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Chapter 1

Introduction

The aim of this thesis is to study metric measure spaces with a synthetic notion of Ricci
curvature bounded below. We study them from the point of view of Sobolev/Nash type
functional inequalities in the non-compact case, and from the point of view of spectral
analysis in the compact case. The heat kernel links the two cases: in the first one, the goal
is to get new estimates on the heat kernel of some associated weighted structure; in the
second one, the heat kernel is the basic tool to establish our results.

The topic of synthetic Ricci curvature bounds has known a constant development over
the past few years. In this introduction, we shall give some historical account on this
theory, before explaining in few words the content of this work. The letter K will re-
fer to an arbitrary real number and N will refer to any finite number greater or equal than 1.

Ricci curvature
Ricci curvature is one fundamental way to express how a smooth Riemannian manifold

differs from being flat. Finding its roots in the tensorial calculus - “calcolo assoluto” -
developed at the turn of the twentieth century by G. Ricci-Curbastro and T. Levi-Civita
[RL01, Ric02], it came especially into light in 1915, when A. Einstein used it to formalize in
a concise way its celebrated equations modelling how a spacetime is curved by the presence
of local energy and momentum encoded in the so-called stress-energy tensor [E15] (see also
[To54] for historical details).

Throughout the second half of the XXth century, many mathematicians have studied
the implications of a lower bound on the Ricci curvature. Indeed, it was soon realized that
such a bound grants powerful comparison theorems giving a control of several analytic
quantities, like the Hessian and the Laplacian of distance functions d(x, ·), or the volume
of geodesic balls and spheres, in terms of the corresponding ones in the model spaces with
constant curvature (see e.g. [GHL04]).

Following this path, J. Cheeger and D. Gromoll provided in 1971 their well-known
splitting theorem [CG71], extending V. Topogonov’s previous result [To64] established under
the weaker assumption of non-negative sectional curvature: if a complete non-negatively
Ricci curved Riemannian manifold contains a line, then it splits into the Riemannian
product of R and a submanifold of codimension 1.

On a more analytical side, P. Li and S.-T. Yau proved in 1986 a striking global Harnack
inequality for positive solutions of the equation (∆ − q(x) − ∂

∂t)u(x, t) = 0 on complete
Riemannian manifolds with Ricci curvature bounded below, where q is a C2 potential with
controlled gradient and bounded Laplacian [LY86]. Their results apply especially to the
case of the heat equation (∆− ∂

∂t)u(x, t) = 0, i.e. when q ≡ 0. In the Euclidean space, the
Harnack inequality for parabolic differential equations was estabilished in 1964 by J. Moser
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6 CHAPTER 1. INTRODUCTION

[Mo64]. It implies Hölder regularity of positive weak solutions of the equation and sharp
upper and lower Gaussian bounds for the associated Green’s kernel. Therefore, Li-Yau’s
Harnack inequality extended these two results to the setting of Riemannian manifolds with
Ricci curvature bounded below.

Moreover, the assumption Ric ≥ K implies two important results, namely the Bishop-
Gromov theorem ([Bis63], see also [GHL04]) and the local L2 Poincaré inequality ([Bus82],
see also [CC96, Th. 2.11 and Rk. 2.82]). The former implies the local doubling condition
(2.1.8) which is a useful tool to extend classical analytic results to the setting of metric
measure spaces. Let us mention that L. Saloff-Coste proved that on Riemannian manifolds,
the local doubling condition and the local L2 Poincaré inequality are equivalent to the
parabolic Harnack inequality [Sa92]. K.-T. Sturm extended this result to the context of
Dirichlet spaces [St96].

Further consequences of Ricci curvature bounded below are eigenvalue estimates, isoperi-
metric inequalities, Sobolev inequalities, etc., for which we refer e.g. to [L12].

Looking for a synthetic notion
All these results focused the attention on the set of Riemannian manifolds with

Ricci curvature bounded below by K ∈ R, seen as particular subclass of the general
collection of metric spaces. In this regard, M. Gromov provided in 1981 an important
result, known as the precompactness theorem, which states that for any given n ∈ N and
D > 0, the setM(n,K,D) of all n-dimensional compact Riemannian manifolds with Ricci
curvature bounded below by K and diameter bounded above by D, is precompact for the
Gromov-Hausdorff topology (Theorem 2.4.2). Let us recall that the Gromov-Hausdorff
distance between compact metric spaces (X,dX) and (Y, dY ) is dGH((X,dX), (Y,dY )) :=
inf dH,Z(i(X), j(Y )), where the infimum is taken over the triples (Z, i, j) such that Z is a
metric space, i : X ↪→ Z, j : Y ↪→ Z are isometric embeddings, and dH,Z stands for the
Hausdorff distance in Z.

In other words, Gromov’s precompactness theorem states that from any sequence
of elements in M(n,K,D), one can extract a subsequence converging, in terms of the
Gromov-Hausdorff distance, to a metric space. This result extends in an appropriate way to
the setM(n,K) of all complete n-dimensional Riemannian manifolds with Ricci curvature
bounded below by K, see [Gro07, Th. 5.3].

Metric spaces arising as such limits of manifolds, nowadays called Ricci limits, are in
general not Riemannian manifolds. Nevertheless, they possess some structural properties
which were investigated at the end of the nineties by J. Cheeger and T. Colding [CC97,
CC00a, CC00b]. These two authors proved that several results from the smooth world of
Ricci curvature bounded below hold also on Ricci limits. Indeed, as a suitable consequence
of Ascoli-Arzelà theorem, it is always possible to construct a limit measure ν∞ on any
such space X = limiMi so that the Gromov-Hausdorff convergence Mi → X upgrades
to the measured Gromov-Hausdorff convergence, due to K. Fukaya [F87], for which we
have voli(Bi) → ν∞(B∞) whenever Bi → B∞ in the Gromov-Hausdorff sense for any
ball B∞ with ν∞-negligible boundary. In particular, the Bishop-Gromov theorem passes
automatically to the limit, and J. Cheeger and T. Colding also proved that the local L2

Poincaré inequality is still true on Ricci limits.
Driven by these observations, they asked the following question [CC97, Appendix 2]

which was also stated in [Gro91, p. 84]: calling synthetic a set of conditions defining a class
of metric spaces without refering to any notion of smoothness, can one provide a synthetic
notion of having Ricci curvature bounded below?

Note that in the case in which Ricci curvature is replaced by sectional curvature, the
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theory of Alexandrov spaces [Ale51, Ale57, BGP92] provides an interesting answer to this
question: indeed, the class A(K,N) of Alexandrov spaces with dimension bounded above
by N and curvature bounded below by K is defined in a synthetic way, and it contains
the Gromov-Hausdorff closure S(K,N) of the collection of Riemannian manifolds with
dimension lower than N and sectional curvature bounded below by K. Whether the
inclusion S(K,N) ⊂ A(K,N) is strict or not is still an open question, the conjecture being
that it is not [Kap05].

A first natural direction towards an answer to Cheeger-Colding’s question could have
been provided by the class of PI doubling spaces (Definition 2.2.17), namely those metric
measure spaces (X,d,m) satisfying the local doubling condition and a local Poincaré
inequality. In his seminal paper [Ch99], J. Cheeger constructed a first-order weak differential
structure on such spaces based on the following functional:

Ch(f) = inf
fn→f

{
lim inf
n→+∞

ˆ
X
|∇fn|2 dm

}
∈ [0,+∞]

defined for any f ∈ L2(X,m), where the infimum is taken over all the sequences (fn)n ⊂
L2(X,m) ∩ Lip(X,d) such that ‖fn − f‖L2(X,m) → 0 and where |∇fn| is the slope of fn.
Setting H1,2(X,d,m) := {Ch < +∞} as an extension of the classical Sobolev space H1,2

to this setting, J. Cheeger showed that for functions f ∈ H1,2(X,d,m) it is possible to
define a suitable notion of norm of the gradient, called minimal relaxed slope, and denoted
by |∇f |∗. Out of this, he built a vector bundle TX̃ → X̃ over a set of full measure X̃ ⊂ X
with possibly varying dimension of the fibers. Local trivializations of this bundle are
given by uples (U, f1, . . . , fk) where U ⊂ X̃ is Borel and f1, . . . , fk : U → R are Lipschitz
maps, and any Lipschitz function f : X → R admits on U a differential representation
df =

∑k
i=1(αi, fi), the Borel functions αi being understood as the local coordinates of df

(Theorem 2.2.18), and the pairs (αi, fi) being usually denoted in the more intuitive manner
αi dfi.

However, the class of PI doubling spaces is too large to be regarded as a synthetic
definition of Ricci curvature bounded below: for instance, it was proved by N. Juillet
[Ju09] that for any n ∈ N\{0}, the n-dimensional Heisenberg group does not belong to
the Gromov-Hausdorff closure ofM(n,K) even though they do belong to the class of PI
doubling spaces.

Nevertheless, what follows from this discussion is that any tentative synthetic definition
of Ricci curvature bounded below should single out a subclass of the collection of PI
doubling spaces.

RCD∗(K,N) spaces
R standing for “Riemannian”, C for “curvature” andD for “dimension”, the RCD∗(K,N)

condition for complete, separable, geodesic metric measure spaces (X,d,m) amounts to
the seminal works of K.-T. Sturm [St06a] and J. Lott and C. Villani [LV09] in which were
introduced similar but slightly different conditions giving a meaning to Ricci curvature
bounded below and dimension bounded above on such spaces and denoted by “CD(K,N)”.
Note that in the second cited article only the cases CD(K,∞) and CD(0, N) with N < +∞
were considered. Afterwards, two main requirements were added to the theory. The first
one is the CD∗ condition, due to K. Bacher and K.-T. Sturm [BS10], which ensures better
tensorization and globalization properties of the identified spaces. The second one is the
infinitesimally Hilbertian condition added to the CD(K,∞) condition by L. Ambrosio,
N. Gigli and G. Savaré in [AGS14b], providing the class of RCD(K,∞) spaces which rules
out non-Riemannian Finsler structures. The addition of the infinitesimally Hilbertian
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condition to the CD(K,N) condition with N < +∞ was suggested by N. Gigli in [G15,
p. 75], and provides especially a splitting theorem similar to Cheeger-Gromoll’s original
result [G13].

The original formulation of the CD and CD∗ conditions involves optimal transportation,
and gradient flow theory for the infinitesimally Hilbertian condition, but we can now adopt
the equivalent characterization provided a posteriori by M. Erbar, K. Kuwada and K.-
T. Sturm [EKS15] based on Γ-calculus and built upon the study of the infinite dimensional
case RCD∗(K,∞) carried out by L. Ambrosio, N. Gigli and G. Savaré [AGS15], saying
that a space (X,d,m) is RCD∗(K,N) if:

(i) balls grow at most exponentially i.e. m(Br(x̄)) ≤ c1 exp(c2r
2) for some (and thus

any) x̄ ∈ X;

(ii) Cheeger’s energy is quadratic (and this it provides a strongly regular Dirichlet form
with a Γ operator);

(iii) the Sobolev-to-Lipschitz property holds, namely any f ∈ H1,2(X, d,m) with Γ(f) ≤ 1;
m-a.e. admits a 1-Lipschitz representative;

(iv) Bochner’s inequality

1
2∆Γ(f)− Γ(f,∆f) ≥ (∆f)2

N
+KΓ(f)

holds in the class of functions f ∈ Lipb(X,d) ∩ H1,2(X,d,m) such that ∆f ∈
H1,2(X,d,m) which, a posteriori, turns out to form an algebra [S14].

Note that quadraticity of Ch allows us to adopt the standard definition of Laplacian,
namely

D(∆) := {f ∈ H1,2(X,d,m) : there exists h ∈ L2(X,m) such thatˆ
X

Γ(f, g) dm = −
ˆ
X
hg dm for all g ∈ H1,2(X,d,m) }

and ∆f := h for any f ∈ D(∆).
The RCD∗(K,N) condition holds on n-dimensional Riemannian manifolds (M, g) with

Ricg ≥ Kg and n ≤ N and is stable with respect to measured Gromov-Hausdorff conver-
gence. Moreover, the collection of RCD∗(K,N) spaces is a subclass of the set of PI doubling
spaces, and it has been shown to contain the Gromov-Hausdorff closure ofM(n,K) for any
n ≤ N . For these reasons, over the past few years the collection of RCD∗(K,N) spaces
has appeared as an interesting class of possibly non-smooth spaces on which one could
study Riemannian type properties, strictly contained in the class of CD∗(K,N) spaces.
Chapter 2 is devoted to a detailed review on RCD∗(K,N) spaces and on their properties,
starting from the optimal transportation context from which it originates.

Weighted Sobolev inequalities via patching
To test the validity of the RCD∗(K,N) condition as a good synthetic notion of Ricci

curvature bounded below and dimension bounded above, many works in the recent years
have aimed at proving classical results from Riemannian geometry on RCD∗(K,N) spaces.
N. Gigli’s splitting theorem [G13] and the Li-Yau Harnack inequality established in this
context by R. Jiang, L. Huaiqian and H. Zhang [JLZ16] are particularly relevant examples.
But, some results hold true in the broader context of CD(K,N) spaces, for which the Ch
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energy might not be quadratic and the synthetic notion of Ricci curvature bounded below
by K and dimension bounded above by N is expressed in terms of K-convexity of the
Rényi entropy along Wasserstein geodesics, see Section 2.1 for details. For instance, the
Bishop-Gromov inequality and the local L2 Poincaré inequality hold true on CD(K,N)
spaces, see Theorem 2.1.14 and Theorem 2.1.16 respectively. Therefore, any result from
Riemannian geometry whose proof requires only these two ingredients can be performed
on CD(K,N) spaces, provided the smooth structure of the spaces can be forgotten in the
proof.

We follow this path in Chapter 3 to establish weighted Sobolev inequalities on CD(0, N)
spaces satisfying a suitable growth condition at infinity. The content of this chapter is
taken from the submitted note [T17a] and the work in progress [T17b]. Our approach
is based on an abstract patching procedure due to A. Grigor’yan and L. Saloff-Coste,
which permits to glue local Sobolev inequalities into a global one via a discrete Poincaré
inequality formulated on a suitable discretization of the space [GS05]. The validity of
the local Sobolev inequalities follows from the doubling and Poincaré properties, and the
discrete Poincaré inequality requires the additional volume growth condition.

Such a procedure was already performed in 2009 by V. Minerbe on Riemannian manifolds
with Ricci curvature bounded below [Mi09]. Let us spend a few words on V. Minerbe’s
motivation in this context. It is well-known that any n-dimensional non-negatively Ricci
curved Riemannian manifold (M, g) with volume measure vol having maximal volume
growth, i.e. such that vol(Br(x))r−n tends as r → +∞ to some positive number Θ > 0 for
some (and then any) x ∈ X, satisfies the classical global Sobolev inequality:

sup
{(ˆ

M
|f |2n/(n−2) dvol

)1−2/n (ˆ
M
|∇f |2 dvol

)−1
: f ∈ C∞(M)\{0}

}
< +∞.

However, this inequality is not satisfied if the manifold has non-maximal volume growth.
V. Minerbe’s idea consisted in putting a weight on the volume measure vol to absorb the
lack of maximal volume growth, providing an adapted weighted Sobolev inequality from
which he deduced several rigidity results. H.-J. Hein subsequently extended Minerbe’s
result to smooth Riemannian manifolds with an appropriate polynomial growth condition
and quadratically decaying lower bound on the Ricci curvature, deducing existence results
and decay estimates for bounded solutions of the Poisson equation [He11].

We show that this procedure also applies on CD(0, N) spaces, and deduce from our
weighted Sobolev inequality a weighted Nash inequality and a uniform control on the heat
kernel of the associated weighted structure.

Weyl’s law on RCD∗(K,N) spaces
Coming back to RCD∗(K,N) spaces, until recently the best structural result in this

context was the so-called Mondino-Naber decomposition stating that any RCD∗(K,N)
space (X,d,m) could be written, up to a m-negligible set, as a countable partition of
bi-Lipschitz charts (Ui, ϕi) where ϕi(Ui) is a Borel set of Rki and the uniformly bounded
dimensions ki ≤ N might be varying [MN14]. Further independent works subsequently
proved the absolute continuity of m Ui with respect to the corresponding Hausdorff
measure H ki [GP16, DePhMR16, KM17]. For Ricci limits, it was known from the work of
T. Colding and A. Naber [CN12] that the dimensions ki are all the same. This result was
conjectured to hold true also on general RCD∗(K,N) spaces, and a recent work of E. Brué
and D. Semola solved positively this conjecture [BS18]. To be precise, it is by now known
that for some n =: dimd,m(X), we have m(X\Rn) = 0 where the so-called set of n-regular
points Rn is defined to be the set of points x ∈ X for which the limit of the sequence of



10 CHAPTER 1. INTRODUCTION

rescalings {(X, r−1d,m(Br(x))−1m, x)}r>0 is the Euclidean space (Rn, deucl, Ĥ n, 0n) where
Ĥ n = H n/ωn where ωn is the volume of the n-dimensional Euclidean unit ball.

Motivated by this conjecture, we studied compact RCD∗(K,N) spaces (X,d,m) from
the point of view of spectral theory. As for closed Riemannian manifolds, the doubling and
Poincaré properties ensure the existence of a discrete spectrum for the Laplace operator ∆
of (X, d,m) which can be represented by a non-decreasing sequence 0 = λ0 < λ1 ≤ λ2 ≤ . . .
such that λi → +∞ when i → +∞. A classical result of geometric analysis is Weyl’s
asymptotic formula, which states that for any closed n-dimensional Riemannian manifold
(M, g) one has

N(λ)
λn/2

∼ ωn
(2π)nL

n(Ω) λ→ +∞

where N(λ) = ]{i ∈ N : λi ≤ λ} and Ln(Ω) is the n-dimensional Lebesgue measure of Ω.
We proved in the article [AHT18] that this result holds true also on (X,d,m), but

with the Lebesgue measure appearing in the above right-hand side replaced by the top-
dimensional Hausdorff measure appearing in Mondino-Naber’s decompotion. To this
purpose, we establish a pointwise convergence result for the heat kernels of a measured
Gromov-Hausdorff converging sequence of RCD∗(K,N) spaces. We present these results
in Chapter 4: our presentation slightly differs from the published paper, since we can take
into account the simplifications stemming from Brué-Semola’s theorem.

Our proof is based on Karamata’s theorem, which rephrases Weyl’s law into a short-time
asymptotic formula for the trace of the heat kernel of (X,d,m), namely

ˆ
X
p(x, x, t)dm(x) ∼ (4πt)−n/2Hn(Rn) t→ 0

where n = dimd,m(X) is the dimension of (X,d,m). For m-a.e. point x ∈ X, the rescaled
spaces (X, r−1d,m(Br(x))−1m, x) converge to (Rn,deucl, ω−1

n L n, 0) when r → 0, and
the heat kernels pr of these rescaled spaces satisfy the scaling formula p

√
t(x, x, 1) =

m(B√t(x))p(x, x, t) for any t > 0. Let us provide an informal computation in order to
make clear the idea of our proof, with pe denoting the heat kernel on Rn:

lim
t→0

tn/2
ˆ
X
p(x, x, t) dm(x) = lim

t→0

ˆ
X
m(B√t(x))p(x, x, t) tn/2

m(B√t(x)) dm(x)

= lim
t→0

ˆ
X
p
√
t(x, x, 1) tn/2

m(B√t(x)) dm(x)

=
ˆ
X

(
lim
t→0

p
√
t(x, x, 1)

)
ω−1
n

(
lim
t→0

ωnt
n/2

m(B√t(x))

)
dm(x)

=
ˆ
X
pe(0, 0, 1) dH n

dm (x) dm(x)

= (4π)−n/2H n(X).

Our proof consists in turning this informal computation in rigorous terms. Note that
in order to justify the third equality we assume a criterion which turns out to be satisfied
on all known examples of RCD∗(K,N) spaces (and, in particular, in all doubling spaces).
The fourth equality requires a careful study of the “reverse” absolute continuity property
H n � m which is achieved using a reduced n-dimensional regular set.

Embedding RCD∗(K,N) spaces into a Hilbert space
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In the last chapter of this thesis, we present the results of the paper [AHPT17] which
shall be finalized this summer (after adding a few more extensions, but the paper is already
essentially complete).

In 1994, P. Bérard, G. Besson and S. Gallot studied the asymptotic properties of
a family (Ψt)t>0 of embeddings of a closed n-dimensional Riemannian manifold (M, g)
into the space of square-integrable real-valued sequences [BBG94]. Constructed with the
eigenvalues and eigenfunctions of the Laplace-Beltrami operator, these embeddings tend
to be isometric when t ↓ 0, in the sense that they provide a family of pull-back metrics
(gt)t>0 such that

gt = g +A(g)t+O(t2) t ↓ 0 (1.0.1)
where the smooth function A(g) involves the Ricci and scalar curvatures of (M, g).

In [AHPT17], we start the study of an extension of this result, replacing (M, g) with a
generic compact RCD∗(K,N) space (X, d,m). For convenience, we work with the family of
embeddings Φt : x 7→ p(x, ·, t), t > 0, which take values in the space L2(X,m). Thanks to
the heat kernel expansion (4.0.21), this approach is equivalent to Bérard-Besson-Gallot’s
one and it allows us to refine the blow-up techniques which were already used in [AHT18].
Note that we provide in Proposition 5.2.1 a first-order differentiation formula for the
functions Φt which does not appear in [AHPT17].

To provide a meaningful version of (1.0.1) on (X,d,m), we use N. Gigli’s formalism
[G18], and in particular the Hilbert module L2T (X,d,m) which plays for (X,d,m) the
role of an abstract space of L2-vector fields, to provide a genuine notion of RCD metrics
on RCD∗(K,N) spaces. Shortly said, RCD metrics are functions ḡ : L2T (X,d,m) ×
L2T (X,d,m) → L1(X,m) retaining the main algebraic features of Riemannian metrics
seen as functions C∞(TM)× C∞(TM)→ C∞(M). Among these objects, we single out a
canonical element g which is characterized by the propertyˆ

X
g(∇f1,∇f2) dm =

ˆ
X

Γ(f1, f2) dm ∀f1, f2 ∈ H1,2(X,d,m),

where the objects∇f1,∇f2 are the analogues of L2 gradient vector fields in Gigli’s formalism
- note that one can equivalently understand these objects as L2-derivations, in which case
we have g(V, V ) = |V |2 for any V ∈ L2T (X,d,m) where |V | is the local norm of the
derivation V , see Remark 5.2.11.

Afterwards we show that for any t > 0, an integrated version of the pointwise expression
of the Riemannian pull-back metric gt written in the appropriate language on (X,d,m),
namelyˆ
X

Φ∗t gL2(V1, V2)(x) dm(x) =
ˆ
X

(ˆ
X
〈∇xp(x, y, t), V1(x)〉〈∇xp(x, y, t), V2(x)〉 dm(y)

)
dm(x),

∀V1, V2 ∈ L2T (X,d,m),

defines a RCD metric gt on (X,d,m).
A natural partial order ≤ holds on the set of RCD metrics of (X,d,m) allowing to

define on the space of metrics h̄ such that h̄ ≤ Cg for some C > 0 a notion of L2-weak
convergence ḡi → ḡ by requiring that ḡi(V, V ) → ḡ(V, V ) holds in the weak topology of
L1(X,m) for any V ∈ L2T (X,d,m). To define L2-strong convergence, we rely again on
Gigli’s formalism, this time using the tensor products

L2T (X,d,m)⊗ L2T (X,d,m) and L2T ∗(X,d,m)⊗ L2T ∗(X,d,m)

which are easily shown to be dual one to another. Any RCD metric ḡ is then associated to
a (0, 2) tensor ḡ, and we can define the local Hilbert-Schmidt norm | · |HS of any (difference
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of) tensors by duality with the Hilbert-Schmidt norm considered in [G18]. Then L2-strong
convergence ḡi → ḡ is defined as L2-weak convergence plus convergence of the norms
‖|ḡi − ḡ|HS‖HS → 0.

With these basic definitions in hand, we prove L2-strong convergence results for suitable
rescalings sctgt of gt. Two natural scalings can be chosen. The first one is sct ≡ t(n+2)/2

with n = dimd,m(X), in direct analogy with the Riemannian context, but the most natural
one in the RCD∗(K,N) context is sct = tm(B√t(·)), which takes into account the fact
that RCD∗(K,N) spaces are indeed closer to weighted Riemannian manifolds. Thus we
prove the L2 strong convergence tm(B√t(·)) → cng when t ↓ 0, where cn is a positive
dimensional constant. We also prove that t(n+2)/2g → Fng L

2-strongly when t ↓ 0 where
Fn is a m-measurable function which involves notably the inverse of the density of m with
respect to H n; as shown in [AHT18], this inverse is well-defined on a suitable reduced
regular set R∗n whose complement is m-negligible in X.

Let us explain in few words the strategy of the proofs. First of all, one can show that the
L2-weak convergence ĝt := tm(B√t(·))gt → cng follows from the property

´
A ĝt(V, V ) dm→

cn
´
A g(V, V )2 dm for any Borel set A ⊂ X and any given V ∈ L2T (X,d,m). By Fubini’s

theorem,
ˆ
A
ĝt(V, V ) dm =

ˆ
X

ˆ
A
tm(B√t(x))〈∇xp(x, y, t), V (x)〉2 dm(x) dm(y),

and therefore we are left with understanding the behavior of
ˆ
A
tm(B√t(x))〈∇xp(x, y, t), V (x)〉2 dm(x) (1.0.2)

when t ↓ 0 for m-a.e. y ∈ X, a careful application of the dominated convergence theorem
leading eventually to the result. To proceed, we introduce a notion of harmonic points z of
L2-vector fields which allows us to replace V in (1.0.2) by ∇f for some f ∈ H1,2(X,d,m)
such that for any tangent space (Y,dY ,mY , y) = limri→0(X, r−1

i d,m(Bri(z))−1m, z), the
rescaled functions fri,z ∈ H1,2(X, r−1

i d,m(Bri(z))−1m) converge in some suitable sense
(H1,2

loc -strongly) to a Lipschitz and harmonic function f̂ : Y → R. We show that the set
H(V ) of such points has full measure in X. Assuming without any loss of generality
that harmonic points are also Lebesgue points of |∇f |2 (it will be part of the definition),
we can restrict the attention to points z ∈ H(V ) ∩ Rn for which the following heuristic
computation can be made rigorous (where dt :=

√
t
−1d, m(B√t(z))−1m, and p̂e is the heat

kernel of (Rn,deucl, Ĥ n)): for any L > 0,
ˆ
BL
√
t(z)

tm(B√t(x))〈∇xp(x, z, t),∇f(x)〉2 dm(x)

=
ˆ
B

dt
L (z)

mt(Bdt
1 (x))〈∇xp

√
t(x, z, 1),∇f√t,z(x)〉2 dmt(x)

t↓0−−→
ˆ
BL(0n)

Ĥ n(B1(x))〈∇xp̂e(x, 0n, 1),∇f̂(x)〉2 dH n(x)

= cn(L)
n∑
j=1

∣∣∣∣∣ ∂f̂∂xj
∣∣∣∣∣
2

= cn(L)(|∇f |2)∗(z)

for some constant cn(L) > 0 which is such that cn(L) → cn when L → +∞ and where
(|∇f |2)∗(z) = limr→0

ffl
Br(z) |∇f |

2 dm is well-defined as z is a Lebesgue point of |∇f |2.
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This computation is at the core of Proposition 5.3.9 which contains most of the technical
ingredients leading to the convergenceˆ

X

ˆ
A
tm(B√t(x))〈∇xp(x, y, t), V (x)〉2 dm(x) dm(y)→ cn

ˆ
A
|V |2 dm t→ 0.

In order to improve the convergence ĝt → cng from L2-weak to L2-strong, we need to
prove convergence for the Hilbert-Schmidt local norm which in our case can be translated
into the following estimate:

lim sup
t↓0

ˆ
X

(
tm(B√t(x))

)2
∣∣∣∣ˆ
X
∇xp(x, y, t)⊗∇xp(x, y, t) dm(y)

∣∣∣∣2
HS

dm(x) ≤ nc2
nm(X).

The proof of this estimate requires a more delicate blow-up procedure. We refer to Section
5.4 for the details. We prove the L2-weak/strong convergence g̃t := t(n+2)/2gt → Fng in a
similar way.

Finally, building on stability results of [AH17a] and extending classical estimates
on eigenvalues and eigenfunctions of the Riemannian Laplace-Beltrami operator to the
RCD∗(K,N) setting, we show that for any measured Gromov-Hausdorff convergent se-
quence of compact RCD∗(K,N) spaces (Xj ,dj ,mj) → (X,d,m) and any tj → t > 0, we
have Gromov-Hausdorff convergence Φtj (Xj)→ Φt(X), where the distances are induced
by the corresponding L2 scalar products.

Further directions and open questions
The work described in this introduction leads to several interesting questions which

could be future research projects.
A first issue concerns applications of the weighted Sobolev inequalities we have es-

tablished on CD(0, N) spaces. For instance, is there a way to exploit it in order to get
existence, boundedness and decay estimates of the solutions of Poisson’s equation, as done
by H.-J. Hein in [He11] on Riemannian manifolds?

A second issue concerns Weyl’s law. In 1980, V. Ivrii proved [Ivr80] that for any
compact Riemannian manifolds (M, g) with non-empty boundary, under a rather mild
assumption,

N(λ) = ωn
(2π)nH n(M)λn/2 ± π

2
ωn−1

(2π)n−1 H n−1(∂M)λ(n−1)/2 + o(λ(n−1)/2) λ→ +∞.

(1.0.3)

An appropriate notion of boundary in RCD∗(K,N) spaces is still a topic of research.
However, the subclass of RCD∗(K,N) spaces made of stratified spaces [BKMR18] which
are, loosely speaking, manifolds with conical singularities of codimension at least two,
might suit well a study of further terms in the expansion (1.0.3).

Finally, the work [AHPT17] opens several questions. The first one is: how to turn the
RCD metrics gt into distances dt converging to d when t ↓ 0? A possible way would be
to study the functionals Cht(f) :=

´
X

´
X |〈∇xp(x, y, t),∇f(x)〉|2 dm(y) dm(x) from which

one can define the intrinsic pseudo-distances: for any y, z ∈ X,

dt(y, z) := sup{|f(y)− f(z)| : f ∈ Lip(X) s.t.
ˆ
X
|〈∇xp(x, ·, t),∇f(x)〉|2 dm ≤ 1

for m-a.e. x ∈ X}.

It seems doable to show that for some constant C depending only on K and N , we have
dt ≤ Cd for any t > 0 sufficiently small. However, in our attempts to prove a reverse
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estimate, we need a bound from below for the norm of the gradient of the heat kernel. It
does not seem that such a bound has been studied yet, not even on Riemannian manifolds.
Another approach involving a family of Wasserstein distances W2,t suitable to define the
distances dt has been proposed by L. Ambrosio.

A second question is: we know that Φt provides an homeomorphism from X to L2(X,m),
but to what extent the family (gt)t provides a regularization of the space (X, d,m)? Indeed,
as the heat kernel has nice regularizing properties on functions (L1 to C∞ on Riemannian
manifolds, L1 to Lipschitz on RCD∗(K,N) spaces), one motivation for the extension of
Bérard-Besson-Gallot’s theorem to the setting of RCD∗(K,N) spaces was to produce an
approximation scheme of any compact RCD∗(K,N) space (X,d,m) with more regular
spaces (X, dt,m), say spaces which can be embedded by bi-Lipschitz maps into the Euclidean
space. Note that another approximation has been proposed by N. Gigli and C. Mantegazza
in [GM14], however M. Erbar and N. Juillet proved on cones that it has not the desired
regularizing properties [EKS16]. In any case, it may be interesting to compare the two
approaches: indeed, on Riemannian manifolds, Bérard-Beeson-Gallot’s family of metrics is
tangent to the gradient flow of the Hilbert-Einstein functional, whereas Gigli-Mantegazza’s
family is, in a weak sense, tangent to the Ricci flow.

Finally, a last research direction could be to start from the Riemannian expansion
(1.0.1) (or (5.1.6)) together with the notion of measure-valued Ricci tensor Ricd,m proposed
by B.-X. Han [Ha17] to provide a notion of scalar curvature bounded below/above on
compact RCD∗(K,N) spaces (X,d,m):

lim inf
t↓0

2
(

3 ĝt − g
t

m + Ricd,m

)
≥ Km,

lim sup
t↓0

2
(

3 ĝt − g
t

m + Ricd,m

)
≤ Km.



Chapter 2

Preliminaries

This first chapter is dedicated to the background knowledge on the RCD theory.

2.1 Curvature-dimension conditions via optimal transport
In this section, we present Sturm’s and Lott-Villani’s optimal transport curvature-dimension
conditions, nowadays known as CD(K,N) conditions where C stands for curvature, D for
dimension, K ∈ R for a lower bound on the curvature and N ∈ [1,+∞] for an upper bound
on the dimension. According to M. Ledoux, the first occurence of the notation “CD(K,N)”
goes back to [Ba91] in which D. Bakry denoted a curvature-dimension condition previously
introduced by D. Bakry himself and M. Émery [BE85] in the setting of Markov diffusion
operators. We will return on Bakry-Émery’s notion in Section 2.3.

Preliminaries in optimal transport theory
Let us start with recalling some notions from optimal transport theory. We refer to

[Vi03, Ch. 7] or [Vi09, Ch. 6] for a more detailed treatement and proofs of the statements.
Let (X,d) be a Polish (meaning complete and separable) metric space. We denote by

P(X) the set of probability measures on (X,d), i.e. positive Borel measures µ such that
µ(X) = 1.

If (X,d) is compact, we equip P(X) with the Wasserstein distance W2 defined by:

W2(µ0, µ1) := inf
π∈TP(µ0,µ1)

(ˆ
X

d2(x0, x1) dπ(x0, x1)
)1/2

∀µ0, µ1 ∈ P(X),

where TP(µ0, µ1) is the set of transport plans between µ0 and µ1, namely probability
measures π ∈ P(X×X) with first marginal µ0 and second marginal µ1. The above infimum
is always achieved, and any minimizer is called optimal transport plan between µ0 and µ1.
The distance W2 metrizes the weak topology. Moreover, the space (P(X),W2) is compact,
with diameter equals to the diameter of X, as one can easily see from the embedding
X 3 x 7→ δx ∈ P2(X).

If (X,d) is noncompact, without any further assumptions on µ0 and µ1, the quantity
W2(µ0, µ1) might be infinite, as one can check by applying Kantorovitch duality formula
([Vi03, Th. 1.3], [Vi09, Th. 5.10]) to (X,d) = (R,deucl) with µ0 = | · |−21(−∞,−1] and
µ1 = | · |−21[1,+∞). Therefore, we restrict W2 to the set P2(X) of probability measures
µ with finite second moment, meaning that

´
X d(x, x0)2 dµ(x) < +∞ for some x0 ∈ X.

It can be easily checked that W2 takes only finite values on P2(X) × P2(X). Note that
having finite second moment does not depend on the base point x0, as one can immediately
verified from the triangle inequality.

15



16 CHAPTER 2. PRELIMINARIES

When (X, d) is compact, P2(X) and P(X) coincide. Therefore, regardless of compact-
ness properties of (X,d), we will always consider W2 defined on P2(X).

Let us finally point out that the Polish structure of (X,d) transfers to the metric
space (P2(X),W2), and that in the non-compact case, the W2-convergence µn → µ is
equivalent to weak convergence of µn to µ together with convergence of the second moments´
X d(x, xo)2 dµn(x)→

´
X d(x, xo)2 dµ(x) taken with respect to any fixed base point xo ∈ X.

Geodesics
By definition, a geodesic on (X,d) is a continuous curve γ : [0, 1] → X such that

d(γs, γt) = |s− t|d(γ0, γ1) for any s, t ∈ [0, 1]. The set of all geodesics on (X, d) is denoted
by Geo(X,d), or more simply Geo(X) whenever the distance d is clear from the context.
Any generic geodesic on (X,d) is often called a d-geodesic. Note that if (X,d) is a
Riemannian manifold equipped with its canonical Riemannian distance, such geodesics
γ coincide with smooth constant speed curves which locally minimize the energy (or
equivalently, the length) functional, see [GHL04, Section 2.C.3].

The metric space (X,d) is called geodesic whenever for any x, y ∈ X there exists
a geodesic γ such that γ0 = x and γ1 = y. If (X,d) is geodesic, then (P2(X),W2) is
geodesic too. In particular, if (M, d) is a Riemannian manifold equipped with its canonical
Riemannian distance, then (P2(M),W2) is geodesic. Any W2-geodesic is sometimes also
called Wasserstein geodesic. Finally, let us recall the following important proposition
(which is a consequence of a more general characterization of Wasserstein geodesics, see
[AG13, Th. 2.10] for instance).

Proposition 2.1.1. Let (X,d) be a Polish geodesic space, µ0, µ1 ∈ P2(X) and (µt)t∈[0,1]
be the Wasserstein geodesic between µ0, µ1. Then

supp(µt) ⊂ {γ(t) : γ ∈ Geo(X) s.t. γ0 ∈ supp(µ0) and γ1 ∈ supp(µ1)}.

Reference measure
Throughout the whole thesis, we will deal with metric measure spaces, namely triples

(X, d,m) where (X, d) is a metric space, and m is a non-negative Borel measure on (X, d)
which will always be assumed finite and non-zero on balls with finite and non-zero radius.

We denote by Pa2 (X,m) the set of probability measures µ on (X, d) which are absolutely
continuous with respect to m, i.e. such that µ(A) = 0 whenever m(A) = 0 for any Borel
set A ⊂ X. Recall that for any µ ∈ Pa2 (X,m), the Radon-Nikodym theorem ensures the
existence of a m-measurable function ρ : X → [0,+∞) called density of µ with respect to
m such that µ(A) =

´
A ρ dm for any Borel set A ⊂ X.

Displacement convexity
In [Mc97], R. McCann studied the existence of unique minimizers for energy functionals

modelling a gas in Rn interacting only with itself. Such functionals, defined on P(Rn),
required an appropriate notion of convexity in order to be treated by classical means of
convex analysis. Indeed, for the simple example

F (µ) =
¨

R×R
|x− y|2 dµ(x) dµ(y),

whose convex interaction density A(x) = |x|2 suggests a convex behavior of the functional,
one can check that F ((1− t)δ0 + tδ1) = 2t(1− t) for any t ∈ [0, 1], and the map t 7→ 2t(1− t)
is concave. In other words, F is not convex for the traditional linear structure of P(Rn).

To deal with this difficulty, R. McCann proposed to interpolate measures in P(Rn)
- to be fair, in Pa2 (Rn), the reference measure being tacitly the n-dimensional Lebesgue
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measure - using Wassertein geodesics, and to study convexity of functionals F along these
geodesics. This led him to introduce the crucial notion of displacement convexity, that we
phrase here in the context of a general metric measure space (X,d,m).

Definition 2.1.2 (displacement convexity). We say that a functional F : Pa2 (X,m) →
R ∪ {+∞} is displacement convex if for any W2-geodesic (µt)t∈[0,1],

F (µt) ≤ (1− t)F (µ0) + tF (µ1) ∀t ∈ [0, 1].

As a matter of fact, R. McCann showed that any internal-energy functional:

F (µ) =
ˆ
Rn
A

( dµ
dL n

)
dL n ∀µ ∈ Pa2 (Rn),

is displacement convex as soon as its density A : [0,+∞)→ R ∪ {+∞} satisfies

λ 7→ λnA(λ−n) be convex non-increasing on (0,+∞) and A(0) = 0.

The set of such functions A is called the n-dimensional displacement convex class, and is
usually denoted by DCn.

Distorted displacement convexity
In order to extend the Euclidean Borell-Brascamp-Lieb inequality to complete connected

Riemannian manifolds, D. Cordero-Erausquin, R. McCann and M. Schmuckenschläger
introduced in [CMS01] the following so-called distortion coefficients.

Definition 2.1.3. Let (M, g) be a smooth Riemannian manifold with canonical volume
measure vol. Then the distortion coefficients of (M, g) are the non-negative functions
{βt : M ×M → R}t∈[0,1] defined as follows:

• set β1 constantly equal to 1;

• for t ∈ (0, 1), for any x, y ∈M ,

(i) if x and y are joined by a unique geodesic, set

βt(x, y) := lim
r→0

vol(Zt(x,Br(y)))
vol(Btr(y))

where Zt(x,Br(y)) is the set of t-barycenters between {x} and Br(y), namely⋃
ỹ∈Br(y)

{z ∈M : d(x, z) = td(x, ỹ) and d(z, ỹ) = (1− t)d(x, ỹ)},

(ii) if x and y are joined by several geodesics, set

βt(x, y) := inf
γ

lim sup
s→1−

βt(x, γs)

where the infimum is taken over all geodesics γ such that γ0 = x and γ1 = y;

• for any x, y ∈M , set β0(x, y) := lim
t→0

βt(x, y).

Note that βt(x, y) = +∞ if and only if x and y are conjugate points.
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The physical meaning of this distortion coefficients is explained at length in [Vi09,
p. 394-395]. Armed with it, one can deal with energy functionals defined over any non-flat
Riemannian manifold, by upgrading displacement convexity into a notion taking into
account the distorted geometry of the manifold. This is the content of the next definition,
which we write directly in the context of a general metric measure space (X,d,m), and
where β stands for a family of non-negative functions {βt : X ×X → R}t∈[0,1], coinciding
with the above coefficients when X is a Riemannian manifold.

Definition 2.1.4 (distorted displacement convexity). Let F : Pa2 (X,m)→ R ∪ {+∞} be
an internal-energy functional with continuous and convex density A satisfying A(0) = 0.
We say that F is displacement convex with distortion β if for any W2-geodesic (µt)t∈[0,1],
there exists an optimal transport plan π between µ0 and µ1, such that

F (µt) ≤(1− t)
ˆ
X×X

A

(
ρ0(x0)

β1−t(x0, x1)

)
β1−t(x0, x1) dπµ0(x1) dm(x0) (2.1.1)

+ t

ˆ
X×X

A

(
ρ1(x1)

βt(x0, x1)

)
βt(x0, x1) dπµ1(x0) dm(x1) (2.1.2)

for all t ∈ [0, 1], where ρ0 (resp. ρ1) is the density of µ0 (resp. µ1) with respect to m, and
πµ0 (resp. πµ1) denotes the disintegration w.r.t. µ0 (resp. µ1) of the optimal transport plan
π between µ0 and µ1.

Remark 2.1.5. Introducing for all t ∈ [0, 1] the distorted functionals

F̃ βtπ (µ) :=
ˆ
X×X

A

( 1
βt(x0, x1)

dµ
dm

)
βt(x0, x1) dπµ0(x1) dm(x0) ∀µ ∈ Pa2 (X,m)

and

F̃ βtπ̌ (µ) :=
ˆ
X×X

A

( 1
βt(x0, x1)

dµ
dm

)
βt(x0, x1) dπµ1(x0) dm(x1) ∀µ ∈ Pa2 (X,m),

then (2.1.1) writes in the more concise way

F (µt) ≤ (1− t)F̃ β1−t
π (µ0) + tF̃ βtπ̌ (µ1).

Reference distortion coefficients
For the three reference spaces Rn, Sn and Hn, which have constant Ricci curvature equal

to 0, n− 1 and −(n− 1) respectively, the distortion coefficients are explicitly computable.
Indeed, for Rn, it is immediatly checked that βt ≡ 1 for any t ∈ [0, 1]. Let us explain in
few words how to do the computation on Sn, refering to [GHL04] for the basic notions of
Riemannian geometry involved. We only treat the simple case t ∈ (0, 1], and assume that x
and y are not conjugate, the other cases not being much more difficult to handle, but more
lengthy. As x and y are not conjugate, there exists a unique geodesic γ such that γ(0) = x
and γ(1) = y. Let (e1, . . . , en) be an orthonormal basis of TySn such that en = γ′(1), and
for any t ∈ [0, 1] and 1 ≤ i ≤ n− 1, let Ui(t) ∈ Tγ(t)Sn be the parallel transport of ei along
γ. Then for any 1 ≤ i ≤ n− 1, the unique Jacobi field Ji along γ such that Ji(0) = 0 and
Ji(1) = ei is given by

Ji(t) = sin(td(x, y))
sin(d(x, y)) Ui(t) ∀t ∈ [0, 1].

Then it follows immediately from [Vi09, Prop. 14.18] that

βt(x, y) =
( sin(td(x, y))
t sin(d(x, y))

)n−1
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as J0,1(t) there is precisely the matrix formed by J1(t), . . . , Jn−1(t), tγ′(t).
A similar computation can be performed for Hn, as well as for the scaled sphere with

Ricci curvature constantly equal to (n − 1)K for some 1 6= K > 0 and for the scaled
hyperbolic space with Ricci curvature constantly equal to −(n− 1)K. This motivates the
introduction of the reference coefficients {β(K,N)

t : [0,+∞) → [0,+∞]}t∈[0,1], defined for
any K ∈ R and N ∈ [1,+∞] as follows:

• β(K,N)
0 constantly equal to 1;

• if 0 < t ≤ 1 and 1 < N < +∞,

β
(K,N)
t (α) =



+∞ if K > 0 and α > π,(
sin(t
√
K/(N−1)α)

t sin(
√
K/(N−1))

)N−1
if K > 0 and 0 ≤ α ≤ π,

1 if K = 0,(
sinh(t
√
|K|/(N−1)α)

t sinh(
√
|K|(N−1))

)N−1
if K < 0.

• if 0 < t ≤ 1 and N = 1, modify the above expressions as follows:

β
(K,1)
t (α) =

{
+∞ if K > 0,
1 if K ≤ 0.

• if 0 < t ≤ 1 and N = +∞, modify only

β
(K,∞)
t (α) = e

K
6 (1−t2)α2

.

We will eventually use α = d(x, y).

Sturm and Lott-Villani conditions : infinite dimensional case
Now that the appropriate language is set up, we are in a position to express how to

read curvature using optimal transportation.
Although similar in spirit, Sturm’s and Lott-Villani’s approaches are slightly different;

nevertheless, as we shall explain later, they coincide on a large class of spaces. Let us start
with an informal explanation, inspired by [Vi03, p. 445], to motivate Sturm’s definition.
Let us consider the sphere Sn ⊂ Rn+1, whose curvature is known to be constant and
equal to n− 1, and rescale it to work with the sphere with constant curvature equal to
1. Imagine that a gas made of non-interacting particles is supported in a region U0 of
the sphere, close to the equator but lying completely inside the north hemisphere, and
that we want to let it evolve into, say, the symmetric U1 of this region with respect to
the equator. To do so in the most efficient way (efficiency being measured here by the
Wasserstein distance), particles must follow geodesics from U0 to U1. Starting from U0,
such geodesics first move away one to another, before drawing near back when approching
U1. Consequently, during the transportation of the gas, its denstiy ρ lowers constantly
until an intermediate time before constantly re-increasing. This implies a concave behavior
for the entropy S(ρ) = −

´
ρ log ρ, which measures the spreading of the gas, or a convex

behavior of the Boltzmann entropy

Ent(ρ) :=
ˆ
ρ log ρ,

which in turn measures the concentration of the gas.
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Remark 2.1.6. Let us propose a simple example to illustrate how Ent measures the
concentration of a density ρ. Set L1(R,L 1) 3 ρn : x 7→ (

´
R e
−n|x| dx)−1e−n|x| and notice

that ρn concentrates around the origin for n high (more rigorously, ρn → δ0 in D′(R)).
A direct computation shows that Ent(ρn) = 2 log(n/2) − 2, then Ent(ρn) → +∞ when
n→ +∞.

According to this observation, the following conjecture, due to F. Otto and C. Vil-
lani [OV00], sounds natural: non-negativity of the Ricci curvature of a manifold implies
displacement convexity of the functional Entvol. This conjecture was proved true by
D. Cordero-Erausquin, R. McCann and M. Schmuckenschläger [CMS01, Th. 6.2]. After-
wards, K.-T. Sturm and M.-K. Von Renesse dramatically improved this result: calling
K-displacement convex any functional F : Pa2 (X,m) → R ∪ {+∞} such that for any
W2-geodesic (µt)t∈[0,1],

F (µt) ≤ (1− t)F (µ0) + tF (µ1)−Kt(1− t)
2 W2(µ0, µ1) ∀t ∈ [0, 1],

they showed the following characterization of Ricci curvature bounded below [RS05, Th. 1].

Theorem 2.1.7. Let (M, g) be a smooth connected Riemannian manifold with canoni-
cal Riemannian volume measure denoted by vol. Then the following two properties are
equivalent:

(i) Ricg ≥ Kg;

(ii) the functional Entvol : Pa2 (M, vol)→ R defined by:

Entvol(µ) :=
ˆ
M

dµ
dvol log

( dµ
dvol

)
dvol ∀µ ∈ Pa2 (M, vol),

is K-displacement convex.

Note that condition (ii) can be formulated on any Polish geodesic metric measure space
(X,d,m) satisfying the following exponential estimate on the volume growth of balls: for
some x ∈ X, there exist c0, c1 > 0 such that:

m(Br(x)) ≤ c0e
c1r ∀r > 0. (2.1.3)

Indeed, such a condition implies that for any µ ∈ Pa2 (X,m), the negative part of A(µ) :=
dµ
dm log

(
dµ
dm

)
is integrable, and then the functional Entm : Pa2 (X,m) 3 µ 7→

´
X A(µ) dm

cannot take the value −∞, implying meaningfulness of the K-displacement convexity
assumption. Sturm’s CD(K,∞) condition is built on this observation. However, K-
displacement convexity is a too strong requirement for non-smooth spaces, especially
because of convergence issues that we shall describe in Section 2.4. One needs therefore to
introduce the notion of weak K-displacement convexity.

Definition 2.1.8. We say that a functional F : Pa2 (X,m) → R ∪ {+∞} is weakly K-
displacement convex if between any µ0, µ1 ∈ Pa2 (X,m), there exists at least oneW2-geodesic
(µt)t∈[0,1] such that F (µt) ≤ (1− t)F (µ0) + tF (µ1)−Kt(1− t)W2(µ0, µ1)/2 for all t ∈ [0, 1].

In order to emphasize the difference with the weak notion, K-displacement convexity
is often refers as “strong K-displacement convexity” in the literature. We are now in a
position to state Sturm’s CD(K,∞) condition.
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Definition 2.1.9. (Sturm’s CD(K,∞) condition) A Polish geodesic metric measure space
(X,d,m) is called Sturm CD(K,∞) if Entm is weakly K-displacement convex.

In [LV09], J. Lott and C. Villani followed a slightly different path, in continuity of
McCann’s works, by considering the functionals

F (µ) =
ˆ
X
A

( dµ
dm

)
dm (2.1.4)

with density A : [0,+∞)→ R ∪ {+∞} satisfying

λ 7→ eλA(e−λ) be convex non-increasing on (0,+∞) and A(0) = 0.

The set of such densities A is called the ∞-dimensional displacement convexity class, and
denoted by DC∞. Note that for every A ∈ DC∞, the limit

A′+(r) = lim
s→r+

A(s)−A(r)
s− r

makes sense for any r > 0. Here is Lott-Villani’s condition.

Definition 2.1.10. (Lott-Villani’s CD(K,∞) condition) A Polish geodesic metric measure
space (X,d,m) is called Lott-Villani CD(K,∞) if for any µ0, µ1 ∈ Pa2 (X,m), there exists
a W2-geodesic (µt)t∈[0,1] such that for all A ∈ DC∞, denoting by F : Pa2 (X,m) → R the
corresponding functional (2.1.4), one has:

F (µt) ≤ (1− t)F (µ0) + tF (µ1)− 1
2λK(A)t(1− t)W2(µ0, µ1)2 ∀t ∈ [0, 1],

where λK(A) := inf
r>0

K(A′+(r)−A(r)/r).

Note that Lott-Villani’s condition is often refered as weak because of the requirement
of convexity along at least only one W2-geodesic.

The bridge between Sturm’s and Lott-Villani’s conditions is provided by the following
observation. For any continuous and convex function A : (0,+∞) → R, let us define
the associated pressure pA and iterated pressure pA2 by pA(r) := rA′+(r) − A(r) and
pA2 (r) = rp′(r)− p(r) for any r > 0. Then A ∈ DC∞ if and only if pA2 ≥ 0, and pA2 ≡ 0 if
and only if A(r) = r log r. In this regard, the entropy Entm can be seen as a borderline
case in the class of functionals (2.1.4) with density A belonging to DC∞.

Sturm’s and Lott-Villani’s conditions: finite dimensional case
Let us present now the CD(K,N) conditions for N < +∞. Recall that K ∈ R is

kept fixed. Here again, Sturm’s and Lott-Villani’s approaches differ a little bit. Let us
present first Lott-Villani’s condition, formulated with the displacement convex class DCN .
Here if F : Pa2 (X,m)→ R is an internal-energy functional with density A, we stress the
dependance in A of F by means of the notation FA.

Definition 2.1.11. A Polish geodesic metric measure space (X, d,m) is called Lott-Villani
CD(K,N) if the family of functionals {FA : Pa2 (X,m) → R ∪ {+∞}}A∈DCN is jointly
K-displacement convex with distortion β, meaning that for any µ0, µ1 ∈ P(X) with
supp(µ0), supp(µ1) ⊂ supp(m) compact, there exists a W2-geodesic (µt)t∈[0,1] and an
optimal transport plan π between µ0 and µ1 such that for any A ∈ DCN and any t ∈ [0, 1],

FA(µt) ≤(1− t)
ˆ
X×X

A

(
ρ0(x0)

β1−t(x0, x1)

)
β1−t(x0, x1) dπµ0(x1) dm(x0) (2.1.5)

+ t

ˆ
X×X

A

(
ρ1(x1)

βt(x0, x1)

)
βt(x0, x1) dπµ1(x0) dm(x1), (2.1.6)
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or using the notation introduced in Remark 2.1.5,

FA(µt) ≤ (1− t) ˜[FA]β1−t
π (µ0) + t ˜[FA]βtπ̌ (µ1).

Let us present now Sturm’s CD(K,N) condition. To this purpose, we introduce the
N -dimensional Rényi entropy SNm , which is defined as

SNm (µ) := −
ˆ
X
ρ1−1/N dm

for any measure µ ∈ Pa2 (X,m) with density ρ. We also need the modified distortion
coefficients τ (K,N) := {τ (K,N)

t : R+ → [0,+∞]}t∈[0,1] given as follows: for any θ ≥ 0, if
N > 1,

τt(θ) :=



t
1
N

(
sinh(tθ

√
−K/(N−1))

sinh(θ
√
−K/(N−1))

)1− 1
N

if K < 0

t if K = 0

t
1
N

(
sin(tθ
√
K/(N−1))

sin(θ
√
K/(N−1))

)1− 1
N

if K > 0 and 0 < θ <
√
K/(N − 1)

∞ if K > 0 and θ ≥
√
K/(N − 1)

and if N = 1, τt(θ) = t.

Definition 2.1.12. A Polish geodesic metric measure space (X,d,m) is called Sturm
CD(K,N) if for all N ′ ≥ N , SN ′m is weakly displacement convex with distortion τ (K,N),
meaning that for any µ0, µ1 ∈ Pa2 (X,m) with respective densities ρ0, ρ1, there exists at
least one W2-geodesic (µt)t∈[0,1] and an optimal transport plan π between µ0 and µ1 such
that:

SN
′

m (µt) ≤ (1− t)[S̃N ′m ]β1−t
π (µ0) + t[S̃N ′m ]βtπ̌ (µ1) ∀t ∈ [0, 1].

Note that in particular, Sturm CD(0, N) spaces are those metric measure spaces for
which all Rényi entropies SN ′m , with N ′ ≥ N , are weakly displacement convex.

As for the infinite dimensional case, one can introduce the pressure and iterated pressure
of any density A ∈ DCN . Then A ∈ DCN ⇐⇒ pA2 + (pA)2

N ≥ 0, and the borderline case
pA2 + (pA)2

N = 0 is provided by the density A(r) = −N(r1−1/N − r) which gives rise to the
functional S̃Nm = N +NSNm . For convenience, Sturm preferred to work with SNm instead of
S̃Nm ; he accordingly needed the modified distortion τ (K,N) in place of β(K,N).

Non-branching and essentially non-branching spaces
It turns out that Sturm’s and Lott-Villani’s CD(K,N) conditions (including the case

N = +∞) coincide on non-branching metric measure spaces, as proved, for instance, in
[Vi03, Th. 30.32]. Let us recall that a metric space (X,d) is called non-branching if two
geodesics γ1 and γ2 which coincide on [0, t0] for some 0 < t0 < 1 coincide actually on [0, 1].
Riemannian manifolds and Alexandrov spaces are non-branching, but whether general
Ricci limit spaces are always non-branching is still an open question. It is then natural to
consider the following weaker notion.

Definition 2.1.13. A Polish geodesic metric measure space (X, d,m) is called essentially
non-branching if any optimal transport plan π ∈ P(Geo(X)) between two generic µ0, µ1 ∈
Pa2 (X,m) is concentrated on a set of non-branching geodesics.
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In other words, a space is essentially non-branching if any optimal transport on the
space is carried out over non-branching geodesics. Essentially non-branching spaces were
introduced in [RS14] by T. Rajala and K.-T. Sturm who proved the equivalence between
Sturm’s and Lott-Villani’s CD(K,∞) conditions on such spaces, as well as the inclusion
within this framework of the class of RCD(K,N) spaces, on which we shall focus later.

Doubling property of finitely dimensional CD(K,N) spaces
The classical Bishop-Gromov inequality (see e.g. [Gro07, Lem. 5.3bis] for a proof)

asserts that if (M, g) is a complete n-dimensional Riemannian manifold with Ric ≥
(n− 1)Kg for some K ∈ R, then for any p ∈M ,

vol(BR(p))
volK(BR(p)) ≤

vol(Br(p))
volK(Br(p))

∀ 0 < r ≤ R,

where pK is any point of the unique complete simply connected n-dimensional Riemanian
manifold (Mn

K , g
K) with Ricci curvature constantly equal to (n− 1)KgK , and volK is the

corresponding volume measure of (Mn
K , g

K). Let us point out that a direct computation
provides

volK(Br(p)) =


´ r

0 sin(t
√
K/(n− 1))n−1 dt if K > 0,

ωnr
n if K = 0,´ r

0 sinh(t
√
|K|/(n− 1))n−1 dt if K < 0.

for any r > 0, where ωn denotes the n-dimensional Lebesgue measure of the unit Euclidean
ball. Note that the above right-hand sides are independant of pK ∈ Mn

K , and they still
make sense if one replaces n ∈ N by any real number N ≥ 1. Therefore, we can set

volK,N (r) :=


´ r

0 sin(t
√
K/(N − 1))N−1 dt if K > 0,

ωnr
n if K = 0,´ r

0 sinh(t
√
|K|/(N − 1))N−1 dt if K < 0,

for any r > 0 and N ≥ 1.
Lott and Villani extended Bishop-Gromov inequality to the case of CD(0, N) spaces

in [LV09, Prop. 5.27], while Sturm proved it directly for Sturm CD(K,N) spaces [St06a,
Th. 2.3], whatever be K ∈ R. In [Vi03, Th. 30.11], Villani provided Bishop-Gromov
inequality for any Lott-Villani CD(K,N) spaces.

Theorem 2.1.14 (Bishop-Gromov inequality). Let (X, d,m) be a CD(K,N) space. Then
for any x ∈ supp(m),

m(BR(x))
m(Br(x)) ≤

volK,N (R)
volK,N (r) ∀ 0 < r ≤ R.

An immediate corollary of Bishop-Gromov inequality is the (local) doubling condition,
which is crucial to apply several analytic means.

Corollary 2.1.15 (Doubling condition). Let (X,d,m) be a CD(K,N) space. If K ≥ 0,
then the measure m is doubling with constant ≤ 2N , meaning that

m(B2r(x)) ≤ 2Nm(Br(x)) ∀x ∈ supp(m), ∀r > 0. (2.1.7)

If K < 0, then m is locally doubling, meaning that for any x ∈ supp(m), there exists
CD = CD(K,N) > 0 and ro = ro(x) > 0 such that

m(B2r(x)) ≤ CDm(Br(x)) ∀ 0 < r < r0. (2.1.8)
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Local Poincaré inequality
The local Poincaré inequality is a common assumption in the study of metric measure

spaces. Coupled with the doubling condition, it gives access to a large spectrum of analytic
tools, as revealed by the works of J. Heinonen and P. Koskela [HeK98], J. Cheeger [Ch99]
and P. Hajlasz and P. Koskela [HK00], see Definition 2.2.17 and Theorem 2.2.18 in the next
section. Therefore, the following result, due to T. Rajala, is of the outmost importance for
the CD theory.

Theorem 2.1.16 (Rajala’s Poincaré type inequalities [Raj12]). 1. Any Lott-Villani
CD(K,∞) space with K ≤ 0 supports the weak local (1, 1)-Poincaré type inequality

 
B
|u− uB| dm ≤ 4re|K|r2

 
2B
g dm

holding for any ball B ⊂ X with radius r > 0, any locally integrable function u defined on
B, and any integrable upper gradient g of u.

2. Any Lott-Villani CD(K,N) space with K ≤ 0 and N < +∞ supports the weak local
(1, 1)-Poincaré type inequality

 
B
|u− uB|dm ≤ 2N+2re

√
(N−1)|K|2r

 
2B
g dm

holding for any ball B ⊂ X with radius r > 0, any locally integrable function u defined on
B, and any integrable upper gradient g of u.

Note that we prefer to call these inequalities “Poincaré type” inequalities because of
the exponential term which does not appear in the definition of Poincaré inequality we
give in Definition 2.2.17.
Remark 2.1.17. In particular, any Lott-Villani CD(0, N) space supports the weak local
(1, 1)-Poincaré inequality:

 
B
|u− uB| dm ≤ 2N+2r

 
2B
g dm

for any ball B ⊂ X with radius r > 0, any locally integrable function u defined on B, and
any integrable upper gradient g of u.

Local-to-global property
The local-to-global issue for CD(K,N) spaces asked whether a space (X,d,m) is

CD(K,N) whenever it is CDloc(K,N), meaning that there exists a countable partition
X = qiXi such that each (Xi, d|Xi×Xi ,m Xi) is CD(K ′, N ′) for someK ′ ≥ K andN ′ ≥ N .
The answer is obviously yes for Riemannian manifolds, but in full generality, the problem is
much more involved. K.-T. Sturm [St06a, Th. 4.17] and C. Villani [Vi09, Th. 30.37] proved
respectively that under the non-branching assumption, compact CD(K,∞) and CD(0, N)
satisfy the local-to-global property. Nonetheless, T. Rajala provided a final negative answer
to the general question by constructing a (highly branching) CDloc(0, 4) space which is not
CD(K,N), whatever K ∈ R and N ∈ [1,+∞) be [Raj16].

In the meantime, K. Bacher and K.-T. Sturm had introduced the so-called reduced
curvature dimension condition CD∗(K,N), for N < +∞, by considering the reduced
distortion σ(K,N) = {σ(K,N)

t : R+ → [0,+∞]}t∈[0,1] defined by:

σ
(K,N)
t (θ) := t−1/N [τ (K,N+1)

t (θ)]1+1/N ∀t ∈ [0, 1].
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Definition 2.1.18. A Polish geodesic metric measure space (X, d,m) is called CD∗(K,N)
if for any µ0, µ1 ∈ Pa2 (X,m) with respective densities ρ0, ρ1, there exists a W2-geodesic
(µt)t∈[0,1] and an optimal transport plan π between µ0 and µ1 such that for all N ′ ≥ N ,
SN

′
m is displacement convex with distortion σ(K,N).

Note that the coefficients σ(K,N)
t are slightly smaller than the coefficients τ (K,N)

t ,
implying that the CD∗(K,N) condition is slightly weaker than the CD(K,N). However,
CD∗(K,N) spaces advantageously satisfy the local-to-global property, and the condition
CD∗loc(K,N) is equivalent to CDloc(K,N).

Finally, let us point out that for essentially non-branching spaces with finite mass,
the conditions CD(K,N) and CD∗(K,N) are equivalent, as shown by F. Cavalletti and
E. Milman [CMi16].

Examples
Let us conclude this section with some examples of CD(K,N) spaces.

1. As proved by K.-T. Sturm and M.-T. von Renesse [RS05], any complete connected
n-dimensional Riemannian manifold (M, g) with Ricg ≥ (n− 1)Kg equipped with its
canonical Riemannian distance dg and volume measure volg is a CD(K,∞) space.

2. For any givenN > n and V ∈ C2(M), the weighted Riemannian manifold (Mn, dg, e−Vm)
satisfies the CD(K,N) condition if and only if

Ric + Hessf −
1

N − n
∇f ⊗∇f ≥ Kg,

see [Vi09, Th. 29.9] for a proof. In particular for V ≡ 0, we get that (M, dg, volg) is
CD(K,n) if and only if Ricg ≥ (n− 1)Kg.

3. When (Mn, dg, volg) = (Rn, deucl,L n) and V is only C0 on Rn, it can be shown that
the space (Rn, deucl, e−V L n) is CD(0,∞) if and only if V is convex. For any K ∈ R,
a similar statement holds if one replaces CD(0,∞) with CD(K,∞) and convexity of
V with K-convexity, meaning that

V ((1− t)x+ ty) ≤ (1− t)V (x) + tV (y)−K (1− t)t
2 |x− y| (2.1.9)

holds for any x, y ∈ Rn and 0 ≤ t ≤ 1, cf. [Vi09, Ex. 29.13].

4. Let (Mn, g) be a smooth compact Riemannian manifold with non-negative Ricci
curvature, and G a compact group acting on M by isometries, meaning that there
exists a map Ψ : G → Isom(G) such that Ψ(eG) = Id and Ψ(g · g′) = Ψ(g) ◦ Ψ(g′)
for all g, g′ ∈ G. Then the quotient M/G, which might not be a smooth manifold (it
could typically have singularities at fixed points of the action), is CD(0, n).

5. Non-negatively curved Alexandrov spaces of dimension n ≤ N are CD(0, N), as
proved by A. Petrunin [Pet11].

6. K. Bacher and K.-T. Sturm proved in [BS14] that Euclidean and spherical cones over
smooth complete non-negatively curved Riemannian manifolds, which might not be
neither smooth Riemannian manifolds nor Alexandrov spaces, satisfy a CD(K,N)
condition for some right K ∈ N and N ∈ N. C. Ketterer extended these results to
warped products over complete Finsler manifolds [K13a].
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7. Anticipating on Section 2.4, any Ricci limit space is CD(K,N), whenever the ap-
proximating sequence has dimension constantly equal to n ≤ N and Ricci curvature
uniformly bounded below by (n−1)K. This follows from the stability of Lott-Villani’s
CD(K,N) condition with respect to measured Gromov-Hausdorff convergence, see
Th. 2.4.9.

8. The space (Rn, ‖ · ‖∞,L n), where ‖x‖∞ = supi |xi| for any x = (x1, . . . , xn) ∈ Rn, is
Lott-Villani CD(0, n). This result is due to D. Cordero-Erausquin, K.T.-Sturm and
C. Villani, but we point out that it doesn’t appear in any publication. Nevertheless,
the reader can find a detailed sketch of proof in [Vi09, p. 912].
This example has been a cornerstone in the theory of synthetic Ricci curvature
bounds, because it is not a Ricci limit space. Indeed, if it were so, Cheeger-Colding’s
almost splitting theorem [CC96, Th. 6.64] would imply the isometric splitting of
(Rn, ‖ · ‖∞) into R×X for some (n− 1)-dimensional manifold X. This is impossible,
as one can easily check from the case in which the splitting line coincides with
{x2 = · · · = xn = 0}: take x = (x1, x

′), y = (y1, y
′) ∈ R×X such that |x1 − y1| = 1,

x′ 6= y′ and |xi−yi| < 1 for any 2 ≤ i ≤ n. Then |x1−y1|+dX(x′, y′) = ‖x−y‖∞ = 1,
implying dX(x′, y′) = 0, what is impossible.

9. More generally, it follows from S.-T. Ohta’s work [Oh09, Th. 2] that any compact
smooth Finsler manifold is CD(K,N) for some appropriate K ∈ R and 1 ≤ N < +∞.
Let us recall that a smooth Finsler manifold is a smooth manifold M equipped with a
positive definite, homogeneous and subadditive function F : TM → [0,+∞] smooth
on the complement of the zero section in TM . The space (Rn, ‖ · ‖∞,L n), with F
constantly equal to ‖ · ‖∞, is one simple example.
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2.2 Calculus tools on metric measure spaces and Rieman-
nian curvature-dimension conditions

The aim of this section is to present the Riemannian curvature-dimension conditions
RCD(K,∞) and its refinements, and to give the abstract calculus tools that we shall
frequently use throughout the thesis. From now on, unless explicitely mentioned, by Polish
metric measure space we mean a triple (X,d,m) where (X,d) is a Polish (i.e. complete
and separable) metric space and m is a Borel regular measure on (X, d) finite and non-zero
on balls with finite and non-zero radius.

Cheeger energy and the Sobolev space H1,2(X,d,m)
Although previous works had already dealt with the extension of Euclidean analytic

tools to the setting of general metric measure spaces (e.g. [CW77], [Ha95], [HK95], [KM96],
[Se96],[HeK98], [St98]), J. Cheeger’s celebrated article [Ch99] is nowadays refered as the
starting point of the modern theory of analysis on metric measure spaces spaces (X, d,m).
Aiming at a generalized Rademacher’s theorem on such spaces, J. Cheeger developed a
robust first-order differential structure embodied by the space H1,2(X,d,m) of weakly
differentiable functions defined by means of approximation. Recall that when Ω is an open
set of Rn, the space H1,2(Ω) is defined as the closure of C∞(Ω) with respect to the ‖ · ‖1,2
norm. Replacing Ω with (X,d,m), smooth functions are, of course, not available. The
starting point of J. Cheeger’s analysis consisted in replacing those missing smooth functions
with Lipschitz functions. Recall that by definition, the slope (also called sometimes local
Lipschitz constant) of a Lipschitz function f : X → R is

|∇f |(x) :=

lim sup
y→x

|f(x)−f(y)|
d(x,y) if x ∈ X is not isolated,

0 otherwise.

Definition 2.2.1. (Cheeger’s H1,2 space) A function f ∈ L2(X,m) is called Sobolev if
there exists a sequence of Lipschitz functions (fn)n such that ‖fn − f‖L2(X,m) → 0 and
supn ‖|∇fn|‖L2(X,m) < +∞. The real vector space of such Sobolev functions is denoted by
H1,2(X,d,m).

It is worth point out that in this thesis, we only work with the Sobolev space H1,2 with
exponent 2, even if Cheeger’s original definition, as well as several other notions discussed
in this section, was given for any exponent p ∈ (1,+∞).

Related to this construction is the crucial Cheeger energy which is defined for any
f ∈ L2(X,m) by

Ch(f) = inf
fn→f

{
lim inf
n→+∞

ˆ
X
|∇fn|2 dm

}
∈ [0,+∞], (2.2.1)

where the infimum is taken over all the sequences (fn)n ⊂ L2(X,m) ∩ Lip(X, d) such that
‖fn − f‖L2(X,m) → 0.

Although Ch can reasonably be understood as an extension of the classical Dirichlet
energy, there is no guarantee that it defines a Dirichlet form (Definition 2.3.1) on (X,m):
this is one of the argument put forward by N. Gigli [G15] in favour of the name “Cheeger
energy” instead of “Dirichlet energy”, the second argument being that an equivalent
definition of Ch where slopes of Lipschitz functions are replaced with upper gradients
(Definition 2.2.7 below) of L2 functions goes back to [Ch99], see (2.2.6) below.

Main properties of Ch are gathered in the next proposition.
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Proposition 2.2.2. The function Ch : L2(X,m)→ [0,+∞] is convex and lower semicon-
tinuous. Morover, its finitness domain coincides with H1,2(X,d,m) which is a Banach
space dense in L2(X,m).

Proof. Convexity can be directly shown using the following simple algebraic property of
the slope, holding for any f, g ∈ Lip(X) and a, b > 0:

|∇(af + bg)| ≤ a|∇f |+ b|∇g| m-a.e. on X. (2.2.2)

By definition, H1,2(X, d,m) coincides with the finiteness domain of Ch. Lower semicontinu-
ity of Ch is a straigthforward consequence of the definition, and implies that H1,2(X, d,m)
endowed with the norm ‖ · ‖H1,2 =

√
‖ · ‖L2 + Ch is a Banach space, following the lines of

[Ch99, Th. 2.7]. Finally, density of H1,2(X,d,m) in L2(X,m) follows from the density of
Lipschitz functions f ∈ L2(X,m) with |∇f | ∈ L2(X,m) (see [?, Prop. 4.1]).

As classical Sobolev spaces H1,2(Ω) defined over open sets Ω ∈ Rn are Hilbert, the next
definition sounds rather natural.

Definition 2.2.3. (Infinitesimally Hilbertianity) A Polish metric measure space (X, d,m)
is called infinitesimally Hilbertian if H1,2(X,d,m) endowed with the norm ‖ · ‖H1,2 is a
Hilbert space, or equivalently, if Ch is a quadratic form.

Recall that a quadratic form over a real vector space E is a map q : E → R such that
q(λf) = λ2q(f) for any λ ∈ R and f ∈ E (we say that q is 2-homogeneous), and for which
the map q̃ : (f, g) 7→ 1

4(q(f + g)− q(f − g))1 defines a real-valued bilinear symmetric map
on E × E. The application q 7→ q̃ defines an isomorphism of real vector spaces between
the space of quadratic forms over E and the space of bilinear symmetric maps E ×E → R,
and the inverse of such an application associates p : f 7→ p̃(f, f) to any given bilinear
symmetric map p̃ : E × E → R.

Note that Ch is obviously 2-homogeneous, and that as such Ch is quadratic if and only
if it satisfies the parallelogram rule:

Ch(f + g) + Ch(f − g) = 2Ch(f) + 2Ch(g) ∀f, g ∈ H1,2(X,d,m).

It turns out that infinitesimal Hilbertianity is a powerful requirement which can be
reformulated in various ways and provides a simple manner to state the Riemannian
curvature-dimension conditions.

Definition 2.2.4. (RCD(K,N) and RCD∗(K,N) conditions) Let K ∈ R and 1 ≤ N ≤
+∞ be fixed. A Polish metric measure space is called RCD(K,N) (resp. RCD∗(K,N)) if
it is both CD(K,N) (resp. CD∗(K,N)) and infinitesimally Hilbertian.

To fully appreciate the structural power of such conditions, we need to introduce further
first-order calculus tools.

Absolutely continuous curves
We start with the basic notion of absolutely continuous curve on a metric space

(X,d). Classically, a function f : [a, b]→ R is called absolutely continuous if there exists
g ∈ L1(a, b) such that

f(x)− f(y) =
ˆ x

y
g(t) dt ∀x, y ∈ (a, b),

1Or equivalently q̃ : (f, g) 7→ 1
2 (q(f + g)− q(f)− q(g) or q̃ : (f, g) 7→ 1

2 (q(f) + q(g)− q(f − g)
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in which case such a g is easily shown to be unique (as equivalent class of L1 functions),
and the derivative f ′(x) = limy→x(x− y)−1(f(x)− f(y)) exists for L 1-a.e. x ∈ (a, b), with
equality f ′(x) = g(x). Absolutely continuous curves are an extension of this notion for
functions taking values in a metric space (X,d).

Definition 2.2.5 (Absolutely continuous curves). We say that γ : [a, b] → X is an
absolutely continuous curve if there exists g ∈ L1(a, b) non-negative such that

d(γ(x), γ(y)) ≤
ˆ y

x
g(t) dt ∀ a ≤ x ≤ y ≤ b. (2.2.3)

The set of such curves is denoted by AC([a, b];X). The set of absolutely continuous
curves γ such that there exists a function g ∈ Lp(a, b) satisfying (2.2.3) is denoted by
ACp([a, b];X).

Notice that in case X = Rn, Definition 2.2.5 is equivalent to the classical notion
of absolute continuity which is also equivalent to Vitali’s formulation: f : [a, b] → R
is absolutely continuous if and only if for any ε > 0, there exists δ > 0 such that
for any collection of disjoint intervals {(ai, bi)}i in [a, b] with

∑
i(bi − ai) < δ, we have∑

i |f(bi)− f(ai)| < ε. In the context of general metric spaces, Definition 2.2.5 and Vitali’s
formulation still make sense and are equivalent.

Absolutely continuous curves are often used to construct a first-order differential
structure on metric spaces because they possess a weak notion of velocity, called metric
derivative.

Theorem 2.2.6 (Metric derivative). For any γ ∈ AC([a, b];X) the limit

lim
h→0

d(γ(t), γ(t+ h))
|h|

=: |γ′|(t)

exists for L 1-a.e. t ∈ (a, b). In addition, up to L 1-negligible sets, |γ′| coincide with the
L 1-a.e. minimal function g that we can choose in Definition 2.2.5. It is called the metric
derivative of γ.

Upper gradients
The fundamental theorem of calculus implies that whenever f : Rn → R is a C1

function and γ : [0, 1] → Rn is a C1 curve, f(γ(1)) − f(γ(0)) =
´ 1

0 〈∇f(γ(t)), γ′(t)〉dt.
Taking absolute values and applying Cauchy-Schwarz inequality, one gets

|f(γ(1))− f(γ(0))| ≤
ˆ 1

0
|∇f |(γ(t))|γ′(t)|dt.

In case f is defined over a metric space (X,d) and γ ∈ AC([0, 1], X), the term |γ′(t)| in
the above inequality still makes sense, at least for L 1-a.e. t ∈ [0, 1], as metric derivative of
γ. This motivates the introduction of upper gradients, which should be seen as extensions
of the norm of the gradient for general functions f : X → R.

Definition 2.2.7 (Upper gradient). For any f : X → R, we say that a function g : X →
[0,+∞] is an upper gradient of f , and we write g ∈ UG(f), if for any γ ∈ AC([0, 1];X),

|f(γ(1))− f(γ(0))| ≤
ˆ 1

0
g(γ(s))|γ′|(s) ds. (2.2.4)

If moreover, g ∈ Lp(X,m), we write g ∈ UGp(f).
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Remark 2.2.8. We usually write
´
∂γ f for f(γ(1))−f(γ(0)) and

´
γ g for

´ 1
0 g(γ(s))|γ′|(s) ds,

so that (2.2.4) becomes ∣∣∣∣∣
ˆ
∂γ
f

∣∣∣∣∣ ≤
ˆ
γ
g. (2.2.5)

The notion of upper gradient goes back to Heinonen-Koskela’s work [HeK98] in which it
was called “very weak gradient” and formulated with rectifiable curves instead of absolute
continuous curves. But any rectifiable curve can be reparametrized into an absolutely
continuous one with constant metric derivative, see e.g. [AT03, Th. 4.2.1], so that the
definition we gave is equivalent to Heinonen-Koskela’s one.

Note that a simple example of upper gradient is provided by the slope of a Lipschitz
function. In this regard, let us point out that Cheeger’s original approach, defining Ch as

Ch(f) := inf
fn→f, gn

{
lim inf
n→+∞

ˆ
X
g2
n dm

}
∀f ∈ L2(X,m), (2.2.6)

where the infimum is taken over all the sequences (fn)n, (gn)n ⊂ L2(X,m) such that
‖fn − f‖L2(X,m) → 0 and gn is an upper gradient of fn for any n, provides an a priori
smaller functional compared to (2.2.1), as we are taking the infimum over a bigger set.
However, L. Ambrosio, N. Gigli and G. Savaré proved in [?, Th. 6.2, Th. 6.3] that the two
functionals coincide.

Minimal relaxed slope
A suitable diagonal argument applied to optimal approximating sequences in (2.2.1) or

(2.2.6) (see for instance [Ch99, Th. 2.10]) provides for any f ∈ H1,2(X, d,m) the existence
of a L2-function |∇f |∗, called minimal relaxed slope or minimal generalized upper gradient
of f which gives integral representation of Ch:

Ch(f) =
ˆ
X
|∇f |2∗ dm ∀f ∈ H1,2(X,d,m).

The minimal relaxed slope is a local object, meaning that

|∇f |∗ = |∇g|∗ m-a.e. on {f = g}

for any f, g ∈ H1,2(X,d,m). This, combined with the integral representation property,
ensures that |∇f |∗ is unique as class of L2-equivalent functions.

Locality here is closely related to the theory of Dirichlet forms whose connection with
our discussion follows from the forthcoming Proposition 2.2.10. Let us state a preliminary
lemma with a sketch of proof, refering to [?] for the details.

Lemma 2.2.9. For any f, g ∈ H1,2(X,d,m), the limit

lim
ε↓0

|∇(f + εg)|2∗ − |∇f |2∗
2ε

exists in L1(X,m).

Sketch of proof. Take f, g ∈ H1,2(X,d,m), and define F : [0,+∞)→ L1(X,m) by F (ε) =
|∇(f+εg)|2∗ for any ε > 0. Convexity of the slope of Lipschitz functions follows from (2.2.2)
and implies by approximation the convexity of |∇ · |∗, which in turns gives convexity of F .
Consequently, the growth rate Gx : (0,+∞) 3 ε 7→ ε−1(F (ε)− F (0))(x) is nondecreasing
for m-a.e. x ∈ X, whence the existence of the limit limnGx(εn) for any such x and any
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infinitesimal decreasing sequence (εn) ⊂ (0,+∞). Of course F can be defined also for ε′ < 0,
and the L1 function ε′−1(F (ε′)− F (0)) provides a bound by below for the sequence of L1

functions G(εn) - such functions are integrable because |∇(f + εg)|∗, |∇f |∗ ∈ L2(X,m) for
all ε. Then monotone convergence theorem for Lebesgue integrals provides the result.

As stated in the next proposition, one of the main properties of infinitesimally Hilbertian
spaces is the existence of a unique strongly local Dirichlet form E such that E(f, f) = Ch(f)
for any f ∈ H1,2(X,d,m) (see [AGS14b, Sect. 4.3]). We will spend further words on
Dirichlet forms in the next section. Let us also point out that strong locality of E stems
from locality of the minimal relaxed slope.

Proposition 2.2.10. Assume that (X, d,m) is infinitesimally Hilbertian. Then the function

C(f, g) := lim
ε↓0

|∇(f + εg)|2∗ − |∇f |2∗
2ε ∀f, g ∈ H1,2(X,d,m)

provides a symmetric bilinear form on H1,2(X, d,m)×H1,2(X, d,m) with values in L1(X,m),
and

E(f, g) :=
ˆ
X
C(f, g) dm, ∀f, g ∈ H1,2(X,d,m)

defines a strongly local Dirichlet form.

In the sequel, we will often use the notation 〈∇f,∇g〉 instead of C(f, g), because of the
obvious case of the Euclidean space. For consistency with the theory of Dirichlet forms,
one sometimes writes Γ(f, g) instead of C(f, g), in which case the operator Γ is called carré
du champ.

Heat flow
A further important consequence of infinitesimal Hilbertiannity is linearity of the heat

flow, which we are going to define in a moment.
First of all, recall that if (H, ‖ · ‖) is a Hilbert space, then any absolutely continuous

curve (x(t))t>0 in H is differentiable L 1-a.e. with norm of the derivative equal to the metric
derivative. In the classical theory of gradient flows, the Komura-Brezis theorem ensures
that, given a K-convex (2.1.9) and lower semicontinuous function F : H → [−∞,+∞], for
any “starting point” x̄ ∈ {f < +∞}, there exists a unique absolutely continuous curve
(x(t))t>0 ⊂ H such thatx

′(t) ∈ −∂KF (x(t)) for L 1-a.e. t > 0,
lim
t→0
‖x̄− x(t)‖ = 0,

where ∂KF (x) denotes the K-subdifferential of F at x ∈ H, defined as

∂KF (x) :=
{
p ∈ H : ∀y ∈ H, F (y) ≥ F (x) + 〈p, y − x〉+ K

2 ‖y − x‖
2
}
.

Such a curve (x(t))t>0 is called gradient flow of F starting from x̄. It satisfies the
remarkable contraction property ‖x(t) − y(t)‖ ≤ e−2Kt‖x̄ − ȳ‖ for any t > 0. Moreover,
for L 1-a.e. t>0, the derivative x′(t) equals the element in ∂KF (x(t)) with minimal norm.

As Ch is convex and lower semicontinuous, the Komura-Brezis theorem provides a family
of maps {Pt : D ⊂ L2(X,m)→ L2(X,m)}t>0 defined by Pt(f) = ft for any f ∈ L2(X,m),
with (ft)t>0 being the gradient flow of Ch starting from f . Here D is the set of functions
f ∈ L2(X,m) such that ∂0Ch(f) 6= 0. This family is called heat flow of (X, d,m), because
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if one writes d
dtPtf for the derivative of the absolutely continuous curve (Ptf)t>0 and

−∆Ptf for the element of minimal norm in ∂0Ch(Ptf), we have

d
dtPtf = ∆Ptf for L 1-a.e. t > 0.

In full generality, the maps Pt might fail to be linear, as it is the case for instance on
smooth Finsler manifolds [OS09]: in this context, the heat flow is linear if and only if the
Finsler structure is actually Riemannian. Historically, this observation was at the core of
the definition of the RCD(K,∞) condition, as one can easily understand from the next
proposition.

Proposition 2.2.11. The Polish metric measure space (X, d,m) is infinitesimally Hilber-
tian if and only if the heat flow is linear, meaning that all maps Pt, t > 0, are linear.

Moreover, linearity of the heat flow implies linearity of the operator ∆, which coincides
with the infinitesimal generator of the semi-group (Pt)t>0, granting several results from
spectral theory or from the theory of diffusion processes, like the celebrated Bakry-Émery
estimate on which we will spend more time in Section 2.3.

Gradient flow of the relative entropy
As we shall explain in this paragraph, it turns out that in a quite general context,

the heat flow produces the same evolution as the gradient flow of the relative entropy
Entm. Obviously, as (P2(X),W2) is not necessarily an Hilbert space, we cannot apply
the Komura-Brezis theory to define the gradient flow of Entm; we need a fully metric
characterization. The next definition, due to E. De Giorgi, applies in wide generality and
fit our context well.

Definition 2.2.12. Let (E, dE) be a metric space, f : E → R∪{+∞}, and x̄ ∈ {f < +∞}.
An EDI (Energy Dissipation Inequality) gradient flow of f starting from x̄ is a locally
absolutely continuous curve (x(t))t≥0 ⊂ E such that x(0) = x̄ and

f(x̄) ≥ f(x(t)) + 1
2

ˆ t

0
|x′|2(s) ds+ 1

2

ˆ t

0
|∇−f |2(x(s)) ds (2.2.7)

for any t > 0, where |∇−f | is the descending slope of f , defined as

|∇−f |(x) :=

lim sup
y→x

max(f(y)−f(x),0)
dE(x,y) if x ∈ X is not isolated,

0 otherwise.

When equality holds for all t > 0 in (2.2.7), the curve (x(t))t>0 is called EDE (Energy
Dissipation Equality) gradient flow.

The identification between the heat flow and the EDE gradient flow of the relative
entropy was originally observed at a formal level by R. Jordan, D. Kinderlehrer and F. Otto
in [JK098] and stated rigorously for the first time in the Euclidean space in [AGS08].
Afterwards N. Gigli, K. Kuwada and S. Ohta extended it to the purely metric setting of
compact Alexandrov spaces [GKO13], replacing the Dirichlet energy with the Cheeger
energy. The next statement is taken from [?, Th. 8.5], and as a byproduct, it justifies the
existence of the EDE gradient flow of the relative entropy on CD(K,∞) spaces.

Theorem 2.2.13. Let (X,d,m) be a CD(K,∞) space. Then for all f0 ∈ L2(X,m) such
that µ0 = f0m ∈ P2(X),
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(i) if (ft)t>0 is the heat flow of (X, d,m) starting from f0, then (µt := ftm)t>0 is the EDE
gradient flow of Entm starting from µ0, t 7→ Entm(µt) is locally absolutely continuous
in (0,+∞) and

− d
dtEntm(µt) = |µ̇t|2 for a.e. t ∈ (0,+∞);

(ii) if (µt)t>0 is the EDE gradient flow of Entm starting from µ0, then for any t > 0 we
have µt � m, and the family of densities (ft := dµt

dm )t>0 is the heat flow of (X,d,m)
starting from f0.

Remark 2.2.14. The heat flow can also be identified with the so-called EVIK-gradient
flow of Entm. This property is particularly useful in the study of convergent sequences of
RCD(K,∞) spaces, see [AGS14b].

The Newtonian space N1,2(X,d,m)
Another way to characterize a Sobolev function f on a given open set Ω in Rn is to

require that for almost any line γ in Ω, the function f ◦ γ is absolutely continuous. Such
an approach goes back to 1901 and the pioneering work of B. Levi [Le01]. It was later on
pushed forward by B. Fuglede [Fu57] who formulated the quantification over almost all lines
via an outer measure called 2-Modulus. This observation inspired N. Shanmugalingam who
proposed in [Sh00] another possible definition of Sobolev space over (X,d,m), replacing
lines in Levi-Fuglede approch with absolutely continuous curves: this gives rise to the
so-called Newtonian space N1,2(X,d,m), which is by definition the space of functions
f : X → [−∞,+∞] with

´
X f

2 dm < +∞ for which there exist a function f̃ : X → R such
that f̃ = f m-a.e. on X, and a function g ∈ L2(X,m) called 2-weak upper gradient, such
that ∣∣∣∣∣

ˆ
∂γ
f̃

∣∣∣∣∣ ≤
ˆ
γ
g

holds for Mod2-a.e. curve γ. Here Mod2 is the outer measure defined on the set of paths,
i.e. absolutely continuous curves taking values in X, by

Mod2(Γ) := inf
{
‖g‖2L2(X,m) : g : X → [0,+∞] Borel such that

ˆ
γ
g ≥ 1 for all γ ∈ Γ

}

for any family of paths Γ. The set of L2-weak upper gradients of f being convex and closed,
whenever it is non-empty there exists an element with minimal L2(X,m) norm, denoted
by |∇f |S and called minimal 2-weak upper gradient of f .

Using Cheeger’s formalism, Shanmugalingam proved in [Sh00, Th. 4.1] thatH1,2(X, d,m)
coincides with N1,2(X,d,m) in the following sense: an equivalent class f ∈ L2(X,m) be-
longs to H1,2(X,d,m) if and only if there exists a representative f : X → [−∞,+∞] of
f belonging to N1,2(X,d,m), in which case the minimal 2-weak upper gradient of f is
denoted by |∇f |S . Furthermore, |∇f |∗ = |∇f |S m-a.e. on X for any f ∈ H1,2(X, d,m), see
[AGS13, Th. 7] (see also [?] in the context of extended metric measure spaces).

The Sobolev class S2(X,d,m)
A different way to quantify over almost every curves was proposed by L. Ambrosio,

N. Gigli and G. Savaré in [?, Sect. 5] using the notion of test plan. For any s ∈ [0, 1],
let us denote by es : C([0, 1], X) → R the evaluation map defined by es(γ) = γ(s) for
any γ ∈ C([0, 1], X). We call test plan on (X,d,m) any outer measure π on C([0, 1], X)
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such that π(C([0, 1], X)) = 1, concentrated in AC2([0, 1], X), with bounded compression
(meaning that there exists C > 0 such that (es)#π ≤ Cm for all s ∈ [0, 1]) and with
finite energy, i.e.

´ ´ 1
0 |γ

′|(s)2 dsdπ(γ) < +∞. Then a set of curves Γ ⊂ C([0, 1], X) is
called 2-negligible whenever π(Γ) = 0 for any test plan π. A property is said to hold for
2-a.e. curve if the set of curves on which it doesn’t hold is 2-negligible.

The Sobolev class S2(X,d,m) is by definition the set of Borel functions f : X → R
admitting a L2 weak upper gradient, namely a non-negative function G ∈ L2(X,m) such
that

ˆ
C([0,1],X)

|f(γ(1))− f(γ(0))|dπ(γ) ≤
ˆ
C([0,1],X)

ˆ 1

0
G(γ(t))|γ̇|(t) dtdπ(γ) (2.2.8)

holds for any test plan π. It can be shown (see [?, Def. 5.1] or [AGS13, Sec. 4.3]) that for
every f ∈ S2(X,d,m) there exists a unique (up to m-negligible sets) mimimal (in the m-
a.e. sense) L2 weak upper gradient, denoted by |Df |. The intersection S2(X, d,m)∩L2(X,m)
coincides with H1,2(X, d,m), and the minimal weak upper gradient |Df | coincides with the
minimal relaxed slope |∇f |, up to m-negligible sets, see [ACDM15] for a nice presentation
of this fact.

The link between functions in the Sobolev class and their regularity along curves lies in
the following statement, see [G18, Th. 6.4] for a proof.

Proposition 2.2.15. Let f : X → R and G : X → [0,+∞] be Borel functions with
G ∈ L2(X,m). Then the following are equivalent.

1. f ∈ S2(X,d,m) and G is a 2-weak upper gradient of f ;

2. for 2-a.e. curve γ, the function f ◦ γ coincides L 1-a.e. in [0, 1] and in {0, 1} with an
absolutely continuous map fγ : [0, 1]→ R, and

∣∣∣´∂γ f ∣∣∣ ≤ ´
γ G.

Remark 2.2.16. Several other definitions of Sobolev spaces on metric measure spaces exist
in the literature. For instance, N.J. Korevaar and R.M. Schoen considered in [KS93] the
space of functions u : X → R such that

sup
{

lim sup
ε→0

ˆ
X
f(x)

[ 
Bε(x)

ε−p|u(x)− u(y)|p dm(y)
]

dm(x) : f ∈ Cc(X, [0, 1])
}
< +∞.

In [Ha95], P. Hajlasz set as Sobolev function any f ∈ Lp(X,m) for which there exists a
function g ∈ Lp(X,m) and a m-negligible set N ⊂ X such that |f(x)−f(y)| ≤ d(x, y)(g(x)+
g(y)) holds for any x, y ∈ X\N . Both spaces are equal when (X,d,m) satisfies a local
(1, q)-Poincaré inequality with 1 ≤ q < p, see [KM98, Th. 4.5], and of course they coincide
with the usual Sobolev space H1,p(Ω) when Ω is an open subset of Rn.

Cheeger’s first-order differential structure
Recall that Rademacher’s theorem states that any Lipschitz function f : Rn → R is

differentiable L n-a.e. on Rn. In [Ch99], J. Cheeger extended this result to PI doubling
spaces which are defined as follows.

Definition 2.2.17. (PI doubling spaces) Let (X,d) be a metric space and m a Borel
regular measure on (X,d) which is finite and non-zero on balls with finite and non-zero
radius. Then the metric measure space (X, d,m) is called PI doubling if the two following
conditions hold:
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(i) (local doubling condition) for all R > 0 there exists CD = CD(R) > 0 such that for
all x ∈ X and 0 < r < R,

m(B2r(x)) ≤ CDm(Br(x));

(ii) (local weak (1, p)-Poincaré inequality) for some 1 ≤ p < +∞, there exists R > 0,
1 < λ < +∞ and CP = CP (p,R) > 0 such that for all f ∈ L0(X,m) and g ∈ UGp(f),

 
Br

|f − fBr |dm ≤ CP r
( 

Br

gp dm
)1/p

holds for all ball Br with radius 0 < r < R.

In addition to the generalized Rademacher’s theorem, which provides a first-order
differential structure on PI doubling spaces, J. Cheeger also proved that Sobolev functions
asymptotically satisfy the Dirichlet principle, i.e. they tend to minimize the local Cheeger
energy on every ball with radius converging to 0.

Theorem 2.2.18. Let (X,d,m) be a PI doubling space. Then:

(1) (asymptotic minimizers of the Cheeger energy) for all f ∈ H1,2(X,d,m), for m-a.e.
x ∈ X one has Dev(f,Br(x)) = o(m(Br(x))) as r ↓ 0, where

Dev(f,Br(x)) =
ˆ
Br(x)

|∇f |2 dm− inf
{ˆ

Br(x)
|∇h|2 dm : f − h ∈ Lipc(Br(x))

}
;

(2.2.9)

(2) (generalized Rademacher’s theorem) there exist two constants 0 < M < +∞ and
N ∈ N depending only on CD and CP such that m-almost all of X can be covered
by a sequence of Borel sets C with the following property: there exist a family of
k = k(C) Lipschitz functions F1, . . . , Fk ∈ H1,2(X,d,m), with k ≤ N , such that for
all f ∈ Lip(X,d) ∩H1,2(X,d,m), one has

lip
(
f(·)−

k∑
i=1

χi(x0)Fi(·)
)
(x0) = 0 for m-a.e. x0 ∈ C (2.2.10)

for suitable χi ∈ L2(C,m) with
∑
i χ

2
i ≤M |∇f |2 m-a.e. on C.

Sobolev spaces and Laplacians on open sets
Following a standard approach, let us localize some of the concepts previously introduced

in this chapter. These notions will be used only in Chapter 5. First of all, let us introduce the
Sobolev space H1,2(BR(x), d,m) on a RCD∗(K,N)-space (X, d,m). See also [Ch99, Sh00]
for the definition of Sobolev space H1,p(U, d,m) for any p ∈ [1,∞) and any open subset U
of X. Our working definition is the following.

Definition 2.2.19. Let U ⊂ X be open.

1. (H1,2
0 -Sobolev space) We denote by H1,2

0 (U, d,m) the H1,2-closure of Lipc(U, d), the
subspace of Lip(U,d) of compactly supported functions.

2. (Sobolev space on an open set U) We say that f ∈ L2
loc(U,m) belongs to H1,2

loc (U, d,m)
if ϕf ∈ H1,2(X,d,m) for any ϕ ∈ Lipc(U,d). In case X\U 6= ∅, if, in addition,
|∇f | ∈ L2(U,m), we say that f ∈ H1,2(U,d,m).
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Notice that f ∈ H1,2
loc (U, d,m) if and only if for any V b U there exists f̃ ∈ H1,2(X, d,m)

with f̃ ≡ f on V . The global condition |∇f | ∈ L2(U,m) in the definition of H1,2(U, d,m) is
meaningful, since the locality properties of the minimal relaxed slope ensure that |∇f |makes
sense m-a.e. in X for all functions f such that ϕf ∈ H1,2(X,d,m) for any ϕ ∈ Lipc(U,d).
Indeed, choosing ϕn ∈ Lipc(U,d) with {ϕn = 1} ↑ U and defining

|∇f | := |∇(fϕn)| m-a.e. on {ϕn = 1} \ {ϕn−1 = 1}

we obtain an extension of the minimal relaxed gradient to H1,2(U, d,m) (for which we keep
the same notation, being also independent of the choice of ϕn) which retains all bilinearity
and locality properties.

Accordingly, for U ⊂ X open we can define the Cheeger energy ChU : L2(U,m)→ [0,∞]
on U by

ChU (f) :=
{

Ch(f) if f ∈ H1,2
0 (U,d,m);

+∞ otherwise
(2.2.11)

and put Ch(x,R) := ChBR(x).
We introduce the Dirichlet Laplacian acting only on H1,2

0 -functions as follows:

Definition 2.2.20 (Dirichlet Laplacian on an open set U). Let D0(∆, U) denote the set
of all f ∈ H1,2

0 (U,d,m) such that there exists h := ∆Uf ∈ L2(U,m) satisfying
ˆ
U
hg dm = −

ˆ
U
〈∇f,∇g〉 dm ∀g ∈ H1,2

0 (U,d,m).

We also set ∆x,R := ∆BR(x) when U = BR(x) for some x ∈ X and R ∈ (0,∞).

Strictly speaking, the Dirichlet Laplacian ∆U should not be confused with the operator
∆, even if the two operators agree on functions compactly supported on U ; for this reason we
adopted a distinguished symbol. Notice that λD1 (BR(x)) > 0 whenever if m(X \Br(x)) > 0,
as a direct consequence of the local Poincaré inequality.

Definition 2.2.21 (Laplacian on an open set U). For f ∈ H1,2(U,d,m), we write f ∈
D(∆, U) if there exists h := ∆Uf ∈ L2(U,m) satisfying

ˆ
U
hg dm = −

ˆ
U
〈∇f,∇g〉 dm ∀g ∈ H1,2

0 (U,d,m).

Since for f ∈ H1,2
0 (U,d,m) one has f ∈ D(∆, U) iff f ∈ D0(∆, U) and the Laplacians

are the same, we retain the same notation ∆U of Definition 2.2.20. It is easy to check
that for any f ∈ D(∆, U) and any ϕ ∈ D(∆) ∩ Lipc(U,d) with ∆ϕ ∈ L∞(X,m) one has
(understanding ϕ∆Uf to be null out of U) ϕf ∈ D(∆) with

∆(ϕf) = f∆ϕ+ 2〈∇ϕ,∇f〉+ ϕ∆Uf m-a.e. in X. (2.2.12)

Such notions allow to define harmonic functions on an open set U as follows.

Definition 2.2.22. Let U ⊂ X be open. We say that f ∈ H1,2
loc (U, d,m) is harmonic in U

if f ∈ D(∆, V ) with ∆f = 0 for any open set V b U , namely
ˆ
U
〈∇f,∇g〉dm = 0 ∀g ∈ Lipc(U,d).

Let us denote by Harm(U,d,m) the set of harmonic functions on U .
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In Chapter 5, we will consider mainly globally defined harmonic functions. It is worth
pointing out that, in general, these functions do not belong to H1,2(X,d,m) but, by
definition, they belong to H1,2

loc (X,d,m).

Harmonic replacement
Let us conclude this section by introducing the notion of harmonic replacement which

will play a key role in Chapter 5. As we already remarked, the assumption that the first
Dirichlet eigenvalue λD1 (BR(x)) for the ball BR(x) is strictly positive is valid for sufficently
small balls, indeed it holds as soon as m(X \BR(x)) > 0.

Proposition 2.2.23. Assume that m(BR(x)) > 0 and λD1 (BR(x)) > 0. Then for any
f ∈ H1,2(BR(x), d,m), there exists a unique f̂ ∈ D(∆, BR(x)), called harmonic replacement
of f , such that 

∆x,Rf̂ = 0

f − f̂ ∈ H1,2
0 (BR(x), d,m).

(2.2.13)

Moreover,
‖|∇f̂ |‖L2(BR(x)) ≤ 2‖|∇f |‖L2(BR(x)), (2.2.14)

‖f̂‖L2(BR(x)) ≤ ‖f‖L2(BR(x)) + 1
λD1 (BR(x))

‖|∇f |‖L2(BR(x)). (2.2.15)

Finally, f̂ − f is the unique minimizer of the functional

ψ ∈ H1,2
0 (BR(x),d,m) 7→

ˆ
X
|f + ψ|2 dm.



38 CHAPTER 2. PRELIMINARIES

2.3 Main properties of spaces with Riemannian curvature-
dimension conditions

In this section, we explain how RCD∗(K,N) spaces, with N < +∞, admit a unique heat
kernel satisfying sharp Gaussian bounds. Afterwards we present the relationship between
the RCD∗(K,N) conditions (with N possibly infinite) and Bakry-Émery’s conditions stated
in the context of diffusion processes. We conclude with deep results concerning the structure
of finite-dimensional RCD∗(K,N) spaces.

Heat kernel in the setting of diffusion processes
In the context of diffusion processes, K.-T. Sturm established in [St94, St95, St96]

several results concerning existence, uniqueness and regularity properties of the heat kernel
associated with a Dirichlet form, under the assumption that this Dirichlet form defines a
metric on the state space with nice properties. Let us give the precise setting in which
these results hold.

Let (X, τ) be a locally compact, separable, Hausdorff topological space and m a positive
Radon measure on the Borel σ-algebra of (X, τ) such that suppm = X. We shall use the
following notation: C(X) is the set of continuous real-valued functions on X, Cc(X) (resp.
Cb(X)) is the subset of C(X) made of compactly supported (resp. bounded) functions,
Rad stands for the set of signed Radon measures defined on the Borel σ-algebra of (X, τ).

We start with the definition of Dirichlet form, following Sturm’s approach.

Definition 2.3.1. (Dirichlet form) A Dirichlet form E on L2(X,m) with domain D(E) is
a positive definite bilinear map E : D(E) × D(E) → R, with D(E) being a dense subset
of L2(X,m), satisfying closedness, i.e. the set {(f, g, E(f, g)) : f, g ∈ D(E)} (the graph of
E) is closed in D(E) × D(E) × R, and the Markov property: E(f1

0 , f
1
0 ) ≤ E(f, f) for any

f ∈ D(E), where f1
0 = min(max(f, 0), 1).

We refer to [BH91, FOT10] for equivalent formulations of the Markov property, and
more generally for the basics on Dirichlet forms.

Note that instead of requiring closedness, we can equivalently assume L2(X,m)-lower
semicontinuity of E . This fact is important as it enables to apply the general theory
of gradient flows to any Dirichlet form E , producing a semi-group of operators (Pt)t>0 :
L2(X,m)→ L2(X,m).

We will only consider symmetric Dirichlet forms, i.e. such that E(f, g) = E(g, f) for any
f, g ∈ D(E), and always assume that the space D(E) is a Hilbert space once equipped with

〈f, g〉 :=
ˆ
X
fg dm + E(f, g) ∀f, g ∈ D(E).

Usually Dirichlet forms are studied with further assumptions.

Definition 2.3.2. Let E be a Dirichlet form on L2(X,m) with domain D(E).

1. (locality) We say that E is local if E(f, g) = 0 for any f, g ∈ D(E) with disjoint
supports;

2. (regularity) we say that E is regular if Cc(X) ∩D(E) contains a subset which is both
dense in Cc(X) for ‖ · ‖∞ and dense in D(E) for ‖ · ‖E ;

3. (strong locality) we say that E is strongly local if E(f, g) = 0 for any f, g ∈ D(E)
such that f is constant on a neighborhood of supp g;
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4. (irreducibility) denoting by Dloc(E) the set of m-measurable functions f on X such
that for any compact set K there exists g ∈ D(E) such that f = g m-a.e. on K, we
say that E is irreductible if any f ∈ Dloc(E) such that E(f, f) = 0 is constant on X.

Under suitable assumptions, any Dirichlet form admits an important representation
formula established by A. Beurling and J. Deny [BD59].

Proposition 2.3.3. (Representation of E with Radon measures) Assume that E is a strongly
local regular symmetric Dirichlet form on L2(X,m). Then there exists a nonnegative definite
and symmetric bilinear map Γ : D(E)×D(E)→ Rad such that

E(f, g) =
ˆ
X

dΓ(f, g) ∀f, g ∈ D(E)

where
´
X dΓ(f, g) denotes the total mass of the measure Γ(f, g).

It is worth point out that the above map Γ is concretely given as follows: for any
f ∈ D(E) ∩ L∞(X,m), the measure Γ(f) = Γ(f, f) is defined through its action on test
functions: ˆ

X
ϕ dΓ(f) := E(f, fϕ)− 1

2E(f2, ϕ) ∀ϕ ∈ D(E) ∩ Cc(X). (2.3.1)

Regularity of E allows to extend (2.3.1) to the set of functions Cc(X), providing a well-posed
definition of Γ(f) by duality between Cc(X) and Rad. The general expression of Γ(f, g)
for any f, g ∈ D(E) is then obtained by polarization:

Γ(f, g) := 1
4(Γ(f + g, f + g)− Γ(f − g, f − g)).

Locality of Γ allows to extend E to the set Dloc(E) consisting of all m-measurable
functions f such that for any compact set K ∈ X there exists a function g ∈ D(E) such
that f = g m-a.e. on K.

Thanks to Γ, we can associate with E an (extended) pseudo-distance which shall be of
outmost importance in the sequel.

Definition 2.3.4. (Intrinsic extended pseudo-distance) The intrinsic extended pseudo-
distance ρ associated to E is defined by

ρ(x, y) := sup{|f(x)− f(y)| : f ∈ Dloc(E) ∩ L∞(X,m) s. t. [f ] ≤ m} ∀x, y ∈ X.

Here [f ] ≤ m means that [f ] is absolutely continuous with respect to m with
∣∣∣ d[f ]

dm

∣∣∣ ≤ 1
m-a.e. on X, and “extended” refers to the fact that ρ(x, y) may be infinite.

Recall finally that any Dirichlet form is associated with a non-positive definite self-
adjoint operator L with dense domain D(L) ⊂ L2(X,m) characterized by the following
property: {

D(L) ⊂ D(E),
E(f, g) = −

´
X(Lf)g dm ∀f ∈ D(L), g ∈ D(E).

We are now in a position to present Sturm’s results.

Theorem 2.3.5. Let (Pt)t>0 be the semi-group of operators associated to E. Assume that:

(A) the intrinsic pseudo-distance ρ associated to E is actually a distance which induces
the topology τ ;
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(B) the local doubling property (2.1.8) holds for (X, ρ,m);

(C) a local weak L2-Poincaré inequality holds: there exists a constant CP > 0 such that
for all f ∈ H1,2(X,d,m),

ˆ
Br

|f − fBr |2 dm ≤ CP r2
ˆ
B2r

dΓ(f, f)

for all relatively compact balls B2r ⊂ X, with fBr denoting the mean-value of f over
the ball Br.

Then there exists a measurable function p : X ×X × (0,+∞) → (0,+∞] called heat
kernel of (X,m, E) such that:

(1) p is symmetric with respect to the first two variables;

(2) ([St95, Prop. 2.3]) for any t > 0 and f ∈ D(L),

Ptf(x) =
ˆ
X
p(x, y, t)f(y) dm(y) for m-a.e. x ∈ X;

(3) ([St96, Th. 3.5 and Cor. 3.3]) there exists a locally Hölder continous representative
of p, which from now on we will always use to state formulae: for any relatively
compact set Y ⊂ X, there exists constants α = α(Y ) ∈ (0, 1) and C = C(Y ) > 0
such that for all balls B2r ⊂ Y , all T > 0, and any x ∈ X,

|p(x, y1, t1)− p(x, y2, t2)| ≤ C(sup
Q2

u)
(
|t1 − t2|1/2 + |y1 − y2|

r

)α
(2.3.2)

for any 0 < r <
√
T/2, where Q2 = (T − 4r2, T ) × B2r and (y1, t1), (y2, t2) are in

Q1 := (T − r2, T )×Br;

(4) ([St95, Prop. 2.3]) the Chapman-Kolmogorov formula

p(x, y, t1 + t2) =
ˆ
X
p(x, z, t1)p(z, y, t2) dm (2.3.3)

holds for any x, y ∈ X and any t1, t2 > 0;

(5) ([St95, Eq. (2.27)]) for any x, y ∈ X, the function t 7→ p(x, y, t) is C∞ on (0,+∞),
and for every ε > 0 and j ∈ N, there exists a constant C1 = C1(ε, j, CD, CP ) > 0
such that [ d

dt

]j
p(x, y, t) ≤ C1

m(B√t(x))e
− ρ

2(x,y)
(4+ε)t ∀t > 0; (2.3.4)

(6) ([St96, Cor. 4.10]) there exists a constant C2 = C2(CD, CP ) > 0 such that

p(x, y, t) ≥ C−1
2

m(B√t(x))e
−C2

ρ2(x,y)
t (2.3.5)

for all t > 0 and x, y ∈ X.

Several remarks are in order.
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Remark 2.3.6. 1. Let us point out that Sturm’s results hold in a more general context
in which E is replaced by a family of Dirichlet forms (Es)s∈R with common domain F ,
the estimate (2.3.2), (2.3.4) and (2.3.5) being then suitably modified. In this case, further
requirements are needed, namely uniform parabolicity and local strong uniform parabolicity
with respect to a reference strongly local regular Dirichlet form E , but they are automatically
satisfied when Es ≡ E .

2. The proof of the existence of p presented in [St95, Prop. 2.3] relies on precise Lp
estimates for sub- and supersolutions of the equation (L+α)u = ∂tu with α ∈ R, obtained
by Moser iteration technique which in turn requires a local Sobolev inequality. On smooth
Riemannian manifolds, such an inequality is implied by doubling condition and local
Poincaré inequality, as proved indepedently by A. Grigor’yan [Gr92] and L. Saloff-Coste
[Sa92]. K.-T. Sturm pointed out that Saloff-Coste’s proof is valid also in the present setting
[St96, Th. 2.6].

3. The previously mentioned local Sobolev inequality used by Sturm involves a dimension
N which might depend on the relatively compact open set on which it holds.

4. The local Hölder continuity of a representative of the heat kernel is a consequence
of the parabolic Harnack inequality [St96, Prop. (II)] which was proved equivalent in the
smooth setting to the local doubling and Poincaré properties by L. Saloff-Coste [Sa92].
Here again, K.-T. Sturm noticed that one side of the equivalence in Saloff-Coste’s proof
could be carried over line by line in his context, the other side following from the previously
mentioned Lp estimates.

5. The constants in the Gaussian estimates (2.3.4) and (2.3.5) are not sharp.

Heat kernel on RCD∗(K,N) spaces
Theorem 2.3.5 applies to any given RCD∗(K,N) space (X,d,m) - note that here for

convenience we assume supp(m) = X. Indeed, the intrinsic distance associated to the
strongly local and regular Dirichlet form identified in Proposition 2.2.10, that we shall
also denote by Ch in the sequel, coincides with the original distance d on X × X, see
[AGS14b, Th. 6.10], and recall that by Corollary 2.1.15 and Theorem 2.1.16, the local
doubling condition and a local L1-Poincaré inequality hold true even in the more general
context of CD(K,N) spaces. Whence the existence of the heat kernel p on (X,d,m).

Note that by properties of the heat flow, for any y ∈ X, t > 0 we have p(·, y, t) ∈
H1,2(X, d,m), and in the sequel we adopt the notation |∇xp(x, y, t)| := |∇p(·, y, t)|(x) and
〈∇xp(x, y, t), g〉 = 〈∇p(·, y, t),∇g〉(x) for any g ∈ H1,2(X,d,m).

The Gaussian bounds (2.3.4) and (2.3.5) can be sharpened in the RCD∗(K,N) setting,
thanks to the Laplacian comparison theorem due to N. Gigli [G15, Th. 5.14] and the
parabolic Harnack inequality for the heat flow established by N. Garofalo and A. Mondino
[GM14, Th. 1.4] for the case µ(X) < +∞ and R. Jiang [J16, Th. 1.3] for the case
µ(X) = +∞. Combining these sharp estimates with the Li-Yau gradient estimate proved
by the same authors ([GM14, Th. 1.1], [J16, Th. 1.1]), one can derive a sharp bound for
the gradient of the heat kernel. These results are due to R. Jiang, H. Li and H. Zhang
[JLZ16, Th. 1.2 and Cor. 1.2].

Theorem 2.3.7. Let (X,d,m) be a RCD∗(K,N) space with K < 0 and N ∈ [1,+∞).
Then for any ε > 0, there exist positive constants C1, C2, C3, C4 > 0 depending only on K,
N and ε such that for any t > 0 and x, y ∈ X,

C−1
1

m(B√t(x)) exp
(
−d2(x, y)

(4− ε)t − C2t

)
≤ p(x, y, t) ≤ C1

m(B√t(x)) exp
(
−d2(x, y)

(4 + ε)t + C2t

)
,

(2.3.6)
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and for any y ∈ X and t > 0,

|∇xp(x, y, t)| ≤
C3√

tm(B√t(x))
exp

(
−d2(x, y)

(4 + ε)t + C4t

)
(2.3.7)

for m-a.e. x ∈ X.
Moreover by [D97, Thm. 4] with (2.3.6) the inequality∣∣∣∣ d

dtp(x, y, t)
∣∣∣∣ = |∆xp(x, y, t)| ≤

C5
tm(Bt1/2(x)) exp

(
−d(x, y)2

(4 + ε)t + C6t

)
(2.3.8)

holds on all t > 0 and m×m-a.e. (x, y) ∈ X×X, where C5, C6 > 1 depend only on ε,K,N
(see also [JLZ16, (3.11)]).

We will mainly apply these estimates in the case ε = 1. Note that (2.3.7) implies
a quantitative local Lipschitz bound on p, i.e., for any z ∈ X, any R > 0 and any
0 < t0 ≤ t1 <∞ there exists C := C(K,N,R, t0, t1) > 0 such that

|p(x, y, t)− p(x̂, ŷ, t)| ≤ C

m(B
t
1/2
0

(z))d((x, y), (x̂, ŷ)) (2.3.9)

for all x, y, x̂, ŷ ∈ BR(z) and any t ∈ [t0, t1].

Relation between RCD∗(K,N) spaces and Bakry-Émery’s curvature-dimension
condition BE(K,N)

Recall that a Markov semi-group on a σ-finite measure space (X,m) is a family of
operators (Pt)t>0 acting on L2(X,m) such that Pt+s = Pt ◦ Ps for any t, s > 0 and
Ptf ≥ 0, ‖Ptf‖L1(X,m) = 1 whenever f ≥ 0 and ‖f‖L1(X,m) = 1 respectively. As one can
easily check, a simple example of Markov semi-group is the one associated to a Dirichlet
form. Any Markov semi-group (Pt)t>0 is called hypercontractive whenever there exists λ > 0
such that ‖Ptf‖Lq(X,m) ≤ ‖f‖Lp(X,m) for any p, q ≥ 1 and t > 0 such that q−1 ≤ (p−1)eλt.
Hypercontractivity plays a central role in the theory of diffusion processes because it
provides crucial tools to prove many estimates and functional inequalities like logarithmic
Sobolev, Poincaré, or Talagrand ones, see e.g. [Ba94] for an overview on this topic.

At the end of the eighties, D. Bakry and M. Émery introduced a sufficient condition for
a Markov semi-group to be hypercontractive [BE85] which was later on extensively studied
as a curvature-dimension condition for measure spaces equipped with a suitable Dirichlet
form, see e.g. [CS86, Ba91, Le00, BGL14].

In full generality, the objects under consideration in Bakry-Émery’s condition are a set
X, an algebra A of functions f : X → R, and a linear map L : A → A. Associated to this
linear map are the symmetric bilinear operators Γ,Γ2 : A × A → R, respectively called
carré du champ and iterated carré du champ, which are defined as follows:

Γ(f, g) := 1
2(L(fg)− fLg − gLf),

Γ2(f, g) := 1
2(L(Γ(f, g))− Γ(Lf, g)− Γ(f, Lg)),

for all f, g ∈ A.
Definition 2.3.8. For K ∈ R and 1 ≤ N < +∞, we say that the triple (X,A, L) satisfies
Bakry-Émery’s curvature-dimension condition BE(K,N) if

Γ2(f) ≥ KΓ(f) + (Lf)2

N
∀f ∈ A.

For N =∞, the requirement is Γ2(f) ≥ KΓ(f) for all f ∈ A.
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Let us give a simple class of BE(K,N) spaces. Recall Bochner’s formula
1
2∆|∇f |2 = Ric(∇f,∇f) + |Hessf |2HS + 〈∇f,∇∆f〉, (2.3.10)

holding for any smooth and compactly supported function f defined over a smooth complete
Riemannian manifold (Mn, g). Assume Ricg ≥ (n − 1)Kg, and note that |Hessf |2HS ≥
(∆f)2/n as a consequence of the inequality of Cauchy-Schwartz inequality. Considering the
Laplace-Beltrami operator L = ∆, one can easily check that Γ2(f) = 1

2∆|∇f |2−〈∇f,∇∆f〉
for any f ∈ C∞(M), from what follows thanks to (2.3.10) that (M,C∞(M),∆) satisfies
the BE((n− 1)K,n) condition.

Moreover, it was immediately realized [AGS14b, Th. 6.2] that infinitesimal Hilbertian-
nity provides the following gradient estimate for the heat flow of any RCD∗(K,∞) space
(X,d,m): for any f ∈ H1,2(X,d,m),

|∇(Ptf)|2∗ ≤ e−2KtPt(|∇f |2∗) m-a.e. on X, ∀t > 0. (2.3.11)

It can be shown that this estimate implies the weak Bochner inequality
1
2

ˆ
X

(∆ϕ)|∇f |2∗ dm−
ˆ
X
ϕ〈∇∆f,∇f〉dm ≥ K

ˆ
X
ϕ|∇f |2∗ dm (2.3.12)

∀ϕ ∈ D(∆) ∩ L∞(X,m) nonnegative with ∆ϕ ∈ L∞(X,m),

holding for any f ∈ D(∆) with ∆f ∈ H1,2(X,d,m), see [AGS14b, Rk. 6.3]. Building
on this, G. Savaré proved that the class of so-called test functions TestF(X,d,m) :=
{f ∈ Lipb(X,d) ∩H1,2(X,d,m) : ∆f ∈ H1,2(X,d,m)} is an algebra [S14]. Therefore, the
inequality (2.3.12) can be understood as a weak BE(K,∞) condition, which can be written
in the more enlightning way

Γ2(f ; ·) ≥ KΓ(f ; ·) ∀f ∈ TestF(X,d,m), (2.3.13)

by setting Γ(f, ϕ) =
´
X ϕ|∇f |

2
∗ dm and Γ2(f, ϕ) = 1

2
´
X(∆ϕ)|∇f |2∗ dm−

´
X ϕ〈∇∆f,∇f〉 dm

for any ϕ ∈ D(∆) ∩ L∞(X,m) nonnegative with ∆ϕ ∈ L∞(X,m) and Γ2(f, ·) ≥ KΓ(f, ·)
if and only if Γ2(f, ϕ) ≥ KΓ(f, ϕ) for any ϕ as above. In other words, RCD∗(K,∞) ⇒
weak BE(K,∞).

Note that on Riemannian manifolds, (2.3.13) and therefore (2.3.11) implies the bound
Ric ≥ K, so we immediately get equivalence between RCD∗(K,∞) and BE(K,∞) in this
context.

In general, the converse property weak BE(K,∞)⇒ RCD∗(K,∞) was established in
an appropriate way by L. Ambrosio, N. Gigli and G. Savaré [AGS15, Th. 4.17].

The finite dimensional picture was studied by M. Erbar, K. Kuwada and K.-T. Sturm in
[EKS15]. Armed with a dimensional modification of Entm, namely UN := exp(−N−1Entm),
thanks to which they reformulated the CD(K,N) condition into the suitable so-called
entropic curvature-dimension condition CDe(K,N), and introducing a new notion of EVI
gradient flow, which they called EVIK,N , taking into account both the curvature and the
dimension, they proved the following equivalence result.

Theorem 2.3.9. A geodesic Polish metric measure space (X,d,m) is RCD∗(K,N) if
and only if it is infinitesimally Hilbertian with no more than exponential volume growth
(meaning that (2.1.3) holds), satisfies the weak BE(K,N) condition:

1
2

ˆ
Γ(f)∆ϕdm ≥

ˆ
ϕ(Γ(f,∆f) + 1

N
(∆f)2 +KΓ(f))dm (2.3.14)

∀ϕ ∈ D(∆) ∩ L∞(X,m) nonnegative with ∆ϕ ∈ L∞(X,m)
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and the so-called Sobolev-to-Lipschitz property, stating that any f ∈ H1,2(X,d,m) with
|∇f |∗ ≤ 1 m-a.e. on X admits a Lipschitz representative f̃ with Lipschitz constant smaller
or equal than 1.

Therefore, several consequences of the Bakry-Émery condition weak BE(K,N) are
available on RCD∗(K,N) spaces.

Note that for the particular case of weighted Riemannian manifolds, the last statement
takes a simpler form.

Theorem 2.3.10. Let (M,d, e−fHn) be a smooth weighted Riemannian manifold. Then
the Bakry-Emery condition BE(K,N) (or equivalently the weak BE(K,N) condition) reads
as the following Bochner’s tensorial inequality

Ric + Hessf −
df ⊗ df
N − n

≥ Kg (2.3.15)

and is equivalent to the RCD∗(K,N) condition.

Structure of RCD∗(K,N) spaces
Spaces with Riemannian curvature-dimension bounds enjoy strong structural properties,

strenghtening the relevance of the RCD conditions as synthetic notion of Ricci curvature
bounded below. Let us first recall that T. Colding and A. Naber proved in [CN12] that
Ricci limit spaces have constant dimension, up to a negligible set. Their technique was
carried out on RCD∗(K,N) spaces by A. Mondino and A. Naber who established that any
RCD∗(K,N) space could be partitioned in Borel sets, each bi-Lipschitz equivalent to a
Borel subset of an Euclidean space, with possibly varying dimension [MN14, Th. 1.1]. To
state their result with better accuracy, let us introduce some preliminary notions.

Definition 2.3.11 (Rectifiable sets). Let (E, d) be a metric space and k ≥ 1 be an integer.

(1) We say that S ⊂ E is countably k-rectifiable if there exist at most countably many
bounded sets Bi ⊂ Rk and Lipschitz maps fi : Bi → E such that S ⊂ ∪ifi(Bi).

(2) For a nonnegative Borel measure µ in E (not necessarily σ-finite), we say that S
is (µ, k)-rectifiable if there exists a countably k-rectifiable set S′ ⊂ S such that
µ∗(S \ S′) = 0, i.e. S \ S′ is contained in a µ-negligible Borel set.

Definition 2.3.12 (Tangent metric measure spaces). Let (X,d,m) be a Polish metric
measure space. For any x ∈ X, we denote by Tan(X, d,m, x) the set of tangents to (X, d,m)
at x, that is to say the collection of all pointed metric measure spaces (Y, dY ,mY , y) such
that (

X,
1
ri

d, m

m(Bri(x)) , x
)
mGH→ (Y,dY ,mY , y)

for some infinitesimal sequence (ri) ⊂ (0,∞).

Definition 2.3.13. For any k ≥ 1, the k-dimensional regular set Rk of a RCD∗(K,N)
space (X,d,m) is by definition the set of points x ∈ X such that

Tan(X,d,m, x) =
{(

Rk,dRk ,
Lk

ωk
, 0
)}

,

where ωk is the k-dimensional volume of the unit ball in Rk.
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We are now in a position to state Mondino-Naber’s result.

Proposition 2.3.14. Let (X,d,m) be a RCD∗(K,N) space. Then

m(X\
[N ]⋃
k=1
Rk) = 0,

where [N ] is the integer part of N .

Having in mind the case of Ricci limit spaces, it was conjectured that there is a unique
k between 1 and [N ] such that m(Rk) > 0. This conjecture was proved true in the recent
work of E. Brué and D. Semola [BS18], building upon the careful analysis made by several
independent groups of researchers [DePhMR16, GP16, KM17] on the relationship between
the reference measure m restricted to each Rk and the corresponding Hausdorff measure
H k.

Theorem 2.3.15 (Constant dimension of RCD∗(K,N) spaces). For any RCD∗(K,N)
space (X, d,m), there exists a unique integer n, also denoted by dimd,m(X), between 1 and
[N ] such that m(Rn) > 0; in particular m(X\Rn) = 0. Moreover, m Rn �H n.

The converse absolute continuity has been studied in [AHT18] in which the next
theorem was proved. To some extent, it is a generalization of [CC00b, Theorem 4.6] to
the RCD setting. Note that we slightly rewrite the original statement of [AHT18] to take
Brué-Semola’s theorem into account.

Theorem 2.3.16 (Weak Ahlfors regularity). Let (X,d,m) be a RCD∗(K,N) space with
K ∈ R, N ∈ (1,+∞) and set n = dimd,m(X). Define

R∗n :=
{
x ∈ Rn : ∃ lim

r→0+

m(Br(x))
ωnrn

∈ (0,+∞)
}
. (2.3.16)

Then m(Rn \ R∗n) = 0, m R∗n and Hn R∗n are mutually absolutely continuous and

lim
r→0+

m(Br(x))
ωnrn

= dm R∗n
dHn R∗n

(x) for m-a.e. x ∈ R∗n. (2.3.17)

Moreover, one has

lim
r→0+

ωnr
n

m(Br(x)) = χR∗n(x)dHn R∗n
dm R∗n

(x) for m-a.e. x ∈ X. (2.3.18)

Proof. Let Sn be a countably n-rectifiable subset of Rn with m(Rn \ Sn) = 0. From
(4.0.4) we obtain that the set R∗n \ Sn is Hn-negligible, hence R∗n is (Hn, n)-rectifiable. We
denote mn = m Rn and recall that mn � Hn thanks to Proposition 2.3.15. We denote by
f : X → [0,+∞) a Borel function such that mn = fHn R∗n (whose existence is ensured
by the Radon-Nikodym theorem, being R∗n σ-finite w.r.t. Hn) and recall that (4.0.5) gives

∃ lim
r→0

mn(Br(x))
ωkrn

= f(x) for Hn-a.e. x ∈ R∗n. (2.3.19)

Now, in (2.3.19) we can replace mn by m for Hn-a.e. x ∈ R∗n; this is a direct consequence
of (4.0.3) with µ = m−mn and S = R∗n.

Calling then Nn the Hn-negligible (and then mn-negligible) subset of R∗n where the
equality

lim
r→0

m(Br(x))
ωnrn

= f(x)
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fails, we obtain existence and finiteness of the limit on R∗n \Nn; since f is a density, it is
also obvious that the limit is positive mn-a.e., and that Hn R∗n ∩ {f > 0} is absolutely
continuous w.r.t. mn.

This proves that m(Rn \R∗n) = 0 and that m R∗n and Hn R∗n are mutually absolutely
continuous. The last statement (2.3.18) is straigthforward.
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2.4 Convergence of metric measure spaces and stability re-
sults

In this section, we provide the stability results related to the curvature-dimension conditions
CD /RCD(K,N) for K ∈ R and N ∈ [1,+∞].

Measured Gromov-Hausdorff convergence
There are several ways to express convergence of metric measure spaces, the most

common one being probably the measured Gromov-Hausdorff convergence. Let us first
recall the definition of Gromov-Hausdorff distance introduced by M. Gromov in [Gro81].

Definition 2.4.1. The Gromov-Hausdorff distance between two compact metric spaces
(X,dX) and (Y, dY ) is

dGH((X,dX), (Y, dY )) := inf{dH,Z(i(X), j(Y )) : ((Z,dZ), i, j)}

where the infimum is taken over all the triples ((Z,dZ), i, j) where (Z,dZ) is a complete
metric space and i : X → Z, j : Y → Z are isometric embeddings, and dH,Z stands for the
Hausdorff distance in Z.

The Gromov-Hausdorff distance is invariant by replacing the metric spaces under
consideration by isometric copies; in particular, we can replace all the spaces by their
completion. Therefore, without loss of generality, we will always work with complete
spaces.

Gromov-Hausdorff convergence is convergence with respect to dGH , usually denoted with
GH−−→. It can be reformulated in terms of functions called ε-isometries: (Xn, dn) GH−−→ (X, d)
if and only if there exists a sequence εn ↓ 0 and functions ϕn : Xn → X such that the
εn-neighborhood of ϕn(Xn) coincides with X, and |dX(ϕn(x), ϕn(x′))− dXn(x, x′)| ≤ εn
for all x, x′ ∈ Xn. Recall that for any ε > 0, the ε-neighborhood of a subset Y ⊂ X is by
definition

⋃
x∈Y Bε(x).

In the context of non-compact metric spaces, this notion adapts by distinguishing
reference points on the spaces and requiring Gromov-Hausdorff convergence to hold on
balls centered at these reference points: (Xn, dn, xn) GH−−→ (X, d, x) whenever Br(xn) ⊂ Xn

Gromov-Hausdorff converges to Br(x) ⊂ X for any r > 0. We usually talk about pointed
Gromov-Hausdorff convergence, and a triple (X, d, x) is called a pointed metric space. Here
again ε-isometries provides a user-friendly characterization: (Xn,dn, xn) GH−−→ (X,d, x) if
and only if there exists two sequences εn ↓ 0 and rn ↑ +∞ and functions ϕn : Brn(xn)→
X such that for any n, ϕn(xn) = ϕ(x), the εn-neighborhood of ϕn(Brn(xn)) contains
Brn−εn(xn) and |dX(ϕn(x), ϕn(x′))− dXn(x, x′)| ≤ εn for all x, x′ ∈ Xn.

To deal with compact metric measure spaces, K. Fukaya introduced in [F87] the mea-
sured Gromov-Hausdorff convergence (Xn,dn,mn) mGH−−−→ (X,d,m), which is by definition
(Xn,dn, xn) GH−−→ (X,d, x) with the further condition (ϕn)#mn

Cbs(X)
⇀ m, where Cbs(X)

denotes the set of continuous functions f : X → R with bounded support. Such a no-
tion extends in a natural way to pointed metric measure spaces: (Xn,dn,mn, xn) mGH−−−→
(X,d,m, x) whenever (Br(xn), (dn)|Br(xn)×Br(xn),mn Br(xn)) converges in the measure
Gromov-Hausdorff sense to (Br(x),d|Br(x)×Br(x),m Br(x)) for any r > 0.

Here is Gromov’s well-known precompactness theorem [Gro07, Th. 5.3] and two refine-
ments.
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Theorem 2.4.2 (Gromov’s precompactness theorem). 1. Let CMS be the set of all
compact metric spaces. Then for any n ∈ N∗, K ∈ R and 0 < D < +∞, the set
M(n,K,D) of compact n-dimensional Riemannian manifolds (M,dg) with Ricci
curvature bounded below by K and diameter bounded above by D is a precompact
subset of (CMS,dGH).

2. For any n ∈ N∗ and K ∈ R, any sequence of pointed complete n-dimensional
Riemannian manifolds (M, dg, xn) with Ricci curvature uniformly bounded below by
K admits a subsequence GH converging to some pointed metric space (X,d, x).

3. For any n ∈ N∗ and K ∈ R, any sequence of pointed complete n-dimensional Rie-
mannian manifolds (M,dg, volg, xn) with Ricci curvature uniformly bounded below
by K admits a subsequence mGH converging to some pointed metric measure space
(X,d,m, x).

Stability of Lott-Villani’s CD(K,∞) condition under mGH convergence of
compact spaces

The next result justifies that compact Ricci limit spaces are Lott-Villani’s CD(K,∞)
spaces for an appropriate K ∈ R.

Theorem 2.4.3 (Stability of Lott-Villani CD(K,∞) condition for compact spaces). Let
K ∈ R and {(Xi,di,mi)}i be a sequence of compact Lott-Villani CD(K,∞) spaces such
that (Xi,di,mi)

mGH−−−→ (X,d,m) for some compact metric measure space (X,d,m). Then
(X,d,m) is a Lott-Villani’s CD(K,∞) space.

Theorem 2.4.3 is a direct corollary of the following proposition. Recall that a metric
space (X,d) is called a length space if for any x, y ∈ X,

d(x, y) = inf
{ˆ 1

0
|γ′|(t) dt : γ ∈ AC([0, 1], X) s.t. γ(0) = x and γ(1) = y

}
,

and that geodesic metric spaces are particular examples of length spaces.

Proposition 2.4.4. Let {(Xi,di,mi)}i be a sequence of compact metric measure length
spaces. Assume that (Xi,di,mi)

mGH−−−→ (X,d,m) for some compact measured length space
(X, d,m). Let us assume that for some convex continuous function A : [0,+∞)→ [0,+∞)
with A(0) = 0, for any i ∈ N the associated functional Fi : P(Xi) 3 µ 7→

´
Xi
A(µ) dmi

is weakly K-displacement convex on (Xi,di,mi). Then F : P(X) 3 µ 7→
´
X A(µ) dm is

weakly K-displacement convex on (X,d,m).

We will provide a proof of Proposition 2.4.4. To this purpose, we need three lemmas
and a theorem. We shall give a proof only for the theorem and provide suitable references
for the lemmas. The first lemma states that it is enough to consider probability measures
with continuous densities to check the validity of weak K-displacement convexity of an
internal-energy functional. See [OV00, Lem. 3.24].

Lemma 2.4.5. Let (X, d,m) be a compact length space. Let A : [0,+∞)→ R be a convex
continuous function with A(0) = 0 and F : Pa(X,m)→ R∪{+∞} be the associated internal
energy functional. Assume that for all µ0, µ1 ∈ Pa(X,m) with continuous densities, there
exists at least one geodesic (µt)t∈[0,1] joining µ0 to µ1 such that

F (µt) ≤ (1− t)F (µ0) + tF (µ1)−Kt(1− t)
2 W 2

2 (µ0, µ1) ∀t ∈ [0, 1].

Then F is weakly K-displacement convex.
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The second lemma is a kind of Ascoli-Arzelà theorem for functions defined over a
convergent sequence of compact metric spaces. See [Gro81] for details. Note that any
ε-approximation ϕ between two compact metric spaces (X, dX) and (Y, dY ) has a so-called
approximate inverse ϕ′ : Y → X defined as follows: for any y ∈ Y , choose x ∈ X so that
dY (ϕ(x), y) ≤ ε and put ϕ′(x) = y. It is easily seen that ϕ′ is then a 3ε-approximation
between Y and X.

Lemma 2.4.6. Let (Xi,dXi)
GH−−→ (X,dX) and (Yi,dYi)

GH−−→ (Y,dY ) be two convergent
sequences of compact metric spaces. Let {αi : Xi → Yi}i be an asymptotically equicontinuous
family of maps, meaning that for any ε > 0, there exists δε > 0 and iε ∈ N such that for
all i ≥ iε,

dXi(x, x′) ≤ δε ⇒ dYi(αi(x), αi(x′)) ≤ ε

for all x, x ∈ Xi. Let ϕi : Xi → X and ψi : Yi → Y be εi-approximations for some
infinitesimal sequence (εi)i ⊂ (0,+∞), and ϕ′i : X → Xi be an approximate inverse of ϕi
for any i.

Xi
ϕi //

αi
��

X

ψi◦αi◦ϕ′i
��

Yi
ψi
// Y

Then after passing to a subsequence, the maps ψi ◦ αi ◦ ϕ′i converge uniformly to some
continuous map α : X → Y .

Note that the above maps ψi ◦ αi ◦ ϕ′i may not be continuous.
The third lemma states that Wasserstein spaces are stable under measured Gromov-

Hausdorff convergence. We refer to [OV00, Cor. 4.3] for a proof.

Lemma 2.4.7. Let (Xi, di)
GH−−→ (X, d) be a convergent sequence of compact metric spaces.

Then (P2(Xi),W2) GH−−→ (P2(X),W2). More specifically, if ϕi : Xi → X are εi-isometries
for some infinitesimal sequence (εi)i ⊂ (0,+∞), then (ϕi)# : P2(Xi) → P2(X) are εi-
isometries.

We will finally need a theorem whose proof is given for completeness.

Theorem 2.4.8. Let (X, τ) be a compact Hausdorff topological space. Let A : [0,+∞)→ R
be a continuous and convex density with A(0) = 0 and A(r)/r → +∞ when r → +∞, and
for any ν ∈ P(X), let

Fν(µ) =


´
X A

(
dµ
dν

)
dν if µ� ν,

+∞ otherwise,

be the associated internal energy functional. Then giving P(X) the weak* topology, the
function

P(X)× P(X) → (−∞,+∞]
(µ, ν) 7→ Fν(µ)

is lower semicontinuous. Moreover, if (Y,dY ) is a compact Hausdorff metric space, if
f : X → Y is a Borel map, then for any µ, ν ∈ P(X), we have Ff#ν(f#µ) ≤ Fν(µ).
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Proof. Let us recall that the topological dual C(X)∗ of C(X) equipped with the weak*
topology is the space of linear and continuous functionals defined on C(X), and that any
finite Borel measure µ defines an element ϕµ ∈ C(X)∗ by

ϕµ(f) =
ˆ
X
f dµ ∀f ∈ C(X).

For any L ∈ C(X), we denote by L∗∗ ∈ C(X)∗∗ its bidual element. The proof of the
Theorem is based on the representation formula [LV09, Th. B.2] which can be written

Fν(µ) = sup
(L1,L2)∈L

{L∗∗1 (ϕµ) + L∗∗2 (ϕν)} ∀(µ, ν) ∈ P(X)× P(X),

where L is a subset of C(X) × C(X). For any (L1, L2) ∈ L, the function (µ, ν) 7→
L∗∗1 (ϕµ) + L∗∗2 (ϕν) is continuous, then a fortiori lower semicontinuous. As the supremum
of a family of lower semicontinuous functions is lower semicontinuous, we get the first
statement of the theorem. For the second statement, we refer to [AGS08, Lem. 9.4.5].

We are now in a position to prove Proposition 2.4.4. Recall that we are given a
convergent sequence of compact metric measure length spaces (Xi, di,mi)

mGH−−−→ (X, d,m),
and that for some convex continuous function A : [0,+∞)→ [0,+∞) with A(0) = 0, for any
i ∈ N the associated functional Fi : P(Xi) 3 µ 7→

´
Xi
A(µ) dmi is weakly K-displacement

convex on (Xi,di,mi). We want to prove that F : P(X) 3 µ 7→
´
X A(µ) dm is weakly

K-displacement convex on (X,d,m).

Proof. Let µ0, µ1 ∈ P(X). Assume that µ0 � m and µ1 � m, otherwise there is nothing
to prove, and write µ0 = ρ0m and µ1 = ρ1m. Thanks to Lemma 2.4.5, we can assume
ρ0, ρ1 ∈ C(X).

Step 1: Construction of good geodesics on (P(Xn),W2).
As (Xi, di,mi)

GH−−→ (X, d,m), there exists an infinitesimal sequence (εi)i ⊂ (0,+∞) and
εi-approximations ϕi : Xi → X such that (ϕi)#mi

C(X)
⇀ m, from which we get that for i large

enough,
´
X ρ0 d[(ϕi)#µ0] > 0 and

´
X ρ1 d[(ϕi)#µ1] > 0. For such i, define µi,0, µi,1 ∈ P(X)

by
µi,0 := ρ0 ◦ ϕi´

X ρ0 d[(ϕi)#µ0]mi and µi,1 := ρ1 ◦ ϕi´
X ρ1 d[(ϕi)#µ1]mi.

As Fi is displacement convex, there exists a W2-geodesic (µi,t)t∈[0,1] ⊂ P(X) joining µi,0
and µi,1 such that

Fi(µi,t) ≤ (1− t)Fi(µi,0) + tFi(µi,1)−Kt(1− t)
2 W 2

2 (µi,0, µi,1) (2.4.1)

for all t ∈ [0, 1]. We claim that

W2(µi,0, µi,1)→W2(µ0, µ1). (2.4.2)

To justify this, let us first prove that (ϕi)#µi,0 weakly converges to µ0. Take h ∈ C(X).
As ρ0 ∈ C(X),

´
X ρ0 d[(ϕi)#mi]→

´
X ρ0 dm = 1, so

ˆ
X
hd[(ϕi)#µi,0] =

ˆ
X
h

ρ0´
X ρ0 d[(ϕi)#mi]

d[(ϕi)#mi]→
ˆ
X
hρ0 dm =

ˆ
X
h dµ0.
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One can similarly show that (ϕi)#µi,1 ⇀ µ1. Moreover, it follows from Lemma 2.4.7 that
for any i,

|W2(µi,0, µi,1)−W2((ϕi)#µi,0, (ϕi)#µi,1)| ≤ εi.
The convergence (2.4.2) follows from the triangle inequality:

|W2(µi,0, µi,1)−W2(µ0, µ1)| ≤ |W2(µi,0, µi,1)−W2((ϕi)#µi,0, (ϕi)#µi,1)|
+ |W2((ϕi)#µi,0, (ϕi)#µi,1)−W2(µ0, µ1)|.

Step 2: Construction of a good geodesic between µ0 and µ1 by limiting argument.
Let us apply Lemma 2.4.6 to the case (Xi, dXi) ≡ ([0, 1], deucl), (Yi, dYi) = (P(Xi),W2)

and αi : t 7→ µi,t, in which case asymptotical equicontinuity follows directly from the
equilipschitz property

W2(αi(t), αi(t′)) = |t− t′|W2(µi,0, µi,1) ≤ C|t− t′|W2(µ0, µ1) ∀t, t′ ∈ [0, 1] (2.4.3)

for i large enough and some C ≥ 1, which is an automatic consequence of the fact that
(µi,t)t are geodesics and (2.4.2). We get a continuous map α : [0, 1] 7→ P(X) with uniform
convergence αi → α. Let us write µt := α(t) for any t ∈ [0, 1].

Step 3: Passing to the limit in (2.4.1).
Let us show that Fi(µi,0)→ F (µ0) (and similarly, Fi(µi,1)→ F (µ1)). As

F (µi,0) =
ˆ
X
A

(
ρ0 ◦ ϕi´

X ρ0 d[(ϕi)#mi]

)
dmi =

ˆ
X
A

(
ρ0´

X ρ0 d[(ϕi)#mi]

)
d[(ϕi)#mi],

we can compute

|F (µi,0)− F (µ0)| ≤
∣∣∣∣∣
ˆ
X
A

(
ρ0´

X ρ0 d[(ϕi)#mi]

)
d[(ϕi)#mi]−

ˆ
X
A(ρ0) d[(ϕi)#mi]

∣∣∣∣∣
+ |

ˆ
X
A(ρ0) d[(ϕi)#mi]−

ˆ
X
A(ρ0) dm|

≤ ‖A
((

ρ0´
X ρ0 d[(ϕi)#mi]

))
−A(ρ0)‖∞︸ ︷︷ ︸

→0

ˆ
X

d[(ϕi)#mi]︸ ︷︷ ︸
=1

+ |
ˆ
X
A(ρ0) d[(ϕi)#mi]−

ˆ
X
A(ρ0) dm|︸ ︷︷ ︸

→0 since (ϕi)#mi ⇀ m

.

This, combined with (2.4.2), implies that the right-hand side in (2.4.1) converges to
(1− t)F (µ0) + tF (µ1)−K t(1−t)

2 W 2
2 (µ0, µ1) when i→ +∞. To conclude the proof, apply

Theorem 2.4.8 to get

F (µt) ≤ lim inf
i→+∞

Fi((ϕi)#µi,t) ≤ lim inf
i→+∞

Fi(µi,t)

for all t ∈ [0, 1].

Stability of Lott-Villani’s CD(K,N), N < +∞, condition under pointed mGH
convergence

Lott-Villani’s finite dimensional conditions CD(K,N), N < +∞, are also stable under
measured Gromov Hausdorff convergence. This statement holds for locally compact
complete (possibly non-compact) Polish metric measure spaces. As the proof is long and
involved, we omit it, and refer to [Vi09, Th. 29.25].
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Theorem 2.4.9 (Stability of Lott-Villani’s CD(K,N) conditions). Let {(Xi,di,mi, xi)}i
and (X, d,m, x) be locally compact complete separable metric measure spaces with σ-finite
reference measure. Assume that the spaces (Xi,di,mi, xi) are all Lott-Villani’s CD(K,N)
for some K ∈ R and N ∈ [1,+∞), and that (Xi,di,mi, xi)

mGH−−−→ (X,d,m, x). Then
(X,d,m, x) is Lott-Villani’s CD(K,N).

Sturm’s D-convergence
For completeness, we present now Sturm’s D-convergence. Let us recall that (X, dX ,mX)

and (Y,dY ,mY ) are isomorph if there exists an isometry f : supp(mX)→ supp(mY ) such
that f#mX = mY ; notably, (X,dX ,mX) and (supp(mX),dX ,mX) are isomorph. When
considering pointed metric measure spaces (X,dX ,mX , x) and (Y,dY ,mY , y), we require
in addition f(x) = y.

K.-T. Sturm proposed in [St06a] an alternative notion of convergence of metric measure
spaces, introducing the distance D which is a kind of extension of the Wasserstein distance
to the set X of all isomorphism classes of normalized Polish metric measure spaces (X, d,m)
with finite second moment. Here by normalized we mean m(X) = 1. Two normalized
Polish metric measure spaces (X, dX ,mX) and (Y, dY ,mY ) being given, a coupling between
dX and dY is by definition a pseudo-distance d̃ on X t Y such that d̃|X = dX and
d̃|Y = dY , and a coupling between mX and mY is a probability measure γ ∈ P(X t Y )
such that γ(A t Y ) = mX(A) and γ(X t A′) = mY (A′) for any measurable sets A ⊂ X,
A′ ⊂ Y . Sturm’s distance between two isomorphism classes of metric measure spaces
[X,dX ,mX ], [Y, dY ,mY ] ∈ X is then defined as

D([X,dX ,mX ], [Y, dY ,mY ]) := inf
(d̃,γ)

{ˆ
X×Y

d̃2(x, y) dγ(x, y)
}
,

the infimum being taken over all couplings d̃ between dX and dY and γ between mX and
mY . Such an infimum is always achieved [St06a, Lem. 3.3]. The space (X,D) is a Polish
length space [St06a, Th. 3.6]. Moreover, when restricted to the class X(D,C) of doubling
normalized Polish metric measure spaces with full support and diameter and doubling
constant bounded above by D and C respectively, the distance D metrizes the measured
Gromov-Hausdorff convergence [St06a, Lem. 3.18].

In this context, the following stability property holds. The infinite dimensional case is
taken from [St06a, Th. 4.20] and the finite dimensional case from [St06b, Th. 3.1].

Theorem 2.4.10 (Stability of Sturm’s CD(K,N) conditions). Let K ∈ R and N ∈ [1,+∞].
Let {(Xi,di,mi)}i be a sequence of Sturm’s CD(K,N) normalized metric measure spaces
with uniformly bounded diameter. If [Xi,di,mi]

D−→ [X,d,m] for some normalized metric
measure space (X,d,m), then (X,d,m) is Sturm’s CD(K,N).

Pointed Gromov convergence and extrinsic approach
Lott-Villani’s stability results need the spaces to be proper, meaning that any closed ball

must be compact. This assumption is automatically satisfied when the spaces are CD(K,N)
with N < +∞, but it might fail to be true on non-compact CD(K,∞) spaces. On the
other hand, Sturm’s approach restricts his stability results to the class of normalized spaces
with finite variance. In [GMS15], N. Gigli, A. Mondino and G. Savaré introduced a notion
of convergence of pointed metric measure spaces which does not require any compactness
assumption on the spaces nor particular restriction on the reference measures to imply
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stability of Ricci curvature bounds. They call their notion pointed measured Gromov
convergence, “pmG” for short. It is based on the next theorem, proved by M. Gromov
[Gro07] in the case of spaces with finite mass and extended in [GMS15] to spaces with
infinite mass, which provides a characterization of the equivalent classes of isomorphic
metric measure spaces in terms of suitable test functions. Let us introduce the set TestG
made of functions ϕ : RN2 → R for some N ≥ 2 which are continuous and have bounded
support. For any ϕ ∈ TestG and any pointed metric measure space X = (X,d,m, x), set

ϕ∗(X) :=
ˆ
XN

ϕ(D(x1, . . . , xn)) dδx(x1) dm⊗N−1(x2, . . . , xn)

where D(x1, . . . , xn) is the N2-uple formed by the elements {d(xi, xj)}1≤i,j≤N .

Theorem 2.4.11 (Gromov’s reconstruction theorem). Two pointed metric measure spaces
X1 = (X1,d1,m1, x1) and X2 = (X2,d2,m2, x2) are isomorph if and only if:

ϕ∗(X1) = ϕ∗(X2) ∀ϕ ∈ TestG.

Therefore, the next definition provides a notion of convergence of equivalent classes of
pointed metric measure spaces [GMS15, Def. 3.8].

Definition 2.4.12 (pmG convergence). Let {Xi = (Xi, di,mi, xi)}i∈N,X = (X, d,m, x) be
pointed metric measure spaces. We say that Xi converge in the pointed measured Gromov
sense to X, and we write (Xi, di,mi, xi)

pmG−−−→ (X,d,m, x), if for any ϕ ∈ TestG,

lim
i→+∞

ϕ∗(Xi) = ϕ∗(X).

N. Gigli, A. Mondino and G. Savaré proved that this notion of convergence is equivalent
to the classical so-called extrinsic approach of convergence.

Definition 2.4.13 (Extrinsic approach). Let {(Xi, di,mi, xi)}i∈N, (X, d,m, x) be pointed
metric measure spaces. We say that (Xi, di,mi, xi) converge to (X, d,m, x) in the extrinsic
sense if there exists a complete and separable metric space (Y, dY ) and isometric embeddings
ϕi : Xi → Y and ϕ : X → Y such that dY (ϕi(xi), ϕ(x)) → 0 and (ϕi)#mi

Cbs(Y )
⇀ ϕ#m

when i→∞.

Proposition 2.4.14 (Equivalence pmG/extrinsic approach). Let {(Xi, di,mi, xi)}i∈N and
(X, d,m, x) be pointed metric measure spaces. Then (Xi, di,mi, xi)

pmG−−−→ (X, d,m, x) if and
only if (Xi,di,mi, xi)→ (X,d,m, x) in the extrinsic sense.

Note that [GMS15, Th. 3.15] states also the equivalence of pointed measured Gromov
convergence with two other notions of convergence, one being a variant of Sturm’s D
convergence.

With this notion in hand, N. Gigli, A. Mondino and G. Savaré proved stability of
Sturm’s CD(K,∞) condition [GMS15, Th. 4.9].

Theorem 2.4.15. Let K ∈ R. Let {(Xi, di,mi, xi)}i∈N be a sequence of Sturm’s CD(K,∞)
spaces converging in the pointed measured Gromov sense to a space (X, d,m, x). Then the
space (X,d,m, x) is Sturm’s CD(K,∞).

Using the extrinsic approach, N. Gigli, A. Mondino and G. Savaré also proved stability
of the (possibly non linear) heat flows [GMS15, Th. 5.7] and stability of the Cheeger’s
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energies [GMS15, Th. 6.8] (in the sense of Mosco convergence [Mo69]). The stability of
heat flows will be a key result for us in Chapter 4.

It is easily seen that pointed measured Gromov-Hausdorff convergence implies pmG-
convergence [GMS15, Prop. 3.30], but the converse implication might fail, see for instance
[GMS15, Ex. 3.31]. Nevertheless, the next proposition ensures that the two notions coincide
for a large class of spaces, namely those satisfying a uniform doubling condition.

Proposition 2.4.16. [GMS15, Prop. 3.33] Let {(Xi,di,mi, xi)}i∈N be a sequence of uni-
formly doubling pointed metric measure spaces. Then (Xi, di,mi, xi) pmG-converge to some
pointed metric measure space (X, d,m, x) if and only if it converges in the pointed measured
Gromov-Hausdorff sense. Moreover, using the extrinsic approach of convergence, we can
assume the common metric space (Y, d) in which all the spaces (Xi, di), (X, d) are embedded
to be doubling.

Note that complete and doubling spaces are proper (i.e. bounded closed sets are
compact), hence separable.

Thanks to Bishop-Gromov’s theorem (Theorem 2.1.14), Proposition 2.4.16 applies
especially in case (Xi,di,mi) are all Lott-Villani’s CD(K,N) spaces, or all RCD(K,N)
spaces. Therefore, Theorem 2.4.9 can be reformulated assuming pmG convergence of the
spaces instead of pointed mGH convergence, and we can equivalently use the extrinsic
formulation of convergence.

Convergence of functions defined on varying spaces and related stability
results

The extrinsic approach is convenient to formulate various notions of convergence of
functions and to avoid the use of ε-isometries, see Remark 2.4.19 below. However, it
should be handled with care: for instance, if f ∈ Lipb(Y,d) is viewed as a sequence of
bounded Lipschitz functions in the spaces (Xi,di,mi), then the sequence need not be
strongly convergent in H1,2 in the sense of Definition 2.4.21 below (see [AST17, Ex. 6.3]
for a simple example).

Let us give now the definition of L2-weak/strong convergence of functions defined on
pmG-convergent sequences of spaces, following the formulation in [GMS15] and [AST17].
Other good formulations of L2-convergence, in connection with mGH-convergence, can be
found in [H15, KS11]. Note that in the setting of RCD∗(K,N) spaces these formulations
are equivalent by the volume doubling condition (see e.g. [H16, Proposition 3.3]).

Definition 2.4.17 (L2-weak convergence of functions with respect to variable measures).
1. (L2-weak convergence) We say that fi ∈ L2(Xi,mi) L2-weakly converge to f ∈
L2(X,m) if supi ‖fi‖L2 <∞ and fimi

Cbs(X)
⇀ fm.

2. (L2
loc-weak convergence) We say that fi ∈ L2

loc(Xi,mi) L2
loc-weakly converge to f ∈

L2
loc(X,m) if ζfi L2

loc-weakly converge to ζf for any ζ ∈ Cbs(X).

Note that it was proven in [GMS15] (see also [AST17], [AH17a]) that any L2-bounded
sequence has an L2-weak convergent subsequence in the above sense.

The analogy with the usual weak convergence in Hilbert spaces is immediate by writing
fimi

Cbs(X)
⇀ fm as

lim
i→0
〈fi, ϕ〉L2(X,m) = 〈f, ϕ〉L2(X,m) ∀ϕ ∈ Cbs(X).

Moreover, for any L2-weak convergent sequence L2(Xi,mi) 3 fi → f ∈ L2(X,m), it can
be shown that lim inf i→∞ ‖fi‖L2(Xi,mi) ≥ ‖f‖L2(X,m). Following the classical property of
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weak convergence in Hilbert spaces stating that strong convergence follows from weak
convergence and convergence of norms, we can define L2-strong convergence of functions
defined on varying spaces in the following natural way.

Definition 2.4.18 (L2-strong convergence of functions with respect to variable measures).

1. We say that fi ∈ L2(Xi,mi) L2-strongly converge to f ∈ L2(X,m) if fi L2-weakly
converge to f with lim supi→∞ ‖fi‖L2 ≤ ‖f‖L2 .

2. We say that fi ∈ L2
loc(Xi,mi) L2

loc-strongly converge to f ∈ L2
loc(X,m) if ζfi L2

loc-
strongly converge to ζf for any ζ ∈ Cbs(X).

Remark 2.4.19. Note that a naive way to define L2 convergence of functions L2(Xi,m) 3
fi → f ∈ L2(X,m) for a pointed measured Gromov-Hausdorff convergent sequence
(Xi,di,mi, xi)

mGH−−−→ (X,d,m, x) would be the following: if ϕi : Xi → X are εi-isometries
for some infinitesimal sequence (εi)i ⊂ (0,+∞), we could require ‖fi − f ◦ ϕi‖L2(Xi,mi)
to tend to zero when i → ∞. But in case Xi ≡ X = [0, 1], fi ≡ 1 and f = 1Q, taking
εi-isometries ϕi with values in Q we get ‖fi−f ◦ϕi‖L2(0,1) ≡ 0, but ‖fi‖L2(0,1) ≡ 1 whereas
‖f‖L2(0,1) = 0. So we cannot formulate a relevant notion of L2-convergence in this way.

We are now in a position to state an important stability result concerning the heat flow
for a pmG-convergent sequence of CD(K,∞) spaces [GMS15, Th. 6.11].

Theorem 2.4.20 (Stability of the heat flow for CD(K,∞) spaces). Let (Xi, di,mi, xi)
pmG−−−→

(X, d,m, x) be a converging sequence of CD(K,∞) spaces. For any i, let (P it )t>0 be the heat
flow of (Xi, di,mi) and (Pt)t>0 the one of (X, d,m). Then for any L2-strongly convergent
sequence L2(Xi,mi) 3 fi → f ∈ L2(X,m), we have L2-strong convergence of the functions
P it fi to Ptf for any t > 0.

Let us conclude by mentioning that N. Gigli, A. Mondino and G. Savaré also established
in [GMS15] stability of the RCD(K,∞) condition with respect to pmG-convergence and
convergence of the eigenvalues of the Laplacian (defined by Courant’s min-max proce-
dure, see (4.0.2)) for pmG-convergent sequences of metric measure spaces satisfying a
uniform weak logarithmic Sobolev-Talagrand inequality which holds easily for sequences of
RCD∗(K,N) spaces.

Still following [GMS15], let us now define weak and strong convergence of Sobolev
functions defined on varying metric measure spaces. To that purpose, let us fix a pmG-
convergent sequence of CD(K,N) spaces (Xi, di,mi, x) pmG−−−→ (X, d,m, x). For convenience,
we shall denote by Chi = Chmi , 〈·, ·〉i, ∆i, etc. the various objects associated to the i-th
metric measure structure.

Definition 2.4.21 (H1,2-convergence of functions defined on varying spaces). We say
that fi ∈ H1,2(Xi,di,mi) are weakly convergent in H1,2 to f ∈ H1,2(Xi,di,mi) if fi are
L2-weakly convergent to f and supi Chi(fi) is finite. Strong convergence in H1,2 is defined
by requiring L2-strong convergence of the functions, and Ch(f) = limi Chi(fi).

We can also introduce the local counterpart of these concepts.

Definition 2.4.22 (Local H1,2-convergence on varying spaces). We say that the functions
fi ∈ H1,2(BR(xi), di,mi) are weakly convergent in H1,2 to f ∈ H1,2(BR(x), d,m) on BR(x)
if fi are L2-weakly convergent to f on BR(x) with supi ‖fi‖H1,2 <∞. Strong convergence
in H1,2 on BR(x) is defined by requiring strong L2 convergence and limi ‖|∇fi|‖L2(BR(xi)) =
‖|∇f |‖L2(BR(x)).
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We say that gi ∈ H1,2
loc (Xi,di,mi) H1,2

loc -weakly (or strongly, resp.) convergent to
g ∈ H1,2

loc (X, d,m) if gi|BR(xi) H
1,2-weakly (or strongly, resp.) convergent to g|BR(x) for all

R > 0.

The following fundamental properties of local convergence of functions have been
established in [AH17b]. They imply, among other things, that in the definition of local
H1,2-weak convergence one may equivalently require L2-weak or L2-strong convergence of
the functions.

Theorem 2.4.23 (Compactness of local Sobolev functions). Let R > 0 and let fi ∈
H1,2(BR(xi),di,mi) with supi ‖fi‖H1,2 <∞. Then there exist f ∈ H1,2(BR(x),d,m) and
a subsequence fi(j) such that fi(j) L2-strongly converge to f on BR(x) and

lim inf
j→∞

ˆ
BR(xi(j))

|∇fi(j)|2i(j) dmi(j) ≥
ˆ
BR(x)

|∇f |2 dm.

Theorem 2.4.24 (Stability of Laplacian on balls). Let fi ∈ D(∆, BR(xi)) with

sup
i

(‖fi‖H1,2(BR(xi)) + ‖∆xi,Rfi‖L2(BR(xi))) <∞,

and with fi L
2-strongly convergent to f on BR(x) (so that, by Theorem 2.4.23, f ∈

H1,2(BR(x), d,m)). Then:

(1) f ∈ D(∆, BR(x));

(2) ∆xi,Rfi L
2-weakly converge to ∆x,Rf on BR(x);

(3) |∇fi|i L2-strongly converge to |∇f | on Br(x) for any r < R.

We shall also use in Chapter 5 the following local compactness theorem under BV
bounds for sequences of Sobolev functions. Note that for any p ∈ (1,+∞), one can
define Lp-weak/strong convergence out of the definition of L2-weak/strong convergence by
replacing 2 by p everywhere.

Theorem 2.4.25. Assume that fi ∈ H1,2(B2(xi),di,mi) satisfy

sup
i

(
‖fi‖L∞(B2(xi)) +

ˆ
B2(xi)

|∇fi| dmi

)
<∞.

Then (fi) has a subsequence Lp-strong convergent on B1(x) for all p ∈ [1,∞).

Proof. The proof of the compactness w.r.t. L1-strong convergence can be obtained arguing
as in [AH17a, Prop. 7.5] (where the result is stated in global form, for normalized metric
measure spaces, even in the BV setting), using good cut-off functions, see also [H15,
Prop. 3.39] where a uniform Lp bound on gradients, for some p > 1 is assumed. Then,
because of the uniform L∞ bound, the convergence is Lp-strong for any p ∈ [1,∞), see
[AH17a, Prop. 1.3.3(e)].

Let us conclude with sufficient conditions under which harmonic replacements (recall
Proposition 2.2.23) are continuous with respect to measured Gromov-Hausdorff convergence.
This last result is a consequence of [AH17b, Thm. 3.4].
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Proposition 2.4.26 (Continuity of harmonic replacements). Assume that m(BR(x)) > 0,
λ1(BR(x)) > 0 and that

H1,2
0 (BR(x), d,m) =

⋂
ε>0

H1,2
0 (BR+ε(x), d,m). (2.4.4)

Let fi ∈ H1,2(BR(xi), di,mi) be a weak H1,2-convergent sequence to f ∈ H1,2(BR(x), d,m)
on BR(x). Then the harmonic replacements f̂i of fi on BR(xi) exist for i large enough and
L2-strongly converge to the harmonic replacement f̂ of f on BR(x).

Notice that a simple separability argument shows that, given x ∈ X, the condition
(2.4.4) is satisfied for all R > 0 with m(BR(x)) > 0, with at most countably many exceptions
(see [AH17b, Lem. 2.12]).
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Chapter 3

Weighted Sobolev inequalities via
patching

In this chapter, we present the results of the notes [T17a] and [T17b], namely weighted
Sobolev inequalities on non-compact metric measure spaces satisfying a growth assumption
on the volume of large balls, following an approach due to A. Grigor’yan and L. Saloff-
Coste [GS05] and applied successfully by V. Minerbe [Mi09] to get a weighted L2-Sobolev
inequality on smooth Riemannian manifolds with non-negative Ricci curvature satisfying a
suitable reverse doubling condition.

Unless explicitely mentioned, in the whole chapter the triple (X,d,m) stands for a
complete and separable metric space (X, d) equipped with a reference measure m defined
on the Borel σ-algebra of (X,d).

Several constants appear in this section. For better readability, if a constant C depends
only on parameters a1, a2, . . . we will always write C = C(a1, a2, . . .) for its first occurrence,
and then write more simply C if there is no ambiguity.

Weighted Sobolev inequalities in CD(0,N) spaces and consequences
Let us present immediately the main results of [T17a], postponing the proofs later in

this section.
Theorem 3.0.1 (Weighted Sobolev inequalities). Let (X, d,m) be a CD(0, N) space with
N > 2. Assume that there exists 1 < η < N such that

0 < Θinf := lim inf
r→+∞

V (o, r)
rη

≤ Θsup := lim sup
r→+∞

V (o, r)
rη

< +∞ (3.0.1)

for some o ∈ X. Then for any 1 ≤ p < η, there exists a constant C = C(N, η,Θinf ,Θsup, p) >
0, depending only on N , η, Θinf , Θsup and p, such that for any Borel function u : X → R
admitting an upper gradient g ∈ Lp(X,m),(ˆ

X
|u|p∗dµ

) 1
p∗

≤ C
(ˆ

X
gpdm

) 1
p

(3.0.2)

where p∗ = Np/(N − p) and µ is the measure absolutely continuous with respect to m with
density wo = V (o, d(o, ·))p/(N−p)d(o, ·)−Np/(N−p).

Note that the growth condition (3.0.1) imposes a restriction on the dimension at infinity
of the space.

We shall deduce from Theorem 3.0.1 the following weighted Nash inequality holding in
the context of RCD(0, N) spaces. Let us point out that some weighted Nash inequalities
were also considered in [BBGL12], but they seem unrelated to ours.

59
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Theorem 3.0.2 (Weighted Nash inequality). Assume that (X,d,m) is a RCD(0, N)
space, with N > 2, satisfying (3.0.1) with η > 2. Then there exists a constant C =
C(N, η,Θinf ,Θsup) > 0 such that for any u ∈ L1(X,µ) ∩H1,2(X,d,m),

‖u‖2+ 4
N

L2(X,µ) ≤ C‖u‖
4
N

L1(X,µ)Ch(u).

Finally, using Theorem 3.0.2, we can deduce a uniform bound on the corresponding
weighted heat kernel of RCD(0, N) spaces provided a N -Ahlfors regularity property holds
for balls with small radii. Recall that for any integer k, a space (X, d,m) is called k-Ahlfors
regular if there exists a constant C > 1 such that

C−1 ≤ V (x, r)
rk

≤ C, ∀r > 0 (3.0.3)

holds for all x ∈ X. Note that if 1 ≤ p, q ≤ +∞ and L is a bounded operator from Lp(X,µ)
to Lq(X,µ), we denote by ‖L‖Lp(X,µ)→Lq(X,µ) its norm.

Theorem 3.0.3 (Bound of the weighted heat kernel). Assume that (X, d,m) is a RCD(0, N)
space with dimd,m(X) = N ≥ 3 satisfying the growth condition (3.0.1) for some η > 2 and
such that

C−1
o ≤ m(Br(x))

rN
≤ Co ∀x ∈ X, ∀ 0 < r < ro (3.0.4)

for some Co > 1 and ro > 0. Let (hµt )t>0 be the semi-group generated by the Dirichlet form
Q defined on L2(X,µ) by

Q(f) =
{´

X |∇f |
2
∗ dm if f ∈ H1,2

loc (X,d,m) with |∇f |∗ ∈ L2(X,m)
+∞ otherwise.

Then there exists C = C(N, η,Θinf ,Θsup) > 0 such that

‖hµt ‖L1(X,µ)→L∞(X,µ) ≤
C

tN/2
, ∀t > 0,

or equivalently, for any t > 0, hµt admits a kernel pµt with respect to µ such that for every
x, y ∈ X,

pµt (x, y) ≤ C

tN/2
.

Preliminary notions
Let us start with recalling two technical notions taken from [HK00]. First, it is well-

known that the classical gradient of a Lipschitz function on, say, a smooth manifold vanishes
on the open sets on which the function is constant. The following truncation property is
an extension of this fact to the context of metric measure spaces.

Definition 3.0.4. (Truncation property) Let u : X → [−∞,+∞] and g : X → [0,+∞] be
two measurable functions. For any 0 < t1 < t2 and any function v : X → R, we denote
by vt2t1 the truncated function min(max(0, u− t1), t2 − t1). We say that (u, g) satisfies the
truncation property if for any 0 < t1 < t2, any b ∈ R and any ε ∈ {−1, 1}, gχt1<u<t2 is an
upper gradient of (ε(u− b))t2t1 .

It can be easily checked that the couple (u, g) made of a function u and any of its upper
gradients g satisfies the truncation property.

Next notion will be useful to turn weak inequalities into strong inequalities.
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Definition 3.0.5 (John domains). Let Ω be a bounded open set of X. Ω is called a John
domain if there exists x0 ∈ Ω and C > 0 such that for every x ∈ Ω, there exists a Lipschitz
curve γ : [0, L]→ Ω parametrized by arc-length such that γ(0) = x, γ(L) = x0 and for any
t ∈ [0, L],

C ≤ d(γ(t), X\Ω)
t

. (3.0.5)

Let us point out that condition (3.0.5) prevents John domains to have cusps on their
boundary, as one can easily understand from a simple example. Take Ω = {(x, y) ∈
R2 : 0 < x < π/2, |y| < e− tanx}. Then (3.0.5) fails at the cuspidal point (1, 0): define
zε = (π/2 − ε, 0) for any 0 < ε < π/4, then for any Lipschitz curve γ starting from zε
parametrized by arc-length and with length larger than ε,

d(γ(ε),R2\Ω)
ε

≤ d(z2ε,R2\Ω)
ε

= e− tan(π/2−2ε)

ε
ε→0−−−→ 0.

Patching procedure
Let us present the patching procedure [GS05, Mi09] that we shall apply to get Theorem

3.0.1. Recall that µ is the Borel measure absolutely continuous with respect to m with
density wo = V (o, d(o, ·))p/(N−p)d(o, ·)−Np/(N−p). For a given set {·}, we denote by Card{·}
its cardinality. Let A ⊂ A# ⊂ X be two Borel sets such that 0 < m(A) ≤ m(A#) < +∞.

Definition 3.0.6. A countable family (Ui, U∗i , U
#
i )i∈I of Borel subsets of X with finite

m-measure is called a good covering of (A,A#) with respect to (µ,m) if:

1. for every i ∈ I, Ui ⊂ U∗i ⊂ U
#
i ;

2. there exists a m-negligible Borel set E ⊂ A# such that X\A# ⊂
⋃
i Ui;

3. (overlapping condition at level 3)
there exists Q1 > 0 such that for every i0 ∈ I, Card({i ∈ I : U#

i0
∩ U#

i 6= ∅}) ≤ Q1;

4. (embracing condition between level 1 and 2)
for every (i, j) ∈ I2 such that Ui ∩ Uj 6= ∅, there exists k(i, j) ∈ I such that
Ui ∪ Uj ⊂ U∗k(i,j);

5. (measure control of the embracing condition)
there exists Q2 > 0 such that for every i, j ∈ I, if Ui ∩ Uj 6= ∅,

(i) µ(U∗k(i,j)) ≤ Q2 min(µ(Ui), µ(Uj));
(ii) m(U∗k(i,j)) ≤ Q2 min(m(Ui),m(Uj)).

Assume that (Ui, U∗i , U
#
i )i∈I is a good covering of (A,A#) with respect to (µ,m). Let

us explain how to define out of (Ui, U∗i , U
#
i )i∈I a canonical weighted graph (V, E , µ), where

V is the set of vertices of the graph, E is the set of edges, and µ is a weight on the graph
(i.e. a function µ : V tE → R). We define V by associating to each Ui a vertex i (informally,
we put a point i on each Ui). Then we define E as

E := {(i, j) ∈ V × V : i 6= j and Ui ∩ Uj 6= ∅}.

We will write i ∼ j whenever (i, j) ∈ E . Note that two vertices are linked if the associated
pieces of the covering intersect. But in practice, we will always consider good coverings



62 CHAPTER 3. WEIGHTED SOBOLEV INEQUALITIES VIA PATCHING

such that Ůi ∩ Ůj = ∅ for every i 6= j, so roughly speaking, we are just linking two vertices
i and j if they correspond to adjacent pieces Ui and Uj . Afterwards we weight the vertices
of the graph setting µ(i) := µ(Ui) for every i ∈ V (the repeated use of the letter “µ” won’t
cause any trouble), and the edges setting µ(i, j) := max(µ(i), µ(j)) for every (i, j) ∈ E .

The patching theorem (Theorem 3.0.11) states that if some local inequalities are true
on the pieces of the good covering, and if a discrete inequality holds on the associated
canonical weighted graph, then the local inequalities can be patched into a global one. Let
us give the precise definitions.

Definition 3.0.7. We say that the good covering (Ui, U∗i , U
#
i )i∈I satisfies local continuous

Lp Sobolev-Neumann inequalities if there exists a constant Sc > 0 such that for every i ∈ I,

1. (levels 1-2) for any measurable function u : U∗i → R and any upper gradient
g ∈ Lp(U∗i ,m) of u,

(ˆ
Ui

|u− 〈u〉Ui |p
∗ dµ

) 1
p∗

≤ Sc

(ˆ
U∗i

gp dm
) 1
p

;

2. (levels 2-3) for any measurable function u : U#
i → R and any upper gradient

g ∈ Lp(U#
i ,m) of u,

(ˆ
U∗i

|u− 〈u〉U∗i |
p∗ dµ

) 1
p∗

≤ Sc

(ˆ
U#
i

gp dm
) 1
p

.

Definition 3.0.8. We say that the weighted graph (V, E , µ) satisfies a discrete (p, p)
Poincaré inequality if there exists a constant Sd > 0 such that for every f ∈ Lp(V, µ),

(∑
i∈V
|f(i)|pµ(i)

) 1
p

≤ Sd

 ∑
{i,j}∈E

|f(i)− f(j)|pµ(i, j)

 1
p

.

Remark 3.0.9. Note that here we differ from Minerbe’s terminology, which call the above
inequality a discrete Lp Sobolev-Dirichlet inequality of order ∞. More generally, we say
that a discrete Lp Sobolev-Dirichlet inequality of order k holds if there exists a constant
Sd such that for every f ∈ Lp(V, µ),

(∑
i∈V
|f(i)|

pk
k−pµ(i)

) k−p
pk

≤ Sd

 ∑
{i,j}∈E

|f(i)− f(j)|pµ(i, j)

 1
p

.

As we don’t need this general definition, we have chosen the terminology “Poincaré” which
seems more natural.

In the following statements, we consider 1 ≤ q < +∞.

Definition 3.0.10. A good covering (Ui, U∗i , U
#
i )i∈I of (A,A#) is called a (p, q) patchwork

if it satisfies the local continuous Lp Sobolev-Neumann inequalities and if the associated
weighted graph (V, E ,m) satisfies the discrete (q, q) Poincaré inequality.

We are now in a position to state the patching theorem.
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Theorem 3.0.11. Assume that (A,A#) admits a (p, q) patchwork. Then there exists a
constant C = C(p, q,Q1, Q2, Sc, Sd) > 0 such that for any Borel function u : X → R
admitting an upper gradient g ∈ Lp(X,m),

(ˆ
A
|u|q dµ

) 1
q

≤ C
(ˆ

A#
gp dm

) 1
p

.

The proof of Theorem 3.0.11 can be copied verbatim from [Mi09, Th. 1.8], replacing
norm of gradients by upper gradients, thus we omit it. Nonetheless, let us stress that this
proof does not require any extra assumption on (X,d,m).

A similar statement holds if we replace the discrete (q, q) Poincaré inequality by a
discrete (q, q) Poincaré-Neumann inequality, namely there exists a constant Sd > 0 such
that for every f : V → R with finite support,

(∑
i∈V
|f(i)−m(f)|pµ(i)

) 1
p

≤ Sd

 ∑
{i,j}∈E

|f(i)− f(j)|pµ(i, j)

 1
p

,

where m(f) =
(∑

i : f(i)6=0 m(i)
)−1∑

i f(i)m(i). Note that the terminology “Poincaré-
Neumann” used here comes from the mean-value in the left-hand side which draws an
analogy with the local Poincaré inequality applied in the study of the eigenvalues of the
Laplacian with Neumann boundary conditions on bounded Euclidean domains, see [Sa02,
Sect. 1.5.2].

Theorem 3.0.12. Assume that (A,A#) admits a finite good covering (Ui, U∗i , U
#
i )i∈I

satisfying the local continuous Lp Sobolev-Neumann inequalities and whose associated
weighted graph (V, E ,m) satisfies the above discrete (q, q) Poincaré-Neumann inequality.
Then there exists a constant C = C(p, q,Q1, Q2, Sc, Sd) > 0 such that for any u ∈ L1(X,µ)
admitting an upper gradient g ∈ Lp(X,m),

(ˆ
A
|u− 〈u〉A|q dµ

) 1
q

≤ C
(ˆ

A#
gp dm

) 1
p

.

See [Mi09, Th. 1.10] for the proof.

Proof of Theorem 3.0.1
Let (X,d,m) be a non-compact CD(0, N) space with N ≥ 3. Take 1 ≤ p < N and

p < η < N , and assume that the growth condition (3.0.1) holds. Let us recall that
p∗ = pN/(N − p) and that µ is the measure absolutely continuous with respect to m with
density wo = V (o,d(o, ·))p/(N−p)d(o, ·)−Np/(N−p).

As pointed out by Minerbe [Mi09], on Riemannian manifolds, the local continuous L2

Sobolev-Neumann inequalities can be derived from the doubling condition and a uniform
local (2, 2) strong Poincaré inequality, both implied by the non-negativity of the Ricci
curvature. However, the discrete (2∗, 2∗) Poincaré inequality requires the addition of
a reverse doubling condition (3.0.6), which is an immediate consequence of the growth
condition (3.0.1).

Lemma 3.0.13. There exist A > 0 and CRD > 0 such that

V (o,R)
V (o, r) ≥ CRD

(
R

r

)η
∀A < r ≤ R. (3.0.6)
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Proof. The growth condition (3.0.1) implies the existence of A > 0 such that for any r ≥ A,
Θinf/2 ≤ r−ηV (o, r) ≤ 2Θsup. Take R ≥ r. Then R−ηV (o,R) ≥ Θinf/2, whence the result
with CRD = Θinf/(4Θsup).

Remark 3.0.14. With no loss of generality, we can (and will) assume that A = 1.
We shall need the following result, namely a local Lp-Sobolev inequality, which is a

well-known consequence of the doubling and Poincaré properties of (X,d,m).

Proposition 3.0.15. There exists a constant C = C(N, p) > 0 such that for any function
u ∈ L1

loc(X,m), any upper gradient g of u, and any ball B = BR(x) ⊂ X,

( 
B
|u− uB|p

∗ dm
)1/p∗

≤ CR
( 

B
gp dm

)1/p
(3.0.7)

or, equivalently, (ˆ
B
|u− uB|p

∗ dm
)1/p∗

≤ C R

V (x,R)1/N

(ˆ
B
gp dm

)1/p
. (3.0.8)

Proof. Assume that u : X → R is a Borel function admitting an upper gradient g ∈
Lp(X,m). Assume that B is a ball of X with radius R. Using Hölder’s inequality, the
Poincaré inequality (Theorem 2.1.16) gives

 
B
|u− uB|dm ≤ 2N+2r

( 
2B
gp dµ

)1/p
.

As η > p we are in a position to apply 1. of [HK00, Th. 5.1], which implies( 
B
|u− uB|p

∗ dm
)1/p∗

≤ Cr
( 

10B
gp dm

)1/p
.

To turn this weak inequality into a strong one, let us apply [HK00, Th. 9.7] to the ball B.
As (X, d,m) is a CD(0, N) space, the metric structure (X, d) is proper and geodesic, then
all the balls of X are John domain with a common constant [HK00, Cor. 9.5]. The fact
that there exists a constant C > 0 such that for every ball B(x, ρ) ⊂ B with ρ < 2r,

m(B(x, r)) ≥ C
(
ρ

2r

)η
m(B),

is easily verified using the doubling condition. Then [HK00, Th. 9.7] applies and gives the
result.

Remark 3.0.16. Theorem 9.7 of [HK00] is stated for weak John domains, a generalization
of the notion of John domain to structures without enough rectifiable curves (especially
fractals, see [HK00, p.39] for details). However being a John domain implies being a weak
John domain, and CD(0, N) spaces are geodesics so they contain enough rectifiable curves.

Finally, let us state a result whose proof can be taken from [Mi09, Prop. 2.8], replacing
smooth functions by measurable ones, norm of gradients by upper gradients, and the strong
local (2, 2) Poincaré inequality used there by Rajala’s Poincaré inequality (Theorem 2.1.16).
Notice that even if Theorem 2.1.16 provides only a weak inequality, one can harmlessly
substitute it to the strong one used in the smooth case, because it is applied to a function
f which is Lipschitz on a ball B and extended by 0 outside of B.
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Proposition 3.0.17. There exists κ0 = κ0(N, η, p) > 1 such that for every R > 0, for any
couple of points x, y in the geodesic sphere S(o,R), there exists a rectifiable curve from x
to y that remains inside B(o,R)\B(o, κ−1

0 R).

Remark 3.0.18. It is worth pointing out that the conclusion of Proposition 3.0.17 can be
understood as a connectedness property, as it implies that any annulus B(o, κi+2

o )\B(o, κi−1
o )

must be connected. Moreover, the proof can be carried out with only the doubling and
Poincaré properties, thus the conclusion holds for any PI doubling space.

Let us prove now Theorem 3.0.1.

STEP 1: The good covering.

Let us give explain in a few words on how to construct a good covering on (X,d,m).
We refer to [Mi09, Section 2.3.1] for the details. Define κ as the square-root of the constant
κ0 given by Proposition 3.0.17. Then for any R > 0, two connected components of
B(o, κR)\B(o,R) are always contained in one component of B(o, κR)\B(o, κ−1R). Let us
write Ai = B(o, κi)\B(o, κi−1) for any i ∈ N.

Let γ be a line starting at o, i.e. a continuous function γ : [0,+∞) → X such that
γ(o) = 0 and d(γ(t), γ(s)) = |t− s| for any s, t ≥ 0. Such a line can be obtained as follows.
For x1 ∈ S(o, 1), let γ1 : [0, 1]→ X be a geodesic between o and x1. Define then recursively
xn := arg min{d(xn−1, x) : x ∈ S(o, n)} and γn geodesic between xn−1 and xn for any
n ≥ 1. The concatenation of all the γn provides the desired γ.

Then for any integer i, denote by (U ′i,a)0≤a≤h′i the connected components of Ai, U ′i,0
being the one which intersects γ. Let us prove that the numbers h′i are uniformly bounded.
This was stated without proof in [Mi09].

Lemma 3.0.19. There exists a constant h = h(N,κ) <∞ such that supi h′i ≤ h.

Proof. Take i ∈ N. For every 0 ≤ a ≤ h′i, pick xa in Ui,a ∩ S(o, (κi + κi−1)/2). As the balls
V (xa, (κi − κi−1)/4), 0 ≤ a ≤ h′i, are disjoints and all included in V (o, κi),

h′i min
0≤a≤h′i

V (xa, (κi − κi−1)/4) ≤
∑

0≤a≤h′i

V (xa, (κi − κi−1)/4) ≤ V (o, κi).

Assume for simplicity that min
0≤a≤h′i

V (xa, (κi − κi−1)/4) = V (x0, (κi − κi−1)/4). Notice that

d(o, x0) ≤ κi. Then

h′i ≤
V (o, κi)

V (x0, (κi − κi−1)/4) ≤
V (x0, κ

i + d(o, x0))
V (x0, (κi − κi−1)/4) ≤

(
8κi

κi − κi−1

)N

by the doubling condition. Whence the result with h =
(

8κ
κ−1

)N
.

Define then the covering (U ′i,a, U ′∗i,a, U
′#
i,a )i∈N,0≤a≤h′i where U

′∗
i,a is by definition the union

of the sets U ′j,b such that U ′j,b ∩ U ′i,a 6= ∅, and U
′#
i,a is by definition the union of the sets

U ′∗j,b such that U ′∗j,b ∩ U ′∗i,a 6= ∅. Note that (U ′i,a, U ′∗i,a, U
′#
i,a )i∈N,0≤a≤h′i is not necessarily a

good covering, as there is no reason a priori that it satisfies the measure control of the
overlapping condition: the pieces U ′i,a may be arbitrary small compared to their neighbors.
Thus whenever U ′i,a ∩ S(o, κi) = ∅, we define Ui−1,a = U ′i,a ∪ U ′i−1,a′ where a′ is such that
U ′i,a ∩ Ui−1,a′ 6= ∅; otherwise we define Ui,a = U ′i,a. In other words, we incorporate small
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pieces U ′i,a into the adjacent piece U ′i−1,a′ . Then we define U∗i,a and U
#
i,a in a similar way than

U ′∗i,a and U ′#i,a . Using the doubling condition, one can show that (Ui,a, U∗i,a, U
#
i,a)i∈N,0≤a≤hi

is a good covering on (X,d) with respect to (µ,m), with constants Q1 and Q2 depending
only on N .

STEP 2: The discrete (p∗, p∗) Poincaré inequality.

Let us denote by (V, E , µ) the weighted graph obtained from the good covering
(Ui,a, U∗i,a, U

#
i,a)i∈N,0≤a≤hi . Define the degree deg(i) of a vertex i as the number of ver-

tices j such that i ∼ j. As a consequence of Lemma 3.0.19, sup deg(i) : i ∈ V ≤ 2h.
Moreover, the doubling condition implies easily the existence of a number C ≥ 1 such that
for every i, j ∈ E, C−1m(i) ≤ m(j) ≤ Cm(j). Thus by [Mi09, Prop. 1.12], the discrete
(1, 1) Poincaré inequality implies the (q, q) one for every q ≥ 1. But the discrete (1, 1)
Poincaré inequality is equivalent to the isoperimetric inequality ([Mi09, Prop. 1.14]): there
exists a constant I > 0 such that for any Ω ⊂ V with finite measure,

µ(Ω)
µ(∂Ω) ≤ I

where ∂Ω := {(i, j) ∈ E : i ∈ Ω, j /∈ Ω}. The only ingredients to prove this isoperimetric
inequality are the doubling and reverse doubling conditions, see Section 2.3.3 in [Mi09].
Then the discrete (q, q) Poincaré inequality holds for any q ≥ 1, with a constant Sd de-
pending only on q, η, Θinf , Θsup and on the doubling and Poincaré constants of (X, d,m),
i.e. on N .

STEP 3: The local continuous Lp Sobolev-Neumann inequalities.

Let us explain how to get the local continuous Lp Sobolev-Neumann inequalities. We
start by deriving from the local Lp-Sobolev inequality (3.0.7) a crucial technical result,
namely a Lp-Sobolev-type inequality on connected Borel subsets of annuli.

Lemma 3.0.20. Let R > 0 and α > 1. Let A be a connected Borel subset of B(o, αR)\B(o,R).
For 0 < δ < 1, denote by (A)δ the δ-neighborhood of A, i.e. (A)δ =

⋃
x∈ABδ(x). Then

there exists a constant C = C(N, δ, α, p) > 0 such that for any measurable function
u : (A)δ → [−∞,+∞] and any upper gradient g ∈ Lp((A)δ,m),

(ˆ
A
|u− uA|p

∗ dm
)1/p∗

≤ C Rp

V (o,R)p/N

(ˆ
(A)δ

gp dm
)1/p

.

Proof. Define s = δR and choose (xj)j∈J an s-lattice of A (a maximal set of points whose
distance between two of them is at least s). Set Vi = B(xi, s) and V ∗i = V #

i = B(xi, 3s).
Using the doubling condition, there is no difficulty in proving that (Vi, V ∗i , V

#
i ) is a good

covering of (X, d) with respect to (m,m). A discrete (p∗, p∗) Poincaré-Neumann inequality
holds on the associated weighted graph, as one can easily check following the lines of [Mi09,
Lem. 2.10]. The local continuous Lp Sobolev-Neumann inequalities stem from the proof
of [Mi09, Lem. 2.11], where we replace (14) there by Proposition 3.0.15. Then Theorem
3.0.12 gives the result.

Let us prove that Lemma 3.0.20 implies the local continuous Lp Sobolev-Neumann
inequalities with a constant Sc depending only on N , η and p. Take a piece of the good
covering Ui,a. Choose δ = (1− κ−1)/2 so that (Ui,a)δ ⊂ U∗i,a. Take a measurable function
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u : U∗i,a → [−∞,+∞] and an upper gradient g of u. By the triangle inequality and the
elementary fact |x+ y|p∗ ≤ 2p∗−1(|x|+ |y|) holding for any x, y ∈ R,

ˆ
Ui,a

|u− 〈u〉Ui,a |p
∗ dµ ≤ 2p∗ inf

c∈R

ˆ
Ui,a

|u− c|p∗ dµ ≤ 2p∗
ˆ
Ui,a

|u− uUi,a |p
∗
wo dm.

As wo is a radial function, let us define w̄o(r) = wo(x) for r = d(o, x). Note that by
Bishop-Gromov theorem, w̄o is a decreasing function, soˆ

Ui,a

|u− 〈u〉Ui,a |p
∗ dµ ≤ 2p∗w̄o(κi−1)

ˆ
Ui,a

|u− uUi,a |p
∗ dm.

Applying Lemma 3.0.20 with A = Ui,a, R = κi−1 and α = κ2, we get
ˆ
Ui,a

|u− 〈u〉Ui,a |p
∗ dµ ≤Cp∗2p∗ κp

∗(i−1)

V (o, κi−1)p∗/N
w̄o(κi−1)

(ˆ
U∗i,a

gp dm
)p∗/p

≤ C
(ˆ

U∗i,a

gp dm
)p∗/p

where we used the same letter C to denote different constants depending only on N , p,
and κ. As κ depends only on N , η and p, we get the result.

An analogous argument implies the inequalities between levels 2 and 3.

STEP 4: Conclusion.

Apply Theorem 3.0.11 to get the result.

Weighted Nash inequality
Let us now prove Theorem 3.0.2. To this purpose, we need a standard lemma which

states that the relaxation procedure defining Ch can be achieved with slopes of Lipschitz
functions with bounded support. We give a proof for convenience.

Lemma 3.0.21. Let u ∈ H1,2(X,d,m). Then

Ch(u) = inf
{

lim inf
n→∞

ˆ
X
|∇un|2 dm : (un)n ⊂ Lipbs(X), ‖un − u‖L2(X,m) → 0

}
.

In particular, for any u ∈ H1,2(X,d,m), there exists a sequence (un)n ⊂ Lipbs(X) such
that ‖u− un‖L2(X,m) → 0 and ‖|∇un|‖L2(X,m) → Ch(u) when n→ +∞.

Proof. Choose a point o ∈ X and for every n ∈ N∗, let χn be a Lipschitz function
constant equal to 1 on B(o, n), to 0 on X\B(o, n + 1) and such that |∇χn| ≤ 2. Take
f ∈ Lip(X) ∩ L2(X,m) and define, for every n ∈ N, fn = fχn. Using the chain rule and
Young’s inequality for some ε > 0, denoting by Lip(χn)(≤ 2) the Lipschitz constant of χn,
we get

|∇fn|2 ≤
(
χn|∇f |+ f Lip(χn)1B(0,n+1)\B(0,n)

)2

≤ (1 + ε)|∇f |2 + 4(1/(1 + ε))f21B(0,n+1)\B(0,n).

Integrating over X and taking the limit superior, it implies

lim sup
n→∞

ˆ
X
|∇fn|2 dm ≤ (1 + ε)

ˆ
X
|∇f |2 dm,



68 CHAPTER 3. WEIGHTED SOBOLEV INEQUALITIES VIA PATCHING

and letting ε go to 0 leads to

lim sup
n→∞

ˆ
X
|∇fn|2 dm ≤

ˆ
X
|∇f |2 dm.

Then for u ∈ H1,2(X,d,m), for any sequence (uk)k ⊂ Lip(X) ∩ L2(X,m) L2(X,m)-
converging to u, considering for any k ∈ N a sequence (vk,n)n ⊂ Lipb(X) built as above, a
diagonal argument provides a sequence (vk,n(k))k such that

lim inf
k→∞

ˆ
X
|∇vk,n(k)|2 dm ≤ lim inf

k→∞

ˆ
X
|∇uk|2 dm.

Taking the infimum among all sequences (uk)k L2-converging to u leads to the result.

We can now prove Theorem 3.0.2. The proof presented here is the standard way to
deduce a Nash inequality from a Sobolev inequality, see for instance [BBGL12].

Proof. By the previous lemma it is sufficient to prove the result for u ∈ Lipbs(X)∩L1(X,µ).
By Hölder’s inequality,

‖u‖L2(X,µ) ≤ ‖u‖θL1(X,µ)‖u‖
1−θ
L2∗ (X,µ)

where 1
2 = θ

1 + 1−θ
2∗ i.e. θ = 2

N+2 . Then by Theorem 3.0.1 applied for p = 2 < η,

‖u‖L2(X,µ) ≤ C‖u‖
2

N+2
L1(X,µ)‖|∇u|‖

N
N+2
L2(X,m).

The result follows from the previous inequality raised to the power 2(N + 2)/N .

Bound on the corresponding heat kernel
We consider now a RCD(0, N) space (X,d,m) satisfying (3.0.1) for some η > 2 and

such that there exists Co > 1 and ro > 0 such that

C−1
o ≤ m(Br(x))

rN
≤ Co ∀x ∈ X, ∀ 0 < r < ro. (3.0.9)

Let us explain which weighted heat kernel we are dealing with. We consider wo =
V (o,d(o, ·))2/(N−2)d(o, ·)−2N/(N−2), i.e. the case p = 2. Recall that µ = wom, and note
that L2(X,m) ⊂ L2(X,µ) as wo is a bounded function (this follows from Bishop-Gromov’s
theorem and (3.0.10)).

Recall that by definition, H1,2
loc (X, d,m) = {f ∈ L2

loc(X,m) : ϕf ∈ H1,2(X, d,m) ∀ϕ ∈
Lipc(X)}, and that as an immediate consequence of the boundedness of wo, we have
f ∈ L2

loc(X,m) if and only if f ∈ L2
loc(X,µ).

Define the Dirichlet form Q on L2(X,µ) as follows:

Q(f) =
{´

X |∇f |
2
∗ dm if f ∈ H1,2

loc (X,d,m) with |∇f |∗ ∈ L2(X,m)
+∞ otherwise.

Q is easily seen to be convex. Moreover, since convergence in L2
loc(X,m) and in L2

loc(X,µ)
are equivalent, Q is a L2(X,µ)-lower semicontinuous functional on L2(X,µ), so we can
apply the general theory of gradient flow to define the semi-group (hµt )t>0 associated to
Q which is characterized by the property that for any f ∈ L2(X,µ), t → hµt f is locally
absolutely continuous on (0,+∞) with values in L2(X,µ), and

d
dth

µ
t f = −Ahµt f for L 1-a.e. t ∈ (0,+∞),
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where the self-adjoint operator −A associated to Q is defined on a dense subset D(A) of
D(Q) = {Q < +∞} and characterized by:

Q(f, g) =
ˆ
X

(Af)g dµ ∀f ∈ D(A), ∀g ∈ D(Q).

Note that by the Markov property, each hµt can be uniquely extended from L2(X,µ) ∩
L1(X,µ) to a contraction from L1(X,µ) to itself.

We start with a preliminary lemma stating that the Nash inequality also holds for the
Dirichlet form Q. For convenience, from now on we write Lp(m), Lp(µ), etc. . . instead of
Lp(X,m), Lp(X,µ), etc.

Lemma 3.0.22. Let (X,d,m) be a RCD(0, N) space with N ≥ 3 satisfying (3.0.1) for
some η > 2 and such that there exists Co > 1 and ro > 0 such that

C−1
o ≤ m(Br(x))

rN
≤ Co ∀x ∈ X, ∀ 0 < r < ro, (3.0.10)

and Q as above. Then there exists a constant C = C(N, η,Θinf ,Θsup) > 0 such that for
any u ∈ L1(µ) ∩ D(Q),

‖u‖2+ 4
N

L2(µ) ≤ C‖u‖L1(µ)Q(u).

Proof. Let u ∈ L1(µ) ∩ D(Q). Then u ∈ L2
loc(m), ϕu ∈ H1,2(X,d,m) for any ϕ ∈ Lipc(X)

and |∇u|∗ ∈ L2(m). In particular, if we take (χn)n as in the proof of Lemma 3.0.21, we get
that χnu ∈ H1,2(X,d,m) for any n ∈ N. Then there exists a sequence (un,k)k ⊂ Lipbs(X)
such that un,k → χnu in L2(m) and

´
X |∇un,k|

2 dm→
´
X |∇(χnu)|2∗ dm for any n ∈ N. For

any given n ∈ N, apply Theorem 3.0.2 to the functions un,k to get

‖un,k‖
2+ 4

N

L2(µ) ≤ C‖un,k‖
4
N

L1(µ)

ˆ
X
|∇un,k|2 dm

for any k ∈ N. As the un,k and χnu have bounded support, the L2(m) convergence
un,k → χnu is equivalent to the L2

loc(m), L2
loc(µ), L2(µ) and L1(µ) convergences. Therefore,

passing to the limit k → +∞, we get

‖χnu‖
2+ 4

N

L2(µ) ≤ C‖χnu‖
4
N

L1(µ)

ˆ
X
|∇(χnu)|2∗ dm.

By an argument similar to the proof of Lemma 3.0.21, we can show that

lim sup
n→+∞

ˆ
X
|∇(χnu)|2∗ dm ≤

ˆ
X
|∇u|2∗ dm.

And monotone convergence ensures that ‖χnu‖L2(µ) → ‖u‖L2(µ) and ‖χnu‖L1(µ) →
‖u‖L1(µ). Whence the result.

Theorem 3.0.23 (Bound of the weighted heat kernel). Assume that N ≥ 3. Let
(X,d,m) be a RCD(0, N) space satisfying the growth condition (3.0.1) for some η > 2
and the regularity condition (3.0.10) for some Co > 1 and ro > 0. Then there exists
C = C(N, η,Θinf ,Θsup) > 0 such that

‖hµt ‖L1(X,µ)→L∞(X,µ) ≤
C

tN/2
, ∀t > 0,

or equivalently, for any t > 0, hµt admits a kernel pµt with respect to µ such that for every
x, y ∈ X,

pµt (x, y) ≤ C

tN/2
.
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To prove this theorem we follow closely the lines of [Sa02, Th. 4.1.1]. The constant
C may differ from line to line, note however that it will always depend only on N , Θinf

and Θsup. For better readability, we will write Lp(µ) and Lp(m) instead of Lp(X,µ) and
Lp(X,m) respectively.

Proof. Let u ∈ L1(X,µ) be such that ‖u‖L1(X,µ) = 1. We claim that for any chosen t > 0,
we have ‖hµt u‖L2(µ) ≤ C

tN/4 . First of all, by density of Lipbs(X) in L1(X,µ), we can assume
u ∈ Lipbs(X) with ‖u‖L1(X,µ) = 1. Furthermore, since by the Markov property the operator
hµt : L1(X,µ)∩L2(X,µ)→ D(Q) extends uniquely to a contraction operator from L1(X,µ)
to itself, we can assume u ∈ L1(X,µ) ∩ L2(X,µ), so that hµt u ∈ L1(X,µ) ∩ D(Q) and
‖hµt u‖L1(X,µ) ≤ 1. Therefore, we can apply Lemma 3.0.22 to get

‖hµt u‖
2+ 4

N

L2(X,µ) ≤ CQ(hµt u).

As
ˆ
X
|∇hµt u|2∗ dm =

ˆ
X

(Ahµt u)hµt u dm = −
ˆ
X

( d
dth

µ
t u

)
hµt u dm = −1

2
d
dt‖h

µ
t u‖2L2(X,µ),

we finally end up with the following differential inequality:

‖hµt u‖
2+4/N
L2(µ) ≤ −

C

2
d
dt‖h

µ
t u‖2L2(µ) ∀t > 0.

Writing ϕ(t) = ‖hµt u‖2L2(µ) and ψ(t) = N
2 ϕ(t)−2/N for any t > 0, we get 2

C ≤ −ψ
′(t) and

thus 2
C t ≤ ψ(t)− ψ(0). As ψ(0) = N

2 ‖h
µ
t u‖

−4/N
L2(µ) ≥ 0, we obtain 2

C t ≤ ψ(t), leading to

‖hµt u‖L2(µ) ≤
C

tN/4
,

and therefore ‖hµt ‖L1(µ)→L2(µ) ≤ C
tN/4 . Using the self-adjointness of htf , one deduces by

duality ‖hµt u‖L2(µ)→L∞(µ) ≤ C
tN/4 . Finally the semi-group property

‖hµt ‖L1(µ)→L∞(µ) ≤ ‖h
µ
t/2‖L1(µ)→L2(µ)‖h

µ
t/2‖L2(µ)→L∞(µ)

implies the result.

Adimensional weighted Sobolev inequalities in PI doubling spaces
As the patching procedure does not use any special properties of CD(0, N) spaces

apart from the doubling condition and Poincaré inequality, the proof of Theorem 3.0.1
carries over verbatim on geodesic PI doubling spaces (note that contrary to the weak
local (1, p)-Poincaré inequality of Definition 2.2.17, here we assume that a strong local
(p, p)-Poincaré inequality holds, namely there exist R > 0 and CP = CP (p,R) > 0 such
that for all f ∈ L0(X,m) and g ∈ UGp(f),( 

Br

|f − fBr |p dm
)1/p

≤ CP r
( 

Br

gp dm
)1/p

holds for all ball Br with radius 0 < r < R). Nevertheless, the constant N appearing
in (3.0.2) is only an upper bound on the dimension, so some information related to the
dimension of the spaces might get lost. Therefore, following a suggestion of T. Coulhon,
we provide in [T17b] the following family of weighted Sobolev inequalities, calling it
“adimensional” because the dimension does not appear directly.
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Theorem 3.0.24. Let (X, d,m) be a PI doubling space with constants CD > 0, 1 ≤ p < +∞
and CP > 0 such that (3.0.1) holds for some o ∈ X and p < η < log2(CD). Then for any
f ∈ L0(X,m), (ˆ

X
f qwqp′,q dm

)1/q
≤ C

(ˆ
X
gp
′ dm

)1/p′

(3.0.11)

holds for any 1 ≤ p′ < η, any p ≤ q ≤ p? := p log2 CD
log2 CD−p

and any g ∈ UGp′(f). Here the
weight wp,q is defined by:

wp,q(x) = V (o, d(o, x))
1
p
− 1
q

d(o, x) , ∀x ∈ X.
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Chapter 4

Weyl’s law on RCD*(K,N) spaces

This chapter presents the main results of [AHT18], which are:

• the pointwise convergence of heat kernels for a convergent sequence of RCD∗(K,N)
spaces (Theorem 4.0.6) which is a generalization of Ding’s Riemannian results [D02],

• a sharp criterion for the validity of Weyl’s law on compact RCD∗(K,N) spaces
(Theorem 4.0.9). Let us point out that it is not known yet whether there exist
RCD∗(K,N) spaces which do not satisfy this criterion, since all known examples
satisfy it.

We conclude with a proof of the expansions of the heat kernel (4.0.21) and (4.0.22) on a
compact RCD∗(K,N) space using eigenvalues and eigenfunctions. This proof is taken from
[AHPT17, App. A], but the expansion (4.0.21) already played a major role in [AHT18] in
which it was given without sufficiently many details, so we prefer to include it to this chapter.

A brief account on classical Weyl’s law type results
Named after H. Weyl [We11] who established it in dimension 2 and 3 in connection

with the black-body radiation experiment (see [ANPS09] for a nice historical account), the
classical Weyl’s law describes the asymptotic behavior of the eigenvalues of the Laplacian
on bounded domains of Rn. More precisely, if Ω ⊂ Rn is a bounded domain, standard
arguments from the theory of compact operators and elliptic regularity ensure that the
spectrum of (minus) the Dirichlet Laplacian on Ω is a discrete sequence of positive numbers
(λi)i∈N which can be ordered, counting multiplicity, as 0 = λ0 < λ1 ≤ λ2 ≤ · · · and such
that λi → +∞ when i→ +∞. Weyl’s law states that

lim
λ→+∞

N(λ)
λn/2

= ωn
(2π)nL

n(Ω)

where N(λ) = ]{i ∈ N : λi ≤ λ}, ωn is the volume of the n-dimensional Euclidean unit
ball, and Ln(Ω) is the n-dimensional Lebesgue measure of Ω.

Among the possible generalizations of Weyl’s law, one can replace the bounded domain
Ω ⊂ Rn by a n-dimensional closed (i.e. compact without boundary) manifold. The Laplacian
is then replaced by the Laplace-Beltrami operator of the manifold, and the term Ln(Ω) is
replaced by Hn(M), where Hn denotes the n-dimensional Hausdorff measure. It has been
proved by B. Levitan in [Le52] that Weyl’s law is still true in that case.

Another generalization concerns compact Riemannian manifolds (M, g) equipped with
the distance d induced by the metric g and a measure with positive smooth density e−f

73
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with respect to the volume measure Hn. For such spaces (M,d, e−fHn), called weighted
Riemannian manifolds, one has

lim
λ→+∞

N(M,d,e−fHn)(λ)
λn/2

= ωn
(2π)nH

n(M), (4.0.1)

where N(M,d,e−fHn)(λ) denotes the counting function of the (weighted) Laplacian ∆f :=
∆ − 〈∇f,∇·〉 of (M,d, e−fHn). This result is a consequence of [Hö68]. We stress that
in the asymptotic behavior (4.0.1) the information of the weight, e−f , disappears (as we
obtain by different means in Example 4.0.15). This sounds a bit surprising because the
Hausdorff dimension is a purely metric notion, whereas the Laplace-Beltrami operator on
weighted Riemannian manifolds and more generally the Laplacian on RCD∗(K,N) spaces
does depend on the reference measure.

Eigenvalues and eigenfunctions of compact RCD∗(K,N) spaces
Thanks to the Cheeger energy Ch, the sequence of eigenvalues can be defined on any

metric measure space (X,d,m) via Courant’s min-max procedure:

λi := min
{

max
f∈S, ‖f‖L2=1

Ch(f) : S ⊂ H1,2(X,d,m), dim(S) = i

}
i ≥ 1. (4.0.2)

We then define
N(X,d,m)(λ) := #{i ≥ 1 : λi ≤ λ}

as the “inverse” function of i 7→ λi. Notice that the formula makes sense even though Ch
is not quadratic or equivalently even though ∆ is not a linear operator. Moreover, if d̃ is a
distance bi-Lipschitz equivalent to d, meaning that c−1d̃ ≤ d ≤ cd̃ for some c > 0, then
Lip(X, d) = Lip(X, d̃), for any f ∈ Lip(X, d) one has c−1|∇f |∗,d̃ ≤ |∇f |∗,d ≤ c|∇f |∗,d̃, and
consequently c−1C̃h ≤ Ch ≤ cC̃h where C̃h is the Cheeger energy of (X, d̃,m). Then (4.0.2)
shows that the growth rate of N(X,d,m) does not change if we replace the distance d by d̃.
This observation also holds if we perturb the measure m by a factor uniformly bounded
away from 0 and +∞. Notice also that if (X, d) is doubling we can always find a Dirichlet
form E with C−1E ≤ Ch ≤ CE , with C depending only on the metric doubling constant,
see [ACDM15] (a result previously proved in [Ch99] for PI doubling metric measure spaces).
Thus, the replacement of Ch with E makes the standard tools of Linear Algebra applicable.
However, in the case of CD(K,∞) spaces with non-linear Laplacian, Weyl’s law is still
an open question. Note that in this context, the stability of the Krasnoselskii spectrum
of the Laplace operator with respect to measured Gromov-Hausdorff convergence has
been established by L. Ambrosio, S. Honda and J. Portegies in [AHP18] under a suitable
compactness assumption.

When (X, d,m) is a compact RCD∗(K,N) space, the operator ∆ is linear and the space
H1,2(X,d,m) is Hilbert. As Rellich-Kondrachov theorem [HK00, Thm. 8.1] implies that
the injection H1,2(X,d,m) ↪→ L2(X,m) is compact, we can apply standard arguments of
spectral theory [Bé86] to show the existence of an orthonormal basis of L2(X,m) made
of eigenfunctions of ∆, namely functions ϕi such that ∆ϕi = λiϕi, with ϕ0 ≡ 1/

√
m(X)

corresponding to λ0 = 0. As in the Riemannian case for (minus) the Dirichlet Laplacian,
the sequence (λi)i can be ordered in increasing order and is such that λi → +∞ when
i→ +∞.

Technical preliminaries
Before going further, let us recall some technical results. We start with basic differenti-

ation properties of measures.
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Proposition 4.0.1. If µ is a locally finite and nonnegative Borel measure in X and S ⊂ X
is a Borel set, one has

µ(S) = 0 =⇒ µ(Br(x)) = o(rk) for Hk-a.e. x ∈ S. (4.0.3)

In addition,

µ(S) = 0, S ⊂ {x : lim sup
r→0+

µ(Br(x))
rk

> 0} =⇒ Hk(S) = 0. (4.0.4)

Finally, if µ = fHk S with S countably k-rectifiable, one has

lim
r→0+

µ(Br(x))
ωkrk

= f(x) for Hk-a.e. x ∈ S. (4.0.5)

Proof. The proof of (4.0.3) and (4.0.4) can be found for instance in [F69, 2.10.19] in a
much more general context. See also [AT03, Theorem 2.4.3] for more specific statements
and proofs. The proof of (4.0.5) is given in [K94] when µ = Hk S, with S countably
k-rectifiable and having locally finite Hk-measure (the proof uses the fact that for any
ε > 0 we can cover Hk-almost all of S by sets Si which are biLipschitz deformations, with
biLipschitz constants smaller than 1 + ε, of (Ri, ‖ · ‖i), for suitable norms ‖ · ‖i). In the
general case a simple comparison argument gives the result.

We shall also need the two next auxiliary results.

Lemma 4.0.2. Let fi, gi, f, g ∈ L1(X,m). Assume that fi, gi → f, g m-a.e. respectively,
that |fi| ≤ gi m-a.e., and that limi→∞ ‖gi‖L1 = ‖g‖L1. Then fi → f in L1(X,m).

Proof. Obviously |f | ≤ g m-a.e. Applying Fatou’s lemma for hi := gi + g − |fi − f | ≥ 0
yields ˆ

X
lim inf
i→∞

hidm ≤ lim inf
i→∞

ˆ
X
hidm.

Then by assumption the left hand side is equal to 2‖g‖L1 , and the right hand side is equal
to 2‖g‖L1 − lim supi ‖fi − f‖L1 . It follows that lim supi ‖fi − f‖L1 = 0, which completes
the proof.

The proof of the next classical result can be found, for instance, in [F71, Sec. XIII.5,
Theorem 2].

Theorem 4.0.3 (Karamata’s Tauberian theorem). Let ν be a nonnegative and locally
finite measure in [0,+∞) and set

ν̂(t) :=
ˆ

[0,+∞)
e−λtdν(λ) t > 0.

Then, for all γ > 0 and a ∈ [0,+∞) one has

lim
t→0+

tγ ν̂(t) = a ⇐⇒ lim
λ→+∞

ν([0, λ])
λγ

= a

Γ(γ + 1) .

In particular, if γ = k/2 with k integer, the limit in the right hand side can be written as
aωk/π

k/2.
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Remark 4.0.4. Following the proofs of Theorems 10.2 and 10.3 in [S79], we prove in [AHT18,
Sect. 5] the so-called Abelian one-sided implications and inequalities:

lim inf
t→0+

tγ ν̂(t) ≥ Γ(γ + 1) lim inf
λ→+∞

ν([0, λ])
λγ

, (4.0.6)

lim sup
λ→+∞

ν([0, λ])
λγ

< +∞ =⇒ lim sup
t→0+

tγ ν̂(t) ≤ Γ(γ + 1) lim sup
λ→+∞

ν([0, λ])
λγ

(4.0.7)

as well as the so-called Tauberian one-sided implications and inequalities:

lim sup
λ→+∞

ν([0, λ])
λγ

≤ e lim sup
t→0+

tγ ν̂(t), (4.0.8)

lim inf
t→0+

tγ ν̂(t) > 0, lim sup
t→0+

tγ ν̂(t) < +∞ =⇒ lim inf
λ→+∞

ν([0, λ])
λγ

> 0. (4.0.9)

When (X, d,m) is a RCD∗(K,N) space, we can apply Karamata’s Theorem 4.0.3 to the
measure µ =

∑
i δλi to relate the growth rate of N(X,d,m)(λ) = ν([0, λ]) with the behavior

of ν̂(t) =
∑
i e
−λit when t ↓ 0. Assuming compactness of (X,d), the expansion (4.0.21)

implies that
ν̂(t) =

ˆ
X
p(x, x, t) dm ∀t > 0,

reducing the focus to the short-time behavior of the above right-hand side.

Pointwise convergence of heat kernels
Our approach is based on a blow-up procedure. To explain it, let us fix a pointed mea-

sured Gromov-Hausdorff convergent sequence (Xi, di,mi, xi)
mGH→ (X, d,m, x) of RCD∗(K,N)-

spaces. Recall that by [GMS15, Prop. 3.30], we can adopt the extrinsic point of view
on this convergence, embedding all spaces into a doubling and complete metric space
(Y, dY ) by isometric embeddings ψi : Xi ↪→ Y , ψ : X ↪→ Y such that dY (ψi(xi), ψ(x))→ 0
and (ψi)]mi

Cbs(Y )
⇀ (ψ)]m as i→∞. Without any loss of generality, we can assume that

supp(mi) = Xi for any i, and identify the spaces (Xi,di,mi, xi) with their image by ϕi,
namely (ϕi(Xi),d|ϕi(Xi), (ϕi)#mi, ϕi(xi)). For simplicity, we can also assume that the
doubling and complete space (Y, dY ) is (X, d), in which case each space Xi is a subset of X
supporting the measure mi, and we have mi

Cbs(X)
⇀ m. We shall denote yi

GH−−→ y whenever
a sequence yi ∈ Xi is such that d(yi, y)→ 0.

Let us start with a crucial technical proposition which allows to turn L2-weak/strong
convergence into pointwise convergence.

Proposition 4.0.5. Let fi ∈ C(Xi) and f ∈ C(X). Assume (X,d) proper and

sup
i

sup
Xi∩BR(xi)

|fi| < +∞ ∀R > 0.

Assume moreover that {fi}i is locally equi-continuous, i.e. for any ε > 0 and any R > 0
there exists δ > 0 independent of i such that

(y, z) ∈ (Xi ∩BR(xi))2 d(y, z) < δ =⇒ |fi(y)− fi(z)| < ε. (4.0.10)

Then the following are equivalent:

(1) lim
k→∞

fi(k)(yi(k)) = f(y) whenever y ∈ suppm, i(k)→∞ and Xi(k) 3 yi(k)
GH−−→ y,
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(2) fi L2
loc-weakly converge to f ,

(3) fi L2
loc-strongly converge to f .

Proof. We prove the implication from (1) to (3) and from (2) to (1), since the implication
from (3) to (2) is trivial.

Assume that (2) holds, let ε > 0 and let yi → y. Take ζ nonnegative, with support
contained in Bδ(y) and with

´
ζdm = 1. Thanks to (4.0.10) and the continuity of f , for δ

sufficiently small we have

(fi(yi)− ε)
ˆ
ζdmi ≤

ˆ
ζfidmi ≤ (fi(yi) + ε)

ˆ
ζdmi f(y)− ε ≤

ˆ
ζfdm ≤ f(y) + ε

Since
´
ζfidmi →

´
ζfdm and

´
ζdmi →

´
ζdm = 1, from the arbitrariness of ε we obtain

that fi(yi)→ f(y). A similar argument, for arbitrary subsequences, gives (1).
In order to prove the implication from (1) to (3) we prove the implication from (1) to

(2). Assuming with no loss of generality that fi and f are nonnegative, for any ζ ∈ Cbs(X)
nonnegative, (1) and the compactness of the support of ζ give that for any ε > 0 and any
s > 0 the set Xi ∩ {fiζ > s} is contained in the ε-neighbourhood of {fζ > s} for i large
enough, so that

lim sup
i→∞

mi({fiζ > s}) ≤ m({fζ ≥ s}).

Analogously, any open set A b {fζ > s} is contained for i large enough in the set
{fiζ > s} ∪ (X \Xi), so that

lim inf
i→∞

mi({fiζ > s}) ≥ m({fζ > s}).

Combining these two informations, Cavalieri’s formula and the dominated convergence
theorem provide

´
X fiζdmi →

´
X fζdm and then, since ζ is arbitrary, (2).

Now we can prove the implication from (1) to (3). Thanks to the equiboundedness
assumption, the sequence gi := f2

i is locally equi-continuous as well and gi pointwise
converge to g := |f |2 in the sense of (1), applying the implication from (1) to (2) for gi
gives

lim
i→∞

ˆ
Xi

ζ2f2
i dmi =

ˆ
X
ζ2f2dm ∀ζ ∈ Cbs(X),

which yields (3).

Here is our generalization/refinement of Ding’s results [D02, Theorems 2.6, 5.54 and
5.58] from the Ricci limit setting to our setting, via a different approach.

Theorem 4.0.6 (Pointwise convergence of heat kernels). The heat kernels pi of (Xi, di,mi)
satisfy

lim
i→∞

pi(xi, yi, ti) = p(x, y, t)

whenever (xi, yi, ti) ∈ Xi ×Xi × (0,+∞)→ (x, y, t) ∈ suppm× suppm× (0,+∞).

Proof. By rescaling d→ (t/ti)1/2d, without any loss of generality we can assume that ti ≡ t.
Let f ∈ Cbs(X). Recall that, viewing f as an element of L2 ∩ L∞(Xi,mi), Theorem 2.4.20
provides L2-strong convergerce of hitf to htf . By the estimate [AGS14b, Theorem 6.5]
valid in all RCD(K,∞) spaces, defining I0(t) := t and IS(t) := (eSt − 1)/S for S 6= 0, we
have √

2I2K(t)Lip(hitf, suppm) ≤ ‖f‖L∞(X,m),
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so the functions hitf are equi-Lipschitz on X. Applying Proposition 4.0.5 yields then
hitf(yi)→ htf(y) for any yi

GH−−→ y.
On the other hand, the Gaussian estimate (2.3.6) shows that supi ‖pi(·, yi, t)‖L∞ <∞.

By definition, since

htf(yi) =
ˆ
Xi

pi(z, yi, t)f(z)dmi(z), htf(y) =
ˆ
X
p(z, y, t)f(z)dm(z),

we see that pi(·, yi, t) L2
loc-weakly converge to p(·, y, t). Moreover, since thanks to (2.3.9) the

functions pi(·, yi, t) are locally equi-Lipschitz continuous, choosing any continuous extension
of p(·, y, t) to the whole of X and applying Proposition 4.0.5 once more to pi(·, yi, t)
we obtain that pi(xi, yi, t) converge to p(x, y, t) for any xi

GH−−→ x, which completes the
proof.

We deduce an important corollary concerning the heat kernel of a fixed RCD∗(K,N)
space (X, d,m). Recall Definition 2.3.13 in which regular sets of (X, d,m) were introduced.

Corollary 4.0.7 (Short time diagonal behavior of heat kernel on the regular set). Let
(X, d,m) be a RCD∗(K,N) space with K ∈ R and N ∈ (1,+∞). Set n = dimd,m(X). Then

lim
t→0+

m(Bt1/2(x))p(x, x, t) = ωn
(4π)n/2

(4.0.11)

for any n-dimensional regular point x of (X,d,m).

Proof. Let us recall that for any r > 0 and any C > 0 the heat kernel p̂(x, y, t) of
the rescaled RCD∗(r2K,N) space (X, r−1d, Cm) is given by p̂(x, y, t) = C−1p(x, y, r2t).
Applying this for r := t1/2, C := 1

m(Bt(x)) with Theorem 4.0.6 shows

lim
t→0+

m(Bt1/2(x))p(x, x, t) = lim
t→0+

pt(x, x, 1) = pRn(0n, 0n, 1) = ωn
(4π)n/2

,

where pt, pRn denote the heat kernels of
(
X, t−1/2d, m

m(B
t1/2 (x))

)
,
(
Rn,dRn ,

Hn
ωn

)
, respectively.

Weyl’s law
Let us discuss now Weyl’s law on compact RCD∗(K,N) spaces (X,d,m). As the

example of weighted Riemannian manifolds suggests, the asymptotic behavior of the
eigenvalues of the Laplacian is related to the behavior of the Hausdorff measure on regular
sets with respect to the restriction of the reference measure. Recall that by Theorem
(2.3.16), denoting by n the dimension of (X,d,m), we have m Rn � H n, and the set
R∗n ⊂ Rn made of those points at which the density θ of m w.r.t. H n is finite and non-zero
is such that m(Rn\R∗n) = 0.

We are now in a position to introduce a first criterion. We always have Hn(R∗n) > 0
and, if an assumption slightly stronger than the finiteness of n-dimensional Hausdorff
measure holds, we obtain Weyl’s law in the weak asymptotic form. For simplicity we use the
following notation: f(λ) ∼ g(λ) if there exists C > 1 satisfying C−1f(λ) ≤ g(λ) ≤ Cf(λ)
for sufficiently large λ.

Theorem 4.0.8. Let (X,d,m) be a compact RCD∗(K,N) space with K ∈ R and N ∈
(1,+∞), let n = dimd,m(X) and let R∗n be as in (2.3.16) of Theorem 2.3.16. Then we have

lim inf
t→0+

(
tn/2

∑
i

e−λit
)
≥ 1

(4π)n/2
Hn(R∗n) > 0. (4.0.12)
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In particular, if N(X,d,m)(λ) ∼ λi as λ→ +∞ for some i, then Remark 4.0.4 gives i ≥ n/2.
In addition

lim sup
s→0+

ˆ
X

sn

m(Bn(x))dm(x) < +∞ ⇐⇒ N(X,d,m)(λ) ∼ λn/2 (λ→ +∞). (4.0.13)

Proof. In order to prove (4.0.12) we first notice that the combination of (4.0.11) and
(2.3.18) gives

lim
t→0+

tn/2p(x, x, t) = 1
(4π)n/2

χR∗n(x)dHn R∗n
dm R∗n

(x) for m-a.e. x ∈ X.

Using the identity tn/2
∑
i e
−λit =

´
X t

n/2p(x, x, t)dm(x) and Fatou’s lemma we obtain

lim inf
t→0

(
tn/2

∑
i

e−λit
)
≥ 1

(4π)n/2

ˆ
R∗n

dHn R∗n
dm R∗n

dm = 1
(4π)n/2

Hn(R∗n).

The heat kernel estimate (2.3.6) shows

C−1 tn/2

m(Bt1/2(x)) ≤ t
n/2p(x, x, t) ≤ C tn/2

m(Bt1/2(x)) (4.0.14)

for some C > 1, which is independent of t and x. Thus the upper bound on p gives

lim sup
t→0+

tn/2
ˆ
X
p(x, x, t)dm(x) ≤ C lim sup

s→0+

ˆ
X

sn

m(Bs(x))dm(x) < +∞.

We can now invoke Remark 4.0.4 to obtain the implication ⇒ in (4.0.13). The proof of the
converse implication is similar and uses the lower bound in (4.0.14).

Under the stronger assumption (4.0.15) (notice that both the finiteness of the limit
and the equality of the integrals are part of the assumption) we can recover Weyl’s law in
the stronger form.

Theorem 4.0.9. Let (X,d,m) be a compact RCD∗(K,N) space with K ∈ R and N ∈
(1,+∞), and let n = dimd,m(X). Then

lim
s→0+

ˆ
X

sn

m(Bs(x))dm(x) =
ˆ
X

lim
s→0+

sn

m(Bs(x))dm(x) < +∞ (4.0.15)

if and only if

lim
λ→+∞

N(X,d,m)(λ)
λn/2

= ωn
(2π)nH

n(R∗n) < +∞. (4.0.16)

Proof. We first assume that (4.0.15) holds. Taking (2.3.18) and (4.0.14) into account, we
can apply Lemma 4.0.2 with ft(x) = tn/2p(x, x, t) and gt(x) = Ctn/2/m(Bt1/2(x)) to get

lim
t→0+

tn/2
ˆ
X
p(x, x, t)dm(x) =

ˆ
X

lim
t→0+

tn/2p(x, x, t)dm(x)

=
ˆ
R∗n

1
(4π)n/2

dHn R∗n
dm R∗n

dm

= 1
(4π)n/2

Hn(R∗n)

which shows (4.0.16) by Karamata’s Tauberian theorem.
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Next we assume that (4.0.16) holds. Then by (2.3.18) and Karamata’s Tauberian
theorem again, (4.0.16) is equivalent to

lim
t→0+

tn/2
ˆ
X
p(x, x, t)dm(x) =

ˆ
X

lim
t→0+

tn/2p(x, x, t)dm(x) < +∞. (4.0.17)

Let ft(x) := tn/2/m(Bt1/2(x)). Then the heat kernel estimate (4.0.14) shows that we can
apply Lemma 4.0.2 with gt(x) = Ctn/2p(x, x, t) to get (4.0.15).

By the stability of RCD conditions with respect to mGH-convergence and [CC97,
Theorem 5.1], noncollapsed Ricci limit spaces give typical examples of RCD∗(K,N) spaces
(X,d,m) with dimd,mX = N . For such metric measure spaces Weyl’s law was proven in
[D02] by Ding. Thus the following corollary also recovers his result.

Corollary 4.0.10. Let (X,d,m) be a compact RCD∗(K,N) space with K ∈ R and N ∈
(1,+∞) ∩ N, and assume that N = dimd,mX. Then (4.0.16) holds.

Proof. The existence of a functions g ∈ L1(R∗N ,HN ) such that

g(x, t) := tN

m(Bt(x))
dm R∗N

dHN R∗N
(x) ≤ g(x) ∀t ∈ (0, 1)

for HN -a.e. x ∈ R∗N follows directly from the Bishop-Gromov inequality, since m(Br(x))/rk
is bounded from below by a positive constant. Then the proof follows by the dominated
convergence theorem in conjunction with Theorem 4.0.9.

Applications
Let us provide a serie of examples to which Theorem 4.0.9 can be applied.

Example 4.0.11. Let us consider the following RCD∗(N − 1, N) space:

(X,d,m) :=
(
[0, π], d[0,π], sinN−1 tdt

)
for N ∈ (1,∞) (note that this is a Ricci limit space if N is an integer, see for instance
[AH17a]). Then we can apply Theorem 4.0.9 with k = 1 and R∗1 = R1 = (0, π), because of
supt<1 ‖g(·, t)‖L∞ <∞, where g is as in Corollary 4.0.10. Thus we have Weyl’s law:

lim
λ→+∞

N(X,d,m)(λ)
λ1/2 = ω1

2πH
1((0, π)) = 1.

Example 4.0.12 (Iterated suspensions). Let us apply now Theorem 4.0.9 to iterated
suspensions of (X,d,m) as in Example 4.0.11:{

(X1,d1,m1) := ([0, π],d[0,π], sinN−1 tdt),
(Xn+1,dn+1,mn+1) := ([0, π], d[0,π], sin tdt)×1 (Xn,dn,mn).

Recall that the spherical suspension ([0, π], d[0,π], sin tdt)×1(X, d,m) of a metric measure
space (X, d,m) is the quotient of the product [0, π]×X by the identification of every point
of {0} × X and {π} × X into two distinct points, equipped with the product measure
dµ := sin tdt×m and with the distance dsusp defined by

cos dsusp
(
(t, x), (s, y)

)
= cos t cos s+ sin t sin s cos(min{d(x, y), π}).
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Note that (Xn,dn,mn) is a RCD∗(N + n− 2, N + n− 1) space (see [K15b]) and that
(Xn, dn) are isometric to a hemisphere of the n-dimensional unit sphere Sn as metric spaces.

Then we can apply Theorem 4.0.9 because an elementary calculation similar to the one
of Example 4.0.11 shows that supt<1 ‖gn(·, t)‖L∞ <∞. Thus Weyl’s law follows:

lim
λ→+∞

N(Xndn,mn)(λ)
λn/2

= ωn
(2π)nH

n(Xn) = ωn
(2π)n

Hn(Sn)
2 .

Example 4.0.13 (Gaussian spaces). For noncompact RCD(K,∞) spaces the behavior of
the spectrum is different, and requires a more delicate analysis. For instance (see [Mil15,
(2.2)]) the n-dimensional Gaussian space (X,d,m) := (Rn, dRn , γn) satisfies

lim
λ→+∞

N(X,d,m)(λ)
λn

= 1
Γ(n+ 1) .

Theorem 4.0.9 implies the following corollary for Ahlfors regular RCD∗(K,N) spaces.

Corollary 4.0.14 (Weyl’s law on compact Ahlfors regular RCD∗(K,N) spaces - especially
Alexandrov spaces). Let (X,d,m) be a compact RCD∗(K,N) space with K ∈ R and
N ∈ (1,+∞). Assume that (X, d,m) is Ahlfors n-regular for some n ∈ N, i.e. there exists
C > 1 such that

C−1rn ≤ m(Br(x)) ≤ Crn ∀x ∈ X, r ∈ (0, 1).

Then we have Weyl’s law:

lim
λ→+∞

N(X,d,m)(λ)
λn/2

= ωn
(2π)nH

n(X). (4.0.18)

In particular this holds if (X,d,m) is an n-dimensional compact Alexandrov space.

Proof. Note that by the Ahlfors n-regularity of (X,d,m), any tangent cone at x also
satisfies the Ahlfors n-regularity, which implies that Ri = ∅ for any i 6= n. In particular
since Hn � m� Hn, we have

m(X \ Rn) = Hn(X \ Rn) = 0. (4.0.19)

Then Theorem 4.0.9 can be applied with gk ≡ c for some c > 0, which proves (4.0.18) by
(4.0.19). The final statement follows from the compatibility between Alexandrov spaces
and RCD spaces [Pet11, ZZ10].

Example 4.0.15. Let us discuss the simplest case we can apply Corollary 4.0.14; let M be
a compact n-dimensional manifold and let f ∈ C2(M). Then, thanks to (2.3.15), for any
N ∈ (n,∞) there exists K ∈ R such that (M, d, e−fHn) is a RCD∗(K,N) space. Moreover
since

(
M, d, e−fHn

)
is Ahlfors n-regular, Corollary 4.0.14 yields Weyl’s law:

lim
λ→+∞

N(M,d,e−fHn)(λ)
λn/2

= ωn
(2π)nH

n(M).

In order to give another application of Weyl’s law on compact finite dimensional
Alexandrov spaces, let us recall that two compact finite dimensional Alexandrov spaces
are said to be isospectral if the spectrums of their Laplacians coincide. See for instance
[S85, EW13] for constructions of isospectral manifolds and of isospectral Alexandrov spaces
(see also [KMS01] for analysis on Alexandrov spaces).
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It is also well-known as a direct consequence of Perelman’s stability theorem [Per91] (see
also [Kap07]) that for fixed n ∈ N, K ∈ R and d, v > 0 the isometry class of n-dimensional
compact Alexandrov spaces X of sectional curvature bounded below by K with diamX ≤ d
and Hn(X) ≥ v has only finitely many topological types. By using this and Weyl’s law,
we can prove the following result which is a generalization of topological finiteness results
for isospectral spaces proven in [BPP92, Stan05, Har16] to Alexandrov spaces.

Corollary 4.0.16 (Topological finiteness theorem for isospectral Alexandrov spaces). Let
χ := {(Xu, du,Hnu)}u∈U be a class of compact finite dimensional Alexandrov spaces with a
uniform sectional curvature bound from below. Assume that there exists C > 1 such that

lim sup
λ→+∞

N(Xu,du,Hnu )(λ)
N(Xv ,dv ,Hnv )(λ) ≤ C (4.0.20)

for all u, v ∈ U . Then χ has only finitely many topological types.
In particular, any class of isospectral compact finite dimensional Alexandrov spaces

with a uniform sectional curvature bound from below has only finitely many members up to
homeomorphism.

Proof. By an argument similar to the proof of [BPP92, Corollary 1.2] (or [Stan05, Proposi-
tion 7.4]) with [VR04, Corollary 1] there exists d > 0 such that diamXu ≤ d for any u ∈ U .
Since Weyl’s law (4.0.18) with (4.0.20) implies that there exist n ∈ N and v > 0 such that
dimXu ≡ n and Hn(Xu) ≥ v for any u ∈ U , the topological finiteness result stated above
completes the proof.

Expansions of the heat kernel
Throughout this paragraph we assume that (X,d,m) is a metric measure space with

(X, d) compact, m(X) = 1 (this is not restrictive, up to a normalization) and suppm = X.
We denote by D the diameter of (X,d).

The main aim of this paragraph is to provide a complete proof of the expansions

p(x, y, t) =
∑
i≥0

e−λitϕi(x)ϕi(y) in C(X ×X) (4.0.21)

for any t > 0 and

p(·, y, t) =
∑
i≥0

e−λitϕi(y)ϕi in H1,2(X,d,m) (4.0.22)

for any y ∈ X and t > 0, where p denotes the locally Hölder representative of the heat
kernel in the case when, in addition, (X, d,m) is RCD∗(K,N) space. Our goal is to justify
the convergence of the series in (4.0.21) and (4.0.22): as soon as this is secured, a standard
argument shows that they provide good representatives of the heat kernel. Here and in the
sequel 0 = λ0 < λ1 ≤ λ2 ≤ · · · → +∞ are the eigenvalues of −∆, and ϕ0, ϕ1, ϕ2, . . . are
corresponding eigenfunctions forming an orthonormal basis of L2(X,m), with ϕ0 ≡ 1.

The following proposition is a consequence of [HK00, Th. 5.1 and Th. 9.7].

Proposition 4.0.17. Assume, in addition, that (X,d,m) is a PI space, with doubling
constant CD ≤ 2N for some N > 2 and Poincaré constant CP . Then there exists a constant
CS = CS(N,CP , D) > 0 such that(ˆ

X
|f − fX |2N/(N−2) dm

)(N−2)/2N
≤ CS

(ˆ
X
|∇f |2 dm

)1/2

for any f ∈ H1,2(X,d,m), where fX denotes the mean-value of f over X.
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The following result, well-known for compact Riemannian manifolds, provides by
Moser’s iteration technique a polynomial lower bound for the eigenvalues of −∆. The
estimate we provide is not sharp, but sufficient for our purposes.

Proposition 4.0.18. Assuming that (X,d,m) is a RCD∗(K,N) space, there exists a
constant C0 = C0(D,K,N) > 0 such that

λi ≥ C0i
1/N ∀i ≥ 1.

Proof. Take i ≥ 1, write Ei = Span(ϕ1, . . . , ϕi) and recall that, under our assumptions, we
can and will use the continuous version of the ϕi, which are even Lipschitz [J16]. We claim
that there exists fo ∈ Ei such that sup f2

o ≥ i and ‖fo‖2 = 1. Let us define the continuous
function F =

∑i
j=1 ϕ

2
j and let p ∈ X be a maximum point of F . Then

fo(x) := 1√
F (p)

i∑
j=1

ϕj(p)ϕj(x)

satisfies ‖fo‖2 = 1 and fo(p) =
√
F (p), so that

i = dimEi =
ˆ
X
F dm ≤ F (p) ≤ sup f2

o . (4.0.23)

We claim now that there exists C1 > 0 depending only on K and N such that

sup |f | ≤ C1λ
N/2
i ‖f‖2 ∀f ∈ Ei. (4.0.24)

Using this claim with f = fo together with (4.0.23), we obtain the stated lower bound on
the λi.

As one can easily check, ∆f2 = 2f∆f + 2|∇f |2 ≥ 2f∆f for any f ∈ Ei, so that for
k ≥ k0 = 2N/(N − 2) > 1, we estimate

ˆ
X
|f |k−2f∆f dm ≤ 1

2

ˆ
X
|f |k−2∆f2 dm = −1

2

ˆ
X
〈∇|f |k−2,∇f2〉dm

= −(k − 2)
ˆ
X
|f |k−2|∇|f ||2 dm = −4(k − 2)

k2

ˆ
X
|∇|f |k/2|2 dm

≤ −4(k − 2)
k2CS

(ˆ
X
|f |kN/(N−2) dm

)(N−2)/N

≤ − 1
kC

(ˆ
X
|f |kN/(N−2) dm

)(N−2)/N
,

where we used Proposition 4.0.17 (note that fX = 0 for any f ∈ Ei, and that Ei ⊂
L∞(X,m), so that |f |k/2 ∈ H1,2(X,d,m)) and C is chosen in such a way that 4(k −
2)/(kCS) ≥ 1/C for all k ≥ k0. Thus, setting β = N/(N − 2) > 1, we get

‖f‖kβk ≤ kC
ˆ
X
|f |k−1|∆f | dm ≤ kC‖f‖k−1

k ‖∆f‖βk, (4.0.25)

by Hölder’s inequality. A simple reasoning [L12, p. 101] shows that if h ∈ Ei is such that

‖h‖βk
‖h‖2

= max
f∈Ei\{0}

‖f‖βk
‖f‖2

,
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then ‖∆h‖βk ≤ λi‖h‖βk, so that (4.0.25) with f = h implies ‖h‖k−1
βk ≤ kCλi‖h‖

k−1
k . Notice

that, as soon as C is chosen in such a way that C ≥ CS , the inequality holds also in the
case k = 2. Therefore with kj = 2βj , j ≥ 0, by induction, we get

max
f∈Ei\{0}

‖f‖kj
‖f‖2

≤
j−1∏
`=0

(k`Cλi)1/(k`−1) ∀j ≥ 1.

Now, notice that k1/(k`−1)
` can be bounded above by a dimensional and that, since λ1 ≥

c(K,N) > 0, we can choose C so large that Cλi ≥ 1. Therefore using the inequality
j−1∑
`=0

1
k` − 1 ≤ 2

∞∑
`=0

1
k`

= N

2 ,

letting j →∞ provides (4.0.24).

In the following proposition we obtain an explicit estimate on the L∞ norm and the
Lipschitz constant of eigenfunctions of −∆ in terms of the size of eigenvalues, see also [J16]
for related results.

Proposition 4.0.19. Assuming that (X, d,m) is a RCD∗(K,N) space, whenever λi ≥ D−2

one has
‖ϕi‖∞ ≤ CλN/4i ‖ϕi‖2, ‖∇ϕi‖∞ ≤ Cλ(N+2)/4

i ‖ϕi‖2,

with C = C(K,N,D).

Proof. Let us prove only the first inequality, since the proof of the second one goes along
similar lines. Throughout this proof, C denotes a generic constant depending on K, N ,
whose value can also change from line to line. Since ϕi is an eigenfunction with eigenvalue
λi, for all t > 0 one has Ptφi = e−λitφi, so that

ϕi(x) = eλit
ˆ
X
p(x, y, t)ϕi(y) dm(y) ∀x ∈ X.

If we use the heat kernel estimates (2.3.6) with ε = 1 and the assumption m(X) = 1 we
obtain

|ϕi(x)| ≤ eλit
ˆ
X
p(x, y, t)|ϕi(y)|dm(y) ≤ eλit‖ϕi‖2

(ˆ
X
p(x, y, t)2 dm(y)

)1/2

≤ C‖ϕi‖2
eλit+Ct

m(B√t(x)) .

Now we use the Bishop-Gromov inequality (Theorem 2.1.14) to conclude that, for t ≤ D2,
one has

m(B√t(x))
VolK,N (

√
t)
≥ 1

VolK,N (D) .

Therefore,

|ϕi(x)| ≤ C eλit+Ct√
VolK,N (

√
t)

√
VolK,N (D)‖ϕi‖2.

Choosing t = 1/λi the proof is achieved.

We are now in a position to conclude. The first expansion (4.0.21) is a direct
consequence of Proposition 4.0.18 and Proposition 4.0.19. The second expansion (4.0.22)
follows, thanks to the simple observation that ‖∇ϕi‖22 = λi.



Chapter 5

Embedding RCD*(K,N) spaces
into L2 via their heat kernel

In the last chapter of this thesis, we present the results of [AHPT17], in which we explain
how to extend a Riemannian construction due to P. Bérard, G. Besson and S. Gallot
[BBG94, Sect. 3] to the RCD setting.

5.1 Riemannian context

Let us start with a review on the original theorem in the Riemannian context.

A family of smooth embeddings
Let (M, g) be a closed n-dimensional Riemannian manifold equipped with its canonical

Riemannian distance d and volume measure vol. For any positive time t > 0, the map
Φt : M → L2(M) is given by

Φt(x) = p(x, ·, t) (5.1.1)

where p : M ×M × (0,∞) → (0,∞) is the heat kernel on M . The next proposition is
similar to [BBG94, Thm. 5] and gives regularity properties of the maps Φt.

Proposition 5.1.1. For any t > 0 the map Φt is a smooth embedding. Moreover the
differential dxΦt : TxM → L2(M) at x ∈M is given by

dxΦt(v) : y 7→ gx(∇xp(x, y, t), v) ∀v ∈ TxM. (5.1.2)

In particular

‖dxΦt(v)‖2L2(M) =
ˆ
M
|gx(∇xp(x, y, t), v)|2dvol(y) ∀v ∈ TxM.

Proof. We first check that Φt is a continuous embedding. Continuity is obvious. As (M, d)
is compact, it suffices to show that Φt is injective. Recall the expression (4.0.21) of the
heat kernel, we see that Φt(x1) = Φt(x2) yields∑

i

e−λitϕi(x1)ϕi(y) =
∑
i

e−λitϕi(x2)ϕi(y) for vol-a.e. y ∈M. (5.1.3)

In particular, multiplying both sides of (5.1.3) by ϕj(y) and integrating over M shows
that ϕj(x1) = ϕj(x2) holds for all j. Then since p(x1, x1, s) = p(x1, x2, s) for all s > 0 by
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(4.0.21), the Gaussian bounds (2.3.6) yield

1
C1m(Bs1/2(x1)) exp (−C2s) ≤ p(x1, x1, s) = p(x1, x2, s)

≤ C1
m(Bs1/2(x1)) exp

(
−d2(x1, x2)

5s + C2s

)
,

i.e. exp
(
−C2s

)
≤ C2

1 exp
(
−d2(x1, x2)/(5s)+C2s

)
. Then letting s ↓ 0 yields x1 = x2, which

shows that Φt is injective.
Next we prove the smoothness of Φt along with (5.1.2). Let us denote by q(x, t, v)(∈

L2(M, vol)) the right hand side of (5.1.2). Take a smooth curve c : (−ε, ε) → M with
c(0) = x and c′(0) = v and estimate∥∥∥∥Φt ◦ c(h)− Φt ◦ c(0)

h
− q(x, t, v)

∥∥∥∥2

L2

=
ˆ
M

∣∣∣∣p(c(h), y, t)− p(c(0), y, t)
h

− d
ds

∣∣∣
s=0

p(c(s), y, t)
∣∣∣∣2 dvol(y)

=
ˆ
M

∣∣∣∣∣
ˆ h

0

s

h
Hessp(x,·,t)

(
c′(s), c′(s)

)
ds
∣∣∣∣∣
2

dvol

≤ h
ˆ
M

ˆ h

0

∣∣∣Hessp(x,·,t)
(
c′(s), c′(s)

)∣∣∣2 ds dvol, (5.1.4)

where we applied the identity f(h) = f(0)+f ′(0)h−
´ h

0 sf
′′(s)ds, valid for any f ∈ C2(−ε, ε),

to the family of functions fy(s) := p(c(s), y, t), y ∈M . Thus, letting h→ 0 in (5.1.4) shows
that Φt is differentiable at x ∈ M and that (5.1.2) holds. The smoothness of Φt follows
similarly.

Pull-back metrics
Viewing L2(M) as an infinite dimensional manifold whose tangent space at each point is

L2(M) itself, we can see the L2 scalar product as a “flat” Riemannian metric gL2 . Thanks
to Proposition 5.1.1, for any t > 0 we consider the pull-back metric Φ∗t gL2 which writes as
follows:

[Φ∗t gL2 ]x(v, w) :=
ˆ
M
gx(∇xp(x, y, t), v)gx(∇xp(x, y, t), w)dvol(y), ∀v, w ∈ TxM,∀x ∈M.

(5.1.5)
The asymptotic behavior of Φ∗t gL2 was discussed in [BBG94, Thm 5] where one can find
the following result.

Theorem 5.1.2. Denoting by Ric, Scal the Ricci and the scalar curvature of (M, g) re-
spectively,

c(n)t(n+2)/2Φ∗t gL2 = g + t

3

(1
2Scal g − Ric

)
+O(t2), t ↓ 0, (5.1.6)

in the sense of pointwise convergence, where c(n) is a positive constant depending only on
the dimension n.

The proof of the previous theorem heavily relies on the so-called Minakshisundaram-
Pleijel asymptotic formula [MP49]. Recall that for any x ∈M the injectivity radius inj(x)
of M at x is set as the supremum of the set of real numbers r > 0 such that the exponential
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map expx restricted to Br(x) is a diffeomorphism onto its image. We write inj(M) for the
injectivity radius of M , which is by definition inf{inj(x) : x ∈M}. Note that compactness
of M implies that inj(M) > 0. Finally, let us set InjDiag(M) := {(x, y) ∈ M ×M :
|x− y| ≤ inj(M)}.

Proposition 5.1.3 (Minakshisundaram-Pleijel asymptotic expansion). There exists a
sequence of smooth functions ui : InjDiag(M)→ R, i ∈ N, such that for any N ∈ N,

pt(x, y) = 1
(4πt)

n
2
e−

d(x,y)
4t

[
N∑
i=0

tiui(x, y) +O(tN+1)
]

t ↓ 0, (5.1.7)

for any (x, y) ∈ InjDiag(M). Moreover, (5.1.7) can be differentiated with respect to x, y or
t as many time as needed.

A careful study of the first terms u0, u1 of the expansion (5.1.7) provides the following
extra information.

Proposition 5.1.4. 1. The first term u0 in (5.1.7) coincides with θ−
1
2 where for any

x ∈M , the function θ(x, ·) defined on Binj(M)(x) is the density w.r.t. the Lebesgue
measure of (exp−1

x )#vol� L n.

2. The second term u1 satisfies

u1(x, x) = Scal(x)
6 , ∀x ∈M.

Finally, recall that if γ is a length minimizing geodesic on (M, g), one has:

θ(γs, γt) =
|t−s|→0

1− Ric(γ̇s, γ̇s)
|t− s|2

6 +O(|t− s|3). (5.1.8)

We are now in a position to provide a detailed proof of Theorem 5.1.2.

Proof. We will only need the first-order expansion of Minakshisundaram-Pleijel’s formula.
For convenience, let us write

Kt(x, y) = (4πt)−n/2e−
d2(x,y)

4t and Rt(x, y) = u0(x, y) + tu1(x, y) +O(t2),

so that
pt(x, y) = Kt(x, y)Rt(x, y). (5.1.9)

Let us fix x ∈M and v ∈ TxM . Then thanks to the expansion (4.0.22),

[Φ∗t gL2 ]x(v, v) =
ˆ
M
gx(∇xp(x, y, t), v)2dvol(y)

=
ˆ
M

∑
i,j

e−(λi+λj)tϕi(y)ϕj(y)gx(∇xϕi, v)gx(∇xϕj , v) dvol(y)

=
∑
i

e−2λit dxϕi(v)2

= d2
x d1

xpt(v, v). (5.1.10)

Let us explain the notation “d2
x d1

x”. The function pt : M ×M → (0,+∞) depends on
two variables, then d1

xpt : TxM ×M → (0,+∞) is the differential w.r.t. the first variable
of pt at x, and d2

x d1
xpt : TxM × TxM → (0,+∞) is the differential with respect to the
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second variable of d1
xpt at x. The function d2

x d1
xpt is called mixed derivative of pt at x.

The equality (5.1.10) is a direct consequence of the expansion (4.0.22). Let us compute
d2
x d1

ypt for some y ∈M , afterwards we will consider only the value for y = x.
Thanks to (5.1.9), Leibniz rule and chain rule, for any y ∈M ,

d1
xpt(v, y) = d1

xKt(v, y) Rt(x, y) + Kt(x, y) d1
xRt(v, y)

= − 1
4t( d1

x[d2(·, y)](v))Kt(x, y)Rt(x, y)

+Kt(x, y)
(

d1
xu0(·, y)(v) + td1

x[u1(·, y)](v) +O(t2)
)
.

Then by Leibniz rule, and writing d instead of d for better readability,

d2
y d1

xpt(v, v) =− 1
4t d2

yKt(x, v) d1
xd

2(v, y)Rt(x, y)− 1
4tKt(x, y) d2

y d1
xd2(v, v)Rt(x, y)

− 1
4tKt(x, y) d1

xd
2(v, y) d2

yRt(x, v) + d2
yKt(x, v) d1

xRt(v, y)

+Kt(x, y) d2
y d1

xRt(v, v).

To go on, note that by definition, d1
xd

2(v, y) = d
dt

∣∣∣
t=0

d2(γt, y) where γ is a curve such

that γ0 = x and γ̇0 = v. If y = x, one gets d
dt

∣∣∣
t=0

d2(γt, x) which reads d
dt

∣∣∣
t=0
|tW − 0|2

in local coordinates, W being some vector of Rn depending on the system of coordinates.
Then d1

xd
2(v, x) = 0, so in the above equality, taking y = x, the first and third term vanish.

One can prove similarly d2
xd

2(x, v) = 0. As d2
xKt(x, v) = −(4t)−1Kt(x, y) d2

yd
2(x, v), the

fourth term vanish. To deal with the second term, let us compute the mixed second
derivative of d2. Take a curve γ such that γ0 = x and γ̇0 = v. One can choose γ to be a
geodesic. Then

d2
x d1

xd
2(v, v) = d

ds

∣∣∣∣
s=0

d
dt

∣∣∣∣
t=0

d2(γs, γt) = d
ds

∣∣∣∣
s=0

d
dt

∣∣∣∣
t=0

gx(v, v)|t− s|2 = −2gx(v, v).

Finally, we get

d2
x d1

xpt(v, v) = Kt(x, x)
(
gx(v, v)

2t Rt(x, x) + d2
x d1

xRt(v, v)
)

= (4πt)−n/2
[
gx(v, v)

2

(
u0(x, x)

t
+ u1(x, x)

)
+ d2

x d1
xu0(v, v) +O(t)

]
The result follows from Proposition 5.1.4 and the computation d2

x d1
xu0(v, v) = − 1

3!Ricx(v, v)
made thereafter. Recall that u0 = θ−1/2. Let γ be a geodesic such that γ0 = x and γ̇0 = v.

d
ds

∣∣∣∣
s=0

d
dt

∣∣∣∣
t=0

θ−1/2(γs, γt) = d
ds

∣∣∣∣
s=0

(
−1

2θ
−3/2(γs, γ0) d

dt

∣∣∣∣
t=0

θ(γs, γt)
)

= −1
2

−3
2 θ
−5/2(γ0, γ0)︸ ︷︷ ︸

=1

d
ds

∣∣∣∣
s=0

θ(γs, γ0) d
dt

∣∣∣∣
t=0

θ(γ0, γt)

+ θ−3/2(γ0, γ0)︸ ︷︷ ︸
=1

d
ds

∣∣∣∣
s=0

d
dt

∣∣∣∣
t=0

θ(γs, γt)


Thanks to (5.1.8),

d
ds

∣∣∣∣
s=0

θ(γs, γ0) = d
ds

∣∣∣∣
s=0

(
1− Ric(γ̇s, γ̇s)

s2

6 +O(s3)
)

= 0
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and
d
ds

∣∣∣∣
s=0

d
dt

∣∣∣∣
t=0

θ(γs, γt) = d
ds

∣∣∣∣
s=0

(
− 1

3!Ricγs(γ̇s, γ̇s)s+O(s2)
)

= − 1
3!Ricγ0(γ̇0, γ̇0) d

ds

∣∣∣∣
s=0

s︸ ︷︷ ︸
=1

− 1
3!

[ d
ds

∣∣∣∣
s=0

Ricγs(γ̇s, γ̇s)
]
s|s=0︸ ︷︷ ︸

=0

+ O(2s)|s=0︸ ︷︷ ︸
0

= − 1
3!Ricγ0(γ̇0, γ̇0).

5.2 RCD context
From now on and until the end of this chapter, K ∈ R and N ∈ [1,+∞) are kept fixed. We
move from the Riemannian manifold (M, g) considered in the previous section to a compact
RCD∗(K,N) space (X,d,m). For any positive time t > 0, the map Φt : X → L2(X,m) is
given by

Φt(x) = p(x, ·, t) (5.2.1)

where p : X × X × (0,∞) → (0,∞) is the locally Hölder continuous representative of
the heat kernel on (X,d,m). It is immediate to check that the maps Φt are continuous
embeddings. Indeed, since (4.0.21) holds true on (X,d,m), we can carry out the proof of
Proposition 5.1.1 to get that Φt is an embedding for any t > 0. Continuity is obvious as
we consider the locally Hölder representative of the heat kernel.

First-order differentiation formula
Let us start with an analogue of the differentiation formula (5.1.2) which does not

appear in [AHPT17]. Such a precise formula seems hardly reachable on (X,d,m), as
there is no pointwise definition of tangent vectors on RCD∗(K,N) spaces. Nevertheless,
following [G13, Prop. 5.15], we can prove an integrated version of (5.1.2) along Wasserstein
geodesics with bounded compression (Proposition 5.2.1), or even along more general curves
(Remark 5.2.2). Indeed, for some given t > 0, let us consider the W2-continuous curve
(µs := p(xs, ·, t)m)s, where (xs)s∈[0,1] is a continuous curve on X. Then for any s ∈ [0, 1]
and any z ∈ X, by the Chapman-Kolmogorov property (2.3.3),

Ft(s)(z) :=
ˆ
X
p(x, z, t) dµs(x) =

ˆ
X
p(x, z, t)p(xs, x, t) dm(x) = p(xs, z, 2t).

If (X,d,m) is a Riemannian manifold, it follows from Proposition 5.1.1 that Ft : [0, 1]→
L2(X,m) is continuously differentiable on [0, 1], and

F ′t(s) = gxs(∇xp(xs, ·, 2t), x′s) ∀s ∈ [0, 1].

From this observation, it appears natural to study the differentiability properties of the
L2(X,m)-valued functions Ft : s 7→

´
X p(x, ·, t) dµs for suitable W2-continuous curves (µs)s.

In the next proposition we consider W2-geodesics (µs) with bounded compression, meaning
that there exists C > 0 such that µs ≤ Cm holds for every s ∈ [0, 1]. Let us recall that
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Kantorovitch potentials between any given µ, ν ∈ P(X) are optimizers in Kantorovitch
duality formula [Vi03, Th. 1.3]:

1
2W

2
2 (µ, ν) = sup

ϕ

{ˆ
X
ϕdµ+

ˆ
X
ϕc dν

}
,

where the supremum is taken over all Borel functions ϕ : X → R ∪ {−∞} such that
ϕ ∈ L1(X,µ), and the c-transform ϕc of ϕ is by definition

ϕc(y) := inf
x∈X

{
d2(x, y)

2 − ϕ(x)
}
.

On compact spaces, one can always find a locally Lipschitz Kantorovitch potential between
two arbitrary probability measures. Let us also recall the Hopf-Lax formula: for any given
bounded function f : X → R, the function Qsf : X → R is defined as

Qsf(x) := inf
y∈X

f(y) + d2(x, y)
2s ∀s > 0,

and Q0f = f . The following two simple results are well-known:

• continuity: if f is continuous, then the function s 7→ Qsf(x) is continuous on [0,∞)
for any x ∈ X;

• Lipschitz estimate:

Lip(Qsf) ≤ 2

√
sup f − inf f

2s , ∀s > 0. (5.2.2)

Proposition 5.2.1. For any W2-geodesic (µs) with bounded compression, the L2(X,m)-
valued function Ft defined by:

Ft(s) :=
ˆ
X
p(x, ·, t) dµs(x) ∀s ∈ [0, 1], (5.2.3)

is continuously differentiable in [0, 1] and

F ′t(s) =
ˆ
X
〈∇xp(x, ·, t),∇[Qs(−ϕ)](x)〉dµs(x) ∀s ∈ (0, 1] (5.2.4)

= −
ˆ
X
〈∇xp(x, ·, t),∇[Q1−s(−ϕc)](x)〉 dµ1−s(x) ∀s ∈ [0, 1), (5.2.5)

where the function ϕ is any locally Lipschitz Kantorovitch potential from µ0 to µ1.

Proof. From the bounded compression assumption, we know that the W2-geodesic (µs)s
induces a map ρs : [0, 1]→ L∞(X,m) continuous w.r.t. the w∗-L∞(X,m) topology, where
ρs is the density of µs w.r.t. m. Note also that given two measures µ0, µ1 ∈ P(X) and
a Kantorovitch potential ϕ from µ0 to µ1, for any s ∈ [0, 1], the functions sQs(−ϕ) and
(1− s)Q1−s(−ϕc) are Kantorovitch potentials from µs to µ0 and from µs to µ1 respectively.
Let us now fix a Lipschitz Kantorovich potential ϕ from µ0 to µ1, whose existence is
ensured by the compactness of (X,d). Pick s0 ∈ (0, 1]. First of all, it is easily checked
that F (s0) ∈ L2(X,m) thanks to the heat kernel upper bound (2.3.6), boundedness of the
density ρs and compactness of (X,d). Let us prove the convergence

lim
h→0

Ft(s0 + h)− Ft(s0)
h

= −
ˆ
X
〈∇xp(x, ·, t),∇Qs0ϕ(x)〉 dµs0(x) in L2(X,m). (5.2.6)
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As p(·, y, t) ∈ H1,2(X,d,m) ∩ L1(X,m) for any y ∈ X, we can apply [G13, Prop. 5.16] to
get:

lim
h→0

ˆ
X
p(x, y, t) d

(
µs0+h − µs0

h

)
(x) = −

ˆ
X
〈∇xp(x, y, t),∇Qs0ϕ(x)〉 dµs0(x), ∀y ∈ X.

(5.2.7)
WriteGh = h−1(F (s0+h)−F (s0)) for any h > 0 andG0 = −

´
X〈∇xp(x, ·, t),∇Qs0ϕ(x)〉 dµs0(x).

Then for any y ∈ X,

Gh(y) =
ˆ
X
p(x, y, t) d

(
µs0+h − µs0

h

)
(x) = 1

s0

ˆ
p(γh, y, t)− p(γ0, y, t)

h
dπ−s0(γ)

where π−s0 = (Restrs0
0 )#π, π is a lifting of the geodesic (µs)s and Restrs0

0 is the function
associating to each curve γ ∈ C([0, 1], X) the reparametrization over [0, 1] of the restriction
to [0, s0] of γ. By the heat kernel gradient upper bound (2.3.7),

|p(γh, y, t)− p(γ0, y, t)| ≤ (sup
x,y
|∇xp(x, y, t)|)d(γh, γ0) ≤ C1e

C2t

√
t(min
z∈X

m(B√t(z)))
h =: C0(t)h.

Here infz m(B√t(z)) is achieved and positive because of compactness of (X, d) and continuity
of the function z 7→ m(B√t(z)). This implies that |Gh(y)| ≤ C0(t)/s0. Moreover, applying
the Lipschitz continuity estimate (5.2.2) and (2.3.7), we get

|G0(y)| ≤
ˆ
X
|∇xp(x, y, t)||∇Qs0ϕ(x)| dµs0(x) ≤ 2C0(t)

√
supϕ− inf ϕ

s0
.

Hence, by dominated convergence, the pointwise convergence (5.2.7) implies the L2 conver-
gence (5.2.6) and thus the validity of the formula (5.2.4). The formula for s0 ∈ [0, 1) is
established similarly.

Let us prove now that the function F ′t is continuous in (0, 1]. Let sn, s ∈ (0, 1] be such
that sn → s. Writing

Hn =
ˆ
X
〈∇xp(x, ·, t),∇[Qsn(−ϕ)](x)〉dµsn(x), H = −

ˆ
X
〈∇xp(x, ·, t),∇[Qs(−ϕ)](x)〉 dµs(x),

we claim that Hn converge to H pointwise in X. This follows from [G13, Lem. 5.11] applied
to the (non relabeled) subsequence of (sn) such that ρsn → ρs∞ m-a.e., the measures
µn = µsn , µ = µs∞ and the functions gn = g = p(·, y, t) and fn = Qsnϕ, f = Qs∞ϕ. Note
that continuity of the function s 7→ Qsϕ and the Lipschitz continuity estimate (5.2.2) imply
the required hypotheses on fn, f . Moreover, assuming w.l.o.g. that sn > s/4 for every n,
using again (5.2.2) and (2.3.7) one has

|Hn(y)| ≤ 4C0(t)

√
supϕ− inf ϕ

s
∀y ∈ X

and similarly one can bound |H∞| by 2C0(t)
√

(supϕ− inf ϕ)/s. Thus, dominated conver-
gence theorem turns the pointwise convergence of Hn into L2(X,m) convergence, which
implies continuity of F ′t at s. The continuity of F ′t in [0, 1) can be proved by similar means
using the second formula in (5.2.4) instead of the first one.

Remark 5.2.2. More generally, it follows from [GH14, Prop. 3.7] that for any 2-absolutely
continuous curve µ = (µs) ⊂ P(X) w.r.t. W2 with bounded compression, for any t > 0,
the L2(X,m)-valued function Ft defined by (5.2.3) is absolutely continuous on [0, 1], and

F ′t(s)(y) = Lµs (p(·, y, t)) ∀y ∈ X,
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for any s ∈ [0, 1]\N µ, where N µ is a L 1-negligible subset of [0, 1] and (Lµs )s∈[0,1]\Nµ is a
family of linear maps from S2(X,d,m) to R, both N µ and (Lµs )s∈[0,1]\Nµ depending only
on µ.

Tangent bundle
Before going further, we need to remind the construction of the L2-tangent bundle

L2T (X, d,m) introduced by N. Gigli [G18]. Although Gigli’s construction can be performed
in more general settings, recall that here we are considering a compact RCD∗(K,N) space
(X,d,m) for fixed K ∈ R and N ∈ [1,+∞). In particular, the infinitesimally Hilbertian
condition on (X, d,m) allows several simplifications, as Gigli’s original construction provides
first the space L2T ∗(X,d,m) from which one recovers L2T (X,d,m) by duality.

Recall that for any unitary ring (A,+, ·), a A-module M is by definition an abelian
group (M,+) equipped with an operation A ×M → M whose properties are those of
scalar multiplication for vector spaces, namely bilinearity, associativity, and invariance
of any element under the action of the identity element 1A of A. Such an operation is
sometimes called left-multiplication, and one could similarly consider right-multiplications
M × A → M . We won’t need these refinements here, and be content with the solely
operation A×M →M that we simply call multiplication.

Of special interest for us are L∞(X,m)-modules. Such modules admit a natural structure
of real vector spaces, identifying multiplication by a real number λ with multiplication by
the L∞(X,m) function equal m-a.e. to λ.

The lack of differentiable structure on (X, d,m) prevents any consistent definition of a
tangent space TX in analogy with the tangent bundle TM of a differentiable manifold M .
Therefore, to define a first order-calculus on (X,d,m), a seminal idea due to N. Weaver
[W00] in the context of complete separable metric measure spaces is to forget about the
tangent space TX in itself, and to look rather for an analogue of the space of Lp sections of
this tangent space, for any 1 ≤ p < +∞. Indeed, in the differentiable context, such spaces
satisfy simple abstract algebraic properties which can be properly turned into definitions.

Slightly modifying the appellation in [G18, Sect. 1.2] for consistency with Weaver’s
work, we give the following definition.

Definition 5.2.3. (Banach L∞(X,m)-module) We say that E is a Banach L∞(X,m)-
module if it is a L∞(X,m)-module equipped with a complete norm ‖ · ‖E satisfying
‖fv‖E ≤ ‖f‖L∞(X,m)‖v‖E for any f ∈ L∞(X,m) and v ∈ E, and if the two following
properties hold:

(i) (locality) for any v ∈ E and any countable family of Borel sets (An)n,

1Anv = 0 ∀n ⇒ 1∪Anv = 0;

(ii) (gluing) for any sequence (vn)n ⊂ E and any countable family of Borel sets (An)n such
that 1An∩Amvn = 1An∩Amvm for any n,m and lim supn→+∞ ‖

∑n
i=1 1Aivi‖E < +∞,

there exists v ∈ E gluing all the (vn, An)’s together, in the sense that 1Anv = 1Anvn
for any n and ‖v‖E ≤ lim infn→+∞ ‖

∑n
i=1 1Aivi‖E .

For instance, the space of smooth vector fields over a n-dimensional differentiable
manifold M is a Banach L∞(M,H n)-module.

Let us choose 1 ≤ p < +∞. To characterize the space of Lp sections in such an algebraic
way, we need a further definition.
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Definition 5.2.4. (Lp(X,m)-normed modules) We say that a Banach L∞(X,m)-module
E is a Lp(X,m)-normed module provided there exists a function | · | : E → {f ∈ Lp(X,m) :
f ≥ 0}, called local norm, satisfying:

(a) |v + v′| ≤ |v|+ |v′| m-a.e. in X, for all v, v′ ∈ E;

(b) |χv| = |χ||v| m-a.e. in X, for all v ∈ E, χ ∈ L∞(X,m);

(c) the function

‖v‖p :=
(ˆ

X
|v(x)|p dm(x)

)1/p
(5.2.8)

is a norm in E.

Notice that homogeneity and subadditivity of ‖ · ‖p are obvious consequences of (a), (b).
Note also that the space of Lp vector fields over a n-dimensional differentiable manifold M
is a Lp(M,H n)-normed module.

We arrive now to the core of Gigli’s construction. Define the so-called pretangent
module Pre(X,d,m) as the set of countable families {(Ai, fi)}i where (Ai)i is a Borel
partition of X and fi ∈ H1,2(X,d,m). Take the quotient of Pre(X,d,m) with respect to
the equivalence relation

{(Ai, fi)}i∈I ∼ {(Bj , gj)}j∈J ⇐⇒ |∇(fi − gj)|∗ = 0 m-a.e. in Ai ∩Bj for any i, j.

Thanks to the locality property of the minimal relaxed slope, it is easily seen that:

• the sum of two families {(Ai, fi)}i∈I and {(Bj , gi)}j∈J defined as {Ai ∩ Bj , fi +
gj}(i,j)∈I×J is well-defined on Pre(X,d,m)/ ∼;

• the multiplication of {(Ai, fi)}i∈I by m-measurable functions χ taking finitely many
values, defined as χ{(Ai, fi)} = {(Ai ∩ Fj , zjfi)}i,j with χ =

∑N
j=1 zj1Fj , is also

well-defined on Pre(X,d,m)/ ∼;

• the map | · |∗ : Pre(X,d,m)/ ∼→ L2(X,m) defined by |{(Ai, fi)}i∈I |∗ := |∇fi|∗
m-a.e. on Ai for any i, is well-posed;

• the map ‖ · ‖L2T : Pre(X,d,m)/ ∼→ [0,+∞) defined by ‖{(Ai, fi)}i∈I‖L2T :=∑
i

´
Ai
|∇fi|2∗ dm defines a norm.

Definition 5.2.5. (The tangent bundle)
The tangent bundle over (X, d,m) is defined as the completion of the space Pre(X, d,m)/ ∼

w.r.t. the norm ‖ · ‖L2T ; it is a L2(X,m)-normed module denoted by L2T (X,d,m).

Note that the terminology “tangent bundle” is a little bit misleading here, for two
reasons. First because we only define the analogue of the set of L2 tangent vector fields,
not the whole set of tangent vector fields. Second because L2T (X,d,m) is not a bundle
in the usual sense. However this terminology is convenient, and it has already appeared
many times in the literature, so we stick to it.

In the sequel we shall denote by V, W , etc. the typical elements of L2T (X,d,m) and
by |V | the local norm. We also start using a more intuitive notation, using ∇f for (the
equivalence class of) {(X, f)} where f ∈ H1,2(X,d,m), and

∑
i χi∇fi for any finite sum∑

i χi{(X, fi)} where fi ∈ H1,2(X,d,m) and χi ∈ L∞(X,m) for any i.
The following result is a simple consequence of the definition of L2T (X,d,m).
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Theorem 5.2.6. The vector space{
n∑
i=1

χi∇fi : χi ∈ L∞(X,m), fi ∈ H1,2(X,d,m), n ≥ 1
}

is dense in L2T (X,d,m).

More generally, density still holds if the functions χi vary in a set D ⊂ L2 ∩ L∞(X,m)
stable under truncations and dense in L2(X,m) (as Lipb(X,d) ∩ L2(X,m)).

Let us explain now how to define the cotangent module L2T ∗(X, d,m) out of L2T (X, d,m).

Definition 5.2.7. (Dual module of a Banach L∞(X,m)-module)
For any Banach L∞(X,m)-module (E, ‖ · ‖E), the space

Hom(E,L1(X,m)) :={T : E → L1(X,m) linear, bounded as map between Banach spaces
i.e. ‖T‖E∗ := sup{‖T (v)‖L1(X,m) : ‖v‖E = 1} < +∞,

and satisfying T (fv) = fT (v) for any v ∈ E and f ∈ L∞(X,m)}

equipped with ‖ · ‖E∗ is a Banach L∞(X,m)-module; it is denoted by E∗ and called dual
module of E.

It turns out that the dual module of a L2(X,m)-normed module is still a L2(X,m)-
normed module. Whence the following natural definition.

Definition 5.2.8. (The cotangent module)
The dual module of L2T (X,d,m) is denoted by L2T ∗(X,d,m) and called cotangent

module over (X, d,m). Moreover, for any f ∈ H1,2(X, d,m), we shall write df for the dual
element of ∇f .

The cotangent and tangent bundles over (X, d,m) not only have a structure of L2(X,m)-
normed modules: they are also Hilbert L∞(X,m)-modules, in the sense of the following
definition.

Definition 5.2.9. (Hilbert L∞(X,m)-module)
Let (E, ‖ · ‖E) be a Banach L∞(X,m)-module. We call it a Hilbert L∞(X,m)-module

whenever ‖ · ‖E is an Hilbertian norm.

Remark 5.2.10. (Hilbert L∞(X,m)-modules are L2(X,m)-normed modules) It is natural to
ask whether there exists a relationship between Hilbert L∞(X,m)-modules and L2(X,m)-
normed modules. A preliminary result in this direction states that whenever (E, ‖ · ‖E) is
a Hilbert L∞(X,m)-module, for any v ∈ E, the map

µv : A 7→ ‖χAv‖2E

defines a non-negative measure on the Borel σ-algebra of (X,d) such that µv � m.
Afterwards, it can be shown ([G18, Prop. 1.2.21]) that any Hilbert L∞(X,m)-module
(E, ‖ · ‖E) is a L2(X,m)-normed module whose local norm | · |E is given by

|v|E := √ρv ∀v ∈ E

where ρv is the density of the measure µv w.r.t. m. Moreover, |·|E satisfies the parallellogram
identity: for any v, v′ ∈ E,

|v + v′|2 + |v − v′|2 = 2|v|2 + 2|v′|2 m-a.e. on X.
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The importance of Hilbert modules lies in the fact that we can define a scalar product
on it: if (E, ‖ · ‖E) is a Hilbert L∞(X,m)-module, set

〈v, v′〉E := |v + v′|2 − |v|2 − |v′|2

for any v, v′ ∈ E. In particular, L2T (X,d,m) and L2T ∗(X,d,m) possess both a scalar
product denoted by 〈·, ·〉L2T and 〈·, ·〉L2T ∗ respectively in the sequel.

Remark 5.2.11. (Derivations) Another way to define the space L2T (X, d,m) is to consider
derivations, as in [W00] or [AST17]. Recall that a derivation over a differentiable manifold
M is a R-linear map D : C∞(M)→ C∞(M) satisfying the Leibniz rule, whose pointwise
norm is defined by |D|(x) := sup{|D(f)(x)| : f ∈ C∞(M)with |∇f(x)| = 1} for any x ∈M .
This definition can be extended to the metric measure setting, calling derivation any linear
functional b : Lipb(X) → L0(X,m) for which there exists some h ∈ L0(X,m) such that
|b(f)| ≤ h|Df | holds m-a.e. in X, for any f ∈ Lipb(X). The m-a.e. smallest function h
with such property is denoted by |b| and called (local) norm of b. The space of derivations
with square integrable local norm coincides with L2T (X,d,m): this follows from [G18,
Sect. 2.3.1].

Tensors over (X,d,m) and Hilbert-Schmidt norm
Hilbert L∞(X,m)-modules have good tensorization properties. Recall that if M , N

are two A-moduli for some commutative ring A, the tensor product M ⊗N of M and N is
defined as the quotient C/D where C is the free A-modulus generated by the functions
{e(x,y) : M ×N → A}(x,y)∈M×N defined by

e(x,y)(v, v′) =
{

1A if (v, v′) = (x, y),
0 otherwise.

and D is the submodulus of C generated by the elements

e(x+u,y) − e(x,y) − e(u,y),

e(x,y+v) − e(x,y) − e(x,v),

e(αx,y) − αe(x,y),

e(x,αy) − αe(x,y),

where x, u ∈ M , y, v ∈ N and α ∈ A. Up to isomorphism of A-modulus, M ⊗ N is the
unique A-modulus satisfying the following universal property:

there exists a bilinear map ϕ : M ×N →M ⊗N such that for any A- modulus F and
any bilinear map f : M ×N → F , there exists a unique linear map g : M ⊗N → F such
that f = g ◦ ϕ.

Recall now that the Hilbert tensor product of two Hilbert spaces (H1, 〈·, ·〉H1) and
(H2, 〈·, ·〉H2) is defined as the completion of the algebraic tensor product H1 ⊗H2 defined
above w.r.t. the norm defined out of the following scalar product:

〈x⊗ u, y ⊗ v〉H1⊗H2 := 〈x, y〉H1〈u, v〉H2 ,

for all x, y ∈ H1 and u, v ∈ H2. We keep the notation H1⊗H2 to denote this Hilbert space.
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Remark 5.2.12. Note that the tensor product of Hilbert spaces does not satisfy the expected
universal property: there exists a bilinear and continuous map ϕ : H1 ×H2 → H1 ⊗H2
such that for any Hilbert space F and any bilinear and continuous map f : H1 ×H2 → F ,
there exists a unique linear and continuous map g : H1 ⊗H2 → F such that f = g ◦ ϕ (see
[G18, Rk. 1.5.3] for a counter-example).

Let us consider now two Hilbert L∞(X,m)-modules (H1, ‖ · ‖H1) and (H2, ‖ · ‖H2) with
respective scalar products 〈·, ·〉H1 and 〈·, ·〉H2 . A priori, there is no reason for the Hilbert
tensor product H1 ⊗H2 to be a Hilbert L∞(X,m)-module; actually, the construction of a
tensor product in the category of Hilbert L∞(X,m)-modules is much more involved. Let
us provide the main ideas behind this construction, refering to [G18, Sec. 1.3 and 1.5] for a
more complete treatment.

We first define the so-called associated L0(X,m)-module H0
1 (and similarly H0

2 ) as the
completion of H0

1 w.r.t. the topology induced by the distance

dH0
1
(v, w) :=

∑
i

1
2im(Ei)

ˆ
Ei

min{|v − w|, 1} dm ∀v, w ∈ H0
1

where (Ei)i is any countable partition of X with sets of finite and positive measure. Note
that although the choice of the partition (Ei)i might modify the distance dH0

1
, the induced

topology is not affected.
Define now the Hilbert L∞(X,m)-module tensor product between H1 and H2 as the

subspace of H0
1⊗H0

2 made of those elements A such that

‖|A|HS‖L2(X,m) < +∞,

the so-called Hilbert-Schmidt local norm | · |HS : H0
1⊗H0

2 → L0(X,m) and the space
H0

1⊗H0
2 being defined as follows. Set first the product function P as the unique bilinear

map H0
1 ⊗H0

2 → L0(X,m) such that

P (v1 ⊗ v2, w1 ⊗ w2) = 〈v1, w1〉H1〈v2, w2〉H2

for all v1, w1 ∈ H0
1 and v2, w2 ∈ H0

1 . Afterwards define

|A|HS =
√
P (A,A) ∀A ∈ H0

1 ⊗H0
2 .

It follows from the construction that the Hilbert-Schmidt local norm | · |HS satisfies
the following natural properties: for all Borel set E ⊂ X, all A,B ∈ H0

1⊗H0
2 and all

f ∈ L0(X,m),
|A|HS = 0 m-a.e. on E ⇐⇒ A = 0 on E,

|A+B|HS ≤ |A|HS + |B|HS m-a.e. on X,

|fA|HS = |f ||A|HS m-a.e. on X.

Finally, set H0
1⊗H0

2 as the completion of H0
1 ⊗H0

2 w.r.t. the topology τ⊗ induced by the
distance

d⊗(A,B) :=
∑
i

1
2im(Ei)

ˆ
Ei

min(|A−B|HS , 1) dm

where (Ei)i is a countable partition of X with sets of finite and positive measure. Here
again the topology τ⊗ does not depend on the choice of (Ei)i.
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We will especially work with the two following Hilbert L∞(X,m)-module tensor prod-
ucts:

L2T (X,d,m)⊗ L2T (X,d,m) and L2T ∗(X,d,m)⊗ L2T ∗(X,d,m)
which are easily shown to be dual one to another; we shall denote by [·, ·] : L2T (X, d,m)⊗2×
L2T ∗(X,d,m)⊗2 → L0(X,m) the duality pairing. Following the definition of the class
TestF(X,d,m) which was defined right after (2.3.12), let us introduce the set

Test0
2(X,d,m) :=

{
n∑
i=1

χi∇f1
i ⊗∇f2

i : χi, f
1
i , f

2
i ∈ TestF(X,d,m), n ≥ 1

}

which shall play an important role later.

RCD metrics
Now that the appropriate abstract notions have been introduced, we can provide the

definition of RCD metrics on the given compact RCD∗(K,N) space (X,d,m). Note that
such objects are called “Riemannian metrics” in [AHPT17], but here we prefer to call it
RCD metrics, in order to let to the Riemannian world the Riemannian designations. For
brevity, we drop “(X, d,m)” from the notation H1,2(X, d,m), L2T (X, d,m), L2T (X, d,m)⊗
L2T (X,d,m), etc. We will also denote by L2 ∩ L∞T the subspace of L2T (X,d,m) made
of those element V such that |V | ∈ L∞(X,m).

Definition 5.2.13. (RCD metrics) We call RCD metric any symmetric bilinear form
ḡ : L2T × L2T → L0 such that

(i) ḡ is L∞-linear, meaning that ḡ(χV,W ) = χḡ(V,W ) for any χ ∈ L∞ and V,W ∈ L2T ;

(ii) ḡ is non-degenerate, in the sense that ḡ(V, V ) > 0 m-a.e. on {|V | > 0} for any
V ∈ L2T .

The set of RCD metrics supports the following natural partial order:

g1 ≤ g2 ⇐⇒ g1(V, V ) ≤ g2(V, V ) m-a.e. in X, for all V ∈ L2T . (5.2.9)

Moreover, we can single out a canonical RCD metric, as shown in the next proposition.

Proposition 5.2.14. There exists a unique RCD metric g such that

g(∇f1,∇f2) = 〈∇f1,∇f2〉 m-a.e.

for all f1, f2 ∈ H1,2. Such a metric is called canonical RCD metric of (X,d,m).

To define the norm of a RCD metric in a natural way, let us recall that the usual norm of a
bilinear form b defined over an Euclidean space is given by |b| = sup

{
b(v1,v2)
〈v1,v2〉 : v1, v2 ∈ V \{0}

}
.

Thanks to the canonical RCD metric g, we can adapt this definition to our context, setting
as “local norm” of any RCD metric ḡ the m-measurable function defined by

|ḡ|(x) := sup
{
ḡ(V1, V2)
〈V1, V2〉

: V1, V2 ∈ L2T, V1(x) 6= 0 6= V2(x)
}

for m-a.e. x ∈ X.

Note that |ḡ| is, up to m-negligible subsets, the smallest positive m-a.e. function s ∈ L0

satisfying ĝ ≤ s(·)g.
We can finally defined a notion of convergence of RCD metrics. We shall consider only

the case when
ḡi ≤ Cg (5.2.10)

for some C independent of i.
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Definition 5.2.15. (Weak convergence of RCD metrics) We say that a family (ḡi)i of
RCD metrics weakly converges to ḡ if for any V ∈ L2T , the sequence ḡi(V, V ) weakly
converges in L1 to ḡ(V, V ).

Note that we don’t assume any uniformity w.r.t. V ∈ L2T for the L1-weak convergence
ḡi(V, V )→ ḡ(V, V ), so weak convergence of RCD metrics must be understood as a pointwise
weak convergence.

RCD metric tensors
It is not difficult to show that Bilin(L2T × L2T ;L0), namely the space of L∞(X,m)-

bilinear maps L2T×L2T → L0, is a L2(X,m)-normed module with local norm given by |F | :
x 7→ sup{F (V, V )(x)|V |−2(x) : V ∈ L2T, |V |(x) 6= 0} for any F ∈ Bilin(L2T × L2T ;L0),
and that

Bilin(L2T× L2T; L0) ' L2T ∗ ⊗ L2T ∗, (5.2.11)

so that we can canonically associate a (0,2) tensor ḡ to any RCD metric ḡ. Such a tensor
is called metric tensor, or lifted metric, of ḡ. More explicitly, ḡ is the only element in
L2T ∗ ⊗ L2T ∗ such that[

ḡ;
∑
i

χi∇f1
i ⊗∇f2

i

]
=
∑
i

χiḡ(∇f1
i ,∇f2

i ) m-a.e.

for any
∑
i χi∇f1

i ⊗∇f2
i ∈ Test0

2. Note that (5.2.11) provides also a tensorial representation
of any linear combination of RCD metrics, and in particular the metric tensor of the
difference of two RCD metrics ḡ1, ḡ2 is ḡ1 − ḡ2.

Definition 5.2.16. (Hilbert-Schmidt norm for RCD metrics) The duality formula (5.2.11)
gives rise to a natural dual norm for any RCD metric ḡ (more generally, for any symmetric
and L∞-bilinear form h : L2T ×L2T → L0) defined as the smallest m-measurable function
s : X → [0,+∞] such that

[ḡ, A] ≤ s|A|HS ∀A ∈ Test0
2 .

Such a function is called (dual) Hilbert-Schmidt norm of ḡ and denoted by |ḡ|HS .

As for any f1, f2 ∈ H1,2, we have ḡ(∇f1,∇f2) = [ḡ;∇f1⊗∇f2] ≤ |ḡ|HS |∇f1⊗∇f2|HS
and by definition, |∇f1 ⊗ ∇f2|HS = 〈∇f1,∇f2〉 = g(∇f1,∇f2) m-a.e., we immediately
notice that |g| ≤ |ḡ|HS .

Definition 5.2.17. The space L2T 0
2 (or L2T 0

2 (X,d,m)) is defined as the completion of
Test0

2 with respect to the norm ‖| · |HS‖L2(X,m).

Note that if |ḡ|HS ∈ L2, then ḡ extends uniquely to an element of L2T 0
2 , still denoted

by ḡ.
Following the characterization of strong convergence in Hilbert spaces by the combina-

tion of weak convergence and convergence of norms, we can use the Hilbert-Schmidt norm
of lifted RCD metrics to provide a notion of strong convergence for RCD metrics.

Definition 5.2.18 (Strong convergence of RCD metrics). We say that RCD metrics
ḡi satisfying (5.2.10) L2-strongly converge to the Riemannian metric ḡ if in addition to
L2-weak convergence, we have |ḡi − ḡ|HS → 0 in L2(X,m).
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Notice that L2-strong convergence of ḡi to ḡ implies strong convergence in L1 of ḡi(V, V )
to ḡ(V, V ) for all V ∈ L2T ; indeed, because of (5.2.10), by density it suffices to check this
for V ∈ L2 ∩ L∞T , and for this class of vector fields it follows immediately by

|ḡi(V, V )− ḡ(V, V )| ≤ ‖V ‖∞|ḡi − ḡ|HS |V |,

so that by integration the L1 convergence of ḡi(V, V ) can be obtained.
The following convergence criterion will also be useful.

Proposition 5.2.19. Let ḡi, ḡ be RCD metrics with |ḡi|HS , |ḡ|HS ∈ L2(X,m). Then ḡi
L2-strongly converge to ḡ as i→∞ if and only if

lim
i→∞

ˆ
X
ḡi(V, V ) dm =

ˆ
X
ḡ(V, V ) dm ∀V ∈ L2 ∩ L∞T (5.2.12)

and
lim sup
i→∞

ˆ
X
|ḡi|2HS dm ≤

ˆ
X
|ḡ|2HS dm.

Proof. One implication is obvious. To prove the converse, by the reflexivity (as Hilbert
space) of L2T 0

2 it is sufficient to check the weak convergence of ḡi to ḡ. The family of
linear continuous functionals

g 7→
ˆ
X

g(V, V ) dm V ∈ L2 ∩ L∞T

separates points in L2T 0
2 , therefore weak convergence of ḡi follows by (5.2.12).

Pull-back metrics
For any t > 0, a natural way to define a pull-back Riemannian metric on (X,d,m) is

based on an integral version of (5.1.5), namely Φ∗t gL2(V1, V2) satisfies:
ˆ
X

Φ∗t gL2(V1, V2)(x) dm(x) =
ˆ
X

(ˆ
X
〈∇xp(x, y, t), V1(x)〉〈∇xp(x, y, t), V2(x)〉 dm(y)

)
dm(x),

∀V1, V2 ∈ L2T. (5.2.13)

To see that this is a good definition, notice that the function G(x, y) in the integral in
the right hand side of (5.2.13) is pointwise defined as a map y 7→ G(·, y) with values in L2

(L2 integrability follows by the Gaussian estimate (2.3.7)). By Fubini’s theorem also the
map x 7→

´
G(x, y) dm(y) is well defined, up to m-negligible sets, and this provides as with

the pointwise definition, up to m-negligible sets, of Φ∗t gL2(V1, V2), namely

Φ∗t gL2(V1, V2)(x) =
ˆ
X
〈∇xp(x, y, t), V1(x)〉〈∇xp(x, y, t), V2(x)〉 dm(y). (5.2.14)

As a matter of fact, since many objects of the theory are defined only up to m-measurable
sets, we shall mostly work with the equivalent integral formulation.

It is obvious that (5.2.14) defines a symmetric bilinear form on L2T with values in
L0 and with the L∞-linearity property. The next proposition ensures that gt = Φ∗t gL2

is indeed a RCD metric on (X,d,m), provides an estimate from above in terms of the
canonical metric, and the representation of the lifted metric gt.
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Proposition 5.2.20. Formula (5.2.13) defines a RCD metric gt on L2T with
ˆ
X
|gt|2HS dm =

∑
i

e−2λit
ˆ
X
gt(∇ϕi,∇ϕi) dm (5.2.15)

=
∑
i

e−2λit
ˆ
X

ˆ
X
|〈∇xp(x, y, t),∇ϕi〉|2 dm(y) dm(x),

|gt|HS(x) =
∣∣∣∣ˆ
X
∇xp(x, y, t)⊗∇xp(x, y, t) dm(y)

∣∣∣∣
HS

for m-a.e. x ∈ X (5.2.16)

and representable as the HS-convergent series

gt =
∞∑
i=1

e−2λitdϕi ⊗ dϕi in L2T 0
2 . (5.2.17)

Moreover, the rescaled metric tm(B√t(·))gt satisfies

tm(B√t(·))gt ≤ C(K,N)g ∀t ∈ (0, C−1
4 ), (5.2.18)

where C4 is the constant in (2.3.7).

Proof. Let us prove (5.2.18), assuming 0 < t < min{1, C−1
4 }. For V ∈ L2T and y ∈ X, the

Gaussian estimate (2.3.7) with ε = 1 and the upper bound on t yield
ˆ
X
|〈∇xp(x, y, t), V (x)〉|2 dm(x) ≤

ˆ
X

C2
3e

2

tm(B√t(x))2 exp
(
−2d(x, y)2

5t

)
|V (x)|2 dm(x).

(5.2.19)
By integration with respect to y and taking into account (5.3.7) with ` = 0 (applied to
the rescaled space (X, dt,m) with dt = d/

√
t, whose constants c0, c1, c2 can be estimated

uniformly w.r.t. t, since (X,dt,m) is RCD∗(t2K,N)), we recover (5.2.18).
Let us prove now non-degeneracy of gt, using the expansion (4.0.22) of ∇xp. For all

V ∈ L2T we haveˆ
X
gt(V, V ) dm

=
ˆ
X

ˆ
X
〈∇xp(x, y, t), V (x)〉2 dm(x) dm(y)

=
ˆ
X

ˆ
X

(∑
i

e−λitϕi(y)〈∇ϕi, V 〉(x)
)2

dm(x) dm(y)

=
ˆ
X

ˆ
X

∑
i, j

e−(λi+λj)tϕi(y)ϕj(y)〈∇ϕi, V 〉(x)〈∇ϕj , V 〉(x) dm(x) dm(y)

=
∑
i

e−2λit
ˆ
X
〈∇ϕi, V 〉2 dm. (5.2.20)

By L∞-linearity, it suffices to check that ‖gt(V, V )‖L1 = 0 implies |V |(x) = 0 for m-a.e.
x ∈ X. Thus assume ‖gt(V, V )‖L1 = 0. Then (5.2.20) yields that for all i,

〈∇ϕi, V 〉(x) = 0 for m-a.e. x ∈ X. (5.2.21)

Since L2T is generated, in the sense of L2-modules, by {∇f : f ∈ H1,2} and since the
vector space spanned by ϕi is dense in H1,2, it is easily seen that L2T is generated, in the
sense of L2-modules, also by {∇ϕi : i ≥ 1}. In particular (5.2.21) shows that V = 0.
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In order to prove (5.2.15) and (5.2.17), fix an integer N ≥ 1 and let

gNt :=
N∑
i=1

e−2λitdϕi ⊗ dϕi.

Then
ˆ
X
|gNt |2HS dm =

N∑
i, j=1

e−2(λi+λj)t
ˆ
X
〈∇ϕi,∇ϕj〉2 dm (5.2.22)

=
N∑
i=1

e−2λit

 N∑
j=1

e−2λjt
ˆ
X
〈∇ϕi,∇ϕj〉2 dm


≤
∞∑
i=1

e−2λit
ˆ
X
gt(∇ϕi,∇ϕi) dm

≤ C
∞∑
i=1

e−2λit
ˆ
X
|∇ϕi|2 dm ≤ C

∞∑
i=1

e−2λitλi <∞,

where C = C(K,N, t) and we used (5.2.18) and (5.2.20), together with a uniform lower
bound on m(B√t(x)), x ∈ suppm. By Proposition 4.0.18, an analogous computation shows
that ‖|gNt − gMt |HS‖2 → 0 as N, M →∞, hence gNt → g̃t.

Passing to the limit in the identity
ˆ
X
〈gNt , χ2∇f ⊗∇f〉 dm =

N∑
i=1

e−2λit
ˆ
X
χ2〈∇ϕi,∇f〉2 dm

with χ ∈ L∞, f ∈ TestF, we obtain from (5.2.20) with V = χ∇f
ˆ
X
〈g̃t, χ2∇f ⊗∇f〉 dm =

ˆ
X
〈gt, χ2∇f ⊗∇f〉 dm.

Hence g̃t = gt (in particular gt has finite Hilbert-Schmidt norm and it can be extended to
L2T 0

2 ).
In order to prove (5.2.15) it is sufficient to pass to the limit as N →∞ in

ˆ
X
|gNt |2HS dm =

ˆ
X

N∑
i, j=1

e−2(λi+λj)t〈∇ϕi,∇ϕj〉2 dm

taking (5.2.20) into account.
Finally, (5.2.16) follows by the observation that gt is induced by the scalar product,

w.r.t. the Hilbert-Schmidt norm, with the vector
´
X ∇xp(x, y, t)⊗∇xp(x, y, t) dm(y).

5.3 Convergence results via blow-up
In this section, we study the L2-convergence of the rescaled metrics sctgt as t→ 0+ on a
given compact RCD∗(K,N) space (X,d,m). Here the function sct : X → R is a suitable
scaling function whose expression requires an immediate discussion. In the Riemannian
case (X, d,m) = (Mn, dg, volg), one knows by (5.1.6) that sct ≡ cnt(n+2)/2 where cn > 0 is
a constant depending only on the dimension n. In the RCD setting, we have two choices:

• on one hand, the analogy with the Riemannian setting suggests to take sct ≡ t(n+2)/2,
where n = dimd,m(X) (recall Theorem 2.3.15);
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• on the other hand, since the RCD setting is closer to a weighted Riemannian setting,
we can also set sct = tm(B√t(·)), to take into account the effect of the weight θ,
namely the density of m w.r.t. Hn Rn.

In both cases, we prove that sctgt converges to a rescaled version of the canonical Rie-
mannian metric g on (X,d,m), where the rescaling reflects the choice of sct. To be more
precise, we prove in Theorem 5.3.14 that ĝt := tm(B√t(x))gt converges to ĝ = cng, where
cn is a constant depending only on the dimension (5.3.14). Concerning the other scaling,
as t(n+2)/2 = (

√
t
n
/m(B√t(x)))tm(B√t(x)), we prove in Theorem 5.3.16 that the limit of

g̃t := t(n+2)/2gt is (ωnθ)−11R∗n ĝ (notice that this is a good definition, since θ is well-defined
up to Hn-negligible sets and m and Hn are mutually absolutely continuous on R∗n).

Technical preliminaries
We shall denote by pk,e the Euclidean heat kernel in Rk, given by

pk,e(x, y, t) := 1
(4πt)k/2

exp
(
−|x− y|

2

4t

)
(5.3.1)

and recall the classical identity

1√
2πt

ˆ
R
x2 exp

(
−x

2

2t

)
dx = t (5.3.2)

for the variance of the centered Gaussian measures. Furthermore, we shall often use the
scaling formula

p̃(x, y, s) = b−1p(x, y, a−2s) ∀x, y ∈ suppm, ∀s > 0 (5.3.3)

relating for any a, b > 0, the heat kernel p̃ of the rescaled space (X, ad, bm) to the heat
kernel p of (X,d,m).

Because of Bishop-Gromov’s inequality (Theorem 2.1.14), the following lemma, whose
proof is omitted for brevity, applies to the whole class of RCD∗(K,N) spaces. It is a simple
consequence of Cavalieri’s formula together with (5.3.5) and its useful corollary:

m(B1(x))
m(B1(y)) ≤ c2 exp (c1d(x, y)) ∀x, y ∈ suppm (5.3.4)

with c2 = c0e
c1 .

Lemma 5.3.1. Let (Y, dY ,mY ) be a metric measure space and let x ∈ suppmY be satisfying

m(BR(x))
m(B1(x)) ≤ c0e

c1R ∀R ≥ 1 (5.3.5)

for some constants c0, c1 > 0. Then:

(1) for any δ > 0 there exists L0 = L0(δ, c0, c1) > 1 such that
ˆ
Y \BL0 (x)

mY (B1(y)) exp
(
−2d2

Y (x, y)
5

)
dmY (y) < δ(mY (B1(x)))2; (5.3.6)

(2) for any ` ∈ Z there exists C = C(`, c0, c1) ∈ [0,∞) such that
ˆ
Y
mY (B1(y))` exp

(
−2d2

Y (x, y)
5

)
dmY (y) ≤ C(mY (B1(x)))`+1. (5.3.7)
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The following result is a consequence of the rectifiability of the set Rn in Theorem 2.3.15,
which provides a canonical isometry between the tangent bundle L2T (X,d,m) as defined
later on and the tangent bundle defined via measured Gromov-Hausdorff limits, see [GP16,
Thm 5.1] for the proof.

Lemma 5.3.2. If (X, d,m) is RCD∗(K,N), the canonical metric g of Proposition 5.2.14
satisfies

|g|2HS = n m-a.e. in X, with n = dimd,m(X). (5.3.8)

The pointwise convergence of heat kernels for a convergent sequence of RCD∗(K,N)
spaces has been proved in Chapter 4 ([AHT18, Thm. 3.3]); building on this, and using
the “tightness” estimate (5.3.9) below, one can actually prove the global H1,2-strong
convergence.

Theorem 5.3.3 (H1,2-strong convergence of heat kernels). For all convergent sequences
ti → t in (0,∞) and yi ∈ Xi → y ∈ X, pi(·, yi, ti) ∈ H1,2(Xi, di,mi) H1,2-strongly converge
to p(·, y, t) ∈ H1,2(X,d,m).

Proof. By a rescaling argument we can assume ti = t = 1. Applying Theorem 2.4.24 for pi
with (2.3.8) yields that pi(·, yi, 1) H1,2

loc -strongly converge to p(·, y, 1). We claim that for
any δ > 0 there exists L := L(K−, N, δ) > 1 such that for any RCD∗(K,N)-space (Y, d, ν)
and any y ∈ supp ν one has (q denoting its heat kernel)

ˆ
Y \BL(y)

q2(z, y, 1) + |∇zq(z, y, 1)|2 dν(z) ≤ δ

ν2(B1(y)) . (5.3.9)

Indeed, let us prove the estimate for q, the proof of the estimate for |∇zq| (based on
(2.3.7)) being similar. Combining (5.3.4) with the Gaussian estimate (2.3.6) with ε = 1,
one obtains

ˆ
Y \BL(y)

q2(z, y, 1) dν(z) ≤ c2
2C

2
1e
C2

ν2(B1(y))

ˆ
Y \BL(y)

exp
(
−2

5d2(z, y) + 2c1d(z, y)
)

dν(z)

and then one can use the exponential growth condition on ν(BR(y)), coming from the
Bishop-Gromov estimate (Theorem 2.1.14), to obtain that the left hand side is smaller
than δ/ν2(B1(y)) for L = L(K−, N, δ) sufficiently large.

Combining (5.3.9) with the H1,2
loc -strong convergence of pi shows that

lim
i→∞
‖pi(·, yi, 1)‖H1,2(Xi,di,mi) = ‖p(·, y, 1)‖H1,2(X,d,m), (5.3.10)

which completes the proof.

We shall also use the following local compactness theorem under BV bounds, applied
to sequences of Sobolev functions.

Theorem 5.3.4. Assume that fi ∈ H1,2(B2(xi)) satisfy

sup
i

(
‖fi‖L∞(B2(xi)) +

ˆ
B2(xi)

|∇fi| dmi

)
<∞.

Then (fi) has a subsequence Lp-strong convergent on B1(x) for all p ∈ [1,∞).
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Proof. The proof of the compactness w.r.t. L1-strong convergence can be obtained arguing
as in [AH17a, Prop. 7.5] (where the result is stated in global form, for normalized metric
measure spaces, even in the BV setting), using good cut-off functions, see also [H15,
Prop. 3.39] where a uniform Lp bound on gradients, for some p > 1 is assumed. Then,
because of the uniform L∞ bound, the convergence is Lp-strong for any p ∈ [1,∞), see
[AH17a, Prop. 1.3.3(e)].

Harmonic points
We now introduce another technical concept, namely harmonic points of vector fields.

Those are points at which a vector field infinitesimally (meaning after blow-up of the metric
measure space) looks like the gradient of a harmonic function.

Let us first recall the definition of Lebesgue point.

Definition 5.3.5 (Lebesgue point). Let f ∈ Lploc(X,m) with p ∈ [1,∞). We say that
x ∈ X is a p-Lebesgue point of f if there exists a ∈ R such that

lim
r→0

 
Br(x)

|f(y)− a|p dm(y) = 0.

The real number a is uniquely determined by this condition and denoted by f∗(x). The
set of p-Lebesgue points of f is Borel and denoted by Lebp(f).

Note that the property of being a p-Lebesgue point and f∗(x) do not depend on
the choice of the representative in the equivalence class, and that x ∈ Lebp(f) impliesffl
Br(x) |f(y)|p dm→ |f∗(x)|p as r ↓ 0. It is well-known (see e.g. [Hein01]) that the doubling
property ensures that m(X \ Lebp(f)) = 0, and that the set {x ∈ Lebp(f) : f∗(x) = f(x)}
(which does depend on the choice of representative in the equivalence class) has full measure
in X. When we apply these properties to a characteristic function f = 1A we obtain that
m-a.e. x ∈ A is a point of density 1 for A and m-a.e. x ∈ X \A is a point of density 0 for
A.

Definition 5.3.6 (Harmonic point of a function). Let x ∈ X, z ∈ BR(x) ∩ suppm and
let f ∈ H1,2(BR(x),d,m). We say that z is a harmonic point of f if z ∈ Leb2(|∇f |) and
for any (Y,dY ,mY , y) ∈ Tan(X,d,m, z), mGH limit of (X, t−1

i d,m(Bti(z))−1m, z), where
ti → 0+, there exist a subsequence (ti(j)) of (ti) and f̂ ∈ Lip(Y,dY ) ∩ Harm(Y,dY ,mY )
such that the rescaled functions

fj,z := 1
ti(j)

f −  
Bti(j) (z)

f dm


in the spaces (X, t−1

i(j)d,m(Bti(j)(z))−1m, z), H1,2
loc -strongly converge to f̂ as j →∞.

We denote by H(f) the set of harmonic points of f .

Note that being an harmonic point also does not depend on the choice of versions of
f and |∇f | and that this notion is closely related to the differentiability of f at x. For
instance when (X,d,m) = (M, g, vol) is a smooth Riemannian manifold and f ∈ C1(M),
every point x ∈M is a harmonic point of f , and the function f̂ appearing by blow-up is
unique and equals the differential of f at x. On the other hand if f(x) = |x| on Rn, then
0n is not an harmonic point of f .

Another way to understand Definition 5.3.6 is the following. The rescaled functions
fj,z tells us how the function f differs from satisfying the mean-value property at the scale
Bti(j)(z).

The definition of harmonic point can be extended to vector fields as follows.
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Definition 5.3.7 (Harmonic point of L2-vector fields). Let V ∈ L2T (X,d,m) and let
z ∈ suppm. We say that z is a harmonic point of V if there exists f ∈ H1,2(X, d,m) such
that z ∈ H(f) and

lim
r↓0

 
Br(z)

|V −∇f |2 dm = 0. (5.3.11)

We denote by H(V ) the set of harmonic points of V .

Obviously, if V = ∇f for some f ∈ H1,2(X,d,m), then Definition 5.3.7 is compatible
with Definition 5.3.6. Notice also that, as a consequence of (5.3.11) and the condition
z ∈ Leb2(|∇f |),

ffl
Br(z) |V |

2 dm converge as r → 0+ to (|∇f |∗)2(z) and we shall denote this
precise value by |V |2∗(z). By Lebesgue theorem, this limit coincides for m-a.e. z ∈ H(V )
with |V |2(z). The statement and proof of the following result are very closely related to
Cheeger’s Theorem 2.2.18; we simply adapt the proof and the statement to our needs.

Theorem 5.3.8. For all V ∈ L2T (X,d,m) one has m(X \H(V )) = 0.

Proof. Step 1: the case of gradient vector fields V = ∇f . Recall that RCD∗(K,N) spaces
are doubling and satisfy a local Poincaré inequality, see (2.1.16). We fix z ∈ Leb2(|∇f |)
where (2.2.9) of Theorem 2.2.18 holds and we prove that z ∈ H(f). Let (ti) and
(Y, dY , y,mY ), fti,z be as in Definition 5.3.6. Take R > 1, set di = t−1

i d, mi = m/m(Bti(x))
and write H1,2

i , L2
i and Chi for H1,2(Bdi

R (z),di,mi), L2(Bdi
R (z),mi) and Ch(Bdi

R (z),di,mi)
re-

spectively. Along with the existence in [0,∞) of the limit (|∇f |∗(x))2 of
ffl
Br(z) |∇f |

2 dm
as r ↓ 0, this provides for i large enough a uniform control of the H1,2

i -norms of fti,z: on
Bdi
R (z),

‖fti,z‖2H1,2
i

= ‖fti,z‖2L2
i

+ Chi(fti,z) = t−2
i ‖f −

 
B

di
1

f dm‖2L2
i

+ m(Bdi
R (z))

m(Bdi
1 (z))

 
Bd
tiR

(z)
|∇f |2 dm

≤ C(K,N,R)((|∇f |∗(x))2 + 1),

where C(K,N,R) > 0 depends on the doubling and Poincaré constants. Thus, since R > 1
is arbitrary, by Theorem 2.4.23 and a diagonal argument there exist a subsequence (si) of
(ti) and f̂ ∈ H1,2

loc (Y,dY ,mY ) such that fsi,z H
1,2
loc -weakly converge to f̂ .

Let us prove that fsi,z is a H1,2
loc -strong convergent sequence. Let R > 0 where (2.4.4)

holds and let hi,R be the harmonic replacement of fsi,z on Bdi
R (z) (recall di = s−1

i d).
Then applying Proposition 2.4.26 yields that hi,R H1,2-weakly converge to the harmonic
replacement hR of f̂ on BR(y). Since hi,R are harmonic, by Theorem 2.4.24, hi,r H1,2-
strongly converge to hR on Br(z) for any r < R.

Note that Proposition 2.2.23 yields
ˆ
B

di
R (z)
|∇(fsi,z − hi,R)|2 dmi =

ˆ
B

di
R (z)
|∇fsi,z|2 dmi −

ˆ
B
di
R (z)
|∇hi,R|2 dmi

=
 
BRsi (z)

|∇f |2 dm− inf
ϕ∈H1,2

0 (BRsi (z),d,m)

 
BRsi (z)

|∇(f + ϕ)|2 dm.

(5.3.12)

Thus, since by our choice of z the right hand side of (5.3.12) goes to 0 as i → ∞, the
Poincaré inequality gives ‖fsi,z − hi,R‖L2(Bdi

R (z)) → 0, hence fsi,z H1,2-weakly converge to

hR on BR(y), so that f̂ = hR on BR(y). In addition, the H1,2-strong convergence on balls



106 CHAPTER 5. EMBEDDING RCD*(K,N) SPACES BY HEAT KERNEL

Br(z), r < R, of the functions hi,R shows that fsi,z H1,2-strongly converge to f̂ on Br(z)
for any r < R. Since R has been chosen subject to the only condition (2.4.4), which holds
with at most countably many exceptions, we see that f̂ ∈ Harm(Y, dY ,mY ) and that fsi,z
H1,2

loc -strongly converge to f̂ .
Finally, let us show that f̂ has a Lipschitz representative. It is easy to check that the

condition z ∈ Leb2(|∇f |), namely

lim
r↓0

 
Br(z)

||∇f | − |∇f |∗(z)|2 dm = 0

with the H1,2
loc -strong convergence of fsi,z yield |∇f̂ |(w) = |∇f |∗(z) for mY -a.e. w ∈ Y .

Thus the Sobolev-Lipschitz property shows that f̂ has a Lipschitz representative.
Step 2: the general case when V ∈ L2(T (X,d,m)). Let C, M , k, Fi be given by Theo-
rem 2.2.18. It is sufficient to prove existence of f as in Definition 5.3.7 for m-a.e. x ∈ C.
Since

´
Br(x)\C |V |

2 dm = o(m(Br(x))) for m-a.e. x ∈ C, we can assume with no loss of
generality, possibly replacing V by 1X\CV , that V = 0 on X \ C. As illustrated in [G18,
Cor. 2.5.2] (by approximation of the χi by simple functions) the expansion (2.2.10) gives
also

1C

(
∇f −

k∑
i=1

αi∇Fi

)
= 0

for all f ∈ Lip(X,d) ∩H1,2, with
∑
i α

2
i ≤M |∇f | m-a.e. on C. By the approximation in

Lusin’s sense of Sobolev by Lipschitz functions and the locality of the pointwise norm, the
same is true for Sobolev functions f . Eventually, by linearity and density of gradients, we
obtain the representation

V =
k∑
i=1

αi∇Fi

for suitable coefficients αi ∈ L2(X,m), null on X \ C. It is now easily seen that if x is an
harmonic point for all Fi and a 2-Lebesgue point of all αi, then x ∈ H(V ) with

f(y) :=
k∑
i=1

α∗i (x)Fi(y).

The behavior of tm(B√t(x))gt as t ↓ 0
The main purpose of this paragraph is to prove Theorem 5.3.14, i.e. the L2-strong

convergence of the metrics
ĝt := tm(B√t(·))gt

t↓0−−→ ĝ, (5.3.13)

where ĝ is the normalized Riemannian metric on (X,d,m) defined by cng, where n =
dimd,m(X), the dimensional constant cn is given by

cn := ωn
(4π)n

ˆ
Rn

∣∣∂x1

(
e−|x|

2/4)∣∣2 dx = ωn

4
√

2πn
, (5.3.14)

and we used (5.3.2) for the explicit computation of the integral.
Here is an important proposition whose proof contains the main technical ingredients

that shall be used in the sequel.
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Proposition 5.3.9. (“pointwise” convergence) Let V ∈ L2(T (X, d,m)) and y ∈ Rn∩H(V ).
Then

lim
t↓0

ˆ
X
tm(B√t(x))|〈∇xp(x, y, t), V (x)〉|2 dm(x) = cn|V |2∗(y). (5.3.15)

Proof. As y ∈ H(V ), there exists f ∈ H1,2 such that
ffl
Br(x) |V − ∇f |

2 dm → 0 as r ↓ 0.
With W = V −∇f , let us first prove that

lim
t↓0

ˆ
X
tm(B√t(x))|〈∇xp(x, y, t),W (x)〉|2 dm(x) = 0. (5.3.16)

Using the heat kernel estimate (2.3.7) with ε = 1 we need to estimate, for 0 < t < C−1
4 ,

ˆ
X

1
m(B√t(x)) exp

(
−2d2(x, y)

5t

)
|W (x)|2 dm(x)

and use (5.3.4) to reduce the proof to the estimate of

1
m(B√t(y))

ˆ
X

exp
(
−2d2(x, y)

5t + c1
d(x, y)√

t

)
|W (x)|2 dm(x).

Using the identity
´
f(d(·, y)) dµ = −

´∞
0 µ(Br(y))f ′(r) dr with µy := exp(c1d(·, y)/

√
t)|W |2m

and fy(r) = exp(−2r2/(5t)), we need to estimate

− 1
m(B√t(y))

ˆ ∞
0

µ(Br(x))f ′y(r) dr.

Now, write µy(Br(y)) ≤ ω(r) exp(c2r/
√
t)m(Br(y)) with ω bounded and infinitesimal as

r ↓ 0 and use the change of variables r = s
√
t to see that it suffices to estimate

4
5

ˆ ∞
0

(
ω(s
√
t)
m(Bs√t(y))
m(B√t(y))

)
exp

(
c1s−

2s2

5

)
s ds.

Now we can split outer the integration in (0, 1) and in (1,∞); the former obviously gives
an infinitesimal contribution as t ↓ 0; the latter can be estimated with the exponential
growth condition (5.3.5) on m(Br(y)) and gives an infinitesimal contribution as well. This
proves (5.3.16).

Now, setting cn(L) = ωn/(4π)n
´
BL(0)

∣∣∂x1

(
e−|x|

2/4)∣∣2dx ↑ cn as L ↑ ∞, we shall first
prove that

lim
t↓0

ˆ
BL
√
t(y)

tm(B√t(x))|〈∇xp(x, y, t), V (x)〉|2 dm(x) = cn(L)|V |2∗(y) (5.3.17)

for any L <∞. Taking (5.3.16) into account, it suffices to prove that

lim
t↓0

ˆ
BL
√
t(y)

tm(B√t(x))|〈∇xp(x, y, t),∇f(x)〉|2 dm(x) = cn(L)(|∇f |∗)2(y) ∀L ∈ [0,∞).

(5.3.18)
In order to prove (5.3.18), for t > 0 let us consider the rescaling d 7→ dt := t−1/2d,
m 7→ mt := m(B√t(y))−1m. We denote by pt the heat kernel on the rescaled space
(X,dt,mt). Applying (5.3.3) with a :=

√
t
−1, b := 1

m(B√t(y)) and s := t yields (notice that
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the factor t = a−2 disappears by the scaling term in the definition of f√t,y and the scaling
of gradients) ˆ

BL
√
t(y)

tm(B√t(x))|〈∇xp(x, y, t),∇f(x)〉|2 dm(x)

=
ˆ
B

dt
L (y)

mt(Bdt
1 (x))|〈∇xpt(x, y, 1),∇f√t,y(x)〉|2 dmt(x). (5.3.19)

Take a sequence ti ↓ 0, let (si) be a subsequence of (ti) and f̂ be a Lipschitz and harmonic
function on Rn as in Definition 5.3.6 (i.e. f̂ is the limit of f√si,y). Note that f̂ has
necessarily linear growth. Since linear growth harmonic functions on Euclidean spaces are
actually linear or constant functions, we see that ∇f̂ =

∑
j aj

∂
∂xj

for some aj ∈ R. Then,
letting i→∞ in the right hand side of (5.3.19) shows

lim
i→∞

ˆ
B

dsi
L (y)

msi(B
dsi
1 (x))|〈∇xpsi(x, y, 1),∇f√si,y(x)〉|2 dmsi(x)

=
ˆ
BL(0n)

Ĥn(B1(x))|〈∇xqn(x, 0n, 1),∇f̂(x)〉|2 dĤn(x), (5.3.20)

where Ĥn = Hn/ωn (hence Ĥn(B1(x)) ≡ 1) and qn denotes the heat kernel on (Rn, dRn , Ĥn).
Since (5.3.1) and (5.3.3) give

qn(x, 0n, 1) ≡ ωn
(4π)n/2

e−|x|
2/4,

a simple computation shows that the right hand side of (5.3.20) is equal to cn(L)(
∑
j |aj |2).

Finally, from

(|∇f |∗(z))2 = lim
r↓0

(
1

m(Br(y))

ˆ
Br(y)

|∇f |2 dm
)

= lim
i→∞

ˆ
B

dsi
1 (y)

|∇f√si,y|
2 dmsi

=
ˆ
B1(0n)

|∇f̂ |2 dĤn =
∑
j

|aj |2, (5.3.21)

we have (5.3.17) because (ti) is arbitrary.
In order to obtain (5.3.15) it is sufficient to let L→∞ in (5.3.17), taking into account

that cn(L) ↑ cn as L ↑ ∞ and that, arguing as for (5.3.16), one can prove that

lim
L→∞

sup
0<t<C−1

4

ˆ
X\BL√t(y)

|〈∇xp(x, y, t),W (y)〉|2 dm(x) = 0.

Corollary 5.3.10. Let A be a Borel subset of X. Then for any V ∈ L2(T (X,d,m)) and
y ∈ H(V ) ∩Rn, one has

(1) if
´
Br(y)∩A |V |

2 dm = o(m(Br(y))) as r ↓ 0, we have

lim
t↓0

ˆ
A
tm(B√t(x))|〈∇xp(x, y, t), V (x)〉|2 dm(x) = 0; (5.3.22)

(2) if
´
Br(y)\A |V |

2 dm = o(m(Br(y))) as r ↓ 0, we have

lim
t↓0

ˆ
A
tm(B√t(x))|〈∇xp(x, y, t), V (x)〉|2 dm(x) = cn|V |2∗(y). (5.3.23)
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In particular, if V ∈ Lp(T (X, d,m)) for some p > 2, (5.3.22) holds if A has density 0 at y,
and (5.3.23) holds if A has density 1 at y.

Proof. (1) Let W = 1AV and notice that our assumption gives that y ∈ H(W ), with f ≡ 0,
so that |W |2∗(y) = 0. Therefore (5.3.22) follows by applying Proposition 5.3.9 to W . The
proof of (5.3.23) is analogous.

Remark 5.3.11. Thanks to the estimate (5.3.4), a similar argument provides also the
following results for all y ∈ H(V ) ∩Rn:

(1) if
´
Br(y)∩A |V |

2 dm = o(m(Br(y))) as r ↓ 0,

lim
t↓0

ˆ
A
tm(B√t(y))|〈∇xp(x, y, t), V (x)〉|2 dm(x) = 0; (5.3.24)

(2) if
´
Br(y)\A |V |

2 dm = o(m(Br(y))) as r ↓ 0,

lim
t↓0

ˆ
A
tm(B√t(y))|〈∇xp(x, y, t), V (x)〉|2 dm(x) = cn|V |2∗(y). (5.3.25)

Theorem 5.3.12. Let V ∈ L2(T (X,d,m)). Then for any Borel subsets A1, A2 of X we
have

lim
t↓0

ˆ
A1

(ˆ
A2

tm(B√t(x))|〈∇xp(x, y, t), V (x)〉|2 dm(x)
)

dm(y) =
ˆ
A1∩A2

ĝ(V, V ) dm.

(5.3.26)

Proof. Taking the uniform L∞ estimate (5.2.18) into account, it is enough to prove the
result for V ∈ L∞T , since this space is dense in L2T . Take y ∈ X. By (5.2.19), for
0 < t < C−1

4 , we get
ˆ
X
tm(B√t(x))|〈∇xp(x, y, t), V (x)〉|2 dm(x) ≤

ˆ
X

C2
3e

2‖V ‖2∞
m(B√t(x)) exp

(
−2d(x, y)2

5t

)
dm(x)

(5.3.27)
and, by applying (5.3.7) to the rescaled space dt :=

√
t
−1d, we obtain that the left hand

side in (5.3.27) is uniformly bounded as function of y.
Thus, denoting by A∗2 the set of points of density 1 of A2 and by A∗∗2 the set of points

of density 0 of A2 (so that m(X \ (A∗2 ∪A∗∗2 )) = 0), the dominated convergence theorem,
Corollary 5.3.10 and the definition of ĝ imply

ˆ
A1

(ˆ
A2

tm(B√t(x))|〈∇xp(x, y, t), V (x)〉|2 dm(x)
)

dm(y)

=
ˆ
Rn∩A1∩A∗2

(ˆ
A2

tm(B√t(x))|〈∇xp(x, y, t), V (x)〉|2 dm(x)
)

dm(y)

+
ˆ
Rn∩A1∩A∗∗2

(ˆ
B2

tm(B√t(x))|〈∇xp(x, y, t), V (x)〉|2 dm(x)
)

dm(y)

→
ˆ
Rn∩A1∩A∗2

cn|V |2∗(y) dm(y) =
ˆ
A1∩A2

ĝ(V, V ) dm. (5.3.28)
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Remark 5.3.13. Building on Remark 5.3.11, one can prove by a similar argument

lim
t↓0

ˆ
A1

(ˆ
A2

tm(B√t(y))|〈∇xp(x, y, t), V (x)〉|2 dm(x)
)

dm(y) =
ˆ
A1∩A2

ĝ(V, V ) dm.

(5.3.29)
In order to improve the convergence of the ĝt from weak to strong, a classical Hilbertian

strategy is to prove convergence of the Hilbert norms. In our case, at the level of ĝt (and
taking (5.3.8) and (5.2.16) into account), this translates into

lim sup
t↓0

ˆ
X

(
tm(B√t(x))

)2
∣∣∣∣ˆ
X
∇xp(x, y, t)⊗∇xp(x, y, t) dm(y)

∣∣∣∣2
HS

dm(x) ≤ nc2
nm(X).

(5.3.30)
The proof of this estimate requires a more delicate blow-up procedure, and to its proof
we devoted Appendix B. Notice that, by using the (non-sharp) estimate of the left hand
side in (5.3.30) with

´ [
tm(B√t(·))

´
|∇xp|2 dm

]2 dm one obtains n2c2
nm(X), but this upper

bound is not sufficient to obtain the convergence of the Hilbert-Schmidt norms.
We are now in a position to prove the main theorem of this paragraph. Let us recall

the Dunford-Pettis theorem which states that a family (fi)i ⊂ L1(X,m) is relatively
compact w.r.t. the weak topology of L1(X,m) if and only if it is equi-integrable, and the
Vitali-Hahn-Saks theorem which implies that whenever a family of absolutely continuous
measures (µi = fim)i is such that µi(A)→ µ(A) for any Borel set A ⊂ X, with µ being a
Borel measure, then (fi)i is an equi-integrable family.

Theorem 5.3.14. The family of RCD metrics ĝt in (5.3.13) L2-strongly converges to ĝ
as t ↓ 0 according to Definition 5.2.18. In particular one has L1-strong convergence of
ĝt(V, V ) to ĝ(V, V ) as t ↓ 0 for all V ∈ L2T .

Proof. For all V ∈ L2T , the L1-weak convergence of ĝt(V, V ) to ĝ(V, V ) follows easily from
Theorem 5.3.12: indeed, choosing A1 = X, we obtain that

´
A2
ĝt(V, V ) dm converge as t ↓ 0

to
´
A2
ĝ(V, V ) dm for any Borel set A2 ⊂ X. The Vitali-Hahn-Saks and Dunford-Pettis

theorems then grants convergence in the weak topology of L1.
By combining (5.2.16), (5.3.30) and (5.3.8) we have

lim sup
t↓0

ˆ
X
|ĝt|2HS dm

= lim sup
t↓0

ˆ
X

(
tm(B√t(x))

)2∣∣∣∣ˆ
X
∇xp(x, y, t)⊗∇xp(x, y, t) dm(y)

∣∣∣∣2
HS

dm(x)

= nc2
nm(Rn) =

ˆ
X
|ĝ|2HS dm. (5.3.31)

The L2-strong convergence now comes from Proposition 5.2.19.

The behavior of t(n+2)/2gt as t ↓ 0
Let us now consider the convergence result

g̃t := t(n+2)/2gt → g̃,

where n = dimd,m(X) and, with our notation m = θHn, the normalized metric g̃ is defined
by

g̃ = cn
ωnθ

1R∗ng.

Let us start with the analog of Theorem 5.3.12 in this setting.
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Theorem 5.3.15. Let V ∈ L∞(T (X,d,m)) and A1 ⊂ R∗n Borel. If

lim
r↓0

ˆ
A1

rn

m(Br(y)) dm(y) =
ˆ
A1

lim
r↓0

rn

m(Br(y)) dm(y) <∞, (5.3.32)

then for any Borel set A2 ⊂ X one has

lim
t↓0

ˆ
A1

(ˆ
A2

t(n+2)/2|〈∇xp(x, y, t), V (x)〉|2 dm(x)
)

dm(y) = cn
ωn

ˆ
A1∩A2

|V |2 dHn.

(5.3.33)

Proof. Recall that (2.3.18) of Theorem 2.3.16 gives that rn/m(Br(y)) converges as r → 0
to 1/(ωnθ(y)) for m-a.e. y ∈ A1, where θ is the density of m w.r.t. Hn. By an argument
similar to the proof of Theorem 5.3.14, using also with (5.3.5) we obtain that for any y ∈ X
and any t < 1/C4 one has

ϕt(y) := tm(B√t(y)))
ˆ
A2

|〈∇xp(x, y, t), V (x)〉|2 dm(x) ≤ C(K,N)‖V ‖2∞. (5.3.34)

Let

ft(y) :=
√
t
n

m(B√t(y))1A1(y)ϕt(y), gt(y) := C(K,N)‖V ‖2∞1A1(y)
√
t
n

m(B√t(y)) , (5.3.35)

so that (5.3.34) gives ft(y) ≤ gt(y). Note that (5.3.24) and (5.3.25) yield

lim
t↓0

ft(y) = cn
ωn

1A2(y) 1
θ(y) |V |

2(y) for m-a.e. y ∈ A1. (5.3.36)

Applying Lemma 4.0.2 with g(y) = C(K,N)‖V ‖2∞1A1(y)/(ωnθ(y)) and taking (5.3.32) into
account we get

lim
t↓0

ˆ
X
ft dm =

ˆ
X

lim
t↓0

ft dm = cn
ωn

ˆ
A1∩A2

|V |2 dHn, (5.3.37)

which proves (5.3.33).

We are now in a position to prove the main result of this paragraph.

Theorem 5.3.16. Assume that

lim
r↓0

ˆ
R∗n

rn

m(Br(y)) dm(y) =
ˆ
R∗n

lim
r↓0

rn

m(Br(y)) dm(y) < +∞. (5.3.38)

Then g̃t L2-strongly converge to g̃ as t ↓ 0.

Proof. Let A2 ⊂ X be a Borel set and V ∈ L∞T . Then Fubini’s theorem leads to
ˆ
A2

g̃t(V, V ) dm =
ˆ
X

ˆ
R∗n∩A2

〈∇xp(x, y, t), V (x)〉 dm(x) dm(y)

Then, we can apply Theorem 5.3.15 to get
ˆ
A2

g̃t(V, V ) dm→ cn
ωn

ˆ
R∗n∩A2

|V |2 dHn =
ˆ
A2

g̃(V, V ) dm.



112 CHAPTER 5. EMBEDDING RCD*(K,N) SPACES BY HEAT KERNEL

This implies the convergence of g̃t(V, V ) to g̃(V, V ) in the weak topology of L1(X,m) by
the Vitali-Hahn-Saks theorem. Let us prove now the L2-strong convergence of g̃t to g̃
as t ↓ 0 using Proposition 5.2.19. Since the scaling factors depend only on t and x, it is
immediately seen that

|g̃|HS = cn
ωnθ

1R∗n |g|HS , |g̃t|HS = t(n+2)/2|gt|HS .

Let us write for clarity F (x, t) =
∣∣´
X ∇xp(x, y, t)⊗∇xp(x, y, t) dm(y)

∣∣
HS

. Applying
(5.2.16), (5.3.30) and (5.3.8) we get

lim sup
t↓0

ˆ
X
|g̃t|2HS dm = lim sup

t↓0

ˆ
Rn

tn+2|gt|2HS dm

= lim sup
t↓0

ˆ
Rn

tn+2F 2(x, t) dm(x)

≤
ˆ
Rn

lim sup
t↓0

(
t(n+2)/2

tm(B√t(x)))

)2

t2m(B√t(x))2F 2(x, t) dm(x)

=
ˆ
Rn

1
ω2
nθ

2nc
2
n dm(x) =

ˆ
X
|g̃|2HS dm.

Notice that we are enabled to pass to the limit under the integral sign thanks to (5.3.38)
and Lemma 4.0.2, since the convergence in (5.3.30) is dominated.

We obtain in particular the following corollary when the metric measure space (X, d,m)
is Ahlfors n-regular: indeed, in this case obviously one has n = dimd,m(X), m and Hn
are mutually absolutely continuous and the existence of the limits in (5.3.38), as well as
the validity of the equality, are granted by the rectifiability of Rn and by the dominated
convergence theorem.

Corollary 5.3.17. Assume that m is Ahlfors n-regular, i.e. there exists C ≥ 1 such that

C−1 ≤ m(Br(x))
rn

≤ C for all r ∈ (0, 1) and all x ∈ X.

Then t(n+2)/2gt L
2-strongly converge to cn(ωnθ)−1g as t ↓ 0.

Behavior with respect to the mGH-convergence
Let us fix a mGH-convergent sequence of compact RCD∗(K,N)-spaces:

(Xj ,dj ,mj)
mGH→ (X,d,m).

In this section we can adopt the extrinsic point of view of Section 2.3, viewing when
necessary all metric measure spaces as isometric subsets of a compact metric space (Y, d),
with Xj convergent to X w.r.t. the Hausdorff distance and mj weakly convergent to m.

Let us denote by λi,j , λi, ϕi,j , ϕi the corresponding eigenvalues and eigenfunctions of
−∆j , −∆, respectively, listed taking into account their multiplicity (we will also use a
similar notation below), recall that {ϕi,j}i≥0 are orthonormal bases of L2(Xj ,mj) and
that, according to [GMS15], for any i one has λi,j → λi as j → ∞, so called spectral
convergence. In addition, by the uniform bound on the diameters of the spaces, we know
from Proposition 4.0.19 (see also [J16]) that uniform Lipschitz continuity of eigenfunctions
holds, i.e.

sup
j
‖∇ϕi,j‖L∞ <∞ ∀i ≥ 0. (5.3.39)
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With no loss of generality, we can also assume that the ϕi,j are restrictions of Lipschitz
functions defined on Y , with Lipschitz constant equal to ‖∇ϕi,j‖L∞(Xj ,mj).

Although the following lemma was already discussed in the proof of [GMS15, Thm.
7.8], we give the proof for the reader’s convenience.
Lemma 5.3.18. Under the same setting as above, there exist j(k) and an L2-orthonomal
basis {ψi}i≥0 of L2(X,m) such that ϕi,j(k) H

1,2-strongly converge to ψi for all i, with
uniform convergence.
Proof. Since ‖|∇ϕi,j |‖2L2 = λi,j , by Theorem 2.4.24 and a diagonal argument there exist a
subsequence j(k) and ψi ∈ L2(X,m) such that ϕi,j(k) H

1,2-strongly converge as k →∞ to
ψi for all i ≥ 0, with L2-weak convergence of ∆j(k)ϕi,j(k) to ∆ψi. In particular we obtain
that ∆ψi = λiψi for all i and thatˆ

X
ψ`ψm dm = lim

k→∞

ˆ
Xj(k)

ϕ`,j(k)ϕm,j(k) dmj(k) = δ`m.

Thus, as written above, {ψi}i≥0 is an L2-orthonormal basis of L2(X,m).

Taking Lemma 5.3.18 into account, with no loss of generality in the sequel we can
assume that ϕi,j H1,2-strongly converge to ϕi for all i ≥ 0, in addition with uniform
convergence in Y .
Definition 5.3.19. We say that RCD metrics hj ∈ L2(T 0

2 (Xj , dj ,mj)) L2-weakly converge
to h ∈ L2(T 0

2 (X,d,m)) if supj
´
Xj
|hj |2HS dmj <∞ and hj(∇gj ,∇gj) L2-weakly converge

to h(∇g,∇g) whenever gj H1,2-strongly converge to g with supj ‖|∇gj |‖L∞ <∞. L2-strong
convergence is defined by requiring, in addition, that limj

´
Xj
|hj |2HS dmj =

´
X |h|

2
HS dm.

It is not difficult to show several fundamental properties of L2-strong/weak convergence
of metrics, including L2-weak compactness and lower semicontinuity of L2-norms with
respect to L2-weak convergence as previously discussed in the case of metrics on a fixed
space; in particular, the convergence can be improved from weak to strong if and only if

lim sup
j

ˆ
Xj

|hj |2HS dmj ≤
ˆ
X
|h|2HS dm.

Theorem 5.3.20. Let tj → t ∈ (0,∞), let Φj
tj : Xj → L2(Xj ,mj) be the corresponding

embeddings and let gXjtj be the corresponding pull-back metrics in (Xj , dj ,mj). Then g
Xj
tj L2-

strongly converge to gXt and Φj
t (Xj), endowed with the L2(Xj ,mj) distance, GH-converge

to Φt(X) endowed with the L2(X,m) distance.
Proof. By rescaling with no loss of generality we can assume that tj ≡ t = 1.

Let us prove first the convergence of metrics.
For all N ≥ 1, recalling the representation formula (5.2.17) for the metrics, we define

GN
j :=

∞∑
i≥N

e−2λi,jdϕi,j ⊗ dϕi,j
(
= g1,j − gN−1

1,j

)
and define GN analogously. Note that as the ϕi,j ’s are orthogonal in L2(Xj ,mj), one can
show that dϕi,j ⊗ dϕi,j are orthogonal in L2T (Xj ,dj ,mj)⊗

2 , and therefore |g1,j|2HS =
|gN−1

1,j |2HS + |GN
j |2HS . Then, arguing as in (5.2.22), we get

ˆ
Xj

|GN
j |2HS dmj =

∞∑
`,m≥N

e−2(λ`,j+λm,j)
ˆ
Xj

〈∇ϕ`,j ,∇ϕm,j〉2 dmj ≤ C
∞∑
`≥N

λ`,je
−2λ`,j

(5.3.40)
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with C = C(K,N), and a similar estimate holds for
´
X |G

N |2HS dm. On the other hand,
since ˆ

Xj

ˆ
Xj

|∇xpj(x, y, 1)|2 dmj(x) dmj(y) =
∞∑
`=1

λ`,je
−2λ`,j

and ˆ
Xj

ˆ
Xj

|∇xpj(x, y, 1)|2 dmj(x) dmj(y)→
ˆ
X

ˆ
X
|∇xp(x, y, 1)|2 dm(x) dm(y),

taking also the spectral convergence into account we get
∞∑
`≥N

λ`,je
−2λ`,j →

∞∑
`≥N

λ`e
−2λ` ∀N. (5.3.41)

In particular for any ε > 0 there exists N such that for all sufficiently large j
∞∑
`≥N

λ`, je
−2λ`,j +

∞∑
`≥N

λ`e
−2λ` < ε.

Thus, for sufficiently large j one has
ˆ
Xj

|GN
j |2HS dmj +

ˆ
X
|GN |2HS dm < 2Cε. (5.3.42)

On the other hand, since ϕ`,j H1,2-strongly converge to ϕ`, (5.3.39) yields that 〈∇ϕ`,j ,∇ϕm,j〉
Lp-strongly converge to 〈∇ϕ`,∇ϕm〉 for all p ∈ [1,∞). In particular, as j →∞ we get

ˆ
Xj

|gN1,j |2HS dmj =
N∑

`,m=1
e−2(λ`,j+λm,j)

ˆ
Xj

〈∇ϕ`,j ,∇ϕm,j〉2 dmj

→
N∑

`,m=1
e−2(λ`+λm)

ˆ
X
〈∇ϕ`,∇ϕm〉2 dm =

ˆ
X
|gN1 |2HS dm. (5.3.43)

Since ε is arbitrary, combining (5.3.42) with (5.3.43) yields
ˆ
Xj

|g1,j |2HS dmj →
ˆ
X
|g1|2HS dm. (5.3.44)

Since it is easy to check that Lemma 5.3.18 yields that gN−1
1,j L2-weakly converge to gN−1

1 ,
combining (5.3.42) with (5.3.44) completes the proof of the L2-strong convergence of
metrics.

Now we prove the second part of the statement. Using the eigenfunctions φi,j we can
embed isometrically all Φt(Xj) ⊂ L2(Xj ,mj) into `2, and then we need only to prove the
Hausdorff convergence inside `2 of the sets Wj to W , where

Wj =
{(
e−λi,jφi,j(x)

)
i≥1 : x ∈ Xj

}
, W =

{(
e−λiφi(x)

)
i≥1 : x ∈ X

}
.

By Proposition 4.0.18 and 4.0.19 in the next section, for all ε > 0 there exists N ∈ N such
that for all j ∑

i≥N+1
e−2λi,j‖ϕi,j‖2L∞ < ε2

∑
i≥N+1

e−2λi‖ϕi‖2L∞ < ε2.
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Denoting πN : `2 → `2 the projection defined by πN ((x)i) := (x1, . . . , xN , 0, . . .), from this
it is easy to get

d`2H(Wj ,W
N
j ) < ε, d`2H(W,WN ) < ε,

where WN
j := πN (Wi),WN := πN (W ). Hence, by the triangle inequality, it suffices to

check that d`2H(WN
j ,W

N )→ 0 for N fixed. Since

WN
j =

{(
e−λ1,jφ1,j(x), e−λ2,jφ2,j(x), . . . , e−λN,jφN,j(x), 0, 0, . . .

)
: x ∈ Xj

}
,

and an analogous formula holds for WN , from the uniform convergence of the ϕi,j to ϕi
we immediately get that d`2H(WN

j ,W
N )→ 0.

Remark 5.3.21. The canonical RCD metrics gXj L2-weakly converge to gX , which is a
direct consequence of [AH17a, Thm. 5.7]. In particular the lower semicontinuity of the
L2-norms of gXj :

lim inf
j→∞

ˆ
Xj

|gXj |2j dmj ≥
ˆ
X
|gX |2 dm (5.3.45)

yields
lim inf
j→∞

dimdj ,mj (Xj) ≥ dimd,m(X) (5.3.46)

because Lemma 5.3.2 shows that
´
Xj
|gXj |2 dm = dimdj ,mj (Xj)mj(Xj),

´
X |g

X |2 dm =
dimd,m(X)m(X).

This allows us to define the notion that {(Xj ,dj ,mj)}j is a noncollapsed convergent
sequence to (X,d,m) if the condition limj→∞ dimdj ,mj (Xj) = dimd,m(X) holds (see also
[K17]). Moreover it is noncollapsed sequence if and only if

lim
j→∞

ˆ
Xj

|gXj |2j dmj = lim
j→∞

dimdj ,mj (Xj)mj(Xj) = dimd,m(X)m(X) =
ˆ
X
|gX |2 dm

that is, gXj L2-strongly converge to gX . (these observation are justified even for noncompact
case if we replace Xj , X by B1(xj), B1(x), where xj → x). One of the important points in
Theorem 5.3.20 is that the RCD metrics gXjtj are L2-strongly convergent even without the
noncollapsed assumption.

5.4 Proof of the limsup estimate
In this section, we will prove the estimate (5.3.30) which implies the strong L2 convergence
of RCD metrics ĝt → ĝ and g̃t → g̃ when t ↓ 0.

To this purpose, we will notably need the local notion of Hessian developed within
the framework of N. Gigli’s theory [G18] and defined as symmetric bilinear form on
L2(T (X,d,m)). In particular we will use the fact that this Hessian is defined for all
f ∈ D(∆), with an integral estimate coming from Bochner’s inequality [G18, Cor. 3.3.9]

ˆ
X
|Hessf |2dm ≤

ˆ
X

(
|∆f |2 −K|∇f |2

)
dm ∀f ∈ D(∆). (5.4.1)

In addition, we shall use the property [G18, Prop. 3.3.22] that, for all f, g ∈ D(∆) with
|∇f |, |∇g| ∈ L∞(X,m), one has 〈∇f,∇g〉 ∈ H1,2(X,d,m), with

∇〈∇f,∇g〉 = Hessf (∇g, ·) + Hessg(∇f, ·) m-a.e. in X. (5.4.2)
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We set

F (x, t) :=
(
tm(B√t(x))

)2
∣∣∣∣ˆ
X
∇xp(x, y, t)⊗∇xp(x, y, t) dm(y)

∣∣∣∣2
HS

.

and we notice that the Gaussian estimate (2.3.7) provides a uniform upper bound on the
L∞ norm of F (·, t), for 0 < t ≤ 1. Now, we claim that (5.3.30) follows by Proposition 5.4.1
below; indeed, by integration of both sides we get

lim
t↓0

ˆ
X

1
m(B√t(x̄))

ˆ
B√t(x̄)

F (x, t) dm(x) dm(x̄) = nc2
nm(X)

and, thanks to Fubini’s theorem, the right hand side can be represented as

lim
t↓0

ˆ
X
F (x, t)

(ˆ
B√t(x)

1
m(B√t(x̄)) dm(x̄)

)
.dm(x)

Since it is easily seen that
´
B√t(x)

1
m(B√t(x̄)) dm(x̄) are uniformly bounded and converge to

1 as t ↓ 0 for all x ∈ Rn (in particular m-a.e. x), from the dominated convergence theorem
we obtain (5.3.30).

Hence, we devote the rest of the appendix to the proof of the proposition.

Proposition 5.4.1. For all x̄ ∈ Rn one has

lim
t↓0

1
m(B√t(x̄))

ˆ
B√t(x̄)

F (x, t) dm(x) = nc2
n, (5.4.3)

with cn defined as in (5.3.14).

Proof. Let us fix tj ↓ 0 and consider the mGH convergent sequence

(X,dj , x,mj) :=

X,√tj−1d, x̄, m

m(B√tj (x̄))

 mGH→
(
Rn, dRn , 0n, L̃n

)
, (5.4.4)

where H̃n := Hn/ωn.
Setting

Fj(x) :=
(
tjm(B√tj (x̄))

)2∣∣∣∣ˆ
X
∇xp(x, y, tj)⊗∇xp(x, y, tj) dm(y)

∣∣∣∣2
HS

.

we claim that, in order to get (5.4.3), it is sufficient to prove that

lim
j→∞

1
m(B√tj (x̄))

ˆ
B√tj (x̄)

Fj(x) dm(x) = nc2
n. (5.4.5)

Indeed, letting

Hj(x) :=
∣∣∣∣ˆ
X
∇xp(x, y, tj)⊗∇xp(x, y, tj) dm(y)

∣∣∣∣2
HS

, (5.4.6)
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so that Fj(x) =
(
tjm(B√tj (x̄))

)2
Hj(x), one has

1
m(B√tj (x̄))

ˆ
B√tj (x̄)

∣∣∣∣(tjm(B√tj (x̄))
)2
Hj(x)−

(
tjm(B√tj (x))

)2
Hj(x)

∣∣∣∣ dm(x)

=
ˆ
B

dj
1 (x̄)

∣∣∣1− (mj(B
dj
1 (x))

)2∣∣∣ ∣∣∣∣ˆ
X
∇xpj(x, y, 1)⊗∇xpj(x, y, 1) dmj(y)

∣∣∣∣2
HS

dmj(x)

≤ C
ˆ
B

dj
1 (x̄)

∣∣∣1− (mj(B
dj
1 (x))

)2∣∣∣ dmj(x)→ C

ˆ
B1(0n)

∣∣∣1− (H̃n(B1(x))
)2∣∣∣ dH̃n(x) = 0,

where C comes from a Gaussian bound.
Applying Proposition 2.4.26 (more precisely [AH17b, Cor. 4.12]) for the standard

coordinate functions hi : Rn → R yields that (possibly extracting a subsequence) the
existence of Lipschitz functions hi,j ∈ D(∆j), harmonic in B

dj
3 (x̄), such that hi,j H1,2-

strongly converge to hi on B3(0n) with respect to the convergence (5.4.4). Here and in the
sequel we are denoting ∆j the Laplacian of (X,dj ,mj). Note that gradient estimates for
solutions of Poisson’s equations given in [J16] show

C := sup
i,j
‖|∇hi,j |j‖

L∞(B
dj
2 (x̄))

<∞, (5.4.7)

where | · |j denotes the modulus of gradient in the rescaled space.
On the other hand Bochner’s inequality (we use here and in the sequel the notation

Hessj for the Hessian in the rescaled space) shows

1
2

ˆ
X

∆jϕ|∇hi,j |2j dmj ≥
ˆ
X
ϕ
(
|Hessjhi,j |

2 + tjK|∇hi,j |2j
)

dmj (5.4.8)

for all ϕ ∈ D(∆j) with ∆jϕ ∈ L∞(X,mj) and suppϕ ⊂ B
dj
3 (x̄). In particular, taking as

ϕ = ϕj the good cut-off functions constructed in [MN14] we obtain

lim
j→∞

ˆ
B

dj
2 (x̄)

|Hessjhi,j |
2 dmj = 0. (5.4.9)

Let us define functions a`,mj : Bdj
2 (x̄)→ R, a`,m : B2(0n)→ R by

a`,mj (x) :=
ˆ
X
〈∇xpj(x, y, 1),∇h`,j(x)〉j〈∇xpj(x, y, 1),∇hm,j(x)〉j dmj(y),

a`,m(x) :=
ˆ
Rn
〈∇xq(x, y, 1),∇h`(x)〉〈∇xq(x, y, 1),∇hm(x)〉 dH̃n(y),

respectively, where pj(x, y, t) is the heat kernel of (X,dj ,mj) and q(x, y, t) is the heat
kernel of (Rn,dRn , H̃n) (we also use the 〈·, ·〉j notation to emphasize the dependence of
these objects on the rescaled metric). Notice that the explicit expression (5.3.3) of q(x, y, t)
provides the identity a`,m = c2

nδ`,m.
Now let us prove that a`,mj Lp-strongly converge to a`,m on B1(0n) for all p ∈ [1,∞). It

is easy to check the uniform L∞ boundedness by the Gaussian estimate (2.3.7) and (5.4.7),
and the Lp-weak convergence by Theorem 5.3.3. To prove improve the convergence from
weak to strong, thanks to the compactness result stated in Theorem 5.3.4, it suffices to
prove that a`,mj ∈ H1,2(Bdj

2 (x̄), dj ,mj) for all j, and that

sup
j

ˆ
B

dj
2 (x̄)

|∇a`,mj |j dmj <∞. (5.4.10)
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Thus, let us check that (5.4.10) holds as follows. For any y ∈ X, the Leibniz rule and
(5.4.2) give

∇ (〈∇xpj(x, y, 1),∇h`,j(x)〉j〈∇xpj(x, y, 1),∇hm,j(x)〉j) (5.4.11)
= 〈∇xpj(x, y, 1),∇h`,j(x)〉j

(
Hessjpj(·,y,1)(∇hm,j , ·) + Hessjhm,j (∇pj(·, y, 1), ·)

)
+ 〈∇xpj(x, y, 1),∇hm,j(x)〉j

(
Hessjpj(·,y,1)(∇h`,j , ·) + Hessjh`,j (∇pj(·, y, 1), ·)

)
.

Now, recalling that (X,dj ,mj) arises from the rescaling of a fixed compact space, the
Gaussian estimate (2.3.7) yields that 〈∇xpj(x, y, 1),∇h`,j(x)〉j〈∇xpj(z, y, 1),∇hm,j(x)〉j
belong to H1,2(Bdj

2 (x̄),dj ,mj), with norm for j fixed uniformly bounded w.r.t. y. Hence,
we can commute differentiation w.r.t. x and integration w.r.t. y to obtain that a`,mj ∈
H1,2(Bdj

2 (x̄),dj ,mj) with

∇a`,mj =
ˆ
X
∇ (〈∇xpj(x, y, 1),∇h`,j(x)〉j〈∇xpj(x, y, 1),∇hm,j(x)〉j) dmj(y) (5.4.12)

mj-a.e. in B
dj
2 (x̄). From (5.4.11) we then get

|∇a`,mj | ≤ C
(
|Hessjpj(·,y,1)(∇h`,j , ·)|+ |Hessjpj(·,y,1)(∇hm,j , ·)|

)
|∇pj(·, y, 1)|j

+ C
(
|Hessjh`,j (∇p(·, y, 1), ·)|+ |Hessjhm,j (∇p(·, y, 1), ·)|

)
|∇pj(·, y, 1)|j

where C is the constant in (5.4.7), so that using (5.4.7) once more we get

‖∇a`,mj ‖L1(B
dj
2 (x̄))

≤ C̃
(ˆ

X

ˆ
B

dj
2 (x̄)

|Hessjpj(·,y,1)|
2 dmj(x) dmj(y)

)1/2(ˆ
X

ˆ
B

dj
2 (x̄)

|∇xpj(x, y, 1))|2j dmj(x) dmj(y)
)1/2

+ C̃

ˆ
X

ˆ
B

dj
2 (x̄)

(
|Hessjh`,j |(x)|∇xpj(x, y, 1)|2j + |Hessjhm,j |(x)|∇xpj(x, y, 1)|2j

)
dmj(x) dmj(y)

(5.4.13)

for some positive constant C̃ (recall that the Hessian norm is the Hilbert-Schmidt norm).
Note that the second term of the right hand side of (5.4.13) is uniformly bounded with
respect to j because of the Gaussian estimate (2.3.7) and (5.4.9).

Note that (2.3.8) and (2.3.7) with Lemma 5.3.1 show

sup
j

(ˆ
X

ˆ
B

dj
2 (x̄)

|∆j
xpj(x, y, 1)|2 dmj(x) dmj(y) +

ˆ
X

ˆ
B

dj
2 (x̄)

|∇xpj(x, y, 1))|2j dmj(x) dmj(y)
)
<∞.

In particular by applying (5.4.1) to the scaled spaces, with a sequence of good cut-off
functions constructed in [MN14], we obtain

sup
j

ˆ
X

ˆ
B

dj
2 (x̄)

|Hessjpj(·,y,1)|
2 dmj(x) dmj(y) <∞.

Thus (5.4.13) yields (5.4.10), which completes the proof of the Lp-strong convergence of
a`,mj to a`,m for all p ∈ [1,∞).

Then, since a`,m = c2
nδ`m we get

lim
j→∞

ˆ
B

dj
1 (x̄)

∑
`,m

|a`,mj |
2 dmj =

ˆ
B1(0n)

∑
`,m

|a`,m|2 dH̃n = nc2
n. (5.4.14)
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Hence, to finish the proof of (5.4.5), and then of the proposition, it suffices to check that

 
B√tj (x̄)

∣∣∣∣∣∣
∑
`,m

|a`,mj |
2 −

(
tjm(B√tj (x̄))

)2 ∣∣∣∣ˆ
X
∇xp(x, y, tj)⊗∇xp(x, y, tj) dm(y)

∣∣∣∣2
HS

∣∣∣∣∣∣ dm(x)

(5.4.15)
is infinitesimal as j →∞.

To prove this fact, we first state an elementary property of Hilbert spaces whose proof
is quite standard, and therefore omitted: for any r-dimensional Hilbert space (V, 〈·, ·, 〉),
ε > 0, {ei}ri=1 ⊂ V one has the implication

|〈ei, ej〉 − δij | < ε ∀i, j ⇒
∣∣∣∣∣|v|2 −

r∑
i=1
|〈v, ei〉|2

∣∣∣∣∣ ≤ C(r)ε2|v|2 ∀v ∈ V. (5.4.16)

Note that the scaling property (5.3.3) of the heat kernel gives

 
B√tj (x̄)

∣∣∣∣∣∣
∑
`,m

|a`,mj |
2 −

(
tjm(B√tj (x̄))

)2 ∣∣∣∣ˆ
X
∇xp(x, y, tj)⊗∇xp(x, y, tj) dm(y)

∣∣∣∣2
HS

∣∣∣∣∣∣ dm(x)

=
ˆ
B

dj
1 (x̄)

∣∣∣∣∣∣
∑
`,m

|a`,mj |
2 −

∣∣∣∣ˆ
X
∇xpj(x, y, 1)⊗∇xpj(x, y, 1) dmj(y)

∣∣∣∣2
HS

∣∣∣∣∣∣ dmj(x)

=
ˆ
B

dj
1 (x̄)

∣∣∣∣∣∣
∑
`,m

|a`,mj |
2 −Gj

∣∣∣∣∣∣ dmj , (5.4.17)

where

Gj(x) :=
∣∣∣∣ˆ
X
∇xpj(x, y, 1)⊗∇xpj(x, y, 1) dmj(y)

∣∣∣∣2
HS

.

Let
εj := max

`,m

ˆ
B

dj
1 (x̄)

|〈∇h`,j ,∇hm,j〉j − δ`m| dmj .

Then notice that for all `, m one has
ˆ
B

dj
1 (x̄)

|〈∇h`,j ,∇hm,j〉j − δ`m| dmj →
ˆ
B1(0n)

|〈∇h`,∇hm〉 − δ`m| dH̃n = 0

as j →∞. In particular εj → 0.
Let

K`,m
j :=

{
w ∈ Bdj

1 (x̄) : |〈∇h`,j ,∇hm,j〉j(w)− δlm| >
√
εj
}
.

Then the Markov inequality and the definition of εj give mj(K`,m
j ) ≤ √εj , so that Kj :=⋃

`,mK
`,m
j satisfy mj(Kj)→ 0 as j →∞.

On the other hand, (5.4.16) with r = n2 yields

ˆ
B

dj
1 (x̄)\Kj

∣∣∣∣∣∣
∑
`,m

|a`,mj |
2 −Gj

∣∣∣∣∣∣ dmj ≤ C(n2)εj
ˆ
B

dj
1 (x̄)

|Gj |2 dmj → 0, (5.4.18)

where we used supj ‖Gj‖L∞(B
dj
1 (x̄))

<∞, as a consequence of the Gaussian estimate (2.3.7).
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Then since

ˆ
Kj

∣∣∣∣∣∣
∑
`,m

|a`,mj |
2 −Gj

∣∣∣∣∣∣ dmj ≤
√
mj(Kj)

ˆ
B

dj
1 (x̄)

∣∣∣∣∣∣
∑
`,m

|a`,mj |
2 −Gj

∣∣∣∣∣∣
2

dmj


1/2

→ 0,

where we used the uniform Lp-bounds on a`,mj for all p, we have

(5.4.17) =
ˆ
Kj

∣∣∣∣∣∣
∑
`,m

|a`,mj |
2 −Gj

∣∣∣∣∣∣ dmj +
ˆ
B

dj
1 (x̄)\Kj

∣∣∣∣∣∣
∑
`,m

|a`,mj |
2 −Gj

∣∣∣∣∣∣ dmj → 0.

Thus we have that the expression in (5.4.15) is infinitesimal as j →∞, which completes
the proof of Proposition 5.4.1.
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