years: a full list would probably take another volume, and I've already grown old writing one. Thank you all; this is...

The End.


[^0]:    ${ }^{1}$ Fatgraphs have appeared independently in many different areas of mathematics: several equivalent definitions are known, with names such as "ribbon graphs", "cyclic graphs", "maps", "dessins d'enfants", and "rotation systems". See [42] for a comprehensive survey.

[^1]:    ${ }^{2}$ Actually, the maximum size of a message is a linear function of the length of a matrix row.

[^2]:    ${ }^{1}$ Code available for download from http://code.google.com/p/fatghol.

[^3]:    ${ }^{2}$ Labels can be drawn from any finite set. In actual computer implementations, two obvious choices are to use the set of machine integers, or the set of Edge objects themselves (i.e., label each fatgraph edge with the corresponding computer representation).

[^4]:    ${ }^{3}$ This is important in order to share the same corner objects across multiple BoundaryCycle instances, which saves computer memory.

[^5]:    ${ }^{4}$ So there are only two vertices in total, and the corresponding fatgraph belongs in $\mathcal{R}_{0, m}$.
    ${ }^{5}$ That is to say, the orientation that corresponds to the orientation induced on the cell $\Delta\left(G^{\prime}\right)$ as a face of $\Delta(G)$.

[^6]:    ${ }^{6}$ The checks already performed ensure that $\boldsymbol{G}_{1}$ and $\boldsymbol{G}_{2}$ have the same "valence spectrum", so $\boldsymbol{G}_{1}$ has at least one vertex of the chosen valence.
    ${ }^{7}$ The variables nexts and neighborhood play the role of the FIFO in the usual formulation of breadth-first search: vertices are added to neighborhood during a loop, and the resulting list is then orderly browsed (as nexts) in the next iteration.

[^7]:    ${ }^{8}$ Here we use $\otimes$ to indicate juxtaposition of graphs: $G_{1} \otimes G_{2}$ is the (non-connected) fatgraph having two connected components $G_{1}$ and $G_{2}$.

[^8]:    ${ }^{9}$ A single 3 -valent vertex with one loop attached and a regular edge with one loose end.

[^9]:    ${ }^{10}$ The interested reader is referred to the publicly-available code at http:/ /fatghol.googlecode. com for details.

[^10]:    ${ }^{11}$ It is an immediate corollary of Lemma 3.33 that if one marked fatgraph $\left(G, \nu^{*}\right)$ has an orientation-reversing automorphisms, then every marked fatgraph ( $G, \nu$ ) over the same topological fatgraph $G$ has an orientation-reversing automorphism.

[^11]:    ${ }^{12}$ Written in the Python programming language (see [12, 65]). Code is publicly available at http://code.google.com/p/fatghol.

[^12]:    ${ }^{13}$ If two "bordered fatgraphs" were isomorphic, they would remain such if we remove the leaves and the edge supporting them, which would give us isomorphic marked fatgraphs
    ${ }^{14}$ A leaf may be regarded as a choice of an edge or a vertex along a boundary cycle; if there are $p_{i}$ vertices (counted with multiplicities) and $q_{i}$ edges along the $i$-th boundary cycle, then the number of ways we could possibly add leaves to a marked fatgraph $G$ is $r_{1} r_{2} \cdots r_{n}$, with $r_{i}=p_{i}+q_{i}$ so that:

    $$
    r_{1}+r_{2}+\cdots+r_{n}=\sum_{i} p_{i}+\sum_{i} q_{i}=\sum_{v \in V(G)} z_{v}+2 m=4 m
    $$

[^13]:    ${ }^{1}$ By "sufficiently good" we mean that it has enough properties to meaningfully define a Gaussian Elimination procedure: for instance, a field or a Bézout domain.

[^14]:    ${ }^{2}$ Given three operands $a, x, y$, CAS atomically compares the value of memory location $a$ with the value $x$ and, if they are equal, sets $a$ to the new value $y$. Otherwise, the value stored at $a$ is unchanged. In any case, the value stored $a$ prior to the CAS invocation is returned as result of the operation.
    ${ }^{3}$ This feature can easily be implemented on top of the others, by atomically increasing a counter each time a task is spawned, and atomically decreasing it each time a task finishes its execution. The waiting task is woken up when the counter reaches 0 .

[^15]:    ${ }^{4}$ This requirement can be relaxed: the sample implementation uses TBB's queuing_mutex class [36], which guarantees that lock contenders are queued and will eventually be granted the lock.

[^16]:    ${ }^{5}$ This implements the virtual "reordering step" needed to bring a matrix into block echelon form.

[^17]:    ${ }^{6}$ OpenMP offers several scheduling algorithms that partition the range in slightly different ways. Their actual performance is very close and the differences in OpenMP scheduling algorithms do not affect the following analysis of why OpenMP-based parallelization is not effective for Rheinfall.

[^18]:    ${ }^{7}$ Priorities could as well be drawn from the real interval $[0,1]$ : tasks generated from the processing of row $i$ are assigned priority $i / n$.

[^19]:    Table 4.5. Average Mflop/s attained in running LU factorization of square $N \times N$ matrices. The table compares the performance of the sample Rheinfal$1 / \mathrm{C}++\mathrm{LU}$ factorization with SuperLU 4.2. The test matrices are a subset of those used in [26]. Hardware, compilation flags and running conditions as in Section 3.

[^20]:    ${ }^{1}$ Readers familiar with object-oriented programming will note that this is an over-simplified version of the usual object-oriented definition of objects and classes; this originates in the fact that the concrete implementation of the algorithms was done in object-oriented Python, but object-orientation is by no means essential to the implementation.

[^21]:    ${ }^{1}$ The author is aware of no other algorithm for generating the set of all fatgraphs. The comparison here is taken with the solutions used in earlier attempts of implementation of the FatGHoL software.

