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Introduction

Let L be a translation-invariant differential operator on Rn. In many situations, the study
of L may be simplified by means of the Fourier transform; indeed, if we conjugate L with the
Fourier transform, we obtain the operator of multiplication by a polynomial. If we consider a
left-invariant differential operator L on a Lie group G, we may still study L by means of the
Fourier transform; however, if G is not commutative, the Fourier transform is less manageable
than in the commutative case, so that a different approach is preferable.

A reasonable alternative is provided by the spectral theorem. On the one hand, this method
works well for a large class of left-invariant differential operators, considered individually; on
the other hand, if we want to consider the interactions between two or more operators, the
spectral theorem requires some commutativity assumptions in order to work. Actually, there
exists functional calculi for operators which do not commute (see, for example, [65]), but, if one
wants to keep a scalar calculus, some relevant properties have to be lost, like multiplicativity.
For this reason, we prefer to work under a suitable commutativity assumption. We observe
explicitly that the approach we follow is very sensitive to the chosen family of operators. For
example, it may be convenient to study the interactions between two (or more) operators if we
embed them into a bigger family whose study is simpler. This is the case for abelian groups,
where it seems sensible to study translation-invariant operators as polynomials in the partial
derivatives.

Now, assume that (L1, . . . ,Lk) is a family of formally self-adjoint left-invariant differential
operators on G, each one of which induces an essentially self-adjoint operator on L2(G) with
domain C∞c (G); assume that the self-adjoint operators induced by L1, . . . ,Lk commute. Then,
there is a unique spectral measure µ on Rk such that

Ljϕ =

∫
Rk
λj dµ(λ)ϕ

for every ϕ ∈ C∞c (G). If m : Rk → C is bounded and µ-measurable, we may then associate
with m a distribution K(m) such that

m(L1, . . . ,Lk)ϕ = ϕ ∗ K(m)

for every ϕ ∈ C∞c (G). The mapping K is the desired substitute for the (inverse) Fourier
transform.

One may then investigate the similarities between K and the (inverse) Fourier transform.
For instance, one may consider the following questions:

1. does the ‘Riemann-Lebesgue’ property hold? In other words, if m ∈ L∞(µ) and K(m) ∈
L1(G), does m necessarily admit a continuous representative?

2. is there a positive Radon measure β on Rk such that K extends to an isometry of L2(β)
into L2(G)?

3. if such a ‘Plancherel measure’ β exists, is it possible to find an ‘integral kernel’ χ ∈
L1

loc(β ⊗ νG)1 such that, for every m ∈ L∞(β) with compact support,

K(m)(g) =

∫
Rk
m(λ)χ(λ, g) dβ(λ)

for almost every g ∈ G?
1Here, νG denotes a fixed (left or right) Haar measure on G.

iii
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4. if G is a group of polynomial growth, so that S(G) can be defined in a reasonable way,
does K map S(Rk) into S(G)?

5. if G is a group of polynomial growth and K(m) ∈ S(G) for some m ∈ L∞(µ), does m
necessarily admit a representative in S(Rk)?

In the following, we shall be particularly interested in Questions 1 and 5; we shall therefore
name the affirmative answers to them as Properties (RL) and (S)

Some of these questions have already been addressed in various situations. For instance, the
construction of the Plancherel measure of Question 2 dates back to M. Christ [27, Proposition
3] for the case of a homogeneous sub-Laplacian on a stratified group, and was generalized to
weighted subcoercive systems of operators on general Lie groups by A. Martini [58, Theorem
3.2.7]. The ‘integral kernel’ of Question 3 was then introduced by L. Tolomeo [83, Theorem
2.11] for a sub-Laplacian on a group of polynomial growth.

Further, A. Hulanicki [52] showed that Question 4 has an affirmative answer in the setting of
a positive Rockland operator on a graded group; his result was then extended by A. Veneruso [85]
to some families of operators on the Heisenberg groups, and then by A. Martini [58, Proposition
4.2.1] to the case of a weighted subcoercive system of operators on a group of polynomial growth.

Finally, Property (S) was analysed by F. Astengo, B. Di Blasio and F. Ricci [4], [5], V.
Fischer and F. Ricci [40], V. Fischer, F. Ricci and O. Yakimova [41], and A. Martini, F. Ricci
and L. Tolomeo [59] for some families of operators associated with some Gelfand pairs and for
a sub-Laplacian on a large class of groups of polynomial growth.

Notice that, even though we stressed the usefulness of the preceding construction on non-
commutative groups, a thorough study of K may provide further insight into the chosen oper-
ators L1, . . . ,Lk even when G is abelian. For example, if we consider the Laplacian ∆ on Rn,
Property (S) is basically equivalent to Whitney’s theorem on C∞ even functions [86]. In ad-
dition, there are families of operators which show pathological behaviours even in dimension 2
(cf. Remark 6.4). It may also happen that two families of differential operators (L1, . . . ,Lk) and
(L′1, . . . ,L′k′) give rise to two equivalent functional calculi, even though neither of the two can
be written as a polynomial image of the other. A trivial example is given by the two families
(∆2) and (∆3), where ∆ is the Laplacian on Rn; we shall present less intuitive examples in
Proposition 7.44. As a consequence, some care has to be taken in the choice of the family.

The best setting where one can study Questions 1, 2, and 3 is probably that of weighted
subcoercive systems of operators on general Lie groups, while it seems reasonable to study
Questions 4 and 5 on groups of polynomial growth. As we mentioned before, this study has
been pursued in the case of one sub-Laplacian and in the case of Gelfand pairs. Even though
some of the results which follow generalize to weighted subcoercive systems of operators on
(unimodular) Lie groups, we shall generally restrict to homogeneous operators on homogeneous
groups for simplicity. In this case, a family consisting of one operator automatically satisfies
property (RL), while proeprty (S) still provides some difficulties. Nevertheless, even property
(RL) can fail in general.

The thesis is divided into two parts: in the first one, which consists of Chapters 1 to 7, we
study Rockland families on homogeneous groups; in the second part, which consists of Chapter 8
and is joint work with T. Bruno, we give sharp asymptotic estimates for the heat kernel (and
its derivatives) associated with the standard sub-Laplacian on an H-type group.

In Chapter 1, we introduce some auxiliary spaces which will allow us to define a general
notion of convolvability for distributions, following L. Schwartz [76]. As one may expect, this
definition does not encompass all the situations in which a reasonable notion of convolvability
is known; for instance, it does not seem to be fully compatible with the Fourier transform even
on Rn. Nevertheless, it does encompass all the cases we need to use; in addition, in this way we
are able to avoid defining convolution on various classes of distributions by means of limiting
techniques, which, in principle, do not guarantee that the result is unequivocal.

As in the abelian case, this definition of convolution is widely compatible with left- and right-
invariant differential operators and thus leads to simple convolvability criteria for distributions
in spaces of Sobolev type.

In addition, by means of a remarkable result of J. Dixmier and P. Malliavin [34], we are able
to characterize the topology of many spaces of distributions, such as D′ or E ′ (at least when
the group is separable), by means of the convolution with the elements of C∞c . This kind of



v

characterizations are very useful for the study of the kernel transform, since we basically know
kernels as convolutors of C∞c into a suitable space.

In Chapter 2, we collect some technical results. To begin with, we briefly study some
spaces of smooth and Schwartz functions on not necessarily regular closed subsets of Rn, fol-
lowing [4]. This study is very useful for the study of property (S). Indeed, a kernel determines
the corresponding multiplier only up to a negligible set; in particular, continuous multipliers
are uniquely determined only on the joint spectrum σ(L1, . . . ,Lk). Therefore, it is natural to
consider Schwartz multipliers only modulo Schwartz functions which vanish on σ(L1, . . . ,Lk),
while for continuous multipliers one may simply consider C(σ(L1, . . . ,Lk)), thanks to the Tietze
extension theorem.

We then pass to a generalization of the dual form of the classical Hadamard’s lemma to
homogeneous group. In the classical situation, the aforementioned result states that a Schwartz
function has vanishing moments up to order k if and only if it is the sum of derivatives of order
k+ 1 of Schwartz functions. On homogeneous groups we basically replace the notion of ‘order’
with that of ‘homogeneous degree.’ Some more care has to be taken, though, because on not
necessarily stratified groups one needs to consider sums of (left- or right-invariant) derivatives
of homogeneous degree > k in order to prove an analogous statement.

Finally, we shall consider some results on composite functions. These results are par-
ticularly useful to treat image families, that is, families of the form (L′1, . . . ,L′k′), where
L′j = Pj(L1, . . . ,Lk) for some polynomial mapping Pj on Rk and for every j = 1, . . . , k′.
By means of the results we prove, under suitable assumptions on the family (L1, . . . ,Lk) one
may deduce that properties (RL) and (S) hold for the image family (L′1, . . . ,L′k′). We shall
present several applications of these results in Chapter 7.

In Chapter 3, we introduce Rockland families and the general properties of some associated
objects, such as the kernel transform, the Plancherel measure of Question 2, the integral ker-
nel of Question 3, and the multiplier transform. Let us mention here that, even though the
integral kernel has excellent properties in the second variable, its joint continuity is equivalent
to the fact that the multiplier transform, which is basically the adjoint of K, maps L1 into
C0(σ(L1, . . . ,Lk)). This property, that is, continuity of the integral kernel, is strictly stronger
than property (RL), as we show in Remark 7.51. Nonetheless, establishing this property will
be crucial in the proof of Theorem 7.45, which completely solves our problem for families whose
elements are some sub-Laplacians and the central derivative on a Heisenberg group.

In the last section of the chapter, we relate property (RL) with the study of the Banach ∗-
algebra of L1 kernels; this connection provides more insight into property (RL). For example, it
basically shows how (and why) property (RL) fails: in a sense, multipliers corresponding to L1

kernels may be discontinuous because σ(L1, . . . ,Lk) is ‘too small’ with respect to the Gelfand
spectrum of the algebra of L1 kernels.

In Chapter 4, we consider some basic operations on the underlying group, such as taking
quotients or products, as well as on the family, such as taking image families. For what concerns
quotients, as a corollary of [58, Proposition 3.2.4], which in turn is a generalization of [57,
Proposition 2.1], one may prove an analogue of the Poisson formula for weighted subcoercive
systems of operators on amenable Lie groups. Nevertheless, in this more general situation some
more care is needed. Roughly speaking, this analogue of the Poisson formula states that, if
ones has an L1 kernel f relative to the family (L1, . . . ,Lk) with a continuous multiplier m,
and the canonical projection π of G onto a quotient of it, then the projection π∗(f) of f , given
by integration on cosets, is a kernel of dπ(L1, . . . ,Lk) with the same multiplier m. Observe
that, even though under suitable conditions we have σ(dπ(L1, . . . ,Lk)) ⊆ σ(L1, . . . ,Lk), the
corresponding spectral measures may be mutually singular; as a consequence, a result of this
kind need not hold if we do not assume that m is continuous. Actually, in Chapter 7 we show
examples in which m cannot be taken so as to be continuous and π∗(f) is not even a kernel
associated with dπ(L1, . . . ,Lk).

Products are much better behaved than quotients, and we are able to prove that properties
(RL) and (S) pass from the factors to the product (and conversely). For what concerns image
families, we limit ourselves to writing down the basic facts one needs to be able to apply the
technical results of Chapter 2. Considering the variety of applications, we refrain from stating
general results in this chapter about properties (RL) and (S), since they would become either
inefficient or awkwardly cumbersome otherwise. After these remarks on image families, we
briefly compare two notions of equivalence between Rockland families. On the one hand, one
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may consider an ‘algebraic’ version of equivalence, according to which two families are equivalent
if they are (polynomial) images of one another. This kind of equivalence is quite natural and
preserves all the main objects taken into consideration. On the other hand, one may consider a
more ‘functional’ notion of equivalence, according to which two families are equivalent if they are
(not necessarily polynomial) functions of one another; in other words, if the two families have
the same kernels, even though corresponding to different multipliers. This kind of equivalence
is much weaker, to the point that it does not preserve properties (RL) and (S), in general.
Actually, if two families are ‘functionally equivalent’ but not ‘algebraically equivalent,’ then at
most one of them can satisfy property (S). This leads to a notion of ‘functional completeness’
for Rockland families; nevertheless, we shall not pursue its study. We only notice that property
(S) implies completeness, while the converse fails.

In Chapter 5, we consider a somewhat different problem. We start from a remarkable
correspondence between Calderón-Zygmund kernels and Mihlin multipliers ‘of infinite order’ on
abelian groups (cf. [64, Theorems 2.1.11 and 2.2.1]), and we try to generalize it to our setting.
It happens that, in order to get the same result for kernels associated with Rockland families,
an additional condition is needed (though we do not know if it is necessary): we need that the
space of kernels corresponding to Schwartz multipliers is closed in S(G). We know that this is
the case for abelian groups and when property (S) holds, but we do not know if this property
holds in general.

In Chapter 6, we consider the case of abelian homogeneous groups. In this case, it is
generally useful to consider Rockland families thereon as (polynomial) images of −i∂; indeed,
the kernel transform associated with −i∂ is the inverse Fourier transform, so that the study
of Rockland families is basically reduced to the study of proper polynomial mappings with
homogeneous components. We are then able to prove a simple characterization of the Rockland
operators which satisfy property (S). This result, in turn, provides sufficient (but not necessary)
conditions in order that a positive Rockland operator on a general homogeneous group should
satisfy property (S). We then report, for the sake of completeness, some results by Astengo, Di
Blasio and Ricci [5], which show that properties (RL) and (S) hold under suitable invariance
conditions. Notice, though, that the simplifications due to the presence of a scalar-valued
Fourier transform do not prevent the appearance of pathological examples, as we show in
Remark 6.4.

In Chapter 7, we restrict ourselves to 2-step stratified groups, and to families whose elements
are sub-Laplacians or elements of the centre of the Lie algebra. For this kind of families, we
derive several sufficient conditions for the validity of properties (RL) and (S). We also present
several examples and applications. We refer the reader to the introductions of Sections 7.3
and 7.4 for a more extensive description of our results.

Finally, Chapter 8 treats a different topic; it is joint work with T. Bruno [24]. Here we
consider the heat-kernel p associated with the standard sub-Laplacian on a restricted family
of homogeneous groups, namely the groups of Heisenberg type. Considering the importance of
heat kernels in various parts of analysis, we propose to find sharp asymptotic estimates p and
all of its derivatives.2
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Chapter 1

Convolution and Representations

1.1 Homogeneous Groups
In this section we recall some definitions about Lie groups and homogeneous groups.

Definition 1.1. A (finite-dimensional real) Lie group is a (finite-dimensional real) analytic
manifold G endowed with a group structure such that the product is analytic.

If G is a Lie group, then G 3 g 7→ g−1 ∈ G is an analytic diffeomorphism (cf. [22, Proposition
3 of Chapter III, § 1, No. 1]).

Definition 1.2. Let G be a Lie group and take g ∈ G. We denote by Lg and Rg the analytic
diffeomorphisms g′ 7→ gg′ and g′ 7→ g′g−1 of G onto itself, respectively. If f is a function defined
on G, then we define Lgf := f ◦ Lg−1 and Rgf := f ◦ Rg−1 . If T is a distribution on G, then
we write LgT and RgT instead of (Lg)∗(T ) and (Rg)∗(T ). In other words, for every ϕ ∈ D(G),

〈LgT, ϕ〉 = 〈T, ϕ ◦ Lg〉 =
〈
T, Lg−1ϕ

〉
;

analogously for RgT .

Definition 1.3. A (Radon) measure µ on a Lie group G is relatively invariant if there are two
functions ∆L,∆R : G→ C∗ such that Lgµ = ∆L(g)−1µ and Rgµ := ∆R(g)µ for every g ∈ G. If
µ 6= 0, then ∆L and ∆R are uniquely determined homomorphisms of G into C∗, and are called
the left and right multipliers of µ, respectively (cf. [20, Chapter VIII, § 1]).

The measure µ is a left or right Haar measure if it is positive, non-zero, relatively invariant,
and satisfies ∆R = χG or ∆L = χG, respectively.

Notice that any non-zero left-invariant n-form on a Lie group of dimension n induces a left
Haar measure (cf. [22, Proposition 55 of Chapter III, § 3, No. 16]). Since left or right Haar
measures are unique up to a multiplicative constant (cf. [20, Theorem 1 of Chapter VIII, § 1,
No. 2]), they have an analytic density with respect to Lebesgue measure in every local chart.
The same then holds for relatively invariant measures (cf. [20, Corollary to Proposition 10 of
Chapter VIII, § 1, No. 8] and [22, Theorem 1 of Chapter III, § 8, No. 1]).

Definition 1.4. A Lie group G is unimodular if it possesses a left and right Haar measure.

Definition 1.5. Let G be a Lie group, and let X be a differential operator on G. Then, X is
left-invariant if (Lg)∗(X) = X for every g ∈ G; analogously, X is right-invariant if (Rg)∗X = X
for every g ∈ G.

Proposition 1.6. Let G be a Lie group. Then, the following hold:

• to every v ∈ Te(G) there corresponds a unique left-invariant vector field X and a unique
right-invariant vector field Y on G such that v = Xe = Ye;

• there is a unique analytic mapping expG : Te(G)→ G such that expG(0) = eG, T0(expG) =
ITe(G) and the mapping R 3 t 7→ expG(tv) ∈ G is a group homomorphism for every
v ∈ Te(G).

1



2 CHAPTER 1. CONVOLUTION AND REPRESENTATIONS

See [22, Theorem 4 of Chapter III, § 6, No. 4] for a proof of the second assertion.

Definition 1.7. The Lie algebra g of G is the vector space Te(G) endowed with the bracket
[v, w] := [Xv, Xw]e = −[Yv, Yw]e for every v, w ∈ Te(G), where Xv, Xw are left-invariant vector
fields, Yv, Yw are right-invariant vector fields, (Xv)e = (Yv)e = v and (Xw)e = (Yw)e = w.

The mapping expG of Proposition 1.6 is the exponential map of G.

Definition 1.8. We denote by UC(g) the complexification of the enveloping algebra of the Lie
algebra g of G. We shall generally identify the elements of g and UC(g) with left-invariant
vector fields and left-invariant differential operators, respectively.

Definition 1.9. A homogeneous group G is a simply connected nilpotent Lie group G whose
Lie algebra is endowed with a graduation of type (R∗+,+). In other words, g =

⊕
r>0 gr and

[gr, gs] ⊆ gr+s for every r, s > 0. We denote by Q the homogeneous dimension of G, that is,∑
r>0 r dim gr.

If G is a homogeneous group, then expG is a diffeomorphism (cf. [22, Proposition 13 of
Chapter III, § 9, No. 5]). In addition, one may endow g, and consequently G, with a family of
dilations such that

s ·X =
∑
r>0

srXr

for every s > 0 and for every X ∈ g, where Xr is the component of X in gr for every r > 0.
Then, [s ·X, s · Y ] = s · [X,Y ] and (s · g)(s · h) = s · (gh) for every X,Y ∈ g, for every g, h ∈ G,
and for every s > 0.

It turns out that, if ν is the Lebesgue measure on g, then (expG)∗(ν) is a left and right Haar
measure on G, so that G is unimodular (cf. [43, Proposition 1.2]).

Definition 1.10. Let G be a homogeneous group and take δ ∈ C. Then:

• a function f on G is homogeneous of homogeneous degree δ if f(r · ) = rδf for every r > 0;

• a distribution T on G is homogeneous of homogeneous degree δ if (r · )∗(T ) = rδT for
every r > 0;

• a differential operator X on G is homogeneous of degree δ if (r · )∗X = rδX for every
r > 0.

Notice that we depart from the notion of homogeneous degree defined in [43] for what
concerns distributions, since we prefer to consider distributions as odd n-currents instead of
even 0-currents. In this way, any Haar measure on G is homogeneous of homogeneous degree
−Q, instead of 0. In addition, if a differential operator X is homogeneous of homogeneous
degree δ, then the distribution Xe is homogeneous of homogeneous degree δ, and the converse
holds if X is either left- or right-invariant. Finally, the elements of gr are homogeneous of
degree r for every r > 0.

Definition 1.11. Let G be a homogeneous group. A homogeneous norm on G is a symmetric
proper homogeneous mapping | · | : G → R+ with homogeneous degree 1. We shall generally
assume that, in addition, | · | is of class C∞ on G \ { e }.

Let us now state two results on ‘polar decomposition.’ We state them a little more generally
in order to meet some later needs. The proof is inspired by that of [43, Proposition 1.15].

Proposition 1.12. Let G be a locally compact group which operates continuously on the left on
a locally compact space X; let | · | : X → G be a continuous function on X such that |g ·x| = g|x|
for every g ∈ G and for every x ∈ X. Take f ∈ C(G;C∗) and µ ∈ M(X), and assume that
(g · )∗(µ) = f(g)−1µ for every g ∈ G. Define S := { x ∈ X : |x| = e }. Then, S is a locally
compact subspace of X and there is a unique µ̃ ∈M(S) such that∫

X

ϕ(x) dµ(x) =

∫
G×S

ϕ(g · s)f(g) d(νG ⊗ µ̃)(g, s)

for every ϕ ∈ Cc(X); here, νG denotes a fixed left Haar measure on G.
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The classical situation occurs whenG = R∗+, X is a homogeneous group (minus the identity),
G acts on X by means of the dilations, | · | is a homogeneous norm on X, and f : r 7→ rα for
some α ∈ C.

Proof. Define Φ: X 3 x 7→ (|x|, |x|−1 · x) ∈ G × S and observe that Φ is continuous. Further,
the inverse of Φ is clearly the continuous mapping G × S 3 (g, s) 7→ g · s ∈ X, so that Φ is
a homeomorphism. In addition, since | · | is continuous, S is closed in X; hence, S is locally
compact.

Next, notice that the measure µ′ :=
(
f−1 ◦ | · |

)
·µ is invariant under the action of G: indeed,

if µ = 0 there is nothing to prove; otherwise, f is clearly a homomorphism. Hence, we may
assume that f = χG.

Now, take ϕ ∈ Cc(S) and ψ ∈ Cc(G), and define

F (ψ,ϕ) :=

∫
G×S

(ψ ⊗ ϕ) dΦ∗(µ).

Then,
F (ψ(g · ), ϕ) = F (ψ,ϕ)

for every g ∈ G, so that the mapping ψ 7→ F (ψ,ϕ) is a left-invariant measure on G. There-
fore, [20, Corollary to Proposition 10 of Chapter VIII, § 1, No. 8] implies that there is a unique
〈µ̃, ϕ〉 ∈ C such that

F (ψ,ϕ) = 〈µ̃, ϕ〉〈νG, ψ〉

for every ψ ∈ Cc(G). Now, take ψ ∈ Cc(G) so that 〈νG, ψ〉 = 1. Then,

|〈µ̃, ϕ〉| = |F (ψ,ϕ)| 6 |Φ∗(µ)|(Supp(ψ)× Supp(ϕ))‖ψ‖∞‖ϕ‖∞,

so that µ̃ is a Radon measure on S. Finally, since clearly∫
G×S

(ψ ⊗ ϕ) dΦ∗(µ) = F (ψ,ϕ) =

∫
G×S

(ψ ⊗ ϕ) d(νG ⊗ µ̃)

by Fubini’s theorem, and since Cc(G)⊗Cc(S) is dense in Cc(G× S), the assertion follows.

Corollary 1.13. Keep the hypotheses and the notation of Proposition 1.12, and assume that
f = χG. Take h ∈ L1

loc(µ) so that h(g · ) = h for every g ∈ G. Then, there is a unique
h̃ ∈ L1

loc(µ̃) such that∫
X

ϕ(x)h(x) dµ(x) =

∫
G×S

ϕ(g · s)h̃(s) d(νG ⊗ µ̃)(g, s)

for every ϕ ∈ Cc(X).
In addition, take p ∈ [1,∞], a νG-integrable subset K1 of G such that νG(K1) > 0, and a

µ̃-measurable subset K2 of S; assume that χK1·K2
h ∈ Lp(µ). Then, χK2

h̃ ∈ Lp(µ̃) and∥∥∥χK2 h̃
∥∥∥
Lp(µ̃)

6 νG(K1)−
1
p ‖χK1·K2h‖Lp(µ)

One may also consider the case in which µ and h are relatively G-invariant. The first part
of the result is then easily deduced from the present assertion, while the Lp estimates become
less transparent.

Proof. Define Φ as in the proof of Proposition 1.12, and set β := h ·µ, so that Proposition 1.12
implies that there is a unique β̃ ∈ M(S) such that Φ∗(β) = νG ⊗ β̃. Let us prove that β̃ is
a measure with base µ̃. Indeed, let K be a µ̃-negligible compact subset of S, and let H be a
compact neighbourhood of e in G. Then, H × K is a (νG ⊗ µ̃)-negligible compact subset of
G× S by [19, Corollary 3 to Proposition 5 of Chapter V, § 8, No. 3] and the remark following
its proof. Then, Φ−1(H × K) is a µ-negligible compact subset of X by [19, Proposition 7 of
Chapter V, § 6, No. 4] (applied with π = Φ−1 and A = Φ−1(H ×K)). Therefore, Φ−1(H ×K)

is β-negligible, so that H ×K is (νG⊗ β̃)-negligible again by [19, Proposition 7 of Chapter V, §
6, No. 4]. Since H is not νG-negligible, [19, Corollary 1 to Proposition 7 of Chapter V, § 8, No.
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3] and the remark following its proof imply that K is β̃-negligible. Therefore, [19, Theorem 2
of Chapter V, § 5, No. 5] implies that there is a unique h̃ ∈ L1

loc(µ̃) such that β̃ = h̃ · µ̃.
Finally, take p, K1, and K2 as in the statement. Then, for every ϕ ∈ Cc(S), Fubini’s

theorem implies that∣∣∣∣∫
S

ϕχK2
h̃dµ̃

∣∣∣∣ =
1

νG(K1)

∣∣∣∣∫
G×S

[χK1
⊗ (ϕχK2

)](g, s)h̃(s) d(νG ⊗ µ̃)(g, s)

∣∣∣∣
=

1

νG(K1)

∣∣∣∣∫
X

[[χK1 ⊗ (ϕχK2)] ◦ Φ]hdµ

∣∣∣∣
6

1

νG(K1)
‖hχK1·K2‖Lp(µ)‖(χK1 ⊗ ϕ) ◦ Φ‖Lp′ (µ).

In addition,

‖(χK1
⊗ ϕ) ◦ Φ‖Lp′ (µ) = ‖χK1

⊗ ϕ‖Lp′ (νG⊗µ̃) = νG(K1)
1
p′ ‖ϕ‖Lp′ (µ̃),

Then, the arbitrariness of ϕ implies that

‖χK2 h̃‖Lp(µ̃) 6 νG(K1)−
1
p ‖hχK1·K2‖Lp(µ),

whence the result.

Finally, let us present a way to associate to every polynomial mapping on g∗ a differential
operator on G. This procedure is called ‘symmetrization,’ but we shall present it in a more
algebraic way. Since we are interested in formally self-adjoint differential operators, we shall
actually consider polynomials on ig∗, in order that real polynomials be mapped to formally
self-adjoint operators, and conversely.

Definition 1.14. Let A be a unital R-algebra and V a finite-dimensional vector subspace
of A. Let P be a polynomial mapping on V ∗, and let (Pk) be the family of the homogeneous
components of P . Let, for each k ∈ N,

P̃k : (V ∗)⊗k → R

be the linear mapping associated with the symmetric k-multilinear mapping which induces
Pk. Let mk : V ⊗k → A be the linear mapping associated with the k-multilinear mapping
(xj) 7→ x1 · · ·xk, and let ιk : ((V ∗)⊗k)∗ → V ⊗k be the canonical isomorphism. Consider the
linear mapping ∑

k∈N

mk ◦ ιk ◦
t
P̃k : R∗ → A.

Then, we define PA as the element of A which canonically corresponds to that mapping, that
is, its value at IR.

The following result shows that the abstract definition of PA looks simpler if computed with
the aid of a basis.

Lemma 1.15. Keep the notation of Definition 1.14. Let (ej)j∈J be a basis of V and let (e∗j )j∈J
be the associated dual basis. Then,

PA =
∑
k∈N

∑
j1,...,jk∈J

P̃k(e∗j1 ⊗ · · · ⊗ e
∗
jk

) ej1 · · · ejk .

Proof. Notice that we may assume that P = Pk for some k ∈ N. Then,〈
mk ◦ ιk ◦

t
P̃k, IR

〉
=
〈
mk ◦ ιk, P̃k

〉
=

〈
mk,

∑
j1,...,jk∈J

P̃k(e∗j1 ⊗ · · · ⊗ e
∗
jk

) ej1 ⊗ · · · ⊗ ejk

〉
=

∑
j1,...,jk∈J

P̃k(e∗j1 ⊗ · · · ⊗ e
∗
jk

) ej1 · · · ejk ,

whence the result.
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Proposition 1.16. Let G be a Lie group with Lie algebra g. Then, the mapping

λG : Pol(g∗;C) 3 P 7→ [P (i−1 · )]UC(g) ∈ UC(g)

is an isomorphism of vector spaces. In addition, for every polynomial mapping P on g∗ the
following hold:

1. if G is a homogeneous group, then P is homogeneous (with respect to the graduation
(g∗r)r>0 of g∗) if and only if λG(P ) is homogeneous; in this case, the homogeneous degrees
are the same;

2. λG(P ) = λG(P )∗ with respect to a right Haar measure. In particular, λG(P ) is formally
self-adjoint with respect to a right Haar measure if and only if P is real;

3. if G′ is a Lie group with Lie algebra g′, and if π : G → G′ is a homomorphism of Lie
groups, then dπ(λG(P )) = λG′(P ◦ tdπ).

Proof. 0. Let Φ1 be the mapping Pol(g∗;C) 3 P 7→ [P (i−1 · )]SC(g) ∈ SC(g), where SC(g) is
the complexification of the symmetric algebra over g, and observe that Φ1 is an isomorphism
thanks to Lemma 1.15. Then, let Φ2 be the isomorphism of SC(g) onto the graded algebra G
associated with UC(g) (cf. [21, Theorem 1 of Chapter 1, § 2, No. 7]). Finally, let Φ3 be the
canonical isomorphism of vector spaces of UC(g) onto G. Then, clearly Φ2 ◦ Φ1 = Φ3 ◦ λG, so
that λG is an isomorphism of vector spaces.

1. Suppose thatG is a homogeneous group, and let (Xj)j∈J be a basis of g with homogeneous
elements. Then, also the dual basis (X∗j ) of g∗ has homogeneous elements, so that the assertion
follows easily from Lemma 1.15 and 0 above.

2. Since the elements of ig are formally self-adjoint with respect to a right Haar measure,
the assertion follows easily from Lemma 1.15 and 0 above.

3. The third assertion follows easily from Lemma 1.15.

In order to show that the mapping Pol(g∗;C) 3 P 7→ PUC(g) is the so-called symmetrization,
it suffices to observe that this map is linear and that the polynomial mapping v 7→ 〈v,X〉k has
image Xk for every X ∈ g, as one sees immediately by means of Lemma 1.15 (cf. [48, Theorem
4.3] and [13, Chapter IV, § 5, No. 11]).

1.2 The Space B(M)

In this section, M denotes a locally compact space. The results of this section are based
on [76, 77].

Definition 1.17. We define B(M) as the set of bounded continuous functions onM with values
in C, endowed with the supremum norm.

We shall denote by Bc(M) the space B(M) endowed with the finest locally convex topology
which induces the topology of C(M), that is, the topology of compact convergence, on the
bounded subsets of B(M).

The topology of Bc(M) is not always easy to handle. Nonetheless, we have the following
result.

Proposition 1.18. Let (E, τ1) be a locally convex space, and B a translation-invariant set
of subsets of E. Let τ2 be the locally convex topology induced by the semi-norms which are
continuous on every element of B. Then, τ2 is the finest locally convex topology on E which
induces the same topology as τ1 on each element of B.

If, in addition, τ1 is metrizable, then every sequentially continuous semi-norm on (E, τ2) is
continuous.

Proof. Observe first that τ2 is finer than every locally convex topology which induces the same
topology as τ1 on every element of B; in particular, it is finer than τ1. Conversely, take B ∈ B,
and let us prove that τ2 induces the same topology as τ1 on B; it will suffice to prove that
it induces a coarser topology. Take v ∈ B, and let V be a neighbourhood of v in B with
respect to τ2. Then, there is a semi-norm ρ which is continuous with respect to τ2 and satisfies
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(v + ρ−1([0, 1])) ∩ B ⊆ V . Now, there is a neighbourhood U of 0 in B − v, endowed with the
topology induced by τ1, such that ρ(U) ⊆ [0, 1], so that U ⊆ ρ−1([0, 1]). Now, this implies that
v+U ⊆ (v+ ρ−1([0, 1]))∩B ⊆ V ; since v+U is a neighbourhood of v in B with respect to the
topology induced by τ1, the first assertion follows. The second assertion follows easily.

For further reference, we state also the following immediate corollary.

Corollary 1.19. Let F be a locally convex space and H a set of linear mappings from Bc(M)
into F . Then, the following conditions are equivalent:

1. H is equicontinuous;

2. for every bounded subset B of B(M), the set
{
T

B
: T ∈ H

}
is equicontinuous.

If, in addition, M is countable at infinity, then the preceding conditions are equivalent to the
following one:

3. H is sequentially equicontinuous.

Lemma 1.20. Let B be a bounded subset of B(M). Then, there is a bounded subset B′ of
B(M) contained in Cc(M) and such that the closure of B′ in Bc(M) contains B.

Proof. Indeed, let K be the set of compact subsets of M , and take, for every K ∈ K, some
τK ∈ Cc(M) such that χK 6 τK 6 χM ; endow K with the section filter induced by ⊆. Define
B′ := { ϕτK : ϕ ∈ B,K ∈ K }. Then, it is clear that B′ is bounded in B(M). In addition, for
every ϕ ∈ B the bounded filtered family (τKϕ) converges to ϕ in C(M), hence in Bc(M).

Proposition 1.21. The following hold:

1. the canonical bilinear mapping M1(M) × Bc(M) 3 (µ, ϕ) 7→
∫
M
ϕdµ ∈ C induces an

isomorphism ofM1(M) onto the strong dual of Bc(M);

2. a subset B of Bc(M) is bounded (resp. relatively compact) if and only if it is uniformly
bounded (resp. and equicontinuous);

3. Bc(M) is Hausdorff and quasi-complete.

Proof. Take µ ∈ M1(M). In order to prove that µ induces a continuous linear functional on
Bc(M), by Corollary 1.19 it suffices to observe that µ is continuous on every bounded subset of
Bc(M) with respect to locally uniform convergence. However, this follows from [19, Proposition
21 of Chapter IV, § 5, No. 11].

Conversely, every element of Bc(M)′ induces a unique element ofM1(G) since the inclusion
C0(M) ⊆ Bc(M) is continuous and dense by Lemma 1.20. Therefore, Bc(M)′ = M1(M) as
vector spaces. Consequently, a subset B of Bc(M) is bounded if and only if 〈µ,B〉 is bounded
for every µ ∈M1(M). Now, this is true if B is uniformly bounded. Conversely, if B is bounded
in Bc(M), then B induces a pointwise bounded subset ofM1(M)′, which is then bounded since
M1(M) is barrelled. Hence, sup

x∈M,ϕ∈B
|〈δx, ϕ〉| <∞ since { δx : x ∈M } is bounded inM1(M);

hence, B is uniformly bounded.
Now, let B be a bounded subset of Bc(M); then Lemma 1.20 shows that there is a bounded

subset B′ of C0(M) such that B is contained in the closure of B′ in Bc(M). Therefore,

sup
ϕ∈B′
|〈µ, ϕ〉| > sup

ψ∈B
|〈µ, ψ〉|

for every µ ∈ M1(M), so that the semi-norm µ 7→ sup
ψ∈B
|〈µ, ψ〉| is continuous on M1(M).

Hence,M1(M) is the strong dual of Bc(M). The other assertions follow from [17, Corollary 3
to Theorem 2 of §§ 1 and 2].

Remark 1.22. Assume that M is not compact. Then, Bc(M) is not semi-barrelled. In partic-
ular, it is neither barrelled nor bornological.

Indeed, let (Kn) be a strictly increasing sequence of compact subsets of M whose union
N is not compact. Then, the subset { δx : x ∈ N } of M1(M) is clearly bounded but not
equicontinuous on Bc(M) thanks to Corollary 1.19. By the same reference, it is easily seen that
the set { δx : x ∈ Kn } is equicontinuous for every n ∈ N. Hence, Bc(M) is not semi-barrelled.
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Definition 1.23. We shall denote by M1
c(M) the space M1(M) endowed with the topology

of uniform convergence on the compact subsets of Bc(M).

Proposition 1.24. M1
c(M) is a Hausdorff space. It is complete if M is paracompact.

Proof. The first assertion is clear. Then, assume that M is paracompact. Let M1
k(M) be

the spaceM1(M) endowed with the topology of uniform convergence on the compact subsets
of C0(M), so that M1

k(M) is complete by [18, Proposition 12 of Chapter III, § 3, No. 8]. In
addition, the identity mappingM1

c(M)→M1
k(M) is continuous; let us prove that the topology

of M1
c(M) is defined by a family of semi-norms which are lower semi-continuous on M1

k(M).
Indeed, take a relatively compact subset B of Bc(M). Let C be a partition ofM into σ-compact
open subspaces of M (cf. [16, Theorem 5 of Chapter I, § 9, No. 10]). Take, for every C ∈ C,
an increasing sequence (τC,j) of elements of Cc(M) such that 0 6 τC,j 6 χC for every j ∈ N,
and such that Supp(τC,j) is contained in the interior of the set where τC,j+1 equals 1. Then,
it is easily seen that B′C,j := { τC,jϕ : ϕ ∈ B } is relatively compact in C0(M) for every C ∈ C
and for every j ∈ N, and that their union B′ is relatively compact in Bc(M). Therefore, the
semi-norms of the form sup

ϕ∈B′
|〈 · , ϕ〉|, as B runs through the relatively compact subsets of Bc(M),

define the topology ofM1
c(M) and are lower semi-continuous onM1

k(M). Then, the assertion
follows from [16, Corollary to Proposition 7 of Chapter II, § 3, No. 3].

We now give some characterizations of the compact subsets ofM1
c(M). We begin with an

elementary result of functional analysis. Recall that a semi-Montel space is a Hausdorff locally
convex space whose bounded subsets are relatively compact.

Proposition 1.25. Let E be a locally convex space, F a semi-Montel space, and H an equicon-
tinuous subset of L(E;F ). Then, H is relatively compact in Lc(E;F ).

Proof. Notice that also the closure H of H in Ls(E;F ) is equicontinuous by [18, Proposition 4
of Chapter III, § 3, No. 4], hence compact by [18, Corollary 1 to Proposition 4 of Chapter III, §
3, No. 4]. Now, [18, Proposition 5 of Chapter III, § 3, No. 4] implies that the topologies induced
by Lc(E;F ) and Ls(E;F ) on H coincide, so that H is a compact subset of Lc(E;F ).

Proposition 1.26. Assume that M is paracompact, and let H be a subset of M1
c(M). Then,

the following conditions are equivalent:

1. H is equicontinuous on Bc(M);

2. H is relatively compact;

3. H satisfies Prokhorov’s condition, that is, H is bounded and1

lim
K∈K

sup
µ∈H
|µ|(M \K) = 0.

Proof. 1 =⇒ 2. This follows from Proposition 1.25.
2 =⇒ 3. It is clear that H is bounded; assume by contradiction that there is ε0 > 0 such

that for every compact subset K of M there is µ ∈ H such that |µ|(M \K) > ε0.
Suppose first that M is σ-compact, and let (Vh) be a covering of M by relatively compact

open subsets such that Vh ⊆ Vh+1 for every h ∈ N. Then, it is clear that we may construct
by induction a strictly increasing sequence (hj) of elements of N, a sequence (Kj) of compact
subsets ofM and a sequence (µj) of elements ofH such thatKj ⊆ Vhj+1\V hj and |µj |(Kj) > ε0.
Now select, for every j ∈ N, some ϕj ∈ D0(Vhj+1

\V hj ) such that ‖ϕj‖∞ 6 1 and 〈µj , ϕj〉 = ε0.
Then, the set { ϕj : j ∈ N } is compact in Bc(M). Since H is precompact inM1

c(M), we may
then find µ′1, . . . , µ′h in H such that for every µ ∈ H there is ` ∈ { 1, . . . , h } such that

|〈µ− µ′`, ϕj〉| <
ε0

2

for every j ∈ N. Taking µ = µj , we see that there are ` ∈ { 1, . . . , h } and an infinite subset N
of N such that

|〈µ′`, ϕj〉| >
ε0

2

1Here, K denotes the set of compact subsets of M , endowed with the section filter relative to the ordering ⊆.
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for every j ∈ N . Since ‖ϕj‖∞ 6 1 for every j ∈ N, this implies that |µ′`|(Vhj+1
\ V hj ) > ε0

2 for
every j ∈ N , so that µ′` 6∈ M1(M): contradiction.

Now, consider the general case. By [16, Theorem 5 of Chapter I, § 9, No. 10], there is a
partition of C of M whose elements are σ-compact open subsets of M . Now, take ε > 0 and
assume by contradiction that there is an uncountable subset C′ of C and a family (µC)C∈C′ of
elements of H such that |µC |(C) > ε for every C ∈ C′. Then, for every C ∈ C′ we may find
ϕC ∈ D(C) such that ‖ϕ‖∞ 6 1 and 〈µC , ϕC〉 = ε. Clearly, { ϕC : C ∈ C′ } is a compact subset
of Bc(M); reasoning as before, this leads to a contradiction. Therefore, there is a countable
union of components of M which contains the support of each element of H, so that the
preceding argument applies with minor modifications.

3 =⇒ 1. Let B be a bounded subset of Bc(M). Take ε > 0, and define C1 := sup
ϕ∈B
‖ϕ‖∞

and C2 := sup
µ∈H
‖µ‖. Let K be a compact subset of M such that

|µ|(M \K) 6
ε

3C1 + 1
.

for every µ ∈ H. Now, assume that ϕ1, ϕ2 ∈ B satisfy

|ϕ1(x)− ϕ2(x)| 6 ε

3C2 + 1

for every x ∈ K. Then,

|〈µ, ϕ1 − ϕ2〉| 6
∫
K

|ϕ1 − ϕ2|d|µ|+
∫
M\K

|ϕ1|d|µ|+
∫
M\K

|ϕ2|d|µ| 6 ε,

for every µ ∈ H. Then, Corollary 1.19 completes the proof.

Corollary 1.27. Assume that M is paracompact. Then, Bc(M) is canonically identified with
(M1

c(M))′c. In addition, Bc(M) is complete.

Proof. Since Bc(M) is quasi-complete by Proposition 1.21, the topology of M1
c(M) is coarser

than the Mackey topology τ(M1(M),Bc(M)); in addition, it is finer than the weak topology
σ(M1(M),Bc(M)). Therefore, the dual of M1

c(M) is canonically identified with Bc(M) as a
vector space by [18, Theorem 1 of Chapter IV, § 1, No. 1]. The first assertion then follows from
Proposition 1.26 and [18, Corollary 1 to Proposition 7 of Chapter III, § 3, No. 5].

Now, let us prove that Bc(M) is complete. Indeed, by means of Proposition 1.26 and the
above, we see that the topology of Bc(M) is induced by a family of semi-norms which are lower
semi-continuous with respect to the topology of E0(M). Taking into account the fact that
E0(M) is complete, [16, Proposition 7 of Chapter II, § 3, No. 3] leads to the conclusion.

Proposition 1.28. The inclusion E ′0c (M) ⊆M1
c(M) is continuous and dense.

Proof. Since the inclusion Bc(M) ⊆ E0(M) is continuous and dense, it follows that the inclusion
E ′0c (M) ⊆ M1

c(M) is continuous. Then, take µ ∈ M1
c(M) and define K and (τK) as in the

proof of Lemma 1.20. Let us prove that (τKµ) converges to µ in M1
c(M). Indeed, it suffices

to observe that this filtered family converges pointwise to µ and that it is equicontinuous on
Bc(M) by Proposition 1.26.

Observe that, even though our definition of Bc(M) is inspired by [78, p. 203], the topology
we put on Bc(Rn) is strictly finer than the topology of the corresponding space B0

c of [77],
that is, the supremum between the topology induced by that of E0(Rn) and that of uniform
convergence on the compact subsets ofM1(Rn).

Indeed, [77] and our definition of Bc(Rn) imply that the identity Bc(Rn)→ B0
c is continuous.

On the other hand, the topology of B0
c is that of uniform convergence on the sets of the form

B1 +B2, where B1 is relatively compact inM1(Rn) and B2 is bounded in E ′0(Rn), that is, is
bounded inM1(Rn) and its elements are supported in a fixed compact subset of Rn. On the
other hand, Corollary 1.27 implies that the topology of Bc(Rn) is that of uniform convergence
on the bounded subsets ofM1(Rn) which satisfy Prokhorov’s condition.

Now, the set B :=
⋃
j∈N
{

2−jδx : x ∈ B(0, 2j)
}
satisfies Prokhorov’s condition. However, if

B ⊆ B1 + B2 for some B1, B2 as above, then there is k ∈ N such that (χRn − χB(0,2k)) · B is
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precompact inM1(Rn). Therefore, also the set
{
δx : x ∈ B(0, 2k+1) \B(0, 2k)

}
is precompact

in M1(Rn); since this latter set is infinite and discrete, this is absurd Since the bornology
generated by the sets of the form B1 + B2 as above is adapted, the assertion follows from [18,
Proposition 2 of Chapter III, § 3, No. 1].

1.3 Spaces of Sobolev Type
In this section, G denotes a Lie group of dimension n, and X = (X1, . . . , Xn) and Y =

(Y1, . . . , Yn) two bases of left- and right-invariant vector fields on G which agree at the identity
e of G. We denote by β a relatively invariant positive measure on G with left and right
multipliers ∆L and ∆R, respectively.

Definition 1.29. Take p ∈]1,∞] and k1, k2 ∈ N ∪ {∞ }, and define W k1,k2,p(β) as the set
of f ∈ Lp(β) · β such that Yα1Xα2f ∈ Lp(β) · β for every α1, α2 of length at most k1, k2,
respectively. We shall endow W k1,k2,p(β) with the topology induced by the canonical mapping
f 7→ (Yα1Xα2f)|α1|6k1,|α2|6k2

into the product of the Lp(β) · β.
If p ∈ [1,∞[, then we define analogously the spaces W k1,k2,1(G), W k1,k2,1

c (G), W k1,k2,p
0 (β),

W k1,k2,∞
0 (G), Bk1,k2(G), and Bk1,k2

c (G), starting with M1(G), M1
c(G), Lp(β), C0(G), B(G),

and Bc(G), respectively.

Proposition 1.30. Take p ∈ [1,∞] and k1, k2 ∈ N ∪ {∞ }. Then, the following hold:

• W k1,k2,1
c (G) and Bk1,k2

c (G) are complete Hausdorff spaces;

• W k1,k2,p(β) and Bk1,k2(G) are Fréchet spaces;

• W k1,k2,p(β) is reflexive if p ∈]1,∞[;

• D(G) is dense in Bk1,k2
c (G), while D(G) · β is dense in W k1,k2,1

c (G);

• W k1,k2,p
0 (β) · β is the closure of D(G) · β in W k1,k2,p(β).

Proof. The first three properties follow easily from the fact that the continuous linear mapping

W k1,k2,p(β) 3 f 7→ (Yα1Xα2f) ∈
∏

|α1|6k1,|α2|6k2

Lp(β) · β

is closed and one-to-one (with suitable modifications for the other spaces). The remaining
assertions are proved with standard techniques: one first reduces to distributions with com-
pact support by means of suitable truncations; smooth approximations are then obtained by
convolution.

Definition 1.31. Take p ∈ [1,∞] and k1, k2 ∈ N ∪ {∞ }. Then, define W−k1,−k2,p(β) and
B−k1,−k2(G) as the strong duals of W k1,k2,p

′

0 (β) and W k1,k2,1
c (G), respectively.

If p ∈]1,∞], then define W−k1,−k2,p
c (β), W−k1,−k2,1

c (G), and B−k1,−k2
c (G) as the duals of

W k1,k2,p
′

0 (β), Bk1,k2
c (G), and W k1,k2,1

c (G), respectively, endowed with the topology of compact
convergence.

Proposition 1.32. Take k1, k2 ∈ N ∪ {∞ } and p ∈ [1,∞]; let (F, F0) be one of the pairs

(W−k1,−k2,p(β), Lp(β) · β) (W−k1,−k2,1
c (G),M1

c(G)) (B−k1,−k2(G),B(G) · β),

and let B be a subset of F . Then, B is equicontinuous if and only if there are h1, h2 ∈ N with
h1 6 k1 and h2 6 k2, and a bounded family (µT,α)T∈B,|α1|6h1,|α2|6h2

of elements of F0 such
that

T =
∑
|α1|6h1

|α2|6h2

(Yα1Xα2)†µT,α

for every T ∈ B.
If, in addition, (F, F0) = (W−k1,−k2,p(β), Lp(β) · β) and B is compact, then the family

(µT,α)T∈B,|α1|6h1,|α2|6h2
can be chosen so as to be compact.
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Proof. Consider the closed embedding of the proof of Proposition 1.30, and apply [18, Propo-
sitions 10 and 15 of Chapter IV, § 1].

Corollary 1.33. Take k1, k2 ∈ N ∪ {∞ }. Then, W−k1,−k2,1(G) is canonically identified with
the strong dual of Bk1,k2

c (G).

Proof. It is easily seen that the inclusion W k1,k2,∞
0 (G) ⊆ Bk1,k2

c (G) is continuous and dense,
so that there is a continuous injection of Bk1,k2

c (G)′ into W−k1,−k2,1(G). Now, this injection
is onto by Proposition 1.32, so that it only remains to prove that every bounded subset of
Bk1,k2
c (G) is contained in the closure, in Bk1,k2

c (G), of a bounded subset of W k1,k2,∞
0 (G). We

leave the details to the reader.

Corollary 1.34. Take k1, k2 ∈ N ∪ {∞ } and p ∈]1,∞[. Then, D(G) · β is dense in each one
of the spaces W−k1,−k2,p(β), W−k1,−k2,1

c (G), and W−k1,−k2,∞
c (β). In addition, the inclusion

E ′k1+k2(G) ⊆W−k1,−k2,1(G) is continuous and dense.

Definition 1.35. Take k1, k2 ∈ N ∪ {∞ } and p ∈ [1,∞]. Then, we shall define W−k1,k2,p(β)
as the set of T ∈ W−k1,0,p(β) such that XαT ∈ W−k1,0,p(β) for every α with length at most
k2. We shall endow W−k1,k2,p(β) with the topology induced by the mapping T 7→ (XαT ) ∈∏
|α|6k2

W−k1,0,p(β). We shall denote by W−k1,k2,p
c (β) the space W−k1,k2,p(β) endowed with

the topology induced by the mapping T 7→ (XαT ) ∈
∏
|α|6k2

W−k1,0,p
c (β).

The spaces W k1,−k2,p(β) and W k1,−k2,p
c (β) are defined analogously.

Observe that this is consistent with the preceding notation when k1 = 0.

Definition 1.36. Take k1, k2 ∈ N ∪ {∞ }. Then, we shall define B−k1,k2
c (G) as the set of

T ∈ B−k1,0
c (G) such that XαT ∈ B−k1,0

c (G) for every α with length at most k2. We shall endow
B−k1,k2
c (G) with the topology induced by the mapping T 7→ (XαT ) ∈

∏
|α|6k2

B−k1,0
c (G).

The space Bk1,−k2
c (G) is defined analogously.

Observe that this definition is consistent with the preceding notation when k1 = 0.

Definition 1.37. Take k1, k2 ∈ Z∪{ ±∞ }. Then, we shall say that a subset K ofW k1,k2,1
c (G)

is strictly compact if YαXβK is equicontinuous on B(k1)−,(k2)−,1
c (G) for every α, β with length

at most (k1)+, (k2)+, respectively.
Analogous definition switching the roles of B and W 1.

Proposition 1.38. Take µ ∈M+(G). If µ ∈W−∞,−∞,1(G), then µ ∈M1(G).

Notice that the same assertion does not hold if µ is not positive. For example, one may
take ϕ ∈ E(G)∩L1(β) such that X†1ϕ 6∈ L1(β). Then, X†1(ϕ · β) ∈W 0,−1,1(β), but X†1(ϕ · β) =

(X†1ϕ) · β 6∈ M1(β).

Proof. Indeed, 〈µ, τK〉 is bounded as K runs through the set of compact subsets of G, where τK
denotes an element of D(G) such that χK 6 τK 6 χG. Since µ is positive, we have µ∗(G) <∞,
so that µ ∈M1(G).

We conclude this section with some Sobolev embeddings.

Definition 1.39. Let (M,g) be a Riemannian manifold, and take k ∈ N and p ∈ [1,∞[. Let
∇ be the Levi-Civita connection on M and let ω be the canonical volume form. Define, for
every ϕ ∈ C∞(M),

‖ϕ‖Wk,p(M,g) :=

 k∑
j=0

∫
M

|∇jϕ|pω

 1
p

.

Then,W k,p(M,g) is defined as the completion of the set of ϕ ∈ C∞(M) such that ‖ϕ‖Wk,p(M,g)

is finite with respect to the norm ‖ · ‖Wk,p(M,g).

Lemma 1.40. Let g be a left-invariant Riemannian metric on G, and take k ∈ N and p ∈
[1,∞[; assume that β is left-invariant. Then, the following hold:

1. the spaces W k,p(G,g) and W 0,k,p
0 (β) are canonically isomorphic as locally convex spaces;
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2. if h ∈ N, q ∈ [1,∞[, and 1
p > 1

q > 1
p −

h
n > 0, then W 0,k+h,p

0 (β) embeds canonically into
W 0,k,q

0 (β);

3. if h ∈ N and h
n >

1
p , then W

0,k+h,p
0 (β) embeds canonically into B0,k(G).

Proof. The proof of the first assertion is left to the reader. As for what concerns the other
assertions, by [6, Theorem 2.21], it suffices to observe that (G,g) is a complete Riemannian
manifold, and that its curvature and exponential map are left invariant, so that its curvature
is bounded and its injectivity radius is strictly positive.

Proposition 1.41. Assume that β is both left- and right-invariant, and take k1, k2 ∈ N∪{∞ },
h1, h2 ∈ N and p, q ∈ [1,∞[. Then, the following hold:

1. if 1
p > 1

q > 1
p −

h1+h2

n > 0, then W k1+h1,k2+h2,p
0 (β) embeds canonically into W k1,k2,q

0 (β);

2. if h1+h2

n > 1
p and either h1

n 6=
1
p or h2

n 6=
1
p , then W k1+h1,k2+h2,p

0 (β) embeds canonically
into Bk1,k2(G).

Proof. 1. Take f ∈ W k1+h1,k2+h2,p
0 (β). Take q′ ∈ [1,∞] so that 1

q′ = 1
p −

h1

n . Then, for every

α1 with length at most k1 we have Yα1f ∈ Wh1,k2+h2,p
0 (β), so that Yα1f ∈ W 0,k2+h2,q

′

0 (β)
by Lemma 1.40. In the same way we see that for every α2 with length at most k2 we have
Yα1Xα2f ∈ Lq(β), whence our assertion.

2. Assume, for the sake of definiteness, that h1

n 6=
1
p . If h1

n < 1
p , then choose q′ as in 1.

Then, Lemma 1.40 implies that Yα1f ∈ W 0,h2,q
′
(β) for every α1 of length at most k1, so that

another application of Lemma 1.40 shows that Yα1Xα2f ∈ B(G) for every α2 of length at
most k2, whence the result. If, on the contrary, h1

n > 1
p , then Lemma 1.40 leads directly to the

conclusion.

Proposition 1.42. Take k1, k2 ∈ N ∪ {∞ }. Then, W k1+1,k2,1(G) and W k1,k2+1,1(G) embed
continuously into W k1,k2,1

0 (β).

Proof. We may reduce to proving thatW 0,1,1(G) embeds into L1(β). Now, by means of suitable
truncations, we may reduce to prove the assertion for measures with compact support; then,
by means of a finite partition of the unity we may reduce to the case in which that support is
contained in the domain of a local chart. Then, the assertion follows from [2, Exercise 3.2].

Corollary 1.43. Assume that β is both left- and right-invariant, and take k1, k2 ∈ N ∪ {∞ }
such that k1 + k2 =∞ and p ∈ [1,∞[. Then, the following hold:

1. W k1,k2,p(β) = W k1,k2,p
0 (β) · β and the inclusion W k1,k2,p

0 (β) ⊆ Bk1,k2(G) is continuous;

2. W k1,k2,∞(β) = Bk1,k2(G) · β.

Proof. The first assertion is a consequence of Propositions 1.41 and 1.42. Next, take f ∈
W k1,k2,∞(β). Then, for every ϕ ∈ D(G) we have ϕ · f ∈ W k1,k2,1(G), so that ϕ · f ∈ D(G) · β.
The assertion follows from the arbitrariness of ϕ.

1.4 Convolution
In this section, G will denote a Lie group of dimension n, and β a relatively invariant measure

onG with left and right multipliers ∆L,∆R, respectively. The definition of convolution we adopt
is a straightforward generalization of [76]. See also [32] and the references therein for an account
of other equivalent definitions of convolution on Rn.

Definition 1.44. Take T1, T2 ∈ D′(G). We say that T1 and T2 are convolvable if

[ϕ ◦ ( · )](T1 ⊗ T2) ∈W−∞,−∞,1(G×G)

for every ϕ ∈ D(G). In this case, we define

〈T1 ∗ T2, ϕ〉 := 〈[ϕ ◦ ( · )](T1 ⊗ T2), χG×G〉

for every ϕ ∈ D(G).
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Observe that Proposition 1.38 implies that, if two measures µ1, µ2 are convolvable as mea-
sures, in the sense that the mapping · : G × G → G is (µ1 ⊗ µ2)-proper, that is, (|µ1| ⊗ |µ2|)-
proper, then µ1 and µ2 are convolvable in the sense of Definition 1.44. Nevertheless, the converse
fails, in general, if µ1 or µ2 is not positive (cf. Remark 1.56).

Lemma 1.45. Let T1 and T2 be two convolvable distributions on G. Then, the mapping ϕ 7→
〈T1 ∗ T2, ϕ〉 defines a distribution which is supported in the closure of Supp(T1) Supp(T2).

Proof. Indeed, let (τK) be a filtered family which is bounded in B∞,∞c (G×G), has elements in
D(G×G), and converges to χG×G in B∞,∞c (G×G).2 Then, for every ϕ ∈ D(G), the family

〈T1 ⊗ T2, [ϕ ◦ ( · )]τK〉

is bounded and converges to 〈T1 ∗ T2, ϕ〉. Therefore, the mappings ϕ 7→ 〈T1 ⊗ T2, [ϕ ◦ ( · )]τK〉
are equicontinuous on D(G), so that their pointwise limit T1 ∗ T2 is continuous on D(G). The
assertion concerning the support follows from the fact that, if the support of ϕ does not intersect
the closure of Supp(T1) Supp(T2), then ϕ ◦ ( · ) vanishes on a neighbourhood of the support
Supp(T1)× Supp(T2) of T1 ⊗ T2.

The following simple result will be very useful in the sequel.

Proposition 1.46. Take T1, T2 ∈ D′(G). Then, T1 and T2 are convolvable if and only if Ť2

and Ť1 are convolvable. In this case,

(T1 ∗ T2)̌ = Ť2 ∗ Ť1.

Proof. Suppose that T1 and T2 are convolvable, and take ϕ ∈ D(G). Then, [ϕ̌ ◦ ( · )](T1 ⊗
T2) ∈ W−∞,−∞,1(G×G), so that its image under the reflection (g1, g2) 7→ (g−1

2 , g−1
1 ), that is,

[ϕ ◦ ( · )](Ť2 ⊗ Ť1), belongs to W−∞,−∞,1(G), and has the same value at χG×G.3 Therefore, Ť2

and Ť1 are convolvable and (T1 ∗ T2)̌ = Ť2 ∗ Ť1. The converse implication follows if one applies
the preceding result to Ť2 and Ť1.

Proposition 1.47. Take T1, T2 ∈ D′(G) and a continuous (hence analytic) representation χ
of G in C∗. Then, T1 and T2 are convolvable if and only if χT1 and χT2 are convolvable. In
this case,

χ(T1 ∗ T2) = (χT1) ∗ (χT2).

Proof. Take ϕ ∈ D(G). Then,

[ϕ ◦ ( · )][(χT1)⊗ (χT2)] = [(χϕ) ◦ ( · )](T1 ⊗ T2).

Since the mapping ϕ 7→ χϕ induces and automorphism of D(G), it is clear that T1 and T2 are
convolvable if and only if χT1 and χT2 are convolvable. In addition, in this case χ(T1 ∗ T2) =
(χT1) ∗ (χT2).

Definition 1.48. If T1 and T2 are two convolvable distributions and T1 ∗ T2 = f · β for some
f ∈ L1

loc(β), then we shall also denote f by T1 ∗β T2, or even T1 ∗ T2 if no ambiguity is to be
feared. If, in addition, T1 = f1 · β for some f1 ∈ L1

loc(β), then we shall also write f1 ∗β T2, or
even f1 ∗T2, instead of (f1 ·β) ∗T2. We shall use similar conventions also if T2 = f2 ·β for some
f2 ∈ L1

loc(β).

Definition 1.49. We shall say that two distributions T1 and T2 on G are transversally con-
volvable if · : Supp(T1)× Supp(T2)→ G is a proper mapping.

Lemma 1.50. Let A,B be two closed subsets of G. Then, the following facts are equivalent:

1. · : A×B → G is proper;

2. A ∩KB−1 is compact for every compact subset K of G;

3. B ∩A−1K is compact for every compact subset K of G.
2For example, if V is a compact neighbourhood of e in G × G and ψ ∈ D(G × G) equals 1 on V , then one

may define τK := ψ ∗β χVKV ∗β ψ for every compact subset K of G×G.
3It suffices to observe that the reflection (g1, g2) 7→ (g−1

2 , g−1
1 ) induces an automorphism of B∞,∞c (G×G).
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Proof. 1 =⇒ 2 ∧ 3. Indeed, if K is a compact subset of G, then pr1([( · )−1(K)]∩ (A×B)) =
A ∩KB−1 and pr2([( · )−1(K)] ∩ (A×B)) = B ∩A−1K.

2 ∧ 3 =⇒ 1. Indeed, by 1 we see that [( · )−1(K)]∩ (A×B) ⊆ [A∩KB−1]× [B ∩A−1K].
Since [( · )−1(K)] ∩ (A×B) is closed, it is compact.

2 ⇐⇒ 3. Indeed, let K be a compact subset of G, and assume that 2 holds. Then,
A∩KB−1 is compact, so that A−1∩BK−1 is compact. Therefore, (A−1∩BK−1)K is compact.
Since A−1K ∩B is closed and contained in (A−1 ∩BK−1)K, it is compact. Hence 3 holds. In
the same way one proves the converse implication.

Proposition 1.51. Take two transversally convolvable distributions T1 and T2 on G. Then, T1

and T2 are convolvable. In addition, if V is a compact neighbourhood of e in G, ϕ1, ϕ2 ∈ E(G),

χV Supp(T1) 6 ϕ1 6 χV 2 Supp(T1), χSupp(T2)V 6 ϕ2 6 χSupp(T2)V 2 ,

and ϕ ∈ D(G), then the mappings

g1 7→ ϕ1(g1)〈T2, ϕ(g1 · )〉 and g2 7→ ϕ2(g2)〈T1, ϕ( · g2)〉

belong to D(G), and

〈T1 ∗ T2, ϕ〉 = 〈T1, g1 7→ ϕ1(g1)〈T2, ϕ(g1 · )〉〉 = 〈T2, g2 7→ ϕ2(g2)〈T1, ϕ( · g2)〉〉.

Proof. Observe that, for every ϕ ∈ D(G), the intersection of the support of ϕ ◦ ( · ) with the
support of T1⊗T2 is compact, so that [ϕ◦ ( · )](T1⊗T2) has compact support. Hence, T1 and T2

are convolvable. Now, observe that Lemma 1.50 implies that · : V 2 Supp(T1)×Supp(T2)V 2 → G
is still proper, so that Lemma 1.50 again implies that the mappings

g1 7→ ϕ1(g1)〈T2, ϕ(g1 · )〉 and g2 7→ ϕ2(g2)〈T1, ϕ( · g2)〉,

which are clearly of class C∞, have compact support. Finally, take a filtered family (τK)K∈K
which is bounded and converges to χG×G in B∞,∞c (G × G) and whose elements belong to
D(G×G). Then, for every ϕ ∈ D(G),

〈T1 ∗ T2, ϕ〉 = 〈[ϕ ◦ ( · )](T1 ⊗ T2), χG×G〉
= lim
K,K
〈[ϕ ◦ ( · )](T1 ⊗ T2), τK〉

= lim
K,K
〈T1, g1 7→ 〈T2, ϕ(g1 · )τK(g1, · )〉〉;

since the mappings g1 7→ 〈T2, ϕ(g1 · )τK(g1, · )〉 converge locally uniformly with every left-
invariant derivative to g1 7→ 〈T2, ϕ(g1 · )〉, the first equality follows easily from the preceding
remarks. The other equality is proved similarly.

Corollary 1.52. Keep the hypotheses and the notation of Proposition 1.51. Assume further
that T1 = ψ1 ·β for some ψ1 ∈ Er1+r2(G) ·β, and that T2 ∈ D′r2(G). Then, T1 ∗T2 ∈ Er1(G) ·β
and

(ψ1 ∗β T2)(g1) =
〈
T2, ϕ2 ψ1(g1 · −1)∆−1

R

〉
.

Analogously, if T2 = ψ2 · β for some ψ2 ∈ Er1+r2(G) · β, and T1 ∈ D′r1(G), then T1 ∗ T2 ∈
Er2(G) · β and

(T1 ∗β ψ2)(g2) =
〈
T1, ϕ1 ψ2( ·−1g2)∆−1

L

〉
.

The proof is standard and is omitted

Corollary 1.53. Take three non-empty closed subsets F1, F2, F3 of G such that the mapping

F1 × F2 × F3 3 (g1, g2, g3) 7→ g1g2g3 ∈ G

is proper. Take T1, T2, T3 ∈ D′(G), and assume that Tj is supported in Fj for every j = 1, 2, 3.
Then, the following hold:

• T1 and T2 are transversally convolvable;

• T2 and T3 are transversally convolvable;
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• T1 ∗ T2 and T3 are transversally convolvable;

• T1 and T2 ∗ T3 are transversally convolvable;

• (T1 ∗ T2) ∗ T3 = T1 ∗ (T2 ∗ T3).

The proof is standard and is omitted.

Corollary 1.54. Take r1, r2 ∈ N ∪ {∞ } and three non-empty closed subsets F1, F2, F3 of G
such that the mapping

F1 × F2 × F3 3 (g1, g2, g3) 7→ g1g2g3 ∈ G

is proper. Take T1 ∈ D′r1(G), T2 ∈ D′r2(G), and ϕ3 ∈ Er1+r2(G), and assume that they are
supported in F1, F2, and F̌3, respectively. Then, the following hold:

• T1 and T2 are transversally convolvable;

• ϕ3 and ∆RŤ2 are transversally convolvable;

• ∆LŤ1 and ϕ3 are transversally convolvable;

• the following equalities hold:4

〈T1 ∗ T2, ϕ3〉 =
〈
T1, ϕ3 ∗β (∆RŤ2)

〉
=
〈
T2, (∆LŤ1) ∗β ϕ3

〉
.

Proof. By Corollaries 1.52 and 1.53 and Propositions 1.46 and 1.47, we see that the ordered
pairs (T1, T2), (T1∗T2,∆Lϕ̌3), (T2,∆

−1
L ϕ̌3) and (T1, T2∗(∆−1

L ϕ3)) are transversally convolvable,
and that

〈T1 ∗ T2, ϕ3〉 = [(T1 ∗ T2) ∗β (∆−1
L ϕ̌3)](e)

= [T1 ∗β (T2 ∗β (∆−1
L ϕ̌3))](e)

=
〈
T1, [T2 ∗β (∆−1

L ϕ̌3)]̌ ∆−1
L

〉
=
〈
T1, [(∆

−1
R ϕ3) ∗β Ť2]∆R

〉
=
〈
T1, ϕ3 ∗β (∆RŤ2)

〉
.

In the same way one may prove the other equality.

The following result is the main achievement of Definition 1.44. It will enable us to simplify
several proofs in the following.

Proposition 1.55. Take T1, T2 ∈ D′(G) such that T1 and T2 are convolvable, a left-invariant
differential operator X and a right-invariant differential operator Y of G. Then, the following
hold:

1. Y T1 and XT2 are convolvable, and

Y X(T1 ∗ T2) = (Y T1) ∗ (XT2);

2. suppose that X and Y are vector fields which coincide at e. Then, XT1 and T2 are
convolvable if and only if T1 and Y T2 are convolvable. If this is the case, then

(XT1) ∗ T2 = T1 ∗ (Y T2).

Notice that the both assertions may fail if we do not assume that T1 and T2 are convolvable,
even if we assume that the stated formulae make sense. Indeed, assume that G = R, that β is
Lebesgue measure, and that X = Y is the first derivative. Then:

• if T1 = IR · β and T2 := β, then T1 and XT2 = 0 are convolvable, but XT1 = T2 and T2

are not convolvable;
4In order to make the stated formulae more concise, we write 〈T1 ∗ T2, ϕ3〉 instead of 〈T1 ∗ T2, ψ1,2 ϕ3〉,

where ψ1,2 is some element of E(G) which equals 1 on a neighbourhood of the support of T1 ∗T2, subject to the
condition that the intersection Supp(ψ1,2)∩Supp(ϕ3) is compact. Analogous considerations for the other cases.
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• if T1 = sgn ·β and T2 = β, then T1 and XT2 = 0 are convolvable, XT1 = 2δ0 and T2 are
convolvable, but

(XT1) ∗ T2 = 2β 6= 0 = T1 ∗ (XT2).

Proof. 1. Take ϕ ∈ D(G), and assume first that Y is the identity. Proceeding by induction, we
may assume that X is a vector field. Now,

〈X(T1 ∗ T2), ϕ〉 =
〈
T1 ∗ T2, X

†ϕ
〉

=
〈
[(X†ϕ) ◦ ( · )](T1 ⊗ T2), χG×G

〉
.

Define X ′2 on G ×G so that (X ′2ψ)(g1, g2) := X(ψ(g1, · ))(g2) for every ψ ∈ E(G ×G) and for
every g1, g2 ∈ G, so that X ′2 is a left-invariant vector field on G×G. Then,

[(X†ϕ) ◦ ( · )](T1 ⊗ T2) = [ϕ ◦ ( · )][T1 ⊗ (XT2)] +X ′†2 [[ϕ ◦ ( · )](T1 ⊗ T2)],

so that [ϕ ◦ ( · )][T1 ⊗ (XT2)] ∈W−∞,−∞,1(G×G). Hence, T1 and XT2 are convolvable by the
arbitrariness of ϕ, and〈

[(X†ϕ) ◦ ( · )](T1 ⊗ T2), χG×G
〉

= 〈[ϕ ◦ ( · )][T1 ⊗ (XT2)], χG×G〉,

that is,
〈X(T1 ∗ T2), ϕ〉 = 〈T1 ∗ (XT2), ϕ〉,

whence the result in this case. Now, by means of Proposition 1.46 we get the assertion also in
the case in which X is the identity while Y is arbitrary. The general assertion then follows.

2. Suppose that XT1 and T2 are convolvable, and take ϕ ∈ D(G). Observe that, with
notation analogous to that of 1,

X ′1[ϕ ◦ ( · )](g1, g2) = X[Rg2
ϕ](g1) = Xe[Lg−1

1
Rg2

ϕ]

= Y [Lg−1
1
ϕ](g2) = Y ′2 [ϕ ◦ ( · )](g1, g2)

for every g1, g2 ∈ G. Then,

[ϕ ◦ ( · )][(XT1)⊗ T2] = [ϕ ◦ ( · )][T1 ⊗ (Y T2)] + (X ′1 − Y ′2)[[ϕ ◦ ( · )](T1 ⊗ T2)].

Since T1 and T2 are convolvable, [ϕ ◦ ( · )][T1 ⊗ (Y T2)] ∈ W−∞,−∞,1(G × G), so that the
arbitrariness of ϕ implies that T1 and Y T2 are convolvable. In addition,

〈[ϕ ◦ ( · )][(XT1)⊗ T2], χG×G〉 = 〈[ϕ ◦ ( · )][T1 ⊗ (Y T2)], χG×G〉.

that is,
〈(XT1) ∗ T2, ϕ〉 = 〈T1 ∗ (Y T2), ϕ〉,

whence the second assertion. The converse implication may be proved by means of Proposi-
tion 1.46.

Remark 1.56. Take G = R, and define ϕ := e−| · | and ψ := e−| · | sin(e2| · |); let β be Lebesgue
measure. Then, T1 := ϕ · β and T2 := ψ · β are convolvable, so that T ′1 and T2 are convolvable,
T1 and T ′2 are convolvable, and

(T1 ∗ T2)′ = T ′1 ∗ T2 = T1 ∗ T ′2.

Now, observe that T1, T2, and T ′1 are bounded measures, so that T ′1 ∗ T2 is a bounded measure;
in addition, T ′2 is a measure. Nevertheless, T1 and T ′2 are not convolvable as measures, that
is, +: R × R → R is not (T1 ⊗ |T ′2|)-proper. Indeed, T ′2 − 2 cos(e2| · |)e| · | sgn ·β is a bounded
measure, so that it will suffice to show that the positive measures T1 and

∣∣cos(e2| · |)
∣∣e| · | · β are

not convolvable. However, Tonelli’s theorem implies that∫ ∗
+−1([−R,R])

e−|x|
∣∣∣cos

(
e2|y|)∣∣∣e|y| d(x, y) >

∫ ∗
[R,+∞[

∣∣cos
(
e2y
)∣∣ey(eR−y − e−R−y) dy

= sinh(R)

∫ ∗
[e2R,+∞[

|cos(z)|
z

dz = +∞,

for every R > 0, whence our claim.
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We shall now state without proof some hypocontinuity results for convolution on various
spaces. See [78] for some proofs in the abelian case.

Corollary 1.57. Take r1, r2 ∈ N ∪ {∞ }; then, the bilinear mappings

∗β : Er1(G)×Dr2(G)→ Er1+r2(G), ∗β : Dr1(G)× Er2(G)→ Er1+r2(G)

∗β : Dr1(G)×Dr2(G)→ Dr1+r2(G),

are hypocontinuous relative to the bounded subsets of each factor.

Corollary 1.58. Take r1, r2 ∈ N ∪ {∞ }; then, the bilinear mappings

∗β : D′r1(G)×Dr1+r2(G)→ Er2(G), ∗β : Dr1+r2(G)×D′r2(G)→ Er1(G)

∗β : E ′r1(G)× Er1+r2(G)→ Er2(G), ∗β : Er1+r2(G)× E ′r2(G)→ Er1(G)

∗β : E ′r1(G)×Dr1+r2(G)→ Dr2(G), ∗β : Dr1+r2(G)× E ′r2(G)→ Dr1(G),

where the spaces E ′ and D′ are endowed with the topology of bounded (resp. compact) conver-
gence, are hypocontinuous relative to the bounded subsets of each space E ′, D′ and to the bounded
(resp. compact) subsets of each space E, D.

Corollary 1.59. Take r1, r2 ∈ N ∪ {∞ }; then, the bilinear mappings

∗ : E ′r1(G)×D′r2(G)→ D′r1+r2(G), ∗ : D′r1(G)× E ′r2(G)→ D′r1+r2(G)

∗ : E ′r1(G)× E ′r2(G)→ E ′r1+r2(G),

where all spaces are endowed with the topology of bounded (resp. compact, pointwise) convergence
are hypocontinuous relative to the equicontinuous (resp. equicontinuous, finite) subsets of each
factor.

The following theorem is a generalization of an remarkable result by J. Dixmier and P.
Malliavin [34, Theorem 3.1]. We begin with a definition.

Definition 1.60. Let V,W be two vector spaces over R or C, and let A be a subset of V . We
shall say that a mapping T : A→W is linear if T

(∑
j∈J λjvj

)
=
∑
j∈J λjT (vj) for every finite

set J , for every (λj) ∈ FJ , and for every (vj) ∈ AJ such that
∑
j∈J λjvj ∈ A.

In other words, T is linear if it is the restriction to A of a linear mapping defined on V .

Theorem 1.61. Let G be a Lie group. Let V be a neighbourhood of e in G and F a Fréchet
space which is continuously embedded in E(G). Assume that F ∗β X ⊆ F for every X ∈ U(g).
Let B be a bounded subset of F . Then, there are a finite family (ψγ)γ∈{ 0,1 }n of elements of
D(V ), and a uniformly continuous linear mapping T on B with values in a bounded subset of
F { 0,1 }n such that

ϕ =
∑

γ∈{ 0,1 }n
Tγ(ϕ) ∗β ψγ ,

and such that Supp(Tγ(ϕ)) ⊆ Supp(ϕ) for every γ ∈ { 0, 1 }n and for every ϕ ∈ B.

Proof. Take ε > 0 so that the mapping

Φ: ]− ε, ε[n3 (t1, . . . , tn) 7→ expG(tnXn) · · · expG(t1X1)

is a diffeomorphism of ]− ε, ε[n onto an open subset of V . Let (ρj)j∈N be an incresing sequence
of continuous semi-norms on F which define the topology of F , and let X1, . . . , Xn be a basis
of the Lie algebra of G. Set, for every m, j ∈ N,5

Mm,j := sup
ϕ∈B

∥∥ϕ ∗β X2m
1

∥∥
ρj
< +∞.

5Observe that the mapping F 3 ϕ 7→ ϕ ∗X ∈ F is continuous for every X ∈ U(g) thanks to the closed graph
theorem, so that B ∗X2m

1 is bounded in F .
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Then, [34, Lemma 2.5 and Remark 2.6] imply that there are a sequence (cm) in R+ and
g

(1)
0 , g

(1)
1 ∈ D(]− ε, ε[) such that

∑
m∈N cmMm,j < +∞ for every j ∈ N, and

∞∑
m=0

(−1)mcm∂
2mg

(1)
0 = δ0 + g

(1)
1

in E ′(R). Let µ(1)
0 , µ

(1)
1 be the images of the measures g(1)

0 · νR and g(1)
1 · νR under the mapping

R 3 t 7→ expG(tX1) ∈ G. Then, it is clear that
∞∑
m=0

[
(−1)mcmX

2m
1 ∗ µ(1)

0

]
= δe + µ

(1)
1

in E ′(G). In particular,

ϕ =

∞∑
m=0

[
(−1)mcm (ϕ ∗β X2m

1 ) ∗β µ(1)
0

]
− ϕ ∗β µ(1)

1

in E(G) for every ϕ ∈ B. Now, thanks to our choice of the sequence (cm), the Weierstrass
criterion and the completeness of F imply that the sum

∑
m∈N(−1)mcm ϕ ∗βX2m

1 converges in
F to some T (1)

0 (ϕ), uniformly as ϕ runs through B. Therefore, T (1)
0 (B) is bounded in F and

the mapping B 3 ϕ 7→ T
(1)
0 (ϕ) ∈ F is uniformly continuous.

Define T (1)
1 (ϕ) := −ϕ, so that T (1)

j is a uniformly continuous linear mapping from B into
a bounded subset of F for j = 0, 1. Now, fix ϕ ∈ B; since F embeds continuously into E(G),∑∞
m=0

[
(−1)mcm(ϕ ∗β X2m

1 ) ∗β µ(1)
0

]
converges to T (1)

0 (ϕ) ∗ µ(1)
0 in E(G), so that

ϕ = T
(1)
0 (ϕ) ∗ µ(1)

0 + T
(1)
1 (ϕ) ∗ µ(1)

1 .

In addition, T (1)
j (ϕ) is clearly supported in Supp(ϕ) for j = 0, 1, and B1 := T

(1)
0 (B) ∪ T (1)

1 (B)
is bounded in F .

Define inductively, for k = 2, . . . , n, bounded subsets Bk of F , measures µ(k)
0 , µ(k)

1 on G and
uniformly continuous linear mappings T (k)

0 , T
(k)
1 from Bk−1 into F such that:

• Bk = T
(k)
0 (Bk−1) ∪ T (k)

1 (Bk−1) is bounded in F ;

• there are g(k)
0 , g

(k)
1 ∈ D(] − ε, ε[) such that µ(k)

0 and µ
(k)
1 are the image of the measures

g
(k)
0 · νR and g(k)

1 · νR under the mapping t 7→ expG(tXk);

• Supp
(
T

(k)
j (ϕ)

)
⊆ Supp(ϕ) for j = 0, 1 and for every ϕ ∈ Bk−1;

• ϕ = T
(k)
0 (ϕ) ∗β µ(k)

0 + T
(k)
1 (ϕ) ∗β µ(k)

1 for every ϕ ∈ Bk−1.

Take γ ∈ { 0, 1 }n and set Tγ := T
(n)
γn ◦ · · · ◦ T

(1)
γ1 and µγ := µ

(n)
γn ∗ · · · ∗ µ

(1)
γ1 . Then, T is

a uniformly continuous linear mapping from B into a bounded subset of F { 0,1 }n such that
Supp(Tγ(ϕ)) ⊆ Supp(ϕ) for every γ ∈ { 0, 1 }n and for every ϕ ∈ B; in addition,

ϕ =
∑

γ∈{ 0,1 }n
Tγ(ϕ) ∗β µγ

for every ϕ ∈ B. It remains to prove that the µγ have the required properties. How-
ever, µγ is clearly the image measure Φ

((
g

(n)
γn ⊗ · · · ⊗ g

(1)
γ1

)
· νRn

)
, so that µγ has density(

g
(n)
γn ⊗ · · · ⊗ g

(1)
γ1

)
◦Φ−1 ∈ D(V ) with respect to Φ(νRn). Finally, Φ(νRn) has a density of class

Cω with respect to β, whence the result.

Theorem 1.62. Let V be an open neighbourhood of e in G. Endow D′(G) with the topology of
bounded (resp. pointwise) convergence. Then, the mapping

Φ: D′(G) 3 T 7→ [ϕ 7→ T ∗ ϕ] ∈ Ls(D(V );D′(G))

is an isomorphism onto its image.
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Proof. Notice first that Corollary 1.58 implies that Φ is a continuous linear mapping. Con-
versely, let F be a filter on D′(G), and assume that Φ(F) converges to 0. Take a bounded (resp.
finite) subset B of D(G), and apply Theorem 1.61. Then, we find a finite family (ψj)

2n

j=1 of
elements of D(V ) and a continuous linear mapping L from ∆LB̌ into D(G)2n such that

ϕ =

2n∑
j=1

ψj ∗ Lj(ϕ)

for every ϕ ∈ ∆LB̌. Since F ∗ ψj converges to 0 in D′(G), Corollary 1.58 (resp. Corollary 1.52)
implies that

F ∗β ϕ =

2n∑
j=1

(F ∗ ψj) ∗β Lj(ϕ)

converges to 0 in E(G) (resp. pointwise), uniformly as ϕ runs through ∆LB̌. Hence, F = (F ∗
(∆L ·̌ ))(e) converges uniformly to 0 on B. By the arbitrariness of B, we infer that F converges
to 0 in D′(G). Therefore, Φ is one-to-one and its inverse is continuous on Φ(D′(G)).

Corollary 1.63. Let Φ: D(G)→ D′w(G) be a left-invariant continuous linear operator. Then,
there is a unique T ∈ D′(G) such that Φ(ϕ) = ϕ ∗ T for every ϕ ∈ D(G).

Proof. Let (ϕj) be a sequence of elements of D(G) which converges to δe in E ′0(G). Then, for
every ϕ ∈ D(G),

lim
j→∞

ϕ ∗ Φ(ϕj) = lim
j→∞

Φ(ϕ ∗β ϕj) = Φ(ϕ)

in D′w(G), hence in D′(G) since D(G) is a Montel space. Therefore, Theorem 1.62 implies that
(Φ(ϕj)) is a Cauchy sequence in D′(G), so that it converges to some T . It is then clear that
Φ(ϕ) = ϕ ∗ T for every ϕ ∈ D(G).

Corollary 1.64. Let B be a subset of D′(G). Then, B ∗ ϕ is bounded in D′(G) for every
ϕ ∈ D(V ) if and only if B is bounded in D′(G).

Theorem 1.65. Assume that G is countable at infinity, and let V be an open neighbourhood
of e in G. Endow E ′(G) with the topology of bounded (resp. pointwise) convergence. Then, the
mapping

Φ: E ′(G) 3 T 7→ [ϕ 7→ T ∗ ϕ] ∈ Ls(D(V ); E ′(G))

is an isomorphism onto its image.

The proof is similar to that of Theorem 1.62 and is omitted.

Corollary 1.66. Let V be an open neighbourhood of e in G. Let B be a subset of D′(G), and
assume that B ∗ϕ is bounded in E ′(G) for every ϕ ∈ D(V ). Then, B is contained and bounded
in E ′(G).

Proof. 1. Assume first that G in countable at infinity. Take T ∈ B, define ΦT : D(V ) 3 ϕ 7→
T ∗ϕ ∈ E ′(G), and observe that ΦT is continuous by [18, Theorem 1 and Corollary to Theorem
2 of Chapter III, § 6]. LetW be a neighbourhood of e in G such thatW 2 ⊆ V , and let (ϕj) be a
sequence of elements of D(W ) which converges to δe in E ′(G). Then, ΦT (ϕj)∗ϕ = ΦT (ϕj ∗β ϕ)
converges to ΦT (ϕ) in E ′(G) for every ϕ ∈ D(W ). Hence, Theorem 1.65 implies that (ΦT (ϕj))
is a Cauchy sequence in E ′(G); since it converges to T in D′(G), it follows that T ∈ E ′(G).
Then, Theorem 1.65 implies that B is bounded in E ′(G).

2. Consider the general case. Let F be the closure of the union of the supports of the
elements of B. We want to prove that F is compact in G. Indeed, by 1 we see that F ∩ G′
is compact for every separable open subgroup G′ of G. Let Ge be the component of G which
contains e, and let A be any separable open subset of G. Then, G′A :=

⋃
m∈N(Ge∪A∪A−1)m is

a separable open subgroup of G which contains A. Therefore, F ∩G′A is compact. Now, if F is
not compact, there must be a sequence (Cj) of distinct components of G such that F ∩Cj 6= ∅.
However, C :=

⋃
j∈N Cj is a separable open subset of G, so that F ∩ C ⊆ F ∩G′C is compact,

which is absurd. Therefore, F is compact.
Let V be a relatively compact neighbourhood of F . If we apply 1 to G′V , we then see that

B
G′V

is equicontinuous with respect to the topology of E(G′V ). Therefore, B is contained in
E ′(G) and bounded therein.
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Corollary 1.67. Let V be an open neighbourhood of e in G, F a filter with countable base on
E ′(G) and T ∈ E ′(G). Assume that F ∗ ϕ converges to T ∗ ϕ in E ′w(G) for every ϕ ∈ D(V ).
Then, F converges to T in E ′(G).

Proof. We may reduce to the case in which F is the elementary filter associated with a sequence
(Tj). Since the { Tj ∗ ϕ : j ∈ N } is bounded in E ′(G) for every ϕ ∈ D(V ), Corollary 1.66 implies
that { Tj : j ∈ N } is bounded in E ′(G). Therefore, there is a separable subgroup G′ of G such
that each Tj is supported in G′. In addition, since E(G) is a Montel space, Tj ∗ ϕ converges to
T ∗ ϕ in E ′(G) for every ϕ ∈ D(V ). Hence, Theorem 1.65 implies that Tj G′

converges to T
G′

in E ′(G′). The assertion follows.

Corollary 1.68. Let Φ: D(G)→ E ′w(G) be a left-invariant continuous linear operator. Then,
there is a unique T ∈ E ′(G) such that Φ(ϕ) = ϕ ∗ T for every ϕ ∈ D(G).

The proof is similar to that of Corollary 1.63 and is omitted.

1.5 Convolution on Spaces of Sobolev Type
In this section, G will denote a Lie group endowed with a non-zero relatively invariant

positive measure β with left and right multipliers ∆L and ∆R, respectively. We shall first give
some general criteria for convolvability.

Proposition 1.69 (Young’s Inequality). Take k1, k2, k3 ∈ Z∪{ ±∞ }, and p1, p2, p3 ∈ [1,∞]
such that 1

p′1
+ 1

p′2
= 1

p′3
. In addition, take T1 ∈ W k1,k2,p1(β) and T2 ∈ W−k2,k3,p2(β). Then,

the following hold:

1. ∆
1/p′2
L T1 and ∆

1/p′1
R T2 are convolvable;

2.
(
∆

1/p′2
L T1

)
∗
(
∆

1/p′1
R T2

)
∈W k1,k3,p3(β) and, if k1 = k2 = k3 = 0,∥∥∥(∆1/p′2

L T1

)
∗
(
∆

1/p′1
R T2

)∥∥∥
p3

6 ‖T1‖p1
‖T2‖p2

;

3. if k1 = k2 = k3 = 0 and T2 = f2 · β for some f2 ∈ Lp2(β), then[(
∆

1/p′2
L T1

)
∗β
(
∆

1/p′1
R T2

)]
(g2) =

∫
G

(
∆

1/p′1
R f2

)
(g−1

1 g2)∆
1/p2

L (g−1
1 ) dT1(g1)

for β-almost every g2 ∈ G;

4. if k1 = k2 = k3 = 0 and T1 = f1 · β for some f1 ∈ Lp1(β), then[(
∆

1/p′2
L T1

)
∗β
(
∆

1/p′1
R T2

)]
(g1) =

∫
G

(
∆

1/p′2
L f1

)
(g1g

−1
2 )∆

1/p1

R (g−1
2 ) dT2(g2)

for β-almost every g1 ∈ G.

For the proof, use the classical Young’s inequality to prove convolvability when k1 = k2 =
k3 = 0, and then make use of Proposition 1.55 to establish the general case. The details are
left to the reader.

Proposition 1.70. The bilinear mappings

∗β : (∆LM1(G))× B(G)→ B(G) ∗β : B(G)× (∆RM1(G))→ B(G)

are well-defined and continuous.

Proof. Take µ1 ∈M1(G) and ϕ2 ∈ B(G). Then, Proposition 1.69 shows that

((∆Lµ1) ∗β ϕ2)(g1) =

∫
G

ϕ2(g−1
2 g1) dµ1(g2)

for β-almost every g1 ∈ G, so that (∆Lµ1) ∗β ϕ2 has a continuous representative by dominated
convergence. The assertion follows.
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Observe that ˇ induces an isomorphism between W k1,k2,p(β) and (∆L∆R)−
1/p′W k2,k1,p(β)

for every k1, k2 ∈ Z ∪ { ±∞ } and for every p ∈ [1,∞].

Corollary 1.71. Take p1, p2, p3 ∈ [1,∞] such that 1
p′1

+ 1
p′2

= 1
p′3
. In addition, take (T1, T2, ϕ3)

in
(
∆

1/p′2
L W 0,0,p1(β)

)
×
(
∆

1/p′1
R W 0,0,p2(β)

)
×W 0,0,p′3

0 (β) if p3 6= 1, in M1(G) ×M1(G) × B(G)
otherwise. Then,

〈T1 ∗ T2, ϕ3〉 =
〈
T1, ϕ3 ∗β (∆RŤ2)

〉
=
〈
T2, (∆LŤ1) ∗β ϕ3

〉
.

Proof. If p1 6= 1, then Proposition 1.69 shows that ϕ3 ∗β (∆RŤ2) ∈ ∆
−1/p′2
L W

0,0,p′1
0 (β), while

ϕ3 ∗β (∆RŤ2) ∈ ∆
−1/p′2
L B(G) if p1 = 1 thanks to Proposition 1.70 and [20, Proposition 14 of

Chapter VIII, § 4, No. 5]. Therefore, the trilinear mapping

(T1, T2, ϕ3) 7→ 〈T1 ∗ T2, ϕ3〉 −
〈
T1, ϕ3 ∗β (∆RŤ2)

〉
is well-defined and continuous on the stated domain. In addition, Corollary 1.54 implies that
it vanishes if at least two among T1, T2 and ϕ3 have compact support. Hence, the assertion
follows by approximation. The second equality is proved similarly.

Corollary 1.72. Take p1, p2, p3 ∈ [1,∞] such that 1
p′1

+ 1
p′2

= 1
p′3

(resp. and such that p3 6= 1),
and k1, k2, k3 ∈ Z ∪ { ±∞ }. Let S1 and S2 be the set of bounded (resp. compact) subsets of
∆

1/p′2
L W k1,k2,p1(β) and ∆

1/p′1
R W−k2,k3,p2(β), respectively. Then, the bilinear mapping

∗ :
(
∆

1/p′2
L W k1,k2,p1(β)

)
×
(
∆

1/p′1
R W−k2,k3,p2(β)

)
→W k1,k3,p3(β)

(resp. ∗ :
(
∆

1/p′2
L W k1,k2,p1

c (β)
)
×
(
∆

1/p′1
R W−k2,k3,p2

c (β)
)
→W k1,k3,p3

c (β))

is well-defined and (S1,S2)-hypocontinuous.

Proof. 1. Observe that by means of Proposition 1.55 we may reduce to the case in which
k1, k3 6 0. In addition, by means of Proposition 1.46 we may further assume that k2 > 0. LetS3

be the set of bounded (resp. compact) subsets of W−k1,−k3,p
′
3

0 (β). Take Bj ∈ Sj for j = 1, 2, 3.
Then, Proposition 1.32 implies that for every γ with length at most k2 there is a finite subset
PB1,γ of { α ∈ Nn : |α| 6 |k1| } and a bounded (resp. compact) family (µT1,α,γ)T1∈B1,α∈PB1,γ

of

elements of ∆
1/p3

L ∆
−1/p′1
R W 0,0,p1(β) such that

Yγ(∆LŤ1) =
∑

α∈PB1,γ

XαµT1,α,γ

for every T1 ∈ B1. By the same reference, there is a finite set PB2
of (α, γ) ∈ Nn × Nn such

that |α| 6 k2 and |γ| 6 |k3|, and a bounded (resp. compact) family (µT2,α,γ)T2∈B2,(α,γ)∈PB2
of

elements of ∆
1/p′1
R W 0,0,p2(β) such that

T2 =
∑

(α,γ)∈PB2

Yα(Xγ)†µT2,α,γ .

2. Now, take T1 ∈ ∆
1/p′2
L W k1,k2,p1(β), T2 ∈ B2 and ϕ3 ∈ B3. Then, Proposition 1.55 implies

that

〈T1 ∗ T2, ϕ3〉 =
∑

(α,γ)∈PB2

〈
[Xαn

n · · ·X
α1
1 T1] ∗ [(Xγ)†µT2,α,γ ], ϕ3

〉
=

∑
(α,γ)∈PB2

〈[Xαn
n · · ·X

α1
1 T1] ∗ µT2,α,γ ,X

γϕ3〉

=
∑

(α,γ)∈PB2

〈Xαn
n · · ·X

α1
1 T1, (X

γϕ3) ∗ (∆Rµ̌T2,α,γ)〉,

where the third equality follows by means of Corollary 1.71. In particular, the set of (Xγϕ3) ∗
(∆Rµ̌T2,α,γ), as T2 runs through B2 and ϕ3 runs through B3, is bounded (resp. compact) in the
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space ∆
−1/p′2
L W

−k1,0,p
′
1

0 (β) if p1 6= 1, in ∆
−1/p′2
L B−k1,0

c (G) otherwise. Therefore, the mappings
∆

1/p′2
L W k1,k2,p1(β) 3 T1 7→ T1 ∗ T2 ∈ W k1,k3,p3(β) (resp. ∆

1/p′2
L W k1,k2,p1

c (β) 3 T1 7→ T1 ∗ T2 ∈
W k1,k3,p3
c (β)), as T2 runs through B2, are equicontinuous.
3. Next, take T1 ∈ B1, T2 ∈ ∆

1/p′1
R W−k2,k3,p2(β) and ϕ3 ∈ B3. Then, Proposition 1.55

implies that, for every α with length at most |k1| and for every γ with length at most k2,

XαYγ((∆LŤ1) ∗ ϕ3) = [Yγ(∆LŤ1)] ∗ (Xαϕ3)

=
∑

δ∈PB1,γ

(XδµT1,δ,γ) ∗ (Xαϕ3)

=
∑

δ∈PB1,γ

µT1,δ,γ ∗ (Y δnn · · ·Y
δ1
1 Xαϕ3).

In particular, Propositions 1.69 and 1.70 imply that the set of Ť1 ∗ ϕ3, as T1 runs through
B1 and ϕ3 runs through B3, is bounded (resp. compact) in ∆

−1/p′1
R W

k2,−k3,p
′
2

0 (β) if p2 6= 1, in
∆
−1/p′1
R Bk2,−k3

c (β) otherwise. Then, by means of Corollary 1.71 we see that

〈T1 ∗ T2, ϕ3〉 =
〈
T2, (∆LŤ1) ∗ ϕ3

〉
.

Then, the maps ∆
1/p′1
R W−k2,k3,p2(β) 3 T2 7→ T1 ∗ T2 ∈W k1,k3,p3(β) (resp. ∆

1/p′1
R W−k2,k3,p2

c (β) 3
T2 7→ T1 ∗ T2 ∈W k1,k3,p3

c (β)), as T1 runs through B1, are equicontinuous.

Proposition 1.73. Take k1, k2, k3 ∈ Z ∪ { ±∞ }. Then, the following bilinear mappings

∗β : (∆LW
k1,k2,1
c (G))× B−k2,k3

c (G)→ Bk1,k3
c (G)

∗β : Bk1,k2
c (G)× (∆RW

−k2,k3,1
c (G))→ Bk1,k3

c (G)

∗ : W k1,k2,1
c (G)×W−k2,k3,1

c (G)→W k1,k3,1
c (G)

are well-defined and hypocontinuous for the sets of strictly compact subsets of each factor.

Proof. 1.a. Assume first that k1 = k2 = k3 = 0. Let B1 be a compact subset ofM1
c(G) and let

B2 be a bounded subset of Bc(G). Then, Proposition 1.26 shows that B1 satisfies Prokhorov’s
condition. Set C1 := sup

µ1∈B1

‖µ1‖1 and C2 := sup
ϕ2∈B2

‖ϕ2‖∞, and take ε > 0 and a compact subset

K3 of G. Then, there is compact subset K1 of G such that

|µ1|(G \K1) <
ε

3C2 + 1

for every µ1 ∈ B1. Take ϕ1, ϕ2 ∈ B2 so that

|ϕ1(g)− ϕ2(g)| 6 ε

3C1 + 1

for every g ∈ K−1
3 K1. Then,∣∣((∆Lµ1) ∗β ϕ1)(g1)− ((∆Lµ1) ∗β ϕ2)(g1)

∣∣ 6 ∫
K1

|ϕ1(g−1
2 g1)− ϕ2(g−1

2 g1)|d|µ1|(g2)

+

∫
G\K1

|ϕ1(g−1
2 g1)|d|µ1|(g2) +

∫
G\K1

|ϕ2(g−1
2 g1)|d|µ1|(g2) 6 ε.

Therefore, the mappings Bc(G) 3 ϕ 7→ (∆Lµ1) ∗β ϕ ∈ Bc(G), as µ1 runs through B1, are
equicontinuous.

1.b. Let B2 be a compact subset of Bc(G), and let B3 be a compact subset ofM1
c(G). Take

ε > 0, and define C3 := sup
µ3∈B3

‖µ3‖1, C2 := sup
ϕ2∈B2

‖ϕ2‖∞, and take a compact subset K3 of G

such that
|µ3|(G \K3) <

ε

3C2 + 1

for every µ3 ∈ B3. In addition, fix g1 ∈ G and let V be a compact neighbourhood of g1 in G
such that

|ϕ2(g′−1
1 g2)− ϕ2(g−1

1 g2)| < ε

3C3 + 1
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for every ϕ ∈ B2, for every g′1 ∈ V , and for every g2 ∈ K3. Arguing as in 1.a, we then see that

|((∆Lµ3) ∗ ϕ̌2)(g′1)− ((∆Lµ3) ∗ ϕ̌2)(g1)| < ε

for every g′1 ∈ V , for every ϕ2 ∈ B2, and for every µ3 ∈ B3. Therefore, the set of µ3 ∗β ϕ̌2, as µ3

runs through B3 and ϕ2 runs through B2, is relatively compact in Bc(G). Now, Corollary 1.71
implies that 〈

(∆Lµ1) ∗β ϕ2, µ3

〉
=
〈
µ1, (∆Lµ3) ∗β ϕ̌2

〉
for every µ1 ∈ M1

c(G), for every ϕ2 ∈ B2 and for every µ3 ∈ B3. Since Bc(G) is isomorphic to
(M1

c(G))′c by Corollary 1.27, it follows that the mappingsM1
c(G) 3 µ1 7→ (∆Lµ1)∗βϕ2 ∈ Bc(G),

as ϕ2 runs through B2, are equicontinuous.
1.c. The assertions concerning the bilinear mapping ∗ : M1

c(G)×M1
c(G)→M1

c(G) follow
by transposition from 1.a–b.

2. The proof of the general case proceeds as that of Corollary 1.72.

Corollary 1.74. Take k1, k2 ∈ Z ∪ { ±∞ } and p ∈ [1,∞]. Then, D(G) · β is dense in
W k1,k2,p
c (β).

Proof. By means of suitable truncations, we may approximate every element of W k1,k2,p
c (β) by

distributions with compact support; since E ′0c (G) embeds continuously into W−k2,k2,1
c (G), by

convolution with a suitable approximate identity the assertion follows by Corollary 1.72 and
Proposition 1.73.

Proposition 1.75. Take k1, k2, k3, k4 ∈ Z ∪ { ±∞ }. In addition, take p1, p2, p3 ∈ [1,∞] such
that 1

p′1
+ 1

p′2
+ 1

p′3
6 1. Take T1 ∈ ∆

1/p′2+1/p′3
L W k1,k2,p1(β), T2 ∈ ∆

1/p′3
L ∆

1/p′1
R W−k2,−k3,p2(β) and

T3 ∈ ∆
1/p′1+1/p′2
R W k3,k4,p3(β). Then

T1 ∗ (T2 ∗ T3) = (T1 ∗ T2) ∗ T3.

Proof. Indeed, Corollary 1.72 implies that the trilinear mapping

(T1, T2, T3) 7→ T1 ∗ (T2 ∗ T3)− (T1 ∗ T2) ∗ T3

is separately continuous from(
∆

1/p′2+1/p′3
L W k1,k2,p1(β)

)
×
(
∆

1/p′3
L ∆

1/p′1
R W−k2,−k3,p2(β)

)
×
(
∆

1/p′1+1/p′2
R W k3,k4,p3(β)

)
into W k1,k4,p4(β), where 1

p′4
= 1

p′1
+ 1

p′2
+ 1

p′3
. In addition, it vanishes if at least two among

T1, T2, T3 are compactly supported by Corollary 1.53. Since one at most among p1, p2, p3 can
be ∞, the assertion follows.

Theorem 1.76. Take p ∈ [1,∞] and a neighbourhood V of e in G. Endow each space W with
the topology of bounded (resp. compact, pointwise – on the corresponding space Bc if p = 1)
convergence. Then, the following hold:

1. the mapping

Φ: W 0,−∞,p(β) 3 T 7→ [ϕ 7→ T ∗ ϕ] ∈ Ls(D(V );W 0,−∞,p(β))

is an isomorphism onto its image;

2. the mapping

Φ: W−∞,0,p(β) 3 T 7→ [ϕ 7→ ϕ ∗ T ] ∈ Ls(D(V );W−∞,0,p(β))

is an isomorphism onto its image;

3. the mapping6

Φ: W−∞,−∞,p(β) 3 T 7→ [(ϕ1, ϕ2) 7→ ϕ1 ∗ T ∗ ϕ2] ∈ Ls(D(V ),D(V );W−∞,−∞,p(β))

is an isomorphism onto its image.
6By Ls(D(V ),D(V );W−∞,−∞,p(β)) we mean the space of separately continuous bilinear mappings, endowed

with the topology of pointwise convergence. Thus Ls(D(V ),D(V );W−∞,−∞,p(β)) is canonically isomorphic to
Ls(D(V );Ls(D(V );W−∞,−∞,p(β))).
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The proof is similar to that of Theorem 1.62 and is omitted.

Corollary 1.77. Take p ∈ [1,∞]. Then, the following hold:

1. let Φ: D(G) → W 0,−∞,p(β) be a right-invariant continuous linear operator. Then, there
is a unique T ∈W 0,−∞,p(β) such that Φ(ϕ) = T ∗ ϕ for every ϕ ∈ D(G);

2. let Φ: D(G)→W−∞,0,p(β) be a left-invariant continuous linear operator. Then, there is
a unique T ∈W−∞,0,p(β) such that Φ(ϕ) = ϕ ∗ T for every ϕ ∈ D(G).

The proof is similar to that of Corollary 1.63 and is omitted.

Corollary 1.78. Take p ∈ [1,∞], and let V be a neighbourhood of e in G. Endow each space
W with the topology of bounded (resp. compact, pointwise – on the corresponding space Bc if
p = 1) convergence. Let B be a subset of D′(G). Then, the following hold:

1. if B ∗ ϕ is contained and bounded (resp. relatively compact) in W 0,−∞,p(β) for every
ϕ ∈ D(V ), then B is contained and bounded (resp. relatively compact) in W 0,−∞,p(β);

2. if ϕ ∗ B is contained and bounded (resp. relatively compact) in W−∞,0,p(β) for every
ϕ ∈ D(V ), then B is contained and bounded (resp. relatively compact) in W−∞,0,p(β);

3. if B is contained in W−∞,−∞,p(β) and ϕ1 ∗ B ∗ ϕ2 is bounded (resp. relatively compact)
in W−∞,−∞,p(β) for every ϕ1, ϕ2 ∈ D(V ), then B is bounded (resp. relatively compact)
in W−∞,−∞,p(β).

Corollary 1.79. Let B be a subset of D′(G) and let V be a neighbourhood of e in G. Then,
the following conditions are equivalent:

1. B is contained and bounded in W 0,−∞,∞(β) (resp. W−∞,0,∞(β));

2. B ∗β ϕ (resp. ϕ ∗β B) is bounded in B(G) for every ϕ ∈ D(V );

3. the set of Lg(∆−1
L T ) (resp. Rg(∆−1

R T )), as g runs through G and T runs through B, is
bounded in D′(G).

Proof. 1 ⇐⇒ 2. This follows from Corollaries 1.72 and 1.78.
2 ⇐⇒ 3. Indeed, if T ∈ B and ϕ ∈ D(V ), then

(T ∗β ϕ)(g) =
〈
T,∆−1

L Lgϕ̌
〉

for every g ∈ G.

Corollary 1.80. Assume that G is a homogeneous group, and take ϕ ∈ S(G) with integral 1.
Define ϕj := 2jQϕ(2j · ) for every j ∈ N, where Q is the homogeneous dimension of G. Then,
(ϕj · β) converges to δe in W∞,−∞,1(G) and in W−∞,∞,1(G).

Proof. We prove only the first assertion. Observe that, for every right-invariant differential
operator Y on G and for every ψ ∈ D(G), the sequence ((Y ϕj) ∗β ψ) converges to Y ψ in
S(G), hence in W 0,−∞,1

0 (G). Then, Theorem 1.76 implies that Y (ϕj · β) converges to Y δe in
W 0,−∞,1(G), whence the result by the arbitrariness of Y .

Lemma 1.81. Let G be a homogeneous group. Take ϕ ∈W 0,1,1(G), a bounded family (µt)t>0

of elements ofM1(G) and ψ ∈ L∞(G). Define, for every t > 0, ϕt := (t · )∗ϕ, and assume that
µt ∗β ψ ∗β ϕt (resp. ϕ̌t ∗β ψ ∗β µt) converges pointwise almost everywhere to some ψ̃ as t→ +∞.
Then, ψ̃ is constant almost everywhere on G.

Notice that, if µt = δe for every t > 0, then the assertion becomes: ‘if ψ ∗ ϕt converges
pointwise almost everywhere to some ψ̃, then ψ̃ is constant almost everywhere on G.’

Proof. Indeed, for every j = 1, . . . , n we have, by Proposition 1.55,

Xj(µt ∗ ψ ∗ ϕt) = µt ∗ ψ ∗ (Xjϕt) = t−djµt ∗ ψ ∗ [(Xjϕ)t],

where (Xjϕ)t := (t · )∗(Xjϕ) and dj is the homogeneous degree of Xj . Since µt ∗ ψ ∗ [(Xjϕ)t]

is bounded in L∞(G) · β, and since µt ∗ ψ ∗ ϕt converges to ψ̃ · β in D′w(G) by the dominated
convergence theorem, it is easily seen that Xjψ̃ = 0. By the arbitrariness of j, we then infer
that ψ̃ is constant almost everywhere. The second assertion follows reasoning on the opposite
group of G.
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1.6 Representations

We start with some results on general representations and then we pass to group homomor-
phisms.

Definition 1.82. Let π be a continuous unitary representation of G into a hilbertian space
H, and take k ∈ N ∪ {∞ }. Then, Ck(π) denotes the set of v ∈ H such that the mapping
G 3 g 7→ π(g) · v ∈ H is of class Ck, endowed with the topology induced by that of Ek(G;H).
We shall define C−k(π) as the strong dual of Ck(π).

Observe that Ck(π) is a hilbertian space if k is finite, a Montel space if k is infinite; in
particular, Ck(π) is reflexive for every k ∈ Z ∪ { ±∞ }. Therefore, the scalar product on H
induces a · -semiliner continuous embedding of H into C−k(π) which turns C∞(π) into a dense
subspace of C−k(π), for every k ∈ N ∪ {∞ }. For every k ∈ Z ∪ { ±∞ }, we shall then extend
〈 · | · 〉 to a hypocontinuous sesquilinear form (relative to the bounded subsets of each factor)
on Ck(π) × C−k(π) which is compatible with the duality on both factors. Then, π induces
continuous representations of G in Ck(π) for every k ∈ Z ∪ { ±∞ }.

Proposition 1.83. Let π be a continuous unitary representation of G into a hilbertian space
H. Take k1, k2 ∈ Z ∪ { ±∞ } and T ∈W−∞,−∞,1(G), and define

〈π(T ) · v1|v2〉 := 〈T, g 7→ 〈π(g) · v1|v2〉〉

for every v1 ∈ C∞(π) and for every v2 ∈ C∞(π). Then, π induces three continuous linear
mappings

W k1,k2,1(G)→ L(C−k2(π);Ck1(π))

W k1,k2,1
c (G)→ Lc(C−k2(π);Ck1(π))

W k1,k2,1
c (G)→ L(C−k2(π);Ck1

c (π)),

where Ck1
c (π) is the dual of C−k1(π) endowed with the topology of compact convergence.

Proof. Observe first that, if h1, h2 ∈ N ∪ {∞ }, v1 ∈ Ch1(π), v2 ∈ Ch2(π), |α1| 6 h1 and
|α2| 6 h2, then

Yα2Xα1〈π( · ) · v1|v2〉 = 〈π( · ) · dπ(Xα1) · v1|dπ(Yα2)∗ · v2〉,

so that 〈π( · ) · v1|v2〉 ∈ Bh2,h1
c (G). The assertion then follows easily when k1, k2 6 0, and then

when k1, k2 > 0 by transposition. We leave to the reader the details of the case k1k2 < 0.

Definition 1.84. Let π be a continuous unitary representation of G into a hilbertian space H,
and take T ∈W−∞,−∞,1(G). Then, we shall define π(T ) as in Proposition 1.83.

Proposition 1.85. Let π be a continuous unitary representation of G into a hilbertian space
H. Take k1, k2, k3 ∈ Z ∪ { ±∞ }, T1 ∈W k1,k2,1(G), and T2 ∈W−k2,k3,1(G). Then,

π(T1 ∗ T2) = π(T1) · π(T2).

Proof. Observe first that the assertion is clear if T1, T2 ∈ D(G)·β. Now, the left-hand side of the
asserted formula is a separately continuous function of (T1, T2) fromW k1,k2,1

c (G)×W−k2,k3,1
c (G)

into Lc(C−k3(π);Ck1(π)) by Propositions 1.73 and 1.83. The same holds for the right-hand
side by Proposition 1.83. Since D(G) · β is dense in W k1,k2,1

c (G) and in W−k2,k3,1
c (G) by

Corollary 1.74, the assertion follows.

Proposition 1.86. Let G be a postliminal unimodular separable Lie group, and let νĜ be the
Plancherel measure on Ĝ corresponding to a Haar measure β on G (cf. [33, 18.8.2]).7 Let H
be the canonical field of hilbertian spaces on Ĝ (cf. [33, 8.6.1]). Choose a measurable field π of

7When we speak of measurable fields of hilbertian spaces, vectors, etc., we shall always refer to the ν
Ĝ
-

completion of the standard Borel structure of Ĝ.
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continuous unitary representations on Ĝ such that πζ ∈ ζ and πζ is a representation on Hζ for
every ζ ∈ Ĝ (cf. [33, 8.6.2]). Take k ∈ Z∗+. Then, the isomorphism8

F : L2(G)→
∫ ⊕
Ĝ

L2(Hζ) dνĜ(ζ)

induces a (unique) continuous linear mapping9

W−k,0,2(G)→
∫ ⊕
Ĝ

L2(Ck(πζ);Hζ) dνĜ(ζ).

Proof. 1. Since G is separable, we may find a countable dense subset D of D(G). Then,
let (vj)j∈N be a sequence of measurable vector fields with values in the Hζ such that (vj,ζ)

is total in Hζ for every ζ ∈ Ĝ. Since πζ(D) · Hζ is dense in Ck(πζ), the countable family
((πζ(ϕ) · vj,ζ)ζ)j∈N,ϕ∈D is total in Ck(πζ). Therefore, we may define the measurable vector
fields with values in the Ck(πζ) as the v ∈

∏
ζ∈Ĝ C

k(πζ) such that the mapping

ζ 7→ 〈vζ |πζ(ϕ) · vj,ζ〉Ck(πζ)

is measurable for every j ∈ N and for every ϕ ∈ D.
2. Take f ∈ L2(G) and choose a finite family (fγ)|γ|6k of elements of L2(G) such that

f =
∑
|γ|6kY

γfγ . Let us prove that

Ff(πζ) =
∑
|γ|6k

(Ffγ)(πζ) · dπζ(Xγ)

on C∞(πζ) for νĜ-almost every ζ ∈ Ĝ. Indeed, take a sequence (ϕk) of elements of D(G) · β
which converges to δe in E ′0c (G). Then,

F(ϕk ∗β f)(πζ) =
∑
|γ|6k

(−1)|γ|(Ffγ)(πζ) · πζ(Yγϕ̌k)

for νĜ-almost every ζ ∈ Ĝ. Now, up to a subsequence F(f ∗β ϕk)(πζ) converges to Ff(πζ)

in L2(Hζ) for νĜ-almost every ζ ∈ Ĝ, while Proposition 1.83 implies that (−1)|γ|πζ(Y
γϕ̌k)

converges to dπζ(X
γ) in Lc(Ck(πζ);Hζ). The assertion follows.

Now, it is clear that the mapping ζ 7→ dπζ(X
α) is a measurable field of linear mappings

from the Ck(πζ) into the Hζ , and that ‖dπζ(Xα)‖L(Ck(πζ);Hζ) 6 1 for every ζ ∈ Ĝ. Therefore,
Ff is a class of measurable fields of linear mappings from the Ck(πζ) into the Hζ , and

‖(Ff)(ζ)‖L2(Ck(πζ);Hζ) 6
∑
|γ|6k

‖(Ffγ)(ζ)‖L2(Hζ ;Hζ)

for νĜ-almost every ζ ∈ Ĝ. Therefore,

‖Ff‖∫⊕
Ĝ
L2(Ck(πζ);Hζ) dνĜ(ζ) 6

∑
|γ|6k

‖fγ‖L2(G).

Now, observe that the mapping∏
|γ|6k

L2(G) 3 (fγ) 7→
∑
|γ|6k

Yγfγ ∈W−k,0,2(G)

is onto by Proposition 1.32; therefore, the mapping

f 7→ inf
f=

∑
|γ|6kYγfγ

√∑
|γ|6k

‖fγ‖2L2(G)

8Define Ff(πζ) = πζ(f̌) for f ∈ L1(G) ∩ L2(G) and for every ζ ∈ Ĝ.
9Once a basis (X1, . . . , Xn) of g has been fixed, endow Ck(πζ), for every ζ ∈ Ĝ, with the hilbertian norm

v 7→
√∑n

k=1‖dπ(Xk) · v‖2. The topological vector space
∫⊕
Ĝ
L2(Ck(πζ), Hζ) dν

Ĝ
(ζ) does not depend on the

choice of (X1, . . . , Xk). See the proof for the definition of measurable vector fields.
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is a norm which defines the topology of W−k,0,2(G). Hence, the mapping

F : L2(G) 7→
∫ ⊕
Ĝ

L2(Ck(πζ);Hζ) dνĜ(ζ).

is continuous with respect to the topology of W−k,0,2(G). Since L2(G) is dense in W−k,0,2(G)
by Corollary 1.34, the assertion follows.

Definition 1.87. Keep the hypotheses and the notation of Proposition 1.86, and take an
element T of W−∞,0,2(G), so that T ∈ W−k,0,2(G) for some k ∈ N. Then, we shall define FT
as in Proposition 1.86.

In addition, for every ζ ∈ Ĝ we shall write ζ instead of πζ by a slight abuse of notation.

Corollary 1.88. Keep the hypotheses and the notation of Proposition 1.86, and take γ ∈ Nn
and T ∈W−∞,0,2(G). Then,

F(YγT )(π) = FT (π)dπ(Xγ)

on C∞(π) for νĜ-almost every π ∈ Ĝ.

Proof. Indeed, equality holds if T ∈ D(G) · β. The assertion then follows by density thanks to
Corollary 1.34.

Corollary 1.89. Keep the hypotheses and the notation of Proposition 1.86, and take T ∈
W−∞,0,1(G) ⊆ W−∞,0,2(G). Then, π(Ť ) = FT (π) for νĜ-almost every π ∈ Ĝ. In particular,
if X ∈ UC(g), then FX(π) = dπ(X) for νĜ-almost every π ∈ Ĝ.

Proof. Take a relatively compact open neighbourhood V of e in G and a sequence (ϕj) of
elements of D(V ) · β which converges to δe in E ′0c (G). Then, Ť ∗β ϕj ∈ W 0,∞,1(G) ⊆ L1(G) ∩
L2(G), so that π(Ť ∗ϕj) = F(ϕ̌j ∗β T )(π) for νĜ-almost every π ∈ Ĝ. Now, π(Ť ∗ϕj) converges
to π(Ť ) in L(C∞(π);Hπ) for every π ∈ Ĝ, thanks to Proposition 1.83. Next, choose k ∈ N so
that T ∈W−k,0,2(G); then, ϕ̌j ∗T converges to T in W−k,0,2(G) by Corollary 1.72. Indeed, the
endomorphisms ϕ̌j ∗ · of W−k,0,2(G) are equicontinuous since the sequence (ϕ̌j) is bounded in
E ′0(G), hence in W−k,k,1(G); in addition, they converge to the identity on the dense subspace
D(G) · β, so that the assertion follows. The proof is complete.

Proposition 1.90. Let G, G′ be two Lie groups, and let π : G → G′ be a continuous (hence
analytic) homomorphism of G into G′. Take k1, k2 ∈ Z ∪ { ±∞ }. Then, the following hold:

1. the formula, for ϕ ∈ D(G′) and T ∈W−∞,−∞,1(G),

〈π∗(T ), ϕ〉 := 〈T, ϕ ◦ π〉

defines an element π∗(T ) of W−∞,−∞,1(G′);

2. the mappings

W k1,k2,1(G) 3 T 7→ π∗(T ) ∈W k1,k2,1(G′)

W k1,k2,1
c (G) 3 T 7→ π∗(T ) ∈W k1,k2,1

c (G′)

are continuous;

3. if T ∈ W−∞,−∞,1(G) and X,Y are a left- and right-invariant differential operators on
G, respectively, then

dπ(Y )†dπ(X)†π∗(T ) = π∗(Y
†X†T ).

Proof. Suppose first that k1, k2 6 0. Then, the mapping

B−k1,−k2
c (G′) 3 ϕ 7→ ϕ ◦ π ∈ B−k1,−k2

c (G)

is well-defined and continuous, since for every α1, α2 of length at most −k1,−k2 respectively,
and for every ϕ ∈ B−k1,−k2

c (G′),

Yα1Xα2(ϕ ◦ π) = [dπ(Y)α1dπ(X)α2ϕ] ◦ π.

Therefore, all the assertions follow easily in this case.
The remaining cases follow easily from 3 and preceding one.
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Definition 1.91. Let G, G′ be two Lie groups, and let π : G → G′ be a continuous ho-
momorphism of G into G′. Take T ∈ W−∞,−∞,1(G). Then, we shall define π∗(T ) as in
Proposition 1.90.

Proposition 1.92. Let G, G′ be two Lie groups, and let π : G → G′ be a continuous homo-
morphism of G onto G′. Let βG, βG′ be two left Haar measures on G,G′ respectively. Then,
there is a unique left Haar measure βH on H := kerπ such that, with a slight abuse of notation,∫

G

ϕdβG =

∫
G′

∫
H

ϕ(gh) dβH(h) dβG′(π(g))

for every ϕ ∈ D0(G). In addition, if f ∈ L1(βG) and we define

π∗(f)(π(g)) :=

∫
H

f(gh) dβH(h)

for β′G-almost every π(g) ∈ G′, then π∗ is well-defined and maps L1(G) onto L1(G′) with norm
1. Finally,

π∗(f · βG) = π∗(f) · βG′ .

Proof. The first assertion is a consequence of [20, Proposition 10 of Chapter VII, § 2, No.
7]. The second assertion follows from [20, Propositions 4, 5 and Corollary to Proposition 9 of
Chapter VII, § 2]

Definition 1.93. Let G, G′ be two Lie groups, and let π : G→ G′ be a continuous homomor-
phism of G onto G′. Let βG, βG′ be two left Haar measures on G,G′ respectively. Then, we
shall define βH and π∗ as in Proposition 1.92.

Corollary 1.94. Keep the hypotheses and the notation of Proposition 1.92. Assume further
that G and G′ are unimodular, and take f ∈ L1(βG). Then,

π∗(f)(π(g)) =

∫
H

ϕ(gh) dβH(h) =

∫
H

ϕ(hg) dβH(h)

for βG′-almost every π(g).

Proof. Apply Proposition 1.92 to the opposites of G and G′. Then, we find a unique right Haar
measure β′H on H such that (with an abuse of notation)∫

G

ϕdβG =

∫
G′

∫
H

ϕ(hg) dβ′H(h) dβG′(π(g))

for every ϕ ∈ D0(G). However, Proposition 1.92 implies that∫
G

ϕdβG =

∫
G

ϕ̌dβG =

∫
G′
π∗(ϕ̌) dβG′ =

∫
G′
π∗(ϕ̌)̌ dβG′ ,

and that
π∗(ϕ̌)̌ (π(g)) =

∫
H

ϕ(h−1g) dβH(h) =

∫
H

ϕ(hg) dβH(h)

since H is unimodular by [20, Proposition 10 of Chapter VII, § 2, No. 7]. Therefore, βH =
β′H .

Corollary 1.95. Keep the hypotheses and the notation of Proposition 1.92. Then, the following
hold:

1. π∗ maps W k1,k2,1
0 (βG) continuously into W k1,k2,1

0 (βG′) for every k1, k2 ∈ N ∪ {∞ };

2. dπ(Y )dπ(X)†π∗(ϕ) = π∗(Y X
†ϕ) for every right- and left-invariant differential operators

Y,X on G of order at most k1, k2 ∈ N, respectively, and for every ϕ ∈W k1,k2,1
0 (βG).

Proof. The assertions follow from Propositions 1.90 and 1.92.

Corollary 1.96. Keep the hypotheses and the notation of Proposition 1.92, and let L be a
hypoelliptic left- or right-invariant differential operator on G. Then, dπ(L) is hypoelliptic.
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Proof. 1. Let us first show that there is a positive function τ ∈ E(G) such that Supp(τ)∩π−1(K)
is compact for every compact subset K of G′, and such that

∫
H
τ(gh) dβH(h) = 1 for every

g ∈ G. Indeed, take, for every g′ ∈ G′, some positive τg′ ∈ D(G) such that τg′(g) > 0 for
some g ∈ π−1(g′). Let Ug′ be the set where τg′ does not vanish, and observe that Ug′ is
an open set, so that π(Ug′) is an open neighbourhood of g′ in G′. Since G′ is paracompact,
there is a partition of unity (λg′)g′∈G′ with elements in D(G′) and subordinate to the covering
(Ug′). Then, the mapping τ ′ :=

∑
g′(λg′ ◦ π)τg′ is a positive element of E(G), its support has a

compact intersection with π−1(K) for every compact subset K of G′; in addition, τ does not
vanish identically on any fibre of π. Then, we may define π∗(τ ′) with the same formula used in
Proposition 1.92, and clearly π∗(τ ′) is a positive nowhere-vanishing function on G′. In addition,
for every ϕ ∈ D(G′) we have π∗(τ ′)ϕ = π∗(τ

′(ϕ ◦ π)) ∈ D(G′) since τ ′(ϕ ◦ π) ∈ D(G) (see 2
below), so that π∗(τ) ∈ E(G′). Hence, it suffices to define τ := τ ′

π∗(τ ′)◦π .
2. We shall assume that L is right-invariant; the other case follows considering the opposite

group of G. Observe that Corollary 1.95 together with the classical (local) Sobolev embeddings
shows that π∗ maps D(G) continuously into D(G′); one may prove that this mapping is actually
onto, but we shall not need this fact. Then, we may define by transposition a continuous linear
mapping π∗ : D′(G′)→ D′(G). Then, take T ∈ D′(G′) and assume that dπ(L)T = ψ · βG′ + S,
where ψ is the extension by 0 of an element of E(U) for some open subset U of G′, while
S ∈ D′(G′) and Supp(S) ∩ U = 0; let us prove that T equals an element of E(G′) · βG′ on
U . Since the assertion is local, we may assume that T is compactly supported and that U is
relatively compact. Now, Proposition 1.92 and Corollary 1.95 show, by transposition, that

Lπ∗(T ) = π∗(dπ(L)T ) = π∗(ψ · βG′) + π∗(S) = (ψ ◦ π) · βG + π∗(S).

Since clearly Supp(π∗(S)) ∩ π−1(U) = ∅ and since L is hypoelliptic, this implies that π∗(T ) =
ζ · βG + S′, where ζ is the extension by 0 of an element of E(π−1(U)), while S′ ∈ D′(G) and
Supp(S) ∩ π−1(U) = ∅.

Now, take τ as in 1. Then, τ · π∗(T ) ∈ E ′(G) since we assumed that T is compactly
supported, so that

〈π∗(τ · π∗(T )), ϕ〉 = 〈π∗(T ), τ(ϕ ◦ π)〉 = 〈T, π∗(τ(ϕ ◦ π))〉 = 〈T, ϕ〉

for every ϕ ∈ D(G′), thanks the properties of τ . Therefore, T equals π∗(τζ) · βG′ on U , whence
the assertion since π∗(τζ) is the extention by 0 of an element of E(U).

Proposition 1.97. Keep the hypotheses and the notation of Proposition 1.92. Assume further
that G and G′ are homogeneous groups, and that π is homogeneous. Then, the following hold:

1. π∗ induces a strict morphism of S(G) onto S(G′) which has a continuous linear section;

2. π∗ induces a strict morphism of D(G) onto D(G′) which has a continuous linear section.

Proof. Let us prove that the mapping π∗ : S(G)→ S(G′) has a continuous linear section. Let g
(resp. h, g′) be the Lie algebra of G (resp. H,G′). Apply Lemma A.22 to the homogeneous ideal
h of g, thus finding a strong Malcev basis (in the sense of [28, second note after Theorem 1.1.13])
(Xj)

n
j=1 of g consisting of homogeneous elements such that h =

⊕m
j=1XjR, where m := dim h.

Let h′ :=
⊕n

j=m+1XjR. Then, dπ induces an isomorphism of homogeneous vector spaces
between h′ and g′. Furthermore, the mapping Φ: h ⊕ h′ 3 (Y,X) 7→ expG(Y ) expG(X) ∈ G is
a polynomial diffeomorphism by [28, Proposition 1.2.7]. Therefore, Φ induces an isomorphism
between S(h ⊕ h′) and S(G). Now, take ψ ∈ S(G′). Then, ψ ◦ expG′ ∈ S(g′), so that ψ̃ :=
ψ ◦ expG′ ◦dπ ∈ S(h′). Next, take ϕ ∈ D(H) so that

∫
H
ϕ(y) dβ′H(y) = 1, and observe that

β′H is the push-forward of the Lebesgue measure on h along expH , which is the restriction to
h of expG. Define τψ := (ϕ ⊗ ψ̃) ◦ Φ−1. By the preceding remarks, τψ ∈ S(G); in addition,
τψ ∈ D(G) if ψ ∈ D(G′). Furthermore, for every X ∈ h′,

π∗(τψ)(π(expG(X))) =

∫
H

τψ(y expG(X)) dβ′H(y)

=

∫
h

ϕ(Y )ψ̃(X) dY

= ψ(π(expG(X)))
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since π(expG(X)) = expG′(dπ(X)). Since the set of π(expG(X)) as X runs through h′ is G′,
this proves that π∗(τψ) = ψ. Now, it is easily seen that the mapping ψ 7→ τψ is linear and
continuous from S(G′) into S(G) and also from D(G′) into D(G). This completes the proof.

Proposition 1.98. Let G,G′ be two Lie groups, and let π be a continuous homomorphism of
G onto G′. Let βG′ be a relatively invariant measure on G′ with right multiplier ∆′R, and define
$(g) ·f := ∆

′1/2
R (π(g))f( ·π(g)) for every f ∈ L2(βG′) and for every g ∈ G. Then, the following

hold:

1. $ is a continuous unitary representation of G in L2(βG′);

2. Ck($) = W 0,k,2
0 (βG′) for every k ∈ N ∪ {∞ };

3. if T ∈W−k2,−k1,1(G), and f1 ∈ Ck1($), then

$(T ) · f1 = (f1 · βG′) ∗
(
∆
′1/2
R π(Ť )

)
.

Proof. 1. It is clear that$(g) is a unitary operator on L2(βG′) for every g ∈ G. Since continuity
is clear on D(G′), and since D(G′) is dense in L2(βG′), the assertion follows.

2. Take a (real) left-invariant vector field X on G, and f ∈ dom(d$(X)). Then, for every
ϕ ∈ D(G′),

〈d$(X) · f |ϕ〉 = X〈$( · )f |ϕ〉(e)

= lim
t→0

〈
∆
′1/2
R

(
etdπ(X)

)
f
(
· etdπ(X)

)
− f

∣∣∣ϕ〉
t

= lim
t→0

〈
f
∣∣∣∆′R(e− t2 dπ(X)

)
ϕ
(
· e−tdπ(X)

)
− ϕ

〉
t

=
〈
f
∣∣dπ(X)†ϕ+ 1

2 (dπ(X)∆′R)(e′)ϕ
〉
,

so that dπ(X)f = d$(X)·f− 1
2 (dπ(X)∆′R)(e′)f ∈ L2(βG′). Conversely, assume that dπ(X)f ∈

L2(βG′); then

lim
t→0

$
(
etdπ(X)

)
· f − f

t
= lim
t→0
−
∫ t

0

∆
′1/2
R

(
esdπ(X)

)[
1
2 (dπ(X)∆′R)(e′)f

(
· esdπ(X)

)
+ dπ(X)f

(
· esdπ(X)

)]
ds = dπ(X)f + 1

2 (dπ(X)∆′R)(e′)f

in L2(βG′), so that f ∈ dom(d$(X)). It then follows that Ck($) = W 0,k,2
0 (βG′) for every

k ∈ N ∪ {∞ }.
3. For every f2 ∈ C∞($),

$(T ) · (f1, f2) =
〈
T, g 7→

〈
∆
′1/2
R (π(g))f1( ·π(g)) · βG′ , f2

〉〉
=
〈
π(T ),∆

′−1/2
R

[
f̌2 ∗βG′ (∆′Rf1)

]〉
=
〈(

∆
′−1/2
R π(T )

)
∗ (f1 · βG′ )̌ , f̌2

〉
=
〈

(f1 · βG′) ∗
(
∆
′1/2
R π(Ť )

)
, f2

〉
,

whence the result.

Definition 1.99. Let G,G′ be two Lie groups, endowed with two right Haar measures βG and
βG′ , and let π be a continuous homomorphism of G onto G′. Then, we shall define the right
quasi-regular representation of G in G′ as the representation $ of Proposition 1.98.





Chapter 2

Some Useful Tools

2.1 Smooth Functions on Closed Sets
In this section, all manifolds are supposed to be over R, of class C∞, and locally compact,

that is, Hausdorff and locally of finite dimension.

Definition 2.1. Let M be a manifold, k an element of N ∪ {∞ }, x an element of M , E a
Hausdorff locally convex space, and f1, f2 : M → E two functions. We say that f1 and f2 have
contact of order greater than k at x if f1(x) = f2(x) and there is a local chart (U,ϕ) of M at
x such that [(f1 − f2) ◦ ϕ−1](y) = o(|y − ϕ(x)|h) for y → ϕ(x) and for every h ∈ N, h 6 k.1

Consider the equivalence relation on Ek(M ;E) defined as follows: ‘f1 and f2 have contact
of order greater than k at x.’ We denote by Jkx (M ;E) the quotient of Ek(M ;E) with respect
to this equivalence relation. Its elements are called jets of order k at x. We denote by jkx the
canonical projection and by T (k)

x (M) the dual of Jkx (M).

Lemma 2.2. Let M be a manifold, k an element of N ∪ {∞ }, x an element of M and E a
Fréchet space. Then, the following hold:

1. T (∞)
x (M) is the inductive limit of the T (h)

x (M), as h runs through N;

2. Jkx (M ;E) is canonically isomorphic to Jkx (M)⊗̂E;

3. if B is a basis of T (k)
x (M), then the mapping

Jkx (M ;E) 3 ϕ 7→ (Xϕ)X ∈ EB

is an isomorphism.

In particular, the bilinear mapping

T (k)
x (M)× Jkx (M ;E) 3 (X,ϕ) 7→ Xϕ ∈ E

is well-defined and separating in Jkx (M ;E) (and also in T (k)
x (M), provided that E 6= 0).

Proof. Observe first that we may assume thatM is an open subset of Rn for some n ∈ Z∗+, and
that E 6= 0. Then, B0 := (∂αx )|α|6k is a basis of T (k)

x (M). Next, observe that E(M) is nuclear
thanks to [84, Corollary to Theorem 51.5 and Proposition 50.1]. In addition, [84, Theorem
44.1] shows that E(M ;E) is canonically isomorphic to E(M)⊗̂εE, hence to E(M)⊗̂E by [84,
Theorem 50.1]. Then, define

Φ: E(M) 3 ϕ 7→ (Xϕ)X ∈ RB0 ,

so that Φ is a continuous linear mapping and ker Φ = ker jkx . Next, observe that Φ⊗̂IE canoni-
cally corresponds to the mapping

ΦE : E(M ;E) 3 ϕ 7→ (Xϕ)X ∈ EB0 ,

1This property then holds for every local chart (U,ϕ) at x.
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whose kernel is the kernel of jkx on E(M ;E). Then, [45, Proposition 3 of Chapter I, § 1, No. 2]
implies that ker ΦE is the closed subspace of E(M ;E) generated by the elements of the form
ϕ⊗ v with ϕ ∈ ker Φ and v ∈ E. In addition, [45, Proposition 3 of Chapter I, § 1, No. 2] again
implies that this set is also the kernel of the canonical mapping E(M)⊗̂E → Jkx (M)⊗̂E, which
is onto by [84, Proposition 43.9]. Hence, 2 follows.

Now, 3 is clear if E = R and k ∈ N, since both spaces have the same finite dimension. In
addition, if E = R and k =∞, then the canonical mapping of 3 is onto by [50, Theorem 1.2.6];
since both spaces are Fréchet spaces, 3 follows from the open mapping theorem in this case.
Observe that also 1 follows by means of [18, Proposition 15 of Chapter IV, § 1, No. 5].

Finally, the general case of 3 follows from the case E = R, 2, and [45, Proposition 6 of
Chapter I, § 1, No. 3].

Definition 2.3. Let M be a manifold, F a closed subset of M , k an element of N∪{∞ }, and
E a Hausdorff locally convex space. Then, we denote by EM,k(F ;E) the quotient

E(M ;E)/{ f ∈ E(M ;E) : jk(f) = 0 on F
}.

We shall omit to denote k is F is the closure of an open set.

Lemma 2.4. Let M be a manifold, k ∈ N ∪ {∞ }, x ∈ M and E a Hausdorff locally convex
space. Then, Jkx (M ;E) is canonically isomorphic to EM,k({ x };E).

Proof. Indeed, this is clear if k = ∞. Then, assume that k ∈ N, and take ϕ ∈ Ek(M ;E).
Working in local coordinates, it is easily seen that there is a function ψ ∈ E(M ;E) such that
jkx(ϕ) = jkx(ψ). The assertion follows.

Proposition 2.5. Let M be a paracompact manifold, F a closed subset of M , k an element of
N ∪ {∞ } and E a Fréchet space. Then, EM,k(F )⊗̂E is canonically isomorphic to EM,k(F ;E).

Proof. Since the projective tensor product is compatible with products (cf. [84, Exercise 43.8]),
we may assume thatM is countable at infinity, so that E(M) is nuclear thanks to [84, Corollary
to Theorem 51.5 and Proposition 50.1]. In addition, we may assume that E 6= 0. Now, the
proof of [84, Theorem 44.1] can be generalized to prove that E(M ;E) is canonically isomorphic
to E(M)⊗̂εE, hence to E(M)⊗̂E by [84, Theorem 50.1]. Then, define

Φ: E(M) 3 ϕ 7→ jk(ϕ) ∈
∏
x∈F

Jkx (M)

so that Φ is a continuous linear mapping with kernel
{
f ∈ E(M) : jk(f) = 0 on F

}
. Next,

observe that Φ⊗̂IE canonically corresponds to the mapping

E(M ;E) 3 ϕ 7→ jk(ϕ) ∈
∏
x∈F

Jkx (M ;E)

thanks to Lemma 2.2 and [45, Proposition 6 of Chapter I, § 1, No. 3]. Therefore, [45, Proposition
3 of Chapter I, § 1, No. 2] implies that

{
f ∈ E(M ;E) : jk(f) = 0 on F

}
is the closed subspace

of E(M ;E) generated by the elements of the form ϕ⊗ v with ϕ ∈ ker Φ and v ∈ E. Now, [45,
Proposition 3 of Chapter I, § 1, No. 2] again implies that this set is also the kernel of the
canonical mapping E(M)⊗̂E → EM,k(F )⊗̂E, which is onto by [84, Proposition 43.9]. The
assertion follows.

Definition 2.6. LetM be a manifold of class C∞, F a closed subset ofM , k1, k2 two elements of
N∪{∞ }, E a Hausdorff locally convex space and x an element of F . Then, define Jk1

M,k2,x
(F ;E)

as the quotient of Jk1
x (M ;E) by

{
jk1
x (ϕ) : ϕ ∈ E(M ;E), jk2(ϕ) = 0 on F

}
.

Definition 2.7. Let G be a homogeneous group, F a closed subset of G, k an element of
N ∪ {∞ }, and E a Fréchet space. Then, we denote by SG,k(F ;E) the quotient

S(G;E)/{ f ∈ S(G;E) : jk(f) = 0 on F
}.

We shall omit to denote k if F is the closure of an open set.
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Proposition 2.8. Let G be a homogeneous group, F a closed subset of G, k an element of
N ∪ {∞ }, and E a Fréchet space. Then, the mapping (ϕ, v) 7→ ϕ ⊗ v induces a canonical
isomorphism

SG,k(F )⊗̂E → SG,k(F ;E).

Proof. The proof proceeds along the lines of that of Proposition 2.5.

Corollary 2.9. Let G1, G2 be two homogeneous groups, and let F1, F2 be two closed subsets of
G1, G2, respectively. Let E be a Fréchet space. Then,

SG1×G2,k(F1 × F2;E) ∼= SG1,k(F1)⊗̂SG2,k(F2)⊗̂E

canonically for every k ∈ { 0,∞}.

Proof. By Proposition 2.8, we may assume that E = R. Then, observe that the composition of
the canonical mappings

S(G1 ×G2) ∼= S(G1;S(G2))→ S(G1;SG2,k(F2))

→ SG1,k(F1;SG2,k(F2)) ∼= SG1,k(F1)⊗̂SG2,k(F2)

is onto. In addition, its kernel is the set of ϕ ∈ S(G1×G2) such that jk(ϕ) vanishes on F1×F2,
whence the result.

Definition 2.10. Let G be a homogeneous group, V an open subset of G and E a Fréchet
space. Then, we shall denote by S̃G(V ;E) the set of ϕ ∈ E(V ) such that for every α ∈ Nn and
for every k ∈ N the function

(1 + | · |)kXαϕ

is bounded on V . We shall endow S̃G(V ;E) with the semi-norms

ϕ 7→ sup
x∈V

(1 + |x|)k‖(Xαϕ)(x)‖ρ

as k runs through N, α runs through Nn, and ρ runs through the set of continuous semi-norms
on E.

Proposition 2.11. Let G be a homogeneous group, V an open subset of G and E a Fréchet
space. Then, S̃G(V ;E) is a Fréchet space and j0 maps SG(V ;E) continuously into S̃G(V ;E).

Proposition 2.12. Let G be a homogeneous group and V a dilation-invariant open subset of
G which is minimally smooth in the sense of [79, Chapter VI, § 3.3]. Then, the canonical
mapping S(G) → S̃G(V ) admits a continuous linear section. In particular, SG(V ) and S̃G(V )
are canonically isomorphic.

Proof. Notice that we may assume that G is abelian. In addition, observe that [79, Theorem
5 of Chapter VI, § 3.1] shows that there is a linear extension operator Φ: L∞(V ) → L∞(G)
which maps W k,∞(V ) continuously into W k,∞(G) for every k ∈ N ∪ {∞ }.

Next, take τ0, τ1 ∈ D+(G) so that 0 6∈ Supp(τ1) and so that the function

τ2 := τ2
0 +

∑
j∈N

τ1(2−j · )2

never vanishes. Then,
√
τ2 ∈ E(G), so that, up to replacing τ0 and τ1 with τ0√

τ2
and τ1√

τ2
,

respectively, we may assume that τ2 = χG. Now, take ϕ ∈ S̃G(V ) and define

Ψ(ϕ) := τ0Φ(τ0ϕ) +
∑
j∈N

τ1(2−j · )Φ(τ1ϕ(2j · ))(2−j · ).

Then, our choice of τ0 and τ1 shows that Ψ(ϕ) is well defined, and that Ψ(ϕ) = ϕ on V .
Let us prove that Ψ maps S̃G(V ) continuously into S(G). Indeed, take k,N ∈ N. Then, it

is clear that there is a constant Ck,N > 0 such that

max
|α|6k

∥∥∂α(τ1ϕ(2j · ))
∥∥
∞ 6 Ck,N2−jN



34 CHAPTER 2. SOME USEFUL TOOLS

for every j ∈ N. Hence, there is a constant C ′k,N > 0 such that

max
|α|6k

|∂αΨ(ϕ)| 6 C ′k,NχSupp(τ0) + C ′k,N
∑
j∈N

2−jNχ2j ·Supp(τ1).

Therefore, there is a constant C ′′k,N > 0 such that

max
|α|6k

|∂αΨ(ϕ)| 6
C ′′k,N

(1 + | · |)N
.

This proves that Ψ(ϕ) ∈ S(G). Now, either analysing more carefully the preceding estimates,
or applying the closed graph theorem, we see that Ψ is actually continuous.

We conclude this section with a result on the composition with homogeneous polynomial
mappings.

Proposition 2.13. Take two homogeneous groups E1, E2, a dilation-invariant closed subset C
of E1, an open subset V of Rn, r ∈ N∪{∞ }, and a mapping P : V → Pol(E1;E2) of class Cr
such that P (v)(t · ) = t · P (v) and P (v)(x1) 6= 0 for every v ∈ V , for every t > 0, and for every
non-zero x1 ∈ C. Then, the mapping

V 3 v 7→ [ϕ 7→ ϕ ◦ P (v)] ∈ L(S(E2);SE1,k(C))

is well-defined and of class Cr for every k ∈ N ∪ {∞ }.

Proof. 1. Observe that we may assume that both E1 and E2 are abelian. Let S1 be the unit
sphere of E1 associated with some homogeneous norm, and fix a compact subset K of V . Then,
the mapping v 7→ P (v) ∈ C(S1 ∩ C;E2) is continuous since Pol(E1;E2) embeds continuously
into E(E1;E2). In addition, the mapping V × E1 3 (v, x1) 7→ P (v)(x1) ∈ E2 is continuous, so
that

min
v∈K

min
x1∈S1∩C

|P (v)(x1)| > 0.

By compactness, we may find a neighbourhood UK of S1 ∩ C in S1 such that

inf
v∈K

inf
x1∈UK

|P (v)(x1)| > 0.

Then, take τK ∈ B∞(E1) such that τK equals 1 on a neighbourhood of C, and Supp(τK) ⊆
B(0, 1) ∪ (R∗+ · UK).

Next, let OM (E1;E2) be the set of ϕ ∈ E(E1) such that ϕS(E1) ⊆ S(E1;E2), endowed
with the topology induced by the mapping ϕ 7→ [ψ 7→ ϕψ] ∈ L(S(E1);S(E1;E2)). Then,
Pol(E1;E2) embeds continuously into OM (E1;E2), so that the mapping P : V → OM (E1;E2)
is of class Cr.

2. Keep the notation of 1 above. Let us prove that the mapping

ΦK : K 3 v 7→ [ϕ 7→ (ϕ ◦ P (v))τK ] ∈ L(S(E2);S(E1))

is well-defined and that ΦK(K) is bounded in Ls(S(E2);S(E1)). Take ϕ ∈ S(E2) and h1, h2 ∈
N. Then, Faà di Bruno’s formula implies that2

(1 + |x1|)h1(ΦK(v)(ϕ))(h2)(x1) = (1 + |x1|)h1

∑
h2=h3+h4

h2!

h3!h4!
τ

(h3)
K (x1)·

·
∑

∑h4
p=1 p`p=h4

h4!

`!
ϕ(|`|)(P (v)(x1))

h4∏
p=1

(
P (v)(p)(x1)

p!

)`p
.

for every v ∈ K and for every x1 ∈ E1. Now, observe that P (K) is bounded in OM (E1;E2)
by 1, and that τK ∈ B∞(E1). Therefore, there are h5 ∈ N and a constant C > 0 such that

|(1 + |x1|)h1(Φ(v)(ϕ))(h2)(x1)| 6 C(1 + |x1|)h1+h5χSupp(τK)(x1)

h2∑
h3=0

|ϕ(h3)(P (v)(x1))|

2Cf. Corollary A.24 for the notation.
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for every v ∈ K and for every x1 ∈ E1. Next, observe that there is a constant C ′ > 0 such that

|ϕ(h3)(x2)| 6 C ′

(1 + |x2|)h1+h5

for every x2 ∈ E2 and for every h3 = 0, . . . , h2. In addition, by 1 and the homogeneity of P ,
we see that there is a constant C ′′ > 0 such that

(1 + |P (v)(x1)|) > C ′′(1 + |x1|)

for every v ∈ K and for every x1 ∈ Supp(τK). Therefore,

|(1 + |x1|)h1(ΦK(v)(ϕ))(h2)(x1)| 6 CC ′

C ′′h1+h5
(h2 + 1)

for every x1 ∈ E1. By the arbitrariness of h1, h2 ∈ N, the assertion follows.
3. Now, let us prove that ΦK is continuous. Since ΦK(K) is bounded in Ls(S(E2);S(E1))

and since S(E2) is barrelled, we see that ΦK(K) is equicontinuous. Since, in addition, S(E2)
is a Montel space, by means of [18, Proposition 5 of Chapter III, § 3, No. 4] we see that it will
suffice to show that the mapping K 3 v 7→ ΦK(v) ·ϕ ∈ S(E1) is continuous for every ϕ ∈ S(E2).
Now, also S(E1) is a Montel space; in addition, the set of Dirac measures is total in S ′(E1).
By the same reference, it will then suffice to show that the mapping K 3 v 7→ 〈ΦK(v)(ϕ), δx1〉
is continuous for every ϕ ∈ S(E1) and for every x1 ∈ E1. However, this is clear, whence the
result.

By the arbitrariness of K, and since V is locally compact, we then see that the mapping

Φ: V 3 v 7→ [ϕ 7→ ϕ ◦ P (v)] ∈ L(S(E2);SE1,k(C))

is well-defined and continuous. Hence, the assertion follows if r = 0.
4. Now, let K ′ be the interior of K and assume that r > 1. Let us prove that ΦK is

differentiable on K ′, with derivative3

Φ′K(v)(ϕ) = ΦK(ϕ′)P ′(v)

for every v ∈ K ′ and for every ϕ ∈ S(E2). Observe first that the mapping

ΦK,1 : K ′ 3 v 7→ [ϕ 7→ ΦK(ϕ′)P ′(v)] ∈ L(Rn;L(S(E2);S(E1)))

is continuous thanks to 3 above and Lemma A.25. Fix v0 ∈ K ′ and a compact convex neigh-
bourhood U of v0 in K ′. Since L(S(E2);S(E1)) is a complete space, [19, Proposition 8 of
Chapter VI, § 1, No. 2] implies that the integral∫

[0,1]

ΦK,1(v0 + tv) · v dt

exists in L(S(E2);S(E1)) for every v ∈ U − v0. In addition, for every ϕ ∈ S(E2) and for every
x1 ∈ E1, ∫

[0,1]

ΦK,1(v0 + tv)(ϕ)(x1) · v dt = ΦK(v0 + v)(ϕ)(x1)− ΦK(v0)(ϕ)(x1),

so that ΦK is differentiable at v0 and its derivative is ΦK,1. The assertion follows.
5. Now, assume that r ∈ Z∗+. Then, 4 implies that

Φ′K(v) = ΦK( · ′)P ′(v)

for every v ∈ K ′. Arguing by induction, we may assume that ΦK is of class Cr−1, so that by
means of Lemma A.25 we see that Φ′K is of class Cr on K ′. By the arbitrariness of K, we see
that Φ is of class Cr on V . The assertion for r =∞ follows.

3By an abuse of notation, we write ΦK(ϕ′)P ′(v) instead of
∑n2
j=1 ΦK(∂jϕ)P ′j(v), where we identified E2

with Rn2 for some n2 > 0.
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2.2 Hadamard’s Lemma

In this section, G denotes a homogeneous group of dimension n and homogeneous dimen-
sion Q. We denote by | · | a homogeneous norm on G, and by X = (Xj)j=1,...,n a basis of
homogeneous left-invariant vector fields on G; for every γ we denote by dγ the homogeneous
degree of Xγ =

∏n
j=1X

γj
j . We shall assume that d1 6 . . . 6 dn. We denote by Y = (Yj)

n
j=1

the basis of right-invariant vector fields on G which corresponds to X.
We shall denote by d ·Nn the set of the sums

∑n
j=1 djkj , as k = (k1, . . . , kn) ∈ Nn. In other

words, d ·Nn is the set of homogeneous degrees of the left-invariant differential operators on G.
We identify the Lie algebra g of G with Rn by means of the basis (Xj), and then we identify

G with Rn by means of the exponential map. Therefore, x = (xj) means x = exp
(∑

j∈J xjXj

)
.

We shall prove here a technical lemma about the correspondences between Xβ , Yβ and ∂β .
The main idea is that the ‘principal terms’ of these operators coincide; nevertheless, we shall
need some precise description of the terms of higher degree which appear in the decompositions,
for example, of Xβ in terms of either the Yβ′ or the ∂β

′
. This result is based on [43, Chapter

1, C].

Lemma 2.14. Take β ∈ Nn. Then, there are unique families with finite support (Pk,β,β′),
k = 1, . . . , 6, of functions on G such that

Xβ =
∑
β′

P1,β,β′∂
β′ Yβ =

∑
β′

P2,β,β′∂
β′

∂β =
∑
β′

P3,β,β′X
β′ ∂β =

∑
β′

P4,β,β′Y
β′

Xβ =
∑
β′

P5,β,β′Y
β′ Yβ =

∑
β′

P6,β,β′X
β′ .

Furthermore, for every β, β′ and for every k = 1, . . . , 6, Pk,β,β′ is a homogeneous polynomial of
homogeneous degree dβ′ − dβ, ∂`Pk,β,β′ = 0 if d` > maxβ′h 6=0 dh and k = 1, 2, and one of the
following conditions holds:

(i) Pk,β,β′ = 0;

(ii) β = β′;

(iii) |β| > |β′|;

(iv) |β| = |β′| and dβ′ > dβ.

Finally, Pk,β,β = 1.

By the proof, it follows that ∂`Pk,β,β′ = 0 if d` = dn, for every k = 1, . . . , 6.

Proof. 1. The existence and uniqueness of the families (Pk,β,β′) follows from standard argu-
ments. The fact that the Pk,β,β′ are homogeneous of degree dβ′ − dβ follows easily from the
uniqueness of the decomposition and from the homogeneity of Xβ ,Yβ and ∂β . Let us prove
the other assertions by induction on the length of β. If β = 0, then there is nothing to prove.

2. Let us treat here the case in which |β| = 1. Notice first that the group law of G is
represented by the Hausdorff series in the chosen system of coordinates, so that there is a finite
family of polynomials (Pj)j=1,...,n such that

(xj) · (yj) = (xj + yj + Pj((xh)dh<dj ; (yh)dh<dj ))

for every (xj), (yj) ∈ G. This implies that

Xj(x) = ∂j +
∑

dj′>dj

∂2,jPj′((xh)dh<dj′ ; 0)∂j′

Yj(y) = ∂j +
∑

dj′>dj

∂1,jPj′(0; (yh)dh<dj′ )∂j′ ,
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so that, for every x ∈ G,

P1,ej ,ej′ (x) = ∂2,jPj′((xh)dh<dj′ ; 0)

P2,ej ,ej′ (x) = ∂1,jPj′(0; (xh)dh<dj′ )

if dj′ > dj , P1,ej ,ej = P2,ej ,ej = 1, and P1,ej ,ej′ = P2,ej ,ej′ = 0 in the remaining cases. Hence,
the assertion holds for k = 1, 2 if β has length 1.

3. Now, consider the general case; then, there are j and γ such that Xβ = XjX
γ . By the

inductive hypothesis,
Xγ =

∑
γ′

P1,γ,γ′∂
γ′ ,

where P1,γ,γ′ is a homogeneous polynomial of degree dγ′−dγ which satisfies one of the conditions
(i) to (iv), and ∂`P1,γ,γ′ = 0 if d` > maxγ′h 6=0 dh. Therefore,

P1,β,β′ =
∑

γ′,j′ : β′=γ′+ej′

P1,ej ,ej′P1,γ,γ′ +
∑
j′

P1,ej ,ej′∂j′P1,γ,β′ .

It is then clear that P1,β,β′ is a polynomial, and that ∂`P1,β,β′ = 0 if d` > maxβ′h 6=0 dh. Now,
assume that P1,β,β′ 6= 0. If P1,ej ,ej′∂j′P1,γ,β′ 6= 0 for some j′, then |β| > |γ| > |β′| by the
inductive hypothesis, so that (iii) holds. If there is no such j′, then there are γ′ and j′ such that
β′ = γ′ + ej′ and P1,ej ,ej′P1,γ,γ′ 6= 0. Then, dj′ > dj , dγ′ > dγ and |γ′| 6 |γ| by the inductive
hypothesis. Next, assume that |β| = |β′|. If dj < dj′ , then dβ′ = dγ′ + dj′ > dγ + dj = dβ
and we are done. Otherwise, the inductive hypothesis implies that j = j′, so that γ = γ′ and
β = β′; furthermore, P1,β,β = P1,ej ,ejP1,γ,γ = 1. This completes the proof for k = 1. The case
k = 2 follows applying the case k = 1 to the opposite group of G.

4. Now, consider the case k = 3. Then, we can solve the equations

Xβ =
∑
β′

P1,β,β′∂
β′

for ∂β
′
, thus getting the family (P3,β,β′). More precisely,

P3,β,β′ =
∑
`∈N

(−1)`
∑

Card(β(1),...,β(`))=`

P1,β,β(1)P1,β(1),β(2) · · ·P1,β(`),β′ ,

where the term corresponding to ` = 0 must be interpreted as P1,β,β′ . Hence, P3,β,β′ is a
polynomial which satisfies one of the conditions (i) to (iv). This completes the proof for k = 3.
The case k = 4 follows applying the case k = 3 to the opposite group of G.

5. Next, consider the case k = 5. Then,

Xβ = Yβ +
∑
β′

(P1,β,β′ − P2,β,β′)∂
β′

= Yβ +
∑
β′

∑
β′′

(P1,β,β′ − P2,β,β′)P4,β′,β′′Y
β′′ ,

so that
P5,β,β′′ = δβ,β′′ +

∑
β′

(P1,β,β′ − P2,β,β′)P4,β′,β′′ .

It then follows that P5,β,β′′ is a polynomial and satisfies one of the conditions (i) to (iv). This
completes the proof for k = 5. The case k = 6 follows applying the case k = 5 to the opposite
group of G.

As a corollary of the preceding analysis, we state the following result. It essentially shows
that we can construct Taylor polynomials of any sufficiently differentiable function with respect
to either the left- or the right-invariant derivatives. This happens to be an important tool, since
it will allow us to deal with the (possibly) non-commutative structure of G and to take greater
care of the homogeneous structure of G. For example, one may need to approximate sufficiently
smooth functions f with polynomials Pf in such a way that all the left-invariant derivatives of
f and Pf , up to a fixed homogeneous degree, at a given point are equal.
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Corollary 2.15. Take x ∈ G and β ∈ Nn. Then, there are two unique polynomials Px,β and
Qx,β such that

(Xβ′Px,β)(x) = δβ,β′ and (Yβ′Qx,β)(x) = δβ,β′

for every β′. Further, Px,β and Qx,β have homogeneous degree dβ.

This result is essentially [43, Proposition 1.30], so that the proof is omitted.
We now consider an analogue of the ‘dual form’ of Hadamard’s lemma on homogeneous

groups. For the sake of completeness, we state and prove also the classical versions.

Lemma 2.16 (Hadamard). Let F be a Fréchet space, and take k ∈ N, and f ∈ S(Rn;F ).
Then, the following conditions are equivalent:

1. f (j)(0) = 0 for every j = 0, . . . , k;

2. there is a finite family (fβ)|β|=k+1 of elements of S(Rn;F ) such that f =
∑
|β|=k+1( · )βfβ.

Proof. 1 =⇒ 2. Let ϕ be a C∞ function such that χB(0,1) 6 ϕ 6 χB(0,2). By Taylor’s
formula,

(fϕ)(x) =

∫
[0,1]

(fϕ)(k+1)(tx) · xk+1 (1− t)k

k!
dt

=
∑
|β|=k+1

xβf0,β(x),

where

f0,β(x) = ϕ
(x

2

)k + 1

β!

∫
[0,1]

∂β(ϕf)(tx)(1− t)k dt.

Notice that f0,β ∈ DB(0,4)(R
n;F ) for every β of length k + 1. Next, define

f∞,β(x) :=
(k + 1)!

β!

xβ

‖x‖2(k+1)
(1− ϕ(x))f(x).

Then, ∑
|β|=k+1

xβf∞,β(x) = (1− ϕ(x))f(x),

and each f∞,β belongs to S(Rn;F ). It suffices to define fβ := f0,β + f∞,β .
2 =⇒ 1. Obvious.

The following corollary, which corresponds to Lemma 2.16 via the Fourier transform, is the
result which we wish to generalize. It is worthwhile to consider a vector-valued version.

Corollary 2.17. Let F be a Fréchet space, and take ϕ ∈ S(Rn;F ) and k ∈ N. Then, the
following conditions are equivalent:

1.
∫
Rn
ϕP dHn = 0 for every polynomial P of degree at most k;

2. there is a finite family (ϕβ)|β|=k+1 of elements of S(Rn;F ) such that ϕ =
∑
|β|=k+1 ∂

βϕβ.

Proof. The assertion follows from Lemma 2.16 by means of the Fourier transform if F = C,
hence if F = R by taking the real parts.

Now, define Sk(Rn;F ) as the set of ϕ ∈ Sk(Rn;F ) such that 〈ϕ|P 〉 = 0 for every polynomial
P of degree at most k, and consider the continuous linear mapping

τk,F :
∏

|β|=k+1

S(Rn;F ) 3 (ϕβ) 7→
∑
|β|=k+1

∂βϕβ ∈ Sk(Rn;F ).

The assertion then means that τk,F is onto. Next, observe that

∏
|β|=k+1

S(Rn;F ) ∼=

( ∏
|β|=k+1

S(Rn)

)
⊗̂F
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canonically, thanks to Proposition 2.8 and [84, Exercise 43.8]. Let us prove that the canonical
isomorphism S(Rn;F ) ∼= S(Rn)⊗̂F induces an isomorphism Sk(Rn;F ) ∼= Sk(Rn)⊗̂F . Indeed,
let Bk be a basis of the space of polynomials of degree at most k on Rn. Then, Sk(Rn;F ) is
the kernel of the linear mapping

Φk,F : S(Rn;F ) 3 ϕ 7→ (〈ϕ|P 〉) ∈ FBk ,

which corresponds to Φk,R⊗̂IF under the canonical identifications. Taking into account the
fact that S(Rn) is nuclear, the assertion follows by means of [45, Proposition 3 of Chapter I, §
1, No. 2] and [84, Proposition 43.7].

Therefore, by means of [84, Proposition 43.9] we see that τk,F is onto, whence the result.

Corollary 2.18. Let F be a Fréchet space, ϕ ∈ S(G;F ) and k ∈ d ·Nn. Then, the following
conditions are equivalent:

1. 〈ϕ|P 〉 = 0 for every polynomial P of homogeneous degree < k;

2. there is a family with finite support (ϕk,β)dβ>k of elements of S(G;F ) such that ϕ =∑
dβ>k

Xβϕk,β;

3. there is a family with finite support (ϕ̃k,β)dβ>k of elements of S(G;F ) such that ϕ =∑
dβ>k

Yβϕ̃k,β.

If, in addition, {Xj : dj = d1 } generates the Lie algebra of G, then the preceding conditions
are equivalent to the following ones:

2′. there is a finite family (ψk,β)dβ=k of elements of S(G;F ) such that ϕ =
∑

dβ=kX
βψk,β;

3′. there is a finite family (ψ̃k,β)dβ=k of elements of S(G;F ) such that ϕ =
∑

dβ=kY
βψ̃k,β.

Proof. 1 =⇒ 2. We proceed by induction on k ∈ d · Nn. If k = 0, we may take ϕ0,0 := ϕ
and ϕ0,β := 0 for β 6= 0. Next, assume that k > 0 and let k′ be the greatest element of d ·Nn
which is < k; assume, by induction, that the assertion holds for k′. Then, there is a family
(ϕk′,β)dβ>k′ of elements of S(G;F ) such that ϕ =

∑
dβ>k′

Xβϕk′,β . Take β such that dβ = k′;
let us prove that ϕk′,β has integral 0. Notice that Lemma 2.14 implies that there is a unique
family with finite support (Pγ,γ′) of homogeneous polynomials such that Xγ =

∑
γ′ Pγ,γ′∂

γ′ ; in
addition, Pγ,γ = 1, Pγ,γ′ has homogeneous degree dγ′ − dγ and one of the following conditions
holds:

(i) Pγ,γ′ = 0;

(ii) γ = γ′;

(iii) |γ| > |γ′|;

(iv) |γ| = |γ′| and dγ′ > dγ .

Write Qβ to denote the monomial x 7→ xβ . Then, for every γ such that dγ > k′

〈Xγϕk′,γ |Qβ〉 =
∑
γ′

(−1)|γ|
〈
ϕk′,γ

∣∣∣Pγ,γ′∂γ′Qβ〉.
If Pγ,γ′∂γ

′
Qβ 6= 0, then dβ > dγ′ > dγ > k′ = dβ . In particular, both Pγ,γ′ and ∂γ

′
Qβ are

non-zero constants, so that γ′ = β. Hence,

〈Xγϕk′,γ |Qβ〉 = (−1)|γ|β!〈ϕk′,γ |Pγ,β〉.

Further, either β = γ (so that Pγ,β = Pβ,β = 1) or |β| < |γ|. Therefore,

0 = 〈ϕ|Qβ〉 =
∑

dγ=k′

(−1)|γ|β!〈ϕk′,γ |Pγ,β〉

= (−1)|β|β!

∫
G

ϕk′,β(x) dx+
∑

dγ=k′

|γ|>|β|

(−1)|γ|Pγ,β(0)β!

∫
G

ϕk′,γ(x) dx.
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Arguing by descending induction on the length of β (still subject to the condition dβ = k′), we
then see that ϕk′,β has integral 0. Therefore, Corollary 2.17 implies that, for every β such that
dβ = k′, there is a family (ϕk′,β,j) of elements of S(G;F ) such that

ϕk′,β =

n∑
j=1

∂jϕk′,β,j .

Now, by Lemma 2.14, for every j there is a family with finite support (Qj,j′) of polynomials
such that Qj,j′ is homogeneous of homogeneous degree dj′ − dj , and

∂j =
∑
j′

Qj,j′Xj′ .

By transposition, this yields
∂j =

∑
j′

Xj′(Qj,j′ · ).

Hence,
ϕk′,β =

∑
j,j′

Xj′(Qj,j′ϕk′,β,j),

so that

ϕ =
∑

dβ>k

Xβϕk′,β +
∑

dβ=k′

∑
j,j′

XβXj(Qj,j′ϕk′,β,j).

The assertion follows easily.
2 =⇒ 1. Indeed, for every polynomial P of homogeneous degree < k,

〈ϕ|P 〉 =
∑

dβ>k

(−1)|β|
〈
ϕk,β

∣∣XβP
〉

= 0

since XβP is a polynomial of homogeneous degree < k − dβ 6 0, so that it is 0.
1 ⇐⇒ 3. This follows from the equivalence 1 ⇐⇒ 2 applied to the opposite group of G.

Assume from now on that {Xj : dj = d1 } generate the Lie algebra of G, and define m :=
max{ j : dj = d1 }.

2 =⇒ 2′. Take (ϕk,β) as in 2. Take β such that dβ > k, and expand each Xj , with
j = m+ 1, . . . , n, as an iterated commutator of X1, . . . , Xm. If h :=

dβ
d1
∈ Z∗+, then

Xβ =
∑
γ

cβ,γXγ

for some family of real numbers (cβ,γ) with finite support; here, for every γ = (γ1, . . . , γh) ∈
{ 1, . . . ,m }h, Xγ := Xγ1

. . . Xγh . Split each γ in (γ′, γ′′), where
∑
j dγ′j = k.4 Then,

Xβϕk,β =
∑
γ

cβ,γXγ′(Xγ′′ϕk,β).

Since each Xγ′ , for cβ,γ 6= 0, can be expanded as a linear combination of the Xβ with dβ = k,
the result follows easily.

2′ =⇒ 2. This is obvious.
3 ⇐⇒ 3′. Apply the equivalence 2 ⇐⇒ 2′ to the opposite group of G.

Below we present an easy converse concerning the validity of 2′ and 3′ of Corollary 2.18.
In particular, it shows that the condition imposed in order that conditions 2′ and 3′ hold is
optimal.

4In other words, γ′ has the first k
d1
∈ N components of γ.
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Remark 2.19. Assume that, for every ϕ ∈ S(G) such that
∫
G
ϕ(x) dx = 0, there is a finite

family (ϕj)dj=d1
of elements of S(G) such that ϕ =

∑
dj=d1

Xjϕj . Then, {Xj : dj = d1 }
generates g as a Lie algebra.

Indeed, let h be the ideal of g generated by {Xj : dj = d1 }. Define H := exp(h), so that
H is a normal homogeneous subgroup of G. Let G′ be the quotient of G by H, and let
π : G → G′ be the canonical projection. Then, Proposition 1.97 implies that there is a strict
morphism π∗ of S(G) onto S(G′) such that π∗(Xψ) = dπ(X)π∗(ψ) for every ψ ∈ S(G) and
for every left-invariant differential operator X on G. Now, take ϕ and (ϕj) as above. Then,
π∗(ϕ) =

∑
dj=d1

dπ(Xj)π∗(ϕj) = 0, so that the set
{
ϕ ∈ S(G) :

∫
G
ϕ(x) dx = 0

}
is contained

in the kernel of π∗. Since π∗ is onto, this proves that S(G′) has dimension at most 1; hence,
G′ = { e }. This means that h = g. Now, h is (contained in, hence equal to) the vector space
generated by {Xj : dj = d1 }∪[g, g], so that {Xj : dj = d1 } generates g as a Lie algebra (cf. [21,
Exercise 4.b of Chapter I, § 4]).

2.3 Composite Functions: Continuous Functions
In this section we develop some tools to deal with the following problem: given three Haus-

dorff spaces X,Y, Z, a measure µ on X, a µ-proper mapping π : X → Y ,5 and a function
m : Y → Z such that m ◦ π equals µ-almost everywhere a continuous function, does m equal
π∗(µ)-almost everywhere a continuous function?

To this end, we introduce the following definition.

Definition 2.20. Let X be a Hausdorff space, Y a set, µ a positive Radon measure on X, and
π a mapping of X into Y .

We say that two points x, x′ of Supp(µ) are (µ, π)-connected if π(x) = π(x′) and there are
x = x1, . . . , xk = x′ ∈ π−1(π(x)) ∩ Supp(µ) such that

µ•
(
π−1(π(Uj) ∩ π(Uj+1))

)
> 0

for every j = 1, . . . , k, for every neighbourhood Uj of xj in Supp(µ) and for every neighbourhood
Uj+1 of xj+1 in Supp(µ).

We say that µ is π-connected if every two elements of π−1(y)∩Supp(µ) are (µ, π)-connected
for every y ∈ Y .

Observe that (µ, π)-connectedness actually depends only on the equivalence class of µ and
the equivalence relation induced by π on X. In addition, notice that if Y is a topological space
and π is open at some point of each fibre (in the support of µ), then µ is clearly π-connected.

We emphasize that, in the definition of (µ, π)-connectedness, the points x1, . . . , xk are fixed
before considering their neighbourhoods. In other words, if for every neighbourhood U of x in
Supp(µ) and for every neighbourhood U ′ of x′ in Supp(µ) we found x = x1, . . . , xk = x′ and
neighbourhoods Uj of xj in Supp(µ) such that U = U1, U ′ = Uk and

µ•
(
π−1(π(Uj) ∩ π(Uj+1))

)
> 0

for every j = 1, . . . , k, then we would not be able to conclude that x and x′ are (µ, π)-connected
(cf. Remark 2.25 below).

Now we can prove our main result. Notice that, even though its hypotheses are quite
restrictive, it still gives rise to important consequences.

Proposition 2.21. Let X,Y, Z be three Hausdorff spaces, π : X → Y a mapping, and µ a
π-connected positive Radon measure on X. Assume that π is µ-proper and that there is a
disintegration (λy)y∈Y of µ relative to π6 such that Supp(λy) ⊇ Supp(µ) ∩ π−1(y) for π∗(µ)-
almost every y ∈ Y .

Take a continuous mapping m0 : X → Z and assume that there is mapping m1 : Y → Z such
that m0(x) = (m1 ◦ π)(x) for locally µ-almost every x ∈ X. Then, there is a π∗(µ)-measurable
mapping m2 : Y → Z such that m0 = m2 ◦ π pointwise on Supp(µ).

5Recall that this means that π∗(µ) is a Radon measure. In other words, for every y ∈ Y there is an open
neighbourhood V of y in Y such that π−1(V ) is µ-integrable.

6By this we mean that λy is a probability measure carried by π−1(y) for locally π∗(µ)-almost every y ∈ Y ,
and that for every µ-measurable function f : X → [0,+∞] the function Y 3 y 7→

∫ •
X f dλy is π∗(µ)-measurable

and
∫ •
X f dµ =

∫ •
Y

∫ •
X f dλy dπ∗(µ)(y).
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If π is also proper, then m2 is actually continuous on the image of π.

Proof. Observe first that there is a locally π∗(µ)-negligible subset N of Y such that m1◦π = m0

locally λy-almost everywhere for every y ∈ Y \N . In addition, we may assume that Supp(µ) = X
and that, if y ∈ Y \ N , then the support of λy contains π−1(y). Since m0 is continuous and
since m1 ◦π is constant on the support of λy, it follows that m0 is constant on π−1(y) for every
y ∈ Y \N .

Now, take y ∈ π(X) ∩ N and x1, x2 ∈ π−1(y). Let U(x1) and U(x2) be the filters of
neighbourhoods of x1 and x2, respectively. Assume first that π(U1)∩π(U2) is not locally π∗(µ)-
negligible for every U1 ∈ U(x1) and for every U2 ∈ U(x2), and take U1 ∈ U(x1) and U2 ∈ U(x2).
Then, there is yU1,U2 ∈ π(U1) ∩ π(U2) \N , and then xh,U1,U2 ∈ Uh ∩ π−1(yU1,U2) for h = 1, 2.
Now, m0(x1,U1,U2) = m0(x2,U1,U2) for every U1 ∈ U(x1) and for every U2 ∈ U(x2); in addition,
xh,U1,U2

→ xh in X along the product filter of U(x1) and U(x2). Since m0 is continuous,
passing to the limit we see that m0(x1) = m0(x2). Since µ is π-connected, this implies that m0

is constant on P−1(y) for every y ∈ π(X). The assertion follows.

Here are some useful examples of connected measures.

Proposition 2.22. Let E1, E2 be two finite-dimensional affine spaces, L : E1 → E2 an affine
mapping, C a closed convex subset of E1 and µ a positive Radon measure on E1 with support C.
Take a µ-measurable subset X of E1 which carries µ. Then, µX is L

X
-connected.7

Proof. Notice that we may assume that the following hold:

• E1 and E2 are vector spaces and L is linear;

• C has non-empty interior.

Now, take x ∈ C. Since C has non-empty interior, we may find a bounded open convex subset U
of C and an open convex neighbourhood V of 0 in kerL such that U+V ⊆ C. Take r ∈]0, 1] and
x, y ∈ C such that y − x ∈ V ; take R > 0 so that U ⊆ B(x,R). Then, for every u ∈ U we have
y+r(u−x) ∈ B(y,Rr)∩ [y, y−x+u] ⊆ B(y,Rr)∩C; analogously, x+r(U−x) ⊆ B(x,Rr)∩C.
Since L(x) = L(y), we infer that

L−1(L(B(x,Rr) ∩ C) ∩ L(B(y,Rr) ∩ C)) ⊇ x+ r(U − x).

Now, x + r(U − x) is a non-empty open subset of C = Supp(µ), so that µ(x + r(U − x)) > 0.
The arbitrariness of r then implies that x and y are (µ,L)-connected.

In the same way we see that if x, y ∈ Supp(µX) = C ∩ X and y − x ∈ V , then x, y are
(µX , L X

)-connected. The assertion then follows from the fact that X is a countable union of
precompact sets.

Before we state Corollary 2.24, we recall the definition of a convex polyhedron.

Definition 2.23. Let E be a finite-dimensional affine space and P a subset of E. Then, P is a
convex polyhedron if it is the intersection of a finite number of closed half-spaces. Equivalently,
P is a convex polyhedron if it is the convex envelope of a finite family of points and closed
half-lines of E.

Corollary 2.24. Let E1, E2 be two finite-dimensional affine spaces, C a convex polyhedron of
E1, L : E1 → E2 an affine mapping which is proper on C, and µ a positive Radon measure on
E1 with support ∂C. Then, µ is L-connected.

Proof. 1. Consider first the case in which C is compact and has non-empty interior, E1 = Rn,
E2 = Rn−1 and L(x1, . . . , xn) = (x1, . . . , xn−1) for every (x1, . . . , xn) ∈ En. Define C ′ := L(C),
so that C ′ is a compact convex polyhedron of E2. Now, the functions

f− : C ′ 3 x′ 7→ min{ y ∈ R : (x′, y) ∈ C }

and
f+ : C ′ 3 x′ 7→ max{ y ∈ R : (x′, y) ∈ C }

7Here, we denote by µX the Radon measure induced by µ on X.
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are well-defined; in addition, f− is convex while f+ is concave. Therefore, f− and f+ are

continuous on
◦
C ′ by [18, Corollary to Proposition 21 of Chapter II, § 2, No. 10]. Now,

observe that f− 6 f+; if f−(x′) = f+(x′) for some x′ ∈
◦
C ′, then f− = f+ on C ′ by

convexity, and this contradicts the assumption that C has non-empty interior. Therefore,{
(x′, y) : x′ ∈

◦
C ′, f−(x′) < y < f+(x′)

}
is the interior of C, so that ∂C ∩ (

◦
C ′×R) is the union

of the graphs Γ− and Γ+ of the restrictions of f− and f+ to
◦
C ′. Since L induces homeomor-

phisms of Γ− and Γ+ onto
◦
C ′, it follows that (x′, f−(x′)) and (x′, f+(x′)) are (µ,L)-connected

for every x′ ∈
◦
C ′.

Now, take x′ ∈ ∂C ′, and observe that { (x′, y) : y ∈ [f−(x′), f+(x′)] } ⊆ ∂C. Take y ∈
[f−(x′), f+(x′)] and an (n − 1)-dimensional facet F of C which contains (x′, y). Observe that
the support of χF ·µ is F . Indeed, clearly Supp(χF · µ) ⊆ F . Conversely, take x in the relative
interior of F . Then, every sufficiently small open neighbourhood of x intersects ∂C only on
F , so that it is clear that x ∈ Supp(χF · µ). Since F is the closure of its relative interior, the
assertion follows. Then, Proposition 2.22 implies that (x′, y) and (x′, y′) are (µ,L)-connected
for every y′ ∈ R such that (x′, y′) ∈ F . Since ∂C is the (finite) union of its (n− 1)-dimensional
facets, it follows that (x′, y) and (x′, y′) are (µ,L)-connected for every y′ ∈ [f−(x′), f+(x′)].
The assertion follows in this case.

2. Now, consider the general case. Observe first that we may assume that C has non-empty
interior. Take y ∈ L(∂C) and a closed cube Q in E2 which contains y in its interior. Then,
C ∩ L−1(Q) is a compact polyhedron; in addition,

∂C ∩ L−1(
◦
Q) = ∂[C ∩ L−1(Q)] ∩ L−1(

◦
Q).

Hence, in order to prove that any two points of L−1(y) ∩ ∂C are (µ,L)-connected, we may
assume that C is compact. Now, take x1, x2 ∈ ∂C such that x1 6= x2 and L(x1) = L(x2). Let
L′ be an affine mapping defined on E1 such that L′(x1) = L′(x2) and such that the fibres of L′
have dimension 1. Then, we may apply 1 above and deduce that x1, x2 are (µ,L′)-connected.
It is then easily seen that x1, x2 are also (µ,L)-connected, whence the result.

Remark 2.25. Notice that Corollary 2.24 is false for general convex sets. Indeed, choose
E1 = R3, E2 = R2, L = pr1,2 and

C1 :=
{

(x, y, z) ∈ E1 : 2yz > x2, z ∈ [0, 1], y > 0
}
.

Define C as the union of C1 and π(C1), where π is the reflection along the plane pr−1
3 (1). Then,

∂C is the union of

C ′1 :=
{

(x, y, z) ∈ E1 : 2yz = x2, z ∈ [0, 1], y > 0
}

and π(C ′1). Choose any continuous function m1 : C ′1 → C, and define m : ∂C → C so that it
equals m1 on C ′1 and m1 ◦ π on π(C ′1). Then, m is clearly continuous. In addition, it is clear
that C ′1 intersects the fibres of L at most at one point except for L−1(0, 0). Since m can be
chosen so that it is not constant on { (0, 0) } × [0, 2], Proposition 2.21 shows that χ∂C · H2

cannot be L-connected.

We now consider some results about the disintegration of measures, in order to meet the
hypotheses of Proposition 2.21.

Proposition 2.26. Let, for j = 1, 2, Ej be an Hkj -measurable and countably Hkj -rectifiable
subset of Rnj . Assume that k2 6 k1, and let P be a locally Lipschitz mapping from E1

into E2. Take a positive f ∈ L1
loc(χE1 · Hk1), and assume that P is f · Hk1-proper and that

f(x) apJk2P (x) 6= 0 for Hk1-almost every x ∈ E1.8

Then, the following hold:

8Define ap J as in [39, 3.2.16]. Recall that ap Jk2
P (x) =

∥∥∥∧k2 TxP
∥∥∥ if E1 and P are of class C1 in a

neighbourhood of x.
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1. the mapping

g : Rn2 3 y 7→
∫
P−1(y)

f

ap Jk2
P

dHk1−k2

is well-defined Hk2-almost everywhere and measurable; in addition,

P∗(f · Hk1) = g · Hk2 ;

2. the measure
βy :=

1

g(y)

f

ap Jk2P
χP−1(y) · Hk1−k2

is well-defined and Radon for P∗(f · Hk1)-almost every y ∈ Rn2 ; in addition, (βy) is a
disintegration of f · Hk1 relative to P ;

3. βy is equivalent to χP−1(y) · Hk1−k2 for P∗(f · Hk1)-almost every y ∈ E2.

Proof. Since E1 is Hkj -measurable and countably Hkj -rectifiable, we may find an increas-
ing sequence (Ej,p)p∈N of Hkj -measurable and Hkj -rectifiable subsets of Rnj such that Ej ⊆⋃
p∈NEj,p (j = 1, 2). We may further assume that E2,p is Borel measurable for every p ∈ N, and

that E1 =
⋃
p∈NEj,p. Then, E1,p ∩ P−1(E2,q) is an Hk1 -measurable and Hk1-rectifiable subset

of Rn1 for every p, q ∈ N. Take an Hk1-measurable function h : Rn1 → [0,+∞]. Then, [39,
Theorem 3.2.22] implies that for Hk2 -almost every y ∈ E2,q the set P−1(y) ∩ E1,p is Hk1−k2 -
measurable and Hk1−k2-rectifiable, and that∫

E1,p∩P−1(E2,q)

h ap Jk2
P dHk1 =

∫
E2,q

∫
P−1(y)∩E1,p

hdHk1−k2 dHk2(y).

Passing to the limit as p, q → ∞, we see that for Hk2 -almost every y ∈ E2, the set P−1(y) is
Hk1−k2 -measurable and countably Hk1−k2-rectifiable, that the mapping y 7→

∫
P−1(y)

hdHk1−k2

is Hk2-almost everywhere defined and measurable, and that∫
E1

h ap Jk2
P dHk1 =

∫
Rn2

∫
P−1(y)

hdHk1−k2 dHk2(y).

Therefore, if Z is the set of zeroes of f ap Jk2P , then Hk1−k2(P−1(y) ∩ Z) = 0 for Hk2-almost
every y ∈ Rn2 . Hence, g is well-defined Hk2-almost everywhere and measurable. In addition,
for Hk2-almost every y ∈ Rn2 we have g(y) = 0 if and only if Hk1−k2(P−1(y)) = 0.

Now, take a positive ϕ ∈ D0(Rn2). Then, the preceding remarks imply that∫
E1

(ϕ ◦ P )f dHk1 =

∫
Rn2

ϕg dHk2 .

By the arbitrariness of ϕ, it follows that P∗(f · Hk1) = g · Hk2 ; in particular, g ∈ L1
loc(Hk2).

Finally, take ϕ ∈ D0(Rn1). Then,∫
E1

ϕf dHk1 =

∫
Rn2

g(y)

∫
E1

ϕdβy dHk2(y),

so that (βy) is a disintegration of f · Hk1 relative to P (cf. [19, Proposition 2 of Chapter V, §
3, No. 1] and [19, Theorem 1 of Chapter VI, § 3, No. 1]).

Corollary 2.27. Let M be an analytic manifold of dimension n and countable at infinite,
endowed with a positive Radon measure µ which is equivalent to Lebesgue measure on every
local chart. In addition, take k, h ∈ N and a µ-proper analytic mapping P : M → Rk with
generic rank h. Then, the following hold:

1. P (M) is Hh-measurable and countably Hh-rectifiable;

2. P∗(µ) is equivalent to χP (M)Hh;

3. Supp(P∗(µ)) = P (M);
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4. if (βy)y∈Rk is a disintegration of µ relative to P , then Supp(βy) = P−1(y) for Hh-almost
every y ∈ P (M).

It is worthwhile for our analysis to consider the case in which M is possibly disconnected.

Proof. Observe first that M may be embedded as a closed submanifold of class C∞ of R2n+1

by Whitney embedding theorem (cf. [31, Theorem 5 of Chapter 1]). We may therefore assume
that µ = f · Hn for some f ∈ L1

loc(χM · Hn). Now, [75] implies that the set where P has
rank < h, which is Hn-negligible by analyticity, has Hh-negligible image under P . Since the
image under P of the set where P has rank h is a countable union of analytic submanifolds of
Rk of dimension h, we see that P (M) is Hh-measurable and countably Hh-rectifiable. There-
fore, Proposition 2.26 applies. Now, the preceding arguments show that P−1(y) is an analytic
submanifold of dimension n − h of M for Hh-almost every y ∈ P (M). As a consequence,
Supp(βy) = Supp

(
χP−1(y) · Hn−h

)
= P−1(y) for Hh-almost every y ∈ P (M); for the same

reason, we also see that P∗(µ) is equivalent to χP (M) · Hh. Finally, Supp(P∗(µ)) = P (M) since
P is continuous and Supp(µ) = M .

2.4 Composite Functions: Schwartz Functions

In this section we shall extend some results by E. Bierstone, P. Milman and G. W. Schwarz
to the case of Schwartz functions by means of the techniques developed by F. Astengo, B.
Di Blasio and F. Ricci. We shall take advantage of the remarkable works of E. Bierstone, P.
Milman and G. W. Schwarz about the composition of smooth functions on analytic manifolds,
and we shall refer to [9, 10, 11] for any unexplained definition, in particular for the notion of
(Nash) subanalytic sets. As a matter of fact, in the applications we shall only need to know
that any convex subanalytic set is automatically Nash subanalytic, since it is contained in an
affine space of the same dimension; and that semianalytic sets are Nash subanalytic (cf. [9,
Proposition 2.3]).

Our starting point is the following result (cf. [9, Theorem 0.2] and [11, Theorem 0.2.1]).

Theorem 2.28. Let C be a closed subanalytic subset of Rn and let P : Rn → Rm be an analytic
mapping. Assume that P is proper on C and that P (C) is Nash subanalytic. Then, the canonical
mapping

Φ: E(Rm) 3 ϕ 7→ ϕ ◦ P ∈ ERn(C)

has a closed range, and admits a continuous linear section defined on Φ(E(Rn)).
In addition, ψ ∈ ERn(C) belongs to the image of Φ if and only if for every y ∈ Rm there is

ϕy ∈ E(Rm) such that j∞x (ϕy ◦ P ) = j∞x (ψ) in J∞Rn,0(C) for every x ∈ C such that P (x) = y.

In order to simplify the notation, we shall simply say that ψ is a formal composite of P if
the second condition of the statement holds.

The following result extends Theorem 2.28 to the case of Schwartz functions. We omit the
proof, since it basically consists in repeating that of [5, Theorem 6.1] with minor modifications.

Theorem 2.29. Let E1, E2 be two homogeneous groups, and P : E1 → E2 a polynomial map-
ping such that P (r · x) = r · P (x) for every r > 0 and for every x ∈ E1. Let C be a dilation-
invariant subanalytic closed subset of E1, and assume that P is proper on C and that P (C) is
Nash subanalytic. Then, the canonical mapping

Φ: S(E2) 3 ϕ 7→ ϕ ◦ P ∈ SE1
(C)

has a closed range, and admits a continuous linear section defined on Φ(S(E2)). In addition,
ψ ∈ SE1(C) belongs to the image of Φ if and only if it is a formal composite of P .

As a matter of fact, in our applications E1 = ELA , E2 = EP (LA), and C = σ(LA). Then,
Theorem 2.29 gives sufficient conditions in order that some f ∈ SP (LA) which has a Schwartz
multiplier in ELA should have a Schwartz multiplier in EP (LA).

Notice, however, that sometimes it is convenient to take C so as to be a subset of σ(LA)
such that P (C) = σ(P (LA)), since σ(LA) need not be subanalytic.

In the following result we give a simple application of Theorem 2.29.
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Corollary 2.30. Let V and W be two finite-dimensional affine spaces, C a subanalytic closed
convex cone in V , and L an affine mapping of V intoW which is proper on C. Take m1 ∈ S(V ),
and assume that there is m2 : W → C such that m1 = m2 ◦L on C. Then, there is m3 ∈ S(W )
such that m1 = m3 ◦ L on C.

Proof. 1. Observe first that we may assume that V,W are vector spaces, and that C has vertex
0 and generates V . Indeed, the first three assumptions and the linearity of L are satisfied if
we choose suitable ‘origins’ in both V and W . Then, up to replacing V with the affine space
generated by C (which is a vector space since 0 ∈ C), also the fourth assumption is satisfied.

Observe, by the way, that L(C) is subanalytic (cf. [10, Theorem 0.1 and Proposition 3.13]),
hence Nash subanalytic.

2. Fix x ∈ C. Since C generates V , we may find a free family (vj)j∈J in C which generates
an algebraic complement V ′ of kerL in V . In addition, since either x = 0 or x 6∈ kerL, we may
assume that x ∈ V ′. Let L′ : W → V be the composite of the inverse of the restriction of L to
V ′ with the natural immersion of V ′ in V . Then, L′ is a linear section of L.

Define m′ := m1 ◦ L′, so that m′ ∈ E(W ). Next, define C ′ := V ′ ∩ C, so that C ′ is a closed
convex cone with non-empty interior in V ′, since it contains the non-empty open set

∑
j∈J R

∗
+vj .

Take z ∈ C ′ and any y ∈ C ∩ [x+ kerL]. Then, x+ z = (L′ ◦L)(x+ z) = (L′ ◦L)(y+ z), so that
m1 = m′ ◦ L on y + C ′. Since m1 is constant on the intersections of C with the translates of

kerL, it is also clear that the same holds on C∩(y+C ′+kerL). Now, denote by
◦
C ′ the interior

of C ′ in V ′. Then, y+
◦
C ′+kerL is an open convex set and y is adherent to C∩ (y+

◦
C ′+kerL);

therefore, the Taylor polynomials of every fixed order of m1 and m′ ◦ L about y must coincide

on C ∩ (y +
◦
C ′ + kerL), hence on V since C ∩ (y +

◦
C ′ + kerL) has non-empty interior. Since

this holds for every y ∈ C ∩ [x + kerL], Theorem 2.29 implies that there is m3 ∈ S(W ) such
that m1 = m3 ◦ L on C.



Chapter 3

Rockland Families

In this chapter, G denotes a homogeneous group; νG, or simply ν, denotes a fixed Haar
measure on G. In addition, we fix a non-empty, commutative, finite family LA = (Lα)α∈A of
formally self-adjoint, homogeneous, left-invariant differential operators without constant terms
on G.

3.1 Admissible Families
In order that the notion of spectral multipliers relative to the family LA make sense, we

need to impose some further conditions, which we summarize in the following definition.

Definition 3.1. We say that the family LA is admissible if Lα is essentially self-adjoint on D(G)
for every α ∈ A and the self-adjoint extensions of the Lα commute as self-adjoint operators on
L2(G).

If the family LA is admissible, then we shall denote by µLA the spectral measure associated
with the family of the self-adjoint extensions of the Lα.

Notice that we do not assume that each Lα is non-zero: indeed, this requirement would
create some fuss in some subsequent results, and is totally irrelevant. On the contrary, we shall
usually work under an assumption which ensures that some Lα is not zero.

In addition, observe that the condition which we truly need is that the operators (Lα,D(G))
have commuting left-invariant homogeneous self-adjoint extensions, but we shall not need this
generalization.

Definition 3.2. We denote by ELA the space RA endowed with the dilations

r · λ := (rδαλα)α∈A

for every r > 0 and for every λ = (λα) ∈ ELA , where δα is the homogeneous degree of Lα if
Lα 6= 0, and is 1 otherwise. Finally, | · | will denote a homogeneous norm on ELA .

Now it makes sense to consider functions of the family LA. However, we are not interested
in the operators m(LA) as much as in their (convolution) kernels; therefore, we shall restrict
ourselves to a (still wide) class of multipliers in order that the operators m(LA) be defined at
least on D(G). The following simple result proves that the operators m(LA) which are defined
at least on D(G) have a (right convolution) kernel.

Lemma 3.3. Assume that LA is admissible and let m : ELA → C be a µLA-measurable function
such that D(G) ⊆ Dom(m(LA)). Then, there is a unique K ∈ D′(G) such that m(LA)·ϕ = ϕ∗K
for every ϕ ∈ D(G).

In addition, K ∈W−∞,0,2(G) and for every ϕ ∈W 0,∞,1(G) we have ϕ ∈ Dom(m(LA)) and
m(LA) · ϕ = ϕ ∗K.

Proof. Observe first that m(LA) is a closed operator on L2(G); since D(G) embeds continu-
ously into L2(G), the operator m(LA) : D(G) → L2(G) has a closed graph. Then, the closed
graph theorem (cf. [18, Proposition 10 of Chapter II, § 4, No. 6]) implies that the operator
m(LA) : D(G) → L2(G) is continuous. Since m(LA) is left-invariant, Corollary 1.77 implies
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that it has a unique (right) convolution kernel K ∈ W−∞,0,2(G). Now, Corollary 1.72 implies
that the mapping W 0,∞,1(G) 3 ϕ 7→ ϕ ∗ K ∈ L2(G) is continuous. Since m(LA) is a closed
operator and since D(G) is dense in W 0,∞,1(G), the last assertion follows.

The following definition provides some short-hand notation which will be very useful as
the study advances. Indeed, it will allow us to avoid long and cumbersome sentences such as
‘assume that m is a µLA -measurable function defined on ELA with values in C such that D(G)
is contained in the domain of m(LA) and such that the kernel of the operator m(LA) belongs
to F ,’ and similar ones.

Definition 3.4. Let F be a locally convex space which is continuously embedded into D′w(G).
We shall denote by M(µLA ;F ) the set of µLA-measurable mappings m : ELA → C such that
D(G) ⊆ Dom(m(LA)) and such that the convolution kernelK ofm(LA) (cf. Lemma 3.3) belongs
to F . We shall denote by KLA the mapping which to each m ∈M(µLA ;D′w(G)) associates the
convolution kernel KLA(m) of m(LA). We shall endowM(µLA ;F ) with the topology induced
by F through KLA .

Let N be the set of µLA -negligible functions. Since (m + m′)(LA) = m(LA) for every
m′ ∈ N , we shall also define (m+N)(LA) := m(LA) and KLA(m+N) := KLA(m).

Definition 3.5. Let F be a locally convex space which is continuously embedded into D′w(G).
We shall denote by FLA the space KLA(M(µLA ;F )). We shall denote by FLA,0 the space
KLA(M(µLA ;F ) ∩ C(ELA)).

Definition 3.6 (Riemann-Lebesgue). We say that LA satisfies property (RL) if L1
LA(G) =

L1
LA,0(G).

Now, we shall study in detail the elementary properties of the ‘kernel transform’ KLA . Here,
‘in detail’ means that we shall strive to achieve (almost) the best possible formulation of most
results with respect to the weakness of the hypotheses. This will unfortunately make some
statements concerning convolution less readable, since this purpose will force us to consider
some quite abstract spaces which satisfy suitable conditions.

We first translate the homogeneity of the operators Lα in terms of µLA and KLA . Then,
we interpret in terms of KLA the fact that m(LA) is the adjoint of m(LA). In the results
which follow, we translate the fact that (m1m2)(LA) is the closure of the composite operator
m1(LA)m2(LA) into results about KLA in two different situations: when the expressionm1(LA)·
KLA(m2) makes sense; when the expression KLA(m2)∗KLA(m1) makes sense. Finally, we shall
also deal with the following question: when is m(LA) · ψ actually equal to ψ ∗ KLA(m)?

Proposition 3.7. Assume that LA is admissible. Then,

KLA(m(r · )) = (r · )∗(KLA(m))

for every m ∈M(µLA ;D′w(G)) and for every r > 0.1

Proof. Notice first that, for every α ∈ A and for every r > 0,

rδα
∫
E

λα dµLA(λ) = rδαLα

= (r−1 · ) ◦ Lα ◦ (r · )

= (r−1 · ) ◦
∫
E

λα dµLA(λ) ◦ (r · ).

Now, the mappings m 7→ 〈µLA ,m(r · )〉 and m 7→ (r−1 · )◦ 〈µLA ,m〉 ◦ (r · ), defined on D0(ELA),
are spectral measures, so that the arbitrariness of α implies that they are equal. Next, take
m ∈M(µLA ;D′w(G)). Then, for every ψ ∈ D(G),

ψ ∗ KLA(m(r · )) =

∫
E

m(r · λ) dµLA(λ) · ψ

= [(ψ(r · )) ∗ KLA(m)](r−1 · )
= ψ ∗ [(r · )∗(KLA(m))],

1Notice that, if KLA (m) ∈ L1
loc(G) · νG and we identify KLA (m) with its density, then this means that

KLA (m(r · )) = r−QKLA (m)(r−1 · )
for every r > 0.
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whence KLA(m(r · )) = (r · )∗(KLA(m)) by the arbitrariness of ψ.

Proposition 3.8. Assume that LA is admissible and take m ∈M(µLA ;D′w(G)). Then,

KLA(m)∗ = KLA(m).

Proof. For every ϕ,ψ ∈ D(G),

〈ϕ|ψ ∗ KLA(m)∗〉 = 〈ϕ ∗ KLA(m)|ψ〉
= 〈m(LA) · ϕ|ψ〉
= 〈ϕ|m(LA) · ψ〉
= 〈ϕ|ψ ∗ KLA(m)〉,

whence KLA(m)∗ = KLA(m) by the arbitrariness of ϕ and ψ.

Proposition 3.9. Assume that LA is admissible, and take m1 ∈ M(µLA ;D′w(G)) and m2 ∈
M(µLA ; Dom(m1(LA))). Then, m1m2 ∈M(µLA ;D′w(G)) and

KLA(m1m2) = m1(LA) · KLA(m2).

Proof. Assume first that m1 ∈ L∞(µLA), m2 ∈M(µLA ;L2(G)), and ϕ ∈ D(G). Then,

(m1m2)(LA) · ϕ = m1(LA) ·m2(LA) · ϕ

= m1(LA) ·
∫
G

ϕ(g)LgKLA(m2) dg

=

∫
G

ϕ(g)Lgm1(LA) · KLA(m2) dg

= ϕ ∗ [m1(LA) · KLA(m2)],

where the first equality follows from the fact that ϕ ∈ Dom(m2(LA)) and m2(LA) ·ϕ ∈ L2(G) =
Dom(m1(LA)), while the third equality follows from the fact that m1(LA) is left-invariant
and continuous on L2(G). The arbitrariness of ϕ then implies that KLA(m1m2) = m1(LA) ·
KLA(m2).

Now, consider the general case. For every k ∈ N, let Ek be the set of λ ∈ ELA such that
|m1(λ)| 6 k and |m2(λ)| 6 k. Then,

lim
k→∞

KLA(m1m2χEk) = lim
k→∞

(m1χEk)(LA) · KLA(m2) = m1(LA) · KLA(m2)

in L2(G), by spectral theory and the above. Now, take ϕ ∈ D(G); then χEk(LA) · ϕ ∈
Dom((m1m2)(LA)) and converges to ϕ in L2(G). In addition,

(m1m2)(LA) · χEk(LA) · ϕ = (m1m2χEk)(LA) · ϕ = ϕ ∗ KLA(m1m2χEk)

converges to ϕ ∗ (m1(LA) · KLA(m2)) in L2(G). Since (m1m2)(LA) is a closed operator, ϕ ∈
Dom((m1m2)(LA)) and (m1m2)(LA) · ϕ = ϕ ∗ (m1(LA) · KLA(m2)). The assertion follows by
the arbitrariness of ϕ.

Proposition 3.10. Let F1, F2 be two vector subspaces of D′(G), and endow F1, F2 with two
Hausdorff locally convex topologies such that the inclusions

F1 ⊆ L2(G) and F2 ⊆ D′w(G)

are well-defined and continuous; in addition, assume that D(G) ∩ F1 is dense in F1. Take
m ∈M(µLA ;F2) and assume that one of the following conditions hold:

1. the bilinear mapping ∗ : F1 × F2 → L2(G) is well-defined and separately continuous;

2. F1 is Dom(m(LA)) with a coarser topology, and the bilinear mapping ∗ : F1×F2 → D′w(G)
is well-defined and separately continuous.

Then, F1 ⊆ Dom(m(LA)) and, for every ψ ∈ F1,

m(LA) · ψ = ψ ∗ KLA(m).
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Proof. 1. Take ψ ∈ F1. Let (ψk) be a sequence of elements of D(G) ∩ F1 which converges
to ψ in F1; then, (ψk) converges to ψ in L2(G) and m(LA) · ψk = ψk ∗ KLA(m) converges to
ψ ∗ KLA(m) in L2(G). Since m(LA) is a closed operator, this proves that ψ ∈ Dom(m(LA))
and that m(LA) · ψ = ψ ∗ KLA(m).

2. Take ψ ∈ F1. For every k ∈ N, let Ek be the set of λ ∈ ELA such that |m(λ)| 6 k.
Notice that χEk(LA) ·ψ converges to ψ in Dom(m(LA)) by spectral theory, hence in F1. Take,
for every k ∈ N, a sequence (ψk,j)j of elements of D(G) which converges to χEk(LA) · ψ in F1.
Then,

m(LA) · ψ = lim
k→∞

(mχEk)(LA) · ψ

= lim
k→∞

m(LA) · χEk(LA) · ψ

= lim
k→∞

lim
j→∞

m(LA) · ψk,j

= lim
k→∞

lim
j→∞

ψk,j ∗ KLA(m)

= lim
k→∞

(χEk(LA) · ψ) ∗ KLA(m)

= ψ ∗ KLA(m),

where the limits in the first four equalities are in L2(G), while the other ones are in D′w(G).
The assertion follows by the arbitrariness of ψ.

Proposition 3.11. Let F1, F2, F3 be three vector subspaces of D′(G), and endow F1, F2, F3

with three Hausdorff locally convex topologies such that the inclusions

F1, F2 ⊆ D′w(G) and F3 ⊆ L2(G)

are well-defined and continuous. Assume that E ′(G)∩F1 is dense in F1, and that the following
bilinear mappings

∗ : F1 × F2 → D′w(G)

∗ : D(G)× F1 → F3

∗ : F3 × F2 → L2(G)

are well-defined and separately continuous. Now, takem1 ∈M(µLA ;F1) andm2 ∈M(µLA ;F2).
Then, m1m2 ∈M(µLA ;D′w(G)) and

KLA(m1m2) = KLA(m1) ∗ KLA(m2).

Proof. Take ϕ ∈ D(G). By 1 of Proposition 3.10, we see that m1(LA) · ϕ = ϕ ∗ KLA(m1) ∈
Dom(m2(LA)), and that

(m1m2)(LA) · ϕ = m2(LA) ·m1(LA) · ϕ = (ϕ ∗ KLA(m1)) ∗ KLA(m2).

Now, the trilinear mapping

D(G)× F1 × F2 3 (T1, T2, T3) 7→ (T1 ∗ T2) ∗ T3 − T1 ∗ (T2 ∗ T3) ∈ D′w(G)

is well-defined and separately continuous. In addition, it vanishes on D(G)× (E ′(G)∩F1)×F2,
so that it vanishes identically. Thus,

(m1m2)(LA) · ϕ = ϕ ∗ (KLA(m1) ∗ KLA(m2)),

so that m1m2 ∈M(µLA ;D′w(G)) and KLA(m1m2) = KLA(m1) ∗ KLA(m2) by the arbitrariness
of ϕ.

We state the following easy corollaries to show the usefulness and flexibility of Proposi-
tion 3.11.

Corollary 3.12. Take m1,m3 ∈M(µLA ;W−∞,∞,1(G)) and m2 ∈M(µLA ;D′w(G)).
Then, m1m2m3 ∈M(µLA ;D′w(G)) and

KLA(m1m2m3) = KLA(m1) ∗ KLA(m2) ∗ KLA(m3)∗.
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Proof. Observe first that KLA(m2) ∈W−∞,0,2(G) by Lemma 3.3. Therefore, if m3 = χELA the
assertion follows from Proposition 3.11, applied with F1 = W−∞,∞,1(G), F2 = W−∞,0,2(G),
and F3 = W 0,∞,1(G). The general case follows from the preceding one by means of Proposi-
tion 3.8.

As a particular case, we have the following result.

Corollary 3.13. Take m ∈ M(µLA ;D′w(G)) and P ∈ C[A]. Then, mP ∈ M(µLA ;D′w(G))
and2

KLA(mP ) = P (LA)KLA(m) = P
(
LRA
)
KLA(m).

Corollary 3.14. Assume that W∞,∞,1LA (G) = W∞,∞,1LA,0 (G) and that there is f ∈ SLA(G) such
that

∫
G
f dνG = 1. Then, W−∞,−∞,1LA (G) = W−∞,−∞,1LA,0 (G).

In particular, if there is f ∈ SLA(G) such that
∫
G
f dνG = 1, then property (RL) can be

tested on kernels in W∞,∞,1LA (G), and then holds for kernels in W−∞,−∞,1LA (G).

Proof. Take a bounded continuous function τ such that f = KLA(τ); define τj := τ(2−j) for
every j ∈ N, and take m ∈M(µLA ;W−∞,−∞,1(G)). Then, Corollary 3.12 implies that

KLA
(
m|τj |2

)
= KLA(τj) ∗ KLA(m) ∗ KLA(τj)

∗.

Therefore, KLA
(
m|τj |2

)
∈ W∞,∞LA (G), so that m|τj |2 equals µLA -almost everywhere a contin-

uous function. Now, by means of Propositions 1.73 and 3.7, and Corollary 1.80, we see that
KLA

(
m|τj |2

)
converges to KLA(m) in W−∞,−∞,1(G), while clearly m|τj |2 converges locally

uniformly to τ(0)m. By means of Lemma 3.17 below, we see that τ(0) = 1, so that m equals
µLA -almost everywhere a continuous function.

In the following result we give conditions under which the space M(µLA ;F ) is complete.
Notice that the condition that F is continuously embedded into W−∞,0,2(G) is rather natural
in view of Lemma 3.3.

Proposition 3.15. Let F be a Hausdorff locally convex space which is continuously embedded
into W−∞,0,2(G). Then, FLA is closed in F .

In particular, the space M(µLA ;F ) is complete (resp. semi-complete, quasi-complete) if F
is complete (resp. semi-complete, quasi-complete).

In particular, this result applies to F = Lp(G) for p ∈ [1, 2], M1(G), E ′0(G), D(G), S(G),
and many other spaces.

Proof. Take K0 in the closure of FLA in F . Then, there is a filter F onM(µLA ;F ) such that
KLA(F) converges to K0 in F . Therefore, for every ϕ ∈ D(G) we have

lim
m,F−F

∫
ELA

|m|2 d〈µLA · ϕ|ϕ〉 = lim
m,F−F

‖ϕ ∗ KLA(m)‖22 = 0,

so that F is a Cauchy filter in L2(〈µLA · ϕ|ϕ〉) for every ϕ ∈ D(G). Let S be a finite sub-
set of D(G), and observe that F converges to some universally measurable function mS in
L2
(∑

ϕ∈S〈µLA · ϕ|ϕ〉
)
. Now, let (Sj) be an increasing sequence of finite subsets of D(G) such

that D :=
⋃
j∈N Sj is dense in D(G). Then, mSj1

= mSj2
〈µLA · ϕ|ϕ〉-almost everywhere for

every j1, j2 ∈ N such that j1 6 j2 and for every ϕ ∈ Sj1 . Therefore, there is a universally
measurable subset N of ELA such that N is 〈µLA · ϕ|ϕ〉-negligible for every ϕ ∈ D, and such
that the sequence mSj (x) is eventually constant for every x 6∈ N . Now, take (εϕ) ∈ `1(D) so
that εϕ > 0 for every ϕ ∈ D, and define µD :=

∑
ϕ∈D εϕ〈µLA · ϕ|ϕ〉. Then, µD is a positive

bounded Radon measure such that µD(N) = 0 by [19, Proposition 1 of Chapter V, § 2, No. 2].
If we define

m0(x) :=

{
lim
j→∞

mSj (x) if x ∈ ELA \N

0 if x ∈ N ,

2Here we denote by LRA the family of right-invariant differential operators which corresponds to LA.
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then m0 is universally measurable and F converges to m0 in L2(〈µLA · ϕ|ϕ〉) for every ϕ ∈ D.
Therefore, F(LA)·ϕ converges tom0(LA)·ϕ in L2(G) for every ϕ ∈ D, so thatm0(LA)·ϕ = ϕ∗K0

for every ϕ ∈ D. Now, observe that the operator D(G) 3 ϕ 7→ ϕ∗K0 ∈ L2(G) is continuous, and
that D is dense in D(G). Since the operator m0(LA) is closed, we have D(G) ⊆ dom(m0(LA))
and m0(LA) ·ϕ = ϕ∗K0 for every ϕ ∈ D(G). Therefore, KLA(m0) = K0, whence the result.

Proposition 3.16. Let F be a Hausdorff locally convex space which is continuously embed-
ded into D′w(G), and assume that the mapping ∗ : L2(G) × F → L2(G) is well-defined and
continuous. Then, FLA,0 is closed in F .

Proof. For every T ∈ FLA,0, denote by mT a bounded continuous element ofM(µLA ;F ) such
that T = KLA(mT ); observe that the mapping FLA,0 3 T 7→ mT ∈ Cb(σ(LA)) is linear and
continuous. Let F be a filter on FLA,0 which converges to some T0 in F , so that mF is a Cauchy
filter on Cb(σ(LA)). Hence, mF converges uniformly to some m0 on σ(LA), so that F converges
to KLA(m0) in D′(G) by Theorem 1.62. Hence, T = KLA(m0) and the assertion follows.

Lemma 3.17. Let F be a bounded filter on L∞(µLA) which converges in µLA-measure to some
m0.3 Then, KLA(F) converges to KLA(m0) in W−∞,0,2(G).

Proof. Notice first thatm0 ∈ L∞(µLA), so that KLA(m0) is defined and belongs toW−∞,0,2(G)
by Lemma 3.3; hence, we may assume that m0 = 0. Take ϕ ∈ D(G). Then, [19, Proposition 21
of Chapter IV § 5, No. 11] implies that

lim
m,F
‖ϕ ∗ KLA(m)‖22 = lim

m,F

∫
ELA

|m|2 d〈µLA · ϕ|ϕ〉 = 0.

The assertion follows from Theorem 1.76.

3.2 Rockland Families
In this section, we introduce a class of admissible families in which we are particularly

interested. They are characterized by the following theorem, which enriches [58, Proposition
3.6.3].

Theorem 3.18. Let LA be a (not necessarily commutative) non-empty finite family of formally
self-adjoint, homogeneous, left-invariant differential operators without constant terms on G.
Then, the following conditions are equivalent:

1. LA is jointly hypoelliptic;

2. there is a constant C > 0 such that, for every j = 1, . . . , n and for every ϕ ∈ Cb(G) such
that LAϕ = 0,

|(Xjϕ)(e)| 6 C‖ϕ‖∞;

3. for every continuous non-trivial irreducible unitary representation π of G in a hilbertian
space H, the family dπ(LA) is jointly injective on C∞(π);

4. the (non-unital) algebra generated by LA contains a Rockland operator, possibly with re-
spect to a different family of dilations on G;

5. the (non-unital) algebra generated by LA contains a hypoelliptic operator.

Assume, in addition, that the elements of LA commute. Then, the preceding conditions are
equivalent to the following ones:

6. LA is admissible and KLA maps S(ELA) into S(G).

7. LA is admissible and KLA maps S(ELA) into W 0,∞,1(G).

The proofs of the implications 1 =⇒ 2 and 2 =⇒ 3 are an adaptation of the proof of [7,
Theorem 1].

3This means that F converges in
〈
µLA · ϕ1

∣∣ϕ2

〉
-measure to m0 for every ϕ1, ϕ2 ∈ L2(G).
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Proof. 1 =⇒ 2. Define V as the kernel of LA in Cb(G). Then, V is closed in Cb(G), so
that it is a Banach space. In addition, the inclusion V ⊆ E(G) has a closed graph, so that it
is continuous. Therefore, there is a constant C > 0 such that, for every ϕ ∈ V and for every
j = 1, . . . n,

|(Xjϕ)(e)| 6 C‖ϕ‖∞.

2 =⇒ 3. Let π be a continuous non-trivial irreducible unitary representation of G in a
hilbertian space H; take v ∈ C∞(π) and assume that dπ(LA)·v = 0. Define ϕ : g 7→ 〈π(g) · v|v〉,
so that ϕ ∈ C∞(G) ∩ Cb(G) and

(LAϕ)(g) = 〈dπ(LA) · π(g) · v|v〉 = 〈π(g) · v|dπ(LA) · v〉 = 0

for every g ∈ G. Since LA[(Lgϕ)(r · )] = 0 for every g ∈ G and for every r > 0,

rdj |(Xjϕ)(g)| = |Xj [(Lgϕ)(r · )](e)| 6 C‖(Lgϕ)(r · )‖∞ = C‖ϕ‖∞

for every j = 1, . . . , n. By passing to the limit for r → +∞, we infer that Xjϕ = 0 for
j = 1, . . . , n, so that ϕ is constant. In particular,

〈π(g) · v|v〉 = 〈π(e) · v|v〉 = ‖v‖2

for every g ∈ G; since ‖π(g) · v‖ = ‖v‖, this implies that π(g) · v = v for every g ∈ G. Since π
is irreducible and non-trivial, this proves that v = 0.

3 =⇒ 4. This is the implication (ii) =⇒ (i) of [58, Proposition 3.6.3].
4 =⇒ 5. This is trivial.
5 =⇒ 1. Take an open subset V of G and T ∈ D′(T ) such that LAT is C∞ on V . Take

P ∈ C[A] such that P (0) = 0 and P (LA) is hypoelliptic. Then, it is clear that P (LA)T is C∞
on V , so that T is C∞ on V .

Now, assume that the Lα commute as differential operators.
4 =⇒ 6. This follows from [58, Propositions 1.4.4, 3.1.2, and 4.2.1]; indeed, if P ∈ C[A] is

such that P (LA) is Rockland with respect to a suitable family of dilations on G, then (PP )(LA)
is a positive Rockland operator thanks to the characterization of Rockland operators provided
in [47].

6 =⇒ 7. This is trivial.

Before we prove the implication 7 =⇒ 3, we need an analogue of [58, Proposition 3.2.4],
which is interesting in its own rights.

Theorem 3.19. Assume that LA is an admissible family, and that KLA maps S(ELA) into
W 0,∞,1(G). Let π be a continuous unitary representation of G in a hilbertian space H. Then,
the following hold:

• dπ(LA) is a commuting family of self-adjoint operators on H;

• σ(dπ(LA)) ⊆ σ(LA);

• if m is an element of M(µLA ;W−∞,0,1(G)) which is continuous on an open subset U of
ELA which carries µdπ(LA), then

π∗(KLA(m)) = m(dπ(LA)).

Proof. 1. For what concerns the first assertion, it suffices to repeat the proof of [66, Corollary
2.4] with minor modifications.

2. Now, let us prove that KLA maps S(ELA) continuously into W∞,∞,1(G). Observe first
that Proposition 3.8 and Corollary 3.12 imply that

KLA(m1m2) = KLA(m1) ∗ KLA(m2) = KLA(m1)∗ ∗ KLA(m2) ∈W∞,∞,1(G)

for every m1,m2 ∈ S(ELA). Now, apply the Fourier transform to Theorem 1.61, applied with
F = S(ELA). Then, every element of S(ELA) is a finite sum of products of elements of S(ELA),
so that KLA maps S(ELA) into W∞,∞,1(G); continuity follows from the closed graph theorem
and Lemma 3.17.
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3. Now, takem ∈ D(ELA) and τ ∈ D(G) so that χB(0,1) 6 τ 6 χB(0,2); define τk := τ(2−k · )
for every k ∈ N. Then, it is easily seen that for every k ∈ N there is a sequence (Pk,h)h of
polynomials on ELA such that the sequence (τkPk,h)h converges to τkm in D(ELA). Take v ∈ H.
Then,

m(dπ(LA)) · v = lim
k→∞

(τkm)(dπ(LA)) · π∗(KLA(τk)) · v

= lim
k→∞

lim
h→∞

(τkPk,h)(dπ(LA)) · π∗(KLA(τk)) · v

= lim
k→∞

lim
h→∞

τk(dπ(LA)) · π∗(Pk,h(LA) · KLA(τk)) · v

= lim
k→∞

τk(dπ(LA)) · π∗(KLA(τkm)) · v

= π∗(KLA(m)) · v,

where each equality holds since:

1. τkm = m from some k on, while π∗(KLA(τk)) · v converges to v in H since KLA(τk)
converges to δe inM1

c(G) (cf. the proof of Corollary 3.14);

2. τkPk,h converges uniformly to τkm as h→∞;

3. (τkPk,h)(dπ(LA)) = τk(dπ(LA))·Pk,h(dπ(LA)) and π∗(KLA(τk))·v belongs to C∞(π) since
KLA(τk) ∈W∞,∞,1(G); in addition, Pk,h(dπ(LA))·π∗(KLA(τk)) = π∗(Pk,h(LA)·KLA(τk));

4. τkPk,h converges to τkm in S(ELA) as h→∞, so that Pk,h(LA) ·KLA(τk) = KLA(τkPk,h)
converges to KLA(τkm) in W∞,∞,1(G) as h→∞; this in turn implies that π∗(Pk,h(LA) ·
KLA(τk)) · v converges to π∗(KLA(τkm)) · v in H, as h→∞;

5. τkm = m, so that KLA(τkm) = KLA(m), for k sufficiently large. On the other hand, τk
converges pointwise and boundedly to χE , so that τk(dπ(LA)) converges to χE(dπ(LA)) =
IL(H) pointwise. This implies that τk(dπ(LA))·π∗(KLA(τkm))·v converges to π∗(KLA(m))·
v in H.

The arbitrariness of v then implies that

Kdπ(LA)(m) = π∗(KLA(m)).

Therefore, Kdπ(LA)(m) = π∗(KLA(m)) = 0 for every m ∈ D(ELA) which vanishes on σ(LA), so
that σ(dπ(LA)) ⊆ σ(LA).

4. Next, take m ∈ C0(ELA) such that KLA(m) ∈ M1(G). Then, there is a sequence (mj)
of elements of D(ELA) which converges to m in C0(ELA). For every µ ∈ M1(G) denote by
N2(µ) the norm of the mapping L2(G) 3 f 7→ f ∗ µ ∈ L2(G). Then,

lim
j→∞

N2(KLA(m)−KLA(mj)) = lim
j→∞
‖(m−mj)(LA)‖L(L2(G))

6 lim
j→∞
‖m−mj‖C0(ELA ) = 0.

By Theorem A.20,

lim
j→∞
‖π∗(KLA(m))−mj(dπ(LA))‖L(H) = lim

j→∞
‖π∗(KLA(m)−KLA(mj))‖L(H)

6 lim
j→∞

N2(KLA(m)−KLA(mj)) = 0.

Analogously,

lim
j→∞
‖m(dπ(LA))−mj(dπ(LA))‖L(H) 6 lim

j→∞
‖m−mj‖C0(ELA ) = 0.

We then infer that m(dπ(LA)) = π∗(KLA(m)) as claimed.
5. Now, take m ∈ C(ELA) such that KLA(m) ∈W−∞,0,1(G). Then, Corollary 3.12 implies

that, with the notation of 3,

KLA(mτk) = KLA(τk) ∗ KLA(m) ∈W 0,∞,1(G).
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Then, Proposition 1.73 and Corollary 1.80 imply that KLA(mτk) converges to KLA(m) in
W−∞,0,1c (G), so that π∗(KLA(mτk)) converges to π∗(KLA(m)) in Lc(C∞(π);H). Further, 4
above shows that π∗(KLA(mτk)) = (mτk)(dπ(LA)) for every k ∈ N. Then, take v ∈ C∞(π),
and observe that τk(dπ(LA)) · v converges to v in H, while

m(dπ(LA)) · τk(dπ(LA)) · v = (mτk)(dπ(LA)) · v = π∗(KLA(mτk)) · v

converges to π∗(KLA(m)) · v in H. Since m(dπ(LA)) is a closed operator, this implies that
v ∈ dom(m(dπ(LA))), and that

m(dπ(LA)) · v = π∗(KLA(m)) · v.

Conversely, take v ∈ dom(m(dπ(LA))). Then, it is clear that τk(dπ(LA)) · v converges to v in
dom(m(dπ(LA))). Since τk(dπ(LA)) · v = π∗(KLA(τk)) · v ∈ C∞(π), it follows that C∞(π) is
dense in dom(m(dπ(LA))), so that m(dπ(LA)) is the closure of π∗(KLA(m)).

6. Finally, take an open subset U of ELA whose complement is µdπ(LA)-negligible, and take
m ∈M(µLA ;W−∞,0,1(G)) so that m is continuous on U . Then, there is an increasing sequence
(ψj) of elements of D(ELA) which converges pointwise to χU . Therefore, Corollary 3.12 implies
that

KLA(m) ∗ KLA(ψj) = KLA(mψj) = KLA(ψj) ∗ KLA(m) ∈W∞,0,1(G).

In addition, mψj is continuous, so that 5 above and Proposition 1.85 imply that ψj(dπ(LA)) =
π∗(KLA(ψj)) and that

ψj(dπ(LA)) · π∗(KLA(m)) ⊆ π∗(KLA(m)) · ψj(dπ(LA))

= π∗(KLA(mψj))

= (mψj)(dπ(LA))

= m(dπ(LA)) · ψj(dπ(LA))

⊇ ψj(dπ(LA)) ·m(dπ(LA)).

Now, ψj(dπ(LA)) converges pointwise to χU (dπ(LA)) = IH . Therefore,

π∗(KLA(m)) = m(dπ(LA)),

whence the result.

Now we are able to conclude the proof of Theorem 3.18.

Proof of the implication 7 =⇒ 3 of Theorem 3.18. Notice first that, by [60, Proposition 1.1],
we may replace the family of dilations of G with another one in such a way that Lα is homo-
geneous of homogeneous degree δ′α ∈ Z∗+ for every α ∈ A. Therefore, there is a polynomial
P ∈ R[A] which induces on ELA a proper positive homogeneous polynomial mapping without
constant terms. Take a continuous non-trivial irreducible unitary representation π of G in a
hilbertian space H, and take v ∈ C∞(π) so that dπ(LA) · v = 0. Then, dπ(P (LA)) · v = 0 since
P (0) = 0.

Now, define pt := KLA(e−tP ), so that pt ∈ W 0,∞,1(G) for every t > 0, and observe that
π∗(pt) = e−tdπ(P (LA)) by Theorem 3.19, so that π∗(pt) · v = v for every t > 0. Define ϕ : g 7→
〈π(g) · v|v〉, and let us show that ϕ ∗ pt = ϕ for every t > 0. Indeed,

(ϕ ∗ pt)(g1) =

∫
G

ϕ(g1g2)pt(g
−1
2 ) dg2

=

〈
π(g1) ·

∫
G

pt(g2)π∗(g2) · v dg2

∣∣∣∣v〉
= 〈π(g1) · π∗(pt) · v|v〉
= ϕ(g1)

for every g1 ∈ G, since G is unimodular. Then, Lemma 1.81 implies that ϕ is constant. As in
the proof of the implication 2 =⇒ 3, we then conclude that v = 0, whence the result.
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Definition 3.20. Let LA be a commutative finite family of formally self-adjoint, homogeneous,
left-invariant differential operators on G without constant terms. We shall say that LA is a
Rockland family if it satisfies the equivalent conditions of Theorem 3.18.

Definition 3.21. We say that a Rockland family LA satisfies property:

(S)C if S(G,LA) := KLA(S(ELA)) is closed in S(G);

(S)0 if SLA,0(G) = S(G,LA);

(S) if SLA(G) = S(G,LA).

We end this section with a simple extension of a result of [59]; we present a proof for the
sake of completeness. Recall that νĜ denotes the Plancherel measure on Ĝ.

Proposition 3.22. Assume that LA is a Rockland family, and take m ∈M(µLA ;W−∞,0,2(G)).
Then, for νĜ-almost every π ∈ Ĝ, the function m is µdπ(LA)-measurable and

m(dπ(LA)) = (FKLA(m))(π).

Proof. 1. Define

µ′ : D0(ELA) 3 ϕ 7→ [(vπ) 7→ (ϕ(dπ(LA)) · vπ)] ∈ L
(∫ ⊕

Ĝ

L2(Hπ) dνĜ(π)

)
;

we shall prove that µ′ is a well-defined spectral measure and that
∫
ELA

λ dµ′(λ) = FLAF−1. As
for what concerns the first assertion, observe that Theorem 3.19 implies that π 7→ ϕ(dπ(LA)) is
a measurable field of operators on Ĝ whenever ϕ ∈ D(ELA), and then for every ϕ ∈ D0(ELA) by
approximation. As for what concerns the second one, take τ ∈ D(ELA) so that χV1 6 τ 6 χV2

for some relatively compact open neighbourhoods V1, V2 of 0 such that V1 ⊆ V2. Then, define
τj := τ(2−j · ) for every j ∈ N, and take ϕ,ψ ∈ D(G), π ∈ Ĝ, and α ∈ A. Let us prove that
(τj prα)(dπ(LA)) converges to dπ(Lα) in L(C∞(π);Hπ). Indeed, it suffice to observe that∑

α∈A
dπ(Lα)2 + IHπ : C∞(π)→ Hπ

is continuous, and that τj prα
‖ · ‖2+χELA

converges uniformly to prα
‖ · ‖2+χELA

. Now, π∗(ϕ) : Hπ →
C∞(π) is continuous, so that (τj prα)(dπ(LA)) · π∗(ϕ) converges to dπ(Lα) · π∗(ϕ) in L(Hπ).
Next, observe that ψ can be written as a finite sum of (binary) convolutions of elements of D(G)
(cf. Theorem 1.61), so that by means of the Plancherel theorem we see that π∗(ψ) ∈ L1(Hπ)

for νĜ-almost every π ∈ Ĝ, and that
∫ ∗
Ĝ
‖π∗(ψ)‖L1(Hπ) dνĜ(π) <∞. Therefore,

lim
j→∞

Tr((τj prα)(dπ(LA)) · π∗(ϕ) · π∗(ψ)∗) = Tr(dπ(Lα) · π∗(ϕ) · π∗(ψ)∗).

Since,

|Tr((τj prα)(dπ(LA)) · π∗(ϕ) · π∗(ψ)∗)| 6 ‖dπ(Lα) · π∗(ϕ)‖L(Hπ)‖π
∗(ψ)∗‖L1(Hπ),

the dominated convergence theorem implies that

lim
j→∞
〈µ′(τj prα) · F(ϕ)|F(ψ)〉 = 〈dπ(Lα) · F(ϕ)|F(ψ)〉.

Taking into account the arbitrariness of ϕ and ψ, and the fact that D(G) is a core for Lα, the
assertion follows. Therefore, µ′(ϕ) = FµLA(ϕ)F−1 for every ϕ ∈ D0(ELA).

Now, let us prove that, for every µLA -measurable function m : ELA → C, the function m is
µdπ(LA)-measurable for νĜ-almost every π ∈ Ĝ, and that∫

ELA

mdµ′ · vπ = m(dπ(LA)) · vπ

for every v ∈ F(dom(m(LA))) and for νĜ-almost every π ∈ Ĝ.
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Indeed, the assertion is clear if m ∈ D(ELA). If m is positive, bounded, and lower semi-
continuous, then there is an increasing sequence of positive elements of D(ELA) which converges
pointwise to m, so that the assertion holds for m.

Now, if m = χE , where E is a µLA-negligible set, then there is a decreasing sequence (mk) of
positive, bounded, and lower semi-continuous functions which are greater than m and converge
µLA -almost everywhere tom. If m̃ = inf

k∈N
mk, then it is clear that m̃(dπ(LA)) = 0 for νĜ-almost

every π ∈ Ĝ; since 0 6 m(dπ(LA)) 6 m̃(dπ(LA)), it follows that m(dπ(LA)) = 0. Although
this does not prove that µdπ(LA) is of base µLA for νĜ-almost every π ∈ Ĝ (which, in general,
is not true), this result enables us to deal with not necessarily Borel functions.

If m is positive and bounded, then we may take (mk) as above and conclude that the
assertion holds for m since the set where m differs from m̃ is µLA -negligible.

If m is bounded, then the assertion follows by reducing to the positive and negative parts
of the real and imaginary parts of m.

Finally, consider the general case. Define Ek := { λ ∈ ELA : |m(λ)| 6 k } for every k ∈ N,
and take v ∈ F(dom(m(LA))). Up to a subsequence, we may then assume that

∫
Ek
m dµ′ · vπ

converges to
∫
ELA

m dµ′ · vπ for νĜ-almost every π ∈ Ĝ. Now,∫
Ek

m dµ′ · vπ = (mχEk)(dπ(LA)) · vπ = m(dπ(LA)) · χEk(dπ(LA)) · vπ

for νĜ-almost every π ∈ Ĝ. Since χEk(dπ(LA)) · vπ converges to vπ in Hπ for every π ∈ Ĝ,
and since m(dπ(LA)) is a well-defined closed operator on Hπ for νĜ-almost every π ∈ Ĝ, the
assertion follows.

2. Take m ∈M(µLA ;L2(G)) and ϕ ∈ D(G). Then, for νĜ-almost every π ∈ Ĝ,

m(dπ(LA)) · (Fϕ)(π) =

∫
ELA

m dµ′ · (Fϕ)(π)

= F(m(LA)ϕ)(π)

= F(ϕ ∗ KLA(m))(π)

= (FKLA(m))(π) · (Fϕ)(π).

Let D be a countable dense subset of D(G), so that D is also dense in L2(G). Let us prove
that π∗(D) is dense in L2(Hπ) for νĜ-almost every π ∈ Ĝ. Indeed, let (Φj) be a sequence
of measurable vector fields with values in the L2(Hπ) such that (Φj,π) is total in L2(Hπ) for
every π ∈ Ĝ. Since νĜ is σ-finite, we may assume that Φj ∈

∫ ⊕
Ĝ
L2(Hπ) dνĜ for every j ∈ N.

Then, for every j ∈ N there is a sequence (ϕj,k)k in D such that (Fϕj,k)k converges to Φj
in
∫ ⊕
Ĝ
L2(Hπ) dνĜ; we may also assume that there is a νĜ-negligible subset N of Ĝ such that

(Fϕj,k)(π) converges to Φj,π for every π ∈ Ĝ \ N and for every j ∈ N. Hence, the family
(π∗(ϕj,k))j,k∈N is total in L2(Hπ) for every π ∈ Ĝ \N , whence our assertion.

Then, fix a representative of F(KLA(m)), and take a νĜ-negligible subset N
′ of Ĝ such that

m(dπ(LA)) · π∗(ϕ) = (FKLA(m))(π) · π∗(ϕ)

for every π ∈ Ĝ \N ′ and for every ϕ ∈ D. Then,

m(dπ(LA)) = (FKLA(m))(π)

for every π ∈ Ĝ \ (N ∪N ′), whence the assertion in this case. The general case is established
as in the proof of Theorem 3.19. Alternatively, it is an easy consequence of Proposition 3.29
below.

3.3 Weighted Subcoercive Systems
In this section we briefly recall the definition of a weighted subcoercive operator (cf. [82]),

as well as that of a weighted subcoercive system (cf. [58]), and compare the latter notion with
that of a Rockland family.

For this reason, in this section we shall depart from the general notation of this chapter,
and G will denote a general connected Lie group with Lie algebra g.
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Definition 3.23. Let (Fλ)λ>0 be an increasing family of vector subspaces of g such that
[Fλ1

, Fλ2
] ⊆ Fλ1+λ2

for every λ1, λ2 > 0, and such that
⋃
λ>0 Fλ = g and

⋂
λ>0 Fλ = 0. We call

(Fλ) a filtration of g for short.
Then, a reduced weighted algebraic basis A1, . . . , An of g adapted to the filtration (Fλ) is

a linearly independent system of elements of g such that the following holds: “let λj , for every
j = 1, . . . , n, be the least λ > 0 such that Aj ∈ Fλ. Then, for every λ > 0, Fλ is the vector space
generated by the commutators (adAα1

) · · · (adAαk−1
)Aαk as k ∈ N∗ and λα1

+ · · ·+ λαk 6 λ.4
In addition, for every λ > 0, the space generated by the Aj with λj = λ has null intersection
with Fλ′ for every λ′ ∈]0, λ[.” We then call λ1, . . . , λn the weights of A1, . . . , An.

It is clear that to every filtration of g one may associate a reduced weighted algebraic basis.
In addition, it is clear that a reduced weighted algebraic basis generates the Lie algebra g.

Definition 3.24. Let A1, . . . , An be a reduced weighted algebraic basis adapted to a filtration
(Fλ) of g. Then, a non-zero left-invariant differential operator L on G is weighted subcoercive if
it can be written in the form

∑
α cαAα1 · · ·Aαk , where cα ∈ C for every α, and Aα1 · · ·Aαk = I

when k = 0, with

m := max{ λα1
+ · · ·+ λαk : cα 6= 0 } ∈

n⋂
j=1

2λjN
∗,

and if the following local Gårding inequality holds: there are a > 0, b ∈ R, and an open
neighbourhood V of e in G such that

Re

∫
G

ϕLCϕdν > a
∑

2λα1
+···+2λαk6m

‖Aα1
· · ·Aαkϕ‖

2
L2(ν) + b‖ϕ‖2L2(ν)

for every ϕ ∈ D(V ), where ν is a (fixed) right Haar measure on G.

See [82, 58] for several equivalent definitions of weighted subcoercive operators.
Observe that a positive Rockland operator on a homogeneous group and a (hypoelliptic)

sub-Laplacian on a general connected Lie group are always weighted subcoercive (cf. [58, 1.4.4]).

Definition 3.25. Let (L1, . . . ,Lk) be a finite commuting family of left-invariant differential
operators on G which are formally self-adjoint with respect to the right Haar measure. Then,
(L1, . . . ,Lk) is a weighted subcoercive system if P (L1, . . . ,Lk) is a weighted subcoercive oper-
ator for some real polynomial P in k indeterminates.

Notice that, if L is a formally self-adjoint operator on G, then the family (L) can be a
weighted subcoercive system even if L is not a weighted subcoercive operator. For example, if
G is a homogeneous group and L is a formally self-adjoint Rockland operator thereon, then (L)
is a weighted subcoercive system since L2 is a positive Rockland operator, hence a weighted
subcoercive operator. On the other hand, if L is a weighted subcoercive operator, then it is the
generator of a continuous semigroup of endomorphisms of L2(G) by [58, Theorem 1.4.1 (a)],
applied to the right regular representation of G in L2(G). In particular, since by homogeneity
the L2(G)-spectrum of L must be either R−, R+, or R, it follows that L is a positive operator.
In other words, a Rockland operator is weighted subcoercive if and only if it is positive.

Now, observe that, if G is a homogeneous group and L1, . . . ,Lk are formally self-adjoint,
homogeneous, commuting left-invariant differential operators without constant terms on G,
then Theorem 3.18 and [58, Proposition 3.6.3] show that (L1, . . . ,Lk) is a weighted subcoercive
system if and only if it is a Rockland family. Therefore, in our context, there is no need to
distinguish between the notions of a weighted subcoercive system and that of a Rockland family,
so that we shall generally neglect the former. Nevertheless, several results of this chapter extend
to weighted subcoercive systems on suitable classes of Lie groups, with only minor modifications
in the proofs. Since we shall almost only work in the homogeneous setting, we shall not pursue
these generalizations.

4Here we denote by adX, for X ∈ g, the endomorphism Y 7→ [X,Y ] of the vector space g.
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3.4 The Plancherel Measure

In this section, LA is assumed to be a Rockland family; we shall introduce a relevant tool
in the study of Rockland families, that is, the Plancherel measure. In the classical case, that
is, when G = Rn and LA = −i∂ = (−i∂j)nj=1, the ‘kernel transform’ K−i∂ is nothing but the
inverse Fourier transform F−1. Let us denote here by E the dual of Rn with respect to the
Fourier transform. It is well-known, then, that m ∈ L2(E) if and only if K−i∂(m) ∈ L2(Rn),
and that the norms of m and K−i∂(m) are equal if we endow E with the Plancherel measure β.
Here we look for something similar.

The existence of the Plancherel measure was first proved by M. Christ (cf. [27, Proposi-
tion 3]) for a homogeneous sub-Laplacian on a stratified group, and then generalized by A.
Martini (cf. [58, Theorem 3.2.7]) to weighted subcoercive systems of differential operators on
arbitrary connected Lie groups. We shall only sketch a different proof which is based on the
classical equality (F−1m)(0) =

∫
E
mdβ; nevertheless, while A. Martini’s proof holds even in

non-unimodular groups, our method fails in that context.

Theorem 3.26. There is a unique positive Radon measure βLA on ELA such that the following
hold:

1. L2(βLA) =M(µLA ;L2(G)) and

‖m‖L2(βLA ) = ‖KLA(m)(g)‖L2(G)

for every m ∈ L2(βLA); in addition, βLA and µLA share the same negligible sets;

2. (r · )∗(βLA) = r−QβLA for every r > 0; furthermore, βLA({ 0 }) = 0.

Proof. Take a positive m ∈ D(G); then, for every ψ ∈ D(G),

〈ψ ∗ KLA(m)|ψ〉L2(G) = 〈m(LA) · ψ|ψ〉 > 0,

so that KLA(m) is of positive type. Therefore, KLA(m)(e) > 0 and the mapping βLA : D(ELA) 3
m 7→ KLA(m)(e) ∈ C is a positive linear functional on D(ELA); hence, it defines a positive
(Radon) measure on ELA . Then, Corollary 3.12 implies that, for every m ∈ D(ELA),∫

E

|m|2 dβLA = [KLA(m) ∗ KLA(m)∗](e) =

∫
G

|KLA(m)(g)|2 dνG(g).

Let KLA,2 be the unique isometry of L2(βLA) into L2(G) which extends the isometry D(G) 3
m 7→ KLA(m) ∈ L2(G). Let us sketch the remaining steps of the proof.

• KLA(m) = KLA,2(m) if m belongs to L2
+(βLA) and is bounded and lower semi-continuous:

take an increasing sequence of elements of S(ELA) which converges pointwise to m and
use Lemma 3.17.

• βLA-negligible sets are µLA -negligible: since µLA is positive, it is sufficient to prove the
assertion for countable intersections of βLA -integrable open sets.

• m is µLA -measurable and KLA(m) = KLA,2(m) if m belongs to L2
+(βLA) and is bounded:

use Lemma 3.17.

• µLA-negligible sets are βLA -negligible: use the separability of L2(G) as in the proof of
Proposition 3.15.

• m ∈ M(µLA ;L2(G)) and KLA(m) = KLA,2(m) if m ∈ L2(βLA): approximate m by
bounded functions and use the fact thatm(LA) is closed as in the proof of Proposition 3.10.

• M(µLA ;L2(G)) = L2(βLA): approximate the elements of M(µLA ;L2(G)) by bounded
functions with compact support.

Finally, uniqueness is clear, while homogeneity is proved as in [58, Proposition 3.6.1].
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Definition 3.27. We shall denote by βLA the positive (Radon) measure defined in Theo-
rem 3.26.

Furthermore, we shall denote by SLA the unit sphere with respect to the fixed homogeneous
norm | · | on ELA , that is { λ ∈ ELA : |λ| = 1 }; we shall also denote by νR∗+ the Haar measure
on R∗+ such that νR∗+(R∗+)([1, e]) = 1, and we shall denote by β̃LA the unique measure on SLA
such that (cf. Proposition 1.12)∫

ELA

ϕdβLA =

∫
R∗+×SLA

ϕ(r · s)rQ d(νR∗+ ⊗ β̃LA)(r, s)

for every ϕ ∈ D0(ELA).

Here we present an example which essentially covers the original result by M. Christ [27,
Proposition 5]. The possibility to achieve such an explicit description of the Plancherel measure
is, however, due to the properties of homogeneity of the operator involved and to the very simple
geometry of R. With more than one operator (or with not necessarily homogeneous operators)
the situation is much more complicated.

Lemma 3.28. Let L be a Rockland operator of homogeneous degree δ > 0. Then, there are
CL,−, CL,+ > 0 such that

〈βL, ϕ〉 = CL,−

∫
R−

ϕ(λ)(−λ)
Q
δ −1 dλ+ CL,+

∫
R+

ϕ(λ)λ
Q
δ −1 dλ

for every ϕ ∈ D0(R).

Proof. It suffices to take CL,± := β̃L({ ±1 }).

Now we show how the set of multipliers which admit a kernel via spectral theory can be
described more precisely.

Proposition 3.29. The space M(µLA ;D′w(G)) is the set of βLA-measurable functions m de-
fined on ELA such that

m

1 + | · |k
∈ L2(βLA)

for some k ∈ N.

Proof. Observe first that, if m
1+| · |k ∈ L

2(βLA), then m
P ∈ L

2(βLA) for some proper polynomial
P on ELA . Therefore, Corollary 3.13 implies that m ∈M(µLA ;D′w(G)).

Conversely, assume that m ∈ M(µLA ;D′w(G)) and take r > 0. Take, in addition, τ ∈
D(ELA) so that τ(λ) = 1 for every λ ∈ V = { λ′ ∈ ELA : |λ′| 6 1 }. Then, Proposition 3.7 and
Corollary 3.12 imply that m(r · ) τ ∈M(µLA ;D′w(G)) and that

KLA(m(r · ) τ) = KLA(τ) ∗ [(r · )∗KLA(m)] ∈ L2(G),

so that m(r · ) τ ∈ L2(βLA) by Theorem 3.26. Now, Proposition 1.32 implies that there is a
finite family (fγ)|γ|6h of elements of L2(G) · β such that

KLA(m) =
∑
|γ|6h

Yγfγ .

Therefore,

‖m(r · )τ‖L2(βLA ) = ‖KLA(τ) ∗ [(r · )∗KLA(m)]‖L2(G)

6
∑
|γ|6h

rdγ−Q2 ‖Xγn
n . . . Xγ1

1 KLA(τ)‖L1(G)‖fγ‖L2(G)

for every r > 0. Therefore, there are a constant C > 0 and h′ ∈ N such that

‖mχr·V ‖L2(βLA ) 6 C(1 + rh
′
)

for every r > 0. Hence, it will suffice to take k := h′ + 1.
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By means of the Plancherel isometry, we are now able to extend KLA to L1(βLA). The image
of this mapping may then be characterized as the set of convolutions of kernels corresponding
to multipliers in L2(βLA).

Proposition 3.30. The mapping KLA : M(µLA ;D′w(G)) ∩ L1(βLA) → D′(G) extends to a
unique continuous linear mapping

KLA,1 : L1(βLA)→ C0(G).

Furthermore KLA,1 has norm 1 and maps L1
+(βLA) isometrically into the set of continuous

functions of positive type. Finally, if m1,m2 ∈ L2(βLA), then

KLA,1(m1m2) = KLA(m1) ∗ KLA(m2).

Proof. 1. Take m ∈ L1(βLA) and assume thatm is bounded. Then, Theorem 3.26 and Proposi-
tion 3.11, the latter applied with F1 = F2 = L2(G) and F3 =

{
f ∈ L2(G) : L2(G) ∗ f ⊆ L2(G)

}
,

imply that

‖KLA(m)‖C0(G) =
∥∥∥KLA(√|m|) ∗ KLA(sgn(m)

√
|m|
)∥∥∥

C0(G)

6
∥∥∥KLA(√|m|)∥∥∥

L2(G)

∥∥∥KLA(sgn(m)
√
|m|
)∥∥∥

L2(G)

=
∥∥∥√|m|∥∥∥2

L2(βLA )

= ‖m‖L1(βLA ).

2. Take m ∈ L1(βLA)∩M(µLA ;D′w(G)) and let, for every k ∈ N, Ek be the set of λ ∈ ELA
such that |m(λ)| 6 k. Then, for every ψ ∈ D(G),

ψ ∗ KLA(m) = lim
k→∞

ψ ∗ KLA(mχEk)

= lim
k→∞

ψ ∗
(
KLA

(√
|mχEk |

)
∗ KLA

(
sgn(mχEk)

√
|mχEk |

))
= ψ ∗

(
KLA

(√
|m|
)
∗ KLA

(
sgn(m)

√
|m|
))

where the first limit is in L2(G) and equality follows from spectral theory, while the second
limit is in C0(G) and equality follows from Theorem 3.26, since the sequences

(√
|mχEk |

)
and(

sgn(mχEk)
√
|mχEk |

)
converge to

√
|m| and sgn(m)

√
|m|, respectively, in L2(βLA). There-

fore, as in 1 we infer that ‖KLA(m)‖C0(G) 6 ‖m‖L1(βLA ).
3. By 2, there is a unique continuous linear mapping KLA,1 : L1(βLA) → C0(G) which

extends KLA on L1(βLA) ∩ M(µLA ;D′w(G)); furthermore, KLA,1 has norm at most 1. By
approximation it is then easily seen that KLA,1(m1m2) = KLA(m1) ∗ KLA(m2) for every
m1,m2 ∈ L2(βLA).

4. Finally, take m ∈ L1
+(βLA). Then, KLA,1(m) = KLA(

√
m) ∗ KLA(

√
m)∗ thanks to 3

above and Proposition 3.8; hence, KLA,1(m) is of positive type. In particular,

‖KLA,1(m)‖C0(G) = KLA,1(m)(e)

= ‖KLA(
√
m)‖2L2(G)

= ‖
√
m‖2L2(βLA )

= ‖m‖L1(βLA )

by Theorem 3.26. Hence, KLA,1 is an isometry on L1
+(βLA), so that it has norm exactly 1. This

completes the proof.

Definition 3.31. We shall denote by KLA,1 the mapping defined in Proposition 3.30. We shall
also denote by KLA,1 the corresponding mapping defined on L1(βLA).
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Observe that, by interpolation, KLA extends to a continuous linear mapping with norm at
most 1 from Lp(βLA) into Lp

′
(G), for every p ∈ [1, 2]. Nevertheless, we shall not need this

extension.

In the next proposition we collect some properties of KLA,1 and KLA . The first and the third
ones are the analogues of Propositions 3.7, 3.8, and 3.11, while the second property resembles
a property of the classical (inverse) Fourier transform.

Proposition 3.32. The following hold:

1. take m ∈ L1(βLA) and s > 0. Then,

KLA,1(m(s · )) = s−QKLA,1(m)(s−1 · )

and
KLA,1(m) = KLA,1(m)∗;

2. take m ∈ L1(βLA). Then,

KLA,1(m)(e) =

∫
ELA

m dβLA ;

3. take m1 ∈M(µLA ;M1(G)) and m2 ∈ L1(βLA). Then,

KLA,1(m1m2) = KLA(m1) ∗ KLA,1(m2) = KLA,1(m2) ∗ KLA(m1).

Proof. 1. This follows from Propositions 3.7 and 3.8 by approximation.
2. Notice first that Theorem 3.26 implies by polarization that, for every m1,m2 ∈ L2(βLA),

[KLA(m1) ∗ KLA(m2)∗](e) = 〈m1|m2〉L2(βLA ).

Now, define m1 :=
√
|m| and m2 := sgn(m)

√
|m|, so that m1,m2 ∈ L2(βLA). Then, Proposi-

tion 3.30 implies that

KLA,1(m)(e) = [KLA(m1) ∗ KLA(m2)∗](e) = 〈m1|m2〉L2(βLA ) =

∫
ELA

mdβLA .

3. Let (m2,j) be a sequence of elements of D(ELA) which converges to m2 in L1(βLA).
Then, Proposition 3.11, applied with F1 = F2 =M1(G) and F3 = L2(G), implies that

KLA(m1m2,j) = KLA(m2,j) ∗ KLA(m1) = KLA(m1) ∗ KLA(m2,j).

The assertion follows passing to the limit.

3.5 The Integral Kernel

In this section, LA is assumed to be a Rockland family; we prove the existence of an integral
kernel for KLA,1. In the classical case, this is the mapping (ξ, x) 7→ eixξ.

Proposition 3.33. There is a unique χLA ∈ L∞(βLA ⊗νG) such that, for every m ∈ L1(βLA),

KLA,1(m)(g) =

∫
ELA

m(λ)χLA(λ, g) dβLA(λ),

for νG-almost every g ∈ G. In addition, ‖χLA‖L∞(βLA⊗νG) = 1.

The following proof is a straightforward generalization of that of [83, Theorem 2.11].
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Proof. Take f ∈ L1(νG;L1(βLA)). Since the mapping

L1(βLA)×G 3 (m, g) 7→ KLA,1(m)(g) ∈ C

is continuous by Proposition 3.30, it is clear that the mapping

G 3 g 7→ KLA,1(f(g))(g) ∈ C

is νG-measurable; in addition,

|KLA,1(f(g))(g)| 6 ‖f(g)‖L1(βLA )

for every g ∈ G, so that the mapping g 7→ KLA,1(f(g))(g) is νG-integrable. Then, define

〈χ̃, f〉 :=

∫
G

KLA,1(f(g))(g) dνG(g),

and observe that 〈χ̃, f〉 = 0 if f vanishes νG-almost everywhere, so that χ̃ induces a contin-
uous linear functional χ on L1(νG;L1(βLA)) with norm at most 1. Since L1(νG;L1(βLA)) is
canonically isomorphic to L1(βLA ⊗ νG), there is a unique χLA ∈ L∞(βLA ⊗ νG) such that

〈χ, f〉 =

∫
G

∫
ELA

χLA(λ, g)f(g)(λ) dβLA(λ) dνG(g)

for every f ∈ L1(νG;L1(βLA)).
Now, take ϕ ∈ D(G) and m ∈ L1(βLA). Then, Fubini’s theorem implies that∫

G

ϕ(g)

∫
ELA

m(λ)χLA(λ, g) dβLA(λ) dνG(g) =

∫
ELA×G

(m⊗ ϕ)χLA d(βLA ⊗ νG)

=

∫
G

ϕ(g)KLA,1(m)(g) dνG(g).

By the arbitrariness of ϕ, we infer that

KLA,1(m)(g) =

∫
ELA

m(λ)χLA(λ, g) dβLA(λ)

for νG-almost every g ∈ G. Since KLA,1 has norm 1 by Proposition 3.30, it follows that also
χLA has norm 1.

Definition 3.34. We shall denote by χLA the unique element of L∞(βLA ⊗ νG) such that

KLA,1(m)(g) =

∫
ELA

m(λ)χLA(λ, g) dβLA(λ)

for every m ∈ L1(βLA) and for almost every g ∈ G.

Proposition 3.35. For every s > 0 and for (βLA ⊗ νG)-almost every (λ, g) ∈ ELA ×G,

χLA(s · λ, g) = χLA(λ, s · g).

In addition, there is a unique χ̃LA ∈ L∞(β̃LA ⊗ νG) such that

χLA(λ, g) = χ̃LA(|λ|−1 · λ, |λ| · g)

for (βLA ⊗ νG)-almost every (λ, g) ∈ ELA ×G;
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Proof. 1. Takem ∈ D(ELA) and ϕ ∈ D(G). Then, Fubini’s theorem, Propositions 3.7 and 3.33,
and 2 of Theorem 3.26 imply that∫

ELA×G
m(λ)ϕ(g)χLA(s · λ, g) d(βLA ⊗ νG)(λ, g)

=

∫
G

ϕ(g)

∫
ELA

m(λ)χLA(s · λ, g) dβLA(λ) dνG(g)

= s−Q
∫
G

ϕ(g)

∫
ELA

m(s−1 · λ)χLA(λ, g) dβLA(λ) dνG(g)

= s−Q
∫
G

ϕKLA(m(s−1 · )) dνG

=

∫
G

ϕ(g)KLA(m)(s · g) dνG(g)

=

∫
G

ϕ(g)

∫
ELA

m(λ)χLA(λ, s · g) dβLA(λ) dνG(g)

=

∫
ELA×G

m(λ)ϕ(g)χLA(λ, s · g) d(βLA ⊗ νG)(λ, g).

The arbitrariness of m and ϕ then implies the claim.
2. Thanks to 2 of Theorem 3.26 and to 1 above, it will suffice to apply Corollary 1.13 with:

G := R∗+ X := E∗LA ×G r · (λ, g) := (r · λ, r−1 · g)

|(λ, g)| := |λ| µ := [(βLA ⊗ νG)]E∗LA×G
f := χR∗+

h := χLA

for every r > 0 and for every (λ, g) ∈ E∗LA ×G. Then, S = SLA ×G and clearly µ̃ = β̃LA ⊗ νG,
so that it suffices to set χ̃LA := h̃.

The following property is reminiscent of an analogous statement concerning Gelfand pairs.
It extends [83, Proposition 2.14] to our setting; we shall nevertheless present an alternative
proof.

Proposition 3.36. Take m ∈M(µLA ;M1(G)). Then,

KLA(m) ∗ χLA(λ, · ) = χLA(λ, · ) ∗ KLA(m) = m(λ)χLA(λ, · )

for βLA-almost every λ ∈ ELA .

Proof. Notice first that, for every ϕ2 ∈ D(G), the linear functional

L∞(G) 3 f 7→ 〈KLA(m) ∗ f, ϕ2〉 = 〈f,KLA(m)̌ ∗ ϕ2〉 ∈ C

is continuous with respect to the weak topology σ(L∞(G), L1(G)). In addition, for every
ϕ1 ∈ D(ELA),

KLA(ϕ1) =

∫
ELA

ϕ1(λ)χLA(λ, · ) dβLA(λ)

in L∞(G), endowed with the weak topology σ(L∞(G), L1(G)). Therefore,∫
ELA

〈KLA(m) ∗ χLA(λ, · ), ϕ2〉ϕ1(λ) dβLA(λ) = 〈KLA(m) ∗ KLA(ϕ1), ϕ2〉

= 〈KLA(mϕ1), ϕ2〉

=

∫
ELA

(mϕ1)(λ)〈χLA(λ, · ), ϕ2〉dβLA(λ),

whence the assertion by the arbitrariness of ϕ2. The other equality is proved similarly.

The following result shows that there are well-behaved representatives of χLA . It extends [83,
Lemmas 2.12 and 2.15 and Propositions 2.17 and 2.18] to the present setting.
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Theorem 3.37. There is a representative χ0 of χLA such that the following hold:

1. χ0(λ, · ) is a function of positive type of class C∞ for every λ ∈ ELA ;

2. for every γ1, γ2 there is a constant Cγ1,γ2
> 0 such that

‖Yγ1Xγ2χ0(λ, · )‖∞ 6 Cγ1,γ2 |λ|
dγ1+dγ2

for every λ ∈ ELA ;

3. χ0(λ, e) = 1 for every λ ∈ ELA ;

4. χ0(λ, · ) converges to χ0(0, · ) = 1 in E(G) as λ→ 0;

5. χ0( · , g) is βLA-measurable for every g ∈ G.

Proof. Take a representative χ1 of χLA such that χ1(λ, · ) belongs to L∞(G) for every λ ∈ ELA .
In addition, take τ ∈ S(ELA) so that τ(0) = 1 and τ(λ) > 0 for every λ ∈ ELA . Hence,
Proposition 3.36 implies that, if we define

χ2(λ, g) :=
1

τ(λ)
[χ1(λ, · ) ∗ KLA(τ)](g)

for every (λ, g) ∈ ELA × G, then χ2 is a representative of χLA and χ2(λ, · ) is of class C∞
for every λ ∈ ELA . Since

∫
ELA

mdβLA = KLA(m)(e) for every m ∈ S(ELA), we see that
χ2(λ, e) = 1 for βLA-almost every λ ∈ ELA . Analogously, since 〈ϕ ∗ KLA(m)|ϕ〉 > 0 for every
positive m ∈ S(ELA) and for every ϕ ∈ C∞c (G), we see that χ2(λ, · ) is of positive type for
βLA -almost every λ ∈ ELA . Therefore, we may assume that χ2(λ, · ) is a C∞ function of positive
type which takes the value 1 at e for every λ ∈ ELA .

Now, as before we see that for every t > 0 there is a βLA-negligible subset Nt of ELA such
that

τ(t · λ)2χ2(λ, g) = [KLA(τ(t · )) ∗ χ2(λ, · ) ∗ KLA(τ(t · ))](g)

for every λ ∈ ELA \ Nt and for every g ∈ G. Define N := { 0 } ∪
(⋃

t∈Q∗+
Nt
)
, and take

λ ∈ ELA \N , g ∈ G, t > 0, and a sequence (tj) of elements of Q∗+ which converges to t. Then,

lim
j→∞

KLA(τ(tj · )) = lim
j→∞

t−Qj KLA(τ)
(
t−1
j ·

)
= t−QKLA(τ)

(
t−1 ·

)
= KLA(τ(t · ))

in L1(G). Hence,

lim
j→∞

KLA(τ(tj · )) ∗ χ2(λ, · ) ∗ KLA(τ(tj · )) = KLA(τ(t · )) ∗ χ2(λ, · ) ∗ KLA(τ(t · ))

uniformly on G, so that

|τ(t · λ)|2χ2(λ, g) = [KLA(τ(t · )) ∗ χ2(λ, · ) ∗ KLA(τ(t · ))](g)

for every t > 0, for every λ ∈ ELA \N , and for every g ∈ G. Define χ0 : ELA ×G→ C so that
χ0(λ, g) := χ2(λ, g) if λ 6∈ N , while χ0(λ, g) := 1 otherwise, so that χ0 is still a representative
of χLA . Now, set t := 1

|λ| for λ 6∈ N and take γ1, γ2 ∈ Nn; then Yγ1Xγ2χ0(λ, · ) equals

1

|τ(|λ|−1 · λ)|2
Yγ1KLA

(
τ(|λ|−1 · )

)
∗ χ0(λ, · ) ∗Xγ2KLA

(
τ(|λ|−1 · )

)
.

Set
Cγ1,γ2

:=
1

min|λ|=1|τ(λ)|2
‖Yγ1KLA(τ)‖1‖X

γ2KLA(τ)‖1;

then,
‖Yγ1Xγ2χ0(λ, · )‖ 6 Cγ1,γ2

|λ|dγ1
+dγ2

for every λ ∈ ELA \ N . Since χ0(λ, · ) = χG by definition for every λ ∈ N , the preceding
estimate holds for every λ ∈ ELA , up to replace C0,0 with max(1, C0,0).
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Now, take a sequence (λj) of non-zero elements of ELA which tends to 0. Then, the sequence
(χ0(λj , · )) is bounded in E(G), hence relatively compact. Therefore, there is a strictly increasing
sequence (jk) of elements ofN such that the sequence (χ0(λjk , · )) converges to some χ̃0 in E(G).
If the set of k ∈ N such that λjk ∈ N is infinite, then clearly χ̃0 = χG. Otherwise, we may
assume that λjk 6∈ N for every k ∈ N. Since the sequence (χ0(λjk , · )) is also bounded in Cb(G),
it is easily seen that

χ̃0 = KLA(τ(t · )) ∗ χ̃0 ∗ KLA(τ(t · ))

for every t > 0. Then, Lemma 1.81 implies that χ̃0 is constant. Now, χ0(λ, e) = 1 for every
λ ∈ ELA , so that χ̃0(e) = 1. Hence, χ̃0 = 1. Since the sequence (λj) was arbitrary, χ0(λ, · )
converges to χ0(0, · ) = 1 in E(G) as λ→ 0.

Remark 3.38. Theorem 3.37 is optimal. In other words, without further assumptions on
LA, the kernel χLA does not have more ‘regularity’ properties than those that Theorem 3.37
explicitly states, at least in terms of continuity.

Take G = H3, and let (X1, X2, Y1, Y2, T ) be the standard basis of left-invariant vector fields
on G; define Lj := −(X2

j + Y 2
j ) for j = 1, 2. Set L := θ1L1 + θ2L2, where θ1, θ2 > 0 and θ1

θ2
is irrational, and LA := (L,−iT ). Then, Proposition 7.16 shows that χLA has a representative
which is C∞ (even analytic) in a neighbourhood of every point of [σ(LA) \ (R+ × { 0 })] × G
and which is continuous at every point of { (0, 0) } × G, in accordance with Proposition 3.35
and Theorem 3.37; in other words, we may have deduced the existence of such a representative
arguing only on the properties stated in Proposition 3.35 and Theorem 3.37 and on the form
of σ(LA). Nevertheless, Theorem 7.45 shows that χLA has no continuous representatives.

Lemma 3.39. Take χ0 as in Theorem 3.37. Then, the mapping

λ 7→ χ0(λ, · ) ∈ B∞,∞c (G)

is βLA-measurable.

Proof. Indeed, Lemma A.21 implies that the mapping λ 7→ χ0(λ, · ) ∈ E(G) is βLA -measurable.
However, 2 of Theorem 3.37 implies that the set of χ0(λ, · ), as λ stays in a fixed compact
subset of ELA , is bounded in B∞,∞c (G). Since the topologies induced by E(G) and B∞,∞c (G)
on the bounded subsets of B∞,∞c (G) coincide, this completes the proof by the principle of
localization.

Proposition 3.40. Take m1,m2 ∈M(µLA ;W−∞,−∞,1(G)). Then,

KLA(m1) ∗ χLA(λ, · ) ∗ KLA(m2) = (m1m2)(λ)χLA(λ, · )

for βLA-almost every λ ∈ ELA .

Proof. Observe first that we may choose a representative χ0 of χLA as in Theorem 3.37, and
prove the assertion with that representative. Next, notice that for every ϕ1 ∈ D(ELA) we have

KLA(m1ϕ1m2) = KLA(m1) ∗ KLA(ϕ1) ∗ KLA(m2)

thanks to Corollary 3.12. In addition, the mapping

B∞,∞c (G) 3 f 7→ 〈KLA(m1) ∗ f ∗ KLA(m2), ϕ2〉

is continuous for every ϕ2 ∈ D(G) thanks to Proposition 1.73. Finally, let us prove that

KLA(ϕ1) =

∫
ELA

ϕ1(λ)χ0(λ, · ) dβLA

in B∞,∞c (G). Indeed, by Lemma 3.39 the mapping λ 7→ χ0(λ, · ) ∈ B∞,∞c (G) is βLA-measurable
and locally bounded in measure. Since B∞,∞c (G) is quasi-complete, and since ϕ1 ∈ D(ELA), [20,
Proposition 8 of Chapter VI, § 1, No. 2] implies that the integral exists, so that it must coincide
with KLA(ϕ1) since B∞,∞c (G) embeds continuously into L∞(G). Then, we may proceed as in
the proof of Proposition 3.36.
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3.6 The Multiplier Transform
In this section, LA is assumed to be a Rockland family.

Definition 3.41. Let K be a compact subset of ELA ; denote temporarily by L2
K(βLA) the

set of f ∈ L2(βLA) whose support lies in K, endowed with the topology induced by L2(βLA).
Then, we shall denote by L2

comp(βLA) the inductive limit of the L2
K(βLA), as K runs through

the directed set of compact subsets of ELA .

Lemma 3.42. KLA induces a continuous linear mapping from L2
comp(βLA) into W∞,∞,2(G).

Proof. Take m ∈ L2(βLA) with support contained in some compact subset K of ELA , and take
τ ∈ D(ELA) so that τ = 1 on K. Then, Corollary 3.12 implies that

KLA
(
|τ |2m

)
= KLA(τ) ∗ KLA(m) ∗ KLA(τ)∗ ∈W∞,∞,2(G).

The assertion then follows from the closed graph theorem.

Definition 3.43. We shall define MLA : W−∞,−∞,2(G) → L2
loc(G) as the transpose of the

continuous linear mapping L2
comp(βLA) 3 m 7→ KLA(m)̌ ∈W∞,∞,2(G) (cf. Lemma 3.42).

Proposition 3.44. MLA induces the adjoint of KLA : L2(βLA)→ L2(G).

Proof. The assertion follows from Proposition 3.8.

Proposition 3.45. Take T ∈W−∞,−∞,2(G) and r > 0. Then,

MLA((r · )∗T ) =MLA(T )(r · ) and MLA(T ∗) =MLA(T ).

Proof. The assertion follows from Propositions 3.7 and 3.8 by transposition.

Here we prove a prototype result about some sort of compatibility betweenMLA and con-
volution with kernels. Many similar statements can be proved with analogous techniques.

Proposition 3.46. Take p1, p2, p3 ∈ [1,∞] such that 1
p′1

+ 1
p′2

+ 1
p′3

= 1
2 , and take m1 ∈

M(µLA ;W−∞,∞,p1(G)), m2 ∈M(µLA ;W∞,−∞,p2(G)), and T ∈W−∞,−∞,p3(G). Then,

MLA(KLA(m1) ∗ T ∗ KLA(m2)) = m1m2MLA(T ).

Proof. Observe first that p1, p2, p3 6 2. In addition, 1
p′1

+ 1
p′2

= 1
2 −

1
p′3
∈
[
0, 1

2

]
, so that T ∈

W−∞,−∞,2(G) and KLA(m2)∗S(G)∗KLA(m1) ⊆W∞,∞,2(G) thanks to Proposition 1.41. Then,
take m ∈ D(ELA) and observe that Corollaries 1.71, 1.72, and 3.12, and Propositions 1.46, 1.55
and 3.8 imply that

〈MLA(KLA(m1) ∗ T ∗ KLA(m2)),m〉 = 〈KLA(m1) ∗ T ∗ KLA(m2),KLA(m)̌ 〉
= 〈T, (KLA(m2) ∗ KLA(m) ∗ KLA(m1))̌ 〉
= 〈T,KLA(m1m2m)̌ 〉
= 〈m1m2MLA(T ),m〉,

whence the result by the arbitrariness of m.

Corollary 3.47. If m ∈M(µLA ;W−∞,−∞,2(G)), then m =MLA(KLA(m)).

Proof. Take p1 = p2 = 1, p3 = 2, and m1 = m2 = χELA in Proposition 3.46.

Proposition 3.48. Let χ0 be a representative of χLA as in Theorem 3.37. Then, the following
hold:

1. for every T ∈W−∞,−∞,1(G),

[MLA(T )](λ) :=
〈
T, χ0(λ, · )

〉
for βLA-almost every λ ∈ ELA ;
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2. for every T ∈W−∞,−∞,1(G), there are C, d > 0 such that

|[MLA(T )](λ)| 6 C(1 + |λ|)d

for βLA-almost every λ ∈ ELA ;

3. MLA induces a continuous linear mapping from W−∞,−∞,1(G) into L∞loc(βLA);

4. MLA induces a continuous linear mapping fromM1(G) into L∞(βLA).

By interpolation,MLA then induces a continuous linear mapping from Lp(G) into Lp
′
(βLA)

for every p ∈ [1, 2].

Proof. 1. Indeed, take T ∈ W−∞,−∞,1(G) and m ∈ D(ELA). As in the proof of Proposi-
tion 3.40, we see that the mapping λ 7→ m(λ)χ0(λ, · ) ∈ B∞,∞c (G) has weak integral KLA(m),
so that

〈T,KLA(m)̌ 〉 =

∫
ELA

〈
T, χ0(λ, ·−1)

〉
m(λ) dβLA(λ).

Now, χ0(λ, ·−1) = χ0(λ, · ) for every λ ∈ ELA , D(ELA) is dense in L2
comp(βLA), and the

mapping λ 7→
〈
T, χ0(λ, · )

〉
is locally bounded (cf. 2 below). Hence, the assertion follows.

2. Observe first that there are k ∈ N and a constant C > 0 such that

|〈T, ϕ〉| 6 C‖ϕ‖Wk,k,∞(G)

for every ϕ ∈ B∞,∞(G) (cf. Proposition 1.32). Therefore, the assertion follows easily from 2 of
Theorem 3.37.

3. The third assertion follows from the fact that the set of χ0(λ, · ), as λ stays in a compact
subset of ELA , is bounded in B∞,∞c (G).

4. The fourth assertion follows easily from 1.

Corollary 3.49. Take m ∈ L∞loc(βLA) such that KLA(m) ∈ W−∞,−∞,1(G). Then, m is con-
tinuous at 0 and

m(0) = 〈KLA(m), 1〉.

Proof. Take a representative χ0 of χLA as in Theorem 3.37, and define

m0(λ) :=
〈
KLA(m), χ0(λ, g)

〉
,

for every λ ∈ ELA , so that m0 is a representative of m thanks to Corollary 3.47 and Proposi-
tion 3.48. The assertion follows from the properties of χ0.

Proposition 3.50. The following conditions are equivalent:

1. χLA has a representative χ0 such that χ0( · , g) is continuous on σ(LA) for almost every
g ∈ G;

2. MLA induces a continuous linear mapping from L1(G) into C0(σ(LA));

3. MLA induces a continuous linear mapping from W−∞,−∞,1(G) into E0(σ(LA));

4. χLA has a continuous representative.

Proof. 1 =⇒ 2. Observe first that we may assume that χ0( · , g) is continuous on σ(LA) for
every g ∈ G, and take ϕ ∈ L1(G). Then, it is easily seen that

[MLA(ϕ)](λ) =

∫
G

χ0(λ, · )ϕdνG

for βLA -almost every λ ∈ ELA . Now, it is easily seen that there is a negligible subset N of
G such that |χ0(λ, g)| 6 1 for every (λ, g) ∈ σ(LA) × (G \ N). Take λ0 ∈ σ(LA); then the
dominated convergence theorem implies that

lim
λ→λ0

λ∈σ(LA)

∫
G

χ0(λ, g)ϕ(g) dg =

∫
G

χ0(λ0, g)ϕ(g) dg.
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Hence,MLA(ϕ) has a representative m0 which is continuous and bounded on σ(LA), and m0

is uniquely determined. Therefore,MLA induces a continuous linear mapping from L1(G) into
Cb(σ(LA)). Now, take τ ∈ D(ELA) such that τ(0) = 1, and define τj := τ(2−j · ) for every
j ∈ N. Then, Proposition 3.46 implies that

MLA(ϕ ∗ KLA(τj)) = m0τj

on σ(LA). Since ϕ ∗ KLA(τj) converges to ϕ in L1(G) by Proposition 3.7 and Corollary 3.49,
the assertion follows.

2 =⇒ 4. Take τ ∈ S(ELA) so that τ(λ) > 0 for every λ ∈ ELA . Observe that the
mapping G 3 g 7→ KLA(τ)(g · ) ∈ L1(G) is continuous, so that also the mapping G 3 g 7→
MLA(KLA(τ)(g · )) ∈ C0(σ(LA)) is continuous. Therefore, the mapping

σ(LA)×G 3 (λ, g) 7→ MLA(KLA(τ)(g · ))(λ) ∈ C

is continuous. Now, let χ0 be a representative of χLA as in Theorem 3.37. Then, Proposi-
tion 3.40 implies that

MLA(KLA(τ)(g · ))(λ) =

∫
G

KLA(τ)(gg′)χ0(λ, g′−1) dg′

= [KLA(τ) ∗ χ0(λ, · )](g)

= τ(λ)χ0(λ, g)

for (βLA ⊗ νG)-almost every (λ, g) ∈ ELA ×G. In particular, χLA has a representative which is
continuous on σ(LA)×G. By [17, Corollary to Theorem 2 of Chapter IX, § 4, No. 3], χLA has
a continuous representative.

4 =⇒ 1. Obvious.
2 =⇒ 3. Since D(G) is dense inW−∞,−∞,1(G), the assertion follows from Proposition 3.48.
3 =⇒ 2. Clearly,MLA induces a continuous linear mapping from L1(G) into Cb(σ(LA)).

Arguing as in the proof of the implication 1 =⇒ 2, we see that MLA induces a continuous
linear mapping from L1(G) into C0(σ(LA)).

Corollary 3.51. Assume that χLA has a continuous representative. Then, χLA has a repre-
sentative χ0 such that the following hold:

1. χ0 is continuous on ELA ×G;

2. χ0(λ, · ) is a function of positive type of class C∞ for every λ ∈ σ(LA);

3. the mapping σ(LA) 3 λ 7→ χ0(λ, · ) ∈ E(G) is continuous;

4. χ0(λ, e) = 1 for every λ ∈ σ(LA);

5. for every γ1, γ2 there is a constant Cγ1,γ2
> 0 such that

‖Yγ1Xγ2χ0(λ, · )‖∞ 6 Cγ1,γ2
|λ|dγ1

+dγ2

for every λ ∈ σ(LA).

Proof. Repeat the proof of Theorem 3.37 with minor modifications.

Remark 3.52. Take a sub-Laplacian L on G = H1 × R and a basis T of the derived al-
gebra of the Lie algebra of G. Then, Proposition 7.16 shows that χ(L,iT ) has no continuous
representatives, even though (L, iT ) satisfies property (RL) by Theorem 7.20.

3.7 The Banach Algebra L1
LA(G)

In this section, LA is assumed to be a Rockland family; we study the Gelfand spectrum of
the commutative Banach algebra L1

LA(G), and relate it to σ(LA). This will provide an abstract
characterization of property (RL).

Before starting, let us observe that G is hermitian, that is, L1(G) is symmetric (cf. [68,
12.5.17]); therefore, every closed ∗-subalgebra of L1(G) is symmetric (cf. [68, 9.8.3]).
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Proposition 3.53. Define, for every λ ∈ σ(LA),

ΦLA(λ) : L1
LA,0(G) 3 f 7→ MLA(f)(λ) ∈ C,

where MLA(f) is identified with its unique representative in C0(σ(LA)). Then, ΦLA defines a
homeomorphism between σ(LA) and ∆(L1

LA,0(G)).

Proof. The proof follows the lines of that of [58, Proposition 3.3.13], where Γ1
LA is replaced

throughout by L1
LA,0(G).

More precisely, we have the following result.

Proposition 3.54. Let ϕ : G → C be a C∞ function of positive type such that LAϕ = λϕ
for some λ ∈ ELA , and take m ∈ M(µLA ;W−∞,−∞,1(G)) so that m is continuous on a
neighbourhood of λ. Then,

KLA(m) ∗ ϕ = m(λ)ϕ.

Proof. Indeed, [58, Proposition 3.3.3] implies that there are a continuous unitary representation
π of G in a hilbertian space H and a cyclic vector v in C∞(π) such that dπ(LA) · v = λv and
ϕ(g) = 〈π(g) · v|v〉 for every g ∈ G. Assume first that m is continuous on ELA and that
KLA(m) ∈W−∞,0,1(G). Then, Theorem 3.19 implies that, for every g ∈ G,

m(λ)ϕ(g) = m(λ)〈π(g) · v|v〉
= 〈m(dπ(LA)) · π(g) · v|v〉
= 〈π∗(KLA(m)) · π(g) · v|v〉
=
〈
KLA(m),

〈
π( ·−1g) · v

∣∣v〉〉
= (KLA(m) ∗ ϕ)(g),

whence the result in this case.
Now, assume that m is continuous on some open neighbourhood U of λ and that KLA(m) ∈

W−∞,−∞,1(G), and take τ ∈ D(U) such that τ(λ) = 1. Then, Corollary 3.12 implies that

KLA(mτ) = KLA(m) ∗ KLA(τ) ∈W−∞,0,1(G),

so that

m(λ)ϕ = (mτ)(λ)ϕ = KLA(mτ) ∗ ϕ = KLA(m) ∗ KLA(τ) ∗ ϕ = KLA(m) ∗ ϕ,

whence the result.

Lemma 3.55. The space W∞,∞,1LA (G) is dense in L1
LA(G) and in W−∞,−∞,1LA (G).

Proof. Indeed, take T ∈ W−∞,−∞,1LA (G) and τ ∈ D(ELA) such that τ(0) = 1; define τj :=

τ(2−j · ) for every j ∈ N. Then, KLA(τj) ∗ T ∗ KLA(τj)
∗ belongs to W∞,∞,1LA (G) thanks to

Corollary 3.12; in addition, it converges to T in W−∞,−∞,1LA (G). The other assertion is proved
similarly.

Proposition 3.56. Let Φ be a character of L1
LA(G). Then, Φ extends to a unique continuous

linear functional on W−∞,−∞,1LA (G). In addition, there is ϕ ∈ B∞,∞(G) such that

Φ(T ) = 〈T, ϕ〉

for every T ∈W−∞,−∞,1LA (G).

Proof. Observe first that there is ϕ0 ∈ L∞(G) such that

Φ(f) = 〈f, ϕ0〉

for every f ∈ L1
LA(G). If Φ 6= 0, then Lemma 3.55 implies that there is h ∈ W∞,∞,1LA (G) such

that Φ(h) 6= 0. Then,

Φ(f) = Φ(h)−2Φ(h ∗ f ∗ h) = Φ(h)−2
〈
f, ȟ ∗ ϕ0 ∗ ȟ

〉
for every f ∈ L1

LA(G). Since ȟ∗ϕ0∗ ȟ ∈ B∞,∞(G), this proves that Φ is continuous with respect
to the topology of W−∞,−∞,1(G), so that the assertion follows from Lemma 3.55.
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Proposition 3.57. Take T ∈W−∞,−∞,1LA (G). Then, the mapping

θT : ∆(L1
LA(G)) 3 Φ 7→ Φ(T ) ∈ C

is continuous. In addition, θT (Φ) = θT∗(Φ) for every Φ ∈ ∆(L1
LA(G)), so that θT is real-valued

if T = T ∗.

Proof. Let us first show that θT is continuous. Let (Φj) be a sequence which converges to
some Φ in ∆(L1

LA(G)). Since Φ 6= 0, Lemma 3.55 implies that there is h ∈ W∞,∞,1LA (G) such
that Φ(h) 6= 0, so that Φj(h) 6= 0 for all but finitely many j ∈ N. Now, L1

LA(G) is a closed ∗-
subalgebra of L1(G) by Proposition 3.15, so that it is symmetric by the remarks at the beginning
of this section. Therefore,

lim
j→∞

Φj(T ) = lim
j→∞
|Φj(h)|−2

Φj(h
∗ ∗ T ∗ h) = |Φ(h)|−2

Φ(h∗ ∗ T ∗ h) = Φ(T )

since h∗ ∗ T ∗ h ∈ L1
LA(G). Since ∆(L1

LA(G)) is metrizable, this proves that θT is continuous.
In addition,

θT∗(Φ) = |Φ(h)|−2
Φ(h∗ ∗ T ∗ ∗ h) = |Φ(h)|−2

Φ(h∗ ∗ T ∗ h) = θT (Φ)

since h∗ ∗ T ∗ ∗ h = (h∗ ∗ T ∗ h)∗.

Theorem 3.58. Let ∆+(L1
LA(G)) be the set of Φ ∈ ∆(L1

LA(G)) such that there is a function
of positive type ϕ ∈ C∞(G) such that LAϕ = λϕ for some λ ∈ CA, and

Φ(f) = 〈f, ϕ〉

for every f ∈ L1
LA(G). Then, the following hold:

1. if Φ and λ are as above, then λ = Φ(LAδe) ∈ σ(LA);

2. ∆+(L1
LA(G)) is a closed subspace of ∆(L1

LA(G));

3. the mapping
θLA : ∆(L1

LA(G)) 3 Φ 7→ Φ(LAδe) ∈ σ(LA)

is proper and onto, as well as its restriction to ∆+(L1
LA(G)).

Proof. 1. Indeed, by approximation we see that

Φ(LAδe) = 〈LAδe, ϕ〉 =
〈
δe,LAϕ

〉
= λϕ(e).

However,
1 = Φ(δe) = 〈δe, ϕ〉,

so that λ = Φ(LAδe). Finally, [58, Corollary 3.3.11] shows that λ ∈ σ(LA) ⊆ RA, so that
λ = Φ(LAδe).

2. Let (Φj) be a sequence of elements of ∆+(L1
LA(G)) which converges to some Φ in

∆(L1
LA(G)). Take, for every j ∈ N, a function of positive type ϕj ∈ C∞(G) such that LAϕj =

Φj(LAδe)ϕj and
Φj(T ) = 〈T, ϕj〉

for every T ∈W−∞,−∞,1LA (G). As in 1, we see that ‖ϕj‖∞ = ϕj(e) = 1 for every j ∈ N, so that
we may assume that the sequence (ϕj) converges to some continuous function of positive type
ϕ in the weak topology σ(L∞(G), L1(G)). Therefore,

LAϕ = lim
j→∞

LAϕj = lim
j→∞

Φj(LAδe)ϕj = Φ(LAδe)ϕ

by Proposition 3.57, while clearly

Φ(f) = lim
j→∞

Φj(f) = lim
j→∞
〈f, ϕj〉 = 〈f, ϕ〉

for every f ∈ L1
LA(G). Then, [58, Proposition 3.3.1] shows that ϕ ∈ C∞(G), so that Φ ∈

∆+(L1
LA(G)).
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3. Take Φ ∈ ∆(L1
LA(G)), and let us prove that Φ does not vanish identically on L1

LA,0(G).
Indeed, assume by contradiction that Φ vanishes on L1

LA,0(G), and take f ∈ L1
LA(G). Take

τ ∈ S(ELA) such that τ(0) = 1, and define τj := τ(2−j · ) for every j ∈ N. Then, f ∗ KLA(τj)
belongs to L1

LA(G) by Corollary 3.12, and converges to f in L1(G) thanks to Proposition 3.7
and Corollary 3.49. Therefore,

Φ(f) = lim
j→∞

Φ(f ∗ KLA(τj)) = lim
j→∞

Φ(f)Φ(KLA(τj)) = 0,

so that Φ = 0: contradiction.
Then, Φ induces a non-zero character of L1

LA,0(G), so that Proposition 3.53 shows that
θLA(Φ) ∈ σ(LA). Now, let us prove that θLA is proper. Let K be a compact subset of σ(LA),
and let (Φj) be a sequence in θ−1

LA(K). Then, Proposition 3.53 shows that we may assume
that the sequence (Φj) converges to some Φ̃ in ∆(L1

LA,0(G)). In addition, since ∆′(L1
LA(G)) is

compact and metrizable, we may also assume that (Φj) converges to some Φ in ∆′(L1
LA(G)).

Then, Φ̃ is the restriction of Φ to L1
LA,0(G), so that Φ 6= 0 and then Φ ∈ ∆(L1

LA(G)). Hence,
θLA is proper on ∆(L1

LA(G)). By 2 above, it follows that θLA is proper on ∆+(L1
LA(G)).

Finally, let us prove that θLA(∆+(L1
LA(G))) = σ(LA). Let D be a countable dense subset

of L1
LA(G), and take a representative χ0 of χLA as in Theorem 3.37. Then, Propositions 3.40

and 3.48, and Corollary 3.47 imply that there is a βLA -negligible subset N of ELA such that

χ0(λ, · ) ∗ f =
〈
f, χ0(λ, · )

〉
χ0(λ, · )

for every λ ∈ ELA \N and for every f ∈ D. Thanks to Proposition 3.40, we may further assume
that LAχ0(λ, · ) = λχ0(λ, · ) for every λ ∈ σ(LA) \N . Then, fix λ0 ∈ σ(LA) \N , and observe
that χ0(λ0, · ) is a function of positive type and of class C∞; in addition, if f1 ∈ L1

LA(G) and
f∗2 ∈ D, then〈

f1 ∗ f2, χ0(λ0, · )
〉

=
〈
f1, χ0(λ0, · ) ∗ f∗2

〉
=
〈
f1, χ0(λ0, · )

〉〈
f2, χ0(λ0, · )

〉
.

By density, the same assertion holds for every f1, f2 ∈ L1
LA(G). Therefore,

Φ: L1
LA(G) 3 f 7→

〈
f, χ0(λ0, · )

〉
∈ C

is an element of ∆+(L1
LA(G)) and θLA(Φ) = λ0. Hence, the image of θLA is a closed subset of

σ(LA) which contains σ(LA) \N . Since N is βLA-negligible and σ(LA) is the support of βLA ,
it follows that θLA is onto.

Corollary 3.59. Keep the notation of Theorem 3.58. Then, the following conditions are equiv-
alent:

1. LA satisfies property (RL);

2. θLA is one-to-one;

3. θLA is one-to-one on ∆+(L1
LA(G)).

In this case, ∆+(L1
LA(G)) = ∆(L1

LA(G)).

Proof. Assume first that LA satisfies property (RL). Then, θLA is a homeomorphism of
∆(L1

LA(G)) onto σ(LA) by Proposition 3.53.
Conversely, assume that θLA is a homeomorphism of ∆+(L1

LA(G)) onto σ(LA). Take f ∈
L1
LA(G), and let m be its Gelfand transform. It will suffice to show that KLA(m ◦ θ−1

LA) = f .
Take χ0 and N as in the last part of the proof of Theorem 3.58. Then,

m(θ−1
LA(λ)) =

〈
f, χ0(λ, · )

〉
for every λ ∈ σ(LA) \ N . Therefore, m ◦ θ−1

LA is a representative of MLA(f), whence the
result.



Chapter 4

Quotients, Products, Image
Families

In this chapter we develop some tools in order to deduce some properties of the families into
consideration from other known families.

4.1 Quotients

Theorem 4.1. Let G and G′ be two homogeneous groups, LA a Rockland family on G, and π
a homogeneous homomorphism of G onto G′. Then, the following hold:

1. dπ(LA) is a Rockland family;

2. σ(dπ(LA)) ⊆ σ(LA);

3. if m is an element of M(µLA ;W−∞,−∞,1(G)) which is continuous on an open subset U
of ELA which carries βdπ(LA), then

π∗(KLA(m)) = Kdπ(LA)(m).

Proof. In order to prove that dπ(LA) is a Rockland family, observe that if $ is a non-trivial
continuous irreducible unitary representation of G′, then $ ◦ π is a non-trivial continuous
irreducible unitary representation of G, and that C∞($) = C∞($ ◦π) since π is a submersion.

Then, it suffices to apply Theorem 3.19 to the right quasi-regular representation $ of G in
G′, observing that D(G′) is dense in E($) = W 0,∞,2

0 (G′). The general form of 3 is proved by
approximation, taking into account Proposition 1.73 and Corollary 1.80.

Remark 4.2. Theorem 4.1 may fail if m is not continuous, even if KLA(m) ∈ S(G). See the
proofs Proposition 7.44 and Theorem 7.45 for an example. More precisely, it may happen that
π∗(KLA(m)) does not even correspond to any multiplier of dπ(LA).

4.2 Products

Unlike quotients, products are very well-behaved, and (almost) all the properties in which
we are interested transfer easily from the factors to the product. Nevertheless, this is not
surprising, since the structure of a product is much simpler than that of a quotient. As a
matter of fact, even though we prove only the relevant implications, also the converse ones are
true for (almost) every statement. We leave the details to the reader.

In this section, (GA)A∈A denotes a finite family of homogeneous groups; we define G :=∏
A∈AGA.

1 For every A ∈ A, LA = (Lα)α∈A denotes a Rockland family on GA; we denote by
L′A = (L′α)α∈A the corresponding family of operators onG. Finally, define L′A = ((L′α)α∈A)A∈A.

Proposition 4.3. L′A is a Rockland family.
1To avoid notational issues, we assume that the elements of A are pairwise disjoint.

73
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Proof. The assertion follows from [58, Propositions 3.4.2 and 3.6.3].

Proposition 4.4. Take a µLA-measurable function mA : ELA → C for every A ∈ A. Then,⊗
A∈AmA is µL′A-measurable and

(⊗
A∈AmA

)
(L′A) =

⊗
A∈AmA(LA).

Further, if mA ∈ M(µLA ;D′w(GA)) for every A ∈ A, then
⊗

A∈AmA ∈ M(µL′A ;D′w(G))
and

KL′A

(⊗
A∈A

mA

)
=
⊗
α∈A
KLA(mA).

Proof. The first assertion follows easily by spectral theory, while the second assertion is a trivial
consequence of the first one when each mA is bounded. The general case is an easy consequence
of Proposition 3.29 and [58, Proposition 3.3.4].

Proposition 4.5. We have
βL′A =

⊗
A∈A

βLA

and
χL′A((λA), (gA)) =

∏
A∈A

χLA(λA, gA)

for (βL′A ⊗ νG)-almost every ((λA), (gA)).

Proof. The first assertion follows from [58, Proposition 3.3.4]. The second assertion is an easy
consequence of the first one.

We now pass to properties (RL) and (S). We begin with an elementary lemma.

Lemma 4.6. Assume that A = {A1, A2 }, and take m ∈ L1(βL′A) and µ ∈ M1(GA2). Then,
there is mµ ∈ L1(βLA1

) such that∫
GA2

KL′A,1(m)( · , g2) dµ(g2) = KLA1
,1(mµ).

Proof. Observe first that L1(βL′A) ∼= L1(βLA1
)⊗̂L1(βLA2

) thanks to Proposition 4.5 and [84,
Exercise 46.5]. Therefore, [84, Theorem 45.1] implies that there are (cj) ∈ `1 and two bounded
sequences (mj,1), (mj,2) in L1(βLA1

) and L1(βLA2
), respectively, such that

m =
∑
j∈N

cj(mj,1 ⊗mj,2)

in L1(βL′A). Therefore,

mµ :=
∑
j∈N

cj

∫
G2

KLA2
,1(mj,2)(g2) dµ(g2)mj,1

is a well-defined element of L1(βLA1
) which satisfies∫

GA2

KL′A,1(m)( · , g2) dµ(g2) = KLA1
,1(mµ),

whence the result.

Corollary 4.7. Assume that A = {A1, A2 }, and take m ∈ M(µL′A ;L1(GA)) and f ∈
L∞(GA2). Then, ∫

GA2

KL′A(m)( · , g2)f(g2) dνGA2
(g2) ∈ L1

LA1
(GA1).

In addition, KL′A(m)( · , g2) ∈ L1
LA1

(GA1
) for almost every g2 ∈ GA2

.
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Proof. 1. Assume first that m is compactly supported. Let (Kj) be an increasing sequence of
compact subsets of GA2

whose union is GA2
. Then,

lim
j→∞

∫
Kj

KL′A(m)( · , g2)f(g2) dνGA2
(g2) =

∫
GA2

KL′A(m)( · , g2)f(g2) dνGA2
(g2)

in L1(GA1
) by dominated convergence. Now, clearly m ∈ L1(βL′A), so that Lemma 4.6 implies

that ∫
Kj

KL′A(m)( · , g2)f(g2) dνGA2
(g2) ∈ L1

LA1
(GA1

)

for every j ∈ N, whence the first assertion thanks to Proposition 3.15. The second assertion
follows from Lemma 4.6 taking Dirac deltas.

2. Now, take τ ∈ D(ELA) such that τ(0) = 1, and define τj := τ(2−j · ) for every j ∈ N.
Then, Corollary 3.12 implies that

KL′A(mτj) = KL′A(τj) ∗ KL′A(m) ∈ L1(GA)

for every j ∈ N, so that it converges to KL′A(m) in L1(GA). Then, both assertions follow from 1
above and Proposition 3.15.

Theorem 4.8. If LA satisfies property (RL) for every A ∈ A, then L′A satisfies property (RL).

Proof. 1. Proceeding by induction, we may reduce to the case in which A = {A1, A2 }. In
order to simplify the notation, we shall simply write Gj instead of GAj for j = 1, 2. Now, take
f ∈ L1

L′A
(G) and let m be a representative ofML′A(f). Then, Corollary 3.47, Proposition 4.5

and Fubini’s theorem imply that

MLA1
[g1 7→ MLA2

[f(g1, · )](λ2)](λ1) = m(λ1, λ2)

for βLA1
-almost every λ1 ∈ ELA1

and for βLA2
-almost every λ2 ∈ ELA2

. Observe that Corol-
lary 4.7 implies that f(g1, · ) ∈ L1

LA2
(G2) for almost every g1 ∈ G1, and that by assumption

MLA2
induces a continuous linear mapping from L1

LA2
(G2) into C0(σ(LA2

)). Therefore, the
mapping g1 7→ MLA2

[f(g1, · )] defines an element of L1(G1;C0(σ(LA2
))).

2. Let us prove that, for every µ ∈ M1(σ(LA2
)), the mapping g1 7→ (µ · MLA2

)[f(g1, · )]
belongs to L1

LA1
(G1). Indeed, the preceding considerations show that µ · MLA2

defines an
element of L1

LA2
(G2)′, so that µ · MLA2

is represented by an element of L∞(G2); hence, the
assertion follows from Corollary 4.7.

Now, let us prove that the mapping

M1
c(σ(LA1)) 3 µ 7→

[
g1 7→ (µ · MLA2

)[f(g1, · )]
]
∈ L1

LA1
(G1)

is continuous. By the preceding computations, it will suffice to prove continuity with respect to
the codomain L1(G1). Now, L1(G1;C0(σ(LA2

))) ∼= L1(G1)⊗̂C0(σ(LA2
)) thanks to [84, Theo-

rem 46.2]. Therefore, [84, Theorem 45.1] implies that there are (cj) ∈ `1 and two infinitesimal
sequences (hj), (ϕj) in L1(G1) and C0(σ(LA2

)), respectively, such that[
g1 7→ MLA2

[f(g1, · )]
]

=
∑
j∈N

cj(hj ⊗ ϕj)

in L1(G1;C0(σ(LA2
))). Since[

g1 7→ (µ · MLA2
)[f(g1, · )]

]
=
∑
j∈N

cj〈µ, ϕj〉hj

in L1
LA1

(G1), and since the mappings M1
c(σ(LA1)) 3 µ 7→ 〈µ, ϕj〉 ∈ C, as j runs through N,

are equicontinuous, the assertion follows.
3. Now, MLA1

induces a continuous linear mapping from L1
LA1

(G1) into C0(σ(LA1
)), so

that 2 above implies that the mapping

σ(LA2
) 3 λ2 7→ MLA1

(
g1 7→ MLA2

[f(g1, · )](λ2)
)
∈ C0(σ(LA1))
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is continuous. Therefore, the mapping

σ(L′A) 3 (λ1, λ2) 7→ MLA1

(
g1 7→ MLA2

[f(g1, · )](λ2)
)
(λ1) ∈ C

is continuous, so that it extends to a continuous mapping m0 on EL′A by [17, Corollary to
Theorem 2 of Chapter IX, § 4, No. 3]. Now, 1 implies that m0(λ1, λ2) = m(λ1, λ2) for βLA1

-
almost every λ1 ∈ ELA1

and for βLA2
-almost every λ2 ∈ ELA2

. Since both m and m0 are
βL′A-measurable, Tonelli’s theorem implies that m = m0 βL′A -almost everywhere, whence the
result.

Proposition 4.9. If LA satisfies property (S)C for every A ∈ A, then L′A satisfies property
(S)C .

Proof. Indeed, Lemma A.26 implies that KL′A =
⊗̂

A∈AKLA induces a strict morphism of

S(EL′A) ∼=
⊗̂
A∈A
S(ELA) into

⊗̂
A∈A
S(GA) ∼= S(G).

We now repeat, with some relevant modifications, the arguments that led to Theorem 4.8
in order to deal with property (S). We begin with another corollary of Lemma 4.6.

Corollary 4.10. Assume that A = {A1, A2 }, and take m ∈ M(µL′A ;S(GA)) and T ∈
S ′(GA2

). Then, 〈
T, g2 7→ KL′A(m)( · , g2)

〉
∈ SLA1

(GA1
).

Proof. Assume first that m is compactly supported. Let (µj) be a sequence of measures with
compact support which converges to T in S ′(GA2

). Then

lim
j→∞

∫
GA2

KL′A(m)( · , g2) dµj(g2) =
〈
T, g2 7→ KL′A(m)( · , g2)

〉
in S(GA1

). Since
∫
GA2
KL′A(m)( · , g2) dµj(g2) ∈ SLA1

(GA1
) by Lemma 4.6, and since SLA1

(GA1
)

is closed in S(GA1
) by Proposition 3.15, the assertion follows in this case.

The general case is then established as in the proof of Corollary 4.7.

Theorem 4.11. If LA satisfies property (S) for every A ∈ A, then L′A satisfies property (S).

Proof. 1. Proceeding by induction, we may reduce to the case in which A = {A1, A2 }. In
order to simplify the notation, we shall simply write Gj and S(σ(LAj )) instead of GAj and
SELAj ,0(σ(LAj )), respectively, for j = 1, 2. Now, take f ∈ SL′A(G) and letm be a representative
ofML′A(f). As in the proof of Theorem 4.8, we see that

MLA1
[g1 7→ MLA2

[f(g1, · )](λ2)](λ1) = m(λ1, λ2)

for βLA1
-almost every λ1 ∈ ELA1

and for βLA2
-almost every λ2 ∈ ELA2

. Observe that
Corollary 4.10 implies that f(g1, · ) ∈ SLA2

(G2) for every g1 ∈ G1, and that by assump-
tion MLA2

induces an isomorphism of SLA2
(G2) onto S(σ(LA2

)). Therefore, the mapping
g1 7→ MLA2

[f(g1, · )] defines an element of S(G1;S(σ(LA2
))).

2. Let us prove that the mapping g1 7→ MLA2
[f(g1, · )] canonically corresponds to an

element of SLA1
(G1)⊗̂S(σ(LA2

)). Indeed, take T ∈ S(σ(LA2
))′; then Corollary 4.10 implies

that
[g1 7→ (T · MLA2

)[f(g1, · )]] ∈ SLA1
(G1),

since T ·MLA2
defines an element of SLA2

(G2)′, which extends to an element of S ′(G2). Next,
observe that [84, Proposition 50.4] implies that

SLA1
(G1)⊗̂S(σ(LA2

)) ∼= L(S(σ(LA2
))′;SLA1

(G1))

since S(σ(LA2)) is nuclear thanks to [84, Proposition 50.1]. Now, it is clear that the map-
ping g1 7→ MLA2

[f(g1, · )] belongs to S(G1;S(σ(LA2
))), which is the canonical image of

S(G1)⊗̂S(σ(LA2
)) ∼= L(S(σ(LA2

))′;S(G1)) (reason as above). Then, the preceding arguments
imply our claim.
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3. Now, MLA1
induces an isomorphism of SLA1

(G1) onto S(σ(LA1
)), so that the linear

mapping
MLA1

⊗̂IS(σ(LA2
)) : SLA1

(G1)⊗̂S(σ(LA2))→ S(σ(LA1))⊗̂S(σ(LA2))

is an isomorphism. In addition, for every T ∈ S(σ(LA2))′ and for every λ1 ∈ σ(LA1),〈
δλ1
⊗̂T,

(
MLA1

⊗̂IS(σ(LA2
))

)
(g1 7→ MLA2

[f(g1, · )])
〉

=MLA1
[g1 7→ (T · MLA2

)[f(g1, · )]](λ1)

(reason as in 2). Choosing T = δλ2 for λ2 ∈ σ(LA2), and taking into account Corollary 2.9, we
see that the mapping

σ(L′A) 3 (λ1, λ2) 7→ MLA1
(g1 7→ MLA2

[f(g1, · )](λ2))(λ1)

extends to an element m0 of S(EL′A). Now, 1 implies that m0(λ1, λ2) = m(λ1, λ2) for βLA1
-

almost every λ1 ∈ ELA1
and for βLA2

-almost every λ2 ∈ ELA2
. Since both m and m0 are

βL′A -measurable, Tonelli’s theorem implies that m = m0 βL′A -almost everywhere. Hence, L′A
satisfies property (S).

4.3 Image Families

In this section, LA denotes a Rockland family on a homogeneous group G, Γ denotes a
non-empty finite set, and P : ELA → RΓ denotes a polynomial mapping with homogeneous
components.

Proposition 4.12. The following hold:

1. P (LA) is an admissible family;

2. µP (LA) = P∗(µLA) and σ(P (LA)) = P (σ(LA));

3. a function m : EP (LA) → C belongs toM(µP (LA);D′w(G)) if and only if m ◦ P belongs to
M(µLA ;D′w(G)); in this case,

KP (LA)(m) = KLA(m ◦ P ).

Observe that the same assertions hold, except the one referring to the spectrum, if we only
assume that P is a βLA -measurable mapping with homogeneous components and that Pγ(LA)
is a (left-invariant) differential operator for every γ ∈ Γ.

Proof. The first assertion follows from Theorem 3.19, while the second assertion follows from
spectral theory. The third assertion is an easy consequence of the second one.

Proposition 4.13. The following statements are equivalent:

1. P (LA) is Rockland;

2. P (λ) 6= 0 for every λ ∈ σ(LA) ∩ SLA ;

3. P is proper on σ(LA).

Proof. 1 =⇒ 2. Take m ∈ S(EP (LA)) such that m(0) 6= 0. Then, [58, Proposition 3.2.11]
implies that m ◦ P ∈ C0(σ(LA)). If P (λ) = 0 for some λ ∈ σ(LA) ∩ SLA , then (m ◦ P )(r · λ) =
m(r · P (λ)) = m(0) 6= 0 for every r > 0, so that m ◦ P 6∈ C0(σ(LA)): contradiction.

2 =⇒ 1. This follows from Proposition 2.13.
2 ⇐⇒ 3. Just observe that the closed set

P−1(B(0, R)) ∩ σ(LA) =

{
λ ∈ σ(LA) \ { 0 } : |λ| 6 R

|P (|λ|−1 · λ)|

}
∪ { 0 }

is bounded if and only if P (λ) 6= 0 for every λ ∈ σ(LA) ∩ SLA .
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Proposition 4.14. Assume that P (LA) is a Rockland family. Then,

βP (LA) = P∗(βLA).

In addition, let (βλ′)λ′∈EP (LA)
be a disintegration of βLA relative to P . Then,

χP (LA)(λ
′, g) =

∫
ELA

χLA(λ, g) dβλ′(λ)

for (βP (LA) ⊗ νG)-almost every (λ′, g) ∈ EP (LA) ×G.

Observe that the existence of a disintegration follows from [19, Theorem 1 of Chapter VI, §
3, No. 1].

Proof. The first assertion follows easily from Propositions 4.12 and 4.13. Then, take a repre-
sentative χ0 of χLA . Let us first observe that the family (βλ′⊗νG) is βP (LA)-adequate and that
βLA ⊗ νG =

∫
EP (LA)

(βλ′ ⊗ νG) dβP (LA), so that χ0 is (βλ′ ⊗ νG)-measurable for βP (LA)-almost
every λ′ ∈ EP (LA) by [19, Proposition 4 of Chapter V, § 3, No. 2]. Now, take m ∈ D(EP (LA))
and ϕ ∈ D(G). Then, Fubini’s theorem implies that∫

EP (LA)×G
(m⊗ ϕ)χP (LA) d(βP (LA) ⊗ νG) =

∫
G

ϕKP (LA)(m) dνG

=

∫
G

ϕKLA(m ◦ P ) dνG

=

∫
ELA×G

[(m ◦ P )⊗ ϕ]χ0 d(βLA ⊗ νG)

=

∫
EP (LA)×G

∫
ELA

(m ◦ P )(λ)ϕ(g)χ0(λ, g) dβλ′(λ) d(βP (LA) ⊗ νG)(λ′, g).

Since βλ′ is concentrated on P−1(λ′) for βP (LA)-almost every λ′ ∈ EP (LA), the last expression
equals ∫

EP (LA)×G
m(λ′)ϕ(g)

∫
ELA

χ0(λ, g) dβλ′(λ) d(βP (LA) ⊗ νG)(λ′, g),

whence the result by the arbitrariness of m and ϕ.

Proposition 4.15. Assume that the following conditions hold:

1. σ(LA) is subanalytic;

2. σ(P (LA)) is Nash subanalytic;

3. P (LA) is a Rockland family;

4. LA satisfies property (S)C .

Then, P (LA) satisfies property (S)C .

Proof. This follows from Proposition 4.13 and Theorem 2.29.

The following result deals with a rather simple case in which Proposition 4.15 may not be
applicable.

Proposition 4.16. Assume that the following conditions hold:

1. Card Γ = 1 and P is linear;

2. the closure of σ(LA) with respect to the Zariski topology is ELA ;

3. P (LA) is a Rockland family.

Then, the following hold:

(i) if LA satisfies property (S)C , then P (LA) satisfies property (S)C ;
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(ii) if LA satisfies property (S), then P (LA) satisfies property (S).

As an application, one may prove that, if L is a sub-Laplacian on a Heisenberg group Hn,
and if T is an element of the centre of the Lie algebra of Hn, then the family (L+ iT ) satisfies
property (S) whenever it is Rockland.

Proof. Both assertions are consequences of the following statement:
‘If m ∈ Cb(EP (LA)) and m ◦ P equals an element of S(ELA) on σ(LA), then m equals an

element of S(EP (LA)) on σ(P (LA)).’
Then, take m ∈ Cb(EP (LA)), and assume that there is m1 ∈ S(ELA) such that m ◦ P = m1

on σ(LA). Notice that we may take Σ ⊆ σ(LA) so that σ(LA) ⊆
⋃
r>0 rΣ,2 and P (x) = ±1

for every x ∈ Σ. Define Σ± as the set of x ∈ Σ such that P (x) = ±1, so that Σ is the disjoint
union of Σ− and Σ+. Take x in Σ± (if not empty). Then, m1(λx) = m(±λ) for every λ > 0,
so that m coincides with a Schwartz function on R±. If either Σ− or Σ+ is empty, then the
assertion follows. Now, assume that Σ−,Σ+ 6= ∅. Notice that there is ε ∈ { −,+ } such that
the closure of

⋃
r>0 rΣε with respect to the Zariski topology is ELA . Then, take k ∈ N and let

Pk be the Taylor polynomial of order k of m1 about 0; in addition, let P−,k and P+,k be the
left and right Taylor polynomials of order k, respectively, of m about 0. Then, the polynomial
Pk − (P±,k ◦ P ) vanishes on

⋃
r>0 rΣ±, so that Pk = Pε,k ◦ P . Hence, m(k)

− (0) = m
(k)
+ (0) for

every k ∈ N, so that we may take m2 := m by the arbitrariness of k, and we are done.

Further results concerning properties (RL) and (S) may be proved making use of the results
of Sections 2.3 and 2.4.

4.4 Functional Equivalence and Completeness
In this section, LA and L′A′ denote two Rockland families on a homogeneous group G.

Definition 4.17. LA and L′A′ are equivalent if they generate the same algebra.

In other words, LA and L′A′ are equivalent if and only if there are two polynomial mappings
with homogeneous components P : ELA → EL′

A′
and Q : EL′

A′
→ ELA such that P (LA) = L′A′

and Q(L′A′) = LA. Therefore, the results of Section 4.3 show that P and Q induce two
isomorphisms between SELA ,0(σ(LA)) and SEL′

A′
,0(σ(L′A′)) which are inverse of one another,

and that LA satisfies property (RL), (S), (S)C , etc., if and only if L′A′ satisfies property (RL),
(S), (S)C , etc., respectively.

Therefore, our analysis truly depends only on the algebra generated by the chosen Rockland
family; nevertheless, we shall not pursue this approach any further. Instead, let us state the
following definition

Definition 4.18. LA and L′A′ are functionally equivalent if D′LA(G) = D′LA(G).

In other words, LA and L′A′ are functionally equivalent if and only if there are two measurable
mappings m1 : ELA → EL′

A′
and m2 : EL′

A′
→ ELA such that m1(LA) = L′A′ and m2(L′A′) =

LA.
Notice that this kind of equivalence is much weaker than the preceding one; for example,

properties (RL) and (S) are not preserved by functional equivalence.

Definition 4.19. LA is complete if it generates the unital algebra (UC(g))LA .

Proposition 4.20. LA is complete if and only if every Rockland family which is functionally
equivalent to LA is actually an image family of LA.

Proof. One implication is clear. Then, assume that every Rockland family which is function-
ally equivalent to LA is actually an image family of LA, and take T ∈ A := (UC(g))LA . Let
T1, . . . , Tk be the homogeneous components of T , and let δ1, . . . , δk be their (positive) homo-
geneous degrees. Now, take 0 < r1 < · · · < rk, and observe that the matrix (r

δj2
j1

)j1,j2=1,...,k

is invertible by [73]. Since (rj1 · )∗T =
∑k
j2=1 r

δj2
j1
Tj2 ∈ A for every j1 = 1, . . . , k (cf. Propo-

sition 3.7), it follows that T1, . . . , Tk ∈ A. Then, the family obtained by adding to LA the
2Notice that here we consider scalar multiplication, and not the dilations of ELA .
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left-invariant differential operators associated with the Tj such that δj > 0 is a Rockland fam-
ily, and is functionally equivalent to LA. Therefore, the operators T1, . . . , Tk belong to the
unital algebra generated by LA, so that also T does. The assertion follows.

Observe, in addition, that property (S) implies completeness, even though the converse fails
in general (cf. Proposition 7.52).

Proposition 4.21. If LA satisfies property (S), then it is complete.

Proof. Assume that LA is not complete, so that Proposition 4.20 implies that there is m ∈
M(µLA ;UC(g)) such that KLA(m) is homogeneous of homogeneous degree δ > 0, and such that
m is not equal βLA -almost everywhere to any polynomials.

Set k := min{ h ∈ N : δ 6 hminα∈A δα },3 and assume by contradiction that m ∈ Ck(ELA).
Then [43, Theorem 1.37] implies that there is a family with finite support (Pδ′)06δ′6δ, where
Pδ′ is a homogeneous polynomial of homogeneous degree δ′ for every δ′ ∈ [0, δ], such that

m(λ) =
∑

06δ′6δ

Pδ′(λ) + o
(
|λ|δ
)

as λ→ 0. Now, recall that we have m(r ·λ) = rδm(λ) for every r > 0 and for βLA-almost every
λ ∈ ELA . Since m is continuous, the preceding equality holds for every λ ∈ σ(LA). Now, fix a
non-zero λ ∈ σ(LA). Then, we have

rδm(λ) = m(r · λ) =
∑

06δ′6δ

Pδ′(r · λ) + o
(
|r · λ|δ

)
=

∑
06δ′6δ

rδ
′
Pδ′(λ) + o

(
rδ
)

for r → 0+, so that Pδ′(λ) = 0 for every δ′ ∈ [0, δ[ and Pδ(λ) = m(λ). Therefore, we have
m = Pδ on σ(LA): contradiction.

Hence, if we take τ ∈ S(ELA) so that τ(λ) > 0 for every λ ∈ ELA , then mτ is not equal
βLA -almost everywhere to any elements of S(ELA), but

KLA(mτ) = KLA(τ) ∗ KLA(m) ∈ S(G)

by Corollary 3.12, so that LA does not satisfy property (S).

It therefore seems reasonable to only work with complete families; nevertheless we have not
been able to prove that any Rockland family has a ‘completion,’ that is, that (UC(g))LA is a
finitely generated algebra for every Rockland family LA, so that the notion of complete families
is of limited use.

3Recall that δα is the homogeneous degree of Lα; we assume, for the sake of convenience, that no Lα is zero.



Chapter 5

Mihlin Multipliers and
Calderón-Zygmund Kernels

In this chapter we shall generalize to Rockland families a classical result about the correspon-
dence between kernels which satisfy ‘Calderón-Zygmund conditions of order∞’ and multipliers
which satisfy ‘Mihlin conditions of order ∞’ (cf. [64, Theorems 2.1.11 and 2.2.1]).

We identify G with Rn by means of a homogeneous basis X1, . . . , Xn of left-invariant vector
fields (and the group exponential map); Y1, . . . , Yn denotes the corresponding basis of right-
invariant vector fields. In addition to that, we shall assume that the homogeneous degrees
d1, · · · ,dn of X1, . . . , Xn are ordered so that d1 6 . . . 6 dn. If γ ∈ Nn, we define dγ :=
γ1d1 + · · ·+ γndn. In this chapter we shall write K(j) instead of 2jQK(2j · ) for K ∈ L1

loc(G).
Let us now define what we mean by ‘Calderón-Zygmund kernels.’

Definition 5.1. Define KZ(G) as the space of tempered distributions K on G which coincide
with a C∞ function on G∗ := G \ { e } and satisfy the following conditions:

1. (‘Size conditions’) for every γ ∈ Nn, there is Cγ > 0 such that

|(XγK)(x)| 6 Cγ

|x|Q+dγ

for every x 6= e;

2. (‘Cancellation conditions’) there is C > 0 such that

|〈K, η(δ · )〉| 6 C

for every δ > 0 and for every η ∈ D(G) such that Supp(η) ⊆ B(0, 1) and ‖η‖∞,
‖X1η‖∞, . . . , ‖Xnη‖∞ 6 1 (‘normalized bump functions’).

We shall endow KZ(G) with the norms

K 7→ sup
|γ|6k

sup
x∈G∗

|x|Q+dγ |(XγK)(x)|+ sup
η∈DB(0,1)(G)

‖η‖∞,‖X1η‖∞,...,‖Xnη‖∞61

sup
δ>0
|〈K, η(δ · )〉|,

as k runs through N.

Then, let us define what we mean by ‘Mihlin-Hörmander multipliers.’ Recall that δα is the
homogeneous degree of Lα for every α ∈ A, 1 if Lα = 0; define δγ :=

∑
α∈A γαδα for every

γ ∈ NA.

Definition 5.2. DefineMH(ELA) as the space of m ∈ C∞(E∗LA), where E∗LA = ELA \ { 0 },
such that for every γ ∈ Nn there is Cγ > 0 such that

|(∂γm)(λ)| 6 Cγ

|λ|δγ

81
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for every λ ∈ E∗LA . We shall endowMH(ELA) with the norms

m 7→ sup
|γ|6k

sup
λ∈E∗

|λ|δγ |(∂γm)(λ)|,

as k runs through N.

Then, with routine arguments one may prove the following results (cf., for example, [64,
Theorem 2.2.1]).

Lemma 5.3. Let K be a bounded subset of S(G)Z such that Kj has integral 0 for every (Kj) ∈ K
for every j ∈ Z.

Then, for each (Kj) ∈ K the sum
∑
j∈ZK

(j)
j converges absolutely in E(G∗) and in S ′(G).

In addition, the set of
∑
j∈ZK

(j)
j , as (Kj) runs through K, is bounded in KZ(G).

Lemma 5.4. Let M be a bounded subset of S(ELA)Z such that mj(0) = 0 for every (mj) ∈M
and for every j ∈ Z.

Then, for each (mj) ∈M the sum
∑
j∈Zmj(2

j · ) converges absolutely in E(E∗). In addition,
the set of

∑
j∈Zmj(2

j · ), as (mj) runs through M, is bounded inMH(ELA).

Taking into account the fact that KLA maps S(ELA) into S(G) continuously, we deduce the
following result.

Corollary 5.5. KLA mapsMH(ELA) into KZ(G) continuously.

We now want to prove a converse of the preceding statement. In order to do that, we first
need to define in a reasonable way the set of elements of KZ(G) which ought to be kernels
corresponding to multipliers in MH(ELA). On the one hand, the space KZLA(G) of kernels
belonging to KZ(G) is too large for our purposes, unless LA satisfies property (S). On the
other hand, the closure of KLA(S(ELA)) in KZ(G) is too small; since we have not been able
to describe its weak closure, we do not know if it would be a reasonable choice. Therefore, we
shall make use of the following definition.

Definition 5.6. Define KZ(G,LA) as the union of the closures in S ′w(G) of the subsets of
S(G,LA) which are bounded in KZ(G).

Then, we can state the announced converse.

Theorem 5.7. Assume LA satisfies property (S)C , and let K be a subset of S ′(G). Then, the
following conditions are equivalent:

(i) K is a bounded subset of KZ(G,LA);

(ii) there is a bounded family (mK)K∈K of elements of MH(ELA) such that K = KLA(mK)
for every K ∈ K;

(iii) there is a bounded family (mK,j)K∈K,j∈Z of elements of S(ELA) which vanish at 0 such
that K =

∑
j∈ZKLA(mK,j)

(j) in S ′w(G) for every K ∈ K;

(iv) there is a bounded family (HK,j)K∈K,j∈Z of elements of KLA(S(ELA)) with integral 0 such
that K =

∑
j∈ZH

(j)
K,j in S ′w(G) for every K ∈ K.

Furthermore, KLA induces a strict morphism ofMH(ELA) onto KZ(G,LA).

In particular, KZ(G,LA) is closed in KZ(G).
In order to prove Theorem 5.7, we need the following proposition.

Proposition 5.8. Let K be a bounded subset of KZ(G), ϕ ∈ S(G), and k ∈ d ·Nn. Assume
that 〈ϕ|P 〉 = 0 for every polynomial of homogeneous degree < k. Then, for every homogeneous
differential operator X with continuous coefficients on G∗ and with homogeneous degree d, there
is a constant CX > 0 such that

|X(K ∗ ϕ)(x)| 6 CX

|x|Q+k+Red

for every x ∈ G∗ and for every K ∈ K.
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In particular, for k = 0 we see that KZ(G) embeds continuously intoW∞,−∞,p(G) for every
p ∈]1,∞] and, analogously, into W−∞,∞,p(G) (cf. Corollary 1.77).

Proof. Fix η ∈ Nn and take τ ∈ D(G) such that χB(0,1) 6 τ 6 χB(0,2). Notice that by
Proposition 2.18 there is a family with finite support (ϕk,γ)dγ>k of elements of S(G) such that

ϕ =
∑

dγ>k

Yγϕk,γ .

Then, for every K ∈ K,

Yη(K ∗ ϕ) =
∑
γ

Yη(K ∗ (Yγϕk,γ)) =
∑
γ

(Xγn
n . . . Xγ1

1 YηK) ∗ ϕk,γ

For every K ∈ K and for every γ, define K0,γ,η := τ(Xγn
n . . . Xγ1

1 YηK) and K∞,γ,η := (1 −
τ)(Xγn

n . . . Xγ1

1 YηK). Set dγ,η := Q+ dγ + dη. Then, for every γ there is a constant Cγ,η > 0
such that

|K∞,γ,η(x)| 6 Cγ,η

|x|dγ,η

for every x ∈ G. In particular, this implies that |K∞,γ,η(x)| 6 Cγ,η for every x ∈ G, so that we
may assume that

|K∞,γ,η(x)| 6 Cγ,η
(1 + |x|)dγ,η

for every x ∈ G. Take C > 0 such that |xy| 6 C(|x|+ |y|) for every x, y ∈ G. Then,∥∥(1 + | · |)dγ,η (K∞,γ,η ∗ ϕk,γ)
∥∥
∞ 6 Cdγ,η

∥∥((1 + | · |)dγ,η |K∞,γ,η|
)
∗
(
(1 + | · |)dγ,η |ϕk,γ |

)∥∥
∞

6 Cdγ,ηCγ,η
∥∥(1 + | · |)dγ,ηϕk,γ

∥∥
1

for every K ∈ K. Therefore, there is constant C ′γ,η such that

|(K∞,γ,η ∗ ϕk,γ)(x)| 6
C ′γ,η

(1 + |x|)Q+dγ+dη

for every x ∈ G.
Next, notice that

(K0,γ,η ∗ ϕk,γ)(x) = 〈K0,γ,η, Lxϕ̌k,γ〉 = (−1)|γ|+|η|〈K,Y ηnn . . . Y η1

1 Xγ(τLxϕ̌k,γ)〉.

Now, the set of
(1 + |x|)dγ,ητLxϕ̌k,γ ,

as x runs through G, is bounded in DB(0,2)(G). By the cancellation conditions, this proves that
there is a constant C ′′γ,η > 0 such that

|(K0,γ,η ∗ ϕk,γ)(x)| 6
C ′′γ,η

(1 + |x|)Q+dγ+dη

for every x ∈ G. Therefore,

|Yη(K ∗ ϕ)(x)| 6 1

(1 + |x|)Q+k+dη

∑
γ : ϕk,γ 6=0

(C ′γ,η + C ′′γ,η).

This proves the first assertion when X has the form Yη for some η. Now, let X be arbitrary.
Then, there is a unique family with finite support of continuous functions (fη) such that

X =
∑
η

fηY
η.

Moreover, by uniqueness and homogeneity, fη is homogeneous of degree dη − d for every η.
Therefore, it is easily seen that there is C ′ > 0 such that

|X(K ∗ ϕ)(x)| 6 C ′

|x|Q+k+Red

for every x ∈ G∗.
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Proof of Theorem 5.7. 1. Let us first prove the implication (ii) =⇒ (iii). Take a positive func-
tion ϕ ∈ D(E∗LA) such that

∑
j∈Z ϕ(2j · ) = χE∗ ; define ψ := KLA(ϕ) and mK,j := mK(2−j · )ϕ.

It is easily seen that the family (mK,j)K,j is bounded in S(ELA). In addition, mK,j(0) = 0,
and, since the sum

∑
j∈ZmK,j(2

j · ) converges pointwise and boundedly to mK on E∗LA , the
sum

∑
j∈ZmK,j(2

jLA) converges pointwise to mK(LA). Hence, K = KLA(mK).
2. Now, consider the implications (iii) =⇒ (iv) and (iv) =⇒ (i). By hypothesis, the set

of HK,j := KLA(mK,j), as K runs through K and j runs through Z, is bounded in S(G,LA);
furthermore, its elements have integral 0 by Corollary 3.49. This proves the implication (iii) =⇒
(iv). Now, Lemma 5.3 implies that the set of

∑
j∈J H

(j)
K,j , as K runs through K and J runs

through the set of finite subsets of Z, is bounded in KZ(G) and contained in S(G,LA). Hence,
K is a bounded subset of KZ(G) contained in KZ(G,LA). This proves the implication (iv) =⇒
(i).

3. Notice that, by the way, we have proved that that KLA mapsMH(ELA) into KZ(G,LA)
continuously. Indeed, the implication (ii) =⇒ (i) shows that KLA maps MH(ELA) into
KZ(G,LA) boundedly, and the assertion follows from the fact that MH(ELA) is a Fréchet
space.

4. Let us now prove the implication (iii) =⇒ (ii). Indeed, define mK :=
∑
j∈ZmK,j(2

j · )
in E(E∗LA); by Lemma 5.4, this definition is well-posed; furthermore, the set of mK , as K runs
through K, is bounded inMH(ELA). Lemma 5.4 also implies that the set of

∑
j∈J mK,j(2

j · ), as
K runs through K and J runs through the set of finite subsets of Z, is bounded inMH(ELA).
Hence, the sum

∑
j∈ZmK,j(2

j · ) converges pointwise and boundedly to mK on E∗LA . This
proves that K =

∑
j∈ZKLA(mK,j)

(j) = KLA(mK) in S ′(G) by Lemma 3.17.
5. Assume that K is a bounded subset of KZ(G,LA). Take some ϕ ∈ D(E∗LA) such that∑
j∈Z ϕ(2j · )2 = χE∗LA

, and define ψ := KLA(ϕ). We shall prove that there is a bounded family
(mK,j)K∈K,j∈Z of elements of D(E∗LA) such that KLA(mK,j) = K(−j) ∗ ψ ∗ ψ.1 Indeed, define
L :=

∑
α∈A L2

α. Then L is a left-invariant differential operator without constant term. Further,
for every k ∈ N the mapping λ 7→ 1

‖λ‖2kϕ(λ) belongs to S(ELA), so that there is ψk ∈ S(G,LA)

such that ψ = Lkψk. Since the set of K(−j), as K runs through K and j runs through Z, is
bounded in KZ(G), Proposition 5.8 implies that the set of K(−j) ∗ ψ, as K runs through K
and j runs through Z, is bounded in S(G,LA) (cf. 6 below). Hence, there is a bounded family
(m̃K,j)K∈K,j∈Z of elements of S(ELA) such that KLA(m̃K,j) = K(−j) ∗ ψ for every K ∈ KLA
and for every j ∈ Z. Define mK,j := m̃K,jϕ for every K ∈ K and j ∈ Z. Then (mK,j) is a
bounded family of elements of D(E∗LA), and KLA(mK,j) = K(−j) ∗ ψ ∗ ψ.

6. Now we prove that KLA mapsMH(ELA) onto KZ(G,LA). Indeed, let K ∈ KZ(G,LA).
Then there is a bounded subset B of KZ(G) contained in S(G,LA) such that K belongs to
the closure B of B with respect to the topology induced by S ′w(G). Since S(G) is barrelled,
and since B is pointwise bounded, it follows that B is equicontinuous, so that also B is. Now,
since S(G) is a Fréchet-Montel space, it is separable, so that the uniformity induced on B by
S ′w(G) is metrizable. Hence, there is a sequence (Kk) of elements of B which converges to K in
S ′w(G). By 4 and 5, there is a bounded sequence (mk) in MH(ELA), whose elements belong
to S(ELA), such that KLA(mk) = Kk for every k ∈ N. Now, the sequence (mk) is obviously
bounded in E(E∗LA); since this latter space is a Fréchet-Montel space, we may assume that (mk)
converges to some m in E(E∗LA). It is then easily verified that m belongs toMH(ELA). Notice
that then (mk) converges pointwise and boundedly to m on E∗LA , so that KLA(m) = K.

7. Now, the implication (i) =⇒ (iii) is an easy consequence of 5 and 6 (use Lemma 5.3 to
prove that K =

∑
j∈ZKLA(mK,j)

(j) in S ′w(G)). Finally, KLA is a strict morphism thanks to
the implication (i) =⇒ (ii) and to the fact that KZ(G,LA) is a metrizable space.

Corollary 5.9. If LA satisfies property (S), then KZLA(G) = KZ(G,LA). In other words,
if an element of KZ(G) corresponds to some multiplier, then this multiplier can be taken in
MH(ELA).

Proof. Observe first that property (S) implies property (S)C thanks to Proposition 3.15, so
that Theorem 5.7 applies; in particular, KZ(G,LA) ⊆ KZLA(G). Now, take K ∈ KZLA(G),

1Notice that, since convolution of Schwartz functions is associative, the formulaK(−j)∗ψ∗ψ is not ambiguous.
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and take a positive function τ ∈ D(ELA) such that τ vanishes in a neighbourhood of 0 and∑
j∈Z

τ(2j · ) = χE∗LA

pointwise, and define ϕ := KLA(τ). Reasoning as in the proof of Theorem 5.7 and taking
Proposition 5.8 into account, we see that (K∗ϕ(j))j∈Z is a bounded family in S(G) with integral
0. In addition, K ∗ ϕ(j) ∈ SLA(G) = S(G,LA) for every j ∈ Z, thanks to Corollary 3.12. Since
K =

∑
j∈ZK∗ϕ(j) in S ′w(G), Theorem 5.7 implies that K ∈ KZ(G,LA), whence the result.

Now we consider a converse of Proposition 5.8. Namely, we want to show that, if a Schwartz
function ϕ convolves all Calderón-Zygmund kernels into the Schwartz space, then all the mo-
ments of ϕ must vanish. Actually, we shall prove a somewhat more precise version of this result,
since we shall show how much faster than a Calderón-Zygmund kernel should K ∗ ϕ decay, for
all K, in order that the moments of ϕ, up to a certain homogeneous degree, should vanish.

The following lemma allows us to find, for every Schwartz function ψ, a differential operator
X such that ψ and Xϕ have the same moments up to a fixed homogeneous degree. Here, ϕ is a
function whose moments, except for the 0-th, vanish. This will allow us to reason by induction
in the result which follows.

Lemma 5.10. Let ϕ be an element of S(G) such that
∫
G
ϕ(x)xβ dx = δβ,0 for every β. Then,

for every ψ ∈ S(G) and for every k ∈ d ·Nn, there is a finite family (cβ)dβ6k such that∫
G

ψ(x)xγ dx =
∑

dβ6k

cβ

∫
G

(Xβϕ)(x)xγ dx

for every γ such that dγ 6 k. Further, if there is some h < k such that
∫
G
ψ(x)xγ dx = 0

whenever dγ 6 h, then we may take (cβ) so that cβ = 0 whenever dβ 6 h.

Proof. Notice that the hypothesis on ϕ means that∫
G

ϕP dνG = P (e)

for every polynomial mapping P on G. Now, Corollary 2.15 implies that for every β there is a
polynomial Pβ of homogeneous degree dβ such that

(Xγn
n . . . Xγ1

1 Pβ)(e) = δβ,γ

for every γ. Notice that this implies that the family (Pβ)dβ6k is a basis of the space of poly-
nomials of homogeneous degree at most k. Therefore, for every β such that dβ 6 k there is a
finite family (cβ,β′)dβ′6k of real numbers such that

xβ =
∑

dβ′6k

cβ,β′Pβ′(x)

for every x ∈ G.
Set cβ := (−1)|β|

∫
G
ψ Pβ dνG for every β such that dβ 6 k. Then,∫

G

ψ(x)xγ dx =
∑

dβ′6k

cγ,β′(−1)|β
′|cβ′

=
∑

dβ ,dβ′6k

cγ,β′(−1)|β
′|cβ′(X

βn
n . . . Xβ1

1 Pβ′)(e)

=
∑

dβ ,dβ′6k

cγ,β′(−1)|β|cβ

∫
G

ϕXβn
n . . . Xβ1

1 Pβ′ dνG

=
∑

dβ ,dβ′6k

cγ,β′cβ

∫
G

(Xβϕ)Pβ′ dνG

=
∑

dβ6k

cβ

∫
G

(Xβϕ)(x)xγ dx,

where the third equality holds since
∫
G
ϕXβn

n . . . Xβ1

1 Pβ′ dνG = (Xβn
n . . . Xβ1

1 Pβ′)(e) = δβ,β′ .
The last assertion follows easily from the definition of (cβ).
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Here we state the ‘converse’ of Proposition 5.8. Notice that the conditions on the decay of
the convolution K ∗ϕ are not the same as those we found in Proposition 5.8. Nevertheless, this
had to be expected, since there K was fixed and ϕ varied, while now ϕ is fixed and K varies;
this asymmetry is reflected by the asymmetry of the statements.

The main strategy of the proof is to essentially reduce to the case in which k = 0, which
is relatively easy to handle. This is accomplished by several manipulations which employ both
Lemma 5.10 and Proposition 5.8.

Proposition 5.11. Let k ∈ d ·Nn, ε > 0, and ϕ ∈ S(G). Assume that for every K ∈ KZ(G)
there is a constant CK > 0 such that

|(Xβ(K ∗ ϕ))(x)| 6 CK

|x|Q+dβ+ε

for every β such that dβ 6 k and for every x ∈ G∗. Then,
∫
G
ϕP dνG = 0 for every polynomial

of homogeneous degree at most k.
The same conclusion holds if K ∗ ϕ is replaced by ϕ ∗K in the above hypothesis.

Proof. 1. Let us prove that for every K ∈ KZ(G) and for every continuous homogeneous
differential operator X of homogeneous degree d 6 k, there is a constant CK,X > 0 such that

|(X(K ∗ ϕ))(x)| 6 CK,X
(1 + |x|)Q+d+ε

for every x ∈ G. Indeed, notice first that there is a unique family with finite support (fβ) of
continuous functions such that

X =
∑
β

fβX
β .

By uniqueness and homogeneity we then infer that fβ is homogeneous of degree dβ − d for
every β. Further, there is a constant CX > 0 such that sup

|x|=1

|fβ(x)| 6 CX for every β, so that,

|(X(K ∗ ϕ))(x)| 6 NXCXCK

|x|Q+d+ε

for every x ∈ G∗, where NX is the cardinality of the support of (fβ). Next, notice that
Proposition 5.8 implies that X(K ∗ ϕ) is bounded. Hence, we may find a constant CK,X > 0
such that

|(X(K ∗ ϕ))(x)| 6 CK,X
(1 + |x|)Q+d+ε

as claimed.
It is now clear that the second assertion of the statement follows from the first one, applied

to the opposite group of G.
2. Now, assume by contradiction that

∫
G
ϕ(x)xβ 6= 0 for some β such that dβ 6 k. Without

loss of generality, we may assume that
∫
G
ϕ(x)xβ = 0 for every β such that dβ < k. We shall

prove that, for every ψ ∈ S(G) with integral 1 and for every K ∈ KZ(G), there is a constant
CX,ψ,K > 0 such that

|(X(K ∗ ψ))(x)| 6 CX,ψ,K
(1 + |x|)Q+k′

for every x ∈ G. Here, k′ is the minimum between k + ε and the least element of d ·Nn which
is strictly greater than k.

Take ψ1 ∈ S(G) such that
∫
G
ψ1 P dνG = P (e) for every polynomial P .2 Then, there is a

finite family (cβ)dβ=k of real numbers such that, once we define X :=
∑

dβ=k cβX
β , we have∫

G
(ϕ−Xψ1)P dνG = 0 for every polynomial of homogeneous degree at most k (cf. Lemma 5.10).

Hence, Proposition 5.8 implies that for every K ∈ KZ(G) there is C ′X,K > 0 such that

|(K ∗ (ϕ−Xψ1))(x)| 6
C ′X,K

(1 + |x|)Q+k′

2It suffices to take ψ1 so that its euclidean Fourier transform is identically 1 in a neighbourhood of 0.
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for every x ∈ G. Take any ψ ∈ S(G) with integral 1. Then, Proposition 5.8 implies that there
is C ′X,ψ,K > 0 such that

|K ∗ (Xψ1 −Xψ))(x)| = |X(K ∗ (ψ1 − ψ))(x)| 6
C ′X,ψ,K

(1 + |x|)Q+k′

for every x ∈ G. Combining these inequalities with 1, we infer that there is CX,ψ,K > 0 such
that

|(X(K ∗ ψ))(x)| 6 CX,ψ,K
(1 + |x|)Q+k′

for every x ∈ G.
3. Now, Lemma 2.14 implies that there are a non-zero homogeneous right-invariant differen-

tial operator Y of homogeneous degree k and a family with finite support (Pβ) of homogeneous
polynomials such that

X = Y +
∑

dβ>k

PβY
β .

Moreover, Pβ has homogeneous degree dβ − k and does not depend on the xj of greatest
homogeneous degree. Therefore,

|((Y K) ∗ ψ)(x)| = |(X(K ∗ ψ))(x)| 6 CX,ψ,K
(1 + |x|)Q+k′

for every K ∈ KZ(G), for every ψ ∈ S(G) and for every x ∈ G such that xj = 0 if dj < dn.3
In particular, this holds for x = (0, . . . , 0, xn) for every xn ∈ R.

Now, fix x̃ = expG(tXn), where t is fixed so that |x̃| = 1. Then, there is a polynomial P
such that (Y P )(x̃) = 2. Take τ1, τ2 ∈ D(G) such that the following hold:

1. τ1 and τ2 are supported on the set C of x ∈ G such that 3
4 < |x| <

3
2 ;

2. τ1τ2 = 0;

3. Pτ1 − τ2 has zero integral;

4. τ1 is identically 1 on B(x̃, 2r) for some r > 0 such that (Y P )(x) > 1 for every x ∈ B(x̃, r)
and B(x̃, 2r) is contained in C;4

Define K =
∑
j∈Z(Pτ1 − τ2)(j), so that K(j) = K and K ∈ KZ(G) for every j ∈ Z by

Lemma 5.3. Furthermore,

(Y K)(x) = 2j(Q+k)(Y P )(2j · x) > 2j(Q+k)

for every x ∈ 2−j · B(x̃, r) and for every j ∈ Z. Now, take a positive ψ ∈ D(G) which is
supported on B(e, r) and has integral 1. Then, for every j ∈ N,

(2j · x̃)B(e, r) = B(2j · x̃, r) ⊆ B(2j · x̃, 2jr) = 2j ·B(x̃, r),

so that

((Y K) ∗ ψ)(2j · x̃) =

∫
G

(Y K)((2j · x̃)x)ψ(x−1) dx > 2−j(Q+k) =
1

|2j · x̃|Q+k
.

This contradicts the estimate |((Y K) ∗ ψ)(x)| 6 CX,ψ,K
(1+|x|)Q+k′ of 2. The proof is complete.

Finally, we state as a corollary the cleaner result which one obtains by considering the
limiting case k →∞ of Propositions 5.11 and 5.8.

Corollary 5.12. Let ϕ ∈ S(G). Then, the following conditions are equivalent:

1.
∫
G
ϕP dνG = 0 for every polynomial P ;

3Indeed, for such x, Pβ(x) = Pβ(0) = 0 for every β such that dβ > k.
4Here, the balls are relative to the left-invariant quasi-distance induced by | · |; in other words, B(x, r) is the

set of y ∈ G such that |x−1y| < r. Then, B(x, r) = xB(e, r).
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2. for every k ∈ N there is a finite family (ϕk,β), with dβ > k, of elements of S(G) such
that ϕ =

∑
dβ>k

Xβϕk,β;

3. for every k ∈ N there is a finite family (ϕ̃k,β), with dβ > k, of elements of S(G) such
that ϕ =

∑
dβ>k

Yβϕ̃k,β;

4. the mapping K 7→ K ∗ ϕ induces a continuous homomorphism of KZ(G) into S(G);

5. the mapping K 7→ ϕ ∗K induces a continuous homomorphism of KZ(G) into S(G).

Proof. 1 ⇐⇒ 2 ⇐⇒ 3. This follows from Corollary 2.18.
2 =⇒ 4. Since KZ(G) is a Fréchet space, the result follows from Proposition 5.8.
4 =⇒ 2. This follows from Proposition 5.11.
3 ⇐⇒ 5. This is the equivalence 2 ⇐⇒ 4, applied to the opposite group of G.



Chapter 6

Abelian Groups

6.1 General Properties
Here, we consider the case of a general family of operators on an abelian group. We present

first the easy consequences of the results of Section 4.3. Then, we proceed to finer results in
some particular cases.

Proposition 6.1. Let G be the group Rn endowed with a family of dilations, denote by ∂ the
family (∂1, . . . , ∂n) of partial derivatives, and define LA = P (−i∂) for some finite family of
polynomials P = (Pα)α∈A in n variables. Then, the following hold:

1. LA is an admissible family;

2. σ(P (LA)) = P (E−i∂);

3. m ∈M(µLA ;D′w(G)) if and only if m ◦ P ∈ F(W−∞,2(G)); in this case,1

KLA(m) = F−1(m ◦ P ).

Proof. All statements follow easily from Proposition 4.12 and from the properties of the Fourier
transform.

Proposition 6.2. Keep the notation of Proposition 6.1. Then, LA is a Rockland family if and
only if P is proper; in this case, LA satisfies property (S)C .

Next, let r be the maximum rank of P ′ and set cλ :=
∫
P−1(λ)

1
JrP (λ′)dHn−r(λ′) for Hr-almost

every λ ∈ σ(LA). Then,

βLA =
1

(2π)n
c χσ(LA) · Hr,

and
χLA(λ, g) =

1

cλ

∫
P−1(λ)

1

JrP (λ′)
eiλ
′g dHn−r(λ′)

for (βLA ⊗ νG)-almost every (λ, g).

Proof. The first assertion follows from Propositions 4.13 and 4.15, since σ(LA) is semi-algebraic
by [29, Corollary 2.4], hence Nash subanalytic.

The second assertion then follows from Propositions 4.14 and 2.26.

Proposition 6.3. Keep the notation of Proposition 6.1. If P is proper and β−i∂ is P -connected,
then LA satisfies property (RL).

Proof. Keep the notation of Proposition 6.2. Notice that [75, Theorem 1] implies that P−1(λ)
is an analytic submanifold of E−i∂ for Hr-almost every λ ∈ σ(LA), hence for βLA -almost every
λ ∈ ELA . In addition, if P−1(λ) is an analytic submanifold of E−i∂ , then χP−1(λ) · Hn−r has
support P−1(λ). Then, the assertion follows from Proposition 2.21.

1Here, the Fourier transform is computed with respect to the identification of G and E−i∂ with Rn by means
of the chosen basis ∂.
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Remark 6.4. Here we show a proper polynomial mapping P : R2 → R2 with homogeneous
components such that there is a βP (−i∂)-measurable non-continuous function (m1,m2) : R2 →
R2 such that m1(P (−i∂)) = −∂2

1 and m2(P (−i∂)) = −∂2
2 . This example was communicated

to the author by J. M. Gamboa.
Define P (1) : R2 3 (x, y) 7→ (x2, y2) ∈ R2 and let P (2) be the polynomial mapping from

R2 into R2 which corresponds to C 3 z 7→ z4 ∈ C under the identification R2 3 (x, y) 7→
x+ iy ∈ C; define P := P (2) ◦P (1). It is easily seen that P is a proper polynomial mapping with
homogeneous components. In addition, the image of P (1) is R2

+, while P (2) induces a bijection
between

(
R+ ×R∗+

)
∪{ (0, 0) } and R2. Let (m1,m2) be the inverse bijection. Then, it is clear

that (m1,m2) ◦ P = P (1) on R×R∗, hence β−i∂-almost everywhere. The assertion follows.
Notice, in addition, that (m1,m2) does not equal βP (−i∂)-almost everywhere a continuous

function, so that P (−i∂) does not satisfy properties (RL) and (S).

6.2 The Case of One Operator
In this and the following section, we consider some special cases. The first special case is

that of one positive operator with arbitrary order. Before we do that, we need to establish a
few technical results.

Lemma 6.5. Take k, d ∈ N∗ and define P (x) = xd for every x ∈ R. Take a function
m : P (R)→ C and assume that the following conditions hold:

1. m ◦ P is of class Ckd on R;

2. (m ◦ P )(h)(0) = 0 if h 6 kd and d does not divide h.

Then m extends to an element of Ck(R).

The proof is simple and left to the reader.

Lemma 6.6. Let A be a non-empty finite set and endow E := RA with the structure of a
homogeneous group. Take a positive, non-constant, homogeneous polynomial P in R[A] and
assume that there is a homogeneous element x of E such that P (x) 6= 0. Then, the following
statements are equivalent:

1. there are no positive polynomials Q ∈ R[A] and no k ∈ N such that k > 2 and P = Qk;

2. if m is a complex-valued function defined on R+ such that m ◦ P is C∞ on E, then m
may be extended to an element of C∞(R).

Notice that, if P is not required to be positive, but vanishes only at 0, then a similar assertion
still holds. Indeed, if P is negative, then it suffices to consider −P , while if P does not keep a
constant sign, then A has one element and the assertion is trivial.

Proof. 1 =⇒ 2. Take m : R+ → C and assume that m ◦P is C∞ on E. Notice that there is a
homogeneous polynomial Px ∈ R[X] such that P (λx) = Px(λ) for every λ ∈ R.2 In particular,
m ◦ Px is of class C∞. In addition, Px(X) = axX

dx for some ax > 0 and dx ∈ 2Z∗+, so that m
is of class C∞ on R∗+. Further, m ◦ Px admits a Taylor development

∑
j∈N ajX

j at 0, so that

m admits the asymptotic development
∑
j∈N ax,jλ

j
dx for λ→ 0+, where ax,j :=

aj

a
1/dx
x

for every
j ∈ N. Suppose that there are some j ∈ N \ (dxN) such that ax,j 6= 0, and let jx be the least
of them. Let qx, rx be the quotient and the remainder, respectively, of the division of jx by dx.

Let us show that ∂jxx P
jx
dx is continuous. Define m̃ := m−

∑jxdx
j=0 ax,j( · )

j
dx . Then, m̃ ◦ Px is

C∞ and (m̃ ◦ Px)(λ) = o
(
|λ|jxdx

)
.3 Hence, Lemma 6.5 implies that m̃ may be extended to an

element of Cjx(R). Let us then prove that

ax,jx∂
jx
x P

jx
dx = ∂jxx (m ◦ P )−

qx∑
j=0

ax,dxj∂
jx
x P

j −
jxdx∑

j=jx+1

ax,j∂
jx
x P

j
dx − ∂jxx (m̃ ◦ P )

2Notice that λx denotes the scalar multiplication of x by λ, not the dilate λ · x of x by λ, which by the way
is meaningful only for λ > 0.

3Here, |λ| denotes the usual absolute value of λ ∈ R.
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extends to a continuous function on E′ := { x′ ∈ E : P (x) 6= 0 } ∪ { 0 }. Indeed, this is clear for
the first two terms, and follows from the above remarks for the fourth one. Let us then consider
the third term. Notice that both ∂x and P are homogeneous, and that ∂jxx P

jx
dx is homogeneous

of homogeneous degree 0 on the x axis, hence on E. Hence, ∂jxx must be homogeneous of homo-
geneous degree d jxdx , where d is the homogeneous degree of P . Then, ∂jxx P

j
dx is homogeneous of

degree d j−jxdx
> 0 for every j = jx + 1, . . . , jxdx, so that it may be extended by continuity at 0.

Therefore, ∂jxx P
jx
dx extends to a continuous function on E′ which is homogeneous of homoge-

neous degree 0, so that it is constant. In addition, its constant value is clearly C := a
jx/dx
x jx! 6= 0.

Now, Faà di Bruno’s formula shows that

P 1− rxdx =
1

C
P 1− rxdx ∂jxx P

jx
dx =

1

C

∑
∑jx
`=1 `β`=jx

jx!

β!

(
jx
dx

)
|β|
P 1+qx−|β|

jx∏
`=1

(
∂`xP

`!

)β`

on E′, where
(
jx
dx

)
|β|

:= jx
dx

(
jx
dx
− 1
)
· · ·
(
jx
dx
− |β|+ 1

)
is the Pochhammer symbol. Let Q̃ be

the right hand side of the preceding formula. Then, Q̃ is a rational function, so that there are
N,D ∈ R[A], with D 6= 0, such that Q̃ = N

D . Further, P dx−rx = Q̃dx = Ndx

Ddx
on E′. Since

P dx−rx is a polynomial, this proves that Ddx divides Ndx . However, R[A] is factorial, so that
D divides N . Hence, Q̃ is a polynomial, and Q̃ is positive since P is. Next, let g be the greatest
common divisor of dx and dx − rx, and take d′, r′ ∈ Z∗+ such that dx = g d′ and dx − rx = g r′.
Hence,

Q̃d
′

= P r
′
.

Since R[A] is factorial, this proves that there is a polynomial Q ∈ R[A] such that Qr
′

= Q̃
and Qd

′
= P .4 Now, P = Qd

′
and d′ > r′ > 0 since rx > 0, so that d′ > 2. Therefore,

our assumption 1 cannot hold. It follows that ax,j = 0 for every j 6∈ dxN, so that m has the
asymptotic development

∑
j∈N ax,dxjλ

j for λ→ 0+. The conclusion follows from Lemma 6.5.
2 =⇒ 1. Suppose by contradiction that there are a positive polynomial Q ∈ R[A]

and k > 2 such that P = Qk, and define m : λ 7→ λ
1
k on R+. Then, m is C∞ on R∗+ and

lim
λ→0+

m(λ)−m(0)
λ = +∞. However, m ◦ P = Q since Q is positive, so that m ◦ P is of class C∞:

this contradicts our assumption 2.

We give the main result in the case of one operator in a slightly more general situation,
since we do not restrict to abelian groups. In the case of abelian group, this result provides a
complete characterization of the (positive) Rockland operators which satisfy property (S).

Theorem 6.7. Let L = λG(P ) be a positive Rockland operator on a non-trivial homogeneous
group G for some P ∈ Pol(g∗;R). Then, the following hold:

1. L satisfies property (S)C ;

2. χL has a continuous representative and χ̃L has a C∞ representative;

3. let k be the greatest k′ ∈ N∗ such that P
1
k′ is a polynomial mapping on [g, g]◦, and K a

bounded subset of SL(G). Then, there are k bounded families (m0,ϕ)ϕ∈K, . . . , (mk−1,ϕ)ϕ∈K
of elements of S(R) such that5

ϕ = KL

(
k−1∑
h=0

( · )hkmh,ϕ

)

for every ϕ ∈ K;

4. take m ∈ L∞(βL); then, KL(m) ∈ KZ(G) if and only if m has a representative in
MH(EL).

4Indeed, take an irreducible polynomial T , and let h be the greatest integer such that Th divides Q. Then,
hd′ is the greatest integer h′ such that Th

′
divides P r

′
; hence, r′ divides hd′. Since r′ and d′ have no common

divisors, this proves that r′ divides h. By the arbitrariness of T we are then able to construct such Q.
5Notice, however, that a multiplier of this form need not have a Schwartz kernel, unless G is abelian.
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Notice that 4 does not hold, in general, for more than one operator.

Proof. 1. The abelian case follows immediately from Proposition 6.2. Then, let G′ be the
abelianization of G, and let π : G → G′ be the canonical projection. Since clearly σ(L) =
σ(π(L)) = R+, by means of Theorem 4.1 we see that S(G;L) is closed in S(G).

2. The second assertion follows easily from Propositions 3.35 and 3.48.
3. Since χL has a continuous representative by 2 above, Corollary 3.47, Proposition 3.50

and Theorem 4.1 imply that π∗(ϕ) ∈ Sdπ(L)(G
′) for every ϕ ∈ K. Since dπ(L) = λG′(P ◦ tdπ)

by Proposition 1.16, the preceding analysis shows that there is a bounded family (mϕ)ϕ∈K of
elements of C0(R+) such that (mϕ ◦P ◦ tdπ) is a bounded family of elements of S([g, g]◦), and
such that

ϕ = KL(mϕ)

for every ϕ ∈ K. Now, take Q ∈ Pol([g, g]◦) so that P ◦ tdπ = Qk. Observe that Lemma 6.6
implies that the mapping

SR(R+) 3 ϕ 7→ ϕ ◦Q ∈ S([g, g]◦)

is a strict morphism, so that (mϕ ◦ ( · )k) is a bounded family of elements of SR(R+). Next,
let
∑
`∈N a`,ϕλ

` be the Taylor development of mϕ ◦ ( · )k at 0, for every ϕ ∈ K. Take h ∈
{ 1, . . . , k − 1 }; then, ((ah+k`,ϕ)`)ϕ∈K is a bounded family of elements of CN. Since the linear
mapping S(R) 3 ϕ 7→ (ϕ(`)(0))` ∈ CN is onto by [50, Theorem 1.2.6], and since CN is a
Fréchet-Montel space, [18, Corollary to Proposition 12 of Chapter II, § 4, No. 7] implies that
there is a bounded family (mh,ϕ)ϕ∈K of elements of S(R) such thatmh,ϕ has Taylor development∑
`∈N ah+k`λ

` at 0. Reasoning as before (but this time using the surjection S(R)→ SR(R+)),
we see that there is a bounded family (m0,ϕ) of elements of S(R) such that

mϕ =

k−1∑
h=0

( · )hkmh,ϕ

on R+, for every ϕ ∈ K. The assertion follows.
4. By 1 above and Theorem 5.7, we only need to prove that, if m ∈ M(µL;KZ(G)), then

there is a bounded family (Kj)j∈Z of elements of S(G;L) such that KL(m) =
∑
j∈ZK

(j)
j in

S ′w(G). Then, take ϕ ∈ D+(R∗) so that
∑
j∈Z ϕ(2−j · ) = χR∗ , and define mj := m(2j · )ϕ.

Now, arguing as in the proof of Theorem 5.7 we see that the family (KL(mj)) is bounded
in S(G). Next, 3 above implies that there are k bounded families (mj,0)j , . . . , (mj,k−1)j of
elements of S(R) such that

mj =

k−1∑
h=0

( · )hkmj,h

βL-almost everywhere, for every j ∈ N. Therefore, it is clear that mj has a representative in
D(R∗). Therefore, the family (KL(mj)) is bounded in S(G;L). Finally, arguing as in the proof
of Theorem 5.7 we see that KL(m) =

∑
j∈ZKL(mj)

(j) in S ′w(G).

6.3 Gelfand Pairs; Quadratic Operators

Proposition 6.8. Assume that LA is a Rockland family and that G is abelian. Suppose further
that there is a compact Lie group G′ which acts on G in such a way that LA generates the unital
algebra of translation-invariant G′-invariant differential operators. Then, the following hold:

1. the mapping ΦF : f 7→ −
∫
G′
f(g′ · ) dνG′(g

′) is a continuous projector of F , where F is any
one of the spaces D(G), S(G), E(G), Lp(G) (p ∈ [1,∞]), E ′(G), S ′(G), D′(G) (the last
three spaces being endowed with either the weak or strong dual topology);

2. if F = Lp(G) for some p ∈ [1,∞], then ΦF is a contraction;

3. KLAMLA equals ΦL2(G) on L2(G);

4. LA satisfies property (S) and χLA has a continuous representative.
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Proof. 1–2. Notice first that ΦF is well defined. Indeed, if F 6= L∞(G), then the mapping
G′ 3 g′ 7→ f(g′ · ) ∈ F is continuous; since G′ is compact and since F is quasi-complete, it follows
that the closed balanced convex envelope of the set of f(g′ · ), as g′ runs through G′, is compact
in F . Hence, [19, Proposition 8 of Chapter VI, § 1, No. 2] implies that −

∫
G′
f(g′ · ) dνG′(g

′) ∈ F .
If F = L∞(G), then the preceding remarks apply as well if we endow L∞(G) with the weak
topology σ(L∞(G), L1(G)).

Now, if F = Lp(G) for some p ∈ [1,∞], then ‖f‖F = ‖f(g′ · )‖F for every g′ ∈ G′, so that it
is clear that ΦF is a contraction, hence continuous. Next, if F is either D(G) or S(G), then the
closed graph theorem implies that ΦF is continuous. If, otherwise, F is either D′(G) or S ′(G),
endowed with either the weak or the strong dual topology, then it is easily seen that

〈ΦF · T, ϕ〉 = −
∫
G′

〈
T, ϕ(g′−1 · )

〉
dνG′(g

′) = 〈T,ΦF ′ · ϕ〉

for every T ∈ F and for every ϕ ∈ F ′, so that ΦF is continuous by transposition. By the
closed graph theorem and transposition again, one proves that ΦF is continuous for F = E(G)
and E ′(G), endowed with either the weak or the strong topology. In the same way we see that
ΦL2(G) is self-adjoint, while it is clear that ΦF is a projector.

3. Denote by P the restriction of KLAMLA to L2(G). Then, the image of P is contained
in the set of G′-invariant elements of L2(G), which is the image of ΦL2(G); conversely, every
element in the image of ΦS(G) belongs to SLA(G) ⊆ P (L2(G)) by [5, Theorem 6.1]. Now, S(G)
is dense in L2(G), so that ΦL2(G)(S(G)) is dense in ΦL2(G)(L

2(G)); therefore, P and ΦL2(G)

are two self-adjoint projectors of L2(G) with the same image, so that they are equal.
4. By [5, Theorem 6.1], LA satisfies property (S); since KLAMLA induces a contraction of

L1(G) by 1, 2 and 3 above, it follows that χLA has a continuous representative.

Corollary 6.9. Take a finite family (Gα)α∈A of abelian homogeneous groups with the standard
dilations, and set G :=

∏
α∈AGα. For every α ∈ A, let nα be the dimension of Gα, and endow

Gα with a scalar product and the corresponding Laplacian Lα.
Consider the family LA = (Lα)α∈A. Then, LA is a Rockland family and satisfies property

(S). In addition, KLAMLA maps S(G) onto itself, and

βLA =
⊗
α∈A

1

(4π)nα/2Γ
(
nα
2

) ( · )
nα
2 −1χR+H1

while

χLA(λ, x) =
∏
α∈A

Γ
(nα

2

)Jnα
2 −1

(√
λα|xα|

)(√
λα|xα|

2

)nα
2 −1

for (βLA ⊗ νG)-almost every (λ, x). In particular, χLA admits a representative of class Cω.

Proof. By Proposition 4.3 to Theorem 4.11, we may reduce to the case in which CardA = 1,
and then drop the unnecessary indices. Then, Proposition 6.8, applied with G′ equal to the
group of linear isometries of G, implies that KLAMLA maps S(G) onto SLA(G), which is the
set of radial Schwartz functions. The formulae for βLA and χLA are then obtained by means
of Proposition 6.2 and the classical theory of Bessel functions (cf., for example, [80, Chapter
IV] or [83, Corollary 3.4]). Analyticity follows from the fact that the mapping R∗+ 3 x 7→
x1−n2 Jn

2−1(x) equals
∑
k∈N

(−1)kx2k

22k+n
2
−1k!Γ(k+n

2 )
, so that it extends to an entire function.

Corollary 6.10. Keep the hypotheses and the notation of Corollary 6.9. Let A′ be a finite set
and L a linear mapping of Rn into RA

′
such that kerL ∩ Rn+ = { 0 }. Then, L(LA) satisfies

properties (RL) and (S).

Proof. By Corollaries 2.30 and 6.9, and by Propositions 2.21 and 2.22, it will suffice to show
that Rn+ = σ(LA) is a subanalytic closed convex cone. However, it is clearly semi-algebraic
(cf. [29, Corollary 2.4]), so that it is subanalytic by [9, Proposition 2.3].

Corollary 6.11. Let LA be a Rockland family with at most two elements on Rn, n > 3. Assume
that each element of LA has order two. Then, LA satisfies properties (RL) and (S).
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On the contrary, observe that the Rockland family (∂2
1 − ∂2

2 , ∂1∂2) on R2 is functionally
equivalent to the Rockland family (∂2

1 , ∂
2
2 , ∂1∂2), which satisfies properties (RL) and (S); there-

fore, it satisfies property (RL) but not property (S).
Indeed, functional equivalence follows once we observe that

−(∂2
1 + ∂2

2) =
√
−(∂2

1 − ∂2
2)2 + 4(∂1∂2)2

as positive self-adjoint operators on L2(R2). In addition, the family (∂2
1 , ∂

2
2 , ∂1∂2) generates

the algebra of translation-invariant differential operators on R2 which are invariant under the
symmetry x 7→ −x, so that it satisfies properties (RL) and (S).

Proof. Indeed, this is clear if A has one element. Otherwise, take Q1, Q2 so that LA =
(Q1(−i∂), Q2(−i∂)). Then, by means of [25] we see that we may diagonalize Q1 and Q2

simultaneously, so that Q1(−i∂) and Q2(−i∂) must be linear combinations of ∂2
1 , . . . , ∂

2
n. The

result follows from Corollary 6.10.



Chapter 7

2-Step Groups

In this chapter, G denotes a 2-step stratified group of dimension n; we assume that G is
not abelian, since the case of abelian groups has already been treated in Chapter 6. We shall
denote by g1 and g2 = [g, g] the first and the second layer, respectively, of the stratification of
the Lie algebra g of G. For every ω ∈ g∗2, we define

Bω : g1 × g1 3 (X,Y ) 7→ 〈ω, [X,Y ]〉,

so that Bω is a skew-symmetric bilinear form. For our purposes, it is worthwhile to consider 2-
step stratified groups which satisfy a slight strengthening of the Moore-Wolf condition (cf. [61],
and also [62]). We then say that G satisfies condition MW+, or that G is an MW+-group if
Bω is non-degenerate for some ω ∈ g∗2. Then, a 2-step stratified group satisfies the Moore-Wolf
condition if and only if it is the direct sum of an MW+-group and an abelian group.

We say that G is a Métivier group if Bω is non-degenerate for every ω 6= 0. Observe that, in
this case, g2 is the centre of the Lie algebra of G. We say that G is a group of Heisenberg type,
or simply an H-type group, if its Lie algebra is endowed with a scalar product such that g1 and
g2 are orthogonal, and such that, for every ω ∈ g2, the skew-symmetric operator Jω : g1 → g1

defined by
〈[X,Y ]|ω〉 = 〈Jω(X)|Y 〉 ∀X,Y ∈ g1

satisfies |Jω| = |ω|Ig1
. In particular, an H-type group is a Métivier group.

A Heisenberg group is a non-commutative Métivier group with one-dimensional centre.
The free 2-step stratified Lie group on d generators is the simply-connected Lie group asso-

ciated with the quotient of the free Lie algebra g on d generators by its ideal [g, [g, g]].
We shall consider some Rockland families on G whose elements are sub-Laplacians and

elements of the centre of g, and prove some sufficient conditions for the validity of properties
(RL) and (S).

7.1 Quadratic Operators
Take a symmetric bilinear form Q on g∗1, and observe that Q induces a quadratic form

Q0 : g∗1 ⊕ g∗2 3 x∗1 + x∗2 7→ Q(x∗1, x
∗
1) on g∗. We shall say that the operator λG(Q0) on G

associated with Q0 as in Proposition 1.16 is the operator associated with Q.

Lemma 7.1. Let Q be a symmetric bilinear form on g∗1, and let L be the associated operator.
Then, L is formally self-adjoint if and only if Q is real. In addition, L is formally self-adjoint
and hypoelliptic if and only if Q is non-degenerate and either positive or negative.

Proof. The first assertion follows from the fact that the formal adjoint of L is associated with
Q. The last assertion then follows from [49].

We recall the following definition from the theory of bilinear forms (cf. [15, Chapter IX, §
1, No. 1]).

Definition 7.2. Let V be a vector space and Φ a bilinear form on V . Then, define the left
and right linear mappings sΦ,dΦ : V → V ∗ associated with Φ so that

〈sΦ(w), v〉 = 〈dΦ(v), w〉 = Φ(w, v),

95



96 CHAPTER 7. 2-STEP GROUPS

for every v, w ∈ V . If sΦ and dΦ are bijective, then we denote by Φ̂ the inverse of Φ on V ∗,
that is, Φ ◦

(
s−1
Φ × d−1

Φ

)
.

Proposition 7.3. Let Q1 and Q2 be two symmetric bilinear forms on g∗1, and let L1 and L2

be the associated operators. Then, L1 and L2 commute if and only if

dQ1 ◦ dBω ◦ dQ2 = dQ2 ◦ dBω ◦ dQ1

for every ω ∈ g∗2.

Proof. Choose a basis (Xj)j∈J of g1 and a basis (Tk)k∈K of g2, and let (X∗j )j∈J and (T ∗k )k∈K
be the corresponding dual bases. Define ah,j1,j2 := Qh(X∗j1 , X

∗
j2

) for every h = 1, 2 and for
every j1, j2 ∈ J , so that dQh is identified with the matrix Ah := (ah,j1,j2)j1,j2∈J for h = 1, 2.
Analogously, define bk,j1,j2 := BT∗k (Xj1 , Xj2) for every k ∈ K and for every j1, j2 ∈ J , so
that dBT∗

k
is identified with the matrix Bk := (bk,j1,j2)j1,j2∈J for every k ∈ K. Now, define

Yj1,j2 := 1
2 (Xj1Xj2 +Xj2Xj1) for every j1, j2 ∈ J . Then,

Lh =
∑

j1,j2∈J
ah,j1,j2Yj1,j2

since Qh is symmetric. In addition, for every j1, j2, j3, j4 ∈ J ,

[Yj1,j2 , Yj3,j4 ] = Yj2,j4 [Xj1 , Xj3 ] + Yj2,j3 [Xj1 , Xj4 ] + Yj1,j4 [Xj2 , Xj3 ] + Yj1,j3 [Xj2 , Xj4 ]

since the elements of g2 = [g1, g1] lie in the centre of U(g). Next, observe that, for every
j1, j2 ∈ J ,

[Xj1 , Xj2 ] =
∑
k∈K

bk,j1,j2Tk.

Therefore,

[L1,L2] =
∑

j1,j2,j3,j4∈J
k∈K

a1,j1,j2a2,j3,j4 [bk,j1,j3Yj2,j4 + bk,j1,j4Yj2,j3 + bk,j2,j3Yj1,j4 + bk,j2,j4Yj1,j3 ]Tk

= 2
∑

j1,j2∈J

∑
k∈K

ck,j1,j2Yj1,j2Tk,

where
ck,j1,j2 =

∑
j3,j4∈J

(a1,j1,j3a2,j2,j4 + a1,j2,j3a2,j1,j4)bk,j3,j4

for every k ∈ K and for every j1, j2 ∈ J . Now, it is clear that the distinct monomials in the
family of the Yj1,j2Tk, as j1, j2 ∈ J and k ∈ K, are linearly independent (cf., for example, [21,
Theorem 1 of Chapter I, § 2, No. 7]). In addition, denote by Ck the matrix (ck,j1,j2)j1,j2∈J for
every k ∈ K. Now, since A1 and A2 are symmetric and since Bk is skew-symmetric,

Ck = A1BkA2 +A2
tBkA1 = A1BkA2 −A2BkA1

for every k ∈ K. The assertion follows easily.

It is worthwhile to consider some results on the simultaneous diagonalization of quadratic
forms with respect to some skew-symmetric form.

Proposition 7.4. Let V be a finite-dimensional vector space over R, and let σ be a skew-
symmetric bilinear form on V . In addition, let (Qα)α∈A be a family of positive, non-degenerate
bilinear forms on V such that the d−1

Qα
◦ dσ, as α runs through A, commute.

Then, there is a finite family (Pγ)γ∈Γ of projectors of V such that the following hold:

• there is γ0 ∈ Γ such that Pγ0
(V ) = ker dσ;

• Pγ is σ- and Qα-self-adjoint for every α ∈ A and for every γ ∈ Γ;

• IV =
∑
γ∈Γ Pγ and PγPγ′ = 0 for γ, γ′ ∈ Γ, γ 6= γ′;
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• the bilinear forms Qα(Pγ · , Pγ · ), as α ∈ A, are all multiples of one another for every
γ ∈ Γ, γ 6= γ0.

Observe that this also implies that, if R is the absolute value of d−1
Qα
◦ dσ relative to Qα,

then R is the absolute value of d−1
Qα
◦ dσ relative to Qα′ for every α′ ∈ A. Therefore, we may

denote R by |d−1
Qα
◦ dσ| unambiguously.

Proof. Define Jα := d−1
Qα
◦ dσ for every α ∈ A. Then, for every x, y ∈ V ,

Qα(x, Jα(y)) = 〈x,dσ(y)〉 = σ(x, y),

so that
Qα(x, Jα(y)) = σ(x, y) = −σ(y, x) = −Qα(y, Jα(x)) = Qα(−Jα(x), y).

Hence, Jα is Qα-skew-adjoint, and then −J2
α is Qα-positive and self-adjoint, hence diagonaliz-

able. In addition, for every x, y ∈ V ,

σ(x, Jα(y)) = Qα(x, J2
α(y)) = −Qα(Jα(x), Jα(y)) = σ(−Jα(x), y),

so that Jα is also σ-skew-adjoint; hence, −J2
α is σ-self-adjoint. Therefore, if Γ is the set of

joint eigenvalues of the family (−J2
α)α∈A, and (Vγ)γ∈Γ is the corresponding family of joint

eigenspaces, then the Vγ are pairwise σ-orthogonal. Now, let UαRα be the polar decomposition
of Jα relative to Qα; in other words, Rα is the absolute value of Jα, while Uα is an isometry
which restrict to the identity on ker dσ. Next, take α1, α2 ∈ A. Since [Jα1

, Jα2
] = 0, we infer

that Rα1 , Rα2 , Uα1 , and Uα2 all commute. In particular, define V ′ :=
⊕

γ∈Γ\{ 0 } Vγ , so that
V ′ is an algebraic complement of the radical V0 of σ, and is the orthogonal complement of V0

with respect to Qα for every α ∈ A. Then, Uα is σ- and Qα-skew-symmetric on V ′ for every
α ∈ A, so that −U2

α is the identity on V ′. Take α1, α2 ∈ A; then, for every x, y ∈ V ′,

Qα2
(x, (Uα1

Uα2
Rα2

)(y)) = σ(x, Uα1
(y)) = −σ(Uα1

(x), y) = Qα2
((Uα1

Uα2
)(x), Rα2

(y))

and
Qα2

(x, (Uα1
Uα2

Rα2
)(y)) = σ(x, Uα1

(y)) = Qα1
(x,−Rα1

(y)),

so that −Uα1
Uα2

is self-adjoint and positive with respect to Qα2
( · , Rα2

· ) on V ′. Since
(Uα1Uα2)2 is the identity on V ′, it follows that Uα1 = Uα2 on V ′. Therefore, Uα1 = Uα2

on V , so that there is U such that Uα = U for every α ∈ A. In particular,

Qα1(x,Rα1(y)) = σ(x, U−1(y)) = Qα2(x,Rα2(y))

for every x, y ∈ V , so that the Vγ , as γ runs through Γ, are Qα-orthogonal for every α ∈ A.
Now, take a non-zero γ ∈ Γ. Then, γα 6= 0 for every α ∈ A, so that the Qα are multiple of

one another on Vγ . The assertion follows.

Choosing a symplectic basis of σ on each Vγ , γ 6= γ0, as in [1, Corollary 5.6.3], we get the
following corollary. Observe that Qα(vj , vj) is the eigenvalue of |d−1

Qα
◦ dσ| on the Vγ to which

vj belongs.

Corollary 7.5. Keep the hypotheses and the notation of Proposition 7.4, and let m be the
dimension of V . Then, we may find a positive integer n 6 m

2 and a basis (vj)j=1,...,m of V such
that the following hold:

• Qα(vj , vj) = Qα(vn+j , vn+j) > 0 for every α ∈ A and for every j = 1, . . . , n;

• Qα(vj , vk) = 0 for every α ∈ A and for every j, k ∈ { 1, . . . ,m } such that j 6= k and
either j 6 2n or k 6 2n;

• for every j, k = 1, . . . ,m,

σ(vj , vk) =


1 if j ∈ { 1, . . . , n } and k = n+ j;

−1 if j ∈ { n+ 1, . . . , 2n } and k = j − n;

0 otherwise.
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Finally, let us show that the existence of commuting sub-Laplacians implies that the group
is reducible in some sense. We consider only the case of MW+-groups.

Proposition 7.6. Take a finite family (Lα)α∈A of commuting sub-Laplacians on an MW+-
group G, and let (Qα)α∈A be the corresponding family of non-degenerate positive bilinear forms
on g∗1. Then, there is a finite family (Pγ)γ∈Γ of non-zero projectors of g1 such that the following
hold:

• Ig1
=
∑
γ∈Γ Pγ and Pγ1

Pγ2
= 0 for every γ1, γ2 ∈ Γ such that γ1 6= γ2;

• Pγ is Bω- and Q̂α-self-adjoint for every γ ∈ Γ, for every ω ∈ g∗2, and for every α ∈ A;

• for every γ ∈ Γ, the symmetric bilinear forms Qα
(
tPγ · , tPγ ·

)
, as α runs through A, are

mutually proportional.

Proof. 1. Fix ω0 ∈ g∗2 such that Bω0
is non-degenerate. Then, Corollary 7.5 implies that we

may find a basis X1, . . . , X2n of g1 such that dBω0
is represented by the matrix(

0 I
−I 0

)
,

while, for every α ∈ A, dQα is represented by the matrix(
Dα 0
0 Dα

)
for some diagonal matrix Dα. Denote by dα,1, . . . , dα,n the diagonal elements of Dα, and denote
by (aω,j,k) the matrix associated with dBω , for every non-zero ω ∈ g∗2.

2. Assume that A has exactly two elements α1, α2, and define

Γ :=

{
dα1,j

dα2,j
: j ∈ { 1, . . . , n }

}
and, for every γ ∈ Γ, let Vγ be the vector subspace of g1 generated by the set{

Xj , Xn+j :
dα1,j

dα2,j
= γ

}
.

Next, take j, k ∈ { 1, . . . , n } such that dα1,j

dα2,j
6= dα1,k

dα2,k
. Apply Proposition 7.3, and observe that

the (j, k)-th components of (the matrices representing) the equality

dQα1
◦ dBω ◦ dQα2

= dQα2
◦ dBω ◦ dQα1

give
dα1,jaω,j,kdα2,k = dα2,jaω,j,kdα1,k,

so that aω,j,k = 0. Considering the components (n+ j, k), (j, n+ k) and (n+ j, n+ k), we see
that aω,n+j,k = aω,j,n+k = aω,n+j,n+k = 0. Therefore, Bω(Vγ1

, Vγ2
) = { 0 } for every non-zero

ω ∈ g∗2 and for every γ1, γ2 ∈ Γ such that γ1 6= γ2. Then, define Pγ as the projector of g1 onto
Vγ with kernel

⊕
γ′ 6=γ Vγ′ .

3. Consider the general case. Take α1, α2 ∈ A such that α1 6= α2, and define Γα1,α2
:={

dα1,j

dα2,j
: j ∈ { 1, . . . , n }

}
and the corresponding projectors Pα1,α2,γ as in 2 above. Define, for

every γ ∈
∏
α1 6=α2

Γα1,α2
,

Pγ :=
∏

α1 6=α2

Pα1,α2,γα1,α2
;

notice that Pγ is a projector since the Pα1,α2,γα1,α2
commute. Then, it suffice to take Γ as the

set of γ ∈
∏
α1 6=α2

Γα1,α2
such that Pγ 6= 0.
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7.2 Plancherel Measure and Integral Kernel
In this section, (Qη)η∈H denotes a finite family of positive symmetric bilinear forms on g∗1

and (T1, . . . , Tn2) a basis of g2. We shall denote by Lη the sub-Laplacian induced by Qη, and we
shall assume that LA := (LH , (−iTk)k=1,...,n2

) is a Rockland family. Observe that this condition
is equivalent to the fact that the sum of the Lη is hypoelliptic. Indeed, if π0 is the projection of
G onto its abelianization, then dπ0(LA) is a Rockland family, so that F(dπ0(LA)δ0) vanishes
only at 0. Since F(dπ0(Lη)δ0) > 0 and dπ0(Tk) = 0 for every η ∈ H and for every k = 1, . . . , n2,
this implies that

∑
η∈H F(dπ0(Lη)δ0) vanishes only at 0, so that

∑
η∈H Qη is positive and non-

degenerate, so that
∑
η∈H Lη is hypoelliptic. We may therefore assume that Qη is positive and

non-degenerate for every η ∈ H.
We shall assume that either one of the following conditions hold:

• G is an MW+-group;

• Card(H) = 1; in this case, we shall omit unnecessary indices.

We shall also endow g with a scalar product for which g1 and g2 are orthogonal, and which
induces Q̂η0

on g1 for some fixed η0 ∈ H. If n is the dimension of G, then we may define
Hn with respect to the induced distance, and exp∗(Hn) is a Haar measure on G. Up to a
normalization, we may then assume that (expG)∗(Hn) is the chosen Haar measure on G. We
shall endow g∗2 with the scalar product induced by that of g2, and then with the corresponding
Hausdorff measure.

We define
JQη,ω := dQη ◦ dBω : g1 → g1

for every η ∈ H and for every ω ∈ g∗2. In addition, define d := minω∈g∗2 dim ker dBω , so that
G is an MW+-group if and only if d = 0. We shall denote by W the set of ω ∈ g∗2 such that
dim ker dBω > d, so that G is a Métivier group if and only if d = 0 and W = { 0 }.

We shall denote by Ω the set of ω ∈ g∗2 \W where Card(σ(|JQH ,ω|)) attains its maximum
h.1 Notice that Ω is open and dense, as the next lemma shows.

Lemma 7.7. W and g∗2 \ Ω are algebraic varieties.

As the proof shows, the multiplicities of the eigenvalues are constant on Ω.

Proof. Choose η ∈ H and define Cη,ω so that XdCη,ω(X2) is the characteristic polynomial of
−J2

Qη,ω
. Then, it is clear that W is the zero locus of the polynomial mapping ω 7→ Cη,ω(0), so

that it is an algebraic variety.
Next, take k ∈ { 1, . . . , n1 } and let Pk be the set of partitions of { 1, . . . , n1 } into k non-

empty sets. Define

Nk((Xη,1, . . . , Xη,n1
)η∈H) :=

∏
K∈Pk

∑
K∈K

∑
η∈H

∑
k1,k2∈K

(Xη,k1
−Xη,k2

)2,

so that Nk is a SH
n1
-invariant polynomial. Take µ̃η,1,ω, . . . , µ̃η,n1,ω ∈ R+ so that

0, . . . , 0,±iµ̃η,1,ω, . . . ,±iµ̃η,n1,ω

are the eigenvalues of JQη,ω for every ω ∈ g∗2 and for every η ∈ H. Then, the SH
n1
-invariant

function ω 7→ Nk((µ̃2
η,1,ω, . . . , µ̃

2
η,n1,ω)η∈H) in the roots of the polynomials (Cη,ω)η∈H is a poly-

nomial mapping (cf. [14, Theorem 1 of Chapter IV, § 6, No. 1] for the case where H has one
element). Therefore, the set of ω ∈ g∗2 such that Nk((µ̃η,1,ω, . . . , µ̃η,n1,ω)η∈H) = 0 is an algebraic
variety Wk. In addition, it is clear that Ω is the complement of W ∪Wh−1, so that it is open
in the Zariski topology.

Proposition 7.8. There are four analytic mappings

µ : Ω→ ((R∗+)h)H

P : Ω→ L(g1)h

P0 : g∗2 \W → L(g1)

ρ : Ω→
{

1, . . . , h
}n1

1By an abuse of notation, we denote by |JQH ,ω | the family (|JQη,ω |)η∈H .
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such that the following hold:

• the mapping
Ω 3 ω 7→ µη,ρk,ω,ω ∈ R+

extends to a continuous mapping ω 7→ µ̃η,k,ω on g∗2 for every k = 1, . . . , n1 and for every
η ∈ H;

• for every h = 0, . . . , h and for every ω ∈ Ω (for every ω ∈ g∗2 \W if h = 0), Ph,ω is a Bω-
and Q̂H-self-adjoint projector of g1;

• if h = 1, . . . , h and ω ∈ Ω, then TrPh,ω = 2 Card({ k ∈ { 1, . . . , n1 } : ρk,ω = h });

•
∑h
h=0 Ph,ω = Ig1 and

∑h
h=1 µη,h,ωPh,ω = |JQη,ω| for every ω ∈ Ω and for every η ∈ H;

• P0,ω(g1) = ker dBω for every ω ∈ g∗2 \W .

The proof is based on [54, § 1.3–4 and § 5.1 of Chapter II] when Card(H) = 1. The extension
to the case Card(H) > 1 follows by means of Proposition 7.6. We leave the details to the reader.

Definition 7.9. We shall define µ, µ̃, P and P0 as in Proposition 7.8. In addition, we define
n1 : Ω→ (N∗)h so that n1,h,ω = 1

2 TrPh,ω for every h = 1, . . . , h and for every ω ∈ Ω.
Furthermore, we shall sometimes identify µω with the linear mapping

Rh 3 λ 7→

 h∑
h=1

µη,h,ωλh


η∈H

∈ RH

for every ω ∈ Ω. Analogous notation for µ̃ω.

With the above notation, we have µω(n1,ω) =
(∑h

h=1 µη,h,ωn1,h,ω

)
η∈H

. Observe, in addi-

tion, that the index 1 in n1 refers to the first layer g1, just as the index 2 in n2 refers to the
second layer g2.

Corollary 7.10. The function ω 7→ µη,ω(n1,ω) = µ̃η,ω(1n1
) is a norm on g∗2 which is analytic

on g∗2 \W for every η ∈ H.

Proof. Observe that

2µη,ω(n1,ω) = ‖JQη,ω‖1 = ‖JQη,ω + P0,ω‖1 − d

for every ω ∈ g∗2, and that the linear mapping ω 7→ JQη,ω is one-to-one since G is stratified.
The assertion follows.

Definition 7.11. By an abuse of notation, we shall denote by (x, t) the elements of G, where
x ∈ g1 and t ∈ g2, thus identifying (x, t) with expG(x, t). For every x ∈ g1 and for every
ω ∈ g∗2 \W , we shall define

x0,ω := P0,ω(x),

while, for every ω ∈ Ω and for every h = 1, . . . , h,

xh,ω :=
√
µη0,h,ωPh,ω(x).

By an abuse of notation, we write xω instead of (xh,ω)h=1,...,h, so that |xω| =
(∑h

h=1|xh,ω|
2
)1/2

.

Proposition 7.12. The mapping

g1 × Ω 3 (x, ω) 7→
h∑
h=1

xh,ω

extends uniquely to a continuous function on g1 × g∗2 which is analytic on g1 × (g∗2 \W ).
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Proof. Observe that, for every ω ∈ g∗2, −J2
Qη0

,ω = J∗Qη0
,ωJQη0

,ω is positive, and that

−J2
Qη0

,ω + P0,ω

is positive and non-degenerate as long as ω 6∈W . Therefore, the mapping

ω 7→ 4

√
−J2

Qη0
,ω = 4

√
−J2

Qη0
,ω + P0,ω − P0,ω ∈ L(g1)

is continuous on g∗2 and analytic on g∗2 \W thanks to [23, Proposition 10 of Chapter I, § 4, No.
8].2 Then, it suffices to observe that

4

√
−J2

Qη0
,ω(x) =

h∑
h=1

xh,ω

for every ω ∈ Ω and for every x ∈ g1.

Definition 7.13. Define Gω, for every ω ∈ g∗2, as the quotient of G by its normal subgroup
expG(kerω).

Then, G0 is the abelianization of G, and we identify it with g1. If ω 6= 0, then we shall
identify Gω with g1 ⊕R, endowed with the product

(x1, t1)(x2, t2) :=

(
x1 + x2, t1 + t2 +

1

2
Bω(x1, x2)

)
for every x1, x2 ∈ g1 and for every t1, t2 ∈ R. Hence,

πω(x, t) = (x, ω(t))

for every (x, t) ∈ G.

Proposition 7.14. Define

$ :
⋃
ω∈Ω

({ ω } ×Gω) 3 (ω, (x, t)) 7→ ω ∈ Ω,

and identify the domain of $ with Ω× (g1⊕R) as an analytic manifold, so that $ becomes an
analytic submersion.

Then, $ defines a fibre bundle with base Ω and fibres isomorphic to G′ := Hn1 ⊕Rd. More
precisely, for every ω0 ∈ Ω, there is an analytic trivialization (U,ψ) of $ such that the following
hold:

• U is an open neighbourhood of ω0 in Ω;

• ψ : $−1(U)→ U ×G′ is an analytic diffeomorphism such that pr1 ◦ψ = $ and such that
ψω := pr2 ◦ψ : $−1(ω)→ G′ is a group isomorphism for every ω ∈ U ;

• if (X1, . . . , X2n1 , T, Y1, . . . , Yd) is a basis of left-invariant vector fields on G′ which at the
origin induce the partial derivatives along the coordinate axes, then

d(ψω ◦ πω)(Lη) = −
n1∑
k=1

µ̃η,k,ω(X2
k +X2

n1+k)−
d∑
k=1

Y 2
k

and
d(ψω ◦ πω)(T`) = ω(T`)T

for every η ∈ H, for every ` = 1, . . . , n2, and for every ω ∈ U .

The proof is omitted. It basically consists in using the projectors Ph to propagate locally
a given basis of eigenvectors and then in ‘symplectifying’ the new basis in order to meet the
requirements.

2For what concerns continuity, just observe that 4
√
· is continuous on the cone of positive endomorphisms of

g1, which is the closure of the cone of non-degenerate positive endomorphisms of g1, as in [50, p. 85].
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Definition 7.15. For every ω ∈ g∗2 \ W , define |Pf(ω)| :=
∏h
h=1 µ

n1,h,ω

η0,h,ω
, the Pfaffian of ω

(cf. [3]).
Furthermore, take m, γ ∈ N. Then, we shall denote by Λγm the m-th Laguerre polynomial

of order γ. In other words, Λγm(X) =
∑m
j=0

(
m+γ
m−j

) (−X)j

j! .

Before we state the next result, where we find relatively explicit formulae for the Plancherel
measure and the integral kernel associated with LA, let us comment briefly our techniques.
Thanks to the form of the Plancherel formula for G (see [3]), we basically reduce to study
dπω(LA) for ω 6= 0, or only for ω ∈ Ω. Therefore, the analysis of LA is reduced to the case
in which n2 = 1. If G is actually a Heisenberg group, then the Plancherel formula involves
only the Bargmann-Fock representations πλ (λ 6= 0), and it is well-known that dπλ(LA) has
an orthonormal basis of eigenfunctions which consists of suitably normalized monomials; the
corresponding functions of positive type on G are then Laguerre functions (cf. [53]). If G has
higher-dimensional centre, then it splits into the product of a Heisenberg group and an abelian
group, and the results are somewhat similar, even though the presence of the abelian factor
causes a ‘superposition’ of different ‘layers’ of the Plancherel measure associated with LA.

Proposition 7.16. Define, for every γ1, γ2 ∈ Nh,

ϕγ1,γ2
: gh1 ×R 3 (x, t) := eit

h∏
h=1

e−
1
4 |xh|

2

Λ
γ1,h−1
γ2,h

(
1

2
|xh|2

)
and

Φd : R+ 3 x 7→ Γ

(
d

2

)
J d

2−1(x)(
x
2

) d
2−1

.

Then, the following hold:

1. suppose that d > 0, and define for every (λ, ω) ∈ R× (g∗2 \W ) such that λ > µω(n1,ω),3

cλ,ω :=
∑
γ∈Nh

µω(n1,ω+2γ)<λ

(
n1,ω + γ − 1h

γ

)
(λ− µω(n1,ω + 2γ))

d
2−1

.

Then, for every ϕ ∈ D0(ELA),∫
ELA

ϕdβLA =
π
d
2

(2π)n1+n2+dΓ
(
d
2

) ∫
λ>µω(n1,ω)

ϕ(λ, ω(T))cλ,ω|Pf(ω)|d(λ, ω);

2. suppose that d = 0, and define Σω := µω(n1,ω + 2Nh) for every ω ∈ Ω; then, for every
ϕ ∈ D0(ELA),∫

ELA

ϕdβLA =
1

(2π)n1+n2

∫
g∗2

∑
γ∈Σω

c′γ,ωϕ(γ, ω(T))|Pf(ω)|dω,

where
c′γ,ω :=

∑
γ′∈Nh

µω(n1,ω+2γ′)=γ

(
n1,ω + γ′ − 1h

γ′

)

for every ω ∈ Ω and for every γ ∈ Σω;

3. suppose that d > 0; then, for (βLA ⊗ νG)-almost every ((λ, ω(T)), (x, t)),

χLA((λ, ω(T)), (x, t)) =
1

cλ,ω

∑
γ∈Nh

µω(n1,ω+2γ)<λ

(λ− µω(n1,ω + 2γ))
d
2−1×

× ϕn1,ω,γ(xω, ω(t))Φd

(√
λ− µω(n1,ω + 2γ)|x0,ω|

)
3Recall that, in this case, we assumed that Card(H) = 1.
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4. suppose that d = 0; then, for (βLA ⊗ νG)-almost every ((γ, ω(T)), (x, t)),

χLA((γ, ω(T)), (x, t)) =
1

c′γ,ω

∑
µω(n1,ω+2γ′)=γ

ϕn1,ω,γ′(xω, ω(t)).

Proof. 1–2. We follow the construction of the Plancherel measure of [3] as in [58, 4.4.1].
Now, let π be an irreducible unitary representation of G into a infinite dimensional hilbertian

space H. Then, Schur’s lemma (cf. [42, (3.5)]) implies that there is a unique ω ∈ g∗2 such that
π(0, t) = eiω(t) for every t ∈ g2. Hence, there is a unique irreducible representation π̃ of Gω
such that π = π̃ ◦ πω. Since G0 is abelian and H is infinite-dimensional, we have ω 6= 0. Then,
Schur’s lemma again implies that there is a unique τ ∈ P0,ω(g1)∗ such that π̃(x, t) = eit+iτ(x)

for every (x, t) ∈ P0,ω(g1)×R. Since the quotient of Gω by its normal subgroup P0,ω(g1) is a
Heisenberg group, the Stone–Von Neumann theorem (cf. [42, (6.49)]) implies that there is one
and only one such π̃, once ω and τ are fixed; we denote by πω,τ the corresponding representation
π of G, and by Hω,τ the corresponding hilbertian space.

Now, fix ω ∈ g∗2 \W and τ ∈ P0,ω(g1)∗. Then, for every f ∈ L2(G),

‖f‖22 =
1

(2π)n1+n2+d

∫
g∗2

∫
P0,ω(g1)∗

‖πω,τ (f)‖22|Pf(ω)|dτ dω.

Now, it is well-known that there is a commutative family (Pω,τ,γ)γ∈Nh of self-adjoint pro-

jectors of Hω,τ such that IHω,τ =
∑
γ∈Nh Pω,τ,γ pointwise, and such that for every γ ∈ Nh we

have TrPω,τ,γ =
(
n1,ω+γ−1h

γ

)
and

dπω,τ (LA) · Pω,τ,γ = (|τ |2 + µω(n1,ω + 2γ), ω(T))Pω,τ,γ .

Therefore, for every ϕ ∈ D(ELA),

‖KLA(ϕ)‖22 =
1

(2π)n1+n2+d

∫
g∗2

∫
P0,ω(g1)∗

∑
γ∈Nh

(
n1,ω + γ − 1h

γ

)
×

×
∣∣∣ϕ(|τ |2 + µω(n1,ω + 2γ), ω(T)

)∣∣∣2|Pf(ω)|dτ dω.

The stated formulae for βLA follow.
3–4. Now, we shall deal with the integral kernel. Observe first that from the stated

Plancherel formula for G we deduce the following inversion formula:

f(x, t) =
1

(2π)n1+n2+d

∫
g∗2

∫
P0,ω(g1)∗

Tr(πω,τ (x, t)∗πω,τ (f))|Pf(ω)|dτ dω

for every f ∈ S(G). If ϕ ∈ D(ELA), then

KLA(ϕ)(x, t) =
1

(2π)n1+n2+d

∫
g∗2

∫
P0,ω(g1)∗

∑
γ∈Nh

ϕ
(
|τ |2 + µω(n1,ω + 2γ), ω(T)

)
×

× Tr(πω,τ (x, t)∗Pω,τ,γ)|Pf(ω)|dτ dω.

Next, observe that
Tr(πω,τ (x, t)∗Pω,τ,γ) = eiτ(x0,ω)ϕn1,ω,γ(xω, ω(t))

by [53, Proposition 2] and [38, 10.12 (41)], while

−
∫
∂B(0,1)∩P0,ω(g1)∗

eiτ(x0,ω) dHd−1(τ) = Γ

(
d

2

)
J d

2−1(|x0,ω|)(
|x0,ω|

2

) d
2−1

= Φd(|x0,ω|).

The asserted formulae for χLA follow.

Proposition 7.17. Take m : ELA → C so that KLA(m) ∈M1(G), and k ∈ N such that k < n2.
For every element X of the Grassmannian Gk(g2) of k-dimensional subspaces of g2, let PX be
the canonical projection of G onto G/expG(X)

. Then, for almost every X ∈ Gk(g2),

(PX)∗(KLA(m)) = m(dPX(LA)).
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Observe that the assertion with k = n2 need not hold, even if we take m carefully (cf. The-
orem 7.45 below).

Proof. Keep the notation of the proof of Proposition 7.16. By Proposition 3.22, there is a
negligible subset N1 of g∗2 such that W ⊆ N1 and such that for every ω ∈ g∗2 \ N1 there is a
negligible subset N2,ω of P0,ω(g1)∗ such that

π∗ω,τ (KLA(m)) = m(dπω,τ (LA))

for every τ ∈ P0,ω(g1)∗ \ N2,ω. Now, by means of [20, Ex. 11 of Chapter VIII, § 3] and [19,
Proposition 2 and Corollary 1 to Proposition 3 of Chapter V, § 3], we see that there is a negligible
subset N ′1 of Gk(g2) such that, for every X ∈ Gk(g2) \N ′1, the set X◦ ∩N1 is negligible.

Fix X ∈ Gk(g2) \N ′1. Then, for every ω ∈ X◦ \ { 0 } and for every τ ∈ P0,ω(g1)∗ there is a
unique representation πX,ω,τ of PX(G) into Hω,τ such that

πω,τ = πX,ω,τ ◦ PX .

Therefore,
π∗X,ω,τ (PX(KLA(m))) = m(dπX,ω,τ (dPX(LA)))

for every ω ∈ X◦ \ N1 and for every τ ∈ P0,ω(g1)∗ \ N2,ω. Now, Proposition 3.22 again
implies that there are a negligible subset N1,X of X◦ which contains X◦ ∩ N1 and, for every
ω ∈ X◦ \N1,X , a negligible subset N2,X,ω of P0,ω(g1)∗ which contains N2,ω such that

π∗X,ω,τ (KdPX(LA)(m)) = m(dπX,ω,τ (dPX(LA)))

for every τ ∈ P0,ω(g1)∗ \N2,X,ω. Since the representations πX,ω,τ , as ω runs through X◦ \N1,X

and τ runs through P0,ω(g1)∗ \ N2,X,ω, form a co-negligible subset of the dual of PX(G), it
follows that (PX)∗(KLA(m)) = KdPX(LA)(m).

Before we pass to the following sections, let us summarize in a table the most important
results which we shall prove for the family (LH , (−iT1, . . . ,−iTn′2)), n′2 6 n2.

d = 0 d > 0
W = { 0 } Examples with ¬[(RL) ∨ (S)] (RL) and (S)
n′2 < n2 (RL)

n′2 < n2, W = { 0 },
and Card(H) = 1

(RL) and (S) a.e. (RL) and (S)

Here, ‘a.e.’ means ‘for almost every choice of (T1, . . . , Tn′2) in g
n′2
2 .’ Nevertheless, we do not

know of any examples where properties (RL) and (S) do not hold, n′2 < n2, and W = { 0 }.

Remark 7.18. Let T ′1, . . . , T ′k be k homogeneous elements of the centre z of g. We wish to
show that the study of the family (LH ,−iT ′1, . . . ,−iT ′k) is a consequence of the study of the
families of the form (LH ,−iT1, . . . ,−iTn′2), where T1, . . . , Tn′2 ∈ g2. Notice that, since z = g2 if
d = 0, we may assume that d > 0. Recall that, in this case, Card(H) = 1.

Notice that we may assume that there is k′ ∈ { 0, . . . , k } such that T ′1, . . . , T ′k′ ∈ g2 while
T ′k′+1, . . . , T

′
k 6∈ g2; let g′′ be the vector subspace of g generated by T ′k′+1, . . . , T

′
k. Observe that,

since T ′k′+1, . . . , T
′
k are homogeneous and do not belong to g2, clearly g′′ ⊆ g1. Let g′1 be the

Q̂-orthogonal complement of g′′ in g1, and define g′ := g′1⊕ g2. Then, g1 = g′1⊕ g′′ and g is the
direct sum of its ideals g′ and g′′.

Let G′ and G′′ be the Lie subgroups of G corresponding to g′ and g′′, and let L′ and
L′′ be the sub-Laplacians on G′ and G′′, respectively, corresponding to the restriction of Q
to g′∗1

∼= g′′◦ ∩ g◦2 and g′′∗ ∼= g′◦. By an abuse of notation, then, L = L′ + L′′, so that the
family (L,−iT ′1, . . . ,−iT ′k) is equivalent to the family (L′,−iT ′1, . . . ,−iT ′k). Now, the family
(−iT ′k′+1, . . . ,−iT ′k) on G′′ satisfies property (RL) by classical Fourier analysis. Therefore,
Theorem 4.8 and its easy converse imply that the family (L,−iT ′1, . . . ,−iT ′k) on G satisfies
property (RL) if and only if the family (L′,−iT ′1, . . . ,−iT ′k′) on G′ satisfies property (RL).

Similar arguments apply to property (S) and the continuity of the integral kernel.
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7.3 Property (RL)

Keep the notation of Section 7.2.
In this section we shall present several sufficient conditions for the validity of property (RL).

We begin with the case in which d > 0, which is much simpler than the case in which d = 0.
First of all, when d > 0 the spectrum of LA is a convex cone, whereas when d = 0 the spectrum
of LA is a countable union of semianalytic sets. In addition, when d > 0, we can basically
ignore the Laguerre polynomials of higher order which appear in the integral kernel, thanks to
Proposition 3.22. Indeed, with reference to the proof of Proposition 7.16, the ‘ground state,’
that is, the first eigenvalue of dπω,τ (LA), is sufficient to cover the whole of σ(LA), as ω and τ
vary. This fact leads to significant simplifications, as the basic Lemma 7.19 shows.

Concerning the case in which d > 0, then, we need to distinguish between the ‘full’ family
LA, for which we can prove continuity of the multipliers only on a dense subset of the spectrum
in full generality (cf. Lemma 7.19), and the ‘partial’ families (L, (−iT1, . . . ,−iTn′2)) for n′2 < n2,
for which by means of a deeper analysis we are able to prove property (RL) in full generality
(cf. Theorem 7.22).

When d > 0 and we deal with the ‘full’ family LA, we observed above that we can prove
in full generality that every integrable kernel corresponds to a multiplier which is continuous
on a dense subset of the spectrum. Nevertheless, we can prove that property (RL) holds for
the ‘full’ family LA in the following situations: when P0 extends to a continuous function on
g∗2 \ { 0 }, for example when W = { 0 }, or when G is the product of an MW+-group and a
non-trivial abelian group (cf. Theorem 7.20); when G is a free 2-step stratified group on an odd
number of generators (cf. Theorem 7.21). In the first case, we employ directly the simplified
‘inversion formula’ for KLA which is available in this case, while in the second case we employ
the simple structure of free groups to prove that the L1 kernels are invariant under sufficiently
many linear transformations in order that the above-mentioned inversion formula give rise to a
continuous multiplier.

The case in which d = 0 is much more complicated. Even though in this case we are
able to prove continuity results for χLA under rather strong assumptions (cf. Theorem 7.24)
and then deduce property (RL) under slightly weaker assumptions (cf. Theorem 7.25), the
techniques employed are much more involved, and the generality of the obtained results is
much narrower. Let us comment a little more on the assumptions of Theorem 7.25. Besides
the conditions that Ω is g∗2 \ { 0 } and that µ is constant on the unit sphere associated with
the norm µη0

(n1), we need to add the condition that dimR µω(Rh) = dimQ µω(Qh) for some,
and then all, ω ∈ Ω. Even though this condition may appear peculiar, we cannot get rid of
it without running into counterexamples, as Theorem 7.45 shows. Furthermore, observe that,
even though Theorem 7.45 is the main application of Theorems 7.24 and 7.25, the latter result
can be applied to more general sub-Laplacians on H-type groups, as we show in Section 7.7.

Our last results in the case in which d = 0 concern families of the form (L, (−iT1, . . . ,−iTn′2))
for n′2 < n2. Notice that, in this case, we do not only reduce the number of elements of g2, but
we assume that Card(H) = 1. In this case, indeed, the spectrum of (L, (−iT1, . . . ,−iTn′2)) is no
longer a countable union of semianalytic sets, but a convex cone, so that things are somewhat
easier and we can prove more general results than for the ‘full family’ LA. In Theorem 7.28,
we show that property (RL) holds if W = { 0 } and β(L,(−iT1,...,−iTn′2 )) is a measure with
base Hn2+1; this is the generic case as Corollary 7.29 shows; this happens, in particular, if
Ω = g∗2 \ { 0 }. Some applications are shown in Section 7.7.

Our last result concerns the case of general MW+-groups (cf. Theorem 7.30); in this case,
however, the hypotheses are much more restrictive than in the preceding ones. It nonetheless
applies when G is a product of Heisenberg groups and L is a sum of sub-Laplacians on each
factor (cf. Theorem 7.48).

Let us begin with a simple lemma.

Lemma 7.19. Take f ∈ L1
LA(G). Then,MLA(f) has a representative which is continuous on

{ (µω(n1,ω), ω(T)) : ω ∈ g∗2 }.

If, in addition, d > 0, thenMLA(f) has a representative which is continuous on

{ (µω(n1,ω), ω(T)) : ω ∈ g∗2 } ∪ { (λ, ω(T)) : ω ∈ g∗2 \W,λ > µω(n1,ω) }.
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Proof. The first assertion follows from Propositions 7.12 and 7.16.
Then, assume that d > 0 and keep the notation of the proof of Proposition 7.16, and fix a

multiplier m of f . By Proposition 3.22, there is a negligible subset N1 of g∗2 such that for every
ω ∈ g∗2 \N1 there is negligible subset N2,ω of P0,ω(g1)∗ such that

π∗ω,τ (f) = m(dπω,τ (LA))

for every τ ∈ P0,ω(g1)∗ \N2,ω. Notice that we may assume that W ⊆ N1. Therefore, for every
ω ∈ g∗2 \N1 and for every τ ∈ P0,ω(g1)∗ \N2,ω,

m(µω(n1,ω) + |τ |2, ω(T)) =
1

TrPω,τ,0
Tr(m(dπω,τ (LA))Pω,τ,0)

=

∫
G

f(x, t)e−
1
4 |xω|

2+iω(t)+iτ(x0,ω) dνG(x, t).

Now, for every ω ∈ g∗2 \ N1 there is negligible subset N3,ω of R∗+ such that, for every λ ∈
R∗+ \N3,ω, we have Hd−1

(
∂BP0,ω(g1)∗

(
0,
√
λ
)
∩N2,ω

)
= 0. Therefore, for every ω ∈ g∗2 \N1 and

for every λ ∈ R∗+ \N3,ω,

m(µω(n1,ω) + λ, ω(T)) = −
∫
∂B(0,

√
λ)

∫
G

f(x, t)e−
1
4 |xω|

2+iω(t)+iτ(x0,ω) dνG(x, t) dHd−1(τ)

=

∫
G

f(x, t)e−
1
4 |xω|

2+iω(t)Φd

(√
λ|x0,ω|

)
dνG(x, t).

Now, the mapping

(ω, λ) 7→
∫
G

f(x, t)e−
1
4 |xω|

2+iω(t)Φd

(√
λ|x0,ω|

)
dνG(x, t)

is continuous on [(g∗2 \W )×R+]∪ [g∗2×{ 0 }] by Proposition 7.12, so that by means of Tonelli’s
theorem we see that it induces a representative of m which satisfies the conditions of the
statement.

7.3.1 The Case d > 0 and n′2 = n2

Theorem 7.20. Assume that d > 0 and that P0 can be extended to a continuous function on
g∗2 \ { 0 }. Then, LA satisfies property (RL).

Notice that, by polarization, P0 has a continuous extension to g∗2 \{ 0 } if and only if |P0(x)|
has a continuous extension to g∗2 \ { 0 } for every x ∈ g1.

In addition, observe that the hypotheses of the theorem hold in the following situations:

• when d > 0 and W = { 0 }, for example when G is the free 2-step nilpotent group on
three generators;

• when d > 0 and P0 is constant on g∗2 \ W , for example when G = G′ × Rd for some
MW+-group G′, such as a product of Heisenberg groups;

Proof. 1. Keep the notation of the proof of Lemma 7.19. Assume first that n2 = 1, so that
W = { 0 }. In addition, ker dσω = ker dσ−ω for every ω ∈ g∗2, so that P0 is constant on g∗2 \{ 0 }.
The computations of the proof of Lemma 7.19 then lead to the conclusion.

2. Denote by P̃0 the continuous extension of P0 to g∗2 \ { 0 }; observe that P̃0,ω is a self-
adjoint projector of g1 of rank d for every non-zero ω ∈ g∗2. Take f ∈ L1

LA(G) and define, for
every non-zero ω ∈ g∗2 and for every λ > 0,

m(µω(n1,ω) + λ, ω(T)) :=

∫
G

f(x, t)e−
1
4 |xω|

2+iω(t)Φd

(√
λ|P̃0,ω(x)|

)
dνG(x, t),

so that f = KLA(m). Then,m is clearly continuous con σ(LA)\(R×{ 0 }n2), andm(µrω(n1,ω)+
λ, rω(T)) converges to ∫

G

f(x, t)Φd

(√
λ|P̃0,ω(x)|

)
dνG(x, t)
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as r → 0+, uniformly as ω runs through the unit sphere S of g∗2. Therefore, it will suffice to
prove that the above integrals do not depend on ω ∈ S for every λ > 0. Indeed, Theorem 4.1
implies that, for every ω ∈ S,

(πω)∗(f) = Kdπω(LA)(m).

Now, 1 above implies that the family dπω(LA) satisfies property (RL). Then, Theorem 4.1
implies that

(π0)∗(f) ∈ L1
dπ0(LA)(G0);

in addition, dπ0(LA) is identified with (−∆, 0, . . . , 0), where ∆ is the Laplacian associated with
the scalar product Q̂ on g1. Then,∫

G

f(x, t)Φd

(√
λ|P̃0,ω(x)|

)
dνG(x, t) =

∫
g1

(π0)∗(f)(x)Φd

(√
λ|P̃0,ω(x)|

)
dx,

so that the assertion follows since (π0)∗(f) is rotationally invariant.

Notice that the proof of the preceding theorem is based on the following observation: “For
LA to satisfy property (RL), it is (necessary and) sufficient that, for every f ∈ L1

LA(G), for
every λ > 0, and for every ω0 ∈W , the integral∫

G

f(x, t)e−
1
4 |xω|

2+iω0(t)Φd

(√
λ|P̃ (x)|

)
dνG(x, t)

be independent of the limit point P̃ of P0,ω as ω → ω0, ω 6∈W .”
Under the hypotheses of Theorem 7.20, the preceding condition is trivially satisfied for every

non-zero ω0 ∈W ; we established it also for ω0 = 0 with a different technique. When G is a free
group (on an odd number of generators), we can develop further the technique used to establish
the case ω0 = 0 in order to prove that property (RL) holds without further assumptions.

Theorem 7.21. Assume that G is a free 2-step stratified group on an odd number of generators.
Then, LA satisfies property (RL).

Proof. Take f ∈ L1
LA(G); by Lemma 7.19, f has a multiplier m which is continuous on σ(LA) \

(R×W (T)). Now,

(πω)∗(f)(x, t) =

∫
ω(t′)=t

f(x, t′) dt′

for almost every (x, t) ∈ Gω. Then, Theorem 4.1 implies that (πω)∗(f) is invariant under
the isometries which restrict to the identity on (ker dσω )⊥, for every ω ∈ g∗2 \ W ; indeed,
dπω(LA) is invariant under such isometries, and these isometries are group automorphisms.
Next, take ω ∈ W and an isometry U of Gω which restricts to the identity on (ker dσω )⊥.
Since dim ker dσω is odd, there must be some v ∈ ker dσω such that U · v = ±v. Let V be the
orthogonal complement of Rv in ker dσω , so that V is U -invariant. Now, let σV be a standard
symplectic form on the hilbertian space V ,4 and define ωp, for every p ∈ N, so that

σωp = σω + 2−pσV ;

this is possible since G is a free 2-step stratified group. Then, ωp belongs to g∗2 \ W and
converges to ω. In addition, (πωp)∗(f) is U -invariant thanks to Theorem 4.1 (cf. also the results
of Section 7.5 below). Now, it is easily seen that (πωp)∗(f) converges to (πω)∗(f) in L1(g1⊕R),
so that (πω)∗(f) is U -invariant.

Then, the mapping

m1 : R+ × (g∗2 \W ) 3 (λ, ω) 7→
∫
G

f(x, t)e−
1
4 |xω|

2+iω(t)Φ1

(√
λ|x0,ω|

)
dνG(x, t),

extends to a continuous function on R+×g∗2. Since m(λ, ω(T)) = m1(λ−µω(n1,ω), ω) for every
(λ, ω(T)) ∈ σ(LA), with ω 6∈W , the assertion follows.

4That is, choose a symplectic form σV on V so that V admits an orthonormal basis (relative to the scalar
product) which is also a symplectic basis (relative to σV ).
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7.3.2 The Case d > 0 and n′2 < n2

Theorem 7.22. Assume that d > 0, and take n′2 < n2. Then, the family (L, (−iTj)j=1,...,n′2
)

satisfies property (RL).

Proof. Define L′A′ = (L, (−iTj)j=1,...,n′2
), and let L : ELA → EL′

A′
be the unique linear mapping

such that L′A′ = L(LA). Until the end of the proof, we shall identify g∗2 with Rn2 by means
of the mapping ω 7→ ω(T). In addition, define and X := (σ(LA) \W ) ∪ ∂σ(LA), so that X is
a Polish space by [17, Theorem 1 of Chapter IX, § 6, No. 1]. Let β be the (Radon) measure
induced by βLA on X, so that Supp(β) = X. Let L′ be the restriction of L to X. Since σ(LA)
is a convex cone by Corollary 7.10 and since W is βLA-negligible, Proposition 2.22 implies that
β is L′-connected. In addition, L′(X) = σ(L′A′).

Now, Proposition 2.26 implies that β has a disintegration (βλ′)λ′∈EL′
A′

such that βλ′ is

equivalent to χL′−1(λ′) ·Hn2−n′2 for βL′
A′
-almost every λ′ ∈ EL′

A′
. Observe that L−1(λ′)∩σ(LA)

is a convex set of dimension n2−n′2 for βL′
A′
-almost every λ′ ∈ EL′

A′
. In addition, W ∩L−1(λ′)

is an algebraic variety of dimension at most n2 − n′2 − 1 for βL′
A′
-almost every λ′ ∈ EL′

A′
, for

otherwise Hn2+1(W ) would be non-zero, which is absurd. Therefore, Supp(βλ′) = L′−1(λ′) for
βL′

A′
-almost every λ′ ∈ EL′

A′
.

Now, takem0 ∈ L∞(βLA) so that KL′
A′

(m0) ∈ L1(G). Let us prove thatm0 has a continuous
representative. Indeed, Lemma 7.19 implies that there is a continuous function m1 on X such
thatm0◦L′ = m1 β-almost everywhere. Hence, Proposition 2.21 implies that there is a function
m2 : σ(L′A′) → C such that m2 ◦ L′ = m1. Since the mapping L : ∂σ(LA) → σ(L′A′) is proper
and onto, and since ∂σ(LA) ⊆ X, it follows thatm2 is continuous. The assertion follows (cf. [17,
Corollary to Theorem 2 of Chapter IX, § 4, No. 2]).

7.3.3 The Case d = 0 and n′2 = n2

We begin with a technical lemma.

Lemma 7.23. Let V, Ṽ be two finite-dimensional vector spaces over R, L a discrete subgroup
of V , C the convex envelope of R+F for some finite subset F of L which generates V , and
µ : V → Ṽ a linear mapping which is proper on C. Assume that L ∩ kerµ generates kerµ, and
take ξ ∈ µ(C). Define

Vξ := µ−1(ξ) Sξ := Vξ ∩ C

nξ := dimR Sξ νξ :=
1

Hnξ(Sξ)
χSξ · Hnξ .

Take x0 ∈ C and define, for every λ ∈ R∗+ and for every γ ∈ µ(x0 + L ∩ C),

νλ,γ =
1

cγ

∑
γ′∈L∩C

γ=µ(x0+γ′)

δλ(x0+γ′),

where cγ = Card
(
µ−1(γ) ∩ (x0 + L ∩ C)

)
. Then,

lim
(λγ,λ)→(ξ,0)
γ∈µ(x0+L∩C)

νλ,γ = νξ

in E ′0c (V ).

Proof. 1. Define Σ := µ(x0+L∩C) and define Fξ as the filter ‘(λ, γ) ∈ R∗+×Σ, (λγ, λ)→ (ξ, 0).’
Observe that it will suffice to prove that νλ,γ converges vaguely to νξ along Fξ. Indeed, the νλ,γ
are probability measures supported in

Sλγ ⊆ C ∩ µ−1(K) (1)

eventually along Fξ, where K is a compact neighbourhood of ξ in Ṽ . Since µ is proper on C,
the assertion follows.
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Now, let us prove that we may reduce to the case in which x0 = 0. Indeed, define

ν0
λ,γ :=

1

cγ

∑
γ′∈L∩C

γ=µ(x0+γ′)

δλγ′ .

It will then suffice to prove that νλ,γ − ν0
λ,γ converges vaguely to 0 along Fξ. However, take

ϕ ∈ Cc(V ) and ε > 0. Then, there is a neighbourhood U of 0 in V such that |ϕ(x1)−ϕ(x2)| < ε

for every x1, x2 ∈ V such that x1−x2 ∈ U . Therefore,
∣∣∣〈νλ,γ − ν0

λ,γ , ϕ
〉∣∣∣ < ε as long as λx0 ∈ U ,

hence eventually along Fξ. The assertion follows.
2. Observe that C is a polyhedral convex cone. In addition, let n be the dimension of V ,

and let (Fh)h∈H be the (finite) family of (n− 1)-dimensional facets of C; observe that Fh is a
convex cone for every h ∈ H, so that 0 ∈ Fh. Take, for every h ∈ H, some ph ∈ V ∗ such that
Fh = ker ph ∩ C and ph(C) ⊆ R+. Then, C is the set of x ∈ V such that ph(x) > 0 for every
h ∈ H, and L ∩ ker ph generates ker ph for every h ∈ H.

In addition, let Hξ be the set of h ∈ H such that ph(Sξ) = { 0 }, and let H ′ξ be its
complement in H. We shall write pHξ and pH′ξ instead of (ph)h∈Hξ and (ph)h∈H′ξ , respectively.

Define V ′ξ := Vξ∩ker pHξ . Then, V ′ξ ∩p
−1
H′ξ

(
(R∗+)H

′
ξ

)
is the interior of Sξ in V ′ξ ; now, by convexity

V ′ξ ∩ p
−1
H′ξ

(
(R∗+)H

′
ξ

)
is not empty, so that V ′ξ is the affine space generated by Sξ.

3. DefineWξ := V ′ξ −V ′ξ , and observe that L∩Wξ generatesWξ. Indeed, the linear mapping
(µ, pHξ) : V → Ṽ × RHξ maps L into the discrete subgroup µ(L) ×

∏
h∈Hξ ph(L) of Ṽ × RHξ ,

and Wξ is the kernel of (µ, pHξ), whence the assertion.
Therefore, there are two subspaces W ′ξ and W ′′ξ of V such that the following hold (cf. [17,

Exercises 2 and 3 of Chapter VII, § 1]):

• Wξ ⊕W ′ξ = V0 and V0 ⊕W ′′ξ = V ;

• L ∩W ′ξ and L ∩W ′′ξ generate W ′ξ and W ′′ξ , respectively, over R;

• (L ∩Wξ)⊕ (L ∩W ′ξ)⊕ (L ∩W ′′ξ ) = L as abelian groups.

Therefore, we may endow V and Ṽ with two scalar products such that Wξ, W ′ξ, and W
′′
ξ are

orthogonal, and µ induces an isometry of W ′′ξ into Ṽ . We may further assume that ‖ph‖ 6 1
for every h ∈ H.

4. Define, for λ > 0 and γ ∈ Σ,

rξ,λ,γ := inf{ r > 0: Sλγ ⊆ B(Sξ, r) }+ λ,

so that Sλγ ⊆ B(Sξ, rξ,λ,γ). Let us prove that rξ,λ,γ converges to 0 along Fξ.
Indeed, let U be an ultrafilter finer than Fξ. Denote by K the space of non-empty compact

subsets of V endowed with the Hausdorff distance dH . By (1), [16, Proposition 10 of Chapter
I, § 6, No. 7] and [2, Theorem 6.1], we see that Sλγ has a (unique) limit S in K along U. Now,
for every closed neighbourhood K of ξ in Ṽ ,

Sλγ ⊆ C ∩ µ−1(K)

as long as λγ ∈ K, so that, by passing to the limit along U,

S ⊆ C ∩ µ−1(K).

By the arbitrariness of K, it follows that S ⊆ Sξ. Therefore,

rξ,λ,γ 6 dH(S, Sλγ) + λ,

so that rξ,λ,γ converges to 0 along U. Thanks to [16, Proposition 2 of Chapter I, § 7, No. 2],
the arbitrariness of U implies that rξ,λ,γ converges to 0 along Fξ.

5. Now, let πξ be the affine projection of V onto V ′ξ with fibres parallel to W ′ξ ⊕ W ′′ξ .
Reasoning as in 1 and taking 4 into account, we see that νλ,γ − (πξ)∗(νλ,γ) converges vaguely
to 0 along Fξ, so that it will suffice to prove that (πξ)∗(νλ,γ) converges vaguely to νξ along Fξ.
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Now, if nξ = 0, then (πξ)∗(νλ,γ) = δξ′ = νξ, where ξ′ is the unique element of Sξ. Therefore,
we may assume that nξ > 0.

Next, take ε > 0 and x, y ∈ Sξ,λ,γ := Supp((πξ)∗(νλ,γ)). Assume that B(x, ε)∩p−1
Hξ

(
R
Hξ
+

)
⊆

C, and that rξ,λ,γ < ε. Take y′ ∈ Supp(νλ,γ) such that πξ(y′) = y, and let us prove that
y′ + x − y ∈ Supp(νλ,γ). Indeed, it is clear that x − y ∈ λL ∩Wξ, so that y′ + x − y ∈ λL.
Hence, it will suffice to prove that y′ + x − y ∈ C. Now, since y′ ∈ Sλγ ⊆ B(Sξ, ε), it follows
that there is x′ ∈ Sξ such that |y′ − x′| < ε, so that

ε2 > |y′ − x′|2 = |y − x′|2 + |y′ − y|2

since y−x′ ∈Wξ and y′−y ∈W ′ξ⊕W ′′ξ . Therefore, |y′−y| < ε; since, in addition, ph(y′+x−y) =

ph(y′) > 0 for every h ∈ Hξ, it follows that y′ + x− y ∈ B(x, ε) ∩ p−1
Hξ

(
R
Hξ
+

)
⊆ C.

6. By the arguments of 5 above, we see that there is a function cξ,λ,γ on Sξ,λ,γ such that

(πξ)∗(νλ,γ) =
∑

x∈Sξ,λ,γ

cξ,λ,γ(x)δx,

and such that cξ,λ,γ(x) > cξ,λ,γ(y) eventually along Fξ whenever x, y ∈ Sξ,λ,γ and B(x, ε) ∩
p−1
Hξ

(
R
Hξ
+

)
⊆ C for some fixed ε > 0. In particular, cξ,λ,γ is constant on the set of x ∈ Sξ,λ,γ

such that B(x, ε) ∩ p−1
Hξ

(
R
Hξ
+

)
⊆ C.

Now, let us prove that, if ε 6 minh∈H′ξ minSξ ph and if x ∈ V ′ξ and B(x, ε) ∩ V ′ξ ⊆ C,

then B(x, ε) ∩ p−1
Hξ

(
R
Hξ
+

)
⊆ C. Indeed, take x′ ∈ B(x, ε), and assume that ph(y) > 0 for

every h ∈ Hξ. Take h ∈ H ′ξ, and observe that |ph(y − x)| 6 |y − x| < ε, so that ph(y) =
ph(x) + ph(y − x) > ph(x)− ε > 0 by our choice of ε. By the arbitrariness of h, it follows that
y ∈ C.

7. Finally, take a fundamental parallelotope Pξ of L ∩Wξ, and extend cξ,λ,γ to a function
on V which is constant on x + λPξ for every x ∈ πξ(λL), and vanishes on the complement
of Sξ,λ,γ + λPξ. Then, νξ,λ,γ := 1

Hnξ (λPξ)
cξ,λ,γ · Hn

′
ξ is a probability measure; in addition, as

in 1 we see that (πξ)∗(νλ,γ)− νξ,λ,γ converges vaguely to 0 along Fξ, so that it will suffices to
show that νξ,λ,γ converges vaguely to νξ along Fξ. However, if S′ξ denotes the boundary of Sξ
in V ′ξ , then 4 and 6 imply that 1

Hnξ (λPξ)
cξ,λ,γ is uniformly bounded eventually along Fξ, and

converges on V \ S′ξ to a function g which is 0 on the complement of Sξ, and is constant on
Sξ \ S′ξ. The assertion follows by dominated convergence.

Theorem 7.24. Assume that d = 0, that Ω = g∗2 \ { 0 }, that dimQ µω(Qh) = dimR µω(Rh) for
every ω ∈ Ω, and that Ph is constant on Ω. Then, χLA has a continuous representative.

Proof. 1. We shall simply write Ph and n1 to denote the constant values of the functions
ω 7→ Ph,ω and ω 7→ n1,ω, respectively. In addition, we shall denote by | · |′ the norm µη0

(n1),
and by S′ the corresponding unit sphere. Choose ω0 ∈ S′ and define, for every x ∈ g1,

µη,h := µη,h,ω0 and xh := xh,ω0 . Then, µη,h,ω = |ω|′µη,h and xh,ω =
√
|ω|′xh for every ω ∈ Ω.

For every ξ ∈ µ(Rh+), denote by Fξ the filter ‘(λ, γ) ∈ R∗+ × Σ, (λγ, λ) → (ξ, 0),’ where
Σ := µ(n1 + 2NH). In addition, define, for every λ ∈ R∗+ and for every γ ∈ Σ,

ν′λ,γ =
∑

γ=µ(n1+2γ′)

δλ(n1+2γ′),

and νλ,γ := 1
ν′λ,γ(Rh)

· ν′λ,γ , so that νλ,γ is a probability measure. Then, Lemma 7.23 implies

that νλ,γ converges to some probability measure νξ in E ′0c (Rh) along Fξ.
2. Define, for every (x, t) ∈ RH ×R,

χ0(λ(n1 + 2γ′), λ, x, t) = e−
1
4λ|x|

2+iλt 1(n1+γ′−1h
γ′

) h∏
h=1

Λ
n1,h−1

γ′h

(
1

2
λ|xh|2

)
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for every λ ∈ R∗+ and for every γ′ ∈ Nh, and

χ0(ξ′, 0, x, t) :=

h∏
h=1

2n1,h−1(n1,h − 1)!(√
ξ′h|xh|

)n1,h−1 Jn1,h−1

(√
ξ′h|xh|

)

for every ξ′ ∈ Rh+. Then, χ0 extends to a continuous function on Rh ×R×Rh ×R.
Next, define, for every λ ∈ R+,

fλ : Rh 3 x 7→(2λ)|n1−1h|
( x

2λ + n1

2 − 1h
n1 − 1h

)
=

h∏
h=1

(xh + λn1,h − 2λ) · · · (xh − λn1,h + 2λ)

(n1,h − 1)!
,

and observe that fλ converges locally uniformly to f0 as λ→ 0+. Therefore, fλ · νλ,γ converges
to f0 · νξ in E ′0c (Rh) along Fξ. If we define ν′λ,γ := 1

νλ,γ(fλ)fλ · νλ,γ and ν′ξ := 1
νξ(f0)f0 · νξ, then

ν′λ,γ converges to ν′ξ in E ′0c (Rh) along Fξ.
Define, for every ω ∈ Ω and for every γ ∈ Σ,

χ1((|ω|′γ, ω(T)), (x, t)) :=
〈
ν′|ω|′,γ , χ0( · , |ω|′, (|xh|)hh=1,

ω(t)
|ω|′ )

〉
,

so that χ1 is a representative of χLA by Proposition 7.16. Now,

lim
(λ,γ),Fξ

χ1((λγ, λω(T)), (x, t)) =
〈
ν′ξ, χ0( · , 0, (|xh|)hh=1, ω(t))

〉
uniformly as ξ runs through µ(Rh+), as ω runs through S′, and as (x, t) runs through a compact

subset of G. Since
〈
ν′ξ, χ0( · , 0, (|xh|)hh=1, ω(t))

〉
does not depend on ω, it follows that χ1 is

continuous on σ(LA)×G. The assertion follows from [17, Corollary to Theorem 2 of Chapter
IX, § 4, No. 2].

Theorem 7.25. Assume that d = 0, that Ω = g∗2 \ { 0 }, that dimQ µω(Qh) = dimR µω(Rh)
for every ω ∈ Ω, and that µ is constant where µη0(n1) is constant. Then, LA satisfies property
(RL).

Proof. Take ϕ ∈ L1
LA(G). Let S′ be the unit sphere associated with the homogeneous norm

| · |′ : ω 7→ µη0,ω(n1). Then, Proposition 7.17 implies that there is a negligible subset N of
S′ such that (πω)∗(ϕ) ∈ L1

dπω(LA)(Gω) for every ω ∈ S′ \ N . Observe, in addition, that the
mapping

ω 7→ (πω)∗(ϕ) ∈ L1(g1 ⊕R)

is continuous on Ω, hence on S′. Now, fix ω0 ∈ S′, and take (U,ψ) as in Proposition 7.14.
Then, it is easily seen that the mapping

U ∩ S′ 3 ω 7→ (ψω ◦ πω)∗(ϕ) ∈ L1(G′)

is continuous. Furthermore, observe that our assumptions imply that, with the notation of
Proposition 7.14,

L′H := d(ψω ◦ πω)(LH) =

(
−

d∑
k=1

Y 2
k −

n1∑
k=1

µ̃η,k(X2
k +X2

n1+k)

)
η∈H

does not depend on ω, while
d(ψω ◦ πω)(T) = ω(T)T.

Observe that (L′H ,−iT ) satisfies property (RL) by Theorem 7.24, and that (ψω ◦ πω)∗(ϕ) ∈
L1

(L′H ,−iT )(G
′) for every ω ∈ S′ \N , hence for every ω ∈ S′ by continuity, since L1

(L′H ,−iT )(G
′)

is closed in L1(G′) by Proposition 3.15. Therefore, the mapping

U ∩ S′ 3 ω 7→ M(L′H ,−iT )((ψω ◦ πω)∗(ϕ)) ∈ C0(σ(L′H ,−iT ))
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is continuous. Now, take ω ∈ U ∩ S′ \N . Then, Theorem 4.1 implies that

M(L′H ,−iT )((ψω ◦ πω)∗(ϕ))(λ, 0) =Mdπ0(LH)((π0)∗(ϕ))(λ)

for every λ ∈ RH such that (λ, 0) ∈ σ(L′H ,−iT ), that is, for every λ ∈ σ(dπ0(LH)). By
continuity, this proves that the mapping U ∩ S′ 3 ω 7→ M(L′H ,−iT )((ψω ◦ πω)∗(ϕ))(λ, 0) is
constant for every λ ∈ σ(dπ0(LH)). Taking into account the arbitrariness of U , we infer that
there is a unique m ∈ C0(σ(LA)) such that

m(λ, ω(T)) =M(L′H ,−iT )((ψU,ω/|ω|′ ◦ πω/|ω|′)∗(ϕ))(λ, |ω|′)

for every (λ, ω(T)) ∈ σ(LA) such that ω
|ω|′ ∈ U ∩ S

′, where U runs through a finite covering of
S′, and ψU is the associated local trivialization as above. Hence, ϕ = KLA(m) and the assertion
follows.

Here we prove a negative result.

Proposition 7.26. Assume that G is the product of k > 2 MW+-groups G1, . . . , Gk, and
assume that each Gj is endowed with a sub-Laplacian Lj. Assume that Card(H) = 1 and that
L = L1 + · · ·+ Lk. Then, LA does not satisfy properties (RL) and (S).

Proof. Take, for every j = 1, . . . , k, a basis Tj of the centre gj,2 of the Lie algebra of Gj . Then,
we may assume that LA = (L,−iT1, . . . ,−iTk); define L′A′ := (L1, . . . ,Lk,−iT1, . . . ,−iTk).
Then, there is a unique linear mapping L : EL′

A′
→ ELA such that LA = L(L′A′). Now, take

j ∈ { 1, . . . , k } and γ ∈ Nhj , and define

Cj,γ := { (µj,ω(n1,j,ω + 2γ), ω(Tj)) : ω ∈ Ωj }.

Define

C :=
⋃

γ∈
∏k
j=1 N

hj

k∏
j=1

Cj,γj ,

and observe that βL′
A′

is equivalent to χC · Hn2 . Now, define

N := Rk ×
⋃

γ∈
∏k
j=1 Z

hj

γ 6=0

 ω(T) : ω ∈
k∏
j=1

Ωj ,

k∑
j=1

µj,ωj (γj) = 0

,
and observe that L is one-to-one on σ(L′A′) \N . In addition, the µj are analytic and homoge-
neous of homogeneous degree 1, and the components of the Ωj are unbounded; therefore, it is
easily seen that N is βL′

A′
-negligible. Therefore, there is a unique m : ELA → EL′

A′
such that

m ◦ L is the identity of σ(L′A′) \ N , while m equals 0 on the complement of L(N). Then, m
is βLA -measurable, and KLA(m) = L′A′δe. Now, let us prove that m is not equal βLA-almost
everywhere to a continuous function. Assume by contradiction that L′A′δe = KLA(m′) for some
continuous function m′, and let π0 be the projection of G onto its abelianization. Then, The-
orem 4.1 implies that the operators dπ0(L1), . . . ,dπ0(Lk) belong to the functional calculus of
π0(L), which is clearly absurd.

To conclude, simply take τ ∈ S(ELA) such that τ(λ) 6= 0 for every λ ∈ ELA , and observe
that KLA(mτ) = L′A′KLA(τ) is a family of elements of S(G), while mτ is not equal βLA-almost
everywhere to a continuous function.

7.3.4 The Case d = 0 and n′2 < n2

Lemma 7.27. Let E1, E2 be two finite-dimensional vector spaces, C a convex subset of E1

with non-empty interior, and L : E1 → E2 a linear mapping which is proper on ∂C. Assume
that for every x ∈ ∂C either L−1(L(x)) ∩ ∂C = { x } or ∂C is an analytic hypersurface of E1

in a neighbourhood of x. Then, L induces an open mapping L′ : ∂C → L(∂C).
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Proof. Take x ∈ ∂C, and assume that L−1(L(x)) ∩ ∂C = { x }. Define, for every k ∈ N,
Ux,k := L−1(B(L(x), 2−k)) ∩ ∂C. Since L is proper on ∂C, Ux,k is a compact neighbourhood
of x for every k ∈ N. In addition,

⋂
k∈N Ux,k = { x }; hence, [16, Proposition 1 of Chapter 1, §

9, No. 3] implies that (Ux,k) is a fundamental system of neighbourhoods of x in ∂C, so that L′
is open at x.

Now, assume that L−1(L(x)) ∩ ∂C 6= { x }. Then, there is a convex neighbourhood U of
L−1(L(x)) ∩ ∂C such that ∂C ∩ U is an analytic hypersurface of E1. Assume by contradiction
that kerL ⊆ Tx(∂C ∩U), and take x′ ∈ ∂C so that L(x′) = L(x) but x′ 6= x. Since C is convex,
we have [x, x′] ⊆ ∂C. Now, ∂C ∩ U is an analytic hypersurface and U is convex, so that the
arbitrariness of x′ implies that `∩U ⊆ ∂C, where ` is the line passing through x and x′. Since
each x′′ ∈ ` ∩ ∂C has a convex neighbourhood where ∂C is an analytic hypersurface, we see
that the non-empty closed set `∩ ∂C is open in `. It follows that ` ⊆ ∂C, which is absurd since
then ` is contained in the compact set L−1(L(x))∩∂C. Therefore, kerL 6⊆ Tx(∂C ∩U), so that
L′ is open at x. The assertion follows.

Theorem 7.28. Assume that d = 0, that Card(H) = 1, and that W = { 0 }; take a positive
integer n′2 < n2, and assume that β(L,(−iTj)j=1,...,n′2

) is a measure with base Hn′2+1. Then, the
family (L, (−iTj)j=1,...,n′2

) satisfies property (RL).

Proof. 1. Consider the mapping

L : ELA 3 λ 7→ (λ1, (λ2,j)
n′2
j=1) ∈ E(L,(−iTj)j=1,...,n′2

),

so that L(LA) = (L, (−iTj)j=1,...,n′2
). Define, for every γ ∈ Nn1 ,

βγ : D(ELA) 3 ϕ 7→
∫
g∗2

ϕ(µ̃ω(1n1
+ 2γ), ω(T))|Pf(ω)|dω,

so that βLA = 1
(2π)n1+n2

∑
γ∈Nn1 βγ . Define

ρ0 : Rn
′
2 3 ω′ 7→ min{ µω(n1) : ω(T) = ω′ },

and
C0 :=

{
(ρ0(ω′) + r, ω′) : ω′ ∈ Rn

′
2 , r > 0

}
,

so that ρ0 is a norm on Rn
′
2 and C0 = L(Supp(β0)) = L(σ(LA)).

2. Now, Corollary 7.10 implies that Supp(β0) \ { 0 } is an analytic submanifold of ELA .
Therefore, Corollary 2.27 implies that L∗(β0) is equivalent to β(L,(−iTj)j=1,...,n′2

) and that, if
(β0,λ) is a disintegration of β0 relative to L, then Supp(β0,λ) = L−1(λ) ∩ Supp(β0) for L∗(β0)-
almost every λ ∈ C0. In addition, Lemma 7.27 implies that the mapping L : Supp(β0)→ C0 is
open. The assertion then follows from Proposition 2.21 and Lemma 7.19.

Corollary 7.29. Assume that d = 0, that Card(H) = 1, and that W = { 0 }; take n′2 < n2.
Then, the following hold:

1. for almost every (T ′1, . . . , Tn′2) ∈ g
n′2
2 , (L, (−iT ′j)j=1,...,n′2

) satisfies property (RL);

2. if Ω = g∗2 \ { 0 }, then (L, (−iTj)j=1,...,n′2
) satisfies property (RL).

Proof. 1. Let X be the polar in g∗2 of the subspace of g2 generated by some free family
(T ′1, . . . , T

′
n′2

) of elements of g2,5 and let (T ′n′2+1, . . . , T
′
n2

) be a basis of g2 ∩X◦⊥. Consider the
linear mapping L : E(L,(−iT ′j)j=1,...,n2

) → E(L,(−iT ′j)j=1,...,n′2
) such that L(L, (−iT ′j)j=1,...,n2

) =

(L, (−iT ′j)j=1,...,n′2
). Then, there is a unique linear mapping L′ : g∗2 → (X◦)∗ such that

L(λ, (ω(T ′j))j=1,...,n2) = (λ, (L′(ω)(T ′j))j=1,...,n′2
)

for every ω ∈ g∗2 and for every λ ∈ R. Then, tL′ : X◦ → g2 is the canonical inclusion, so that
kerL′ = X. Now, take γ ∈ Nn1 and define βγ as in the proof of Theorem 7.28; let C be the set

5Observe that the set of non-free families in g
n′2
2 is negligible, since it is the set of zeroes of the multilinear

mapping (T ′1, . . . , T
′
n2

) 7→ T ′1 ∧ · · · ∧ T ′n′2
.
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of components of Ω. Choose C ∈ C, and observe that µ̃′ω(1n1
+ 2γ) does not vanish identically

on C, since the mapping ω 7→ µ̃′ω(1n1
+ 2γ) is proper on g∗2 and C is unbounded. Then, take

ωC,γ ∈ C so that µ̃′ωC,γ (1n1
+ 2γ) 6= 0, and observe that L is generically a submersion on

Supp(βγ) ∩ (R× C) if
X = kerL′ 6⊆ ker µ̃′ωC,γ (1n1

+ 2γ).

Therefore, if X is not contained in the negligible set⋃
γ∈Nn1 ,C∈C

ker µ̃′ωC,γ (1n1 + 2γ),

then β(L,−iT ′1,...,−iT ′n′2
) is a measure with base Hn′2+1 thanks to Proposition 2.26. Hence, Propo-

sition 7.28 shows that (L,−iT ′1, . . . ,−iT ′n′2) satisfies property (RL); the assertion follows.
2. If Ω = g∗2 \{ 0 }, one only has to observe that the arguments we used to prove that L∗(β0)

is a measure with base Hn′2+1 in Proposition 7.28 apply to prove that L∗(βγ) is a measure with
base Hn′2+1. The assertion then follows from Proposition 7.28.

Theorem 7.30. Define Cγ := { (µ̃ω(1n1 + 2γ), ω(T)) : ω ∈ g∗2 } for every γ ∈ Nn1 . In addition,
take n′2 < n2 and define L := IR × pr1,...,n′2

on ELA . Assume that the following hold:

1. Card(H) = 1 and d = 0;

2. χC0
· βLA is L-connected;

3. for every f ∈ L1
LA(G) and for every γ ∈ Nn1 , MLA(f) equals βLA-almost everywhere a

continuous function on Cγ .

Then, L(LA) satisfies property (RL).

Observe that condition 2 holds if C0 is the boundary of a convex polyhedron (cf. Corol-
lary 2.24) and if Ω = g∗2 \ { 0 } (cf. Lemma 7.27). With a little more effort, one may prove that
condition 2 holds if n′2 = 1.

We shall prepare the proof of Theorem 7.30 through several lemmas.

Lemma 7.31. Let V be a topological vector space, C a convex subset of V with non-empty

interior, and W an affine subspace of V such that W ∩
◦
C 6= ∅. Then, W ∩ ∂C is the boundary

of W ∩ C in W .

Proof. Indeed, take x0 ∈ W ∩
◦
C, and take x in the interior of W ∩ C in W . Then, there is

y ∈ W ∩ C such that x ∈ [x0, y[, so that [18, Proposition 16 of Chapter II, § 2, No. 7] implies

that x ∈
◦
C. By the arbitrariness of x, W ∩

◦
C is the interior of W ∩ C in W . Analogously, one

proves that W ∩ C is the closure of W ∩ C in W , so that the assertion follows.

Lemma 7.32. Let f : Rn → R be a convex function which is differentiable on an open subset
U of Rn. Let L be a linear mapping of Rn onto Rk for some k 6 n, and assume that (f, L) has
rank k on U . Then, for every y ∈ (f, L)(U), the fibre (f, L)−1(y) is a closed convex set which
contains L−1(y2) ∩ U .

Proof. Define π := (f, L) : Rn → R × Rk, and observe that kerL ⊆ ker f ′(x) for every x ∈ U
since π has rank k on U . Therefore, if y ∈ π(U), then f is locally constant on L−1(y2)∩U . Now,
take two components C1 and C2 of L−1(y2) ∩ U , and observe that they are open in L−1(y2).
Take x1 ∈ C1 and x2 ∈ C2. Then, [x1, x2] ⊆ L−1(y2), so that there are x′1, x′2 ∈]x1, x2[ such
that f is constant on [x1, x

′
1] and on [x′2, x2]. By convexity, f must be constant on [x1, x2],

hence on C1 ∪ C2. By the arbitrariness of C1 and C2, we infer that π−1(y) ⊇ L−1(y2) ∩ U .
Now, consider the closed convex set C := { (λ, x) : x ∈ Rn, λ > f(x) }, and observe that

◦
C = { (λ, x) : x ∈ Rn, λ > f(x) }

since f is continuous, so that ∂C is the graph of f . Next, define W := (IR × L)−1(y) =
{ y1 } × L−1(y2), and observe that W ∩ ∂C = { y1 } × π−1(y). Assume by contradiction that
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W ∩
◦
C 6= ∅. Then, Lemma 7.31 implies that W ∩ ∂C is the boundary of W ∩ C in W , so that

π−1(y) has empty interior in L−1(y2). However, π−1(y) contains L−1(y2)∩U , which is open in
L−1(y2): contradiction. Therefore, { y1 } × π−1(y) = W ∩C is a closed convex set, whence the
result.

Lemma 7.33. Let f : Rn → R be a convex function which is analytic on some open subset Ω
of Rn whose complement is Hn-negligible. Let L be a linear mapping of Rn onto Rk for some
k 6 n, and let U be the union of the components of Ω where (f, L) has rank k. Then,

(f, L)−1(y) = L−1(y2) ∩ U

for Hk-almost every y ∈ (f, L)(U).

Proof. Define π := (f, L). Since the complement of Ω is Hn-negligible, there is an Hk-negligible
subset N1 of Rk such that L−1(y)\Ω is Hn−k-negligible for every y ∈ Rk \N1 (cf. [39, Theorem
3.2.11]). In addition, observe that the set Rk of x ∈ Ω \ U such that kerL ⊆ ker f ′(x), that
is, such that π′(x) has rank k, is Hn-negligible by the analyticity of f . Then, there is an
Hk-negligible subset N2 of Rk such that L−1(y) ∩Rk is Hn−k-negligible for every y ∈ Rk \N1

(loc. cit.). Now, define N := R × (N1 ∪ N2), and observe that χπ(U) · Hk is a pseudo-image
measure of χU · Hn under π thanks to Corollary 2.27;6 since U ∩ π−1(N) = U ∩ L−1(N1 ∪N2)
is Hn-negligible, it follows that π(U) ∩N is Hk-negligible.

Now, take y ∈ π(U)\N . Then, Lemma 7.32 implies that π−1(y) is a closed convex set which
contains L−1(y2)∩U , so that its interior in L−1(y2) is not empty. Let U ′ be a component of Ω
which is not contained in U , and assume that π−1(y) ∩ U ′ 6= ∅. Since f is analytic on U ′, and
since π−1(y) is a convex set with non-empty interior in L−1(y2), we see that a component C of
L−1(y2) ∩ U ′ is contained in Rk. By the choice of N2, this implies that C is Hn−k-negligible;
since C is non-empty and open in L−1(y2), this leads to a contradiction. Therefore,

L−1(y2) ∩ U ⊆ π−1(y) ⊆ L−1(y2) ∩ [U ∪ (Rn \ Ω)].

By our choice of N1, the set L−1(y2) \ Ω is Hn−k-negligible; on the other hand, the support
of χπ−1(y) · Hn−k is π−1(y) by convexity. Hence, L−1(y2) ∩ U is dense in π−1(y), whence the
result.

Lemma 7.34. Keep the hypotheses and the notation of Lemma 7.33. Assume, in addition,
that lim

x→∞
f(x) = +∞ and that Hn is (f, L)-connected. Then, for every m ∈ C(Rn) such that

m = m′ ◦ (f, L) Hn-almost everywhere for some m′ : R × Rk → C, there is m′′ ∈ C(R × Rk)
such that m = m′′ ◦ (f, L) pointwise.

Proof. Define π := (f, L). Let (β1,y)y∈R×Rk be a disintegration of χU · Hn relative to π and let
(β2,y)y∈R×Rk be a disintegration of χΩ\U · Hn relative to π. Then, Corollary 2.27 implies that:

• π∗(χU · Hn) is equivalent to χπ(U) · Hk;

• π∗(χΩ\U · Hn) is equivalent to χπ(Ω\U) · Hk+1;

• Supp(β1,y) = π−1(y) ∩ U for Hk-almost every y ∈ π(U);

• Supp(β2,y) = π−1(y) ∩ Ω \ U for Hk+1-almost every y ∈ π(Ω \ U).

In addition, π(U) has Hausdorff dimension k, so thatHk+1(π(U)) = 0; in particular, π∗(χU ·Hn)
and π∗(χΩ\U ·Hn) are alien measures. If we define βy := β1,y for every y ∈ π(U) and βy := β2,y

for every y ∈ (R×Rk) \ π(U), then (βy) is a disintegration of Hn relative to π.
Now, Lemma 7.33 implies that π−1(y) ∩ U = π−1(y) for Hk-almost every y ∈ π(U); let

us prove that π−1(y) = π−1(y) ∩ Ω \ U for Hk+1-almost every y 6∈ π(U). Let us first prove
that π−1(y) is the boundary of a compact convex set with non-empty interior in L−1(y2) for
Hk+1-almost every y ∈ π(Ω \ U).

Indeed, by [75] there is an Hk+1-negligible subset N of π(Ω \ U) such that π′(x) has rank
k + 1 for every x ∈ L−1(y) ∩ Ω \ U and for every y ∈ π(Ω \ U) \ N . Now, define C :=

6In other words, χπ(U) · Hk is equivalent to π∗(χU · Hn).
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{ (λ, x) : x ∈ Rn, λ > f(x) }, and observe that IR × L is proper on C since lim
x→∞

f(x) = +∞.

Therefore, { y1 }× π−1(y) = (IR×L)−1(y)∩ ∂C is compact for every y ∈ R×Rk. In addition,

if y ∈ π(Ω \ U) \ N , then (IR × L)−1(y) ∩
◦
C 6= ∅, so that Lemma 7.31 implies that π−1(y) is

the boundary of a compact convex set with non-empty interior in L−1(y2).
Therefore, π−1(y) is bi-Lipschitz homeomorphic to Sn−k−1, so that the support of χπ−1(y) ·

Hn−k−1 is π−1(y) for such y. In addition, since Rn \Ω is Hn-negligible, [39, 3.2.11] implies that
π−1(y) \ Ω is Hn−k−1-negligible for Hk+1-almost every y ∈ R×Rk. Hence, π−1(y) ∩ Ω \ U =
π−1(y) for Hk+1-almost every y 6∈ π(U).

Then, Proposition 2.21 implies that there is m′′′ : π(Rn)→ C such that m = m′′′ ◦ π; since
π is proper, this implies that m′′′ is continuous on π(Rn). In addition, π(Rn) is closed, so that
the assertion follows from [17, Corollary to Theorem 2 of Chapter IX, § 4, No. 2].

Proof of Theorem 7.30. Until the end of this proof, we shall identify Rn2 and g∗2 by means of
the bijection ω 7→ ω(T); L′ will denote pr1,...,n′2

, so that L = IR × L′. In addition, for every
γ ∈ Nn1 , we define πγ : Rn2 3 ω 7→ (µω(1n1 + 2γ), ω), so that πγ is continuous and Cγ is its
graph.

Take f ∈ L1
L(LA)(G), and let m be a representative ofML(LA)(f). Take, for every γ ∈ Nn1 ,

a continuous function mγ on Cγ such that mγ =MLA(f) χCγ · βLA-almost everywhere. Then,
Lemma 7.34 implies that there is a continuous function m′0 : EL(LA) → C such that m0 = m′0◦L
on C0. Since βL(LA) need not be equivalent to L∗(χC0

· βLA), though, this is not sufficient to
conclude.

For every γ ∈ Nn1 , define βγ := χCγ · βLA , and observe that βγ is equivalent to (πγ)∗(Hn2).
Let Uγ,1 be the union of the components C of Ω such that kerL′ 6⊆ ker µ̃′ω(1n1

+ 2γ) for some
ω ∈ C, and let Uγ,2 be the complement of Uγ,1 in Ω. Then, Corollary 2.27 implies that the
following hold:

• L∗(χR×Uγ,1 · βγ) is equivalent to χL(πγ(Uγ,1)) · Hn
′
2+1;

• L∗(χR×Uγ,2 · βγ) is equivalent to χL(πγ(Uγ,2)) · Hn
′
2 ;

• χR×Uγ,2 ·βγ has a disintegration (βγ,2,λ)λ∈EL(LA)
relative to L such that βγ,2,λ is equivalent

to χL−1(λ)∩πγ(Uγ,2) · Hn2−n′2 and L−1(λ) ∩ πγ(Uγ,2) ⊆ Supp(βγ,2,λ) for Hn′2-almost every
λ ∈ L(πγ(Uγ,2)).

In particular, βL(LA) is equivalent to χσ(L(LA)) · Hn
′
2+1 + µ, where µ is a measure with base

Hn′2 alien to Hn′2+1. Now, observe that L∗(χR×Uγ,1 · βγ) is a measure with base L∗(β0); since
(m − m′0) ◦ L is β0-negligible, we see that there is an L∗(β0)-negligible subset N of EL(LA)

such that m = m′0 on EL(LA) \ N . Since N is L∗(χR×Uγ,1 · βγ)-negligible, this implies that
(m−m′0)◦L vanishes χR×Uγ,1 ·βγ-almost everywhere. Since m◦L = mγ βγ-almost everywhere,
it follows that m′0 ◦ L = mγ χR×Uγ,1 · βγ-almost everywhere, hence pointwise on

Supp
(
χR×Uγ,1 · βγ

)
= Supp

(
(πγ)∗(χUγ,1 · Hn2)

)
= πγ(Uγ,1)

since m′0 ◦ L and mγ are continuous, while πγ is proper.
Next, consider χR×Uγ,2 · βγ . Observe that Tonelli’s theorem implies that L′−1(λ2) \ Ω is

Hn2−n′2-negligible for Hn′2-almost every λ2 ∈ Rn
′
2 . Now, if Ñ is an Hn′2-negligible subset of

R × Rn′2 , then pr2(Ñ) is Hn′2 -negligible since pr2 is Lipschitz. Therefore, there is an Hn′2 -
negligible subset N ′ of Rn

′
2 such that, for every λ ∈ L(πγ(Uγ,2)) \ (R×N ′),

• m ◦ L = mγ βγ,2,λ-almost everywhere;

• L−1(λ) ∩ πγ(Uγ,2) ⊆ Supp(βγ,2,λ);

• L′−1(λ2) \ Ω is Hn2−n′2-negligible.

Hence, if λ ∈ L(πγ(Uγ,2)) \ (R ×N ′), then mγ is constant on L−1(λ) ∩ πγ(Uγ,2). In addition,
fix λ ∈ L(πγ(Uγ,2)) \ (R×N ′); then,

L′−1(λ2) = L′−1(λ2) ∩ Uγ,1 ∪ L′−1(λ2) ∩ Uγ,2,
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so that either L′−1(λ2) ∩ Uγ,1 ∩ L′−1(λ2) ∩ Uγ,2 6= ∅ or L′−1(λ2) ∩ Uγ,1 = ∅ by connectedness.
Now, let C be the set of components of L′−1(λ2) ∩ Uγ,2; observe that C is finite since

L′−1(λ2)∩Ω is semi-algebraic (cf. [29, Proposition 4.13]) and since L′−1(λ2)∩Uγ,2 is open and
closed in L′−1(λ2)∩Ω. In addition, observe that pr1 ◦πγ is constant on each C ∈ C; let λ1,C be
its constant value. In particular, since pr1 ◦πγ is proper and since C is finite, this implies that
L′−1(λ2) ∩ Uγ,1 6= ∅. Further, mγ is constant on πγ(C) ⊆ L−1(λ1,C , λ2) ∩ πγ(Uγ,2) for every
C ∈ C. Now, there is C1 ∈ C such that L′−1(λ2) ∩ Uγ,1 ∩ C1 6= ∅; since mγ ◦ πγ = m′0 ◦ L ◦ πγ
on Uγ,1, and since mγ is continuous, it follows that mγ ◦ πγ = m′0 ◦L ◦ πγ on C1. Iterating this
procedure, we eventually see that mγ ◦ πγ = m′0 ◦ L ◦ πγ on L′−1(λ2). Therefore, mγ = m′0 ◦ L
on L−1(λ) ∩ Cγ for every λ ∈ L(πγ(Uγ,2)) \ (R×N ′).

Now, observe that L−1(R × N ′) ∩ πγ(Uγ,2) is Hn′2-negligible since pr2 ◦L ◦ πγ = L′ and
since Hn′′2 is a pseudo-image measure of Hn2 under L′. Therefore, mγ = m′0 ◦ L βγ-almost
everywhere, hence pointwise on Cγ by continuity. By the arbitrariness of γ, this implies that
m′0 ◦L is a representative ofMLA(f), so that m′0 is a continuous representative ofML(LA)(f).
The assertion follows.

7.4 Property (S)

Keep the notation of Section 7.2.
The results of this section are basically a generalization of the techniques employed in [4, 5].

The first two results concern the case in which d = 0; the former one has very restrictive hy-
potheses, for the same reasons explained while discussing property (RL), but hold for the ‘full
family’ LA (cf. Theorem 7.36); on the contrary, the latter one holds under more general assump-
tions, but only for families of the form (L, (−iT1, . . . ,−iTn′2)) for n′2 < n2 (cf. Theorem 7.39).

Notice that, even though Theorem 7.45 is the main application of Theorem 7.36, there are
other families to which it applies as well. See Section 7.7 for some examples.

Our last result concerns the case in which d > 0 (cf. Theorem 7.40). As for property (RL),
the case in which d > 0 is simpler than the case in which d = 0, and the results so obtained are
more general. Theorem 7.40 applies, for example, to the free 2-step nilpotent group on three
generators, and to the product of a Métivier group and a non-trivial abelian group.

Notice that in all of our results we imposed the conditionW = { 0 }; this is unavoidable (with
our methods), since on W we cannot infer any kind of regularity from the ‘inversion formulae’
employed. Indeed, our auxiliary functions, such as |xω|2 or P0, are not differentiable on W , in
general. Nevertheless, this does not mean that property (S) cannot hold when W 6= { 0 }, as
Theorems 7.41, 7.48, and 7.50 show.

We begin with a lemma which will allow us to get some ‘Taylor expansions’ of multipliers
corresponding to Schwartz kernels under suitable hypotheses. We state it in a slightly more
general context for later use.

Lemma 7.35. Let L′A′ be a Rockland family on a homogeneous group G′, and let T ′1, . . . , T ′n be
a free family of homogeneous elements of the centre of the Lie algebra g′ of G′. Let π1 be the
canonical projection of G′ onto its quotient by the normal subgroup exp(RT ′1), and assume that
the following hold:

• (L′A′ , iT ′1, . . . , iT ′n) satisfies property (RL);

• dπ1(L′A′ , iT ′2, . . . , iT ′n) satisfies property (S)0.

Take ϕ ∈ S(L′
A′ ,iT

′
1,...,iT

′
n)(G

′). Then, there are two families (ϕ̃γ)γ∈Nn and (ϕγ)γ∈Nn of
elements of S(G′,L′A′) and S(L′

A′ ,iT
′
1,...,iT

′
n)(G

′), respectively, such that

ϕ =
∑
|γ|<h

T′γϕ̃γ +
∑
|γ|=h

T′γϕγ

for every h ∈ N.

Proof. For every k ∈ { 1, . . . , n }, let G′k be the quotient of G′ by the normal subgroup
exp(RT ′k). Endow g′ with a scalar product which turns (T ′1, . . . , T

′
n) into an orthonormal

family. Then, Theorem 4.1 implies that (π1)∗(ϕ) ∈ Sdπ1(L′
A′ ,iT

′
2,...,iT

′
n),0(G′1), so that there
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is m̃1 ∈ S(Edπ1(L′
A′ ,iT

′
2,...,iT

′
n)) such that (π1)∗(ϕ) = Kdπ1(L′

A′ ,iT
′
2,...,iT

′
n)(m̃1). Define ϕ̃0,1 :=

K(L′
A′ ,iT

′
2,...,iT

′
n)(m̃1), so that Theorem 4.1 implies that (π1)∗(ϕ− ϕ̃0,1) = 0. In other words,∫

R

(ϕ− ϕ̃0,1)(exp(x+ sT ′1)) ds = 0

for every x ∈ (RT ′1)⊥. Identifying S(G′) with S(RT ′1;S((RT ′1)⊥)), by means of Corollary 2.17
we see that there is ϕ1 ∈ S(G′) such that

ϕ = ϕ̃0,1 + T ′1ϕ1.

Now, let us prove that ϕ1 ∈ S(L′
A′ ,iT

′
1,...,iT

′
n)(G

′). Indeed,

T ′1K(L′
A′ ,iT

′
2,...,iT

′
n)M(L′

A′ ,iT
′
2,...,iT

′
n)(ϕ1) = ϕ− ϕ̃0,1 = T ′1ϕ1.

Since clearly K(L′
A′ ,iT

′
2,...,iT

′
n)M(L′

A′ ,iT
′
2,...,iT

′
n)(ϕ1) ∈ L2(G′), and since T ′1 is one-to-one on

L2(G′), the assertion follows. If n > 2, then we can apply the same argument to ϕ̃0,1 con-
sidering the quotient G′2, since we already know that ϕ̃0,1 has a Schwartz multiplier. Then, we
obtain ϕ̃0,2 ∈ S(G′, (L′A′ , iT ′3, . . . , iT ′n)) and ϕ2 ∈ S(L′

A′ ,iT
′
1,...,iT

′
n)(G

′) such that

ϕ = ϕ̃0,2 + T ′1ϕ1 + T ′2ϕ2.

Iterating this procedure, we find ϕ̃0 ∈ S(G′,L′A′) and ϕ1, . . . , ϕn ∈ S(L′
A′ ,iT

′
1,...,iT

′
n)(G

′) such
that

ϕ = ϕ̃0 +

n∑
k=1

T ′kϕk.

The assertion follows proceeding inductively.

Theorem 7.36. Assume that d = 0, that Ω = g∗2 \ { 0 }, that dimQ µω(Qh) = dimR µω(Rh) for
every ω ∈ Ω, and that µ is constant where µη0

(n1) is constant. Then, LA satisfies property (S).

Proof. We proceed by induction on n2 > 1.
1. Notice that the inductive hypothesis, Corollary 6.10, Theorem 7.25, and Lemma 7.35

imply that we may find a family (ϕ̃γ) of elements of S(G,LH), and a family (ϕγ) of elements
of SLA(G) such that

ϕ =
∑
|γ|<h

Tγϕ̃γ +
∑
|γ|=h

Tγϕγ

for every h ∈ N.
Define m̃γ :=MLH (ϕ̃γ) ∈ S(σ(LH)) andmγ :=MLA(ϕγ) ∈ C0(σ(LA)) for every γ (cf. The-

orem 7.25). Then,
m0(λ, ω) =

∑
|γ|<h

ωγm̃γ(λ) +
∑
|γ|=h

ωγmγ(λ, ω)

for every h ∈ N and for every (λ, ω) ∈ σ(LA).
2. Assume that mγ = 0 for every γ ∈ Nn2 , and define N(ω) := µω(n1) for every ω ∈ g∗2,

so that N is a norm on g∗2 which is analytic on Ω. Define, in addition, Σ := µω(n1 + 2Nh)
for some (hence every) ω ∈ g∗2 such that N(ω) = 1. Then, set d := inf

σ∈Σ
d(σ,Σ \ { σ }), and

observe that d > 0 since dimQ µω(Qh) = dimR µω(Rh). Finally, identify g∗2 with Rn2 by
means of the mapping ω 7→ ω(T), take r ∈

]
0, minσ∈Σ|σ|

4d

[
, and choose ϕ ∈ D(RH) so that

χB(0,r) 6 ϕ 6 χB(0,2r). Define

m̃(λ) :=

{∑
σ∈Σ m̃0(N(λ2)σ, λ2)ϕ

(
1
d

(
λ1

N(λ2) − σ
))

if λ2 6= 0

0 if λ2 = 0

for every λ ∈ ELA . Proceeding as in the proof of [4, Lemma 3.1], one sees that m̃ ∈ S(ELA),
so that ϕ ∈ S(G,LA).

3. Now, consider the general case. By a vector-valued version of Borel’s lemma (cf. [50,
Theorem 1.2.6] for the scalar, one-dimensional case), we see that there is m̂ ∈ D(g∗2;S(RH))
such that m̂(γ)(0) = m̃γ for every γ ∈ Nn2 . Interpret m̂ as an element of S(ELA). Then, 2
implies that m− m̂ equals a Schwartz function on σ(LA). The assertion follows.
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For the case d = 0, Card(H) = 1, and n′2 < n2, we need a suitable version of the Morse
lemma.

Lemma 7.37. Let U be an open subset of R×Rn, r an element of N∪ {∞ } such that r > 3,
and ϕ a mapping of class Cr of U into R. Assume that ∂1ϕ(x0) = 0 and ∂2

1ϕ(x0) > 0 for some
x0 ∈ U .7

Then, there are an open neighbourhood V1 of 0 in R, an open neighbourhood V2 of x0,2 in Rn,
and a Cr−2-diffeomorphism ψ from V1×V2 onto an open subset of U such that ψ(0, x0,2) = x0,
ψ2 = pr2, and

ϕ(ψ(y)) = ϕ(ψ(0, y2)) + y2
1

for every y ∈ V1 × V2. If, in addition, ϕ is analytic, then also ψ can be taken so as to be
analytic.

Proof. Up to restricting U , we may assume that U = U1 × U2 for some open subset U1 of R
and for some open subset U2 of Rn. Then, by means of the implicit function theorem we may
assume that there is a function f : U2 → U1 of class Cr−1 such that, for every x ∈ U , ∂1ϕ(x) = 0
if and only if x1 = f(x2). In particular, f(x0,2) = x0,1. Now, up to restricting U2, we may
assume that there is an open interval U ′1 of R such that 0 ∈ U ′1 and x1 + f(x2) ∈ U1 for every
x1 ∈ U ′1 and for every x2 ∈ U2. Then, define U ′ := U ′1 × U2 and

ϕ̃ : U ′ 3 x 7→ ϕ(x1 + f(x2), x2)− ϕ(f(x2), x2) ∈ R,

so that ϕ̃ is of class Cr−1 on U ′, ϕ̃(0, x2) = 0 for every x2 ∈ U2 and, for every x ∈ U ′, ∂1ϕ̃(x) = 0
if and only if x1 = 0. Then, define

ψ1 : U ′ 3 x 7→
∫

[0,1]

(∂2
1 ϕ̃)(tx1, x2)(1− t) dt,

so that Taylor’s theorem implies that

ϕ̃(x) = x2
1ψ1(x)

for every x ∈ U ′. In addition, it is easily seen that ψ1 is of class Cr−2 on U ′, and that
ψ1(0, x0,2) = 1

2∂
2
1 ϕ̃(0, x0,2) > 0. Hence, we may assume that ψ1(x) > 0 for every x ∈ U ′, so

that the mapping
ψ2 : U ′ 3 x 7→ x1

√
ψ1(x) ∈ R

is of class Cr−2 on U ′. In addition, ∂1ψ2(0, x0,2) > 0, so that we may assume that ψ3 =
(ψ2,pr2) : U ′ → R × Rn is a Cr−2-diffeomorphism of U ′ onto its image V , which is then an
open subset of R ×Rn. Then, V is an open neighbourhood of (0, x0,2) in R ×Rn, so that we
may find an open neighbourhood V1 of 0 in R and an open neighbourhood V2 of x0,2 in Rn
such that V1 × V2 ⊆ V . Let ψ4 : V → U ′ be the inverse of ψ3, so that ψ4 = (ψ4,1,pr2). Then,
ψ2(ψ4(0, y2)) = 0 for every y2 ∈ V2. However, the preceding arguments show that ψ2(x) = 0 if
and only if x1 = 0, so that ψ4,1(0, y2) = 0 for every y2 ∈ V2. Then,

ψ : V1 × V2 3 y 7→ (ψ4,1(y) + f(y2), y2) ∈ U

satisfies the conditions of the statement. The assertions concerning analyticity are easily estab-
lished.

Corollary 7.38. Keep the hypotheses and the notation of Lemma 7.37, and assume that r =∞.
Take a function f ∈ C∞(ψ(V1 × V2)×R) and a function g : V2 ×R→ C so that

f(x, ϕ(x)) = g(x2, ϕ(x))

for every x ∈ ψ(V1 × V2). Then, g can be modified so as to be of class C∞ in a neighbourhood
of (x0,2, ϕ(x0)).

7Here, ∂1 denotes the partial derivative in the R-component of R×Rn, not in the first component of Rn.
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Proof. Indeed, the assumption means that

f(y, ϕ(ψ(0, y2)) + y2
1) = g(y2, ϕ(ψ(0, y2)) + y2

1)

for every y ∈ V1 × V2. Define, for every y2 ∈ V2,

f̃y2
: V1 3 t 7→ f((t, y2), ϕ(ψ(0, y2)) + t2)

and
g̃y2 : R 3 t 7→ g(y2, ϕ(ψ(0, y2)) + t).

Then, the mapping V2 3 y2 7→ f̃y2
belongs to E(V2; E(V1)), and

f̃y2
(y1) = g̃y2

(y2
1)

for every y1 ∈ V1 and for every y2 ∈ V2.
Now, [86] implies that the mapping

Φ1 : ER(R+) 3 h 7→ h ◦ ( · )2 ∈ E(R)

is an isomorphism onto the set of even functions. Since there is a continuous linear extension
operator ER(R+)→ E(R), we find a continuous linear mapping Φ2 : Φ1(ER(R+))→ E(R) such
that

Φ2(h) ◦ ( · )2 = h

for every even function h ∈ E(R). Then, take τ ∈ D(V1) so that τ equals 1 on a neighbourhood
V ′1 of 0 in V1, and define

G̃y2 : V1 3 t 7→ Φ2(τ f̃y2)(t).

Then, G̃y2(t2) = g̃y2(t2) for every t ∈ V ′1 and for every y2 ∈ V2. In addition, the mapping
y2 7→ G̃y2

belongs to E(V2; E(R)), so that there is G̃ ∈ E(V2 × R) such that G̃(y2, t) = G̃y2
(t)

for every y2 ∈ V2 and for every t ∈ R. Then,

g(y2, ϕ(ψ(0, y2)) + t2) = G̃(y2, t
2)

for every y2 ∈ V2 and for every t ∈ V ′1 . Define

G : V2 ×R 3 (y2, t) 7→ G̃(y2, t− ϕ(ψ(0, y2))),

so that G ∈ E(V2 ×R) and
f(x, ϕ(x)) = G(x2, ϕ(x))

for every x ∈ ψ(V ′1 × V2). The assertion follows.

Theorem 7.39. Assume that Card(H) = 1, d = 0, and W = { 0 }, and let S be the an-
alytic hypersurface { ω ∈ g∗2 : µω(n1,ω) = 1 }. Take n′2 ∈ { 0, . . . , n2 − 1 } and define LA′ :=
(L, (−iT1, . . . ,−iTn′2)). Assume that the following hold:

• βLA′ is a measure with base Hn′2+1;

• if ω ∈ S and
〈
T1, . . . , Tn′2

〉◦ ⊆ Tω(S), then the Gaussian curvature of S at ω is non-zero.

Then, LA′ satisfies property (S).

The hypotheses are satisfied if, for example, ω 7→ µω(n1,ω) is a hilbertian norm. Observe,
in addition, that the Gaussian curvature of S vanishes on a negligible set in virtue of the strict
convexity of the norm ω 7→ µω(n1,ω). Therefore, for almost every (T1, . . . , Tn′2) the family
(L, (−iT1, . . . ,−iTn′2)) satisfies property (S).

Proof. 1. Assume first that n′2 = n2 − 1 and that dπ1(LA′) satisfies property (S), where π1 is
the canonical projection of G onto its quotient by its normal subgroup expG(RT1).

Take ϕ ∈ SLA′ (G). Then, Proposition 7.28 and Lemma 7.35 imply that we may find a
family (ϕ̃γ)

γ∈Nn
′
2
of elements of S(G,L), and a family (ϕγ)

γ∈Nn
′
2
of elements of SLA′ (G) such

that
ϕ =

∑
|γ|<h

Tγϕ̃γ +
∑
|γ|=h

Tγϕγ
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for every h ∈ N.
Define m̃γ :=ML(ϕ̃γ) ∈ S(σ(L)) and mγ :=MLA′ (ϕγ) ∈ C0(σ(LA′)) for every γ. Then,

m0(λ, ω′) =
∑
|γ|<h

ω′γm̃γ(λ) +
∑
|γ|=h

ω′γmγ(λ, ω′)

for every h ∈ N and for every (λ, ω′) ∈ σ(LA′).
2. As in the proof of Theorem 7.36, we may reduce to the case in which m̃γ = 0 for every

γ. Let L : ELA → ELA′ be the unique linear mapping such that L(LA) = LA′ , and denote by
L′ the mapping g∗2 3 ω 7→ (ω(T1), . . . , ω(Tn′2)) ∈ Rn′2 , so that

L({ r } × rS(T)) = { r } × rL′(S) =
(
{ r } ×Rn

′
2

)
∩ σ(LA′)

for every r > 0. Now, define

M̃(ω) :=

∫
G

ϕ(x, t)e−
1
4 |xω|

2+iω(t) d(x, t)

for every ω ∈ g∗2. Reasoning as in the proof of [4, Lemma 3.1] and taking into account Propo-
sition 7.12, we see that M̃ ∈ S(g∗2) and that M̃ vanishes of order ∞ at 0. Now, observe
that

m0(µω(n1,ω), L′(ω)) = M̃(ω)

for every ω ∈ g∗2. In addition, Σ := R+({ 1 } × S(T)) is a closed semianalytic subset of ELA
since it is the closure of the graph of an analytic function (defined on g∗2 \ { 0 }); in addition, L
is proper on Σ and L(Σ) = σ(LA′) is a subanalytic closed convex cone, hence Nash subanalytic.
By Theorem 2.29, in order to prove that m0 ∈ SEL

A′
,0(σ(LA′)) it suffices to show that M̃ is a

formal composite of L′. Now, the assertion is clear at 0 since M̃ vanishes of order∞ at 0. Then,
take ω ∈ S. If kerL 6⊆ Tω(T)(S(T)), then L′ is a local diffeomorphism at ω, so that the assertion
follows in this case. Otherwise, as in the proof of Lemma 7.27 we see that L′−1(L′(ω)) = { ω },
so that the assertion follows from Corollary 7.38. By homogeneity, the assertion follows for
every ω 6= 0. Therefore, m0 ∈ SEL

A′
,0(σ(LA′)), whence the result in this case.

3. Now, let us prove the statement for n′2 = n2 − 1 by induction on n2. Observe that the
assertion follows from Theorem 6.7 when n2 = 0. Then, assume that n2 > 0 and take LA′ as in
the statement. Arguing as in the proof of Corollary 7.29, we see that, since βLA′ is a measure
with base Hn′2+1, X◦ 6⊆ kerµ′ω(n1 + 2γ) for every γ ∈ Nh and for almost every ω ∈ g∗2, where
X =

〈
T1, . . . , Tn′2

〉
. Now, taking the quotient of G by expG(Y ), for some vector subspace Y of

X, corresponds to restricting g∗2 to Y ◦ ⊇ X◦. Therefore, for almost every line Y in X we have
Y ◦ ∩ Ω 6= ∅ and X◦ 6⊆ kerµ′ω(n1 + 2γ) for every γ ∈ Nh and for almost every ω ∈ Y ◦ ∩ Ω.
Hence, we may find a basis T ′1, . . . , T ′n′2 of X such that βdπ1(LA′ ) is a measure with base Hn′2 .
Then, 1 and 2 imply that βLA′ satisfies property (S).

4. Finally, let us prove the assertion for n′2 < n2 − 1. Keep the notation of 3 above,
and observe that we may find a hyperplane X ′ of g∗2 which contains X such that X ′◦ 6⊆
kerµ′ω(n1 + 2γ) for every γ ∈ Nh and for almost every ω ∈ g∗2. Therefore, 3 above implies
that the family (L, (−iT1, . . . ,−iTn′2 ,−iT

′
n′2+1, . . . ,−iT ′n2−1)) satisfies property (S), so that the

assertion follows by means of Corollary 2.30.

Theorem 7.40. Assume that d > 0 and that W = { 0 }. Take n′2 ∈ { 0, . . . , n2 }. Then,
(L, (−iTk)

n′2
k=1) satisfies property (S).

Proof. Notice that Theorems 7.20 and 7.22 imply that (L, (−iTk)
n′2
k=1) satisfies property (RL).

Therefore, by means of Corollary 2.30 we see that it will suffice to prove the assertion for
n′2 = n2. We proceed by induction on n2 > 1.

1. Observe first that the inductive hypothesis, Theorems 6.7, and Lemma 7.35 imply that
we may find a family (ϕ̃γ) of elements of S(G,L), and a family (ϕγ) of elements of SLA(G)
such that

ϕ =
∑
|γ|<h

Tγϕ̃γ +
∑
|γ|=h

Tγϕγ
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for every h ∈ N.
Define m̃γ :=ML(ϕ̃γ) ∈ S(σ(L)) and mγ :=MLA(ϕγ) ∈ C0(βLA) for every γ. Then,

m0(λ, ω) =
∑
|γ|<h

ωγm̃γ(λ) +
∑
|γ|=h

ωγmγ(λ, ω)

for every h ∈ N and for every (λ, ω) ∈ σ(LA). As in the proof of Theorem 7.36, we may reduce
to the case in which m̃γ = 0 for every γ; we shall simply write m instead of m0.

2. Consider the norm N := µ(n1) on g∗2 and let S be the associated unit sphere. Define
σ(ω) := ω

N(ω) for every ω ∈ g∗2 \ { 0 }. Then, the mapping

S 3 ω 7→ (πω)∗(ϕ) ∈ S(g1 ⊕R)

is of class C∞. Next, fix ω0 ∈ S. It is not hard to see that we may find a dilation-invariant
open neighbourhood U of ω0 and an analytic mapping ψ : U × (g1⊕R)→ R2n1 ×R×Rd such
that, for every ω ∈ U , ψω := ψ(ω, · ) is an isometry of g1 ⊕ R onto R2n1 × R × Rd such that
ψω(P0,ω(g1)) = { 0 } × Rd and ψω({ 0 } × R) = { 0 } × R × { 0 }. Take ω ∈ U . By transport
of structure, we may put on R2n1 × R a group structure for which R2n1 × R is isomorphic to
Hn1 and which turns ψω into an isomorphism of Lie groups.8 Then, there is a sub-Laplacian
L′ω on R2n1 ×R such that, if T denotes the derivative along { 0 }×R ⊆ R2n1 ×R and ∆ is the
standard (positive) Laplacian on Rd, then

d(ψω ◦ πω)(LA) = (L′ω + ∆, ω(T)T ).

Therefore, Theorem 4.1 and Corollary 4.10 imply that

(ψω ◦ πω)∗(ϕγ)((y, t), · ) ∈ S∆(Rd)

for every (y, t) ∈ R2n1 ×R and for every γ ∈ Nn2 . Define

ϕ̂γ : (U ∩ S)×R+ × (R2n1 ×R) 3 (ω, ξ, (y, t)) 7→ M∆((ψω ◦ πω)∗(ϕγ)((y, t), · ))(ξ),

so that ϕ̂γ(ω, · , (y, t)) ∈ S(R+) for every ω ∈ U ∩ S and for every (y, t) ∈ R2n1 ×R thanks to
Theorem 6.7. In addition, the mapping

ω 7→ [(y, t) 7→ (ψω ◦ πω)∗(ϕγ)((y, t), · )]

belongs to E(S ∩ U ;S(R2n1 ×R;S∆(Rd))), so that the mapping

ω 7→ [(y, t) 7→ ϕ̂γ(ω, · , (y, t))]

belongs to E(S ∩ U ;S(R2n1 ×R;SR(R+))). Now, observe that the mapping

U 3 ω 7→ ψ−1
ω ∈ L(R2n1 ×R×Rd; g1 ⊕R)

is of class C∞, so that also the mapping

f : U ×Rn1 3 (ω, y) 7→ |(ψ−1
σ(ω)(y, 0, 0))ω|2

is of class C∞, thanks to Proposition 7.12. In addition, by means of Proposition 7.16 we see
that

mγ(ξ +N(ω), ω(T)) =

∫
R2n1×R

ϕ̂γ(σ(ω), ξ, (y, t))e−
1
4 f(ω,y)+iN(ω)t d(y, t)

for every γ ∈ Nn2 , for every ω ∈ U and for every ξ > 0. Therefore, the preceding arguments
and some integrations by parts show that

m(ξ +N(ω), ω(T)) =
∑
|γ|=h

σ(ω(T))γ
∫
Hn1

Thϕ̂γ(σ(ω), ξ, (y, t))e−
1
4 f(ω,y)+iN(ω)t d(y, t)

=
∑
|γ|=h

(−iω(T))γ
∫
Hn1

ϕ̂γ(σ(ω), ξ, (y, t))e−
1
4 f(ω,y)+iN(ω)t d(y, t)

8Obviously, this structure depends on ω.
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for every h ∈ N, for every ω ∈ U and for every ξ > 0. Now, fix p1, p2, p3 ∈ N, and take h ∈ N.
Apply Faà di Bruno’s formula and integrate by parts p3 times in the t variable. Then, we see
that there is a constant C > 0 such that

|(∂p1

1 ∂p2

2 m)(ξ, ω(T))| 6 CN(ω)h−p2−p3(1 +N(ω))p2

∫
Hn1

(1 + |(y, t)|)2p2×

× max
|γ|=h

q2+q3=0,...,p2

|∂q21 ∂
p1+q3
2 ∂p3

(3,2)ϕ̂γ(σ(ω), ξ −N(ω), (y, t))|d(y, t)

for every (ξ, ω(T)) ∈
◦

σ(LA) ∩ (R × U). Here, |(y, t)| = |y| +
√
|t| is a homogeneous norm on

R2n1 ×R.
Now, take a compact subset K of U ∩S. Then, the properties of the ϕ̂γ imply that for every

p4 ∈ N there is a constant C ′ such that

|ϕ̂(q)
γ (ω, ξ, (y, t))| 6 C ′

(1 + ξ)p4(1 + |(y, t)|)2p2+2n1+3

for every γ with length h, for every q = 0, . . . , p1 + p2 + p3, for every ω ∈ K, for every ξ > 0
and for every (y, t) ∈ R2n1 ×R. Therefore, there is a constant C ′′ > 0 such that

|(∂p1

1 ∂p2

2 m)(ξ, ω(T))| 6 C ′′N(ω)h−p2−p3
(1 +N(ω))p2

(1 + ξ −N(ω))p4

for every (ξ, ω(T)) ∈
◦

σ(LA) ∩ (R× U) such that σ(ω) ∈ K. By the arbitrariness of U and K,
and by the compactness of S, we see that we may take C ′′ so that the preceding estimate holds

for every (ξ, ω(T)) ∈
◦

σ(LA) ∩ (R× Ω).
Now, taking h − p3 > p2 we see that ∂p1

1 ∂p2

2 m extends to a continuous function on σ(LA)
which vanishes on R+ × { 0 }. If N(ω) 6 1

3 , then take h− p3 = p2 and observe that

1

3
+ ξ +N(ω) 6

2

3
+ ξ 6 1 + ξ −N(ω)

for every ξ > N(ω). On the other hand, if N(ω) > 1
3 , then take p3 = p4 + h and observe that

1 + ξ +N(ω) 6 (1 + 2N(ω))(1 + ξ −N(ω)) 6 5N(ω)(1 + ξ −N(ω))

for every ξ > N(ω). Hence, for every p4 ∈ N we may find a constant C ′′′ > 0 such that

|(∂p1

1 ∂p2

2 m)(ξ, ω(T))| 6 C ′′′
1

(1 + ξ +N(ω))p4
.

Then, Proposition 2.12 implies that m ∈ SELA ,0(σ(LA)).

Theorem 7.41. Assume that G is the product of a finite family (Gη)η∈H of 2-step stratified
groups which do not satisfy the MW+ condition; endow each Gη with a sub-Laplacian Lη and
assume that (Lη, iTη) satisfies property (RL) (resp. (S)) for some finite family Tη of elements
of the second layer of the Lie algebra of Gη. Define L :=

∑
η∈H Lη (on G), and let T be a finite

family of elements of the vector space generated by the Tη. Then, the family (L,−iT ) satisfies
property (RL) (resp. (S)).

Proof. Observe first that, by means of Propositions 2.21, 2.22, and 2.26, and Corollary 2.30, we
may reduce to the case in which T is the union of the Tη. Then, Theorems 4.8 and 4.11 imply
that the family (LH ,−iT ) satisfies property (RL) (resp. (S)). Therefore, the assertion follows
easily from Propositions 2.21, 2.22, and 2.26, and Corollary 2.30.

7.5 Examples: H-Type Groups
In this section we deal with the following situation: G is an H-type group and there is a

finite family (vη)η∈H of vector subspaces of g1 such that vη ⊕ g2, with the induced structure, is
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an H-type Lie algebra for every η ∈ H, and such that vη1
and vη2

commute and are orthogonal
for every η1, η2 ∈ H such that η1 6= η2. We define n1 :=

(
1
2 dim vη

)
η∈H .

We shall then consider, for every η ∈ H, the group of linear isometries O(vη) of vη, and
define a canonical action of O :=

∏
η∈H O(vη) on the vector space subjacent to g as follows:

(Lη)((vη), t) := ((Lη · vη), t) for every (Lη) ∈ O and for every ((vη), t) ∈ g1 ⊕ g2.
A projector of D′(G) is then canonically defined as follows:

π∗(T ) :=

∫
O

(L · )∗(T ) dνO(L)

for every T ∈ D′(G); here, νO denotes the normalized Haar measure on O.

Proposition 7.42. The following hold:

1. π∗ induces a continuous projection on D′r(G), S ′(G), E ′r(G), Dr(G), S(G), Er(G) and
Lp(G) for every r ∈ N ∪ {∞ } and for every p ∈ [1,∞];

2. if ϕ1, ϕ2 ∈ D(G), then

〈π∗(ϕ1), ϕ2〉 = 〈ϕ1, π∗(ϕ2)〉 and 〈π∗(ϕ1)|ϕ2〉 = 〈ϕ1|π∗(ϕ2)〉;

3. if µ is a positive measure on G, then also π∗(µ) is a positive measure; in addition,
π∗(νG) = νG;

4. if T ∈ D′(G) is O-invariant, then also Ť is O-invariant;

5. if T is supported at e, then π∗(T ) is supported at e;

6. if ϕ1, ϕ2 ∈ D(G) are O-invariant, then also ϕ1 ∗ϕ2 is O-invariant and ϕ1 ∗ϕ2 = ϕ2 ∗ϕ1.

The proof is based on [30] and is omitted.
Now, let Lη be the differential operator corresponding to the restriction of the scalar

product to v∗η; in other words, Lη is minus the sum of the squares of the elements of any
orthonormal basis of vη. Let T1, . . . , Tn2

be an orthonormal basis of g2, and define LA :=
((Lη)η∈H , (−iT1, . . . ,−iTn2

)).

Proposition 7.43. LA is a Rockland family and generates the unital algebra of left-invariant
differential operators which are π-radial.

Notice that a left-invariant differential operator X is π-radial if and only if π∗(Xe) = Xe,
that is, if and only if Xe is O-invariant. Nevertheless, this does not imply that X is O-invariant.

Proof. Since
∑
η∈H Lη is the operator associated with the scalar product of g∗1, it is clear that

LA is a Rockland family.
Now, take an O-invariant distribution S on G which is supported at e. Let p : G→ G/[G,G]

be the canonical projection. Then, it is clear that p(S) is O-invariant and supported at p(e).
By means of the Fourier transform, we see that there is a unique polynomial P0 ∈ R[H] such
that p(S) = P0(p(LH,e)). Therefore, there are S1, . . . , Sn2

∈ D′(G) such that Supp(Sk) ⊆ { e }
for every k = 1, . . . , n2, and such that

S = P0(LH,e) +

n2∑
k=1

Tk,eSk.

Reasoning by induction, it follows that S belongs to the unital algebra generated by LA,e.
Conversely, it is clear that T1, . . . , Tn2

are π-radial. On the other hand, a direct computation
shows that Lη,e = −

∑
v∈B(∂2

v)e, where v is any orthonormal basis of vη. Hence, Lη,e is
O-invariant.

Now, we shall consider some image families of LA. More precisely, we shall fix µ ∈ (RH)H
′

so that the induced mapping from RH into RH
′
is proper on RH+ . Then, we shall define

L : ELA 3 (λ1, λ2) 7→ (µ(λ1), λ2) ∈ RH′ ×Rn2 and consider the family L(LA). Then, L(LA) is
a Rockland family since L is proper on σ(LA) by construction.
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Proposition 7.44. Set r := dimQ µ(QH). Then, there are a βL(LA)-measurable function
m : EL(LA) → Cr and a linear mapping L′ : Rr → CH

′
such that the following hold:

• there is µ′ ∈ ((Q∗+)H)r such that m(LA) = µ′(LH);

• (L′(m(LA)), (−iTj)n2
j=1) = L(LA);

• m equals βL(LA)-almost everywhere a continuous function if and only if r = dimR µ(RH).

Proof. Indeed, we may find r linearly independent Q-linear functionals p1, . . . , pr on µ(QH).
Let µ′1, . . . , µ′r be the elements of QH associated with p1 ◦ µ, . . . , pr ◦ µ. Then, µ′1, . . . , µ′r are
linearly independent over Q, hence over C by tensorization. Now, define L′′h :=

∑
η∈H µ

′
h,ηLη,

so that the family (L′′1 , . . . ,L′′r ) is linearly independent over C. Next, take h ∈ { 1, . . . , r }, and
observe that, if λ ∈ Rn2 \ { 0 } and γ1, γ2 ∈ NH are such that

(|λ|µ(n1 + 2γ1), λ) = (|λ|µ(n1 + 2γ2), λ),

then µ(γ1 − γ2) = 0, so that

(|λ|µ′(n1 + 2γ1), λ) = (|λ|µ′(n1 + 2γ2), λ).

Hence, there is a βLA -measurable function m : EL(LA) → Cr such that

mh(L(λ′)) = µ′h(λ′)

for every λ′ ∈ σ(LA) ∩ (RH × (Rn2 \ { 0 })); hence, L′′hδe = KLA(mh) for every h = 1, . . . , r.
Next, observe that for every η′ ∈ H ′ there is (L′η′,1, . . . , L

′
η′,r) ∈ Qr such that

r∑
h=1

L′η′,h(ph ◦ µ) = µη′

on QH . Therefore,
∑r
h=1 L

′
η′,hµ

′
h = µη′ , whence (L′(m(LA)), (−iTj)n2

j=1) = L(LA).
Now, if r = dimR µ(RH), then m × IRn2 is clearly a homeomorphism of σ(L(LA)) onto

σ(L′′1 , . . . ,L′′r , (−iTh)n2

h=1). Conversely, assume that m can be taken so as to be continuous.
Then, clearly m × IRn2 and L′ × IRn2 are inverse of one another between σ(L(LA)) and
σ(L′′1 , . . . ,L′′r , (−iTh)n2

h=1). In particular, L′ induces a homeomorphism of µ′(RH+ ) onto µ(RH+ ),
so that these two cones must have the same dimension. Hence, r = dimR(µ(RH)).

Theorem 7.45. The following conditions are equivalent:

(i) χL(LA) has a continuous representative;

(ii) L(LA) satisfies property (RL);

(iii) every element of SL(LA)(G) has a continuous multiplier;

(iv) L(LA) satisfies property (S);

(v) L(LA) is complete;

(vi) dimQ µ(QH) = dimR µ(RH).

If, in addition, L(LA) is not complete, then there is L′, corresponding to some µ′ ∈ (RH)H
′′
,

such that L′(LA) is complete and functionally equivalent to L(LA).

Proof. (i) =⇒ (ii). Obvious.
(ii) =⇒ (iii). Obvious.
(iii) =⇒ (vi). Assume, on the contrary, that dimQ µ(QH) > dimR µ(RH), and keep

the notation of Proposition 7.44. Then, mq cannot be taken so as to be continuous for some
q ∈ { 1, . . . , r }. Take ϕ ∈ S(EL(LA)) so that ϕ(λ) 6= 0 for every λ ∈ ELA . Then,

KL(LA)(mqϕ) = µ′q(LH)KL(LA)(ϕ) ∈ S(G),

but mqϕ is not equal βL(LA)-almost everywhere to any continuous functions, whence the result.
(vi) =⇒ (iv). This follows from Theorem 7.36.
(iv) =⇒ (v). This follows from Proposition 4.21.
(v) =⇒ (vi). This follows from Proposition 7.44.
(vi) =⇒ (i). This follows from Theorem 7.24.
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7.6 Examples: Products of Heisenberg Groups
In this section, (Gα)α∈A denotes a family of Heisenberg groups each of which is endowed

with a sub-Laplacian Lα. Define L :=
∑
α∈A Lα, and denote by T a finite family of elements

of g2, which is the centre of the Lie algebra of G :=
∏
α∈AGα.

Before we proceed to the main results of these section, let us introduce some more notation.
For every α ∈ A, we denote by Tα a basis of the centre of the Lie algebra of Gα, so that we may
identify canonically g2 with

⊕
α∈ARTα. Then, there is a basis (Xα,1, . . . , Xα,2n1,α , Tα) of the

Lie algebra of Gα such that [Xα,k, Xα,n1,α+k] = Tα for every k = 1, . . . , n1,α, while the other
commutators vanish, and such that there is µα ∈ (R∗+)n1,α such that

Lα = −
n1,α∑
k=1

µα,k(X2
α,k +X2

α,n1,α+k).

We shall denote by g1,α the vector space generated by Xα,1, . . . , Xα,2n1,α , and we shall set
n1 := (n1,α)α∈A.

Proposition 7.46. Assume that Card(A) > 2. If T generates g2, then the families (L,−iT )
and (LA,−iT ) are functionally equivalent. In addition, (L,−iT ) does not satisfy properties
(RL) and (S).

Proof. The assertion follows from Proposition 7.26 and its proof.

Lemma 7.47. Let µ be a linear mapping of Rn onto Rm such that kerµ∩Rn+ = { 0 }. Define
Σ0 := µ(Rn+)× { 0 }, and

Σ := { (λµ(1n + 2γ), λ) : λ > 0, γ ∈ Nn } ∪ Σ0.

If ϕ ∈ C∞(Rm ×R) vanishes on Σ, then ϕ vanishes of order ∞ on Σ0.

Proof. Take x = (λµ(1n + 2γ), 0) for some λ > 0 and some γ ∈ Nn. Then, for every k ∈ N,(
x1,

λ

2k + 1

)
=

(
λ

2k + 1
µ(1n + 2((2k + 1)γ + k1n)),

λ

2k + 1

)
∈ Σ.

Therefore, it is easily seen that ∂h2ϕ(x) = 0 for every h ∈ N. Since the set

{ (λµ(1n + 2γ), 0) : λ > 0, γ ∈ Nn }

is dense in Σ0, it follows that ∂h2ϕ vanishes on Σ0 for every h ∈ N. Then, observe that, since
we assumed that µ(Rn) = Rm, the closed convex cone Σ0 generates Rm × { 0 }, so that Σ0 is
the closure of its interior in Rm × { 0 }. The assertion follows easily.

Theorem 7.48. Assume that Card(A) > 2. If T does not generate g2, then the family (L,−iT )
satisfies properties (RL) and (S).

Proof. 1. Let us prove that (L,−iT ) satisfies property (RL). Consider the Rockland family
(L,−iTA) and take α ∈ A. Take ω ∈ RA, and define

Cγ :=

{(∑
α∈A
|ωα|µα(1n1,α

+ 2γα), ω

)
: ω ∈ RA

}

for every γ ∈ Nn1 , so that C0 is the boundary of a convex polyhedron. If L : E(L,−iTA) →
E(L,−iT ) is the unique continuous linear mapping such that L(L,−iTA) = (L,−iT ), then
χC0
· β(L,−iTA) is L-connected by Corollary 2.24. Now, define

L′A′ := ((−X2
α,k −X2

α,n1,α+k)k=1,...,n1,α
,−iTα)α∈A,

so that L′A′ satisfies properties (RL) and (S) by Theorems 4.8, 4.11, and 7.45. Take f ∈
L1

(L,−iT )(G), and let m̃ be its continuous multiplier relative to L′A′ (cf. Theorem 7.45). Then,

mγ : Cγ 3

(∑
α∈A
|ωα|µα(1n1,α

+ 2γα), ω

)
7→ m̃((|ωα|(1n1,α

+ 2γα), ωα)α∈A)
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is a continuous function on Cγ which equalsM(L,−iTA)(f) χCγ · β(L,−iTA)-almost everywhere.
Therefore, (L,−iT ) satisfies property (RL) thanks to Theorem 7.30.

2. Assume that T generates a hyperplane of g2, and let us prove that (L,−iT ) satisfies
property (S). Takem ∈ C0(E(L,−iT )) such that K(L,−iT )(m) ∈ S(G), and consider the (unique)
linear mapping

L′ : EL′
A′
→ E(L,−iT )

such that L′(L′A′) = (L,−iT ). Then, there is m0 ∈ S(EL′
A′

) such that m ◦L′ = m0 on σ(L′A′).
Next, define, for every ε ∈ { −,+ }A and for every γ ∈ Nn1 ,

Sε,γ :=

{ (
|ωα|(1n1,α + 2γα), ωα

)
α∈A : ω ∈

∏
α∈A

Rεα

}
,

so that Sε,γ is a closed convex semi-algebraic set of dimension Card(A). Assume that L′
is not one-to-one on Sε,γ . Since L′ is proper on σ(L′A′), for every λ ∈ L′(Sε,γ) the fibre
L′−1(λ) intersects Sε,γ on a closed segment whose end-points lie in the relative boundary of
Sε,γ . Therefore, L′(Sε,γ) gives no contribution to

⋃
ε′∈{ −,+ }A L

′(Sε′,γ); in particular, we may
find a subset E0 of { −,+ }A such that

⋃
ε∈E0

L′(Sε,0) = L′(σ(L′A′)) and such that L′ is one-
to-one on Sε,0 for every ε ∈ E0.

Now, Corollary 2.30 implies that for every ε ∈ E0 there is m′ε ∈ S(E(L,−iT )) such that
m′ε ◦ L′ = m0 on Sε,0. Nevertheless, we must prove that these functions m′ε can be patched
together to form a Schwartz multiplier of K(L,−iT )(m). Then, take λ ∈ σ(L,−iT ). We shall
distinguish some cases.

Assume first that there are ε1, ε2 ∈ E0 such that L′(Sε1,0)∩L′(Sε2,0) has non-empty interior
and such that λ ∈ L′(Sε1,0) ∩ L′(Sε2,0). Then, m′ε1 = m′ε2 on L′(Sε1,0) ∩ L′(Sε2,0), so that
m′ε1 −m

′
ε2 vanishes of order infinity on the closure of the interior of L′(Sε1,0)∩L′(Sε2,0), which

is L′(Sε1,0) ∩ L′(Sε2,0) by convexity. In particular, m′ε1 −m
′
ε2 vanishes of order infinity at λ.

Next, assume that there are ε1, ε2 ∈ E0 and λ′ ∈ Sε1,0 ∩ Sε2,0 such that L′(λ′) = λ. Then,
λ′ ∈ Sεk,γ for every γ ∈ Nn1 such that γα = 0 for every α ∈ A such that ε1,α = ε2,α, and for
every k = 1, 2; let Γε1,ε2 be the set of such γ. Now, clearly m′εk ◦ L

′ = m0 on Sεk,γ for every
γ ∈ Γε1,ε2 . Taking into account Lemma 7.47, we see that the restriction of (m′ε1 −m

′
ε2) ◦ L′ to∏

α∈A Vα vanishes of order∞ at λ′, where Vα is R(1n1,α
, ε1,α) if ε1,α = ε2,α while Vα = Rn1,α+1

otherwise. Since either ε1 = ε2 or L′ :
∏
α∈A Vα → E(L,−iT ) is onto, it follows that m′ε1 −m

′
ε2

vanishes of order ∞ at λ.
Then, assume that there are ε1, ε2 ∈ E0 such that λ ∈ L′(Sε1,0) ∩ L′(Sε2,0), but that

L′(Sε1,0) ∩ L′(Sε2,0) has empty interior and λ 6∈ L′(Sε1,0 ∩ Sε2,0). Let us prove that there is
ε3 ∈ E0 such that λ ∈ L′(Sε1,0∩Sε3,0) and such that L′(Sε2,0)∩L′(Sε3,0) has non-empty interior.
Indeed, observe that there is a unique liner mapping L′′ such that L′′(L′A′) = (L,−iTA). In
addition, if S0 =

⋃
ε∈NA Sε,0, then L′′ induces a homeomorphism of S0 onto S′0 = L′′(S0).

In addition, S′0 is the boundary of the convex envelope C ′0 of σ(L,−iTA), which is a convex
polyhedron; further, kerL′′ has dimension 1. Next, observe that L(S′0) = L(C ′0) = σ(L,−iT )
and that L is proper on C ′0; put an orientation on kerL, fix a linear section ` of L, and define

g+ : σ(L,−iT ) 3 λ 7→ max{ t ∈ kerL : `(λ) + t ∈ S′0 }

and
g− : σ(L,−iT ) 3 λ 7→ min{ t ∈ kerL : `(λ) + t ∈ S′0 }.

Then, g− and g+ are convex and concave, respectively, hence continuous on the interior of
σ(L,−iT ). Observe that the union of the graphs of g− and g+ is

⋃
ε∈E0

L′′(Sε,0). Now, let
E0,± be the set of ε ∈ E0 such that L′′(Sε,0) is contained in the graph of g±. Observe that
E0 is the disjoint union of E0,− and E0,+, since g−(λ) 6= g+(λ) for every λ in the interior of
σ(L,−iT ) (cf. the proof of Corollary 2.24). Therefore, σ(L,−iT ) =

⋃
ε∈E0,±

L′(Sε,0); since
L′(Sε,0) is closed for every ε ∈ E0 and since E0 is finite, this proves that the union of the
L′(Sε,0) such that ε ∈ E0,± and λ ∈ L′(Sε,0) is a neighbourhood of λ in σ(L,−iT ). Next,
since λ 6∈ L′(Sε1,0 ∩ Sε2,0), we may assume that ε1 ∈ E0,+ and ε2 ∈ E0,−. Then, there is
ε3 ∈ E0,+ such that λ ∈ L′(Sε3,0) and L′(Sε2,0) ∩ L′(Sε3,0) has non-empty interior, so that
λ ∈ L′(Sε1,0 ∩ Sε2,0). Therefore, the preceding arguments show that m′ε2 − m

′
ε1 vanishes of

order ∞ at λ.
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Hence, by means of Theorem 2.29 we see that there is m′ ∈ S(E(L,−iT )) such that m′ ◦L =
m0 on σ(L′A′), so that m′ = m on σ(L,−iT ), whence the result in this case.

3. Now, consider the general case, and take m ∈ C0(E(L,−iT )) such that K(L,−iT )(m) ∈
S(G). Take a finite subset T ′ of g2 which contains T and generates a hyperplane of g2, so that 2
implies that (L,−iT ′) satisfies property (S). Observe that σ(L,−iT ′) is a convex semi-algebraic
set. Therefore, the assertion follows easily from Corollary 2.30.

Lemma 7.49. Let G′ and G′′ be two non-trivial homogeneous groups, L′ and L′′ two positive
Rockland operators on G′ and G′′, respectively. Then, the operator L′+L′′ on G′×G′′ satisfies
property (S).

Proof. The assertion is an easy consequence of Theorem 6.7.

Theorem 7.50. Let G′ be a homogeneous group endowed with a positive Rockland operator L′
which is homogeneous of degree 2. Then, the following hold:

1. (L+ L′,−iT ) (on G×G′) satisfies property (RL);

2. if L′ satisfies property (S), then also (L+ L′,−iT ) satisfies property (S).

Notice that we do not require that G′ is graded, so that the requirement that L′ has
homogeneous degree 2 can be always met up to rescaling the dilations of G′. In addition, if L′
is not positive, then (L+L′,−iT ) is not a Rockland family, since the mapping σ(L,−iT ,L′) 3
(λ1, λ2, λ3) 7→ (λ1 + λ3, λ2) is not proper.

Finally, observe that the first assertion follows from Theorems 7.20 and 7.22 when G′ is
abelian.

Proof. 1. Let us prove that LA satisfies property (RL). Observe that, if the assertion holds
when T generates g2, then it holds in general thanks to Propositions 2.21 and 2.22. Therefore,
we may assume that T is a basis of g2.

Define L′A′ := (((−X2
1 − X2

1+n1,α
, . . . ,−X2

n1,α
− X2

2n1,α
),−iTα)α∈A,L′), and observe that

L′A′ satisfies property (RL) by Theorems 4.8 and 7.45. Define

S0 :=
{ (
|ωα|1n1,α , ωα

)
α∈A : ω ∈ RA

}
,

so that S0 is a closed semi-algebraic set of dimension Card(A). Then, apply Proposition 2.21
with β := χS0×R+

βL′
A′
, observing that L : S0 × R+ → σ(L + L′,−iT ) is a proper bijective

mapping, hence a homeomorphism. Since L∗(β(L+L′,−iT )) is equivalent to L∗(β) thanks to
Proposition 2.26, the assertion follows.

2. Next, assume that L′ satisfies property (S), and let us prove that (L+L′,−iT ) satisfies
property (S). Observe that, if we prove that the assertion holds when T generates g2, then
the general case will follow by means of Corollary 2.30. Therefore, we shall assume that T =
(Tα)α∈A.

Observe first that L′A′ satisfies property (S) by Theorems 7.45 and 4.11. Then, take m ∈
C0(σ(LA)) such that KLA(m) ∈ S(G×G′), so that there is m1 ∈ S(EL′

A′
) such that

m ◦ L = m1

on σ(L′A′). Since S0 × R+ is a closed semi-algebraic set, by Theorem 2.29 it will suffice to
show that the class of m1 in S(S0 × R+) is a formal composite of L. Now, this is clear at
the points of the form

(∑
α∈A|ωα|µα(n1,α) + r, ω

)
, where ω ∈ (R∗)A and r > 0. Arguing by

induction on Card(A) and taking Lemma 7.49 into account, the assertion follows by means of
Lemma 7.35.

Remark 7.51. Let (X,Y, T ) be the standard basis of H1, and let U be the derivative on R.
Then, (−X2−Y 2−U2,−iT ) satisfies property (RL) but χ(−X2−Y 2−U2,−iT ) has no continuous
representatives.

Indeed, the first assertion follows from Theorem 7.50, while the second one is a consequence
of Proposition 7.16.

As a complement to Theorem 7.50, we present the following pathological case.
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Proposition 7.52. Let (X,Y, T ) be a standard basis of H1, and let L′ be a positive Rockland
operator on a homogeneous group G. Assume that (L′) satisfies property (S) and that L′h is
homogeneous of degree 2 for some h > 2. Then, the Rockland family (−X2− Y 2 +L′h,−iT ) is
complete and satisfies property (RL), but does not satisfy property (S).

Proof. 1. Define L := −X2 − Y 2. Then, Proposition 7.50 implies that (L + L′h,−iT ) is a
Rockland family which satisfies the property (RL). Next, take ϕ ∈ D(E(L,−iT,L′)) such that ϕ
is supported in

{
(λ′1, λ

′
2, λ
′
3) : λ′1 < 3|λ′2| − λ′h3

}
and equals pr3 on a neighbourhood of (1, 1, 0).

Then, clearly
m : (λ1, λ2) 7→ ϕ(|λ2|, λ2,

h
√
λ1 − |λ2|)

does not induce an element of Sσ(LA)(ELA). On the other hand, KLA(m) = K(L,−iT,L′)(ϕ) ∈
S(H1 ×R), so that LA does not satisfy property (S).

2. Now, let us prove that LA is complete. Takem ∈ C(ELA) such that KLA(m) is supported
in { e }, and observe that we may assume that m is continuous since LA satisfies property (RL).
Projecting onto the quotient by { e } ×R, we see that there is a unique polynomial P on ELA
which coincides with m on σ(L,−iT ). On the other hand, the family (L,−iT,L′) is complete
since it satisfies property (S) (cf. Theorem 4.11 and Proposition 4.21). Hence, there is a unique
polynomial Q on E(L,−iT,L′) such that

m(λ1 + λh3 , λ2) = Q(λ1, λ2, λ3)

for every (λ1, λ2, λ3) ∈ σ(L,−iT,L′). Hence,

P (λ1 + λh3 , λ2) = Q(λ1, λ2, λ3)

for every (λ1, λ2, λ3) ∈
{ (

k1|r|, r, h
√
k2|r|

)
: r ∈ R, k1 ∈ 2N+ 1, k2 ∈ 2N

}
. Now, the closure

of this latter set in the Zariski topology is E(L,−iT,L′), so that m = P on σ(LA). The assertion
follows.

7.7 Miscellaneous Examples

7.7.1 The Complexified Heisenberg Group
Here, G denotes C2 × C with a group law which is the complexification of that of the

Heisenberg group H1. In other words,

(x1, t1)(x2, t2) =

(
x1 + x2, t1 + t2 +

x1,1x2,2 − x1,2x2,1

2

)
for every (x1, t1), (x2, t2) ∈ G. We shall denote by X1,1, X1,2, X2,1, X2,2, T1, T2 the left-invariant
vector fields on G whose exponentials are (1, 0, 0), (i, 0, 0), (0, 1, 0), (0, i, 0), (0, 0, 1), (0, 0, i),
respectively. Then,

[X1,1, X2,1] = [X2,2, X1,2] = T1

[X1,2, X2,1] = [X1,1, X2,2] = T2,

while the other commutators vanish. In particular,

[X1,1 + iX1,2, X2,1 + iX2,2] = 2(T1 + iT2).

In addition, observe that tdBωdBω = |ω|I for every ω ∈ R2. In other words, G is an H-type
group with respect to the scalar product which turns the chosen basis of the Lie algebra of G
into an orthonormal one.

Now, if L is the homogeneous sub-Laplacian associated with a positive, non-degenerate,
symmetric bilinear form Q, then the characteristic polynomial of JQ,ω has the form λ4 +

q(ω)λ2 + |ω|4, where q is a positive non-degenerate quadratic form on R2. Hence, µ̃ω,1 + µ̃ω,2 =√
q(ω) + 2|ω|2 for every ω ∈ R2.
If T ∈ g2, then Theorems 6.7, 7.28, and 7.39 imply that (L,−iT ) satisfies properties (RL)

and (S).
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Next, take a, b, c, d > 0 and assume that

L = −(aX2
1,1 + bX2

1,2 + cX2
2,1 + dX2

2,2).

Then, µ̃2
ω,1 and µ̃2

ω,2 are the solutions of the equation

λ2 − ((ac+ bd)ω2
1 + (ad+ bc)ω2

2)λ+ abcd|ω|4.

We have the following cases:

• a = b and c = d: then µ̃ω,1 = µ̃ω,2 =
√
ac|ω|. In addition, L is the standard sub-Laplacian

on G with respect to the scalar product which turns a−
1
2X1,1, a

− 1
2X1,2, c−

1
2X2,1, c

− 1
2X2,2,

(ac)−
1
2T1, (ac)

− 1
2T2 into an orthonormal basis;

• ac = bd and ad 6= bc (resp. ac 6= bd and ad = bc): then Ω = R×R∗ (resp. Ω = R∗ ×R);

• ac 6= bd and ad 6= bc: then Ω = R2 \ { 0 }.

It is easily seen that the preceding cases cover all possibilities. In addition, the ratio µ̃ω,1
µ̃ω,2

is
constant if and only if ac+ bd = ad+ bc, that is, a = b or c = d. In this case, easy computations
show that this ratio is rational if and only if

√
a
b ,
√

c
d ∈ Q.

Then, Theorems 7.24, 7.25, and 7.36 imply that the following hold:

• if a = b and c = d, then (L,−iT1,−iT2) satisfies property and (S); further χ(L,−iT1,−iT2)

has a continuous representative;

• if
√

a
b ,
√

c
d ∈ Q and one of them is 1, then (L,−iT1,−iT2) satisfies properties (RL) and

(S).

We conclude this subsection portraying the outer part of the section of σ(L,−iT1,−iT2)
with the plane

{
2−

1/2
}
×R2 for a = d = 1 and b = c = 5.
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-0.10

-0.05
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As the reader may see, the spectrum presents some ‘singularities’ even in the ‘smooth’ region
Ω, these singularities being generated by the intersections of multiple ‘smooth’ components. The
reader should not think that this kind of ‘singularities’ do not arise when Ω = R2\{ 0 }. Indeed,
a moment’s reflection shows that these ‘multiple points’ appear when some relation (over the
integers) between the eigenvalues holds somewhere but not everywhere, and this is the case
unless a = b or c = d, in which case the eigenvalues are radial functions.

In the next example we shall see that more ‘singularities’ may arise, in the sense that
the spectrum cannot be decomposed into the union of countably many analytic submanifolds,
outside of Ω.
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7.7.2 The Quaternionic Heisenberg Group

Here, G denotes H × ImH, where H is the division ring of quaternions, with the following
group law:

(x1, t1)(x2, t2) = (x1 + x2, t1 + t2 + Im(x1x2))

for every (x1, t1), (x2, t2) ∈ G. We shall denote by X1, X2, X3, X4, T1, T2, T3 the left-invariant
vector fields on G whose exponentials are (1, 0), (i, 0), (j, 0), (k, 0), (0, i), (0, j), (0, k), respec-
tively, where i, j, k is the canonical basis of ImH. Then, with respect to this basis,

dBω =


0 −ω1 −ω2 −ω3

ω1 0 −ω3 ω2

ω2 ω3 0 −ω1

ω3 −ω2 ω1 0

.
In particular, tdBωdBω = |ω|I for every ω ∈ R3. In other words, G is an H-type group with
respect to the scalar product which turns the chosen basis of the Lie algebra of G into an
orthonormal one.

Now, if L is the homogeneous sub-Laplacian associated with a positive, non-degenerate,
symmetric bilinear form Q, then the characteristic polynomial of JQ,ω has the form λ4 +

q(ω)λ2 + |ω|4, where q is a positive non-degenerate quadratic form on R3. Hence, µ̃ω,1 + µ̃ω,2 =√
q(ω) + 2|ω|2 for every ω ∈ R3. Therefore, if T ′1, T ′2 ∈ g2, then Theorems 6.7, 7.28, and 7.39

imply that (L,−iT ′1,−iT ′2) satisfies properties (RL) and (S).
Now, assume that

L = −(aX2
1 + bX2

2 + cX2
3 + dX2

4 )

for some a, b, c, d > 0. Then, µ̃2
ω,1 and µ̃2

ω,2 are the solutions of the equation

λ2 + ((ab+ cd)ω2
1 + (ac+ bd)ω2

2 + (ad+ bc)ω2
3)λ+ abcd|ω|4.

We have the following cases:

• a = b = c = d: then µ̃ω,1 = µ̃ω,2 = a|ω| and L is the standard sub-Laplacian on G;

• a = b 6= c = d (resp. a = c 6= b = d, a = d 6= c = d): then Ω = R∗ × R2 (resp.
Ω = R×R∗ ×R, R2 ×R∗);

• ad = bc and a 6= b, c (resp. ac = bd and a 6= b, d, ab = cd and a 6= c, d): then Ω is the
complement of { 0 }2 ×R (resp. { 0 } ×R× { 0 }, R× { 0 }2) in R3;

• ad 6= bc, ac 6= bd, and ab 6= cd: then Ω = R3 \ { 0 }.

It is easily seen that the preceding cases cover all possibilities. In addition, the ratio µ̃ω,1
µ̃ω,2

is
constant if and only if ab + cd = ac + bd = ad + bc, that is, at least three among a, b, c, d are
equal. In this case, easy computations show that this ratio is rational if and only if the square
roots of the ratios of any two elements among a, b, c, d are rational.

Then, Theorems 7.24, 7.25, and 7.36 imply that the following hold:

• if a = b = c = d, then (L,−iT1,−iT2,−iT3) satisfies property (S); in furthermore,
χ(L,−iT1,−iT2,−iT3) has a continuous representative;

• if, up to a re-ordering of the Xj , a = b = c and
√

d
a ∈ Q, then (L,−iT1,−iT2,−iT3)

satisfies properties (RL) and (S).

Observe, finally, that if ad = bc and a 6= b, c (up to a re-ordering of the Xj), then µ̃ cannot
be taken so as to be differentiable at any (fixed) point of { 0 }2×R, as easy computations show.
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7.7.3 A Métivier Group which is not of Heisenberg Type

We consider the group constructed in [63, Appendix]. In this case, G = R8 × R2; if
X1, . . . , X8, T1, T2 is the basis of its Lie algebra corresponding to the canonical basis of partial
derivatives at the origin, then

[X1, X5] = [X2, X6] = [X3, X7] = [X4, X8] = T1

[X8, X1] = [X2, X5] = [X3, X6] = [X4, X7] = T2,

while the other commutators vanish. Now, assume that

L = −(X2
1 + · · ·+X2

8 ).

Then, easy computations show that, for every ω ∈ R2, we may take

µ̃ω,1 =

√
|ω|2 −

√
2ω1ω2 and µ̃ω,1 =

√
|ω|2 +

√
2ω1ω2.

Notice, in particular, that µ̃ω is analytic on R2 \ { 0 } even though Ω = R∗ ×R∗. In addition,

µ̃ω,1 + µ̃ω,2 =
√

2

√
|ω|2 +

√
ω4

1 + ω4
2 ,

and the curve
{
ω ∈ R2 : |ω|2 +

√
ω4

1 + ω4
2 = 1

}
has never vanishing curvature. Indeed, observe

that {
ω ∈ R2 : |ω|2 +

√
ω4

1 + ω4
2 = 1

}
=
{
ω ∈ R2 : |ω| < 1, 2ω2

1ω
2
2 − 2|ω|2 + 1 = 0

}
.

Now, the second derivative of the polynomial 2ω2
1ω

2
2 − 2|ω|2 + 1 is non-degenerate for |ω|2 +

4ω2
1ω

2
2 6= 1. It is easily seen that there is no ω ∈ R2 such that 6ω2

1ω
2
2 = 1 and 3|ω|2 = 2, so that

the assertion follows.
Therefore, Theorems 7.28 and 7.39 imply that (L,−iT ) satisfies properties (RL) and (S)

for every T ∈ g2.
We finish this subsection with a portrait of the outer part of the section of σ(L,−iT1,−iT2)

with the plane { 1 } ×R2:
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7.7.4 An ‘Irreducible’ MW+-Group which is not a Métivier Group
Assume that G = R4 × R3; let X1, X2, X3, X4, T1, T2, T3 be a basis of left-invariant vector

fields on G which at the origin are the standard basis of partial derivatives of R4×R3. Assume
that

[X1, X2] = T1, [X2, X3] = T2, [X3, X4] = T3,

while the other commutators vanish. Then, d = 0 and W =
{
ω ∈ R3 : ω1ω3 = 0

}
, so that G is

an MW+-group but not a Métivier group. In addition, it is not hard to see that G is actually
irreducible, in the sense that there are no non-trivial projectors of g1 which are Bω-self-adjoint
for every ω ∈ g∗2.

Then, assume that L = −(X2
1 +X2

2 +X2
3 +X2

4 ). Then,

µ̃ω,1 = 2−
1
2

√
|ω|2 −

√
|ω|4 − 4ω2

1ω
2
3 µ̃ω,2 = 2−

1
2

√
|ω|2 +

√
|ω|4 − 4ω2

1ω
2
3 .

In particular, Ω =
{
ω ∈ R3 : ω1ω3 6= 0 ∧ (ω2 6= 0 ∨ ω1 6= ω3)

}
.

We only portray the outer part of the section of the spectrum σ(L,−iT1,−iT2,−iT3) with
the plane

{
2−

1
2

}
×R× { 0 } ×R.
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7.8 Supplement: General Sub-Laplacians
In this section we show how the techniques developed so far can be effectively employed to

address the study of non-homogeneous operators.
Observe that properties (RL) and (S) can be investigated for more general families of

operators; for example, for weighted subcoercive systems of operators on general Lie groups
and on Lie groups of polynomial growth, respectively; see [58] for more details on the ‘kernel
transform’ associated with a weighted subcoercive system of operators.

Nonetheless, here we shall refrain from making use of the notion of a weighted subcoercive
system of operators as much as possible, trying to rely on the results we proved for homogeneous
operators instead.

Proposition 7.53. Let G be a connected, simply-connected 2-step nilpotent Lie group, and let
L be a (hypoelliptic) sub-Laplacian on G. Take T in the Lie algebra g of G and c in R. Then,
we may define KL+iT+c in the fashion of Definition 3.4.
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Assume that KL+iT+c maps some continuous multiplier which does not vanish at any point
of σ(L+ iT + c) into an element of L1(G).9 Then, L+ iT + c satisfies properties (RL) and (S).

With different methods, A. Martini, D. Müller, F. Ricci and L. Tolomeo proved that a quasi-
homogeneous sub-Laplacian on a stratified group satisfies properties (RL) and (S) (personal
communication).

Proof. 1. Let us first prove that we may endow G with a suitable stratification so that L =
L1 + L2, where L1 and L2 are homogeneous sums of squares of homogeneous degree 2 and
4, respectively. Indeed, L is the differential operator associated with a positive symmetric
bilinear form Φ on g∗. Set g2 := [g, g], and let π : G → G/[G,G]

be the canonical projection.

Observe that dπ(L) is a homogeneous sum of squares; in addition, it is hypoelliptic thanks
to Corollary 1.96. Hence, Φ is non-degenerate on g◦2 thanks to Proposition 6.2, so that g∗ is
the direct sum of g◦2 and its Φ-orthogonal complement (g◦2)⊥ thanks to [15, Proposition 1 of
Chapter 9, § 4, No. 1]; thus, g1 := ((g◦2)⊥)◦ is a direct complement of g2 in g. Then, L2 is
induced by the restriction of Φ to g◦1, while L1 is induced by the restriction of Φ to g◦2.

Now, let us prove that we may assume that T ∈ g2 and c = 0. Since g is the direct sum
of g1 and g2, there are T ′1 ∈ g1 and T ′2 ∈ g2 such that T = T ′1 + T ′2. Now, if T ′1 6= 0, that
is, if T 6∈ g2, then there is d > 0 so that we may complete dT ′1 to a basis dT ′1, X2, . . . , Xn1

of g1 such that the corresponding dual basis of g◦2 is Φ-orthonormal. Endow G/[G,G]
with

coordinates corresponding to the basis dπ(T ′1),dπ(X2), . . . ,dπ(Xn1), and define h := pr1 ◦π.
Then, T ′1h = (dπ(T ′1) pr1) ◦ π = χG, while X2h = · · · = Xn1

h = T ′2h = 0. Therefore, if we
consider the unitary operator U : f 7→ e

i
2d2 hf of L2(G), we have

U−1(L+ iT + c)U = L+ iT ′2 + c− 1

4d2
.

Since e
i

2d2 h is a character of G and since U preserves D(G), we have

U−1(KL+iT+c) = KL+iT ′2+c− 1
4d2
,

in the sense that the left-hand side is defined if and only if the right-hand side is, and then they
are equal. Since U−1 preserves both L1(G) and S(G), we may reduce to proving our assertions
for L+ iT ′2 + c− 1

4d2 . In addition, it is also clear that

KL+iT ′2+c− 1
4d2

(m) = KL+iT ′2

(
m

(
· + c− 1

4d2

))
,

with the same meaning as before. Hence, we may reduce to proving our assertions for L+ iT ′2.
In other words, from now on we may work under the additional assumptions that T ∈ g2 and
that c = 0.

Then, choose a basis (T1, . . . , Tn2) of g2 with dual basis (T ∗1 , . . . , T
∗
n2

) such that (T ∗1 , . . . , T
∗
n2

)
is Φ-orthogonal and Φ(T ∗k , T

∗
k ) = 1 for every k = 1, . . . , n′2 for some n′2 6 n2, while Φ(T ∗k , T

∗
k ) =

0 for every k = n′2 + 1, . . . , n2. We shall then generally identify g∗2 with Rn2 by means of the
basis T1, . . . , Tn2

without further comments. Choose s ∈ Rn2 so that T =
∑n2

k=1 sjTj , and
define P : ELA → R so that

P (λ) := λ1 +

n2∑
k=1

skλ2,k +

n′2∑
k=1

λ2
2,k

for every λ ∈ ELA ; thus, L+ iT = P (LA).
Now, by means of Theorem 3.19, applied to the right regular representation of G in L2(G),

we see that L+ iT is essentially self-adjoint on W 0,∞,2(G), hence on D(G). Therefore, KL+iT

can be defined in the fashion of Definition 3.4, so that the first assertion of the statement holds.
From now on, assume that there is a nowhere vanishing m ∈ C(σ(L + iT + c)) such that

KL+iT (m) ∈ L1(G).10 Since KLA(m ◦ P ) = KL+iT (m) ∈ L1(G), clearly m ◦ P ∈ C0(σ(LA)).
9This is the case, for example, if the one-element family (L+ iT + c) is weighted subcoercive, since one may

then take the multiplier to be a Gaussian (cf. [58, Proposition 4.2.1]).
10Notice that this condition is preserved under the preceding operations.
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Arguing as in the proof of Proposition 4.13, we then see that P is proper on σ(LA);11 as
a consequence, P∗(βLA) is a well-defined Radon measure and plays the role of a Plancherel
measure for L+ iT , so that we shall denote it by βL+iT .

2.a. Assume first that d = 0; let us prove that L + iT satisfies property (RL). If L2 = 0,
then L+ iT is homogeneous, so that χL+iT has a continuous representative and property (RL)
follows. Therefore, we may assume that L2 6= 0.

Define C := { (µω · n1,ω, ω) : ω ∈ Rn2 \W }, and observe that every element of L1
LA(G) has

a multiplier which is continuous on C by Proposition 7.20; let β be the measure induced by
βLA on C. Define S := pr2(({ 1 } ×Rn2) ∩ C), so that β is the image of a measure equivalent
to Hn2 under the mapping S ×R 3 (ω, r) 7→ (|r|, rω). Observe that S = pr2(({ 1 }×Rn2)∩C)
and define P ′ on S ×R by

P ′(ω, r) := P (|r|, rω) = |r|+ ra(ω) + r2b(ω)

for every (ω, r) ∈ S×R, where a and b are suitable continuous functions on S which are analytic
on S; observe that b > 0. Now, P ′ is proper, so that the image of P ′ is a closed interval I of R
containing R+; let γ be the greatest lower bound of I. Next, observe that b 6= 0 since L2 6= 0,
and that, if b(ω) 6= 0, then P ′(ω, · ) is strictly convex, hence a submersion except at a single
point. Since b is generically non-zero, P ′ is generically a submersion.

Let us prove that we may find ω ∈ S so that the image of P ′(ω, · ) is I. Assume first that
γ 6= −∞, and observe that there are ω ∈ S and r ∈ R so that P ′(ω, r) = γ. If b(ω) > 0, then
it is clear that P ′(ω, · ) has image I. If, otherwise, b(ω) = 0, then the image of P ′(ω, · ) is the
union of two half lines with origin 0, so that it must be R+; in particular, γ = 0. Next, assume
that γ = −∞. Observe that, since P ′ is proper, a(ω) 6= ±1 for every ω ∈ S such that b(ω) = 0.
If |a(ω)| < 1 for every ω ∈ S such that b(ω) = 0, then by compactness there is δ ∈ [0, 1[ such
that |a(ω)| 6 δ for every ω in a neighbourhood U (in S) of the set of ω ∈ S such that b(ω) = 0.
Since b has then a strictly positive minimum on S \U , it is clear that the image of P ′ is bounded
from below: contradiction. Therefore, there is ω ∈ S such that |a(ω)| > 1 and b(ω) = 0, so that
the image of P ′(ω, · ) is clearly R.

Now, take ω̃ so that he image of P ′(ω̃, · ) is I and observe that, since P ′(ω̃, · ) is convex and
takes γ at most one point, the mapping P ′(ω̃, · ) : R→ I is open. Therefore, β is P -connected.

Next, Proposition 2.26 implies that P∗(β) is equivalent to χI · H1, and that β admits a
disintegration (βξ)ξ>γ such that Supp(βξ) ⊇ P−1(ξ)∩C for H1-almost every ξ ∈ I. Take ξ ∈ I
such that ξ 6= γ, 0, and (ω, r) ∈ S × R such that P ′(ω, r) = ξ. Since P ′(ω, · ) is convex, we
may find a sequence (ωk, rk) of elements of (S ∩ b−1(R∗+))×R∗ such that (ωk, rk) converges to
(ω, r) and P ′(ωk, rk) < ξ for every k ∈ N. Since clearly the image of P ′(ωk, · ) is an interval
containing R+, we see that there is r′k ∈ R∗ such that P ′(ωk, r′k) = ξ; in addition, we may
choose the r′k so that they converge to r. In other words, the sequence (|r′k|, r′kωk) converges
to (|r|, rω), and its elements belong to P−1(ξ) ∩ C. By the arbitrariness of ξ and (ω, r), this
implies that Supp(βξ) = P−1(ξ) ∩ C for H1-almost every ξ ∈ I.

A similar argument which employs Ω instead of Rn2 \ W shows that βL+iT = P∗(βLA)
is equivalent to χI · H1, hence to P∗(β). Therefore, Proposition 2.21 implies that for every
f ∈ L1

L+iT (G) there are m1 ∈ E0(C) and m2 : I → C such that f = KL+iT (m2) and

m2 ◦ P = m1

on C; since P is proper on C, it follows that m2 is continuous on I. Hence, L + iT satisfies
property (RL).

2.b. Assume that d > 0 and that T ∈ g2; let us prove that L+ iT satisfies property (RL).
Arguing as in 2.a, we may assume that L2 6= 0. Define, then,

C := { (λ, ω) ∈ ELA : ω 6∈W, λ > µω · n1,ω } ∪ { (µω · n1,ω, ω) : ω ∈ Rn2 },

so that every element of L1
LA(G) has a multiplier which is continuous on C by Proposition 7.20.

Now, it is clear that P is a submersion, so that Proposition 2.26 implies that the restriction β
of βLA to C admits a disintegration (βξ) relative to P such that Supp(βξ) = P−1(ξ) ∩ C for
βL+iT = P∗(β)-almost every ξ ∈ R (argue as in 2.a). In addition, arguing as in 2.a we see that

11Conversely, it is not difficult to see that, if P is proper of σ(LA), then KL+iT+c maps some continuous
nowhere vanishing multiplier into an element of S(G).
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β is P -connected. Therefore, Proposition 2.21 implies that for every f ∈ L1
L+iT (G) there are

m1 ∈ E0(C) and m2 : I → C such that f = KL+iT (m2) and

m2 ◦ P = m1

on C. Now, P (C) = P (∂σ(LA)) = P (σ(LA)) and P is proper on ∂σ(LA) ⊆ C; therefore, m2 is
continuous. Hence, L+ iT satisfies property (RL).

3. Let us prove that L + iT satisfies property (S). Take ω ∈ Rn2 such that the im-
age of r 7→ P (µrω · n1,rω, rω) is σ(L + iT ) (cf. 2.a), and let Gω be the quotient of G by
expG(ker(

∑n2

k=1 ωkT
∗
k )); let πω : G → Gω be the canonical projection. Then, σ(L + iT ) =

σ(dπω(L+ iT )), so that we may assume that dim g2 = 1, thanks to property (RL) and Theo-
rem 3.19 (applied to LA).

The assertion follows by means of Propositions 4.16, 7.36, and 7.40 if L2 = 0. Therefore,
assume that L2 6= 0. In this case, observe that σ(L+ iT ) cannot be the whole of R, since we as-
sumed that dim g2 = 1. Now, if σ(L+iT ) = R+, then we may consider the canonical projection
π : G→ G/[G,G]

and complete the proof, since dπ(L+ iT ) is a homogeneous Laplacian. Oth-

erwise, σ(L + iT ) = [γ,+∞[ for some γ ∈ R∗−. Then, P maps L := { (λµω · n1,ω, ελ) : λ > 0 }
onto σ(L+ iT ) for some ε ∈ { ±1 }. In addition, by means of the preceding techniques (cf., for
example, Theorem 7.40) it is not difficult to see that every element of L1

LA(G) has a multiplier
whose restriction to L can be extended to an element of S(ELA). Since P induces a polynomial
of degree 2 on L, [86] leads to the conclusion.



Chapter 8

The Heat Kernel on H-Type
Groups

The results of this chapter are joint work with Tommaso Bruno, cf. [24].

Estimates at infinity for the heat kernel on the Heisenberg group or, more generally, H-type
groups have attracted a lot of interest in the last decades (see, e.g., [44, 51, 8, 36, 55, 56]). In the
context of H-type groups, in particular, some results were recently obtained by N. Eldredge [36]
and H.-Q. Li [56] independently. In [36], Eldredge provides precise upper and lower bounds for
the heat kernel ps and its horizontal gradient ∇Hps. In [56], Li provides asymptotic estimates
for the heat kernel ps, as well as upper bounds for all its derivatives. In this chapter, we provide
asymptotic expansions at infinity of the heat kernel and of all its derivatives.

We divide this chapter into three sections. In the next section we fix the notation and recall
some preliminary facts on the method of stationary phase. In Section 8.2 we provide asymptotic
estimates for ps,k1,k2

in the case m = 1, namely when G is a Heisenberg group; in Section 8.3
we extend the results of Section 8.2 to the more general class of H-type groups. This is done
via a reduction to the case m = 1 when m is odd; a descent method is then applied in order to
cover the case in which m is even. As the reader may see, our Theorem 8.24 and Corollary 8.37
cover the cases of [56, Theorems 1.4 and 1.5] and [36, Theorem 4.2] as particular instances, and
imply [56, Theorems 1.1 and 1.2] and [36, Theorem 4.4] as easy corollaries.

We emphasize that our methods are strongly related to those employed by B. Gaveau [44]
and then H. Hueber and D. Müller [51] in the case of the Heisenberg group H1; some ideas are
also taken from the work of Eldredge [36]. In particular, we borrow from [44] and [51] the use
of the method of stationary phase, though in a stronger form provided by L. Hörmander [50].

8.1 Preliminaries

8.1.1 The Heat Kernel
Let G be an H-type group, with dim g1 = 2n and dim g2 = m, and let L be the sub-

Laplacian on G associated with the scalar product on g∗1 induced by that on g. Then, the
corresponding heat kernel (ps)s>0 has the form

ps(x, t) =
1

(4π)n(2π)msn+m

∫
Rm

e
i
s 〈λ|t〉−

|x|2
4s |λ| coth(|λ|)

(
|λ|

sinh |λ|

)n
dλ, (1)

for every s > 0 and every (x, t) ∈ G (cf. [71] or [88]). For the sake of clarity, we shall sometimes
stress the dependence of ps on m by writing p(m)

s instead of ps.
We begin by writing the heat kernel (1) in a more convenient form. Let R be an isometry

such that Rt = |t|u1, where u1 is the first element of the canonical basis1 of the centre of G,
namely Rm. Making the change of variables λ 7→ R−1λ in (1), we get

ps(x, t) =
1

(4π)n(2π)msn+m

∫
Rm

e
i
s 〈λ|u1〉|t|− |x|

2

4s |λ| coth(|λ|)
(
|λ|

sinh |λ|

)n
dλ. (2)

1The choice of u1 is actually irrelevant.

137
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It is now clear that ps depends only on |x| and |t|. This leads us to the following definition.

Definition 8.1. Let R = |x|2
4 . For all s > 0 and for all k1, k2 ∈ N, define

ps,k1,k2(x, t) :=
∂k1

∂Rk1

∂k2

∂|t|k2
ps(x, t) =

(−1)k1ik2

(4π)n(2π)msn+m+k1+k2
×

×
∫
Rm

e
i
s |t|〈λ|u1〉− |x|

2

4s |λ| coth |λ| |λ|
n+k1 cosh(|λ|)k1

sinh(|λ|)n+k1
〈λ|u1〉k2 dλ.

(3)

Notice that ps is a smooth function of R and |t| by formula (2), so that the definition of
ps,k1,k2

is meaningful on the whole of G. In addition, consider a differential operator on G of
the form

X =
∂|γ|

∂xγ1∂tγ2

for some γ = (γ1, γ2) ∈ N2n × Nm. By means of Faà di Bruno’s formula, the function Xps
can be written on {t 6= 0} as a finite linear combination with smooth coefficients of the func-
tions ps,k1,k2

, for suitable k1 and k2. Since Xps is uniformly continuous, the value of Xps(x, 0)
can then be recovered by continuity uniformly in x ∈ R2n. Therefore, one can obtain asymp-
totic estimates for Xps by combining appropriately some given estimates of ps,k1,k2 (see also
Remark 8.38).

Observe that it will be sufficient to study p1,k1,k2
, since

ps,k1,k2
(x, t) =

1

sn+m+k1+k2
p1,k1,k2

(
x√
s
,
t

s

)
for every s > 0, k1, k2 ∈ N and (x, t) ∈ G. Hence, we shall focus only on p1,k1,k2

. Furthermore,
from now on we shall fix the integers k1, k2 ≥ 0. Of course, the choice k1 = k2 = 0 gives the
heat kernel ps.

Remark 8.2. It is well known (see [35] or [12, Remark 3.6.7]) that there exist n and m for
which R2n × Rm cannot represent any H-type group. Nevertheless, (1) and hence (3) make
sense for every positive n,m ∈ N, and for such n and m we shall then study ps,k1,k2

.

Definition 8.3. (cf. [51]) For every (x, t) ∈ G, define2

ω :=
|t|
R
, δ :=

√
R

π|t|
, κ := 2

√
π|t|R.

We shall split the asymptotic condition (x, t) → ∞ into four cases, some of which depend
on an arbitrary constant C > 1. In particular, the first one covers the case in which |t|/|x|2 is
bounded, while the other three are a suitable splitting of the case |t|/|x|2 →∞.

I. (x, t)→∞ while ω = 4|t|/|x|2 ≤ C;

II. δ → 0+ and κ→ +∞ ;

III. δ → 0+ and κ ∈ [1/C,C];

IV. κ→ 0+ and |t| → +∞.
IV

III

II

I

|x|

|t|

We shall describe the asymptotic behaviour of p1,k1,k2
in each of these four cases. The first

two will both need the method of stationary phase (Theorem 8.7 below), while the other two
can be treated through Taylor expansions.

In order to simplify the notation, we give some definitions.

Definition 8.4. Define the function θ : (−π, π)→ R by

θ(λ) :=

{
2λ−sin(2λ)

2 sin2(λ)
, if λ 6= 0,

0, if λ = 0.
2Actually, ω is defined for x 6= 0 and δ for t 6= 0, but we shall not recall it again in the following.
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Lemma 8.5. [44, § 3, Lemma 3] θ is an odd, strictly increasing analytic diffeomorphism between
(−π, π) and R.

Definition 8.6. For every ω ∈ R, set yω := θ−1(ω). For every (x, t) ∈ G define

d(x, t) :=


|x| yω

sin(yω) if x 6= 0 and t 6= 0,
|x| if t = 0,√

4π|t| if x = 0.

It is worth observing that d(x, t) is the Carnot-Carathéodory distance between (x, t) and
the origin with respect to the horizontal distribution generated by the vector fields X1, . . . , X2n.
See [81] but also [72, 8, 36] for a proof and further details.

8.1.2 The Method of Stationary Phase
The main tool that we shall use is an easy corollary of Hörmander’s theorem of stationary

phase [50, Theorem 7.7.5]. We include a proof for the sake of clarity. If f is a twice differentiable
function on an open neighbourhood of 0, we write P2,0f for the Taylor polynomial of order 2
about 0 of f .

Theorem 8.7. Let V be an open neighbourhood of 0 in Rm, and let F , G be bounded subsets
of E(V ) such that

1. Imf(λ) ≥ 0 for every λ ∈ V and every f ∈ F . Moreover, there exist η > 0 and c1 > 0
such that B(0, 2η) ⊆ V and Imf(λ) ≥ c1|λ| whenever |λ| ≥ η and f ∈ F ;

2. Imf(0) = f ′(0) = 0 and det f ′′(0) 6= 0 for all f ∈ F ;

3. there exists c2 > 0 such that |f ′(λ)| ≥ c2|λ| for all |λ| ≤ 2η and for all f ∈ F ;

4. there exists c3 > 0 such that |g(λ)| ≤ c3ec3|λ| whenever λ ∈ V , for every g ∈ G.

Then, for every k ∈ N,∫
V

eiRf(λ)g(λ) dλ = eiRf(0)

√
(2πi)m

Rm det f ′′(0)

k∑
j=0

Lj,fg

Rj
+O

(
1

R
m
2 +k+1

)
(4)

as R→ +∞, uniformly as f ∈ F and g ∈ G, where

Lj,fg = i−j
2j∑
µ=0

〈
f ′′(0)−1∂|∂

〉µ+j
[(f − P2,0f)µg](0)

2µ+jµ!(µ+ j)!
.

In particular, L0,fg = g(0).

Proof. Take some τ ∈ C∞c (Rm) such that χB(0,η) ≤ τ ≤ χB(0,2η). Then, split the integral as∫
V

eiRf(λ)g(λ) dλ =

∫
V

eiRf(λ)g(λ)τ(λ) dλ+

∫
V

eiRf(λ)g(λ)(1− τ(λ)) dλ

and apply [50, Theorem 7.7.5] to the first term, thanks to the first assumption in 1 and the
assumptions 2 and 3: this represents the main contribution to the integral, and gives the right
hand side of (4). The second term is instead negligible, since by the second assumption in 1
and by 4 we get, if R is large enough,∣∣∣∣∫

V

eiRf(λ)g(λ)(1− τ(λ)) dλ

∣∣∣∣ ≤ c3 ∫
|λ|≥η

e−R Imf(λ)+c3|λ| dλ

= c3 ωm−1

∫ ∞
η

e−Rc1ρ+c3ρρm−1 dρ

= c3 ωm−1

∫ ∞
η

e−(c1Rρ−(1+c3)ρ)−ρρm−1 dρ

≤ c3 ωm−1 e
−(c1R−(1+c3))η

∫ ∞
0

e−ρρm−1 dρ,

which is O
(
e−Rc1η

)
; here, ωm−1 is the measure of the unit sphere in Rm.
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Remark 8.8. Theorem 8.7 covers more cases than only oscillatory integrals. Indeed, assume
we have an integral of the form ∫

V

e−Rf(λ)g(λ) dλ

where f is real. Under suitable assumptions, such integrals are usually treated via Laplace’s
method (see, e.g., [37] and [87]). In this case, one can use directly Theorem 8.7, by substituting
Imf by f in the assumptions 1-4, thus getting

∫
V

e−Rf(λ)g(λ) dλ =

√
(2π)m

Rm det f ′′(0)

k∑
j=0

Lj,fg

Rj
+O

(
1

R
m
2 +k+1

)
, (5)

with the obvious modifications on Lj,fg. In such cases, Theorem 8.7 will be referred to as
Laplace’s method.

8.2 Heisenberg Groups

In this section we deal with the case m = 1, namely when G = Hn is a Heisenberg group.
The function p1,k1,k2 of Definition 8.1 here reads

p1,k1,k2
(x, t) =

2(−1)k1ik2

(4π)n+1

∫
R
eiλ|t|−

|x|2
4 λ coth(λ)λ

n+k1+k2 cosh(λ)k1

sinh(λ)n+k1
dλ.

Indeed, the absolute values of λ in the integral (3) can be removed by parity reasons. We begin
by introducing some functions which greatly simplify the notation.

Definition 8.9. Define

hk1,k2(R, t) := (−1)k1ik2

∫
R
eiλ|t|−Rλ coth(λ)λ

n+k1+k2 cosh(λ)k1

sinh(λ)n+k1
dλ

=

∫
R
eiRϕω(λ)ak1,k2(λ) dλ,

where

ak1,k2
(λ) =

{
(−1)k1ik2 λ

n+k1+k2 cosh(λ)k1

sinh(λ)n+k1
if λ 6∈ πiZ,

(−1)k1ik2δk2,0 if λ = 0,

ϕω(λ) =

{
ωλ+ iλ coth(λ) if λ 6∈ πiZ,
i if λ = 0.

(6)

Notice that

p1,k1,k2
(x, t) =

2

(4π)n+1
hk1,k2

(R, t)

for all (x, t) ∈ Hn; hence we can reduce matters to studying hk1,k2(R, t). Observe, in addition,
that yω = θ−1(ω) ∈ [0, π), since ω ≥ 0.

It will be convenient to reverse the dependence relation between (R,ω) and (x, t): hence,
we shall no longer consider R and ω as functions of (x, t), but rather as ‘independent variables.’
In this order of ideas, the formula |t| = Rω should sound as a definition.

Our intent will be to apply Theorem 8.7 to a function closely related to hk1,k2
; hence we

shall find some stationary points of the phase of hk1,k2
, namely ϕω. The lemma below is of

fundamental importance.

Lemma 8.10. [44, § 3, Lemma 6] ϕ′ω(λ) = ω + θ̃(iλ) for all λ 6∈ πiZ∗, where θ̃ is the analytic
continuation of θ to Dom(ϕω). In particular, iyω is a stationary point of ϕω.
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8.2.1 Estimates for (x, t)→∞ while 4|t|/|x|2 ≤ C

Theorem 8.11. Fix C > 0. If (x, t)→∞ while 0 ≤ ω ≤ C, then

p1,k1,k2
(x, t) =

1

|x|
e−

1
4d(x,t)2

Ψ(ω)

[
(−1)k1+k2

yn+k1+k2
ω cos(yω)k1

sin(yω)n+k1
+O

(
1

|x|2

)]
(7)

where

Ψ(ω) =

 1
4nπn+1

√
π sin(yω)3

sin(yω)−yω cos(yω) , if ω 6= 0,
(3π)1/2

4nπn+1 , if ω = 0.

It is worthwhile to stress that the above estimates may not be sharp when ω → 0 and k2 > 0,
as well as when ω → π

2 and k1 > 0. In these cases indeed yω → 0 and yω → π
2 , respectively, and

the first term of the asymptotic expansion (7) may be smaller than the remainder. Since the
sharp asymptotic behaviour of p1,k1,k2

when ω remains bounded is rather involved, we avoid to
outline the complete picture for the moment. The statement above is just a simplified version
of Theorem 8.24, where the general case of H-type groups is completely described.

In this section we then limit ourselves to consider Theorem 8.11 in the stated form. Its
proof mostly consists in a straightforward generalization of [44, Theorem 2 of § 3], but it can
also be seen as Proposition 8.26 in the current setting of Heisenberg groups. Nevertheless, for
the sake of completeness we give a brief sketch of the proof.

The main idea is to change the contour of integration in the integral defining hk1,k2 in order
to meet a stationary point of ϕω. Since Imϕω(λ) = ω Imλ + Re[λ coth(λ)] for every λ 6∈ πiZ,
to make this change we need to deepen our knowledge of Re[λ coth(λ)] and |ak1,k2

|; this is done
in the following lemma, which we state without proof.

Lemma 8.12. For all λ, y ∈ R such that |λ| > |y|,

Re[(λ+ iy) coth(λ+ iy)] =
λ sinh(2λ) + y sin(2y)

2(sinh(λ)2 + sin(y)2)
> 0.

Moreover, for all λ, y ∈ R such that either y 6∈ πZ or λ 6= 0,

|ak1,k2(λ+ iy)| = |λ+ iy|n+k1+k2(sinh(λ)2 + cos(y)2)
k1
2

(sinh(λ)2 + sin(y)2)
n+k1

2

.

In the following lemma we perform the change of the contour of integration in the definition
of hk1,k2 . Its proof is a simple adaptation of that of [51, Lemma 1.4].

Lemma 8.13. For all y ∈ [0,+∞) \ πN∗

hk1,k2
(R, t) =

∫
R

eiRϕω(λ+iy)ak1,k2
(λ+ iy) dλ+ 2πi

∑
k∈N∗
kπ∈[0,y]

Res
(
eiRϕωak1,k2

, kπi
)
.

Proof of Theorem 8.11. Define

ψω = ϕω( · + iyω)− ϕω(iyω)

and observe that

ϕω(iyω) = iω yω + iyω cot(yω) = i
y2
ω

sin(yω)2
,

since ω = θ(yω). Therefore, by Lemma 8.13 (recall that 0 ≤ yω < π, so that there are no
residues)

hk1,k2
(R, t) = e−

1
4d(x,t)2

∫
R

eiRψω(λ)ak1,k2
(λ+ iyω) dλ.

Our intent is to apply Theorem 8.7 to the bounded subsets F = {ψω : ω ∈ [0, C]} and G =
{ak1,k2(· + iyω) : ω ∈ [0, C]} of E(R). Therefore we first verify that the four conditions of its
statement hold.



142 CHAPTER 8. THE HEAT KERNEL ON H-TYPE GROUPS

2. Lemmas 8.10 and 8.5 imply that iϕ′′ω(iyω) = −θ′(−yω) < 0 for all ω ∈ R+. From the
definition of ψω we then get

ψω(0) = ψ′ω(0) = 0, iψ′′ω(0) < 0. (8)

3. Consider the mapping ψ : R × (−π, π) 3 (λ, y) 7→ ψθ(y)(λ). By (8), ∂1ψ(0, y) = 0 and
i∂2

1ψ(0, y) < 0 for all y ∈ [0, π); moreover, ψ is analytic thanks to Lemma 8.5. Therefore,
by Taylor’s formula we may find two constants η > 0 and C ′ > 0 such that |∂1ψ(λ, y)| ≥
C ′|λ| for all λ ∈ [−2η, 2η] and for all y ∈ [0, θ−1(C)].

1. Lemma 8.12 implies that

Imψ(λ, y) =
λ cosh(λ) sinh(λ)− y cot(y) sinh(λ)2

sinh(λ)2 + sin(y)2

for all λ ∈ R and for all y ∈ (−π, π), y 6= 0; moreover, the mapping (0, π) 3 y 7→ y cot(y)
is strictly decreasing and tends to 1 as y → 0+. Therefore, if λ 6= 0 and y ∈ [0, π), then

Imψ(λ, y) ≥ λ coth(λ)− 1

1 + 1
sinh(λ)2

> 0

since λ coth(λ) − 1 > 0. Observe finally that, since λ coth(λ)−1

1+ 1
sinh(λ)2

∼ |λ| for λ → ∞, the

second condition is also satisfied.

4. Just observe that G is bounded in L∞(R).

By Theorem 8.7,∫
R

eiRψω(λ)ak1,k2
(λ+ iyω) dλ =

(2π)(4π)n

|x|
Ψ(ω)ak1,k2

(iyω) +O

(
1

|x|3

)

for R→ +∞, uniformly as ω runs through [0, C].

From now on, we shall consider the case ω → +∞. The method of stationary phase cannot
be applied directly in this case, since yω → π, and iπ is a pole of the phase (as well as of
the amplitude). Although it seems possible to adapt the techniques developed by Li [56] to
this situation, our proof follows the idea presented by Hueber and Müller [51, Theorem 1.3 (i)]
for the Heisenberg group H1. We shall take advantage of this singularity to get the correct
behaviour of hk1,k2

, by means of the residues obtained by Lemma 8.13.

8.2.2 Estimates for δ → 0+ and κ→ +∞
We state below the main result of this section.

Theorem 8.14. For δ → 0+ and κ→ +∞

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

4n(πδ)n+k1−1
√

2πκ
e−

1
4d(x,t)2

[
1 +O

(
1

κ
+ δ

)]
.

The proof of Theorem 8.14 will be prepared by several lemmas. The first step will be to
invoke Lemma 8.13, of which we keep the notation, to move the contour of integration beyond
the singularity at πi; since at 2πi there is another one, it seems convenient to stop at 3πi

2 .
We first notice that the integral on R + 3πi

2 may be neglected in some circumstances, as the
following lemma shows. It is essentially [51, Lemma 1.4], so we omit the proof.

Lemma 8.15. There exists a constant C ′ > 0 such that∣∣∣∣∫
R

eiRϕω(λ+ 3πi
2 )ak1,k2

(
λ+

3πi

2

)
dλ

∣∣∣∣ ≤ C ′e− 3π|t|
2 .
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Hence, matters are reduced to the computation of the residue. First of all, define

r(λ) =

{
1 + 1

λ − π(1 + λ) cot(πλ), if λ 6∈ Z,
0, if λ = 0,

and observe that r is holomorphic on its domain. It will be useful to define also

ϕ̃k1,k2
(R, ξ) :=

{
eRr(−ξ) (πξ)n+k1 cos(πξ)k1 (1−ξ)n+k1+k2

sin(πξ)n+k1
, if ξ 6∈ Z,

1, if ξ = 0,

and
ϕδ,k1,k2

(s) := e−i(n+k1−1)sϕ̃k1,k2
(0, δeis) (9)

whenever δeis 6∈ Z∗. The following lemma may be proved again on the lines of [51, Lemma 1.4].

Lemma 8.16. For every δ < 1

2πiRes
(
eiRϕωak1,k2

, πi
)

=
(−1)k2πk2+1

δn+k1−1
e−R−π|t|

∫ π

−π
eκ cos(s)+Rr(−δeis)ϕδ,k1,k2

(s) ds. (10)

Therefore, it remains only to estimate the integral in (10), namely

Hk1,k2
(R, t) :=

∫ π

−π
eκ cos(s)+Rr(−δeis)ϕδ,k1,k2

(s) ds =

∫ π

−π
eκqδ(−is)ϕδ,k1,k2

(s) ds, (11)

where
q(δ, ζ) = qδ(ζ) := cosh(ζ) +

δ

2
r(−δe−ζ). (12)

Notice that we may apply Theorem 8.7 only when κ → +∞, and this is why we confined
ourselves to the case where δ → 0+ (and we shall assume 0 < δ < 1) and κ→ +∞.

Again for technical convenience, we shall reverse the dependence relation between (δ, κ) and
(R, |t|), thus assuming that δ and κ are ‘independent variables.’ Indeed, δ and κ completely
describe our problem, since

|t| = κ

2πδ
, R =

κδ

2
,

and |t|+R→ +∞ if δ → 0+ and κ→ +∞. We shall sometimes let δ take complex values. The
following lemma is essentially [51, Lemma 1.2]. We present a slightly shorter proof.

Lemma 8.17. The function q is holomorphic on the set {(δ, ζ) ∈ C×C| δe−ζ 6∈ Z∗}. Further,
there exist two constants δ1 ∈ (0, 1) and η1 > 0 such that for all δ ∈ BC(0, δ1) there is a unique
σδ ∈ BC(0, η1) such that q′δ(σδ) = 0. Then, the mapping BC(0, δ1) 3 δ 7→ σδ is holomorphic
and real on (−δ1, δ1). Finally, σδ = O(δ2) and qδ(σδ) = 1 +O(δ2) for δ → 0.

Proof. q is holomorphic since r is. Furthermore, ∂2q(0, 0) = 0 and ∂2
2q(0, 0) = 1. Therefore,

the implicit function theorem (cf. [26, Proposition 6.1 of IV.5.6]) implies the existence of some
δ1 and η1 as in the statement, the holomorphy of the mapping δ 7→ σδ, and that d

dδσδ|δ=0 = 0.
Notice also that σ0 = 0, so that σδ = O(δ2) for δ → 0 by Taylor’s formula.

Since qδ is real on real numbers, q′δ(σδ) = q′δ(σδ) = 0; thus σδ = σδ for the uniqueness of σδ,
and hence σδ ∈ R for all δ ∈ (−δ1, δ1).

The last assertion follows from Taylor’s formula, since q0(σ0) = q0(0) = 1 and d
dδ qδ(σδ)|δ=0 =

∂1q(0, 0) + ∂2q(0, 0) ddδσδ|δ=0 = 0.

The contour of integration can now be changed in order to apply the method of stationary
phase. For the remainder of this section, we keep δ1 and η1 of Lemma 8.17 fixed.

Lemma 8.18. Let τ ∈ C∞c (R) such that χ[−π2 ,
π
2 ] ≤ τ ≤ χ[π,π]. Define, for all δ ∈ (−δ1, δ1),

the path γδ(s) := s+ iσδ τ(s), and

Fδ(s) := −iqδ(−iγδ(s)) + iqδ(σδ) and ψδ,k1,k2
:= (ϕδ,k1,k2

◦ γδ) γ′δ.

Then
Hk1,k2(R, t) = eκ qδ(σδ)

∫ π

−π
eiκFδ(s)ψδ,k1,k2(s) ds.
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Proof of Theorem 8.14. We shall apply Theorem 8.7 to the bounded subsets F = {Fδ : δ ∈
(0, δ2)} and G = {ψδ,k1,k2

: δ ∈ (0, δ2)} of E((−π, π)), depending on some δ2 to be fixed later.
Hence we check that the four conditions of the statement are satisfied.

1. The mapping F : (−δ1, δ1) × R 3 (δ, s) 7→ Fδ(s) is of class C∞, and ∂2
2F (0, 0) = i; thus

we may find δ2 ∈ (0, δ1), η2 ∈
(
0, π2

)
and C ′′ > 0 such that Im ∂2

2F (δ, s) ≥ 2C ′′ for all
δ ∈ [−δ2, δ2] and for all s ∈ [−2η2, 2η2]. From Taylor’s formula then

ImF (δ, s) =

∫ s

0

∂2
2 ImF (δ, τ)(s− τ) dτ ≥ C ′′s2

for all s ∈ [−2η2, 2η2] and for all δ ∈ [−δ2, δ2]. Since ImF (0, s) = 1 − cos(s) for all
s ∈ [−π, π], by reducing δ2 and C ′′ if necessary one may assume that ImF (δ, s) ≥ C ′′π2 ≥
C ′′s2 for all s ∈ R such that 2η2 ≤ |s| ≤ π and for all δ ∈ [−δ2, δ2].

2. It is immediately seen that Fδ(0) = F ′δ(0) = 0 by definition.

3. For every δ ∈ [−δ2, δ2] and s ∈ [−2η2, 2η2]

|∂2F (δ, s)| ≥ |∂2 ImF (δ, s)| =
∣∣∣∣∫ s

0

∂2
2 ImF (δ, τ) dτ

∣∣∣∣ ≥ 2C ′′|s|.

4. Just observe that G is bounded in L∞((−π, π)).

By Theorem 8.7, then,

∫ π

−π
eiκFδ(s)τ2(s)ψδ,k1,k2(s) ds =

√
2πi

κF ′′δ (0)
ψδ,k1,k2(0) +O

(
1

κ3/2

)
.

It is then easily seen that F ′′δ (0) = iq′′δ (σδ) = i(1 + O(δ)) and ψδ,k1,k2(0) = ϕδ,k1,k2(iσδ) =
1 +O(δ) for δ → 0+.

Now, by construction,

−R− π|t|+ κqδ(s) = iRϕω(πi(1− δe−s))

for s in a neighbourhood of σδ. Take δ3 ∈ (0, δ2] so that (1− δe−σδ) ∈ (−1, 1) for all δ ∈ [0, δ3],
and fix δ ∈ (0, δ3) and t 6= 0. We shall prove that

yω = π(1− δe−σδ).

Indeed, yω is the unique element of (−π, π) such that ϕ′ω(iyω) = 0; furthermore, π(1− δe−σδ) ∈
(−π, π) for the choice of δ3, and −Rπ δ e−σδϕ′ω(πi(1 − δe−σδ)) = κ q′δ(σδ) = 0. Therefore,
yω = π(1 − δe−σδ). Finally, equality holds by analyticity whenever both sides are defined. It
then follows that

−R− π|t|+ κqδ(σδ) = iRϕω(iyω) = −1

4
d(x, t)2. (13)

Finally observe that, by definition of κ and δ, and by Lemma 8.17,

−3π|t|
2

+R+ π|t| − κqδ(σδ)+ log κ ≤ − κ

2πδ

[
π

2
− πδ2 + 2πδ

(
1 +O

(
δ2
))
−2πδ

log κ

κ

]
,

which tends to −∞ as δ → 0+ and κ→ +∞. This means that

e−
3π|t|

2 = o

(
e−R−π|t|+κqδ(σδ)

κ

)
for κ→ +∞, uniformly as δ runs through (0, δ2]. Our assertion is then a consequence of Lem-
mas 8.13 and 8.15.
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8.2.3 Estimates for δ → 0+ and κ bounded

Strictly speaking, cases III and IV have already been considered together by Hueber and
Müller [51, Theorem 1.3 (ii)] on the Heisenberg group H1, i.e. when n = 1. Since their method
does not apply when n > 1, we shall follow a different approach similar to that of Li [55].

We first recall that, for all ν ∈ Z and ζ ∈ C, the modified Bessel function Iν of order ν is
defined as

Iν(ζ) =
∑
k∈N

ζ2k+ν

22k+νk! Γ(k + ν + 1)
.

If s > 0, then also

Iν(s) =
1

2π

∫ π

−π
es cos(ξ)−iνξ dξ,

as one can verify from [38, 7.3.1 (2)] by applying the change of variables ψ = π
2 − ϕ and by

taking into account the relationship [38, 7.2.2 (12)] between Iν = I−ν and Jν , and also the
periodicity of the integrand. Notice that for s > 0 and ν ∈ Z, Iν(s) is strictly positive unless
s = 0 and ν 6= 0. The main result of this section is the following.

Theorem 8.19. Fix C > 1. If δ → 0+ while 1/C ≤ κ ≤ C, then

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

4n(πδ)n+k1−1
e−

1
4d(x,t)2

e−κIn+k1−1(κ)[1 +O(δ)]. (14)

When κ→ 0+ and |t| → +∞

p1,k1,k2(x, t) =
(−1)k2πk1+k2

4n(n+ k1 − 1)!
|t|n+k1−1

e−
1
4d(x,t)2

[
1 +O

(
1

|t|
+ κ

)]
. (15)

Lemma 8.20. For every N ∈ N

Hk1,k2
(R, t) = 2π

∑
|α|≤N

In+k1−1−α2
(κ)

∂αϕ̃k1,k2(0, 0)κα1

2α1α!
δ|α| +O

(
δN+1

)
for δ → 0+, uniformly as κ runs through [0, C].

Proof. By substituting (9) in (10) and by Taylor’s formula applied to ϕ̃k1,k2
,

Hk1,k2(R, t) =

∫ π

−π
eκ cos(s)e−i(n+k1−1)sϕ̃k1,k2(R, δeis) ds

=
∑
|α|≤N

∂αϕ̃k1,k2
(0, 0)

α!
Rα1δα2

∫ π

−π
eκ cos(s)e−i(n+k1−1−α2)s ds+RN+1(δ, κ)

= 2π
∑
|α|≤N

In+k1−1−α2
(κ)

∂αϕ̃k1,k2
(0, 0)κα1

2α1α!
δ|α| +RN+1(δ, κ),

where the last equality holds since R = δκ
2 . Moreover, RN+1(δ, κ) is easily seen to be O

(
δN+1

)
for δ → 0+ uniformly as κ runs through [0, C]. This completes the proof.

Proof of Theorem 8.19. Lemmas 8.15 and 8.16 imply that

p1,k1,k2
(x, t)=

(−1)k22πk2−n

4n+1δn+k1−1
e−R−π|t|Hk1,k2

(R, t) +O
(
e−

3π|t|
2

)
.

Moreover, recall that δ|t| = κ
2π and R = κδ

2 ; therefore, for every N ∈ N,

e−
3π|t|

2 = o
(
δN+2−n−k1e−R−π|t|

)
(16)

as δ → 0+, uniformly as κ runs through [1/C,C]. By (13) and Lemma 8.17, the first assertion
follows from Lemma 8.20 for N = 0.
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As for (15), observe first that κ→ 0+ and |t| → +∞ is equivalent to saying δ, κ→ 0+ and
δ = o(κ). Then, Lemma 8.20 with N = n + k1 − 1 and an easy development of the Bessel
function in a neighbourhood of 0 imply that

p1,k1,k2
(x, t) =

πk1+k2(−1)k2

4n(πδ)n+k1−1
e−π|t|−R

[
κn+k1−1

I
(n+k1−1)
n+k1−1 (0)

(n+ k1 − 1)!
+O(κn+k1)

+
∑

1≤|α|≤n+k1−1

O
(
In+k1−1−α2

(κ)κα1δ|α|
)

+O(δn+k1)

]
+O

(
e−

3π|t|
2

)
.

Since δ = o(κ), one has δα2+α1−1 = O(κα2+α1−1) for every α 6= 0. Therefore,∑
1≤|α|≤n+k1−1

O
(
In+k1−1−α2(κ)κα1δ|α|

)
=

∑
1≤|α|≤n+k1−1

O
(
κn+k1−2+2α1δ

)
= O

(
κn+k1−2δ

)
.

Since κ
2πδ = |t| and I(n+k1−1)

n+k1−1 (0) = 1
2n+k1−1 , we get

p1,k1,k2
(x, t) =

πk1+k2(−1)k2

4n(n+ k1 − 1)!
e−π|t|−R|t|n+k1−1

[
1 +O

(
1

|t|
+ κ+ δ

)]
+O

(
e−

3π|t|
2

)
.

Finally, δ = o
(

1
|t|

)
since δ|t| = κ

2π ; moreover

e−
3π|t|

2 = o
(
e−π|t|−R|t|n+k1−2

)
since R→ 0+ and |t| → +∞. The assertion follows.

The estimates in cases II, III, and IV can be put together. This is done in the following
corollary, which will turn out to be fundamental later on. Define first, for ζ ∈ C and ν ∈ Z,

Ĩν(ζ) :=
∑
k≥0

ζ2k

22k+νk!Γ(k + ν + 1)
.

From now on we shall use the following abbreviation. We keep the notation of Lemma 8.17.

Definition 8.21. For δ ∈ BC(0, δ1), define ρ(δ) := qδ(σδ).

By Lemma 8.17, ρ is a holomorphic function such that ρ(0) = 1 and ρ′(0) = 0, so that
ρ(δ) = 1 +O(δ2) as δ → 0.

Corollary 8.22. When (x, t)→∞ and δ → 0+

p1,k1,k2(x, t) =
(−1)k2πk1+k2

2n−k1+1
|t|n+k1−1

e−
1
4d(x,t)2

e−κρ(δ)Ĩn+k1−1(κρ(δ))[1 + g(|x|, |t|)],

where

g(|x|, |t|) =


O
(
δ + 1

κ

)
if δ → 0+ and κ→ +∞,

O(δ) if δ → 0+ and κ ∈ [1/C,C],

O
(

1
|t| + κ

)
if δ → 0+ and κ→ 0+

(17)

for every C > 1.

Proof. 1. Assume first that κ → +∞. Since Iν(s) = es√
2πs

[
1 +O

(
1
s

)]
for s → +∞, ν ∈ Z

(cf. [38, 7.13.1 (5)]),

Ĩν(s) =
es

sν
√

2πs

[
1 +O

(
1

s

)]
for s→ +∞. (18)
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Therefore, Theorem 8.14 implies that

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

4n(πδ)n+k1−1
√

2πκ
e−

1
4d(x,t)2

[
1 +O

(
1

κ
+ δ

)]
=

(−1)k2πk1+k2 Ĩn+k1−1(κρ(δ))

2n−k1+1
|t|n+k1−1

e−
1
4d(x,t)2

e−κρ(δ)

×
[
1 +O

(
1

κρ(δ)

)][
1 +O

(
1

κ
+ δ

)]
=

(−1)k2πk1+k2 Ĩn+k1−1(κρ(δ))

2n−k1+1
|t|n+k1−1

e−
1
4d(x,t)2

e−κρ(δ)
[
1 +O

(
1

κ
+ δ

)]
,

since ρ(δ) = 1 +O(δ2) and 2|t|
κ = 1

πδ .
2. Assume now that κ ∈ [1/C,C] for some C > 1. Then, by Theorem 8.19,

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

4n(πδ)n+k1−1
e−

1
4d(x,t)2

e−κIn+k1−1(κ)[1 +O(δ)]

=
(−1)k2πk1+k2

2n−k1+1
|t|n+k1−1

e−
1
4d(x,t)2

e−κρ(δ)Ĩn+k1−1(κρ(δ))
[
1 +O

(
δ2
)]

[1 +O(δ)]

=
(−1)k2πk1+k2

2n−k1+1
|t|n+k1−1

e−
1
4d(x,t)2

e−κρ(δ)Ĩn+k1−1(κρ(δ))[1 +O(δ)],

where the second equality holds since In+k1−1(κρ(δ)) − In+k1−1(κ) = O(κ(ρ(δ) − 1)) = O(δ2)
uniformly as κ runs through [1/C,C] by Taylor’s formula.

3. Finally, if κ→ 0+ then

Ĩn+k1−1(κ) = Ĩn+k1−1(0) +O(κ) =
1

2n+k1−1(n+ k1 − 1)!
+O(κ)

by the definition of Ĩn+k1−1. The assertion follows by means of Theorem 8.19.

8.3 H-type Groups
In this section we deal with the general case m ≥ 1. In particular, we prove a refined version

of Theorem 8.11, and extend Theorems 8.14 and 8.19: this is done through Theorems 8.24, 8.35
and 8.36 respectively. Theorem 8.24 treats case I and is still inspired by [44, Theorem 2 of
§ 3]. The asymptotic estimates in the other three cases are first obtained in the case m odd,
‘reducing’ to the case m = 1; the case m even is then achieved through a descent method.

The first step in order to apply the method of stationary phase is to extend the integrand
to a meromorphic function on Cm. If m > 1, such extension is no longer automatic as when
m = 1. A natural way consists in taking advantage of the parity of the functions that appear, as
in [36]. Indeed, any continuous branch of λ 7→

√
λ2 is a holomorphic function which coincides

with λ 7→ ±|λ| on Rm; therefore, whenever g is an even holomorphic function defined on
a symmetric open subset of C, the function λ 7→ g(

√
λ2) is well-defined, holomorphic, and

coincides with λ 7→ g(|λ|) on Rm. Hence, we are led to the following definition, which is the
analogue of Definition 8.9. We shall use the same notation as before, without stressing the
(new) dependence on m.

Definition 8.23. Define

hk1,k2
(R, t) =

∫
Rm

eiRϕω(λ)ak1,k2
(λ) dλ

where

ak1,k2(λ) =

(−1)k1ik2

√
λ2n+k1 cosh(

√
λ2)k1

sinh(
√
λ2)n+k1

〈λ|u1〉k2 if
√
λ2 6∈ iπZ∗,

(−1)k1ik2δk2,0 if λ = 0,

ϕω(λ) =

{
ω 〈λ|u1〉+ i

√
λ2 coth(

√
λ2) if

√
λ2 6∈ iπZ∗,

i if λ = 0.

(19)
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Define also
ak1,k2,ω(λ) := ak1,k2(λ+ iyωu1). (20)

Observe again that

p1,k1,k2
(x, t) =

1

(4π)n(2π)m
hk1,k2

(R, t)

for all (x, t) ∈ R2n ×Rm, and that yω = θ−1(ω) ∈ [0, π), since ω ≥ 0.

8.3.1 Estimates for (x, t)→∞ while 4|t|/|x|2 ≤ C

The main result of this section is Theorem 8.24 below. As already said, the main ingredient
of its proof is the method of stationary phase (cf. Proposition 8.26), which is already employed
in [44, Theorem 2 of § 3] to treat the case n = m = 1 and k1 = k2 = 0.

The novelty of considering all the derivatives of the heat kernel p1 (in other words, all the
cases k1 ≥ 0 and k2 ≥ 0) introduces additional complexity to the developments, since the choice
k = 0 in (4) may not give the sharp asymptotic behaviour of p1,k1,k2

at infinity, while ω remains
bounded. In particular, this happens in the cases ω → 0 and k2 > 0, or ω → π

2 and k1 > 0. If
ω remains bounded and away from 0 and π

2 , the first term is instead enough.

Theorem 8.24. Fix ε, C > 0. If (x, t)→∞ while 0 ≤ ω ≤ C, then

p1,k1,k2
(x, t) =

1

|x|m
e−

1
4d(x,t)2

Ψ(ω)Υ(x, t)

where

Ψ(ω) =

 1
4nπn+m

√
(2π)mym−1

ω sin(yω)3

2ωm−1(sin(yω)−yω cos(yω)) , if ω 6= 0,
(3π)m/2

4nπn+m , if ω = 0,
(21)

and

1. if ε ≤ ω ≤ π
2 − ε or π

2 + ε ≤ ω ≤ C,

Υ(x, t) = (−1)k1+k2
yn+k1+k2
ω cos(yω)k1

sin(yω)n+k1
+O

(
1

|x|2

)
; (22)

2. if ω → 0 and k2 is even,

Υ(x, t) =

k2/2∑
j=0

ck1,k2,j
ωk2−2j

|x|2j
+O

k2/2∑
j=0

ωk2−2j+1

|x|2j
+

1

|x|k2+2

; (23)

3. if ω → 0, k2 is odd and |t| → ∞,

Υ(x, t) =

(k2−1)/2∑
j=0

ck1,k2,j
ωk2−2j

|x|2j
+O

(k2+1)/2∑
j=0

ωk2−2j+1

|x|2j

; (24)

4. if ω → 0, k2 is odd and 0 ≤ |t| ≤ C

Υ(x, t) = ck1,k2+1,(k2+1)/2
|t|

|x|k2+1
+O

(
|t|

|x|k2+3

)
; (25)

5. if ω → π
2 and k1 is even,

Υ(x, t) =

k1/2∑
j=0

bk1,k2,j

(
ω − π

2

)k1−2j

|x|2j
+O

k1/2∑
j=0

(
ω − π

2

)k1−2j+1

|x|2j
+

1

|x|k1+2

; (26)
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6. if ω → π
2 and k1 is odd,

Υ(x, t) =

(k1−1)/2∑
j=0

bk1,k2,j

(
ω − π

2

)k1−2j

|x|2j
+
bk1,k2,(k1+1)/2

|x|k1+1

+O

(k1−1)/2∑
j=0

(
ω − π

2

)k1−2j+1

|x|2j
+

ω − π
2

|x|k1+1
+

1

|x|k1+3

. (27)

The coefficients ck1,k2,j and bk1,k2,j are explicitly given by (33), (35) and (36).

The remainder of this section is devoted to the proof of Theorem 8.24. Since it is quite
involved, we split this section into two parts: in the first one we apply the method of stationary
phase, while in the second one we find the asymptotics of the development given by Theorem 8.7
which are required to get the sharp developments (23)–(27). These proofs go through several
lemmas.

Remark 8.25. Notice that any pair of terms in the sums appearing in the developments (23),
(24), (26), and (27) are not comparable with each other under the stated asymptotic condition.
Therefore, these developments cannot be simplified. Observe, in addition, that for k1 and
k2 fixed the coefficients bk1,k2,j (resp. ck1,k2,j) have the same sign; thus, no cancellation can
occur, and our developments are indeed sharp. A more detailed description will be given in
Section 8.3.1.

Finally, notice that it is possible to obtain even more precise expansions if one does not
develop the terms Lj,ψωak1,k2,ω which appear in Proposition 8.26 below. In particular, in
the cases when ω → 0+ and k2 = 0, or ω → π

2 and k1 = 0, the explicit computation of
L0,ψωak1,k2,ω = ak1,k2

(iyωu1) leads to better remainders than those in (23) and (26) respectively.

Application of the Method of Stationary Phase

As already said, Proposition 8.26 below is an easy generalization of Theorem 8.11.

Proposition 8.26. Fix C > 0 and let k ∈ N. Then, if (x, t)→∞ while 0 ≤ ω ≤ C,

p1,k1,k2
(x, t) =

1

|x|m
e−

1
4d(x,t)2

Ψ(ω)

 k∑
j=0

4jLj,ψωak1,k2,ω

|x|2j
+O

(
1

|x|2k+2

) (28)

where Ψ is defined by (21).

In the same way as in Section 8.2.1, we begin by finding some stationary points of the phase
of hk1,k2 , namely ϕω.

Lemma 8.27. [36, Formula (5.7)] For all λ such that
√
λ2 6∈ iπZ∗,

ϕ′ω(λ) = ωu1 + λ
θ̃(i
√
λ2)√
λ2

where θ̃ is the analytic continuation of θ to Dom(ϕω). In particular, iyωu1 is a stationary point
of ϕω.

We then change the contour of integration in the integral defining hk1,k2 in order to meet
a stationary point of ϕω. This is done in the following lemma, which is the analogue of
Lemma 8.13.

Lemma 8.28. For every y ∈ [0, π)

hk1,k2
(R, t) =

∫
Rm

eiRϕω(λ+iyu1)ak1,k2
(λ+ iyu1) dλ.
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Proof. The theorem is proved in a similar fashion to [36, Lemma 5.4]. It may be useful to
observe that for every λ ∈ Cm such that either Im

√
λ2 /∈ πZ or Re

√
λ2 6= 0, we have

|ak1,k2(λ)| =
|λ|n+k1

(
sinh

(
Re
√
λ2
)2

+ cos
(

Im
√
λ2
)2
)k1/2

(
sinh

(
Re
√
λ2
)2

+ sin
(

Im
√
λ2
)2
)(n+k1)/2

|〈λ|u1〉|k2 ,

by Lemma 8.12, since |
√
λ2| = |λ|. Moreover, ak1,k2

is bounded on the set {λ + iyu1 : λ ∈
Rm, y ∈ [0, C ′]} for every C ′ ∈ (0, π).

Proof of Proposition 8.26. Define

ψω = ϕω( · + iyωu1)− ϕω(iyωu1)

and observe that, since
√

(iyωu1)2 = ±iyω and ω = θ(yω), ϕω(iyωu1) = i
y2
ω

sin(yω)2 . Therefore,
by Lemma 8.28

hk1,k2
(R, t) = e−

1
4d(x,t)2

∫
R

eiRψω(λ)ak1,k2
(λ+ iyωu1) dλ.

We apply Theorem 8.7 to the bounded subsets F = {ψω : ω ∈ [0, C]} and G = {ak1,k2,ω : ω ∈
[0, C]} of E(Rm).

2. Elementary computations show that

−iψ′′ω(0) = θ′(yω)u1 ⊗ u1 +
ω

yω

m∑
j=2

uj ⊗ uj , (29)

so that det(−iψ′′ω(0)) = θ′(yω)
(
θ(yw)
yw

)m−1

> 0. The conditions ψω(0) = ψ′ω(0) = 0 hold
by construction.

3. Consider the mapping ψ : Rm × (−π, π) 3 (λ, y) 7→ ψθ(y)(λ). Then, by the preceding
arguments, there is c > 0 such that ∂1ψ(0, y) = 0 and −i∂2

1ψ(0, y) ≥ c〈 · | · 〉 for all
y ∈ [0, π); moreover, ψ is analytic by Lemma 8.5. Therefore, by Taylor’s formula we may
find two constants η > 0 and C ′ > 0 such that |∂1ψ(λ, y)| ≥ C ′|λ| for all λ ∈ BRm(0, 2η)
and for all y ∈ [0, θ−1(C)].

1. Combining [36, Lemmas 5.3 and 5.7], we infer that there is a constant C ′′ > 0 such that

Imψ(λ, y) = yθ(y) + Re
[√

(λ+ iyu1)2 coth
√

(λ+ iyu1)2
]
− y2

sin2 y
≥ C ′′|λ|

whenever |λ| ≥ η and 0 ≤ y ≤ θ−1(C).

4. Just observe that G is bounded in L∞(Rm).

By Theorem 8.7, then,

∫
Rm

eiRψω(λ)ak1,k2(λ+ iyωu1) dλ =
(2π)m(4π)n

|x|m
Ψ(ω)

k∑
j=0

4jLj,ψωak1,k2,ω

|x|2j
+O

(
1

|x|m+2k+2

)

for R→ +∞, uniformly as ω runs through [0, C].
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Further Developments and Completion of the Proof of Theorem 8.24

We begin by recalling that, for every j ∈ N,

Lj,ψωak1,k2,ω = i−j
2j∑
µ=0

〈
ψ′′ω(0)−1∂|∂

〉µ+j
[(ψω − P2,0ψω)µak1,k2,ω](0)

2µ+jµ!(µ+ j)!
. (30)

Thus, 1 of Theorem 8.24 follows immediately taking k = 0 in Proposition 8.26, since

L0,ψωak1,k2,ω = ak1,k2,ω(0) = ak1,k2(iyωu1).

As for the other developments, observe that, by (29),〈
ψ′′ω(0)−1∂|∂

〉µ+j
[(ψω − P2,0ψω)µak1,k2,ω](0)

=
∑

|α|=µ+j

(µ+ j)!

α!

1

(iθ′(yω))α1

(yω
iω

)|α|−α1

∂2α[(ψω − P2,0ψω)µak1,k2,ω](0), (31)

where

∂2α[(ψω − P2,0ψω)µak1,k2,ω](0)

=
∑
β≤2α,
|β|≥3µ

(2α)!

β! (2α− β)!
∂β [(ψω − P2,0ψω)µ](0) ∂2α−βak1,k2

(iyωu1). (32)

The sum above is restricted to |β| ≥ 3µ since ψω(λ)−P2,0ψω(λ) is infinitesimal of order at least
3 for λ→ 0. Observe moreover that, since |2α−β| = 2|α|− |β| ≤ 2j−µ, we have |2α−β| ≤ 2j
and |2α− β| = 2j if and only if µ = 0 and β = 0. We first consider the case ω → 0.

Lemma 8.29. For every j ∈ N such that 2j ≤ k2, define

ck1,k2,j := (−1)k1+k2
3k2−jk2!

2k2−2j(k2 − 2j)!j!
. (33)

Then
4jLj,ψωak1,k2,ω = ck1,k2,jω

k2−2j +O
(
ωk2−2j+1

)
for ω → 0.

Proof. Recall that ak1,k2
is an analytic function on its domain, and observe that3

ak1,k2(λ) = (−1)k1ik2λk2
1 +O

(
|λ|k2+2

)
for λ→ 0. Therefore, for every h = 0, . . . , k2 we have

a
(h)
k1,k2

(λ) = (−1)k1ik2
k2!

(k2 − h)!
λk2−h

1 u⊗h1 +O
(
|λ|k2−h+2

)
(34)

as λ→ 0.
We now consider (32). If |2α− β| < 2j, then by (34)

∂β [(ψω − P2,0ψω)µ](0)∂2α−βak1,k2(iyωu1) = O
(
yk2−|2α−β|
ω

)
= O

(
yk2−2j+1
ω

)
for ω → 0. Otherwise, let |2α− β| = 2j, so that µ = 0 and β = 0. If α 6= ju1, then (34) implies
that

∂2αak1,k2
(iyωu1) = O

(
yk2−2j+2
ω

)
= O

(
yk2−2j+1
ω

)
,

while, if α = ju1,

∂2j
1 ak1,k2(iyωu1) = (−1)k1+k2i−2j k2!

(k2 − 2j)!
yk2−2j
ω .

From this and the fact that
θ′(0) = lim

ω→0

ω

yω
=

2

3

we get the asserted estimate.
3Here and in the following, λ1 stands for 〈λ|u1〉.
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Lemma 8.29 above gives the expansions 2 and 3 of Theorem 8.24. Indeed, it allows us to
choose k in Proposition 8.26 as

2. k = k2/2 if k2 is even, since in this case the last term of the sum in (28) is

ck1,k2,k2/2

|x|k2
+O

(
ω

|x|k2

)
which is bigger than the remainder.

3. k = (k2− 1)/2 if k2 is odd and |t| → ∞, since in this case the last term of the sum in (28)
is

ck1,k2,(k2−1)/2
ω

|x|k2−1
+O

(
ω2

|x|k2−1

)
= ck1,k2,(k2−1)/2

|t|
|x|k2+1

+O

(
|t|2

|x|k2+3

)
which is bigger than the remainder, since |t| → ∞.

The case 4 of Theorem 8.24, that is the case when k2 is odd, ω → 0 and |t| is bounded,
has to be treated in a different way, since ω/|x|k2−1 may be comparable with the remainder
1/|x|k2+1 or even smaller. Thus, the development given above may not be sharp in this case.
To overcome this difficulty, we make use of the following lemma. For the reader’s convenience,
we also consider k2 even and a stronger statement than the one we need (see Remark 8.38).

Lemma 8.30. Let N ∈ N. Then, when ω → 0,

p1,k1,k2
(x, t) =

N∑
h=0

1

(2h+ 1)!
|t|2h+1p1,k1,k2+2h+1(x, 0) +O

(
|t|2N+3

p1,k1,k2+2N+3(x, 0)
)

if k2 odd; if k2 is even, then

p1,k1,k2
(x, t) =

N∑
h=0

1

(2h)!
|t|2hp1,k1,k2+2h(x, 0) +O

(
|t|2N+2

p1,k1,k2+2N+2(x, 0)
)
.

Proof. Assume that k2 is odd. Then

(4π)n(2π)m

∣∣∣∣∣p1,k1,k2
(x, t)−

N∑
h=0

1

(2h+ 1)!
|t|2h+1p1,k1,k2+2h+1(x, 0)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rm

e−
|x|2

4 |λ| coth |λ| |λ|
n+k1 cosh(|λ|)k1

sinh(|λ|)n+k1
〈λ|u1〉k2

{
ei|t|〈λ|u1〉 −

N∑
h=0

[i|t|〈λ|u1〉]2h+1

(2h+ 1)!

}
dλ

∣∣∣∣∣
≤ |t|2N+3

(2N + 3)!

∫
Rm

e−
|x|2

4 |λ| coth |λ| |λ|
n+k1 cosh(|λ|)k1

sinh(|λ|)n+k1
〈λ|u1〉k2+2N+3

dλ

=
(4π)n(2π)m

(2N + 3)!
|t|2N+3|p1,k1,k2+2N+3(x, 0)|.

The first assertion is then proved. The proof in when k2 is even is analogous.

Thus, the case ω → 0 while |t| remains bounded when k2 is odd can be related to the same
case when k2 is even, which is completely described by Lemma 8.29. Observe that the expansion
appearing in 4 of Theorem 8.24 is obtained with the choice N = 0 in Lemma 8.30.

We finally consider the case ω → π
2 , which as above provides the expansions 5 and 6 of

Theorem 8.24.

Lemma 8.31. Define, for j ∈ N such that 2j ≤ k1,

bk1,k2,j := (−1)k2
k1!

2k1−2j(k1 − 2j)!j!

(π
2

)n+k1+k2

, (35)

and, when k1 is odd,

bk1,k2,(k1+1)/2 := (−1)k2
(k1 + 1)!

[(k1 + 1)/2]!

(π
2

)n+k1+k2−1

×

×
(
n+ k1 + k2 +

π2

24
(k1 + 2) +

3

2
(m− 1)

)
.

(36)
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Then, for ω → π
2 , if 2j ≤ k1

4jLj,ψωak1,k2,ω = bk1,k2,j

(
ω − π

2

)k1−2j

+O

((
ω − π

2

)k1−2j+1
)

while if k1 is odd, then

2k1+1L(k1+1)/2,ψωak1,k2,ω = bk1,k2,(k1+1)/2 +O
(
ω − π

2

)
.

Proof. By elementary computations,

ak1,k2,π/2(λ) = (−1)k1ik2−n
(
i
π

2

)n+k1+k2

λk1
1 + (−1)k1ik2−n

(
i
π

2

)n+k1+k2−1

×

×
(

(n+ k1 + k2)λk1+1
1 +

k1

2
λk1−1

1 (λ2 − λ2
1)

)
+O

(
|λ|k1+2

)
. (37)

Since ak1,k2,π/2 is analytic on its domain, we infer that, for every h = 0, . . . , k1,

a
(h)
k1,k2,π/2

(λ) = (−1)k1ik2−n
(
i
π

2

)n+k1+k2 k1!

(k1 − h)!
λk1−h

1 u⊗h1 +O
(
|λ|k1−h+1

)
, (38)

as λ→ 0.
Consider first j such that 2j ≤ k1. Then, arguing as in the proof of Lemma 8.29 and taking

into account (38) and the fact that

yω −
π

2
=

1

2

(
ω − π

2

)
+O

[(
ω − π

2

)2
]

when ω → π/2, the first assertion follows.
Let now k1 be odd, so that (k1 + 1)/2 is an integer. We shall prove that

2k1+1L(k1+1)/2,ψπ/2ak1,k2,π/2 = bk1,k2,(k1+1)/2.

The estimate in the statement will be a consequence of this equality by Taylor expansion.
Since (ψ′′π/2(0)−1∂, ∂)µ+(k1+1)/2 is a differential operator of degree 2µ+ k1 + 1 while [(ψω −

P2,0ψω)µak1,k2,ω] is infinitesimal of degree 3µ + k1 at 0, the only terms in the sum (30) (with
j = (k1 + 1)/2) which are not zero are clearly those for which

2µ+ k1 + 1 ≥ 3µ+ k1,

namely µ ≤ 1. Consider first µ = 0. Then, since θ′(yπ/2) = 2, by (31)〈
ψ′′π/2(0)−1∂|∂

〉(k1+1)/2

ak1,k2,π/2(0) = i−(k1+1)/2
∑

|α|=(k1+1)/2

[(k1 + 1)/2]!

2α1α!
∂2αak1,k2,π/2(0).

Observe that, by (37), ∂2αak1,k2,π/2(0) 6= 0 only if α = ((k1−1)/2)u1+uh for some h = 1, . . . ,m.
For the choice h = 1,

∂k1+1
1 ak1,k2,π/2(0) = (−1)k1ik2−n

(
i
π

2

)n+k1+k2−1

(k1 + 1)!(n+ k1 + k2)

while, for h = 2, . . . ,m,

∂k1−1
1 ∂2

hak1,k2,π/2(0) = (−1)k1ik2−n
(
i
π

2

)n+k1+k2−1

k1!

so that〈
ψ′′π/2(0)−1∂|∂

〉(k1+1)/2

ak1,k2,π/2(0) = (−1)k1
ik2−n− k1+1

2

2
k1+1

2

×

×
(
i
π

2

)n+k1+k2−1

(k1 + 1)!(n+ k1 + k2 +m− 1).
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Consider now µ = 1. Then, by (31)〈
ψ′′π/2(0)−1∂|∂

〉(k1+3)/2[
(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2

]
(0)

= i−(k1+3)/2
∑

|α|=(k1+3)/2

[(k1 + 3)/2]!

2α1α!
∂2α
[
(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2

]
(0).

Since

ψ′′′π/2(0) = πu1 ⊗ u1 ⊗ u1 +
2

π

m∑
h=2

(u1 ⊗ uh ⊗ uh + uh ⊗ u1 ⊗ uh + uh ⊗ uh ⊗ u1),

we deduce that the only α for which we get a non-zero term in the above sum are u1(k1+1)/2+uh
for h = 1, . . . ,m. Now,

∂k1+3
1

[
(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2

]
(0) =

(k1 + 3)!

3!
(−1)k1ik2−nπ

(
i
π

2

)n+k1+k2

,

while, for h = 2, . . . ,m,

∂k1+1
1 ∂2

h

[
(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2

]
(0) =

2

π
(−1)k1ik2−n

(
i
π

2

)n+k1+k2

(k1 + 1)!.

Therefore,〈
ψ′′π/2(0)−1∂|∂

〉(k1+3)/2[
(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2

]
(0)

= (−1)k1ik2− k1+1
2

(k1 + 1)!

2(k1+3)/2
i−n
(
i
π

2

)n+k1+k2−1

(k1 + 3)

[
π2

12
(k1 + 2) +m− 1

]
from which one gets the asserted estimate.

Theorem 8.24 is now completely proved.

The Other Cases
We now consider the case ω → +∞. We begin by showing that, when m is odd, matters

can be reduced to the case m = 1.

Lemma 8.32. When m is odd, m ≥ 3,

p
(m)
1,k1,k2

(x, t) =

m−1
2∑

k=1

cm,k(−1)k

(2π)
m−1

2

k2∑
r=0

(
k2

r

)
(−1)r(m− 1− k)r
|t|m−1−k+r

p
(1)
1,k1,k2+k−r(x, |t|), (39)

where
cm,k =

(m− k − 2)!

2
m−1

2 −k
(
m−1

2 − k
)
!(k − 1)!

and (m− 1− k)r = (m− 1− k) · · · (m− 1− k + r − 1) is the Pochhammer symbol4.

Proof. Let m be odd, m ≥ 3. We first pass to polar coordinates in (3) for k2 = 0, and get

p
(m)
1,k1,0

(x, t) =
(−1)

m−1
2

(2π)m(4π)n

∫ ∞
0

∫
Sm−1

eiρ|t|〈σ|u1〉 dHm−1(σ) e−Rρ coth(ρ)ak1,m−1(ρ) dρ,

where ak1,m−1 is the function defined in (6). Since the Bessel function is an elementary function
when m is odd, one can prove that (see e.g. [36, equation (6.5)] and references therein)5

∫
Sm−1

eiρ|t|〈σ|u1〉 dσ = 2(2π)
m−1

2 Re

 eiρ|t|

(ρ|t|)m−1

m−1
2∑

k=1

cm,k(−i|t|ρ)k

.
4See, e.g., [38].
5This is why we had to restrict to the case k2 = 0; otherwise, we would get the additional term (σ, u1)k2 in

the integral on the sphere.
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This yields

p
(m)
1,k1,0

(x, t) =

m−1
2∑

k=1

cm,k(−1)k

(2π)
m−1

2

1

|t|m−1−k p
(1)
1,k1,k

(x, |t|)

which gives (39), since p(m)
1,k1,k2

(x, t) = ∂k2

∂|t|k2
p

(m)
1,k1,0

(x, t) by definition.

Corollary 8.33. Assume that m is odd. Then, when (x, t)→∞ and δ → 0+,

p
(m)
1,k1,k2

(x, t) =
(−1)k2πk1+k2

2n−k1+1+m−1
2

|t|n+k1−1−m−1
2 e−

1
4d(x,t)2 Ĩn+k1−1(κρ(δ))

eκρ(δ)
[1 + g(|x|, |t|)], (40)

where g satisfies the estimates (17).

Proof. If m = 1, the statement reduces to Corollary 8.22. Suppose, then, that m ≥ 3. Since
p

(1)
1,k1,r

� p(1)
1,k1,k2

for every 0 ≤ r ≤ k2 by Corollary 8.22, the principal term in (39) corresponds
to r = 0 and k = m−1

2 . Hence,

p
(m)
1,k1,k2

(x, t) =
(−1)

m−1
2

(2π)
m−1

2

|t|−
m−1

2 p
(1)

1,k1,k2+m−1
2

(x, t)

[
1 +O

(
1

|t|

)]
. (41)

Now substitute the estimate given by Corollary 8.22 into (41). The remainder g in (40) still
satisfies (17), since (17) is satisfied by 1/|t|.

Assume, now, that m is even and greater than 2. We start by a descent method, in the
same spirit of [36]: indeed, observe that the Fourier inversion formula yields

p
(m)
1,k1,0

(x, t) =

∫
R

p
(m+1)
1,k1,0

(x, (t, tm+1)) dtm+1,

so that, by differentiating under the integral sign,

p
(m)
1,k1,k2

(x, t) =

∫
R

∂k2

∂|t|k2
p

(m+1)
1,k1,0

(x, (t, tm+1)) dtm+1.

Observe now that |(t, tm+1)| = |t|
√

1 +
t2m+1

|t|2 . Therefore, Faà di Bruno’s formula applied twice

leads to

p
(m)
1,k1,k2

(x, t) =
∑

∑k2
j=1 jhj=k2

k2!

h!

∫
R

p
(m+1)
1,k1,|h|(x, (t, tm+1))Fh(t, tm+1) dtm+1,

where

Fh(t, tm+1) =

k2∏
j=1

 ∑
`1+2`2=j

2`1

`!
(−1)|`|

(
−1

2

)
|`|
|t|1−j

(
1 +

t2m+1

|t|2

) 1
2−|`|

hj

.

Since F(k2,0,...,0) =
(

1 +
t2m+1

|t|2

)−k2/2

, while Fh = O

(
1
|t|

(
1 +

t2m+1

|t|2

)−1/2
)

otherwise, we have

proved the following lemma.

Lemma 8.34. When m is even, m ≥ 2,

p
(m)
1,k1,k2

(x, t) =

∫
R

(
1 +

t2m+1

|t|2

)− k2
2

p
(m+1)
1,k1,k2

(x, (t, tm+1)) dtm+1

+O

 1

|t|
max

0≤r<k2

∫
R

(
1 +

t2m+1

|t|2

)− 1
2

p
(m+1)
1,k1,r

(x, (t, tm+1)) dtm+1

.
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As a consequence of Lemma 8.34, matters can be reduced to finding the asymptotic expan-
sions of the integrals ∫

R

(
1 +

t2m+1

|t|2

)α
p

(m+1)
1,k1,r

(x, (t, tm+1)) dtm+1 (42)

when α ∈ R and 0 ≤ r ≤ k2. From these, it will also be proved that the remainder in Lemma
8.34 is indeed smaller than the principal part, which a priori is not obvious.

With this aim, we define the function σ : R 3 s 7→
√

1 + s2, and write t′ = (t, tm+1) ∈ Rm+1.
It is straightforward to check that |t′| = |t|σ

(
tm+1

|t|

)
. Thus, define

δ(s) :=
δ√
σ(s)

, κ(s) := κ
√
σ(s) = 2π|t|δ

√
σ(s).

Obviously, δ(0) = δ and κ(0) = κ. If we put a prime on the quantities introduced in Defini-
tion 8.3 relative to t′, then

δ′ = δ

(
tm+1

|t|

)
, κ′ = κ

(
tm+1

|t|

)
.

In cases II, III and IV, |t| → ∞ and δ → 0+. By substituting (40) into (42) and by the change
of variable tm+1

|t| 7→ s in the integral, we get

(42) =
(−1)rπr+k1

2n−k1+1+m
2
|t|n+k1−1−m2 +1e−

1
4d(x,t)2

e−κρ(δ)I2α+n+k1−1−m2 ,

where
Iβ =

∫
R

σ(s)βe−|t|π(σ(s)−1)Ĩn+k1−1(κ(s)ρ(δ(s)))[1 + g(|x|, |t|σ(s))] ds, (43)

and g satisfies the estimates (17). Therefore, matters can be reduced to finding some asymptotic
estimates of the integrals Iβ .

8.3.2 Estimates for δ → 0+ and κ→ +∞
Theorem 8.35. For δ → 0+ and κ→ +∞

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

4n(πδ)n+k1−m+1
2

√
2πκm

e−
1
4d(x,t)2

[
1 +O

(
δ +

1

κ

)]
.

Proof. When m is odd, the theorem follows from Theorem 8.14 and (41). Therefore, we only
consider m even. By the preceding arguments, it will be sufficient to study Iβ in (43).

Since the argument of the modified Bessel function tends to +∞, we use the development
(18), which gives

Iβ =
(2π)−n−k1eκρ(δ)

δn+k1− 1
2 |t|n+k1− 1

2

∫
R

e−|t|ϕδ(s)
σ(s)β−

1
4−

n+k1−1
2

ρ(δ(s))
n+k1− 1

2

×

[
1 +O

(
1

δ|t|
√
σ(s)

)]
[1 + g(|x|, |t|σ(s))] ds,

where
ϕδ(s) = π[σ(s)− 1] + 2πδ

[
ρ(δ)−

√
σ(s)ρ(δ(s))

]
.

We first study the principal part of the integral, to which we apply Laplace’s method (see
Remark 8.8) with

F = {ϕδ : δ ∈ [0, δ2]}, G =

{
σ(·)β− 1

4−
n+k1−1

2

ρ(δ(·))n+k1− 1
2

: δ ∈ [0, δ2]

}

for some δ2, smaller than the δ1 of Lemma 8.17, to be determined.



8.3. H-TYPE GROUPS 157

2. It is easily seen that ϕδ(0) = 0. In addition,

ϕ′δ(s) = π
s

σ(s)

[
1− δ(s)ρ(δ(s)) +

δ2

σ(s)
3
2

ρ′(δ(s))

]
, (44)

so that ϕ′δ(0) = 0 and ϕ′′δ (0) = π(1− δρ(δ) + δ2ρ′(δ)). Observe that there is δ2 > 0, which
we may choose smaller than δ1, such that

1− δ(s)ρ(δ(s)) +
δ2

σ(s)
3
2

ρ′(δ(s)) ≥ 1

2
(45)

for every s and every δ ∈ [0, δ2]. Therefore, ϕ′′δ (0) ≥ π
2 for every δ ∈ [0, δ2].

3. By (44) and (45), for s ∈ R and δ ∈ (0, δ2),

|ϕ′δ(s)| ≥
π

2σ(s)
|s|. (46)

In particular, |ϕ′δ(s)| ≥ π
2σ(2) |s| for every s ∈ [−2, 2].

1. Observe that ϕ′δ(s) = sgn(s)|ϕ′δ(s)| by (44); then, by (46),

ϕδ(s) =

∫ s

0

sgn(s)|ϕ′δ(u)|du =

∣∣∣∣∫ s

0

|ϕ′δ(u)|du
∣∣∣∣ ≥ π

2σ(s)

∣∣∣∣∫ s

0

|u|du
∣∣∣∣ ≥ πs2

4σ(s)

for every s ∈ R, since σ is even and increasing on [0,∞).

4. Taking into account the definition of σ and the continuity of ρ at zero, we get g(s) =

O
(
|s|β− 1

4−
n+k1−1

2

)
for s→∞, uniformly in g ∈ G.

By Theorem 8.7, then,∫
R

e−|t|ϕδ(s)
σ(s)β−

1
4−

n+k1−1
2

ρ(δ(s))
n+k1− 1

2

ds =

√
2

|t|(1− δρ(δ) + δ2ρ′(δ))

[
1 +O

(
1

|t|

)]

=

√
2

|t|

[
1 +O

(
δ +

1

|t|

)]
.

The remainder can be treated similarly, and with the same arguments as above one gets∫
R

e−|t|ϕδ(s)
σ(s)β−

1
4−

n+k1−1
2

ρ(δ(s))
n+k1− 1

2

[
O

(
1

δ|t|
√
σ(s)

)
+O

(
1

κ
+ δ

)]
ds

=

√
2

|t|

[
1 +O

(
δ +

1

|t|

)]
O

(
1

δ|t|
+

1

κ
+ δ

)
=

√
2

|t|
O

(
1

κ
+ δ

)
since 1

δ|t| = 2π
κ = O

(
1
κ

)
and 1/

√
σ(s) ≤ 1 for every s ∈ R. The proof is complete.

8.3.3 Estimates for δ → 0+ and κ bounded
These two cases can be treated together and the principal part of p(m)

1,k1,k2
is easy to get.

The remainders are more tricky, since when passing from the m-dimensional variable t to the
(m+1)-dimensional variable t′ the asymptotic conditions in II, III and IV do not correspond to
those in II’, III’, IV’ (these symbols standing for the cases relative to m+ 1); on the contrary,
they mix together according to the values of the additional variable tm+1.

Theorem 8.36. Fix C > 1. If δ → 0+ while 1/C ≤ κ ≤ C, then

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

4n(πδ)n+k1−m+1
2 κ

m−1
2

e−
1
4d(x,t)2

e−κIn+k1−1(κ)[1 +O(δ)].

When κ→ 0+ and |t| → +∞

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

22n+m−1
2 (n+ k1 − 1)!

|t|n+k1−1−m−1
2 e−

1
4d(x,t)2

[
1 +O

(
κ+

1

|t|

)]
.



158 CHAPTER 8. THE HEAT KERNEL ON H-TYPE GROUPS

Proof. The theorem holds when m is odd by Theorem 8.19 and (41). When m is even, we apply
Laplace’s method to Iβ . We first deal with the principal part. Define

ϕ(s) = πσ(s)− π,

so that Theorem 8.7 will be applied to

F = {ϕ}, G = {σ(·)β Ĩn+k1−1(κ(·)ρ(δ(·))) : δ ∈ [0, δ1), κ ∈ [0, C]}

where δ1 is that of Lemma 8.17.

2. Notice that ϕ(0) = 0, that ϕ′(s) = π s
σ(s) , and that ϕ′′(0) = π.

1. Observe that ϕ(s) = π s2

1+
√

1+s2
≥ π s2

2+|s| , for every s ∈ R.

3. It is easily seen that |ϕ′(s)| ≥ π
σ(1) |s| for every s ∈ [−1, 1].

4. Recall that by (18)

Ĩn+k1−1(κ(s)ρ(δ(s))) = O
(
eκ(s)ρ(δ(s))

)
= O

(
eκ
√
σ(s)
)

as s→∞, uniformly as κ ∈ [0, C] and δ ∈ [0, δ1). Hence, there is a constant c1 > 0 such
that |σ(s)β Ĩn+k1−1(κ(s)ρ(δ(s)))| ≤ c1ec1|s|.

Therefore, by Theorem 8.7∫
R

e−|t|ϕ(s)σ(s)β Ĩn+k1−1(κ(s)ρ(δ(s))) ds =

√
2

|t|
Ĩn+k1−1(κρ(δ))

[
1 +O

(
1

|t|

)]

uniformly in κ and δ. Since Ĩn+k1−1(κρ(δ)) − Ĩn+k1−1(κ) = O(κρ(δ) − κ) = O(δ2) uniformly
as κ ∈ [0, C] by Taylor’s formula, we are done with the principal part. We now deal with the
remainders, namely

I ′β =

∫
R

e−|t|ϕ(s)σ(s)β Ĩn+k1−1(κ(s)ρ(δ(s)))g(|x|, |t|σ(s)) ds,

where

g(|x|, |t|σ(s)) =


O
(
δ(s) + 1

κ(s)

)
if δ(s)→ 0+ and κ(s)→ +∞,

O(δ(s)) if δ(s)→ 0+ and κ(s)∈ [1/C ′, C ′],

O
(

1
|t|σ(s) + κ(s)

)
if δ(s)→ 0+ and κ(s)→ 0+

for every C ′ > 1. Since δ(s) ≤ δ for every s ∈ R, we may find some positive constants C ′′,
δ2 ≤ δ1, where δ1 is that of Lemma 8.17, and κ2 ≤ κ1 such that

|g(|x|, |t|σ(s))| ≤


C ′′
(
δ(s) + 1

κ(s)

)
when δ ≤ δ2, κ(s) ≥ κ1,

C ′′δ(s) when δ ≤ δ2, κ2 ≤ κ(s) ≤ κ1,

C ′′
(

1
|t|σ(s) + κ(s)

)
when δ ≤ δ2, κ(s) ≤ κ2.

We shall split the integrals accordingly. Notice first that we may assume also that κ2 ≤
1/(2C) ≤ 2C ≤ κ1, and, up to taking a smaller δ2, that

ϕ(s)− 2πδ
√
σ(s)ρ(δ(s)) ≥ 1

2
|s|

whenever |s| ≥ 2 and δ ∈ [0, δ2).
Consider case III, that is, κ ∈ [1/C,C]. We split

I ′β =

∫
κ(s)≤κ1

+

∫
κ(s)≥κ1

= I ′β,1 + I ′β,2.
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Observe that κ(s) ≥ κ1 if and only if |s| ≥
√

κ4
1

κ4 − 1 =: s1,κ ≥ 2. Since

Ĩn+k1−1(κ(s)ρ(δ(s))e−|t|ϕ(s) = O
(
e|t|[2πδ

√
σ(s)ρ(δ(s))−ϕ(s)]

)
= O

(
e−

1
2 |t||s|

)
as s→∞, and since δ = O

(
1
κ

)
= O(1) in case III, we get

|I ′β,2| ≤ C ′
(
δ +

1

κ

)∫
|s|≥s1,κ

σ(s)β−
1
2 Ĩn+k1−1(κ(s)ρ(δ(s)))e−|t|ϕ(s) ds = O

(
e−

s1,κ
4 |t|

)
,

which is negligible relative to 1
|t|3/2 . By Laplace’s method, in addition,

|I ′β,1| ≤ C ′δ
∫
|s|≤s1,κ

σ(s)β−
1
2 Ĩn+k1−1(κ(s)ρ(δ(s)))e−|t|ϕ(s) ds = O

(
δ

1√
|t|

)
with the same arguments as above. This concludes the study of case III.

Consider, now, case IV, that is, κ→ 0+. We split

I ′β =

∫
κ(s)≤κ2

+

∫
κ2≤κ(s)≤κ1

+

∫
κ(s)≥κ1

= I ′β,1 + I ′β,2 + I ′β,3.

Observe that κ(s) ≥ κ2 if and only if s ≥
√

κ4
2

κ4 − 1 =: s2,κ, and s1,κ ≥ s2,κ ≥ 2 if κ is sufficiently
small. Exactly as above, we get

|I ′β,3| ≤ C ′
(
δ +

1

κ

)∫
|s|≥s1,κ

σ(s)β−
1
2 Ĩn+k1−1(κ(s)ρ(δ(s)))e−|t|ϕ(s) ds = O

(
1

κ
e−

s1,κ
4 |t|

)
which is negligible relative to 1

|t|3/2 . Then,

|I ′β,2| ≤ C ′δ
∫
s2,κ≤|s|≤s1,κ

σ(s)β−
1
2 Ĩn+k1−1(κ(s)ρ(δ(s)))e−|t|ϕ(s) ds = O

(
δ e−

s2,κ
4 |t|

)
,

which is negligible relative to 1
|t|3/2 in case IV. Finally,

|I ′β,1| ≤ C ′
∫
|s|≤s2,κ

σ(s)β Ĩn+k1−1(κ(s)ρ(δ(s)))e−|t|ϕ(s)

(√
σ(s)κ+

1

σ(s)|t|

)
ds

= O

[
1√
|t|

(
1

|t|
+ κ

)]
,

by Laplace’s method as above. The proof is complete.

We can finally state the following corollary, which is the natural extension of Corollary 8.22.

Corollary 8.37. For (x, t)→∞ and δ → 0+

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

2n−k1+1+m−1
2

|t|n+k1−m+1
2 e−

1
4d(x,t)2 Ĩn+k1−1(κρ(δ))

eκρ(δ)
[1 + g(|x|, |t|)],

where

g(|x|, |t|) =


O
(
δ + 1

κ

)
if δ → 0+ and κ→ +∞,

O(δ) if δ → 0+ and κ ∈ [1/C,C],

O
(

1
|t| + κ

)
if δ → 0+ and κ→ 0+

for every C > 0.

We have not been able to find a single function which displays the asymptotic behaviour
of p1,k1,k2

(x, t) as (x, t) → ∞, though we showed that the exponential decrease is the same in
the four cases. This is also the same decrease found by Eldredge [36, Theorems 4.2 and 4.4],
when k1 = k2 = 0 and for the horizontal gradient, and Li [56, Theorems 1.4 and 1.5], when
k1 = k2 = 0. Notice that in [56, Theorem 1.5 and the following Remark (1)] the remainders
for k1 = k2 = 0 seem to be better than the one we put in Corollary 8.37, but they reduce to
ours when developing the estimates in a more convenient form in cases II and IV, as we did in
Theorems 8.35 and 8.36.
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Remark 8.38. Our sharp estimates for p1,k1,k2
can be used to obtain asymptotic estimates of

all the derivatives of the heat kernel p1. Indeed, Faà di Bruno’s formula leads to

∂|γ|

∂xγ1∂tγ2
p1(x, t) = γ1!γ2!

∑
η,µ,β

|µ|!2|µ1|−|γ1|

η!µ!β!

 |µ|∏
h=1

((
1
2

)
h

h!

)βhxη1 sgn(t)µ1×

× |t||β|−|γ2|p1,|η|,|β|(x, t),

(47)

where the sum is extended to all η = (η1, η2) ∈ N2n × N2n, µ = (µ1, µ2) ∈ Nm × Nm and
β ∈ N|µ| such that

γ1 = η1 + 2η2, γ2 = µ1 + 2µ2,

|µ|∑
h=1

hβh = |µ|.

Anyway, the sharp asymptotic expansions we explicitly provided in Theorems 8.24, 8.35 and 8.36
may not be enough to get directly sharp asymptotic estimates of any desired derivative of p1:
some cancellations among the principal terms may indeed occur in (47). Nevertheless, by
inspecting case by case, the interested reader could consider as many terms of the expansions
given by Theorem 8.7 or Lemma 8.20 as necessary. In the case when t→ 0, one may also make
use of Lemma 8.30 before expanding each term: a suitable choice for N gets rid of the negative
powers of |t| appearing in (47).
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Appendix

A.1 Banach Algebras

Here we recall some basic notation concerning Banach algebras. See [67, 68] for more details.

Definition A.1. A Banach algebra A is an associative algebra over C which is endowed with
a complete norm such that ‖xy‖ 6 ‖x‖‖y‖ for every x, y ∈ A, and such that ‖e‖ = 1 if A has a
unit e.

Definition A.2. Let A be a Banach algebra. Then, we denote by ∆′(A) the set of characters
of A, that is, the set of (continuous) homomorphisms of C-algebras from A into C. We shall
endow ∆′(A) with the topology of pointwise convergence, that is, the topology induced by the
weak topology σ(A′, A).

We shall denote by ∆(A) the Gelfand spectrum of A, that is, ∆′(A) \ { 0 }.

Recall that ∆′(A) is a compact space which is also metrizable if A is separable. Therefore,
∆(A) is a locally compact space which has a countable base if A is separable; ∆(A) is actually
compact if A has a unit.

Definition A.3. Let A be a Banach algebra and take x ∈ A. If A is a unital algebra, then the
spectrum σ(x) of x in A is the set of λ ∈ C such that x−λe is not invertible. If A is not unital,
then the spectrum σ(x) of x is the spectrum of (x, 0) in the unitization of A, that is, the space
A⊕C with product (x, λ)(y, µ) := (xy + µx+ λy, λµ) and norm ‖(x, λ)‖ := ‖x‖+ |λ| (x, y ∈ A
and λ, µ ∈ C).

Definition A.4. Let A be a Banach algebra. Then, we shall denote by G the Gelfand transform,
that is, the homomorphism of A into C0(∆(A)) defined by G(x)(χ) := χ(x) for every x ∈ A and
for every χ ∈ ∆(A).

Definition A.5. A Banach ∗-algebra A is a Banach algebra endowed with an isometry ∗ : A→
A such that (λv + µw)∗ = λv + µw, (vw)∗ = w∗v∗ and (v∗)∗ = v for every v, w ∈ A and for
every λ, µ ∈ C.

Definition A.6. Let A be a Banach ∗-algebra. Then, A is symmetric if σ(x∗x) ⊆ R+ for every
x ∈ A. Equivalently, if σ(x) ⊆ R for every x ∈ A such that x = x∗.

A.2 The Spectral Theorem

In this section we recall some basic facts and notation concerning the spectral theorem for
commuting self-adjoint operators on a hilbertian space. H will denote a complex hilbertian
space.

Definition A.7. An operator T on H is a linear mapping from a vector subspace dom(T ) of
H into H. If dom(T ) is dense in H, then T is said to be densely defined. We shall generally
write T · v instead of T (v) to denote the evaluation of T at v ∈ dom(T ).
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If T is a densely defined operator on H, then we shall denote by T ∗ the operator on H
defined as follows: v ∈ dom(T ∗) if and only if there is w ∈ H such that, for every v′ ∈ dom(T ),

〈T · v′|v〉 = 〈v′|w〉.

In this case, w is uniquely determined and T ∗ · v := w.

Definition A.8. An operator T on H is closed if its graph is closed in H ×H; T is closable if
the closure of its graph is the graph of an operator, which is denoted by T .

If T is closed, its spectrum σ(T ) is the set of λ ∈ C such that λIH − T has no continuous
inverse.

Recall that, if T is densely defined, then T ∗ is closed; in addition, T is closable if and only
if T ∗ is densely defined (cf. [74, Theorem 13.9 and 13.12]).

Definition A.9. Let T1 and T2 be two operators on H. Then, we define

T1 + T2 : dom(T1) ∩ dom(T2) 3 v 7→ T1 · v + T2 · v,

and
T1 · T2 : T−1

2 (dom(T1)) 3 v 7→ T1 · (T2 · v2).

Definition A.10. Let T be a densely defined operator on H. Then:

• T is self-adjoint if T = T ∗;

• T is essentially self-adjoint if it is closable and T is self-adjoint;

• T is symmetric if T ⊆ T ∗; equivalently, if 〈T · v|v〉 ∈ R for every v ∈ dom(T );

• T is positive if 〈T · v|v〉 > 0 for every v ∈ dom(T ).

Now we define the measures which will be used to define the functional calculus associated
with a family of commuting self-adjoint operators on H. We call them spectral measures to
simplify the notation, even though they need not be associated with any family of self-adjoint
operators in the sense of Theorem A.14.

Definition A.11. Let µ be a Radon measure on a locally compact space X with values in
Ls(H). We say that µ is a spectral measure if the following hold:

• µ(ϕ) · µ(ψ) = µ(ϕψ) for every ϕ,ψ ∈ Cc(X);

• µ(ϕ)∗ = µ(ϕ) for every ϕ ∈ Cc(X);

• χX ∈ L(µ) and
∫
X

dµ = IH .

If f : X → C is µ-measurable, we shall denote by Df the set of v ∈ H such that f ∈ L(µ · v),
where µ · v is the measure ϕ 7→ µ(ϕ) · v. We shall then define an operator

∫
X
f dµ on H with

domain Df so that
(∫
X
f dµ

)
· v :=

∫
X
f d(µ · v) for every v ∈ Df .

Proposition A.12. Let µ be a spectral measure on a locally compact space X with values in
Ls(H). Then, the following hold:

• for every µ-measurable function f : X → C, Df is the set of v ∈ H such that f ∈
L2(〈µ · v|v〉). In addition, Df is dense in H and∥∥∥∥∫

X

f dµ · v
∥∥∥∥2

=

∫
X

|f |2 d〈µ · v|v〉

for every v ∈ Df ;

•
(∫
X
f dµ

)∗
=
∫
X
f dµ for every µ-measurable function f : X → C. In particular,

∫
X
f dµ

is a closed operator;
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• if f and g are µ-measurable functions from X into C, then∫
X

f dµ+

∫
X

g dµ ⊆
∫
X

(f + g) dµ ⊆
∫
X

f dµ+

∫
X

g dµ

and ∫
X

f dµ ·
∫
X

g dµ ⊆
∫
X

fg dµ ⊆
∫
X

f dµ ·
∫
X

g dµ;

in addition, the domain of
∫
X
f dµ ·

∫
X
g dµ is Dg ∩ Dfg;

• if f : X → C is µ-measurable, then
∫
X
f dµ is self-adjoint (resp. positive) if and only if f

is real-valued (resp. positive).

Definition A.13. Let T1 and T2 be two self-adjoint operators on H. Then, T1 and T2 commute
if the bounded operators (λIH − T1)−1 and (λIH − T2)−1 commute in the ordinary sense for
some (hence every) λ 6∈ σ(T1) ∪ σ(T2) ⊆ R.

Theorem A.14. Let (Tα)α∈A be a finite family of commuting self-adjoint operators on H.
Then, there is a unique spectral measure µ on RA such that

Tα =

∫
RA

λα dµ(λ)

for every α ∈ A.
In addition, if T ∈ L(H) and T ·Tα ⊆ Tα ·T for every α ∈ A, then T ·

∫
X
f dµ ⊆

∫
X
f dµ ·T

for every µ-measurable function f : RA → C.

Extending the notion of spectral measures to the case of Hausdorff spaces which are not nec-
essarily locally compact, one may extend the preceding result to arbitrary families of commuting
self-adjoint operators on H.

Definition A.15. Let TA = (Tα)α∈A be a finite family of commuting self-adjoint operators on
H. Then, we shall denote by σ(TA) the support of the unique spectral measure µ on RA such
that Tα =

∫
RA

λα dµ(λ) for every α ∈ A. In addition, we shall simply write f(TA) instead of∫
CA

f dµ for every µ-measurable function f : RA → C.

A.3 Transference

Here we recall some basic results on transference. We begin with the definition of amenable
groups, which we state in terms of Leptin’s condition (cf. [69, Corollary 4.14]). See [69] or [70]
for other characterizations of amenable groups.

Definition A.16. A locally compact group G is amenable if for every compact subset K of G
and for every ε > 0 there is a compact subset H of G such that, if β is a left Haar measure on
G, then β(KH) 6 (1 + ε)β(H).

Notice that, since G is amenable if and only if its opposite G◦ is amenable (cf. [70, Corollary
4.20]), an analogous characterization holds for right Haar measures.

Definition A.17. Let G be a locally compact group, endowed with a right Haar measure β,
and take µ ∈ M1(G), a Banach space F , and p ∈ [1,∞]. Then, the mapping f 7→ f ∗β µ
induces an endomorphism of Lp(β;F ) (cf. Proposition 1.69 for the scalar case); we shall denote
by Np,F (µ) its norm.

Notice that Np,F does not depend on the choice of β. The following result is a consequence
of [89, Lemma 2.10 of Chapter XV].

Proposition A.18. Let G be a locally compact group, endowed with a right Haar measure β,
and take µ ∈M1(G), a Hilbertian space H, and p ∈ [1,∞[. Then, Np,H(µ) = Np,R(µ).

The following result is a straightforward generalization of [46, Lemma 13.3].
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Proposition A.19. Let G be a locally compact group, endowed with a right Haar measure β,
let ν be a positive measure on a σ-algebra of subsets of a set X, and take µ ∈ M1(G). Let
F1 be a Banach space and let F2 be a closed subspace of Lp(ν;F1) for some p ∈ [1,∞[. Then,
Np,F1(µ) = Np,F2(µ).

Theorem A.20. Let G be a locally compact group, and take µ ∈ M1(G), a Banach space F ,
and p ∈ [1,∞[. Let π be an equicontinuous representation of G in F , and define C := sup

g∈G
‖π(g)‖.

Then,
‖π∗(µ)‖ 6 C2Np,F (µ).

For the proof, follow that of [46, Theorem 13.1] with minor modifications. By approximation,
one may then prove a similar result when G is a Lie group and µ ∈W 0,−∞,1(G).

A.4 Miscellaneous Results
Lemma A.21. Let M be a locally compact manifold of class Cr (r ∈ N∪{∞ }) which admits
a countable base, and let X be a Hausdorff space endowed with a Radon measure µ. Let f : X×
M → C be a mapping such that f(x, · ) is of class Cr for every x ∈ X, while f( · , y) is
µ-measurable for every y ∈M . Then, the mapping X 3 x 7→ f(x, · ) ∈ Er(M) is µ-measurable.

Proof. Notice first that, since the notion of measurability is local, we may assume that X is
compact. Now, sinceM admits a countable base, there is a sequence of local charts (Uj , ϕj)j∈N
of M which covers M . Hence, the mapping ψ 7→ (ψ ◦ϕ−1

j )j∈N identifies E(M) with a subspace
of the countable product

∏
j∈N Er(ϕj(Uj)). Since M is also locally compact, by means of [19,

Theorem 1 of Chapter IV, § 5, No. 3] we may further assume that M is Rn for some n.
Then, it is clear that Er(M) is a separable Fréchet space; denote by ν the Lebesgue measure

on Rn. Now, take ϕ ∈ Dr(M), and define

Tj :=
∑
k∈Nn

ϕ(2−jk)2−njδ2−jk

for every j ∈ N. Then, clearly Tj is a (Radon) measure with finite support, and Tj converges
to ϕ · ν in E ′0c (M) as j →∞. By assumption, the mappings

X 3 x 7→ 〈f(x, · ), Tj〉

are µ-measurable for every j ∈ N; hence, so is their pointwise limit

X 3 x 7→ 〈f(x, · ), ϕ · ν〉.

Since Dr(M) · ν is sequentially dense in E ′rc (M), as above we see that the mapping X 3 x 7→
〈f(x, · ), T 〉 is µ-measurable for every T ∈ E ′r(M). Then, [19, Corollary 2 to Proposition 10 of
Chapter IV, § 5, No. 5] completes the proof.

The following result is a straightforward generalization of [28, Theorem 1.1.13]. The proof
is omitted.

Lemma A.22. Let g be a homogeneous Lie algebra, and let (gj)
k
j=1 be an increasing sequence

of homogeneous ideals of g. Define mj := dim gj for every j = 1, . . . , k, and assume that
gk = g. Then, there is a basis (Xh)mkh=1 of g consisting of homogeneous elements such that, for
every h = 1, . . . ,mk, the vector subspace of g generated by X1, . . . , Xh is a (homogeneous) ideal
of g; in addition, if h = mj for some j = 1, . . . , k, then X1, . . . , Xh generates gj.

Next we prove two results about Faà di Bruno’s formula.

Lemma A.23. Let A be a commutative ring in which n ·1A is invertible for every n ∈ Z∗+. Let
E1, E2, E3 be three A-modules, with E1 and E2 free. Let P : E1 → E2 and Q : E2 → E3 be two
polynomial mappings such that P (0) = 0. Denote by Pk and Qk the homogeneous components of
degree k of P and Q respectively, and let Q̃k be the symmetric k-multilinear mapping associated
with Qk, for every k ∈ N. Then,

Q ◦ P =
∑
k∈N

∑
∑
h∈N hαh=k

|α|!
α!

Q̃|α| ◦Pα,
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where Pα denotes the polynomial mapping E1 → E
|α|
2 which has αh components equal to Ph for

every h ∈ N, arranged in any (fixed) order.

Proof. Indeed,

Q ◦ P =
∑
k∈N

Q̃k

(∑
h∈N

Ph, . . . ,
∑
h∈N

Ph

)
=
∑
k∈N

∑
|α|=k

k!

α!
Q̃k ◦Pα,

and the assertion follows easily.

Corollary A.24 (Faà di Bruno’s formula). Let E1, E2 be two normed spaces, and let E3 be
a locally convex space. Let Vj be an open subset of Ej (j = 1, 2), and take f ∈ Ck(V1;V2) and
g ∈ Ck(V2;E3) for some k ∈ N. Take x0 ∈ V1. Then,1

(g ◦ f)(k)(x0) =
∑

∑k
h=1 hαh=k

k!

α!
g(|α|)(f(x0)) ·

k∏
h=1

(
f (h)(x0)

h!

)αh
.

Proof. Indeed, if P denotes the Taylor polynomial oforder k of f − f(x0) about x0 and Q
denotes the Taylor polynomial of order k of Q about f(x0), clearly

g(f(x)) = g
(
f(x0) + P (x) + o1

(
|x− x0|k

))
= Q

(
P (x) + o1

(
|x− x0|k

))
+ o2

((
P (x) + o1

(
|x− x0|k

))k)
= Q(P (x)) + o3

(
|x− x0|k

)
for x→ x0, since P (x) = O(|x− x0|). The assertion then follows easily from Lemma A.23 and
Taylor’s formula.

Lemma A.25. Let V be an open subset of Rn, let F1, F2, F3 be three Hausdorff locally convex
spaces and let 〈 · , · 〉 : F1 × F2 → F3 be a bilinear mapping which is hypocontinuous for the
countable compact subsets of F1.

Take f1 ∈ Cr(V ;F1) and f2 ∈ Cr(V, F2) for some r ∈ N∪{∞ }. Then, 〈f1, f2〉 ∈ Cr(V ;F3).
In addition, if r > 1, then

〈f1, f2〉′ = 〈f ′1, f2〉+ 〈f1, f
′
2〉

Proof. 1. Assume first that r = 0. Take x ∈ V , and let (xj) be a sequence which converges to
x in V . Then [18, Proposition 4 of Chapter III, § 5, No. 3] implies that

lim
j→∞
〈f1(xj), f2(xj)〉 = 〈f1(x), f2(x)〉,

whence the result by the arbitrariness of x and (xj).
2. Now, assume that n = r = 1. Take x and (xj) as before, but now assume that xj 6= x

for every j ∈ N. Then

〈f1(xj), f2(xj)〉 − 〈f1(x), f2(x)〉
xj − x

=

〈
f1(xj),

f2(xj)− f2(x)

xj − x

〉
+

〈
f1(xj)− f1(x)

xj − x
, f2(x)

〉
.

Therefore, [18, Proposition 4 of Chapter III, § 5, No. 3] again and the arbitrariness of x and
(xj) imply that 〈f1, f2〉 is differentiable on V , with

〈f1, f2〉′ = 〈f ′1, f2〉+ 〈f1, f
′
2〉.

3. Now, assume that r = 1 and that n is arbitrary. Then, 2 shows that 〈f1, f2〉 is differen-
tiable along every direction v of Rn, and that

∂v〈f1, f2〉 = 〈f ′1 · v, f2〉+ 〈f1, f
′
2 · v〉.

1Here
∏k
h=1

(
f(h)(x0)

h!

)αh
denotes the symmetrization of the mapping E1 → E

|α|
2 which has the first α1

components equal to f ′(x0), the subsequent α2 components equal to f ′′(x0)
2

, and so on. Notice that the product
so defined is not commutative if dimE2 > 1; nevertheless, the actual order of the factors is not relevant, since
g(|α|)(f(x0)) is symmetric.
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Since 〈f ′1, f2〉+ 〈f1, f
′
2〉 is continuous on V by 1, by means of standard techniques we see that

〈f1, f2〉 ∈ C1(V ;F3).
4. Now, assume that r ∈ Z∗+. Then, 3 implies that

〈f1, f2〉′ = 〈f ′1, f2〉+ 〈f1, f
′
2〉

Arguing by induction on r, we see that 〈f ′1, f2〉 + 〈f1, f
′
2〉 ∈ Cr−1(V ;F3), so that 〈f1, f2〉 ∈

Cr(V ;F3). The assertion then follows also for the case r =∞.

Lemma A.26. Let F1, F2, F
′
1, F

′
2 be four locally convex spaces, and let T1 : F1 → F ′1 and

T2 : F2 → F ′2 be two strict morphisms; assume that either F ′1 or F ′2 is nuclear. Then, the
linear mapping T1⊗̂T2 : F1⊗̂F2 → F ′1⊗̂F ′2 is a strict morphism.

Proof. Let F ′′1 , F ′′2 be the images of T1, T2, respectively. Denote by T ′1, T ′2 the co-restriction of
T1, T2 to their images, respectively. Then [84, Proposition 43.9] implies that T ′1⊗̂T ′2 : F1⊗̂F2 →
F ′′1 ⊗̂F ′′2 is a strict morphism. In addition, since F ′1 or F ′2 is a nuclear space, also F ′′1 or F ′′2 is a
nuclear space by [84, Proposition 50.1], so that F ′′1 ⊗̂F ′′2 is canonically isomorphic to F ′′1 ⊗̂εF ′′2
by [84, Theorem 50.1]. Analogously, F ′1⊗̂F ′2 is canonically isomorphic to F ′1⊗̂εF ′2. Therefore,
by means of [84, Proposition 43.7] we see that the canonical mapping F ′′1 ⊗̂F ′′2 → F ′1⊗̂F ′2 is an
isomorphism onto its image. The assertion follows.



Bibliography

[1] Abraham, R., Marsden, J. E., Foundations of Mechanics, Addison-Wesley, 1987.

[2] Ambrosio, L., Fusco, N., Pallara, D., Functions of Bounded Variation and Free Disconti-
nuity Problems, Oxford University Press, 2000.

[3] Astengo, F., Cowling, M., Di Blasio, B., Sundari, M., Hardy’s Uncertainty Principle on
Certain Lie Groups, J. London Math. Soc., 62 (2000), pp. 461–472.

[4] Astengo, F., Di Blasio, B., Ricci, F., Gelfand transforms of polyradial Schwartz functions
on the Heisenberg group, J. Funct. Anal., 251 (2007), pp. 772–791.

[5] Astengo, F., Di Blasio, B., Ricci, F., Gelfand Pairs on the Heisenberg Group and Schwartz
Functions, J. Funct. Anal., 256 (2009), pp. 1565–1587.

[6] Aubin, T., Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, 1998.

[7] Beals, R., Opérateurs invariants hypoelliptiques sur un groupe de Lie nilpotent, Séminaire
Équations aux dérivées partielles (Polytechnique), (1976-1977), pp. 1–8.

[8] Beals, R., Gaveau, B., Greiner, C., P., Hamilton-Jacobi theory and the heat kernel on
Heisenberg groups, J. Math. Pures Appl. 79 (2000), p. 633–689.

[9] Bierstone, E., Milman, P., Composite Differentiable Functions, Ann. Math., 116 (1982),
pp. 541–558.

[10] Bierstone, E., Milman, P., Semianalytic and Subanalytic sets, Inst. Hautes Études Sci.
Publ. Math., 67 (1988), pp. 5–42.

[11] Bierstone, E., Schwarz, G. W., Continuous Linear Division and Extension of C∞ Functions,
Duke Math. J., 50 (1983), pp. 233–271.

[12] Bonfiglioli, A., Lanconelli, E., Uguzzoni, F., Stratified Lie groups and Potential Theory for
their Sub-Laplacians, Springer-Verlag, 2009.

[13] Bourbaki, N., Algebra I, chap. 1–3 (Elements of Mathematics), Springer-Verlag, 1989.

[14] Bourbaki, N., Algebra II, chap. 4–7 (Elements of Mathematics), Springer-Verlag, 1990.

[15] Bourbaki, N., Algèbre, chap. 9 (Éléments de Mathématique), Springer-Verlag, 2007.

[16] Bourbaki, N., General Topology, chap. 1–4 (Elements of Mathematics), Springer-Verlag,
1995.

[17] Bourbaki, N., Topologie Générale, chap. 5–10 (Éléments de Mathématique), Springer-
Verlag, 2006.

[18] Bourbaki, N., Topological Vector Spaces, chap. 1–5 (Elements of Mathematics), Springer-
Verlag, 2003.

[19] Bourbaki, N., Integration I, chap. 1–6 (Elements of Mathematics), Springer-Verlag, 2004.

[20] Bourbaki, N., Integration II, chap. 7–9 (Elements of Mathematics), Springer-Verlag, 2004.

[21] Bourbaki, N., Groupes et algèbres del Lie, chap. 1 (Éléments de Mathématique), Springer-
Verlag, 2007.

167



168 BIBLIOGRAPHY

[22] Bourbaki, N., Groupes et algèbres del Lie, chap. 2–3 (Éléments de Mathématique),
Springer-Verlag, 2006.

[23] Bourbaki, N., Théories spectrales, chap. 1–2 (Éléments de Mathématique), Springer-Verlag,
2007.

[24] Bruno, T., Calzi, M., Asymptotics for the heat kernel on H-type Groups, Ann. Mat. Pur.
Appl. 197 (2018), pp. 1017–1049.

[25] Calabi, E., Linear Systems of Real Quadratic Forms, P. Am. Math. Soc., 15 (1964), pp.
844–846.

[26] Cartan, H., Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables
complexes, Hermann, 1985.

[27] Christ, M., Lp Bounds for Spectral Multipliers on Nilpotent Groups, Trans. Am. Math.
Soc., 328 (1991), pp. 73–81.

[28] Corwin, L. J., Greenleaf, F. P., Representations of Nilpotent Lie Groups and their Appli-
cations, Part I: Basic Theory and Examples, Cambridge University Press, 1990.

[29] Coste, M., An Introduction to Semialgebraic Geometry, URL
https://perso.univ-rennes1.fr/michel.coste/polyens/SAG.pdf.

[30] Damek, E., Ricci, F., Harmonic Analysis on Solvable Extensions of H-type Groups, J.
Geom. Anal., 2 (1992), pp. 213–248.

[31] de Rham, G., Differentiable Manifolds, Springer-Verlag, 1984.

[32] Dierolf, P., Voigt, J., Convolution and S ′-Convolution of Distributions, Collect. Math. 29
(1978), pp. 185–196.

[33] Dixmier, J., Les C∗-algèbres et leurs représentations, Gauthier-Villars, 1969.

[34] Dixmier, J., Malliavin, P., Factorisations de fonctions et de vecteurs indéfiniment différen-
tiables, Bull. Sci. Math. 102 (1978), pp. 305–330.

[35] Eckmann, B., Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon über die Kom-
position quadratischer Formen, Comment. Math. Helv. 15 (1943), pp. 358–366.

[36] Eldredge, N., Precise estimates for the subelliptic heat kernel on H-type groups, J. Math.
Pures Appl. 92 (2009), pp. 52–85.

[37] Erdélyi, A., Asymptotic Expansions, Dover Publications, Inc., 1956.

[38] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Higher Transcendental Func-
tions, vol. II, McGraw–Hill, 1953.

[39] Federer, H., Geometric Measure Theory, Springer, 1969.

[40] Fischer, V., Ricci, F., Gelfand transforms of SO(3)-invariant Schwartz functions on the
free group N3,2, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, pp. 2143–2168.

[41] Fischer, V., Ricci, F., Yakimova, O., Nilpotent Gelfand pairs and Schwartz extensions of
spherical transforms via quotient pairs, J. Funct. Anal. 274 (2018), no. 4, pp. 1076–1128.

[42] Folland, G. B., A Course in Abstract Harmonic Analysis, CRC Press, 1995.

[43] Folland, G. B., Stein, E. M., Hardy Spaces on Homogeneous Group, Princeton University
Press, 1982.

[44] Gaveau, B., Principe de moindre action, propagation de la chaleur et estimées sous ellip-
tiques sur certains groupes nilpotents, Acta Math. 139 (1977), pp. 95–153.

[45] Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires, Mem. Am. Math.
Soc., 16 (1966).



BIBLIOGRAPHY 169

[46] Haase, M., Lectures on Functional Calculus, 2018, URL
https://www.math.uni-kiel.de/isem21/en/course/phase1/isem21-
lectures-on-functional-calculus.

[47] Helffer, B., Nourrigat, J., Caracterisation des opérateurs hypoelliptiques homogènes invari-
ants a gauche sur un groupe de Lie nilpotent gradué, Commun. Part. Diff. Eq., 4 (1979),
pp. 899–958.

[48] Helgason, S., Groups and Geometric Analysis, AMS, 2002.

[49] Hörmander, L., Hypoelliptic Second Order Differential Equations, Acta Math., 119 (1967),
pp. 147–171.

[50] Hörmander, L., The Analysis of Linear Partial Differential Operators, I, Springer-Verlag,
1990.

[51] Hueber, H., Müller, D., Asymptotics for some Green Kernels on the Heisenberg Group and
the Martin Boundary, Math. Ann. 283 (1989), pp. 97–119.

[52] Hulanicki, A., A functional calculus for Rockland operators on nilpotent Lie groups, Stud.
Math., 78 (1984), pp. 253–266.

[53] Hulanicki, A., Ricci, F., A Tauberian Theorem and Tangential Convergence for Bounded
Harmonic Functions on Balls in Cn, Invent. Math., 62 (1980), pp. 325–331.

[54] Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, 1980.

[55] Li, H.-Q., Estimations asymptotiques du noyau de la chaleur sur les groupes de Heisenberg,
C. R. Math. Acad. Sci. Paris 344 (2007), pp. 497–502.

[56] Li, H.-Q., Estimations optimales du noyau de la chaleur sur les groupes de type Heisenberg,
J. Reine Angew. Math. 646 (2010), pp. 195–233.

[57] Ludwig, J., Müller, D., Sub-Laplacians of Holomorphic Lp-type on Rank One AN-Groups
and Related Solvable Groups, J. Funct. Anal. 170 (2000), pp. 366–427.

[58] Martini, A., Algebras of Differential Operators on Lie Groups and Spectral Multipliers,
Ph.D. thesis, Scuola Normale Superiore, 2010, arXiv:1007.1119v1 [math.FA].

[59] Martini, A., Ricci, F., Tolomeo, L., Riemann-Lebesgue and Invariance of the Schwartz
Class for Sub-Laplacians on Solvable Lie Groups of Polynomial Growth, preprint.

[60] Miller, K. G., Parametrices for Hypoelliptic Operators on Step Two Nilpotent Lie Groups,
Commun. Part. Diff. Eq., 5 (1980), pp. 1153–1184.

[61] Moore, C. C., Wolf, J. A., Square Integrable Representations of Nilpotent Groups, T. Am.
Math. Soc. 185 (1973), pp. 445–462.

[62] Müller, D., Ricci, F., Solvability for a Class of Doubly Characteristic Differential Operators
on 2-Step Nilpotent Groups, Ann. Math., 143 (1996), pp. 1–49.

[63] Müller, D., Seeger, A., Singular Spherical Maximal Operators on a Class of Two Step
Nilpotent Lie Groups, Israel J. Math., 141 (2004), pp. 315–340.

[64] Nagel, A., Ricci, F., Stein, E. M., Singular Integrals with Flag Kernels and Analysis on
Quadratic CR Manifolds, J. Funct. Anal., 181 (2001), pp. 29–118.

[65] Nelson, E., Operants: A Functional Calculus for Non-Commuting Operators, Springer
Berlin Heidelberg, 1970, pp. 172–187.

[66] Nelson, E., Stinespring, W. F., Representation of Elliptic Operators in an Enveloping
Algebra, Am. J. Math., 81 (1959), pp. 547–560.

[67] Palmer, T. W., Banach Algebras and the General Theory of ∗-Algebras, I, Cambridge
University Press, 1994.



170 BIBLIOGRAPHY

[68] Palmer, T. W., Banach Algebras and the General Theory of ∗-Algebras, II, Cambridge
University Press, 2001.

[69] Paterson, A. L. T., Amenability, AMS, 1988.

[70] Pier, J.-P., Ameanble Locally Compact Groups, John Wiley & Sons, 1984.

[71] Randall, J., The heat kernel for generalized Heisenberg groups, J. Geom. Anal. 6 (1996),
pp. 287–316.

[72] Rigot, S., Mass transportation in groups of type H, Comm. in Cont. Math. 7 (2005), no. 4,
p. 509–537.

[73] Robbin, J. W., Salamon, D. A., The exponential Vandermonde
matrix, Linear Algebra Appl. 317 (2000), pp. 225–226, URL
https://people.math.ethz.ch/ salamon/PREPRINTS/vandermonde.pdf.

[74] Rudin, W., Functional Analysis, McGraw-Hill, 1973.

[75] Sard, A., Hausdorff Measure of Critical Images on Banach Manifolds, Am. J. Math., 87
(1965), pp. 158–174.

[76] Schwartz, L., Définition intégrale de la convolution de deux distributions, Seminaire
Schwartz, 1 (1953–1954), no. 22, pp. 1–7.

[77] Schwartz, L., Espaces de fonctions différentiables a valeurs vectorielles, Jour. d’Analyse
Math., 4 (1954–1955), pp. 88–148.

[78] Schwartz, L., Théorie des distributions, Hermann, 1978.

[79] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton
University Press, 1970.

[80] Stein, E. M., Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton
University Press, 1971.

[81] Tan, K.-H., X.-P., Y., Characterisation of the sub-Riemannian isometry groups of H-type
groups, Bull. Austr. Math. Soc. 70 (2004), no. 1, pp. 87–100.

[82] ter Elst, A. F. M., Robinson, D. W., Weighted Subcoercive Operators on Lie Groups, J.
Funct. Anal. 157 (1998), pp. 88–163.

[83] Tolomeo, L., Misure di Plancherel associate a sub-laplaciani su
Gruppi di Lie, Master’s thesis, Scuola Normale Superiore, 2015, URL
https://core.ac.uk/download/pdf/79618830.pdf.

[84] Treves, F., Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967.

[85] Veneruso, A., Schwartz kernels on the Heisenberg group, Bollettino dell’Unione Matematica
Italiana 6-B (2003), no. 3, pp. 657–666.

[86] Whitney, H., Differentiable Even Functions, Duke Math. J., 10 (1943), pp. 159–160.

[87] Wong, R., Asymptotic approximations of integrals, Academic Press, Inc., 1989.

[88] Yang, Q., Zhu, F., The heat kernel on H-type groups, Proc. Amer. Math. Soc. 136 (2008),
pp. 1457–1464.

[89] Zygmund, A., Trigonometric Series, Cambridge University Press, 3rd ed., 2003.



Index of Notation

Notation Description Page
N natural numbers, starting from 0
N∗ natural numbers, starting from 1
Z rational integers
Q rational numbers
R real numbers
C complex numbers
A+ positive (> 0) elements of A
x+, x− positive and negative parts of x
R∗+ strictly positive real numbers
Tx(M) tangent space of M at x
ϕ∗(X) push-forward of X under ϕ
Xγ Xγ1

1 . . . Xγn
n

X† formal transpose of X
XT 〈XT,ϕ〉 =

〈
T,X†ϕ

〉
X†T

〈
X†T, ϕ

〉
= 〈T,Xϕ〉

A⊗B tensor product, endowed with the π-topology
A⊗̂B completed π-tensor product
A⊗ε B tensor product, endowed with the ε-topology
A⊗̂εB completed ε-tensor product
L(E;F ) the space of linear mappings from E into F

with the topology of bounded convergence
Lc(E;F ) the space of linear mappings from E into F

with the topology of compact convergence
Ls(E;F ) the space of linear mappings from E into F

with the topology of pointwise convergence
tT transpose of T
Pol(A;B) the space of polynomial mappings from A into B
Dr the space of Cr compactly supported functions
Er the space of Cr functions
S the space of Schwartz functions
D′r the space of distributions of order r
E ′r the space of distributions with compact support or order r
S ′ the space of tempered distributions
C0(X) the space of continuous functions vanishing at infinity on X
χA characteristic function of the set A
IX identity mapping of X
M the space of Radon measures
M1 the space of bounded Radon measures
Lp, Lp classical Lebesgue spaces
Lploc, L

p
loc classical local Lebesgue spaces

δx Dirac delta at x
Hn suitably normalized Hausdorff measure
f · µ measure with density f with respect to µ
|µ| absolute value of the measure µ
µ∗ outer measure associated with µ
µ• essential outer measure associated with µ
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172 INDEX OF NOTATION

Symbol Description Page
π∗(µ) image of µ under π
Supp(T ) support of T
UC(g) the complexified enveloping algebra of g
dπ extension of π to the universal enveloping algebra
ˇ the inversion x 7→ x−1

T ∗ Ť
Lg, Rg left and right translations 1
∆L,∆R left and right multipliers 1
expG group exponential map 2
Q homogeneous dimension 2
| · | homogeneous norm 2
PA element of A induced by P 4
λG symmetrization of P 5
B,Bc the space of bounded continuous functions 5
M1

c(M) the space of bounded measures with a suitable topology 7
W k1,k2,1, W k1,k2,1

c spaces of Sobolev type based onM1 9, 9, 10
W k1,k2,p, W k1,k2,p

0 spaces of Sobolev type based on Lp 9, 9, 10
Bk1,k2 , Bk1,k2

c spaces of Sobolev type based on B 9, 9, 10
∗, ∗β convolution 11, 12
Ck(π) vectors of class Ck 24
F Fourier transform 26
π(T ) representation of T 24
π∗(T ) projection of T 27
Jkx (M ;E) the space of jets of order k at x 31
T

(k)
x (M) the dual of Jkx (M) 31
jkx(f) jet of order k of f at x 31
EM,k(F ;E) space of C∞ functions on F 32
Jk1

M,k2;x(F ;E) space of jets of order k1 at x on F 32
SG,k(F ;E) space of Schwartz functions on F 32
S̃G(V ;E) space of Schwartz functions on V 33
µLA spectral measure associated with LA 47
ELA 47
KLA kernel transform 48
M(µLA ;F ) the space of multipliers with kernel in F 48
FLA the space of kernels in F 48
FLA,0 the space of kernels in F having a continuous multiplier 48
S(G,LA) the space of kernels with a Schwartz multiplier 56
βLA Plancherel measure 60
β̃LA ‘spherical’ Plancherel measure 60
SLA unit sphere of ELA 60
KLA,1 extension of KLA to L1(βLA) 61
χLA integral kernel 63
MLA multiplier transform 67
K(j) 2jQK(2j · ) 81
KZ(G) the space of Calderón-Zygmund kernels 81
MH(ELA) the space of Mihlin-Hörmander multipliers 81
KZ(G,LA) 82
Bω (X,Y ) 7→ 〈ω, [X,Y ]〉 95
sΦ, dΦ left and right linear mappings associated with Φ 95
Φ̂ inverse of Φ 95
JQη,ω dQη ◦ dBω 99
d minω dim ker dBω 99
W { ω : dim ker dBω > d } 99
Ω the set of ω 6∈W where Card(σ(|JQH ,ω|)) is greatest 99
µ, Ph, µ̃ eigenvalues and eigenprojectors 100
n1

1
2 TrPω 100
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Symbol Description Page
xh,ω, xω 100
πω : G→ Gω 101
|Pf(ω)| the Pfaffian 102
Λγm the m-th Laguerre polynomial of order γ 102
R |x|2

4 138
ps,k1,k2 or p(m)

s,k1,k2
138

ω |t|/R 138
δ (R/π|t|)

1/2 138
κ 2

√
π|t|R 138

θ λ 7→ 2λ−sin(2λ)
2 sin2(λ)

138
d(x, t) Carnot-Carathéodory distance 139
Iν modified Bessel function of the first kind of order ν 145
ρ 146
∆′(A) the set of characters of A 161
∆(A) the Gelfand spectrum of A 161
σ(x) the spectrum of x in A 161
G the Gelfand transform 161
dom(T ) the domain of T 161
T ∗ the adjoint of T 162
T the closure of T 162
σ(T ) the spectrum of T 162
T1 + T2, T1 · T2 162
σ(TA) joint spectrum of TA 163
f(TA) 163





Index

µ-proper mapping, 41

Algebra
Banach, 161
Banach ∗-, 161
Gelfand spectrum of a Banach, 161
Gelfand transform of a Banach, 161
spectrum of an element of a Banach, 161
symmetric Banach ∗-, 161

Calderón-Zygmund kernels, 81
Complete Rockland family, 79
Convex polyhedron, 42
Convolvability

of distributions, 11
of measures, 12
transversal, 12

Differential operator
homogeneous, 2
left-invariant, 1
right-invariant, 1

Disintegration, 41

Equivalence
of Rockland families, 79
of Rockland families, functional, 79

Exponential map, 2

Faà di Bruno’s formula, 165
Family

admissible, 47
Rockland, 56

Group
H-type, 95
MW+, 95
Free 2-step stratified, 95
Heisenberg, 95
homogeneous, 2
Lie, 1
locally compact amenable, 163
Métivier, 95
unimodular, 1

Homogeneous
differential operator, 2
dimension, 2
distribution, 2
function, 2
group, 2

norm, 2

Integral kernel, 63

Jet, 31

Kernel transform, 48

Lie algebra
of a Lie group, 2

Measure
connected, 41
Haar, 1
Plancherel, 60
pseudo-image, 115
relatively invariant, 1
spectral, 162

Method of stationary phase, 139
Mihlin multipliers, 81
Multiplier

of a relatively invariant measure, 1
Multiplier transform, 67

Operator
adjoint, 162
closable, 162
closed, 162
densely defined, 161
essentially self-adjoint, 162
positive, 162
self-adjoint, 162
symmetric, 162

Property
(RL), 48
(S), 56
(S)0, 56
(S)C , 56

Quasi-regular representation, 29

Subanalytic set, 45
Nash, 45

Symmetrization, 5

weighted subcoercive
operator, 58
system, 58

Young’s inequality, 19
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