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A B S T R A C T

A deep understanding of molecular reactions is a challenging task
since the range of time and energy covered implies a wide and dense
grid for the numerical representation of the reactive Hamiltonian.

For a computational chemist, the accurate prediction of its value
starting from the definition of reactants and products is fascinating
and demanding, but can be extremely useful for further investigation
and optimization problems.

Several methods, all derived by the Transition State Theory, have
been developed to avoid the computational cost of the Hamiltonian
representation on a large, multidimensional grid; we investigate these
strategies both in the time and energy domain to explore the advan-
tages and drawbacks of these reciprocal spaces.

Since we want to increase the range of applicability of the calcula-
tion of thermal rate constants to medium size molecules, which can
have floppy geometries with low frequency modes, we introduce a
dedicated treatment of such modes based on the Intrinsic Reaction
Path of Fukui.

In Part i, we introduce the theoretical instrument used to perform
our calculation, both in energy and time domain; Part ii is devoted to
the presentation of the applications, mainly focused on current issues
in astrochemical studies. Appendices treat specific topics, like Möller
operators, essential for the comprehension of the theory but too long
to be inserted in Part i.
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1
T H E R AT E C O N S TA N T

Chemistry is the discipline that studies matter and its transforma-
tions; as physical chemists, our goal is to understand, describe and
predict the behaviour of matter at the highest level of accuracy we
can reach.

In the ensemble of all the typologies of behaviour of matter, chemi-
cal reactions are probably the most important ones, since the techno-
logical consequences of a better knowledge of reactions can improve
almost every field of human activity. An atomistic description of re-
actions has to be used in order to obtain the details of chemical rate
dependence on physical quantities such as translational motion, vi-
brational population, rotational orientation. . .

For these reasons, it is not surprising that the first experiments and
theoretical investigations were made on gas phase unimolecular reac-
tions with an inert gas (usually a noble gas, treated as an ensemble
of structureless particles) as a thermal bath.

Even if common sense associates chemical reactions with the liquid
phase due to the stereotype of chemistry as an empirical science done
with laboratory glassware, the ability to make accurate predictions
of the evolution of gas phase reactions is crucial for various fields,
from astronomy to aeronautical engineering, from pharmaceutics to
electronic industries [1].

From a phenomenological point of view, experiments in chemical
kinetics have shown a relation between the rate of a reaction and two
macroscopic variables: the concentrations of the reactants R1,R2, . . .
that we denote using squared brackets, [R1], [R2]. . . , and the tempera-
ture T of the system.

Even in a favourable field of investigation like gas phase molecular
reactions, this dependence is cumbersome in most of the experimen-
tal cases.

This happens because in general reactions are complex, which means
that they are constituted of an ensemble of steps, called elementary re-
actions.

An elementary reaction involves two groups of stable molecules,
one that defines the reactants and one that defines the products (see
Section 2.1 for a formal definition of a stable molecule).

The first step to inquire on the behaviour of the microscopic events
that lead to the generic reaction is the isolation of the chain of elemen-
tary reactions that identify the reaction mechanism, that will be treated
in Section 2.8.

3



4 the rate constant

Elementary reactions are divided in terms of their molecularity, i.e.
the number of reactants involved in it:

• Unimolecular: one molecule reacts to give a product (e.g. cis-
trans conversion) or more products (i.e. dissociation);

• Bimolecular: two molecules react to produce one or more prod-
ucts;

• Termolecular: three molecules react to give one or more prod-
ucts.

The evolution of a reaction is commonly measured by the velocity
of disappearance of (one of) the reactants weighted by its stoichiomet-
ric coefficient, which has the dimension of concentration divided by
time, [·]t−1.

For a unimolecular reaction,

R
k(T)

GGGGGGGGBFGGGGGGGG

k’(T)
P1 + P2 + . . . (1)

The rate of disappearance is found to be

−
d[R]

dt
= k(T)[R] − k ′(T)

n∏
i=1

[Pi] (2)

where k(T) is the thermal unimolecular rate constant and k ′(T)
∏n
i=1[Pi]

is the rate of the inverse reaction, which depends on the concentration
of the products; note that the unit of k(T) is the inverse of time.

Assuming the case of an elementary bimolecular reaction where Pn
are a set of products,

R1 + R2
k(T)

GGGGGGGGBFGGGGGGGG

k’(T)
P1 + P2 + . . .

the time evolution of a reaction can be described by a second-order
law, following the rate of decrease of one of the reactant concentration:

−
d[R1]

dt
= k(T)[R1][R2] − k

′(T)

n∏
i=1

[Pi] (3)

where we intend that the rate dependence is of the first order for
both of the reactants. Here the unit of the thermal rate contant of a
bimolecular reaction is the inverse of concentration × time (([·]t)−1).

Termolecular reactions follow the same structure, but they will
never be discussed in this Thesis because the collision of three bodies
is a rare event, therefore this kind of reactions are almost negligible.

Eq. 2 and Eq 3 are the starting points of our research and they will
be always considered true. Since the concentration of molecules does
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not contain any information about what is actually happening but
can be experimentally measured with high level of accuracy, all the
information about the physical process like energy transfer between
particles, quantum effects, non-equilibrium statistics. . . is contained
in k(T).

Therefore, the calculation of thermal rate constants is a formidable
task which involves the Boltzmann average over the evolution of all
states available at a given temperature, while the environment ex-
changes energy with the reactive molecules before and after the reac-
tion.

In this Thesis we will focus on gas phase reactions, where molecules
can be treated as singular, isolated systems in vacuum that interact
only with other reactants (if necessary for the reaction). The main
objective is to find a computation strategy to calculate k(T) in a rea-
sonable way that limits the computational cost in order to perform
the calculation on a dedicated workstation, instead of a large cluster.

The first attempt to find a formula to calculate k(T) was made in
1889, when Svante Arrhenius found experimentally an exponential-
type relation between temperature and rate constant, described in his
well-known equation

k(T) = Ae-Ea/RT (4)

where A is the pre-exponential factor, Ea is the activation energy and
R is the thermodynamic ideal gas constant. The previous equation
can be derived from a classical treatment of hard sphere collisions [2]
where the probability of reaction is always one if the particles have a
relative translational energy greater or equal to the activation barrier.

Even if the Arrhenius law can be considered a fundamental step for
the comprehension of chemical reactions, due to its direct and simple
treatment, some drawbacks can be found:

• It neglects every information about internal state distribution
of products and reactants. This could lead to vast errors in com-
plex chains of elementary reactions, where the products become
the reactants for another reaction step.

• In the low temperature regime, where quantum effects domi-
nate, most reaction rates diverge from linearity in an Arrhenius
plot, which displays the logarithm of kinetic constants ln(k(T))
on the ordinate axis plotted against the inverse temperature 1/T
on the abscissa.

The complete description of the microscopic events that lead to a
chemical reaction can be studied by solving the equation of motion
under the laws of non relativistic quantum mechanics, (i.e., follow-
ing the dynamics of the system) in the microcanonical ensemble (i.e.
for a given energy, volume and number of particles). This approach



6 the rate constant

is called reaction dynamics, since we technically observe the system
moving.

One of the results of the investigation of the dynamics is the Cumu-
lative Reaction Probability (CRP) N(E), which allows to calculate the
thermal rate constant for each temperature T with a straightforward
calculation, averaging on the Boltzmann statistics

k(T) =
1

hQR(T)

∫∞
-∞N(E)e

- E
kBT dE (5)

where QR(T) is the reactant partition function per unit volume and
kB is the Boltzmann constant, while h is the Planck constant.

The CRP is the sum of probabilities that each state of the reactants
α goes to a specific state β of the products [3]

N(E) =
∑
α,β

Pα,β(E) (6)

therefore, the CRP is not normalizable and does not share any proper-
ties of probability distribution, as wavefunctions do.

On the other hand, it is possible to calculate the thermal rate con-
stant as an integral with respect to time t of the Flux-Flux Correlation
Function (FFCF) Cf(t), which represents the autocorrelation function
of a quantum system in a reactive geometry at time zero and itself

k(T) =
1

QR(T)

∫∞
0

Cf(t)dt (7)

where

Cf(t) = i tr
[
F̄Û(−tc)F̄Û(tc)

]
(8)

In the previous equation, F̄ is a symmetrized flux operator across a
generic surface that properly divides reactants and products regions
in the configurational space and Û(tc) is the propagator in the com-
plex time tc.

The formal derivation of the CRP and the FFCF will be presented in
Chapter 2 and Chapter3, respectively.

The most used levels of theory for reaction dynamics are the fol-
lowing:

• Classical: the molecules are particles that follow the classical
equations of motion;

• Quasiclassical: the molecules follow again the classical equation
of motion, but quantum mechanical properties (like tunneling)
can be added with some a posteriori corrections;

• Semiclassical: the molecules are described using a simplified
wavefunction description, which allows to treat quantum effects
in a coherent, but approximate approach;
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• Quantum: the molecules are described in terms of wavefunc-
tions that follow the laws of quantum mechanics.

The choice of the level of theory is a consequence of the character-
istics of the molecular system and its environment (electromagnetic
radiation, presence and effects of the solvent. . . ), the accuracy that we
want to reach and the computational resources that we use.

The knowledge of the whole Potential Energy Surface (PES) (see Ap-
pendix A for more details) is a common prerequisite for the numer-
ical implementation of almost every dynamical theory proposed [4].
Therefore, small molecular systems, such as atom-diatom reactions
in the gas phase (H+H2, for example) are the usual benchmark, and
in general analytic PES are not available for reactions involving more
than five atoms.

Due to the large number of calculations needed to create the PES
and to solve the equations of motion, all these different theories, in
each specific approach and approximation scheme, were applied after
the introduction of modern calculators, during the second part of the
last century.

At the classical level of theory, the trajectories are run over a PES, to-
gether with some reasonable initial conditions for the coordinates and
momenta. To sample as much as possible of the initial phase space
(coordinates and momenta) and to get meaningful results, many tra-
jectories (usually thousands or tens of thousands) should be run.

Often one restricts the initial vibrational energies in the various
vibrational modes to their allowed quantized values, and when this
is done the method is usually called the Quasi Classical Trajectory
(QCT) method [5]. QCT calculations can give accurate results when
dynamical quantum effects such as zero point energy, tunneling, and
resonances are not important.

Semiclassical methods, instead, are a class of approximation based
on the (Jeffreys-Wentzel-Kramers-Brillouin method (JWKB)) method
for differential equations [6], which provides analytic formulae for
wavefunctions, energy levels, scattering cross sections. . . in the limit-
ing case of  h → 0, i.e. when the action in the corresponding classical
counterpart is high enough to ignore the magnitude of  h. Since the
seventies of the last century, semiclassical models for chemical reac-
tions have been proposed and refined [7, 8, 9, 10], involving various
schemes of corrections [11].

The adjective "semiclassical" is also used to define some hybrid
methodologies [12, 13], where classical trajectories are propagated
and successively a WKB solution of the Schrödinger equation is per-
formed to reproduce quantum effects like the surface hopping be-
tween different PES [14].

If experiments or other sources of information suggest that the re-
action is strongly non classical (for example, if we expect the presence
of resonance peaks or classically forbidden events), we are forced to
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treat reactions at the quantum level, usually in the frame of Scatter-
ing Theory [15]. In a quantum mechanics picture, the structure of
a molecule is described by a multidimensional nuclear wavefunction
including the rotations, the vibrations and reactions that it can accom-
plish: while the former two motions conserve its molecular identity,
the latter allows to reach new chemical structures under the restric-
tion of mass conservation.

Also electrons in molecules, which are coherently described only
in frame of quantum mechanics laws, play a crucial role in chemical
reactions. Not only does their Coulomb interaction with nuclei and
themselves generate an infinite number of PES (the lowest one is,
normally, the only one supposed to be populated), but they can also
exchange energy through electromagnetic radiation(visible and UV)
not accessible directly to nuclei.

Electrons (see Eq. 12 in Chap. 2 for a formal definition) not only
absorb energy, eventually making it available to nuclear motions, but,
when the energy difference between two or more of electronic states is
low enough, they also permit non classical behaviour such as surface
hopping [16, 17].

Another way to obtain the CRP or FFCF is by using the Trasition State
Theory (TST), thanks to which the computational cost is dramatically
reduced avoiding the calculation of the whole PES. The main idea un-
der TST is that the molecular system of the reactants will move in the
configurational space under the appropriate laws of motion, but the
reaction will take place only if the system assumes a specific geome-
try called Trasition State (TS). A necessary condition to the successful
application of TS is that the reaction must be elementary [18].

Almost every chemical reaction of practical interest consists of a
network of elementary steps, each with its own contribution to the
global kinetics, where each reactant and product of each step is the
product and the reactant of another elementary reaction forming a
chemical pathway (see Section 2.8 in Chapter 2 for more details).

TST moves the reaction rate calculation from a global problem (that
needs a whole PES to be resolved) to a series of local problems, that
involves the calculation of a smaller number of points along the PES,
especially when the number of atoms rises above ten.

The TST results are called kinetic, because our goal becomes the
evaluation of the rate of reaction between some reference structures.

The concepts introduced in this Chapter will be discussed in Chap-
ter 2 and Chapter 3. Chapter 4, Chapter 5 and Chapter 6 will cover
the applications to chemical reactions of astrochemical interest.



2
E N E R G Y F R A M E W O R K

2.1 time independent schrödinger equation

Chemical reactions are a complex class of physical events that hide
both theoretical and experimental problems, because both their causes
and consequences involve wide time and energy scales.

From a theoretical perspective, the first step is to introduce the Time
Independent Schrödinger Equation (TISE) 9 for different geometries of
the atoms Na and electrons Ni that constitute the molecules

Ĥ(R, r)Ψ(R, r) ≡ [T̂(R, r) + V̂(R, r)]Ψ(R, r) = EΨ(R, r) (9)

where ’R’ represents the nuclear coordinates and ’r’ are the electronic
ones. As in standard textbooks, Ĥ(R, r) is the Hamiltonian, T̂(R, r) is
the kinetic energy operator and V̂(R, r) is the potential.

Thus, reactants R and products P are solutions (relative minima)
of the nuclear motion described by the TISE. This definition is almost
arbitrary, because polyatomic molecules have a vast ensemble of ge-
ometries that satisfy this condition. Structural isomers are the clearest
examples of how many geometries satisfy the same TISE with a fixed
number of atoms and electrons, but in general this number is much
higher, including a variety of geometries called generically intermedi-
ates.

In other words, we are almost free to choose any geometry which is
a minimum as our reactants and products, but normally the chemical
problem itself defines R and P. Nevertheless, for fixed R and P we
usually find that the molecular system passes through a number of
intermediates. These geometries are crucial because it is possible to
decompose a reaction into a series of elementary reactions from one
intermediate to another. Section 2.8 is devoted to the description of
chains of elementary reactions and their combination, called reaction
mechanism.

If not differently specified, every time we talk about reaction, we
refer to an elementary reaction.

The Hamiltonian in Eq. 9 can be written in atomic units as

Ĥ = −
1

2

Na∑
a=1

∇2a
Ma

−
1

2

Ni∑
i=1

∇2i+∑
a>b

ZaZb
|Ra-Rb|

+
∑
i>j

1

|ri-rj|
−
∑
a,i

Za

|Ra-ri|
(10)

The letters ’a’ and ’b’ label the nuclei of the atoms of the molecule,
whereas ’i’ and ’j’ are used for electrons, which have unit mass and

9



10 energy framework

charge in atomic units. In particular, the first two terms are the kinetic
operators for nuclei and electrons, respectively; the other three repre-
sent the nuclear and electronic repulsion potential (both with positive
sign) and the attractive potential between nuclei and electrons (with
negative sign).

Eq. 10 depends on all the electrons and all the nuclei of the molecules
related with the chemical reactions. In the case of bimolecular reac-
tion or unimolecular decompositions, where the same amount of par-
ticles is shared or divided depending on the reaction stage, we treat
each fragment of the whole molecule as non interacting, i.e. placed at
infinity with respect to each other.

This assumption is consistent with the non-relativistic quantum me-
chanics used in this Thesis, where particles (nuclei and electrons) can-
not be destroyed nor created.

The first strategy to decrease the complexity of Eq. 9 is to treat sepa-
rately electrons and nuclei: this approach, called the Born-Oppenheimer
approximation (BO) approximation [19], allows us to resolve the elec-
tronic part of Schrödinger equation for a specific, fixed geometry of
the nuclei.

In the BO approximation, the Hamiltonian is separated into two
parts, one for the electronic part Ĥel and another for the nuclear part
Ĥnuc

Ĥ = Ĥnuc + Ĥel (11)

where

Ĥel = −
1

2

Ni∑
i=1

∇2i +
∑
a>b

ZaZb
|Ra − Rb|

+
∑
i>j

1

|ri − rj|
−
∑
a,i

Za

|Ra − ri|
(12)

and

Ĥnuc = −
1

2

Na∑
a=1

∇2a
Ma

(13)

In Eq. 12 the use of R means that the nuclear positions are fixed
parameters; the spectrum of eigenvalues εi(R), also PES, absorbs also
the repulsive nuclear potential because it is an additive term which is
irrelevant for the results.

The electronic part of the Schrödinger equation is

Ĥelφi(r; R) = εi(R)φi(r; R) (14)

where the notation φ(r; R) means that the electronic wavefunctions
are functions of the electronic coordinates and accept R as parame-
ters. To obtain a more compact notation, from here to the end of the
Chapter 2 we use the Dirac bracket notation.
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By the Spectral Theorem [20], the eigenfunctions φ(r; R) of a self-
adjoint operator form a complete and orthogonal basis set at each R

∑
i

|φi(r; R)〉 〈φi(r; R)| = 1 〈φi(r; R)|
∣∣φj(r; R)

〉
= δi,j (15)

where δi,j is Kronecker’s delta function.
The reason under the BO approximation comes from a kinematic

consideration: electrons are roughly two thousand times lighter than
the hydrogenion, which is the lightest atom in the periodic table. This
means that electrons respond faster than nuclei to internal or external
forces, as if the latter are ’frozen’ from the electron’s point of view.

There are cases where the BO approximation does not work per-
fectly, but the error can be evaluated and even recovered with various
strategies [17]. A common example of this failure is the behaviour of
the nuclear motion in the neighbourhood of conical intersections [21],
where two or more electronic states show some kind of degeneracy
(εi ' εj).

Another example of process that involves more electronic states is
the interaction with visible or UV photons, which can be created (via
emission) or destroyed (via absorption) by molecules. In this disser-
tation we exclude electronic photon-induced phenomena and surface
hopping, focusing our analysis on reactions where only the first (or
ground) electronic state ε1 of Equation 14 is populated, supposing it
is well defined and not degenerate. Nevertheless, it is still possible
to study the influence of photons on chemical reactions from ab initio
methods [16].

Electronic calculations, also known as quantum chemistry calcu-
lations, can be performed with a dedicated software [22], which can
yield all the information (energy, Gradient, Hessian. . . ) we need about
each nuclear geometry.

After the solution of the electronic Hamiltonian, Eq 11 can be writ-
ten in the BO framework as

ĤBO ≈ Ĥnuc + ε1(R) (16)

and then used to solve the equation

(Ĥnuc + ε1(R))ϕ(R) = Eϕ(R) (17)

Again, the nuclear wavefunction ϕ(R) depends directly on the coor-
dinates of the nuclei.

The product function ϕ(R) ·φ(r; R) is the BO approximated solution
of Eq. 9.

2.2 chemical kinetics

The unfeasible computational cost of the evaluation of a whole PES

(see Appendix A) for medium sized molecules leads to the necessity
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of a theory that can predict the rate constant using the least number
of quantum chemistry calculations.

All of these theories start with the identification of a specific ge-
ometry that drives the reaction, namely the TS, since it represents the
lowest energetic geometric arrangement that the molecule can reach
in the motion from reactants to products.

Many different versions of TST have been proposed during the last
90 years [23, 24, 25, 26, 27, 28, 29, 30, 31] but the identification of the
TS is always a crucial challenge.

Formally, the dynamics of a complex molecule can be accurately
described only in the phase space using the laws of quantum me-
chanics, i.e. by sampling with a sufficient (normally large) number of
quantum trajectories the space spanned by the 3N coordinates and
3N momenta.

We have to identify a point in the whole phase space that represents
the dynamical bottleneck of the reaction, which in principle depends
not only on the geometry of the nuclei, but also on the momenta [32,
33], which are coupled with all the coordinates.

This treatment needs again the knowledge of the global PES and
expensive calculations.

On the other hand, we can easily locate in the coordinate space a
first order saddle point, a specific geometry along a chosen reactive
molecular coordinate (usually, a bond length) and define it as the
Transition State, the bottleneck that the reactants have to surpass to
become the products.

Under this preliminary consideration, we are going to introduce
the microcanonical version of TST, called Rice-Ramsperger-Kassel-Marcus
theory (RRKM) theory.

The key idea of RRKM theory starts from the concept of classical
phase space, i.e. the space of 3N coordinates q̄ (where, N is the num-
ber of atoms) and their 3N conjugate momenta p̄. In a non relativistic
description, the time is simply a parameter used to describe the mo-
tion along some trajectories in the phase space.

In the microcanonical ensemble the phase space volume is constant
as a consequence of Liouville equation (Eq. 24), which is actually a
n-dimensional continuity equation [34], that is true in the absence
of any kind of source or sink of particles. This condition is always
respected in non-relativistic quantum mechanics.

More specifically, the number of quantum states n in the infinitesi-
mal volume element dq̄ · dp̄ is

n =
1

h3N
dq̄ · dp̄ (18)

where h is Planck’s constant and 6N is the dimensionality of the
phase space. Eq. 18 is a correspondence rule used in statistical me-
chanics [34] as a bridge between quantum and classical partition func-
tion. The association of a phase space volume h3N with each quantum
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state can be thought of as a consequence of the uncertainty principle,
which limits the precision with which a phase point can be specified
in a quantum mechanical system [35].

The phase space volume formalism is used to select some specific
subset of the total quantum states. The number of states with energy
below a given value E is proportional to the volume of the integral

n(E) =
1

h3N

∫
Θ(H(q̄, p̄) − E)dq̄dp̄ (19)

where H(p,q) is the energy of the point. The Heaviside theta function
Θ(H(q̄, p̄) − E) is used as a selector, that nullifies the contribution of
the points that do not meet the condition to have the energy lower
than E

Θ(H(q̄, p̄) − E) =

1, if H(q̄, p̄) 6 E;

0, if H(q̄, p̄) > E.

Now, we introduce the concept of Density of States (DOS), ρ(E), i.e.
the number of states per unit of energy, by differentiation of Eq 19

ρ(E) ≡ ∂n(E)
∂E

=
∂

∂E

[ 1

h3N

∫
Θ(H(q̄, p̄) − E)dq̄dp̄

]
(20)

Using the property of Heaviside function

dΘ(x)

dx
= δ(x) (21)

where δ(x) is the Dirac Delta function, defined as

δ(H(q̄, p̄) − E) =

∞, if H(q̄, p̄) − E = 0;

0, if H(q̄, p̄) − E 6= 0.

the DOS can be now written as

ρ(E) =
1

h3N

∫
δ(H(q̄, p̄) − E)dq̄dp̄ (22)

Similarly to Heaviside function in Eq. 19, the Dirac Delta function
acts like a switch, or a projector operator, by counting only the states
(or, equally, point of phase space) with energy E.

By integration over the energy range [0,E], we can rewrite Eq. 19

using the DOS 22 as

n(E) =

∫E
0

ρ(E ′)dE ′ (23)

The microcanonical rate constant k(E) can be roughly imagined as
the probability for a microcanonical ensemble of states to evolve into
another one: for this reason, we need to evaluate the flux of particles
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that flow from reactant to product region of the phase space at a
specific value of energy.

This quantity can be in principle calculated by defining a (hyper)surface
at any point of the phace space dividing the two regions, but a wise
choice of this point can greatly reduce the effort needed to calculate
the flux.

This point is the TS and represents the dynamical bottleneck of the
reaction. It is usually defined as the point in configurational space
where the PES reaches a maximum between reactants and products,
i.e. a first order saddle point [36].

Introduced simultaneously by Evans and Polanyi [37], and Eyring [38],
the TST has been the most used and efficient method for the calcula-
tion of rate constants.

In the derivation and application of the formulae of the rate con-
stant in RRKM, some approximations are made:

1. The distribution of reactants is in a microcanonical equilibrium;

2. The identification of TS is made in the configuration space;

3. The reactive mode is the normal mode of the TS with imaginary
frequency [39];

4. If a particle surpasses the TS on the reactive mode into the prod-
uct region, it becomes a product (no-recrossing approximation);

5. The motion along the reactive mode is separable from the others
and is treated classically.

Here, we briefly derive the RRKM microcanonical rate constant; for a
detailed demonstration, we refer to any book of chemical kinetics [40].
After the identification of two regions of phase space as reactants
and products, the flux between them is described by the Liouville’s
equation

∂ρ(q̄, p̄)
∂t

+∇ · ρ(q̄, p̄)
p̄

m
= 0 (24)

where ρ(q̄, p̄) is the probability density in phase space and m is the
generalized mass of the particle. Here, we note that Eq. 24 is the clas-
sical analogue of Eq. 104 in Chapter 3. By following the flow proba-
bility density between different regions in phase space, it is possible
to study the course of the chemical reaction.

The microcanonical equilibrium assumes that the total phase space
is populated statistically to form a microcanonical ensemble of states
at total energy E, including at the TS, identified at coordinate q ′+dq ′

and p ′ + dp ′. At each given energy E in the interval [0,∞], this as-
sumption permits the ratio of molecules at the TS to the total number
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of molecules, dN(E,q ′,p ′)/N to be expressed as the ratio of the phase
space volume at the TS to total one

dN(E,q ′,p ′)
N

=
dq ′dp ′

∫
δ(HTS(q̄, p̄) − E)dτ‡∫

δ(HR(q̄, p̄) − E)dq̄dp̄
(25)

where the integration in the numerator in the Right Hand Side (RHS)
of Eq. 25 is done over all the variables except for the reactive coordi-
nate and the conjugate momentum

dτ‡ =
∏
i 6=i ′

dqidpi (26)

In Eq. 25, HTS and HR are the Hamiltonian of the TS and reactants, re-
spectively: they are used to select, as in Eq. 22, the specific energy of
each trajectory. Counting only the trajectories with positive momen-
tum p ′ + dp ′ in Eq. 25 is equivalent to the no-recrossing approxima-
tions, because we accept as reactive trajectories only the ones with a
positive momentum in the direction of products.

The separation of the reactive mode implies that the Hamiltonian
at the TS can be written as

HTS(q̄, p̄) = H(τ‡,q ′,p ′) = E‡ + V(q ′0) +
p ′2

2m
(27)

The differential dq ′ in Eq. 25 may be replaced with p ′dt/m, obtaining

dN(E,p ′)
dt

=
Np ′dp

m

∫
δ(HTS(q̄, p̄) − E)dτ‡∫
δ(HR(q̄, p̄) − E)dq̄dp̄

(28)

The quantity at the right side of Eq. 28 is the flux that we want to
find, F(E,p ′) = dN(E,p ′)/dt. By the change of variable E ′ = p ′2/2m,
in Eq.28 the flux dependence on the reactive momentum is replaced
by its relative energy becoming

F(E,E ′) =
NdE ′

∫
δ(HTS(q̄, p̄) − E)dτ‡∫

δ(HR(q̄, p̄) − E)dq̄dp̄
(29)

This equation expresses the reaction rate for total energy E and energy
E ′ in the reaction coordinate, which is equal by definition to

F(E,E ′) = k(E,E ′)NdE ′ (30)

Using the Hamiltonian of the TS in Eq. 27, the numerator of the right
hand side of Eq. 29 can be defined as the DOS at the TS and thanks to
the property of the Dirac delta function∫

δ(HTS(q̄, p̄) − E)dτ‡ = ρ‡(E− V(q ′) − E ′) (31)
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The integral in the denominator of the right hand side of Eq. 28 is the
DOS of the reactants, therefore we obtain

k(E,E ′) =
ρ‡(E− V(q ′) − E ′)

hρ(E)
(32)

This expression of the rate is specific for some value of the E ′; by
integration over the interval [0,E− V(q ′)] we obtain

k(E) =

∫E−V(q ′)
0 ρ‡(E− V(q ′) − E ′)dE ′

hρ(E)
(33)

which is the classical RRKM rate constant for a chemical reaction [41,
42, 43]. Note that in Eq. 33 the numerator, also called Sum of States
(SOS), labeled as N(E), count as reactive only the trajectories with
energy E > E ′ + V(q ′), which means that tunnelling is not allowed.
In Section 2.4 this quantum effect will be recovered with some ad hoc
assumptions. In the next Sections of this Chapter, we will focus on
the correction of the classical RRKM in order to obtain a quantum (or
semiclassical) version of RRKM thoery.

The assumption of microcanonical equilibrium at TS remains the
critical approximation, but it is expected to work better as long as
the molecules involved increase in complexity, which is the perfect
kind of behaviour we need in order to create a computational tool
for the calculation of the rate constants of reactions of medium size
molecules.

The thermal rate constant finally becomes, as in Eq. 5,

k(T) =

∫∞
0 N(E)e−E/kBTdE

Qreac(T)
(34)

and in RRKM theory it can be viewed as a Boltzmann average of en-
ergy dependent flux in microcanonical equilibrium from reactants to
products passing through the TS.

2.3 separation of dof and conservation laws

The derivation of the RRKM microcanonical rate constant in Sec. 2.2
treats each DOS equivalently, except the reactive mode: we will col-
lectively define these orthogonal modes as "bath". In general, the bath
is composed of internal motions, i.e. bonds stretching and bending,
plus other kinds of particular motion (hindered rotations, ring defor-
mations, etc. . . ; for more details, see Section 2.5). If not differently
specified, we can approximately think about them as a set of har-
monic oscillators.

At the same time, the hypothesis of microcanonical equilibrium at
reactants and TS implies that the coupling between the bath’s DOS

make the energy freely flow from one DOS to another.
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However, the conservation laws of linear and angular momentum
lead to the necessity of further consideration in order to obtain phys-
ically consistent results.

The linear momentum is the easiest conservative quantity to pre-
serve, because the motion of the centre of mass of a molecule (or
more than one) in the gas phase is always exactly separable [39].

The translational Degree of Freedom (DOF) can be simply dropped
out from the calculation of RRKM rate constants, because the total
linear momentum never changes during the process.

The three external rotational DOFs are more complex to handle,
because they actually exchange energy with the bath via Coriolis cou-
pling [44] and can assist the reaction due to centrifugal contribution
for a reaction with bond breaking (clearly, a normal situation for all
dissociation reactions), under the constraint of angular momentum
conservation.

A rotating molecule can be described as a rigid rotor, excluding the
coupling with the internal vibrations; moreover, in a gas phase envi-
ronment these rotations are unconstrained, therefore the Hamiltonian
of these three DOF consists of a kinetic term only

Ĥ = T̂ =
1

2

[
ĵ2x
Ixx

+
ĵ2y

Iyy
+
ĵ2z
Izz

]
(35)

where jx,y,z are the angular momentum operators and Ixx,yy,zy are
the principal moments of inertia, obtained by diagonalization of the
inertia tensor [39].

In order to simplify the problem, the space-fixed coordinate sys-
tem x,y, z can be replaced by the new system x ′,y ′, z ′ that rotates
with the molecule, called molecular-fixed system. The transformation
between the two sets of variables can be defined for each atom i in
the molecule and is evaluated by the following equation

Rx,y,z;i = Rx ′,y ′,z ′;i +B(θ,φ,χ)i(d0x ′,y ′,z ′;i + dx ′,y ′,z ′;i) (36)

where Rx,y,z is the position vector in the space-fixed system, B(θ,φ,χ)
is an orthonormal transformation matrix that rotates the position vec-
tors in the molecule-fixed system d0x ′,y ′,z ′ and dx ′,y ′,z ′ , which are the
reference and the displacement vectors, respectively.

The transformation has to meet the Eckart-Sayvetz conditions [45,
46],

∑
i

mi(
∂d0x ′,y ′,z ′;i

∂t
) = 0 (37)

∑
i

mid
0
x ′,y ′,z ′;i ×

∂dx ′,y ′,z ′;i

∂t
= 0 (38)
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minimizing the interaction between rotational and vibrational mo-
tions. This is the standard treatment for the kinetic term of the Hamil-
tonian in polyatomic molecules [39] and we will not discuss here any
more.

The total angular operator Ĵ2 and its component along the quanti-
zation axes z, jz satisfy the following equations

Ĵ2 |j,m〉 = j(j+ 1) |j,m〉 (39)

ĵz |j,m〉 = m |j,m〉 − j 6 m 6 j (40)

(41)

where |j,m〉 is the rotational wavefunction [47].
The total angular momentum and its projection along a space-fixed

quantization axis must be conserved, therefore they are the same in
every coordinate system we use and remain the same throughout the
process of forming the TS from reactants.

The choice of a molecule-fixed Cartesian frame to describe free ro-
tations and their angular momenta suffers from an unavoidable arbi-
trariness, since the permutation of the axes leaves all the observables
unchanged. We prefer to label the orthogonal axes in molecule-fixed
frame x ′,y ′, z ′ with the letters (a,b, c) where the choice of which axis
is associated to which letter is made by the convention that the higher
rotational constant is assigned to A, the second one to B and the third
one to C.

Since the rotational constants are defined as

A =
1

2Ia
B =

1

2Ib
C =

1

2Ic
(42)

the inertia moments are labelled such that Ia 6 Ib 6 Ic.
The most general case of rigid rotor is the asymmetric one, which

has three different moments of inertia Ia 6= Ib 6= Ic, but in this case
the energy levels cannot be calculated in closed form. Since the prob-
ability that a medium sized molecule is strictly a symmetric top (two
equal moments) or a spherical top (all moments equal) is low, we will
approximate our asymmetric top as a symmetric top, taking the geo-
metric mean of the two nearest moments of inertia. For example, the
case where Ia 6= Ib ≈ Ic becomes Ia 6=

√
IbIc =

√
IbIc

In the case of a rigid symmetric top, the rotational eigenvalues in
Eq. 39 become

Erot(j,m) =

j(j+ 1)B+ k2(A−B), if Ia < Ib = Ic

j(j+ 1)B+ k2(C−B), if Ia = Ib < Ic

Even though the rotational energy is a sum of two additive terms,
looking separable, the constraint −j 6 k 6 j couples them, see Eq 40.

We shall next uncouple the rotors, dropping the restriction on k
and neglecting the term −k2B, so that the energy in Eq. 35 is merely
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the sum of energies of a two-dimensional rigid free rotor and of a
one-dimensional rigid free rotor.

Neglecting the term −k2B in the energy has the effect of diminish-
ing the total number of states, but the absence of a restriction on k
results in the inclusion of normally disallowed states having k > j,
which has the effect of increasing the number of states within a spec-
ified energy interval. Thus the two errors tend to compensate each
other, with the result that the separated rotor approximation for the
density of states is reasonable [48].

After the introduction of these approximations, we shall discuss
how rotation affects the reaction. If we label Br and BTS as the ro-
tational constants of reactants and transition state and suppose that
Br 6= BTS, because the presence of a reactive mode implies a distor-
tion on some bond length or angle, then we have an energy difference

∆Erot = j(j+ 1)(Br −BTS) (43)

∆Erot is available to drive the reaction.
A different discussion is made for the quantum number m; there

are 2J+ 1 values of m for a given J, which means that exists a (2J+ 1)-
fold degeneracy. If m is conserved in the reaction, the 2J + 1 states
cannot contribute to J-resolved microcanonical rate K(E, J) [49] and
are called adiabatic. If m is not conserved, both numerator and de-
nominator in Eq. 33 should be multiplied by a constant factor 2J+ 1,
leaving the microcanonical RRKM rate unchanged [48].

In applications, the individual rotational DOS will be treated classi-
cally, because in medium sized molecules the value of the rotational
constant is small enough to safely approximate the sum over states
as an analytical integral, reaching the classical (i.e. continuum) limit.

2.4 anharmonicity

Since RRKM theory is based on the microcanonical equilibrium hy-
pothesis, which implies a strong coupling between the DOF of the
bath, it seems not reasonable to accept that a pure harmonic treat-
ment of internal modes, intrinsically orthogonal and separated, can
coherently describe the system.

For this reason we use a second order perturbative vibrational
Hamiltonian [50] (called Second order Vibrational Perturbation The-
ory (VPT2)) that allows us to describe simultaneously the coupling
between the modes of the bath and gives us a suggestion about the
dissociation limit, furthermore describing overtones and combination
modes and handling accidental degeneracy.

A detailed discussion of the state of the art of vibrational spec-
troscopy is not an object of this Thesis and is beyond our goals.
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Here, we just want to briefly summarize that the energy of N cou-
pled anharmonic oscillators defined by an n-tuple n̄ of vibrational
quantum numbers n̄ = [n1,n2, . . . nN] is assumed to be

E(n̄) = E0 +

N∑
i

ωi(ni + 1/2) +

N∑
i>j

χi,j(ni + 1/2)(nj + 1/2) (44)

where the term E0, called Zero Point Energy (Zero Point Energy
(ZPE)), contains all the energy contributions independent of the vi-
brational quantum numbers.

These equations are valid if the molecule under analysis is found
at a minimum of the electronic PES, when all the frequencies ωi and
anharmonic terms χi,j are real.

In the case of a TS, one frequency is imaginary [51] and the asso-
ciated state is metastable (see Chapter 3). We can associate it with
the complex eigenvalue E(n̄), where the real part is the energy of the
N− 1 normal modes, defined n‡, while the imaginary one is related
with the reactive one, defined here as nr.

The total complex energy associate with the TS is

E(n‡,nr) = E(n‡) + i
(
ωr −

∑
i

χ̄i,jninr

)
(45)

where χi,r = −iχ̄i,r.
Metastable states have a finite lifetime inversely proportional to the

imaginary part of their energy; this is the reason why it is possible
to define a semiclassical action θ as function of the energy of the
n-tuple [52, 53]

nr +
1

2
= i

θ

π
(46)

where nr is the quantum number related to the imaginary frequency.
Now, substituting Eq. 46 in Eq. 45 we obtain

E(n‡, θ) = E(n‡) + i
(
ωr − i

θ

π

∑
i 6=ir

χ̄i,jni − i
2 θ
2

π2
χ̄ir,ir

)
(47)

Solving the previous second order equation leads to an expression of
θ(E) that can be used for tunnelling probability in the frame of the
JWKB approximation

P(E) =
1

1+ e2θ(E)
(48)

where θ(E) becomes [3]

θ(E) =
π∆E

Ωr(1+
√
1+ 4χ̄r,r∆E/Ω2r)

(49)
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with

∆E = E− E(n‡) (50)

ΩR = ωr −
∑
i 6=r

χ̄i,r(Ni +
1

2
) (51)

Now, we introduce the semiclassical tunnelling probability P(E) in
Eq. 48, the previous definition of the microcanonical rate constant
k(E) expressed in Eq. 33 of Section 2.2.

Since the tunnelling probability depends on the energy difference
∆E in Eq 50, where E(n‡) is the energy of the TS, in order to be
consistent with the notation os Section 2.2 we write

k(E) =

∫∞
0 ρ
‡(E− V(q ′) − E ′)P(E− E ′)dE ′

hρ(E)
(52)

∆E = E ′ − E (53)

The actual integration limit Emax, is chosen such that Emax � E, be-
cause the tunneling correction makes the DOS of the TS at energies
higher than E relevant for the calculation of the SOS at a lower en-
ergy [54].

2.5 large amplitude motion

The harmonic treatment of vibrational modes, as well the VPT2, is
based on the hypothesis that the potential is correctly described as a
Taylor series, which is truncated at second order, in the case of pure
harmonic vibration, or up to fourth order, in the VPT2 case.

The Taylor series is intrinsically local, in the sense that it assumes
to describe the behaviour of the potential at infinity from the knowl-
edge of the PES in the neighbourhood of a point, chosen as reference
(minimum or TS). Some kinds of potentials, however, cannot be cor-
rectly described by a Taylor series: for example, if the potential is n
times periodic, as in the case of Hindered Rotations, the Taylor series
converges slowly.

The failure in the description of the multidimensional PES as a set
of harmonic oscillators, moreover, implies that the normal modes
themselves, which are obtained by diagonalization of the GF prod-
uct matrix in Wilson’s method for the calculation of the molecular
vibrational Hamiltonian [39], cannot describe the vibrations of the
molecule properly [55]. Normal modes are also called rectilinear be-
cause they are expressed as linear combinations of the mass-weighted
Cartesian coordinates.

We will define these special modes Large Amplitude Motions (LAM)
and treat them separately from the others, which implies that also the
terms that couple the LAM with the other "standard" normal modes
must be ignored in the calculation of χi,j matrix in Eq. 44.
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To surpass this poor description of vibrational modes, which leads
to a incorrect evaluation of DOS and SOS, we need to use some co-
ordinates which follow the real movements of the molecule: for this
purpose, internal coordinates are the natural choice. Internal coordi-
nates are a set of curvilinear (i.e. non linear) combinations of Cartesian
coordinate [56]. Three kinds of primitive internal coordinate [57] exist:

• bond lengths ri,j;

• valence angles αi,j,l;

• dihedral angles γi,j,l,m.

where the bond lengths are the usual Cartesian distances between
atoms i and j sharing a chemical bond. Valence and dihedral angles
are defined by the following equations

cos(αi,j,l) =
ri,j · rj,l
|ri,j| · |rj,l|

(54)

cos(γi,j,l,m) =
(ri,j × rj,l) · (rj,l × rl,m)

sinαi,j,l sinαj,l,m
(55)

From now until the end of the Section, we focus on the Hindered
Rotations (HR) because they represent an easy internal mode that can
be identified unequivocally by a single primitive internal coordinate,
whereas other, more complex internal modes, like ring deformations,
should be expressed as a linear combination of primitive internal
modes.

We are interested in a computational strategy that allows us to find
the energy spectrum of the vibrational Hamiltonian of the system
beyond the harmonic oscillator [58]: following the formalism of the
Reaction Path Hamiltonian (RPH) [59], based on the Intrinsic Reactive
Coordinate (IRC) [60, 61], we define a path ζ(s) that obeys the follow-
ing differential equation

dζ(s)

ds
= ζ ′(s) =

g√
g† ·g

(56)

where ζ(s) is a curve in the configurational space and s is the arc
length that can be viewed as a variable that determinates univocally
the position of each point ∈ ζ (see. Appendix B): thus, ζ ′(s) is the
tangent line to ζ(s) in s, i.e. its derivative. g is the energy gradient
in mass-weighted Cartesian coordinates, whose elements, labelled as
gi, are defined as

gi =
∂V(x̄)

∂xi
(57)

Note that the denominator of Eq. 56 is a normalization factor to keep
the velocity vector equal to one.
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Equation 56 becomes indeterminate at any extremum point along
the closed curve ζ(s), but it can be shown [62] that even at these
points the solution can be deduced from the knowledge of the second
and third coefficients of the Taylor expansion of the PES, that we can
perform automatically in the frame of VPT2 [50]. The mass-weighted
Cartesian space X can be parametrized by the curve; therefore, each
point x in X is identified by a value of s and its displacement from
the curve ξi. For each component the relation

xi = ζi(s) + ξi (58)

holds. We need a practical way to evaluate the curve ζ(s) that asso-
ciates to each value of s a point x in X: we first note that Eq. 56 has
six solutions that are identically zero, related to translations and ex-
ternal rotations, plus another one related to the curve itself, because
we expect that the energy of the internal rotation varies slowly along
the curve (otherwise, it should be treated as a vibration).

Since it is always possible to diagonalize the reduced 3N− 7 Hes-
sian, we can rewrite the displacement ξi from the curve ζ(s) as

xi = ζi(s) +

3N−7∑
k=1

Li,k(s)Qk (59)

where Lk(s) (whose components are Li,k(s)) are the eigenvectors of
the non-zero eigenvalues of the Hamiltonian (i.e. the vibrations) and
Qk are the normal modes [59].

Eq. 59 is the reference for the numerical identification of the curve
solution of Eq 56.

The first step to obtain it is to perform a relaxed scan along the
primitive internal coordinate, i.e. the HR, obtaining a series of geome-
tries that we label as j = [1, . . . N]: the relaxation on the other vibra-
tional modes minimizes the coupling with the HR, satisfying (at least
variationally) Eq. 189.

Imposing the Eckart-Sayvetz conditions to two consecutive, opti-
mized geometries and then superimposing their Eckart frames, we
are able to minimize the rototranslational displacement between them.
Again this computational strategy is the best numerical solution to
satisfy Eq. 187 and Eq. 188 If the two geometries, actually two points
x in the configurational space X, are close enough, the vibrational
displacement (i.e. the second part of the RHS in Eq. 59) is negligible
and we can calculate pointwise a(s) as the distance in mass-weighted
coordinate between the two points x

|ds|2 = |ai+1(s) −ai(s)|
2 = |xj+1 − xj|

2 (60)

In this scheme, the reduced mass is equal to unity and any informa-
tion about kinematic coupling is stored in the discrepancy between
the closed curve s [63], parametrized pointwise by the map a(s), and
its geometrical counterpart, i.e. the dihedral angle that defines the
internal rotation.
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2.6 discrete value representation

Since we are interested in the DOS of a molecular system composed
of a number of harmonic (or anharmonic) oscillators and some LAM,
we need to find a practical way to calculate the energy spectrum of
the one dimensional Hamiltonian of the latter, in order to introduce
it coherently in an equation like Eq. 44. For this reason we use the
Discrete Value Representation (DVR) basis set [64] |xi〉, a finite basis
of the L2(R) build up using localized functions on an interval ∆x =

xi+1− xi of the uniform grid on R formed by N points in the interval
(a,b) such that

xi = i∆x+ a i = [1 . . .N− 1] (61)

where

∆x =
b− a

N
(62)

Due to their localized nature in R, DVR functions have some remark-
able properties that make them useful for quantum calculation in
low-dimensional problem; DVR are dense in L2(R), are orthogonal
with respect to the grid points and therefore complete

〈xj|xi〉 = δj, i
∑
i

|xi〉 〈xi| = 1 (63)

If we are interested in some property, represented by the operator
F̂(x) of a wavefunction built using the DVR basis set ψ(x) =

∑
ci |xi〉,

we need to use a discrete summation in place of the standard integral
of the relative operator representation

〈ψ(x)| F̂(x) |ψ(x)〉 =
N∑
i

c∗j ci
〈
xj
∣∣ F̂(x) |xi〉 = N∑

i

F(xi)|ci|
2 (64)

The momentum counterpart of the DVR basis set, |ki〉 [65], is called
Finite Basis Representation (FBR) basis set and is orthogonal and com-
plete itself

〈ki|kj〉 = δi,j
∑
i

|ki〉 〈ki| = 1 (65)

As expected, the momentum range ∆k is inversely proportional to
the shortest wavelength that can be represented on a grid of length
N∆x

∆k =
2π

N∆x
(66)

DVR and FBR basis sets allow a diagonal representation of operators
that act on position or momentum, respectively. The superposition
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between them should respect the Uncertainty Principle, a discrete
version of Fourier Transform

〈xi|kj〉 = ci,j =
√

2

b− a
sin
(
kjxiπ

b− a

)
(67)

where ci,j are the coefficients of the linear combination∣∣kj〉 = ∑
i

ci,j |xui〉 (68)

The energy spectrum of the Hamiltonian can be now evaluated by
diagonalization of its matrix representation

〈xi| Ĥ
∣∣xj〉 = 〈xi| T̂ ∣∣xj〉+ 〈xi| V̂ ∣∣xj〉 (69)

=
∑
l,m

〈xi|kl〉 〈kl| T̂ |km〉 〈km|xj〉+ V(xi)δi,j (70)

=
∑
l

〈xi|kl〉 T̂ll 〈kl|xj〉+ V(xi)δi,j (71)

The kinetic operator in FBR |ki〉 is simply

T̂ll =
 h2

2m
k2l (72)

Evaluating the kinetic part of the Hamiltonian T̂i,i ′ =
∑
l 〈xi|kl〉 T̂ll 〈kl|xj〉

is an analytic procedure [66] that leads to exact (analytic) representa-
tion of the kinetic operator on the DVR basis set

T̂i,i ′ =


π2

4(b−a)2

(
2N2+1
3 − 1

sin2(πi/N)

)
if i = i ′,

π2(−1)i−i
′

2(b−a)2

(
1

sin2(π(i−i ′)/2N)
− 1

sin2(π(i+i ′)/2N)

)
if i 6= i ′

On the other hand, the diagonal representation of the potential is
approximated in the DVR basis set, since it is exact only in the limit
of an infinite number of points, while in applications the grid will
always be finite [67]. Nevertheless, we can increase the number of
points until numerical convergence of the vector of eigenvalues ε(n).

Finally, the energy of an ensemble of quantum anharmonic oscil-
lator with k LAMs can be described as function of their quantum
numbers n̄

Evib(n̄) = E0 +

3N−6−k∑
i=1

ωini +

3N−6−k∑
i,j=1

Xi,jninj +

k∑
l=1

εl(nl) (73)

where nl is the quantum number of the l-th LAM and εl(nl) is its
relative eigenvalue.
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2.7 random sampling of phase space

We are interested in an accurate description of the vibrational DOS

ρ(E) starting from a functional form of the energy depending on
the vibrational quantum numbers as in Eq. 73, but the presence of
a quadratic term that couples the modes makes the analytic solutions
used for the pure harmonic case incorrect [34]; also numerical algo-
rithms for harmonic vibrations are useless [68, 69].

To achieve the highest level of accuracy in the calculation of the vi-
brational DOS, which is important also for the calculation of the SOS
in Eq 52 avoiding the unfeasible direct count of each possible combi-
nation of quantum numbers, we use the WL algorithm [70], a Monte
Carlo sampling of the phase space described by the Hamiltonian in
Eq. 73.

The method is based on a random walker, i.e. a random genera-
tor of vibrational states, that moves along the phase space creating
new states with energy Enew which are counted (or "accepted") with
a probability P(Eold,Enew) that is inversely proportional to the DOS
itself [70]

P(Eold,Enew) = min
( ρ(Eold)

ρ(Enew)
, 1) (74)

In the previous equation, ρ(Eold) is the DOS of the energy interval
where we start the current step of the sampling and ρ(Enew) is the
DOS of energy interval Enew where the new n-tuple belongs. Since the
probability of the random step is inversely proportional to the DOS of
the step that we want to jump in, the high energy region of the DOS

will be statistically less visited, compensating for the fact that there
are more combinations of quantum numbers n̄ within that specific
energy interval. This strategy produces a flat histogram as Metropolis-
Hastings algorithm [71], that is used to check the convergence of the
sampling.

The exact DOS ρ(E) is then used to calculate the partition function
at every temperature [58]

Q(T) =

∫
ρ(E)e-E/kBT dE (75)

This approach, also called multicanonical in statistical papers, has
been proved [72] to give results of the same quality as MetaDynamics
(MD) [73] and Statistical Temperature Molecular Dynamics (STMD) [74]
in the limit of a satisfactory sampling.

Widely used in many areas of physics and chemistry, the WL algo-
rithm has been improved by Barker and coworkers [75] by the addi-
tion of a filter which automatically discards any non-bounded state,
which has negative partial derivatives ∂E(n̄)/∂n.

The results show excellent agreement with exact counting DOS for
small molecules, while the linear scaling of CPU time versus the num-
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ber of DOF and the possibility of massive parallelization due to the sta-
tistical nature of WL sampling makes it possible to handle molecular
systems with thousands of DOF [76].

The other thermodynamic properties, enthalpy, entropy and Gibbs
free energy can be calculated by the well known equations

H = E0 + kBT + kBT
2(
∂Q(T)

∂T
) (76)

S = kBT(
∂Q(T)

∂T
) + kBT lnQ(T) (77)

G = H− TS = E0 + kBT(1− lnQ(T)) (78)

In order to avoid numerical instabilities and errors due to numerical
differentiation, in our applications we prefer to use the completely
equivalent expression

H = RT(
Q ′(T)

Q(T)
) (79)

S = R(lnQ(T) +
Q ′(T)

Q(T)
) (80)

where Q ′(T) is

Q ′(T) =

∫
Eρ(E)e-E/kBT dE (81)

is the first moment distribution of the partition function.

2.8 kinetic master equation

By Kinetic Master Equation (KME) we mean a series of coupled first
order differential equations of the form

dρi(E)

dt
=

∑
j

ki,j(E)cj(E) −
∑
j ′

kj ′,i(E)ci(E) (82)

where ki,j(E) are the rate constants of j reactants that produce the i-
th molecule, the system that we are investigating, and kj ′,i(E) are the
rate constants of the reactions where i are the reactants, with negative
contribution. In addiction to these reactive terms, collisional terms
representing energy transfer between states at different energy E can
be added if the environment conditions are compatible with this kind
of phenomena, that depend on the density of particles, both reactive
or the thermal bath.

A KME is called monodimensional if it depends only on the total en-
ergy E; if we use J-resolved rate constant, k(E, J), we have to calculate
a two dimensional KME.

In previous Sections, we referred to the reaction mechanism as the
chain of elementary reactions that compound a given reaction. The re-
action mechanism consists of a series of N stable molecular systems,
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reactants, products and intermediates, usually separated by one or
more TS, the metastable configurations that allow the reaction to pro-
ceed.

The reaction mechanism gives us the connection to build up N
equations like Eq. 82: if they are divided by a TS, the RRKM micro-
canonical rate constants k(E) are used.

Some reactions have some barrierless step: in this case, often regard-
ing radical reactions, specific techniques have to be used to obtain the
reaction cross sections [77, 78].

Since the rate constants are time independent, the time evolution of
the DOS, also called population or concentration, is defined Markovian,
i.e. does not conserve any information about his past populations,
continuously evolving to equilibrium.

Markovian process are based on the same assumption of micro-
canonical equilibrium in RRKM theory and is always satisfied if the
intramolecular energy transfer in faster than reaction, always true in
dilute gas phase [79].

Moreover, microcanonical equilibrium implies that direct and in-
verse rates must be equal. This property is also called detailed balance
and implies that the for a generic reaction A → B (unimolecular or
bimolecular, A,B are generic labels)

kρ(A) = k-1ρ(B) (83)

where k and k-1 are the direct and inverse rate constant respectively
and ρ(·) is the DOS of reactants or products. The matrix formalism is
the most used approach to solve this set of coupled linear equations.

Therefore, if we call the c the vector of population and K the matrix
of rate constants, we have to resolve the vectorial differential equation

ċ = K · c (84)

for each energy interval.
The elements ki,j of K satisfy the following properties:

• Diagonal terms are negative, since, as shown in Eq. 82, the rate
of inverse reactions for the i-th population are proportional to
its number of states.

• The sum of each column is zero, because the rate of descruction
is equal to the sum of the rates of its reactions.

Defined in this way, K is not hermitian and therefore its eigenvalues
are not real. Different strategies have been proposed to solve the pre-
vious equation, with or without symmetrization of the K matrix [80].

By diagonalization we find the eigenvectors Λ and thus the time
evolution of the population vector

c(t) = UeΛtU-1c(0) (85)
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where c(0) is the initial population vector determinated by the physics
of the reaction or simply taken from the microcanonical equilibrium
DOS.





3
T I M E F R A M E W O R K

3.1 time dependent schrödinger equation

In Chapter 2, we introduced the concepts of reactants, products and
Transition States as minima or first order saddle points of the TISE.

In the latter case, we anticipated the concept of metastable states,
that are characterised by a finite lifetime, contrary to the reactants
and product which are stable (infinite lifetime).

How does the molecular system evolve from a stable to a metastable
state? In the absence of external forces the necessary energy is pro-
vided by the bath by random collisions; this process is known as
thermal activation.

In Section 2.2 we postulated a microcanonical equilibrium to esti-
mate the population at the TS, but is it always true?

As an example, the rate of a chemical reaction can be influenced,
while the molecule walks the path from reactants to products pass-
ing through the TS, by the formation of a geometrical configuration
where the hypothesis of intramolecular strong coupling fails, leading
to a non-RRKM reaction [81, 82, 83].

Van der Waals complexes, relative minima of the PES not identi-
fied as intermediates, are another example of troublesome molecular
structures which are not satisfactorily treated in RRKM theory.

The information about the exact evolution of molecules is con-
tained in the Time Dependent Schrödinger Equation (TDSE), written
in atomic units as

i
∂

∂t
Ψ(r̄, t) = ĤΨ(r̄, t) (86)

where Ĥ is the same of Eq. 10. Eq. 86 describes the evolution of all
the particles (nuclei and electrons) at each time, making possible the
study of the properties of a molecule under the laws of quantum
mechanics: the collective variable r̄ represents the ensemble of 3N
spatial DOF of interest of the system (3Na + 3Ni).

The BO approximation is postulated to be true at each instant in
Eq 86 leading to

i
∂

∂t
ψ(R, t) = Ĥnucψ(R, t) (87)

where ψ(R, t) is the time dependent nuclear wavefunction. The nota-
tion used here is consistent with the one used in Section 2.1.

31
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Separating the time from the spatial coordinates ψ(R, t) = χ(t)ϕ(R),
we obtain two equations

i
∂χ(t)

∂t
= Eχ(t) (88)

ĤBOϕ(R) = Eϕ(R) (89)

which are true if the Hamiltonian does not depend on time, but in
general it is not possible.

Eq. 88 is a first order differential equation and its solution is written
as

χ(t) = χ(0)e-iEt χ(0) ≡ χ(t0) (90)

where the initial time is t0 = 0 for simplicity of the notation.
The total wavefunction becomes

ψ(R, t) = χ(0)ϕ(R)e-iEt (91)

but the multiplicative factor χ(0) is usually absorbed in ϕ(R) and then
its magnitude is calculated remembering that the wavefunction is a
probability distribution with normalization condition∫∞

−∞ |ψ(R, t)|2 dR = 1 (92)

Now we introduce the evolution operator (also called propagator)
Û(t, t ′), which takes a time dependent wavefunction as in Eq. 91 at
time t ′ and transform it in the same wavefunction at time t

Û(t, t ′)ψ(R, t ′) = ψ(R, t) Û(t, t ′) ≡ e-iH(t-t ′) (93)

Normally, t ′ = 0, therefore the evolution operator is rewritten as
Û(t, 0) = Û(t). By differentiation with respect to time of Eq. 93, we
can notice that Û(t) satisfies the TDSE

i
∂Û(t)

∂t
= ĤÛ(t) Û(0) ≡ I (94)

where I is the identity operator. The propagator does not change the
norm of a stationary state and must be consistent with time symmetry
and the wavefunction superposition principle [84].

If we define a generic operator Â, supposed to be time independent,
the evolution of its expectation value 〈a(t)〉 as a function of time is

〈a(t)〉 = 〈ψ(R, t)|A |ψ(R, t)〉 (95)

=
〈
ψ(R, 0)eiHt

∣∣A ∣∣e-iHtψ(R, 0)
〉

(96)

= 〈ψ(R, 0)| eiHtAe-iHt |ψ(R, 0)〉 (97)

= 〈ψ(R, 0)| Û(-t)A(t)Û(t) |ψ(R, 0)〉 (98)

= 〈ψ(R, 0)| Â(t) |ψ(R, 0)〉 (99)
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When operators are time independent, only the wavefunction shows
a dependence on time: this is called Schrödinger picture and is repre-
sented in Eq. 95.

On the other hand, the use of the evolution operator makes clear
that it is completely equivalent to think about the time dependence
of the expectation value as a time dependent operator Â(t)

Â(t) = Û(-t)AÛ(t) (100)

that operates on stationary wavefunctions, as in Eq. 99: this approach
is called Heisenberg picture.

One of the most useful quantities that can be evaluated in the time
dependent frame of quantum mechanics is the autocorrelation func-
tion of a wavefunction, namely

C(t) = 〈ψ(0)|ψ(t)〉 (101)

The autocorrelation function is a well known instrument used in
many scientific and engineering fields. In quantum mechanics, it is
strictly related to the spectra of the molecular system; the reader is in-
vited not to confuse C(t) with the flux autocorrelation function Cf(t)
of Eq. 114, defined later in Section 3.2.

Since we focus our treatment on nuclear dynamics, the region of
the spectra that we reproduce is the infrared region (IR), associated
with vibrations. Nevertheless, the same formalism can be applied to
electronic wavefunctions to obtain electronic spectra, in the visible
and Ultra Violet portion of the electromagnetic field (VIS-UV).

In order to use the TDSE to predict the motion and the observables
of a molecular system of a generic dimension, we need to know a
functional form of the potential as a function of each DOF, provided
by quantum chemistry calculation in the BO approximation. But even
in the cases where the PES is known, the analytic solutions for multi-
dimensional problems are unknown.

For this reason the TDSE cannot be used directly to calculate and
propagate a time dependent wave function wavefunction as it is. We
need to impose some analytic form, physically reasonable, to the func-
tions, to the operators or both of them. These numerical methods will
be discussed in Section 3.3 and Section 3.4.

Before the presentation of the numerical methodologies for the cal-
culation of thermal rate constants and partition functions in time de-
pendent quantum mechanics, we need to introduce the concept of
quantum Current Density and the flux operator, which are the fun-
damental concepts to obtaining information about the thermal rate
constant of a reacting molecular system with a reasonable computa-
tional effort.
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3.2 the current density and flux operator

While the TDSE in Eq. 87 describes the evolution in time of the wave-
function, we are interested in the evolution of density of probability,
i.e. the square of its norm

ρ(R, t) = |ψ(R, t)∗ψ(R, t)| (102)

which is normalized to unity,∫
ρ(R, t)dR = 1 (103)

Again, R represents the generalized spatial coordinate, which collects
all the nuclear variables: the electronic ones are not involved in nu-
clear motion thanks to the BO approximation.

Now, we are interested in the evolution of the density, also known
as Liouville-VonNeumann equation or quantum mechanical continu-
ity equation. For simplicity of the notation, here we drop the time
and space dependence of the wavefunction, thus ψ ≡ ψ(R, t).∫

Ω

∂ρ

∂t
dR =

∫
Ω

ψ∗
(∂ψ
∂t

)
+
(∂ψ∗
∂t

)
ψdR

=

∫
Ω

ψ∗
(
−iĤψ

)
+
(
iĤψ∗

)
ψdR

=
i

2m

∫
Ω

ψ∗
(
∇2ψ

)
−
(
∇2ψ∗

)
ψdR

=
i

2m

∫
Ω

∇ ·
(
ψ∗∇ψ−

(
∇ψ∗

)
ψ
)
dR

=
i

2m

∫
Σ

(
ψ∗∇ψ−

(
∇ψ∗

)
ψ
)
·ndσ

(104)

whereΩ is the volume of the space, Σ is a closed surface that contains
Ω and n is the normal vector at the surface dσ.

Now we can define the quantity S(R, t), the Current Density (CD) [15]
as

S(R, t) =
1

2im

(
ψ∗∇ψ−

(
∇ψ∗

)
ψ
)

= Im 〈ψ∗| ∇
m

|ψ〉 = Re 〈ψ∗| ∇
im

|ψ〉
(105)

and obtain a compact form for the evolution of the flux of probability
density through the surface Σ∫

Ω

∂ρ

∂t
dR = −

∫
Σ

S ·ndσ (106)

Equation 106 is the conceptual starting point of all strategies to cal-
culate the rate constant on time dependent approach, but cannot be
used directly, because the integrand region Ω or the closed surface Σ
cannot be defined easily in practical cases.
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Before discussing how we can find the rate constant for a chemical
reaction from the quantum flux, we have to make some considera-
tions about the physical meaning of S(R, t).

If the volume of integration Ω is chosen such that it covers all the
configurational space and the closed surface Σ that containsΩ is prop-
erly set, the probability density ρ is a conservative quantity: the flux
is constant and therefore the right part of Eq. 106 is always equal to
zero. In other word, it implies that Equation 103 will be constantly
satisfied. On the other hand, we can think of S(R, t) as a CD operator,
and associate the operator 1/m∇ to a velocity operator.

Eq. 106 cannot be used directly since is numerically difficult to
define a closed surface Σ that covers an infinite volume. The existence
of a first order saddle point on the PES, a TS, can be used to localize the
calculation of the CD only in one specific point of the configurational
space, as in Sec. 2.2; this assumption introduces the concept of flux
operator F̂.

The flux operator is strictly related with the CD in Eq. 105, since
they operate on the same set of wavefunctions but with the difference
that, while the CD is computed by integration on the closed surface Σ,
the flux operator F̂ is integrated over the vibrational normal modes
of the TS perpendicular to the reactive mode, written with the Dirac
bracket notation.

We define a generic coordinate s such that the region of space
where s < 0 is associated with reactants and s > 0 with products.

The main advantage of the flux operator is that the TS is our ref-
erence choice as generating point for the surface, set at s = 0, and
its vibration modes define a dividing hyperplane that separates reac-
tants from products, a 3N− 7 space embedded in the 3N− 6 space
obtained when we drop out the 6 dimensions related to translation
and external rotation in our 3N configurationl space).

The plane can be defined as

f(R)s=0 = 0 (107)

The flux operator F̂ is defined with respect to the dividing surface
f(R, s) as [85]

F̂ =
∂h(f(R)s=0)

∂t
= δ(s)

∂f(R)s=0
∂R

· p
m

(108)

where h(f(R)s=0) is Heaviside function and its derivative δ(f(R)s=0)
is the Dirac delta function.

The derivative of the surface, ∂f(R)s=0/∂R, is the normal vector to
TS plane in the product direction.

As in Section 2.2, we have to project out the contribution of negative
momentum that moves in the reactant space by the introduction of
a projection operator P which consists in a Heaviside function h(k)



36 time framework

that takes into account all states that have positive momentum in the
infinite future

P = lim
t→∞ Û(−t)Û0(t)h(p)Û0(−t)Û(t) = Ω+P0Ω− (109)

where

P0 =
∑
na

∫∞
-∞ h(k) |χ±k,nr〉 〈χ±k,nr | (110)

In the previous equations,Ω± are the Möller operator [84] and χ±k,nr
are the scattering eigefunctions [86].

The thermal rate constant can be evaluated using the Flux operator
starting from the definition of CRP as the sum of the squares of the
S-matrix elements [86], leading to

k(T) =
1

Qr(T)

∑
na

∫ 〈
Ψp ′,na

∣∣ F̂e−βHP ∣∣Ψp ′,na〉dp ′ (111)

In the previous equation, Qr(T) is the partition function of the re-
actants, β = (kBT)

-1, where kB is the Boltzmann constant, p ′ is the
momentum of the reactive mode perpendicular to the surface and∣∣Ψp ′,na〉 are the scattering wavefunctions of the reactants.

In Eq. 111, the rate constant is expressed as a Boltzmann average
of the reactive flux operator F̂P, i.e. a trace; but quantum mechanical
traces are independent of the basis set in which they are calculated,
therefore, it can be rewritten more generally as

k(T) =
1

Qr(T)
Re
[

tr
[
F̂e−βHP

]]
(112)

With a series of calculations [87] the thermal rate constant is finally
expressed as the time integral of the flux autocorrelation function
Cf(t), as anticipated in Eq.7

k(T) =
1

Qr(T)

∫∞
0

Cf(t)dt (113)

Cf(t) = tr
[
F̄Û(−tc)F̄Û(tc)

]
(114)

where F̄ = (F̂+ F̂†)/2 is the symmetrized flux operator and tc = t−

iβ/2 is the complex time which thermalizes the molecular system at
temperature T = 1/kBβ and then propagates it for time t.

Eq. 113 makes possible to calculate the thermal rate constant as a
time integral; on the other hand, in Eq. 5, we propose to find the same
quantity by a Boltzmann average of CRP, namely N(E). The relation-
ship between the CRP and the flux operator becomes explicit if we use
the identity

Û(tc) = e
-iHtc =

∫
e-iHtcδ(H− E)dE (115)
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and insert it in Eq. 113 obtaining [88]

k(T) =
1

2Qr(T)

∫
dt

∫
dE

∫
dE ′e−β(E+E

′)/2

ei(E−E
′)ttr

[
F̄δ(H− E)F̄δ(H− E)

]
(116)

From the property of Dirac delta function, the time integral becomes∫
ei(E−E

′)t dt = 2πδ(E− E ′) (117)

which cancels out every contribution in Eq. 116 for E 6= E ′, leaving

k(T) =
π

Qr(T)

∫
dEe−βEtr

[
F̄δ(H− E)F̄δ(H− E)

]
(118)

By comparison with 5, we finally find

N(E) = 2π2 tr
[
F̄δ(H− E)F̄δ(H− E)

]
(119)

Here, we followed the derivation of Miller [87], but a similar result
was proposed by Yamamoto [89] using Kubo linear response analysis.
Before a deeper investigation on the flux autocorrelation function, we
focus on the symmetrized flux operator, since its evaluation is crucial
for any further purpose.

If we resolve the scalar product in Eq. 108 between the normal
vector from the surface and the positive momentum vector in the
product space, we obtain the reactive momentum perpendicular to
the surface, namely p ′. Then we obtain

F̂ = δ(s)
p ′

m
(120)

Since the flux operator is designed to return the value of the momen-
tum in a specific position, due to the Heisenberg uncertainty princi-
ple it is an unbounded operator, i.e. the magnitude of its eigenvalues
diverges in the limit of a complete basis set [90].

From the quantum definition of linear momentum, p = −i∂/∂x we
find

F̂ =
1

im

(
δ(s)

∂

∂x

)
(121)

The symmetrized flux operator becomes

F̄ =
1

2im

(
δ(s)

∂

∂x
+
∂

∂x
δ(s)

)
(122)

If we represent the symmetrized flux operator on an arbitrary basis
set n = [φ1, . . . ,φN] and its spatial derivatives d = [φ ′1, . . . ,φ ′N] we
found that its secular equation becomes

F̄ · c =
1

2im

(
n(d> · c) − d(n> · c)

)
= f c (123)
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where c are the eigenvectors and f are the eigenvalues.
F̄ is an imaginary, antisymmetric matrix and its associated secular

equation [91] is(
〈n| F̄ |d〉− f 〈d|d〉
〈n|n〉 〈d| F̄ |n〉− f

)
×

(
a

b

)
= 0

where a and b are the coefficients of the linear combination of the
basis set and its derivatives to form the eigenvectors c

c = an + bd (124)

The associated eigenvalues can be found analytically and consist of a
pair of solutions, one positive and one negative

f± = ± 1

2m
|n| · |d| (125)

while the two eigensolutions are complex conjugate

c = |F±〉 =
1√
2

( n
|n|
± id

|d|
)

(126)

Using this property, the symmetrized flux operator can be rewritten
by spectral decomposition as a simple sum

F̄ =
∑

|F±〉 f± 〈F±| (127)

The flux autocorrelation function allows to calculate the rate constant
of a molecular system for any surface we choose, but the convergence
with respect to time is not the same.

More interestingly, the two flux operators in Eq. 114 do not have to
share the same surface, therefore we can think of the Cf(t) as a func-
tion that returns, depending on time, how much probability density
ρ(R, t) escapes from the interval along the reactive coordinate defined
by the two surfaces in the product region [92].

The optimal choice for the two surfaces should be in the proximity
of the TS, where the DOS is minimal and can be represented by a
limited number of wavefunctions. Moreover, since the TS is a saddle
point, it induces fast dynamics in the reactive coordinate and there-
fore a short propagation is sufficient for a converged calculation.

The formalism of flux autocorrelation function has been success-
fally implemented in several different ways depending on the infor-
mation needed.

Here, we briefly summarize two different strategies:

• if we are interested on the total rate of the reaction, we can use
Absorbing Boundary Condition (ABC) to guarantee the conver-
gence of the calculation [93, 94, 95];
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• if we need a state-selected rate, because the same PES has a bi-
furcation in the product region that leads to two different ar-
rangements (in other words, there is one single TS for different
products) or, otherwise, we know that only one specific reac-
tant state is available to perform the reaction, we can settle one
of the dividing surfaces far in the product or in the reactant
region, respectively [96, 97].

Since the dividing surfaces are constant in time, the flux operator
is independent of the choice of computational methods we use to
propagate the wavefunction: at each time step, we have to calculate
|F±〉 and f± and build a posteriori the flux autocorrelation function or
the CRP in the time domain. Propagation methods will be discussed
in the next Section.

3.3 numerical propagation of the tdse

In the previous two Sections we have seen that every result about the
reaction of a molecular system in the TDSE entails the propagation of
wavefunctions.

The propagation is always possible and exact by the application of
the evolution operator Û(t) of Eq. 93.

Unfortunately, the exact knowledge of the time dependent wave-
function is confined in only a few, standard textbook cases like free
particle motion or harmonic oscillator.

Since we are now focusing on the general time behaviour of the
wavefunction, we drop every reference on the spatial coordinates.

Two different numerical strategies are proposed for the propaga-
tion of wavefunctions in quantum mechanics, depending on the knowl-
edge of the PES.

The first approach is used if the PES is known in the whole interval
of interest. However, in real simulations we approximate the continu-
ous potential surface to a grid and calculate the PES pointwise, exactly
in the same way as in Section 2.6.

For a supposed small, discrete time interval dt, the solution of TDSE

is

ψ(t+ dt) = Û(t+ dt, t)ψ(t) = e−iĤdtψ(t) (128)

but the evaluation of the propagator is more complex than Ĥ because
the position and momentum operator of the Hamiltonian are coupled
by the exponentiation [84].

Expanding the propagator in a Taylor series

e−iĤdt = 1− iĤdt+ . . . (129)
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leads to unstable results, because this scheme does not conserve the
time reversal symmetry of the Schrödinger equation [98]. Using a
symmetric numerical differentiation

ψ(t+ dt) −ψ(t− dt) = (e−iĤdt − eiĤdt)ψ(t) (130)

leads to an iterative propagation scheme

ψ(t+ dt) = ψ(t− dt) − 2iĤdtψ(t) (131)

Anyway, every propagation scheme based on a local evaluation of
the propagator (for example, by a chosen truncation of the Taylor
series) must be repeated several times, accumulating errors during
the calculations.

For this reason, when the potential has been calculated, the Cheby-
shev series, proposed by Kosloff [99, 100], avoids this source of error
permitting us to perform a propagation over an indefinite time inter-
val in a single step.

We define a reduced Hamiltonian Hred by the contraction of the
range of its eigenvalues ∆E = Emax − Emin] in the interval [−1, 1]

Hred =
2(H− E0)

∆E
E0 =

Emin + Emax

2
(132)

Since we work on a grid of N points that correspond to the number
of single quantum chemistry calculations, the range of eigenvalues is

Emin = Vmin Emax =
P2max
2m

+ Vmax (133)

where P2max is determined by the grid, as in Section 2.6.
The reduced HamiltonianHred becomes the argument of the Cheby-

shev polynomials and the propagator is written as

e−iĤdt =

∞∑
n=0

(2− δn,0)Jn(∆Edt)Tn(−iHred)e
-iE0t (134)

where δn,0 is the Kronecher Delta function, Jn(H) are Bessel functions
of the first kind and Tn(t) are Chebyshev polynomials, which are
generated from the recurrence relation

Tn+1(Hred) = 2HredTn(Hred) + Tn−1(Hred) (135)

with the starting conditions

T1(Hred) = 1 T2(Hred) = Hred (136)

In Chapter 4, we use the Chebyshev expansion to evaluate the trace
of the Boltzmann operator

e−H/kbTc =

∞∑
n=0

(2− δn,0)In(∆E/kBTc)Tn(Hred) (137)
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i.e. the partition function of the molecular system described by the
Hamiltonian. The difference between the propagator, an exponential
operator that contains only an imaginary part, and the Boltzmann
operator, a real operator, is reflected on the type of Bessel function
used in the expression. In the previous equation, In(∆E/kBTc) is a
modified Bessel function of the first kind.

Even if the polynomial expansion of the Hamiltonian looks arti-
ficially complicated, the series in Eq. 134 and Eq. 137 decay expo-
nentially when the index of the summation becomes higher than the
argument of the pertinent Bessel function. This means that the error
in propagation can be kept lower than a chosen value that can be
evaluated a priori of the calculation, depending on the accuracy that
we want to reach.

Instead, when the potential is globally unknown, as in the BO ap-
proximation, we can express the total wavefunction as a linear com-
bination of wavepackets [101], localized wavefunctions, that evolve fol-
lowing Eq. 86.

In the field of molecular reaction dynamics, where an ensemble of
harmonic or anharmonic oscillators evolves through a TS to another
molecular species, the most common potential can be imagined as a
multidimensional "near to quadratic" function, coupled between the
different DOF.

For this reason the Gaussian WavePackets (GWP) [8] are usually
used as time dependent functional forms of the wavefunction, since
they are similar to the eigenfunctions of the Schrödinger equation in
harmonic potential.

Before approaching the multidimensional case, it is useful to re-
view the monodimensional case of a GWP in a harmonic potential
as a benchmark [102]. This particular kind of GWP are called frozen
because the width (called sigma in statistics, σ = (2a)−1/2) cannot
change

g(x, t) = Nea(x−xt)
2+ikt(x−xt) a,b ∈ R,a > 0 (138)

where N is the normalization factor

N =
4

√
2a

π
ek

2
t/4a (139)

xt is the time dependent centre of the wavepacket and kt is the mo-
mentum.

Now, we consider the motion of a GWP on a harmonic potential
V(x) = mω2x2/2, exactly expanded as a Taylor series; we need to cal-
culate the Hamiltonian and the time derivative of the GWP, obtaining
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two coupled equations for the variable of motion, position and mo-
mentum, and a condition on the width that must be satisfied, namely

a =
mω

2
(140)

∂kt

∂t
= −

∂V(x)

∂x
= −

∂H

∂x
(141)

∂xt

∂t
=
kt

m
(142)

In other words, under the constraint of a specific value for the width,
the GWP moves under the classical laws of motion.

Another remarkable property of GWP is that they remain GWP un-
der the Fourier Transform

ψ(k) =
1√
2π

∫
g(x, 0)e−ikx dx (143)

=
1√
2π

∫
e−ax

2−i(k0−k)x dx (144)

=
1√
2π

√
π

a
e(k0−k)

2/4a (145)

=
1√
2a
e(k0−k)

2/4a = g(k, 0) (146)

g(k, 0) is the momentum representation of g(x, 0). The general time
dependent GWP in the momentum representation can be evaluated
with the help of propagator in Eq. 93

g(k, t) = Û(t)g(k, 0) =
1√
2a

∫
e(k0−k)

2/4ae−ik
2t/2mdx (147)

If we calculate the variance in coordinate and momentum space, ∆x
and ∆k, we find

∆x =
1√
2a

∆k =

√
a

2
(148)

which satisfies the Uncertain Principle

∆x∆k =
1

2
(149)

This property comes directly form the fact that Gaussian distributions
are eigenfunctions of the Fourier Transform.

3.4 gaussian multi configuration time dependent hartree

In the case of a molecular system with many modes coupled between
them, the nuclear Hamiltonian can be written as

Ĥnuc = −
∑
i

∇2

2mi
+ V(x1, x2 . . . xn) (150)
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The Multi Configuration Time Dependent Hartree (Multi Configura-
tion Time Dependent Hartree (MCTDH)) is a numerical methodology
developed in the last forty years to perform the propagation of wave-
function expressed as [103, 104]

ψ(x̄, t) =
∑
j

aj(t)
∏
i

φi,j(xi, t) (151)

namely a product of monodimensional Single Particle Function (SPF)
φi,j(xi, t), linearly combined with a time dependent coefficient aj(t)
that weights the importance of each configuration j. Since each DOF xi
is not limited to be described by one SPF, but ni, then j is a multi-index
which runs over each SPF ni of each DOF i; therefore, the number of
configurations j and time dependent coefficients aj(t) is equal to

j =
∏
i

ni (152)

The presence of different configurations is needed to recover the cor-
relation (or at least some of it) introduced by the nonseparability of
the PES in the Hamiltonian in Eq 150. If we are propagating the wave-
function using a single configuration, the Hartree product that we use
to describe the wavefunction in Eq. 151 will miss any correlation ef-
fects.

The analytic structure of the primitive function used is strictly re-
lated to the physics of the particular DOF: a Gaussian wavepacket
for translational motion, associated Legendre functions for angular
coordinate, spherical harmonics for a combined rotation over two an-
gles. . . All of these functions must be orthonormalized in order to
maintain the square norm of the total wavefunction ψ(t) normalized
to unity.

The use of a time dependent basis set reduces the computational
cost because the grid, formed by the SPF, adapts itself during the prop-
agation. On the other hand, in a time independent grid the wavefunc-
tion has to be calculated at each point at each time. Moreover the time
independent grid should be significantly larger in order to allow long
time propagation.

The best way to propagate wavefunctions like in Eq. 151 is using
the Dirac-Frenkel Variational Principle (DFVP) [105, 106]

〈δψ|Ĥ− i∂tψ〉 = 0 (153)

where ∂t is the partial time derivative.
The DFVP asserts that any variation δψ, which can be viewed as a

tangent plane to the subspace that contains the wavefunction ψ, must
be orthogonal to the approximated solution of the TDSE, the ket of
Eq. 153.

In order to quantify the evolution of the wavefunction, we write
it in terms of an ensemble of time dependent parameters: note that
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DFVP is true in the finite dimensional space H̄ spanned by the time
dependent basis set [φ(xi, t)].

If the space was complete, and the variations unrestricted (i.e. if the
number of parameters, configurations and wavepackets are infinite)
the solution of Eq. 153 is equivalent to the solution of the TDSE.

Even if the computational cost of the propagation in MCTDH scales
favourably with the number of DOF, the main disadvantage remains
the request of the total PES as a precondition of the propagation [107]
which need to be fitted in a product representation [108] to be effi-
ciently propagated.

This undesired feature of MCTDH comes from the use of non local-
ized primitive functions as SPF in the expression of the total wavefunc-
tion in Eq. 151.

What we need is an efficient method to evaluate the effect of time
on the wavefunction of a molecular system. In this contest, efficiency
is strictly related with two requests that the method must satisfy:

• The computation cost has to scale favourably with the number
of degrees of freedom, in order to save CPU time;

• The propagation does not need the knowledge of the whole
PES to be performed, in order to save memory storage and long
quantum chemistry calculations.

The Gaussian Multi Configuration Time Dependent Hartree (G-MCTDH)
satisfies both requirements because the local nature of GWP implies
that we can treat the PES locally by the Local Harmonic Approxima-
tion (LHA), using the gradient and the Hessian to perform the propa-
gation. The computational cost is minimized thanks to the flexibility
of a time dependent basis set.

In G-MCTDH the SPF are always frozen Gaussian functions as in
Eq. 138, obtaining a similar expression to Eq. 151 for the total wave-
function

ψ(t) =
∑
j

aj(t)
∏
i

gi,j(x, t) (154)

Actually, this is a Gaussian similar to Eq. 138

gi,j(x, t) = Ne−a(x−xt)
2+bt(x−xt) (155)

where a ∈ R and bt ∈ C. The real and complex part of the parameter
bt are built so that

<(bt) = −2axt =(bt) = p (156)

The normalization constant N is defined so that each GWP is normal-
ized. Is it also possible to compress more than one physical DOF in
one SPF, which are called logical variables to avoid misunderstanding;
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this computational strategy is called mode combination and helps to
treat molecular systems with tens to hundreds of physical DOF that
are less important for the dynamics.

In the following presentation, we suppose that mode combination
is not used, anyway, this extension is straightforward.

This approach is also called direct dynamics since we can interface
the nuclear propagation with the electronic calculations directly [109].

Appling the DFVP to a wavepacket such as Eq.154 leads to two cou-
pled differential equations, one for the coefficients and one for the
wavefunction [110]iSȦ = (H − iτ)A

iC(κ)Λ̇(κ) = Y(κ)

In the previous equations we use a vectorial notation, consistent with
the following definition of G-MCTDH wavefunction

ψ(x, t) =
∑
j

AjGj = AG (157)

where j is the index that label the N configurations, Aj is the vector of
the coefficients and Gj is the product of GWP. In the next presentation,
however, N is the number of DOF and nκ is the number of GWP for
each DOF [111]:

• S, (N × N), is the configurational overlap matrix 〈Gi|Gj〉 be-
tween each configuration Gj, since GWP are not orthonormal;

• Ȧ, (N), is the time derivative vector of the coefficients;

• H, (N×N), is the Hamiltonian matrix which elements are 〈Gi|H
∣∣Gj〉;

• τ, (N ×N), is the overlap matrix between configurations and
their time derivatives, 〈Gi|∂tGj〉;

• Λ̇(κ), (nκ), is time evolution vector of the λ parameters in GWP;

• C(κ), (nκ ×nκ), which elements are

Cκjλ,j ′λ ′ = ρ
κ
j,j ′
〈
∂λgj

∣∣ 1− Pκ ∣∣∂λ ′gj ′〉 (158)

where ρκj,j ′ = 〈ψκj |ψκj ′〉 is the reduced density matrix defined by
the single-hole wavefunction ψκj of the configuration j, obtained
by elimination of the SPF κ , and Pκ is the projection operator
spanned by it

Pκ =
∑
i,j

∣∣∣g(κ)i 〉
S-1
i,j

〈
g
(κ)
j

∣∣∣ (159)
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• Y(κ), (nκ), is defined as

Y(κ)
j,λ =

∑
j ′

〈∂λ| (1− Pκ)Hκj,j ′
∣∣gj ′〉 (160)

where Hκj,j ′ = 〈ψκ|H |ψ〉κ is the mean field Hamiltonian.

For a detailed introduction to G-MCTDH, the interested reader can
find more details in many reviews [108] and books [107].

3.5 flux operator in g-mctdh

The final stage of our analysis for the calculation of time dependent
thermal rate constants is the evaluation of the flux operator in the
frame of G-MCTDH, to obtain a general theoretical tool for the evalu-
ation of thermal rate constant in the time frame for molecules with
tens or even hundreds of DOF.

Using the property that the symmetrized flux operator F̄ has only
two eigenvalues [90, 91], we obtain

F̄ =
i

2m
[p̂, δ(s)] (161)

where the Dirac delta function is the derivative of the Heaviside step
function that defines the surface. The delta function can be obtained
as the limit of a narrow Gaussian function [112]

δ(s) = lim
γ→∞

√
γ

π
e-γs2 (162)

for a given parameter γ. This approximation makes possible the eval-
uation of the flux operator as the superposition of the G-MCTDH wavepacket
with another Gaussian, fixed in the configuration space, that repre-
sent the surface.

The symmetrized flux operator becomes

F̄ =
i

2m
(|g〉

〈
g ′
∣∣− ∣∣g ′〉 〈g|) (163)

where |g〉 ′ has been approximated by the finite difference of Gaus-
sians

|g〉 ′ = γ

2
√
π

(
eγ(x+1/

√
γ)2 − eγ(x−1/

√
γ)2
)

(164)

Now, we can apply the symmetrized flux operator to the G-MCTDH

wavepacket rewritten as Ψ = g‡ψ‡, where ψ‡ is the single-hole func-
tion obtained by dropping the GWP in the reactive mode g‡, obtain-
ing

F̄Ψ = ψ‡F̄g† = ψ‡ 〈g ′|g‡〉−ψ‡ 〈g|g‡〉 (165)
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PA RT I T I O N F U N C T I O N O F H I N D E R E D R O TAT I O N S

In this second part of the Thesis we will focus on computational
strategies and numerical results obtained in a series of study cases.

The calculation of thermal rate constants, both in energy (Eq. 5) and
time domain (Eq. 7), needs the knowledge of the Molecular Partition
Function (MPF), but the evaluation of this crucial quantity is not trivial,
since it contains the full thermodynamical information on systems in
the canonical ensemble.

The MPF is defined as the trace of the Boltzmann operator

Q(T) = tr[e-H/kBT ] =
∑
i

e-Ei/kBT (166)

The total MPF per unit volume is usually written, following the sep-
aration of the Hamiltonian, as a product of translational, rotational,
vibrational and electronic contributions

Q(T) = Qtrans(T)Qrot(T)Qvib(T)Qel(T) (167)

The considerations and the approximations made during the separa-
tion of these modes in Chapter 2 are the same here; therefore, the
total MPF accuracy can be lowered when some conditions (like the
separation of the electronic states in BO approximation) are not satis-
fied.

Nevertheless, since the separation of the centre of mass is always
exact in gas phase, the reference equation for the translational parti-
tion function is

Qtrans(T) =
(2πµ

 h2β

)3/2
(168)

and it will always be considered true: µ is the reduced mass of the
translational motion and β = (kBT)

-1.
Since we are focused on electronic ground states with the same

number of electrons between reactants and Transition State, the elec-
tronic partition function Qel(T) is simply the multiplicity of the elec-
tronic ground state.

The standard approach for the remaining two parts of the total MPF,
Qrot(T) andQvib(T), consists in the treatment of the molecules as rigid
rotors and a series of harmonic, uncoupled oscillators. At a higher
level of accuracy, it is possible to include the coupling of rotations and
vibrations with a quasi-rigid description of rotations and the coupling
between vibrational modes with a perturbative approach [113].

49
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As a working definition, a floppy-geometry molecule contains one
or more LAM which must be treated separately with the computa-
tional strategy presented in the Theory part. Molecules with floppy
geometries cannot be treated by the perturbative approach, for the
reasons presented in Section 2.5. Moreover, while the size of molecules
grows, the probability that it contains one or more LAM grows as well,
making it impossible to be accurately described in the approximation
of anharmonic vibrations.

As anticipated in Section 2.5, we focus on the Hindered Rotation
because it is a common LAM that corresponds to a single, well de-
fined primitive internal coordinate. Nevertheless, both the methods
presented, the Chebyshev expansion of the propagator presented in
Section 3.3 and diagonalization of the DVR Hamiltonian presented in
Section 2.6 can be applied, with the proper generalizations, to the
study of multidimensional LAM, like a series of coupled hindered ro-
tors or the complex motions described by a linear combination of
internal coordinates, like ring deformations.

However, specific studies demonstrate that the coupling between
different hindered rotations is weak in most molecules of practical in-
terest [44, 114, 115] and therefore we focus only on monodimensional
Hindered Rotor Partition Function (HRPF).

Methods based on the vibrational perturbation theory, like Simple
Perturbation Theory (SPT) [116], cannot be applied for the same rea-
son that forces us to use the Generalized Coordinate (GC) method: the
Taylor series does not converge fast enough, therefore the anharmonic
contributions suffer from numerical instability.

4.1 numerical implementation for hrpf

While in Sections 2.6 and 3.3 we had presented the general features
of the GC and the Chebyshev expansion, in this Section we present
the computational strategies used to maximize the efficiency of their
respective algorithms.

It must be stressed that both methods require a relaxed scan to a
be performed, i.e. they need the whole PES of the LAM, which usually
is just a small subset of the total modes, here equal to one.

In the Chebyshev expansion of the Hamiltonian (Eq. 137 in Sec-
tion 3.3), defined as "time propagation" in the following graphs, the
result of the propagation is directly the HRPF, which can be multiplied
by the partition function of the other motions to obtain the total MPF.

It has been implemented, following the idea of Manthe and co-
workers [117], by propagation of a initial real wave function |ψr〉, de-
fined as

|ψr〉 =
N∑
i

(−1)Ri |φr〉 (169)
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where (−1)Ri is the overlap with the corresponding DVR function at
each point around the 1-D rotor configuration space; Ri is a random
integer number.

In this way, the norm of |ψr〉 is equal toN and the trace of the Boltz-
mann operator (i.e. the HRPF) can be approximated by the formula

Tr(e-βH) =
1

N

N∑
i=1

〈ψi | e-βH | ψi〉 (170)

In the case of HR, an upper bound of the eigenvalues range, Emax of
Eq. 133, is

Emax = AN2p + Vmax (171)

where A is the rotational constant of the HR and Np is the number
of points of the grid. Thus, the number of points should be increased
to ensure a converged partition function: we choose to cut the Hamil-
tonian spectrum when the argument of the exponential Emax/KBT is
greater than three, which corresponds to a maximum absolute error
of 9 · 10-2.

For this reason, the PES obtained with the relaxed scan with a lim-
ited number of quantum chemistry calculations along the dihedral
angle are fitted using cubic spline in order to obtain a representation
of the PES with a flexible number of points.

While the value of Np does not influence drastically the computa-
tional cost of the Chebyshev algorithm, in the GC approach it repre-
sents the computational bottleneck, since it increases the size of the
Hamiltonian matrix.

In the GC method two considerations must be made on the dis-
tribution of the eigenvalues obtained by the diagonalization of the
Hamiltonian matrix:

1. whenever the free rotor limit is reached the corresponding eigen-
values show the typical progression of K2 with a double degen-
eracy and do not contain any more valuable information about
the LAM;

2. since we use a random walker to sample the phase space by the
use of Eq. 73, a finite number of eigenvalues does not ensure a
complete description of the DOS of the LAM.

For these reasons we fit the discrete energy spectrum for the HR

obtained by GC method as a function of the quantum number (inter-
preted as a running integer spanning the Hamiltonian eigenvalues).

Since for a free rotor the energy is a quadratic function of the quan-
tum number, a polynomial fitting procedure up to the second order
can describe properly the progression of the eigenvalues.

However, for low energies, a polynomial performs rather poorly
in reproducing the energies as a result of the (quasi)- degeneracies
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arising from tunnelling across the torsional potential maxima. Thus,
for every HR, we define two limits:

1. The minimum quantum number n0, below which all energies
are taken to have their exact (variational) values;

2. A limiting quantum number nfr, above which the free rotor
limit is assumed to have been reached and the energies are as-
sumed to follow a quadratic expression.

The intermediate region (between n0 and nfr) is fitted to a quartic
polynomial expression; as the quantum number n0 corresponds semi-
classically to a certain value of the action around the torsional loop,
it is chosen to be proportional to the curvilinear integral

n0 ∝
∮√

(Vmax − V(s)ds (172)

where Vmax is the maximum value of the potential; s is the generalized
coordinate, presented in Appendix B, whose length is proportional to
the reduced mass of the HR.

Thus, the quantum number n0 will be higher for systems with a
higher reduced mass, where the generalized coordinate s runs over
a wider interval, and for molecules with higher torsional variation
of the potential. However, whenever the semiclassical integral gives
a value less than 10 we have chosen to assume n0 = 10 in order to
avoid numerical difficulties associated with a large state spacing.

We have found that a good value for the limiting quantum number
nfr is essentially 3n0, since all the reflection effects of the hindering
potential on the eigenstates with an energy higher than Vmax vanish
rapidly. Thus, between n0 and nfr the eigenvalues were fitted using
a quartic polynomial and above nfr the free rotor limit is assumed to
have been reached and a quadratic polynomial is obtained through
fitting of the last three doubly-degenerate state pairs below nfr.

Here, we examine a few test cases that illustrate a representative
subset of various combinations of rotational constants and hindering
potentials, presented in Table 1.

Table 1: Molecules of interest

Potential Rotational Constant

Low High

Low Biphenyl Methanol

High 1,2-Dichloroethane Fluoromethanol

Since all these HRs arise from the rotation around a single bond, as
a further test case we also treat a series of metallocenes, presented in
Section 4.6. Metallocenes show moments of inertia even higher than
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the examples in Table 1 and a symmetry number σ = 5; therefore,
these characteristics make the metallocenes a stress case for GC and
time propagation methods.

In Table 2, we show the minimum quantum number n0 needed for
the fitting procedure, the size of the Monte Carlo (Monte Carlo (MC))
sample for the Chebyshev expansion and the minimum number of
eigenvalues that we have to use to obtain a fully convergent partition
function.

Table 2: Minimum rotational quantum number, Monte Carlo sample size
and DVR number of basis functions for each molecule

Molecule n0 MC sample Min. Np
Methanol 3 160 56

Fluoromethanol 8 80 59

Biphenyl 37 80 456

1,2-Dichloroethane 56 80 252

All the electronic calculations have been performed at the Density
Functional Theory (DFT) level, using the B3LYP functional and the
SNSD basis set; in the case of biphenyl, dispersion contributions have
been evaluated using the empirical correction proposed by Grimme
[118]. The anharmonic corrections have been obtained using VPT2 as
implemented in the quantum chemistry package GAUSSIAN09 [22].
Each point along the internal rotation coordinate has been adiabati-
cally relaxed.

These choices for the quantum chemistry calculations were made
to optimize both the accuracy of the anharmonic frequencies, com-
pared with experimantel IR and Raman spectra, and the computa-
tional cost [50], since our final objective is to create an flexible algo-
rithm which can runs over a wide range of molecules with different
sizes.

In all cases, the MPF has been calculated using four different schemes:

1. Wang-Landau full anharmonic treatment of vibrations and hin-
dered rotations, with fitting of the hindered rotation quantum
numbers

2. Wang-Landau full anharmonic treatment of vibrations with imag-
inary time propagation of hindered rotation

3. Wang-Landau full anharmonic treatment of vibrations with ex-
act (variational) treatment of hindered rotation

4. Harmonic treatment of all vibrations
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4.2 biphenyl

In Fig. 1 is shown the torsional potential for the biphenyl molecule.
Although the symmetry number σ = 2, the potential surface of biphenyl
has four peaks: the interaction of hydrogen atoms in the coplanar con-
figurations causes the first and the third ones, while the second and
the fourth peaks are related to the repulsion of π molecular orbitals.

Figure 1: Biphenyl potential: the first and the third peak are around 780 cm-1

(0.0034 hartree) while the second and the fourth about 810 cm-1

(3.7× 10-3 hartree).
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Due to the combination of a low rotational constant (≈ 1.7 × 10-6

hartree) and a difference between maximum and minimum value
of hindering potential of ≈ 3.7× 10-3 hartree (i.e. ≈ 800 cm-1), the
biphenyl molecule is a quantum system very close to the classical
hindered rotor limit.

In Fig. 2 is shown the partition function of biphenyl, calculated
in the four different modes shown previously. As expected, the har-
monic treatment underestimates the total partition function (due to
the higher spacing of the vibrational manifold). On the other hand,
both the time-propagation and the fitting schemes do an excellent
job of approximating the variational results, although they slightly
appear to overestimate and underestimate the partition function re-
spectively. The underestimation by the fitting scheme can conceivably
be traced to an overestimation of the quadratic "free rotor" rotational
constant by the fitting, a minimal residue of the influence of the tor-
sional potential. It is more difficult to assess the precise effect of the
time-propagation convergence because of its fundamentally stochas-
tic nature. Nevertheless, all methods appear to perform excellently at
all temperatures considered.
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Figure 2: Biphenyl partition functions. The continuous black line refers to
the variational results, the blue continuous line where hindered ro-
tation has been treated through imaginary time propagation, the
dotted red line where hindered rotation eigenvalues have been fit-
ted and the continuous green line where the harmonic vibrational
scheme has been used.
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The minimum fitting quantum number for biphenyl was found to
be 37. Its relatively high value can be traced to the high reduced mass
and torsional rotational constant, which confines a large number of
states in the torsional potential. On the other hand, the torsional free
rotor limit was assumed to be reached after around 110 states.

4.3 1 ,2-dichloroethane

The potential energy profile in Fig. 3 shows a global minimum for
the anti conformation and two symmetric local minima for the two
gauche rotamers. The presence of the two vicinal chlorine atoms in
1,2-Dichloroethane produces a single peak in the torsional profile of
about 3200 cm-1 or 1.45× 10-2 hartree, that corresponds to an equiva-
lent temperature of about 4000 K.

However, the other two peaks have a height of 7 × 10-3 hartree.
This kind of torsion can be viewed literally as a large amplitude mo-
tion with a single barrier due to the eclipsing repulsion of the two
chlorine atoms. Figure 4 shows the canonical partition functions. The
agreement with the exact results is seen to be excellent again. The
only appreciable deviation at high temperatures is due to the time-
propagation treatment of the hindered rotation (which still, neverthe-
less, is essentially coincident with the exact results). As the deviation
at low temperatures is essentially zero, the slight high-T deviation is
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Figure 3: 1,2-dichloroethane potential: the first and the third peaks lie at
3200 cm-1 while the second one lies at 1600 cm-1
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probably due to incomplete Monte Carlo sampling of the configura-
tion space.

Interestingly, at low temperatures the harmonic partition function
appears to be slightly higher than the other ones. Presumably this is
due to a negative anharmonicity coefficient and/or coupling between
modes which serves to increase the anharmonic spacing of some low-
lying states.

The minimum fitting quantum number in this case is 56, with
the free rotor limit reached around 160. Even though the rotational
constant of 1,2-Dichloroethane is higher, the torsional potential is so
much higher than in the case of biphenyl that more states need to be
taken into account variationally. We remind that this is all indicated
by the semiclassical integral in Eq. 172.

4.4 methanol

The methanol molecule has been extensively studied [119, 120] and,
moreover, represents a prototype of hindered rotation. The small po-
tential barrier, of about 360 cm−1 (or 1.5 · 10-3 hartree), suggests that
the free rotor limit is reachable even for medium temperatures, as
shown in Fig. 6.

On the other hand, at lower temperatures (50-100 K) quantum ef-
fects become strong and the classical and harmonic HRPFs underes-
timate the exact one: the ground state is a quasi-degenerate triplet,
because the potential energy surface has a symmetry number σ = 3,
as the energy profile shows in Fig. 6. The high rotational constant of
methanol means that, at moderate temperatures, the phase space is
adequately sampled with only a few wavefunctions and, moreover,
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Figure 4: As in Fig. 2 for 1,2-Dichloroethane.
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these wavefunctions have a relatively high spatial coherence length.
The case of methanol, therefore, is among the ones least amenable to
a Monte Carlo approach and more to an exact one.

Figure 5: As in Fig. 2 for methanol.
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At high temperatures, both hindered rotation schemes approximate
the variational partition function rather well, if slightly overestimat-
ing it. On the other hand, at low temperatures, the time propagation
approach seriously underestimates the partition function. As men-
tioned before, this can be traced to the highly "quantum", delocalized
nature of methanol low torsional levels. On the other hand, the fitting
scheme does excellently at low temperatures (as expected, since low
levels are taken with their variational values).
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Figure 6: Methanol potential: the three degenerate maxima have a value of
360 cm−1.
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The minimum fitting quantum number for methanol was found to
be 3 by the semiclassical integral and, as mentioned before, we have
taken it to be 10 in order to avoid numerical problems. This is both an
effect of the low torsional potential and the high rotational constant.

4.5 fluoromethanol

In order to assess the effect of a high torsional barrier (1750 cm−1, ≈
7.6 · 10-3 hartree) on a hindered rotor with a high rotational constant,
we have also studied fluoromethanol.

Even though the molecular structure suggests the presence of three
asymmetrical minima (Fig. 6 and Fig. 8), the potential energy surface
shows only two minima associated with the two gauche rotamers. The
anti conformation is actually the highest maximum (the second peak
in Fig. 8) and the syn conformation is the lower maximum, i.e. the
first peak.

This behaviour is presumably associated to an interplay between
eclipsing interactions between the O-H and the C-H and C-F bonds
and an intramolecular O-H...F hydrogen bond.

The fluoromethanol partition function converges relatively slowly
with the number of initial wavepackets. An explanation for this fact
lies in the higher torsion potential profile: the resulting eigenfunc-
tions have a relatively localized structure and are therefore less eas-
ily represented with sample eigenfunctions whose amplitude is uni-
form throughout the configuration space. This is also reflected in the
fact (as in the case of methanol) that, at low temperatures, the time-
propagation partition function seriously underestimates the variational
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Figure 7: As in Fig. 2 for fluoromethanol
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one. On the other hand, the fitting partition function does well at all
temperatures.

From the interplay of a medium rotational constant and a relatively
high torsional potential, a minimum fitting quantum number of 8 is
calculated (therefore, again, the value of 10 is adopted).

Figure 8: Fluoromethanol potential: the two maxima correspond to 1000

cm-1 and 1750 cm-1.

0 90 180 270 360
Dihedral angle

0

500

1000

1500

2000

W
a
v
e
n

u
m

b
e
r 

(c
m

 -1
 )

It can be seen that the harmonic model can be very inadequate
and, for accurate results, anharmonicity as well as coupling between
normal vibrational modes is indispensable.
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Table 3: Maxima of the torsional potential (in cm-1), metal-carbon distance
(in Å) and harmonic frequencies (in cm-1)

METALLOCENES

Ferrocene Ruthenocene Osmocene

Vmax 293 245 361

d̄(M,C) 2.04 2.18 2.18

ωharm 30.5061 44.3077 52.3460

4.6 metallocenes

Another interesting application of GC and time propagation method-
ologies is the study of HR in metallocenenes, extending the range of
our investigation to organometallic compounds with high symmetric
hindering potentials (σ = 5).

Metallocenes are formed by a pair of cyclopentadienyl (Cyclopen-
tadienyl (Cp)) anions (C5H5) and a transition metal atom in oxidation
state II, wherein the metal atom stays between the two Cp units, form-
ing a sandwich-like structure.

A large class of metallocenes have been analyzed by various spec-
troscopic techniques, obtaining accurate information about their crys-
tallographic structures, molecular geometries and potential energy
surfaces. Such studies include X-ray diffraction experiments, as well
as vibrational spectroscopy, both Raman and infrared [121, 122, 123]

The ferrocene, ruthenocene and osmocene molecules have been re-
cently analyzed from a computational point of view [124], finding
the best results at DFT level of theory with the combination of the
B3PW91 functional [125] and the LANL2DZ basis set [126], includ-
ing polarization functions on all atoms (H (p; 0.800), C (d; 0.587), Fe
(p; 0.135), Ru (f; 1.235), Os (f; 0.886)). These parameters have previ-
ously produced satisfactory agreement with experimental spectra for
all three metallocenes considered.

Interestingly, as shown in Table 3, the potential maximum energies
Vmax (Fig.9) (taking 0 as the potential minimum) do not obviously cor-
relate with the distance between metal and the carbon d̄(M,C) in the
optimized geometry; also the harmonic frequencies, which are sensi-
tive only to the curvature of the potential at the minimum, are not
directly related with the global behaviour of the PES. This confirms
the necessity of quantum chemistry calculations to obtain accurate
PES for internal rotation.

As the energy increases, the eigenfunctions of the Hamiltonian are
expected to switch from a localized nature among the five potential
minima to the delocalized nature of the free rotor levels. However, at
all energies (and for all kinds of fivefold symmetric potentials) a 5-
cycle permutation of the carbon and hydrogen atoms in a Cp unit is a
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Figure 9: Comparison of the torsional potential in cm−1 of metallocenes.
The red line refers to ferrocene, the black line to ruthenocene and
the blue line to osmocene.
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symmetry operation. Briefly, this implies that, in all cases, the energy
levels can be classified into three categories:

1. Totally symmetric nondegenerate wavefunctions, A

2. Doubly degenerate wavefunctions, whose character under a 5-
cycle is 2 cos(2π/5), E1.

3. Doubly degenerate wavefunctions, whose character under a 5-
cycle is 2 cos(4π/5), E2.

In the free rotor case, these correspond respectively to K being a
multiple of 5, congruent to ±1modulo 5 and congruent to ±2modulo
5 (in this case there is also the additional degeneracy for K being
a nonzero multiple of 5). On the other hand, for an infinitely high
potential, all three cases merge into a 5-fold degeneracy.

In Table 4 are shown the first 15 eigenvalues for all three cases
and the transition of regimes can be seen. The lowest 5 eigenvalues
have approximately the same energy (although the totally symmet-
ric among them are already seen to be splitting away). This is the
case also for the highest eigenvalues shown apart from the case of
ruthenocene, where the 1− 2− 2 splitting pattern starts being visible.

In order to compare our results with other methods for the inclu-
sion of anharmonicities, we compute the partition function using the
equation proposed by Mc Clurg and all [127]

Q(T) = Qc(T)
Qhq(T)

Qhc (T)
e(

 hω)2/kT(2 hω+16V0) (173)
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Table 4: First 15 eigenvalues in the Variational Approach(cm−1).

METALLOCENES

Ferrocene Ruthenocene Osmocene

0 22.579 19.864 23.982

1 24.615 21.005 25.523

2 24.615 21.006 25.525

3 24.616 21.007 25.525

4 24.616 21.008 25.525

5 67.229 59.540 72.252

6 70.258 61.795 75.339

7 70.260 61.796 75.343

8 70.266 61.811 75.343

9 70.267 61.812 75.343

10 110.087 97.944 119.498

11 113.400 100.637 123.168

12 113.401 100.639 123.174

13 113.402 100.666 123.174

14 113.403 100.668 123.174

where V0 is the half height of the potential maximum and Qc(T) is
the classical hindered rotor partition function

Qc(T) =
(2πIkT

 h2

)1/2 ∫2π
0

e-βV(φ)dφ (174)

Qhc and Qhq are the classical and quantum mechanical partition
function of the harmonic oscillator, respectively

Qhc =
kT
 hω

(175)

Qhq =

∞∑
n=0

e-((n+1/2) hω/kT (176)

In the following figures, we refer to the partition functions obtained
by this equation as the ’Mc Clurg’ results.

The potential maximum of ferrocene (Table 3) is equivalent to a
temperature of about 420K. On the other hand, the derivative of the
partition function does not show a significant change around that
value, starting to decrease after 500K. The energy gap between the
quasidegenerate quintets slowly decreases from 40 to 20 cm−1, while
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Figure 10: Ferrocene partition functions: the continuous line refers to the
time dependent Chebyshev expansion and the dotted line refers
to the variational results, while the dashed and dash-dotted are
the harmonic and the corrected one.
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the E1,E2 doublets are separated from each other at the beginning of
the free rotor region (around 300cm−1), by a difference of 10 cm−1.
For this reason ‘ the derivative of the partition function starts to de-
crease significantly when the spectrum becomes similar to the free
rotor one.

Figure 11: Ruthenocene partition functions: the continuous line refers to the
time dependent Chebyshev expansion and the dotted line refers
to the variational results, while the dashed and dash-dotted are
the harmonic and the corrected one.
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Ruthenocene (Fig. 11) shows a transition to the free rotor limit at
an equivalent temperature of 352 K, which makes it an interesting
molecule because it exhibits this transition at a temperature near the
ambient one. As can be seen, this molecule has the highest partition
function (see also Table 4), even though at high temperatures this
difference becomes less significant.
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Figure 12: Osmocene partition functions: the continuous line refers to the
time dependent Chebyshev expansion and the dotted line refers
to the variational results, while the dashed and dash-dotted are
the harmonic and the corrected one.
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Osmocene, which has the highest potential variation, has the lowest
partition function. This trend should be confirmed by further investi-
gations on the field of organometallic molecules.

At the end of this Section about the calculation of MPF for floppy
molecules, which implies the knowledge of the HRPF, we can con-
clude that the two hindered rotor schemes turn out to be complemen-
tary in their range of applicability.

• The time propagation scheme performs nicely in the case of
large, classical-like molecules where, on the one hand, the quan-
tum phase space is efficiently sampled by a MC scheme and,
on the other hand, the calculation (and subsequent fitting) of a
large number of discrete levels would be cumbersome.

• The GC scheme does well for smaller, quantum-like molecules
where only a small number of discrete levels needs to be taken
into account and MC sampling tends to perform poorly at low
temperatures.

The main drawback of the time dependent approach, as is common
with all MC approaches, where random sampling of a large popula-
tion is involved, is the absence of a unique way to estimate the error
when the exact solution is not available. However, we expect that its
advantages far outweigh the disadvantages in the treatment of the
partition functions and thermodynamics of large systems.



5
R AT E C O N S TA N T S O F U N I M O L E C U L A R
R E A C T I O N S

As an example of a gas phase unimolecular reaction, we focus on the
isomerization of C-cyanomethanimine between the Z and E isomers
as in Fig. 13, due to the interest of these compounds as presumed
intermediates in reactions involving purines and proteins [128] and
in prebiotic chemistry [129].

These molecules have been detected in molecular clouds, a part of
the Interstellar Medium (ISM) where the conditions of density, radia-
tions and temperature are compatible with the formation of such kind
of organic molecules. Most of the computations were performed with
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Figure 13: Form left to right: the E isomer, the transition state and the Z
isomer

the B3LYP hybrid density functional, in conjunction with the SNSD
basis set [130]. Additional computations were performed with the
double-hybrid B2PLYP functional and with the second-order Møller-
Plesset perturbative many body treatment (MP2), in conjunction with
the m-aug-cc-pVTZ basis set, where d functions on hydrogen atoms
have been removed. Semiempirical dispersion contributions were also
included into DFT computations by means of the D3 model of Grimme [131],
leading to B3LYP-D3 and B2PLYP-D3 models.

On these quantum chemistry calculations, performed with a devel-
opment version of Gaussian09 [22], a full kinetic investigation has
been undertaken in order to compute the rate constant using the
RRKM theory presented in Section 2.2. Due to the absence of low
frequency modes (i.e. LAM), the GC approach has not been used in
this study.

We have computed the total density of states ρ(E) of both isomers,
as well as the transition state connecting them, by convolution of the
3D classical rotational DOS

ρrot,3D =
2

σ

√
E

ABC
(177)

where σ is the rotational symmetry number and ABC is the product
of the three rotational constants, while the anharmonic vibrational
DOS is obtained by the WL algorithm.

65
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The enthalpy and entropy of the Z and E isomers are calculated as
functions of temperature and plotted as the unitless quantities H/kBT
in Fig. 14 and S/kB in Fig. 15, using Eq. 79 and Eq. 80, respectively.
In order to assess the effects of anharmonicity, these quantities are

Figure 14: Variation of the unitless quantity H/kBT : the black line is the
anharmonic WL result, while the red line is the harmonic calcula-
tion.
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compared with the ones obtained using the harmonic vibrational den-
sity of states evaluated by the Stein-Rabinovitch modification of the
Beyer- Swinehart algorithm [69].

It must be stressed that, even though the Wang-Landau algorithm
is valid for any energy interval, the quadratic approximation for vi-
brational energy levels issuing from the VPT2 model loses reliability at
high energies (corresponding to high temperatures) when the various
dissociation limits of the vibrational modes are reached since, beyond
the quadratic extremum, the energy tends to (unphysically) diminish
with the quantum number.

Consequently, as a reasonable compromise between reliability of
the quadratic energy level formula and temperature range of the data
reported, we have chosen a temperature of 1500 K as our upper limit.

The chosen direction of the reaction is Z→ E, while the most stable
isomer is always Z at every level of theory used in our investigation.
In Table 5, we report the ZPE corrected energy difference, ∆E between
Z, E and TS and ∆G, where the zero is fixed at the reactant value.
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Figure 15: Variation of the unitless quantity S/kB: as in Fig 14 for entropy.
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Table 5: Energy difference and Gibbs free energy difference in kJ/mol

∆E ∆G

(kJ/mol) (kJ/mol)

Z 0.0 0.0

TS 106.27 101.88

E 2.30 2.47

The trends of the two thermodynamic functions with temperature
are very similar. The next step to understand how the introduction of
anharmonicity affects the reaction is to evaluate the reaction enthalpy
∆H and entropy ∆S as a function of the temperature, as shown in
Fig. 16 and Fig. 17. The reaction enthalpy is always positive. The main
factor responsible for this is the higher zero-point energy of the E iso-
mer. On the other hand, the entropy change in Fig. 17 is negative
for the same reason, since fewer states are available to the E isomer.
In the harmonic case, the enthalpy increases steadily and almost lin-
early with temperature, indicating an almost constant difference in
heat capacities. This changes at very low temperatures, where the rel-
ative sparsity of E states diminishes its heat capacity and ultimately
reverses the trend. Inclusion of anharmonicity has the effect of ren-
dering the entropy change more negative, indicating that it increases
the Z density of states more than the E one.
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Figure 16: Reaction enthalpy ∆H/kBT : the black line is the anharmonic WL
result, while the red line is the harmonic calculation.
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Figure 17: Reaction entropy ∆S/kB: the black line is the anharmonic WL
result, while the red line is the harmonic calculation.
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The effect of introducing anharmonicity in the DOS can be better
evidenced in terms of the so-called anharmonic factor, defined as the
ratio of the corresponding densities of states

F(E) =
ρanh(E)

ρhar(E)
(178)

As shown in Figure 18, the anharmonic factor varies almost linearly
with the energy. A similar trend was found by Troe et al. [132], who

Figure 18: Energy dependence of the anharmonic factor F(E)
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compared harmonic and anharmonic DOS for various small molecules.
The high-frequency deviation in the low-energy region is related to
the statistical sampling of the WL algorithm.

It can be seen that the slope in the case of the Z-isomer is higher,
indicating that anharmonicity increases the DOS more for the Z iso-
mer than for its E counterpart. This trend is in agreement with the
enthalpy and entropy curves shown above.

Fig. 19 shows the natural logarithm of the equilibrium constant for
the Z→ E isomerization, written as usual

K(T) =
k(T)

k-1(T)
(179)

where k(T) and k-1(T) are the thermal rate constants of the direct
and inverse reaction, calculated as in Eq. 5 At all temperatures con-
sidered, the equilibrium constant is less than one, and this effect is
more pronounced at low temperatures where the enthalpy term dom-
inates. As the temperature increases, the difference in zero point en-
ergies becomes increasingly less important, and the equilibrium con-
stant approaches unity. Introducing anharmonicity lowers slightly the
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Figure 19: Logarithm of the thermal equilibrium constant K(T)
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equilibrium constant. This appears principally to be an entropy effect
since, as shown before, the entropy of the Z isomer is substantially
larger than that of E, while the enthalpy contributions are very simi-
lar. Fig. 20 shows the microcanonical and canonical rate constants for
the direct reaction. It can be seen that the anharmonic rates are lower
than the harmonic ones at all energies and temperatures considered.
It has already been shown how anharmonicity lowers the Gibbs free
energy of the reactants. This effect more than compensates for the cor-
responding effect on the transition state, thus reducing the rate con-
stant. From the Arrhenius plot, it is seen that the slope of the curve
is essentially the same both in the harmonic and anharmonic case.
Thus, the activation energy remains invariant on introduction of an-
harmonicity, which seems primarily to decrease the pre-exponential
factor. The activation energy calculated from the slope of the Arrhe-
nius plot is 100.0 kj/mol, which is in nice agreement with the poten-
tial barrier of the system (106.27 kj/mol).
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Figure 20: In the left graph, the microcanonical rate constant k(E) is plotted
against the energy, expressed in cm−1; in the right, the Arrhenius
plot of the thermal rate constant of the direct reaction.
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6
M A S T E R E Q U AT I O N A P P R O A C H F O R C O M P L E X
R E A C T I O N S I N G A S P H A S E

As discussed in Section 2.2, in gas phase reactions quantum effects
play a crucial role at low temperatures, when only a small range of
energies are important to describe the thermal rate constant. An ac-
curate treatment of tunneling can enhance the microcanonical rate
constant at low energy (see Eq. 52) and allows classically forbidden
states to contribute to the reaction.

As in Chapter 5, the molecular clouds in the ISM is the environment
where the condition of low temperature and low density should make
quantum effects in molecular reactions important.

Formamide, the simplest amide, has attracted increasing attention
in the field of prebiotic chemistry [133, 134], has been chosen as a
study case, since it has the ability to act as a precursor in the abi-
otic amino acid synthesis and perhaps also in that of nucleic acid
bases [135].

Formamide is, therefore, a central compound to connect metabolism
(conversion of energy), which is ruled by proteins, and genetics (pas-
sage of information), ruled by RNA and DNA.

The question that leads our investigation is: how was formamide
formed in space?

Several reaction mechanisms have already been investigated for for-
mamide in the gas phase:

• ion-molecules reactions [136];

• radical-molecule reactions with the assistance of ice grains as a
third body [137].

The former reactions were discarded as a source of formamide in the
ISM by the authors themselves, while the latter has been experimen-
tally proved to be possible.

However, this second network of reactions needs the presence of
ice grains, which has the role of hosting the reactants on its surface,
and supplementary energy, necessary for the reaction. This external
energy is provided by the inelastic scattering of protons of the Galac-
tic cosmic-ray field.

Since three-body collisions are quite unusual in the low density
environment of the ISM, we want to study the reaction probability of
radical-molecule path for the formation of formamide in a two body
collision, focusing on the tunneling effects at the TS.

Therefore, to resolve this issue, we have undertaken a comprehen-
sive quantum mechanical investigation, focusing on the addition of

73
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the ·OH radical to methanimine, as suggested in a study by Ali and
Barker [138] and showed in Fig 21. When looking carefully at the

C
H

H
N

H
+ O H

Figure 21: Addition of ·OH radical to methanimine

system, one can envisage an additional plausible path involving the
addition of the ·NH2 radical to formaldehyde in Fig 22, already sug-

C
H

H
O + N

H

H

Figure 22: Addition of the ·NH2 radical to formaldehyde

gested in a study by Kahane and coworkers [139].
In these two cases, the initial association is barrierless and capture

theory has been implemented to calculate the rate: the first step is to
calculate, as in GC approach for LAM, a monodimensional PES for the
approach of the two fragments, fitted to a long range potential [140]
functional form

V(r) = −
C6
r6

(180)

Adding the centrifugal contribution due to angular momentum, we
obtain the effective potential

Veff(r) = −
C6
r6

+
J(J+ 1)

2mr2
(181)

The rate constant of the radical addition is

kcapt(E) =

√
2E

µ
σ(E) (182)

where µ is the reduced mass of the molecular system and σ(E) is the
capture cross section

σ(E) =
3π

22/3
3

√
C6
E

(183)

Due to the conservation of the total angular momentum J, we also
obtain the maximum Jmax(E), used later in the RRKM calculation of
the following reaction step. It must be stressed that the distribution of
the reactive energy E, the translational energy of the two fragments,
is assumed to be in Boltzmann distribution at the temperature of
the ISM (> 10K). The back-dissociation rate is calculated using the
detailed balance principle, as in Eq. 83.
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On the other hand, when a well-defined transition state existed,
we have performed a RRKM calculation as presented in Section 2.2,
semiclassically corrected to introduce the tunneling contributions.

Computations were mainly performed with the double-hybrid B2PLYP
functional in conjunction with the m-aug-cc-pVTZ basis set, where
d functions on hydrogens have been removed. Semiempirical dis-
persion contributions were also included into DFT computations by
means of the D3BJ model of Grimme, thus leading to the so-called
B2PLYP-D3 computational model.

For all stationary points, intermediates and TSs, improved elec-
tronic energies were obtained by means of a composite approach
based on Coupled Cluster theory employing the single and double
excitations approximation (CCSD) augmented by a perturbative treat-
ment of triple excitations, CCSD(T) [141], and implemented in CFOUR [142].
Here we briefly summarize the components of our composite strategy
in electronic calculations:

• the first level is the Hartree-Fock self-consistent-field (HF-SCF)
energy extrapolated to the complete basis-set (CBS) limit;

• the valence correlation energy at the CCSD(T) level extrapo-
lated to the CBS limit and the core-valence correlation correc-
tion (CV);

• for some TSs, a full treatment of triple (fT) and quadruple exci-
tations (fQ) was also added.

We label the electronic energies obtained by the composite method by
simply adding the relative acronyms: thus, the most accurate results
are defined as (CBS+CV+fT+fQ).

For more details about quantum chemistry calculation, the inter-
ested readers will find an accurate dissertation in Ref. [140].

6.1 methanimine and ·oh addition

In Fig. 23, one can see plausible paths concerning the approach of
·OH to methanimine. Starting from the separated reactants, a com-
plex stabilized by the formation of a hydrogen bond (RI0), more
stable by 30.4 kJ/mol than the reactants, is formed. If we add zero-
point corrections, this complex is found to be more stable than the
precursors by 22.2 kJ/mol. Fig. 24 depicts the possible full paths
of the CH2NH + ·OH reaction and reports the relative electronic
(at the CCSD(T)/CBS+CV level) and zero-point corrected energies
(electronic CCSD(T)/CBS+CV energies + ZPE issuing from B2PLYP-
D3/m-aug-cc-pVTZ anharmonic vibrational calculations) of all min-
ima and TSs. If we focus on the possible products, formamide + H is
the most stable one, with a relative energy of -89.5 kJ/mol. The fol-
lowing ones are E-methanimidic acid + H and formaldehyde + NH2,
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Figure 23: Proposed path for the approach of ·OH and methanimine. Rela-
tive electronic CCSD(T)/CBS+CV energies in black. Energies in
kJ/mol

at -44.8 and -43.5 kJ/mol respectively, and then the less stable product
is Z-methanimidic acid + H that exhibits a relative energy of -30.1 kJ/-
mol.

It is noteworthy that all compounds involved in the reaction scheme
of Figure 24 are lower in energy than the reactants, which makes the
entire path viable in the ISM.

Together with the channels shown in Fig. 24, we investigated also
addition of OH to the N atom of methanimine, together with other
possible abstractions of hydrogen atoms (linked to the C atom). How-
ever the energies of the transition states governing the first steps were
so high (of the order of 15 kJ/mol) that we decided to consider those
channels closed.

6.2 formaldehyde and ·nh2 addition

Starting from the reactants either a weak van der Waals complex
(RI0b-vW) or an intermediate stabilized by a hydrogen bond (RI0b-
Hbond) can be formed, as shown in Fig. 25.

Both of them are followed by a low lying, first order saddle point
(TS5) having an energy very close to that of the reactants, which then
leads to an intermediate (RI3).

Once again, one can notice that this first step, leading to RI3, is
nearly barrier-less, our best estimate for the transition state height
with respect to reactants being 3.8 kJ/mol. Inclusion of the full-T
(CBS+CV+fT) and full-Q (CBS+CV+fT+fQ) corrections further lowers
this barrier to 2.05 and 1.67 kJ/mol, respectively.
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Figure 24: Proposed full reaction path of ·OH and methanimine addition.
Electronic energies (black) are at the CCSD(T)/CBS+CV level and
the ZPE corrected energies (green) are obtained by including the
ZPE issuing from B2PLYP-D3/m-aug-cc-pVTZ anharmonic vibra-
tions
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Figure 25: Proposed path for the approach of ·NH2 and formamide. Rela-
tive electronic CCSD(T)/CBS+CV energies in black. Energies in
kJ/mol

Therefore, capture theory seems appropriate to describe this step.
Fig. 26 displays the possible path of the CH2O + ·NH2 → NH2CHO
+ H formation reaction (skipping again details about the approach
step) and the relative electronic (CCSD(T)/CSB+CV) and zero-point
corrected energies (ZPE at the B2PLYP-D3/m-aug-cc- pVTZ level) of
all minima and transition states. In the case of the intermediate RI3,
the hindered NH2 rotation needs to be carefully managed, using the
GC method presented in Chapter 2.

The overall zero point energy (ZPE) is then obtained by summing
ZPEGVPT2 [50] of the other modes with the ZPEHR, i.e. the first eigen-
value of the HR spectra. This strategy comes naturally considering
Eq. 73. After the formation of the intermediate RI3, hydrogen loss
can be observed, leading to formamide and the ·H radical through
the transition state TS6 that has a barrier of 73.2 kJ/mol. The rotation
around the C-N bond in RI3 can lead to another energy minimum,
which forms again formamide through the same transition state TS6.
The products were found 46 kJ/mol more stable than the reactants.

Let us now have a deeper insight into the hindered rotation occur-
ring in the intermediate RI3 that we mentioned above. Fig. 27 shows
the potential energy profile along the φ dihedral angle, which de-
scribes the NH2 hindered rotation
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Figure 26: Proposed reaction path for formamide formation. Electronic en-
ergies (black) are at the CCSD(T)/CBS+CV level and the ZPE
corrected energies (green) are obtained by including the ZPE is-
suing from B2PLYP-D3/m-aug-cc-pVTZ anharmonic vibrational
calculations. All energies are given in kJ/mol.

Figure 27: Potential energy profile along the φ dihedral angle (NH2 rota-
tion) for the intermediate RI3 obtained at the B2PLYP-D3/maug-
cc-pVTZ level.
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In addition to the absolute energy minimum, the potential energy
surface shows two additional equivalent local minima. All these min-
ima correspond to staggered conformations and are connected by
three transition states, corresponding to eclipsed conformations. The
equivalent conformers a and c are separated by b, which is the highest
transition state, with a barrier of ca. 3.8 kJ/mol. The most stable conformer
(e) is found to be about 10.5 kJ/mol more stable than the other minima. The
d and f equivalent transition states rule the c to e and e to a transformations
and have a relative energy about 14.6 kJ/mol higher than the most stable
conformer e.

6.3 kinetics calculation

The master equation approach needed for the calculation of rate constant of
formation ofthe products has been performed by direct solution of the Eq. 84,
without symmetrization. In both additions, the rate of back dissociation of
the initial complex (using the principle of detailed balance) at a particular
energy is proportional to the DOS per unit volume of the reactants.

As the translational component of reactants DOS (Eq. 168) is propor-
tional to the square root of the translational energy, at low energies the back
dissociation of the initial complex is suppressed due to the reactant density
of states tending to zero.

In the methanimine and ·OH addition mechanism, at low energies the
initial van der Waals complex RI0 in Fig. 23 is present with the chance
to either rearrange to HOCH2NH (with subsequent possible formation of
methanimidic acid) or eliminate a water molecule forming the H2CN radical,
passing through TS0a and TS0b respectively.

The other two possible products (formamide+H or formaldehyde+NH2)
have negligible rates due to the fact that more than one step is required to
reach them from the original complex and that one of these steps consists in
overpassing the high energy TS2.

Both transition states corresponding to these channels lie ≈ 4.5 kJ/mol
below the reactant zero point energy. However, the TS leading to water elim-
ination presents a higher SOS than the second one at low energies, leading
to a low-energy dominance of H2O elimination.

This can be seen in Figs. 28 and 29 as a constant ratio of around 8 between
the rate constants of water elimination and methanimidic acid formation. It
is to be noted that Z-methanimidic acid has a much lower rate of formation
than its E-isomer. This is essentially due to the fact that the corresponding
transition state is rather lower in energy. Moreover, as the two isomers of
HOCH2NH (which dissociate to the corresponding isomers of methanimidic
acid) equilibrate rapidly between themselves and the E-isomer is more stable,
this is another factor contributing to this effect.

As the energy increases, the reactant density of states increases rapidly and
this brings about a rapid increase in the rate of redissociation of the complex.
Indeed, the two next highest rate constants diminish with increasing energy
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Figure 28: Microcanonical rate constant as a function of energy in kJ/mol.

Figure 29: Thermal rate constant as a function of temperature.



82 master equation approach for complex reactions in gas phase

because of this effect (on the other hand, the rate constant of Z-methanimidic
acid continues to increase slightly). The same effects are also seen in the
canonical rate constants, albeit smeared out due to Boltzmann averaging.
Despite the predominance of redissociation, H2CN and E-methanimidic acid
formation remain important processes up to 300K (with rate constants above
10-11 cm3s-1).

On the other hand, the formamide and ·NH2 addition has no such high
energy TS: in a previous paper [143], a similar RRKM study was performed
on the ·NH2+H2CO reaction, based on calculations at the CBS-QB3 level
of theory. This enabled us to assure that, even at low temperatures, the for-
mation of formamide through this reaction was largely predominant over the
back-dissociation.

In Fig. 30, we show the thermal rate constant calculated by RRKM cal-
culations at different level of quantum electronic calculation, CBS-QB3,
CCSD(T)/CBS+CV and CCSD(T)/CBS+CV+fT+fQ. The rate constant drops

Figure 30: Rate constants for the formation of formamide starting from the
addition of ·NH2 and formaldehyde reaction using the CBS-QB3,
CCSD(T)/CBS+CV and CCSD(T)/CBS+CV+fT+fQ energies.

from 3.1×10-10 to 7.6×10-11 cm3s-1 at 5 K, which is explained by a higher
barrier for the transformation of RI3 into formamide + H (represented by
TS6), but the formamide formation still predominates at low temperatures
since the rate constant of back-dissociation is too law.

Moreover, when including the full-T (CBS+CV+fT) and full-Q (CBS+CV+fT+fQ)
corrections, the TS6 relative energy that was found at -1.3 kJ/mol drops to -
2.3 and -2.8 kJ/mol respectively, which leads to slightly higher rate constants
(9.9×10-11 cm3s-1 at 5 K with CCSD(T)/CBS+CV+fT+fQ energies).

With these calculations, we have provided new insights concerning the for-
mation of formamide in the molecular clouds of the ISM. Our computations
allowed us to suggest two reaction paths combined to probable mechanisms
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concerning this formation. In both cases, ·OH+CH2NH and ·NH2+H2CO,
the addition step does not involve significant barriers and can therefore oc-
cur in space. While RRKM calculations confirmed the effectiveness of the
·NH2+H2CO reaction (since, once this first addition has been done, for-
mamide formation largely predominates over back-dissociation at low ener-
gies), the ·OH+CH2NH reaction leads preferentially to other products of
prebiotic interest such as methanimidic acid and the H2CN radical. Together
with the specific interest of the studied system, the reliability, robustness, and
reasonable computational cost of the proposed computational strategy paves
the route toward the study of larger systems of interest for astrochemistry
and astrobiology.

This computational strategy can be also applied without any restrictions to
the calculation of gas phase thermal rate constants in every field of scientific
and industrial research for molecule with up to 20-30 atoms. For even larger
molecular systems, hybrid schemes can be implemented, where harmonic and
anharmonic schemes are both used.
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A
P O T E N T I A L E N E R G Y S U R FA C E

By (single) Potential Energy Surface (PES) the community of physical chemists
means the eigenvalue ε1(R) of the electronic Hamiltonian in Eq. 12, that we
rewrite here

Ĥel = −
1

2

Ni∑
i=1

∇2i +
∑
a>b

ZaZb
|Ra − Rb|

+
∑
i>j

1

|ri − rj|
−
∑
a,i

Za

|Ra − ri|
(184)

Varying at will the geometry of a molecule R, under the hypothesis that
the Born-Oppenheimer approximation is always correct, we can obtain a
surface (the PES) of NPES = 3Natom − 6 dimensions. On this surface, the
atoms move defining trajectories: all the information about the system, its
dynamical evolution is described by these curves.

This task is extraordinarily demanding both for its computational cost and
for the human labour involved, mainly for three reasons:

• Using a uniform grid of N points for each DOF (the number of DOFs
is supposed equal to M) leads to a number of quantum chemistry calcu-
lation points of NM, that becomes unfeasible for most molecules with
more than 4 or 5 atoms. Non-uniform, symmetry adapted grids can
also be implemented, but the number of points versus the number of
atoms still scale unfavourably;

• The level of theory of each calculation may vary, due to convergence
problems or inconsistency between different calculations;

• Fitting procedures to obtain smooth functional forms of the PES can
create further error and are not obvious for multidimensional surfaces.

Many algorithms [144] have been proposed to overcome these drawbacks,
but the computational costs and the memory requirement remain the main
reasons why full PES of medium size molecules are not available. Moreover, it
is easy to note that many regions of the PES are not explored during the evo-
lution, because the electronic potential is too high even if tunnelling effects
play a crucial role in dynamics [145].

However, since no formulae are available for the accurate evaluation of
multidimensional tunnelling effects, we have not any simple criteria to ex-
clude some regions of the PES in particular with a priori considerations.

The most convenient strategy to decrease the total number of quantum
chemistry calculations for the estimation of the thermal rate constant is the
TST, which implies the existence of a Reactive Mode where the reaction takes
place.

89
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The motion along the Reactive Mode changes at infinity the molecular
identity of the ensemble of atoms that we are studying and it is impossible,
as far as we know, to introduce a model potential which can be both accurate
and general, like inverse harmonic or Eckart barrier[45].

The reactive motion, as well some other types of low frequency motions (see
Section 2.5), can be better described as a LAM: in Appendix B, we present
the derivation of Eq. 56.



B
I N T R O D U C T I O N O F C U RV E S I N RN

We are interested in finding a path (also called curve), ζ ( t ) , that connects
some stationary points on the PES, i.e.

∂V

∂x i
= 0 ∀ i ∈ [ 1 , 2 , . . . 3N ] (185)

which can be reactants, products, intermediates or Transition States. Here,
x i are the Cartesian nuclear coordinates. The Newton classical law of motion
is

d

d t
(ma ẋ i ) = −

∂V

∂x i
∀ i ∈ R 3N (186)

and we start our treatment of LAMs assuming that the path they follow can
be described by Eq. 186 [60].

We introduce the concept of intrinsic motion, i.e. a motion that takes
place at an infinitesimal velocity: even if calculated in the frame of classical
mechanics, we can build a quantum mechanical Hamiltonian on this curve,
using, for example, the DVR representation.

This assumption means that the trajectory, or curve, that the molecule
follows in R 3N can be found by integration of Eq. 186 with the consistent
boundary conditions, ẋ i = 0 .

We first note that Eq. 186 has six solutions that are identically zero, related
to translations and external rotations, plus another one related to the curve
itself, because we expect that the energy along the LAM varies slowly along
the curve (otherwise, it should be treated as a vibration).

These properties can be summarized by three equations

3N∑
i=1

√
ma ξ i = 0 (187)

3N∑
i=1

ζ i ( s ) × ξ i = 0 (188)

3N∑
i=1

ζ ′i ( s ) · ξ i = 0 (189)

where ma is the mass of the atoms, a ∈ [ 1 , N ] , ζ i ( s ) is the curve
and ξ i is the displacement from the curve. The first and the second are the
Eckart-Sayvetz conditions (see Eq. 37 and Eq. 38 in Section 2.3). The third,
Eq. 189, represents the orthogonality between the curve and its displacement
in the remaining 3N − 7 dimensions.
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Applying the Eckart-Sayvetz conditions, we can reduce our investigation
to a R 3N-6 space: for a small time interval δ t , the velocity variation δ ẋ
along the IRC can be found by integration

ma ẋ i = −
∂V i
∂x i

∀ i ∈ R 3N-6 (190)

For the sake of compactness, we use mass weighted Cartesian coordinates in
bold vectorial notation Ẋ and V. Accordingly, the previous equation becomes

Ẋ = −
∂V

∂X
(191)

The infinite ensemble of solutions of Eq. 191 is called meta-IRC, while the
specific solution passing through reactants, TS and products is called IRC.
The IRC is a curve, a differentiable path in the 3N-6mass-weighted Cartesian
coordinate space and can be identified as the Minimum Energy Path (MEP),
the steepest descent path along the BO potential.

Differential curves are generated by a differential map ζ(t), a set of differ-
entiable functions (ζ1(t), ζ2(t), . . . ζ3N(t)), where the variable t ∈ I, I =
(a,b).

This definition implies a correspondence law that associates (or maps) each
t ∈ I into a point ζ(t) ∈ R3N-6 [146]

ζ(t) = (ζ1(t), ζ2(t), . . . , ζ3N-6(t)), ζ(t) ∈ R3N-6 (192)

The derivative (or tangent vector, or velocity vector) is defined as

ζ ′(t) = (ζ ′1(t), ζ
′
2(t), . . . ζ

′
3N-6(t)) (193)

If ζ ′(t) exists and it is everywhere nonzero, then the curve is called regular.
After setting the starting point of the regular curve ζ at t = 0 the arc length
s(t) is defined as

s(t) =

∫t
0

|ζ ′(t)|dt (194)

where

|ζ ′(t)| =

√√√√3N-6∑
i=1

(ζ ′i(t))
2 (195)

is the length of the tangent to ζ(t). Note that, sometimes, it can happen that
the parameter t is the arc length measured from some point and therefore
ds/dt = 1. This is not true for HR, since the variable t = φ ∈ I = [0, 2π],
while the curve s(t) is moving in a general R3N-6 space and its length
depends on the magnitude of the reduced mass of the HR.

The key role of the parameter t is to guide our research of the IRC but
if we merely follow the definition of the LAM (an internal rotation, a bond
stretching etc.) the coupling between the LAM itself and the other vibrations
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makes Eq. 189 not satisfied. This inconvenience implies that the definition of
internal coordinate (as an example, Eq. 55) cannot be used to calculate the
set of differentiable functions ζi(t) and ζ ′i(t).

Thus, in order to find a computational strategy to calculate the IRC and
its arc length s(t), we need to perform a relaxed scan along the LAM in order
to satisfy, at least variationally, Eq. 189: in this way, we obtain a series of
points in the mass weighted Cartesian coordinates Xi ∈ R3N-6.

Then, we need a numerical strategy to evaluate locally the arc length s(t),
which is related with the metric tensor gi,j by the following equation [147]

ds2 =

3N-6∑
i,j

gi,j dXidXj (196)

where Xk are, again, the mass weighted Cartesian coordinate. The metric
tensor is written as

gi,j =

3N-6∑
t=1

∂ζt

∂Xi

∂ζt

∂Xj
(197)

Since the energy of the molecular system is a conservative quantity, the
Hamiltonian along the curve must be invariant under any change of co-
ordinates; Podosky [148] and later Schaad [149] show that the coordinate
independent Hamiltonian is written as

Ĥ = −
 h2

2

3N-6∑
i,j

g1/4
∂

∂si
g−1/2gi,j

∂

∂sj
g1/4 + V(s) (198)

where g is the determinant of the metric tensor.
If we assume that, for small displacements along the curve, the metric

tensor remains constant, the Hamiltonian can be simplified to

Ĥ = −
 h2

2

3N-6∑
i,j

gi,j
∂2

∂si∂sj
+ V(s) (199)

If the IRC is separable from the other vibrational modes the total nuclear
Hamiltonian can be written as a sum of a monodimensional IRC and the
remaining vibrations, Ĥ = ĤIRC + Ĥ⊥, where ĤIRC is written as

ĤIRC = −
 h2

2
gi,i

∂2

∂s2i
+ V(s) (200)

In this form, Eq. 199 is also called Reaction Path Hamiltonian [59].
Comparing Eq.199 with the standard expression for the Hamiltonian, it

is clear that the inverse of the metric matrix is the reduced mass of the LAM.
Now, the computational strategy used to solve the curvilinear differential

equation 200 requires to set the reduced mass to unity [63]; in this way, the
arc length ds can be calculated for a monodimensional motion (compare with
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n

Eq. 196) as the finite difference of the mass weighted Cartesian coordinates
of two consecutive geometries i, i+ 1 of the relaxed scan

|ds|2 = |Xi+1 −Xi|
2 (201)

This result is achieved by normalization of the gradient of the potential in
Eq. 191 in mass weighted coordinates

Ẋ =
∂V

∂X
· 1

|∂V/∂X|
(202)

which is Eq. 56. Nevertheless, from the local, approximate knowledge of the
arc length we obtain another definition for the reduced mass of a monodimen-
sional LAM

µ(s) =
(ds
dx

)2 (203)

In this method, the information about the variation of the reduced mass (a
well known problem that interests different fields of scientific research) is
stored in the discrepancy between V(s), the potential along the curve ex-
pressed in mass-weighted Cartesian coordinates, and V(x), the potential in
Cartesian coordinates.

Equation 56 becomes indeterminate at any extremum point along the
closed curve ζ(s), but it can be shown [62] that even at these points the
solution can be deduced from the knowledge of the second and third coeffi-
cients of the Taylor expansion of the PES, that we can perform automatically
in the frame of VPT2 [50].
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