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Abstract

By the Teichmüller Theory it is known that every complete non-compact
hyperbolic surface with finite volume presents one or more ends called cusps.
These surfaces can always be seen as Gromov-Hausdorff limits of families
of complete, noncompact, hyperbolic surfaces whit funnel-like ends. In this
thesis we consider a Riemannian manifold (M, g) of dimension n ≥ 2 with
constant negative scalar curvature equal to −n(n− 1) whose ends are cusps
and we prove the existence of a family of complete constant scalar curvature
metrics (gε)ε>0 converging to g smoothly on compact subset of M , as ε→ 0.
The cusps of g are replaced with funnel-like ends in each metric of the
family. An important feature of these ends is that they can be foliated by
hypersurfaces whose mean curvature is constant and ranging from −m(ε)
to n− 1, where m(ε) > 0 and limε→0+ m(ε) = n− 1.
As a byproduct of our construction, we are able to select totally umbilical
solutions to the Einstein constraint equations with apparent horizons. We
recall that a triple (M, g,K), where (M, g) is a Riemannian manifold and
K is a symmetric (0, 2)-tensor on M , is said to be a solution of the Einstein
constraint equations if the following system is satisfied{

Scalg − |K|2g + (trgK)2 = 2Λ

divgK = dtrK.
(1)

In this text the cosmological constant Λ is assumed to lie in the interval
[−n(n− 1)/2, n2(n− 1)(n− 2)/2). Whenever it is nonempty, the boundary
∂M of M is called an apparent horizon if its outward null expansion θ+ is
vanishing. It is worth recalling that the outward null expansion of ∂M is
defined as

θ+ = −trgK +K(ν, ν) + (n− 1)H,

where ν is the exterior unit normal of ∂M view as an hypersurface in M ,
and H is the mean curvature of ∂M computed with respect to ν.

In the setting described above, the triple (M, gε, λgε), with λ =
√

1 + 2Λ
n(n−1) ,

automatically provides a solution to the Einstein constraint equations. More-
over it is possible to truncate each end of gε along the leaf of the CMC foli-
ation with mean curvature H = λ ∈ [0, n − 1), producing an hyperboloidal
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solution with apparent horizons. Finally, we prove that these relativistic ini-
tial data (M, gε, λgε) verify the Riemannian Penrose inequality conjecture.
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Chapter 1

Introduction

Initially, the idea was to generalize in arbitrary dimension a famous fact de-
scending from the Teichmüller theory (see [83]). Briefly, it is known that ev-
ery complete hyperbolic metric with finite volume defined on a non-compact
surface, whose ends are cusps, can be obtained as Gromov-Hausdorff limit
of complete hyperbolic metrics with funnels (see [43], [86]). Both cusps and
funnels are ends diffeomorphic to semicylinders, but geometrically the cir-
cular slices of the first ones shrink toward the infinity whereas the circular
slices of the last ones initially shrink but then, after reaching a minimal
geodesic, they begin to expand toward the infinity. This fact is not the most
famous fact of the Teichmüller theory, which studies the moduli space of
complete hyperbolic metrics with finite volume existing on a given surface
(usually but not necessarily oriented and of finite type) up to isometries
(called Teichmüller space), but rather it is a tool used in this theory. Since
the Teichmüller theory considers metrics with finite-volume and funnels do
not have finite volume, usually the previous fact is presented in a differ-
ent way. They are considered surfaces of finite-type with boundary and
the complete hyperbolic metrics on it must have finite volume and geodesic
boundary. However every geodesic boundary can be uniquely extended to a
funnel and viceversa every funnel can be cut along its minimal geodesic to
give raise to a surface with geodesic boundary. In any case, our initial goal
was to extend the fact that every cusp can be seen as limit of funnels in
higher dimension and not just for hyperbolic surface. The first problem was
then to define cusps and funnels in general dimension. We also had to decide
what kind of requirement use in dimension n ≥ 3 to replace the hypothesis
of hyperbolic metrics for surfaces, since in dimension n = 2 there is essen-
tially a unique concept of curvature. If on one hand it was not a problem
to extend the definition of cusps for any dimension considering manifolds
with constant sectional curvature(this definition already exists in literature,
see [59] for instance, although our definition is a little more general since
we will not set conditions on the curvature), on the other hand (cfr Sec 2.1)
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CHAPTER 1. INTRODUCTION 2

the right setting for extending the definition of funnels turned out to be the
one of Riemannian manifolds with constant negative scalar curvature. The
result we could prove was then the following: Given a Riemannian manifold
(M, g) with negative constant scalar curvature and cusps, it is possible to find
a family of metrics with negative constant scalar curvature (gε) that replace
the cusps of g by ends asymptotic to funnels (or more precisely, to funnel-
like ends. See Definition 2.1) and such that gε → g as ε → 0 smoothly on
compact subsets of M . Moreover every end of gε contains a unique minimal
graph-hypersurface. The proof of this result was achieved with a Yamabe
problem approach (see [55] or Section 5.7 for a quick introduction), working
with weighted functional spaces (originally introduced in [40] and used in a
setting close to our by [71] and [41]). The existence of the metrics gε could
be deduced by [10], however if we would apply their result we would not be
able to deduce the convergence of gε to g, so we had to choose a different
way to face the problem (see Section 3.5).

With similar arguments of the proof, we think it is simple to generalize
a second famous fact of the Teichmüller theory, which actually follows from
the one above. In fact if one consider a simple loop geodesic of a complete
hyperbolic metric (a point in the Teichmüller space) and if one shrink the
length of this geodesic describing a curve in the Teichmüller space, then con-
cretely the surface develops a neck which becomes longer and finer as the
geodesic shrinks as in Figure 1. The limit case when the geodesic collapse
to a point (namely when its length is zero) splits the neck in two different
ends (cusps) and is not a point of the Teichmüller space (it changed the
topology of the surface!). In particular we can consider two different com-
plete hyperbolic surfaces with finite volume and we can glue them through
their cusps (in couples, not necessarily all the cusps) simply reverting the
previous discussion. In higher dimension we think that it is possible to glue
Riemannian manifold with constant negative scalar curvature whose ends
are cusps just through their cusps (see Section 4.4), using the techniques of
our main result with some simple adjustments.

Let us come back to the construction of the metric gε approximating g
described some lines above. We asked if the minimal hypersurface included
in the ends of gε is actually a leaf of a CMC foliation, as it happens in the 2-
dimensional case. The presence of a CMC foliation for the ends of manifolds
would have been very interesting. In fact there are physical consequence
related to this problem. For instance one can try to use it to define a
mass (even more a center of mass) in the spirit of the milestone [46]. This
problem was overstudied for asymptotically flat manifolds, but in our case
the funnel-like ends turned out to be asymptotically hyperbolic. Although
some authors like [66] and [5] studied the problem of the existence of a
CMC foliation for some classes of asymptotically hyperbolic manifolds, the
funnel-like end did not fall inside this classes of manifolds. However we
could adapt the arguments of [5] to prove what we expected: the ends of
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gε could be foliated by CMC hypersurfaces. Let us explain the physical
consequences emerging from this result one step at a time. First, both (M, g)
and (M, gε) can be regarded as totally umbilical solutions of the Einstein’s
constraint equations. This is not yet a consequence of the CMC foliation
but is simply related to the constant scalar curvature. More precisely (see
Subsection 4.1.2) this means that there are Lorentzian manifolds satisfying
the Einstein’s field equations that contains (M, g) or (M, gε) as isometrically
embedded totally umbilical (that is with extrinsic curvature proportional to
the induced metric) space-like hypersurface (see [17] or Chapter 4 for an
introduction). Due to the presence of a CMC foliation, we are also able to
find apparent horizons (see Section 4.2) in (M, gε). Without discussing now
this meaning, it is now sufficient to know that this implies the presence of
black holes in the spacetime associated to (M, gε). Here they are important
two observations. One is that our black holes are exotic in the sense that
their gravitational ends do not propagate spherically (as when one consider
usual spherical black holes), but are rather toroidal (the literature is less
rich in this setting, however toroidal black holes have been considered in
[1]). The other is that since (M, gε) tends to (M, g) as ε→ 0, then the same
happens to their respective associated spacetimes. The black holes of the
spacetime relative to (M, gε) run away toward the infinity as ε → 0, and
that is why the spacetime relative to (M, g) do not present black holes and
(M, g) has not apparent horizons.

As we mentioned before, another consequence of the existence of a CMC
foliation of our asymptotically hyperbolic manifolds is that we can consider a
positive mass mε of (M, gε), despite the most celebrated Positive Mass Theo-
rem considers asymptotically flat manifolds. Actually there exists a Positive
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Mass Theorem defined for asymptotically hyperbolic manifolds whose ends
are topologically semicylinders with spherical base, but we mentioned that
our ends are semicylinders with toroidal base and the literature is not very
deep in this direction. Therefore the mass was defined following the analo-
gies with the works of [5] and [24]. Once defined a mass, at least when n = 3,
the presence of a CMC foliation (including an apparent horizon) for (M, gε)
introduces to a well-known problem, called Riemannian Penrose inequality
conjecture. For an introduction to this problem, we recommend [24]. Most
of the results about the Penrose inequality concern asymptotically flat man-
ifolds. In general, and particularly in our setting, the Penrose inequality
is still a conjecture. For the manifolds (M, gε), assuming for simplicity the
existence of a unique end, it is equivalent to show that(

Aε
16π

)1/2

+ 4

(
Aε
16π

)3/2

≤ mε,

where Aε is the area of the apparent horizon of (M, gε). Notice that the
constants 16π do not have a physical meaning (for spherical slices, they
simplify some computation) since the mass mε is definite up to multiply by
numerical constants. Precisely, the right value for mε (or equivalently of
the constants that can replace 16π) is chosen in such a way that there is a
model satisfying the Penrose inequality as an equality. In fact, the Penrose
inequality often contains a rigidity statement: if it holds as an equality, the
considered manifold is isometric to a model case. We were able to show that
the Riemannian manifolds (M, gε) strictly verify the Penrose inequality. If
the Penrose inequality conjecture was true in general, then this heuristically
means that our spacetime do not present singularities with exception of the
Big Bang and of singularities within event horizons (therefore not observable
from outside). This is known as the Cosmic censorship hypothesis (see [44]
or [79] for an introduction).

Contents

The Chapter 2 gives the definitions of cusps and funnel-like ends (a sub-
class of asymptotically hyperbolic ends), which are the possible ends we will
consider in this text. The Chapter 3 is so organized. In Section 3.1 we
state the main result. Namely, we consider a Riemannian manifold (M, g)
with cusps and constant negative scalar curvature, and we build a family of
metrics (gε)ε on M which is in some sense close to g for small ε and preserve
the constant scalar curvature. Every metric gε has asymptotically hyper-
bolic ends which can be foliated by CMC hypersurfaces, one of the leaves
is minimal. The proof of the main result begins in Section 3.2, where we
build approximate solutions hε, which can not be chosen as exact solutions
gε since they lack a constant scalar curvature in a compact subset of the
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ends of M . The exact solutions will be obtained via a conformal transfor-
mation of hε, this reduce to a non-compact Yamabe problem. This is solved
by a fixed-point approach in Subsection 3.5, after introducing a suitable
weighted space of functions where to work in Section 3.3 and proving an a
priori uniform estimate for the linear operator associated to our problem in
Section 3.4. After that, we have to check the existence of a CMC foliation
for the ends of gε. In Section 3.6 we prove that such a foliation exists on a
compact subset of the ends, then in Section 3.7 we extend it to the whole
ends. Due to the existence and the properties of the found CMC foliation,
we can apply the main result to the General Relativity. In Chapter 4 we
will see in what sense the manifolds involved in our main result can be seen
as solutions of the Einstein’s constraint equations with apparent horizons.
We are also able to check the validity of the Riemannian Penrose Inequality
for our manifolds. This inequality is still a conjecture for general asymp-
totically hyperbolic manifolds. Finally we included an appendix containing
useful result which are applied in Chapter 3.



Chapter 2

Special ends of Riemannian
manifolds

This chapter treats particular types of ends which can be encountered when
considering non-compact ends equipped with a warped product metric with
constant negative scalar curvature. These ends will be the main characters
of this text and are called cusps and funnel-like ends since their defini-
tions, which is given in the next sections, extend the 2-dimensional notion
of ˝cuspsand ˝funnelsrespectively. Actually we will give the two men-
tioned definitions without assuming any hypothesis on the scalar curvature,
however we have been inspired by the following observation. Notice that by
Proposition 5.1, a warped product which can be written as dr2 + ψ(r)4/nḡ,
where (Σ, ḡ) is a scalar flat manifold of dimension n−1, have constant nega-

tive curvature equal to −n(n−1) if and only if it holds ψ̈ = n2

4 ψ. So we can

take ψ(r) = aenr/2 + be−nr/2 for some a, b ∈ R such that ψ > 0. In practise
the definition of funnel-like end comes from the case a 6= 0 and b 6= 0, up to
a translation of r, whereas the definition of cusp comes from the case b = 0
(or a = 0, up to replace r by −r).

2.1 Funnel-like ends

Definition 2.1. Let (M, g) be a complete Riemannian manifold of dimen-
sion n ≥ 2. A funnel-like end is an open subset of M diffeomorphic
to (r0,+∞)× Σ for some r0 ≤ 0 and some compact Riemannian manifold
(Σ, ḡ) of dimension n− 1, such that

g|(s0,+∞)×Σ = dr2 + ε2
(

2 cosh
(nr

2

))4/n
ḡ, (2.1)

with ε > 0.

The origin of the name descends from the fact that the areas of the slices
{r}×Σ increase as r → +∞ so that they recall a funnel. By Proposition 5.1 a

6



CHAPTER 2. SPECIAL ENDS OF RIEMANNIAN MANIFOLDS 7

funnel-like end has constant negative scalar curvature if and only if Rḡ = 0,
and it is never hyperbolic nor Einstein (except for n = 2). In dimension
n = 2 we get precisely the usual concept of funnel. By Lemma 5.4 the slices

{r}×Σ have second fundamental form II = ε2
(
2 cosh

(
nr
2

))4/n
tanh(nr/2)ḡ

and therefore constant mean curvature H = (n − 1) tanh(nr/2) computed
with respect to the unit normal vector field ∂r. It is possible to prove
that the funnel-like ends are conformally compact, more precisely they are
asymptotically hyperbolic. We recall that a Riemannian manifold (Z, γ) is
called conformally compact if Z is the interior of a compact Riemannian
manifold (Ẑ, γ̂) with non-empty boundary and if there exists a smooth non-
negative function ω : Ẑ → R (called boundary defining function) such that
{ω = 0} = ∂Ẑ, dω 6= 0 on ∂Ẑ and γ = ω−2γ̂ on Z. If moreover |d logω|γ → 1
as ω → 0, then (Z, γ) is called asymptotically hyperbolic. The reason of this
name descends from the fact that on a conformally compact manifold the
curvature tensor R of γ takes the form

Rijkl = −|dω|2γ̂(γikγjl − γilγjk) +O(ω), as ω → 0,

thus it holds sec(γ) → −1 as ω → 0 if and only if (Z, γ) is asymptotically
hyperbolic. Let us check that a funnel-like end is asymptotically hyperbolic.
First set t = r + log ε so that

g = dt2 + e2t
(
1 + εne−nt

)4/n
ḡ.

From this expression we see that g is asymptotic to dt2 +e2tḡ independently
from ε, so we will check the thesis for the latter metric. We chose ω(t) :=
e−t and we claim that it it the wanted boundary defining function. The
function ω is positive, ω → 0 as t→ +∞ and |d logω|dt2+e2tḡ = 1, moreover
ω2(dt2 + e2tḡ) = dω2 + ḡ can be extended as a smooth cylindrical metric up
to the boundary {ω = 0}, corresponding to t→ +∞. This proves the claim.

2.2 Cusps

Definition 2.2. Let (M, g) be a complete Riemannian manifold of dimen-
sion n ≥ 2. A cusp is an open subset of M diffeomorphic to (s0,+∞)× Σ
for some s0 ∈ R and some compact Riemannian manifold (Σ, ḡ) of dimension
n− 1, such that

g|(s0,+∞)×Σ = ds2 + e−2sḡ. (2.2)

The origin of the name descends from the fact that the areas of the
slices {s} × Σ decrease exponentially as s → +∞. By Proposition 5.1 a
cusp has constant negative scalar curvature if and only if Rḡ = 0. Similarly
it can be shown that a cusp is Einstein (Ricg = −(n − 1)g) if and only
if ḡ is Einstein (Ricḡ = 0) and that a cusp is hyperbolic if and only if
ḡ is flat. In dimension n = 2 we get the usual definition of cusp. By
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Lemma 5.4 the slices {s} × Σ have second fundamental form II = −e−2sḡ
and therefore constant mean curvature H = −(n−1) computed with respect
to the unit normal vector field ∂s. A cusp is not conformally compact, in
fact it can be easily shown using Gauss Lemma that in suitable coordinates
a conformally compact metric can be written in the form dσ2 + ω−2(σ)Gσ.
Here Gσ is a family of metrics on Σ tending to a limit metric G0 on Σ,
as σ → +∞, and ω(σ) → 0, as σ → +∞. In particular the sections
{σ = const.} become “larger” when approaching the infinity, whereas in
the cusps they shrink. We already discussed in what sense every complete
hyperbolic surface with finite volume presents a cusp in a neighbourhood of
every puncture. This result can be actually extended on higher dimension
by the Margulis thick-thin decomposition [19, pag. 133]. Namely, every
complete hyperbolic manifold with finite volume contains a compact part
(thick part) whose complementary set (thin part) is the finite disjoint union
of open subsets each one isometric to

(
(s0,+∞)× Σ, ds2 + e−2sḡ

)
, where

(Σ, ḡ) is some flat manifold. Therefore the ends of a complete hyperbolic
metric with finite volume are all examples of cusps.



Chapter 3

Complete hyperbolic metrics
with funnel-like ends

3.1 Statement of the main result

Theorem 3.1 (Main result). Let (M, g) be a n-dimensional Riemannian
manifold (n ≥ 2) with constant scalar curvature equal to −n(n − 1), con-
sisting of a compact core and k cusps (see Definition 2.2). For i = 1, . . . , k
fix a positive parameter εi, one for each cusp. If ε = (ε1, . . . , εk) is small
enough then there exists a metric gε on M such that:

(1) The metric gε has constant scalar curvature −n(n− 1);

(2) The metric gε replaces every one of the k cusps of g with an asymptot-
ically hyperbolic end. More precisely each of these ends is conformal
and asymptotic to a funnel-like end (see Definition 2.1);

(3) The metric gε smoothly converges to g as ε→ 0 on compact subsets of
M ;

(4) Every asymptotically hyperbolic end of gε is foliated by a family of
weakly stable CMC hypersurfaces whose mean curvatures span (−m,n−
1) ⊂ R, for some positive m = m(ε) ∈ R which can be different for each
end and satisfies limε→0m = n − 1. Moreover the area Areagε(Σmin)
of the minimal hypersurface Σmin ⊂M belonging to an asymptotically
hyperbolic end of gε is comparable to εn−1

i , where εi is the parameter
relative to the involved end. This means that there exists a constant
c > 1 independent of ε such that c−1εn−1

i ≤ Areagε(Σmin) ≤ cεn−1
i .

3.2 Approximate solutions

The metric gε that we are going to build for small ε in order to prove
Theorem 3.1 will turn out to be a small perturbation of an approximate

9



CHAPTER 3. COMPLETE HYPERBOLICMETRICSWITH FUNNEL-LIKE ENDS10

solution hε. In this subsection we define the metric hε and we study its
main properties. The metric hε is an approximate solution meaning that
it fulfills the requirements of Theorem 3.1 but the first point (its negative
scalar curvature is not constant in the whole manifold M).

Consider (M, g) as in the hypothesis of Theorem 3.1. For simplicity we
will suppose that (M, g) is a Riemannian manifold of dimension n ≥ 2 with
constant scalar curvature Rg = −n(n − 1) and with a unique cusp. By
definition this means that there exists a subset U ⊂ M such that M \ U is
relatively compact and U is diffeomorphic to [s0,+∞)× Σ with

g|U = ds2 + e−2sḡ. (3.1)

As a consequence of Proposition 5.1, necessarily (Σ, ḡ) is a compact manifold
of dimension n−1 with zero scalar curvature. Without loss of generality we
can assume s0 = 0. Introduce now a smooth cut-off function η : M → [0, 1]
vanishing outside the cusp U and coinciding with 1 in {s ≥ 1} ⊂ U , then
define for ε > 0 the metric

hε :=

{
g, in M \ U
ds2 + e−2s (1 + η(s)εnens)4/n ḡ in U.

(3.2)

The metric hε, which will be called approximate solution, has an asymp-
totically hyperbolic end isometric to a funnel-like end. To see this, set
r = s+ log ε, then in {s ≥ 1} it holds

hε = dr2 + ε2
(

2 cosh
(nr

2

))4/n
ḡ. (3.3)

By construction Rhε +n(n−1) vanishes everywhere outside the region {0 <
s < 1}. We have the following estimate:

Lemma 3.2. The following inequality holds for the scalar curvature of the
approximate solutions hε defined above. For every k ∈ N there exists C > 0
such that for small ε > 0, one has

‖Rhε + n(n− 1)‖C k(M) ≤ Cε
n, (3.4)

where C k(M) can be equivalently computed with respect to hε or g. The
constant C only depends on η, k and n.

Proof. We restrict ourselves to the case where 0 < s < 1. For bounded s
the metrics g and hε are comparable and so are their induced norms. By
Proposition 5.1 it follows that that in {0 ≤ s ≤ 1} one has

Rhε + n(n− 1) = −4
n− 1

n
εnens

η̈(s) + nη̇(s)

1 + η(s)εnens
,
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so it is sufficient to prove that

sup
s∈[0,1]

∣∣∣∣ dkdsk
(

ens
η̈(s) + nη̇(s)

1 + η(s)εnens

)∣∣∣∣ ≤ C1

for some constant C1 = C1(n, k, η). That is true since we are bounding a
ratio whose denominator is greater than 1 and whose numerator consists on
products of derivatives of ens, η̈(s) + nη̇(s) and 1 + η(s)εnens, all bounded
in terms of n, k and ‖η‖C k+2 .

We conclude this subsection analysing three remarkable behaviours of
hε as the parameter ε tends to zero depending on the subset of M where
one wants to consider this limit. The first lemma involves the compact core
of M .

Lemma 3.3. The metrics hε in (3.2) converge to g as ε→ 0 in C∞-norm
on compact subsets of M .

Proof. Let Ω be a compact subset of M , we can suppose without loss of
generality that Ω = M \ {s > C} for some large C. Since hε coincides with
g outside the cusp, the lemma holds away from {0 ≤ s ≤ C}. By the local
expression of g and hε in this region, it is sufficient to prove that

lim
ε→0

sup
s∈[0,C]

∣∣∣∣ dkdsk (η(s)εnens)

∣∣∣∣ = 0

for every k ∈ N. This follows from the boundedness of ens and of the
derivatives of the cut-off function η, and we are done.

The second lemma describes the behaviour of hε along the end of M .

Lemma 3.4. Let us consider the coordinate t = s+2 log ε. Then the metrics
hε defined in (3.2) converge to the metric dt2 +e2tḡ with all their derivatives
uniformly on subsets of the form {t ≥ a}, a ∈ R, as ε→ 0.

Proof. It is sufficient to observe that

hε = dt2 + e2t
(
1 + εne−nt

)4/n
ḡ (3.5)

on {s ≥ 1} = {t ≥ 1 + 2 log ε}, then the thesis follows with a symmetric
argument as in the previous Lemma 3.3.

Finally, we notice that by (3.3) the metric hε collapses to dr2 as ε → 0
in a neighbourhood of {r = 0}, which is an bottleneck region between the
compact core of M and its end. However, the next lemma shows that it is
possible to introduce a conformal factor which not only prevents the collapse
of hε but also makes it to converge to a cylinder.
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Lemma 3.5. Let us consider the coordinate r = s + log ε. Then for ev-
ery a ∈ R the Riemannian manifold {|r| < − log ε + a} equipped with

ε−2
(
2 cosh

(
nr
2

))−4/n
hε defined in (3.2) converge in the Gromov-Hausdorff

sense to the cylinder R× Σ as ε→ 0.

Proof. Let ρ = ρ(r) be the solution of the 1st-order ODE

ρ̇(r) = ε−1
(

2 cosh
(nr

2

))−2/n
, ρ(0) = 0. (3.6)

Since ρ̇ > 0, this function is actually a new coordinate on {|r| < − log ε+a}.
A direct computation from (3.3) gives

ε−2
(

2 cosh
(nr

2

))−4/n
hε = dρ2 + ḡ.

Thus the manifold {|r| < − log ε+a} equipped with the metric ε−2
(
2 cosh

(
nr
2

))−4/n
hε

is isometric to the limited cylinder
(
{|ρ| < ρ0}, dρ2 + ḡ

)
for some ρ0 =

ρ0(a, ε). The positive constant ρ0 is given by

ρ0 =
1

ε

∫ − log ε+a

0

dr

(cosh(nr/2))2/n

and tends to +∞ as ε→ 0, for every fixed a ∈ R. This implies the thesis.

As first goal, we want to perturb the approximate solution hε with a
conformal factor in order to get a metric gε with constant negative scalar
curvature on M .

3.3 Weighted functional spaces

The Yamabe Problem

Consider a perturbation of the approximate solution hε in the form

gε := (1 + vε)
4

n−2 hε, if n ≥ 3 and gε = e2vεhε, if n = 2. (3.7)

Here vε is smooth on M and such that the conformal factor is positive. If we
want gε to satisfy Rgε = −n(n−1), then by Proposition 4.5 this is equivalent
to solve the well-known Yamabe equation

(∆hε − 2) vε = 1
2Rhε + 1 +Q(vε) if n = 2,

(∆hε − n) vε = n−2
4(n−1) (Rhε + n(n− 1)) (1 + vε) +Q(vε) if n ≥ 3,

(3.8)

where Q is a quadratic remainder defined as

Q(v) :=

{
e2v − 2v − 1 if n = 2,
n(n−2)

4 (1 + v)
n+2
n−2 − n(n+2)

4 v − n(n−2)
4 if n ≥ 3.

(3.9)
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A remarkable property of the quadratic remainder is that its coefficients do
not depend on the parameter ε > 0.

REMARK 3.1. It is very important to point out that the original part of
this text is not to prove the existence of a smooth solution vε of the Yamabe
equation (3.8). In fact the existence and uniqueness of such a solution in this
context is guaranteed (at least for n ≥ 3) by classical works like [71], [12]
and [13]. For what concerns the case n = 2, analogous results can be found
in [86] and [87]. It is also possible to use the literature (cfr. Theorem 1.2 of
[9]) to show that vε tends to zero along the ends of M . In short the points
(1) and (2) of Theorem 3.1 can be easily deduced by well-known results, but
this does not hold for points (3) and (4). In fact the originality of this text
involves an estimate for vε which will look like

‖vε‖C k,αδ (M,hε)
≤ Cεn. (3.10)

The precise definition of this norm is treated in the next subsection, basically
it gives us two information. Firstly it implies that vε and its derivatives tends
to zero as ε → 0. This will allow us to deduce point (3) and to prove that
there is a CMC foliation on a compact subset of each end of (M, gε), if ε
is small enough. Secondly it implies that for fixed ε the function vε (and
derivatives) decrease exponentially as it approaches the infinity. This will
allow us to extend the compact CMC foliation to the whole end of (M, gε).
For these reasons we decided to infer the existence of a solution vε of (3.8)
(which is a posteriori the same solution provided by the literature) with a
different method (fixed-point), that also gives us the estimates (3.10).

The proof of the existence of a smooth solution vε of the Yamabe equa-
tion satisfying (3.10) is so organized:

• We conclude this Section introducing the space of functions C k,α
δ (M,hε)

where to face the problem and we motivate the decision for this choice.

• In Sections 3.4 we prove some a priori estimates (Proposition 3.7) for
the operator ∆hε − n. This requires some preliminary lemmas.

• In Section 3.5 we apply the fixed-point method under the guise of a
contraction theorem, getting the desired result.

Weighted Hölder spaces

The usual Riemannian functional spaces of (M,hε) are not the right choice
to solve the Yamabe equation (3.8). The reason is hidden in the behaviour
of hε far away from the compact core of M as ε → 0. We recall that hε is
close to g for small ε > 0 on compact subsets of the form M \{s > const.} by
Lemma 3.3, it collapses around {r = 0} as ε → 0 but a suitable conformal
rescaling makes it to be close to a cylindrical metric by Lemma 3.5, whereas
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it is close to the asymptotically hyperbolic metric dt2 + e2tḡ on subsets of
the form {t > const.}, with t = s + 2 log ε, by Lemma 3.4. These three
distinct behaviours of hε suggest the next definition.

Definition 3.1. The manifold M is the union of K, N and E , with the
following definitions:

• The compact core K := M \ {s ≥ 3} is a relatively compact subset,
which we improperly denote as K = {s < 3}. It contains a neighbour-
hood of the cut-off area of η, see (3.2);

• The neck region N := {2 < s < −2 log ε − 2} is a neighbourhood
of {s = − log ε}. In this region is useful to work with the variable
r = s+ log ε so that N = {|r| < − log ε− 2} is centred at {r = 0}. It
is also convenient to define a new variable ρ by

ρ̇(r) = ε−1
(

2 cosh
(nr

2

))−2/n
, ρ(0) = 0; (3.11)

• The funnel-like end E := {s > −2 log ε − 3} is the end of (M, gε).
In this region is useful to work with the variable t = s+ 2 log ε so that
E = {t > −3}.

A qualitative picture of this partition of M is represented in Figure 3.3.
We can finally define the announced space of functions on (M,hε).

Definition 3.2. Fix k ∈ N, α ∈ (0, 1) and δ ∈ R. Given an open subset
U ⊆M and a function f ∈ C k,α(U), we define

‖f‖
C k,αδ (U,hε)

:= ‖f‖C k,α(K∩U,g)+‖f‖C k,α(N∩U,gcyl)
+‖f‖

C k,αδ (E∩U,gah)
, (3.12)

where gcyl = dρ2 + ḡ and gah = dt2 + e2tḡ. In the equation (3.12) above, we
have set

‖f‖C k,α(K∩U,g) = max
j≤k

sup
K∩U
|∇(j)

g f |+ sup
p 6=q∈K∩U

|∇(k)
g f(p)−∇(k)

g f(q)|g
dg(p, q)α

,

we have also set

‖f‖C k,α(N∩U,gcyl)
= max

j≤k
sup
N∩U

|∇(j)
gcyl

f |gcyl
+ sup
p 6=q∈N∩U

|∇(k)
gcylf(p)−∇(k)

gcylf(q)|gcyl

dgcyl
(p, q)α

and finally we have set

‖f‖
C k,αδ (E∩U,gah)

= max
j≤k

sup
E∩U

eδt|∇(j)
gah
f |gah

+ sup
p 6=q∈E∩U

eδt(p)
|∇(k)

gahf(p)−∇(k)
gahf(q)|gah

dgah
(p, q)α

.

The Banach space containing the functions that satisfy ‖f‖
C k,αδ (U,hε)

< +∞

is then denoted C k,α
δ (U, hε) and can be regarded as a weighted Hölder space

(see [41] [9]).
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REMARK 3.2. Apparently the parameter ε is not involved in the right-hand
side of (3.12). This optical illusion comes from the fact that both gcyl and
gah are written in terms of variables ρ and t, which depend on ε.

We observe that the three different norms used to define ‖f‖
C k,αδ (U,hε)

are equivalent in the overlapping subsets of M , uniformly in ε, as showed in
the next lemma.

Lemma 3.6. In the setting of Definition 3.2 there exists C > 0 independent
of ε > 0 such that{

C−1‖f‖C k,α(K∩N ,g) ≤ ‖f‖C k,α(N∩K,gcyl)
≤ C‖f‖C k,α(K∩N ,g)

C−1‖f‖
C k,αδ (E∩N ,gah)

≤ ‖f‖C k,α(N∩E,gcyl)
≤ C‖f‖

C k,αδ (E∩N ,gah)

(3.13)

for every f ∈ C k,α(M).

Proof. For the first inequality, we notice that on K ∩ N = {2 < s < 3}
the norm induced by the metric g = ds2 + e−2sḡ is equivalent to the norm
induced by the metric ds2+ḡ. This is true because e−2s is uniformly bounded
above and below by positive constants for 2 < s < 3, and the same holds
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for the absolute value of its derivatives. On the other hand, by (3.11) and
r = s+ log ε, it can be computed that

gcyl = e2s
(
1 + εne−ns

)−4/n
ds2 + ḡ.

Since e2s (1 + εne−ns)
−4/n

can be uniformly bounded above and below by
positive constants for 2 < s < 3, and the same for the absolute value of its
derivatives, also the norm induced by gcyl is equivalent to the norm induced
by ds2 + ḡ on K∩N . This shows the first inequality. The second one can be
proved similarly on E ∩ N = {−3 < t < −2}, but in this case one has also
to notice that for −3 < t < 2 the weight function eδt is uniformly bounded
above and below by positive constants.

We conclude this subsection motivating why we considered the definition
(3.12) to study elliptic problems on (M,hε).

The norm on K

In the compact part K of M the norm ‖·‖C k,α(K∩U,g) is essentially the unique
reasonable choice. One could equivalently replace this norm by norm

‖f‖C k,α(K∩U,hε) = max
j≤k

sup
K∩U
|∇(j)

hε
f |+ sup

p 6=q∈K∩U

|∇(k)
hε
f(p)−∇(k)

hε
f(q)|hε

dhε(p, q)
α

.

induced by hε. The fact that those norms are equivalent descends from
Lemma 3.3, namely there exists C > 0 independent of small ε > 0 such that

C−1‖ · ‖C k,α(K∩U,g) ≤ ‖ · ‖C k,α(K∩U,hε) ≤ C‖ · ‖C k,α(K∩U,g)

for every f ∈ C k,α(M). However, the choice of ‖ · ‖C k,α(K∩U,g) has the
advantage of being independent of ε.

The cylindrical norm on N

As mentioned many times, the usual norm of hε degenerates as ε→ 0 on the
neck region N of M and therefore the same would happen to its induced
metric. For this reason, in order to study (N , hε) for small ε it is useful
to consider a sort of blow-up. Precisely, we observe that by Lemma 3.5

the metric ε−2
(
2 cosh

(
nr
2

))−4/n
hε coincides with gcyl on N , which does not

collapse as ε. Replacing hε by gcyl has then some advantages, the most
essential are the Schauder estimates (Lemma 3.11) uniformly in small ε,
which differently fail in a collapsing setting such as (N , hε) when ε → 0.
Notice that this blow-up of the neck region becomes negligible near ∂N ,
meaning that gcyl is comparable with g on K ∩ N and is comparable with
hε on N ∩ E in the sense of Lemma 3.6.
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The weighted norm on E

Here is where the word ”weighted” assumes its full significance. The norm
‖ · ‖

C k,αδ (E∩U,gah)
in the funnel-like end is actually coherent with the classical

weighted Hölder norm defined for asymptotically hyperbolic manifold or,
even more generally, for conformally compact manifold [40, pag. 53], [41,
pag. 206], [9, Definition 2.2]. In fact we recall that gah, as well as hε, is
conformally compact with boundary defining function e−t. These weighted
norms provide a good environment where to develop the theory of particular
elliptic operators, such as ∆hε − n (cfr.[41, section 3]). Indeed the non-
compactness of the manifold is in some sense balanced by the introduction
of a weight function along the end and some classical results that holds on
compact manifold can be traduced in this non-compact case, such as the
Schauder estimates ([41], Proposition 3.4) and results about isomorphisms
([41], Theorem 3.10). With such kind of results we will be able to invert
∆hε −n and transform the Yamabe equation (3.8) in a fixed-point problem.
Notice that by Lemma 3.4 one could equivalently replace gah by hε in the
definition of ‖ · ‖

C k,αδ (E∩U,gah)
and all the what follows would hold as well.

3.4 Linearization of the problem

In this section we analyse the equation (∆hε − n)u = f and, with the help
of the functional setting introduced in the previous subsection, we prove the
following proposition.

Proposition 3.7. Let (M,hε) be the Riemannian manifold defined in (3.2)
and fix α ∈ (0, 1) and (n − 1)/2 < δ < n. Then for every f ∈ C 0,α

δ (M,hε)

there exist a unique u ∈ C 2,α
δ (M,hε) such that (∆hε − n)u = f . Moreover

there exists ε0 > 0 and C > 0 such that

‖u‖C 2,α
δ (M,hε)

≤ C ‖f‖C 0,α
δ (M,hε)

, (3.14)

where the constant C > 0 is independent of u, f and ε ∈ (0, ε0).

The proof of the proposition above will be given after a short list of
lemmas. We need a couple of lemmas that are Liouville-type results, in
the sense that we want to conclude u = 0 from the assumption that u
solves the condition (∆ − n)u = 0 and has a certain decay along the ends
of particular manifolds. We also need some lemmas concerning the Interior
Schauder estimates for the case of non-compact manifolds such as cylinders
and conformally compact manifolds.
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3.4.1 Preliminary Lemmas

Liouville-type results

We present two results about the injectivity of ∆ − n in the cuspidal and
the asymptotically hyperbolic case.

Lemma 3.8. Let (M, g) be a complete Riemannian manifold of dimension
n ≥ 2 containing a compact subset U such that M \ U is diffeomorphic to
(0,+∞) × Σ, where (Σ, ḡ) is a compact Riemannian manifold, and such
that g|M\U = ds2 + e−2sḡ (namely (M, g) is the manifold with a single cusp
introduced at the beginning of Section 3.2). Suppose that u is a C 2-function
on (M, g) satisfying ∆gu = nu. If |u|, |∂su| < C for some C > 0, then
u = 0.

Proof. Let Ω =: M \{s > s0} denote a compact subset with smooth bound-
ary. Multiplying ∆gu = nu by u and integrating by parts on Ω we get∫

Ω
u∆gu+ |∇u|2g =

∫
∂Ω
u
∂u

∂s
.

The right-hand side is bounded by C2Area({s = s0}), therefore
∫

Ω nu
2 +

|∇u|2g ≤ C1e−(n−1)s0 for some constant C1 independent of s0. Taking the
limit for s0 → +∞, we get u = 0.

Lemma 3.9. Suppose that u is a C 2-function on (R × Σ, dt2 + e2tḡ), with
(Σ, ḡ) a compact Riemannian manifold of dimension n− 1. Suppose ∆u =
nu. If |u|, |∂tu| < C min{1, e−δt} for some C > 0 and (n − 1)/2 < δ, then
u = 0.

Proof. Similarly to the previous lemma, we integrate ∆u = nu by parts on
Ω = {−t0 ≤ t ≤ t0}, for some large t0 ∈ R. Then∫

Ω
nu2+|∇u|2g ≤

∫
{t=−t0}

∣∣∣∣u∂u∂t
∣∣∣∣+∫

{t=t0}

∣∣∣∣u∂u∂t
∣∣∣∣ ≤ C1(e−(n−1)t0+e−2δt0e(n−1)t0),

for some constant C1 > 0 independent of t0. Taking the limit for t0 → +∞
we get the result for (n− 1)/2 < δ.

REMARK 3.3. The two lemmas above are stated in the precise way that
they will be used. We are not saying that these results are sharp for what
concerns the bound of the function u along the ends or the restriction of
δ in ((n − 1)/2, n). About the last argument, we recall that the operator
∆hε − n studied in Proposition 3.7 is an isomorphism for δ ∈ (0, n) but we
will get the uniform bound (3.14) for a smaller range of δ exactly because
of the restriction done in Lemma 3.9. We emphasize here that this will not
imply a loss of information about the control of the solution vε of (3.8), in

fact if δ > δ′ then Ck,αδ (M,hε) ⊂ Ck,αδ′ (M,hε), thus the best control for vε is
got when δ is close to n.
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Interior Schauder Estimates

We are going to state ad hoc Interior Schauder Estimates for particular Rie-
mannian manifolds. Despite these results can be extended in more general
settings, we tried to keep the background as conformal as possible to the
proof of Proposition 3.7, where they are applied.

The first lemma we want to prove is a simple translation of the classical
Schauder estimates in the setting of our Riemannian manifold with a cusp.

Lemma 3.10. Let (M, g) be a complete Riemannian manifold of dimension
n ≥ 2 containing a compact subset U such that M \ U is diffeomorphic to
(0,+∞) × Σ, where (Σ, ḡ) is a compact Riemannian manifold, and such
that g|M\U = ds2 + e−2sḡ (namely (M, g) is the manifold with a single cusp
introduced at the beginning of Section 3.2). They hold the Schauder estimates
for the second order elliptic operator ∆−n in K := {s < 3} ⊂ K′ := {s < 4},
that is for every k ∈ N and α ∈ (0, 1) there exists C > 0 such that

‖u‖C k+2,α(K,g) ≤ C
(
‖(∆− n)u‖C k,α(K′,g) + ‖u‖C 0(K′,g)

)
for every u ∈ C k+2,α(K′, g).

Proof. This result will follow applying the classical Schauder estimates (cfr.
[40], Corollary 6.3) on a finite covering of K by local patches. Since K′ is
bounded, then R := min{1, injrad(K′, g)} > 0 and we can assume

‖ · ‖C k,α(U,g) = max
j≤k

sup
U
|∇(j)

g · |g + sup
0<d(p,q)<R/2

|∇(k)
g · (p)−∇(k)

g · (q)|g
dg(p, q)α

for every open subset U ⊆ K′. By compactness of K it is possible to find a
finite number of balls {Vβ}β centred at some p ∈ K with radius R/4 covering
K. Denoting by Uβ the ball concentric to Vβ with radius R/2, we have by
construction

K ⊆
⋃
β

Vβ ⊂
⋃
β

Uβ ⊆ K′.

The classical Schauder estimates then assert that

‖u‖C k+2,α(Vβ ,g)
≤ Cβ

(
‖(∆− n)u‖C k,α(Uβ ,g)

+ ‖u‖C 0(Uβ ,g)

)
with Cβ > 0 independent of u. Since Uβ ⊂ K′, then

max
β
‖u‖C k+2,α(Vβ ,g)

≤ max
β

Cβ

(
‖(∆− n)u‖C k,α(K′,g) + ‖u‖C 0(K′,g)

)
.

We got the thesis if we prove that there exists c > 0 independent of u such
that

‖u‖C k+2,α(K,g) ≤ cmax
β
‖u‖C k+2,α(Vβ ,g)

.
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By construction K ⊆
⋃
β Vβ, it follows that it is enough to check the estimate

above for the Hölder coefficient of ‖u‖C k+2,α(K,g). Namely, we have to check
that for every p, q ∈ K such that 0 < d(p, q) < R/2, there exists β such that

|∇(k)
g u(p)−∇(k)

g u(q)|g
dg(p, q)α

≤ c‖u‖C k+2,α(Vβ ,g)
.

The proof of this fact is standard. Choose β such that p ∈ Vβ. Then two
cases may occur. If q ∈ Vβ then the thesis follows with c = 1. If q /∈ Vβ then
d(p, q) ≥ R/4 and therefore

|∇(k)u(p)−∇(k)u(q)|
d(p, q)α

≤ (R/4)−α(|∇(k)
g u(p)|g+|∇(k)

g u(q)|g) ≤ c‖u‖C k+2,α(Vβ ,g)

with c = 2(R/4)−α.

The second lemma we want to prove concerns the cylinder. We want
to show that an analogue of the previous proposition can be applied to the
cylinder without involving the diameter of the larger open subset.

Lemma 3.11. Consider the cylinder (R × Σ, gcyl = dρ2 + ḡ) with compact
fiber (Σ, ḡ) and let L be a second order uniformly elliptic operator on R×M
of the form

L = ∂2
ρ + ∆ḡ + a(ρ)∂ρ + b(ρ), (3.15)

for some smooth function a(ρ), b(ρ). Fix D > 0 and D′ := D + d, for
some 0 < d < D, and consider the following encapsulated open subsets Ω :=
{|ρ| < D} and Ω′ := {|ρ| < D′}. There exists a constant C > 0 such that if
it holds Lu = f for some f ∈ C k,α(Ω′, gcyl) and some u ∈ C k+2,α(Ω′, gcyl)
then one has the following estimate

‖u‖C k+2,α(Ω,gcyl)
≤ C

(
‖f‖C k,α(Ω′,gcyl)

+ ‖u‖C 0(Ω′,gcyl)

)
. (3.16)

The constant C only depends on (Σ, ḡ), α ∈ (0, 1), k ∈ N, a lower and a
upper bound for d and an upper bound for ‖a‖C k,α(R) and ‖b‖C k,α(R).

Proof. It is not restrictive to suppose that

‖f‖C k,α(U,gcyl)
= max

j≤k
sup
U
|∇(j)

gcyl
f |+ sup

0<dgcyl
(p,q)<R/2

|∇(k)
gcylf(p)−∇(k)

gcylf(q)|gcyl

dgcyl
(p, q)α

with R = injrad (R×Σ, gcyl). Notice that R > 0 by compactness of Σ. The
idea is to cover Ω and Ω′ by smaller compact cylinder in order to apply the
classical Schauder estimates. For ρ0 ∈ (−D1 + d,D1 − d), set

Vρ0 := (ρ0 − d, ρ0 + d)× Σ and Uρ0 := (ρ0 − 2d, ρ0 + 2d)× Σ.
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By construction ⋃
ρ0

Vρ0 = Ω and
⋃
ρ0

Uρ0 = Ω′.

Up to covering Σ by a finite number of coordinate patches as in the proof
of the previous lemma, it is then possible to apply the classical Schauder
estimates to prove that

‖u‖C k+2,α(Vρ0 ,gcyl)
≤ C1

(
‖f‖C k,α(Uρ0 ,gcyl)

+ ‖u‖C 0(Uρ0 ,gcyl)

)
,

where the constant C1 only depends on n, α, k, the ellipticity constant of L,
a positive lower bound for d(Vρ0 , ∂Uρ0), an upper bound for the C k,α(Uρ0)-
norms of a and b and an upper bound for the diameter of Uρ0 . All those
quantities can be controlled by (Σ, ḡ), k, α, a lower and upper bound for d
and an upper bound for ‖a‖C k,α(R) and ‖b‖C k,α(R). Since Uρ0 is contained in
Ω′, then

‖u‖C k+2,α(Vβ,ρ0 ,gcyl)
≤ C1

(
‖f‖C k,α(Ω′,gcyl)

+ ‖u‖C 0(Ω′,gcyl)

)
,

thus the thesis would follow if we show that

‖u‖C k+2,α(Ω,gcyl)
≤ C2 sup

ρ0

‖u‖C k+2,α(Vρ0 ,gcyl)

for some C2 > 0 depending only on the same factors as C1. Since {Vρ0}ρ0 is
an open covering for Ω, the non trivial inequality only concerns the Hölder
part of ‖u‖C 2,α(Ω,gcyl), namely we have to check that for p 6= q in Ω with
dgcyl

(p, q) < R/2, one has

|∇(k+2)
gcyl u(p)−∇(k+2)

gcyl u(q)|gcyl

dgcyl
(p, q)α

≤ C2 sup
ρ0

‖u‖C k+2,α(Vρ0 ,gcyl)
. (3.17)

So we fix p ∈ Ω, which belongs to Vρ0 for some ρ0. Then two cases may
occur. If q ∈ Vβ,ρ0 too, then (3.17) is trivial with C2 = 1. If q /∈ Vβ,ρ0 then
dgcyl

(p, q) ≥ d, therefore

|∇(k+2)
gcyl u(p)−∇(k+2)

gcyl u(q)|gcyl

dgcyl
(p, q)α

≤ 2d−α sup
Vρ0

|∇(k+2)
gcyl

u|gcyl

and we got the thesis with C2 = 2d−α.

The analogous interior Schauder estimates for unbounded domains in
the context of conformally compact manifold has been obtained by Graham
and Lee [41, Proposition 3.4], even in a more general setting involving el-
liptic uniformly degenerate operators and weighted tensorial spaces. For our
purpose, it is enough to have the following result.
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Lemma 3.12. In (R × Σ, gah := dt2 + e2tḡ), where (Σ, ḡ) is a compact
Riemannian manifold, they hold the weighted Schauder estimates for the
second order elliptic operator ∆ − n in E := {t > −3} ⊂ E ′ := {t > −4},
that is for every k ∈ N, δ ∈ R, α ∈ (0, 1) there exists C > 0 such that

‖u‖
C k+2,α
δ (E,gah)

≤ C
(
‖(∆− n)u‖

C k,αδ (E ′,gah)
+ ‖u‖C 0

δ (E ′,gah)

)
for every u ∈ C k+2,α

δ (R× Σ).

Proof. As mentioned above, this lemma is an application of [41, Proposition
3.4], which is in turn a consequence of the analysis of elliptic operators in
[40]. To see that, we first notice that the only involved end is the neigh-
bourhood of {t = +∞}. Thus we can assume that (R × Σ, gah) is replaced
by the Riemannian manifold with boundary ([−5,+∞), gah), which has a
unique end. We report here the statement of [41, Proposition 3.4], followed
by some comments and explanations of their terms.
“Let k ∈ N, 0 < α < 1 and (M, g) a conformally compact manifold (eventu-
ally with boundary). Let Ω ⊂ Ω′ be two subsets of M such that d(∂Ω′,Ω) ≥
1/2 and let P be an elliptic degenerate operator. If u ∈ C 2(Ω′) ∩ Λδ0,0(Ω′)

and Pu ∈ Λδk,α(Ω′), then u ∈ Λδk+2,α(Ω) and

‖u‖Λδk+2,α(Ω) ≤ C
(
‖Pu‖Λδk,α(Ω′) + ‖u‖Λδ0,0(Ω′)

)
for some constant C independent of u, Ω and Ω′. ”
We observed in Section 2.1 that gah is asymptotically hyperbolic (hence
conformally compact) for t → +∞. Therefore (M, g) := ([−5,+∞), gah) is
conformally compact (with boundary). We can therefore consider on (M, g)
the weighted Banach spaces Λδk,α(U) introduced by Graham and Lee for
every open subset U ⊂ M . As remarked in [9, Definition 2.2 and follow-

ing remarks], these spaces correspond to C k,α
δ (U, gah) of this text and the

respective norms are equivalent. With the choice Ω = E and Ω′ = E ′, the
proof of the lemma would descend from the result of Graham and Lee re-
ported above if the operator P = ∆−n falls inside their definition of elliptic
degenerate operators. Those are operators whose coefficients obey to some
growing condition depending on the boundary defining function, the pre-
cise definition can be found in [41, pag. 209]. The same authors (see [41,
pag. 212]) prove that the operator ∆−n is elliptic degenerate, so the result
follows.

3.4.2 A priori estimates

We are ready to prove Proposition 3.7. Actually the only point to be shown is
the uniform estimate (3.14), in fact the involved operator is an isomorphism
by [41, Corollary 3.11] or [9, Lemma 4.2 with ξ = n] for 0 < δ < n. We
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will prove (3.14) by contradiction. Suppose by contradiction that for every
j ∈ N there exists (εj , uj , fj) ∈ R+ ×C 2,α

δ (M,hεj )×C 0,α
δ (M,hεj ) such that

(i) εj → 0, as j → +∞;

(ii) (∆hεj
− n)uj = fj , ∀j ∈ N;

(iii) ‖uj‖C 2,α
δ (M,hεj )

= 1, ∀j ∈ N;

(iv) ‖fj‖C 0,α
δ (M,hεj )

→ 0, as j → +∞.

The proof then proceeds as follows.

Step 1: We show that up to subsequence ‖uj‖C 2,α(K,g) → 0 as j → +∞ with
the help of the Liouville-type result obtained Lemma 3.8 and the in-
terior Schauder estimates (Lemma 3.10);

Step 2: We show that up to subsequence ‖uj‖C 2,α
δ (E,gah)

→ 0 as j → +∞ with

the help of the Liouville-type result obtained in Lemma 3.9 and the
weighted Schauder estimates (Lemma 3.12);

Step 3: Finally we use the previous two steps and the Schauder estimates for
the cylinder (Lemma 3.11) to show that also ‖uj‖C 2,α(N ,gcyl) → 0 as
j → +∞ (up to subsequence) and we get a contradiction with (iii).

It is useful to introduce the following open subsets of M

K′ = {s < 4}, E ′ = {t > −4}, N ′ = {|r| < − log ε− 1}.

These subsets extend (respectively) K, E and N by a unitary length and
will be used to apply the interior estimates. Clearly all the preliminary
observations, such as Lemma 3.6, obtained in the previous section for K, E
and N adapts to K′, E ′ and N ′ as well.

Step 1: We are going to show that up to subsequence

lim
j→+∞

‖uj‖C 2,α(K,g) = 0. (3.18)

Consider the compact subset {s ≤ 1}. From (iii) it follows that

‖uj‖C 2,α({s≤1},g) ≤ 2

for j large enough. By Ascoli-Arzelà, there is a subsequence of (uj) converg-
ing to some u(1) in C 2({s ≤ 1}, g). Now look at this convergent subsequence
in the larger compact subset {s ≤ 2}. Since ‖uj‖C 2,α({s≤2},g) is still bounded
independently of large j’s, there is a further subsequence converging to some
u(2) in C 2({s ≤ 2}, g) and necessarily u(2) extends u(1). We can iterate this
argument for

{s ≤ 1} ⊂ {s ≤ 2} ⊂ {s ≤ 3} ⊂ . . .
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and so on. This produces a function u(∞) defined on M such that for
every compact subset {s ≤ c} ⊂ M there exists a subsequence of the uj ’s
converging to u(∞) in the C 2({s ≤ c}, g)-norm. Moreover, since |uj |, |∂suj | <
2 in every compact subset {s ≤ c} for j large enough, then |u(∞)|, |∂su(∞)| <
2 on M . We can also conclude that (∆g − n)u(∞) = 0, in fact this holds
in the strong sense on every compact subset of the form {s ≤ c} passing to
the limit from (∆hεj

− n)uj = fj and applying both (iv) and Lemma 3.3.

Then we can apply Lemma 3.8 and we get u(∞) = 0. We have in particular
proved the existence of a subsequence (uj) converging to zero in C 2(K′, g).
We apply Lemma 3.10 to this subsequence in K ⊂ K′, getting

‖uj‖C 2,α(K,g) ≤ C1

(
‖(∆g − n)uj‖C 0,α(K′,g) + ‖uj‖C 0(K′)

)
(3.19)

for some C1 > 0 independent of j. We know that ‖uj‖C 0(K′) → 0 as
j → +∞, on the other hand from Lemma 3.3 we also know that ‖(∆g −
n)uj‖C 0,α(K′,g) ≤ 2‖fj‖C 0,α

δ (K′,hεj )
for large j’s, which tends to zero by (iv)

as j → +∞. These last two arguments and (3.19) imply (3.18), and we are
done.

Step 2: We are going to show that up to subsequence

lim
j→+∞

‖uj‖C 2,α
δ (E,gah)

= 0. (3.20)

This is the analogue of (3.18) in the manifold’s end E and the technique
we use is really specular. Consider the subset {−1 ≤ t}. From (iii) it
follows that ‖uj‖C 2,α

δ ({a≤t},gah)
≤ 2 for j large enough. By Ascoli-Arzelà,

there is a subsequence of (uj) converging to some u(−1) in C 2
δ ({−1 ≤ t}, gah).

Similarly as in the first step, then one extract from this subsequence a further
subsequence converging in C 2

δ ({−2 ≤ t}, gah) and this argument is iterated
for

{−1 ≤ t} ⊂ {−2 ≤ t} ⊂ {−3 ≤ t} ⊂ . . .

and so on. As a result we get a function u(−∞) defined in R× Σ such that
for every subset {−c ≤ t} there is a subsequence of the uj ’s converging
to u(−∞) in the C 2

δ ({−c ≤ t}, gah)-norm. Moreover, since |uj |, |∂tuj | <
2 min{1, e−δt} in every subset of the form {−c ≤ t} for j large enough, then
|u(−∞)|, |∂tu(−∞)| < 2 min{1, e−δt} on R × Σ. We can also conclude that
(∆gah

− n)u(−∞) = 0, in fact this holds in the strong sense on every subset
of the form {−c ≤ t} passing to the limit from (∆hεj

− n)uj = fj and

applying both (iv) and Lemma 3.4. Then we can apply Lemma 3.9 and we
get u(−∞) = 0. We have in particular proved the existence of a subsequence
(uj) converging to zero in C 2

δ (E ′, gah). By hypothesis (n− 1)/2 < δ < n, so
we can apply Lemma 3.12 to this subsequence in E ⊂ E ′, getting

‖uj‖C 2,α
δ (E,gah)

≤ C2

(
‖(∆gah

− n)uj‖C 0,α
δ (E ′,gah)

+ ‖uj‖C 0(E ′)

)
(3.21)
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for some C2 > 0 independent of j. We know that ‖uj‖C 0(E ′) → 0 as
j → +∞, on the other hand from Lemma 3.4 we also know that ‖(∆gah

−
n)uj‖C 0,α

δ (E ′,gah)
≤ 2‖fj‖C 0,α

δ (E ′,gah)
for large j’s, which tends to zero by (iv)

as j → +∞. Using these two considerations in (3.21), we infer (3.20), as
wanted.

Step 3: We are going to get the contradiction proving that

lim
j→+∞

‖uj‖C 2,α(N ,gcyl) = 0. (3.22)

It is not restrictive suppose that the uj ’s satisfy (3.18) and (3.20), up to
take a subsequence. For every arbitrary constant β > 0 we can consider
the function ±uj − β. By construction (∆hεj

− n)(±uj − β) = ±fj + nβ is

non-negative on N ′ for j large enough since by (iv) it holds supN ′ |fj | → 0
as j → +∞. On the other hand ±uj − β ≤ 0 on ∂N ′ by (3.18) and (3.20).
We can then apply the maximum principle to the strictly elliptic operator
∆hεj

− n on N ′, so that for every β > 0 there exists j0 ∈ N such that

±uj ≤ β on N ′ for every j > j0. This means limj→+∞ ‖uj‖C 0(N ′,gcyl) = 0.

We want to improve this limit to the C 2,α(N , gcyl)-norm via Lemma 3.11.
Define a second-order elliptic operator Lj in N ′ by

Lj := φ2
j (∆hεj

− n), φj(r) := εj

(
2 cosh

(nr
2

))2/n
.

By construction Ljuj = φ2
jfj . Since a direct computation gives

∆hεj
= ∂2

r +
∆ḡ

ε2
j

(
2 cosh

(
nr
2

))4/n + (n− 1) tanh
(nr

2

)
∂r (3.23)

in N ′, then with respect to the variable ρ defined in (3.11) by ρ̇(r) = 1/φj(r)
one has

Lj = ∂2
ρ + ∆ḡ + (n− 2) tanh (nr(ρ)/2)φj(r(ρ))∂ρ − nφj(r(ρ))2. (3.24)

The equation (3.24) was derived by (3.23) using that ∂r = ρ̇∂ρ and ∂2
r =

ρ̇2∂ρ+ρ̈∂ρ. We also define D(j) = ρ(− log εj−2) and D′(j) := ρ(− log εj−1),
so that

N = {|ρ| < D(j)}, N ′ = {|ρ| < D′(j)}.

We can apply Lemma 3.11, getting

‖uj‖C 2,α(N ,gcyl) ≤ C3

(
‖φ2

jfj‖C 0,α(N ′,gcyl) + ‖uj‖C 0(N ′,gcyl)

)
. (3.25)

We claim that C3 does not depend on large j’s. In fact by Lemma 3.11 it is
sufficient to prove that:

• the quantities d(j) := D′(j)−D(j) can be bounded above and below
by positive constants independent of j (large enough);
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• the C0,α-norms of the coefficients tanh (nr(ρ)/2)φj(r(ρ)) and φj(r(ρ))2

can be bounded uniformly in j.

It is easy to see that for large j’s one has e−2 < φj |(− log εj−2,− log εj−1) < 1.
In particular by Lagrange,

d(j) = ρ(− log εj − 1)− ρ(− log εj − 2) = 1/φj(r
∗)

for some r∗ ∈ (− log εj − 2,− log εj − 1), thus we have the uniform bound
for d(j). Notice that on the other hand

lim
j→+∞

D(j) = lim
j→+∞

∫ − log εj−2

0

dr

φj(r)
=

∫ +∞

0

dr

(2 cosh(nr/2))2/n
lim

j→+∞

1

εj

is equal to +∞, in particular it follows d(j) < D(j). Finally we have to
check that φj(r(ρ)) and tanh(nr(ρ)/2) can be bounded (uniformly for large
j’s) in N ′ together with their first derivative in ρ. Since ∂ρ = φj∂r, then it
is sufficient to check that φj(r) and tanh(nr/2) can be bounded (uniformly
for large j’s) in {|r| < − log εj − 1} together with their first derivative in
r. This is trivial for the hyperbolic tangent, on the other hand one can
easily check that φ̇j = φj tanh(nr/2), thus it is sufficient to notice that in
{|r| < − log εj − 1} we have |φj | < 1. This proves that the constant C3 in
(3.25) can be chosen independent of j. Using again that φj is bounded in
N ′ uniformly in j with all its derivatives and using the absurd hypothesis
(iv), we have ‖φ2

jfj‖C 0,α(N ′,gcyl) → 0 as j → +∞. Also we have shown that
‖uj‖C 0(N ′) → 0. These two results and (3.25) imply ‖uj‖C 2,α(N ,gcyl) → 0 as
j → +∞ and we got the result.

3.5 Exact solutions

Now it is the moment to face the non-linear analysis. We want to prove the
existence of a solution vε of the Yamabe equation (3.8) satisfying

‖vε‖C k,αδ (M,hε)
≤ Cεn

for some C > 0 independent of ε. This is done via a contraction theorem.

3.5.1 Fixed-point method

The Yamabe equation (3.8) is equivalent to Fε(vε) = vε, where the operator

Fε : C k,α
δ (M,hε)→ C k+2,α

δ (M,hε) is defined by

Fε(v) =

{
(∆hε − n)−1 (1

2Rhε + 1 +Q(v)
)
, if n = 2

(∆hε − n)−1
(

n−2
4(n−1) (Rhε + n(n− 1)) (1 + v) +Q(v)

)
, if n ≥ 3.

(3.26)
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We recall that Rhε + n(n− 1) is compactly supported, so one deduces that

the operator Fε actually maps C k+2,α
δ (M,hε) into C k,α

δ (M,hε). The purpose

of this section is to prove that Fε is a contraction on a ball of C k,α
δ (M,hε)

centred at 0 with radius proportional to εn. By simplicity, we will show this
result for k = 2, then one get the general result by elliptic regularity and
a bootstrap argument. The following lemma is a control of the quadratic
term.

Lemma 3.13. Let C > 0 be the uniform bound for (∆hε − n)−1 given by
Proposition 3.7. The quadratic term Q : C 2,α

δ (M,hε) → C 0,α
δ (M,hε) intro-

duced in (3.8), for δ > 0, satisfies

‖Q(x)−Q(y)‖C 0,α
δ (M,hε)

≤ 1

2C
‖x− y‖C 2,α

δ (M,hε)
, (3.27)

provided that x, y ∈ C 2,α
δ (M,hε) are close enough to 0.

Proof. We will prove something slightly stronger, namely that

‖Q(x)−Q(y)‖C 1
δ (M,hε) ≤

1

2C
‖x− y‖C 2,α

δ (M,hε)
.

In virtue of the definition of this norm (see Definition 3.2), it will be sufficient
to check the validity of both the zero-order estimates

sup
K∪N

|Q(x)−Q(y)|+ sup
E

eδt|Q(x)−Q(y)| ≤ 1

4C
‖x− y‖C 2,α

δ (M,hε)
(3.28)

and the first-order estimates

sup
K
|∇g(Q(x)−Q(y))|g + sup

N
|∇gcyl

(Q(x)−Q(y))|gcyl
+

+ sup
E

eδt|∇gah
(Q(x)−Q(y))|gah

≤ 1

4C
‖x− y‖C 2,α

δ (M,hε)
.

(3.29)

Notice that by construction the operator Q is defined as Q(u) = q ◦ u, with
q : R→ R given by

q(x) =

{
e2x − 2x− 1 in dimension n = 2,
n(n−2)

4 (1 + x)
n+2
n−2 − n(n+2)

4 x− n(n−2)
4 in dimension n ≥ 3.

Notice also that there exist c1 and c2 independent of ε such that |q′(x)| <
c1|x| and |q′′(x)| < c2 if |x| < 1. Let us begin with the zero-order estimates.
For every p ∈ K ∪N one has

|Q(x)(p)−Q(y)(p)| = |q′(x∗)(x(p)− y(p))|
≤ c1|x∗||x(p)− y(p)| ≤ c1(|x(p)|+ |y(p)|)|x(p)− y(p)|,

(3.30)
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where by Lagrange x∗ lives between x(p) and y(p), so its modulus is less or
equal to the sum of |x(p)| and |y(p)|. Similarly, if p ∈ E one has

eδt|Q(x)(p)−Q(y)(p)| ≤ c1c3(eδt|x(p)|+ eδt|y(p)|)eδt|x(p)− y(p)| (3.31)

by the same argument above and the fact that 1 ≤ c3eδt in E , with c3

independent of ε. So it follows (3.28) for ‖x‖C 2,α
δ (M,hε)

,‖y‖C 2,α
δ (M,hε)

≤
(8Cc1(1 + c3))−1. Finally let us face the first-order estimates, separately for
K, N and E . Assume initially p ∈ K and let (x1, . . . , xn) = (s, θ1, . . . , θn−1)
be local coordinates around p, where (θ1, . . . , θn−1) are local coordinates for
Σ. With respect to these coordinates, by Lagrange we have

|∂i(Q(x))(p)− ∂i(Q(y))(p)| = |q′(x(p))∂ix(p)− q′(y(p))∂iy(p)|
≤ |q′(x(p))[∂ix(p)− ∂iy(p)]|+ |[q′(y(p))− q′(x(p))]∂iy(p)|
≤ c1|x(p)||∂i(x− y)(p)|+ |q′′(x∗)||x(p)− y(p)||∂iy(p)|
≤ c1|x(p)||∂(x− y)(p)|+ c2|x(p)− y(p)||∂y(p)|.

Since ∂i is the derivative which counts in the computation of our weighted
Hölder norms C 1(K, g), we just proved in K it holds

|∇g(Q(x)−Q(y))|g ≤ c4

(
‖x‖C 2,α

δ (M,hε)
+ ‖y‖C 2,α

δ (M,hε)

)
‖x− y‖C 2,α

δ (M,hε)

(3.32)

for some c4 > 0 independent of ε. Assume now that p ∈ N and let
(x1, . . . , xn) = (ρ, θ1, . . . , θn−1) be local coordinates around p. With the
same arguments of the compact case, we can deduce that in N it holds

|∇gcyl
(Q(x)−Q(y))|gcyl

≤ c5

(
‖x‖C 2,α

δ (M,hε)
+ ‖y‖C 2,α

δ (M,hε)

)
‖x− y‖C 2,α

δ (M,hε)

(3.33)

for some c5 > 0 independent of ε. Assume finally that p ∈ E and let
(x1, . . . , xn) = (t, θ1, . . . , θn−1) be local coordinates around p. Similarly as
in the previous cases we have

eδt|∂i(Q(x))(p)− ∂i(Q(y))(p)| = eδt|q′(x(p))∂ix(p)− q′(y(p))∂iy(p)|
≤ eδt|q′(x(p))[∂ix(p)− ∂iy(p)]|+ eδt|[q′(y(p))− q′(x(p))]∂iy(p)|
≤ c1eδt|x(p)||∂i(x− y)(p)|+ |q′′(x∗)|eδt|x(p)− y(p)||∂iy(p)|
≤ c1c3eδt|x(p)|eδt|∂i(x− y)(p)|+ c2c3eδt|x(p)− y(p)|eδt|∂iy(p)|.

From this inequality it follows that on E it holds

eδt|∇gah
(Q(x)−Q(y))|gah

≤ c6

(
‖x‖C 2,α

δ (M,hε)
+ ‖y‖C 2,α

δ (M,hε)

)
‖x− y‖C 2,α

δ (M,hε)

(3.34)
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for some c6 > 0 independent of ε. Using (3.32), (3.33) and (3.34), we get

sup
K
|∇g(Q(x)−Q(y))|g + sup

N
|∇gcyl

(Q(x)−Q(y))|gcyl
+ sup
E

eδt|∇gah
(Q(x)−Q(y))|gah

≤ c7

(
‖x‖C 2,α

δ (M,hε)
+ ‖y‖C 2,α

δ (M,hε)

)
‖x− y‖C 2,α

δ (M,hε)

for some c4 > 0 independent of ε, and (3.29) holds provided to take ‖x‖C 2,α
δ (M,hε)

and ‖y‖C 2,α
δ (M,hε)

smaller then (8Cc7)−1.

Finally we can prove the main result of this section, in which it is essential
the role of Proposition 3.7.

Proposition 3.14. Fix (n − 1)/2 < δ < n and α ∈ (0, 1). For small
ε > 0, the operator Fε : C 2,α

δ (M,hε) → C 2,α
δ (M,hε) defined in (3.26) is a

contraction of a ball of C 2,α
δ (M,hε) centred at 0 with radius proportional to

εn.

Proof. We set for convenience

aε =

{
1
2Rhε + 1 in dimension n = 2,
n−2

4(n−1) (Rhε + n(n− 1)) in dimension n ≥ 3,

and bε = 0 if n = 2 and bε = aε if n ≥ 3. Consider the ball

Bρ :=
{
v ∈ C 2,α

δ (M,hε) | ‖v‖C 2,α
δ (M,hε)

≤ ρ
}
,

for some ρ > 0. Due to Proposition 3.7 for every x ∈ Bρ one has

‖Fε(x)‖C 2,α
δ (M,hε)

=
∥∥∥(∆hε − n)−1 (aε + bεx+Q(x))

∥∥∥
C 2,α
δ (M,hε)

≤ C ‖aε + bεx+Q(x)‖C 0,α
δ (M,hε)

≤ C ‖aε + bεx‖C 0,α
δ (M,hε)

+ C ‖Q(x)‖C 0,α
δ (M,hε)

.

Assuming ρ > 0 small enough, we can apply Lemma 3.13 with y = 0, so
that C ‖Q(x)‖C 0,α

δ (M,hε)
≤ ρ/2. Then

‖Fε(x)‖C 2,α
δ (M,hε)

≤ C1 ‖aε‖C 0,α
δ (M,hε)

+
1

2
ρ

for some C1 > 0 independent of ε. Here we used that ‖aε + bεx‖ ≤ ‖aε‖ +
‖bεx‖, the fact that ‖x‖ is bounded. Since aε is bounded in terms of εn by
Lemma 3.2, we got

‖Fε(x)‖C 2,α
δ (M,hε)

≤ C2ε
n +

1

2
ρ
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for some C2 > 0 independent of ε and, as a consequence, Fε(Bρ) ⊆ Bρ if
ρ ≥ 2C2ε

n. So we chose ρ := 2C2ε
n and ε > 0 small enough. We claim that

Fε is a contraction of Bρ. Indeed for x, y ∈ Bρ one has

‖Fε(x)− Fε(y)‖C 2,α
δ (M,hε)

=
∥∥∥(∆hε − n)−1 (bε(x− y) +Q(x)−Q(y))

∥∥∥
C 2,α
δ (M,hε)

≤ C ‖bε(x− y) +Q(x)−Q(y)‖C 0,α
δ (M,hε)

≤ C ‖bε(x− y)‖C 0,α
δ (M,hε)

+ C ‖Q(x)−Q(y)‖C 0,α
δ (M,hε)

≤ C3ε
n ‖x− y‖C 0,α

δ (M,hε)
+

1

2
‖x− y‖C 2,α

δ (M,hε)
.

In the previous inequality we used again Proposition 3.7, Lemma 3.13 and
the bound for bε given by Lemma 3.2. We got the thesis if ε > 0 is small
enough.

3.5.2 Estimates of the solution

As a consequence of the previous section, the solution vε of the Yamabe
equation (3.8) satisfies

‖vε‖C 2,α
δ (M,hε)

≤ Cεn (3.35)

for some C > 0 independent of small ε. More generally, with the same
arguments of the previous sections one could prove that for every k ∈ N
there exists C > 0 such that

‖vε‖C k,αδ (M,hε)
≤ Cεn,

however the case k = 2 is enough to proceed. Actually, it also could be
proved that vε is smooth in ε as well, since the contraction Fε depends
smoothly on this parameter. In this subsection we want to explicit the
meaning of (3.35) focusing on the derivatives up to the second order. As
usual we have to distinguish the three distinct regions of M = K ∪ N ∪ E
introduced in Section 3.3.

• For every p ∈ K, the control (3.35) implies

|vε(p)|, |∇ḡvε(p)|ḡ, |∇2
ḡvε(p)|ḡ, |∂svε(p)|, |∇ḡ∂svε(p)|ḡ, |∂2

svε| < C1ε
n

for some C1 > 0 independent of p and ε. It was sufficient to apply the
definition of the involved norm and the boundedness of es in K.

• For every p ∈ N , the control (3.35) implies

|vε(p)|, |∇ḡvε(p)|ḡ, |∇2
ḡvε(p)|ḡ, |∂ρvε(p)|, |∇ḡ∂ρvε(p)|ḡ, |∂2

ρvε| < C2ε
n
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for some C2 > 0 independent of p and ε. It was sufficient to apply
the definition of the involved norm. In terms of the variable r, using
(3.11), it holds

|vε(p)|, |∇ḡvε(p)|ḡ, |∇2
ḡvε(p)|ḡ < C3ε

n

|∂rvε(p)|, |∇ḡ∂rvε(p)|ḡ < C3ε
n−1 cosh−2/n(nr(p)/2)

|∂2
rvε| < C3ε

n−2 cosh−4/n(nr(p)/2)

for some C3 > 0 independent of p and ε.

• For every p ∈ E , the control (3.35) implies
|vε(p)|, e−t(p)|∇ḡvε(p)|ḡ, e−2t(p)|∇2

ḡvε(p)|ḡ < C4ε
ne−δt(p)

|∂tvε(p)|, e−t(p)|∇ḡ∂tvε(p)|ḡ < C4ε
ne−δt(p)

|∂2
rvε| < C4ε

ne−δt(p)

for some C4 > 0 independent of p and ε. It was sufficient to apply the
definition of the involved norm.

The estimates above will play a central role in the next section, where we
will construct a CMC foliation for the ends of (M, gε). More generally, the
arguments above can be used to show that for k1, k2 ∈ N it holds

supK

∣∣∣∇(k1)
ḡ ∂k2

s vε

∣∣∣ = O(εn)

supN

∣∣∣cosh2k2/n(nr/2)∇(k1)
ḡ ∂k2

s vε

∣∣∣ = O(εn−k2)

supE

∣∣∣e(δ−k1)t∇(k1)
ḡ ∂k2

s vε

∣∣∣ = O(εn).

3.6 Local CMC foliations

The aim of this section is to prove Theorem 3.1-(4). In the previous pages
we built on (M, g) a family of metrics {gε}ε, defined for small ε > 0, with
constant negative scalar curvature. Each gε is a conformal perturbation of
the approximate solution hε defined in (3.2) and we were able to show the
points (1), (2) and (3) of Theorem 3.1. Now we want to show that every
end of gε is foliated by a family of weakly stable CMC hypersurfaces (the
definition of weakly stable hypersurface is at the end of this introduction),
analysing the possible values of the mean curvatures as well as the area of
the minimal leaf belonging to this foliation.

Since this problem only involves the ends of (M, gε), we will assume for
simplicity that through this section

M = (log ε+ 2,+∞)× Σ.

We recall that
gε = e2uεhε, (3.36)
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where hε is the model metric defined by

hε = dr2 + ε2φ2(r)ḡ, with φ(r) :=
(

2 cosh
(nr

2

))2/n
, (3.37)

and (Σ, ḡ) is a compact manifold with vanishing scalar curvature. We defined
the function uε by

e2uε := (1 + vε)
4

n−2 , if n ≥ 3 and uε := vε, if n = 2. (3.38)

Here vε is the function constructed in the previous sections, which is smooth
and, in virtue of what we observed in Subsection 3.5.2, satisfies

‖vε‖C 2,α
δ (M,hε)

≤ Cεn, for some
n− 1

2
< δ < n.

In particular the above estimate implies that, in terms of uε, for every real
number δ ∈ ((n− 1)/2, n) there exist C1, C2 > 0 independent of ε such that

sup
(log ε+2,− log ε−2)×Σ

|uε|+ |∇gcyl
uε|gcyl

+ |∇2
gcyl

uε|gcyl
≤ C1ε

n, (3.39)

where gcyl := ε−2φ−2(r)hε is the cylindrical metric already introduced in
(3.11), and

sup
(− log ε−3,+∞)×Σ

eδ(r+log ε)
(
|uε|+ |∇hεuε|hε + |∇2

hεuε|hε
)
≤ C2ε

n. (3.40)

The main result of this section is actually stronger then Theorem 3.1-(4).
In fact we are going to prove the following Theorem 3.15. We recall that
the mean curvatures are computed with respect to the unit normal vector
pointing toward the infinity.

Theorem 3.15. Let (Σ, ḡ) be a compact Riemannian manifold of dimension
n − 1, n ≥ 2. Let (M, gε) = ((log ε+ 2,+∞)× Σ, gε) be defined by (3.36)-
(3.37) and assume it holds (3.39)-(3.40). Then for every R > 0 there exist
εR > 0 and CR > 0 with the following property:

(i) For every ε ∈ (0, εR) and for every ρ ∈ [log ε + 3,− log ε + R] there
exists a function ψ(· ; ε, ρ) ∈ C 2,α(Σ, ḡ) such that

S(ε, ρ) := {(ρ+ ψ(θ; ε, ρ), θ) | θ ∈ Σ}

is an hypersurface with constant mean curvature equal to (n−1) tanh(nρ/2)
sitting inside (M, gε);

(ii) The hypersurface S(ε, ρ) belongs to a small neighbourhood of {r = ρ},
since it holds

‖ψ(· ; ε, ρ)‖C 2(Σ,ḡ) ≤ CRε
n−1; (3.41)
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(iii) The family {S(ε, ρ)}ρ∈[log ε+3,− log ε+R] provide a weakly stable CMC
foliation of a compact subset of M ;

(iv) The area of the minimal hypersurface S(ε, 0) is comparable to εn−1,
meaning that there exists c > 1 depending only on n and Areaḡ(Σ)
such that

c−1εn−1 ≤ AreagεS(ε, 0) ≤ cεn−1.

Moreover, there exists R0 > 0 depending only on (Σ, ḡ) and the constant C2

of (3.40) such that if R > R0 then:

(v) The foliation above can be uniquely extended to a weakly stable CMC
foliation {S(ε, ρ)}ρ≥log ε+3 of the whole end, whose leaves’ constant
mean curvatures increase towards the infinity and tend to n− 1.

REMARK 3.4. Notice that in Theorem 3.15 all the hypersurfaces S(ε, ρ)
are automatically included in (log ε+ 2,+∞)×Σ if it holds (3.41), provided
that εR is small enough. Notice also that the mean curvature of S(ε, ρ) for
ρ = log ε+ 3 tends to −(n− 1) as ε→ 0 in according to Theorem 3.1-(4).

REMARK 3.5. We emphasize that in the theorem above we do not require
gε to have constant scalar curvature. In this sense, this theorem is more
general then the setting of Theorem 3.1, where gε is the metric obtained via
a conformal transformation of hε imposing that the scalar curvature equal to
−n(n−1). In fact it is sufficient to consider any conformal perturbation of hε
satisfying (3.39)-(3.40) in order to guarantee the existence of a CMC foliation
of the ends. Differently, it will be necessary to assume Rgε = −n(n−1) when
we will prove the Riemannian Penrose inequality (Section 4.3).

Before proving the theorem above, we recall the notion of weakly stable
foliation for the reader’s convenience.

Weakly stable hypersurfaces

An hypersurface S embedded in a Riemannian manifold is called weakly sta-
ble if the second variation of the area of S under volume preserving variations
is non-negative. Equivalently, we give this analytic definition:

Definition 3.3. Assume that S is an oriented hypersurface in a Rieman-
nian manifold (M, g) such that M \ S has a unique unbounded connected
component. Let ν be the unit normal vector pointing toward the infinity
and II(X,Y ) = −〈∇XY, ν〉 be the second fundamental form of S ⊂M . The
operator

LS := ∆S + Ric(ν, ν) + |II|2

is called Jacobi operator of S. A constant mean curvature hypersurface S
is called weakly stable iff

∫
S LS(f)fdS ≤ 0 for every f ∈ C∞(S) with∫

S fdS = 0.
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3.6.1 The model case

In this subsection we show that Theorem 3.15 easily holds replacing gε by
the model metric hε, which is the case uε = 0. Consider the hypersurface
S = {r = ρ} in the model manifold

(M,hε) := (R× Σ, dr2 + ε2φ2(r)ḡ),

where (Σ, ḡ) is compact manifold of dimension n−1 and φ(r) := (2 cosh(nr/2))2/n.
As ρ varies in R the hypersurfaces {r = ρ} provide a foliation and by Lemma
5.4 the mean curvature of S is constant and equal to (n − 1)φ−1(ρ)φ̇(ρ) =
(n − 1) tanh(nρ/2), computed with respect to the unit vector field ν = ∂r.
In particular there is a unique minimal leaf (for ρ = 0) and it is easy to

compute its area, which is equal to 2
2(n−1)
n Areaḡ(Σ)εn−1. Let us check

that S is weakly stable. On one hand, it is easy to compute the Lapla-
cian ∆S = ε−2φ−2(ρ)∆ḡ, on the other hand by Proposition 5.1

Ric(ν, ν) =
n(n− 1)

2

(
n− 2

n
tanh2

(nρ
2

)
− 1

)
while by Lemma 5.4 the second fundamental form of S is II = ε2φ(ρ)φ̇(ρ)ḡ
and therefore

|II|2 = (n− 1) tanh2
(nρ

2

)
.

By summing the last results we get the Jacobi operator of S given by

LS = ε−2φ−2(ρ)∆ḡ −
n(n− 1)

2

1

cosh2(nρ/2)

= ε−2φ−2(ρ)∆ḡ − 2n(n− 1)φ−n(ρ).

(3.42)

For every f ∈ C∞(Σ) with vanishing mean value∫
S
LS(f)f = −

∫
S
ε−2φ−2(ρ)|∇f |2 − 2n(n− 1)φ−n(ρ)f2 ≤ 0

simply integrating by parts, therefore S is weakly stable.
The idea of the proof of Theorem 3.15 is to prove an analogue of the

model case above for the conformal perturbation gε. More precisely, the
proof will be divided into two parts: we need to consider separately the
construction of the CMC foliation in a compact part of the manifold’s end
(which is faced in this section), namely points (i)-(iv) of Theorem 3.15, and
the construction on the infinity of the end (which is faced in the next),
namely point (v) of Theorem 3.15. The necessity of dividing the proof
in these two cases has already been discussed by Ambrozio in a similar
setting (cfr. [5]), where he constructed a weakly stable CMC foliation for
perturbations of asymptotically anti-de Sitter spaces.

Here is how the next subsections are organized in order to prove Theorem
3.15, except for the last point which is obtained in the next section.
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• In Subsection 3.6.2 we follow the idea of Ambrozio [5] to product CMC
hypersurfaces with the Implicit Function Theorem. This approach has
the advantage of being short and does not require too computation, it
has also the advantage of simplifying the proof that the these hyper-
surfaces provide a foliation as well as that each leaf is weakly stable.
However, with this approach we are not able to conclude the estimate
(3.41) about the location of the leaf with prescribed mean curvature.
This estimate describes how well the CMC foliation of gε approximate
the CMC foliation of the model metric hε for small ε > 0.

• For this reason we will build the same CMC foliation with a differ-
ent method. Precisely we reduce the problem to solving a fixed-point
problem. In Subsection 3.6.3 the construction of the leaf of mean cur-
vature equal to (n−1) tanh(nρ/2) is reduced to prove the convergence
of an iterative scheme of the form

L(ε, ρ)[xj+1] = ε2φ2(ρ)Q(xj ; ε, ρ) + E(xj ; ε, ρ),

where L(ε, ρ) : C 2,α(Σ, ḡ)→ C 0,α(Σ, ḡ) is a linear elliptic operator in-
ducing an isomorphism between Hölder spaces, Q(· ; ε, ρ) : C 2,α(Σ, ḡ)→
C 0,α(Σ, ḡ) is a quadratic term and E(· ; ε, ρ) : C 2,α(Σ, ḡ)→ C 0,α(Σ, ḡ)
is an error term depending on the conformal perturbation uε;

• The Subsections 3.6.4, 3.6.5 and 3.6.6 contain some preliminary results
about the operators E, L and Q respectively. Those results trigger the
iterative scheme, which is proved to converge in Subsection 3.6.7. In
this way we are able to prove the points (i) and (ii) of Theorem 3.15.

• In Subsection 3.6.8 we deal the weak stability of the leaves, proving the
point (iii) of Theorem 3.15. Finally in Subsection 3.6.9 we compute
the volume of the minimal leaf, proving the point (iv) of Theorem
3.15.

Throughout these subsections we will make large use of (3.39), while (3.40)
will be crucial in the next section, concerning the unique extension of the
foliation to the infinity.

3.6.2 Local existence

In this subsection we follow the implicit function approach of Ambrozio [5]
to show the existence of a weakly stable CMC foliation on a compact subset
of the end of the Riemannian manifold (M, gε). With this method it is easy
to prove the weak stability, however a precise information about the position
of the single leaf is missing. Such a control, as mentioned before, will be
achieved in the next subsections.
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Let I be a compact neighbourhood of [log ε+ 3,− log ε+R], for instance
we can chose

I = [log ε+ 3− 1/2,− log ε+R+ 1/2].

For every u ∈ C 2,α
δ (M,hε), for every σ ∈ I and for every x ∈ C 2,α(Σ), let

us denote by H(σ, u, x) ∈ C 0,α(Σ) the mean curvature of the hypersurface
{r = σ + x} with respect to the metric e2uhε and the unit normal vector
pointing toward r = +∞. By Lemma 5.4 one has

eu(σ+x,·)H(σ, u, x) =− φ−1(σ + x)div

(
∇x√

φ2(σ + x) + |∇x|2

)
+

(n− 1)φ̇(σ + x)√
φ2(σ + x) + |∇x|2

+ (n− 1)
∂ru(σ + x, ·)− φ−2(σ + x)〈∇u(σ + x, ·),∇x〉√

1 + φ−2(σ + x)|∇x|2
(3.43)

as equality on Σ, where all the geometric objects refers to ḡ. Consider now
the Banach spaces of functions

A :=

{
x ∈ C 2,α(Σ) s.t. −

∫
Σ
x = 0

}
and

B :=

{
y ∈ C 0,α(Σ) s.t. −

∫
Σ
y = 0

}
,

and define the C1-operator

Φ: I × C 2,α
δ (M,hε)×A→ B (3.44)

by Φ(σ, u, x) = H(σ, u, x) − −
∫

ΣH(σ, u, x). Observe that Φ(σ, u, x) = 0 if
and only if {r = σ + x} is a CMC hypersurface with respect to e2uhε. In
particular Φ(σ, 0, 0) = 0, as we noticed in Subsection 3.6.1. Let us verify
that DxΦ(σ,0,0) : A → B is an isomorphism for every σ ∈ I, so that it is
possible to apply the Implicit Function Theorem. Since v has mean value
equal to zero, a direct computation gives

DxΦ(σ,0,0)[v] = lim
t→0

1

t
(Φ(σ, 0, tv)−Φ(σ, 0, 0)) = ε−2φ−2(σ)∆ḡv−2n(n−1)φ−n(σ)v,

which is an isomorphism from A to B as mentioned. By the Implicit Func-
tion Theorem there is a C1-application x(σ, u) ∈ A uniquely determined
by the equation Φ(σ, u, x(σ, u)) = 0 in a neighbourhood of (σ, 0, 0). By
compactness of I, we can assume that x is defined in I × U , where U is
a neighbourhood of 0 ∈ C 2,α

δ (M,hε). Here is the crucial point where the
following argument can not be applied to the whole end of M but we have to
consider a parameter ρ bounded above. By construction, the hypersurface

Ŝ(u, σ) := {r = σ + x(σ, u)}
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has constant mean curvature with respect to e2uhε, but we do not know
its value and in general it may not coincide with (n− 1) tanh(nσ/2), which
is the mean curvature of {r = σ} in (M,hε). Now we choose u = uε as
in the hypothesis of Theorem 3.15. Due to (3.39) and (3.40), for small ε,
depending on I thus on R, the set I ×{uε} belongs to the domain of x. We
claim that the hypersurfaces Ŝ(uε, σ) provide a weakly stable foliation of a
compact subset of M as σ varies in I. In order to prove that it is a foliation,
it is sufficient to check that for small ε one has

∂σ(σ + x(σ, uε)) > 0. (3.45)

By continuity, this hold if ∂σ(σ+x(σ, 0)) > 0, which is trivial since x(σ, 0) =
0. Similarly, we can conclude that Ŝ(uε, σ) is weakly stable up to restrict ε
again. In fact in Subsection 3.6.1 we proved that∫

Ŝ(σ,0)
LŜ(σ,0)(f)fdŜ ≤ −c‖f‖2

L2(Ŝ(σ,0))

for every f ∈ C∞(Ŝ(σ, 0)) with zero average and some constant c = c(n,R) >
0. By continuity it holds∫

Ŝ(σ,uε)
LŜ(σ,uε)

(f)fdŜ ≤ 0

for small ε, and the claim follows. Up to now, we constructed a local weakly
stable CMC foliation but the leaf Ŝ(uε, σ) may not correspond to the hyper-
surface S(ε, σ) with constant mean curvature equal to (n − 1) tanh(nσ/2)
announced in Theorem 3.15. In the next pages we will build the CMC
hypersurfaces {S(ε, ρ)}ρ∈[log ε+3,− log ε+R] and we will use this subsection to
prove that they are a weakly stable foliation.

3.6.3 Iterative approach

Conformally to the assumption of this section, we consider the manifold
M = (2+log ε,+∞)×Σ and the metric gε defined by (3.36). Let ψ : Σ→ R
be a regular function and assume that the hypersurface {r = ρ + ψ} is
included in (M, gε). Then by Lemma 5.4 the mean curvature Hgε of this
hypersurface, which clearly depends on ρ and ψ, is given by

Hgε = e−uε(ρ+ψ,·)Hhε

+ (n− 1)e−uε(ρ+ψ,·)∂ruε(ρ+ ψ, ·)− ε−2φ−2(ρ+ ψ)〈∇ψ,∇uε(ρ+ ψ, ·)〉√
1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

,

(3.46)



CHAPTER 3. COMPLETE HYPERBOLICMETRICSWITH FUNNEL-LIKE ENDS38

where

Hhε = −ε−1φ−1(ρ+ ψ) div

(
∇ψ√

ε2φ2(ρ+ ψ) + |∇ψ|2

)

+ (n− 1)
(φ̇/φ)(ρ+ ψ)√

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

(3.47)

is the mean curvature of {r = ρ + ψ} with respect to (M,hε). As usual
the geometric quantities are computed with respect to ḡ. We recall that all
the mean curvatures are computed with respect to the unit normal vector
pointing toward r = +∞. In view of (3.46) and (3.47), the hypersurface
{r = ρ+ψ} has constant mean curvature equal to H(ρ) := (n−1)(φ̇/φ)(ρ) =
(n− 1) tanh(nρ/2) if and only if F (ψ; ε, ρ) = 0, where

F (ψ; ε, ρ) = −euε(ρ+ψ,·)√1 + ε−2φ−2(ρ+ ψ)|∇ψ|2 (Hgε −H(ρ)) .

Notice that H(ρ) is precisely the mean curvature of {r = ρ} in the model
manifold (M,hε). In what follows we explicit the equation F (ψ; ε, ρ) = 0
and we rewrite it in a smarter way with the purpose of applying a fixed-point
method to solve it. After using (3.46), we explicit Hhε in

F (ψ; ε, ρ) = −
√

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2Hhε

− (n− 1)
(
∂ruε(ρ+ ψ, ·)− ε−2φ−2(ρ+ ψ)〈∇ψ,∇uε(ρ+ ψ, ·)〉

)
+ euε(ρ+ψ,·)√1 + ε−2φ−2(ρ+ ψ)|∇ψ|2H(ρ)

expending the divergence term. This gives

F (ψ; ε, ρ) = ε−2φ−2(ρ+ ψ)∆ψ

− ε−4φ−4(ρ+ ψ)
Hessψ(∇ψ,∇ψ)

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

− ε−2φ−2(ρ+ ψ)
(φ̇/φ)(ρ+ ψ)|∇ψ|2

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

− (n− 1)(φ̇/φ)(ρ+ ψ)

− (n− 1)
(
∂ruε(ρ+ ψ, ·)− ε−2φ−2(ρ+ ψ)〈∇ψ,∇uε(ρ+ ψ, ·)〉

)
+ euε(ρ+ψ,·)√1 + ε−2φ−2(ρ+ ψ)|∇ψ|2H(ρ).

We want to linearise each line of this expression at ψ = 0 up to the first
order, except for the two last lines which involve uε and will be treated later.
This makes sense since ψ = 0 provides a solution in the model case uε = 0.
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Notice that the second and third line are quadratic in ψ. So we get

F (ψ;ε, ρ) = ε−2φ−2(ρ)∆ψ + ε−2
(
φ−2(ρ+ ψ)− φ−2(ρ)

)
∆ψ

− ε−4φ−4(ρ+ ψ)
Hessψ(∇ψ,∇ψ)

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

− ε−2φ−2(ρ+ ψ)
(φ̇/φ)(ρ+ ψ)|∇ψ|2

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

− (n− 1)(φ̇/φ)(ρ+ ψ) +H(ρ) + 2n(n− 1)φ−n(ρ)ψ +H(ρ)− 2n(n− 1)φn(ρ)ψ

− (n− 1)
(
∂ruε(ρ+ ψ, ·)− ε−2φ−2(ρ+ ψ)〈∇ψ,∇uε(ρ+ ψ, ·)〉

)
+ euε(ρ+ψ,·)√1 + ε−2φ−2(ρ+ ψ)|∇ψ|2H(ρ).

which is reorganized as

F (ψ; ε, ρ) = ε−2φ−2(ρ)∆ψ − 2n(n− 1)φn(ρ)ψ

+ ε−2
(
φ−2(ρ+ ψ)− φ−2(ρ)

)
∆ψ

− ε−4φ−4(ρ+ ψ)
Hessψ(∇ψ,∇ψ)

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

− ε−2φ−2(ρ+ ψ)
(φ̇/φ)(ρ+ ψ)|∇ψ|2

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

− (n− 1)(φ̇/φ)(ρ+ ψ) +H(ρ) + 2n(n− 1)φ−n(ρ)ψ

+ (n− 1)ε−2φ−2(ρ+ ψ)〈∇ψ,∇uε(ρ+ ψ, ·)〉
− (n− 1)∂ruε(ρ+ ψ, ·)

+ euε(ρ+ψ,·)√1 + ε−2φ−2(ρ+ ψ)|∇ψ|2H(ρ)−H(ρ).

In this way the first line is linear in ψ, from the second to the sixth line we
have terms quadratic in ψ, while the last two lines are not quadratic in ψ
but can be rearranged so that they are negligible for uε close to zero. Indeed
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we can write

F (ψ; ε, ρ) =

(
ε−2φ−2(ρ)∆− 2n(n− 1)φn(ρ)

)
ψ

+

(
ε−2

(
φ−2(ρ+ ψ)− φ−2(ρ)

)
∆ψ

− ε−4φ−4(ρ+ ψ)
Hessψ(∇ψ,∇ψ)

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

− ε−2φ−2(ρ+ ψ)
(φ̇/φ)(ρ+ ψ)|∇ψ|2

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

− (n− 1)(φ̇/φ)(ρ+ ψ) +H(ρ) + 2n(n− 1)φ−n(ρ)ψ

+ (n− 1)ε−2φ−2(ρ+ ψ)〈∇ψ,∇uε(ρ+ ψ, ·)〉

+ euε(ρ+ψ,·)H(ρ)(
√

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2 − 1)

)
+

(
(euε(ρ+ψ,·) − 1)H(ρ)− (n− 1)∂ruε(ρ+ ψ, ·)

)
.

The advantage of the formula above is that now F (ψ; ε, ρ) = 0 can be
equivalently written as

ε−2φ−2(ρ)L(ε, ρ)[ψ] = Q(ψ; ε, ρ) + ε−2φ−2(ρ)E(ψ; ε, ρ), (3.48)

where:

• We introduced the linear operator L(ε, ρ) of the second order defined
in (Σ, ḡ) by

L(ε, ρ) := ∆− 2n(n− 1)ε2φ2−n(ρ). (3.49)

Notice that ε−2φ−2(ρ)L(ε, ρ) is precisely the Jacobi operator computed
in Example ??;

• We introduced the operator

Q(ψ; ε, ρ) : = −ε−2
(
φ−2(ρ+ ψ)− φ−2(ρ)

)
∆ψ

+ ε−4φ−4(ρ+ ψ)
Hessψ(∇ψ,∇ψ)

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

+ ε−2φ−2(ρ+ ψ)
(φ̇/φ)(ρ+ ψ)|∇ψ|2

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

+ (n− 1)(φ̇/φ)(ρ+ ψ)−H(ρ)− 2n(n− 1)φ−n(ρ)ψ

− (n− 1)ε−2φ−2(ρ+ ψ)〈∇ψ,∇uε(ρ+ ψ, ·)〉

− euε(ρ+ψ,·)H(ρ)(
√

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2 − 1)

(3.50)

which is quadratic in ψ;
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• We introduced a last term E(ψ; ε, ρ) defined by

E(ψ; ε, ρ) := ε2φ2(ρ)

(
−(euε(ρ+ψ,·) − 1)H(ρ) + (n− 1)∂ruε(ρ+ ψ, ·)

)
(3.51)

which depends on ψ but is not quadratic in ψ. It has the advantage
of being small if uε is close to zero. Notice that F (0; ε, ρ) is equal to
ε−2φ−2(ρ)E(0; ε, ρ), therefore we will usual refer to E(ψ; ε, ρ) as the
error term.

We want to build a solution ψ(· ; ε, ρ) of F (ψ; ε, ρ) = 0 through the iterative
scheme {

x0 = 0,

L(ε, ρ)[xj+1] = ε2φ2(ρ)Q(xj ; ε, ρ) + E(xj ; ε, ρ).
(3.52)

To do that, we need some preliminary analytical estimates about the error
term E(· ; ε, ρ), about the linear operator L(ε, ρ) and about the quadratic
remainder Q(· ; ε, ρ). The constant appearing in the estimates for Q and E,
as we will see in the next, can not be found independently of R. Therefore,
as well as in the approach of Ambrozio, also our method does not work for
constructing a CMC foliation of the whole end at once, but we need another
argument to extend it to the infinity.

3.6.4 Control of E

The operator

E(ψ; ε, ρ) = (n− 1)ε2φ2(ρ)∂ruε(ρ+ ψ, ·)−H(ρ)ε2φ2(ρ)
(

euε(ρ+ψ,·) − 1
)

(3.53)
involves the function uε defined in (3.38) and satisfying (3.39)-(3.40). In
particular for every (n − 1)/2 < δ < n there exists C > 0 independent of
small ε > 0 such that

sup
r∈(log ε+2,− log ε−2)

sup
Σ
|uε|+ |∇uε|+ |∇2uε| < Cεn, (3.54)

where the geometric quantities are computed with respect to gcyl = ε−2φ−2(r)hε,
and

sup
t∈(−3,+∞)

sup
Σ

eδt
(
|uε|+ |∇uε|+ |∇2uε|

)
< Cεn, (3.55)

where the geometric quantities are computed with respect to dt2 + e2tḡ,
t = r + log ε. The following lemma contains two property of uε descending
from (3.54) and (3.55), stated in the setting as they will be applied.

Lemma 3.16. Let (Σ, ḡ) be a compact Riemannian manifold of dimension
n−1, n ≥ 2. For every R > 0 there exist εR > 0 and C > 0 with the following
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property. For every ε ∈ (0, εR) and for every function uε : (log ε+2,+∞)→
R of class C 2 satisfying (3.54) and (3.55), one has

‖uε(r, ·)‖C 2(Σ) < Cεn and ‖∂ruε(r, ·)‖C 1(Σ) < Cεn−1 (3.56)

for every r ∈ (log ε+ 2,− log ε+R+ 1).

Proof. In this proof (θ1, . . . , θn−1) will denote local coordinates for Σ and
∂
∂θi

will be denoted by ∂i. It is useful to separate the proof for r ∈ (log ε+
2,− log ε − 2) and then for r ∈ [− log ε − 2,− log ε + R + 1). Let us begin
assuming r ∈ (log ε + 2,− log ε − 2). In this case we introduce a new coor-
dinate ρ = ρ(r) by ρ(0) = 0 and ε−1φ−1(r)dr = dρ. With this notation we
have gcyl = dρ2 + ḡ and (3.54) implies

|uε|, |∂iuε|, |∂i∂juε|, |∂ρuε|, |∂i∂ρuε| < C1ε
n

for some C1 independent of ε and r. Since ∂r = ε−1φ−1∂ρ and since φ−1

is uniformly bounded, we got (3.56). It remains to consider the case r ∈
[− log ε − 2,− log ε + R + 1), namely t ∈ [−2, R + 1). Since in this case eδt

can be uniformly bounded in terms of R, then (3.55) implies

|uε|, |∂iuε|, |∂i∂juε|, |∂tuε|, |∂i∂tuε| < C2ε
n

for some C1 independent of ε and r. Since ∂r = ∂t, we got (3.56).

As a corollary, we have the following result.

Lemma 3.17. Let (Σ, ḡ) be a compact Riemannian manifold of dimension
n − 1, n ≥ 2. For every R > 0 there exist εR > 0 and CR > 0 with the
following property. For every ε ∈ (0, εR), for every ρ ∈ [log ε+3,− log ε+R]
and for every ψ ∈ C 2,α(Σ) satisfying ‖ψ‖C 2,α(Σ) < 1, one has

‖E(ψ; ε, ρ)‖C 1(Σ) ≤ CRεn+1,

where E(ψ; ε, ρ) is the operator defined by (3.53) with respect to a function
uε satisfying (3.54) and (3.55).

Proof. Since by definition

E(ψ; ε, ρ) := (n− 1)ε2φ2(ρ)∂ruε(ρ+ ψ, ·)−H(ρ)ε2φ2(ρ)
(

euε(ρ+ψ,·) − 1
)
,

it is sufficient to apply the previous lemma noticing that ρ+ψ lies between
log ε+ 2 and − log ε+R+ 1.

REMARK 3.6. We recall that the next goal is to build a solution ψ(· ; ε, ρ)
of Theorem 3.15 via the iterative scheme (3.52). Due to the previous lemma,
one can heuristically guess why estimate (3.41) should hold. In fact ψ has to
solve F (ψ; ε, ρ) = 0 and by the estimates of this subsection it is possible to
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show F (−cεn−1; ε, ρ) < 0 and F (cεn−1; ε, ρ) > 0 for some c > 0 independent
of ρ and ε. In other words, the constants −cεn and cεn provide respectively
a sub-solution and a super-solution for our problem. This seems to justify
the control of the exact solution in (3.41). However, we will obtain this
estimate with the iterative scheme.

3.6.5 Control of L

In this subsection we study the linear operator L(ε, ρ) defined in (3.49). It
is easy to see that in general it is not possible to have C > 0 independent
of ε such that

‖x‖C 2,α ≤ C‖y‖C 0,α ,

whenever L(ε, ρ)[x] = y. To see that, it is sufficient to take x = 1 and ε→ 0.
However, a similar bound can be obtained replacing x by x− −

∫
Σ x.

Lemma 3.18. Let (Σ, ḡ) be a compact Riemannian manifold of dimension
n−1, n ≥ 2. Then there exists C > 0 such that for every ρ ∈ R and 0 < ε < 1
the second-order elliptic operator L(ε, ρ) : C 2,α(Σ) → C 0,α(Σ) defined by
(3.49) satisfies the following property. If x ∈ C 2,α(Σ) and y ∈ C 0,α(Σ)
verify L(ε, ρ)[x] = y then∥∥∥∥x−−∫

Σ
x

∥∥∥∥
C 2,α(Σ)

≤ C‖y‖C 0,α(Σ).

Proof. Assume to prove the next Lemma 3.19, then the thesis will follow
with

κ = 2n(n− 1)ε2φ2−n(ρ),

noticing that φ2−n is uniformly bounded and so for ε < 1 we have κ < κ0

for some constant κ0 depending only on n.

Lemma 3.19. Fix κ0 > 0. Let (Σ, ḡ) be a compact Riemannian manifold
and consider the elliptic operator Lκ := ∆−κ, for some constant 0 < κ < κ0.
Then there exists C > 0 such that for every x ∈ C 2,α(Σ) and y ∈ C 0,α(Σ)
satisfying Lκx = y, one has∥∥∥∥x−−∫

Σ
x

∥∥∥∥
C 2,α(Σ)

≤ C‖y‖C 0,α(Σ).

The constant C = C(κ0) does not depend on x, y and κ.

Proof. First, we recall that by compactness of Σ and by the fact that κ > 0,
the operator ∆− κ induces an isomorphism from{

x ∈ C 2,α(Σ) s.t. −
∫

Σ
x = 0

}
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to {
y ∈ C 0,α(Σ) s.t. −

∫
Σ
x = 0

}
.

Therefore it holds∥∥∥∥x−−∫
Σ
x

∥∥∥∥
C 2,α(Σ)

≤ C1

∥∥∥∥y −−∫
Σ
y

∥∥∥∥
C 0,α(Σ)

≤ C2 ‖y‖C 0,α(Σ)

for some constant C1, C2 > 0 independent of x and y, but that a priori
can depend on κ. We can assume w.l.o.g. that Areaḡ Σ = 1. Suppose
by contradiction that κj → 0, Lκjxj = yj , ‖xj − −

∫
Σ xj‖C 2,α(Σ) = 1 and

‖yj‖C 0,α(Σ) → 0. Up to subsequence xj − −
∫

Σ xj → v in C 2. Now notice that

(∆− κj)
(
xj −−

∫
Σ
xj

)
=

Lκj

(
xj −−

∫
Σ
xj

)
= yj + κj−

∫
Σ
xj

and taking the mean integral

κj−
∫

Σ
xj = −−

∫
Σ
yj ,

so ∣∣∣∣κj−∫
Σ
xj

∣∣∣∣ ≤ −∫
Σ
|yj | ≤ ‖yj‖C 0,α(Σ) → 0.

On the other hand, taking the pointwise limit of Lκjxj = yj , we get ∆v = 0.
By compactness of Σ, the function v is constant. Moreover

−
∫

Σ
v = lim

j
−
∫

Σ
(xj −−

∫
Σ
xj) = 0,

so xj−−
∫

Σ xj → 0 in C 2(Σ). Now let {Ωk}k be a finite covering of open balls
of Σ with fixed radius equal to (injradΣ)/4 and let {Ω′k}k the covering of
Σ such that Ω′k is the ball concentric with Ωk but with radius (injradΣ)/2.
By the Schauder Interior Estimates there exists C > 0 depending only on
(Σ, ḡ) such that∥∥∥∥xj −−∫

Σ
xj

∥∥∥∥
C 2,α(Ωk)

≤ C

(∥∥∥∥yj + κj−
∫

Σ
xj

∥∥∥∥
C 0,α(Ω′k)

+

∥∥∥∥xj −−∫
Σ
xj

∥∥∥∥
C 0(Ω′k)

)
.

Taking the supremum over the covering, we get

1 = sup
{Ωk}

∥∥∥∥xj −−∫
Σ
xj

∥∥∥∥
C 2,α(Ωk)

≤ C

(
‖yj‖C 0,α(Σ) +

∣∣∣∣κj−∫
Σ
xj

∣∣∣∣+

∥∥∥∥xj −−∫
Σ
xj

∥∥∥∥
C 0(Σ)

)
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and we got a contradiction since all the terms on the right hand side tend
to zero as j → +∞.

3.6.6 Control of Q

In this subsection we prove an estimate for Q(ψ; ε, ρ). The following lemma
guarantees that if ψ ∈ C 2,α(Σ) satisfies ‖ψ‖C 2,α(Σ) = O(εn−1) and ‖ψ −
−
∫

Σ ψ‖C 2,α(Σ) = O(εn+1) as ε→ 0, then one has ‖Q(ψ; ε, ρ)‖C 0,α(Σ) = o(εn−1)
as ε → 0. Due to that we will be able to show in the next subsection that
the iterative scheme (3.52) converges.

Lemma 3.20. Let (Σ, ḡ) be a compact Riemannian manifold of dimension
n − 1, n ≥ 2. For every R > 0 there exist εR > 0 and CR > 0 with the
following property. For every ε ∈ (0, εR), for every ρ ∈ [log ε+3,− log ε+R]
and for every ψ ∈ C 2,α(Σ) satisfying ‖ψ‖C 2,α(Σ) < 1 and ‖ψ−−

∫
Σ ψ‖C 2,α(Σ) <

ε2, one has

‖Q(ψ; ε, ρ)‖C 0,α(Σ) ≤ CR
(
ε−2 ‖ψ‖C 2,α(Σ)

∥∥∥∥ψ −−∫
Σ
ψ

∥∥∥∥
C 2,α(Σ)

+

∥∥∥∥ψ −−∫
Σ
ψ

∥∥∥∥
C 2,α(Σ)

+ ‖ψ‖2C 2,α(Σ)

)
,

where Q(ψ; ε, ρ) is the operator defined by (3.50).

Proof. In this proof we assume that (θ1, . . . , θn−1) are local coordinates in
Σ and we denote ∂

∂θi
by ∂i. Also, the constants C1, C2, . . . appearing in this

proof are independent of ψ, ε and ρ, but may depend on R. In order to
simplify the computation, we decompose Q(· ; ε,m) = Q1 + Q2 + · · · + Q6

with
Q1(ψ) = −ε−2

(
φ−2(ρ+ ψ)− φ−2(ρ)

)
∆ψ,

Q2(ψ) = ε−4φ−4(ρ+ ψ)
Hessψ(∇ψ,∇ψ)

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2
,

Q3(ψ) = ε−2φ−2(ρ+ ψ)
(φ̇/φ)(ρ+ ψ)|∇ψ|2

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2
,

Q4(ψ) = (n− 1)
(

(φ̇/φ)(ρ+ ψ)− (φ̇/φ)(ρ)− 2nφ−n(ρ)ψ
)
,

Q5(ψ) = −(n− 1)ε−2φ−2(ρ+ ψ)ḡij∂iψ∂juε(ρ+ ψ, ·)

and

Q6(ψ) = −(n− 1)( ˙φ/φ)(ρ)
(√

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2 − 1
)
euε(ρ+ψ,·),

with φ(r) = (2 cosh(nr/2))2/n. Therefore it is enough to check the required
estimate separately for Q1, . . . , Q6.
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1) The C 0,α-norm of Q1(ψ) can be uniformly bounded in terms of

ε−2‖φ−2(ρ+ ψ)− φ−2(ρ)‖C 1(Σ)‖∆ψ‖C 0,α(Σ).

By Lagrange

|φ−2(ρ+ ψ)− φ−2(ρ)| = 2|φ−3(ψ∗)φ̇(ψ∗)ψ|

for some ψ∗ pointwise lying between ρ+ ψ and ρ, whereas

|∂i(φ−2(ψ + ρ)− φ−2(ρ))| = 2|φ−3(ψ)φ̇(ψ)∂iψ|.

As a consequence

‖Q1(ψ)‖C 0,α(Σ) ≤ C1ε
−2‖ψ‖C 1(Σ)‖∆ψ‖C 0,α(Σ)

≤ C2ε
−2‖ψ‖C 2,α(Σ)

∥∥∥∥ψ −−∫
Σ
ψ

∥∥∥∥
C 2,α(Σ)

;

2) The C 0,α-norm of Q2(ψ) can be uniformly bounded in terms of

ε−4‖φ−4(ρ+ψ)‖C 1(Σ)

∥∥∇2ψ
∥∥

C 0,α(Σ)
‖∇ψ‖2C 0,α(Σ)

∥∥(1 + ε−2φ−2(ρ+ ψ)|∇ψ|2)−1
∥∥

C 1(Σ)
,

which can be bounded in turn by

ε−4‖φ−4(ρ+ψ)‖C 1(Σ)

∥∥∥∥ψ −−∫
Σ
ψ

∥∥∥∥3

C 0,α(Σ)

∥∥(1 + ε−2φ−2(ρ+ ψ)|∇ψ|2)−1
∥∥

C 1(Σ)
.

We get the thesis for Q2 if we show that

‖φ−4(ρ+ψ)‖C 1(Σ) ≤ C3 and
∥∥(1 + ε−2φ−2(ρ+ ψ)|∇ψ|2)−1

∥∥
C 1(Σ)

≤ C4.

The first inequality follows from the fact that both

|φ−4(ρ+ φ)|

and

|∂i(φ−4(ρ+ φ))| = 4|φ−4(ρ+ φ) tanh(n(ρ+ ψ)/2)∂iψ|

are uniformly bounded. Here we used ‖ψ‖C 2,α(Σ) < 1. The second
inequality follows from the fact that both

|(1 + ε−2φ−2(ψ)|∇ψ|2)−1|

and∣∣∂i(ε−2φ−2(ψ)|∇ψ|2)
∣∣ ≤2

∣∣φ−2(ρ+ ψ) tanh(n(ρ+ ψ)/2)
∣∣ ε−2|∇ψ|2

+ φ−2(ρ+ ψ)ε−2|∂iḡjk∂jψ∂kψ|
+ 2φ−2(ρ+ ψ)ε−2|ḡjk∂ijψ∂kψ|

are uniformly bounded. Here we used (1 + ε−2φ−2(ψ)|∇ψ|2)−1 ≤ 1,
the uniform boundedness of the functions φ−2(r) and (φ̇/φ)(r) = (n−
1) tanh(nr/2) and the hypothesis ‖ψ − −

∫
Σ ψ‖C 2,α(Σ) < ε2;
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3) Using as in the previous points the boundedness of the functions
φ−2(r) and (φ̇/φ)(r) = tanh(nr/2) (and derivatives) as well as the uni-
form boundedness of

∥∥(1 + ε−2φ−2(ψ)|∇ψ|2)−1
∥∥

C 1(Σ)
, one concludes

that the C 0,α-norm of Q3(ψ) can be uniformly bounded in terms of
ε−2‖∇φ‖2C 0,α(Σ). The hypothesis on ψ then implies

‖Q3(ψ)‖C 0,α(Σ) ≤ C5

∥∥∥∥ψ −−∫
Σ
ψ

∥∥∥∥
C 2,α(Σ)

;

4) If one set f(r) := (n−1) tanh(nr/2), then a simple computation shows
that

Q4(ψ) = f(ρ+ ψ)− f(ρ)− f ′(ρ)ψ.

This means that Q4 is nothing but the Taylor expansion of f(ρ + ψ)
truncated to the first order. As a consequence, by Lagrange there
exists ψ∗ pointwise lying between ρ and ρ+ ψ such that

Q4(ψ) = (n− 1)f ′′(ψ∗)ψ2

= −2n2(n− 1)φ−n−1(ψ∗)φ̇(ψ∗)ψ2.

Reasoning as in the previous points, we obtain

‖Q4(ψ)‖C 0,α(Σ) ≤ C6‖ψ‖2C 2,α(Σ);

5) The C 0,α-norm of Q5(ψ) can be uniformly bounded in terms of

ε−2‖φ−2(ρ+ ψ)‖C 0,α(Σ)‖∇ψ‖C 0,α(Σ)‖∇uε(ρ+ ψ, ·)‖C 0,α(Σ).

By uniform boundedness of φ−2(r) and derivatives we deduce

‖Q5(ψ)‖C 0,α(Σ) ≤ C7ε
−2

∥∥∥∥ψ −−∫
Σ
ψ

∥∥∥∥
C 2,α(Σ)

sup
θ∈Σ
‖uε(r, ·)‖C 2(Σ)|r=ρ+ψ(θ)

Since ρ+ψ lies in (log ε+2,− log ε+R+1), we can apply Lemma 3.16.
As a consequence ‖Q4(ψ)‖C 0,α(Σ) is bounded in terms of

∥∥ψ − −∫Σ ψ
∥∥

C 2,α(Σ)
;

6) Since uε is bounded, since it holds (n − 1)| tanh(nρ/2)| < n − 1 and
since

(√
1 + x− 1

)
< x for x > 0, then for sure

|Q6(ψ)| ≤ C8ε
−2φ−2(ρ+ ψ)|∇ψ|2,

which is bounded by
∥∥ψ − −∫Σ ψ

∥∥
C 2,α(Σ)

with the same arguments of

the previous points. Dealing with the derivatives, a direct computation
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shows that

∂iQ6(ψ) = ε−2−2φ−3(ρ+ ψ)φ̇(ρ+ ψ)∂iψ|∇ψ|2√
1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

euε(ρ+ψ,·)

+ ε−2 2φ−2(ρ+ ψ)gkl∂ilψ∂kψ√
1 + ε−2φ−2(ρ+ ψ)|∇ψ|2

euε(ρ+ψ,·)

+
(√

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2 − 1
)
euε(ρ+ψ,·)∂ruε(ρ+ ψ, ·)∂iψ

+
(√

1 + ε−2φ−2(ρ+ ψ)|∇ψ|2 − 1
)
euε(ρ+ψ,·)∂iuε(ρ+ ψ, ·).

This implies

‖Q6(ψ)‖C 0,α(Σ) ≤ C9

∥∥∥∥ψ −−∫
Σ
ψ

∥∥∥∥
C 2,α(Σ)

+ C10ε
−2‖∇ψ‖3C 0(Σ)

+ C11ε
−2‖∇2ψ‖C 0(Σ)‖∇ψ‖C 0(Σ)

+ C12ε
−2‖∇ψ‖3C 0(Σ) sup

θ∈Σ
‖∂ruε(r, ·)‖C 0(Σ)|r=ρ+ψ(θ)

+ C13ε
−2‖∇ψ‖2C 0(Σ) sup

θ∈Σ
‖uε(r, ·)‖C 1(Σ)|r=ρ+ψ(θ)

≤ C14

∥∥∥∥ψ −−∫
Σ
ψ

∥∥∥∥
C 2,α(Σ)

.

The last inequality follows from the same arguments used in the pre-
vious points and Lemma 3.16.

3.6.7 Convergence of the Newton scheme

Now we are able to prove that the iterative scheme (3.52), that for simplic-
ity we report below in (3.57), converge (up to subsequence) to a solution
ψ(· ; ε, ρ) of Theorem 3.15.

Proposition 3.21. Let (Σ, ḡ) be a compact Riemannian manifold of di-
mension n − 1, n ≥ 2. For every R > 0 there exist εR > 0 and c > 0
satisfying the following property. For every ε ∈ (0, εR) and for every ρ ∈
[log ε+3,− log ε+R] the functions xj’s, j ∈ N, given by the iterative scheme{

x0 = 0,

L(ε, ρ)[xj+1] = ε2φ2(ρ)Q(xj ; ε, ρ) + E(xj ; ε, ρ),
(3.57)

satisfy∥∥∥∥xj −−∫
Σ
xj dVḡ

∥∥∥∥
C 2,α(Σ)

≤ cεn+1 and

∣∣∣∣−∫
Σ
xj dVḡ

∣∣∣∣ ≤ cεn−1. (3.58)
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Therefore, up to subsequence, xj tends to some function ψ(· ; ε, ρ) ∈ C 2(Σ)
in C 2(Σ)-norm, as j → +∞. Moreover it holds∥∥∥∥ψ −−∫

Σ
ψ dVḡ

∥∥∥∥
C 2(Σ)

≤ cεn+1 and

∣∣∣∣−∫
Σ
ψ dVḡ

∣∣∣∣ ≤ cεn−1 (3.59)

and the hypersurface in (log ε+ 2,+∞)× Σ given by

S(ε, ρ) := {(ρ+ ψ(θ; ε, ρ), θ) | θ ∈ Σ}

has constant mean curvature equal to (n− 1) tanh(nρ/2) computed with re-
spect to the metric gε defined by (3.36) and the unit normal vector pointing
toward the infinity.

Proof. In this proof it is useful to introduce x̄j := −
∫

Σ xj ∈ R. The constant
C1, C2, ... will be independent of ε, ρ and j ∈ N but may depend on R. We
also understand that all of the integrals and the Hölder norms of this proof
are computed with respect to (Σ, ḡ). First notice that for j = 0 the function
x0 = 0 satisfies the two inequalities (3.58). We are going to prove (3.58) by
induction on j, but to do so we need the preliminary estimates (3.61) and
(3.62) to establish a good choice for c and εR. The first non-trivial function
in the iterative scheme is x1 and is given by

L(ε, ρ)[x1] = E(0; ε, ρ).

Taking the mean integral, since Σ is close, we get

−2n(n− 1)ε2φ2−n(ρ)x̄1 = −
∫
E(0; ε, ρ).

By Lemma 3.17 it follows
|x̄1| ≤ C1ε

n−1.

On the other hand, Lemma 3.18 implies

‖x1 − x̄1‖C 2,α(Σ) ≤ C ‖E(0; ε, ρ)‖C 0,α(Σ)

and by Lemma 3.17 we get

‖x1 − x̄1‖C 2,α(Σ) ≤ C2ε
n+1.

We recall that both the constant which controls the error term and the
constant which controls the quadratic term depend on R and this is precisely
why we can not prove this result for ρ ∈ [log ε+ 3,+∞). By definition

L(ε, ρ)[xj+1] = E(xj ; ε, ρ) + ε2φ2(ρ)Q(xj ; ε, ρ),

it follows immediately that

L(ε, ρ)[xj+1 − x1] = E(xj ; ε, ρ)− E(0; ε, ρ) + ε2φ2(ρ)Q(xj ; ε, ρ). (3.60)
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Therefore if we assume that ‖xj − x̄j‖C 2,α(Σ) < ε2 and ‖xj‖C 2,α(Σ) < 1, then
from Lemma 3.17, Lemma 3.18 and Lemma 3.20 we get

‖(xj+1 − x̄j+1)− (x1 − x̄1)‖C 2,α(Σ)

≤ C
(
‖E(xj ; ε, ρ)‖C 0,α(Σ) + ‖E(0; ε, ρ)‖C 0,α(Σ) + ε2φ2(ρ)‖Q(xj ; ε, ρ)‖C 0,α(Σ)

)
≤ C3

(
εn+1 + ε2‖xj‖2C 2,α + ‖xj‖C 2,α‖xj − x̄j‖C 2,α + ε2‖xj − x̄j‖C 2,α

)
,

while taking the integral of (3.60) one deduces similarly that

|x̄j+1 − x̄1|
≤ C4

(
εn−1 + ‖xj‖2C 2,α + ε−2‖xj‖C 2,α‖xj − x̄j‖C 2,α + ‖xj − x̄j‖C 2,α

)
.

We have proved that it holds{
|x̄1| ≤ C5ε

n−1

‖x1 − x̄1‖C 2,α ≤ C6ε
n+1

(3.61)

and that if it holds ‖xj − x̄j‖C 2,α(Σ) < ε2 and ‖xj‖C 2,α(Σ) < 1 for every
j ≥ 1, then
|x̄j+1| ≤ |x̄j+1 − x̄1|+ |x̄1|

≤ C7

(
εn−1 + ‖xj‖2C 2,α + ε−2‖xj‖C 2,α‖xj − x̄j‖C 2,α + ‖xj − x̄j‖C 2,α

)
,

‖xj+1 − x̄j+1‖C 2,α ≤ ‖(xj+1 − x̄j+1)− (x1 − x̄1)‖C 2,α + ‖x1 − x̄1‖C 2,α

≤ C8

(
εn+1 + ε2‖xj‖2C 2,α + ‖xj‖C 2,α‖xj − x̄j‖C 2,α + ε2‖xj − x̄j‖C 2,α

)
.

(3.62)
The constants C1, . . . , C8 do not depend on j since they do not depend on
the function xj . Now we can prove (3.58) by induction choosing c = c(R) =
C5 + C6 + 2C7 + 2C8 and εR > 0 small enough so that

2c2εn−1 + c2εn+3 + 3c2εn+1 + cε2 < 1.

In fact this guarantees |x̄1| < cεn−1 and ‖x1 − x̄1‖C 2,α < cεn+1, and if
we assume that (3.58) holds for j then it holds ‖xj − x̄j‖C 2,α(Σ) < ε2 and
‖xj‖C 2,α(Σ) < 1, and then

|x̄j+1| ≤ C7

(
εn−1 + ‖xj‖2C 2,α + ε−2‖xj‖C 2,α‖xj − x̄j‖C 2,α + ‖xj − x̄j‖C 2,α

)
≤ c

2

(
εn−1 + c2(εn−1 + εn+1)2 + ε−2c(εn−1 + εn+1)cεn+1 + cεn+1

)
=
c

2
εn−1

(
1 + 2c2εn−1 + c2εn+3 + 3c2εn+1 + cε2

)
< cεn−1.

Similarly we obtain

‖xj+1−x̄j+1‖C 2,α(Σ) ≤
c

2
εn+1

(
1 + 2c2εn−1 + c2εn+3 + 3c2εn+1 + cε2

)
< cεn+1.
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This proves (3.58) by induction. Then it is sufficient to apply Ascoli-Arzelà
and, up to subsequence, xj → ψ(· ; ε, ρ) in C 2(Σ) as j → ∞ and it holds
(3.59). Moreover, passing to the limit from (3.57), the function ψ verify

L(ε, ρ)[ψ] = ε2φ2(ρ)Q(ψ; ε, ρ) + E(ψ; ε, ρ)

and this is equivalent to say that S(ε, ρ) has constant mean curvature equal
to H(ρ) = (n− 1) tanh(nρ/2) with respect to gε.

3.6.8 Weak stability

Due to the convergence of the iterative scheme in the previous subsection,
we built hypersurfaces S(ε, ρ) = {r = ρ+ψ(· ; ε, ρ)} in (M,hε) with constant
mean curvature equal to (n−1) tanh(nρ/2) satisfying Theorem 3.15-(i),(ii).
In this subsection we prove that it also holds Theorem 3.15-(iii) and we will
make use of the arguments and notation of Subsection 3.6.2. First we notice
that since S(ε, ρ) has constant mean curvature with respect to gε = e2uεhε,
then it holds

Φ

(
ρ+−

∫
Σ
ψ(· ; ε, ρ), uε, ψ(· ; ε, ρ)−−

∫
Σ
ψ(· ; ε, ρ)

)
= 0.

By (3.41) and (3.39), up to reduce εR, we can suppose that the function
x(σ, uε) ∈ C 2,α(Σ) introduced in Subsection 3.6.2 is defined for

σ := ρ+−
∫

Σ
ψ(· ; ε, ρ),

for every ρ ∈ [log ε+3,− log ε+R]. But we know that the x = x(σ, uε) is (lo-
cally) the unique C 2,α(Σ)-function with zero average for which Φ(σ, uε, x) =
0 by the implicit function theorem. Since for small εR the function ψ is close
to zero, then this implies

S(ε, ρ) = Ŝ

(
uε, ρ+−

∫
Σ
ψ(· ; ε, ρ)

)
.

Namely, we showed that every single hypersurface S(ε, ρ) coincides with a
leaf of the foliation formed by the Ŝ(uε, σ)’s. This implies the weak sta-
bility for the S(ε, ρ)’s. On the other hand two different hypersurfaces of
the S(ε, ρ)’s can not correspond to the same leaf of the foliation formed by
the Ŝ(uε, σ)’s since they have different mean curvatures. Moreover S(ε, ρ)
depends continuously on the parameter ρ, so we deduce that the S(ε, ρ)’s
hypersurfaces provide a foliation of a compact subset of (M,hε), coinciding
with a part of the foliation constructed in Subsection 3.6.2, and the point
(iii) of Theorem 3.15 follows.
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3.6.9 The volume of the leaves

In this subsection we prove Theorem 3.15-(iv), which is the estimate for the
area of the minimal leaf S(ε, 0) in terms of εn−1. Notice that the volume form
of hε can be obtained multiplying the volume form of gε by enuε , therefore

|Areagε(S)−Areahε(S)| ≤
(

max
S
|enuε − 1|

)
Areahε(S) (3.63)

for every hypersurface S. Using (3.39), in particular we deduce that

(1− Cεn)Areahε(S(0, ε)) ≤ Areagε(S(0, ε)) ≤ (1 + Cεn)Areahε(S(0, ε))

for some C > 0 independent of ε. Since S(0, ε) has zero mean curvature, it
is a local minimum for Areagε in a neighbourhood of {r = 0}. On the other
hand, by construction gε = e2uεhε and the hypersurface {r = 0} is a (global,
as we will see in the next section) minimum for Areahε . This implies

(1− Cεn)Areahε({r = 0}) ≤ (1− Cεn)Areahε(S(ε, 0)) ≤ Areagε(S(ε, 0))

Areagε(S(ε, 0)) ≤ Areagε({r = 0}) ≤ (1 + Cεn)Areahε({r = 0}).

We just shown that Areagε(S(ε, 0)) is comparable with Areahε({r = 0}). A

rapid computation shows that the last quantity is equal to 2
2(n−1)
n Areaḡ(Σ) εn−1,

as we wanted to prove.
In dimension n = 3 this estimate on the area of the minimal leaf can be

improved with a sharper estimate, namely the Riemannian Penrose inequal-
ity of Section 4.3. Precisely, in this setting it will follow Areagε(S(ε, 0)) <
24/3Areaḡ(Σ) ε2.

3.7 Extension of the foliation to the infinity

In this subsection we will prove the delicate point (v) of Theorem 3.15. In
a similar situation, involving the construction of a CMC foliation near the
infinity of asymptotically Anti-de Sitter manifolds, Ambrozio [5] adapted the
mean curvature approach of Rigger [77] for the existence and the approach
of Neves and Tian [73] for the uniqueness. Differently, we will adapt a
variational approach.

Since we are going to study the infinity of (M, gε), it will be useful to
work with the coordinate t = r+ log ε ∈ (2 log ε+ 2,+∞). With this choice

gε = euεhε = euε(t,θ)
(
dt2 + e2t(1 + εne−nt)4/nḡ

)
,

for every (t, θ) ∈ (2 log ε + 2,+∞) × Σ. We recall that by the inequality
(3.40) we know that for every (n − 1)/2 < δ < n there exists C > 0 such
that

sup
t∈(−3,+∞)

sup
Σ

eδt
(
|uε|+ |∇uε|+ |∇2uε|

)
< Cεn, (3.64)
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where the geometric quantities are computed with respect to dt2 + e2tḡ.
However, as it will be clearer in next of this subsection, it would be sufficient
that (3.64) holds for some δ > n − 1 in order to guarantee the existence of
a foliation near the infinity of gε.

Suppose that it holds the following lemma:

Lemma 3.22. Let (Σ, ḡ) be a compact Riemannian manifold of dimension
n − 1, n ≥ 2. There exist T > 0 (large) with the following property. For
every ε ∈ (0, 1) the manifold (2 log ε+ 2,+∞)×Σ equipped with the metric

e2uε(t,θ)
(
dt2 + e2t(1 + εne−nt)4/nḡ

)
,

where uε is a smooth function satisfying (3.64) for some δ > n−1, admits a
unique weakly stable foliation by CMC hypersurfaces {S(t, ε)}t≥T such that
every leaf S(τ, ε) is the graph of the function t = τ +x for some x ∈ C∞(Σ)
with zero average and ‖x‖C 2,α(Σ) < 1. The (constant) mean curvature of
S(t, ε), which is computed with respect to the normal vector pointing toward
the infinity, strictly increase as t→ +∞ and tends to n− 1.

Then it follows Theorem 3.15-(v). Indeed it is sufficient to apply the
lemma above to (M, gε) and then Theorem 3.15-(i),(ii),(iii) with R > T and
ε < min{εR, 1}. This causes an overlapping of the foliations provided by
these two mentioned results. By uniqueness, the foliation near the infinity
provided by Lemma 3.22 must be an extension of the compact foliation
provided by Theorem 3.15-(i),(ii),(iii), and the claim would follow. Hence
the aim of this section is to prove Lemma 3.22. The proof is so organized:

• First we fix a function x ∈ C 2,α(Σ) with zero mean value and we
compute the area Vτ,ε(x) of the hypersurface {t = τ + x} with respect
to gε = euε(t,θ)

(
dt2 + e2t(1 + εne−nt)4/nḡ

)
, then we compare it with

the area Wτ,ε(x) of the same hypersurface computed with respect to
the model metric hε = dt2 + e2t(1 + εne−nt)4/nḡ;

• Then we check that x = 0 is a regular minimum for Wτ,ε(x) and that
the convexity of Wτ,ε at x = 0 does not degenerate as τ grows;

• Then we observe that the operator Vτ,ε −Wτ,ε converges to zero as
τ → +∞ up to the second order, uniformly for bounded and positive
ε;

• We use the previous convergence to deduce that Vτ,ε has a unique
minimum x(· ; τ, ε), so that S(τ, ε) = {t = τ + x(· ; τ, ε)} is the unique
hypersurface with constant mean curvature of the form {t = τ + x}.
Finally we check that for large τ the just built family of the CMC
hypersurfaces {S(τ, ε)}τ provides the unique CMC foliation required.
In particular, we discuss why these hypersurfaces form a smooth folia-
tion, why they are weakly stable and why the mean curvatures of the
leaves increase toward the infinity and tend to n− 1.
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3.7.1 Zero-order estimates

We will assume w.l.o.g. that Areaḡ(Σ) = 1. It is well known that a generic
hypersurface of type {t = τ +x}, where x : Σ→ R is a regular function with
zero average, has constant mean curvature with respect to gε if and only if
x minimize the area functional relative to the metric gε. In the following,
we will set

hε = dt2 + e2tξ2(t)ḡ, ξ(t) := (1 + ε2e−nt)2/n

so that gε = e2uεhε. Notice that ξ depends on ε, however it will be clear
in the next computation that what counts is its convergence to 1 as t →
+∞ uniformly for bounded and positive ε. Let S = {t = τ + x} be an
hypersurface in (2 log ε+2,+∞)×Σ and assume x ∈ C 2,α(Σ) with −

∫
Σ x = 0.

Then the volume form induced by hε on S is

dVS =
√

det(∂ix∂jx+ e2(τ+x)ξ2(τ + x)ḡij) dθ
1 . . . dθn−1,

where (θ1, . . . , θn−1) are local coordinates for Σ and we set for simplicity
∂i := ∂

∂θi
. By the matrix determinant lemma, we get

dVS =
√

1 + e−2(τ+x)ξ−2(τ + x)|∇x|2 e(n−1)(τ+x)ξn−1(τ + x)dVḡ

= e(n−2)(τ+x)ξn−2(τ + x)
√

e2(τ+x)ξ2(τ + x) + |∇x|2ḡ dVḡ.

Therefore the area Wτ,ε(x) of the hypersurface {t = τ + x} computed with
respect to hε is given by

Wτ,ε(x) =

∫
Σ

e(n−2)(τ+x)ξn−2(τ + x)
√

e2(τ+x)ξ2(τ + x) + |∇x|2ḡ dVḡ. (3.65)

Similarly one can compute the area Vτ,ε(x) of the hypersurface {t = τ + x}
with respect to gε obtaining

Vτ,ε(x) =

∫
Σ

enuε(τ+x,θ)e(n−2)(τ+x)ξn−2(τ+x)
√

e2(τ+x)ξ2(τ + x) + |∇x|2ḡ dVḡ.

(3.66)
One easily notice that x = 0 is a global minimum for Wτ,ε among the
functions with zero average, in fact etξ(t) is convex and using the Jensen
inequality one has

Wτ,ε(x) ≥
∫

Σ
e(n−1)(τ+x)ξn−1(τ + x)dVḡ

≥ e(n−1)
∫
Σ(τ+x)dVḡξn−1

(∫
Σ

(τ + x)dVḡ

)
= e(n−1)τξn−1(τ) = Wτ,ε(0)
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with equality if and only if x = 0. This fact confirms that the slices {t =
const.} have constant mean curvature with respect to hε.

We will assume the operators above to be defined on the functional space

A :=

{
x ∈ C 2,α(Σ) s.t. −

∫
Σ
x = 0

}
,

and sometimes we will restrict the domain to A1, which is the closed ball
of A with radius equal to 1 in the C 2,α(Σ)-norm. As first step, we check
that Vτ,ε well approximates Wτ,ε for large τ , uniformly in ε. In the next
subsections we will extend this result up to the second order.

Lemma 3.23. In the setting of this section, one has

lim
τ→+∞

sup
ε∈(0,1)

sup
x∈A1

|Vτ,ε(x)−Wτ,ε(x)| = 0.

Proof. Since x is bounded in C 2,α(Σ) and since ξ(t) is also bounded for t→
+∞, we can conclude that both eτ+xξ(τ+x) and

√
e2(τ+x)ξ2(τ + x) + |∇x|2ḡ

are positive quantities bounded by 2eτ+x. Then subtracting (3.65) from
(3.66) we infer that

|Vτ,ε(x)−Wτ,ε(x)| ≤ 2n−1

∫
Σ

∣∣∣enuε(τ+x,θ) − 1
∣∣∣ e(n−1)(τ+x) dVḡ.

In view of the hypothesis (3.64), we have |enuε(τ+x,·) − 1| < 2e−δ(τ+x). It
follows

|Vτ,ε(x)−Wτ,ε(x)| ≤ 2n
∫

Σ
e(n−1−δ)(τ+x) dVḡ.

We got the thesis for boundedness of x and the hypothesis n−1−δ < 0.

3.7.2 First-order estimates

In order to avoid long lines in the next formulas, we introduce the shorter
notation

I = eτ+xξ(τ+x), J =
√

e2(τ+x)ξ2(τ + x) + |∇x|2ḡ and K = [1+ξ−1ξ′](τ+x).

(3.67)
In this way (3.65) and (3.66) become

Wτ,ε(x) =

∫
Σ
In−2J dVḡ and Vτ,ε(x) =

∫
Σ
In−2J enuε(τ+x,θ) dVḡ. (3.68)

Using thatDIx[v] = IKv andDJx[v] = J−1(I2K+ḡ(∇x,∇v)), for every x ∈
A1 the Fréchet differential of Vτ,ε at x is the linear operator D(Vτ,ε)x : A→ R
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given by

D(Vτ,ε)x[v] = n

∫
Σ
In−2Jenuε(τ+x,·)∂ruε(τ + x, ·)v dVḡ

+ (n− 2)

∫
Σ
In−2JKenuε(τ+x,·)v dVḡ

+

∫
Σ
InJ−1Kenuε(τ+x,·)v dVḡ

+

∫
Σ
In−2J−1enuε(τ+x,·)ḡ(∇x,∇v) dVḡ.

(3.69)

Similarly, the Fréchet differential of Wτ,ε at x is given by

D(Wτ,ε)x[v] = (n− 2)

∫
Σ
In−2JKv dVḡ

+

∫
Σ
InJ−1Kv dVḡ

+

∫
Σ
In−2J−1ḡ(∇x,∇v) dVḡ

(3.70)

and can be obtained by formula for D(Vτ,ε) replacing uε by zero. Notice
that D(Wτ,ε)0[v] = 0 for every v ∈ A, and this follows from the observation
that x = 0 is a global minimum for Wτ,ε. The following lemma shows that
D(Vτ,ε) well approximates D(Wτ,ε) for large τ , uniformly in ε.

Lemma 3.24. In the setting of this section, one has

lim
τ→+∞

sup
ε∈(0,1)

sup
x∈A1

sup
‖v‖C2,α(Σ)=1

|D(Vτ,ε)x[v]−D(Wτ,ε)x[v]| = 0.

Proof. As observed in the proof of Lemma 3.23, both I and J are positive
quantities bounded by 2eτ+x. Subtracting (3.70) from (3.69) and using the
boundedness of x and v, we easily get

|D(Vτ,ε)x[v]−D(Wτ,ε)x[v]| ≤ n2n−1

∫
Σ

e(n−1)(τ+x)enuε(τ+x,·)|∂ruε(τ + x, ·)| dVḡ

+ (n− 2)2n−1

∫
Σ

e(n−1)(τ+x)K|enuε(τ+x,·) − 1| dVḡ

+ 2n
∫

Σ
en(τ+x)J−1K|enuε(τ+x,·) − 1| dVḡ

+ 2n−2

∫
Σ

e(n−2)(τ+x)J−1|enuε(τ+x,·) − 1| dVḡ.

(3.71)

Since ξ(t)→ 1 and ξ′(t)→ 0 as t→ +∞, we can observe that 0 < K < 2 and
0 < J−1 < 2e−(τ+x). Moreover by (3.64) we have deduce |enuε(τ+x,·) − 1| <
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2e−δ(τ+x), |∂ruε(τ + x, ·)| < 2e−δ(τ+x) and |enuε(τ+x,·)| < 2. The previous
estimates imply

|D(Vτ,ε)x[v]−D(Wτ,ε)x[v]| ≤ c(n)

∫
Σ

e(n−1−δ)(τ+x) dVḡ. (3.72)

for some constant c(n) > 0. We got the thesis for boundedness of x and the
hypothesis n− 1− δ < 0.

3.7.3 Second-order estimates

Now we want to consider a further differentiation and study the bilinear and
symmetric operators D2(Wτ,ε)x, D

2(Vτ,ε)x : A×A→ R. We have

D2(Vτ,ε)x[v, w] =

2n

∫
Σ

(
(n− 2)In−2J + InJ−1

)
Kenuε(τ+x,·)∂ruε(τ + x, ·)vw dVḡ

+ n

∫
Σ
In−2J−1 enuε(τ+x,·)∂ruε(τ + x, ·) (ḡ(∇x,∇w)v + ḡ(∇x,∇v)w) dVḡ

+ n

∫
Σ
In−2J enuε(τ+x,·) [n(∂ruε(τ + x, ·))2 + ∂2

ruε(τ + x, ·)
]
vw dVḡ

+

∫
Σ
In−2

(
(n− 2)2JK2 + 2(n− 1)I2J−1K2 + (n− 2)JDK + I2J−1DK

)
enuε(τ+x,·)vw dVḡ

+ (n− 2)

∫
Σ
In−2J−1Kenuε(τ+x,·)(ḡ(∇x,∇w)v + ḡ(∇x,∇v)w) dVḡ

−
∫

Σ
In−2J−3 enuε(τ+x,·)(I2Kv + ḡ(∇x,∇v))(I2Kw + ḡ(∇x,∇w)) dVḡ

+

∫
Σ
In−2J−1 enuε(τ+x,·)ḡ(∇w,∇v) dVḡ

(3.73)

and, replacing uε by zero, we also get

D2(Wτ,ε)x[v, w] =∫
Σ
In−2

(
(n− 2)2JK2 + 2(n− 1)I2J−1K2 + (n− 2)JDK + I2J−1DK

)
vw dVḡ

+ (n− 2)

∫
Σ
In−2J−1K(ḡ(∇x,∇w)v + ḡ(∇x,∇v)w) dVḡ

−
∫

Σ
In−2J−3(I2Kv + ḡ(∇x,∇v))(I2Kw + ḡ(∇x,∇w)) dVḡ

+

∫
Σ
In−2J−1ḡ(∇w,∇v) dVḡ.

(3.74)
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In the above equation we introduced the short notation DK := [−ξ−2(ξ′)2 +
ξ−1ξ′′](τ + x) so that DKx[w] = DKw. It is important to point out that in
particular for every τ ∈ R large enough and for every ε ∈ (0, 1) we have

D2(Wτ,ε)0[v, w] = (n− 1)e(n−1)τξn−1(τ)
[
(n− 1)K2 +DK

]
x=0

∫
Σ
vw dVḡ

+ e(n−3)τξn−3(τ)

∫
Σ
ḡ(∇w,∇v) dVḡ ≥

∫
Σ
vw dVḡ,

(3.75)

namely the convexity of Wτ,ε at its minimum x = 0 does not degenerate to
zero as τ → +∞.

Similarly to the two previous subsections, we show that D2(Vτ,ε) well
approximates D2(Wτ,ε) for large τ , uniformly in ε.

Lemma 3.25. In the setting of this section, one has

lim
τ→+∞

sup
ε∈(0,1)

sup
x∈A1

sup
‖v‖C2,α(Σ)=1

sup
‖w‖C2,α(Σ)=1

|D2(Vτ,ε)x[v, w]−D2(Wτ,ε)x[v, w]| = 0.

Proof. This computation is very similar to the proves of Lemmas 3.23 and
3.24, but has longer expressions. For this reason we omit the computation,
but we recall how this result can be obtained. First one subtract (3.74) from
(3.73). Then one has to recall that:

• The quantity I = eτ+xξ(τ+x) satisfies 0 < I < 2eτ+x for boundedness
of ‖x‖C 2,α(Σ) and of ξ(t) = (1 + ε2e−nt)2/n as t→ +∞;

• The quantity J =
√

e2(τ+x)ξ2(τ + x) + |∇x|2ḡ satisfies 0 < J < 2eτ+x

for the same arguments above, and 0 < J−1 < 2e−(τ+x) for bounded-
ness of ξ−1(t) as t→ +∞;

• The quantities K = [1+ξ−1ξ′](τ+x) and DK = [−ξ−2ξ′+ξ−1ξ′′](τ+x)
satisfy 0 < K,DK < 2 for boundedness of ‖x‖C 2,α(Σ) and the fact that
ξ(t)→ 1, ξ′(t)→ 0 and ξ′′(t)→ 0 as t→ +∞;

• In view of the hypothesis (3.64), we have

|enuε(τ+x,·) − 1|, |∂ruε(τ + x, ·)|, |∂2
ruε(τ + x, ·)| < 2e−δ(τ+x),

and |enuε(τ+x,·)| < 2.

With these observations, one get

|D2(Vτ,ε)x[v, w]−D2(Wτ,ε)x[v, w]| ≤ c(n)

∫
Σ

e(n−1−δ)(τ+x) dVḡ. (3.76)

exactly as in the zero-order and first-order estimates. We got the thesis for
boundedness of x and the hypothesis n− 1− δ < 0.
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3.7.4 Construction of the CMC foliation

From Lemma 3.23, Lemma 3.24 and Lemma 3.25, we obtain that

lim
τ→+∞

sup
ε∈(0,1)

‖Vτ,ε −Wτ,ε‖C 2(A1,R) = 0, (3.77)

which is the uniform convergence of Vτ,ε −Wτ,ε to zero up to the second
order as τ → +∞, uniformly in ε. On the other hand we observed before
that Wτ,ε admits a unique regular minimum x = 0 and that the convexity of
Wτ,ε at this minimum does not degenerate as τ → +∞. As a consequence
there exists T > 0 such that for τ > T and ε ∈ (0, 1) the functional Vτ,ε
admits a unique minimum x(· ; τ, ε) in A1 which converges to 0 as τ grows,
namely

‖x(· ; τ, ε)‖C 2,α(Σ) → 0 as τ → +∞ (3.78)

for every ε ∈ (0, 1). Notice that x(· ; τ, ε) is actually smooth on Σ since
resolves the second-order elliptic PDE D(Vτ,ε)x = 0. This also implies that
x(· ; τ, ε) is regular in τ and ε and as a consequence ‖∂τx(· ; τ, ε)‖C 2,α(Σ) → 0
as τ → +∞.

The hypersurface S(τ, ε) := {t = τ + x(· ; τ, ε)} has been constructed
with the property of having constant mean curvature. We want to check
that they provide a weakly stable CMC foliation of the infinity, with strictly
increasing mean curvatures tending to n − 1 as the leaves approach the
infinity. This is done using the considerations of the previous subsection:
essentially it will be enough to check these properties for the model manifold
(M,hε) and consider τ > T for T large enough. Indeed, if T is large enough
then: From the observations of the previous subsection, if T is large enough
then:

• the family {S(τ, ε)}τ>T is a foliation, in fact it holds ∂τ (τ+x(· ; τ, ε)) >
0;

• every leaf S(τ, ε) is weakly stable. This can be proved with the same
arguments that we used for the foliation of the compact subset of the
end. In fact the Jacobi operator of S(τ, ε) approximates the Jacobi
operator of {t = τ} in hε for large τ , and this last example is weakly
stable (cfr. Subsection 3.6.1);

• the mean curvature of S(τ, ε) computed with respect to gε is strictly
increasing and tends to n − 1 as τ → +∞. In fact it is sufficient
to notice that the same statement holds for the slices {t = τ} with
respect to hε, as a consequence of Lemma 5.4.

This concludes the proof of Lemma 3.22.
We conclude this subsection with an observation about the precise value

of the mean curvature of every leaf S(τ, ε), in the spirit of the previous
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section. We recall that we just know that the mean curvature of S(τ, ε) is
constant and that this value increase to n− 1 as τ → +∞. Therefore once
fixed the leaf S(τ, ε) there exists a unique ρ = ρ(τ, ε) ∈ R such that the mean
curvature of S(τ, ε) is (n− 1) tanh(nρ/2). If we set ψ := τ + x(·; τ, ε)− ρ−
log ε, then S(τ, ε) can be written as {r = ρ+ψ}, with t = r+ log ε, and the
last is written with the notation used for building the local CMC foliation
in the previous section. In fact with the argument above we are able to find
for every ρ ∈ R (large enough) the correspondent CMC leaf with constant
mean curvature equal to (n − 1) tanh(nρ/2), which can be written in the
form {r = ρ+ ψ(·; ε, ρ)}. Studying the correspondence ρ = ρ(τ, ε), one can
observe that (3.78) is equivalent to

‖ψ(· ; ε, ρ)‖C 2,α(Σ) → 0 as ρ→ +∞. (3.79)



Chapter 4

Physical applications

4.1 Einstein’s constraint equations

In the 1916 Einstein published the well-known formula

Ricγ −
1

2
Rγγ + Λγ = 8πGT (4.1)

to model our 4-dimensional pseudo-Riemannian spacetime (M, γ) of signa-
ture (−,+,+,+). In the above Einstein’s field equation (4.1), G denotes
the Newton’s constant of gravitation, Λ denotes the cosmological constant
and T is the energy-momentum tensor, usually depending on γ. In general,
it is very difficult to find solutions of (4.1), which is a set of ten non-linear
equations on the metric coefficients and their derivatives (actually only six
of them are linearly independent, since we have four degrees of freedom
to make coordinate transformations). A fruitful method to build examples
of solutions is the Cauchy formulation (or method by initial data), whose
origins descend from different works of Choquet-Bruhat and Geroch in the
60’s. The idea of this method is to build the space-time beginning from a
space-like embedded hypersurface with prescribed metric and extrinsic cur-
vature. Before introducing this method, we recall some important examples
of Einstein’s spacetimes.

4.1.1 Famous solutions of the Einstein’s field equation

Here it is a crude list of remarkable solutions of (4.1) in the vacuum case
T = 0. The first three examples are usually used to describe the infinity of
our universe. The main difference between this three models is connected
with the sign of the cosmological constant Λ.

• The Minkowski spacetime is the simplest example of Einstein’s space-
time (Λ = 0). It is defined as R4 equipped with the flat Lorentzian
metric γ = −dt2+dx2+dy2+dz2. This metric can be also presented in

61
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a double-warped form (using spherical coordinates, which are smooth
on R4 but the origin) as

γ = −dt2 + dr2 + r2gS2 .

This is an example of static universe, namely all the slices {t = const.}
are metrically equal.

• The de Sitter spacetime can be regarded as an example of Einstein’s
spacetime in the vacuum case (Λ = 3) since it satisfies Ricγ = 3γ. It
is topologically R× S3 and the metric is given by

γ = −dt2 + cosh2(t)[dr2 + sin2(r)gS2 ]

with singularities descending from the choice of the coordinates. It is
possible to consider rescaling of this metric to have solutions of the
vacuum Einstein’s field equation with arbitrary positive cosmological
constant.

• Similarly as the previous point, the anti-de Sitter spacetime can be
regarded as an example of Einstein’s spacetime in the vacuum case
(Λ = −3) since it satisfies Ricγ = −3γ. It is topologically S1×R3 and
the metric is given by

γ = −dt2 + cos2(t)[dr2 + sinh2(r)gS2 ]

with singularities descending from the choice of the coordinates. In
particular, with a change of coordinate the singularities at t = ±π

2 turn
out to be apparent, and the anti-de Sitter spacetime can be written in
the static form

γ = − cosh2(r)dt′2 + dr2 + sinh2(r)gS2 .

It is possible to consider rescaling of this metric to have solutions of the
vacuum Einstein’s field equation with arbitrary negative cosmological
constant.

While the Minkowski, de Sitter and anti-de Sitter spacetimes can be used to
describe the distribution of matter for the large scale universe (and in fact
a good property for general Einstein spacetimes is the one of being asymp-
totically close to these three models), there are other important spacetimes
which are usually used to describe the local geometry of the universe. The
following examples share the asymptotic behaviour of the three cases con-
sidered above, but are drastically different in a compact zone.

• The Schwarzschild is the unique solution of the Einstein’s field equa-
tion (with Λ = 0) describing a spherically symmetric empty (T = 0)
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spacetime around a spherical symmetric massive body. It is static and
given by

γ = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2gS2 .

Here the constant m > 0 represents the gravitational mass. This
metric is defined for r > 2m and present an apparent singularity at
r = 2m which depends on the choice of the coordinates. Notice that
as r → +∞ this metric approximate the Minkowski spacetime.

• The Schwarzschild-de Sitter spacetime (resp. Schwarzschild-anti de
Sitter) generalizes the Schwarzschild metric for Einstein’s spacetime
with positive (resp. negative) cosmological constant Λ. They are de-
fined as

γ = −
(

1− Λ

3
r2 − 2m

r

)
dt2 +

(
1− Λ

3
r2 − 2m

r

)−1

dr2 + r2gS2

for 1− Λ
3 r

2− 2m
r > 0. Despite the Schwarzschild-de Sitter and anti-de

Sitter spacetimes can be described with the same formula, the sign of
Λ drastically changes the metrical structure of the space.

• Further generalizations of the metrics above are given by

γ = −
(
k − Λ

3
r2 − 2m

r

)
dt2 +

(
k − Λ

3
r2 − 2m

r

)−1

dr2 + r2gB

where (B, gB) is a 2-dimensional Riemannian manifold with constant
sectional curvature equal to k, replacing the sphere of the previous
point.

Finally, we want to focus the attention on a very special class of solutions.
We observe that the spacetime R× R× T 2 equipped with

γε = −ε
2 sinh2(3r/2)

cosh2(3r/2)
dt2 + dr2 + ε2 (2 cosh(3r/2))4/3 gT 2 ,

where ε is a positive real number and gT 2 is a flat metric defined on a torus
T 2, provides a solution of (4.1) with Λ = −3. To see that, it is sufficient to
set m := 2ε3 and r′ := ε(2 cosh(3r/2))2/3, then we have

γε = −
(
r′2 − 2m

r′

)
dt2 +

(
r′2 − 2m

r′

)−1

dr′2 + r′2gT 2 ,

which falls inside the last example of spacetimes introduced above. Similarly,
we can consider the Einstein’s solution

γ0 = −r2dt2 + r−2dr2 + r2gT 2
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and set r = e−s, so that

γ0 = −e−2sdt2 + ds2 + e−2sgT 2 .

The time-slices {t = const.} of γε and γ0 are respectively the funnel-like
ends and the cusps of dimension n = 3 considered in this text.

4.1.2 The Einstein’s constraint equations

In this subsection we present a famous method to build solutions (M, γ) of
the Einstein’s field equation (4.1) of arbitrary dimension n + 1 ≥ 3. Con-
sider any space-like hypersurface (M, g) embedded in a Lorentzian manifold
(M, γ) of signature (1, n) and let g and II denote the induced norm and the
second fundamental form induced on M respectively. Fix p ∈ M and let
(ν, ∂1, . . . , ∂n) be an orthonormal frame for TpM such that ∂i is tangent to
M for i = 1, . . . , n. By the Gauss, Codazzi and Mainardi equations one can
compute that

Ricγ(ν, ν)− 1

2
Rγγ(ν, ν) = Ricγ(ν, ν) +

1

2
Rγ =

1

2

(
Rg + (trgII)

2 − |II|2g
)

and that

Ricγ(ν, ∂i)−
1

2
Rγγ(ν, ∂i) = Ricγ(ν, ∂i) = gkj∇jIIik − gjk∇iIIjk.

In particular if (M, γ) is an Einstein spacetime in the sense that it solves
(4.1), then the last formulas imply that

1

2

(
Rg + (trgII)

2 − |II|2g
)
− Λ = 8πGT (ν, ν)

and
gkj∇jIIik − gjk∇iIIjk = 8πGT (ν, ∂i).

If we introduce the mass density µ := 8πGT (ν, nu) and the current density
Ji := 8πGT (ν, ∂i), then we just find the Einstein’s constraint equations{

Rg + (trgII)
2 − |II|2g − 2Λ = 2µ

divgII− d(trgII) = J.
(4.2)

The matter-free case T = 0 gives raise to the (vacuum) Einstein’s constraint
equations {

Rg + (trgII)
2 − |II|2g = 2Λ

divgII = d(trgII).
(4.3)

The power of these equations is that if on one hand any space-like hyper-
surface of an Einstein’s empty spacetime (M, γ) satisfies (4.3), then on the
other hand any solution (M, g, II) of (4.3), given by a Riemannian manifold
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(M, g) of dimension n ≥ 2 and a symmetric (0, 2)-tensor II, can be seen
as a space-like hypersurface of an Einstein empty spacetime (M, γ) and,
with respect to this immersion, g is precisely γ|M and II coincides with the
second fundamental form of M in M. Moreover there exists a unique max-
imal spacetime associated to a solution (M, g, II) of (4.3). This was showed
by Choquet-Bruhat, which studied the well-posedness of (4.1) with Cauchy
data (M, g, II) satisfying (4.3).

Observe that the time-slices of the Minkowski, De Sitter and Anti-de
Sitter spacetimes, which can be regarded as Cauchy data for the Einstein’s
equations, are respectively the euclidean space (with a totally geodesic em-
bedding), the sphere (with an umbilical embedding) and the hyperbolic
space (with an umbilical embedding), all of dimension 3.

4.1.3 The conformal method

Now that we know the relevance of (4.3), whose solution can be used as
initial data for building Einstein spacetimes, we can talk about the most
famous method to product solutions (M, g, II) of the Einstein’s constraint
equations, called conformal method (Lichnerowicz 1944, then generalized by
Choquet-Bruhat, York and collaborators). For simplicity we will talk about
the vacuum case T = 0 in the physically relevant dimension n+ 1 = 4. The
idea of this method is to consider a 3-dimensional manifold M and to look
for a metric g and a symmetric (0, 2)-tensor II written in a specific form.
Precisely, one suppose to have fixed:

• a Riemannian metric g0 on M ;

• a regular function τ : M → R;

• a symmetric (0, 2)-tensor σ in (M, g0) with divg0σ = 0 and trg0σ = 0.

Then look for solutions of the Einstein’s constraint equations in the form

g = φ4g0 and II = φ−2(σ + LW ) +
τ

3
φ4g0 (4.4)

for some smooth positive function φ : M → R and some vector field W
defined on M . Here L denotes the conformal Killing operator, so that in
local coordinates

(LW )ij = (g0)jk∇iW k + (g0)ik∇jW k − 2

3
(g0)ij∇kW k,

where the ∇’s are computed with respect to g0. The advantage of (4.4) is
that, in view of the formulas for the conformal transformations of a metric
(cfr. Section 5.4), the constraint equations (4.3) becomes{

div(LW ) = 2
3φ

6dτ

∆φ = 1
8Rg0φ− 1

8φ
−7|σ + LW |2 + 1

12τ
2φ5,

(4.5)
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seen as equations in φ and W . In (4.5) the metrical objects are computed
with respect to the metric g0. In summary, the purpose of the conformal
method is to find solutions of the constraint equations in the form (4.4) once
fixed the conformal data M , g0, τ and σ. This is possible if and only if the
conformal data permits to find solutions (φ,W ) of (4.5). The existence of a
solution for (4.5) is false in general and it strongly depend on the choice of
the conformal data. However, it can be proven that there exist solutions of
(4.5) with conformal data (M, g0, τ, σ) if and only if there exist solutions of
(4.5) with conformal data (M, θ4g0, τ, θ

−2σ). Therefore we can restrict our
attention to specific metrics in the conformal class of g0, for instance in view
of the Yamabe problem it is not restrictive to suppose to have fixed g0 with
constant scalar curvature. So, which conditions on the conformal data allow
to find solutions of (4.5)? This problem has been overstudied in the last
years, but some points are still open. The point is that several hypothesis
can be imagined on the conformal data, for instance

• one can assume some conditions on M . It is possible to consider M
as compact manifold, eventually with boundary, or one can suppose
that it presents some ends which can be asymptotically euclidean or
asymptotically hyperbolic or asymptotically conical or asymptotically
cylindrical and so on. Every choice open the street for different re-
search and results;

• as mentioned above, one can make hypothesis on g0. A common choice
is to take a metric g0 with constant scalar curvature, however the sign
of the curvature may influence the existence of a solution of (4.5);

• one can also make assumptions on σ. Usually the literature distinguish
that case σ ≡ 0 from the general case;

• one can also make assumption on τ . For instance one can suppose
that τ is constant. This is called the CMC conformal problem since
by (4.4) it holds trgII = τ . This is the most understood background
for the conformal method. There are some results also in the Near-
CMC conformal problem, where τ is not more assumed to be constant
but there is a suitable control of |dτ |. For arbitrary τ , the conformal
problem is in general an open problem, with few exceptions. This last
case is usually called Far-CMC conformal problem.

Moreover, it is also important to specify the space of functions where we
are looking for solutions. Also, there is an analogous problem in the non-
vacuum cases. This leads to further classifications depending on the energy-
momentum T , which can assume distinct aspects according to the physical
problem that one wants to study. For an overlooking on what is known and
what is not, we suggest [48].
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4.2 Apparent horizons

4.2.1 Definition

Let (M, g, II) be a solution of the Einstein constraint equations and assume
∂M 6= ∅. Then ∂M is called apparent horizon iff

−trgII + II(ν, ν) + (n− 1)H = 0,

where ν denotes the out-warding unit vector field perpendicular to ∂M and
H is the mean curvature of ∂M ⊂ M computed with respect to the metric
g and the normal vector field ν. In the next we briefly discuss the origin
and the meaning of this definition. As basic example (supported by Figure
4.2.1), imagine that the ECE’s solution (M, g, II) is the initial data for a
spacetime R×M which is not static, but which is collapsing in future. Let
S be an hypersurface of M at a fixed time (for instance at t = 0). For
simplicity we can suppose that S is a sphere in the physically relevant case
n + 1 = 4. Now imagine that at t = 0 the sphere S sends a light signal
toward infinity, in direction perpendicular to S. After some time these light
rays got a little away from S but, since the spacetime is collapsing, it is
possible that they are still inside the region originally (meaning at t = 0)
included in S. If this happens for all the times, the sphere S is called future
marginally trapped. In the very special case in which all of the light rays (for
all the times) lay exactly on the surface originally defined by S, then S is
called an apparent horizon. A similar situation can be described in a more
general setting and it turns out that θ+ := −trgII + II(ν, ν) + (n − 1)H is
the expansion of the vector field generated by the light rays orthogonal to
S. Therefore any hypersurface S of M , such as ∂M , is marginally trapped
(in the sense heuristically described before) if θ+ ≤ 0. The outermost of the
marginally trapped hypersurfaces satisfies θ+ = 0 and this motivates the
definition of apparent horizon as described at the beginning of this section.

Example 4.1. We want to characterize the apparent horizons for solutions
of the constraint equations in the form (M, g, λg). So we replace II by λg in
θ+ := −trgII + II(ν, ν) + (n − 1)H, then the condition θ+ = 0 for an being
apparent horizon becomes H = λ. In this special case an apparent horizon
is equivalent to a boundary with mean curvature equal to λ, with respect to
the out-warding unit vector field.

4.2.2 Application to our problem

Assume that you are looking for a solution (M, g, II) of the (vacuum) Ein-
stein’s constraint equations{

Rg + (trgII)
2 − |II|2g = 2Λ

divgII = d(trgII)
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such that the embedding ofM in its associated spacetime is totally umbilical.
Namely, we look for a solution of the form (M, g, λg) for some λ ∈ R. Then
the constraint equations reduce to the single scalar equation

Rg + n2λ2 − nλ2 = 2Λ

since the last constraint equation is trivially satisfied. We recall that n is
the dimension of M . We just proved that the totally umbilical solutions
(M, g, λg) of the Einstein’s constraint equations have constant scalar curva-
ture, so we set Rg = kn(n−1) for some k ∈ R, and that the unique condition
to be satisfied is

λ2 = −k +
2Λ

n(n− 1)
, (4.6)

relating the constant λ defining the second fundamental form, the cosmo-
logical constant Λ and the constant k defining the scalar curvature of g. If
M has a boundary, we observed that it is an apparent horizon if and only if
it has mean curvature H = λ. In this text we worked with manifolds with
constant negative scalar curvature R = −n(n − 1), which is k = −1. From
the observation above we infer the following result.

Theorem 4.1. Let (M, g) be Riemannian manifold consisting of a compact
core and finitely many cusps, with dimension n ≥ 2, and let gε be the metrics
provided by Theorem 3.1. If the cosmological constant Λ verifies

−n(n− 1)

2
≤ Λ <

n2(n− 1)(n− 2)

2
(4.7)

and λ ∈ [0, n− 1) is defined by

λ :=

√
1 +

2Λ

n(n− 1)
, (4.8)

then the Riemannian manifold with boundary M̂ε obtained truncating each
end of (M, gε) along the unique hypersurfaces with mean curvature equal to
λ ∈ [0, n−1) (given by Theorem 3.1) provides a solution (M̂ε, gε, λgε) of the
ECE with apparent horizons. These solutions with boundary converge in the
Gromov-Hausdorff sense to (M, g, λg) as ε → 0, which is a solution of the
ECE (without boundary).

4.3 The Riemannian Penrose inequality

4.3.1 Introduction

Although the ends of the asymptotically hyperbolic manifolds we considered
(in dimension n = 3) are diffeomorphic to (r0,+∞) × T2, the Riemannian
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Penrose inequality is usually stated for manifolds whose ends are diffeomor-
phic to (r0,+∞)×S2. Let us begin with this case. Assume that (M,h) is a
3-dimensional asymptotically hyperbolic Riemannian manifold whose ends
are diffeomorphic to semicylinders with a spherical base. If Rh ≥ −6 then
it is possible to define a mass m > 0 for (M,h) in virtue of the positive
mass theorem in the asymptotically hyperbolic case. If M has a non-empty
boundary which is a minimal hypersurface (assume outermost and connected
for simplicity), then it is conjectured (Penrose inequality conjecture) that(

Areah(∂M)

16π

)1/2

+ 4

(
Areah(∂M)

16π

)3/2

≤ m.

Until now there are not counterexamples, and in many examples the Penrose
inequality also holds with rigidity (namely it is an equality in those models
and holds strictly in their perturbations). The validity of this conjecture
will have strong implications about the cosmic censorship hypothesis.

When one consider ends diffeomorphic to semicylinders with a compact
surface Σ as base, instead then S2, then the Penrose inequality conjecture
becomes

(1− γ)

(
Areah(∂M)

16π

)1/2

+ 4

(
Areah(∂M)

16π

)3/2

≤ m,

where γ is the genus of Σ (see [24]). Notice that the constant 16π assumes
less significance in the generic case (when Σ is not S2) and on the other hand
the mass is usually defined up to rescale. A common approach to prove the
validity of the Penrose inequality involves the existence of a CMC foliation
{Σt}t of the ends (for simplicity, a single end). This should not surprising
since the mass can be computed with this approach, as done by [46]. We
adopted this approach, following [24], [5] and others, in the next subsection.

4.3.2 Application to our problem

Theorem 4.2. Let (M, g) be Riemannian manifold consisting of a compact
core and finitely many cusps, with dimension n = 3, and let gε be the metrics
provided by Theorem 3.1. This implies that every end of (M, g) is isometric
to ((s0,+∞)× T2, ds2 + e−2sgT2) for some s0 ∈ R, where (T2, gT2) is a flat
torus. Let {Σt}t>0 be the CMC foliation near the infinity of one end of
(M, gε) (given by Theorem 3.1) and set

σ(t) :=

√
Areagε(Σt)

4
(
AreagT2 (T2)

)3/2 ∫
Σt

(
Rt −

1

2
H2
t + 2

)
dΣt

where Rt and dΣt denotes respectively the scalar curvature and the volume
form induced by gε on Σt, and Ht is the mean curvature of the embedding of
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Σt in (M, gε) computed with respect to the unit normal vector pointing toward
the infinity of the end. Then it holds the Riemannian Penrose inequality
σ(t) < 2ε3 and σ(t)→ 2ε3 as t→ +∞.

It follows the proof of this theorem.

REMARK 4.1 (Comparison with the AdS-case). In [5] Ambrozio faced a
problem similar to Theorem 3.1-(4). Precisely he proved that there is a
weakly stable CMC foliation for metrics that are suitable perturbation of
the 3-dimensional Schwarzschild anti-de Sitter space of mass µ > 0. This
last metric can be written as

g = dt2 +

(
sinh(t)2 +

2µ

3 sinh(t)
+O

(
e−5t

))
gS2 ,

where gS2 is the round metric of the sphere and t > 0. The analogy with
our case is that the metric hε, with the coordinate change t = r+ log ε, can
be written as

hε = dt2 +

(
e2t +

4εn

n
e−(n−2)t +O

(
e−2(n−1)t

))
ḡ.

The expression of hε with n = 3 is really comparable with the Schwarzschild
anti-de Sitter space of mass µ = 2ε3, the main difference is that the compact
cross-sections in our case turn out to be tori and not spheres (they are
compact surfaces carrying a flat metric). In [5] Ambrozio also proved that
a Penrose inequality held for his considered class of manifolds. Due to the
analogies with his work, we are able to prove Theorem 4.2 in the following.

In dimension n = 3, which is the most interesting case in GR, each end
of (M,hε) is isometric to a semicylinder (log ε+ 2,+∞)× T2 and

hε = dr2 + ε2 (2 cosh(3r/2))4/3 gT2 ,

where the base (T2, gT2) of the cylinder is a flat torus. We recall that this
end presents a CMC foliation given by {r = ρ} as ρ varies in (log ε+2,+∞)
and the leaf S(ρ) := {r = ρ} has constant mean curvature equal to Hρ :=
2 tanh(3ρ/2) computed with respect to the normal vector pointing toward
the infinity. As a consequence of this fact and of the Gauss-Bonnet formula,
the quantities

σhε(ρ) :=

√
Areahε(S(ρ))

4
(
AreagT2 (T2)

)3/2 ∫
S(ρ)

(
RS(ρ) −

1

2
H2
ρ + 2

)
dS(ρ)

=
1

2

(
Areahε(S(ρ))

AreagT2 (T2)

)3/2
1

cosh2(3ρ/2)
,

(4.9)

where RS(ρ) and dS(ρ) denotes respectively the scalar curvature and the
volume form induced by hε on S(ρ), are constantly equal to 2ε3. Here
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one has to use that Areahε(S(ρ)) = ε2 (2 cosh(3ρ/2))4/3 AreagT2 (T2). This

value 2ε3 is called Hawking mass of (M,hε). Similarly we can consider the
metric gε of Theorem (3.1), which has been built as gε = e2uεhε imposing
the Yamabe equation Rgε = −6 on M . In Theorem 3.15 we proved the
existence of a weakly stable CMC foliation {S(ε, ρ)} for the ends of (M, gε),
defined for ρ ≥ log ε + 3, such that each leaf S(ε, ρ) = {r = ρ + ψ(· ; ε, ρ)}
has constant mean curvature equal to Hρ = 2 tanh(3ρ/2) computed with
respect to the normal vector pointing toward the infinity. We introduce as
before the quantity

σgε(ρ) :=

√
Areagε(S(ε, ρ))

4
(
AreagT2 (T2)

)3/2 ∫
S(ε,ρ)

(
RS(ε,ρ) −

1

2
H2
ρ + 2

)
dS(ε, ρ)

=
1

2

(
Areagε(S(ε, ρ))

AreagT2 (T2)

)3/2
1

cosh2(3ρ/2)

(4.10)

where RS(ε,ρ) and dS(ε, ρ) denotes respectively the scalar curvature and the
volume form induced by gε on S(ε, ρ). In this case σgε(ρ) is not constant in
ρ and the Hawking mass of (M, gε) is defined as

mHaw(M, gε) := lim
ρ→+∞

σgε(ρ).

In our setting above the Riemannian Penrose inequality asserts that

σgε(ρ) < 2ε3 (4.11)

for every ρ ≥ 0. In particular when ρ = 0 it implies Areagε(S(ε, 0)) <
Areahε(S(0)), namely that the area of the minimal leaf in the end relative
to gε is smaller than the area of the minimal leaf of the end relative to hε,
improving Theorem 3.15-(iv). The proof of (4.11) will easily follow from
this two results:

• It holds mHaw(M, gε) = 2ε3;

• It holds σ′gε(ρ) > 0 for ρ > 0.

We recall that the function uε defining gε satisfies (3.39)-(3.40), however -
in order to prove the two points above - it will be sufficient to observe that
from (3.40) and (3.41) one has

max
S(ε,ρ)

|e3uε − 1| ≤ Cε2e−δρ (4.12)

for large ρ. Differently from the construction of the CMC foliation on
(M, gε), in this section we will make use of Rgε = −6.



CHAPTER 4. PHYSICAL APPLICATIONS 73

4.3.3 Computing the Hawking mass

In this subsection we prove that mHaw(M, gε) = 2ε3. By definition of Hawk-
ing mass, this is equivalent to prove that

lim
ρ→+∞

σgε(ρ)2/3 − σhε(ρ)2/3 = 0.

Since cosh(3ρ/2)4/3 is proportional to Areahε(S(ρ)), then the problem is
equivalent to prove

lim
ρ→+∞

Areagε(S(ε, ρ))

Areahε(S(ρ))
= 1. (4.13)

By (3.63) and (4.12) for large ρ it holds

(1−Cε2e−δρ)Areahε(S(ε, ρ)) ≤ Areagε(S(ε, ρ)) ≤ (1+Cε2e−δρ)Areahε(S(ε, ρ)),

whereas from (3.65) one can easily notice that

Areahε(S(ρ−‖ψ(· ; ε, ρ)‖C 0(T2))) ≤ Areahε(S(ε, ρ)) ≤ Areahε(S(ρ+‖ψ(· ; ε, ρ)‖C 0(T2)))

for large ρ. Since 1 ± Cε2e−δρ tends to 1 as ρ → +∞ and since it holds
(3.79), then we get the thesis from the bounds above.

4.3.4 Monotonicity of σgε

In this subsection we prove that σ′gε(ρ) > 0 for ρ > 0. It will be important to
use the facts that Rgε = −6 and that {S(ε, ρ)}ρ is weakly stable. Consider
the function F : (log ε + 3,+∞) × Σ → R × Σ defined by F (ρ, θ) = (ρ +
ψ(θ; ε, ρ), θ). This function parametrizes the CMC foliation in the sense
that F ({ρ} × Σ) = S(ε, ρ). Let ϕρ be the function defined on S(ε, ρ) by
∂ρF = ϕρνρ, where νρ is the unit vector perpendicular to S(ε, ρ) and directed
to r = +∞. By construction ϕ > 0. We claim that

σ′gε(ρ) =

√
Areagε(S(ε, ρ))

4
(
AreagT2 (T2)

)3/2 ∫
S(ε,ρ)

ϕρ
(
−∆S(ε,ρ)Hρ +QρHρ

)
dS(ε, ρ),

(4.14)
where ∆S(ε,ρ) denotes the Laplacian induced by gε on S(ε, ρ) and

Qρ =
1

2
RS(ε,ρ) −

1

2
|II|2 +

1

4
H2
ρ .

Here |II|2 denotes the square norm of the second fundamental form of the
embedding S(ε, ρ) ⊂ R×Σ with respect to the metric gε. To prove (4.14) it is

sufficient to notice that by (4.10) the derivative of 4
(
AreagT2 (T2)

)3/2
σgε(ρ)

with respect to ρ is√
Areagε(S(ε, ρ))

∫
S(ε,ρ)

(
3

2

(
2− 1

2
H2
ρ

)
d

dρ
dS(ε, ρ)−Hρ

d

dρ
HρdS(ε, ρ)

)
.
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In [45] Huisken and Polden proved that

d

dρ
dS(ε, ρ) = −ϕρHρdS(ε, ρ) and

d

dρ
Hρ = LS(ε,ρ)(ϕρ), (4.15)

where LS(ε,ρ) = ∆S(ε,ρ)+|II|2+Ricgε(νρ, νρ) is the Jacobi operator of S(ε, ρ).

Thus the derivative of 4
(
AreagT2 (T2)

)3/2
σgε(ρ) with respect to ρ is equal to√

Areagε(S(ε, ρ))

∫
S(ε,ρ)

(
−3

2

(
2− 1

2
H2
ρ

)
ϕρHρ −HρLS(ε,ρ)(ϕρ)

)
dS(ε, ρ).

Integrating by parts and using the Gauss equation

−6 = Rgε = RS(ε,ρ) + 2Ricgε(νρ, νρ) + |II|2 −H2
ρ ,

we get (4.14). Since Hρ is constant on S(ε, ρ), then from (4.14) we get

4
(
AreagT2 (T2)

)3/2
σ′gε(ρ) =

√
Areagε(S(ε, ρ))Hρ

∫
S(ε,ρ)

Qρϕρ dS(ε, ρ)

=
√

Areagε(S(ε, ρ))Hρ

∫
S(ε,ρ)

(∆S(ε,ρ) +Qρ)(ϕρ − ϕ̄ρ) dS(ε, ρ)

+
√

Areagε(S(ε, ρ))Hρϕ̄ρ

∫
S(ε,ρ)

Qρ dS(ε, ρ),

where we set ϕ̄ρ :=
∫
S(ε,ρ) ϕρ dS(ε, ρ). Now notice that Hρ > 0 for ρ > 0 and

by Gauss-Bonnet and Cauchy-Schwartz
∫
S(ε,ρ)QρdS(ε, ρ) ≥ 0. Moreover

∆S(ε,ρ) +Qρ and LS(ε,ρ) differ by a constant on S(ε, ρ). It follows that

4
(
AreagT2 (T2)

)3/2
σ′gε(ρ) ≥

√
Areagε(S(ε, ρ))Hρ

∫
S(ε,ρ)

LS(ε,ρ)(ϕρ−ϕ̄ρ) dS(ε, ρ).

Since Hρ is constant on S(ε, ρ), then the same holds for LS(ε,ρ)(ϕρ) = ∂ρHρ.
So by weak stability of S(ε, ρ) we have

0 ≤ −
∫
S(ε,ρ)

(ϕρ − ϕ̄ρ)LS(ε,ρ)(ϕρ − ϕ̄ρ)dS(ε, ρ)

=

∫
S(ε,ρ)

(ϕρ − ϕ̄ρ)LS(ε,ρ)(ϕ̄ρ)dS(ε, ρ)

= ϕ̄ρ

∫
S(ε,ρ)

LS(ε,ρ)(ϕρ − ϕ̄ρ)dS(ε, ρ),

thus σ′gε(ρ) ≥ 0 for ρ > 0. It remains to show that in our setting we can not
have σ′gε(ρ) = 0. In fact, this would imply∫

S(ε,ρ)
(ϕρ − ϕ̄ρ)LS(ε,ρ)(ϕρ − ϕ̄ρ)dS(ε, ρ) =

∫
S(ε,ρ)

QρdS(ε, ρ) = 0,

namely we deduce that 2|II|2 = H2
ρ and that LS(ε,ρ)ϕ̄ρ is constant on S(ε, ρ).

This is equivalent to assert that S(ε, ρ) is totally umbilical and (by the Gauss
equation) has constant scalar curvature equal to zero. Therefore gε should
be isometric to hε, which is not possible since uε 6= 0.
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4.4 Generalizations

In this section we give some ideas on possible generalizations of Theorem
3.1, without proof.

4.4.1 Preserving some cusps

We think that it is possible to give a slightly stronger version of Theorem
3.1. Precisely, once considered (M, g) as in the hypothesis of the theorem,
we would like to build metrics (gε) which replace with funnel-like ends only
finitely-many (chosen) cusps. So the difference is that we want to preserve
some cusps, instead of replacing all of them by funnel-like ends. The exis-
tence of such a metric should follow from Theorem 3.1 itself. It seems to be
sufficient to initially replace all the cusps as in the original statement, and
then letting to 0 the parameters relative to the cusp we want to preserve.

4.4.2 Gluing cusps

With the same argument of this thesis, we think that it is possible to glue
two different manifolds whose ends are cusps through cusps, as it is known
to be possible for hyperbolic surfaces. This should be done with arguments
similar to the ones of this text, using a “piece of funnel ”to connect the
cusps. More generally, this result should be generalized to the gluing of
several couples of cusps.



Chapter 5

Appendix

This appendix collects some of the classic results in Riemannian Geometry,
focusing mainly in those arguments which concern the manifold’s curvatures,
and other results - such as Lemma 5.4 - which are known but not so common
in literature and that have been used in the thesis. We also use this appendix
to fix the notation, which is however pretty standard.

5.1 Remarks about Riemannian Geometry

Curvatures

In dimension n = 2 there is essentially a unique definition of intrinsic cur-
vature for a metric defined on a surface: the Gaussian curvature (cfr. Theo-
rema Egregium, 1827). In higher dimension this concept of curvature, which
is a scalar function defined on the surface, can be replaced by a well-known
curvature tensor, introduced in the following.

Let (M, g) be a smooth Riemannian manifold of real dimension n ≥ 2.
We recall that this means that M is equipped with an atlas of smooth charts
and g is a symmetric (0, 2)-tensor, which can be written in local coordinates
(x1, x2, . . . , xn) as

g = gij dx
i ⊗ dxj ,

with the property that (gij(p)) is a positive definite matrix at each point
p ∈M . We use to denote by ∇g, or simply by ∇, the Levi-Civita connection
of g extended on tensors, which is the unique connection on M such that:

Torsion-free: for every vector fields X,Y on M one has∇XY −∇YX =
[X,Y ], with [X,Y ] denoting the Lie brackets of X and Y ;

Preserving g: for every vector fieldsX, Y , Z onM one has∇X(g(Y,Z)) =
g(∇XY,Z) + g(Y,∇XZ).

76
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In local coordinates (x1, x2, . . . , xn) the Levi-Civita connection is determined
by its Christoffel symbols

Γkij = Γkji =
1

2
gkl (∂igjl + ∂jgil − ∂lgij) ,

meaning that ∇∂i∂j = Γkij∂k, where we set ∂i = ∂
∂xi

for i = 1, . . . , n. More
generally, if K is a (r, s)-tensor, then ∇K is the (r, s+ 1)-tensor defined in
local coordinates by

∇kKj1,...,jr
i1,...,is

= ∂kK
j1,...,jr
i1,...,is

+

r∑
ρ=1

Γ
jρ
klK

j1,...,jρ−1,l,jρ+1,...,jr
i1,...,is

−
s∑

σ=1

ΓlkiσK
j1,...,jr
i1,...,iσ−1,l,iσ+1,...,is

.

For instance ∇kgij = ∂kgij − Γlikglj − Γlkjgil and therefore the fact that the
Levi-Civita connection preserves g can be equivalent stated as ∇g = 0. The
curvature tensor (or Riemann tensor) R of (M, g) is the (1, 3)-tensor
defined by

R(X,Y )Z := [∇X ,∇Y ]Z −∇[X,Y ]Z,

for every vector field X,Y and Z defined on M . Due to the presence of a
metric g on M , the curvature tensor can also be introduced as the (0, 4)-
tensor

R(X,Y, Z,W ) = g (R(X,Y )Z,W ) ,

for every vector field X,Y, Z and W defined on M . The main algebraic
properties of the curvature tensor are listed below.

Let X,Y, Z, V,W ∈ C∞(TM) be vector fields, then:

(1) R(X,Y, Z,W ) = −R(Y,X,Z,W ) = −R(X,Y,W,Z);

(2) R(X,Y, Z,W ) = R(Z,W,X, Y );

(3) R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0;

(4) ∇R(X,Y, Z, V,W ) +∇R(Y, Z,X, V,W ) +∇R(Z,X, Y, V,W ) = 0.

Properties (3) and (4) are usually called first and second Bianchi identity
respectively.

In local coordinates (x1, x2, . . . , xn) the expression of the curvature ten-
sor is

R(∂i, ∂j)∂k = Rlkij∂l =
(
∂iΓ

l
jk − ∂jΓlik + ΓmjkΓ

l
im − ΓmikΓ

l
jm

)
∂l,

and R(∂i, ∂j , ∂k, ∂l) = gmlR
m
kij . The curvature tensor in some sense mea-

sures the deviation of g from the flat euclidean metric, therefore the origin
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of its name, but why should this definition be the analogue of the Gaussian
curvature in high dimension? The answer descends from a second (equiv-
alent!) way to introduce the notion of curvature for (M, g), which clearly
extends the Gaussian curvature in every dimension. Let p ∈ M and con-
sider a 2-plane π ⊂ TM . The sectional curvature of π is defined to be
the Gaussian curvature of the surface expp(π) in p and is given by

secp(π) :=
R(w, v, v, w)

g(v, v)g(w,w)− g(v, w)2
,

for any two vectors v, w ∈ TpM generating π (the definition does not de-
pend on the choice of v and w). The sectional curvature contains the same
information of R, in fact it is possible to compute the sectional curvature
from the curvature tensor and viceversa.

There are other curvature tensors which can be derived from R. Tracing
the curvature tensor, we get a symmetric (0, 2)−tensor called Ricci tensor.
In local coordinates it is given by

Rickj = Rlklj = ∂lΓ
l
jk − ∂jΓllk + ΓmjkΓ

l
lm − ΓmlkΓljm.

Taking the trace again we get the scalar curvature, which is the function
defined onM by Rg := gkjRickj . If n > 2 then the scalar curvature obviously
contains less information about (M, g) than the Ricci curvature, which in
turns contains less information than the sectional curvature. If n = 2 this
is not true since it holds Rg(p) = 2secp(TpM) for every p ∈ M , namely
the scalar curvature is twice the Gaussian curvature. All the concepts of
curvature above are metrical invariants, namely they are preserved under
isometries. Given two equidimensional Riemannian manifolds (M, g) and
(M ′, g′), a local isometry is a smooth map F : M →M ′ such that F ∗g′ = g.
An isometry is a local isometry which is also a diffeomorphism.

Geodesics

A Riemannian metric g on M induces a structure of metric space. In fact
given a smooth curve γ : [a, b] ⊂ R→M one can define

Lengthg(γ) :=

∫ b

a

√
g (γ̇(t), γ̇(t))dt

and for p, q ∈ M . Then one defines d(p, q) as the infimum of Lengthg(γ)
among the smooth curves γ connecting p to q. It turns out that d is a
distance on M and the topology of M as differential manifold coincides
with the topology induced by d. In general this infimum is not a minimum,
meaning that for two general points p, q ∈ M may not exist a curve γ
connecting p and q with length d(p, q). However such a curve exists and is
unique if p and q are sufficiently close and, in any case, when a smooth curve
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γ connects p an q and has length equal to d(p, q) then, up to parametrize γ
by arc-length, it holds ∇γ′ = 0. This is a consequence of the first variation
formula. In local coordinates ∇γ′ = 0 is equivalent to the second-order
system of ODE on γ given by

γ̈k(t) + Γkij(γ(t))γ̇i(t)γ̇j(t) = 0, ∀k = 1, . . . , n.

A curve γ is called geodesic if it holds ∇γ′ = 0 at each point γ(t). Equiva-
lently, a geodesic is a curve γ such that (locally) the distance between two
points belonging to its support is realized by the curve γ itself. A geodesic γ
is necessarily parametrized by arc-length, indeed d

dtg(γ′, γ′) = 2g(γ′,∇γ′) =
0 since the Levi-Civita connection preserves g. By the fundamental theo-
rem of local existence and uniqueness for ODE applied to ∇γ′ = 0, for every
p ∈M it is well-defined a map

expp : Up →M, expp(v) = γv(1) ∀v ∈ Up

where Up is a starred neighbourhood of 0 ∈ TpM and γv is the unique
geodesic satisfying γv(0) = p and γ′v(0) = v. More generally, one can notice
that expp(tv) = γv(t), so that expp(tv) is in particular a geodesic for every
v ∈ Up. It can be proved that the exponential map expp is smooth and
a local diffeomorphism in 0 ∈ TpM since it holds d(expp)0 = idTpM . The
injectivity radius of p is defined as

injradp(M, g) := sup{ρ > 0 | expp |Bρ(0)is a diffeomorphism onto its image},

where Bρ(0) denotes the ball of TpM of radius ρ (with respect to gp) centred
at 0 ∈ TpM . The injectivity radius is always positive for each p, however it
may happen that there is not a lower bound for injradp(M, g) as p varies in
M . Notice that if d(p, q) < injradp(M, g), then there is a unique minimizing
geodesic from p to q and is of the type expp(tv) for some v ∈ TpM . A
further fundamental property of the exponential map is described in the
Gauss Lemma. It asserts that expp : Up → M induces a radial isometry,
namely

g(∇ expp(∂r),∇ expp(v)) = gp(∂r, v), ∀v ∈ Up
where the function r is defined as the distance from p. In particular the
image via the exponential map of a ball of TpM centred at 0 ∈ TpM of
radius R < injradp(M, g) is precisely the ball centred at p ∈M of radius R.
In general a geodesic curve can not be defined for all times t ∈ R, however
the famous Hopf-Rinow theorem answers to this problem. It states that for
every Riemannian manifold (M, g) the following properties are equivalent:

1. (M,d) is complete as metric space;

2. all the geodesics are defined for every time;
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3. for every p ∈ M the exponential map expp is defined in the whole
TpM ;

4. there exists p ∈ M such that all the geodesics passing through p are
defined for every time;

5. every closed and bounded subset of M is compact.

Moreover, each of the equivalent points above implies that there is a mini-
mizing geodesic connecting any couple of points of M . In particular, if M
is compact then all the points above hold.

Special metrics

One of the most important applications of the Riemannian Geometry should
be to find the “best ”metric g on a given n-dimensional manifold M encoding
the most topological aspects of M . Such a result will be a great advantage
for classifying class of manifolds. For example it is well-known that the
unique topological invariant for an oriented compact surface S is its Euler
characteristic χ(S) = 2− 2γ, where γ is the genus of S. On the other hand
for every metric g on S it holds the Gauss-Bonnet formula∫

S
RgdS = 4πχ(S).

This means that if we know that some oriented compact surface admits a
metric with constant curvature, then we can deduce its Euler characteristic
and therefore its topological structure. In higher dimension, even in the
compact case, the problem of finding the best metric on a given manifold
is still open and very rich from the point of view of the research. Special
classes of metrics are given in the following definition.

Definition 5.1. A Riemannian metric g on M is said to have constant
curvature k ∈ R if secp(π) = k for any p ∈M and π ⊂ TpM 2-plane. It is
said to be E instein if Ric = k(n− 1)g. It is said to have constant scalar
curvature if Rg = kn(n− 1).

Any Riemannian manifold with constant curvature is Einstein and the
converse in general is false in dimension n > 3 (ex. [75], pag.38). Any
Einstein manifold has constant scalar curvature but the converse is in general
false in dimension n > 2 (ex. [75], chp. 3). The constant k ∈ R appearing
in the definition above is preserved in all the previous implications.

As a first approach, given a Riemannian manifold M , one can try to find
a metric with constant curvature. However, such a metric may not exist.
In fact, the only manifolds admitting such a metric are quotients of the
euclidean space, the hyperbolic space or the sphere by an isometry action
(Uniformization Theorem). On the other hand if one relax this requirement
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and looks for metrics with constant scalar curvature, then they are too
much to encode topological properties (cfr. [21]). Einstein metrics seems
to be a good compromise. Moreover the relevance of studying Einstein’s
metrics emerges also from a physical interest. Indeed the spacetime we live
is conjectured to be an Einstein manifold of signature (−,+,+,+).

5.2 Teichmüller Theory

In dimension n ≥ 3 there exists at most one complete hyperbolic metric
on a given manifold (Mostow rigidity, 1968), determined by its fundamental
group. In dimension n = 2 this is not true and a given surface can admit
several non-isometric hyperbolic structures. The Teichmüller theory studies
these possibilities (we suggest [59] [83] for a good introduction). The typical
setting for this theory is the case of oriented surfaces of finite-type. Probably,
its most famous result looks like that: the space of complete hyperbolic
metrics with finite volume and geodesic boundary, up to isometries isotopic
to the identity (called Teichmüller space), on an oriented compact surface of
genus γ deprived by p points and by b small open disks (namely on a surface
of finite-type) is diffeomorphic to R6γ+2p+3b−6. A similar result was also
adapted to non-orientable surfaces and to complete metrics with infinite
volume too. In the next we give some comments about the result above
emphasizing those tools and objects which are used in the rest of the thesis.

The first step of the Teichmüller theory consists on building very special
hyperbolic surfaces with boundary, called pair of pants. This is done gluing
particular hexagons in the hyperbolic space. In dimension n = 2 the hyper-
bolic space is isometric to the Poincaré disk (D, gD), where D = {(x, y) ∈
R2 |x2 + y2 < 1} and

gD =
4

(1− ρ2)2
geucl, ρ :=

√
x2 + y2.

It is well-known that geodesics on Poincaré disks consist on arcs of circum-
ference perpendicular to ∂D, including the degenerate case of straight lines
through the origin. By the Uniformization Theorem, any complete hyper-
bolic surface can be seen as the quotient of (D, gD) with respect to a suitable
group of isometries. Therefore one can build examples of complete hyper-
bolic surfaces using special polygons of (D, gD). A right angled hexagon is
defined as a six-sided regular polygon on D whose sides are arcs of geodesics
and such that two adjacent sides are perpendicular. It can be shown that
for any a, b, c > 0 there exist a unique right angled hexagon up to isometries
with three not-adjacent sides of length a, b and c. For a, b, c > 0 the pair of
pants with boundary lengths 2a, 2b and 2c is defined to be the Riemannian
manifold with boundary obtained by taking two copies of a right angled
hexagon with with three not-adjacent sides of length a, b and c and identi-
fying the respective remaining sides. A pair of pants is actually a hyperbolic
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Figure 5.1: Here is how to build the right angled hexagon with three not-adjacent
sides of given length a, b and c inside the Poincaré disk. (1) Consider any geodesic α
and any two points A and B on it with hyperbolic distance equal to a. (2) Let L1 be
the unique geodesic perpendicular to α and passing through A, and let β be the unique
geodesic perpendicular to β and passing through B. (3) Now let C 6= B be a point of
β. The choice of this point in β is a degree of freedom that we initially assume on this
construction. Let γ be the geodesic perpendicular to β and passing through C. (4) Let
D be the point of γ such that the hyperbolic distance between C and D is equal to b and
such that A and D belong to the same half-space determined by γ. (5) Define L2 the
geodesic perpendicular to γ and passing through C. (6) If the hyperbolic distance of C
from B is large enough, then L1 and L2 are hyper-parallel. Therefore there exists a unique
geodesic l which is perpendicular to both L1 and L2. We define the intersection points
E = L2 ∩ l and F = L1 ∩ l. (7) The hyperbolic distance between L1 and L2 corresponds
to the hyperbolic distance between E and F and depends on our initial choice of C (the
degree of freedom). It is always possible to find a unique point C such that this distance
is equal to c ≥ 0. (8) The points A, B, C, D, E and F form the required hexagon. This
figure was built with GeoGebra.
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Figure 5.2: A pair of pants is an example of hyperbolic surface with three boundary
components and Euler characteristic −1. Its volume is equal to 2π.

surface with smooth boundary since the angles of the hexagon measure π/2.
Its three boundary components are geodesics isometric to circumferences of
lengths 2a, 2b and 2c. The name “pair of pants” descends from its shape: it
looks like a sphere deprived of three disks. Since the right angled hexagons
are essentially unique once fixed the lengths of three non-adjacent sides, then
it turns out that (up to isometries) there exists a unique pair of pants with
fixed boundary lengths 2a, 2b, 2c > 0. Actually this result still holds for the
degenerate case a, b, c ≥ 0. In fact one can consider hexagons with a side of
degenerate length zero and then build pair of pants where one, two or three
boundary components have degenerated to a cusp. A cusp in a degenerate
pair of pants is always isometric to

ds2 + e−2sdθ2, (s, θ) ∈ (s0,+∞)× S1

for some s0 > 0 large enough. Now observe that gluing equivalent (non-
degenerate) sides of pair of pants it is possible to build a lot of examples of
smooth hyperbolic surfaces, eventually with geodesic boundaries or cusps.

The key point of Teichmüller theory is that this process can be inverted,
namely all the complete hyperbolic structures with finite volume can be
obtained gluing pairs of pants. We conclude this section with a sketch of the
proof for the main result of Teichmüller theory. For simplicity we consider

Figure 5.3: Degenerate pair of pants with one, two or three cusps. The last one is the
unique complete hyperbolic metric with finite volume on the 3-punctured sphere.
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Figure 5.4: (1) It is represented a decomposition of the sphere with 4 holes in two pairs
of pants with two cusps each. (2) The torus admits no hyperbolic metrics unless you
remove at least one point. Examples of complete hyperbolic metrics of finite volume on
the punctured torus are obtained identifying the boundaries of a single pair of pants with
one cusp and two sides of the same length. (3) For genus grater than 1 there are examples
of compact hyperbolic metrics obtained gluing non-degenerate pairs of pants. (4) Given
any surface S of genus γ with n punctures obtained gluing pairs of pants, it is possible to
obtain a hyperbolic surface with genus γ + 1 and n punctures or a surface with genus γ
and n+ 1 punctures just entering between two glued pants of S the surface (4.a) or (4.b)
respectively, with the proper boundary lengths.

the case without boundary.
Let Sγ,p be the p-punctured surface of genus γ. By Gauss-Bonnet The-

orem if there exist a hyperbolic metric with finite volume on Sγ,p then it
must hold

χ(Sγ,p) := 2− 2γ − p < 0.

So we suppose 2 − 2γ − p < 0. Under this assumption it is possible to
show that every complete hyperbolic metric with finite volume on Sγ,p can
be obtained by gluing of pair of pants. Precisely, one need −χ(Sγ,p) pair
of pants and p of them are degenerate with a single cusp. On the other
hand, if you want to build hyperbolic surfaces gluing −χ−p non-degenerate
pairs of pants and p pairs of pants with a cusp, you have a total amount of
3(−χ−p)+2p boundaries and for each couple of them you have two degrees
of freedom for identifying them: the length of the boundary and a torsion
parameter for the identification, descending from the possible isometry of
S1 to itself. This gives you 3(−χ− p) + 2p = 6γ + 2p− 6 degree of freedom.
With this argument it is possible to show that the Teichmüller space of Sγ,p
is isomorphic to R6γ+2p−6. We emphasize that we are considering metrics
with finite volume. If one drops this assumption, then it is clearly possible to
build examples of complete hyperbolic metrics also in some case χ(Sγ,p) ≥ 0.
As an example consider the Poincaré disk (γ = 0, p = 1) or the cylinder
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(γ = 0, p = 2) equipped with

dt2 + e2tdθ2, (t, θ) ∈ R× S1

or with
dt2 + 4ε2 cosh(r)2dθ2, (t, θ) ∈ R× S1,

for fixed ε > 0. The last example restricted to [0,+∞)× S1 is often called
funnel and presents a geodesic boundary at {t = 0} of length 4πε. Actually,
if one consider a complete hyperbolic surface with negative Euler character-
istic and infinite volume, then all of the ends with infinite volume of that
surface are funnels.

5.3 Warped products

Let (Σ, ḡ) be a Riemannian manifold of dimension n − 1. This section
studies the geometric properties of the warped product R×Σ equipped with
the metric

g = dr2 + ψ(r)4/nḡ,

where ψ : R → R is a smooth positive function. This class of metrics is
largely present in this thesis, since cusps and funnels are examples of warped
products. We are going to prove the following result:

Proposition 5.1. Consider the warped product g = dr2 + ψ(r)4/nḡ defined
on R× Σ, where (Σ, ḡ) be a Riemannian manifold of dimension n− 1. For
j = 1, 2, 3, 4 let X̄j be a vector field on Σ and let Xj = xj∂r + X̄j be a vector
field on R× Σ. Then the following formulas hold:

• Formula for the curvature tensor:

ψ−4/nR(X1, X2, X3, X4) = R̄(X̄1, X̄2, X̄3, X̄4)

+
2

n

(
ψ̈

ψ
− n− 2

n

ψ̇2

ψ2

)
S1 +

4

n2
ψ(r)4/n−2ψ̇(r)2S2,

(5.1)

with S1 = x1x3ḡ(X̄2, X̄4)−x1x4ḡ(X̄2, X̄3)+x2x4ḡ(X̄1, X̄3)−x2x3ḡ(X̄1, X̄4)
and S2 = ḡ(X̄1, X̄3)ḡ(X̄2, X̄4)− ḡ(X̄2, X̄3)ḡ(X̄1, X̄4);

• Formula for the Ricci tensor

Ric(X1, X2) = Ric(X̄1, X̄2) +
2(n− 1)

n

(
n− 2

n

ψ̇2

ψ2
− ψ̈

ψ

)
x1x2

− 2

n
ψ4/n

(
n− 2

n

ψ̇2

ψ2
+
ψ̈

ψ

)
ḡ(X̄1, X̄2);

(5.2)
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• Formula for the scalar curvature

Rg = ψ(r)−4/nRḡ −
4(n− 1)

n

ψ̈(r)

ψ(r)
(5.3)

Let us prove the proposition above. We consider local coordinates (xi) =
(r, θα) = on R × Σ, where (θα) are local coordinates on Σ. Latin indexes
run from 1 to n, greek indexes from 1 to n− 1. Since grr = 1, grα = 0 and
gαβ = ψ(r)4/nḡαβ, then the Christoffel symbols of g are given by:

Γrrr = Γrrβ = Γrβr = Γαrr = 0

Γrαβ = −1

2
∂rgαβ = − 2

n
ψ(r)4/n−1ψ̇(r)ḡαβ

Γαrβ = Γαβr =
1

2
gαγ∂rgβγ =

2

n
ψ(r)−1ψ̇(r)δαβ

Γαβγ = Γ̄αβγ .

The overlined objects refer to ḡ. We can then compute the curvature tensor
Rijkl = gmlR

m
kij , which is given by:

Rrrrr = 0

Rrrrα = −Rrrαr = Rrαrr = −Rαrrr = 0

Rrrαβ = Rαβrr = 0

Rrαrβ = −Rrαβr = Rαrβr = −Rαrrβ =
2

n
ψ(r)4/n

(
ψ̈(r)

ψ(r)
− n− 2

n

ψ̇(r)2

ψ(r)2

)
ḡαβ

Rrαβγ = −Rαrβγ = Rβγrα = −Rβγαr = 0

Rαβγδ = ψ(r)4/nR̄αβγδ +
4

n2
ψ(r)8/n−2ψ̇(r)2(ḡαγ ḡδβ − ḡβγ ḡαδ).

From these formulas we can compute the sectional curvature (only for this
computation we assume n > 2). Assume that p ∈ R × Σ has coordinates
(r, θ) and let π be a 2-plane of Tp(R ×M). Let v = x∂r + vα∂α and w =
y∂r+w

α∂α be a g-orthonormal frame for π, namely x2+ψ(r)4/nḡαβv
αvβ = 1,

y2 + ψ(r)4/nḡαβw
αwβ = 1 and xy + ψ(r)4/nḡαβv

αwβ = 0, and assume that
prΣ(π) := 〈vα∂α, wα∂α〉 is a 2-piano in TθΣ. It follows that

secθ(prΣ(π)) =
wαvβvγwδR̄αβγδ

ψ(r)−8/n[(1− x2)(1− y2)− (−xy)2]

is the sectional curvature of prΣ(π) with respect to (Σ, ḡ). On the other
hand secp(π) = R(w, v, v, w) and by the formulas for the components of R



CHAPTER 5. APPENDIX 87

we get

secp(π) = − 2

n
(y2 + x2)

(
ψ̈(r)

ψ(r)
− n− 2

n

ψ̇(r)2

ψ(r)2

)

+
4

n2

ψ̇(r)2

ψ(r)2
(−1 + y2 + x2)

+ ψ(r)4/nwαvβvγwδR̄αβγδ.

Equivalently, we proved

secp(π) =
2

n
(y2 + x2)

(
ψ̇(r)2

ψ(r)2
− ψ̈(r)

ψ(r)
− n

2

secθ(prΣ(π))

ψ(r)4/n

)

− 4

n2

ψ̇(r)2

ψ(r)2
+

secθ(prΣ(π))

ψ(r)4/n
.

The formula for the Ricci tensor descends from the expression of the com-
ponents of R, indeed Ricjk = glmRljkm, thus

Ricrr =
2(n− 1)

n

(
n− 2

n

ψ̇(r)2

ψ(r)2
− ψ̈(r)

ψ(r)

)
Ricrα = Ricαr = 0

Ricαγ = Ricαγ −
2

n
ψ(r)4/n

(
n− 2

n

ψ̇(r)2

ψ(r)2
+
ψ̈(r)

ψ(r)

)
ḡαγ .

Tracing these formulas we get the expression for the scalar curvature

Rg = ψ(r)−4/nRḡ −
4(n− 1)

n

ψ̈(r)

ψ(r)

and the proposition is proved.

Warped products with constant sectional curvature

We want to study all the warped products dr2 +ψ(r)4/nḡ with sectional cur-
vature constant to k ∈ R. In virtue of the previous results, this is equivalent
to require that for every 2-piano π̄ in TΣ and for every x, y ∈ R it holds

4

n2

ψ̇2

ψ2
− secθ(π̄)

ψ4/n
+ k =

2

n
(y2 + x2)

(
ψ̇2

ψ2
− ψ̈

ψ
− n

2

secθ(π̄)

ψ4/n

)
.

Necessarily the sectional curvature of ḡ must be constant to some λ ∈ R and
ψ must satisfy 

4
n2

ψ̇2

ψ2 − λ
ψ4/n + k = 0

ψ̇2

ψ2 − ψ̈
ψ −

n
2

λ
ψ4/n = 0.
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Actually the second equation follows deriving the first one, thus the warped
products with constant sectional curvature equal to k all arise from a base
(Σ, ḡ) with constant sectional curvature equal to λ and a warped function
ψ which is a positive solution of

4

n2

ψ̇2

ψ2
− λψ−4/n + k = 0.

If one set y = ψ2/n, then the equation above becomes ẏ2 + ky2 = λ. Re-
markable solutions of the equation above (which is invariant by transla-
tion) are given by ψ(r) = (λ/k)n/4 cos(

√
kr)n/2 if k, λ > 0, by ψ(r) =

(−λ/k)n/4 sinh(
√
−kr)n/2 if k < 0 and λ > 0, by ψ(r) = (λ/k)n/4 cosh(

√
−kr)n/2

if k, λ < 0, and there are not solutions if k > 0 and λ < 0. If we assume
λ = 0 then necessarily k ≤ 0 and ψ(r) = e

√
−knr/2 is a solution. If we assume

k = 0 then necessarily λ ≥ 0 and ψ(r) = (1 + λr)n/2 is a solution.

Einstein warped products

We want to study all the warped products dr2+ψ(r)4/nḡ which are Einstein,
namely such that Ric = k(n− 1)g for some k ∈ R. In virtue of the previous
results, this is equivalent to require that

k(n− 1) =
2(n− 1)

n

(
n− 2

n

ψ̇2

ψ2
− ψ̈

ψ

)

and

k(n− 1)ψ4/nḡαβ = Ricαγ −
2

n
ψ4/n

(
n− 2

n

ψ̇2

ψ2
+
ψ̈

ψ

)
ḡαγ .

From the second one we see that necessarily ḡ is Einstein, namely Ric =
λ(n− 2)g for some λ ∈ R, and ψ must satisfy

n
2k = n−2

n
ψ̇2

ψ2 − ψ̈
ψ

k(n− 1)ψ4/n = λ(n− 2)− 2
nψ

4/n
(
n−2
n

ψ̇2

ψ2 + ψ̈
ψ

)
,

which is equivalent to the single equation

4

n2

ψ̇2

ψ2
− λψ−4/n + k = 0.

We have already encountered this equation in the previous paragraph, there-
fore the Einstein warped products can be obtained from as we did for the
warped products with constant sectional curvature, but relaxing the condi-
tion on the base (Σ, ḡ).



CHAPTER 5. APPENDIX 89

Warped products with constant scalar curvature

We want to study all the warped products dr2 + ψ(r)4/nḡ with scalar cur-
vature constant to kn(n − 1) ∈ R. In virtue of the previous results, this is
equivalent to require that

kn(n− 1) = ψ(r)−4/nRḡ −
4(n− 1)

n

ψ̈(r)

ψ(r)
.

Then necessarily Rḡ = (n− 1)(n− 2)λ for some λ ∈ R and ψ must satisfy

4

n(n− 2)

ψ̈(r)

ψ(r)
− λψ(r)−4/n +

kn

n− 2
= 0.

Notice that we can assume n > 2, otherwise we reduce to the case of warped
products with constant sectional curvature, which was already considered.
If we set y = ψ2/n, then the equation above becomes ẏ2+ 2

n−2yÿ+ kn
n−2y

2 = λ.
The function ψ considered for Einstein warped products are also solutions of
the equation above since they verify ÿ = −ky. However this time we have a
larger class of warped functions, which do not verify ÿ = −ky. For instance
if we assume λ = 0, then ψ(r) = cosh(nr/2) is a solution of the equation
above for k = −1, ψ(r) = cos(nr/2) is a solution of the equation above for
k = 1 and ψ(r) = r is a solution of the equation above for k = 0. All of
these examples do not correspond to warped functions for Einstein warped
products.

5.4 Conformal geometry

Let (M, g) be a Riemannian manifold of dimension n ≥ 2. A conformal
transformation of g is the metric g̃ := e2ug obtained rescaling g by a smooth
function u : M → R. The study of conformal transformation has been really
fruitful in many areas, probably the Yamabe problem is the most famous
result concerning the conformal geometry (see Section 5.7). In this section
we recall how to relate the curvature properties of g̃ (denoted with a tilde)
with respect to g and u. The formulas involve the Laplace-Beltrami operator
∆, given in local coordinates by

∆u = gij∇iju.

Proposition 5.2. Let (M, g) be a Riemannian manifold of dimension n ≥
2, let u : M → R be a smooth function and set g̃ := e2ug. Then the following
formulas hold:

• Formula for the (0, 4)-curvature tensor:

R̃ = e2u

(
R− g ? (∇2u− du⊗ du+

1

2
|∇u|2g)

)
, (5.4)
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where ? is the Kulkarni-Nomizu product defined in local coordinates
for symmetric (0, 2)-tensors by

(g ? h)ijkl = gikhjl + gjlhik − gilhjk − gjkhil;

• Formula for the Ricci tensor

R̃ic = Ric−
(
∆u+ (n− 2)|∇u|2

)
g + (n− 2)(du⊗ du−∇2u) (5.5)

• Formula for the scalar curvature

Rg̃ = e−2u(Rg − 2(n− 1)∆u− (n− 1)(n− 2)|∇u|2). (5.6)

In dimension n > 2 the above formula simplifies to

Rg̃ = e−2u

(
Rg −

4(n− 1)

n− 2
e−

n−2
2
u∆e

n−2
2
u

)
.

The proof of this proposition is a direct computation. Since g̃ij = e2ugij ,
then g̃ij = e−2ugij and

Γ̃kij = Γkij + δki ∂ju+ δkj ∂iu− gij∇ku.

Therefore the curvature tensor is locally given by

R̃ijkl = g̃ml

(
∂iΓ̃

m
jk − ∂jΓ̃mik + Γ̃pjkΓ̃

m
ip − Γ̃pikΓ̃

m
jp

)
= e2uRijkl + e2ugml∂i(δ

m
k ∂ju+ δmj ∂ku− gkj∇mu)

− e2ugml∂j(δ
m
k ∂iu+ δmi ∂ku− gki∇mu)

+ e2ugmlΓ
p
kj(δ

m
i ∂pu+ δmp ∂iu− gip∇mu)

+ e2ugml(δ
p
k∂ju+ δpj ∂ku− gkj∇

pu)Γmip

+ e2ugml(δ
p
k∂ju+ δpj ∂ku− gkj∇

pu)(δmi ∂pu+ δmp ∂iu− gip∇mu)

− e2ugmlΓ
p
ki(δ

m
j ∂pu+ δmp ∂ju− gjp∇mu)

+ e2ugml(δ
p
k∂iu+ δpi ∂ku− gki∇

pu)Γmjp

+ e2ugml(δ
p
k∂iu+ δpi ∂ku− gki∇

pu)(δmj ∂pu+ δmp ∂ju− gjp∇mu).

After some simplifications, the above formula becomes

R̃ijkl = e2uRijkl + e2u(gjl∂iku− gkj∂ilu+ gkjΓ
p
il∂pu)

− e2u(gil∂jku− gki∂jlu+ gkiΓ
p
jl∂pu)

+ e2ugilΓ
p
kj∂pu+ e2u(gil∂ju∂ku− gik∂ju∂lu)

− e2ugjlΓ
p
ki∂pu− e2u(gjl∂iu∂ku− gjk∂iu∂lu)

− e2u|∇u|2gkjgil + e2u|∇u|2gkigjl.
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Since ∇iju = ∂iju− Γpij∂pu and since by definition

(g ? (∇2u− du⊗ du+
1

2
|∇u|2g))ijkl

= gik(∇2
jlu− ∂ju∂lu+

1

2
|∇u|2gjl)

+ gjl(∇2
iku− ∂iu∂ku+

1

2
|∇u|2gik)

− gil(∇2
jku− ∂ju∂ku+

1

2
|∇u|2gjk)

− gjk(∇2
ilu− ∂iu∂lu+

1

2
|∇u|2gil),

(5.7)

we got the formula for the curvature tensor. The Ricci tensor R̃icjk =
g̃ilR̃ijkl is then given by

R̃icjk = gilRijkl + gil(gjl∇iku− gkj∇ilu)

− gil(gil∇jku− gki∇jlu)

+ gil(gil∂ju∂ku− gik∂ju∂lu)

− gil(gjl∂iu∂ku− gjk∂iu∂lu)

− |∇u|2gilgkjgil + gil|∇u|2gkigjl,

that is

R̃icjk = Ricjk − (n− 2)∇jku+ (n− 2)∂ju∂ku+
(
−∆u− (n− 2)|∇u|2

)
gjk.

Tracing again, we get the formula for the scalar curvature

Rg̃ = e−2u(Rg − (2n− 2)∆u− (n− 1)(n− 2)|∇u|2).

Finally we set ψ := e
n−2

2
u, and the above formula becomes

Rg̃ = ψ−
2

n−2 (Rg −
4(n− 1)

n− 2
ψ−1∆ψ).

5.5 Hypersurfaces

The aim of this section is to compute the second fundamental form (extrin-
sic curvature) and the mean curvature of hypersurfaces that are graphs in
special classes of Riemannian manifolds. Before doing so, we recall some
definitions. Given a regular function f : M → R, the gradient of f is defined
as the vector field ∇f on M satisfying g(∇f,X) = df(X) for every vector
field X on M . In local coordinates ∇f = gij∂if∂j . It is called Hessian of f
the symmetric (0, 2)-tensor defined by

Hessf(X,Y ) = g(∇X∇f, Y )
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for every vector field X, Y on M . In local coordinates Hessf(∂i, ∂j) =
∂i∂jf − Γkij∂kf . We already introduced the Laplace-Beltrami operator ∆f
of f , defined as the trace of the Hessian of f . In local coordinates

∆f = tr Hessf = gij(∂i∂jf − Γkij∂kf).

Finally we recall that for a vector field X, the divergence of X is defined
to be the function divX = trg∇X, which is given in local coordinates by

divX = ∂iX
i + ΓjijX

i. In virtue of the previous definition, one can notice
that ∆f = div∇f .

Now let (M, g) be a Riemannian manifold of dimension n and consider
an hypersurface S ⊂ M . The second fundamental form of S ⊂ M is
defined by

II(X,Y ) = g(∇νX,Y ) = −g(∇XY, ν)

for every vector fields X,Y tangent to S, where ν denotes a unit vector field
normal to S (notice that the sign of the second fundamental form depends
on the choice of a direction for ν). The mean curvature of S ⊂ M is
defined to be the trace of the second fundamental form. The role of the
second fundamental form is to relate the curvature of the hypersurface to
those one of the ambient space.

Proposition 5.3. Let S be an hypersurface embedded in a Riemannian
manifold (M, g). Denote by g0, R0 and II respectively the metric induced
by (M, g) on S, the curvature tensor of (S, g0) and the second fundamental
form of the embedding S ⊂M . Then the following facts hold:

• Gauss equation: For any vector fields X,Y, Z and W tangent to S one
has

R(X,Y, Z,W ) = R0(X,Y, Z,W )−II(Y,Z)II(X,W )+II(X,Z)II(Y,W )

• Codazzi-Mainardi equation: For any vector fields X,Y and Z tangent
to S one has

R(X,Y, Z, ν) = −(∇XII)(Y,Z) + (∇Y II)(X,Z),

where ν denotes the unit vector field normal to S for which the second
fundamental form is computed.

Graphs on cylinders

As first example, consider the cylinder (R × Σ, g), where g = dr2 + ḡ and
(Σ, ḡ) is a Riemannian manifold of dimension n− 1. Every smooth function
ψ : Σ → R defines the graph hypersurface S := {r = ψ} = {(ψ(θ), θ) | θ ∈



CHAPTER 5. APPENDIX 93

Σ}. We can consider the unit vector ν perpendicular to S and directed to
r = +∞, which is

ν =
∇(r − ψ)

|∇(r − ψ)|
=

∂r −∇ḡψ√
1 + |∇ḡψ|2ḡ

.

If (θα) = (θ1, . . . , θn−1) denote local coordinates for Σ, then the metric g on
S becomes g|S = (∂αψ∂βψ + ḡαβ)dθα ⊗ dθβ and

vα := ∂αψ∂r + ∂α

is a local frame for TS. Thus the second fundamental form is given by

IIαβ = −g (∇vαvβ, ν)

= −∂αψ∂βψg (∇∂r∂r, ν)− ∂αψg (∇∂r∂β, ν)− ∂αβψg (∂r, ν)

− ∂βψg (∇∂α∂r, ν)− g (∇∂α∂β, ν) .

A direct computation shows that the unique non-vanishing Christoffel sym-
bols of g are the ones which do not involve the variable r, namely Γγαβ, which

coincide with the Christoffel symbols Γ̄γαβ of ḡ. Thus

IIαβ = −
∂αβψ − g (∇∂α∂β,∇ḡψ)√

1 + |∇ḡψ|2ḡ
= −

∇αβψ√
1 + |∇ḡψ|2ḡ

is the formula for the second fundamental form. To compute the mean
curvature H of S ⊂ M , we have to notice that the inverse of (g|S)αβ =
ḡαβ + ∂αψ∂βψ is

(g|S)αβ = ḡαβ − ∇
α
ψ∇βψ

1 + |∇ḡψ|2ḡ
and therefore

H = −

(
ḡαβ − ∇

α
ψ∇βψ

1 + |∇ḡψ|2ḡ

)
∇αβψ√

1 + |∇ḡψ|2ḡ

= − ∆ḡψ√
1 + |∇ḡψ|2ḡ

+
Hessḡψ(∇ḡψ,∇ḡψ)(

1 + |∇ḡψ|2ḡ
)3/2

= −divḡ

 ∇ḡψ√
1 + |∇ḡψ|2ḡ

 .

(5.8)
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Graphs on conformal manifolds

As second example, consider a conformal metric g̃ = e2ug where (M, g) is a
Riemannian manifold of dimension n. Let S ⊂ M be an hypersurface, we
want to relate the second fundamental form ĨI and the mean curvature H̃ of
S in (M, g̃) with respect to the same objects II and H relative to (M, g). We
notice that ν̃ := e−uν is the g̃-unit vector perpendicular to S if ν denotes
the g-unit vector perpendicular to S. Then

ĨI(X,Y ) = −g̃(∇̃XY, ν̃) = −eug(∇̃XY, ν).

Using the formula for the transformation of the Christoffel symbols under a
conformal change, one observe that

∇̃XY = ∇XY + Y (u)X +X(u)Y − g(X,Y )∇u,

therefore
ĨI(X,Y ) = euII(X,Y ) + eug(X,Y )g(∇u, ν).

Taking the trace by (g̃|S)−1, we get the formula for the mean curvature

H̃ = e−u(H + (n− 1)g(∇u, ν)).

Graphs on warped products

Due to the results of the last two subsections, we are going to show the
following result.

Lemma 5.4. Let (Σ, ḡ) be a Riemannian manifold of dimension n− 1 and
consider M := R× Σ equipped with the metric

g := e2u
(
dr2 + φ2(r)ḡ

)
,

where u : Σ → R and φ : R → R are smooth functions, φ > 0. Then the
second fundamental form II of the graph of a smooth function ψ : Σ → R,
with respect to g and the unit normal pointing to r = +∞, can be computed
as

e−u
√

1 + φ−2|∇ψ|2 II = −Hessψ + φ−1φ̇ dψ ⊗ dψ
+ (φ2∂ru+ φφ̇)(φ−2dψ ⊗ dψ + ḡ)

− ḡ(∇u,∇ψ)(φ−2dψ ⊗ dψ + ḡ),

(5.9)

while the mean curvature H can be computed as

euH =− φ−1div

(
∇ψ√

φ2 + |∇ψ|2

)

+ (n− 1)
φ−1φ̇+ ∂ru− φ−2〈∇u,∇ψ〉√

1 + φ−2|∇ψ|2
.

(5.10)



CHAPTER 5. APPENDIX 95

In the above formulas all the geometric quantities are computed with respect
to ḡ and, with abuse of notation, we tacitly omitted the composition with ψ,
so that u, ∂ru, 〈∇u,∇ψ〉, φ and its derivative φ̇ are the functions defined
for θ ∈ Σ by u(ψ(θ), θ), ∂ru(ψ(θ), θ), ḡij∂iu(ψ(θ), θ)∂jψ(θ), φ(ψ(θ)) and
φ̇(ψ(θ)) respectively. Equivalently, (5.10) can be rewritten as

√
1 + φ−2|∇ψ|2euH = −φ−2∆ψ +

φ−4Hessψ(∇ψ,∇ψ)

1 + φ−2|∇ψ|2

+ φ−1φ̇
φ−2|∇ψ|2

1 + φ−2|∇ψ|2

+ (n− 1)φ−1φ̇

+ (n− 1)
(
∂ru− φ−2〈∇u,∇ψ〉

)
.

(5.11)

Let us show the previous result. We have to compute the second fun-
damental form and the mean curvature of the hypersurface S = {r = ψ}
in R × Σ equipped with the metric g̃ = e2u(dr2 + φ2(r)ḡ), with respect to
the unit vector pointing to r = +∞. If we introduce v := u + log φ and
consider the new variable ρ in R defined by ρ′(r) = 1/φ(r) and ρ(0) = 0,
then g̃ = e2vg with g = dρ2 + ḡ. With this notation the hypersurface S
becomes the graph {ρ = f}, where f : Σ→ R is defined by

f(θ) =

∫ ψ(θ)

0

dr

φ(r)
.

Due to the results of the previous paragraphs, we know that

ĨI = evII + evg(∇v, ν)g,

where

II = − Hessḡf√
1 + |∇ḡf |2ḡ

and ν =
∂ρ −∇ḡf√
1 + |∇ḡf |2ḡ

.

Since ∂αf = ∂αψ/(φ ◦ ψ), then ∇ḡf = (ψ ◦ ψ)−1∇ḡψ and Hessḡf = (φ ◦
ψ)−1Hessḡψ − (φ ◦ ψ)−2(φ̇ ◦ ψ)dψ ⊗ dψ. Then

ĨI = −ev
(φ ◦ ψ)−1Hessḡψ − (φ ◦ ψ)−2(φ̇ ◦ ψ)dψ ⊗ dψ√

1 + (φ ◦ ψ)−2|∇ḡψ|2ḡ
+ evg(∇v, ν)((φ ◦ ψ)−2dψ ⊗ dψ + ḡ).

Now we use that v = u+ log φ, so that

g(∇v, ν) =
(φ ◦ ψ)∂ru(ψ, ·) + φ̇ ◦ ψ − (φ ◦ ψ)−1ḡαβ∂αu(ψ, ·)∂βψ√

1 + (φ ◦ ψ)−2|∇ḡψ|2ḡ
.
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This gives

e−u(ψ,·)ĨI = −Hessḡψ − (φ̇ ◦ ψ)(φ ◦ ψ)−1dψ ⊗ dψ√
1 + (φ ◦ ψ)−2|∇ḡψ|2ḡ

+ (φ ◦ ψ)
(φ ◦ ψ)∂ru(ψ, ·) + φ̇ ◦ ψ√

1 + (φ ◦ ψ)−2|∇ḡψ|2ḡ
((φ ◦ ψ)−2dψ ⊗ dψ + ḡ)

− ḡ(∇ḡu(ψ, ·),∇ḡψ)√
1 + (φ ◦ ψ)−2|∇ḡψ|2ḡ

((φ ◦ ψ)−2dψ ⊗ dψ + ḡ).

It remains to check the formula for the mean curvature. It is sufficient to
trace the formula above via the inverse of (g|S)αβ = e2u(ψ,·)(∂αψ∂βψ + (φ ◦
ψ)2ḡαβ), which is

(g|S)αβ = e−2u(ψ,·)

(
(φ ◦ ψ)−2ḡαβ − (φ ◦ ψ)−4 ∇αψ∇βψ

1 + (φ ◦ ψ)−2|∇ḡψ|2ḡ

)
.

In this way we obtain√
1 + (φ ◦ ψ)−2|∇ḡψ|2ḡ eu(ψ,·)H̃ = −(φ ◦ ψ)−2∆ḡψ

+
(φ ◦ ψ)−4Hessḡψ(∇ḡψ,∇ḡψ)

1 + (φ ◦ ψ)−2|∇ḡψ|2ḡ

+ (φ ◦ ψ)−3(φ̇ ◦ ψ)
|∇ḡψ|2ḡ

1 + (φ ◦ ψ)−2|∇ḡψ|2ḡ
+ (n− 1)(φ ◦ ψ)−1(φ̇ ◦ ψ)

+ (n− 1)
(
∂ru(ψ, ·)− (φ ◦ ψ)−2ḡ(∇ḡu(ψ, ·),∇ḡψ)

)
,

(5.12)

and the claim follows.

5.6 Elliptic operators

We recall the basic definitions and properties of elliptic operators on Rie-
mannian manifolds. This section also explains the notation used in the
thesis, which is standard in literature.

Functional spaces

Let (M, g) be a Riemannian manifold of dimension n. The volume form
dVg induced by g gives raise to a Borel measure on M . This allows one to
define measurable functions from M to R and weak derivatives. For k ∈ N
and p ∈ [1,+∞], the Sobolev space Lp,k(M, g) is defined to be the set of
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those measurable functions f : M → R (modulo equality almost everywhere)
satisfying

‖f‖Lp,k(M) := max
j≤k

(∫
M
|∇(j)f |pgdVg

) 1
p

< +∞

if p <∞, and
‖f‖L∞,k(M) := max

j≤k
sup
M
|∇(j)f |pg < +∞

for p = +∞. For k ∈ N and α ∈ (0, 1), the Hölder space C k,α(M, g)
is defined to be the set of those measurable functions f : M → R (again
modulo equality almost everywhere) satisfying

‖f‖C k,α(M,g) = max
j≤k

sup
M
|∇(j)f |+ sup

p 6=q∈M

|∇(k)f(p)−∇(k)f(q)|
d(p, q)α

<∞,

where the term supp 6=q∈M is considered among those q 6= p belonging to
a normal convex neighbourhood of p ∈ M so that the parallel transport
is well-defined and the expression ∇(k)f(p) − ∇(k)f(q) makes sense. Both
the Sobolev and Hölder space are examples of Banach spaces on M . Their
definition strongly depends on the metric g, however if M is compact then g
only influences the definitions of the norms but not Sobolev or Hölder spaces
themselves, and it holds the following result.

Proposition 5.5. If (M, g) is a compact Riemannian manifold of dimension
n, then the following are true.

1. For p ∈ [1,+∞) the space of smooth function C∞(M) is dense in
Lp,k(M, g);

2. For k, k′ ∈ N and p, p′ ∈ [1,+∞) satisfying

k ≥ k′ and k − n/p ≥ k′ − n/p′, (5.13)

the space Lp,k(M, g) embeds continuously in Lp
′,k′(M, g), and it is a

compact embedding if (5.13) hold strictly;

3. For m, k ∈ N, α ∈ (0, 1) and p ∈ [1,+∞) satisfying

m− n/p ≥ k + α, (5.14)

the space Lp,m(M, g) embeds continuously in C k,α(M, g), and it is a
compact embedding if (5.14) hold strictly;

4. For k, k′ ∈ N and α, α′ ∈ (0, 1) satisfying

k + α ≥ k′ + α′, (5.15)

the space C k,α(M, g) embeds continuously in C k′,α′(M, g), and it is a
compact embedding if (5.15) hold strictly.
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Elliptic linear operators

Consider a compact Riemannian manifold (M, g) of dimension n. A second
order operator is an operator that takes a function u on M which is at least
two-times differentiable (possibly in a weak sense) and maps it to a function
P (u) defined on M depending only (and at least continuously) on u, ∇u and
∇2u. The operator is called linear if P (λu+ µv) = λP (u) + µP (v) for u, v
functions and λ, µ ∈ R. In general a second-order operator P is not linear,
but it is possible to linearise it around a function u letting

Lv := lim
t→0

P (u+ tv)− P (u)

t

for a function v. Then P is linear if and only if coincides with its lineariza-
tion. A second-order linear operator L with C k,α(M)-coefficients can be
written by definition as

Lu =
n∑

i,j=1

aij∇iju+
n∑
i=1

bi∇iu+ cu,

where aij = aji, bi and c belong to C k,α(M). It can be seen as an operator
L : C k+2,α(M) → C k,α(M). The principal symbol of L at p ∈ M is the
homogeneous polynomial of degree 2 defined as σ(p, ξ) :=

∑
ij a

ij(p)ξiξj .
The operator L is called elliptic if σ(p, ξ) 6= 0 for every p ∈ M and every
non-zero ξ ∈ Rn. More generally a (non-linear) second order operator P
is called elliptic at u if its linearization at u is elliptic. The most famous
example of second order linear elliptic operator with smooth coefficients
on (M, g) is probably the Laplace-Beltrami operator ∆ + κ, κ ∈ R, whose
principal symbol is σ(p, ξ) = |ξ|2g(p). A second well-known property of ∆ +κ
is to be self-adjoint. Let L be a second-order linear operator with smooth
coefficients, it turns out that there exists an unique linear operator L∗, called
adjoint of L, such that ∫

M
vLudVg =

∫
M
uL∗vdVg

for every u, v ∈ L2,2(M, g). The Laplace-Beltrami operator is self-adjoint in
the sense that (∆ + κ)∗ = ∆ + κ. Indeed we recall that since M is close
without boundary the it holds∫
M
v(∆u+κu)dVg = −

∫
M
g(∇v,∇u)dVg+κ

∫
M
vudVg =

∫
M
u(∆v+κv)dVg.

Regularity and existence results

We list some very useful and classic properties of a linear elliptic operators
(for simplicity, we focus on operators of the second order, but analogous
results hold in general).
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Theorem 5.6 (Regularity). Let (M, g) be a compact Riemannian manifold
and L a second-order elliptic linear operator on M with smooth coefficients.
Fix p > 1, k ∈ N and α ∈ (0, 1). Suppose that Lu = v holds weakly for two
integrable functions u and v on M . If v ∈ Lp,k(M) then u ∈ Lp,k+2(M) and

‖u‖Lp,k+2(M) ≤ C
(
‖v‖Lp,k(M) + ‖u‖L1,0(M)

)
for some C > 0 independent of u, v. If v ∈ C k,α(M) then u ∈ C k+2,α(M)
and

‖u‖C k+2,α(M) ≤ C
(
‖v‖C k,α(M) + ‖u‖C 0(M)

)
for some C > 0 independent of u, v.

In particular, under the hypothesis of the theorem above one deduces
that if v is smooth then u is smooth.

Theorem 5.7 (Existence). Let (M, g) be a compact Riemannian manifold
and L a second-order elliptic linear operator on M with smooth coefficients.
Fix p > 1, k ∈ N and α ∈ (0, 1). The operator L can be seen as operator
C k+2,α(M) → C k,α(M), Lp,k+2(M) → Lp,k(M) or C∞(M) → C∞(M).
In all these cases KerL is a finite-dimensional subspace of the domain of L.
Moreover for every v ∈ Lp,k(M) there exists u ∈ Lp,k+2(M) such that Lu = v
if and only if

∫
M vwdVg = 0 for every w ∈ Lp,k(M) such that L∗w = 0, and

u is unique if one requires
∫
M uwdVg = 0 for every w ∈ Lp,k+2(M) such

that Lw = 0. Similarly, for every v ∈ C k,α(M) there exists u ∈ C k+2,α(M)
such that Lu = v if and only if

∫
M vwdVg = 0 for every w ∈ C k,α(M)

such that L∗w = 0, and u is unique if one requires
∫
M uwdVg = 0 for every

w ∈ C k+2,α(M) such that Lw = 0.

For instance, the previous result implies that ∆ + κ is an isomorphism
from C k+2,α(M) to C k,α(M) whenever −κ is not an eigenvalue of ∆. Sim-
ilarly, it follows that the image of ∆, whose kernel consists on constant
functions, contains those functions with null mean.

The last result we recall is usually known as Interior Schauder Estimates.

Theorem 5.8. Let (M, g) be a compact Riemannian manifold and L a
second-order elliptic linear operator on M with smooth coefficients. Let Ω ⊂
Ω′ be two relatively compact open subsets of M such that dg(Ω, ∂Ω′) > 0.
Fix k ∈ N and α ∈ (0, 1), then there exists a constant C > 0 such that if
u ∈ C k+2(Ω′, g) satisfies Lu ∈ C k,α(Ω′, g), then u ∈ C k+2,α(Ω, g) and

‖u‖C k+2,α(Ω,g) ≤ C
(
‖Lu‖C k,α(Ω′,g) + ‖u‖C 0(Ω′,g)

)
.

An analogue result holds in the Sobolev setting. The Interior Schauder
Estimates above are stated under the hypothesis of compactness of M , how-
ever since they only involve Ω and Ω′ one can expect the same result for a
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non-compact M . If M is not compact, we have to assume that the symbol
of L satisfies σ(p, ξ) > λ|ξ|2g(p) for some λ > 0 independent of p (uniform

ellipticity). Then the Interior Schauder Estimates holds as well but the con-
stant C will depend as previously on (M, g), dg(Ω, ∂Ω′), k, α and on upper
bounds for the C k+2,α-norms of the coefficients of L, but also on λ and on
the diameter of Ω′ .

5.7 The Yamabe problem

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 2. If
n = 2 the uniformization theorem asserts that g is conformal to a metric
with constant scalar curvature (this is actually true also in the non-compact
case). The Yamabe problem asks if the same holds in higher dimension.
Precisely

Yamabe problem, 1960 Let (M, g) be a compact Riemannian manifold
of dimension n ≥ 3. Is there a metric g̃ in the conformal class [g] of g such
that the scalar curvature Rg̃ is constant?

Yamabe himself claimed to have found a solution of his problem, how-
ever Neil Trudinger found a mistake in Yamabe’s proof. Some time later
Trudinger and Aubin showed that the approach of Yamabe could work but
with some hypothesis on M , precisely if the Yamabe invariant (the precise
definition below) is smaller of a certain constant λ(Sn). Moreover, Aubin
showed that such conditions were verified by Riemannian manifolds of di-
mension n ≥ 6 which are not locally conformally flat. The remaining cases
was proved some years later, in 1984, by Richard Schoen, who gave a positive
answer to the Yamabe problem.

Given two metrics g and g̃ = ψ
4

n−2 g in the same conformal class, their
scalar curvatures are related by

Rg̃ = ψ−
2

n−2

(
Rg −

4(n− 1)

n− 2
ψ−1∆ψ

)
),

as we noticed in Section 5.4. Therefore the Yamabe problem is equivalent
to find a positive smooth solution ψ to the Yamabe equation

4(n− 1)

n− 2
∆ψ −Rgψ + εψ

n
n−2 = 0,

for some ε ∈ R. By a variational point of view, the Yamabe problem is
also equivalent to show the existence of stationary points of the operator
Q : [g]→ R defined by

Q(g̃) :=

∫
M Rg̃ dVg̃

Volg̃(M)
n−2
n

.
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In fact it can be shown that a metric in [g] is a stationary point for Q if
and only if it has constant scalar curvature. It can be also shown that Q is
bounded below, so it makes sense to introduce the Yamabe invariant

λ(M) := inf
[g]
Q,

which only depends on M and [g]. A Yamabe metric is a metric g̃ ∈ [g] such
that Q(g̃) = λ(M), namely a minimum for Q. The idea for showing the
Yamabe problem was actually to prove the existence of a Yamabe metric on
[g]. For what concerns the uniqueness, it can be shown that if λ(M) ≤ 0,
then there is a unique solution for the Yamabe problem up to homothety. In
particular if λ(M) < 0 there exists a unique metric in [g] with constant scalar
curvature equal to −1, and if λ(M) = 0 there exists a unique metric in [g]
with constant scalar curvature equal to 0 and volume equal to 1. Differently,
if λ(M) > 0 there may exists different metrics in [g] with constant scalar
curvature, which are not related by homothety. This depends on the possible
existence of stationary points for Q which are not Yamabe metrics.

The Yamabe problem in the non-compact setting is still open and false
in general. This strongly depends on the behaviour of the geometry of the
ends of the manifold.



Bibliography

[1] A. M. ABRAHAM, G. B. COOK, S. L. SAPHIRO, S. A. TEUKOLSKY: Solv-
ing Einstein’s equations for rotating spacetimes: Interaction with gravi-
tational waves, Phys. Rev. D, 49 (1994), 5153–5164.

[2] P. T. ALLEN, J. ISENBERG, J. M. LEE, I. STAVROV: Weakly asymptoti-
cally hyperbolic manifolds. arXiv:1506.03399

[3] A. AMBROSETTI, A. MALCHIODI: Perturbation Methods and Semilin-
ear Elliptic problems on Rn, Birkhäuser, 2005. XII+184 pp.

[4] A. AMBROSETTI, G. PRODI: A Primer of Nonlinear Analysis, Cam-
bridge University Press, Cambridge, 1993. VIII+171 pp.

[5] L. C. AMBROZIO: on perturbations of the Schwarzschild anti-de Sitter
spaces of positive mass, Communications in Mathematical Physics, 337
(2015), 767–783.

[6] L. ANDERSSON: Elliptic systems on manifolds with asymptotically neg-
ative curvature, Indiana Univ. Math. Jour., 42 (1993), no. 4, 1359–1387.

[7] M.T. ANDERSSON: Topics in conformally compact Einstein metrics, Per-
spectives in Riemannian Geometry, CRM Proc. Lecture Notes, 40 (2006),
1–26.

[8] L. ANDERSSON, M. CAI, G. J. GALLOWAY: Rigidity and positivity of
mass for asymptotically hyperbolic manifolds, Ann. Henri Poincaré, 9
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