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Executive summary

The field of market microstructure connects the workings of financial markets on the micro-
level, e.g. of single agents or single orders and often at ultra-fast time scales, to emergent
phenomena and behaviours at a more macroscopic level and slower time scales. Classical
examples include the price formation process, especially the impact of trading on prices,
and the estimation and modelling of volatility and liquidity - often with a special focus
on fluctuations and extreme events. Corresponding applications are manifold and diverse,
ranging from optimal execution problems faced by financial investors to market design
and the detection of fraudulent trading behaviours by regulators. Increasing availability of
high-frequency and high-quality data, especially in the wake of electronification of trading
and regulatory initiatives for higher transparency, have led the field to flourish in recent
decades.

Most of these advances have been concentrated on international equities markets and,
after the introduction of mandatory post-trade reporting through TRACE, the U.S. fixed-
income market. Considerably less attention has been devoted to fixed-income markets in
Europe. This imbalance is not so much reflective of the importance of these markets, but
rather due to the availability of reliable data sources. As a matter of fact the market for
European fixed-income securities and especially sovereign debt is one of the most important
worldwide.

Like in most fixed-income markets trading occurs predominantly over-the-counter, with
smaller market shares being taken by retail and interdealer electronic platforms. Until
recently studies of this market have been few and - especially from a market microstructure
point of view - been based mainly on data from the interdealer platform MTS. However
the European sovereign debt crisis, the Quantitative Easing program of the ECB and the
environment of low and negative bond yields as well as upcoming regulatory changes have
drawn new attention to fixed income markets in Europe.

This thesis aims to shed light on the market microstructure in European fixed income
markets from a number of different viewpoints, focusing on interconnections among se-
curities, trading structures and markets. One limitation of such an endeavor, as alluded
above, is the availability of representative data due to the existing trading structures. In
the first part of this thesis we overcome this by using data from electronic platforms, while
in the second part we make use of a regulatory dataset that includes over-the-counter
transactions. The remainder of this thesis is organized as follows.

Chapter 1 Here we provide an overview of the main contributions in this thesis.

Chapter 2 This chapter introduces the themes and research questions that we address
in this thesis for a general audience. A reader already familiar with the concepts of market
microstructure could skip this chapter.
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Chapter 3 This chapter presents several stylized facts of trading and quoting activity
on the electronic retail platform MOT.

Chapter 4 In this chapter we study limits to cross-asset arbitrage in market impact
models, extending the framework of Gatheral (2010) to the multi-dimensional case where
trading in one asset has a cross-impact on the price of other assets. From the condition of
absence of dynamical arbitrage we derive theoretical limits for the size and form of cross-
impact and we test these constraints on cross-impact estimated from trades in sovereign
bonds on the platform MOT. While we find significant violations of the no-arbitrage
conditions, we show that these are not arbitrageable with simple strategies because of the
presence of the bid-ask spread.

Chapter 5 Here we model the cross-asset dynamics of liquidity, considering especially
significant deteriorations of liquidity conditions. We propose a peak-over-threshold method
to identify abrupt liquidity drops from limit order book data and we model the time-series
of these illiquidity events across multiple assets as a multivariate Hawkes process. This
allows to quantify both the self-excitation of extreme changes of liquidity in the same asset
(illiquidity spirals) and the cross-excitation across different assets (illiquidity spillovers).
Applying the method to the MTS sovereign bond market, we find significant evidence for
both illiquidity spillovers and spirals.

Chapter 6 Dealers in European sovereign bonds have the option to trade either over-
the-counter or on an exchange. In this chapter we study the drivers behind their decision
for either venue, using a regulatory dataset of transactions in German federal government
debt which we match with the limit order book of the interdealer platform MTS. We
find that both factors related to cost and immediacy are major drivers of venue choice.
Over-the-counter trades on average occur at prices that are favorable with respect to those
offered on the exchange and we investigate also the drivers for this OTC discount.

Chapter 7 The final chapter assesses liquidity of German corporate bonds in comparison
to the benchmark U.S. market. We describe a market that consists of a majority of
infrequently traded bonds and a fraction of few actively traded bonds. For the latter
we compute liquidity metrics and determine their driving factors. In a matched sample
analysis we also find the subset of the most actively traded German corporate bonds to be
significantly more liquid than comparable U.S. bonds.

Chapters 3 through 7 contain the original contributions of this thesis. Each of them is
self-contained and in principle can be read separately.



Contents

Executive summary 3

List of publications 9

1 Presented research 13
1.1 Empirical market microstructure . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Price impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Illiquidity dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Venue choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Introduction 19
2.1 Market structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Market liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Round-trip cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Trading activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Price impact as a liquidity dimension . . . . . . . . . . . . . . . . . 24

2.3 Price impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Autocorrelation of order flow . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Price impact models . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Stylized facts of the MOT bond platform 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Market rules and mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Market structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Market rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Volatility auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Data preparation & checks . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Intraday seasonalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Stylized facts of trading activity . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Stylized facts of quoting activity . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Shape of the limit oder book . . . . . . . . . . . . . . . . . . . . . . 37
3.6.2 Impact of tick size changes . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.A List of ISINs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Cross-impact and no-dynamic-arbitrage 45

5



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Price process and cost of trading . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Principle of no-dynamic-arbitrage . . . . . . . . . . . . . . . . . . . . 48

4.3 General constraints on cross-impact for bounded decay kernels . . . . . . . 49
4.3.1 A simple strategy with two assets . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Cross-impact as odd function of the trading rate . . . . . . . . . . . 50
4.3.3 Constraints on the strength of cross-impact . . . . . . . . . . . . . . 51
4.3.4 Symmetry of cross-impact . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.5 Linearity of market impact . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.6 Exponential decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.7 Symmetry and bid-ask spread . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Empirical evidence of cross-impact . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.1 Market structure of MOT . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.2 Response function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.3 Instantaneous market impact . . . . . . . . . . . . . . . . . . . . . . 57
4.4.4 Decay kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.5 Testing for symmetry of cross-impact . . . . . . . . . . . . . . . . . 62

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.B Power-law decay and impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.C List of ISINs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Illiquidity spillovers 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Event detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Hawkes processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.1 MTS market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.2 Liquidity metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.3 Illiquidity event detection . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.4 Self-excitation and spillover . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.5 Robustness checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Venue choice in hybrid markets 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4 Market setting and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.1 Bund market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4.2 Data preparation and descriptives . . . . . . . . . . . . . . . . . . . 98

6.5 Venue choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.6 Trading costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6.1 OTC discount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.6.2 Drivers of OTC discount . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



6.A Cross-venue response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.A.a Order sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.A.b Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.A.c Autocorrelation of the order sign . . . . . . . . . . . . . . . . . . . . 114

7 Liquidity of German corporate bonds 117
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2.1 European corporate bond market . . . . . . . . . . . . . . . . . . . . 120
7.2.2 U.S. corporate bond market . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 Market structure and financial market regulation . . . . . . . . . . . . . . . 122
7.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4.1 Description of the dataset . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4.2 Data filtering and sample selection . . . . . . . . . . . . . . . . . . . 123

7.5 Liquidity in markets with and without transparency . . . . . . . . . . . . . 126
7.5.1 Descriptive analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.5.2 Measuring liquidity in bond markets . . . . . . . . . . . . . . . . . . 131
7.5.3 Time-series dynamics of liquidity . . . . . . . . . . . . . . . . . . . . 132
7.5.4 Determinants of liquidity . . . . . . . . . . . . . . . . . . . . . . . . 138
7.5.5 Matched sample analysis . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.A TRACE data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.B Liquidity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.C Additional figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Conclusions 151

Bibliography 163





List of publications

The following articles are part of this thesis:

• Schneider, M., F. Lillo, and L. Pelizzon (2018). Modelling illiquidity spillovers
with Hawkes processes: an application to the sovereign bond market. Quantitative
Finance 18 (2), 283–2931

• Schneider, M. and F. Lillo (2018). Cross-impact and no-dynamic-arbitrage. forthco-
ming in Quantitative Finance

• de Roure, C., E. Moench, L. Pelizzon, and M. Schneider (2018). OTC discount. in
preparation
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Tomio, Florian Klöck, Jun Uno, Sebastian Vogel and many more. I also acknowledge kind
financial support from the Association of Foundations of Banking Origin that benefited
the research presented in Chapters 4 and 5.

Going the way from physics to finance would not have been possible without the
encouragement, advice and support of Werner Krauth, Jean-Philippe Bouchaud, Marc
Potters, Wei-Xing Zhou and Fabrizio Lillo. Thank you for believing in me.

It is impossible to imagine the last years without my family and friends. I especially
thank my parents Martina and Wolfgang for their unconditional love and support. Marco,
Matte, Ale, and many friends all over the globe, thank you for all the shared moments.
Finally, thank you Maria Chiara for being with me.

11





Chapter 1

Presented research

This thesis presents a selection of studies on the microstructure of European fixed income
markets from a number of different viewpoints, focusing on interconnections among securi-
ties, trading structures and different markets. While a lot of parallels to e.g. equity markets
exist, fixed-income markets are more complex. This is on one hand due to structural
reasons, since bonds are traded mostly in opaque over-the-counter markets. On the other
hand it is also related to the higher degree of fragmentation in bond markets, where a
single issuer might have hundreds of bonds outstanding and the number of trades in a
single bond is typically low. The scope of this thesis is to explore the resulting market
structure and help the understanding of this under-investigated market. In this chapter we
summarize the main contributions presented in Chapters 3 through 7 and relate them to
the existing literature.

1.1 Empirical market microstructure

This thesis contributes in describing and exploring for the first time datasets that have not
previously been accessed by academic researchers for the scope of market microstructure
studies. Careful preparation of such datasets and the understanding of market rules are
elementary towards robust results and ultimately serve the validation of datasets and
findings. Other studies in this direction are e.g. Fleming (1997) for the U.S. Treasury
market while Dick-Nielsen (2009, 2014) have helped making the U.S. corporate bond
TRACE data accessible for a wide range of researchers.

Our contribution I. Chapters 3 and 4 are the first microstructure studies on the retail
bond platform MOT. Especially Chapter 3 contributes in describing the market rules of
MOT and the available data, validating the dataset and exploring stylized facts of trading
and quoting activity. We describe intraday patterns of liquidity, the autocorrelation of
order signs and the shape of the limit order book, also in the context of tick size changes.

Our contribution II. Along the same line the work presented in Chapters 6 and 7 is
the first to employ a regulatory dataset of transactions by German banks, including over-
the-counter trades, for market microstructure studies. Chapter 7 describes the regulatory
origin and scope of the data and recommends procedures for cleaning the raw dataset. On
this base Chapter 6 contributes further in providing a first study of the cash market for
German sovereign bonds (Bunds), while Chapter 7 does so for German corporate bonds.

The main contribution of Chapter 7 lies in studying the liquidity of the opaque German
corporate bond market and comparing it with the benchmark U.S. market where there is
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post-trade transparency through the TRACE database. Therefore our study also provides
a unique cross-sectional view on the impact of transparency on over-the-counter markets.
While the market for U.S. corporate bonds is far more active, we find that the most liquid
and actively traded German bonds are actually more liquid, in terms of transaction costs,
than comparable U.S. bonds. We posit that this is related to a ‘crowding’ effect where
trading activity and liquidity is concentrated in a small set of liquid bonds.

Let us stress that the studies in Chapters 6 and 7 are also particularly relevant in view
of the MiFID II regulations in force since January 2018. First, as a guidance for data
preparation, as MiFID II post-trade transaction reports will be structured similarly. And
second, as a reference point for future studies on the impact of MiFID II regulations, where
we provide the ‘before’ picture.

1.2 Price impact

Price impact, i.e. the impact of order flow on price dynamics, is a central theme of market
microstructure and has received increased attention from researchers and the financial
industry in recent years (Bouchaud et al., 2008). This is, from a fundamental point of
view, since market impact is essential towards understanding the price formation process,
while from an applied point of view it is crucial for optimal execution and transaction cost
analysis. Despite its importance and the interest, market impact remains not yet fully
understood and its modeling continues to be a challenge for academics and practitioners
alike.

Market impact refers to several similar yet different notions and a careful distinction
is necessary. First, there is the impact of the aggregated order flow in a certain period
(e.g. the averaged order sign of trades in a 1 minute interval). A second notion refers to
the aggregate impact of a large meta-order that is executed incrementally. In this thesis
we refer to a third notion of impact, that of a single trade (i.e. not aggregating into time
intervals and regardless of whether it is part of a meta-order).

The majority of research on market impact has naturally focused on self-impact, i.e.
the impact of trading an asset on the price of the same asset. Cross-impact, i.e. the impact
of trading an asset on the price process of other assets, has only very recently become the
subject of empirical studies (Benzaquen et al., 2017; Wang et al., 2016a,b).

Appropriate models of market impact are an indispensable ingredient for transaction
cost analysis and optimal execution problems. Crucially such models should not only
be realistic representations of observed impact, but also free of opportunities for price
manipulation and arbitrage. This insight has lead to a rich literature already for the
single-asset case with self-impact (e.g. Huberman and Stanzl (2004); Gatheral (2010);
Alfonsi et al. (2012); Gatheral and Schied (2013a); Curato et al. (2016, 2017)). As optimal
execution is taking into account also cross-impact (e.g. Schöneborn (2016); Tsoukalas et al.
(2017); Mastromatteo et al. (2017)) it is equally important to understand the limitations
that arise in a multi-asset framework with cross-impact.

Our contribution I. The work presented in Chapter 4 contributes both to the theore-
tical and the empirical literature on cross-impact. In the theoretical part of the chapter we
derive necessary conditions for the absence of dynamic arbitrage in the sense of Huberman
and Stanzl (2004). While Alfonsi et al. (2016) show that absence of arbitrage is equivalent
to the decay kernel being a positive definite matrix-valued function, this is difficult to
verify in practice when a decay kernel is obtained coordinate-wise from estimations. We
contribute by establishing some easily verifiable conditions that are necessary for absence



of arbitrage.
In order to do so we expand the framework of Gatheral (2010). Our model for the price

Sit of asset i at time t reads

Sit = Si0 +
∑
j

∫ t

0
f ij(ẋjs)G

ij(t− s)ds+

∫ t

0
σidZis (1.1)

where f ij and Gij capture the impact of order size and decay with time respectively from
trades in other assets j, σi is the volatility and Zs a correlated noise process (e.g. a
multivariate Wiener process). For a set of simple round-trip strategies we calculate the cost
according to the model and absence of arbitrage requires that such costs are non-negative.
Assuming further that the decay kernel G(τ) is bounded, non-increasing and continuous
around τ = 0, we arrive at the following necessary conditions:

1. Odd market impact: f must be an odd function of the trading rate, i.e.

f ij(v) = −f ij(−v) ∀ i, j . (1.2)

2. Symmetric cross-impact: Cross-impact must be symmetric from i ↔ j in the
sense that

vif
ij(vj) = vjf

ji(vi) ∀ i, j . (1.3)

3. Linear cross-impact: Cross-impact must be linearly dependent on order size, i.e.
we require that

f ij(v) = ηijv ∀ i, j (1.4)

with ηij constant.

Furthermore we estimate self- and cross-impact among sovereign bonds traded on
the electronic platform MOT. To the best of our knowledge we are the first to estimate
cross-impact at the level of single trades instead of aggregated order flow, where in order
to do so we adapt the multi-asset version (Benzaquen et al., 2017) of the transient impact
model by Bouchaud et al. (2004). Analyzing the impact of single trades allows us to explore
the origins of cross-impact. Panel (a) of Figure 1.1 shows that there are contributions from
contemporaneous order flow as well as quote revisions. Panel (b) illustrates that cross-
impact decays similarly to self-impact and is weaker by roughly an order of magnitude.1

Finally we also examine whether the symmetry condition is empirically verified. While
we do find significant violations thereof, we show that these are not arbitrageable due to
the presence of the bid-ask spread and an upper limit on the speed of trading.

Our contribution II. Appendix 6.A of Chapter 6 also relates to price impact. There
we study cross-venue response based on a dataset that includes trades from both the
over-the-counter (OTC) and the exchange segment of the German sovereign bond (Bunds)
market. We do so by comparing the response of mid-quotes on the exchange to OTC
trades (that are only observed by the involved counterparties) to the response of exchange
trades. We find evidence that response to OTC trades is weaker than for exchange trades,
even when taking into account potential mis-classifications of the order sign, and that price
changes due to OTC trades occur slowly, with a timescale of one hour or longer.

1In Chapter 4 we provide a detailed discussion why observed market impact is non-linear (conditioning
of order sizes on available volumes), the initial increase of the estimated decay kernel and the estimation
procedure for the decay kernel.
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Figure 1.1: Estimated shape of self- and cross-impact: Self-impact is depicted in red and cross-
impact in blue. Panel (a) shows the average self- and cross-impact function among four bonds where impact
is from the column on the row. Solid lines show the market impact function based on all trades, dotted
lines show market impact based on isolated trades, i.e. when there was no other transaction from 3 seconds
before to 2 seconds after the triggering trade. Panel (b) depicts the average decay kernel for self- and
cross-impact among all bonds in our sample. For self- (cross-) impact we show the mean over all bonds
(pairings) weighted by the number of transactions in the triggering bond.

1.3 Illiquidity dynamics

Market liquidity is crucial for the functioning of financial markets. At the same time its
absence, i.e. illiquidity, has been identified as an important channel for financial contagion
(see e.g. Kyle and Xiong (2001); Garleanu and Pedersen (2007); Cespa and Foucault
(2014)) and concerns have been raised especially about tail events, i.e. liquidity crashes
(Brunnermeier and Pedersen, 2009; Huang and Wang, 2009; Easley et al., 2011). While
there is a vast empirical literature on commonality in liquidity pioneered by Chordia
et al. (2000), documenting the correlation of liquidity across assets, markets and asset
classes (Chordia et al., 2005; Brockman et al., 2009; Karolyi et al., 2012), this literature
mostly focuses on the average correlation in liquidity, including therefore normal and tail
conditions.

Our contribution. The work presented in Chapter 5 focuses instead on tail events of
market liquidity. We construct a liquidity factor from limit order book data and we identify
illiquidity shocks by adapting to factor increments the peak-over-threshold method which
is well-established in the context of price dynamics and exceedances of the Value-at-Risk
(VaR) threshold (Chavez-Demoulin et al., 2005; Embrechts et al., 2011; Chavez-Demoulin
and McGill, 2012). The innovation of our approach is to abstract from a discrete time grid
and use the continuous time-resolution of the underlying limit order book data.

This makes the illiquidity event arrival process particularly suited for modeling with
Hawkes processes (Hawkes, 1971a,b). Hawkes processes are a class of self-exciting point
processes now widely used in Finance (Bacry et al., 2015) to describe discontinuous
processes, such as price jumps or limit order book events.

Here we apply the illiquidity event detection method to the limit order book of MTS, the



●●●●●●●●●●●
●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●
●●●●●
●●●●●
●●●●●●

●●●●
●●
●●●
●●●●●●

●●●●●
●●●●●●

●
●●●
●●●●●

●●●●
●●●

●●●
●●

●●
●●●●●

●●
●
●●

●
●

●
●

●

●

●
● ● ●

●

●

●

●

0

1

2

3

4

5

0 1 2 3 4 5

exponential quantiles

re
sc

al
ed

 s
am

pl
e 

qu
an

til
es

● ● ●
●

●●●
●●●

●●
●●
●●●●

●●●●●●●
●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●●

●●
●

0.01

0.10

1.00

0.01 0.10 1.00

(a) QQ-plot of inter-event durations

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

0.2

0.4

0.6

2012 2013 2014 2015 2016

fr
ac

tio
n 

of
 e

ve
nt

s

●

baseline intensity

self−excitation

cross−excitation

(b) Fraction of events due to illiquidity spirals and spillovers

Figure 1.2: Modeling of illiquidity events with Hawkes processes: Panel (a) shows an example
quantile-quantile plot of sample inter-event durations rescaled by the estimated intensity and exponential
quantiles. The inset is in logarithmic scale on both axis. Panel (b) shows the fraction of illiquidity events
attributed to random arrivals (baseline intensity), illiquidity spirals (self-excitation) and illiquidity spillovers
(cross-excitation).

leading interdealer exchange for European sovereign bonds, and we parametrically model
their arrival process as a Hawkes process that allows for both self- and cross-excitation.
In this framework we can identify the fraction of such illiquidity shocks that is either due
to a constant arrival intensity of events, self-excitation, or cross-excitation. We associate
self-excitation of illiquidity events with illiquidity spirals and cross-excitation across assets
with illiquidity spillovers.

Panel (a) of Figure 1.2 shows the quantile-quantile plot of inter-event durations between
illiquidity events rescaled by the estimated arrival intensity and exponential quantiles,
illustrating that our approach is indeed well-suited to the modeling of these shocks. In Panel
(b) we demonstrate a strong presence of fast illiquidity spirals and illiquidity spillovers
throughout the investigated period from 2011 to 2016. We also observe that spillovers
occur at the time-scale of a few seconds and significantly faster for bonds with similar
maturities.

To our knowledge we are the first to use Hawkes processes to investigate extreme
illiquidity events and to document intraday contagion of illiquidity shocks for bonds. As
the event detection approach described in this chapter can also be applied to other limit
order book markets, potential studies of illiquidity contagion across markets are a natural
extension of this work.

1.4 Venue choice

Equities are typically traded on exchanges that are organized as electronic limit order book
markets. However many exchanges also have so-called upstairs markets that effectively
resemble over-the-counter (OTC) structures. This has lead to a rich theoretical literature on
the motivations of traders to be active in one segment or the other (Seppi, 1990; Grossman,
1992) as well as vast empirical literature exploring the hybrid market structures and testing
the theoretical predictions (cf. e.g. Smith et al. (2001); Bessembinder and Venkataraman
(2004); Carollo et al. (2012)).

Regulatory initiatives to shift trading in fixed income instruments and especially bonds
from OTC markets towards electronic platforms have created a new interest for hybrid



markets (Lee and Wang, 2017; Vogel, 2017). Related studies on bond markets are few, with
the notable exception of Barclay et al. (2006), who study the choice between electronic and
voice brokerage for U.S. Treasuries that go off-the-run, and Hendershott and Madhavan
(2015), who analyze a request-for-quote platform for U.S. corporate bonds.

Our contribution. Chapter 6 contributes by empirically studying a hybrid market with
a dominant OTC segment and an exchange that is organized as a fully electronic limit
order book. We investigate the German sovereign bond market, using a regulatory dataset
of transactions matched with the full limit order book of the leading interdealer exchange
MTS. First, we contribute to the literature on venue choice by considering two determinants
that, to the best of our knowledge, have not been considered so far. These are immediacy
and transparency. The exchange provides an outside option to the OTC search process and,
crucially, immediacy. Indeed we find exchange trading more likely in market situations
where the demand for immediacy is higher. However we also find evidence that in some
cases traders forego profits to benefit from the opacity of OTC trading and avoid the
post-trade transparency inherent to the exchange.

Second, we compare transaction costs across the two venues to study cost differences
and price discrimination. We do so by calculating the hypothetical price that an OTC
trade would have cost on the exchange and consider the difference to the actual trade price.
OTC trades provide an average discount of 1.5 basis points to trading on the exchange,
which means that OTC round-trip costs are on average 50% lower than on the MTS
market. Trades by dealers with access to MTS are on average 0.9 basis points cheaper in
the OTC market than those by non-MTS dealers, whereas the impact of immediacy on
OTC discounts depends on trade size.



Chapter 2

Introduction

This chapter serves as an overview over the field of market microstructure and aims to be
accessible to a broader audience. The seminal textbook on the field O’Hara (1995) defines
market microstructure as:

Market microstructure is the study of the process and outcomes of exchanging
assets under explicit trading rules. While much of economics abstracts from
the mechanics of trading, the microstructure literature analyzes how specific
trading mechanisms affect the price formation process.

Assets in the above definition refers to the goods that are traded, which could be company
shares, bitcoin (Donier and Bonart, 2015; Koutmos, 2018) or cattle (Frank and Garcia,
2011). It is customary to distinguish between asset classes. The most standard asset
classes include equities (company shares, also called stocks), fixed income (debt titles or any
contract that obliges the issuer to make scheduled payments, e.g. corporate or sovereign
bonds), foreign exchange (foreign currencies) and commodities (physical goods, e.g. gold,
oil, lifestock or electricity). In this thesis we focus on fixed income markets and especially
bond markets, however we will often make reference or compare to other asset classes,
especially in this chapter.

As market microstructure comprises many diverse subfields, uniting researchers from
various disciplines including economics, physics and data science as well as financial
practitioners and regulators, a comprehensive overview is beyond the scope of this chapter.
Instead we will in the following provide a comprehensible introduction to the topics that
are most relevant to this thesis. Section 2.1 illustrates what “explicit trading rules” and
“trading mechanisms” in the above definition refer to by presenting examples of financial
market structures. Section 2.2 introduces the concept of liquidity, which can roughly be
transcribed as capturing ‘ease of trading.’ A particular aspect of this is price impact, i.e.
how trading activity influences prices, which we highlight in Section 2.3.

2.1 Market structures

Financial markets can be organized in a number of different ways and distinguish themselves
in several characteristics. As no two venues or no two asset classes (or even assets) are
exactly alike we describe two stylized market structures that are most relevant in the
context of this thesis, instead of describing specific markets. That is we consider a market
that is organized as an exchange as well as an over-the-counter market:

1. Exchange: Strictly speaking an exchange refers to any venue (which could be a
physical location or a digital infrastructure) that allows the meeting of traders and
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the exchange of assets. Here we refer as exchange to such a venue that is organized
as an electronic continuous double-sided auction market. A double-auction market
is built around orders, which are binding expressions of an interest to trade, and
collected and organized in the limit order book (LOB). An order contains information
on which asset one wants to trade, whether one wants to buy or sell, at which price,
and how much of it. We distinguish between the following order types:

• Market orders are executed immediately.

• Limit orders are collected in the LOB for potential later execution.

• Cancellations (or modifications) cancel (or modify) existing limit orders. Market
orders cannot be cancelled or modified as they execute immediately.

Limit orders are collected in the limit order book until they are executed (i.e. result
in a trade) or cancelled. They are organized on two sides according to price-time
priority. Limit orders for the intention to buy (sell) are grouped on the bid (ask)
side. When a buy (sell) market order arrives it is matched with the limit order(s)
with the highest priority on the ask (bid) side. The highest priority is assigned to
the limit orders offering the best price (i.e. price priority). In case of a tie (equal
prices) the limit order that arrived earlier has priority over later limit orders at the
same price (i.e. time priority).

(a) LOB before a trade. (b) LOB after a buy market order.

Figure 2.1: Illustration of a stylized limit order book: Prices are increasing along the x-axis and
the y-axis depicts volume, where each block corresponds to one unit of the asset. Limit orders on the bid
(ask) side are depicted in blue (yellow). Panel (b) shows the effect of a buy market order on the limit order
book from Panel (a): the market order has a size of 5 units and takes out 2 units from the former best ask
level and 3 units from the level behind.

Figure 2.1 illustrates these market rules in an example. Panel 2.1a (Panel 2.1b) shows
a stylized limit order book right before (after) the arrival of a buy market order for a
size of 5 units. The buy market order is executed against the limit orders on the sell
side. At the level with price priority there are limit orders for two units of the asset.
The remaining 3 units of the market order are executed against limit orders with
the time priority at the next level. This implies that the first two units were bought
at a cheaper price than the next 3 units, an effect known as walking up the book in
market jargon.

2. Over-the-counter: Trading over-the-counter (OTC) is essentially trading in bilate-
ral negotiations. Someone wanting to e.g. buy an asset starts by contacting potential
counterparties (i.e. sellers in this case), either by phone or through electronic systems.
The trader wanting to buy an asset expresses her interest to do so and for which size
(request-for-quote, RFQ). The contacted trader in response quotes a price at which
she is willing to sell and the potential buyer has the option to accept or not. In



some cases big banks provide indicative quotes (i.e. non-binding prices, e.g. through
Bloomberg). The buyer might have to contact multiple potential counterparties in
order to find a counterparty willing to trade or she could do so trying to get a better
price. This is termed the search process.

This is only a small subset of possible market structures. Other platforms for example
offer to send RFQs to multiple dealers at the same time (a one-sided auction effectively).
Some so-called dark pools instead take orders and match buy and sell orders only based on
volume, while the price is determined from an external reference, e.g. a double auction
market. In the following, we compare the exchange and the over-the-counter structures
along several dimensions related to market microstructure:

• Pre-trade transparency: Pre-trade transparency is given when any trader knows
before initiating a trade the conditions thereof. The exchange offers this, since
contracts are standardized and any trader knows the price she would achieve from
observing the limit order book. This is not the case in an OTC market. There a
trader needs to send a RFQ in order to learn about the conditions she could trade at.

• Price discrimination: Whereas all traders receive the same price in the exchange
market, the OTC market features price discrimination. That is two traders directing
the same RFQ to a counterparty might receive different quotes in return.

• Post-trade transparency: Trading on an exchange is typically post-trade transpa-
rent, that is a trade is observed by all market participants after it has happened (but
typically not who was involved in the trade). The level of post-trade transparency in
OTC markets depends on the rules set by the regulator. A priori only the involved
parties know of the trade. However in some asset classes and countries reporting is
mandatory. For example data on U.S. corporate bond transactions is collected in the
TRACE database and made accessible to researchers.

• Immediacy: A market order on the exchange is immediate. The search process in
OTC markets can be time-consuming depending on the asset and market conditions.

A basic familiarity with these characteristics is crucial towards understanding the topics
presented in the previous section and in the following chapters. However, already this level
opens up several exciting research questions:

1. Market design: both regulators and exchanges have an interest to set the rules
of a market in a way that is ‘optimal’. Optimal in the sense of the provider of the
exchange might be so that trading activity is maximized, whereas optimal in the
sense of the regulator might mean that trading is fair and stable. Parameters of
exchange trading that can be altered relatively easy are for example the minimum
size of a trade or the tick size, i.e. the minimum allowed price change. Several studies
examine the effects of tick size changes in the light of various market microstructure
aspects and in Section 3.6.2 we investigate the impact of a tick size reduction (i.e. a
transition to a finer price grid) on the shape of the limit order book.

2. Market choice: So far we have implied that one asset is traded in only one market,
e.g. only on the exchange. However for most assets multiple diversely organized
platforms and OTC structures compete for order flow and market shares. In Chapter
6 we study the special case of a hybrid market where traders have the choice between
an exchange venue and an over-the-counter segment to trade the same asset. The



research question is twofold: What determines the choice of trading venue? What
determines the cost difference between the two options?

3. Post-trade transparency: How does regulator-imposed post-trade transparency
impact financial markets? Chapter 7 adds to this open discussion by comparing liqui-
dity in a market with post-trade transparency to a market without this characteristic.

2.2 Market liquidity

Financial market liquidity captures the ‘ease’ of trading an asset.1 A security is considered
liquid if one is able to trade even large quantities of it quickly and at a low cost without
affecting prices. On the other hand an asset is illiquid if trading is expensive, if one is
only able to trade small orders, trading is slow or if trading has a considerable impact on
prices. While this is still fairly intuitive, a more precise definition and the measurement of
liquidity is far from being straightforward. Already O’Hara (1995) remarks that “liquidity,
like pornography, is easily recognized but not so easily defined.” This is in part since
liquidity has multiple dimensions and no measure is able to capture all aspects of liquidity.
In this section we present different approaches to measuring liquidity, acknowledging its
multi-dimensionality.2

2.2.1 Round-trip cost

A round-trip trade is e.g. buying an amount of an asset and subsequently selling the same
amount so that the final position in the asset is equal to the initial position of the trader.
The cost associated with such a trade is the round-trip cost and captures the transaction
cost aspect of liquidity.

The round-trip cost for small volumes is measured fairly easily in limit order book
markets through the bid-ask spread. There the bid-ask spread is defined as the price
difference between the best prices on the ask and bid side of the order book :

bid-ask spread = pricebest ask − pricebest bid . (2.1)

A higher bid-ask spread indicates that an asset is less liquid. In the example in Figure 2.1
the bid-ask spread is two ticks in Panel (a) (two price levels from the leftmost ask limit
orders in yellow and the rightmost bid limit orders in blue) and three ticks in Panel (b).
Note that here we assume a round-trip trade of one unit of the asset, as it is customary to
measure bid-ask spread for the smallest possible order size. If we were to calculate bid-ask
spread in the same example for e.g. a trade of size five units, the result would be higher.

Measuring round-trip cost in OTC markets is a more intricate matter for two reasons.
First, price discrimination implies that round-trip costs differ from agent to agent. Quotes
that are available from market services are only indicative. Second, even indicative quotes
are often not available for a large number of assets. Therefore it is customary to estimate
liquidity based on datasets that record trades.

Effective bid-ask spread, proposed by Hong and Warga (2000), is defined as the difference

1Market liquidity is to be distinguished from funding liquidity, the availability of credit to finance the
purchase of assets. Both are ultimately related, see e.g. Brunnermeier and Pedersen (2009).

2For recent overviews on the topic see also Goyenko et al. (2009) and Schestag et al. (2016).



between the average buy and the average sell price3 (and normalized by their midprice):

effective bid-ask spread =
pricebuy − pricesell

1/2(pricebuy + pricesell)
. (2.2)

Other measures do not require the knowledge of whether a trade was a buy or a sell.
For example imputed round-trip cost, developed in Feldhütter (2011) and applied for OTC
markets in Dick-Nielsen et al. (2012), proxies the bid-ask spread by comparing the highest
to the lowest price of a set of transactions. A simplified definition is

imputed round-trip cost = 1− min (price)

max (price)
(2.3)

while the actual calculation averages this measure over sets of trades with identical size.4

The Roll measure, developed in Roll (1984), relates the autocorrelation of returns to
round-trip cost. It is obtained as twice the square root of the negative autocovariance of
returns:

Roll measure = 2
√
−cov(returnj , returnj−1) (2.4)

where returnj is the return due to trade j, i.e. returnj =
priceafter trade j

pricebefore trade j
− 1.

2.2.2 Trading activity

Another dimension of liquidity is trading activity which also provides a proxy for how
quickly one is able to conclude a large trade.

Turnover is a measure of how much of an asset was traded in a certain period of time.
It can be defined quite generally as

turnover[tstart,tend] =
∑

tj∈[tstart,tend]

order sizej (2.5)

where tstart and tend are the start and end point of the reference time period respectively
and the sum is over all trades j happening in that period. Where there is a well-defined
amount outstanding for a security (e.g. for company shares or bonds, but not for e.g.
currencies) turnover is often rescaled by the outstanding amount.

A different approach is to capture trading activity is to determine how often a security
is traded or how often its price changes. If a security is not traded in a day, then its price
(recorded as the price of the last trade) does not change. Such time series of daily prices
are often easier to obtain than data on single trades. Lesmond et al. (1999) use the share
of zero-return days in a period t:

proportion of zero return dayst =
#zero return days

#days
. (2.6)

Based on a similar idea Bandi et al. (2017) defines excess idle time via the occurrence
of intraday periods without price changes that last longer than expected.

3The average is taken over all sell (buy) transactions in the respective time period, that is for buys
pricebuy = 1/nbuy

∑nbuy

j=1 pricebuy,j , where nbuy is the number of buy trades.
4See Chapter 7 and especially Appendix 7.B therein for a precise definition and further liquidity measures.



2.2.3 Price impact as a liquidity dimension

Price impact is at the core of market microstructure and the question how order flow and
prices are related to one another. We will touch on this in more detail in the next section
and instead focus here on the aspects related to liquidity. If a small trade shifts the price
of the traded asset by a large amount, then the asset is considered illiquid.

One metric to measure price impact is the lambda proposed in Hasbrouck (2009). It is
obtained as the coefficient λ obtained from regressing returns on order volume:

returnt = λεt
√

order volumet + εt. (2.7)

The return is defined e.g. over a five-minute interval, i.e. returnt = pricet
pricet−5mins

− 1,

order volumet is the absolute value of aggregated order volumes of trades during the same
interval and εj is customarily defined as +1 (−1) if the majority of order volume stemmed
from buy (sell) trades. The dependence on the square root of order volume is motivated
by empirical studies that find that the price impact of metaorders is well-described by the
so-called square-root law (see e.g. Tóth et al. (2011)).

Another standard measure for lower frequencies is the Amihud measure, proposed in
Amihud (2002). It is computed as the mean ratio of absolute returns to trade volumes:

Amihudt =
1

#trades

∑
j∈t

|returnj |
order sizej

(2.8)

where again the sum is over all trades j in period t.

Liquidity is a central theme in market microstructure as well as in this thesis. As this
section shows, already the measurement of liquidity is a research topic in its own. For
example in Chapter 3 we describe several aspects related to liquidity on the bond exchange
MOT. Chapter 7 is primarily concerned with the study of liquidity in the over-the-counter
market for German corporate bonds. One key question therein is how far some of the
above measures, which have been developed with U.S. bond markets in mind, are also
applicable to other global markets.

Also the dynamics of liquidity are of considerable interest (Chordia et al., 2000; Karolyi
et al., 2012). Financial crisis are typically accompanied with drops in market liquidity
(Kyle and Xiong, 2001; Garleanu and Pedersen, 2007; Brunnermeier and Pedersen, 2009).
With this in mind Chapter 5 studies how illiquidity shocks, i.e. sudden drops in market
liquidity, propagate over time and across assets.

Finally let us point out that liquidity is a crucial ingredient to many studies in economics
and finance, further underlining the importance of its truthful measurement. For example a
strand of literature explores the liquidity premium, i.e. the extent to which market liquidity
is reflected in asset prices and returns (Amihud and Mendelson, 1986). Also the analysis
we perform in Chapter 6 relies on liquidity as a determining factor.

2.3 Price impact

Already in the previous section we have touched on the interdependence of order flow and
asset prices. Simply put, buying (selling) an asset will on average raise (lower) its price.
How exactly this happens is subject of ongoing research. This section will illustrate some
key concepts and results of this topic that is at the heart of market microstructure: the
price formation process.



2.3.1 Response

The response function R` measures the average price change conditional on a trade. It is
defined as

R` = E
[(

pricet+` − pricet
)
εt|tradet

]
(2.9)

where t is the time of a trade, pricet is the price just before the trade and ` is a lag that
could either be in trade time (i.e. ` trades ahead) or in physical time (e.g. 10 minutes
ahead). εt is the market order sign or trade sign of the trade at time t, defined as +1 for a
buyer-initiated trade and −1 for a seller-initiated trade.5 Multiplying by εt ensures that
the response to buys and sells is treated symmetrically.
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Figure 2.2: Response function: Average price change conditional on a trade. The x-axis shows the lag
` since the trade in logarithmic scale (trade time). The asset is the stock ‘France Telecom’ (FT) and data
is from 2001 to 2002. The response R` on the y-axis has been rescaled for the 2001 data to collapse onto
the 2002 data. Source: Bouchaud et al. (2008), adapted therein from Bouchaud et al. (2004).

Figure 2.2 shows an example of a response function for the French stock ‘France
Telecom’. Response is positive (reflecting the intuition that on average buys move prices
upward) and increases by a factor of ∼ 2 between ` = 1 and ` = 100. Qualitatively similar
response functions have been found for different stocks, periods, markets and asset classes.

Crucially, response is not equal to impact. To see this, consider a simple toy model
where buying an asset moves its price up instantly by 1 EUR. Let us assume, for example,
that only two buys happen, driving the price up by 1 EUR each. Calculating the response
function on this (admittedly small) sample gives a response of 1 EUR for ` = 1 (in line
with the model) and a response of 2 EUR for ` = 2, in disagreement with the model. While

5While every trade is between a buyer and a seller, in a double-auction market the initiator (or aggressor)
of the trade is clearly identified as the party that traded with a market order against an existing limit order.



this example does not carry any statistical significance, it illustrates the limitations of the
response function with regard to order flow: if a buy trade is more likely followed by a buy
trade, this distorts the observed response from the true impact. In the next section we
show that this is indeed the case in practice.

2.3.2 Autocorrelation of order flow

To quantify the notion that a buy (sell) trade is more likely to be followed by another buy
(sell) trade than a sell (buy) we use the autocorrelation function (ACF ) of the order sign ε:

ACF` =
E [(εt − µ) (εt+` − µ)]

σ2
(2.10)

where µ = E [ε] and σ2 = E

[
(ε− µ)2

]
are the mean and variance of the order sign

respectively. `, as above, is the lag, customarily given in number of trades. A positive
(negative) autocorrelation function implies that after a buy trade the next trade is more
likely a buy (sell).

Figure 2.3: Autocorrelation of the market order sign: autocorrelation function of the order sign
(±1 for buy/sell trades) versus lag ` in trade events. Data for the stock ‘Vodafone’ traded on London Stock
Exchange in the period 1999-2002. Source: Lillo and Farmer (2004); Bouchaud et al. (2008).

Figure 2.3 shows the autocorrelation function estimated for the stock ‘Vodafone’ based
on trades on London Stock Exchange in 1999-2002. Autocorrelation is clearly positive even
for large lags that are longer than the average number of trades in a day and indeed Lillo
and Farmer (2004) demonstrate that the order sign is a long memory process. Similar
autocorrelation functions have been found also for other order types (limit orders or
cancellations), assets or asset classes, markets and time periods.



Two explanations have been proposed for why the order sign is so persistent even over
longer periods of time. LeBaron and Yamamoto (2007) suggest herding, i.e. different agents
trading in a similar fashion. On the other hand Lillo et al. (2005) show that order splitting
can explain the long memory of the order sign. Order splitting refers to the practice of
traders to break up large orders (that would considerably walk up the limit order book
if executed in one piece and thus be more expensive) into smaller orders which are then
executed incrementally. It has been demonstrated empirically by Toth et al. (2015) that
order splitting is the dominating effect causing the persistent autocorrelation of order flow.

2.3.3 Price impact models

We will now seek to arrive at a statistical model for price impact (also termed market
impact), i.e. a model for the price process as a function of the order flow. We have already
presented a simple version of such a model with the toy model in Section 2.3.1. In this
simplistic toy model prices are moved up (down) 1 EUR by an arriving buy (sell) market
order and otherwise constant. We have also seen in Section 2.3.2 that the order flow shows
a long-range autocorrelation and is therefore predictable to some extent. But then in our
toy model also prices would be predictable. This is at odds both with observation and the
notion that financial markets are statistically efficient, i.e. that market prices are diffusive
and thus uncorrelated.

An impact model that is consistent with the long-range memory of the order sign is
the propagator model of Bouchaud et al. (2004), a simplified version of which we present
here.6 Crucially impact in the progator model is not permanent (as in our toy model) but
decays as a function of time. The price process is defined as

pricej =
∑
k<j

G(j − k)εk +
∑
k<j

ξk + price−∞ (2.11)

where G is the propagator or decay kernel and ξ is a noise term that captures effects
unrelated to the order flow, e.g. news. Price is thus a linear combination of the impacts
of previous trades, weighted by the propagator as a function of the time passed since the
trade, plus an independent noise term. It is possible to link the response function R` in
equation (2.9) and the autocorrelation function of the order sign ACF` in equation (2.10)
with the price process in equation (2.11). This allows to compute the propagator G from
empirically estimated response and autocorrelation functions R` and ACF` (Bouchaud
et al., 2004; Eisler et al., 2012).

Figure 2.4 shows the propagator G(`) estimated for company shares of Apple. The
propagator decays with increasing lag `, that is while trades further in the past continue
to influence the current price, the strength of this impact reduces the further in the past a
trade took place.

The academic interest towards a detailed understanding of price impact is crucial in
a multitude of ways. First, a deeper knowledge of the price formation process allows for
a better understanding of related issues such as volatility and extreme price movements.
Second, estimations of transaction costs in the sense of Section 2.2.3 can benefit from
insights about the microstructure of price impact. Finally, understanding price impact is
also essential to the field of optimal execution, which is concerned with finding strategies

6The simplification is that we neglect the role of order size in the model, as we do throughout this
introduction for the sake of accessibility. Note that also other models are consistent with the persistence of
the order flow sign. E.g. in the model of Lillo and Farmer (2004) impact is permanent and its strength
depends on the expected order sign. Bouchaud et al. (2008) shows that both models are equivalent under
additional assumptions.
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Figure 2.4: Decay kernel of price impact: Propagator of price impact G as defined in equation (2.11)
for the stock ‘Apple’ (AAPL) estimated from NYSE and NASDAQ data for the period February to April
2013. G is given in units of basis points (100 bp = 1%) and the lag ` is given in trade time. Both axis are
logarithmic. Source: Taranto et al. (2016).

that minimize costs and risks associated with trading (Almgren and Chriss, 2001). Thereby
price impact is also of utmost practical importance.

In Chapter 4 of this thesis we consider price impact across multiple assets, i.e. how
the order flow of one asset impacts the price process of another asset. This is termed
cross-impact. We derive conditions for a certain class of models of cross-impact in order to
be well-behaved and we estimate cross-impact, comparing the theoretical conditions to our
empirical findings.



Chapter 3

Stylized facts of the MOT bond
platform

3.1 Introduction

Trading in European fixed income markets takes place, either entirely or predominantly,
in over-the-counter markets. Due to the opaque nature of over-the-counter trading in
Europe, most studies on e.g. European sovereign bond markets have relied on data from
the interdealer exchange MTS. Access to this platform is restricted to dealer banks and
minimum order sizes are typically 2 million EUR or higher. In this chapter we focus on a
different segment of the market, that has so far received considerably less attention from
researchers. That is we study the MOT fixed-income platform,1 aimed at the retail segment
of the market and organized as a fully electronic limit order book market. While also listing
a wide range of European fixed income securities, activity on MOT is concentrated on
Italian bonds and especially sovereign bonds. According to bi-annual statistics reported by
the Italian securities and exchange commission CONSOB MOT accounted for 8.7% (8.8%)
of traded value excluding the OTC market in 2014 (2015) as the third-largest platform for
Italian sovereign bonds, behind the interdealer exchange MTS and the request-for-quote
platform BondVision.2

We are aware of only one other study on the MOT market: Linciano et al. (2014)
compares the liquidity of dual-listed corporate bonds that are traded not only on MOT but
also on the EuroTLX platform. They proxy liquidity through a set of metrics that have
mostly been employed to gauge liquidity in over-the-counter markets (turnover ratio, zero
trade days, Amihud and Roll measures). Instead here we make use of data that includes
information on the limit order book as well as trades. We describe several stylized facts of
trading and quoting activity on MOT with the aim of making further analysis accessible.
To this end Section 3.2 presents the market structure and rules of MOT and Section 3.3
discusses our data and how we prepare it. In Section 3.4 we discuss intraday patterns in
liquidity (proxied by the quoted bid-ask spread and the volume quoted in the limit order
book) and trading activity, whereas Sections 3.5 and 3.6 discuss stylized facts in trading
and quoting activity respectively. Section 3.7 concludes.

1http://www.lseg.com/areas-expertise/our-markets/borsa-italiana/fixed-income-markets/

mot
2CONSOB, Bollettino Statistico Nr. 8, March 2016, available at http://www.consob.it/web/

area-pubblica/bollettino-statistico
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3.2 Market rules and mechanisms

In this section we describe the structure and the functioning of the MOT market as
described in the official rules and instructions.3

3.2.1 Market structure

Traded on MOT are “bonds other than convertible ones, Government securities, euro-bonds,
structured bonds, covered bonds, ABS and other debt securities and instruments tradable
in the monetary market.” The market is divided into two segments distinguished by their
settlement mechanisms:

• DomesticMOT for “financial instruments settled via the settlement system managed
by Monte Titoli S.p.A.”

• EuroMOT for “financial instruments settled via foreign settlement systems managed
by Euroclear and Clearstream Banking.”

The DomesticMOT segment is further divided into two classes for Italian government
securities and other debt securities respectively, while EuroMOT constitutes a single
“Eurobond, ABS, securities of foreign issuers and other debt securities class”.4

3.2.2 Market rules

Trading on MOT starts with an opening auction phase that lasts from 08:00 to 09:00 and
then gives way to the continuous trading phase which lasts until 17:30. A closing auction
does not take place.

The opening auction is concluded at a random time between 09:00:00-09:00:59 where
the random time can differ across bonds. The continuous trading phase starts at the end
of the opening auction phase and lasts until 17:30. It is organized as an electronic limit
order book with limit and market orders. (Partially) unfilled limit and market to limit
orders from the pre-auction phase are automatically transferred to the continuous trading
phase as limit orders. The continuous phase also allows for “iceberg orders”, limit orders
of which only a partial quantity is visible, subject to a minimum displayed size. Once such
an iceberg order is fully filled, a new limit order is created for the same partial quantity or
the remaining quantity of the order. Execution of all orders follows price-time priority and
for newly revealed parts of iceberg orders time priority corresponds to the time of the the
new order.

Besides the order types above, the market also permits pre-arranged trades. So called
“committed cross” orders can be entered with the aim of concluding contracts with a given
counterparty for a price at or between the best bid and ask price. The same applies to
“Block Trade Facilities” (BTF) that require a minimum size and can be executed at a wider
price range than committed cross orders.5

3A non-binding English translations of the rules and instructions can be do-
wnloaded at http://www.borsaitaliana.it/borsaitaliana/regolamenti/regolamenti/

regolamentoborsa-istruzionialregolamento.en.htm and http://www.borsaitaliana.it/

borsaitaliana/regolamenti/istruzioni/istruzioni.en.htm respectively. For consistency with our
sample period we refer to the versions effective 16 February 2016. We are not aware of any significant
changes to these rules as of January 2018.

4Instructions accompanying the Rules of the Markets organised and managed by Borsa Italiana S.p.A.,
version effective 16 February 2015, Article IA 6.2.1

5For government bonds the allowed variation from the best prices is 0.75%.

http://www.borsaitaliana.it/borsaitaliana/regolamenti/regolamenti/regolamentoborsa-istruzionialregolamento.en.htm
http://www.borsaitaliana.it/borsaitaliana/regolamenti/regolamenti/regolamentoborsa-istruzionialregolamento.en.htm
http://www.borsaitaliana.it/borsaitaliana/regolamenti/istruzioni/istruzioni.en.htm
http://www.borsaitaliana.it/borsaitaliana/regolamenti/istruzioni/istruzioni.en.htm


Bond prices are quoted in percentage points of nominal value and the tick size is
determined by the residual life time of a bonds. Bonds with a remaining time to maturity
of more than (equal to or less than) two years have a tick size of 1/100 (1/1000) percentage
points, i.e. 1 basis point (0.1 basis points) of nominal.

The presence of a specialist or a bid specialist is possible but in practice only the case
for a subset of financial sector coporate bonds.

3.2.3 Volatility auctions

If certain price limits are violated, a volatility auction phase is initiated for a duration of
10 minutes plus a random interval shorter than one minute.6 Price limits are defined in
percentage terms of a reference price7 and there are two reference prices for each bond:
the dynamic price and the static price. That is volatility auctions are triggered by either
of the following events:

1. If the price of a “contract in conclusion”, e.g. a market order entered but not yet
executed, would exceed the maximum price variation limit with respect to the static
price. The static price is defined as the price of contracts concluded in the last
auction phase (or, if there were no trades, the price of the first contract concluded in
the continuous trading phase).

2. The price of a contract in conclusion would exceed the maximum price variation limit
with respect to the dynamic price. The dynamic price is defined as the price of the
last contract concluded in the current session (or the previous days reference price if
no contracts have been concluded in the current session).

Volatility auctions may be re-iterated and thus last longer than 10-11 minutes.

Our dataset does not include flags or identifiers for volatility auctions. However we can
deduce their presence when there is a crossing between the bid and ask side of the limit
order book in the absence of trades. Specifically we detect a volatility auction either when
the bid-ask spread is zero or negative or when one or both of best bid and best ask price
is recorded as zero, indicating the presence of an unexecuted market order with no limit
price.

In Figure 3.1 we illustrate these rules at the example of trading in GR0138014809 on
16 January 2015. The maximum allowed price variation with respect to the static price
is 3.5% and 2% with respect to the dynamic price. It is possible that there are further
volatility auctions than we can not detect with the above identification criteria, especially
during the first half of this day. In total we detect 1, 364 volatility auction periods, 1, 058
of which are for the two Greek bonds in our sample.

Bormetti et al. (2015) identifies volatility auction phases on an equities market with
similar rules through the absence of trades in windows of multiples of 10-11 minutes. Since
for many of the bonds in our sample trading happens less frequently (and absence of trades
for a period of 10 minutes or more would not necessarily imply a high likelihood for the
presence of a volatility auction), this method is not suitable for the MOT bond market.

6See e.g. Reboredo (2012) for a study on the effect of volatility auctions on trading.
7E.g. for a reference price of 100 EUR and a “maximum price variation limit” of 2% the price limits are

98 and 102 EUR.
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Figure 3.1: Example of volatility auctions in GR0138014809 on 16 January 2015. Best bid and ask price
are drawn as solid blue and green lines respectively, and concluded trades as purple dots. The limits
corresponding to the dynamic and the static price are shown as dashed red and black lines respectively.
Periods with detected volatility auctions are shaded in orange. The first shaded period until 09:01
corresponds to the opening auction. Three volatility auction periods are detected between the trades at
09:38 and 11:38 due to crossed bid and ask quotes, whereas it is likely that more auction phases took place
during that time. Volatility auctions are triggered by attempted trades at prices beyond the limits around
either the dynamic or the static price. The auction phase at 13:38 is likely due to a violation of the upper
dynamic limit, whereas the last auction phase around 17:00 is due to the static limit (an arriving buy
market order, indicated by the best bid price dropping to zero, would have been executed against the best
ask level which was beyond the limit around the prevailing static price.)

3.3 Data

3.3.1 Data description

Our sample period spans the 194 trading days from 01 Dec 2014 to 27 Feb 2015 and from
13 April 2015 to 16 October 2015, while our bond universe consists of 66 sovereign and
corporate bonds. The bond universe consists of mostly Italian sovereign bonds, some
European sovereign bonds and Italian corporate bonds, which were hand-picked to represent
both a large share of trading activity on the platform as well as a cross-section of the traded
asset types. Table 3.2 in the Appendix 3.A lists the ISINs and gives basic descriptives of
the coupon rate, maturity at issuance as well as tick size, number of orders in our sample,
average order size and average bid-ask spread.

The dataset consists of separate trades and limit-order-book (LOB) datasets, covering
all trades and almost all LOB updates.8 The trades data consists of 2.0 million trades
and carries the information of date, ISIN code, intraday time, price and size of a trade.
The LOB is recorded as snapshots of the best ten bid and ask side levels. Each entry

8In phases of heavy trading multiple updates of the LOB may be summarized into one update of our
data. However we are guaranteed at least one update per second whenever there are changes to the LOB
and in the vast majority of our sample updates are more frequent.



contains the date, ISIN code and intraday time of the snapshot, as well es the number of
occupied levels on the bid- and ask side of the LOB (up to the maximum of 10). For each
of these up to 20 levels, the price, available quantity and number of limit orders at the
level is recorded. In total our dataset contains 174.8 million snapshots. The intraday time
is recorded at millisecond precision as a 9 digit integer.9

3.3.2 Data preparation & checks

We prepare our dataset by detecting volatility auction periods as described in Section 3.2.3.
All trades and limit orders before 09:01:00 or associated with a volatility auction period
are flagged as such and excluded from our further analysis.

When a single market order is executed against more than one limit order, then it is
recorded as a number of trades. We aggregate single trades in the same bond to orders
when they happen within one millisecond.10 That is the almost 2 million trades in our
sample are remapped to roughly 1.4 million orders. We infer the order sign by comparing
to the state of the LOB immediately preceding the trade. An order executed at the best bid
(best ask) price is seller-initiated (buyer-initiated) and assigned the order sign -1 (+1).11

Where an order does not happen at the best price we infer the sign by applying the method
of Lee and Ready (1991). By this identification method 93.7% (94.1%) of orders (trades)
occur at the best price and of the remaining orders (trades) 9.7%/37.9%/6.8%/35.9%/9.6%
(12.5%/35.2%/6.5%/33.5%/12.3%) are below the best bid price/ inside the spread and
below the mid price/ at the mid price/ inside the spread above the mid price/ above the
best ask price respectively.

3.4 Intraday seasonalities

It is a well-established observation across other markets and venues that trading activity,
liquidity and volatility are not uniform across the day, but follow certain intraday patterns,
often reflecting e.g. opening and closing effects or lunch hours (see e.g. McInish and Wood
(1990, 1992); Bollerslev and Domowitz (1993); Abhyankar et al. (1997); Ito and Hashimoto
(2006)). In this section we describe the intraday seasonalities on MOT by looking to the
intraday patterns of different measures of liquidity.

Figure 3.2 shows the intraday pattern of trading activity in terms of the share of the
total nominal amount traded per day that is traded during bins of 10 minute time. If
trading activity were constant throughout the day, each of the 51 bins should account
for roughly 2% of daily trading activity. The figure shows instead that some variation is
present, with on average roughly 1− 2.5% of total activity captured in a 10 minute bin.
Less active is the period from 13:00 to 14:30 and the last 10 minute bin of the day, whereas
the most active time of the day is during the morning hours from after the opening to
12:30. Note that the first 10 minute bin does not include trades concluded during the
opening auction. The pattern we observe is present equally for the set of all bonds and
for the 10 bonds with the largest trading volume in our sample as well as at the level of

9The format is “hhmmssMMM” where h/m/s/M are the hour/minute/second/millisecond digits re-
spectively. E.g. a time of ”09:17:25” and 89 milliseconds would be recorded as ”091725089”.

10Most orders that are executed as multiple trades are recorded at precisely the same millisecond
timestamp. It can occur in rare cases that the timestamps of trades belonging to the same order span two
consecutive milliseconds.

11When a market order walks up the LOB, i.e. consumes liquidity from levels deeper in the LOB than
the best, the price of the first trade is used to determine the order sign. This order sign is then attributed
to the order and all trades therein.
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Figure 3.2: Intraday pattern of trading activity: share of daily trading activity in terms of volume
traded during 10 minute bins, averaged over days and bonds. all bonds refers to all bonds in our sample
and 10 most active bonds are the 10 bonds with the highest trading volume in our sample. Trades occurring
during the opening auction or volatility auctions are excluded.
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Figure 3.3: Intraday pattern of bid-ask spread: average quoted bid-ask spread during 10 minute
bins, given in basis points of nominal value. Averages are computed as time-weighted averages per 10
minute bin, winsorized from above and below at the percentiles corresponding to 1% and 99% and averaged
over bonds and days. all bonds refers to all bonds in our sample and 10 most active bonds are the 10 bonds
with the highest trading volume in our sample. Auction periods are excluded.

individual bonds.

The intraday pattern of the quoted bid-ask spread in Figure 3.3 follows a typical
U-shape, i.e. bid-ask spread is larger in the beginning and in the end of the trading day.
During the day bid-ask spread is fairly flat, especially in the sample of more active bonds,
whereas from roughly noon to 14:30 a slight increase is visible when considering the full
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Figure 3.4: Intraday pattern of quoted volume in the limit order book: average quoted volume
available at the best price level of the LOB, the three best levels and all observed 10 best levels of the
LOB. Quoted volume is given as nominal amount in million EUR and is averaged over bid and ask side.
The sample consists of the 10 bonds with the highest trading volume in our sample; results are similar for
the sample of all bonds. Averages are computed as time-weighted averages per 10 minute bin, winsorized
from above and below at the percentiles corresponding to 1% and 99% and averaged over bonds and days.
Auction periods are excluded.

sample of bonds.
Finally Figure 3.4 shows the intraday pattern of the quoted volume at different levels

of the limit order book for the sample of the 10 most actively traded bonds. There is no
evident pattern when considering the volume quoted at the best or the best three levels on
both sides of the book, indicating that the available liquidity for small- and medium-sized
trades is roughly constant throughout the day. Only when considering all 10 observable
levels of the limit order book there is an inverse U-shape pattern analogous to Figure 3.3,
i.e. right after the opening, around 14:00 and towards the closing there is less volume
available in the deeper levels of the book.

3.5 Stylized facts of trading activity

This section gives an overview of trading activity by describing the distribution of market
order sizes and the sign autocorrelation of trades.

Table 3.1: Distribution of market order size: nominal amount of market orders in EUR (scaled by
1000 EUR). all bonds refers to all bonds in our sample and 10 most active bonds are the 10 bonds with the
highest trading volume in our sample. Orders during auction periods are included. The distribution is very
similar when considering only orders occuring at the best price.

×1000EUR mean std dev 5 Pcl 25 Pcl median 75 Pcl 95 Pcl # orders

all bonds 87.4 200.2 2.0 10.0 31.0 80.0 350.0 1,378,730
10 most active bonds 86.8 191.8 2.0 13.0 40.0 81.0 325.0 850,214

Table 3.1 provides summary statistics for the nominal amount of orders. While more
than 60% of trading activity in terms of number of trades and traded volume is concentrated



in the most active 10 bonds of our sample, their distribution is very similar, and also when
we only consider orders that happen at the best price of the order book. The average
order size is only 87, 000 EUR, reflecting that MOT is a retail market, and the 5% and
25% percentiles at 2, 000 and 10, 000 EUR respectively, indicating a large number of small
trades. The upper percentiles of trade size reflect the presence of some larger trades, with
the 95%, 99% and 99.9% percentiles at 350, 000 EUR, 1 million EUR and 2 million EUR
respectively. The latter amount is comparable in size to small trades on the sovereign bond
interdealer exchange MTS.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●
●
●
●
●

● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●

●●●
●
●
●
●

1

0.1

0.01

0.001

1e−04

1e−05

1e−06
1000 10000 1e+05 1e+06 1e+07

order volume

cu
m

ul
at

iv
e 

de
ns

ity
 fu

nc
tio

n

●

●

all bonds

10 most active bonds

Figure 3.5: CDF of market order size: cumulative density function of market order size, measured
as nominal amount of orders in EUR. Log-log scale. all bonds refers to all bonds in our sample and 10
most active bonds are the 10 bonds with the highest trading volume in our sample. Orders during auction
periods are included. Vertical “drops”, e.g. at 1 million EUR, indicate a preference for certain, typically
round, order sizes.

Figure 3.5 shows the cumulative density function of MOT order size. It confirms that
there is a large share of small orders and larger orders are increasingly rare, with the largest
orders having a size of 10 million EUR. Again this is natural since MOT constitutes a retail
market and larger orders mitigate to other trading venues or the over-the-counter market.
This makes our setting different from studies on markets that encompass a majority of
trading in an asset. E.g. Figure 3 in Lallouache and Abergel (2014) shows a power-law
decay of order size over two orders of magnitude, while the decay we observe is much faster.
Finally the vertical drops in Figure 3.5 also illustrate a strong preference for “round” order
sizes, such as 100, 000 EUR or 1 million EUR.

Next we consider the autocorrelation of the market order sign. A positive autocorrelation
at a lag of one trade event means that a buy (sell) order is more likely to be followed by
another buy (sell) than one would expect from a random sequence of buy and sell orders.
Indeed it has been found in Lillo and Farmer (2004); Bouchaud et al. (2004) that the time
series of the order sign is a long memory process and two compatible explanations have
been proposed. Herding refers to different agents acting in a similar fashion and has been
proposed as an explanation in LeBaron and Yamamoto (2007), whereas Lillo et al. (2005)
shows that order splitting, i.e. agents breaking large orders into smaller orders that are
executed incrementally, can explain the long memory of the order sign. Toth et al. (2015)
show empirically that order splitting is the dominating effect.
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Figure 3.6: ACF of trade sign: autocorrelation function of the market order sign (±1 for buy/sell
orders) for the 10 bonds with the highest trading volume in our sample. Orders during auction periods are
excluded. Different colors correspond to autocorrelation functions in different bonds. The result is similar
when considering only orders occuring at the best price.

In Figure 3.6 we show the autocorrelation function of the order sign in the 10 most
active bonds of our sample. In line with the studies of other markets we also find a positive
correlation that is significant for lags of up to hundreds of trades.

3.6 Stylized facts of quoting activity

3.6.1 Shape of the limit oder book

In this section we study the average shape of the limit order book, i.e. how the volume
quoted in the limit order book is distributed across price levels. Since tick size plays an
important role we now distinguish three sets of bonds: we consider as large tick all bonds
that have a tick size of 1 basis point or 0.01% of nominal value. The 10 most active bonds
are as before the bonds with the highest trading volume and are a subset of the large tick
bonds. By the rules of MOT bonds with a remaining time to maturity of 2 years or less
have a tick size of 0.1 basis points or 0.001% of nominal value and we refer to them as
small tick.

Figure 3.7 shows the average volume quoted in the limit order book as a function of
the distance to the best price. Since with our data we observe at most 10 levels of the limit
order book, the representation is only exact up to a price difference to the best price of 9
ticks, and increasingly downwards biased for price differences of 10 ticks or more.12 For

12In the case that the price difference between the ten first occupied levels of the LOB is minimal, i.e.
one tick each, we have no information for the state of the book at a distance of 10 ticks to the best and
beyond and treat this as absence of volume in these levels. That is we take the view of someone who, as
us, observes only the best 10 occupied levels of the book. While we could also take into account gaps and
consider only states of the book where we know our estimate to be exact, this would induce a bias towards
states of the book with large gaps when considering average volumes at higher distances from the best.
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Figure 3.7: Shape of the limit order book: Average quoted volume in the limit order book as a
function of the distance to the best quote. The shape is exact only for the first 10 levels. Given as nominal
value in EUR. large tick refers to all bond-day observations in our sample where the tick size is 1 basis
point and small tick are observations where the tick size is 0.1 basis points. 10 most active bonds are the
10 bonds with the highest trading volume in our sample and all large tick. Averages are computed as
time-weighted averages per day, winsorized from above and below at the percentiles corresponding to 1%
and 99% and averaged over bonds and days. Auction periods are excluded.

computational reasons we calculate the shape of the book up to a distance of 30 ticks (30
basis points) for large tick bonds and up to 100 ticks (10 basis points) for small tick bonds.
The graph is symmetrized for the bid and ask side, i.e. a positive price difference to the
best corresponds to bid quotes at lower prices than the best bid for the bid side and ask
prices above the best ask on the ask side. We do not observe any significant differences
between the shape of the book on the bid and ask sides.

Volume in large tick bonds is concentrated in the first few levels. Averaging over all
large tick bonds the maximum volume is at the best level and decreasing with distance to
the best, whereas for the 10 most active bonds the volume increases initially, peaks at 5
basis points from the best and then decreases. Besides this ‘kink’ the average distribution
of volume in large tick bonds fairly smooth. This is different for small tick bonds, where
several peaks of volume are visible at ‘round’ distances from the best. The maximum of
average volume is at the best level and peaks are clearly discernible at e.g. 1 basis point
(10 ticks), 2 basis points (20 ticks), 2.5 basis points (25 ticks) and also 10 basis points (100
ticks) from the best. This implies that some market participants do not make use of the
full spectrum of admissible prices and rather prefer price differences that are e.g. multiples
of 10 ticks. A similar behavior has been observed and studied on the foreign exchange
platform EBS by Lallouache and Abergel (2014) in the context of a tick size change. They
find that this is caused by traders that prefer values on the old, coarser, price grid and
argue that these are mostly manual traders. Automatic (algorithmic) traders can then
take advantage of this behaviour e.g. obtaining price priority by placing a limit order just
one tick before the limit orders of manual traders. Tick size changes for three bonds during
our sample period and we will revisit this argument in more depth in section 3.6.2 below.

Figure 3.8 gives an alternative representation of the limit order book that takes into
account the availability of only 10 levels of the book. Panels (a), (b) and (c) show the
average volume quoted at each level, the probability of a level being occupied and the
average gap size between two adjacent levels respectively. Unoccupied levels are counted as
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(b) Probability of a level being occupied.
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(c) Average gap between adjacent levels of the LOB in basis points of nominal
value.

Figure 3.8: Shape of the limit order book: alternative representation that characterizes the shape of
the limit order book. large tick refers to all bond-day observations in our sample where the tick size is 1
basis point and small tick are observations where the tick size is 0.1 basis points. 10 most active bonds are
the 10 bonds with the highest trading volume in our sample and all large tick. Averages are computed as
time-weighted averages per day, winsorized from above and below at the percentiles corresponding to 1%
and 99% and averaged over bonds and days. Auction periods are excluded.



zero volume in Panel (a). Panel (b) reveals that in the most active bonds all 10 observable
levels are occupied virtually all of the time. For the other large tick bonds (for small tick
bonds) this holds true only up to the third (fifth) level. Panel (a) of Figure 3.8 overlaps
with Figure 3.7 for the first level (0 price difference to the best), whereas for all other levels
also the gap size between two occupied levels determines the shape in Figure 3.7. Panel (c)
in Figure 3.8 shows that the average gap size is increasing with higher levels. For the first
few levels gap sizes are smallest for small tick bonds (measured in basis points, not ticks)
and for larger levels the most active bonds have smallest gap sizes. The sample including
less active large tick bonds always has the widest gaps between occupied levels. Figure 3.8
is unable however to reproduce the features present in Figure 3.7 especially for small tick
bonds. In the following section we will examine how a tick size change affects this shape.

3.6.2 Impact of tick size changes

In Figure 3.7 small tick bonds (where the minimum tick size is 0.1 basis points of nominal
value) and large tick bonds (1 basis point minimum tick size) show a strikingly different
limit order book shape. This could, in principle, be due to differences in bond characteristics
across the two subsamples. To rule out such factors, and for a more detailed analysis we
consider in this section three Italian government bonds for which the minimum tick size
changed during our sample time as their remaining maturity reached 2 years.

Figure 3.9 shows the effect of the tick size change for these three bonds by comparing
the average shape of their limit order book during the two weeks before the tick size change
with the average shape over the two weeks after the tick size change. Since we found only
negligible differences between the shape on the bid and ask side of the limit order book in
Section 3.6.1 we show only the ask side here, the bid side behaving similarly.

Across all bonds it is evident that after the tick size change volume is concentrated at
distances from the best corresponding to multiples of 10 ticks, i.e. effectively mimicking
the ‘old’ price grid. The shape after the tick size change also resembles the one from before
and several features remain unchanged in the new, finer price grid. E.g. IT0005023459
shows a peak at 10 basis points from the best before the tick change which is still present
on the finer grid and there even sharper.

The observations from Figure 3.9 suggest that a price grid that is too fine is not always
accepted and fully used by market participants. Lallouache and Abergel (2014) find similar
externalities to ours, where some traders (termed manual traders) stick to the old price
grid after a general tick size change. Interestingly in their case the tick size change was
later reverted to an interim minimum tick size. Indeed finding an ‘optimal’ tick size is a
market design problem that is as complex as it is important to exchanges competing with
one another for liquidity. E.g. Goldstein and Kavajecz (2000) reports that a minimum
tick size reduction on the New York Stock Exchange led to decreases both in bid-ask
spreads and the depth of the limit order book, to the advantage of small traders but at the
disadvantage of participants wanting to trade larger order sizes. Huang et al. (2016) applies
the approach of Dayri and Rosenbaum (2015) to predict the effects of tick size changes on
Tokyo Stock Exchange on an ex-ante basis and define an optimal tick value. Note that the
choice of tick size is not only up to the exchange (or regulators) but also companies can
influence the effective tick size (defined as the minimum tick value divided by the asset
price) of their shares by performing a (reverse) stock-split (Angel, 1997; Schultz, 2000).
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Figure 3.9: Shape of LOB around tick size changes: Average quoted volume in the limit order book
as a function of the distance to the best quote. The shape is exact only for the first 10 levels. Given as
nominal value in EUR. Shown is the ask side. The sample consists of bonds that underwent a tick size
change as their remaining maturity reduced to two years and large tick refers to the two weeks before
the tick size change when bonds where quoted on a grid of 1 basis points width. small tick refers to the
two weeks after the tick size change when the minimum price difference between two quotes is 0.1 basis
points. Averages are computed as time-weighted averages per day, winsorized from above and below at the
percentiles corresponding to 1% and 99% and averaged over days. Auction periods are excluded.

3.7 Conclusion

In this chapter we have explored the bond trading platform MOT, describing its market
structure and stylized facts of trading and quoting activity. To the best of our knowledge
this is the first such study on a fixed income retail platform. Despite its focus on retail
trades and the hybrid market structure of bond markets with a large share of over-the-
counter trades we are able to reproduce several stylized facts known from exchange markets
in other asset classes, especially equities, on MOT. This suggests it is well suited as a
laboratory for the analysis of further topics in market microstructure. Indeed in the next
chapter we use the same dataset to empirically test theoretical predictions for price impact
across bonds.



Appendix

3.A List of ISINs

Table 3.2 lists the bonds in our sample together with descriptives of bond characteristics,
trading parameters and indicators of bond liquidity.

Table 3.2: Descriptives for the set of bonds used in the estimation: coupon is the coupon rate in
percent. maturity is the maturity at issuance of the bond in years. tick size is the minimum tick size in
percent of nominal value. changing indicates that the tick size changes from 1 to 0.1 basis points during our
sample. # orders is the number of orders for that bond and order vol. the average order volume therein in
multiples of 1, 000 EUR. bid-ask is the average quoted bid-ask spread in basis points of nominal amount,
calculated as time-weighted average excluding auction periods.

ISIN coupon maturity tick size # orders order vol. bid-ask

corporate bonds

IT0004576978 3.5 6.0 0.001 5,075 11.9 6.2
IT0004576994 indexed 6.0 0.001 4,031 12.7 5.6
IT0004645542 5 10.0 0.01 4,577 25.2 16.9
IT0004720436 indexed 10.0 0.01 3,927 27.3 17.5
IT0004966823 5.5 7.0 0.01 6,412 24.4 12.4
IT0005056483 3 5.0 0.01 9,192 32.9 12.4
IT0005075533 6 7.0 0.01 6,894 32.3 22.7

non-Italian sovereign bonds

DE0001102358 1.5 10.0 0.01 4,739 10.5 16.0
DE0001102366 1 9.9 0.01 555 73.1 12.1
DE0001102374 .5 10.1 0.01 1,416 95.0 12.2
ES00000123X3 4.4 10.5 0.01 3,004 9.4 20.3
ES00000126B2 2.75 10.4 0.01 494 13.5 22.6
ES00000126Z1 1.6 10.3 0.01 931 30.3 19.6
GR0114028534 4.75 5.0 0.01 12,259 18.2 42.8
GR0138014809 2 30.0 0.01 4,498 11.5 89.4
PTOTE5OE0007 4.1 31.1 0.01 23,982 32.2 23.9

Italian sovereign bonds

IT0001278511 5.25 31.0 0.01 26,372 47.5 15.4
IT0003535157 5 31.0 0.01 24,926 49.3 23.4
IT0003844534 3.75 10.3 0.001 3,862 60.7 2.0
IT0003934657 4 31.5 0.01 223,909 71.9 5.6
IT0004009673 3.75 15.5 0.01 19,909 66.6 5.8
IT0004019581 3.75 10.4 0.001 6,827 59.5 2.4
IT0004164775 4 10.1 changing 5,413 65.0 3.8
IT0004273493 4.5 10.4 0.01 4,321 88.1 4.9
IT0004361041 4.5 10.3 0.01 5,707 110.7 4.9
IT0004423957 4.5 10.5 0.01 5,198 103.6 5.5
IT0004489610 4.25 10.3 0.01 10,132 93.2 5.7

Table continued on next page.



Table 3.2 continued from previous page.

ISIN coupon maturity tick size # orders order vol. bid-ask

Italian sovereign bonds (continued)

IT0004518715 floating 6.9 0.001 11,725 106.4 1.9
IT0004532559 5 31.0 0.01 43,435 56.2 18.0
IT0004536949 4.25 10.4 0.01 9,510 155.1 5.9
IT0004545890 indexed 31.9 0.01 25,834 56.0 28.7
IT0004584204 floating 7.0 changing 10,996 88.0 2.6
IT0004594930 4 10.4 0.01 13,791 85.2 5.9
IT0004634132 3.75 10.5 0.01 11,710 81.9 6.2
IT0004695075 4.75 10.5 0.01 5,994 86.8 6.9
IT0004759673 5 10.5 0.01 7,343 93.6 7.7
IT0004794142 4.875 6.0 0.01 3,649 24.3 12.0
IT0004801541 5.5 10.5 0.01 5,985 87.9 8.3
IT0004848831 5.5 10.2 0.01 5,128 101.6 8.9
IT0004898034 4.5 10.2 0.01 8,638 96.2 8.4
IT0004917842 5.75 10.0 0.01 6,729 24.5 15.0
IT0004923998 4.75 31.3 0.01 62,991 69.7 15.7
IT0004953417 4.5 10.6 0.01 12,278 169.3 5.5
IT0004969207 indexed 4.0 0.01 39,101 109.3 3.3
IT0005001547 3.75 10.5 0.01 11,496 147.4 6.6
IT0005004426 indexed 10.5 0.01 10,570 95.3 25.4
IT0005022204 zero-cpn 1.0 0.001 807 69.6 0.9
IT0005023459 1.15 3.0 changing 3,016 108.5 5.1
IT0005024234 3.5 15.8 0.01 62,475 84.3 9.8
IT0005028003 2.15 7.5 0.01 19,295 170.6 5.0
IT0005030504 1.5 5.1 0.01 5,976 246.1 5.4
IT0005044976 zero-cpn 2.0 0.001 7,012 135.9 1.9
IT0005045270 2.5 10.3 0.01 49,800 136.9 4.5
IT0005056541 floating 6.2 0.01 17,654 192.9 5.6
IT0005058463 .75 3.3 0.01 4,174 134.9 5.4
IT0005058919 indexed 6.0 0.01 31,676 131.0 5.2
IT0005069395 1.05 5.0 0.01 17,646 184.1 4.3
IT0005083057 3.25 31.6 0.01 191,730 84.0 6.2
IT0005086886 1.35 7.2 0.01 22,041 128.9 4.9
IT0005090318 1.5 10.3 0.01 55,936 108.1 4.4
IT0005094088 1.65 17.0 0.01 102,275 65.0 6.2
IT0005105843 indexed 8.0 0.01 30,321 132.9 3.6
IT0005106049 .25 3.1 0.01 2,618 199.3 5.1
IT0005107708 .7 5.0 0.01 9,544 174.1 5.7
IT0005127086 2 10.3 0.01 7,420 81.6 4.0
IT0005135840 1.45 7.0 0.01 1,849 113.4 4.4





Chapter 4

Cross-impact and
no-dynamic-arbitrage

4.1 Introduction

Market impact, i.e. the interplay between order flow and price dynamics, has increasingly
attracted the attention of researchers and of the industry in the last years (Bouchaud
et al. (2008)). Despite its importance, both from a fundamental point of view (due to its
relation with supply-demand) and from an applied point of view (due to its relation with
transaction cost analysis and optimal execution), market impact is not yet fully understood
and different models and approaches have been proposed and empirically tested.

It is important to note that market impact refers to different aspects of this interplay
and that they should be carefully distinguished (see Bouchaud et al. (2008) for a discussion).
First, there is the impact of an individual trade or of the aggregated signed1 order flow in a
fixed time period. Second, especially for transaction cost analysis and optimal execution, it
is more interesting to consider the impact of a large trade (sometimes termed as meta-order)
executed incrementally by the same investor with many transactions and orders over a
given interval of time. Both these definitions of market impact are typically investigated
by considering one asset at a time, i.e. without considering the effect of a trade (or of an
order) in one asset on the price dynamics of another asset.

This is the third type of impact, that we study in this chapter, and that is termed
cross-impact. Understanding and modeling cross-impact is important for many reasons,
since it enters naturally in problems like optimal execution of portfolios, statistical arbitrage
of a set of assets, and to study the relation between correlation in prices and correlation
in order flows. Conceptually, while self-impact, the impact of a trade on the price of
the same asset, can qualitatively be understood as the result of a mechanical component
(e.g. a market order with volume larger than the volume at the opposite best) and an
induced component (resilience of the order book due to liquidity replenishment), the source
of cross-impact is less clear. On one side if a trader is liquidating simultaneously two
assets one can obviously expect a non-vanishing cross-impact. Since impact measures are
typically averages across many measurements, this mechanism produces cross-impact if
simultaneous trades and positively correlated order flow are frequently observed. On the
other side, liquidity providers and arbitrageurs detect local mispricing between correlated
assets and bet on a reversion to normality by placing orders. In other words this induced
cross-impact relates to the possibility of identifying price changes due to local imbalances

1Conventionally buyer (seller) initiated trades have positive (negative) volume and order sign.
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of supply-demand in one asset (rather than to fundamental information) and of exploiting
the possibly short-lived mispricing between correlated assets.

Even though cross-impact has already been discussed e.g. in Almgren and Chriss
(2001) as an extension of their optimal execution model and in Hasbrouck and Seppi (2001)
in a principal component approach, it has only recently been the subject of extensive
empirical studies. Pasquariello and Vega (2013) empirically show that order imbalance has
a significant impact on returns across stocks and sectors at the daily scale. Wang et al.
(2016a,b) present evidence for a structured price cross-response and correlated order flow at
the intraday time-scale across stock pairs. Benzaquen et al. (2017) link cross-response and
order flow in a multivariate extension of the Transient Impact Model (TIM) of Bouchaud
et al. (2004) and show that their model can reproduce a significant part of the well-known
correlation structure of asset returns. Mastromatteo et al. (2017) exploits this link between
correlation and cross-impact, showing that cross-impact is crucial for a correct estimation
of liquidity when trading portfolios. Wang and Guhr (2016) perform a scenario analysis in
a model similar to Benzaquen et al. (2017), finding that cross-response is related both to
cross-impact and correlated order flow across assets.

It is clear that the cross-impact problem talks naturally to dynamic arbitrage and to the
possibility of price manipulation, as already discussed in Huberman and Stanzl (2004). It
is therefore natural to ask which constraints the no-price-manipulation assumption imposes
on market impact models. There is a large literature on this problem, often focused on
the single asset case (Huberman and Stanzl (2004), Gatheral (2010), Alfonsi et al. (2012),
Gatheral and Schied (2013a), Curato et al. (2016, 2017)).

In the multi-asset case many articles are concerned with strategies for optimal portfolio
liquidation in the presence of volatility risk by expanding the model of Almgren (2003).
Schied et al. (2010) show that optimal execution strategies for investors with constant
absolute risk aversion are deterministic and for a more general absolute risk aversion
setting Schöneborn (2016) finds that the optimal strategies for investors with different
risk preferences vary only in the speed of their execution. The case of cross-impact in a
lit market when there is also a dark pool is discussed in Kratz and Schöneborn (2015).
Tsoukalas et al. (2017) instead develop a limit order book model with cross-impact and
find that it can be optimal to temporarily take up positions contrary to the direction of
one’s trading intent. The paper most related to ours from a theoretical point of view is
Alfonsi et al. (2016). They model multi-asset price impact by considering a linear version
of the model of Gatheral (2010), extending thus the model already considered in Alfonsi
et al. (2012). They show that the absence of no-dynamic-arbitrage on a discrete-time
grid corresponds to the decay kernel being described by a positive definite matrix-valued
function. Furthermore they formulate further conditions to ensure that resulting optimal
strategies are well-behaved, both in discrete and continuous time, and show how such
kernels can be constructed. However it is not generally straightforward to establish positive
definiteness when a decay kernel is obtained coordinate-wise from estimations and therefore
necessary conditions for the absence of dynamic arbitrage that can be verified on estimated
decay kernels prove useful.

In this chapter, focusing on the TIM framework in continuous time, we establish some
easily verifiable necessary conditions that must be satisfied by self- and cross-impact, in
order to avoid the presence of price manipulation. We do this in the same spirit of Gatheral
(2010) by explicitly constructing trading strategies that lead to price manipulation and
negative expected cost. Some of these relations are simple generalizations to the multi-asset
case of the corresponding relations for the single asset case derived in Gatheral (2010).
Other relations that we derive here are instead genuinely relative to the multi-asset case.



In particular we formalize in Lemma 4.3.6 that cross-impact must be symmetric, i.e. the
return induced in asset i by a trade of volume v in asset j must be equal to the impact of
a trade of the same volume v in asset i on the price of asset j.

It is natural to ask whether this symmetry condition is empirically verified. In this
chapter we study a market whose microstructure, to the best of our knowledge, has not
been explored so far. This is the MOT market for sovereign bonds,2 a fully electronic limit
order book market for fixed-income assets. One of the reasons for our choice is that, due to
the nature of the traded assets, we expect cross-impact, especially due to quote revisions,
to be very high. In fact, two Italian fixed-rate BTPs differ mostly through the coupon rate
and the time-to-maturity - factors which are accounted for in the price, which moves in a
very synchronised way since for most purposes both titles are perfectly interchangeable.

Calibrating a multivariate TIM in trade time we find that there exist pairings of bonds
where the symmetry condition of cross-impact is violated in a statistically significant way.
By comparing the potential profit from a simple arbitrage strategy to transaction costs
such as the bid-ask spread, which are neglected in the model, we conclude that arbitraging
is not profitable. It is also crucial to point out that the empirical part of this work is
important because it is the first application of a TIM model to fixed income markets and
to the best of our knowledge it is the first work to consider cross-impact of single market
orders and not the order sign imbalance aggregated over fixed time intervals (as done in
Busseti and Lillo (2012), Benzaquen et al. (2017) and Wang et al. (2016a)).

The rest of the chapter is structured as follows. Section 4.2 introduces our model
and the links to the no-dynamic-arbitrage principle. Section 4.3 discusses some general
constraints on cross-impact that arise in our framework for bounded decay kernels and
the corresponding proofs are given in Appendix 4.A. In Section 4.4 we study cross-impact
empirically and compare to the theoretical results in Section 4.3. Finally Section 4.5
concludes.

4.2 Model setup

The presence of dynamic arbitrage depends on the market impact model. In this chapter
we consider the Transient Impact Model (TIM) introduced in Bouchaud et al. (2004) (see
Bouchaud et al. (2008) for a discussion). The model has been originally formulated in
discrete time, and its continuous time version, that we present in the next section, has
been proposed in Gatheral (2010).

4.2.1 Price process and cost of trading

Gatheral (2010) assumes that the asset price St at time t follows a random walk with a
drift determined by the cumulative effect of previous trades

St = S0 +

∫ t

0
f(ẋs)G(t− s)ds+

∫ t

0
σdZs (4.1)

where f(ẋs) represents the (instantaneous) impact of trading at a rate ẋs at time s < t
weighted by a decay kernel G(τ) with τ = t−s. Zs is a noise process, for example a Wiener
process, and σ is the volatility. For consistency with equation (4.3) below, the trading rate
ẋ is given in units of number of shares per unit of time. In our multivariate extension we
consider the prices of a set of assets where the drift in asset i not only depends on the

2http://www.lseg.com/areas-expertise/our-markets/borsa-italiana/fixed-income-markets/

mot

http://www.lseg.com/areas-expertise/our-markets/borsa-italiana/fixed-income-markets/mot
http://www.lseg.com/areas-expertise/our-markets/borsa-italiana/fixed-income-markets/mot


trading history of asset i but also on past trades in assets j 6= i. Thus the price process of
asset i is given by

Sit = Si0 +
∑
j

∫ t

0
f ij(ẋjs)G

ij(t− s)ds+

∫ t

0
σidZis (4.2)

with a correlated noise process Zs (e.g. a multivariate Wiener process) and where in
addition to the self-impact terms f ii and Gii we have introduced additive cross-impact
terms f ij and Gij , i 6= j, that represent the impact of trading in asset j on the price of
asset i.

For a trading strategy Π = {xt} , t ∈ [0, T ], where xt is the vector of asset positions xit
in asset i at time t, the expected cost (or implementation shortfall) is

C(Π) = E

[∑
i

∫ T

0
ẋit(S

i
t − Si0)dt

]

=
∑
i,j

∫ T

0
ẋitdt

∫ t

0
f ij(ẋjs)G

ij(t− s)ds (4.3)

where as in Gatheral (2010) we consider only costs due to price impact, i.e. the price shift
induced by our own trading, and neglect slippage costs, i.e. costs due to all other market
frictions such as bid-ask spreads and trading fees. Also Alfonsi et al. (2016) ignore these
costs by arguing that a sophisticated trading strategy consists not only of market orders
but also of limit orders, thus on average both paying (earning) a half spread from market
(limit) orders. In practice the constraints we derive may well be weakened when slippage
costs are unavoidable, e.g. when immediacy requires to execute a trading strategy with
market orders. In Section 4.3.7 we introduce a bid-ask spread and discuss its implications
on our results.

4.2.2 Principle of no-dynamic-arbitrage

Huberman and Stanzl (2004) define a round-trip trade as a sequence of trades whose sum
is zero, i.e. a trading strategy Π = {xt} with∫ T

0
ẋtdt = 0 . (4.4)

This implies a round-trip in all assets traded in the strategy, i.e.
∫ T

0 ẋitdt = 0 ∀ i. A
price manipulation is a round-trip trade Π whose expected cost C(Π) is negative and
the principle of no-dynamic-arbitrage states that such a price manipulation is impossible.
Formally, the principle requires that for any round trip trade Π it is

C(Π) ≥ 0 . (4.5)

In the one-dimensional case this translates to

C(Π) =

∫ T

0
ẋtdt

∫ t

0
f(ẋs)G(t− s)ds ≥ 0 (4.6)

and imposes a relationship on the market impact function f(·) and the decay kernel G(·).
The functions f(·) and G(·) are said to be consistent if they exclude the possibility of
price manipulation. Several papers have studied the consistency of this kind of market



impact models (for a review see Gatheral and Schied (2013a)). Gatheral et al. (2011) show
that any decay kernel that is non-singular at time zero is inconsistent with non-linear f(·).
Moreover Gatheral (2010) sets some necessary constraints for no arbitrage for power law
dependence of f and G and Curato et al. (2017) show that inconsistencies can also arise
for power-law f(·) and G(·) even when necessary conditions derived in Gatheral (2010) are
not violated.

In the multidimensional case the cost requirement is

C(Π) =
∑
i,j

∫ T

0
ẋitdt

∫ t

0
f ij(ẋjs)G

ij(t− s)ds ≥ 0 (4.7)

and we are similarly looking at what forms of f(·) and G(·) are consistent when there is
cross-impact.3 Specifically we are asking what limits there are to cross-impact, i.e. the
form of f ij(·), i 6= j, and whether the presence of cross-impact leads to possible arbitrages
in pairs of f(·) and G(·) that are consistent in the one-dimensional case.

4.3 General constraints on cross-impact for bounded decay
kernels

Let us for the remainder of this chapter assume, without loss of generality, that G(τ) is
a dimensionless quantity, i.e. all dimensionality of cross-impact, including the sign, is
captured by the instantaneous market impact function f .

In this section we also assume that the decay kernel G(τ) is non-increasing, right-
continuous at τ = 0 and bounded in all components, i.e. that there exists an upper bound
U > 0 so that |Gij(τ)| < U for all τ ∈ [0,∞) and all i, j. While we do not consider
unbounded kernels in this section, we discuss in Appendix 4.B some constraints that
arise for the popular class of pure power law kernels for cross-impact. The non-increasing
assumption rules out non-zero decay kernels with Gij(0) = 0 so that we are able to take G
as normalized to 1 for its smallest lag τ = t− s, i.e. Gij(0) = 1 for all pairs ij.4A special
case of such a kernel is exponential decay Gij(t− s) = e−ρ

ij(t−s) as in Obizhaeva and Wang
(2013).

In the following we consider the two-dimensional case, i ∈ {a, b}, i.e. the number of
assets N = 2. Note that all results from the one-dimensional case still hold since we are
free to choose a trading strategy that is active only in one asset, e.g. Π =

(
Πa,Πb

)ᵀ
=

(Πa, 0)ᵀ , ∀ t ∈ [0, T ] where Πa is a round-trip trading strategy in asset a.

In this chapter we assume some properties of the decay kernel G and then deduce from
the absence of dynamic arbitrage properties of f . An interesting alternative is to fix f and
deduce the properties of G. Some results exist when f is linear, both in the single asset
case (see Proposition 5 in Gatheral and Schied (2013b)) and in the multi-asset case in a
discrete-time framework (see Proposition 1 of Alfonsi et al. (2016)). When f is non-linear
the problem of existence of no-arbitrage conditions is still open (see Curato et al. (2017)).

The proofs of the results in this section are given in Appendix 4.A and are obtained
following the approach of Gatheral et al. (2011). All results can also be obtained following

3Alfonsi et al. (2016) consider a slightly different case where instead of a round-trip strategy, they
consider the liquidation of an existing portfolio. This is equivalent in the limit of building up the portfolio
infinitely slowly and when impact is purely transient.

4The non-increasing assumption is necessary already in the single-asset case to avoid arbitrage oppor-
tunities from simple buy-hold-sell strategies. In the multi-asset case we require it e.g. for our symmetry
result in Lemma 4.3.6.



Gatheral (2010) under the slightly more restrictive assumptions of the decay kernel G
being representable as a suitable series expansion and considering only the first non-zero
orders in the limit of τ → 0+.

4.3.1 A simple strategy with two assets

In the following we will often make use of a simple strategy in two assets which is split
into two phases of trading at constant rates.

Example 4.3.1. A simple in-out strategy.
At first we build up a position at a constant trading rate from time 0 until time Θ, with
0 < Θ < T , and then liquidate the position in a second phase from Θ until T .

Π = {xt} , ẋt =

{
(va,I, vb,I)

ᵀ for 0 ≤ t ≤ Θ

(va,II, vb,II)
ᵀ for Θ < t ≤ T

. (4.8)

The velocities vi,I, vi,II are constrained by our choice of the strategy. Since Π is a round-trip
strategy, the trading rates vi,I and vi,II have opposite signs, i.e. κ = vi,I/vi,II < 0, and

the time Θ when the trading direction changes is given as Θ =
−vi,II

vi,I−vi,IIT = 1
1−κT . Let

us further fix notation with λ = va,I/vb,I = va,II/vb,II. Figure 4.1a illustrates a possible
realization of this strategy with λ < 0.

The cost of this strategy can be decomposed as C(Π) =
∑

i,j=a,bC
ij
A + CijB + CijC where

CijA = vi,If
ij(vj,I)

∫ Θ

0
dt

∫ t

0
Gij(t− s)ds

CijB = vi,IIf
ij(vj,I)

∫ T

Θ
dt

∫ Θ

0
Gij(t− s)ds (4.9)

CijC = vi,IIf
ij(vj,II)

∫ T

Θ
dt

∫ t

Θ
Gij(t− s)ds

In the one-dimensional case the principle of no-dynamic-arbitrage imposes a constraint
on the term CiiB and from equation (4.7) it follows that −CiiB ≤ CiiA + CiiC as in Gatheral
(2010). For the multi-dimensional case C(Π) ≥ 0 further implies a relationship between
the strength of cross-impact and self-impact.

In the following we will try to exploit cross-impact in order to push down the cost of
strategies. Supposing that cross-impact is positive for positive trading rates, i.e. f ij(v) > 0
for v > 0, we can choose λ < 0, e.g. trading into asset a while contemporaneously trading
out of asset b, in order to get a negative contribution from cross-impact.

4.3.2 Cross-impact as odd function of the trading rate

In the one-dimensional case Gatheral (2010) shows that permanent market impact needs
to be an odd function in the rate of trading v, i.e. f(v) = −f(−v). We show here that the
same holds for cross-impact for decay kernels that are non-singular around τ → 0+.

Lemma 4.3.2. Assume a price process as in (4.2) with a bounded, non-increasing decay
kernel G that is continuous around τ = 0. Then such a model admits price manipulation
if f is not an odd function of the trading rate, i.e. unless

f ij(v) = −f ij(−v) ∀ i, j . (4.10)



(a) Strategy as in Example 4.3.1 (b) Strategy as in Example 4.3.5

Figure 4.1: Schematic of the trading strategies in Example 4.3.1 (left panel) and Example 4.3.5 (right
panel).

We will use equation (4.10) for the remainder of this chapter. As a corollary it follows
that

Corollary 4.3.3. Absence of dynamic-arbitrage for a price process as in (4.2) with a decay
kernel that is bounded, non-increasing and continuous around τ = 0 requires that

f ij(0) = 0 ∀ i, j . (4.11)

4.3.3 Constraints on the strength of cross-impact

The cost constraint in equation (4.7) also imposes a constraint on the relative strength of
f ij . Let us consider a simple example at first.

Example 4.3.4. Trading in and out at the same rate
We consider a strategy as above in Example (4.3.1) where we are trading in and out

of positions at the same rate, i.e. vi,I = −vi,II and therefore Θ = T/2, but in different
directions in the two assets, choosing e.g. va,I = va > 0, vb,I = −vb < 0 and thus λ < 0.
For simplicity let us assume a uniform decay of market impact, i.e. Gij(t) = G(t) for all
pairings ij. The cost is then

C(Π) =
[
vaf

aa(va) + vbf
bb(vb)− vafab(vb)− vbf ba(va)

]
(4.12){∫ T/2

0
dt

∫ t

0
[G(t− s)−G(t+ T/2− s)] ds+

∫ T

T/2
dt

∫ t

T/2
[G(t− s)−G(T − s)] ds

}
and Gatheral (2010) shows that the term in curly brackets in equation (4.12) is greater than
zero when further requiring that G(·) is strictly decreasing. Thus the no-dynamic-arbitrage
constraint (4.5) requires that

vaf
aa(va) + vbf

bb(vb)− vafab(vb)− vbf ba(va) ≥ 0 (4.13)

for any va, vb ≥ 0, thus constraining the relative size of the cross-impact terms fab and f ba

with respect to self-impact. Note that by setting vb = 0 we recover the one-dimensional
case and it follows that vaf

aa(va) ≥ 0.

In the general case, the decay Gij(τ) is not uniform and we can not factor out the term
in curly brackets in equation (4.12), instead we have to weight each of the terms of equation
(4.13) with a factor that depends on the decay Gij(τ). Furthermore we are free to choose
a strategy with different trading rates as in Example 4.3.1 or a more sophisticated strategy.
Alfonsi et al. (2016) consider this problem in discrete time with linear instantaneous price
impact. Their Proposition 2.6 states that absence of arbitrage in the sense of equation
(4.7) is equivalent to the condition that the elementwise product of strength of impact and
the decay kernel corresponds to a positive definite matrix-valued function.



4.3.4 Symmetry of cross-impact

Let us assume that G(τ) is bounded, non-increasing and continuous around τ = 0. We will
show that in this case impact needs to be symmetric, i.e. vif

ij(vj) = vjf
ji(vi), in order to

avoid price manipulations. For illustration we first consider an example where impact is
linear and permanent.

Example 4.3.5. An asymmetric strategy with purely permanent and linear impact.
Suppose market impact is linear and permanent, i.e. f ij(v) = ηijv and Gij(τ) = 1 ∀ i, j.
Then the cost of trading in the single-asset case only depends on the initial and final
positions x0 and xT . If there is cross-impact between two or more assets, there is also an
interaction term between the trading rates in different assets, i.e.

C(Π) =
∑
i,j

∫ T

0
vi,tdt

∫ t

0
ηijvj,sds

=
∑
i

ηii

2
(xiT − xi0)2 +

∑
j 6=i

ηij
∫ T

0
vi,tdt

∫ t

0
vj,sds (4.14)

and while the first sum with the self-impact terms disappears for a round-trip strategy
since x0 = xT , this is not generally the case for the second sum with the terms due to
cross-impact. To see this, let us consider a different round-trip strategy Π in two assets,
which is now asymmetric and lasts over three phases:

va,t =


va for 0 ≤ t ≤ T/3
0 for T/3 < t ≤ 2T/3

−va for 2T/3 < t ≤ T
, vb,t =


−vb for 0 ≤ t ≤ T/3
vb for T/3 < t ≤ 2T/3

0 for 2T/3 < t ≤ T
, (4.15)

with va, vb > 0 and as illustrated in Figure 1(b). While self-impact cancels out when we
calculate C(Π), the asymmetry in our strategy makes for a non-trivial total cost that stems
from cross-impact:

C(Π) = vavb
T 2

18
(ηba − ηab). (4.16)

If ηba < ηab this gives a negative cost and likewise when ηba > ηab by interchanging assets
a↔ b in the strategy (4.15). Therefore it follows that cross-impact needs to be symmetric
with respect to asset pairs in order to exclude arbitrage opportunities, as observed in
Huberman and Stanzl (2004).

In fact we can expand this result to the transient impact case for general cross-impact
functions f ij :

Lemma 4.3.6. If decay of market impact G(τ) is bounded, non-increasing and continuous
around τ = 0, absence of dynamic arbitrage requires that

vif
ij(vj) = vjf

ji(vi) ∀ i, j . (4.17)

4.3.5 Linearity of market impact

Gatheral et al. (2011) finds that any single-asset market impact model as in equation (4.1)
is inconsistent when f is non-linear and G is bounded and non-increasing. We expand this
proposition to the multi-asset case with cross-impact, i.e.



Lemma 4.3.7. Assuming a price process as in (4.2) with a bounded, non-increasing decay
kernel G that is continuous around τ = 0 and a non-linear market impact function f .
Then such a model admits price manipulation.

As a corollary of Lemma 4.3.7 we can extend Lemma 4.1 in Gatheral (2010) for
self-impact to the case with cross-impact.

Corollary 4.3.8. A price process as in (4.2) with self- and cross-impact that decays
exponentially at different rates and instantaneous price impact that is non-linear, admits
price manipulations.

We obtain the same corollary for purely permanent impact by taking the limit ρij → 0+

in the case of exponential decay Gij(t− s) = e−ρ
ij(t−s), as already observed in Huberman

and Stanzl (2004):

Corollary 4.3.9. Nonlinear permanent self- and cross-asset market impact is inconsistent
with the principle of no-dynamic-arbitrage.

Let us reconsider Example 4.3.4 taking into account linearity and symmetry of cross-
impact as shown above. In this case Equation (4.13) simplifies to

v2
aη
aa + v2

bη
bb − 2vavbη

cross ≥ 0 (4.18)

and minimizing the cost constrains the strength of cross-impact ηcross = ηab = ηba as

ηcross ≤
√
ηaaηbb , (4.19)

in agreement with Proposition 3.7.(b) of Alfonsi et al. (2016) and equivalent to the condition
for a symmetric 2× 2 matrix to be positive-semidefinite.

4.3.6 Exponential decay

The conditions of linearity and symmetry of cross-impact are necessary for absence of
arbitrage, but are they also sufficient?

Example 4.3.10. An asymmetric strategy with symmetric, exponentially decaying linear
impact.

Let us re-consider the strategy in Eq. (4.15) with exponentially decaying impact
Gij(t − s) = e−ρ

ij(t−s) and a linear instantaneous impact function f ij(v) = ηijv that is
now symmetric with ηab = ηba = ηcross. The cost terms for self-impact are now

Caa =
ηaav2

a

(ρaa)2

[
−e−ρaaT + 2e−2ρaaT/3 + e−ρ

aaT/3 − 2 +
2ρaaT

3

]
Cbb =

ηbbv2
b

(ρbb)2

[
−e−2ρbbT/3 + 4e−ρ

bbT/3 − 3 +
2ρbbT

3

]
. (4.20)

and likewise for cross-impact

Cab =
ηcrossvavb

(ρab)2

[
−ρ

abT

3
+ 2e−ρ

abT/3 − 3e−2ρabT/3 + e−ρ
abT

]
Cba =

ηcrossvavb
(ρba)2

[
2− ρbaT

3
− 3e−ρ

baT/3 + e−2ρbaT/3

]
. (4.21)



When we develop the terms in squared brackets in (4.20) and (4.21) in powers of ρijT all
terms of order (ρijT )0 and (ρijT )1 cancel out, while terms proportional to (ρijT )2 sum to
0 thanks to the symmetry of instantaneous cross-impact. The cost to the first non-zero
order of ρijT is then

C(Π) =
T 3

6

[
2

3
ηaav2

aρ
aa +

4

27
ηbbv2

bρ
bb − 5

27
ηcrossvavb

(
ρab + ρba

)]
+
∑
i,j

O
(
(ρij)2T 4

)
(4.22)

and when ρab or ρba is large enough5 compared to the other terms the cost can still be
negative. For absence of price manipulations we therefore also require further constraints
on the speed of decay described by G.

This is in agreement with the results of Alfonsi et al. (2016) in discrete time. Their
Proposition 3.7 proves that the conditions of symmetry ηab = ηba, and a non-increasing
decay kernel, i.e. min(ρab, ρba) ≥ 1

2(ρaa + ρbb) and 1
4(ηabρab + ηbaρba)2 ≤ ηaaρaaηbbρbb, are

sufficient for the absence of arbitrage. We complement this result in Lemma 4.3.6 by
showing that symmetry ηij = ηji is indeed necessary for any decay kernel G(τ) that fulfills
our conditions of being bounded, non-increasing and continuous around τ = 0. Note that
this excludes kernels where for some ij Gij(0) = 0 but Gij(τ) > 0 for some τ > 0. Indeed
Example 3 in Alfonsi et al. (2016) has a kernel that is asymmetric for τ > 0 and which
does not allow price manipulation.

4.3.7 Symmetry and bid-ask spread

As pointed out in section 4.2.1 we have so far neglected slippage costs. Here we relax
this assumption for the case of a trader that can not ignore the bid-ask spread. Let us
re-consider example 4.3.5, now with a constant bid-ask spread Bi.

Example 4.3.11. An asymmetric strategy with purely permanent and linear impact and
constant bid-ask spread.
Suppose market impact is linear and permanent, i.e. f ij(v) = ηijv and Gij(τ) = 1 ∀ i, j. A
trader pays half the bid-ask spread both when buying and selling an asset, and therefore
the cost of a strategy Π reads

C(Π) =
∑
i,j

∫ T

0
vi,tdt

∫ t

0
ηijvj,sds+

∑
i

∫ T

0

1

2
|vi,t|Bidt

=
∑
i

ηii

2
(xiT − xi0)2 +

∑
j 6=i

ηij
∫ T

0
vi,tdt

∫ t

0
vj,sds+

∑
i

∫ T

0

1

2
|vi,t|Bidt. (4.23)

We use the same asymmetric round-trip strategy of equation (4.15). Only the self-impact
term cancels out, with the remaining terms being due to cross-impact and the bid-ask
spread respectively:

C(Π) = vavb
T 2

18
(ηba − ηab) + (vaBa + vbBb)

T

3
. (4.24)

If ηba < ηab the first term is negative and likewise if ηba > ηab by interchanging assets
a↔ b in the strategy (4.15). Since this negative cost due to cross-impact scales ∼ v2 and
the cost due bid-ask spread only ∼ v, we can always choose va, vb (or T ) large enough so
that C(Π) < 0. It follows that cross-impact needs to be symmetric also when there is a
constant bid-ask spread.

5While keeping the product of ρijT small for all ij.



We can then generalize Lemma 4.3.6 for the presence of a constant bid-ask spread.

Corollary 4.3.12. Assume a price process as in (4.2) with decay of market impact G(τ)
that is bounded, non-increasing and continuous around τ = 0, f ij(v) = ηijv that is linear
and has the expected cost

C(Π) =
∑
i,j

∫ T

0
ẋitdt

∫ t

0
f ij(ẋjs)G

ij(t− s)ds+
∑
i

∫ T

0

1

2

∣∣ẋit∣∣Bidt (4.25)

with Bi the constant bid-ask spread of asset i. Then such a model admits price manipulation
unless cross-impact is symmetric, i.e. unless ηij = ηji for all i, j.

Here we have assumed a constant bid-ask spread, which is a good approximation for
large-tick assets, where the bid-ask spread is equal to the minimum tick size most of the
time. But even where that is not the case, it suffices to assume that there is an upper
bound on the bid-ask spread and re-interpret Bi as this upper bound. Our argument then
still holds, as we are always able to choose va, vb large enough so that spread costs are
outweighed by gains from cross-impact.

Being able to choose the speed of trading v large enough is also the more critical
assumption from an applied point of view. In practice, e.g. for too high a value for the
trading rate v, linear impact may no longer be realistic, as liquidity in the limit order book
would be consumed faster than being replenished and additional price impact costs would
arise. Let us consider a simple case of example 4.3.11 where we set T = 1, Ba = Bb = B
and va = vb = v and we denote ∆η = ηab − ηba the cross-impact asymmetry, which we
assume positive for fixing ideas. The no-arbitrage condition can be rewritten as

− v∆η

12
+B ≥ 0 . (4.26)

This inequality sets the maximal trading speed for the absence of arbitrage, when the
spread and the asymmetry of impact are given. In fact it can be rewritten as v ≤ 12B/∆η.
Therefore, when we discuss empirical asymmetries of cross-impact in section 4.4.5, we also
consider upper bounds for vi. Similarly, when the spread and the maximal trading velocity
vmax are given, the maximal asymmetry of cross-impact is ∆η ≤ 12B/vmax. Finally, given
the maximal trading speed and the cross-impact asymmetry, the spread must be larger
than B ≥ ∆ηvmax/12.

4.4 Empirical evidence of cross-impact

4.4.1 Market structure of MOT

For the empirical analysis we consider Italian sovereign bonds traded on the retail platform
‘Mercato telematico delle obbligazioni e dei titoli di Stato’ (MOT). We choose to estimate
cross-impact between bonds instead of equities since we expect the strength of cross-impact
among sovereign bonds of the same issuing country, especially of similar maturity, to be
bigger than the one between e.g. stocks or indices. Sovereign bonds of one country typically
have a very similar underlying risk and their prices are implicitly connected via the yield
curve, a link that we deem stronger than e.g. a common factor between stocks of the same
sector.

The secondary market for European sovereign bonds is divided into an opaque over-the-
counter market (OTC) and an observable exchange-traded market. The Italian securities
and exchange Commission CONSOB publishes a bi-annual report listing the share in



trading of Italian government bonds separated per trading venue.6 For the year 2014 (2015)
the share of OTC trading has been 58.8% (59.1%), while 45.6% (44.8%) of trading on
platforms took place on the inter-dealer platform MTS. MOT is the third-largest platform
by traded value with 8.7% (8.8%) of traded value excluding the OTC market in 2014
(2015). Most of the literature for the Italian and European government bonds market
focuses on MTS, with the exception of Linciano et al. (2014) who compare the liquidity of
dual-listed corporate bonds across MOT and the EuroTLX platform. Darbha and Dufour
(2013) review the market microstructure of MTS in the context of the market for European
sovereign bonds and discuss several liquidity measures based on the limit order book, trades
or bond characteristics. They note that MTS ‘normally has a few trades per bond per
day, even for the most liquid government bonds’. Indeed, due to large minimum sizes, for
most titles there is on average less than one transaction per day on MTS, making studies
of market impact difficult. Dufour and Nguyen (2012) overcome this issue by building
impulse response functions from regressions of returns on order flow at 10 second intervals
to study permanent market impact. In a different approach Schneider et al. (2018) use a
measure of (virtual) mechanical price impact along with other liquidity measures calculated
from the limit order book to detect illiquidity shocks that can be modeled as a self- and
cross-exciting Hawkes process in and across Italian sovereign bonds.

Instead in this chapter we focus on MOT where we observe a sufficient number of
(smaller) trades as well as an active limit order book. Italian government bonds are traded
on the DomesticMOT segment of MOT where the trading day is divided into an opening
auction from 8:00 to 9:00 followed7 by a phase of continuous trading until 17:30. If certain
price limits are violated during the continuous trading, a volatility auction phase is initiated
for a duration of 10-11 minutes. MOT is organized as a continuous double auction where
besides market and limit orders also partially hidden ‘iceberg orders’, ‘committed cross’
orders and ‘block trade facilities’ are allowed. While the presence of a specialist or a
bid specialist is possible, in practice this is only the case for a subset of financial sector
corporate bonds not in our sample. The tick size depends on the residual lifetime and is 1
basis point of nominal size or 0.1 basis points if the residual lifetime is less or equal than
two years, corresponding to 1 or 0.1 euro cents respectively.

Our dataset contains all trades and limit order book (LOB) snapshots8 for a selection
of 60 ISINs from December 1, 2014 to February 27, 2015 and April 13, 2015 to October
16, 2015 for a total of 194 trading days. For the remainder of this chapter we will focus
on a set of N = 33 fixed rate or zero-coupon Italian sovereign bonds listed in Appendix
4.C with at least 5,000 trades throughout our sample to ensure sufficient liquidity and
statistical significance of our results. To avoid intraday seasonalities we further restrict our
data to 10:00 - 17:00 and discard observations when we detect a volatility auction. The
average spread is smaller than 10 ticks for most of the bonds with the exception of some
very long-term bonds and bonds where the tick size is 0.1 basis points. More than 92% of
the orders in our sample are executed at the corresponding best bid or ask quote9 and thus
identified as sell or buy orders respectively, while all other orders are classified according

6CONSOB, Bollettino Statistico Nr. 8, March 2016, available at http://www.consob.it/web/

area-pubblica/bollettino-statistico
7The conclusion of contracts from the opening auction happens at a random time between 09:00:00-

09:00:59.
8In phases of heavy trading multiple updates of the LOB may be recorded as one update in our data.

However there is at least one update per second whenever there are changes to the LOB and in the vast
majority of our sample updates are more frequent.

9The remaining ∼ 8% can either be due to orders that were executed across more than one millisecond
(so that they are recorded as two or more orders), missed LOB updates or exotic order types.

http://www.consob.it/web/area-pubblica/bollettino-statistico
http://www.consob.it/web/area-pubblica/bollettino-statistico


to the algorithm of Lee and Ready (1991).
Let us fix notation for the estimations in the following sections. We consider the

log-price Xi
t = log(Sit) of the mid-price of the best bid and ask quote for asset i at time t

and calculate the return rit,t+∆t from time t to time t+ ∆t as rit,t+∆t = Xi
t+∆t−ε−Xi

t−ε for

ε→ 0+. εit is the sign of a trade (market order) and +1 for a buyer-initiated transaction,
−1 for a sell, and undefined when there is no trade in the asset i at time t. Iit is an indicator
function that is +1 when there is a trade in asset i at time t and 0 otherwise and we
consider the product of an undefined trade sign with a 0 indicator function to be 0 such
that the product εitI

i
t is always defined and one of {−1, 0,+1}. The size of a trade V i

t is
given as its nominal value in EUR and the price is reported per one asset (or contract) with
a face value of 100 EUR. Unlike e.g. Benzaquen et al. (2017) we do not de-mean the order
sign in order to avoid attributing a price impact to the absence of transactions in a bond
in the sense of Corollary 4.3.3. However we have verified that our results are qualitatively
similar when considering de-meaned order signs ε or εI and de-meaned returns.

4.4.2 Response function

We define the self- and cross-response function Rij∆t as the unconditional ∆t-ahead return
in asset i controlled for the order sign of asset j, i.e.

Rij∆t = E

[(
Xi
t+∆t−ε −Xi

t−ε
)
εjtI

j
t

]
. (4.27)

For i = j we will speak of self-response and of cross-response for i 6= j. Figure 4.2 shows
the average self- and cross-response function for all bonds in our sample and their pairings
respectively. For positive lags ∆t we find that self-response is on average larger than
cross-response by a factor of ∼ 5, consistent with observations of Benzaquen et al. (2017);
Wang et al. (2016a,b). Rij∆t=0 is zero by definition, whereas for small negative ∆t we find
that Rij is on average positive, producing a cusp at ∆t = 0. We conjecture that such
behavior is not observed in Benzaquen et al. (2017) because of the rather large time lag
of 5 minutes, corresponding to ∼ 80 units of transaction time in Figure 4.2. In the single
asset case this feature is clearly present for the large-tick stock Microsoft in Figure 1 of
Taranto et al. (2016). As shown there, the kink could be related to correlations of market
order flow with past returns and indicates a forecasting power of current returns on the
future order sign imbalance. Interestingly we find that the cross-response measured at
negative lags is smaller (i.e. larger in absolute value) than self-response, contrary to the
observations in Benzaquen et al. (2017).10 The figure also shows the prediction from the
model of the negative lag impact (see Taranto et al. (2016) for details). We observe a clear
difference with the empirical data suggesting also for cross-impact a reaction of order flow
to past price dynamics of other bonds.

4.4.3 Instantaneous market impact

We measure the instantaneous market impact function f(·) as

f ij(V ) = E

[
rit−ε,t+2sε

j
t |I

j
t,V = 1

]
(4.28)

which is the expected return in asset i from just before a trade at time t until 2 seconds
after t, multiplied by the trade sign in asset j at time t and conditional on a trade in asset

10We suppose that this is related to the fact that many of the bonds considered here are easily substitutable
for one another.
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Figure 4.2: Plot of average self- and cross- response function Rij
∆t in transaction time as defined in

Section 4.4.4. Mean over all bonds and pairings in our sample and weighted by the number of trades in
the triggering bond j. Self-response is shown as red dots connected by solid lines, cross-response as blue
triangles connected by dashed lines. The lines correspond to the prediction from the model in Section 4.4.4.

j at time t of size V . We have chosen the two second interval as twice the maximum time
between two updates of the limit order book, i.e. we can rule out that changes in the
book were not reported in our data. For measurement purposes we bin similar trade sizes
together, with the bin size chosen as a function of the number of trades in the triggering
bond j.

Figure 4.3 shows self- and cross-impact between all bonds in our sample as a function
of trade size V measured in units of face value. Cross-impact is universally present across
our sample and on average smaller than self-impact by roughly one order of magnitude.
The cross-impact curves of different pairings ij are very close one to the other when both
bonds have a time-to-maturity of at least four years left. For bonds with three or less years
left until maturity we do not observe an intense trading activity, thus the curves in the
leftmost column in the figure are very noisy. Likely the price-dynamics of these short-term
titles are more decoupled from the medium- and long-term bonds with a lifespan of four

11In principle this observation suggests the presence of arbitrage opportunities due to the violation of
Lemma 4.3.7. However we should remember that what is shown in Figure 4.3 is the observed impact, which
might be different from the virtual impact, since the former does not take into account the selection bias
due to the fact that traders condition the market order volume to what is present at the opposite best. For
a discussion of this point in the self-impact case, see Bouchaud et al. (2008).
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Figure 4.3: Plot of the average self- and cross-impact function among all pairs of bonds in our sample as
a function of trade size V measured in units of face value. Each line corresponds to one pairing ij, grouped
by time-to-maturity into four categories, where impact is from the column on the row. Self-impact is shown
in the diagonal panels as red solid lines, cross-impact is shown as blue dashed lines and present in all panels.
Price impact is calculated as average price change (multiplied by the trade sign) after a lag of 2 seconds, the
minimum time that ensures we observe an update of the limit order book. Self- and cross-impact is clearly
non-linear. For comparison the solid black line in the lower left panel illustrates a linear impact function.

or more years. The figure shows that all the estimated functions f ij(V ) are non-linear,
being concave and well described by a power law behavior with an exponent smaller than
1. This has been already observed in self-impact (Lillo et al. (2003)) and is extended here
to cross-impact.11

Having established the evidence for cross-impact, we investigate its possible origin:
Is this due to correlated trades across assets (e.g. a strategy trading several bonds
simultaneously) or is it mostly due to quote revision following a trade, leading to changes of
the mid-price of a bond in the absence of trades? To discriminate between these alternatives,
we repeat the analysis in Figure 4.3 and distinguish now whether there were any trades
beyond the triggering one in any other bond in our sample during a period from 3 seconds
before to 2 seconds after the triggering transaction, which we will call isolated trades. For
better readability in Figure 4.4 we focus on the four most recently issued 30 year BTPs in
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Figure 4.4: Plot of the average self- and cross-impact function among the four most recent 30 year bonds
in our sample. Each line corresponds to one pairing ij, where impact is from the column on the row.
Self-impact is present on the diagonal panels in red, cross-impact on the off-diagonals in blue. Solid lines
show the market impact function based on all trades as in Figure 4.3, dotted lines show market impact
based on isolated trades only, i.e. when there was no other transaction from 3 seconds before to 2 seconds
after the triggering trade.

our sample, which were shown in the lower right panel of Figure 4.3. Results are similar
for all other pairs of bonds. When we consider market impact of isolated trades only, self
impact is lower than unconditionally. This is somewhat expected since order signs are
positively autocorrelated and we exclude contributions where other trades have on average
a positive contribution to impact. However the decrease in market impact is stronger for
the cross-impact components, which are smaller by a factor of ∼ 5−10 on average, whereas
self-impact decreases only by a factor ∼ 2 on average. We conclude therefore that both
an autocorrelation of orders across assets as well as quote revisions play a role in forming
cross-impact. In the next section we will take into account the (cross-) autocorrelation of
the order sign when we estimate the shape of the decay of market impact.



4.4.4 Decay kernel

To estimate the empirically observed decay function we employ a multivariate version of the
transient impact model of Bouchaud et al. (2004) and similarly to Benzaquen et al. (2017);
Wang and Guhr (2016). While the advantage of the model lies in the fully non-parametric
estimation of the kernel that we obtain, the TIM is typically estimated in event time which
is asset-specific. Previous approaches avoid potential pitfalls by estimating the propagator
in calendar time and binning trades. The estimation then is sensitive to the bin width. A
small bin-width such as 1 second in Wang and Guhr (2016) introduces problems in the
treatment of bins without trading activity, while a large bin width such as 5 minutes in
Benzaquen et al. (2017) is too coarse to observe effects of single transactions. The main
difference of our estimation is that we estimate the propagator in a combined market order
time. Specifically our combined trade time is defined to advance by one unit for any unique
timestamp at which there is at least one trade recorded, irrespective of the asset(s).12

Our model for the (log-) mid-price Xi
t of asset i just before a trade at time t reads

Xi
t =

∑
t′<t

∑
j

[
H ij(t− t′)εjt′I

j
t′

]
+ ξit′

+Xi
−∞ (4.29)

where εit is the order sign and Iit an indicator function for a trade in asset i at time t as
defined in Section 4.4.1. ξ is a noise term with correlation matrix Σ(ξ) and the empirically
observed correlation structure of returns r of X is not Σ(ξ) but the noise component Σ(ξ)

plus the component due to the correlated order flow and cross-impact Σ(H), as shown
in Benzaquen et al. (2017). Finally self- and cross-impact is captured by the propagator
matrix H ij(δt) which gives the price impact of a trade in asset j on asset i after a positive
time lag δt. Note that here we assume that trades of all volumes have the same impact
and to avoid confusion with the previous sections we denote the decay kernel H .13 In this
model returns rit in asset i from a trade at time t to the next time-step are then defined as

rit = Xi
t+1 −Xi

t

=
∑
j

H ij(1)︸ ︷︷ ︸
Hij(0)

εjtI
j
t +

∑
j

∑
t′<t

H ij(t+ 1− t′)−H ij(t− t′)︸ ︷︷ ︸
Hij(t−t′)

ij
(t− t′)εjt′I

j
t′ + ξit

=
∑
j

∑
t′≤t
Hij(t− t′)εjt′I

j
t′ + ξit (4.30)

where H(`) ≡H(`+1)−H(`), H(` ≤ 0) ≡ 0 and due to the definition of the price process
in equation (4.29) a lag of τ = 0 as the argument of G in equation (4.2) corresponds to
` = 1 for H . In practice (both due to computational limitations and to avoid dealing with
overnight effects) the sum over t′ is performed up to a cutoff lag p. For an estimation of
H that is more stable with respect to p (Eisler et al. (2012)) we compute the observable

12In other words, each trade advances time by one step, unless when there are two or more trades (in the
same or different assets) recorded at exactly the same timestamp (at millisecond resolution). In such a
case our combined trade time advances only by 1. In our sample ca. 3% of trades happen at the same
time-stamp as another trade in a different bond.

13H corresponds to the elementwise product of f and G as defined in equation (4.2), given the assumption
of indifference to trade size.



S̃ij(`)

S̃ij(`) = E[rit+`ε
j
tI
j
t ] (4.31)

=
∑
k

∑
n≥0

Hik(n)E
[
εkt+`−nI

k
t+l−nε

j
tI
j
t

]
=
∑
k

∑
n≥0

Hik(n)C̃kj(`− n) (4.32)

where C̃(`−n) is the cross-correlation matrix of the modified order sign εitI
i
t at lag `−n.14

To estimate H ij(n) =
∑n−1

l=0 Hij we re-write equation (4.32) as a matrix equation

S̃ = HC̃ (4.33)

where with a slight abuse of notation S̃ and H are row vectors of N ×N block matrices,
i.e. S̃ = (S̃(0), · · · , S̃(p− 1)) and H = (H(0), · · · ,H(p− 1)), and C̃ is a symmetric block-
Toeplitz matrix of p× p blocks of the correlation matrices at different lags, of dimension
Np×Np,

C̃ =


C̃(0) C̃(1) · · · C̃(p− 1)

(C̃(1))ᵀ C̃(0) · · · C̃(p− 2)
...

...
. . .

...

(C̃(p− 1))ᵀ (C̃(p− 2))ᵀ · · · C̃(0)

 (4.34)

where we use that C̃(−m)) = (C̃(m))ᵀ. To estimate H and thus H we invert C̃ and right-
multiply equation (4.33) with C̃−1, where both S̃ and C̃ are constructed from (weighted)
averages over daily estimations.

Figure 4.5 shows the mean of the decay kernel H ij(τ) for self- and cross-impact averaged
over all the bonds and pairings and weighted by the number of transactions. The mean
and median values are not shown here but behave similarly. Both propagators do not
decay immediately but reach their peak after ∼ 10 transactions. This indicates a market
inefficiency which has been observed for self-impact in other markets (see e.g. Figure 1
in Taranto et al. (2016)). In the absence of slippage this inefficiency could be exploited
by e.g. a simple buy-hold-sell strategy. However here the expected gain is on the order of
∼ 0.1 basis points while spread costs are > 1 basis points so that such a strategy would
not be profitable. Further we observe that self- and cross-impact decay rather slowly with
average self-impact reaching its initial level after ∼ 100 transactions, corresponding to ∼ 10
minutes of physical time and cross-impact taking even longer.

4.4.5 Testing for symmetry of cross-impact

We have shown in section 4.3.4 that for a bounded decay kernel the strength of cross-impact
must be symmetric across pairs, i.e. ηij = ηji. Here we check whether this is empirically
verified. In the estimation of the previous section where we are averaging over the trade
volume, effectively regressing returns on trade events, this corresponds to the condition that
Ĥ ij(1) = Ĥji(1), i.e. we are assuming that prices are roughly constant so that absolute
returns can be approximated by relative returns and that the average value (trade volume
weighted by price) does not differ across bonds. As a robustness check, we repeat the
estimation taking into account trading value, i.e. we modify Equation (4.30) to be

rit =
∑
k

∑
t′≤t
K̃ik(t− t′)εkt′W k

t′I
k
t′ (4.35)

14Note that even though we refer to it as such, C̃ is not strictly speaking a correlation matrix, as we do
not de-mean nor normalize εitI

i
t .
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Figure 4.5: Plot of the estimated average decay kernel Hij (in basis points) for self-impact (red dots
connected by solid lines) and cross-impact (blue triangles connected by dashed lines) among all bonds in
our sample. For self- (cross-) impact we show the mean over all bonds (pairings) weighted by the number
of transactions in the triggering bond.

where we are now regressing returns on traded value W i
t = SitV

i
t and the estimated impact

and the decay kernel K(n) =
∑n−1

l=0 K̃(l) is connected to the η and G discussed in Sections
4.2 and 4.3 via

K̃ij(t− s) = η̃ijGij(t− s) =
ηij

SitS
j
t

Gij(t− s) (4.36)

when assuming a linear f . Clearly the symmetry of ηij of Lemma 4.3.6 must hold also for
η̃ij = K̃ij(1) which is the impact and decay kernel estimated at its smallest lag. Again we
assume a roughly constant bond price process S. The added accuracy of this estimation
due to including the value is countered by the fact that the empirically observed market
impact function is non-linear.

While we may easily check for symmetry on the estimated impact matrix η, this
does not allow for any statement on its statistical significance. Therefore we repeat the
estimation on a shorter time scale, i.e. we obtain S̃ and C̃ by averaging over the days of
each calendar week instead of over the whole sample period and estimate the decay kernel
Hw (or Kw respectively for the estimation on trade value) for each week w separately. For
each of the 41 estimated Hw we compute the asymmetry ∆H ij

w = H ij
w (1)−Hji

w (1) and for
each of the 33× 32/2 = 528 pairs we perform a Student’s t-test of the null hypothesis that
∆H ij

w = 0. For robustness we repeat this for three different aggregation periods: weekly as



Table 4.1: Percentage of bond-pairs for which the null of symmetry in cross-impact is rejected according
to a t-test on the null ∆Hij

w = Hij
w (1)−Hji

w (1) = 0 (∆Kij
w = Kij

w (1)−Kji
w (1) = 0). Tests are performed on

weekly/bi-weekly/monthly estimations of H (K) from regressions of returns on signed trades (value of
trades).

Percentage of significantly asymmetric pairs confidence level
regression on aggregation 1% 5% 10%

trade events
weekly 8.0% 16.3% 24.4%
bi-weekly 6.1% 15.3% 24.6%
monthly 4.0% 14.0% 24.1%

trade value
weekly 3.0% 12.1% 21.8%
bi-weekly 3.4% 11.6% 21.0%
monthly 2.5% 11.0% 21.8%

described above, bi-weekly, and monthly.

In Table 4.1 we report the number of pairs for which the null hypothesis that ∆H ij = 0
(∆Kij = 0) is rejected. The table reveals that for all scenarios and for all confidence
levels the number of bond pairs for which the assumption of symmetric cross-impact is not
supported is larger than the number expected under the null hypothesis.15 This implies
that in principle it is possible to exploit this dynamic arbitrage opportunity in at least
some pairs, for example by using the strategy presented in Section 4.3.4.

We now check whether such a strategy would also be easily profitable in the bond pairs
singled out above when taking into account bid-ask spread costs. While we have shown in
section 4.3.7 that cross-impact should be symmetric also when there is slippage, the proof
required trading fast and at high trading rates. Here we evaluate the negative (positive)
cost term due to asymmetric cross-impact (slippage) for realistic values of the execution
duration T and trading rate v:

Ccross ' vavb
T 2

18
∆η , Cslippage ' (vaBa + vbBb)

T

3
(4.37)

where ∆η = |ηab − ηba|. In order to make a profit the ratio

Ccross

Cslippage
' vavbT∆η

6(vaBa + vbBb)
(4.38)

must be larger than one. For the duration T , we need to keep in mind that in the proof
of Lemma 4.3.6 we operated in the limit of very fast trading, i.e. under the assumption
that the kernel is approximately constant. The most conservative estimate for T then
would be 3 units of trade time, as this is the fastest we can execute the three phases of the
strategy. On the other extreme, the empirically observed decay of impact in Figure 4.5
suggests that the kernel actually first increases for ∼ 10 trade time units and then decays
slowly, reaching its initial value only after ∼ 100 (∼ 500) trade time units for self-impact
(cross-impact). Thus the maximal value of T which is consistent with the constant kernel
is of the order of ∼ 100 trade time units. If we assume too high of a value for the trading

15We have been unable to make out any obvious patterns which pairs are significantly asymmetric when
ordering by various measures of liquidity and trading activity (time-to-maturity, maturity, bid-ask spread,
average number of trades per day, average trade volume, turnover, tick size). This suggests that the
asymmetry we observe is not just a mere artifact of any of those measures.



rate v, the assumption of linear impact costs no longer holds, as liquidity in the limit order
book would be consumed faster than being replenished and additional price impact costs
would arise. We therefore suppose that an arbitrageur would use an average-sized trading
rate and assume viT as three times the average trade value in asset i as reported in Table
4.2.16

In the following we estimate the ratio in equation (4.38) for the set of 6 pairs (1.1%)
where symmetry is rejected at the 5% level for at least five of the six aggregation and
regression scenarios of Table 4.1.17 Conservatively assuming T as 3 units of trade time
and with the assumptions described above, we get Ccross

Cslippage ∼ 1 · 10−4. If we are able to
maintain this strategy for a longer period T (at the same trading rate), we are getting
closer to profitability since gains from cross-impact scale as T 2 and losses due to slippage
as T . Assuming T = 100, i.e. the timescale when on average impact has decayed beyond
its initial timescale, yields a ratio Ccross

Cslippage ∼ 0.005. Only if we were able to neglect decay
and other costs when executing our strategy throughout a whole trading day, it could turn
profitable. Given that we do observe a faster decay (but also considering the associated
risk and the chance that dominating the trading activity with the strategy might produce
a less favorable impact structure) we conclude that dynamic arbitrage from cross-impact is
unprofitable at least with our simple trading strategy. However our results also indicate
that it is worth taking cross-impact into account when executing other strategies.

4.5 Conclusion

Even though cross-impact has been studied in the theoretical literature on optimal portfolio
liquidation, empirical studies have been scarce until very recently. In this chapter we aim
to connect the two strands of literature from a no-dynamic-arbitrage perspective.

A desirable market impact model should be free of arbitrage opportunities. In this
chapter we focus on the specific class of multi-asset Transient Impact Models (TIMs)
of market impact and we derive some necessary conditions for the absence of dynamic
arbitrage. In particular, by using specific examples of simple round-trip strategies, we
focus our attention on possible constraints on the shape and size of cross-impact.

One such condition is symmetry of cross-impact with respect to its direction between
assets and we test it on empirical cross-impact kernels obtained by estimating a TIM in
transaction time on Italian sovereign bonds traded in the MOT electronic market. Due
to the strongly interrelated nature of these assets, we believe cross-impact plays a much
stronger role here than compared to other asset classes such as, for example, equities. We
find that while there exist statistically significant violations of the no-arbitrage conditions
related to impact symmetry, these are unprofitable because of slippage costs such as the
bid-ask spread which are neglected in the theoretical considerations.

In addition to this, we want to stress our contributions in describing the high-frequency
market microstructure of the MOT sovereign bond market, applying the TIM to fixed-
income markets and presenting evidence for cross-impact at the level of single orders
instead of aggregated order flows. While this type of modeling and empirical estimation
has been performed on many different types of markets, the application to sovereign bond
(electronic) markets is new. This makes our study also relevant from a monetary policy
point of view. Recent studies (Schlepper et al. (2017); Arrata and Nguyen (2017); De Santis

16To see this, denote the average trade size in asset i as x̄i shares and take the case of executing the
strategy in three trades corresponding to 3 units of trade time. The first phase, i.e. the first trade, lasts
T/3 and is of size x̄i shares, therefore viT = 3x̄i shares.

17Considering different sets leads to similar results.



and Holm-Hadulla (2017)) that aim to quantify the price impact (measured as decline in
the yield to maturity) of Quantitative Easing purchases in the Euro area could benefit
from taking into account cross-impact effects.

Appendix

4.A Proofs

Let us recall that for all proofs in this section we assume that the decay kernel G is
bounded, i.e. there exists an upper bound U > 0 so that |Gij(τ)| < U for all τ ∈ [0,∞)
and all i, j and therefore we take G as normalized to 1 for its smallest lag τ = t − s,
i.e. Gij(0) = 1 for all pairs ij. Furthermore we assume G(τ) to be non-increasing and
right-continuous at τ = 0, i.e.

∀ ε > 0 ∃ Tε > 0 such that ∀ τ with 0 < τ < Tε and ∀ i, j : |Gij(0)−Gij(τ)| < ε . (4.39)

Proof of Lemma 4.3.2. We first show that a non-odd f leads to a price manipulation in the
single-asset case. Let us therefore assume an in-out strategy Π as in the first component of
Example 4.3.1 with κ = −1 and therefore Θ = T/2, i.e. both phases of trading last equally
long. That is we first accumulate a position at the rate v > 0 to then liquidate it at the same
negative rate −v. Without loss of generality we choose v such that f(v) > −f(−v) ≥ 0
and that

ε :=
1

4

f(v) + f(−v)

f(v)
> 0 (4.40)

which is non-zero since f is not an odd function.18 Then by continuity there exists a Tε > 0
for which we can bound the cost of our strategy as

C(Π) = vf(v)

∫ T/2

0
dt

∫ t

0
G(t− s)ds

− vf(−v)

∫ T

T/2
dt

∫ t

T/2
G(t− s)ds

− vf(v)

∫ T

T/2
dt

∫ T/2

0
G(t− s)ds

≤ vf(v)
T 2

8
− vf(−v)

T 2

8
− vf(v)(1− ε)T

2

4

= v
T 2

8
[−f(v)− f(−v) + 2εf(v)]

< 0 (4.41)

when choosing T = Tε. That is for any trading rate v there is a Tε > 0 for which there
is a price manipulation by our choice of ε. Therefore we conclude that f(v) must be an
odd function of v in the single-asset case and the same holds for self-impact f ii in the
multi-asset case with cross-impact since we can always execute a strategy in only one asset.

Let us now show that the same holds for cross-impact. We choose va, vb > 0 and for

18In the case that f(v) < −f(−v) all we need is to change the sign in equation (4.40) to ensure that ε is
positive. In the cases that either f(v) ≤ 0 ∧ f(−v) ≤ 0 or f(v) ≥ 0 ∧ f(−v) ≥ 0 the price manipulation
arises in a simple in-out or out-in strategy as above respectively. Finally if assuming vf(v) ≤ 0 the proof is
analogous to the one above.



simplicity we assume that sgn(ẋif
ij(ẋj)) = sgn(ẋiẋj) for all i, j, the proof being analogous

in the other cases. We re-define

ε :=
va
[
fab(vb) + fab(−vb)

]
4vafaa(va) + 4vbf bb(vb) + 3vafab(vb)− vafab(−vb) + 3vbf ba(va)− vbf ba(−va)

> 0

(4.42)
where again we assume for simplicity that fab(vb)+fab(−vb) > 0, the proof being analogous
in the other case with fab(vb) and fab(−vb) interchanged in (4.42). We assume a first
strategy Π1 as in Example 4.3.1, again with κ = −1 and therefore Θ = T/2, and λ > 0, that
is we first accumulate both assets at the rates va, vb > 0 to then liquidate both positions at
the negative rates −va,−vb < 0:

Π1 = {ẋt} , ẋt =

{
(+va,+vb)

ᵀ for 0 ≤ t ≤ T/2
(−va,−vb)ᵀ for T/2 < t ≤ T

(4.43)

Choosing T = Tε we are able to bound the cost of this strategy as above, obtaining

C(Π1) ≤ T 2

8

∑
i,j=a,b

vif
ij(vj)− vif ij(−vj)− 2vi(1− ε)f ij(vj)

=
T 2

8

−va [fab(vb) + fab(−vb)
]
− vb

[
f ba(va) + f ba(−va)

]
+ 2ε

∑
i,j=a,b

vif
ij(vj)

 .

(4.44)

Repeating the same estimation for a strategy Π2 which is anti-symmetric with λ < 0 but
otherwise as above, i.e.

Π2 = {ẋt} , ẋt =

{
(+va,−vb)ᵀ for 0 ≤ t ≤ T/2
(−va,+vb)ᵀ for T/2 < t ≤ T

. (4.45)

The cost is similarly bounded from above:

C(Π2) ≤ T 2

8

{
−va

[
fab(vb) + fab(−vb)

]
+ vb

[
f ba(va) + f ba(−va)

]
+ε
[
2vaf

aa(va) + 2vbf
bb(vb) + vaf

ab(vb)− vafab(−vb) + vbf
ba(va)− vbf ba(−va)

]}
.

(4.46)

Combining the cost of the two strategies with identical parameters va, vb we have

C(Π1) + C(Π2) ≤ T 2

4
{ − va

[
fab(vb) + fab(−vb)

]
+ ε

[
4vaf

aa(va) + 4vbf
bb(vb)

+3vaf
ab(vb)− vafab(−vb) + 3vbf

ba(va)− vbf ba(−va)
]}

(4.47)

which is negative for our choice of ε and therefore price manipulation is possible.

Proof of Lemma 4.3.6. From the single-asset case we use the result that self-impact is
linear and denote this as

f ii(v) = ηiiv . (4.48)



Given the trading rates va, vb > 0 and assuming w.l.o.g. that vaf
ab(vb) > vbf

ba(va) > 0,
we choose

ε :=
1

2

vaf
ab(vb)− vbf ba(va)

2ηaav2
a + 2ηbbv2

b + 3vafab(vb) + vbf ba(va)
(4.49)

so that ε > 0.19 Then by our assumption of continuity there exists a Tε > 0 for which
|Gij(0)−Gij(τ)| ≤ ε for all τ with 0 ≤ τ ≤ Tε and for all i, j ∈ {a, b}. We implement the
same asymmetric strategy (4.15) as in Example 4.3.5 with T = Tε and calculate the cost of
this strategy as C(Π) = Caa +Cbb +Cab +Cba where Caa and Cbb are the self-impact costs
of trading in assets a and b respectively and Cab and Cba are the costs due to cross-impact
from asset b to a and vice versa. The explicit calculation of the self-impact terms gives

Caa = ηaav2
a

{∫ T/3

0
dt

∫ t

0
Gaa(t− s)ds+

∫ T

2T/3
dt

∫ t

2T/3
Gaa(t− s)ds−

∫ T

2T/3
dt

∫ T/3

0
Gaa(t− s)ds

}

≤ ηaav2
a

{
T 2

18
+
T 2

18
− (1− ε)T

2

9

}
= εηaav2

a

T 2

9

Cbb ≤ εηbbv2
b

T 2

9
(4.50)

and likewise for cross-impact:

Cab = vaf
ab(vb)

{
−
∫ T/3

0
dt

∫ t

0
Gab(t− s)ds+

∫ T

2T/3
dt

∫ T/3

0
Gab(t− s)ds−

∫ T

2T/3
dt

∫ 2T/3

T/3
Gab(t− s)ds

}

≤ vafab(vb)
{
−(1− ε)T

2

18
+ ε

T 2

9

}
= vaf

ab(vb)
T 2

18
(−1 + 3ε)

Cba = vbf
ba(va)

{
−
∫ T/3

0
dt

∫ t

0
Gba(t− s)ds+

∫ 2T/3

T/3
dt

∫ T/3

0
Gba(t− s)ds

}

≤ vbf ba(va)
{
−(1− ε)T

2

18
+
T 2

9

}
= vbf

ba(va)
T 2

18
(1 + ε) . (4.51)

Summing over all terms yields

C(Π) ≤ T 2

18
(vbf

ba(va)− vafab(vb)) + ε
T 2

18

(
2ηaav2

a + 2ηbbv2
b + 3vaf

ab(vb) + vbf
ba(va)

)
=
T 2

36
(vbf

ba(va)− vafab(vb)) (4.52)

< 0

and we conclude that there is a price manipulation unless cross-impact is symmetric, i.e.
we require vbf

ba(va)− vafab(vb).
19We can choose an equivalent ε > 0 in all other cases, i.e. for vbf

ba(va) > vaf
ab(vb) > 0 by interchanging

a↔ b in equation (4.49) and below. In the case that the denominator in (4.49) is negative we interchange
a ↔ b in order to ensure ε > 0 while the case of va and vb such that the denominator is exactly zero is
resolved by a slight modification of the turnaround points in the strategy.



Proof of Lemma 4.3.7. We prove the claim that that cross-impact needs to be a linear
function of volume by contradiction, that is we show that non-linear cross-impact introduces
arbitrage opportunities.

Therefore we consider a scenario as in Example 4.3.1 and illustrated in Figure 4.1a,
i.e. trading in two assets over two phases, denoted by I and II, at a constant rate vi,I and
vi,II respectively during each phase. The rates of the first and second phase are related

by κ = vi,I/vi,II < 0 and the turn-around point Θ = T
−vi,II

vi,I−vi,II = T 1
1−κ is common to both

assets a, b. From the single-asset case we use the result that self-impact is linear and denote
this as f ii(v) = ηiiv. We assume w.l.o.g. that vf ij(v) ≥ 0 and thus have λ < 0, i.e. trading
in opposite directions.20

Let us assume that fab(v) is a non-linear function. From Corollary 4.3.3 we know that
f ij(0) = 0 and therefore non-linearity implies that there exist v1, v2 > 0, v1 6= v2 for which
fab(v1)/v1 6= fab(v2)/v2.21 Therefore we can choose vb = vb,II > 0 and κ < 0, κ 6= −1 so
that

− κvafab(vb) > vaf
ab(−κvb) > 0 (4.53)

where also va = −va,II > 0.22 Then we can define

ε :=
1

2

vaf
ab(−κvb) + κvaf

ab(vb)

κηaav2
a + κηbbv2

b − vafab(−κvb) + κvafab(vb)
> 0 . (4.54)

To see that ε is positive, note that the numerator in equation (4.54) is negative by equation
(4.53) and all terms in the denominator in equation (4.54) are negative as well: the first
two since κ < 0 and ηii > 0 (cf. equation (18) with vb = 0), and the last two terms are
negative by equation (4.53) again.

By continuity of G as defined in equation (4.39) we can choose T = Tε such that the
cost terms for self- and cross-impact can be bounded from above as

Cii = κ2ηiiv2
i

∫ Θ

0
dt

∫ t

0
G(t− s)ds+ ηiiv2

i

∫ T

Θ
dt

∫ t

Θ
G(t− s)ds+ κηiiv2

i

∫ T

Θ
dt

∫ Θ

0
G(t− s)ds

≤ ηiiv2
i

[
κ2θ2/2 + (T −Θ)2/2 + (1− ε)κT (T −Θ)

]
= εηiiv2

i

κ2T 2

(1− κ)2
(4.55)

and for i 6= j

Cij = κvif
ij(−κvj)

∫ Θ

0
dt

∫ t

0
G(t− s)ds− vif ij(vj)

∫ T

Θ
dt

∫ t

Θ
G(t− s)ds

+ vif
ij(−κvj)

∫ T

Θ
dt

∫ Θ

0
G(t− s)ds

≤ vif ij(−κvj)
[
(1− ε)κΘ2/2 + Θ(T −Θ)

]
+ (1− ε)vif ij(vj)(T −Θ)2/2
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T 2
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vif

ij(−κvj)
[
−κ

2
− εκ

2

]
+ vif

ij(vj)

[
−κ

2

2
+ ε

κ2

2

]}
. (4.56)

20If vf ij(v) ≤ 0 then arbitrage arises from a strategy with λ > 0, i.e. trading in the same direction.
21We make the choice v1, v2 > 0 for simplicity of our arguments, this is without loss of generality since

by Lemma 4.3.2 f ij(v) needs to be an odd function of v.
22The choice is either vb = v1 and −κvb = v2 > 0 or vb = v2 and −κvb = v1 > 0 (with v1 ↔ v2), chosen

such that the first inequality in equation (4.53) is fulfilled.



Summing over all terms for two assets i, j ∈ {a, b} gives

C(Π) =
∑
ij

Cij

≤ T 2

2(1− κ)2

{
−κ
[
vaf

ab(−κvb) + vbf
ba(−κva) + κvaf

ab(vb) + κvbf
ba(va)

]
+ ε

[
2κ2ηaav2

a + 2κ2ηbbv2
b − κvafab(−κvb)

−κvbf ba(−κva) + κ2vaf
ab(vb) + κ2vbf

ba(va)
]}

=
T 2

(1− κ)2

{
κ
[
−vafab(−κvb)− κvafab(vb)

]
+εκ

[
κηaav2

a + κηbbv2
b − vafab(−κvb) + κvaf

ab(vb)
]}

, (4.57)

where in the last step we have used symmetry of cross-impact as shown in Lemma 4.3.6.
Then by our choice of ε

C(Π) ≤ κT 2

2(1− κ)2

{
−vafab(−κvb)− κvafab(vb)

}
(4.58)

≤ 0

and it follows that non-linear cross-impact fab admits arbitrage. Therefore, by symmetry,
linearity of all f ij is a necessary condition for absence of arbitrage.

Proof of Corollary 4.3.12. We follow the same proof as for Lemma 4.3.6 with linear self-
and cross-impact, i.e. f ij(v) = ηijv. The bid-ask spread enters as an additional cost term
in equation (4.52) so that

C(Π) ≤ vavb
T 2

36
(ηba − ηab) + (vaBa + vbBb)

T

3
. (4.59)

Since ηba − ηab < 0 we can choose va, vb large enough so that C(Π) < 0 and therefore price
manipulation is still possible unless cross-impact is symmetric.

4.B Power-law decay and impact

A popular class of unbounded decay kernels are power law kernels, e.g. G(τ) ∼ τ−γ , 0 <
γ < 1. Their advantage lies in allowing for more realistic parametrizations of the market
impact function, such as concave power-law impact f(v) ∼ sgn(v)|v|δ for 0 < δ < 1. While
Gatheral (2010) establishes necessary conditions for such a model to be consistent in the
one-dimensional case, numerical optimizations reported in Curato et al. (2016) find that
violations of the principle of no-dynamic-arbitrage occur even when these conditions are
verified, proofing them to be necessary but not sufficient. It remains an open problem
whether and under what conditions power law decay kernels and market impact functions
are consistent. In this section we do not address this question but consider necessary
constraints that arise from the presence of cross-impact. Specifically we show that in this
case the shape parameter of the market impact function f needs to be unique for all self-
and cross-impact terms.



Lemma 4.B.1. Assume a price process as in (4.2) where decay of market impact G(τ) is
a power law function, i.e. Gij(τ) = τ−γ

ij
with 0 < γij < 1 and f ij(v) = ηij sgn(v)|v|δij is

also power-law with ηij ≥ 0 for all i, j.23 Then absence of dynamic arbitrage requires that

δij = δ ∀ i, j . (4.60)

Proof of Lemma 4.B.1. Consider a strategy of two phases lasting equally long where at
first we build up a position at a constant trading rate from time 0 until time Θ = T/2 and
then liquidate the position in a second phase from T/2 until T , i.e.

Π = {ẋt} , ẋt =

{
(va, vb)

ᵀ for 0 ≤ t ≤ T/2
(−va,−vb)ᵀ for T/2 < t ≤ T

. (4.61)

which is a special case of Example 4.3.1. Further we use the notation λ = va/vb. Explicit
calculation of the cost terms due to self-impact yields

Cii = ηiiv1+δii

i
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0
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0
dsτ−γ

ii
+
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]
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i T 2−γii
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[
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]

=: Λii(ηij , γij , T )v1+δii

i (4.62)

and similarly we obtain for cross-impact

Cij = −ηijvivδ
ij

j

[∫ T/2

0
dt
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0
dsτ−γ

ij
+
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T/2
dt
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ij −
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= −
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j T 2−γij
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[
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=: −Λij(ηij , γij , T )viv
δij

j (4.63)

with Λij > 0 ∀ ij. Since λ = va/vb we substitute w.l.o.g. va = λv, vb = v. The total cost of
the strategy is thus

C =
∑
ij

Cij

= Λbbv1+δbb − λδbaΛbav1+δba − λΛabv1+δab + λ1+δaaΛaav1+δaa

= Λbbv1+δbb − λδbaΛbav1+δba +O(λ) (4.64)

where in the last step we are choosing λ small enough so that linear terms in λ can be
neglected. Then if δbb > δba we can choose v > 0 small enough so that C < 0 and likewise
if δbb < δba we can choose v large enough so that there is a price-manipulation. Therefore
we require δbb = δba =: δb and likewise δaa = δab =: δa. Therefore we can re-express the

23In the one-dimensional case Gatheral (2010) shows that for absence of dynamic arbitrage it is also
necessary that γ ≥ γ∗ = 2− log 3

log 2
≈ 0.415 and γ + δ ≥ 1.



cost as

C = Λbbv1+δb − λδbΛbav1+δa − λΛabv1+δa +O(λ1+δa)

= (Λbb − λδbΛba)︸ ︷︷ ︸
:=Λb

v1+δb − λδaΛbav1+δa +O(λ1+δa) (4.65)

now also considering linear terms in λ. Since λ is small we can use that Λb > 0 and by the
same arguments as above we conclude that absence of arbitrage requires δa = δb = δ.

4.C List of ISINs

Table 4.2 reports basic descriptive statistics and liquidity measures for all the N = 33
bonds that were used for estimations. The set of bonds was selected as all fixed rate or
zero-coupon Italian sovereign bonds with at least 5,000 trades throughout our sample.
Note that some bonds were issued during our sample period and therefore less than 194
trading days were observed.

The description for each bond lists the bond type (BTPs refers to fixed-income treasury
bonds, CTZ to zero coupon bonds), the fixed interest rate (where applicable) and the
maturity date. Maturity is the time from issuance of a bond to the maturity date in
years and time-to-maturity is calculated as the remaining time from the end of our sample
(October 16, 2015) to the maturity date. The trade volume measures in Table 4.2 (mean
traded volume per day and mean volume per trade) are reported as face volume traded
and to arrive at the value one has to multiply by the price. The liquidity measures of the
limit order book (mean number of limit order book updates per day, mean spread and
ratio of tick size over mean spread) are computed from 10:00 to 17:00 of each day as we
restrict our analysis to this period to avoid intraday seasonalities. Bid-ask spread is given
in units of basis points of the face value, e.g. an average spread 14.9bp corresponds to a
contract with a nominal value of EUR 100 offered at a mean spread of 14.9 euro-cents.



Table 4.2: Descriptives and liquidity measures for the set of bonds used in estimation.

ISIN description maturity time-to # days with avg. # avg. traded avg. volume avg. # LOB avg. spread tick size
(in years) -maturity observa- trades volume per day per trade updates per (in basis points / avg.

(in years) tions per day (in million EUR) (in 1,000 EUR) day (in 1,000) of par) spread

IT0001278511 BTPS 5.250 01/11/29 31.0 14.1 194 108.8 5.5 50.3 31.4 14.9 0.07
IT0003535157 BTPS 5.000 01/08/34 31.0 18.8 194 103.3 5.5 52.9 44.3 22.7 0.04
IT0003934657 BTPS 4.000 01/02/37 31.5 21.3 194 882.1 66.5 75.4 31.0 5.5 0.18
IT0004009673 BTPS 3.750 01/08/21 15.5 5.8 194 84.4 5.8 68.5 18.5 5.6 0.18
IT0004019581 BTPS 3.750 01/08/16 10.4 0.8 194 29.2 1.8 60.5 4.9 2.3 0.04
IT0004164775 BTPS 4.000 01/02/17 10.1 1.3 194 22.8 1.5 67.8 3.2 3.7 0.03
IT0004361041 BTPS 4.500 01/08/18 10.3 2.8 194 23.3 2.6 111.9 6.8 5.1 0.20
IT0004423957 BTPS 4.500 01/03/19 10.5 3.4 194 22.4 2.4 108.1 10.8 5.6 0.18
IT0004489610 BTPS 4.250 01/09/19 10.3 3.9 194 42.7 4.1 95.6 12.2 5.7 0.18
IT0004532559 BTPS 5.000 01/09/40 31.0 24.9 194 179.3 10.6 59.1 35.0 17.6 0.06
IT0004536949 BTPS 4.250 01/03/20 10.4 4.4 194 41.2 6.7 162.8 14.3 5.9 0.17
IT0004594930 BTPS 4.000 01/09/20 10.4 4.9 194 57.6 5.1 89.3 15.9 5.8 0.17
IT0004634132 BTPS 3.750 01/03/21 10.5 5.4 194 49.3 4.2 85.3 18.0 6.1 0.16
IT0004695075 BTPS 4.750 01/09/21 10.5 5.9 194 25.3 2.3 89.7 17.8 6.7 0.15
IT0004759673 BTPS 5.000 01/03/22 10.5 6.4 194 30.7 3.1 99.9 18.1 7.5 0.13
IT0004801541 BTPS 5.500 01/09/22 10.5 6.9 194 25.2 2.3 91.4 19.0 8.3 0.12
IT0004848831 BTPS 5.500 01/11/22 10.2 7.0 194 20.9 2.2 107.2 16.8 8.7 0.11
IT0004898034 BTPS 4.500 01/05/23 10.2 7.5 194 35.1 3.6 101.4 18.8 8.3 0.12
IT0004923998 BTPS 4.750 01/09/44 31.3 28.9 194 252.9 18.7 73.9 33.1 15.4 0.07
IT0004953417 BTPS 4.500 01/03/24 10.6 8.4 194 50.9 9.2 180.0 23.4 5.5 0.18
IT0005001547 BTPS 3.750 01/09/24 10.5 8.9 194 47.1 7.3 154.7 22.5 6.5 0.15
IT0005024234 BTPS 3.500 01/03/30 15.8 14.4 194 257.3 22.6 87.8 27.2 9.3 0.11
IT0005028003 BTPS 2.150 15/12/21 7.5 6.2 194 83.1 14.4 173.0 16.7 4.7 0.21
IT0005030504 BTPS 1.500 01/08/19 5.1 3.8 194 25.8 6.7 258.5 10.5 5.4 0.18
IT0005044976 CTZ 14- 30/08/16 24M 2.0 0.9 194 31.8 4.3 135.3 2.5 1.7 0.06
IT0005045270 BTPS 2.500 01/12/24 10.3 9.1 194 202.1 29.0 143.7 25.7 4.4 0.23
IT0005069395 BTPS 1.050 01/12/19 5.0 4.1 194 74.6 14.2 190.3 11.2 4.2 0.24
IT0005083057 BTPS 3.250 01/09/46 31.6 30.9 163 892.4 78.3 87.7 31.4 6.1 0.16
IT0005086886 BTPS 1.350 15/04/22 7.2 6.5 145 124.1 16.5 133.1 18.0 4.7 0.21
IT0005090318 BTPS 1.500 01/06/25 10.3 9.6 135 332.7 36.8 110.7 28.3 4.3 0.23
IT0005094088 BTPS 1.650 01/03/32 17.0 16.4 134 603.3 41.4 68.7 22.9 6.1 0.16
IT0005107708 BTPS 0.700 01/05/20 5.0 4.5 121 65.5 11.7 178.6 12.3 5.6 0.18
IT0005127086 BTPS 2.000 01/12/25 10.3 10.1 35 174.8 14.6 83.3 18.6 3.8 0.26





Chapter 5

Illiquidity spillovers

5.1 Introduction

Market liquidity - the ability to quickly trade large quantities of an asset at a low cost - is
crucial to the functioning of financial markets and therefore of great interest to both market
participants and policymakers. Concerns about illiquidity - the absence of market liquidity
- have recently been raised not only about the average level of (il-)liquidity, but especially
about extreme illiquidity events and the associated risk. In a study on the liquidity of the
U.S. treasury market Adrian et al. (2015) conclude: “perhaps the concerns are not so much
about average liquidity levels, as we examined, but about liquidity risk. [...] episodes of
sharp, seemingly unexplained price changes in the dollar-euro and German Bund markets
have heightened worry about tail events in which liquidity suddenly evaporates.” During
such tail events, also referred to as “liquidity crashes” or “liquidity dry-ups” (Brunnermeier
and Pedersen (2009); Huang and Wang (2009); Easley et al. (2011)), market participants
are unwilling to provide liquidity and as a consequence trading becomes prohibitively
expensive.

Studying the dynamics of abrupt illiquidity events is important also because the
clustering of several such shocks in the same asset can lead to a significant liquidity crash.
In the following we will refer to such a cluster as an illiquidity spiral.1 Moreover dry-ups
of market liquidity might not be constrained to one asset but can propagate to other
assets. We refer to the contagion of liquidity crashes in one asset to another as illiquidity
spillover. Indeed market liquidity has become an important channel in the theoretical
literature on financial contagion (see e.g. Kyle and Xiong (2001); Garleanu and Pedersen
(2007); Brunnermeier and Pedersen (2009); Cespa and Foucault (2014) and the discussion
in Bongaerts et al. (2015)). They relate to a large literature on commonality in liquidity
pioneered by Chordia et al. (2000) and documenting the correlation between the liquidity
of different assets, markets (Brockman et al. (2009)) and asset classes (e.g. Chordia et al.
(2005), see also Karolyi et al. (2012) for a survey). The relation with price is studied by
Hameed et al. (2010) who show that stock market declines increase the commonality in
liquidity. However this literature mostly focuses on the average correlation in liquidity,
including therefore normal and tail conditions.

In this chapter we focus instead on time lagged correlations of the occurrence of extreme
illiquidity events across different assets. By using limit order book information and by
constructing a suitable liquidity factor, we identify these events as an adaptation of the

1I.e. illiquidity spirals are downward spirals in market liquidity and not to be confused with liquidity
spirals in the sense of Brunnermeier and Pedersen (2009) where downward moves in market and funding
liquidity reinforce themselves.
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peaks-over-threshold method to the liquidity factor increments. To model the dynamics of
illiquidity spillovers and spirals we will use the class of self-exciting point processes named
Hawkes processes (Hawkes (1971a,b)). They were initially applied to model earthquake
data (Vere-Jones (1970, 1995); Ogata (1988)) and are now widely used in Finance (see
Bacry et al. (2015) for a recent review) to describe discontinuous processes, such as price
jumps or limit order book events. In fact spirals and spillovers can be naturally related to
self- and cross-excitation events, respectively, of a Hawkes process.

We apply this approach to identify bond illiquidity spirals and spillovers. To our
knowledge we are the first to use Hawkes processes to investigate extreme illiquidity events
and to investigate intraday commonality and contagion of illiquidity shocks for bonds. In
fact most of the research concentrates either on the equity market or on bond liquidity
at daily or weekly frequency. A recent study by Bongaerts et al. (2015) directly identifies
liquidity shocks in different equity markets at 5-minute resolution and does not find any
evidence for spillovers in time nor across markets, challenging the concepts of liquidity
dry-ups and contagion of liquidity shocks.

Here we follow a different approach, both methodologically and for the choice of a
much shorter time scale. We follow the well-established method to model the occurrences
of exceedances of the Value-at-Risk (VaR) threshold (Chavez-Demoulin et al. (2005);
Embrechts et al. (2011); Chavez-Demoulin and McGill (2012)) by parametrically modeling
the arrival process of illiquidity events as a Hawkes process that allows for both self- and
cross-excitation. In this framework we can identify the fraction of such illiquidity shocks
that is either due to a constant arrival intensity of events, self-excitation, or cross-excitation.
We apply our methods to a dataset of the limit order book of the Mercato dei Titoli di
Stato (MTS), the leading interdealer platform for European sovereign bonds, selecting a
representative sample of Italian sovereign bonds of different maturities in the period from
June 2011 through December 2015. Using a condensed measure of liquidity that is based on
spread, price-impact and depth, we find significant evidence for the presence of illiquidity
spirals and illiquidity contagion. We observe that illiquidity becomes more interconnected
throughout our sample and the proportion of illiquidity contagion has roughly doubled
from 2011 to 2015. Illiquidity spillover typically occurs within a few seconds (much faster
than the sampling interval of 5 minutes in Bongaerts et al. (2015)) and is faster in bonds
that are related by a similar maturity. It is notable that trades are very sparse on MTS
and our results can be seen as directly due to quoting activity, supporting a channel of
“informativeness” as in Cespa and Foucault (2014). Therefore the main contributions
of this chapter lie in (i) proposing an event detection method for limit order book data
that does not use a discrete time grid and therefore especially suited for modeling with
Hawkes processes, and (ii) documenting extreme illiquidity contagion, i.e. cross-excitation
of illiquid tail events, as well as self-exciting illiquidity spirals by applying our modeling
approach to fixed-income order book data.

The rest of the chapter proceeds as follows. Section 5.2 describes our event detection
algorithm and the Hawkes kernel used for modeling. In Section 5.3 we apply our method to
the MTS dataset. Section 5.3.1 describes our dataset together with the market structure and
the historic context. Our liquidity measure is introduced in 5.3.2 and sections 5.3.3 and 5.3.4
describe the results of our event detection and Hawkes modeling exercise respectively, with
some robustness checks in Section 5.3.5. Section 5.4 mentions further possible applications
of our method and concludes.



5.2 Method

We assume to observe a process xi(t) in continuous time that measures the illiquidity of an
asset i at time t. This can be a direct liquidity metric (e.g. spread or depth) or a suitable
combination of such metrics. For example in the empirical investigation below we will use
a liquidity factor derived from a Principal Component Analysis of three liquidity metrics
extracted from limit order book data. The important point is that we are able to measure
the process, which is typically piecewise constant and changing in correspondence of limit
order book events, at any time. In the next section we propose an identification method
that yields a counting process N i(t) of extreme illiquidity events in the asset i up to time
t. Then in Section 5.2.2 we introduce Hawkes processes and our modeling and estimation
approach.

5.2.1 Event detection

Detection of extreme events is common in empirical analysis of prices because of their
importance for risk assessment and the possible connection with jumps. Due to the
unobservability of the efficient price and the presence of microstructure noise, the typical
approach is to identify returns (rescaled by a suitable volatility estimator) beyond a certain
high threshold, set e.g. as a high percentile of the return distribution (Chavez-Demoulin
et al. (2005)) or as a multiple of the volatility estimator (Lee and Mykland (2008)). This
method is often referred to as peaks-over-threshold (PoT), and can also capture the
magnitude of the exceedances over the threshold.

Common to these detection methods is that they are effectively carried out on discrete
time intervals, even when high-frequency data are available. For example Chavez-Demoulin
and McGill (2012) samples stock-returns over 15-minute periods, Bongaerts et al. (2015)
over five minutes or Bormetti et al. (2015) at one minute frequency. However the discrete
time grid might miss events that occur at shorter time-scales and, when modeled as Hawkes
processes, forces discrete time on the originally continuous Hawkes process. Furthermore
discrete grids introduce the problem of contemporaneity of jumps. Indeed Bollerslev et al.
(2008); Gilder et al. (2014); Bormetti et al. (2015) observe a significant number of co-jumps
in price across multiple stocks.

When considering extreme illiquidity events, we can instead observe a proxy of illiquidity,
i.e. xi(t) in our notation, which is updated at irregular but frequent intervals. The event
time M i(t) advances by one unit with every update of xi. We detect an illiquidity event,
i.e. a shock to liquidity, when there is a large and abrupt increase in illiquidity, that is
when the speed of increase in illiquidity is over a threshold θi. Specifically the counting
process of liquidity shocks is defined as

N i(t) =

M i(t)∑
m=0

1{
xi(tm)−xi(t

m−`i
)

tm−t
m−`i

>θi∧N i(tm)=N i(tm−`i)

} (5.1)

where M i(t) is the number of updates of xi up to time t, tm the physical time corresponding
to update m, θi the threshold and `i a lag that determines the level of coarse-graining in
event time. The speed of increase in illiquidity is measured in physical time over a window
length determined as `i updates in event time. In order to avoid modeling market activity
as opposed to liquidity we have added a second condition, keeping an illiquidity shock
only if there are at least `i updates since the previous detection. Thereby we ensure a
minimum lag (in event time) between two successive detected illiquidity events. Note that



the threshold θi and lag `i depend on the asset i to take into account a potentially different
nature of liquidity processes (e.g. of different asset classes) and different update rates. For
example, taking `i as the average number of updates over a certain range of physical time
ensures that in the subsequent estimation step there is no bias introduced from different
update rates in the liquidity processes of the assets estimated together.

5.2.2 Hawkes processes

Hawkes processes (Hawkes (1971a,b)) are point processes with counting process N i(t)
where the intensity λi(t) depends on the past history of the process. That is their intensity
can be written as (following the notation of Bacry et al. (2015))

λi(t) = µi +

∫ t

−∞
Φii(t− s)dN i(s) +

∑
j 6=i

∫ t

−∞
Φij(t− s)dN j(s) (5.2)

where µi accounts for an exogenous baseline intensity and Φ(τ) is a kernel matrix which
for all elements ij is non-negative, i.e. Φij(τ) ≥ 0 ∀ τ , causal, i.e. Φij(τ) = 0 ∀ τ < 0,
and L1-integrable. For an asymptotically stationary process we further require that the
spectral radius of the L1-norm of Φ is smaller than 1. Given stationarity of the kernel we
can take the expectation value on both sides of the process in (5.2), i.e.

λ̄ = µ+ γλ̄ (5.3)

where [γ]ij =
∫∞

0 Φij(τ)dτ is the kernel norm and λ̄ the unconditional expectation of the
event arrival intensity, which is well-defined under the stationarity condition above:

λ̄ = (1− γ)−1µ . (5.4)

Re-writing equation (5.3) for a single component i and dividing by λ̄i we get

1 =
µi

λ̄i
+ γii +

∑
j 6=i

γij
λ̄j

λ̄i
, (5.5)

which gives an interpretation to each term on the rhs as the fraction of events due to the
baseline intensity µi, self-excitation, and cross-excitation respectively. In the following
we will take N i(t) to be the counting process of illiquidity events and therefore interpret∑

j 6=i γij λ̄
j/λ̄i as a measure of the frequency of illiquidity spillovers from other assets j to

asset i. γii is the fraction of illiquidity events explained by self-excitation. A higher γii

means liquidity shocks in asset i are more likely to amplify and propagate in time and
market liquidity therefore is more fragile or less resilient along the time dimension.

5.3 Application

5.3.1 MTS market

The sovereign bond market of the Eurozone is one of the largest in the world with e6.8
trillion outstanding nominal value at the end of 2015.2 The largest debtor country by the
same measure is Italy with e1.8 trillion outstanding. Beyond its size the Italian market is

2Nominal Value of outstanding amounts issued by central governments according to ECB:
https://www.ecb.europa.eu/stats/ecb_statistics/escb/html/table.en.html?id=JDF_SEC_OAT_

DEBT_SECURITIES&period=2015-12

https://www.ecb.europa.eu/stats/ecb_statistics/escb/html/table.en.html?id=JDF_SEC_OAT_DEBT_SECURITIES&period=2015-12
https://www.ecb.europa.eu/stats/ecb_statistics/escb/html/table.en.html?id=JDF_SEC_OAT_DEBT_SECURITIES&period=2015-12


of even bigger importance as a pillar of the Euro, as during and after the sovereign bond
crisis, Italy was repeatedly seen as crucial to the survival of the Eurozone.3

The secondary market for Italian sovereign bonds is divided in an opaque over-the-
counter (OTC) market and an observable exchange-traded market that is organized in
different platforms. The market share of the OTC market was 59.1% in 2015, while 44.8%
of trading in organized platforms reported to the Italian securites and exchange commission,
CONSOB, took place on the interdealer platform Mercato dei Titoli di Stato (MTS).4

Besides accounting for almost half of the exchange trade activity, MTS is also important
because it is used by the Italian treasury to evaluate the performance of primary market
participants in terms of liquidity provision.5 MTS therefore is the leading interdealer
trading platform for European and especially Italian sovereign bonds (Dufour et al. (2004);
Pelizzon et al. (2016)). It is organized as an electronic limit order book split into a
“EuroMTS” market for benchmark bonds and a domestic market and minimum quote and
transaction sizes are typically e1 million or larger.

Our dataset contains all trades and limit orders on the MTS platform from June 2011
to December 2015 at millisecond and from the beginning of 2013 at microsecond resolution.
From the dataset that includes all bonds we pick for each date the three most recently
issued 5, 10 and 30 year fixed-rate Italian government bonds (Buoni del Tesoro Poliennale,
BTP). In the U.S. treasury market the on-the-run, i.e. the most recently issued bond
of a maturity, enjoys a special status and better liquidity than older off-the-run bonds.
This is not the case in Italy (Coluzzi et al. (2008)) where the issued volume of a bond is
typically augmented several times in reopenings. Performing our analysis on three bonds
per maturity improves our statistics without dispersing too much over different times to
maturity. We have verified that there is no significant difference between on- and off-the-run
bonds in the analysis below.

We remove duplicated and inactive orders as well as filtering for obvious outliers and
reconstruct the full limit order book. Regular trading hours are from 9:00 to 17:30 and we
discard the first 30 and last 15 minutes of each day. We further discard all observations
from 26 November 2012 through 28 December 2012, as on those days the data have already
been recorded with microsecond precision while still being reported at millisecond precision
in our dataset. This renders it impossible for us to reliably reconstruct the limit order
book at the full precision without introducing artefacts.

Our sample period is also interesting from an economic point of view. It starts amid
the European sovereign debt crisis where in August 2011 Spanish and Italian 10 year bond
yields breached 6% and led the ECB to purchase mostly Spanish and Italian sovereign debt
through the Securities Market Program (SMP) during the same month.6 Subsequent rating
downgrades and international concerns mounted pressure on the Italian government under
Berlusconi that was replaced by a technocratic cabinet in November 2011. In December
2011 and February 2012 the ECB used their Long Term Refinancing Operation (LTRO) to
infuse credit into the banking system at exceptionally good conditions, which indirectly
lowered yields (Crosignani et al. (2015)). The situation subsequently relaxed by mid 2012
to early 2013, in the light of significantly lowered interest rates and the “whatever it takes”
speech of ECB president Draghi in July 2012. After cutting the deposit interest rate to

3See e.g. “Monti in fight for survival - of Italy and euro”, Financial Times, June 20, 2012, available at
http://www.ft.com/cms/s/0/1ef8289c-baef-11e1-b445-00144feabdc0.html

4CONSOB, Bollettino Statistico Nr. 8, March 2016, available at http://www.consob.it/web/

area-pubblica/bollettino-statistico
5See http://www.dt.tesoro.it/en/debito_pubblico/specialisti_titoli_stato/
6See Ghysels et al. (2014) and press release http://www.ecb.europa.eu/press/pr/date/2011/html/

pr110807.en.html.

http://www.ft.com/cms/s/0/1ef8289c-baef-11e1-b445-00144feabdc0.html
http://www.consob.it/web/area-pubblica/bollettino-statistico
http://www.consob.it/web/area-pubblica/bollettino-statistico
http://www.dt.tesoro.it/en/debito_pubblico/specialisti_titoli_stato/
http://www.ecb.europa.eu/press/pr/date/2011/html/pr110807.en.html
http://www.ecb.europa.eu/press/pr/date/2011/html/pr110807.en.html


negative terrain in June 2014, on 22 January 2015 the ECB announced their Quantitative
Easing (QE) program under the name of Public Sector Purchase Program (PSPP). The
PSPP was started in March 2015 with a monthly volume of e50 billion of purchases of
euro area sovereign debt with a remaining maturity of 2-30 years. For Italy this translates
to monthly purchases of e7.7 billion, with so far unknown effects for market liquidity.

5.3.2 Liquidity metrics

Liquidity is a multi-dimensional latent process and for exchange-traded securities typically
observed through asset characteristics, trades (Goyenko et al. (2009)) and/or the limit
order book. Since trades are sparse on MTS (Darbha and Dufour (2013)), trade-based
measures of liquidity could only be sensibly constructed at daily or lower frequencies,
incompatible with our high-frequency analysis. We therefore focus on liquidity measures
based on the limit order book.

Following Pelizzon et al. (2014) we use three “raw” metrics of liquidity: bid-ask spread,
total quoted volume, and inverse depth. (Bid-Ask) Spread is defined as the best ask minus
the best bid price and captures the round-trip cost of small trades. Total (Quoted) Volume
is the sum of all the volume quoted in the limit order book, irrespective of price, and taken
as the mean of the bid and ask sides. It is highly correlated (> 95%) with the number of
active proposals and indicates general willingness to participate in the market and depth
of the whole book. Inverse Depth on the ask (bid) side is defined as how much a buy (sell)
trade of size e15 million would shift the best ask (bid) price at any instant of time.7 To
obtain inverse depth we take the mean of the measures on the bid and ask side. Inverse
depth, in the absence of frequent trades, is a measure of (the virtual or mechanical) price
impact.8

To obtain a condensed measure of illiquidity we perform a principal component analysis
(PCA) for each bond on the “raw” liquidity metrics bid-ask spread, total quoted volume
and inverse depth as in Fleming (2003) and Mancini et al. (2013). Let L be the T × 3
matrix of the demeaned and standardized time-series (T observations) of the three liquidity
metrics above, sampled at 1-minute intervals. Then the empirical covariance matrix is
proportional to L′L = V ΛV ′ where Λ is the 3 × 3 diagonal matrix of eigenvalues and
V the 3× 3 matrix of the eigenvectors of L′L. The eigenvector v1 corresponding to the
first principal component, capturing the majority of variance in liquidity, has positive
eigenvector loadings in the Spread and Inverse Depth component and negative loading in
the Total Volume component, thus measuring illiquidity.9 The time-series of our condensed
illiquidity measure PCA1 is thus constructed as PCA1 = Lv1 where now both PCA1 and
L are at the same millisecond or higher time-resolution as our data.

Since our sample period spans from the sovereign bond crisis up to the implementation
of Quantitative Easing in the Eurozone, we do not assume that the (co-)variance structure
of liquidity remained constant and instead estimate the illiquidity measure for each month
on a rolling-window basis. That is for each month we estimate the demeaning and
standardization coefficients of the raw liquidity metrics and the PCA loadings based on
L sampled in the period from six months before to six months after the current month,

7The amount of e15 million was chosen as the 90% percentile of trade sizes. Inverse depth thus reflects
the cost of a large trade requiring immediacy (Pelizzon et al. (2014)).

8While price impact is typically computed as a regression of price changes on order flow, having at our
disposition the complete limit order book, we can also compute the mechanical price response that would
arise to a given trade. This virtual or mechanical price impact is however only one component of price impact,
as the reaction of market participants to trades also plays a role, which cannot be captured in this way.

9The eigenvector is uniquely defined up to a sign. We normalize the Spread component to always be
positive, i.e. PCA1 measures illiquidity as opposed to liquidity.
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Figure 5.1: Eigenvector loadings and fraction of variance explained by the first eigenvector. Green
triangles, blue rectangles and purple crosses show the eigenvector loadings of the first eigenvector in each
month for Spread, Total Volume and Inverse Depth respectively, averaged over all bonds in the sample
during the respective month. Red circles show the fraction of variance explained by the first eigenvector.

or shorter when new bonds are issued. Figure 5.1 shows the eigenvector loadings in the
raw liquidity measures as average over all bonds in the active subsample, as well as the
fraction of variance explained by the first eigenvector. Eigenvector loadings are similar
over time and we have also verified that they are similar across different bonds, with small
deviations occurring mostly in the relatively calm period around 2013, and robust also to
different sampling frequencies.

In Figure 5.2 we report the distribution of PCA1 sampled at one minute frequency for
all the bonds in our sample. The distribution is very skewed and clearly shows a heavy
right tail, indicating the presence of market liquidity crises. This distribution is similar for
all bonds in our sample.

5.3.3 Illiquidity event detection

In this section we apply the event detection developed in Section 5.2.1 to the condensed
liquidity measure PCA1 described in Section 5.3.2 above. The counting process N i(t) of
illiquidity events of bond i at time t is then defined as

N i(t) =

M i(t)∑
m=0

1{
PCA1i(tm)−PCA1i(t

m−`i
)

tm−t
m−`i

>θi∧N i(tm)=N i(tm−`i )

} (5.6)

where M i(t) is the number of updates of PCA1i up to time t and tm the physical time
corresponding to update m. As for the PCA we evaluate the parameters `i and θi for
each month over a running window lasting from six months before to six months after the
current month. For each of these windows and for each bond i we determine `i as the
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Figure 5.2: Probability density function of illiquidity PCA1 sampled at 1 minute intervals, averaged over
all days and bonds in the sample. y-axis is logarithmic.

average number of PCA1i updates per minute and θi as the 95% percentile of the liquidity

returns
PCA1i(tm)−PCA1i(tm−`i )

tm−tm−`i
.

Figure 5.3 illustrates our detection method by showing a snapshot of the full limit order
book of a 5 year BTP together with eight illiquidity events detected in quick succession
around 15:27 on 7 June 2012. The first event follows a rapid decline in the total quoted
volume while the subsequent events correspond to a step-wise widening of the bid-ask
spread.10

Figure 5.4 describes the distribution of the number of detected illiquidity events per
day. While the peak of the distribution is around ∼ 20 events per bond per day, there is
also a heavy tail of days with many more illiquidity events. Given that we are considering
extreme events, the high number of detected observations may seem counter-intuitive.
However note that since we are working in event time, a quick succession of liquidity shocks
is entirely possible and thus constitutes the actual extreme event. The idea is that one
illiquidity event by itself is unlikely to have severe externalities, but the concern is much
more about the risk it carries, i.e. whether it gets amplified (resulting in subsequent shocks)
or not. Finally note that also in Chavez-Demoulin et al. (2005) the threshold is such that
around 10% of the data are exceedances, and the VaR at higher thresholds is modeled
based upon these events.

The intraday pattern of illiquidity events in Figure 5.5 can be decomposed into two
main components. First there is a background of events throughout the day that is stronger
around the opening and weaker during lunch hours. This follows the intraday pattern of

10Indeed we often observe such a step-wise widening of the bid-ask spread when the limit order that was
previously the best disappears. Our observations suggest that there is a structure of confident participants
that are willing to quote at the best price and following participants that make their orders relative to
those of other market participants. This has been confirmed in conversations with market participants.
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Figure 5.3: Dynamics of the limit order book with the detected illiquidity events of the 5 year BTP
IT0004793474 on roughly four minutes of June 7, 2012. Solid horizontal lines represent limit orders, quoted
in EUR per 100EUR face value and different colors indicate the limit orders of different market participants.
Detected illiquidity events are marked as vertical dashed black lines. No trades took place in the period
depicted.
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Figure 5.4: Probability density function of the number of illiquidity events per day, averaged over all days
and bonds in the sample. y-axis is logarithmic.
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Figure 5.5: Intraday pattern of illiquidity events. Sampled over the whole sample period and all bonds.
The binwidth is 1 minute. Results are similar across maturity groups and over time.

market activity since the detection of liquidity shocks is related to market activity. Secondly
there are several major spikes at 11:00, 14:30 and 16:00. We attribute these peaks to the
arrival of scheduled exogenous news. E.g. the spike at 14:30 corresponds to the release
of important macro-economic news in the U.S. leading to a similar spike in illiquidity in
the U.S. treasury market on announcement days (Fleming and Remolona (1999)), while
Euro-area data is typically released at 11:00. Rambaldi et al. (2015) show that scheduled
announcement effects lead to increased trading activity in the foreign exchange market
both after and also before the release of macroeconomic news and that activity around
the news release can be well described by a Hawkes model. Therefore in Section 5.3.5 we
conduct a robustness test showing that our results on self- and cross-excitation are not due
to these announcement effects.

5.3.4 Self-excitation and spillover

The first question we ask, is whether the Hawkes modeling of extreme illiquidity events is
necessary, or if a Poisson process explains the data well enough. To answer this question,
the left panel of Figure 5.6 shows the quantile-quantile plot of sample inter-event durations
of illiquidity shocks against exponential quantiles for a subset of days in our sample. If
the arrival intensity of illiquidity events were constant (i.e. a Poisson process), then the
sample quantiles plotted against exponential quantiles should lie on a line through the
origin. This is clearly not the case since the figure shows a significant presence of short
inter-event times, indicative of clustering, and justifying the use of Hawkes processes.

Therefore we model the arrival intensity λi(t) of illiquidity events in bond i as a Hawkes
process as described in Section 5.2.2

λi(t) = µi +
∑
j

∫ t

−∞
Φij(t− s)dN j(s) (5.7)



where N i(t) is the counting process of illiquidity events as defined in equation (5.6). We
choose to parametrize the Hawkes kernel Φ(t) in equation (5.7) as an exponential kernel

Φij(t− s) =

Pij∑
k=1

αijk exp(−βijk (t− s)) (5.8)

with a double exponential kernel for the self-exciting component (Pii = 2) and a single
exponential for the cross-excitation terms (Pij = 1, i 6= j). The advantage of the exponential
kernel is that the corresponding likelihood function can be computed recursively and thus
lends itself to maximum-likelihood estimations (Toke (2011)). We can further interpret
the αij in equation (5.8) as capturing fragility (the amplitude of reaction to an illiquidity
shock) whereas the inverse of βij is the time-scale of the decay of self- and cross-excitation:
the larger β the quicker the arrival intensity of induced shocks decays. Both parameters
enter in calculating the norm of the kernel

γij =

Pij∑
k=1

αijk
βijk

. (5.9)

Empirically we proceed by estimating the Hawkes parameters separately for each
trading day and each pair of bonds via a maximum-likelihood estimation, leaving us with
14 parameters to estimate. Estimating more bonds together (i.e. summing over more
j) would require too many fitting parameters (Bacry et al. (2015)) given our short time
series and instead we will average over multiple estimations for the same bond i with
different j. The average is either taken over all other bonds j 6= i or over bonds with
similar maturity where we are interested in spillover effects between maturities. To avoid
over-fitting we discard estimations where there are not sufficient illiquidity events in both
bonds11 (5.1% of estimations) and we discard estimations where the estimated Hawkes
process is non-stationary, i.e. has a spectral radius ≥ 1 and thus the stationary state is
not well-defined (9.8% of estimations). By choosing trading days as the estimation period
we avoid the problem of overnight returns. Alternatively, assuming stationarity of the
parameters across days, one could estimate the kernel parameters on a longer time series of
concatenated observations (as in e.g. Chavez-Demoulin and McGill (2012)) or by summing
the likelihoods of different days.12

In the right panel of Figure 5.6 we show the quantile-quantile plot of the inter-event
durations rescaled by the estimated intensity for the same days as in the left panel of the
same figure. The plot indicates that the Hawkes process describes well the dynamics of
liquidity shocks. The inset shows the same plot in a logarithmic scale. For very short
durations the data quantiles are larger than the theoretical ones, which we conjecture is
due to the minimum duration of ` limit order book updates between two events imposed
in our event detection scheme. While the finite reaction time of market participants is
an alternative explanation, that effect will still be amplified by the minimum lag. In a
Ljung-Box test the null of no autocorrelation between rescaled inter-event times is rejected
(at a 10% significance level) in 10% of cases for a lag of both 1 and 10 events and similarly
for other significance levels, supporting our choice of modelling.

11We require at least 20 observations in both bonds, i.e.
∑

iNi ≥ 20.
12We have verified that our results also hold for estimation on weekly concatenated time-series. The only

non-negligible difference is that, due to the longer estimation period, the slower of the two time-scales of self-
excitation (i.e. the largest 1/βii

k ) is slower than for daily estimations. Therefore self-excitation captures a
larger fraction of events in the weekly estimation whereas less events are attributed to the baseline intensity.
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Figure 5.6: Quantile-quantile plot of sample inter-event durations between liquidity shocks and exponential
quantiles (left panel) and between sample inter-event durations rescaled by the estimated intensity and
exponential quantiles (right panel). The inset is in logarithmic scale on both axis. The inter-event durations
are of IT0003934657 (estimated with IT0004286966, both are 30 year BTPs) and different colors and
symbols indicate different days from 26 October to 1 Nov 2011.
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Figure 5.7: Fraction of illiquidity events attributed to random arrivals (baseline intensity), illiquidity
spirals (self-excitation) and illiquidity spillovers (cross-excitation).
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Figure 5.8: Time-scale of illiquidity spillover (cross-excitation). Measured as mean over monthly medians
of 1/βij , (i 6= j).

For each estimation (i.e. day and pair of bonds), we calculate the fraction of illiquidity
events of bond i attributed to self-excitation, cross-excitation from the paired bond j, and
the baseline intensity. The averaged fractions, displayed in Figure 5.7, indicate that on
average approximately one third of the events arrive randomly and are not due to self-
nor cross-excitation, irrespective of time or the maturity of bonds. This fraction may be
relatively large because of the rather lax threshold we have defined in Section 5.3.3. The
fraction of self-excited events is between one half and one third of events, pointing to the
presence of illiquidity spirals. While there is a decreasing trend, this is fully compensated
by cross-excitation (and thus illiquidity spillovers) since the fractions by the definition in
equation (5.5) sum up to 1. It is worth noting that the fraction of events that are due to
cross-excitation has roughly doubled during our sample from ∼ 0.1 in 2011 to ∼ 0.2 in
2015.

Having established the presence of illiquidity spillovers, we study its typical timescale.
The parameter 1/βij (i 6= j) gives the decay time-scale of the cross-excitation kernel and
thus an estimate for the timescale of illiquidity spillovers. Figure 5.8 shows that typically
illiquidity spillovers take place on a time-scale of a few seconds. We further observe very
fast spillovers during the sovereign bond crisis in 2011 and a general decrease from 2012 to
2015. We conjecture that the first feature is due to a more fragile market during the crisis
while the decreasing trend since 2012 is related to advances in technology and therefore
faster updating of quotes with respect to information arriving from other bonds. Table 5.1
gives further information on the average time-scale of illiquidity spillovers distinguished by
the maturity bin of the originating and the affected bond. Spillover is faster from shorter
maturity bonds that are typically more active in terms of number of limit order book
events.

Finally we test whether illiquidity spillover is faster for bonds within the same maturity



Table 5.1: Time-scale of illiquidity spillover (cross-excitation) in seconds. Measured
as mean over the monthly medians of 1/βij , (i 6= j) for each maturity pairing.

in seconds from
5y BTP 10y BTP 30y BTP

to
5y BTP 4.19 7.36 10.94
10y BTP 5.87 6.54 10.16
30y BTP 7.18 8.46 7.70
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Figure 5.9: Fraction of estimations for which cross-excitation αij is significantly different from zero at the
1% and the 0.1% confidence level.

bin and we find that spillover across similar maturities is on average approximately two
seconds faster than across different maturity bins. The difference in monthly medians is
significant at all standard confidence levels.

5.3.5 Robustness checks

In this section we perform two robustness checks to further establish our finding of illiquidity
spillover. Specifically, in Section 5.3.5 we show that for a large share of our estimations,
illiquidity spillover is statistically significant and in 5.3.5 we show that spillover is still
present when controlling for the arrival of exogenous news.

Significance of parameter estimates

Following Bowsher (2007) we estimate confidence intervals of the parameter estimates from
the inverse of the negative Hessian of the likelihood function when assuming normality. This
assumption is supported by the central limit theorem for maximum likelihood estimators
of stationary point processes, including Hawkes processes (see Ogata (1978); Ozaki (1979)).
For every estimation in Section 5.3.4 we test whether the cross-excitation parameters
αij , i 6= j are significantly different from zero under the normality assumption. In Figure
5.9 we show the fraction of such significant αij averaged over all bond pairs and days in



a month. Both at the 1% and the 0.1% significance level there is significant illiquidity
spillover in at least 20% of observations, and in the period from 2013 to mid 2015 this
fraction is on average 80%, strongly supporting our evidence for illiquidity spillover.

Announcement effects

The intraday pattern of liquidity shocks in Figure 5.5 shows that a sizeable fraction of
illiquidity events occur close to announcements. To verify that our observations are not a
mere artifact of announcement effects, we repeat our analysis for a subsample of 5 and
10 year BTPs in 2012. To avoid the peaks and any other regular effects, we drop from
the observations in each day the half hour from 15 minutes before to 15 minutes after
11:00 and 14:30 each and the 10 minutes from 5 minutes before to 5 minutes after each full
hour and append the remaining times. The results we obtain are in line with our findings
above. There are less days with a sufficient number of events to perform an estimation
and for the estimated time-series the quality of the fits is visibly worse due to appending.
The fractions reported in Figure 5.7 change only slightly in that there is a shift from
self-excited to baseline events by 5-10 percentage points. Also the time-scales of both self-
and cross-excitation remain similar.

5.4 Conclusion

Illiquidity risk, especially dry-ups of liquidity and illiquidity spillovers, is a major threat
to the functioning of financial markets and thus a concern for investors and regulators
alike. We propose a new identification and modeling approach to detect when the reactions
of market participants to illiquidity shocks are susceptible to becoming a self-enforcing
circle that leads to dry-ups of liquidity and spillovers of illiquidity across different assets.
This approach gives a directional measure of illiquidity spillovers and fragility to extreme
illiquidity events.

Our empirical analysis focuses on the Italian sovereign bond market from 2011 through
2015, encompassing the core parts of the European sovereign debt crisis, the start of
Quantitative Easing by the ECB and most recently the regime of extremely low bond yields.
We find a strong presence of fast illiquidity spirals and illiquidity spillovers throughout the
investigated period. Moreover the proportion of illiquidity spillovers has roughly doubled
since 2011. Spillover happens at the time-scale of a few seconds and is significantly faster
for bonds with similar maturities. It is especially fast during the sovereign bond crisis in
2011 but also gradually becoming faster from 2012 to 2015.

Our identification method is not restricted to illiquidity, but can be applied to any
process that is based on a limit order book or similarly piecewise constant datasets.
Furthermore one could easily adapt our method for forecasting purposes by basing it on
estimators that rely only on information up to the current point in time. Variations in the
strength of self- and cross-excitation could then serve as a measure for liquidity risk and as
a warning indicator.

In this chapter we have considered the case of closely related assets traded on the same
market. We leave the extension to spillover across asset classes or markets for future work.





Chapter 6

Venue choice in hybrid markets

6.1 Introduction

German sovereign bonds, generally known as Bunds, enjoy benchmark status for Europe
as a safe asset and are considered the second most liquid sovereign bond market in the
world after the U.S. Treasury bond market. While the vast majority of transactions in
the Bund cash market are dealt over-the-counter (OTC), i.e. in bilateral negotiations, it
effectively constitutes a hybrid market. That is Bund dealers have the choice to execute a
trade either in the OTC segment of the market, or send it to an exchange. The scope of
our study is twofold. First, we explore the decision process whether to trade in the OTC
segment or on the exchange. A major reason why dealers trade OTC is because prices
are advantageous. Thus, in a second step, we study differences in transaction costs across
segments and their determinants.

The decision to trade in one segment or another is complex since dealers face advantages
and disadvantages in executing trades on an exchange compared to OTC. To trade OTC, a
dealer needs to enter bilateral negotiations with counterparties, thus incurring search costs
and execution lags. On the other hand, OTC trades are typically not observed by other
market participants and may thereby satisfy dealers’ demand for opacity. Moreover, in a
relatively opaque OTC market, different investors may pay quite different prices for the
same asset at essentially the same time. The resulting price dispersion may vary in terms of
the relative bargaining power of the market participant, their access to alternative trading
opportunities and the quality of their information both about the fundamental value of the
asset and about recent transactions. Trading on an exchange, in turn, guarantees certain
and immediate execution. On the other hand, the trade is also immediately revealed
to other market participants. Moreover, transaction costs are increasing with trade size
so that large orders need to be split into smaller trades and executed sequentially when
trading on an exchange.1

We study the relative importance of these driving forces by making use of a unique
regulatory dataset which includes all transactions on Bunds made by German financial
institutions from 2011 to 2016, a dataset very similar to U.S. TRACE for corporate bonds
and to the Treasury TRACE data that FINRA is collecting since July 2017. We match
these transactions with the full limit order book and trades of the interdealer platform MTS,
the largest sovereign bond exchange in Europe. To understand the venue choice between
OTC and exchange we look into a group of dealers with access to both MTS and OTC.
For a sample of trades where trading in both venues is possible we estimate a probit model

1For a detailed overview of the theoretical advantages and disadvantages and complexity of trades in
the OTC markets versus exchanges see Duffie (2012a).
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for the probability that a dealer will trade on the exchange instead of over-the-counter.
The crucial advantage of our dataset and setting over most similar studies is that in doing
so we are able to define for any OTC trade the contemporaneous conditions of trading on
the exchange.

We find that trading on the exchange is less likely (i) when transaction costs are
high, i.e. when bid-ask spreads are wide and for large trades, and (ii) for younger bonds,
especially the cheapest-to-deliver that is linked closely to the Bund futures contract and
carries benchmark status. Additionally, we find that the required immediacy towards a
trade, proxied by the occurrence of auctions and intraday volatility, raises the probability
of trading on the exchange.

In a second step, we analyse the cross-sectional dispersion of prices negotiated at a
particular time between the OTC segment and the exchange. Specifically, we measure the
price discount or premium of an OTC trade with respect to potential execution of the
same trade on the exchange at the same time. We first calculate the hypothetical trading
cost of a given trade on the exchange, taking into account the state of the limit order book.
We then define the OTC discount as the difference between the hypothetical trade price
and the actual observed OTC price.

Our main finding is that the two markets are largely complementary because the MTS
limit order book bounds the price discrimination in the OTC market as MTS represents
an outside option to OTC trading in the sense of Duffie et al. (2005, 2007). Transaction
costs are on average by 1.5− 2 basis points lower in the OTC market. This discount is
economically significant given that the average half-spread on the exchange is only 3.6
basis points in the 10-year Bund. Since the main difference between both markets is
immediacy, we interpret the OTC discount as a proxy for the cost of immediacy. However,
we also observe a significant number of trades where dealers leave money on the table by
avoiding the exchange. This suggests that transparency or opacity play an important role
for venue choice. We assess the drivers of the OTC discount by regressing it on trade and
bond-time characteristics. We find that larger trades and those in older bonds enjoy higher
discounts with respect to exchange prices. Moreover, only 10 − 20% of increases in the
quoted bid-ask spread on the exchange are passed on to OTC trades. We also investigate
whether being a dealer in the MTS market provides a competitive advantage. Indeed we
find that transaction prices of MTS dealers are on average 0.7− 0.9 basis points lower than
those of non-MTS dealers.

This chapter makes three main contributions relative to the extant literature. First, our
unique data allow us to study the determinants of venue choice in a highly liquid hybrid
sovereign bond market. While several previous studies have analyzed related questions for
equity markets (Smith et al. (2001); Bessembinder and Venkataraman (2004); Friederich
and Payne (2007); Carollo et al. (2012)), there is little to no evidence for bond markets.
Two notable exceptions are Barclay et al. (2006) who study the choice between electronic
and voice brokerage for U.S. Treasuries that go off-the-run and Hendershott and Madhavan
(2015) who analyze U.S. corporate bonds on a request-for-quote platform. In contrast to
these studies we can compare between exchange and OTC trading that is in line with
the settings described in theoretical studies (Seppi, 1990; Grossman, 1992; Lee and Wang,
2017; Vogel, 2017). Moreover, we can explicitly characterize the importance of immediacy
and opacity as determinants of venue choice which have not previously been analyzed for
bond markets.

Our second contribution is a detailed analysis of the differences in transaction costs
between the OTC and exchange segments. Our dataset allows for a full reconstruction of
the limit order book. We can thus disentangle the determinants of OTC transaction costs



by relating the OTC discount to trade- and bond characteristics.

Finally, we contribute to the literature by analyzing in detail the microstructure of
the Bund market, which so far has been largely unexplored.2 This is surprising given the
benchmark role of the Bund market in the Eurozone and beyond.

Our analysis is relevant for academics, practitioners and regulators alike and especially
so in light of MiFID II. The intention of the recently rolled out MiFID II regulation is to
improve market conditions in and beyond European fixed-income markets by introducing
transparency requirements as well as other measures aimed at shifting trading activity
towards organized trading platforms.3 This study gives insights in the incentives of traders
faced with such a venue choice in an affected market and will help understanding the effects
of the regulation in the years to come. There is a vast and growing theoretical literature
on the design and modeling of financial markets that we relate to, and particularly hybrid
markets. While the early literature focused on modeling equity markets with off-book
segments (Seppi (1990); Grossman (1992)), there is now a new interest in this direction in
the light of hybrid fixed-income markets (Lee and Wang (2017); Glode and Opp (2017))
and the effects of introducing benchmarks (Duffie et al. (2017)) or hybrid markets (Vogel
(2017)). Our study provides a natural laboratory and allows to empirically test some of
the predictions therein.

The remainder of this chapter proceeds as follows: Section 6.2 provides an overview of
related studies and the theoretical literature. In Section 6.3 we introduce and motivate our
hypotheses and Section 6.4 presents the market setting and data. Section 6.5 examines
the venue choice between trading on-exchange or over-the-counter, whereas in Section
6.6 we study the differences in transaction costs across the two markets as well as their
drivers. Section 6.7 concludes. Furthermore in the Appendix 6.A we provide an exploratory
analysis of price response to over-the-counter transactions

6.2 Literature review

Most stock exchanges have or used to have so-called upstairs or off-book segments where
(large) trades could be concluded away from the limit order book of the exchange (the
downstairs market or on-book) in bilateral negotiations effectively resembling over-the-
counter market structures. This inspired a series of both theoretical and empirical research
on hybrid markets that has since been expanded beyond the original equities upstairs
market context.

On the theoretical side Grossman (1992) and Seppi (1990) provide concurrently compati-
ble motivations for trading in the upstairs market: in the model of Seppi (1990) an institution
has a trading need either because she needs to rebalance her portfolio (termed liquidity-
motivated) or due to an endowment with private information (information-motivated).
While a liquidity provider in the downstairs market needs to quote a wider bid-ask spread
to insure herself against the risk of being adversely selected by information traders, dealers
in the upstairs market can screen their customers and offer better conditions to uninformed
clients. That is a liquidity-motivated trader may find it optimal to give up its anonymity
by interacting with a dealer in the upstairs market, whereas information-motivated traders
resort to the downstairs segment. This implies that dealers are able to infer (at least to some

2Upper and Werner (2002) studies the information content of the Bund futures and cash market in 1998.
3Since January 3, 2018 directive 2014/65/EU - Markets in Financial Instruments Directive II (MiFID II)

is effective for all European markets. It includes provisions for pre- and post-trade transparency, separation
of transaction and related services fees among many others. Our sample period ends before the introduction
of MiFID II.



degree) the information state of their clients through a relationship build from repeated
interactions. Indeed Seppi (1990) describes implied no-bagging agreements incentivizing
customers not to trade the same asset again too soon after an upstairs trade and therefore
to reveal their full liquidity need to the dealer or else face worse conditions on future trades.

Grossman (1992) argues that upstairs trades need not necessarily be uninformed. In his
model limit orders in the downstairs market represent expressed order flow, whereas some
traders, for fear of being speculated against, are unwilling to reveal their full trading needs
in the observable limit order book. Dealers in the upstairs market acquire knowledge about
this unexpressed order flow through interaction with their clients. Thus the upstairs market
is able to facilitate trades that would otherwise not happen in the downstairs market. As
in the model of Grossman (1992) customers choose whether to be active in the upstairs or
downstairs segment, this may lead to externalities where, because of a clustering of traders
in the upstairs market, bid-ask spreads in the downstairs market are wide and activity is
low.

Similar themes have resurfaced recently in the wake of increased attention for the
market structure of fixed-income markets and regulatory initiatives. The model of Lee and
Wang (2017) is similar to Seppi (1990) with informed and uninformed investors that can
trade on an exchange or over-the-counter. However the model of Lee and Wang (2017)
does not focus on differences in trade size and instead features price discrimination based
purely on the (assumed) reputation of an investor. Therefore dealers cream-skim the
order flow from uninformed investors on the over-the-counter market by offering a lower
bid-ask spread to investors deemed uninformed whereas informed investors are driven to
the exchange. Crucially their model explains why smaller orders are traded OTC despite
the availability of liquid exchanges and how OTC trading is predominant for standardized
and frequently traded assets.

Another set of articles compare OTC and exchange markets but without considering
them jointly. Glode and Opp (2017) present a model with a sequential search process for
counterparties, arguing that search frictions in OTC markets can promote higher welfare
through rents that encourage expertise acquisition. Also Malamud and Rostek (2017)
discusses the efficiencies gained from a more general setup of decentralized markets, while
Malinova and Park (2013) compare the price impact in dealer and limit order market.

Duffie et al. (2017) study the introduction of benchmarks to OTC markets. While the
benchmark lowers dealers’ profit margins, it also increases market participation and thus
increases welfare. Similarly Vogel (2017) studies the effects of introducing a request-for-
quote platform to an OTC market, predicting that it lowers average costs for all traders
and providing sufficient conditions for the increased participation due to lower costs to
outweigh the gains foregone by the dealers.

This theoretical literature is matched with a vast empirical literature on hybrid equities
markets,4 bond markets (Barclay et al. (2006); Hendershott and Madhavan (2015)) and
the index CDS market (Riggs et al. (2017)).

The papers most related to the first part of our analysis on venue choice are Smith
et al. (2001); Barclay et al. (2006); Hendershott and Madhavan (2015); Riggs et al. (2017).
Smith et al. (2001) finds mechanism choice related to several measures of liquidity as well
as trade size. Barclay et al. (2006) focus on the effects of U.S. treasuries going off-the-run
and argues that venue choice depends mostly on trading volume on each venue (and thus

4E.g. of NYSE (Keim and Madhavan, 1996; Madhavan and Cheng, 1997; Madhavan and Sofianos, 1998),
Toronto Stock Exchange (Smith et al., 2001), Helsinki Stock Exchange (Booth et al., 2002), Paris Bourse
(Bessembinder and Venkataraman, 2004) and London Stock Exchange (Friederich and Payne, 2007; Carollo
et al., 2012)



the ability to match trading interests) and information asymmetry. Since for treasuries
going off-the-run the latter can be assumed constant, they identify the matching ability as
a main driver. The main difference in our setup with respect to those two papers is that we
consider a predominantly over-the-counter market that does not feature on-the-run effects.
Instead in Hendershott and Madhavan (2015); Riggs et al. (2017) not only parameters of
the market setting are different, but the market structures in themselves. Hendershott and
Madhavan (2015) compares transactions in the voice OTC market for U.S. corporate bonds
to one-sided electronic auctions on the multi-dealer request-for-quote (RFQ) platform
MarketAxess, considering also cross-sectional differences in bond characteristics. While
a central limit order book exists in the setting of Riggs et al. (2017) it is so illiquid that
their comparison is between RFQ and request-for-streaming (RFS) mechanisms, the latter
coming close to an OTC segment. Their ability to identify counterparties involved in a
trade allows them to find that e.g. asset managers are more likely to trade via RFQ.

The second part of our study on transaction cost differences compares observed tran-
saction prices to hypothetical exchange prices derived from the knowledge of the full limit
order book. We are only aware of a similar analysis in Bessembinder and Venkataraman
(2004) who find upstairs trades on Paris Bourse advantageous with respect to exchange
prices, thereby supporting the model of Grossman (1992). Our analysis does not suffer
from two restrictions present in their setup: first their data does not include information
on cancelled limit orders, thus overestimating liquidity present in the book. Second in our
case there are no restrictions on the price range or size of OTC trades.

Other papers compare transaction costs without using the full limit order book infor-
mation. Dunne et al. (2015) compare trades in European sovereign bonds on the retail
request-for-quote platform Bondvision to quotes on the interdealer exchange MTS. They
find that the retail quotes and trades occur at prices on average 1-2 basis points better than
in the interdealer market. Valseth (2015) quantifies the transaction cost differences across
mechanisms in Norwegian government bonds by comparing the median bid-ask spread of
quotes in the OTC segment to that of the exchange and finds a price improvement in the
OTC market of 2-6 basis points.

Specifically with regard to price discrimination, Collin-Dufresne et al. (2017) finds
significant differences in transaction costs both across the dealer-to-client and dealer-to-
dealer segments and across trading protocols for interdealer trades in the index CDS
market.

Let us note that multimarket trading relates also to a huge literature on dark pool
trading. For a recent overview we refer to Menkveld et al. (2017). They create a pecking
order of equity trading venues by the transparency and immediacy they offer and show how
surprises lead to shifts in towards lit markets that offer higher immediacy at a higher cost.

6.3 Hypotheses

In our setup a subset of market participants, referred to as MTS dealers, have the choice
to trade either over-the-counter (OTC) or on an exchange, the inter-dealer platform MTS.
All other participants (non-MTS dealers) can only trade on the OTC market. Trading
on the exchange is immediate and transparent, i.e. the trade is observed by other market
participants. The OTC market instead is opaque, but trading OTC incurs search costs
(time delays and resources).

In the first hypothesis we consider the drivers of venue choice, i.e. when is a MTS
dealer more likely to trade on the exchange than over-the-counter? Formally we test the
following hypothesis:



Hypothesis 1. MTS dealers are more likely to execute a trade on exchange instead of
OTC when a) the bid-ask spread on the exchange is small, b) the size of the trade is small,
c) a bond is older and not the cheapest to deliver for the current futures contract, and d)
required immediacy is higher.

The first two drivers relate to the cost of a trade: naturally, the higher the bid-ask
spread on the exchange, the more costly is a trade and less the incentive of a trader to
transact on the exchange. In addition to the bid-ask spread quoted at the best, trades that
are larger than the amount quoted at the best also incur additional costs due to executing
at deeper levels of the limit order book, an effect known as ‘walking up the book’. By
the model of Grossman (1992) OTC dealers are able to provide better prices by tapping
into pools of unexpressed liquidity while in Seppi (1990) larger trades are associated with
uninformed liquidity traders that receive better quotes from dealers.

The age and cheapest-to-deliver status are related to the price discrimination arguments
of Lee and Wang (2017). If a bond has special status by being cheapest-to-deliver for the
current Bund future, i.e. linked to a highly liquid instrument, the adverse selection risks
associated with it are lower. This allows dealers to offer more competitive spreads in the
OTC market and attract more trades.

With regard to immediacy the advantage of the exchange is natural as trading requires
no search process at all. We proxy the immediacy in the market through the occurence of
auctions and intraday volatility. We posit that when a bond is newly issued or re-opened,
this creates need for immediacy through various channels: First only an auction truly
reveals the ability of the issuer to place new debt and is thus observed with great attention
by traders in related securities, as they might need to adapt their portfolios on the arrival
of new information. Second, even in the absence of informational effects, many participants
(e.g. insurers) are required to shift or roll over their holdings and thus create additional
demand with dealers that might not be fully predictable. Along the same line, also dealers
that participate in the auction only learn after the fact about their allotted amounts and
might need to correct their holdings on the secondary market within the same day. Higher
intraday volatility implies a higher risk of adverse price movements. A MTS dealer might
therefore prefer the secure and immediate execution of a trade on the exchange over a
potentially longer search across counterparties in the OTC market when intraday volatility
is high.

In the next hypotheses we consider only over-the-counter trades. As we have the full
information of the order book on the exchange, we are able to compare the price of the
OTC trade with the hypothetical cost had the initiator chosen to trade the same amount
at the same time on the exchange. We term the difference between both prices (or costs)
OTC discount. Formally we test:

Hypothesis 2. Trades that take place OTC on average have a positive OTC discount, i.e.
their price is favorable in comparison to the attainable price of executing the same trade on
the exchange.

Hypothesis 2 provides a test for the prediction of Grossman (1992) that the OTC
(upstairs) segment is able to make available more liquidity than what is visible on the
exchange (downstairs). Furthermore, as observed trades are also a result of the conditions
encountered by traders, the hypothesis also talks to the predictions of Seppi (1990) and Lee
and Wang (2017) that the OTC segment provides favorable quotes to uninformed investors
(a feature themed price discrimination in Lee and Wang (2017)). That is an informed
trader will find himself less able to trade OTC (or at worse conditions) and therefore prefer
the exchange, while uninformed investors flow to the OTC segment.



We interpret the OTC discount as a proxy for the cost of immediacy, i.e. the price-
improvement that dealers forgo when they trade on the exchange.5 Having established its
prevalence, we formally test the drivers of OTC discounts:

Hypothesis 3. OTC discounts are larger a) when the bid-ask spread is larger, b) when
the size of the trade is larger, c) when a bond is older and d) for traders that have access
to the exchange market.

The first two determinants relate to the concept that large transaction costs on the
exchange (proxied by wide bid-ask spreads and large orders that incur additional costs
from walking up the book) allow for larger discounts in over-the-counter trades. By the
arguments of Hypothesis 1 also older bonds tend to be less liquid and thus there is more
play for OTC discounts.

Finally MTS dealers always have an outside option to trading OTC (i.e. on the exchange)
and thus we also expect them to achieve a higher discount when trading over-the-counter
(Duffie et al., 2005, 2007).6

6.4 Market setting and data

Our empirical analysis is based on trades in German federal government securities, typically
referred to as Bunds. In section 6.4.1 we give an overview of the primary and secondary
market for these securities and the related Bund futures market. Section 6.4.2 then
introduces our dataset and provides some descriptive statistics of quantities of interest in
our analysis.

6.4.1 Bund market

German sovereign debt securities enjoy benchmark status in the Eurozone and worldwide
as a liquid and safe asset. They exist as 6- or 12-month zero coupon Treasury discount
papers (“Unverzinsliche Schatzanweisungen”, Bubills), 2-year “Bundesschatzanweisungen”
(Schaetze), 5-year “Bundesobligationen” (Bobls) and 10- and 30-year “Bundesanleihen”
(Bunds).7 In this study we will focus on 2-year Schaetze, 5-year Bobls and 10- and 30-year
Bunds and, where not explicitly mentioning maturities, we will intend all of them when
refering to Bunds from here on.

German government securities are issued regularly by the German finance agency
(“Deutsche Finanzagentur”, DFA) either as new issues or as reopenings of already issued
bonds. Participants in this primary market are the members of the Bund issues auction
group, a group of currently 36 international banks that commit to subscribing to a certain
minimal amount of the total annual issuance. Auction days are announced well in advance
and the tender process runs until 11:30 a.m. on the day of the auction, after which the

5Trading at a negative discount is a priori irrational. It can occur nonetheless, e.g. when trading
relationships are at play, when one requires opacity and is unwilling to display trading intentions publicly
or when a non-MTS dealer does not have access to the exchange and is unable (within her time-constraints)
to locate a MTS dealer willing to offer a better price. Additionally trading OTC might give access to added
services such as contemporanenous hedging on the futures market.

6This could also be related to the characteristics of MTS dealers instead of their access to the exchange.
We are unable to disentangle whether such an advantage is due to their MTS status or other factors, such
as e.g. the skills of their trading desks.

7There are also inflation-linked Bobls and Bunds, which we do not consider in this study. We also do
not consider any regional-issued debt, such as Laender bonds or debt titles from supranationals with a
federal guarantee, e.g. by Kreditanstalt für Wiederaufbau (KfW).



allotment decision is made immediately and the results published.8 Even though Bunds are
actively traded and priced through the secondary market and the Bund futures contracts,
information about the quantity and conditions at which the sovereign is able to issue is
only revealed during the auction, which is therefore regarded with great interest by traders
in all related securities and markets.

The secondary market for German federal debt titles is predominantly an over-the-
counter market. A survey by DFA among the members of the Bund issues auction group
pegs daily trading volume at more than 17 billion EUR.9 Besides the over-the-counter
market there exist several trading platforms, most of which are aimed at the retail market.
Notwithstanding a relatively large number of trades in the retail market, trade sizes are
typically too small to carry any economic significance. The most important interdealer
platform is MTS, which is operated as a fully electronic limit order book during the hours
from 9 a.m. to 5:30 p.m. Trading activity on MTS accounts for only a small market share
in terms of traded volume as even for liquid bonds typically only a few trades per bond and
day are recorded; however quoting is very active and one usually finds limit orders in excess
of 100 million EUR on both the bid and ask side of the book for most securities. This, in
conjunction with the availability of MTS data for market participants and researchers, has
given MTS a benchmark function for European sovereign bond markets.10

A primary contributor to the liquidity of the secondary cash market for German Bunds
is the even more liquid Eurex futures contract. There exist futures contracts for 2-year
Schaetze, 5-year Bobls and 10-year and 30-year Bunds, with most activity in the 10-year
Bund futures. Turnover across all futures was almost 32 trillion EUR in 2017, more
than seven times the turnover in the cash market, with a minimum size of 100,000 EUR
and minimum tick sizes corresponding to 0.5− 2 basis points depending on the contract.
Trading activity is generally concentrated in the contract with the nearest delivery day,
which is around the 10th of each March, June, September and December. By construction
ca. 3-5 bonds are deliverable for each contract and one bond is the cheapest-to-deliver and
therefore its price is tied to the one of the futures through a close arbitrage link.11 It is
worth pointing out that physical delivery of the futures on the delivery day is rare and most
contracts are closed by entering an opposite position. That implies that, notwithstanding
the comparatively more active futures market, anyone wanting to own Bunds (e.g. banks
or insurances for regulatory reasons) or to enter an arbitrage position still needs to be
active on the cash market. The next section describes our data on this market.

6.4.2 Data preparation and descriptives

Our study is based on a regulatory dataset of trades by German financial institutions
which we connect to the full limit order book data from the interdealer exchange MTS. In

8Auction group members can place competitive and non-competitive bids. The former are alloted
in full at the bid price up to the lowest accepted price and the latter at a weighted average price
of the accepted competitive bids. For more details regarding the auction process, auction schedule,
members of the Bund issues auction group and auction results we refer to the DFA website: https:

//www.deutsche-finanzagentur.de/en/institutional-investors/primary-market/.
9See https://www.deutsche-finanzagentur.de/en/institutional-investors/secondary-market/.

Our sample captures about 15% of this trading activity.
10Dufour et al. (2004) provides a detailed description of the MTS dataset and Darbha and Dufour (2013)

give an overview over market structure and liquidity. MTS data have been used and validated in numerous
studies at the European level, an incomplete list of which includes e.g. Beber et al. (2009); Pelizzon et al.
(2016).

11Contractual details for the futures can be found at http://www.eurexchange.com/exchange-en/

products/int/fix/government-bonds/Euro-Bund-Futures/14770. Trading hours last from 8 a.m. to 10
p.m. and thus exceed those of MTS.

https://www.deutsche-finanzagentur.de/en/institutional-investors/primary-market/
https://www.deutsche-finanzagentur.de/en/institutional-investors/primary-market/
https://www.deutsche-finanzagentur.de/en/institutional-investors/secondary-market/
http://www.eurexchange.com/exchange-en/products/int/fix/government-bonds/Euro-Bund-Futures/14770
http://www.eurexchange.com/exchange-en/products/int/fix/government-bonds/Euro-Bund-Futures/14770


order to make full use of both datasets we restrict our analysis to the period from June
2011 through December 2016 and as outlined above our sample consists of 2-year Schaetze,
5-year Bobls and 10- and 30-year Bunds, which we will also collectively refer to as Bunds.

The regulatory transactions data is based on reporting requirements of German financial
institutions mandated by the German Securities Trading Act (“Wertpapierhandelsgesetz”,
WpHG) and the respective regulation “Wertpapierhandel-Meldeverordnung” (WpHMV ). It
includes any transaction by the reporting institutions in a wide set of securities, including
German government bonds, and contains information on the price, size and time of the
trade and a flag that indicates whether a trade was over-the-counter or the platform it
was made on. We further have anonymized identifiers for the reporting agent and the
counterparty of a trade, where the identifier for the counterparty can be missing when the
counterparty is non-German.12

Our dataset from the interdealer exchange MTS contains all trades thereon as well as
the full limit order book information on all executable quotes. This allows us to combine
both datasets and from the MTS dataset we compute for any trade in the WpHMV dataset
the quoted bid-ask spread at the same time and the price a trade of the same size would
have incurred on MTS had it been transacted there. The WpHMV data do not include
information on whether a trade was buyer- or seller-initiated. Hence, we infer the order
sign of each trade by comparing its price to the contemporaneous midprice on the exchange,
following Bessembinder and Venkataraman (2004); Eisler and Bouchaud (2016).13 For each
bond and for each day, we calculate intraday volatility based on five-minute returns of MTS
mid quotes. Where the ID of the initiator of a trade is known, we also append a dummy
that indicates whether she has access to the MTS market, which is inferred from her other
trades. Finally we also control the exchange flag of the WpHMV data by matching all
trades to the full set of trades of MTS. Lastly we add information on auctions, amount
outstanding and bond status as eligible or cheapest-to-deliver for the futures contract from
DFA, Bloomberg and Thomson Reuters Eikon.

Our full sample contains almost 470,000 trades across 237 German federal bonds. The
first row in Table 6.1 reveals that most of these trades are very small, with the 25%
percentile at only 100,000 EUR of nominal amount. This is by far too small for trading
on MTS, where the required minimum trade size is 2 million EUR. Our intention is to
compare trades where there is a choice between trading over-the-counter and on MTS.
Therefore we limit our sample to the set of trades where trading in both venues is an
economically viable option. We refer to those as trades where MTS is possible. More
specifically, it requires a minimum trade size of 2 million EUR and the trade must be
initiated by a MTS dealer during MTS trading hours.14 The last two rows of Table 6.1
show the size distribution of trades on MTS, once for the set of trades we observe through
the WpHMV dataset and below for the set of all trades on MTS as reported in the MTS
dataset. The distribtion is very similar across both sets indicating that, even though we
capture only roughly 6% of MTS trades, our dataset is representative of the market as a
whole. We also observe that MTS trades tend to be rather small, with the 95% percentile

12For a detailed description of the dataset we refer to Chapter 7 and the text of the
law and regulation, for which a non-binding English translation is provided at https://www.

bafin.de/SharedDocs/Veroeffentlichungen/EN/Aufsichtsrecht/Gesetz/WpHG_en.html (Section 9 the-
rein) and https://www.bafin.de/SharedDocs/Veroeffentlichungen/EN/Aufsichtsrecht/Verordnung/

WpHMV_en.html?nn=8379960 respectively.
13We are unable to calculate some of these measures e.g. when an OTC trade takes place outside of

MTS opening hours or when the size of a trade exceeds the quantity available in the MTS limit order book,
either because a trade is too large or because the order book is depleted.

14We also exclude trades so large that they would exceed the liquidity available in the limit order book
of MTS.

https://www.bafin.de/SharedDocs/Veroeffentlichungen/EN/Aufsichtsrecht/Gesetz/WpHG_en.html
https://www.bafin.de/SharedDocs/Veroeffentlichungen/EN/Aufsichtsrecht/Gesetz/WpHG_en.html
https://www.bafin.de/SharedDocs/Veroeffentlichungen/EN/Aufsichtsrecht/Verordnung/WpHMV_en.html?nn=8379960
https://www.bafin.de/SharedDocs/Veroeffentlichungen/EN/Aufsichtsrecht/Verordnung/WpHMV_en.html?nn=8379960


Table 6.1: Statistics of trade size: This table shows the distribution of trade size measured in million
EUR. full sample refers to all trades in the WpHMV sample. The block OTC trades where MTS is possible
refers to OTC trades from our WpHMV sample that could have been traded on MTS. The row all refers
to all such trades and the row ≤ 25M EUR imposes a maximum size of 25 million EUR. The block MTS
trades refers to trades on the interdealer exchange MTS. WpHMV data describes the statistics of MTS
trades that we observe in our WpHMV data. MTS data refers to all trades on MTS from the MTS dataset.

Mean Std Dev 5 Pcl 25 Pcl 50 Pcl 75 Pcl 95 Pcl # Obs

full sample 7.01 20.56 0.00 0.10 1.00 5.00 32.10 469,689

OTC trades where MTS is possible

all 16.95 31.64 2.00 4.00 5.59 18.00 58.00 49,519
≤ 25M EUR 7.88 6.41 2.00 3.20 5.00 10.00 25.00 41,888

MTS trades

WpHMV data 6.92 5.81 2.00 4.00 5.00 10.00 10.00 2,275
MTS data 6.07 4.72 2.00 2.50 5.00 10.00 10.00 37,943

at 10 million EUR compared to 32 million EUR in our full sample. This is expected as
larger trades on MTS consume liquidity from higher levels of the limit order book, thus
incurring a higher cost and deincentivizing dealers from making very large transactions
on the exchange. Therefore we will also consider a subsample of the trades where MTS is
possible with an upper limit of 25 million EUR.15 Indeed we then find that the distribution
of trade size for this subset of OTC trades is comparable to the one for trades on MTS.
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Figure 6.1: Histogram of trade size when MTS is possible: number of trades in bins of trade size
measured as the nominal amount of the trade. Binwidth is 0.5 million EUR and the sample consists of OTC
trades where MTS trading is possible and MTS trades, therefore imposing a minimum size of 2 million
EUR. A preferences for “round” amounts is present for both OTC and MTS trades.

To visualize the distribution Figure 6.1 shows the histogram of trade size for all trades
where MTS was possible.16 Beyond the evidence in Table 6.1, Figure 6.1 clearly reveals

1525 million EUR corresponds to the 99.4% percentile of trade size on MTS.
16Both OTC and MTS trades are shown, i.e. Figure 6.1 corresponds to the union of the subsets described

in the second and the fourth row of Table 6.1.



a preference for ‘round’ amounts of trade size, such as e.g. 5, 10 or 25 million EUR.
This feature is present for both OTC and MTS trades and is in line with trading in the
Bund cash market being still predominantly ‘manual’, as expected for an OTC-dominated
market.17

Table 6.2: Statistics of bid-ask spread by maturity: Descriptive statistics of the average daily MTS
bid-ask spread of the on-the-run German federal bonds in each maturity bin. Given in basis points and
based on average daily values of bid-ask spread and winsorized at the 1% level from above.

Mean Std Dev 5 Pcl 25 Pcl 50 Pcl 75 Pcl 95 Pcl

2-year Schatz 3.67 1.86 1.68 2.56 3.14 4.12 7.51
5-year Bobl 6.80 3.75 3.65 4.74 5.87 7.75 12.02
10-year Bund 7.22 3.94 3.91 4.98 6.14 8.15 13.67
30-year Bund 54.90 37.65 23.22 37.55 46.78 60.20 99.30

Finally we also provide summary statistics for the quoted bid-ask spread on the MTS
exchange. Table 6.2 and Figure 6.2 give the descriptives and time evolution of the average
daily quoted bid-ask spread on MTS for the on-the-run bond of each maturity bin. In line
with the previous literature we find that bid-ask spread is increasing with maturity, ranging
from on average 3.7 basis points in 2-year Schaetze to 7.2 basis points in the 10-year Bund.
30-year Bunds are less liquid and have a much wider bid-ask spread with a mean of 55
basis points.

The time evolution of bid-ask spread in Figure 6.2 is smoothened to the weekly level and
indicates the larger trends during our sample period ranging from June 2011 to December
2016. The European sovereign bond crisis is discernible in 2011-2012 whereas the peak at
the end of 2016 might be related to low trading activity and scarcity effects at the end of
the regulatory year.
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Figure 6.2: Bid-ask spread: Average daily quoted bid-ask spread on MTS of the on-the-run of each
maturity bin. Aggregated to weekly level and given in basis points.

17Round amounts are associated with manual trading, whereas automated trading algorithms tend to
make use of the continuity of possible sizes. See Lallouache and Abergel (2014) for an example in the
context of a tick size reduction.



6.5 Venue choice

Hypothesis 1. MTS dealers are more likely to execute a trade on exchange instead of
OTC when a) the bid-ask spread on the exchange is small, b) the size of the trade is small,
c) a bond is older and not the cheapest to deliver for the current futures contract, and d)
required immediacy is higher.

In order to test Hypothesis 1, we estimate a probit model

MTSn = f(vn) (6.1)

at the level of single trades (indexed by n), where our dependent variable MTSn is a dummy
that is 0 for a trade in the over-the-counter segment and 1 for trades on the exchange MTS
and independent variables include trade, bond and bond-time characteristics summarized
in the vector vn.

Our sample consists only of trades that are able to take place in either section of the
market, i.e. we ensure that each trade is qualified for MTS. That is our sample consists of
trades with a minimum size of 2 million EUR that took place during MTS trading hours
and were initiated by a trader that has access to the MTS market, leaving us with a sample
of 51,565 trades of which 2,270 are on MTS (4.4%).18 While it is in principle possible to
trade for the full quantity quoted on the limit order books of MTS, this would be very
costly. Therefore, we also repeat our estimations for a subsample of trades below a certain
threshold above which trading on MTS is unlikely, chosen as 25 million EUR of nominal
value.19 Finally, we also repeat our estimations for the subsample of trades initiated by
MTS-dealers that are obliged to report and where thus we observe the complete set of
their trading activity.20

Let us stress that we are unable to observe the part of the decision process of whether
to trade at all or not. Especially in the OTC market a trader might be unable to find a
willing counterparty to a transaction or only at a cost that outweighs the expected benefits
of the trade so that the originally intended trade is no longer desirable. E.g. Hendershott
and Madhavan (2015) report that on average only 51.0 − 73.4% of electronic auctions
(corresponding to multi-dealer requests-for-quote) lead to trades and 8.2−14.7% of auctions
do not receive a quote from a dealer.

The independent variables in our model include trade characteristics, bond characteris-
tics and bond-time characteristics. Trade characteristics are the size of a trade, given as
the natural logarithm of the nominal value of the trade in EUR, and the bid-ask spread
prevailing on MTS at the time of the trade, given in basis points. As bond characteristics
we include a dummy for the maturity of the bond, i.e. whether it is a 2-, 5-, 10- or 30-year
title. Bond-time characteristics are the age of a bond, i.e. the time since its issuance in
years, the nominal amount outstanding in billion EUR, a dummy that is 1 when a bond is
the cheapest to deliver for the current futures contract on the day of the trade and 0 else,
and the intraday volatility in the same bond at the same time and day. We also add a

18We also exclude trades when the bid-ask spread on MTS was prohibitively high, setting the threshold
as 100 basis points, corresponding to the 99%-percentile across all bonds and the 95%-percentile for 30-year
Bunds, the least liquid bonds in our sample.

19Our results are robust for the choice of threshold between 15 or 50 million EUR. 25 million EUR
corresponds to the 94% threshold of trade sizes in our full sample and the 99.4% threshold of trade sizes on
MTS.

20That is because our sample also contains trades by institutions that have no reporting obligation
but where an identifier is provided. For those instutions we then only observe their trades with German
counterparties.



dummy that is 1 when there was an auction affecting the bond on the same day, and 0 for
non-auction days.21

Table 6.3: Probit for market choice: Marginal effects of a probit model for the choice of trading on
exchange or over-the-counter. Sample are trades where MTS is possible, i.e. initiated by MTS dealers
during MTS hours with a minimum size of 2 million EUR. Dependent variable is 1 for trades on the
exchange MTS and 0 for OTC transactions. Explanatory variables include MTS bid-ask spread at the time
of the trade, natural logarithm of nominal trade size in EUR, bond age, amount outstanding of the bond,
intraday volatility (on MTS) and dummies for being cheapest-to-deliver and days when the same bond
is (re-)issued. The baseline specification corresponds is for 10-year bonds and we including dummies for
2-year, 5-year or 30-year Bunds. Z-scores are given in brackets where standard errors are clustered at the
dealer level and *, ** and *** denote significance at the 10%, 5% and 1% level respectively.

trade size ≤ 25M EUR

initiator is
reporting

bid-ask spread (bp) -0.0052*** -0.0052*** -0.0059*** -0.0041***
(-4.7920) (-4.8270) (-4.7054) (-3.0564)

trade size (log) -0.0199*** -0.0206*** -0.0100 -0.0106
(-2.8073) (-2.8378) (-1.2070) (-1.1134)

dummy: 2-year Schatz 0.0514*** 0.0540*** 0.0646*** 0.0568***
(5.5271) (5.6932) (5.8192) (3.7978)

dummy: 5-year Bobl 0.0052 0.0062 0.0072 0.0107*
(1.2848) (1.5438) (1.5176) (1.7604)

dummy: 30-year Bund 0.4978*** 0.4896*** 0.5152*** 0.4386***
(4.9039) (4.7754) (4.8014) (2.8907)

bond age (years) 0.0019** 0.0021*** 0.0024*** 0.0015
(2.3445) (2.7468) (2.8379) (1.4162)

amount outstanding (billion) 0.0008 0.0011* 0.0011* 0.0009
(1.5062) (1.9274) (1.7066) (1.1711)

dummy: cheapest-to-deliver -0.0412*** -0.0424*** -0.0487*** -0.0354***
(-5.2191) (-5.1435) (-4.8376) (-2.8090)

intraday volatility 1.0316*** 1.1130*** 0.6573**
(2.8962) (2.6742) (2.4596)

dummy: issuance day 0.0313** 0.0416*** 0.0230
(2.2265) (2.6590) (1.2325)

R2
Pseudo .1166 .1193 .1048 .1051

N 51,565 51,522 43,895 31,213

Table 6.3 shows the marginal effects of the probit estimation, with standard errors
clustered at the dealer level.22 Quoted bid-ask spread is significant in all specifications
and on average an increase in bid-ask spread by 4 basis points (roughly one standard
deviation of bid-ask spread in 10-year Bunds) makes it 2% less likely that a trade is taking
place on MTS. Trade size is also negatively related to trading on MTS when we do not
impose an upper cap on trade size: the marginal effect of ca. −0.02 implies that a trade
of 10 million EUR is 1.4% less likely on MTS than an otherwise comparable trade half
as large, i.e. of size 5 million EUR. When we cap trade size this effect is roughly half

21The dummy is set to 1 when a bond was newly auctioned or re-opened (tapped) on the same day. For
new issuances we set the dummy to 1 also for the previous on-the-run bond in the same maturity category.
That is in the case of a re-opening the dummy is 1 for the bond that is re-opened only and in the case of a
new issuance for the newly issued bond and the one that is thus going off-the-run.

22Due to the lower number of dealers in the sample with trades only by reporting dealers significance
estimates in the rightmost column are based on bootstrapped standard errors.



as strong and no longer significant. The positive coefficients for age suggest that older
bonds are more likely to be traded on exchange, whereas the cheapest to deliver bond
for the current futures contract is more likely to be transacted over-the-counter.23 Next
we consider immediacy proxies in our specifications. When intraday volatility is high
the risk of adverse price movements is larger and a trader will want to fulfill her trading
need faster. Beyond volatility, we also consider the required immediacy to be higher on
auction days. That is since only on auction days the capability of the issuer to place their
debt is revealed, dealers participating in the primary auction learn only during the day of
their endowment obtained during the auction and might be faced by added trading needs
from clients that wish to invest in the newly issued bond. Indeed we find the coefficient
for intraday volatility to be significant across all specifications and consistently pointing
towards a higher probability of trading on the exchange. Also on auction days we find that
trading on the exchange is 2.3− 4.2% more likely and significantly so for all but the last
specification.

We thus confirm Hypothesis 1, identifying transaction costs, order size, benchmark
status and immediacy as determinants of venue choice. It is established that higher
transactions costs (Smith et al. (2001); Bessembinder and Venkataraman (2004)) and
larger order sizes (Smith et al. (2001); Bessembinder and Venkataraman (2004); Barclay
et al. (2006); Hendershott and Madhavan (2015)) are drivers towards bilateral trading
arrangements. Our finding that also the cheapest-to-deliver status makes OTC trading
more likely confirms such a prediction in Lee and Wang (2017). The effect due to immediacy,
to the best of our knowledge, has not been taken into account so far.

6.6 Trading costs

Having established the drivers of market choice in the previous section, we consider in this
section the cost differences between trading over-the-counter and on the exchange. To do
so we introduce OTC discount in Section 6.6.1 and study its drivers in Section 6.6.2.

6.6.1 OTC discount

Hypothesis 2. Trades that take place OTC on average have a positive OTC discount, i.e.
their price is favorable in comparison to the attainable price of executing the same trade on
the exchange.

To test Hypothesis 2 we examine cost differences between over-the-counter trades and
the trading conditions provided through the limit order book. Therefore we compare the
actual, observed, price of a trade with the hypothetical price the same trade would have
incurred, had it been placed on the exchange. This is feasible because at any point in
time we have the knowledge of the full limit order book of MTS. Hence, we are able to
determine for any OTC trade how much a virtual trade on MTS would have cost. Formally
we define OTC discount for any trade n as

OTC discountn = εn

(
pricevirtual,MTS

n − priceobserved, OTC
n

)
, (6.2)

that is the price difference between the virtual price a trade would have incurred on MTS
and the actually observed price of trade n, symmetrized for buyer- and seller-initiated
trades by multiplying with the trade sign εn (ε = ±1 for buyer-/seller-initiated trades). By

23Due to the construction of the futures contract the cheapest-to-deliver mostly coincides with the on-the-
run bond during our sample period as long as the minimal requirement for the amount outstanding is met.



our definition a positive OTC discount implies that executing a trade over-the-counter
was cheaper for the initiator than trading on the exchange. Since the discount of MTS
trades is by definition equal to zero, we only consider over-the-counter trades in this section.
Figure 6.3 shows the histogram of OTC discount for trades in 2-year Schaetze, 5-year
Bundesobligationen and 10-year Bunds with a minimum trade size of two million EUR.24

Our definition of OTC discount already takes into account the effect of walking up the
book, i.e. when trades larger than the quantity available at the best execute against limit
orders at deeper levels of the book and thus at an additional cost.
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Figure 6.3: Histogram of OTC discount: By how much is trading OTC cheaper than on MTS?
Discount received by OTC trades in 2-year Schaetze, 5-year Bundesobligationen and 10-year Bunds with a
minimum trade size of two million EUR. OTC discount is the difference of the observed trade price to the
hypothetical price of an identical trade on MTS, including the effect of walking up the book, symmetrized
for buys and sells. A positive OTC discount implies that trading OTC was cheaper than on the exchange.
Given in basis points.

We observe a distribution that is heavy on positive values of OTC discount, i.e. in the
majority of cases trading over-the-counter is cheaper than on the exchange. This is natural
since trading on the exchange provides the initiator with immediacy, a service that comes
at a cost, and we will therefore also refer to the OTC discount as the cost of immediacy.
Note that the other main difference of trading on the exchange is transparency: trading on
the exchange publicly reveals a trading need to all other market participants post-trade,
whereas for an over-the-counter trade only the contacted potential counterparties learn of
the intention to trade. Since we are unable to disentangle this effect due to transparency or
opacity preferences of a trader, we are actually under-estimating the true cost of immediacy.
In other words, when one trades on the exchange, one pays not only with higher transaction
costs but also with ones private information.

We also observe in Figure 6.3 that some trades have a negative OTC discount. This
seems irrational at first, as one could have traded on the exchange at a lower cost. Several
factors nevertheless explain such observations. First, the initiator of a trade might wish
to protect her valuable private information, accepting a higher cost in the OTC market
to avoid post-trade publication of a trade. E.g. Jank et al. (2016) provide evidence of a
scenario where investors forego profits to protect their private information in the context
of publication thresholds for short-selling. Second, a trader might also accept to trade at a

24We are excluding 30-year Bunds from the figure as their much wider bid-ask spread distorts the
distribution. Results are nonetheless similar when including also 30-year Bunds.



Table 6.4: Descriptive statistics of OTC discount: OTC discount is the difference of the observed
trade price to the hypothetical price of an identical trade on MTS, including the effect of walking up the
book, symmetrized for buys and sells and given in units of basis points. A positive OTC discount implies
that trading OTC was cheaper than on the exchange. The column p-value gives the p-value for a t-test of
the mean being different from zero. Samples are all OTC trades and all OTC trades in 2-year Schaetze,
5-year Bundesobligationen and 10-year Bunds. The latter sample is also subsetted with a minimum size of
2 million EUR of nominal amount and an additional maximum trade size of of nominal 25 million EUR.
For the subsample bounded in trade size from above and below we also distinguish between trades initiated
by MTS dealers and non-MTS dealers.

OTC trades mean stddev p05 p25 median p75 p95 num obs p-value

all 3.58 8.03 -3.19 0.97 2.10 3.80 21.00 403,415 0.0000

2-year - 10-year bonds

all 1.53 4.17 -3.00 0.80 1.90 3.00 5.40 338,929 0.0000
min. 2M EUR 2.11 4.68 -3.00 1.00 2.00 3.30 6.58 144,602 0.0000

trade size between 2 - 25M EUR

all 1.46 3.51 -3.10 0.80 1.90 3.00 5.00 121,798 0.0000
MTS access 1.49 3.40 -3.00 0.90 1.90 3.00 4.90 37,895 0.0000
no MTS access 1.51 3.46 -3.00 0.90 2.00 3.00 5.00 48,822 0.0000

negative OTC discount in order to cultivate a valuable trading relationship. Di Maggio
et al. (2017) show that trading relationships affect prices and liquidity and the value of
the relationship increases during market turmoil. Lastly a trader might accept a negative
discount when trading OTC offers additional services, such as e.g. contemporaneous
hedging trades on the futures market.

Hypothesis 2 states that OTC discount is on average positive. In Table 6.4 we give the
descriptive statistics of OTC discount. For all of our subsets both the mean and median
are positive and in all cases the mean is statistically different from zero at all standard
confidence levels, thus confirming the hypothesis. Furthermore, for the subset of trades
sized between 2 and 25 million EUR, i.e. of comparable size to MTS trades, the mean
(median) OTC discount is 1.5 (1.9) basis points, acting as a lower bound also to the cost
of immediacy. We do not find a significant difference in the average OTC discount of
trades by MTS dealers or non-MTS dealers, but this is not taking into account potential
differences in trade characteristics between these two groups.25 Our finding supports also
the prediction from Grossman (1992) that OTC trading can tap into pools of unexpressed
liquidity. This is confirmed even more by the fact that we also observe OTC trades that
are too large for the MTS exchange.

6.6.2 Drivers of OTC discount

Hypothesis 3. OTC discounts are larger a) when the bid-ask spread is larger, b) when
the size of the trade is larger, c) when a bond is older and d) for traders that have access
to the exchange market.

In the following we study the drivers behind OTC discount and immediacy costs in
order to test Hypothesis 3. Table 6.5 shows the results of estimating the following equation:

OTC discountn = αvn + ∆i + εn (6.3)

25Since for some trades we do not know the identity of the initiator and therefore also ignore her MTS
status, these trades do not enter the last two rows of Table 6.4. Therefore the number of observations in
the last two rows does not add up to the one in the third row from the bottom.



where the left hand variable is the OTC discount, defined in basis points, vn is a vector of
trade and bond-time characteristics, and ∆i are bond-fixed effects. We consider several
specifications for the estimation: with only a lower bound for trade size of 100,000 EUR,
with a lower bound of 2 million EUR, with an additional upper bound of 25 million EUR
and considering only trades by MTS dealers. Let us point out that notwithstanding the
similarities one should not directly compare the results for venue choice from Section 6.5
to the drivers of OTC discount presented in this section. The estimation in the previous
section was for the probability of trading on-exchange or over-the-counter conditional
on trading (in either market). Instead the estimation in this section is for the discount
of over-the-counter trades, i.e. conditional on a trader being able and willing to trade
over-the-counter.

We find that bid-ask spread is a significant driver across all specifications. The
magnitude implies that an increase in the quoted bid-ask spread by 1 basis point also leads
to an increase in OTC discount by 0.39− 0.45 basis points. Given that the bid-ask spread
corresponds to the cost of a round-trip, up to 90% of the increased cost of trading on the
exchange is rebated in over-the-counter trades. Also trade size significantly influences OTC
discount: OTC discount is bigger in larger over-the-counter trades. This is expected since
trading costs on the exchange mechanically increase with size whereas liquidity providers in
the OTC market can filter based on their perception of a counterparties trading motivation
and thus allow for lower transaction costs also in larger trades. The magnitude of size
effects depends on the size constraints we impose on our sample: the effect is smaller when
imposing an upper limit on trade size, since for these trades the effect of walking up the
limit order book is still relatively small. Also when we use a small lower limit for trade
size of 100,000 EUR, i.e. including trades that are actually too small for MTS, the size
effect is smaller.26 Also older bonds receive a higher OTC discount, which may reflect
increasing bid-ask spreads as bonds are ageing. Being cheapest-to-deliver for the futures is
not a significant driver of OTC discount, that is the close pricing linkage to the futures
does not confer a lower cost of OTC trading. The effects related to immediacy are more
nuanced in this regression. Intraday volatility is only significant at the 10% level in the
specifications with a lower limit of 100,000 EUR where it implies that OTC discount is
lower on days with higher intraday volatility. The sign of the dummy for issuance days
depends on whether we impose an upper bound on trade size or not. With an upper bound
the impact of an auction on OTC discount is negative. Considering OTC trades of a size
of 2 − 25 million EUR we find that OTC discount for them is 1.5 basis points lower on
days when there is an auction affecting the bond, and even 2.5 basis points lower for OTC
trades by MTS dealers. This is in line with our conjecture relating to immediacy and our
earlier findings, as in the wake of auctions there is either less OTC discount to be had, or
traders are willing to accept a lower OTC discount over the exchange. However for OTC
trades typically considered too large for MTS this effect is reversed, implying that there
are some very large trades that do not incur such additional costs for immediacy but rather
an additional rebate. Finally we also observe that MTS dealers get on average a 0.7− 0.9
basis points higher OTC discount, i.e. they are better in their search for counterparties
to OTC trades. As we do not control for bank characteristics we are unable to make any
claim as to whether this advantage is due to their privilege of having access to the MTS
market or rather is a consequence of the skills of their trading desk.

This confirms Hypothesis 3. While drivers relating to transactions costs are naturally

26This is mostly a technical effect since small trades do not incur additional costs from walking up the
book that are reflected in OTC discount. As almost half of the trades in this specification are smaller than
2 million EUR, this has a substantial influence on the size coefficient.



Table 6.5: Drivers of OTC discount: Ordinary least squares regression of OTC discount (in basis points) on trade- and bond-time characteristics. The sample
consists of OTC trades in German sovereign debt titles involving German financial institutions. Regressions include bond-fixed effects and standard errors are clustered
at daily time and dealer level. T-values are given in brackets and *, ** and *** denote significance at the 10%, 5% and 1% level respectively.

trade size ≥ 100k EUR trade size ≥ 2M EUR

trade size ≤ 25M EUR ≤ 25M EUR

MTS access

bid-ask spread (bp) 0.450*** 0.450*** 0.393*** 0.393*** 0.393*** 0.407*** 0.407*** 0.407*** 0.410*** 0.410*** 0.395*** 0.394***
(14.995) (14.995) (9.074) (9.074) (9.075) (7.662) (7.661) (7.663) (17.308) (17.230) (17.015) (16.905)

trade size (log) 0.581*** 0.562*** 1.795*** 1.756*** 1.786*** 0.402* 0.423* 0.415* 1.997*** 1.946*** 0.737*** 0.774***
(4.176) (4.133) (8.299) (8.258) (8.365) (1.863) (1.955) (1.962) (9.630) (9.441) (3.785) (4.062)

bond age (years) 0.480*** 0.501*** 0.351*** 0.378*** 0.358*** 0.319** 0.300* 0.323** 0.324** 0.357** 0.367*** 0.336***
(5.552) (5.678) (2.628) (2.737) (2.744) (2.164) (1.972) (2.319) (2.313) (2.587) (3.005) (2.747)

dummy: cheapest-to-deliver -0.076 -0.075 -0.229 -0.230 -0.190 -0.238 -0.245 -0.204 0.116 0.111 0.642 0.634
(-0.194) (-0.192) (-0.431) (-0.434) (-0.351) (-0.462) (-0.474) (-0.397) (0.162) (0.155) (1.186) (1.171)

intraday volatility -0.100* -0.100* -0.118 -0.118 -0.118 -0.011 -0.011 -0.010 -0.005 -0.004 0.000 0.000
(-1.758) (-1.755) (-1.594) (-1.591) (-1.589) (-0.561) (-0.567) (-0.551) (-0.403) (-0.392) (0.024) (0.017)

dummy: issuance day 1.814** 1.485* -1.482* 1.555* -2.491*
(2.498) (1.759) (-1.889) (1.712) (-1.896)

dummy: MTS access 0.853** 0.696**
(2.361) (2.170)

R2 .7999 .8 .5558 .5558 .5559 .6121 .6122 .6122 .03934 .03943 .04632 .04654
R2

adjusted .7998 .7999 .5553 .5554 .5554 .6117 .6117 .6118 .03719 .03726 .0438 .044

R2
within .796 .796 .5456 .5457 .5457 .6024 .6024 .6025 .01044 .01054 .008393 .008621

N 209,540 209,540 112,419 112,419 112,419 96,835 96,835 96,835 49,254 49,254 41,652 41,652



explained by the potential which there is for discounts, other effects are more nuanced. E.g.
immediacy seems to play a different role for small, medium-sized and large trades. This
is in line with theories as Seppi (1990) that identify large trades as liquidity-motivated,
wherefore they receive better quotes, i.e. a higher OTC discount.

6.7 Conclusion

In an environment where academics and regulators increasingly call for a shift from
traditional over-the-counter market structures towards electronic platforms and greater
transparency, an in-depth understanding of the drivers and motivations behind venue
choice is ever more important. The empirical literature has so far focused mostly on
either exchange-dominated markets (such as equities) or hybrid markets that involve an
over-the-counter market and multi-dealer request-for-quote platforms. A main innovation
of this chapter is to study a hybrid bond market with a predominant OTC segment and a
liquid limit order book venue. The richness of our data allows us to study at the level of
single trades venue choice and transactions costs.

In particular we consider also immediacy and transparency as drivers of venue choice.
Our findings suggest that not one single factor is able to capture the dynamics of venue
choice on its own. Instead we see significant contributions related to transaction costs, order
size, benchmark status of a bond and immediacy as well as evidence that also transparency
plays a crucial role.

This study is highly relevant in the context of the recently introduced MiFID II
regulation that affects also the Bund market, through e.g. post-trade transparency also for
OTC transactions and best-execution rules that encourage trading on regulated platforms.
Our results imply that both market structures provide advantages in different circumstances:
E.g. the transaction cost analysis reveals that when the exchange is less liquid, the over-
the-counter market is still able to provide liquidity at least to some traders. On the other
hand the exchange is clearly beneficial in providing immediacy when it is needed. How
MiFID II will impact European fixed income markets is an open question to be answered
in the years to come, providing numerous opportunities for further research.

Appendix

6.A Cross-venue response

The hybrid setting of the Bund market poses an interesting laboratory also from a price
impact point of view. That is, what is the price impact of over-the-counter transactions?
Since the OTC segment in our setting is opaque we would expect price impact to be weaker
and slower, as less information is revealed and only indirectly observed by most market
participants. In this section we explore the potential of our dataset to answer this question.
We stop short of applying a transient impact model (TIM) as in Bouchaud et al. (2004)
and instead consider price response, i.e. the price movement in a bond conditional on a
trade.27

Some studies on upstairs markets have also considered price impact of upstairs trades,
e.g. Keim and Madhavan (1996); Booth et al. (2002); Carollo et al. (2012). As before we
argue that our setting is sufficiently different in having an OTC segment that is independent

27See Section 2.3 and also Chapter 4 for a discussion of how price response is related to price impact.



from the exchange. Eisler and Bouchaud (2016) study price impact in the OTC credit
index market and show that a TIM is well-suited also for this market structure. Here
instead we consider the influence of trades on the quoted mid-price on the exchange MTS.
That is we define response as

Ri∆t = E
[(
Xi
t+∆t−ε −Xi

t−ε
)
εit
]
. (6.4)

where Xi
t is the log MTS mid-price of bond i at time t and εit is the order sign of the trade

(+1 for buys, −1 for sells) which occured at time t. Thus we term the response to OTC
trades cross-venue response.28

6.A.a Order sign

A crucial input to equation (6.4) is the market order sign ε, i.e. whether a trade was a
buyer- or seller-initiated. Unfortunately for trades in the WpHMV data (transactions
data by German banks) the order sign is not given. Therefore we infer the order sign by
comparing the price of the trade to the MTS mid price at the beginning of the minute
of the trade.29 A transaction at a price above (below) the mid price is classified as a
buy (sell) and trades at the midprice do not enter the calculation of response, following
the approach in Eisler and Bouchaud (2016). While trades at the midprice could also be
classified following Lee and Ready (1991), we exclude them from this part of our analysis.

To test this classification approach we first apply it to the sample of all MTS trades,
where the true order sign is known. We correctly classify 91.5% of trades, better than the
72% reported by Eisler and Bouchaud (2016) for a sample of proprietary trades in credit
index instruments and comparing to midquotes from Bloomberg. For robustness we also
consider a time lag of plus and minus one minute, i.e. comparing to the mid price from at
least one minute before (again at the full minute) and the full minute following the trade
respectively. This correctly classifies 85.0% and 69.8% of trades. Classification precision is
also roughly consistent across maturities at issuance, with short-term bonds faring slightly
better than long-term bonds with typically higher bid-ask spreads. Table 6.6 reports the
classification precision for MTS trades in the rightmost column “OS precision”.

Table 6.6: Statistics of bid-ask spread by maturity and order sign classification precision:
Descriptive statistics of the average daily MTS bid-ask spread of the on-the-run German federal bonds in
each maturity bin. Given in basis points and based on values winsorized at the 1% level from above. Order
sign classification precision (OS precision) is the share of trades where the order sign is correctly inferred
from comparison with the MTS mid price in the same minute, given in %.

Mean Std Dev 5 Pcl 25 Pcl 50 Pcl 75 Pcl 95 Pcl OS precision

2-year Schatz 3.67 1.86 1.68 2.56 3.14 4.12 7.51 92.7 %
5-year Bobl 6.80 3.75 3.65 4.74 5.87 7.75 12.02 93.0 %
10-year Bund 7.22 3.94 3.91 4.98 6.14 8.15 13.67 91.9 %
30-year Bund 54.90 37.65 23.22 37.55 46.78 60.20 99.30 88.9 %

For OTC trades from the WpHMV sample we can not compare to the true order sign,
as it is not reported and therefore unknown. Instead we check how stable the classification

28Cross-venue response is to be distinguished from cross-asset response or impact as discussed in Chapter 4.
29The WpHMV data is reported in seconds precision, however the effective resolution is often of lower

frequency. This is on the one hand since at some point it becomes difficult to assign a precise timestamp to
an OTC trade facilitated via phone and may on the other hand also be due to imprecisions in reporting.
By effectively reducing resolution to minutes we take this into account.



of the order sign is with respect to shifts of the reference mid price by one minute back and
forth as above. Comparing to the midprice from the previous (following) minute 88.7%
(87.8%) of order signs remain unchanged. Finally, Carollo et al. (2012) infer the order
sign of trades in the LSE upstairs market as the sign of the client. Our dataset does allow
for this analysis when we restrict it to dealer-to-client trades. However we then find only
50.4% of order signs classified in agreement with the mid price comparison above.

6.A.b Response

In Figure 6.4 we show the response function Ri∆t averaged over all trades in all bonds for
four subsamples: over-the-counter trades from the WpHMV data, MTS trades from the
WpHMV data, and MTS trades from the MTS data, where for the latter we once use the
true order sign in computing the response and once we use the inferred order sign. We also
restrict ourselves to trades of a nominal size between 1 and 50 million EUR as to avoid
biases from a large number of small transactions or very large trades.
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Figure 6.4: Response function: Average log returns of MTS midquotes in response to trades of size
1-50 million EUR nominal value. OTC- WpHMV sample indicates response to over-the-counter trades
recorded in the regulatory WpHMV dataset and MTS - WpHMV sample refers to MTS (exchange) trades
included therein. MTS - MTS sample refers to all trades on the exchange MTS (of which the MTS trades
in the WpHMV sample are a subgroup) and we calculate response once with the inferred order sign (c.f.
Section 6.A.a) and once with the true order sign as recorded in the MTS dataset.

Let us first distinguish the response to MTS trades. The differences between the
response functions here are due to either sample differences (the WpHMV sample contains
only a subset of all MTS trades) or the order sign used for calculating response (for the MTS
sample we compute response both using the inferred and the true order sign). Considering
only the rather small set of MTS trades recorded in the WpHMV database the response
function is rather noisy and we only consider it for illustration purposes here. Looking
to the larger MTS sample, naturally the response to MTS trades is higher when inferred
with the correct order sign. The ratio corresponds roughly to the classification precision of
91.5%, i.e. immediate response with the true order sign is ca. 2 basis points versus ca. 1.8
basis points with the inferred order sign.



Immediate response is higher for MTS trades by a factor ∼ 10, i.e. response to exchange
trades is roughly 2 basis points and to OTC trades ca. 0.2 basis points. The response to
exchange trades is approximately immediate and appears roughly flat, whereas response to
OTC trades keeps increasing after the initial minute for at least one hour, rising from ca.
0.2 basis points to ca. 0.5 basis points on average. Both observations are in line with our
initial expectation that information from opaque OTC trades is reflected in quoted prices
more slowly and less strongly.

We will in the following distinguish between response in bonds of different maturities
in order to expand on this discussion.

Table 6.7: Number of trades by maturity: Number of trades in the over-the-counter (OTC) and
exchange (MTS) segment by bond maturity. Includes trades for a nominal amount of 1 - 50 million EUR.

OTC - WpHMV data MTS - MTS data number of bonds

2-year Schatz 15,711 4,782 31
5-year Bobl 36,772 5,403 26
10-year Bund 102,764 16,941 36
30-year Bund 16,697 8,258 14

sum 171,944 35,384 107

Table 6.8: Number of trades per day by maturity: Average number of trades per bond-day if there
was at least one trade on said day in said bond. OTC - WpHMV data are over-the-counter trades and
MTS - MTS data are all trades on the interdealer exchange MTS. Includes trades for a nominal amount of
1 - 50 million EUR.

OTC - WpHMV data MTS - MTS data number of bonds

2-year Schatz 2.71 2.87 31
5-year Bobl 3.17 2.27 26
10-year Bund 4.36 2.48 36
30-year Bund 2.20 2.96 14

Tables 6.7 and 6.8 give an overview of the number of OTC and MTS trades per maturity
bin and the average number of trades per bond and day (conditional on a trade) respectively.
Since we consider the conditional average of number of trades per bond-day in Table 6.8
the average number of OTC and MTS trades is roughly similar. However Table 6.7 reveals
that the number of OTC trades is two to six times that of MTS trades, depending on the
maturity at issuance of a bond. Most active in the OTC market are 10-year Bunds with a
conditional average of 4.4 trades per bond and day and more than 100, 000 trades in total.

Figure 6.5 shows the response function for each maturity bin separately. Note that the
strength of response increases with maturity, i.e. response is smallest for short term 2-year
Schaetze and largest for very long-term 30-year Bunds. As already noted above, response
to MTS trades is mostly immediate and flat, ranging from roughly 0.5 basis points in
2-year bonds to about 5 basis points in 30-year Bunds. Response to OTC trades is in all
cases smaller than response to exchange trades by roughly one order of magnitude. Note
that this is at least in part due to trades with incorrectly inferred order signs that on
average weaken the strength of the estimated response. However we deem our classification
to be sufficiently precise to posit that the response to OTC transactions is indeed weaker.
Whereas response to exchange trades is immediate we observe that prices continue to
increase after OTC trades for at least one hour after the trade to roughly double the initial
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(b) 5-year Bobls
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(c) 10-year Bunds
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(d) 30-year Bunds

Figure 6.5: Response function: Average log returns of MTS midquotes in response to trades of size 1-50 million EUR nominal value, distinguished by maturity at
issuance. OTC- WpHMV sample indicates response to over-the-counter trades recorded in the regulatory WpHMV dataset where the ordersign is inferred and MTS-
MTS sample refers to all trades on the exchange MTS and response is calculated with the true order sign as recorded in the MTS dataset.



response. This could be either due to autocorrelated order signs or, as pointed out above,
when information from OTC trades is only slowly incorporated into prices on the exchange,
a point that we will discuss in more detail below.

Let us next consider the response at negative lags. In exchange markets the lag at
negative responses is typically negative, a feature that is related to the autocorrelation
of order flow (cf. Section 4.4.2 and Taranto et al. (2016) for a discussion) and indeed
predicted by transient impact models. Here we find that response at negative lags is mostly
positive, with the exception of MTS trades in 10-year Bunds. This is evidence that financial
agents condition their trading activity on prevailing market conditions, a feature that is
not reflected in TIMs. That is a trader is more likely to buy when a bond is relatively
cheaper, i.e. on falling prices. This is indeed what we observe in Figure 6.5. Note that this
is also observed on exchange markets when observed response at negative lags is larger
than what is predicted from the TIM as e.g. in Figure 4.2 in this thesis or Figure 1 in
Taranto et al. (2016).

6.A.c Autocorrelation of the order sign

As indicated from Table 6.8 most bonds see only few trades per day and especially so on MTS
(cf. also Darbha and Dufour (2013)). This would suggest that herding and order splitting,
two main causes of autocorrelation of order signs, are less prevalent and therefore also
autocorrelation would be weaker. Furthermore Seppi (1990) describes anecdotal evidence
for upstairs markets that traders are discouraged from order splitting and encouraged to
reveal their full liquidity needs to the dealer, suggesting that the autocorrelation in the
signs of OTC trades should be even lower. At the same time, if there were a significant and
strong autocorrelation of OTC order signs, this would provide a competing explanation for
the slowly increasing response that we observe in Figure 4.2 for positive lags.

In Figure 6.6 we show the response function for three actively traded 10-year Bunds,
examplary for our larger sample. We compute the autocorrelation separately for OTC and
MTS trades and therefore the lag on the x-axis corresponds to different physical timescales
unless trading activity in both markets were equal.30 We do find a positive autocorrelation
of order signs for the duration of a few trades for both OTC and MTS trades. As expected,
this effect is considerably weaker for OTC trades. This supports the explanation that the
slow increase of response to OTC trades is due to information from OTC trades being
incorporated into public markets only slowly and undermines the alternative explanation
that this might be due to order splitting.31

We leave the expansion of this study to price-impact for future work. Both applying
the TIM of Eisler and Bouchaud (2016) or a modified TIM that identifies each venue are
conceivable. The latter approach would then be methodologically similar to the cross-
impact TIM used in Chapter 4 of this thesis. The evidence we have collected here suggest
that OTC trades indeed have a lower price impact compared to market orders on the
exchange.

30The OTC market is more active in our case.
31Also that OTC response at negative lags is found to be positive is in line with this line of reasoning.
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Figure 6.6: ACF of order sign: Autocorrelation function of the order sign (±1 for buy/sell trades)
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Chapter 7

Liquidity of German corporate
bonds

7.1 Introduction

One of the most interesting developments in the transparency of global financial markets
occurred in 2002 with the initial launch of the Trade Reporting and Compliance Engine
(TRACE) platform by the Financial Industry Regulatory Authority (FINRA) for the
mandatory reporting of transactions in the over-the-counter (OTC) U.S. corporate bond
market.1 However, more than 15 years after the dissemination of TRACE, the effect of
transparency on liquidity and investor welfare in OTC markets is still debated. Suppor-
ters of OTC market transparency argue that it reduces the asymmetry of information
between dealers and investors. Furthermore, transparency encourages the participation
of retail/uninformed investors, who can benefit from better price discovery, and obtain a
fairer price for their transactions, similar to informed/institutional traders.2 On the other
hand, OTC market transparency could increase transaction costs for some investors, by
eliminating dealers’ information rents and, thus, incentives to compete or even participate
in the market.3

In this chapter, we contribute to the debate by providing a unique study of a market
without trade transparency, and comparing it to one with full post-trade information
dissemination. Specifically, we analyze the liquidity of the German corporate bond market,
where there is no mandatory post-trade transparency, and compare it to the U.S. market,
where FINRA enforces a strict disclosure protocol. For our analysis, we use a unique
regulatory dataset, with a complete set of bond transactions of German financial institutions
from 2008 until 2014.4 To the best of our knowledge, we are the first researchers to use this
database to study market liquidity. Therefore, we provide a detailed description of our data
cleaning procedures, which determine our sample selection. We focus on straight, unsecured
corporate bonds, excluding all bonds with complex optionalities attached. We estimate
transaction costs at a weekly frequency by adopting a wide range of liquidity measures.

1The TRACE platform was extended to other U.S. fixed income markets, including the structured product
market in May 2011 (see Friewald et al. (2017)), and most recently, the Treasury bond market in July 2017.

2For theoretical work on OTC market transparency see Pagano and Roell (1996), Duffie et al. (2017),
Asriyan et al. (2017). Empirical analysis supporting these arguments can be found in Bessembinder et al.
(2006), Edwards et al. (2007).

3See Naik et al. (1999), Bloomfield and O’Hara (1999), Holmstrom (2015), Bhattacharya (2016).
4Reporting is mandated through the German Securities Trading Act, (Wertpapierhandelsgesetz, shortened

to “WpHG”) and collected by the German federal financial supervisory authority Bundesanstalt für
Finanzdienstleistungsaufsicht, in short “BaFin”.
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Starting with a sample of 11,670 corporate bonds, we focus on a relatively liquid sample in
which a particular bond trades at least 8 times in a week. Our final sample includes 1,703
corporate bonds for the German market (1,585 issued by financial institutions and 118
issued by non-financial firms). Our study consists of four parts. First, we provide a general
description of the German corporate bond market, focusing on the key characteristics of
the bonds in our sample and their trading activity. Second, we analyze the time-series
evolution of liquidity in the German market. Third, we study the determinants of liquidity
in the cross-section of the German market with panel regressions on bond characteristics in
the spirit of Edwards et al. (2007). Fourth, we use a matched-sample approach to compare
the transaction costs of similar bonds, at the same point in time, in the German and
the U.S. market, respectively. The variables that we use for our matching procedure are
coupon, rating, time to maturity, size, volume traded and trading frequency.

In our descriptive analysis, we find significant differences between the German and U.S.
markets. The former is composed, in great part, of financial bonds (i.e., bonds issued by
financial firms), which are ten times as many as non-financial bonds (i.e., bonds issued
by non-financial firms). In the U.S. market, financials are also the majority, but just four
times as many as non-financials. Bond characteristics present differences, as well, in our
sample: German bonds have a higher coupon, a lower time to maturity than their U.S.
counterparts, and also, most of the non-financial bonds are unrated. Overall, observed
trading activity is much lower in the German market: the bonds that traded at least once
8 times per week are only 17% of the sample, against 74% of the traded sample in the U.S.
universe. Looking at the market as a whole, liquidity is clearly much higher in the U.S.,
with a significantly larger number of securities that trade often, and therefore, likely to
provide more informative prices. This result is consistent with various theoretical studies
that show that transparency lowers costs for un-sophisticated investors and, therefore,
incentivizes participation in the market.5

The time-series dynamics of liquidity look similar between the two markets and across
different liquidity measures. As expected, we find that transaction costs for German
corporate bonds spiked during the 2008-2009 global financial crisis and the sovereign debt
crisis in 2011-2012. While the former clearly affected liquidity in the U.S. market as well,
as documented by Friewald et al. (2012) and others, the latter did not and, thus, was a
shock mostly limited to the Euro-area, and perhaps the rest of Europe. The cross-sectional
analysis shows that the relations predicted by search theories of OTC markets are also
confirmed in the German market: A bond is more liquid if it has a larger issue size, a
better credit rating, a shorter time-to-maturity, a younger age, and a larger volume traded.

The matched sample analysis allows us to compare frequently traded German bonds
with a group of U.S. bonds that have similar characteristics, at the same point in time.
Contrary to our expectations, across all the liquidity measures except imputed round-trip
cost, we find that this group of German bonds has significantly lower transaction costs
than comparable bonds in the U.S. market. The difference in round-trip costs is within
a range of 37-67 basis points, depending on the liquidity measure used. This finding
might seem surprising, at first blush. However, it is in line with studies that highlight the
potential unintended consequences of an increase in transparency in OTC markets. For
example, Naik et al. (1999) show that, in a more transparent market, dealers fail to extract
information rents from trading with investors and have less incentive to compete, which
could lead to higher costs of trading for investors. Bloomfield and O’Hara (1999) provide
similar findings in a laboratory experiment. In a recent study, Bhattacharya (2016) shows
how post-trade transparency can increase transaction costs due to trade delays of investors,

5For theoretical studies, see for example Pagano and Roell (1996), Duffie et al. (2017).



who wait longer in order to acquire more information by monitoring disseminated trade
prices. In a similar vein, Friewald et al. (2017) document in the U.S. securitized product
market that there is an optimal level of detail in disclosure, beyond which there is no
improvement in liquidity. A possible explanation for our finding is that, when there is little
transparency, investors concentrate their demand into a few well-traded assets, resulting in
“crowding.” As a consequence, the liquidity of these few bonds is particularly high, while
the others are barely traded, resulting in a greater dispersion of liquidity across bonds. On
the other hand, when overall transparency increases, investors spread their portfolios across
a wider range of assets, given the higher level of information available. While the overall
market liquidity improves, there is less relative demand for the previously “well-known
assets,” and hence their transaction costs, at least in some cases, could be higher.

Overall, our results support the notion that the effects of transparency in OTC markets
are multifaceted, and not unambiguously positive. Our analysis shows that transparent
markets have greater trading activity and stronger participation, overall. The proportion of
securities that is traded frequently is much higher, suggesting better price discovery overall.
This indicates that transparent markets are, as a whole, more liquid. However, when
restricting the analysis to securities that are most frequently traded in the non-transparent
market, the most similar bonds in the transparent markets could have higher transaction
costs. A possible explanation for this seemingly anomalous result is that, in non-transparent
markets, investors concentrate their demand in a few securities, making them more liquid,
while barely trading the rest of the assets. An alternative, symmetric explanation could
be that market makers find it difficult to provide liquidity beyond a small number of
instruments, when transparency is low, overall. In either case, lower transparency leads to
“crowding” of demand into a few securities that may be even more liquid, as a consequence.

This chapter makes three main contributions. First, it contributes to the debate on the
effect of transparency in OTC markets, by providing a novel analysis of a market without
post-trade transparency. Many empirical studies have analyzed the impact of transparency
in the U.S. market, using different phases of the TRACE program as identification. However,
such analyses cannot overcome the limitation that the assets still belong to the same
overall market, allowing for no cross-market comparisons. In contrast, our access to a
novel database allows us to analyze, in detail, the German market without transparency,
and compare it with the U.S. market with mandatory disclosure. Second, it presents a
comprehensive analysis of the liquidity of a rather unexplored market, which is growing
and is among the largest European bond markets. Third, we provide a detailed description
of a filtering procedure for a new database, which has potential for future research on
other illiquid bond markets or for answering policy questions regarding the German bond
market.

Our results are of interest for academics and regulators alike. In particular, they speak
to the recent debate on the introduction of MiFID II and MiFIR, and provide a perspective
on how to critically evaluate the anticipated improvement in transparency in European
fixed-income markets.6

The chapter is organized as follows. Section 7.2 provides a literature review. Section
7.3 describes the corporate bond market structure in Europe. Section 7.4 introduces our
dataset and describes our approach to obtaining samples, for which we provide descriptive
statistics. In Section 7.5, we use various liquidity measures from the literature in order to

6In an attempt to increase transparency, the European Parliament and the European Council approved
in 2014 the Notification 2014/65/EU - Markets in Financial Instruments Directive II (MiFID II) and the
Regulation (EU) No 600/2014 – Markets in Financial Instrument Regulation (MiFIR), to enhance pre-and
post-trade transparency of both equity and non-equity instruments and derivatives including fixed income
bonds, which are applicable to all European markets since January 3, 2018.



examine the time-series evolution of liquidity, study the determinants of liquidity in the
cross-section with panel regressions and to compare the transaction costs of similar bonds,
at the same point in time, in the German and the U.S. market with a matched-sample
approach. Section 7.6 concludes.

7.2 Literature review

7.2.1 European corporate bond market

A number of papers deal with the pricing of European corporate bonds in relation to credit
risk and other risk factors and illiquidity risk at an aggregate level. Others provide a
description of the vast cross-section of yields. However, none of them provide an analysis
of liquidity at an issue level, since they do not employ a dataset nearly as complete and
detailed as ours. A few studies use transaction data, e.g., Dı́az and Navarro (2002) use
data of trades in 1993-1997 on three Spanish bond platforms and Frühwirth et al. (2010)
use closing prices from transactions on German exchanges. Other articles (Houweling et al.
(2005); Van Landschoot (2008); Castagnetti and Rossi (2013); Klein and Stellner (2014);
Utz et al. (2016)) rely on yield quotes, e.g., from Bloomberg, at daily or lower frequencies
or consider corporate bond indices (Aussenegg et al. (2015)).

Two papers shed light on the market microstructure of specific trading platforms for
corporate bonds: Fermanian et al. (2016) models the request-for-quote (RFQ) process on
the multi-dealer-to-client platform Bloomberg FIT, based on a fraction of the RFQs received
by BNP Paribas in the years 2014 and 2015. However, their focus is on the behavior of
clients and dealers rather than the market as a whole, with the data being used to calibrate
their theoretical model. In fact, no statistics on trading volumes or liquidity measures are
provided, since that is not their focus. Linciano et al. (2014) study the liquidity of Italian
corporate bonds that are listed on two platforms contemporaneously (DomesticMOT or
ExtraMOT and EuroTLX) and find a mixed impact of such fragmentation. Also, their
analysis is restricted to these platforms and neglects the major market share of OTC trades,
which form the majority of trades in corporate bond markets.

A different approach is taken in Bundesbank (2017), which mainly considers the market
size of bonds of non-financial corporations in the Eurozone in terms of the total amount
outstanding. The report analyzes the bond market in the context of the low-interest-rate
environment of the past few years based on supply and demand factors, looking at issued
amounts, yields and yield spreads of corporate bond indices.7 In the context of measuring
the impact of ECB bond purchases under the Corporate Securities Purchase Program
(CSPP), Grosse-Rueschkamp et al. (2017) show that there was an increase in bond financing
in companies whose debt was eligible for purchase by the ECB. Again, there are no statistics
provided on trade volumes and liquidity measures.

Biais et al. (2006) investigates liquidity based on a dataset of interdealer trades from
2003-2005 in a set of Euro- and sterling denominated bonds listed in the iBoxx index
by looking at quoted and effective bid-ask spreads. Furthermore, the paper considers
informational efficiency in the European bond markets and compares it to the early
literature on the U.S. TRACE database. However, it refers to the market before the global
financial crisis and the European sovereign debt crisis and the consequent changes in market
regulation are not reflected therein.

Our study, in contrast, is based on a broader dataset, both in terms of transaction

7An earlier study in this direction is Pagano and Von Thadden (2004), in the context of the monetary
unification of the Eurozone.



detail and the underlying bond universe, and provides a direct comparison with the U.S.
TRACE database. Finally, in our evaluation of liquidity, we do not only rely on quoted
spreads and prices but employ a range of liquidity measures based on actual transactions
that have proven more suitable for the analysis of OTC markets. We are aware of only two
other studies that make use of regulatory trade-level data to study liquidity in European
bond markets: AMF (2015) studies the French bond market and is aimed primarily at
constructing a composite liquidity indicator. Aquilina and Suntheim (2017) provide a
similar analysis for the U.K. corporate bond market, quantifying as well the yield spread
due to liquidity.8 It should be emphasized that non of these studies takes into account bond
characteristics as drivers of liquidity and their evolution in time, nor is there a comparison
against the benchmark U.S. market.

7.2.2 U.S. corporate bond market

Since the inception of TRACE in July 2002, there has been a growing number of empirical
studies that analyze the U.S. corporate bond market. Among the first of these after the
introduction of post-trade transparency are Bessembinder et al. (2006) and Edwards et al.
(2007).9 Both papers focus on the effect that post-trade transparency has on corporate bond
transaction costs, finding that bid-ask spreads significantly reduced after the introduction
of TRACE. Edwards et al. (2007) further provide an analysis of trading costs on the cross-
section of bonds, showing that those better rated, recently issued and close to maturity are
more liquid. In a more recent paper, Bao et al. (2011) focus on the link between illiquidity
and pricing in the U.S. corporate bond market, showing that a significant part of the
variation of yield spreads can be explained by movements in corporate bond prices. Along
the same lines, Lin et al. (2011) find a robust link between illiquidity and corporate bond
returns. Liquidity can be an issue especially during periods of financial distress, either
at the market or at the security level. The two most prominent papers analyzing U.S.
corporate bond market liquidity during the financial crisis are Friewald et al. (2012) and
Dick-Nielsen et al. (2012): both show that trading costs spiked during the recent financial
crisis, thus having a significant impact on yield spreads, especially those of bonds with high
credit risk. Jankowitsch et al. (2014) focus instead on the effects of financial distress on
liquidity at the security level, analyzing recovery rates of defaulted bonds. A more recent
group of papers focuses on the impact of the Volcker rule on the U.S. corporate bond
market liquidity. As pointed out by Duffie (2012b), the restriction imposed by regulators
on dealers’ trading activity can significantly impact the level of the bid-ask spreads in the
market. Bessembinder et al. (2016) study corporate bond liquidity and dealer behavior in
the period 2006-2016, finding that trade execution costs have not increased significantly
over time, while dealer capital commitment was significantly reduced after the crisis. Bao
et al. (2016) analyze the illiquidity of stressed bonds, focusing on rating downgrades as
stress events. They find that, after the introduction of the Volcker Rule, stressed bonds are
significantly more illiquid, due to Volcker-affected dealers lowering their market liquidity
provision. Finally, in a recent working paper, Choi and Huh (2017) demonstrate that
customers, such as hedge funds, often provide liquidity in the post-crisis U.S. corporate
bond market. Therefore, average bid-ask spreads, which rely on the assumption that
dealers provide liquidity, underestimate trading costs that liquidity-demanding investors
pay. Finally, Schestag et al. (2016) provide a comprehensive analysis of liquidity measures

8Another regulatory report that is concerned with the corporate bond market at the European level
is ESMA (2016); however, it relies on data from Markit and Euroclear, both based on market averages,
instead of transactions-level data.

9Harris and Piwowar (2006) have a similar study for the municipal bond market.



in OTC bond markets using a sample period that covers 2003-2014.

7.3 Market structure and financial market regulation

From the market microstructure point of view, the European corporate bond market is
mostly a classic over-the-counter (OTC) market.10 This OTC market is further diffe-
rentiated by size and involves an inter-dealer segment (i.e., D2D) and a retail segment
(dealer-customer, i.e., D2C), and into voice and electronic markets by trading mechanism.

The voice market is organized around dealers (large banks and securities houses) and
their network of clients. Transactions are largely bilateral via the telephone. As stressed
in Duffie (2012a), the process of matching buyers and sellers requires a large amount of
intermediation in this market, as well as attendant search costs. Since this market is known
as a quote-driven market, i.e., executable prices are offered in response to a counterparty’s
request to trade, prices for the same bond, at the same time, could vary significantly across
dealers; hence, traders often contact more than one dealer in search of the best execution
price. This fact, and that quotes and transaction prices are usually not publicly known,
make bond trading more opaque than many other traded asset classes.

Besides voice, there exist several electronic platforms with different trading protocols
at their core. Single-dealer platforms are often a mere electronic version of the voice
mechanisms described above, while multi-dealer platforms allow the customer to request
quotes to trade from a number of dealers simultaneously and facilitate automated record
keeping. Another recent innovation is “all-to-all” platforms that are estimated to account
for almost 5% of electronic trading by now. For a survey of the ongoing developments
that are affecting the market structure and functioning of the fixed income markets due to
electronic trading, see BIS (2016). A study by Greenwich Associates (Greenwich Associates
(2014)) indicates that around 50% of trading volume is conducted electronically in the
European investment grade corporate bond market, and almost 20% for high-yield bonds.

7.4 Data

7.4.1 Description of the dataset

Our dataset is based on the transaction reporting obligations of German banks mandated
by the German Securities Trading Act (Wertpapierhandelsgesetz, “WpHG”). Section 9 of
the act, further detailed in the respective regulation (Wertpapierhandel-Meldeverordnung,
“WpHMV”), requires credit or financial services institutions, branches of foreign institutions
and central counterparties (only Eurex Clearing AG, in practice) domiciled in Germany
to report to the German Federal Financial Supervisory Authority (Bundesanstalt für
Finanzdienstleistungsaufsicht, popularly known as “BaFin”). The requirement is to report
“any transactions in financial instruments which are admitted to trading on an organised
market or are included in the regulated market (regulierter Markt) or the regulated unofficial
market (Freiverkehr) of a German stock exchange.” The dataset also captures a large set

10Even in cases where exchanges are organized around a central limit order book, their market share is
minor. For example, in the Italian bond market, where exchange trading is relatively more common, less
than 30% of the turnover in Italian non-government bonds takes place on exchanges, according to a report
by the Italian securities regulator Commissione Nazionale per le Società e la Borsa (CONSOB) (CON-
SOB, Bollettino Statistico Nr. 8, March 2016, available at http://www.consob.it/web/area-pubblica/

bollettino-statistico), with the rest occurring in the OTC market. This number is likely to be much
lower for other European countries, including Germany.

http://www.consob.it/web/area-pubblica/bollettino-statistico
http://www.consob.it/web/area-pubblica/bollettino-statistico


of transactions of non-German institutions at German exchanges.11

To the best of our knowledge this dataset has only been used in a set of studies in
the context of institutional herding in the German equities market (Kremer and Nautz
(2013a,b); Boortz et al. (2014)). Since these prior studies offer neither a comprehensive
description of the dataset nor a focus on corporate bonds, we initially provide a detailed
description of the dataset and the series of filtering steps we apply to the raw data. The
transactions dataset contains security information, detailed information on the transaction
(for instance, time, price, size, exchange code or indicator for OTC trades) and the parties
involved (an identifier for the reporting institution and, where applicable, identifiers of
client, counterparty, broker or intermediaries).12 We augment this information with security
characteristics from the Centralized Securities Database (CSDB), which is operated jointly
by the members of the European System of Central Banks (ESCB), together with other
security information from Thomson-Reuters, Datastream and Bloomberg. For a smaller
subset of bonds we also obtained time-series of daily price quotes from Bloomberg.

Our raw dataset contains all reporting in “any interest-bearing or discounted security
that normally obliges the issuer to pay the bondholder a contracted sum of money and to
repay the principal amount of the debt” as indicated by a CFI-code starting with “DB”
(with “D” for debt instruments, and “B” for bonds).13 Our bond dataset covers the full
set of transactions over the period from January 2008 to December 2014; therefore, it
initially includes any type of sovereign, guaranteed, secured, unsecured, negative pledge,
junior/subordinated and senior bonds reported through WpHG. For this sample selection
we adopt a narrower definition of the corporate bond market than Bundesbank (2017)
and the capital market statistics of Deutsche Bundesbank, which include other debt-type
securities not classified as bonds. Of the total market size of 145 billion EUR amount
outstanding of German corporate bonds at the end of 2014 reported in the capital market
statistics, we capture about 41 billion EUR, i.e. roughly one-third. In addition, we note that
our initial sample includes non-German bonds (traded by German financial institutions)
as well.

7.4.2 Data filtering and sample selection

Our dataset is subjected to a careful filtering process, in order to ensure the soundness and
reliability of the final sample. We describe below our general procedure, also mentioning
considerations for uses of the data other than ours. We then proceed to describe the sample
selection filters that are specific to our study.

Panel A of Table 7.1 provides an overview of the observations discarded throughout
the cleaning process. In a first cleaning step, we remove entries with invalid ISINs or
time-stamps. Moreover, we employ an error code assigned by BaFin to each observation,
which takes the integer values from 0 (no errors) to 3 (serious errors - junk), to drop
observations with error code 3 in this step. On average, this step filters out only 0.2% of
observations and we observe that the data quality improves after 2009. Recall that the
initial filtering of our dataset for bond-type securities relied on the CFI-code provided by

11Building societies (Bausparkassen) are excluded from the reporting requirement. Moreover, non-German
EU banks do not have to report trades in MiFID-securities since they already report these in their home
countries. A non-binding English translation of the law is provided at https://www.bafin.de/SharedDocs/
Veroeffentlichungen/EN/Aufsichtsrecht/Gesetz/WpHG_en.html

12For a full list of variables see the Annex to WpHMV. A non-binding English translation is provided at
https://www.bafin.de/SharedDocs/Downloads/EN/Formular/WA/dl_wphmv_anlage_en.html

13This definition excludes any convertible bonds (“DC”), bonds with warrants attached (“DW”), medium-
term notes (“DT”), money market instruments (“DY”), asset-backed securities (“DA”), mortgage-backed
securities (“DG”), or other miscellaenous debt instruments (“DM”).

https://www.bafin.de/SharedDocs/Veroeffentlichungen/EN/Aufsichtsrecht/Gesetz/WpHG_en.html
https://www.bafin.de/SharedDocs/Veroeffentlichungen/EN/Aufsichtsrecht/Gesetz/WpHG_en.html
https://www.bafin.de/SharedDocs/Downloads/EN/Formular/WA/dl_wphmv_anlage_en.html


Table 7.1: Data Cleaning and Sample Selection: Panel A shows the number of observations after each of the cleaning steps described in section 7.4.2. Before
cleaning is the initial number of observations. We discard observations with errors in ISIN or time-stamp, in non-debt securities, in minor currencies, corresponding to
technical lines (duplicate lines that are automatically created by some reporting systems when the trade is on hold) or corresponding to double-reporting by both parties
of a trade. Filtering is applied for prices (absolute values and weekly price median filter) and complete CFI-codes (for bond classification). Panel B describes number of
bonds, observations and traded volume retained in our sample selection process. Vanilla bonds are bonds with a complete CFI code with fixed or zero coupon and a fixed
redemption date and which are not classified otherwise as hybrid or structured products. Vanilla bonds are distinguished into secured/guaranteed bonds (secured through
assets or a non-government entity), treasury-type bonds (issued or guaranteed by a federal or state government) and unsecured bonds. For unsecured bonds we distinguish
between certificates and corporate bonds which are either financial bonds or non-financial bonds depending on the issuer type.

Panel A: Data Cleaning

before after removing after complete vanilla
year cleaning errors non-debt currencies technical lines double-reporting price-filtering CFI code bonds

2008 3,802,701 3,766,085 3,461,772 3,428,490 2,416,096 1,597,236 1,588,700 1,522,319 1,261,461
2009 3,675,045 3,670,634 3,263,093 3,242,910 1,706,814 1,197,506 1,189,079 1,114,034 845,341
2010 4,106,918 4,106,149 3,989,344 3,965,796 2,019,035 1,486,864 1,478,227 1,343,649 935,190
2011 3,770,269 3,769,170 3,678,184 3,658,141 2,072,979 1,429,922 1,421,010 1,297,610 928,948
2012 4,681,385 4,681,196 4,573,035 4,543,243 2,695,704 1,765,453 1,723,423 1,584,035 961,130
2013 4,258,139 4,258,136 4,122,257 4,077,110 2,670,584 1,711,202 1,687,676 1,497,546 965,263
2014 4,077,082 4,077,070 3,818,136 3,747,882 2,426,399 1,574,867 1,554,282 1,351,927 843,248∑

28,371,539 28,328,440 26,905,821 26,663,572 16,007,611 10,763,050 10,642,397 9,711,120 6,740,581

Panel B: Sample Selection

vanilla bonds unsecured bonds corporate bonds

vanilla bonds secured treasury-type unsecured certificates corporates non-financial financial

WPHG: all trades

# bonds 81,664 4,873 4,218 72,573 60,817 11,670 817 10,853
# trades 6,740,581 1,188,767 2,906,710 2,645,104 765,781 1,857,777 738,839 1,118,938
traded volume (million EUR) 12,474,668 791,973 11,244,802 437,893 29,901 389,294 57,209 332,085

WPHG: trades in German bonds

# bonds 65,819 2,803 1,272 61,744 51,938 9,741 178 9,563
# trades 4,216,200 661,076 1,287,824 2,267,300 671,381 1,578,591 581,594 996,997
traded volume (million EUR) 7,572,336 488,579 6,732,304 351,453 20,863 319,454 34,879 284,575

TRACE

# bonds 9,602 598 274 8,730 8,730 2,314 6,414
# trades 16,810,039 319,396 414,914 16,075,729 16,075,729 3,537,977 12,537,466
traded volume (million USD) 6,865,837 195,225 274,333 6,396,279 6,396,279 1,605,194 4,790,566



the reporting institutions. In the second step, to ensure robustness of our data, we also
remove all observations from ISINs where the CFI-code recorded by CSDB does not start
with “DB”, thus double-checking our sample selection. This removes another 5.0% of our
initial observations. Prices are reported in the currency used in the trade and need to be
converted to EUR. In the third step we do so, by keeping only trades originally reported in
the main currencies: “EUR”, “AUD”, “CHF”, “GBP”, “USD”, “CAD”, “JPY”, “DKK”,
“NOK” and “SEK”.

In the fourth step, we remove so-called technical lines. These lines are created in some
reporting systems e.g., when a trade is on hold while a broker is gathering more of a
security she has committed to sell. Technical lines are detected when the reporting entity
field is identical to the client field. Discarding them removes 37.6% of the initial number of
observations. Even after accounting for technical lines, the same transaction can still be
recorded in multiple lines. This happens, for instance, when both counterparties are obliged
to report when a central counterparty is involved or when an intermediary is used. Since
our focus is on trading activity, in the fifth step, we keep only one observation for each
transaction, i.e., we identify duplicates as trades on the same day, in the same security, at
the same price, and for the same absolute volume. While the parties involved in the trade
are also reported, their reporting style can be inconsistent. We thus ignore the information
on the involved parties to avoid false negative duplicate detections, but instead we use it
for fine-tuning our filtering parameters. Another crucial variable is the intraday time of the
trade. Unfortunately, it is possible that for the same trade, different intraday timestamps
are reported, e.g., when one counterparty of an OTC transaction needed additional time to
conclude their side of the trade. As a compromise between false positive and false negative
duplicate detections, we consider two lines to be duplicates only when their intraday time
difference is a maximum of ten minutes. By discarding duplicates, we drop another 18.5%
of the initial data-set or 32.8% of the remaining observations.

Finally, we apply price filters. We first remove trades reported at prices of less than
1% or more than 500% of nominal bond value, and then apply a weekly price median filter,
filtering out trades that deviate by more than 10% from the weekly median price. For
computational reasons, we do not apply a price reversal filter since we find for a smaller
subset of actively traded bonds that only a negligibly small number of trades would be
flagged. This filtering step drops only 0.4% of observations. Two additional fields in the
dataset indicate whether a deal is on behalf of a client or not and whether the deal affects
the balance sheet of the reporting institution. These fields are useful when one is interested
in the inventory or balance sheet of the reporting institutions.

The cleaning steps described above leave us with about 10.6 million observations,
corresponding to single trades, down from an initial 28.4 million observations. Next, we
proceed to select our sample of corporate bonds, relying on the CFI code. Thus, in the
second column from the right of Panel A in Table 7.1, we consider only bonds where
the 1st, 2nd and 3rd attributes (type of interest, guarantee and redemption) in the CFI
code (consolidated from WpHG and CSDB data) are well-defined (i.e., non-“X”). This
corresponds to dropping another 8.8% of trades. From this sample, we select bonds with
either a fixed or zero coupon rate and a fixed redemption date, and that are not classified
otherwise as hybrid or structured products; we name these vanilla bonds. Our initial
sample of vanilla bonds, therefore, consists of 6.7 million trades in 81, 664 bonds for a
traded volume of ca. 12.5 trillion EUR.

Panel B of Table 7.1 distinguishes vanilla bonds by bond securization type as inferred
from the second attribute of the CFI code. The column secured/guaranteed refers to vanilla
bonds either secured through assets or guaranteed by a non-government entity (attribute



“S” or “G” respectively), Treasury-type bonds are issued or guaranteed by a federal or state
government (attribute “T”), e.g., German Bunds and KfW-issued bonds are also part
of this category. Unsecured bonds do not carry a guarantee or security (attribute “U”).
The largest share of trading volume is due to government bonds with 11.2 trillion EUR,
while secured or guaranteed bonds make up for 792 billion EUR. Unsecured bonds account
for a total trading volume of 438 billion EUR. Based on the CSDB variable “debt type”
we classify unsecured vanilla bonds into corporate bonds and certificates. While there is
a large number of 60, 817 certificates, they make up for only 30 billion EUR of traded
volume. The set of corporate bonds is further distinguished in the two rightmost columns
into financial bonds (i.e., bonds issued by financial corporations such as banks, insurance
corporations and financial auxiliaries) and non-financial bonds (bonds issued by industrial
and other non-financial companies). Even though there are only 817 non-financial bonds in
our sample, they make up for a traded volume of 57 billion EUR compared to 332 billion
EUR traded in 10, 853 financial bonds.

We believe that our sample is highly representative of the German (corporate) bond
market, but only to a much lesser extent of the whole European market. Therefore, we
focus our attention on German corporate bonds and report the statistics of number of
bonds, number of trades and traded volume for German-issued bonds in the middle section
of Panel B. Throughout this chapter, therefore, we will compare the German corporate
bond market, based on the BaFin dataset, to the market for U.S. corporate bonds, based
on TRACE data. Therefore, we also provide the corresponding statistics for U.S. bonds
at the bottom section of Panel B. It is remarkable that even though the U.S. corporate
bond market is much larger in size, we are starting from an even slightly larger number of
bond issues in the German market.14 It is important to stress that our transaction data
on German bonds captures only a share of trading activity (that by German financial
institutions, essentially), whereas TRACE data can be considered as covering the full U.S.
corporate bond market. Any comparison we make should thus be seen with this caveat in
mind. We cannot make any final statement on the absolute levels of trading volume and
trading activity, which are lower than the total market. However, we believe this sample to
be representative of the whole market, and hence informative on relative levels of liquidity,
trading activity and trading volume.15

7.5 Liquidity in markets with and without transparency

In the previous section, we have described, in detail, the filtering and selection process to
obtain our dataset for analysis. In this section, we present our main analysis, which can be
divided into four parts. First, we provide a general description of the German corporate
bond market, focusing on the key characteristics of the bonds and their trading activity.
Second, we analyze the time-series evolution of liquidity in the German market. Third,
we study the determinants of liquidity in the cross-section of the German market with
panel regressions on bond characteristics in the spirit of Edwards et al. (2007). Fourth, we
use a matched-sample approach to compare the transaction costs of similar bonds, at the
same point in time, in the German and the U.S. market. The variables that we use for our

14Most of these are financial bonds, a finding that is confirmed by industry reports and data from the
Centralised Securities Database (CSDB) of the Eurosystem of Eurpean central banks. Note that our
TRACE sample does not include certificates to make the comparison more reasonable.

15This type of limited sample has been used even when larger datasets are available as in the US. For
example, Di Maggio et al. (2017) study trading relationships in the U.S. corporate bond market by using a
random sample of TRACE data which covers approximately 10% of the market.



matching procedure are coupon, rating, time to maturity, size, volume traded and trading
frequency.

7.5.1 Descriptive analysis

Full sample

In Table 7.2 we provide summary statistics of bond characteristics and bond-level trading
activity, distinguishing both between financial and non-financial corporate bonds, and
comparing our German BaFin sample with the U.S. TRACE counterpart.

The coupon rates of German corporate bonds are slightly larger than for U.S. bonds
(6.3% compared to 5.9% for non-financials and 5.4% compared to 5.2% for financial bonds),
which is somewhat surprising, considering that overall German interest rates were lower
than in the U.S. in our sample period. German corporate bonds are typically shorter-
lived with an average maturity of 5.9 years for non-financial bonds and 4.0 years for
corporate bonds, whereas the corresponding numbers for U.S. bonds are 13.7 and 8.5 years
respectively, also featuring greater variation, as indicated by wider quantiles and a higher
standard deviation, in relative terms. Most notably U.S. bonds are also, on average, much
larger, measured by issue size. The mean amount issued of German non-financial bonds
(financial bonds) is 146 million EUR (48 million EUR), compared to 406 million USD
(229 million USD) for U.S. bonds. Also, the 95% percentile of the issue amount at 1.25
billion USD is much larger than the corresponding 700 million EUR (139 million EUR) for
German bonds. Notice that the EUR/USD exchange rate during the 2008-2014 period
fluctuated between 1.19 and 1.60, with a mean of 1.36 USD per EUR.

Turning to indicators of trading activity, there is a clear disparity between the two bond
markets. The average number of trades per day in our sample of German non-financials
has a mean of 5.22, and ranges from 0.008 to 18.5, from the 5% to the 95% percentile. For
U.S. bonds, the mean is 1.23, and the 5% and 95% percentiles range from 0.001 to 2.16. It
is important to consider that, in our German sample, the number of non-financial bonds is
only 178 versus 2, 374 in the U.S. sample. However, the picture is quite the opposite for
financial bonds. In this case, there are 9, 563 German financial bonds, and the mean of
the average number of trades per day is 0.18, and the quantiles range from 0.002 to 0.78.
Instead for the U.S. sample, where the number of financial bonds is far lower, 6, 414, the
mean is 0.70, more than three times larger, and ranges from 0.002 to 3.44, that is the value
at the 95th percentile is four times larger. We observe the opposite picture for the average
duration between two trades in the same bond, where for German non-financial bonds, the
average is 12.75 days, compared to 69.48 days in the U.S., whereas for financial bonds, the
average duration between trades is 64.11 days in Germany versus 49.62 days for the U.S.,
with a large dispersion around these measures. These summary statistics provide evidence
of the large heterogeneity between the two markets, and between financial/non-financial
issuers. Yet, there is no clear evidence that these two subsamples of German bonds are
any less liquid than the corresponding two subsamples of U.S. corporate bonds.

A clearer picture is given by Table 7.3, which reports the distribution of bonds in bins
of the number of days per year for which we observe trading activity in the bond. First,
the number of bonds in the two markets is rather similar: 9,741 in Germany and 8,728
in the U.S. However, when looking at the distribution of the trading frequency, there is a
clear difference between the two markets: 32% of the U.S. sample is traded at least 100
days a year, while only 6% of the German bonds are traded that often. On the other
hand, 48% of the U.S. sample is rarely traded (0-50 trading days a year). The group
of rarely traded bonds in the German sample amounts to 87%, representing the great



Table 7.2: Descriptive statistics of bond characteristics for German and U.S. corporate bonds, differentiated for financial and non-financial sector bonds. Coupon
rate is in percent, excluding zero coupon-bonds. Maturity is the maturity at issuance, in years. Time-to-maturity) is the average remaining maturity at the time of a
trade (averaged for each bond), in years. Amount issued is the issued amount of bond in million EUR or USD respectively. Average number of trades per day is the
average number of trades on any given trading day for the lifetime of the security. Average number of trades per day if trade is the average number of trades on a trading
day with at least one trade. Average trading interval is the average amount of calendar days between two consecutive trades. Average daily volume is the average volume
in million EUR (USD) traded on one day. Average daily volume if trade is the average volume in million EUR (USD) traded on a trading day with at least one trade.
Trade volume total is the summed value of trades recorded in our sample for a given security, in million EUR or USD respectively.

German bonds, WPHG U.S. bonds, TRACE

mean stddev p05 median p95 mean stddev p05 median p95

non-financial bonds

Coupon rate (%) 6.32 1.80 3.21 6.61 9.00 5.94 2.48 1.50 6.05 9.88
Maturity (years) 5.89 2.32 3.02 5.00 10.00 13.71 12.44 2.48 10.02 30.08
Time-to-maturity (years) 4.11 2.21 1.14 4.00 7.88 1.53 4.65 0.00 0.02 7.88
Amount issued (millions) 146.63 236.47 2.17 30.00 700.00 406.49 633.17 12.92 250.00 1,250.00
Avg. # trades per day 5.22 7.11 0.01 2.45 18.48 0.42 1.23 0.00 0.04 2.16
Avg. # trades per day | trade 6.55 6.67 1.25 4.20 18.18 11.67 25.75 1.33 3.02 62.00
Avg. trading interval (days) 12.75 34.23 1.44 1.89 56.14 22.06 69.49 1.46 5.00 91.34
Avg. daily volume (millions) 0.33 0.68 0.00 0.09 1.42 0.22 0.63 0.00 0.02 1.06
Avg. daily volume | trade (millions) 0.49 0.82 0.01 0.20 1.71 28.81 399.01 0.06 2.22 122.75
Total trade volume (millions) 195.95 313.37 0.11 54.66 925.15 693.69 2,054.87 0.73 86.78 3,077.17

financial bonds

Coupon rate (%) 5.36 4.30 1.45 3.87 15.00 5.16 1.70 2.00 5.30 7.55
Maturity (years) 4.02 2.87 1.07 3.25 10.00 8.53 7.99 1.05 5.04 25.06
Time-to-maturity (years) 2.45 2.38 0.22 1.41 7.20 0.98 2.90 0.00 0.01 5.35
Amount issued (millions) 47.89 203.17 0.10 17.01 139.00 229.28 511.28 10.53 24.73 1,250.00
Avg. # trades per day 0.18 0.70 0.00 0.02 0.78 0.70 2.01 0.00 0.14 3.44
Avg. # trades per day | trade 1.60 1.28 1.00 1.20 3.39 4.97 8.37 1.00 2.96 16.15
Avg. trading interval (days) 64.11 125.24 2.82 25.07 245.32 18.75 49.62 1.48 5.41 72.63
Avg. daily volume (millions) 0.06 0.30 0.00 0.00 0.21 0.32 1.41 0.00 0.01 1.72
Avg. daily volume | trade (millions) 3.63 25.48 0.00 0.07 14.60 4.11 25.81 0.04 0.16 15.27
Total trade volume (millions) 29.76 135.91 0.00 1.11 119.58 746.89 2,911.20 0.28 20.63 4,007.97



majority of the market. This major difference is a clear indication of much greater market
liquidity in the U.S., with a significantly larger number of securities that trade often, and
therefore, likely to provide more informative prices. This result is consistent with various
theoretical studies that show that transparency lowers costs for unsophisticated investors
and, therefore, incentivizes participation in the market.16

Table 7.3: Frequently traded bonds: Number of bonds for which trading activity is reported on a
number of days within bins of 50. For each bond we count the most active year.

German bonds TRACE

non-financial financial non-financial financial

200+ 78 102 288 828
151-200 15 147 161 524
101-150 19 248 197 865
51-100 13 579 286 1,356
0-50 53 8,487 1,382 2,841∑

178 9,563 2,314 6,414

Liquid sample

In an attempt to provide a precise estimate of transaction costs, we concentrate our following
analysis on a set of bonds for which liquidity measures can be estimated. In line with the
best practices established in the literature, we consider only bond-week observations that
have at least 8 transactions.17 This leaves us with 1, 703 German bonds (118 non-financial
and 1, 585 financial bonds) and 6, 493 U.S. bonds (1, 744 non-financial and 4, 749 financial
bonds). Table 7.4 provides the descriptive statistics of bond characteristics and trading
activity for this liquid sample.

The sub-sample partially confirms the characteristics that we observe in the larger
sample. As for the whole sample, the amount issued is smaller for German corporate
bonds. For non-financial bonds, the average number of trades per day is larger for German
bonds compared to the U.S., whereas for financial bonds, the distributions are now quite
similar. For all these measures, the dispersion is quite large, indicating that both samples
feature considerable heterogeneity across bonds. The coupon rates in this case are largely
similar and, instead, the maturity is shorter for German bonds (both non-financials and
financials).

In Table 7.5, we also report the credit ratings for our sample of liquid bonds. Credit
ratings for the German BaFin sample were obtained from Bloomberg, Thomson Reuters
and Bundesbank databases, whereas ratings for TRACE are from Mergent FISD. Most
bonds are rated investment grade across samples. This is especially true for German
financial bonds, due to the relatively better credit rating quality of state banks. The most
striking feature is the lack of credit ratings for German non-financial bonds, where we are
able to obtain a credit rating only for 28 of the 118 bonds. This low proportion of rated
non-financial bonds is explained by the credit market structure in Europe, which not only

16For theoretical studies, see for example Pagano and Roell (1996), Duffie et al. (2017).
17Estimations based on TRACE data are usually performed at a daily frequency. However given the less

complete coverage of trading in German bonds, this would impose too strict a selection criterion on the
German sample. However, while we use a weekly frequency for our analysis, robustness checks at a daily
frequency show that our results are in line with our findings below.



Table 7.4: Descriptive statistics of bond characteristics for liquid German and U.S. corporate bonds, differentiated for financial and non-financial sector bonds.
Coupon rate is in percent, excluding zero coupon-bonds. Maturity is the maturity at issuance, in years. Time-to-maturity) is the average remaining maturity at the time
of a trade (averaged for each bond), in years. Amount issued is the issued amount of bond in million EUR or USD respectively. Average number of trades per day is the
average number of trades on any given trading day for the lifetime of the security. Average number of trades per day if trade is the average number of trades on a trading
day with at least one trade. Average trading interval is the average amount of calendar days between two consecutive trades. Average daily volume is the average volume
in million EUR (USD) traded on one day. Average daily volume if trade is the average volume in million EUR (USD) traded on a trading day with at least one trade.
Trade volume total is the summed value of trades recorded in our sample for a given security, in million EUR or USD respectively.

German bonds TRACE

mean stddev p05 median p95 mean stddev p05 median p95

non-financial bonds

Coupon rate (%) 6.00 1.77 2.93 6.50 8.50 6.12 2.27 2.13 6.13 9.88
Maturity (years) 5.81 2.00 4.00 5.00 10.00 14.35 12.61 4.15 10.02 30.10
Time-to-maturity (years) 4.06 1.71 1.31 4.02 6.61 4.76 6.19 0.00 1.85 18.07
Amount issued (millions) 183.42 264.41 5.00 50.00 757.50 477.75 682.65 14.99 300.00 1300.00
Avg. # trades per day 6.92 7.45 0.11 4.34 20.32 0.51 1.42 0.00 0.04 2.94
Avg. # trades per day | trade 7.90 7.04 1.60 5.41 20.28 30.66 38.39 9.00 16.17 99.82
Avg. trading interval (calendar days) 4.52 8.99 1.44 1.73 19.60 76.74 148.82 7.00 27.22 309.63
Avg. daily volume (millions) 0.46 0.80 0.01 0.16 1.66 0.26 0.70 0.00 0.03 1.33
Avg. daily volume | trade (millions) 0.55 0.83 0.02 0.30 1.71 49.57 474.12 0.22 11.31 166.96
Total trade volume (millions) 269.58 353.44 2.91 108.07 948.85 824.26 2365.86 0.68 123.70 3679.08

financial bonds

Coupon rate (%) 3.75 2.18 1.61 3.38 6.15 5.15 1.62 2.03 5.35 7.50
Maturity (years) 4.57 2.75 1.19 4.09 10.00 11.03 8.13 2.04 10.00 30.02
Time-to-maturity (years) 2.85 2.18 0.41 2.43 6.87 3.85 3.54 0.20 2.71 9.47
Amount issued (millions) 72.58 151.35 2.36 27.00 250.00 311.92 591.74 10.71 31.31 1500.00
Avg. # trades per day 0.73 1.33 0.04 0.31 2.69 0.89 2.40 0.01 0.13 5.14
Avg. # trades per day | trade 2.90 2.17 1.36 2.15 7.15 25.16 32.66 9.25 14.35 82.01
Avg. trading interval (calendar days) 15.36 25.80 2.09 8.14 49.93 44.78 70.41 7.00 25.22 141.08
Avg. daily volume (millions) 0.12 0.36 0.00 0.02 0.46 0.43 1.37 0.00 0.01 2.58
Avg. daily volume | trade (millions) 1.17 4.86 0.03 0.14 5.00 12.45 44.77 0.16 0.58 60.63
Total trade volume (millions) 60.39 158.84 0.79 14.05 267.57 1050.43 3462.93 0.64 22.50 6109.19



heavily relies on bank loan financing, but also involves corporate bonds that are often
held until maturity by long-term investors such as insurance companies. As a consequence,
many corporate bond issuers do not seek a credit rating.

Table 7.5: Ratings of liquid bonds: Ratings for German corporate bonds are obtained via Bloomberg,
Thomson Reuters or Bundesbank databases. Ratings for U.S. bonds are from Mergent ID. The sample is
corporate bonds for which we calculate liquidity measures. Bonds with a rating step of 10 and better are
investment grade.

German bonds U.S. bonds

rating step non-financial financial non-financial financial

1 (Aaa/AAA) 0 64 58 368
2 (Aa1/AA+) 0 38 59 348
3 (Aa2/AA) 0 117 17 365
4 (Aa3/AA-) 0 347 82 690
5 (A1/A+) 4 460 110 539
6 (A2/A) 0 134 250 768
7 (A3/A-) 0 260 161 252
8 (Baa1/BBB+) 7 34 145 106
9 (Baa2/BBB) 7 1 164 89
10 (Baa3/BBB-) 7 17 115 99

11 (Ba1/BB+) 1 0 41 262
12 (Ba2/BB) 1 2 59 67
13 (Ba3/BB-) 0 0 70 68
14 (B1/B+) 1 2 55 173
15 (B2/B) 0 0 55 48
16 (B3/B-) 0 0 90 32
17 (Caa1/CCC+) 0 0 46 9
18 (Caa2/CCC) 0 0 16 6
19 (Caa3/CCC-) 0 0 3 6
20 (Ca/CC) 0 0 0 1
21 (C/C) 0 0 2 0

unavailable 90 109 146 453∑
118 1,585 1,744 4,749

7.5.2 Measuring liquidity in bond markets

Liquidity metrics

To measure liquidity, we employ a range of liquidity metrics that have been tested and
verified on U.S. TRACE data. The Amihud measure, proposed in Amihud (2002), is a
proxy for market price impact, i.e., the average price shift induced by a trade. The other
measures we use capture the cost of a round-trip trade: Price dispersion, the Roll measure,
the imputed round-trip cost and the effective bid-ask spread all estimate the loss associated
with buying and immediately selling an asset (which would be the bid-ask spread in the case
of an exchange market). All details regarding the calculation of these liquidity measures
are provided in Appendix 7.B. It is important to highlight two aspects of our methodology.
First, while these measures are typically calculated on a daily basis for U.S. TRACE data,



all measures calculated here for both the German and the U.S. samples are based on weekly
data. This allows us to include more German bonds in our analysis that are relatively
actively traded, but not typically on a daily basis, while maintaining the comparability
between the two samples. Second, the calculation of the effective bid-ask spread requires
the trade sign, i.e., whether a trade was buyer- or seller-initiated. This information is
provided in TRACE but not in our BaFin data on the German market. Instead there
we infer the trade sign using the algorithm of Lee and Ready (1991) by comparing our
trade prices with quotes from Bloomberg. Since such quotes are not available for all bonds
in our sample, this effectively creates a different subsample and we need to be careful
when comparing the effective bid-ask spread with other liquidity measures of German
bonds. We present visually this in Figure 7.1, where we show the number of bonds for
which the liquidity metrics of price dispersion and the effective bid-ask spread could be
computed in each week of our sample.18 The number of bonds for which we compute the
effective bid-ask spread is always smaller than that for the effective bid-ask spread due to
the reasons mentioned above.

Table 7.6 provides summary statistics of the different liquidity measures. Panel A
reports the liquidity measures for both German and U.S. non-financial bonds. The table
indicates that the different liquidity measures do have a large cross-sectional variation, both
for the German and U.S. bonds. The price dispersion and Roll measures, and the effective
bid-ask spread based on our BaFin sample, are, on average, lower for German non-financial
bonds than the corresponding bonds in TRACE, whereas the Amihud illiquidity measure
and the round trip cost are higher. On the other hand in Panel B, the financial bonds in
TRACE are shown to be, on average, always more illiquid than German financial bonds in
the BaFin sample. However, we hasten to emphasize that a simple average comparison is
misleading. Such a comparison should not induce us to conclude that German corporate
bonds are generally more liquid than the U.S. corporate bonds. In fact, financial bonds
in TRACE appear to be more illiquid because of the large differences in the number of
bonds considered in both samples, i.e., the number of bond-week observations of the BaFin
German sample are only as much as one-eighth of the TRACE U.S. sample in Panel A,
whereas in Panel B, this ratio is even less than 10 percent. The time series dynamics of
these measures are potentially different and will be taken into account in the analysis below.
In the following subsections, we perform a finer and more granular analysis of the different
liquidity measures from a time series and cross-sectional perspective, and try to investigate
potential similarities and differences in the patterns and cross-sectional characteristics of
the different liquidity measures between U.S. and German corporate bonds.

7.5.3 Time-series dynamics of liquidity

In describing the evolution of liquidity, we first consider the effective bid-ask spread. This
is the liquidity measure that relies on the most complete set of information and, thus,
is our benchmark for the other measures. Recall that the only caveat with the effective
bid-ask spread is that it requires the information on the initator of the trade, which is
only available for a smaller sample of German bonds that have quote information. Figure
7.2 shows the average level of effective bid-ask spread in German (U.S.) bonds in Panel
(a) (Panel (b)), separated for financial and non-financial bonds. For both countries, there
is a sharp increase in illiquidity, associated with the financial crisis at the end of 2008.
Liquidity in U.S. bonds has since improved steadily, and the average level of the effective

18The criteria for the calculation of price dispersion are almost identical to those of the Amihud and
Roll measures as well as the imputed round-trip cost. In the interest of readability, we only show the line
corresponding to price dispersion in the figure, while the other measures behave in a similar manner.
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(a) German non-financial bonds
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(c) Number of bonds in TRACE with liquidity calculated at the weekly
level.

Figure 7.1: Number of liquid bonds: Number of bonds for which we compute liquidity measures at the
weekly level. The sample Panel (a) are German non-financial bonds and German financial bonds for Panel
(b). Price dispersion, Roll measure, Amihud measure and imputed round-trip cost require 8 observed trades.
The calculation of the effective bid-ask spread for our German sample further requires the availability of
quotes to infer whether a trade was buyer- or seller-initiated, leading to less observations. Year-end effects
are clearly discernible in all transaction-based measures of liquidity. For U.S. bonds in Panel (c) the trade
sign is included in TRACE and we distinguish only between financial and non-financial bonds.



Table 7.6: Liquidity statistics: Summary statistics of liquidity measures of German and U.S. corporate
bonds. Panel A shows statistics for non-financial bonds and Panel B for financial bonds. Amihud is the
Amihud measure of price impact obtained as the mean ratio of absolute log returns to trade volumes. Price
dispersion is the root mean squared difference between traded prices and the market valuation proxied
by the volume-weighted average trade price. Roll is the Roll measure, a proxy for the round trip cost
and obtained as twice the square root of the negative auto-covariance of returns. Effective bid-ask spread
is the difference between the average sell and the average buy price, normalized by their midprice. The
trade sign (buy/sell) is inferred by comparing to quotes from Bloomberg. Imputed round-trip cost proxies
bid-ask spread by comparing the highest to the lowest price of a set of transactions with identical volumes.
All measures were computed for every bond and week where there were at least 8 trades with sufficient
information available and winsorized at the 0.5% and 99.5% quantile. Units are basis points except for the
Amihud measure which is given as in units of basis points per million EUR (USD) for German bonds (U.S.
bonds).

Panel A: Non-financial bonds

mean stddev p05 median p95 # bonds # bond-weeks

German non-financial bonds

Amihud (bp per M EUR) 349.47 1447.58 5.17 42.96 1210.15 118 11,057
Price Dispersion (bp) 57.41 59.35 8.61 38.02 177.66 118 11,045
Roll Measure (bp) 67.25 50.61 15.01 54.18 167.02 118 10,674
Effective Bid-Ask (bp) 81.65 109.63 11.00 48.78 282.32 87 6,278
Imputed Roundtrip (bp) 120.18 176.15 9.73 58.38 516.45 118 10,922

TRACE non-financial bonds

Amihud (bp per M USD) 77.43 115.73 1.41 40.63 273.84 1,658 85,580
Price Dispersion (bp) 90.27 110.88 10.28 57.80 263.07 1,658 85,580
Roll Measure (bp) 128.86 124.76 16.87 94.84 346.51 1,625 79,086
Effective Bid-Ask (bp) 136.04 168.95 5.48 73.91 447.54 1,582 79,119
Imputed Roundtrip (bp) 66.81 69.21 5.32 45.76 199.80 1,602 81,267

Panel B: Financial bonds

mean stddev p05 median p95 # bonds # bond-weeks

German financial bonds

Amihud (bp per M EUR) 29.81 61.17 0.71 11.88 106.85 1,508 18,917
Price Dispersion (bp) 34.69 34.41 3.00 24.85 98.42 1,508 18,744
Roll Measure (bp) 53.84 50.63 3.65 39.24 153.58 1,508 17,945
Effective Bid-Ask (bp) 102.62 92.88 12.33 77.71 270.45 323 3,048
Imputed Roundtrip (bp) 45.83 53.53 2.75 29.26 143.59 1,476 17,253

TRACE financial bonds

Amihud (bp per M USD) 110.88 190.21 3.45 51.96 401.21 4,318 276,466
Price Dispersion (bp) 123.82 192.00 10.19 73.89 389.02 4,318 276,467
Roll Measure (bp) 164.08 192.58 17.83 110.61 452.80 4,265 256,743
Effective Bid-Ask (bp) 199.76 254.81 6.53 130.67 582.02 4,249 263,809
Imputed Roundtrip (bp) 88.00 100.14 6.63 56.87 263.56 4,218 260,827

bid-ask spread was below 100 basis points. Financial bonds were, on average, less liquid
through 2012, a gap that has closed in 2013 and 2014. We observe similar dynamics for
German financial bonds, whereas German non-financials seem to become more illiquid
from 2013 on.

Again, we cannot distinguish between the two markets by simply looking at the dynamics
of the effective bid-ask spread, to ascertain whether this is due to the changing composition
of our sample towards more bonds of smaller issue size (which is typically associated with
lower liquidity), or it is due to a general deterioration of market liquidity. From Figure 7.1,



we know that the number of liquid German bonds has changed significantly in the last
part of the period and, instead, the amount outstanding has not increased significantly.
From Figure 7.2, it also appears that during the first part of our sample period, German
corporate bonds were actually more liquid than their U.S. counterparts. It should be borne
in mind, however, that the limited sample for which we compute the effective bid-ask
spread is likely to be biased towards more liquid bonds. In this case, the clear differences
between the two markets in terms of the distribution of the number of trades per bond
in the sample highlighted in Table 7.3 prevent us from comparing the patterns of these
figures in Panels (a) and (b).
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(a) German bonds (WpHG data).
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(b) U.S. bonds (TRACE data).

Figure 7.2: Effective bid-ask spread: Effective bid-ask spread is the difference between the average
sell and the average buy price, normalized by their midprice and given in basis points.

For the same reason that the effective bid-ask spread is based on a smaller sample of
bonds, it can result in a rather noisy liquidity measure, as suggested by the spikes (especially
for financial bonds) in Panel (a) of Figure 7.2. Importantly, we find these observed trends
to be robust in the other liquidity measures, for which we do not have the trade initiation
limitation and, thus, can use the full sample of liquid bonds. Panels (a) to (d) of Figure



7.3 show the time series dynamics of the price dispersion, Roll, imputed round-trip cost
and Amihud measures respectively for German bonds, and for their counterparts in Figure
7.4 for U.S. bonds. The dynamics of these measures for U.S. bonds coincides with those
for the effective bid-ask spread, whereas the dynamics of liquidity in the German market
requires more detailed attention.
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(a) Price dispersion
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(b) Roll measure
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(c) Imputed round-trip cost
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(d) Amihud measure

Figure 7.3: Further liquidity measures - German bonds. Price dispersion is the root mean squared
difference between traded prices and the market valuation proxied by the volume-weighted average trade
price. Roll is a proxy for the round trip cost and obtained as twice the square root of the negative
auto-covariance of returns. Imputed round-trip cost proxies bid-ask spread by comparing the highest to the
lowest price of a set of transactions with identical volumes. Amihud is a measure of price impact obtained
as the mean ratio of absolute log returns to trade volumes. All measures are given in basis points except
for the Amihud, which is given in in units of basis points per million EUR of trade volume.

For German corporate bonds, we first note that the qualitative patterns that emerge
from the single panels of Figure 7.3 are quite different from another. Price dispersion and
imputed round-trip cost behave in a similar manner as the effective bid-ask spread, but
several features of the Roll and Amihud measures are not replicated in the other liquidity
metrics. Keeping in mind that the Roll measure is based on the auto-covariance of returns,
and the Amihud measure on average returns during an observation period, both measures
ultimately rely on the pattern of bond returns. The divergence between these two measures
may be mostly because not all time stamps and prices are observed in the dataset, and
hence returns are not properly defined. We, therefore, focus our attention on the effective
bid-ask spread, price dispersion, imputed round-trip cost and, to some extent, the Amihud
measure.19

We now look at the evolution of liquidity in the German sample and compare it to the
U.S. market. A common feature to these time series is the sudden increase in illiquidity at
the end of 2008, due to the financial crisis, characterized by a sharp spike at the end of 2008,

19We report correlation coefficients for the liquidity measures in Table 7.10 in Appendix 7.B. The results
are in line with our more descriptive findings above.
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(b) Roll measure
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(c) Imputed round-trip cost
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Figure 7.4: Further liquidity measures - TRACE. Price dispersion is the root mean squared difference
between traded prices and the market valuation proxied by the volume-weighted average trade price. Roll
is a proxy for the round trip cost and obtained as twice the square root of the negative auto-covariance of
returns. Imputed round-trip cost proxies bid-ask spread by comparing the highest to the lowest price of a
set of transactions with identical volumes. Amihud is a measure of price impact obtained as the mean ratio
of absolute log returns to trade volumes. All measures are given in basis points except for the Amihud,
which is given in in units of basis points per million USD of trade volume.

in conjunction with the Lehman Brothers bankruptcy event. The impact of the European
sovereign debt crisis of 2012 is also evident in the graphs corresponding to German bonds,
whereas this effect is of minor consequence for U.S. bonds. All our measures, with the
exception of the Roll measure, show a divergence of German non-financial bonds, which
became more illiquid than German financial bonds. As suggested above, the figures we
present allow for at least two alternative explanations. First, corporate bonds may have
become more illiquid (and also more numerous) in general. Second, trading activity may
have expanded to newly issued bonds which are more illiquid and, thus, while the liquidity
of individual bonds may not have changed, the overall liquidity level might be lower, since
our sample gradually includes more illiquid securities. We aim to distinguish better between
these two effects in our panel regressions below, since no such trend is observed for U.S.
corporate bonds.

In terms of market liquidity, Table 7.6 provides a simple comparison of the different
liquidity measures. In Panel A, the price dispersion, Roll and effective bid-ask are on
average lower for German non-financial bonds than those bonds in TRACE, whereas
Amihud illiquidity and the round trip cost are higher. On the other hand in Panel B,
financial bonds in TRACE are shown to be on average always more illiquid than German
financial bonds. However, a simple average comparison is misleading. Notice that the
number of bond-week observations of the German sample are only as much as one-eighth of
the TRACE sample in Panel A, wheras in Panel B, this ratio is even less than 10 percent.



7.5.4 Determinants of liquidity

In this subsection, we perform a panel analysis that allows us to investigate whether
the liquidity measures for German bonds are related to certain bond characteristics, and
whether the sensitivity of these measures with respect to these characteristics is of similar
magnitude for the U.S. and German samples. The results of the panel analysis are reported
in Table 7.7.

Table 7.7 shows that, for German corporate bonds, the amount issued is not an
important determinant for the various liquidity measures, the only exception being the
effective bid-ask spread, which shows a negative and statistically significant coefficient. In
contrast, for the U.S. corporate bond market, this is a highly significant variable for almost

Table 7.7: Determinants of liquidity: Regression of the liquidity measures described in Table 7.6,
computed at weekly frequency, on bond and bond-time characteristics. The sample for Panel A are German
corporate bonds that carry a rating and U.S. bonds with a rating for panel B. All liquidity measures
are calculated for each bond on a weekly basis and winsorized at the 0.5% level from both tails. The
explanatory variables are given by bond size (in million EUR/USD), rating step (1 being the best rating
on the scale, cf. Table 7.5), time to maturity (in years), age (in years), volume traded in the same bond
and week (in million EUR/USD), and a dummy indicating whether the bond is issued by a financial firm.
Year-fixed effects are included with the year 2014 as a baseline. Test statistics, derived from standard errors
corrected for heteroscedasticity and clustered at the firm level, are given in parenthesis. The significance is
indicated as follows: ∗ < 0.1, ∗∗ < 0.05, ∗∗∗ < 0.01.

Panel A: German liquid bonds

Price Dispersion Roll Amihud Imputed Roundtr. Eff. Bidask

Bond size (million EUR) 0.005 0.010 −0.008 0.013 −0.032∗∗

(0.991) (1.104) (−1.246) (1.357) (−2.294)
Rating step 2.703∗∗∗ 2.754∗∗∗ 2.631 6.267∗∗∗ 3.257

(3.439) (2.681) (1.331) (3.553) (1.339)
Time-to-maturity (years) 4.466∗∗∗ 7.853∗∗∗ 1.599 6.307∗∗∗ 4.902∗∗

(4.661) (4.631) (1.275) (4.469) (2.324)
Age (years) 1.294∗∗ 3.154∗∗∗ 2.664∗∗ 2.602∗∗ −1.913

(2.485) (3.591) (2.319) (2.258) (−0.886)
Volume (million EUR) 0.029 −0.089∗ −0.171∗ −0.093∗∗ −0.241∗

(0.989) (−1.758) (−1.959) (−2.538) (−1.859)
Dummy: financial 17.694∗∗∗ 25.066∗∗∗ 12.430 32.080∗∗∗ 50.080∗∗∗

(2.914) (3.184) (1.196) (3.157) (4.868)
Dummy: year 2008 12.684∗∗∗ 5.508 −0.104 14.300∗ 66.761∗∗∗

(3.179) (0.566) (−0.015) (1.689) (6.677)
Dummy: year 2009 13.408∗∗∗ 9.120 −3.639 10.278 65.888∗∗∗

(3.588) (0.876) (−0.572) (1.121) (5.379)
Dummy: year 2010 8.307∗∗ 9.298 −2.442 5.366 36.318∗∗∗

(2.458) (0.860) (−0.413) (0.664) (4.832)
Dummy: year 2011 8.064∗ 4.367 0.209 8.857 42.605∗∗∗

(1.866) (0.356) (0.026) (0.884) (4.114)
Dummy: year 2012 10.593∗∗ 5.904 9.936 12.692 24.705∗∗∗

(2.515) (0.558) (1.030) (1.371) (3.213)
Dummy: year 2013 3.912 6.279 2.307 6.901 9.088

(1.506) (1.060) (0.568) (1.562) (1.470)
Constant −23.173∗ −20.737 −4.062 −53.029∗∗ −2.586

(−1.856) (−1.277) (−0.163) (−2.271) (−0.081)

Observations 21,439 20,691 21,599 19,965 5,709
number of bonds 1,391 1,343 1,411 1,341 305
R2 0.090 0.123 0.029 0.104 0.251
Adjusted R2 0.089 0.123 0.029 0.103 0.250



Panel B: TRACE liquid bonds

Price Dispersion Roll Amihud Imputed Roundtr. Eff. Bidask

Bond size (million USD) −0.018∗∗∗ −0.012∗∗∗ −0.022∗∗∗ −0.011∗∗∗ −0.062∗∗∗

(−3.631) (−3.423) (−5.365) (−5.478) (−6.560)
Rating step 12.407∗∗∗ 8.300∗∗∗ 4.849∗∗∗ 3.612∗∗∗ 11.218∗∗∗

(8.504) (7.027) (4.048) (5.989) (3.979)
Time-to-maturity (years) 3.906∗∗∗ 5.946∗∗∗ 4.644∗∗∗ 3.669∗∗∗ 6.181∗∗∗

(10.006) (16.419) (11.519) (13.845) (10.940
Age (years) 0.931 0.845 3.705∗∗∗ 0.301 2.779∗∗∗

(0.979) (1.061) (3.563) (1.029) (2.776
Volume (million USD) 0.032 −0.005 −0.051∗∗ −0.004 −0.153∗∗∗

(1.397) (−0.295) (−2.316) (−0.383) (−2.678
Dummy: financial 44.110∗∗∗ 45.167∗∗∗ 46.378∗∗∗ 27.453∗∗∗ 80.162∗∗∗

(7.518) (9.030) (7.460) (9.603) (8.799
Dummy: year 2008 179.640∗∗∗ 168.019∗∗∗ 142.558∗∗∗ 82.966∗∗∗ 190.142∗∗∗

(10.094) (13.168) (9.656) (15.139) (7.803
Dummy: year 2009 146.160∗∗∗ 125.867∗∗∗ 107.225∗∗∗ 72.495∗∗∗ 165.765∗∗∗

(14.781) (17.150) (15.604) (17.675) (13.161
Dummy: year 2010 25.115∗∗∗ 40.329∗∗∗ 37.112∗∗∗ 25.934∗∗∗ 38.944∗∗∗

(3.562) (6.833) (6.236) (8.697) (4.237
Dummy: year 2011 24.103∗∗∗ 33.459∗∗∗ 30.538∗∗∗ 21.168∗∗∗ 34.972∗∗∗

(4.212) (6.194) (5.770) (6.702) (4.455
Dummy: year 2012 8.979∗ 13.384∗∗∗ 6.927∗∗ 9.131∗∗∗ 21.325∗∗∗

(1.856) (4.925) (2.535) (6.217) (3.976
Dummy: year 2013 1.848 2.119 −1.729 1.491 2.979

(0.510) (0.773) (−0.718) (0.957) (0.553
Constant −90.503∗∗∗ −52.730∗∗∗ −56.609∗∗∗ −21.936∗∗∗ −57.717∗∗

(−5.798) (−3.864) (−4.055) (−3.326) (−2.134

Observations 357,132 357,132 357,132 344,871 357,132
number of bonds 5,660 5,660 5,660 5,617 5,660
R2 0.322 0.265 0.206 0.281 0.306
Adjusted R2 0.322 0.265 0.206 0.281 0.306

all the various liquidity measures. A potential explanation for this divergence between
the two markets is the relatively lower dispersion in the amounts outstanding in the case
of German corporate bonds, in particular due to the absence of bonds with very large
amounts outstanding.

The credit rating is also relevant for liquidity, i.e., with more risky bonds being less
liquid, since for three out of five liquidity measures, this variable is statistically different
from zero at the 1% level. For the U.S., all the liquidity measures are sensitive to the credit
rating variable with the respective coefficients being statistically significant. However, if we
compare the coefficients between the two panel regressions, we observe that each additional
change of one notch in the credit rating is associated with a larger reduction of liquidity,
which could be due to a sample selection bias: As we show in Table 7.5, the U.S. corporate
bond sample contains a larger fraction of non-investment grade bonds compared to the
German counterpart.

The time to maturity variable is highly significant and positive for both German and
U.S. corporate bonds, with a similar magnitude, for most of the liquidity measures. The
only exception is the Amihud measure for the German sample. The age variable is slightly
significant for almost all the liquidity measures for the German corporate bonds and,
instead, is significant only for the Amihud and the effective bid-ask spread measures for
the U.S. sample. The traded volume of the bond in a given week improves the liquidity of



these bonds, but this variable is only marginally significant both for the German and U.S.
sample.

The dummy variable for financial bonds is highly significant for both German and U.S.
samples, indicating that financial bonds are, on average, more illiquid than non-financial
bonds. A comparison of the coefficients for the financial dummy between the two samples
indicates that the reduction in liquidity is larger, on average, for U.S. financial bonds than
for the German bonds, but this may be again due to the marginally larger proportion of
financial bonds considered for the U.S. market.

The panel analysis allows us also to investigate whether liquidity, in general, has
improved in recent years. In doing this, we control for bond characteristics that may have
changed over time in our sample. The reference year is 2014 and, as the Table shows,
dummies from 2008 until 2012 are statistically different from zero and positive at least
for three out of five liquidity measures. The dummy variable for 2013 is not statistically
significant, indicating that liquidity is quite similar in the years 2013 and 2014. This result
indicates that, at least for these three measures, liquidity has improved after controlling for
the change in sample composition of bond characteristics. The same applies for the U.S.
where, in this case, the variable is positive and significant for all five liquidity measures.

In summary, Table 7.7 provides a panel analysis from which we could observe that
the signs of the coefficients of the different determinants are very similar between the two
groups: A typical corporate bond is more liquid with a larger bond size, a better rating,
a shorter time-to-maturity, a younger age, and a larger volume. Our results are in line
with traditional search theories in OTC markets; larger assets are easier to find, and are
therefore cheaper to trade. A similar argument applies for the credit rating and the time
to maturity: when a bond has a better rating (shorter maturity), dealers will require
a lower spread, since it is less risky for them to hold it in their inventory. Trades with
larger volumes are most likely being used by larger and more sophisticated investors, who
bear lower search costs, have greater bargaining power, and trade with lower spreads, in
equilibrium. It is noteworthy to mention that these characteristics less significantly drive
the liquidity in the German sample than in the U.S. sample. This is especially true for
bond size and volume. Moreover, the yearly dummies indicate that there is an improvement
of the liquidity of bonds for both the U.S. and German bonds from 2008 to 2014. Overall,
the time dummies confirm the patterns observed in the Figures 7.2 through 7.4.

7.5.5 Matched sample analysis

Our analysis, thus far, has pointed to the conclusion that the U.S. corporate bond market
is far more liquid than the German one with a large fraction of bonds that are traded
more frequently than in German bonds and a significant larger volume of trade, even
adjusting for the differences in the amount outstanding. On the other hand, (i) the simple
analysis of the average of the different liquidity measures there is not clear evidence that
one market is more liquid than the other for very liquid bonds and (ii) the German and
U.S. samples behave similarly: trends in liquidity over time are roughly similar, and so
are the magnitudes of liquidity measures and their drivers. However, these inconsistencies
could be largely driven by the different compositions of the two samples.

Therefore, in order to provide a more appropriate comparison between the two markets,
we perform two additional sets of analysis. The first is a simple horse race where we
compare the most liquid bonds in the German sample with the corresponding ones we
observe in the U.S. sample. This allows us to compare samples with exactly the same
number of bonds. This comparison is useful from the point of view of an investor who holds
a portfolio of German corporate bonds that are most liquid, without taking into account



considerations about maturities, amount outstanding or other bond characteristics. In
doing this, we look at the sample of liquid German bonds in each week and take the same
number of U.S. bonds that are most liquid in the week, after ranking them from most to
least liquid. We then average the liquidity measures across the bond and time dimensions.
We perform this analysis for all liquidity measures and find that the most liquid U.S. bonds
are far more liquid than the most liquid German bonds. The difference between the two
markets is 15.5 basis points for price dispersion and 63.7 basis points for the imputed
round-trip cost, both differences being highly significant. Any such comparison based on
the most liquid bonds of each country (which could well be the motive of an investor) is
clearly in favor of U.S. bonds.

In the second analysis, we investigate whether a German corporate bond is as liquid as
a comparable U.S. corporate bond. Simply comparing the time-series of liquidity measures
shown, for example in Figure 7.2, is not sufficient, since it completely neglects the underlying
sample composition, and the changes therein. Instead, in this section, we match German
bonds with U.S. bonds of comparable characteristics. This allows us to repeat the panel
regression of liquidity from the previous section for the matched sample, and quantify any
differences in liquidity through an added dummy variable that controls for whether a bond
is part of our German sample or the U.S. one.

Specifically, we make use of our finding from the previous section that the drivers of
liquidity are common to both samples and employ a propensity score matching approach to
create our matched sample. In order to rule out variations in liquidity over time as a source
of differences, our matching of bonds is performed on a weekly basis. In other words, for
each week we consider the set of German bonds for which we compute liquidity measures as
our treated sample and construct a control sample of U.S. bonds using “nearest neighbor”
matching, based on the criteria of amount outstanding (in USD), coupon rate, rating notch,
age, maturity at issuance, average trade volume and a rank measure of trading activity. We
match only financial bonds to financial bonds and, likewise, for non-financial bonds, and
impose minimum closeness criteria for a matched pair to be part of our sample.20 In order
to minimize the impact of any remaining sample differences, we then repeat the analysis
of Table 7.7 for the matched sample with two slight modifications: First, we include a
dummy variable that is one for German bonds (our treatment group) and zero for U.S.
bonds (control group). Second, we drop regression variables that are related to the sample
coverage.21

Table 7.8 shows the results of the matched panel regression. Drivers of liquidity are
consistent with the findings from the previous sections: larger and better-rated bonds
are more liquid, and so are non-financial bonds. Illiquidity increases with both age and
time-to-maturity, i.e., bonds with shorter maturities and bonds that have been issued
recently are more liquid. Most strikingly, the coefficient for German bonds is negative in
all liquidity measures, and significantly so for all but the imputed round-trip cost. This
implies that liquid German bonds are actually 37 to 67 basis points more liquid than
comparable U.S. bonds even after controlling for bond and time effects.

It is worth discussing possible reasons for this surprising finding, which is most likely
related to our natural focus on the most liquid German bonds. Potentially the lack of

20To be precise, we only keep matches within half a standard deviation of the distance measure from
the original observation. Our results are robust to various variations in the matching approach, such as
the variable set for matching, matching with or without replacement, matching to a larger control set and
other thresholds for closeness.

21Otherwise, we would introduce a bias from the more complete coverage of our U.S. sample against the
admittedly partial coverage of trading activity in German bonds, in our dataset. In practice this amounts
to dropping the variable “volume”.



Table 7.8: Propensity Score Matched Regressions: Regression of the liquidity measures described
in Table 7.6, computed at weekly frequency, on bond and bond-time characteristics. All liquidity measures
are calculated for each bond on a weekly basis and winsorized at the 0.5% level from both tails. The sample
is a matched sample of German corporate bonds that carry a rating (treatment group) and a control group
of U.S. bonds matched at weekly frequency based on amount outstanding, time-to-maturity, maturity at
issuance, rating, coupon rate, average trade volume and classification as financial bond. See section 7.5.5 for
details of the matching process. The explanatory variables are given by bond size (in million EUR/USD),
rating step (1 being the best rating on the scale, cf. Table 7.5), time to maturity (in years), age (in years),
a dummy indicating whether the bond is issued by a financial firm and a dummy indicating whether a
bond is part of the German (treatment) sample. Year-fixed effects are included with the year 2014 as a
baseline. Test statistics, derived from standard errors corrected for heteroscedasticity and clustered at the
firm level, are given in parenthesis. The significance is indicated as follows: ∗ < 0.1, ∗∗ < 0.05, ∗∗∗ < 0.01.

Price Dispersion Roll Amihud Imputed Roundtr. Eff. Bidask

Bond size (million USD) −0.012∗∗ −0.004 −0.018∗∗∗ −0.005 −0.058∗∗∗

(−2.107) (−0.879) (−3.414) (−1.272) (−6.444)
Rating step 5.143∗∗∗ 4.060∗∗∗ 4.968∗∗∗ 2.474∗∗∗ 5.276∗∗∗

(4.344) (4.448) (4.658) (5.117) (3.181)
Time-to-Maturity (years) 5.052∗∗∗ 7.515∗∗∗ 5.094∗∗∗ 4.647∗∗∗ 7.695∗∗∗

(8.015) (9.389) (6.628) (10.995) (8.282)
Age (years) 3.687∗∗∗ 3.117∗∗∗ 3.857∗∗∗ 1.328∗∗ 4.665∗∗∗

(3.479) (3.790) (3.868) (2.068) (3.432)
Dummy: financial 37.398∗∗∗ 30.121∗∗∗ 18.365∗∗∗ 16.940∗∗∗ 60.484∗∗∗

(4.291) (4.134) (2.829) (3.452) (5.294)
Dummy: German sample −67.428∗∗∗ −59.602∗∗∗ −36.856∗∗∗ −5.631 −41.874∗∗∗

(−8.971) (−9.512) (−5.174) (−1.211) (−3.796)
Dummy: year 2008 81.144∗∗∗ 77.568∗∗∗ 50.724∗∗∗ 33.153∗∗∗ 106.122∗∗∗

(6.609) (6.104) (4.352) (5.312) (6.967)
Dummy: year 2009 68.364∗∗∗ 65.901∗∗∗ 34.600∗∗∗ 28.859∗∗∗ 109.692∗∗∗

(7.213) (6.531) (3.139) (4.471) (7.441)
Dummy: year 2010 22.329∗∗∗ 26.105∗∗∗ 12.850 9.365∗∗ 41.348∗∗∗

(3.879) (3.710) (1.161) (2.275) (5.251)
Dummy: year 2011 20.886∗∗∗ 20.763∗∗∗ 8.239 8.746∗ 40.200∗∗∗

(3.675) (2.744) (0.716) (1.733) (4.403)
Dummy: year 2012 16.042∗∗∗ 13.768∗ 5.183 6.528 25.173∗∗∗

(3.008) (1.799) (0.339) (1.241) (3.048)
Dummy: year 2013 4.842 5.290 −13.021 −1.153 9.590

(1.343) (1.320) (−1.231) (−0.357) (1.553)
Constant −23.801 −3.454 −15.325 −2.374 −8.688

(−1.286) (−0.233) (−1.039) (−0.275) (−0.358)

Observations 22,842 22,038 22,978 21,416 8,648
number of bonds 3,898 3,753 3,942 3,801 1,916
R2 0.194 0.186 0.064 0.103 0.226
Adjusted R2 0.193 0.186 0.064 0.102 0.225

transparency in the German market leads to a “crowding”-effect, where market participants
concentrate their trading activity in a small set of bonds. These, as a consequence, result
more liquid than comparable bonds in a transparent market, where investors are able to
diversify their trading across more bonds, which then appear less liquid at the individual
level.

7.6 Conclusion

In this chapter, we study the impact of transparency on liquidity in OTC markets, the
subject of an important debate for academia, industry and regulators. Supporters of OTC



market transparency argue that it reduces the asymmetry of information between dealers
and investors, and hence encourages the participation of retail/uninformed investors. On
the other hand, OTC market transparency could increase transaction costs for investors,
by eliminating dealers’ information rents and, thus, their incentives to compete, or even
participate in the market. We contribute to this debate by providing an analysis of liquidity
in a corporate bond market without trade transparency (Germany), and comparing our
findings to one with full disclosure (the U.S.). We employ a unique regulatory dataset of
transactions of German financial institutions from 2008 until 2014.

Our analysis consists of four parts. First, we provide a general description of the
German corporate bond market, focusing on the key characteristics of the bonds and their
trading activity. Second, we analyze the time-series evolution of liquidity in the German
market. Third, we study the determinants of liquidity in the cross-section of the German
market with panel regressions on bond characteristics. Fourth, we use a matched-sample
approach to compare the transaction costs of similar bonds, at the same point in time, in
the German and the U.S. market.

In our descriptive analysis, we find that overall, observed trading activity is much lower
in the German market. The bonds that trade at least once 8 times per week are only
17% of our sample, as against 74% of the traded sample in the U.S. universe. Looking
at the market as a whole, overall liquidity is clearly much higher in the U.S., with a
significantly larger number of securities that trade often. This result is consistent with
various theoretical studies that show that transparency lowers costs for unsophisticated
investors and, therefore, incentivizes their participation in the market. Our time-series
analysis shows that the average transaction costs for German corporate bonds spiked
sharply during the 2008-2009 global financial crisis, but less so during the 2010-2012
sovereign debt crisis. The cross-sectional regressions confirm that, similar to the U.S.,
the determinants of German corporate bond liquidity are in line with search theories of
OTC markets. A bond is more liquid if it has a larger issue size, a better rating, a shorter
time-to-maturity, a younger age, and a larger volume traded. Finally, the matched sample
analysis reveals that frequently traded German bonds have lower transaction costs than
comparable bonds in the U.S. market. The difference in round-trip costs is within a range of
37-67 basis points, depending on the liquidity measure. Although surprising at first blush,
this finding is in line with studies that highlight the potential unintended consequences
of an increase in transparency in OTC markets.22 A possible explanation for our finding
is that, when there is little transparency, investors concentrate their demand into a few
well-traded assets. As a result, the liquidity of these few bonds is particularly high, while
the others are barely traded. On the other hand, when overall transparency increases,
investors spread their portfolios across a wider range of assets, given the higher level of
information available. While the overall market liquidity improves, there is less relative
demand for the previously “well-traded assets,” and hence their transaction costs could
become higher.

Our results are of considerable interest to market participants, both on the buy and sell
side, as well as to regulators. Furthermore, our findings provide a benchmark for future
research on the measurement of liquidity in European fixed-income markets, which could
benefit from more detailed data. In fact, from January 2018, MiFID II requires all firms in
the European Union to publish details of their OTC transactions in non-equity instruments
almost in real time (commonly referred to as OTC post-trade transparency). Hence, the
introduction of MiFID II is likely to change the landscape of the European fixed-income

22See, for example Naik et al. (1999), Bloomfield and O’Hara (1999), Bhattacharya (2016) and Friewald
et al. (2017).



market with new regulations on the provision of trading services and reporting. There
are significant concerns in the financial services industry about the cost of fulfilling these
requirements, especially since a mandatory transparency could potentially hamper liquidity
due to the withdrawal of dealers who would be concerned about “showing their hand.”
Our results imply that the pre-MiFID opaque structure could be one of the reasons why a
selected set of German bonds are revealed to be more liquid than their U.S. counterparts.

Although this study provides some insights into a market that has so far been dark,
for many of its market participants, from an academic point of view, and even from a
regulatory perspective, much still remains to be done to address specific policy questions.
This said, our findings lay the foundations for a future academic and regulatory research
agenda. Without data regarding the liquidity of the market before the implementation
of MiFID II along the lines of our findings, it would be impossible to assess empirically
whether pre- and post-trade transparency in the European bond market indeed improved
liquidity. While the scope of MiFID II is vast, it remains to be seen how well and how
broadly the directive will be implemented. Suffice it to say that even in the U.S., the
implementation of TRACE took place over several years, just for the corporate bond
market, and its extension to other fixed income markets is still work in progress. It is fair
to assume that the dissemination of a reasonable sample of such data will take several
years. Our analysis on liquidity has shown, for instance, that given the low number of
bonds traded at significant frequency, any increase in the number of these liquid bonds
due to MiFID II regulation would be an achievement. Once reliable data from MiFID
II become available in the future, our study could serve as a benchmark of the “before-”
period. As the construction of reliable transaction databases will be a challenge in the
years to come, we expect our findings to remain valid and relevant in the interim.

Another issue that can be addressed based on our evidence is how the Corporate Asset
Purchase Program (CAPP), launched by the ECB in June 2016 as part of its Quantitative
Easing (QE), has reshaped the liquidity in the European corporate bond markets. This
study could be the basis for a proper analysis of the impact of corporate bond purchases in
the CAPP. Our study would provide such a benchmark to assess the impact of this specific
program by the ECB, which does not have a counterpart in the QE programs of the U.S.
Federal Reserve System (FED). Overall, this chapter serves the purpose of shedding light
on what was previously unknown and opening up an important topic for further discussion.

Appendix

7.A TRACE data preparation

We use two main sources of data for our analysis on the U.S. corporate bond market. We
obtain information on bond characteristics from Mergent FISD, while TRACE enhanced

23In addition to the TRACE standard version, TRACE enhanced includes buy-sell indicators for each
transaction, and the trading volume is not capped.

24We delete duplicates, trade corrections, and trade cancellations on the same day. Moreover, we delete
reversals, which are errors detected not on the same day they occurred.

25We adopt a median and a reversal filter. The median filter eliminates any transaction where the price
deviates by more than 10% from the daily median or from a nine-trading-day median, which is centered at
the trading day. The reversal filter eliminates any transaction with an absolute price change that deviates
at the same time by at least 10% from the price of the transaction before, the transaction after and the
average between the two.



contains bond transactions’ prices, which are used for the calculation of the liquidity
measures.23 For comparability with the WpHG data, our sample spans January 2008 to
December 2014. For TRACE, we follow standard data cleansing procedures described
by Dick-Nielsen (2009).24 Furthermore, we implement the price filters used in Edwards
et al. (2007) and Friewald et al. (2012).25 We consider only straight (simple callable and
puttable) bonds, and exclude any bond with complex structures or optionalities. Details
on amount of observations lost in the cleaning process can be found in Table 7.9.

Table 7.9: Data Cleaning Process - TRACE: This table illustrates the data cleaning process and the
number and share of observations remaining after each cleaning step for each year of data and the whole
dataset. The data sample comes from TRACE enhanced and covers the period January 2008 - December
2014. When necessary, bond characteristics are matched from MERGENT FISD. The initial number of
observations is given as before cleaning. TRACE filter In the first cleaning step we cleanse the transaction
data of errors using the algorithm described in Dick Nielsen (2009). In particular, we delete duplicates,
trade corrections and trade cancellations on the same day. Moreover, we remove reversals, which are errors
detected on a day later than that of the initial trade. price filter Additionally, we implement the price
filters Friewald et al (2012). Specifically, we adopt a reversal filter, which should eliminate extreme price
movements, and a median filter, which identifies outliers in prices reported in TRACE, within a given time
period.

year before cleaning TRACE filter % of raw price filter % of raw

2008 8,982,733 5,791,024 64% 5,766,619 64%
2009 15,509,609 9,968,885 64% 9,847,259 63%
2010 16,196,597 9,710,084 60% 9,349,861 58%
2011 14,866,634 9,044,960 61% 8,610,110 58%
2012 16,552,442 9,908,571 60% 9,211,178 56%
2013 16,276,111 9,691,278 60% 8,898,621 55%
2014 15,224,322 9,115,658 60% 8,239,993 54%∑

103,608,448 63,230,460 61% 59,923,641 58%

For subsetting our baseline sample of vanilla bonds, secured bonds are identified as
those with SECURITY TYPE=“SS” in Mergent FISD. Treasury-type bonds are those
with bond type among “USBD”,“USBL”,“USBN”,“USNT”,“USSI”,“USSP”,“USTC” in
Mergent FISD. Unsecured bonds are the remaining ones that do not fall in any of the
previous two categories. To divide unsecured bonds into those issued by non-financial firms
and those issued by financial corporations we use the industry classification provided by
Mergent FISD. Financial bonds are those with INDUSTRY GROUP=2, while non-financial
bonds are those belonging to any other industry group code.

7.B Liquidity measures

We employ a set of liquidity measures that mostly capture the costs associated with
price-impact and round-trip trades, following the presentation in Friewald et al. (2017).
While these measures are typically calculated on a daily basis for U.S. TRACE data, all
measures calculated here are based on weekly data. This allows us to include more bonds
in our analysis that are relatively actively traded, but not typically on a daily basis. We
define our notation such that Liqit is the liquidity of bond i in week t and N i

t is the number
of trades in bond i in week t.

• The Amihud measure, proposed in Amihud (2002), is our proxy of price impact. The
more a trade of a given size shifts the observed price, the higher the Amihud measure



and the less liquid the bond. The measure is obtained as the mean ratio of absolute
log returns to trade volumes:

Amihudit =
1

N i
t

N i
t∑

j=1

|ri,jt |
V i,j
t

(7.1)

where the index j spans all trades in bond i in week t while ri,jt and V i,j
t are the (log)

return and transaction volume associated with the trade j. The measure is given in
units of basis points per million EUR (per million USD for our TRACE sample) and
we require at least 8 transactions per week in order to calculate it.

All following measures capture the liquidity component that is associated with the cost
of a round-trip trade and are given in units of basis points:

• Price dispersion was introduced in Jankowitsch et al. (2011). The idea is that the
lower the volatility of prices around the consensus price, the more liquid the bond,
since agents are more likely to trade the bond at its fair value. It is calculated as the
root mean squared (weighted) difference between traded prices P i,jt and the market
valuation P it proxied by the volume-weighted average trade price.

PriceDispit =

√√√√√ 1∑N i
t

j=1 V
i,j
t

N i
t∑

j=1

(P i,jt − P it )2 V i,j
t (7.2)

with P it = 1∑Ni
t

j=1 V
i,j
t

∑N i
t

j=1 P
i,j
t As for the Amihud measure we require a minimum of

8 transactions per week.

• Roll is the Roll measure that relates the autocorrelation of returns to the bid-ask
spread, developed in Roll (1984). It is obtained as twice the square root of the
negative auto-covariance of returns.

Rollit = 2

√
−Cov(ri,jt , r

i,j−1
t ) (7.3)

We require a minimum of 8 transactions per week in order to compute the Roll
measure.

• Imputed round-trip cost, developed in Feldhütter (2011) and applied for OTC markets
in Dick-Nielsen et al. (2012), proxies the bid-ask spread by comparing the highest to
the lowest price of a set of transactions with identical volumes. These transactions
are assumed to belong to a round-trip trade and the highest (lowest) of their prices
thus to correspond to the prevailing ask (bid) price:

ImputedRTCostit =
1

Bi
t

Bi
t∑

b=1

1− minP i,bt

maxP i,bt
(7.4)

where Bi
t is the number of sets with trades of identical size and P i,bt is the set of prices

that belong to the set b. We require a minimum of 8 transactions per week, and at
least 2 transactions of the same size, in order to compute the imputed round-trip
cost.



• Effective bid-ask spread, proposed in Hong and Warga (2000), is the most restrictive
of our measures. It is the difference between the average sell and the average buy
price, normalized by their midprice:

EffSpreadit =
2(P̄ i,sell

t − P̄ i,buy
t )

P̄ i,sell
t + P̄ i,buy

t

(7.5)

where P̄ i,sell
t = 1

N i,sell
t

∑N i,sell
t

j=1 P i,jt is the average sell price and idem for the average

buy price P̄ i,buy
t of bond i in week t. While in TRACE the trade sign (buy/sell)

is provided, for our German sample it needs to be inferred using the algorithm of
Lee and Ready (1991) by comparing to quotes from Bloomberg. Therefore, for this
measure, we not only require Bloomberg quotes, but also 8 trades which must include
at least one buy and sell trade each. In our case, it is possible to obtain negative
values for the effective bid-ask spread since we infer the trade sign from daily data,
but average over one week. We discard all such negative values.26

Table 7.10 gives simple descriptives of the correlation of weakly averages of the liquidity
measures described above.

Table 7.10: Correlation of liquidity measures: Correlation of weekly means of liquidity measures
for German and U.S. corporate bonds. Amihud is the Amihud measure of price impact obtained as the
mean ratio of absolute log returns to trade volumes. Price dispersion is the root mean squared difference
between traded prices and the market valuation proxied by the volume-weighted average trade price. Roll
is the Roll measure, a proxy for the round trip cost and obtained as twice the square root of the negative
auto-covariance of returns. Effective bid-ask spread is the difference between the average sell and the average
buy price, normalized by their midprice. The trade sign (buy/sell) is inferred by comparing to quotes from
Bloomberg. Imputed round-trip cost proxies bid-ask spread by comparing the highest to the lowest price of
a set of transactions with identical volumes. All measures were computed for every bond and week where
there were at least 8 trades with sufficient information available and winsorized at the 0.5% and 99.5%
quantile.

Panel A: in levels, all German liquid bonds

Amihud EffSpread ImputedRTCost PriceDisp Roll

Amihud 1.00 0.25 0.88 0.69 0.51
EffSpread 0.25 1.00 0.26 0.32 0.32
ImputedRTCost 0.88 0.26 1.00 0.91 0.68
PriceDisp 0.69 0.32 0.91 1.00 0.77
Roll 0.51 0.32 0.68 0.77 1.00

Panel B: in differences, all German liquid bonds

Amihud EffSpread ImputedRTCost PriceDisp Roll

Amihud 1.00 0.13 0.40 0.14 0.14
EffSpread 0.13 1.00 0.24 0.33 0.15
ImputedRTCost 0.40 0.24 1.00 0.64 0.29
PriceDisp 0.14 0.33 0.64 1.00 0.40
Roll 0.14 0.15 0.29 0.40 1.00

26For example, we could observe buys on the first day, following which the bond price falls and the bond
is sold again at a lower price later in the same week.



Panel C: in levels, all U.S. liquid bonds

Amihud EffSpread ImputedRTCost PriceDisp Roll

Amihud 1.00 0.98 0.98 0.97 0.99
EffSpread 0.98 1.00 0.97 0.98 0.98
ImputedRTCost 0.98 0.97 1.00 0.96 0.98
PriceDisp 0.97 0.98 0.96 1.00 0.98
Roll 0.99 0.98 0.98 0.98 1.00

Panel D: in differences, all U.S. liquid bonds

Amihud EffSpread ImputedRTCost PriceDisp Roll

Amihud 1.00 0.81 0.88 0.90 0.90
EffSpread 0.81 1.00 0.76 0.77 0.73
ImputedRTCost 0.88 0.76 1.00 0.93 0.92
PriceDisp 0.90 0.77 0.93 1.00 0.93
Roll 0.90 0.73 0.92 0.93 1.00

7.C Additional figures
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(a) Liquid German bonds.
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Figure 7.5: Monthly traded volume: monthly volume of trades in German corporate bonds reported
due to WPHG (Panel (a)) and in U.S. corporate bonds (Panel (b)).
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Figure 7.6: Bonds outstanding: Number of bonds outstanding (Panels (a), (c)) and amount outstanding in billion EUR (Panels (b), (d)) across the universe of
German corporate bonds for which we compute liquidity measures at least once. Non-financial bonds are in Panels (a) and (b) and financial bonds in Panels (c), (d).
Numbers may be inaccurate before April 2009.





Conclusions

In this thesis we have presented a selection of market microstructure studies on fixed-income
markets in Europe. Our research spans a wide range of market structures (electronic
exchanges, over-the-counter markets, and hybrid markets), market segments (retail as well
as interdealer segments), assets (sovereign and corporate bonds) and central topics.

Chapter 4 is concerned with cross-asset price impact. It contributes by extending the
work of Gatheral (2010), deriving theoretical limits for the size and form of cross-impact
from the condition of absence of dynamical arbitrage. For bounded decay kernels we find
that cross-impact must be an odd and linear function of trading intensity and cross-impact
from asset i to asset j must be equal to the one from j to i. To test these constraints
we use a dataset from the electronic platform MOT, which we have explored in Chapter
3. While we find significant violations of the above symmetry condition in the estimated
cross-impact, we show that these are not arbitrageable with simple strategies because of
the presence of the bid-ask spread.

In Chapter 5 we study abrupt deteriorations of liquidity conditions. To this end we
propose a peak-over-threshold method to identify such illiquidity shocks from limit order
book data and we model the time-series of these illiquidity events across multiple assets
as a multivariate Hawkes process. This allows us to quantify both the self-excitation of
extreme changes of liquidity in the same asset (illiquidity spirals) and the cross-excitation
across different assets (illiquidity spillovers). Applying the method to the MTS sovereign
bond market, we find significant evidence for both illiquidity spillovers and spirals.

Chapter 6 serves as a bridge between the exchange venues studied in Chapters 3 - 5
and over-the-counter markets (that we study in Chapter 7). It studies the venue choice
of dealers in a hybrid bond market with an exchange and a dominant over-the-counter
segment and it compares transaction costs across the two venues. Our results indicate
that not only transaction costs but also immediacy and post-trade transparency play an
important role for this venue choice.

Post-trade transparency is also at the core of our analysis in Chapter 7 where we study
liquidity in over-the-counter corporate bond markets. We compare the German market
(without transparency) to the U.S. market (with transparency) and find that the latter
is much more active. However we also observe that the most liquid and actively traded
German corporate bonds are more liquid, in terms of transaction costs, than comparable
U.S. bonds. We posit that this is due to transparency, in line with the notion that investors
‘crowd’ in a small set of the most liquid securities in the absence of transparency.

Let us stress that our methods and findings are far more general than the context of
fixed-income markets that we are using here to illustrate them. Especially our results
on modeling cross-impact are valid for any two (or more) assets that are related and the
methods we use regarding illiquidity spillovers can be applied to any limit order book
market.

With respect to fixed-income markets which, particularly in Europe, have received
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rather little attention until recently, we hope that this thesis serves as a starting point and
blueprint for further exploration. The MiFID II regulation, in place since January 2018, is
designated also to provide more data on European fixed income markets. Once reliable
datasets on this regulatory basis will be available in the years to come, academics will find
abundant opportunities for further research.
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Wang, S., R. Schäfer, and T. Guhr (2016b). Cross-response in correlated financial markets:
individual stocks. The European Physical Journal B 89 (4), 1–16.

http://lamp.ecp.fr/MAS/fiQuant/ioane_files/HawkesCourseSlides.pdf
http://lamp.ecp.fr/MAS/fiQuant/ioane_files/HawkesCourseSlides.pdf

	Executive summary
	List of publications
	Presented research
	Empirical market microstructure
	Price impact
	Illiquidity dynamics
	Venue choice

	Introduction
	Market structures
	Market liquidity
	Round-trip cost
	Trading activity
	Price impact as a liquidity dimension

	Price impact
	Response
	Autocorrelation of order flow
	Price impact models


	Stylized facts of the MOT bond platform
	Introduction
	Market rules and mechanisms
	Market structure
	Market rules
	Volatility auctions

	Data
	Data description
	Data preparation & checks

	Intraday seasonalities
	Stylized facts of trading activity
	Stylized facts of quoting activity
	Shape of the limit oder book
	Impact of tick size changes

	Conclusion
	Appendix
	List of ISINs

	Cross-impact and no-dynamic-arbitrage
	Introduction
	Model setup
	Price process and cost of trading
	Principle of no-dynamic-arbitrage

	General constraints on cross-impact for bounded decay kernels
	A simple strategy with two assets
	Cross-impact as odd function of the trading rate
	Constraints on the strength of cross-impact
	Symmetry of cross-impact
	Linearity of market impact
	Exponential decay
	Symmetry and bid-ask spread

	Empirical evidence of cross-impact
	Market structure of MOT
	Response function
	Instantaneous market impact
	Decay kernel
	Testing for symmetry of cross-impact

	Conclusion
	Appendix
	Proofs
	Power-law decay and impact
	List of ISINs

	Illiquidity spillovers
	Introduction
	Method
	Event detection
	Hawkes processes

	Application
	MTS market
	Liquidity metrics
	Illiquidity event detection
	Self-excitation and spillover
	Robustness checks

	Conclusion

	Venue choice in hybrid markets
	Introduction
	Literature review
	Hypotheses
	Market setting and data
	Bund market
	Data preparation and descriptives

	Venue choice
	Trading costs 
	OTC discount
	Drivers of OTC discount

	Conclusion
	Appendix
	Cross-venue response
	Order sign
	Response
	Autocorrelation of the order sign


	Liquidity of German corporate bonds 
	Introduction
	Literature review
	European corporate bond market
	U.S. corporate bond market

	Market structure and financial market regulation
	Data
	Description of the dataset
	Data filtering and sample selection

	Liquidity in markets with and without transparency
	Descriptive analysis
	Measuring liquidity in bond markets
	Time-series dynamics of liquidity
	Determinants of liquidity
	Matched sample analysis

	Conclusion
	Appendix
	TRACE data preparation
	Liquidity measures
	Additional figures

	Conclusions
	Bibliography

