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CHAPTER 1

Introduction

The object of this thesis is the automated computation of the rational (co)homology
of the moduli spaces of smooth marked Riemann surfaces M, ,,. This is achieved by
using a computer to generate a chain complex, known in advance to have the same
homology as M, ,,, and explicitly spell out the boundary operators in matrix form.
As an application, we compute the Betti numbers of some moduli spaces Mg ..

Our original contribution is twofold. In Chapter 3, we develop algorithms for the
enumeration of fatgraphs and their automorphisms, and the computation of the
homology of the chain complex formed by fatgraphs of a given genus g and number
of boundary components n.

In Chapter 4, we describe a new practical parallel algorithm for performing Gauss-
ian elimination on arbitrary matrices with exact computations: projections indicate
that the size of the matrices involved in the Betti number computation can easily
exceed the computational power of a single computer, so it is necessary to distrib-
ute the work over several processing units. Experimental results prove that our
algorithm is in practice faster than freely available exact linear algebra codes.

An effective implementation of the fatgraph algorithms presented here is available
at http://code.google.com/p/fatghol. It has so far been used to compute the Betti
numbers of My ,, for (2g +n) < 6.

The Gaussian elimination code is likewise publicly available as open-source software
from http://code.google.com/p/rheinfall.

1. Fatgraphs and the homology of the moduli space of Riemann
surfaces

In the seminal papers [39] and [40], M. Kontsevich introduced “Graph Homology”
complexes that relate the stable homology groups of certain infinite-dimensional
Lie algebras to various other topological objects. In particular, the “associative
operad” variant of this construction results in a chain complex whose homology is
isomorphic to the (co)homology of the moduli space of smooth Riemann surfaces
My n: the graded module underlying the complex is freely generated by the set
Rg.n of fatgraphs of genus g and number of boundary components n, endowed with
the differential defined by edge contraction.

A fatgraph! is a multigraph enriched with the assignment, at each vertex v, of
a cyclic order of the edges incident to v. Such graphs can be “fattened” into a
Riemann surface, by gluing polygons along the fatgraph edges in such a way that

1Fatgraphs have appeared independently in many different areas of mathematics: several
equivalent definitions are known, with names such as “ribbon graphs”, “cyclic graphs”, “maps”,

“dessins d’enfants”, and “rotation systems”. See [42] for a comprehensive survey.
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two adjacent edges on the polygon boundary are consecutive in the cyclic order
at the common endpoint. The resulting Riemann surface is naturally marked,
by choosing the marking points to be the centers of the polygons. There is thus
a functorial correspondence between fatgraphs and marked Riemann surfaces; a
fatgraph G is said to have genus g and n boundary components if it corresponds to
a punctured Riemann surface S € My ,,.

Chapter 1 presents a construction of Kontsevich’ fatgraph complex, deriving it as
a relative of Harer’s arc-system complex [30, 31|, and proves the isomorphism of
its homology with the rational (co)homology of M, ,,. The main ingredient of this
construction is a cell decomposition of M, based on a theorem of Jenkins [37]
and Strebel [59]. This fatgraph complex is the same complex that one gets by
applying Kontsevich’ construction in the associative case; however, the proof given
here is specific to M ,, and does not trivially extend to other cases. The techniques
devised by Kontsevich are instead suitable to further generalization to any “modular
operad” [18].

A construction of the graph complex, closely following Kontsevich’ original work,
has been detailed by Conant and Vogtmann in [11]; Hamilton and Lazarev gave a
new proof in [27]. Other graph homology complexes related to the (co)homology
of My, have also been proposed; most relevant to the subject of this thesis is
the work by Godin [23], who constructed a variant complex that computes the
integral homology of mapping class groups of surfaces with boundary, and gives the
homology of M, ,, as a particular case. In the recent preprint [56], LaFountain and
Penner constructed a space which is homotopy equivalent to the Deligne-Mumford
compactification ﬁgyn and admits a cellularization indexed by suitably decorated
fatgraphs.

The fatgraph cellularization of the moduli space of smooth pointed Riemann sur-
faces and related topics have been extensively studied; the interested reader can find
comprehensive accounts of the subject in [1, Chapters XVIII and XIX] and [51].

2. Effective computation of the fatgraph complex

Chapter 3 is concerned with finding an effectively computable representation of
fatgraphs, and presenting algorithms to:

(1) compute automorphisms of any given fatgraph (Section 2);

(2) generate the set R, ,, of fatgraphs, given the genus g and number of bound-
ary components n (Section 3);

(3) compute the homology of the fatgraph complex Ry ,, (Section 4).

Note that, in contrast with other computational approaches to fatgraphs (e.g., [57]),
which draw on the combinatorial definition of a fatgraph, our computer model of
fatgraphs is directly inspired by the topological definition, and the algorithm for
enumerating elements of R, ,, is likewise backed by a topological procedure.

Theorem 2.24 provides an effective way to compute the (co)homology of M, ,,. The
Betti numbers of M, ,, can be computed from the knowledge of the dimension of
chain spaces W), of the fatgraph complex and the ranks of boundary operators Dy;
this computation is accomplished in the following stages:

I. Generate the basis set of W,; by definition, the basis set is the set R, of
oriented marked fatgraphs that correspond to surfaces in My .
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II. Work out the differential D: W, — W, explicitly as matrices D®) map-
ping coordinates in the fatgraph basis of W), into coordinates relative to
the fatgraph basis of W,_;.

III. Compute the ranks of the matrices D®).

Stage I needs just the pair g,n as input; its output is the set of orientable marked
fatgraphs belonging in R, ,,. By definition, marked fatgraphs are decorated abstract
fatgraphs, whose decoration is a simple combinatorial datum (namely, a bijection
of the set of boundary cycles with the set {1,...,n}): therefore, the problem can
be reduced to enumerating abstract fatgraphs. With a recursive algorithm, one can
construct trivalent Ry ,-fatgraphs from trivalent graphs in Rgy_1, and Rg_q ny1.
All other graphs in R, , are obtained by contraction of non-loop edges.

The differential D has a simple geometrical definition: D(G) is a sum of graphs
G’, each gotten by contracting a non-loop edge of G. A simple implementation of
Stage II would just compare each contraction of a graph with p edges with any graph
with p—1 edges, and score a +1 (depending on the orientation) in the corresponding
entry of the matrix D®). However, this algorithm has quadratic complexity, and
the large number of graphs involved makes it very inefficient already for My 5. The
simple observation that contraction of edges is defined on the topological fatgraph
underlying a marked fatgraph allows us to apply the naive algorithm to topological
fatgraphs only, which cuts complexity down by a factor O((n!)?). The resulting
matrix is then extended to marked fatgraphs by the action of graph automorphism
groups on the markings of boundary cycles. This is the variant detailed in Section 4.

Stage III is conceptually the simplest: by elementary linear algebra, the Betti
numbers can be computed from the rank of matrices D) and the dimension of
their domain space. The computational problem of determining the rank of a
matrix has been extensively studied; it should be noted, however, that this step
can actually be the most computationally burdening.

Explicit generators of the homology modules could be computed with a little variant
in the last step of the algorithm; however, this is not interesting in connection with
the homology of My ,,, since expression of a fatgraph homology class in terms of the
“natural” algebro-geometric classes has proved to be a difficult problem [50, 33, 34],
and to-date lacks a general solution.

A implementation of the algorithms presented in this paper has been actually used
to compute the Betti numbers of all M, ,, with 2g+n < 6. Results are summarized
in Table 1.1; see Section 5 for implementation-specific details and a discussion of
performance.

All the Betti numbers were already known; the output of the program corrobo-
rates computations previously published in the literature. The original sources are
scattered across a wide array of publications. For g > 1, the groups H'(M, ,, Q)
are known from the works of Mumford [53] and Harer [29]; H?(M, ,, Q) has been
computed also by Harer in [29]; a comprehensive statement with a new proof is
given by Arbarello and Cornalba in [2] (where a minor mistake in Harer’s state-
ment is corrected). The complete integral homology of M; o and My 1 has been
published in Godin’s paper [23]. The homology of the My . spaces is computed in
[20, Corollary, 3.10]; see [46] for alternative approaches using results from [62] to
compute the Poincaré polynomial of My ,,. The Poincaré-Serre polynomial of M o
follows as a special case of Corollary I11.2.2 in Tommasi’s thesis [61]; the results also
follows by combining [21, p. 22] with [32, Appendix A]. The rational cohomology
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bp b1 by b3 by bs bg by bg by big b1 b1
M073 1
Moy 1 2
Mos 1 5 6
Mo 1 9 26 24
My 1
MLQ 1
Mys 1 1
My 1 403
Moy 1 1
Moo 1 2 1

TaBLE 1.1. Betti numbers of My, for 2g +n < 6. For readability, null values
have been omitted and the corresponding entry left blank.

of M 4 is completely described (as a particular case) by Theorem 1 of [25]; it can
also be explicitly computed by using the tools developed by Getzler in [22]. In all
these cases, the numerical results agree with the values in Table 1.1.

The complete set of Betti numbers has apparently been completely computed for
just a few spaces, besides those presented in Table 1.1. The equivariant Serre
polynomials of M, with 29 +n < 7 are completely tabled in [19]. Only for
g = 0 and g = 1 is the Poincaré polynomial of M, known for any n > 0; as
pointed out earlier, for My . the result is due to Getzler [20], but it can be derived
from other results as shown in [46]; a complete description of the cohomology of
M . is contained in the preprint [25] by Gorinov. The Betti numbers of M,
are well-known for n < 2; for n = 1 see, e.g., Godin’s [23], but see also [46] for
alternative approaches; for n = 2, see [21, 32, 61]; O. Tommasi has announced
complete results for My 3 and My 4 but they have not been published yet. The
rational cohomology of M is given in [6] (which refines results from [19, 44]);
the one of Mz 2 has been computed by Tommasi in [60]. No other computation of
Betti numbers of the spaces Mg 5, is known to the author; an online public attempt
to gather information about the known Betti numbers of M, ,, is ongoing at [46].

Along with the computation, the entire family of fatgraphs R, (with 2g+n < 6)
has been computed, and for each fatgraph the isomorphism group is known. The full
list of fatgraphs and their isomorphisms is too long to reproduce here (see a sample
in Appendix C), but the data is publicly available at http://fatghol.googlecode.
com/download/list. A summary of the number of abstract and marked fatgraphs
is provided in Tables 3.2 and 3.3 in Chapter 3.

3. A novel parallel algorithm for exact Gaussian Elimination of general
sparse matrices

The algorithms presented in Chapter 3 reduce computation of the Betti number of
moduli spaces My ,, to reckoning the rank (over Q) of some large sparse matrix with
integer entries. An effective method for computing this rank is given by Gaussian
Elimination.

The serial algorithm for Gaussian Elimination is well-known; it consists of a certain
number of iterations of the following two steps: a pivoting step followed by an
elimination step. Starting with the upper left entry, a non-zero element (pivot)
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is searched for; once a pivot has been found, a permutation is applied so that the
pivot rests in the upper left corner of the “uneliminated” matrix. In the elimination
phase, all the elements in the leftmost column and below the pivot are set to zero
by summing to each row a suitable multiple of the pivot row. Then the procedure
is recursively applied to the portion of the matrix excluding the topmost row and
the leftmost column.

An enormous literature has been published on the subject of Gaussian Elimination,
that is outside the scope of this short introduction to survey. However, available
practical codes for exact matrix rank computation seem to be limited to the free
software library LINBoOX [14, 43|, which does not offer any parallel distributed-
memory algorithm and is thus bound to usage on a single computer at a time.
Indeed, Gaussian Elimination algorithms with exact computations has been anal-
ysed in [16], and the authors concluded that “there remains to design a direct
parallel method suited to sparse matrices”.

Let us say that a matrix is in “block echelon form” iff each row starts with a number
of null entries that is not less than the number of null entries of the row directly
above. The “Rheinfall” algorithm presented here is based on the observation that
any sparse matrix can be put in a “block echelon form” with minimal computational
effort. One can then run elimination on each block of rows of the same length
independently (i.e., in parallel); a communication step is needed to re-order the
rows after elimination. The procedure ends when all blocks have been reduced to
a single row, i.e., the matrix has been put in row echelon form.

As can be seen from this cursory description, the “Rheinfall” algorithm distributes
the matrix data and the elimination work to an arbitrary number p of processors;
it can thus fully exploit the power of present-day massively parallel machines. No
collective communication takes place; however it is assumed that the communi-
cation fabric is able to route a message of arbitrary size? from any processor to
any other. On the other hand, the algorithm requires frequent one-to-one commu-
nication among all processing units; the issue of distributing matrix data among
processors is thus crucial to minimizing the network traffic and for the overall per-
formance of the algorithm.

The “Rheinfall” algorithm has been developed and used to compute the rank of the
homology matrices arising from fatgraph complexes; however, it is of (potentially)
much wider application. The interesting question is then to determine the class of
matrices on which “Rheinfall” is efficient. A direct approach to this problem quickly
leads to the conclusion that the amount of work and communication performed by
the algorithm is strictly dependent on the nonzero pattern of the input matrix.
By using computational experiments, we can assess the performance of “Rheinfall”
on a large set of matrices, and give some complexity estimates. As it turns out,
“Rheinfall” is competitive with LINBOX on a large subset of the test matrices, and
specifically outperforms it on the M, ,, homology ones.

4. Notation

Algorithms are listed in pseudo-code reminiscent of the Python language syntax (see
[65]); comments in the code listings are printed in italics font. The word “object”
is used to denote a kind of aggregate type in the computer programs: an object is
a tuple ‘(a1, as, ..., an)’, where each of the slots a; can be independently assigned

2Actually7 the maximum size of a message is a linear function of the length of a matrix row.
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a value; we write X.a; to denote the slot a; of object X. Object slots are mutable,
i.e., they can be assigned different values over the course of time. Appendix A gives
a complete recap of the notation used and the properties assumed of syntax, data
structures, and operators.

A great deal of Chapter 3 is concerned with finding computationally-effective rep-
resentations of topological objects; in general, we use boldface letters to denote the
computer analog of a mathematical object. For instance, the letter G always de-
notes a fatgraph, and G its corresponding computer representation as a Fatgraph
object.

Finally, if A is a category of which X, Y are objects, we use Eilenberg’s notation
A(X,Y) for the Hom-set, instead of the more verbose Hom 4 (X,Y).



CHAPTER 2

The Fatgraph Chain Complex

This chapter recalls the main definitions and properties of fatgraphs, and the re-
lation of the fatgraph complex to the cohomology of M, ,. These results are well-
known: a comprehensive exposition of the research connected with the topic of
this chapter can be found in Mondello’s [51]; the book by Lando and Zvonkin [42]
provides a broad survey of the applications of fatgraphs and an introduction ac-
cessible to readers without a background in Algebraic Geometry; a recent account
of the crucial Jenkins-Strebel theorem (together with applications to the triangula-
tions of the Teichmiiller and moduli space of curves) can be read in Arbarello and
Cornalba’s paper [3].

1. Fatgraphs

“Fatgraphs” take their name from being usually depicted as graphs with thin bands
as edges, instead of 1-dimensional lines; they have also been called “ribbon graphs”
in Algebraic Geometry literature. Here, the two names will be used interchangeably.

Definition 2.1 (Topological definition of fatgraphs). A fatgraph is a finite CW-
complex of pure dimension 1, together with an assignment, for each vertex v, of a
cyclic ordering of the edges incident at v.

A morphism of fatgraphs is a cellular map f: G — G’ such that, for each vertex v
of G’, the preimage f~!(V) of a small neighborhood V' of v is a small neighborhood
of a tree in G (i.e., f~(V) is a contractible connected graph).

Unless otherwise specified, we assume that all vertices of a fatgraph have valence
at least 3.

If G is a fatgraph, denote V(G), E(G) and L(G) the sets of vertices, unoriented
edges and oriented edges (equivalently called “legs” or “half-edges”).

1.1. Combinatorial description of fatgraphs. The following combinato-
rial description of a fatgraph will also be needed:

Definition 2.2 (Combinatorial definition of fatgraphs). A fatgraph is a 4-
tuple (L,00,01,02), comprised of a finite set L together with bijective maps
09,01,09: L — L such that:

» o1 is a fixed-point free involution: o? = id, and
» 09009 =O01.

Lemma 2.3. Definitions 2.1 and 2.2 are equivalent.

7
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PROOF. To pass from the topological description to the combinatorial one, take
L to be the set of oriented edges of the CW-complex underlying a fatgraph. Define
01: L — L as the orientation reversal on edges. Define 0¢: L — L by means of the
cyclic order at vertices: let L(v) be the subset of edges in L that end at a vertex v,
the cyclic order on edges incident at v induces a cyclic order on L(v). If z € L(v)
then define o (z) as the successor to  in the cyclic order on L(v). Finally, define
09 : L — L by means of o5 = 06101.

Vice versa, let L; be the set of orbits of the map o;. Take Lq to be the set of 0-cells;
for each {zT,2~} € L1, glue a 1-cell to the O-cells corresponding to the og-orbits
of 1 and z~. The cyclic order at each vertex is induced by the action of 0. [

Any two of the maps 0q, 01, 09 determine the third, by means of the defining relation
0p 0 03 = o7; therefore, to give a ribbon graph, it is sufficient to specify only two
out of three maps.

In the combinatorial description, V(G) is the set Lg of orbits of o, E(G) is the set
L, of orbits of o1, and L(G) is plainly the set L.

1.2. Morphisms arising from contraction of an edge. Let G be a fat-
graph, and G’ be the CW-complex obtained by contracting an edge = € E(G) to a
point. If 2 connects two distinct vertices (i.e., x is not a loop) then G’ inherits a
fatgraph structure from G: if (r <21 <...<zp <z)and (z <z} <..<z) <«x)
are the cyclic orders at endpoints of x, then the vertex formed by collapsing z is
endowed with the cyclic order (z1 < ... <z, <z} <...<uz}).

Contraction morphisms play a major role in manipulation of ribbon graphs.

Lemma 2.4. Any morphism of fatgraphs is a composition of isomorphisms and
contractions of non-loop edges.

We can thus define functors V(—), E(—) and L(—) that take a morphism of graphs
to a map of their set of vertices, (unoriented) edges, and oriented edges.

1.3. From fatgraphs to Riemann surfaces. There is a functorial construc-
tion to build a closed oriented surface S(G) from a fatgraph G; this is usually
referred to as “thickening” or “fattening” in the literature.

Lemma 2.5. (1) There exists a functor S that associates to every fatgraph G a
punctured Riemann surface S(G), and to every morphism f: G — G’ a continuous
map S(f): S(G) — S(G"). (2) The surface S(G) is naturally endowed with a trian-
gulation indexed by oriented edges of G. (3) The graph G is a deformation retract
of S(G).

Denote by B(G) the set Ly of orbits of oq; in the topological description, its elements
are the support of 1-cycles in H!(G) that correspond under the retraction to small
loops around the punctures in S(G); they are called “boundary cycles” of G.

The assignment G — B(G) extends to a functor B(—); by Lemma 2.4, for any
f: G1 = G2 the map B(f): B(G1) — B(G3) is a bijection.

The correspondence between fatgraphs and Riemann surfaces allows us to give the
following.
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Ficure 2.1. Thickening of a fatgraph into a Riemann surface. Left column:
Starting fatgraph: the cyclic order at the vertices is given by the orientation of
the ambient euclidean plane. Middle column: Thickening of the fatgraph by
gluing topological disks along the boundary components. The border of a cells
is drawn as a dotted line; each topological disk has been given a different color.
Right column: The resulting Riemann surface with the embedded graph. Note
that the two starting graphs would be isomorphic when considered as ordinary
multigraphs; they are distinguished by the additional cyclic structure at the
vertices.

Definition 2.6. The number of boundary cycles of a graph G is given by n =
|B(G)|, and is equal to the puncture number of the Riemann surface S(G).
If S(G) has genus g and n punctures, then:

X(G) =x(5(G)) =2-29—n=2-29—|B(G)], (1.1)

so we can define, for any fatgraph G, the genus g, as given by the above relation.

It is trivial to check the following.

Lemma 2.7. If G’ is obtained from G by contraction of a non-loop edge, then G
and G’ share the same genus and number of boundary cycles.

1.4. Complex analytic structure on S(G). We can give the topological
Riemann surface S(G) a complex analytic structure by means of the triangulation
in Lemma 2.5(2) and an analytic atlas, which depends on the perimeters py, ..
pr of boundary cycles by, ..., b,. (See [52] for details.)

)

Definition 2.8. A metric ¢ on a fatgraph G is an assignment of a real positive
number ¢, for each edge x € E(G).

A metrized fatgraph (G, {) is a fatgraph G equipped with a metric /.

The perimeters p1, ..., p, are determined by the metric data ¢, therefore the
complex analytic structure on S(G) actually depends on the metrized graph (G, ¢).
Let S(G, ¢) denote the Riemann surface S(G) endowed with this complex analytic
structure.

Lemma 2.9. If G, G’ are metrized fatgraphs and f is an isomorphism preserving
edge lengths, then S(f) is a complex analytic mapping.



10 2. THE FATGRAPH CHAIN COMPLEX

1.5. Marked fatgraphs.

Definition 2.10. A marked fatgraph is a fatgraph G endowed with a bijection
v: B(G) = {1,...,n}. The map v is called the “marking” on G.

A morphism f: G; — G5 of marked fatgraphs must preserve the numbering of
boundary cycles:

B(Gh) ! B(Gs) (1.2)

{1,...,n}

By a slight abuse of language, we shall usually omit mention of the marking map v
and just speak of “the marked fatgraph G”.

2. Moduli spaces of Riemann surfaces

Let us recap the main points of the construction of the moduli space of smooth
algebraic curves; the short summary given here tracks closely the first section of
[45], which has proofs and references.

Fix integers g, n > 0 such that 2—2g—n < 0. Let S be a Riemann surface of genus
gand P={Py,...,P,} aset of n points in S.

Let Diff(S, P) be the group of diffeomorphisms of S that fix P pointwise; Diff’(S, P)
denotes the subgroup of diffeomorphisms homotopic to the identity mapping idg;
let Diff" (S, P) indicate the subgroup of orientation-preserving diffeomorphisms.

Every set P of marked points can be transformed into another chosen set P’ (of the
same cardinality) by a diffeomorphism ¢ homotopic to the identity mapping idg.
Therefore, Diff" (S, P) and Diff’(S, P) depend only on n = |P| and not on P (see
[41]). Summing up:

Definition 2.11. Diff(S,n) is the group of orientation-preserving diffeomorphisms

that keep the n marked points fixed.

Diff’(S, n) is the group of diffeomorphisms of S which are homotopic to the identity
mapping idg and that keep the n marked points fixed.

Every complex structure on S determines a conformal structure; let Conf(.S) be the
set of all conformal structures on S.

Definition 2.12. The Teichmiiller space
T, := Conf(S)/Dift"(S,n)

is the quotient of the set of all conformal metrics on S by the set of all diffeomor-
phisms homotopic to the identity and fixing the n marked points.

The Teichmiiller space T, is an analytic space and is homeomorphic to a convex
domain in C3973+7,

Definition 2.13. The mapping class group Iy ,, is the set of connected components
of Diff"(S,n), the group of all diffeomorphisms that preserve orientation and fix
marked points:

Ty = Diff (S, n)/Diff’ (S, n).
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Definition 2.14. The topological space My ,, := T, /I'g, is the moduli space of
(smooth) n-pointed algebraic curves of genus g. It parametrizes complex structures
on S, up to diffeomorphisms that: (1) are homotopic to the identity mapping on
S, (2) preserve the orientation of S, and (3) fix the n marked points.

Since T ,, is an analytic variety and I'y ,, acts discontinuously with finite stabilizers,
My, inherits a structure of analytic orbifold of complex dimension 3g — 3 + n.

Since Ty, is contractible, its equivariant (co)homology with rational coefficients is
isomorphic to the rational (co)homology of M, ,, (see [10, VIL.7.7]):

Hy " (T, Q) 2 Hy (Mg, Q),  Hf, (T, Q) = H (M,,,Q),  (21)

One may instead consider equivalence classes of n-punctured surfaces S (i.e., with
n points removed) by bianalytic mappings that do not permute the punctures, and
repeat the same construction of the Teichmiiller and the moduli space. By the
Riemann extension theorem, the two approaches turn out to yield the same result.

In the course of this chapter, we will make use of the description of M ,, that best
fits in the context, often without explicit notice. In particular, we shall consider
the points Py, ..., P, as marked points or as punctures, interchangeably.

2.1. Quadratic differentials. If S is an n-punctured Riemann surface, then
S retracts onto a graph, however, this graph is not uniquely determined. We can
refine this correspondence: a theorem proved independently by J. A. Jenkins [37]
and K. Strebel [59] provides the key tool: the construction of fatgraphs from smooth
complex curves.

Definition 2.15. A quadratic differential ¢ on a Riemann surface S is a (mero-
morphic) section of (T*5)®2.

The set of vectors in 7,5 on which g takes real non-negative values forms a real line
in T..S: therefore, they make up a foliation F on S\ {poles of ¢}. The non-compact
leaves of F' together with zeroes of ¢ form the “critical locus” of ¢q. Call F' the
“horizontal” foliation associated with gq.

Every quadratic differential ¢ induces a metric (away from the critical locus) by
ds? = |q(2)| - |dz|.

Theorem 2.16 (Jenkins, Strebel; [59, Theorem 23.2 and 23.5]). For any complex

analytic curve S with n marked points Py, ..., P,, and any assignment of real posi-
tive numbers pi,...,pn, there exists one and only one quadratic differential ¢ such
that:

» q is holomorphic on S\ {Py,...,Py};

» q has double poles at the marked points Py,..., P, with second residue
_(p1/2W)27 ) _(pn/Qﬂ-)Q;

» the non-critical real trajectories of F, are simple closed circles around x;;

» the complement of the critical locus is a collection of disks {D;}i=1.... n,
each one centered at a pole P;.

Furthermore, q has the following properties:

» every nonsingular closed leaf circling around P; has length p; in the flat
metric induced by q.
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» the critical locus G of q is a graph embedded in S;

» the projective class of the collection of radii of disks {D;} equals the pro-
jective class [p1,...,pnl;

» q depends continuously on S and (p1,...,pn).

2.2. The fatgraph cellularization of the moduli spaces of marked Rie-
mann surfaces. An embedding of a fatgraph G is an injective continuous map
t: G — S, that is, a homeomorphism of G onto ¢(G) C S, such that the orientation
on S induces the cyclic order at the vertices of ¢(G).

Definition 2.17. An embedded fatgraph is a fatgraph G endowed with a homeo-
morphism 7 between S(G) and the ambient surface S, modulo the action of Diff’(S).

There is an obvious action of I'y, on the set fJNQg,n of fatgraphs embedded into
n-marked Riemann surfaces of genus g.

If confusion is likely to arise, we shall speak of abstract fatgraphs, to mean the
topological and combinatorial objects defined in Definitions 2.1 and Definition 2.2,
as opposed to embedded fatgraphs as in Definition 2.17 above.

The critical graph G inherits a structure of embedded metrized fatgraph from the
ambient surface S: the length of an edge « is the one measured in the metric induced
by the quadratic differential. Furthermore, Jenkins-Strebel’s theory states that G
has a vertex of valence k + 2 where ¢ has a zero of order k, therefore, vertices of G
have valence > 3. Since the markings Py, ..., P, are ordered, G has an additional
structure of marked fatgraph.

Let G be a fatgraph (embedded or abstract) of genus g with n marked boundary
components. The set A(G) = {(G, ¢)} of metrics on G has an obvious structure of
topological cell; now glue these cells by stipulating that A(G’) is the face £, = 0 of
A(G) when G’ is obtained from G by contraction of the edge z. The topological
spaces obtained by these gluing instructions are denoted ‘Tg?}f‘b (when using embed-
ded fatgraphs), or M;f’;}lb (when using abstract fatgraphs). The following theorem
clarifies their relation to the Teichmiiller and the moduli space; details can be found,
e.g., in [51, Section 4.1].

Theorem 2.18. The thickening construction induces orbifold isomorphisms:

n ., qcomb n o~ comb
Ty X R 0 TeOmb -\ R™ o V0P,

Call M(G) the cell in Mcgf’ffb corresponding to an abstract fatgraph G, and T(G)
the cell in ‘J’;%"b corresponding to an embedded fatgraph G.

The functorial action of I'y ,, on Ry, induces an action on ‘J';O;Lnb, which permutes
:

cells T(G) by PL isomorphisms.
Lemma 2.19. M;f’glb is the quotient space of ‘J';?,;“b by the cellular action of the

mapping class group L'y, ; the projection homomorphism commutes with the iso-
morphisms in Theorem 2.18.

The action of I'y ,, commutes with the face operators, so M(G) is a face of M(G")
iff G’ is obtained from G by contraction of a non-loop edge.

Lemma 2.20. The isotropy group s of the cell T(G) < TSM is (isomorphic to)

the automorphism group Aut G of the abstract fatgraph G underlying G.
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PROOF. If a € Aut G, then S(a) is an automorphism of S(G, ¢) for any metric
L. If ¢ € A(G) varies continuously, then so does S(a). Therefore, an element of
I €Ty, is defined.

Conversely, let 7 € I'y ,, fix the cell T G setwise. If ¢ is the Jenkins-Strebel quadratic
differential inducing the complex analytic structure corresponding to the metric
¢ € T(G), then 7*q defines a quadratic differential corresponding to a point in T'G,
so it has critical graph G. But 7*¢ has critical graph T(é), since g has critical
graph G. Therefore, T restricts to a fatgraph isomorphism, so a map g — AutG
is defined, which is clearly the inverse of the map Aut G — I' 5 defined above. [

3. Equivariant homology of 7,, and the complex of fatgraphs

Definition 2.21. An orientation of a fatgraph G is an orientation of the vector
space QF(G), that is, the choice of an order of the edges of G, up to even permu-
tations.

Giving an orientation on G is the same as orienting the simplex A(G); respectively,
an orientation on G is identified with an orientation of the cell T'(G).

If G is a fatgraph with p edges, let Wg := A’ QF(G) be the 1-dimensional vector
space generated by the wedge products 1 A... Az, of edges of G. Every f € AutG
induces a map f : E(G) — E(G) on the edges and thus a map f. :z1 A .. Axp —
flxi) Ao A f(zp). Trivially, fo(zi A... Axp) = £21 A... A zp, depending on
whether f preserves or reverses the orientation of G.

Definition 2.22. A fatgraph G is orientable iff it has no orientation-reversing
automorphisms.

Form a differential complex of orientable fatgraphs as follows.

Definition 2.23. The complex (W, D) of orientable fatgraphs is defined by:

» Wy := @, Wa, where G runs over orientable fatgraphs with (294+n—1+p)
edges; _
» D:=Y"(-1)'d;, where d;: W, — W,_ is given by:

1 A...ANT; A... ANz, if z; is not a loop and

G/x; is orientable,
di(xl/\.../\xp):: /Z

0 otherwise.

Call a fatgraph with one vertex only a clover; the number of edges of a clover of
genus g with n boundary cycles is readily computed by (1.1):

Mpin = 1 — X(G) =2g+n — 1. (3.1)

On the other hand, the number m of edges and the number [ of vertices are maximal
when all vertices are 3-valent:

Mmax = 69 + 3n — 6, lmax =49 +4n —4 (3.2)

From equations (3.1) and (3.2) we see that W, is a finite complex of length 4g +
2n — 5, which is already predicted by the results of Harer on the equivariant spine
of Ty, [30].

Every oriented fatgraph (G,w) defines an element wg € W by taking the wedge
product of edges of G in the order given by w; conversely, any 1 A ... Az, € Wg
defines an orientation on G by setting w 1=z < ... < zp.
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Theorem 2.24. The Iy ,,-equivariant homology of Ty, with rational coefficients
is computed by the complex of oriented fatgraphs (W, D), i.e., there exists an iso-
morphism:

H{g,n(j’g’n,@) = H*(W*7D)

PROOF. The genus and number of boundary cycles will be fixed throughout,

so for brevity, set I := T ,, T := T, ,, and TmP := 7;071;113_

By Theorem 2.18, we have:

H,(T,Q) = H (T, Q).
Recall that HI(T°™P Q) can be defined as the homology of the double complex
P, ® C,(T°™P Q), where P, is any projective resolution of Q over Q[I']. The
spectral sequence E}, := Hy(P. ®r Cp) = Hy(T',Cp) abuts to H, (TP) (see
[10, VIL5 and VIL7)).

The space ‘J’;O,ﬂ"b has, by definition, an equivariant cellularization with cells indexed
by embedded fatgraphs of genus g with n marked boundary components. Let
X, be a set of representatives for the orbits of p-cells under the action of I'. By
Lemma 2.19, X, is in bijective correspondence with the set of abstract fatgraphs
having p edges, and the orientation of a cell translates directly to an orientation
of the corresponding graph. For each geometric simplex T(G’) C Jeomb et s
be its isotropy group, and let QG be the I's-module consisting of the Q-vector
space generated by an element A on which I' 5 acts by the orientation character:
7-A = £A depending on whether 7 preserves or reverses the orientation of the cell
T(G). By Lemma 2.20, there is an isomorphism between g and AutG;if T €'z
reverses (resp. preserves) orientation of T(G), then the corresponding f € Aut G
reverses (resp. preserves) orientation on G. Therefore, QG and W, are isomorphic
as Aut G = I' 5 modules.

Following [10, p. 173], let us decompose (as a I-module)
C (:J-comb7Q @ WG»

GeX,

then, by Shapiro’s lemma [10, IIL.6.2], we have:
H,(T, @ H,(Tg,QG) = @ H,(Aut G, We).
GeEX, GeX,

Since Aut G is finite and we take rational coefficients, then H,(Aut G, W¢g) = 0 if
g > 0 [10, IT1.10.2]. On the other hand, if G is orientable then Aut G acts trivially
on Weg, so:
0 if G has an orientation-reversing automorphism,

We  if G has no orientation-reversing automorphisms.

Ho(Allt G, Wg) = {

Let X, be the collection of all orientable fatgraphs with p edges. Substituting back
into the spectral sequence, we see that only one column survives:

Eyo= @ We=w, (3.3)
GeX,,
=0 for all ¢ > 0, (3.4)

In other words, E reduces to the complex (E! o, d").

Finally, we show that the differential d': E}, — E} ; ; corresponds to the dif-

ferential D: W, — W,_; under the isomorphism formula (3.3); this will end the
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proof. Indeed, we shall prove commutativity of the following diagram at the chain
level:

P*®Wp7@GEX;P*®WGM>D G”EX;D71 P*®WGl7P*®Wp—1

api =

P, ® C«p(gﬂ:omb7 Q) map* [ Cp_l(‘J'COmb, Q)

(3.5)
which implies commutativity at the homology level:

@GGXI’, Hy(Aut G, Wg) _ D ®G/6X;71 Hy(Aut G', Weqr)

~i lN

Ho(T', Cp (T, Q) gyt CIUE Cp—1(T™, Q))

whence the conclusion E} = (W,, D).

The vertical maps 6,, 6,_1 in (3.5) are the chain isomorphisms underlying the I'-
module decomposition Cp, (T, Q) = P, x, Wa- Taking the boundary of a cell
T(G) C TP commutes with the I-action: 0T (7 - G) = 7 - dT(G). Furthermore,
T(G') is a cell in T (G) iff G’ is obtained from G by contraction of an edge; but
G’ is a contraction of G iff the underlying abstract fatgraphs G’ and G stand in the
same relation. Thus, the I'-complexes (Ci, d) and (W,, D) are isomorphic by ., so
diagram (3.5) commutes, as was to be proved. ]



CHAPTER 3

Algorithms for graph homology

The objects of this Chapter 3 are finding an effectively computable representation
of fatgraphs (see Section 1), and presenting algorithms to:

(1) compute automorphisms of any given fatgraph (Section 2);

(2) generate the set R ,, of fatgraphs, given the genus g and number of bound-
ary components n (Section 3);

(3) compute the homology of the fatgraph complex R, ,, (Section 4).

By Theorem 2.24, this is tantamount to computing the (co)homology with rational
coefficients of the moduli spaces My .

An effective computer implementation® of the algorithm has been written as part of
the research. It is capable of computing the Betti numbers of M, ,, for (2g+n) < 6
on commonly-available hardware. Experimental results from running the code are
discussed in Section 5.

1. Computer representation of Fatgraphs

Although the combinatorial definition of a fatgraph (cf. Lemma 2.3) lends itself to a
computer representation as a triple of permutations —as used, e.g., in [57, Section
2.4]—, the functions that are needed by the generation algorithms (see Section 3)
are rather topological in nature and thus suggest an approach more directly related
to the concrete realization of a fatgraph.

Definition 3.1. A Fatgraph object G is comprised of the following data:

» A list G.vertices of Vertex objects.

» A list G.edges of Edge objects.

» A set G.boundary cycles of BoundaryCycle objects.
» An orientation G.orient.

The exact definition of the constituents of a Fatgraph object is the subject of the
following sections; informally, let us say that a Vertex is a cyclic list of edges and
that an Edge is a pair of vertices and incidence positions. A precise statement
about the correspondence of abstract fatgraphs and Fatgraph objects is made in
Section 1.5.

There is some redundancy in the data comprising a Fatgraph object: some of these
data are inter-dependent and cannot be specified arbitrarily. Actually, all data
comprising a Fatgraph object can be computed from the vertex list alone, as the
following sections show.

In what follows, the letters [, m and n shall denote the number of vertices, edges
and boundary cycles respectively:

LCode available for download from http://code.google.com/p/fatghol.

16
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» 1 = |V(GQ)| = size(G.vertices),
» m = |E(G)| = size(G.edges),
» n = |B(GQ)| = size(G.boundary cycles).

Throughout this Chapter, we shall use the topological and the combinatorial def-
inition of a fatgraph equivalently, according to what best suits in context. The
symbols oy, o1 and oy stand for the structure maps in the combinatorial defini-
tion Definition 2.2.

For integers a and k, we use (a%k) to denote the smallest non-negative represen-
tative of @« mod k .

1.1. Vertices. We can represent a fatgraph vertex by assigning labels? to all
fatgraph vertices and mapping a vertex to the cyclically-invariant list of labels of
incident edges. Figure 3.1 gives an illustration.

Definition 3.2. A vertex together with a choice of an attached edge is called a
ciliated vertex. The chosen edge is called the cilium.

Definition 3.3. If v is a ciliated vertex and e is a half-edge attached to it, define
the attachment index of e at v as the index of edge e relative to the cilium at v: if
a is the attachment index of e at v, then off takes the cilium at v onto e.

The attachment index at a vertex is unambiguously defined for all edges which are
not loops; the two half-edges comprising a loop have distinct attachment indices.
For brevity, in the following we shall slightly abuse the definition and speak of the
attachment index of an edge at a vertex.

Definition 3.4. A Vertex object v = Vertex(ey, ..., e,) is a list of the labels e,
.., e, of attached edges.

Two Vertex objects are considered equal if one is equal (as a sequence) to the other
rotated by a certain amount.

Example 3.5. Consider for example the fatgraph depicted in Figure 3.1: the edges
are given labels “0”, “1” and “2”, so the two vertices are represented by objects a =
Vertex(0,1,2) and b = Vertex(0,2,1), where the edge labels are listed starting with
the ciliated vertex and continue according to the cyclic order given at the vertex.

Note that the definition of Vertex objects as plain lists would correspond to ciliated
vertices in a fatgraph. For instance, if a different cilium were chosen in Figure 3.1,
we would have represented vertex a equivalently as Vertex(1,2,0) or Vertex(2,0,1).
In order to implement the cyclic behavior of fatgraph vertices, the requirement on
equality must be imposed; equality of Vertex objects can be tested by an algorithm
of quadratic complexity in the vertex valence.

If v is a vertex object, let us denote num_loops(v) the number of loops attached
to v. This is a vertex invariant and will be used in the computation of fatgraph
isomorphisms. Implementations of num_Ioops need only count the number of re-
peated edge labels in the list defining the Vertex object v.

2Labels can be drawn from any finite set. In actual computer implementations, two obvious
choices are to use the set of machine integers, or the set of Edge objects themselves (i.e., label
each fatgraph edge with the corresponding computer representation).
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1.2. Edges.

Definition 3.6. An Edge object e is an unordered pair of endpoints, so defined:
each endpoint corresponds to a 2-tuple (v,a), where v is a vertex, and a is the
index at which edge e appears within vertex v (the attachment index).

The notation Edge({endpoints)) will be used for an Edge object comprising the
specified endpoints.

Figure 3.2 provides a graphical illustration of the representation of fatgraph edges
as Edge objects.

It is clear how an Edge object corresponds to a fatgraph edge: a fatgraph edge is
made of two half-edges, each of which is uniquely identified by a pair formed by the
end vertex v and the attachment index a. In the case of loops, the two ends will
have the form (v, a), (v,a’) where a and a’ are the two distinct attachment indices
at v.

Example 3.7. For instance, consider the fatgraph depicted in Figure 3.2, and label
the three edges with the natural numbers 0, 1, 2, starting with the bottom edge.
Then the two vertices are represented by a = Vertex(1,0,0) and b = Vertex(2,1,2).
Hence, the bottom edge e is represented as Edge( (a,l), (a,2) ) because its label
0 appears at positions 1 and 2 in the Vertex object a.

Given an Edge object e, the other end(e, v, a) function returns the endpoint of e
opposite to (v, a).

1.2.1. Computation of the edge list. The edge list G.edges can be computed
from the list of vertices as follows.

The total number m of edges is computed from the sum of vertex valences, and
used to create a temporary array P of m lists (each one initially empty). We then
incrementally turn P into a list of edge endpoints (in the form (v, a) where v is a
vertex and a the attachment index) by just walking the list of vertices: P[k] is the
list [ (vg,0), ..., (U, zk) | where vy, (of valence zy) is the k-th Vertex in G.vertices.
The list G.edges is just P recast into Edge objects. In pseudo-code:

m <— (1/2) : ZvEG.vertices Valence(v)
P « array of m empty lists

for v in G.vertices:
for (a, €) in enumerate(v):
append (v, a) to Ple]
wrap endpoints into "Edge" objects

G.edges + | Edge(p) for pin P |

1.3. Boundary Cycles.
Definition 3.8. A BoundaryCycle object is a set of corners (see Figure 3.3).

A corner object C'is a triple (vertex, incoming, outgoing), consisting of a vertex v
and two indices ¢ = C.incoming, j = C.outgoing of consecutive edges (in the cyclic
order at v). In order to have a unique representation of any corner, we impose the
condition that either j =i+ 1, or ¢ and j are, respectively, the ending and starting
indices of v (regarded as a list).
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Vertex(0,1,2) [ @ 1 { b ) Vertex(0,2,1)

2

FicuRE 3.1. Representation of vertices as (cyclic) lists of edge labels; vertices
are identified by lowercase Latin letters; edge labels are depicted as roman
numerals on a yellow square background, sitting over the edge they label.
The representation of a vertex as a list is implicitly ciliated: here we use the
convention that the edge closest to the tail of the arrow is the ciliated one.

e, = Edge( (b,0), (b,2) )

e, = Edge( (a,0), (b,1))

80 = Edge( (ayl): (a,Z) )

Ficure 3.2. Representation of fatgraph edges. Each edge is identified with a
pair of endpoints, where an endpoint is a vertex together with an attachment
index. In the figure, letters a and b denote the vertices; attachment indices are
computed by assigning index 0 to the edge closest to the orientation arrow’s
tail.

b 01

Ficure 3.3. Representation of fatgraph boundary cycles. Left: How the
boundary cycles are represented with corners: each boundary component is
identified with the set of triplets it encloses. Therefore the boundary cycles
for the graph are represented by the sets {(a,0, 1), (b,2,0)}, {(a, 1,2), (b,1,2)},
and {(a,2,0),(b,0,1)}. Right: Zoom around vertex a in the left picture, to
show the three corners identified with triples (a,, 7). The indices in the triple
are attachment indices, i.e., displacement relative from the ciliated edge (the
one closest to the arrow tail); they bear no relation to the labels on the edges
(numbers on the light yellow background in the left picture).

19
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Example 3.9. Corner objects are meant to represent the entity formed by a vertex
and two consecutive half-edges; attachment indices are used to distinguish between
the two ends of a looping edge. So, for instance, the corner formed by the vertex b
and edges 0 and 1 in Figure 3.3 is given by the triplet (b,2,0), as edge 1 is attached
at position 2 in the Vertex object b, and edge 0 is attached at position 0; the
normalization condition that C.outgoing be the successor of C.incoming in the
cyclic ordering at the vertex b dictates the order of the two edges in the corner.

The notation ‘a’ is used in Appendix C to indicate corners; a boundary cycle is
denoted by (*a}® — “al’ — - — *al*).

It is easy to convince oneself that a BoundaryCycle object corresponds to a bound-
ary cycle as defined in Section 1. Indeed, if (L, 00,01,02) is a fatgraph, then the
boundary cycles are defined as the orbits of o5 on the set L of half-edges; a (end-
point vertex, attachment index) pair uniquely identifies an half-edge and can thus
be substituted for it. For computational efficiency reasons, we add an additional
successor index to form the corner triple (v,7,7) so that the action of o2 can be
computed from corner data alone, without any reference to the ambient fatgraph.3

Since distinct orbits are disjoint, two BoundaryCycle objects are either identi-
cal (they comprise the same corners) or have no intersection. In particular,
this representation based on corners distinguishes boundary cycles made of the
same edges: for instance, the boundary cycles of the fatgraph depicted in Fig-
ure 3.4 are represented by the disjoint set of corners {(v,2,3), (v,4,5),(v,0,1)}
and {(v,1,2), (v,3,4),(v,5,0)}.

1.3.1. Computation of boundary cycles. The procedure for computing the set
of boundary cycles of a given Fatgraph object G is listed in Algorithm 1. The
algorithm closely follows a geometrical procedure: starting with any corner, follow
its “outgoing” edge to its other endpoint, and repeat until we come back to the
starting corner. The list of corners so gathered is a boundary cycle. At each
iteration, the used corners are cleared out of the corners list by replacing them
with the special value USED, so that they will not be picked up again in subsequent
iterations.

Lemma 3.10. For any Fatgraph object G representing a fatgraph G, the function
compute boundary _cycles in Algorithm 1 has the following properties: 1) termi-
nates in finite time, and 2) returns a list of BoundaryCycle objects that represent
the boundary cycles of G.

PRrROOF. The algorithm works on a temporary array corners: as it walks along
a boundary cycle (lines 24-30), corner triples are moved from the working array
to the triples list and replaced with the constant USED; when we’re back to the
starting corner, a BoundaryCycle object b is constructed from the triples list and
appended to the result.

The corners variable is a list, the n-th item of which is (again) a list holding the cor-
ners around the n-th vertex (i.e., G.vertices[n]), in the order they are encountered
when winding around the vertex. By construction, corners|v][i] has the the form
(v,1,7) where j is the index following i in the cyclic order, i.e., (v,1,j) represents
the corner formed by the “incoming” i-th edge and the “outgoing” j-th edge.

3This is important in order to share the same corner objects across multiple BoundaryCycle
instances, which saves computer memory.
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Algorithm 1 Output the set of boundary cycles of a Fatgraph object G. Input
to the algorithm is a Fatgraph object G; the output is a list of BoundaryCycle
objects. The special constant USED marks locations in the temporary array corners
whose contents has already been assigned to a boundary cycle.

def compute boundary cycles(G):
build working array of corners
corners < [ [ (v, 4, ((i+1) % |v|)) for iin0,...,|v]| —1]
for v in G.vertices |
result < empty list
lg <0
ig < 0
while True:
locate the first unused corner
for I in Iy, ..., size(corners)—1:
v < G.vertices|l]
i + first_index_not_used(corners|v], ig)
if 4 is not None:
exit “for” loop
if | = size(corners)—1 and i is None:
all corners used, mission accomplished
return result
else:
lg < 1
19 — ¢
walk the boundary cycle and record corners
start < (v,1)
triples < empty list
while (v,4) # start or size(triples) = 0:
triples.append(corners[v][i])
J + corners|v][i][2]
e « olj]
mark location as ‘“‘used’’
corners|v][i] - USED
(v,1) < other_end(e, v, j)
b + BoundaryCycle(triples)
result.append(b)

def first _index not used(L):
for index, item in enumerate(L):
if item is not USED:
return index
return None
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The starting corner for each walk along a boundary cycle is determined by scanning
the corners list (lines 10-14): loop over all indexes v, ¢ in the corners list, and quit
looping as soon as corners|v][i] is not USED (line 13). If all locations in the corners
list are USED, then the all corners have been assigned to a boundary cycle and we
can return the result list to the caller. (]

Example 3.11. Consider the fatgraph in Figure 3.3: it has two vertices a =
Vertex(0,1,2) and b = Vertex(0,2,1) with three incident edges each, so initially we
have cornersla] = [ (a,0,1), (a,1,2), (a,2,0) | and corners[b] = [ (b,0,1), (b,1,2),
(b,2,0) |. Start with the first available corner (a,0,1) and follow the edge attached
at position 1 to its other end (b,2); the corresponding corner corners[b|[2] is (b,2,0).
Hence we continue the walk with edge 0 (attached at position 0 to vertex b), and
through its other end (a,0) we come back to the starting point. So, one boundary
cycle is formed by corners { (a,0,1), (b,2,0) }; the corners list now has the values
corners|a] = [ USED, (a,1,2), (a,2,0) | and corners[b] = [ (b,0,1), (a,1,2), USED ].

1.4. Orientation. According to Definition 2.21, orientation is given by a total
order of the edges (which directly translates into an orientation of the associated
orbifold cell).

Definition 3.12. The orientation G.orient is a list that associates each edge with
its position according to the order given by the orientation. Two such lists are
equivalent if they differ by an even permutation.

If e; and es are edges in a Fatgraph object G, then e; precedes e, if and only if
G.orientle;| < G.orient|es]; this links the fatgraph orientation from Definition 2.21
with the one above.

If a Fatgraph object is derived from another Fatgraph instance (e.g., when an edge
is contracted), the resulting graph must derive its orientation from the “parent”
graph, if we want the edge contraction to correspond to taking cell boundary in the

: comb
orbicomplex Mg}

When no orientation is given, the trivial one is (arbitrarily) chosen: edges are
ordered in the way they are listed in the G.edges list, i.e., G.orient|e] is the position
at which e appears in G.edges.

According to Definition 2.22, a fatgraph is orientable iff it has no orientation-
reversing automorphism. The author knows of no practical way to ascertain if
a fatgraph is orientable other than enumerating all automorphisms and checking if
any one of them reverses orientation:

def is_ oriented(G):
for a in automorphisms(G):
if is_orientation_reversing(a):
return False
no orientation—reversing automorphism found, G is orientable
return True

1.5. A category of Fatgraph objects.
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1.5.1. Isomorphisms of Fatgraph objects. In this section, we shall only give the
definition of Fatgraph isomorphisms and prove the basic properties; the algorithmic
generation and treatment of Fatgraph isomorphisms is postponed to Section 2.

Definition 3.13. An isomorphism of Fatgraph objects G; and G is a triple
f =(pv, rot, pe) where:

» pv is a permutation of the vertices: vertex v of G is sent to vertex pv{v]
of G, and rotated by rot[v] places leftwards;

» pe is a permutation of the edge labels: edge e in G is mapped to edge
pele] in Gs.

The adjacency relation must be preserved by isomorphism triples: if v; and vs
are endpoint vertices of the edge e, then pv|v;| and pv[vs] must be the endpoint
vertices of edge pele] in Ga.

Since a vertex in a Fatgraph instance is essentially the list of labels of edges attached
to that vertex, we can dually state this compatibility condition as requiring that,
for any vertex v in G.vertices and any valid index j of an edge of v, we have:

G .vertices|pv[v]|[j+rot[v]] = pe|G.vertices|v][j]] (1.1)

The above formula (1.1) makes the parallel between Fatgraph object isomorphisms
and fatgraph maps (in the sense of Definition 2.1) explicit.

Lemma 3.14. Let Gy, G2 be fatgraphs, represented respectively by G1 and Gs.
Every isomorphism of fatgraphs f: Gi — Ga lifts to a corresponding isomor-
phism f = (pv, rot, pe) on the computer representations. Conversely, every triple
(pv, rot, pe) representing an isomorphism between the Fatgraph instances induces
a (possibly trivial) fatgraph isomorphism between G1 and Gs.

PROOF. Every isomorphism f: G; — G2 naturally induces bijective maps
fv: V(Gy) = V(G2) and fg: E(G1) — E(G2) on vertices and edges. Given a
cilium on every vertex, f additionally determines, for each vertex v € V(G), the
displacement f,o(v) of the image of the cilium of v relative to the cilium of fy (v).
Similarly, fg determines a bijective mapping of edge labels, and is completely de-
termined by it. This is exactly the data collected in the triple (pv, rots, pe), and
the compatibility condition (1.1) holds by construction.

Conversely, assume we are given a triple (pv, rots, pe), representing an isomorphism
of Fatgraph instances. We can construct maps fy, fg as follows: fy sends a vertex
v € G to the vertex corresponding to pv[v]; fg maps the cilium of v to the
edge attached to pv|[v] at rot[v] positions away from the cilium; the compatibility
condition (1.1) guarantees that fg is globally well-defined. O

Example 3.15. Consider the fatgraph G in Figure 3.1 again; a Fatgraph object
G representing it has vertices a= Vertex(0,1,2), b= Vertex(0,2,1), and edges ey,
ey, es. Picture G as embedded on the surface of a sphere, with the vertices on the
two poles; an obvious automorphism is the one induced by rotation of the sphere
along its axis: fg maps ey — e, e; — eg, and es — eg, hence peleg|= ey, etc.
Correspondingly, we have that fy fixes the vertices but rotates the attachment
indices: pvla]= a and pv[b]= b, but rot[a]= 1 and rot[b]= 1.

Exchanging the north and south poles of the sphere yields a different automor-
phism f’ of the graph G: this time we have clearly f’.pv]a]= b and pv[b]= a with
f’.rot[a]= 0 and rot[b]= 0, but f’.pe[e1]= ez, pelez|= e1, and peleg]= ey by (1.1).
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Lemma 3.16. Let G1, Gy be Fatgraph objects, and n a bijective map between
G'1.edges and Gs.edges that preserves the incidence relation. Then there is a unique
Fatgraph isomorphism f that extends n (in the sense that f.pe = n).

PROOF. Start constructing the Fatgraph morphism f by setting f.pe = n. If
e, ..., e, are the edges incident to v, € Gy.vertices, then there is generally one
and only one endpoint v;, common to edges 7(ey); define f.pvlvy| = v},. There is
only one case in which this is not true, namely, if all edges share the same two
endpoints:? in this case, however, there is still only one choice of f.pv[vy] such that
the cyclic order of edges at the source vertex matches the cyclic order of edges at
the target vertex. Finally, choose f.rot[vy] as the displacement between the cilium
at vj, and the image of the cilium of wvy.

It is easy to check that eq. (1.1) holds, so f is a well-defined isomorphism. O

1.5.2. Contraction morphisms. Recall from the definition in Section 1.2 that
contraction produces a “child” fatgraph from a “parent” fatgraph and a chosen
regular (i.e., non-looping) edge.

The Fatgraph.contract method (see Algorithm 2) thus takes as input the “parent”
graph G and the edge e to contract, and produces as output the “child” fatgraph
G’. The contraction algorithm proceeds in the following way:

» The two end vertices of the edge e are fused into one: the list G’.vertices
is built by copying the list G.vertices, removing the two endpoints of e,
and adding the new vertex (resulting from the collapse of e) at the end.

» Deletion of an edge also affects the orientation: the orientation G'.orient
on the “child” fatgraph keeps the edges in the same order as they are in the
parent fatgraph. However, since G’.orient must be a permutation of the
edge indices, we need to renumber the edges and shift the higher-numbered
edges down one place.

» The “child” graph G’ is constructed from the list G’.vertices and the de-
rived orientation G’.orient; the list of “new” edges is constructed according
to the procedure given in Section 1.2.1.

Listing 2 summarizes the algorithm applied.

The vertex resulting from the contraction of e is formed as follows. Assume v
and vy are the endpoint vertices of the contracted edge. Fuse the endpoints of the
contracted edge as follows:

(1) Rotate the lists v1, v2 so that the given edge e appears last in v; and first
in V2.

(2) Form the new vertex v by concatenating the two rotated lists (after ex-
punging e).

Note that this changes the attachment indices of all edges incident to v; and v,
therefore the edge list of G’ needs to be recomputed from the vertex list.

Example 3.17. Consider the fatgraph G on the left of Figure 3.5; assume we want
to contract the edge e;. According to the above recipe, the first step is to use
cyclic invariance to rewrite the vertices a and b in the form: a= Vertex(2,0,1) and
b= Vertex(1,0,2); then the two vertices are fused into one: a’= Vertex(2,0,0,2),
which is the only vertex of the contracted fatgraph G’.
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Ficure 3.4. A fatgraph whose two boundary cycles are comprised of ex-
actly the same edges; however, they give rise to disjoint sets of corners:
{(v,2,3),(v,4,5), (v,0,1)} versus {(v,1,2), (v,3,4),(v,5,0)}.

Algorithm 2 Construct a new Fatgraph object G’ obtained by contracting the
edge e in G. The renumbering function s is the identity on numbers in the range
0, ..., e — 1, and shifts numbers in range e + 1, ..., m down by 1. Function
rotated(L, p) returns a copy of list L shifted leftwards by p places.

def contract(G, e):
let (v1, a1), (v2, az) be the endpoints of e
V' « | Vertex(z for z in v if x # e)
for v in G.vertices if v # v; and v # vq |
append the fused vertezx at end of list V.
v’ + Vertex(rotated(vi, a1) + rotated(va, ag))
V'.append(v’)
w' + | s(G'.orient|z]) for z in G’'.edges if x # e |
return Fatgraph(vertices < V'; orient + ')

(@,0,1)
@9’0

@20 ‘a (b,0,1) ﬂﬂ (@300 >=a' L (a,1,2)
2
e (@,2,3)

s

Ficure 3.5. Example of a contraction morphism. Contract edge e; in the
“parent” fatgraph on the left to obtain the “child” fatgraph on the right. An-
notations show how the corners are changed by the contraction procedure.
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The “child” fatgraph G’ inherits an orientation from the “parent” fatgraph, which
might differ from its default orientation. Let aq, ..., ap, ..., a;, be the edges of the
parent fatgraph G, with e = ay, being contracted to create the “child” graph G’. If
g1y < gy < ... < Q) is the ordering on E(G) that induces the orientation
on G and h = k(j), then a1y < ... < ag—1) < Qgs1) < - < Qp(m) descends
to a total order on the edges of G’ and induces the correct orientation.’

Orientation is represented in a Fatgraph object as a list, mapping edge labels to a
position in the total order; using the notation above, the orientation of G is given
by w := k~!. The orientation on G is then given by w’ defined as follows:

(i) {w(i) if w(i) < h,
C|w(@) =1 ifw(i) > h

Alternatively we can write:

, x if v < h,
w' =sow, s(x) == )
z—1 ifx>h.

This corresponds exactly to the assignment in Algorithm 2.

Example 3.18. Building upon Example 3.17, assume the orientation on G is w =
(0 <1 < 2), meaning that the edges e; are ordered in such a way that e; < e; iff
i < j. Let ef, €] be the edges of the “child” fatgraph G’, with e{, being the image
of eg, and €] the image of es. So the orientation induced on G’ is e}, < e}, i.e.,
W =(0<1).

The above discussion can be summarized in the following.

Lemma 3.19. If G and G’ represent fatgraphs G and G', and G = contract(G', e),
then G is obtained from G’ by contraction of the edge e represented by e.

The contract _boundary cycle function. The boundary cycles of the “child”
Fatgraph object G’ can also be computed from those of G. The implementation (see
Listing 1) is quite straightforward: we copy the given list of corners and alter those
who refer to the two vertices that have been merged in the process of contracting
the specified edge.

Let v; and vy be the end vertices of the edge to be contracted, and a1, as be the
corresponding attachment indices. Let z; and 25 be the valences of vertices vy, vs.
We build the list of corners of the boundary cycle in the “child” graph incrementally:
the b’ lists starts empty (line 6), and is then added corners as we run over them in
the loop between lines 7 and 26.

There are four distinct corners that are bounded by the edge e to be contracted;
denote them by C;, Cy, C3, C4. These map onto two distinct corners C, C’ after
contraction. Assume that C7; and Cy map to C: then C; and Cs lie “on the same
side” of the contracted edge, i.e., any boundary cycle that includes C; will include
also Cy and viceversa. (See Figure 3.6 for an illustration.) Since they both map
to the same corner C' in the “child” graph, we only need to keep one: we choose to
keep (and transform) the corner that has the contracted edge at the second index
(lines 9-10); similarly for C3 and C, in mapping to C’ (lines 16-17).

430 there are only two vertices in total, and the corresponding fatgraph belongs in Ro,m.

5That is to say, the orientation that corresponds to the orientation induced on the cell A(G)
as a face of A(G).
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Algorithm 3 Return a new BoundaryCycle instance, image of b under the topo-
logical map that contracts the edge with index e.

def contract boundary cycle(G, b, e):
let (v1, a1), (v2, az) be the endpoints of e
z1 < valence(vy)
z9 < valence(vs)
““child” boundary cycle b' starts off as an empty list
b ]
for corner in b:
if corner[0] = v;:
if a; = corner.incoming:
continue with next corner
else:
i1 ¢ (corner.incoming — a1 — 1) % =
io < (corner.outgoing — a3 — 1) % 21
append corner (v, 41, i2) to b’
elif corner[0] = va:
if ag = corner.incoming:
continue with next corner
if ag = corner.outgoing:
append (vy,21 + 22 — 3,0) to b’
else:
i1 < 21 — 1 + ((corner.incoming — az — 1) % z3)
i < z1 — 1 + ((corner.outgoing — as — 1) % z3)
append (vq,141,42) to o
else:
keep corner unchanged
append corner to b’
return BoundaryCycle(b’)

0

: o

Ficure 3.6. How corners are modified by edge contraction. Left: Four dis-
tinct corners are formed at the endpoints v1, v2 of edge e, which is to be con-
tracted: C1 = (v1,0,2), C2 = (v2,0,1), C3 = (v2,1,2), and Cy = (v1,0,1).
Edges are shown thickened, and (potentially) distinct boundary cycles are
drawn in different colors. Right: After contraction of e, corners C7 and Ca
are fused into C = (v,0, 1), and C3, C4 are fused into C’ = (v, 2, 3).
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Recall that, when contracting an edge with endpoints v; and vo, the new vertex
is formed by concatenating two series of edges: (1) edges attached to the for-
mer v, starting with the successor (in the cyclic order) of the contracted edge;
(2) edges attached to the former vy, starting with the successor of the contracted
edge. Therefore:

(1) The image of a corner rooted in vertex v; will have its attachment indices
rotated leftwards by a; + 1 positions: the successor of the contracted
edge has now attachment index 0 (lines 12-13). Note that the highest
attachment index belonging into this group is z; — 2: position z; — 1
would correspond to the contracted edge.

(2) The image of a corner rooted in vertex we has its attachment indices
rotated leftwards by as + 1 positions, and shifted up by z; — 1 (lines 21—
22). As a special case, when the contracted edge is in second position we
need to map the corner to the corner having attachment index 0 in second
position (line 19).

Any other corner is copied with no alterations (line 26).
Worked out examples are provided in Figures 3.5 and 3.6.

1.5.3. The category of Fatgraph objects. We can now formally define a category
of Fatgraph objects and their morphisms.

Definition 3.20. R# is the category whose objects are Fatgraph objects, and
whose morphisms are compositions of Fatgraph isomorphisms (as defined in Sec-
tion 2) and edge contraction maps.

More precisely, if G and G’ are isomorphic Fatgraph objects, then the morphism set
R# (G, G') is defined as the set of Fatgraph isomorphisms in the sense of Section 2;

otherwise, let m and m’ be the number of edges of G, G’, and set k := m —
m': each element in R¥(G,G’) has the form a’ o (7 o --- o m,) o @ where a,
a’ are automorphisms of G, G’ (respectively) and 7, ..., 7 are non-loop edge
contractions.

Theorem 3.21. There exists a functor K from the category R¥# of Fatgraph objects
to the category R of abstract fatgraphs, which is surjective and full.

PRrROOF. Given a Fatgraph G, its constituent Vertex objects determine cyclic

sequences vo = (e, €l,..., €2 ), ..., vy = (e},...,€.)), such that
0 0 1 -1 Iy _
{€0s - 1 €50, €05 1€ 5 €05 s €5 F ={0,...,m — 1}
Fix a starting element for each of the cyclic sequences vy, ..., v;. Then set:

L:={(e,i,v) : v =v; € {vg,..., v}, g:eg € v},

and define maps og,01,02: L — L as follows:

» oo sends (e,i,v;) to (¢/,',v;) where i' = (i + 1)%z; and ¢’ = ¢/, is the
successor of e in the cyclic order at vj;

» o1 maps (e,4,v) to the unique other triplet (¢’,i’,v") € L such that e = €’;

» finally, o5 is determined by the constraint oy o 09 = o7.

Then K(G) = (L, 00,01,02) is a fatgraph. Figure 3.7 provides a graphical illustra-
tion of the way a Fatgraph object is constructed out of such combinatorial data.
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Now let G be an abstract fatgraph; assuming G has m edges, assign to each edge a
“label”, i.e., pick a bijective map e : E(G) — E, where E is an arbitrary finite set.
Each vertex v € V(@) is thus decorated with a cyclic sequence of edge labels; the
set of which determines a Fatgraph object G; it is clear that G = K(G).

This proves that K is surjective; since every fatgraph morphism can be written as
a composition of isomorphisms and edge contractions (Lemma 2.4), it is also full.
It is clear that every edge contraction is the image of an edge contraction in the
corresponding Fatgraph objects, and the assertion for isomorphisms follows as a
corollary of Lemma 3.14. (]

Definition 3.22. If G = K(G) then we say that the Fatgraph object G represents
the abstract fatgraph G.

It is clear from the construction above that there is a considerable amount of arbi-
trary choices to be made in constructing a representative Fatgraph; there are thus
many representatives for the same fatgraph, and different choices lead to equivalent
Fatgraph objects.

Lemma 3.23. Two distinct Fatgraph objects representing the same abstract fat-
graph are isomorphic.

PrOOF. Assume G; and G5 both represent the same abstract fatgraph G =
K(G1) = K(G3). Let n1, n2 be the maps that send Edge objects in Gy, G2 to
the corresponding edges in G; then n = n; 1o 1y maps edges of G into edges of
G and respects the incidence relation, therefore it is the edge part of a Fatgraph
isomorphism by Lemma 3.16. (]

Theorem 3.24. The categories R¥ and R are equivalent.

PRrROOF. The functor K is surjective and full by Theorem 3.21; that it is also
faithful follows from the following argument. Any fatgraph morphism is a com-
position of edge contractions and isomorphisms. Any isomorphism determines, in
particular, a map on the set of edges, and there is one and only one Fatgraph iso-
morphism induced by this map (Lemma 3.16). Any edge contraction is uniquely
determined by the contracted edge: if f: G; — G2 is the morphism contracting
edge e and G; = K(G;), then f, contraction of the Edge object e representing e,
is the sole morphism of G into G that maps onto f. O

2. Fatgraphs isomorphism and equality testing

The isomorphism problem on computer representations of fatgraphs consists in
finding out when two distinct Fatgraph instances represent isomorphic fatgraphs (in
the sense of Definition 2.1) or possibly the same fatgraph. Indeed, the procedure for
associating a Fatgraph instance to an abstract fatgraph (see Theorem 3.21) involves
labeling all edges, choosing a starting edge (cilium) on each vertex, and enumerating
all vertices in a certain order; for each choice we get a different Fatgraph instance
representing the same (abstract) fatgraph.

The general isomorphism problem for (ordinary) graphs is a well-known difficult
problem. However, the situation is much simpler for fatgraphs, because of the
following property.
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Lemma 3.25 (Rigidity Property). Let G1, G2 be connected fatgraphs, and f: G1 —
Go an isomorphism. For any vertex v € V(G1), and any edge x incident to v, f is
uniquely determined (up to homotopies fizing the vertices of G;) by its restriction
tov and x.

In particular, an isomorphism of graphs with ciliated vertices is completely deter-
mined once the image w = f(v) of a vertex v is known, together with the displace-
ment (relative to the cyclic order at w) of the image of the cilium of v relative to
the cilium of the image vertex w.

ProoF. Consider f as a CW-complex morphism: f = (fo, f1) where f; is a
continuous map on the set of i-dimensional cells.

Let U be a small open neighborhood of v € V(G;). Given f|y, incrementally
construct a CW-morphism f’: G; — G5 as follows. Each edge 2’ incident to v can
be expressed as &’ = o§z for some 0 < o <valence(v). Let w = f(v) and y = f(z),
and define:

filz) =y,

fi(v) == w,

fia") == ogy =05 fi(x) if2’ =05,
0(vg) = W,

where:

» v, is the endpoint of 2’ = oz “opposite” to v,
» w!, is the endpoint of y' = o§y “opposite” to w.

Then f’ extends f on a closed set U’ 2 U, which contains the subgraph formed by
all edges attached to v and v’, and their endpoints. In addition:

» f1(z') = f(2') up to a homotopy fixing the endpoints since f commutes
with og,
» fo(va) = f(v,) since f preserves adjacency.

By repeating the same construction about the vertices v/, and w/,, one can extend
f' to a CW-morphism that agrees with f on an closed set U” such that U’ is strictly
contained in the interior of U”.

Recursively, by connectedness, we can thus extend f’ to agree with f (up to homo-
topy) over all of G;. O

2.1. Enumeration of Fatgraph isomorphisms. The stage is now set for
presenting the algorithm to enumerate the isomorphisms between any two given
Fatgraph objects. Pseudo-code is listed in Algorithm 4; as this procedure is quite
complex, a number of auxiliary functions have been used, whose purpose is ex-
plained in Section 2.1.1. Function isomorphisms, given two Fatgraph objects G4
and G, returns a list of triples (pv, rot, pe), each of which determines an isomor-
phism. If there is no isomorphism connecting the two graphs, then the empty list
[ ] is returned.

By the rigidity Lemma 3.25, any fatgraph isomorphism is uniquely determined by
the mapping of a small neighborhood of any vertex. The overall strategy of the
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Ficure 3.7. Construction of a fatgraph out of a set of Vertex instances: half-
edges tagged with the same (numeric) label are joined together to form an
edge.

Algorithm 4 Enumerate isomorphisms between two Fatgraph objects G and G:
output of the algorithm is a list of triples (pv, rot, pe). If there is no isomorphism
connecting the two input fatgraphs, the empty list is returned.

def isomorphisms(G1, Gs):
immediately rule out easy cases of no isomorphisms
if graphs invariants differ:
return | |
result + [ |
vsl < valence_spectrum(Gh)
vs2 < valence_spectrum(Gs)
(valence, vertices) +— starting _vertices(G3)
vy  vsl|valence|[0]
for vo in compatible vertices(vy, vertices):
for rot in 0, ... ,valence:
Initialize pv, rots, pe as empty maps
pvlvy] + v9
rots|vy] « rot
extend _map(pe, vy, rotated(vs, rot))
if extension failed:
continue with next rot
breadth—first search to extend the mapping over corresponding vertices
nexts < neighbors(pv, pe, G1, v1, Ga, v2)
while size(pv) < Gy.num_ vertices:
neighborhood « [ ]
for (v}, v}, r) in nexts:
(pv, rots, pe) < extend _iso(pv, rots, pe, G1, vi, r, Ga, v})
if cannot extend:
exit “while” loop and continue with next rot
append neighbors(pv, pe, G1, v, G2, v}) to neighborhood
nexts < neighborhood
isomorphism found, record it
result.append((pv, rots, pe))
return result
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algorithm is thus to pick a pair of “compatible” vertices and try to extend the map
as in the proof of Lemma 3.25.

We wish to stress the difference with isomorphism of ordinary graphs: since an
isomorphism f is uniquely determined by any pair of corresponding vertices, the
initial choice of candidates v, f(v) either yields an isomorphism or it does not: there
is no backtracking involved.

Since the isomorphism computation is implemented as an exhaustive search, it
is worth doing a few simple checks to rule out cases of non-isomorphic graphs
(lines 3—4). One has to weigh the time taken to compute a graph invariant versus
the potential speedup obtained by not running the full scan of the search space;
experiments run using the Python code show that the following simple invariants
already provide some good speedup:

» the number of vertices, edges, boundary cycles;
» the total number of loops;

» the set of valences;

» the number of vertices of every given valence.

Since an isomorphism is uniquely determined by its restriction to any vertex, one
can restrict to considering just pairs of the form (vq,v2) where v; is a chosen vertex
in G;. Then the algorithm tries all possible ways (rotations) of mapping v; into a
compatible vertex vo in Go. The body of the inner loop (line 11 onwards) mimics
the construction in the proof of Lemma 3.25.

The starting vertex v, should be selected so to minimize the number of mapping
attempts performed; this is currently done by minimizing the product of valence
and number of vertices of that valence on G (line 8), and then picking a vertex of
the chosen valence in G as vy (line 9).5

First, given the target vertex vs and a rotation rot, a new triple (pv,rots,pe) is
created; pv is set to represent the initial mapping of v, onto wvs, rotated leftwards
by rot positions, and pe maps edges of v, into corresponding edges of the rotated
vy. If this mapping is not possible (e.g., v1 has a loop and vy does not, or not in a
corresponding position), then the attempt is aborted and execution continues from
line 11 with the next candidate rot.

The mapping defined by (pv,rots,pe) is then extended to neighbors of the vertices
already inserted. This entails a breadth-first search” over pairs of corresponding
vertices, starting from v; and vy. Note that, in this extension step, not only the
source and target vertices, but also the rotation to be applied is uniquely deter-
mined: chosen a vertex v} connected to v; by an edge e, there is a unique rotation
r on v} such that pv|e] has the same attachment index to v} that e has to vy. If,
at any stage, the extension of the current triple (pv, rots, pe) fails, the triplet is
discarded and execution continues from line 11 with the next value of rot.

When the loop started at line 10 is over, execution reaches the end of the
isomorphisms function, and returns the (possibly empty) list of isomorphisms to
the caller.

6The checks already performed ensure that G; and G2 have the same “valence spectrum”,
so G'1 has at least one vertex of the chosen valence.

"The variables nexts and neighborhood play the role of the FIFO in the usual formulation
of breadth-first search: vertices are added to neighborhood during a loop, and the resulting list is
then orderly browsed (as nexts) in the next iteration.
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Algorithm 5 Enumerate the candidate extensions of the given pv and pe in the
neighborhood of input vertices v, and vs.

def neighbors(pv, pe, G1, v1, G2, v2):
result + | |
for each non-loop edge e attached to vy:
let (v}, a1) be the endpoint of e distinct from vy
if v} already in pv domain:
continue with next e
let (v}, as) be the endpoint of e’=pele] distinct from vy
if v} already in pv image:
continue with next e
result.append((v}, v}, a1 — az))
return result

Theorem 3.26. Given Fatgraph objects G1, G2, function isomorphisms returns
all Fatgraph isomorphisms from Gy to Gs.

PROOF. Given an isomorphism f : Gy — G, restrict f to the starting ver-
tex v1: then f will be output when Algorithm 4 examines the pair vy, f(v1); since
Algorithm 4 performs an exhaustive search, f will not be missed.

Conversely, since equation (1.1) holds by construction for all the mappings returned
by isomorphisms, then each returned triple f =(pv, rots, pe) is an isomorphism. O

2.1.1. Awziliary functions. Here is a brief description of the auxiliary functions
used in the listing of Algorithm 4 and 5. Apart from the neighbors function, they
are all straightforward to implement, so only a short specification of the behavior
is given, with no accompanying pseudo-code.

The neighbors function. A preliminary definition is necessary.

Definition 3.27. Define a candidate extension as a triplet (v, v}, r), where:

» v] is a vertex in G, connected to v; by an edge e;

» vh is a vertex in Gz, connected to vy by edge €’ = pele];

» r is the rotation to be applied to v} so that edge e and e’ have the same
attachment index, i.e., they are incident at corresponding positions in v}
and v5.

Function neighbors lists candidate extensions that extend map pv in the neighbor-
hood of given input vertices v; (in the domain fatgraph G4) and v (in the image
fatgraph G3). It outputs a list of triplets (v}, v}, r), each representing a candidate
extension.

A sketch of this routine is given in Algorithm 5. Two points are worth of notice:

(1) By the time neighbors is called (at lines 19 and 26 in Algorithm 4), the
map pe has already been extended over all edges incident to v;, so we can
safely set e’ =pele| in neighbors.

(2) Algorithm 4 only uses neighbors with the purpose of extending pv and pe,
so neighbors ignores vertices that are already in the domain or image of

pv.
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The valence spectrum function. The auxiliary function valence spectrum,
given a Fatgraph instance G, returns a mapping that associates to each valence z
the list V, of vertices of G with valence z.

The starting _vertices function. For each pair (z,V,) in the valence spectrum,
define its intensity as the product z - |V,| (valence times the number of vertices with
that valence). The function starting vertices takes as input a Fatgraph object G
and returns the pair (z,V,) from the valence spectrum that minimizes intensity. In
case of ties, the pair with the largest z is chosen.

The compatible and compatible vertices functions. Function compatible takes
a pair of vertices v; and v, as input, and returns boolean True iff v; and vy have
the same invariants. (This is used as a short-cut test to abandon a candidate
mapping before trying a full adjacency list extension, which is computationally
more expensive.) The sample code uses valence and number of loops as invariants.

The function compatible vertices takes a vertex v and a list of vertices L, and
returns the list of vertices in L that are compatible with v (i.e., those which v
could be mapped to).

The extend map and extend iso functions. The extend map function takes
as input a mapping pe and a pair of ciliated vertices v and vy, and alters pe to
map edges of v; to corresponding edges of vy: the cilium to the cilium, and so on:
pelo§(e)] = of(pele]). If this extension is not possible, an error is signaled to the
caller.

The extend iso function is passed a (pv, rots, pe) triplet, a vertex v| of Gy, a
vertex v} of G5 and a rotation r; it alters the given (pv,rots,pe) triple by adding a
mapping of the vertex v} into vertex v} (and rotating the target vertex by r places
rightwards). If the extension is successful, it returns the extended map (pv, rot, pe);
otherwise, signals an error.

2.2. Operations with Fatgraph Isomorphisms.

Compare pull-back orientation. The compare_orientations function takes an
isomorphism triple (pv, rots, pe) and a pair of Fatgraph objects G; , G3, and
returns +1 or —1 depending on whether the orientations of the target Fatgraph
pulls back to the orientation of the source Fatgraph via the given isomorphism.

Recall that for a Fatgraph object G, the orientation is represented by a map-
ping G.orient that associates an edge e with its position in the wedge prod-
uct that represents the orientation; therefore, the pull-back orientation accord-
ing to an isomorphism (pv, rots, pe) from G to G’ is simply given by the map
e — G’ .orient[pele]]. Thus, the comparison is done by constructing the permuta-
tion that maps G.orient|e] to G’.orient|pele]] and taking its sign (which has linear
complexity with respect to the number of edges).

The is_orientation reversing function. Determining whether an automorphism
reverses orientation is crucial for knowing which fatgraphs are orientable. Func-
tion is_orientation reversing takes a Fatgraph object and an isomorphism triple
(pv, rots, pe) as input, and returns boolean True iff the isomorphism reverses ori-
entation. This amounts to checking whether the given orientation and that of the
pull-back one agree, which can be done with the comparison method discussed
above.
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Algorithm 6 Function MgnGraphs returns all connected fatgraphs having pre-
scribed genus g and number of boundary cycles n. Actual output of the function is
a list R, whose k-th element R[k]| is itself a list of graphs in R, ,, with m — k edges.

def MgnGraphs(g,n):
m < 4g + 2n — 5 mazimum number of edges
R < array of m empty lists
R[0] < MgnTrivalentGraphs(g,n) first item contains all 3—valent graphs
for k in 1, \Idots, m — 1:
Initialize R[k] as an empty list
for G in R[k —1]:
for e in edge orbits(G):
if e is a loop:
continue with next e
G’ + contract(G, e)
if G’ not already in R[k]:
append G’ to RI[k]
return R

Transforming boundary cycles under an isomorphism. The function trans-
form boundary cycle is used when comparing marked fatgraphs: as the marking
is a function on the boundary cycles, we need to know exactly which boundary cycle
of the target graph corresponds to a given boundary cycle in the source graph.

Recall that BoundaryCycle instances are defined as list of corners; function trans-
form boundary cycle takes a BoundaryCycle b and returns a new BoundaryCycle
object b’, obtained by transforming each corner according to a graph isomorphism.
Indeed, transform boundary cycle is straightforward loop over the corners mak-
ing up b: For each corner (v,i,j), a new one is constructed by transforming the
vertex according to map pv, and displacing indices ¢ and j by the rotation amount
indicated by rot[v] (modulo the number of edges attached to v).

3. Generation of fatgraphs

Let MgnGraphs be the function which, given two integers g, n as input, returns
the collection of Ry, graphs. Let us further stipulate that the output result will
be represented as a list R: the 0-th item in this list is the list of graphs with the
maximal number m of edges; the k-th item R[k] is the list of graphs having m — k
edges. There are algorithmic advantages in this subdivision, which are explained
below.

Graphs with the maximal number of edges are trivalent graphs; they are computed
by a separate function MgnTrivalentGraphs, described in Section 3.1.

We can then proceed to generate all graphs in R, ,, by contraction of regular edges:
through contracting one edge in trivalent graphs we get the list R[1] of all graphs
with m — 1 edges; contracting one edge of G € R[1], we get G’ € R[2] with m — 2
edges, and so on. Pseudo-code for MgnGraphs is shown in Algorithm 6. The loop
at lines 8-13 is the core of the function: contract edges of the fatgraph G (with
m—k+1 edges) to generate new fatgraphs with m —k edges. However, we need not
contract every edge of a fatgraph: if a € Aut G is an automorphism and e € E(G)
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is an edge, then the contracted graphs G’ = G/e and G” = G/a(e) are isomorphic.
Hence, we can restrict the computation to only one representative edge per orbit of
the action induced by Aut G on the set E(G); the edge orbits function referenced
at line 8 should return a list of representative edges, one per each orbit of Aut(G)
on E(G).

Lines 12-13 add G’ to R[k] only if it is not already there. This is the most com-
putationally expensive part of the MgnGraphs function: we need to perform a
comparison between G’ and each element in R[k]; testing equality of two fatgraphs
requires computing if there are isomorphisms between the two, which can only be
done by attempting enumeration of such isomorphisms. (Fatgraph isomorphism is
discussed in detail in Section 2.)

If Ni is the number of elements in R[k] and Tis, is the average time needed to
determine if two graphs are isomorphic, then evaluating whether G’ is already
contained in R[k] takes O(Ny - Tiso) time: thus, the subdivision of the output R into
lists, each one holding graphs with a specific number of edges, reduces the number
of fatgraph comparisons done in the innermost loop of MgnGraphs, resulting in a
substantial shortening of the total running time.

Note that the top-level function MgnGraphs is quite independent of the actual
implementation of the Fatgraph type of objects: all is needed here, is that we have
methods for enumerating edges of a Fatgraph object, contracting an edge, and
testing two graphs for isomorphism.

Lemma 3.28. If MgnTrivalentGraphs(g,n) returns the complete list of trivalent
fatgraphs in Ry, then the function MgnGraphs defined above returns the complete
set of fatgraphs Rg p.

PROOF. By the above dissection of the algorithm, all we need to prove is that
any fatgraph in R, ,, can be obtained by a chain of edge contractions from a trivalent
fatgraph. This follows immediately from the fact that any fatgraph vertex v of
valence z > 3 can be expanded (in several ways) into vertices vy, vo of valences z1,
z9 such that z = (21 — 1) 4+ (22 — 1), plus a connecting edge. O

3.1. Generation of Trivalent Fatgraphs. Generation of trivalent graphs
can be tackled by an inductive procedure: given a trivalent graph, a new edge is
added, which joins the midpoints of two existing edges. In order to determine which
graphs should be input to this “edge addition” procedure, one can follow the reverse
route, and ascertain how a trivalent graph is transformed by deletion of an edge.

Throughout this section, I and m stand for the number of vertices and edges of a
graph; it will be clear from the context, which exact graph they are invariants of.

3.1.1. Removal of edges. Let G € Ry, be a connected trivalent graph. Each
edge © € E(G) falls into one of the following categories:

A) x is aloop: both endpoints of = are attached to a single vertex v, another
edge x’ joins v with a distinct vertex v';

B) z joins two distinct vertices v, v’ € V(G) and separates two distinct bound-
ary cycles 8,8 € B(G);

C) x joins two distinct vertices v,v" € V(G) but belongs to only one boundary
cycle 8 € B(G), within which it occurs twice (once for each orientation).
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Deletion of edge x requires different adjustments in order to get a trivalent graph
again in each of the three cases above; it also yields a different result in each case.

Case A): If z is a loop attached to v, then, after deletion of x, one needs to also
delete the loose edge 2’ and the vertex v’ (that is, join the two other edges attached
to v’; see Figure 3.8, bottom row). The resulting fatgraph G’ has:

» two vertices less than G: v and v’ have been deleted;

» three edges less: z, 2’ have been deleted and two other edges merged into
one;

» one boundary cycle less: the boundary cycle totally bounded by z has
been removed.

Therefore:
2-2¢ =x(G")=1I—-m'+n
=(l-2)—-(m—=-3)+(n—-1)
=l—-m+n=x(G)=2-2g,

hence g = ¢/, and
G e ng’nfy (A)

Case B): x joins distinct vertices v, v' and separates distinct boundary cycles (see
Figure 3.8, top row). Delete x and merge the two edges attached to each of the
two vertices v and v’; in the process, the two boundary cycles 3,5’ also merge
into one. The resulting fatgraph G’ is connected. Indeed, given any two vertices
u,u’ € V(G'), there is a path (z1,...,2x) connecting u with «' in G. If this
path passes through x, one can replace the occurrence of x with the perimeter —
excluding z— of one of the two boundary cycles 3,3’ to get a path joining v and
v’ which avoids z, and thus projects to a path in G’. Again we see that G’ has:

» two vertices less than G: v and v’ have been deleted;

» three edges less: = has been deleted and four other edges merged into two,
pair by pair;

» one boundary cycle less: the boundary cycles 3, 8’ have been merged into
one.

Therefore g = ¢/, and
G/ S iRgJL—l- (B)

Case C): x joins distinct vertices v, v’ but belongs into one boundary cycle 5 € B(G)
only. Delete edge = and the two vertices v, v/, joining the attached edges two by
two as in case B). We distinguish two cases, depending on whether the resulting
fatgraph is connected.

C’) If the resulting fatgraph G’ is connected, then 8 € B(G) has been split into
two distinct boundary cycles 8/, 8” € B(G'). Indeed, write the boundary
cycle 8 as an ordered sequence of oriented edges: yo — yv1 — ... —
Yr — Yo. Assume the y, appear in this sequence in the exact order they
are encountered when walking along [ in the sense given by the fatgraph
orientation. The oriented edges y; are pairwise distinct: if y; and y; share
the same supporting edge, then y; and y; have opposite orientations. By
the initial assumption of case C), edge x must appear twice in the list: if &
and z denote the two orientations of x, then y; =  and y; = z. Deleting
z from S is (from a homotopy point of view) the same as replacing y; = T
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with # — z, and y; = z with £ — = when walking a boundary cycle.
Then we see that § splits into two disjoint cycles:
Bl=yo—=y = 2yl T =T Y= = Yk — Yo,
ﬂ”zy,-_H = Y1 L X > Yitl-
In this case, G’ has:
» two vertices less than G: v and v' have been deleted;
» three edges less: x has been deleted and four other edges merged into
two, pair by pair;
» one boundary cycle more: the boundary cycle § has been split in the
pair ', 8.
Therefore ¢ =g —1 and n’ =n + 1, so:
G e ngfl,n+1~ (C’)

C”) G’ is a disconnected union of fatgraphs G} and GY%; for this statement
to hold unconditionally, we temporarily allow a single circle into the set
of connected fatgraphs (consider it a fatgraph with one closed edge and
no vertices) as the one and only element of Rgo. As will be shown in
Lemma 3.29, this is irrelevant for the MgnTrivalentGraphs algorithm.
Now:

I+l=10-2, my +mhy=m—3, ny+ny=n+1,
hence:
(2-2))+ (2 26)) = (1~ 2) — (m—3) + (n+ 1)
=(l-m+n)+2=4—-2g
So that g + g5 = g+ 2, n} +ny =n+1, and:®
G =G @Gy € Ryt @Ryt (&)

3.1.2. Inverse construction. If x € E(G) is an edge of a fatgraph G, denote &
and x the two opposite orientations of x.

In the following, let fR;,n be the set of fatgraphs with a selected oriented edge:
R, =1{(G,7): G € Ry, T € L(G)}.
Similarly, let IR;"n be the set of fatgraphs with two chosen oriented edges:
R_'q’m ={(G,z,9) : G € Ry n,%,§ € L(G)}.
The following abbreviations are convenient:

R=UR,,, R =UR

g R = Ungm.

Define the attachment of a new edge to a fatgraph in the following way. Given a
fatgraph G and an oriented edge T, we can create a new trivalent vertex v in the
midpoint of x, and attach a new edge to it, in such a way that the two halves of x
appear, in the cyclic order at v, in the same order induced by the orientation of Z.
Figure 3.9 depicts the process.

We can now define maps that invert the constructions A), B), C’) and C”) defined
in the previous section.

8Here we use ® to indicate juxtaposition of graphs: G1 ® G2 is the (non-connected) fatgraph
having two connected components G; and Ga.
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Ficure 3.8. Graphical illustration of fatgraph edge removal. Top row: a
regular edge (crossed) is removed from an Rg 4 graph; its endpoints are further
removed; the remaining edges are joined and the resulting graph is a trivalent
fatgraph in Ro 3. Bottom row: a loop is removed from a trivalent Ro 4 graph;
the stem together with its endpoints has to be removed as well; the remaining
edges are joined, and we end up with a trivalent fatgraph in Rg 3.
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Ficure 3.9. When adding a new vertex in the middle of an edge x, the cyclic
order depends on the oriented edge: the two orientations Z and z get two
inequivalent cyclic orders.
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Ficure 3.10. Graphical illustration of maps p, g, rg,n. (1): p(G,Z) attaches
a “slipknot” to edge Z. (2): r2,5(G1,%,G2,¥) joins fatgraphs G and G with
a new edge. (8) and (4): it is shown how changing the orientation of an edge
can lead to different results in (8) q(G,,y) and (4) p(G,z, 7).
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Let pg.r : R:Nhl — Ry, be the map that creates a fatgraph p(G,z) from a pair
(G, %) by attaching the loose end of a “slip knot”® to the midpoint of . The map
p: R — R defined by p|g% 1= Pg,n is ostensibly inverse to A).

To invert B) and C’), define a map ¢ : R” — R that operates as follows:

» Given (G, Z,y) with Z # g, the map ¢ attaches a new edge to the midpoints
of x and y; again the cyclic order on the new midpoint vertices is chosen
such that the two halves of x and y appear in the order induced by the
orientations T, y.

» When T = g, let us further stipulate that the construction of ¢(G, Z, T)
happens in two steps:

(1) a new trivalent vertex is created in the midpoint of z € E(G) and a
new edge ¢ is attached to it,

(2) create a new trivalent vertex in the middle of the half-edge which
comes first in the ordering induced by the orientation Z; attach the
loose end of the new edge £ to this new vertex.

It is clear that the above steps give an unambiguous definition of ¢ in
all cases where T and ¢ are orientations of the same edge of GG, that is,

(G,z,z), (G,z,z), (G,z,z), and (G, z, ).

Ostensibly, ¢ inverts the edge removal in cases B) and C’): the former applies when
a graph G € Ry, is sent to ¢(G) € Ry pnt1, the latter when G € Ry, is sent to
Q(G) € :Rg+1,n71'

Finally, to invert C”), let us define

Tgn @ Rty X Ry = R
91+95=9+2
ni+nt=n
From (G',Z’',G",Z"), construct a new fatgraph by bridging G’ and G” with a new
edge, whose endpoints are in the midpoints of ' and z”’; again, stipulate that the
cyclic order on the new vertices is chosen such that the two halves of 2/, 2’/ appear
in the order induced by the orientations z’, ”.

Summing up, any fatgraph G € R, ,, belongs to the image of one of the above maps
p, q, and . There is considerable overlap among the different image sets: in fact,
one can prove that r is superfluous.

Lemma 3.29. Any fatgraph obtained by inverting construction C”) lies in the image
of maps p and q.

PROOF. Assume, on the contrary, that G lies in the image of r only. Then,
deletion of any edge x from G yields a disconnected graph G’ ® G”. Both subgraphs
G’ and G” enjoy the same property, namely, that deletion of any edge disconnects:
otherwise, if the removal of y € E(G’) does not disconnect G’, then neither does
it disconnect G = r4,(G’,G"), contrary to the initial assumption. As long as G’
or G’ has more than 3 edges, we can delete another edge; by recursively repeating
the process, we end up with a fatgraph G* with [* < 3 edges, which is again
disconnected by removal of any edge. Since G* is trivalent, 3-m* = 2-1*, therefore
G* must have exactly 3 edges and 2 vertices. But all such fatgraphs belong to Rg 3
or R; 1, and it is readily checked that there is no way to add an edge such that the
required property holds, that any deletion disconnects. O

9A single 3-valent vertex with one loop attached and a regular edge with one loose end.
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3.1.3. The MgnTrivalentGraphs algorithm. The stage is now set for implement-
ing the recursive generation of trivalent graphs. Pseudo-code is listed in Algo-
rithm 7.

Lemma 3.30. MgnTrivalentGraphs(g,n) generates all trivalent fatgraphs for each
given g, n. Only one representative per isomorphism class is returned.

PRrROOF. The function call MgnTrivalentGraphs(g,n) recursively calls itself to
enumerate trivalent graphs of Ry ,—1 and Ry_1 ,41. In particular, MgnTrivalent-
Graphs must:

» provide the full set of fatgraphs Ry 3 and R, ; as induction base.
» return the empty set when called with an invalid (g,n) pair;

The general case is then quite straightforward: (1) apply maps p, ¢ to every fatgraph
in Ry ,,—1, and ¢ to every fatgraph in Ry_1 ,41; (2) discard all graphs that do not
belong to R, ,,; and (3) take only one graph per isomorphism class into the result
set.

To invert construction A), map p is applied to all fatgraphs G € Ry ,—1; if a €
Aut G, then p(a(G),a(x)) = p(G,x), therefore we can limit ourselves to one pair
(G, x) per orbit of the automorphism group, saving a few computational cycles.
Similarly, since ¢ is a function of (G, Z, ¥), which is by construction invariant under
Aut G, we can again restrict to considering only one (G, Z, ) per Aut G-orbit; this
is computed by the edge pair orbits(G) function. O

Note that there is no way to tell from G if fatgraphs p(G, z) and ¢(G, x,y) belong
to Rg,n: one needs to check g and n before adding the resulting fatgraph to the
result set R.

The selection of only one representative fatgraph per isomorphism class can be done
by removing duplicates from the collection of generated graphs in the end, or by
running the isomorphism test before adding each graph to the working list R. The
computational complexity is quadratic in the number of generated graphs in both
cases, but the latter option requires less memory. In any case, this isomorphism
test is the most computationally intensive part of MgnTrivalentGraphs.

For an expanded discussion of the size of the result set R, and a comparison
with other generation algorithms, see Appendix B. It would be interesting to re-
implement the trivalent generation algorithm using the technique outlined in [47],
and compare it with the current (rather naive) algorithm.

3.1.4. Implementing maps p(G,x) and q(G, z,y). Implementation of both func-
tions is straightforward and pseudo-code is therefore omitted;'” the only question is
how to represent the “oriented edges” that appear in the signature of maps p and gq.

In both p and ¢, the oriented edge Z or x is used to determine how to attach a new
edge to the midpoint of the target (unoriented) edge x. We can thus represent an
oriented edge as a pair (e, s) formed by a Fatgraph edge e and a “side” s: valid
values for s are +1 and —1, interpreted as follows. The parameter s controls which
of the two inequivalent cyclic orders the new trivalent vertex will be given. Let
a, b, c be the edges attached to the new vertex in the middle of e, where a,b are
the two halves of e. If s is +1, then the new trivalent vertex will have the cyclic
order a < b < ¢ < a; if 51 is —1, then the edges a and b are swapped and the new
trivalent vertex gets the cyclic order b < a < ¢ < b instead.

10T he interested reader is referred to the publicly-available code at http://fatghol.googlecode.
com for details.
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Algorithm 7 Return a list of all connected trivalent fatgraphs with prescribed
genus ¢ and number of boundary cycles n. A fatgraph if “admissible” iff it has the
prescribed genus ¢ and number of boundary cycles n.

def MgnTrivalentGraphs(g, n):
avoid infinite recursion in later statements
if n= 0 or (g,n) < (0, 3):
return empty list

Induction base: Mg 3 and My 1
if (g,n) = (0,3):
return list of fatgraphs in Rg 3
elif (g,m) = (1,1):
return list of fatgraphs in Ry ;

general case
else:
R <+ empty list

case A): hang a circle to all edges of graphs in Mg 1
for G in MgnTrivalentGraphs(g, n — 1):
for « in edge orbits(G):
add p(G, Z) to R if admissible
add p(G, z) to R if admissible

case B): bridge all edges of a single graph in Mg ,_1
for G in MgnTrivalentGraphs(g, n — 1):
for (x,y) in edge_ pair_orbits(G):
add ¢(G,z,y) to R if admissible
add ¢(G,z,7)) to R if admissible
add ¢(G,,y) to R if admissible
add ¢(G,Z,9) to R if admissible

case C’): bridge all edges of a single graph in Mg_q p41
for G in MgnTrivalentGraphs(g — 1, n + 1):
for (z,y) in edge pair_orbits(G):
add ¢(G,z,y) to R if admissible
add ¢(G, z,y) to R if admissible
add ¢(G,z,y) to R if admissible
add ¢(G, z,y) to R if admissible

remove isomorphs from R
return R
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4. The homology complex of marked fatgraphs

Betti numbers of a complex (W,, D,) can be reckoned (via a little linear algebra)
from the matrix form D®*) of the boundary operators Dj. Indeed, given that b, :=
dim Hi (W, D) and Hi(W, D) := Z,(W, D)/Br(W, D) = Ker Dy, /Dj—1(Wg—_1), by
the rank-nullity theorem we have dim Ker D), = dim W}, — rank D®) hence by, =
dim Ker Dy, — dim Dj,_; (Wy_1) = dim W}, — rank D) — rank D(*~1),

In order to compute the matrix D®*), we need to compute the coordinate vector of

Dkxgk) for all vectors mgk) in a basis of Wy,. If (W,, D,) is the fatgraph complex, then

the basis vectors xyc) are marked fatgraphs with k edges, and the differential Dy is

defined as an alternating sum of edge contractions. Therefore, in order to compute

(k)
’ k

is isomorphic to a given contraction of xg ) and score a +1 coefficient depending on

whether orientations agree or not.

the coordinate vector of Dyx>"’, one has to find the unique fatgraph zglk_l) which

Although this approach works perfectly, it is inefficient in practice. Indeed, lookups
into the basis set {xg]:l)N} of Wi_1 require on average O(N?) isomorphism
checks. Still, we can take a shortcut: if two topological fatgraphs G and G’ are
not isomorphic, so are any two marked fatgraphs (G,v) and (G’,v’). Indeed, rear-
range the rows and columns of the boundary operator matrix D*) so that marked
fatgraphs (G, v) over the same topological fatgraph G correspond to a block of
consecutive indices. Then there is a rectangular portion of D) that is uniquely
determined by a pair of topological fatgraphs G and G’. The main function for
computing the boundary operator matrix can thus loop over pairs of topological
fatgraphs, and delegate computing the each rectangular block to specialized code.
There are n!/| Aut G| marked fatgraphs per given topological fatgraph G, so this
approach can cut running time down by O((n!)?).

The generation of inequivalent marked fatgraphs (over the same topological fat-
graph G) can be reduced to the (computationally easier) combinatorial problem of
finding cosets of a subgroup of the symmetric group &,. In addition, the list of
isomorphisms between G and G’ can be cached and re-used for comparing all pairs
of marked fatgraphs (G,v), (G’,v'). This strategy is implemented by two linked
algorithms:

(1) MarkedFatgraphPool: Generate all inequivalent markings of a given topo-
logical fatgraph G.

(2) compute block: Given topological fatgraphs G and G’, compute the rect-
angular block of a boundary operator matrix whose entries correspond to
coordinates of D(G,v) w.r.t. (G',V).

4.1. Generation of inequivalent marked fatgraphs. For any marked fat-
graph (G,v), denote [G,v] its isomorphism class; recall that B(—) is the functor
associating a fatgraph with the set of its boundary cycles. Let N(G) be the sets of
all markings over G and N(G) the set of isomorphism classes thereof:

N(G):={(G,v) |v: B(G) = {1,...,n}},
N(G):={[G,V] |v: B(G) = {1,...,n}}.
Let (G, 7) be a chosen marked fatgraph. Define a group homomorphism:
®:Aut(G)>ar—voB(a)ov ! e&,. (4.1)
The set P = ®(Aut G) is a subgroup of &,,.



4. THE HOMOLOGY COMPLEX OF MARKED FATGRAPHS 45

Lemma 3.31. The marked fatgraphs (G,7) and (G,o0) are isomorphic if and only
if o€ P.

PROOF. Let 0 € P, then 0~ ! € P and there exists a € Aut G such that:
1

o t=voB(a)ov?,

whence:
(cop)oB(a)or™! =id,
therefore a induces a marked fatgraph isomorphism between (G, 7) and (G, 0 o ©).
Conversely, let 7 = ov and assume (G,7) and (G,?) are isomorphic as marked
fatgraphs: then there exists a € Aut G such that © o B(a) o 7~! is the identity.
Given any 7 o B(a’) o 7~! € P we have:
P>voB(d)ov ' =vo (0t ob)oB(a)oB(a) ' o B(a)or™*
=(wo f/_l) oo B(a)o (D_l obD)o B(a_l) o B(a')o 7!
=0 lo(PoBla)o

therefore P = 0~'P, so o € P. O

Define a transitive action of &,, over N(G) by o - (G, v) := (G, ov); this descends
to a transitive action of &,, on N(G). By the previous Lemma, P is the stabilizer

of [G,7] in N(G).

Lemma 3.32. The action of &,, on N(G) induces a bijective correspondence be-
tween isomorphism classes of marked fatgraphs and cosets of P in S,,.

PROOF. Given isomorphic marked fatgraphs (G,v) and (G, V'), let 0,0’ € &,
be such that v = gov and v/ = ¢’ob. By definition of marked fatgraph isomorphism,
there is a € Aut G such that the following diagram commutes:

B(a)

B(G) B(G)

<TOVX %ou
{1,...,n}

Hence commutativity of another diagram follows:

B(@) Ble) B(G)

{1,...,n} 7z {1,...,n}

Thus (G, ) is isomorphic to (G, o710’ o v); therefore 0=t0’ € P, hence o’ € o P,
i.e., 0 and ¢’ belong into the same coset of P.

Conversely, let 7, 7" € o P; explicitly:
1

3

T=0coboB(a)ov~ ' =covoB(a)or !
Set v =T oD, vV =7’ o substituting back the definition of 7, we have:

v=covoB(a)ov tov=0o0voB(a),
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whence 7 = o0~ ovo B(a)™!, and:
V=covoB(d)=0o0 (0_1 ovoB(a)')oB(a) =voB(a'od),

Lo@’ is an isomorphism between the marked fatgraphs (G, v) and (G, ).

O

therefore a™

The following is an easy corollary of the transitivity of the action of &,, on N (G).

Lemma 3.33. Given any marking v on the fatgraph G, there ezist o € &, and
a € Aut G such that: v=covoa.

PROOF. By Lemma 3.32, there exists o € &, such that [G,v] = [G,007], i.e.,
(G, v) is isomorphic to (G,o 0 D). If a € Aut G is this fatgraph isomorphism, then
the following diagram commutes:

{1,...,n}
Therefore v = 0 o v 0 B(a). O

The MarkedFatgraphPool algorithm. Given a fatgraph G and a Fatgraph ob-
ject G representing it, let us stipulate that © be the marking on G that enu-
merates boundary cycles of G in the order they are returned by the function
compute_boundary cycles(G). By Lemma 3.33, every (G,vU)) can then be ex-
pressed (up to isomorphism) as (G, o) o) with 0\ € &,,. The set {¢)} enumer-
ates all distinct isomorphism classes of marked fatgraphs over G iff {¢() P} runs
over all distinct cosets of P in &,, (by Lemma 3.32).

The MarkedFatgraphPool function computes the set N(G) of isomorphism classes
G,v].

Theorem 3.34. Given a Fatgraph G as input, MarkedFatgraphPool(G), as com-
puted by Algorithm 8, outputs a tuple (graph, P, A, markings, orientable), whose
components are defined as follows:

» The graph item is the underlying Fatgraph object G.

» The P slot holds a list of all elements in the group P = ®(Aut G).

» A stores a corresponding set of pre-image representatives (each element
is an automorphism of G): permutation Pli] is induced by automorphism
Ali], i.e., if # = P[i] and a = A[i] then 7 = ®(a).

» The markings item holds the list {o\9)} of distinct cosets of P (represent-
ing inequivalent markings).

» orientable is a boolean value indicating whether any (G,v) in the pool is
orientable.!t

We need a separate boolean variable to record the orientability of the family of
marked fatgraphs N(G) = {(G,v)}, because the automorphism group of a marked
fatgraph Aut(G,v) can be a proper subgroup of AutG: hence, (G,v) can be ori-
entable even if G is not.

Ut is an immediate corollary of Lemma 3.33 that if one marked fatgraph (G,v*) has an
orientation-reversing automorphisms, then every marked fatgraph (G, v) over the same topological
fatgraph G has an orientation-reversing automorphism.
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Algorithm 8 Compute the distinct markings of a given fatgraph. Input to the
algorithm is a Fatgraph object Gj final result is a tuple (G, P, A, markings, ori-
entable) which represents the set N(G) of isomorphism classes of marked fatgraphs.

def phi(a, G):
7w < array of n elements
for src_index, src_ cycle in enumerate(G.boundary cycles):
dst_cycle < a.transform__boundary cycle(src_ cycle)
if dst_cycle not in G.boundary _cycles:
abort and signal error to caller
else:
dst__index < index of dst_ cycle in G.boundary _cycles
w[sre_index]| < dst_index
return m

def MarkedFatgraphPool(G):
P + empty list
A <+ empty list
assume (G, V) is orientable until we have counter—evidence
orientable <— True
step (1): loop over Aut G
for @ in G.automorphisms():
try:
7 < phi(a, G)
except phi failed:
continue with next a
if permutation 7 is identity:
found a new automorphism:
— does it reverse orientation?
if a.is_orientation _reversing():
orientable <— False
— does it define a new marking?
if 7 not in P:
append 7 to P
append a to A
step (2): enumerate cosets of P
markings < | |
for o in &,,:
for 7 in P:
if 7 o o in markings:
continue with next o
add o to markings
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PROOF. Generation of all inequivalent markings over G is a direct application
of Lemma 3.32, performed in two steps:

(1) In the first step: for each automorphism a € Aut G, compute the permu-
tation ®(a) it induces on the set of boundary components and form the
subgroup P. The subgroup P and the associated set of automorphisms
A C Aut G are stored in variables P and A.

(2) In the second step: compute cosets of P by exhaustive enumeration. They
are recast into the list {o¥)}, which is stored into the markings variable.

As an important by-product of the computation, the automorphism group Aut(G, v)
is computed, and used to determine if the marked fatgraphs in the pool are ori-
entable.

The auxiliary function phi computes the permutation ®(a) = Vo B(a) o 7™, A
permutation 7 is created and returned; it is represented by an array with n slots,
which is initially empty and is then stepwise constructed by iterating over boundary
cycles. Indeed, the boundary cycle src_cycle is transformed according to B(a)
and its position in the list of boundary cycles of G is then looked up. Note that
this lookup may fail: there are in fact cases, in which the Fatgraph.isomorphisms
algorithm finds a valid mapping, that however does not preserve the markings on
boundary cycles; such failures need to be dealt with by rejecting a.

Step (1) of the computation is performed in lines 18-27:

» Computation of the permutation 7 (induced by a on the boundary cycles
of G) may fail; if this happens, the algorithm ignores a and proceeds with
another automorphism.

» If a preserves the boundary cycles, then it induces an automorphism of
the marked graph and we need to test whether it preserves or reverses
orientation.

» There are |Ker ®| distinct automorphisms inducing the same permutation
on boundary cycles: if 7 is already in P, discard it and continue with the
next a.

By Lemma 3.32, there are as many distinct markings as there are cosets of P in
S,,. Step (2) of the algorithm proceeds by simply enumerating all permutations
in G,,, with marking initially set to the empty list; for each permutation o a test
is made as to whether o P intersects the list markings (lines 35-37); if it does not,
then the marking induced by o is added to the list.

O

A constructive version of Lemma 3.33 can now be implemented: the following
function index and_aut, given a Fatgraph object G and a marking, returns the
permutation (by index number j in G.markings) and fatgraph automorphism a =
G . A[i] such that the topological fatgraph G decorated with marking is isomorphic
(through a) to the same graph decorated with G.markings|j|.

def index and _aut(G, marking):
for (i, ) in enumerate(G.P):
T4 ooTm
if 7 in G.markings:
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j <« index of 7 in G.markings
return (j, G.Ali])

else:
continue with next 7

The algorithm enumerates all permutations # € P, and compares ¢ o 7 to every
element of G.markings: by Lemma 3.32, we know that one must match.

4.2. Computing boundary operator matrix blocks. The differential
D(G,v) is computed by summing contractions of regular edges in G (with alternat-
ing signs); likewise, the matrix block corresponding to coordinates of the families of
marked fatgraphs {(G,v)} and {(G’,v’)} can be decomposed into a sum of blocks,
each block representing the coordinates of {(G/e,v)}ccr(c) projected on the linear
span of {(G’,v")}.

More precisely, given any two fatgraphs G (with m edges) and Go (with m — 1
edges), let X1, Xo C %, ., be the linear span of N(G1) and N(G2) respectively, and
denote by pry, the linear projection on subspace X,. Recall that, for any fatgraph
G, we have D(G) = 3. +d(?)(G), where the sum is taken over all regular edges e of
G, and d© is the contraction of edge e.

Let G be the fatgraph obtained by contracting the chosen edge e in G;. If G2 and
G are isomorphic, then the three graphs are related by the following diagram of
fatgraph morphisms, where f; is the contraction map and f> is a fatgraph isomor-
phism:

G (4.2)

|

GT:>G2

The above diagram (4.2) functorially induces a diagram on the set of boundary
cycles:

B(G1) —>{1,...,n} (4.3)

wl

B = B
(@) B (G2)

Diagram (4.3) commutes iff f1, fo can be extended to morphisms of marked fat-
graphs f1: (G1,v1) — (G,v) and fs : (G,v) — (Ga,12).
Now choose Fatgraph objects G1, G, G2 representing G1, G, Gs.

Let 71, U, 5 be the markings on G, G, G2 that enumerate boundary cycles in the
order they are returned by the function compute boundary cycle applied to Gy,
G, G5 respectively. Define ¢1, ¢ € &,, by:

¢1:=1vo0B(f1) o}, ¢y := Dy 0 B(fz) oL, (4.4)

Lemma 3.35. Given any marking v1 on Gy, choose o1 € &,, such that vy = o1 011y
and define:

Vg = alo(z)l_l o¢2_101727 (4.5)

Then vy is the unique marking on Go such that diagram (4.3) commutes.
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PROOF. Let 09 ;=07 0 qbfl o qﬁ;l. We need to prove that the external square
in diagram (4.3) is commutative; indeed, we have:

gy =010 oB(fi) o™ )o (o B(f) "t o)

=01 oB(fao fi) tory !,

so that:

vy 0 B(f2) 0o B(f1) = 020190 B(f20 f1)
= 0171 0 B(fs Ofl)_l 0551 ovg o B(f0 f1)
=010l = 1.

The uniqueness assertion is of immediate proof, since maps B(f1) and B(f2) are
invertible.

Let p1, po be the MarkedFatgraphPool output corresponding to G;, Gs, and
let {V%J)}jzlw,Nl, {Vék)}kzlw.,Nz be the enumeration of fatgraph markings cor-
responding to items in the lists p;.markings and ps.markings respectively.

Lemma 3.36. For any regular edge e of G1, and any choice of j € {1,..., N1},
there exist unique k € {1,...,Na} and s € {—1,0,+1} such that:

Prx, (d(E) [Gl’ 1/9)]) =S5 [G27 Vék)]' (4'6>

PROOF. If G2 and G = G;/e are not isomorphic, then, for any marking 1,
d(G1,v1) has no component in the subspace X5 = {(G2,12)}, so the assertion is
true with s = 0.

(4)

Otherwise, by Lemma 3.35, given vy = vy”’ there is a unique v, such that s can be

non-null; by Lemma 3.33, there exist yék) = Uék) oy and a € Aut G such that:

(1) the marked fatgraph (G, uék)) is a representative of the isomorphism class
[GQ, VQ] ;

(2) a gives the isomorphism between marked fatgraphs (G, v2) and (G, ng));

(3) Vék) is the marking on Go represented by k-th item in list po.markings.

The coefficient s must then be £1 since both (Ga, z/ék)) and d(°) (G, 1/§j)) are (iso-
morphic to) elements in the basis of X5. O

Theorem 3.37. Given MarkedFatgraphPool objects p1, ps, and a chosen edge e
of G1, the function compute block in Algorithm 9 returns the set S of all triplets
(4, k, 8) with s = £1 such that:

pry, (d9Grv]) =5 Ga, V). (4.7)

Proor. The algorithm closely follows the computation done before
Lemma 3.35 and in the proof of Lemma 3.36.

If Gy and G = Gy /e are not isomorphic, then d(®)[Gy,v;] has no component in
the subspace Xo generated by {[G2, 2]}, whatever the marking ;. The assertion
is thus satisfied by S = @, i.e., an empty list of triplets (j,%,s) (lines 5-6 in
Algorithm 9).

If G is isomorphic to G = G1 /e through fa, then Lemma 3.35 provides the explicit

formula yék) = a§j) o qbfl ) ¢)51 o s, where U%j) = Vij) ) Dfl.
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Algorithm 9 Return the set S of triplets (j, k, s) such that eq. (4.7) holds for
(Gq, Z/Y )) and (Ga, Vék)) obtained by contracting e in all marked graphs in p; and
projecting onto graphs in the ps family.

def compute_block(p, e, p2):
G1 < p;.graph
G5 < ps.graph
G « contract(Gy, e)
if G and G2 are not isomorphic:
return empty list
else:
result < empty list
fo « first isomorphism computed by Fatgraph.isomorphisms(G, G2)
¢7! < compute phil _inv(G, Gy, €)
¢y ' < compute phi2 inv(G, Ga, f2)
for (j,0) in enumerate(p;.markings):
(k,a) < index_and_aut(ps, o o ¢7' o ¢y ')
p + G.orient[e]
s + (=1)P % compare orientations(fs) * compare orientations(a)
append (4, k, s) to result
return result

def compute phil _inv(G, G4, e):
T < empty array of n elements
for 4, b in enumerate(G1.boundary cycles):
b’ < contract boundary cycle(Gy, b, e)
i’ < index of b’ in G.boundary cycles
T[] + 4
return 7

def compute phi2 inv(G, G2, f2):
7' ¢ empty array of n elements
for ¢, b in enumerate(Gq.boundary cycles):
b’ « transform_boundary cycle(fs, b)
i’ + index of b’ in G.boundary cycles
T[] + 4
return 7/
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By assumption, 7; numbers the boundary cycles on G in the order they are re-
turned by running function compute boundary cycles on G1, so ay ) is the per-
mutation corresponding to the j-th element in p;.markings.

The map ¢; is easy to compute: again, given that both 7 and 7; number the bound-
ary cycles of G and G in the order they are returned by compute boundary _cycles,
the auxiliary function compute phil inv incrementally builds the result by loop-
ing over G'1.boundary _cycles, contracting the target edge, and mapping the corre-
sponding indices.

Computation of the map ¢2 depends on the isomorphism f5; however, two different
choices for fo will not change the outcome of the algorithm: in the final loop at
lines 12-16, only the sign of fo is used, and the sign is constant across all isomor-
phisms having the same source and target fatgraphs (iff they are both orientable).
Computation of ¢; ' (in the auxiliary function compute phi2 inv) is done in the
same way as the computation of ¢;17 except we transform b to ' by means of
transform_ boundary _cycle(f2, —), i.e., B(f2).

Finally, for every marking 09 ) in p1.markings (representing V§j )), we know by

Lemma 3.36 that there is a unique index k£ and a € Aut G'3 such that: a%j) o ogy?

is the k-th item O’ék) in py.markings (representing l/ék)), and such that the following
chain:

G1flGZGQiG2

extends to a marked fatgraph morphism:

(Grov) == (Gov) —= (Gayv) —= (Ga ).

1 f2

The sign s is then obtained by comparing the orientation wsy of (Ga, Z/Q(k)) with the
push-forward orientation (a o fz o f1), w1, where wy is the orientation on (Gy, ij)),
and multiplying by the alternating sign from the homology differential. There are

four components that make up s:

» the sign given by the contraction f;: this is +1 by definition since the
“child” fatgraph G inherits the orientation from the “parent” fatgraph Gi;

» the sign given by the isomorphism fy: this is obtained by comparing
(f2)«w with we, which is implemented for a generic isomorphism by the
function compare orientations;

» the sign of the automorphism a of G5 which transforms the push-forward
marking into the chosen representative in the same orbit: this again can
be computed by comparing (a).ws with we and only depends on the action
of a on edges of Gg;

» the alternating sign from the homology differential, which only depends
on the position p of edge e within the order w;.

The product of the three non-trivial components is returned as the sign s. O

4.3. Matrix form of the differential D. In Algorithm 10, the function
compute_boundary operators computes the matrix form D™ of the differential
D restricted to the linear space generated by fatgraphs with m edges.

Input to the function are the number m and the list of graphs, divided by number
of fatgraph edges: graphs[m] is the list of fatgraphs with m edges.
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Algorithm 10 Compute the boundary operator matrix, block by block.

def compute boundary operator(m, graphs):
N; < number of graphs with m edges
Ny < number of graphs with m — 1 edges
D™ « N; x N, matrix, initially null
jo 0
for G in graphs|m]:
p1 < MarkedFatgraphPool(G)
ko < 0
for G5 in graphs|m—1]:
p2 < MarkedFatgraphPool(G5)
for e in G.edges:
if e is a loop:
continue with next e
for (j,k, s) in compute block(pi, e, p2):
add s to entry D™ [k 4 ko, j + jo]
increment kg by the number of inequivalent markings in po
increment jo by the number of inequivalent markings in p;
return D("™)

The output matrix D™ is constructed incrementally: it starts with all entries set
to 0, and is then populated blockwise. Indeed, for every pair of MarkedFatgraphPool
objects p; (from a graph with m edges) and py (with m — 1 edges), and every non-
loop edge e, the rectangular matrix block whose upper-left corner is at indices jg, ko
is summed the block resulting from compute block(pl, e, ps).

5. Experimental results

An implementation'? of the algorithms presented in this paper has been actually
used to compute the Betti numbers of all My, with 2g +n < 6. The results
are summarized in Table 3.1. All the Betti numbers were already known in the
literature; Section 2 in the “Introduction” chapter provides references. In all these
cases, published results agree with the values in Table 3.1.

An internal verification step in the code computes the classical and virtual Euler
characteristics of the fatgraph complex; the values computed by the Python pro-
gram match those published in [28, 8, 7|, where they are derived by theoretical
means.

Along with the computation, the entire family of fatgraphs Ry ,, (with 2g +n < 6)
has been computed, and for each fatgraph the isomorphism group is known. The
full list of fatgraphs and their isomorphisms is too long to print here, but the data
is publicly available at http://fatghol.googlecode.com/download/list. Tables 3.2
and 3.3 provide a numerical summary of the results.

12Written in the Python programming language (see [12, 65]). Code is publicly available at
http://code.google.com/p/fatghol.
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TaBLE 3.1. Betti numbers of My, for 2g +n < 6. For readability, null values
have been omitted and the corresponding entry left blank.

N
[
—_

No. of edges: 12 11 10 9 8 7 6 5 4 8 2| Total
g=0,n=3 2 1 3
g=0,n=4 6 6 7 6 25
g=0,n=5 26 26 72 103 65 21 313
g=0,n=6 191 191 866 1813 1959 1227 418 76 6741
g=1n=1 1 1 2
g=1,n=2 5 5 8 8 26
g=1,n=3 46 46 162 256 198 72 780
g=1,n=4 669 669 3442 7850 9568 6752 2696 562 32208
g=2,n=1 9 9 29 52 45 21 165
g=2,n=2 368 368 2005 4931 6543 5094 2279 546 22134

TABLE 3.2. Number of distinct abstract fatgraphs with the given genus g and
number of boundary cycles n. For readability, null values have been omitted
and the corresponding entry left blank.

5.1. Performance. Table 3.4 gives a summary of the running times obtained
on the idhydra.uzh.ch cluster at the University of Zurich; Figure 3.11 provides a
graphical representation of the same data. The computational demands of the code
are such that the homology of M, , can actually be computed on desktop-class
hardware for 2g + n < 6.

The scatter plot in Figure 3.11 shows that the time spent in computation of the
D™ matrix ranks done in Stage III can become the dominant contribution to the
total running time as the number of fatgraphs increases. This highlights a limitation
of the program: the large number of fatgraphs in the Kontsevich complex might
turn out to be a challenge for today’s sparse linear algebra software.

However, the set of fatgraphs for a given (g,n) pair has to be generated prior to
computing the matrices DU™): a very large set of graphs can exhaust the computer’s
memory long before computation time becomes a blocking issue.

6. Application to other fatgraph complexes

In [23], V. Godin defined a “bordered fatgraph complex”, which computes the inte-
gral homology of the moduli spaces of Riemann surfaces with boundaries. Godin’s
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ot

t

No. of

Moz Moa Mo Mo,6 Mip Miz Miz  Mia Mza Mz
edges
12 122880 14944 713
11 616320 81504 3983
10 1274688 185760 9681
9 2240 1359840 236 227564 9 12927
8 8160 862290 918 160128 28 10077
7 11280 294480 1440 63756 43 4519
6 64 7260 49800 9 1112 13000 39 1057
5 144 2112 3024 15 408 1008 20 97
4 99 210 10 54 3
3 4 20 1 3
2 3 1
Total ‘ 7 327 31262 4583322 2 37 4168 747664 142 43054

TABLE 3.3. Number of distinct orientable marked fatgraphs in the Penner-
Kontsevich complex of each of the indicated My, spaces. For readability, null

values have been omitted and the corresponding entry left blank.

Time (s): Stage I Stage IT  Stage III Total
Mo,3 < 4ms < 4ms 0.03 0.12
Mo,a 0.05 0.09 < 4ms 0.29
Mo,5 4.78 21.91 1.85 29.43
Mo 2542.56  16011.70 179157.39 233007.06
M < 4ms < 4ms 0.010 0.128
My 2 0.05 0.08 < 4ms 0.27
M3 40.56 136.88 < 4ms 174.75
M4 82486.51 336633.75 4872.69 424615.85
Mo 1 2.39 4.76 < 4ms 7.39
Moo 43402.18 181091.11 5.507 224694.61

TaBLE 3.4. Total CPU time (seconds) used by the Betti numbers computa-
tion for the indicated My, spaces. The C++ library LinNBox (43, 14| was
used for the rank computations in Stage III. Running time was sampled on the
idhydra.uzh.ch computer of the University of Zurich, equipped with 480GB
of RAM and 48 Intel Xeon CPU cores model X7542 running at 2.67GHz;
Python version 2.6.0 installed on the SUSE Linux Enterprise Server 11 64-bits
operating system was used to execute the program. The system timer has a
resolution of 4ms. The “Total” column does not just report the sum of the
three stages, but also accounts for the time the program spent in I/O and

memory management.
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Ficure 3.11. Scatter plot of the data in Table 3.4. Both axes use log-scale.
Note how Stage III (computation of the boundary operators rank) becomes
the dominant task as the number of marked fatgraphs increases.

fatgraphs extend the abstract fatgraph by requiring that a leaf (i.e., a univalent
vertex), and only one, is present in each boundary cycle. The bordered fatgraph
complex is then constructed exactly as the fatgraph complex presented here, with
the proviso that an edge ending in a univalent vertex is never contracted: hence,
the differential D is given by the sum of contraction of non-loop non-leaf edges.

The algorithms of this paper can easily be adapted to compute the homology of
Godin’s bordered fatgraph complex: after generating the family of marked fat-
graphs of a given (g,n) pair, we decorate each marked fatgraph with leaves; com-
pute the matrix form of the differential D and then reduce it to Smith normal form
to reckon the integral homology modules of the moduli space of bordered surfaces.

There is no need for checking duplicates in the set of bordered fatgraphs so gen-
erated,® therefore the decoration step can be implemented efficiently. A shortcut
can also be taken in computing the matrix D: since leaf edges are never contracted,
the differential on bordered fatgraphs can be deduced easily from the differential
on marked fatgraphs. However, the number of bordered fatgraphs is much larger
than the number of marked fatgraphs;'* this means that the final linear algebra

131f two “bordered fatgraphs” were isomorphic, they would remain such if we remove the
leaves and the edge supporting them, which would give us isomorphic marked fatgraphs

L4A leaf may be regarded as a choice of an edge or a vertex along a boundary cycle; if there
are p; vertices (counted with multiplicities) and ¢; edges along the i-th boundary cycle, then the
number of ways we could possibly add leaves to a marked fatgraph G is rirg - - -y, with r; = p;+q;
so that:

ritra+--+rn :ZPH‘Z%: Z zv +2m = 4m,
i i VeV (G)

where m is the total number of edges and z, is the valence of vertex v.
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computations require even more computational resources than they do for M ,
computations.

7. Future development directions

There are a number of directions in which the current algorithms and code could
be improved.

As already noted, the generation algorithms produce quite a number of duplicates,
that have to be removed using a quadratic-complexity procedure. A variant of
the “isomorph-free generation” algorithm of McKay [47] could replace the naive
MgnTrivalentGraphs code; the question of which algorithm would be faster has
probably to be sorted out empirically, the critical performance factor being the
number of times the “isomorphism” test is invoked.

Another approach would be to turn the generation procedure “upside down”: instead
of starting with trivalent graphs and contracting edges, one could start with (g, n)-
fatgraphs with one vertex and expand those until the whole set of fatgraphs is
generated. This would have the advantage that the chromatic fatgraph polynomial
of Bollobas and Riordan [9] is available as an invariant to speed up the isomorphism
procedure. On the other hand, the number of fatgraphs generated this way seems
consistently larger than the number of fatgraphs generated with the procedure
adopted here (see Section 2 in Appendix B).

So far, the major obstacle to applying the algorithms of this paper to a wider range
of moduli spaces has been the large number of fatgraphs involved: it affects both the
total run time and memory consumption of the code. Most algorithms described
here lend themselves naturally to parallelization, so it would be possible to rewrite
the program to exploit several processors and distributed memory, which could solve
both issues. However, the number of generated fatgraphs grows super-exponentially
in the asymptotic limit [4, 5], so any implementation of the algorithms outlined
here will soon hit the limit of any present-day computing device. The question
remains open, whether more significant result could be obtained before hitting the
limits of today’s computers.



CHAPTER 4

A novel parallel algorithm for exact Gaussian
Elimination of general sparse matrices

The algorithm presented in Chapter 3 reduces computation of the Betti number of
moduli spaces My ,, to reckoning the rank (over Q) of some large sparse matrix with
integer entries. An effective method for computing this rank is given by Gaussian
Elimination.

Here we describe a new algorithm for Gaussian Elimination (nicknamed “Rheinfall”);
it was specifically developed for computing the rank of fatgraph homology matrices,
but, being a variant of the most general Gaussian Elimination procedure, has wider
applicability.

The “Rheinfall” algorithm is, in essence, a rearrangement of the operations in the
usual Gaussian Elimination with Partial Pivoting (GEPP) procedure; in contrast
to GEPP, the “Rheinfall” algorithm presented here naturally allows a parallel for-
mulation both in the message-passing/distributed-memory paradigm and in the
threaded /shared-memory one. However, the “Rheinfall” algorithm degrades grace-
fully to sequential execution when run on a single compute node, and experiments
have shown that it can yield better performance than GEPP on certain classes of
matrices.

A sample implementation of the code is available at http://rheinfall.googlecode.
com; examples and performance data given in the text have been measured us-
ing that program for computing the rank of integer matrices (using machine-size
integers as the entry type).

Any Gaussian Elimination algorithm can be applied equally well column- or row-
wise; here we take the row-oriented approach.

This chapter features a large number of figures and tables, that are placed at the
end of the chapter rather than being interspersed through the text.

1. Description of the algorithm
Let A = (a;5]i =0,...,n—1;5=0,...,m — 1) be a n x m matrix with entries in
a “sufficiently good”! ring k.

Definition 4.1. Given a matrix A, define z; := min{j|a;; # 0}, i.e., z is the
column index of the first non-zero entry in the i-th row of A; for a null row, define
z; := m. We say that the i-th row of A starts at column z;.

The matrix A is in block echelon form iff z; > z;_q foralli=1,...,n— 1.

The matrix A is in row echelon form iff, for all i, either z; > z;_1 or z;_1 = z; = m.

1By “sufficiently good” we mean that it has enough properties to meaningfully define a Gauss-
ian Elimination procedure: for instance, a field or a Bézout domain.
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Every matrix can be put into block echelon form by a permutation of the rows.
We shall show that the code in Algorithm 11 can be used to transform any given
matrix into row echelon form.

The “Rheinfall” algorithm is most easily described using a Bulk Synchronous Parallel
(BSP) model [64]; we show in Sections 1.1 and 1.2 how it can be adapted to popular
implementation paradigms.

For reducing the n x m matrix A to row echelon form, create m Processing Units
P[0], ..., P[m—1], one for each matrix column: Processing Unit P[c] handles rows
starting at column c.

Each Processing Unit P[c] maintains some internal state variables:

u. Holds either a matrix row, or (initially) the special value NIL. By
construction, u.[c] # 0 and u.[j] = 0 for all j < c.

Q. A collection of rows on which to perform elimination. An incoming
ROW message (with payload a matrix row r) triggers the addition of r
to Q¢; likewise, when r is modified by elimination, it is removed from
Q.. No assumption is done on the data structure underlying Q., other
than it allows addition and removal of rows; in particular, Q. need not
preserve the order in which rows have been added to it.

outputlc] The contribution of this PU to the global result: its actual form varies
with the specifics of what is being computed by the algorithm. For
reducing a matrix to row echelon form, output is a matrix row; other
variants are discussed in Sections 2.1 and 2.2.

During each BSP superstep, Processing Unit P[c] orderly performs the tasks be-
low, independently from other Processing Units (PUs). PUs communicate only by
exchanging ROW messages: the content of a ROW message is a matrix row 7.

(1) Chooses a pivot row u. among the rows available in block Q..

(2) Performs elimination on all the rows in Q. using the chosen pivot row.

(8) Sends the modified rows to other PUs: if row ' (gotten by elimination of
row r with the pivot row u.) starts at column ¢, send it to PU P[¢/].

When all processing is done, the output of each P[c] is made available to a “master”
process, which assembles the global result.
Example 4.2. A worked out example might clarify how the Rheinfall algorithm

performs Gaussian Elimination.

(a) Assume we are given the following input matrix (for readability, zeroes
have been omitted and the corresponding entry left blank):

1 2 1
1
A=12 2
3 1 1
1 15

(b) The matrix is permuted so that All rows having the first nonzero in the
same column are arranged into a block of consecutive indices:

1 2 1

2 2

ReA=| 31 1 (S0)
1 1 5

1
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Thus, rows the first two rows, r; and rg, are sent to PU P[1], then r3 and
r4 are sent to P[2], and row rs is assigned to P[4].
(c) PUs choose a pivot in each block (indicated with italic font in the follow-

ing):
1 2 1
2 2
RoA = 3 1 1 (S1)
1 1 5
1

Note that pivoting is restricted to the block: there is no global search or
broadcast of pivot values.
(d) Elimination is now performed by each PU independently and concurrently:

1 2 1
0 2 -4 -2
EoRoA = 0 1 -3 —14 (S2)
1 1 5
1

Note that P[4] does not perform any work since it has only one row in its
block.

(e) Eliminated rows are sent to the PU assigned to their new starting column
and the process is performed again from step (S1).

1 2 1
1 1 5
RiEgRoA = 1 -3 14 (S1")
2 —4 -2
1

In the above example, note that the two eliminated rows have been sent
to PU P3|, that was previously empty.

Note that there is actually no separate reordering step (S0) for initially putting
the input matrix A into block echelon form: rows are distributed to Processing
Units as they are read. In a sense, rearrangement of the matrix is an artifact of the
textual representation: “Rheinfall” chops up the matrix and operates independently
on each block.

More generally, this is an invariant of the “Rheinfall” algorithm: by exchanging
rows among PUs after every round of elimination is done, the working matrix is
kept in block echelon form at all times. Indeed, let A(®) = A. After completion of
the k-th superstep we can define the working matrix A*) by concatenating: the
pivot row u; of P[1] (if not NIL); the rows in @)1, in some order (e.g., in the relative
order they appeared originally in A); the pivot row (if any) of P[2]; then rows of
Q2 (if not empty); etc.

Lemma 4.3. A% s in block echelon form, and is gotten from A by elementary
row operations.

Proor. A® is in block echelon form by construction. Each row of A% is
either a pivot row or a linear combination of (at most) two rows of A*~1: a
recursion argument proves the claim. U
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The eliminate function at line 17 in Algorithm 11 returns a sum of suitable multiples
of two rows so that the result row has a null entry in all columns j < ¢. The
actual definition of eliminate depends on the coefficient ring of A: for Gaussian
Elimination over a field, eliminate returns r — (r[c]/ulc])u; elimination over a ring
involves finding «, 8 such that ar[c] = Bu[c] and then returning ar — fu. Note that
u[e] # 0 by construction.

Lemma 4.4. After at most m supersteps, each row r of the n x m input matriz A
has been modified to fall in either one of these two cases: (1) it is the pivot row
u. for some Processing Unit Plc], or (2) it has been completely eliminated, i.e.,
successive modifications have zeroed out all its entries.

PrOOF. If A is the null matrix, then all rows are null and they all fall into
case (2).

Otherwise, assume A has at least one nonzero row and proceed by induction on m.
If m = 1, then one row will be chosen as pivot, and the other ones will be zeroed
out by elimination after the first superstep.

If m > 1, let r1, ..., r be the rows of A with a nonzero entry in column 1; let
A be the submatrix formed by the rest of rows of A. In the first superstep, one
of them (say, 1) is chosen as pivot row wu;, and the other ones are transformed
by the eliminate function into rows 74, ..., r;, having a zero in the first column.
By induction, every row of the (n — 1) x (m — 1) matrix A formed by 75, ..., 7}
and A is modified into a pivot row or zeroed out in m — 1 steps. But Am=1) jg
the lower-right submatrix of A(™) hence the claim holds for every row of A in m
steps. O

The following statement is now immediate.

Theorem 4.5. Algorithm 11 reduces any given nxXm input matrix A to row echelon
form in (at most) m supersteps.

PrOOF. By Lemma 4.4, after m steps each row has either been selected as a
pivot row in some PU P[c], or it has been completely zeroed out by elimination.
Therefore each block of A(™) is comprised of just one row, i.e., A is in row
echelon form. O

1.1. Distributed-memory variant. To increase efficiency in a distributed-
memory/Message Passing Interface (MPI) algorithm, we drop both the requirement
that communication happens as a separate substep after all elimination has been
performed, and the barrier synchronization after communication. The distributed
“Rheinfall” Gaussian Elimination algorithm comprises the parallel execution of the
same code by several stateful Processing Units, which continually perform elimina-
tion work and exchange messages.

So, the main problem becomes how to detect when all PUs have finished their work.
As in the BSP model, we assume that every Processing Unit can send messages to
every other PU. We extend the communication protocol by introducing END mes-
sages: END messages carry no payload and just signal a PU to finalize computations
and then stop execution. The Gaussian Elimination procedure is complete when
the END token leaves the last Processing Unit P[m)].

In order to guarantee that the END message is the last message that a running PU
can receive, we make two assumptions on the message exchange system:
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(1) that messages sent from one PU to another arrive in the same order they
were sent, and

(2) that it is possible for a PU to wait until all the messages it has sent have
been delivered.

Both conditions are satisfied by MPI-compliant message passing systems.

A “master” process starts the P[1], ..., P[m] Processing Units; feeds the initial
data to them; and collects the results at the end of processing, but is not otherwise
involved in the computation, and remains inactive while the PUs are running.

Theorem 4.6. Algorithm 11 reduces any given input matriz A to row echelon form
in finite time.

PrOOF. Lemma 4.4, which is the key ingredient in the proof of Theorem 4.5,
does not depend on the BSP assumptions. Therefore it still holds if we replace “in
at most m supersteps” with “in finite time” in the claim.

Hence, to prove the theorem we only need to show that the Master procedure in
Algorithm 11 terminates in finite time, i.e., that each PU receives an END message
in finite time.

This can easily be proved, again by induction on m: when m = 1, the Processing
Unit P[1] receives the END message from the Master process immediately after
startup. When m > 1, PU P[m] receives the END message in a finite time 79 by
induction hypothesis. There are only a finite number of rows in block @, and no
more rows can be delivered to it, since all PUs P[c] with ¢ < m are now in DONE
state. Thus, P[m] finishes its processing in a finite time 71 so the END token is sent
back to the Master in finite time 79 + 71. O

1.2. Shared-memory variant. In the shared-memory setting, Processing
Units are not realized as continuously-running agents, rather as “tasks” that are
scheduled on-demand when there is elimination work to be performed on a block
of columns.

We assume that the run-time system supports the following features:

» It is possible to atomically set the value of a variable.

» A mutex lock construct is available to avoid concurrent access to the same
variable by concurrently-executing threads.

» A compare-and-swap (CAS) operation is available.?

» It is possible to spawn function invocations as asynchronous tasks. A
task scheduler distributes tasks to the available processing resources and
will eventually run any scheduled task (provided each task terminates in
a finite amount of time); correctness of the “Rheinfall” algorithm is not
dependent on any order of execution of the scheduled tasks, i.e., the task
queue needs not be a FIFO.

» It is possible for an execution thread to wait until all tasks have been
executed.?

2Given three operands a, =, y, CAS atomically compares the value of memory location a
with the value x and, if they are equal, sets a to the new value y. Otherwise, the value stored at
a is unchanged. In any case, the value stored a prior to the CAS invocation is returned as result
of the operation.

3This feature can easily be implemented on top of the others, by atomically increasing a
counter each time a task is spawned, and atomically decreasing it each time a task finishes its
execution. The waiting task is woken up when the counter reaches 0.
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Algorithm 11 Reduce a matrix to row echelon form by Gaussian Elimination
(distributed-memory version). Top: Algorithm run by processing unit Plc|]. Bot-
tom: Sketch of the “master” procedure. Input to the algorithm is an n x m matrix
A, represented as a list of rows r;. Row and column indices are 1-based.

def ProcessingUnit(c): [where ¢ is a column index/
Ue < NIL
Q. < empty list
output|c] + NIL
state < RUNNING
while state is RUNNING:
wait for messages to arrive
append ROW messages to Q.
select best pivot row ¢ from Q.
if u. is NIL:
Ue — ¢
remove t from Q.
else:
if ¢ has better pivoting features than wu.:
exchange u. and ¢
for each row 7 in Q.:
r’ + eliminate(r,u.)
¢ <+ first nonzero column of 7’
send 7’ to P[]
delete r from Q.
if received message END:
wait for all sent messages to arrive
output|c] + u.
ife+1<m:
send END to Plc+ 1]
else:
send END to Master
state < DONE —— break out of the loop
return output|c]|

def Master(A): [where A is an n X m matriz]

start a PU P]c] for each column ¢ of A
foriin {1,...,n}:

¢ < first nonzero column of r;

send r; to P[]
send END message to P[1]
wait until P[m| sends out an END message
result < collect output results from all PUs
return result
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Algorithm 12 Reduce a matrix to row echelon form by Gaussian Elimination
(shared-memory version). Input to the algorithm is an n X m matrix A, represented
as a list of rows r;. Row and column indices are 1-based.

def Master(A): [where A is an n X m matriz|
for cin {1,...,m}:
InitProcessingUnit(c)
for ¢ in {1,...,n}:
¢ < first nonzero column of r;
SendRow(r;, ¢)
wait until all tasks are done
result « collect output|c] from all PUs
return result

def SendRow(r, ¢): [where r is a matriz row and ¢ is a column]
acquire lock L,
add r to Q.
release lock L.
status <— CAS(spawned|c|, FALSE, TRUE)
if status is FALSE: —— compare with old value of spawned/c]
spawn task ProcessingUnitTask(c)

def InitProcessingUnit(c): [where ¢ is a column index]
U 4 NIL
Q. + empty list
output|c| + NIL
spawned|c|]  FALSE

def ProcessingUnitTask(c): [where ¢ is a column indez]
B + empty list
acquire lock L,
swap contents of B and Q.
release lock L.
select best pivot row t from B
if u. is NIL:
Ue < T
else:
if ¢ has better pivoting features than wu:
exchange u and ¢
for each row r in B:
r’ < eliminate(r,u)
¢ + first nonzero column of r’
SendRow(r’, ')
output < u
if Q. is not empty:
—— re—schedule self ——
spawn task ProcessingUnitTask(c)
else:
atomically set spawned|c| to FALSE
return output
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All these features are easily available in modern systems; the source code freely
available at http://rheinfall.googlecode.com/ provides a sample C++ implementa-
tion on top of the Intel “Threading Building Blocks” library [35].

The definition of a Processing Unit P[c] is augmented with two more internal vari-
ables:

L. A mutex lock object that protects modification of the block of rows
Q.: a section of code must acquire the lock prior to any modification.
If the lock is currently being held by another task, the task wishing
to acquire the lock shall wait until the lock is released.

spawned[c] A boolean flag that is TRUE when a task to run ProcessingUnit Task(c)
has already been spawned; it serves as a guard for not spawning
two concurrent tasks operating as the same PU. Write accesses to
spawned|c|] must exclude concurrent reads.

The “Rheinfall” algorithm is applied to a matrix by passing it as an argument to
the Master procedure of Algorithm 12. The Master process kick-starts PU P[c| for
all ¢ = 1,...,m such that there is at least one row starting at column c¢; then it
waits for all tasks to be finished before collecting the results.

Theorem 4.7. Algorithm 12 reduces any given input matriz A to row echelon form
in finite time.

PROOF. As in the proof of Theorem 4.6, the validity of Lemmas 4.3 and 4.4
does not depend on the BSP model: we just need to prove that each matrix row
undergoes the elimination steps in finite time.

A ProcessingUnitTask is scheduled for each non-empty block in A’s block echelon
form (lines 4-6 in Master of Algorithm 12). Since, by assumption, the task scheduler
will eventually execute any task, every row is either selected as pivot row or modified
by elimination and sent to a higher-column PU; a recursion argument proves the
thesis.

So we are left with proving that every instance of ProcessingUnitTask(c) completes
in finite time. The only operations that could block ProcessingUnitTask indefinitely
are the locking operations on lines 3, 15 (indirectly because of line 2 in SendRow).
If lock contention occurs, we prioritize contenders by stipulating that the task
associated with the lowest column index ¢ wins.* Since the number of rows processed
by a PU is finite, this guarantees that eventually every PU will get a chance to
acquire the lock and complete its tasks. O

1.3. Sequential execution. The “Rheinfall” algorithm can also be executed
sequentially. We shall not discuss this at length, as sequential execution is a de-
generate case of the shared-memory algorithm, where only one task is running at a
time, and the tasks scheduler strictly prioritizes tasks by ascending column index.
Of course, there is no need for locking in the sequential execution model, so the
locking operations can be left out.

4This requirement can be relaxed: the sample implementation uses TBB’s queuing_mutex
class [36], which guarantees that lock contenders are queued and will eventually be granted the
lock.
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2. Applications

2.1. Computation of matrix rank. The Gaussian Elimination algorithm
can be easily adapted to compute the rank of a general (unsymmetric) sparse ma-
trix: one just needs to count the number of non-null rows of the row echelon form.

The output|c] variable is modified to hold an integer number: the result shall be 1
if at least one row has been assigned to PU P[c| (u # NIL) and 0 otherwise.

Procedure Master performs a sum-reduce when collecting results: replace line 8 in
Algorithm 11 and line 8 in Algorithm 12 with result +— sum-reduce of output from
Plc], forc=1,...,m.

2.2. LUP factorization. We shall outline how Algorithm 11 can be modified
to produce a variant of the familiar LU P factorization. For the rest of this section
we assume that A has coefficients in a field and is square and full-rank.

It is useful to recast the Rheinfall algorithm in matrix multiplication language, to
highlight the small differences with the usual LU factorization by Gaussian Elimi-
nation. Let Il be the permutation matrix that reorders rows of A so that IIjA is in
block echelon form; this is where Rheinfall’s PUs start their work. We can write the
k-th elimination step as multiplication by a matrix Fj (which is itself a product
of elementary row operations matrices), and the ensuing communication step as
multiplication by a permutation matrix II; , ; which rearranges the rows again into
block echelon form (with the proviso that the u row to be used for elimination of
other rows in the block comes first). In other words, after step k the matrix A has
been transformed to AK*) = EplL, - Epll A

Theorem 4.8. Given a square full-rank matriz A, the Rheinfall algorithm outputs
a factorization 11A = LU, where:

» U=E,11I,_;--- ExlljA is upper triangular;
» I =11, _, ---IIy is a permutation matriz;
» L=T,_,---T - E; ' ' By - T Y B is lower unitriangular.

ProoF. Clearly we have ITA = LU with II, L, U as given in the statement
of the theorem. By Theorem 4.5, we know that U is upper triangular, so we only
need to show that L is lower unit triangular.

To prove that L is lower unitriangular, consider the sequence of matrices recursively
defined by Ly = Eal and Lpy1 = Hk+1LkH;i1E,:J:1: we shall show by induction on
k that Ly has unit diagonal and its leading k x k submatrix is lower unitriangular.
The proof of this statement relies on two observations:

(1) At step k, Processing Unit P[k] has finished processing all its rows and
no new ones can arrive, so II, fixes rows {0,...,k — 1}, and the leading
(k+1) x (k+ 1) submatrix of Fj is the identity matrix.

(2) The row used as pivot is the lowest-numbered one in a block, so Ej, (hence
E; ") is lower unitriangular.

The base case k = 0 is an immediate consequence of these two assertions.

When k > 0, by induction we have that L has unit diagonal and a leading k x k
lower unitriangular submatrix. Let ;41 € G, be the permutation corresponding to
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the permutation matrix II; , ;: we then have (Hk,HLkH;il)iJ = (L) s (1), 7051 () -
In the course of elimination, rows only move towards higher-numbered PUs, so row
(k + 1) can only have been modified by linear combination with lower-numbered
rows; hence, (Lg)g = 0 for I > k, and (L) = 0 for I < k. Thus the leading
(k+1) x (k+ 1) submatrix of HkJrlLkH,;il is lower unitriangular, and the same
holds for Lyy1 =10, Lell ) - Bl O
The LU P algorithm variant works by exchanging triplets (r, h, s) among PUs; every
PU stores one such triple (u,i,!), using u as pivot row. Each processing unit P[]
receives a triple (r, h, s) and sends out (1, h, s’), where:

» The r rows are initially the rows of IIyA; they are modified by successive
elimination steps as in Algorithm 11: v’ = r — au with o = r[c]/u[c].

» h is the row index at which r originally appeared in IIpA; it is never
modified.

» The s rows start out as rows of the identity matrix: s = ey initially. Each
time an elimination step is performed on 7, the corresponding operation
is performed on the s row: s’ = s+ al.

When the last PU has terminated its job, the Master procedure collects triplets
(e, e, 1) from PUs and constructs:

» the upper triangular matrix U = (uc)e=1,....n;

» a permutation 7 of the indices, mapping the initial row index 7. into the
final index ¢ (this corresponds to the IT permutation matrix);

» the lower triangular matrix L by assembling the rows [, after having per-
muted columns according to 7.

3. Algorithm characteristics

The “Rheinfall” parallel algorithm operates closely like the sequential Gaussian
Elimination, its strength being chiefly that each processing unit can independently
perform elimination on a subset of the rows. However, the processing units are
(logically) completely independent processes, and it is thus quite difficult to rea-
son about their their collective performance and provide a detailed analysis of the
algorithmic complexity.

We take therefore and experimental and statistical approach. We begin by review-
ing some simple cases where the complexity can be worked out in detail.

3.1. Three examples of predictable performance. (1) Worst-case per-
formance is attained on the n x (n + 1) matrix A(™ defined by:

A 1 ifj=0o0rj=i+1,
g 0o otherwise.

It is clear that A is already in block echelon form, comprising a single block
which is sent to Processing Unit P[0]: elimination using the first row as pivot row
produces the matrix A"~1 as a result, which is then sent to P[1], and so on. Thus,
Rheinfall (any variant) collapses to sequential operation, and complete elimination
of A™) requires n?/2 row operations and the exchange of O(n?) ROW messages.
A different pivoting strategy can help prevent this collapse; see the discussion on
“weight pivoting” in Section 3.2 below.
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1 1110 0]
31 1.0 0 0|m
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Ficure 4.1. A block of rows to provide examples of different pivoting strate-
gies. Row rg would be the pivot row chosen by the “no pivoting” strategy and
by threshold pivoting with v = 1/2. Row 71 would be chosen as pivot row by
the “sparsity” pivoting strategy. Row r2 would instead be the choice done by
the “weight” pivoting strategy algorithm.

Note that only about (1/n) of the entries of A are nonzero, which proves that
Rheinfall’s performance does not depend on the fill percentage of the input matrix.
(2) The matrix A(™ defined by KE?) = Al(:zij (that is, we are flipping A horizon-
tally) is already in row echelon form: hence its processing by Rheinfall requires no
row operations, and the algorithm terminates in the minimum required time. In the
distributed-memory / MPI case, this could still be a significant lapse of time (the
time required for the END token to travel from P[1] to P[m]), but in the shared-
memory and sequential execution case this means that a single iteration over PUs
concludes the processing. This suggests that an initial reordering of the matrix by
columns could speed up the elimination phase; what exact criterion to use for this
rearrangement in the general case is still unclear, and could be the subject of future
research.

(3) Finally, transposing A gives a matrix V(") which has a very different block
echelon form, consisting of a block with two lines starting at column 0, and n — 1
blocks with one line each. Therefore Rheinfall’s processing of V(") requires only
n — 1 row operations; it still collapses to sequential execution, but this time only
one ROW message is sent from one PU to the next one, so the total processing time
is only slightly larger than the one required by A,

3.2. Pivoting strategies. The key observation in Rheinfall is that all rows
assigned to a PU start at the same column. This implies that pivoting is restricted
to the rows in a block, but also that each PU may independently choose the row it
shall use for elimination.

This allows most arguments about GEPP to be ported almost verbatim to “Rhe-
infall”. The main difference with the usual column-scope partial pivoting is that
different pivot rows may be used at different times: when a new row with a better
pivoting entry arrives, it replaces the old one. This can lead to a sub-optimal pivot
being used for the early eliminations, before the “best” pivot row settles into place.
However, as it is very difficult to predict what rows will form the block Q. at a
certain stage of the algorithm, only experiments can tell when and where this is an
issue in practice.

Four different pivoting strategies have been evaluated in the sample Rheinfall im-
plementation. Figure 4.1 provides an example of what the different strategies would
select as pivot within a block of rows.

3.2.1. No pivoting. In this strategy, the first row to ever arrive to a PU PJc] is
used as the pivot row u.. In the sample implementation, this is the lowest-numbered
row that starts at column c. In the example in Figure 4.1, row ry would be chosen
as pivot since it was the first to be inserted in the block.
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3.2.2. Sparsity pivoting. At each round of elimination performed on the block
Q., the row with less nonzero entries is chosen as pivot. Ties are resolved by
choosing the row with the leading entry of smallest absolute value (if performing
elimination over the integers; on floating-point entries the largest entry should be
chosen to ensure numerical stability).

In the example in Figure 4.1, row r; would be chosen as pivot: it has the same
number of entries as row 79, but the leading coefficient is smaller in value.

3.2.3. Weight pivoting. Define the weight W (r) of a matrix row r by W(r) :=
>{1/7 : r[j] # 0}. At each round of elimination, choose the row with the lowest
weight as the pivot row.

This is a variant of sparsity pivoting that has been developed to avoid the slowdown
caused by A(™-like matrices (see example (1) in Section 3.1 above). Indeed, when
performing elimination on a A" matrix with weight pivoting, then the last row
A%ni will be chosen as pivot row; elimination in P[1] then yields a matrix having
the same nonzero pattern as A"~ (see example (2) above), which is processed
very efficiently.

In the example in Figure 4.1, row 72 would be chosen as pivot; this shows that
weight-based pivoting tries to select rows whose nonzero entries are more dense in
the final segment of the row.

3.2.4. Threshold pivoting. Threshold pivoting interpolates between sparsity- or
weight-based pivoting and the choice of pivot row by the norm of the entry in leading
position (as usual in GEPP).

Fix v € [0,1] and let QF = Q.U {u.} be the block of rows worked on by Processing
Unit P[c] at a certain point in time (including the current pivot row u.).

If A has integer entries, let b = min{|r[c]| : » € Q}} and choose as pivot the row r
of minimum weight among those such that |r[c]| < b/~.

If A has floating-point entries, then let b = max {|r[¢]| : 7 € @7} and choose as
pivot the row r that minimizes weight among those such that |r[c]| = ~ - b. This

guarantees that elements of L are bounded by vy~ 1.

In the example in Figure 4.1, row r9 would be chosen as pivot: it has the smallest
leading entry and no other row is within a factor of 2 from it.

3.3. Complexity estimates. In order to assess the impact of the four piv-
oting strategies described in section 3.2 above, we have run the sample Rheinfall
implementation on all matrices of the SIMC collection, counting the total number
of arithmetic operations performed by the rank-computing algorithm for each ma-
trix and pivoting strategy. Figure 4.2 shows a scatter plot of the total number of
arithmetic operations performed by the rank-computing Rheinfall algorithm, versus
the number of nonzero entries in any matrix of the SIMC collection; the complete
data is available in Section 2. This computational experiment also showed that
“Rheinfall” consistently fails on a certain percentage of the matrices in the SIMC
collection, either because the entries get too large (arithmetic complexity overflow)
or because of the growth of the fill-in (memory overflow); a more thorough theo-
retical assessment would be needed, but has not been carried out in the context of
the present research.
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Pivoting Strategy s S50 $80

No pivoting 1.1964 1.3853 2.0780
Sparsity 1.2198 1.4124 2.0780
Threshold 1.2198 1.4124 2.0780
Weight 1.2198 1.4124 2.0780

TABLE 4.1. Slopes of lines separating a certain percentage of the plot points
in Figure 4.2. The value of sp is such that a percentage P of points in the
scatter plot of Figure 4.2 lies below the line with slope sp.

An interesting pattern emerging in Figure 4.2 is that the points are arranged into
a roughly triangular shape. Let N be the number of nonzero entries and K be the
total number of arithmetic operations performed by the rank-computing Rheinfall
algorithm. The data in Table 4.1 shows that for 80% of the matrices in the SIMC
collection,

S99 - log N < log K, log K < sgp - log N.

Hence:

» K <ep- N?98 for 80% of the SIMC matrices, and
» K < eo- NY2 for 50% of the SIMC matrices,

independently of the chosen pivoting strategy; slightly sharper bounds can be given
for threshold pivoting and weight-based pivoting (the exact values are printed in
Table 4.1). Of course, how much these results extend to arbitrary integer-valued
sparse matrices depends on how much SIMC is a representative sample of the set
of “interesting” matrices.

While not a proof of the complexity characteristics of Rheinfall, this statistics shows
that Rheinfall is practically advantageous over traditional GEPP for a large number
of matrices.

3.4. Numerical stability. When v = 1, threshold pivoting reduces to partial
pivoting (albeit restricted to block-scope), and one can repeat the error analysis
done in [24, Section 3.4.6, p. 115] almost verbatim. The main difference with the
usual column-scope partial pivoting is that different pivot rows may be used at
different times: when a new row with a better pivoting entry arrives, it replaces
the old one. This could result in the matrix growth factor being larger than with
GEPP; only numerical experiments can tell how much larger and whether this is an
issue in actual practice. However, no such numerical experiments have been carried
out, as this initial exploration of the Rheinfall algorithm has been driven by the
needs of homology computations over Q.

Still, the major source of instability when using the Rheinfall algorithm on matrices
with floating-point entries is its sensitivity to “compare to zero”: after elimination
has been performed on a row, the eliminating PU must determine the new starting
column (in order to forward it to the another PU). This requires scanning the initial
segment of the (modified) row to determine the column where the first nonzero lies.
Changes in the threshold € > 0 under which a floating-point number is considered
zero can significantly alter the final outcome of Rheinfall processing.
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4. Sequential performance

The “Rheinfall” algorithm can of course be run on just one processor: processing
units execute a single step() pass (corresponding to lines 16-28 in Algorithm 11),
one after another; this continues until the last PU has switched to DONE state.

4.1. Sample Implementation. A sample program has been written that
implements matrix rank computation and LU factorization with the variants of
Algorithm 11 described before. Source code is publicly available from http://code.
google.com /p /rheinfall.

The sample code is written in object-oriented style, using the C++ programming
language. Processing Units are implemented by a ProcessingUnit class, exposing
a step() method which performs a single pass of the main loop in procedure Pro-
cessingUnit (cf. lines 16-28 in Algorithm 11). A Processing Unit’s “inbox” Q. is
implemented as a list of rows. When a PU starts its step() procedure, it performs
elimination on all rows in . and immediately sends the modified rows to other
PUs for processing. As all PUs reside within the same OS process, communication
among PUs has virtually no cost: it is implemented by simply adding a row to
another PU’s “inbox” Q..

In the sequential implementation, the main computation function consists of a loop
that calls each PU’s step() in turn, until all PUs have performed elimination.
Since Plc] can only receive rows from P[c] if ¢ < ¢, one pass is sufficient to run
the complete elimination procedure on any matrix.

The main program reads a file in LinBox’ SMS format [15], creates a PU for each
column, and dispatches rows directly to the responsible PU;% after that, it calls
the main computation function. At the end of the computations, the total rank is
computed by summing the contributions of each PU.

4.2. Integer performance. In order to get a broad picture of Rheinfall’s
sequential performance, the rank-computation program has been tested an all the
integer matrices in the SIMC collection [15], and in particular on the M, ,, homology
matrices which were the main driver for developing the “Rheinfall” algorithm. The
complete data is collected in Section 3, comparing the performance of the sample
Rheinfall implementation to the integer GEPP implementation provided by the free
software library LINBOX [14, 43]; a summary plot is shown in Figure 4.3, showing
that “Rheinfall” outperforms LINBOX in a large number of cases. Detailed results
for the My, matrices and a selection of those for other matrices are shown in
Tables 4.2 and 4.3.

Results in Table 4.2 consistently show “Rheinfall” outperforms LINBOX, by even
a couple order of magnitudes in the case of large matrices. Instead, results in
Table 4.3 show great variability: the relative speed of “Rheinfall” vs LINBOX changes
by orders of magnitude in one or the other direction. The performance of both
algorithms varies significantly depending on the actual arrangement of nonzeroes in
the matrix being processed, with no apparent correlation to simple matrix features
like size, number of nonzeroes or fill percentage.

Table 4.4 shows the running time on the transposes of the test matrices. Both in
LinBox’s GEPP and in “Rheinfall”; the computation times for a matrix and its

5This implements the virtual “reordering step” needed to bring a matrix into block echelon
form.
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transpose could be as different as a few seconds versus several hours! However, the
variability in Rheinfall is greater, and looks like it cannot be explained by additional
arithmetic work alone; the examples discussed in Section 3.1 suggest that matrices
showing large variability might have one or more minors of the form A®*). More
investigation is needed to better understand how “Rheinfall” workload is determined
by the matrix nonzero pattern.

4.3. Floating-point performance. In order to assess the “Rheinfall” perfor-
mance in floating-point uses cases, the LU factorization program has been tested
on a subset of the test matrices used in [26]. Results are shown in Table 4.5, com-
paring the Mflop/s attained by the “Rheinfall” sample implementation with the
performance of SUPERLU 4.2 on the same platform.

The most likely cause for the huge gap in performance between “Rheinfall” and
SUPERLU lies in the strict row-orientation of “Rheinfall”: SUPERLU uses block-
level operations, whereas Rheinfall only operates on rows one by one. In support
of this view, let us observe that the Mflop/s rate of the Rheinfall LU factorization
program is higher (sometimes approximately double) than the equivalent rate of
the Rheinfall rank-computation program. This can only be explained by the fact
that the LU computations require two row operations per cycle in a PU’s inner
loop, whereas the rank computation only performs one. However, row orientation
is a defining characteristic of the “Rheinfall” algorithm (as opposed to a feature of
its implementation) and cannot be circumvented. Considering also the “compare to
zero” issue outlined in Section 3.4, one must conclude that “Rheinfall” is generally
not suited for inexact computation.

5. Parallel performance and scalability: distributed-memory

The “Rheinfall” parallel algorithm operates closely like sequential Gaussian Elimina-
tion, its strength being chiefly that each processing unit can independently perform
elimination on a subset of the rows, and that communication can be completely
overlapped with computation (to the extent allowed by practical implementations).
However, the processing units are (logically) completely independent processes, re-
acting to each other’s messages; it is thus quite difficult to reason about their
collective performance.

5.1. Sample Implementation. The sample code presented in Section 4.1
can also be compiled with MPI [48, 49] support to run in a distributed-memory
environment.

In the distributed-memory implementation, the main computation function consists
of an inner loop that calls each PU’s step() in turn, until all PUs have performed
one round of elimination. Incoming messages from other MPI processes are then
received and dispatched to the destination PU. After that, PUs which have tran-
sitioned to END state are removed from the list (they are all concentrated in the
initial segment), and another pass is made. This outer loop repeats until there are
no more PUs in RUNNING state.

Communication is effected using the MPI_Issend function: each PU maintains a
list of sent messages and checks at the end of an elimination cycle which ones have
been delivered and can be removed. Incoming messages are only received at the
end of the main inner loop, and dispatched to the appropriate PU.
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Because of the way MPI messaging works, messages cannot be addressed to a specific
PU: a dedicated section in the rank-computing function (executed sequentially at
the end of the outer main loop) receives messages, inspects their content to find
the starting column, and then enqueues each message into the appropriate PU’s
“inbox” Q..

5.2. Workload distribution. Since there is only a limited degree of paral-
lelism available on a single computing node, an issue arises on how to map Pro-
cessing Units to actual threads in the computer. The “Rheinfall” algorithm does
not impose any fixed scheme for mapping PUs to execution units. A column-cyclic
distribution pattern has been currently implemented, but the code is open for mod-
ification and experimentation of different schemes.

Processing units have not been implemented as separate continuously-running
threads; rather, each MPI process (rank) is assigned a number of PUs and steps
each of them in turn.

Let p be the number of MPI processes available, and m be the total number of
columns in the input matrix A. The input matrix is divided into vertical stripes,
each comprised of w adjacent columns. Stripes are assigned to MPI ranks in a cyclic
fashion: MPI process k (with 0 < k < p) hosts the k-th, (k 4 p)-th, (k + 2p)-th, ...
stripe; in other words, it owns processing units Plw-(k+a-p)+b] where a = 0,1, . ..
and 0 < b < w.

5.3. Experimental results. In order to assess the parallel performance and
scalability of the sample “Rheinfall” implementation, the rank-computation pro-
gram has been run on a small set of matrices (extracted from the larger SIMC [15]
collection; see Appendix D for details). The program has been run with a varying
number of MPI ranks, ranging from 16 to 256 in a geometric progression of ratio 2,
and different values of the stripe width parameter w, ranging from 1 to 4096 in a
geometric progression of ratio 4.

The plots in Figure 3.11 show that running time generally decreases with higher
w and larger number p of MPI ranks allocated to the computation, albeit not
regularly. This is particularly evident in the plot of running time versus stripe
width (Figure 3.11, bottom), which shows an alternation of performance increases
and decreases.

The following discussion and the examples in Section 3.1 suggest that the test
matrix that perform badly have a large minor of the form A®*). The evidence is
however not conclusive so this should be considered a working hypothesis; a more
detailed investigation is needed.

The w parameter influences communication in two different ways. On the one hand,
there is a lower bound m7y/w on the time required to pass the END message from
P[0] to P[m], where 79 is the minimal time required to send an END message across
the network, and we assume that communication between two PUs residing on the
same compute node is instantaneous. Indeed, since the END message is always sent
from one PU to the next one, then we only need to send one END message per
stripe. This could explain why the running time is almost the same for large p
when w = 1 in the good cases: the computation time decreases so much that the
running time is dominated by the time taken to pass the END message along.

The plots in Figure 4.4 highlight an additional cause: when the “Rheinfall” sample
implementation is run on identity N x N matrices, we know from Section 3.1 that
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no elimination work is being performed, hence the total running time measures
the total communication time restricted to the END messages. However, the ratio
between the time spent receiving the MPI message and the time spent stepping the
PUs has to be taken into account:

» for a relatively small matrix (like the 10* x 10* identity matrix 110000),
the portion of the main loop spent in PU code is small, hence run times
tend to show the erratic behavior due to network jitter (this is visible in
the curves for high values of p and w);

» using a larger matrix (like the 107 x 107 identity matrix 110000000), the
main loop still spends a significant amount of time just calling the step ()
method of each PU; hence, the run time decreases proportionally with the
number of MPI ranks p and stripe width w: the larger the values of either
one, the smaller the ratio of computation to communication time.

On the other hand, MPI messages are collected after every processing unit residing
on a MPI rank has performed a call to its step () method and the needed elimination
work; this leads to the risk that a single PU can slow down the entire MPI rank if it
gets many elimination operations to perform. An empirical test has been conducted
in the following way. The percentage of running time spent executing MPI calls has
been collected using the mpiP tool [66]; a selection of relevant data is available in
Table 4.14. The three call sites for which data is presented measure three different
aspects of communication and workload balance:

» The MPI_Recv figures measure the time spent in actual row data commu-
nication (the sending part uses MPI_Issend).

» The MPI_Iprobe calls are all done after all PUs have performed one round
of elimination: thus they measure the time a given MPI rank has to wait
for data to arrive.

» The MPI_Barrier is only entered after all PUs residing on a given MPI
rank have finished their job; it is thus a measure of workload imbalance.

Now, processing units corresponding to higher column indices naturally have more
work to do, since they get the rows at the end of the elimination chain, which
have accumulated fill-in. Because of the way PUs are distributed to MPI ranks,
a larger w means that the last MPI rank gets more PUs of the final segment: the
elimination work is thus more imbalanced. This is indeed reflected in the profile data
of Table 4.14: one can see that the maximum time spent in the final MPI_Barrier
increases with w and the number p of MPI ranks, and can even become 99% of the
time for some ranks when p = 256 and w = 4096.

Finally, a larger w speeds up delivery of ROW messages from P[c] to P[] iff
(¢ —¢)/w = 0(mod p). Whether this is beneficial is highly dependent on the
structure of the input matrix; some internal regularity of the input data may result
on elimination work being concentrated on the same MPI rank, thus slowing down
the whole program. Indeed, the large percentages of time spent in MPI_Iprobe for
some values of p and w show that the matrix nonzero pattern plays a big role in
determining computation and communication in Rheinfall. Static analysis of the
entry distribution could help determine an assignment of PUs to MPI ranks that
keeps the work more balanced.
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6. Parallel performance and scalability: shared-memory

6.1. Sample Implementation. The sample code can also be compiled to-
gether with the Intel Threading Building Blocks (TBB) library to run on multi-core
shared-memory computers.

As in the distributed-memory variant, an implementation problem to be solved
is how to map Processing Units to actual threads in the computer; the solution
adopted is discussed in Section 6.2 below.

In all other aspects, the shared-memory implementation closely resembles the se-
quential one; in particular, communication costs are negligible since passing a Row
message amounts to just moving a pointer to a row object from one ProcessingUnit
instance to another.

6.1.1. OpenMP. An attempt has also been made at OpenMP-based paralleliza-
tion, which has distinctly different features than TBB.

In a shared-memory OpenMP setting, the sequential main loop is naively modified
by using an OpenMP “parallel for”: each thread would call the the step procedure
of a segment of w = m/p adjacent PUs.® As in the sequential execution model,
message delivery costs are negligible. However, w caps the number of PUs that
can turn to DONE state in a single iteration: when Plc 4+ w — 1] emits the END
message, P[c+ w]’s step has already been run by another thread. This introduces
a significant delay in the processing of the END message by P[c + w].

Experimental results show indeed that the delay so introduced can be quite substan-
tial, and that the single-node OpenMP implementation is slower than the sequential
one for low values of p, and becomes only marginally faster for higher values of p.

Therefore, no further mention of OpenMP will be done in the sequel.

6.2. Workload distribution. Processing units have not been implemented
as separate continuously-running threads; rather, the main computation function
starts a thread pool and enqueues one task to invoke each PU’s step() function; it
then waits for termination of those tasks and the ones spawned by them.

The sample implementation offers a “coarse grained” and “fine grained” variant: the
former corresponding exactly to Algorithm 12, the latter instead uses a separate
task for every elimination operation.

6.3. Experimental results. To evaluate the scalability of the “Rheinfall” al-
gorithm in the shared-memory variant, the sample implementation has been run on
the same set of matrices used for testing the MPI variant. Results for the “coarse
grained” variant are reported in Table 4.7 and plotted in Figure 4.7; correspond-
ing data for the “fine grained” variant are available in Table 4.11 and graphed in
Figure 4.9.

In contrast with the distributed memory approach, communication costs are negli-
gible and there is no issue of workload distribution in the algorithm itself: the Intel
TBB scheduler is responsible for managing the task queue that is created by the

6OpenMP offers several scheduling algorithms that partition the range in slightly different
ways. Their actual performance is very close and the differences in OpenMP scheduling algorithms
do not affect the following analysis of why OpenMP-based parallelization is not effective for
Rheinfall.
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algorithm. However, the plots in Figure 4.7 show the expected scalability behavior
up to a certain number of threads (variable with the actual matrix), and then the
performance stabilizes (in the good cases GL7d24 and IG5-18) or deteriorates (in
the case of the My, homology matrices M0,6-D8, M0,6-D9 and MO0,6-D10). The
outlook for the “fine grained” case is qualitatively similar, but the run times are
higher and scalability issues are even more relevant. This seems to indicate that the
actual computation time in the tasks is too small compared to the thread scheduling
overhead by TBB.

To test this hypothesis, we run the same rank-computing program on a set of
identity square matrices, with size ranging from 10* to 107; the run times are given
in Tables 4.9 and 4.13, and graphed in the IV quadrant of Figures 4.7 and 4.9. By
the discussion in Section 3.1, we know that “Rheinfall” performs no operations in
the case of a matrix which is already in row echelon form, hence the processing
time is entirely due to the thread scheduling; there is also no lock contention issue,
since there is no row movement. The plots show indeed that the performance is
irregular on the identity matrix, and that run time becomes larger as the number of
available threads increases. This again suggests that the number of threads should
be balanced with respect to the elimination work that has to be done; predicting
this “break even point”, however, looks like a non-trivial specific challenge and might
constitute the subject of future research.

One enhancement that could help the performance goal is the introduction of a
more flexible priority system in the Intel TBB library. As of this writing, TBB 4.0
only allows t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>