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Introduction

The microscopic comprehension of the kinetic aspects of a chemical reaction is

recognized a challenge in theoretical and computational chemistry because of the

many facets of the problem. Role of temperature, influence of the phase in which

the reaction takes place, significance of quantum effects, along with their reciprocal

influences, are only a few points which need elucidation.

One of the first attempts to construct an accurate theory of reaction rates dates

back to 1930s, with the introduction of TST (Transition State Theory) by M. Polanyi,

H. Eyring and E. Wigner[1]. In occasion of the famous General Discussion of the Fara-

day Society held in Manchester in 1937, two different perspectives in Transition State

Theory (TST) were illustrated, leading to a dualism still present in modern strategies:

Eyring (together with Evans) introduced the thermodynamic picture, based on the

assumption of a quasi-equilibrium between the Transition State (TS) and reactants,

which dominated the field in the first decades due to its large number of applications

to realistic systems and reactions; Wigner, instead, focused his attention on the dy-

namical point of view, through the hypothesis of no-recrossing dynamics (also called

the dynamical bottleneck assumption) for trajectories pointing towards the products

when leaving the transition state.

Furthermore, Wigner gave an even today valid snapshot of the kinetic problem in his

’three threes’: three groups (1), (2), (3), each composed of three items, describing (1)

the three steps which are necessarily involved in kinetic theory, (2) the three groups of

elementary reactions to deal with and, most of all, (3) the three basic assumptions of

TST, i.e. electronic adiabaticity next to the dynamical bottleneck, the validity of clas-

sical mechanics for nuclear motion and the presence of a dividing surface separating

reactants from products.

Transition state theory, indeed, was born as a classical theory, which aims to

compute one-way rate constants at equilibrium and gives the best results for multi-

dimensional systems, at low energy, a situation where quantum effects like tunneling

grow in importance with the lowering of temperature. For these reasons, many at-

tempts have been made and keep on being made to extend transition state theory to
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2 Introduction

the realm of quantum mechanics, by inclusion of tunneling and interference contribu-

tions.

A relatively recent review of TST and its state-of-art appeared in 1996 [3], essentially

in the form of bibliographical collection, (a list that would be actually much longer

nowadays), confirming the vivacity and plenty of interest in the matter. Advance-

ments in the calculation of rate constants, related to improvements of the electronic

structure description, the inclusion of solvent effects and the accuracy of approxima-

tions in treating quantum dynamics, were widely illustrated.

Eyring’s work was based on a time independent interpretation of the assumed

quasi-equilibrium, while Wigner opened up a route, centered on real-time dynamics,

that led, actually some decades later, to various and stimulating approaches to the

problem.

Present-day thermodynamic approaches intend to introduce quantum effects by ex-

trapolating thermal rate constants without explicitly considering the real-time dy-

namics of the reactive process. Two major classes can be identified:

i) the Centroid Rate theory developed mainly by Gillan, Voth et al.[4, 5], in which

a classical transition state theory treatment is adopted in the presence of a quantum

potential of mean force defined by the centroid density: since the centroid density is

computed from the diagonal elements of the imaginary-time propagator, this repre-

sents a legitimate thermodynamic strategy;

ii) methods which can be reconducted to the Hansen-Andersen approach to the time

dependent flux-side or flux-flux correlation function formulation [6, 7]. Here one finds,

for the true potential, the first two initial-time derivatives of the correlation function,

which depend only on matrix elements of the imaginary time propagator, and then,

by means of analytic continuation, extrapolates the result to large (formally infinite)

time.

Coming to Wigner, a preliminary step to grasp his dynamical view brings us to Ya-

mamoto [8], who suggested a flux-flux correlation function formalism. Yamamoto’s

idea lays on classical-mechanics grounds, while quantum calculations should rigor-

ously set up the problem in terms of state-to-state reactive scattering (evaluation

of the S−matrix). Actually, if one is interested principally in evaluating thermal

rate constants, a lot of work can be avoided by estimating the long-time limit of the

quantum mechanical trace of the thermalized flux times a time-dependent projecton

operator [9, 10]. This result, initially derived for the thermal penetration of a barrier

with asymptotically vanishing boundary interaction, can also be successfully applied

to the decay of metastable states.

The formally exact Miller’s expression can be elaborated in different ways, and, con-

sequently, many paths have been explored: amongst them, we cite the direct evalu-
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ation of the trace in different complete basis sets ( trace invariance with respect to

the choice of the representation); the development of a non-separable transition state

theory; the formulation of a rigorous semiclassical theory of rate constants, along with

a stationary-phase procedure to evaluate the trace.

The assumption of separability of the Hamiltonian operator about the potential sad-

dle point is a poor one, due to the corner-cutting effect [11], and can be avoided by

means of semiclassical approximations to the Boltzmann operator [12]. Tunneling,

in this semiclassical picture, takes place along a periodic classical trajectory on the

upside-down potential energy surface [13, 14].

Miller et al arrived to a quantum analog of Yamamoto’s correlation function [15]

that provides exact reaction rates if calculations are pushed to long times.

Long-time quantum dynamics is synonymic of impossible task. The best we can do for

its approximate implementation involves a first step where thermal and dynamical

contributions are separated out, followed by a second step in which dynamics is

approximated more or less drastically, either avoiding direct real-time propagation

(long-time fictitious-dynamics approaches) or limiting its duration to a brief period

(short-time approaches).

Ankerhold, Grossmann and Tannor [16] studied the partition between dynami-

cal and thermal factors in quantum rate calculations by means of a coherent-state

approach, suitable to analyze the different contributions to the rate constant from

various phase space regions. The parabolic barrier approximation in the asymptotic

limit (ωbt ≫ 1) leads to introduce a complex-valued error function, a feature which

deserves to be remarked because a similar quantity plays a role in our approach.

Voth, Chandler and Miller, in a different formulation of quantum transition state

theory [17], arrived to Miller’s quantum reactive formula for the thermal rate constant

starting from Zwanzig’s work on correlation functions [18]. Here, the factorization

is between the thermal density matrix and the so-called (dynamical) z factor, which

is calculated at large times for a few models: free particle, parabolic barrier and

one-dimensional barriers (semiclassical limit).

More recently, quantum transition state theory has been revisited by Pollak and

Liao [19]. Their new rate expression, based on a parabolic barrier approximation

to the dynamics is similar to that put forward by Voth, Chandler and Miller, the

main difference deriving from the adoption of a symmetrized form of the thermal flux

operator.

A different formulation of quantum transition state theory encompasses short-time

approaches, sometimes referred to as Short Time Quantum Transition State Theory

(STQTST). In short time quantum transition state theory, (real-time) dynamics is

not completely avoided, but rather considered for just the brief period necessary to



4 Introduction

get the main contribution to the reaction rate, or to reach the regime behavior.

In this view, Tromp and Miller [20, 21] proposed an approach based on the correlation

functions introduced by Miller, Schwartz and Tromp: the calculation of the flux-

flux autocorrelation function is stopped as soon as its value tumbles to zero. As a

consequence, the integration needed to get the rate constant is limited to a short

time. Any negative lobe of the function at longer times is interpreted as a recrossing

flux through the chosen dividing surface, unveiling, in this way, the route towards a

possible variational theory.

In the context of short time quantum transition state theory, through a series of recent

papers, Craig and Manolopoulos have proposed a formulation for calculating reaction

rates [22, 23, 24] based on the Ring Polymer Molecular Dynamics method (RPMD).

According to this approach, the ”harmonic ring polymer” involved, initially centered

around the dividing surface, is made to evolve classically. The long-time limit of

an appropriately approximated version of the Kubo-transformed flux-side correlation

function depends on the behavior of the centroid, and the final result is that the

correlation function converges to its long-time limit rapidly.

In general, the main problem plaguing any quantum transition state theory (of

course we understand that there is not a unique one) is the difficulty to perform

quantum calculations. While it is well documented that simulations relative to a

great variety of dynamical processes (including chemical reactions) can be carried

out in classical terms, even for complex molecular systems, a full quantum dynamical

treatment for many degrees of freedom is out of question, due to the unendurable

computational costs. The adoption of approaches able to give account of tunnel and

interference effects, but based on the evolution, over effective potential energy sur-

faces, of classical trajectories determined entirely by the initial conditions, represents

an attempt to get sensible results with tolerable computational efforts.

The standard Van Vleck’s Semi-Classical approximation to the real time quantum-

mechanical propagator [25] leads to a general procedure of this kind. Developed

mainly by W.H.Miller and coworkers, the approach, known as Semi-Classical Initial

Value Representation (SCIVR) [26], has been widely improved since its first formula-

tion [27] and extended to the study of complex systems. In SC-IVR, all the degrees

of freedom are treated semiclassically and the non-linear boundary value problem,

associated with Van Vleck’s approximation is replaced by an average over the initial

conditions of classical trajectories. The integrations involved in the evaluation of

the real-time propagator, instead of being performed via Stationary Phase Approxi-

mation (SPA), are carried out numerically, by resorting to Monte Carlo techniques,

providing a way to deal with classically forbidden phenomena in terms of real-valued

trajectories.
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The goal of the present work is the evaluation of the rate constant for reactive pro-

cesses, described by simple onedimensional barriers. The approach is an elaboration

of a previous result suggested by W.H.Miller for bimolecular rate constants under a

fully quantum mechanical treatment. After separating out thermal and dynamical

contributions to the rate constant, the introduction of a specific parabolic-barrier ap-

proximation to dynamics allows us through short-time classical simulations, to get,

finally, the observable (rate constant). It should be observed that, while the dynam-

ical problem is overcome by resorting to the parabolic barrier approximation, the

thermal factor is calculated exactly, by means of the Feynman-Kac relation. Results

have been obtained for the truncated parabola, symmetrical and asymmetrical Eckart

barriers, in addition to the parabolic barrier.

In chapter one, a brief summary of a number of techniques adopted in transition

state theory is presented. Exact classical rate theory, classical and quantum transi-

tion state theory and some of the main features of Miller’s semiclassical initial value

representation are described in a concise way, with the goal of introducing the ba-

sic themes of reaction rate theory, while focusing on the strategy adopted by those

approaches.

In chapter two, quantum mechanical propagators for a few Hamiltonian opera-

tors involving simple potential energy functions are recalled and derived by means

of analytical procedures. Both real-time and imaginary-time propagators are taken

into consideration. Analytic continuation, a technique frequently adopted in ther-

modynamic methods to face the reaction rate problem, constitutes the interrelation

between the two propagators.

In chapter three, the approach adopted in the present work is introduced and de-

scribed. Starting from preceding results suggested by Miller, pushing through quan-

tum mechanical operations, the final shore is represented by the extension to the case

of not analytically solvable barriers.

Chapter four is devoted to the description and analysis of the computational

strategies employed. The general procedure involves two steps: initially, the de-

termination of the (off-diagonal) elements of the thermal density matrix; then, the

integration of the evolved trajectories to obtain the rate constant.

The Feynman-Kac formula is described, together with applications to some kinds of

activation barrier. Filon’s formula for the integration of oscillatory integrands and

Gautschi’s algorithm for complex error functions are briefly discussed in view of their

importance in this work.

Finally, in chapter five, results are reported for the truncated parabolic barrier

and Eckart barrier (both symmetrical and asymmetrical): these represent the onedi-

mensional barriers to which the approach, here developed, is applied.



Chapter 1

A brief introduction to reaction

rate theory

Reaction rate theory is a vast field of theoretical research, with so many possible

approaches of a different kind and so many problems to face, depending on features

like type of reaction, nature of reactants, operating temperature (to name only a few),

that an exhaustive description cannot be achieved in this context.

Two main methodological branches can be recognized: thermodynamic approaches

and dynamical approaches. The former are based on the assumption of quasi-equilibrium

between reactants and transition state (with all information extracted from the ther-

mal density matrix), while the latter are based on the study of trajectories over a

potential energy surface.

It is in the dynamical-approach area that the approach presented in this work finds

his placement. Some of the most common methods employed, like classical TST,

the attempts for a quantum version of it, called Quantum Transition State Theory

(QTST), or semiclassical formulations like the SemiClassical Initial Value Represen-

tation (SCIVR) [26], are firstly presented and successively our specific approach is

introduced and developed.

Going back to the large number of contributions to the field, consider that, just

as an example, a relative recent review [3] of TST and its state-of-art appeared in

1996: it was filled with bibliographic items, a list that would be actually longer

nowadays, confirming the vivacity and plenty of interest in the subject. Advancements

in topics related to the calculation of rate constants like electronic-structure theory,

the inclusion of solvent effects or the accuracy of various approximations to quantum

dynamics were illustrated. By the way, all that stuff was referred to TST, which is

just one (even though, perhaps, the best known) of the possible approaches to the

kinetic problem. Nowadays, many scientists and research groups are involved in the

6



Chapter 1: A brief introduction to reaction rate theory 7

improvement of theoretical techniques to efficiently describe chemical reactions.

In a classical world, accurate reaction rate constants could be evaluated by means

of molecular-dynamics simulations, even for fairly complex reactions. The dynamical

problem posed by the necessity of monitoring the microscopic evolution of the system

to long times, although very exacting, would be superable.

TST is an approximation to the exact classical treatment which assumes the in-

stantaneous flux of reactant trajectories through a dividing surface (between reactants

and products) to be the net reactive flux. From a dynamical point of view, this as-

sumption is equivalent to that of zero-time dynamics: the initial momenta of reactants

on the dividing surface is, in fact, all that is needed to quarry the rate constant. TST

is verified to lead to predictions in good accordance with exact classical results in

the low-energy range and for multidimensional systems. Due to these features, it is

normal to try exporting TST in the realm of quantum mechanics, since it is at low

energies that quantal phenomena are more influent. From now, anyway, we emphasize

that there is no unique quantum analogue of TST and that many QTST approaches

have been proposed.

Exact quantum rate constants should actually be determined by solving the asso-

ciated reactive scattering problem, a difficult and expensive (in computational terms)

procedure, particularly if the interest is addressed to calculate primarily reaction rate

constants. The fact that the knowledge of the scattering S-matrix for all the possible

reactive channels results in a costly excess of information has directed the efforts to

search for alternative routes. Fundamental contributions in this direction are the

result of much work by W.H.Miller and his group at Berkeley [14, 15]. Here we limit

ourselves to recall that, through his formulations, Miller has shown how the evalua-

tion of a rate constant is reducible to that of a time-dependent quantum mechanical

trace at long times or, equivalently, of appropriate correlation functions (a difficult

task, in any case).

Many different kinds of approximations have been introduced into Miller’s original

formulation, leading to different versions of QTST. Since, in quantum mechanics,

Heisenberg’s uncertainty principle prevents us from the possibility of following particle

trajectories, the TST fundamental assumption must be replaced by some other kind

of assumption or by resorting to semiclassical methods. In particular, developments

of Miller’s formula in the coherent-state space, which adopt an overcomplete basis

set, have been pursued [16].

A central role in quantum treatments is played by the calculation of propagators

at real and imaginary times. Path integration techniques [28] or semiclassical dynam-

ical methods, originated from the standard Van Vleck’s approximation [29], have been

employed in these computations. In quantum mechanics, statistics and dynamics are
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strictly intertwined, since both of them are entirely described in terms of wave func-

tions; the possibility of achieving a clear separation between thermal and dynamical

effects, surely coexisting in rate constant calculations, represents an interesting goal

which our approach aims at.
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1.1 Classical rate theory

Prerequisite of all the considerations we are about to make is the assumption of

knowing the Potential Energy Surface (PES) on which the nuclear motions are bound

to take place in the frame of the adiabatic Born-Oppenheimer approximation. The

PES is expected to be known with good accuracy, especially for the reactant and

product regions and for first-order saddle points.

If a reactive process is treated from a purely classical point of view, the following

exact expression for the reaction rate constant is readily determined [12, 30]

kcl(T ) = Qr(T )−1(2π~)−L

∫

dp

∫

dq e−βH(p,q)F (p,q)χr(p,q) (1.1)

The factor ~
−L, where L is the number of degrees of freedom of the system, is cus-

tomarily included in the classical partition function so as to ensure an approximately

correct quantum state counting [30]; Qr(T ) is the reactant partition function per unit

volume, β = (kT )−1, H(p,q) is the Hamiltonian for the complete molecular system.

Finally, F (p,q) is the flux factor and χr(p,q) the characteristic function for the re-

action.

The presence of a flux factor implies the presence of a surface to which the flux is

referred. This particular surface (a subspace of the potential energy surface) is called

the dividing surface, because it separates the reactant region from the product one.

Topologically, it is defined by the equation

f(q) = 0 (1.2)

reactants being referred to the f(q) < 0 region and products to the f(q) > 0 one.

The flux can therefore be expressed as

F (p,q) =
d

dt
Θ[f(q)] (1.3)

where Θ(ξ) is the Heaviside function

Θ(ξ) =

{

1 ξ > 0

0 ξ < 0
(1.4)

Assuming the vectors (p,q) to be expressed in terms of Cartesian components, the

flux tranforms as follows

F (p,q) = δ[f(q)]
∂f

∂q
· p

m
(1.5)
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χr(p,q), the characteristic function, can be defined in a way allowing a direct quantum

mechanical generalization

χr(p,q) = lim
t→∞

Θ[f(q(t))] (1.6)

Here q(t) is the t-time evolved trajectory originated from the initial conditions (p,q)

at time t = 0. In this way, χr(p,q) = 1 if the trajectory with initial conditions

(p,q) is on the product side in the limit t → ∞; otherwise, χr equals 0. Therefore,

in the classical rate constant formula, eq.(1.1), the canonical ensemble statistics is

represented by the e−βH(p,q) term, while the dynamics is exclusively contained in the

characteristic function χr(p,q).

According to another purely classical approach, one can define a microcanonical

rate constant, i.e. the rate constant for reactions at fixed energy E

k(E) = (2π~ρr(E))−1N(E) (1.7)

where ρr is the density of reactant states (per unit energy) and N(E) the cumulative

reaction probability

N(E) = 2π~(2π~)−F

∫

dp

∫

dq δ[E − H(p,q)]F (p,q)χr(p,q) (1.8)

Its relation to the canonical rate constant is

k(T ) = (2π~Qr)
−1

∫

dEe−βEN(E) (1.9)

Since the integrations in eq. (1.1) and eq. (1.8) are extended to the whole phase

space, the knowledge of χr(p,q) for each starting point would imply the study of

the complete dynamics of the system. Actually, the presence of the Dirac delta in

the flux definition requires to evolve trajectories starting from the dividing surface

only and the multi-dimensional integrations involved can then be performed by re-

sorting to convenient Monte Carlo methods [31, 32]. It is a fact that, according to

Liouville’s theorem, the rate is independent of the choice of the dividing surface; a

good choice, based on both energetic and entropic considerations (i.e. considering a

free energy rather than potential energy surface), however, can be of noticeable aid

making calculations easier.
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1.2 Transition State Theory (TST)

Transition State Theory (TST ) provides a powerful approximation to the clas-

sical determination of rate constants. The fundamental assumption of TST is that

trajectories leaving the dividing surface and pointing towards the products will be

unable to recross it in the opposite direction (direct dynamics). In mathematical

terms, therefore, the approximate characteristic function χr(p,q) enjoys the peculiar

property

χTST (p,q) =

{

1 p · n > 0

0 p · n ≤ 0
(1.10)

where n is the direction normal to the dividing surface and pointing towards the

products. In a compact form,

χTST (p,q) = Θ

[

∂f(q)

∂q
· p

m

]

(1.11)

The characteristic function defined by eq.(1.10) can be interpreted as a short-time

approximation to dynamics, because, more than the whole evolution of the trajectory,

from its generation at the dividing surface until its long-time behavior, what counts is

in this view the orientation of the component of the momentum normal to the surface

as the trajectory originates.

Use of eq. (1.11) provides an upper bound to the correct classical reaction rate

constant (kTST (T ) ≥ kcl(T )), with the equality valid only if χTST = χr (see eq. (1.1)).

For a one-dimensional barrier, the transition state is univocally determined on the

basis of energetic considerations, i.e. the best dividing surface (actually a point)

is located at the top of the barrier, and, in this case, kTST (T ) = kcl(T ) . If the

dividing surface were chosen away from the maximum of the barrier, transition state

theory would lead to a result higher than expected. This is because both χr(p, q)

and χTST (p, q) would equal 0 for p < 0, but, on the contrary, for p > 0 χTST would

always be 1, while χr would be 0 in case the particle had not sufficient kinetic energy

to climb over the barrier.

The accuracy of the TST approximation clearly depends on the particular loca-

tion of the dividing surface. The search for a dividing surface which optimizes the

calculated value of the rate constant has originated a variational procedure, called

variational transition state theory (VTST ). It is out of our scope to treat VTST (a

detailed review can be found for instance in [33, 34, 35]) but it is a fact and a peculiar

characteristic that the results from TST computations depend on the choice of the

dividing surface. In a one-dimensional space, naturally, it is trivial to find the best

location for the dividing surface according to energetic considerations, but in two or
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even higher-dimensional systems the task becomes more difficult, due to the role of

entropic factors, clearly in competition with the purely energetic ones. For this rea-

son, many approaches proposed rely on the consideration of free energy rather than

potential energy surfaces.

Anyway, calculations are made easier if the dividing surface is planar; if qF denotes

the normal coordinate, in fact, the surface is defined by the equation f(q) = q∗F and

the choice q∗F = 0 allows to reduce eq. (1.8) to the form

NTST (E) = 2π~(2π~)−F

∫

dp

∫

dq δ

[

E − V (q) − p2

2m

]

δqF
pF

m
Θ(pF ) (1.12)

and after performing the integrations with respect to pF , qF

NTST (E) = (2π~)−(F−1)

∫

dp′
∫

dq′ Θ(E − H 6=(p′,q′)) (1.13)

Here p′,q′ label coordinates and momenta relative to the motion on the (F − 1)-

dimensional dividing surface and

H 6=(p′,q′) =
F−1
∑

k=1

p2
k

2m
+ V (q′, qF = 0) (1.14)

Eq.(1.13) states that the cumulative reaction probability (CRP) is the volume of the

phase space of the activated complex with energy less or equal to E.

Finally,

kTST (T )Qr(T ) =
kT

h
Q6=(T ) (1.15)

Q6=(T ) = (2π~)−(F−1)

∫

dp′
∫

dq′ e−βH 6=(p′,q′) (1.16)

In the particular case of a one-dimensional barrier of height V 6=,

kTST Qr =
kT

h
e−βV 6=

(1.17)

which for a free particle reduces to

kf.p.
TST =

kT

h
(1.18)

an exact result expected to be valid for both the classical and the quantum treatments.

TST is found to be an accurate approximation at sufficiently low energy [10, 36],

i.e. a little above the potential energy barrier, while at higher energy it breaks down

because of the great number of trajectories which recross back the dividing surface.
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Figure 1.1: Comparison between TST and classical molecular dynamics

This point can be appreciated in fig.1.1, where the ratio between reactive and incident

flux is plotted against energy for a collinear H + H2 reaction, according to TST and

classical molecular dynamics calculations carried out by Porter and Karplus many

years ago [37].

So far, our considerations have been limited only to classical rate theory. An accurate

estimation of the rate constant, however, must also take into account quantum effects

like tunneling. A quantum mechanical formulation of the problem is possible; how-

ever, the fact that TST works better for multidimensional systems and at low energy

( where quantum effects are more prominent), suggests that it would be extremely

interesting to find out a quantum analogue of TST.
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1.3 Quantum Transition State Theory

Chemical reactions can be treated rigorously from a quantum mechanical point

of view in terms of a formulation based on the scattering S-matrix associated to the

reaction.

The cumulative reaction probability can be shown to be expressible in the form

N(E) =
∑

np

∑

nr

∣

∣Snp,nr
(E)
∣

∣

2
(1.19)

The sums in eq.(1.19) run over the quantum numbers labeling the states of reactants

and products, the square moduli of the S-matrix elements representing reaction prob-

abilities for the nr → np transitions (channels).

The knowledge of the S-matrix elements provides the most detailed information about

the reaction, surely much more than necessary to evaluate an averaged quantity like

the reaction rate constant. Besides, the solution of the reactive scattering problem is

generally a difficult and computationally expensive task, so that the implementation

of a more direct procedure would be desirable.

A first attack to the problem could be based on the direct quantization of the

classical TST expression for N(E) [38]. In this view, the phase-space integration in

eq.(1.13) becomes a quantum mechanical trace, with the Hamiltonian operator Ĥ 6=

bounded on the dividing surface

NQTST (E) = Tr
[

Θ(E − Ĥ 6=)
]

=
∑

n

Θ(E − E 6=
n ) (1.20)

The expression for k(T ) which stems from eq.(1.20) is

kQTST (T )Qr(T ) =
kT

h
Q6=(T ) (1.21)

Eqs.(1.20),(1.21) neglect the motion along the reaction coordinate and the associated

tunneling effect. Eq.(1.20) can be improved by replacing the step function with a

tunneling probability, which depends on the energy difference EF = E − E 6=
n

NQTST (E) =
∑

n

PF (E − E 6=
n ) (1.22)

Eq.(1.22) leads to

kQTST (T )Qr(T ) = κ(T )
kT

h
Q6=(T ) (1.23)

where κ(T ) is the one-dimensional tunneling factor, defined by

κ(T ) = β

∫ +∞

−∞
dEF e−βEF PF (EF ) (1.24)
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The fact that in eq.(1.23) the quantum tunneling appears as a multiplicative fac-

tor means that the reaction coordinate has been considered uncoupled to the other

degrees of freedom. This is, of course, an oversimplification [12] and different mul-

tidimensional tunneling corrections have been suggested [39, 40, 41], in many cases

with better results, even though these procedures still rest on approximations to the

coupling between the reaction coordinate and the remaining degrees of freedom.

In 1974, Miller proposed a direct formula, later rearranged in terms of correlation

functions [9], to tackle the problem [15]

k(T )Qr(T ) = lim
t→∞

Tr
[

e−βĤF̂Θ(p̂(t))
]

(1.25)

In eq.(1.25) the rate constant is calculated as the long-time limit of a quantum me-

chanical trace. The operators involved are the statistical Boltzmann operator, a flux

operator and a projection operator onto the product states. The role of these opera-

tors will be widely discussed in chapter 3. At the moment, it is interesting to notice

that eq.(1.25) involves the quantum propagation of the momentum operator at long

times. Needless to say that resorting to approximate treatments of dynamics is the

rule in actual calculations.

The necessity of including quantum effects in the estimation of rate constants,

along with the possibility of avoiding long-time simulations, makes the search for

a quantum version of transition state theory a fundamental topic in reaction rate

theory.

A central role in this search is held by the partitioning of dynamical from thermal

effects. Ankerhold, Grossmann and Tannor [16] have investigated this aspect by

means of a coherent-state approach. Coherent states constitute an overcomplete

expansion basis set. The evaluation of the quantum mechanical trace present in

Miller’s formula in terms of such basis set leads to the following expression for the

rate constant

k(T )Qr(T ) = Re

∫

dx0 dp0

2π~

∫

dp′′0
2π~

〈x0|e−βĤ |x′′
0 = 0〉p

′′
0

m
〈z̃p′′0 ,x′′

0=0; α|P̂ |z̃p0,x0 ; α〉
(1.26)

where |z̃; α〉 denote coherent states in the notation adopted by Caratzoulas and

Pechukas [42]. Eq.(1.26) involves a position representation for the Boltzmann op-

erator and the coherent-state representation for the projector operator which takes

into account the dynamics.

The application of the formalism to two typical one-dimensional models, parabolic

barrier and symmetrical Eckart barrier, along with a detailed analysis of the phase-

space dynamics has led to ascertain the role of the two partitioned effects, quantifying

their prominence in various temperature regimes. In particular, the long-time limit
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for the parabolic barrier model leads to a very interesting result for the projection

operator matrix element involved in eq.(1.26), that can be expressed as product of a

coherent state overlap matrix element times a complex complementary error function

〈z̃p′′0 ,x′′
0=0; α|P̂ |z̃p0,x0 ; α〉 = 〈z̃p′′0 ,x′′

0=0; α|z̃p0,x0 ; α〉ξ(p′′0; p0, x0) (1.27)

where

ξ(p′′0; p0, x0) =
1√
π

∫ u(p′′0 ;p0,x0)

−∞
dx e−x2

(1.28)

with u a complex function depending also on the barrier curvature (for more details see

[16]). Our emphasis on this point, the occurrence of an error function as a consequence

of an approximation based on the parabolic barrier, is related to the fact that the

result is similar to our findings in the approach discussed in this thesis (see Chap. 3).

It has been argued that a rigorous quantum formulation of the transition state

theory should share with its classical analogue some basic features [19]:

a) To be a first-principle theory;

b) Rate constant deducible directly from the thermal density matrix;

c) The theory overestimates the exactly measured rate constant;

d) The theory is variational and the result can be optimized by proper location of

the dividing surface;

e) The QTST expression is the leading term in a possible expansion of the rate

constant with respect to some suitable, small parameter.

In conclusion, there is not an unambiguous generalization of the transition state the-

ory to the realm of quantum mechanics, but, instead, there exist a bunch of different

approaches aimed at adding tunneling and interference effects onto a classical-born

theory.

1.3.1 Long-Time Fictitious-Dynamics Quantum Transition State

Theory (LTFDQTST)

The acronym adopted tries to capture the main characteristics of some QTST ap-

proaches where the true (real-time) dynamics is replaced by a fictitious one, exactly

tractable, so as to suggest an easy guess for the required Long-Time quantum evolu-

tion. In this way, the estimation of the kinetic rate constant is essentially reduced to
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a calculation involving the ”exact” thermal density matrix and a (time-independent)

matrix element associated with the asymptotic fictitious dynamics.

Voth, Chandler and Miller (VCM) [17] arrived at two different expressions for the

rate constant which yield the same results, provided that exact calculations are per-

formed for both thermal density matrix ρ(x, x′; β) and dynamical factor z(x, x′; ∆t).

In the first formula

k(T )Qr(T ) =
2

~β

∫

dx

∫

dx′ Θr(x)Θp(x
′)ρ(x, x′; β)z(x, x′; ∆t) (1.29)

Θr(x) (Θp(x
′)) represents the Heaviside function associated with the population op-

erator of reactants (products), while

z(x, x′; ∆t) = Im〈x|Θ̂r(∆t)|x′〉 = −Im〈x|Θ̂p(∆t)|x′〉 (1.30)

is the dynamical factor.

The second formula is (x∗ corresponds to the location of the dividing surface)

k(T )Qr(T ) =
~

m

∫

dx
∂ρ(x, x∗; β)

∂x∗ z(x∗, x; ∆t) (1.31)

VCM calculated the general matrix element of the real-time propagator (hence the

z-factor) for a few models: free particle (exact), parabolic barrier (exact), general

one-dimensional barrier (semiclassical limit).

For the free particle (f.p.) and parabolic barrier (p.b.) cases, the long-time limit of

the respective z-factors

zf.p.(x, x′;∞) =
1

2π(x′ − x)
(1.32)

zp.b.(x, x′;∞) =
1

2π

1

(x′ − x)
cos
[mωb

2
(x2 − x′2)

]

(1.33)

provides working approximations for the dynamical factor of Eqs. (1.29),(1.31). For

a symmetrical Eckart barrier, for instance, results in appreciable agreement with the

exact ones have been obtained. The same cannot be said in the case of asymmetric

Eckart barriers, at low temperatures, where some unphysical findings emerged in their

study.

Pollak and Liao (PL) [19] proposed a slightly different approach still derived from

first principles, which adopts the long-time behavior of the parabolic-barrier system

as approximate dynamics. For long times (ω 6= is the curvature of the parabolic barrier

which fits the actual barrier at the dividing surface)

x̂p.b.(t) ≈
1

2
eω 6=t

[

x̂ +
p̂

mω 6=

]

(1.34)
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so that

lim
t→∞

eiĤpbt/~ Θ(x̂) e−iĤpbt/~ = Θ

(

x̂ +
p̂

mω 6=

)

(1.35)

For any one-dimensional Hamiltonian Ĥ, it is possible to separate out a parabolic

barrier component Ĥp.b., so that Ĥ = Ĥpb + Ĥ ′. In this way, the result in eq.(1.35)

can be considered the leading-order term in the expansion of the time evolution of

the Heaviside operator.

The formula for the rate constant becomes

kQTST (T )Qr(T ) = Tr
[

F̂ (β, x∗)Θ(ωx̂ + p̂/m)
]

(1.36)

The next steps of the PL procedure involve the adoption, differently from VCM, of a

symmetrized form of the thermal flux operator and the choice to represent the trace

appearing in eq. (1.36) in the form (Wigner transform method)

Tr[ÂB̂] = 2π~

∫ +∞

−∞
dp

∫ +∞

−∞
dxAw(p, x)Bw(p, x) (1.37)

Since the Wigner representation of the Heaviside operator is easily found, one arrives

at the central result

kQTST (T )Qr(T ) =

∫ +∞

−∞
dp

∫ +∞

−∞
dx Θ(p + mω 6=x)ρw

[

F̂ (β, x∗); p, x
]

(1.38)

Through this formulation, PL have obtained good results for symmetrical and asym-

metric Eckart barriers, even in those cases where VCM where only partially successful.

1.3.2 Short-time Quantum Transition State Theory (STQTST)

Short-time approaches, differently from the previous ones, do not discard the real-

time propagation in the true potential. In this kind of approaches, some approxima-

tion on the dynamics is introduced and in this way the long-time limit, which would

rigorously be required to attain the correct result for the rate constant, is actually

reached after a short time.

Tromp and Miller proposed [20, 21] a new quantum transition state theory ver-

sion, based on the reactive flux correlation function formalism suggested by Miller,

Schwartz and Tromp [15]. The thermal rate constant for a bimolecular reaction can

be expressed in the form

k(T )Qr(T ) =

∫ ∞

0

Cf (t)dt (1.39)

where Cf (t) is a flux-flux autocorrelation function. Fig.1.2 shows the behavior of
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Figure 1.2: Classical (CL) and quantum mechanical (QM) flux-flux correlation func-
tions are shown for the symmetrical Eckart barrier for the case that the dividing
surface is chosen at the top of the barrier (s0 = 0) or displaced from it (s0 6= 0). The
shaded regions in the classical (CL) case simulates the Dirac delta function at t = 0.

the classical (on the left) and quantum (on the right) correlation function for a sym-

metrical one-dimensional Eckart barrier. The upper parts of the figures refer to a

choice of the dividing surface located at the top of the barrier, while, in the lower

parts, the dividing surface has been displaced. Incidentally, the quantum calculations

were performed by adopting a finite-basis set approximation to the trace, in terms of

standard harmonic oscillator eigenfunctions.

The main feature of the classical simulation is the presence of a Dirac delta-like

behavior at time t = 0, with no recrossing flux if the dividing surface is chosen at the

top of the barrier.

The classical rate constant can be evaluated from the flux-flux autocorrelation func-

tion according to

kcl
TST (T )Qr(T ) = lim

ε→0

∫ ε

0

dtCcl
f (t) (1.40)

It must be observed, however, that the expression provides the correct (classical)

result only if the dividing surface is chosen properly, in a way that no recrossing flux

takes place; otherwise, it overestimates the true rate constant. As a consequence, a
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variational theory should be performed, to the aim of minimizing the rate constant

by shifting the dividing surface.

The quantum results for the flux-flux autocorrelation function are characterized

by a different behavior: the δ function at t = 0 is replaced by smoother curves, which

drop to zero in a time of the order ~β. Even in this case, the results are affected by

the choice of the position of the dividing surface; even though the time integral of

the correlation function is invariant, in fact, the correlation function does not display

negative contributions only if the dividing surface is chosen at the top of the barrier.

The quantum transition state approach suggested by Tromp and Miller is based on

the evaluation of the contribution arising from the first positive lobe of the quantum

correlation function

kqm
TST =

∫ t0

0

dtCqm
f (t) (1.41)

where t0 corresponds to the first zero of Cqm
f (t). A number of methods have been

explored to calculate the quantum correlation function at short times [43, 44] and

eq.(1.41) provides an example of short-time quantum transition state theory.

Craig and Manolopoulos (CM), in a series of recent papers [22, 23, 24], have

developed a procedure, known as Ring Polymer Molecular Dynamics (RPMD) ap-

proach, which arrives to a short-time quantum transition state theory, starting from

the Kubo-transformed version of the reaction rate theory. The procedure is based

on the recognized isomorphism between path integral representation of the quantum

partition function and the classical partition function of a harmonic ring polymer

[45, 46, 47]. Concisely, if Â and B̂ are two coordinate-dependent operators, their

correlation function can be expressed as

〈Â(0)B̂(t)〉n =
1

(2π~)nZn

∫

dp0

∫

dx0 e−βnHn(p0,x0)An(x0)Bn(xt) (1.42)

where n is the number of beads that constitute the harmonic ring, βn = β/n the scaled

Boltzmann factor, while Hn(p,x) denotes the classical Hamiltonian of a harmonic ring

polymer subjected to an external potential V (x)

Hn(p,x) =
n
∑

i=1

p2
i

2m
+

m

2β2
n~2

n
∑

i=1

(xi − xi−1)
2 +

n
∑

i=1

V (xi) (1.43)

An(x0) and Bn(xt) represent averages over the beads, respectively at two different

times

An(x0) =
1

n

n
∑

i=1

A[xi(0)] (1.44)
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Bn(xt) =
1

n

n
∑

i=1

B[xi(t)] (1.45)

The expression in Eq.(1.42) gives the correct result for the correlation function in the

limit n → ∞ if the external potential is harmonic. If both Â and B̂ are operators

linearly coordinate dependent (i.e. the case of the position autocorrelation function),

and the external potential is harmonic, the classical result (n = 1) is valid too. For

the general case of an external potential V (x) which is not harmonic, eq.(1.42) yields

an approximation to the exact result.

As already mentioned, the starting point of the RPMD approach is the approxi-

mate Kubo-transformed side-side correlation function

c̃ss(t) ≈
1

(2π~)n

∫

dp0

∫

dx0 e−βnHn(p0,x0)Θn(x0)Θn(xt) (1.46)

which can be rearranged to the following flux-side correlation function

c̃fs(t) ≈
1

(2π~)n

∫

dp0

∫

dx0 e−βnHn(p0,x0)δ1(x0)v1(p0)Θn(xt) (1.47)

with δ1(x) = δ(x1 − x∗), v1(p) = p1/m and Θn(x) = 1/n
∑n

i=1 Θ(xi − x∗).

Eq.(1.47) means that the first bead is initially (t = 0) in correspondence of the

dividing surface and its initial velocity is correlated with the fraction of the ring

polymer that lies on the product side at time t.

The strategy just described can be improved (i.e. it can be formulated in a

manner which permits to reach more rapidly convergence to the long-time limit)

by considering the dynamics of the ring-polymer centroids, the centroid of the ring-

polymer coordinates being defined as

x̄ =
1

n

n
∑

i=1

xi (1.48)

Eq.(1.47) can be shown to be equivalently calculable as

c̃fs(t) =
1

(2π~)n

∫

dp0

∫

dx0 e−βnHn(p0,x0)δ(x̄0 − x∗)
p̄0

m
Θ(x̄t − x∗) (1.49)

a result very similar to the preceding one, provided the first bead is replaced by the

centroid.

Eq.(1.49) appears preferable to eq.(1.47) due to the improved phase-space average

and the faster convergence to the long-time limit. The phase-space average is bet-

ter calculated by means of Monte Carlo methods in the centroid approach: most

contributions, in fact, are positive, since it is not very probable (and of course less
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probable than for the first bead in the first-bead approach) that a starting centroid,

characterized by p̄0 < 0, is found on the product side at time t.

The fact that the long-time limit is soon achieved, makes the CM approach an exam-

ple of short-time quantum transition state theory.
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1.4 Main features of SCIVR

In the previous sections, we have tried to underline the limitations of a classical

description of chemical kinetics, evidencing that intrinsically quantum mechanical ef-

fects, such as coherences, tunneling, selection rules have a role and cannot be ignored.

At the same time, the quantum problem associated with chemically reactive events

is recognized as one generally difficult to treat, mainly when a highly dimensional

description is involved. In this view, all the quantum transition state approaches

examined in precedence have been tested over low-dimensionality systems (usually

one-dimensional barrier models).

The adoption of mixed quantum/classical approaches, where only a limited num-

ber of degrees of freedom are treated rigorously, i.e. assuming acceptable for all the

remaining ones a classical description, is a possible way to face the problem.

A viable alternative is offered in principle by semiclassical approaches, employing Van

Vleck’s approximation for the matrix element (transition amplitude) of the real-time

propagator in the coordinate representation [25]. The required evolution of classical

trajectories leads unfortunately to deal with a non-linear boundary value problem,

usually difficult to solve.

The SemiClassical Initial Value Representation (SCIVR) formalism [26, 27] is an

approach where all the degrees of freedom ( even electronically non-adiabatic) are

treated on the same footing and nowadays constitutes possibly the leading strategy

for studying complex reactions, even in condensed phase. It takes its origins from

Van Vleck’s approximation, so that in all respects we are confronting with a semi-

classical theory. In its main lines, the approach starts from the standard Van Vleck’s

approximation for the general matrix element of the quantum propagator,

〈2|e−iĤt/~|1〉 =
∑

roots

∫ ∫

dx1dx2Ψ
∗
2(x2)Ψ1(x1)

[

(2πi~)f

∣

∣

∣

∣

∂x2

∂p1

∣

∣

∣

∣

]−1/2

e
i
~

St(x2,x1)−iπν(t)/2

(1.50)

with

St(x2, x1) =

∫ t

0

dt′
[

p(t′)
dx(t′)

dt′
− H(p(t′), x(t′))

]

(1.51)

the classical action (time integral of the Lagrangian) for trajectories starting from x1

at t′ = 0 and ending at x2 at time t′ = t.

∣

∣

∣

∣

∂x2

∂p1

∣

∣

∣

∣

=

∣

∣

∣

∣

∂xt(x1, p1)

∂p1

∣

∣

∣

∣

(1.52)

is the Jacobian factor, while the phase factor (or Maslov index) ν(t) counts how many

times the determinant |∂xt/∂p1| vanishes in the time interval [0, t], f being finally the
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number of degrees of freedom of the system.

A straightforward application of the Van Vleck’s approximation leads, as already

mentioned above, to deal with a rather difficult non-linear numerical problem with

given boundary value conditions. As a matter of fact, xt is not necessarily a mono-

tone function of p1, with consequent occurrence of solutions to find out, because the

problem solution requires that all the roots (trajectories) are calculated.

The novelty introduced by SCIVR is based on the recognition that classical tra-

jectories are univocally determined by initial conditions rather than by multiple roots

defined by boundary conditions. This feature allows the following replacement

∑

roots

∫

dx2 →
∫

dp1

∣

∣

∣

∣

∂xt

∂p1

∣

∣

∣

∣

(1.53)

so that eq.(1.50) transforms into

〈2|e−iĤt/~|1〉 =

∫

dx1

∫

dp1Ψ
∗
2(xt)Ψ1(x1)

[ |∂xt/∂p1|
(2πi~)f

]1/2

e
i
~
[St(p1,x1)−iπν(t)/2] (1.54)

From a formal point of view, eqs.(1.50) and (1.54) are equivalent but the implementa-

tion of the latter introduces computational facilities, in addition to the advantageous

replacement of the sum over different roots with a single integral mentioned before.

Furthermore, the new Jacobian factor removes the singularities and keeps the inte-

grand going to zero, preserving its continuity each time the Maslov index is null.

Among various virtues, SCIVR is able to provide an approximate description of

dynamical tunneling, while maintaining the interference structure proper of semiclas-

sical theories. Finally, SCIVR can be seen as a way to add quantum effects over

purely classical simulations. The only problem affecting the approach seems to lie

in the oscillatory nature of the integrand, even though some Monte Carlo techniques

have been formulated to tackle this aspect [48, 49, 50, 51].

The SCIVR application to time correlation functions of the form

CAB(t) = Tr[ÂeitĤB̂e−itĤ ]

leads to

CAB(t) = (2π~)−f

∫

dp0dx0dp
′
0dx

′
0 〈x0|Â|x′

0〉〈x′
t|B̂|xt〉ei(St−S′

t)/~

∣

∣

∣

∣

∂xt

∂p0

∣

∣

∣

∣

1/2 ∣
∣

∣

∣

∂x′
t

∂p′
0

∣

∣

∣

∣

1/2

(1.55)

We are particularly interested to the reactive flux correlation function (its long-time

limit is involved in the rate constant calculation), where

Â = e−βĤ/2F̂ e−βĤ/2 (1.56)
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B̂ = Θ(s(x̂)) (1.57)

A way to deal with eq.(1.55) is by adopting the linearization approximation: the

oscillatory integrand in the double phase-space integration is treated by assuming

that the only important contribution comes from trajectories close to one another.

This kind of approximation reduces SCIVR to the classical Wigner approximation

[52]

CAB(t) ≈ (2π~)−f

∫

dp̄0

∫

dx̄0Aw(p̄0, x̄0)Bw(p̄t, x̄t) (1.58)

where p̄0 = 1
2
(p̄0 + p̄′

0) and x̄0 = 1
2
(x̄0 + x̄′

0), while Aw and Bw are the Wigner

functions associated to the operators Â and B̂ respectively. Various tests on several

benchmark model problems confirm that the linear approximation describes the short-

time quantum behavior well, so that it must rightfully be added to the number of

quantum transition state theory.

Overcoming the linearized SCIVR approach without becoming involved in the

double phase-space integrations (see (1.55)) has motivated the growth of other ap-

proaches (which will not be reviewed). Among them, we cite the forward-backward

IVR, suggested by Thompson and Makri [53, 54] and developed by Miller.
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Quantum mechanical propagators

in the case of simple Hamiltonian

operators

A key role in modern quantum-mechanical theories devised to provide a rationale

as well as viable computational routes for chemical kinetics investigations is played

by the (quantum) propagator both at real time and at imaginary time.

The expansion of the imaginary-time propagator into a coordinate basis set (〈x|e−βĤ |x′〉)
yields a matrix representation of the Boltzmann operator e−βĤ in the form of an inte-

gral characterized by a non-oscillatory integrand, that can be evaluated numerically

by resorting to Monte Carlo techniques based on the Feynman path integration for-

malism [57].

On the contrary, the computation of the real-time propagator (〈x|e−iĤt|x′〉), a quan-

tity seemingly similar to the preceding one, involves a much more difficult task, re-

lated to the oscillatory behavior of the integrand. Modified Monte Carlo procedures

have been suggested and developed to attack this kind of integrals [48, 49, 58], even

though it must be remarked the frequent recourse to appropriate approximations to

the real-time dynamics so as to avoid the heavy difficulties of the direct calculation.

Real-time propagators can be analytically calculated in some particular cases and

the result extended to the correspondent imaginary-time propagators by resorting

to analytic continuation procedures, a standard technique often adopted in thermo-

dynamic approaches to reaction rate theory (see, for instance, the Hansen-Andersen

work [6, 7]).

Needless to say that real-time propagators can be obtained quite easily for a free

particle (sec.(2.1)) and, at the cost of some efforts, for the harmonic oscillator poten-

tial (sec.(2.2), sec.(2.3)). An ordinary presentation is based on the calculation of the

26
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Feynman propagator for a quadratic-Lagrangian system [60, 61]. At our craftsman

level, we shall look at the problem of the harmonic oscillator according to Beaure-

gard’s theorem [59].

For simplicity, in the forthcoming formulae, the choice ~ = 1 has been maintained.
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2.1 Propagators for the free particle

The trivial case of a free particle is the first type of propagator to take into

consideration. Of course, the free-particle system is not of great importance in the

context of the reaction rate theory. Neverthless, the results relative to this system

serve as a starting point for treating more complex cases and represent a basic tool

in view of the algebraic techniques employed.

The Hamiltonian contains only the kinetic energy operator: Ĥ = p̂2/2m, so that

K(x, x′; t) = 〈x|e−iĤt|x′〉 = 〈x|e−i p̂2

2m
t|x′〉 (2.1)

which is easily elaborated by switching from the position to the momentum represen-

tation

K(x, x′; t) = 〈x|e−i p̂2

2m
t|x′〉 =

=
1

2π

∫ +∞

−∞
dp e−ip(x′−x)e−i p2

2m
t

(2.2)

By the following standard result

∫ +∞

−∞
ds e−As2+Bs =

√

π

A
eB2/4A (2.3)

we get without effort

Kf.p.(x, x′; t) =
( m

2πit

)1/2

e−
m(x−x′)2

2it (2.4)

Analytic continuation allows one to find the expression of the free-particle thermal

density matrix. In fact, analytic continuation in the complex field is obtained by

means of the substitution t → −iβ, so that

〈x|e−β p2

2m |x′〉 = ρf.p.(x, x′; β) =

(

m

2πβ

)1/2

e−
m(x−x′)2

2β (2.5)

In conclusion, the imaginary-time propagator for the free particle in the coordinate

representation is a Gaussian function whose width depends on the temperature and

the mass of the particle: the lower mass and temperature, the higher the spread of

the density matrix element around the x′ position at which it is centered. This result

is also central in the evaluation of thermal density matrices by means of Feynman

path integration.
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2.2 The harmonic oscillator case

This calculation is a bit more complex and difficult than the previous one and

requires some additional efforts.

The Hamiltonian for a particle under the influence of the harmonic potential can be

expressed as follows

Ĥh.p. =
p̂2

2m
+

1

2
mω2x̂2 (2.6)

where ω is the frequency of the harmonic oscillator.

The searched solution for the propagator is attained by reduction of the problem

to that of a free particle, invoking the following theorem due to Beauregard:

Theorem. Let P̂ and Q̂ be two linear operators obeying the following commutation

relations
{

[[Q̂, P̂ ], P̂ ] = 2P̂

[[P̂ , Q̂], Q̂] = 2Q̂
(2.7)

Let λ be a dimensionless parameter. Then[59, 62]

e2λ(P̂+Q̂) = exp{Q̂ tan(λ)} exp{P̂ sin(2λ)} exp{Q̂ tan(λ)} (2.8)

Beauregard’s theorem was first stated (without demonstration) by Fujiwara. It pro-

vides a way to factorize the exponential of a sum of non-commuting operators defined

by the commutation relations in Eqs. (2.7).

Defining the operators P̂ , Q̂ and the parameter λ as follows (it is easy to demon-

strate that they satisfy the conditions in Eqs.(2.7))



















P̂ = − i

2mω
p̂2

Q̂ =
mω

2i
x̂2

2λ = ωt

(2.9)

the real-time propagator can be expressed as follows

Kh.p.(x, x′; t) = 〈x|e−iĤt|x′〉 = 〈x|eQ̂ tan(λ)eP̂ sin(2λ)eQ̂ tan(λ)|x′〉 (2.10)

and therefore

Kh.p.(x, x′; t) = A〈x|eP̂ sin(2λ)|x′〉, A = e
mω
2i

(x2+x′2) tan(ωt/2) (2.11)
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The matrix element is easily evaluated in the momentum representation,

Kh.p.(x, x′; t) = A

(

mω

2πi sin(ωt)

)1/2

e−
mω(x−x′)2

2i sin(ωt) (2.12)

Easy manipulations of eq.(2.12), based on simple trigonometry, lead to the well known

formula of the propagator for the harmonic oscillator in its usual form

〈x|e−iĤt|x′〉 =

(

mω

2πi sin(ωt)

)1/2

exp

{

imω

2 sin(ωt)

[

(x2 + x′2) cos(ωt) − 2xx′]
}

(2.13)

Actually, eq.(2.13) is not completely correct, since a double-valued analytic con-

tinuation has been adopted while extending the validity of the result of the basic

Gaussian integral of eq.(2.3) to the corresponding one with imaginary parameters

(
∫∞
−∞ e−iαx2

dx =
√

iπ/α [61]). The consequence is that a phase ambiguity arises at

caustic points (values of t = nπ/ω, n integer). Once removed this ambiguity by ex-

ploiting the group property of the propagators and translational invariance in time

[60], the final result is the following Feynman-Soriau formula

Kh.p.(x, x′; t) =

e−i π
2
( 1
2
+Ent[ωt

π
])

(

mω

2π| sin(ωt)|

)1/2

exp

{

imω

2 sin(ωt)

[

(x2 + x′2) cos(ωt) − 2xx′]
}

(2.14)

where Ent[ξ] denotes the entire part of ξ.

From the relations
{

sin(iα) = i sinh(α)

cos(iα) = cosh(α)
(2.15)

and by analytic continuation of eq.(2.13) (t → −iβ), a straightforward procedure

similar to that adopted for the free particle, leads to the thermal density matrix

(imaginary time propagator),

ρh.p.(x, x′; β) ≡ 〈x|e−βĤ |x′〉

=

(

mω

2π sinh(βω)

)1/2

exp

{

−mω

2

[

(x2 + x′2) coth (βω) − 2xx′

sinh(βω)

]}

(2.16)

This result will serve as a test for checking the reliability of the Path Integral Monte

Carlo (PIMC) algorithm described in one of the following chapters (sec.(4.2)). It

must be noticed that Eq.(2.16) is not normalized,
∫

ρh.p.(x, x; β)dx 6= 1, so that it

does not represent a proper density matrix. The space integral of ρh.p. in Eq.(2.16)

(with x′ = x), i.e. the trace of the operator e−βĤ is the quantum partition function

for the harmonic oscillator.
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2.3 Real-time propagator for the complete oscilla-

tor potential

Another potential, for which a direct analytic treatment is possible, is represented

by the complete oscillator potential, i.e. of the form V (x) = a + bx + cx2, a complete

second order polynomial.

The complete oscillator Hamiltonian is therefore

Ĥx =
p̂2

2m
+

1

2
mω2x̂2 + v1x̂ + V0 (2.17)

To proceed, it is convenient to define the following translated position operator

ŷ = x̂ +
v1

mω2
(2.18)

which allows to transform Ĥx into

Ĥy =
p̂2

2m
+

1

2
mω2ŷ2 − v2

1

2mω2
+ V0 (2.19)

apart an additive constant, the Hamiltonian operator of a simple harmonic oscillator.

The generic matrix element of the propagator is therefore

K(y, y′; t) = 〈y|e−iĤyt|y′〉 (2.20)

Taking into account the result of eq.(2.13), after the introduction of the auxiliary

parameters F =
(

mω
2πi sin(ωt)

)1/2

and F ′ = F e−iV0t eiv2
1t/(2mω2), it is possible to go back

to the x−representation

〈x|e−itĤx |x′〉 = F ′ exp

{

imω

2 sin(ωt)

[(

(x +
v1

mω2
)2 + (x′ +

v1

mω2
)2
)

cos(ωt) − 2(x +
v1

mω2
)(x′ +

v1

mω2
)
]

}

= F ′ exp

{

imω

2 sin(ωt)

[(

x2 + x′2 +
2v2

1

(mω2)2
+

2v1

mω2
(x + x′)

)

cos(ωt) +

−2

(

xx′ +
v2
1

(mω2)2
+

v1

mω2
(x + x′)

)]}

(2.21)

Eq.(2.21) can be conveniently elaborated on the basis of the following simplifications

involving different powers of the parameter v1:

(v2
1) : exp

{

imω

2 sin(ωt)

[

2v2
1

(mω2)2
cos(ωt) − 2v2

1

(mω2)2

]}

=

= exp

{

iv2
1t

mω2

1

ωt

(

1

tan(ωt)
− 1

sin(ωt)

)}

=

= exp

{

− iv2
1t

mω2

tan(ωt/2)

ωt

}

(2.22)
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(v1) : exp

{

imω

2 sin(ωt)

[

2v1

mω2
(x + x′) cos(ωt) − 2v1

mω2
(x + x′)

]}

=

= exp

{

iv1(x + x′)

ω

(

1

tan(ωt)
− 1

sin(ωt)

)}

=

= exp

{

−iv1(x + x′)
tan(ωt/2)

ω

}

(2.23)

The terms independent of v1, are expected to give rise to the same result found for

the harmonic oscillator (Eq.(2.13)). A few manipulations along the lines of the above

procedure lead to:

(v0
1) : F exp

{

imω

2 sin(ωt)

[

(x2 + x′2) cos(ωt) − 2xx′]
}

=

= F exp

{

imω

2 sin(ωt)

[(

(x + x′)2 + (x − x′)2

2

)

cos(ωt) − (x + x′)2 − (x − x′)2

2

]}

= F exp

{

imω

4 sin(ωt)

[

−(x + x′)2 tan(ωt/2) +
(x − x′)2

tan(ωt/2)

]}

(2.24)

Consequently, the real-time propagator for the complete oscillator potential, is

〈x|e−itĤx|x′〉 = F e−iV0t exp

{

iv2
1t

2mω2

(

1 − 2 tan(ωt/2)

ωt

)}

×

exp

{

i

[

mω

4

(

(x − x′)2

tan(ωt/2)
− (x + x′)2 tan(ωt/2)

)

− v1

ω
(x + x′) tan(ωt/2)

]}

(2.25)

Another kind of potential for which it is not complicated to get an expression for

the propagator is the linear potential. The solution can be found, for instance, in

[61]. Since the main interest for the purposes of this thesis is addressed to parabolic

barriers, the case of a particle moving in an uniform force field will be omitted from

our considerations.

2.4 Thermal density matrices for parabolic barriers

The harmonic potentials treated in precedence are not ideally suitable to describe

a barrier involved in a reactive process, mainly because of their unbound shape over

the whole space (in particular, their pathological behavior as x±∞). In spite of their

inadequacy, they are useful as a starting point to test the efficience of any strategy

adopted to tackle the dynamical problem. The physical reason making this potential

eligible as the main approximation in the study of a realistic kinetics is to be searched
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in the fact that some features of the ”true” barrier potentials are captured by simpler

model potentials like the inverted harmonic one. Our present interest is addressed

to the computation of the (unnormalized) thermal density matrix, in particular the

matrix element 〈x|e−βĤ |x′ = 0〉p.b., for the case of a parabolic barrier, which plays a

fundamental role in the following.

The procedure employed to get the searched results is, once again, the analytic con-

tinuation of eqs. (2.13) and (2.25) by the replacement

ω → iω (2.26)

In fact, under such transformation, the Hamiltonian (2.6) (and in a similar way

that for the complete oscillator potential) becomes the correct Hamiltonian for the

parabolic barrier

Ĥp.b. =
p̂2

2m
− 1

2
mω2x2 ω ∈ ℜ (2.27)

Some algebra and use of the trigonometric relations of eqs.(2.15) lead to

〈x|e−βĤ |x′〉p.b. =

(

mω

2π sin(βω)

)1/2

exp

{

−mω

2

[

(x2 + x′2) cot(βω) − 2xx′

sin(βω)

]}

(2.28)

〈x|e−βĤ |0〉p.b. =

(

mω

2π sin(βω)

)1/2

exp
{

−mω

2
x2 cot(βω)

}

(2.29)

A double analytic continuation procedure (in time and frequency) ωt → βω of
eq.(2.25) leads to the thermal density matrix elements for the complete parabolic
barrier (c.p.b.)

〈x|e−βĤ |x′〉c.p.b. =

(

mω

2π sin(βω)

)1/2

e−βV0 exp

{

− βv2
1

2mω2

[

2 tan(βω/2)

βω
− 1

]}

×

exp

{

−
[

mω

4

(

(x − x′)2

tan(βω/2)
− (x + x′)2 tan(βω/2)

)

+
v1

ω
(x + x′) tan(βω/2)

]}

(2.30)

〈x|e−βĤ |0〉c.p.b. =

(

mω

2π sin(βω)

)1/2

e−βV0 exp

{

− βv2
1

2mω2

[

2 tan(βω/2)

βω
− 1

]}

×

exp

{

−
[

mωx2

2
cot(βω) +

v1x

ω
tan(βω/2)

]}

(2.31)

Inspection of eqs.(2.28)-(2.31) highlights an unexpected behavior for βω > π, be-

cause the thermal density matrix elements give up being real. The problem is that

the analytic continuation ω → iω in certain situations can produce paradoxical conse-

quences, and so it can be accepted only under strict conditions [65]. The mechanically

unstable system involving a parabolic barrier, in fact, gives rise to an unacceptable

(statistical) thermodynamics and the Boltzmann operator matrix elements exist only

for βω < π [17]. The temperature at which βω = π is called the critical temperature.



Chapter 3

A dynamical approach to the

calculation of thermal reaction

rates

In the preliminary chapter addressed to introduce the reaction rate theory, the

problem of the resolution of a (complex) scattering problem was reformulated by

means of a time-dependent correlation function formalism introduced by Miller et

al., whose long-time limit approaches the thermal (i.e. with reactants in Boltzmann

equilibrium) rate constant (T is the absolute temperature)

k(t; T )Qr(T ) = Re
{

Tr
[

e−βĤF̂ P̂ (t)
]}

, k(T ) = lim
t→∞

k(t; T ) (3.1)

The above expression implies the resolution of the quantum dynamical problem at

long times, a goal usually difficult to reach, due to its complexity and, in any case, of

high computational cost.

The purpose of this chapter is to suggest a dynamical approach, developed for

one-dimensional systems, based on the expansion of eq.(3.1) in the ordinary position

representation, which leads to a separation between thermal and dynamical effects.

The procedure does not take origin from semiclassical approximations to the quan-

tum mechanical propagators (like, for instance, SC-IVR, which moves from the known

Van Vleck’s approximation [25]); instead, it adopts a completely rigorous quantum

mechanical treatment, joined with a parabolic-barrier approximation. Classical tra-

jectories evolved for a rather short time then enable to approximate reasonably the

dynamical factor and to arrive, finally, to the rate constant.

In eq. (3.1) Qr(T ) represents the partition function for reactants (per unit of

volume), while from now on, for simplicity, the explicit temperature dependence will

34
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be omitted; F̂ is the flux operator through a potential energy surface (in our one-

dimensional system actually reduced to the point x = 0), which separates reactive

species from products. The flux operator is chosen to be

F̂ =
1

m
δ(x̂)p̂ (3.2)

with p̂ momentum operator. Besides,

P̂ (t) = eitĤΘ(p̂) e−itĤ (3.3)

is the projection operator onto the product states, explicitly expressed in terms of

the time evolution of the Heaviside operator Θ(p̂) (notice that the usual choice ~ = 1

has been done).

Eq.(3.3) corresponds to identify the reaction products by means of the sign of

the momentum, in agreement with the basic work by Miller, Schwartz and Tromp

[15]. The procedure, fully correct for gas-phase reactions, breaks down in the case of

condensed phases, due to cage effects which modify the dynamics, in the sense that

products are not necessarily characterized by a definite-sign momentum [55]. The

extension to kinetics under such conditions can be attained by replacing Θ(p̂) with

Θ(x̂− x̄) (x̄ being the location of the dividing surface), the transformation being valid

for bimolecular collisions in the long-time limit.

In our approach, the basic starting point is eq. (3.3), which will now be elaborated

in a proper way.
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3.1 First quantum mechanical steps

The trace operation in eq. (3.1) can be carried out in terms of the complete set

of position eigenstates |x〉, so that

k(t)Qr = Re

∫ +∞

−∞
dx < x|e−βĤF̂ P̂ (t)|x >

= Re

∫ +∞

−∞
dx

∫ +∞

−∞
dx′ < x|e−βĤ |x′ >< x′|F̂ P̂ (t)|x >

(3.4)

The matrix element involving the quantal flux F̂ defined in precedence is readily

evaluated,

< x′|F̂ P̂ (t)|x > =
1

m
< x′|δ(x̂)p̂P̂ (t)|x >

=
δ(x′)

m
< x′|p̂P̂ (t)|x >

(3.5)

The form of the operator P̂ (t) suggests the introduction of a complet set of momentum

eigenstates {|p〉}

< x′|F̂ P̂ (t)|x >=
1√
2πm

∫ +∞

−∞
dp p < p|P̂ (t)|x > δ(x′) eipx′

(3.6)

After integrating with respect to x′, we get a first fundamental result, characterized

by the separation of the thermal factor from the dynamical one, a feature that appears

both gratifying and computationally useful

k(t)Qr =
1√
2πm

Re

∫ +∞

−∞
dx < x|e−βĤ |x = 0 >

∫ +∞

−∞
dp p < p|P̂ (t)|x > (3.7)

The Boltzmann average involves off-diagonal elements of the thermal density matrix

centered around x = 0, ρ(x; 0; β) ≡< x|e−βĤ |x = 0 >, or, more generally, centered

around the location of the dividing point (surface).

The dynamical matrix element can be developed efficiently by resorting to the integral

representation of the Heaviside operator

Θ(p̂) =
i

2π
lim
ε→0

∫ +∞

−∞
dξ

e−iξp̂

ξ + iε
(3.8)

From

lim
ε→0

(ξ + iε)−1 = p.p. [1/ξ] − iπδ(ξ) (3.9)
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it follows

Θ(p̂) =
1

2
+

i

2π
−
∫ +∞

−∞

dξ

ξ
e−iξp̂ (3.10)

where −
∫

stands for the principal value of the integral.

Therefore P̂ (t) can be expressed in the form

P̂ (t) =
1

2
+

i

2π
−
∫ +∞

−∞

dξ

ξ
e−iξp̂(t), where p̂(t) = eiĤtp̂e−iĤt (3.11)

The calculation of the rate constant involves therefore two contributions,

k(t)Qr =
1√
2πm

Re

∫ +∞

−∞
dx < x|e−βĤ |x = 0 >

1

2

∫ +∞

−∞
dp p < p|x > +

+
1√
2πm

Re

∫ +∞

−∞
dx < x|e−βĤ |x = 0 >

i

2π
−
∫ +∞

−∞

dξ

ξ

∫ +∞

−∞
dp p < p|e−iξp̂(t)|x >

(3.12)

It is easy to verify that

1

2

∫ +∞

−∞
dp p < p|x >=

√
2π

2
i

∂

∂x
δ(x) (3.13)

so that the first of the two terms of eq.(3.12) is purely immaginary and cannot con-
tribute to the final real value.
Thus,

k(t)Qr =
1

2πm
√

2π
Re

∫ +∞

−∞
dx < x|e−βĤ |x = 0 > −

∫ +∞

−∞

dξ

ξ
i

∫ +∞

−∞
dp p < p|e−iξp̂(t)|x >

(3.14)

Equation (3.14) is an important intermediate result of our approach. It will be

further elaborated and characterized by investigating a few simple models of potential

barriers.
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3.2 The ininfluent dynamics limit (t = 0)

The evaluation of eq. (3.14) in the particular and extreme case t = 0 corresponds

to ignore the fundamental role of dynamics of the system under investigation. Never-

theless, it can be considered an interesting calculation, since it can be related to the

classical transition state theory assumption (instantaneous, i.e. time independent,

reactive flux through the dividing surface). Under this condition,

〈p|e−iξp̂(0)|x〉 = 〈p|e−iξp̂|x〉 =
1√
2π

e−ip(x+ξ) (3.15)

so that eq. (3.14) transforms into

k(0)Qr =
1

(2π)2m
Re

{

i

∫ +∞

−∞
dx〈x|e−βĤ |x = 0〉−

∫ +∞

−∞

dξ

ξ

∫ +∞

−∞
dp p e−ip(x+ξ)

}

(3.16)

Introducing a partial differentiation with respect to x to treat the p-integral

k(0)Qr =
1

(2π)2m
Re

{

i

∫ +∞

−∞
dx〈x|e−βĤ |x = 0〉−

∫ +∞

−∞

dξ

ξ

(

i
∂

∂x

∫ +∞

−∞
dp e−ip(x+ξ)

)}

(3.17)

After exchanging properly the order of the integrations,

k(0)Qr = − 1

2πm
Re

{

−
∫ +∞

−∞

dξ

ξ

∫ +∞

−∞
dx〈x|e−βĤ |x = 0〉 ∂

∂x
δ(x + ξ)

}

(3.18)

an integration by parts on the x variable leads to the result

k(0)Qr =
1

2πm
Re

{

−
∫ +∞

−∞

dξ

ξ

∂

∂x
〈x|e−βĤ |x = 0〉

∣

∣

∣

∣

x=−ξ

}

(3.19)

As one could expect, ignoring the dynamics of the system transforms the problem in

a purely thermodynamic one: the knowledge of the thermal density matrix elements

is sufficient to get the value of the rate constant.

A trivial case, obviously unfit to depict realistic barriers, is that of the free particle,

for which it is easy to find the requested matrix elements. From standard results for

Gaussian integrals1,

< x|e−βĤ |x = 0 > =

∫ +∞

−∞
dp < x|p > < p|e−βp̂2/2m|x = 0 >

=
1

2π

∫ +∞

−∞
dp eipx e−βp2/2m

=

(

m

2πβ

)1/2

e−mx2/2β

(3.20)

1
∫ +∞

−∞
dxe−Ax2+Bx =

√

π/AeB2/4A
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Use of this result in eq.(3.19) leads to the ξ cancellation at the denominator and to

the final result for the free particle,

k(0)Qr = kf.p. Qr =
1

2πβ
(3.21)

In a more general frame (i.e. independently of the choice of the adopted units)

eq.(3.21) can be written as kQr = kBT/h, with kB the Boltzmann constant, and h

the Planck constant.

It is interesting to remark that for the free particle (but for it only) eq.(3.21) is valid at

any time, since p̂(t) = p̂(0) = p̂. As already remarked, eq.(3.21) is also the expression

that would have been obtained in the realm of classical transition state theory.

An important delucidation, that is worth investigating at this point, is about the

influence of the choice of the position of the dividing surface. We shall examine the

problem in the present context, i.e. in the ininfluent-dynamics limit, but the results

could be readily generalized to the general case of influent dynamics.

Shifting the location of the dividing surface from x = 0 to x = x∗ is seen immediately

to imply the following changes in the flux operator and in the thermal matrix element

1.

F̂ =
δ(x̂ − x∗)

m
p̂ (3.22)

2.

〈x|e−βĤ |x = 0〉 → eipx∗〈x|e−βĤ |x∗〉 (3.23)

By inserting these changes in due places, it is readily verified that

k(0)Qr = − 1

2πm
Re

{

−
∫ +∞

−∞

dξ

ξ

∫ +∞

−∞
dx

d

dx

(

〈x|e−βĤ |x∗〉
)

δ [x − (x∗ + ξ)]

}

= − 1

2πm
Re

{

−
∫ +∞

−∞

dξ

ξ

d

dx

(

〈x|e−βĤ |x∗〉
)

x=x∗+ξ

} (3.24)

The exact result cannot be influenced by the location of the dividing surface, even

though a crafty choice can simplify the problem by making calculations easier. A

simple test can be performed by applying eq.(3.24) to the free-particle case:

k(0)Qr = − 1

2πm
Re







−
∫ +∞

−∞

dξ

ξ

[

d

dx

(

(

m

2πβ

)1/2

e−
m(x−x∗)

2β

)]

x=x∗+ξ







=
1

2πβ

(

m

2πβ

)1/2 ∫ ∞

−∞
dξ e−

mξ2

2β

(3.25)
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and, finally,

k(0)Qr =
1

2πβ
(3.26)
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3.3 Reaction rate constants for parabolic barrier

models

The discussion of the simple parabolic barrier is important because it permits to

go deeper into the nature of the general reactive problem, suggesting, together with

the complete parabolic barrier case, some of the techniques and numerical strate-

gies adopted in the present work. It provides also the main approximations used to

mimic the crossing of more complicated and realistic barriers, especially in the high-

temperature regime, as the majority of the contributions to the rate constant comes

from states with energy close to the top of the barrier [55].

3.3.1 The simple parabolic barrier

The Hamiltonian operator for the simple parabolic barrier is

Ĥ =
p̂2

2m
− 1

2
mω2x̂2 ω ∈ ℜ (3.27)

The thermal density matrix elements, obtained by analytic continuation in sec.(2.4)

are

〈x|e−βĤ |x′〉p.b. =

(

mω

2π sin(βω)

)1/2

exp

{

−mω

2

[

(x2 + x′2) cot(βω) − 2xx′

sin(βω)

]}

(2.28)

The next step involves the resolution of the quantum dynamical problem, before

we can use eq.(3.14).

The strategy employed is standard. The starting point is the quantum mechanical

time evolution of the momentum operator

d

dt
p̂(t) = ieiĤt[Ĥ, p̂]e−iĤt (3.28)

The commutator can be evaluated without difficulties to yield

[Ĥ, p̂] = −mω2

2
[x̂2, p̂]

= −mω2

2
{x̂[x̂, p̂] + [x̂, p̂]x̂}

= −imω2x̂

(3.29)

so that
d

dt
p̂(t) = mω2x̂(t) (3.30)
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By a similar procedure, applied to the time evolution of the operator x̂(t), we get the

following set of coupled first-order differential equations











d

dt
p̂(t) = mω2x̂(t)

d

dt
x̂(t) =

1

m
p̂(t)

(3.31)

By a simple time derivation eqs.(3.31) are decoupled

d2

dt2
p̂(t) = ω2p̂(t) ,

d2

dt2
x̂(t) = ω2x̂(t) (3.32)

Starting from the initial conditions

p̂(0) ≡ p̂ , x̂(0) ≡ x̂ (3.33)

and from the second of eqs.(3.31)

p̂(t) = m ˙̂x(t) (3.34)

the natural ansatz is for solutions of the type

p̂(t) = âeωt + b̂e−ωt , x̂(t) = ĉeωt + d̂e−ωt (3.35)

â and b̂ being operator quantities to determine.

It is a simple exercise to verify that

p̂(t) = p̂ cosh(ωt) + mωx̂ sinh(ωt) (3.36)

Use of eq.(3.36) into eq.(3.14) leads seemingly to a complicate expression for the

matrix element 〈p|e−iξp̂(t)|x〉, but a suitable simplification is made possible by recourse

to commutator algebra. In fact

[x̂, [x̂, p̂]] = 0 , [p̂, [x̂, p̂]] = 0 (3.37)

and, consequently [66]

eAx̂+Bp̂ = eBp̂ eAx̂ e−
AB
2

[p̂,x̂] (3.38)

(A, B arbitrary constants).

Eq.(3.38) translated in terms of eq.(3.14) is written

e−iξp̂(t) = e−iξp̂ cosh ωt e−iξmωx̂ sinh(ωt) e−imωξ2 sinh(ωt) cosh(ωt)/2 (3.39)
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The factorization of the exponential allows a direct calculation for the matrix element:

< p|e−iξp̂(t)|x >=
e−ipx

√
2π

e−iξ[p cosh(ωt)+mωx sinh(ωt)] e−imωξ2 sinh(ωt) cosh(ωt)/2 (3.40)

This result concerning the dynamics of a parabolic barrier is exact. Its importance

in the context of this thesis work can be hardly stressed. This statement will become

evident going further (see, in particular, sec.3.4) when the role of eq. (3.40) as a

starting point for approximations to the reactive dynamical feature in the case of

general barriers will be discussed.

Two important features of eq.(3.40) should be remarked:

1.

pcl(t) = p cosh(ωt) + mωx sinh(ωt) (3.41)

is the solution for the classical moment of a particle moving under the influence

of a parabolic barrier, with the initial conditions pcl(0) = p and xcl(0) = x;

2. The last exponential factor in eq.(3.40) arises from the term e−AB[x̂,p̂]/2 and

involves purely quantum effects due to the non-commutative behavior of the

operators p̂ and x̂.

It goes without saying that the factorization between classical and quantum terms put

in evidence suggests the possibility of adding quantum effects over classical dynamics

simulations.

The Fourier representation of the Dirac delta allows to evaluate eq.(3.14). It is

easily verified that after performing the p-integration, we get

k(t)Qr = − 1

2πm
Re

∫ +∞

−∞
dx < x|e−βĤ |x = 0 > ×

−
∫ +∞

−∞

dξ

ξ
e−imωξ2 sinh(ωt) cosh(ωt)/2 e−imωxξ sinh(ωt) ∂

∂x
δ(x + ξ cosh(ωt))

(3.42)

and successively (after integration by parts)

k(t)Qr =
1

2πm
Re−
∫ +∞

−∞

{

dξ

ξ
eimωξ2 sinh(ωt) cosh(ωt)/2 < x = −ξ cosh(ωt)|e−βĤ |x = 0 >

[

∂ ln < x|e−βĤ |x = 0 >

∂x
− imωξ sinh(ωt)

]

x=−ξ cosh(ωt)







(3.43)
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Using eq.(2.29) for the thermal density matrix element (βω < π)

k(t)Qr =
1

2πm

(

mω

2π sin(βω)

)1/2

Re

{

−
∫ +∞

−∞

dξ

ξ
eiξ2mω sinh(ωt) cosh(ωt)/2 e−

mωξ2

2 tan(βω)
cosh2(ωt)

[

ξmω cosh(ωt)

tan(βω)
− iξmω sinh(ωt)

]}

=
1

2πm

(

mω

sin(βω)

)1/2

Re

{

(

mω

tan(βω)
− imω tanh(ωt)

)1/2
}

(3.44)

and finally

k(t)Qr =
ω

2π(sin(βω))1/2
Re

[

(

1

tan(βω)
− i tanh(ωt)

)1/2
]

(3.45)

The required real part of the complex function in eq.(3.45) can be explicited easily

by noticing that

Re
[

(a + ib)1/2
]

= ρ1/2 cos(θ/2) ρ = (a2 + b2)1/2 θ = arctan(b/a) (3.46)

cos(θ/2) =

√

1 + cos θ

2

cos θ =
1√

1 + tan2 θ

(3.47)

so that

Re
[

(a + ib)1/2
]

=

[

(a2 + b2)1/2 + a

2

]1/2

(3.48)

In the particular case of eq.(3.45), a = 1/ tan(βω) and b = − tanh(ωt).
Two immediate applications are that at ininfluent dynamics (t = 0) and the one in
the long-time limit (t → ∞), the latter giving the exact quantum rate coefficient for
a parabolic barrier

k(0)Qr =
ω

2π

1

(sin(βω))1/2
Re

[

(

1

tan(βω)

)1/2
]

=
ω

2π

[cos(βω)]1/2

sin(βω)
ininfluent dynamics (3.49)

k(∞)Qr =
ω

2π

1

(sin(βω))1/2
Re

[

(

1

tan(βω)
− i

)1/2
]

=
ω

4π

1

sin(βω/2)
exact result (3.50)

The expressions thus obtained are relative to a parabolic barrier with maximum

V0 = 0 at x = 0. For a different choice V 6= 0, it is straightforward to verify that

the only change involves the presence of the additional factor e−βV0 . It should be

observed that the exact result is divergent as βω → 2π, but the existence domain of

the density matrix element is limited to βω < π.
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In the previous section (sec.(3.2)) it was illustrated how our approach reduces, as

it must, to a thermodynamic result in the limit t = 0 (eq.(3.19)). So, one can expect

that applying eq.(3.19) to the case of a parabolic barrier, the same result of eq.(3.49)

is regained. This is actually what happens, since from eqs.(3.19) and (2.29)

k(0)Qr =
1

2πm
Re

{

−
∫ +∞

−∞

dξ

ξ

(

mω

2π sin(βω)

)1/2 [(

− mωx

tan(βω)

)

e−
mωx2

2 tan(βω)

]

x=−ξ

}

=
1

2πm

(

mω

2π sin(βω)

)1/2
mω

tan(βω)

∫ +∞

−∞
dξ e−

mωξ2

2 tan(βω)

k(0)Qr =
ω

2π

[cos(βω)]1/2

sin(βω)

(3.51)

Finally, going back to the k(∞) value, it is interesting to consider the quantum

correction, defined by

Γ =
k(∞)

kcl
(3.52)

where kcl = kT
h

e−βV0 is the classical rate constant. Therefore,

Γ =
u/2

sin(u/2)
(u = βω) (3.53)

The result expressed by eq.(3.53) can be obtained by analitically continuing the real

frequency to imaginary values in Wigner’s studies about the harmonic oscillator [63].

To the same conclusion has come also Bell in his work on the tunnel effect correction

for parabolic potential barriers [64].

3.3.2 The complete parabolic barrier

If one adds a term, linearly dependent on the position, to the definition of the

Hamiltonian in eq.(3.27), the vertex of the parabolic barrier moves from x∗ = 0 to

the new position x∗ = v1/(mω2). The new Hamiltonian becomes

Ĥ =
p̂2

2m
+ V0 + v1x̂ − 1

2
mω2x̂2 ω ∈ ℜ (3.54)

In the conclusive part of sec.(3.2) it has been remarked that the exact quantum result

is indipendent of the particular location of the dividing surface; so, the calculation

probably will be an easier task if performed choosing x∗ = v1/(mω2), i.e. reducing the

complete parabolic barrier to a simple one. For more complicated potentials, however,

the location of the best dividing surface, presumably unknown a priori (especially for
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multidimensional simulations, where entropic effects have a role in the determination

of the best location for the dividing surface), so that it is fundamental to develop

eq.(3.1) in the basic case x∗ = 0.

The starting point involves a trivial reorganization of eq.(3.14)

k(t)Qr = − 1

2πm
√

2π
Im

∫ +∞

−∞
dx < x|e−βĤ |x = 0 > ×

−
∫ +∞

−∞

dξ

ξ

∫ +∞

−∞
dp p < p|e−iξp̂(t)|x >

(3.55)

The evolution of p̂(t) under the initial conditions of eq.(3.33) can be found following

the scheme illustrated in sec.(3.3.1). The resulting system of coupled differential

equations is










d

dt
x̂(t) =

1

m
p̂(t)

d

dt
p̂(t) = mω2x̂(t) − v1

(3.56)

from which, by differentiation with respect to time

d2

dt2
x̂(t) = ω2x̂(t) − v1/m

d2

dt2
p̂(t) = ω2p̂(t) (3.57)

The solution for the momentum operator is

p̂(t) = p̂ cosh(ωt) + mωx̂ sinh(ωt) − v1

ω
sinh(ωt) (3.58)

It is straightforward, now, to evaluate the mixed momentum-position matrix ele-

ment appearing in eq.(3.55), with the result

< p|e−iξp̂(t)|x >=
e−ipx

√
2π

e−iAξe−Bξ2

(3.59)

where
A = p cosh(ωt) + mωx sinh(ωt) − v1

ω
sinh(ωt)

B =
1

4
mω sinh(2ωt) =

mω

2
sinh(ωt) cosh(ωt)

(3.60)

The calculation could be continued, in analogy to sec.(3.3.1), performing the inte-

gration over p, but here a different strategy will be pursued. This procedure will be

useful in the following, as we shall examine the extension to general potentials, where

obtaining exact solutions for the evolution of the operatot p̂(t) is out of question.

The integrations involved in eq.(3.14) are carried out first with respect to ξ and then
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to p and x. This alternative procedure is reliable and leads to the correct result for

the simple parabolic barrier (v1 = 0).

After the first integration, we are led to define the function (see Appendix A for

a demonstration)

J(p, x) =
e−ipx

√
2π

−
∫ +∞

−∞

dξ

ξ
e−iAξe−iBξ2

= −i

√

π

2

A

|A| erf

[ |A|
2
√

iB

]

e−ipx

(3.61)

J(p, x) reduces the principal value of the ξ-integration to an error function of complex

argument, which plays a central role in the present approach. The error function, ac-

tually, contains and, consequently, ”weights” the intrinsic dynamics of the problem.

A correct estimation of kQr, forces to examine the long-time limit (t → ∞) of

eqs.(3.60), so that

A =
1

2
eωt
(

p + mωx − v1

ω

)

(t → ∞)

B =
mω

8
e2ωt (t → ∞)

(3.62)

The auxiliary function U(x) follows from J(p, x) according to

U(x) =

∫ +∞

−∞
dp p J(p, x) (3.63)

Taking into account eqs. (3.62), after the change of variable r = p + mωx − v1/ω we
find

U(x) = −i

√

π

2

∫ +∞

−∞

dr
r

|r| (r + v1/ω − mωx) e−irxe−ix(v1/ω−mωx) erf

[ |r|√
2imω

]

(3.64)

Notice that the point r = 0 represents in eq.(3.64) an eliminable discontinuity, since
erf(r) → r as r → 0. Simple properties of the error function and the change of
variable r → −r lead to

U(x) = −i

√

π

2
e−ix(v1/ω−mωx)

∫ +∞

−∞

dr e−irx (r + v1/ω − mωx) erf

(

r√
2imω

)

= i

√

π

2
e−ix(v1/ω−mωx)

(

v1/ω − mωx + i
∂

∂x

)
∫ +∞

−∞

dr eirx erf

(

r√
2imω

)
(3.65)

Exploiting the following remarkable result (see Appendix B)

I(x) =

∫ +∞

−∞
dr eirx erf

(

r√
2imω

)

=







0 x = 0

− 2

ix
e−imωx2/2 x 6= 0

(B.2)
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U(x) can be cast into the more compact form

U(x) = −
√

π

2
eimωx2/2 d

dx

[

e−ix(v1/ω−mωx/2)I(x)
]

(3.66)

Eq.(3.55) can now be properly integrated by parts to yield the rate constant,

k(∞)Qr = − 1

4πm
Im

∫ +∞

−∞

dx e−ix(v1/ω−mωx/2) I(x)
d

dx

[

eimωx2/2 < x|e−βĤ |x = 0 >
]

(3.67)

The Boltzmann matrix element of eq.(2.31) is conveniently written as

< x|e−βĤ |x′ = 0 >= N e−ax2+bx (3.68)

where

N =

(

mω

2 sin(βω)

)1/2

e−βV0 e
− βv2

1
2mω2

0

@1−
2 tan(βω/2)

βω

1

A

a =
mω

4 tan(βω/2)

(

1 − tan2(βω/2)
)

=
mω

2 tan(βω)

b =
v1

ω
tan(βω/2)

(3.69)

After introducing the explicit expansion of I(x), eq.(B.2), we get

k(∞)Qr =
1

2πm
Im

∫ +∞

−∞
dx

e−ixv1/ω

ix

d

dx

[

eimωx2/2 < x|e−βĤ |x′ = 0 >
]

=
N

2πm
Im

{

i

∫ +∞

−∞
dx e−(a−imω/2)x2+(b−iv1/ω)x [2a − imω − b/x]

} (3.70)

and finally

k(∞)Qr =
N

2πm
Im

{

i

∫ +∞

−∞
dx e−Ax2+Bx [2A − b/x]

}

(3.71)

where we have set

A = a − imω

2

B = b − iv1

ω

(3.72)

The parameter A and B which arise from the thermal density matrix element should

not be confused with those introduced in eq.(3.62), which are associated with the

dynamics of the problem.

The two Gaussian integrals in eq.(3.71) can be treated separately. The former has

already been encountered (see footnote (1)), while the latter

R(B) =

∫ +∞

−∞

dx

x
e−Ax2+Bx (3.73)
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deserves greater attention. By differentiation with respect to B, we are reduced to

solve the differential equation

∂R

∂B
=

∫ +∞

−∞
dx e−Ax2+Bx (3.74)

with the boundary condition R(0) = 0.

Simple manipulations lead to

R(B) =

√

π

A

∫ B

0

dt et2/4A = −
√

π

A
i
√

4A

∫ iB/
√

4A

0

dx e−x2

= −iπ erf

(

iB√
4A

)

(3.75)

with erf(z) the error function, so that

k(∞)Qr =
N

2πm
Im

{

2Ai

√

π

A
eB2/4A − πb erf

(

iB√
4A

)}

(3.76)

At this point, we think it interesting to verify that the procedure just developed,

which differs from the one adopted in sec.(3.3.1) for the order of the integrations,

leads to correct result for the simple parabolic barrier with maximum at x∗ = 0. For

this purpose, it is enough to put v1 = 0. With v1 = 0, from eqs.(3.69), (3.72) it

follows b = B = 0 and therefore

k(∞)Qr =
N

2πm
Im
[

2i
√

πA
]

(3.77)

At the cost of a few manipulations involving eqs. (3.62), (3.69) under the usual

parabolic barrier condition βω < π, as expected, the exact result of eq.(3.50) is

regained

k(∞)Qr =
ω

4π

e−βV0

sin(βω/2)
(3.78)

After this detailed investigation of the parabolic barrier models, the next step involves

the consideration of more general forms of barrier, for which an analytically exact

resolution is not possible, so that one is forced to search for approximate treatments.
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3.4 Treatment of forms of barrier not analytically

solvable

The basic approximation suggested in this thesis work stems from eq. (3.40),

where the matrix element < p|e−iξp̂(t)|x > which takes into account the role of dy-

namics is explicitly separated into a purely classical contribution and a quantum

effect. This observation suggests a formulation which seems to be convincing and

useful to the study of potential barriers of general shape.

Going back to eq.(3.40) and recalling that for the simple parabolic barrier

pcl(t) = p cosh(ωt) + mωx sinh(ωt) (3.79)

is the classical solution for the momentum, it is possible to express even the quantum

factor in terms of the classical evolution of the momentum pcl(t), so that we can write

< p|e−iξp̂(t)|x >=
e−ipx

√
2π

e−iξpcl(t) e
−
iξ2

2

0

@

∂pcl(t)

∂p

∂pcl(t)

∂x

1

A

(3.80)

x and p being respectively initial position and momentum from which the classical

momentum evolves.

Eq.(3.80) is obviously a way of expressing the exact result for the case of a simple

parabolic barrier and a reasonable approximation conjecture in the case of different

forms of barrier. Eq.(3.80) takes one to consider classical simulations as a way for

evaluating the matrix element of eq.(3.40), inclusive of quantum effects, by solving

the classical dynamics problem relative to the specific potential barrier considered.

In other terms, < p|e−iξp̂(t)|x > will be, from now on, calculated on the base of

eq.(3.80), so that eq. (3.14) for the kinetic constant assumes the following form

k(t)Qr = − 1

(2π)2m
Im

∫ +∞

−∞
dx < x|e−βĤ |x = 0 > ×

∫ +∞

−∞
dp p e−ipx−

∫ +∞

−∞

dξ

ξ
e−iξpcl(t) e

−
iξ2

2

0

@

∂pcl(t)

∂p

∂pcl(t)

∂x

1

A

(3.81)

As stated in sec.(3.3.2), the procedure goes on by performing first the ξ-integration,

differently indeed from the simple parabolic barrier treatment, but in analogy with

the complete parabolic barrier one.

At this point, there are two main ways of dealing with the principal value of the

integral with respect to ξ:
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1. to treat directly the integral, interpreting it in the complex domain and adopting

Romberg’s method for integration [67];

2. to be able to find an analytical formula which permits to avoid the integration.

Point 2 above has just been investigated in the previous section. With reference to

Appendix A, we have already shown that

−
∫ +∞

−∞

dξ

ξ
e−iAξ e−iBξ2

= −iπ
A

|A| erf

[ |A|
2
√

iB

]

(3.82)

so that in conclusion the computational efforts must be addressed to the estimate of
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(3.83)

where pcl(x, p) is evaluated in the long time limit. Eq.(3.83) is actually valid at any

time t, but the correct kinetic constant is captured only as t → ∞.

The estimate according to eq.(3.83) involves some numerical problems:

1. the determination of the thermal density matrix elements. This topic will be

examined carefully in the next chapter, where a Feynman path integral approach

is described;

2. the partial derivatives appearing in the error function will be treated by using

finite difference central formulae;

3. the error function itself will be estimated resorting to a particular algorithm,

suggested by Gautschi and based on some numerical expansions [68].

4. the p−integrand involved in the p−integration is made up of an oscillatory term

(e−ipx) times an error function, whose value depends also on the x−variable.

This last feature makes the auspicable application of Fast-Fourier Techniques

(FFT) difficult, so that a more laborious integration procedure based on Filon’s

algorithm [69] has been adopted.
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Computational strategies

At the end of the last chapter, we have listed the problems to be tackled for suc-

cessfully implementing the approach described. In this chapter, those problems are

examined and suitable solutions are proposed.

In the description of the procedures we recognize the existence of two steps. The first

one involves properties of the density matrix: these are initially presented, and the

different behavior of diagonal and off-diagonal elements is investigated. The calcula-

tion of off-diagonal elements of the thermal density matrix (those of interest in the

present approach) is performed by resorting to a formalism based on the Feynman-

Kac formula, which requires the generation of Brownian random walks.

The second step is associated with the dynamics of the particle and the needed classi-

cal evolution is proved to be efficiently brought about by a velocity-Verlet integration

scheme. The complex error function involved in the formalism is estimated by an al-

gorithm suggested by Gautschi. The problem of dealing with an oscillatory integrand

in the momentum space is solved by adopting the Filon’s algorithm. An additional

trouble connected with the double integration is that the limits are not finite: in the

case of the x-integration, the matrix element fades away as x goes off from the central

point x = 0; for the p-integration, instead, the introduction of a convergence factor

becomes a necessary way out.

All these aspects play a crucial role before the present approach can be implemented;

they are discussed in this chapter, while results and conclusions constitute the con-

tents of the last one.

52
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4.1 Step 1: the thermal density matrix

The approach described in the last chapter is characterized, among other things, by

an aspect common also to the different versions of QTST treated in the introductory

part of this thesis, associated with the separation between thermal and dynamical

effects. While a full account of the dynamical effects is a nearly hopeless task, so that

one must be satisfied with reasonably accurate estimates, for example based on the

parabolic barrier approximation, thermal effects should be computed as exactly as

possible, to avoid the occurrence of additional inadequacies making the analysis of the

results more difficult. The fact that the thermal contribution involves an imaginary-

time propagator offers the possibility of adopting appropriate Monte Carlo techniques

to calculate numerically the thermal density matrix.

The thermal density matrix plays a fundamental role in the quantum mechanical

description of mixed systems, since it describes how the system is populated and

gives a quantitative estimate of quantum interference effects.

In the next sections of this chapter, different techniques employed for the eval-

uation of the thermal density matrix are described, among these the Path Integral

Monte Carlo (PIMC) approach and that based on the Feynman-Kac formula. In par-

ticular, the concept of isomorphism between a quantum particle and a ring polymer

of classical particles is employed, and the generation of Brownian motion is discussed.

The importance of sampling multiple paths around that of minimal action (classical)

will be put in evidence through the comparison between quantum and semiclassical

calculations of the density matrix. A set of results will then be reported for the simple

harmonic potential, the Eckart barrier and a confined system (i.e. spacially confined

between infinite walls).

4.1.1 Some properties of density matrices

The formalism of density operators was introduced in 1927 by J.Von Neumann

(and, independently, by L. Landau and F. Bloch) with the aim of giving a quanti-

tative description of physical situations in which mixed states are involved; such a

circumstance arises, for instance, for a quantum system in thermal equilibrium or for

the entanglement of two subsystems.

A pure state is completely described by a single wavefunction |Ψ〉 (which can be

expanded in terms of a complete set of eigenfunctions of a hermitian operator). The

corresponding density operator is the projection operator on the pure state and is

given by [70]

ρ̂ = |Ψ〉〈Ψ| (4.1)
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The extension to mixed states, represented by a linear combination of pure states, is

straightforward and leads to:

ρ̂ =
∑

i

pi|Ψi〉〈Ψi| (4.2)

where pi is the weight of the i-th pure state in the mixed state.

In the case of systems kept in contact with a heat bath (i.e. at finite temperature

T ), pi can be interpreted as the probability of finding the system in its i-th state at

temperature T , and eq. (4.2) then defines a thermal density operator.

Choosing {|Ψi〉} to be the eigenfunctions of the Hamiltonian operator Ĥ, in the

canonical ensemble pi ∝ exp(−βEi), kBT = 1/β and the thermal density operator

reads:

ρ̂ =
∑

i

e−βEi|Ψi〉〈Ψi| = e−βĤ (4.3)

The density operator has some important features (we shall limit ourselves to consider

one-dimensional systems):

- from the invariance property of the trace

Tr[ρ̂] =

∫

dx〈x|ρ̂|x〉 (4.4)

is a representation of the density operator in the position space; ρ(x, x′) =

〈x|ρ̂|x′〉 is called the density matrix. The operator defined by eq.(4.3) has an

unnormalized trace, because we have chosen pi = e−βEi and
∑

i pi 6= 1. The

normalization constant Q =
∑

i pi =
∫

dx 〈x|e−βĤ |x〉 is the canonical partition

function of the system.

- the mean value of a generic hermitian operator F̂ , function only of the position

operator x̂, is obtained as [66]

〈F̂ 〉 = Tr[F̂ ρ̂] =

∫

dx

∫

dx′F (x′)ρ(x′, x)δ(x′ − x) (4.5)

- the idempotency property ρ̂2 = ρ̂ holds true only for pure states (see eq. (4.1)).

For mixed states, the non validity is immediately evident, considering the case

of the thermal density operator, eq. (4.3).

In general, the evaluation of the diagonal and off-diagonal elements of the (thermal)

density matrix is not a trivial problem. Actually, only in a few simple cases the solu-

tion is known and can be found at the cost of less or more analytical effort.
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In many situations, a practical way of proceeding has been to reduce the expression

under investigation to one that contains only tractable density matrices. These, of

course, include the cases of the free particle and the harmonic oscillator. Although,

for simplicity, only one-dimensional systems are considered in the following, the gen-

eralization to multidimensional spaces is not difficult.
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4.2 Calculation of the thermal density matrix ele-

ments

The diagonal elements of the thermal density matrix ρ(x, x; β) represent the pop-

ulation of the system in the position eigenstate |x〉. By this we mean that performing

N times (with N very large) the same measurement, under the same initial condi-

tions, Nρ(x, x; β) systems should be found in the position eigenstate |x〉.
On the other hand, the off-diagonal elements ρ(x, x′; β), also known as coherences,

represent the quantum interference between the eigenstates |x〉 and |x′〉. Coherences

between two states can appear when the pure state |Ψi〉 is some their superposition:

ρ(x, x′; β) is nothing else than the average (over the statistical mixture) of such inter-

ferences. ρ(x, x′; β) = 0 means that the interference effects have been averaged out,

while ρ(x, x′; β) 6= 0 denotes the presence of coherences.

4.2.1 Diagonal elements

The strategy of the Path Integral Monte Carlo (PIMC) techniques [71, 72, 73] is

characterized by the goal of expressing the density matrix of any given systems in

terms of the known result for the free particle.

The generic element of the thermal density matrix can be expressed in the basic form

[66]

ρ(x, x′; β) =

∫

dx′′ρ(x, x′′; β/2)ρ(x′′, x′; β/2) (4.6)

(see Appendix C). The decomposition in the integrand can be continued on, with the

result that the searched density matrix element will be expressible in terms of a chain

of integrals of density matrices involving higher and higher temperatures.

Thus, if the number of steps is P (P is called Trotter number),

ρ(x0, xP ; β) =

∫

. . .

∫

dx1 . . . dxP−1ρ(x0, x1; β/P ) . . . ρ(xP−1, xP ; β/P ) (4.7)

The right-hand side of eq. (4.7) is referred to as a path integral representation. For

P sufficiently large (usually P ≥ 10), the role of the high temperature PT involved in

the integrand is to damp the effect of the potential, so that for small intervals in the

position space one can think of the potential as a smooth function of the coordinates.

Indicating the free particle Hamiltonian with Ĥ0, the high-temperature density matrix
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by means of the above-mentioned properties can be rewritten

ρ(xn, xn+1; β/P ) =
∑

i

Ψ∗
i (xn)e−β[Ĥ0+Û(x)]Ψi(xn+1)

≈
∑

i

Ψ∗
i (xn)e−

β
P

Ĥ0

Ψi(xn+1)e
− β

2P
[U(xn)+U(xn+1)]

= ρ0(xn, xn+1; β/P )e−
β
2P

[U(xn)+U(xn+1)]

(4.8)

The approximation in eq.(4.8) becomes exact in the limit P → ∞.

For a free particle, the exact density matrix expression has been shown previously,

so that for the diagonal element of the unknown density matrix one finally gets the

result

ρ(x0, x0; β) = CP/2

∫

. . .

∫

dx1 . . . dxP−1 e−β[Uhar+Uext] (4.9)

with

C =
mP

2πβ
Uext =

P−1
∑

n=0

U(xn)/P Uhar =
Cπ

β

P−1
∑

n=0

(xn − xn+1)
2

Equation (4.9) is easily generalizable to the case of several degrees of freedom and,

due to its form, Monte Carlo methods seem to be suitable to perform the multiple

integration involved. It is also interesting to notice that it establishes an isomorphism

between a single quantum particle and a polymer of P classical particles. The label

har adopted for one of the two contributions to the potential energy is a reminder of

the fact that we are actually dealing with a ring polymer (xP = x0), with the n−th

link under the influence of an external potential U(xn)/P , and two contiguous beads

(n,n + 1) coupled by a harmonic bond potential Cπ(xn − xn+1)
2/β. The solution of

the quantum problem relative to a particle is therefore equivalently obtained via Path

Integral Monte Carlo (PIMC) method by solving that of a ring polymer of P classical

particles.

From a computational point of view, it must be observed that the external potential

Uext is damped by larger values of P , so that larger steps are allowed to change

configurations to sample the entire space. On the other hand, the oscillator strength

Pm/β2 grows up along with P ; in this case smaller Monte Carlo steps are necessary.

To switch from one configuration to another during the Monte Carlo simulation, the

best way of proceeding is to shift first the whole polymer by a large (random) quantity

and, then, to displace each individual classical particle by a small (random) amount.

Once the new configuration has been determined, the variation (∆U) in the polymer

energy must be computed (i.e. being Upot = Uhar + Uext, ∆U = Unew
pot − U old

pot ) to

decide, according to a Metropolis step, if the new configuration must be retained

or rejected. Since the diagonal element of the density matrix in the position space,
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ρ(x, x, β), represents the probability density of finding the quantum particle at x, it

can be obtained as the fraction of particles residing at x during the Monte Carlo

simulation.

Figure 4.1 shows a comparison between the exact value of ρh.p.(x, x; β) and that

obtained by our PIMC code. The normalized expression for the harmonic potential

density matrix is

ρh.p.(x, x; β) =
[mω

π
tanh(βω/2)

]1/2

exp
{

−mωx2 tanh(βω/2)
}

(4.10)

In the limit of low temperatures (β → ∞), eq.(4.10) reduces to (mω/π)1/2 exp(−mωx2),

a fast decaying function with maximum at x = 0. On the other hand, in the limit

β → 0, ρh.p.(x, x; β) → 0, leading to the expectation of plots which become wider

and lower as the temperature increases. The physical explanation of this fact is that

at higher temperatures it is easier to find population also in the eigenstates at some

distances from the position x = 0, which corresponds to the minimum of the potential

energy.

From a comparison of the two plots a) and b) in Fig. 4.1, the agreement between

PIMC simulation and exact result can be fully appreciated; a superposition of the

two plots actually would not reveal any significant discrepancies. The results c) and

d) reported in Fig. 4.2 exhibit the temperature dependence in a way similar to the

one of the preceding figure.
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Figure 4.1: Density matrix plot for the harmonic potential (m = 1, ω = 1). a) exact
result (β=1); b) PIMC result at β=1. Distances are in a.u.
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Figure 4.2: Density matrix plot for the harmonic potential (m = 1, ω = 1) for different
values of β. c) PIMC result (β=10); d) PIMC simulation (β=0.1). Distances are in
a.u.
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4.2.2 Off-diagonal elements

After the investigation of the populations, i.e. the diagonal elements of the thermal

density matrix, the spotlight shifts to the calculation of the coherences, i.e. the off-

diagonal elements of the matrix.

In the final formula, Eq.(3.83), of our approach, coherences should be introduced as

far as possible without approximation. These matrix elements can be calculated by

resorting to the Feynman-Kac relation [75, 76]

ρ(x, x′; β) = ρ0(x, x′; β) 〈e−
R β

0 dt V [x(t)]〉BRW (4.11)

with the free particle term (ρ0) acting as a weight over all Brownian Random Walks

(BRW ), which start from x and end at x′ after an imaginary time β.

Averaging over a huge number of paths is really a very time-consuming procedure. An

attempt to simplify calculations leads to consider just a reduced number of the totality

of the possible paths, trying to discard the minor contributions. The semiclassical

approximation to the Feynman-Kac formula considers the straight path only, i.e.

ρSC(x, x′; β) = ρ0(x, x′; β) e−
R β

0 dtV [xSC(t)] xSC =

(

1 − t

β

)

x +
t

β
x′ (4.12)

This is surely a fast method of computing the thermal density matrix, but a careful

valuation shows that such an approximation cannot be considered a reliable way of

treating the problem. In fact, as shown in Fig. 4.3, the method does not work well at

low temperatures, where the classical trajectory of minimum action is not the only

important one, even nearby paths being influential.

Accurate off-diagonal element calculations, instead, can be obtained by means of

the Feynman-Kac relation (4.11), that relies upon the idea of Brownian motion. To

this aim, the concept of probability space is worth being touched upon briefly.

A probability space is defined by the triplet (Ω, B, P), where: Ω is a set whose elements

ω serve as labels for the realisation of the stochastic process under investigation; B

is the family of subsets of Ω satisfying the following conditions:

1. Ω ∈ B;

2. if Bn ∈B (n=1,2,. . .) then
⋃

n Bn ∈ B;

3. if B ∈ B then Bc ∈ B (Bc ≡ Ω\B).



62 Chapter 4: Computational strategies

P is an additive function such that 0 ≤ P (B) ≤ 1∀B ∈ B, P(Ω)=1.

In other words, the elements ω ∈ Ω are the results of the random process, B ∈ B are

called events, while P(B) is the probability associated to the realisation of the event

B. So, the function P is a measure of the measurable space (Ω,B) with the additional

constraint that the total measure must be 1.

In the particular case of the Wiener probability space, Ω ≡ [0, 1], B is the class of

all the subsets of Ω which are Lebesgue measurable and P is the Lebesgue measure.

This triplet describes the random choice of a number in the interval [0, 1].

Given a stochastic process W (t, ω), where t ∈ T (T is a continuous ordered en-

semble) and ω is a random variable in the probability space (Ω,W, P ), W (t, ω) is

called a Brownian motion (or Wiener process) if [77]











W (0, ω) = 0

W (t, ω)(t > 0) is Gaussian in (Ω,W, P ) and∀t, h : t + h > 0,

W (t + h, ω) − W (t, ω) has expectation value 0 and variance |h|
(4.13)

From these properties it follows that the Brownian motion is an additive process. Ac-

cording to the Feynman-Kac formula, the mean over a large number of such processes

leads (after the evaluation of the imaginary-time integral) to the right estimation of

the off-diagonal elements of the thermal density matrix.

There are two main routes to generate Brownian motion:

- the method due to Paley and Wiener [78], based on Fourier series expansion

theory, which adopts complex functions and complex random variables;

- the second method, suggested by P. Levy [79] and based on the just mentioned

additive feature of the Brownian motion, is actually the one adopted in this

work. At each step, to the pre-existent W (t, ω) it is added a new term, composed

of a random variable from a normal distribution of mean 0 and variance 1

(χ(t′, ω)) and a factor (σ(t′ − t)), which scales the variance depending on the

distance between two adiacent points along the path

W (t′, ω) = W (t, ω) + σ(t′ − t)χ(t′, ω) (4.14)

In this way a Brownian motion, characterized by the initial condition W (0, ω) = 0,

is obtained.

The Feynman-Kac relation requires that stricter conditions are met, in the sense that

not only the starting point, but also the ending point of the Brownian motion is
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fixed (W (ti, ω) = x, W (tf , ω) = y). A Brownian motion conditioned in a way like

this is called a Brownian bridge or tied-down Brownian motion. The choice of the

second construction method is explained by its direct generalization to the case of

the Brownian bridge (B(t, ω))

B(t, ω) = W (t, ω) + x − t

tf
{W (tf , ω) + x − y} (4.15)

B(t, ω) is a Gaussian process with mean

tf − t

tf
x +

t

tf
y (4.16)

and covariance

Γ(t, s) = s
tf − t

tf
(s < t) (4.17)

At this point, it is interesting to study the harmonic potential density matrix

obtained by the Brownian random walk technique, and to compare the results with

those in fig.(4.3). Fig.(4.4) shows that the average over Brownian random walks leads

to a really accurate evaluation of the off-diagonal elements 〈x|e−βĤ |x = 0〉 even in the

range of low temperatures (the BRW curve is almost perfectly superimposed over the

exact one). The oscillations present around the maximum could be easily averaged

out by choosing a moderately higher number of paths onto which to perform the

average in the Feynman-Kac formula.
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Figure 4.3: Semiclassical approximation for the harmonic potential (m = 1, ω = 1)
at different temperatures: β = 1 (upper figure) and β = 10 (lower figure)
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Figure 4.4: Comparison between exact result and BRW simulation based on the
Feynman-Kac formula for the harmonic potential (β = 10, m = 1,ω = 1). Distance
in a.u.
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4.3 The density matrix for the Eckart barrier

In view of its importance for the purposes of this thesis, we cannot get out of

considering the case of the symmetrical Eckart barrier, defined by

V (x) =
V0

cosh2(αx)
(4.18)

The shape of the barrier described by eq. (4.18), differently from the harmonic

potential case, allows the particle motion to span an effetively infinite region. As a

consequence, the probability of finding a particle far from the barrier is different from

zero and the density matrix diagonal elements are expected to exhibit a minimum, in

correspondence of the maximum of the barrier, and to be alike the free particle ones

far from the barrier top. These features are, in fact, verifiable from the inspection of

fig.(4.5). In the case of the Eckart barrier, it is interesting to study the results for the

 0.15
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 0.3

 0.35

 0.4
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ρEck (x,x;1)

FK simulation

Figure 4.5: BRW simulation for the diagonal elements of the Eckart barrier
(β = 1, V0 = 1, α = 0.5)

usual matrix element 〈x|e−βĤE.b.|x = 0〉 at different temperatures.
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From eq. (4.3) one derives immediately the limit result

lim
β→0

ρ(x, x′; β) = δ(x − x′) (4.19)

so that, in the high-temperature regime, a behavior characterized by a certain degree

of localization around x = 0 is expected. On the other hand, in the low-temperature

range, the loss of localization due to quantum effects, along with the fact that the

Eckart barrier has its maximum at x = 0, should add up to determine a particular

shape for the off-diagonal term. This is the rough explanation of the local minimum

at x = 0 in fig.(4.6) which appears for sufficiently low temperatures
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Figure 4.6: BRW simulation for off-diagonal density matrix elements of the Eckart
barrier (β = 5)
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Figure 4.7: Comparison between off-diagonal density matrix elements of the Eckart
barrier at different temperatures (β = 1 ; β = 5)
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4.4 Confined systems

In the presence of confining infinite walls, the motion of the particle is restricted

to occur within the region of finite potential; the quantum-mechanical trace of the

thermal density operator, i.e. the canonical quantum partition function, is finite and

the density operator is normalizable in the sense of eq.(4.4).

In the Feynman-Kac formula, the presence of confining walls is introduced by

discarding the contribution of paths which go inside the walls, since that region of

space is absolutely prohibited to the particle. Consequently, initial and final points

must necessarily be localized within the allowed region, otherwise the matrix element

equals zero.

Figure (4.8) refers to the matrix element 〈x|e−βĤ |x = 0〉 for a confined harmonic

potential. As one can easily see, the position of the walls can be detected by noticing

the exactly zero value of the density matrix outside their location.
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Figure 4.8: Confined harmonic potential. Walls at x = ±2. (β = 1)

The role of the temperature in both enhancing or damping the quantum effects is

made explicit in fig. (4.9). The walls have been set a distance of 2 away from x = 0.
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If β ≤ 1, the off-diagonal density matrix element is still rather localized around x = 0,

while at lower temperatures (for instance, β = 5), one notes highly non-local effects

and the presence of interference phenomena.
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Figure 4.9: Comparison between confined harmonic potential matrix elements at
different temperatures. Walls are at x = ±2.
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4.5 A different algorithm for Boltzmann path in-

tegrals

Miller, Schwartz and Tromp proposed [15] a different kind of algorithm to deal

with the matrix elements of the Boltzmann operator in the coordinate representation.

Since the kinetic energy contribution to the exponent of the integrand (in the stan-

dard Feynman path integral expression) is quadratic, it is possible to incorporate the

Gaussian factors into a proper set of integration variables and to scale all of them to

have the limits (0, 1). In this way, a Monte Carlo evaluation is straightforward.

The expression to evaluate is the following:

〈xN |e−βĤ |x0〉 =

(

m

2πβ

)1/2

exp

[

− m

2β
(xN − x0)

2

]

× (4.20)

∫ 1

0

dω1 . . .

∫ 1

0

dωN−1 exp [−βV (ω1, . . . , ωN)] (4.21)

(4.22)

with

V (ω1, . . . , ωN) =
1

N

N
∑

i=1

V

(

xi + xi−1

2

)

(4.23)

It can be shown that the set of variables {xi} can be expressed in terms of the set

{ωi} by means of the recursion relation

xi =
N − i

N − i + 1
xi−1 +

xN

N − i + 1
+

[

2πβ

m

N − i

N(N − i + 1)

]1/2

z(ωi) (4.24)

where z(ω) is the inverse of the integral function

w(z) =

∫ z

−∞
dz′ exp(−πz′2)

A simple rational approximation is available for z(ω) [68, 80]

z(ω) =

√

1

2π

(

t − c0 + c1t + c2t
2

1 + d1t + d2t2 + d3t3

)

+ ε(p) 0 < p ≤ 0.5 (4.25)

where

p =1 − ω

t =
√

ln(p−2)

|ε(p)| < 4.5 10−4
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and

c0 = 2.515517 d1 = 1.432788
c1 = 0.802853 d2 = 0.189269
c2 = 0.010328 d3 = 0.001308

The approximation is valid for 0.5 ≥ ω < 1. In the case 0 < ω ≤ 1 the relation

Z(ω) = −Z(1 − ω) stands.

The multiple integral over the variables {ωi} is conveniently carried out by Monte

Carlo techniques. So, the algorithm in question looks like the one described before,

since the desired matrix element is given by a first factor which is the free particle

matrix element and a second factor which is the average of the exponential over the

random path generated by means of the recursion relation (4.24) and the rational

approximation (4.25). Obviously, the correct result would require to average over an

infinite number of simulations, but it is a fact that different applications need different

accuracy.

The procedure of changing the integration variables so as to incorporate part of the

integrand is an example of importance sampling. Since the harmonic potential gives

rise to a contribution which is quadratic in the integration variables {xi}, it can be

factorized out, leading to

〈xN |e−βĤ |x0〉 = 〈xN |e−βĤ0|x0〉〈e−βV 〉 (4.26)

where Ĥ0 is the harmonic potential Hamiltonian, for which the analytic expression of

the matrix element has been found previously. This procedure, of course, results to be

very useful in the case of additional degrees of freedom, many of which are oscillators:

the harmonic part of the potential can be incorporated explicitly, resulting in a huge

simplification of the calculations and a drastic reduction of computational time.
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4.6 Step 2: dynamics and integration

From eq.(3.83) one sees explicitly that its implementation involves the knowledge

of pcl(p, q) along with that of its partial derivatives with respect to the initial con-

ditions. Two different problems arise due to this quest: first of all, the dynamics of

the particle must be evolved for a sufficiently long time from given initial conditions

(p, q) and, secondly, an appropriate computational procedure must be employed to

get the partial derivatives. The latter task is easily accomplished by means of central

finite difference formulae: the finite difference, in fact, is the discrete analogue of the

derivative. Realizing the former demand, instead, requires to set up an integration

scheme. One of the most common integration procedures in molecular dynamics (ac-

tually the one adopted in this work) is the velocity-Verlet algorithm [81].

The velocity-Verlet algorithm, an evolution of the previous Verlet algorithm [82, 83],

is a scheme based on two (one forward and one backward in time) third-order Taylor

expansions for the trajectory r(t). The great advantage of this algorithm is that posi-

tions, velocities and accelerations at time t+∆t are obtained from the same quantities

at time t, according to the following scheme:

r(t + ∆t) = r(t) + v(t)∆t +
1

2
a(t)∆t2

v(t + ∆t/2) = v(t) +
1

2
a(t)∆t

v(t + ∆t) = v(t + ∆t/2) +
1

2
a(t + ∆t)∆t

a(t + ∆t) can be calculated from r(t + ∆t), through the motion equation a(t +

∆t) = − 1
m
∇V (r(t + ∆t)). The step involving v(t + ∆t/2) is necessary, so positions,

velocities and accelerations are stored simultaneously at the same time, but never at

two different times.

Once the dynamics has been evolved, the problem of the evaluation of the complex

error function present in eq.(3.83) arises. To come through this issue, an algorithm

suggested by W.Gautschi [84, 85] is adopted. This is based on the computation of

the complex function

w(z) = e−z2

[

1 +
2i√
π

∫ z

0

et2 dt

]

, (4.27)

which is easily expressed in terms of the searched complex error function

w(z) = e−z2

[1 − erf(−iz)] (4.28)

Gautschi’s algorithm is characterized by an extremely high degree of precision (it

is exact to the tenth decimal digit), but it was written for the first quadrant only.
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The extension to the other quadrants, however, is readily obtained. In fact, in the

notation of ref. [68],

w(−z) = 2 e−z2 − w(z) w(z∗) = [w(−z)]∗ (4.29)

The complex integral function

F (z) = e−z2

∫ z

0

et2 dt, (4.30)

known as Dawson’s integral, can be calculated by means of the approximation

F (z) = lim
h→0

1√
π

∑

n odd

e−(z−nh)2

n
(4.31)

which is characterized by an increasing accuracy with decreasing h.

Coming back to discuss eq.(3.83), there is an additional point, a not negligible

one, connected with the range of integration, which is not limited, along with the fact

that limz→∞ erf(z) = 1: thus, the p-integration involved can be argued to lead to

possible problems. To ”cure” this trouble, an appropriate smoothing factor has been

introduced, transforming the p-integral as follows:

lim
ε→0

∫ +∞

−∞
dp p e−ipx e−ε|p| pcl

|pcl|
erf









|pcl|
√

2i
∂pcl

∂p

∂pcl

∂x









(4.32)

so that the integration must be performed under the limit ε → 0. The convergence

factor e−ε|p| acts as a sort of adiabatic switching (a technique adopted to describe

interactions in many fields, such as solid state physics or quantum electrodynamics),

in which the role of the dynamics (i.e. the importance of the interactions) is switched

on slowly between p → −∞ and p = 0 and switched off slowly between p = 0

and p → ∞. In other words, momenta which are too large are not influenced in a

significant way by the potential and cancel out mutually with those opposite in sign.

The Taylor expansion of the term e−ε|p| keeps only the linear term for ε sufficiently

small, so that the search for the requested limit is conjectured to be feasible by linear

extrapolation for suitable ε. The actual magnitude of ε needed was found to depend

on the type of potential under examination.

Anyway, from a computational point of view, an accurate evaluation of integrals

often means to face some problems. Three of the most common troubles are related

to the following occurrences:
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1. the integrand is discontinuous in the integration range;

2. the integrand has some singularities;

3. the range of integration is infinite.

In most cases, these problems cannot be dealt with directly by numerical tech-

niques and, consequently, some preparatory manipulation of the integrand is required.

In the first case, which, anyway, is not of interest in our case, the position of the dis-

continuities must be found and the integral split into a sum of two or more integrals,

the ranges of which avoid the discontinuities.

The second point (i.e. the presence of singularities) is most frequently tackled by

resorting to changes of variable, integration by parts or splitting of the integral. Ac-

tually, in our case this problem is intrinsically avoided since the possible presence of

caustic points is embedded in the error function, which is well-behaved.

Finally, the problem of the infinite range of integration can be treated by means of

particular methods (for instance use of Gauss-Laguerre and Gauss-Hermite formu-

lae) or, sometimes, by means of a preliminar treatment fit to reduce the range of

integration within finite limits.

There are many quadrature techniques able to provide accurate estimations also

to difficult integration problems. However, as a general rule, it is known that even the

best quadrature methods meet with difficulties as the functions involved vary very

rapidly due to small changes in the independent variable, i.e. in the case of highly

oscillatory integrands.

To deal with the oscillatory integrand which characterizes the p-integration in formula

(3.83), we have resorted to the Filon’s method [69]. To reduce the overall number of

calculations required, there exist some adaptive methods (like Patterson’s technique),

able to thicken the intervals only in those regions where the function is changing very

rapidly.

Filon’s technique can successfully be applied to integrals of the form
∫ b

a
f(x) cos kxdx

and
∫ b

a
sin kxdx. For instance, considering the first of the two integrals above, by the

method of undetermined coefficients an approximation can be obtained. Let

∫ 2π

0

f(x) cos xdx = A1f(0) + A2f(π) + A3f(2π) (4.33)

Requiring that this should be exact for f(x) = 1, x, x2

∫ 2π

0

f(x) cos xdx = [2f(0) − 4f(π) + 2f(2π)]/π (4.34)
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More general results can be developed as follows:

∫ b

a

f(x) cos kxdx = h [A{f(xn) sin kxn − f(x0) sin kx0} + BCe + DC0] (4.35)

∫ b

a

f(x) sin kxdx = h [A{f(x0) cos kx0 − f(xn) cos kxn} + BSe + DS0] (4.36)

where h = (b − a)/n, q = kh and

A =
[

q2 + q sin 2q/2 − sin2 q
]

/q3

B =2
[

q(1 + cos2 q) − sin 2q
]

/q3

D =4 [sin q − q cos q] /q3

C0 =
n−1
∑

i=1,3,5

f(xi) cos kxi

Ce = [f(x0) cos kx0 + f(xn) cos kxn] /2 +
n−2
∑

i=2,4,6

f(xi) cos kxi

It can be seen that C0 and Ce involve odd and even sums of cosine terms. S0 and Se

are similarly defined with respect to sine terms.

It is important to note that Filon’s method, when applied to functions of the form

given above, usually gives better results than Simpson’s method, the number of in-

tervals being equal.

It is sometimes useful (even though not adopted in this work) to use approximations

to the expressions for A,B,C, and D given above, by expanding them in a series of

ascending powers of q. This leads to the following results:

A =2q2
(

q/45 − q3/315 + q5/4725 + . . .
)

B =2
(

1/3 + q2/15 + 2q4/105 + q6/567 + . . .
)

D =4/3 − 2q2/15 + q4/210 − q6/11340 + . . .

When the number of intervals becomes very large, h and q become small. As q tends

to zero, A tends to zero, B tends to 2/3 and D tends to 4/3. Substituting these values

into the formula for Filon’s method, it can be shown that it becomes equivalent to

the Simpson’s rule.
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Reaction rates and conclusions

The utilization of all the techniques analysed in the previous chapter allows in

principle the complete and final application of the approach advocated in this the-

sis. After having presented some results relative to the thermal density matrix and

the few cases where an analytical solution for the real-time propagator is possible,

we get ready to move onto models where the kinetics is associated with simple one-

dimensional barriers, in particular truncated parabola and Eckart barrier (symmetri-

cal and asymmetrical).

The main difficulties met with the simulations lie in the choice of an adequate

discretization of the phase space, ( in turn related to the accuracy of the integration

algorithm) and the determination of the integration ranges.

The integration bounds are essentially controlled by the density matrix element and

the convergence factor e−ε|p|, for the x- and p-integration respectively. As a matter

of fact, the matrix element 〈x|e−βĤ |x = 0〉 drops to zero for x sufficiently far from

x = 0, while pe−ε|p| becomes negligible for sufficiently large values of p (depending on

the value of ε), so that the individuation of suitable bounds for the integrations is

not so difficult.

Calculations are necessarily performed for different values of ε and the final result

follows by extrapolation. The smaller ε, the larger the integration range in the p-

variable. Considering that the Filon’s algorithm is the truly time-consuming step in

the procedure, this aspect represents the real bottleneck to overcome: in particular,

we have found that the need of small ε values is more marked for highly asymmetrical

barriers.

77



78 Chapter 5: Reaction rates and conclusions

5.1 The truncated parabolic barrier

The first kind of one-dimensional barrier investigated in this thesis is the truncated

parabolic barrier, i.e. a barrier having parabolic shape in the positive region of the

potential, which becomes abruptly zero out of that region. Explicitly,

V (x) =
E∗

a2
(x2 − a2)Θ(a − |x|) (5.1)

where E∗ is the height of the barrier and 2a its width. Fig. (5.1) is a plot of the

potential corresponding to E∗ = 4, a = 2 (in arbitrary units).

 0
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Figure 5.1: Truncated parabolic potential V (x) = (4 − x2)Θ(2 − |x|).

Expressions for the tunnel-effect correction in the case of a truncated parabola of

given curvature ωB have been proposed by Bell [64, 86, 87]. These are in accordance

with previous results by Bigeleisen [88] (their validity, actually, extends to a broader

range).

The approach consists in choosing a permeability function G(E) for the barrier, sat-

isfying some conditions that hold true for an exact solution:
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- to reduce to the WKB approximation at low energies (E ≪ E∗);

- to approach the value G(E∗) = 1/2.

A simple function with these characteristics, able to give good results also for energies

next to the barrier top E∗, is

G(E) = [1 + exp(β′y)]−1 y = 1 − E/E∗ (5.2)

In eq.(5.2) β′ is a parameter that depends on the energy E, the mass of the particle

and the width of the barrier:

β′ = πa(2mE)1/2 (5.3)

In the cases of chemical interest (i.e. when the ratio between the energy E and

thermal energy β−1 is less than β′), the quantum correction found by Bell is

Γ =
1

2
u/ sin

(

1

2
u

)

(u = βωB) (5.4)

which can be expanded as

Γ = 1 +
u2

24
+

7u4

5760
+ . . . (u < 2π) (5.5)

a result equivalent, in the low-order terms, to that obtained by Wigner through a

general treatment for the passage of a particle over a multidimensional energy surface.

Simulations relative to the truncated-parabola potential were performed by the

present approach for different temperatures, assuming the parabola parameters (in

a.u.) 2a = 4, ωB = 0.95493 and the maximum of the potential E∗ = 1.82378, i.e. the

values employed by Bell. The values reported in Table (5.5) have been obtained by

the basic result k(T )Q = Γe−βE∗

/2πβ (see sec. 3.3.1). The validity of eq.(5.4), in the

range of energies considered, shows that, for truncated-parabola barriers which are

wide compared to their height, the quantum correction reduces to that of the simple

parabolic barrier.

u ΓBell Γcalc

0.1 1.0041 1.00184
0.5 1.01049 1.01355
1.0 1.04288 1.04818

Table 5.1: Results for the truncated-parabola potential. Bell’s results are based on
eq.(5.5)
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5.2 The Eckart barrier

A role similar to that of the truncated parabolic barrier is played by the Eckart

barrier, a potential which changes smoothly and continuously, proposed by C. Eckart

in 1930 [89]. Eckart evaluated the probability, κ(E), of crossing the barrier for a

particle of energy E, while Johnston [90] introduced statistical effects performing

numerical integration of the transmission probability κ(E) over a Boltzmann distri-

bution of incident particles (see below).

The potential relative to the Eckart barrier can be written as

V =
Ay

1 − y
− By

(1 − y)2
(5.6)

with

y = − exp(2πx/L) (5.7)

A, B and L (a characteristic length) are adjustable parameters.

By denoting with V1 the separation between the maximum value and limx→−∞ V (x),

V2 the analogous separation between the maximum and the V (x) value as x → +∞
and F ∗ the second derivative of the function at its maximum, the following relations

are easily derived:

V1 =(A + B)2/4B (5.8)

V2 =(A − B)2/4B (5.9)

F ∗ = − π2(A2 − B2)2

2L2B3
(5.10)

(5.11)

Obviously, the case of the symmetrical barrier corresponds to A = 0.

A particle of mass m and energy E which approaches the barrier is characterized by

ν∗ =
1

2π
(−F ∗

m
)1/2, u∗ = hν∗/kT (5.12)

α1 =2πV1/hν∗ (5.13)

α2 =2πV2/hν∗ (5.14)

ξ =E/V1 (5.15)

(5.16)

The transmission probability through the barrier is found by solving the Schrödinger’s

equation, with the following result

κ(E) = 1 − cosh 2π(a − b) + cosh 2πd

cosh 2π(a + b) + cosh 2πd
(5.17)



Chapter 5: Reaction rates and conclusions 81

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-6 -4 -2  0  2  4  6x

V(x)
Asymmetrical Eckart barrier

Figure 5.2: A typical shape of asymmetrical Eckart barrier (A = 0.4, B = 2.5, L = 5,
arbitrary units).

where

2πa = 2(α1ξ)
1/2

(

1

α
1/2
1

+
1

α
1/2
2

)−1

(5.18)

2πb = 2[(1 + ξ)α1 − α2]
1/2

(

1

α
1/2
1

+
1

α
1/2
2

)−1

(5.19)

2πd = 2[α1α2 − (2π)2/16]1/2 (5.20)

Whenever d is imaginary, the term cosh 2πd in eq. (5.18) transforms into cos 2π|d|.
The kinetic constant is directly related to κ(E); in particular, the ratio between the

quantum mechanical barrier crossing rate and the classical mechanical prediction is

Γ∗ =
Rqu

Rcl

=
exp(V1/kT )

kT

∫ ∞

0

κ(E) exp(−E/kT )dE (5.21)
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5.2.1 Symmetrical Eckart barrier

It is easily verified that the symmetrical Eckart barrier can also be expressed in an

alternative form. Starting from eq. (5.6) with A = 0 (symmetrical barrier) it follows

that

V =
Beα

(1 + α)2
, α =

2πx

L
(5.22)

After rearrangement, this expression yields

V =
B

(eα/2 + e−α/2)2
=

B

4[cosh(α/2)]2
=

B

4
[sech(α/2)]2 (5.23)

and, finally,

V (x) = V0 sech2(x/L) (5.24)

where L is a new length parameter. The next comments are facilitated by the intro-

duction of the following two dimensionless parameters:

α = 2πV0/ωB (5.25)

u = βωB (5.26)

where ω2
b = 2V0/(mL2), m being the mass of the crossing particle.

Fig.(5.3) summarizes effectively many points discussed in the previous chapters.

The full line (label c) corresponds to the exact solution as calculated by Johnston [90],

while the classical transition state theory result is that represented by the straight line

d. The increasing deviation of the classical prediction from the exact solution as the

temperature decreases (i.e. when quantum effects become more and more important)

should be noticed. The three dotted and/or dashed lines labeled e, b, f correspond to

estimates obtained by means of different approximations for the dynamical z factor

introduced by Voth, Chandler and Miller [17]. They refer specifically to free particle

(e), parabolic barrier (b) and semiclassical (f) estimates of the z factor. Finally, the

results plotted by adopting a parabolic-barrier approximation for both thermal and

dynamical factors (line a), put in clear evidence the inadequacy of a model entirely

based on the standard parabolic-barrier behavior.

The approach elaborated in this thesis has been tested by performing calculations

on the symmetrical Eckart barrier with values for the parameters corresponding to

the maximum of the potential and the correspondent curvature equal to those (V0,

ωB) adopted for the truncated parabolic barrier previously analysed (see Fig.(5.4)).

The results have been obtained for values of the parameters α and u, α = 12 and

u ∈ [2, 6], identical to those of Fig. (5.3).

The application of the approach leads to results in good agreement with both Bell

(truncated parabolic barrier) and Johnston (exact quantum mechanical solution).
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Figure 5.3: Comparison between kinetic constant results obtained by different ap-
proaches for a symmetrical Eckart barrier. The plots refer to α = 12 and u ∈ [2, 12]
(see text).

The philosophy at the basis of the long-standing ideas pioneered by W. H. Miller, P.

Pechukas et al., in particular the separation between thermal and dynamical effects,

suggests itself as a satisfying alternative to the ineluctability of full quantum scatter-

ing calculations.

The fact that the approach works well in the cases tested induces to believe that it can

be extended to different and even more realistic potentials, such as, for instance, the

asymmetrical Eckart barrier, which is the topic briefly touched in the next subsection.

5.2.2 Asymmetrical Eckart barrier

Our study concerning an asymmetrical Eckart barrier has been simulated for val-

ues of the involved parameters (see eq. (5.12)) α1 = 4 and α2 = 8, with the cur-
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Figure 5.4: Test for a symmetrical Eckart barrier: a) Classical result; b) Exact quan-
tum mechanical result derived by Johnston [90]; c) our approach.

vature at the maximum kept identical to that assumed in the study of both trun-

cated parabola and symmetrical Eckart barrier (ωB = 0.954929a.u.). Explicitly,

V1 = 0.608 a.u. and V2 = 1.216 a.u.

The simulations, performed in the temperature range u ∈ [2, 8], lead to the results

collected in Table (5.2.2).

u ln(2πβkQ)q.m. ln(2πβkQ)calc.

2 -1.050 -1.064
4 -1.889 -1.884
6 -2.550 -2.207
8 -3.069 -2.687

Table 5.2: Kinetic constant results for the asymmetrical Eckart barrier (α1 = 4,
α2 = 8). Second column: exact quantum mechanical findings by Johnston [90]. Last
column: estimates according to the approach discussed in this thesis.
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Specifically, our results have been extrapolated from simulations which required ε

values so small as ε = 0.005 and |pmax| = 3000 as cutoff for the momenta involved.

Again, the parabolic barrier approximation overestimates the correct rate, with better

behavior at higher temperatures.
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5.3 Conclusions and perspectives

A first point on which to dwell is the role played by statistical and dynamical

effects in the estimation of rate constants. The thermal density matrix, being calcu-

lated essentially without approximations, cannot be responsible for the discrepancies

observed between the results obtained by our approach and the reference ones. Thus

it is evident that blame for the overestimation cannot but lay in the insufficient ap-

preciation of dynamics.

The expectation that dominant features of quantum dynamics involved in barrier

crossing can be grasped looking at the exactly soluble case of the parabolic barrier

has largely bonafide motivation. Actually what we see is that the specificity of a

given barrier becomes less influential only at sufficiently high temperature, an indi-

cation that there are more specific quantum effects left out from our analysis. These

few considerations suggest also that deficiencies caused by the introduction in the

treatment of poor or insufficient dynamical approximations could probably be com-

pensated by use of modified parabolic potentials involving temperature-dependent

parameters. To this regard, it is worth of mention that effective potentials of this

type have been employed in various physical contexts.

The truncated parabolic barrier, along with the symmetrical Eckart barrier, con-

stitute two good tests for judging the reliability of our approach. Our results are

quantitatively acceptable (even though some different techniques and methods can

lead to better accuracy), a good reason for extending the test to the more demanding

problem involving an asymmetrical Eckart potential. The importance of such exten-

sion lies in the fact that some realistic reactions, for instance the well-studied reactive

process H + H2 [91], can be properly modeled in terms of such potential. Even in

this case the few simulations performed appear to confirm the preceeding judgement.

The application of the approach to multidimensional systems, to depict reactions in-

volving many degrees of freedom, appears, intuitively, a natural extension. To this

regard, we think that the SC-IVR (SemiClassical Initial Value Representation) strat-

egy, advocated particularly by W. H. Miller is, nowadays, the best way to take on

complex reactions, since all the degrees of freedom are treated equivalently and the

old limitation dating back to Wigner, i.e. of a reaction taking place on a single po-

tential energy surface (adiabatic reaction), can be surpassed so as to make possible

the study of photoelectronic reactions.

The possible development of our approach in this direction appears, at this mo-

ment, only a stimulating challenge for the future. A few comments on this point,

however, are in order. The extension of the calculation of the thermal density matrix

to several dimensions does not seem to grow any particular problems. The strategy
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described in the fourth chapter is easily generalizable to the multidimensional case:

from a computational point of view, many independent one-dimensional paths (actu-

ally one for each degree of freedom) would be generated.

On the other hand, the same cannot be said about the dynamical part, for which a

more careful treatment is required. The extension of the quantum mechanical treat-

ment described in chapter three to a multidimensional space is not impossible, but the

basic parabolic barrier approximation exploited in the one-dimensional case should

be replaced, if possible, by a working multidimensional analogue.

Alternatively, a sort of mixed quantum/classical approach could be preferred, with

one degree of freedom (i.e. the reaction coordinate) treated according to the quan-

tum approach adopted in the one-dimensional case, and all the remaining degrees of

freedom described by classical dynamics.

Additional difficulties to reckon with would originate from the multiple integration

involved. Probably, the Filon’s algorithm would no longer be competitive and other

procedures, such as Monte Carlo methods for oscillatory integrands or FFT tech-

niques, should be devised.

As a final conclusion, we want to spend a few words about the approach. As

pointed out above, its implementation should be further elaborated to permit the

study of complex reactions, which involve multidimensional potential energy sur-

faces. To this regard it is right to say that strategies like the Semiclassical Initial

Value Representation, which has been widely developed and applied to a variety of

different reactions, or the recent approach suggested by Craig and Manolopoulos, that

is more direct and straightforward to apply, are probably preferable in facing really

complicated kinetic problems.

All the same, some merits should be recognized to our efforts, in particular the

fact that some important points have been put in evidence: first of all, quantum scat-

tering calculations have been avoided, in harmony with modern formulations of the-

oretical chemical kinetics implemented after the pioneer suggestions by W. H. Miller,

P. Pechukas et al.; secondly, the general lines of the approach, developed quantum

mechanically on rigorous grounds, lead to a clear separation between thermal and

dynamical effects (associated with imaginary and real time dynamics, respectively),

with the standard parabolic barrier approximation to the real time dynamics intro-

duced only as a final step. The approximation, presented in an original and appealing

way, involves the appearance in the formalism of an error function. In this manner,

the problem of caustic points is avoided, while the presence of a suitable convergence

factor acts as a cutoff limiting the integrations to a finite range.

Altogether, then, the study of the approach, even though anything but exhaustive,

has come to a positive point, with acceptable results for the cases we minded to face.



Appendix A

A remarkable relation between a

principal value integral and a

complex error function

The main goal of this appendix is to show the validity of the relation

I = −
∫ +∞

−∞

dξ

ξ
e−iAξ e−iBξ2

= −iπ
A

|A| erf

[ |A|
2
√

iB

]

(A.1)

The principal value integral can be evaluated as the limit of the sum of two integrals

I = lim
ε→0

∫ −ε

−∞

dξ

ξ
e−iAξ e−iBξ2

+

∫ +∞

ε

dξ

ξ
e−iAξ e−iBξ2

= lim
ε→0

∫ ε

+∞

dξ

ξ
eiAξ e−iBξ2

+

∫ +∞

ε

dξ

ξ
e−iAξ e−iBξ2

= lim
ε→0

∫ +∞

ε

dξ

ξ
e−iBξ2 (

e−iAξ − eiAξ
)

= −2i

∫ +∞

0

dξ e−iBξ2 sin(Aξ)

ξ

(A.2)

It is possible to generalize this result for any argument of the sine function, finding

the equivalent formula

I = −2i
A

|A|

∫ +∞

0

dξ e−iBξ2 sin (|A|ξ)
ξ

(A.3)

In this way, indipendently of the effective value of A, the substitution η = |A|ξ
preserves the integration limits, leading to

I = −2i
A

|A|

∫ +∞

0

dη e−iBη2/|A|2 sin η

η
(A.4)
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To proceed it is convenient to introduce the auxiliary function

K(α) =

∫ +∞

0

dη e−iαη2 sin η

η
(A.5)

where α = B/|A|2. The calculation of K(α) follows a quite standard procedure.

First, a derivation with respect to α gives

dK(α)

dα
= −i

∫ +∞

0

dη η sin η e−iαη2

= −ei/4α

2

∫ +∞

0

dη η
[

e−iα(η−1/2α)2 − e−iα(η+1/2α)2
]

(A.6)

Simple manipulations lead to the result

dK(α)

dα
= −ei/4α

2

[
∫ +∞

−1/2α

dη′
(

η′ +
1

2α

)

e−iαη′2 −
∫ +∞

1/2α

dη′
(

η′ − 1

2α

)

e−iαη′2

]

= −ei/4α

2

[
∫ −∞

1/2α

dη′
(

η′ − 1

2α

)

e−iαη′2 −
∫ +∞

1/2α

dη′
(

η′ − 1

2α

)

e−iαη′2

]

(A.7)

and successively to

dK(α)

dα
=

ei/4α

2

[
∫ +∞

−∞
dη′
(

η′ − 1

2α

)

e−iαη′2

]

= −ei/4α

4α

∫ +∞

−∞
dη′ e−iαη′2

= −ei/4α

4α

√

π

iα

(A.8)

The solution of eq.(A.5) is obtained by integration of eq.(A.8)

K(α) = K(0) +

∫ α

0

dα′ dK

dα′ (A.9)

where

K(0) =

∫ +∞

0

dη
sin η

η
=

π

2
(A.10)

Thus

K(α) =
π

2
− 1

4

∫ α

0

dα′ei/4α′

√

π

iα′3 (A.11)



90
Appendix A: A remarkable relation between a principal value integral and a complex

error function

The integral in eq.(A.11) is evaluated by means of suitable variable changes. If β =
1

4α′ , eq.(A.11) becomes

K(α) =
π

2
+

1

2

√

π

i

∫ 1/4α

∞
dβ

eiβ

√
β

=
π

2
−
√

π

i

∫ ∞

1/2
√

α

du eiu2

(A.12)

At this point it is a trivial task to express the above result in terms of the error

function. If we put s = u/
√

i, it follows

K(α) =
π

2
−
√

π

∫ ∞

1/2
√

iα

ds e−s2

(A.13)

From the definition of the error function erf(z)

erf(z) =
2√
π

∫ z

0

ds e−s2

=
2√
π

[√
π

2
−
∫ ∞

z

ds e−s2

]

= 1 − 2√
π

∫ ∞

z

ds e−s2

(A.14)

the following result for K(α) is found

K(α) =
π

2
erf

(

1

2
√

iα

)

(A.15)

Finally, the starting I integral can be written

I = −iπ
A

|A| erf

( |A|
2
√

iB

)

(A.16)
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Calculation of an integral of the

error function

We find it interesting to show in detail the technique employed to evaluate the

integral

I(x) =

∫ +∞

−∞
dr eirx erf

(

r√
2imω

)

(B.1)

which is involved in the resolution of the problem of the complete parabolic barrier

(sec.(3.3.2)).

First of all, we observe that for x = 0 the integrand is odd, so that

I(0) =

∫ +∞

−∞
dr erf

(

r√
2imω

)

= 0 (B.2)

On the basis of simple parity reasons, in eq. (B.1) I(x) is expected to be purely

imaginary. Assuming for the error function its integral representation, we are led to

I(x) =
2√
π

∫ +∞

−∞
dr eirx

∫ r/
√

2imω

0

dt e−t2 (B.3)

and successively, by the variable change T = t
√

2imω/r,

I(x) =
2√
π

∫ +∞

−∞
dr eirx

∫ 1

0

dT
r√

2imω
e−r2T 2/2imω

=
2√

2πimω

∫ 1

0

dT

∫ +∞

−∞
dr r e−r2T 2/2imω eirx

(B.4)

The integral
∫ +∞

−∞
dr r e−r2T 2/2imω eirx (B.5)
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can be evaluated making use of known results for Gaussian-like integrals, arriving at

∫ +∞

−∞
dr r e−r2T 2/2imω eirx = −mωx

√
2πimω

e−imωx2/2T 2

T 3
(B.6)

The change of variable β = x/T provides

I(x) =
2mω

x

∫ x

∞
dβ β e−imωβ2/2

= − 2

ix
e−imωx2/2

(B.7)

Hence, the final result is

I(x) =

∫ +∞

−∞
dr eirx erf

(

r√
2imω

)

=







0 x = 0

− 2

ix
e−imωx2/2 x 6= 0

(B.8)



Appendix C

Basic path integral method for the

calculation of thermal density

matrix elements

In this appendix, we wish to provide the basic formulation of the path integral

method which leads to the relations adopted in sec.(4.2). For evaluating the matrix

element of interest

K(x, y; β) =< x|e−β(T̂+V̂ )|y >, (C.1)

the starting point is the operatorial equality

eÂ = (eÂ/N)N (C.2)

so that

K(x, y; β) =< x|
[

e−β(T̂+V̂ )/N
]N

|y > (C.3)

By resorting to the Trotter product formula

e−λ(T̂+V̂ ) = lim
N→∞

[

e−λT̂/Ne−λV̂ /N
]N

(C.4)

eq.(C.3) transforms into

K(x, y; β) = lim
N→∞

< x|(e−βT/Ne−βV/N)N |y > (C.5)

At this point, it is convenient to introduce N − 1 complete sets of eigenstates of the
position operator

∫

dxj|xj >< xj|, labelled by the indexes j = 1, . . . , N − 1, so that

K(x, y;β) = lim
N→∞

∫

dx1 . . . dxN−1

N−1
∏

j=0

< xj+1|e−βT/Ne−βV/N |xj >, y = x0 , x = xN (C.6)
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elements

The operator V (x̂) is multiplicative in the position representation

e−βV̂ /N |xj >= |xj > e−βV (xj)/N (C.7)

Consequently, K(x, y; β) (eq.(C.6)) becomes

K(x, y; β) = lim
N→∞

∫

dx1 . . . dxN−1

N−1
∏

j=0

e−βV (xj)/N < xj+1|e−βT̂/N |xj > (C.8)

The matrix elements < xj+1|e−βT̂/N |xj > are readily evaluated by introducing a

complete set of eigenstates of the momentum operator,

< xj+1|e−βT̂/N |xj > =

∫ +∞

−∞
dp < xj+1|p > < p|e−βT̂/N |xj >

=
1

2π

∫ +∞

−∞
dp e−

βp2

2mN eip(xj+1−xj)

=

√

mN

2πβ
e−mN(xj+1−xj)

2/2β

(C.9)

The final result for the matrix element of eq. (C.1) is

K(x, y;β) = lim
N→∞

∫

dx1 . . . dxN−1

√

mN

2πβ

N−1
∏

j=0

exp

{

−mN(xj+1 − xj)
2

2β
+

βV (xj)

N

}

(C.10)
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