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A.10 Computation of v̇t and Ḟt in the SHARK model . . . . . . . . . . . . . . . . . . . . . . . . 159

A.11 Proof of proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.12 Proof of proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



Acknowledgements

I am indebted to my supervisors, Giacomo Bormetti, Fulvio Corsi and Fabrizio Lillo, who introduced

me to the topics covered by this thesis. All the four projects that came out as a result of my research

activity as a PhD student at Scuola Normale Superiore benefited enormously from their expert advices.

The time spent on numerous meetings with them was very important and much appreciated.

I am also indebted to Rosario Mantegna and Stefano Marmi. I started to collaborate with them

well before the beginning of my PhD and they played an important role in my decision to switch from

Physics to Quantitative Finance, as well as in my decision to enroll in a PhD program at Scuola Normale

Superiore.

Another thank goes to all my colleagues and former members of the Quantitative Finance research

group at Scuola Normale. I had fruitful research discussions especially with Giulia Livieri, Davide Pirino

and Luca Trapin.

I am grateful to the R&D group at UniCredit S.p.A., who financed my PhD scholarship within the

project “Dynamics and Information Research Institute - Quantum Information, Quantum Technologies”.

Last but not least I thank my family, who always supported the career path that I have chosen.

Pisa, September 2018

5



Chapter 1

Introduction

Time-varying parameter models are ubiquitous in finance and economics. A well-known property of

financial returns is volatility clustering, meaning that large changes tend to be followed by large changes

and, similarly, small changes tend to be followed by small changes. This phenomenon is a consequence

of the fact that volatility is not constant over time but has non-trivial dynamics. Both ARCH-type and

stochastic volatility models (Engle 1982, Bollerslev 1986, Tauchen and Pitts 1983) have been employed to

describe time-varying volatilities in financial markets. In a multivariate setting, it is a well documented

empirical evidence that financial data exhibit strong changes in their dependence structure, especially in

periods of market turmoil. To capture this behaviour, different dynamic correlations and copula models

have been proposed (cfr. Engle 2002a, Shephard 2005, Patton 2006). High-frequency financial data

feature time-varying volatilities and correlations at the intraday level (Andersen and Bollerslev 1997,

Tsay 2005, Bibinger et al. 2014). Empirical evidence of time-varying VAR coefficients and stochastic

volatility have also been found in the macroeconomic literature, as shown by Cogley and Sargent (2001),

Cogley and Sargent (2005), Stock and Watson (2007), amongst others.

This thesis provides new contributions to the field of time-varying parameter models1 from both

theoretical and empirical perspectives. On the one side, we introduce a general smoothing methodology

that is named Score-Driven Smoother (SDS). As it will be shown in Chapter 3, the SDS provides

smoothed estimates of time-varying parameters of a large class of nonlinear non-Gaussian models. On

the other side, we propose new time-varying parameter models capturing relevant empirical features of

high-frequency price dynamics. Econometric inference on such models helps answering key questions

arising in the field of high-frequency finance and market microstructure.

The SDS is related to the framework of so-called observation-driven models (Cox 1981), that is, time-

varying parameter models where the sources of randomness driving parameter changes are nonlinear

functions of past observations. A common example is given by the GARCH model of Bollerslev (1986),

1We mainly concentrate on discrete-time models.

6



7

where the conditional variance depends on squares of past returns. Observation-driven models are

typically viewed as data generating processes. However, they can also be employed as misspecified

filters. For instance, Nelson 1992 examined the diffusion limit of GARCH models in a setting where

the latter are employed as nonlinear filters for stochastic volatility models. If observation-driven models

are regarded as data generating processes, there is no room for smoothing, as all relevant information is

encoded on past observations. In contrast, if they are employed as filters, smoothing can help improving

the estimation of time-varying parameters, as shown by Nelson 1996 in the case of the GARCH. While

many observation-driven models have been proposed (e.g. all univariate and multivariate GARCH-

type models), the literature lacks of corresponding “observation-driven smoothers”, allowing to estimate

parameters using actual and future observations. The SDS fills this gap, in that it provides a general

methodology to exploit all observations when estimating time-varying parameters.

In our theoretical and empirical work on high-frequency finance, we address relevant research ques-

tions related to high-frequency price dynamics and market microstructure. In particular, we focus on

the following key points:

1. It is well-known that high-frequency asset prices are characterized by lead-lag effects, meaning

that some assets lead the dynamics of other assets. How can we motivate the existence of these

effects from a market microstructure perspective and how can we estimate lead-lag correlations

by accounting for asynchronous trading and microstructure noise (e.g. price discreteness, bid-ask

bounds, etc)?

2. What are the intraday dynamics of dependencies among high-frequency asset prices and how can we

forecast intraday correlations by accounting, again, for asynchronous trading and microstructure

noise?

3. Do measurement errors on realized volatility measures play a role in volatility estimation and

forecasting? Can we disentangle the effect of measurement errors from the one of non-linearity?

The above questions arise from the increasing availability of high-frequency financial data, which

nowadays are recorded at very small time-scales (e.g. milliseconds). On the one hand, this leads to the

possibility of examining in detail the intraday dynamics of high-frequency prices, allowing to build new

data-driven models for market microstructure analysis. However, intraday data are unbalanced, with

trades arriving at irregular and random times. In addition, they are contaminated by observational noise,

due to microstructure effects. Standard univariate and multivariate techniques are therefore not effective

in extracting the meaningful economic content of the data. On the other hand, since the seminal work of

Andersen et al. (2003), high-frequency data have been largely employed to model and forecast volatility

through realized measures. Time series of realized volatility exhibit strong nonlinear dynamics and are
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characterized by measurement errors. Neglecting both effects may lead to biased estimates and poor

volatility forecasts (Corsi et al. 2008, Bollerslev et al. 2016a). We design new time-varying parameter

models apt to tackle these modelling issues and provide answers to previous questions.

This thesis is divided in five parts. The first part, in Chapter 2, is a brief overview of time-varying

parameter models. It introduces a notation and a nomenclature that will be extensively used throughout

the work. Moreover, it lists the main results related to the Kalman filter and recently introduced score-

driven models (Creal et al. 2013, Harvey 2013). The latter are a large class of observation-driven models

including, but not limited to, the GARCH, the EGARCH model of Nelson (1991), the MEM model of

Engle (2002b) and the ACD model of Engle and Russell (1998). Both Kalman filter and score-driven

models are the main building blocks of the theoretical and empirical work that is illustrated in the

subsequent Chapters.

Chapter 3 deals with the SDS. The main theoretical idea conveying to the formulation of the SDS is

the following result, which we prove in Section 3.1.1:

Proposition. In the steady state, the standard Kalman filter and smoothing recursions for linear Gaus-

sian models can be re-written in a general form that only involves the score and the Fisher information

of the Gaussian conditional density.

By computing scores and information based on a non-Gaussian density, these new recursions can

be regarded as the approximate filtering and smoothing recursions for a generic nonlinear non-Gaussian

model. The predictive filtering recursion turns out to have the form of score-driven models, which in

turn are approximate nonlinear filters. More interestingly, the update filter and smoothing recursions

lead to a new score-driven update filter (SDU) and the SDS. The SDU updates filtered estimates once

new observations become available while the SDS updates filtered estimates by including the effect of

future observations.

In this new framework, we can assess filtering uncertainty and construct confidence bands around

filtered and smoothed estimates. Filtering uncertainty is absent in correctly specified observation-driven

models, as time-varying parameters are deterministic functions of past observations. However, in mis-

specified observation-driven filters, time-varying parameters are not fully revealed by past observations

and therefore filtering uncertainty matters. In the literature, there are no well-established methods to

quantify filtering uncertainty in misspecified observation-driven filters. As a byproduct of our results,

we provide a general methodology to construct robust confidence bands reflecting filtering uncertainty

in general score-driven models.

Given standard score-driven filter recursions, companion SDU and SDS recursions can be computed

in order to update filtered estimates based on actual and future observations. Compared to standard

smoothing techniques for nonlinear non-Gaussian models, which are based on computationally demand-
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ing simulation-based methods, the SDS is a simple backward recursion following the standard forward

filtering recursion of score-driven models.

In our simulation and empirical work, we showed the following:

• The SDU and SDS improve significantly over standard score-driven filtered estimates. In par-

ticular, for the SDS, we found gains larger than 30% and lower than 60% in mean square errors

when estimating time-varying parameters in a large class of misspecified observation-driven models

(GARCH, MEM, time-varying AR(1), t-GAS, Wishart-GARCH).

• Confidence bands around filtered and smoothed estimates correctly quantify the true filtering

uncertainty.

• In a nonlinear non-Gaussian setting, the SDS does not lead to an excessive deterioration of the

reconstructed signal compared to exact methods. Indeed, comparing the performance of our ap-

proximate smoother to that of correctly specified parameter-driven models, we found that losses

are small, never exceeding 2.5% on average.

• The SDU and SDS are computationally convenient. For instance, we found that smoothing with the

SDS is on average more than 200 times faster than smoothing with efficient importance sampling

techniques.

• The SDS and SDU can be easily extended to a framework with multiple time-varying parameters,

as they maintain the same simple form as in the univariate case.

• Empirically, it turns out that SDU and SDS estimates of daily conditional covariance matrices

are superior to those based on standard score-driven filtered estimates, which are often used in

practical applications.

In Chapter 4, we motivate the existence of cross-asset pricing effects observed at high-frequency

(Hasbrouck and Seppi 2001, Bernhardt and Taub 2008, Pasquariello and Vega 2015) through a new

Multi-asset Lagged Adjustment (MLA) price formation model that generalizes standard univariate mi-

crostructure models of lagged price adjustment (Hasbrouck 1996). In the MLA, the price formation

process of a given asset is influenced by the price of other assets. Lead-lag correlations naturally arise as

a consequence of the multivariate nature of the price formation process. We thus establish a link between

the financial literature on cross-asset pricing and the econometric literature on high-frequency lead-lag

correlations. The MLA represents the first multivariate extension of well known univariate models of

lagged price-adjustment. In this new framework, lead-lag effects can be explained from a clear market

microstructure perspective.
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Estimation of the MLA is robust to both microstructure effects and asynchronous trading. Indeed,

it can be estimated through a Kalman-EM algorithm that allows latent prices being contaminated by

additive noise and that easily tackles asynchronicity as a missing value problem. The main advantages

of the MLA are the following:

• In contrast to existing estimators of lead-lag correlations, the MLA is robust to spurious correlations

arising under asynchronous trading. This is shown in detail in the simulation study in Section 4.2.1.

• The MLA is able to disentangle contemporaneous and lagged correlations. As such, it provides an

estimate of the integrated covariance of the efficient martingale process that is robust to microstruc-

ture noise, asynchronous trading and that takes into account the presence lead-lag correlations.

The latter is a novel contribution, given that estimators of the integrated covariance typically neglect

lead-lag dependencies. We provide strong empirical evidence for the existence of a multi-asset price

formation mechanism in equity data. In particular, we find that cross-asset effects surge in periods of

high volatility. This empirical result can be explained through the behavior of high-frequency traders,

who exploit short living arbitrage opportunities that are likely to appear in periods of high uncertainty.

In Chapter (5), we introduce a multivariate conditional correlation model that can handle noisy and

asynchronous observations. As such, the model is suitable for investigating the intraday dynamics of

correlations among high-frequency data. This topic is interesting from both theoretical and practical

reasons. However, it has received little attention in the econometric literature (Bibinger et al. 2014,

Koopman et al. 2015a). We propose to model intraday prices through a multivariate Local Level model

with Score-Driven (LLSD) time-varying covariances. In the LLSD, the latent random walk represents

the efficient price, whose covariances evolve in time based on the score of the conditional density.

The main advantage of this approach is that, even in presence of time-varying parameters, the LLSD

is conditionally Gaussian. The Kalman filter can therefore be applied to write both the log-likelihood

and the score in closed form. The consequence is that asynchronous trading can be treated as a typical

missing value problem, in a similar fashion to the MLA. This implies that we can avoid synchronizing

prices, a procedure that generally leads to significant data reduction, especially at large dimensions.

Even at very small time-scales (e.g. 1 second), the dynamics of covariances can thus be reconstructed

using all available data. We adopt a parametrization of the correlation matrix based on hyperspherical

coordinates that guarantees positive-definite estimates. Similarly to DCC models, large dimensionality

is handled by separating the estimation of correlations from individual volatilities. The consistency of

this two-step estimation approach is studied through Monte-Carlo simulations.

Empirically, we find the following results:

• Volatilities have the typical U-shape: they are large at the beginning and at the end of the trading
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day

• Correlations have an increasing pattern during the day. They are found to be small at the beginning

of the day and progressively increase until the last minutes, when they tend to decrease

While the intraday behavior of volatilities is a well-established stylized fact, the intraday pattern

of correlations is less known. Our result can be explained by the prevalence of idiosyncratic trading

in the first part of the day, leading to large idiosyncratic risk and low correlations. A market factor

progressively emerge in the second part of the trading day, with all cross-correlations rapidly increasing.

Remarkably, the LLSD updates filtered estimates once new, unbalanced data become available and

thus it can track in real-time the response of market covariances to external information, e.g. macro-

news announcements. In order to assess the forecasting ability of the LLSD on real data, we perform

an out-of-sample test based on intraday portfolio optimization and show its advantages compared to

standard dynamic covariance models.

In the last Chapter, we deal with the problem of modelling and forecasting volatility using high-

frequency data. The HAR model of Corsi (2009) is nowadays one of the most popular dynamic specifi-

cation for realized volatility. However, it assumes volatility being observed with no measurement errors

and exhibits several forms of misspecification due to the inherent nonlinear dynamics of volatility. Corsi

et al. (2008) and Bollerslev (1986) showed that these two effects can largely jeopardize volatility fore-

casts. Our aim is to disentangle them and quantify their impact on volatility forecasts. We follow a step

by step strategy: we first devise two different HAR extensions that account separately for each effect

and then combine the two approaches in a single model that accounts for both measurement errors and

nonlinearities.

As a first step, we write the HAR in a linear state-space representation where, consistently with

the asymptotic distribution of realized variance, the time-varying variance of the measurement error is

driven by realized quarticity. The Kalman filter allows to easily estimate bias-corrected HAR parameters

and incorporates the effect of measurement errors through a time-varying Kalman gain. We name this

model HAR-Kalman (HARK). The HARK provides more conservative forecasts when current volatility

estimates are noisy and generates more responsive forecasts when volatility is estimated with a good

accuracy.

In a second step, we exploit the fact that general nonlinear autoregressive models can be represented

as linear autoregressive models with time-varying coefficients and introduce an HAR model with time-

varying parameters. The dynamics of parameters are driven by the score of the conditional likelihood,

thus allowing to write the likelihood in closed form. The resulting model is named score-HAR (SHAR).

The SHAR is nonlinear in nature and features iid standardized residuals when estimated on real data.

As a final step, the two approaches are combined in a single model, the score-HAR-Kalman (SHARK)
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that accounts for both measurement errors and nonlinear dependencies. ”Injecting” nonlinearities in the

HARK is possible by modeling time-varying parameters through the score of the conditional likelihood.

The SHARK is susceptible of treatment with the Kalman filter and can therefore be estimated through

standard maximum likelihood methods.

Our empirical analysis provides strong evidence that the effects captured by the (S)HAR(K) are

relevant for volatility forecasting. In particular, we show that measurement errors are important at

small and intermediate sampling frequencies and the corresponding forecast gains slightly increase with

the forecast horizon. Time-varying parameters provide statistically significant improvements that are

independent on the sampling frequency and slightly increase with the forecast horizon.

Up to our knowledge, this methodology is the first achieving the goal of disentangling the effects

of measurement errors and nonlinear dependencies. This is a significant contribution, considered that

existing approaches dealing with measurement errors on realized volatility may lead to spurious effects

as a result of mixing the two effects.



Chapter 2

Time-varying parameter models

2.1 Overview

In its most general form, a discrete time, time-varying parameter model can be written as:

yt|θt ∼ p(yt|θt,Ψ) (2.1.1)

θt = f(αt,Ψ) (2.1.2)

αt = g(αt−1, αt−2, . . . , yt−1, yt−2, . . . , ηt,Ψ) (2.1.3)

where yt ∈ Rn is a vector of observations with conditional density function given by p(yt|θt,Ψ), θt ∈ Rq is

known as “signal” and αt ∈ Rm is a vector of time-varying parameters. The latter can depend on lagged

values of both αt, yt and on a vector ηt ∈ Rm of idiosyncratic innovations. All the static parameters are

collected in a vector that is denoted by Ψ. Eq. (2.1.1) is known as “measurement equation” while eq.

(2.1.3) is known as “transition equation”.

Based on the specific form of the function g(·), Cox (1981) distinguished between parameter-driven

and observation-driven models. In the first class of models, αt depends only on its lagged values and on

idiosyncratic innovations ηt, namely:

αt = g(αt−1, αt−2, . . . , ηt,Ψ) (2.1.4)

meaning that the dynamics of αt are driven by the random shocks ηt, which are independent on obser-

vations yt.

The simplest example of a parameter-driven model is the linear Gaussian state-space model, which

reads:

yt|θt ∼ N(θt, H) (2.1.5)

θt = Zαt (2.1.6)

αt+1 = c+ Tαt + ηt, ηt ∼ N(0, Q) (2.1.7)

13
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where Z ∈ Rn×m, H ∈ Rn×n, T ∈ Rm×m and Q ∈ Rm×m are system matrices. The specification with

n = m, Z = In, T = In, c = 0 is known as “local-level” model and will be of particular interest in Chapter

5. The Kalman filter, which will be described in detail in Section 2.2, provides optimal estimates of αt

and allows to compute the likelihood in closed form.

Most parameter-driven models are nonlinear and/or non-Gaussian. For instance, a scalar stochastic

volatility (SV) model reads:

yt|σt ∼ N(0, σ2
t ) (2.1.8)

σ2
t = exp(αt) (2.1.9)

αt+1 = c+ φαt + ηt, ηt ∼ N(0, σ2
η) (2.1.10)

where yt are typically log-returns and the signal σ2
t is related to the time-varying parameter αt through

an exponential link function. The SV model has been largely applied in financial econometrics, cfr.

Tauchen and Pitts (1983), Ghysels et al. (1996) and Shephard (2005).

Except for linear Gaussian models and discrete-state hidden Markov models, no closed form solutions

for the exact likelihood of a parameter-driven model are generally available. The reason is that, in order

to compute the likelihood, one has to integrate over the unobserved state variables:

L(Ψ) =

∫
p(α1, . . . , αN , y1, . . . , yN ,Ψ)

N∏
i=1

dαi (2.1.11)

where p(α1, . . . , αN , y1, . . . , yN ,Ψ) is the joint probability density function of observations and time-

varying parameters. The above expression is an high-dimensional integral which requires computationally

intense methods such as Monte-Carlo integration. In some cases, approximate filtering and smoothing

methods are available, such us the QML method of Harvey et al. (1994) for the SV model. For a detailed

analysis on the estimation of nonlinear non-Gaussian state-space models, we refer the reader to Durbin

and Koopman (2012).

Observation-driven models are an alternative class of time-varying parameter models. In observation-

driven models, time-varying parameters are a deterministic function of past observations:

αt = g(Yt−1,Ψ) (2.1.12)

where Yt−1 = {y1, . . . , yt−1} denotes the set of past observations and g(·) is typically a nonlinear function.

The law of motion (2.1.12) implies that parameters are random, since they are a function of past

observations. However, conditionally on Yt−1, they are known with no uncertainty. The GARCH model

of Bollerslev (1986) is probably the most popular example of observation-driven models. It reads:

yt|σt ∼ N(0, σ2
t ) (2.1.13)

σ2
t+1 = ω + αy2

t + βσ2
t (2.1.14)
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where yt are log-returns. The time-varying variance σ2
t therefore depends recursively on squared of past

returns. An immediate consequence of eq. (2.1.14) is that the conditional log-likelihood is:

log p(yt+1|Yt,Ψ) = −1

2
log(2π)− log σt+1 −

y2
t+1

2σ2
t+1

(2.1.15)

where σt+1 is given by the update rule (2.1.14). The full log-likelihood function can thus be written in

closed form:

log p(Ψ) =
N∑
t=1

log p(yt|Yt−1,Ψ) (2.1.16)

and can be maximized with respect to Ψ = {ω, α, β}. Other examples of observation-driven models

include the DCC model of Engle (2002a), the multiplicative error model (MEM) of Engle (2002b) and

Engle and Gallo (2006) and the ACD model of Engle and Russell (1998).

There is a clear trade-off between parameter-driven and observation-driven models. On the one hand,

parameter-driven models are more flexible, since the dynamics of time-varying parameters are driven

by independent sources of randomness. In contrast, time-varying parameters are completely determined

by past observations in observation-driven models. Also, statistical properties such us stationarity and

ergodicity are generally more difficult to analyze for observation-driven models, as there are complex

feedbacks effects between observations and time-varying parameters (see e.g. Blasques et al. (2014a).

On the other hand, since the likelihood function can be written-down in closed form, observation-driven

models are easy to estimate. The maximization of the likelihood is typically performed through standard

quasi-Newton algorithms. In contrast, the estimation of parameter-driven models requires the use of

computationally intensive simulation-based techniques.

2.2 The Kalman filter

In this Section we report the main results related to the Kalman filter, which will be extensively used

throughout the thesis. We closely follow both Harvey (1991) and Durbin and Koopman (2012). Let us

consider the linear Gaussian state-space model introduced in eq. (2.1.5). We can re-write it as:

yt = Zαt + εt, εt ∼ NID(0, H) (2.2.1)

αt+1 = c+ Tαt + ηt, ηt ∼ NID(0, Q) (2.2.2)

We are interested in updating our knowledge of the underlying state variable αt when a new observation

yt becomes available and in predicting αt+1 based on the last observations y1, . . . , yt. Thus, we define:

at|t = E[αt|Yt], Pt|t = Var[αt|Yt] (2.2.3)

at+1 = E[αt+1|Yt], Pt+1 = Var[αt+1|Yt] (2.2.4)
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The linearity assumption, together with normality, leads to the following result:

αt|Yt ∼ N(at|t, Pt|t), αt+1|Yt ∼ N(at+1, Pt+1) (2.2.5)

The Kalman filter allows to compute recursively at|t, Pt|t, at+1 and Pt+1. Assuming α1 ∼ N(a1, P1) and

that a1 and P1 are known, for t = 1, . . . , N we have:

vt = yt − Zat (2.2.6)

at|t = at + PtZ
′F−1
t vt (2.2.7)

at+1 = c+ Tat +Ktvt (2.2.8)

and

Ft = ZPtZ
′ +H (2.2.9)

Pt|t = Pt − PtZ ′F−1
t ZPt (2.2.10)

Pt+1 = TPt(T −KtZ)′ +Q (2.2.11)

where Kt = TPtZ
′F−1
t is the Kalman gain. The conditional mean at|t is known as update filter while at+1

is known as predictive filter. The two conditional covariance matrices Pt|t and Pt+1 allow to construct

confidence bounds around at|t and at+1, respectively. Note that, even in case the normality assumption

is dropped, Kalman filter estimates are minimum variance linear unbiased (MVLU). Generalization of

the above recursions to the case where a1 and P1 are unknown are discussed in detail by both Harvey

(1991) and Durbin and Koopman (2012).

The problem of estimating αt when all observations are available is known as smoothing. Let us

define:

α̂t = E[αt|YN ], P̂t = Var[αt|YN ] (2.2.12)

for N > t. Similarly to the filtering case, the conditional distribution of αt given YN is normal:

αt|YN ∼ N(α̂t, P̂t) (2.2.13)

Both α̂t and P̂t can be computed through the following backward recursions:

rt−1 = Z ′F−1
t vt + L′trt (2.2.14)

α̂t = at + Ptrt−1 (2.2.15)

and

Nt−1 = Z ′F−1
t Z + L′tNtLt (2.2.16)

P̂t = Pt − PtNt−1Pt (2.2.17)
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where Lt = T −KtZ, rN = 0, NN = 0 and t = N, . . . , 1. Note that at, Pt, vt and Ft are provided by the

filtering recursions. Thus, one can run the backward smoothing recursions after having performed the

forward filtering recursions.

The matrices Pt, Pt|t, P̂t characterize the variance of the conditional distribution of the state variable.

They can therefore be used to construct confidence bands around filtered and smoothed estimates. These

confidence bands reflect filtering uncertainty, i.e. the fact that the state variable is not completely

determined by observations. As such, they are different from confidence bands for correctly specified

observation-driven model, which reflect uncertainty on maximum likelihood estimates. In the language

of Blasques et al. (2016), the latter is known as parameter uncertainty.

The linear Gaussian model in eq. (2.2.1), (2.2.2) is time-invariant, as system matrices are constant

over time. In this case, the Kalman recursion for Pt+1 converges to a constant matrix P̄ , which is the

solution of the following matrix Riccati equation:

P̄ = T P̄T ′ − T P̄Z ′F̄−1ZP̄T ′ +Q (2.2.18)

where F̄ = ZP̄Z ′ + H. This result is useful from a computational point of view, as one can avoid

computing recursions for Pt|t, Pt+1 and P̂t once convergence to P̄ has been reached1. The solution of eq.

(2.2.18) is known as steady state.

The log-likelihood of the linear-Gaussian model can be computed in the prediction error form, namely:

log p(yt|Yt−1,Ψ) = const− 1

2

(
log |Ft|+ v′tF

−1
t vt

)
(2.2.19)

where vt and Ft are an output of the Kalman filter recursions and Ψ denotes the set of system matrices

to be estimated. The full likelihood function can therefore be written as:

log p(Ψ) =

N∑
t=1

log p(yt|Yt−1,Ψ) (2.2.20)

and can be maximized with respect to Ψ through a quasi-Newton algorithm. For high-dimensional

problems, the use of gradient-based algorithms become unfeasible. In this case, estimation is more

conveniently performed through the expectation-maximization (EM) algorithm of A. P. Dempster (1977).

The latter alternates between an estimation step, performed through the Kalman filter and smoother,

and a maximization step where closed-form update formulas for the new values of Ψ can be recovered.

The EM algorithm for linear-Gaussian state-space models is discussed e.g. by Shumway and Stoffer

(1982).

A relevant advantage of the Kalman filter and smoother recursions for linear Gaussian state-space

models is that they hold even in case observations are missing. We distinguish the case where, for some

1Convergence is typically very fast, with the matrix norm between Pt and P̄ becoming very small after the first few

steps.
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t, all the n observations are missing and the case where some, but not all observations, are missing. In

the first case, the Kalman recursions remain valid, provided what one sets Z = 0 at time t. The filtering

recursions therefore become:

at|t = at, Pt|t = Pt (2.2.21)

at+1 = Tat, Pt+1 = TPtT +Q (2.2.22)

while the smoothing recursions reduce to:

rt−1 = T ′rt, Nt−1 = T ′NtT (2.2.23)

In the second case, one can define a selection matrix Wt such that y∗t = Wtyt is the vector of values that

are observed at time t. The observation equation becomes:

y∗t = Z∗t αt + ε∗t , ε∗t ∼ N(0, H∗) (2.2.24)

where Z∗t = WtZ, ε∗t = Wtεt and H∗ = WtHW
′
t . The Kalman filter and smoothing recursions (2.2.6)-

(2.2.11) and (2.2.14)-(2.2.15) are then applied to the new observation equation (2.2.24). Note that the

model is no longer time-invariant, as the dimensions of Zt and Ht change over time.

2.3 Score-driven models

Score-driven models, also known as Generalized Autoregressive Score (GAS) models or Dynamic Condi-

tional Score (DCS) models, have been introduced by Creal et al. (2013) and Harvey (2013). They are a

general class of observation-driven models where time-varying parameters are driven by the score of the

conditional likelihood.

Let us denote by ft ∈ Rk the vector of time-varying parameters and by p(yt|ft,Ψ) the conditional

density of the observations yt ∈ Rn. The transition equation in a score-driven model has the following

form:

ft+1 = ω +ASt∇t +Bft (2.3.1)

where ∇t ∈ Rk is the score of the conditional density:

∇t =
∂ log p(yt|ft,Ψ)

∂ft
(2.3.2)

while St is a scaling matrix possibly depending on ft. The vector ω ∈ Rk and the two matrices A,B ∈

Rk×k are static parameters. Creal et al. (2013) discussed several choices of St based on inverse powers

of the information matrix It|t−1 ∈ Rk×k:

St = (It|t−1)−α = (Et−1[∇t∇′t])−α, α ∈ [0, 1] (2.3.3)
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Common choices of α are α = 0, 1/2, 1. There are several intuitive motivations that justify the use of

the score. For instance, the update equation (2.3.1) has similar form to a step of the Newton-Raphson

algorithm used for numerical optimization. This means that the score updates ft in the steepest ascent

direction, improving the model’s local fit in terms of density at time t. Harvey (2013) provides other

possible interpretations. In Chapter 3, we will see that (2.3.1) is equivalent to the Kalman filter prediction

step in eq. (2.2.8) where one replaces the Gaussian score with the score of the conditional density

p(yt|ft,Ψ).

Score-driven models have been extensively used in the financial econometric literature. Creal et al.

(2011) developed a multivariate dynamic model for volatilities and correlations using fat tailed distri-

butions. Harvey and Luati (2014) described a new framework for filtering with heavy tails while Oh

and Patton (2017) introduced high-dimensional factor copula models based on score-driven dynamics for

systemic risk assessment. Score-driven models have also been employed to model realized (co)variance

measures. Notably examples are given by the realized Wishart-GARCH model of Hansen et al. (2016)

and the Heavy GAS tF model of Opschoor et al. (2017).

Compared to other observation-driven models, score-driven models are locally optimal from an in-

formation theoretic perspective, as shown by Blasques et al. (2015). The asymptotic properties of the

maximum likelihood estimator for score-driven models have been studied by Harvey (2013), Blasques

et al. (2014a), Blasques et al. (2014b) and Blasques et al. (2017) while conditions for stationarity and

ergodicity for univariate models have been analyzed by Blasques et al. (2014d). Koopman et al. (2016)

showed that misspecified score-driven models have similar forecasting performance as correctly specified

parameter-driven models.

Score-driven models can be used to generate a wide variety of new models with interesting dynamic

features. The key ingredient is that the full shape of the observation density p(yt|ft,Ψ) is taken into

account not only in the estimation of the static parameters but also in the dynamic equation of time-

varying parameters. An example explaining this fact can be made by considering an univariate normal

density with a time-varying variance:

yt|σt ∼ N(0, σ2
t ) (2.3.4)

It is immediate to see that, by setting ft = σ2
t and St = I−1

t|t−1, eq. (2.3.1) reduces to:

ft+1 = ω +A(y2
t − ft) +Bft (2.3.5)

that is, a GARCH(1,1) model. However, if one assumes a t-distribution with ν degrees of freedom, i.e.

yt = σtεt, εt ∼ tν (2.3.6)

eq. (2.3.1) does not reduce to the t-GARCH(1,1) model of Bollerslev (1987). Instead, one obtains the
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following law of motion (see e.g. Creal et al. 2013 or Harvey 2013):

ft+1 = ω +A(1 + 3ν−1)

[
1 + ν−1

(1 + 2ν−1)(1 + ν−1/(1− 2ν−1)y2
t /ft)

y2
t − ft

]
+Bft (2.3.7)

The updating scheme in eq. (2.3.7) is more complex than the one in eq. (2.3.5). The GARCH(1,1)

provides large changes in volatility when large returns occur. However, in presence of fat-tailed dis-

tributions, the latter are more likely to be due to outliers rather than shocks in volatility. The role

of the factor multiplying y2
t in eq. (2.3.7) is to undermine volatility estimates in presence of outliers.

This updating scheme is pertinent when dealing with fat-tailed densities and provides robustness against

outliers.

2.4 Conditionally Gaussian models

A linear Gaussian model with time-varying system matrices reads:

yt = Ztαt + εt, εt ∼ NID(0, Ht) (2.4.1)

αt+1 = ct + Ttαt + ηt, ηt ∼ NID(0, Qt) (2.4.2)

Econometric inference on such a model relies on the law of motion of the time-varying parameters Zt,

Ht, ct, Tt and Qt. If system matrices follow a dynamic process with independent sources of randomness,

then model (2.4.1) (2.4.2), together with the new dynamic equations for the system matrices, becomes

a nonlinear non-Gaussian parameter-driven model. The latter can be estimated through simulation-

based techniques. As an example, Stock and Watson (2007) used Markov Chain Monte Carlo (MCMC)

methods to estimate their local level model with stochastic variances.

Another possibility is that system matrices depend on past observations, namely:

yt = Zt(Yt−1)αt + εt, εt|Yt−1 ∼ NID(0, Ht) (2.4.3)

αt+1 = ct(Yt−1) + Tt(Yt−1)αt + ηt, ηt|Yt−1 ∼ NID(0, Qt) (2.4.4)

These kinds of models are known as conditionally Gaussian (Harvey 1991). The advantage of this for-

mulation is that, conditionally on past information, the model is linear and Gaussian, with deterministic

time-varying parameters. Thus, the Kalman filter can be applied exactly as in the time-invariant case.

In particular, the Kalman filtering recursions become:

vt = yt − Ztat (2.4.5)

at|t = at + PtZ
′
tF
−1
t vt (2.4.6)

at+1 = c+ Ttat +Ktvt (2.4.7)
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and

Ft = ZtPtZ
′
t +Ht (2.4.8)

Pt|t = Pt − PtZ ′tF−1
t ZtPt (2.4.9)

Pt+1 = TtPt(Tt −KtZ)′ +Qt (2.4.10)

where Kt = TtPtZ
′
tF
−1
t . Similarly, Kalman smoother recursions are written in terms of the time-varying

system matrices, which are known one-step ahead:

rt−1 = Z ′tF
−1
t vt + L′trt (2.4.11)

α̂t = at + Ptrt−1 (2.4.12)

and

Nt−1 = Z ′tF
−1
t Zt + L′tNtLt (2.4.13)

P̂t = Pt − PtNt−1Pt (2.4.14)

where Lt = Tt −KtZt, rN = 0, NN = 0 and t = N, . . . , 1. The conditional log-likelihood can be written

in the error decomposition form:

log p(yt|Yt−1,Ψ) = const− 1

2

(
log |Ft|+ v′tF

−1
t vt

)
(2.4.15)

where vt and Ft are now obtained through the time-varying Kalman filter recursions (2.4.5)-(2.4.10).

The vector Ψ collects the set of static parameters governing the dynamics of the system matrices and

can be estimated by numerically maximizing the log-likelihood function. Note that the Kalman filter is no

longer a linear function of past observations. Therefore, conditionally Gaussian models feature nonlinear

dynamics while at the same time being susceptible of treatment with the Kalman filter. This is a relevant

advantage from an inferential point of view, as estimation can be performed through standard maximum

likelihood methods rather than computationally demanding simulation-based techniques. Note also that,

in the framework of Cox (1981), conditionally Gaussian models can be regarded as mixed parameter and

observation-driven models. Indeed, while the time-varying state vector follows a dynamic model with

its own innovations, the dynamics of system matrices are driven by past observations.

In order to provide a complete specification of the model, one needs to augment eq. (2.4.3), (2.4.4)

with the law of motion of the system matrices. Since the conditional log-likelihood can be written-

down in closed form, score-driven models provide a natural, observation-driven framework to model the

dynamics of system matrices. Conditionally Gaussian models with score-driven, time-varying parameters

were introduced by Creal et al. (2008) and have been described in their full generality by Delle Monache

et al. (2016), who dubbed these class of models as “adaptive state-space” models. Let ft ∈ Rk collect all
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the time-varying parameters in Zt, Ht, ct, Tt and Qt. In order to implement the update equation (2.3.1),

one needs to compute the score ∇t and the information matrix It|t−1 from the conditional log-likelihood

(2.4.15). Delle Monache et al. (2016) showed the following result2:

∇t = −1

2

[
Ḟ ′t(In ⊗ F−1

t )vec(In − vtv′tF−1
t ) + 2v̇′tF

−1
t vt

]
(2.4.16)

It|t−1 =
1

2

[
Ḟ ′t(F

−1
t ⊗ F−1

t )Ḟt + 2v̇′tF
−1
t v̇t

]
(2.4.17)

where Ḟt = ∂vec(Ft)/∂f
′
t and v̇t = ∂vt/∂f

′
t denote derivatives of Ft and vt with respect to ft.

The prediction error vt and the covariance matrix Ft appearing in eq. (2.4.16), (2.4.17) are an output

of the Kalman filter recursions. Instead, v̇t and Ḟt can be computed by deriving eq. (2.4.5), (2.4.8) with

respect to ft. As a result, one obtains a new filter which runs in parallel with the standard Kalman

filter recursions, thus allowing to compute ∇t and It|t−1 at each time step. The parallel filter recursions

for the “full” model (2.4.3), (2.4.4) are reported in Delle Monache et al. (2016). In Chapter 5, we will

compute the parallel filtering recursions for a multivariate local level model with time-varying covariance

matrices while in Chapter 6 we will examine an HAR (Corsi 2009) plus noise model with time-varying

coefficients and stochastic variance.

The methodology described above provides a unified filter for both the state vector αt and the time-

varying system matrices. Extension to the case with missing observations is readily available by writing

the observation equation as in eq. (2.2.24) and will be relevant for our application to high-frequency

data in Chapter 5. Several applications of conditionally Gaussian models to macroeconomic data can be

found in Delle Monache et al. (2015) and Delle Monache et al. (2016).

2The notation used here is described in detail in appendix (A.1)



Chapter 3

Smoothing with score-driven models

Almost all results in this chapter previously appeared in Buccheri et al. (2017a).

As discussed in Chapter 1, observation-driven models are typically regarded as data generating

processes. As such, all relevant information is encoded on past observations and there is no room for

using actual and future observations when estimating time-varying parameters. However, they can also

be viewed as predictive filters, as time-varying parameters are one-step-ahead predictable. This idea was

largely exploited by Daniel B. Nelson, who explored the asymptotic properties of conditional covariances

of a misspecified GARCH under the assumption that the data generating process is a diffusion1; see

Nelson (1992), Nelson and Foster (1994), Nelson and Foster (1995) and Nelson (1996). In particular,

Nelson (1996) showed how to efficiently use information in both lagged and led GARCH residuals to

estimate the unobserved states of stochastic volatility models. Despite many observation-driven models

have been proposed in the econometric literature, little attention has been paid to the problem of

smoothing within this class of models in case they are employed as misspecified filters rather than data

generating processes.

We aim at filling this gap by introducing a smoothing method for score-driven models of Creal

et al. (2013) and Harvey (2013), which represent a general class of observation-driven models. We

show that, in the steady state, Kalman filter and smoothing recursions for linear Gaussian models can

be re-written in terms of the score of the conditional density, the Fisher information matrix and a

set of static parameters. In particular, the predictive filtering recursion turns out to have the form

of score-driven models. The latter can therefore be viewed as approximate filters for nonlinear non-

Gaussian models. The performances of these filters have been examined by Koopman et al. (2016),

1The interpretation of GARCH processes as filters is well described in this statement by Nelson (1992): “Note that our

use of the term ‘estimate’ corresponds to its use in the filtering literature rather than the statistics literature; that is, an

ARCH model with (given) fixed parameters produces ‘estimates’ of the true underlying conditional covariance matrix at each

point in time in the same sense that a Kalman filter produces ‘estimates’ of unobserved state variables in a linear system”.

23



24 CHAPTER 3. SMOOTHING WITH SCORE-DRIVEN MODELS

who showed that misspecified score-driven models provide similar forecasting performances as correctly

specified parameter-driven models. Based on the same logic, we build a new class of approximate

nonlinear smoothers that have similar form to Kalman backward smoothing recursions but employ the

score of the non-Gaussian density. The resulting smoothing method is very general, as it can be applied

to any observation density, in a similar fashion to score-driven models. We name the newly proposed

methodology Score-Driven Smoother (SDS). Similarly, we introduce a Score-Driven Update (SDU) filter,

allowing to update predictive filtered estimates once new observations become available.

Smoothing with the SDS requires performing a backward recursion following the standard score-

driven forward recursion to filter time-varying parameters. While going backward, the SDS updates

filtered estimates by including the effect of actual and future observations and leads to a more efficient

reconstruction of time-varying parameters. In our experiments, we have found that, compared to filtered

estimates, the SDS provides gains up to 63% in mean square errors, for a wide class of data generating

processes. Considered that the likelihood of observation-driven models can be typically written down in

closed form, smoothing with the SDS is particularly advantageous from a computational point of view. In

contrast, the classical theory of filtering and smoothing for nonlinear non-Gaussian models requires the

use of computationally demanding simulation-based techniques (Durbin and Koopman 2012). Another

relevant advantage of the SDS over traditional simulation-based methods is that extension to a setting

with multiple time-varying parameters is immediate, as it maintains the same simple form as in the

univariate case.

This general framework allows to construct confidence bands around filtered and smoothed estimates.

In observation-driven models, confidence bands are typically needed because static parameters are re-

placed by their maximum likelihood estimates. In the language of Blasques et al. (2016), this is known

as parameter uncertainty. However, if observation-driven models are employed as filters, the latent state

variables are not completely revealed by past observations. Thus, also filtering uncertainty has to be

considered when building confidence bands. While confidence bands reflecting parameter uncertainty

can be built through the methods developed by Blasques et al. (2016), it is less clear how one can take

into account filtering uncertainty in observation-driven models. Zamojski (2016) proposed a bootstrap

based method to construct in-sample confidence bands for the GARCH. As acknowledged by the author,

this method leads to underestimate filtering uncertainty and provides narrow confidence bands. We show

that, as a byproduct of our results, one can build both in-sample and out-of-sample confidence bands

accounting for filtering uncertainty in score-driven models. In this Chapter, we examine in detail the

construction of confidence bands in the case of the GARCH model. A general and systematic treatment

of filtering uncertainty in score-driven models is provided by Buccheri et al. (2018c).

For any score-driven model, one can devise companion SDS and SDU recursions. In particular,
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the SDS is useful for off-line signal reconstruction and analysis, while the SDU can be used for on-line

updating of time-varying parameters. We examine in detail the companion SDS and SDU recursions of

popular observation-driven models, namely the GARCH, the MEM model of Engle (2002b) and Engle

and Gallo (2006) and an AR(1) model with a time-varying autoregressive coefficient. In oder to show

the effectiveness of the proposed methodology in a setting with multiple time-varying parameters, we

consider the t-GAS model of Creal et al. (2011) and the Wishart-GARCH model of Hansen et al. (2016).

A related smoothing technique for a dynamic Student’s t location model was introduced by Harvey

(2013), who replaced prediction errors in the Kalman smoothing recursions with a martingale difference

that is proportional to the score of the t distribution. An application of this smoother can be found in

Caivano et al. (2016). The main difference with our approach is that we write the Kalman recursions

for the mean of time-invariant linear Gaussian models in a general form that only depends on the score

and the Fisher information matrix of the observation density. The resulting smoothing recursions are

different by those obtained by Harvey (2013) and are easily applicable to a generic score-driven model

by replacing the Gaussian density with the observation density at hand. The SDS is also related to

the “approximation via mode estimation” technique described by Durbin and Koopman (2000) and

Durbin and Koopman (2012). These authors proved that one can find a sequence of approximating

linear Gaussian models enabling the computation of the conditional mode of a non-Gaussian model

via a Newton-Raphson algorithm. The main difference with our methodology is that the SDS requires

a unique, nonlinear recursion rather than a sequence of Kalman recursions for approximating linear

Gaussian models. In addition, in our methodology, the filter coincides with well-known observation-

driven model (e.g. GARCH, MEM, ACD, etc) while the approximation via mode estimation technique

uses a sequence of filters that are not easily interpretable as dynamic models.

By performing extensive Monte Carlo simulations of nonlinear non-Gaussian state-space models,

we compare the performance of the SDS to that of correctly specified parameter-driven models. In

particular, we consider two stochastic volatility models and a stochastic intensity models. Importance

sampling methods allow to evaluate the full likelihood of these models. Compared to correctly specified

models, the losses incurred by the SDS are very small in all the simulated scenarios and are always

lower, on average, than 2.5% in mean square errors. Computational times are decisively in favour of

the SDS. For the models used in the simulation study, we found that smoothing with the SDS is on

average 215 times faster than smoothing with efficient importance sampling techniques. The advantages

of the proposed method are also shown on empirical data. Using realized covariance as a proxy of latent

covariance, we show that SDU and SDS covariance estimates obtained through the dynamic t-GAS

model fitted on Russel 3000 stock returns are superior to standard filtered score-driven estimates. The

analysis allows to examine the informational content of present and future log-returns from a dynamic
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covariance modelling perspective.

3.1 Theoretical framework

In this Section, we discuss in detail the main theoretical results conveying to the formulation of our

approximate, nonlinear smoothing technique. We start by showing that, in the steady state, the classical

Kalman filter and smoothing recursions for linear Gaussian models can be re-written in an alternative

form that only involves the score of the conditional likelihood, the Fisher information matrix and a set

of static parameters. Abstracting from the linear Gaussian setting, these recursions can be viewed as

the approximate filtering and smoothing recursions for a non-Gaussian model by computing scores and

information based on the non-Gaussian density. We then show that filtering uncertainty in score-driven

models can be evaluated as an immediate byproduct of our results.

3.1.1 Kalman recursions: a more general representation

In Appendix A.2 we prove the following:

Proposition 1. In the steady state, eq. (2.2.7), (2.2.8), (2.2.14), (2.2.15) can be written as:

at|t = at + T−1R∇t (3.1.1)

at+1 = c+ Tat +R∇t (3.1.2)

and

rt−1 = ∇t + (T −RI)′rt (3.1.3)

α̂t = at + T−1Rrt−1 (3.1.4)

where ∇t = ∂ log p(yt|Ft−1)
∂at

, I = Z ′F̄−1Z, F̄ = Z ′P̄Z + H, R = T P̄ and P̄ is the steady state variance

matrix which is the solution of the matrix Riccati equation:

P̄ = T P̄T ′ − T P̄Z ′F̄−1ZP̄T ′ +Q (3.1.5)

Note that a steady state solution exists whenever the system matrices are constant (Harvey 1991,

Durbin and Koopman 2012). In this case, the variance matrix Pt converges to P̄ after few time steps.

The new Kalman recursions for the mean are re-parameterized in terms of the score ∇t and the Fisher

information matrix I. This representation is equivalent to the one in equations (2.2.7), (2.2.8) and

(2.2.14), (2.2.15). However, it is more general, as it only relies on the measurement density p(yt|Ft−1).

In principle, the forward recursions (3.1.1), (3.1.2) and the backward recursions (3.1.3), (3.1.4) can be

applied to any parameter-driven model for which a measurement density p(yt|Ft−1) is defined.
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3.1.2 SDS recursions

The predictive filter (3.1.2) has an autoregressive structure and is driven by the score of the conditional

likelihood, i.e. it has the form of score-driven models of Creal et al. 2013 and Harvey 2013. Thus, if one

looks at score-driven models as filters, it turns out that the score-driven filter (SDF hereafter) is optimal

in case of linear Gaussian models. In case of nonlinear non-Gaussian models, the SDF can be regarded

as an approximate nonlinear filter. The main difference with the Kalman filter is that the Gaussian score

is replaced by the score of the true conditional density, thus providing robustness to non-Gaussianity.

As shown by Koopman et al. (2016), score-driven filters have similar predictive accuracy as correctly

specified nonlinear non-Gaussian models, while at the same time providing significant computational

gains. Indeed, the likelihood can be written in closed form and standard quasi-Newton techniques can

be employed for optimization.

Based on the same principle, we introduce an approximate nonlinear smoother allowing to estimate

time-varying parameters using all available observations. In case of linear Gaussian models, the Kalman

smoother is a minimum variance linear unbiased estimator (MVLUE) of the state. Thus, we define

our smoother in such a way that it coincides with the latter in this specific case. In case of nonlinear

non-Gaussian models, it maintains the same simple form of Kalman backward smoothing recursions but

replaces the Gaussian score with the one of the non-Gaussian density.

Let us assume that observations yt ∈ Rp, t = 1, . . . , n, are generated by the following observation

density:

yt|ft ∼ p(yt|ft,Θ) (3.1.6)

where ft ∈ Rk is a vector of time-varying parameters and Θ is a vector of static parameters. We

generalize the filtering and smoothing recursions (3.1.1)-(3.1.4) for the measurement density p(yt|ft,Θ)

as:

ft|t = ft +B−1A∇t (3.1.7)

ft+1 = ω +A∇t +Bft (3.1.8)

t = 1, . . . , n and:

rt−1 = ∇t + (B −AIt|t−1)′rt (3.1.9)

f̂t = ft +B−1Art−1 (3.1.10)

where rn = 0 and t = n, . . . , 1. The predictive filter in Eq. (3.1.8) has the same form of score-driven

models. The term ∇t is now the score of the measurement density p(yt|ft,Θ), namely:

∇t =
∂ log p(yt|ft,Θ)

∂ft
(3.1.11)
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while It|t−1 = Et−1[∇t∇′t] is the information matrix, which may be time-varying. The vector ω ∈ Rk and

the two matrices A,B ∈ Rk×k are static parameters included in Θ. They are estimated by maximizing

the log-likelihood, namely:

Θ̂ = argmax
Θ

n∑
t=1

log p(yt|ft,Θ) (3.1.12)

Thus, one can run the backward smoothing recursions (3.1.9), (3.1.10) after computing the forward

filtering recursions (3.1.7), (3.1.8), in a similar fashion to Kalman filter and smoothing recursions. Note

that the above recursions are nonlinear, as the score of a non-Gaussian density is typically nonlinear

in the observations. The filter ft|t in eq. (3.1.7) allows to update the current estimate ft once a new

observation yt becomes available. While going backward, the smoothing recursions (3.1.9), (3.1.10)

update the two filters ft and ft|t using all available observations. Smoothed estimates f̂t are generally

less noisy than filtered estimates ft|t, ft and provide a more accurate reconstruction of the time-varying

parameters.

As discussed in Section 2.3, it is a standard practice in score-driven models replacing the score ∇t

with the scaled score st = St∇t. The role of the scaling matrix St is to take into account the curvature

of the log-likelihood function. The filtering and smoothing recursions (3.1.7)-(3.1.10) are obtained if one

sets St equal to the identity matrix. When using a scaled score st, the filtering recursions (3.1.7), (3.1.8)

become:

ft|t = ft +B−1Ast (3.1.13)

ft+1 = ω +Ast +Bft (3.1.14)

Since the score is now scaled by St, the term AIt|t−1 in eq. (3.1.9) must take into account the new

normalization. Thus, we replace A with ASt. As a result, we obtain the general backward smoothing

recursions:

rt−1 = st + (B −AStIt|t−1)′rt (3.1.15)

f̂t = ft +B−1Art−1 (3.1.16)

Note that the second equation is unaffected, as the term rt−1 already corrects for the scaling. For

instance, if St = I−1
t|t−1, we obtain:

rt−1 = st + (B −A)′rt (3.1.17)

f̂t = ft +B−1Art−1 (3.1.18)

that is, the information matrix It|t−1 disappears because its effect is already taken into account when
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scaling the score. If St = I−1/2
t|t−1 , we get:

rt−1 = st + (B −AI1/2
t|t−1)′rt (3.1.19)

f̂t = ft +B−1Art−1 (3.1.20)

From a computational point of view, the backward recursions (3.1.15), (3.1.16) are simple since st and

It|t−1 are typically available from the forward filtering recursion. We term the approximate smoother

obtained through recursions (3.1.15), (3.1.16) as Score-Driven Smoother (SDS). Basically, for any score-

driven model, one can devise a companion SDS recursion that only requires the st, It|t−1 and the static

parameters, as estimated through the SDF. Note that the forward recursion (3.1.13) is the analogue

of recursion (2.2.7) in the Kalman filter and allows to update SDF estimates once a new observation

yt becomes available. We denote the approximate Score-Driven Update filter (3.1.13) by SDU. The

proposed methodology can thus be schematically represented through the following procedure:

1. Estimation of static parameters:

Θ̃ = argmax
Θ

n∑
t=1

log p(yt|ft,Θ)

2. Forward predictive and update filter:

ft+1 = ω̃ + Ãst + B̃ft

ft|t = ft + B̃−1Ãst

3. Backward smoother:

rt−1 = st + (B̃ − ÃStIt|t−1)′rt

f̂t = ft + B̃−1Ãrt−1

3.1.3 Filtering uncertainty

The general framework developed in Section 3.1.2 also allows to construct in-sample and out-of-sample

confidence bands around filtered and smoothed estimates. As underlined by Blasques et al. (2016),

confidence bands can reflect both parameter and filtering uncertainty. Parameter uncertainty is related

to the fact that static parameters are replaced by their maximum likelihood estimates. Both observation-

driven and parameter-driven models are affected by parameter uncertainty. In observation-driven models,

confidence bands reflecting parameter uncertainty can be constructed through the methods developed

by Blasques et al. (2016). Filtering uncertainty is related to the fact that time-varying parameters

are not completely revealed by observations. As such, it is absent in observation-driven models, where

time-varying parameters are deterministic functions of past observations. However, if observation-driven
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models are regarded as filters, one is interested in constructing confidence bands around filtered and

smoothed estimates reflecting the conditional distribution of the underlying state variable.

In linear Gaussian models, filtering uncertainty can be assessed through the variance matrices Pt+1,

Pt|t, P̂t introduced in Section 2.2, which provide the conditional variance of the unobserved state variable.

It is instead less clear how one can quantify filtering uncertainty in misspecified observation-driven mod-

els. Zamojski (2016) proposed a bootstrap based method for assessing filtering uncertainty in GARCH

filters. Confidence bands constructed through this technique tend to underestimate filtering uncertainty,

because they are based on bootstraps of the filter rather than the underlying state variable. In addition,

the method of Zamojski (2016) does not allow to construct out-of-sample confidence bands, which are

often needed in practical applications.

In our framework, in-sample and out-sample confidence bands can be constructed by exploiting the

relation between Kalman filter recursions and score-driven recursions. In Section 3.1.1, we have shown

that the steady state variance matrix P̄ can be expressed as:

P̄ = T−1R (3.1.21)

In the score-driven framework, the analogue of Pt+1, which we denote by Jt+1, is then given by:

Jt+1 = B−1ASt (3.1.22)

where the scaling matrix St is introduced to take into account different normalizations of the score. From

eq. (2.2.10), (A.2.2), the analogue of Pt|t is:

Jt|t = Jt − JtIt|t−1Jt (3.1.23)

Similarly, the analogue of P̂t, from eq. (3.1.24), (2.2.10), is:

Nt−1 = It|t−1 + (B −AStIt−1)′Nt(B −AStIt−1) (3.1.24)

Ĵt = Jt − JtNt−1Jt (3.1.25)

with Nn = 0 and t = n, . . . , 1.

Confidence bands can be computed as quantiles of the conditional distribution of the state variable.

For a general state-space model, the latter is non-Gaussian and is not known analytically. Assuming a

Gaussian density generally leads to underestimate filtering uncertainty, as the true conditional density

is typically fat-tailed. In order to construct robust confidence bands, we use a more flexible density

determined by matching location and scale parameters with those of the normal density. This method

is described in its full generality by Buccheri et al. (2018c). In Section 3.2.2, we show an application to

the GARCH and assess the performance of robust confidence bands in a simulation study.
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3.2 Examples of SDS recursions

In this Section we provide several examples of SDS estimates. As a first step, we focus on two volatility

models that are quite popular in the econometric literature, namely the GARCH model of Bollerslev

(1986) and the multiplicative error model (MEM) of Engle (2002b) and Engle and Gallo (2006). These

are score-driven models which are susceptible of treatment within our framework. As a third example,

we present an AR(1) model with a score-driven autoregressive coefficient. The time-varying autoregres-

sive coefficient allows to capture temporal variations in persistence, as well as nonlinear dependencies

(Blasques et al. 2014c). Autoregressive models with time-varying coefficients have been employed for

instance by Delle Monache and Petrella (2017). In Chapter 6 we will use time-varying autoregressive

coefficients to capture nonlinearities in volatility dynamics.

One of the advantages of the SDS recursions (3.1.15), (3.1.16) is that they maintain the same simple

form when ft ∈ Rk, k > 1 is a vector containing multiple time-varying parameters. In this multivariate

setting, the use of simulation-based techniques would be highly computationally demanding. In order

to test the SDS in a multivariate setting, we consider the t-GAS model of Creal et al. (2011) and

the Wishart-GARCH model of Hansen et al. (2016). The former is a conditional correlation model

for heavy-tail returns while the latter is a joint model for the dynamics of daily returns and realized

covariance matrices. In these models, the number of time-varying parameters grows as the square of the

number of assets and therefore they provide an interesting multivariate framework in which to assess the

performance of the SDS.

1. GARCH-SDS

Consider the model:

yt = σtεt, εt ∼ NID(0, 1) (3.2.1)

The conditional density is thus:

p(yt|σ2
t ) =

1√
2πσ2

t

e
− y2t

2σ2t (3.2.2)

Setting ft = σ2
t and St = I−1

t|t−1, equations (3.1.13), (3.1.14) reduce to:

ft|t = ft +B−1A(y2
t − ft) (3.2.3)

ft+1 = ω +A(y2
t − ft) +Bft (3.2.4)

In particular, the predictive filter (3.2.4) is the standard GARCH(1,1) model. The smoothing recursions

(3.1.15), (3.1.16) reduce to:

rt−1 = y2
t − ft + (B −A)′rt (3.2.5)

f̂t = ft +B−1Art−1 (3.2.6)
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t = n, . . . , 1.
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Figure 3.2.1: Comparison among simulated (black lines), filtered (blue dotted lines) and smoothed (red

lines) variance σ2
t of GARCH(1,1) model.

2. MEM-SDS

Consider the model:

yt = µtεt (3.2.7)

where εt has a Gamma distribution with density p(εt|α) = Γ(α)−1εα−1
t ααe−αεt . The conditional density

is thus given by:

p(yt|µt, α) = Γ(α)−1yα−1
t ααµ−αt e

−α yt
µt (3.2.8)

Setting ft = µt and St = I−1
t|t−1, equations (3.1.13), (3.1.14) reduce to:

ft|t = ft +B−1A(yt − ft) (3.2.9)

ft+1 = ω +A(yt − ft) +Bft (3.2.10)

In particular, the predictive filter (3.2.10) is the standard MEM(1,1) model. The smoothing recursions

(3.1.15), (3.1.16) reduce to:

rt−1 = yt − ft + (B −A)′rt (3.2.11)

f̂t = ft +B−1Art−1 (3.2.12)
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t = n, . . . , 1.

3. AR(1)-SDS

Consider the model:

yt = c+ αtyt−1 + εt, εt ∼ N(0, q2) (3.2.13)

The conditional density is thus given by:

p(yt|αt) =
1√
2πq

exp

[
−1

2

(
yt − c− αtyt−1

q

)2
]

(3.2.14)

Setting ft = αt and St = I−1
t|t−1, equations (3.1.13), (3.1.14) reduce to:

ft|t = ft +B−1A

(
yt − c− ftyt−1

yt−1

)
(3.2.15)

ft+1 = ω +A

(
yt − c− ftyt−1

yt−1

)
+Bft (3.2.16)

while the smoothing recursions (3.1.15), (3.1.16) reduce to:

rt−1 =

(
yt − c− ftyt−1

yt−1

)
+ (B −A)′rt (3.2.17)

f̂t = ft +B−1Art−1 (3.2.18)

t = n, . . . , 1.

4. t-GAS-SDS

Let rt ∈ Rp denote a vector of demeaned daily log-returns. Consider the following observation density:

p(rt|Vt, ν) =
Γ((ν + p)/2)

Γ(ν/2)[(ν − 2)π]p/2|Vt|1/2

[
1 +

r′tV
−1
t rt

(ν − 2)

]− ν+p
2

(3.2.19)

where Vt ∈ Rp×p is a time-varying covariance matrix and ν > 2 is the number of degrees of freedom.

Note that p(rt|Vt, ν) is a normalized Student t distribution such that Cov(rt|Vt, ν) = Vt. Applying the

filtering eq. (3.1.14) leads to the t-GAS model of Creal et al. (2011). Closed form formulas for the

score and information matrix are reported in Creal et al. (2011). These authors also proposed two

parameterizations of Vt leading to positive-definite estimates. The first is similar to the one used in

the DCC model of Engle (2002a), while the second is based of hyperspherical coordinates. In the two

parameterizations, the number of time-varying parameters is k = p + p(p + 1)/2 and k = p(p + 1)/2,

respectively.

5. Wishart-GARCH-SDS

Let us assume that, in addition to daily log-returns rt, we can compute realized measures from the

intraday returns of the p assets. Let Xt ∈ Rp×p denote a positive definite estimate of the realized
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covariance matrix. Let also Ft denote the σ-field generated by rt and Xt. The observation density in

the Wishart-GARCH model is:

rt|Ft−1 ∼ Nk(0, Vt) (3.2.20)

Xt|Ft−1 ∼Wk(Vt/ν, ν) (3.2.21)

whereNk(0, Vt) is a multivariate zero-mean normal distribution with covariance matrix Vt andWk(Vt/ν, ν)

is a Wishart distribution with mean Vt and degrees of freedom ν ≥ p. Assuming that rt and Xt are

conditionally independent given Ft−1, the conditional log-likelihood can be written as:

logL(rt, Xt|Vt,Ft−1) = logL(rt|Vt,Ft−1) + logL(Xt|Vt,Ft−1) (3.2.22)

where:

logL(rt|Vt,Ft−1) =
1

2
dr(p)−

1

2
log |Vt| −

1

2
tr(V −1

t rtr
′
t) (3.2.23)

logL(Xt|Vt,Ft−1) =
1

2
dX(p) +

ν − p− 1

2
log |Xt| −

ν

2
log |Vt| −

ν

2
tr(V −1

t Xt) (3.2.24)

Here dr(p) = −p log(2π), dX(p, ν) = νp log(ν/2) − 2 log Γp(ν/2) and Γp is the multivariate Gamma

function of order p. We denote the vector of time-varying covariances by ft = vech(Vt) ∈ Rk, k = p(p+1)
2 .

The score ∇t = ∂ logL(rt,Xt|ft,Ft−1)
∂ft

∈ Rk and the information matrix It|t−1 = Et−1[∇t∇′t] ∈ Rk×k can be

computed as reported in Hansen et al. (2016). Opschoor et al. (2017) proposed an alternative specification

with a heavy tail distribution for both returns and realized measures. Similar SDS recursions can be

recovered for this fat-tail specification using our general framework.

Figures 3.2.1 - 3.2.3 show several examples of SDS estimates from the above models. The time-

varying parameters follow both deterministic and stochastic patterns and are generated as described in

the next paragraph.

3.2.1 Comparison of SDF and SDS estimates

In order to show the effectiveness of the proposed methodology, we compare SDF, SDU and SDS esti-

mates. It is natural expecting that SDU and SDS estimates are affected by lower estimation errors, as

they use more information when reconstructing time-varying parameters. However, comparing with the

SDF allows to provide a quantitative assessment of the benefits of using the SDU and SDS in place of

standard score-driven estimates.

We first focus on the univariate models (GARCH, MEM, AR(1)) and simulate N = 250 time-series

of n = 4000 observations with different dynamic patterns for the time-varying parameters. The first

2000 observations are used to estimate the models while the remaining observations are used for testing.

Let βt generically denote the time-varying parameters σ2
t , µt and αt in the three models. We consider

the following data generating processes for βt:
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Figure 3.2.2: Comparison among simulated true covariances Vt (black lines), filtered (blue dotted lines)

and smoothed (red lines) (co)variances of t-GAS model in the case k = 5. We show the variance

corresponding to the first asset on the left and the covariance between the first and the second asset on

the right.
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Figure 3.2.3: Comparison among simulated observations of Xt (grey lines), simulated true covariances

Vt (black lines), filtered (blue dotted lines) and smoothed (red lines) (co)variances of realized Wishart-

GARCH model in the case k = 5. We show the variance corresponding to the first asset on the left and

the covariance between the first and the second asset on the right.
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1. Slow sine: β1 + 1
2 sin(2πt

N )

2. Fast sine: β1 + 1
2 sin(20πt

N )

3. Ramp: β1 + 1
N mod (t, Nω )

4. Step: β1 + 1
2(t > N

2 )

5. Model: βt+1 = c+ ϕβt + ξt, ξt ∼ N(0, σ2)

t = 1, . . . , n. We set ω = 4, k = 1, c = 0.01, ϕ = 0.98, σ2 = 0.5. For some of these dynamic specifications,

figure 3.2.1 shows examples of filtered and smoothed estimates of time-varying parameters obtained

through the GARCH. As expected, SDS estimates are less noisy than filtered estimates and provide a

more accurate reconstruction of time-varying parameters.

Slow sine Fast sine Ramp Step Model

MSE

GARCH

SDF 1.0000 1.0000 1.0000 1.0000 1.0000

SDU 0.9958 0.9879 0.9888 0.9889 0.9912

SDS 0.4231 0.5398 0.5494 0.5029 0.5289

MEM

SDF 1.0000 1.0000 1.0000 1.0000 1.0000

SDU 0.9928 0.9718 0.9769 0.9794 0.9791

SDS 0.3874 0.4300 0.5239 0.5140 0.5132

AR(1)

SDF 1.0000 1.0000 1.0000 1.0000 1.0000

SDU 0.9954 0.9849 0.9935 0.9966 0.9991

SDS 0.5657 0.5202 0.6257 0.6303 0.6441

MAE

GARCH

SDF 1.0000 1.0000 1.0000 1.0000 1.0000

SDU 0.9974 0.9902 0.9975 0.9966 0.9948

SDS 0.6279 0.7017 0.7479 0.7314 0.7351

MEM

SDF 1.0000 1.0000 1.0000 1.0000 1.0000

SDU 0.9957 0.9813 0.9968 0.9962 0.9885

SDS 0.5990 0.6318 0.7370 0.7497 0.7178

AR(1)

SDF 1.0000 1.0000 1.0000 1.0000 1.0000

SDU 0.9991 0.9891 0.9978 0.9988 0.9995

SDS 0.7074 0.7010 0.7940 0.7934 0.7705

Table 3.2.1: Average MSE and MAE of filtered SDU and smoothed SDS estimates relative to standard

filtered SDF estimates.
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Table 3.2.1 shows average MSE and MAE of SDF, SDU and SDS estimates, for all the patterns

considered above. The SDU updates ft once a new observation yt becomes available. This translates

into a slight improvement over standard filtered estimates. The SDS, using all available observations,

significantly improves on SDF estimates, with relative gains larger than 35% and lower than 62% in

mean square errors.

We now consider the two multivariate models, namely the t-GAS and the Wishart-GARCH. We

compare SDF estimates to SDU and SDS in a simulation setting where N = 250 time series of n = 2000

daily realized covariance matrices and log-returns are generated as described in Appendix A.3. The aim

of the experiment is to estimate the true covariance matrix Vt from observations of daily returns rt in

the t-GAS model and from observations of both daily returns rt and realized covariance matrices Xt in

the Wishart-GARCH model. We consider three scenarios where the number of assets is p = 5, 10, 20

respectively, and thus we have k = 15, 55, 210 time-varying covariances2.

For p = 5, figures 3.2.2 and 3.2.3 compare SDF and SDS estimates of the Vt(1, 1) and Vt(1, 2)

elements of the simulated covariance matrix in the t-GAS and Wishart-GARCH models, respectively.

As in the previous univariate cases, smoothed estimates provide a better reconstruction of the time-

varying covariances. Note that, compared to the t-GAS model, the Wishart-GARCH provides estimates

which are closer to the simulated Vt, as they are obtained by conditioning on a larger information set.

In order to quantify estimation errors, we use the root mean square error (RMSE) and the quasi-

likelihood (Qlike), which are robust loss measures for covariance estimates (Patton 2011). These are

defined in Appendix A.3. Table 3.2.2 shows relative RMSE and Qlike gains of SDU and SDS estimates

over SDF. We first note that SDU and SDS provide significantly lower RMSE. In the t-GAS model, the

relative gain of the SDU is roughly equal to 3%, while the one of SDS is larger than 14% and lower

than 19%. In the Wishart-GARCH model, the relative gain of SDU is larger than 7% and lower than

13%, while the one of the SDS is larger than 13% and lower than 19%. It is interesting to note that

SDU gains are significantly larger in the Wishart-GARCH model. This is due to the fact that today’s

realized covariance Xt is a highly informative proxy of Vt, thus leading to drastic RMSE reduction when

included in the information set. In contrast, daily returns are less informative and thus it is necessary

to include all available observations to achieve significant RMSE reduction in the t-GAS model. If one

looks at the Qlike loss, relative gains of SDU and SDS are moderate compared to RMSE but they are

statistically significant. Even in this case, SDU gains are larger in the Wishart-GARCH model due to

the highly informative content of realized covariance measures.
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p 5 10 20

RMSE

t-GAS

SDF 1.0000 1.0000 1.0000

SDU 0.9723 0.9654 0.9666

SDS 0.8165 0.8202 0.8596

Wishart-GARCH

SDF 1.0000 1.0000 1.0000

SDU 0.8733 0.8821 0.9330

SDS 0.8164 0.8070 0.8742

Qlike

t-GAS

SDF 1.0000 1.0000 1.0000

SDU 0.9989 0.9965 0.9922

SDS 0.9821 0.9888 0.9898

Wishart-GARCH

SDF 1.0000 1.0000 1.0000

SDU 0.9858 0.9909 0.9901

SDS 0.9658 0.9700 0.9712

Table 3.2.2: Average root mean square error (RMSE) and quasi-likelihood (Qlike) of SDU and SDS

estimates relative to SDF estimates of t-GAS and Wishart-GARCH model

Nominal c.l. 90% 95% 99%

In-sample

Normal

SDF 0.8356 0.9026 0.9703

SDU 0.8346 0.9022 0.9701

SDS 0.8303 0.8980 0.9680

Robust

SDF 0.8968 0.9523 0.9930

SDU 0.8963 0.9520 0.9929

SDS 0.8921 0.9489 0.9918

Out-of-sample

Normal

SDF 0.8304 0.8975 0.9669

SDU 0.8296 0.8971 0.9667

SDS 0.8268 0.8951 0.9661

Robust

SDF 0.8917 0.9483 0.9913

SDU 0.8912 0.9481 0.9912

SDS 0.8890 0.9467 0.9909

Table 3.2.3: Average coverage of in-sample and out-of-sample confidence bands obtained by assuming a

normal conditional density and the fat-tailed density described in Section 3.2.2. We report results for

three different nominal confidence levels, namely 90%, 95%, 99%.

.
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3.2.2 Confidence bands

In Section (3.1.3), we have seen that an estimate of the conditional variance of the state variable is given

by the variance matrices Jt+1, Jt and Ĵt defined in eq. (3.1.22), (3.1.23), (3.1.25). As in the Kalman

filter, one can use these variances to construct confidence bands around filtered and smoothed estimates.

However, the conditional density of the state variable is typically fat-tailed and cannot be written in

closed form. Assuming normality generally provides narrow confidence bands and thus underestimates

filtering uncertainty.

Robust in-sample and out-of-sample confidence bands can be constructed by computing quantiles of

a more flexible distribution determined by matching location and scale parameters. We illustrate here

an application of this technique in the case of the GARCH. A detailed and systematic treatment can be

found in Buccheri et al. (2018c).

Let us consider the following stochastic volatility model:

yt = e
θt
2 εt, εt ∼ N(0, 1) (3.2.25)

θt+1 = γ + φθt + ηt, ηt ∼ N(0, σ2
η) (3.2.26)

We are interested in computing quantiles of the conditional density of eθt . Filtered and smoothed

estimates of the latent log-variance θt are recovered by computing the score-driven recursions for the

following observation density:

p(yt|ft) =
1√

2πeft
e
− y2t

2eft

As an outcome of this procedure, we also obtain the conditional variances Jt+1, Jt and Ĵt. Let Fθt|Ft1 (θ) =

P (θt < θ|Ft1), 1 < t1 < n, be the conditional distribution function of θt. The quantile function of eθt is

then given by:

F−1
eθt |Ft1

= exp
(
F−1
θt|Ft1

)
(3.2.27)

As a first approximation, we compute quantiles by assuming θt|Ft1 ∼ N(ft|t1 , Jt|t1). For t1 = t − 1,

t1 = t, t1 = n we obtain N(ft, Jt), N(ft|t, Jt|t), N(f̂t, Ĵt), respectively. These conditional densities

depend on parameters which are an output of the score-driven recursions and thus confidence bands

can be easily computed through eq. (3.2.27) using the Gaussian quantile function. We then assume

θt|Ft1 ∼ t(ft|t1 , Jt|t1 , ν), i.e. a Student’s t-distribution with location ft|t1 , scale Jt|t1 and ν degrees of

freedom. If ν →∞, we recover the Gaussian confidence bands. However, if ν is finite, confidence bands

will be larger and provide a better approximation to the true filtering uncertainty. In this example, the

parameter ν is chosen by fitting a t distribution on the residuals of an AR(1) model estimated on f̂t.

More sophisticated techniques are developed in Buccheri et al. (2018c).

2We implement the t-GAS model using hyperspherical coordinates, and thus we have k = p(p + 1)/2) time-varying

covariances.
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In order to test the quality of confidence bands, we generate 1000 time series of n = 4000 observations

of the stochastic volatility model (3.2.25), (3.2.26). The values of static parameters are chosen in order

to be similar to those obtained when estimating the model on real financial returns: γ = 0.001, φ = 0.98,

σ2
η = 0.02. Figure (3.2.4) shows one of the simulated patterns, together with 95% confidence bands for

filtered and smoothed estimates computed through the method described above.

We estimate the GARCH in the sub-sample comprising the first 2000 observations and construct

in-sample confidence bands. In the remaining sub-sample of 2000 observations, out-of-sample bands are

constructed using previous parameter estimates. Both Gaussian and robust confidence bands are built

at 90%, 95%, 99% nominal confidence levels. We compare the nominal confidence level to the coverage,

defined as the fraction of times the true variance path eθt is inside the confidence bands. Table (3.2.3)

shows average coverages for in-sample and out-of-sample SDF, SDU and SDS confidence bands. As

expected, confidence bands constructed by assuming a Gaussian density provide an average coverage

which is significantly lower than the nominal confidence level, meaning that they underestimate filtering

uncertainty. In contrast, the average coverage of robust confidence bands is very close to the nominal

coverage. Similar results are found when changing the variance σ2
η in the latent process. In particular,

for larger values of σ2
η, the quality of Gaussian confidence bands further deteriorates, while robust bands

still provide a good matching to the nominal level. A systematic treatment of the technique described

here and, more generally, of filtering uncertainty in observation-driven models can be found in Buccheri

et al. (2018c).

3.3 Monte Carlo analysis

In this Section we perform extensive Monte Carlo simulations to test the performance of the SDS

under different dynamic specifications for the time-varying parameters. Since we interpret the SDS

as an approximate smoother for nonlinear non-Gaussian models, we compare its performance to that

of correctly specified parameter-driven models. The main idea is to examine the extent to which the

approximation leads to similar results as correctly specified parameter-driven models. In this case, the

use of the SDS would be particularly advantageous from a computational point of view, as the likelihood

of score-driven models can be written in closed form and smoothing can be performed through a simple

backward recursion. This analysis is similar in spirit to that of Koopman et al. (2016), who compared

score-driven models to correctly specified parameter-driven models and found that the two classes of

models have similar predictive accuracy, with very small average losses. We find a similar result for the

SDS.
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Figure 3.2.4: Simulated volatility and SDF, SDU, SDS estimates together with 95% in-sample confidence

bands computed through the technique described in Section 3.2.2.
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3.3.1 Linear non-Gaussian models

We first consider an AR(1) model with a t-distributed measurement error:

yt = αt + εt, εt ∼ t(0, σ2
ε , ν) (3.3.1)

αt+1 = c+ φαt + ηt, ηt ∼ N(0, σ2
η) (3.3.2)

We choose c = 0.01 and φ = 0.95. The signal-to-noise ratio is defined as δ =
σ2
η

σ2
ε
. The corresponding

observation driven model is a t-location model (Harvey 2013) with measurement density:

p(yt|ft;ϕ, β) =
Γ[(β + 1)/2]

Γ(β/2)ϕ
√
πβ

[
1 +

(yt − ft)2

βϕ2

]−(β+1)/2

(3.3.3)

Setting St = I−1
t|t−1, eq. (3.1.14) reduces to:

ft+1 = ω +A(β + 3)
yt − ft

β +
(
yt−ft
ϕ

)2 +Bft (3.3.4)

while the smoothing recursions (3.1.15), (3.1.16) reduce to:

rt−1 = (β + 3)
yt − ft

β +
(
yt−ft
ϕ

)2 + (B −A)′rt (3.3.5)

f̂t = ft +B−1Art−1 (3.3.6)

t = N, . . . , 1. We compare standard Kalman filtered and smoothed estimates to SDF, SDU and SDS

estimates. Similarly to previous simulation studies, we generate 1000 time series of 4000 observations and

use the first subsample of 2000 observations for estimation and the remaining observations for testing.

Table 3.3.1 shows relative MSE and MAE for different values of ν. Note that SDF, SDU and SDS provide

better estimates than standard Kalman filter and smoother. In particular, we observe large differences

for low values of ν, where the t-distribution strongly deviates from the Gaussian, and for low values

of δ, at which accounting for the non-normality of the measurement error becomes more important.

Note also that gains of SDS over Kalman smoother estimates are larger than gains of SDF over the

Kalman filter for low ν and δ. These results confirm the ability of the SDS to provide robust smoothed

estimates of time-varying parameters, to the same extent as the SDF provides robust filtered estimates

of time-varying parameters in presence of a non-Gaussian prediction density.

3.3.2 Nonlinear non-Gaussian models

We now examine the behavior of the SDS in presence of nonlinear non-Gaussian parameter-driven models.

In particular, we consider the following three specifications, which are quite popular in the econometric

literature:
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SDF − KF(p) SDU − KF(u) SDS − KS

δ 0.1 1 10 0.1 1 10 0.1 1 10

ν = 3

MSE 0.8610 0.9522 0.9991 0.8074 0.8357 1.0223 0.8093 0.8876 0.9618

MAE 0.9389 0.9859 1.0036 0.9110 0.9439 1.0150 0.9128 0.9634 1.0169

ν = 5

MSE 0.9552 0.9912 1.0032 0.9407 0.9681 1.0032 0.9376 0.9880 1.0058

MAE 0.9792 0.9973 0.9999 0.9720 0.9886 1.0032 0.9698 0.9949 1.0112

ν = 8

MSE 0.9877 0.9981 1.0029 0.9895 0.9928 1.0107 0.9844 0.9954 1.0117

MAE 0.9939 0.9992 1.0039 0.9927 0.9973 1.0070 0.9917 0.9982 1.0136

Table 3.3.1: Average MSE and MAE of SDF, SDU, SDS relative to Kalman filtered and smoothed

estimates of AR(1) model plus non-Gaussian noise.

1. Stochastic volatility model with Gaussian measurement density:

yt = e
θt
2 εt, εt ∼ N(0, 1)

θt+1 = γ + φθt + ηt, ηt ∼ N(0, σ2
η)

2. Stochastic volatility with non-Gaussian measurement density:

yt = e
θt
2 εt, εt ∼ t(0, 1, ν)

θt+1 = γ + φθt + ηt, ηt ∼ N(0, σ2
η)

3. Stochastic intensity model with Poisson measurement density:

p(yt|λt) =
λytt e

−λt

yt!
, θt = log λt

θt+1 = γ + φθt + ηt, ηt ∼ N(0, σ2
η)

In order to estimate the two stochastic volatility models, Harvey et al. (1994) proposed a Quasi

Maximum Likelihood method (QML) based on a Gaussian quasi-likelihood. Normality is assumed for

the linearized model. The latter is thus susceptible of treatment with the Kalman filter and the method

can be viewed as providing approximate filtered and smoothed estimates. It is therefore interesting to

compare the performance of the QML to that of the SDS.

The three models above are estimated through importance sampling (IS hereafter). As discussed by

Durbin and Koopman (2000), IS methods are simple and effective for problems in time series analysis.

They are based on independent samples rather than Markov chains, thus enabling to obtain accurate

estimates of Monte-Carlo variances. Sandmann and Koopman (1998) devised an IS technique to evaluate

the full likelihood function of stochastic volatility models. We estimate models 1 and 2 by employing
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the same IS approach but use the recently developed “Numerically Accelerated Importance Sampling”

(NAIS) technique of Koopman et al. (2015b) to choose the parameters of the importance density. This

method has been shown to provide several efficiency gains compared to other IS approaches. The

stochastic intensity model can also be estimated through IS, as described e.g. by Durbin and Koopman

(1997). Similarly to the previous cases, we choose the parameters of the importance density through

the NAIS. More details on IS techniques for nonlinear non-Gaussian state-space models can be found in

Durbin and Koopman (2012).

We set the measurement densities of the corresponding observation-driven models as indicated below.

1. For the two stochastic volatility models:

p(yt|ft) =
Γ
(
β+1

2

)
Γ
(
β
2

)√
πβeft

[
1 +

1

β

(
yt

e
ft
2

)2
]−β+1

2

(3.3.7)

2. For the stochastic intensity model:

p(yt|ft) = e−e
ft e

ftyt

yt!
(3.3.8)

The use of a t distribution for the first model is motivated by the fact that even Gaussian stochastic

volatility models are able to generate a predictive density with fat-tails and over-dispersion (Carnero

et al. 2004). Thus, in order for the observation-driven model to capture these dynamic features, we

adopt a more flexible specification for the measurement density. This is in line with Koopman et al.

(2016), who used more flexible densities for observation-driven counterparts of parameter-driven models.

Note that the measurement density (3.3.7) is similar to the one leading to the Beta-t-EGARCH model

of Harvey and Chakravarty (2008).

In the first case, setting St = I−1
t|t−1, the filtering recursion (3.1.14) reduces to:

ft+1 = ω +A
β + 3

β

β + 1

β

(
yt

e
ft
2

)2

1 + 1
β

(
yt

e
ft
2

)2 − 1

+Bft (3.3.9)

while the smoothing recursions (3.1.15), (3.1.16) reduce to:

rt−1 =
β + 3

β

β + 1

β

(
yt

e
ft
2

)2

1 + 1
β

(
yt

e
ft
2

)2 − 1

+ (B −A)′rt (3.3.10)

f̂t = ft +B−1Art−1 (3.3.11)

In the case of the measurement density in eq. (3.3.8), setting St = I−1
t|t−1, the filtering recursion (3.1.14)

reduces to:

ft+1 = ω +A(e−ftyt − 1) +Bft (3.3.12)
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while the smoothing recursions (3.1.15), (3.1.16) reduce to:

rt−1 = e−ftyt − 1 + (B −A)′rt (3.3.13)

f̂t = ft +B−1Art−1 (3.3.14)

Estimation of parameter-driven models is performed through the NAIS with S = 200 simulations.

We also introduce control variables as described by Koopman et al. (2015b). Smoothed estimates are

computed with G = 200 simulations. Larger values of S and G do not lead to significant improvements

of parameter-driven model estimates compared to SDS estimates. The simulation setting is the same as

in the previous experiment, with 1000 simulated time series of 4000 observations. Figure 3.3.1 compares

smoothed estimates obtained through both IS and the SDS for the three different models at hand. A

simple visual inspection shows that the estimates provided by the two methods are very close.

In order to examine in more detail differences between SDS and IS estimates, tables 3.3.2, 3.3.3, 3.3.4

show the results of Monte Carlo experiments for the three models. In the case of stochastic volatility

models, we consider several scenarios by varying the autoregressive coefficient φ and the coefficient of

variation CV. The latter is defined as in Sandmann and Koopman (1998), namely:

CV = exp

(
σ2
η

1− φ2

)
− 1 (3.3.15)

CV 0.1 1 5 10 0.1 1 5 10

MSE MAE

φ = 0.98

NAIS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SDS 0.9988 1.0050 1.0001 1.0162 1.0004 1.0043 1.0017 1.0097

QML 1.4153 1.3880 1.3333 1.3138 1.1797 1.1739 1.1564 1.1475

φ = 0.95

NAIS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SDS 1.0057 0.9983 0.9988 1.0059 1.0034 1.0023 1.0024 1.0059

QML 1.3131 1.3737 1.3246 1.3168 1.1450 1.1758 1.1567 1.1524

φ = 0.90

NAIS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SDS 1.0076 0.9956 0.9974 1.0086 1.0044 1.0010 1.0033 1.0093

QML 1.2371 1.3157 1.2893 1.2750 1.1109 1.1508 1.1422 1.1370

Table 3.3.2: Average MSE and MAE of IS, SDS and QML smoothed estimates normalized by IS loss in

case of stochastic volatility model with Gaussian measurement density.

Note that CV is related to the variance of the signal innovation. The values of both φ, CV and

of the remaining parameters are chosen to be close to those estimated on real financial time series, as

discussed in Sandmann and Koopman (1998). For the stochastic intensity model, we consider scenarios

characterized by different autoregressive coefficients φ and different values of the variance σ2
η of the
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Figure 3.3.1: Comparison among simulated unobserved components (black dotted lines), IS smoothed

estimates (red dashed lines) and SDS smoothed estimates (blue dotted and dashed).
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signal. In the case of the two stochastic volatility models, the SDS largely outperforms the QML in all

scenarios. The performance of the latter tends to worsen as CV decreases, according to the fact that

the non-normality of the measurement equation becomes more relevant for low CV . Compared to IS,

the relative MSE loss of the SDS is very small. In particular, it is always less than 2% in the Gaussian

case, while it is always lower than 2.5% in the non-Gaussian case. Larger losses are observed for large

values of CV , where ση is large and accounting for the non-normality of observations is less relevant.

CV 0.1 1 5 10 0.1 1 5 10

MSE MAE

φ = 0.98, ν = 3

NAIS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SDS 1.0026 0.9950 1.0140 1.0169 1.0015 0.9997 1.0077 1.0098

QML 1.3962 1.2553 1.2125 1.1998 1.1735 1.1184 1.1013 1.0939

φ = 0.95, ν = 3

NAIS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SDS 1.0014 1.0049 1.0121 1.0200 1.0008 1.0031 1.0064 1.0105

QML 1.3058 1.2639 1.2447 1.2246 1.1354 1.1230 1.1158 1.1056

φ = 0.90, ν = 3

NAIS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SDS 1.0020 1.0033 1.0149 1.0221 1.0016 1.0023 1.0081 1.0117

QML 1.2306 1.2325 1.2262 1.2200 1.1026 1.1075 1.1062 1.1034

Table 3.3.3: Average MSE and MAE of IS, SDS and QML smoothed estimates normalized by IS loss in

case of stochastic volatility model with non-Gaussian measurement density.

In the case of the stochastic intensity model, we observe a similar behavior but the relative MSE

loss is slightly larger for φ = 0.98 and σ2
η = 0.01, where it is found to be around 5%. Overall, average

MSE losses are less than 2.5% if one averages across all scenarios. This result is in agreement with what

Koopman et al. (2016) found by comparing the prediction performance of score-driven models to that

of correctly specified parameter-driven models.

Finally, it is interesting to look at computational times. Table 3.3.5 shows average computational

times of IS relative to those of SDS. We report both the time required to estimate the parameters

and that required for smoothing. Estimation of static parameters is much faster, as the likelihood can

be computed in closed form. In contrast, estimating correctly specified parameter-driven models with

S = 200 simulations is on average 80 times slower. Note that decreasing S would lead to faster estimates

at the expense of reducing efficiency. Smoothing with IS is on average 215 times slower compared to

smoothing with the SDS. Note also that, while it is generally difficult to extend the NAIS and other IS

methods to a setting with multiple time-varying parameters, the SDS maintains the same form in case ft

is a large vector of time-varying parameters. Thus, using the SDS allows to obtain smoothed estimates

which are very close to those of correctly specified parameter-driven models but reducing considerably
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σ2
η × 100 0.1 0.5 1 0.1 0.5 1

MSE MAE

φ = 0.98

NAIS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SDS 1.0149 1.0281 1.0521 1.0067 1.0132 1.0244

φ = 0.95

NAIS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SDS 1.0203 1.0176 1.0254 1.0097 1.0083 1.0120

φ = 0.90

NAIS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SDS 1.0310 1.0160 1.0205 1.0142 1.0079 1.0099

Table 3.3.4: Average MSE and MAE of IS and SDS smoothed estimates normalized by IS loss in case

of stochastic intensity model with Poisson measurement density.

the computational burden.

SV Gaussian SV Fat tail Intensity

Estimation 45.35 107.90 82.33

Smoothing 179.74 229.79 236.34

Table 3.3.5: Average computational times of IS relative to SDS.

3.4 Empirical illustration

It is interesting to investigate whether the results found in the simulation study in Section 3.2 also

hold on empirical data. In particular, we aim to provide a quantitative assessment of the improvement

of SDU and SDS estimates over standard score-driven estimates in a problem of empirical relevance.

Unlike the simulation study, it is generally difficult to perform such analysis empirically, given that

time-varying parameters do not belong to the econometrician’s information set and cannot be employed

as a benchmark in the loss function. However, when dealing with conditional covariance estimates

computed from daily log-returns, one can use realized covariance computed from intraday log-returns

as an accurate proxy of the true latent covariance (Andersen and Bollerslev 1997). Loss functions can

therefore be built as if covariances were observed. This empirical analysis will also show the advantages

of the SDS methodology in an highly multivariate framework, where the use of simulation-based methods

is computationally problematic or even unfeasible.

Our dataset consists of unbalanced 1-minute transaction data of Russel 3000 constituents over the

period from 18-11-1999 to 27-09-2013. The total number of assets is 4166. The analysis is performed on

the subsample comprising the last T = 2000 days, in order to avoid discontinuities due to changes on

index composition. We consider trades from 9:30 to 16:00, leading to 390 timestamps per day. Assets
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Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4

RMSE×107

SDF
0.7967∗ 0.2904 0.2181 0.9222

1.0000 1.0000 1.0000 1.0000

SDU
0.7967∗ 0.2806∗ 0.1997 0.8976∗

0.9733 0.9665 0.9157 0.9732

SDS
0.7445∗ 0.2791∗ 0.1732∗ 0.8101∗

0.9345 0.9611 0.7941 0.8784

Qlike

SDF
-34.1291 -37.3352 -32.4399 -37.7819

1.0000 1.0000 1.0000 1.0000

SDU
-34.2181 -37.4292 -32.6133 -37.9202∗

0.9974 0.9975 0.9947 0.9964

SDS
-34.3482∗ -37.5424∗ -32.6987∗ -37.9751∗

0.9936 0.9945 0.9921 0.9949

Table 3.4.1: Absolute and relative RMSE and Qlike of SDF, SDU, SDS estimates of the t-GAS model

for the four randomly selected portfolios with n = 5. The asterisk implies that the estimator is included

in the model confidence set.

having less than 10 trades per day are excluded in order to avoid poor and ill-conditioned realized

covariance estimates. As a final outcome of our filtering procedure, we obtain N = 1682 assets.

In order to estimate conditional covariances from daily log-returns, we use the t-GAS model of Creal

et al. (2011) described in Section (3.2). Compared to standard conditional covariance models, the main

advantage of the t-GAS is that it updates covariances by taking into account the full shape of the Student

t observation density and thus provides robustness against outliers (see discussions on Creal et al. 2011).

We implement the parameterization based on hyperspherical coordinates, as it generally leads to better

estimates. The number of time-varying parameters grows as p2, where p is the number of assets.

Among the universe of N = 1682 assets, we select random groups of p = 5, 10, 20 assets. In particular,

for each cross-section dimension p, we randomly choose four groups. The analysis is thus performed on 12

different groups of assets. As done in the simulation study, we use the RMSE and Qlike as loss functions.

The benchmark used in the loss function is the realized covariance estimator of Barndorff-Nielsen and

Shephard (2004) computed at the 5-minutes sampling frequency. The use of other estimators does not

alter the outcome of the experiment. For each group of assets, the t-GAS is estimated on the time-series

of T = 2000 open-to-close log-returns. We thus compute (i) the predictive filter ft, (ii) the update filter

ft|t and (iii) the smoother f̂t. The statistical significance of loss differences is tested through the model

confidence set of Hansen et al. (2011) at the 90% confidence level.

Tables 3.4.1, 3.4.2, 3.4.3 show the results of the analysis, for p = 5, 10, 20, respectively. We first note
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Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4

RMSE×105

SDF
0.1271 0.2080 0.3105 0.1398

1.0000 1.0000 1.0000 1.0000

SDU
0.1229∗ 0.2021∗ 0.3008 0.1356∗

0.9662 0.9716 0.9688 0.9704

SDS
0.1189∗ 0.1946∗ 0.2868∗ 0.1345∗

0.9354 0.9355 0.9237 0.9623

Qlike

SDF
-65.5001 -68.3171 -70.4809 -70.9020

1.0000 1.0000 1.0000 1.0000

SDU
-65.7213 -68.4716 -70.6554 -71.0882

0.9974 0.9977 0.9975 0.9974

SDS
-65.8784∗ -68.6694∗ -70.9327∗ -71.2838∗

0.9936 0.9949 0.9936 0.9946

Table 3.4.2: Absolute and relative RMSE and Qlike of SDF, SDU, SDS estimates of the t-GAS model

for the four randomly selected portfolios with n = 10. The asterisk implies that the estimator is included

in the model confidence set.

that covariance estimates constructed through the predictive filter feature larger RMSE and Qlike and

are always excluded from the model confidence set. They are in fact less informative, since only past

log-returns are used when reconstructing time-varying parameters. Covariance estimates built through

ft|t and f̂t are both included in the model confidence set constructed through the RMSE. If the Qlike

is used, only smoothed estimates are included. The latter provide a better reconstruction of realized

covariance, suggesting that future observations contain relevant information on today’s covariance. Note

also that relative gains are similar across different dimensions, meaning that the SDS is not affected by

the proliferation of time-varying parameters when the number of assets increases.

The above results suggest that, when extracting latent covariance, the smoothing provided by the

t-GAS model is effective in aggregating all available information. Compared to standard score-driven

filtered estimates, the update filter ft|t and the smoother f̂t can thus be regarded as providing a more

accurate estimate of latent covariance. As seen in the simulation study, this is true for a large class of

dynamic models. We thus use these results to solicit the use of the SDS in place of standard filtered

estimates in signal reconstruction analysis.
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Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4

RMSE×105

SDF
0.7061 0.3705 0.2146 0.3255

1.0000 1.0000 1.0000 1.0000

SDU
0.6950∗ 0.3634∗ 0.2099 0.3170∗

0.9843 0.9808 0.9782 0.9739

SDS
0.6709∗ 0.3565∗ 0.1998∗ 0.3046∗

0.9501 0.9622 0.9311 0.9358

Qlike

SDF
-134.7951 -128.6277 -140.1625 -137.9562

1.0000 1.0000 1.0000 1.0000

SDU
-135.1702 -129.0375 -140.5694 -138.2863

0.9972 0.9968 0.9971 0.9976

SDS
-135.7584∗ -129.3180∗ -141.2055∗ -138.8856∗

0.9929 0.9947 0.9926 0.9933

Table 3.4.3: Absolute and relative RMSE and Qlike of SDF, SDU, SDS estimates of the t-GAS model

for the four randomly selected portfolios with n = 20. The asterisk implies that the estimator is included

in the model confidence set.



Chapter 4

A multi-asset price formation model

Almost all results in this chapter previously appeared in Buccheri et al. (2018b).

The dynamics of high-frequency asset prices are known to be characterized by “lead-lag effects”:

some assets (the laggers) tend to follow the movements of other assets (the leaders). This phenomenon

is of fundamental interest in market microstructure research and in high-frequency financial economet-

rics. However, while it has received some attention in the empirical finance literature (see e.g. Chan

1992, de Jong and Nijman 1997, Chiao et al. 2004, Huth and Abergel 2014, Dobrev and Schaumburg

2017) and in the statistical literature (Hoffmann et al. 2013, Hayashi and Koike 2016, Hayashi and

Koike 2017), there is still a lack of econometric approaches aiming to describe lead-lag effects from a

market microstructure perspective. On the one hand, there is no well-established microstructure theory

explaining the existence of lead-lag effects. On the other hand, compared to the case of low-frequency

(e.g. daily) data, the estimation of both contemporaneous and lagged correlations among assets traded

at high-frequency is a more complex task. This is mainly due to the presence of microstructure noise

and asynchronous trading, which prevent the use of traditional multivariate techniques1.

Motivated by the empirical evidence of cross-asset trading (Hasbrouck and Seppi 2001, Bernhardt and

Taub 2008, Pasquariello and Vega 2015), i.e. the fact that dealers may rely on the prices of other securities

when setting their quotes, we introduce a multi-asset price formation mechanism which generalizes well

known univariate microstructure models of lagged price adjustment (see Hasbrouck, 1996 for a review

on lagged price adjustment models). We name our model Multi-asset Lagged Adjustment (MLA). The

MLA is a micro-founded model where lead-lag correlations among high-frequency returns naturally arise

as a result of the multivariate nature of the price formation process. Econometric inference on the

MLA allows to test for the presence of lead-lag correlations in the latent price process or, equivalently,

1For instance, the so-called Epps effect Epps (1979), i.e. the bias towards zero of (contemporaneous) sample correlations

as the sampling frequency increases, is due to asynchronous trading.
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for the existence of a non-trivial multi-asset price generation mechanism. Interestingly, by separating

the estimation of lead-lag correlations from contemporaneous correlations, we obtain an estimate of the

integrated covariance of the efficient martingale price process that is robust to microstructure noise,

asynchronous trading and lead-lag effects.

Lagged price adjustment models, also known as partial price adjustment models, were proposed,

amongst others, by Hasbrouck and Ho (1987), Amihud and Mendelson (1987) and Damodaran (1993).

The theoretical concept underlying these models is that prices do not instantaneously adjust when new

information arrives. Instead, due to lagged dissemination of information and price smoothing by market

dealers, the adjustment process is delayed. Hasbrouck and Ho (1987) introduced a lagged adjustment

price process that allows to describe return autocorrelations at orders greater than one, as observed on

real transaction data. We extend this idea to a multivariate framework by viewing the price formation

process as a genuine multi-asset process where information related to other assets affects the price

discovery process of a given asset. By doing so, we establish a link between the market microstructure

literature on lagged price adjustment and that on cross-asset trading.

The concept of cross-asset trading (also known as cross-asset pricing or cross-asset learning) has

been extensively exploited by researchers since the seminal work of Caballé and Krishnan (1994), who

developed a model of insider trading based on the informational assumption that market makers can learn

about one security from observing all order flows in the market. Based on cross-asset learning, Cespa

and Focault (2011) developed a transmission mechanism of liquidity shocks among many stocks, the

so-called “liquidity spillovers”. Pasquariello and Vega (2015) described the relation between cross-price

impact and informed multi-asset trading by assuming that dealers in one security can condition on prices

of all other securities. Finally, common factors in the price discovery process have been investigated by

Hasbrouck and Seppi (2001), Harford and Kaul (2005), Andrade et al. (2008) and Tookes (2008).

Econometric inference on the MLA can be conveniently carried out by casting the model into a state-

space representation. The transition equation is a VAR(1) process for the returns of the “adjusted” price

while the observation equation incorporates microstructure effects as an additive noise term. Estima-

tion is performed through a Kalman-EM algorithm which easily handles missing observations. Thus,

asynchronicity can be treated as a typical missing value problem, in a similar fashion to Corsi et al.

(2015) and Shephard and Xiu (2016). This approach allows to estimate the parameters using all avail-

able observations and avoids the use of standard synchronization schemes. The latter may introduce

spurious lead-lag correlations or destroy true short-term lead-lag effects. As shown in Section 4.2, the

MLA estimator of lead-lag correlations is robust to asynchronous trading and to differences in the level

of trading activity.

In the MLA, there is a one-to-one correspondence between the VAR matrix of lead-lag coefficients
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and the speed of adjustment matrix in the lagged price adjustment process. As such, the presence

of statistically significant lead-lag correlations can be interpreted as an evidence of the existence of

a multi-asset price formation mechanism. Due to the VAR structure in the transition equation, the

MLA can detect “latent” Granger causality, i.e. causality relationships among noisy and asynchronous

observations.

In Section 4.3 the MLA is tested on a cross-section of NYSE tick data. We provide empirical evidence

for the existence of a multi-asset price formation mechanism. This is done by recovering the speed of

adjustment matrix from the estimated lead-lag correlations and showing that it contains statistical

significant elements. A likelihood ratio test proves that the null hypothesis of a standard random walk

plus noise model, along the lines of Corsi et al. (2015) and Shephard and Xiu (2016), is not able to

capture relevant features of the dynamics of high-frequency prices. In particular, deviations from the

null assumption of a random walk are more pronounced in periods of large volatility. In a similar fashion

to Dobrev and Schaumburg (2017), this empirical finding can be interpreted in light of high-frequency

trading: volatility can create short-living cross-autocorrelations that are exploited by short-term, high-

frequency trading strategies. A positive relation between volatility and high-frequency trading is found

by Zhang (2010), amongst others. We finally examine in detail the cross autocorrelation structure of

the market and find that, in contrast to what is typically found with alternative, non-robust estimators,

even assets characterized by lower trading activities can lead the dynamics of more liquid assets.

4.1 Theoretical framework

4.1.1 The MLA

A significant portion of the empirical research on market microstructure has been devoted to understand-

ing the autocorrelation structure of univariate and multivariate high-frequency return series. There is

well-established evidence of three key empirical properties: strong negative first-order autocorrelation

in the return series, existence of positive autocorrelation at lags greater than one and, finally, existence

of lead-lag correlations. Simple bid-ask models such as the model of Roll (1984) reproduce the negative

first-order autocorrelation observed in the return series. Univariate bid-ask models were later generalized

to capture correlations at orders greater than one through the introduction of lagged price adjustments

(Hasbrouck, 1996). Here, we consider a multi-asset version of a model with lagged price adjustment that

is also able to keep into account lead-lag correlations.

We assume that the efficient log-price Pt is a d-dimensional vector that evolves as Brownian semi-

martingale defined on some filtered probability space (Ω,F , {Ft}t∈[0,T ],P):

Pt =

∫ t

0
µsds+

∫ t

0
σdWs, Σ = σσ′ (4.1.1)
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where t ∈ [0, T ], µs is a vector of predictable locally bounded drifts, σ is a volatility matrix and Ws is

a vector of independent Brownian motions. The interval [0, T ] can be thought of as representing the

trading day.

Let 0 ≤ t1, . . . , tn ≤ T denote n equally-spaced observation times. Opposed to Pt, we consider the d-

dimensional observed log-price process Yti . The difference τ = ti+1− ti between consecutive observation

times is assumed to be a very short time interval (e.g. τ = 1 sec. in our empirical application). Note

that, because of asynchronous trading, only the components of Yti corresponding to traded assets are

observed at time ti, i = 1, . . . n. Observations of other assets are missing. For simplicity, we assume that

the drift term in eq. (4.1.1) is zero2. We can write:

Pti+1 = Pti + uti , uti ∼ NID(0, τΣ) (4.1.2)

These are the prices that, abstracting from microstructure effects, would be observed in a perfect market,

i.e. one in which prices instantaneously react to new information. In real markets, dealers do not

instantaneously adjust their quotes to new information. Instead, the adjustment process is gradual and

reflects lagged dissemination of information and several market imperfections, such as trading costs,

discreteness and price smoothing by market makers. In addition, due to cross-asset trading (Hasbrouck

and Seppi 2001, Bernhardt and Taub 2008, Pasquariello and Vega 2015), dealers tend to look at more

informative securities before setting their quotes. In order to capture lagged dissemination of information

across stocks, we start from the simple univariate lagged adjustment mechanism proposed by Hasbrouck

and Ho (1987) and adapt it to a multi-asset framework.

Let Xti , i = 1, . . . , n denote a d-dimensional vector of “adjusted” prices reflecting the imperfections

of the trading process. We assume that Xti is related to the efficient log-price process Pti by:

Xti+1 = Xti + Ψ(Pti+1 −Xti) (4.1.3)

where Ψ is a d×d matrix characterizing the speed of adjustment of Xti to the true efficient log-price Pti .

If Ψ = Id, then Xti = Pti and the adjustment process is instantaneous. Instead, if Ψ 6= Id the adjustment

process is gradual and, as a result, there is a delay between Xti and Pti . Note that the matrix Ψ may

be non-diagonal. This implies that the adjustment process of one asset is affected by the adjustment

process of other assets and the strength of this effect is quantified by the non-diagonal elements of Ψ.

Due to the presence of market microstructure effects (e.g. bid-ask bounces), the observed log-price

process Yti deviates from the lagged price Xti . Therefore, we assume that Xti is observed under additive

noise:

Yti = Xti + εti , εti ∼ NID(0, H) (4.1.4)

2This assumption is not too restrictive since we are considering ultra-high-frequency returns for which drift effects are

negligible.
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where εti is a normal white noise term summarizing microstructure effects. In line with Corsi et al. (2015)

and Shephard and Xiu (2016), the noise covariance matrix H is assumed to be diagonal. However, the

model can be easily estimated even under a non-diagonal noise term. Denoting by ∆Xti+1 = Xti+1 −Xti

the log-returns of the lagged price, eq. (4.1.2) and (4.1.3) imply:

∆Xti+1 = (Id −Ψ)∆Xti + Ψuti (4.1.5)

that is, a first order vector autoregressive VAR(1) process. If Ψ is non-diagonal, the knowledge at time

ti of the return of one asset is useful for forecasting the return of another asset at time ti+1. Therefore,

in this multi-asset framework, lead-lag effects naturally arise as a consequence of the mutual influence

between adjustment processes of different assets.

Let us assume, without loss of generality, τ = 1 and re-write eq. (4.1.4) and (4.1.5) as:

Yt = Xt + εt, εt ∼ NID(0, H) (4.1.6)

∆Xt+1 = F∆Xt + ηt, ηt ∼ NID(0, Q) (4.1.7)

where F = Id − Ψ and Q = ΨΣΨ′. eq. (4.1.6) is a measurement equation expressing the fact that

observations of latent prices are affected by noise while eq. (4.1.7) is a transition equation describing

the dynamics of latent returns. We name model (4.1.6), (4.1.7) Multi-Asset Lagged Adjustment (MLA)

model. The MLA cannot be estimated as a standard VAR model since Xt is not observed. As discussed

in Section 4.1.2, it can conveniently be estimated through a standard Kalman-EM algorithm with missing

observations.

The assumption of a constant instantaneous matrix Σ in the efficient log-price process may be re-

garded as too restrictive, since there is well-established evidence that both volatilities and correlations

exhibit strong intraday variation (see e.g Andersen and Bollerslev, 1997, Tsay, 2005, Bibinger et al.,

2014, Buccheri et al., 2017b). However, by performing extensive Monte-Carlo simulations and using a

misspecified DGP with a time-varying covariance matrix Σt, we will show (see Section 4.2.2) two relevant

properties. First, the estimate F̂ of the VAR(1) matrix of lead-lag coefficients remains unbiased even

in presence of time-varying covariances. Second, denoting by Ψ̂ and Q̂ the two estimates of Ψ and Q,

the matrix Σ̂ = Ψ̂−1Q̂Ψ̂′−1 is an unbiased estimator of 1
TQV , the quadratic covariation of the efficient

log-price process:

QV =

∫ T

0
Σsds (4.1.8)

This result is similar to the one obtained by Shephard and Xiu (2016), who derived the asymptotic theory

for the QML estimator of the integrated covariance of a Brownian semimartingale process observed

under noise and asynchronicity but neglecting lead-lag effects. Thus, the MLA provides an estimator of

the quadratic covariation of a Brownian semimartingale process that is robust to microstructure noise,

asynchronicity and that takes into account the presence of lead-lag effects.
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Note that making inference on model (4.1.7) can be regarded as testing for one-lag Granger causality

in the latent process Xt. Testing for higher order lags would result in additional d× d lead-lag matrices

to be estimated, thus increasing considerably the dimensionality of the parameter space. In practice, a

less efficient but more feasible method is to consider observations sampled at a smaller frequency, which

avoids estimating complex higher order VAR(p) models.

4.1.2 Estimation

The MLA can be conveniently estimated by writing the two equations in a linear Gaussian state-space

representation. This is possible if one introduces the 2d-dimensional state vector X̄t = (X ′t, X
′
t−1)′ and

re-writes the two equations as:

Yt = MX̄t + εt, εt ∼ NID(0, H) (4.1.9)

X̄t = φX̄t−1 + η̄t, η̄t ∼ NID(0, Q̄) (4.1.10)

where:

φ =

(
Id + F −F
Id 0d×d

)
, Q̄ =

(
Q 0d×d

0d×d 0d×d

)
(4.1.11)

with M = (Id, 0d×d) being a matrix that selects the first d components of X̄t and 0d×d denoting a d× d

matrix of zeros. We generically denote as Ω the set of parameters to be estimated, namely Ω = {F,Q,H}.

Model (4.1.9), (4.1.10) is a linear Gaussian state-space representation for which the Kalman filter

can be applied and the log-likelihood function can be written down in the form of the prediction error

decomposition, as described in Section 2.2. Instead of numerically optimizing the log-likelihood function

through a quasi-Newton method, we use the EM algorithm of A. P. Dempster (1977). The latter is

particular advantageous for multivariate models, as it does not require inverting the Hessian matrix.

As a first step, we assume there are no missing observations. We will show how to handle missing

observations in the next paragraph. We denote by Xn = {X̄0, . . . , X̄n} the set of latent prices and by

Yn = {Y1, . . . , Yn} the set of observed prices. Also, let us assume that X̄0 ∼ N(µ,Σ). Note that, since the

knowledge of X̄t−1 completely determines the last d components of X̄t, the density function f(X̄t|X̄t−1)

can be written as:

f(X̄t|X̄t−1) = f(MX̄t|X̄t−1) (4.1.12)

Therefore, denoting by logL = logL(Yn,Xn) the complete log-likelihood function, we have:

logL = const− 1

2
log |Σ| − 1

2
(X̄0 − µ)′Σ−1(X̄0 − µ)

− n

2
log |Q| − 1

2

n∑
t=1

(X̄t − φX̄t−1)′M ′Q−1M(X̄t − φX̄t−1)

− n

2
log |H| − 1

2

n∑
t=1

(Yt −MX̄t)
′H−1(Yt −MX̄t)

(4.1.13)
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One cannot maximize the complete log-likelihood to obtain the MLE of Ω since Xn is not observed.

The EM algorithm provides an iterative method for finding the MLE by successively maximizing the

conditional expectation of the complete log-likelihood function. The latter can be computed using the

Kalman filter and smoothing recursions.

Let us introduce the following quantities which can be recovered as an output of the Kalman filter

and smoothing recursions:

X̄s
t = E[X̄t|Ys] (4.1.14)

P̄ st = Cov[X̄t|Ys] (4.1.15)

P̄ st,t−1 = Cov[X̄t, X̄t−1|Ys] (4.1.16)

With s = t, s < t and s > t, the resulting conditional expectation is, respectively, an update filter, a

predictive filter and a smoother. X̄s
t and P̄ st can be computed through the Kalman filter and smoother

recursions showed in Section 2.2 while P̄ st,t−1 can be computed recursively as described in appendix

(A.4). The Kalman filter is initialized with diffuse initial conditions, i.e. we set E[X̄1|Y1] = 0 and

Cov[X̄1|Y1] = κId with κ → ∞. At iteration r, the expectation step in the EM algorithm consists in

taking the conditional expectation of the complete log-likelihood given the observations Yn and using

the estimate of Ω obtained at step r − 1:

E[logL|Yn, Ω̂r−1] = −1

2
log |Σ| − 1

2
Tr[Σ−1[(X̄n

0 − µ)(X̄n
0 − µ)′ + P̄n0 ]

− n

2
log |Q| − 1

2
Tr[M ′Q−1M(C −Bφ′ − φB′ + φAφ′)]

− n

2
log |H| − 1

2
Tr[H−1

n∑
t=1

[(Yt −MX̄n
t )(Yt −MX̄n

t )′ +MP̄nt M
′]

(4.1.17)

where A, B and C are given by:

A =
n∑
t=1

(P̄nt−1 + X̄n
t−1X̄

n′
t−1) (4.1.18)

B =

n∑
t=1

(P̄nt,t−1 + X̄n
t X̄

n′
t−1) (4.1.19)

C =
n∑
t=1

(P̄nt + X̄n
t X̄

n′
t ). (4.1.20)

In the maximization step, the function Q(Ω|Ω̂r−1) = E[logL|Yn, Ω̂r−1] is maximized with respect to

Ω. Let us consider the following terms depending on F , Q and H:

G1(F,Q) = −1

2
Tr[M ′Q−1M(C −Bφ′ − φB′ + φAφ′)]

G2(F,Q) = −n
2

log |Q|+G1(F,Q)

G3(H) = −n
2

log |H| − 1

2
Tr[H−1[(Yt − PX̄t)(Yt − PX̄t)

′ +MP̄nt M
′]
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We start by solving the first order condition ∇FG1(F,Q) = 0. Let us write the matrices A and B in the

following form:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
(4.1.21)

where Aij and Bij , i = 1, 2 are d× d submatrices of A and B. In appendix (A.5) we prove the following:

Proposition 2. The solution of the matrix equation ∇FG1(F,Q) = 0 is:

F̂r = ΓΘ−1 (4.1.22)

where Γ = B11 −B12 −A11 +A12 and Θ = A11 +A22 −A12 −A21.

The estimated value of F is then used to solve ∇QG2(F̂r, Q) = 0. In appendix (A.6), (A.4) we prove the

following proposition:

Proposition 3. The solution of the two matrix equations ∇QG2(F̂r, Q) = 0, ∇HG3(H) = 0 is:

Q̂r =
Υ̂

n
, Ĥr =

diag(Λ)

n
(4.1.23)

where Υ̂ = M(C −Bφ̂′r − φ̂rB′ + φ̂rAφ̂
′
r)M

′, Λ =
∑n

t=1[(Yt −MX̄n
t )(Yt −MX̄n

t )′ +MP̄nt M
′] and

φ̂r =

(
Id + F̂r −F̂r
Id 0d×d

)
(4.1.24)

Conditions under which the EM algorithm converges to a local maximum of the incomplete log-

likelihood function are studied by Wu (1983). We check convergence by looking at the relative increase

of the log-likelihood and stop the algorithm when it is lower than some small threshold (µ = 10−6

in our simulation and empirical study). The log-likelihood can be computed in the prediction error

decomposition form:

logL = const− 1

2

n∑
t=1

log |Ft| −
1

2

n∑
t=1

v′tF
−1
t vt (4.1.25)

where vt = Yt −MX̄t−1
t is the prediction error and Ft = MP̄ t−1

t M ′ +H.

Once F̂ , Q̂ and Ĥ have been estimated, the matrix of price adjustment Ψ and the covariance matrix

of the efficient log-price process Σ can be computed as:

Ψ̂ = Id − F̂ , Σ̂ = Ψ̂−1Q̂Ψ̂′−1 (4.1.26)

The Kalman filter and smoothing recursions provide filtered and smoothed estimates of the lagged price

Xt. From these, using eq. (4.1.3), one also obtains, as a byproduct, filtered and smoothed estimates of

the martingale efficient log-price process.
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4.1.3 Missing value modification

The update formulas in the maximization step can be modified to keep into account missing values. Let

us assume that, at time t, d1 components in the vector Yt are observed while the remaining d2 are not

observed. We consider the d1-dimensional vector Y
(1)
t of observed components and the d1 × d matrix

M
(1)
t whose lines are the lines of M corresponding to Y

(1)
t . Also, we consider the d1 × d1 covariance

matrix H
(11)
t of observed components disturbances. Following Shumway and Stoffer (2015), the Kalman

filter and smoothing recursions in appendix (A.4) and the prediction error decomposition form of the

log-likelihood, eq. (4.1.25) are still valid, provided that one replaces Yt, M and H with:

Y(t) =

(
Y

(1)
t

0

)
, M(t) =

(
M

(1)
t

0

)
, H(t) =

(
H

(11)
t 0

0 I(22)

)
(4.1.27)

where I(22) is the d2×d2 identity matrix and 0 generically denotes zero arrays of appropriate dimension.

Note that the time dependence in M(t) and H(t) is only due to missing observations, while the matrices

M and H are constant over time.

Taking the conditional expectation in eq. (4.1.13) requires some modifications in case of missing

observations. The second and the fourth term remain as in eq. (4.1.17), provided that one runs Kalman

filter and smoothing recursions as described in (4.1.27). The last term changes because one needs to

evaluate expectations of Yt conditioning to the incomplete data Y(1)
n = {Y (1)

1 , Y
(1)

2 , . . . , Y
(1)
n }. If H is

diagonal, as we are assuming here, Shumway and Stoffer (1982) showed that:

E[(Yt −MX̄t)(Yt −MX̄t)
′|Y(1)

n ] = (Y(t) −M(t)X̄
n
t )(Y(t) −M(t)X̄

n
t )′

+M(t)P̄
n
t M

′
(t) +

(
0 0

0 Ĥ22,t,r−1

)
(4.1.28)

where Ĥ22,r−1 is the d2×d2 covariance matrix of unobserved components disturbances at time t obtained

using the estimate at step r − 1 of the matrix H. Therefore, the update equation for H becomes:

Ĥ =
diag(Λ∗)

n
(4.1.29)

where

Λ∗ =

n∑
t=1

Dt

[
(Y(t) −MX̄n

t )(Y(t) −MX̄n
t )′ +M(t)P̄

n
t M

′
(t) +

(
0 0

0 Ĥ22,t,r−1

)]
D′t, (4.1.30)

Dt being a permutation matrix that rearranges the components of Yt in their original order.

4.2 Simulation study

4.2.1 Comparison with other estimators

As underlined in the introduction, non-synchronous trading can have deep consequences when one wants

to make inference on multivariate high-frequency tick-by-tick data. For instance, the Epps effect is
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Figure 4.2.1: Cross-correlogram of two simulated Brownian motions with correlation ρ = 0.4 observed

asynchronously over T = 10000 timestamps. The red line is obtained by averaging across HY estimates

while the blue line is obtained by averaging EM estimates over N = 250 independent realizations.

certainly due to asynchronicity (see Epps, 1979 and Hayashi and Yoshida, 2005).

Non-synchronous trading is responsible for two main kinds of spurious lead-lag correlations. First,

some assets seem to lead other assets simply because, being traded more frequently, they are more

likely to show the effect of new information arriving on the market before other assets which are traded

less frequently. This effect is only due to differences in the level of trading activity and is not related

to true lead-lag dependencies. Second, as we will show below, even in presence of similar levels of

trading activities, one can find spurious nonzero lead-lag correlations that are not related to true lead-

lag dependencies. Another source of spurious lead-lag correlations can simply arise as a result of the

combination between autocorrelation and contemporaneous correlations and is not due to nonzero non-

diagonal elements in the VAR matrix.

A detailed analysis of the impact of asynchronicity on lead-lag correlations has been performed by

Huth and Abergel (2014), who considered the standard previous-tick correlation estimator (Griffin and

Oomen, 2011) and the estimator proposed by Hoffmann et al. (2013). The latter is computed on bivariate

series by applying the Hayashi-Yoshida (HY) estimator (Hayashi and Yoshida 2005) after shifting the

timestamps of one of the two series. In their simulation study, Huth and Abergel generated two (contem-

poraneously) correlated Brownian motions with different timestamps. Compared to the previous-tick

correlation estimator, the HY estimator is not affected by differences in the levels of trading activity,

meaning that the lead-lag correlogram remains symmetric even if the two processes are characterized by

different average durations. However, as a consequence of asynchronicity, it has a bias at nonzero leads

and lags that implies nonzero correlations even in absence of true lead-lag dependencies.

The MLA is robust to both effects. The reason is that asynchronicity is handled as resulting from
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Figure 4.2.2: As in figure (4.2.1) but HY and EM are estimated over a time series obtained by shifting

one of the two simulated Brownian motions. We show the average correlations provided by the HY (red

line) and EM (blue line) estimators and the cross-correlogram of the simulated time-series (grey line).

missing observations which can easily be incorporated in the EM algorithm without jeopardizing the

inference. In order to show this property, we sample two Brownian motions over a time grid of T = 10000

equally spaced points. The correlation between the two Brownian motions is ρ = 0.4. Asynchronicity is

reproduced by censoring the simulated observations through Poisson sample. The probability of missing

values is set equal to Λ1 = 0.3 for the first series and Λ2 = 0.5 for the second series. We repeat the

experiment 250 times and for each realization compute lead-lag correlations by estimating model (4.1.6),

(4.1.7) and using the HY estimator. Figure (4.2.1) shows the cross-correlogram obtained by averaging

lead-lag correlations over all the simulations. We note that both correlograms are symmetric, meaning

that both estimators are not affected by differences in the level of trading activity. However, the HY

estimator provides nonzero correlations at nonzero lags. As shown by Huth and Abergel (2014) (appendix

B) this is due to asynchronicity. In contrast, the EM estimator is not affected by asynchronicity and

correctly reproduces the correlogram of simulated data.

Our definition of lead-lag effects is formally different from the one of Hoffmann et al. In the MLA

framework, lead-lag effects arise as a consequence of nonzero non-diagonal coefficients in the lagged

adjustment matrix Ψ. In their work, Hoffman et al. considered a continuous-time bivariate process

(Xt, Yt) and focused on the estimation of the time shift θ such that the shifted process (Xt, Yt+θ) is a

semi-martingale with respect to some filtration. In order to understand how the MLA behaves in this

different framework, we consider the bivariate time series of the previous experiment and shift by a lag

θ = 1 all the timestamps of one of the two series. Figure (4.2.2) shows the correlogram of the new

bivariate time-series and those estimated by the HY and MLA estimators. The HY estimator correctly

estimates the lagged cross correlation but provides nonzero correlations at other leads and lags. The
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MLA estimator correctly captures the true cross-correlogram. Indeed, the shifted time series can be

written as a VAR(1) process with a nonzero non-diagonal element in F and uncorrelated disturbances.

In case θ > 1, one can sample observations at a lower frequency and still use the MLA estimator.

As a final remark, it is interesting observing that, in contrast to the HY estimator, the MLA estimator

is robust to microstructure noise in that it allows observations of the underlying process Xt to be

contaminated by noise. Another relevant advantage is that the proposed estimator is not pairwise, i.e.

it can be applied to a generic multivariate time-series of dimension d ≥ 2.

4.2.2 Robustness to stochastic volatility

In eq. (4.1.1) the covariance matrix Σ of the efficient log-price is assumed to be constant over time. This

assumption is too restrictive since real high-frequency data are characterized by significant changes in

their covariance structure during the day. In order to assess the properties of F̂ and Σ̂ in a more realistic

scenario, we simulate realizations from a misspecified DGP with a time-varying covariance matrix Σt.

The latter is decomposed as:

Σt = DtRDt (4.2.1)

where R is a constant correlation matrix and Dt is a diagonal matrix of time-varying standard deviations:

Dt =


σt,1 · · · 0

...
. . .

...

0 · · · σt,d

 (4.2.2)

The dynamic terms σt,i evolve through the following stochastic volatility model:

dσ2
t,i = ki(vi − σ2

t,i)dt+ wiσt,idBt,i i = 1, . . . , d (4.2.3)

where Bt,i is Wiener process, E[dBt,idWt,j ] = δijρijdt and E[dBt,idBt,j ] = δijdt.

We report the results obtained in the bivariate case (d = 2). The length of the trading day is

assumed to be T = 6.5 hours. Thus, we simulate n = 23400 timestamps of 1-second prices. The

stochastic volatility process is simulated by through Euler discretization. The parameters in eq. (4.2.3)

are chosen in the following way: v1 = 0.01, v2 = 0.02, w1 = w2 = 0.1, k1 = 10, k2 = 7. We adopt the

following choices for the matrix F of lead-lag coefficients and the leverage matrix ρ:

F =

(
0.1 0.5

0.3 0.1

)
, ρ =

(
0.05 0

0 0.1

)
(4.2.4)

The diagonal elements of the variance matrix H, that we denote as hii, i = 1, 2, are computed based on

the average signal-to-noise ratio, that is defined as δ̄i = vi/hii.
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For simplicity, we assume δ̄1 = δ̄2. In order to mimic realistic noise scenarios, we choose δ̄i = 0.5, 1, 2.

Indeed, as shown in Section 4.3, these are the values that are estimated on real markets. We consider

both the case where observations are synchronized and the case where there are missing values. In the

latter case, the simulated observations are censored using Poisson sampling. The probability of having

a missing value is set equal to Λ = 0.5 for both series.

We estimate model (4.1.6), (4.1.7) for N = 1000 independent realizations and consider the pivotal

statistics θ̂iF = F̂ i−F and θ̂iΣ = Σ̂i− 1
TQV , for i = 1, . . . , N . The term QV is the quadratic covariation

defined in eq. (4.1.8). The three scenarios δ̄ = 0.5, 1, 2 are combined to each of the two scenarios

Λ = 0, 0.5, obtaining a total of 6 scenarios. In table (4.2.1) we show the sample mean and standard

deviations of each entries of two matrices θ̂iΣ and θ̂iF . A one sample t-test is performed in order to test

the null assumption that the mean is zero. The p-value is reported in the table. The distribution of

θ̂Σ and θ̂F is always centered in 0. This implies that, even in case of time-varying covariances, F̂ is an

unbiased estimate of the true matrix F of lead-lag coefficients while Σ̂ is an unbiased estimate of the

quadratic covariation of the efficient log-price process.

In figures (4.2.3), (4.2.4), (4.2.5), the two scenarios Λ = 0, δ̄ = 1 and Λ = 0.5, δ̄ = 1 are considered.

We plot histograms of each element of θ̂Σ and θ̂F after normalizing by their sample standard deviations.

In the first scenario there are no missing values and the histograms are perfectly compatible with a

standard normal distribution. In the second scenario the distribution is still centered in zero but we

observe slight deviations from the normal. This is due to the fact that censoring halves, on average, the

number of observations and thus leads to less efficient estimates.

In order to assess the effect of lead-lag correlations, we plot in figure (4.2.6) the same histograms as

in figure (4.2.5a), (4.2.5b), (4.2.5c) but now use the Hayashi-Yoshida estimator to compute the quadratic

covariation. As can be seen, the Hayashi-Yoshida estimator is largely biased in case lead-lag effects are

present. A similar bias is observed when using other estimators of the quadratic covariation, e.g. the

pairwise estimator of Aı̈t-Sahalia et al. (2010), the multivariate realized kernel of Barndorff-Nielsen et al.

(2011), and the QML estimator of Shephard and Xiu (2016).

4.3 Empirical evidence

4.3.1 Dataset

Our dataset is provided by Thomson Reuters and contains intraday transaction data of 11 among the

most frequently traded NYSE assets in the period between 03-01-2006 and 31-12-2014, a total of 2250

days. The time stamp precision is the second. We use the procedure described by Barndorff-Nielsen

et al. (2009) to clean the data. In particular: (i) we consider trades in the time window from 9:30 to



66 CHAPTER 4. A MULTI-ASSET PRICE FORMATION MODEL

-5 0 5

0

0.2

0.4

0.6

F
11

-5 0 5

0

0.2

0.4

0.6

F
12

-5 0 5

0

0.2

0.4

0.6

F
21

-5 0 5

0

0.2

0.4

0.6

F
22

Figure 4.2.3: Histograms of the elements of the matrix θ̂F standardized by their sample standard devia-

tions in the scenario δ̄ = 1,Λ = 0 over N = 1000 independent realizations. The red line is the standard

normal distribution.
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Figure 4.2.4: Histograms of the elements of the matrix θ̂F standardized by their sample standard devia-

tions in the scenario δ̄ = 1,Λ = 0.5 over N = 1000 independent realizations. The red line is the standard

normal distribution.
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Figure 4.2.5: Histograms of the elements of the matrix θ̂Σ standardized by their sample standard de-

viations in the scenario δ̄ = 1,Λ = 0 (a), (b), (c) and in the scenario δ̄ = 1,Λ = 0.5 (d), (e), (f) over

N = 1000 independent realizations. The red line is the standard normal distribution.
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Figure 4.2.6: Histograms of the elements of the matrix θ̂Σ standardized by their sample standard devi-

ations and computed using the Hayashi-Yoshida estimator in the scenario δ̄ = 1,Λ = 0 over N = 1000

independent realizations. The red line is the standard normal distribution.
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16:00; (ii) we aggregate high-frequency prices at the one-second frequency by taking the median price of

trades within the same second; (iii) we delete entries with prices that are above the ask plus the bid-ask

spread.

Table (4.3.1) shows the 11 assets used for the analysis together with the probability of missing values

Λ, the average duration ∆t in seconds between observations, the average number of observations per day

n̄ and the average signal-to-noise ratio δ̄ as estimated by the MLA in the last 250 days of the sample.

Note that five of the selected assets, namely {C, JPM, BAC, MS, GS} belong to the banking sector while

the remaining six, namely {XOM, CVX, SLB, GM, COP, GE} belong to the oil, energy and transport

sectors. We name the two sets of assets as “Group I” and “Group II”, respectively.

Stock Symbol Λ ∆t n δ

Exxon XOM 0.816 5.434 4304 1.178

Citigroup C 0.837 6.135 3832 1.246

JPMorgan JPM 0.840 6.250 3743 0.999

Chevron CVX 0.848 6.578 3553 0.850

Schlumberger SLB 0.853 6.802 3454 0.613

General Motors GM 0.866 7.462 3135 0.888

Bank of America BAC 0.869 7.633 3079 0.328

ConocoPhillips COP 0.880 8.333 2828 0.494

General Electric GE 0.892 9.259 2543 0.641

Morgan Stanley MS 0.897 9.708 2416 0.741

Goldman Sachs GS 0.920 12.500 1873 0.630

Table 4.3.1: For each asset we show the probability of missing values Λ, the average duration ∆t in

seconds between consecutive observations, the average number of observations per day n̄ and the average

signal-to-noise ratio as estimated by the MLA. The averages are computed over the last 250 days of the

sample.

4.3.2 Lead-lag effects and cross-asset trading

Our primary goal is to assess the statistical significance of the multi-asset lagged adjustment mechanism

that we have introduced. To this end, we compare the MLA to a standard random walk plus noise model,

also known as local level (LL) model (see e.g. Durbin and Koopman 2012). The latter is nested into the

MLA, as it is obtained by setting to zero the VAR matrix F in eq. (4.1.7). The resulting model can be

estimated through the EM algorithm with missing observations, as described by Corsi et al. (2015) and

Shephard and Xiu (2016).

In order to compare the two models, for the 11 assets considered here, we estimate the LL and the

MLA on each day of the sample and compute the likelihood ratio λ = LLL

LMLA . Figure (4.3.1) reports the
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Figure 4.3.1: We show the test statistic −2 log(λ) computed for each day of the sample and the upper

bound of the 95% confidence interval evaluated using a χ2 distribution with a number of degrees of

freedom equal to d2.

test statistic −2 log(λ), which is distributed according to a χ2 with a number of degrees of freedom equal

to d2, i.e. the difference between the number of parameters in the MLA and the one in the LL model.

The null hypothesis that the matrix of lead-lag coefficients F is zero is strongly rejected in most of the

cases. This indicates that the simple LL specification considered e.g. by Corsi et al. (2015) and Shephard

and Xiu (2016) is not sufficient to capture important features of the dynamics of high-frequency prices.

In particular, the fact that F is nonzero implies that the lagged adjustment matrix Ψ = Id−F is different

from the identity and therefore the adjustment process is delayed, as a result of lagged dissemination of

information across stocks.

The deviation of the MLA specification from the null assumption of a simple random walk process

is larger in periods of high volatility. Figure (4.3.2) shows the logarithm of RVavg. For each day of

the sample, the latter is computed as the average realized variance of the 11 assets considered in table

(4.3.1). Large values of −2 log(λ) correspond to bursts in volatility. This is confirmed by figure (4.3.3),

which shows a scatter plot of the two quantities and the line obtained from the OLS regression. The

correlation is ρ = 0.4296 and is highly significant.

The relation between cross-asset effects and volatility can be ascribed to the impact of high-frequency

trading (HFT). HFT is typically based on short-term statistical dependencies among assets. In periods

of high uncertainty, volatility can create short-living cross autocorrelations that are exploited by high-

frequency traders. A positive relationship between HFT and volatility, especially in periods of high

market uncertainty, was found by Zhang (2010). A related result is the one of Dobrev and Schaumburg
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Figure 4.3.2: For each day of the sample, we show the logarithm of RVavg. The latter is computed as

the average realized variance of the 11 assets considered in table (4.3.1).
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Figure 4.3.3: Scatter plot of −2 log(λ) versus log(RVavg), where RVavg is computed as the average realized

variance of the assets. The correlation is ρ = 0.4296. We also show the result of the OLS regression of

−2 log(λ) on log(RVavg)
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(2017), who revealed a close relationship between volatility and lead-lag effects among different markets

as a consequence of HFT surges in cross-market activity.
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Figure 4.3.4: Dynamics of 1-sec lead-lag correlations between Bank of America and Citigroup.
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Figure 4.3.5: Dynamics of 1-sec lead-lag correlations between Chevron and Exxon.

A more detailed description of the relation between market volatility and cross-asset effects can be

obtained by looking at the estimated lead-lag correlations. Figure (4.3.4) shows the daily dynamics of

1-sec lead-lag correlations between Bank of America and Citigroup. Lead-lag correlations are computed

from the MLA estimated parameters as described in appendix (A.7). Figure (4.3.5) shows the same result

for Chevron and Exxon. In periods of high uncertainty and large volatility, the cross-autocorrelation

structure of the market is more stable, with leag-lag correlations being typically above zero. This is

especially true during the 2007-2008 financial crisis, where correlations are generally positive for both
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couples of assets. Note also that both lead and lag correlations are nonzero, meaning that sometimes

asset A can lead the dynamics of asset B and other times B can lead the dynamics of A.

In periods of low volatility, the dynamic of leag-lag correlations is generally more erratic. Thus, it is

necessary to focus on shorter periods of time to examine in more detail the multi-asset structure of the

market. We concentrate here on the last 250 days of the sample, i.e. the subsample including the year

2014. In figures (4.3.6), (4.3.7) we plot the average of cross autocorrelations for every couple of assets in

Group I and Group II, respectively. Bars denote 95% confidence intervals. Correlations at positive lags

imply that the second asset is leading the first while correlations at negative lags imply the opposite. As

suggested by the previous analysis, we find strong evidences of cross-asset effects in both groups. For

instance, in Group I, Goldman Sachs appears to lead all other assets while Bank of America is lead by

all the remaining assets. Note that Goldman Sachs is the less traded asset of Group I. The fact that it

leads the dynamics of other assets implies that this effect is not merely due to differences in liquidity but

to true lead-lag correlations that emerge as a consequence of nonzero lead-lag coefficients in the matrix

F . In Group II we note that oil companies like Exxon, ConocoPhillips, Chevron, Schlumberger lead the

dynamics of energy and transport companies like General Electric and General Motors. In contrast, we

observe weaker lead-lag correlations among leaders (e.g. between XOM and CVX) and among laggers

(e.g. between GE and GM).

There is statistical evidence of lead-lag correlations between assets belonging to different groups.

These between-groups effects are in general weaker then within-group lead-lag effects. For instance, in

figure (4.3.8) we show the estimated correlogram of GS-GM (4.3.8a) and the one of MS-CVX (4.3.8b).

These are the two couples of assets belonging to different groups exhibiting the largest lead-lag correla-

tions. In other cases we observe smaller or even non-significant correlations.

Note that lead-lag correlations can arise even if the non-diagonal elements of F are all zero, as a

consequence of combined autocorrelation and contemporaneous correlation effects. This is not the case

here, as the estimated matrix F̂ has a lot of statistically significant non-diagonal elements. Tables

(4.3.2), (4.3.3) show the average, over the subsample considered above, of the two sub-matrices of F

corresponding to lead-lag coefficients of Group I and Group II, respectively. Non-diagonal elements are

nonzero, with great significance. This implies that the recovered cross-asset structure arises as a direct

consequence of the proposed multi-asset price formation mechanism. This result can be interpreted in

light of cross-asset trading. Dealers tend to rely on the prices of more informative securities in order to

set their quotes and this translates into a lagged dissemination of information across assets, as captured

by the non-diagonal elements of the matrix Ψ.
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Figure 4.3.6: Cross autocorrelations for all the couples of assets in Group I. The correlograms are

computed by averaging those obtained on all the business days of 2014. Error bars denote 95% confidence

intervals. Correlations at positive lags imply that the second asset displayed in the title is leading the

first and the other way around for negative lags.
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Figure 4.3.7: Cross autocorrelations for all the couples of assets in Group II. The correlograms are

computed by averaging those obtained on all the business days of 2014. Error bars denote 95% confidence

intervals. Correlations at positive lags imply that the second asset displayed in the title is leading the

first and the other way around for negative lags.
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Group I

avg Fij

C JPM BAC MS GS

C 0.0886∗∗∗∗ 0.0472∗∗∗∗ 0.0220∗ -0.0635∗∗∗∗ 0.1276∗∗∗∗

JPM 0.0318∗∗∗ 0.1023∗∗∗∗ 0.0065(ns) -0.0709∗∗∗∗ 0.1358∗∗∗∗

BAC 0.0518∗∗∗∗ 0.0657∗∗∗∗ 0.0863∗∗∗∗ 0.0201(ns) 0.1040∗∗∗∗

MS 0.0752∗∗∗∗ 0.0973∗∗∗∗ 0.0107(ns) 0.0193∗ 0.1542∗∗∗∗

GS 0.0334∗∗ 0.0011(ns) -0.0031(ns) -0.0743∗∗∗∗ 0.1647∗∗∗∗

Table 4.3.2: We report the sample average, over the sub-sample of N = 252 days, of the elements

of the estimated matrices F̂ corresponding to assets belonging to Group I, together with significance

levels obtained based on the p-value of the one-sample t-test: ∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001,

∗∗∗∗p ≤ 0.0001, (ns)p > 0.05.

Group II

avg Fij

XOM CVX SLB GM COP GE

XOM 0.0776∗∗∗∗ 0.0428∗∗∗ 0.0273∗∗∗∗ -0.0143∗∗ -0.0263(ns) -0.0408∗∗∗∗

CVX 0.0232∗ 0.0981∗∗∗∗ 0.0155∗ -0.0137(ns) -0.0327∗ -0.0322∗∗∗

SLB 0.0135(ns) 0.0665∗∗∗ 0.0946∗∗∗∗ -0.0251∗ -0.0709∗∗∗∗ -0.0355∗

GM 0.0809∗∗∗∗ 0.0657∗∗ 0.0733∗∗∗∗ 0.0686∗∗∗∗ -0.0035(ns) 0.0182(ns)

COP 0.0318∗∗ 0.0502∗∗∗ 0.0485∗∗∗∗ -0.0114(ns) 0.0531∗∗∗∗ -0.0045(ns)

GE 0.0321∗ 0.0542∗∗∗ 0.0424∗∗∗∗ 0.0137(ns) -0.0015(ns) 0.0585∗∗∗∗

Table 4.3.3: We report the sample average, over the sub-sample of N = 252 days, of the elements

of the estimated matrices F̂ corresponding to assets belonging to Group II, together with significance

levels obtained based on the p-value of the one-sample t-test: ∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001,

∗∗∗∗p ≤ 0.0001, (ns)p > 0.05.
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Figure 4.3.8: Cross autocorrelations between stocks belonging to different groups.



Chapter 5

Intraday covariance dynamics

Almost all results in this chapter previously appeared in Buccheri et al. (2017b).

Multivariate conditional volatilities and correlation models have been largely applied to low-frequency

(e.g. daily) financial data where prices are synchronized and microstructure effects are negligible. Popular

multivariate dynamic time-series models include the class of multivariate extensions of the univariate

GARCH model of Engle (1982) and Bollerslev (1986) and the dynamic conditional correlation (DCC)

model of Engle (2002a). However, these models are difficult to apply to intraday high-frequency financial

data, since assets are traded asynchronously and prices are contaminated by microstructure effects. At

the same time, estimating and forecasting intraday volatilities and correlations of high-frequency asset

prices is a problem of crucial interest from both a theoretical and an empirical perspective.

We propose a new multivariate conditional correlation model able to cope with observations of the

underlying process that are asynchronous and affected by noise. This is done by considering a multi-

variate local level model with time-varying covariances and treating asynchronicity as a missing value

problem. The dynamic of time-varying parameters is driven by the score of the predictive likelihood

(Creal et al. 2013), thus allowing to write-down the likelihood in closed-form. The resulting condition-

ally Gaussian model is a Local Level with Score-Driven (LLSD) time-varying parameters. The LLSD

estimates covariances using all available data, thus avoiding the use of standard synchronization tech-

niques. It guarantees positive-definite correlation matrices and provides filtered estimates of both the

time-varying parameters and the efficient martingale price process. Other than being estimated us-

ing standard maximum-likelihood techniques, the LLSD allows to deal with large covariance matrices

through a two-step maximum likelihood procedure that couples simple univariate models to a parsimo-

nious correlation model.

The modelling of asynchronicity as a missing value problem was first developed by Corsi et al. (2015)

and Shephard and Xiu (2016), who considered a state-space representation with constant parameters for

75
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the purpose of estimating the integrated covariance of high-frequency asset prices. Here, we are interested

in a different problem, namely the dynamic modelling of the conditional correlation of high-frequency

asset prices.

In the field of high-frequency financial econometrics, the most tangible effect of asynchronous trad-

ing and microstructure noise on covariance estimation is the so-called Epps effect (Epps 1979), i.e. a

downward bias of sample correlations as the sampling interval shrinks. This problem motivated re-

searchers to build robust estimators of the high-frequency integrated covariance. For instance, Hayashi

and Yoshida (2005) proposed an unbiased and consistent estimator of the quadratic covariation of a

bivariate semimartingale that is observed asynchronously over time. Examples of estimators that also

take into account the presence of microstructure noise have been proposed by Aı̈t-Sahalia et al. (2010),

Barndorff-Nielsen et al. (2011), Bibinger (2012), Corsi et al. (2015), Shephard and Xiu (2016). Also,

there was a parallel interest in the estimation of the intraday instantaneous covariance matrix. This

stream of the high-frequency financial econometric literature has received less attention compared to the

problem of quadratic covariation estimation and, consequently, is less developed. However, it is similar

in spirit to our purpose since we are interested in modelling the intraday dynamics of conditional volatil-

ities and correlations. For instance, Zu and Boswijk (2014) proposed a two-scale realized spot volatility

estimator while Bibinger et al. (2014) proposed a spot covariance estimator based on a local method of

moments.

As discussed in Section 2.4, the computation of the score of time-varying parameters in a linear

Gaussian state-space representation requires deriving the Kalman filter recursions with respect to the

time-varying parameters. This approach was described by Creal et al. (2008) for a univariate local level

model with time-varying variances. Here, we propose a local level model with time-varying covariance

matrices that can be regarded as the multivariate generalization of the latter. Recently, the estimation

of linear Gaussian state-space models with score-driven parameters has been described in more detail

by Delle Monache et al. (2015) and Delle Monache et al. (2016) in the context of inflation and GDP

forecasting.

In a similar fashion to DCC models, we estimate covariances in two steps. In the first step, individual

volatilities are estimated using independent univariate local level models with time-varying variances

and in a further step correlations are estimated conditionally on the previous volatility estimates. The

problem of estimating a large dimensional model is thus reduced to numerically simpler problems. In

addition, restrictions can be imposed on the structure of the parameter space of the correlation model

in such a way that the number of static parameters scales well with the cross-sectional dimension. The

covariance matrix is parametrized using spherical coordinates (Jaeckel and Rebonato 1999). This choice

guarantees positive-definite estimates and also avoids the typical problem of over-parametrization present
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in the DCC.

In Section 5.4, by performing extensive Monte-Carlo experiments, we test the performance of the

model in estimating several dynamic patterns of volatilities and correlations on a broad range of scenarios

that closely mimic real market conditions. We find that the LLSD provides superior performances

compared to standard techniques that are typically employed when dealing with noisy and asynchronous

data.

Application to transaction data of 25 NYSE assets in Section 5.5 shows that volatilities exhibit the

well-known U-shape. Correlations are found to be small at the opening and then they increase, especially

during the first two hours, until the last 15 minutes of the trading day, after which they tend to decrease.

We study variations of the intraday patterns over time and how the release of relevant information

affects the day-specific dynamics of volatilities and correlations. Indeed, since intraday patterns can

be recovered separately for each day, our estimator is able to capture in real-time abrupt changes of

volatilities and correlations following particular events (e.g. macro-news announcements) occurring on

specific days. Out-of-sample covariance forecasts provided by the model are empirically assessed through

an economically meaningful application based on intraday portfolio optimization. Following the strategy

suggested by Engle and Colacito (2006), we find significant improvements and large efficiency gains

compared to standard techniques.

5.1 The model

5.1.1 General framework

Let t ∈ [0, S] and denote by Xt = (X1
t , . . . , X

n
t )′ an n-dimensional vector of intraday efficient log-prices.

We consider T equally-spaced observation times 0 ≤ t0 < t1 < · · · < tT−1 ≤ S and propose to model

Xti , i = 0, . . . , T − 1 as a random walk with heteroskedastic Gaussian innovations:

Xti+1 = Xti + ηti , ηti ∼ NID(0, Qti) (5.1.1)

Due to microstructure effects, observed prices are contaminated by noise. This implies that we do not

directly observe the efficient log-price Xt but a blurred version of it. Let Y ∗ti be the n-dimensional vector

of log-prices. Due to asynchronous trading, the components of Y ∗ti corresponding to assets that are traded

at time ti are observed, while observations of the remaining components are missing.

Let us denote by Yti the ni, 0 < ni ≤ n components1 of Y ∗ti that are observed at time ti. For

i = 0, . . . , T − 1 define an ni × n matrix Wi such that Yti = WiY
∗
ti . We write the observed log-price

vector Yti as:

Yti = WiXti +Wiεti , εti ∼ NID(0, Hti) (5.1.2)

1The case ni = 0 is discussed in Session (5.1.2).
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where εti is a Gaussian disturbance term which is assumed to be independent on the efficient log-price Xti .

Hansen and Lunde (2006) argued that endogeneity (i.e. a nonzero correlation between the microstructure

noise and the efficient price process) may be important, especially for mid-quote data. Our model uses

the Kalman filter and the extension of the latter to deal with correlated measurement and model errors

is standard in the literature (see e.g. Simon 2006). In line with Corsi et al. (2015) and Shephard and

Xiu (2016), we assume that the noise covariance matrix Ht is diagonal.

5.1.2 State-space representation

Eq. (5.1.2) describes the measurement process of the latent efficient log-price, while eq. (5.1.1) describes

the dynamics of the latter at discrete times. Thus, the disturbance term εt can be thought of as

summarizing microstructure effects while ηt is the idiosyncratic innovation driving Xt. We can re-write

both equations as a multivariate local level:

Yt = WtXt + εt, εt ∼ NID(0, H̄t) (5.1.3)

Xt+1 = Xt + ηt, ηt ∼ NID(0, Qt) (5.1.4)

where, without loss of generality, we have set ti+1 − ti = 1 for i = 0, . . . , T − 1 and H̄t ≡WtHtW
′
t . Note

that, because of missing values, the dimensionality of the observation vector Yt changes over time.

We model time-varying parameters in an observation-driven framework and assume that Ht and Qt

are known given the set of past observations Yt−1 = {Y1, . . . , Yt−1} and a vector Θ of static parameters:

Ht = Ht(Yt−1,Θ) (5.1.5)

Qt = Qt(Yt−1,Θ) (5.1.6)

Under this assumption, model (5.1.3)-(5.1.4) is conditionally Gaussian and is susceptible of treatment

with the Kalman filter (see Section 2.4). By defining xt|t = E[Xt|Yt], Pt|t = Var[Xt|Yt], xt+1 =

E[Xt+1|Yt], Pt+1 = Var[Xt+1|Yt], the latter can be computed recursively through equations (2.4.5)-

(2.4.10). Note that, since the state vector Xt is non-stationary, the Kalman filter requires diffuse initial-

ization, i.e. we set x1 = 0 and P1 = κIn with κ → ∞. The log-likelihood function can be computed in

the usual prediction error decomposition form:

logL(Y1, . . . , YT ) = −nT
2

log 2π − 1

2

T∑
t=1

(
log |Ft|+ v′tF

−1
t vt

)
(5.1.7)

The advantages of having a linear Gaussian state-space representation are numerous. Beside the fact

that the model can be estimated using standard maximum likelihood techniques, another relevant aspect

is that Kalman filter recursions still hold in presence of missing observations. The only modification is

the introduction of the matrix Wt which selects the components of Yt that are actually observed at
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time t. Therefore, the problem of modelling asynchronicity is equivalent to having missing values in the

observation vector Y ∗t and these are easily tackled by the Kalman filter.

In case Ht and Qt are constant over time, model (5.1.3)-(5.1.4) can be conveniently estimated using

the expectation maximization (EM) method, as described by Shumway and Stoffer (1982) and Durbin

and Koopman (2012). In order to apply the Kalman filter recursions and write down the log-likelihood

function, we need to specify the law of motion of Ht and Qt.

5.1.3 The LLSD

Let us collect all the time-varying parameters of the model in a k-dimensional column vector ft. The

score-driven update rule is given by:

ft+1 = ω +Ast +Bft (5.1.8)

where ω is a k× 1 vector, A, B are k× k matrices and st is the scaled derivative of the log-density with

respect to the time-varying parameter vector ft. As described in Section 2.3, we write it as:

st = St∇t (5.1.9)

where

∇t =

[
∂ log p(yt|ft,Yt−1; Θ)

∂f ′t

]′
(5.1.10)

The vector Θ of static parameters includes the elements of ω, A and B. In our application to high-

frequency financial data, we will set St = (It|t−1)−1/2, i.e. we take the principal square root matrix of

the inverse of It|t−1. Motivated by the generality and flexibility of the score driven approach2, we model

dynamically volatilities and correlations in the multivariate local level using the update equation (5.1.8).

The resulting model is named Local Level with Score-Driven (LLSD) time-varying parameters.

The time-varying parameters in the LLSD are the elements of the diagonal noise covariance matrix

Ht and those in the state vector covariance matrix Qt. As in the DCC model and in the multivariate

t-GAS model of Creal et al. (2011), we decompose Qt as:

Qt = DtRtDt (5.1.11)

where Rt is the correlation matrix and Dt is the diagonal matrix of standard deviations. The correlation

matrix Rt is decomposed as:

Rt = Z ′tZt (5.1.12)

where Zt is an n×n matrix containing kZ = n(n−1)/2 time-varying parameters. The parametrization of

Zt will be discussed in detail in Section 5.3. Note that the present decomposition of Qt and Rt guarantees

that both matrices are positive-definite by construction. The k-dimensional time-varying parameter

2See Section 2.3 for a general discussion on score-driven models.
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vector ft includes the 2n elements of Ht, Dt and the kZ elements of Zt and therefore k = 2n+n(n−1)/2

is the number of time-varying parameters in the LLSD model.

5.2 Estimation

A major challenge in modelling time-varying correlations is handling large dimensionality. The DCC

model has a clear computational advantage over multivariate GARCH models in that the number of

parameters to be estimated in the correlation process is independent on the cross-sectional dimension

n. This is possible if one uses a two-step maximum likelihood procedure where one first separately

estimates n GARCH models and then inputs the estimated variances into the DCC. If one assumes that

correlations have same persistences, the number of static parameters to be estimated in the last step

will be independent on the dimension n.

Thanks to the particular structure of the local level model, this relevant feature of the DCC can be

incorporated into the LLSD model. In the language of Harvey (1991), the multivariate local level model

is a particular case of a Seemingly Unrelated Time Series Equation (SUTSE) model in that each series

is modeled as in the univariate case but disturbances are correlated across series. Therefore, one can

employ n univariate LLSD models to separately estimate the time-varying parameters in Ht and Dt, i.e.

the time-varying variances of the noise and the standard deviations of the innovations in the transition

equation. In a further step, the time-varying correlations in Rt can be estimated as if Ht and Dt were

known and given by the previous estimates.

In the following sections, we will describe in detail the two-step estimation procedure. First, we

discuss the estimation of the time-varying parameters in Zt. The kZ-dimensional time-varying parameter

vector will be denoted as fZt . The results that will be recovered in this Section are independent on the

parametrization of Zt. We refer to the dynamics of fZt as the correlation model. Second, we discuss the

estimation of the noise covariance matrix Ht and the matrix of standard deviations Dt of the state vector.

We will consider n independent univariate LLSD models where the time-varying parameter vector is a

2-dimensional vector that we will denote as ft,i for i = 1, . . . , n. This univariate specification coincides

with the one proposed by Creal et al. (2008).

In practice, one first estimates the n univariate models and then uses the estimated matrices Ht and

Dt as an input to the correlation model. In the following paragraph, we describe in detail the correlation

model. The univariate local-level with time-varying variances is discussed in appendix (A.8).

5.2.1 The correlation model

Let us consider the multivariate local level model (5.1.3), (5.1.4) and assume that Ht and Dt are known.

As underlined above, fZt is a kZ-dimensional column vector that includes all the time-varying parameters
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in Zt. Let us define:

∇Zt =
∂ log p(Yt|Yt−1)

∂fZt
′ , IZt|t−1 = E[∇Zt ∇Zt

′
] (5.2.1)

As discussed in Section 2.4, the score and the information matrix of the conditional log-likelihood are

given by:

∇Zt = −1

2

[
Ḟ ′t(Int ⊗ F−1

t )vec(Int − vtv′tF−1
t ) + 2v̇′tF

−1
t vt

]
(5.2.2)

IZt|t−1 =
1

2

[
Ḟ ′t(F

−1
t ⊗ F−1

t )Ḟt + 2v̇′tF
−1
t v̇t

]
(5.2.3)

where Ḟt = ∂vec(Ft)/∂f
Z
t and v̇t = ∂vt/∂f

Z
t . The two terms Ḟt and v̇t needed to evaluate ∇t and It|t−1

can be computed recursively as:

v̇t = −Wtẋt (5.2.4)

Ḟt = (Wt ⊗Wt)Ṗt (5.2.5)

where:

ẋt+1 = ẋt + (v′t ⊗ In)K̇t +Ktv̇t (5.2.6)

Ṗt+1 = Ṗt − (KtWt ⊗ In)Ṗt − (In ⊗ PtW ′t)KnnK̇t + Q̇t (5.2.7)

K̇t = (F−1
t Wt ⊗ In)Ṗt − (F−1

t ⊗Kt)Ḟt (5.2.8)

Q̇t = (Dt ⊗Dt)Ṙt (5.2.9)

Ṙt = (Żt ⊗ In)KnnŻt + (In ⊗ Z ′t)Żt (5.2.10)

The above formulas are recovered by deriving the Kalman filter recursions (2.4.5)-(2.4.10) with respect

to fZt and are a particular case of the recursions appearing in Delle Monache et al. (2016). Note that

Dt and Ht are not derived since they are freezed and equal to the output of the univariate estimation.

At time t, the one-step-ahead prediction of the time-varying vector fZt is given by:

fZt+1 = ωZ +AZst +BZf
Z
t (5.2.11)

where ωZ , AZ and BZ are static parameters of appropriate dimensions. Let ΘZ = {ωZ , AZ , BZ} collect

all the static parameters in the correlation model. The scaled score st is chosen as st = (IZt|t−1)−1/2∇Zt
and is computed using eq. (5.2.2), (5.2.3) and the derivative recursions (5.2.4)-(5.2.7), which run in

parallel with the Kalman filter recursions. The conditional log-likelihood is given in the prediction error

decomposition form:

logLZ(Y1, . . . , YT |ΘZ) = const− 1

2

T∑
t=1

1

2

(
log |Ft|+ v′tF

−1
t vt

)
(5.2.12)
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where vt and Ft are evaluated using the Kalman filter recursions and the score-driven update equation

with parameters given by ΘZ . The maximum likelihood estimate of the static parameter vector ΘZ is

simply obtained by numerically optimizing the log-likelihood function through a quasi-Newton algorithm:

Θ̂Z = argmax
Θ

logLZ(Y1, . . . , YT |Θ) (5.2.13)

5.3 The TAP parametrization for Zt

As a parametrization for Zt, we use the triangular angles parametrization (TAP) introduced by Jaeckel

and Rebonato (1999) and described in detail by Rapisarda et al. (2007). The TAP has been used in

the financial econometric literature. For instance, Creal et al. (2011) employed it in their multivariate

t-GAS model for time-varying covariances. In the TAP parametrization, the generic element zij,t of the

matrix Zt in eq. (5.1.12) is given by:

zij =


1 i = j = 1

cos θ1j i = 1, j > 1∏i−1
k=1 sin θkj cos θij1j>i +

∏i−1
k=1 sin θkj1i=j i > 1

(5.3.1)

where we have suppressed the subscript t for ease of notation. Thus, denoting by cij = cos θij and

sij = sin θij , the matrix Zt has the following form:

Zt =



1 c12 c13 . . . c1n

0 s12 c23s13 . . . c2ns1n

0 0 s23s13 . . . c3ns2ns1n

...
...

...
...

0 0 0 . . .
∏n−1
k=1 skn


(5.3.2)

The i-th column of Zt contains the spherical coordinates of a vector of unit norm in an ith-dimensional

subspace of Rn, which is parametrized by i − 1 angles. Therefore, we have a total of n(n − 1)/2

angles [θ12,t, θ13,t, . . . , θn−1n,t]. The two main advantages of the TAP are that it guarantees positive-

definite estimates of Rt and that the number of free parameters is n(n− 1)/2. In contrast to the DCC

parametrization, where there are n extra parameters, the number of parameters is the same as the

degrees of freedom of the correlation matrix. Thus, the Fisher information matrix is full-rank and the

static parameters are identifiable. Note that, as pointed out by Rapisarda et al. (2007), every correlation

matrix can be written in the TAP form.

At time t, the vector fZt of time-varying parameters is a kZ = n(n−1)/2 dimensional vector containing

all the angles θ12,t, θ13,t, . . . , θn−1n,t. In order to perform recursion (5.2.10), we need to know the derivative
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of Zt with respect to fZt . This is easily computed by observing that:

∂zij
∂θlm

=


0 i > j, j 6= m, l ≥ m, l > i

−zij tan θij i < j, l = i

zij
tan θij

i ≤ j, l < i

(5.3.3)

5.4 Simulation study

5.4.1 Finite sample properties

The finite sample properties of the maximum likelihood estimator are tested in a Monte-Carlo experiment

where bivariate time-series are generated using the LLSD as a DGP. We choose a simulation setting that

resembles as closest as possible the main features of high-frequency data. In particular, we assume a

trading day of 6.5 hours and simulate N = 2000 one-second time-series of T = 23400 observations.

Asynchronicity is reproduced by censoring the simulated observations using Poisson sampling. The

probability of missing values is set equal to Λ = 0, 0.5, 0.8. The last two scenarios are commonly

observed in real transaction data, as it will be shown in Section 5.5.

Λ ωZ AZ BZ

BIAS

0 0.00056 0.00085 -0.00256

0.5 0.00261 -0.00660 -0.00562

0.8 0.00308 -0.00719 -0.00743

Standard Dev.

0 0.00778 0.01373 0.00725

0.5 0.01238 0.02258 0.01254

0.8 0.01435 0.03075 0.01569

Table 5.4.1: Bias and standard deviations of N = 2000 maximum likelihood estimates of static parame-

ters ωZ , AZ , BZ for different probabilities of missing values Λ = 0, 0.5, 0.8.

For simplicity, individual volatilities are assumed to be constant over time. This is obtained by

setting ωi = 0, Ai = 02×2 and Bi = I2×2 for i = 1, 2. The initial values f1,i are chosen in order to have a

signal-to-noise ratio δ = ξ2
i /σ

2
i = 1, for i = 1, 2. The latter is close to the typical values that are found on

empirical data. Different choices of the static parameters in the univariate model lead to similar results.

The static parameters of the correlation model have the following values:

ωZ = 0.021, AZ = 0.1, BZ = 0.98 (5.4.1)

The LLSD is estimated using the two-step procedure described in Section 5.2. Initial values of the time-

varying parameters are set equal to their unconditional means. Table (5.4.1) shows the bias and sample
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standard deviations of the maximum likelihood estimates of ωZ , AZ and BZ while figure (5.4.1) shows

their kernel density estimates. In the no missing scenario, the bias is less than 1% for AZ and BZ while

it is slightly larger for ωZ . For Λ = 0.5, 0.8, as a result of missing observations, the distribution of ωZ

and BZ becomes more skewed and fat tailed. However, the bias remains small in relative terms and even

for Λ = 0.8, where the sample is highly asynchronous, the parameter BZ is accurately recovered with a

bias lower than 1%.

0 0.02 0.04 0.06 0.08 0.1

0

10

20

30

40

50

60

70

80

90

ω
Z

0 0.1 0.2 0.3

0

5

10

15

20

25

30

35

40

A
Z

0.9 0.92 0.94 0.96 0.98 1

0

10

20

30

40

50

60

70

80

90

B
Z

Figure 5.4.1: Kernel density estimates of maximum likelihood estimates of parameters ωZ , AZ and BZ

for Λ = 0 (yellow lines), Λ = 0.5 (dotted red lines) and Λ = 0.8 (dashed blue lines).

5.4.2 Monte-Carlo analysis based on misspecified DGP

We first deal with the problem of choosing challenging benchmark models with which to compare the

forecasting performance of the LLSD. The DCC model and other existing multivariate conditional cor-

relation models are misspecified in presence of additive noise. In order to assess the impact of the noise

term, we simulate a bivariate local level model as in (5.1.3), (5.1.4) with T = 5000 timestamps. The

two matrices Ht and Dt are kept constant while the correlation in Rt follows the deterministic path in

figures (5.4.2a) - (5.4.2d). The signal-to-noise ratio δ is assumed to be the same for the two simulated

series. If δ is very large (e.g. δ = 10) the estimate provided by the DCC is close to that of the LLSD.

However, as δ decreases, the noise leads to downward biased correlation estimates. Note that, except for

the very large value δ = 10, the other values are commonly observed in real markets, as we will see in

the empirical application in Section 5.5.

In order to attenuate the effect of the noise on the estimates provided by the DCC, we proceed in



5.4. SIMULATION STUDY 85

two different ways. The first is to compute returns by subsampling at larger time-scales, thus neglecting

part of the available observations. This has the effect of increasing the signal-to-noise ratio. We name as

DCCsub the correlation estimates obtained by the DCC on the new sample with returns computed on a

time-scale K > 1. The second method is to apply a pre-averaging procedure (Jacod et al. 2009). Indeed,

since εt is uncorrelated, the variance of the noise term of 1/K
∑K−1

j=0 Yti−j , is 1/K times the variance of

the noise of Yti . Therefore, the effect of the pre-averaging is, again, to increase the signal-to-noise ratio.

We name the correlation estimates obtained by the DCC on the pre-averaged sample as DCCpre. In both

cases the tuning parameter K is chosen as the one minimizing the mean square error in formula (5.4.2)

over a sample of N = 100 independent realizations. In figures (5.4.2e), (5.4.2f) we show the estimates

provided by the LLSD, DCCsub and DCCpre for δ = 1 and δ = 0.5, respectively. Differently from the

previous case, DCCsub and DCCpre are now able to capture the dynamics of the simulated correlation

pattern.

In order to test the forecasting performance of the LLSD under a misspecified DGP, we design two

different simulation settings, one for the correlation model and a different one for the univariate variance

model. In the former case, the Monte-Carlo experiments that will be performed are similar to those

conducted by Engle (2002a) and Creal et al. (2011). While keeping variances constant, we estimate a

bivariate LLSD over a set of deterministic and stochastic correlation patterns. Different levels of noise

and asynchronicity are simulated in order to closely mimic real market conditions.

A relevant advantage of the LLSD is that the conditional correlation matrix is estimated using

all the available data. This implies more efficient estimates compared to standard synchronization

schemes where a significant fraction of the observations is typically neglected. We examine the impact

of asynchronicity in a higher-dimensional experiment where LLSD estimates are compared to those

provided by the DCC model estimated on a synchronized sample. The chosen synchronization scheme

is the refresh-time described by Barndorff-Nielsen et al. (2011).

In the bivariate and univariate tests, our loss measures are the mean squared error (MSE) and the

mean absolute error (MAE) which are computed as:

MSE =
1

T

T∑
t=1

(θt − θ̂t)2, MAE =
1

T

T∑
t=1

|θt − θ̂t| (5.4.2)

where θt generically denote the simulated variable, i.e. the correlation in the first test and the variance

in the second test, while θ̂t denotes the estimated variable. In the higher dimensional experiment, we

use the Frobenius norm ‖ · ‖F and the 1−norm ‖ · ‖1 defined as:

‖Rt − R̂t‖F =

√√√√ n∑
i=1

n∑
j=1

(Rt,ij − R̂t,ij)2, ‖Rt − R̂t‖1 = max
1≤j≤n

n∑
i=1

|Rt,ij − R̂t,ij | (5.4.3)

where Rt is the simulated correlation matrix and R̂t is the estimated one.
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5.4.3 Monte-Carlo design I: time-varying correlations

We assume again a trading day of 6.5 hours and simulate N = 250 bivariate time series of T = 23400

observations from the time-varying local level model (5.1.3), (5.1.4). Following Engle (2002a) and Creal

et al. (2011), we keep the two variances σ2
t,i, ξ

2
t,i, i = 1, 2 constant while the off-diagonal element of the

correlation matrix Rt, that we will denote as ρt, evolves dynamically according to the following patterns:

1. Sine ρt = as + bs sin(csπt)

2. Fast Sine ρt = af + bf sin(cfπt)

3. Step ρt = αs − βs(t > γs)

4. Ramp ρt = 1
br

mod (t+ ar, br)

5. Model ρt = exp (ht)/(1 + exp (ht))

where ht follows an AR(1) process:

ht+1 = cm + bmht + amφt, φt ∼ N(0, 1)

The parameters appearing in the dynamics of the correlation coefficient ρt are chosen in the following

way: as = af = 0, bs = bf = 0.4, cs = 7/(2T ), cf = 101/(2T ), αs = 0.25, βs = 0.5, γs = T/2, br = T/20,

ar = br/2, bm = 0.997, cm = −0.4(1− bm), am = 0.05. The variance ξ2
t,i of the latent process is constant

and equal to 0.1 for all the simulated patterns. Instead, the variance σ2
t,i of the noise is computed based

on the chosen signal-to-noise ratio δ which is varied in the simulations in order to reproduce different

scenarios: δ = 2 (high signal), δ = 1 (moderate signal) and δ = 0.5 (low signal). As we will see in Section

5.5, these three scenarios are close to those observed in real data.



5.4. SIMULATION STUDY 87

(a) δ = 10 (b) δ = 2

(c) δ = 1 (d) δ = 0.5

(e) δ = 1 (f) δ = 0.5

Figure 5.4.2: (a)-(d) Examples of correlation estimates on a bivariate time-series of T = 5000 timestamps

provided by the LLSD and the DCC using different levels of noise. (e), (f) Estimates provided by the LLSD,

DCCsub and DCCpre for large noise scenarios.
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As in the previous experiment, the probability of missing values is set equal to Λ = 0, Λ = 0.5

and Λ = 0.8. In the simulations each signal-to-noise ratio scenario is combined to each missing values

scenario in order to study the behavior of the filtered estimates under a multiplicity of realistic market

conditions. Figures (5.4.3a) - (5.4.3e) show the simulated correlation patterns and the corresponding

LLSD estimates in the scenario δ = 1, Λ = 0.5.

We divide the sample into two parts of 11700 timestamps each. The first sub-sample is used to

estimate the LLSD, DCCsub, and DCCpre while the second is used for computing out-of-sample forecasts.

In order to estimate the LLSD, we apply the two-step procedure described in Section 5.2. In both steps we

first estimate a local level model with constant parameters and then set the initial values of time-varying

parameters in the LLSD equal to the latter ML estimates.

The average MSE (MAE) of the LLSD is compared to that of DCCsub and DCCpre in table (5.4.3). In

scenarios with missing values, the DCCsub and DCCpre are estimated by first synchronizing the sample

using the refresh-time. The LLSD outperforms the DCCsub and DCCpre on all of the simulated scenarios

while the DCCpre outperforms the DCCsub in most of the cases. In the “no missing” scenario, the relative

difference between the LLSD and the other two estimators is large for all the simulated patterns. Indeed,

the Kalman filter is able to optimally estimate the state vector, thus allowing to capture the dynamics

of correlations even in presence of very noisy observations.

In the two scenarios (Λ = 0.5, 0.8), the effect of the noise diminishes because the average duration

between observations increases. However, the use of the refresh-time implies neglecting a significant

part of the available data and at the same time alters the instantaneous correlation structure of the

observations. Indeed, we note that the relative difference between the LLSD and the other two estimators

is larger in case of patterns with abrupt changes (e.g. step and ramp) and in stochastic patterns (model)

while it is more moderate in case of smooth patterns (e.g. sine and fast sine).
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(a) Sine (b) Step

(c) Fast sine (d) Ramp

(e) Model (f) CIR

Figure 5.4.3: (a)-(e) Examples of correlation estimates provided by the LLSD for the five simulated

patterns in Section 5.4.3 in the scenario Λ = 0.5, δ = 1 for a bivariate time-series of T = 23400

timestamps. (f) LLSD estimate of the time-varying variance of the efficient log-price process. The

horizontal dashed line denotes the value of the noise variance.
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In order to provide a better understanding of the advantages of the LLSD in dealing with asyn-

chronous data, we design a new Monte-Carlo experiment where 5-dimensional time-series of T = 23400

timestamps are simulated using the DCC as a DGP. The simulated observations are then randomly

censored as in the previous experiment. The first 11700 timestamps are used to estimate the models,

while the second part of the sample is used for assessing loss measures. We consider the five scenarios

described in table (5.4.2).

As in the bivariate case, the DCC is estimated by first synchronizing the sample using the refresh-

time. There is no noise added to observations and therefore the relative difference between the LLSD and

the DCC is entirely due to the effect of asynchronicity. Table (5.4.4) shows the average, over N = 250

repetitions, of ‖ · ‖F and ‖ · ‖1 norms between the simulated correlation matrix and the one estimated by

the LLSD and the DCC. Note that, even though the DCC is correctly specified while the LLSD is not,

the latter provides better estimates and the relative difference between the two increases as the level of

asynchronicity increases.

Scenario asset 1 asset 2 asset3 asset 4 asset 5

Λ1 0.1 0.1 0.1 0.1 0.1

Λ2 0.1 0.1 0.1 0.1 0.8

Λ3 0.3 0.3 0.3 0.3 0.3

Λ4 0.5 0.5 0.5 0.5 0.5

Λ5 0.8 0.8 0.8 0.8 0.8

Table 5.4.2: Probability of missing values for each asset on each of the five scenarios
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Estimator Λ1 Λ2 Λ3 Λ4 Λ5

‖ · ‖F norm

LLSD 0.4132 0.4496 0.4483 0.4771 0.5407

DCC 0.4558 0.5467 0.5937 0.6671 0.7653

relative 0.9065 0.8224 0.7551 0.7152 0.7065

‖ · ‖1 norm

LLSD 0.4254 0.4655 0.4608 0.4896 0.5530

DCC 0.4688 0.5598 0.6068 0.6797 0.7792

relative 0.9074 0.8315 0.7594 0.7203 0.7097

Table 5.4.4: Results of Monte-Carlo experiments with n = 5 and using the DCC as a DGP. The first

two lines show the average of the ‖ · ‖F (‖ · ‖1) norm over N = 250 independent repetitions while the

third line shows the average of the ‖ · ‖F (‖ · ‖1) norm of the LLSD relative to that of the DCC.

5.4.4 Monte-Carlo design II: time-varying volatilities

We simulate N = 250 univariate time series of T = 23400 observations from model (A.8.1), (A.8.2).

The variance σ2
t of the noise is kept constant and equal to a value that we denote as σ2. Thus, the only

time-varying parameter is the volatility ξt of the state variable.

We consider a CIR stochastic volatility model as a DGP for the variance:

dξ2
t = k(θ − ξ2

t )dt+ wξtdWt (5.4.4)

Simulations are performed by discretizing the process in the Euler scheme. The values assigned to the

parameters are the following: θ = 0.2, k = 10, w = 0.5. The first observation of the CIR process

is drawn from a Gamma distribution Γ(2kθ/w2, w2/2k) centered in the mean variance. We define the

average signal-to-noise ratio as δ̄ = θ/σ2 and perform the simulation in three scenarios: low signal

(δ̄ = 0.5), moderate signal (δ̄ = 1) and high signal (δ̄ = 2). As in the previous experiment, the first

11700 observations are used for estimation purposes, while the second part of the sample is used for

computing loss measures. An example of a simulated path, together with the estimates provided by the

LLSD model in the scenario δ = 1 is given in figure (5.4.3f).

In order to compare the estimates of the LLSD with a reliable benchmark, we use the two methods

employed in the bivariate test, i.e. the computation of returns on larger time-scales and the pre-averaging

approach. We name the variance estimates provided by the GARCH model estimated on these new

samples as GARCHsub and GARCHpre, respectively.

Table (5.4.5) contains the results of the Monte-Carlo simulations. We show the average MSE (MAE)

for the three scenarios δ̄ = 0.5, 1, 2 obtained by estimating the LLSD, GARCHsub and GARCHpre. The

LLSD provides better estimates than the other two estimators and the relative difference increases as

the level of the noise increases. Again, thanks to the use of the Kalman filter which provides optimal
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Estimator δ̄ = 0.5 δ̄ = 1 δ̄ = 2

MSE×100

1−LLSD 0.0866 0.0730 0.0623

GARCHsub 0.2616 0.1946 0.1701

GARCHpre 0.2139 0.1272 0.0862

MAE

1−LLSD 0.0233 0.0214 0.0198

GARCHsub 0.0416 0.0354 0.0338

GARCHpre 0.0386 0.0275 0.0232

Table 5.4.5: Results of Monte-Carlo experiment II. We show the average MSE (MAE) of the LLSD,

GARCHsub, GARCHpre estimators over N = 250 independent repetitions. The three simulated scenarios

are: low signal (δ̄ = 0.5), moderate signal (δ̄ = 1) and high signal (δ̄ = 2).

estimates of the state variable, the dynamics of the variance is well captured even in case of very noisy

observations.

5.5 Empirical illustration

5.5.1 Dataset

The dataset contains transaction prices of 25 assets traded in the NYSE in 2014. The exchange opens

at 9.30 and closes at 16.00 local time, so that the number of seconds per day is T = 23400. We follow

the same procedure described in Section 4.3 to clean the data. Table (5.5.1) shows the assets together

with the average number of observations per day m, the probability of missing values Λ = 1−m/T , the

average duration in seconds between observations ∆t and the average signal-to-noise ratio as estimated

by the LLSD. Note that the probability of missing values is Λ ∼ 80% for Exxon, which is the most

frequently traded asset. This implies that the high-missing scenario that we considered in the simulation

study is quite realistic, even for the most liquid assets. In this highly asynchronous scenario, the LLSD

provides reliable estimates of the time-varying correlations, even in presence of patterns characterized

by abrupt changes and/or random behavior.

5.5.2 Model specification

We implement the univariate LLSD under the following restrictions:

– Ai is diagonal

– Bi = I2

– ωi = (0, 0)′
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Symbol ∆t Λ m δ Symbol ∆t Λ m δ

XOM 5.434 0.816 4304 1.178 PG 7.633 0.869 3080 1.030

C 6.135 0.836 3832 1.246 BAC 7.633 0.869 3079 0.328

JPM 6.250 0.840 3743 0.999 PFE 7.874 0.873 2967 0.509

HAL 6.369 0.843 3690 0.872 WFC 7.936 0.874 2961 0.724

CVX 6.579 0.848 3553 0.850 MDT 8.196 0.878 2874 0.571

DIS 6.622 0.849 3543 0.846 CAT 8.196 0.878 2861 0.782

JNJ 6.666 0.850 3529 0.809 HD 8.264 0.879 2829 0.754

SLB 6.802 0.853 3454 0.613 COP 8.333 0.880 2828 0.494

DAL 6.993 0.857 3348 0.766 T 8.333 0.880 2809 0.492

WMT 7.042 0.858 3325 0.698 MCD 8.474 0.882 2756 0.673

VZ 7.407 0.865 3172 0.678 PM 8.547 0.883 2746 0.683

MRK 7.462 0.866 3146 0.685 CBS 8.620 0.884 2725 0.760

GM 7.462 0.866 3135 0.888 - - - - -

Table 5.5.1: Summary statistics for the top 25 most frequently traded assets in 2014 in the NYSE. We

show the average duration (in seconds) between observations ∆t, the probability of missing values Λ,

the average number of observations per day m and the average signal-to-noise ratio δ̄ as estimated by

the LLSD.

Therefore, the score-driven update is:

ft+1,i = ft,i +Aist,i (5.5.1)

This choice allows to account for the intrinsic non-stationary behavior of variances during the trading

day. For each i, we need to estimate the two diagonal elements of Ai. Thus, the number of parameters

that are estimated in the first step is 2n.

The parameters of the correlation model in eq. (5.2.11) are estimated under the following restrictions:

– AZ = aIkZ

– BZ = IkZ

– ωZ = (0, . . . , 0)′

where kZ = n(n − 1)/2. As it is common practice in the DCC model, we restrict the parameter space

by requiring that the matrix AZ is diagonal, with all the diagonal elements being equal to a scalar

parameter a. This guarantees that the number of parameters to be estimated in the correlation model

is independent on the number of time-series. As in the univariate model, the two restrictions on ωZ and

BZ are due to the intrinsic non-stationary behavior of correlations during the trading day. Thus, there

is a total of 2n+ 1 static parameters to be estimated. Initial values of time-varying parameters are set
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equal to those found by estimating a local level model with constant parameters in the first 15 minutes

of each trading day.

Before studying intraday patterns of volatilities and correlations, we show an interesting byproduct of

the estimation procedure, i.e. the reconstruction of the efficient log-price using the Kalman filter. Once

the LLSD is estimated, one can use the estimated parameters to obtain filtered and smoothed estimates

of the efficient log-price. We show in figure (5.5.1) the observed log-price of Citigroup in a 5 minutes

time window on 02/01/2014 together with the filtered estimate provided by the Kalman filter. Note

that, even if observations are missing at a given point in time, the filter is able to use the multivariate

information in order to optimally predict the state variable at that time.

Figure 5.5.1: Reconstruction of the efficient log-price of Citigroup in a 5-minutes time-window on 02-01-

2014 using the estimated LLSD.

5.5.3 Intraday patterns

The LLSD is estimated on the first N = 120 business days of 2014. As a result, estimates of the time-

varying parameters Dj
t , H

j
t , Qjt and Rjt are recovered, for j = 1, . . . , N . In order to investigate the

variation of intraday patterns among both different assets and different days, we compute the following
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averages:

D̄t(i) =
1

N

N∑
j=1

Dj
t (i, i), D̃t(j) =

1

n

n∑
i=1

Dj
t (i, i)

H̄t(i) =
1

N

N∑
j=1

Hj
t (i, i), H̃t(j) =

1

n

n∑
i=1

Hj
t (i, i)

δ̄t(i) =
1

N

N∑
j=1

δji,t, δ̃t(j) =
1

n

n∑
i=1

δji,t

R̄t(p, q) =
1

N

N∑
j=1

Rjt (p, q), R̃t(j) =
1

n(n− 1)

∑
p 6=q

Rjt (p, q)

Q̄t(p, q) =
1

N

N∑
j=1

Qjt (p, q), Q̃t(j) =
1

n(n− 1)

∑
p 6=q

Qjt (p, q)

where t = 1, . . . , T . For every asset i = 1, . . . , n or couple of assets (p, q), p, q = 1, . . . , n the quantities

on the left are averages of the time-varying parameters over all the days of the sample while for every

day j, j = 1, . . . , N the quantities on the right are averages of the time-varying parameters over all the

assets (or couple of assets). For every t = 1, . . . , T , we plot deciles of D̄t,
√
H̄t, δ̄t, vech(Q̄t), vech(R̄t) in

figure (5.5.2) and deciles of D̃t,
√
H̃t, δ̃t, Q̃t, R̃t in figure (5.5.3). We also show in red the total average

of the time-varying parameters over both assets and days.

The average volatility of the efficient price process exhibits the well known U-shape: volatility is huge

at the beginning of the day and then it gradually declines until noon, except for a small raise at 10:00.

After noon, we observe a steep raise at 14:00 and then a large increase at the end of the trading-day,

especially in the last 30 seconds where volatility steeply increases. The average variance of the noise

has two regimes: a steep decline from 9:30 to 10:00 and a slow decline from 10:00 until the end of the

trading day. It resembles the typical intraday pattern of the bid-ask spread, suggesting that the LLSD is

consistently setting apart the efficient log-price process from microstructure effects. The signal-to-noise

ratio exhibits a more symmetric pattern: it is quite large at the beginning of the day (δ ∼ 2) and at the

end, where it reaches similar values. Instead, it is small at noon, where δ ∼ 0.5. Note that these values

are close to those used in the simulation study.

Average covariances follow a pattern which resembles the standard U-shape of volatility. However,

their pattern is also driven by the non-trivial dynamics of the correlations which increase throughout

the day. At the beginning of the day correlations are low, meaning that the dynamics of prices is

largely affected by idiosyncratic risk. Then, we observe a steep increase of the correlations until 11:00

which is associated to the fast decline of the volatilities. After that, correlations still keep increasing,

even at a slightly lower rate, until 15:45. At that time we observe a decline of all the correlations which
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corresponds to the large increase of individual volatilities occurring during the last minutes of the trading

day. Therefore, a market factor progressively gains explanatory power during the day, as shown by the

intraday behavior of the first five eigenvalues of the correlation matrix R̄t in figure (5.5.5). Note that the

first eigenvalue increases during the day, following the same pattern of correlations, while the remaining

eigenvalues decrease. At the end of the trading day the market factor accounts for ∼ 42% of the total

variance.

These results are in agreement with the empirical findings of Allez and Bouchaud (2011) who used

standard sample correlations to study the intraday evolution of dependencies among asset prices. An

increasing of correlations during the trading day was also found by Bibinger et al. (2014) using a spot

covariance estimator.

Comparing figures (5.5.2) and (5.5.3), we note that the large increase of volatilities at the beginning

and at the end of the trading day is common to all the assets and is observed every day. Also, the

increase of correlations throughout the day and their sudden drop on the last 15 minutes is common to

all the stocks and to all the days of our sample. There is, however, a remarkable variation of the level of

correlations over different days, especially at the end of the trading day. For instance, the first decile of

R̃t is ∼ 0.3 while the last decile is ∼ 0.5 at the closing time.

While these movements characterizing the intraday dynamics of volatilities and correlations are

observed every day, there are other movements that are observed only in correspondence of some specific

events. For instance, from figures (5.5.2), (5.5.3) we note that the increase of variances and covariances at

14:00 is common to all the stocks but is not observed every day. In order to understand the cause of this

burst, we plot in figure (5.5.4) the estimate of the average Dt and vech(Rt) obtained in correspondence of

three different meetings of the Federal Open Market Committee (FOMC) in 2014, the first on 29-01-2014,

the second on 19-03-2014 and the third on 30-04-2014.

Compared to the average intraday pattern, we observe significant deviations, especially at 14:00 and

at 15:00. The time interval from 14:00 to 15:00 coincides with the press conference in which economic

information is released by the central bank. We observe a huge increase of volatility at 14:00 followed by

another peak at 15:00, especially in the second case. Moreover, in all the three days correlation decreases

a bit immediately before the meeting and then it steeply increases until 15:45. It becomes significantly

larger than the intraday pattern in the first two cases while in the third case correlation is significantly

lower than the intraday pattern at the beginning of the day but it steeply increases after 14:00 and

reaches the same level of the pattern in less than 30 minutes.

Thus, the LLSD is able to capture in real-time variations of volatilities and correlations occurring

at a very small time-scale. This would not be possible using traditional methods since the presence of

noise and asynchronous trading inevitably leads to neglect a lot of relevant information related to the
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dynamics at smaller time-scales.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5.2: Intraday patterns of D̄t,
√
H̄t, δ̄t, vech(Q̄t) and vech(R̄t) as defined in Section 5.5.3.

Grey lines are deciles while the red line is the average over all the assets (or couple of assets). (b)

is as (a) but zoomed from 11:00 to 16:00.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5.3: Intraday patterns of D̃t,
√
H̃t, δ̃t, Q̃t and R̃t as defined in Section 5.5.3. Grey lines

are deciles while the red line is the average over all the days. (b) is as (a) but zoomed from 11:00

to 16:00.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5.4: We show the intraday pattern of the average volatility and correlations (red line)

and the estimate of Dt and vech(Rt) (averaged over all assets and couple of assets) obtained in

correspondence of the first three meetings of the FOMC (black line) in 2014: on 29-01-2014 (a),

(b), on 19-03-2014 (c), (d) and on 30-04-2014 (e), (f)
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(a) (b)

Figure 5.5.5: Intraday patterns of the first eigenvalue (a) and of the following largest four eigenvalues

(b) of the matrix R̄t.

5.5.4 Intraday portfolio selection

We assess covariance forecasts provided by the LLSD through an economically meaningful application

based on portfolio optimization. As noted by Patton and Sheppard (2009), economic evaluation of

volatility and correlation forecasts is an important tool for assessing the performance of the model. In

our case, since the LLSD is designed to describe the dynamics of correlations at very small time-scales,

we concentrate on short intraday investment horizons, of the order of few minutes.

Let us consider the problem of finding the Global Minimum Variance Portfolio (GMVP):

min
wt

w′tΣtwt, w′tu = 1 (5.5.2)

where u is a vector of ones of the same dimension as portfolio weights wt. It is easy to show3 that, if

the GMVP solution wt is constructed using the true conditional covariance matrix Σt, than the variance

of a portfolio constructed using a different weight w̃t is larger. Engle and Colacito (2006) extended

this result to a general mean-variance problem and showed that, if expected returns are constant, the

portfolio constructed using the true covariance matrix has a variance which is lower than the one obtained

through any covariance forecast, regardless of the assumed value of expected returns.

Based on these results, it is therefore possible to assess the forecasts of two different conditional

correlation models by comparing the variances of optimal portfolios constructed using the two models.

In this application we focus on the GMVP and denote by πjt = wj′t rt, j = 1, 2, the portfolio realized

return computed with model j. Then, we consider differences between the squared returns of the two

portfolios:

ut = (π1
t )

2 − (π2
t )

2 (5.5.3)

3see e.g. Patton and Sheppard 2009.



5.5. EMPIRICAL ILLUSTRATION 103

If the mean of ut is significantly positive (negative), model 2 (1) provides better forecasts. Using squared

returns as a proxy of the portfolio variance is based on the assumption that expected returns are zero.

This is not restrictive since we are considering high-frequency returns computed on very small time-scales.

We consider the first n = 2 assets4 in table (5.5.1) and find the GMVP using the forecasts provided by

the LLSD and the DCC. The DCC model is estimated on a rolling window of 24 hours, using a regularly

spaced grid of 4-min returns. This is the highest possible frequency at which it is possible to aggregate

prices to have at least an observation per grid point. The LLSD is estimated on the same window but

using all the observations. The choice of n is conservative since we verified that, as n increases, the

relative performance of the LLSD over the DCC increases as well. The rolling window is shifted by 4

minutes each time and new GMVP’s are constructed on a time-horizon T = 4 minutes. As such, the

forecasts provided by the two models are non-overlapping.

Using the Diebold-Mariano (DM) test statistic, we test the null hypothesis that ut = (π1
t )

DCC −

(π2
t )

LLSD has mean zero. Figure (5.5.6) shows the DM test statistic computed for each day of the

sample. We also show the average of efficiency gains over all the portfolios constructed on a given day.

The efficiency gain is defined here as the relative increase of the DCC portfolio standard deviation over

the LLSD portfolio. Figure (5.5.6a) shows that the null hypothesis that the two portfolios have the same

variance is rejected at the 95% c.l. for most of the days of the sample. In particular, we find that ut

is significantly positive in 104 days out of 120. The DM test statistic computed on the whole sample is

DM = 17.2729, indicating strong evidence of rejection of the null hypothesis. Positive differences among

portfolio variances translate into larger efficiency gains for LLSD portfolios, as shown in figure (5.5.6b).

The average of efficiency gain over the whole sample is 45%, with peaks of more than 80% observed

on certain days. For instance, the efficiency gain is ∼ 85% on 29-01-2014, corresponding to a FOMC

announcement.

4We obtained similar results with other couples of assets.
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(a) (b)

Figure 5.5.6: (a) Daily DM test statistic computed on differences of intraday portfolios realized variance.

(b) Daily average efficiency gains of LLSD portfolios relative to DCC portfolios. Vertical lines denote

FOMC days.



Chapter 6

Realized volatility: errors and

nonlinearity

Almost all results in this chapter previously appeared in Buccheri et al. (2018a).

Estimating and forecasting the volatility of financial markets is a prominent topic in theoretical and

applied finance. Andersen and Bollerslev (1997) were the first to advocate the use of realized variance

computed from high-frequency data as an accurate proxy of integrated variance. Linear reduced-form

specifications for time series of realized variance are widely recognized today as being extremely powerful

in predicting financial volatility (Andersen et al. 2003). However, the vast majority of these dynamic

specifications ignore two key aspects: (i) realized variance is a noisy estimate of the true integrated

variance and (ii) volatility dynamics are highly nonlinear. In particular, the HAR model of Corsi (2009),

one of the most popular dynamic specification for realized volatility, suffers from three main forms of

misspecification when estimated on realized variance series: (a) biased OLS estimates (Bollerslev et al.

2016a); (b) autocorrelated and highly heteroskedastic residuals (Corsi et al. 2008); (c) time-varying

OLS coefficients (Chen et al. 2010). While (a) is related to measurement errors, (b) and (c) are due to

nonlinear dependencies, i.e. deviations of the true underlying volatility dynamics from the linear HAR

specification.

In the following, we aim to disentangle and quantify the impact of measurement errors and nonlin-

earity on volatility forecasts provided by the HAR. The strategy adopted here is a step by step approach.

We first devise different HAR extensions aimed to account separately for each effect. Then, we combine

the different approaches in a single model that takes into account both effects. In doing so, we can

quantify the forecast gains resulting from removing each form of misspecification. The specific choice of

the HAR model is not restrictive, as the same approach can be applied to any linear specification for

realized variance.

105
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As a first step, we write the HAR in a linear state-space representation where the time-varying

variance of the measurement error is driven by realized quarticity, as prescribed by the asymptotic theory

of realized variance (Barndorff-Nielsen and Shephard 2002). The Kalman filter allows to easily estimate

bias-corrected HAR parameters and incorporates the effect of measurement errors through a time-varying

Kalman gain. We name this model HAR-Kalman (HARK). The HARK corrects HAR forecasts based on

the uncertainty with which volatility is measured. It provides more conservative forecasts when current

volatility estimates are noisy and, in contrast, generates more responsive forecasts when volatility is

measured with a good accuracy.

Compared to the HAR, the HARlog, i.e. the HAR estimated on log(RVt) series, provides a bet-

ter dynamic specification for realized variance (Corsi et al. 2008). However, even on log(RVt) series,

residuals feature significant heteroskedasticity. In addition, OLS coefficients tend to vary significantly

when estimating the model on different time windows. This means that volatility forecasts can vary

substantially when changing the estimation window. These empirical findings underline deviations of

the volatility process from the linear HAR specification and can be viewed as an evidence of nonlinear

dynamics. Blasques et al. (2014c) showed that general nonlinear autoregressive models1 can be equiva-

lently represented as linear autoregressive models with time-varying parameters. They proved that this

formulation is optimal from an information theoretic perspective, provided that parameters are driven by

the score of the conditional likelihood. Motivated by this result, we devise an HARlog extension that fea-

tures heteroskedastic errors and time-varying coefficients. In particular, we adopt an observation-driven

approach where parameters evolve based on the score of the conditional likelihood. The resulting model,

the Score-HAR (SHAR), is nonlinear in nature and features iid standardized residuals when estimated

on real data.

As a final step, we combine together the HARK and the SHAR to obtain a more general model, the

SHARK, that accounts for all forms of misspecification. In particular, we let the parameters of the HARK

evolve through an observation-driven update scheme. The resulting model is conditionally Gaussian and

can be handled by the Kalman filter, as underlined in Section 2.4. As the HARK, the SHARK can

handle measurement errors but also accounts for heteroskedasticity and time-varying parameters. As

the SHAR, the SHARK accounts for nonlinear dependencies but provides more responsive time-varying

parameters, as static parameters are not bias attenuated by measurement errors.

Our empirical analysis, conducted on both index future and individual stock data, provides strong

evidence that the effects captured by the HARK, SHAR and SHARK are relevant for volatility forecast-

ing. As a matter of fact, the SHARK is always included in the model confidence set of Hansen et al.

(2011). In some cases the test has not enough power to exclude the HARK and the SHAR while the

1Nonlinear autoregressive models have the general form yt = φ(Yt−1,Θ) + ut, where φ(·) is a nonlinear function of past

observations Yt−1 = {yt−1, yt−2, . . . }, Θ is a set of parameters and ut is a zero-mean sequence of independent innovations.
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HARlog and other competing models feature much lower p-values and are excluded in the vast majority

of cases. Interestingly, the out-of-sample performance of SHAR and SHARK models does not change

significantly if one estimates static parameters on a single window or on a rolling window. Indeed, while

HAR parameters vary significantly when estimating the model on a moving window, SHAR and SHARK

models have built-in time-varying coefficients which capture the variation of volatility persistence over

time. Comparing the relative gains among our models, we obtain that measurement errors are important

at small and intermediate sampling frequencies. The corresponding forecast gains slightly increase with

the forecast horizon. The impact of heteroskedasticity is always relevant, especially at longer forecast

horizons. Finally, time-varying parameters provide statistically significant improvements that are inde-

pendent on the sampling frequency and slightly increase with the forecast horizon.

The problem of taking into account the effect of measurement errors on realized variance forecasts

was recently tackled by Bollerslev et al. (2016a), who devised the HARQ model. The main idea is to

augment the HAR with a term proportional to lagged RVt’s that also depends on realized quarticity.

This new term adjusts HAR forecasts based on the current level of uncertainty on realized variance.

Our approach differs in several aspects. First, assuming an HAR plus noise as a DGP for the real-

ized variance, the Kalman filter provides MVLUE estimates (see e.g. Durbin and Koopman 2012) and

corrections due to measurement errors are independent on the level of heteroskedasticity of the noise.

Second, forecasting gains provided by the HARQ may in principle be imputable to potential nonlinear

dependencies captured by the quarticity term, as recently pointed out by Cipollini et al. (2017), or result

from a mixture of measurement errors and nonlinearity. Our approach, being based on the Kalman filter,

allows to quantify the neat effect of estimation errors after disentangling it from nonlinearity.

Our work is related to that of Asai et al. (2012), who employed a state-space representation to account

for measurement errors. However, the error variance in their work is homoskedastic and is not related to

quarticity. Bekierman and Manner (2016) proposed a modification of the HARQ model by allowing the

coefficients of the HAR to be driven by a latent process. Nevertheless, as acknowledged by the authors,

the latter may also capture other sources of temporal variations. Applications of the Kalman filter to

account for measurement errors are widespread in the literature. In the field of high-frequency financial

econometrics, some examples are given by Barndorff-Nielsen and Shephard (2002), Shephard and Xiu

(2016), Corsi et al. (2015). Examples of nonlinear models for realized variance are the class of MEM

models developed by Engle (2002c), Engle and Gallo (2006), Cipollini et al. (2017).
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6.1 Theoretical framework

6.1.1 Asymptotic theory of realized variance estimation

Let Ps denote the asset price at time s. We assume that the log-price Xs = log(Ps) evolves according

to a Brownian semimartingale process:

dXs = µsds+ σsdWs (6.1.1)

where µs and σs are drift and instantaneous volatility processes satisfying the usual assumptions and

Ws is a Wiener process. The day t integrated variance of Xs is defined as:

IVt =

∫ t

t−1
σ2(s)ds (6.1.2)

where the unit time interval corresponds to one trading day. Note that IVt turns out to be equal to the

quadratic variation of Xs computed on [t− 1, t] (see e.g. Protter 1992).

The day t realized variance is defined as:

RVt =
M∑
i=1

r2
i,t (6.1.3)

where the intraday returns ri,t = Xt−1+i∆ − Xt−1+(i−1)∆, i = 1, . . . ,M are computed on M intraday

time intervals of length ∆ = 1/M . The econometric theory of Barndorff-Nielsen and Shephard (2002)

suggests that, as the intraday period ∆→ 0, the estimation error is mixed normal distributed:

RVt = IVt + εt, εt ∼ MN(0, 2∆IQt) (6.1.4)

where IQt =
∫ t
t−1 σ

4(s)ds is the integrated quarticity of the underlying semimartingale process. IQt can

consistently be estimated using the realized quarticity estimator:

RQt =
M

3

M∑
i=1

r4
i,t (6.1.5)

For later convenience, we also report the asymptotic distribution of log(RVt). Using the delta method,

it is immediate to see that, as ∆→ 0:

log(RVt) = log(IVt) + ξt, ξt ∼ MN

(
0, 2∆

IQt
IV 2

t

)
(6.1.6)

A consistent estimator Vt of the variance of ξt can be obtained by replacing IVt and IQt with their

consistent estimators (6.1.3), (6.1.5), namely:

Vt =
2

3

∑M
i=1 r

4
i,t

(
∑M

i=1 r
2
i,t)

2
(6.1.7)

As pointed out by Barndorff-Nielsen and Shephard (2002), this approximation is quite accurate even

at moderate values of M , in which case approximation (6.1.4) is less reliable. Note that jumps and

microstructure effects have not been considered. To account for them, one needs to replace RVt and

RQt with robust estimators. However, our general approach remains unchanged.
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6.1.2 Reduced-form models for volatility estimation and forecasting

If one neglects the measurement error term in eq. (6.1.4), then RVt = IVt and the integrated variance

is observable. This assumption is at the basis of reduced-form specifications that have been employed in

last years to model and forecast volatility using time series of realized variance.

One of the most popular linear specification is the approximate long-memory HAR model of Corsi

(2009). The HAR reads:

RVt+1 = β0 + β1RVt + β2RVt−1|t−5 + β3RVt−6|t−22 + ηt+1 (6.1.8)

where ηt+1 ∼ NID(0, q) and RVt1|t2 denotes the average of daily RV’s from day t1 to day t2. Even

though the HAR is not a long-memory process, the aggregation of volatilities at short and long time-

scales leads to a slowly decaying autocorrelation function that closely resembles the one observed on real

financial data. The model can be simply estimated by OLS and provides out-of-sample forecasts which

have been proved to be comparable to those of long-memory ARFIMA-RV models (Corsi 2009). Corsi

and Renò (2009) extended the HAR to include the effect of leverage and jumps. Given the simplicity

and effectiveness of the HAR, we will use it as a basis for our modeling framework and empirical work.

However, any other linear specification for RVt is susceptible of treatment within our approach.

6.1.3 Measurement errors

The main effect of the measurement error term in eq. (6.1.4) is the well-known attenuation bias of OLS

coefficients in presence of latent regressors (see e.g. Wansbeek and Meijer 2000). As a consequence, the

estimated model features less persistence and volatility forecasts are less accurate.

Recently, there was an increased interest in examining the effect of measurement errors on HAR

volatility forecasts. Bollerslev et al. (2016a) suggested to augment the HAR with a term depending on

quarticity. The latter underrates RV forecasts in case estimation errors are large and in turn generates

more responsive forecasts when errors are small. Their HARQ model reads:

RVt+1 = β0 + (β1 + β1QRQ
1/2
t )RVt + β2RVt−1|t−5 + β3RVt−6|t−22 + ηt+1 (6.1.9)

If β1Q < 0, the term β1QRQ
1/2
t corrects RVt+1 based on the degree of uncertainty with which RVt is

measured. Similar correction terms can also be included in the remaining terms.

In order to show the effect of measurement errors on OLS coefficients and the correction provided

by the HARQ, we simulate IVt using an HAR specification and contaminate the simulated observations

with a white noise term:

RVt = IVt + εt (6.1.10)

IVt+1 = β0 + β1IVt + β2IVt−1|t−5 + β3IVt−6|t−22 + ηt+1 (6.1.11)
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where εt ∼ NID(0, Ht) and ηt+1 ∼ NID(0, q) are uncorrelated measurement and model disturbances.

Observations are simulated by first sampling IVt, t = 1, . . . , 22 from a lognormal distribution with mean

and variance given by the unconditional mean and variance of process (6.1.11) and then iteratively

applying eq. (6.1.10) and (6.1.11). Since the HARQ relies on having an heteroskedastic measurement

error, we model dynamically Ht through a GARCH process:

zt =
√
Htζt (6.1.12)

Ht+1 = ω + γz2
t + ρHt (6.1.13)

where ζt ∼ N(0, 1). We define the signal-to-noise ratio as δ = q(1 − γ − ρ)/ω and in this example we

choose q = 0.1, γ = 0.01, ρ = 0.95 and ω = q(1− γ− ρ), such that δ = 1. The remaining parameters are

set as: β0 = 1, β1 = 0.5, β2 = 0.2, β3 = 0.1.

After generating T = 1000 observations for N = 1000 Monte-Carlo repetitions, the simulated RVt

and Ht are used to estimate2 the HAR and HARQ models. In figure (6.1.1) we plot kernel density

estimates of zi = θ̂i− θi, where θi, θ̂i, i = 1, . . . , 4, denote the parameters of the HAR specification in eq.

(6.1.11) and their estimates obtained using the HAR and HARQ models. In both cases the coefficient

β1 of RVt exhibits a strong negative bias. However, the bias is lower in the HARQ which in turn is more

persistent than the standard HAR model. As expected, the other two coefficients are less affected since

measurement errors decrease when averaging out lagged RVt ’s.

Note that the estimated HARQ coefficient β1Q depends on the level of heteroskedasticity of εt. If Ht

is constant, then β1Q is not identifiable, even in presence of large measurement error variance H. If Ht

is time-varying, larger variations are related to larger estimates of β1 and thus better forecasts. Finally,

note also that specifications (6.1.8) and (6.1.9) do not guarantee RVt to be positive.

6.1.4 The HARK model

The Kalman filter provides a natural way of recovering consistent and unbiased estimates of the HAR

coefficients when observations of IVt are contaminated by noise. Let Ft be the σ-field generated by

RVt and RQt. Let nw be the number of daily RVt’s used in the computation of the second term in eq.

(6.1.11) and nm the number of daily RVt’s used in the computation of the third term. For instance, in

the model in eq. (6.1.11), nw = 5 and nm = 17. Let also define n = nw + nm + 1. We consider the

following linear state-space representation:

RVt = Zαt + εt, εt ∼ NID(0, Ht) (6.1.14)

αt+1 = c+ Tαt + ηt, ηt ∼ NID(0, Q) (6.1.15)

2On real data Ht is not available and is replaced by the RQt estimator in eq. (6.1.5).
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Figure 6.1.1: Kernel density estimates of standardized pivotal HAR and HARQ statistics estimated on

N = 1000 Monte-Carlo simulations of T = 1000 observations of model (6.1.10), (6.1.11)

where we have introduced the n× 1 state vector and the n× n transition matrix:

αt+1 =


IVt+1

IVt
...

IVt−n+2

 , T =



β1,
1
nw
β2

nw terms︷︸︸︷
· · · 1

nw
β2,

1
nm
β3

nm terms︷︸︸︷
· · · 1

nm
β3

1 0 · · · · · · · · · 0 0

0
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · · · · 1 0


(6.1.16)

together with the n× 1 vector of constants and the n× n covariance matrix:

c =


β0

0
...

0

 , Q =


q 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 (6.1.17)

The n-dimensional vector Z = (1, 0 . . . , 0) selects the first element of αt+1. The variance of the measure-

ment error Ht is assumed to be measurable with respect to the information set Ft.

Model (6.1.14), (6.1.15) is a linear Gaussian state-space representation. The Kalman filter recursions

(2.2.6)-(2.2.11) allow to recursively compute conditional forecasts of the mean at+1 = E[αt+1|Ft] and the
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variance Pt+1 = Var[αt+1|Ft] of the state vector αt. The log-likelihood can be computed as:

logL(RV1, . . . , RVT |Φ) = −nT
2

log(2π)− 1

2

T∑
t=1

(
log |Ft|+ v′tF

−1
t vt

)
(6.1.18)

where vt = RVt − Zat is the prediction error, Ft = ZPtZ
′ + Ht is the corresponding covariance matrix

and Φ = {β0, β1, β2, β3, q} is the set of parameters of the model. Note that, compared to the Kalman

filter recursions (2.2.6)-(2.2.11), the measurement error variance Ht is time-varying and is assumed to

be known at time t. Parameters are estimated by maximizing the log-likelihood through a quasi-Newton

algorithm:

Φ̂ = argmax
Φ

logL(RV1, . . . , RVT |Φ) (6.1.19)

In order to select a proxy for the variance Ht of the measurement error term in eq. (6.1.14), we rely

on the asymptotic theory of Barndorff-Nielsen and Shephard (2002) in eq. (6.1.4) and use the realized

quarticity estimator in eq. (6.1.5). In Section 6.4 we will examine more flexible specifications for Ht to

test deviations from this assumption.

Measurement errors are taken into account in the Kalman filter recursions through the Kalman gain

Kt. If the error variance Ht is large, meaning that RVt is estimated with large uncertainty, the predicted

variance is penalized by a small gain. In contrast, if Ht is small, meaning that RVt is estimated with great

accuracy, the predicted variance will be more responsive to RVt. We name this model HAR-Kalman

(HARK).

Figure (6.1.2) shows kernel density estimates of the pivotal HARK statistics obtained in the same

simulation settings of Section 6.1.3. As done with the HARQ in previous experiment, we use the

true measurement error variance Ht to estimate the HARK. The estimates provided by the HARK

are unbiased and distributed according to a normal, as predicted by the econometric theory on linear

state-space models. Estimation of the model is very fast since system matrices are sparse.

It is important to examine whether improvements in parameter estimates translate into better out-

of-sample forecasts. For different values of the signal-to-noise ratio δ, we generate N = 250 Monte-Carlo

realizations of model (6.1.10), (6.1.11) with T = 2000 observations. The latter 1000 observations are

predicted using a moving window of 1000 observations. In figure (6.1.3) we show out-of-sample MSE of

HARQ and HARK relative to the MSE of the HAR, for each signal-to-noise ratio δ. As expected, there

are large gains when δ is small, as observations of the underlying volatility process are mainly dominated

by noise. However, the MSE provided by the HARK is always lower than the one of the HARQ. This is

true for all the choices of the parameters in model (6.1.10), (6.1.11) and in the GARCH model that we

used to generate Ht. This is not surprising, as the HARQ model is misspecified on the DGP (6.1.10),

(6.1.11) while the HARK provides the right specification.
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Figure 6.1.2: Kernel density estimates of standardized pivotal HARK statistics estimated on N = 1000

Monte-Carlo simulations of T = 1000 observations of model (6.1.10), (6.1.11)
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Figure 6.1.3: Out-of-sample MSE of HARQ and HARK models for different values of signal-to-noise

ratio δ. Each MSE is divided by the MSE provided by the HAR model.
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6.1.5 Nonlinear dynamics

The DGP (6.1.10), (6.1.11) used in the previous analysis takes into account the effect of measurement

errors when forecasting IVt but is characterized by a linear transition equation. In order to understand

whether a linear specification fits well realized variance series, we consider high-frequency futures prices

of the S&P 500 market index and compute daily series of realized variance by summing squares of 5-min

returns. The resulting sample is shown in figure (6.1.4) and includes 4259 days, from 03-01-1995 to

21-06-2013.

It is known that the HARlog, i.e. the HAR estimated on log(RVt) series, features less heteroskedastic

residuals (see e.g. Corsi et al. 2008). This is evident from figure (6.1.5), which shows the OLS residuals of

HAR and HARlog, and from figure (6.1.6), which shows the sample autocorrelation function of residuals

and squared residuals of the two models. Compared to the HAR, the residuals of the HARlog are

uncorrelated, while squared residuals show weaker serial correlation.

As a consequence, being the HARK based on a linear state-space representation, it is convenient to

formulate it on logRVt series rather then on RVt. The only modification to the formulation in Section

6.1.4 is that we now rely on the asymptotic distribution of logRVt and, consequently, the measurement

error varianceHt is computed using eq. (6.1.6) and (6.1.7), i.e. Ht = Vt. It is useful to investigate whether

the weaker misspecification of the HARlog model translates into superior out-of-sample forecasts. Indeed,

this is the case, as it will be verified in Section 6.2 using simulated data and in Section 6.3 using real

data.
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Figure 6.1.4: Time series of 5-min daily realized variance of S&P500 future prices from 03-01-1995 to

21-06-2013.
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Figure 6.1.5: Residuals of HAR and HARlog models estimated on the series of 5-min daily realized

variance of S&P500 future prices from 03-01-1995 to 21-06-2013.
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Figure 6.1.6: Sample autocorrelation function of HAR and HARlog residuals and squared residuals

estimated on the series of 5-min daily realized variance of S&P500 future prices from 03-01-1995 to

21-06-2013.
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6.1.6 The SHAR model

We can write the HARlog model as:

RV l
t+1 = β0 + β1RV

l
t + β2RV

l
t−1|t−nw + β3RV

l
t−nw−1|t−nw−nm + ηt+1, ηt+1 ∼ NID(0, q) (6.1.20)

where RV l
t = log(RVt) and RV l

t1|t2 is built as in the HAR but is computed on log(RVt) series. The

heteroskedasticity featured by the HARlog suggests to remove this residual misspecification by modeling

dynamically the variance q of ηt. The HARlog coefficients are also subject to time variations. Figure

(6.1.7) shows the dynamics of β0, β1, β2, β3 obtained by estimating the HARlog on daily realized variances

of S&P500 future prices using a moving window of 2000 observations. Variations over time of the

estimated coefficients are therefore relevant and suggest that volatility forecasts might be improved by

modeling dynamically the HARlog coefficients.

As shown by Blasques et al. (2014c), autoregressive models with time-varying coefficients can be

employed as alternative representations for general nonlinear autoregressive models. We consider the

following HARlog model:

RV l
t+1 = β0,t+1 + β1,t+1RV

l
t + β2,t+1RV

l
t−1|t−nw + β3,t+1RV

l
t−nw−1|t−nw−nm + ηt+1, ηt+1 ∼ NID(0, qt+1)

(6.1.21)

where now coefficients change over time.

Score-driven models, as described in Section 2.3, provide a useful methodological framework to model

time-varying parameters. By defining the vector of time-varying parameters at time t as

ft =
(
β0,t, β1,t, β2,t, β3,t, log qt

)′
the next value ft+1 is determined by:

ft+1 = ω +Ast +Bft (6.1.22)

where st is the scaled score vector:

st = (It|t−1)−1∇t

Let Θ = {ω, vec(A), vec(B)} denotes the set of all the static parameters of the model. The conditional

log-likelihood is given by:

log p(RV l
t |ft,Bt−1,Θ) = −1

2

(
log qt +

(RV l
t − µt|t−1)2

qt

)
(6.1.23)

where µt|t−1 is the conditional mean:

µt|t−1 = E[RV l
t |ft,Bt−1] = β0,t + β1,tRV

l
t−1 + β2,tRV

l
t−2|t−nw−1 + β3,tRV

l
t−nw−2|t−n (6.1.24)
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The static parameters Θ are estimated by numerically optimizing the log-likelihood function:

Θ̂ = argmax
Θ

logL(RV l
1 , . . . , RV

l
T |Θ) (6.1.25)

where logL(RV l
1 , . . . , RV

l
T |Θ) is obtained by summing all the conditional log-likelihood functions (6.1.23)

and updating the time-varying parameters using eq. (6.1.22):

logL(RV l
1 , . . . , RV

l
T |Θ) =

T∑
t=1

log p(RV l
t |ft,Bt−1,Θ) (6.1.26)

We name model (6.1.21), equipped with the update rule (6.1.22), as Score-HAR (SHAR) model. In

appendix (A.9) we will recover expressions for ∇t and It|t−1.

In order to examine whether the SHAR is able to remove the misspecification of the HARlog, we look

at the standardized residuals η̂t = (RV l
t − µt|t−1)/

√
qt obtained by estimating the model on the same

sample used in Section 6.1.5. Figure (6.1.8) shows sample autocorrelations of η̂t and η̂2
t while figure

(6.1.9) shows kernel density estimates for η̂t. The weak heteroskedasticity of HARlog residuals in figure

(6.1.6) has now disappeared and η̂t is iid. Slight deviations from normality in the tails are imputable to

the huge spikes observed during the 2008-2009. Similar results are obtained by estimating the SHAR on

individual stock data.
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Figure 6.1.7: Dynamics of HARlog coefficients obtained by estimating the model on a moving window of

500 observations in the period 23-12-1996 − 21-06-2013.
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Figure 6.1.8: Sample autocorrelation function of SHAR standardized residuals and squared standardized

residuals estimated the series of 5-min daily realized variance of S&P500 future prices from 03-01-1995

to 21-06-2013.
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Figure 6.1.9: Kernel density estimate of SHAR standardized residuals computed on the series of 5-min

daily realized variance of S&P500 future prices from 03-01-1995 to 21-06-2013. Q-Q plot of standardized

residuals.
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6.1.7 The SHARK model

The HARK allows to account for measurement errors when estimating and forecasting volatility with

an HARlog specification. However, the HARlog exhibits heteroskedastic residuals and time-varying coef-

ficients. As done with the SHAR, we can introduce time-varying parameters in the HARK in order to

correct for its residual misspecification. The new model reads:

RV l
t = Zαt + εt, εt ∼ NID(0, Ht) (6.1.27)

αt+1 = ct + Ttαt + ηt, ηt ∼ NID(0, Qt) (6.1.28)

where the system matrices have the same structure as in eq. (6.1.16) and (6.1.17) but parameters

β0,t, β1,t, β2,t, β3,t, qt are now time-varying.

As shown in Section 2.4, score-driven models are convenient when one wants to model dynamically the

parameters of a linear Gaussian state-space representation. Indeed, the resulting model is conditionally

Gaussian and can be estimated by standard maximum likelihood. As in the SHAR, the vector of time-

varying parameters is given by:

ft =
(
β0,t, β1,t, β2,t, β3,t, log qt

)′
(6.1.29)

and follows the usual update rule:

ft+1 = ζ + Cst +Dft (6.1.30)

where st = (It|t−1)−1∇t. The score ∇t and the information matrix It|t−1 can be computed as:

∇t = −1

2

[
Ḟ ′t(Int ⊗ F−1

t )vec(Int − vtv′tF−1
t ) + 2v̇′tF

−1
t vt

]
(6.1.31)

It|t−1 =
1

2

[
Ḟ ′t(F

−1
t ⊗ F−1

t )Ḟt + 2v̇′tF
−1
t v̇t

]
(6.1.32)

where vt and Ft are the Kalman filter prediction error and its covariance matrix. The two quantities

vt and Ft are computed as an output of the Kalman filter recursions (2.4.5)-(2.4.10) for conditionally

Gaussian models. Instead, v̇t and Ḟt denote derivatives of vt and Ft with respect to ft and can be

computed through a parallel set of recursions that is reported in appendix (A.10).

The log-likelihood can be computed in the prediction-error decomposition:

logL(RV l
1 , . . . , RV

l
T |Ω) = −nT

2
log(2π)− 1

2

T∑
t=1

(
log |Ft|+ v′tF

−1
t vt

)
(6.1.33)

where Ω = {ζ, vec(C), vec(D)} denotes the set of static parameters of the model. The time-varying

parameters are updated at each time step using eq. (6.1.30) and computing ∇t and It|t−1 as described

above. The static parameters are estimated by optimizing numerically the log-likelihood with a quasi-

Newton method:

Ω̂ = argmax
Ω

logL(RV l
1 , . . . , RV

l
T |Ω) (6.1.34)
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We name model (6.1.27), (6.1.28), equipped with the update rule (6.1.30), as Score-HAR-Kalman

(SHARK). As we will see in our empirical study in Section 6.3, compared to the SHAR, the SHARK

provides more responsive time-varying parameters, as they are not affected by the attenuation bias due

to measurement errors.

6.1.8 Forecast

In this Section we will provide guidelines for computing one-step and multi-step-ahead forecasts from our

models. Except for the HAR, all other models are estimated on log(RVt) series. Thus, when computing

forecasts of RVt, it is essential to take into account the bias generated by the logarithm transformation.

The one-step-ahead forecast of the HARlog model is simply computed using the moment generating

function of the normal distribution:

Et[exp(RV l
t+1)] = exp

(
β0 + β1RV

l
t + β2RV

l
t−1|t−nw + β3RV

l
t−nw−1|t−nw−nm +

q2

2

)
(6.1.35)

In the HARK, from the theory of linear Gaussian state-space models, we know that αt+1|Ft ∼ N(at+1, Pt+1).

Thus, using the moment generating function of the multivariate normal distribution, we have:

Et[exp(Zαt+1)] = exp

(
Zat+1 +

1

2
ZPt+1Z

′
)

(6.1.36)

Since the time-varying parameters in the SHAR and SHARK are Ft-measurable, we obtain analogous

formulas to eq. (6.1.35) and (6.1.36), respectively. In particular, in the case of the SHAR, we have:

Et[exp(RV l
t+1)] = exp

(
β0,t+1 + β1,t+1RV

l
t + β2,t+1RV

l
t−1|t−nw + β3,t+1RV

l
t−nw−1|t−nw−nm +

q2
t+1

2

)
(6.1.37)

while in the case of the SHARK we have the same one-step-ahead forecast of the HARK in eq. (6.1.36)

but at+1 and Pt+1 are computed with the Kalman filter recursions (2.4.5)-(2.4.10).

We will provide closed form bias-corrected expressions for multi-step ahead forecasts of HARlog and

HARK models. In the SHAR and SHARK models the presence of time-varying parameters does not

allow for similar closed form expressions. In this case, as suggested by Creal et al. (2014), we evaluate

the conditional mean of the predictive density through simulations. This is easily done by simulating

recursively eq. (6.1.21), (6.1.22) for the SHAR and eq. (6.1.27), (6.1.28), (6.1.30) for the SHARK.

As done with the HARK, we write the HARlog model in a vectorial representation by introducing

the n-dimensional column vector RV
l
t = (RV l

t+1, RV
l
t , · · · , RV l

t−n+2)′. Eq. (6.1.20) can thus be written

as:

RV
l
t+1 = cl + TlRV

l
t + ηt, ηt ∼ NID(0, Ql) (6.1.38)

where cl, Tl and Ql have the same structure as c, T and Q in Section 6.1.4 but contain the parameters

of the HARlog model. In appendix (A.11), (A.12), we prove the following two propositions:
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Proposition 4. The j-th step-ahead forecast of the HARlog model is given by:

Et[exp(ZRV t+j)] = exp

{
Z
[
(In + · · ·+ T j−1

l )cl + T jl RV
l
t

]
+

1

2
Z
[
Q+ · · ·+ T j−1Q(T j−1)′

]
Z ′
}

Proposition 5. The j-th step-ahead forecast of the HARK model is given by:

Et[exp(Zαt+j)] = exp

{
Z
[
(In + · · ·+ T j−2)c+ T j−1at+1

]
+

1

2
Z
[
T j−1Pt+1(T j−1)′ +Q+ · · ·+ T j−2Q(T j−2)′

]
Z ′
}

6.2 Simulation study

The linear DGP used in Section 6.1.3 does note provide a good description of empirical realized variance

series, as we have seen that they exhibit evidence of nonlinear dependencies, such as heteroskedasticity

and time-varying parameters. In order to test our models on realistic time-series, we perform an extensive

simulation study using the two-factor stochastic volatility model of Huang and Tauchen (2005). The

same DGP was also used by Bollerslev et al. (2016a) to test the HARQ model (see their appendix A).

We simulate 1-sec data on a regularly spaced grid of 23400 timestamps per day and then compute daily

realized variances by summing up M = 39, 78, 390 intraday squared returns, corresponding to 10, 5, 1-

min sampling frequencies. The simulated RV series have T = 3000 observations. The in-sample analysis

is performed on the last 1000 observations. The out-of-sample analysis is performed on the same sample

of 1000 observations but the models are estimated on a rolling window of 2000 observations, starting

from the first 2000 simulated data. We generate N = 1000 Monte-Carlo realizations and estimate the

following models for both the in-sample and out-of-sample analysis: (i) HAR, (ii) HARQ, (iii) HARlog,

(iv) HARK, (v) SHAR and (vi) SHARK.

The SHAR and the SHARK, featuring dynamic HAR coefficients, tend to provide very close forecast

performances when static parameters are estimated on the initial window and when they are re-estimated

on a daily basis. As such, we generate out-of-sample forecasts from these models using parameter

estimates recovered on the initial window. All other models are re-estimated on a daily basis. We

found particularly effective and parsimonious constraining the dynamic equations (6.1.22), (6.1.30) of

the time-varying parameters in the SHAR and SHARK as:

ft+1 = ft +Ast (6.2.1)

ft+1 = ft + Cst (6.2.2)
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where A and C are 5 × 5 diagonal matrices. More flexible specifications are possible, but they do not

lead to superior out-of-sample forecasts. Thus, the static parameters to be estimated in the SHAR are

the five diagonal elements of A, that we denote as a1, a2, a3, a4, a5 and, similarly, the static parameters

to be estimated in the SHARK are the five diagonal elements of C, that we denote as c1, c2, c3, c4, c5.

HAR HARQ HARlog HARK SHAR SHARK

In-sample

M = 39

MSE 1.0000 0.97620 0.98331 0.99210 0.98376 0.99994

MAE 1.0000 0.98676 0.97516 0.96248 0.97643 0.96478

QLIKE 1.0000 0.97062 0.9499 0.96401 0.95050 0.96581

Signal-to-Noise 7.54 8.00

M = 78

MSE 1.0000 0.97981 0.98710 0.99148 0.98916 0.99474

MAE 1.0000 0.98754 0.97748 0.97048 0.97937 0.97310

QLIKE 1.0000 0.96751 0.9487 0.95535 0.94931 0.95572

Signal-to-Noise 13.62 14.30

M = 390

MSE 1.0000 0.98222 0.98884 0.99017 0.99069 0.99024

MAE 1.0000 0.98870 0.97817 0.97639 0.97982 0.97905

QLIKE 1.0000 0.96532 0.9446 0.94634 0.94502 0.9457

Signal-to-Noise 61.17 62.70

Out-of-sample

M = 39

MSE 1.0000 0.98924 0.96767 0.97639 0.96051 0.98691

MAE 1.0000 0.98696 0.96911 0.95757 0.97252 0.95645

QLIKE 1.0000 0.97056 0.92626 0.94155 0.92271 0.94842

M = 78

MSE 1.0000 0.99382 0.97347 0.97772 0.96987 0.98167

MAE 1.0000 0.98805 0.97159 0.96532 0.97537 0.96447

QLIKE 1.0000 0.96044 0.92487 0.93186 0.92185 0.93414

M = 390

MSE 1.0000 0.99856 0.97658 0.99175 0.97406 0.97688

MAE 1.0000 0.98878 0.97313 0.97600 0.97803 0.97371

QLIKE 1.0000 0.95602 0.92355 0.94976 0.92073 0.92364

Table 6.2.1: Average relative in-sample and out-of-sample losses of HAR, HARQ, HARlog, HARK, SHAR,

SHARK models on 1000 simulated daily RV data. Signal-to-Noise denotes the average signal-to-noise

ratio estimated by HARK and SHARK models.

The first part of table (6.2.1) compares the average in-sample mean square error (MSE), mean

absolute error (MAE) and QLIKE, defined as:

QLIKE =
1

n

n∑
t=1

(
IVt

ÎV t

− log
IVt

ÎV t

− 1

)
(6.2.3)

where ÎV t denotes the one-step-ahead forecast obtained by the model. The true IVt used in the com-



6.2. SIMULATION STUDY 123

putation of the loss measures is computed by summing up 1-sec squared returns3. We also show the

average signal-to-noise ratio estimated by the HARK and SHARK models.

The HARlog outperforms the HAR. Indeed, contrary to the linear DGP in Section 6.1.3, the sim-

ulated series feature nonlinear behavior and, as it has been shown on S&P500 data, the logarithmic

transformation removes most of the heteroskedasticity of the HAR. This translates into better in-sample

estimates.

As expected, the HARQ provides better estimates than the HAR in terms of all the three loss

measures. Note that the relative MSE of the HARQ approaches 1 as M becomes larger. This is due

to the effect of measurement errors. However, the relative QLIKE is significantly lower than 1 even at

M = 390, a setting in which measurement errors are very small. This can be interpreted as an indication

that the HARQ is also capturing other effects than measurement errors.

Except for the fact that the HARK outperforms all other models in terms of MAE, in this in-sample

analysis there are no significant advantages in using the HARK, SHAR and SHARK in place of the

HARlog. The reason is twofold. On the one hand, estimation errors are small, as indicated by the large

values of the signal-to-noise ratio δ. Indeed, the amount of noise on real data is larger, as indicated by

the lower values of δ that we have found in our empirical application in Section 6.3. Second, the filtered

time-varying parameters resulting from estimating the SHAR and the SHARK are less erratic than what

found on empirical data.

It is more interesting to look at out-of-sample results, summarized in the second part of table (6.2.1).

Both the HARlog and the HARQ perform better than the HAR but the HARlog outperforms the HARQ

in terms of all the three loss measures. This implies that, if one is interested in forecasting, modeling

logarithmic time series through the HARlog is more effective than correcting for measurement errors

through the HARQ. Note that the relative performance of the HARQ that we have found in the in-

sample and out-of-sample analysis is in agreement with that of Bollerslev et al. (2016a) obtained in the

same simulation setting.

The HARK still provides better estimates than the HARlog in terms of MAE. In contrast to the

in-sample analysis, introducing time-varying parameters allows improving over the forecasts provided by

the HARlog and the HARK. Indeed, the SHAR has lowest MSE and QLIKE while the SHARK has lowest

MAE. Therefore, even in presence of weak nonlinear dependencies, modeling the residual misspecification

of HARlog and HARK leads to significantly better out-of-sample forecasts.

3The simulated prices are not contaminated by microstructure noise, so the realized variance estimator is a consistent

and unbiased estimator of the true IV. In presence of microstructure noise, one only needs to replace the realized variance

estimator with a robust estimator (see e.g. Zhang et al. 2005) and using a consistent estimator for the variance of the error

to employ as a proxy of Ht.



124 CHAPTER 6. REALIZED VOLATILITY: ERRORS AND NONLINEARITY

6.3 Empirical evidence

In order to test the proposed models on real time series, we use both high-frequency data of S&P500

market index future and individual stock prices. The S&P500 sample is the same as the one used in

Section 6.1.5. It includes 4259 business days, from 03-01-1995 to 21-06-2013. Equity data are provided

by Thomson Reuters and comprise 18 frequently traded NYSE stocks. The sample goes from 03-01-2006

to 31-12-2014, spanning a total of 2250 business days. Table (6.3.1) provides summary statistics of the

series of realized variances computed with 5-min returns.

Stock Symbol Min Mean Median Max

SP500 0.0177 0.9243 0.4808 38.2914

Citigroup C 0.1473 9.6360 2.5460 972.4663

Morgan Stanley MS 0.1847 11.1067 2.8120 1.64e+03

Goldman Sachs GS 0.2056 4.9457 1.6992 394.4546

JPMorgan Chase JPM 0.1035 5.2330 1.6949 254.1726

Bank of America BAC 0.1088 7.8898 2.1562 377.5072

ConocoPhillips COP 0.1303 2.8366 1.4524 191.3988

Exxon Mobil XOM 0.1130 1.9655 0.9875 135.4296

Chevron CVX 0.1052 2.2589 1.1585 142.7586

Schlumberger SLB 0.3042 4.6566 2.7218 165.4489

General Electric GE 0.1088 3.2878 1.1553 172.7190

CBS Corporation CBS 0.2013 5.5533 2.2906 165.6725

Walt Disney DIS 0.1380 2.2760 1.1164 112.5801

Halliburton Company HAL 0.1964 5.5976 3.1641 205.0786

Johnson & Johnson JNJ 0.0668 0.9579 0.5167 49.6791

McDonald’s MCD 0.0867 1.3879 0.7031 124.4459

Pfizer PFE 0.1620 1.9173 1.1373 64.0720

Verizon Communications VZ 0.1229 1.8900 0.9336 108.7225

Wal-Mart WMT 0.1134 1.4193 0.7576 73.2718

Table 6.3.1: Summary statistics of realized variance series computed with 5-min returns for S&P500 and

NYSE stocks data.

Since one of the main purposes of this analysis is to assess the effect of measurement errors, we

compute realized variance at different sampling frequencies. As done in the simulation study, we choose

M = 39, 78, 390, corresponding to sampling 10, 5, 1-min returns4.

For the out-of-sample analysis, a moving window of 2000 observations is employed to estimate the

models and recover forecasts of the last T − 2000 RV’s, where T = 4259 for S&P500 data and T = 2250

4The average realized variance for M = 39, 78, 390 is 0.90, 0.92, 0.89, respectively, suggesting that microstructure effects

are small and that RVt provides unbiased estimates of IVt for all the three sampling frequencies. Similar considerations

hold for individual stock data.
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for stock data. In the case of S&P500 data, the same subsample of 2259 observations is used to perform

the in-sample analysis. For individual stock data, we perform the in-sample analysis on the last 1000

observations.

We constraint the static parameters of the SHAR and SHARK models as in eq. (6.2.1), (6.2.2). As

found in the simulation study, re-estimating the SHAR and SHARK on a moving window or employing

parameter estimates recovered on the first window leads to similar loss measures and same models

ranking. The HARQ may provide negative RVt estimates. In that case, as suggested by Bollerslev et al.

(2016b), we replace the negative estimate with the average of past realized variances.

6.3.1 In-sample analysis

Tables (6.3.2), (6.3.3), (6.3.4) show OLS estimates of HAR, HARQ, HARlog coefficients and maximum

likelihood estimates of HARK, SHAR, SHARK parameters obtained by estimating the models on S&P500

data with M = 39, 78, 390 in the period 23-12-1996 − 21-06-2013. The first 500 observations, from 03-01-

1995 to 22-12-1996, are used for initializing the time-varying parameters. We estimate the HARlog and

HARK on this pre-sample and then use the estimated coefficients as starting values of the time-varying

parameters of the SHAR and SHARK, respectively. In the same table we also report the MSE, QLIKE

and the R2 of the Mincer-Zarnowitz regression computed on the period used for the in-sample analysis.

On the last three lines we show the average MSE, QLIKE and R2 obtained on individual stock data.

The Kalman filter consistently takes into account measurement errors. For M = 39, the coefficient

β1 estimated by the HARK is 0.54 while the one of the HARlog is 0.41, meaning that the former is

correcting for the bias induced by estimation errors. As M increases, the bias becomes smaller and thus

the estimate provided by the HARK becomes closer to that of the HARlog. The same effect is observed

on loss measures, with the relative difference between the two models being larger for M = 39 and then

reducing as M increases. Note that the signal-to-noise ratio increases as M increases and is smaller than

the one estimated on simulated data.

Figure (6.3.1), (6.3.2), (6.3.3), (6.3.4) show, for M = 39, 78, 390, filtered estimates of time-varying

parameters β0,t, β1,t, β3,t, qt. The static parameter in matrices A and C corresponding to β2,t is found to

be zero for both the SHAR and the SHARK. The latter provides more responsive estimates, especially

for M = 39. As M increases, the parameters filtered by the two models tend to show similar dynamics.

Indeed, while the SHARK is able to filter out observational noise through the Kalman filter, SHAR

estimates are bias-attenuated due to measurement errors. In figure (6.3.4), we see that both models

capture the residual heteroskedasticity that we observed in figure (6.1.6) and that is left after taking the

logarithm of RVt. However, the time-varying variance estimated by the SHAR is larger than the one

of the SHARK. This is another consequence of measurement errors. Indeed, the SHAR is not able to
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disentangle the dynamics of the quarticity from those of qt and provides filtered variance estimates that

include the contribution of both terms.

The coefficient β1Q of the HARQ is negative, in agreement with the empirical results of Bollerslev

et al. (2016a). Since the correction term in the HARQ accounts for measurement errors, as M increases

β1Q should become smaller in absolute value. In contrast, for M = 390, it is still significantly different

form zero and it is close to the one computed for M = 39. This empirical finding is in agreement

with what we have found in the simulation study and indicates that the HARQ term may also capture

nonlinearities.

Further insights related to the effect of measurement errors are given by log-likelihood estimates. As

expected, the SHARK has the largest estimated log-likelihood for all M ’s, implying better in-sample

fit resulting from modeling both measurement errors and time-varying parameters. The estimated log-

likelihood of the HARK is larger than the one of the SHAR for M = 39 and M = 78, while it is smaller

for M = 390, as the effect of measurement errors becomes less important.
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Figure 6.3.1: Dynamics of filtered SHAR (blue lines) and SHARK (red lines) β0,t parameter obtained

by estimating the two models on S&P500 realized variance computed with 10, 5, 1-min returns in the

period 23-12-1996 − 21-06-2013.

6.3.2 Out-of-sample analysis

Table (6.3.5) shows the results of the out-of-sample analysis. As suggested by Patton (2011), we con-

sidered the MSE and QLIKE which are known to provide robust loss measures when comparing out-of-

sample forecasts of noisy volatility estimates5.

In our framework, the relative average loss between two models can be interpreted as the forecast

5Since the MSE is highly sensitive to the huge volatility spikes observed during the financial crisis, we considered averages

of squared errors until 01-09-2008, a total of 1437 days. The QLIKE is more robust to huge spikes and it provides the

same ranking when computed in the whole sample. However, to make it comparable with the MSE, we reported its value

computed on the same sample.
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M = 39

HAR HARQ HARlog HARK SHAR SHARK

β0 0.0879 -0.0402 -0.0372 -0.0309

(0.0264) (0.0270) (0.0119) (0.0153)

β1 0.3460 0.7068 0.4167 0.5420

(0.0160) (0.0284) (0.0158) (0.0338)

β2 0.3962 0.3110 0.3655 0.2944

(0.0229) (0.0229) (0.0219) (0.0445)

β3 0.1656 0.0947 0.1602 0.1165

(0.0229) (0.0227) (0.0203) (0.0308)

β1Q -0.0119

(0.0007)

a1, c1 2.2996 3.6931

(0.0794) (0.2418)

a2, c2 0.2300 0.5442

(0.0804) (0.0525)

a3, c3 0.0000 0.0001

(0.0000) (0.0002)

a4, c4 0.0001 0.1944

(0.0003) (0.0847)

a5, c5 1.5477 1.9583

(0.1651) (0.0415)

Signal-to-Noise 3.0487 3.7064

MSE 2.2490 2.0464 2.2108 2.2037 2.1689 2.1617

QLIKE 0.1844 0.6328 0.1847 0.1837 0.1822 0.1783

R2 0.5676 0.6065 0.5798 0.5810 0.5832 0.5859

−LogL · 10−3 1.8585 1.8716 1.8455

MSE 5.7066 5.5769 6.3001 6.2670 6.1582 6.2732

QLIKE 0.1772 0.1774 0.1732 0.1756 0.1739 0.1758

R
2

0.3833 0.3954 0.3397 0.3490 0.3442 0.3318

Table 6.3.2: OLS estimates of HAR, HARQ, HARlog coefficients and maximum likelihood estimates of HARK, SHAR,

SHARK parameters obtained on RV series of S&P500 future prices computed with 10-min returns. Robust standard errors

are indicated inside parenthesis. We also show the in-sample MSE, QLIKE, R2, estimated log-likelihood and the average

in-sample MSE, QLIKE, R2 obtained on RV series of individual stock prices. The SHAR and SHARK parameters are

multiplied by 100.
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M = 78

HAR HARQ HARlog HARK SHAR SHARK

β0 0.0921 0.0127 -0.0307 -0.0270

(0.0280) (0.0279) (0.0106) (0.0147)

β1 0.3249 0.5780 0.4500 0.5480

(0.0159) (0.0237) (0.0157) (0.0299)

β2 0.4166 0.3211 0.3531 0.2914

(0.0232) (0.0236) (0.0214) (0.0367)

β3 0.1661 0.1309 0.1442 0.1147

(0.0236) (0.0232) (0.0193) (0.0276)

β1Q -0.0059

(0.0004)

a1, c1 2.0385 3.3315

(0.0629) (0.1300)

a2, c2 0.3252 0.5295

(0.0358) (0.0304)

a3, c3 0.0000 0.0000

(0.0002) (0.0013)

a4, c4 0.0020 0.2346

(0.0021) (0.0370)

a5, c5 1.9973 1.7019

(0.0632) (0.0368)

Signal-to-Noise 5.0582 6.0415

MSE 2.1577 1.9766 2.1549 2.1587 2.1431 2.1542

QLIKE 0.1536 0.5941 0.1532 0.1507 0.1501 0.1465

R2 0.5973 0.6311 0.6025 0.6046 0.6054 0.6075

−LogL · 10−3 1.6737 1.6851 1.6561

MSE 5.5758 5.3013 5.9656 5.8987 5.8485 5.9093

QLIKE 0.1452 0.1464 0.1400 0.1407 0.1401 0.1408

R
2

0.3808 0.4073 0.3586 0.3687 0.3617 0.3564

Table 6.3.3: OLS estimates of HAR, HARQ, HARlog coefficients and maximum likelihood estimates of HARK, SHAR,

SHARK parameters obtained on RV series of S&P500 future prices computed with 5-min returns. Robust standard errors

are indicated inside parenthesis. We also show the in-sample MSE, QLIKE, R2, estimated log-likelihood and the average

in-sample MSE, QLIKE, R2 obtained on RV series of individual stock prices. The SHAR and SHARK parameters are

multiplied by 100.
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M = 390

HAR HARQ HARlog HARK SHAR SHARK

β0 0.0853 -0.0687 -0.0272 -0.0264

(0.0257) (0.0246) (0.0091) (0.0138)

β1 0.3539 0.8679 0.4996 0.5428

(0.0160) (0.0257) (0.0155) (0.0273)

β2 0.4166 0.2652 0.3442 0.3161

(0.0227) (0.0219) (0.0206) (0.0343)

β3 0.1429 0.0131 0.1056 0.0931

(0.0220) (0.0211) (0.0176) (0.0269)

β1Q -0.0104

(0.0004)

a1, c1 2.7082 2.8887

(0.2107) (0.0212)

a2, c2 1.0119 0.9008

(0.1249) (0.0139)

a3, c3 0.0000 0.0000

(0.0028) (0.0064)

a4, c4 0.1531 0.3086

(0.0298) (0.0093)

a5, c5 2.1238 1.7671

(0.1465) (0.0719)

Signal-to-Noise 16.5013 19.0204

MSE 2.3724 1.9556 2.3027 2.3058 2.3188 2.2867

QLIKE 0.1246 0.3402 0.1210 0.1194 0.1191 0.1174

R2 0.5890 0.6612 0.6048 0.6052 0.6024 0.6060

−LogL · 10−3 1.3861 1.3674 1.3540

MSE 4.0100 3.8106 4.1341 4.1382 4.1397 4.0882

QLIKE 0.1011 0.0997 0.0962 0.0966 0.0963 0.0960

R
2

0.4358 0.4627 0.4322 0.4410 0.4330 0.4356

Table 6.3.4: OLS estimates of HAR, HARQ, HARlog coefficients and maximum likelihood estimates of HARK, SHAR,

SHARK parameters obtained on RV series of S&P500 future prices computed with 1-min returns. Robust standard errors

are indicated inside parenthesis. We also show the in-sample MSE, QLIKE, R2, estimated log-likelihood and the average

in-sample MSE, QLIKE, R2 obtained on RV series of individual stock prices. The SHAR and SHARK parameters are

multiplied by 100.
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Figure 6.3.2: Dynamics of filtered SHAR (blue lines) and SHARK (red lines) β1,t parameters obtained

by estimating the two models on S&P500 realized variance computed with 10, 5, 1-min returns in the

period 23-12-1996 − 21-06-2013.
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Figure 6.3.3: Dynamics of filtered SHAR (blue lines) and SHARK (red lines) β3,t parameters obtained

by estimating the two models on S&P500 realized variance computed with 10, 5, 1-min returns in the

period 23-12-1996 − 21-06-2013.
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Figure 6.3.4: Dynamics of filtered SHAR (blue lines) and SHARK (red lines) qt parameter obtained by

estimating the two models on S&P500 realized variance computed with 10, 5, 1-min returns in the period

23-12-1996 − 21-06-2013.
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gain resulting from taking into account different forms of misspecification of the HAR. Given a generic

loss measure L(·), we define:

ϕhet =
E[L(HARlog)]

E[L(HAR)]
(6.3.1)

ϕ
(1)
tvp =

E[L(SHAR)]

E[L(HARlog)]
, ϕ

(2)
tvp =

E[L(SHARK)]

E[L(HARK)]
(6.3.2)

ϕ(1)
err =

E[L(HARK)]

E[L(HARlog)]
, ϕ(2)

err =
E[L(SHARK)]

E[L(SHAR)]
(6.3.3)

The first measure, ϕhet, quantifies the forecast gain resulting from removing part of the heteroskedas-

ticity of HAR residuals. The other two measures, ϕ
(1)
tvp and ϕ

(2)
tvp, quantify the effect of modeling the

residual nonlinearities by introducing time-varying parameters. Finally, ϕ
(1)
err and ϕ

(2)
err measure the con-

tribution of measurement errors. Table (6.3.6) shows the values of the forecast gains defined in eq.

(6.3.1)-(6.3.3) computed on S&P500 and on individual stocks using the MSE and the QLIKE as loss

measures.

On S&P500 data, the SHARK provides the lowest MSE and QLIKE. The only exception is for

M = 390. In this case, the SHAR provides a slightly lower MSE, as measurement errors are less

important at large sampling frequencies. Except for M = 390, where the HARQ has slightly lower MSE

loss, the HARK always outperforms the latter in terms of both loss measures. Compared to the basic

HARlog model, all the three extensions considered here provide lower MSE and QLIKE.

These results are corroborated by the analysis based on the model confidence set (MCS) of Hansen

et al. (2011). For S&P500 data, table (6.3.5) shows in parenthesis the p-values resulting from a 90%

MCS, that we denote as M̂90%, constructed using the MSE and QLIKE. The three HAR extensions are

the only models belonging to M̂90% constructed with the QLIKE. If one uses the MSE, the HARK and

the SHARK are the only models included in M̂90% for M = 39, 78. For M = 390, the test has not

enough power to exclude any of the models from the confidence set. Such results indicate that the effects

captured by the HARK, SHAR and SHARK models are relevant for volatility forecasting.

The HARlog has always lower MSE and QLIKE compared to the HARQ, except for M = 39, 390.

However, in the first case the HARQ is not included in M̂90%, while in the latter both models are

included. Note that, as M increases, ϕ
(1)
err and ϕ

(2)
err approach 1, as one would expect from a model which

accounts exclusively for measurement errors. On average, ϕ
(1)
err and ϕ

(2)
err are smaller for M = 78 than

M = 39, suggesting that the estimator of the noise variance in eq. (6.1.7) provides less precise estimates

of the true variance Ht when computed using 10-min returns.

The forecast gain coming from taking into account heteroskedasticity turns out to be substantial if

one uses the QLIKE as a loss measure. Indeed, from table (6.3.6), we see that ϕhet is around 0.9 for

M = 390 and even smaller in the remaining cases. More moderate gains are obtained using the MSE.
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HAR HARQ HARlog HARK SHAR SHARK

S&P500

M = 39

MSE 1.0000 0.9897 0.9927 0.9699? 0.9770 0.9508?

(0.033) (0.033) (0.033) (0.233) (0.033) (1.000)

QLIKE 1.0000 0.9037 0.8863 0.8765 0.8643? 0.8536?

(0.015) (0.022) (0.022) (0.057) (0.200) (1.000)

M = 78

MSE 1.0000 0.9714 0.9555 0.9284? 0.9452 0.9163?

(0.003) (0.057) (0.089) (0.587) (0.089) (1.000)

QLIKE 1.0000 0.8689 0.7844 0.7668? 0.7733? 0.7455?

(0.000) (0.000) (0.013) (0.180) (0.180) (1.000)

M = 390

MSE 1.0000? 0.9595? 0.9781? 0.9636? 0.9524? 0.9538?

(0.141) (0.932) (0.141) (0.736) (1.000) (0.932)

QLIKE 1.0000 0.9244 0.9022 0.8911 0.8830? 0.8759?

(0.008) (0.019) (0.019) (0.096) (0.295) (1.000)

Stocks

M = 39

MSE 1.0000(3) 0.7651(5) 0.5639(5) 0.5433(14) 0.5504(14) 0.5377(18)

QLIKE 1.0000(3) 0.9579(3) 0.7366(10) 0.7295(14) 0.7242(16) 0.7188(17)

M = 78

MSE 1.0000(2) 0.9034(3) 0.6612(7) 0.6485(12) 0.6525(15) 0.6428(18)

QLIKE 1.0000(3) 1.2628(3) 0.7071(11) 0.7010(13) 0.6952(17) 0.6890(18)

M = 390

MSE 1.0000(1) 0.8492(1) 0.5437(3) 0.5691(9) 0.5315(9) 0.5216(18)

QLIKE 1.0000(2) 2.3093(3) 0.6002(10) 0.5972(12) 0.5944(17) 0.5866(17)

Table 6.3.5: Relative out-of-sample losses of HAR, HARQ, HARlog, HARK, SHAR, SHARK models on

S&P500 data and average out-of-sample losses of the same models estimated on 18 individual stock data.

In the first case we show in parenthesis the p-values of the MCS at 90% c.l. computed using the MSE

and QLIKE. The presence of an asterisk indicates that the model is included in M̂90%. In the second

case we report the number of times the model is included in M̂90%.
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Gains coming from modeling the residual nonlinearity through time-varying parameters are roughly

equal to 2% on average, as can be seen by looking at the values of ϕ
(1)
tvp and ϕ

(2)
tvp.

On stock data, the HARK, SHAR and SHARK improve significantly over the performance of the

HARlog model, as indicated by lower MSE and QLIKE and by the MCS analysis. With only two

exceptions, the SHARK is always included in M̂90%, while the HARK and SHAR are included more

frequently than the remaining models.

The impact of measurement errors, as quantified by ϕ
(1)
err and ϕ

(2)
err , is slightly lower for M = 39

than M = 78. While ϕ
(1)
err approaches 1 for M = 390, ϕ

(2)
err remains low. This is due to the surprising

improvement of the SHARK compared to all other models, as also indicated by the very small value of

ϕ
(2)
tvp. The reason is that stock volatility exhibits more pronounced parameters dynamics which are not

well captured by the SHAR, even in presence of small measurement errors.

The relative QLIKE of the HARQ is significantly larger than 1 for M = 78, 390. The performance

of the HAR on stock data also deteriorates substantially compared to the HARlog. In both cases the

reason of such a poor performance is due to the estimation window including the 2008 financial crisis,

which strongly affects the OLS estimates of the two models. The HARlog, being estimated on logRV t

series, is robust to these huge peaks, as can be seen from the very low values of ϕhet. Finally, forecast

gains due to accounting for residual nonlinearity and assessed by ϕ
(1)
tvp are of the same size of those found

on S&P500 data.

Our empirical findings reveal substantial improvements coming from correcting for the three types

of misspecification of the HAR. In particular, heteroskedasticity has deep impacts on HAR volatility

forecasts, especially when the model is estimated on turbulent periods. Measurement errors are relevant

at small and intermediate sampling frequencies, while modeling time-varying parameters results on

forecast gains which are roughly equal to 2%.

We conclude this Section by examining in more detail what kind of misspecification is captured

by the HARQ. Indeed, we have found on both simulated and empirical data that the HARQ corrects

for both measurement errors and nonlinear dependencies. In order to quantify the extent to which

this happens, we regress out-of-sample forecast errors of the HARQ against forecast errors provided

by all other models. Table (6.3.7) shows the R2 obtained from such regression on S&P500 data for

M = 39, 78, 390. Forecasts errors of the HARQ are better described in terms of forecast errors of the

SHARK, for M = 39, 78. Thus, at these sampling frequencies, the model is capturing both measurement

errors and nonlinear dependencies. This is also confirmed by the fact that the R2 resulting from regressing

against the HARK and the SHAR is higher than the one resulting from regressing against the HARlog,

where these effects are not taken into account. For M = 390, the highest R2 is the one obtained by

regressing against the SHAR, while the relative difference between regressions onto HARlog and HARK
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ϕhet ϕ
(1)
tvp ϕ

(2)
tvp ϕ

(1)
err ϕ

(2)
err

S&P500

M = 39

MSE 0.9927 0.9842 0.9803 0.9771 0.9732

QLIKE 0.8863 0.9752 0.9739 0.9890 0.9876

M = 78

MSE 0.9555 0.9872 0.9922 0.9715 0.9764

QLIKE 0.7844 0.9746 0.9817 0.9775 0.9846

M = 390

MSE 0.9781 0.9737 0.9898 0.9852 1.0015

QLIKE 0.9022 0.9787 0.9829 0.9876 0.9919

Stocks

M = 39

MSE 0.5639 0.9762 0.9897 0.9635 0.9768

QLIKE 0.7366 0.9831 0.9854 0.9904 0.9926

M = 78

MSE 0.6612 0.9869 0.9911 0.9809 0.9851

QLIKE 0.7071 0.9832 0.9829 0.9914 0.9911

M = 390

MSE 0.5437 0.9775 0.9165 1.0468 0.9815

QLIKE 0.6002 0.9904 0.9822 0.9951 0.9869

Table 6.3.6: Forecast gains ϕhet, ϕ
(1)
tvp, ϕ

(2)
tvp, ϕ

(1)
err , ϕ

(2)
err as defined in eq. (6.3.1), (6.3.2), (6.3.3) and

computed using the MSE and QLIKE as loss measures. In case of stocks, we report the average gains.

is lower. This result is not surprising, since at large sampling frequencies measurement errors become

less important and the forecast gains provided by the HARQ are entirely due to capturing nonlinear

dependencies.

HAR HARlog HARK SHAR SHARK

HARQ
M = 39

0.9490 0.9129 0.9281 0.9627 0.9741

HARQ
M = 78

0.9321 0.9004 0.9235 0.9475 0.9737

HARQ
M = 390

0.9395 0.9405 0.9517 0.9779 0.9623

Table 6.3.7: R2 resulting from regressing forecast errors of the HARQ against forecast errors of all other

models.

6.3.3 Longer forecast horizons

In this Section we assess the effect of measurement errors and nonlinearity on out-of-sample volatility

forecasts for longer time horizons. In particular, we choose a weakly (j = 5) and a monthly (j = 22)

forecast horizon.



6.3. EMPIRICAL EVIDENCE 135

HAR HARQ HARlog HARK SHAR SHARK

j = 5

M = 39

MSE 1.0000 0.9519 0.9302 0.9047? 0.9229 0.8732?

(0.000) (0.001) (0.008) (0.276) (0.091) (1.000)

QLIKE 1.0000 0.9263 0.8253 0.8051? 0.8021? 0.7729?

(0.001) (0.036) (0.083) (0.232) (0.232) (1.000)

M = 78

MSE 1.0000 0.9204 0.8853 0.8652? 0.8607? 0.8460?

(0.000) (0.004) (0.004) (0.512) (0.512) (1.000)

QLIKE 1.0000 0.8917 0.7662 0.7452? 0.7387? 0.7243?

(0.000) (0.010) (0.023) (0.544) (0.544) (1.000)

M = 390

MSE 1.0000 0.9422 0.9190 0.9084? 0.9140 0.9033?

(0.000) (0.003) (0.003) (0.783) (0.003) (1.000)

QLIKE 1.0000 0.9387 0.8572 0.8426? 0.8375? 0.8250?

(0.000) (0.003) (0.003) (0.568) (0.568) (1.000)

j = 22

M = 39

MSE 1.0000 1.0081 0.8686 0.8334? 0.8568? 0.7936?

(0.000) (0.000) (0.008) (0.2350) (0.2350) (1.000)

QLIKE 1.0000 0.9755 0.8023 0.7630 0.8045 0.6935?

(0.001) (0.001) (0.006) (0.074) (0.074) (1.000)

M = 78

MSE 1.0000 0.9896 0.8319 0.8039? 0.8050? 0.7847?

(0.000) (0.000) (0.001) (0.852) (0.852) (1.000)

QLIKE 1.0000 0.9747 0.7697 0.7347? 0.7634? 0.6886?

(0.000) (0.000) (0.000) (0.218) (0.218) (1.000)

M = 390

MSE 1.0000 1.0187 0.9409 0.9241? 0.9400 0.9014?

(0.000) (0.000) (0.000) (0.461) (0.000) (1.000)

QLIKE 1.0000 1.0150 0.8712 0.8468? 0.8459? 0.7993?

(0.002) (0.002) (0.002) (0.157) (0.157) (1.000)

Table 6.3.8: Relative out-of-sample losses of HAR, HARQ, HARlog, HARK, SHAR, SHARK models on S&P500 data for

weakly (j = 5) and monthly (j = 22) variance forecasts. Values in parenthesis denote p-values of the MCS at 90% c.l.

computed using the MSE and QLIKE. The presence of an asterisk indicates that the model is included in M̂90%.
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Bias-corrected, multi-step-ahead forecasts of the HARK, SHAR and SHARK models can be evaluated

as described in Section 6.1.8. In absence of a dynamic equation for the quarticity term in eq. (6.1.9),

longer horizon forecasts for the HARQ model can only be evaluated directly, i.e. by replacing the

daily RVt on the left-hand-side of eq. (6.1.9) with the variance aggregated at different frequencies.

Correspondingly, a correction term is introduced to adjust the lag at the specific forecast horizon (see

Bollerslev et al. 2016a). Ghysels et al. (2009) point out that direct approaches are in general inferior to

methods based on iterated forecasts.

Table (6.3.8) shows the relative out-of-sample MSE and QLIKE obtained on S&P500 data while table

(6.3.9) reports the corresponding forecast gains. The SHARK provides smaller MSE and QLIKE on all

the scenarios and it is always included in M̂90%. With only one exception, the HARK and the SHAR

outperform the HARlog and are included in M̂90% in most of the cases. The HARQ improves over the

HAR but is outperformed by the HARlog, which provides better forecasts, especially on the monthly

horizon.

Measurement errors have a similar effect as in daily forecasts, with ϕ
(1)
err and ϕ

(2)
err approaching one as

M increases. However, note that forecast gains increase as j increases, as longer horizon forecasts benefit

from the higher persistence estimated by both the HARK and SHARK. A similar dependence on the

forecast horizon is observed when modeling time-varying parameters. Figure (6.3.5) shows MSE-based

forecast gains ϕhet, ϕ
(1)
err , ϕ

(1)
tvp, for j = 2, 4, . . . , 22 and M = 78. Both ϕ

(1)
err and ϕ

(1)
tvp exhibit a weak

dependence on j, with the two measures declining slowly as the forecast horizon increases. In contrast,

ϕhet has a strong declining pattern that is due to the accumulation of significant forecast errors over

large horizons.

The statistical significance of these forecasting gains is jointly tested through a pairwise version of

the multi-horizon test recently proposed by Quaedvlieg (2017). In particular, as shown in table (6.3.10),

we find strong evidence of uniform superior predictive ability for ϕhet, by testing HAR−HARlog MSE

losses, and for ϕ
(1)
err , by testing HARlog−HARK MSE losses. In these cases the test achieves basically

zero p-values. For ϕtvp, the test rejects the null hypothesis at the 5% c.l. when testing HARlog−SHAR

MSE losses.

6.4 Robustness checks

The discussion in Section 6.1.5 and the in-sample analysis of Section 6.3 showed that, even on logRVt se-

ries, the HAR is misspecified, as its residuals are weakly heteroskedastic and parameters are time-varying.

The HARK corrects HARlog forecasts for measurement errors through the Kalman filter. However, being

the latter based on a linear state-space representation, it is useful to quantify the misspecification of the

HARK due to the above-mentioned effects. The forecast gain ϕ
(2)
tvp in eq. (6.3.2) is a possible indicator,
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ϕhet ϕ
(1)
tvp ϕ

(2)
tvp ϕ

(1)
err ϕ

(2)
err

j = 5

M = 39

MSE 0.9302 0.9922 0.9652 0.9726 0.9461

QLIKE 0.8253 0.9719 0.9600 0.9755 0.9636

M = 78

MSE 0.8853 0.9834 0.9778 0.9773 0.9717

QLIKE 0.7662 0.9667 0.9720 0.9726 0.9779

M = 390

MSE 0.9190 0.9946 0.9944 0.9885 0.9829

QLIKE 0.8572 0.9770 0.9791 0.9830 0.9851

j = 22

M = 39

MSE 0.8686 0.9864 0.9523 0.9595 0.9263

QLIKE 0.8023 1.0028 0.9088 0.9511 0.8620

M = 78

MSE 0.8319 0.9676 0.9762 0.9662 0.9749

QLIKE 0.7697 0.9919 0.9372 0.9546 0.9020

M = 390

MSE 0.9409 0.9990 0.9754 0.9822 0.9589

QLIKE 0.8712 0.9710 0.9439 0.9720 0.9449

Table 6.3.9: Forecast gains for weakly (j = 5) and monthly (j = 22) forecast horizons.

2 4 6 8 10 12 14 16 18 20 22
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Figure 6.3.5: MSE-based forecast gains ϕhet, ϕ
1
err, ϕ

1
tvp at different forecast horizons.
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ϕhet ϕerr1 ϕtvp1

uSPA test

tuSPA 3.5273 2.8827 1.8295

p-value 0 0 0.0365

Table 6.3.10: MSE based uniform superior predictive ability test (uSPA) of Quaedvlieg (2017). We show

the tuSPA test statistics and related p-values based on a multi-horizon bootstrap with 5000 replications.

since it is nothing but the gain resulting from modelling heteroskedasticity and time-varying parameters

in the HARK.

Another possible method is to observe that the assumption Ht = Vt in Section 6.1.5 is fair only if the

HARK is correctly specified. Thus, one can use a more flexible specification for Ht and see, on real data,

the extent to which the latter deviates from the assumption based on correct specification. In particular,

we have examined the following dynamic specifications for Ht:

1. Ht = αVt + (1− α)Vt−1

2. Ht = αVt + (1− α)mean(Vt)

3. Ht = αVt + (1− α)median(Vt)

4. Ht = βVt

where 0 ≤ α ≤ 1, β > 0 and mean(·) and median(·) denote the sample mean and median, respectively. In

the first case, Ht is exponentially smoothed with past observations of Vt and the parameter α indicates

the level of smoothing. In the second and third case, if α < 1, Ht is shrunk towards its mean or median

level. This can also be viewed as an heteroskedasticity test on Ht, in the sense that, if α > 0, we reject

the null assumption that Ht is homoskedastic, at a given confidence level. Finally, in the last case, β is

a scaling constant that fine-tunes Ht in case the model is misspecified.

M = 39 M = 78 M = 390

β

HARK 2.0595 2.9399 6.9714

(0.2106) (0.2856) (2.7879)

SHARK 0.8969 1.2051 2.3594

(0.2511) (0.3036) (1.8479)

Table 6.4.1: Maximum-likelihood estimates of the scaling parameter β in the dynamic specification 4.

in Section 6.4. Standard errors are shown in parenthesis.

We estimated the HARK and SHARK models, with the dynamic specifications {1, 2, 3, 4} for Ht and

combinations of them, on the same S&P500 sample used in the in-sample analysis of Section 6.3. For

each specification involving the parameter α, the latter turns out to be very close to one. For instance, for
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specification 2, we found α = 0.999994, and similar values have been recovered for other specifications.

This indicates that today’s Vt is the best proxy for Ht and that there are not significant advantages

in using lagged Vt’s. Also, the null assumption of homoskedasticity for Ht is rejected, and this is in

accordance with with what Bollerslev et al. (2016a) have found on RVt series.

Table (6.4.1) shows maximum likelihood estimates of the parameter β for M = 39, 78, 390. We

see that the estimated β is larger than one for the HARK, indicating significant departures from the

assumption of correct specification. In particular, the fact that the estimated signal-to-noise ratio turns

out to be lower, is due to deviations from the linearity assumption, which are spuriously interpreted by

the Kalman filter as an excess of noise. It is worth underling that these more flexible specifications do

not lead to significant out-of-sample improvements compared to the standard HARK model.

In the case of the SHARK, β is close to one for all the three sampling frequencies, in agreement with

the assumption of correct specification. This result is in accordance with what we have found in Section

6.1.7 when looking at the normalized residuals of the SHAR: implementing score-driven parameters in the

HARlog results in removing the misspecification due to heteroskedasticity and time-varying parameters.

The SHARK, which in turn corrects SHAR forecasts for measurement errors, provides therefore the most

complete specification for realized volatility.
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Conclusions

In this thesis, we contributed to the econometric literature on time-varying parameter models. The

first contribution is related to the estimation of nonlinear non-Gaussian state-space models. We showed

how to recover approximate smoothed estimates through a fully observation-driven framework. More

specifically, we extended popular score-driven models to include actual and future observations in a

setting where they are viewed as misspecified filters for nonlinear non-Gaussian state-space models. The

SDS is general, as it can be applied to any observation density. It is also computationally simple, as

it consists of a backward recursion following the standard forward score-driven recursion. At the same

time, it provides estimates that are very close to those of correctly specified parameter-driven models,

which, instead, require computationally demanding simulation-based techniques.

The rest of the thesis has been focused on the investigation of important empirical properties of

high-frequency financial data through the introduction of suitable time-varying parameter models. In

particular, (i) we concentrated on the estimation of high-frequency lead-lag correlation and motivated

their existence through a micro-founded model of lagged price adjustment; (ii) we introduced a con-

ditional correlation model for noisy and asynchronous observations to study the dynamic dependence

structure of high-frequency prices; finally, (iii) we proposed several extensions of the HAR model of

realized volatility to keep into account and disentangle the effects of measurement errors and nonlinear

dynamics. In the following, we discuss in more detail the results obtained in our empirical analysis.

In Chapter 4, we have introduced the MLA, a multi-asset model of price generation that extends

standard univariate microstructure models of lagged price adjustment. Lead-lag effects are naturally

incorporated in this framework through nonzero non-diagonal coefficients in the speed of adjustment

matrix Ψ. The latter captures lagged dissemination of information among assets. Using extensive

Monte-Carlo experiments, we have shown that, as opposed to alternative estimators, the MLA is robust

to spurious correlations arising from asynchronous trading. Also, we have tested the performance of

the estimator in presence of misspecified DGP’s and found that, when covariances are time-varying,
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parameter estimates are still unbiased.

We have tested the MLA on a cross-section of NYSE assets. The analysis provides empirical evidence

for the existence of a multi-asset price formation mechanism. In particular, we observed strong deviations

from the null assumption of a standard random walk plus noise process. The non-diagonal elements in

the VAR matrix are found to be significantly different from zero. As such, the speed of adjustment matrix

contains non-diagonal elements that are responsible for lagged dissemination of information across assets.

Cross-asset effects are more pronounced in periods of high volatility. We argue that this empirical fact

can be explained by the behavior of high-frequency trading strategies. Indeed, the latter tend to exploit

short living cross autocorrelations that are likely to appear in periods of high uncertainty.

The LLSD, introduced in Chapter 5, is a dynamic conditional correlation model that is particularly

appealing when observations of the underlying process are noisy and asynchronous. Both noise and

asynchronicity are handled by writing the model in a state-space form with missing values. By allowing

the parameters of the model to be driven by the score of the predictive likelihood, the state-space

representation turns out to be conditionally Gaussian, implying that the Kalman filter can be applied in

order to write down the likelihood in closed form. The TAP parametrization allows recovering positive

definite estimates of the conditional covariance matrix.

Through extensive Monte-Carlo experiments, we showed that the LLSD provides better estimates

compared to standard pre-averaging and synchronization techniques that are typically used to deal with

noisy and asynchronous high-frequency financial data. This is mainly due to two reasons. The first is that

the Kalman filter optimally estimates the latent state variable and the second is that the LLSD is able to

employ all the available data, thus providing more efficient estimates. By applying the model to a cross-

section of NYSE transaction data, we showed that the LLSD can recover the typical intraday patterns of

volatilities and correlations and, at the same time, it instantaneously captures the effect of real-time, fast

changes of volatilities and correlations following e.g. macro-news announcements. Building a sequence

of intraday optimal portfolios, we found that the LLSD provides superior out-of-sample forecasts and

large efficiency gains over the standard DCC model.

In Chapter 6, we proposed new HAR extensions aimed at removing the three main evidences of

misspecification of the HAR that are imputable to neglecting measurement errors on integrated variance

estimates and nonlinear dependencies in the dynamics of integrated variance.

In particular, starting from the HARlog model, which provides a better dynamic specification for

realized variance, we devised three models that progressively take into account all evidences of misspec-

ification. The HARK model, being based on the Kalman filter, corrects HARlog parameters for the

attenuation bias induced by measurement errors through a time-varying Kalman gain driven by realized

quarticity. The SHAR, having time-varying parameters, removes the heteroskedasticity that is found on
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HARlog residuals. Indeed, it features i.i.d. standardized residuals when estimated on real data. Finally,

the SHARK is a generalization of the HARK that allows for time-varying parameters. It provides more

responsive parameter dynamics, as they are not affected by measurement errors. The relative improve-

ment of a model compared to another can thus be used to quantify the importance of removing each

form of misspecification.

We have provided simulation and empirical evidence that the effects captured by these new models

are statistically significant, as they translate into superior out-of-sample forecasts compared to the basic

HARlog model and other competing approaches. For instance, on real data, the analysis based on the

model confidence set includes our new extensions on the confidence set and excludes the remaining models

in the vast majority of cases. As a final result of this analysis, we concluded that (i) measurement errors

are relevant at small and intermediate sampling frequencies and the corresponding forecast gains slightly

increase with the forecast horizon; (ii) accounting for heteroskedasticity always provides significant gains,

especially at longer forecast horizons; (iii) forecast gains due to time-varying parameters are independent

on the sampling frequency and slightly increase with the forecast horizon.

It is worth emphasizing that, even though the MLA, LLSD and SHAR(K) have been developed in

the field of high-frequency financial econometrics, they are rather general and can be potentially useful

for a wide range of applications. For instance, mixed frequency and noisy data are quite common in

macroeconomics, when one wants to jointly model daily and quarterly data affected by measurement

errors. In this case the MLA and LLSD can be used to study lead-lag correlations, as well as the evolution

of the dependence structure over time. On the other hand, the SHAR(K) is a general framework to model

long-memory processes exhibiting non-linear dynamics and measurement errors.
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Appendix A

A.1 Notation

In denotes the n × n identity matrix. We use ⊗ to denote the Kronecker product between two matrices. The

operator vec(·), applied to an m × n matrix A, stacks the columns of A into an mn column vector while the

operator vech(·), applied to a symmetric n × n matrix B, stacks all the n(n − 1)/2 upper (or lower) diagonal

elements into a column vector. We also introduce the commutation matrix Kmn, i.e. the mn ×mn matrix such

that KmnvecA = vecA′ for every m× n matrix A. The derivative of an m× n matrix function F (X) with respect

to the p × q matrix X is defined as in Abadir and Magnus (2005), i.e. as the mn × pq matrix computed as

∂vec(F (X))/∂vec(X)′.

A.2 Proof of Proposition 1

We first compute the score:[
∂ log p(yt|Ft−1)

∂a′t

]′
=

[
∂ log p(yt|Ft−1)

∂v′t

∂vt
∂a′t

]′
= [v′tF

−1
t Z]′ = Z ′F−1t vt (A.2.1)

The information matrix is then computed as:

It|t−1 = Et−1[∇t∇′t] = Z ′F−1t Z (A.2.2)

Thus, we can re-write recursions for at|t and at+1 as:

at|t = at + Pt∇t (A.2.3)

at+1 = c+ Tat + TPt∇t (A.2.4)

and the backward recursion for α̂t as

rt−1 = ∇t + L′trt (A.2.5)

α̂t = at + Ptrt−1 (A.2.6)

where Lt = T − TPtIt|t−1. In the steady state, Pt converges to the solution P̄ of the matrix Riccati equation

(3.1.5) (Harvey 1991, Durbin and Koopman 2012). By defining R = T P̄ , F̄ = Z ′P̄Z + H and I = Z ′F̄−1Z, we

can re-write the Kalman filtering and smoothing recursions for the mean in the steady state as:

at|t = at + T−1R∇t (A.2.7)

at+1 = c+ Tat +R∇t (A.2.8)
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and

rt−1 = ∇t + (T −RI)′rt (A.2.9)

α̂t = at + T−1Rrt−1 (A.2.10)

Q.E.D.

A.3 DGP for time-varying covariances

We generate daily time series of realized covariance matrices and log-returns through the following method: (a)

using daily log-returns of k = 5, 10, 15 randomly selected NYSE stocks, we compute the sample covariance

matrix C over the period from 03-01-2006 to 31-12-2014, (b) consider the decomposition C = UDU ′, where

D = diag[λ1, . . . , λk] is a diagonal matrix of decreasing eigenvalues of C and U is the corresponding matrix of

normalized eigenvectors, (c) let the first r eigenvalues of C evolve through an AR(1) process:

log λt,j = cj + φj log λt−1,j + βt,j , βt,j ∼ N(0, qj) (A.3.1)

for t = 2, . . . , T and j = 1, . . . , r. We therefore consider the sequence of matrices Vt = UDtU
′, where:

Dt = diag[λt,1, . . . , λt,r, λr+1, . . . , λk] (A.3.2)

for t = 1, . . . T . We set r = 3 and choose the parameters of the AR(1) model as: φ1 = 0.99, q1 = 0.05, φ2 = 0.95,

q2 = 0.05, φ1 = 0.90, q1 = 0.5 while constants cj are chosen by setting the unconditional mean equal to log λj , for

j = 1, 2, 3. We then use the simulated covariance matrices Vt to generate observations of daily returns rt realized

covariance matrices Xt through the observation equations (3.2.20), (3.2.21). For each k, we set ν = k + 1.

As loss measures, we use the root mean square error (RMSE) and the quasi-likelihood (Qlike). The former is

defined as:

LRMSE
t =

√
Tr[(V̂t − Vt)′(V̂t − Vt)] (A.3.3)

while the Qlike loss is given by:

LQlike
t = log |V̂t|+ Tr[V̂ −1t Vt] (A.3.4)

where V̂t generically denotes the estimate obtained through the SDF or the SDS. See Patton (2011) for a more

detailed discussion on the use of these loss measures in the field of (co)variance estimation.

A.4 Computation of P̄ n
t,t−1 in the MLA

We follow Shumway and Stoffer (1982). The set of Kalman filter recursions for the state-space model (4.1.9),

(4.1.10) are given by:

X̄t−1
t = φX̄t−1

t−1 (A.4.1)

P̄ t−1t = φP̄ t−1t−1 φ
′ + Q̄ (A.4.2)

Kt = P̄ t−1t M ′(MP̄ t−1t M ′ +H)−1 (A.4.3)

X̄t
t = X̄t−1

t +Kt(Yt −MX̄t−1
t ) (A.4.4)

P̄ tt = P̄ t−1t −KtHP̄
t−1
t (A.4.5)
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for t = 1, . . . , n. The set of backward smoothing recursions are given by:

Jt−1 = P̄ t−1t−1 φ
′(P̄ t−1t )−1 (A.4.6)

X̄n
t−1 = X̄t−1

t−1 + Jt−1(Xn
t − φX̄t−1

t−1 ) (A.4.7)

P̄nt−1 = P̄ t−1t−1 + Jt−1(P̄nt − P̄ t−1t )J ′t−1 (A.4.8)

for t = n, . . . , 1. The covariance P̄nt,t−1 in eq. (4.1.19) can be computed using the following backward recursion:

P̄nt−1,t−2 = P̄ t−1t−1 J
′
t−2 + Jt−1(P̄nt,t−1 − φP̄ t−1t−1 )J ′t−2 (A.4.9)

where t = n, . . . 2 and P̄nn,n−1 = (I −KnM)φP̄n−1n−1 .

A.5 Proof of Proposition 2

We will use the following matrix differentiation rules:

∇Atr(AB) = B′ (A.5.1)

∇Atr(ABA′C) = CAB + C ′AB′ (A.5.2)

∇A|A| = |A|(A−1)′ (A.5.3)

where A, B and C are matrices of appropriate dimensions.

Let us re-write G1(F,Q) as:

G1(F,Q) = −1

2
Tr[Q−1(MCM ′ − B̃φ̃′ − φ̃B̃′ + φ̃Aφ̃′)] (A.5.4)

where we have defined B̃ = MB and φ̃ = Mφ. Let us compute explicitly the terms in G1(F,Q) depending on F :

B̃φ̃′ = B11(I + F ′)−B12F
′

φ̃B̃′ = (I + F )B′11 − FB′12

φ̃Aφ̃′ = (I + F )A11(I + F ′)− FA21(I + F ′)

− (I + F )A12F
′ + FA22F

′

Therefore, we need to solve ∇FG1(F ) = 0, where:

G1(F ) = Tr[Q−1(−B11(I + F ′) +B12F
′ − (I + F )B′11 + FB′12

+ (I + F )A11(I + F ′)− FA21(I + F ′)− (I + F )A12F
′ + FA22F

′)]

This can be done using eq. (A.5.1) and (A.5.2). One obtains:

∇FG1(F ) = Q−1[−2(B11 −B12 −A11 +A12)

+ 2F (A11 +A22 −A21 −A12)]
(A.5.5)

and therefore:

F̂ = ΓΘ−1 (A.5.6)

Q.E.D.
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A.6 Proof of Proposition 3

First, we solve ∇Q−1G2(F̂r, Q) = 0. We obtain:

∇Q−1G2(F̂r, Q) =

= ∇Q−1

[
−n

2
log |Q| − 1

2
Tr(Q−1Υ̂)

]
=
n

2
Q− 1

2
Υ̂′

(A.6.1)

and therefore, since Υ̂′ = Υ̂:

Q̂ =
Υ̂

n
(A.6.2)

We now solve ∇HG3(F̂r, Q) = 0. Note that, since H is diagonal, we can write:

∇HG3(H) =

= ∇H
[
−n

2
log |H| − 1

2
Tr(H−1diag(Λ))

]
=
n

2
H − 1

2
Λ

(A.6.3)

and therefore:

Ĥ =
diag(Λ)

n
(A.6.4)

Q.E.D.

A.7 Computation of lead-lag correlations in the MLA

In order to compute lead-lag correlations, we first compute the j-th order autocovariance matrix, which is defined

as:

Sj = E[∆Xt∆X
′
t−j ] (A.7.1)

It can be evaluated from the estimated matrices F̂ and Q̂ as:

Ŝj = F̂ Ŝj−1, j = 1, 2, . . . (A.7.2)

where the covariance matrix S0 = E[∆Xt∆X
′
t] is estimated as:

vec(Ŝ0) = (Id2 − F̂ ⊗ F̂ )−1vec(Q̂) (A.7.3)

see e.g. Hamilton (1994). Lead-lag correlations are finally obtained by normalizing the autocovariances with the

diagonal elements of Ŝ0.

A.8 The univariate LLSD model

We show here how the time-varying parameters in Ht and Dt can be estimated separately using the univariate

version of the LLSD model. If n = 1, model (5.1.3)-(5.1.4) becomes a univariate local level model with time-varying

variances:

Yt,i = Xt,i + εt,i, εt ∼ N(0, σ2
t,i) (A.8.1)

Xt+1,i = Xt,i + ηt,i, ηt ∼ N(0, ξ2t,i) (A.8.2)
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for i = 1, . . . , n. This model is the same as the one introduced by Creal et al. (2008). The time-varying parameters

are σ2
t,i and ξ2t,i. In order to recover positive estimates of the variance terms, we consider the two time-varying

parameter vectors:

ft,i =

(
log σ2

t,i

log ξ2t,i

)
, f̃t,i =

(
σ2
t,i

ξ2t,i

)
(A.8.3)

which are related by the following link-function:

f̃t,i = L(ft,i) =

(
exp f1t,i
exp f2t,i

)
(A.8.4)

The Kalman filter recursions are simply given as a special case of (2.4.5)-(2.4.10):

vt,i = Yt,i − xt,i, Ft,i = Pt,i + f̃1t,i, Kt,i =
Pt,i
Ft,i

(A.8.5)

xt|t,i = xt,i +Kt,ivt,i, Pt|t,i = Pt,i(1−Kt,i) (A.8.6)

xt+1,i = xt|t,i, Pt+1,i = Pt,i(1−Kt,i) + f̃2t,i (A.8.7)

The conditional log-likelihood at time t is computed as:

lt,i = −1

2
log 2π − 1

2

(
log |Ft,i|+

v2t,i
Ft,i

)
(A.8.8)

In case at time t observation Yt,i is missing, the above Kalman filter recursions and the expression (A.8.8) of the

conditional log-likelihood are still valid, provided that one takes Kt,i = 0, vt,i = 0 and Ft,i = 1.

The vector ft,i is driven by the scaled score of the predictive likelihood:

st,i = St,i∇t,i (A.8.9)

where ∇t,i = (∂ log lt,i)/(∂f
′
t,i) and St,i = (Iit|t−1)−1/2, Iit|t−1 = Et−1[∇t,i∇′t,i]. Denoting by JL the Jacobian

matrix of the link function

JL =

(
exp f1t,i 0

0 exp f2t,i

)
(A.8.10)

we have:

∇t,i = JL∇̃t,i, Iit|t−1 = JLĨit|t−1JL (A.8.11)

where ∇̃t,i = (∂ log lt,i)/(∂f̃
′
t,i) and Ĩit|t−1 = Et−1[∇̃t,i∇̃′t,i]. The latter are computed as special cases of (5.2.2)

and (5.2.3):

∇̃t,i =
1

2

[
Ḟt,i

((
vt,i
Ft,i

)2

− 1

Ft,i

)
− 2v̇′t,i

vt,i
Ft,i

]
(A.8.12)

Ĩt|t−1,i =
1

2

[
Ḟ ′t,iḞt,i

F 2
t

+ 2
v̇′t,iv̇t,i

Ft

]
(A.8.13)

Note that now dotted variables denote derivatives with respect to f̃t. Similarly to the multivariate case, the latter

are computed by deriving the Kalman filter recursions (A.8.5), (A.8.6) and (A.8.7). One obtains:

v̇t,i = −ẋt,i (A.8.14)

Ḟt,i = Ṗt,i + (1, 0) (A.8.15)

K̇t,i =
Ṗt,i −Kt,iḞt,i

Ft,i
(A.8.16)

ẋt+1,i = ẋt,i(1−Kt,i) + K̇t,ivt,i (A.8.17)

Ṗt+1,i = Ṗt,i(1−Kt,i)− Pt,iK̇t,i + (0, 1) (A.8.18)
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Therefore, the score-driven update equation in the univariate LLSD is given by:

ft+1,i = ωi +Aist,i +Bift,i (A.8.19)

where ωi is a two-dimensional column vector, while Ai and Bi are two-dimensional square matrices. They are

part of the vector Θi of static parameters that is estimated by maximum likelihood. Constraints on ωi, Ai and Bi

depend on the specific data at hand and will be discussed in detail in our empirical application.

As in the correlation model, the likelihood is maximized numerically. Once all of the n univariate models have

been estimated, one can construct the two matrices Ht and Dt as:

Ht =


exp f1t,1 · · · 0

...
. . .

...

0 · · · exp f1t,n

 , Dt =


(exp f2t,1)1/2 · · · 0

...
. . .

...

0 · · · (exp f2t,n)1/2

 (A.8.20)

A.9 Computation of ∇t and It|t−1 in the SHAR model

It is convenient to introduce the auxiliary vector of time-varying parameters:

f̃t =
(
β0,t, β1,t, β2,t, β3,t, qt

)′
(A.9.1)

The latter is related to ft by the following link-function:

f̃t = L(ft) =
[
f1t , f

2
t , f

3
t , f

4
t , exp(f5t )

]′
(A.9.2)

The Jacobian of the transformation is:

JL =
∂f̃t

∂ft
′ =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 exp(f5t )

 (A.9.3)

Note that, using the chain rule, ∇t and It|t−1 can be expressed as:

∇t = JL∇̃t, It|t−1 = JLĨt|t−1JL (A.9.4)

where:

∇̃t =

[
∂log p(RVt|f̃t,Bt−1,Θ)

∂f̃ ′t

]′
, Ĩt|t−1 = E[∇̃t∇̃′t] (A.9.5)

Thus, it is simpler to compute ∇̃t and Ĩt|t−1 and then using eq. (A.9.5) to recover ∇t and It|t−1. By direct

differentiation of the conditional log-likelihood (6.1.23), we have:

∇̃t =



ηt
qt

ηt
qt
RVt−1

ηt
qt
RVt−2|t−nw−1

ηt
qt
RVt−nw−2|t−n

− 1
2qt

+ 1
2
η2t
q2t

 (A.9.6)
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where ηt = RVt − µt|t−1. The information matrix Ĩt|t−1 is easily computed by noting that Et|t−1[η2t ] = qt and

Et|t−1[η4t ] = 3q2t . We have:

Ĩt|t−1 =

1

qt


1 RVt−1 RVt−2|t−nw−1 RVt−nw−2|t−n 0

RVt−1 RV 2
t−1 RVt−1RVt−2|t−nw−1 RVt−1RVt−nw−2|t−n 0

RVt−2|t−nw−1 RVt−1RVt−2|t−nw−1 RV 2
t−2|t−nw−1 RVt−2|t−nw−1RVt−nw−2|t−n 0

RVt−nw−2|t−n RVt−1RVt−nw−2|t−n RVt−2|t−nw−1RVt−nw−2|t−n RV 2
t−nw−2|t−n 0

0 0 0 0 1
2qt


(A.9.7)

A.10 Computation of v̇t and Ḟt in the SHARK model

As done with the SHAR, in order to obtain positive variances, we introduce the auxiliary vector of time-varying

parameters:

f̃t = L(ft) =
[
f1t , f

2
t , f

3
t , f

4
t , exp(f5t )

]′
(A.10.1)

The Jacobian JL is the same as in eq. (A.9.3) and eq. (A.9.4) still hold. Consequently, we first compute ∇̃t
and Ĩt|t−1 defined as in eq. (A.9.5). They have the same form as in eq. (6.1.32) but now v̇t = ∂vt/∂f̃

′
t and

Ḟt = ∂vec(Ft)/∂f̃
′
t denote derivatives with respect to f̃t. Following Delle Monache et al. (2016), they can be

computed through the following set of recursions:

v̇t = −Zȧt (A.10.2)

Ḟt = (Z ⊗ Z)Ṗt (A.10.3)

ȧt+1 = ċt + Ttȧt + (a′t ⊗ In)Ṫt + (v′t ⊗ In)K̇t +Ktv̇t (A.10.4)

Ṗt+1 = (Tt ⊗ Tt)Ṗt + (In ⊗ TtPt)Cn,nṪt + (TtP
′
t ⊗ In)Ṫt − (KtZPt ⊗ In)Ṫt

− (KtZ ⊗ Tt)Ṗt − (In ⊗ TtPtZ ′)Cn,1K̇t + Q̇t

(A.10.5)

K̇t = (F−1t ZPt ⊗ In)Ṫt + (F−1t Z ⊗ Tt)Ṗt −KtF
−1
t Ḟt (A.10.6)

where ċt = ∂at
∂f̃ ′t

is a n× 5 matrix and Ṫt = ∂vecTt

∂f̃ ′t
, Q̇t = ∂vecQt

∂f̃ ′t
are n2 × 5. They are selection matrix of the form:

{Ȧt}i,j =

1, if {vecAt}i = f̃ jt

0, else

(A.10.7)

where At generically denotes ct, Tt and Qt.

A.11 Proof of proposition 4

The proof is made by induction on j. First, let us prove the formula for j = 2. We have:

Et[exp(ZRV t+2)] = Et[exp(Z(cl + TlRV t+1 + ηt+1))]

= Et[exp(Z(cl + Tl(cl + TlRV t + ηt) + ηt+1))]

= exp

[
Z((In + Tl)cl + T 2RV t) +

1

2
Z(Ql + TlQlT

′
l )Z
′
]
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where we have used the moment generating function of the multivariate normal distribution in the last line. So

the formula is true for j = 2. Now let us assume that it is true for j = k and prove that it is also true for j = k+1:

Et[exp(ZRV t+k+1)] =

= Et[exp(Z(cl + TlRV t+k + ηt+k))]

= exp(Zcl)Et[exp(ZTlRV t+k)]Et[exp(Zηt+l)]

= exp(Zcl) exp

{
Z
[
(Tl + · · ·+ T kl )cl + T k+1

l RV
l

t

]
+

1

2
Z
[
TlQlT

′
l + · · ·+ T kQl(T

k)′
]
Z ′
}

exp(ZQlZ
′)

where we have used the induction hypothesis to compute exp(ZTlRV t+k). Upon multiplication of the three terms

we get:

Et[exp(ZRV t+k+1)] =

= exp

{
Z
[
(In + · · ·+ T kl )cl + T jl RV

k+1

t

]
+

1

2
Z
[
Ql + · · ·+ T kQl(T

k)′
]
Z ′
}

which is the formula in Proposition 1 for j = k + 1

Q.E.D.

A.12 Proof of proposition 5

The proof follows exactly the same steps as those in Proposition 4Z Let us prove the formula for j = 2. We have:

Et[exp(Zαt+2)] = Et[exp(Z(c+ Tαt+1 + ηt+1))]

= exp(Zc)Et[exp(ZTαt+1)]Et[exp(Zηt+1)]

where the last step follows from independence between αt+1 and ηt+1. Using the fact that αt+1|Ft ∼ N(at+1, Pt+1),

we have:

Et[exp(Zαt+2)] =

= exp(Zc) exp

(
ZTat+1 +

1

2
ZTPt+1T

′Z ′
)

exp(ZQZ ′)

= exp

[
Z(c+ Tat+1) +

1

2
Z(TPt+1T

′ +Q)Z ′
]

which is the formula in Proposition 2 for j = 2. We now assume that the formula is true for j = k and prove that

it is also true for j = k + 1:

Et[exp(Zαt+k+1)] =

= Et[exp(Z(c+ Tαt+k + ηt+k))]

= exp(Zc)Et[exp(ZTαt+k)]Et[exp(Zηt+k)]

The last term is equal to exp( 1
2ZQZ

′). Based on the induction hypothesis, the second term is given by:

Et[exp(ZTαt+k)] = exp
{
Z
[
(T + · · ·+ T k−1)c+ T kat+1

]
+

1

2
Z
[
T kPt+1(T k)′ + TQT ′ + · · ·+ T k−1Q(T k−1)′

]
Z ′
}
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By summing the three exponents we end up with:

Et[exp(ZTαt+k)] = exp
{
Z
[
(In + · · ·+ T k−1)c+ T kat+1

]
+

1

2
Z
[
T kPt+1(T k)′ +Q+ · · ·+ T k−1Q(T k−1)′

]
Z ′
}

which is the formula in Proposition 2 for j = k + 1

Q.E.D.
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