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Penso che la matematica sia una delle manifestazioni più significative dell’amore per la
sapienza e come tale la matematica è caratterizzata, da un lato, da una grande libertà e,
dall’altro, da una intuizione che il mondo, diciamo, è grandissimo, è fatto di cose visibili
e invisibili, e la matematica ha forse una capacità unica tra tutte le scienze: di passare

dall’osservazione delle cose visibili all’immaginazione delle cose invisibili.
Questo forse è il segreto della forza della matematica.

(Ennio De Giorgi)
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Introduction

This work deals with some classes of nonlinear dispersive evolution PDEs: in particular,
under some non classical framework we will consider a class of nonlinear Schrödinger
equation, a class of nonlinear Klein-Gordon equation and a system of PDEs called
Zakharov system which couples a Schrödinger-type equation with a nonlinear wave
equation. For all of these equations the associated Cauchy problem will be considered.
More specifically we will examine two different asymptotic limits: for the Schrödinger
and the Klein-Gordon equations we will deal with the problem of scattering: roughly
speaking, we wonder weather solutions to the nonlinear Cauchy problem behave as linear
solutions for large times. The second asymptotic problem is instead a singular limit
result related to the solution of the Zakharov system, which depends on a physical
parameter: the qualitative investigation of the solutions for large value of such parameter
is meaningful from a physical point of view. We mentioned the fact that these equations
are considered in a non standard setting: more precisely, the main feature in our context
about the Schrödinger equation concerns the presence of a linear perturbation by means
of a partially periodic time-independent potential (in the sense that it is periodic with
respect to all but one direction) which furthermore does not decay towards zero along
the remaining direction: this kind of potential will be denoted as steplike; about the
Klein-Gordon equation, the novelty with respect to the usual literature is due to the
fact that the equation is not posed on a Euclidean space but on a manifold which mixes
a Euclidean part and a compact part, explicitly given, for technical reasons, by the
one-dimensional torus; the Zakharov system considered in this work is the so-called
vectorial Zakharov equation: in its formulation the Schrödinger equation, coupled with
a wave equation, is not the usual one, in the sense that the classical Laplace operator
appearing in the literature, is replaced by a second order operator involving a parameter
which has got a relevant physical meaning. Let us introduce rigorously the three Cauchy
problems mentioned so far, then the arguments of research about them. They are the
following: the pure-power nonlinear Schrödinger equation (NLS) given by i∂tu+ ∆u− V u = |u|αu, (t, x) ∈ R× Rd

u(0, x) = u0 ∈ H1(Rd)
, (0.0.1)
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where u : R× Rd → C and V : Rd → R, is a non-decaying, partially periodic potential,
the pure-power nonlinear Klein-Gordon equation (NLKG) given by

∂ttu−∆x,yu+ u = −|u|αu, (t, x, y) ∈ R× Rd × T
u(0, x, y) = f(x, y) ∈ H1(Rd × T)

∂tu(0, x, y) = g(x, y) ∈ L2(Rd × T)
, (0.0.2)

where u : R× Rd × T→ R, T being the one dimensional flat torus and ∆x,y the Laplace
operator on Rd × T, while the 3D vectorial Zakharov system is as follows{

i∂tu− ω∇×∇× u+∇(div u) = nu
1
c2
s
∂ttn−∆n = ∆|u|2 , (0.0.3)

considered under the initial conditions

(u(0), n(0), ∂tn(0)) = (u0, n0, n1) ∈ H2(R3)×H1(R3)× L2(R3),

where u : R × R3 → C3, n : R × Rd → R and ∇× is the curl operator. We postpone
the description of the parameters appearing in the equations above in the devoted chapters.

Let us focus on (0.0.1) and (0.0.2): both of them are nonlinear equations in a
defocusing energy-subcritical regime. The energies are defined (respectively for (0.0.1)
and (0.0.2)) as

ENLS(u(t)) = 1
2

∫
Rd

(
|∇u(t)|2 + V |u(t)|2 + 2

α + 2 |u(t)|α+2
)
dx,

ENLKG(u(t), ∂tu(t)) = 1
2

∫
Rd×T

(
|∂tu(t)|2 + |u|2 + |∇u(t)|2 + 2

α + 2 |u(t)|α+2
)
dx dy.

Both these quantities are conserved along the flows, in the sense that they do not depend
on time and therefore

ENLS(u(t)) = ENLS(u0) ∀ t ∈ R,
ENLKG(u(t), ∂tu(t)) = ENLKG(f, g) ∀ t ∈ R.

(0.0.4)

We recall that for the Schrödinger equation, the following conservation law (beside some
other ones) holds true:

‖u(t)‖L2 = ‖u0‖L2 ∀ t ∈ R,

and the latter one is called conservation of mass. Defocusing means, roughly speaking,
that there is no competition between the quadratic part of the energy and the potential
energy (i.e. the Lα+2-norm in (0.0.4)), namely that the energy is nonnegative (the focusing
regime corresponds to the opposite sign in front of the nonlinearity in the equations and
consequently it is reflected by an opposite sign in front of the super-quadratic terms
of the energies. This would lead, in general, to non-global solution). Moreover, they
are investigated in the so-called energy subcritical case (and mass-supercritical case).
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This sub-criticality corresponds to the fact that the nonlinear term is weaker than the
linear terms of the equation, in the sense that the quadratic part of the energy, i.e. the
H1-norm of the solution, controls the super-quadratic term of the energy, by means of the
Sobolev embeddings, both for NLS and NLKG. A consequence of this fact is that once the
local well-posedness theory is established, then local in time solutions can be extended
globally in time. A natural question is now the asymptotic behavior of this solutions. In
the energy topology, is it true that the wave operator is surjective? The mathematical
formulation of this question is as follows: consider the initial value problems associated
to (0.0.1) and (0.0.2) respectively given by i∂tv + ∆v − V v = 0, (t, x) ∈ R× Rd

v(0) = h±0 ∈ H1(Rd)
(0.0.5)

and 
∂ttv −∆x,yv + v = 0, (t, x, y) ∈ R× Rd × T

v(0, x, y) = f± ∈ H1(Rd × T)
∂tv(0, x, y) = g± ∈ L2(Rd × T)

; (0.0.6)

then one wonders if there exist suitable initial data h± ∈ H1(Rd) and corresponding
linear solutions v± to the Cauchy problem (0.0.5) such that

lim
t→±∞

‖u(t, x)− v±(t, x)‖H1(Rd) = 0

and suitable initial data (f±, g±) ∈ H1(Rd × T)× L2(Rd × T) and corresponding linear
solutions v± to the Cauchy problem (0.0.6) such that

lim
t→±∞

∥∥∥u(t, x)− v±(t, x)
∥∥∥
H1(Rd×T)

+
∥∥∥∂tu(t, x)− ∂tv±(t, x)

∥∥∥
L2(Rd×T)

= 0.

The big issue in such kind of problem is to pass from small initial data to arbitrar-
ily large initial data. Here, again, smallness and largeness are defined by means of
the conserved quantities introduced in (0.0.4). For small initial data, the tool of the
Strichartz estimates in fact guarantees a positive answer to the scattering problem by
using a simple perturbative argument, while the passage to the large data theory will
be attacked by a powerful technique introduced by Kenig and Merle which is by now
well celebrated and is known with the name of Concentration/Compactness & Rigidity
method. Briefly, once it is known that a small data scattering result holds true (and
this is a consequence of a basic local theory), the Kenig and Merle road map consists
in the following steps: a Profile Decomposition Theorem, which allows to decompose
any element of a sequence (actually, up to subsequences) of initial data belonging to
the energy space as a superposition of J ≥ 1 free solutions (linear Schrödinger or linear
Klein-Gordon solutions, when dealing with (0.0.1) or (0.0.2), respectively) evaluated at
zero-time plus a remainder term which is still a free solution. The decomposition of the
initial data sequence is characteristic: it is a superposition of suitable free solutions on
which the non-compact groups of transformation leaving invariant the equations act.
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Basically, they are the group of time and space translations. Such translation sequences
enjoy some properties leading to a very weak interaction of the free solutions, while the
remainder term is small is some norm: the latter is not the energy one, but a Strichartz
norm. The second step is the perturbation result: in some sense, the remainder in the
Profile Decomposition Theorem must be absorbed, to build a minimal (with respect to
the energy) global non-scattering solution. Loosely speaking, since we already know
that for small initial data in the energy space scattering holds, here minimal means the
smallest energy which an initial datum can have such that the corresponding nonlinear
solution to the associated Cauchy problem does not scatter. Such minimal non-scattering
solution enjoys some compactness property and the last step consists therefore to exclude
such non-scattering solution by means of Liouville-type theorem. In literature, this last
step is usually proved by using a well known ingredient, the so-called virial identities. In
our work, since dealing with the defocusing regimes, we present an alternative approach
for the latter step (which is the real nonlinear step in the Kenig and Merle strategy)
which relies only on one dimensional a priori estimates known as Nakanishi/Morawetz
estimates. We emphasize how a one dimensional tool is enough to conclude the desired
results although the considered equation are posed on multidimensional frameworks.

Let us turn our attention now to the Zakharov system (0.0.3). Our aim is to provide
a local well-posedness theory and to study the behavior of the solution for large values of
ω. To establish a local well-posedness theory we adopt a method developed by Ozawa and
Tsutsumi in the context of the scalar Zakharov system, where the second order operator
in the first equation of (0.0.3) is replaced by a classical Laplace operator. Basically, this
technique is established to avoid the loss of derivative occurring from the right-hand side
of the wave equation. The physical model takes into account the second order operator
as in (0.0.3) and the parameter ω is basically related to the temperature of the plasma
for which the Zakharov equations describes the oscillation of the Langmuir waves. Direct
observations shows that for large value of ω the models is prescribed to be irrotational:
the second aim of our work is therefore to show that the evolution of the electric field
envelope u is asymptotically constrained (for ω → ∞) onto the space of irrotational
vector fields. More precisely we control separately, in the Strichartz norm, the fast and
slow dynamics of the problem, showing that a solution (uω, nω) to (0.0.3) converges, for
ω →∞, to a solution to {

i∂tu+ ∆u = Q(nu)
1
c2
s
∂ttn−∆n = ∆|u|2

with some well-prepared initial data (i.e. irrotational), where Q := −(−∆)−1∇ div is the
Helmholtz projection operator onto irrotational vector fields.

For a rigorous analysis and explanation of the concepts introduced before, as well as
physical motivations to study them, we refer to the specific chapters of this work. A
detailed bibliographical description of the problems can be also found in the corresponding
chapters.
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Notations
We collect here the notations used along this Thesis, although some of them will be
recalled along the work for the reader’s convenience. Other ones will be introduced in
the sequel in specific contexts.

R and Rd are the one-dimensional and d-dimensional euclidean spaces, respectively,
while C is the complex plane. Mk will denote a k-dimensional compact manifold and T
the one-dimensional torus.

Given a complex number z, z̄ will be its complex conjugate, while <z and =z will be
its real and imaginary parts, respectively.

As usual in the mathematical literature, ∂x will denote the partial derivative operator
with respect to the variable x, ∇ will be the standard gradient operator, ∆ will be the
Laplace operator, div the divergence operator and ∇× the curl operator in R3. The
operator τzf(x) := f(x− z) is the classical translation operator. In the sequel, by F ,F−1

we mean the Fourier transform operator and its inverse, respectively, and often f̂ will
stand for Ff. Moreover, for x ∈ Rd, the function 〈x〉 is classically defined by

√
1 + |x|2.

With standard notation, for 1 ≤ p < ∞, Lp = Lp(Rd) will be the usual Lebesgue
space on Rd of p-summable functions with norm given by ‖f‖Lp = (

∫
Rd |f |p dx)1/p .

W k,p = W k,p(Rd) is instead the Sobolev space of functions in Lp with weak derivatives
in Lp up to the order k, endowed with the norm ‖f‖Wk,p =

(∑k
|α|=0 ‖∂|α|f‖

p
Lp

)1/p
. If

p = 2, Hk := W k,2. If p = ∞, then L∞ (and W k,∞, consequently) is defined with
‖f‖L∞ := ess supx∈Rd |f(x)|. These spaces are similarly defined with Rd replaced by T or
Rd×T; if not otherwise specified, the Lp-norm (W k,p-norm) ‖f‖Lp (‖f‖Wk,p respectively)
of a function f defined on a product space will refer to the whole set of variables; if
instead subscripts with some explicit variable appear, this will mean that the norm is
considered for that subset of variables only.

Given a vector-valued function f(t) from I ⊆ R into a Banach space (X, ‖ · ‖),
Lp(I;X) will denote the Bochner space of that functions having finite Lp(I;X)-norm,
the last defined as ‖f‖Lp(I;X) = (

∫
I ‖f(t)‖pX dt)1/p. If I = R then the notation can be

contracted in LpX.
If a vector-valued function f : I → X is continuous, we will write f ∈ C(I;X) or

f ∈ Cm(I;X) if it is continuos with continuous derivatives up to the order m.
The arrow ⇀ will denote the convergence in a weak topology, while ↪→ will be for a

continuous embedding between two spaces.
For 1 ≤ p ≤ ∞, its conjugate p′ is defined by p′ = p

p−1 . If there exists a constant C
such that two quantities A and B are related by A ≤ CB or A ≥ CB, it will be written
A . B or A & B, respectively. If both the previous relations hold, it will be written
A ∼ B. A << B or A >> B will mean that the quantity A is “much smaller than” or
“much bigger than” the quantity B.
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Chapter 1

Strichartz estimates

The aim of this chapter is twofold: first, to recall the fundamental machinery given by the
Strichartz estimates for the analysis of the dispersive PDEs, in particular by reporting
the basic facts and by now well known results in the framework of the classical (i.e. the
unperturbed one) nonlinear Schrödinger equation, and then to analyze the NLS perturbed
by a steplike potential and the Klein-Gordon equation posed on Rd × T, T being the
one-dimensional flat torus. For the Zakharov system, they arise by a simple scaling
argument from the unperturbed Schrödinger equation, once the propagator associated to
the linear flow of the Schrödinger-type equation is explicitly determined in term of the
classical Schrödinger group.

1.1 The toy model: the unperturbed NLS on Rd

Let us treat the unperturbed linear Schrödinger equation. Consider the Cauchy problem{
i∂tu+ ∆u = 0, (t, x) ∈ R× Rd

u(0, x) = u0(x) ; (1.1.1)

by employing the Fourier transform method, at least assuming smooth initial data, we
can represent explicitly the solution to (1.1.1) as

u(t, x) = U(t)u0 := F−1(e−i|ξ|2tû0(ξ))(x) = K(t, x) ∗ u0 (1.1.2)

with
K(t, x) :=

( 1
4iπt

)d/2
e
i|x|2

4t .

It is straightforward that the propagator U(t) is unitary in Hs for every s ∈ R.

Theorem 1.1.1. For every p ∈ [2,∞] and t 6= 0 the group U(t) maps Lp′ into Lp

continuously, in particular the following estimate holds:

‖U(t)f‖Lp . |t|−d(
1
2−

1
p)‖f‖Lp′ (1.1.3)
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Proof. By the explicit expression for the Schrödinger propagator (1.1.2), using the
Young’s inequality for convolution, follows that

‖U(t)f‖L∞ . |t|−
d
2‖f‖L1 (1.1.4)

and so by using the property that U(t) is unitary from L2 into itself and the Riesz-Thorin
Theorem we end up with (1.1.3).

Definition 1.1.2. The estimate (1.1.4) is called Dispersive estimate.

Let us report here a definition of dispersion as given in Palais, see [105], by quoting a
version for Schrödinger contained in [113]:

A definition of dispersion. Let us consider linear wave equations of the form

∂tu+ P (∂x)u = 0.

where P is polynomial. Recall that a solution u(t, x), which Fourier transform is of the
form ei(kx−ωt) is called a plane-wave solution; k is called the wave number (waves per
unit of length) and ω the (angular) frequency. Rewriting this in the form eik(x−(ω/k)t) we
recognize that this is a traveling wave of velocity ω/k. If we substitute this u(t, x) into
our wave equation, we get a formula determining a unique frequency ω(k) associated to
any wave number k, which we can write in the form

ω(k) = 1
ik
P (ik).

This is called the dispersive relation for this wave equation. Note that it expresses the
velocity for the plane-wave solution with wave number k. For example P (∂x) = c∂x gives
the linear advection equation ∂tu+ c∂x = 0 which has the dispersion relation ω/k = c
showing of course that all plane-wave solutions travel at the same velocity c, and we say
that we have trivial dispersion in this case. On the other hand if we take P (∂x) = −i(∂x)2

then our wave equation is i∂tu+ ∂2
xu = 0, which is the linear Schrödinger equation, and

we have the non-trivial dispersion relation ω/k = k. In this case, plane waves of large
wave-number (and hence high frequency) are traveling much faster than low-frequency
waves. The effect of this is to broaden a wave packet. That is, suppose our initial
condition is u0(x). We can use the Fourier transform to write u0 in the form

u0(x) =
∫
û0(k)eikx dk

and then, by superposition, the solution to our wave equation will be

u(t, x) =
∫
û0(k)eik(x−(ω/k)t) dk.

Suppose for example that our initial wave form is a highly peaked Gaussian. Then in
the case of the linear advection equation all the Fourier modes travel together at the

15



same speed and the Gaussian lump remains highly peaked over time. On the other hand,
for the linearized Schrödinger equation the various Fourier modes all travel at different
velocities, so after time they start canceling each other by destructive interference, and
the original sharp Gaussian quickly broadens.

To better understand how the Strichartz estimates that will be introduced in a while
can be viewed as a regularizing effect of the free propagator U(t), let us recall the
following.

Proposition 1.1.3. For any p > 2 and t̄ ∈ R, there exists a function f ∈ L2 such that
U(t̄)f /∈ Lp. Furthermore it can be shown that there exists a dense subset of Lp functions
contained in L2, say Dp, such that for any f ∈ Dp, U(t)f /∈ Lp.

Because of the group U(t) does not map the space Lp into itself for a generic p 6= 2,
the estimate (1.1.3), even thought remarkable and very useful, does not allow us to deal
with the NLS equation, but it can be used to prove some space-time estimates, called
Strichartz estimates, and the latter ones are essential to study the NLS equation. These
estimates were introduced in [115] by Strichartz in the context of a very interesting and
fascinating problem in harmonic analysis known as Fourier Restriction Problem (see for
example Wolff’s lecture notes [133]), then in the work of Ginibre and Velo [51] was given
a simpler proof along with a generalization of them. For a general treatment we address
to the monographs of Cazenave [20], or Linares and Ponce [90]. See also Tao’s book [119].

Let us introduce the concept of admissible pair. As we already said, Strichartz
estimates are space-time summability properties for the solution to (1.1.1) (and its
inhomogeneous version); in particular they claim that solutions to (1.1.1) belong to
some Bochner space Lq(I;Lr), where I ⊆ R. Since (1.1.1) is invariant under the scaling
uλ(t, x) = u(λ2t, λx), it arises that some algebraic conditions for the exponents (q, r)
must be satisfied. They are precisely the following:

Definition 1.1.4. A pair (q, r) of reals is said admissible if

2
q

= d
(1

2 −
1
r

)
and the following condition are satisfied:

2 ≤ r ≤ 2d
d−2 if d ≥ 3,

2 ≤ r <∞ if d = 2,
2 ≤ r ≤ ∞ if d = 1.

The case corresponding to r = 2d
d−2 when d ≥ 3 is known as endpoint case. The prove

of Strichartz estimates for such exponents is given in the famous and remarkable work
by Keel and Tao [76]. The following collects the set of the Strichartz estimates:

Theorem 1.1.5. Consider a function f ∈ L2. Then the function t→ U(t)f belongs to

Lq(R;Lr(Rd)) ∩ C(R;L2(Rd))
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provided (q, r) is admissible and the following estimate holds:

‖U(t)f‖LqLr ≤ C‖f‖L2 (1.1.5)

where the constant C is independent from f, in particular C = C(q, r) and thus C is also
dependent from d. Moreover, if f ∈ Lγ′(R;Lρ′(Rd)) with (γ, ρ) admissible, then for every
(q, r) admissible the function

t→ Df (t) :=
∫
R
U(t− s)f(s) ds

belongs to
Lq(R;Lr(Rd)) ∩ C(R;L2(Rd))

provided (q, r) is admissible and the following estimate holds:

‖Df‖Lq(R;Lr) ≤ C‖f‖Lγ′ (R;Lρ′ (Rd)). (1.1.6)

where C = C(q, r).

The proof for the non-endpoint cases is a consequence of the pointwise estimate
(1.1.3), the TT ∗ method and the Hardy-Sobolev-Littlewood inequality, see [20,90,119]
for instance.

Corollary 1.1.6. After having proved the Strichartz estimates, it can be claimed that
if f ∈ L2 then for almost every t ∈ R, U(t)f ∈ Lp. This fact does not contradict
Proposition 1.1.3 and it is the smoothing effect that we mentioned before.

Finally, thanks to the Christ and Kiselev Lemma, see [25], the retarded Strichartz
estimates also hold, namely:

Lemma 1.1.7. The same estimate of (1.1.6) holds if we replace Df (t) with

Drf (t) :=
∫
s<t

U(t− s)f(s) ds.

1.2 Strichartz estimates for NLS perturbed by a step-
like potential

It is quite clear that Strichartz estimates for the Schrödinger equation arise once the
dispersive estimate holds. We saw how simple is to establish it in the unperturbed case.
This is no more the case when we consider a perturbation of the Laplace operator, in
fact we cannot rely on the explicit representation of the solution in term of the Fourier
transform. In the presence of a perturbation V (x), by noting UV (t) := eit(∆−V ) the linear
propagator associated to

i∂tu+ ∆u− V u = 0, (1.2.1)
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the dispersive estimate would read

‖UV (t)f‖L∞ . |t|−d/2‖f‖L1, ∀ t 6= 0, ∀ f ∈ L1. (1.2.2)

If (1.2.2) holds, as first consequence we get the following Strichartz estimates

‖UV (t)f‖LaLb . ‖f‖L2

where a, b ∈ [1,∞] are assumed to be Strichartz admissible in the sense of Definition 1.1.4,
namely

2
a

= d
(1

2 −
1
b

)
. (1.2.3)

A lot of works have been written in the literature about the topic of the validity of
(1.2.2), both in 1D and in higher dimensions. We briefly cite works of Artbazar and
Yajima [4], Christ and Kiselev[25], D’Ancona and Fanelli [33], Goldberg and Schlag [58],
Weder[131], [132] and Yajima [135] for the one dimensional case and the papers by Burq,
Planchon, Stalker and Tahvildar-Zadeh [18], Goldberg, Vega and Visciglia [59], Jensen
and Kato [73], Journée, Soffer, Sogge [74], Rauch [109], Rodnianski and Schlag [110] for
the higher dimensional case, referring to the bibliographies contained in these papers
for a more detailed list of works on the subject. It is worth mentioning that in all the
papers mentioned above, the perturbation V is assumed to decay at infinity, but our aim
is to deal with steplike potentials.

Let us focus in the 1D case: we define as steplike a real potential V : R → R such
that

a+ = lim
x→+∞

V (x) 6= lim
x→−∞

V (x) = a−, (1.2.4)

where a− < a+ and without loss of generality it can be assumed a− = 0 and a+ = 1.

Under suitable assumptions, beside the fact that V is steplike, (1.2.2) with d = 1 was
proved in D’Ancona and Selberg [34] by considering at first the steplike perturbation of
the Laplacian given by the Heaviside function χ(x) = χ[0,+∞)(x), then allowing L1(R)
perturbations of it. The strategy to prove (1.2.2) was to derive explicitly the kernel of
the second order operator −∂2

x + χ and the representation of the fundamental solution
corresponding to the non-stationary evolution equation associated to it. If the steplike
perturbation is simply the characteristic function of [0,+∞), the calculation of the kernel
for −∂2

x + χ follows from the standard theory for the ODEs and classical functional
calculus, i.e. spectral analysis and the limiting absorption principle. We observe that
the spectrum of −∂2

x + χ is [0,+∞) and in particular the point spectrum is empty. This
observation is essential when dealing with the problem of dispersive property for evolution
equation: in fact, if the empty spectrum were not empty, then solitons would appear:
consider a solution to

(−∆ + V )Q = µQ, µ ∈ R,
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then u(t, x) = eiµtQ is a solution to i∂tu + ∆u − V u = 0. But clearly such u cannot
disperse, since any Lp-norm is preserved, namely it is constant in time. For this reason,
in [34], the dispersive estimate in its general formulation is not as in (1.2.2), but it is
necessary to project the flow on the absolutely continuous component of the spectrum,
yielding to the estimate

‖PacUV (t)f‖L∞ . |t|−1/2‖f‖L1 , ∀ t 6= 0.

Beside the presence of a non-empty point spectrum, another obstruction to dispersion
is the presence of the so-called resonance at zero energy. Although it is not our purpose to
investigate such problem, for which there is a huge literature (see for example [71–73,109]),
we quote here a definition given in [110] which defines when λ = 0 is a regular point and
some comments about it.

Definition 1.2.1. λ = 0 is called regular point if it is neither an eigenvalue for −∆ + V
nor a resonance. Resonance means that the equation −∆u+ V u = 0 has no solutions in
S = ∩γ>1/2L

2,−γ, with L2,−γ =
{
f : (1 + |x|2)γ/2 ∈ L2

}
.

In [110] is also remarked that in general it is not a matter of regularity of the potential
or its decay if the condition given in Definition 1.2.1 is satisfied, but sometimes is auto-
matically fulfilled; for example when the potential is nonnegative, which is a condition
imposed on our steplike potential in the analysis carried in chapter 3.

When considering a multidimensional setting, we will consider as steplike a real
potential V : Rd → R such that is steplike in one direction, say x1, and which is periodic
with respect to the remaining variables, i.e. x̄ = (x2, . . . , xd). More rigorously, we consider
real potentials V : Rd → R such that uniformly in x̄ ∈ Rd−1,

a− = lim
x1→−∞

V (x1, x̄) 6= lim
x1→+∞

V (x1, x̄) = a+, where x = (x1, x̄) ∈ R× Rd−1

and moreover we assume the existence of d−1 linear independent vectors P2, . . . , Pd ∈ Rd−1

such that for any fixed x1 ∈ R, the following holds:

V (x1, x̄) = V (x1, x̄+ k2P2 + · · ·+ kdPd),
∀ x̄ = (x2, . . . , xd) ∈ Rd−1, ∀ (k2, . . . , kd) ∈ Zd−1.

For such kind of potentials, it is worth highlighting that the dispersive estimate (1.2.2)
is assumed to be satisfied, and then the Strichartz estimates below. But some remarks
about the potential must be done. In fact we note that:
Remark 1.2.2. When considering the multidimensional version of our considered equation,
see (3.1.7), an alternative steplike potential could be provided: for instance we could
assume the existence of the following limits

lim
r→∞

V (rσ) = lσ
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that can change according with σ ∈ Sd−1, being the last one the unit sphere in Rd.
However, since we assume as black-box the validity of the Strichartz estimates for the
linear propagator, this type of potentials cannot be allowed. In fact the Strichartz
estimates are forbidden for this kind of perturbations, see the work of Goldberg, Vega
and Visciglia [59].

When dealing with the nonlinear counterpart of (1.2.1), namely

i∂tu+ ∆u− V u = f(u),

with f(u) = |u|αu, we fix the following Lebesgue exponents

r = α + 2, p = 2α(α + 2)
4− (d− 2)α, q = 2α(α + 2)

dα2 + (d− 2)α− 4 (1.2.5)

and we conclude this section giving the linear estimates that will be fundamental in our
analysis:

‖eit(∆−V )f‖
L

4(α+2)
dα Lr

. ‖f‖H1 , (1.2.6)

‖eit(∆−V )f‖
L

2(d+2)
d L

2(d+2)
d

. ‖f‖H1 , (1.2.7)

‖eit(∆−V )f‖LpLr . ‖f‖H1 . (1.2.8)

The last estimate that we need is the so-called inhomogeneous Strichartz estimate for
non-admissible pairs: ∥∥∥∥∫ t

0
ei(t−s)(∆−V )g(s) ds

∥∥∥∥
LpLr

. ‖g‖Lq′Lr′ , (1.2.9)

whose proof is contained in [22].
Remark 1.2.3. In the unperturbed framework, i.e. in the absence of the potential, and
for general dimensions, we refer to [42] for comments and references about Strichartz
estimates (1.2.6), (1.2.7), (1.2.8) and (1.2.9).
Remark 1.2.4. About Strichartz estimates for not admissible pairs, we address the reader
to the works of Foschi [45] and Vilela [129].

1.3 Strichartz estimates for NLKG on product spaces
In this section we prove some Strichartz estimates on waveguides. Let us consider for
the moment the equation posed on a k-dimensional compact manifold, sayMk: unlike
the euclidean setting, the presence of periodic solutions induces a lack of (global-in-time)
summability on them. The analysis of a mixed situation, in which an euclidean part
guarantees at least enough decay in time for solution to the equation, goes back to the
work of Tzvetkov and Visciglia [126], where the authors investigates the NLS equation
posed on Rd ×Mk, proving a small data scattering result in some anisotropic Sobolev
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space. This section is devoted to the proof of some Strichartz estimates for NLKG on
Rd × T, where T is the one-dimensional flat torus. The method we apply to obtain
Strichartz estimates on the whole product space is used in Hari and Visciglia [63] (which
is inspired in some sense from [126]) for the energy critical NLKG posed on Rd ×M2.
The method is divided into the following steps:

1. state the estimates on Rd, involving Besov spaces;

2. use embedding theorems to deduce some estimates that hold in Lebesgue spaces
posed on Rd;

3. use a scaling argument to handle masses different from one;

4. write (1.3.2) in the basis of eigenfunctions of T and prove Theorem 1.3.1 in the
fashion of [126] and [63].

In [63], dealing with energy-critical nonlinearities, only critical embeddings were needed
to prove small data theory. In our subcritical setting, one has to consider a wider range
of Strichartz estimates to prove such results, obtained with “subcritical” embeddings.
Deeper discussions about these estimates will be made along the proof of Theorem 1.3.1
which is as follows and it is the main result of this section.

Theorem 1.3.1. Let d ∈ N and 1 ≤ q, r ≤ ∞ such that (q, r) satisfies

2q
q − 4 ≤ r q ≥ 4 if d = 1,

2dq
dq − 4 ≤ r ≤ 2q(d+ 1)

q(d− 1)− 2 , q > 2 if d = 2, q ≥ 2 if d ≥ 3.
(1.3.1)

Let w ∈ C(R;H1) ∩ C1(R;L2) be the unique solution to the following nonlinear problem:
∂ttu−∆u+ u = F, (t, x, y) ∈ R× Rd × T

u(0, x, y) = f ∈ H1

∂tu(0, x, y) = g ∈ L2
(1.3.2)

where F = F (t, x, y) ∈ L1L2. Then the estimate below holds:

‖w‖LqLr ≤ C (‖f‖H1 + ‖g‖L2 + ‖F‖L1L2) .

In order to prove Theorem 1.3.1 we recall the definition of the Besov spaces. Given a
cut-off function χ0 such that

C∞c (Rd;R) 3 χ0(ξ) =

1 if |ξ| ≤ 1
0 if |ξ| > 2

then are defined the following dyadic functions

ϕj(ξ) = χ0(2−jξ)− χ0(2−j+1ξ),
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yielding to the partition of the unity

χ0(ξ) +
∑
j>0

ϕj(ξ) = 1, ∀ ξ ∈ Rd.

By denoting with S ′(Rd) the set of all tempered distributions on Rd, we denote by
Pj, j ∈ N ∪ {0}, the following operators acting on f ∈ S ′(Rd):

P0f := F−1 (χ0F(f)) ,
Pjf := F−1 (ϕjF(f)) , ∀j ∈ N.

Let s ∈ R. Then, for 0 < q ≤ ∞, the Besov space Bs
q,2 is defined by

Bs
q,2(Rd) =

{
f ∈ S ′(Rd)

∣∣∣∣ {2js‖Pjf‖Lq(Rd)

}
j∈N∪{0}

∈ l2
}
, (1.3.3)

where l2 is the classical space of square-summable sequences.

We rigorously prove the steps listed above in order to prove Theorem 1.3.1.

We begin therefore with the following proposition which is given in a pure euclidean
context.

Proposition 1.3.2. Let d ≥ 1 and 2 ≤ q, ρ ≤ ∞ such that

2
q

= d

(
1
2 −

1
ρ

)
(with the restrictions q > 2 if d = 2, q ≥ 4 if d = 1) . (1.3.4)

Consider w = w(t, x) satisfying
∂ttw −∆Rdw + w = F, (t, x) ∈ R× Rd

w(0, x) = f ∈ H1(Rd)
∂tw(0, x) = g ∈ L2(Rd)

(1.3.5)

where F = F (t, x) ∈ L1(R;L2(Rd)). Then

‖w‖Lq(R;Bsρ,2(Rd)) ≤ C
(
‖f‖H1(Rd) + ‖g‖L2(Rd) + ‖F‖L1(R;L2(Rd))

)
, (1.3.6)

where C > 0 depends only on the choice of the pair (q, r) and on the dimension d and
s ∈ [0, 1] is defined by

s = 1− 1
2

(
d

2 + 1
)(

1
ρ′
− 1
ρ

)
= 1− 1

2

(
d

2 + 1
)(

1− 2
ρ

)
. (1.3.7)
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The proof is detailed in Nakanishi and Schlag [102], using previous results from
Brenner [12, 13], Ginibre and Velo [52–54], Ibrahim, Masmoudi and Nakanishi [69], Keel
and Tao [76], Nakamura and Ozawa [99], Pecher [106] (see for example [52–54,76] for the
proofs and [76] for the endpoint cases when d ≥ 3. See also Machihara, Nakanishi and
Ozawa [91,92]).
The estimates in previous works are more general: the source term can be handled in a
“dual” Besov space. We chose to handle the source term in the only homogeneous space
we can work with, using a scaling method.

As second step, we state the following embedding theorem contained in [124,125] and
references therein.

Theorem 1.3.3. Let d ≥ 1, s > 0, and 1 < r, ρ <∞. Consider the Besov space Bs
ρ,2(Rd)

and the Lebesgue space Lr(Rd). Then the embedding relations below hold:

1. Bs
ρ,2(Rd) ↪→ Lρ(Rd) (ρ = 1,∞ allowed);

2. If ρ∗ := dρ

d− sρ
, when d > sρ, then Bs

ρ,2(Rd) ↪→ Lr(Rd) for ρ ≤ r ≤ ρ∗;

3. If d ≤ sρ, then Bs
ρ,2(Rd) ↪→ Lr(Rd) for ρ ≤ r < +∞.

Remark 1.3.4. Observe that in the statement of the Embedding Theorem, s is not
assumed to be the same of (1.3.7). We kept the same station since later on they will be
identified.

We notice that for s satisfying (1.3.7) and (q, ρ) as in (1.3.4), the conditions of the
theorem yield

d− sρ < 0 if d = 1,
d− sρ = 0 if d = 2,
d− sρ > 0 if d ≥ 3.

By [123], we have in our setting Bs
ρ,2(Rd) ⊂ W s,ρ(Rd). Thus with Sobolev embeddings

W s,ρ(Rd) ⊂ Lr(Rd) with
r ∈ [ρ,∞] if d = 1,
r ∈ [ρ,∞) if d = 2,
r ∈ [ρ, ρ∗] if d ≥ 3,

and computing ρ, ρ∗ in terms of q, we obtain

2dq
dq − 4 ≤ r if d = 1 or d = 2, (1.3.8)

2dq
dq − 4 ≤ r ≤ 2d2q

d2q − 2d− 2dq + 4 if d ≥ 3. (1.3.9)

Strichartz estimates involving Lebesgue spaces instead of Besov spaces follow immediately
by applying the previous embedding theorem to Proposition 1.3.2, with r satisfying
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(1.3.8) or (1.3.9).

The third step is the scaling argument. By defining wλ := w
(√

λt,
√
λx
)
with w as in

(1.3.5) and noticing that it satisfies
∂ttwλ −∆Rdwλ + λwλ = Fλ, (t, x) ∈ R× Rd

wλ(0, ·) = fλ

∂twλ(0, ·) = gλ

, (1.3.10)

where

fλ(x) = f
(√

λx
)
, gλ(x) =

√
λg
(√

λx
)
, Fλ(t, x) = λF

(√
λt,
√
λx
)
,

we can easily prove the next result, whose detailed proof can be found in [63].

Proposition 1.3.5. Consider a pair (q, ρ) as in (1.3.4), s given by (1.3.7) and r as in
Theorem 1.3.3. Consider w given by (1.3.5) for which Proposition 1.3.2 holds. Then one
has for (1.3.10)

‖wλ‖Lq(R;Lr(Rd)) ≤ Cλ−
1
2( dr+ 1

q
− d2 +1) (√λ‖fλ‖L2(Rd) + ‖fλ‖Ḣ1(Rd)

+ ‖gλ‖L2(Rd) + ‖Fλ‖L1(R;L2(Rd))

)
.

(1.3.11)

The final step is the proof of Theorem 1.3.1, by using the tools of the previous steps.

Proof of Theorem 1.3.1. Once we can rely on the ingredients above, we finally use the
strategy from [126] to conclude with the desired result. We write {λj}j≥0 for the
eigenvalues of −∆T, sorted in ascending order and taking in account their multiplicities;
we also introduce {Φj(y)}j≥0, the eigenfunctions associated with λj, i.e.

−∆TΦj = λjΦj, λj ≥ 0, j ∈ N ∪ {0}. (1.3.12)

This provides an orthonormal basis of L2 (T). We now consider the solution to (1.3.2)
and we write the functions in terms of (1.3.12):

w(t, x, y) =
∞∑
j=0

wj(t, x)Φj(y),

F (t, x, y) =
∞∑
j=0

Fj(t, x)Φj(y),

f(x, y) =
∞∑
j=0

fj(x)Φj(y),

g(x, y) =
∞∑
j=0

gj(x)Φj(y),

(1.3.13)
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with wj = wj(t, x) satisfying
∂ttwj −∆Rdwj + wj + λjwj = Fj, (t, x) ∈ R× Rd

wj(0, ·) = fj

∂twj(0, ·) = gj

. (1.3.14)

Taking λ = 1 + λj in (1.3.11) it follows that

(λj + 1)
1
2( dr+ 1

q
+1− d2 ) ‖wj‖Lq(R;Lr(Rd)) ≤ C

(
(λj + 1)1/2‖fj‖L2(Rd) + ‖fj‖Ḣ1(Rd)

+‖gj‖L2(Rd) + ‖Fj‖L1(R;L2(Rd))

)
.

Then, summing in j the squares as in [126] and [63] one obtains∥∥∥∥(λj + 1)
1
2( dr+ 1

q
+1− d2 )wj

∥∥∥∥
l2jL

q(R;Lr(Rd))
≤ C

(∥∥∥(λj + 1)1/2 fj
∥∥∥
l2jL

2(Rd)
+ ‖fj‖l2j Ḣ1(Rd)

+‖gj‖l2jL2(Rd) + ‖Fj‖l2jL1(R;L2(Rd))

)
.

Since max{1, 2} ≤ 2 ≤ min{q, ρ}, the Minkowski inequality can be applied, hence∥∥∥∥(λj + 1)
1
2( dr+ 1

q
+1− d2 )wj

∥∥∥∥
Lq(R;Lr(Rd))l2j

≤ C

(∥∥∥(λj + 1)1/2 fj
∥∥∥
L2(Rd)l2j

+ ‖gj‖L2(Rd)l2j

+ ‖Fj‖L1(R;L2(Rd))l2j

)
,

and by the Plancherel identity one is able to handle the y variable getting∥∥∥∥(1−∆y)
1
2( dr+ 1

q
+1− d2 )w

∥∥∥∥
Lq(R;Lr(Rd)L2(T))

≤ C
(
‖f‖H1(Rd×T) + ‖g‖L2(Rd×T)

+‖F‖L1(R;L2(Rd×T))

)
,

which in turn implies

‖w‖Lq(R;Lrx(Rd)Hγ
y (T)) ≤ C

(
‖f‖H1(Rd×T) + ‖g‖L2(Rd×T) + ‖F‖L1(R;L2(Rd×T))

)
where

γ =
(
d

r
+ 1
q

+ 1− d

2

)
.

We easily see that γ ≥ 0 when d = 1, 2, and by computing the condition γ ≥ 0 for d ≥ 3,
we have

γ ≥ 0 ⇐⇒ 2dq + 2r + 2qr − dqr
2qr ≥ 0

⇐⇒ 2dq + 2r + 2qr − dqr ≥ 0

⇐⇒ r ≤ 2dq
dq − 2q − 2 .
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It is easy to check that 2dq
dq − 2q − 2 ≥ ρ∗ > r which establishes that under (1.3.9) γ is

always nonnegative.
The proof is then completed by using a Sobolev embedding available for γ ≥ 0

Hγ(T) ↪→ Lr(T) (1.3.15)

which holds (at least) under one of the following conditions:

2γ < 1, 2
1− 2γ ≥ r

2γ ≥ 1, r ≥ 2
. (1.3.16)

Remark 1.3.6. The first one of (1.3.16) is the “usual” condition to have Sobolev embedding,
while the second one ensures (1.3.15) with Hγ(T) ↪→ L∞(T) allowing to control any
Lr-norm with the Hγ-norm since T is of finite volume.
Then by gluing together all conditions (1.3.8),(1.3.9),(1.3.16) in terms of q, we exhibit
the exponent r for which the Strichartz estimates can be proved: for d = 1, since γ > 1/2,
we have Hγ(T) ↪→ L∞(T) and so

2q
q − 4 ≤ r.

For d ≥ 2
2dq
dq − 4 ≤ r ≤ min

{
2d2q

d2q − 2d− 2dq + 4 ,
2q(d+ 1)
dq − q − 2

}
,

that is
2dq
dq − 4 ≤ r ≤ 2q(d+ 1)

dq − q − 2 ,

which concludes the proof of Theorem 1.3.1.

1.4 A dispersive estimate for NLKG on flat
waveguide Rd × T

In order to prove the Profile Decomposition Theorem in chapter 4 we use a decay property
from [32]. The key argument to show it on a waveguide is, again, a scaling argument.
We will briefly sketch the proof given in [32, Example 1.2].

By means of the basis {Φj(y)}j∈N given in (1.3.12) and (1.3.13) we decompose

eit
√

1−∆x,yf(x, y) =
∑
j∈N

eit
√

1+λj−∆xfj(x)Φj(y).

Thus we get∥∥∥∥eit√1−∆x,yf
∥∥∥∥
L∞(Rd×T)

≤
∑
j∈N

∥∥∥∥eit√1+λj−∆xfj(·)
∥∥∥∥
L∞(Rd)

‖Φj(·)‖L∞y .
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From [32], we have ∥∥∥eit√1−∆xf
∥∥∥
L∞x
≤ C|t|−d/2‖f‖

B
d
2 +1

1,1

with B
d
2 +1
1,1 defined similarly to (1.3.3) with the obvious modifications. The function

wm(t, x) = eit
√
m−∆xf satisfies the equation ∂ttwm −∆xwm + mwm = 0 with w(0, x) =

f(
√
mx) := fm, with wm := w(

√
mt,
√
mx) and w satisfying ∂ttw −∆xw + w = 0 with

w(0, x) = f(x). We use a scaling argument to deduce an estimate for fm, noticing that
for m ≥ 1, the Besov norm of a rescaled function can be bounded by:

‖fm‖
B
d
2 +1

1,1

≤ m
d+2

4 ‖f‖
B
d
2 +1

1,1

,

giving the following estimate with m = 1 + λj > 1∥∥∥∥eit√1−∆x,yf

∥∥∥∥
L∞(Rd×T)

≤ C|t|−
d
2
∑
j∈N

√
1 + λj‖fj‖

B
d
2 +1

1,1

‖Φj(y)‖L∞y

= C|t|−
d
2
∑
j∈N

(1 + λj)d+1(1 + λj)−d−1/2‖fj‖
B
d
2 +1

1,1

‖Φj(y)‖L∞y

. |t|−
d
2
∑
j∈N

(1 + λj)d+1‖fj‖
B
d
2 +1

1,1

‖Φj(y)‖L∞y .

Noticing that the righthand side can be expressed a term involving derivatives in (x, y),
one can find N ∈ N large enough to have∥∥∥∥eit√1−∆x,yf

∥∥∥∥
L∞(Rd×T)

≤ C|t|−
d
2‖f‖WN,1(Rd×T). (1.4.1)

1.5 Strichartz estimates for the Zakharov system
About the Zakharov system{

i∂tu− ω∇×∇× u+∇(div u) = nu
1
c2
s
∂ttn−∆n = ∆|u|2 , (1.5.1)

let us remark since now that for the subsequent analysis Strichartz estimates for the wave
equation will not be used, being necessary only the energy estimates for the wave unknown.
Let us therefore consider the free propagator related to the (linear) Schrödinger-type
equation of (1.5.1), namely

i∂tu = ω∇×∇× u−∇ div u. (1.5.2)

Lemma 1.5.1. Let u solve (1.5.2) with initial datum u(0) = u0, then

u(t) = Z(t)u0 = [U(ωt)P + U(t)Q]u0, (1.5.3)

where U(t) = eit∆ is the Schrödinger evolution operator, Q := −(−∆)−1∇ div and
P := 1−Q.
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Proof. By taking the Fourier transform of (1.5.2) we have

i∂tû = −ωξ × ξ × û+ ξ(ξ · û)
= |ξ|2

(
ωP̂(ξ) + Q̂(ξ)

)
û(ξ),

where P̂(ξ), Q̂(ξ) are two (3 × 3)−matrices defined by Q̂(ξ) = ξ⊗ξ
|ξ|2 , P̂(ξ) = 1 − Q̂(ξ)

where 1 is the identity matrix. Hence we may write

û(t) = e−iωt|ξ|
2P̂(ξ)−it|ξ|2Q̂(ξ)û0(ξ).

It is straightforward to see that Q̂(ξ) is a projection matrix, 0 ≤ Q̂(ξ) ≤ 1, Q̂(ξ) = Q̂2(ξ),
hence P̂(ξ) is its orthogonal projection. Consequently we have

û(t) = e−iωt|ξ|
2P̂(ξ)e−it|ξ|

2Q̂(ξ)û0(ξ)
=
(
e−iωt|ξ|

2P̂(ξ) + Q̂(ξ)
) (
e−it|ξ|

2Q̂(ξ) + P̂(ξ)
)
û0(ξ)

=
(
e−iωt|ξ|

2P̂(ξ) + e−it|ξ|
2Q̂(ξ)

)
û0(ξ).

By taking the inverse Fourier transform we find (1.5.3).

By the dispersive estimates for the standard Schrödinger evolution operator of the
previous section, see (1.1.3), we have

‖U(t)Qf‖Lp . |t|−3( 1
2−

1
p)‖Qf‖Lp′ ,

‖U(ωt)Pf‖Lp . |ωt|−3( 1
2−

1
p)‖Pf‖Lp′ ,

(1.5.4)

for any 2 ≤ p ≤ ∞, t 6= 0. These two estimates together give

‖Z(t)f‖Lp . |t|−3( 1
2−

1
p)‖f‖Lp′ ,

for 2 ≤ p < ∞. Let us notice that the dispersive estimate for p = ∞ does not hold
for Z(t) anymore because the projection operators Q,P are not bounded from L1 into
itself (the symbol associated to Q is basically the same of the one defining the Riesz
Transform; it is a well-known property that the Riesz Transform does not map L1 into
itself). Nevertheless by using the dispersive estimates in (1.5.4) and the result in [76]
we infer the whole set of Strichartz estimates for the irrotational and solenoidal part,
separately. By summing them up we thus find the Strichartz estimates for the propagator
in (1.5.3).

Lemma 1.5.2. Let (q, r), (γ, ρ) be two arbitrary admissible pairs (in the sense of
Definition 1.1.4 with d = 3) and let ω ≥ 1, then we have

‖U(ωt)Pf‖Lq(I;Lr) ≤ Cω−
2
q ‖f‖L2 , (1.5.5)∥∥∥∥∫ t

0
U(ω(t− s))PF (s) ds

∥∥∥∥
Lq(I;Lr)

≤ Cω−( 1
q

+ 1
γ )‖F‖Lγ′ (I;Lρ′ ),
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and
‖U(t)Qf‖Lq(I;Lr) ≤ C‖f‖L2 ,∥∥∥∥∫ t

0
U(t− s)QF (s) ds

∥∥∥∥
Lq(I;Lr)

≤ C‖F‖Lγ′ (I;Lρ′ ).

Therefore the linear propagator Z(t) satisfies

‖Z(t)g‖Lq(I;Lr) ≤ C‖f‖L2 , (1.5.6)∥∥∥∥∫ t

0
Z(t− s)F (s) ds

∥∥∥∥
Lq(I;Lr)

≤ C‖F‖Lγ′ (I;Lρ′ ). (1.5.7)

Remark 1.5.3. From the estimates in the Lemma above it is already straightforward that,
at least in the linear evolution, we can separate the fast and slow dynamics and that
the fast one is asymptotically vanishing. This is somehow similar to what happens with
rapidly varying dispersion management, see for example Antonelli, Saut and Sparber [2].
Remark 1.5.4. Let us notice that the constants in (1.5.6) and (1.5.7) are uniformly
bounded for ω ≥ 1. This is straightforward but it is a necessary remark to infer that
the existence time in the local well-posedness result of Section 5.2 is uniformly bounded
from below for any ω ≥ 1.
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Chapter 2

The Concentration/Compactness &
Rigidity scheme

We now introduce the Concentration/Compactness & Rigidity method, first developed by
Kenig and Merle in their famous papers on energy critical radial NLS equation [77] and
energy critical radial nonlinear wave (NLW) equation [78]. This method in the last ten
years have had a tremendous impact on the fields of dispersive PDEs, with an enormous
production of mathematical results in the study of global well-posedness and scattering
for such kind of equations. See below for a (not exhaustive) list of references.

The Kenig and Merle approach can be view as a version of the induction on the
energy developed by Bourgain in [10] to treat the large data problem for the defocusing
energy critical radial NLS on R3. The Kenig and Merle strategy actually applies for both
defocusing and focusing problems, and also for non-critical equations aside from the
critical ones for which the method was developed at first instance. Refinements of the
method led to the removal of the constraint of radial solutions along with the restriction
to low dimensions. We illustrate now how the scheme (which is a indirect method)
proceeds; since it is very general in its plan, we illustrate it in the case of the intra-critical
NLS with constant coefficients in arbitrary dimension, borrowing from [111]. For a sketch
of the strategy we also refer to [42, Section 2], while for a more complete (and historical)
review on the maturation of the method developed by Kenig and Merle we refer to [108].
We further emphasize the main differences between this class of equations and the NLS
equation perturbed with steplike potentials, which is the subject of study of the next
chapter. This strategy will be also adopted for the NLKG equation on waveguide in
chapter 4.
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2.1 The Kenig and Merle road map
Consider the Cauchy problems i∂tu+ ∆u = ±|u|αu, (t, x) ∈ R× Rd

u(0) = u0 ∈ H1(Rd)
(2.1.1)

(the sign + corresponding to the defocusing case while − to the focusing one) with

α ∈


(4
d
,

4
d− 2

)
if d ≥ 3(4

d
,∞

)
if d ≤ 2

.

Solutions to (2.1.1) conserve the L2-norm and the energy, defined as

E(u(t)) = 1
2

(∫
Rd
|∇u(t)|2 ± 2

α + 2 |u(t)|α+2 dx
)
. (2.1.2)

The method we are going to illustrate allows to establish the free dynamics property for
solutions to (2.1.1). We recall the definition of scattering (already introduced in the first
chapter for the equations (0.0.1) and (0.0.2)) in the context of (2.1.1). For this purpose
it is considered the linear problem associated to (2.1.1) which reads as follows: i∂tv + ∆v = 0, (t, x) ∈ R× Rd

v(0) = v0 ∈ H1(Rd)
. (2.1.3)

Definition 2.1.1. Given a global solution u ∈ C(R;H1) to (2.1.1), we say that it scatters
if for large times it behaves like a solution to (2.1.3). More rigorously, u scatters if for
t→ ±∞ there exist v±0 , respectively, such that

lim
t→±∞

‖u(t)− v±(t)‖H1 = 0

where v±(t) solve the Cauchy problems (2.1.3) with v±0 as initial data, respectively.

For such kind of problems we can separate the situation in two cases:

1. small data theory: if ‖u0‖H1 is “small” then global well-posedness of the problems
is quite simple to establish as well as the long time dynamics, which is free (in the
sense that solutions scatter), no matter on the sing in front of the nonlinearity;

2. large data theory: in the defocusing case, in the energy sub-critical regime, once
the local well-posedness is established, the sub-criticality conditions enable to
control the energy norm by means of Sobolev embedding and since the local time
of existence depends only on the size of the initial datum, then it is possible to
extend globally in time the solution by time-stepping. This is no more the case
for the energy critical problem since the time of existence depends on the initial
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profile and not only on its size. For the focusing problems, it can be proved in a
quite simple way, see the Glassey’s argument in [57], that some initial data lead
to blowing-up solutions in finite time. But in general, if we assume that we are
dealing with global solutions, both in the defocusing and focusing regimes, the
dynamics at large times is not simple to establish, since a perturbative argument is
no more exploitable.

The Kenig and Merle road map therefore is a tool which enables us to attack the large
data problems. It is based, as mentioned in the Introduction, on four main points. For
sake of clarity, let us consider since now on the defocusing problems.
Remark 2.1.2. As established by Cazenave and Weissler (see [23]) a sufficient condition to
have scattering for a global solution u(t, x) to (2.1.1) is that u ∈ LpLr, with (p, r) defined
as in (1.2.5). Such condition implies that u belongs to any LγLρ with (γ, ρ) Strichartz
admissible pair. This is enough to show that e−it∆u(t) is a Cauchy sequence in H1, and
this a necessary and sufficient condition to have the scattering property. Therefore the
Kenig and Merle method aims to show that for any initial datum, a solution to (2.1.1)
has finite LpLr-norm.
The four steps are in order:

1. Small data theory, which is “guaranteed” by perturbative argument, see Lemma 3.2.2
and Theorem 4.2.1 for NLS and NLKG, respectively;

2. Construction of a “critical solution” : from the previous point, it is known that
small initial data, and consequently small energies lead to global and scattering
solutions. The method goes on now by exploiting a reasoning by the absurd: if
there exists a global non-scattering solution, then there exists a minimal energy
Ec > 0 (boundedness away from zero is guaranteed by the Step 1 ) for which the
free dynamics fails to hold true. This minimal energy is defined as follows:

Ec = sup
{
E > 0 such that if u0 ∈ H1 with E(u0) < E

then the solution of (2.1.1) with initial data u0 is in LpLr
}
.

Then the first non-trivial step of the method is the construction of a “critical solution”
uc such that E(uc) = Ec, and which is global and non-scattering. Therefore Ec is
not a maximum and it is the smallest energy such that the solutions having such
energy do not scatter;

3. Compactness of the flow: the minimality of Ec has another fundamental consequence:
the critical solution built in the previous step is precompact modulo the symmetries
of the equation in the energy space. This means that {uc(t)}t∈R+ (up to symmetries)
is precompact in H1;

4. Rigidity: the last step, which is the most nonlinear ingredient of the method, is
the exclusion of solutions enjoying the compactness property of the previous point.
This is done by means of Liouville-type theorems and in general relies on virial
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identities. It shows that uc(t) ≡ 0, then one concludes with Ec =∞ and therefore
scattering holds for any initial datum.

Remark 2.1.3. In the subsequent chapters, the rigidity part will be proved by the 1D
Nanakishi/Morawetz estimates. It is worth highlighting since right now that for NLS
perturbed with a potential, as in the situation of chapter 3, the idea to use a 1D tool
allows us to work with potentials which are repulsive in only one direction, although
working in a multidimensional setting. The novelty is that in the previous literature, as
far as we know, only repulsive potentials with respect to the full set of variables had
been considered.

Let us discuss briefly the points above. As said, the first nontrivial point is the
Step 2, and it is based on the Concentration/Compactness method. The Concentra-
tion/Compactness procedure appears in the Calculus of Variation with the seminal
works of Lions [88,89]; there the author analyzes minimization problems on unbounded
domains. Due to the invariance of such domains under the action of non-compact groups
of transformation, for example dilations and translation on Rd, some loss of compactness
arises. Other early works in this direction are due to Brezis and Coron, see [14], Struwe,
see [116], Lieb, see [87], to quote some of them. The precise description of the loss of
compactness in the Sobolev embedding is given in the work of Gérard [46]. When dealing
with critical dispersive equations, the Concentration/Compactness method appears in
the works of Bahouri and Gérard for the (critical) wave equation, see [5, 47], and for the
(critical) Schrödinger equation in the papers by Merle and Vega, see [96], Keraani, see
[80], Hmidi and Keraani, see [66], where the authors describe the loss of compactness in
the Strichartz estimates. How to concern extensions to subcritical cases, see the works by
Holmer and Roudenko [67], Duykaerts, Holmer and Roudenko, [40], Fanelli and Visciglia
[41], Cazenave, Fang, Xie [42], to quote some of them. The Profile Decomposition
Theorem needed for (2.1.1) is given in [42] and is as follows.

Theorem 2.1.4. Let {un}n∈N ⊂ H1(Rd) be a bounded sequence. There exist (tjn, xjn) ⊂
R× Rd and sequences of profiles {ψnj }n,j∈N ⊂ H1 such that, up to subsequences, one can
write

un =
∑

1≤j≤J
eit

j
n∆τxjnψ

j +RJ
n, ∀ J ∈ N. (2.1.4)

Furthermore:

• (dichotomy of the parameters) for any fixed j we have:

either tjn = 0 ∀n ∈ N or tjn
n→∞−→ ±∞,

either xjn = 0 ∀n ∈ N or |xjn|
n→∞−→ ±∞;

• (orthogonality of the parameters) for any j 6= k

|xjn − xkn|+ |tjn − tkn|
n→∞−→ ∞;
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• (smallness of the remainder) ∀ ε > 0 ∃ J = J(ε) such that

lim sup
n→∞

‖eit∆RJ
n‖LpLr ≤ ε,

(see (1.2.5) for the definition of (p, r));

• (Pythagorean expansion of the Sobolev norms) for any 0 ≤ s ≤ 1, as n→∞,

‖un‖2
Ḣs =

∑
1≤j≤J

‖ψj‖2
Ḣs + ‖RJ

n‖2
Ḣs + o(1), ∀ J ∈ N; (2.1.5)

• (Pythagorean expansion of the potential energy) ∀ J ∈ N and ∀ 2 < q < 2∗ we
have, as n→∞,

‖un‖qLq =
∑

1≤j≤J
‖eit

j
n∆ψj‖qLq + ‖RJ

n‖
q
Lq + o(1);

• (Pythagorean expansion of the energy) with E(u) defined as (2.1.2) (with the +
sign), we have, as n→∞,

E(un) =
∑

1≤j≤J
E(eit

j
n∆ψj) + E(RJ

n) + o(1), ∀ J ∈ N. (2.1.6)

Once a similar theorem is proved, the key consideration in the Kenig and Merle scheme is
that due to the minimality of Ec, only one nontrivial profile exists in the decomposition
(2.1.4). More precisely:

Step 1. Consider a minimizing sequence of initial data {un(0)}n∈N with E(un(0))→ Ec
(which is strictly away from zero, since small data scattering holds) and such that the
corresponding solutions {un(t)}n∈N to (2.1.1) satisfy ‖un‖LpLr → ∞ as n → ∞, one
employs the Concentration/Compactness decomposition to {un(0)}n∈N and assumes that
there exists two nontrivial profiles, namely J ≥ 2 in (2.1.4).

Step 2. Assume for example that the first two profiles are nontrivial, namely the ones
indexed by j = 1, 2. Due to the energy-norm orthogonal expansion both of them have
energy less than Ec. Due to the dichotomy condition on the parameters, by the local
well-posedness theory at t = 0 and t = ±∞ is it possible to associate to these two linear
solutions two nonlinear profiles, say V 1, V 2 : here V 1, V 2 are solutions to (2.1.1) with
suitable initial data such that

‖e−t
j
n∆ψj − V j(tjn)‖ n→∞−→ 0 j = 1, 2.

Furthermore, from the Pythagorean expansion of the energy (2.1.6) one can claim that
both E(V 1) < Ec and E(V 2) < Ec, hence they scatter.
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Step 3. By considering a large J > 1 such that the remainder in (2.1.1) is small enough
(this smallness given by the small data theory), a suitable perturbation result implies
that the error term can be absorbed in the nonlinear profiles, leading to the uniform
estimate

sup
n∈N
‖un‖LpLr ≤ C <∞.

But this is a contradiction with respect to the assumption on {un}n∈N, therefore J = 1,
hence the compactness (up to subsequences) of {un(0)}n∈N, then Ec = E(V 1) and the
critical solution is given by uc(t) = V 1(t).

Step 4. By considering {uc(tn)}n∈N, repetition of Step 3 on this sequence yields to the
precompactness of the critical element modulo the symmetries of the equation.

Step 5. The rigidity part (i.e. the proof that uc(t) ≡ 0) is given by means of localized
virial identities, by exploiting concentration of the energy and a convexity argument.
Also a priori uniform bounds like Morawetz estimates can be used to conclude the
argument. It is worth mentioning that such kind of estimates are no more exploitable in
the context of focusing problems and furthermore that for our next results we will use
only one-dimensional version of them, see Remark 2.1.3.

2.2 Remarks
This conclusive section contains remarks on the Concentration/Compactness & Rigidity
method. Moreover some differences with respect to the NLS with non-constant coefficients
(3.1.7) are highlighted, along with some features arising in the NLKG (4.0.1) which do
not appear in the context of the Schrödinger equation. The following are in order.
Remark 2.2.1 (Focusing case). The method illustrated above also applies to the focusing
equation. But it is well-known that in this situation the dynamics of the solutions
is richer: presence of possible blowing-up solutions in finite time, solitons, stationary
solutions... We refer to [42, Introduction] for more comments of the focusing case.
Remark 2.2.2 (Critical problems). Aside from the defocusing/focusing regimes, also
critical problem can be attacked with the method. The (radial) energy critical Schrödinger
and wave equations are exactly the contents of the Kenig and Merle early papers [77, 78].
Remark 2.2.3 (Symmetries). As in the variational problems, the lack of compactness
comes from the symmetries of the problems. We observe that space-time translations
left the equation invariant and they do appear in the Profile Decomposition Theorem.
If we consider radial problems, then only time translations appear, since the problem
is spherically symmetric and the group of rotation is compact, therefore if we consider
also rotations, up to subsequence they can be absorbed in the profiles. For critical
problems, furthermore, there is also the scaling invariance. For such problems, in the
Profile Decomposition Theorem a sequence of scaling parameters appears, satisfying, as
the translation sequences, some orthogonality conditions.

35



Remark 2.2.4 (Alternative proof of scattering in defocusing case). Let us point out that
in the energy sub-critical, defocusing regime, this method provides an alternative proof of
the already known scattering results of Morawetz [97] and Morawetz and Strauss [98] in
Rd for d ≥ 3 and Nakanishi [100] for the low dimensional cases d = 1, 2. This remark also
applies in the energy critical case: the method provides a different proof of the scattering
in R3 with respect to the results of Bourgain in [10].

We now give some comments on the differences between the Schrödinger equation
(2.1.1) and the one studied in chapter 3.
Remark 2.2.5. The Profile Decomposition Theorem related to (3.1.7) with steplike,
partially period coefficients, takes into account the fact that the equation is no more
invariant under space translations. This is reflected in the dichotomy condition on
the space sequences, as well as in the the Pythagorean expansion of the energy. See
Theorem 3.3.1.
Remark 2.2.6. The rigidity step is proved by using only 1D tools, despite the multi-
dimensional setting where the equation is posed. These are the Nakanishi/Morawetz
estimates found by Nakanishi in [100] to prove scattering in low dimensional (d = 1, 2)
cases for (2.1.1) (defocusing case). This kind on tool is also used fro the rigidity result
about NLKG in chapter 4: it is worth mentioning that in this situation a fundamental
property of the Klein-Gordon equation which does not hold for NLS is the so-called
“finite propagation speed”.
Remark 2.2.7. About the two previous remarks, it is worth mentioning that while the
the Rigidity step is related to the invariance of the equation under the action of some
non-compact groups of the Poincaré Group, the Profile Decomposition Theorem is an
abstract result, somehow classic, now. Recently Banica and Visciglia, see [6], gave
an abstract version of it, needed by the authors to prove by scattering for the mass
supercritical NLS on the line perturbed by a repulsive δ-interaction. Since we will work
with a NLS equation with non constant coefficients, we will give, borrowing from [6], a
detailed version of the Concentration/Compactness Theorem in chapter 3, fitting the
structure of our considered equation. The same strategy will be adopted in chapter 4 in
the context of Klein-Gordon equation posed on flat waveguide.
Remark 2.2.8. In the construction of the critical element, due to the different behaviors
at infinity of the potential, the association of nonlinear profiles to the linear ones is more
involved. See Claim 3.5.2.

Beside the already mentioned papers (and those that will be cited in the next chapters)
where the Concentration/Compactness & Rigidity method is used, it is worth mentioning
that this road map found a very large range of applicability, yielding for example to
solutions for the mass-critical problems about NLS in the works of Dodson, see [36–39]
or in the fields of wave maps, see the work of Krieger and Schlag [86], Schrödinger maps,
see Bejenaru, Ionescu, Kenig and Tataru [8] and also for energy supercritical problems,
see for example Bulut [16] or Killip and Visan [83,84].
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Chapter 3

Scattering for a class of NLS with a
steplike potential

This chapter is devoted to the analysis of the behavior for large times of solutions to the
following 1D Cauchy problems{

i∂tu+ ∂2
xu− V u = |u|αu, (t, x) ∈ R× R, α > 4

u(0) = u0 ∈ H1(R)
, (3.0.1)

namely we treat the L2-supercritical defocusing power nonlinearities, and V : R→ R is
a real time-independent steplike potential. More precisely we assume that V (x) has two
different asymptotic behaviors at ±∞:

a+ = lim
x→+∞

V (x) 6= lim
x→−∞

V (x) = a−. (3.0.2)

In order to simplify the presentation we shall assume in our treatment

a+ = 1 and a− = 0,

but of course the arguments and the results below can be extended to the general case
a+ 6= a−. Furthermore, we will give a suitable extension in a multidimensional framework,
by considering potential which are of steplike type along one direction and partially
periodic in the remaining ones (see (3.1.7) below).

3.1 Motivations and main results
We recall that in physics literature the steplike potentials are called barrier potentials
and are very useful to study the interactions of particles with the boundary of a solid
(see Gesztesy [48] and Gesztesy, Nowell and Pötz [49] for more details). We also mention
the paper by Davies and Simon [35] where, in between other results, it is studied via the
twisting trick the long time behavior of solutions to the propagator eit(∂2

x−V ), where V (x)
is steplike (see below for more details on the definition of the double scattering channels).
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For a more complete list of references devoted to the analysis of steplike potentials we
refer to [34]. Nevertheless, at the best of our knowledge, no results are available about
the long time behavior of solutions to nonlinear Cauchy problem (3.0.1) with a steplike
potential.

Roughly speaking the Cauchy problem (3.0.1) looks like the following Cauchy problems
respectively for x >> 0 and x << 0:{

i∂tv + ∂2
xv = |v|αv

v(0) = v0 ∈ H1(R)
(3.1.1)

and {
i∂tv + (∂2

x − 1)v = |v|αv
v(0) = v0 ∈ H1(R)

. (3.1.2)

We recall that in 1D (and also in the 2D case) the long time behavior of solutions to
(3.1.1) (and also to (3.1.2)) has been first obtained in the work by Nakanishi (see [100]),
who proved that the solutions to (3.1.1) (and also (3.1.2)) scatter to a free wave in H1(R)
(see Definition 3.1.4 for a precise definition of scattering from nonlinear to linear solutions
in a general framework). The Nakanishi argument is a combination of the induction
on the energy in conjunction with a suitable version of Morawetz inequalities with
time-dependent weights. Alternative proofs based on the use of the interaction Morawetz
estimates, first introduced in [28], have been obtained later (see for example Colliander,
Grillakis and Tzirakis [26], Colliander, Holmer, Visan and Zhang [27], Planchon and Vega
[107], Visciglia [130] and the references therein).
As far as we know, there are not results available in the literature about the long time
behavior of solutions to NLS perturbed by a steplike potential, and this is the main
motivation of this work.

It is worth mentioning that in 1D, we can rely on the Sobolev embedding H1(R) ↪→
L∞(R). Hence it is straightforward to show that the Cauchy problem (3.0.1) is locally
well posed in the energy space H1(R). For higher dimensions the local well-posedness
theory is still well known, see for example Cazenave’s monograph [20], once the good
dispersive properties of the linear flow are established. Moreover, thanks to the defocusing
character of the nonlinearity, we can rely (as already explained in the Introduction) on
the conservation of the mass and of the energy below, valid in any dimension: for any
t ∈ R

‖u(t)‖L2(Rd) = ‖u(0)‖L2(Rd) (3.1.3)
and

E(u(t)) := 1
2

∫
Rd

(
|∇u(t)|2 + V |u(t)|2 + 2

α + 2 |u(t)|α+2
)
dx = E(u(0)) (3.1.4)

in order to deduce that the solutions are global. Hence for any initial datum u0 ∈ H1(Rd)
there exists one unique global solution u(t, x) ∈ C(R;H1(Rd)) to (3.0.1) for d = 1 and to
(3.1.7) below in higher dimension.
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At the best of our knowledge, the unique paper where the dispersive properties of the
corresponding 1D linear flow perturbed by a steplike potential V (x) have been analyzed
is [34], where the L1 − L∞ decay estimate in 1D is proved:

‖eit(∂2
x−V )f‖L∞(R) . |t|−1/2‖f‖L1(R), ∀ t 6= 0, ∀ f ∈ L1(R). (3.1.5)

We point out again that beside the different spatial behavior of V (x) on left and on
right of the line, other assumptions must be satisfied by the potential, see comments
contained in Section 1.2.

Nevertheless we shall not focus on them since our main point is to show how to go
from (3.1.5) to the analysis of the long time behavior of solutions to (3.0.1). We will
assume therefore as black-box the dispersive relation (3.1.5) and its multidimensional
version

‖eit(∆−V )f‖L∞(Rd) . |t|−d/2‖f‖L1(Rd), ∀ t 6= 0 ∀ f ∈ L1(Rd). (3.1.6)
Our first aim is to provide a nonlinear version of the double scattering channels in 1D
that has been established in the literature in the linear context, see [35].

Definition 3.1.1. Let u0 ∈ H1(R) be given and u(t, x) ∈ C(R;H1(R)) be the unique
global solution to (3.0.1) with V (x) that satisfies (3.0.2) with a− = 0 and a+ = 1. Then
we say that u(t, x) satisfies the double scattering channels provided that

lim
t→±∞

∥∥∥u(t, x)− eit∂2
xη± − eit(∂

2
x−1)γ±

∥∥∥
H1(R)

= 0,

for suitable η±, γ± ∈ H1(R).

We can now state our first result in 1D.

Theorem 3.1.2. Assume that V : R→ R is a bounded, nonnegative potential satisfying
(3.0.2) with a− = 0 and a+ = 1, and (3.1.5). Furthermore, suppose that:

• |∂xV (x)| |x|→∞−→ 0;

• limx→+∞ |x|1+ε|V (x)− 1| = 0, limx→−∞ |x|1+ε|V (x)| = 0 for some ε > 0;

• x · ∂xV (x) ≤ 0.

Then for every u0 ∈ H1(R) the corresponding unique solution u(t, x) ∈ C(R;H1(R)) to
(3.0.1) satisfies the double scattering channels (according to Definition 3.1.1).

Remark 3.1.3. It is worth mentioning that the assumption (3.1.5) it may look somehow
quite strong. However we emphasize that the knowledge of the estimate (3.1.5) provides
for free informations on the long time behavior of nonlinear solutions for small data, but
in general it is more complicated to deal with large data, as it is the case in Theorem 3.1.2.
For instance consider the case of 1D NLS perturbed by a periodic potential. In this
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situation it has been established in the literature the validity of the dispersive estimate for
the linear propagator, see the work by Cuccagna [29], and also the small data nonlinear
scattering, see Cuccagna and Visciglia [31]. However, at the best of our knowledge, it is
unclear how to deal with the large data scattering.

The proof of Theorem 3.1.2 goes in two steps. The first one is to show that solutions
to (3.0.1) scatter to solutions of the linear problem and actually we do that for general
space dimensions (see Definition 3.1.4 for a rigorous definition of scattering in a general
framework); the second one is the asymptotic description of solutions to the linear problem
associated with (3.0.1) (hence the 1D case) in the energy space H1 (see Theorem 3.1.8).
Concerning the first step we use the technique of Concentration/Compactness & Rigidity
pioneered by Kenig and Merle in [77,78], introduced in chapter 2. Since this argument is
rather general, we shall present it in a more general higher dimensional setting.
More precisely in higher dimension we consider the following family of NLS i∂tu+ ∆u− V u = |u|αu, (t, x) ∈ R× Rd

u(0) = u0 ∈ H1(Rd)
, (3.1.7)

where

α ∈


(4
d
,

4
d− 2

)
if d ≥ 3(4

d
,∞

)
if d ≤ 2

.

The potential V (x) is assumed to satisfy, uniformly in x̄ ∈ Rd−1,

a− = lim
x1→−∞

V (x1, x̄) 6= lim
x1→+∞

V (x1, x̄) = a+, where x = (x1, x̄). (3.1.8)

Moreover we assume V (x) periodic with respect to the variables x̄ = (x2, . . . , xd). Namely
we assume the existence of d− 1 linear independent vectors P2, . . . , Pd ∈ Rd−1 such that
for any fixed x1 ∈ R, the following holds:

V (x1, x̄) = V (x1, x̄+ k2P2 + · · ·+ kdPd),
∀ x̄ = (x2, . . . , xd) ∈ Rd−1, ∀ (k2, . . . , kd) ∈ Zd−1.

(3.1.9)

Some comments about this choice of assumptions on V (x) are given in Remark 3.1.6
along with Remark 1.2.2.

Next we recall the classical definition of scattering from nonlinear to linear solutions
in a general setting. We recall that by classical arguments we have that once (3.1.6) is
granted, then the local (and also the global, since the equation is defocusing) existence
and uniqueness of solutions to (3.1.7) follow by standard arguments.
Definition 3.1.4. Let u0 ∈ H1(Rd) be given and u(t, x) ∈ C(R;H1(Rd)) be the unique
global solution to (3.1.7). Then we say that u(t, x) scatters to a linear solution provided
that

lim
t→±∞

‖u(t, x)− eit(∆−V )ψ±‖H1(Rd) = 0

for suitable ψ± ∈ H1(Rd).
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In the sequel we will also use the following auxiliary Cauchy problems that roughly
speaking represent the Cauchy problems (3.1.7) in the regions x1 << 0 and x1 >> 0
(provide that we assume a− = 0 and a+ = 1 in (3.1.8)): i∂tu+ ∆u = |u|αu, (t, x) ∈ R× Rd

u(0) = ψ ∈ H1(Rd)
(3.1.10)

and  i∂tu+ (∆− 1)u = |u|αu, (t, x) ∈ R× Rd

u(0) = ψ ∈ H1(Rd)
. (3.1.11)

Notice that those problems are respectively the analogue of (3.1.1) and (3.1.2) in higher
dimensional setting.

We can now state our main result about scattering from nonlinear to linear solutions
in general dimension d ≥ 1.

Theorem 3.1.5. Let V ∈ C1(Rd;R) be a bounded, nonnegative potential which satisfies
(3.1.8) with a− = 0, a+ = 1, (3.1.9) and assume moreover:

• |∇V (x1, x̄)| |x1|→∞−→ 0 uniformly in x̄ ∈ Rd−1;

• the decay estimate (3.1.6) is satisfied;

• x1 · ∂x1V (x) ≤ 0 for any x = (x1, . . . , xd) ∈ Rd.

Then for every u0 ∈ H1(Rd) the unique corresponding global solution u(t, x) ∈ C(R;H1(Rd))
to (3.1.7) scatters.

Remark 3.1.6. Next we comment about the assumptions done on the potential V (x) along
Theorem 3.1.5. Roughly speaking we assume that the potential V (x1, . . . , xd) is steplike
and repulsive with respect to x1 and it is periodic with respect to (x2, . . . , xd). The main
motivation of this choice is that this situation is reminiscent, according with [35], of
the higher dimensional version of the 1D double scattering channels mentioned above.
Moreover we highlight the fact that the repulsivity of the potential in one unique direction
is sufficient to get scattering, despite to other situations considered in the literature where
repulsivity is assumed with respect to the full set of variables (x1, . . . , xd). Another point
is that along the proof of Theorem 3.1.5 we show how to deal with a partially periodic
potential V (x), despite to the fact that, at the best of our knowledge, the large data
scattering for potentials periodic with respect to the full set of variables has not been
established elsewhere, either in the 1D case (see Remark 3.1.3).
Remark 3.1.7. Next we discuss about the repulsivity assumption on V (x). As pointed
out in the paper by Hong, see [68], this assumption on the potential plays the same role
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of the convexity assumption for the obstacle problem studied by Killip, Visan and Zhang
in [85]. The author highlights the fact that both strict convexity of the obstacle and the
repulsivity of the potential prevent wave packets to refocus once they are reflected by the
obstacle or by the potential. From a technical point of view the repulsivity assumption is
done in order to control the right sign in the virial identities, and hence to conclude the
rigidity part of the Kenig and Merle argument. In this work, since we assume repulsivity
only in one direction we use a suitable version of the Nakanishi-Morawetz time-dependent
estimates in order to get the rigidity part in the Kenig and Merle road map. Of course
it is a challenging mathematical question to understand whether or not the repulsivity
assumption (partial or global) on V (x) is a necessary condition in order to get scattering.

When we specialize in 1D we are able to complete the theory of double scattering
channels in the energy space. Therefore how to concern the linear part of our work, we
give the following result, that in conjunction with Theorem 3.1.5 where we fix d = 1,
provides the proof of Theorem 3.1.2.

Theorem 3.1.8. Assume that V (x) ∈ C(R;R) satisfies the following space decay rate:

lim
x→+∞

|x|1+ε|V (x)− 1| = lim
x→−∞

|x|1+ε|V (x)| = 0 for some ε > 0. (3.1.12)

Then for every ψ ∈ H1(R) we have

lim
t→±∞

∥∥∥eit(∂2
x−V )ψ − eit∂2

xη± − eit(∂
2
x−1)γ±

∥∥∥
H1(R)

= 0

for suitable η±, γ± ∈ H1(R).

Notice that Theorem 3.1.8 is a purely linear statement. The main point (compared
with other results in the literature) is that the asymptotic convergence is stated with
respect to the H1-topology and not with respect to the weaker L2-topology. Indeed we
point out that the content of Theorem 3.1.8 is well-known and has been proved in [35] in
the L2 setting. However, it seems natural to us to understand, in view of Theorem 3.1.5,
whether or not the result can be extended in the H1 setting. In fact according with
Theorem 3.1.5 the asymptotic convergence of the nonlinear dynamic to linear dynamic
occurs in the energy space and not only in L2. As far as we know the issue of H1 linear
scattering has not been previously discussed in the literature, not even in the case of a
potential which decays in both directions ±∞.

For this reason we have decided to state Theorem 3.1.8 as an independent result.

3.2 Small data theory and perturbative results
Along this section we assume that the estimate (3.1.6) is satisfied by the propagator
associated with the potential V (x). We do not need for the moment to assume the other
assumptions done on V (x).
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We also specify that in the sequel the Lebesgue exponents p, r, q are the ones given in
(1.2.5), but for reader’s convenience we recall them:

r = α + 2, p = 2α(α + 2)
4− (d− 2)α, q = 2α(α + 2)

dα2 + (d− 2)α− 4

Lemma 3.2.1. Let u0 ∈ H1 and assume that the corresponding solution to (3.1.7)
satisfies u(t, x) ∈ C(R;H1) ∩ LpLr. Then u(t, x) scatters to a linear solution in H1.

Proof. It is a standard consequence of Strichartz estimates.

Lemma 3.2.2. There exists ε0 > 0 such that for any u0 ∈ H1 with ‖u0‖H1 ≤ ε0, the
solution u(t, x) to the Cauchy problem (3.1.7) scatters to a linear solution in H1.

Proof. It is enough to prove that is ‖u0‖H1 is small enough, then u ∈ LpLr, hence the
thesis follows from Lemma 3.2.1. By writing the solution in the Duhamel’s formulation,
by the Strichartz estimates above we get that, for any T > 0

‖u‖Lp((−T,T );Lr) . ‖u0‖H1 + ‖u‖α+1
Lp((−T,T );Lr).

Therefore a continuity argument gives that if ‖u0‖H1 << 1 then

sup
T>0
‖u‖Lp((−T,T );Lr) <∞.

Lemma 3.2.3. For every M > 0 there exist ε = ε(M) > 0 and C = C(M) > 0 such that:
if u(t, x) ∈ C(R;H1) is the unique global solution to (3.1.7) and w ∈ C(R;H1) ∩ LpLr is
a global solution to the perturbed problem{

i∂tw + ∆w − V w = |w|αw + e(t, x)
w(0, x) = w0 ∈ H1

satisfying the conditions ‖w‖LpLr ≤M ,
∥∥∥∫ t0 ei(t−s)(∆−V )e(s) ds

∥∥∥
LpLr
≤ ε and ‖eit(∆−V )(u0−

w0)‖LpLr ≤ ε, then u ∈ LpLr and ‖u− w‖LpLr ≤ Cε.

Proof. The proof is contained in [42, Proposition 4.7] and it relies on (1.2.9).

3.3 Profile Decomposition Theorem for steplike
perturbations of the Laplacian

The main content of this section is the following profile decomposition theorem. From
now on we will use the notation τz′f(z) := f(z− z′), as usual for the translation operator.
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Theorem 3.3.1. Let V (x) ∈ L∞ satisfies: V ≥ 0, (3.1.9), (3.1.8) with a− = 0 and
a+ = 1, the dispersive relation (3.1.6) and suppose that |∇V (x1, x̄)| → 0 as |x1| → ∞
uniformly in x̄ ∈ Rd−1. Given a bounded sequence {vn}n∈N ⊂ H1, ∀ J ∈ N and ∀ 1 ≤ j ≤
J there exist two sequences {tjn}n∈N ⊂ R, {xjn}n∈N ⊂ Rd and ψj ∈ H1 such that, up to
subsequences,

vn =
∑

1≤j≤J
eit

j
n(∆−V )τxjnψ

j +RJ
n

with the following properties:

• (time translation sequences’ dichotomy) for any fixed j we have the following
dichotomy for the time parameters tjn:

either tjn = 0 ∀n ∈ N or tjn
n→∞−→ ±∞;

• (space translation sequences’ trichotomy) for any fixed j we have the following
scenarios for the space parameters xjn = (xjn,1, x̄jn) ∈ R× Rd−1:

either xjn = 0 ∀n ∈ N
or |xjn,1|

n→∞−→ ∞

or xjn,1 = 0, x̄jn =
d∑
l=2

kjn,lPl with kjn,l ∈ Z and
d∑
l=2
|kjn,l|

n→∞−→ ∞,

where Pl are given in (3.1.9);

• (orthogonality condition) for any j 6= k

|xjn − xkn|+ |tjn − tkn|
n→∞−→ ∞;

• (smallness of the remainder) ∀ ε > 0 ∃ J̄ = J̄(ε) such that for any J > J̄

lim sup
n→∞

‖eit(∆−V )RJ
n‖LpLr ≤ ε;

• (orthogonality of the free energy) by defining ‖v‖2
H =

∫
(|∇v|2 + V |v|2) dx we have,

as n→∞,

‖vn‖2
L2 =

∑
1≤j≤J

‖ψj‖2
L2 + ‖RJ

n‖2
L2 + o(1), ∀ J ∈ N,

‖vn‖2
H =

∑
1≤j≤J

‖τxjnψ
j‖2
H + ‖RJ

n‖2
H + o(1), ∀ J ∈ N;

• (orthogonality of the potential energy) ∀ J ∈ N and ∀ 2 < q < 2∗ we have, as
n→∞,

‖vn‖qLq =
∑

1≤j≤J
‖eit

j
n(∆−V )τxjnψ

j‖qLq + ‖RJ
n‖

q
Lq + o(1);
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• (orthogonality of the energy) with E(v) = 1
2
∫ (
|∇v|2 + V |v|2 + 2

α+2 |v|
α+2

)
dx, we

have, as n→∞,

E(vn) =
∑

1≤j≤J
E(eit

j
n(∆−V )τxjnψ

j) + E(RJ
n) + o(1), ∀ J ∈ N. (3.3.1)

First we prove the following lemma.

Lemma 3.3.2. Given a bounded sequence {vn}n∈N ⊂ H1(Rd) we define

Λ =
{
w ∈ L2 | ∃{xk}k∈N and {nk}k∈N such that τxkvnk

L2
⇀ w

}
and

λ = sup
w∈Λ
‖w‖L2 .

Then for every q ∈ (2, 2∗) there exists a constant M = M(supn∈N ‖vn‖H1) > 0 and an
exponent e = e(d, q) > 0 such that

lim sup
n→∞

‖vn‖Lq ≤Mλe.

Proof. We consider a Fourier multiplier ζ where ζ is defined as

C∞c (Rd;R) 3 ζ(ξ) =

1 if |ξ| ≤ 1
0 if |ξ| > 2

.

By setting ζR(ξ) = ζ(ξ/R), we define the pseudo-differential operator with symbol ζR,
classically given by ζR(|D|)f = F−1(ζRFf)(x) and similarly we define the operator
ζ̃R(|D|) with associated symbol given by ζ̃R(ξ) = 1 − ζR(ξ). For any q ∈ (2, 2∗) there
exists a ε ∈ (0, 1) such that Hε ↪→ L

2d
d−2ε =: Lq. Then, with the standard notation

〈·〉 = (1 + | · |2)1/2, we get

‖ζ̃R(|D|)vn‖Lq . ‖〈ξ〉εζ̃R(ξ)v̂n(ξ)‖L2
ξ

= ‖〈ξ〉ε−1〈ξ〉ζ̃R(ξ)v̂n(ξ)‖L2
ξ

. R−(1−ε)

where we have used the boundedness of {vn}n∈N in H1 at the last step.
For the localized part we consider instead a sequence {yn}n∈N ⊂ Rd such that

‖ζR(|D|)vn‖L∞ ≤ 2|ζR(|D|)vn(yn)|

and we have that up to subsequences, by using the well-known properties F−1(fg) =
F−1f ∗ F−1g and F−1

(
f
(
·
r

))
= rd(F−1f)(r·) (at least for f, g ∈ S and for any r > 0),

lim sup
n→∞

|ζR(|D|)vn(yn)| = Rd lim sup
n→∞

∣∣∣∣∫ η(Rx)vn(x− yn) dx
∣∣∣∣ . Rd/2λ
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where we denoted η = F−1ζ and we used Cauchy-Schwartz inequality. Given θ ∈ (0, 1)
such that 1

q
= 1−θ

2 , by interpolation follows that

‖ζR(|D|)vn‖Lq ≤ ‖ζR(|D|)vn‖θL∞‖ζR(|D|)vn‖1−θ
L2 . R

dθ
2 λθ

lim sup
n→∞

‖vn‖Lq .
(
R

dθ
2 λθ +R−1+ε

)
and the proof is complete provided we select as radius R = λ−β with 0 < β =
θ
(
1− ε+ dθ

2

)−1
and so e = θ(1− ε)

(
1− ε+ dθ

2

)−1
.

Based on the previous lemma we can prove the following result.

Lemma 3.3.3. Let {vn}n∈N be a bounded sequence in H1(Rd). There exists, up to
subsequences, a function ψ ∈ H1 and two sequences {tn}n∈N ⊂ R, {xn}n∈N ⊂ Rd such
that

τ−xne
itn(∆−V )vn = ψ +Wn, (3.3.2)

where the following conditions are satisfied:

Wn
H1
⇀ 0,

lim sup
n→∞

‖eit(∆−V )vn‖L∞Lq ≤ C
(

sup
n
‖vn‖H1

)
‖ψ‖eL2

with the exponent e > 0 given in Lemma 3.3.2. Furthermore, as n→∞, vn fulfills the
Pythagorean expansions below:

‖vn‖2
L2 = ‖ψ‖2

L2 + ‖Wn‖2
L2 + o(1), (3.3.3)

‖vn‖2
H = ‖τxnψ‖2

H + ‖τxnWn‖2
H + o(1), (3.3.4)

‖vn‖qLq = ‖eitn(∆−V )τxnψ‖
q
Lq + ‖eitn(∆−V )τxnWn‖qLq + o(1), q ∈ (2, 2∗). (3.3.5)

Moreover we have the following dichotomy for the time parameters tn:

either tn = 0 ∀n ∈ N or tn
n→∞−→ ±∞. (3.3.6)

Concerning the space parameters xn = (xn,1, x̄n) ∈ R × Rd−1 we have the following
scenarios:

either xn = 0 ∀n ∈ N (3.3.7)
or |xn,1|

n→∞−→ ∞

or xn,1 = 0, x̄jn =
d∑
l=2

kn,lPl with kn,l ∈ Z and
d∑
l=2
|kn,l|

n→∞−→ ∞.
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Proof. Let us choose a sequences of times {tn}n∈N such that

‖eitn(∆−V )vn‖Lq >
1
2‖e

it(∆−V )vn‖L∞Lq . (3.3.8)

According to Lemma 3.3.2 we can consider a sequence of space translations such that

τ−xn(eitn(∆−V )vn) H1
⇀ ψ,

which yields (3.3.2). Let us remark that the choice of the time sequence in (3.3.8) is
possible since the norms H1 and H are equivalent. Then

lim sup
n→∞

‖eitn(∆−V )vn‖Lq . ‖ψ‖eL2 ,

which in turn implies by (3.3.8) that

lim sup
n→∞

‖eit(∆−V )vn‖L∞Lq . ‖ψ‖eL2 ,

where the exponent is the one given in Lemma 3.3.2. By definition of ψ we can write

τ−xne
itn(∆−V )vn = ψ +Wn, Wn

H1
⇀ 0 (3.3.9)

and the Hilbert structure of L2 gives (3.3.3).

Next we prove (3.3.4). We have

vn = e−itn(∆−V )τxnψ + e−itn(∆−V )τxnWn, Wn
H1
⇀ 0

and we conclude provided that we show

(e−itn(∆−V )τxnψ, e
−itn(∆−V )τxnWn)H n→∞−→ 0. (3.3.10)

Since we have

(e−itn(∆−V )τxnψ, e
−itn(∆−V )τxnWn)H = (ψ,Wn)Ḣ1 +

∫
V (x+ xn)ψ(x)W̄n(x) dx

and Wn
H1
⇀ 0, it is sufficient to show that∫

V (x+ xn)ψ(x)W̄n(x) dx n→∞−→ 0. (3.3.11)

If (up to subsequence) xn n→∞−→ x∗ ∈ Rd or |xn,1| n→∞−→ ∞, where we have splitted
xn = (xn,1, x̄n) ∈ R × Rd−1, then we have that the sequence τ−xnV (x) = V (x + xn)
pointwise converges to the function Ṽ (x) ∈ L∞ defined by

Ṽ (x) =


1 if xn,1

n→∞−→ +∞
V (x+ x∗) if xn

n→∞−→ x∗ ∈ Rd

0 if xn,1
n→∞−→ −∞
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and hence ∫
V (x+ xn)ψ(x)W̄n(x) dx =

∫
[V (x+ xn)− Ṽ (x)]ψ(x)W̄n(x) dx

+
∫
Ṽ (x)ψ(x)W̄n(x) dx.

The function Ṽ (x)ψ(x) belongs to L2 since Ṽ is bounded and ψ ∈ H1, and since Wn ⇀ 0
in H1 (and then in L2) we have that∫

Ṽ (x)ψ(x)W̄n(x) dx n→∞−→ 0.

Moreover by using Cauchy-Schwartz inequality∣∣∣∣∫ [
V (x+ xn)− Ṽ (x)

]
ψ(x)W̄n(x) dx

∣∣∣∣ ≤ sup
n∈N
‖Wn‖L2‖[V (·+ xn)− Ṽ (·)]ψ(·)‖L2 ;

since
∣∣∣[V (·+ xn)− Ṽ (·)]ψ(·)

∣∣∣2 . |ψ(·)|2 ∈ L1 we claim, by dominated convergence
theorem, that also ∫

[V (x+ xn)− Ṽ (x)]ψ(x)W̄n(x) dx n→∞−→ 0,

and we conclude (3.3.11) and hence (3.3.10). It remains to prove (3.3.10) in the case
when, up to subsequences, xn,1 n→∞−→ x∗1 and |x̄n| n→∞−→ ∞. Up to subsequences we
can assume therefore that x̄n = x̄∗ + ∑d

l=2 kn,lPl + o(1) with x̄∗ ∈ Rd−1, kn,l ∈ Z and∑d
l=2 |kn,l|

n→∞−→ ∞. Then by using the periodicity of the potential V with respect to the
(x2, . . . , xd) variables we get:

(e−itn(∆−V )τxnψ, e
−itn(∆−V )τxnWn)H

= (e−itn(∆−V )τ(x∗1,x̄n)ψ, e
−itn(∆−V )τ(x∗1,x̄n)Wn)H + o(1)

= (τ(x∗1,x̄∗)ψ, τ(x∗1,x̄∗)Wn)H + o(1)

= (ψ,Wn)Ḣ1 +
∫
V (x+ (x∗1, x̄∗))ψ(x)W̄n dx = o(1)

where we have used the fact that Wn
H1
⇀ 0.

We now turn our attention to the orthogonality of the non quadratic term of the
energy, namely (3.3.5). The proof is almost the same of the one carried out in [6], with
some modification.

Case 1. Suppose |tn| n→∞−→ ∞. By (1.2.2) we have ‖eit(∆−V )‖L(L1;L∞) . |t|−d/2 for any
t 6= 0. Here L(X;Y ) stands for the operator norm of bounded linear operators from the
normed space X onto the normed space Y. We recall that for the evolution operator
eit(∆−V ) the L2-norm is conserved, so the estimate ‖eit(∆−V )‖L(Lp′;Lp) . |t|−d(

1
2−

1
p) is

guaranteed by the Riesz-Thorin Theorem, thus we have the conclusion provided that
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ψ ∈ L1 ∩ L2. If this is not the case we can conclude by a straightforward approximation
argument. This implies that if |tn| → ∞ as n→∞ then for any p ∈ (2, 2∗) and for any
ψ ∈ H1 ∥∥∥eitn(∆−V )τxnψ

∥∥∥
Lp

n→∞−→ 0.

Thus we conclude by (3.3.9).

Case 2. Assume now that tn n→∞−→ t∗ ∈ R and xn n→∞−→ x∗ ∈ Rd. In this case the proof
relies on a combination of the Rellich-Kondrachov theorem and the Brezis-Lieb Lemma
contained in [15], provided that∥∥∥eitn(∆−V )(τxnψ)− eit∗(∆−V )(τx∗ψ)

∥∥∥
H1

n→∞−→ 0, ∀ψ ∈ H1.

But this is a straightforward consequence of the continuity of the linear propagator (see
[6] for more details).

Case 3. It remains to consider tn n→∞−→ t∗ ∈ R and |xn| n→∞−→ ∞. Also here we can proceed
as in [6] provided that for any ψ ∈ H1 there exists a ψ∗ ∈ H1 such that

‖τ−xn(eitn(∆−V )(τxnψ))− ψ∗‖H1
n→∞−→ 0.

Since translations are isometries in H1, it suffices to show that for some ψ∗ ∈ H1

‖eitn(∆−V )τxnψ − τxnψ∗‖H1
n→∞−→ 0.

We decompose xn = (xn,1, x̄n) ∈ R×Rd−1 and we consider the two scenarios: |xn,1| n→∞−→ ∞
and supn∈N |xn,1| <∞.

If xn,1 n→∞−→ −∞, by continuity in H1 of the flow, it is enough to prove that

‖eit∗(∆−V )τxnψ − eit
∗∆τxnψ‖H1

n→∞−→ 0.

We observe that

eit
∗(∆−V )τxnψ − eit

∗∆τxnψ =
∫ t∗

0
ei(t

∗−s)(∆−V )(V e−is∆τxnψ)(s) ds

and hence,

‖eit∗(∆−V )τxnψ − eit
∗∆τxnψ‖H1 ≤

∫ t∗

0
‖(τ−xnV )eis∆ψ‖H1 ds.

We will show that ∫ t∗

0
‖(τ−xnV )eis∆ψ‖H1 ds

n→∞−→ 0. (3.3.12)

Since we are assuming xn,1 n→∞−→ −∞, for fixed x ∈ Rd we get V (x+ xn) n→∞−→ 0, namely
(τ−xnV )(x) n→∞−→ 0 pointwise; since V ∈ L∞, |τ−xnV |2|eit∆ψ|2 ≤ ‖V ‖2

L∞|eit∆ψ|2 and
|eit∆ψ|2 ∈ L1, the dominated convergence theorem yields to

‖(τ−xnV )eit∆ψ‖L2
n→∞−→ 0.

49



Analogously, since |xn,1| n→∞−→ ∞ implies |∇τ−xnV (x)| n→∞−→ 0, we obtain

‖∇(τ−xnV eit∆ψ)‖L2 ≤ ‖(eit∆ψ)∇τ−xnV ‖L2 + ‖(τ−xnV )∇(eit∆ψ)‖L2
n→∞−→ 0.

We conclude (3.3.12) by using the dominated convergence theorem with respect to the
measure ds. For the case xn,1 n→∞−→ ∞ we proceed similarly.

If supn∈N |xn,1| < ∞, then up to subsequence xn,1 n→∞−→ x∗1 ∈ R. The thesis follows by
choosing ψ∗ = eit

∗(∆−V )τ(x∗1,x̄∗)ψ, with x̄
∗ ∈ Rd−1 defined as follows (see above the proof

of (3.3.4)): x̄n = x̄∗ +∑d
l=2 kn,lPl + o(1) with kn,l ∈ Z and ∑d

l=2 |kn,l|
n→∞−→ ∞.

Finally, it is straightforward from [6] that the conditions on the parameters (3.3.6) and
(3.3.7) hold.

Proof of Theorem 3.3.1. The proof of the profile decomposition theorem can be carried
out as in [6] iterating the previous lemma.

3.4 Nonlinear profiles
As already pointed out, the Profile Decomposition Theorem is a pure linear statement.
Therefore we need to associate to every linear profile a non linear profile, which will be
crucial along the construction of the minimal element.

Lemma 3.4.1. Let ψ ∈ H1 and {xn}n∈N ⊂ Rd be such that |xn,1| n→∞−→ ∞. Up to
subsequences we have the following estimates:

xn,1
n→∞−→ −∞ =⇒ ‖eit∆ψn − eit(∆−V )ψn‖LpLr

n→∞−→ 0, (3.4.1)

xn,1
n→∞−→ +∞ =⇒ ‖eit(∆−1)ψn − eit(∆−V )ψn‖LpLr

n→∞−→ 0, (3.4.2)

where ψn := τxnψ.

Proof. Assume xn,1 n→∞−→ −∞ (the case xn,1 n→∞−→ +∞ can be treated similarly). We first
prove that

sup
n∈N
‖eit(∆−V )ψn‖Lp((T,∞);Lr)

T→∞−→ 0. (3.4.3)

Let ε > 0. By density there exists ψ̃ ∈ C∞c such that ‖ψ̃ − ψ‖H1 ≤ ε, then by the
estimate (1.2.8)

‖eit(∆−V )(ψ̃n − ψn)‖LpLr . ‖ψ̃n − ψn‖H1 = ‖ψ̃ − ψ‖H1 . ε.

Since ψ̃ ∈ Lr′ , by interpolation between the dispersive estimate (1.2.2) and the conserva-
tion of the mass along the linear flow, we have

‖eit(∆−V )ψ̃n‖Lr . |t|−d(
1
2−

1
r )‖ψ̃‖Lr′ ,
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and since f(t) = |t|−d(
1
2−

1
r ) ∈ Lp(|t| > 1), there exists T > 0 such that

sup
n
‖eit(∆−V )ψ̃n‖Lp((|t|≥T );Lr) ≤ ε,

hence we get (3.4.3). In order to obtain (3.4.1), we are reduced to show that for a fixed
T > 0

‖eit∆ψn − eit(∆−V )ψn‖Lp((0,T );Lr)
n→∞−→ 0.

Since wn = eit∆ψn−eit(∆−V )ψn is the solution of the following linear Schrödinger equation{
i∂twn + ∆wn − V wn = −V eit∆ψn

wn(0) = 0
,

by combining (1.2.8) with the Duhamel formula we get

‖eit∆ψn − eit(∆−V )ψn‖Lp((0,T );Lr) . ‖(τ−xnV )eit∆ψ‖L1((0,T );H1).

The thesis follows from the dominated convergence theorem.

Lemma 3.4.2. Let {xn}n∈N ⊂ Rd be a sequence such that xn,1 n→∞−→ −∞, (resp. xn,1 n→∞−→
+∞) and v ∈ C(R;H1) be the unique solution to (3.1.10) (resp. (3.1.11)). Define
vn(t, x) := v(t, x− xn). Then, up to a subsequence, the followings hold:

∥∥∥∥∫ t

0

[
ei(t−s)∆ (|vn|αvn) (s)− ei(t−s)(∆−V ) (|vn|αvn) (s)

]
ds
∥∥∥∥
LpLr

n→∞−→ 0 (3.4.4)

(
resp.

∥∥∥∥∫ t

0

[
ei(t−s)(∆−1) (|vn|αvn) (s)− ei(t−s)(∆−V ) (|vn|αvn) (s)

]
ds
∥∥∥∥
LpLr

n→∞−→ 0
)
.

(3.4.5)

Proof. Assume xn,1 n→∞−→ −∞ (the case xn,1 n→∞−→ +∞ can be treated similarly). Our
proof starts with the observation that

lim
T→∞

(
sup
n∈N

∥∥∥∥∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) (s) ds

∥∥∥∥
Lp((T,∞);Lr)

)
= 0. (3.4.6)

By Minkowski inequality and the interpolation of the dispersive estimate (1.2.2) with
the conservation of the mass, we have∥∥∥∥∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) (s) ds

∥∥∥∥
Lrx

.
∫ t

0
|t− s|−d(

1
2−

1
r )‖|vn|αvn(s)‖Lr′x ds

.
∫
R
|t− s|−d(

1
2−

1
r )‖|v|αv(s)‖Lr′x ds = |t|−d(

1
2−

1
r ) ∗ g
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with g(s) = C‖|v|αv(s)‖Lr′x . We conclude (3.4.6) provided that we show |t|−d(
1
2−

1
r ) ∗ g(t)

belongs to Lp(R). By using the Hardy-Littlewood-Sobolev inequality (see [114, Theorem
1, page 119]) we assert∥∥∥|t|−1+ (2−d)α+4

2(α+2) ∗ g(t)
∥∥∥
Lp

. ‖|v|αv‖
L

2α(α+2)
((2−d)α+4)(α+1)Lr′

= ‖v‖α+1
LpLr .

Since v scatters, then it belongs to LpLr, and so we can deduce the validity of (3.4.6).

Consider now T fixed: we are reduced to show that∥∥∥∥∫ t

0

[
ei(t−s)∆ (|vn|αvn) (s)− ei(t−s)(∆−V ) (|vn|αvn) (s)

]
ds

∥∥∥∥
Lp((0,T );Lr)

n→∞−→ 0.

As usual we observe that

wn(t, x) =
∫ t

0
ei(t−s)∆ (|vn|αvn) (s) ds−

∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) (s) ds

is the solution of the following linear Schrödinger equation i∂twn + ∆wn − V wn = −V
∫ t

0
ei(t−s)∆ (|vn|αvn) (s) ds

wn(0) = 0
,

and likely for Lemma 3.4.1 we estimate∥∥∥∥∥
∫ t

0
ei(t−s)∆ (|vn|αvn) (s) ds−

∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) (s) ds

∥∥∥∥∥
Lp((0,T );Lr)

. ‖(τ−xnV )|v|αv‖L1((0,T );H1).

By using the dominated convergence theorem we conclude the proof.

The previous results imply the following useful corollaries.

Corollary 3.4.3. Let {xn}n∈N ⊂ Rd be a sequence such that xn,1 n→∞−→ −∞, and let
v ∈ C(R;H1) be the unique solution to (3.1.10) with initial datum v0 ∈ H1. Then

vn(t, x) = eit(∆−V )v0,n − i
∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) (s) ds+ en(t, x)

where v0,n(x) := τxnv0(x), vn(t, x) := v(t, x− xn) and ‖en‖LpLr n→∞−→ 0.

Proof. It is a consequence of (3.4.1) and (3.4.4).

Corollary 3.4.4. Let {xn}n∈N ⊂ Rd be a sequence such that xn,1 n→∞−→ +∞, and let
v ∈ C(R;H1) be the unique solution to (3.1.11) with initial datum v0 ∈ H1. Then

vn(t, x) = eit(∆−V )v0,n − i
∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) (s) ds+ en(t, x)

where v0,n(x) := τxnv0(x), vn(t, x) := v(t, x− xn) and ‖en‖LpLr n→∞−→ 0.
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Proof. It is a consequence of (3.4.2) and (3.4.5).

Lemma 3.4.5. Let v(t, x) ∈ C(R;H1) be a solution to (3.1.10) (resp. (3.1.11)) and let
ψ± ∈ H1 (resp. ϕ± ∈ H1) be such that

‖v(t, x)− eit∆ψ±‖H1
t→±∞−→ 0(

resp. ‖v(t, x)− eit(∆−1)ϕ±‖H1
t→±∞−→ 0

)
.

Let {xn}n∈N ⊂ Rd, {tn}n∈N ⊂ R be two sequences such that xn,1 n→∞−→ −∞ (resp. xn,1 n→∞−→
+∞) and |tn| n→∞−→ ∞. Let us define moreover vn(t, x) := v(t− tn, x− xn) and ψ±n (x) :=
τxnψ±(x) (resp. ϕ±n (x) = τxnϕ±(x)). Then, up to subsequence, we get

tn → ±∞ =⇒ ‖ei(t−tn)∆ψ±n − ei(t−tn)(∆−V )ψ±n ‖LpLr
n→∞−→ 0 and∥∥∥∥∫ t

0

[
ei(t−s)∆ (|vn|αvn) (s)− ei(t−s)(∆−V ) (|vn|αvn) (s)

]
ds
∥∥∥∥
LpLr

n→∞−→ 0 (3.4.7)

(
resp. tn → ±∞ =⇒ ‖ei(t−tn)(∆−1)ϕ±n − ei(t−tn)(∆−V )ϕ±n ‖LpLr

n→∞−→ 0 and
∥∥∥∥∫ t

0

[
ei(t−s)(∆−1) (|vn|αvn) (s)− ei(t−s)(∆−V ) (|vn|αvn) (s)

]
ds
∥∥∥∥
LpLr

n→∞−→ 0
)
.

Proof. It is a multidimensional suitable version of [6, Proposition 3.6]. Nevertheless,
since in [6] the details of the proof are not given, we expose below the proof of the most
delicate estimate, namely the second estimate in (3.4.7). After a change of variable in
time, proving (3.4.7) is clearly equivalent to prove∥∥∥∥∫ t

−tn
ei(t−s)∆τxn(|v|αv)(s)ds−

∫ t

−tn
ei(t−s)(∆−V )τxn(|v|αv)(s) ds

∥∥∥∥
LpLr

n→∞−→ 0.

We can focus on the case tn →∞ and xn,1 n→∞−→ +∞, being the other cases similar.
The idea of the proof is to split the estimate above in three different regions, i.e.
(−∞,−T )× Rd, (−T, T )× Rd, (T,∞)× Rd for some fixed T which will be chosen in an
appropriate way below. The strategy is to use translation in the space variable to gain
smallness in the strip (−T, T )× Rd while we use smallness of Strichartz estimate in half
spaces (−T, T )c × Rd. Actually in (T,∞) the situation is more delicate and we will also
use the dispersive relation.

Let us define g(t) = ‖v(t)‖α+1
L(α+1)r′ and for fixed ε > 0 let us consider T = T (ε) > 0

such that: 

‖|v|αv‖Lq′ ((−∞,−T );Lr′ ) < ε

‖|v|αv‖Lq′ ((T,+∞);Lr′ ) < ε

‖|v|αv‖L1((−∞,−T );H1) < ε∥∥∥∥|t|−d( 1
2−

1
r ) ∗ g(t)

∥∥∥∥
Lp(T,+∞)

< ε

. (3.4.8)
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The existence of such a T is guaranteed by the integrability properties of v and its decay
at infinity (in time). We can assume without loss of generality that |tn| > T.
We split the term to be estimated as follows:∫ t

−tn
ei(t−s)∆τxn(|v|αv)(s) ds−

∫ t

−tn
ei(t−s)(∆−V )τxn(|v|αv)(s) ds

= eit∆
∫ −T
−tn

e−is∆τxn(|v|αv)(s) ds− eit(∆−V )
∫ −T
−tn

e−is(∆−V )τxn(|v|αv)(s) ds

+
∫ t

−T
ei(t−s)∆τxn(|v|αv)(s) ds−

∫ t

−T
ei(t−s)(∆−V )τxn(|v|αv)(s) ds.

By Strichartz estimate (1.2.8) and the third one of (3.4.8), we have, uniformly in n,∥∥∥∥∥eit∆
∫ −T
−tn

e−is∆τxn(|v|αv)(s) ds
∥∥∥∥∥
LpLr

. ε,∥∥∥∥∥eit(∆−V )
∫ −T
−tn

e−is(∆−V )τxn(|v|αv)(s) ds
∥∥∥∥∥
LpLr

. ε.

Thus, it remains to prove∥∥∥∥∫ t

−T
ei(t−s)∆τxn(|v|αv)(s) ds−

∫ t

−T
ei(t−s)(∆−V )τxn(|v|αv)(s) ds

∥∥∥∥
LpLr

n→∞−→ 0

and we split it by estimating it in the regions mentioned above. By using (1.2.9) and the
first one of (3.4.8) we get uniformly in n the following estimates:∥∥∥∥∫ t

−T
ei(t−s)∆τxn(|v|αv)(s) ds

∥∥∥∥
Lp((−∞,−T );Lr)

. ‖|v|αv‖Lq′ ((−∞,−T );Lr′ ) . ε,∥∥∥∥∫ t

−T
ei(t−s)(∆−V )τxn(|v|αv)(s) ds

∥∥∥∥
Lp((−∞,−T );Lr)

. ‖|v|αv‖Lq′ ((−∞,−T );Lr′ ) . ε.

The difference wn =
∫ t
−T e

i(t−s)∆τxn(|v|αv)(s) ds−
∫ t
−T e

i(t−s)(∆−V )τxn(|v|αv)(s) ds satisfies
the following Cauchy problem: i∂twn + (∆− V )wn = −V

∫ t

−T
ei(t−s)∆τxn(|v|αv)(s) ds

wn(−T ) = 0
.

Then wn satisfies the integral equation

wn(t) =
∫ t

−T
ei(t−s)(∆−V )

(
−V

∫ s

−T
ei(s−σ)∆τxn(|v|αv)(σ) dσ

)
ds

which we estimate in the region (−T, T )× Rd. By Sobolev embedding H1 ↪→ Lr, Hölder
and Minkowski inequalities we have therefore∥∥∥∥∫ t

−T
ei(t−s)(∆−V )

(
−V

∫ s

−T
ei(s−σ)∆τxn(|v|αv)(σ) dσ

)
ds
∥∥∥∥
Lp((−T,T );Lr)

.

. T 1/p
∫ T

−T

∥∥∥∥(τ−xnV )
∫ s

−T
ei(s−σ)∆|v|αv(σ) dσ

∥∥∥∥
H1

ds . ε
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by means of Lebesgue’s theorem. What is left is to estimate in the region (T,∞)× Rd

the terms∫ t

−T
ei(t−s)(∆−V )τxn(|v|αv)(s) ds and

∫ t

−T
ei(t−s)∆τxn(|v|αv)(s) ds.

We consider only one term being the same for the other. Let us split the estimate as
follows: ∥∥∥∥∥

∫ t

−T
ei(t−s)(∆−V )τxn(|v|αv)(s) ds

∥∥∥∥∥
Lp((T,∞);Lr)

≤

≤
∥∥∥∥∥
∫ T

−T
ei(t−s)(∆−V )τxn(|v|αv)(s) ds

∥∥∥∥∥
Lp((T,∞);Lr)

+
∥∥∥∥∥
∫ t

T
ei(t−s)(∆−V )τxn(|v|αv)(s) ds

∥∥∥∥∥
Lp((T,∞);Lr)

.

The second term is controlled by Strichartz estimates, and it is . ε since we are integrating
in the region where ‖|v|αv‖Lq′ ((T,∞);Lr′ ) < ε (by using the second of (3.4.8)), while the
first term is estimated by using the dispersive relation. More precisely∥∥∥∥∥

∫ T

−T
ei(t−s)(∆−V )τxn(|v|αv)(s) ds

∥∥∥∥∥
Lp((T,∞);Lr)

.

.

∥∥∥∥∥
∫ T

−T
|t− s|−d(

1
2−

1
r )‖v(s)‖α+1

L
(α+1)r′
x

ds

∥∥∥∥∥
Lp(T,∞)

.

∥∥∥∥∥
∫
R
|t− s|−d(

1
2−

1
r )‖v(s)‖α+1

L
(α+1)r′
x

ds

∥∥∥∥∥
Lp(T,∞)

. ε

where in the last step we used Hardy-Sobolev-Littlewood inequality and the fourth of
(3.4.8).

As consequences of the previous lemma we obtain the following corollaries.

Corollary 3.4.6. Let {xn}n∈N ⊂ Rd be a sequence such that xn,1 n→∞−→ −∞ and let
v ∈ C(R;H1) be a solution to (3.1.10) with initial datum ψ ∈ H1. Then for a sequence
{tn}n∈N such that |tn| n→∞−→ ∞

vn(t, x) = eit(∆−V )ψn − i
∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) (s) ds+ en(t, x)

where ψn := e−itn(∆−V )τxnψ, vn := v(t− tn, x− xn) and ‖en‖LpLr n→∞−→ 0.

Corollary 3.4.7. Let {xn}n∈N ⊂ Rd be a sequence such that xn,1 n→∞−→ +∞ and let
v ∈ C(R;H1) be a solution to (3.1.11) with initial datum ψ ∈ H1. Then for a sequence
{tn}n∈N such that |tn| n→∞−→ ∞

vn(t, x) = eit(∆−V )ψn − i
∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) (s) ds+ en(t, x)

where ψn := e−itn(∆−V )τxnψ, vn := v(t− tn, x− xn) and ‖en‖LpLr n→∞−→ 0.
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We shall also need the following results, for whose proof we refer to [6].

Proposition 3.4.8. Let ψ ∈ H1. There exists Û± ∈ C(R±;H1) ∩ Lp(R±;Lr) solution to
(3.1.7) such that

‖Û±(t, ·)− e−it(∆−V )ψ‖H1
t→±∞−→ 0.

Moreover, if tn → ∓∞, then

Û±,n = eit(∆−V )ψn − i
∫ t

0
ei(t−s)(∆−V )

(
|Û±,n|αÛ±,n

)
(s) ds+ h±,n(t, x)

where ψn := e−itn(∆−V )ψ, Û±,n(t, ·) := Û±(t− tn, ·) and ‖h±,n(t, x)‖LpLr n→∞−→ 0.

3.5 Construction of the minimal element
In view of the results stated in Section 3.2, we define the following quantity belonging to
(0,∞]:

Ec = sup
{
E > 0 such that if ϕ ∈ H1 with E(ϕ) < E

then the solution of (3.1.7) with initial data ϕ is in LpLr
}
.

Our aim is to show that Ec =∞ and hence we get the large data scattering.

Proposition 3.5.1. Suppose Ec <∞. Then there exists ϕc ∈ H1, ϕc 6≡ 0, such that the
corresponding global solution uc(t, x) to (3.1.7) does not scatter. Moreover, there exists
x̄(t) ∈ Rd−1 such that {uc(t, x1, x̄− x̄(t))}t∈R+ is a relatively compact subset in H1.

Proof. If Ec <∞, there exists a sequence ϕn of elements of H1 such that

E(ϕn) n→∞−→ Ec,

and by denoting with un ∈ C(R;H1) the corresponding solution to (3.0.1) with initial
datum ϕn then

un /∈ LpLr.

We apply the profile decomposition to ϕn :

ϕn =
J∑
j=1

e−it
j
n(−∆+V )τxjnψ

j +RJ
n. (3.5.1)

Claim 3.5.2. There exists only one non-trivial profile, that is J = 1.
Assume J > 1. For j ∈ {1, . . . , J} to each profile ψj we associate a nonlinear profile

U j
n. We can have one of the following situations, where we have reordered without loss of

generality the cases in these way:
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1. (tjn, xjn) = (0, 0) ∈ R× Rd,

2. tjn = 0 and xjn,1
n→∞−→ −∞,

3. tjn = 0, and xjn,1
n→∞−→ +∞,

4. tjn = 0, xjn,1 = 0 and |x̄jn|
n→∞−→ ∞,

5. xjn = ~0 and tjn
n→∞−→ −∞,

6. xjn = ~0 and tjn
n→∞−→ +∞,

7. xjn,1
n→∞−→ −∞ and tjn

n→∞−→ −∞,

8. xjn,1
n→∞−→ −∞ and tjn

n→∞−→ +∞,

9. xjn,1
n→∞−→ +∞ and tjn

n→∞−→ −∞,

10. xjn,1
n→∞−→ +∞ and tjn

n→∞−→ +∞,

11. xjn,1 = 0, tjn
n→∞−→ −∞ and |x̄jn|

n→∞−→ ∞,

12. xjn,1 = 0, tjn
n→∞−→ +∞ and |x̄jn|

n→∞−→ ∞.

Notice that despite to [6] we have twelve cases to consider and not six (this is because
we have to consider a different behavior of V (x) as |x| → ∞). Since the argument to
deal with the cases above is similar to the ones considered in [6] we skip the details. The
main point is that for instance in dealing with the cases (2) and (3) above we have to
use respectively Corollary 3.4.3 and Corollary 3.4.4.

When instead |x̄jn|
n→∞−→ ∞ and xj1,n = 0 we use the fact that this sequences can be

assumed, according with the profile decomposition Theorem 3.3.1 to have components
which are integer multiples of the periods, so the translations and the nonlinear equation
commute and if |tn| n→∞−→ ∞ we use moreover Proposition 3.4.8. We skip the details.
Once it is proved that J = 1 and

ϕn = eitn(∆−V )ψ +Rn

with ψ ∈ H1 and lim sup
n→∞

‖eit(∆−V )Rn‖LpLr = 0, then the existence of the critical element
follows now by [42], ensuring that, up to subsequence, ϕn converges to ψ in H1 and so
ϕc = ψ. We define by uc the solution to (3.1.7) with Cauchy datum ϕc, and we call it
critical element (or soliton-like solution). This is the minimal (with respect to the energy)
non-scattering solution to (3.1.7). We can assume therefore with no loss of generality
that ‖uc‖Lp(R+;Lr) = ∞. The precompactenss of the trajectory up to translation by a
path x̄(t) follows again by [42].
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3.6 Death of the soliton-like solution
Next we show that the unique solution that satisfies the compactness properties of the
critical element uc(t, x) (see Proposition 3.5.1) is the trivial solution. Hence we get a
contradiction and we deduce that necessarily Ec =∞.

The tool that we shall use is the following Nakanishi-Morawetz type estimate.

Lemma 3.6.1. Let u(t, x) be the solution to (3.1.7), where V (x) satisfies x1 ·∂x1V (x) ≤ 0
for any x ∈ Rd, then ∫

R

∫
Rd−1

∫
R

t2|u|α+2

(t2 + x2
1)3/2 dx1 dx̄ dt <∞. (3.6.1)

Proof. The proof follows the ideas of Nakanishi, see [100]; we shall recall it shortly, with
the obvious modifications of our context. Let us introduce

m(u) = a∂x1u+ gu

with
a = −2x1

λ
, g = − t

2

λ3 −
it

λ
, λ = (t2 + x2

1)1/2

and by using the equation solved by u(t, x) we get

0 = <{(i∂tu+ ∆u− V u− |u|αu)m̄)}

= 1
2∂t

(
−2x1

λ
={ū∂x1u} −

t|u|2

λ

)

+ ∂x1<
{
∂x1um̄− alV (u)− ∂x1g

|u|2

2

}

+ t2G(u)
λ3 + |u|

2

2 <{∂
2
x1g}

+ |2it∂x1u+ x1u|2

2λ3 − x1∂x1V
|u|2

λ
+ divx̄<{m̄∇x̄u}.

(3.6.2)

with G(u) = α
α+2 |u|

α+2, lV (u) = 1
2

(
−<{iū∂tu}+ |∂x1u|2 + 2

α+2 |u|
α+2 + V |u|2

)
and divx̄

is the divergence operator with respect to the (x2, . . . , xd) variables. Making use of
the repulsivity assumption in the x1 direction, we get (3.6.1) by integrating (3.6.2) on
{1 < |t| < T} × Rd, obtaining∫ T

1

∫
Rd−1

∫
R

t2|u|α+2

(t2 + x2
1)3/2 dx1 dx̄ dt ≤ C,

where C = C(M,E) depends on mass and energy and then letting T →∞.

Lemma 3.6.2. Let u(t, x) be a nontrivial solution to (3.1.7) such that for a suitable
choice x̄(t) ∈ Rd−1 we have that {u(t, x1, x̄− x̄(t))} ⊂ H1 is a precompact set. If ū ∈ H1

is one of its limit points, then ū 6= 0.
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Proof. This property simply follows from the conservation of the energy.

Lemma 3.6.3. If u(t, x) is an in Lemma 3.6.2 then for any ε > 0 there exists R > 0
such that

sup
t∈R

∫
Rd−1

∫
|x1|>R

(
|u|2 + |∇xu|2 + |u|α+2

)
dx̄ dx1 < ε.

Proof. This is a well-known property implied by the precompactness of the sequence.

Lemma 3.6.4. If u(t, x) is an in Lemma 3.6.2 then there exist R0 > 0 and ε0 > 0 such
that ∫

Rd−1

∫
|x1|<R0

|u(t, x1, x̄− x̄(t))|α+2 dx̄ dx1 > ε0 ∀ t ∈ R+.

Proof. It is sufficient to prove that inft∈R+ ‖u(t, x1, x̄ − x̄(t))‖Lα+2 > 0, then the result
follows by combining this fact with Lemma 3.6.3. If by the absurd it is not true then
there exists a sequence {tn}n∈N ⊂ R+ such that u(tn, x1, x̄− x̄(tn)) n→∞−→ 0 in Lα+2. On
the other hand by the compactness assumption, it implies that u(tn, x1, x̄− x̄(tn)) n→∞−→ 0
in H1, and it is in contradiction with Lemma 3.6.2.

We now conclude the proof of scattering for large data, by showing the extinction of
the minimal element. Let R0 > 0 and ε0 > 0 be given by Lemma 3.6.4, then∫

R

∫
Rd−1

∫
R

|u|α+2t2

(t2 + x2
1)3/2 dx1 dx̄ dt ≥

∫
R

∫
Rd−1

∫
|x1|<R0

t2|u(t, x1, x̄− x̄(t))|α+2

(t2 + x2
1)3/2 dx1 dx̄ dt

≥ ε0

∫ T

1

t2

(t2 +R2
0)3/2 dt→∞ if T →∞.

Hence we contradict (3.6.1) and we get that the critical element cannot exist.

3.7 Double scattering channels in 1D
This last section is devoted to prove Theorem 3.1.8. Following [35, example 1, page 283]
we have the following property:

∀ψ ∈ L2 ∃ η±, γ± ∈ L2 such that
‖eit(∂2

x−V )ψ − eit∂2
xη± − eit(∂

2
x−1)γ±‖L2

t→±∞−→ 0.
(3.7.1)

Our aim is now to show that (3.7.1) actually holds in H1 provided that ψ ∈ H1. We
shall prove this property for t→ +∞ (the case t→ −∞ is similar). We divide the proof
in two steps.

Step 1. Convergence (3.7.1) occurs in H1 provided that ψ ∈ H2

In order to do that it is sufficient to show that

ψ ∈ H2 =⇒ η+, γ+ ∈ H2. (3.7.2)
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Once it is proved then we conclude the proof of this first step by using the following
interpolation inequality

‖f‖H1 ≤ ‖f‖1/2
L2 ‖f‖1/2

H2

in conjunction with (3.7.1) and with the bound

sup
t∈R
‖eit(∂2

x−V )ψ − eit∂2
xη+ − eit(∂

2
x−1)γ+‖H2 <∞

(in fact this last property follows by the fact that the domain of the operator ∂2
x − V (x)

is D(∂2
x − V (x)) = H2 is preserved along the linear flow and by (3.7.2)). Thus we show

(3.7.2). Notice that by (3.7.1) we get

‖e−it∂2
xeit(∂

2
x−V )ψ − η+ − e−itγ+‖L2

t→∞−→ 0,

and by choosing as subsequence tn = 2πn we get

‖e−itn∂2
xeitn(∂2

x−V )ψ − η+ − γ+‖L2
n→∞−→ 0.

By combining this fact with the bound supn ‖e−itn∂
2
xeitn(∂2

x−V )ψ‖H2 <∞ we get η+ +γ+ ∈
H2. Arguing as above but by choosing tn = (2n + 1)π we also get η+ − γ+ ∈ H2 and
hence necessarily η+, γ+ ∈ H2.

Step 2. The map H2 3 ψ 7→ (η+, γ+) ∈ H2 ×H2 satisfies ‖γ+‖H1 + ‖η+‖H1 . ‖ψ‖H1

Once this step is proved then we conclude by a straightforward density argument. By
a linear version of the conservation laws (3.1.3), (3.1.4) we get

‖eit(∂2
x−V )ψ‖H1

V
= ‖ψ‖H1

V
(3.7.3)

where
‖w‖2

H1
V

= ‖w‖2
H + ‖w‖2

L2 =
∫
|∂xw|2 dx+

∫
V |w|2 dx+

∫
|w|2 dx.

Notice that this norm is clearly equivalent to the usual norm of H1.
Next notice that by using the conservation of the mass we get

‖η+ + γ+‖2
L2 = ‖η+ + e−2nπiγ+‖2

L2 = ‖ei2πn∂2
xη+ + ei2πn(∂2

x−1)γ+‖2
L2

and by using (3.7.1) we get

‖η+ + γ+‖2
L2 = lim

t→∞
‖eit(∂2

x−V )ψ‖2
L2 = ‖ψ‖2

L2

Moreover we have

‖∂x(η+ + γ+)‖2
L2 = ‖∂x(η+ + e−2nπiγ+)‖2

L2 = ‖∂x(ei2πn∂
2
x(η+ + e−i2πnγ+))‖2

L2

= ‖∂x(ei2πn∂
2
xη+ + ei2πn(∂2

x−1)γ+)‖2
L2
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and by using the previous step and (3.7.3) we get

‖∂x(η+ + γ+)‖2
L2 = lim

t→+∞
‖∂x(eit(∂

2
x−V )ψ)‖2

L2

≤ lim
t→+∞

‖eit(∂2
x−V )ψ‖2

H1
V

= ‖ψ‖2
H1
V
. ‖ψ‖2

H1 .

Summarizing we get
‖η+ + γ+‖H1 . ‖ψ‖H1 .

By a similar argument and by replacing the sequence tn = 2πn by tn = (2n+ 1)π we get

‖η+ − γ+‖H1 . ‖ψ‖H1 .

The conclusion follows.
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Chapter 4

Scattering for a class of NLKG on
waveguides

We consider the following Cauchy problem for the pure-power defocusing nonlinear
Klein-Gordon equation posed on the waveguide Rd × T, with 1 ≤ d ≤ 4

∂ttu−∆x,yu+ u = −|u|αu, (t, x, y) ∈ R× Rd × T
u(0, x, y) = f(x, y) ∈ H1(Rd × T)

∂tu(0, x, y) = g(x, y) ∈ L2(Rd × T)
, (4.0.1)

where T is the one-dimensional flat torus and ∆x,y = ∆x + ∆y is the usual Laplace
operator ∑d

i=1 ∂
2
xi

+ ∂2
y . We consider nonlinearities that are energy subcritical on Rd+1

and mass supercritical on Rd, namely we restrict our attention to 4
d
< α < 4

d−1 for
2 ≤ d ≤ 4 while α > 4 for d = 1. For some particular choices of nonlinearities, aside
from the natural question of existence of solutions, it is of interest to try to relate the
long-time behavior of nonlinear solutions to linear solutions in appropriate functional
spaces. We wish to investigate the energy scattering for (4.0.1).

4.1 Motivations and main results
About the pure euclidean case Rd, there is a huge mathematical literature, not only
for the Klein-Gordon equation but in general for other dispersive PDEs such as the
NLS equation and the NLW equation. We recall that Strichartz estimates play an
essential role for the local well-posedness and for the large time analysis of the solutions
- once Strichartz estimates have been proved to hold globally in time. The nonlinear
Klein-Gordon equation has been deeply studied in the euclidean framework, producing a
huge literature. We only give here some references amongst others about the scattering
results: in high dimension cases d ≥ 3, we mention the early works by Morawetz [97]
and Morawetz and Strauss [98], the works by Brenner [12, 13], Ginibre and Velo [52–54],
while for the low dimensional case Rd with d = 1 and d = 2 the question of scattering has
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been solved by Nakanishi in [100]. The focusing case have been investigated in [69,70]
by Ibrahim, Masmoudi and Nakanishi both in the energy subcritical and critical cases.
For a more complete picture of the known results, we refer the reader to the references
contained in the previously cited papers.

Unlike the euclidean setting, the compact one does not exhibit the same phenomenon.
This is due to the presence of periodic solutions inducing a lack of (global-in-time)
summability on them. Nevertheless, it is worth pointing out that existence properties on
compact manifolds have been investigated for NLS by Bourgain in [9] and later by Burq,
Gerard and Tzvetkov in [17]. For existence results for NLKG, valid on more general
manifolds, we refer the reader to [75].

The question of “mixing” both configurations, to understand the competition of
induced phenomena is natural. The study of scattering properties for solutions to NLS
posed on a product space was proved for small data on Rd ×Mk -Mk being a compact
Riemannian manifold - by Tzvetkov and Visciglia [126] followed by a theorem of large
data scattering by the previous authors in [127]. We also mention the existence of several
related results in mixed settings, among which the papers by Cheng, Guo, Yang and
Zhao [24], Grébert, Paturel and Thomann [60], Hani and Pausader [61], Hani, Pausader,
Tzvetkov and Visciglia [62], Tarulli, [120], Vilaça da Rocha [128] and references therein.

Our purpose is to carry on with the investigation of the second author and Visciglia
started in [63]. In that paper the authors proved scattering for small energy data for the
pure-power nonlinear energy-critical Klein-Gordon equation in the framework of Rd×M2,
in both defocusing and focusing regimes (the latter corresponding to an opposite sign in
front of the nonlinear term in (4.0.1) and whereM2 is a bidimensional compact manifold.
For small initial data, once Strichartz estimates have been proved to hold globally in
time, the global well-posedness and scattering can be proved by a perturbative argument.

This is no more the case when dealing with initial data without smallness assumption.
We apply the Kenig and Merle scheme. To this aim, after having studied small data
scattering on Rd × T, our first step is to prove a profile decomposition theorem on the
considered product space. Then thanks to a perturbative argument, we construct a mini-
mal energy solution which is global in time but does not enjoy a finite Strichartz bound
which would lead to the scattering property. Moreover, we prove that the trajectory
of this solution is precompact in the energy space, and this will give a contradiction
to its existence once combined with Nakanishi/Morawetz estimates. The choice of the
strategy à la Kenig and Merle seems to be the best adapted to our setting, to deal with
either defocusing or focusing nonlinearities and may be revisited for critical cases. We
however recall that, combined with the mixed geometry, the “bad sign” of the energy in
the focusing case is usually an obstruction to prove a priori bounds such as the Morawetz
or the Nakanishi/Morawetz estimates, whereas for the energy-critical cases, it is expected
that the lack of scaling invariance of NLKG will bring a delicate technical issue. Therefore,
we restrict our attention on the defocusing (energy) subcritical cases, and especially on
the adjustment of the euclidean arguments and tools in our setting, whereas the other
cases are objects of future investigation.
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We briefly recall what we intend as scattering property, as defined in the Introduction:
we investigate the completeness of the wave operator by showing that, a global solution
u(t, x, t) to (4.0.1) behaves, as time t tends to ±∞, like a solution to the following linear
equation 

∂ttv −∆x,yv + v = 0, (t, x, y) ∈ R× Rd × T
v(0, x, y) = f± ∈ H1(Rd × T)

∂tv(0, x, y) = g± ∈ L2(Rd × T)
(4.1.1)

for some initial data (f±, g±) ∈ H1(Rd×T)×L2(Rd×T). The main result of this Chapter
is stated as follows.

Theorem 4.1.1. Assume that d = 1 and α > 4 or 2 ≤ d ≤ 4 and 4
d
< α < 4

d−1 . Let

u ∈ C(R;H1(Rd × T)) ∩ C1(R;L2(Rd × T)) ∩ Lα+1(R;L2(α+1)(Rd × T)). (4.1.2)

be the unique global solution to (4.0.1): then for t→ +∞ (respectively t→ −∞) there
exists (f+, g+) ∈ H1(Rd×T)×L2(Rd×T) (respectively (f−, g−) ∈ H1(Rd×T)×L2(Rd×T))
such that

lim
t→+∞

∥∥∥u(t, x)− u+(t, x)
∥∥∥
H1(Rd×T)

+
∥∥∥∂tu(t, x)− ∂tu+(t, x)

∥∥∥
L2(Rd×T)

= 0, (4.1.3)

(
respectively lim

t→−∞

∥∥∥u(t, x)− u−(t, x)
∥∥∥
H1(Rd×T)

+
∥∥∥∂tu(t, x)− ∂tu−(t, x)

∥∥∥
L2(Rd×T)

= 0
)
,

where u+(t, x, y), u−(t, x, y) ∈ H1(Rd × T)× L2(Rd × T) are the corresponding solutions
to (4.1.1) with initial data (f+, g+) and (f−, g−), respectively.

4.2 Small data theory and perturbative results
Once Strichartz estimates are available (see Section 1.3), they enable to deal with small
data scattering problem. As for the Schrödinger equation examined in chapter 3, this is
the first step we need to proceed with the Concentration/Compactness scheme.

Theorem 4.2.1. Let d = 1 and α ≥ 4 or 2 ≤ d ≤ 5 and α be such that 4
d
≤ α ≤ 4

d−1 .
Then there exists ε > 0 such that for all (f, g) ∈ H1 × L2 satisfying ‖f‖H1 + ‖g‖L2 < ε,
the global nonlinear solution u to the Cauchy problem (4.0.1)

u ∈ C(R;H1) ∩ C1(R;L2) ∩ Lα+1L2(α+1)

scatters in the sense of (4.1.3).

Proof. We recall that in the framework of Theorem 4.2.1, we consider 4
d
≤ α ≤ 4

d−1 for
2 ≤ d ≤ 5 and α ≥ 4 if d = 1. We handle both focusing and defocusing nonlinearities
arguing as in [63].
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We rewrite (4.0.1) in an Hamiltonian form, as a first order system. More precisely if u is
a solution to (4.0.1) then the vector (u, ∂tu)T satisfies

∂t

(
u
∂tu

)
=
(

0 1
−∆ + 1 0

)(
u
∂tu

)
+
(

0
|u|αu

)
.

We have that the following exponential matrix operator

etH =


cos

(
t ·
√

1−∆
) sin

(
t ·
√

1−∆
)

√
1−∆

− sin
(
t ·
√

1−∆
)
·
(√

1−∆
)

cos
(
t ·
√

1−∆
)

 , (4.2.1)

is unitary on the energy space H1 × L2 (see [102]). Moreover(
u
∂tu

)
= etH

(
f
g

)
+
∫ t

0
e(t−s)H

(
0
|u|αu

)
(s) ds

and then, since etH is skew self-adjoint

e−tH
(
u
∂tu

)
=
(
f
g

)
+
∫ t

0
e−sH

(
0
|u|αu

)
(s) ds.

We now write ~V (t) = e−tH
(
u
∂tu

)
, and consider 0 < τ < t. Then

‖~V (t)− ~V (τ)‖H1×L2 ≤ C
∫ t

τ
‖|u|αu(s)‖L2 ds ≤ C‖u‖α+1

Lα+1((τ,t);L2(α+1)),

and it is obvious that ‖u‖α+1
Lα+1((τ,t);L2(α+1)) tends to zero as t, τ tend towards infinity, since

the solution belongs to Lα+1(R;L2(α+1)).

Therefore, there exist (f±, g±) ∈ H1 × L2 such that ~V (t) →
(
f±

g±

)
in H1 × L2 as

t→ ±∞.

Remark 4.2.2. It is worth mentioning that the analysis for small initial data can be
stated without any further restriction in the focusing case, namely replacing in (4.0.1)
the sign in front of the nonlinear term with a plus sign. Furthermore, observe that the
result of the theorem above is valid also in the critical cases. The main restriction on α
is carried by the fact that (α + 1, 2α + 2) should satisfy (1.3.1). It is easy to check that
d = 5, α = 1 is the only case that can be handled for d > 4 and it is critical.

The second tool will be a suitable Profile Decomposition Theorem and will be proved
in the next section. As already mentioned along this work, the latter one is a linear result,
hence in order to deal with the non linear equation and associate a non linear profile to
every linear Klein-Gordon solution given by the Profile Decomposition Theorem, we give
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the following perturbation lemma which will enable us to absorb the nonlinear terms in
the remainders of the Profile Decomposition Theorem, in a proper way. The following
long time perturbation theorem is contained in [102] where it is proved for cubic focusing
NLKG on R3, namely for α = 2, with the opposite sign in front of the nonlinearity and
in an euclidean framework. We report here the statement modified to fit our setting, for
the sake of completeness.

Lemma 4.2.3. For any M > 0 there exist ε = ε(M) > 0 (possibly very small) and
c = c(M) > 0 (possibly very large) such that the following fact holds. Fix t0 ∈ R and
suppose that

‖v‖Lα+1L2(α+1) ≤M

‖eu‖L1L2 + ‖ev‖L1L2 + ‖w0‖Lα+1L2(α+1) ≤ ε′ ≤ ε(M)

where u, v ∈ ⋂1
h=0 Ch(R;H1−h), ez = ∂ttz−∆x,yz+ z+ |z|αz and ~w0(t) = e(t−t0)H(~u(t0)−

~v(t0)). Then
‖u‖Lα+1L2(α+1) <∞,

‖~u− ~v − ~w0‖L∞H + ‖u− v‖Lα+1L2(α+1) ≤ c(M)ε′.

Proof. This retraces the same proof as in [102] (where the nonlinearity is u2u), but with
the following inequality to estimate the nonlinear part:

||u+ v|α(u+ v)− |u|αu| ≤ C(|u|α + |v|α)|v| = C(|u|α|v|+ |v|α+1).

4.3 Profile Decomposition Theorem on flat
waveguide Rd × T

In this section we follow the arguments of [6, 102] to provide a profile decomposition
theorem which is the main ingredient in the proof of scattering properties in the whole
energy space.
We start with the following preliminary lemma. We use the following convention

2∗ =


2(d+1)
d−1 , if d ≥ 2

+∞, if d = 1
. (4.3.1)

Lemma 4.3.1. Let {vn(x, y)}n∈N ⊂ H1(Rd×T), with 1 ≤ d ≤ 4, be a bounded sequence.
Define the set

Λ(vn) = {w(x, y) ∈ L2
∣∣∣ ∃ {(xn, yn)}n∈N ⊂ Rd × T such that,

up to subsequence, vn(x− xn, y − yn) L2
⇀ w(x, y)}

(4.3.2)

and let
λ(vn) = sup

w∈Λ(vn)
‖w‖L2 . (4.3.3)
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Then, for any q such that 2q ∈ (2, 2∗) we have

lim sup
n→∞

‖vn‖L2q . λe(vn)

where
e = e(q, d) = q − 1

3− 5q

(
q(d− 1)− (d+ 1)

q

)
> 0.

Proof. By the Sobolev embedding theorem (see [64]), the energy space embeds contin-
uously in the Lebesgue space L2∗ . In particular H1(Rd × T) ↪→ L2q(Rd × T) for any
q ∈ [1, 2∗/2] if d ≥ 2 while q ≥ 1 if d = 1, where 2∗ is defined in (4.3.1). Similarly to
the proof of Lemma 3.3.2, we consider, as Fourier multiplier, a cut-off function in the
flat-frequencies space Rd

ξ where the cut-off is given by

C∞c (Rd;R) 3 χ(ξ) =

1 if |ξ| ≤ 1
0 if |ξ| > 2

.

By setting χR(ξ) = χ(ξ/R), R > 0, we define the pseudo-differential operator with symbol
χR. It is given by χR(|D|)f = F−1(χRFf)(x) and similarly we define the operator χ̃R(|D|)
with the associated symbol given by χ̃R(ξ) = 1− χR(ξ). Later on we will also use the
well-known properties

F(fg) = F(f) ∗ F(g)
F(f(σ·)) = σ−dFf(·/σ)

(4.3.4)

which hold for any smooth functions f, g : Rd → R and any nonnegative real number σ.
In order to apply the Hausdorff-Young inequality F : Lp → Lp

′ for any p ∈ [1, 2], we set
2q = p′ and p = p′

p′−1 = 2q
2q−1 ∈ (1, 2). We then use Hölder inequality with 1

p
= 1

2 + 1
r
and

exploiting the precise structure of T we can write, for every n ∈ N,

vn(x, y) =
∑
k∈Z

vkn(x)eiky, (4.3.5)

where the functions vkn are the Fourier coefficients, and similarly

χ̃R(|D|)vn(x, y) =
∑
k∈Z

χ̃R(|D|)vkn(x)eiky.

We first notice the embedding H
1
2−

1
2q (T) ↪→ L2q(T), allowing us to write

‖χ̃R(|D|)vn‖2
L2q . ‖χ̃R(|D|)vn‖2

L2q
x H

1
2−

1
2q

y

=

∥∥∥∥∥∥
∑
k∈Z
〈k〉1−

1
q |χ̃R(|D|)vkn|2

∥∥∥∥∥∥
Lqx

.
∑
k∈Z
〈k〉1−

1
q ‖χ̃R(|D|)vkn‖2

L2q
x
.
∑
k∈Z
〈k〉1−

1
q ‖F−1(χ̃R(|ξ|)v̂kn)(x)‖2

L2q
x

.
∑
k∈Z
〈k〉1−

1
q ‖χ̃R(|ξ|)v̂kn(ξ)‖2

L
2q/(2q−1)
ξ

.
∑
k∈Z
〈k〉1−

1
q ‖〈ξ〉

1
2 + 1

2q v̂kn(ξ)‖2
L2
ξ
‖χ̃R(|ξ|)〈ξ〉−

1
2−

1
2q ‖2

L
2q/(q−1)
ξ

(4.3.6)
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where an Hölder inequality was used in the last step. We notice that the last factor in
the RHS term is easily controlled as follows:

‖χ̃R(|ξ|)〈ξ〉−
1
2−

1
2q ‖2

L
2q/(q−1)
ξ

.

∫
|ξ|≥R

dξ

(1 + |ξ|2)(
1
4 + 1

4q )( 2q
q−1)


q−1
q

.

(∫
|ξ|≥R

|ξ|−
q+1
q−1 dξ

) q−1
q

.
(∫ ∞

R
ρ−

q+1
q−1 +d−1 dρ

) q−1
q

.
(
Rd− q+1

q−1

) q−1
q

= R
d(q−1)
q
− q+1

q

where the integrability of the term has been checked and d(q−1)
q
− (1 + 1

q
) < 0. Thus, by

the Plancherel identity, it may be concluded that the estimate (4.3.6) satisfies:

‖χ̃R(|D|)vn‖2
L2q . R

d(q−1)
q
−(1+ 1

q
) ∑
k∈Z
〈k〉1−

1
q

∫
〈ξ〉1+ 1

q |v̂kn(ξ)|2 dξ

. R
d(q−1)
q
−(1+ 1

q
)‖vn‖2

H1 .

Recalling that {vn}n∈N is bounded in H1, we summarize with

‖χ̃R(|D|)vn‖L2q
x,y

. R
d(q−1)

2q − q+1
2q = R

q(d−1)−(d+1)
2q .

We now use (4.3.5) and we define the localized part of vn as

χR(|D|)vn(x, y) =
∑
|k|≤M

χR(|D|)vkn(x)eiky +
∑
|k|>M

χR(|D|)vkn(x)eiky

:= χ≤MR (|D|)vn + χ>MR (|D|)vn.

We estimate the tail χ>MR (|D|)vn as follows. By means of Minkowski and Cauchy-Schwartz
inequalities we get

‖χ>MR (|D|)vn‖L2 ≤ C(V ol(T))
∑
|k|>M

‖χR(|D|)vkn(x)‖L2
x

.

 ∑
|k|>M

1
k2

1/2 ∑
|k|>M

k2‖χR(|ξ|)v̂kn(ξ)‖2
L2
ξ

1/2

.

 ∑
|k|>M

1
k2

1/2 ∑
|k|>M

k2‖v̂kn(ξ)‖2
L2
ξ

1/2

.

 ∑
|k|>M

1
k2

1/2

‖vn‖L2
xH

1
y
.

 ∑
|k|>M

1
k2

1/2

.
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Since ∞∑
k=M+1

ak ≤
∫ ∞
M

f(x) dx

where f : R→ R+ is a decreasing function such that ak = f(k) (it is assumed here that
f(x) = x−2), then  ∑

|k|>M+1
k−2

1/2

.M−1/2

and so
‖χ>MR (|D|)vn‖L2 .M−1/2.

The following interpolation result is a straightforward classical application of the Hölder
inequality.
Lemma 4.3.2. Let p1 ≤ p ≤ p2 and f ∈ Lp1 ∩ Lp2 . Then f ∈ Lp and given θ ∈ [0, 1]
such that 1

p
= θ

p1
+ 1−θ

p2
the following estimates holds:

‖f‖Lp ≤ ‖f‖θLp1‖f‖1−θ
Lp2 .

Therefore by Lemma 4.3.2 we have

‖χ>MR (|D|)vn‖L2q ≤ ‖χ>MR (|D|)vn‖θL2‖χ>MR (|D|)vn‖1−θ
L2∗

. ‖χ>MR (|D|)vn‖
d+1
2q −

d−1
2

L2 .M− 1
2( d+1

2q −
d−1

2 ).
(4.3.7)

It remains to estimate the term ∑
|k|≤M χR(|D|)vkn(x)eiky. Denoting by DM the Dirichlet

Kernel
DM(y) =

M∑
k=−M

eiky,

we can write

χ≤MR (|D|)vn(x, y) =
∑
|k|≤M

χR(|D|)vkn(x)eiky =
∫
T
χR(|D|)vn(x, z)DM(y − z) dz,

and we choose a sequence (xn, yn) ∈ Rd × T such that

‖χ≤MR (|D|)vn‖L∞x,y ≤ 2
∣∣∣χ≤MR (|D|)vn(xn, yn)

∣∣∣
= 2Rd

∣∣∣∣∫
Rd×T

η(Rx)DM(y)vn(x− xn, y − yn) dx dy
∣∣∣∣ ,

where Rdη(Rx) = F−1(χR(|ξ|)). Observe that η(Rx)DM(y) is a function in L2 and that
‖η(Rx)DM(y)‖L2 . R−d/2M‖η‖L2 . Up to subsequences, from (4.3.2) and (4.3.3) we get

lim sup
n→∞

‖χ≤MR (|D|)vn‖L∞ ≤ lim sup
n→∞

2Rd

∣∣∣∣∫
Rd×T

η(Rx)DM(y)vn(x− xn, y − yn) dx dy
∣∣∣∣

= 2Rd

∣∣∣∣∫
Rd×T

η(Rx)DM(y)w(x, y) dx dy
∣∣∣∣

≤ 2Rd/2M‖η‖L2λ . Rd/2Mλ
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thus, again by interpolation, we infer that

‖χ≤MR (|D|)vn‖L2q . ‖χ≤MR (|D|)vn‖1−1/q
L∞ ‖χ≤MR (|D|)vn‖1/q

L2 . ‖χ≤MR (|D|)vn‖1−1/q
L∞ ,

and then
lim sup
n→∞

‖χ≤MR (|D|)vn‖L2q . R
d
2 ( q−1

q )M
q−1
q λ

q−1
q . (4.3.8)

Combining (4.3.6),(4.3.7) and (4.3.8), we obtain

lim sup
n→∞

‖vn‖L2q . R
q(d−1)−(d+1)

2q +M
1
2( q(d−1)−(d+1)

2q ) +R
d
2 ( q−1

q )M
q−1
q λ

q−1
q ,

and by choosing M ∼ R2 we end up with

lim sup
n→∞

‖vn‖L2q . R
q(d−1)−(d+1)

2q +
(
R

d+4
2 λ

) q−1
q
.

We now consider as radius R = λβ, and so

lim sup
n→∞

‖vn‖L2q . λβ(
q(d−1)−(d+1)

2q ) +
(
λβ(

d+4
2 )+1

) q−1
q

.

Defining now β in this way:

β

(
q(d− 1)− (d+ 1)

2q

)
= q − 1

q

(
β

(
d+ 4

2

)
+ 1

)

⇐⇒ β

(
q(d− 1)− (d+ 1)

2q − q − 1
q

d+ 4
2

)
= q − 1

q

⇐⇒ β(q(d− 1)− (d+ 1)− (q − 1)(d+ 4)) = 2(q − 1)

⇐⇒ β(3− 5q) = 2(q − 1) ⇐⇒ β = 2(q − 1)
3− 5q ,

we observe that β = 2(q−1)
3−5q < 0, and we conclude with

lim sup
n→∞

‖vn‖L2q . λ
q−1

3−5q ( q(d−1)−(d+1)
q ).

Remark 4.3.3. We notice that w actually belongs to H1 since the weak limit clearly
enjoys this regularity.

We now fix some notations used in the following part. We define with v(t, x, y) or
simply v(t) the free evolution with respect to the linear Klein-Gordon equation, with
Cauchy datum ~v0 = (v0, v1) and we define by ~v(t) = etH~v0 = (v(t), ∂tv(t))T , where
etH has been introduced in (4.2.1). Then, we give the following decomposition for a
time-independent bounded sequence in H1 × L2. We first introduce the following lemma
which will be useful after.

To shorten notation, we write from now onH = H(Rd×T) = H1(Rd×T)×L2(Rd×T).
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Lemma 4.3.4. Let ~fn ⇀ 0 in H. Then we have:
• tn → t̄ ∈ R =⇒ etnH ~fn(x, y) ⇀ 0 in H,

• e(t2n−t1n)H ~fn(x− (x1
n − x2

n), y) ⇀ ~g 6= 0 =⇒ |t2n − t1n|+ |x2
n − x1

n| → +∞.
Proof. For the first point, we make use of the continuity property of the propagator: by
denoting by (·, ·)H the scalar product in H, for any ~ψ ∈ H we have

(etnH ~fn, ~ψ)H = (etnH ~fn − et̄H ~fn, ~ψ) + (~fn, e−t̄H ~ψ)H
= (~fn, e−tnH ~ψ − et̄H ~ψ)H + (~fn(x, y), e−t̄H ~ψ)H
= (~fn, e−tnH ~ψ − et̄H ~ψ)H + o(1).

The conclusion follows, up to subsequences, since it holds in the L2 × L2-topology by
exploiting the continuity of the flow.

The second point is proved in its contrapositive form. Suppose that sn := (t2n−t1n) and
ξn := (x2

n − x1
n) are bounded. Then, up to subsequences, sn → s ∈ R and ξn → ξ̄ ∈ Rd.

We prove that esnH ~fn(x− ξn, y) ⇀ 0 in H. But as before

(esnH ~fn(x− ξn, y), ~ψ)H = (esH ~fn(x, y), ~ψ(x+ ξ, y))H + o(1)
= (~fn(x, y), e−sH ~ψ(x+ ξ, y))H + o(1) ⇀ 0.

We can now state the following result, whose iteration will give the Profile Decompo-
sition Theorem.
Proposition 4.3.5. Let {~v0

n}n∈N be a bounded sequence in H and 1 ≤ d ≤ 4. Then, for
suitable sequences {tn}n∈N ⊂ R, {xn}n∈N ⊂ Rd, possibly after extractions of subsequences
(still denoted with the subscript n), we can write, for every n ∈ N

~vn(−tn, x− xn, y) = ~ψ(x, y) + ~Wn(x, y)

where ~vn(t, x, y) = etH~v0
n and where the components of ~ψ are denoted by (ψ, ∂ψ). Moreover,

the following properties hold:
~Wn

n→∞
⇀ 0 in H,

lim sup
n→∞

‖vn(t, x, y)‖L∞Lq . ‖ψ‖eL2 for any q ∈ (2, 2∗), (4.3.9)

where e > 0 is given in Lemma 4.3.1 and as n→∞

‖~v0
n‖2
H = ‖~ψ‖2

H + ‖ ~Wn‖2
H + o(1). (4.3.10)

Similarly, for the Lα+2-norm, as n→∞, we have

‖v0
n‖α+2

Lα+2 = ‖ψ‖α+2
Lα+2 + ‖Wn‖α+2

Lα+2 + o(1). (4.3.11)

Furthermore, the translation sequences {tn}n∈N and {xn}n∈N satisfy the dichotomies
below:

either tn = 0 ∀n ∈ N or tn
n→∞−→ ±∞;

either xn = 0 ∀n ∈ N or |xn|
n→∞−→ ∞.

(4.3.12)
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Proof. Define ~vn(t, x, y) := etH~v0
n, namely ~vn(t) is the linear evolution of ~v0

n by the linear
Klein-Gordon flow. Since the energy is preserved along the flow, the sequence ~vn(t) is
bounded in L∞H and by Sobolev embedding the sequence {vn(t)}n∈N is bounded in
L∞Lq-norm, for any q ∈ (2, 2∗). Thus, let us now choose a sequence of times {tn}n∈N
such that

‖vn(−tn)‖Lq >
1
2‖vn(·)‖L∞Lq . (4.3.13)

In the spirit of previous lemma, we consider Λ (vn(−tn, x, y)) and λ (vn(−tn, x, y)) . Let
{(xn, yn)}n∈N be a sequence in Rd × T and ~ψ(x, y) = (ψ, ∂ψ)(x, y) ∈ H be such that, up
to subsequences,

~vn(−tn, x− xn, y − yn) ⇀ ~ψ

in H as n→∞. Then we get

~vn(−tn, x− xn, y − yn) = ~ψ + ~Wn, ~Wn ⇀ 0, (4.3.14)

the latter weak convergence occurring in H and in addition

λ (vn(−tn, x, y)) . ‖ψ‖L2 . (4.3.15)

The relation (4.3.15) along with Lemma 4.3.1 implies that

lim sup
n→∞

‖vn(−tn)‖Lq . ‖ψ‖eL2 for any q ∈ (2, 2∗),

and then (4.3.9) follows by (4.3.13).

By definition, from (4.3.14) we can write

~v0
n(x, y) = etnH ~ψ(x+ xn, y + yn) + etnH ~Wn(x+ xn, y + yn), (4.3.16)

and since etH is an isometry on H and its adjoint is given by e−tH , together with the
fact that ~Wn ⇀ 0, we get, as n→∞,

‖~v0
n‖2
H = ‖~ψ‖2

H + ‖ ~Wn‖2
H + o(1).

We pursue the proof by showing the orthogonality property of the potential energy,
by distinguishing three cases. In the following, the Lebesgue exponent α + 2, is defined
by the same α appearing in the nonlinearity of (4.0.1).

Case 1: |tn| → ∞. From (4.3.16) we see that (4.3.11) holds, observing that Wn is
uniformly bounded and using the dispersive estimate (1.4.1) and a density argument;
hence the orthogonality in Lα+2.

Since {yn}n∈N ⊂ T which is compact, in the next two cases we can assume that up to
subsequence yn → ȳ ∈ T.
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Case 2: tn → t̄ & xn → x̄. We claim the following:

~v0
n(x, y)− etnH ~ψ(x+ xn, y + yn) = etnH ~Wn(x+ xn, y + yn)→ 0,

for almost every (x, y) ∈ Rd × T. In fact

(etnH ~Wn(x+ xn, y + yn), ~ψ)H = ( ~Wn, e
−t̄H ~ψ(x− x̄, y − ȳ))H + o(1) = o(1),

if we localize in the euclidean part, i.e. if we consider the restriction of etnH ~Wn(x +
xn, y + yn) on a compact set K ⊂ Rd. The compactness of K × T gives, by the Rellich-
Kondrakhov theorem, that Wn(tn, x + xn, y + yn) strongly converges towards zero in
Lp(K × T) for any p ∈ (2, 2∗), see [64]. Therefore we have (x, y)-almost everywhere
convergence towards zero of Wn(tn, x+xn, y+ yn). We recall that the Brezis-Lieb Lemma
(see [15]) holds on a general measure space, therefore the same argument given in [6]
yields to the Lα+2-orthogonality in the case tn → t̄ and xn → x̄.

Case 3: if tn → t̄ & |xn| → ∞. Similar arguments apply to the remaining situation
tn → t̄ and |xn| → ∞.

It remains to prove that we can rearrange the sequences of translation parameters
{tn}n∈N, {xn}n∈N and {yn}n∈N. Namely, we wish to have that for any n ∈ N, tn = 0
or tn → ±∞, and similarly for {xn}n∈N, while yn can be assumed to be trivial. In the
following, by tn → t̄ and xn → x̄ we will implicitly assume that this possibly holds after
extraction of subsequences from bounded sequences.

Case 1: tn → t̄ & |xn| → ∞. By continuity of the linear flow

etnH ~ψ
H−→ ~φ, ~φ(x, y) := et̄H ~ψ(x, y).

We rewrite ~v0
n as

~v0
n(x− xn, y − yn) = ~φ(x, y) + etnH ~Wn(x, y) + ~rn(x, y) = ~φ(x, y) + ~ρn(x, y),

where ~rn → 0 strongly in H and ~ρn = etnH ~Wn(x, y) + ~rn(x, y). From Lemma 4.3.4 it
follows that if ~hn ⇀ 0 in H and tn → t̄ then etnH~hn ⇀ 0. Therefore ~ρn ⇀ 0 in H. It
is true whether xn → x0 ∈ Rd or |xn| → ∞. Translating the profiles by ȳ, namely by
choosing ~φ(x, y) := et̄H ~ψ(x, y − ȳ) we can also assume that yn = 0.

Case 2: tn → t̄ & xn → x̄. If tn → t̄ ∈ R and also xn → x̄ ∈ Rd we proceed similarly by
adding a space translation: namely as before but considering ~φ := et̄H ~ψ(x− x̄, y − ȳ).

Case 3: tn → ±∞ & xn → x̄. If tn → ±∞ and xn → x̄ ∈ R then we change the function
by translating in the space variables only, i.e. we consider ~φ := ~ψ(x− x̄, y − ȳ).

Case 4: |tn| → ∞ & |xn| → ∞. By extracting subsequences we have the desired property,
again by translating the profiles in the y variable only.
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We can now state the Profile Decomposition Theorem for a bounded sequence of
linear solutions in the energy space.

Theorem 4.3.6. Let {~un(t, x, y)}n∈N be a sequence of solutions to the linear Klein-
Gordon equation, bounded in H1(Rd × T) × L2(Rd × T) for 1 ≤ d ≤ 4. Recall that
‖~un(t, x, y)‖H = ‖~un(0, x, y)‖H, thus we are assuming that supn ‖~un(0)‖H <∞. For any
integer J ≥ 1 the decomposition below, up to subsequences, holds:

~un(t, x, y) =
∑

1≤j≤J
~vj(t− tjn, x− xjn, y) + ~RJ

n(t, x, y),

where ~vj are solutions to linear Klein-Gordon with suitable initial data and the translation
sequences satisfy

lim
n→∞

(
|tkn − tjn|+ |xkn − xjn|

)
=∞, ∀ j 6= k,

along with the same dichotomy property of (4.3.12). Moreover, for q ∈ (2, 2∗)

lim
J→∞

lim sup
n→∞

‖RJ
n‖L∞Lq = 0

which in turn implies that

lim
J→∞

lim sup
n→∞

‖RJ
n‖Lα+1L2(α+1) = 0.

Furthermore as n→∞,

‖~un(0, x, y)‖2
H =

∑
1≤j≤J

‖~vjn‖2
H + ‖~RJ

n‖2
H + o(1),

and
‖un(0, x, y)‖α+2

Lα+2 =
∑

1≤j≤J
‖vjn‖α+2

Lα+2 + ‖RJ
n‖α+2

Lα+2 + o(1).

Proof. We iterate several times the result of Proposition 4.3.5. We consider {~vn}n∈N as
the sequence of initial data of the linear solution {~un(t, x, y)}n∈N; namely we consider
the sequence {~un(0, x, y)}n∈N as a bounded sequence in H. Let {t1n}n∈N be the sequence
given in the proposition above and {x1

n}n∈N ⊂ Rd be such that, up to subsequences,

~un(−t1n, x− x1
n, y) ⇀ ~ψ1(x, y)

in H. Then
~un(−t1n, x− x1

n, y) = ~ψ1(x, y) + ~W 1
n(x, y),

with ~W 1
n ⇀ 0 in H. It follows, as n→∞, that

~un(0, x, y) = et
1
nH ~ψ1(x+ x1

n, y) + et
1
nH ~W 1

n(x+ x1
n, y) := et

1
nH ~ψ1(x+ x1

n, y) + ~R1
n(x, y),

where
e−t

1
nH ~R1

n(x− x1
n, y) = ~W 1

n(x, y) ⇀ 0 (4.3.17)
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in H, and that

‖~un(0)‖2
H = ‖~ψ1‖2

H + ‖~R1
n‖2
H + o(1) = ‖~ψ1‖2

H + ‖ ~W 1
n‖2
H + o(1).

Similar claim can be proved for the Lα+2-norm. We now consider the functions ~R1
n(x, y) =

et
1
nH ~W 1

n(x+ x1
n, y) as bounded sequence in H. As before, we can write

~R1
n(x, y) = et

2
nH ~ψ2(x+ x2

n, y) + et
2
nH ~W 2

n(x+ x2
n, y) := et

2
nH ~ψ2(x+ x2

n, y) + ~R2
n(x, y),

where ~W 2
n ⇀ 0 in H and

‖~R1
n‖2
H = ‖~ψ2‖2

H + ‖~R2
n‖2
H + o(1) = ‖~ψ2‖2

H + ‖ ~W 2
n‖2
H + o(1).

It implies that at the second step we have

~un(0, x, y) = et
1
nH ~ψ1(x+ x1

n, y) + et
2
nH ~ψ2(x+ x2

n, y) + ~R2
n(x, y),

and by acting with the linear propagator on both sides we get

~un(t, x, y) = e(t+t1n)H ~ψ1(x+ x1
n, y) + e(t+t2n)H ~ψ2(x+ x2

n, y) + etH ~R2
n(x, y).

Moreover, as n→∞,

‖~u(t, x, y)n‖2
H = ‖~ψ1‖2

H + ‖~ψ2‖2
H + ‖~R2

n‖2
H + o(1) = ‖~ψ1‖2

H + ‖~ψ2‖2
H + ‖ ~W 2

n‖2
H + o(1),

and the orthogonality for the Lα+2-norm can be similarly proved. Recall that

et
1
nH ~W 1

n(x+ x1
n, y) = ~R1

n(x, y) = et
2
nH ~ψ2(x+ x2

n, y) + et
2
nH ~W 2

n(x+ x2
n, y),

and so
e(t1n−t2n)H ~W 1

n(x+ (x1
n − x2

n), y) = ~ψ2(x, y) + ~W 2
n(x, y),

with ~W 2
n ⇀ 0 in H, and this implies the weak convergence in H

e(t1n−t2n)H ~W 1
n(x+ (x1

n − x2
n), y) ⇀ ~ψ2(x, y).

Lemma 4.3.4, which is the equivalent of [6, Lemma 2.1] in our context, allows us to
conclude with the orthogonality condition

|t1n − t2n|+ |x1
n − x2

n| → ∞.

Iterating this construction we end up, at the J th step, with

~un(t, x, y) = e(t+t1n)H ~ψ1(x+ x1
n, y) + · · ·+ e(t+tJ−1

n )H ~ψJ−1(x+ xJ−1
n , y) + etH ~RJ

n(x, y),

where
~RJ
n(x, y) = et

J
nH ~W J

n (x+ xkn, y), W J
n ⇀ 0.
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Moreover the free energy orthogonality holds:

‖~un(t, x, y)‖2
H = ‖~ψ1‖2

H + · · ·+ ‖~ψJ−1‖2
H + ‖~RJ

n‖2
H,

and by the fact that the LHS is uniformly bounded in L∞H we get

lim
J→∞

‖ψJ‖L2 ≤ lim
J→∞

‖ψJ‖H1 ≤ lim
J→∞

‖~ψJ‖H = 0.

Using (4.3.15) we obtain the smallness of the remainders in the sense of

lim sup
J→∞

lim sup
n→∞

‖RJ
n‖L∞Lq = 0.

The proof of the smallness in the Strichartz norm

lim
J→∞

lim sup
n→∞

‖RJ
n‖Lα+1L2(α+1) = 0,

is done by interpolation:
Lemma 4.3.7. Let α ∈

(
4
d
, 4
d−1

)
for 2 ≤ d ≤ 4 or α > 4 if d = 1. Consider {un}n∈N a

sequence of solutions to
∂ttun −∆x,yun + un = 0, (t, x, y) ∈ R× Rd × T

un(0, x, y) = fn(x, y) ∈ H1(Rd × T)
∂tun(0, x, y) = gn(x, y) ∈ L2(Rd × T)

,

with supn∈N ‖ (fn, gn) ‖H ≤ C <∞. Suppose that for any q ∈ (2, 2∗), with 2∗ defined in
(4.3.1)

lim
n→∞

‖un‖L∞Lq = 0.

Then
lim
n→∞

‖un‖Lα+1L2(α+1) = 0.

Proof. We drop the subscript n to lighten the notations. We first make a formal
computation (from Hölder inequality) without adjusting the parameters:

‖u‖Lα+1L2(α+1) =
(∫ (∫

|u|a|u|b dx dy
)1/2

dt

)1/(α+1)

≤
(∫ (∫

|u|ar dx dy
)1/(2r) (∫

|u|bs dx dy
)1/(2s)

dt

)1/(α+1)

≤
(∫
‖u‖a/2Lar ‖u‖

b/2
Lbs dt

)1/(α+1)

≤ ‖u‖a/(2α+2)
L∞Lar ‖u‖

b/(2α+2)
Lb/2Lbs

. (4.3.18)
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The claim of Lemma 4.3.7 is satisfied if the following conditions are fulfilled in (4.3.18):

a+ b = 2α + 2, a, b > 0, (4.3.19)
r = q/a > 1, (4.3.20)
s = r/(r − 1) = q/(q − a), (4.3.21)
(b/2, bs) is a Strichartz pair as in Proposition 1.3.2. (4.3.22)

Under these conditions, we may have by hypothesis along with the energy conservation

‖un‖Lα+1L2α+2 ≤ ‖un‖γL∞LqE1−γ → 0,

where γ ∈ (0, 1). Note that it is enough to have the convergence to zero in only one L∞Lq.

Let us now check that all conditions are non-empty.

Case d = 1. Let b = 2α + ε and a = 2− ε. We impose that ε ∈ (0, 2) in order to satisfy
(4.3.19). Strichartz admissibility conditions read b ≥ 8 and s ≥ 2/(b− 8). We strengthen
the first requirement to b > 8. By definition of s we have

q

q − 2 + ε
≥ 2

2α + ε− 8 ⇐⇒ q(2α− 10 + ε) ≥ 2ε− 4.

For α ≥ 5 and for any q ∈ (2, 2∗) the LHS of the last inequality is positive for any
choice of ε ∈ (0, 2), since the RHS is always negative for such values of ε. Then any
q ∈ (2, 2∗) yields to Strichartz admissibility condition.

If α ∈ (4, 5) we further impose on ε the condition ε > 10− 2α beside the upper bound
ε < 2 so that the LHS is still positive and hence any 0 < q ∈ (2, 2∗) is good for our purpose.

Case d = 2. Recall that in this dimension 2∗ = 4. We chose q = q(α) = 2α − 2. We
observe that q(α) ∈ (2, 2∗) for any α ∈ (2, 4) which is the range where α is allowed in
dimension d = 2.

Strichartz admissibility reads b/2 > 2 ⇐⇒ b > 4 and 2
b−4 ≤ s ≤ 6

b−4 which is
equivalent to

2
b− 4 ≤

q

q − a
≤ 6
b− 4 ⇐⇒

2
b− 4 ≤

2α− 2
2α− 2− (2α + 2− b) ≤

6
b− 4

⇐⇒ 2
b− 4 ≤

2α− 2
b− 4 ≤

6
b− 4

⇐⇒ 2 ≤ α ≤ 4

which is satisfied for any intra-critical α ∈ (2, 4).

Case d = 3. In this case 2∗ = 4 and α ∈ (4/3, 2). To satisfy the admissibility condition,
at first we impose b ≥ 4. The second Strichartz condition reads

6
3b− 8 ≤

q

q − a
≤ 4
b− 2 .
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Let us focus on the LHS condition.
6

3b− 8 ≤
q

q − a
⇐⇒ 6(q − 2α− 2 + b) ≤ q(3b− 8)

⇐⇒ b(6− 3q) ≤ 12α + 12− 14q

⇐⇒ b ≥ 12α + 12− 14q
6− 3q := c1(α, q)

If we impose c1 < 4 we are done. But c1 < 4 ⇐⇒ q < 6(α− 1). So we restrict the upper
bound for the choice of q as

q < min{4, 6(α− 1)}.

Let us now focus on the RHS condition.
q

q − a
≤ 4
b− 2 ⇐⇒

q

(q − 2α− 2 + b) ≤
4

b− 2
⇐⇒ q(b− 2) ≤ 4(q − 2α− 2 + b)
⇐⇒ b(4− q) ≥ 8α + 8− 6q

⇐⇒ b ≥ 8α + 8− 6q
4− q := c2(α, q)

If we impose c2 < 4 we are done. But this last condition is equivalent to q > 4(α − 1)
and then by considering

q > max{2, 4(α− 1)}

we are able to conclude summarizing with

max{2, 4(α− 1)} < q < min{4, 6(α− 1)}.

Case d = 4. In this case 2∗ = 10/3 and α ∈ (1, 4/3). To satisfy the admissibility condition,
at first we impose b ≥ 4. The second Strichartz condition reads

2
b− 2 ≤

q

q − a
≤ 10

3b− 4 .

Let us focus on the LHS condition.
2

b− 2 ≤
q

q − a
⇐⇒ 2

b− 2 ≤
q

q − 2α− 2 + b

⇐⇒ b(q − 2) ≥ 4q − 4α− 4

⇐⇒ b ≥ 4q − 4α− 4
q − 2 := c3(α, q)
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If we impose c3 < 4 we are done. But c3 < 4 ⇐⇒ α > 1 which is always satisfied under
the intra-criticality condition.

Let us now focus on the RHS condition.
q

q − a
≤ 10

3b− 4 ⇐⇒
q

(q − 2α− 2 + b) ≤
10

3b− 4
⇐⇒ q(3b− 4) ≤ 10(q − 2α− 2 + b)
⇐⇒ b(10− 3q) ≥ 20α + 20− 14q

⇐⇒ b ≥ 20α + 20− 14q
10− 3q := c4(α, q)

If we impose c4 < 4 we are done. But this last condition is equivalent to q > 10(α− 1)
and then by considering

q > max{2, 10(α− 1)}
we are able to conclude summarizing with

max{2, 4(α− 1)} < q <
10
3 .

The proof of Theorem 4.3.6 is complete.

4.4 Construction of the minimal element
Theorem 4.3.6 is the key tool for the construction of a minimal (with respect to the
energy) non-scattering solution to (4.0.1) with some compactness property. We define
the following critical energy:

Ec = sup{E > 0 | (f, g) ∈ H and E(f, g) < E

=⇒ u(f,g)(t) ∈ Lα+1L2(α+1) <∞}

where u(f,g)(t) denotes here the global solution to (4.0.1) with Cauchy data f and g. Our
final aim, at the end of the chapter, is to exclude that Ec is finite.

The result stated in Theorem 4.2.1 ensures that Ec > 0. The strategy consists in a
contradiction argument. If we suppose that Ec is finite, we will show that there exists
a critical solution uc(t) to (4.0.1), with energy Ec, such that it does not belong to the
Strichartz space Lα+1L2(α+1). It will moreover enjoy some compactness properties. The
latter will imply that such critical solution must be the trivial one, hence a contradiction.

We first proceed with the construction of the critical solution, based on Theorem 4.3.6
and Lemma 4.2.3.

Once every ingredient is given, we continue with the extraction of the critical solution.
We therefore assume that Ec < ∞. Let (fn, gn) ∈ H be a sequence of Cauchy data
such that E(fn, gn)→ Ec as n→ +∞ and let un(t) := u(fn,gn)(t) be the corresponding
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solutions to (4.0.1) which exist globally in time but do not belong to Lα+1L2(α+1), i.e.
‖un‖Lα+1L2(α+1) = ∞. The last condition means that we are considering a maximizing
sequence (fn, gn) ∈ H whose corresponding solutions do not satisfy the scattering
property.

Since E(fn, gn) → Ec and the energy is a conserved quantity, we can state that
~u0
n := (fn, gn) is uniformly bounded in H. And since the Klein-Gordon linear flow

preserves the H-norm, the sequence etH~u0
n is uniformly bounded in L∞H. Thus we can

apply the linear profile decomposition to this sequence of free solutions and we can write

etH~u0
n =

∑
1≤j≤J

~vjn(t) + ~RJ
n(t, x, y), (4.4.1)

where ~vjn(t) = ~vj(t− tjn, x− xjn, y) = e(t−tjn)H ~ψj(x− xjn, y) for suitable ~ψj ∈ H. We recall
that the profile decomposition theorem given above ensures the orthogonality of the
translation sequences in the sense of

lim
n→+∞

(
|thn − tjn|+ |xhn − xjn|

)
= +∞, (4.4.2)

for all j 6= h, the smallness of the remainders in the sense of

lim
J→∞

lim sup
n→∞

‖RJ
n(t)‖L∞Lq∩Lα+1L2(α+1) = 0, (4.4.3)

as well as the pythagorean expansions of the quadratic and super quadratic terms of the
energy. More precisely, for n→∞,

‖(fn, gn)‖2
H = ‖~un(0, x, y)‖2

H = ‖~un(t, x, y)‖2
H =

∑
1≤j≤J

‖~vjn‖2
H + ‖~RJ

n‖2
H + o(1), (4.4.4)

and
‖un(0, x, y)‖α+2

Lα+2 =
∑

1≤j≤J
‖vjn‖α+2

Lα+2 + ‖Rk
n‖α+2

Lα+2 + o(1). (4.4.5)

We suppose that J > 1 and we follow the same strategy as in [6, 102]. We have that,
at most, in one case we can have that both space and time translations sequences are
trivial, due to (4.4.2). Without loss of generality we can suppose that this case happens
when j = 1, and since we are assuming J > 1 we have, by orthogonality of the energy
expressed by summing up (4.4.4) and (4.4.5), that ~ψ1 is such that the corresponding
solution z1 := u~ψ1 to (4.0.1) scatters, as it belongs to Lα+1L2(α+1) by definition. In the
other cases j ≥ 2, we associate to a linear profile ~ψj, a nonlinear profile in a proper
way. We associate a nonlinear profile V j to each linear profile vj thanks to the following
procedure: V j is a nonlinear solution to (4.0.1) such that

lim
n→∞

‖~vj(tjn)− ~V j(tjn)‖H = 0.

Recall that by the dichotomy property of the parameters, for every j, limn→∞ t
j
n = 0 or

limn→∞ |tjn| =∞. Then V j is locally defined both in a neighborhood of t = 0 or |t| =∞ :
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the first property follows by the local well-posedness theory, while the second one by
the existence of the wave operators. Due to the defocusing nature of the equation, V j

is actually globally defined. Orthogonality of the energy given by (4.4.4) together with
(4.4.5) implies that any nonlinear profile V j has an energy less than the minimal one Ec.
Let us define

V (t) =
J∑
j=1

V j(t− tjn, x− xjn, y);

we use the perturbation lemma with V instead of v in Lemma 4.2.3 and un in the role of
u of the Lemma 4.2.3. As in [102] this would imply that

lim sup
n→∞

‖
J∑
j=1

V j(t− tjn, x− xjn, y)‖Lα+1L2(α+1) < C <∞, uniformly in J,

and Lemma 4.2.3 gives
lim sup
n→∞

‖un‖Lα+1L2(α+1) < C,

which is a contradiction. Therefore J = 1, and the precompactness of the trajectory up
to a translation also follows by [102]. We can summarize the core result of this section in
the following theorem.

Theorem 4.4.1. There exists an initial datum (fc, gc) ∈ H1(Rd × T) × L2(Rd × T)
such that the corresponding solution uc(t) to (4.0.1) is global and ‖uc‖Lα+1L2(α+1) =∞.
Moreover there exists a path x(t) ∈ Rd such that {uc(t, x−x(t), y), ∂tuc(t, x−x(t), y)}t∈R+

is precompact in H1(Rd × T)× L2(Rd × T).

4.5 Death of the soliton-like solution
This section establishes that the critical (or soliton-like) solution uc(t) built in the previous
section cannot exist. The first step is to prove the validity of the finite propagation
speed in our framework. It will be useful to control the growth of the translation path
x(t) ∈ Rd given in Theorem 4.4.1. Let us first recall this simple result.

Lemma 4.5.1. Let f be smooth and B(x0, r) ⊂ Rd the ball centered in x0 with radius r.
The following equality holds:

d

dr

∫
B(x0,r)

f(x) dx =
∫
∂B(x0,r)

f(σ) dσ

where ∂B(x0, r) is the boundary of B(x0, r) and dσ is the surface measure on ∂B(x0, r).

Proof. The proof is straightforward once switched in radial coordinates.

We then state the following, which is the finite time propagation speed mentioned
above. The notation B(x0, r)c stands for Rd \B(x0, r).
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Proposition 4.5.2. Let u be the solution to (4.0.1) with Cauchy datum (u0, u1) vanishing
on B(x0, r)c × T, for some r > 0. Then ~u(t) = (u, ∂tu)(t) vanishes on K(x0, r) := {t ≥
0, x ∈ B(x0, r + t)c, y ∈ T}.

Proof. Fix r > 0, x0 ∈ Rd, consider the balls B(x0, r+ t) := B(t+ r) and define the local
energy Er(t) as

Er(t) = 1
2

∫
T

∫
B(r+t)

(
|∂tu|2 + |∇u|2 + |u|2 + 2

α + 2 |u|
α+2

)
(t) dx dy.

Assume that u(t, x, y) is smooth enough (by a classical regularization argument, the
following then extends to rougher solutions), and let us calculate the first time derivative
of the local energy:

d

dt
Er(t) =

∫
T

∫
B(r+t)

∂tu∂ttu+
∑

i∈{1,...,d}
∂xiu ∂xi∂tu+ ∂yu ∂y∂tu dx dy

+
∫
T

∫
B(r+t)

u∂tu+ 1
α + 2 |u|

αu∂tu dx dy

+ 1
2

∫
T

∫
∂B(r+t)

(
|∂tu|2 + |∇u|2 + |u|2 + 2

α + 2 |u|
α+2

)
(t) dσ dy

=
∫
T

∫
B(r+t)

∂tu∂ttu+ divx(∂tu∇xu)− ∂tu∆xu+ ∂y(∂tu∂yu)− ∂tu∂yyu dx dy

+
∫
T

∫
B(r+t)

u∂tu+ 1
α + 2 |u|

αu∂tu dx dy

+ 1
2

∫
T

∫
∂B(r+t)

(
|∂tu|2 + |∇u|2 + |u|2 + 2

α + 2 |u|
α+2

)
(t) dσ dy

=
∫
T

∫
B(r+t)

divx(∂tu∇xu) dx dy +
∫
B(r+t)

∫
T
∂y(∂tu∂yu) dy dx

+ 1
2

∫
T

∫
∂B(r+t)

(
|∂tu|2 + |∇u|2 + |u|2 + 2

α + 2 |u|
α+2

)
(t) dσ dy

= −
∫
T

∫
∂B(r+t)

∂tu∇u · ni dσ dy

+ 1
2

∫
T

∫
∂B(r+t)

(
|∂tu|2 + |∇u|2 + |u|2 + 2

α + 2 |u|
α+2

)
(t) dσ dy.

where ni = ni(x), x ∈ ∂B, denotes the inner normal vector to the boundary of B. Recall
that the energy on the whole space in conserved, and so by using Cauchy-Schwartz
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inequality

d

dt
(E − Er(t)) = d

dt

{
1
2

∫
T

∫
B(r+t)c

(
|∂tu|2 + |∇u|2 + |u|2 + 2

α + 2 |u|
α+2

)
(t) dx dy

}

=
∫
T

∫
∂B(r+t)

∂tu∇u · ni dσ dy

− 1
2

∫
T

∫
∂B(r+t)

(
|∂tu|2 + |∇u|2 + |u|2 + 2

α + 2 |u|
α+2

)
(t) dσ dy

≤ 1
2

∫
T

∫
∂B(r+t)

|∂tu|2 + |∇u|2 dσ dy

− 1
2

∫
T

∫
∂B(r+t)

(
|∂tu|2 + |∇u|2 + |u|2 + 2

α + 2 |u|
α+2

)
(t) dσ dy ≤ 0,

and we obtain

d

dt

{
1
2

∫
T

∫
B(r+t)c

(
|∂tu|2 + |∇u|2 + |u|2 + 2

α + 2 |u|
α+2

)
(t) dx dy

}
≤ 0,

namely the energy on B(x0, r + t)c × T is decreasing. The conclusion follows.

We now give an estimate from above of a portion away from zero of the potential
energy. This will be essential in the last section dealing with the rigidity part in the Kenig
and Merle scheme. We follows the ideas of Bulut in [16], who in turn was inspired by
Killip and Visan [82–84]. We point out that in [16] the situation is much more involved,
since the author is considering energy supercritical NLW.

Lemma 4.5.3. Let u(t, x, y) be a solution to (4.0.1). If {~u(t)}t∈R ⊂ H is a relatively
compact set and ~u∗ ∈ H is one of its limit points, then ~u∗ 6= 0.

Proof. This property simply follows from the conservation of the energy.

At this point we can give the following lemma, essentially based on the well-posedness
of (4.0.1), in particular its continuous dependence on the initial data.

Lemma 4.5.4. Let u(t) be a nontrivial solution to (4.0.1) such that

{u(t, x− x(t), y), ∂tu(t, x− x(t), y)}t∈R is relatively compact in H.

Then for any A > 0, there exists C(A) > 0 such that for any t ∈ R∫ t+A

t

∫
T

∫
|x−x(s)|≤R

|u|α+2(s, x, y) dx dy ds ≥ C(A), (4.5.1)

for R = R(A) large enough.
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Proof. We argue by contradiction, supposing that there exists a sequence of times {tn}n∈N
such that ∫ tn+A

tn

∫
Rd×T

|u|α+2(s, x, y) dx dy ds < 1
n
.

By compactness, up to subsequence still denoted with the subscript n,

(u(tn, x− x(tn), y), ∂tu(tn, x− x(tn), y))→ (f, g) ∈ H.

Let (w(0), ∂tw(0)) = (f, g) be an initial datum and w(t) be the corresponding solution
to (4.0.1): then we have, by the fact that u 6= 0,

E(w, ∂tw) = E(f, g)
= lim

n→∞
E(u(tn, x− x(tn), y), ∂tu(tn, x− x(tn), y))

= E(u0, u1) 6= 0.
(4.5.2)

Local well-posedness and Strichartz estimates imply

0 = lim
n→∞

∫ tn+A

tn

∫
Rd×T

|u|α+2(s, x, y) dx dy ds

= lim
n→∞

∫ A

0

∫
Rd×T

|u|α+2(tn + s, x, y) dx dy ds

= lim
n→∞

∫ A

0

∫
Rd×T

|u|α+2(tn + s, x− x(tn), y) dx dy ds

=
∫ A

0

∫
Rd×T

|w|α+2(s, x, y) dx dy ds,

which in turn gives that w(t) = 0 almost everywhere in (0, A). This contradicts (4.5.2),
then ∫ t+A

t

∫
T×Rd

|u|α+2 dx dy ds ≥ C ′(A).

By exploiting again the precompactness property of the solution∫ t+A

t

∫
T

∫
|x−x(s)|≤R

|u|α+2 dx dy ds

=
∫ t+A

t

{∫
T×Rd

|u|α+2 dx dy −
∫
T

∫
|x−x(s)|≥R

|u|α+2 dx dy

}
ds

≥ C ′(A)− C ′(A)
2 = C ′(A)

2 =: C(A).

Corollary 4.5.5. By interpolation the same property can be claimed for the localized
L2-norm of u. More precisely, under the same assumption of Lemma 4.5.4 on u, for any
A > 0 there exists C(A) > 0 such that for any t ∈ R∫ t+A

t

∫
T

∫
|x−x(s)|≤R

|u|2(s, x, y) dx dy ds ≥ C(A) (4.5.3)

for R = R(A) large enough.
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The last ingredient to derive a contradiction to the existence of a such precompact
solution is an a priori bound for the super-quadratic term of the energy which is due to
Nakanishi, see [100]. The latter is a remarkable extension in the euclidean framework Rm

with m = 1, 2 of the well-known Morawetz estimate proved by Morawetz and Strauss, see
[97,98], for higher dimensions. This a priori bounds lead to the scattering in energy space
both for the nonlinear Klein-Gordon equation and the nonlinear Schrödinger equation
posed in the euclidean space.

4.5.1 Nakanishi/Morawetz-type estimate
We begin this section by giving the analogue in our domain of the decay result due to
Nakanishi, [100]. Our approach is to simply use a multiplier that does not consider all the
variables: neither the compact factor of the product space we work on (the y variable),
nor a set of d− 1 euclidean variables ({x2, . . . , xd}, for instance) will be “seen” by the
multiplier. Consequently, we will show how the Nakanishi/Morawetz type estimate in
one dimension is enough for a contradiction argument which will exclude soliton-like
solutions, i.e. the uc built in Theorem 4.4.1.

We report verbatim the proof contained in [100, Lemma 5.1, equation (5.1)], then we
analyze the extra term given by the remaining part of the second order space operator
involved in the equation. First, Nakanishi introduces the following term with relative
notations (recall that in the following we are in a pure euclidean framework, with x ∈ Rm

and m = 1, 2):

r = |x|, θ = x

r
, λ =

√
t2 + r2, Θ = (−t, x)

λ

ur = θ · ∇xu, uθ = ∇xu− θur

l(u) = 1
2

(
−|∂tu|2 + |∇xu|2 + |u|2 + 2

α + 2 |u|
α+2

)
(∂0, ∂1, ∂2) = (−∂0, ∂1, ∂2) = (∂t,∇x)

g = m− 1
2λ + t2 − r2

2λ3 , M = Θ · (∂tu,∇xu) + ug

(∂2
t −∆x)g = − 5

2λ3 + 3t
2 − r2

λ5 + 15(t2 − r2)2

2λ7 .

Then by multiplying the equation ∂2
t u−∆xu+ u+ |u|αu = 0 by M, with u = u(t, x), we

obtain the relation

0 = (∂2
t u−∆xu+ u+ |u|αu)M =

m∑
β=0

∂β

(
−M∂βu+ l(u)Θβ + |u|

2

2 ∂βg

)

+ |uω|
2

λ
+ |u|

2

2 (∂2
t −∆x)g + α

α + 2 |u|
α+2g,

(4.5.4)
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where uω is the projection of (∂tu,∇xu) on the tangent space of t2 − |x|2 = c, c being a
constant.

We focus on m = 1 and we go back to (4.0.1). We introduce the compact notation

Rd−1 × T =: Y 3 z := (x̄, y) = (x2, . . . , xd, y).

Then the analogous of (4.5.4) is the following:

0 = (∂2
t u−∆u+ u+ |u|αu)M =

∑
β∈{0,1}

∂β

(
−M∂βu+ l(u)Θβ + |u|

2

2 ∂βg

)

+ |uω|
2

λ
+ |u|

2

2 (∂2
t −∆x)g + α

α + 2 |u|
α+2g

−M∆zu.

(4.5.5)

Observe that the term g is nonnegative only in the region where r < t. Then after
integrating (4.5.5) (now u = u(t, x1, z)) on C := {(t, x1) | 2 < t < T, |x1| = r < t} × Y ,
using the divergence theorem, the last relation we obtain is:{∫

Y

∫
r<t
−∂tuM + l(u) t

λ
+ |u|

2

2 ∂tg dx1 dz

} ∣∣∣∣∣
t=T

t=2

=
∫
C

|uω|2

λ
+ |u|

2

2 (∂2
t − ∂2

x1)g + α

α + 2 |u|
α+2g dx1 dz dt

+
√

2
2

∫
Y

∫
2<r=t<T

|u|2 + 2
α + 2 |u|

α+2 dx1 dz

−
∫
C
M∆zu dx1 dz dt,

noticing that |uθ|2 = 0 if m = 1. The LHS of the above identity is bounded by the energy,
as well as the middle term in the first integral in the RHS thanks to the estimate∣∣∣∣∣

∫
C

|u|2

2 (∂2
t − ∂2

x1)g
∣∣∣∣∣ .

∫ T

2

∫
T×Rd

|u|2

t3
dx1 dz dt . E.

The energy flux through the curved surface, i.e. the second integral in the RHS is
estimated by the energy. In fact we have the following:

Lemma 4.5.6. Any smooth solution u to (4.0.1) satisfies:∫
Y

∫
2<|x1|=t<T

|∂tu− θ∂x1u|2 + |∇zu|2 + |u|2 + 2
α + 2 |u|

α+2 dσ dz . E. (4.5.6)

Proof. The proof repeats the same analysis performed to prove the finite propagation
speed property. Define

e(t) := 1
2

∫
Y

∫
|x1|<t

(
|∂tu|2 + |u|2 + |∂x1u|2 + 2

α + 2 |u|
α+2

)
(t, x1, z) dx1 dz.
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Differentiating e(t) with respect to t, we obtain

d

dt
e(t) =

∫
Y

∫
|x1|<t

(
∂tu∂

2
t u+ ∂x1u∂x1∂tu+ ∂tuu+ |u|αu∂tu

)
dx1 dz

+ 1
2

∫
Y

∫
|x1|=t

(
|∂tu|2 + |u|2 + |∂x1u|2 + 2

α + 2 |u|
α+2

)
dσ dz

=
∫
Y

∫
|x1|<t

∂tu
(
∂2
t u− ∂2

x1u+ u+ |u|αu
)

+ ∂x1(∂x1u · ∂tu) dx1 dz

+ 1
2

∫
Y

∫
|x1|=t

(
|∂tu|2 + |u|2 + |∂x1u|2 + 2

α + 2 |u|
α+2

)
dσ dz

=
∫
Y

∫
|x1|<t

∂tu
(
∂2
t u−∆u+ u+ |u|αu

)
+ ∂tu∆zu+ ∂x1(∂x1u · ∂tu) dx1 dz

+ 1
2

∫
Y

∫
|x1|=t

(
|∂tu|2 + |u|2 + |∂x1u|2 + 2

α + 2 |u|
α+2

)
dσ dz

=
∫
Y

∫
|x1|<t

∂tu∆zu+ ∂x1(∂x1u · ∂tu) dx1 dz

+ 1
2

∫
Y

∫
|x1|=t

(
|∂tu|2 + |u|2 + |∂x1u|2 + 2

α + 2 |u|
α+2

)
dσ dz

= −1
2

∫
Y

∫
|x1|<t

∂t|∇zu|2 dx1 dz

+ 1
2

∫
Y

∫
|x1|=t

(
|∂tu|2 + |u|2 + |∂x1u|2 + 2

α + 2 |u|
α+2 − 2θ∂x1u · ∂tu

)
dσ dz

= −1
2
d

dt

∫
Y

∫
|x1|<t

|∇zu|2 dx dz + 1
2

∫
Y

∫
|x1|=t

|∇zu|2 dσ dz

+ 1
2

∫
Y

∫
|x1|=t

(
|∂tu− θ∂x1u|2 + |u|2 + 2

α + 2 |u|
α+2

)
dσ dz

therefore, integrating with respect to the time variable from 2 to T we obtain (4.5.6).

Moreover, the energy estimate on the surface of the light cone gives

sup
t

∫
Rd−1×T

∫
R
|u(|x1|+ t, x1, z)|2 dx1 dz . E.

We now analyze the term −
∫
CM∆zu dx1 dz dt in (4.5.5). We rewrite explicitly the term

to be integrated as

−M∆zu = −divz (M∇zu) +∇zu · ∇zM := A+ B.
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The second term is explicitly given by

B = − t

2λ∂t|∇zu|2 + 1
2λx1 · ∂x1|∇zu|2 + g|∇zu|2

= −1
2∂t

(
t

λ
|∇zu|2

)
+ 1

2 |∇zu|2∂t
(
t

λ

)
+ 1

2λ
(
∂x1(x1|∇zu|2)− |∇zu|2

)
+ g|∇zu|2

= −1
2∂t

(
t

λ
|∇zu|2

)
+ |x1|2

2λ3 |∇zu|2 + 1
2λ∂x1(x1|∇zu|2)− |∇zu|2

2λ + g|∇zu|2

= −1
2∂t

(
t

λ
|∇zu|2

)
+ |x1|2

2λ3 |∇zu|2 + ∂x1

(
x1

2λ |∇zu|2
)

− ∂x1

( 1
2λ

)
x1|∇zu|2 −

|∇zu|2

2λ + g|∇zu|2

= −1
2∂t

(
t

λ
|∇zu|2

)
+ |x1|2

2λ3 |∇zu|2 + ∂x1

(
x1

2λ |∇zu|2
)

+ |x1|2

2λ3 |∇zu|2 −
|∇zu|2

2λ + g|∇zu|2

= −1
2∂t

(
t

λ
|∇zu|2

)
+ ∂x1

(
x1

2λ |∇zu|2
)

and then, after integration, it can be estimated by the energy on the whole space, while
the divergence term B disappears using the Gauss-Green theorem.

In conclusion ∫ ∞
2

∫
Y×{|x1|<t}

|uω|2

λ
+ α

α + 2 |u|
α+2g dx1 dz dt . E.

The Nakanishi/Morawetz-type estimate follows as in [100]:
∫
R

∫
Rd×T

min{|u|2, |u|α+2}
〈t〉 log(|t|+ 2) log(max{|x1| − t, 2})

dx dy dt . E. (4.5.7)

We have now all the elements allowing the exclusion of the soliton-like solution.

4.5.2 Extinction of the minimal element
With the aforementioned tool, we are in position to obtain a contradiction with respect
to the our hypothesis on the finiteness of the critical energy Ec. Consider the upper
bound C = C(E(u)) appearing in (4.5.7), then for any T > 2 we can write

C ≥
∫
R

∫
Rd−1×T

∫
R

min{|u|2, |u|α+2}
〈t〉 log(|t|+ 2) log(max{|x1| − t, 2})

dx1 dz dt

≥
∫ T

2

∫
Rd−1×T

∫
R

min{|u|2, |u|α+2}
〈t〉 log(|t|+ 2) log(max{|x1| − t, 2})

dx1 dz dt

≥
∫ T

2

∫
T

∫
|x−x(t)|≤R

min{|u|2, |u|α+2}
〈t〉 log(|t|+ 2) log(max{|x1| − t, 2})

dx1 dz dt.

(4.5.8)
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The finite propagation speed implies that |x(t)− x(0)| ≤ t+ c0 for t > 0, then

|x| ≤ |x− x(t)|+ |x(t)− x(0)|+ |x(0)| ≤ R + t+ c0 + c1,

so that |x1| − t ≤ c + R. With [T ] being the usual floor function of T, we are able to
carry on with the chain above with

(4.5.8) &
∫ T

2

1
〈t〉 log(|t|+ 2)

∫
T

∫
|x−x(t)|≤R

min{|u|2, |u|α+2} dx dy dt

&
∫ [T ]

2

1
〈t〉 log(|t|+ 2)

∫
T

∫
|x−x(t)|≤R

min{|u|2, |u|α+2} dx dy dt

=
[T ]∑
j=3

∫ j

j−1

1
〈t〉 log(|t|+ 2)

∫
T

∫
|x−x(t)|≤R

min{|u|2, |u|α+2} dx dy dt

&
[T ]∑
j=3

1
〈j〉 log(j + 2)

∫ j

j−1

∫
T

∫
|x−x(t)|≤R

min{|u|2, |u|α+2} dx dy dt

& C(1)
[T ]∑
j=3

1
〈j〉 log(j + 2) ∼

∫ T

2

1
〈t〉 log(t+ 2) dt.

In the last step we used the property stated in Lemma 4.5.4 and Corollary 4.5.5 above
(more precisely (4.5.1) and (4.5.3)) for a suitable choice of the radius R. This suffices to
establish a contradiction by taking T large enough, since for T → +∞∫ T

2

1
〈t〉 log t dt ∼

∫ ∞
2

1
t log t dt

and the latter diverges, while the chain of inequalities above should imply a uniform
bound.
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Chapter 5

A singular limit result for the
Zakharov system in 3D

This chapter is devoted to the local well-posedness theory and the qualitative behavior
of solutions to the initial value problem for the vectorial Zakharov system first derived
by Zakharov in [136] in order to describe the so-called Langmuir waves in a weakly
magnetized plasma. From a Euler-Maxwell two-fluids model, after rescaling of variables,
see [118], vectorial Zakharov equations are given by{

i∂tu− ω∇×∇× u+∇(div u) = nu
1
c2
s
∂ttn−∆n = ∆|u|2 . (5.0.1)

Here u : R × R3 → C3 describes the slowly varying envelope of the highly oscillating
electric field, whereas n : R× R3 → R is the ion density fluctuation. The initial value
problem associated to (5.0.1) is subject to initial conditions

u(0) = u0, n(0) = n0, ∂tn(0) = n1.

The rescaled constants in (5.0.1) are ω = c2

3v2
e
, c being the speed of light and ve =

√
Te
me

the electron thermal velocity, while cs is proportional to the ion acoustic speed.

5.1 Motivations and main results
In many physical situations the parameter ω is relatively large, see for example [122, table
1, p. 47], hence hereafter we will only consider ω ≥ 1. In the large ω regime, the
electric field is almost irrotational and in the electrostatic limit ω →∞ the dynamics is
asymptotically described by {

i∂tu+ ∆u = Q(nu)
1
c2
s
∂ttn−∆n = ∆|u|2 , (5.1.1)

where Q = −(−∆)−1∇ div is the Helmholtz projection operator onto irrotational vector
fields. Later on we will also use the orthogonal projector to Q given by P := 1 −Q,
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which is the projector onto solenoidal vector fields. By further simplifying (5.0.1) it is
possible to consider the so called scalar Zakharov system{

i∂tu+ ∆u = nu
1
c2
s
∂ttn−∆n = ∆|u|2 , (5.1.2)

which retains the main features of (5.1.1). For a rigorous derivation of (5.1.2) we refer
to the work of Texier [121], or the one by Masmoudi and Nakanishi [93], who derived the
model from a Klein-Gordon-Zakharov system. In the subsonic limit cs →∞ we find the
cubic focusing nonlinear Schrödinger equation

i∂tu+ ∆u+ |u|2u = 0.

The Cauchy problem for the Zakharov system has been extensively studied in the
mathematical literature. For the local and global well-posedness, see for example Bourgain
and Colliander [11], Kenig, Ponce and Vega [79], Ozawa and Tsutsumi [103,104], Sulem
and Sulem [117], and the recent results by Bejenaru and Herr [7] and Ginibre, Tsutsumi
and Velo [50] concerning low regularity solutions. In Merle, see [95], formation of blow-up
solutions is studied by means of virial identities, see also the papers by Glangetas and
Merle [55, 56] where self-similar solutions are constructed in two space dimensions. The
subsonic limit cs → ∞ for (5.1.2) is investigated by Schochet and Weinstein in [112].
Here we do not consider such limits, hence without loss of generalities we can set cs = 1.
Furthermore, some related singular limits are also studied by Masmoudi and Nakanishi,
see [93], considering the Klein-Gordon-Zakharov system. The aim of our research is to
rigorously study the electrostatic limit for the vectorial Zakharov equation, namely we
show that mild solutions to (5.0.1) converge towards solutions to (5.1.1) as ω →∞.

As we will see later on, we will investigate this limit by exploiting two auxiliary
systems associated to (5.0.1), (5.1.1), namely the following below:

i∂tv − ω∇×∇× v +∇ div v = nv + ∂tnu
∂ttn−∆n = ∆|u|2
iv − ω∇×∇× u+∇ div u = nu

(5.1.3)

and 
i∂tv

∞ + ∆v∞ = Q(n∞v∞ + ∂tn
∞u∞)

∂ttn
∞ −∆n∞ = ∆|u∞|2

iv∞ + ∆u∞ = Q(n∞u∞)
. (5.1.4)

Those are obtained by considering v = ∂tu as a new variable and by studying the Cauchy
problem for the auxiliary system describing the dynamics for (v, n) and a state equation
for u. This approach was introduced in [103,104] to study local and global well-posedness
for the Zakharov system (5.1.2), and overcomes the problem generated by the loss of
derivatives on the term |u|2 in the wave equation, but in our context it introduces a new
difficulty. Indeed the initial data v(0) for (5.2.1) below is not uniformly bounded for
ω ≥ 1.
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For this reason we will need to consider a family of well-prepared initial data; more
precisely we will take a set uω0 of initial states for the Schrödinger part in (5.0.1) which
converges to an irrotational initial datum for (5.1.1).

We consider initial data (uω0 , nω0 , nω1 ) ∈ H2(R3)×H1(R3)× L2(R3) =: H2 for (5.0.1),
converging in the same space to a set of initial data (u∞0 , n∞0 , n∞1 ) ∈ H2, with u∞0 an
irrotational vector field, and we show the convergence in the space

XT :=
{

(u, n) : u ∈ Lq((0, T );W 2,r(R3)), ∀ (q, r) admissible pair,

n ∈ L∞((0, T );H1(R3)) ∩W 1,∞((0, T );L2(R3))
}
.

Here “admissible” has the same meaning of Definition 1.1.4. Before stating our main
result we first recall the local well-posedness result in H2 for system (5.1.1).

Theorem 5.1.1 ([103]). Let (u0, n0, n1) ∈ H2, then there exist a maximal time 0 <
Tmax ≤ ∞ and a unique solution (u, n) to (5.1.1) such that u ∈ C([0, Tmax);H2) ∩
C1([0, Tmax);L2), n ∈ C([0, Tmax);H1) ∩ C1([0, Tmax);L2). Furthermore the solution
depends continuously on the initial data and the standard blow-up alternative holds true:
either Tmax =∞ and the solution is global or Tmax <∞ and we have

lim
t→Tmax

‖(u, n, ∂tn)(t)‖H2 =∞.

Analogously we are going to prove the same local well-posedness result for system
(5.0.1). Furthermore, although the initial datum for (5.2.1) is not uniformly bounded for
ω ≥ 1 (see the discussion at the beginning of Section 5.2), we can anyway infer some a
priori bounds in ω for the solution (uω, nω) to (5.0.1).

Theorem 5.1.2. Let (uω0 , nω0 , nω1 ) ∈ H2, then there exist a maximal time T ωmax > 0 and
a unique solution (uω, nω) to (5.0.1) such that uω ∈ C([0, T ωmax);H2) ∩ C1([0, T ωmax);L2)
and nω ∈ C([0, T ωmax);H1) ∩ C1([0, T ωmax);L2). Furthermore the existence times T ωmax are
uniformly bounded from below, 0 < T ∗ ≤ T ωmax for any ω ≥ 1, and we have

‖(uω, nω, ∂tnω)‖L∞((0,T );H2) + ‖∂tuω‖L2((0,T );L6) ≤ C(T, ‖uω0 , nω0 , nω1 ‖H2),

for any 0 < T < T ωmax, where the constant above does not depend on ω ≥ 1.

Our main result in this chapter is the following one.

Theorem 5.1.3. Let (uω0 , nω0 , nω1 ) ∈ H2 and let (uω, nω) be the maximal solution to (5.0.1)
defined on the time interval [0, T ωmax). Let us assume that

lim
ω→∞

‖(uω0 , nω0 , nω1 )− (u∞0 , n∞0 , n∞1 )‖H2 = 0,

for some (u∞0 , n∞0 , n∞1 ) ∈ H2 such that u∞0 = Qu∞0 , and let (u∞, n∞) be the maximal
solutions to (5.1.1) in the interval [0, T∞max) with such initial data. Then

lim inf
ω→∞

T ωmax ≥ T∞max
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and we have the following convergence

lim
ω→∞

‖(uω, nω)− (u∞, n∞)‖XT = 0,

for any 0 < T < T∞max.

The proof of the theorem above relies on a bootstrap argument, beside other consid-
erations on the well prepared initial data.

5.2 Local existence theory
In this Section we study the local well-posedness of (5.0.1) in the space H2. We are
going to perform a fixed point argument in order to find a unique local solution in the
time interval [0, T ], for some 0 < T < ∞. By standard arguments it is then possible
to extend the solution up to a maximal time Tmax for which the blow-up alternative
holds. However, due to the loss of derivatives on the term ∆|u|2, we cannot proceed in
a straightforward way, thus we follow the approach in [103] where the authors use an
auxiliary system to overcome this difficulty. More precisely, let us define v := ∂tu, then
by differentiating the Schrödinger equation in (5.0.1) with respect to time variable, we
write the following system

i∂tv − ω∇×∇× v +∇ div v = nv + ∂tnu
∂ttn−∆n = ∆|u|2
iv − ω∇×∇× u+∇ div u = nu

. (5.2.1)

Differently from [103], here we encounter a further difficulty. Indeed we have that the
initial datum for v is given by

v(0) = −iω∇×∇× u0 + i∇ div u0 − in0u0, (5.2.2)

which in general is not uniformly bounded in L2 for ω ≥ 1. Hence the standard fixed
point argument applied to the integral formulation of (5.2.1) would give a local solution
on a time interval [0, T ω], where T ω goes to zero as ω goes to infinity. For this reason we
introduce the alternative variable

ṽ(t) := v(t)− U(ωt)P(iω∆u0), (5.2.3)

for which we prove that the existence time T ω is uniformly bounded from below for
ω ≥ 1. The main result of this Section concerns the local well-posedness for (5.2.1).

Proposition 5.2.1. Let (u0, n0, n1) ∈ H2 be such that

M := ‖(u0, n0, n1)‖H2 .

Then, for any ω ≥ 1 there exists τ = τ(M) and a unique local solution (u, n) ∈ C([0, τ ];H2)
to (5.0.1) such that

sup
[0,τ ]
‖(u, n, ∂tn)(t)‖H2 ≤ 2M
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and
‖v‖L2L6 ≤ CM,

where C does not depend on ω ≥ 1.

We fix now some notation. Given a time interval I ⊂ R we denote the Strichartz
space S0(I) to be the closure of the Schwartz space with the norm

‖u‖S0(I) := sup
(q,r)
‖u‖Lq(I;Lr(R3)),

where the supremum is taken over all admissible pairs; furthermore we write

S2(I) = {u ∈ S0(I) : ∇2u ∈ S0(I)}.

We define moreover the space

W1(I) = {n : n ∈ L∞(I;H1) ∩W 1,∞(I;L2)}

endowed with the norm

‖n‖W1(I) = ‖n‖L∞(I;H1) + ‖∂tn(t)‖L∞(I;L2).

The space of solutions we consider in this chapter is given by

XT = {(u, n) : u ∈ S2([0, T ]), n ∈ W1([0, T ])}.

We will also use the following notation:

C([0, T );H2) =
{

(u, n) : u ∈ C([0, T );H2) ∩ C1([0, T );L2),

n ∈ C([0, T );H1) ∩ C1([0, T );L2)
}
.

By standard arguments we then extend the local solution in Proposition 5.2.1 to a
maximal existence interval where the standard blow-up alternative holds true.

Theorem 5.2.2. Let (u0, n0, n1) ∈ H2, then for any ω ≥ 1 there exists a unique maximal
solution (uω, vω, nω) to (5.2.1) with initial data (u0, v(0), n0, n1), v(0) given by (5.2.2), on
the maximal existence interval Iω := [0, T ωmax), for some T ωmax > 0. The solution satisfies
the following regularity properties:

• uω ∈ C(Iω;H2), uω ∈ S2([0, T ]), ∀ 0 < T < T ωmax,

• vω ∈ C(Iω;L2), vω ∈ S0([0, T ]), ∀ 0 < T < T ωmax,

• nω ∈ C(Iω;H1) ∩ C1(Iω;L2).

Moreover, the following blow-up alternative holds true: T ωmax <∞ if and only if

lim
t→Tω

‖(uω, nω, ∂tnω)(t)‖H2 =∞.

Finally, the map H2 → C([0, Tmax);H2) associating any initial datum to its solution is a
continuous operator.

94



Remark 5.2.3. The blow-up alternative above also implies in particular that the family
of maximal existence times T ω is strictly bounded from below by a positive constant, i.e.
there exists a T ∗ > 0 such that T ∗ ≤ T ω for any ω ≥ 1.

Theorem 5.1.2 yields in a straightforward way from Theorem 5.2.2 above.

Proof of Theorem 5.1.2. Let (uω, vω, nω) be the solution to (5.2.1) constructed in The-
orem 5.2.2, then to prove the Theorem 5.1.2 we only need to show that we identify
∂tu

ω = vω in the distribution sense. Let us differentiate with respect to t the equation

(1− ω∆P−∆Q)u = iv − (n− 1)
(
u0 +

∫ t

0
v(s) ds

)
obtaining

(1− ω∆P−∆Q) ∂tu = i∂tv − (n− 1)v − ∂tn
(
u0 +

∫ t

0
v(s) ds

)
, (5.2.4)

this equation holding in H−2, while the first equation of (5.2.1) gives us

(1− ω∆P−∆Q) v = i∂tv − (n− 1)v − ∂tn
(
u0 +

∫ t

0
v(s) ds

)
.

Also the equation above is satisfied in H−2 and therefore in the same distributional sense
we have ∂tu = v. Moreover from (5.2.4) we get

∂tu = (1− ω∆P−∆Q)−1
(
i∂tv − (n− 1)v − ∂tn

(
u0 +

∫ t

0
v(s) ds

))
∈ C(I;L2)

therefore u ∈ C1(I;L2). It is straightforward that uω(0, x) = u0 and so the proof is
complete.

Proof of Theorem 5.2.2. As discussed above, we are going to prove the result by means
of a fixed point argument. Let us define the function

ṽ(t) := v(t)− U(ωt)P(iω∆u0).

We look at the integral formulation for (5.2.1), namely

v(t) = Z(t)v(0)− i
∫ t

0
Z(t− s) (nv + ∂tnu) (s) ds (5.2.5)

n(t) = cos(t|∇|)n0 + sin(t|∇|)
|∇|

n1 +
∫ t

0

sin((t− s)|∇|)
|∇|

(
∆|u|2

)
(s) ds,

with u determined by the following elliptic equation

−ω∇×∇× u+∇ div u = n
(
u0 +

∫ t

0
v(s) ds

)
− iv,
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and v(0) is given by (5.2.2). This implies that ṽ must satisfy the following integral
equation

ṽ(t) = U(ωt)P(−in0u0) + U(t)Q(i∆u0 − in0u0)

− i
∫ t

0
Z(t− s) (ṽn+ nU(ω·)P(iω∆u0) + ∂tnu) (s) ds.

Let us consider the space

X =
{

(ṽ, n) : ṽ ∈ S2([0, T ]), n ∈ W1([0, T ]),

‖ṽ‖S2(I) ≤M, ‖n‖W1(I) ≤M
}
,

endowed with the norm

‖(ṽ, n)‖X := ‖ṽ‖S2(I) + ‖n‖W1(I).

Here 0 < T ≤ 1,M > 0 will be chosen subsequently and I := [0, T ]. From the third
equation in (5.2.1) and the definition of ṽ we have

−ω∇×∇× u+∇ div u = −iṽ − iU(ωt)(iω∆Pu0)

− in
(
u0 +

∫ t

0
ṽ(s) + U(ωs)(iω∆Pu0) ds

)
,

(5.2.6)

thus it is straightforward to see that given n, ṽ, then u is uniquely determined. Further-
more, by applying the projection operators P,Q, respectively, to (5.2.6) we obtain

ω∆Pu = −iP[ṽ + U(ωt)P(iω∆u0)] + P
[
n
(
u0 +

∫ t

0
ṽ(s) + U(ωs)P(iω∆u0) ds

)]
and

∆Qu = −iQṽ + Q
[
n
(
u0 +

∫ t

0
ṽ(s) + U(ωs)P(iω∆u0) ds

)]
.

We now estimate the irrotational and solenoidal parts of ∆u separately. Let us start
with Q∆u : by Hölder inequality and Sobolev embedding we obtain

‖∆Qu‖L∞L2 . ‖ṽ‖L∞L2 + ‖n‖L∞H1‖u0‖H2 + T 1/2‖n‖L∞H1‖ṽ‖L2L6

+ T 1/2‖n‖L∞H1‖U(ωt)P(iω∆u0)‖L2L6 .

To estimate the last term, we use the Strichartz estimate in (1.5.5); let us notice that by
choosing the admissible exponents (q, r) = (2, 6) we obtain a factor ω−1 in the estimate,
which balances the term ω appearing above. We thus have

‖∆Qu‖L∞L2 . (‖u0‖H2 + 1)M +M2.

By similar calculations, we also obtain an estimate for P∆u,

‖P∆u‖L∞L2 . ‖u0‖2
H2 + ‖u0‖H2M +M2.
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We then sum up the contributions given by the irrotational and solenoidal parts to get

‖u‖L∞H2 . ‖u0‖2
H2 + ‖u0‖H2M +M2 ≤ C(‖u0‖H2)

(
1 +M2

)
. (5.2.7)

Similar calculations also give

‖u− u′‖L∞(I;H2) . ‖ṽ − ṽ′‖L∞L2 + ‖n− n′‖L∞H1

+M(‖n− n′‖L∞H1 + ‖ṽ − ṽ′‖L2L6)
≤ C(1 +M)‖(ṽ, n)− (ṽ′, n′)‖X .

Given (ṽ, n) ∈ X we define the map Φ : X → X, Φ(ṽ, n) = (ΦS,ΦW )(ṽ, n) by

ΦS = U(ωt)P(−in0u0) + U(t)Q(i∆u0 − in0u0) (5.2.8)

− i
∫ t

0
U(ω(t− s))P(ṽn+ nU(ω·)P(iω∆u0) + ∂tnu)(s) ds

− i
∫ t

0
U(t− s)Q (nṽ + nU(ω·)(iω∆u0) + ∂tnu) (s) ds

ΦW = cos(t|∇|)n0 + sin(t|∇|)
|∇|

n1 +
∫ t

0

sin((t− s)|∇|)
|∇|

(
∆|u|2

)
(s) ds (5.2.9)

where u in the formulas above is given by (5.2.6) and its L∞H2-norm is bounded in
(5.2.7). Let us first prove that, by choosing T and M properly, Φ maps X into itself.

Let us first analyze the Schrödinger part (5.2.8), by the Strichartz estimates in
Lemma 1.5.2, Hölder inequality and Sobolev embedding we have

‖U(ωt)P(−in0u0) + U(t)Q(i∆u0 − in0u0)‖LqLr . ‖u0‖H2 + ‖n0‖H1‖u0‖H2

We treat the inhomogeneous part similarly:∥∥∥∥∫ t

0
Z(t− s) (nṽ + nU(ω·)(iωP∆u0)) (s) ds

∥∥∥∥
LqLr

. ‖nṽ + nU(ω·)(iω∆Pu0)‖L1L2

. T 1/2‖n‖L∞H1(‖ṽ‖L2L6 + ‖U(ω·)P(iω∆u0)‖L2L6) . T 1/2M(M + ‖u0‖H2)

where in the last inequality we again used (1.5.5) with (2, 6) as admissible pair. Similarly,∥∥∥∥∫ t

0
Z(t− s) (∂tnu) (s) ds

∥∥∥∥
LqLr

. T‖∂tn‖L∞L2‖u‖L∞H2

. C(‖u0‖H2)TM
(
1 +M2

)
,

where in the last line we use the bound (5.2.7). Collecting these estimates we get

‖ΦS(ṽ, n)‖LqLr ≤ C(‖u0‖H2 , ‖n0‖L2) + CT 1/2M(1 +M). (5.2.10)

For the wave component we use formula (5.2.9) and Hölder inequality to obtain

‖ΦW (v, n)‖W1(I) ≤ C(1 + T )‖n0‖H1 + ‖n1‖L2 + ‖∆|u|2‖L1L2

≤ C (‖n0‖H1 + ‖n1‖L2) + T‖u‖2
L∞H2 ,
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where we used the fact that H2(R3) is an algebra. From (5.2.7) we infer

‖ΦW (v, n)‖W1(I) ≤ C(‖n0‖H1 , ‖n1‖L2) + T
(
M +M4

)
. (5.2.11)

The bounds (5.2.10) and (5.2.11) together yield

‖Φ(ṽ, n)‖X ≤ C(‖(u0, n0, n1)‖H2) + CT 1/2M(1 +M3).

Let us choose M such that
M

2 = C(‖(u0, n0, n1)‖H2)

and T such that
CT 1/2(1 +M3) < 1

2 ,

we then obtain ‖Φ(ṽ, n)‖X ≤M . Hence Φ maps X into itself. It thus remains to prove
that Φ is a contraction. Arguing similarly to what we did before we obtain

‖ΦS(ṽ, n)− ΦS(ṽ′, n′)‖LqLr ≤ CT 1/2(1 +M)‖(ṽ, n)− (ṽ′, n′)‖LqLr
‖ΦW (ṽ, n)− ΦW (ṽ′, n′)‖W1(I) ≤ CT

(
1 +M3

)
‖(ṽ, n)− (ṽ′, n′)‖W1(I).

By possibly choosing a smaller T > 0 such that CT 1/2(1 + M3) < 1 then we see that
Φ : X → X is a contraction and consequently there exists a unique (ṽ, n) ∈ X which
is a fixed point for X. Let us notice that the time T depends only on M , hence
T = T (‖(u0, n0, n1)‖H2). Furthermore from the definition of ṽ it follows that (u, v, n) is
a solution to (5.2.1), where v(t) = ṽ(t) + U(ωt)P(iω∆u0). From (5.2.7) we also see that
the L∞H2-norm of u is uniformly bounded in ω.

Finally, from standard arguments we extend the solution on a maximal time interval,
on which the standard blow-up alternative holds true and we can also infer the continuous
dependence on the initial data.

5.3 Convergence of solutions
Given the well-posedness results of the previous Section, we are now ready to study
the electrostatic limit for the vectorial Zakharov system (5.0.1). In order to understand
the effective dynamics we consider the system (5.0.1) in its integral formulation, by
splitting the Schrödinger linear propagator in its fast and slow dynamics, that is Z(t) =
U(ωt)P + U(t)Q. In particular for uω we have

uω(t) = U(ωt)Pu0 +U(t)Qu0 − i
∫ t

0
U(ω(t− s))P(nu)(s) ds− i

∫ t

0
U(t− s)Q(nu)(s) ds.

Due to fast oscillations, we expect that the terms of the form U(ωt)f go weakly to zero
as ω → 0. This fact can be quantitatively seen by using the Strichartz estimates in
(1.5.5). However, while for the third term we can choose (γ, ρ) in a suitable way such
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that it converges to zero in every Strichartz space, by the unitarity of U(ωt) we see that
‖U(ωt)Pu0‖L∞L2 cannot converge to zero, while ‖U(ωt)Pu0‖LqLr → 0 for any admissible
pair (q, r) 6= (∞, 2).

This is indeed due to the presence of an initial layer for the electrostatic limit for
(5.0.1) when dealing with “ill-prepared” initial data. In general, for arbitrary initial data,
the right convergence, as ω →∞, should be given by

ũω(t) := uω(t)− U(ωt)Pu0 → u∞

in all Strichartz spaces, where u∞ is the solution to (5.1.1). Let us notice that ũω is related
to the auxiliary variable ṽω defined in (5.2.3) and used to prove the local well-posedness
results in Section 5.2, since we have ṽω = ∂tũ

ω.
Our strategy to prove the electrostatic limit goes through studying the convergence

of (vω, nω, uω), studied in the previous Section, towards solutions to
i∂tv

∞ + ∆v∞ = Q(n∞v∞ + ∂tn
∞u∞)

∂ttn
∞ −∆n∞ = ∆|u∞|2

iv∞ + ∆u∞ = Q(n∞u∞)
, (5.3.1)

which is the auxiliary system associated to (5.1.1). Again, we exploit such auxiliary
formulations in order to overcome the difficulty generated by the loss of derivatives on
the terms |uω|2 and |u∞|2.

Unfortunately our strategy is not suitable to study the limit in the presence of an
initial layer. Indeed for ill-prepared data we should consider ũω and consequently ṽω
defined in (5.2.3) for the auxiliary system. This means that when studying the auxiliary
variable vω the initial layer itself becomes singular. For this reason here we restrict
ourselves to study the limit with well-prepared data. More specifically, we consider
(uω0 , nω0 , nω1 ) ∈ H2 such that

‖(uω0 , nω0 , nω1 )− (u∞0 , n∞0 , n∞1 )‖H2 → 0 (5.3.2)

for some (u∞0 , n∞0 , n∞1 ) ∈ H2 and

‖Puω0 ‖H2 → 0 (5.3.3)

as ω →∞. This clearly implies that the initial datum for the limit equation (5.1.1) is
irrotational, i.e. Pu∞0 = 0.
Remark 5.3.1. In view of the above discussion, it is reasonable to think about studying
the initial layer by considering the Cauchy problem for the Zakharov system in low
regularity spaces, by exploiting recent results in [7, 11, 50]. However this goes beyond the
scope of our work and it could be the subject of some future investigations.

To prove the convergence result stated in Theorem 5.1.3 we will study the convergence
from (5.2.1) to (5.3.1). The main result of this Section is the following.
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Theorem 5.3.2. Let ω ≥ 1 and let (uω0 , nω0 , nω1 ), (u∞0 , n∞0 , n∞1 ) ∈ H2 be initial data such
that (5.3.2) and (5.3.3) hold true. Let (uω, vω, nω) be the maximal solution to (5.2.1) with
Cauchy data (uω0 , nω0 , nω1 ) given by Theorem 5.2.2 and analogously let (u∞, v∞, n∞) be the
maximal solution to (5.3.1) in the interval [0, T∞max) accordingly to Theorem 5.1.1. Then
for any 0 < T < T∞max we have

lim
ω→∞

‖(uω, vω, nω)− (u∞, v∞, n∞)‖L∞((0,T );H2) = 0.

The proof of the Theorem above is divided in two main steps. First of all we prove in
Lemma 5.3.3 that, as long as the H2-norm of (uω(T ), nω(T ), ∂tnω(T )) is bounded, then
the convergence holds true in [0, T ]. The second one consists in proving that the H2
bound on (uω(T ), nω(T ), ∂tnω(T )) holds true for any 0 < T < T∞max. A similar strategy
of proof is already exploited in the literature to study the asymptotic behavior of time
oscillating nonlinearities, see for example the works by Cazenave and Scialom [21] where
the authors consider a time oscillating nonlinearity or Antonelli and Weishäupl [3] where
in a system of two nonlinear Schrödinger equations a rapidly varying linear coupling
term is averaging out the effect of nonlinearities. We also mention the paper by Carvajal,
Panthee and Scialom [19], where a similar strategy is also used to study a time oscillating
critical Korteweg-de Vries equation.

Lemma 5.3.3. Let (uω, vω, nω), (u∞, v∞, n∞) be defined as in the statement of Theo-
rem 5.3.2 and let us assume that for some 0 < T1 < T∞max we have

sup
ω≥1
‖(uω, nω, ∂tnω)‖L∞((0,T1);H2) <∞.

It follows that

lim
ω→∞

(‖uω − u∞‖L∞H2 + ‖vω − v∞‖L2L6 + ‖nω − n∞‖W1) = 0,

where all the norms are taken in the space-time slab [0, T1]× R3. In particular we have

lim
ω→∞

‖(uω, nω, ∂tnω)− (u∞, n∞, ∂tn∞)‖L∞((0,T1);H2) = 0.

We assume for the moment that Lemma 5.3.3 holds true, then we first show how this
implies Theorem 5.3.2.

Proof of Theorem 5.3.2. Let 0 < T < T∞max be fixed and let us define

N := 2‖(u∞, n∞, ∂tn∞)‖L∞((0,T );H2).

From the local well-posedness theory, see Proposition 5.2.1, there exists τ = τ(N) such
that the solution (uω, nω, ∂tnω) to (5.2.1) exists on [0, τ ] and we have

‖(uω, nω, ∂tnω)‖L∞((0,T1);H2) <∞.
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We observe that, because of what we said before, the choice T1 = τ is always possible.
By the Lemma 5.3.3 we infer that

lim
ω→∞

‖(uω, nω, ∂tnω)− (u∞, n∞, ∂tn∞)‖L∞((0,T1);H2) = 0.

On the other hand by the definition of N we have that, for ω ≥ 1 large enough,

‖(uω, nω, ∂tnω)(T1)‖H2 ≤ ‖(uω, nω, ∂tnω)(T1)− (u∞, n∞, ∂tn∞)(T1)‖H2

+ ‖(u∞, n∞, ∂tn∞)(T1)‖H2 ≤ N.

Consequently we can apply Proposition 5.2.1 to infer that (uω, nω) exists on a larger
time interval [0, T1 + τ ], provided T1 + τ ≤ T , and again

‖(uω, nω, ∂tnω)‖L∞((0,T1+τ);H2) ≤ 2N.

We can repeat the argument iteratively on the whole interval [0, T ] to infer

‖(uω, nω, ∂tnω)‖L∞((0,T );H2) ≤ 2N.

By using Lemma 5.3.3 this proves the Theorem.

It only remains now to prove Lemma 5.3.3.

Proof of Lemma 5.3.3. Let us fix

M := sup
ω

sup
[0,T1]
‖(uω, nω, ∂tnω)(t)‖H2 .

By using the integral formulation for (5.2.1) and (5.3.1) we have

vω(t)− v∞(t) = U(ωt)P(ω∆uω0 − iuω0nω0 ) + U(t)Q(vω0 − v∞0 )

− i
∫ t

0
U(ω(t− s))[P(∂t(nωuω))](s) ds

− i
∫ t

0
U(t− s)[Q(∂t(nωuω)− ∂t(n∞u∞))](s) ds.

Now we use the Strichartz estimates in Lemma 1.5.2 to get

‖vω − v∞‖L2L6 . ‖Puω0 ‖H2 + ω−1‖nω0 ‖H1‖uω0 ‖H2 + ‖vω0 − v∞0 ‖L2

+ ω−1/2‖nωvω + ∂tn
ωuω‖L1L2

+ ‖nωvω − n∞v∞‖L1L2 + ‖∂tnωuω − ∂tn∞u∞‖L1L2 .

It is straightforward to check that, by Hölder inequality and Sobolev embedding,

‖nωvω + ∂tn
ωuω‖L1L2 ≤ C(T,M),

‖nωvω − n∞v∞‖L1L2 ≤ CT 1/2(‖nω − n∞‖L∞H1 + ‖vω − v∞‖L2L6),
‖∂tnωuω − ∂tn∞u∞‖L1L2 ≤ CT (‖∂tnω − ∂tn∞‖L∞L2 + ‖uω − u∞‖L∞H2) .
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By putting al the estimates together we obtain
‖vω − v∞‖L2L6 . ‖Puω0 ‖H2 + ω−1‖nω0 ‖H1‖uω0 ‖H2‖uω0 − u∞0 ‖H2 + ω−1/2 + ‖nω0 − n∞0 ‖H1

+ T 1/2(‖uω − u∞‖L∞H2 + ‖vω − v∞‖L2L6 + ‖nω − n∞‖W1).

To estimate the wave part in (5.2.1) and (5.3.1), we write

nω − n∞ = cos(t|∇|)(nω0 − n∞0 )− sin(t|∇|)
|∇|

(nω1 − n∞1 )

+
∫ t

0

sin((t− s)|∇|)
|∇|

∆(|uω|2 − |u∞|2)(s) ds,

whence, by using again that H2(R3) is an algebra,

‖nω − n∞‖W1 . ‖nω0 − n∞0 ‖H1 + ‖nω1 − n∞1 ‖L2 + T‖uω − u∞‖L∞H2 .

The estimate for the difference uω − u∞ is more delicate. From the third equations in
(5.2.1) and (5.3.1) we have

−ω∇×∇× uω +∇ div(uω − u∞) = i(vω − v∞)− nωuω + Q(n∞u∞).

Again, here we estimate separately the irrotational and solenoidal parts of the difference.
For the solenoidal part we obtain

ω‖P∆uω‖L∞L2 . ‖vω‖L∞L2 + ‖nωuω‖L∞L2 .

To estimate the L∞L2-norm of vω on the right hand side we use (5.2.5) and Strichartz
estimates to infer

‖vω‖L∞L2 . ω‖Puω0 ‖H2‖uω0 ‖H2‖nω0 ‖H1 + 1.
Hence

ω‖P∆uω‖L∞L2 . ω‖Puω0 ‖H2 + ‖uω0 ‖H2‖n0‖H1 + 1.
For the irrotational part

‖Q∆(uω − u∞)‖L∞L2 . ‖Q(vω − v∞)‖L∞L2 + ‖nω − uω − n∞u∞‖L∞L2 . (5.3.4)

By using (5.2.5), the analogue integral formulation for v∞ and by applying the Helmholtz
projection operator Q to their difference we have that the first term on the right hand
side is bounded by
‖Q(vω − v∞)‖L∞L2 . ‖uω0 − u∞0 ‖H2 + ‖nω0 − n∞0 ‖H1

+ T 1/2 (‖uω − u∞‖L∞H2 + ‖vω − v∞‖L2L6 + ‖nω − n∞‖W1) .

The second term on the right hand side of (5.3.4) is estimated by
‖nωuω − n∞u∞‖L∞L2 . ‖nω − n∞‖L∞L2‖uω‖L∞H2

+ ‖n∞(uω0 − u∞0 )‖L∞L2 +
∥∥∥∥n∞ ∫ t

0
(vω − v∞)(s) ds

∥∥∥∥
L∞L2

. (‖nω0 − n∞0 ‖L2 + T‖∂tnω − ∂tn∞‖L∞L2)M
+ ‖n∞‖L∞L2‖uω0 − u∞0 ‖H2

+ T 1/2‖n∞‖L∞H1‖vω − v∞‖L2L6 .
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By summing up the two contribution in (5.3.4) we then get

‖Q∆(uω − u∞)‖L∞L2 .‖uω0 − u∞0 ‖H2 + ‖nω0 − n∞0 ‖H1

+ T 1/2 (‖uω − u∞‖L∞H2 + ‖vω − v∞‖L2L6 + ‖nω − n∞‖W1) .

Finally, we notice that, by using the Schrödinger equations in (5.0.1) and (5.1.1), we
have

‖uω − u∞‖L∞L2 . T (‖nω − n∞‖L∞H1 + ‖uω − u∞‖L∞H2) ,

so that

‖uω − u∞‖L∞H2 . ‖uω0 − u∞0 ‖H2 + ‖nω0 − n∞0 ‖H1 + ‖Puω0 ‖H2 + ω−1

+ T 1/2 (‖uω − u∞‖L∞H2 + ‖vω − v∞‖L2L6 + ‖nω − n∞‖W1) .

Now we put everything together, finally obtaining

‖vω − v∞‖L2L6 + ‖nω − n∞‖W1 + ‖uω − u∞‖L∞H2 .

. ‖Puω0 ‖H2 + ω−1 + ‖uω0 − u∞0 ‖H2 + ‖nω0 − n∞0 ‖H1 + ‖nω1 − n∞1 ‖L2

+ T 1/2 (‖uω − u∞‖L∞H2 + ‖vω − v∞‖L2L6 + ‖nω − n∞‖W1) .

By choosing T small enough depending on M we can infer

‖vω − v∞‖L2L6 + ‖nω − n∞‖W1 + ‖uω − u∞‖L∞H2 .

. ‖Puω0 ‖H2 + ω−1 + ‖uω0 − u∞0 ‖H2 + ‖nω0 − n∞0 ‖H1 + ‖nω1 − n∞1 ‖L2 .

This proves the convergence in the time interval [0, T ], for T > 0 small enough. Let now
0 < T1 be as in the statement of Lemma, we can divide [0, T1] into many subintervals of
length T such that the convergence holds in any small interval. By gluing them together
we prove the Lemma.
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[132] , Lp-Lṗ estimates for the Schrödinger equation on the line and inverse scattering for the
nonlinear Schrödinger equation with a potential, J. Funct. Anal. 170 (2000), no. 1, 37–68.

[133] T. H. Wolff, Lectures on harmonic analysis, University Lecture Series, vol. 29, American Math-
ematical Society, Providence, RI, 2003. With a foreword by Charles Fefferman and preface by
Izabella Łaba; Edited by Łaba and Carol Shubin.

[134] K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110
(1987), no. 3, 415–426.

[135] , The W k,p-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan 47
(1995), no. 3, 551–581.

[136] V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP 35 (1972), 908–914.

110


	Introduction
	Notations

	Acknowledgments
	Strichartz estimates
	The toy model: the unperturbed NLS on Rd
	Strichartz estimates for NLS perturbed by a steplike potential
	Strichartz estimates for NLKG on product spaces
	A dispersive estimate for NLKG on flat waveguide RdT
	Strichartz estimates for the Zakharov system

	The Concentration/Compactness & Rigidity scheme
	The Kenig and Merle road map
	Remarks

	Scattering for a class of NLS with a steplike potential
	Motivations and main results
	Small data theory and perturbative results
	Profile Decomposition Theorem for steplike  perturbations of the Laplacian
	Nonlinear profiles
	Construction of the minimal element
	Death of the soliton-like solution
	Double scattering channels in 1D

	Scattering for a class of NLKG on waveguides
	Motivations and main results
	Small data theory and perturbative results
	Profile Decomposition Theorem on flat  waveguide RdT
	Construction of the minimal element
	Death of the soliton-like solution
	Nakanishi/Morawetz-type estimate
	Extinction of the minimal element


	A singular limit result for the Zakharov system in 3D
	Motivations and main results
	Local existence theory
	Convergence of solutions

	References

