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Introduction

A European option is a financial instrument that gives the right, but not the obligation,
to buy a certain amount of an underlying instrument at a given price, the strike price, at a
pre-specified future date, the exercise time. The underlying instrument can be a security
such as a bond or an equity share, an exchange rate, a commodity, or sometimes another
financial product. The pay-off of a European option – which is specified in the contract –
may depend on the value of the underlying instrument either at the exercise time or over
the entire life of the option. In the latter case the option is named path-dependent. The
theory of option pricing aims at determining the fair price of the contract. Pricing a finan-
cial derivative typically consists in solving four main issues: (i) The choice of a dynamics
for the underlying instrument under the physical measure P; (ii) the estimation of the
parameters of the chosen dynamics; (iii) the definition of a pricing mechanism described
by a stochastic discounting1; (iv) the development of a fast, accurate, and possibly flexible
numerical method to determine the fair price of the instrument.

In modelling the dynamics of the underlying instruments under the physical measure
P, a common dilemma arises as models which describe the historical dynamics of the asset
price with adequate realism are usually unable to precisely describe the entire dynamics
of the implied volatility surface.

Traditionally, due to the mathematical tractability, the option pricing problem has
been approached by describing the asset price dynamics in continuous time in terms of
a Stochastic Differential Equation (SDE). In this SDE the diffusive coefficient, i.e. the
volatility – which is the most important ingredient of any underlying instrument’s dynam-
ics – can be either a constant (Black and Scholes, 1973), a deterministic function of time
and price (Dupire, 1994) as in local volatility models, or a stochastic process itself (Heston,
1993; Bates, 1996b; Gatheral et al., 2014) as in stochastic volatility models. Although the
legitimate use of local volatility models for the description of the asset dynamics is highly
questionable, they have the merit of being flexible and allowing for the exact reproduction
of the volatility smiles implied by the market. For this reason, local volatility models are
also employed in practice to evaluate path-dependent options whenever smile risk domi-
nates path-dependency risk, e.g. when pricing Asian options2. On the contrary, standard3

1We note that it is possible to approach the option pricing problem by starting with the description of
the dynamics of the underlying instrument either under the historical measure P or the risk-neutral one
Q. This choice depends, for instance, on the modelling needs. In particular, only in the former case it is
necessary to describe a stochastic discounting. In this thesis we start with the description of the dynamics
under the measure P.

2For instance, the pay-off of a fixed strike Asian call is given by max(A(0, T )−K, 0), where A(0, T ) is
the arithmetic average of the values of the underlying instrument over [0, T ], and T and K are the maturity
and the strike of the option, respectively.

3In this thesis we will name standard a stochastic volatility model in which the driving noise of the
SDE describing the volatility dynamics is a standard Brownian Motion.
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stochastic volatility models are able to reproduce well-established stylized facts like the
negative correlation of returns and volatility, and volatility smile. However, drawbacks
arise since standard stochastic volatility models fail to calibrate the steep smile shapes
usually found at short maturities together with their slow decrease for longer maturities,
unless we complicate them with ad hoc time-dependent and/or state-dependent parameter
choices, as in stochastic local volatility models (Ren et al., 2007) or in stochastic jump
diffusion models (Bates, 1996b). Recently (see, for instance Gatheral et al., 2014; Bayer
et al., 2016), it has been shown that rough4 stochastic volatility models are able to repro-
duce both most of the well-stylized facts of financial time series and of option prices data,
one of the most important being the implied volatility term structure.

However, models for the underlying price dynamics under the historical (or physical)
measure P have mainly been constructed in discrete time. Here, the latent conditional
variance of the returns can either be a function of past lagged values of the conditional
variance itself and-or of squared returns as in the time-varying volatility models of the
ARCH-GARCH families (Engle, 1982; Bollerslev, 1986; Glosten et al., 1993; Nelson, 1991),
or made observable through a non-parametric measure of volatility constructed with high-
frequency data as in the so called Realized Volatility (RV) approach, or a stochastic process
itself (Taylor, 1994, 2007). Recently, either within a GARCH framework (Shephard and
Sheppard, 2010; Hansen et al., 2012) or in a stochastic volatility one (Takahashi et al.,
2009; Dobrev and Szerszen, 2010; Koopman and Scharth, 2013), another approach has
been developed, consisting in adding a measurement equation relating the realized mea-
sure of volatility to the conditional variance of returns. It has been shown (see, for instance
Hansen et al., 2012, and references therein) that this leads to a substantial improvement
in the empirical fit of financial time series over the relative incomplete models, i.e. the
models with only one measurement equation. Regarding the fitting of the dynamics of the
volatility surface, a discrete-time volatility model should be able to incorporate volatility
persistence – periods of high volatility tend to be followed by periods of high volatility–
and leverage effect – the mechanism producing the asymmetric impact of positive and
negative past returns on future volatility. In particular, the persistence of the volatility
process is caused by the heterogeneity of agents acting in the market – the fact that dif-
ferent types of agents operate in the market, with different beliefs, risk profiles and degree
of information (Müller et al., 1997). Moreover, it plays a crucial role in the correct fitting
of the long-term part of the implied volatility surface.
It turns out that option pricing models based on realized volatility provide good perfor-
mance (Corsi et al., 2013; Christoffersen et al., 2014; Majewski et al., 2015). On the other
hand, stochastic volatility models offer increased flexibility in incorporating the above
cited features with respect to the other class of models since they assume separate innova-
tions for the conditional mean and the conditional variance of the returns. However, little
work has been devoted to combine the stochastic volatility literature with that on option
pricing to construct stochastic volatility option pricing models. In particular, we are not
aware of any analytical discrete-time option pricing model combining stochastic volatility
with realized measures.

Regarding the second issue (i.e. the estimation of the parameters of the chosen dy-
namics), in a continuous-time setting the parameters of the model are usually calibrated
directly to the option prices. In a discrete-time framework, instead, once the volatility is
filtered (as in GARCH and in stochastic volatility models) or proxied non-parametrically

4In this thesis we will name rough a stochastic volatility model in which the driving noise of the SDE
describing the volatility dynamics is a fractional Brownian motion with Hurst parameter H < 1/2.
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(as in RV models), the parameters are estimated directly from the time series of ob-
served quantities. This is true even when the above cited features are taken into account,
which has been shown to be crucial for an option pricing perspective (see, among others
Majewski et al., 2015). The autoregressive structure characterizing GARCH-ARCH spec-
ifications has led these models to guide the way of measuring and forecasting volatility,
since it facilitates maximum-likelihood estimation. Realized Volatility models are even
more straightforward to estimate since the volatility is an observable quantity and thus
there is no need of any filtering procedure. In stochastic volatility models, instead, the
presence of variance-specific disturbances comes to the use of latent variables and this
calls for the usage of suitable inference tools such as stochastic filtering and simulation
based inference. So, in order to take advantage of the flexibility offered from a stochastic
volatility model, it is crucial to have effective numerical procedures for its estimation.

Regarding the third issue, a pricing mechanism should take into account the uncer-
tainty about the future level of asset volatility (see, for instance, Schwert, 2011). It is not
so surprising that an investor will demand a compensation for bearing this risk. In financial
literature, this reward is named variance risk premium (Bakshi and Kapadia, 2003) and
quantifies the difference between conditional expectations of future volatility computed
under the physical measure P and the risk-neutral one Q. The need for a general pricing
kernel incorporating a variance premium has been well documented in Christoffersen et al.
(2013). Indeed, this premium is able to explain several puzzles concerning the consistency
between the time series properties of the underlying asset prices and the distributions
implicit in option prices (this unconsistency was considered by Bates, 1996a, one of cen-
tral empirical issue in option research). Importantly, the pricing kernel in Christoffersen
et al. (2013) is monotonic in returns and also in volatility, and its projection onto the
stock price return alone is U-shaped, as the one observed in market data. In order to take
under consideration the variance risk premium, the stochastic discounting should be multi-
dimensional. An important class of multi-dimensional stochastic discount factor (SDF) is
- in the state variables - the exponential affine one (see Bertholon et al., 2008; Gagliardini
et al., 2011; Corsi et al., 2013; Alitab et al., 2015; Majewski et al., 2015), where the dif-
ferent sources of risk are clearly identified and compensated with separated risk-premia.
Remarkably, the exponential-affine specification is well suited to the usage of the Laplace
Transform (see Darolles et al., 2006; Gourieroux et al., 2006; Gouriéroux et al., 2009, to
cite only a few) which permits to express the change of measure from P to Q in closed form.

Finally, concerning the problem of the development of fast, accurate, and flexible
numerical method to determine the fair price of a financial derivative, three are the main
methodologies that are employed in practice: i) Numerical methods based on Fourier
transform techniques, ii) numerical schemes for solving the pricing Partial Differential
Equation (PDE), iii) Monte Carlo simulations. The first methodology represents a very
effective tool when the characteristic function of the considered underlying dynamics is
available. It turns out that a popular method based on Fourier-cosine expansion for pricing
non path-dependent European options is the COS one (Fang and Oosterlee, 2008). The
PDE approach (see Wilmott et al., 1993; Alziary et al., 1997; Zvan et al., 2000; Pascucci,
2011, to cite only a few), which requires the definition of a pay-off specific pricing equation,
is computationally efficient especially if we deal with a PDE in one space dimension5.

5We note that, in general, to determine the price of an Asian option a PDE in two space dimensions
has to be solved (see Wilmott et al., 1993). In Rogers and Shi (1995) a variable reduction was used to find
a PDE in one space dimension for the value of an Asian claim.
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Nonetheless, some options with exotic pay-off and exercise rules are subtle to price even
within the Black, Scholes, and Merton framework (see Dewynne and Shaw, 2008; Siyanko,
2012). The Monte Carlo approach (Glasserman, 2004) is a very flexible method to simulate
random trajectories of the price dynamics which permits to achieve any degree of precision
– at least in theory – by simply increasing the number of generated paths. Nevertheless,
it suffers from some ineffectiveness – especially when pricing out-of-the-money (OTM)
options – because a relevant number of sampled paths may not contribute to the option
pay-off. So, in order to take advantage of the flexibility offered from the Monte Carlo
approach, it is important to combine several numerical techniques to reduce the variance
of the price estimator.

The rest of the thesis is organized as follows.

Chapter 1 In this chapter we give an overview on the continuous and discrete time
approaches to asset prices modelling.

Chapter 2 Here we introduce in more detail the themes and research questions that
we address in this thesis. We provide some context and we highlight the most relevant
contributions.

Chapter 3 This chapter contains the first original contribution of this thesis. We build
on the work of Gatheral et al. (2014) to revisit their findings that spot volatilities can be
very well modelled by rough stochastic volatility models with an Hurst exponent around
0.10. Using implied-volatility based approximations of the spot volatility – instead of high-
frequency volatility estimations from historical price data as in Gatheral et al. (2014) – we
find an Hurst parameter of order 0.30. We show analytically that this upward bias is due
to a smoothing effect intrinsic to the chosen proxies. So, we give an additional argument
for the usage of rough volatility models for applications, notably for option pricing and
hedging (Gatheral et al., 2014; Bayer et al., 2016).

Chapter 4 In this chapter we turn to the modelling of discrete time financial time
series, in particular high-frequency returns and Realized Volatilities. We introduce a new
family of flexible and tractable discrete-time stochastic volatility models which allows
to filter the latent conditional variance process from both observed returns and realized
volatility measures. We develop an effective Bayesian estimation procedure for both pa-
rameters and latent quantities. We show that the proposed modelling approach accurately
reproduces well-established stylized fact observed in financial time series, while preserving
closed-form formulas for option prices and closed-form filtering and smoothing for the la-
tent process. So, we propose a procedure that is not only innovative from both modelling
and estimation perspectives but it is also of substantial interest in financial applications
such as option pricing.

Chapter 5 This last chapter contributes to the construction of fast, accurate, and
possible flexible numerical method to determine the fair price of a financial instrument.
We develop a novel algorithm – named Backward Monte Carlo – to exotic option pric-
ing which relies on the construction of a discrete multinomial tree. We use two ways to
characterize the tree. The first one is inspired by the finite difference approximation of
the diffusion infinitesimal generator (Albanese, 2007). The second method relies on the
concept of optimal state-partitioning of a random variable and employs the recent tech-
nique termed Recursive Marginal Quantization Algorithm (RMQA) of Pagés and Sagna
(2015). First, we fix some flaws of the RMQA which have been highlighted in the existing
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literature. Second, we show that our proposal may be relevant from an applied perspective
by assessing its reliability with respect to competitor Monte Carlo methods.

The last three chapters contain the original contributions of this thesis. Each of them
is self-contained and in principle can be read separately.
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Chapter 1

Price dynamics model in
continuous and discrete time

1.1 Price dynamics models in continuous time

Louis Bachelier’s PhD thesis Théorie de la Spéculation (Bachelier, 1900) introduced fi-
nancial mathematics to the world. Among the many original contributions of Bachelier’s
remarkable thesis, the most impressive are the mathematical foundation for the modern
theory of Brownian motion and the introduction of the concept of martingale. Precisely,
he established the probability law for the price fluctuations that the market admits at
a given instant. Remarkably, having obtained the increments of the price process as in-
dependent Gaussian random variables, Bachelier wrote down what we would now call
the Chapman-Kolmogorov equation and from this derives the connection with the heat
equation. Moreover, when computing the price of a barrier option1 he worked with the so
called true price, i.e. a price for which the mathematical expectation of the speculator is
null. In particular, Bachelier is saying that the true price is a martingale. However, the
economic aspect of Bachelier’s work was not completely investigated until the 1960s.

Samuelson (1965), to overcome the major drawback of Bachelier (1900) (i.e. the asset
price modelled with Brownian motion can generate negative values while the price of an
asset cannot), proposed to model the asset price as a geometric Brownian motion, which
is a stochastic process described by a SDE characterized by a log-normal marginal distri-
bution for the asset price. Eight years later, Black and Scholes (1973) introduced another
watershed event in financial economics by deriving, through a non arbitrage argument2,
the closed-form European call option price formula assuming that the asset price dynamics
is given by a geometric Brownian motion. The Black-Scholes model has become a market
standard of quoting options because of its simplicity and tractability. If option prices in
the market were compatible with the Black-Scholes formula, all the market implied volatil-
ities corresponding to various options written on the same asset would coincide with the
constant volatility parameter of the underlying asset. However, in today’s reality3 the
Black-Scholes implied volatility heavily depends on the calendar time, the time to ma-

1The pay-off of a barrier option depends on whether the underlying asset price reaches a trigger point,
the so called barrier price.

2The first two sentences of Black and Scholes (1973)’s abstract work read as follows: If options are
correctly priced in the market, it should not be possible to make sure profits by creating portfolios of long
and short positions in options and their underlying stocks. Using this principle, a theoretical valuation
formula for options is derived.

3Precisely, after the so called Black Monday (October 19th, 1987). Before this market crash, implied
volatility surfaces were compatible with those implied by the Black-Scholes model.

15



16 CHAPTER 1. REVIEW OF PRICE DYNAMICS MODEL

turity, and the moneyness of the option. If one plots implied volatility calculated from
market quotes against different strikes for a fixed time to maturity, he will see a U-shaped
pattern, the so-called smile. Indeed, the Black-Scholes model is not able to reproduce
these dependences and this is considered its main limitation.

Since the late 1980s different approaches for the introduction of the smile in option
pricing have been developed. The first one is by allowing for a time varying volatility,
as in the case of stochastic volatility models (Hull and White, 1987; Scott, 1987; Heston,
1993) and local volatility models (Derman and Kani, 1996; Dupire, 1994). The second
one consists in allowing for jumps in the dynamics of the underlying asset’s price (see
Merton, 1976; Bates, 1996b; Geman et al., 2001; Kou, 2002, among others). In this way,
the dynamics is described as a Lévy process, thus obtaining skewness and non-zero excess
kurtosis in the log-returns’ distribution4. In local-volatility models, volatility becomes a
deterministic function of time and price state. As said in the introduction, local volatility
models have the merit of being flexible and enabling to the exact reproduction of the
volatility smiles implied by the market. So, they are also used in practice to price exotic
instruments whenever the smile risk dominates path-dependency risk e.g. when pricing
Asian options. However, local volatility models do not reproduce the well-established
stylized fact of the negative correlation of returns and volatility. Stochastic volatility
models, which are defined in terms of price and a volatility process both driven by stan-
dard Brownian motion, in contrast, are able to incorporate this feature. Many others
empirical features can be reproduced by using these type of models. For instance, a sym-
metric smile is well explained by assuming independence between the driving noise of the
asset price and of the volatility (see Renault and Touzi, 1996). The correlation between
these two driving noises, instead, reproduces the so-called leverage effect (see Hull and
White, 1987). However stochastic volatility models fail to calibrate the steep smile shapes
usually found at short maturities (i.e. empirically for maturities less than one months)
together with their decrease for longer maturities (i.e. empirically for maturities ranging
from one to two years), unless one complicates them either with ad hoc time-dependent
and/or state-dependent parameter choices, as in stochastic-local volatility models (Ren
et al., 2007), or with jumps (Bates, 1996b). Gatheral et al. (2014) argues that it is the
generated term structure of the at-the-money (ATM) volatility skew5 that really allows to
say more about an option pricing stochastic volatility model. Standard stochastic volatil-
ity models generate an ATM volatility skew which is constant for short maturities (cfr.
Fukasawa, 2011, for a theoretical corroboration of this fact) and decreases faster than it
goes according to empirical data when time to maturity increases. In particular, inability
of accurately reproducing the term structure of the ATM volatility skew at both short and
long time-to-maturity is considered as the main limitation of standard stochastic volatility
models. For this reason, new models for the joint dynamics of the price and its volatility

4For an introduction to time varying volatility models and jump-diffusion models see Tankov (2003)
and Gatheral (2011), respectively

5The term structure of the ATM volatility skew is defined as

ψ (τ)
.
=

∣∣∣∣∂σMKT (τ,K)

∂K

∣∣∣∣
ATM

,

where τ is the option time-to-maturity, and σMKT is the volatility quoted by the market. In particular,
Equity markets usually quotes call or put option prices in term of the volatility parameter to be put in
the Black-Scholes model to match the option price. Empirically — at least in equity market — an ATM
volatility skew proportional to 1/τα for some 0 < α < 1/2 is observed over a very wide range of expirations
(cfr. for example Bayer et al., 2016).
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have been introduced: We name these models fractional stochastic volatility models. The
name comes from the fact that the driving noise of the volatility process is a fractional
Brownian motion (fBM) (Mandelbrot and Van Ness, 1968), which is characterized by a
single parameter H ∈ (0, 1), the so called Hurst parameter6. In particular, if H > 1/2
there is long memory in the dynamics of the fBM, in the sense that the covariance between
two of its increments is not an integrable function.

The first and most celebrated fractional stochastic volatility model is the model in
Comte and Renault (1998) where the dynamics of price follows a diffusion process with
the logarithm of the volatility following a long memory, i.e. H > 1/2, fractional Ornstein-
Uhlenbeck process with a strong mean reversion α. Formally

d log(σt) = νdWH
t + α (m− log (σt)) dt.

Around this model a large literature has subsequently been developed (Cheridito et al.,
2003; Rosenbaum, 2008; Comte et al., 2012) to capture the widely accepted stylized fact
of the long memory property of the volatility process (Ding et al., 1993; Andersen and
Bollerslev, 1997; Andersen et al., 2001). However there is still a lot of ambiguity about
statistical tests verifying its existence and over time it seems that this term has acquired
a more precise meaning. First, the autocorrelation function is not integrable (Beran,
1994). Second, the autocorrelation function has a power-law decay with an exponent less
than one. Since it is not possible to estimate the asymptotic behaviour of the covariance
function without assuming a specific form, much of the most recent literature assumes long
memory in volatility in this second, more technical, sense (see, for instance, Chen et al.,
2006). Nonetheless, it turns out that there exist processes having autocorrelation function
without the previous mentioned power law decay, which are classified as long memory using
a standard statistical procedure (Andersen et al., 2001, 2003) aimed at detecting such a
characteristic. In particular, the recent fractional stochastic volatility model of Gatheral
et al. (2014) belongs to this class of models. In this model the dynamics of the price
follows a diffusion process with the logarithm of the volatility following a short memory –
H of order 0.1 – fractional Ornstein-Uhlenbeck process with a very small mean reversion
α. Its use is suggested from a statistical investigation of recent prices and options data7.
Importantly, it reproduces the explosive behaviour of the ATM volatility skew at short time
to maturity, without using jumps (see Bayer et al., 2016). Inspired by this ground-breaking
work of Gatheral et al. (2014) several studies on short-memory fractional volatility model
have been developed (see, for instance Bennedsen et al., 2016, 2015; El Euch et al., 2016;
El Euch and Rosenbaum, 2016; Funahashi and Kijima, 2015; Guennoun et al., 2014; Jaisson
and Rosenbaum, 2016; Neuenkirch and Shalaiko, 2016). We finally mention the work of
Corlay et al. (2014), in which the logarithm of the volatility follows a multi-fractional
Ornstein-Uhlenbeck process: The constant parameter H is replaced with a time-dependent
function h with value in (0, 1). Estimated on their dataset the function h is often smaller
that 1/2. In this thesis we integrate this last strand of literature revisiting the finding in
Gatheral et al. (2014) and by studying implied volatility based approximations of the spot
volatility.

6The Hurst parameter of a standard Brownian motion is equal to 1/2.
7In Gatheral et al. (2014), the dataset consists of daily non-parametric estimates of volatility of the

S&P and NASDAQ indices – including Realized Variance (RV) and Realized Kernel (RK) estimates – from
January 3, 2000 to March 31, 2014 (http://realized.oxford-man.ox.ac.uk)

http://realized.oxford-man.ox.ac.uk
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1.2 Price dynamics model in discrete time

Models for asset dynamics in discrete time have primarily been developed under the phys-
ical measure P. Before the 1980s traditional econometric models assumed a constant
one-period forecast variance of the returns. To overcame this implausible assumption,
a new class of models named AutoRegressive Conditional Heteroschedastic (ARCH) has
been introduced by Engle (1982). In these models the conditional variance of the returns at
each fixed time is a linear function of the past squared returns. Four years later Bollerslev
(1986) introduced the Generalized AutoRegressive Conditional Heteroscedastic (GARCH)
model, where not only the squared lagged returns but also the lagged conditional vari-
ances influence the current value of the latter. Importantly, these time-varying volatility
models are able to reproduce different regularities of returns and volatility. First, the fact
that large observations, in absolute value, occur more often than expected from a normal
variable, i.e. they have leptokurtic distributions. Second, the fact that volatile periods,
characterized by large returns in absolute value, tend to alternate with more quiet periods
of smaller returns, i.e. the so called volatility clustering (see Mandelbrot, 1997). Other
parametrizations of volatility, which can capture these stylized facts of asset returns have
subsequently been proposed (e.g. Higgins and Bera, 1992; Sentana, 1995, to cite only a
few). Nontheless, in their original formulation, they are not able to reproduce other em-
pirical regularities of asset returns such as the the negative skewness due to the leverage
effect. Asymmetric ARCH (AARCH) by Engle et al. (1990), Exponential GARCH model
(EGARCH) of Nelson (1991), Threshold ARCH model (TARCH) proposed by Zakoian
(1994) and its modified version of Glosten et al. (1993) (GJR) are able to capture this
predictable asymmetric effect. However, in all the previous models, endogenous shocks for
the conditional variance process are not taken in consideration.

Taylor (1994) introduced a basic alternative to ARCH type models by allowing the con-
ditional variance of the returns to be an unobserved random process. The main advantage
of using Stochastic Volatility models is that they provide greater flexibility in describing
the above-cited empirical regularities (see, for instance Ruiz, 1994; Harvey et al., 1994).
However, the use of variance-specific disturbances comes to the use of latent variables
and this calls for the use of suitable inference tools such as stochastic filtering and sim-
ulation based inference (e.g So et al., 1998, 2002; Jacquier et al., 2004, to cite only a
few). In this thesis we introduce a new family of discrete time stochastic volatility models,
named SV-LHARG(p) for the joint modelling of returns and realized measures of volatil-
ity. Importantly, we are able to propose an effective Markov Chain Monte Carlo (MCMC)
algorithm to infer both the parameters and the latent variables.

Recently, thanks to the availability of high frequency data, another well-established dis-
crete time volatility modelling approach is the so called Realized Volatility (RV) approach
8, where the RV is used as proxy for volatility related to the hours of open market. In
particular, this implies that no filtering procedures are required and the model can be esti-
mated directly using the observed RV. Moreover, by its very nature – it is constructed from
the intra-day price movements – RV changes rapidly according to the market’s movement,
and this characteristic turns out to be crucial in improving volatility forecast. Indeed,

8Merton (1980) introduced the idea of RV measures in his seminal work. He showed that the integrated
variance of a Brownian motion can be approximated by the sum of a large number of intra-day squared
returns. This original intuition has been recently formalized and generalized by (Comte and Renault, 1998;
Andersen et al., 2001; Barndorff-Nielsen and Shephard, 2001; Barndorff-Nielsen, 2002; Barndorff-Nielsen
and Shephard, 2002; Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2005)
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many studies have documented that incorporating realized measures in volatility models
leads to a large economic and statistical gain (see, for instance Dobrev and Szerszen, 2010;
Maheu and McCurdy, 2011; Hansen et al., 2012; Christoffersen et al., 2014, 2015). As re-
gards the modelling, the Heterogeneous Autoregressive multi-component model by Corsi
(2009) has become one of the standard models for describing and forecasting the dynamics
of RV. Building on this model, different extensions have been proposed (Corsi et al., 2013;
Majewski et al., 2015; Alitab et al., 2015) to better describe the characteristics observed in
financial data both under the historical measure P and the risk-neutral one Q. However,
RV are affected by measurement errors and overnight effect.

A way to take advantage of the informative content of the realized measures of volatil-
ity and, at the same time, filter them out from measurement errors is to add to the model
a measurement equation for the latent conditional variance of the returns. Recently , this
approach has been followed either within a GARCH framework (Shephard and Sheppard,
2010; Hansen et al., 2012), a MEM framework (Engle and Gallo, 2006; Gallo and Otranto,
2015) or in a stochastic volatility one (Takahashi et al., 2009; Dobrev and Szerszen, 2010;
Koopman and Scharth, 2013). However – to the best of our knowledge – no work has been
devoted to the integration of Stochastic Volatility (SV) models incorporating RV measures
with the literature on analytical option pricing. In this thesis, our SV-LHARG(p) fills-in
this gap.

It turns out that an important class of process in finance is the affine one. A stochastic
process is called affine if the logarithm of characteristic function of its transition distri-
bution is affine with respect to the initial state. The importance of the affine property
in finance has been acknowledged in many studies (see Duffie et al., 2000, 2003; Majew-
ski et al., 2015; Alitab et al., 2015) and in particular for an option pricing application.
Indeed, it allows for closed-form solutions for many of pricing problems. One problem
that arises when addressing the problem of option pricing in a discrete-time framework
is the determination of a risk-neutralization procedure. This theme has been treated for
the first time by Duan (1995) in the context of a GARCH asset return process by us-
ing equilibrium argument and proposing a locally risk-neutral valuation procedure. Since
then, many example of option pricing discrete-time volatility models have been proposed
both in a GARCH-based (see Heston and Nandi, 2000; Gourieroux and Monfort, 2007;
Christoffersen et al., 2008; Gagliardini et al., 2011, among others) and RV approaches (see
Stentoft, 2008b; Corsi et al., 2013; Christoffersen et al., 2015; Majewski et al., 2015; Alitab
et al., 2015, among others). In Bertholon et al. (2008); Gagliardini et al. (2011); Corsi
et al. (2013); Majewski et al. (2015); Alitab et al. (2015) the risk-neutralization is per-
formed by employing the so called Stochastic Discount Factor approach, which permits to
incorporate multiple factor-dependent risk premia. Additionally, in order to have a good
option pricing performance is essential to give a reliable description of the dynamics of the
conditional variance of the returns and a smooth measure of it, since otherwise the noise
in the latter is carried on the option prices. In this thesis, through our SV-LHARG(p), we
corroborate this fact empirically. Indeed the fact that we are able – in an effective way
– to filter out measurement errors of the realized measures of volatility turns out to be
crucial in inflating the persistence of the latent conditional variance of the returns – the
crucial parameter for the effective pricing of Standard and Poor’s 500 Index options.
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Chapter 2

Presented research

The goal of this thesis is to shed light on some of the issues that a researcher has to
examine when he/she has to determine the fair price of a financial derivative: (i) The
choice of a dynamics for the underlying instrument under the physical measure P, (ii)
the estimation of the parameters of the chosen dynamics, (iii) the definition of a pricing
mechanism described by a stochastic discounting, (iv) the development of fast, accurate,
and possibly flexible numerical methods to determine the fair price of the instrument.

The work presented in Chapter 3 is about the first issue. As pointed out, here, a
trade-off arises as models which describe the historical dynamics of the asset price with
adequate realism are usually unable to precisely describe the entire dynamics of the im-
plied volatility surface. Recently, Gatheral et al. (2014) have proposed a new volatility
model, named Rough Fractional Stochastic Volatility (RFSV), in which increments of log-
volatility are assumed to follow a fractional Brownian Motion (fBm) with an estimated
Hurst exponent around 0.1. They have shown how this model is able to reproduce several
important features of empirical time-series and option prices. Remarkably, they repro-
duce the smoothness and the empirical autocorrelation structure of the volatility, and the
exploding term structure when maturity goes to zero of the at-the-money skew (i.e., the
derivative of the implied volatility with respect to strike). However, the volatility is a
latent, unobservable variable. In Gatheral et al. (2014), recent estimation methods based
on high-frequency price data have been used to estimate the spot volatility1. A natural
question arise:
Question 1. What will be the value of the estimated Hurst exponent if one replicates
the analysis of Gatheral et al. (2014) by using implied volatility based approximations of
the spot volatility?

The work presented in Chapter 4 is mainly about the first two issues. In this Chapter,
we move to the modelling of discrete time financial time series, in particular high frequency
returns and realized volatilities. In a recent work, Majewski et al. (2015) have proposed
a fully analytical realized volatility option pricing model featuring multiple-component
structure in both volatility and leverage, and a flexible pricing kernel with multiple risk
premia. On one hand, realized volatility, by its very nature, has the capability of changing
rapidly according to the market’s movement and this feature is essential in order to track
the dynamics of the short-term implied volatility surface. On the other hand, realized
measures provide noisy information about the latent conditional variance of the returns.

1The dataset consists of daily non-parametric estimates of volatility of the S&P and NASDAQ indices
– including Realized Variance (RV) and Realized Kernel (RK) estimates – from January 3, 2000 to March
31, 2014 (http://realized.oxford-man.ox.ac.uk)
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For this reason, realized volatility models fail to reproduce the high-level persistence of the
volatility observed in the data and this fact turns out be crucial for the effective pricing of
medium-long time to maturity options. We thus ask to ourselves the following question:
Question 2. Is it possible to build up a stochastic volatility model with realized measures
of volatility able to: (i) reproduce the well-established stylized fact of financial time series,
and in particular volatility persistence (ii) be effective both in estimation and calibration,
(iii) filter out the measurement errors of the realized volatility, and finally (iv) preserve
closed-form solutions for options prices?

The work presented in Chapter 5 is about the fourth issue and, specifically, about the
construction of numerical techniques to price financial derivatives products whose pay-off
may depend on the whole path followed by underlying asset, i.e. path-dependent options.
The price of path-dependent derivative products is usually determined by employing two
classes of numerical methods. The first approach consists in solving numerically a Par-
tial Differential Equation (PDE) (Wilmott et al., 1993; Alziary et al., 1997; Zvan et al.,
2000; Pascucci, 2011). The second one consists in using standard Monte Carlo meth-
ods(Glasserman, 2004). In particular, Monte Carlo is a very flexible method to generate
random trajectories from the underlying asset price. It permits to achieve any degree
of precision – at least in theory – by simply increasing the number of generated paths.
However, this approach suffers from some ineffectiveness – especially when pricing out-of-
the-money (OTM) options – since a relevant number of sampled paths does not contribute
to the pay-off of the option. For this reason, several numerical techniques have been intro-
duced to reduce the variance of the Monte Carlo price (see Clewlow and Strickland, 1996;
Glasserman, 2004). We ask to ourself the following question:
Question 3 Is it possible to put together several tools or algorithms in order to obtain
an effective numerical scheme based on Monte Carlo simulation to price exotic options?

2.1 Outline

Each question presented above corresponds to a part of the thesis.

In order to answer Question 1, we use two implied volatility based approximation of
the spot volatility. Firstly, the implied volatility of an at-the-money liquid option with
short maturity. Secondly, a refined version of it due to Medvedev and Scaillet (2007). We
perform the same empirical analysis as in Gatheral et al. (2014) and we confirm that the
increments of the log-volatility can be modelled as a fBm with Hurst exponent H less
than 1/2. However, the Hurst parameter found in our analysis, of order 0.30, is slightly
larger than the one obtained in Gatheral et al. (2014). Nonetheless, we are able to provide
both a numerical investigation and a quantitative understanding of this upward bias, thus
confirming their results, i.e. the dynamics of the log-volatility can be described as follows

d log (σt) = α (m− log (σt)) dt+ νdWH
t , (2.1)

with H of order 0.1 and mean reversion time scale very large, compared to the time scales
of interest.2

2We stress that in spite of the apparent similarities between this model and the pioneering model of
Comte and Renault (1998), they are conceptually very different. In Comte and Renault (1998), H has been
taken larger than 1/2 to reproduce the supposed long memory of the volatility while α large to capture the
mean reversion of the volatility, (i.e. upward movements of the volatility tend to be followed by downward
movements of the volatility). In Gatheral et al. (2014), instead, H has been taken very small to reproduce
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To answer Question 2, we introduce a new family of discrete-time stochastic volatility
models for the joint modelling of returns and realized measures of volatility. The novelty in
our model is the presence of two measurement equations3 which relate both the observed
returns and realized measures to the latent conditional variance. Regarding the estima-
tion part, first we extend the work of Creal (2015) and we provide analytical filtering and
smoothing recursions for the basic (i.e. the model without a heterogeneous autoregressive
structure and leverage component) version of the model, henceforth SV-ARG. Then, we
develop an effective MCMC algorithm for richer variants. Building on Majewski et al.
(2015), we develop a fully analytical option pricing framework. We show the importance
of the filtering and smoothing of realized volatility in an option prices exercise on Standard
and Poor’s 500 Index options.

Finally, to answer to Question 3, we propose a new algorithm – named Backward
Monte Carlo – which relies on the construction of a discrete multinomial tree. The crucial
feature of our algorithm is that each random path runs backward from a terminal fixed
point to the initial spot price. To characterize the tree (i.e. to determine the discrete
points of the tree and the different probabilities of moving from one point to another
one), we use two different methodologies. First, a recent technique termed Recursive
Marginal Quantization (Pagés and Sagna, 2015). Second, an approach inspired by the
finite difference approximation of the diffusion’s infinitesimal generator (Albanese, 2007).
We assess the reliability of the new methodology comparing the performance of both
approaches and benchmarking them with competitor Monte Carlo methods.

We now rapidly review the main results of this thesis.

2.2 Rough volatility: evidence from option prices

2.2.1 A proxy for the spot volatility

We use two implied-volatility based approximation of the spot volatility: (i) The implied
volatility of an at-the-money liquid option with short maturity. This idea can be justified
by the fact that – in most models – the at-the-money implied volatility tends to the spot
volatility as maturity goes to zero (see, among others, Mühle-Karbe and Nutz, 2011). (ii)
An approximation formula due to Medvedev and Scaillet (2007). This correction formula
allows to compute a proxy for the spot volatility starting from an at-the-money implied
volatility with any – short – maturity. A drawback of Medvedev-Scaillet’s formula is that
it is proved to be valid only within a restricted class of stochastic volatility models, which
does not include rough volatility models. However, our goal in this part is to see whether
a proxy obtained from a standard volatility model still exhibits a rough behaviour.

2.2.2 Regularity of the volatility

In order to study the regularity of the volatility, we follow the methodology of Gatheral
et al. (2014) and we look at the behaviour of the so-called empirical structure (or partition)

the exact roughness of the volatility – which correspond to some sort of mean reversion – and α small to
capture the positive autocorrelation, or persistence, of the volatility.

3A measurement equation ties the observable quantities to the latent conditional variance.
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function m(q,∆):

m(q,∆) =
1

N

b(N−1)/∆c∑

k=0

∣∣∣log(σt(k+1)∆
)− log(σt(k)∆

)
∣∣∣
q
,

for different values of q > 0 and lags ∆ > 0. If the empirical financial process is scal-
ing, then m(q,∆) ∼ cq∆

ξ(q). We estimate ξ(q) by regressing m(q,∆) on ∆ in log-log
plots for different values of q. Figure 2.1 – left-panel – for instance, shows the structure
function when using the at-the-money implied volatility with short maturity as proxy
for the spot volatility4. For every q and for a wide range of ∆ the points with coordi-
nates (log(∆), log(m(q,∆)) are almost perfectly on the same line, thus confirming that
the process is scaling. Additionally, if the empirical financial process is mono-fractal, then
ξ(q) = qH. Figure 2.1 – right-panel – shows the points with coordinates (q, ξ(q)), with ξ(q)
the slope of the line in the left-panel of the same Figure, corresponding to the power q, and
the points with coordinates (q, 0.32 q): The two graphs can hardly be distinguished. As
last check, we verify that the increments of the log-volatility present a Gaussian behaviour.
Figure 2.2 shows the histograms of log-volatility increments over different time intervals,
together with a Gaussian density fit and the Gaussian density associated to the increments
of a fBm with Hurst parameter equal to 0.32. From these graphs, we obtain that empiri-
cal distributions of log-volatility are reasonably approximated by Gaussian law5. We can
conclude that – with our proxy – increments of log-volatility are well modelled with a fBm
with Hurst parameter of order 0.30.

Figure 2.1: Scaling property of the log-volatility increments when using the implied
volatility of an at-the-money liquid option with short maturity
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Notes: We use a data set from Bloomberg (Data obtained from AXA Group Risk Management)
made of daily observations of the implied volatility of the option with maturity one month on
the S&P500 index, from January 5, 2006 to May 5 2011.

4Results with the Medvedev-Scaillet formula are very similar.
5We remark that the empirical distributions are slightly more concentrated around their center.
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Figure 2.2: Histograms of the log-volatility increments when using the implied volatility
of an at-the-money liquid option with short maturity
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Notes: The Gaussian fit in blue and the density associated to the increments of a fBm with
Hurst parameter equal to 0.32 is in red. Data set: see NOTES in Figure 2.1.

2.2.3 On the upward bias of the Hurst parameter

We ask to ourselves the reason of this upward bias between our estimated Hurst exponent
and the one found in Gatheral et al. (2014). We provide an explanation for this bias, both
numerically and theoretically. Numerically, we perform a Monte Carlo study. We simulate
option prices in a rough volatility model with H = 0.04 and we estimate – through the
same methodology described in the previous section – the Hurst parameter of the at-the-
money implied volatility as a function of time to maturity. Figure 2.3 displays sample
paths of the spot volatility and of the at-the-money implied volatility at maturity τ = 5
and τ = 20 days: At the visual level, it is evident that implied volatility trajectories are
not as rough as that of the spot volatility and that the longer the time to maturity, the
larger the smoothing effect. Quantitatively, we show that the extent of the bias on a
simplified, although representative, setting. Precisely, we suppose that the at-the-money
implied variance at time t of an option with time to maturity τ > 0, denoted by v̂τ (t), is
given by

v̂τ (t) =
1

τ

∫ t+τ

t
Et[vu]du,

where vu is the spot variance at time u and Et[.] the conditional expectation operator with
respect to information up to time t. Furthermore, we take a simplified rough volatility
model assuming that for u > 0,

vu = v0 + νWH
u ,
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for some v0 > 0 and ν > 0. At this point, we compute a quantity very related to m(2,∆),
namely m̂τ (2,∆) = E[(v̂τ (∆) − v̂τ (0))2], and we show that the same scaling relationship
as that associated to the spot volatility – i.e. m̂τ (2,∆) ∼ ∆2H – is approximately satisfied
only if one considers implied volatilities with small enough times to maturity. Other-
wise, this scaling property is disrupted, thus implying biased estimations for the Hurst
parameter.

Figure 2.3: Sample paths of spot volatility and at-the-money implied volatility for τ = 5 and
τ = 20 days when the underlying dynamics is a rough volatility model with H = 0.04.
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2.3 A discrete-time stochastic volatility framework for pric-
ing options with realized measure

2.3.1 Dynamics under the physical measure P
We describe our new family of discrete-time stochastic volatility model in terms of the
following distributional representation

rt|F̃CV
t

d∼ N (µ+ κ
′
1x1t + γCVt,CVt),

RVt|F̃CV
t

d∼ G
(
αe−κ

′
2x2t ,CVte

κ
′
2x2t

)
,

CVt|zt d∼ G (ν + zt, c) ,

zt|CVt−1, lt−1
d∼ Po (ϕ(CVt−1, lt−1)) ,
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t = 1, . . . , T . In previous equations, rt denotes the geometric log-return of a risky asset
computed from closing prices, RVt is the realized volatility and CVt the latent conditional
variance of the log-return – which is described by a general and flexible Heterogeneous Au-
toregressive Gamma process with leverage effect (Majewski et al., 2015). With respect to
the realized volatility model of Majewski et al. (2015), we have two measurement densities
instead of one: a Gaussian density for the daily returns and a Gamma density for the real-
ized volatility measure. The latter is intended to adjust measurement errors and overnight
bias of the realized volatility. It has an intuitive interpretation: The conditional variance
of the returns corresponds to the RV plus a random innovation, with the parameter α
accounting for the overnight bias6. Importantly, the distributional representation above
permits to derive analytically several quantities characterizing the model, e.g. the recur-
sive formula for the computation of the conditional moment generating function (MGF)
under P.

2.3.2 Estimation of the model under the physical measure P

Because of the presence of the latent variable CVt, we employ a Bayesian approach for the
inference, since it provides a natural way to include simulation methods such as Markov
Chain Monte Carlo (MCMC) in the estimation process. We use a two-steps procedure.
First, we extend the work of Creal (2015) and we derive analytical filtering and smoothing
recursion for the latent variables of the SV-ARG. For instance, we derive the following

Proposition 2.3.1. For the SV-ARG model the conditional likelihood,
p(rt,RVt|zt,xt,x2t;θ), the Markov transition, p(zt|zt−1, rt−1,RVt−1,x1t,x2t;θ), and the
initial distribution of zt, p(z1;θ), are respectively given by:

p(rt,RVt|zt,x1t,x2t;θ) = 2η(zt,RVt,x1t,x2t;θ)Kλ(zt)

(√
ψχ(t)

)


√
χ(t)

ψ



λ(zt)

,

p(zt|zt−1, rt−1,RVt−1,x1t,x2t;θ) ∝ S
(
λ(zt−1), χ(t−1)φ

(d)

c
, ψ

c

φ(d)

)
,

p(z1;θ) ∝ NB
(
ν, φ(d)

)
,

for suitable function η, λ(zt), ψ and χ(t). In the previous expression S indicates a Sichel
distribution whereas NB a negative binomial distribution. A formal definition of these
distributions can be found in Chapter 4, Appendix A.2),

which permits to evaluate the likelihood of the SV-ARG exactly. Second, we provide a
Bayesian inference procedure for estimating the parameters and the latent variables given
a set of observations. By assuming a quadratic loss function, the Bayesian estimator is
given by the mean of the posterior distribution, which typically is a multiple-dimensional
integral with respect to a density function that is not tractable and which is known up
to normalizing constant. Thus, we apply Monte Carlo methods to approximate the pos-
terior distribution and the posterior mean. More specifically, we propose a Markov chain
Monte Carlo (see Casella and Robert, 2004) algorithm for approximating the posterior
distribution of the parameters and the latent variables. The parameters are sampled by
applying a Metropolis-Hastings algorithm. As regards to the latent variables, we exploit
the analytical filtering and smoothing results to develop an effective Forward Filtering
Backward Sampling (FFBS) (see Frühwirth-Schnatter, 2006) for the SV-ARG model and

6We remind that the expected value of a Gamma distribution is given by the product between the two
parameters.
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an effective Metropolis-Hastings algorithm for the general SV-LHARG(p) using the SV-
ARG as an auxiliary model. Figure 2.4, for instance, displays the output of the smoothed
conditional variance estimates (red line) together with the RV rescaled to the whole sam-
ple estimates of the overnight factor on S&P 500 Futures. At a visual level it is evident
the inflation in the volatility persistence due to filtering and smoothing.

Figure 2.4: Output of the smoothed conditional variance estimates for SV-ARG model,
on S&P 500 Futures, 1997-2007
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2.3.3 Risk neutral dynamics and financial applications

To determine the risk-neutral dynamics, we follow, among others, Majewski et al. (2015),
and we employ an exponential affine Stochastic Discount Factor (SDF), with two risk
premia. Formally

Mt,t+1 =
e−ν1CVt+1−ν2rt+1

EP
[
e−ν1CVt+1−ν2rt+1 |F̃CV

t , rt

] ,

where ν1 is the conditional variance premium and ν2 is the standard equity premium.
Building on Majewski et al. (2015), we derive the dynamics of the model under the risk-
neutral measure showing that the conditional variance dynamics under Q is obtained from
the dynamics under P through a deterministic transformation of the parameters estimated
under the historical measure. We evaluate the model by benchmarking its performance
with respect to two competitor models taken from both the GARCH and the RV litera-
ture in an option pricing exercise. Table 2.1 reports the relative Root Mean Square Error
on the percentage IV7 of the SV-LHARG with respect to the realized volatility model
of Majewski et al. (2015) for different moneyness m and maturities τ : The amelioration
for longer maturities and deep-out-the-money options is on average 15%. Figure 2.5, in-
stead, compares the level 8 dynamics of the SV-LHARG (red-line) and the two-component
GARCH (blue line) model introduced in Christoffersen et al. (2008). It is evident that
SV-LHARG reacts more dynamically to changes in the volatility level.

7The Root Mean Square Error on the percentage IV (RMSEIV) is defined as

RMSEIV =

√√√√ N∑
i=1

(
IVMOD

i − IVMKT
i

)2
N

,

where N is the number of options, and IVMOD
i and IVMKT

i are the model and the market implied volatility,
respectively.

8The level is the average implied volatility of at-the-money options and maturity at the shortest available
on a given day
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Table 2.1: Model comparison: option pricing performance on S&P500 out-of-the-money
options from February 12, 1997 to December 29, 2004

Option Pricing Performance

Moneyness Maturity
τ ≤ 50 50 < τ ≤ 90 90 ≤ τ ≤ 160 160 < τ

Panel B SV-LHARG/P-LHARG RMSE

0.8 ≤ m ≤ 0.9 0.913 0.857 0.865 0.897

0.9 < m ≤ 0.98 0.937 0.928 0.936 0.956

0.98 ≤ m ≤ 1.02 0.993 1.004 1.005 0.992

1.02 ≤ m ≤ 1.1 0.962 0.918 0.947 0.969

1.1 ≤ m ≤ 1.2 1.166 0.900 0.828 0.893

Notes: Panel A: The historical data are given by the daily RV computed on tick-by-tick data
for the S&P500 Futures. The estimation period ranges from 8-January-1997 to 8-January-2007.

Figure 2.5: Shortest maturity option IV, SV-LHARG and CGARCH
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2.4 A backward Monte Carlo approach to exotic option
pricing

2.4.1 Main ideas of the backward Monte Carlo algorithm

We start from a Markovian dynamics described by a generic Stochastic Differential Equa-
tion (SDE) {

dXt = b (t,Xt) dt+ σ (t,Xt) dWt t ∈ [0, T ]

X0 = x0,

and we assume that it admits a unique strong solution. We split the time interval [0, T ]
into n equally spaced subintervals [tk, tk+1], k ∈ {0, · · · , n− 1}, with t0 = 0 and tn = T ,
and we approximate the SDE with an Euler-Maruyama scheme. Then, we assume that
each random variable X̄tk , k ∈ {1, · · · , n} of the Euler scheme takes values in Γk

.
={

γk1 , · · · , γkN
}

, with Γ0 = γ0 = x0, i.e. we build up a multinomial tree. At this point,
we construct the transition probabilities from node at time tk to a node at time tk+1,
k ∈ {0, · · · , n− 1}

Πk,k+1
i,j

.
= P(γk+1

j |γki ), γki ∈ Γk, γ
k+1
j ∈ Γk+1, and i, j ∈ {1, . . . , N}
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and analogously we define

Πk+1,k
`,m

.
= P(γkm|γk+1

` ), γkm ∈ Γk, γ
k+1
` ∈ Γk+1, and l,m ∈ {1, . . . , N}.

We use a simple idea and we apply Bayes’ theorem to recover the backward probabilities
from the forward one. Formally,

Πk+1,k
i,j =

Πk,k+1
j,i Pkj

Pk+1
i

where, Pki
.
= P( ̂̄Xtk = γki | ̂̄Xt0 = x0), for i = 1, . . . , N , k = 1, . . . , n. Using these

probabilities one can go through the multinomial tree in a backward way, from each
of terminal points γnj to the initial node x0. Indeed, we first select in a determinis-

tic way only those points Γ̃n of the final grid Γn for which the pay-off of our financial
derivative is different from zero, then we evaluate the expectation of the pay-off with
fixed initial and terminal points. For instance, for an up-and-out barrier call option9

Γ̃n = {γni ∈ Γn : K ≤ γni ≤ B}.

2.4.2 Recovering the transition probabilities

We use two methodologies to recover the multinomial tree and the transition probabili-
ties. First, we use an algorithm due to Pagés and Sagna (2015) termed Recursive Marginal
Quantization Algorithm (RMQA). The idea of the RMQA is to optimally approximate
each X̄tk of the Euler scheme, in a least-squares sense, by a discrete random variable
̂̄Xtk : Ω→ Γk, where Γk is a finite set of elements in R, in a recursive way. This algorithm
gives as output also the transition probabilities10. Second, we use an algorithm which we
term Large Time Step Algorithm (LTSA). The LTSA works with an a priori user-specified
grid and requires less computational burden than the RMQA when pricing financial deriva-
tives products whose underline instrument has a piecewise time-homogeneous local volatil-
ity dynamics and the pay-off requires the observation of the underlying instrument on a
predefined finite set of dates. The LTSA consists in approximating the transition probabil-
ity matrix of the (discretized) solution of the backward Kolmogorov equation (see Kijima,
1997; Karatzas and Shreve, 2012) associated to the initial diffusion.
Once that transition probabilities are recovered, we select appropriately the final domain
Γ̃n and we price financial derivatives simulating the paths backward.

2.4.3 Financial applications

We assess the reliability of the Backward Monte Carlo in an option pricing exercise by
benchmarking its performance with respect to different variance reduction methods taken
from the literature (Glasserman, 2004). For instance, we apply the control variates method
when pricing Asian options, and the importance sampling technique when pricing Barrier
options. We also compute the prices of Asian and Barrier options through a forward
Monte Carlo simulation on top of the multinomial tree. Figure 2.6 shows the so called
Error ratio (i.e. the ratio between the error associated to the Monte Carlo estimator

9The pay-off of a up-and-out barrier call option is given by max(XT − K, 0)1{τ>T}, τ =
inf {t ≥ 0 : Xt ≥ B}, B is the barrier and and T and K are the maturity and the strike of the option,
respectively.

10As a novel contribution of this thesis, we also fix some numerical instabilities of the RMQA. We refer
to Chapter 5 for an exhaustive explanation.
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when the price is computed via a standard Monte Carlo procedure on the process X̄, and
the one associated to the other techniques) when we price an out-the-money Asian (resp.
up-and-out barrier option) in a Constant Elasticity of Variance (CEV) model for different
values of the volatility parameter: the strategy of reverting the Monte Carlo paths and
simulating them from maturity back to starting date is an effective alternative to the pure
Euler Monte Carlo or to Euler Monte Carlo combined with different variance reduction
techniques.

Figure 2.6: Plot of the Error ratio as a function of the volatility parameter σ for CEV
model when pricing Asian option and up-and-out barrier options.
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Chapter 3

Rough volatility: evidence from
option prices

The material of this chapter is taken from Livieri et al. (2017).

3.1 Introduction

Since the seminal work of Black and Scholes (1973), the most classical way to model
the behaviour of the price St of a financial asset is to use a continuous semi-martingale
dynamics of the form

d logSt = µtdt+ σtdWt,

with µt a drift process and Wt a Brownian motion. The coefficient σt is referred to as
the volatility process and it is the key ingredient in the model when one is interested in
derivatives pricing and hedging.
Historically, following the pioneering approach of Black and Scholes (1973), practitioners
have first considered the case where the process σt is constant or deterministic, that is
the Black and Scholes model. However, in the late eighties, it became clear that such
specification for the volatility is inadequate. In particular, the Black and Scholes model is
inconsistent with observed prices for liquid European options. Indeed the implied volatil-
ity, that is the volatility parameter that should be plugged into the Black-Scholes formula
to retrieve a market option price, depends in practice on the strike and maturity of the
considered option, whereas it is constant in the Black-Scholes framework.
Hence more sophisticated models have been introduced. A first possible extension, pro-
posed by Dupire (1994) and Derman and Kani (1996), is to take σt as a deterministic
function of time and asset price. Such models, called local volatility models, enable us to
perfectly reproduce a given implied volatility surface. However, their dynamic is usually
quite unrealistic under local volatility. Another approach is to consider the volatility σt
itself as an Ito process driven by an additional Brownian motion, typically correlated to
W . Doing so one obtains less accurate static fits for the implied volatility surface but
more suitable dynamics. Among the most famous of these stochastic volatility models
are the Hull and White (Heston, 1993) and the SABR model (Hagan et al., 2002). More
recent market practice is to use so-called local-stochastic volatility models which both fit
the market exactly and generate reasonable dynamics.
In all the Brownian volatility models mentioned above, the smoothness of the sample path
of the volatility is the same as that of a Brownian motion, namely 1/2− ε Hölder contin-
uous, for any ε > 0. However, it has been recently shown in Gatheral et al. (2014) that in

33
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practice, spot volatility is much rougher than this. This result in Gatheral et al. (2014) is
based on a statistical analysis of historical data using sophisticated high frequency estima-
tion methods. More precisely, it is established in Gatheral et al. (2014) that the dynamic
of the log-volatility process is very close to that of a fractional Brownian motion with
Hurst parameter smaller than 1/2. We recall the following (Mandelbrot and Van Ness,
1968)

Definition 3.1.1. A fractional Brownian Motion with Hurst parameter H ∈ (0, 1) is a
centred self-similar Gaussian process with stationary increments satisfying for any t ∈ R,
∆ ≥ 0, q > 0:

E
[∣∣WH

t+∆ −WH
t

∣∣q
]

= c̃q∆
qH ,

with c̃q the moment of order q of the absolute value of a standard Gaussian variable. For
H = 1/2, one retrieves the classical Brownian motion.

The fBM is thus parametrized by the single parameter H, which has a well precise mean-
ings. First, when H > 1/2, the increments of the fBM are positively correlated and exhibit
long memory in the sense that

+∞∑

t=0

Cov
[
WH

1 ,WH
t −WH

t−1

]
= +∞.

Indeed, Cov
[
WH

1 ,WH
t −WH

t−1

]
is of order t2H−2 as t → ∞1. Second, it gives exactly

the smoothness of the sample path of fBM. Formally one has that ∀ε > 0, WH is (H −
ε)−Hölder continuous almost surely. So, there is a one to one correspondence between
regularity and long memory through the Hurst parameter H.
Models where the volatility is driven by a fractional Brownian motion with H < 1/2 are
called rough volatility models. In addition to fitting almost perfectly historical volatility
time series, rough volatility models enable to reproduce important stylized facts of liquid
option prices that local/stochastic volatility models typically fail to generate. In particular,
the exploding term structure when maturity goes to zero of the at-the-money skew (the
derivative of the implied volatility with respect to strike) is readily obtained, see Bayer
et al. (2016); Fukasawa (2016). Other developments about rough volatility models can be
found in Bennedsen et al. (2015, 2016); El Euch et al. (2016); El Euch and Rosenbaum
(2016); Forde and Zhang (2015); Funahashi and Kijima (2015); Guennoun et al. (2014);
Jaisson and Rosenbaum (2016); Neuenkirch and Shalaiko (2016).
The goal of the present work is to revisit the finding in Gatheral et al. (2014) using implied
volatility data. Indeed in Gatheral et al. (2014), the authors work with historical price
data from underlyings to estimate spot volatility. Here we use a spot volatility proxy which
is not based on historical data, but on implied volatility. More precisely, we approximate
the spot volatility by the implied volatility of an at-the-money liquid option with short
maturity (or a refined version of it). This idea can be justified by the fact that in most
models, the at-the-money implied volatility tends to the spot volatility as maturity goes
to zero, see for example Mühle-Karbe and Nutz (2011). Our main result is a confirmation
of that in Gatheral et al. (2014): When using alternative spot volatility measurement
methods based on option prices, we can still conclude that volatility is rough.
The rest of the chapter is organized as follows. We investigate in Section 3.2 the roughness

1It holds true that

Cov[WH
t ,W

H
s ] =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
.



3.2. A SIMPLE SPOT VOLATILITY PROXY 35

of time series of spot volatility approximations given by implied volatilities of at-the-
money options on the S&P500 index, with maturity one month. In Section 3.3, instead
of using raw implied volatilities, we compute spot volatilities from implied ones through a
correction formula due to Medvedev and Scaillet (Medvedev and Scaillet, 2007). We then
carry the same analysis as in Section 3.2. The results in Sections 3.2 and 3.3 are very
similar to those in Gatheral et al. (2014). However, the estimated values for the Hurst
parameter, although smaller than 1/2, are actually larger than those obtained in Gatheral
et al. (2014). We show numerically and analytically in Section 3.4 that this upward bias
comes from a regularizing effect due to the remaining time to maturity of the considered
options.

3.2 At-the-money implied volatility with short maturity as
spot volatility proxy

As explained in the introduction, our goal is to study the behavior of the spot volatility
and to show that it is well approximated by a rough process. Of course this is a difficult
task since volatility is a latent, unobserved variable. In Gatheral et al. (2014), the authors
use recent estimation methods based on ultra high frequency price data to estimate spot
volatility. In this work, instead, we wish to use option price data. This idea is reasonable
if we use at-the-money options for which the time to maturity is short. Indeed, it is
well-known that in most models, the at-the-money implied volatility converges to the spot
volatility as maturity goes to zero, see for example Mühle-Karbe and Nutz (2011).

3.2.1 Data description

In this section, we use a data set from Bloomberg2, made of daily observations of the
implied volatility of the option with maturity one month on the S&P500 index, from
January 5, 2006 to May 5, 20113. Note that the data are in fact already extrapolated
internally by the data provider (using quoted options at 4 PM) and do not necessarily
exactly correspond to transaction data, see Bloomberg (2008). In Section 3.3, we present
a method enabling us to derive spot volatilities from observed option prices with various
maturities. Here we rely on the data provider approach to get option prices with the same
maturity. This is not an issue since our aim in this work is to show that a rough dynamic
for the volatility is obtained from any reasonable spot volatility proxy.

3.2.2 Scaling property

Let σimpt0
, ..., σimptN

be the time series of implied volatilities extracted from our data base.
Here for i ≥ 0, ti+1 − ti corresponds to one business day. In the spirit of Gatheral et al.
(2014), we wish to review the behaviour of the so-called structure function m(q,∆) given
by

m(q,∆) =
1

N

b(N−1)/∆c∑

k=0

| log(σimpt(k+1)∆
)− log(σimptk∆

) |q

for various q > 0 and lags ∆ going from 1 to about 40 days4. Through the quantity
m(q,∆), our goal is to revisit the finding in Gatheral et al. (2014) that the (spot) log-

2Data obtained from AXA Group Risk Management.
3Data around the third Friday of each month (settlement date) are removed from the data base. We

have 1166 points in total.
4Of course when computing m(q,∆) we in fact also average over the possible starting points t0, ..., t∆−1.
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volatility is well approximated by a fractional Brownian motion with Hurst parameter H
smaller than 1/2. In this case, assuming spot and implied volatilities coincide, we should
observe the following relationship:

m(q,∆) ∼ cq∆qH , (3.1)

with cq a constant depending on q. Indeed (cfr. Definition 3.1.1), we have for t ≥ 0 and
∆ > 0

E[|WH
t+∆ −WH

t |q] = c̃q∆
qH ,

with c̃q the absolute moment of order q of a standard Gaussian random variable.

To investigate the validity of (3.1), we plot in Figure 3.1 the logarithm of m(q,∆) against
the logarithm of ∆, for several values of q.

Figure 3.1: Scaling property of log-volatility increments of the at-the-money implied volatility
with short maturity
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Notes: Data set is from Bloomberg made of daily observations of the implied volatility of the
option with maturity one month on the S&P500 index, from January 5, 2006 to May 5 2011.

For every q, the points with coordinates (log(∆), log(m(q,∆))) are almost perfectly on
the same line, and this for a wide range of ∆. Figure 3.1 is actually very similar to that
obtained from historical volatility measurements in Gatheral et al. (2014). Thus we can
deduce that indeed, for a given q,

m(q,∆) ∼ cq∆ζ(q),

for some ζ(q).
Now we want to check whether ζ(q) can be taken of the form qH for some H, as suggested
in Gatheral et al. (2014). This would lead to the same mono-fractal scaling as that of the
fractional Brownian motion with Hurst parameter H. To answer this, we plot in Figure
3.2 the points with coordinates (q, ζ(q)), where ζ(q) is taken as the slope of the line in
Figure 3.1 corresponding to the power q, and the points with coordinates (q, 0.32q).
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Figure 3.2: Mono-fractal scaling of the at-the-money implied volatility with short maturity
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Notes: Data set is from Bloomberg made of daily observations of the implied volatility of the
option with maturity one month on the S&P500 index, from January 5, 2006 to May 5 2011.

We see that the two graphs on Figure 3.2 can hardly be distinguished. This means that
(3.1) almost perfectly holds, with H around 0.32. Note that such value for H corresponds
to rough volatility since it is smaller than 1/2. However, it is larger than those reported in
Gatheral et al. (2014). This is actually due to the fact that our options have a significant
remaining time to maturity of one month. This induces a smoothing phenomenon in the
estimation of the Hurst parameter. This effect is of the same nature as that described and
explained in Gatheral et al. (2014) caused by the discrepancy between spot and integrated
volatility over a short time interval. We quantify this measurement bias numerically and
analytically in Section 3.4.

3.2.3 Distribution of log-volatility increments

Recall that it is suggested in Gatheral et al. (2014) that the log-volatility process is well
modeled by a fractional Brownian motion with Hurst parameter smaller than 1/2. This
implies monofractal scaling as investigated above but also a Gaussian behavior of the
log-volatility increments. This feature is indeed satisfied when using historical estimates
as measurements for spot volatility, see Gatheral et al. (2014). Here we wish to study
whether such property also holds when the volatility proxies are given by our short term
at-the-money implied volatilities. To this end, we display in Figure 3.3 histograms of
log-volatility increments over different time intervals, together with a Gaussian density fit
and the Gaussian density associated to the increments of a fractional Brownian motion
with Hurst parameter equal to 0.32.
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Figure 3.3: Histograms of the log-volatility increments when using the implied volatility
of an at-the-money liquid option with short maturity
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Notes: The Gaussian fit in blue and the density associated to the increments of a fBm with
Hurst parameter equal to 0.32 is in red. Data set: see NOTES in Figures above.

From these graphs, we obtain that the empirical distributions of log-volatility increments
are reasonably approximated by Gaussian laws. However, we can remark that the empiri-
cal distributions are slightly more concentrated around their center. Finally, the Gaussian
fits almost exactly coincide with those associated to the fractional Brownian motion with
Hurst parameter equal to 0.32.

In conclusion, using at-the-money implied volatilities with maturity one month as spot
volatility proxies, we obtain that log-volatility is well approximated by a rough fractional
Brownian motion. This confirms the finding in Gatheral et al. (2014).

3.3 A refined implied volatility based proxy for the spot
volatility

In this section, we wish to study the robustness of the results obtained in Section 3.2.
To do so, we work with another spot volatility proxy based on at-the-money options with
short maturity. More precisely, we use the approximation formula from Medvedev and
Scaillet (2007). This correction formula enables us to compute a spot volatility proxy
from an at-the-money implied volatility with any (short) maturity. This is an advantage
compared to what is done in Section 3.2 where only options with one month maturity
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are considered5. The drawback of Medvedev-Scaillet formula is that it is proved to be
valid only within a restricted class of stochastic volatility models, which does not include
rough volatility models. However our goal here is to see whether a proxy obtained from a
Brownian volatility model still exhibits a rough behaviour.

3.3.1 Data description and processing

Here our data set is provided by OptionMetrics and consists in daily close bid/ask prices
of European puts and calls on the S&P500 index, from September 5, 2001 to January
31, 2012, for various strikes and maturities, together with the daily traded volumes. We
discard options with price less than 2.5 cents of dollar or with zero trading volume. Besides,
as in Section 3.2, prices corresponding to settlement dates are removed, so as obvious
outliers.

We then want to compute the market implied volatilities from put and call prices.
These can be obtained by inverting the Black-Scholes-Merton formula given the market
prices of call or put options. For the sake of clarity, let us consider a day t in the dataset
and focus on call prices. The market implied volatility is defined so that the following
pricing equation is satisfied with the price C given by the market.

C(τ,K) = D(τ) (F (τ)N(d1(IV(τ); τ,K)−KN(d2(IV(τ); τ,K)))

where D(τ) is the zero-coupon bond price maturing at τ , while we define

d1(IV(τ); τ,K)
.
=

1

IV(τ)
√
τ

log
F (τ)

K
+

1

2
IV(τ)

√
τ

and
d2(IV(τ); τ,K)

.
= d1(IV(τ); τ,K)− IV(τ)

√
τ .

We can notice that to invert the above formula we need also the zero-coupon bond prices
and the asset forward prices. On the other hand, we know for each time-to-maturity τ call
and put bid/ask prices for a whole range of strike levels. Thus, we are able to implement
a best-fit procedure to jointly calibrate for each τ all the quantities: IV, D and F . We
implement an optimization procedure for each time t and time-to-maturity τ . First, we
construct two portfolios: (i) one long call and one short put with the same strike K, (ii)
one short call and one long put again with the same strike K. The prices of these portfolios
can be easily calculated by using the put-call parity when bid/ask spreads are null, since
we have

C(τ,K)− P (τ,K) = D(τ) (F (τ)−K)

In our case the market is quoting bid/ask prices, so that we search for the optimal solution

{D?, F ?} = arg min
D,F

{∑

i

wi

(
1

2

(
Ca
i − P b

i

)
+

1

2

(
Cb
i − P a

i

)
−D(τ) (F (τ)−Ki)

)}

where Ca,b
i and P a,b

i are respectively the call and put market prices (the apices stand for
ask and bid) quoted at strike level Ki, and the weights are given by

wi
.
=

√
min{V C

i , V
P
i }

1
2(Ca

i − Cb
i ) + 1

2(P a
i − P b

i )
,

5Mixing various maturities without any correction would have been very arguable.
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with V C
i and V P

i standing for the trading volumes of call and put options quoted at
strike level Ki. Finally, our implied volatility is taken as that of a call whose price would
be the mid-price between the bid and ask prices. Recall that for our approximations to
be valid, we focus on at-the-money implied volatilities with short maturity. Following
Medvedev and Scaillet (2007), we only select implied volatilities of options with time to
maturity ranging from 15 to 60 days. Shorter term options are discarded because quotes
can be noisy. Moreover, we restrict our data to log-forward moneyness – here6 defined as
X = log (S er τ/K) – with τ the time-to-maturity and K the strike price – belonging to the
interval [−0.03, 0.03]. Such procedure yields a total number of 34842 implied volatilities
over 2569 days.

3.3.2 The Medvedev-Scaillet correction formula

In Medvedev and Scaillet (2007), the authors consider a general modelling framework
encompassing most of the classical parametric price models. They use a two factors jump-
diffusion stochastic volatility model of the form

{
dSt = (r − µ (σt))Stdt+ σtSt dZt + St dJt

dσt = a(σt)dt+ b(σt)
(
ρ dZt +

√
1− ρ2 dWt

)
,

(3.2)

where Zt and Wt are two independent Brownian motions and Jt is a Poisson-type jump
process, independent of Zt and Wt. Both r and the correlation coefficient ρ are assumed to
be constant. The expected jump size E [∆J ] is also constant, but the jump intensity λ(σt)
may depend on the volatility in a deterministic way. Here, as in the numerical experiments
in Medvedev and Scaillet (2007), we consider the following parametric forms:

b(σt) = βσφt , λ(σt) = λ0σ
ψ
t ,

for some non-negative constants β, φ, λ0 and ψ.

Let σ be the spot volatility and σ̂ = σ̂(τ) be the at-the-money implied volatility of an
option with time to maturity τ . Following Medvedev and Scaillet (2007), we build our
option-based spot volatility proxy in two steps. First, the chosen model is calibrated from
the approximation formula in Proposition 7 in Medvedev and Scaillet (2007) using all
our option prices over the entire time period. Precisely, if we set θ = X/(σ

√
τ) (resp.

θ̂ = X/(σ̂
√
τ)) the moneyness degree and ÎV

(
θ̂, τ ; σ̂

)
the market implied volatility we

use the following formula to calibrate the model

ÎV
(
θ̂, τ ; σ̂

)
= σ̂ +

(
I1(θ̂, σ̂)− I1(0, σ̂)

)√
τ

+

(
I1(0, σ̂)

(
∂I1(0, σ̂)

∂σ
− ∂I1(θ̂, σ̂)

∂σ
+
θ̂

θ̂

∂I1(θ̂, σ̂)

∂σ

)

+ I2(θ̂, σ̂)− I2(0, σ̂)

)
τ +O(τ

√
τ), (3.3)

6We note that this is not the definition of forward moneyness usually found in the literature, i.e. −X.
In the reminder of the chapter we will use X as in (Medvedev and Scaillet, 2007) and we will make clear
the precise definition used whenever relevant
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where the function I1 and I2 are given by

I1(θ̂, σ̂) = −bρ
2
θ̂ − µg

I2(θ̂, σ̂) = −µ
2

2σ̂
θ̂2g2 +

(
−µbρ

2σ
θ̂3 − µσ̂

2
θ̂ − σ̂λθ̂

)
g + P

(
θ̂; σ̂
)
,

(3.4)

where P is a quadratic function in θ̂7:

P(θ̂, ; σ̂) =

(
− 5

12

ρ2b2

σ̂
+

1

6

b2

σ̂
+

1

6
ρ2bb

′ − 1

2

µbρ

σ̂

)
θ̂2

+
ρbσ̂

4
+
ρbµ

2σ̂
+

1

24

ρ2b2

σ̂
+

1

12

b2

σ̂

− 1

6
ρ2bb

′
+
µ2

2σ̂
− σ̂µ

2
− λσ̂,

(3.5)

with g = N(θ̂)/n(θ̂), h = 1/n(θ̂), and N(θ̂) and n(θ̂) are the p.d.f and the c.d.f of the
standard normal distribution. Besides, µ = µ(σ̂), b = b(σ̂), and b

′
denotes the derivative

of b w.r.t. σ evaluated in σ̂.
Then, to retrieve the proxy for the spot volatility, we then consider the following expansion
as τ goes to zero shown in Medvedev and Scaillet (2007):

σ = σ̂ − I1(0, σ̂)
√
τ

+

(
I1(0, σ̂)

∂I1(0, σ̂)

∂σ
− I2(0, σ̂) +

1

2
ρb(σ̂)E[∆J ]

∂λ(σ̂)

∂σ

)
τ +O(τ

√
τ). (3.6)

Remark 1. Formula (3.3) does not involve the unobserved spot volatility. As a conse-
quence, it can be used to calibrate any parametric specification of model (3.2) to a set
of option prices across calendar dates simultaneously. Moreover, since all the parame-
ters are calibrated with the exception of the spot volatility, we are able to filter out the
skew dynamics effect from the time series (3.6). This is important for the purpose of our
analysis.

3.3.3 The scaling property revisited

We now wish to study the scaling property of spot volatility proxies based on the approx-
imation formula (3.6). We consider two cases: The Heston case, where φ = 0 and λ0 = 0,
and the general case, where all the parameters are calibrated. The calibration results are
given in Table 3.1

7We note that in the original paper of Medvedev and Scaillet (2007) P
(
θ̂; σ̂
)

depends also from the

volatility drift. However, in practice, the dataset is filtered to select only options with short maturities
and it cannot be inferred from data.
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Table 3.1: Parameters calibrated on quoted S&P500 option prices, from September 5, 2001 to
January 31, 2012.

Parameter Heston General case

βρ −0.18 (0.00) −3.27 (0.08)
ρ −0.48 (0.00) −0.39 (0.00)
φ 0 1.79 (0.02)
λ0E (∆J) 0 −0.6924 (0.03)
E (∆J) −− −− −0.17 (0.00)
ψ −− −− 1.11 (0.01)

Notes: The square root of the average of squared errors in implied volatilities is equal to 0.0065
for the Heston model and 0.0035 for the General case.

Once the parameters are obtained, we can implement Equation (3.6) to compute everyday
a spot volatility proxy. Note that in Equation (3.6), we take for σ̂ the implied volatility
with shortest time to maturity. Then we conduct the same analysis as in Section 3.2.2.
The results are given in Figure 3.4 for the Heston model and Figure 3.5 for the general
case (notations are the same as in Section 3.2.2).

Figure 3.4: Scaling property of log-volatility increments when based on Heston proxy. In the
second graph H is taken equal to 0.33.
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Figure 3.5: Scaling property of log-volatility increments when based on the general case proxy.
In the second graph H is taken equal to 0.34.
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The results are very similar to those in Section 3.2.2. Here again we can confirm the fact
that volatility is rough. This is obtained even though in the models in which the proxies
are computed volatility is of Brownian type and therefore not rough.

3.4 On the upward bias when estimating the Hurst param-
eter

We explain in this section why using implied volatility measures as spot volatility prox-
ies induces an upward bias in the estimation of the Hurst parameter. We start with a
numerical investigation of this phenomenon.

3.4.1 Monte Carlo study

To understand the extent of the bias when estimating the Hurst parameter, we simulate
option prices in a rough volatility model. Then we compute the Hurst parameter based
on these simulated data.
Let T > 0. We consider the following model without leverage effect over the time interval
[0, T ]:

d logSt = σtdZt, d log σt = ηdWH
t .

Here Zt is a Brownian motion, WH
t a fractional Brownian motion independent of Zt and

η > 0.

Simulation of fractional Brownian motion

We consider a time interval [0, T ] and fix an equidistant partition 0 = t0 < t1 < ... < tn =
T . We first wish to simulate (WH

t1 , . . . ,W
H
tn ). For i, j ∈ {1, ..., n}, we have

E[WH
ti W

H
tj ] =

1

2

(
t2Hi + t2Hj − | ti − tj |2H

)
.

Then we can use the Cholesky decomposition of the covariance matrix Σ of (WH
t1 , . . . ,W

H
tn ):

Σ = LLT , where L = (lij)i,j∈{1,n} is lower-triangular. Thus simulating a sample path of the
fractional Brownian motion at times (ti) can be done generating a vector X = (X1, ..., Xn)
of independent standard Gaussian random variables and setting (WH

t1 , ...,W
H
tn ) = LX.

Simulating option prices under rough volatility

We place ourselves at time ti > 0 and assume past spot volatilities and prices have been
observed at times t1, . . . , ti. We want to compute the price at time ti of an option with
expiration date tk = ti + τ for some τ > 0. The procedure goes as follows:

• We generate M paths of the volatility process on the interval [ti+1, tk]. This is done
simulating (WH

tj )ti+1≤tj≤tk conditional on past information, that is the filtration
generated by (Xt1 , ..., Xti). Using the lower triangular form of L, these new values
for the fractional Brownian motion at times ti+1 ≤ tj ≤ tk can be obtained writing

WH
tj =

i∑

p=1

ljpXp +

j∑

p=i+1

ljpXp.

The i first variables Xp are those used to simulate the fractional Brownian motion
up to time ti, whereas (Xi+1, . . . , Xj) is a sample of independent standard Gaussian
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random variables, independent from past values. Taking the exponential, we get our
spot volatility sample path. We write σm for the m-th volatility trajectory.

• The price at time ti of an at-the-money option with time to maturity τ is obtained
computing

1

M

M∑

m=1

CBS


Sti , τ,

√√√√1

τ

k∑

p=i+1

(σmtp )2


 ,

where CBS(Sti , τ, σ) is the price of an at-the-money option with time to maturity τ
in a Black-Scholes model with volatility σ, zero interest rate, and underlying value
Sti .

• Eventually we invert Black-Scholes formula to obtain the implied volatility.

Results

We consider the following set of parameters: H = 0.04, η = 1.0 and T = 1000 days.
Such parameters are consistent with Bayer et al. (2016); Gatheral et al. (2014). We take
τ ∈ {1, . . . , 20} days and run M = 104 simulations. Figure 3.6 displays the sample path
of the spot volatility together with those of the implied volatilities associated to 5 and 20
days.

Figure 3.6: Sample paths of spot volatility and at-the-money implied volatility for τ = 5 and
τ = 20 days when the underlying dynamics is a rough volatility model with H = 0.04.
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At the visual level, it is already clear that implied volatility trajectories are not as rough
as that of the spot volatility. Furthermore, the longer the time to maturity, the larger the
smoothing effect.
As in Sections 3.2 and 3.3, we now consider Equation (3.1). Based on our simulation, for
several values of q, we plot in Figure 3.7 the logarithm of m(q,∆) against the logarithm
of ∆. This is done in two cases: when m is obtained from spot volatility values and when
m is derived from implied volatility values, with τ = 5 days.

Figure 3.7: Scaling property of log-volatility increments: spot volatility and implied volatility
with τ = 5.
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We see that for a given q, when m(q,∆) is computed from implied volatilities, the points
with coordinates (log(∆), log(m(q,∆))) remain on the same line. However, the slope of
this line is larger than that obtained when m(q,∆) is computed from spot volatilities
(which provides the true underlying H up to small statistical error). Hence there is indeed
a smoothing effect due to the remaining time to maturity of the considered options.
Finally, we give in Figure 3.8 the estimated values of H when using implied volatilities
from the simulation, for different times to maturity.

Figure 3.8: Estimated values of the Hurst parameter using implied volatilities as a function of
time to maturity.

Under our simulation framework, we see that using options with maturity 1 day, we obtain
a quite accurate value for H of 0.06, while the true parameter is equal to 0.04. Taking
longer maturities leads to an increasing bias. With 20 days maturity, one gets an estimated
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Hurst parameter of about 0.27. These results are in line with those in Sections 3.2 and
3.3.

3.4.2 Analytical illustration of the upward bias

In the spirit of Appendix C in Gatheral et al. (2014), we finally want to provide a more
quantitative understanding of the observed upward bias when estimating the Hurst param-
eter from implied volatilities. To do so, we consider a very crude approximation. Indeed
we suppose that the at-the-money implied variance at time t of an option with time to
maturity τ > 0, denoted by v̂τ (t), is given by

v̂τ (t) =
1

τ

∫ t+τ

t
Et[vu]du,

where vu is the spot variance at time u and Et[.] the conditional expectation operator with
respect to information up to time t. Furthermore, we take a simplified rough volatility
model assuming that for u > 0,

vu = v0 + νWH
u ,

for some v0 > 0 and ν > 0. These approximations are actually probably enough to shed
light on the bias phenomenon. Indeed it is due to the effects of the conditional expectation
and integral operators appearing in the implied volatility.
In this simplified setting, our goal is to illustrate the smoothing effect leading to the
upward bias. To do so, we compute a quantity very related to m(2,∆), namely

m̂τ (2,∆) = E[(v̂τ (∆)− v̂τ (0))2].

Indeed, under our assumptions, if the implied volatility were equal to the spot one, this
quantity would be proportional to ∆2H . However, we now show that because of the use of
implied volatility in m̂(2,∆), this relationship no longer holds, particularly for large τ/∆.
We recall the Mandelbrot and Van Ness representation of fractional Brownian motion:

WH
t = cH

(∫ t

0
(t− s)H−1/2dWs +

∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dWs

)
,

where Wt is a two-sided Brownian motion and cH is so that the variance of WH
1 is equal

to 1. We easily have

v̂τ (∆) = v0 +
ν

τ
cH

∫ τ

0

∫ 0

−∞

(
(∆ + u− s)H−1/2 − (−s)H−1/2

)
dWsdu

+
ν

τ
cH

∫ τ

0

∫ ∆

0
(∆ + u− s)H−1/2dWsdu.

Using stochastic Fubini theorem, this gives

v̂τ (∆)− v̂τ (0) =
ν

τ
cH

∫ 0

−∞

∫ τ

0

(
(∆ + u− s)H−1/2 − (u− s)H−1/2

)
dudWs

+
ν

τ
cH

∫ ∆

0

∫ τ

0
(∆ + u− s)H−1/2dudWs.

Hence we easily deduce from Ito isometry that

m̂τ (2,∆) = A (h1(∆, τ) + h2(∆, τ)) ,
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with

A =
c2
Hν

2

(H + 1/2)2
,

h1(∆, τ) =
1

τ2

∫ 0

−∞

(
(∆ + τ − s)H+1/2 − (∆− s)H+1/2 − (τ − s)H+1/2 + (−s)H+1/2

)2
ds,

h2(∆, τ) =
1

τ2

∫ ∆

0

(
(∆ + τ − s)H+1/2 − (∆− s)H+1/2

)2
ds.

We write h1(∆, τ) under the form

1

τ2
∆2H+2

∫ 0

−∞

(
(1 +

τ

∆
− s)H+1/2 − (1− s)H+1/2 − (

τ

∆
− s)H+1/2 + (−s)H+1/2

)2
ds.

Setting θ = τ/∆, we obtain
h1(∆, τ) = ∆2Hf1(θ),

where

f1(θ) =
1

θ2

∫ 0

−∞

(
(1 + θ − s)H+1/2 − (1− s)H+1/2 − (θ − s)H+1/2 + (−s)H+1/2

)2
ds.

Similarly, we have
h2(∆, τ) = ∆2Hf2(θ),

where

f2(θ) =
1

θ2

∫ 1

0

(
(1 + θ − s)H+1/2 − (1− s)H+1/2

)2
ds.

So
m̂τ (2,∆) = A∆2H (f1(θ) + f2(θ)) .

Now remark that

lim
θ→0

f1(θ) = (H + 1/2)2

∫ 0

−∞

(
(1− s)H−1/2 − (−s)H−1/2

)2
ds

and

lim
θ→0

f2(θ) = (H + 1/2)2

∫ 1

0
(1− s)2H−1.

Consequently,

lim
θ→0

(f1(θ) + f2(θ)) = (H + 1/2)2 1

c2
H

.

Thus, when θ is small,
m̂τ (2,∆) ∼ ν2∆2H .

This means that the same scaling relationship as that associated to the spot volatility is
approximately satisfied when considering implied volatilities with small enough times to
maturity. Otherwise, one should add the multiplicative factor

f(θ) =
c2
H

(H + 1/2)2
(f1(θ) + f2(θ))

on the right hand side of the above relationship. This disrupts the scaling property and
implies biased estimations for the Hurst parameter. We draw in Figure 3.9 the graph of
the function f for H = 0.04.
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Figure 3.9: The function f for H = 0.04.
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For fixed τ (as in Section 3.2), the function f is increasing with ∆. Therefore, when doing
a regression analysis of the cloud of points with coordinates (log(∆), log(m̂τ (2,∆))), this
implies an upward bias in the estimation of H due to a higher slope.

3.5 Conclusion

Motivated by the recent strand of literature on rough fractional volatility models, in this
chapter we used two implied-volatility based approximations for the daily spot volatility
and we show that the resulting time-series enjoy two simple regularities. First, that the
distributions of increments of log-volatility are approximatively Gaussian. Second, we
found a mono-fractal scaling relationship, i.e.

E [|log(σ∆)− log(σ0)|q] ∼ ∆q H

where H is of order 0.30 and represents a measure of smoothness of the volatility process.
We justify both numerically and quantitatively that, actually, this value for H is upward
bias. Thus, we show that rough volatility models seem to be indeed compatible with
observed prices of liquid options providing another argument for the use of rough volatility
models for financial applications, especially for option pricing and hedging.



Chapter 4

A discrete-time stochastic
volatility framework for pricing
options with realized measure

The material of this chapter is taken from Bormetti et al. (2016).

4.1 Introduction

Thanks to the availability of high frequency data, the literature has recently introduced
a number of realized measures of daily volatility, (see Andersen and Bollerslev, 1998;
Andersen et al., 2001; Barndorff-Nielsen, 2002; Barndorff-Nielsen and Shephard, 2004;
Andersen et al., 2008; Hansen and Horel, 2009, and references therein). Any of these
Realized Volatility (RV) measures is far more informative about the Conditional Volatility
(CV) of daily returns than the ones obtained only from the daily squared returns. On
one hand, it is well established that incorporating realized measures in volatility models
leads to a large economic and statistical gains (see, for instance Dobrev and Szerszen,
2010; Maheu and McCurdy, 2011; Hansen et al., 2012; Christoffersen et al., 2014, 2015).
On the other hand, on empirical data, realized measures of volatility are still affected by
measurement errors and overnight bias. These two facts have motivated the development of
several strands of literature in which the RV measures are used in a measurement equation
for the latent CV, either within a GARCH framework (see Shephard and Sheppard, 2010;
Hansen et al., 2012), a MEM framework (see Engle and Gallo, 2006; Gallo and Otranto,
2015), or in a stochastic volatility one (see Takahashi et al., 2009; Dobrev and Szerszen,
2010; Koopman and Scharth, 2013). However, to the best of our knowledge, no work
has been devoted to the integration of Stochastic Volatility (SV) models incorporating
RV measures with the literature on analytical option pricing: The work presented in the
present chapter fills this gap.

The goal of the work presented in this chapter is to introduce a new family of flexible
and tractable discrete-time SV models which allows to filter the latent CV process from
both observed returns and RV measures. The contemporaneous use of the two sources
of information reduces measurement errors and allows to recover the higher persistence
of the true CV dynamics. The proposed modelling approach accurately reproduces well-
established stylized fact observed in financial time series, while preserving closed-form
formulas for option prices and closed-form filtering and smoothing for the latent process.

In particular, the proposed model has the two following measurement densities: a

49
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Gaussian density for the daily returns and a Gamma density for the RV measure. The
dynamics of the latent CV is assumed to follow the flexible class of Heterogeneous Autore-
gressive Gamma process with Leverage RV-LHARG(p) recently introduced by Majewski
et al. (2015) for the dynamics of RV.
We then term the general version of the presented model as SV-LHARG(p)1. A par-
simonious instance of the latter is able to capture the widely observed stylized facts of
volatility. It is well known, in fact, that volatility is a clustered and a highly persis-
tent process with a multi-factor structure under both the physical measure P (see Müller
et al., 1997; Barndorff-Nielsen and Shephard, 2001; Bollerslev and Wright, 2001; Calvet
and Fisher, 2004) and the risk-neutral measure Q (see Bates, 2000; Adrian and Rosenberg,
2008; Christoffersen et al., 2008; Li and Zhang, 2010). Moreover, equity and stock-index
volatilities show significant asymmetric response to past returns – an effect commonly
referred to as leverage effect (see Christie, 1982; Glosten et al., 1993; Bollerslev et al.,
2006). In modelling the latter effect, recent literature advocates the need of a multi-factor
leverage structure under both P and Q (see Corsi and Renò, 2012; Scharth and Medeiros,
2009).

The first main contribution of the work presented in this chapter is to develop a fully
analytical option pricing framework for discrete-time SV models featuring multiple com-
ponent structure in both volatility and leverage. The option pricing literature in discrete
time traces back to the seminal affine model of Heston and Nandi (2000). However, the
analytical tractability of discrete-time option pricing is guaranteed only for rather specific
types of models. Noticeable exceptions include GARCH-based (see Christoffersen et al.,
2008, 2013; Bormetti et al., 2015) and realized volatility approaches (see Stentoft, 2008a;
Corsi et al., 2013; Christoffersen et al., 2014; Majewski et al., 2015) later extended to
separately deal with the continuous and discontinuous components of realized measures
(see Christoffersen et al., 2015; Alitab et al., 2015). Moreover, the option pricing lit-
erature has recently acknowledged the need for a flexible pricing kernel incorporating a
variance-dependent risk premium, in addition to the common equity risk premium (see
Christoffersen et al., 2013).

Our general SV-LHARG(p) inherits all the analytical features characterizing the RV-
LHARG(p). In particular, we are able to: (i) derive the recursive formulae to compute
the Moment Generating Function (MGF) under P, (ii) derive the change of measure us-
ing a general and flexible exponentially affine Stochastic Discount Factor (SDF) featuring
a variance risk premium, (iii) characterize analytically the no-arbitrage conditions, (iv)
obtain the recursive relation to compute the MGF under Q, (v) derive an explicit one-to-
one mapping between the parameters of the latent process dynamics under P and Q, and,
finally, (vi) have closed-form option prices.

The class of SV models offers increased flexibility over GARCH-type specifications
since they assume separate innovation processes for the conditional mean and the condi-
tional variance of the observables. Seminal contributions in this area date back to Taylor
(1994) and Taylor (2007). The use of variance-specific disturbances comes to the use of la-
tent variables and this calls for the use of suitable inference tools such as stochastic filtering
and simulation based inference. A Bayesian approach to inference provides a natural way
to include simulation procedures, such as MCMC, in the estimation process. ? propose a
suitable Bayesian inference procedure for Gaussian SV models based on MCMC technique
for posterior approximation. Extensions within the Bayesian univariate SV framework in-
clude the non-Gaussian SV with leverage Jacquier et al. (2004), the Markov-switching SV

1SV-LHARG(p) stands for Stochastic Volatility Heterogeneous Autoregressive model with Leverage
effect.
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So et al. (1998), an the threshold autoregressive SV So et al. (2002) models. The uni-
variate SV model has been successfully extended to the multivariate context in order to
capture dependencies and spillover effects between the volatility of different variables (e.g.
see Harvey et al., 1994). Bayesian multivariate SV models which have Gamma autore-
gressive processes as special univariate case include for example Philipov and Glickman
(2006); Asai and McAleer (2009); Casarin et al. (2016). See also Asai et al. (2006) for a
review. Other extensions of the SV models related to the work presented in this chapter
are Takahashi et al. (2009); Shirota et al. (2014); Bekierman and Gribisch (2016) for the
univariate case and Jin and Maheu (2012) for the multivariate case, which both propose
to augment the state space SV model with an RV equation. In spite of the flexibility of
these classes of models in modelling volatility and forecasting return, they do not admit
either exact filtering or analytical pricing formulae.

The second main contribution of this work is to provide analytical filtering and smooth-
ing for the latent variables of the SV-LHARG(p) in the case of p = 1 and no leverage
components. This basic instance of our new family of SV models, that we denote SV-
ARG constitutes a significant contribution to the nonlinear and non-Gaussian filtering
literature. In fact, it is well known (see, e.g. Harvey (1989)) that only for the classes of
Gaussian and linear state-space and finite-state state-space models analytical filtering and
smoothing recursions are available. For the other classes of models, with some exceptions
(e.g., see Smith and Miller (1986), Shephard (1994), Ferrante and Vidoni (1998), Vidoni
(1999), Deschamps (2011), de Pinho et al. (2016)), filtering and smoothing are obtained
through analytical or numerical approximation techniques (see, e.g. Tanizaki (1996) and
Doucet et al. (2001)). More specifically, our framework extends the results given in Creal
(2015) for non-linear and non-Gaussian models with one measurement equation to the
case of two-measurement equations. Indeed, for the SV-ARG, the analytical filtering and
smoothing recursions allows for evaluating the likelihood exactly and developing effective
inference procedures.

The third contribution of the work is to provide a Bayesian inference approach for
both parameters and latent CV of a SV-LHARG(p) and an efficient MCMC procedure
for posterior approximation. The analytical filtering results for the SV-ARG model allow
us to develop an effective Forward Filtering Backward Sampling FFBS algorithm for the
SV-ARG and an effective Metropolis-Hastings algorithm for a general SV-LHARG(p)
model by using the SV-ARG as an auxiliary model in combination with a blocking sam-
pling strategy introduce by Shephard and Pitt (1997) for state-space models and then
successfully employed in combination with MH for latent variable estimation (e.g., see
So (2006), Casarin et al. (2011) and Billio et al. (2016)). Following the literature on
simulation-based inference for SV models we test the effectiveness of the MCMC algo-
rithm in three different scenarios of low, medium and high persistence (e.g., see Chib
et al. (2002) and Casarin et al. (2009)). Our extensive experimentation shows that the
inefficiency factor and the mean square estimation errors of our MCMC procedure are
in line with the results obtained for other SV models in Chib et al. (2002). Finally,
by applying our fully tractable SV-LHARG model on a large sample of S&P500 index
options, we show its superior option pricing performances in comparison with competi-
tor models taken from both the GARCH and RV option pricing literature. In fact, the
filtering and smoothing procedure in the SV-LHARG leads to an higher persistence of
the latent volatility process, thus allowing the SV-LHARG to over-perform the realized
volatility model RV-LHARG in pricing medium to long maturity options.
The remainder of the chapter proceeds as follows. Section 4.2 introduces the general

SV-LHARG(p). Section 4.3 discusses in detail two nested specifications of the SV-



52 CHAPTER 4. A DISCRETE-TIME STOCHASTIC VOLATILITY MODEL

LHARG(p), the SV-ARG and SV-LHARG. Section 4.4 describes the Bayesian inference
procedure and Section 4.5 shows the effectiveness of the estimation methodology on simu-
lated time series. Finally, Section 4.6 presents a financial application where we benchmark
the performance of the SV-LHARG model with that of competitor models in an option
pricing exercise.

4.2 The model

Here we introduce the SV-LHARG(p) model in a general framework. We present some
properties and discuss some special cases.

4.2.1 Dynamics under physical probability P

We consider a risky asset with price St and geometric log-return rt = log (St+1/St) com-
puted from closing prices. Besides, we indicate with CVt a latent volatility process and
with xit, i ∈ {1, 2}, two vectors of exogenous variables. Let Ft .= σ (rt,RVt,x1,t+1,x2,t+1)
the σ-algebra containing the information about observable quantities (log-return, realized
variance RVt, and exogenous variables) available at time t, and F̃CV

t
.
= σ (Ft−1,CVt). We

assume the following model for the dynamics of the log-returns

rt = µ+ κ
′
1x1t + γCVt +

√
CVtεt, εt

i.i.d.∼ N (0, 1), (4.1)

t = 1, . . . , T , where: (i) µ is the risk-free rate, (ii) κ1 is a n1-dimensional vector of
real parameters, (iii) γ is the market price of risk. N (m,σ2) indicates the univariate
normal distribution with mean m and variance σ2. The covariates vector x1t can be used
to capture a jump component in the volatility process, in order to improve the fitting
properties of the model under the physical measure P and the flexibility under risk neutral
one (see, for instance Alitab et al., 2015). We refer to Equation (4.1) as return equation.
The dynamics in Equation (4.1) has a well-precise justification. In a continuous time
setting the log-returns dynamics is described by the following SDE

dRt = (µ+ γσ2
t ) dt+ σt dWt, (4.2)

with µ and γ as above, Wt a standard Brownian motion and σt a stochastic process
indicating the volatility log-returns. Ané and Geman (2000) showed that the dynamics
described in Equation (4.2) can be interpreted as a Brownian motion (with drift) with a
change of time of the type t→ IVt, where IVt is the integrated variance, i.e.

IVt =

∫ t

0
σ2
s ds.

A well-known result in financial econometrics literature is that the daily log-return has
a marginal distribution which is not consistent with a Gaussian one. Precisely, Clark
(1973) theoretically argues that, for an underlying continuous-time diffusion process, the
standard Gaussian distribution can be recovered by rescaling the log-return by an appro-
priate measure of the market activity, such as the integrated variance. When dealing with
continuous-time diffusion, the integrated variance corresponds to the so called quadratic
variation QVt, defined as

QVt = lim
‖Mn‖→0

n∑

i=1

(
Rti −Rti−1

)2
,
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where ‖Mn‖ is the length of the longest sub-interval of an equally spaced partition of the
interval [0, t]. So, we have that

Rt|QVt ∼ N (µ t+ γQVt,QVt) .

In particular, Equation (4.1) can be recovered by identifying CVt with QVt. We stress
that the dynamics in Equation (4.1) differs from that employed in Corsi et al. (2013);
Majewski et al. (2015) for daily log-returns inasmuch in these works authors consider as
driving process for returns a realized measure of volatility, i.e. the realized measure of
volatility and the true conditional variance are used as synonymous.

A realized measure of volatility contains information on the latent conditional variance
process. Nontheless, on empirical data, they are affected from measurement errors and
overnight bias. In spirit of Hansen and Lunde (2006); Engle and Gallo (2006); Shephard
and Sheppard (2010); Takahashi et al. (2009), we add a second measurement equation to
the model, which relates the RVt to the latent CVt. Precisely, we assume

RVt|CVt
i.d∼ G

(
αe−β

′
2x2t ,CVte

β′
2x2t

)
, (4.3)

where α ∈ R+ is constant, and κ2 is a n2-dimensional vector of real parameters. In the
previous equation, G (k, ϑ) denotes a Gamma distribution with positive shape, k, and
scale parameter, ϑ (see Appendix A.2 for the definition of the Gamma distribution). The
covariates vector x2t could be employed to describe possible structural changes in the
parameter α. A more thorough motivation on Equation (4.3) is given in the following.
The idea of RV goes back to the seminal work of Merton (1980), in which he showed
that the integrated variance of a Brownian motion can be approximated by the sum of
a large number of intra-day squared returns. This idea has been recently formalized and
generalized by Andersen et al. (2001) – using the quadratic variation theory – to the
class of finite mean semi-martingales. Precisely, the sum of intra-day squared returns
converges, as the maximal temporal length of returns goes to zero, to the integrated
volatility of the prices, where the convergence is intended in probability. So, theoretically,
one can build up an estimate of the actual daily volatility without any error. However,
in practice, RV presents some biases. Indeed, for an equally spaced returns series, the
RV over a time interval of one day (i.e., t = 1 day) is defined as (see Andersen et al.,
2001; Barndorff-Nielsen, 2002; Barndorff-Nielsen and Shephard, 2001; Barndorff-Nielsen,
2002; Barndorff-Nielsen and Shephard, 2002; Andersen et al., 2003; Barndorff-Nielsen and
Shephard, 2005, among others)

RV∆n
t =

n−1∑

i=0

r2
t−j∆n

, (4.4)

where ∆n = t
n and rt−j∆ indicates the continuously compounded ∆n−frequency returns,

that is, intra-day returns sampled at time interval ∆n. It is clear from (4.4) that the
realized volatility is constructed only from available intra-day returns, i.e. the volatility
during the close market period is missed from the definition. So far, the literature on
stock market realized volatility has adopted several approaches to deal with this overnight
bias. Corsi et al. (2008) and Wu (2011) simply ignore the overnight period. Becker et al.
(2007), Pooter et al. (2008), Blair et al. (2010) and Bollerslev et al. (2009) calculate the
overnight return by subtracting each day close from the next day open value of the stock
and add this squared return to the summation (4.4). Martens (2002) and Koopman et al.
(2005) calculate realized volatility by ignoring the overnight period, but then scaling the
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resulting value upward so that the volatility estimate covers an entire 24-hour day. In this
work, instead, we want to adjust this overnight bias within the model.

Moreover, the distribution theory for the RV in relation to IV has been derived in
Barndorff-Nielsen (2002). They have shown that the law of the scaled difference between
the realized volatility and the integrated one has a mixed Gaussian limit,

√
n (RVt − IVt)

d→ MN (0, 2IQt) n→∞, (4.5)

where IQt is the integrated quarticity

IQt =

∫ t

0
σ4
s ds.

It is intuitive that RV is less precise when σ is high since the size of the error bounds in
Equation (4.5) is positively related to σ. Equation (4.3) is intended to take charge also
of this bias2. This is better understood if we write down the conditional moments of the
realized variance, which can be readily obtained from the distributional assumption on
RVt. In particular, the first two conditional moments are

EP
[
RVt|F̃CV

t

]
= αCVt, VP

[
RVt|F̃CV

t

]
= α exp

(
κ′2x2t

)
CV2

t .

The conditional mean of RVt suggests that α adjusts the overnight bias of the RV es-
timator. In particular, in our financial application we use data for the S&P 500 index
which is quoted from 9:30 AM to 4:00 PM Eastern time, so we should expect α < 1. The
conditional variance, instead, indicates that the error of the RV estimator is proportional
to the square of the CV, in agreement with the distribution theory for the RV (Barndorff-
Nielsen, 2002).

Finally, we define the dynamics for the CV process. It has been proved in the litera-
ture that a stochastic volatility model does not price correctly options with long or short
maturity and out-of-the-money options. This is primarily due to the fact that a single
factor of volatility running on a single time scale is not sufficient to completely describe
the dynamics of the volatility (see Müller et al., 1997, among others). In particular, two
are the main approaches that have been used so far to account for dependencies among
volatilities at different time-scales. The first one is to decompose the daily volatility into
a short- and a long-run volatility component and to describe them independently (see, for
instance Christoffersen et al., 2008; Fouque and Lorig, 2011). The second approach is to
define factors as an average of past volatilities over different time scales (see, for instance
Corsi, 2009; Majewski et al., 2015). In the present work, we follow the second approach.
Additionally, we adopt a multi-component structure also for the leverage, whose impor-
tance has been stressed by Corsi and Renò (2012). Regarding the functional form, we
follow Majewski et al. (2015) and we assume that the leverage corresponds to a quadratic
function of the conditional variance

lt−1 =
(
εt−1 − λ

√
CVt

)2
λ > 0.

This structure for the leverage is similar to the one in Heston and Nandi (2000). It
captures the fact that large positive idiosyncratic component εt−1 has a smaller im-
pact on CVt that large negative one. Introducing the notation lt−1 = (lt−1, . . . , lt−p)′,

2Actually, RV is altered also by the market micro-structure noise – caused by infrequent trading, bid-ask
spread, and rounding effects. Various methods are available in the literature to mitigate this distortion (see,
for example Hansen and Lunde, 2005; Zhang et al., 2005; Bandi and Russell, 2006, 2008; Barndorff-Nielsen
et al., 2008). In this work, we adopt the Two Scale estimator of Zhang et al. (2005)
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CVt−1 = (CVt−1, . . . ,CVt−p)′, β = (β1, . . . , βp)
′ and α = (α1, . . . , αp)

′, we assume that
CVt follows an autoregressive gamma process (see Gouriéroux and Jasiak, 2006) with
transition distribution:

CVt|F̃CV
t−1, rt−1

d∼ Ḡ(ν, ϕ(CVt−1, lt−1), c). (4.6)

In the previous equation, Ḡ(ν, ϕ(CVt−1, lt−1), c) denotes the non-central gamma distribu-
tion with shape ν > 0, scale c > 0 and non-centrality ϕ(CVt−1, lt−1). The non-centrality
parameter is given by

ϕ(CVt−1, lt−1) =

p∑

i=1

βiCVt−i +

p∑

i=1

αilt−i,

where βi ∈ R+ and αi ∈ R+ are the autoregressive coefficients and leverage coefficients,
respectively. Here, we use an alternative re-parametrization of the non-centrality equation
in the following way

ϕ(CVt−1, lt−1) =

p∑

i=1

φi
c

CVt−i +

p∑

i=1

αilt−i,

where φi = βic
3. Using the Poisson mixture representation for the non-central gamma

distribution (see Gouriéroux and Jasiak, 2006, for more details), we rewrite Equation (4.6)
as

CVt|zt i.d∼ G (ν + zt, c) ,

zt|CVt−1, lt−1
i.d∼ P (ϕ(CVt−1, lt−1) ,

where, in general, Po(v) indicates the Poisson distribution with intensity parameter v.
The latter representation is useful for both the characterization of CVt and the inference
procedure. The conditional mean and variance of the process CVt are given by:

EP
[
CVt|F̃CV

t−1, rt−1

]
= cν + c

(
p∑

i=1

βiCVt−i +

p∑

i=1

αilt−i

)
,

VP
[
CVt|F̃Ht−1, rt−1

]
= c2ν + 2c2

(
p∑

i=1

βiCVt−i +

p∑

i=1

αilt−i

)
.

(4.7)

In particular, the first and second order conditional moments are affine functions of the
lagged values of the volatility process and of the leverage.

Summarising, the SV-LHARG(p) is described by the following distributional repre-
sentation:

rt|F̃CV
t

d∼ N (µ+ κ
′
1x1t + γCVt,CVt),

RVt|F̃CV
t

d∼ G
(
αe−κ

′
2x2t ,CVte

κ
′
2x2t

)
,

CVt|zt d∼ G (ν + zt, c) ,

zt|CVt−1, lt−1
d∼ Po (ϕ(CVt−1, lt−1)) ,

(4.8)

3We use interchangeably the two parametrizations in the reminder of the chapter and we make clear
the precise version used whenever relevant.
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t = 1, . . . , T with initial conditions CV0, . . . ,CVp+1. Because of our empirical appli-
cations, in this section we set n1 = n2 = 1 and impose x1t = 0 and x2t = 1 for all
t ∈ {1, · · · , T}. We present now the properties of SV-LHARG(p)4.

First, thanks to the relations in Equation (4.7), it is possible to compute analyti-
cally the invariant unconditional mean and variance of both the latent and the observable
variable. The following relations hold true:

EP [CV1] =
c (ν +

∑p
i=1 αi)

1− c (
∑p

i=1 βi + λ2
∑p

i=1 αi)
,

VP [CV1] =
c2
(
ν + 2

∑p
i=1 αi + 2

∑p
i=1 α

2
i

)
+ 2c2EP [CV1]

(∑p
i=1 βi + λ2

∑p
i=1 αi + 4λ2

∑p
i=1 α

2
i

)

1− c2
(∑p

i=1 β
2
i + λ4

∑p
i=1 α

2
i

) ,

EP [r1] = µ+ γEP [CV1] ,

VP [r1] = EP [CV1] + γ2VP [CV1] ,

EP [RV1] = αEP [CV1] ,

VP [RV1] =
(
α eκ2 + α2

)
VP [CV1] + α eκ2EP [CV1] .

(4.9)

Second, the SV-LHARG(p) satisfies the affine property. We remind that a stochastic
process is called affine if the logarithm of the characteristic function of its transition
distribution is affine with respect to the initial state. Moreover, the importance of the
affine property in finance has been acknowledged in many studies (see, for instance Duffie
et al., 2000; Darolles et al., 2006; Majewski et al., 2015). Its advantage is manifold. It
allows us to provide an exhaustive probabilistic description of both log-return and CV
dynamics. In particular, we obtain a closed-form expression for the conditional moment
generating function of the SV-LHARG(p) under the physical and risk-neutral measure,
as well as we derive an explicit one-to-one mapping between the parameters of the SV-
LHARG(p) under the measures P and Q.

Proposition 4.2.1. For the SV-LHARG(p) process the following relation holds

EP
[
ez̄rt+1+b̄CVt+1+c̄lt+1+d̄RVt+1 |F̃CV

t , rt, lt

]

= exp

(
A (z̄, χ, c̄) +

p∑

i=1

Bi (z̄, χ, c̄) CVt+1−i +

p∑

i=1

Ci (z̄, χ, c̄) lt+1−i

)
,

where the functions A : R × R × R → R, Bi : R × R × R → R, and Ci : R × R × R → R,
i = 1, . . . , p, are defined as:

A(z̄, χ, c̄) = z̄µ− 1

2
log (1− 2c̄)− νW(x(z̄, χ, c̄), c),

Bi(z̄, χ, c̄) = V(x(z̄, χ, c̄), c)βi,

Ci(z̄, χ, c̄) = V(x(z̄, χ, c̄), c)αi,

with

V(x, c) =
cx

1− cx ,
W(x, c) = log (1− cx) ,

x(z̄, χ, c̄) = z̄γ + χ+
1
2 z̄

2 + λ2c̄− 2c̄z̄λ

1− 2c̄
,

χ = b̄− eκ2 log(1− αe−κ2 d̄).

4The properties of the SV-LHARG(p) largely follow from the results in Majewski et al. (2015) and so
we will refer to the original work of Majewski et al. (2015) for the complete proofs when necessary.
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Proof. See Appendix A.1.

Then, following the procedure in Majewski et al. (2015), Appendix C, one can easily
derive the moment generating function of the SV-LHARG(p) under the physical measure
P.

Proposition 4.2.2. Under P, the MGF for SV-LHARG(p) model has the following
form

ϕP (t, T, z̄) = EP
[
ez̄ rt,T |F̃CV

t , rt, lt

]
= exp

(
āt +

p∑

i=1

b̄t,iCVt+1−i +

p∑

i=1

c̄t,ilt+1−i

)
(4.10)

where

ās = ās+1 + z̄µ− 1

2
log (1− 2c̄s+1,1)− νW (xs+1, c)

b̄s,i =

{
b̄s+1,i+1 + V (xs+1, c)βi for 1 ≤ i ≤ p− 1

V (xs+1, c)βi for i = p

c̄s,i =

{
c̄s+1,i+1 + V (xs+1, c)αi for 1 ≤ i ≤ p− 1

V (xs+1, c)αi for i = p

with

xs+1 = z̄γ + b̄s+1,1 +
1
2 z̄

2 + λ2c̄s+1,1 − 2c̄s+1,1z̄λ

1− 2c̄s+1,1
,

and the terminal conditions read āT = b̄T,i = c̄T,i = 0 for i = 1, · · · , p.

Mimicking the reasoning in Gouriéroux and Jasiak (2006), Appendix F, we also derive the
stationary condition for CVt process.

Proposition 4.2.3. The SV-LHARG(p) in Equation (4.8) is stationary if the following
condition

c

(
p∑

i=1

βi + λ2

p∑

i=1

αi

)
< 1

is satisfied.

Proof. See Appendix A.1.

4.2.2 Dynamics under risk-neutral probability Q

We turn now to analyse the risk-neutral dynamics of the SV-LHARG(p). In order to
preserve the analytical tractability of the model, we risk-neutralize it by employing a
Stochastic Discount Factor (SDF) within the exponential affine family, whose high flex-
ibility allows to incorporate multiple factor-dependent risk premia. This approach has
been extensively used in literature (see Bertholon et al., 2008; Gagliardini et al., 2011;
Corsi et al., 2013; Majewski et al., 2015; Alitab et al., 2015, among others). We specify
the following SDF

Mt,t+1 =
e−ν1CVt+1−ν2rt+1

EP
[
e−ν1CVt+1−ν2rt+1 |F̃CV

t , rt

] , (4.11)

which represents the Esscher transform from the physical log-return density to the risk
neutral one (see, for instance Gerber et al., 1994; Bühlmann et al., 1996). The main advan-
tage of the SDF (4.11) is to clearly identify the sources of risk and explicitly compensate
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them with separated risk premia. Specifically, this form allows for both a conditional
variance premium, ν1, and the standard equity premium, ν2. The latter has to satisfy the
following no-arbitrage condition5.

Proposition 4.2.4. The SV-LHARG(p) model defined by Equation (4.8) with SDF
given by (4.11) satisfies the no-arbitrage condition if and only if

ν2 = γ +
1

2
.

Proof of Proposition 4.2.4. See Majewski et al. (2015), Appendix C.

The MGF under the risk-neutral measure Q for SV-LHARG(p) reads

Proposition 4.2.5. Under Q, the MGF for SV-LHARG(p) model has the following form

ϕQ (t, T, z̄) = exp

(
ā∗t +

p∑

i=1

b̄∗t,iCVt+1−i +

p∑

i=1

c̄∗t,ilt+1−i

)
(4.12)

where

ā∗s = ā∗s+1 + z̄µ− 1

2
log
(
1− 2c̄∗s+1,1

)
− νW

(
x∗s+1, c

)
+ νW

(
y∗s+1, c

)

b̄∗s,i =

{
b̄∗s+1,i+1 +

(
V
(
x∗s+1, c

)
− V

(
y∗s+1, c

))
βi for 1 ≤ i ≤ p− 1(

V
(
x∗s+1, c

)
− V

(
y∗s+1, c

))
βi for i = p

c̄∗s,i =

{
c̄∗s+1,i+1 +

(
V
(
x∗s+1, c

)
− V

(
y∗s+1, c

))
αi for 1 ≤ i ≤ p− 1(

V
(
x∗s+1, c

)
− V

(
y∗s+1, c

))
αi for i = p

with

y∗s+1 = −ν2γ − ν1 +
1

2
ν2

2 ,

and the terminal conditions read ā∗T = b̄∗T,i = c̄∗T,i = 0 for i = 1, · · · , p.

In this work, we derive the price of vanilla options. In this case it is sufficient to know
only the MGF under the risk-neutral measure Q, which has been given in the previous
proposition. Precisely, the comparison of the two MGFs, under P and Q, permits to
derive the one-to-one mapping of the parameters under the historical measure and the
risk-neutral one. This mapping ensures that the risk-neutral log-return dynamics is still
governed by a SV-LHARG(p) process.

Proposition 4.2.6. Under risk-neutral measure Q the conditional variance follows a SV-
LHARG(p) process with parameters

β(∗) =
1

1− cy∗ β, α(∗) =
1

1− cy∗α c∗ =
1

1− cy∗ c,

ν∗ = ν, λ∗ = λ+ γ +
1

2
,

where y∗ = −γ2

2 − ν1 + 1
8 .

Proof of Proposition 4.2.6. See Majewski et al. (2015), Appendix D.
5We remind that the no-arbitrage condition is derived by imposing

EP
[
Mt,t+1|F̃CV

t , rt
]

= 1 for t ∈ Z+

EP
[
Mt,t+1e

rt+1 |F̃CV
t , rt

]
= eµ for t ∈ Z+
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4.3 Particular cases

We now discuss two specifications of SV-LHARG(p) which will be used in our empirical
application. The first one is a SV-LHARG(p) model without leverage and heterogeneous
structure and it will be labelled SV-ARG. The SV-ARG turns out to be crucial in the
estimation phase and it extends the class of non-Gaussian state-space models introduced in
Creal (2015). The second specification is a SV-LHARG model, which is an heterogeneous
autoregressive model for the CV with leverage term. This type of parametrization was
introduced in Majewski et al. (2015) to describe the dynamics of the RV.

Before presenting the models, let us introduce some notations. We define with rs:t =
(rs, . . . , rt)

′ ∈ Rt−s+1, RVs:t = (RVs, . . . ,RVt)
′ ∈ Rt−s+1

+ , CVs:t = (CVs, . . . ,CVt)
′ ∈

Rt−s+1
+ , zs:t = (zs, . . . , zt)

′ ∈ Rt−s+1
+ and xs:t = ((x1s, x2s), . . . , (x1t, x2t))

′ ∈ R(s−p+1)×(n1+n2)

the collections, from time s to time t, of the log-daily returns, the realized variance, the
conditional variance, the state and the exogenous variables respectively. Besides we de-
note with: (i) S (λ, χ, ψ) the Sichel distribution with parameters λ ∈ R, χ ∈ R+, ψ ∈ R+,
(ii) NB(ω, p) the Negative Binomial distribution with parameters ω ∈ R+ and p ∈ (0, 1),
(iv) Gig (λ, χ, ψ) the Generalized Inverse Gaussian distribution with parameters λ ∈ R,
χ ∈ R+, ψ ∈ R+, (v) Kλ (x) the modified Bessel function of the second kind. See Appendix
A.2 for a definition of these distributions and functions.

4.3.1 The SV-ARG model

The SV-ARG is obtained from the SV-LHARG(p) in Equation (4.8) setting p = 1 and

the centrality parameter ϕ (CVt−1, lt−1) = ϕ(CVt−1) = β1CVt−1
.
= β(d)CVt−1, and is

described by the following distributional representation

rt|F̃CV
t

d∼ N (µ+ κ
′
1x1t + γCVt,CVt),

RVt|F̃CV
t

d∼ G
(
αe−κ

′
2x2t ,CVte

κ
′
2x2t

)
,

CVt|zt d∼ G (ν + zt, c) ,

zt|CVt−1
d∼ Po

(
β(d)CVt−1

)
,

(4.13)

t = 1, · · · , T with initial condition CV0. We denote by θ =
(
µ,κ′1, γ, α,κ

′
2, ν, c, β

(d)
)′

the
(6 + n1 + n2)-dimensional vector of parameters.

Following a similar argument as in Creal (2015) we are able to to provide analytical
expressions for the: (i) conditional likelihood, (ii) Markov transition, (iii) initial distribu-
tion of zt, (iv) filtering and the smoothing of the latent process CVt.
For the SV-ARG the following two propositions hold true.

Proposition 4.3.1. For the SV-ARG model described in Equation (4.13) the conditional
likelihood, p(rt,RVt|zt,xt,x2t;θ), the Markov transition, p(zt|zt−1, rt−1,RVt−1,x1t,x2t;θ),
and the initial distribution of zt, p(z1;θ), are respectively given by:

p(rt,RVt|zt,x1t,x2t;θ) = 2η(zt,RVt,x1t,x2t;θ)Kλ(zt)

(√
ψχ(t)

)


√
χ(t)

ψ



λ(zt)

,

p(zt|zt−1, rt−1,RVt−1,x1t,x2t;θ) ∝ S
(
λ(zt−1), χ(t−1)φ

(d)

c
, ψ

c

φ(d)

)
,

p(z1;θ) ∝ NB
(
ν, φ(d)

)
,
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with

η(zt,RV,x1t,x2t;θ) =
exp (γµ1t)√

2π

RVαt−1

Γ(αt)
(
exp

(
κ
′
2x2t

))αt
1

Γ(ν + zt)cν+zt
,

µ1t = rt − µ− κ′1x1t,

αt = αe−κ
′
2x2t ,

λ(zt) = ν + zt − αt − 1/2,

χ(t) = µ2
1t + 2µ2t,

µ2t =
RVt

exp (κ′2x2t)
,

ψ = γ2 +
2

c
.

Proof. See Appendix A.3.

In other words, the variable CVt can be integrated out analytically leaving the auxiliary
variable zt as the only state variable remaining in the model. The original SV-ARG is
thus reformulated as a Markov-switching model with state variable zt and known transition
distribution. Moreover, conditional on the discrete variable zt and the data RVt and rt,
the state variable CVt is independent of itself at other periods. This allows us to compute
the filtered p(CVt|r1:t,RV1:t, z1:t,x1:t;θ) and smoothed p(CVt|r1:T ,RV1:T , z1:T ,x1:T ;θ)
distributions.

Proposition 4.3.2. Let λ(zt), χ
(t) and ψ be the quantities defined in Proposition 4.3.1.

The marginal filtered, p(CVt|r1:t,RV1:t, z1:t,x1:t;θ), and smoothed,
p(CVt|r1:T ,RV1:T , z1:T ,x1:T ;θ) distributions are

p(CVt|r1:t,RV1:t, z1:t,x1:t;θ) ∝ Gig
(
λ(zt), χ

(t), ψ
)
,

p(CVt|r1:T ,RV1:T , z1:T ,x1:T ;θ) ∝ Gig
(
λ(zt) + zt+1, χ

(t), ψ + 2
φ(d)

c

)
,

t = 1, · · · , T .

Proof. See Appendix A.3.

4.3.2 The SV-LHARG model

The SV-LHARG is obtained from the SV-LHARG(p) in Equation (4.8) setting p = 22
and making a parsimonious, but effective choice for the centrality parameter of the non-
central gamma distribution.
Specifically, the non-centrality ϕ (CVt−1, lt−1)

.
= ϕ(H) (CVt−1, lt−1) is given by:

ϕ(H) (CVt−1, lt−1) = β(d)CV
(d)
t−1 +β(w)CV

(w)
t−1 +β(m)CV

(m)
t−1 +α(d)l

(d)
t−1 +α(w)l

(w)
t−1 +α(m)l

(m)
t−1 ,

with

CV
(d)
t−1 = CVt−1,

CV
(w)
t−1 =

1

4

5∑

i=2

CVt−i,

CV
(m)
t−1 =

1

17

22∑

i=6

CVt−i,

l
(d)
t−1 = lt−1,

l
(w)
t−1 =

1

4

5∑

i=2

lt−i,

l
(m)
t−1 =

1

17

22∑

i=6

lt−i.
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In the SV-LHARG, lagged terms of conditional variance and of leverage are collected in
three different non-overlapping factors. A daily factor d (or short-term volatility factor), a
weekly factor w (or medium-term volatility factor), and a monthly factor m (or long-term
volatility factor). This specification permits to capture the desired properties of volatility –
i.e. the memory persistence observed in financial data and the multi-component structure
of volatility and leverage – while preserving parameters parsimony. The SV-LHARG is
so described by the following distributional representation

rt|F̃CV
t

d∼ N (µ+ κ
′
1x1t + γCVt,CVt),

RVt|F̃CV
t

d∼ G
(
αe−κ

′
2x2t ,CVte

κ
′
2x2t

)
,

CVt|zt d∼ G(ν + zt, c),

zt|CVt−1, lt−1
d∼ Po

(
ϕ(H)(CVt−1, lt−1)

)
.

(4.14)

We denote by θ =
(
µ,κ′1, γ, α,κ

′
2, ν, c, β

(d), β(w), β(m), α(d), α(w), α(m), λ
)′

the (12 + n1 +
n2)-dimensional vector of parameters.

4.4 Estimation of models under physical probability mea-
sure

In this section, we present the estimation procedure for the SV-LHARG(p). Because of
our empirical application we consider p = 22, although the methodology presented can be
easily adapted to the SV-LHARG(p) without restrictions.

As commonly happens in latent variable models for time series analysis – such as SV
models – the likelihood function of the SV-LHARG(p) is a high-dimensional integral that
has not a closed-form solution. We thus apply a data-augmentation principle (see Tanner
and Wong, 1987), thus obtaining a so called complete-data likelihood function which in-
cludes also the latent variables. Regarding the initial p values of the SV-LHARG(p), we
follow Vermaak et al. (2004) and Casarin et al. (2012) and consider a pseudo-likelihood
approach by assuming that the observations start at t = p+ 1. We denote with ξ and wt

the two (2+n1)-dimensional vectors ξ = (µ,κ′1, γ)′ and wt = (1,x′1t,CVt)
′. The complete-

data pseudo-likelihood is

L (rp+1:T ,RVp+1:T ,CVp+1:T , zp+1:T |θ,xp+1:T ) =
T∏

t=p+1

1√
2πCVt

exp

(
−1

2

(rt − ξ′wt)
2

CVt

)

·
T∏

t=p+1

1

Γ(αt)(CVt exp(κ
′
2x2t))αt

RVαt−1
t exp

(
− RVt

CVt exp(κ
′
2x2t)

)

·
T∏

t=p+1

1

Γ(ν + zt)cν+zt
CVν+zt−1

t exp

(
−CVt

c

)

·
T∏

t=p+1

1

zt!
(ϕ(CVt−1, lt−1))zt exp (−ϕ(CV, lt−1)) .

In what follows, we describe the algorithm employed to compute the likelihood of the
model, as well as the filtered and smoothed estimates of the latent variables. Specifically,
we used a Bayesian inference. In a Bayesian framework, the first step is the specification
of a prior distribution (i.e. a beliefs about the unknown parameters of the model) π (θ)
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on θ. Let β =
(
β(d), β(w), β(m)

)
and α =

(
α(d), α(w), α(m)

)
, we assume:

π (θ) ∝ IR2+n1 (ξ)I(α)R+IRn2 (κ2)IR+(ν)IR+(β)IR+(α)IR+(λ)IAθ(θ)

where IΘ (θ) is the indicator function which takes value 1 if θ ∈ Θ and 0 otherwise. In
Equation (4.4) Aθ indicates the set of parameters values which satisfies the stationarity
condition in Proposition 4.2.3. At this point, the second step is to write down the param-
eters and latent variables joint posterior distribution, which results to be proportional to
the product between the prior distribution π (θ) and the complete-data pseudo-likelihood
function, i.e.

π (θ,CVp+1:T , zp+1:T |rp+1:T ,RVp+1:T ,xp+1:T )

∝ π(θ)L (rp+1:T ,RVp+1:T ,CVp+1:T , zp+1:T |θ,xp+1:T ) .

In our case, this distribution is not tractable. As commonly happens in the literature,
we rely our Bayesian estimation procedure on a MCMC algorithm and we develop a
Gibbs sampling algorithm to generate random draws from the posterior distribution and
to approximate all posterior quantities of interest (Casella and Robert, 2004). In Appendix
A.4 a background material in MCMC is provided. In a data-augmentation framework, the
estimation of the parameters under the physical measure P involves an extra computational
cost due to the estimation of the latent variables. However, despite this difficulty in the
computation of the likelihood, we use the analytical filtering and smoothing recursions
derived for the SV-ARG model (see Subsection 4.3.1) in order to design an effective
computational method for posterior approximation.

Our proposed MCMC algorithm for the SV-LHARG model iterates over the following
steps:

• 1st step: Initialize θ – the set of parameters – and zp+1:T and CVp+1:T – the latent
variables;

• 2st step: Sample θ given (rp+1:T ,RVp+1:T ,CVp+1:T , zp+1:T );

• 3st step: Sample (zp+1:T ,CVp+1:T ) given (rp+1:T ,RVp+1:T ,θ);

• 4st step: Go to the 2st step.

We now give a more thoroughly description of previous steps. Concerning the 2st step,
we consider the following eight blocks of parameters

{(
µ, γ,κ′1

)
, α,κ′2, ν, c

(
β(d), β(w), β(m)

)
,
(
α(d), α(w), α(m)

)
, λ
}

.
=
{
θ1, α,κ

′
2, ν, c,θ2,θ3, λ

}
,

where, for instance, the notation (µ, γ,κ′1) means that µ, γ and κ′1 are sampled in one
block, conditioned on the remaining blocks. These steps are important for reducing the
serial dependence in the MCMC output. The second step of the Gibbs sampler given
above is blocked further as follows:

• 2.1 Sample θ1 from π (θ1|α,κ2, ν, c,θ2,θ3, λ).

• 2.2 Sample α from π (α|θ1,κ2, ν, c,θ2,θ3, λ).

• 2.3 Sample κ2 from π (κ2|θ1, α, ν, c,θ2,θ3, λ).
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• 2.4 Sample ν from π (ν|θ1, α,κ2, c,θ2,θ3, λ).

• 2.5 Sample c from π (c|θ1, α,κ2, ν,θ2,θ3, λ).

• 2.6 Sample θ2 from π (θ2|θ1, α,κ2, ν, c,θ3, λ).

• 2.7 Sample θ3 from π (θ3|θ1, α,κ2, ν, c,θ2, λ).

• 2.8 Sample λ from π (λ|θ1, α,κ2, ν, c,θ2,θ3).

Details on the full conditional distributions and the sampling methods for the parameters
of the SV-LHARG (resp. SV-ARG) model are reported in Appendix A.6 Section A.6
(resp. A.3 Section A.5).

Then, regarding the 3st step of the Gibbs sampler, we exploit the analytical filtering
and smoothing results in Propositions 4.3.1 and 4.3.2 for the SV-ARG model and we
construct a two-step procedure. Precisely, first we develop a Forward Filtering Backward
Sampling (FFBS) procedure for the SV-ARG model (Frühwirth-Schnatter, 2006). Then,
we develop an effective Metropolis-Hastings algorithm for the general SV-LHARG(p) by
using the SV-ARG as an auxiliary model.
In the first step, we follow the strategy used in Creal (2015) and we reformulate the
original SV-ARG model as a Markov-switching model with state variable zt. The regime
zt is the outcome of an unobserved N -state Markov chain. Assuming zt ∈ {0, . . . , N − 1},
we evaluate the transition probabilities p

(t)
l,k ∝ p(zt = k|zt−1 = l, rt−1,RVt−1,xt;θ) by

using the Sichel distribution given in Proposition 4.3.1, t ∈ {1, . . . , T}. We collect these

probabilities in an (N ×N)-dimensional matrix P (t) whose (l,k)-th entry is equal to p
(t)
l,k.

Note that the rows of the matrix have to sum up to one, thus for N < ∞ the transition

given by the Sichel kernel needs to be normalized to get the p
(t)
l,k. Then, we apply the

Forward-Filtering Backward-Sampling (FFBS) procedure. To do this, we denote with:
(i) ηt the N -dimensional vector of conditional likelihood whose l-th element is given by
p(rt,RVt|zt = l,xt;θ) (see Proposition 4.3.1), and with (ii) ξt|τ the N -dimensional vector
whose l-th element contains the filtered (τ = t), predicted (τ = t− 1) and smoothed (τ >
t) distributions of the latent process zt, p (zt = l|r1:τ ,RV1:τ ,x1:τ ;θ), l ∈ {0, . . . , N − 1}
and t ∈ {1, . . . , T}. The FFBS procedure is based on P (t) and ηt. More precisely,
in order to sample a realization of zp+1:T from p(zp+1:T |rp+1:T ,RVp+1:T ,xp+1:T ;θ), we
first apply the Hamilton filter algorithm forward in time, t from p + 1 to T , to find
p (zt = l|r1:t,RV1:t,x1:t,θ), then the Kim algorithm backward in time, t from T to p+ 1,
to find p (zt = l|r1:T ,RV1:T ,x1:T ,θ) (we refer to Hamilton, 1994; Frühwirth-Schnatter,
2006, and references therein for an exhaustive description of these two algorithms). A
draw of zt is obtained by multinomial sampling with multinomial probabilities ξt|T , t ∈
{1, . . . , T}. Once that the trajectory for the state variable zt has been generated, we
sample a realization of CVp+1:T from the Gig distribution as in Proposition4.3.2, t ∈
{p+ 1, . . . , T}.
In the second step we design a multi-move proposal distribution assuming an auxiliary
SV-ARG. The multi-move proposal works as follows. At the j− th iteration of the Gibbs

sampler, we apply the FFBS to generate z
(∗)
τ :τ+δ and CV

(∗)
τ :τ+δ, τ ∈ {1, . . . , T} and δ ∈ N+

such that τ+δ ≤ T . Then, this proposal is accepted or rejected according to the acceptance

log-probability ρ
(

(z
(j−1)
τ :τ+δ,CV

(j−1)
τ :τ+δ), (z

(∗)
τ :τ+δ,CV

(∗)
τ :τ+δ)

)
(see Appendix A.6, Section A.6

for further details) of the Metropolis-Hastings algorithm. The multi-move proposal allows
for a rapid mixing of the MCMC chain. To improve further the mixing, we use a random
block updating. See Takahashi et al. (2009); Fiorentini et al. (2014); Billio et al. (2016).
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Before moving to our financial application, we perform an intensive simulation exercise
to study both the efficiency and effectiveness of the MCMC algorithm.

4.5 Simulation study

Several methodologies have been proposed in the literature to test the efficiency and
the effectiveness of a MCMC algorithm. In this thesis we use three different measures
to evaluate the mixing of the MCMC chain: (i) The acceptance rate (ACC) of the
Metropolis-Hastings steps, (ii) the inefficiency factor (INEFF) of the estimation of the
posterior mean, (iii) the convergence diagnostic statistics (CD).
The INEFF is defined as

INEFF
.
= 1 + 2

∞∑

k=1

ρ(k)

where ρ(k) is the autocorrelation at lag k for a set of samples of the parameter of interest.
Intuitively, this measure captures the quantity of information that we actually have about
a parameter. Indeed, if there are some correlation between successive samples, then our
sample has not revealed as much information of the posterior distribution of our parameter
as we could have gotten if the samples were independent. We point out that in Geweke
et al. (1991) the inverse of the inefficiency factor INEFF is used.

The ACC is defined in Appendix A.4. The CD (Geweke et al., 1991) compares the
location of the sampled parameter on two different time interval of the chain. If the mean
values of the parameter within these two time intervals are close to each other, then one
can assume that the two samples come from the same distribution. We clarify that, using
the same notation of Geweke et al. (1991), we set p = 10, 000, pA = 0.1 p and pB = 0.5 p.

Besides, we measure the efficiency of the FFBS procedure through the Normalized
Root Mean Square Error (NRMSE) averaged over the iterations of the Gibbs sampler.
Specifically, indicating with M the effective number of the MCMC draws and with T the
length of the sample, the NRMSE is defined as

NRMSE
.
=

1

max(ĈV
(i)

1:T )−min(ĈV
(i)

1:T )

1

M

M∑

i=1

√√√√ 1

T

M∑

t=1

(
ĈV

(i)

t − CVt

)2

. (4.15)

In previous equation, we denote with ĈV
(i)

t the estimate of the latent variable CVt on

the i-th iteration of the Gibbs sampler and with max(ĈV
(i)

1:T ) (resp. min(ĈV
(i)

1:T )) the

maximum (resp. the minimum) value of ĈVt on the i-th iteration of the Gibbs sampler.

Some practical considerations for the implementation of the inference algorithm arise.
Specifically, the initialization of the Hamilton filter algorithm and the choice of the number
of states for the approximating Markov Chain of the process zt. To initialize the Hamilton
filter algorithm, we set ξ̂0|0 = ρ, where ρ = N−1ι (ι being the unit vector of dimension
N). The choice of the number of states, instead, is a model-specific issue. We discuss this
aspect when presenting empirical results.

4.5.1 Experiment design

In our simulation design, data are generated from the following four models:

(i) SV-ARG: This is the model in Equation (4.13).
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(ii) SV-LARG : This is the model in Equation (4.14) with β(w) = β(m) = 0 and α(w) =
α(m) = 0.

(iii) SV-HARG: This is the model in Equation (4.14) with α(d) = α(w) = α(m) = 0.

(iv) SV-LHARG : This is the model in Equation (4.14).

For each model we simulate 50 data-series of 1,000 observations. For each data-series
we run the Gibbs sampler for 100,000 iterations, discard the first 20,000 draws to avoid
dependence from initial conditions, and finally apply a thinning procedure to reduce the
dependence between consecutive draws. We devote particular attention to the SV-ARG
because it is used as proposal for the subsequent models. After setting c = 1, we follow, for
instance, Chib et al. (2002); Casarin et al. (2009) and test the efficiency of the algorithm in
three different scenarios: Low-Persistence (β(d) = 0.3), medium persistence (β(d) = 0.6),
and finally, high persistence (β(d) = 0.9). The true values for the other parameters
used in the simulations are reported in Table 4.1 and 4.2 for the SV-ARG and other
models respectively. For all the models, at each fixed time t, we set x1t = 0 and x2t =

0.21{t<0.5T} + 0.01εt with εt
i.i.d∼ N (0, 1).

4.5.2 Results

Tables 4.1 and 4.3 contain the grand average of the parameter posterior means for the SV-
ARG model along with their standard deviations and efficiency indicators, i.e. INEFF,
CD and ACC. In particular, Table 4.1 indicates the accuracy of the MCMC scheme
is remarkable for all the scenarios (Low Persistence, Medium Persistence, High
Persistence). As regards the efficiency, the magnitudes of INEFF in Table 4.3 – after
applying a thinning procedure – are below ten. Precisely, we use a thinning of 20 for the
low and medium persistence scenario and of 50 for the high persistence one. The
high efficiency is due to the analytical filtering and smoothing recursive formula for the
latent variables (see Proposition 4.3.2). The p-values of the CD statistics indicate that
the null hypothesis that the sub-samples associated with the Markov chain have the same
distribution is accepted. Actually, some of these values are not too high. However, Table
4.3 displays only the average p-values over the last 10,000 iterations using the same values
for pA and pB across all the parameters. Finally, the average ACCs are in line with the
ideal values of [0.25, 0.50] suggested in Roberts et al. (1997), thanks to the careful tuning
of the proposal density in the Metropolis-Hastings steps to the target densities.

Table 4.2 confirms that the accuracy of the estimate of the parameters is remarkable
also for the SV-LARG, SV-HARG and SV-LHARG model. The INEFFs factors in
Table A.4 – after applying a thinning procedure with a factor of 50 – are slightly higher
respect to those of the SV-ARG model, although fully satisfactory. This loss of efficiency
is due to the use of a Metropolis-Hastings step for the latent variables z1:T and CV1:T .
Nevertheless, only the inefficiency measure for the β(m) and α(m) parameters in the SV-
LHARG are above 20 and both the p-values of the CD statistics and the ACCs indicate
convergence of the MCMC chains.

Our extensive experimentation shows that the careful implementation of the Metropolis-
Hastings step for the latent variables is crucial for both the magnitude of the inefficiency
factor and the number of sweeps of the Gibbs sampler necessary to obtain representative
samples from the posterior distributions of interest (see also Chib et al., 2002). As regards
the efficiency of the FFBS procedure, the grand average of the NRMSEs as in Equation
(4.15) is given by 0.1147, 0.0941 and 0.0911 for the low, medium and high persistence
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scenario of the SV-ARG. It is equal to 0.0758, 0.1253 and 0.0782 for the SV-LARG,
SV-HARG and SV-LHARG model respectively6.

6A more extensive description of the diagnostic before and after applying thinning to the MCMC
samples is available in the Appendix A.8.



4.5. SIMULATION STUDY 67

T
a
b
le

4
.1
:

S
u

m
m

ar
y

o
u

tp
u

t
o
f

th
e

p
a
ra

m
et

er
es

ti
m

a
te

s
fo

r
th

e
S

V
-A

R
G

m
o
d

el

L
o
w

P
e
r
si
st

e
n
c
e
M
e
d
iu
m

P
e
r
si
st

e
n
c
e
H
ig
h
P
e
r
si
st

e
n
c
e

θ
T
r
u
e
E
st

im
a
t
e

S
t
d

E
st

im
a
t
e

S
t
d

E
st

im
a
t
e

S
t
d

µ
0.

0
0
.0

01
8

0.
01

18
−

0
.0

05
1

0
.0

17
7
−

0.
00

74
0
.0

35
8

γ
1.

0
1
.0

55
2

0
.0

73
8

1
.0

52
3

0.
07

20
1
.0

68
5

0
.0

78
4

κ
1

0.
0
−

0
.0

22
1

0.
09

06
0
.0

08
1

0
.1

15
7
−

0.
00

62
0
.2

61
0

α
0.

8
0
.8

42
8

0
.0

57
2

0
.8

32
7

0.
05

75
0
.8

47
4

0
.0

64
7

κ
2
−

1.
0
−

0
.9

53
8

0.
12

24
−

0
.9

65
2

0
.1

11
9
−

0.
95

40
0
.1

00
5

ν
0.

8
0
.8

03
3

0
.0

37
1

0
.7

98
1

0.
03

94
0
.8

18
2

0
.0

57
6

c
1.

0
0
.9

65
4

0.
09

38
0
.9

70
6

0
.0

90
9

0.
93

95
0
.0

79
0

β
(d

)
0
.3

11
8

0
.0

59
5

0
.6

37
6

0.
07

46
0
.9

70
2

0
.0

83
9

N
o
t
e
s:

R
ep

o
rt

ed
a
re

th
e

p
a
ra

m
et

er
s

es
ti

m
a
ti

o
n

re
su

lt
s

fo
r

th
re

e
d
iff

er
en

t
sc

en
a
ri

o
s

o
f

th
e
S
V
-A

R
G

m
o
d
el

.
T

h
e

re
su

lt
s

a
re

av
er

a
g
es

ov
er

a
se

t
o
f

5
0

in
d
ep

en
d
en

t
M
C
M
C

ex
p

er
im

en
ts

o
n

5
0

in
d
ep

en
d
en

t
d
a
ta

se
ts

o
f

1
0
0
0

o
b
se

rv
a
ti

o
n
s.

O
n

ea
ch

d
a
ta

se
t

w
e

ra
n

th
e

p
ro

p
o
se

d
M
C
M
C

a
lg

o
ri

th
m

fo
r

1
0
0
0
0
0

it
er

a
ti

o
n
s

a
n
d

th
en

d
is

ca
rd

th
e

fi
rs

t
2
0
0
0
0

it
er

a
ti

o
n
s.

A
th

in
n
in

g
p
ro

ce
d
u
re

w
it

h
a

fa
ct

o
r

o
f

2
0

(l
o
w

a
n
d

m
e
d
iu
m

p
e
r
si
st

e
n
c
e

sc
en

a
ri

o
)

a
n
d

5
0

(h
ig
h

p
e
r
si
st

e
n
c
e

sc
en

a
ri

o
)

is
a
p
p
li
ed

.
W

e
re

p
o
rt

th
e

tr
u
e

va
lu

e
o
f

p
a
ra

m
et

er
s

(s
e
c
o
n
d
c
o
l
u
m
n

)
a
n
d

in
ea

ch
se

tt
in

g
(L

o
w

P
e
r
si
st

e
n
c
e
,
M
e
d
iu
m

P
e
r
si
st

e
n
c
e
,

a
n
d
H
ig
h
P
e
r
si
st

e
n
c
e
)

it
s

m
ea

n
(l
e
f
t
c
o
l
u
m
n

)
a
n
d

st
a
n
d
a
rd

d
ev

ia
ti

o
n

(r
ig
h
t
c
o
l
u
m
n

).
T

h
e

va
lu

e
o
f

th
e

p
a
ra

m
et

er
β

(d
)

is
0
.3

,
0
.6

a
n
d

0
.9

0
in

th
e
l
o
w

,
m
e
d
iu
m

a
n
d
h
ig
h
p
e
r
si
st

e
n
c
e
sc

e
n
a
r
io

re
sp

ec
ti

v
el

y.



68 CHAPTER 4. A DISCRETE-TIME STOCHASTIC VOLATILITY MODEL

T
a
b
le

4
.2
:

S
u

m
m

ary
o
u

tp
u

t
o
f

th
e

p
a
ra

m
eter

estim
a
tes

fo
r

S
V

-L
A

R
G

,
S

V
-H

A
R

G
,

S
V

-L
H

A
R

G
m

o
d

els

S
V
-L

A
R
G

S
V
-H

A
R
G

S
V
-L

H
A
R
G

θ
T
r
u
e
E
st

im
a
t
e

S
t
d

E
st

im
a
t
e

S
t
d

E
st

im
a
t
e

S
t
d

µ
0
.0
−

0.0240
0
.04913

0.3038
0
.13521

−
0.5057

0.3100

γ
1
.0

1
.038

0
.03738

0.8251
0
.05820

1.0034
0
.01492

κ
1

0
.0

0.0080
0
.03506

−
0.0853

0
.06324

0.1259
0
.12642

α
0
.8

0
.8650

0
.03112

0.6929
0
.03996

0.8773
0
.03155

κ
2

−
1
.0
−

0.9358
0
.06742

−
1.2126

0
.09249

0.1199
0
.05230

ν
1
.5

1
.3254

0
.07160

1.5383
0
.1574

1
.6004

0
.26841

c
1
.0

1.0197
0
.04495

1.0763
0
.07340

0.9842
0
.01553

β
(d

)
0.30

0.3108
0
.06183

0.3169
0
.03998

0.2918
0
.0227

β
(w

)
0.20

−
−

−
−

0.2245
0
.03951

0.2295
0
.03177

β
(m

)
0.10

−
−

−
−

0.0601
0
.03648

0
.08389

0
.03516

α
(d

)
0.15

0.1119
0
.03776

−
−

−
−

0.1688
0
.01467

α
(w

)
0.10

−
−

−
−

−
−

−
−

0.0883
0
.02497

α
(m

)
0.05

−
−

−
−

−
−

−
−

0.0449
0
.02579

λ
1
.0

1
.1608

0
.47378

−
−

−
−

1.0007
0
.01850

N
o
t
e
s:

R
ep

o
rted

a
re

th
e

p
a
ra

m
eters

estim
a
tio

n
resu

lts
fo

r
th

e
S
V
-L

A
R
G

,
S
V
-H

A
R
G

a
n
d
S
V
-L

H
A
R
G

m
o
d
el.

T
h
e

resu
lts

a
re

av
era

g
es

ov
er

a
set

o
f

5
0

in
d
ep

en
d
en

t
M
C
M
C

ex
p

erim
en

ts
o
n

5
0

in
d
ep

en
d
en

t
d
a
ta

set
o
f

1
0
0
0

o
b
serva

tio
n
s.

O
n

ea
ch

d
a
ta

set
w

e
ra

n
th

e
p
ro

p
o
sed

M
C
M
C

a
lg

o
rith

m
fo

r
1
0
0
,0

0
0

itera
tio

n
s

a
n
d

th
en

d
isca

rd
th

e
fi
rst

2
0
,0

0
0
.

A
th

in
n
in

g
p
ro

ced
u
re

w
ith

a
fa

cto
r

o
f

5
0

is
a
p
p
lied

.
W

e
rep

o
rt

th
e

tru
e

va
lu

e
o
f

th
e

p
a
ra

m
eter

(seco
n

d
co

lu
m

n
)

a
n
d

fo
r

ea
ch

m
o
d
el

its
m

ea
n

(left
co

lu
m

n
)

a
n
d

sta
n
d
a
rd

d
ev

ia
tio

n
(righ

t
co

lu
m

n
).



4.5. SIMULATION STUDY 69

T
a
b
le

4
.3
:

S
u

m
m

ar
y

ou
tp

u
t

of
th

e
effi

ci
en

cy
in

d
ic

a
to

rs
o
f

p
a
ra

m
et

er
es

ti
m

a
te

s
fo

r
th

e
S

V
-A

R
G

m
o
d

el

P
A
N
E
L

A
P
A
N
E
L

B
P
A
N
E
L

C
L
o
w

P
e
r
si
st

e
n
c
e

M
e
d
iu
m

P
e
r
si
st

e
n
c
e

H
ig
h
P
e
r
si
st

e
n
c
e

θ
IN

E
F
F

(C
D
,
p
)

A
C
C

IN
E
F
F

(C
D
,
p
)

A
C
C

IN
E
F
F

(C
D
,
p
)

A
C
C

µ
1.

16
(0
.3

8,
0
.3

6)
−
−

1
.2

0
(−

0.
98
,0
.1

6)
−
−

1
.2

8
(−

0.
48
,0
.3

1)
−
−

γ
6.

0
3

(−
1
.1

8,
0
.1

2)
−
−

6
.8

9
(1
.0

8,
0.

14
)
−
−

7
.3

0
(1
.5

9,
0.

06
)
−
−

κ
1

1.
13

(−
0
.7

7,
0.

22
)
−
−

1
.1

2
(1
.7

4,
0.

04
)
−
−

1
.2

4
(0
.0

2,
0.

49
)
−
−

α
7.

86
(−

1
.3

4,
0.

09
)

0.
20

7.
88

(1
.2

8,
0.

10
)

0
.2

2
1.

19
(1
.5

8,
0.

06
)

0.
20

κ
2

6.
86

(−
0
.5

6,
0.

29
)

0.
25

6
.6

1
(1
.2

4,
0.

11
)

0
.3

2
6
.2

2
(0
.8

0,
0.

21
)

0
.1

7

ν
1.

68
(0
.9

8,
0
.1

6)
0.

20
1.

39
(1
.7

4,
0.

04
)

0
.2

3
1.

29
(1
.3

6,
0.

08
)

0.
22

c
4.

97
(−

1
.1

1,
0.

13
)
−
−

6
.1

3
(−

0.
58
,0
.2

8)
−
−

7
.0

3
(−

1.
99
,0
.0

3)
−
−

β
(d

)
2.

87
(1
.9

7
,0
.0

4)
−
−

5
.0

7
(0
.5

0,
0.

30
)
−
−

6
.7

8
(1
.4

0,
0.

08
)
−
−

N
o
t
e
s:

R
ep

o
rt

ed
a
re

effi
ci

en
cy

in
d
ic

a
to

rs
o
f

th
e

p
a
ra

m
et

er
s

es
ti

m
a
ti

o
n

re
su

lt
s

fo
r

th
re

e
d
iff

er
en

t
sc

en
a
ri

o
s

o
f

th
e
S
V
-A

R
G

m
o
d
el

.
T

h
e

re
su

lt
s

a
re

av
er

a
g
es

ov
er

a
se

t
o
f

5
0

in
d
ep

en
d
en

t
M
C
M
C

ex
p

er
im

en
ts

o
n

5
0

in
d
ep

en
d
en

t
d
a
ta

se
ts

o
f

1
,0

0
0

o
b
se

rv
a
ti

o
n
s.

O
n

ea
ch

d
a
ta

se
t

w
e

ra
n

th
e

p
ro

p
o
se

d
M
C
M
C

a
lg

o
ri

th
m

fo
r

1
0
0
,0

0
0

it
er

a
ti

o
n
s

a
n
d

th
en

d
is

ca
rd

th
e

fi
rs

t
2
0
,0

0
0

it
er

a
ti

o
n
s.

A
th

in
n
in

g
p
ro

ce
d
u
re

w
it

h
a

fa
ct

o
r

o
f

2
0

(l
o
w

a
n
d
m
e
d
iu
m

p
e
r
si
st

e
n
c
e

sc
en

a
ri

o
)

a
n
d

5
0

(h
ig
h
p
e
r
si
st

e
n
c
e

sc
en

a
ri

o
)

is
a
p
p
li
ed

.
In

ea
ch

P
A
N
E
L

:
in

effi
ci

en
cy

fa
ct

o
r

(I
N
E
F
F

);
co

n
v
er

g
en

ce
d
ia

g
n
o
st

ic
st

a
ti

st
ic

((
C
D
,p
))

;
av

er
a
g
e

a
cc

ep
ta

n
ce

ra
te

o
f

th
e

M
et

ro
p

o
li
s-

H
a
st

in
g
s

a
lg

o
ri

th
m

st
ep

s
(A

C
C

).
T

ru
e

va
lu

es
o
f

th
e

p
a
ra

m
et

er
s

a
re

re
p

o
rt

ed
in

T
a
b
le

4
.1



70 CHAPTER 4. A DISCRETE-TIME STOCHASTIC VOLATILITY MODEL

T
a
b
le

4
.4
:

S
u

m
m

ary
o
u

tp
u

t
o
f

th
e

effi
cien

cy
in

d
ica

to
rs

o
f

p
a
ra

m
eter

estim
a
tes

fo
r

th
e

S
V

-L
A

R
G

,
S

V
-H

A
R

G
,

S
V

-L
H

A
R

G
m

o
d

els.

P
A
N
E
L

A
P
A
N
E
L

B
P
A
N
E
L

C
S
V
-L

A
R
G

S
V
-H

A
R
G

S
V
-L

H
A
R
G

θ
IN

E
F
F

(C
D
,
p
)

A
C
C

IN
E
F
F

(C
D
,
p
)

A
C
C

IN
E
F
F

(C
D
,
p
)

A
C
C

µ
5.7

1
(1.55,0

.06)
−
−

5
.77

(0.35,0.36)
−
−

1
.12

(−
0.65,0

.26)
−
−

γ
1
3
.73

(−
1
.22,0.11)

−
−

16.34
(0
.72,0.23)

−
−

1
.11

(0
.42,0.34)

−
−

κ
1

9.5
2

(−
1
.16,0.12)

−
−

1
.67

(−
1
.17,0

.12)
−
−

1
.06

(0.19,0.42)
−
−

α
1
6
.85

(−
1
.44,0.07)

0.21
17.05

(0
.34,0.37)

0
.28

1.23
(−

1.10
,0
.14)

0.26

κ
2

8.5
8

(1.25,0
.05)

0.16
12.89

(−
0
.01,0

.50)
0
.26

1
.11

(−
0.82,0

.21)
0
.23

ν
7.84

(−
1
.16,0.12)

0.22
13.10

(−
1
.04,0

.15)
0.21

1.29
(−

0.77,0
.22)

0.27

c
1
3
.72

(1.33,0
.09)

−
−

17.44
(−

0
.88,0

.19)
−
−

1
.17

(0.50,0.31)
−
−

β
(d

)
8.4

4
(1
.11,0

.13)
0.19

12.51
(0
.31,0.37)

0
.24

2.67
(0
.99,0.16)

0
.17

β
(w

)
−
−

−
−

−
−

11.90
(1.48,0.07)

0
.24

7
.22

(0.95,0.17)
0
.17

β
(m

)
−
−

−
−

−
−

18.19
(−

1.17,0
.12)

0.24
22.62

(1
.49,0.06)

0.17

α
(d

)
11.9

(1.56,0
.06)

0.30
−
−

−
−

−
−

1
.79

(−
0.65,0

.26)
0
.32

α
(w

)
−
−

−
−

−
−

−
−

−
−

−
−

10.87
(0
.26,0.40)

0
.32

α
(m

)
−
−

−
−

−
−

−
−

−
−

−
−

22.57
(0.94,0.17)

0
.32

λ
10
.1

2
(−

1
.65,0.05)

0.27
−
−

−
−

−
−

1
.02

(0
.16,0.43)

0.29

N
o
t
e
s:

R
ep

o
rted

a
re

effi
cien

cy
in

d
ica

to
rs

o
f

th
e

p
a
ra

m
eters

estim
a
tio

n
resu

lts
fo

r
th

e
S
V
-L

A
R
G

(P
a
n
e
l

A
),

S
V
-H

A
R
G

(P
a
n
e
l

B
)

a
n
d

S
V
-L

H
A
R
G

(P
a
n
e
l
C

)
o
n

a
d
a
ta

set
o
f

1
0
0
0

o
b
serva

tio
n
s.

F
o
r

ea
ch

d
a
ta

set
w

e
ra

n
th

e
p
ro

p
o
sed

M
C
M
C

a
lg

o
rith

m
fo

r
1
0
0
,0

0
0

itera
tio

n
s

a
n
d

th
en

d
isca

rd
th

e
fi
rst

2
0
,0

0
0

itera
tio

n
s.

A
th

in
n
in

g
p
ro

ced
u
re

w
ith

a
fa

cto
r

o
f

5
0

is
a
p
p
lied

.
In

ea
ch

P
A
N
E
L

:
in

effi
cien

cy
fa

cto
r

(IN
E
F
F

);
co

n
v
erg

en
ce

d
ia

g
n
o
stic

sta
tistic

((C
D
,p
));

av
era

g
e

a
ccep

ta
n
ce

ra
te

o
f

th
e

M
etro

p
o
lis-H

a
stin

g
s

a
lg

o
rith

m
step

s
(A

C
C

).
T

ru
e

va
lu

es
o
f

th
e

p
a
ra

m
eters

a
re

rep
o
rted

in
T

a
b
le

4
.2



4.6. FINANCIAL APPLICATION 71

4.6 Financial application

4.6.1 Data description

In this section we present empirical results using daily log-returns and realized variance
for the S&P500 Futures7. We employ the RV computed from tick-by-tick data, from 8-
January-1997 to 8-January-2007. In particular, the RV is constructed in the following way.
Although we acknowledge the importance of the jump contribution in log-returns and RV,
this component is not included in the class of models considered in this thesis. In order to
exclude the effect of jump on log-return and volatility process from the empirical analysis
we employ the same methodology adopted by Corsi et al. (2013); Majewski et al. (2015).
Precisely: (i) we estimate the total variation of the log-price process using the Two-Scales
estimator proposed by Zhang et al. (2005) (with a fast scale of two ticks and a slower one
of 20 ticks). This proxy includes jumps in both returns and volatility; (ii) we purify it
from the jump component in prices by means of the Threshold Bi-power variation method
introduced in Corsi et al. (2010) with a significance level of 99%; (iii) we remove the most
extreme observations, seemingly due to volatility jumps, in the volatility series employing
a threshold-based jumps detection method.

4.6.2 Estimation of the models under physical probability measure

We pick out the FED Fund rate as proxy for the risk-free rate µ in all considered models
and we estimate them following the procedure specified in Section 4.4.

Table 4.5 contains posterior quantities for the physical processes developed above. As
in Majewski et al. (2015), both log-returns and volatilities are on a daily and decimal
basis. The posterior quantities are computed from 10,000 draws of the MCMC algorithm,
collected after an initial burn-in period of 5,000 iterations and after applying a thinning
procedure with a factor of 10. We now analyse the results.

The ν parameters (fourth row) do not have standard errors as they are computed by
variance targeting thus exactly matching the observed sample variance of returns8 (see, for
instance Christoffersen et al., 2015). For all the four models, the risk premium parameter γ
is estimated to be negative and significant. This fact implies that the distribution of returns
are negatively skewed and is in line with the finding of Creal (2015). The estimates of the
overnight factor α (second row) suggest that volatility during the open period amounts
to about 65% of daily volatility. We comment the estimates of the complete model SV-
LHARG. The impact of past lags on the present value of the CV is given by the the partial
autocorrelation coefficients c(β(d) + β(w) + β(m) + (α(d) + α(w) + α(m))λ2). According to
our estimates (considering also the leverage effect), the sensitivity of the conditional mean

of CVt on CVt−1 is c(β(d) + λ2α(d)) = 0.52, whereas the sensitivity on CV
(w)
t−1 and CV

(m)
t−1

is c(β(w) + λ2α(w)) = 0.35 and c(β(m) + λ2α(m)) = 0.06, respectively. All parameters are
statistically significant except the monthly leverage component α(m). The CV coefficients
show a decreasing impact of past lags on the present value of the conditional variance (see
also the estimates of the SV-HARG model). This fact has been already documented in
the realized volatility counterpart version of our model (see Corsi et al., 2013; Majewski
et al., 2015). Actually, observing the estimates for the SV-HARG we note that in this
model the conditional mean of CVt is mainly influenced by CVt−1. We attribute this fact

7Future contracts are chosen because of their high liquidity.
8Actually, assuming γ = 0 in the inference algorithm we match the sample variance of the returns to

the invariant unconditional mean of the process CVt (see Equation4.9).
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to the smoothing procedure of the latent variable CVt. This phenomena is not so evident
when introducing the leverage component. In this case also the idiosyncratic component
εt need to be filtered and so, some noise is introduced. Finally, the last row reports for
each model the value of the risk-premium parameter ν1 fitted on option prices (see next
Section). Finally, the persistence of the CV process under the physical measure P, defined
as c(β(d) + β(w) + β(m) + (α(d) +α(w) +α(m))λ2), is equal to: (i) 0.9596 for the SV-ARG,
(ii) 0.8665 for the SV-LARG, (iii) 0.9666 for the SV-HARG, and (iv) 0.8901 for the
SV-LHARG. In particular, the inclusion of the leverage component into SV-ARG and
SV-HARG has the effect of reducing the persistence of the volatility process. Evidence
of the persistence reduction can be found from comparing the CV smoothed estimates
(red line) and the RV rescaled to the whole sample estimate of the overnight factor (black
line) in Figure 4.1. This fact is also documented in Corsi et al. (2013) and Majewski et al.
(2015). In Appendix A.7 further computational details and investigations are reported.

4.6.3 Option pricing: performance assessment

We perform our analysis on European out-of-the-money (OTM) options on S&P500 index
for each Wednesday from from February 12, 1997 to December 29, 2004 (data are provided
by OptionMetrics). We first apply a standard filter removing options with maturity less
than 10 days or more than 365 days, implied volatility larger than 70% and prices less
than 5 cents (see Barone-Adesi et al., 2008; Corsi et al., 2013; Majewski et al., 2015).
Using K/St as definition of moneyness, we filter out deep OTM options with moneyness
larger than 1.2 for call options and less than 0.8 for put options. This choice yields
a total number of 36,377 observations. For our purposes, put options are identified as
Deep OTM if their moneyness is between 0.8 ≤ m ≤ 0.9 and OTM if 0.9 < m ≤ 0.98.
On the other hand, call options are said to be DOTM if 1.1 < m ≤ 1.2 and OTM if
1.02 < m ≤ 1.1. Options are called at-the-money (ATM) if 0.98 < m ≤ 1.02. As far as
the time to maturity τ is concerned, we identify options as short maturity (τ ≤ 50 days),
short-medium maturity (50 < τ ≤ 90 days), long-medium maturity (90 < τ ≤ 160 days),
and long maturity (τ > 160 days). In order to derive the risk-neutral dynamics, the value
for risk premia parameters (ν1, ν2) vector needs to be identified. According to Proposition
4.2.4, in our framework ν2 is fixed by the no-arbitrage condition, while ν1 remains a free
parameter that needs to be calibrated from option prices. In particular, we follow the
same reasoning of Corsi et al. (2013); Majewski et al. (2015) performing the unconditional
calibration of ν1 such that the model generated and the average market IV for a one-year
time to maturity at-the-money option coincide. In order to compute the option prices
– and associated implied volatilities – we employ the option pricing numerical method
termed COS, introduced by Fang and Oosterlee (2008), and which has been proven to be
efficient. The method is based on Fourier-cosine expansions and is available as long as the
characteristic function of log-returns is known.

To sum up, we proceed pricing options following four steps: (i) estimation under the
physical measure P, (ii) unconditional calibration of the parameter ν1 (iii) mapping of
the parameters of the model estimated under P into the parameters under Q, and (iv)
approximation of option prices by the COS method using the MGF of the model with
parameters under the risk-neutral measure.

Thanks to Proposition 4.2.6, the persistence of the CV process under the risk-neutral
measure Q, defined as c∗

(
β(d,∗) + β(w,∗) + β(m,∗) +

(
α(d,∗) + α(w,∗) + α(m,∗))λ∗2

)
is equal

to: (i)0.9682 for the SV-ARG, (ii)0.8927 for the SV-LARG, (iii) 0.9756 for the SV-
HARG and (iv) 0.9107 for the SV-LHARG.
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Figure 4.1: Output of the smoothed conditional variance estimates for SV-ARG, SV-
LARG, SV-HARG, SV-LHARG models, on S&P 500 Futures, 1997-2007
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Notes: Reported are the average of the smoothed estimates of the CV (red line), and the RV
rescaled to the overnight factor estimates, α̂, (black line). The top panel refers to the SV-ARG
model, the second panel refers to the SV-LARG model, while the third and the bottom panels
refer to the SV-HARG and SV-LHARG, respectively. The parameter estimates are taken from
Table A.2. The sample starts January 8, 1997 and ends January 8, 2007.
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We analyse now the static properties of the option pricing results. In particular, as
customary in the literature (see Renault, 1997; Corsi et al., 2013; Majewski et al., 2015),
we employ the Root Mean Square Error on the percentage IV (RMSEIV) as performance
measure:

RMSEIV =

√√√√
N∑

i=1

(IVmod
i − IVmkt

i )2

N
.

In previous equation, N is the number of options, and IVmod and IVmkt are the model
and the market implied volatility, respectively. In particular, in Table 4.6 we report the
global option pricing performance on S&P500 out-of-the-money options from February 12,
1997 to December 31, 2004, computed with the CV measure estimated from 1997 to 2007.
The first row shows the absolute RMSEIV for the SV-ARG in the range of moneyness
0.8 < m < 1.2 and 0.9 < m < 1.1, while the remaining rows display the SV-ARG relative
performances with respect to the other models in the same ranges of moneyness.

At first glance, the SV-LHARG model outperforms all the others. A closer inspection
shows the following. (i) The SV-LARG improves of about 10% both the SV-ARG and
SV-HARG in the range of moneyness 0.8 < m < 1.2, while in the range 0.9 < m < 1.1
the performance is comparable. This result confirms that the inclusion of the leverage
component is essential for the pricing of OTM-DOTM options. (ii) The price perfor-
mance of SV-ARG and SV-HARG is very similar. This is coherent with the observation
done about the sensitivity of CVt−1 on the first moment of CVt. (ii) The SV-LHARG
outperforms all the other models by about 19% in the range of moneyness 0.9 < m < 1.1
and 24%− 30% in the range 0.8 < m < 1.2.

To gain a deeper understanding of the pricing performance, in Table 4.7 we report
the results in terms of RMSEIV disaggregated for different maturities, τ , and moneyness,
m. Panel B-D confirm that the main advantage deriving from the inclusion of the
leverage component is the ability to capture the volatility smile, especially at the put side
and for small maturities. Panel D confirms the superiority of the SV-LHARG model
with respect all the others. While the performance for the ATM options is comparable,
for OTM and DOTM options the improvement is remarkable. On the put side the
improvement varies from 11% to 28%, while on the call side the improvement is even
more apparent (neglecting the DOTM call option at the shortest maturity), varying from
8% to 39%. This analysis suggests that the various ingredients (heterogeneity, leverage
and persistence) are necessary to accurately price options across different maturities and
moneyness. This is the reason why the SV-LHARG consistently shows the best option
pricing performance among the considered models

In addition to the static analysis just carried out, we here investigate the ability of the
different models to describe the dynamic evolution of the IV surface, focusing our attention
on the dynamics of the short-end of the IV surface. Specifically, Figure 4.2 represents the
level (i.e., the average IV of short-term ATM options) dynamic from February 12, 1997
to December 31, 2004 for the four models analysed. This graphical analysis confirms that
the SV-LHARG produces the most adaptive dynamics to volatility changes among the
four model considered.

We conclude this Section by comparing the option pricing performance of the SV-
LHARG with two models present in the literature.

The first one is the P-LHARG model introduced in Majewski et al. (2015). It comes
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Figure 4.2: Shortest maturity option IV
19

98

19
99

20
00

20
01

20
02

20
03

20
04

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

IM
PL

IE
D

VO
LA

TI
LI

TY

SHORTEST MATURITY OPTION IV FOR SV-ARG MODEL

DATA

SV-ARG

19
98

19
99

20
00

20
01

20
02

20
03

20
04

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

IM
PL

IE
D

VO
LA

TI
LI

TY

SHORTEST MATURITY OPTION IV FOR SV-LHARG MODEL

DATA

SV-LHARG

19
98

19
99

20
00

20
01

20
02

20
03

20
04

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

IM
PL

IE
D

VO
LA

TI
LI

TY

SHORTEST MATURITY OPTION IV FOR SV-HARG MODEL

DATA

SV-HARG

19
98

19
99

20
00

20
01

20
02

20
03

20
04

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

IM
PL

IE
D

VO
LA

TI
LI

TY

SHORTEST MATURITY OPTION IV

DATA

SV-LHARG

Notes: level dynamic from February 12, 1997 to December 31, 2004. level is the average
implied volatility of at-the-money options (with moneyness m = K/St between 0.95 and 1.05,
where K and S are the strike and underlying price, respectively) and maturity at the shortest
available on a given day. In each panel, the black line represents the data, the red line, the model.
The top panel illustrates the performance of the SV-ARG, the second panel refers to the SV-
LARG model, while the third and the bottom panels refer to the SV-HARG and SV-LHARG,
respectively. The parameter estimates are taken from Table A.2.
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Table 4.6: Global option pricing performance on S&P 500 out-of-the-money options from
February 12, 1997 to December 29, 2004.

Model Moneyness

0.9 < m < 1.1 0.8 < m < 1.2

SV-ARG 4.217 5.948

SV-LARG/SV-ARG 1.017 0.908

SV-HARG/SV-ARG 0.987 1.000

SV-LHARG/SV-ARG 0.817 0.755

Notes: Global option pricing performance on S&P 500 out-of-the-money options from February
1, 1997 to December 31, 2004, computed with the CV measure estimated from 1997 to 2007.
We use the parameter estimates from Table A.2. First row: percentage Implied Volatility Root
Mean Squared Error (RMSEIV) of the SV-ARG model for different moneyness range. Second
and subsequent rows: relative RMSEIV of the other models with respect to SV-ARG model as
benchmark.

from the class of the realized volatility models and it is described by the following relations

rt = µ+ γRVt +
√

RVtεt

RVt|Ft−1
d∼ Ḡ (ν, ϕ(RVt−1, lt−1), c) .

where εt
i.i.d.∼ N (0, 1) and Ft = σ(rt,RVt). In particular, the conditional distribution of

rt is taken as that of CVt in the SV-LHARG. Thus, we refer to Sub-section 4.3.2 for an
accurate description of it.

The second one, instead, comes from the class of GARCH-type option pricing models.
We consider the two-component GARCH (in the following, CGARCH) introduced in
Christoffersen et al. (2008) with a variance-dependent pricing kernel. The CGARCH
model is given by:

rt = µ+ γCVt +
√

CVtεt

CVt = qt + bs (CVt−1 − qt−1) + as

((
εt−1 − cs

√
CVt−1

)2
−
(
1 + c2

sqt−1

))
,

qt = ω + ρqt−1 + ϕ
((
ε2t−1 − 1

)
− 2cl

√
CVt−1εt−1

)
,

where εt
i.i.d.∼ N (0, 1), and (CVt−1 − qt−1) and qt represent the short- and long-run per-

sistent components, respectively. Both the P-LHARG and the CGARCH have a SDF
comparable to the one used in our research.

Table 4.8, Panel A, reports the parameter estimates of both the P-LHARG and
the CGARCH along with their standard error (in brackets). Panel B, instead, reports
the relative RMSEIV of SV-LHARG to its direct competitor model, the P-LHARG,
disaggregated for the same maturities and moneyness considered in Table 4.7. While the
performances of the SV-LHARG and P-LHARG in the ATM region are quite similar,
SV-LHARG outperform P-LHARG by about 5−7% in the OTM region at both the put
and call side. The amelioration for short maturities and DOTM options reaches about
10%. For longer maturities and DOTM options the gain is even stronger: we obtain on
average 15% smaller RMSEIV. This improvement is due to the gain in persistence. Pre-
cisely, the persistence under the historical dynamics of the P-LHARG is 0.8383, whereas
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Table 4.7: Option pricing performance on S&P500 out-of-the-money options from Febru-
ary 12, 1997 to December 29, 2004.

Moneyness Maturity
τ ≤ 50 50 < τ ≤ 90 90 ≤ τ ≤ 160 160 < τ

Panel A SV-ARG CV RMSE

0.8 ≤ m ≤ 0.9 13.429 9.001 7.677 6.281

0.9 < m ≤ 0.98 6.156 4.999 4.520 4.389

0.98 ≤ m ≤ 1.02 2.798 3.019 3.131 3.622

1.02 ≤ m ≤ 1.1 3.370 3.171 3.046 3.478

1.1 ≤ m ≤ 1.2 4.249 3.839 3.684 3.687

Panel B SV-LARG/SV-ARG CV RMSE

0.8 ≤ m ≤ 0.9 0.788 0.890 0.939 0.975

0.9 < m ≤ 0.98 0.846 1.008 1.023 1.041

0.98 ≤ m ≤ 1.02 1.258 1.274 1.189 1.111

1.02 ≤ m ≤ 1.1 1.082 1.261 1.244 1.157

1.1 ≤ m ≤ 1.2 0.858 0.902 0.972 1.030

Panel C SV-HARG/SV-ARG CV RMSE

0.8 ≤ m ≤ 0.9 1.001 1.022 1.008 0.988

0.9 < m ≤ 0.98 1.021 1.033 1.016 0.967

0.98 ≤ m ≤ 1.02 0.979 0.984 0.942 0.904

1.02 ≤ m ≤ 1.1 0.935 0.885 0.841 0.858

1.1 ≤ m ≤ 1.2 1.032 1.036 1.000 0.928

Panel D SV-LHARG/SV-ARG CV RMSE

0.8 ≤ m ≤ 0.9 0.727 0.705 0.729 0.793

0.9 < m ≤ 0.98 0.723 0.795 0.832 0.898

0.98 ≤ m ≤ 1.02 0.957 0.965 0.969 0.975

1.02 ≤ m ≤ 1.1 0.828 0.804 0.875 0.921

1.1 ≤ m ≤ 1.2 1.174 0.643 0.618 0.749

Notes: Reported is the option pricing performance on S&P500 out-of-the-money options from
February 12, 1997 to December 29, 2004, computed with the smoothed CV estimated from
January 8, 1997 to January 8, 2007. Panel A: percentage Implied Volatility Root Mean Square
Error (RMSEIV) of the SV-ARG model sorted by moneyness and maturities. Panels B to D:
relative RMSEIV sorted by moneyness and maturity. The parameter estimates are taken from
Table A.2.
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Table 4.8: Model comparison: option pricing performance on S&P500 out-of-the-money
options from February 12, 1997 to December 29, 2004

Panel A
Parameter Estimates

P-LHARG CGARCH

Parameter Estimates Parameter Estimates
γ(∗) 0.9 (1.7) γ 2.9 (1.6)
ν 1.2157 bs 0.670 (6.1e-02)
c 1.2863e-05 (7.3e-08) as 1.49e-06 (6.6e-07)
β(d) 1.81e+04 (1.9e+03) cs 4.2e+02 (1.7e+02)
β(w) 1.49e+04 (2.5e+03) ω 1.27e-06 (1.9e-07)
β(m) 9.73e+03 (2.7e+03) bl 0.9861 (2.1e-03)
α(d) 0.262 (1.3e-02) al 2.45e-06 (2.8e-07)
α(w) 0.193 (5.4e-03) cl 88 (15)
α(m) 0.0417 (3.9e-02)
λ 214 (24)
ν1 -1,175 ν1 -77,418

Option Pricing Performance

Moneyness Maturity
τ ≤ 50 50 < τ ≤ 90 90 ≤ τ ≤ 160 160 < τ

Panel B SV-LHARG/P-LHARG RMSE

0.8 ≤ m ≤ 0.9 0.913 0.857 0.865 0.897

0.9 < m ≤ 0.98 0.937 0.928 0.936 0.956

0.98 ≤ m ≤ 1.02 0.993 1.004 1.005 0.992

1.02 ≤ m ≤ 1.1 0.962 0.918 0.947 0.969

1.1 ≤ m ≤ 1.2 1.166 0.900 0.828 0.893

Notes: Panel A: Maximum likelihood estimates with the relative standard errors of the P-
LHARG and CGARCH. The historical data for the P-LHARG model are given by the daily
RV computed on tick-by-tick data for the S&P500 Futures. The estimation period ranges from
8-January-1997 to 8-January-2007. The parameter ν1 is calibrated on option prices.
(∗) The estimation of the market price of risk γ is performed regressing the centred and normal-
ized log-returns on the RV (see Equation (18) in Corsi et al., 2013). Panel B: relative RMSEIV

sorted by moneyness and maturity. The parameter estimates are taken from Panel a.

that under the risk-neutral one is 0.8742. For the SV-LHARG it is equal to 0.8901 and
0.9107 under P and Q respectively.

Finally, Figure 4.3 depicts the Level dynamics from February 12, 1997 to December
31, 2004 for the P-LHARG (top panel) and the CGARCH (bottom panel) model. The
evolution of the IV level for P-LHARG is quite similar to that of the SV-LHARG
(see 4.2), albeit the former seems to be less reactive especially for low IV. This is because
the (rescaled) RV is a noisier version of the CV, and part of the noise is transmitted to
option prices. The CGARCH, instead, tends to reproduce the empirical level dynamics
with some delay.
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Figure 4.3: Shortest maturity option IV, P-LHARG and CGARCH model
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Notes: level dynamic from February 12, 1997 to December 31, 2004. level is the average
implied volatility of at-the-money options (with moneyness m = K/St between 0.95 and 1.05,
where K and S are the strike and underlying price, respectively) and maturity at the shortest
available on a given day. In each panel, the black line represents the data, the red line, the
model. The top panel illustrates the performance of the P-LHARG, the second panel refers to
the CGARCH model.

4.7 Conclusions

Motivated by the presence of measurement errors in the empirically computed realized
volatility measures we introduce a new family of discrete-time SV option pricing models,
named SV-LHARG(p). The SV-LHARG(p) model is characterized by two measurement
equations (one extracting information from the daily returns and the other from the RV
measure) and a transition equation for the latent states CV described by a general and
flexible Heterogeneous Autoregressive Gamma process with leverage effects.

The SV-LHARG(p) represents the first fully analytical option pricing framework for
discrete-time SV models incorporating realized measures of volatility. Indeed, it inherits
several analytical features from Majewski et al. (2015). Specifically: (i) the recursive
formula for the computation of the conditional MGF under P, (ii) the explicit change of
measure using a general and flexible exponentially affine SDF, (iii) the characterization of
the no-arbitrage condition in terms of risk premia, (iv) the explicit one-to-one mapping
between the parameters of the latent process under P and Q, (v) the recursive formula
for the computation of the conditional MGF under Q. In addition, building on Creal
(2015), we derive the analytical filtering and smoothing for the basic specification of the
SV-LHARG(p) with p = 1 and no leverage effect, the so called SV-ARG. Then, we
employ this novel results to design an effective Bayesian inference procedure for both the
parameters and the latent factor of the general model SV-LHARG(p) by sampling the
analytically tractable SV-ARG through a M-H step. The key feature of the Stochastic
Volatility model is that, thanks to the filtering and smoothing procedures, the dynamics
of the estimated CV is less noisy and more persistent than the dynamics of the Realized
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Volatility measure.

The estimation methodology is extensively tested and validated on simulated data and
then applied to daily returns data on the S&P 500 Future index. Finally, in an option
pricing exercise, we benchmark the performance of our SV-LHARG model with that of
competitor models taken from both the GARCH and RV option pricing literature. The
proposed model tracks the dynamics of the short-end of the implied volatility surface
with remarkable realism. As already documented in Corsi et al. (2013) the CGARCH
tends to reproduce the empirical level with some delay (especially during periods of high
volatility), whereas the SV model reacts more dynamically to changes in the volatility
level. The higher persistence of the latent volatility in the SV-LHARG model is the
crucial feature which allows to over-perform the P-LHARG model when pricing medium
to long maturity options.

A Appendix

A.1 Proof of the results in Section 4.2

Proof of Proposition 4.2.1. First, we need to show that the one-step ahead conditional mo-
ment generating function is exponential-affine in the state variables (returns, conditional
variance and leverage).

EP
[
ez̄rt+1+b̄CVt+1+c̄lt+1+d̄RVt+1 |F̃CV

t , rt, lt

]

= EP
[
ez̄rt+1+b̄CVt+1+c̄lt+1EP

[
ed̄RVt+1 |rt+1, ht+1, lt+1

]
|F̃CV
t , rt, lt

]

= EP
[
ez̄rt+1+(b̄−eκ2 log(1−αe−κ2 d̄))CVt+1+c̄lt+1 |F̃CV

t , rt, lt

]
.

Then, the explicit form of the scalar functions A, Bi and Ci follows from Appendix C
in Majewski et al. (2015).

Proof of Proposition 4.2.3. Let us define the function x : R× R× R→ R as

x(z̄, b̄, c̄) = z̄λ+ b̄+
1
2 z̄

2 + λ2c̄− 2c̄z̄λ

1− 2c̄
,

and x1 = x(0, u1, v1). Reasoning as in Appendix F of Gouriéroux and Jasiak (2006), we
have to find the conditions which ensure that the solution of the 2p-dimensional recursive
system:

u1,t =
cx1,t−1

1− cx1,t−1
β1 + u2,t−1, v1,t =

cx1,t−1

1− cx1,t−1
α1 + v2,t−1

...
...

up−1,t =
cx1,t−1

1− cx1,t−1
βp−1 + up,t−1, vp−1,t =

cx1,t−1

1− cx1,t−1
αp−1 + vp,t−1

up,t =
cx1,t−1

1− cx1,t−1
βp, vp,t =

cx1,t−1

1− cx1,t−1
αp

tends to (0, . . . , 0)′ when t tends to infinity, for any non-negative initial values (u1,0, . . . , up,0)′
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and (v1,0, . . . , vp,0)′. System above is equivalent to the following one

u1,t =
β1

βp
up,t + u2,t−1, v1,t =

α1

αp
vp,t + v2,t−1

...
...

up−1,t =
βp−1

βp
up,t + up,t−1, vp−1,t =

αp−1

αp
vp,t + vp,t−1

up,t =
βp

1− cx1,t−1
− βp, vp,t =

αp
1− cx1,t−1

− αp.

From the latter, it follows that ui,t and vj,t take non negative values for all i, j ∈ {1, . . . , p}
and that up,t and vp,t are always larger than −βp and −αp, respectively. Moreover, the
sequence (up,t) satisfies the non-linear recursive equation:

up,t =
βp

1− c
βp

(∑p
i=1

up,t−iβi + λ2βp

∑p

j=1
vp,t−jαj

1−2
∑p

j=1
vp,t−jαj

) − βp. (A.1)

In light of the relation vp,tβp = up,tαp, all t ≥ 0, we rewrite previous Equation (A.1) as
follows:

up,t =
βp

1− c
βp

(∑p
i=1

up,t−iβi + λ2

∑p

j=1
up,t−jαj

1− 2
βp

∑p

j=1
up,t−jαj

) − βp.

Thus, a possible limiting value l for the rescaled sequence (up,tβ
−1
p ) satisfies:

l =
1

1− lc
(∑p

i=1
βi + λ2

∑p

j=1
aj

1−2l
∑
j=1pαj

) − 1
.
=

1

1− lc
(
‖β‖+ λ2 ‖α‖

1−2l‖α‖

) − 1.

Therefore, the admissible values are l = 0 and l = 1
c(‖β‖+λ2‖α)

− 1.

If c(‖β‖ + γ2‖α‖) =
∑p

j=1 φj + cλ2
∑p

j=1 αj < 1 the rescaled sequence (up,tβ
−1
p ) takes

values in the compact set [−1, 0] and the unique solution is l = 0. Given the relation
vp,t = up,tαp/βp, the same conclusion holds for vp,t.

A.2 Definition of distributions used in this chapter

Generalized Inverse Gaussian distribution

A Generalized Inverse Gaussian (GIG) random variable X
d∼ Gig(λ, χ, ψ) has probability

distribution function (p.d.f) given by:

p(x|λ, χ, ψ) =

(√
ψ

χ

)λ
1

2Kλ(
√
χψ)

xλ−1 exp

(
−1

2

(
χ

1

x
+ ψx

))
,

The GIG distribution has the Gamma distribution as special cases. More specifically, the
Gamma distribution G (k, ϑ) with shape k > 0 and scale ϑ > 0 can be obtained setting
λ = k, ψ = 2/ϑ ad χ = 0 in a Gig(λ, χ, ψ). The non-central moments of order δ of a GIG

distribution are defined as

E
(
Xδ
)

=

(√
χ

ψ

)δ Kλ+δ(
√
χψ)

Kλ(
√
χψ)

.
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Figure A.1: Generalized Inverse Gaussian distribution
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Notes: reported is the probability density function (p.d.f) of a Generalized Inverse Gaussian
(GIG) random variable for three different parameter setting (λ, χ, ψ).

Figure A.1 represents the p.d.f of a GIG random variable for three different parameters
setting.

Sichel and Negative Binomial distribution

A Sichel (S) random variable Z
d∼ S(λ, χ, ψ) is obtained by taking a Poisson (Po) random

variable Z
d∼ Po(X) and allowing its mean X to be a random draw from a GIG (Gig)

distribution (see Subsection A.2 above), X
d∼ Gig(λ, χ, ψ). A Sichel random variable has

mass function given by:

p(z|λ, χ, ψ) =

(√
ψ

ψ + 2

)λ(
χ

ψ + 2

)z 1

z!

Kλ+z

(√
χ(ψ + 2)

)

Kλ(
√
χψ)

, z ≥ 0.

The first two moments of a Sichel random variable are defined as:

E (Z) =

(√
χ

ψ

)
Kλ+1(

√
χψ)

Kλ(
√
χψ)

,

E
(
Z2
)

=

(√
χ

ψ

)
Kλ+1(

√
χψ)

Kλ(
√
χψ)

+

(
χ

ψ

)
Kλ+2(

√
χψ)

Kλ(
√
χψ)

.

Figure A.2 represents the p.d.f. function of a Sichel random variable for three different
parameters setting.

A negative binomial (NB) random variable K
d∼ NB(ω, p) is a special case of a

S (λ, χ, ψ) random variable as χ tends to zero. In particular, A NB has mass function
given by:

p(k|ω, p) =
Γ(ω + k)

Γ(ω)Γ(k + 1)
pk(1− p)ω.

Computation of the modified Bessel function of the second kind

In order to calculate the (logarithm of the) modified Bessel function of the second kind
log(Kν+zt (x)) in a computationally stable manner, we implement the same algorithm



84 CHAPTER 4. A DISCRETE-TIME STOCHASTIC VOLATILITY MODEL

Figure A.2: Sichel distribution
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Notes: reported is the probability density function (p.d.f) of a Sichel random variable for three
different parameter setting (λ, χ, ψ).

as in Creal (2015). More precisely, we first define the ratio of Bessel functions Rν+j as

Rν+j =
Kν+j(x)
Kν+j−1(x) , then we start by evaluating Kν+j (x) at the stable values j = 0 and

j = 1 and by computing Rν+1 (x). Finally, we apply the following recursion:

Rν+j(x) =
1

Rν+j−1(x)
+

2

x
(ν + j − 1),

log (Kν+j(x)) = log (Rν+j(x)) + log (Kν+j−1(x)) ,

j = 2, . . . , zt, which gives Kν+zt for any zt.

A.3 Proof of the results in Section 4.3

Proof of Proposition 4.3.1. First, we solve the following integrals:

p(rt,RVt|zt,x1t,x2t;θ) =

∫ ∞

0

p(rt,RVt|CVt,x1t,x2t;θ)p(CVt|zt;θ) dCVt (A.2)

p(zt|zt−1, rt−1,RVt−1,x1t,x2t;θ) =

∫ ∞

0

p(zt|CVt−1;θ)p(CVt−1|rt−1,RVt−1,x1t,x2t;θ) dCVt−1(A.3)

p(z1;θ) =

∫ ∞

0

p(z1|h0;θ)p(h0;θ)dh0, (A.4)

and then we compute the conditional likelihood, the Markov transition and the initial
distribution of z1, respectively.
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Define the following quantities:

µ1t = rt − µ− β′1x1t,

µ2t =
RVt

exp (κ′2x2t)
,

αt = α exp
(
−κ′2x2t

)
,

η(zt,RV,x1t,x2t;θ) =
exp (γµ1t)√

2π

RVαt−1

Γ(αt)
(
exp

(
κ

′
2x2t

))αt
c−ν−zt

Γ(ν + zt)
,

λ(zt) = ν + zt − αt − 1/2,

χ(t) = µ2
1t + 2µ2t,

ψ = γ2 +
2

c
,

then, the conditional likelihood is

p(rt,RVt|zt,x1t,x2t;θ) =

∫ ∞

0
p(rt,RVt,CVt|zt,x1t,x2t;θ) dCVt =

=

∫ ∞

0
p(rt|CVt,x1t;θ)p(RVt|CVt,x2t;θ)p(CVt|zt) dCVt

=

∫ ∞

0
(2πCVt)

−1/2 exp

(
−1

2

((
rt − µ− κ

′
1x1t

)2 1

CVt
+ γ2CVt

))
exp

(
γ
(
rt − µ− κ′1x1t

))

· RVαt−1
t

Γ(αt) (exp (β′2x2t) CVt)
αt exp

(
− yt

exp(κ
′
2x2t)

1

CVt

)

· c−ν−zt

Γ(ν + zt)
CVν+zt−1

t exp

(
−CVt

c

)
dCVt

.
=

∫ ∞

0
(2π)−1/2 CV

−1/2
t exp

(
−1

2

(
µ2

1t

1

CVt
+ γ2CVt

))
exp (γµ1t)

· yαt−1
t

Γ(αt) (exp (β′2x2t))
αt CV−αtt exp

(
−µ2t

1

CVt

)

· c−ν−zt

Γ(ν + zt)
CVν+zt−1

t exp

(
−CVt

c

)
dCVt

=
exp (γµ1t)√

2π

RVαt−1
t

Γ(αt) (exp (κ′2x2t))
αt

c−ν−zt

Γ(ν + zt)

·
∫ ∞

0
CV

(ν+zt−αt−1/2)−1
t exp

(
−1

2

((
µ2

1t + 2µ2t

) 1

CVt
+

(
γ2 +

2

c

)
CVt

))
dCVt

.
= η (zt,RVt,x1t,x2t,θ)

∫ ∞

0
CV

λ(zt)−1
t exp

(
−1

2

((
µ2

1t + 2µ2t

) 1

CVt
+ ψCVt

))
dCVt

= 2η (zt,RVt,x1t,x2t,θ)Kλ(zt)

(√
ψχ(t)

)

√
χ(t)

ψ



λ(zt)

.

The last equality follows from the definition of the kernel of the Generalized Inverse Gaus-
sian distribution in Equation (A.2) with parameters λ(zt), χ

(t) and ψ.
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Markov transition

p(zt|zt−1, rt−1,RVt−1,x1t,x2t;θ) =

∫ ∞

0
p(zt,CVt−1|zt−1, rt−1,RVt−1,x1t,x2t;θ) dCVt−1 =

=

∫ ∞

0
p(zt|CVt−1)p(CVt−1|zt−1, rt−1,RVt−1,x1t,x2t;θ) dCVt−1 =

=

∫ ∞

0
p(zt|CVt−1)

p(CVt−1, zt−1, rt−1,RVt−1,x1t,x2t;θ)

p(zt−1, rt−1,RVt−1,x1t,x2t;θ)
dCVt−1 =

∝
∫ ∞

0
p(zt|CVt−1)p(CVt−1, zt−1, rt−1,RVt−1,x1t,x2t;θ) dCVt−1

∝
∫ ∞

0
p(zt|CVt−1;θ)p(rt−1|CVt−1,x1t−1;θ)p(RVt−1|CVt−1,x2t−1;θ)p(CVt−1|zt−1;θ) dCVt−1 =

∝
∫ ∞

0

1

zt!

(
φ(d)

c
CVt−1

)zt
exp

(
−φ

(d)

c
CVt−1

)
p(rt−1|CVt−1,x1t−1,θ)

· p(RVt−1|CVt−1,x2t−1,θ)p(CVt−1|zt−1;θ) dCVt−1.

(A.5)

Similarly to the computation of the conditional likelihood above we have:

p(rt−1|CVt−1,x1t−1,θ)p(RVt−1|CVt−1,x2t−1,θ)p(CVt−1|zt−1;θ) =

= CV
(ν+zt−1−αt−1/2)−1
t−1 exp

(
−1

2

((
(rt−1 − µ− κ

′
1x1t−1)2

+2
RVt−1

exp
(
κ
′
2x2t−1

)
)

1

CVt−1
+

(
γ2 +

2

c

)
CVt−1

))
=

= CV
λ(zt−1)−1
t−1 exp

(
−1

2

((
µ2

1t + 2µ2t

) 1

CVt−1
+ ψCVt−1

))
.
=

.
= CV

λ(zt−1)−1
t−1 exp

(
−1

2

(
χ(t−1) 1

CVt−1
+ ψCVt−1

))
.

Equation (A.5) becomes:
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p(zt|zt−1, rt−1,RVt−1,x1t,x2t,θ) ∝

∝
∫ ∞

0

1

zt!

(
φ(d)

c
CVt−1

)zt
exp

(
−φ

(d)

c
CVt−1

)
CV

λ(zt−1)−1
t−1

· exp

(
−1

2

(
χ(t−1) 1

CVt−1
+ ψCVt−1

))
dCVt−1 =

=
1

zt!

(
φ(d)

c

)zt ∫ ∞

0
CV

(λ(zt−1)+zt)−1
t−1 exp

(
−1

2

(
χ(t−1) 1

CVt−1

+

(
ψ + 2

φ(d)

c

)
CVt−1

))
dCVt−1

=
1

zt!

(
φ(d)

c

)zt
2Kλ(zt−1)+zt



√
χ(t−1)

(
ψ + 2

φ(d)

c

)

(√

χ(t−1)
(
ψ + 2φ(d)/c

)
)λ(zt−1)+zt

∝ 1

zt!

(√
(φ(d))2

c2

χ(t−1)

(ψ + 2φ(d)/c)

)zt (√
χ(t−1)

(ψ + 2φ(d)/c)

)λ(zt−1)

Kλ(zt−1)+zt



√
χ(t−1)

(
ψ + 2

φ(d)

c

)
 .

(A.6)

If we define

χ̄(t−1) .
= χ(t−1)φ

(d)

c
,

ψ̄
.
= ψ

c

φ(d)
,

then the Markov transition can be re-written as:

p(zt|zt−1, rt−1,RVt−1,x1t,x2t,θ) ∝

∝ 1

zt!



√
χ̄(t−1)

ψ̄ + 2



zt (√

ψ̄(
ψ̄ + 2

)
)λ(zt−1)

Kλ(zt−1)+zt

(√
χ̄(t−1)

(
ψ̄ + 2

))

∝ S
(
λ(zt−1), χ̄(t−1), ψ̄

)

∝ S
(
ν + zt−1 − αt − 1/2, χ(t−1)φ

(d)

c
, ψ

c

φ(d)

)
.

where S
(
λ(zt−1), χ̄(t−1), ψ̄

)
is the Sichel distribution with parameters λ(zt−1), χ̄(t−1) and

ψ̄.
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Initial distribution

p(z1;θ) =

∫ ∞

0
p(z1,CVt−1;θ)dCVt−1

=

∫ ∞

0
p(z1|CVt−1;θ)p(CVt−1;θ)dCVt−1

=

∫ ∞

0

1

z1!

(
φ(d)

c
CVt−1

)z1
exp

(
−φ

(d)

c
CVt−1

)
1

Γ(ν)
CVν−1

t−1

(
1− φ(d)

c

)ν

· exp

(
−CVt−1

(
1− φ(d)

c

))
dCVt−1

=
1

z1!

(
φ(d)

c

)z1 (
1− φ(d)

c

)ν
1

Γ(ν)

∫ ∞

0
CVν+z1−1

t−1 exp

(
−CVt−1

c

)
dCVt−1

=
1

z1!

(
φ(d)

c

)z1 (
1− φ(d)

c

)ν
Γ(ν + z1)

Γ(ν)
cν+z1

=
1

z1!

(
φ(d)

)z1
(1− φ(d))ν

Γ(ν + z1)

Γ(ν)Γ(z1 + 1)

∝ NB
(
ν, φ(d)

)
,

where NB
(
ν, φ(d)

)
is the Negative Binomial distribution with parameters ν and φ(d).

Proof of Proposition 4.3.2. Marginal filtered distribution

p(CVt|r1:t,RV1:t, z1:t,xt;θ) ∝
∝ p(rt|CVt,x1t;θ)p(RVt|CVt,x2t;θ)p(CVt|zt;θ) ∝

∝ CV
−1/2
t exp

(
−1

2

((
rt − µ− κ

′
1x1t

)2 1

CVt
+ γ2CVt

))
CV−αtt

· exp

(
− RVt

exp(κ
′
2x2t)

1

CVt

)
CVν+zt−1

t exp

(
−CVt

c

)

= CV
(ν+zt−αt−1/2)−1
t exp

(
−1

2

((
(rt − µ− κ

′
1x1t)

2 + 2
RVt

exp
(
κ
′
2x2t

)
)

1

CVt

+

(
γ2 +

2

c

)
CVt

))
dCVt

= CV
λ(zt)−1
t exp

(
−1

2

((
µ2

1t + 2µ2t

) 1

CVt
+ ψCVt

))

= CV
λ(zt)−1
t exp

(
−1

2

(
χ(t) 1

CVt
+ ψCVt

))

∝ Gig(λ(zt), χ
(t), ψ).
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Marginal smoothed distribution

p(CVt|r1:T ,RV1:T , z1:T ,x1:T ;θ) ∝
∝ p(CVt|r1:t,RV1:t, z1:t,x1:t;θ)p(zt+1|CVt,θ) ∝

∝ CV
λ(zt)−1
t exp

(
−1

2

(
χ(t) 1

CVt
+ ψCVt

))
CV

zt+1

t exp

(
−φ

(d)

c
CVt

)
=

= CV
λ(zt)+zt+1−1
t exp

(
−1

2

(
χ(t) 1

CVt
+

(
ψ + 2

φ(d)

c

)
CVt

))

∝ Gig
(
λ(zt) + zt+1, χ

(t), ψ + 2
φ(d)

c

)
.

A.4 Background material in Markov Chain Monte Carlo

Essentials for MCMC

Most of the material in this section is from Casella and Robert (2004), Chapters 6, 7 and
10. In what follows, we give a brief introduction to Markov Chain Monte Carlo (MCMC)
methods and formally define the Metropolis-Hastings algorithm.

Broadly speaking, a Markov Chain Monte Carlo (MCMC) method for the simulation of
a distribution π, defined on a state space X , is any method producing an ergodic Markov
chain, X1, X2, . . . , Xn, . . . whose stationary probability measure is π. Precisely, let

I = Eπ [h(x)] =

∫

X
h(x)dπ(x),

then, the ergodic theorem guarantees the almost sure convergence to the quantity I of the
empirical average

ÎN =
1

N

N∑

n=1

h(Xn). (A.7)

Thus, a sequence produced by a MCMC algorithm can be employed just as an i.i.d. sample.

In the set-up of MCMC algorithms, Markov chains are defined by a transition kernel.
Precisely, the following definition holds true, where we indicate with B (X ) the Borel sets
of X .

Definition A.1. A transition kernel is a function K defined on X × B (X ) such that

• ∀x ∈ X , K (x, ·) is a probability measure;

• ∀A ∈ B (X ), K (·, A) is measurable.

Once that a transition kernel is given, the definition of a Markov Chain is readily
obtained.

Definition A.2. Given a transition kernel K, a sequence X0, X1, · · · , Xn, · · · of random
variables is a Markov chain if, for any t, the conditional distribution of Xt given Xt−1 =
xt−1, Xt−2 = xt−2, · · · , X0 = x0 is the same as the distribution of Xt given xt−1. Formally,

P (Xk+1 ∈ A|X0 = x0, X1 = x1, . . . , Xk = xk) = P (Xk+1 ∈ A|Xk = xk) =

∫

A
K(xk, dx).
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Moreover a chain is time homogeneous if the distribution of (Xt1 , · · · , Xtk) given X0 = x0

is the same as the distribution of (Xt1−t0 , Xt2−t0 , · · · , Xtk−t0) given X0 = x0 for every k
and every (k + 1)-uplet t0 ≤ t1 ≤ · · · ≤ tk.

It turns out that the chains encountered in MCMC settings has a stationary probability
distribution π by construction; that is, a distribution π such that if Xn ∼ π, then Xn+1 ∼
π. This means that the kernel K allows for free moves all over the state space. In the
theory of Markov Chain this freedom is called irreducibility. The irreducibility property
ensures that both the average number of visit to an arbitrary set A is infinite – the chain
is recurrent – and the probability of an infinite number of returns to A is one – the chain
is Harris recurrent.

The stationary distribution is also a limiting distribution in the sense that the limiting
distribution of Xn+1 is π under the total variation norm, independently from the initial
value X0. Importantly, this implies the convergence as in Equation (A.7). Besides, when
the chain is reversible (cfr. Definition A.4 ) – i.e. the kernel is symmetric – a Central Limit
Theorem (CLT) also holds for the empirical average above. We now give the essentials
definitions, lemmas and theorems to apply this CLT.
Firstly, we define the kernel for n (n > 1) transitions, Kn (x,A) with K1 (x,A) = K(x,A)

Kn (x,A) =

∫

X
Kn−1 (y,A)K(x, dy),

then we report the following result, which provides convolution formulas of the type
Km+n = Km ∗Kn.

Lemma A.1 (Chapman-Kolmogorov equation). For every (m,n) ∈ N2, x ∈ X , A ∈
B (X ),

Km+n (x,A) =

∫

X
Kn (y,A)Km (x, dy) .

We give now the definition of invariant measure.

Definition A.3. A σ-finite measure π is invariant for the transition kernel K (·, ·) and
for the associated chain if

π (B) =

∫

X
K (x,B)π (dx) , ∀B ∈ B (X ) .

If π is a probability measure the invariant distribution is also referred to as stationary.
In particular, the chain is stationary in distribution. We turn now to the definition of
reversible Markov chain.

Definition A.4. A stationary Markov chain (Xn) is reversible if the distribution of Xn+1

conditionally on Xn+2 = x is the same as the distribution of Xn+1 conditionally on Xn =
x.

The following definition and result provide a sufficient condition for a measure to be the
stationary measure of a kernel.

Definition A.5. A Markov chain with transition kernel K satisfies the detailed balance
condition if there exists a function f satisfying

K(y, x)f(y) = K(x, y)f(x)

for every (x, y).
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Theorem A.1. Suppose that a Markov chain with transition function K satisfies the
detailed balance condition with π a probability density function. Then

• The density π is the invariant density of the chain.

• The chain is reversible.

The Metropolis-Hastings algorithm

Within MCMC methods the Metropolis-Hastings (MH) algorithms have the advantage of
imposing minimal requirements on the target density π and allowing for a wide choice of
possible implementations. It requires the choice of a conditional density q, called proposal
density, defined with respect to the dominating measure for the target. Beside, it assumes
that the ratio π(y)/q(y|x) is known up to a constant independent of x. The transition
from the value of the Markov chain at time t and its value at time t+ 1 proceeds via the
following transition steps. Given Xt = xt,

• 1st step: Generate Yt ∼ q (y|xt);

• 2st step: Take

Xt+1 =

{
Yt with probability ρ(xt, Yt)

xt with probability 1− ρ(xt, Yt),

where

ρ(x, y) = min

{
π(y)

π(x)

q(x|y)

q(y|x)
, 1

}
,

is called the Metropolis-Hastings acceptance probability.

The transition kernel of the M-H algorithm is

K(x, y) = ρ(x, y)q(y|x) + (1− r(x))δx(y),

where r(x) =
∫
ρ(x, y)q(y|x) dy and δx denotes the Dirac mass in x. It is straightforward

to verify that the M-H chain satisfies the detailed balance condition, that is

ρ(x, y)q(y|x)π(x) = ρ(y, x)q(x|y)π(y)

(1− r(x))δx(y)π(x) = (1− r(y))δy(x)π(y).

In particular, Theorem A.1 holds true.

A.5 Computational details for the SV-ARG

Sampling the parameters

For the SV-ARG we have to sample from ξ, α, κ2, ν, c and β(d). We refer the reader to
Subsection A.6 for details on the sampling of the parameters ξ, α, κ2, ν and c because
their full conditional distributions are the same used for the SV-LHARG.



92 CHAPTER 4. A DISCRETE-TIME STOCHASTIC VOLATILITY MODEL

Instead, the full conditional distribution of β(d) is the following one:

π
(
β(d)|r,RV,CV, z,θ(β(d))

)
∝ π

(
β(d)|CV, z

)

∝
T∏

t=p+1

(
β(d)

)zt
exp

(
−β(d)CVt−1

)

∝
(
β(d)

)∑T
t=p+1 zt

exp


−β(d)

T∑

t=p+1

CVt−1




∝ G
(
kβ(d) , θβ(d)

)
,

where G (k, θ) indicates a Gamma random variable with shape k > 0 and scale θ > 0;

kβ(d) =
∑T

t=p+1 zt − 1 and θβ(d) =
(∑T

t=p+1 CVt−1

)−1
.

A.6 Computational details for the SV-LHARG

Sampling the parameters

In what follows, we denote with � and � the element-by-element multiplication and
division respectively, with r

.
= rp+1:T , RV

.
= yp+1:T , z

.
= zp+1:T , CV

.
= CVp+1:T , and

with θ(∗) the vector θ deprived by the parameter (∗). We use the parametrization in([
β(d), β(w), β(m)

]
, c
)

for the centrality parameter of the non-central gamma distribution.
The convergence behaviour of the MCMC chain crucially depends on the parametrization
of the latent process (see Bernardo et al., 2003; Frühwirth-Schnatter, 2004; Roberts et al.,
2004, for more details). Extensive experimentation shows that the latter parametrization
further improves the mixing of the MCMC chain.

The full conditional distribution of the (2 + n1)-dimensional vector ξ is

π(ξ|r,RV,CV, z,x,θ(ξ)) ∝ π(ξ|r,CV,x)

∝
T∏

t=p+1

exp

(
−1

2

(rt − ξ′wt)
2

CVt

)

∝ exp

(
−1

2
(r −Wξ)

′
Υ−1
r (r −Wξ)

)

∝ exp

(
−1

2

(
ξ
′
W
′
Υ−1
r Wξ − 2ξ

′
W
′
Υ−1
r r

))

∝ N2+n1(µξ,Υξ),

where we indicate with W the (T −p)×(2+n1)-dimensional matrix W = (w
′
p+1; . . . ;w

′
T )

and with Υr the (T − p) × (T − p)-dimensional diagonal matrix Υr = diag(r). For the
parameter ξ the full conditional distribution can be sample exactly.

The full conditional distribution of α is

π(α|r,RV,CV, z,x,θ(α)) ∝ π (α|RV,CV,x,κ2)

∝
T∏

t=p+1

1

Γ (α exp (−β′2x2t))

1
(
CVt exp

(
κ
′
2x2t

))α exp(−κ′2x2t)
RV

α exp(−κ′2x2t)
t

∝ exp


−

T∑

t=p+1

log(Γ
(
α exp

(
−κ′2x2t

))
)−

T∑

t=p+1

α exp
(
−κ′2x2t

) (
CVtκ

′
2x2t − log(RVt)

)

 .



A. APPENDIX 93

To simulate from this distribution we employ a Metropolis-Hastings step. We consider
a Gamma random walk proposal and, at the j-th iteration of the algorithm, given the
previous value α(j−1) of the chain, we simulate

α(∗) d∼ G
(
α(j−1),2/ξα, ξα/α

(j−1)
)
,

where ξα represents the scale of the random walk. The proposal value generated from this
density is then accepted or rejected according to the acceptance ratio of the Metropolis-
Hastings algorithm.

The full conditional distribution of κ2 is

π(κ2|r,RV,CV, z,x,θ(κ2)) ∝ π (α|RV,CV,x, α)

∝
T∏

t=p+1

1

Γ (α exp (−β′2x2t))

1
(
CVt exp

(
κ
′
2x2t

))α exp(−κ′2x2t)
RV

α exp(−κ′2x2t)
t ×

exp

(
− RVt

CVt exp (κ′2x2t)

)
.

To simulate from this distribution we employ a Metropolis-Hastings step. Specifically, we
consider a Normal random walk proposal and, at the j-th iteration of the algorithm, given

the previous value κ
(j−1)
2 of the chain, we simulate

κ
(∗)
2

d∼ Nn2

(
κ

(j−1)
2 , ξκ2In2

)
,

where ξκ2 represents the scale of the random walk. The proposal value generated from this
density is then accepted or rejected according to the acceptance ratio of the Metropolis-
Hastings algorithm.

The full conditional distribution of ν is

π(ν|r,RV, z,θ(ν)) ∝ π(ν|CV, z, c) ∝
T∏

t=p+1

1

Γ(ν + zt)

(
1

c

)ν
CVν

t

∝ exp


−

T∑

t=p+1

log(Γ(ν + zt))− ν(T − p) log(c) + ν
T∑

t=p+1

log(CVt)


 .

Similarly to what was done for the parameter α, in the Metropolis-Hastings step, we
consider a Gamma random walk proposal with scale ξν . The proposal value generated
from this density is the accepted or rejected according to the acceptance ratio of the
Metropolis-Hastings algorithm.

The full conditional distribution of c is

π
(
c|r,RV,CV, z,θ(c)

)
∝ π (c|CV, z, ν) ∝

T∏

t=p+1

(
1

c

)ν+zt

exp

(
−CVt

c

)

∝
(

1

c

)(T−p)ν+
∑T
t=p+1 zt

exp


−1

c

T∑

t=p+1

CVt




∝ IG
(
k̄c, θ̄c

)
,
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where IG(k̄, θ̄) indicates an Inverse Gamma random variable with shape k̄ > 0 and scale
θ̄ > 0; k̄c = (T − p)ν +

∑T
t=p+1 zt − 1 and θ̄c =

∑T
t=p+1 CVt.

In order to sample from β′, α′ and λ, we introduce now the following (3 × 22)-
dimensional matrix

E =




1 0′4 0′17

0 1
4ι
′
4 0′17

0 0′4
1
17ι
′
17


 ,

where ιn and 0n indicate the n-dimensional unit and null vector. Besides, we indicate with
CVt−1 and lt−1 the 22-dimensional vectors CVt−1 = (CVt−1, . . . , ht−22)′ and lt−1 =
(lt−1, . . . , lt−22)′, respectively.

The full conditional distribution of β =
(
β(d), β(w), β(m)

)′
is

π
(
β|r,RV,CV, z,θ(β)

)
∝ π (β|r,RV,CV, z,α, λ) ∝

∝
T∏

t=p+1

(
(ECVt−1)′ β + (Elt−1)′α

)zt exp
(
− (ECVt−1)′ β

)
.

To simulate from this distribution we employ a Metropolis-Hastings step. We consider
a Normal random walk proposal and, at the j-th iteration of the algorithm, given the
previous value β(j−1) of the chain, we simulate

β
d∼ N3

(
β(j−1),Υβ

)
,

where Υβ is a (3×3)-dimensional diagonal matrix with diagonal given by
(
ξβ(d) , ξβ(w) , ξβ(m)

)
.

The latter represent the scale of the random walk.

The full conditional distribution of α =
(
α(d), α(w), α(m)

)
is

π
(
α|r,RV,CV, z,θ(α)

)
∝ π (α|r,RV,CV, z,β, λ) ∝

∝
T∏

t=p+1

(
(ECVt−1)′ β + (Elt−1)′α

)zt exp
(
− (Elt−1)′α

)
.

Similarly to what was done for the parameter β, in the Metropolis-Hastings step, we
consider a Normal random walk proposal with scales (ξα(d) , ξα(w) , ξα(m)).

Finally, the full conditional distribution of λ is

π
(
λ|r,RV,CV, z,θ(λ)

)
∝ π (α|r,RV,CV, z,β,α)

∝
T∏

t=p+1

(
(ECVt−1)′ β + (Elt−1)′α

)zt exp
(
− (Elt−1)′α

)
,

where, we remind that lt−i =
(
εt−i − λ

√
CVt−i

)2
, i ∈ {1, . . . , 22}. To simulate from this

distribution we employ a Metropolis-Hastings algorithm with a proposal distribution that
makes use of the information on the structure of the leverage component. In particular,
we would like to capture the asymmetric influence of shock: a large positive idiosyncratic
component has a smaller impact on the CV than a large negative one. We consider
a gamma random walk proposal and, at the j-th iteration of the algorithm, given the
previous value λ(j−1) of the chain, we simulate

λ(∗) d∼ G
(
λ(j−1),2/ξλ, ξλ/λ

(j−1)
)
,
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where ξλ represents the scale of the random walk. The proposal value generated from this
density is then accepted or rejected according to the acceptance ratio of the Metropolis-
Hastings algorithm.

Sampling the latent variables

The acceptance log-probability ρ
(

(z
(j−1)
τ :τ+δ,CV

(j−1)
τ :τ+δ), (z

(∗)
τ :τ+δ,CV

(∗)
τ :τ+δ)

)
is given by the

minimum between one and the exponential transform of

log
(
L
(
rτ+1:τ+δ,RVτ+1:τ+δ,CV

(∗)
τ+1:τ+δ, z

(∗)
τ+1:τ+δ|xτ+1:τ+δ,θ

))

− log
(
L
(
rτ+1:τ+δ,RVτ+1:τ+δ,CV

(j−1)
τ+1:τ+δ, z

(j−1)
τ+1:τ+δ|xτ+1:τ+δ,θ

))

+

τ+δ−1∑

t=τ+1

log
(
p
(
z

(j−1)
t |z(j−1)

t−1 , rt−1,RVt−1,xt,θ
))

+ log
(
p
(

CV
(j−1)
t |rp+1:T ,RVp+1:T , z

(j−1)
p+1:T ,xp+1:T ,θ

))

− log
(
p
(
z

(∗)
t |z

(∗)
t−1, rt−1,RVt−1,xt,θ

))
− log

(
p
(

CV
(∗)
t |rp+1:T ,RVp+1:T , z

(∗)
p+1:T ,xp+1:T ,θ

))
,

A.7 Further details for the financial application

For the SV-ARG model, in order to get an appropriate guess for the initial value of
θ =

(
µ, γ, α, κ2, ν, c, β

(d)
)
, we use the following argumentations. The risk-free rate µ is

fixed to µ = (2.5/252)%. The market price of risk γ is set to 0.0. To fix the initial value
of α, we estimate it with a rolling-window analysis over the period of estimation using as
proxy α̂ introduced in Hansen and Lunde (2005). Precisely

α̂ =

∑m
t=1 (rt − r̄)2

∑m
t=1 RVt

,

where rt is the daily close-to-close return and r̄ is its sample average over the m-days
sample period. We set the rolling window size equals to m = 20 over the estimation
period (from 8-Jan-1997 to 8-Jan-2007) and then we average the T −m+ 1 estimates to
fix the initial guess. Specifically α ≈ 0.66. The following Figure A.3 displays the result of
the rolling window analysis.

Starting values for the parameters φ(d), c (so for β(d)) and ν are obtained by match-
ing the unconditional mean, variance and persistence of average squared returns to the
marginal invariant distribution of the ARG(1) process (see also Creal, 2015). Finally,
initial value for κ2 is set by matching the unconditional variance of our RV estimator
to the marginal invariant distribution of the RV process. In order to fix the initial tra-
jectory for CV1:T , we make use of the physical interpretation of the CV, setting it to
CV1:T = α̂RV1:T . With this values for parameters and CV we simulate z1:T according
with the SV-ARG dynamics. The maximum number of states for the approximating
Markov Chain of the process zt is fixed to 300. As done in Creal (2015), the Feller condi-
tion, ν > 1, as well as the stationary constraint, 0 < β(d)c < 1, are imposed throughout
the estimation.

For the SV-LARG model, in order to get an appropriate guess for the initial value
of θ =

(
µ, γ, α, β2, ν, c, β

(d), α(d), λ
)
, we use the following arguments. For parameters{

µ, γ, α, β2, c, β
(d)
}

we use the same strategy as above. Instead, because of the distribu-

tional properties of the idiosyncratic component of the daily log-return, α(d) and λ are set
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Figure A.3: Rolling-window analysis for the initial guess of the parameter α
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Notes: Reported is the 20 days rolling window estimates of the parameter α over the estimation
period, from 8-January-1997 to 8-January-2007, computed with the proxy introduced in Hansen
and Lunde (2005). Average value α ≈ 0.66.

to α(d) = (1/T )
∑T

t=1 ĈV t and λ = 1/
√
α(d), being CV1:T = α̂RV1:T . The parameter ν is

derived by variance targeting. z1:T is simulated according with the SV-LARG dynamics.
We fix N = 300, in order to have a meaningful comparison among models. Also in this
case, both the Feller condition and the stationary constraint, 0 < c(β(d) +λ2α(d)) < 1, are
imposed throughout the estimation.

For the SV-HARG model, in order to get an appropriate guess for the initial value of
θ =

(
µ, γ, α, β2, ν, c,

[
β(d), β(w), β(m)

])
, we set {µ, γ, α, β2, c} as for the SV-ARG and the

autoregressive component to
[
0.5β̂(d), 0.3β̂(d), 0.20β̂(d)

]
, with β̂(d) the SV-ARG estimate.

The parameter ν is derived by variance targeting. Initial guesses for CV1:T and z1:T are
obtained as before; N = 300.

Finally, a similar strategy is followed for the SV-LHARG. In particular,
[
α(d), α(w), α(m)

]
=[

0.5α̂(d), 0.3α̂(d), 0.20α̂(d)
]
, being α̂(d) the SV-LARG estimate.

Table A.1 reports efficiency indicators of the parameters estimation results for the four
estimated models.

A.8 Further details on simulation experiments

Description of the experiments

To test the efficiency of the proposed MCMC algorithm we simulate 50 independent data
series of 1000 observations from each of the considered models SV-ARG, SV-LARG,
SV-HARG, SV-LHARG. On each set of data we run the proposed MCMC algorithm
for 100,000 iterations, discard the first 20,000, and apply a thinning procedure with an
appropriate factor. The posterior quantities reported in the subsequent sections are the
grand averages over the 50 experiments. To fix the number of states of the approximating
Markov chain for the process zt we use the following strategy. Since we know the invariant
unconditional mean of an ARG, LARG, HARG, LHARG model, then we approximate
the unconditional distribution of zt with a Poisson random variable z having constant
intensity equals to the invariant unconditional mean, i.e. zt ≈ z ∀t. Finally, we determine
N in such a way that P (zt ≥ N) ≤ δ, with δ a constant as small as desired. As second
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Table A.2: True values for SV-LARG, SV-HARG, SV-LHARG parameters, simulated
data

Model

Parameter SV-LARG SV-HARG SV-LHARG

µ 0.0 0.0 0.0
γ 1.0 1.0 1.0
κ1 0.0 0.0 0.0
α 0.8 0.8 0.8
κ2 -1.0 -1.0 -1.0
ν 1.5 1.5 1.5
c 1.0 1.0 1.0
β(d) 0.30 0.30 0.30
β(w) 0.0 0.20 0.20
β(m) 0.0 0.10 0.10
α(d) 0.15 0.0 0.15
α(w) 0.0 0.0 0.10
α(m) 0.0 0.0 0.05
λ 1.0 0.0 1.0

Notes: Reported are the values of the parameters used to simulate from the SV-LARG (second
column, SV-HARG (third column, SV-LHARG (fourth column) in order to test the efficiency
of the MCMC algorithm.

alternative, a model selection procedure can be used to select the optimal number of states
given a set of observations. In our research we opt for the first approach.

We simulate from the SV-ARG by using the following values for the parameters:
µ = 0.0, γ = 1.0, κ1 = 0.0, α = 0.8, κ2 = −1.0, ν = 0.8, c = 1.0, β(d) ∈ {0.3, 0.6, 0.9}.
Besides, at each fixed time t, we use the following values for the exogenous variables:

x1t = 0 and x2t = 0.21{t<0.5T} + 0.01εt with εt
iid∼ N (0, 1). We test the efficiency of

the MCMC algorithm in three different scenarios: low-persistence, β(d) = 0.3, medium-
persistence, β(d) = 0.6, and finally, high persistence, β(d) = 0.9, scenario. The values for
the parameters for the other models used in the simulation procedure are reported in the
Table A.2

Besides, at each fixed time t, we use the following values for the exogenous variables:

x1t = 0 and x2t = 0.21{t<0.5T} + 0.01εt with εt
d∼ N (0, 1). Figures A.4, A.5 and A.6

represent simulated trajectories of a SV-ARG model in the low persistence (1), medium-
persistence (2), high-persistence (3) scenario. Simulated trajectories of a SV-LARG,
SV-HARG, SV-LHARG model are reported in Figure A.7, A.8, A.9 respectively.
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Figure A.4: Simulated trajectories of a SV-ARG in the low-persistence scenario
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Notes: Reported are simulated trajectories of a SV-ARG model in the low-persistence scenario.
The values for the parameters are the following: µ = 0.0, γ = 1.0, β1 = 0.0, α = 0.8, β2 = −1.0,
ν = 0.8, c = 1.0, β(d) = 0.3. Top-left : daily log-returns. Top-right : conditional variance of the
daily log-returns. Bottom-left : realized variance. Bottom-right : state variable.

Figure A.5: Simulated trajectories of a SV-ARG in the medium-persistence scenario
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Notes: Reported are simulated trajectories of a SV-ARG model in the medium-persistence
scenario. The values for the parameters are the following: µ = 0.0, γ = 1.0, β1 = 0.0, α = 0.8,
β2 = −1.0, ν = 0.8, c = 1.0 and β(d) = 0.6. Top-left : daily log-returns. Top-right : conditional
variance of the daily log-returns. Bottom-left : realized variance. Bottom-right : state variable.
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Figure A.6: Simulated trajectories of a SV-ARG in the high-persistence scenario
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Notes: Reported are simulated trajectories of a SV-ARG model in the high-persistence scenario.
The values for the parameters are the following: µ = 0.0, γ = 1.0, β1 = 0.0, α = 0.8, β2 = −1.0,
ν = 0.8, c = 1.0 and β(d) = 0.9. Top-left : daily log-returns. Top-right : conditional variance of
the daily log-returns. Bottom-left : realized variance. Bottom-right : state variable.

Figure A.7: Simulated trajectories of a SV-LARG
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Notes: Reported are simulated trajectories of a SV-LARG model. The values for the parameters
are those in Table A.2, first row. Top-left : daily log-returns. Top-right : conditional variance of
the daily log-returns. Bottom-left : realized variance. Bottom-right : state variable.
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Figure A.8: Simulated trajectories of a SV-HARG
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Notes: Reported are simulated trajectories of a SV-HARG model. The values for the parame-
ters are those in Table A.2, first row. Top-left : daily log-returns. Top-right : conditional variance
of the daily log-returns. Bottom-left : realized variance. Bottom-right : state variable.

Figure A.9: Simulated trajectories of a SV-LHARG
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Notes: Reported are simulated trajectories of a SV-LHARG model. The values for the pa-
rameters are those in Table A.2, first row. Top-left : daily log-returns. Top-right : conditional
variance of the daily log-returns. Bottom-left : realized variance. Bottom-right : state variable.

Parameter posterior approximation

We report additional evidences about the efficiency of the proposed MCMC algorithm
through the inefficiency factor (INEFF) of the chain computed before and after that a
thinning procedure with an appropriate factor is applied. For the SV-ARG we report also
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the estimated Autocorrelation Function ACFs of the chain before and after the thinning
procedure. In particular, Table A.3 contains the diagnostic summaries about the INEFF
for the SV-ARG. Figures A.10-A.11, A.12-A.13, A.14-A.15, instead, contain the analysis
of the ACFs(j), up to lag j = 50, of the MCMC output in the low-persistence (7-
8), medium-persistence (9-10), high-persistence (11-12) scenario for the SV-ARG. More
precisely, on the left-side of each figure we report the ACFs estimated on the raw output,
whereas on the right-side the ACFs estimated after that the thinning procedure on the
raw output is applied. Finally, Table A.4 reports the comparison between the INEFFs
before and after the thinning for SV-LARG, SV-HARG and SV-LHARG.
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Figure A.10: ACFs of the MCMC output for the parameters µ, γ, κ1, α of the SV-ARG
model in the low-persistence scenario.
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Notes: Reported are the ACFs(j) up to lag j = 50 of the MCMC output for the parameters
µ, γ, κ1 and α of the SV-ARG model in the low-persistence scenario. For computational details
see Notes in Table A.3. Left side: ACFs estimated on the raw output. Right side: ACFs
estimated when a thinning procedure with a factor of 20 is applied on the raw output.
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Figure A.11: ACFs of the MCMC output for the parameters κ2, ν, c, β(d) of the SV-
ARG model in the low-persistence scenario.
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Notes: Reported are the ACFs(j) up to lag j = 50 of the MCMC output for the parameters
κ2, ν, c, β(d) of the SV-ARG model in the low-persistence scenario. For computational details
see Notes in Table A.3. Left side: ACFs estimated on the raw output. Right side: ACFs
estimated when a thinning procedure with a factor of 20 is applied on the raw output.
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Figure A.12: ACFs of the MCMC output for the parameters µ, γ, κ1, α of the SV-ARG
model in the medium-persistence scenario.
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Notes: Reported are the ACFs(j) up to lag j = 50 of the MCMC output for the parameters
µ, γ, κ1 and α of the SV-ARG model in the medium-persistence scenario. For computational
details see Notes in Table A.3. Left side: ACFs estimated on the raw output. Right side:
ACFs estimated when a thinning procedure with a factor of 20 is applied on the raw output.
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Figure A.13: ACFs of the MCMC output for the parameters κ2, ν, c, β(d) of the SV-
ARG model in the medium-persistence scenario.
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Notes: Reported are the ACFs(j) up to lag j = 50 of the MCMC output for the parameters κ2,
ν, c, β(d) of the SV-ARG model in the medium-persistence scenario. For computational details
see Notes in Table A.3. Left side: ACFs estimated on the raw output. Right side: ACFs
estimated when a thinning procedure with a factor of 20 is applied on the raw output.
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Figure A.15: ACFs of the MCMC output for the parameters κ2, ν, c, β
(d) of

the SV-ARG model in the high-persistence scenario.
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Notes: Reported are the ACFs(j) up to lag j = 50 of the MCMC output for the parameters
κ2, ν, c, β(d) of the SV-ARG model in the high-persistence scenario. For computational details
see Notes in Table A.3. Left side: ACFs estimated on the raw output. Right side: ACFs
estimated when a thinning procedure with a factor of 50 is applied on the raw output.
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Figure A.14: ACFs of the MCMC output for the parameters µ, γ, κ1, α of the SV-ARG
model in the high-persistence scenario.
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Notes: Reported are the ACFs(j) up to lag j = 50 of the MCMC output for the parameters µ,
γ, κ1 and α of the SV-ARG model in the high-persistence scenario. For computational details
see Notes in Table A.3. Left side: ACFs estimated on the raw output. Right side: ACFs
estimated when a thinning procedure with a factor of 50 is applied on the raw output.



Chapter 5

A backward Monte Carlo
approach to exotic option pricing

The material of this chapter is taken from Bormetti et al. (2017).

5.1 Introduction

Among the issues that a researcher has to solve when pricing a financial derivatives, two
are the main ones. In the first place, the choice of a flexible model for the stochastic
evolution of the underlying asset price. At this point, a common trade-off arises as mod-
els which describe the historical dynamics of the asset price with adequate realism are
usually unable to precisely match volatility smiles observed in the option market (see,
for instance Bouchaud and Potters, 2003; Gatheral, 2011). Secondly, once a reasonable
candidate has been identified, there is the need to develop fast, accurate, and possibly
flexible numerical methods (see Wilmott et al., 1993; Clewlow and Strickland, 1996; Hull,
2006) to price financial derivatives. As regards the former point, local volatility (LV)
models have become very popular since their introduction by Dupire (see Dupire, 1994),
and Derman and co-authors (see Derman and Kani, 1996). Even though the legitimate
use of LV models for the description of the asset dynamics is highly questionable, the
ability to self-consistently reproduce volatility smiles implied by the market motivates
their widespread diffusion among practitioners. Since calibration à la Dupire (see Dupire,
1994) of LV models assumes the unrealistic availability of a continuum of vanilla option
prices across different strikes and maturities (see Kahalé, 2004), recent years have seen the
emergence of a growing strand of literature dealing with this problem (see, for instance
Coleman et al., 1999; Kahalé, 2004; Andreasen and Huge, 2011; Lipton and Sepp, 2011;
Reghai et al., 2012). However, in the present work we fix the calibration following the
latest achievements and we solely focus on the latter issue. Specifically, our goal is to
design a novel pricing algorithm based on the Monte Carlo approach able to achieve a
sizeable variance reduction with respect to competitor approaches.

The main result of this work is the development of a flexible and efficient pricing
algorithm – termed the backward Monte Carlo algorithm – which runs backward on top
of a multinomial tree. The flexibility of this algorithm permits to price generic payoffs
without the need of designing tailor-made solutions for each payoff specification. This
feature is inherited directly from the Monte Carlo approach (see Glasserman, 2004, for an
almost exhaustive survey of Monte Carlo methods in finance). The effectiveness, instead, is
linked primarily to the backward movement on the multinomial tree. Indeed, our approach

111
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combines both advantages of stratified sampling Monte Carlo and the Brownian Bridge
construction (see, for instance Glasserman, 2004; Bormetti et al., 2006), extending them to
more general financial-asset dynamics than the simplistic assumptions of Black, Scholes,
and Merton (see Black and Scholes, 1973; Merton, 1973). The second purpose of this work –
minor in relative terms with respect to the first one – is to investigate an alternative scheme
for the implementation of the Recursive Marginal Quantization Algorithm (henceforth
RMQA). The RMQA is a recursive algorithm which allows to approximate a continuous
time diffusion by means of a discrete-time Markov Chain defined on a finite grid of points.
The alternative scheme, employed at each step of the RMQA, is based on the Lloyd
I method (see Kieffer, 1982) in combination with the Anderson acceleration Algorithm
(see Anderson, 1965; Walker and Ni, 2011) developed to solve fixed-point problems. The
accelerated scheme permits us to speed up the linear rate of convergence of the Lloyd I
method (see Kieffer, 1982), and more importantly, to fix some flaws of previous RMQA
implementations highlighted in Callegaro et al. (2015).

In more detail, a discrete-time Markov Chain approximation of the asset price dynamics
can be achieved by introducing at each time step two quantities: (i) a grid for the possible
values that the price can take, and (ii) the transition probabilities to propagate from one
state to another one. Among the approaches discussed in the literature for computing these
quantities, in the present work we analyse and extend two of them. The first approach
quantizes via the RMQA the Euler-Maruyama approximation of the Stochastic Differential
Equation (SDE) modelling the underlying asset price. The RMQA has been introduced in
Pagés and Sagna (2015) to compute vanilla call and put options prices in a pseudo Constant
Elasticity of Variance (CEV) LV model. In Callegaro et al. (2015) authors employ it to
calibrate a Quadratic Normal LV model. The alternative approach, instead, discretises in
an appropriate way the infinitesimal Markov generator of the underlying diffusion by means
of a finite difference scheme (see Albanese and Mijatovic, 2007; Kushner and Dupuis, 2001,
for a detailed discussion of theoretical convergence results). We name the latter approach
Large Time Step Algorithm, henceforth LTSA. In Reghai et al. (2012) authors implement
a modified version of the LTSA to price discrete look-back options in a CEV model,
whereas in Albanese et al. (2009) they employ the LTSA idea to price a particular class
of path-dependent pay-off termed Abelian pay-off. More specifically, they incorporate the
path-dependency feature – in the specific case whether or not the underlying asset price
hits a specified level over the life of the option – within the Markov generator. The joint
transition probability matrix is then recovered as the solution of a pay-off specific matrix
equation. The RMQA and LTSA present two major differences which can be summarized
as follows: (i) the RMQA permits to recover the optimal – according to a specific criterion
(see Printems et al., 2005) – multinomial grid, whereas the RMQA works with an a priori
user-specified grid, (ii) the LTSA necessitates less computational burden than the RMQA
when pricing financial derivatives products whose pay-off requires the observation of the
underlying on a predefined finite set of dates. Unfortunately, this result holds only for a
piecewise time-homogeneous LV dynamics.

The usage in both equity and foreign exchange (FX) markets of LV models is largely
motivated by the flexibility of the approach which allows the exact calibration to the whole
volatility surface. Moreover, the accurate re-pricing of plain vanilla instruments and of
most liquid European options, together with the stable computation of the option sensi-
tivity to model parameters and the availability of specific calibration procedures, make the
LV modelling approach a popular choice. The LV models are also employed in practice
to evaluate Asian options and other path-dependent options, although more sophisticated
stochastic local volatility models are adopted when the path-dependency risk dominates
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the smile risk (see, for instance Predota, 2005)1. We refer to (Ren et al., 2007) for more
details on calibration and on pricing with LV models. The price of path-dependent deriva-
tive products is then usually computed either solving numerically a Partial Differential
Equation (PDE) or via Monte Carlo methods. The PDE approach is computationally effi-
cient but it requires the definition of a pay-off specific pricing equation (see Wilmott et al.,
1993, for an extensive survey on PDE approach in financial contexts). Moreover, some
options with exotic pay-offs and exercise rules are subtle to price even within the Black,
Scholes, and Merton framework (Dewynne and Shaw, 2008; Siyanko, 2012). On the other
hand, standard Monte Carlo method suffers from some ineffectiveness – especially when
pricing out-of-the-money (OTM) options – since a relevant number of sampled paths does
not contribute to the option pay-off. However, the Monte Carlo approach is extremely
flexible and several numerical techniques have been introduced to reduce the variance of
the Monte Carlo estimator (see Clewlow and Strickland, 1996; Glasserman, 2004). The
backward Monte Carlo algorithm pursues this task.

In this work we consider the FX market, where we can trade spot and forward contracts
along with vanilla and exotic options. In particular, we model the EUR/USD rate using a
LV dynamics. The calibration procedure is the one employed in Reghai et al. (2012) for the
equity market. Specifically, we calibrate the stochastic dynamics for the EUR/USD rate in
order to reproduce the observed implied volatilities with a one basis point tolerance while
the extrapolation to implied volatilities for maturities not quoted by the market is achieved
by means of a piecewise time-homogeneous LV model. In order to show the competitive
performances of the backward Monte Carlo algorithm, we compute the price of different
kinds of options. We do not price basket options, but we only focus on derivatives written
on a single underlying asset considering Asian calls, up-out barrier calls, and auto-callable
options. We show that these instruments can be priced more effectively by simulating the
discrete-time Markov Chain approximation of the diffusive dynamics from the maturity
back to the initial date. In these cases, indeed, the backward Monte Carlo algorithm leads
to a significant reduction of the Monte Carlo variance.

The remaining of the chapter is structured as follows. We start with the introduction of
the key ideas of the backward Monte Carlo algorithm on a multinomial tree in Section 5.2.
Section 5.3 presents the alternative schemes of implementation based on the RMQA and
LTSA, and details the numerical investigations testing the performance of both approaches.
Section 5.4 presents a piecewise time-homogeneous LV model for the FX market and
reports the pricing performances of the backward Monte Carlo algorithm, benchmarking
them with different Monte Carlo algorithms. We conclude in Section 5.5.

5.2 The backward Monte Carlo algorithm

First of all, let us introduce our working framework. We consider a probability space
(Ω,F ,P), a given time horizon T > 0 and a stochastic process X = (Xt)t∈[0,T ] describing
the evolution of the underlying asset price. We suppose that the market is complete, so
that under the unique risk-neutral probability measure Q, X has a Markovian dynamics
described by the following SDE

{
dXt = b(t,Xt) dt+ σ(t,Xt) dWt ,

X0 = x0 ∈ R ,
(5.1)

1We clarify that the algorithms defined in this Chapter are presented for sake of simplicity in a LV
framework in view of studying stochastic local volatility models.
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where (Wt)t∈[0,T ] is a standard one-dimensional Q-Brownian motion, and b : [0, T ]×R→ R
and σ : [0, T ] × R → R+ are two measurable functions satisfying the usual conditions
ensuring the existence and uniqueness of a (strong) solution to the SDE (5.1). Besides,
we consider deterministic interest rates. Henceforth, we will always work under the risk-
neutral probability measure Q, since we focus on the pricing of derivative securities written
on X. Specifically, we are interested in pricing financial derivative products whose pay-
off may depend on the whole path followed by the underlying asset, i.e. path-dependent
options.

Let us now motivate the introduction of our novel pricing algorithm. Even in the
classical Black, Scholes, and Merton (see Black and Scholes, 1973; Merton, 1973) frame-
work, when pricing financial derivatives the actual analytical tractability is limited to plain
vanilla call and put options and to few other cases (for instance, see the discussion in Hui
et al., 2000; Vecer and Xu, 2004). Such circumstances motivate the quest for general and
reliable pricing algorithms able to handle more complex contingent claims in more realistic
stochastic market models. In this respect the Monte Carlo (MC) approach represents a
natural candidate. Nevertheless, a general purpose implementation of the MC method
is known to suffer from a low rate of convergence. In particular, in order to increase its
numerical accuracy, it is either necessary to draw a large number of paths or to imple-
ment tailor-made variance reduction techniques. Moreover, the standard MC estimator is
strongly ineffective when considering OTM options, since a relevant fraction of sampled
paths does not contribute to the pay-off function. For these reasons, in this Chapter, we
present a novel MC methodology which allows to effectively reduce the variance of the
estimated price. To this end, we proceed as follows. First we introduce a discrete-time

and discrete-space process ̂̄X approximating the continuous time (and space) process X in
Equation (5.1). Then, we propose a MC approach – the backward Monte Carlo algorithm

– to sample paths from ̂̄X and to compute derivative prices.

In particular, we first split the time interval [0, T ] into n equally-spaced subintervals
[tk, tk+1], k ∈ {0, . . . , n − 1}, with t0 = 0 and tn = T and we approximate the SDE in
Equation (5.1) with an Euler-Maruyama scheme as follows:

{
X̄tk+1

= X̄tk + b(tk, X̄tk)∆t+ σ(tk, X̄tk)
√

∆t Zk ,

X̄t0 = X0 = x0 ,
(5.2)

where (Zk)0≤k≤n−1 is a sequence of i.i.d. standard Normal random variables and ∆t
.
=

tk+1 − tk = T/n. Then, we assume that ∀k ∈ {1, . . . , n} each random variable X̄tk

in Equation (5.2) can be approximated by a discrete random variable taking values in

Γk
.
= {γk1 , . . . , γkN}, whereas for t0 we have Γ0 = γ0 = x0. We denote by ̂̄Xtk the discrete-

valued approximation of the random variable X̄tk . In this way, we constrain the discrete-

time Markov process ( ̂̄Xtk)1≤k≤n to live on a multinomial tree. Notice that, by definition
|Γk| = N , all k ∈ {1, . . . , n}. Nevertheless, this is not the most general setting. For
instance, within the RMQA framework authors in Pagés and Sagna (2015) perform nu-
merical experiments letting the number of points in the space discretisation grids vary
over time. However, they underline how the complexity in the time varying case becomes
higher as N increases, although the difference in the results is negligible.
In order to define our pricing algorithm, we need the transition probabilities from a node
at time tk to a node at time tk+1, k ∈ {0, . . . , n−1}, so that in the next section we provide
a detailed description of two different approaches to consistently approximate them. For
the moment, we describe the backward Monte Carlo algorithm assuming the knowledge
of both the multinomial tree (Γk)0≤k≤n and the transition probabilities.
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As aforementioned, our final target is the computation at time t0 of the fair price of a
path-dependent option with maturity T > 0. We denote by F its general discounted pay-
off function. In particular, it is a function of a finite number of discrete observations. We
are not going to make precise F at this point, we only recall here that in this paper we will
focus on Asian options, up-and-out barrier options and auto-callable options. According
to the arbitrage pricing theory (see, for instance Björk, 2009), the price is given by the
conditional expectation of the discounted pay-off under the risk-neutral measure Q, given
the information available at time t0. By means of the Euler-Maruyama discretisation, we
can approximate the option price as follows:

Et0
[
F(x0, X̄t1 , . . . , X̄tn)

]
=

∫

Rn
F(x0, x1, . . . , xn) p(x0, x1, . . . , xn) dx1 · · · dxn ,

where p(x0, x1, . . . , xn) is the joint probability density function (PDF) of (X̄0, X̄t1 , . . . , X̄tn).

The previous expression can be further approximated exploiting the process ̂̄X and its dis-
crete nature (recall that Γk = {γk1 , . . . , γkN}):

Et0
[
F(x0, X̄t1 , . . . , X̄tn)

]
' Et0

[
F(x0,

̂̄Xt1 , . . . ,
̂̄Xtn)

]

=

N∑

i1=1

· · ·
N∑

in=1

F(x0, γ
1
i1 . . . , γ

n
in) P(x0, γ

1
i1 , . . . , γ

n
in),

(5.3)

where

P(x0, γ
1
i1 , . . . , γ

n
in)

.
= P( ̂̄Xt0 = x0,

̂̄Xt1 = γ1
i1 , . . . ,

̂̄Xtn = γnin).

Exploiting the Markovian nature of ̂̄X and using Bayes’ theorem, we rewrite the right
hand side of Equation (5.3) in the following, equivalent, way:

N∑

i1=1

· · ·
N∑

in=1

F(x0, γ
1
i1 , . . . , γ

n
in) P(γ1

i1 |x0) · · ·P(γnin |γn−1
in−1

), (5.4)

where

P(γk+1
ik+1
|γkik)

.
= P( ̂̄Xtk+1

= γk+1
ik+1
| ̂̄Xtk = γkik), (5.5)

all γkik ∈ Γk and all k ∈ {1, . . . , n− 1}
In order to compute the expression in Equation (5.4), a straightforward application of

the standard MC theory would require the simulation of NMC paths all originating from
x0 at time t0 = 0. The same aforementioned arguments about the lack of effectiveness
of the MC estimator for the case of a continuum of state-spaces still hold for the discrete
case. However, forcing each random variable X̄tk , 1 ≤ k ≤ n, to take at most N values
leads in general to a reduction of the variance of the Monte Carlo estimator.

For each tk ∈ {t1, . . . , tn−1} we denote by Πk,k+1 the (N × N)-dimensional matrix
whose elements are the transition probabilities:

Πk,k+1
i,j

.
= P(γk+1

j |γki ), γki ∈ Γk, γ
k+1
j ∈ Γk+1, and i, j ∈ {1, . . . , N}

and analogously we define

Πk+1,k
`,m

.
= P(γkm|γk+1

` ), γkm ∈ Γk, γ
k+1
` ∈ Γk+1, and l,m ∈ {1, . . . , N}.
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The key idea behind the backward Monte Carlo algorithm is to express Πk+1,k
i,j as a function

of Πk,k+1
j,i by applying Bayes’ theorem:

Πk+1,k
i,j =

Πk,k+1
j,i Pkj

Pk+1
i

(5.6)

where, Pki
.
= P( ̂̄Xtk = γki | ̂̄Xt0 = x0), for i = 1, . . . , N , k = 1, . . . , n.

Iteratively, we recover all the backward transition probabilities. These allow us to go
through the multinomial tree in a backward way, from each of the terminal points γnj to
the initial node x0. In particular, relation in Equation (5.6) permits us to rewrite the joint
probability appearing in Equation (5.3) and then in Equation (5.4) as

P(x0, γ
1
i1 , . . . , γ

n
in) = P(γ1

i1 |x0) · · ·P(γnin |γn−1
in−1

) =

(
n−1∏

k=0

Πk+1,k
ik+1,ik

)
Pnin .

Consistently, we obtain the following proposition, containing the core of our pricing algo-
rithm:

Proposition 5.2.1. The price at time t0 of a path-dependent option with discounted pay-
off F,
Et0
[
F(x0, X̄t1 , . . . , X̄tn)

]
, can be approximated by:

Et0
[
F(x0,

̂̄Xt1 , . . . ,
̂̄Xtn)

]
=

N∑

in=1

Pnin

N∑

i1=1

· · ·
N∑

in−1=1

(
n−1∏

k=0

Πk+1,k
ik+1,ik

)
F(x0, γ

1
i1 , . . . , γ

n
in)

.
=

N∑

in=1

PninF(x0, γ
n
in),

where F(x0, γ
n
in

) is the expectation of the pay-off function F with respect to all paths starting
at x0 and terminating at γnin.

The expectation F(x0, γ
n
in

) can be computed sampling N in
MC MC paths from the con-

ditional law of ( ̂̄Xt1 , . . . ,
̂̄Xtn−1) given x0 and γnin , thus obtaining, at the same time, the

error σin associated to the MC estimator. By virtue of the Central Limit Theorem the
errors scale with the square root of N in

MC , so that the larger N in
MC is, the smaller the error.

In particular, if we indicate with Γ̃n = {γ̃n1 , . . . , γ̃nN+}, with N+ ≤ N , those points of
Γn for which the pay-off F is different from zero, we can estimate the boundary values
corresponding to the 95% confidence interval for the derivative price as

N+∑

in=1

Pnin
̂F(x0, γ̃nin)± 1.96

√√√√
N+∑

in=1

(Pninσin)2. (5.7)

In the previous Equation ̂F(x0, γ̃nin) corresponds to the Monte Carlo estimator of F(x0, γ̃
n
in

).
It is worth noticing that the error in Equation (5.7) does not take into account the effect
of the finiteness of Γ̃n and of the time discretisation. The sensitivity of the price to the
finite size N , of the grids and to the choice of the boundary conditions are investigated in
Appendices B.3 and B.4, respectively. We point out that the numerical results presented
in this Chapter are computed with time and price grids such that the error due to the
finite granularity is negligible with respect to the statistical error due to the finiteness of
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the Monte Carlo sample.
A sizeable variance reduction results from having split the n sums in Equation (5.4) into
the external summation over the points of the deterministic grid Γ̃n and the evaluation of
an expectation of the pay-off with fixed initial and terminal points. This procedure corre-
sponds to the variance reduction technique known as stratified sampling Monte Carlo (see
Glasserman, 2004). In particular, in Glasserman (2004) the author proves analytically
that the variance of the MC estimator without stratification is always greater than or
equal to that of the stratified one. Besides, he points out that stratified sampling involves
consideration of two issues: (i) the choice of the points in Γn and the allocation N in

MC ,

in ∈ {1, . . . , N}, (ii) the generation of samples from ̂̄X conditional on ̂̄Xtn ∈ Γn and on
̂̄Xt0 = γ0. Our procedure resolves both these points. Precisely, once selected Γ̃n, the
backward Monte Carlo algorithm allows us to choose the number of paths from all the
points in Γ̃n, independently on the value of Pnin .

At this point, two are the main ingredients needed in order to compute the quantities
in Equation (5.7): (i) the transition probabilities, (ii) the fast backward simulation of the

process ̂̄X. For both purposes, we introduce ad-hoc numerical procedures. As regards the
former point, we analyse and extend two approaches already present in the literature. The
first one is based on the concept of optimal state-partitioning of a random variable (called
stratification in Barraquand and Martineau (1995) and quantization in Bally et al. (2003))
and employs the RMQA (see Pagés and Sagna, 2015; Callegaro et al., 2015). The second
approach provides a recipe to compute in an effective way the transition probability matrix
between any two arbitrary dates for a piecewise time-homogeneous process (see Albanese,
2007; Reghai et al., 2012). More details on these two methods will be given in Section 5.3.

For what concerns the backward simulation, we employ the Alias method introduced
in Kronmal and Peterson Jr (1979). More specifically, for every k from n − 1 to 1, the

(backward) simulation of ̂̄Xtk conditional on { ̂̄Xtk+1
= γk+1

j } is equivalent to sampling at
each time tk+1 from a discrete non-uniform distribution with support Γk and probability
mass function equal to the j-th row of Πk+1,k. Given the discrete distribution, a näıve
simulation scheme consists in drawing a uniform random number from the interval [0, 1]
and recursively search over the cumulative sum of the discrete probabilities. However,
in this case the corresponding computational time grows linearly with the number N of
states. The Alias method, instead, reduces this numerical complexity to O(1) by cleverly
pre-computing a table – the Alias table – of size N . We base our implementation on this
method, which enables a large reduction of the MC computation time. A more detailed
description of the Alias method can be found at www.keithschwarz.com.

5.3 Recovering the transition probabilities

We present the two approaches used for the approximation of the transition probabilities of
a discrete-time Markov Chain. The RMQA is described and extended in Section 5.3.1. In
particular, we first provide a brief overview on optimal quantization of a random variable,
then we propose an alternative implementation of the RMQA. The LTSA is presented
in Section 5.3.2, where we also provide a brief introduction on Markov processes and on
Markov generators.

www.keithschwarz.com
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5.3.1 A quantization based algorithm

Optimal quantization

We present here the concept of optimal quantization of a random variable by emphasizing
its practical features, without providing all the mathematical details behind it. A more
extensive discussion can be found in Graf and Luschgy (2000); Pagès et al. (2004); Print-
ems et al. (2005); Pagès (2014). Let X̄ be a one-dimensional continuous random variable
defined on a probability space (Ω,F ,P) and PX̄ the measure induced by it. The quanti-
zation of X̄ consists in approximating it by a one-dimensional discrete random variable
̂̄X. In particular, this approximation is defined by means of a quantization function qN of

X̄, that is to say ̂̄X .
= qN (X̄), defined in such a way that ̂̄X takes N ∈ N+ finitely many

values in R. The finite set of values for ̂̄X, denoted by Γ ≡ {γ1, . . . , γN}, is the quantizer
of X̄, while the image of the function qN is the related quantization. The components of
Γ can be used as generator points of a Voronoi tessellation {Ci(Γ)}i=1,...,N . In particular,
one sets up the following tessellation with respect to the absolute value in R

Ci(Γ) ⊂ {γ ∈ R : |γ − γi| = min
1≤j≤N

|γ − γj |} ,

and the associated quantization function qN is defined as follows:

qN (X̄) =
N∑

i=1

γi11Ci(Γ)(X̄) .

Notice that in our setting, we are going to quantize the random variables (X̄tk)0≤k≤n
introduced in Equation (5.2).

Such a construction rigorously define a probabilistic setting for the random variable
̂̄X, by exploiting the probability measure induced by the continuous random variable X̄.

The approximation of X̄ through ̂̄X induces an error, whose L2 version – called L2-mean
quantization error – is defined as

‖X̄ − qN (X̄)‖2 .
=

√
E
[

min
1≤i≤N

|X̄ − γi|2
]
. (5.8)

The expected value in Equation (5.8) is computed with respect to the probability measure
which characterizes the random variable X̄. The purpose of the optimal quantization
theory is finding a quantizer indicated by Γ∗, which minimizes the error in Equation (5.8)
over all possible quantizers with size at most N . We remind that in one dimension the
uniqueness of the optimal N quantizer is guaranteed if the distribution of X̄ is absolutely
continuous with a log-concave density function (see, for instance Pagès, 2014). From the
theory (see Graf and Luschgy, 2000, among others) we know that the mean quantization
error vanishes as the grid size N tends to infinity. Besides, its rate of convergence is ruled
by Zador theorem. However, computationally, finding explicitly Γ∗ can be a challenging
task. This has motivated the introduction of sub-optimal criteria linked to the notion of
stationary quantizer (see Pagès, 2014):

Definition 5.3.1. A quantizer Γ = {γ1, . . . , γN} inducing the quantization qN of the
random variable X̄ is said to be stationary if

E
[
X̄|qN (X̄)

]
= qN (X̄) . (5.9)
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Remark 2. An optimal quantizer is stationary, the vice-versa does not hold true in general
(see Pagès, 2014).

In order to compute optimal (or sub-optimal) quantizers, one first introduces a notion
of distance between a random variable X̄ and a quantizer Γ as follows

d(X̄,Γ)
.
= min

1≤i≤N
|X̄ − γi| ,

then one considers the so called distortion function

D(Γ)
.
= E

[
d(X̄,Γ)2

]
= E

[
min

1≤i≤N
|X̄ − γi|2

]
=

N∑

i=1

∫

Ci(Γ)
|ξ − γi|2 dPX̄(ξ) . (5.10)

It can be shown (see Pagès, 2014), that the distortion function is continuously differen-
tiable as a function of Γ. In particular, it turns out that stationary quantizers are critical
points of the distortion function, that is, a stationary quantizer Γ is such that OD(Γ) = 0.
Several numerical approaches have been proposed in order to find stationary quantizers
(for a review see Pagès et al., 2004). These approaches can be essentially divided into
two categories: gradient-based methods and fixed-point methods. The former class in-
cludes the Newton-Raphson algorithm, whereas the second category includes the Lloyd I
algorithm. More specifically, the Newton-Raphson algorithm requires the computation of
the gradient, OD(Γ), and of the Hessian matrix, O2D(Γ), of the distortion function. The
Lloyd I algorithm, on the other hand, does not require the computation of the gradient and
Hessian and it consists in a fixed-point algorithm based on the stationary Equation (5.9).

The Recursive Marginal Quantization Algorithm

The RMQA is a recursive algorithm, which has been recently introduced in Pagés and
Sagna (2015). It consists in quantizing the stochastic process X in Equation (5.1) by
working on the (marginal) random variables X̄tk , all k ∈ {1, . . . , n} in (5.2). The key idea
behind the RMQA is that the discrete-time Markov process X̄ = (X̄tk)0≤k≤n in Equation
(5.2) is completely characterized by the initial distribution of X̄t0 and by the transition

probability densities. We indicate by ̂̄Xtk the quantization of the random variable X̄tk

and by D̄(Γk) the associated distortion function.

Remark 3. The process ̂̄X = ( ̂̄Xtk)0≤k≤n is not, in general, a discrete-time Markov
Chain. Nevertheless, it is known (see, for instance Pagès et al., 2004) that there exists

a discrete-time Markov Chain, ̂̄X
c .

= ( ̂̄X
c

tk
)0≤k≤n, with initial distribution and transition

probabilities equal to those of ̂̄X. Hence, throughout the rest of the paper, when we will write
“discrete-time Markov Chain” within the Recursive Marginal Quantization framework we

will refer, by tacit agreement, to the process ̂̄X
c
.

Here we give a quick drawing of the RMQA. First of all, one introduces the Euler
operator associated to the Euler scheme in Equation (5.2):

Ek(x,∆t;Z)
.
= x+ b(tk, x)∆t+ σ(tk, x)

√
∆t Z

where Z ∼ N (0, 1), so that, from (5.2), X̄tk+1
= Ek(X̄tk ,∆t;Zk).

Lemma 1. Conditionally on the event {X̄tk = x}, the random variable X̄tk+1
is a

Gaussian random variable with mean mk(x) = x + b(tk, x)∆t and standard deviation
vk(x) =

√
∆t σ(tk, x), all k = 1, . . . , n− 1.
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Proof. It follows immediately from the equality X̄tk+1
= Ek(X̄tk ,∆t;Zk), given that Zk is

a standard Normal random variable.

At this point, one writes down the following crucial equalities:

D̄(Γk+1) = E
[
d(X̄tk+1

,Γk+1)2
]

= E
[
E
[
d(X̄tk+1

,Γk+1)2|X̄tk

]]

= E
[
d(Ek(X̄tk ,∆t;Zk),Γk+1)2

]
,

(5.11)

where (Zk)0≤k≤n is a sequence of i.i.d. one-dimensional standard Normal random vari-
ables. As said, stationary quantizers are zeros of the gradient of the distortion function. By
definition, the distortion function D̄(Γk+1) depends on the distribution of X̄tk+1

, which
is, in general, unknown. Nevertheless, thanks to Lemma 1, the distortion in Equation
(5.11) can be computed explicitly. Equation (5.11) is the essence of the RMQA. More
precisely, one starts setting the quantization of X̄t0 to x0, namely qN (X̄t0) = x0. Then,
one approximates X̄t1 with X̃t1

.
= E0(x0,∆t;Z1) and the distortion function associated

to X̄t1 with that associated to X̃t1 , namely D̄(Γ1) ≈ D̃(Γ1)
.
= E

[
d(E0(x0,∆t;Z1),Γ1)2

]
.

Then, one looks for a stationary quantizer Γ1 by searching for a zero of the gradient of
the distortion function, using either Newton-Raphson or Lloyd I method. The procedure
is applied iteratively at each time step tk, 1 ≤ k ≤ n, leading to the following sequence of
stationary (marginal) quantizers:

̂̃
Xt0

.
= X̄t0 ,

̂̃
Xtk = qN (X̃tk) and X̃tk+1

= Ek( ̂̃Xtk ,∆t;Zk+1) ,

(Zk)1≤k≤n i.i.d. Normal random variables independent from X̄t0 .

In Pagés and Sagna (2015) the authors give an estimation of the (quadratic) error bound

‖X̄tk − ̂̄Xtk‖2, for fixed k = 1, . . . , n.
At this point, the approximated transition probabilities (termed companion parameters
in Pagés and Sagna, 2015) are obtained instantaneously given the quantization grids and
Lemma 1. In particular:

Πk,k+1
i,j = P(γk+1

j |γki ) ≈ P
(
X̃tk+1

∈ Cj(Γk+1)|X̃tk ∈ Ci(Γk)
)
. (5.12)

In Appendix B.1 we provide the explicit expressions of the distortion function D̃(Γk+1)

and of the approximated transition probabilities P
(
X̃tk+1

∈ Cj(Γk+1)|X̃tk ∈ Ci(Γk)
)

.

In order to compute numerically the sequence of stationary quantizers (Γk)1≤k≤n in
Pagés and Sagna (2015) and Callegaro et al. (2015) authors employ the Newton-Raphson
algorithm. However, as pointed out in Callegaro et al. (2015), it may become unstable
when ∆t→ 0 due to the ill-condition number of the Hessian matrix O2D(Γ). An alterna-
tive approach is based on fixed-point algorithms, such as the Lloyd I method, even though
such method converges to the optimal solution with a smaller rate of convergence (see
Kieffer, 1982, for a discussion). For these reasons and as original contribution we combine
it with a particular acceleration scheme, called Anderson acceleration.

The Anderson accelerated procedure

The acceleration scheme, called Anderson acceleration, was originally discussed in Ander-
son (1965), and outlined in Walker and Ni (2011) together with some practical consid-
erations for implementations. For completeness, in Appendix B.2 we give some details
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on how the Lloyd I method works when employed in the recursive marginal quantization
setting.

Now, we discuss the major differences between a general fixed-point algorithm – and
its associated fixed-point iterations – and the same fixed-point method coupled with the
Anderson acceleration. We outline the practical features without giving all the technical
details concerning the numerical implementation of the accelerated scheme (please refer
to Walker and Ni, 2011, for an extensive discussion on this issue). A general fixed-point
problem – also known as Picard problem – and its associated fixed-point iteration are
defined as follows:

Fixed-point problem : Given g : RN → RN , find Γ ∈ RN s.t. Γ = g(Γ).

Algorithm (Fixed Point Iteration)

Given Γ0,

for l ≥ 0, l ∈ N
set Γl+1 = g(Γl) .

(5.13)

The same problem coupled with the Anderson acceleration scheme is modified as follows:

Algorithm (Anderson acceleration)

Given Γ0 and m ≥ 1 ,m ∈ N,
set Γ1 = g(Γ0),

for l ≥ 1, l ∈ N
set ml = min(m, l)

set Fl = (fl−ml , . . . , fl), where fi = g(Γi)− Γi

determine α(l) = (α
(l)
0 , . . . , α(l)

ml
)T that solves

min
α(l)∈Rml+1

‖Flα(l)‖2 s.t.

ml∑

i=0

α
(l)
i = 1

set Γl+1 =

ml∑

i=0

α
(l)
i g(Γl−ml+i).

(5.14)

The Anderson acceleration algorithm stores (at most) m user-specified previous function
evaluations and computes the new iterate as a linear combination of those evaluations
with coefficients minimising the Euclidean norm of the weighted residuals. In particular,
with respect to the general fixed-point iteration, Anderson acceleration exploits more
information in order to find the new iterate.

In Equation (5.14) Anderson acceleration algorithm allows to monitor the conditioning
of the least squares problem. In particular, we follow the strategy used in Walker and Ni
(2011) where the constrained least squares problem is first transformed in an unconstrained
one, then solved using a QR decomposition. The usage of the QR decomposition to
solve the unconstrained least square problem represents a good balance of accuracy and
efficiency. Indeed, if we name Fl the least squares problem matrix, it is obtained from
its predecessor Fl−1 by adding a new column on the right. The QR decomposition of
Fl can be efficiently attained from that of Fl−1 in O(mlN) arithmetic operations using
standard QR factor-updating techniques (see Golub and Van Loan, 2012). The Anderson
acceleration scheme speeds up the linear rate of convergence of the general fixed-point
problem without increasing its computational complexity. More importantly, it does not
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suffer the extreme sensitivity of the Newton-Raphson method to the choice of the initial
point (grid). We refer to the numerical experiments in Appendix B.3 for an illustration of
both the improvement of the Anderson acceleration with respect to the convergence speed
of the fixed point iteration and of the over-performance of Lloyd I method with respect to
the stability of the Newton-Raphson algorithm. Appendix B.3 is by no means intended to
be exhaustive, since it illustrates the performance of the Anderson acceleration algorithm
in some examples.

5.3.2 The Large Time Step Algorithm

The LTSA is employed to recover the transition probability matrix associated to a time
and space discretisation of a LV model. We start here by recalling some known results
about Markov processes, that will be used in what follows. We work under the following
assumption:

Assumption 5.3.1. The asset price process X follows the dynamics in Equation (5.1),
where the drift and diffusion coefficients b and σ are piecewise-constant functions of time.

Let us consider the Markov processX in Equation (5.1) and let us denote by p(t
′
, γ
′ |t, γ),

with 0 ≤ t < t′ ≤ T and γ, γ′ ∈ R, the transition probability density from state γ at time
t to state γ′ at time t′. Under some non stringent assumptions, it is known that p, as a
function of the backward variables t and γ, satisfies the backward Kolmogorov equation
(see Kijima, 1997; Karatzas and Shreve, 2012):

∂p

∂t
(t′, γ′|t, γ) + (Lp)(t′, γ′|t, γ) = 0 for (t, γ) ∈ (0, t′)× R ,

p(t, γ′|t, γ) = δ(γ − γ′) ,
(5.15)

where δ is the Dirac delta and L is the infinitesimal operator associated with the SDE
(5.1), namely a second order differential operator acting on functions f : R+ × R → R
belonging to the class C1,2 and defined as follows:

(Lf)(t, γ) = b(t, γ)
∂f

∂γ
(t, γ) +

1

2
σ2(t, γ)

∂2f

∂γ2
(t, γ) . (5.16)

The solution to Equation (5.15) can be formally written as

p(t
′
, γ
′ |t, γ) = e(t

′−t)Lp(t, γ). (5.17)

The LTSA consists in approximating the transition probabilities relative to a discrete-
time finite-state Markov chain approximation of X using Equation (5.17). We report now
a simple example to clarify how the LTSA works.

Example 1. Consider for example the case when b and σ in Equation (5.1) are defined
as:

b(t,Xt) = b1(Xt)11[0,T1](t) + b2(Xt)11[T1,T2](t) ,

σ(t,Xt) = σ1(Xt)11[0,T1](t) + σ2(Xt)11[T1,T2](t) ,

where T1 and T2 = T are two target maturities and b1, b2, σ1, σ2 suitable functions. The
transition probabilities in this case are explicitly given. In particular, if we denote by L1

Γ

and L2
Γ the infinitesimal Markov generators of the Markov chain approximation of X in



5.3. RECOVERING THE TRANSITION PROBABILITIES 123

[0, T1] and [T1, T2] respectively, the transition probabilities between any two arbitrary dates
t and t′ are given by:

e(t′−t)L1
Γ for 0 ≤ t ≤ t′ ≤ T1 ,

e(T1−t)L1
Γe(t′−T1)L2

Γ for 0 ≤ t ≤ T1 ≤ t′ ≤ T2 ,

e(t′−t)L2
Γ for T1 ≤ t ≤ t′ ≤ T2 .

In real market situations the above assumption on b and on σ is not at all restrictive, as
we are going to see in Section 5.4.

Let us now give more details on the algorithm. First of all, once a time discretisation
grid {u0, u1, . . . , um} has been chosen (think for example to the calibration pillars or to
the expiry dates of the calibration dates of vanilla options), we need to obtain the space
discretisation grids Γk, 0 ≤ k ≤ m. As a major difference with respect to the RMQA, the
LTSA grids do not stem from the minimization of any distortion function. In particular,
they can be defined with a large degree of arbitrariness (see for instance Appendix B.4)
as follows:

Γ0 ≡ x0 and Γk ≡ Γ
.
= {γ1, . . . , γN}, k = 1, . . . ,m ,

with the only restriction that the grid Γk ≡ Γ for all k = 1, . . . ,m. Actually, to ensure the
applicability of the LTSA (see also Remark 4) it is essential to keep Γk constant within
each time interval where the underlying process is time homogeneous. This apparent
disadvantage of the LTSA is indeed a crucial positive feature when numerical simulations
have to be implemented on Graphic Processing Units to exploit fast exponentiation.

Then, the method consists in discretising, opportunely, the Markov generator L and
in calculating, in an effective and accurate way, the transition probabilities. As regards
the discretisation, authors in Albanese and Mijatovic (2007) give a recipe to construct the
discrete counterpart of L – denoted by LΓ – so that the Markov chain approximation of X
converges to the continuous limit process in a weak or distributional sense (see Kushner
and Dupuis, 2001). In particular, LΓ corresponds to the discretisation of Equation (5.16)
through an explicit Euler finite difference approximation of the derivatives (see Mitchell
and Griffiths, 1980). In Appendix B.4 we provide more details on the discretisation of L.

Once LΓ is constructed, one writes a (matrix) Kolmogorov equation for the transition
probability matrix. In particular, using operator theory (Albanese, 2007), the transition
probability matrix between any two arbitrary dates uk and uk′ with 0 ≤ uk < uk′ ≤ T
can be expressed as a matrix exponential.

Remark 4. The piecewise time-homogeneous feature of the process X plays a crucial
role as regards the computational burden required to compute the transition probability
matrix. Indeed, in case of time-dependent drift and volatility coefficient, it can no longer
be expressed, in a straightforward way, as the exponential of the (time-dependent) Markov
generator LΓ (see, for instance Blanes et al., 2009).

The LTSA is computationally convenient with respect to the RMQA when pricing
path-dependent derivatives whose pay-off specification requires the observation of the asset
price on a pre-specified set of dates, for example, {u0, u1, . . . , um}. Indeed, in this case
we first calculate off-line the m transition matrices as in Equation (1), then we price
the derivative products via MC with coarse-grained resolution. In Figure 5.1 we plot
an example of a possible path corresponding to the case m = 3. This major difference
between RMQA and LTSA becomes more evident looking at Figures 5.2 and 5.3, where
we plot, respectively, a MC simulation connecting the initial point x0 with a random final
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Figure 5.1: Example of one Monte Carlo path sampled with the LTSA with u1 = t1, u2 = t3,
and u3 = t5.

Figure 5.2: Example of one MC path sampled with RMQA over a time-grid computed with
six time buckets.

point ̂̄Xt5 , and a direct jump to date simulation to random points ̂̄Xtk with k = 1, . . . , 5,
respectively.

We underline that, both the RMQA and the LTSA enable the computation of the price
of vanilla options by means of a straightforward scalar product. Indeed, the price of a
vanilla call option with strike K and maturity T = tm can be computed as follows

N∑

i=1

P(γmi |x0)(γmi −K)+ . (5.18)

LTSA implementation: More technical details

In order to compute effectively and accurately a matrix exponential and so recover the
transition probability for the LTSA, we use the so called Scaling and Squaring method
along with Padè approximation. In particular, we implement the version of the method
proposed by Higham (2005) because it outperforms, both in efficiency and in accuracy,
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Figure 5.3: Example of direct transitions from the initial point x0 to random points ̂̄Xtk with
k = 1, . . . , 5 computed with the RMQA.

previous implementations proposed in Sidje (1998) and Ward (1977). We now give a brief
drawing of the algorithm implemented in Higham (2005), outlining its practical features
but without giving all the mathematical details behind it. For a more extensive analysis on
the method we refer to the original paper. Besides, we refer to Baker and Graves-Morris
(1996) for an extensive description of Padè approximation.

The Scaling and Squaring algorithm exploits the following trivial property of the ex-
ponential function:

eL̃Γ =

(
e
L̃Γ
β

)β
, (5.19)

where (tk̃ − tk)LΓ
.
= L̃Γ, together with the fact that eL̃Γ is well approximated by a Padè

approximation near the origin, that is for small ‖L̃Γ‖, where ‖ · ‖ is any subordinate

matrix norm. In particular, Padè approximation estimates eL̃Γ with the ratio between two
(matrix) polynomials of degree 13. The mathematical elegance of the Padè approximation
is enhanced by the fact that the two approximating polynomial are known explicitly.

The main hint of the Scaling and Squaring method is to choose β in Equation (5.19) as
an integer power of 2, β = 2n say, so that L̃Γ/β has norm of order 1, to approximate

eL̃Γ/β by a Padè approximation, and then to compute eL̃Γ by repeating squaring n times.
In particular, we define δt

.
= (tk′ − tk)/2n. We use Padè approximation because of the

usage of the explicit Euler Scheme for the discretisation of L (see Appendix B.4). Indeed,
one needs to impose the so called Courant condition for the matrix δtLΓ. The Courant
condition requires that ‖δLΓ‖∞ < 1. This translates into the following stringent condition
for δt

δt <
1

2

(∆γ)2

σ(γi)
, ∀ 1 ≤ i ≤ N .

The usage of the Padè approximation permits to relax the last constraint. In particular,
the implementation in Higham (2005) allows ‖δLΓ‖∞ to be much larger.

Remark 5. The Backward Monte Carlo algorithm can be applied also to price financial
derivatives in stochastic volatility models. We do not deal with this aspect in this paper,
leaving it for future research. Indeed, the computational effort necessary to recover grids
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and transition probabilities increases substantially and to effectively compute matrix-matrix
multiplications we need to switch to an alternative technology based on Graphic Processing
Units.

5.4 Financial applications

In this final section we present and discuss how results achieved in the previous Sections 5.2
and 5.3 can be applied to finance, and in particular to option pricing in the FX market,
where spot and forward contracts, along with vanilla and exotic options are traded (see
Reiswich and Uwe, 2012, for a broad overview on FX market). In particular, we consider
the following types of path-dependent options: (i) Asian calls, (ii) up-and-out barrier
calls, (iii) automatic callable (or auto-callable). We choose two different models for the
underlying EUR/USD FX rate: a LV model as a benchmark and the CEV (see Cox, 1975),
coming from the academic literature.

5.4.1 Model, pay-off specifications and variance reduction techniques

Let us first introduce some notations relative to the LV model and to the CEV model.
Recall that we have assumed in Section 5.2 deterministic interest rates. Moreover, we
indicate by Xt the spot price at time t of one EUR expressed in USD and by Xt(T ) the
corresponding forward price at time t for delivery at time T . We introduce the so-called
normalized spot exchange rate xLVt

.
= Xt/X0(t), all t ∈ [0, T ] (where the superscript “LV”

clearly stands for Local Volatility), and we suppose that the process xLV
.
= (xLVt )t∈[0,T ]

follows the SDE {
dxLVt = xLVt η(t, xLVt ) dWt ,

xLV0 = 1 .

Hence, in this LV model, xLV corresponds to the underlying process X introduced in
Section 5.2, and besides making reference to Equation (5.1) we have b(t, xLVt ) = 0 and
σ(t, xLVt ) = η(t, xLVt )xLVt , where η : [0, T ] × R → R+ corresponds to the local volatility
function. Specifically, it is a cubic monotone spline for fixed t ∈ [0, T ] (see Fritsch and
Carlson, 1980, for an overview on interpolation technique) with flat extrapolation. The
set of points to be interpolated is determined numerically during the calibration proce-
dure. Precisely, we use the calibration procedure proposed in Reghai et al. (2012). This
procedure is particularly robust. Indeed, the resulting local volatility surface is ensured
to be a smooth function of the spot. In particular, this procedure leads to a piecewise
time-homogeneous dynamics for the process xLV .

The data set used in the calibration is available upon requests.

As a second example we consider the CEV, i.e., we assume that the asset price process X
follows a CEV dynamics {

dXt = rXt dt+ σXα
t dWt ,

X0 = x0 ∈ R+ ,
(5.20)

where r
.
= rd − rf ∈ R is the risk-free interest rate with rd the domestic interest rate

and rf the foreign interest rate, σ ∈ R+ is the volatility, and α ∈ [1/2, 1) is a constant
parameter. Even though coefficients in Eq. (5.20) do not satisfy the usual Lipschitz con-
ditions assumed in Section 5.2, it is well known that in our setting the SDE (5.20) admits
a unique strong solution. Moreover, Jeanblanc et al. (2009) (see Lemma 6.4.4.1) show
that – for the above choice of the parameter alpha – the solution is non-negative, in the
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sense that zero is an absorbing state. As far as the discretisation scheme is concerned, in
order to prevent X̄tk+1

to take negative values, the usual Euler-Maruyama recipe has to
be slightly adjusted. Labbé et al. (2011) review various possible modifications discussed
in the literature. For the general CEV model under consideration here, a non-negative
definite Euler-Maruyama scheme and its weak and strong convergence has been studied
in Bossy and Diop (2007) and Berkaoui et al. (2008), respectively.

Then, given a time discretisation grid {0 = t0, t1, . . . , tn = T} on [0, T ] as in Section
5.2 and making reference to the Euler-Maruyama scheme in Equation (5.2) we consider
the unidimensional pay-off specifications below. In particular, we compute the price at
time t0 = 0.

i) Asian calls. The discounted pay-off function of a discretely monitored Asian call
option is

FA(X̄0, . . . , X̄tn)
.
= e−r(tn−t0) max

(
1

n+ 1

n∑

i=0

X̄ti −K, 0
)
,

where K is the strike price and T > 0 the maturity. As benchmark price for an Asian
call, we consider the price computed with control variates (see, for instance Glasser-
man, 2004, Chapter 4). Specifically, under the risk-neutral measure the discounted
asset price is a martingale and we can employ it as the control variate variable. The
comparison among the different results is postponed to the next section.

ii) Up-and-out barrier calls. We consider barrier options of European style. The
discounted pay-off at maturity T > 0 of an up-and-out barrier call is given by

e−rT max(XT −K, 0)11{τ>T}, (5.21)

where K is the strike price, τ
.
= inf{t ≥ 0 : Xt ≥ B} and B is the upper barrier.

The simplest method to price such an option is to consider the discrete version of
the continuous time discounted pay-off in Equation (5.21)

FB(X̄t0 , . . . , X̄tn)
.
= e−r(tn−t0) max(X̄tn −K, 0)

n∏

k=0

11{X̄tk<B} .

Proceeding this way, however, the price of the option is overestimated because X
can cross the barrier at some time t between two grid points k∆t and (k+ 1)∆t, 0 ≤
k ≤ n− 1, while being never above the barrier at the observation dates t0, t1, . . . tn.
In Gobet (2000) (see, also Glasserman, 2004), the author proposes a strategy to
obtain a better approximation of the price of the option in Equation (5.21) when
employing MC simulation. It relies on the observation that the probability of the
Brownian motion breaching the barrier is computable from the knowledge of the
volatility and of the value of the spot X at the two end points of the observation
interval. Namely, given the points X̄tk and X̄tk+1

, 0 ≤ k ≤ n − 1, the probability
that X has reached the barrier B from below in (tk, tk+1) conditioned on the fact
that it is below the barrier at both X̄tk and X̄tk+1

is given by

p̄k
.
= 1− exp

[
− 2

σk∆t
(B − X̄tk)(B − X̄tk+1

)

]
,

where σk is the diffusive coefficient of the underlying asset price in (tk, tk+1) (assum-
ing B is greater than both X̄tk and X̄tk+1

). So, at each tk = k∆t, 1 ≤ k ≤ n, and
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for all the MC paths `, 1 ≤ ` ≤ NMC , after verifying that X̄
(`)
tk

< B, we investigate
whether the simulated path has reached the barrier B over the interval (tk−1, tk). In
particular, we draw a random variable from a Bernoulli distribution with parameter
(1 − p̄k−1): If the outcome is favorable then the barrier has been reached over this
interval and the price associated to the path is zero.
The variance of the MC estimator can be further reduced by applying an impor-
tance sampling technique. Given the value of X̄tk−1

, each X̄tk is distributed as a
Gaussian random variable with mean µ̄tk

.
= X̄tk−1

+ b(tk−1, X̄tk−1
)∆t and standard

deviation σ̄tk
.
= σ(tk−1, X̄tk−1

)
√

∆t. Then, one modifies this density so that values
of X̄tk greater than B are not sampled. The procedure to draw a Gaussian be-
low B is to sample a uniform random variable U and set X̄tk = F−1

X̄tk
(θU), with

θ = P
(
X̄tk < B

)
. The final value is multiplied by θ. This algorithm is implemented

in Joshi and Leung (2011) to price continuous barrier options in a jump-diffusion
model.
As for the Asian option case, we postpone the comparison among the various tech-
niques to Section 5.4.2.

iii) Automatic callable (or auto-callable) The discounted pay-off of an auto-callable
option (they were first issued in the U.S. by BNP Paribas in August 2003 as cited
for instance in Deng et al. (2011)) with unitary notional is given by

{
e−r(t

c
i−t0)Qi if X̄tcj

< X0b ≤ X̄tci
for all j < i ,

e−r(tn−t0)Xtn
X0

if X̄tci
< X0b for all i = 1, . . . ,m ,

where {tc1, . . . , tcm} is a set of pre-fixed call dates, b > X0 is a pre-fixed barrier level,
and {Q1, . . . , Qm} is a set of pre-fixed coupons. The set of call dates {tc1, . . . , tcm}
does not coincide with the set of times of the Euler scheme discretisation {t0, . . . , tn}.
In particular, the latter has finer time resolution grid.

We show in Section 5.4.2 that all previous pay-offs can be priced efficiently by using
our novel algorithm, i.e., by reverting the Monte Carlo paths and simulating them from
maturity back to the initial date.

5.4.2 Numerical results and discussion

Let us introduce some terminology that we will use in the summary Tables of our numer-
ical results. In particular, we will denote by: (i) Euler Scheme the prices obtained via a
standard MC procedure on the process X̄, (ii) Euler Scheme C.V. the prices obtained via
a MC procedure on the process X̄ when using the variance reduction technique Control
Variates, (iii) Euler Scheme I.S. the prices obtained via a MC procedure on the process X̄
when using the variance reduction technique Importance Sampling, (iv) Forward RMQA

the prices obtained via a forward MC procedure on ̂̄X from the starting date to the matu-
rity, when grids and transition probabilities are computed through the RMQA, (v) Forward

LTSA the prices obtained via a forward MC procedure on ̂̄X from the starting date to the
maturity, when grids and transition probabilities are computed through the LTSA, (vi)

Backward RMQA the prices computed through the backward Monte Carlo algorithm on ̂̄X
when grids and transition probabilities are computed through the RMQA, (vii) Backward

LTSA the prices computed through the backward Monte Carlo algorithm on ̂̄X when grids
and transition probabilities are computed through the LTSA, (viii) Benchmark the price
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computed either as an Euler Scheme price (in case of Asian and up-and-out barrier call
options) or as a Forward LTSA price (in case of auto-callable option) with an intensive
Monte Carlo simulation in order to reduce the pricing error below the last significant digit.
Besides, in brackets we will report the numerical error corresponding to one standard de-
viation.

Let us now stress some aspects related to the implementation of the backward Monte
Carlo algorithm along with the procedures described in Sections 5.3.1 and 5.3.2.

In order to have a meaningful comparison between Euler Scheme-, Forward -, and
Backward -type prices, for each of the N+ points γ̃nin ∈ Γ̃n we generate N in

MC random

paths in such a way that N in
MC × N+ = NMC , where NMC indicates the number of

simulations employed to compute either Euler Scheme- or Forward -type prices. Besides,
Γ̃n

.
= {γni ∈ Γn : K ≤ γni ≤ B} when pricing up-and-out call barrier options and Γ̃n = Γn

when pricing In-The-Money (ITM), At-The-Money (ATM), Out-The-Money Asian call
options and auto-callable options.

Concerning the granularity of the state-space, we fix it in such a way that the error on
vanilla call option prices, computed as

|σmkt − σalg| (5.22)

is less than or equal to 5 bps (recall that 1 bp = 10−4). In Equation (5.22), σmkt is
the market implied volatility, whereas σalg is the volatility implicitly obtained by using
Equation (5.18). In particular we set the cardinality of the quantizers Γk, 1 ≤ k ≤ n, to
100. We refer to Appendix B.3 and B.4 for precise considerations on this aspect.

The stopping criteria for the RMQA corresponds to ‖Γl+1
k − Γlk‖ ≤ 10−5, 1 ≤ k ≤ n,

where Γlk is the quantizer computed by the algorithm at time tk ∈ {t1, . . . , tn} at the l-th

iteration. Moreover, in the Backward Monte Carlo algorithm case, for each point in Γ̃n we
generate N in

MC = NMC/|N+| = 104/|Γ̃n| random paths. Let us now come to the discussion
of the numerical results.

In Tables 5.1 and 5.2 we report up-and-out barrier call option prices for both LV and
CEV, as well as their relative pricing errors. In order to test the performances of our
algorithm we price ITM, ATM and OTM options. In particular, for both models the
initial spot price is X̄0 = 1.36. This value corresponds to the value of the EUR/USD
exchange rate as of date 23-June-2014. Besides, for both dynamics the value of the pair
strike-barrier, (K,B), is set to (1.35, 1.39), (1.36, 1.39) and to (1.37, 1.39) for ITM, ATM
and OTM up-and-out call barrier options respectively. The maturity T is 6 months in
the case of CEV model. In the case of LV model the maturity is T = 1 month, T = 6
months or T = 12 months. The number of Euler steps is n = 9, n = 51 and n = 100 for
T = 1 month, T = 6 months or T = 12 months respectively. For the CEV model we fix
α = 0.5 and r = rd − rf = 0.32% (the latter corresponds to the value of the 6 months
domestic interest rates implied by the forward USD curve at pricing date). As regards the
parameter σ we vary it from σ = 5% to σ = 20% with steps ∆σ = 5%.

In Tables 5.1 and 5.2 we compare the Euler Scheme Monte Carlo price and error with
those of the other methods for the LV and CEV dynamics, respectively. For both models
the Backward Monte Carlo algorithm exhibits the best performances. To better visualize
this fact Figures 5.4 and 5.5 report the ratio between the Euler Scheme MC error and that
of the other techniques, henceforth Error ratio, for the LV and the CEV respectively. Some
observations arise. The two methods employed to recover grids and transition probabilities
lead to similar results. Actually, in the case of CEV model with σ = 20%, the algorithm
performs better when grids and probabilities are recovered through the LTSA. Figure 5.5
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suggests that the gain in efficiency is more evident if we increase the value of the parameter
σ. Intuitively, this happens because the probability for the price paths to hit the barrier
B over the life of the option increases with σ. Moreover, for a fixed value of σ the gain
in efficiency is more evident when pricing OTM options. This happens because for OTM
options a relevant number of forward paths do not contribute to the pay-off. In order
to increase the pricing accuracy of the Euler Scheme MC, it would be necessary to force
paths to sample the region in which the pay-off is different from zero, namely between
the strike K and the barrier B. Remind that in the Euler Scheme price we have already
taken into account the possibility that the price path hits the barrier over a time interval
(tk−1, tk), 1 ≤ k ≤ n.

Table 5.1: Summary output of the results when pricing an up-and-out barrier call option in a
LV dynamics

Up-and-out barrier call

Algorithm ITM ATM OTM

Local Volatility model

T = 1 month

Euler Scheme 5.156E − 3(7.3E − 5) 2.316E − 3(4.5E − 5) 6.90E − 4(2.1E − 5)
Euler Scheme I.S. 5.089E − 3(6.4E − 5) 2.338E − 3(4.1E − 5) 6.95E − 4(1.9E − 5)
Forward RMQA 4.950E − 3(6.4E − 5) 2.073E − 3(3.8E − 5) 5.74E − 4(1.6E − 5)
Forward LTSA 4.929E − 3(6.4E − 5) 2.081E − 3(3.8E − 5) 5.82E − 4(1.6E − 5)
Backward RMQA 5.159E − 3(2.7E − 5) 2.291E − 3(1.4E − 5) 6.78E − 4(5E − 6)
Backward LTSA 5.118E − 3(2.7E − 5) 2.252E − 3(1.4E − 5) 6.65E − 4(5E − 6)
Benchmark 5.150E − 3 2.308E − 3 6.94E − 4

T = 6 months
Euler Scheme 1.089E − 3(3.7E − 5) 4.47E − 4(1.9E − 5) 1.37E − 4(9E − 6)
Euler Scheme I.S. 1.082E − 3(3.2E − 5) 4.40E − 4(1.7E − 5) 1.30E − 4(8E − 6)
Forward RMQA 9.90E − 4(3.45− 5) 4.11E − 4(1.9E − 5) 1.24E − 4(3E − 6)
Forward LTSA 9.92E − 4(3.3E − 5) 4.02E − 4(1.8E − 5) 1.16E − 4(3E − 6)
Backward RMQA 1.046E − 3(1.7E − 5) 4.59E − 4(9E − 6) 1.38E − 4(8E − 6)
Backward LTSA 1.053E − 3(1.7E − 5) 4.54E − 4(9E − 6) 1.38E − 4(7E − 6)
Benchmark 1.069E − 3 4.56E − 4 1.41E − 4

T = 12 months

Euler Scheme 3.01E − 4(2.0E − 5) 1.28E − 4(1.1E − 5) 3.84E − 5(5.2E − 6)
Euler Scheme I.S. 2.70E − 4(1.6E − 5) 1.37E − 4(1.0E − 5) 3.09E − 5(3.8E − 6)
Forward RMQA 2.91E − 4(1.9E − 5) 1.20E − 4(1.05− 5) 3.05E − 5(3.5E − 6)
Forward LTSA 2.81E − 4(1.8E − 5) 1.17E − 4(1.0E − 5) 3.27E − 5(5.4E − 6)
Backward RMQA 2.884− 4(8E − 6) 1.17E − 4(4E − 6) 3.64E − 5(1.3E − 6)
Backward LTSA 2.91E − 4(8E − 6) 1.16E − 4(4E − 6) 3.47E − 5(1.3E − 6)
Benchmark 2.769E − 4 1.18E − 4 3.72E − 5

Notes: Numerical values for Euler Scheme, Euler Scheme I.S., Forward RMQA, Forward LTSA,
Backward RMQA, Backward LTSA, Benchmark prices for an up-and-out barrier call option and
LV dynamics. Errors (in brackets) correspond to one standard deviation. The initial spot price
is X̄0 = 1.36, whereas the pair strike-barrier is set to (1.35, 1.39), (1.36, 1.39), (1.37, 1.39) for
ITM, ATM and OTM options respectively. The maturity T is 1 month, 6 months or 12 months.

In Table 5.3 and 5.4 we compare performances of the Euler Scheme Monte Carlo with
those of the Backward Monte Carlo when pricing Asian call options, for both LV and CEV
model. We set X̄0 = 1.36. As done for up-and-out barrier calls we test the efficiency of our
novel algorithm when pricing ITM (K = 1.35), ATM (K = 1.36) and OTM (K = 1.37)
options. The maturity T is 6 months in the case of CEV model. In the case of LV model the



5.4. FINANCIAL APPLICATIONS 131

Table 5.2: Summary output of the results when pricing an up-and-out barrier call option in a
CEV dynamics

Up-and-out barrier call

Algorithm ITM ATM OTM

CEV model

σ = 5%

Euler Scheme 2.491E − 3(6.8E − 5) 1.102E − 3(3.9E − 5) 3.34E − 4(1.8E − 5)
Euler Scheme I.S. 2.457E − 3(6.0E − 5) 1.087E − 3(3.4E − 5) 3.52E − 4(1.6E − 5)
Forward RMQA 2.417E − 3(6.7E − 5) 1.088E − 3(3.9E − 5) 3.40E − 4(1.8E − 5)
Forward LTSA 2.680E − 3(7.1E − 5) 1.109E − 3(4.0E − 5) 3.32E − 4(1.9E − 5)
Backward RMQA 2.426E − 3(3.4E − 5) 1.087E − 3(1.7E − 5) 3.45E − 4(7E − 6)
Backward LTSA 2.525E − 3(3.3E − 5) 1.114E − 3(1.7E − 5) 3.50E − 4(7E − 6)
Benchmark 2.509E − 3 1.117E − 3 3.46E − 4

σ = 10%

Euler Scheme 4.06E − 4(2.8E − 5) 1.71E − 4(1.5E − 5) 5, 63E − 5(7.4E − 6)
Euler Scheme I.S. 4.22E − 4(2.4E − 5) 1.57E − 4(1.2E − 5) 5.82E − 5(6.3E − 6)
Forward RMQA 5.07E − 4(3.25− 5) 1.90E − 04(1.7E − 5) 5.26E − 5(7.3E − 6)
Forward LTSA 4.25E − 4(2.9E − 5) 1.86E − 04(1.7E − 5) 5.28E − 5(7.2E − 6)
Backward RMQA 4.16E − 4(1.2E − 5) 1.86E − 4(6E − 6) 5.24E − 5(2.2E − 6)
Backward LTSA 4.13E − 4(1.1E − 5) 1.71E − 4(5E − 6) 5.02E − 5(2.1E − 6)
Benchmark 4.08E − 4 1.73E − 4 5.12E − 5

σ = 15%

Euler Scheme 1.64E − 4(1.8E − 5) 5.26E − 5(8.8E − 6) 1.75E − 5(4.2E − 6)
Euler Scheme I.S. 1.36E − 4(1.2E − 5) 5.81E − 5(7.1E − 6) 2.08E − 5(3.4E − 6)
Forward RMQA 1.44E − 4(1.7E − 5) 5.48E − 5(9.25− 5) 1.96E − 5(4.7E − 6)
Forward LTSA 1.35E − 4(1.6E − 5) 5.28E − 5(9.0E − 5) 1.78E − 5(4.2E − 6)
Backward RMQA 1.24E − 4(5E − 6) 5.22E − 5(2.7E − 6) 1.69E − 5(1.1E − 6)
Backward LTSA 1.28E − 4(5E − 6) 5.77E − 5(2.7E − 6) 1.93E − 5(1.1E − 6)
Benchmark 1.31E − 4 5.54E − 5 1.65E − 5

σ = 20%

Euler Scheme 6.20E − 5(1.2E − 5) 2.38E − 5(5.8E − 6) 5.24E − 6(2.2E − 06)
Euler Scheme I.S. 5.49E − 5(8E − 6) 3.14E − 5(5.4E − 6) 6.22E − 6(1.8E − 06)
Forward RMQA 6.71E − 5(1.2E − 5) 2.34E − 5(5.9E − 6) 5.93E − 6(2.3E − 06)
Forward LTSA 5.73E − 5(9E − 6) 2.45E − 5(4.4E − 6) 4.27E − 6(1.9E − 06)
Backward RMQA 5.75E − 5(3E − 6) 2.22E − 5(1.4E − 6) 6.50E − 6(6E − 07)
Backward LTSA 5.61E − 5(3E − 6) 2.06E − 5(1.2E − 6) 6.28E − 6(4E − 07)
Benchmark 5.66E − 5 2.38E − 5 7.10E − 6

Notes: Numerical values for Euler Scheme, Euler Scheme I.S., Forward RMQA, Forward LTSA,
Backward RMQA, Backward LTSA, Benchmark prices for an up-and-out barrier call options and
CEV dynamics. Errors (in brackets) correspond to one standard deviation. The initial spot price
is X̄0 = 1.36, whereas the pair strike-barrier is set to (1.35, 1.39), (1.36, 1.39), (1.37, 1.39) for ITM,
ATM and OTM options respectively. The maturity T is 6 months. σ varies from 5% to 20%
with step of 5%.
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Figure 5.4: Plot of the Error ratio as a function of the maturity T for LV model when
pricing up-and-out barrier call option. The initial spot price is X̄0 = 1.36, whereas the
pair strike-barrier is set to (1.35, 1.39), (1.36, 1.39), (1.37, 1.39) for ITM, ATM and OTM
options respectively.
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maturity is T = 1 month, T = 6 months or T = 12 months. The number of Euler steps is
n = 9, n = 51 and n = 100 for T = 1 month, T = 6 months or T = 12 months respectively.
Also in this case, for CEV model we fix the value of the risk-free rate r = rd− rf = 0.32%
and of α = 0.5, and we vary the value of σ from 5% to 20% with steps ∆σ = 5%. Results
for the LV dynamics are reported in Table 5.3, whereas Table 5.4 reports the results for
the CEV. Table 5.3 suggests that the strategy of reverting the MC paths and simulating
them from maturity back to starting date is an effective alternative to the pure Euler
MC or to Euler MC combined with a control variates variance reduction technique. In
this case the improvement in efficiency derives from the fact that with Backward MC
we decide the number of paths to sample from each of the final points in Γn, sampling
efficiently also those regions that are infrequently explored by the price process because of
its diffusive behaviour. Besides, we note that grids and transition probabilities recovered
through the RMQA perform better than LTSA. This is because the grids in the RMQA
are obtained as local minima of the distortion function, i.e. they well approximate the
law of the stochastic process at any discretisation date. Figures 5.6 and 5.7 support our
conclusions, especially when pricing OTM options. The Error ratio is almost constant
across the value of σ for a fixed scenario (ITM, ATM or OTM).

In Table 5.5 we report prices of auto-callable options for LV dynamics. In this case,
we compare only the Backward LTSA with the Forward LTSA. The Euler Scheme MC is
ineffective for pay-offs specifications which depend on the observation of the underlying
on a pre-specified set of dates (such as auto-callable and European). The multinomial tree
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Table 5.3: Summary output of the results when pricing an Asian option in a LV dynamics

Asian option

Algorithm ITM ATM OTM

Local Volatility model

T = 1 month

Euler Scheme 8.669E − 3(8.0E − 5) 3.920E − 3(5.9E − 5) 1.321E − 3(3.1E − 5)
Euler Scheme C.V. 8.669E − 3(4.1E − 5) 3.988E − 3(3.7E − 5) 1.379E − 3(2.9E − 5)
Forward RMQA 8.860E − 3(8.2E − 5) 4.062E − 3(6.1E − 5) 1.433E − 3(3.7E − 5)
Forward LTSA 8.773E − 3(8.2E − 5) 3.988E − 3(6.0E − 5) 1.430E − 3(3.7E − 5)
Backward RMQA 8.725E − 3(4.2E − 5) 3.948E − 3(3.1E − 5) 1.362E − 3(1.7E − 5)
Backward LTSA 8.690E − 3(5.8E − 5) 3.957E − 3(4.3E − 5) 1.373E − 3(2.3E − 5)
Benchmark 8.750E − 3 3.978E − 3 1.374E − 3

T = 6 months

Euler Scheme 1.3656E − 2(1.64E − 4) 9.408E − 3(1.41E − 4) 6.149E − 3(1.17E − 4)
Euler Scheme C.V. 1.3980E − 2(1.06E − 4) 9.707E − 3(0.98E − 4) 6.402E − 3(0.88E − 4)
Forward RMQA 1.3698E − 2(1.64E − 4) 9.446E − 3(1.40E − 4) 6.197E − 3(1.16E − 4)
Forward LTSA 1.3535E − 2(1.61E − 4) 9.228E − 3(1.37E − 4) 5.792E − 3(1.12E − 4)
Backward RMQA 1.3536E − 2(1.09E − 4) 9.305E − 3(0.92E − 4) 6.068E − 3(0.74E − 4)
Backward LTSA 1.3567E − 2(1.43E − 4) 9.321E − 3(1.23E − 4) 5.852E − 3(0.93E − 4)
Benchmark 1.3724E − 2 9.4663E − 3 6.196E − 3

T = 12 months

Euler Scheme 1.8160E − 2(2.33E − 4) 1.4019E − 2(2.10E − 4) 1.0548E − 2(1.86E − 4)
Euler Scheme C.V. 1.7840E − 2(1.59E − 4) 1.3662E − 2(1.50E − 4) 1.0203E − 2(1.39E − 4)
Forward RMQA 1.8085E − 2(2.27E − 4) 1.3912E − 2(2.04E − 4) 1.0413E − 2(1.79E − 4)
Forward LTSA 1.7709E − 2(2.28E − 4) 1.3527E − 2(2.06E − 4) 1.0084E − 2(1.83E − 4)
Backward RMQA 1.8025E − 2(1.66E − 4) 1.3862E − 2(1.48E − 4) 1.0341E − 2(1.29E − 4)
Backward LTSA 1.7898E − 2(2.10E − 4) 1.3685E − 2(1.87E − 4) 1.0183E − 2(1.62E − 4)
Benchmark 1.8111E − 2 1.3939E − 2 1.0457E − 2

Notes: Numerical values for Euler Scheme, Euler Scheme C.V., Forward RMQA, Forward
LTSA, Backward RMQA, Backward LTSA, Benchmark prices for an Asian option and LV dy-
namics. Errors (in brackets) correspond to one standard deviation. The initial spot price is
X̄0 = 1.36, whereas the value of the strike is set to 1.35, 1.36 and 1.37 for ITM, ATM and OTM
options respectively. The maturity T is 1 month, 6 months or 12 months. The Euler step is
∆t = 0.01 (n = 9, n = 51 and n = 100 when T is 1 month, 6 months or 12 months respectively).



134 CHAPTER 5. A BACKWARD MONTE CARLO ALGORITHM

Table 5.4: Summary output of the results when pricing an Asian option in a CEV dynamics

Asian option

Algorithm ITM ATM OTM

CEV model

σ = 5%
Euler Scheme 1.5942E − 2(1.75E − 4) 9.962E − 3(1.43E − 4) 5.651E − 3(1.09E − 4)
Euler Scheme C.V. 1.6284E − 2(1.04E − 4) 1.0245E − 2(9.5E − 5) 5.859E − 3(8.0E − 5)
Forward RMQA 1.5194E − 2(1.74E − 4) 9.969E − 3(1.42E − 4) 5.649E − 3(1.07E − 4)
Forward LTSA 1.6202E − 2(1.77E − 4) 1.0021E − 2(1.44E − 4) 5.727E − 3(1.10E − 4)
Backward RMQA 1.5844E − 2(1.05E − 4) 9.867E − 3(6.5E − 5) 5.542E − 3(6.5E − 5)
Backward LTSA 1.5941E − 2(1.53E − 4) 1.0021E − 2(9.3E − 5) 5.649E − 3(9.3E − 5)
Benchmark 1.5964E − 2 9.985e− 3 5.662E − 3

σ = 10%

Euler Scheme 2.4825E − 2(3.17E − 4) 1.9362E − 2(2.84E − 4) 1.474E − 2(2.50E − 4)
Euler Scheme C.V. 2.5449E − 2(1.99E − 4) 1.9929E − 2(1.89E − 4) 1.5245E − 2(1.75E − 4)
Forward RMQA 2.4634E − 2(3.12− 4) 1.9202E − 2(2.79E − 4) 1.4611E − 2(2.44E − 4)
Forward LTSA 2.4972E − 2(3.17E − 4) 1.9487E − 2(2.84E − 4) 1.4847E − 2(2.50E − 4)
Backward RMQA 2.4588E − 2(1.92E − 4) 1.9135E − 2(1.71E − 4) 1.4506E − 2(1.49E − 4)
Backward LTSA 2.5015E − 2(2.50E − 4) 1.9490E − 2(2.23E − 4) 1.4808E − 2(1.94E − 4)
Benchmark 2.4871E − 2 1.9441E − 2 1.4789E − 2

σ = 15%
Euler Scheme 3.4044E − 2(4.60E − 4) 2.8765E − 2(4, 27E − 4) 2.4047E − 2(3.93E − 4)
Euler Scheme C.V. 3.4938E − 2(2.93E − 4) 2.9617E − 2(2, 83E − 4) 2.4848E − 2(2.70E − 4)
Forward RMQA 3.4071E − 2(4.57E − 4) 2.8818E − 2(4, 23E − 4) 2.4113E − 2(3.89E − 4)
Forward LTSA 3.4378E − 2(4.62E − 4) 2.9075E − 2(4, 29E − 4) 2.4334E − 2(3.95E − 4)
Backward RMQA 3.3832E − 2(2.78E − 4) 2.8548E − 2(2.57E − 4) 2.3820E − 2(2.36E − 4)
Backward LTSA 3.4027E − 2(3.51E − 4) 2.8680E − 2(3.24E − 4) 2.3921E − 2(2.95E − 4)
Benchmark 3.411E − 2 2.883E − 2 2.4130E − 2

σ = 20%

Euler Scheme 4.3345E − 2(6.05E − 4) 3.8166E − 2(5.72E − 4) 3.3414E − 2(5.38E − 4)
Euler Scheme C.V. 4.4514E − 2(3.88E − 4) 3.9306E − 2(3.77E − 4) 3.4506E − 2(3.58E − 4)
Forward RMQA 4.3372E − 2(5.97E − 4) 3.8191E − 2(5.63E − 4) 3.3428E − 2(5.29E − 4)
Forward LTSA 4.3422E − 2(6.01E − 4) 3.8246E − 2(5.67E − 4) 3.3479E − 2(5.34E − 4)
Backward RMQA 4.3013E − 2(3.62E − 4) 3.7836E − 2(3.41E − 4) 3.3086E − 2(3.20E − 4)
Backward LTSA 4.3505E − 2(4.55E − 4) 3.8291E − 2(4.28E − 4) 3.3502E − 2(3.99E − 4)
Benchmark 4.3426E − 2 3.8265E − 2 3.3524E − 2

Notes:Numerical values for Euler Scheme, Euler Scheme C.V., Forward RMQA, Forward LTSA,
Backward RMQA, Backward LTSA, Benchmark prices for an Asian call option and CEV dy-
namics. Errors (in brackets) correspond to one standard deviation. The initial spot price is
X̄0 = 1.36, whereas the strike is 1.35, 1.36 and 1.37 for ITM, ATM and OTM options respec-
tively. The maturity T is 6 months. The Euler time step is ∆ = 0.01 (n = 51). σ varies from
5% to 20% with step of 5%.
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Figure 5.5: Plot of the Error ratio as a function of the parameter σ for CEV model when
pricing up-and-out barrier call option. The initial spot price is X̄0 = 1.36, whereas the
pair strike-barrier is set to (1.35, 1.39), (1.36, 1.39), (1.37, 1.39) for ITM, ATM and OTM
options respectively.
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and the transition probability matrices are recovered by means of the LTSA. In order to
compare the two MC methodologies we fix a set of call-dates {tc1, . . . , tc4} and a set of pre-
fixed coupon {Q1, . . . , Q4} and we vary the value of the barrier b. Precisely, {t1, . . . , t4} =
{1, 3, 6, 12} months, {Q1, . . . , Q4} = {5%, 10%, 15%, 20%} with unitary notional, and b ∈
{X̄0, 1.05X̄0, 1.1X̄0}. As usual, at pricing date the EUR/USD exchange rate is X̄0 = 1.36.
Results in Table 5.5 show that the improvement on pricing accuracy due to the backward
simulation of the price paths widens with the increase of the value of the barrier b (in
real market usually one has b > X̄0). The ratio between the pricing error of the Forward
MC and that of the Backward MC is ≈ 0.8, ≈ 2 and ≈ 5.5 for b = X̄0, b = 1.05X̄0

and b = 1.1X̄0 respectively. Intuitively, this happens because an increase in the value of
the barrier b makes the early exercise of the option less probable, and a larger number
of paths will reach the final domain of integration. Then, our methodology allows to
efficiently sample paths drawing from regions that would be infrequently explored by the
forward Euler algorithm.
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Figure 5.6: Plot of the Error ratio as a function of the maturity T for LV model when
pricing Asian call option. The initial spot price is X̄0 = 1.36, whereas the strike is set to
1.35, 1.36 and 1.37 for ITM, ATM and OTM options respectively.
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Table 5.5: Summary output of the results when pricing an auto-callable option in a LV dynamics

Auto-callable option

Algorithm ITM ATM OTM

Barrier b b = X̄0 b = 1.05X̄0 b = 1.1X̄0

Local Volatility model

Forward LTSA 0.04107(0.00056) 0.01902(0.00074) 0.00447(0.00058)
Backward LTSA 0.04099(0.00072) 0.01856(0.00039) 0.00377(0.00011)
Benchmark 0.04099 0.01820 0.00357

Notes:Numerical values for Forward, Backward and Benchmark prices for an auto-callable op-
tion in the LV. Errors (in brackets) correspond to one standard deviation. The initial spot price
is X̄0 = 1.36. The value of the barrier b is equal to X̄0, 1.05X̄0 and 1.1X̄0 for the three experi-
ments considered. The call-dates are fixed to {1, 3, 6, 12} months and the pre-fixed coupons are
fixed to {5%, 10%, 15%, 20%} of a unitary notional.
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Figure 5.7: Plot of the Error ratio as a function of the parameter σ for CEV model when
pricing Asian call options. The initial spot price is X̄0 = 1.36, whereas the strike is set
to 1.35, 1.36 and 1.37 for ITM, ATM and OTM options respectively.
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5.5 Conclusions

In this chapter, we presented a novel approach – termed backward Monte Carlo – to
the Monte Carlo simulation of continuous time diffusion processes. We exploit recent
advances in the quantization of diffusion processes to approximate the continuous process
with a discrete-time Markov Chain defined on a finite grid of points. Specifically, we
consider the Recursive Marginal Quantization Algorithm and as a first contribution we
investigate a fixed-point scheme – termed Lloyd I method with Anderson acceleration –
to compute the optimal grid in a robust way. As a complementary approach, we consider
the grid associated with the explicit scheme approximation of the Markov generator of
a piecewise constant volatility process. The latter approach – termed Large Time Step
Algorithm – turns out to be competitive in pricing pay-off specifications which require the
observation of the price process over a finite number of pre-specified dates. Both methods
– quantization and the explicit scheme – provide us with the marginal and transition
probabilities associated with the points of the approximating grid. Sampling from the
discrete grid backward – from the terminal point to the spot value of the process – we
design a simple but effective mechanism to draw Monte Carlo paths and achieve a sizeable
reduction of the variance associated with Monte Carlo estimators. Our conclusion has
been extensively supported by the numerical results presented in the final section.

B Appendix

B.1 The distortion function and companion parameters

We suppose to have access to the quantizer Γk of X̃tk and to the related Voronoi tes-
sellations {Ci(Γk)}i=1,...,N . We derive an explicit expression for the distortion function

D̃(Γk+1) as follows:

D̃(Γk+1) = E
[
d(Ek( ̂̃Xtk ,∆t;Ztk+1

),Γk+1)2

]

=
N∑

i=1

E
[
d(Ek(γki ,∆t;Ztk+1

),Γk+1)2
]
P(X̃tk ∈ Ci(Γk))

=
N∑

i=1

N∑

j=1

(mk(γ
k
i )− γk+1

j )2(Φ(γk+1,j+(γki ))− Φ(γk+1,j−(γki )))P(X̃tk ∈ Ci(Γk))

− 2

N∑

i=1

N∑

j=1

(mk(γ
k
i )− γk+1

j )vk(γ
k
i )(ϕ(γk+1,j+(γki ))− ϕ(γk+1,j−(γki )))P(X̃tk ∈ Ci(Γk))

+

N∑

i=1

N∑

j=1

vk(γ
k
i )2(γk+1,j−(γki )ϕ(γk+1,j−(γki ))− γk+1,j+(γki )ϕ(γk+1,j+(γki )))P(X̃tk ∈ Ci(Γk))

+
N∑

i=1

N∑

j=1

vk(γ
k
i )2(Φ(γk+1,j+(γki ))− Φ(γk+1,j−(γki )))P(X̃tk ∈ Ci(Γk)) ,

(B.1)

where Φ and ϕ indicate the cumulative distribution function and the probability density
function of a standard Normal random variable, respectively. To simplify notation, in
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Equation (B.1), we set for all k ∈ {0, . . . , n− 1} and for all j ∈ {1, . . . , N}

γk+1,j+(γ)
.
=
γk+1
j+1/2 −mk(γ)

vk(γ)
and γk+1,j−(γ)

.
=
γk+1
j−1/2 −mk(γ)

vk(γ)
where

γk+1
j−1/2 ≡

γk+1
j + γk+1

j−1

2
, γk+1

j+1/2 ≡
γk+1
j + γk+1

j+1

2
, γk+1

1/2

.
= −∞ , and γk+1

N+1/2

.
= +∞ .

The so-called companion parameters {P(X̃tk ∈ Ci(Γk))}i=1,...,N and {P(X̃tk ∈ Cj(Γk)|X̃tk−1
∈

Ci(Γk))}j=1,...,N are computed in a recursive way as follows:

P(X̃tk ∈ Ci(Γk)) =

N∑

j=1

(Φ(γk,i+(γk−1
j ))− Φ(γk,i−(γk−1

j )))P(X̃tk−1
∈ Cj(Γk−1)) ,

P(X̃tk ∈ Ci(Γk)|X̃tk−1
∈ Cj(Γk−1)) = Φ(γk,i+(γk−1

j ))− Φ(γk,i−(γk−1
j )).

B.2 Lloyd I method within the RMQA

We present a brief review of the Lloyd I method within the Recursive Marginal Quantiza-
tion framework. Let us fix tk ∈ {t1, . . . , tn} and suppose we have access to the quantizer Γk
of X̃tk and to the associated Voronoi tessellations {Ci(Γk)}i=1,...,N . We want to quantize

X̃tk+1
= Ek( ̂̃Xtk ,∆t;Ztk+1

) by means of a quantizer Γk+1 ≡ {γk+1
1 , . . . , γk+1

N } of cardinal-
ity N . One starts with an initial guess Γ0

k+1 and then one sets recursively a sequence

(Γlk+1)l∈N such that

γk+1,l+1
j = E

[
X̃tk+1

|X̃tk+1
∈ Cj(Γlk+1)

]
, (B.2)

where l indicates the running iteration number. One can easily check that previous equa-
tion implies that

ql+1
N (X̃tk+1

) = E
[
X̃tk+1

|qlN (X̃tk+1
)
]
.
=
(
E
[
X̃tk+1

|X̃tk+1
∈ Ci(Γlk+1)

])
1≤i≤N

,

where qlN is the quantization associated with Γlk+1. It has been proven (see Pagès et al.,

2004; Carmona et al., 2012) that {‖X̃tk+1
− qlN (X̃tk+1

)‖2, l ∈ N+} is a non-increasing

sequence and that qlN (X̃tk+1
) converges towards some random variable taking N values as

l tends to infinity. From Equation (B.2) and exploiting the idea of RMQA we have

γk+1,l+1
j = E

[
X̃tk+1

|X̃tk+1
∈ Cj(Γlk+1)

]

=
E
[
X̃tk+1

11{X̃∈Cj(Γlk+1)}

]

P(X̃tk+1
∈ Cj(Γlk+1))

=
E
[
E
[
X̃tk+1

11{X̃tk+1
∈Cj(Γlk+1)}|X̃tk

]]

E
[
E
[
11{X̃tk+1

∈Cj(Γlk+1)}|X̃tk

]]

=

∑N
i=1 E

[
Ek(γki ,∆t;Ztk+1

)11{Ek(γki ,∆t;Ztk+1
)∈Cj(Γlk+1)}

]
P(X̃tk ∈ Ci(Γk))

∑N
i=1 P(Ek(γki ,∆t;Ztk+1

) ∈ Cj(Γlk+1)P(X̃tk ∈ Ci(Γk))
.

The last term in previous equation is equivalent to the stationary condition in Equation
(5.9) for the quantization qN (X̃tk+1

). Then, the stationary condition is equivalent to a
fixed point relation for the quantizer.
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Figure B.1: Quantization of a standard Normal random variable: Comparison of the conver-
gence of Lloyd I method with and without Anderson acceleration.
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B.3 Robustness checks

We test the convergence of Lloyd I method with and without Anderson acceleration on the
quantization of a standard Normal random variable initialised from a distorted quantizer
(at www.quantize.maths-fi.com a database providing quadratic optimal quantizers of
the standard univariate Gaussian distribution from level N = 1 to N = 1000 is available).
We indicate by Γ∗N (0,1) the optimal quantizer of a standard Normal random variable and
we distort it through the multiplication by a constant c, that is to say c× Γ∗N (0,1). Then,
we monitor the convergence of both algorithms to Γ∗N (0,1) starting from c× Γ∗N (0,1). The

error at iteration l is defined as ‖Γ∗N (0,1) − ΓlN (0,1)‖2, with ΓlN (0,1) the quantizer found by

the algorithms at the l-th iteration and ‖ · ‖2 the Euclidean norm in RN . The stopping
criteria is set to ‖Γl+1

N (0,1) − ΓlN (0,1)‖2 ≤ 10−7, the level of the quantizer to N = 10, and
the constant c to 1.01. The results of our investigation are summarized in Figure B.1.
We can graphically assess the rate of convergence for both algorithms. We recall that a
sequence (Γl)l∈N converging to a Γ∗ 6= Γl for all l is said to converge to Γ∗ with order α
and asymptotic error constant λ if there exist positive constants α and λ such that

lim
l→∞

‖Γl+1 − Γ∗‖2
‖Γl − Γ∗‖α2

= λ .

In case of Lloyd I method without acceleration the convergence is, as expected, linear.
For Lloyd I method with acceleration the rate is not well defined, but Figure B.1 shows
the impressive improvement in the convergence towards the known optimal quantizer.
Figure B.2 supports the same conclusion in terms of the number of iterations necessary
to reach the stopping criterion.

Then, we investigate numerically the sensitivity of Lloyd I method with Anderson
acceleration and Newton-Raphson algorithm to the initial guess as a function of the dis-
tortion c applied to the optimal quantizer Γ∗N (0,1). The results of our investigation are
summarized in Figure B.3. The four panels correspond to different levels of distortion
c = {1.10, 1.20, 1.25, 1.35}. As before, we set N = 10 whereas on the y axis we report the
residual at iteration l, ‖Γl+1−Γl‖2. For low levels of distortion Newton-Raphson method

www.quantize.maths-fi.com
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Figure B.2: Quantization of a standard Normal random variable: Comparison of the number
of iterations necessary to reach the stopping criterion between Lloyd I method with and without
Anderson acceleration.
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converges to the optimal solution more quickly than Lloyd I method. This result confirms
the theoretical behavior due to the quadratic rate of convergence of the Newton-Raphson
algorithm. However, when the initial guess is quite far from the solution – as it is for the
cases of 25% and 35% distortion – the algorithm may spend many cycles far away from
the optimal grid.

Remark 6. Notice that it is also possible to design a hybrid algorithm which starts as
Lloyd with acceleration and after some iterations, when it is convenient, it switches to
Newton-Raphson.

Finally, we examine the convergence of Lloyd I and Newton-Raphson algorithms when
considering the following Euler-Maruyama discrete scheme

{
X̄tk+1

= X̄tk + rX̄tk∆t+ σX̄tk

√
∆t Ztk ,

X0 = x0 ,

with r, σ, and x0 strictly positive real constants, and ∆t = tk+1−tk for all k = 1, . . . , n−1.
To enlighten the greater sensitivity of the Newton-Raphson method to the grid initial-
isation in comparison with the Lloyd I with Anderson acceleration it is sufficient to
stop at n = 2 with ∆t = 0.01. We set the level of the quantizers Γ1 and Γ2 equal to
N = 30 and x0 = 1. By definition the random variable X̄t1 ∼ N (m0(x0), v0(x0)) where
m0(x0) = x0 + rx0∆t and v0(x0) = σx0. In order to compute the quantizer for X̄t1 we
initialise the algorithms at time t1 to m0(x0) + v0(x0)Γ∗N (0,1), with Γ∗N (0,1) the optimal
quantizer of a standard Normal random variable. Once we have obtain the optimal quan-
tizer Γ∗1 = {γ∗11 , · · · , γ∗30

1 } we set the initialisation of the quantizer ΓInit2 = {γ1
2 , · · · , γ30

2 }
at time t2 using one of the following alternatives

i. the optimal quantizer at the previous step

ΓInit2 = Γ∗1 ;
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Figure B.3: Quantization of a standard Normal random variable: Comparison between Lloyd
I method with Anderson acceleration and Newton-Raphson algorithm.

0 2 4 6 8 10 12 14
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

‖Γ
∗ N

(0
,1

)
−

Γ
l N

(0
,1

)
‖ 2

c=1.1 Lloyd I with Acceleration

Newton Raphson

0 2 4 6 8 10 12 14
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

c=1.20 Lloyd I with Acceleration

Newton Raphson

0 100 200 300 400

Iteration Number l

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

‖Γ
∗ N

(0
,1

)
−

Γ
l N

(0
,1

)
‖ 2

c=1.25 Lloyd I with Acceleration

Newton Raphson

0 5 10 15 20 25 30 35

Iteration Number l

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

c=1.35 Lloyd I with Acceleration

Newton Raphson

ii. the Euler operator
γi2 = m1(γi1) + v1(γi1)Γ∗,iN (0,1) ,

for i = 1, . . . , 30;

iii. the mid point between Euler operator and the optimal quantizer at the previous step

γi2 = 0.5γi1 + 0.5(m1(γi1) + v1(γi1)Γ∗,iN (0,1)) ,

for i = 1, . . . , 30;

iv. the expected value
γi2 = m1(γi1) ,

for i = 1, . . . , 30.

The left panel of Figure B.4 shows the four different initial grids which correspond to above
specifications. In the same panel, on the right side, we also plot the optimal quantizer Γ∗2
to which both Lloyd I with Anderson acceleration and Newton-Raphson methods should

converge. The right panel report the quantization error – defined as
√
D̃2(Γl2) – as a

function of the iteration number l. We stop the algorithm when the residual falls below
10−5. The numerical investigation shows that the Newton-Raphson method converges to
the optimal grid faster than the Lloyd I method, with the only exception represented by
the case Γinit2 equal to the mid point. However, when initialized with the Euler operator
or the mid point Newton-Raphson algorithm fails to converge due to the bad condition
number of the Hessian matrix (corresponding lines are not reported on the Figure). This
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Figure B.4: Quantization of the Euler-Maruyama scheme associated to a Geometric Brownian
motion. Left panel: four different initial grids Γinit2 and optimal grid Γ∗2 on the left and right
sides, respectively. Right panel: quantization error as a function of the iteration number.
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result is in line with the findings in Pagès and Printems (2003) where the authors stress
that the Newton-Raphson method may fail even for symmetric initial vectors since the
anomalous behaviour of some components of the Voronoi tessellation.

In light of above explorations, we finally conclude that the approach based on a fixed-
point algorithm such as the Lloyd I method with Anderson acceleration is much more
robust than a Newton-Raphson approach – which in the present application relies on the
computation of the Hessian of the matrix.

Finally, we investigate the impact of the state space finite granularity on option prices.
In the numerical experiments, we employ the CEV model – see Equation (5.20) – with
rd − rf = 0.32%, α = 0.5, and X0 = X̄0 = 1.36. Besides ∆t = 0.01. The error on
vanilla call option prices has been computed according to Equation (5.22) as a function
of N for different values of σ and different exercise conditions (ITM, ATM, OTM). The
four panels of Figure B.5 report the numerical results. When the level of the volatility
parameter σ grows the error increases consistently. As expected the mispricing is more
noticeable for ITM than for OTM options. N equal to 100 guarantees – at least empirically
– the reduction of the absolute error below 5 bps. Accordingly, in numerical applications
in the main text we fix N = 100.

B.4 Construction of the Markov generator LΓ and sensitivity analysis

We define ∆γ
.
= γi+1 − γi, 1 ≤ i ≤ N − 1. The finite difference approximation of the first

and second partial derivative in Equation (5.16) is defined as

∂u

∂γ
(γ, t) ≈ u(γi + ∆γ, t)− u(γi −∆γ, t)

2∆γ
,

∂2u

∂γ2
(γ, t) ≈ u(γi + ∆γ, t)− 2u(γi, t) + u(γi −∆γ, t)

(∆γ)2
,
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Figure B.5: Study of the influence of the granularity N of the state space on the pricing
of call vanilla options when employing the RMQA, CEV model. Top left : σ = 5%, Top
right : σ = 10%, Bottom left : σ = 15%, Bottom right : σ = 20%.
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for all t ∈ [0, T ]. The Markov generator LΓ is the N ×N matrix defined as

LΓ
.
=




d1 u1 0 0 · · · 0 0
l2 d2 u2 0 · · · 0 0

0
. . .

. . .
. . . · · · 0 0

0 0 li di ui 0 0

0 0 0
. . .

. . .
. . . 0

0 0 0 0 lN−1 dN−1 uN−1
0 0 0 0 0 lN dN




,

where the coefficients li, di and ui are given by

li = −b(γi)
2∆γ

+
1

2

σ(γi)
2

(∆γ)2
,

di = −σ(γi)
2

(∆γ)2
,

ui = +
b(γi)

2∆γ
+

1

2

σ(γi)
2

(∆γ)2
,

for all 1 ≤ i ≤ N . The coefficients of the first and last row are chosen so that the Markov
chain is reflected at the boundaries of the state domain. The choice of the boundary
conditions should have a negligible effect provided that the range of the state domain
is sufficiently large. To quantify what sufficiently large means in practical situation, we
consider again the CEV model corresponding to Equation (5.20) with rd − rf = 0.32%,
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α = 0.5 and X0 = X̄0 = 1.36. Besides ∆t = 0.01. The contribution of the drift to the
dynamics is negligible, and to choose the grid boundary values we proceed as follows.
For a given value of σ, we first take symmetric intervals around the starting point X0,
i.e. X0 ± βX0, for different values of the coefficient β. Then, for a fixed β, we vary the
granularity N of the state space and we compute the error on vanilla prices according to
Equation (5.22). We display a contour plot contour(x, y, Z), where x is the vector
of N values, y contains the values of the coefficient β, and Z is the matrix of errors in
basis points. The panels of Figure B.6 report the sensitivity analysis for different values
of σ, and different exercise conditions (ITM, ATM, OTM). Accordingly, in numerical
applications we fix the cardinality of the quantizer to 100 and β to 0.15, 0.25, 0.35, and
0.45 for σ = 5%, σ = 10%, σ = 15%, and σ = 20%, respectively.
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Figure B.6: Sensitivity analysis of the influence of the boundary conditions on the pricing
of Call vanilla options for the LTSA and CEV dynamics. From left to right, from top to
bottom: Contour plot, contour(x, y, Z) where x is the vector containing the variable
N , y is the vector containing the coefficient β, and Z is the matrix of errors in basis
points. The white regions correspond to errors larger than 19 basis points. First row :
σ = 5%, Second row : σ = 10%, Third row : σ = 15%, Fourth row : σ = 20%.
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Conclusions

The objective of the thesis is manifold.
First, we motivate the use of rough volatility models for applications, notably for option

pricing and hedging. We show that rough volatility models seem to be compatible with
observed option prices. Thus, they can be used consistently. We investigate the nature of
the financial data and what they are telling us about the behaviour of the volatility process.

Second, we motivate and introduce the first fully analytical discrete-time option pricing
stochastic volatility model – SV-LHARG(p) – combining stochastic volatility with realized
measures. Our model is characterized by two measurement equations relating both the
observed return and realized measures to the latent conditional variance, which features a
multiple components structure in both volatility and leverage. Following Majewski et al.
(2015), we derive analytically the recursive formulae for the MGF under P and Q mea-
sures, the formal change of measure, as well as the no-arbitrage condition. The change of
measure is obtained using an exponential affine SDF with two risk premia.

Third, we extend the work of Creal (2015) to the case of two-measurement equations.
Thus, contribute to the non-linear and non-Gaussian filtering literature by providing new
analytical filtering and smoothing relations for the basic version of the SV-LHARG(p).
We demonstrate the importance of such relations and we develop an effective Metropolis-
Hasting algorithm for the general SV-LHARG(p). We confirm the efficacy of the MCMC
algorithm through an extensive simulation exercise.

Fourth, we empirically assess the importance of our modelling in an option pricing ex-
ercise. The proposed model suggest significant improvement compared to existing models
in the literature in tracking dynamics of the short-end of the implied volatility surface and
in pricing medium-long maturity options.

Fifth, we motivate and introduce an algorithm – the backward Monte Carlo – based on
Monte Carlo simulation for the effective pricing of path-dependent options where sampled
path runs in a backward way on top of a multinomial tree. We provide two ways to
construct the tree and we fix some flaws highlighted in the existing literature for one
of these two methodologies. We assess the robustness of the proposed solution in some
representative cases.

Finally, we demonstrate the importance of sampling from the multinomial tree in a
backward way, from the terminal point to the initial value of the underlying asset price in
a option pricing exercise. We investigate the performance of the backward Monte Carlo,
especially in combination with different variance reduction techniques, by pricing Asian,
barrier, and auto-callable options.

147
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models. arXiv preprint arXiv:1610.08878 .

Fouque, J.-P. and M. J. Lorig (2011). A fast mean-reverting correction to Heston’s stochas-
tic volatility model. SIAM Journal on Financial Mathematics 2 (1), 221–254.

Fritsch, F. N. and R. E. Carlson (1980). Monotone piecewise cubic interpolation. SIAM
Journal on Numerical Analysis 17 (2), 238–246.
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matical Finance 11 (1), 79–96.



156 BIBLIOGRAPHY

Gerber, H. U., E. S. Shiu, et al. (1994). Option pricing by Esscher transforms. Transactions
of the Society of Actuaries 46 (99), 140.

Geweke, J. et al. (1991). Evaluating the accuracy of sampling-based approaches to the
calculation of posterior moments, Volume 196. Federal Reserve Bank of Minneapolis,
Research Department Minneapolis, MN, USA.

Glasserman, P. (2004). Monte Carlo methods in Financial Engineering. Applications of
Mathematics (New York). Stochastic Modeling and Applied Probability., Volume 53.
Springer-Verlag, New York.

Glosten, L. R., R. Jagannathan, and D. E. Runkle (1993). On the relation between the
expected value and the volatility of the nominal excess return on stocks. The Journal
of Finance 48 (5), 1779–1801.

Gobet, E. (2000). Weak approximation of killed diffusion using Euler schemes. Stochastic
processes and their applications 87 (2), 167–197.

Golub, G. H. and C. F. Van Loan (2012). Matrix computations, Volume 3. JHU Press.

Gouriéroux, C. and J. Jasiak (2006). Autoregressive gamma processes. Journal of Fore-
casting 25 (2), 129–152.

Gouriéroux, C., J. Jasiak, and R. Sufana (2009). The Wishart Autoregressive process of
multivariate stochastic volatility. Journal of Econometrics 150 (2), 167–181.

Gourieroux, C. and A. Monfort (2007). Econometric specification of stochastic discount
factor models. Journal of Econometrics 136 (2), 509–530.

Gourieroux, C., A. Monfort, and V. Polimenis (2006). Affine models for credit risk analysis.
Journal of Financial Econometrics 4 (3), 494–530.

Graf, S. and H. Luschgy (2000). Foundations of quantization for probability distributions.
Springer.

Guennoun, H., A. Jacquier, and P. Roome (2014). Asymptotic behaviour of the fractional
Heston model. Available at SSRN 2531468.

Hagan, P. S., D. Kumar, A. S. Lesniewski, and D. E. Woodward (2002). Managing smile
risk. Wilmott Magazine, 84–108.

Hamilton, J. D. (1994). Time series analysis. Princeton University Press.

Hansen, P. R. and G. Horel (2009). Quadratic variation by Markov chains. Univ. of
Aarhus Dept. of Economics Research Paper (2009-13).

Hansen, P. R., Z. Huang, and H. H. Shek (2012). Realized GARCH: a joint model for
returns and realized measures of volatility. Journal of Applied Econometrics 27 (6),
877–906.

Hansen, P. R. and A. Lunde (2005). A forecast comparison of volatility models: Does
anything beat a GARCH (1, 1)? Journal of Applied Econometrics 20 (7), 873–889.

Hansen, P. R. and A. Lunde (2006). Realized variance and market microstructure noise.
Journal of Business & Economic Statistics 24 (2), 127–161.



BIBLIOGRAPHY 157

Harvey, A. (1989). Forecasting, Structural Time Series Models and the Kalman Filter.
Cambridge University Press.

Harvey, A., E. Ruiz, and N. Shephard (1994). Multivariate stochastic variance models.
The Review of Economic Studies 61 (2), 247–264.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Review of Financial Studies 6 (2), 327–343.

Heston, S. L. and S. Nandi (2000). A closed-form GARCH option valuation model. Review
of Financial Studies 13 (3), 585–625.

Higgins, M. L. and A. K. Bera (1992). A class of nonlinear ARCH models. International
Economic Review , 137–158.

Higham, N. J. (2005). The scaling and squaring method for the matrix exponential revis-
ited. SIAM Journal on Matrix Analysis and Applications 26 (4), 1179–1193.

Hui, C. H., C.-F. Lo, and P. Yuen (2000). Comment on ‘Pricing double barrier options
using Laplace transforms′ by Antoon Pelsser. Finance and Stochastics 4 (1), 105–107.

Hull, J. and A. White (1987). The pricing of options on assets with stochastic volatilities.
The Journal of Finance 42 (2), 281–300.

Hull, J. C. (2006). Options, futures, and other derivatives. Pearson Education India.

Jacquier, E., N. G. Polson, and P. E. Rossi (2004). Bayesian analysis of stochastic volatility
models with fat-tails and correlated errors. Journal of Econometrics 122 (1), 185–212.

Jaisson, T. and M. Rosenbaum (2016). Rough fractional diffusions as scaling limits of
nearly unstable heavy tailed Hawkes processes. The Annals of Applied Probability 26 (5),
2860–2882.

Jeanblanc, M., M. Yor, and M. Chesney (2009). Mathematical methods for financial
markets. Springer Science & Business Media.

Jin, X. and J. M. Maheu (2012). Modeling realized covariances and returns. Journal of
Financial Econometrics 11 (2), 335–369.

Joshi, M. S. and T. S. Leung (2011). Using Monte Carlo simulation and importance
sampling to rapidly obtain jump-diffusion prices of continuous barrier options. Journal
of Computational Finance 10 (4), 93–105.
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