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Chapter 1

Introduction

The study of molecular systems in their electronic excited states is one of the
major issues in many fields of physics, chemistry, biology and material science
with very different applications, going from diagnostic tools in medicine to
probes in analytical chemistry, or new devices for technological applications or
energetics [1],[2],[3]. Moreover, the absorption of visible light and its conver-
sion to other forms of energy is at the heart of some of the most fundamental
processes in biology, such as photosynthesis.
The electronic structure of a molecule is determined by the quantum behav-
ior of electrons inside the system, resulting in molecular states with different
symmetries and different spin multiplicities. Many processes can occur when
the light is absorbed by a molecule, and in particular, the phenomena we here
concentrate on are of electronic origin.
Let us illustrate these processes by a Jablonsky diagram in figure 1.1. Jablonsky
diagrams can be formulated in a variety of forms, depending on the processes
and the systems we are interested to study. The figure here reported shows
a typical energy level diagram involved in the dynamics of processes1 of a
molecule in gas phase, starting from a singlet ground state. The transitions
between states are depicted as vertical lines to illustrate the instantaneous
nature of light absorption, as transitions occur in about 10−15 s, a time too
short for significant displacement of nuclei, in according to the Franck-Condon
principle. During the first absorption step (A in the figure), the molecule is
excited from the ground to any (singlet) excited state. The excited molecule
then tends to release the excess of energy by fast relaxation to lower electronic
states. This could be done in a non-radiative way through the so-called in-
ternal conversion (IC) process, or in a radiative way by emitting light, i.e. a
fluorescence process (F in the figure). The non-radiative process, IC, is esti-

1We excluded a number of other processes, such as quenching or energy transfer
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Figure 1.1: A general Jablonsky diagram

mated to be in the timescale of picoseconds, while the radiative lifetime of the
lowest excited singlet state (S1) is often much larger, in the range of nanosec-
onds. When a molecule possesses a heavy atom, large spin-orbit coupling could
occur which can open up more channels for absorption and emission. These
can be excitations between triplet states, as well as between triplet and singlet
states 2. In the latter case, the triplet excited state is initially populated by the
inter-system-crossing (ISC) process, which is in the time scale of nanoseconds.
In the present Thesis only the A and F processes will be analyzed together
with the geometrical relaxation accompanying the photophysical evolution of
the excited system. In such an analysis another external factor will be intro-
duced, namely the effects of the environment. The environment in which a
molecule is immersed can in fact alter its states and the corresponding spec-
troscopic signals. When absorption and emission UV/vis spectra are measured
in solvents of different polarity, it is found that the positions, intensities, and
shapes of the bands are usually modified. These effects are generally indicated
as solvatochromism.
A solvent behaves both as a macroscopic continuum characterized only by
physical constants such as density, dielectric constant, index of refraction etc.,
and a discontinuum medium which consists of individual, mutually interact-
ing solvent molecules. According to the extent of these interactions, there are

2Transitions between states of different spin multiplicities, such as triplet-singlet tran-
sitions, are governed by the spin selection rule. They are absolutely forbidden when the
spin-orbit coupling is absent.
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solvents with a pronounced internal structure (e.g. water) and others in which
the interaction between the solvent molecules is small (e.g. hydrocarbons).
The interactions between species in solvents (and in solutions) are too strong
to be treated by the laws of the kinetic theory of gases, yet too weak to be
treated by the laws of solid-state physics. Thus, the solvent is neither an in-
different medium in which the dissolved material diffuses in order to distribute
itself evenly and randomly, nor does it possess an ordered structure resembling
a crystal lattice. Nevertheless, the long-distance ordering in a crystal corre-
sponds somewhat to the local ordering in a liquid. Thus, neither of the two
possible models – the gas and crystal models – can be applied to solutions
without limitation.
The changes in excited states induced by the environment are a result of phys-
ical intermolecular solute–solvent interaction forces. More in detail, we can
individuate two main categories: the first category comprises the so-called di-
rectional, induced and dispersion forces, which are non-specific and cannot be
completely saturated; the second group consists of specific interactions, such
as hydrogen-bonding forces, or electron-pair donor acceptor forces. The main
interactions are electrostatic in origin, such as the polarity and the local or-
ganization of solvent molecules around the solute molecule. This behavior
gives rise to a large use of averaged pictures to model the solute-solvent in-
teractions, such as continuum models. However, if we want to treat all those
spectral changes which arise from alteration of the chemical nature of the sol-
vated molecules by the medium, (such as proton or electron transfer between
solvent and solute, solvent-dependent aggregation, ionization, complexation,
or isomerization equilibria) or specific interactions, such as hydrogen bonding,
a discrete description also for solvent molecules is needed.

From the above discussion, it is understandable that a detailed analysis of
the excited states requires a variety of experimental techniques and this also
applies to theoretical simulations. Indeed different computational schemes are
required to understand the properties of different states and to model the ef-
fects that the solvent has on them.
The aim of the research presented in this Thesis is adressed to investigate the
potentiality of the Density Functional Theory (DFT) methods in their time
dependent formulation (TD-DFT), and the reliability offered by its combina-
tion with a Polarizable Continuum Model (PCM) for the solvent, to determine
excitation energies, structures and properties of excited state of molecules in
gas and solvent phase.
More in detail, this Thesis has focused on two main topics.
The first is the critical analysis of TD-DFT methods when applied to the cal-
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culation of molecular excited state energies and properties. The goal is to
assess performances of exchange-correlation functionals and to individuate di-
agnostic tools to analyse the achieved results. This first part is propedeutic to
individuate a good computational protocol within the Linear Response Kohn-
Sham (LR-KS) scheme to be coupled with the Time Dependent Polarizable
Continuum Model (TD-PCM) approach to treat solute-solvent interactions in
describing excited states of solvated molecules. To this aim two alternative
couplings between TD-DFT and PCM are tested in describing charge transfer
(CT) excitations of large systems in solution and to assess the excitation mech-
anism in TICT and/or PICT systems. Finally a new self-consistent strategy
to describe solvated excited states is developed and implemented whitin the
TD-DFT method.
The text is organised as follows:

• Chapter 2 presents the theoretical background, with a short review of
DFT and TD-DFT methods, together with a critical analysis of their
limits and potentialities on the basis of newly developed diagnostic tools.
In parallel a detailed study of accuracy and relability of TD-DFT in
determining excited state structures is presented and discussed.

• Chapter 3 presents the extension of TD-DFT approaches to solvation
continuum models within PCM framework. Different strategies of pos-
sible couplings between TD-DFT and PCM are critically compared when
applied to solvent-sensitive molecular probes. Finally, a new self-consistent
scheme for calculating excitation enegies in solvent is developed and nu-
merical tests are performed in comparison with precedent approaches.

• Conclusion remarks and future directions are given in chapter 4.



Chapter 2

TD-DFT description of
molecular excited states

2.1 Introduction

One of the major problems in reproducing energies and properties of electronic
excited states is due to the computational cost of the method to determine the
electronic structure.
Nowadays, ab initio methods allow to accurately determine a large set of prop-
erties for molecular systems in their ground state. On the contrary, calculations
of excited-state properties, including emission phenomena such as fluorescence
and phosphorescence, are still a challenge, because they require the nontrivial
task of an accurate determination of excited-state structures [4].
On the one hand, fast and cheap purposely tailored semiempirical approaches
lack consistency when applied to families of molecules not included in the orig-
inal training sets. On the other hand, more reliable theoretical tools, such as
EOM-CC [5],[6], MR-CI [7],[8], CAS-PT2 [9],[10],[11], SAC-CI [12], [13], are
too expensive to afford the study of the large systems of chemical and industrial
interest.

At the same time, it is well established that the Kohn-Sham (KS) approach
to density functional theory (DFT) can provide an accurate description of a
large number of physicochemical properties for the ground electronic state [14].
Furthermore, its current accuracy/cost ratio is significantly lower than that of
more sophisticated post-Hatree-Fock approaches. In a similar manner, the
time-dependent density functional theory (TD-DFT)[15] could be a viable al-
ternative for the evaluation of excited-state geometries and properties. In
the Linear Response-Kohn Sham (LR-KS) scheme [16] of the TD-DFT for-
mulation, based on the extension to the action functional of Hohenberg and

11
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Kohn theorems, as in random phase approximation [17] and Tamm-Damcoff
approximation [18], a pseudoeigenvalues equation, where the Lagrange multi-
plier matrix contains excitation energies, can be written down. Consequently,
first-order molecular properties can be calculated by analytical derivatives
[19],[20],[21] by using a Z-vector approach [22], and this introduces the calcu-
lation of third-order derivatives of exchange-correlation (XC) functional used.
The TD-DFT approach presents the typical problems of ground-state DFT
methods: the exact XC functional form is unknown, the approximated func-
tionals introduce self-interaction (SI) errors, the asymptotic behavior of XC
potential could be incorrect, and the use of a single determinant makes DFT
inadequate for cases presenting a near degeneracy of several configurations
[14],[23]. Besides, additional drawbacks originating in the LR formulation
exist. Actually, almost all implementations of TD-DFT are based on the adia-
batic approximation, for which the action functional could be written by using
the XC energy functional used in Kohn-Sham time-independent equation. In
other words, there are no memory effects, the only time dependence is indi-
rectly taken into account by the density, and an instantaneous reaction of XC
potential to the density variations is assumed [24]. From a more applicative
point of view, the use of TD-DFT approach presents some difficulties in de-
scribing charge transfer and Rydberg excitations. This originates in the form
of the operators in the LR-KS equations and the subsequent incapability to
follow the reorganization of charge between two separated regions of space or
between orbitals of different spatial extent [24],[25].
Despite these limits, there are extended studies that show the very good perfor-
mances of TD-DFT in reproducing excitation energies and absorption spectra
[26], [27], [28], [29], [30].
In this chapter, after an introduction of TD-DFT methods, some of the prob-
lems and the difficulties of the LR-KS scheme are critically analysed by intro-
ducing an index to test the vertical excitations calculated [31] and a benckmark
of the performances in reproducing excited state structures is also presented.
The latter constitutes the first systematic study of this type, to the best of our
knownledge [32].

2.2 Brief review of Density Functional Theory

The material world of everyday experience, as studied by chemistry and condensed-
matter physics, is built up from electrons and a hundred kinds of nuclei, where
the basic interaction is electrostatic or Coulombic. All electrons in the lighter
elements, and the chemically important valence electrons in most elements,
move at speeds much less than the speed of light, and so are non-relativistic. As
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nuclei are more massive than electrons, we can assume the Born-Oppenheimer
approximation to obtain two Schrödinger equations, one for the electrons and
one for the nuclei. We will focus only in the electronic part. The non relativis-
tic time-indipendent many-electron problem becames (in atomic units) [33]:

Ĥe|Ψ(x1...xi...xN)〉 = E|Ψ(x1...xi...xN)〉 (2.1)

Where:
x = rσ (2.2)

Ĥe =
N∑
i

t̂i +
N∑
i

v̂ext(ri) +
1

2

N∑
i,j 6=i

1

|ri − rj|
= T̂ + V̂ + Ŵ (2.3)

t̂i = −1

2
∇2
i (2.4)

v̂ext(ri) =
Nnuc∑
α

Zα
|ri −Rα|

(2.5)

The many-particle wave function Ψ(x1...,xi, ...,xN) contains all the informa-
tions of the system. When one is interested in the values of observables corre-
sponding to k-body operators

O(k)[Ψ] = 〈Ψ|Ô(k)|Ψ〉 (2.6)

the k-order reduced density matrix it suffices

Γ(k)(x′1, ...,x
′
k|x1, ...,xk) =(

N
k

) ∫
dxk+1...dxNΨ(x′1, ...,x

′
k,xk+1...,xN)Ψ(x1, ...,xk,xk+1, ...,xN)

(2.7)

〈Ψ|Ô(k)|Ψ〉 =

∫
dx1...dxkÔ(k)Γ(k)(x′1, ...,x

′
k|x1, ...,xk) (2.8)

Most operators of interest are either one or two body operators:

Γ(1)(x′1|x1) = N

∫
dx2...dxNΨ(x′1,x2, ...,xN)Ψ(x1,x2, ...xN) (2.9)

Γ(2)(x′1,x
′
2|x1,x2) =(

N
2

) ∫
dx3...dxNΨ(x′1,x

′
2,x3...,xN)Ψ(x1,x2,x3...,xN)

(2.10)

The energy is an exact functional solely of the first order density matrix, and
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of the diagonal of the second order density matrix:

E =
∫
dx
[

1
2
∇2Γ(1)(x|x′)

]
x=x′

+
∫
dxvext(~x)γ(1)(x)

+
∫
dx
∫
dx′ 1

|~r−~r′|γ
(2)(x,x′)

(2.11)

γ(1)(x) = Γ(1)(x|x) (2.12)

γ(2)(x,x′) = Γ(2)(x,x′|x,x′) (2.13)

Summing over spin in γ(1)(x) the electron density is obtained:

ρ(r) =
∑
σ

γ(1)(rσ) (2.14)

Since the first order density matrix can be obtained by explicit integration
from Γ(2):

E = E[Γ(2)] (2.15)

However, given the number of the electrons and the external potential, in prin-
ciple we have all the information about the system, by solving the Schrödinger
equation. Therefore we obtain the wave function and the density of the sys-
tem: vext(~r) −→ ρ(r).
As Eext ≡ Eext[ρ(r)] (cfr. equations 2.11 and 2.14) we can presume that :

E = E[ρ(r)] (2.16)

The proof of this statement is given by the first Hohenberg-Kohn theorem 1,
whereas the second introduces a variational principle on the energy as a den-
sity functional [34]:

Theorem 1 (of Hohenberg and Kohn) The external potential vext(r) is
(to within an additive constant) a unique functional of the ground state density
ρ(r), and therefore :

vext(r)⇐⇒ ρ(r)

Corollarium 1 The ground state expectation value of any observable Ô is a
unique functional of the exact ground state density 2

O[ρ] = 〈Ψ[ρ]|Ô|Ψ[ρ]〉
1The first formulation of the theorem (1964) is valid only for non degenerate ground

states. However the basic formalism is easily extended to also include degerate cases.
2We drop out here the explicit dependence of the density from the electronic coordinate
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Therefore:

E[ρ] = T [ρ] +W [ρ] + V [ρ] = FHK [ρ] + V [ρ] (2.17)

FHK [ρ] is the universal HK functional. It is universal in the sense that it does
not depend on the external potential.

Theorem 2 (variational character of Energy functional) Given the ex-
act ground state density ρ0 for an external potential v0, and a different v-
representable density ρ,

Ev0 [ρ0] ≤ Ev0 [ρ] (2.18)

A function ρ(r) is termed pure state v-representable if it is the density of a
(possibly degenerate) ground state of the Hamiltonian of the system with some
suitably chosen local external potential v(r). By construction, the functionals
FHK [ρ] and Ev0 [ρ] are defined only for pure-state v-representable functions [14].
However, the original hope that all reasonably well-behaved non negative func-
tions are pure-state v-representable turned to be too optimistic therefore, an
extension of the domain of HK functional to arbitrary non-negative functions,
integrating to the given particle number N appears desiderable. A possible
choice is the Levy-Lieb functional [35],[36], that is defined for all functions
ρ(r) which can be represented as the density of some antisymmetric N-particle
function. These functions are called pure state N-representables.

FLL[ρ] = inf
Ψ→ρ
〈Ψ|T̂ + Ŵ |Ψ〉 (2.19)

All integrable non-negative functions are N-representable [14],[37], provided
that ∫

dr|∇ρ1/2(r)|2 < +∞

.

Beside the v- and N-representability problems, the form of exact universal
functional is unknow. Problems arise not only from the interaction term Ŵ ,
but also from the kinetic part of the functional. A possible strategy is to use a
model system of non-interacting electrons, as pointed out by Kohn and Sham
[38].
The central assertion of the Kohn-Sham scheme is 3:

3The subscript s indicate the non-interacting system related quantities
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For each interacting system (Ŵ 6= 0 in eq. 2.3), there must be a local mono-
electronic potential vs, such that the exact density of the interacting system is
equal to the density of the non-interacting system with external potential vs.

In the Kohn–Sham formulation, the density is expressed in terms of N or-
thonormal orbitals,

ρ(r) =
∑
i

|φi(r)|2 (2.20)

the universal functional is

FKS[ρ] = −1

2

∑
i

〈φi|∇2|φi〉+ EH [ρ] + EXC [ρ] (2.21)

where the Hartree (or classical Coulomb) energy is given by,

EH [ρ] =
1

2

∫ ∫
ρ(r1)ρ(r2)

r12

dr1dr2 (2.22)

Here EXC [ρ] is the exchange-correlation (XC) energy functional. It takes
into account the electron-electron interactions and the correction to the ki-
netic energy term of the interacting system. Minimizing the energy gives the
Kohn–Sham equation

f̂ si [ρ]φi(r) = εiφi(r) (2.23)

where the single-particle Kohn–Sham hamiltonian is

f̂ si = −1

2
∇2 + vs(r) + vH [ρ](r) + vXC [ρ](r) (2.24)

F̂KS =
∑
i

f̂ si (2.25)

Here the Hartree potential is

vH [ρ](r) =
δEH [ρ](r)

δρ(r1)
=

∫
ρ(r2)

r12

dr2 (2.26)

and the XC potential is

vXC [ρ](r) =
δEXC [ρ](r)

δρ(r1)
(2.27)
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Since no exact form of the XC functional is known, this functional is approx-
imated in practice. Once a XC approximation is chosen, the equations are
to be solved self-consistently. What differentiates between the various ap-
proaches to the DFT method is the choice of the exchange-correlation energy
functional. The theory provides no restrictions on the choice, therefore, vari-
ous approximations have been proposed. The principal are the Local Density
Approximation (LDA), the Generalized Gradient Approximation (GGA), the
global hybrid (GH) functionals and a new generation of hybrid functionals,
denoted as range-separeted (RSH) or long-range corrected (LRC).

LDA

Local-density approximations (LDA)[37],[14] are a class of approximations to
the XC energy functional that depend solely upon the value of the electronic
density at each point in space. Many approaches can yield local approximations
to the XC energy. However, overwhelmingly successful local approximations
are those that have been derived from the homogeneous electron gas (HEG)
model. In this regard, LDA is generally synonymous with functionals based
on the HEG approximation applied to realistic systems (molecules and solids).

In general, for a spin-unpolarized system, a local-density approximation for
the exchange-correlation energy is written as

ELDA
xc [ρ] =

∫
ρ(r)εxc(ρ) dr , (2.28)

the exchange-correlation energy density εxc, is a function of the density alone.
Usually it is assumed, in somewhat arbitrary way, to be able to separate the
components of the exchange and correlation functional, which is therefore writ-
ten as a sum :

Exc[ρ] = Ex[ρ] + Ec[ρ] (2.29)

so that separate expressions for Ex and Ec are sought. The exchange term
takes a simple analytic form for the HEG. Only limiting expressions for the
correlation density are known exactly, leading to numerous different approxi-
mations for Ec. The exchange-energy density of a HEG is known analytically.
The LDA for exchange uses the following expression, due to Dirac [39],

ELDA
x [ρ] = −3

4

(
3

π

)1/3 ∫
ρ(r)4/3 dr (2.30)
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This expression is obtained under the approximation that the exchange-energy
in a system where the density in not homogeneous, is obtained by applying the
HEG results pointwise. Analytic expressions for the correlation energy of the
HEG are not known except in the high- and low-density limits corresponding
to infinitely-weak and infinitely-strong correlation. For a HEG with density ρ,
the high-density limit of the correlation energy density is [23]:

εc = A ln(rs) +B + rs(C ln(rs) +D) (2.31)

and the low limit

εc =
1

2

(
g0

rs
+

g1

r
3/2
s

+ . . .

)
(2.32)

where the Wigner-Seitz radius is related to the density as

4

3
πr3

s =
1

ρ
. (2.33)

Accurate quantum Monte Carlo simulations for the energy of the HEG have
been performed for several intermediate values of the density, in turn provid-
ing accurate values of the correlation energy density [40]. The most popular
LDA’s to the correlation energy density interpolate these accurate values ob-
tained from simulation while reproducing the exactly known limiting behavior.
Various approaches, using different analytic forms for c, have generated several
LDA’s for the correlation functional, including

• Vosko-Wilk-Nusair (VWN) [41]

• Perdew-Zunger (PZ81) [42]

• Cole-Perdew (CP) [43]

• Perdew-Wang (PW92) [44]

The exchange-correlation potential corresponding to the exchange-correlation
energy for a local density approximation is given by

vLDA
xc (r) =

δELDA

δρ(r)
= εxc(ρ(r)) + ρ(r)

∂εxc(ρ(r))

∂ρ(r)
(2.34)
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In finite systems, the LDA potential decays asymptotically with an expo-
nential form. This is in error: the true exchange-correlation potential decays
much slower in a Coulombic manner (−1/2r) [42],[37]. The artificially rapid
decay manifests itself in the number of Kohn-Sham orbitals the potential can
bind (that is, how many orbitals have energy less than zero). The LDA po-
tential can not support a Rydberg series and underbond states are too high
in energy. This results in the HOMO energy being too high, so that any pre-
dictions for the ionization potential based on Koopman’s theorem are poor.
Further, the LDA provides a poor description of electron-rich species such as
anions where it is often unable to bind an additional electron, erroneously
predicting species to be unstable.

LDA functionals are important in the construction of more sophisticated
approximations to the exchange-correlation energy, such as generalized gradi-
ent approximations or hybrid functionals, as a desirable property of any ap-
proximate exchange-correlation functional is that it reproduce the exact results
of the HEG for non-varying densities. As such, LDA’s are often an explicit
component of such functionals.

GGA

The LDA functional is exact for the homogeneous electron gas, but in general
tends to underestimate by around 10% the exchange energy of atoms. For
example, for the Ne atom the fair value of Ex is -329 eV while from the Dirac
functional a value of -298 eV is obtained with a considerable error (about 4-5
times the binding energy of H2 molecule).
Among the many faults, it also does not give rise to the right asymptotic be-
havior. In the 80’s efforts to correct the Dirac functional have been proposed,
moving from local to nonlocal functional, or to functionals where the energy
density depends on the density of its gradient. These methods are also called
by the name of the Generalized Gradient Approximation (GGA) [45],[46],[37].
GGA is an improvement quite natural since for the uniform density gradient
is zero, while it is not for the usual atomic and molecular density. In general,
GGA functionals are of the type:

Exc[ρ,∇ρ] =

∫
ρ(r)fx(ρ,∇ρ, r)dr (2.35)

One of the most accurate result for exchange part was obtained by Becke [46]
on the basis of some reasoning aimed at correcting the bad asymptotic behav-
ior of the energy density of the Dirac exchange functional:
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EB
x [ρ,∇ρ] = ELDA

x [ρ] +

∫
ρ(r)εBx (ρ,∇ρ, r)dr (2.36)

where

εBx (ρ,∇ρ, r) = −βρ1/3 X2

1 + 6β sinh−1X
(2.37)

with

X =
|∇ρ|
ρ4/3

and β = 0.0042 (2.38)

β was empirically determined to accurately to reproduce the Hartree-Fock ex-
change energy of noble gases. εBx has the correct asymptotic behavior for the
exact density. However, it should be noted that the corrected exchange poten-
tial:

vx(r) =
δEx
δρ

= εx + ρ
∂εx
∂ρ
−∇ · ∂Ex

∂(∇ρ)
(2.39)

has an asymptotic behavior that is identical to the exchange energy density. It
can be shown that the potential corresponding to the energy density of Becke
decays as −1/r2 instead of −1/r.
The merit of this functional was very large: from 1988 onwards, the KS-DFT
method has become a widely used tool in many fields of theoretical chemistry,
replacing the Hartree-Fock method in computational chemistry.
A positive feature of this functional is that the use of ∇ρ introduced a proper
treatment of the shell structure of atoms: this is the main reason for its success
in representing the energy exchange. Among the defects it has however to be
mentioned that the exchange of Becke (B88) reduces but does not completely
eliminate the error of self-interaction. This will be discussed in a next section.
Concerning the correlation part, one of the most used is the Lee, Yang and
Parr (LYP) correlation functional [47], based on the expression of Colle and
Salvetti. The novelty of this functional is that it was derived from a correlated
wave function for the He atom and not from the HEG. Colle and Salvetti [48]
approximate the correlation energy formula for the Helium atom in terms of
the second order HF density matrix. Lee, Yang and Parr turned this into a
functional of the density, gradient and Laplacian. Miehlich, Savin, Stoll and
Press [49], later eliminated the Laplacian terms using integration by parts. For
closed shell systems the functional is
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Ec[ρ,∇ρ] = −a
∫

ρ
1+dρ−1/3

−ab
∫
ωρ2

[
CFρ

8/3 + |∇ρ|2
(

5
12
− 7δ

72

)
− 11

24
ρ2∇ρ|2

]
dr

(2.40)

ω =
exp(−cρ−1/3)

1 + dρ−1/3
ρ−11/3 δ = cρ−1/3 +

dρ−1/3

1 + dρ−1/3
(2.41)

a = 0.04918 b = 0.132 c = 0.2533 d = 0.349 (2.42)

Hybrid functionals

Two distinct philosophies have emerged in the construction of modern exchange-
correlation functionals. Perdew supports the idea that functionals should be
derived non-empirically using rigorous quantum-mechanical principles and ex-
act conditions, however Becke advocates the semi-empirical approach whereby
a general functional form containing free parameters is proposed, and the pa-
rameters are subsequently fitted to minimise the error in exact physical prop-
erties. The semi-empirical concept is extensively used and developed within
the quantum chemistry community where there is a wealth of known atomic
and molecular data that can be used to fit functionals.
Hybrid functionals incorporate a portion of exact exchange from Hartree-Fock
theory with exchange and correlation from other sources (ab initio, such as
LDA and GGA, or empirical). The exact exchange energy functional is ex-
pressed in terms of the Kohn-Sham orbitals rather than the density, therefore
sometimes it is indicated as an implicit density functional.
The hybrid approach to approximate the XC density functional was intro-
duced by Axel Becke in 1993 [50], on the basis of the adiabatic connection
formula (ACF), which connects the noninteracting KS reference system to the
fully interacting real system, through a continuum of partially interacting real
systems, all sharing a common density.

Hybridization with Hartree-Fock exchange provides a simple scheme for im-
proving many molecular properties, such as atomization energies, bond lengths
and vibration frequencies, which tend to be poorly described with simple ab
initio functionals of the LDA or GGA type.
A hybrid exchange-correlation functional is usually constructed as a linear
combination of the Hartree-Fock exact exchange functional (EHF

x ) and any
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number of exchange and correlation explicit density functionals. The parame-
ters determining the weight of each individual functional are typically specified
by fitting the functional’s predictions to experimental or accurately calculated
thermochemical data.
Standardised sets of experimental data, collated by Pople and co-workers and
known as the Gaussian set 4, were especially suited for the purposes of con-
structing semi-empirical functionals. For example, the G2 set consists of highly
accurate experimental thermochemical data - atomisation energies, ionisation
potentials and electron and proton affinities - of a range of atomic and molec-
ular systems, drawn from the first two rows of the periodic table.
As an example, the popular B3LYP (Becke, three-parameter, Lee-Yang-Parr)
[46],[47],[50] exchange-correlation functional takes the form:

EB3LYP
xc = ELDA

xc + a0(EHF
x − ELDA

x ) + ax(E
GGA
x − ELDA

x ) + ac(E
GGA
c − ELDA

c )
(2.43)

where a0 = 0.20, ax = 0.72, and ac = 0.81 are the three empirical parameters
determined by fitting the predicted values to a set of atomization energies,
ionization potentials, proton affinities, and total atomic energies;[5]
EGGA
x and EGGA

c are generalized gradient approximations: the Becke 88 ex-
change functional[6] and the correlation functional of Lee, Yang and Parr,[7]
and ELDA

c is the VWN local-density approximation to the correlation func-
tional. Hybrid functionals successfully demonstrate the need to incorporate
fully non-local information in order to deliver greater accuracy. In a differ-
ent phylosophy, a parameter free hybrid functional is the PBE0 of Adamo
and Barone [54]. Perdew, Burke and Ernzerhof [45] have introduced a GGA
functional in which all the parameters, other than those in its local spin den-
sity (LSD) component, are fundamental constants. This is obtained using the
Perdew–Wang PW92 [44] correlation functional and the exchange contribution:

EPBE
x [ρ,∇ρ] =

bX2

1 + aX2
(2.44)

where X is defined in eq.(2.38) and b = 0.00336, a = 0.00449. In the ACF
framework the XC functional is written as only one parameter hybrid:

EXC [ρ,∇ρ] = EPBE
XC [ρ,∇ρ] + a

(
EHF
XC − EPBE

XC [ρ,∇ρ]
)

(2.45)

4During the years the number of data collected increases and different set exist, indicated
as G1, G2 and G3 [51],[52],[53]
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However on the basis of what Perdew and co-workers have shown, the opti-
mum value of the a coefficient can be fixed a priori taking into account that
fourth-order perturbation theory is sufficient to get accurate numerical results
for molecular systems. Therefore:

EPBE0
XC [ρ,∇ρ] = EPBE

XC [ρ,∇ρ] +
1

4

(
EHF
XC − EPBE

XC [ρ,∇ρ]
)

(2.46)

Some problems in DFT-KS

The use of approximate XC functionals gives rise to some problems in the de-
scription of the molecular systems. One of these is the asymptotic behavior of
the XC potential [46], as we already mentioned in the case of LDA and GGA.
Since hybrid functionals contain only a fixed percentage of HF exchange (that
shows the correct asymptotic behavior), the correction done is only propor-
tional to this amount. Another well know problem, linked to the asymptotic
behavior problem, is the so-called Self-Interaction of the density [42]. Ap-
proaches that attempt to correct this problem are know as Self-Interaction
Correction (SIC). Let us illustrate the problem in few words.
One of the major difference between a quantum electron density and charge dis-
tribution is in the classical self-interaction. In fact, an electron interacts with
all others but not with itself therefore, for a density of N particles, the right
number of interactions is the number of electron pairs without repetition, and
scale as N2, or more precisely N(N−1)/2. The number of self-interactions will
instead be proportional to N and, for a macroscopic density (eg. N = 1020),
the fraction of the number of self-interactions with respect to the number of
interactions is largely negligible. However for a molecular density this issue is
relevant.
In the HF method, which approximates the wave function with a single Slater
determinant, but it maintains the proper antisymmetry of the wave function,
this requirement is fulfilled in a natural way. In fact, in the energy expression
of inter-electronic repulsion

E
(2)
HF =

1

2

N∑
i=1

N∑
j=1

[〈ij|ij〉 − 〈ij|ji〉] (h+
N∑
j=1

[Jj −Kj])φi = εiφi (2.47)

it is clear that for i = j (interaction of two electrons in the same spin-orbital
or an electron with itself) the Coulomb term is canceled by the terms of ex-
change.
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In the Hartree method the wave function is a product of spin orbitals for which
the antisymmetry of the wave function is not covered and the cancellation does
not occur in the equations and the self interaction term is eliminated ad-hoc:

E
(2)
H =

1

2

N∑
i=1

N∑
j 6=i

〈ij|ij〉 (h+
N∑

j=1,j 6=i

Jj)φi = εiφi (2.48)

with the result that there is a specific equation for each spin orbital. The
correct number of interactions turns out to be N(N − 1)/2, or all pairs of
electrons without repetition.
The electrostatic energy in the DFT method includes the Coulomb term

EH [ρ] = J [ρ] =
1

2

∫
dr1

∫
dr2

ρ(r1)ρ(r2)

r12

=
1

2

N∑
i=1,j=1

〈ij|ij〉 (2.49)

that is the same as the Hartree without the ad-hoc correction, and includes
N2/2 total interactions and N/2 = (N2 −N(N − 1))/2 spurious interactions.
This defect is not unexpected given that we have defined the functional EH [ρ]
as the classic inter-electronic energy. Obviously the functional Exc in its exact
form will have to cancel the spurious terms contained in J [ρ]. Unfortunately,
the exact exchange-correlation energy functional is not known and also with
most of the modern functionals is possible to only get a partial cancellation
of the spurious terms, so the final energy is also affected by problems of self-
interaction. This not precise scaling of the number of interactions with the
number of electrons becomes particularly critical in the case, for example, of
calculations of ionization energies, where the final result comes from the energy
differences between neutral and ionic systems, thus having a different number
of electrons. In this and other cases we can not expect effective cancellation of
the error of the SI. This issue is also reflected in the behavior of the asymptotic
effective potential vxc in the equations of KS.
There are several approaches to correct this problem (see for example references
in [37]). The best known is certainly that of Perdew and Zunger (PZ) [42],
which has the disadvantage of being orbital-dependent, so we obtain N different
KS equations. Other methods make use of a medium approach, based on an
approach similar to that of Fermi and Amaldi [55], in which the density is
scaled by N − 1/N , such as in the ADSIC method [56],[57].

The Long Range Correction Scheme

The local nature of approximate XC functionals in DFT causes serious prob-
lems in practical calculations of various molecular properties. Introducing a
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fixed amount of the Hartree–Fock (HF) exchange contribution gives in many
cases partial solutions of these problems. Nevertheless, some molecular prop-
erties such as the longitudinal polarizabilities of all-trans polyenes with in-
creasing number of ethylene units cannot be described even qualitatively by
such conventional hybrid functionals. The poor performance of the pure and
conventional hybrid functionals for these quantities can be attributed to the
(partial) lack of the long-range exchange interaction. In these years, a power-
ful prescription has been suggested, namely, the so-called long-range correction
(LRC) [58] to exchange functionals. The basic idea of LRC is to simply sep-
arate the electron– electron Coulomb interaction into short-range (SR) and
long-range (LR) parts [59],

1

r12

=
1− w(r12)

r12

+
w(r12)

r12

(2.50)

by a separation-function w(r12), and use the SR part to compute the den-
sity functional exchange contribution and the LR part in the form of the HF
exchange energy. The functionals obtained in this way, the range-separated
hybrid functionals (RSH), have shown dramaticaly improved performance in
the problematic cases mentioned earlier. The complementary error function
erfc(µr12) has been employed almost exclusively as w(r12) with Gaussian-
type basis functions (GTF) for the ease of the computation of integrals over
the modified Coulomb operator. Several extensions of LRC (eq. 2.50) have
been suggested for further improvements of accuracy [60],[61],[62].
Yanai et al. proposed [63] a general form of the range-separation named
Coulomb-attenuated method (CAM),

1

r12

=
1− (α + β)erf(µr12)

r12

+
(α + β)erf(µr12)

r12

(2.51)

CAM indroduces a global mixing of the HF exchange with a fixed ratio, which
is determined by α, as well as the range-separated one. In addition, α + β
indicates the ratio of the HF exchange in r = ∞, which is fixed at 1.0 in the
original LRC scheme eq ( 2.50). The introduction of the parameters α and β
bridges the pure (α = β = 0), conventional hybrid (α = 0 and β = 0), and
range-separated hybrid (β = 0) functionals seamlessly.
The performance of the proposed CAM-B3LYP functional with α = 0.19,
β = 0.46, and µ = 0.33 has been assessed by several authors [64],[65],[66],
[67],[68]. In this Thesis we extensively use the CAM-B3LYP functional to
calculate excited state energies and properties in the LR-KS TD-DFT scheme.
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2.3 The Time Dependent DFT

The traditional KS-DFT is limited to time independent systems, that is,
ground states, and if one wants to establish an analogous time-dependent
theory, time-dependent versions of the first and second HK theorems must
be formulated and a time-dependent KS equation must be derived. In this
section, we present the Runge-Gross theorem [15], which is a time-dependent
analogue to HK first theorem and the role of the action integral in a time-
dependent variational principle is analysed.

The Runge-Gross theorem can be seen as the time dependent analogue
of the first Hohenberg-Kohn theorem and constitutes the cornerstone of the
formal foundation of the time-dependent Kohn-Sham formalism.

Theorem 3 (of Runge and Gross) The exact time-dependent electron den-
sity, ρ(r, t), determines the time-dependent external potential, V (r, t), up to a
spatially constant, time-dependent function C(t) and thus the time-dependent
wave function, Ψ(r, t), up to a time dependent phase factor.

The wave function is thus a functional of the electron density

Ψ(r, t) = Ψ[ρ(t)](t)e−iαt (2.52)

with (d/dt)α(t) = C(t). Also in this case, V (t) is a time-dependent external
potential and is given as a sum of one-particle potentials

V (t) =
N∑
i

v(ri, t) (2.53)

To prove the Runge-Gross theorem, it must be demonstrated that two den-
sities ρA(r, t) and ρB(r, t) evolving from a common initial state Ψ0 under the
influence of two different potentials vA(r, t) and vB(r, t) are always different if
the two potentials differ by more than a purely time-dependent function, that is

vA(r, t) 6= vB(r, t) + C(t) (2.54)

An assumption to be made is that the potentials can be expanded in a Taylor
series in time around t0 The proof proceeds in two steps: First it is shown that
the current densities, jA(r, t) and jB(r, t), corresponding to vA(r, t) and vB(r, t)
are always different, and in a second step, it is derived that different current
densities require different electron densities. Consequently, for different time-
dependent external potentials at t 6= t0, one obtains different time-dependent
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electron densities infinitesimally later than t0. With this, the one-to-one map-
ping between time-dependent densities and time-dependent potentials is es-
tablished, and thus, the potential and the wave function are functionals of the
density 5.
Furthermore, the expectation value of any quantum mechanical operator is a
unique functional of the density because the phase factor in the wave function
cancels out.
Strictly speaking, the expectation value implicitly depends also on the initial
state, Ψ0, that is, it is a functional of ρ(r, t) and Ψ0. For most cases, however,
when Ψ0 is a nondegenerate ground state, O[ρ](t) is a functional of the density
alone, because Ψ0 is a unique functional of its density ρ0(r) by virtue of the
traditional first Hohenberg-Kohn theorem.
The one-to-one mapping between time-dependent potentials and time-dependent
functionals represents the first step in the development of a time dependent
many-body theory using the density as a fundamental quantity. A second
requirement is the existence of a variational principle in analogy to the time-
independent case, in which it is given by the above-described second Hohenberg-
Kohn theorem [37]. In general, if the time-dependent wave function Ψ(r, t) is a
solution of the time-dependent Schrödinger equation with the initial condition

Ψ(r, t0) = Ψ0(t) (2.55)

then the wave function corresponds to a stationary point of the quantum me-
chanical action integral.

A =

∫ t1

t0

dt〈Ψ(r, t)|i ∂
∂t
− Ĥ(r, t)|Ψ(r, t)〉 (2.56)

which is a functional of ρ(r, t) owing to the Runge-Gross theorem, that is,

A[ρ] =

∫ t1

t0

dt〈Ψ[ρ](r, t)|i ∂
∂t
− Ĥ(r, t)|Ψ[ρ](r, t)〉 (2.57)

Consequently, the exact electron density ρ(r, t) can be obtained from the Euler

5Few years ago, van Leeuwen presented a generalization of the Runge-Gross theorem
and proved that a time dependent density ρ(r, t) obtained from a many-particle system can
under mild restriction on the initial state always be reproduced by an external potential in
a many-particle system with different two-particle interaction.
For two states with equivalent initial state and the same two-particle interaction, van
Leeuwen’s theorem reduces to the Runge-Gross theorem.
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equation

∂A[ρ]

∂ρ(r, t)
= 0 (2.58)

when appropriate boundary conditions are applied. Furthermore, the action
integral can be split into two parts, one that is universal (for a given num-
ber of electrons) and the other dependent on the applied potential v(r, t) =
vel−nuc(r) + vappl(r, t)

A[ρ] = B[ρ] +

∫ t1

t0

dt

∫
d3rρ(r, t)v(r, t) (2.59)

The universal functional B[ρ] is independent of the potential v(r, t) and is
given as

B[ρ] =

∫ t1

t0

dt〈Ψ(r, t)|i ∂
∂t
− T̂ (r)− V̂e−e(r)|Ψ(r, t)〉 (2.60)

In summary, the variation of the action integral with respect to the density
according to eq. (2.58) is a prescription of how the exact density can be
obtained.

2.4 Linear Response KS approach to TD-DFT

The stationary action principle can be applied to derive a time-dependent
Kohn-Sham equation in analogy to the time-independent counterpart. The
time-dependent Kohn-Sham equations [16] can be conveniently expressed in
matrix notation in a basis of, say, M time-independent single-particle wave
functions {χi(r)} such that

ϕp(r, t) =
∑
j

cpj(t)χj(r) (2.61)

Then, the time-dependent KS equation reads

i
∂

∂t
C = FKSC (2.62)

Here, the i-th column of the matrix C contains the time-dependent expan-
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sion coefficients of ϕi(r, t) and FKS is the matrix representation of the time-
dependent Kohn-Sham operator 6 in the given basis.

Multiplication of eq (2.62) from the right with C† and then subtraction
from the resultant equation of its Hermitian transpose leads to the Dirac form
of the time dependent Kohn-Sham equation in density matrix form. This equa-
tion reads7

∑
q

(FpqPqr − PpqFqr) = i
∂

∂t
Ppr (2.63)

in which the density matrix Ppr is in general related to the electron density via

ρ(r, t) =
N∑
p,r

M∑
i,j

cpj(t)c
∗
ri(t)χj(r)χ

∗
i (r) =

M∑
i,j

χj(r)χ
∗
i (r)Pij (2.64)

To obtain excitation energies and oscillator strengths employing the time-
dependent KS approach, two different strategies can be followed. One pos-
sibility is to propagate the time-dependent KS wave function in time, which is
referred to as ”real-time TD-DFT”.
The other, most used in quantum chemistry and also in this Thesis, is the
linear response approach: using a density matrix formalism, it is shown how
the excitation energies are obtained from the linear time-dependent response
of the time-independent ground-state electron density to a time-dependent ex-
ternal electric field [16].
Before the time-dependent electric field is applied, the system is assumed to
be in its electronic ground state, which is determined by the standard time-
independent Kohn-Sham equation, which in the density matrix formulation is:∑

q

(
F (0)
pq P

(0)
qr − P (0)

pq F
(0)
qr

)
= 0 (2.65)

with the idempotency condition∑
q

P (0)
pq P

(0)
qr = P (0)

pr (2.66)

F
(0)
pq and P

(0)
pq correspond to the Kohn-Sham Hamiltonian and density matrix

of the unperturbed ground state, respectively. The elements of the time inde-
pendent Kohn-Sham Hamiltonian matrix are given as [24]

6The time-independent counterpart is given in eq. 2.25
7We drop out the superscript KS



30 CHAPTER 2. TD-DFT EXCITED STATES

F (0)
pq =

∫
d3rϕ∗p(r)

{
−1

2
∇2 −

M∑
K=1

ZK
|r −RK |

+

∫
d3r′

ρ(r′)

|r − r′|
+
δExc
δρ(r)

}
ϕq(r)

(2.67)

In the basis of the orthonormal unperturbed single-particle orbitals of the
ground state, these matrices are simply given as 8

F (0)
pq = δpqεp (2.68)

and

P
(0)
ij = δij

P
(0)
ai = P

(0)
ia = P

(0)
ab = 0 (2.69)

Now, an oscillatory time-dependent external field is applied, and the first-
order (linear) response to this perturbation is analysed. In general perturba-
tion theory, the wave function or in this case the density matrix is assumed to
be the sum of the unperturbed ground state and its first-order time-dependent
change,

Ppq = P (0)
pq + P (1)

pq (2.70)

The same holds for the time-dependent Kohn- Sham Hamiltonian, which to
first order is given as the sum of the ground-state KS Hamiltonian and the
first-order change

Fpq = F (0)
pq + F (1)

pq (2.71)

Substituting eqs (2.70) and (2.71) into the time-dependent Kohn-Sham eq.
(2.63) and collecting all terms of first order yield∑

q

(
F (0)
pq P

(1)
qr − P (1)

pq F
(0)
qr + F (1)

pq P
(0)
qr − P (0)

pq F
(1)
qr

)
= i

∂

∂t
P (1)
pr (2.72)

8Again, we follow the convention that indices i, j, etc. correspond to occupied orbitals,
a, b, etc. correspond to virtual orbitals and p, q, r, etc. refer to general orbitals.
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The first-order change of the Kohn-Sham Hamiltonian consists of two terms.
The first contribution corresponds to the applied perturbation, the time depen-
dent electric field itself, and it has been shown that it is sufficient to consider
only a single Fourier component of the perturbation, which is given in matrix
notation as

gpq =
1

2
[fpqe

−iωt + f ∗qpe
iωt] (2.73)

In this equation, the matrix fpq is a one-electron operator and describes the
details of the applied perturbation. Furthermore, the two-electron part of the
Kohn-Sham Hamiltonian changes according to changes in the density matrix.
The changes in the KS Hamiltonian due to the change of the density are given
to first order as

∆F (0)
pq =

∑
st

∂F
(0)
pq

∂Pst
P

(1)
st (2.74)

such that the first-order change in the KS Hamiltonian is altogether given as

F (1)
pq = gpq + ∆F (0)

pq (2.75)

The time-dependent change of the density matrix induced by the perturbation
of the KS Hamiltonian, this is to first order given as

P (1)
pq =

1

2
[Xpqe

−iωt + Y ∗qpe
iωt] (2.76)

where Xpq and Yqp represent perturbation densities.
Inserting the last four equations into eq. (2.72) and collecting the terms that
are multiplied by e−iωt yield the following expression

∑
q

[
F (0)
pq Xqr −XpqF

(0)
qr +

(
fpq +

∑
st

∂F
(0)
pq

∂Pst
Xst

)
P (0)
qr −

P (0)
pq

(
fqr +

∑
st

∂F
(0)
qr

∂Pst
Xst

)]
= ωXpr (2.77)

The terms multiplied by eiωt lead to the complex conjugate of the above equa-
tion. The idempotency condition eq.(2.66) gives an expression for the first
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order change of the density matrix of the form∑
q

[
P (0)
pq P

(1)
qr + P (1)

pq P
(0)
qr

]
= P (0)

pq (2.78)

which restricts the form of the matrix X in eq. (2.77) such that

• occupied-occupied and virtual-virtual blocks (Xii and Yaa) are zero,

• only the occupied-virtual and virtual-occupied blocks (Xia and Yai), re-
spectively, contribute and are taken into account.

Remembering the diagonal nature of the unperturbed KS Hamiltonian and
density matrixes, one obtains the following pair of equations:

F (0)
aa Xai −XaiF

(0)
ii +

(
fai +

∑
bj

[
∂F

(0)
ai

∂Pbj
Xbj +

∂F
(0)
ia

∂Pjb
Ybj

])
P

(0)
ii = ωXai (2.79)

F
(0)
ii Yai − YaiF (0)

aa −

(
fia +

∑
bj

[
∂F

(0)
ia

∂Pbj
Xbj +

∂F
(0)
ai

∂Pjb
Ybj

])
P

(0)
ii = ωYai (2.80)

In the zero-frequency limit (fai = fia = 0), that is, under the assumption that
the electronic transitions occur for an infinitesimal perturbation, one obtains
a non-Hermitian eigenvalue equation, the LR-KS equation,[

A B
B∗ A∗

] [
X
Y

]
= ω

[
1 0
0 −1

] [
X
Y

]
(2.81)

the structure of which is equivalent to the Time Dependent Hartree-Fock (TD-
HF) [33].
Here, the elements of the matrices A and B are given as

Aiaσ,jbτ = δijδabδστ (εa − εb) + 〈iσjτ |aσbτ 〉 − CHF δστ 〈iσaσ|jτbτ 〉

+(1− CHF )〈iσjτ |fxc|aσbτ 〉
(2.82)

Biaσ,jbτ = 〈iσbτ |aσjτ 〉 − CHF δστ 〈iσaσ|bτjτ 〉

+(1− CHF )〈iσbτ |fxc|aσjτ 〉
(2.83)

Equations (2.81) - (2.83) represent the TD-DFT formalism, which is solved
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to obtain excitation energies ω and transition vectors |X + Y〉 when the un-
perturbed KS Hamiltonian , from which the response is derived, contains a
so-called pure DFT XC potential or also parts of Hartree-Fock exchange. In-
deed, the elements of the matrices A and B contain also the response of the
Hartree-Fock exchange potential, as well as the one of the chosen XC potential
at a rate determined by the factor CHF determined in the hybrid XC func-
tional. It becomes apparent that the equations contain TD-HF and pure (i.e.
no hybrid functional used) TD-DFT as limiting cases if CHF = 1 or CHF = 0,
respectively.

In the so-called adiabatic local density approximation (ALDA) [16] the
originally non-local (in time) time-dependent xc kernel is replaced with a
time-independent local one based on the assumption that the density varies
only slowly with time. This approximation allows the use of a standard local
ground-state xc potential in the TD-DFT framework. In the ALDA, the re-
sponse of the xc potential corresponds to the second functional derivative of
the exchange-correlation energy, which is also called the xc kernel, and is given
as

〈iσjτ |fxc|aσbτ 〉 =

∫
d3rd3r′ϕ∗i (r)ϕa(r)

δ2EXC
δρ(r)δρ(r′)

ϕ∗b(r
′)ϕ∗j(r

′) (2.84)

In analogy to TDHF and CIS, the Tamm-Dancoff approximation (TDA) to
TD-DFT has also been introduced [69]. It corresponds to neglecting the ma-
trix B in eq. (2.81), that is, only the occupied-virtual block of the initial
K = X + Y matrix (2.81) is taken into account. This leads to a Hermitian
eigenvalue equation

AX = ωX (2.85)

where the definition of the matrix elements of A is still the same as in eq.
(2.82).
It is worthwhile to note that TDA/TD-DFT is usually a very good approxi-
mation to TD-DFT [70]. A possible reason may be that in DFT correlation is
already included in the ground state by virtue of the XC functional, which is
not the case in HF theory. Since the magnitude of the Y amplitudes and the
elements of the B matrix are a measure for missing correlation in the ground
state, they should be even smaller in TD-DFT than in TD-HF and, thus, be
less important. TD-DFT is also more resistant to triplet instabilities than
TD-HF.
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2.5 Analytical Gradients of LR-KS energy

Since molecular properties can be derived as analitical derivatives of the system
energy, an important advance for Quantum Chemical applications of TD-DFT
has been the implementation of analytic derivatives [19],[20] for TD-DFT ex-
cited states.
This is primarily a matter of calculating

ωξ =
∂ω

∂ξ

to add to

Eξ
GS =

∂EGS
∂ξ

to obtain

Eξ
K =

∂EK
∂ξ

,

the derivative of the energy of the excited state K with respect to a generic
perturbation ξ.
This derivative expression

ωξK =
1

2
〈XK + YK |(A + B)ξ|XK + YK〉+

1

2
〈XK −YK |(A−B)ξ|XK −YK〉 (2.86)

does not involve the derivatives of the excitation amplitudes [i.e., the left and
right eigenvectors of eq. (2.81)] because they have been variationally deter-
mined, but it does require the knowledge of the change in the elements of Fock
matrix in the MO basis which in turn requires the knowledge of the MO coeffi-
cients derivatives, which are the solution of the couple perturbed Kohn-Sham
equations (CPKS).
It is well known, however, that there is no need to solve the CPKS equations
for each perturbation, but rather only for one degree of freedom, to find the
so called Z-vector or relaxed density, which represents the orbital relaxation
contribution to the one-particle density matrices (1PDM) involved in all post-
SCF gradient expressions.

PK = P0 + PK
∆ (2.87)

PK
∆ = TK + ZK (2.88)
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The TK contains the occupied-occupied and virtual-virtual blocks of P∆

P∆
kl = −1

2

∑
a

[(X + Y )kaσ(X + Y )alσ

+(X − Y )kaσ(X − Y )alσ] (2.89)

P∆
bc = −1

2

∑
i

[(X + Y )ibσ(X + Y )ciσ

+(X − Y )ibσ(X − Y )ciσ] (2.90)

The ZK matrix in eq. (2.88) collects the occupied-virtual blocks of P∆. Such
blocks are obtained by solving the following Z-vector equation [20]:

G+
aiσ[P∆

bj ] + δabδijδσσ′(εaσ − εiσ)P∆
aiσ = Laiσ (2.91)

where we define two contractions of a nonsymmetric density matrix P with the
four-indexes portion of the A + B and A − B matrices into the two-electron
integrals portion of a nonsymmetric Fock-like matrix, i.e.

G+
pqσ[Prs] =

∑
rsσ′

[
2(pqσ|rsσ′) + 2fXcpqσ,rsσ′

−cXδσσ′ [(psσ|rqσ′) + (prσ|sqσ′)]]Prsσ′

G−pqσ[Prs] =
∑
rsσ′

[[(psσ|rqσ′) + (prσ|sqσ′)]]Prsσ′ (2.92)

The Lagrangian Laiσ depends only from occupied-occupied and virtual-virtual
blocks of P∆, i.e TKij and TKab

Laiσ = C1aiσ − C2aiσ +G+
aiσ[P∆

kl ] +G+
aiσ[P∆

bc ] (2.93)

C1aiσ =
∑
b

(X + Y )biσG
+
baσ[(X + Y )rs]

+
∑
b

(X − Y )biσG
−
baσ[(X − Y )rs]

+
∑
b

(X + Y )biσG
Xc
baσ[(X + Y )rs] (2.94)
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C2aiσ =
∑
j

(X + Y )ajσG
+
ijσ[(X + Y )rs]

+
∑
j

(X − Y )ajσG
−
ijσ[(X − Y )rs] (2.95)

This allows the calculation of excited-state structure and properties such
as true dipole moments, rather than just transition dipole moments, showing
that such properties are also accessible from TD-DFT [20].
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2.6 Critical analysis of fuctionals performances

in LR-KS: a new diagnostic index

From an applicative point of view, the use of LR-KS approach to TD-DFT
in combination with approximated XC functionals presents some difficulties
in describing charge transfer (CT) and Rydberg (Ry) excitations, absorption
spectra of systems with many electron excitations (such as in polyenes) or
with open shell ground state [25],[24]. In any case, in the literature there are
extended studies showing the very good TD-DFT performances in reproduc-
ing excitation energies for transitions with a local character, such as n-π∗ and
π-π* [26]-[30]. The situation, however, is more complicated than what it could
appear as, in some cases, TD-DFT well performs also for those excitations
for which we expect possible failures, such as intramolecular charge transfer
excitations[71]. Here an analysis on the performances of the Linear Response
(LR) TD-DFT approach in determining electronic excitation energies is pre-
sented. The analysis is focused on local or nonlocal changes in the electronic
density and on the role played by the Hartree Fock Exchange (HF-X). We
introduce a new diagnostic index linked to the variation in the charge centroid
of the single electron components of the excitation. It is shown how this index
can be used as a diagnostic test for the description of the nature of the exci-
tation studied by different hybrid functionals. It is in fact difficult to achieve
a clear and unequivocal picture only by looking at the molecular orbitals in-
volved, especially for large systems.
We compare the new index with the Λ index proposed by Tozer and collabora-
tors [72], which is based on the overlap of the absolute value of the molecular
orbitals involved in the excitation, and we analyse the respective potentialities
in achieving a good diagnosis of TD-DFT accuracy with Rydberg and charge-
transfer excitations. Finally, we show that the principal effect of increasing the
HF-X percentage is to increase orbital energy differences, making any analysis
based only on the evaluation of shape and extension of molecular orbitals not
enough to obtain an exhaustive diagnostic index for TD-DFT users.

2.6.1 Definition of the Γ index

In 2003, Dreuw et Al. [73] showed that, in the case of intermolecular CT
(iCT), for which the product function φi(r)φa(r)→ 0 ,
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AiCTiaσ,jbτ = δijδabδστ (εa − εb)− CHF δστ 〈iσaσ|jτbτ 〉 (2.96)

BiCT
iaσ,jbτ = 0 (2.97)

Starting from this point, a diagnostic test, based on the overlap of absolute
values of molecular orbitals, was recently presented by Peach et al. [72], to
analyse the performance of XC functionals in reproducing local, Rydberg and
intramolecular CT excitations. They proposed index is defined as:

Λ =

∑
iaK

2
ia

∫
|φi(r)||φa(r)|dr∑
iaK

2
ia

(2.98)

where
Kia = Xia + Yia (2.99)

This index measures the overlap between the different KS orbitals involved
in the excitation, and, for GGA and hybrid functionals, it can be correlated to
the error of TD-DFT excitation energies with respect to more correlated wave
function based methods. However,as the authors themselves pointed out, a
correlation between the errors and Λ values is present only for Λ values lower
than 0.4 for GGA and 0.3 for hybrid functionals. By contrast, for Λ > 0.4 we
cannot be sure to obtain accurate values of excitation energies by using hybrid
functionals [74]. It is also worth noting that the range-separated hybrid func-
tionals, such as CAM-B3LYP do not show this correlation between excitation
energy errors and values of Λ [72].

Our considerations start from the observation that the TD-DFT low accu-
racy in describing CT excitations (both intra or intermolecular) or Rydberg
excitations is linked to a not correct description of the local variation of elec-
tronic density during excitation. As Ziegler et al.[75] recently pointed out, the
GGA Hessian can be used to describe changes in energy due to small per-
turbations of electron density, but it should not be applied to one-electron
excitations involving the density rearrangement of a full electron charge. The
Hartree-Fock Hessian describe larger pertubations to electron density, due to
the complete self interaction cancellation by mean of exact exchange that is
only partially taken into account in hybrid functionals. Therefore, an index
able to describe the amount of this spatial rearrangement could warn the user
when the XC-functional is inadequate. We expect a small variation of electron
density for local valence excited states and higher values in the case of Rydberg
or CT states. We define the index, Γ, in order to describe the variation of the
single electron charge sferoids after excitation as:
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Γ =
∑
ia

K2
ia∆ia (2.100)

where

∆ia = |∆a−∆i| = ||〈φa|r2|φa〉− 〈φa|r|φa〉2|− |〈φi|r2|φi〉− 〈φi|r|φi〉2|| (2.101)

By definition, Γ constitutes a measure of the difference of the variance
of electronic position in passing from occupied to virtual orbital. It is the
difference between the size of the molecular orbitals involved in the description
of the transition, if we represent the size by a sphere of radius equal to the root
mean square of the distance of the electron in the orbital from the centroid
of charge[76]. We note that Γ is not a limited quantity. We implement Γ
in a locally modified version of G09 program, by the use of first and second
moments in the atomic orbital basis set.

2.6.2 Systems and methods.

We analysed twelve different molecular systems: N2, CO, H2CO, HCl, Tetracene,
DMABN, a model Dipeptide, Benzene, IDMN, JM, Prodan and TriazeneII (the
relative structures are showed in figure 2.1).
They span a large set of different excitations, namely local, Rydberg and CT.

TriazeneII was studied by Preat et al.[77], and its excitation energies were
analysed in terms of Λ by Peach et al. IDMN, JM and Prodan systems are
examples of charge transfer in extended systems with delocalization of charge.
Benzene is a typical Rydberg system as N2, CO, H2CO.
All DFT and TD-DFT calculations have been carried out with a locally modi-
fied version of the G09 program [78], using different exchange-correlation func-
tionals characterized by a different Hartree-Fock exchange (HF-X) contribu-
tion. They include 3 global hybrids (GH), namely B3LYP [50] (20% of HF-X),
PBE0 [54] (25% of HF-X) and BH&HLYP [79] (50% of HF-X) and one Range-
Separated Hybrid (RSH), CAM-B3LYP [63]. A pure GGA functional is also
tested, namely PBE [45], to compare data obtained by Tozer and co-workers
[72],[74].
The extended basis set d-aug-cc-pVTZ was selected to compute excitation en-
ergies of N2, CO, H2CO, and Benzene in order to achieve converged results for
Rydberg excitations [80] and to compare with the results of Peach et Al [72].
The other systems were studied using the cc-pVTZ basis set.
Finally, for Triazene II system the 6-311+G(2d,p) basis set was used, to make
a direct comparison with Preat [77] and Peach [74] results . SAC-CI calcula-
tions were performed for IDMN, JM and Prodan, respectively with cc-pVTZ,
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Figure 2.1: Structures of studied systems
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6-311G(d) and 6-31+G(d) basis sets, by fixing tightest level of convergence
(level three). Ground state geometry calculations were performed at MP2/6-
31G(d) level, with the exception of N2 and CO (experimental geometries [81])
and TriazeneII, for which we use the geometry reported in ref. [77] for PBE,
PBE0 and CAM-B3LYP TD-DFT calculations.
We check that ground state geometries are actual minima by performing har-
monic vibrational frequency calculations of all optimized structures.

2.6.3 Results and Discussion

In this section we analyse the performance of different functionals in determin-
ing vertical excitations energies in terms of the two indexes Λ and Γ.
We recall here that for GGA and hybrid functionals, Tozer et al. have shown
that Λ values lower than 0.3 and 0.4, respectively are usually correlated with
large errors.
We individuate three main type of excitations, namely Local (L), Rydberg
(Ry) and intramolecular Charge Transfer (CT), and discuss correlations be-
tween the error reported by each functional and values of Λ and Γ for each set.
The term error is here used to refer to the differences in the excitation energy
obtained at TD-DFT level with respect to the reference data obtained with
more correlated methods. More in detail, the errors are defined as TD-DFT
minus reference values.
Let us start the analysis with local excitations in N2, CO, H2CO, Benzene,
Tetracene, DMABN and model dipeptide. In figure 2.2 we report plots of TD-
DFT errors in function of both indexes and correlation plots between Λ and
Γ.
In general local excitations are well reproduced by all functionals for all sys-

tems, the absolute overlap is large and the reorganization of charge is usually
small. Coherently we find large values of Λ (typically 0.5-0.8) and small val-
ues of Γ, most of which are in the range 0-5. Greater values are obtained
with BH&HLYP and CAM-B3LYP functionals in the case of small systems,
for which larger errors are obtained.
For all functionals when Γ increases, Λ decreases. As Γ index constitutes a
measure of the size difference between the MOs involved in the transition, one
can see that the excitations here studied involve MOs that are quite similar.
We expect that the Γ index here defined is more sensitive in describing ex-
citations that involve transitions to more diffuse orbitals such as in Rydberg
transitions reported in figure 2.3. As figure 2.3 shows, for Γ > 60 excitation
energies are quite accurate (i.e. absolute values of the error are lower than 0.5
eV). In general, for such kind of excitations Λ < 0.3 and therefore the use of
only this index is not able to warn the user about the real performances of the
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Figure 2.2: TD-DFT dispersion data for Local excitation
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Figure 2.3: TD-DFT dispersion data for Rydberg excitation
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selected functional.
PBE calculations of the Rydberg excitations here studied give Γ < 60 and ab-
solute errors larger than 0.5 eV. B3LYP and PBE0 values are very similar to
PBE ones, and errors decrease to the range of ± 0.5 eV for Γ > 65. BH&LYP
and CAM-B3LYP functionals, that include a greater HF-X percentage, present
lower Γ threshold. As a matter of fact, BH&LYP results are all in the error
range of ± 0.5 eV, but this is not the case for the CAM-B3LYP ones applied to
the diatomics systems (N2 and CO). This indicate that for these small systems,
the long range part of the functional is not fully exploited and therefore the
effective HF-X percentage is lower than the long-range value (65%). However,
for Γ ≥ 50, CAM-B3LYP calculations became accurate.
It is worth noting that, as Casida et Al [82] pointed out, for high-lying bound
states there is a collapse of the states above the TD-DFT ionization threshold,
which is at −εHOMO. This is true not only in the case of LDA functional, but
also for GGA and hybrids as it is possible to see comparing tables 2.1 and
2.2. If the excitation energy that one try to reproduce by mean of TD-DFT is
greater than the ionization potential calculated by the functional used (i.e. the
limit for bound excited states for that functional), the value of the excitation
energy will be underestimated.

Moving to CT excitations, the corresponding plots are shown in figure 2.4.
The classification of these excitations as CT is based on previous studies. How-
ever, the present analysis based on the two indexes seems to suggest that an
extension of ths common classification of CT states is needed. In fact, for the
excitations here investigated, Γ shows values lower than 5 (with the exception
of the twisted DMABN), exactly as found for local excitations.
From the three plots reported in figure 2.4, it seems possible to distinguish at
least two types of CT excitations. The first type, that we call delocalized CT,
is characterized by Λ ≈ 0.7 (planar DMABN, IDMN, JM and Prodan) and it
involves a transition very similar to a local π − π∗ excitation delocalized on
the molecule (Γ ≈ 1 or 4).
The second type (DMABN twisted to 90o, model dipeptide), that we call local-
ized CT, is characterized by a more evident charge transfer from a well localized
part of the molecule to another one. In this case, low overlaps (0.2 < Λ < 0.5)
are found. The size difference can be more or less pronounced in function of
the symmetry (Γ ≈ 2 in the case n1−π∗2 and π1−π∗2 of model dipeptide, Γ ≈ 6
in the case of twisted DMABN).

In the case of CT transitions, the analysis based on the size (Γ) and the
absolute overlap (Λ) of the KS MOs does not seem to allow us to define a
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Table 2.1: TD-DFT/d-AUG-cc-pVTZ Excitation Energy(eV), Λ and Γ values
for Rydberg excitation. N2, CO and H2CO: see reference values reported in
table 1 of [72]. Benzene ref. [83]
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Figure 2.4: TD-DFT dispersion data for CT excitation
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−εHOMO PBE B3LYP PBE0 BH&HLYP CAM-B3LYP
N2 10.26 11.96 12.20 14.16 13.88
CO 9.04 10.53 10.74 12.45 12.38
H2CO 6.27 7.70 7.91 9.55 9.41
Benzene 6.34 7.09 7.31 8.08 8.52
Tetracene 4.64 5.16 5.34 5.84 6.29
HCl 7.95 9.15 9.44 10.78 10.88
Dipeptide 5.39 6.82 7.09 8.52 8.58
DMABN 5.25 6.04 6.23 7.09 7.38
IDMN 5.27 5.93 6.11 6.83 7.15
JM 5.12 5.80 5.97 6.72 7.02
Prodan 4.78 5.49 5.66 6.41 6.74

Table 2.2: TD-DFT -εHOMO (eV) of studied systems

clear threshold of accuracy, as transitions with high Λ but errors greater than
0.5 eV are present. The reason is correlated to the fact that Λ calculates a
weighted absolute overlap (a condition that comes from ortogonality of MOs),
i.e. an absolute average of the MOs product of the hole-particle pairs and the
phase sign can not be taken in account by definition.
However, the contribution of bielectronic terms in the TD-DFT matrices A and
B (see eqs.2.82-2.83) comes from the value of the product φa(r)φi(r) at each
point r in the integration domain. A very small value of Λ implies φa(r)φi(r)→
0, as the absolute overlap is a stronger condition but the opposite is not in
general true, as the phase sign is neglected.

Since the bielectronic terms in the linear response Hessian depend on the
inverse of the inter-electronic distance, one can try a different analysis in terms
of the average distance between the hole particle components of the excitation
by mean of the charge centroid difference:

∆r =
∑
ia

K2
ia|〈a|−→r |a〉 − 〈i|−→r |i〉| (2.102)

However, for the cases here studied, the informations that is possible to get
are almost complementary to that of Λ index. The plot of the error on the CT
transitions in function of ∆r is shown in figure 2.5.

From the plot it appears that for PBE, B3LYP and PBE0, transitions that
involve orbitals with centroid distance greater than 2 Å become less accurate.
No clear trends appear for the other functionals.

Let us go back to the excitation energy expression in the linear response
approach in order to assess the influence of the different XC functional on the
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Figure 2.5: TD-DFT charge centroid diffences of the CT transitions studied
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errors. We consider, for simplicity, the Tamm-Damcoff approximation to the
TD-DFT, eq. (2.85). Therefore

ω =
∑
ia

K2
ia(εa − εi) +

∑
ia,jb

K∗aiKjb[〈ij|ab〉+

−CHF 〈ia|jb〉+ (1− CHF )〈ij|fxc|ab〉] (2.103)

In equation (2.103), the first term is the zero order contribution to the ex-
citation energy, and it depends on the ground state calculation. This term is
not affected by the product of the hole and particle functions. The HF-X per-
centage of the functional however affects the energy gap between the orbitals.
The terms in square brackets, the Hessian of the bi-eletronic component of the
Fock operator, contain:

- the occupied-virtual, occupied-virtual Coulomb interaction,

- the occupied-occupied, virtual-virtual Coulomb interaction (due to the
non-local HF-X potential),

- the local XC potential, that is once again of the type occupied-virtual,
occupied-virtual.

The first and the third of these first order terms depend on the distance, the
overlap and the different ”size” and ”shape” of the the orbitals involved in
the transition. They correct the zero-order orbital-gap term with a positive
contribution. The Hartree-Fock exchange is a negative term, and it depends on
the inverse of the distance. To have a clearer picture, we analyse the correlation
between the energy excitation errors and these terms.

The plot in figure 2.6 shows the errors in function of the MO’s gaps term∑
iaK

2
ia(εa − εi) for each CT excitation here studied.

Also within this framework, the presence of the two different types of CT
transition is evident. For the localized CT (twisted DMABN, n1−π∗2 and π1−π∗2
of model dipeptide), increasing the HF-X percentage increases the MO’s gaps
term and the errors decrease. This is true also for the diatomic HCl. On the
contrary, for the ”delocalized CT” in the extended systems (planar-DMABN,
IDMN, JM and Prodan) errors increase when the zero order term increases.

Figure 2.7 shows the same plot for the first order term, obtained as the
difference between the excitation energies and MOs gap term.

In the case of localized CT, errors increase with increasing this term, while
an opposite behavior is found for the delocalized CT. This result shows that
for the two types of intramolecular charge transfer excitations, the effect of the
HF-X percentage in the functional is different.
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Figure 2.6: TD-DFT errors in function of the orbital gaps term of Linear
Response
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Figure 2.7: TD-DFT errors in function of the Coulomb-XC term of Linear
Response
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In the case of localized charge transfer, the main effect is on the SCF step,
from which one obtains the orbital energies. This effect is quite similar as we
observed for the Rydberg states, for which excitation energies are sensible to
the ionization threshold.
On the contrary, for the delocalized CT transitions the main effect of the HF-X
percentage is on the first order term in the electronic Hessian, that corrects
back the orbital energy difference. This kind of intramolecular excitation is
usually low in the energy spectrum, and therefore it cannot be affected by the
ionization threshold (see the table 2.2).
Since for CT excitations in push-pull chromophores (where the ground and
excited states are delocalized on the whole molecule) we cannot define sepa-
rated regions for the charge transfer, the Coulombic interactions between the
occupied and virtual orbitals (that are described by the nonlocal HF potential)
need to be reduced.
If the local Coulomb and XC part of the functional is not able to do this,
smaller errors are obtained with reduced HF-X percentage, i.e. hybrid func-
tionals presenting low HF-X percentage. This is the case of DMABN with a
planar structure, IDMN, JM and Prodan, where Λ ≈ 0.7 and Γ < 7 (a small
value if compared to those typical of Rydberg cases). One can also expect that,
in the case of a push pull chromophore where the transition involves a larger
spatial reorganization of charge, but still very delocalized on the molecule, the
Coulomb and the local part of the first order terms become more important.
Probably this can be assessed exploring the transition density matrix by lo-
calization techniques in terms of natural transition orbitals [84].
The increase of the zero-order term explains also the behavior of the various
excitations in Triazene II, for which the analysis in terms of the absolute over-
lap is not sufficient to explain the bad performance of PBE and PBE0 also for
absolute overlap values beyond the thresholds proposed [74].
In table 2.3 errors and index values are reported. There are no simple correla-
tions between errors and Λ, Γ and ∆r. However, the analysis of the MOs gap
and of the first order terms explain the performance of the functional, also in
the case with large overlap.
Figure 2.8 shows the results in function of the zero order term. For all exci-
tations, errors reduce in increasing the MOs gap and in passing from PBE to
PBE0 and CAM-B3LYP.
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PBE PBE0 CAM-B3LYP
Ref ∆E Λ Γ ∆r ∆E Λ Γ ∆r ∆E Λ Γ ∆r
3.03 -1.02 0.49 19.39 2.86 -0.22 0.43 19.22 2.72 0.05 0.41 20.58 2.44
3.34 -0.72 0.64 7.23 3.10 -0.18 0.60 5.28 3.24 0.13 0.59 5.02 3.12
3.90 -0.75 0.40 24.56 3.42 -0.04 0.38 24.87 3.65 0.07 0.38 24.93 3.88
4.53 -1.15 0.65 13.79 2.21 -0.45 0.62 19.34 1.61 0.12 0.62 16.69 1.35
5.00 -2.09 0.49 31.06 1.58 -0.78 0.42 30.03 1.44 0.30 0.42 25.75 1.70
5.04 -1.60 0.57 6.30 5.21 -0.54 0.44 14.12 5.26 0.01 0.64 8.92 1.42
6.02 -2.33 0.30 6.95 4.02 -0.81 0.27 18.36 2.06 -0.09 0.28 6.21 3.09

Table 2.3: TD-DFT/6-311(2d,p) Excitation Energy (eV), Λ and Γ and charge
centroid difference ∆r values for Triazene II excitation. RI-CC2 reference
values from ref [74]

Figure 2.8: Triazene II: TD-DFT errors in function of the orbital gaps term
of Linear Response. The i-vii nomenclature is referred to the order of RI-CC2
calculations in table 2.3
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2.7 TD-DFT accuracy in determining Single

and Double bonds in excited state struc-

tures

In literature, nowadays, there are extended studies that show the performances
of TD-DFT in reproducing excitation energies and absorption spectra [26]-[30].
However, to the best of our knowledge, systematic investigations of the excited-
state structures and fluorescent properties have yet to be carried out. In fact,
some works, devoted to the implementation of TD-DFT analytical derivatives,
have partially (limited number of molecules and functional) analysed this as-
pect (see for instance refs [20] and [21]).
The aim of this section is to contribute to fill this gap by unravelling spe-
cific behaviors of TD-DFT in comparison with the highly correlated CASPT2
method. To this end, we have considered different XC functionals, whose
choice reflects the aim of analysing both the influence of HF-X percentage
once the correlation functional was fixed (B3LYP [50], BH&HLYP [79], and
CAMB3LYP [63]), and the influence of the description of correlation at al-
most the same HF-X (B3LYP, B3P86 [50],[85] , and PBE0 [54]). BMK [86]
functional is also included to have an intermediate HF-X percentage and to
test also a functional originally developed for kinetics and chemical reaction
description.

2.7.1 Computational details

All DFT and TD-DFT calculations have been carried out with the G09 pro-
gram [78], using six different exchange-correlation functionals characterized
by a different HF-X contribution. The set includes five global hybrids (GH),
B3LYP (20% of HFX), B3P86 (20% of HF-X), PBE0 (25% of HF-X), BMK
(42% of HF-X), BHHLYP (50% of HF-X), and one RSH, CAM-B3LYP. Linear
response TD-DFT calculations were carried out to obtain vertical excitation
energies, and the development of analytical derivatives was used for the explo-
ration of excited-state potential energy surface.
Generally, a medium size basis set (valence double or triple-zeta basis) already
gives converged results for valence transitions when both polarization and dif-
fuse functions are added. In particular, Pople’s 6-311+G(2d,p) provides con-
verged transition energies of low-lying states for the majority of investigated
dyes, while the compact 6-31+G(d) basis represents a valuable compromise
between accuracy and computational speed [26],[87].
It has been shown that larger basis sets, including very diffuse functions, are
mandatory when higher energy states (e.g., Rydberg) are sought [88]. These
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highly excited cases are not treated in this work; therefore, all the calcu-
lations (geometry optimization, absorption, and dipole moments) have been
carried out with the 6-31+G(d) basis set. However, basis set effects have been
tested by using seven small and medium-sized basis sets during TD-DFT op-
timizations, including Pople’s 6-31G(d), 6-311G(d) and Dunning’s cc-pVDZ,
cc-pVTZ, aug-cc-pVDZ, and aug-cc-pVTZ basis sets [89] for all systems with
all functionals used in this study.
The obtained results well underline that the convergence is already reached
with the selected basis set, 6-31+G(d) 9.

We appraise the qualities of the selected XC functionals by comparing
TD-DFT results to CASPT2/6-31G(d) reference values for which the active
space was unambiguously selected, to include the valence molecular orbitals,
together with lone pair orbitals where appropriate, as reported in ref [90],
and CASPT2/cc-pVDZ as reported in ref [91]. The CASPT2 calculations we
have used are carried out without any diffuse function, and thus are probably
insufficient to accurately describe excited states that are spatially extended
and have partial Rydberg character.
In the present study, however, the interest is in the low-lying valence excited
states with a compact electron density. In these cases, we are confident that
the selected basis is sufficient to have a correct picture as also shown in the
study of Schreiber et al [80].

9They are reported and briefly discussed in Appendix A.
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2.7.2 Results and Discussion

The core of molecules considered for the present study is constituted by the
set of small organic chromophores originally selected by the reference CASPT2
study of Page and Olivucci [90] (see Figure 2.9).

Figure 2.9: Molecular structures of systems considered in this study. From the
top: cis-buta-1,3-diene (CBD), trans-buta-1,3-diene (TrBD), pyrrole (PYR),
acrolein (ACR), acetone (ACT), diazomethane (DZM), propenoic acid anion
(PAA), and the three protonated Schiff bases (MDB, MDC, and MDD).

Their excitations can be considered as prototypes of n−π∗ or π−π∗ transi-
tions. As representative examples of n−π∗ systems, we studied acrolein (ACR),
acetone (ACT), propenoic acid anion (PAA), and diazomethane (DZM), whereas
cis-buta- 1,3-diene (CBD), trans-buta-1,3-diene (TrBD), and pyrrole (PYR)
constitute the π − π∗ set.
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ACR is an example of a conjugated hydrocarbon where the first excited state
corresponds to a n− π∗ transition, and it can be compared to ACT and PAA
to get more insights on the impact of the conjugation on n− π∗ excited-state
structures. DZM is a model structure for studying n− π∗ excitation in diazo-
compound.
CBD and TrBD are representative systems of the class of conjugated hydro-
carbons, and they are used to study π−π∗ excitations. Finally, PYR is a cyclic
nitrogen-bearing compound, allowing one to compare the C-N bond behavior
in π − π∗ excitations.
As a further analysis, the original set of molecules has been supplemented with
three chromophores belonging to the class of protonated Schiff bases (PSB)
that present π − π∗ excitations (from now on they will be labeled as MDB,
model B, MDC, model C, and MDD, model D; see Figure 2.9).

Recently, these chromophores have been used as model systems in an in-
vestigation of the structure relaxation in the excited state of 11-cis-retinal by
means of CASSCF, CASPT2, CC, and QMC methods [91]. Note that the
description of the excited states of medium and large PSB or related cyanine-
like molecules remains challenging for TD-DFT that tends to overestimate the
transition energies [92],[93]. It appears that RSH functional cannot cure the
problem [66], although the incorrect TD-DFT predictions are probably not
related to the multideterminantal nature of these compounds [94] .

Ground-State Structures: DFT versus CASPT2

Some of the considered functionals (e.g., B3LYP, B3P86, PBE0, BMK) have
been accurately tested on a large number of molecular properties, including
ground-state structures of organic molecules. In particular, errors of about 0.01
Å are expected for bond lengths with the considered GHs [50],[85],[54],[86],[79].
No general and extensive tests on geometries have been carried out (there are
only on particular type of systems or selected properties), to the best of our
knowledge, for the selected RSH. Therefore, before moving to the analysis of
excited-state properties and structures, it is interesting to briefly investigate
ground-state optimized structures.
Table 2.4 reports the variations of structural parameters for each molecule with
respect to CASPT2 values. In this preliminary analysis on GS structures, only
the set of molecules proposed by Page and Olivucci[90] will be considered.

As shown by the data reported in the table, in most cases DFT overestimates
ground-state single bond lengths and underestimates double bond lengths with
respect to CASPT2, and this holds for all tested molecular systems, with the
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Table 2.4: Computed Bond Length (Å) and Angle (deg) Differences
for DFT/6-31+G(d) Ground-State Structures with Respect to
CASPT2/6-31G(d)[90] (6-31+G(d) for PAA).

B3LYP B3P86 PBE0 BMK BH&HLYP CAM-B3LYP CASPT2

cis-Buta-1,3-diene
C-C 0.005 -0.001 0.000 0.015 0.000 0.005 1.468
C=C -0.008 -0.011 -0.011 -0.008 -0.021 -0.016 1.351

C=Ĉ-C 0.6 0.4 0.4 -0.1 0.3 0.2 126.7

trans-Buta-1,3-diene
C-C -0.004 -0.007 -0.008 -0.004 -0.017 -0.012 1.454
C=C 0.004 -0.001 0.000 0.014 0.002 0.006 1.348

C=Ĉ-C 0.7 0.6 0.6 0.2 0.5 0.5 123.6

Pyrrole
C-N 0.002 -0.004 -0.006 -0.006 -0.010 -0.004 1.375
C=C 0.001 -0.002 -0.003 0.005 -0.012 -0.006 1.380
C-C 0.007 0.002 0.002 0.013 0.000 0.003 1.420

C-N̂ -C -0.132 -0.026 0.024 0.262 -0.189 -0.222 110.0

C=Ĉ-N 0.1 0.1 0.1 0.3 0.3 0.3 107.5

C-Ĉ=C -0.1 -0.1 -0.2 -0.4 -0.2 -0.1 107.5

Acrolein
C=O -0.008 -0.012 -0.018 -0.026 -0.023 -0.014 1.226
C-C 0.006 0.001 0.006 0.017 0.000 0.010 1.469
C=C -0.004 -0.007 -0.011 -0.011 -0.016 -0.011 1.345

O=Ĉ-C 0.6 0.7 0.7 0.4 0.5 0.5 123.6

C-Ĉ=C -0.1 -0.4 0.2 -0.5 -0.2 -0.3 121.1

Acetone
C=O -0.007 -0.010 -0.012 -0.015 -0.021 -0.012 1.226
C-C 0.008 0.001 0.000 0.016 -0.003 0.001 1.511

C-Ĉ=O -0.1 0.0 0.0 0.0 -0.1 -0.1 121.7

Diazomethane
N=N -0.012 -0.015 -0.017 -0.008 -0.029 -0.019 1.158
C=N -0.007 -0.011 -0.012 -0.014 -0.017 -0.011 1.302

Propenoic Acid Anion
C-Otrans -0.007 -0.011 -0.013 -0.018 -0.024 -0.014 1.272
C-Ocis -0.006 -0.010 -0.011 -0.016 -0.021 -0.012 1.266
C-C 0.012 0.005 0.006 0.024 0.002 0.007 1.526
C=C -0.004 -0.007 -0.007 -0.003 -0.016 -0.010 1.343

O-Ĉ-C 0.2 0.1 0.0 -0.1 0.0 0.1 116.8

C-Ĉ=C 0.6 0.1 0.1 0.0 0.2 0.2 124.0

O-Ĉ-O 0.0 0.1 0.2 0.4 0.2 0.0 129.0
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exception of trans-buta-1,3-diene that shows an opposite behavior.
Percentage errors are around 1-2% for the underestimation of double bonds
and around 1% for the overestimation of single ones. In more details, C-C
single bonds are accurately estimated by PBE0 and BH&HLYP functionals,
BMK yielding (> 1%) too long bonds (deviations between 0.013 and 0.024 Å).
For the other functionals, values are always smaller than 0.017 Å. The sensi-
tivity of the C=C double bonds to the selected functional is larger, with the
best agreement reached by B3LYP calculations (between 0.001 and 0.008 Å,
corresponding to 0.1-0.3% deviations) and the worst one obtained with BHH-
LYP (from 0.012 and 0.021 Å, 0.9-1.5%).
This tendency to larger variations is observed also for other double bonds; for
example, C=O double bonds present a behavior similar to C=C, the optimal
description being obtained with B3LYP (0.006-0.008 Å, ca. 0.5%), whereas
BMK and BHHLYP errors are close to 2%. The CN bond is described with
deviations close to 1%, the best performances being again reached with B3LYP
(0.002 Å for PYR and 0.007 Å for DZM) and the worst results still coming
from BH&HLYP (0.010 Å for PYR and 0.017 Å for DZM). The DFT-CASPT2
differences for the NN bond of DZM range between 0.7% (BMK) and 2.5%
(BHHLYP).
Angles are very well estimated by all functionals with deviations with respect
to CASPT2 values systematically smaller than 1% (0.1-0.8◦).

From this first analysis, we can conclude that there is a general behav-
ior of DFT functionals to overestimate single bond lengths and underestimate
their double counterparts, which means that DFT provides a slightly too lo-
calized picture. Let us highlight that this statement holds only for these small
molecules. Indeed, in large conjugated systems, such as polyene oligomers,
it is well-known that GHs like B3LYP tend to yield (much) too small bond
length alternations, and that RSHs or GHs including a large share of HF-X
are necessary to restore a more balanced description [95], [96].

In summary, for the systems under scrutiny, the deviations are very small
in the GS case, with errors smaller than 0.03 Å for bonds and 1◦ for valence
angles. Best (worst) accuracies, in average, are given by B3LYP (BHHLYP).
CAM-B3LYP also shows good performances, in many cases close to B3LYP
ones.

Vertical Excitation Energies: TD-DFT versus CASPT2

As mentioned in the Introduction, a large number of tests on TD-DFT perfor-
mances in vertical excitation energies is available in literature. In particular, a
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recent extensive benchmark on valence excitations shows that GH containing
20-25% of HF-X gives the best agreements with respect to post-HF results, for
relatively small molecules [26].
Indeed, the MAEs for considered functionals range between 0.22 eV (B3LYP,
PBE0) and 0.45 eV (BH&HLYP), CAM-B3LYP and BMK showing an in-
termediate behavior (0.35 eV). Of course, these are mean values, and the
actual performance of a functional significantly changes with the considered
chromophore[26]. As for the GS geometries, it is therefore interesting to shortly
comment on the vertical absorption energies. In Table 2.5, we report the verti-
cal excitation energies for all selected molecules, computed at the correspond-
ing optimized geometries.

There is a general agreement between TD-DFT and CASPT2 results, almost
all the functionals showing a MAE ≤ 0.3 eV, a deviation not too far from that
obtained on a much larger set [26].
Here, however, the lowest difference is obtained by B3P86 and BMK function-
als (MAE of 0.21 and 0.22, respectively). In more details, the differences are
of the order of 0.2-0.4 eV for CAM-B3LYP and 0.1-0.3 eV BMK functionals in
all molecular systems studied, and in the 0.2-0.6 eV range for the other four
functionals.

In general, TD-DFT underestimates n − π∗ excitations and overestimes
the π − π∗ ones. The most valuable performances are obtained by BHHLYP
(BMK) for π − π∗ excitations and B3P86 for n− π∗ excitations.
We further note that in the case of our calculation on PSBs, B3LYP is the
functional that better performs with respect to CASPT2 data of Valsson and
Filippi. In this last case, however, CASPT2 vertical excitations have been
calculated using B3LYP/ cc-pVDZ structures [91].
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Excited-State Structures and Properties

The most relevant geometrical parameters of the optimized geometries for each
of the selected excited states are reported in Tables 2.6 and 2.7. Nomenclature
of bonds is referred to ground-state structure. For each molecule, we have op-
timized the lowest singlet excited state with the exception of PYR, for which
the first low-lying 1B2 state has been selected, for the sake of consistency with
the reference CASPT2 calculation [90].
Starting with π−π∗ systems, we note that the C-C single bonds in CBD and

TrBD are overestimated with respect to the reference CASPT2 values, and this
holds for all functionals but BH&HLYP and CAM-B3LYP, which underesti-
mate the bond lengths. PBE0 provides the best agreement, with differences
less than 0.002 Å (< 0.2%). In general, differences for all functionals are less
than 0.012 Å.

In the case of PSBs, two types of C-C single bonds have to be defined.
The first one forms the skeleton of π conjugation, and it is therefore directly
involved in the π− π∗ excitation, whereas the second one connects the methyl
group.
The two CC single bonds present different behavior: the length of the first
is overestimated by low percentage HF-X functional and underestimated by
BH&HLYP and CAM-B3LYP, while the second one is underestimated. It is
worth noting the different behavior of the C-C single bond connected to the
C=NH2 group: in MDB as in the other previous systems, deviations from
CASPT2 are positive for functionals with low HF-X percentage, but in MDC
and MDD, such deviations are negative. This can be related to the position of
the bond along the chain and the sigma-inductive effect of the methyl group,
which is described in opposite manner by BH&HLYP and CAM-B3LYP. In
this case, therefore, the oscillating behavior of low percentage HF-X functional
(particularly B3LYP) could be linked to the description of excitation closer to
an alternation of bonds after excitation where BH&HLYP and CAM-B3LYP
describe a picture of this phenomenon closer to CASPT2 view, with a skeleton
relaxation but of lower intensity. However, for all the systems, the differences
with respect to CASPT2 are less than 0.04 Å for single bonds.

As in the ground state, C=C double bonds are generally underestimated
with deviations of ca. 0.001-0.005 Å for both isomers of butadiene and ca. 0.01-
0.02 Å for PYR. The only exceptions are the BMK and B3LYP functionals that
overestimate the bond distance of TrBD. One can obtain smaller discrepancies
by selecting B3LYP (0.001 and 0.003 Å for CBD and TrBD, respectively) or
BMK for PYR.
Results for PSB systems are in line with this trend: in general, CC double
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Table 2.6: Computed Bond Length (Å) and Angle (deg) Differences
for TD-DFT/6-31+G(d) Excited-State Structures with Respect to
CASPT2/6-31G(d) (6-31+G(d) for PAA)[90]

B3LYP B3P86 PBE0 BMK BH&HLYP CAM-B3LYP CASPT2

cis-Buta-1,3-diene
C-C 0.008 0.003 0.002 0.007 -0.008 -0.003 1.398
C=C -0.001 -0.003 -0.004 0.005 -0.010 -0.005 1.421

C=Ĉ-C -0.2 -0.6 -0.5 -0.6 -0.5 -0.5 122.0

trans-Buta-1,3-diene
C-C 0.005 0.002 0.000 0.006 -0.012 -0.006 1.399
C=C 0.003 0.001 0.000 0.010 -0.005 -0.001 1.421

C=Ĉ-C 0.4 0.4 0.3 0.1 0.3 0.2 124.1

Pyrrole
C-N -0.022 -0.019 -0.029 -0.014 -0.033 -0.025 1.416
C=C -0.011 -0.012 -0.015 0.000 -0.019 -0.013 1.461
C-C -0.001 -0.004 -0.005 0.001 -0.012 -0.008 1.370

C-N̂ -C -1.4 -1.3 -1.3 -1.5 -5.8 -1.4 107.3

C=Ĉ-N 0.4 0.1 0.3 0.1 0.4 0.4 108.1

C-Ĉ=C -0.2 -0.2 -0.3 -0.3 -0.2 -0.2 108.2

Acrolein
C=O -0.052 -0.059 -0.061 -0.061 -0.065 -0.056 1.277
C-C 0.008 0.004 0.008 0.036 0.028 0.027 1.429
C=C -0.005 -0.008 -0.013 -0.022 -0.040 -0.032 1.350

O=Ĉ-C 5.3 6.0 5.5 2.5 1.8 2.6 125.4

C-Ĉ=C 0.5 0.4 0.6 0.5 1.0 0.8 122.5

Acetone
C=O -0.037 -0.043 -0.048 -0.064 -0.071 -0.053 1.368
C-C 0.008 0.001 0.002 0.027 0.010 0.010 1.489

C-Ĉ=O 0.8 0.8 1.0 1.5 1.6 1.1 117.0

Diazomethane
N=N -0.010 -0.013 -0.014 0.012 -0.012 -0.011 1.215
C=N -0.022 -0.025 -0.030 -0.042 -0.053 -0.036 1.327

Propenoic Acid Anion
C-Otrans 0.021 0.014 0.014 0.016 0.015 0.016 1.272
C-Ocis -0.099 -0.104 -0.106 -0.106 -0.111 -0.100 1.394
C-C 0.023 0.018 0.016 0.017 0.000 0.006 1.401
C=C 0.006 0.004 0.001 0.004 -0.018 -0.009 1.409

O-Ĉ-C 8.9 9.1 9.0 8.8 9.0 8.0 117.3

C-Ĉ=C -1.6 -1.9 -1.8 -1.6 -0.8 -1.9 126.7

O-Ĉ-O -4.4 -4.7 -4.7 -4.6 -4.4v -4.3 111.8
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Table 2.7: Computed Bond Length (Å) and Angle (deg) Differences
for TD-DFT/6-31+G(d) Excited-State Structures of cis-Retinal
Model with Respect to CASPT2/cc-pVDZ [91]

B3LYP B3P86 PBE0 BMK BH&HLYP CAM-B3LYP CASPT2

Model B Cs

N=C -0.021 -0.026 -0.027 -0.025 -0.031 -0.024 1.367
C1-C2 0.037 0.029 0.022 0.017 -0.011 -0.001 1.447
C2=C3 -0.056 -0.057 -0.050 -0.026 -0.028 -0.027 1.432
C3-C4 0.030 0.024 0.016 0.012 -0.012 -0.003 1.430
C4=C5 -0.012 -0.015 -0.015 -0.006 -0.016 -0.015 1.396
C-methyl -0.009 -0.016 -0.016 0.001 -0.012 -0.011 1.499

N-Ĉ1-CH3 0.7 0.7 0.6 0.3 0.1 0.2 117.6

C3-Ĉ4-C5 2.4 2.3 2.1 1.2 1.4 1.4 121.1

Model C Cs

N=C -0.016 -0.021 -0.019 -0.019 -0.025 -0.019 1.352
C1-C2 0.003 -0.003 -0.018 -0.003 -0.021 -0.018 1.422
C2=C3 -0.036 -0.037 -0.013 -0.012 -0.019 -0.013 1.419
C3-C4 0.041 0.031 -0.013 0.008 -0.021 -0.013 1.455
C4=C5 -0.033 -0.035 -0.011 -0.008 -0.013 -0.011 1.408
C5-C6 0.016 0.011 -0.006 0.008 -0.012 -0.006 1.432
C6=C7 -0.01 -0.01 -0.02 -0.01 -0.02 -0.02 1.382
C-methyl -0.01 -0.01 -0.01 0.00 -0.01 -0.01 1.506

N-Ĉ1-C2 0.4 0.5 1.0 0.6 1.2 1.0 121.9

C5-Ĉ6-C7 2.1 2.0 1.1 1.0 1.2 1.1 120.0

Model D Cs

N=C -0.015 -0.020 -0.022 -0.018 -0.024 -0.018 1.352
C1-C2 0.001 -0.004 -0.006 -0.003 -0.021 -0.017 1.413
C2=C3 -0.027 -0.030 -0.026 -0.008 -0.016 -0.010 1.414
C3-C4 0.029 0.020 0.013 0.003 -0.023 -0.018 1.454
C4=C5 -0.041 -0.042 -0.036 -0.013 -0.016 -0.012 1.403
C5-C6 0.032 0.024 0.017 0.008 -0.015 -0.010 1.431
C6=C7 -0.026 -0.028 -0.024 -0.009 -0.017 -0.013 1.397
C7-C8 0.011 0.006 0.004 0.009 -0.008 -0.002 1.428
C8=C9 -0.008 -0.012 -0.012 -0.008 -0.021 -0.018 1.375
C-methyl -0.005 -0.013 -0.013 0.003 -0.011 -0.008 1.507

N-Ĉ1-C2 0.3 0.3 0.4 0.5 0.9 0.9 122.5

C7-Ĉ8-C9 2.0 1.8 1.6 1.0 1.1 1.0 121.8
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bonds are underestimated, with deviations from CASPT2 around or lower than
0.04 Å, if we exclude the case of the C13=C14 bond in MDB where 20% of
HF-X gives values around 0.05 Å. In all cases, increasing the HF-X percentage
gives values closer to CASPT2; however, the performances are not improved
by changing the correlation description. The best agreement is obtained using
BMK functional (differences around 0.006-0.026 Å).
The CN bond length of PYR is underestimated with deviations presenting
the same sign, but slightly larger amplitude than for the ground state. Once
again, the best agreement is obtained with BMK (0.014 Å). In the case of PBS
systems, however, values closer to CASPT2 are obtained at the B3LYP level
for which errors less than 0.02 Å are found. All functionals underestimate
the C=Ĉ-C angle in CBD and PYR by values ranging between 0.2-0.6◦ and
0.2-0.3◦, for CBD and PYR, respectively. Conversely, in the case of TrBD,
the angle is overestimated by 0.1-0.4◦. The overestimation is shown also in
the case of the three PSB systems but with larger values, in function of the
position of the bond along the chain.

Concerning the π−π∗ systems, as for the previous case, TD-DFT CC single
bonds are systematically too long with respect to CASPT2, and two different
trends that depend on the HF-X contribution can be outlined. Indeed, for ACR
and ACT systems, increasing the HF-X contribution induces larger differences
(between 0.001 and 0.036 Å) with respect to CASPT2, whereas the opposite
behavior is found for PAA, for which the closest agreement is obtained with
BH&HLYP. The length of the C=C double bond tends to be underestimated
for all systems with the exception of PAA with the B3LYP, B3P86, PBE0, and
BMK functionals, for which the overestimation is very small (values are very
close to CASPT2). The C=O distance is underestimated by about 0.06 Å for
both ACR and ACT. This behavior is also found for the COcis bond in PAA
(0.1 Å underestimation) that presents an enhanced double bond character as
compared to the ground state, especially in comparison with the trans ana-
logue. In fact, this bond is shorter than the “trans” CO bond at the ground
state and longer at the excited state. This interpretation in terms of changes
in the double bond character is also supported by the comparison of the angles
C-Ĉ=O and C-Ĉ-Ocis that have similar behavior (see below).
N=N and C=N bond lengths are both underestimated by all the six function-
als, with differences larger than 0.010 Å for the former and between 0.02 and
0.05 Å for the latter, the most accurate estimate being obtained with B3LYP.
The C-Ĉ=C angle is overestimated in ACR (ca. 0.4◦) and underestimated
in PAA (ca. 2◦), whereas the C-Ĉ=O angle is overestimated for the three
molecules (ca. 2-5◦, 0.8-1◦, and 9◦ for ACR, ACT, and PAA, respectively), in-
cluding the PAA if we assume that the bond C-Ocis presents the double bond
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character. Finally, The O-Ĉ=O angle in PAA is understated by about 4◦.

Table 2.8 collects the mean absolute differences (MADs) and relative stan-
dard deviations (RSD) of excited-state structural parameters, varying either
the system or the functional studied. The first analysis provides insights
regarding the general tendency of TD-DFT in reproducing CASPT2 data,
whereas the second type of analysis indicates which type of functional shows
a more reproducible behavior in estimating the bond type regardless of the
selected systems.

Table 2.8: Mean Absolute Differences (MAD) with Respect to
CASPT2 Values and Corresponding Relative Standard Deviation
(RSD) of Excited-State Bond Lengths (Å), Averaged on Systems
Studied

B3LYP B3P86 PBE0 BMK BH&HLYP CAM-B3LYP

MAD
C-C 0.015 0.013 0.010 0.009 0.014 0.010
C=C 0.020 0.021 0.017 0.010 0.018 0.014
C=O 0.063 0.069 0.072 0.077 0.082 0.070
C=N 0.032 0.034 0.033 0.032 0.038 0.031

RSD
C-C 0.84 0.77 0.61 0.97 0.47 0.68
C=C 0.83 0.78 0.78 0.68 0.43 0.55
C=O 0.42 0.38 0.35 0.27 0.25 0.31
C=N 0.15 0.13 0.18 0.41 0.31 0.27

From the RSD values reported in the table, we can argue that for CC single
and double bonds there is a great dispersion of data in changing system, with
the values between 0.97 and 0.47 for single bonds and between 0.43 and 0.83
for double bonds. In contrast, lower data dispersion and absolute differences
are found for the C=O (in the range 0.25-0.42 for all functionals) and C=N
bond lengths (0.13-0.27), which, therefore, represent a more reproducible geo-
metrical parameter. However, it is worth noting that C=O bonds are presents
only for n− π∗ systems.
In analysing MAD values, we can quantify the effects of changing HF-X per-
centage or correlation functional. CC single and double bonds are, in the aver-
age, better described increasing HF-X percentage, and also passing from LYP
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to P86 and PBE correlation description. Smaller MAD values are obtained
with CAM-B3LYP and BMK, which, however, gives higher RSD. For C=N
bonds, the impacts of both HF-X percentage and correlation are negligible,
as the MAD values are very similar for all functionals except for BH&HLYP,
which undergoes a larger discrepancy. In the case of C=O, the best agreement
is obtained with B3LYP, which, however, yields larger dispersion of data. Also,
in this case, a good compromise between precision and accuracy is reached with
the CAM-B3LYP functional. Finally, we can conclude that all functionals give,
on average, reproducible results for excited-state geometries in comparison to
CASPT2, with CAM-B3LYP showing the best performances.

More insights about the description of the entire excitation process by the
different functionals could be obtained by comparing the mean bond length
variations (BLV) upon excitation for four selected bonds, reported in Figure
2.10.

Figure 2.10: Computed TD-DFT and CASPT2 absolute bond length variations
upon excitations.

As it clearly appears, CC single and double bond variations are well re-
produced by all the functionals, the PBE0 approach providing the smallest
deviations (< 0.005 Å) for both bonds. In contrast, the changes for the C=O
bonds are significantly underestimated by all functionals, with errors about
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0.06 Å. Here, B3LYP gives slightly smaller errors than PBE0. Finally, CN
bond variations are also systematically underestimated at the TD-DFT level,
but this effect remains trifling.

To conclude the analysis on excited-state geometries, we report a further
comparison between DFT and CASPT2, but this time focused on the descrip-
tion of conjugation in extended π− π∗ systems here represented by the PBSs.
Such an analysis is performed in terms of the bond length alternation (BLA)
defined as the difference of the average of single and double carbon-carbon
bonds along the π − π∗ chain. The results obtained with the different func-
tionals and the reference CASPT2 description are reported in Figure 2.11.

Figure 2.11: Bond length alternation (BLA) of excited-state structures of PBS
systems.

As it is shown in Figure 2.11, the increase of HF-X percentage gives a
description of the physics of the system closer to the CASPT2, with the long-
range corrected scheme giving the best agreement for the longer systems. This
is indeed an interesting result, as it shows that CAM-B3LYP is the most “ro-
bust” functional (among the ones investigated here) in consistently describing
the changes in the conjugation with the spatial extent 46 and is compatible
with the CASPT2 picture of relaxation pathways 40.

Finally, in Tables 2.9 and 2.10 we report a comparison of dipole moment
variations, that is, the difference between excited- and ground-state dipole
moments, and emission energies as obtained with the different functionals. As
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CASPT2 data are not available for these quantities, the comparison is limited
to TD-DFT data only.

As it can be seen from Table 2.9, all functionals describe dipole moment varia-
tions in a qualitatively good agreement with what is expected from the nature
of the excitation. In fact, with all the functionals we obtain negative variations
(i.e., decrease of the dipole) for n− π∗ systems (ACR and ACT) and positive
variations (increase of the dipole) for π−π∗ (CBD). Of course, due to symme-
try reasons, TrBD has null dipole in both electronic states. We note that even
if pyrrole is a π − π∗ system, it is also an example of so-called five-membered
six π-electron aromatic ring molecules in which the heteroatom (here nitro-
gen) donates two π electrons and each of the four carbon atoms supplies one
π-electron. In this case, the excitation leads to a decrease of the dipole instead
of an increase as in standard π − π∗ systems.
For a parallel reason, also n−π∗ diazomethane presents a specific behavior with
a positive instead of a negative variation as for standard n− π∗ systems. Go-
ing into more details, some differences appear among the different functionals,
with BMK and B3LYP giving the smallest and highest variations, respectively
(only for ACT and DZM, CAM-B3LYP gives larger variations than B3LYP).
It is worth noting that a general decrease of the module of dipole moment
variation with increasing the percentage of HF-X is found even if the trend is
not completely monotonic going from B3LYP to BH&HLYP.

Emission energies, reported in Table 2.10, show a large dispersion with
functionals for n − π∗ systems (especially ACR and PAA), while for π − π∗

systems the differences are quite small. As for dipole moment variations, no
clear proportionality or dependence with HF-X percentage can be found. It is
interesting to note that dispersion on emission when compared to excitation
(last columns in Tables 2.5 and 2.10) is almost unchanged, except in the case
of ACR and PAA, where RSD values are double.

From the above analysis, one clear trend common to all molecular systems,
types of excitation, and atoms involved emerges: TD-DFT has a tendency
to underestimate the length of double bonds as compared to CASPT2 and
therefore to exaggerate the double bond character of the relaxed excited state.
Clearly, the extent of this trend depends on the character of excitation, with
the CO bonds directly involved in the n− π∗ transition being largely affected.
Indeed, TD-DFT gives a more localized description of this transition than do
post-HF approaches.
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Chapter 3

TD-DFT/PCM schemes for
molecular excited states in
solvent

3.1 Introduction

This chapter focuses on concepts and applications of theoretical and computa-
tional models for the calculation of excitation energies of molecules in solution.
A new computational strategy is proposed after an analysis of the currently
available methods.
The development of accurate but still computationally feasible strategies in
modeling excited state of molecules in solution is a challenging task due to the
complexity of the problem in which the processes of formation and relaxation
of the electronic states have to be coupled with the dynamics of the solvent
molecules [101],[102],[103]. As a consequence, the definition of the excited
states of molecular solutes also requires the characterization of the solvent de-
grees of freedom that are composite in nature and very large in number.
A very well-known example of such a coupling is the distinction between
“nonequilibrium” and “equilibrium” solvation regimes following an electronic
transition in the solute. The differences in the characteristic response time of
the various degrees of freedom of the solvent, in fact, may lead to a solvation
regime in which the slow components (i.e., those arising from molecular trans-
lations and rotations) are not equilibrated with the excited-state electronic
redistribution upon vertical excitation. The resulting nonequilibrium regime
will then relax into a new equilibrium in which the solvent is allowed to com-
pletely equilibrate, i.e., to reorganize all its degrees of freedom including the
slow ones. Especially for highly polar solvents, these two different regimes can

71
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influence the properties of the solute excited states in very different ways.

Equilibrium versus nonequilibrium is just one of the specific issues that have
to be properly accounted for in the complex task of the definition of realistic
and accurate models for the description of structure and properties of excited
states in solution[104][105]. In addition, the necessity of a proper description
of different electronic states implies a quantum-mechanical (QM) description.
These requirements, together with the generally medium-to-large dimensions
of the molecular systems of real interest in this field, are difficult to satisfy
when the effect of the environment is also to be included. As a result of this
combination of complex aspects, the largest part of the models proposed in
the literature introduces a focused approach, i.e., a more accurate description
of the molecular system of interest (the chromophore, possibly including small
portions of the environment) and a less accurate description of the remainder.
There are different formulations of the focused approach; the most common
ones are the hybrid QM/molecular mechanics (QM/MM) [106], [107] and the
continuum solvation models [108], [109], [110] .
Both of them use a classical description for the environment but, whereas in
the former the microscopic nature of the solvent molecules is maintained, in
the latter a macroscopic dielectric is used. The different philosophy beyond
the two classes of methods leads to important differences in both the physical
and the computational aspects of their applications, as well as in their range
of applicability. The methods based on explicit representations of the environ-
ment yield information on specific configurations of the environment around
the chromophore, whereas the continuum models give only an averaged pic-
ture of it. On the other hand, QM/MM requires many more calculations than
continuum models to obtain a correct statistical description. This much larger
computational cost of QM/MM is particularly disadvantageous in the study
of excited states, as the QM level required is generally quite expensive even
for a single calculation on an isolated system; thus, the necessity to repeat
the calculation many times makes the approach very expensive (or even not
feasible). For this reason, most of the QM/MM calculations on excited states
make use of semiempirical QM methods [111], [112], [113], [114], [115].
On the contrary, the level of the QM description can be any when continuum
models are used, as the additional cost with respect to gas-phase calculations
remains very limited. In addition, continuum solvation models include effects
of mutual polarization between the solute and the environment (also those
due to a possible nonequilibrium solvation), whereas standard QM/MM meth-
ods are based on nonpolarizable force fields. As a matter of fact, QM/MM
approaches including environment polarization have been proposed and also
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applied to the study of excited states of solvated systems [116], [117], [118],
[119]. However, among the available approaches, the most popular for this
kind of study is still represented by continuum solvation model [110].
In particular, the polarizable continuum model (PCM) [109] has been shown
to give a reliable description of different phenomena involving electronically
excited states. PCM is in fact a very general continuum model, which has
been extended to many different QM levels as well as to QM methods to eval-
uate energy derivatives with respect to many different perturbations. These
extensions have made PCM applicable to calculate geometries and properties
of various electronic states as well as to study processes and spectroscopies
involving both ground and excited states.
Here, after a short introduction to the PCM model and the quantum problem
associated, different strategies to calculate excited states energies and prop-
erties of solvated systems are presented. The same strategies are applied to
the study of solvent effects on push-pull chromophores [120] and to the anal-
ysis of the role played by intramolecular charge transfers [121]. In the last
part of the chapter a new developed strategy to study vertical excitations in
solution is presented and discussed togheter with some preliminary numerical
applications.

3.2 Short review of the Polarizable Contin-

uum Model (PCM)

The definition of the PCM model goes through two steps [109],[110]:

• treatment of the electrostatic problem 1.

• formalization of the problem in a quantum mechanical framework.

From a classical point of view, we can formulate the problem of a molecule
in solution as a charge density ρM , due to both point charges and a continuous
density, inside a cavity C of proper shape and dimension, within a continuous
polarizable medium (the dielectric characterized by the electric permittivity
ε). Such a system is described by the Poisson equation [122] :

−~∇ · [ε(r)~∇ · ~V (r)] = 4πρM(r) (3.1)

1other terms, such as cavitation, repulsion and dispersion forces will not consider in this
brief review of the method because not strictly necessary to introduce the quantities we need
to follow next paragraphs.
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Setting a boundary condition that the potential vanishes at infinity, the solu-
tion of 3.1 is unique as it is unique, with the same boundary conditions, the
potential VM generated in vacuum by ρM , namely the solution of

−∇2VM(r) = 4πρM(r)

We can therefore define a reaction potential as:

VR = V − VM

which can be interpreted as the electrostatic potential due to the polarization
of the dielectric. Since

ε(r) =

{
0 r ∈ C
ε r /∈ C

the following differential equations are obtained for V , VM and VR :
−∇2V = 4πρM , r ∈ C
−∇2V = 0, r /∈ C
lim
r→0

V (r) = 0


−∇2VM = 4πρM , r ∈ C
−∇2VM = 0, r /∈ C
lim
r→0

VM(r) = 0


−∇2VR = 0 r ∈ C
−∇2VR = 0 r /∈ C
lim
r→0

VR(r) = 0
(3.2)

Equations 3.2 are accompaniend by a set of boundary conditions on the cavity
surface Γ: {

[V ] = 0 on Γ
[∂V ] = 0 on Γ

(3.3)

The first jump condition 3.3 expresses the continuity of the potential across
the surface, whereas the second one involves the continuity of the component
of the field (expressed as the gradient of V) that is perpendicular to the cavity
surface:

[∂V ] =

(
∂V

∂~n

)
in

− ε
(
∂V

∂~n

)
out

= 0 (3.4)

Where ~n is the outward-pointing vector perpendicular to the cavity surface.



3.2. PCM: GENERAL THEORY 75

Equations (3.2) and (3.3) are the basic elements to use in the elaboration of
solvation methods according to standard electrostatics. Among the possible
approaches to solve the electrostatic problem we use here the so called appar-
ent surface charge (ASC) approach, where an apparent surface charge density
σ(~s)2 spread on the cavity surface Γ [123]. The ASC defines a potential over
the whole space:

Vσ(~r) =

∫
Γ

σ(~s)

|~r − ~s|
d2s (3.5)

This potential is exactly the reaction potential VR of eq. (3.2). Despite the
reduction of the source of the reaction potential to a charge distribution lim-
ited to a close surface, the integration of eq.(3.5) over a surface of complex
shape is computationally challenging. The solutions are generally based on a
discretization of the integral into a finite number of elements. This technique
may be profitably linked to the boundary element method (BEM) [124], a
numerical technique widely used in physics and engeneering to solve complex
differential equations.
The cavity surface Γ is approximated in terms of a set of finite elements (called
tesserae) small enough to consider σ(~s) almost constant within each tessera
(with corresponding area Ak). Therefore:

Vσ(~r) ≈
Nts∑
k

σ(~sk)Ak
|~r − ~sk|

=
Nts∑
k

qk
|~r − ~sk|

(3.6)

Where the qks are the point charges in terms of the local value of σ(~sk) on
each tessera. The local value of the potential necessary to define qk also de-
pends on the whole set of the surface charges, and so the correct values of the
surface charges, and the correct expression of the reaction potential, are to be
obtained through an iterative procedure. In the years various definitions of
σ(~sk), and consequently of qk, have been proposed. These have led tho the dif-
ferent formulations of the method known as DPCM [123], IEFPCM [125],[126]
and CPCM [127]. Here we do not present the details for each formulation of
PCM, referring the interested reader to the large literature ( see for instance
ref. [109],[110] and references therein), but we focus only on the common fea-
tures of all the methods.
Once the cavity surface has been partitioned in tesserae the electrostatic equa-
tion for σ(~s) within the various PCM formulation can be rewritten as a set of
NTs (number of tesserae) coupled equations, wich can be recast in a matrix

2~s is the position variable over the surface Γ of the cavity C.
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Table 3.1: Matrices of the various PCM versions of
BEM equations (3.7) [109]

PCM version Q fM

DPCM
(
2π ε+1

ε−1
A−1 −D∗

)−1
E⊥M

CPCM S−1 VM

IEFPCM
[(

2π ε+1
ε−1

A−1 −D∗
)

S
]−1

(2πA−1 −D) VM

form of the type [109]

q = −QfM (3.7)

where Q is a square matrix NTs × NTs collecting cavity geometrical factors
(the tesserae representative points ~sk and the corresponding areas) and the
dielectric constant of the medium; q and fM are column matrices, the first
containing the unknown charges and the second the values of the proper elec-
trostatic quantity, namely, the normal component of the solute electric field
E⊥M or the solute electrostatic potential VM , calculated at the tesserae.
The expression of Q and fM for the various versions of PCM are reported in
Table 3.2. In the table, the matrix A is the diagonal matrix of tesserae areas,
whereas the matrices S and D take the form:

Sii = 1.0694
√

4π
ai

Sij = 1
|~si−~sj |

(3.8)


Dii = −

(
2π +

∑
j 6=i

Dijaj

)
1

ai

Dij =
(~si−~sj)·n̂j

|~si−~sj |3

(3.9)

where ai is the area of tessera i.
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QM approach to PCM

If now we want to translate the PCM equations in a quantum mechanical
language, we have to introduce an effective Hamiltonian for the solute-solvent
system [109]:

Ĥeff = Ĥ0
M + V̂ int (3.10)

where Ĥ0
M is the Hamiltonian od the solute (i.e. the focused part M of the

model) and V̂ int (i.e. the solvent reaction potential) is the solute-solvent inter-
action term. Assumed valid the Born-Oppenheimer (BO) approximation, The
charge distribution is conveniently divided into electronic and nuclear compo-
nents

ρM(r) = ρeM(r) + ρNM(r) (3.11)

In the BO framework, the QM procedure does not affect the nuclear compo-
nent. The operator V̂ int can be divided into four terms that are similar to the
zero-,one- and two-electron type components of the solute Hamiltonian. By
defining the solute-solvent interaction energy as [110]:

U int =

∫
C

Vσ(r)ρM(r)dr3 (3.12)

and considering that the interaction potential has, as sources, the two com-
ponents of ρM , and thus it is composed of two terms, one stemming from the
electronic charge distribution of the solute M and one from its nuclear charge
distribution, we obtain:

U int = U e−e + UN−e + U e−N + UN−N (3.13)

where Ux−y corresponds to the interaction energy between the component of
the interaction potential having as source ρxM(r), namely V̂ int,x and the charge
distribution ρyM(r). Some considerations:

• U e−N is formally identical to UN−e, and both correspond to one-electron
operators.

• UN−N not contribute to electronic part of Ĥeff , and in the BO approx-
imation, is a constant term.
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• U e−e describes the interaction between electronic charge distributions
and therefore correspond to a bi-electronic term.

In a variational framework the resulting Schrödinger equation is

Ĥeff |Ψ〉 = E|Ψ〉 (3.14)

obtained by minimizing an appropriate functional.
The functional to minimize, for a PCM solvated system, is the free energy
functional [109]:

G = 〈Ψ|Ĥ0 + V̂σ|Ψ〉 −
1

2
〈Ψ|V̂σ|Ψ〉 (3.15)

the Eq. (3.15) takes in account the irreversible work done to polarize the di-
electric [128]. If we now apply a self-consistent field (SCF) approach to solve
eq.(3.14), such as Hartree-Fock (HF) or Kohn-Sham (KS), the minimization
of G with respect to variation of |Ψ〉 gives the following Fock operator:

F̂ = F̂0 + V̂σ (3.16)

where F̂0 is the Fock (or KS) operator of the isolated molecule, including one-
electron Hamiltonian, Coulomb and (scaled) exchange terms, and possibly the
exchange-correlation potential, namely, on the basis of molecular orbitals, it
can be expressed as

F 0
pq = hpq +

∑
iτ ′

δττ ′ [〈piτ |qiτ ′〉 − CHF 〈piτ |iqτ ′〉] + V xc
pqτ (3.17)

where CHF is the coefficient of the HF-exchange in the hybrid functional
scheme, and

V̂σ =
Nts∑
k=1

V̂kqk where V̂k = − 1

|r − sk|
(3.18)

The point charges qk are obtained by resolution of the iterative PCM problem.
We will focus on the IEF version of the model, for which:

qk =
Nts∑
l=1

QklVl k, l→ sk, sl (3.19)
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where Vl are the expectation values (including nuclear contributions) of the
electrostatic potential operator computed on the surface element sl:

Vl = V e
l + V Nuc

l = −
occ∑
i

∫
φ∗i (r)φi(r)

1

|r − sl|
dr+

∫
ρNuc(r)

1

|r − sl|
dr (3.20)

Once the formalism has been introduced, we can write down the Eq. 3.15
for the ground state (GS) wave function as:

GGS = 〈ΨGS|Ĥ0 + V̂σ|ΨGS〉 −
1

2
〈ΨGS|V̂σ|ΨGS〉

= EGS − 1

2

∑
k

V GS
k qGSk (3.21)

3.3 Theory for solute excited states in solvent

Time dependent processes embrace a large variety of phenomena, which span
an impressive range of time scales ( from 10−15 s for linear and nonlinear spec-
troscopy to 10−2 s for diffusion-controlled reactions in diluite acqueous solu-
tions). The responses of the microscopic particles (molecules, atoms, electrons)
of the solvent required to reach a certain equilibrium value of the polarization
have specific characteristic times (CT). When the solute charge distribution
varies appreciably within a period of the same order as these characteristic
times, the solvent response will not be sufficiently rapid to build up a new equi-
librium polarization, and the actual value of the polarization will lag behind
the changing charge distribution. The actual polarization ~P (t) is determined
by the Maxwell field in the medium not only at time t but also at a previous
time t’, in a form expressed by the integral [129],[130]

~P (t) =

∫ t

−∞
dt′G(t− t′) ~E(t′) (3.22)

where the kernelG(t−t′) is the solvent response function and ~E(t′) the Maxwell
field. Transforming the convolution integral to the Fourier frequency space we
obtain [131]

~P (ω) =
ε̂(ω − 1)

4π
~E(ω) (3.23)
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where ε̂(ω) is the complex dielectric permettivity

ε̂(ω) = ε′(ω)− iε′′(ω) (3.24)

The real part ε′(ω) is the frequency-dependent dielectric constant, describing
the component of the polarization density in phase with the oscillating field
while the complex part, or loss factor, ε′′(ω) determines the component of the
polarization with a phase difference of π/2 with respect to the Maxwell field,
giving rise to the loss of energy of the electric field in the medium.
The explanation of the correspondence in the behavior of all polar compounds
in an electromagnetic field is found in the fact that the electric polarization
is built up of three parts, the orientational, the nuclear, and the electronic
polarization, each part corresponding to motions of a different kind of par-
ticle (molecules, atoms, electrons, respectively) with different CTs. As the
frequency increases, the so-called nonequilibrium effects appear subsequently
in the different contributions of the polarization. Orientational contributions
(CT below 10−12 s) will first start to lag behind the variations of the electro-
magnetic field; next, nuclei (CT around 10−14 s) will not be able to follow the
field, and finally, at very high frequencies, electrons (CT around 10−16 s) also
will lag behind the electromagnetic field.

Historically, in continuum models large use has been made of the approx-
imation according to which it is sufficient to decompose the polarization into
two terms. Within this approximation, the polarization vector ~P (t) becomes:

~P (t) ≈ ~P fast(t) + ~P slow(t) (3.25)

where fast indicates the part of the solvent response that always follows the
dynamics of the process and slow refers to the remaining inertial term. Such
partition in the medium response gives rise to the so called “nonequilibrium”
regime. Obviously, what is fast and what is slow depends on the specific dy-
namic phenomenon under study. In a very fast process such as the vertical
transition leading to a change of the solute electronic state via photon absorp-
tion or emission, ~P fast can be reduced to the term related to the response of
the solvent electrons, whereas ~P slow collects all of the other terms related to
the various nuclear degrees of freedom of the solvent molecule. The operative
partition of the total polarization can be performed using two alternative, but
equivalent, schemes. In the Marcus scheme [132] (partition I)
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~PA = ~PE
or + ~PA

el (3.26)

where superscripts E and A refer to the “early” (or initial) and the “actual”
time in relation to the chronological order of the transition process. In this
partition, the previous slow and fast indices are replaced by the subscripts or
and el referring to “orientational” and “electronic” polarization response of
the solvent, respectively.

In the Pekar scheme [133], which we shall indicate as partition II, eq. (3.3)
has to be rewritten as

~PA = ~PE
in + ~PA

dyn (3.27)

where the subscripts in and dyn refer now to an “inertial” and a “dynamic”
polarization response of the solvent, respectively. The differences between the
two schemes are related to the fact that, in partition I, the division into slow
and fast contributions is done in terms of physical degrees of freedom (namely,
those of the solvent nuclei and those of the solvent electrons), whereas in parti-
tion II, the concept of dynamic and inertial response is exploited. This formal
difference is reflected in the operative equations determining the two contribu-
tions to ~P as, in II, the slow term (~Pin) includes not only the contributions due
to the slow degrees of freedom but also the part of the fast component that is
in equilibrium with the slow polarization, whereas, in I, the latter component
is contained in the fast term ~Pel.
It is important to stress that the two schemes I and II differ in the form of
the slow and fast components of the polarization, but they are practically and
physically equivalent (in the limit of a linear response regime) in the sense that
they give the same value of the total reaction potential and, thus, the same
effects on the solute as well as the same interaction energies [134]. The use of
one partition instead of the other is dictated only by the requirements of the
specific computational code in which the model is implemented.

3.3.1 PCM-Linear Response and State Specific approach
in solvent

The free energy expression given in Eq. (3.21) for a ground state can be gen-
eralized to both an equilibrium and a non-equilibrium excited state K [135].
In the first case we assume that the solvent reaction field has had time to
completely relax from the initial ground state value determining V̂σ(GS) to
the final value representing a new solute-solvent equilibrium and determining
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V̂σ(K). By contrast, in the nonequilibrium regime, the solvent reaction field is
represented by a Franck-Condon type term, sum of an electronic (or dynamic)

contribution V̂σ
dyn

(K) in equilibrium with the excited state K and an orienta-

tional (or inertial) part still frozen in the initial ground state value, V̂σ
in

(GS).
The expressions of the free energies corresponding to each regime are described
here below.

Equilibrium

We are looking for an expression of the free energy that is as more similar
as possible in both equilibrium and non equilibrium cases. For this reason
we define an excited state energy in equilibrium with a ground-state solvent
reaction field EK,eq

GS :

EK,eq
GS = 〈ΨK

eq|Ĥ0 + V̂σ
GS
|ΨK

eq〉 =

= 〈ΨK
eq|Ĥ0|ΨK

eq〉+
Nts∑
l

〈ΨK
eq|V̂lqGSl |ΨK

eq〉

= 〈ΨK
eq|Ĥ0|ΨK

eq〉+
Nts∑
l

V K
l q

GS
l (3.28)

In Eq.(3.28) we use the definition in Eq.(3.18) of the PCM reaction field op-
erator and the charges qGSl are calculated by Eq.(3.19):

qGSl =
Nts∑
m=1

QlmV
GS
m =

Nts∑
m=1

Qlm〈ΨGS|V̂m|ΨGS〉 (3.29)

We can use the expression for EK,eq
GS to calculate the excited state equilibrium

free energy:

GeqK = 〈ΨK
eq|Ĥ0 +

1

2
V̂σ

K
|ΨK

eq〉 =

= 〈ΨK
eq|Ĥ0|ΨK

eq〉+ 〈ΨK
eq|V̂σ

GS
|ΨK

eq〉 − 〈ΨK
eq|V̂σ

GS
|ΨK

eq〉+
1

2
〈ΨK

eq|V̂σ
K
|ΨK

eq〉

= EK,eq
GS −

Nts∑
l

V K
l q

GS
l +

1

2

Nts∑
l

V K
l q

K
l (3.30)

If we now introduce a partition of the excited state density matrix as:

PK = PGS + P∆ (3.31)
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We can also partition V K
l and qKl :{

V K
l = V GS

l + V ∆
l

qKl = qGSl + q∆
l

(3.32)

The Eq.(3.30) can now be written down as:

GeqK = EK,eq
GS −

1

2

Nts∑
l

[
V GS
l + V ∆

l

]
qGSl +

1

2

Nts∑
l

V GS
l q∆

l +
1

2

Nts∑
l

V ∆
l q

∆
l

= EK,eq
GS −

1

2

Nts∑
l

V GS
l qGSl +

1

2

Nts∑
l

V ∆
l q

∆
l (3.33)

The last line of Eq.(3.33) is our work equation, where we make the approxi-
mation3

V GS
l q∆

l = V ∆
l q

GS
l (3.34)

Nonequilibrium

As in the equilibrium case, we define a nonequilibrium excited state energy in
the presence of the ground state reaction field, EK,neq

GS :

EK,neq
GS = 〈ΨK

neq|Ĥ0 + V̂σ
GS
|ΨK

neq〉

= 〈ΨK
neq|Ĥ0|ΨK

neq〉+
Nts∑
l

V K,neq
l

[
qGS,inl + qGS,dynl

]
(3.35)

In Eq.(3.35) we have introduced the partition of GS charges qGSl in dynamic
and inertial parts. For a generic state M:

qMl =
Nts∑
f

Qfl(ε)V
M
f

qM,dyn
l =

Nts∑
f

Qfl(ε∞)V M
f

qM,in
l = qMl − q

M,dyn
l (3.36)

3This approximation is introduced here as it allows a more compact notation; we note,
however, that in the computational code both formulations have been implemented and that
numerical tests have shown an almost exact equivalence. We also remark that in the limit
of an exact solution of the electrostatic problem, Eq.(3.34) is exactly fulfilled.
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where ε∞ represent the optical dielectric constant of the solvent. For the ΨK
neq

state, eq. (3.36) becomes:

qK,inl = qGS,inl =
∑

f Qfl(ε)V
GS
l −

∑
f Qfl(ε∞)V GS

l

qK,dynl =
∑

f Qfl(ε∞)V K
l =

∑
f Qfl(ε∞)V GS

l +
∑

f Qfl(ε∞)V ∆neq,e
l

(3.37)
In Eq.(3.37) the term V ∆neq,e

l is associated to the partition of the density
matrix given in Eq.(3.31).

The free energy for the ΨK
neq state therefore becomes:

GneqK = 〈Ψneq
K |Ĥ0 + V̂σ

GS,in
+ V̂σ

K,dyn
|Ψneq

K 〉
−1

2
〈ΨGS|V̂σ

GS,in
|ΨGS〉 − 1

2
〈Ψneq

K |V̂σ
K,dyn

|Ψneq
K 〉

= EK,neq
GS +

∑Nts
l V K,neq

l q∆,dyn
l

−1
2

∑Nts
l V GS

l qGS,inl − 1
2

∑Nts
l V K,neq

l qK,dynl

= EK,neq
GS

−1
2

∑Nts
l

[
V GS
l qGS,dynl + V ∆,neq

l q∆neq,dyn
l

]
+
∑Nts

l V ∆,neq
l qGS,dynl − 1

2
V GS
l qGS,inl

(3.38)

where we have made use of Eq.(3.37).
The expression for GneqK can be simplified if once again we assume that

V GS
l q∆neq,dyn

l = V ∆,neq
l qGS,dynl

and therefore

GneqK = EK,neq
GS − 1

2

Nts∑
l

V GS
l qGSl +

1

2

Nts∑
l

V ∆,neq
l q∆neq,dyn

l (3.39)

The vertical transition energy to the excited state K is obtained by subtracting
the ground state free energy GGS of Eq(3.21) from GeqK and GneqK of Eq.(3.33)
and Eq.(3.39):

ωeqK = GeqK − GGS = ∆EK0,eq
GS +

1

2

Nts∑
l

V ∆
l q

∆,dyn
l (3.40)

ωneqK = GneqK − GGS = ∆EK0,neq
GS +

1

2

Nts∑
l

V ∆,neq
l q∆neq,dyn

l (3.41)
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These equations show that vertical excitations in solvated systems are obtained
as a sum of two terms, the difference between excited- and ground-state ener-
gies in the presence of a frozen ground-state solvent (∆EK0,neq

GS ) and a relax-
ation term, which is determined by the mutual polarization of the solute and
the solvent after excitation. The latter term is obtained by taking into account
the dynamic and inertial partition of the solvent response.

The requirement needed to incorporate the solvent effects into a state-
specific method is fulfilled by using the effective Hamiltonian Ĥeff defined in

eq. 3.10. The only specificity to take into account is that, to calculate V̂σ,
the density matrix of the electronic state of interest has to be known. Such a
nonlinear character of V̂σ is generally solved through an iterative procedure: at
each iteration the solvent-induced component of the effective Hamiltonian is
computed by exploiting eq. (3.5), with the apparent charges determined from
the standard ASC equation with the first-order density matrix of the preceding
step. At each iteration n, the free energy of the state K is obtained as

GnK = 〈Ψn
K |Ĥ0

M |Ψn
K〉+

1

2

∑
i

〈Ψn
K |V̂σ[Ψn−1

K ]|Ψn
K〉 (3.42)

where the solvent operator V̂σ[Ψn−1
K ] has been obtained using the solute elec-

tronic density calculated with the wave function of the previous iteration. At
convergence Ψn−1

K and Ψn
K must be the same and eq.(3.42) gives the correct

free energy of the state K. We note that this procedure is valid only for states
fully equilibrated with the solvent. A nonequilibrium formulation requires a
two-step calculation:

1 An equilibrium calculation for the initial electronic state (either ground
or excited), from which the slow (or inertial) apparent charges, qin, are
obtained and stored for the successive calculation on the final state.

2 A nonequilibrium calculation performed with the interaction potential
V̂σ composed of two components, V̂σ = V̂fixed + V̂change, where V̂fixed is

constant due to the fixed qin of the previous calculation, and V̂change
changes during the iteration procedure4.

In contrast, the alternative LR approach is solved in a single step calcula-
tion for the whole spectrum of the excited states of interest, similarly to what

4It is defined in terms of the fast (or dynamic) charges qdyn as obtained from the charge
distribution of the solute final state.



86 CHAPTER 3. TD-DFT/PCM METHODS

done for isolated systems, as show in chapter 2. The form of the LR-PCM
problem [136],[137] is the same of LR-KS:[

A B
B∗ A∗

] [
X
Y

]
= ω

[
1 0
0 −1

] [
X
Y

]
(3.43)

Within this formalism, A and B collect the Hessian components of the free
energy functional G with respect to the wave function variational parameters 5:

Aiaσ,jbτ = δijδabδστ (εa − εb) + 〈iσjτ |aσbτ 〉 − CHF δστ 〈iσaσ|jτbτ 〉

+(1− CHF )〈iσjτ |fxc|aσbτ 〉+ VPCMai,bj (3.44)

Biaσ,jbτ = 〈iσbτ |aσjτ 〉 − CHF δστ 〈iσaσ|bτjτ 〉

+(1− CHF )〈iσbτ |fxc|aσjτ 〉+ VPCMai,jb (3.45)

In the definitions (3.44) and (3.45) the effect of the solvent acts in two ways:
indirectly, by modifying the molecular orbitals and the corresponding orbital
energies (they are in fact solutions of the Fock equations including solvent re-
action terms); explicitly, through the perturbation term VPCMai,jb .
This term can be described as the electrostatic interaction between the charge
distribution φ∗aφi and the dynamic contribution to the solvent reaction poten-
tial induced by the charge distribution φ∗bφj, and it can be written in terms of
the vector product between the electrostatic potential and the induced appar-
ent fast charges, determined by the corresponding transition density charge,
namely

VPCMai,bj =
∑
k

Vai(~sk)q
dyn
bj (3.46)

It is now possible to meaningfully compare the excitation energies obtained
with the explicit determination of the excited state wave functions and those
given by the LR theory. By comparing the PCM term reported in eq. (3.41)
with the one reported in eq. (3.46), we note that they are formally and phys-
ically different; the former depends on the electrostatic potential and PCM

5the same notation of chapter 2 relating to TD-DFT methods is adopted.
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charges calculated using the change of the density matrix P∆ of the excited
state, whereas in the latter the same quantities have been obtained by using
transition matrix elements.
The difference between the two approaches can be clarified by interpreting the
excitation in solution as a two-step process: in the first step, the molecule that
was in its ground state in equilibrium with the solvent is excited to the state
K in the presence of a solvent polarization frozen to the value proper for the
solute ground state. The energy change related to this process, (∆EK0,neq

GS ), is
equally described by the two theories. In the second step of the excitation pro-
cess, the fast degrees of freedom of the solvent rearrange to equilibrate with the
charge density of the solute excited state; in this step the two theories diverge
because the energy variation accompanying this relaxation is not explicitly
accounted for in the LR framework. On the contrary, the LR accounts for a
correction which, being originated by the dynamic solute-solvent interactions,
might be classified as a part of dispersion [135],[138].

3.3.2 The corrected-Linear Response (cLR)

In eq. (3.33) (or equivalently in eq. 3.41 for the nonequilibrium regime) we
have shown that excited-state free energies can be obtained by calculating the
frozen-PCM energy EK

GS and the relaxation term of the density matrix, P∆

(or P∆
neq), where the calculation of the relaxed density matrices requires the

solution of a nonlinear problem being the solvent reaction field dependent on
such densities.
If we introduce a perturbative scheme and we limit ourselves to the first order,
an approximate but effective way to obtain such quantities is represented by
the LR scheme as shown in the following equations. Using a LR scheme, in
fact, we can obtain an estimate of ∆EK0,neq

GS , which represents the difference
between the excited- and ground-state energies in the presence of a frozen
ground-state solvent as the eigenvalue (ω0

K) of a non-Hermitian eigensystem of
type (3.43), where VPCMaiσ,bjσ′ = 0 but the orbitals and the corresponding orbital
energies used to build the A and B matrices have been obtained by solving
the SCF equation in the presence of a ground-state solvent.



88 CHAPTER 3. TD-DFT/PCM METHODS



VPCMaiσ,bjσ′ = 0

εpσ −→ εPCMpσ

|ΨGS〉 −→ |ΨPCM
GS 〉

φi −→ φPCMi

ωK −→ ω0
K

(3.47)

By using this approximation, the equilibrium and nonequilibrium free energies
for the excited state K become:

GeqK = GGS + ω0
K +

1

2

Nts∑
l

Vl(P
∆)q∆,dyn

l (3.48)

GneqK = GGS + ω0
K +

1

2

Nts∑
l

Vl(P
∆,neq)q∆neq,dyn

l (3.49)

The only unknown term of eqs (3.48) and (3.49) is the relaxation part of
the density matrix, P∆ (or P∆,neq) (and the corresponding apparent charges).
These quantities can be obtained through the extension of LR approaches to
analytical energy gradients (see next section). In these extensions the so-called
Z-vector [27] (or relaxed-density) approach is used; as shown in the next sec-
tion, this approach allows a computationally efficient implementation of the
post-HF and TD-DFT analytical gradients. The solution of the Z-vector equa-
tion as well as the knowledge of eigenvectors |XK , YK〉 of the TD-DFT linear
system allow one to calculate P∆ for each state K (as in eq. (2.88). Once P∆

is known we can calculate the corresponding apparent charges as

q∆,x
l =

Nts∑
m

Qml(εx)V
∆x
m (3.50)


εx = ε
P∆,x = P∆ equilibrium regime

q∆,x
l = q∆

l

(3.51)
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
εx = ε∞
P∆,x = P∆neq non-equilibrium regime

q∆,x
l = q∆dyn

l

(3.52)

By introducing the TD-DFT relaxed density and the corresponding charges
(3.50) into Eqs. (3.48) and (3.49) we obtain the first-order approximation to
the exact free energy of the excited state by using a linear response scheme.
This is the current corrected linear response (cLR) approach [139], imple-
mented by solving twice the TD-DFT equations:

a) First, the explicit solvent contribution is left out from such equations
and thus the ω0

K excitation energies are computed.

b) Then these solutions are used as a guess to solve the TD-DFT equations
again, but this time the explicit solvent contribution is included and the
corresponding relaxed density is computed and used as detailed above.

To have a qualitative estimate of the changes in excitation energies one obtains
moving from LR to cLR approach, we can adopt the simple diagnostic index
formulated in ref. [139] using a first-order perturbation theory for a simplified
system (a dipole at the center of a spherical cavity). Such an index correlates
the correction of the SS and LR approaches with respect to the frozen-solvent
transition energy ω0

K with state and transition dipoles, namely

δ =
ω0
K − ωLRK
ω0
K − ωSSK

=
2µ2

0K

∆µ2
0K

(3.53)

where ∆µ0K is the difference between the ground- and excited state K dipole
moment and µ0K is the corresponding transition dipole.
Obviously, we cannot expect that such a relation based on a spherical cavity
and a dipolar coupling between the solute and the reaction field is exactly
fulfilled by the PCM values but it is reasonable to suppose that the correlation
with ∆µ0K and µ0K is maintained. By doing that, we can predict the dif-
ferences between LR and cLR transition energies for some typical excitations
(namely n → π∗, π → π∗ and charge transfer) from the graph reported in
Figure 3.1.

As it can be seen from the graph, the largest differences are found for tran-
sitions in which the difference between the dipole change and the transition
dipole is large; in particular, ωcLRK will be significantly smaller (larger) than
ωLRK if ∆µ2

0K is much larger (smaller) than 2µ2
0K . These two extreme situa-

tions typically apply to n → π∗ and charge-transfer transitions, respectively.
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Figure 3.1: Graphical representation of a qualitative comparison between LR
and cLR for some common excitations.

Finally, it is worth to note that, even if here it is interesting to emphasize pos-
sible differences between the two approaches, it is also important to note that
the solvatochromic contribution related to the inertial response of the solvent
(i.e., that determining ω0

K) is described in the same way. With such a con-
tribution being the main part of relative solvatochromic shifts, we can expect
that in all cases cLR and the LR approaches will give very similar descriptions
of the solvent effect and, in particular, of the relative shift passing from one
solvent to the other.

Concluding this section, it is worth noticing that a different procedure of
state specific type, based on a different philosophy, was presented by Improta
et al [140]. They propose an alternative effective approach to the solution of
the nonlinear problem of determining the polarization charges corresponding
to excited state density based on a self-consistent procedure, which iterates on
the total density: i.e. both PGS and P∆ are modified.

3.3.3 Analytical Gradients of the Excited State Energy.

Once we have described the extension of PCM to LR approaches to evaluate
excitation energies, the natural following step is to generalize it to the analyt-
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ical derivatives with respect to specific perturbations. In this way, in fact, we
can extend the study of excited states to their relaxed geometries and proper-
ties. The evaluation of analytical derivatives of the PCM-TD-DFT excitation
energy ωK with respect to a generic parameter (e.g., a nuclear coordinate) has
been proposed by Scalmani et al. [141], as a generalization of the analogous
derivative for the PCM-CIS excitation energies [142]. The starting point is the
definition of the gradient of the excitation energies ω, wich are solution of eq.
(3.43); this gradient does not require any derivative of the excitation ampli-
tudes (i.e., the eigenvectors) because ω has been variationally determined, but
it requires the changes in the elements of the Fock matrix. These, in turn, re-
quire the knowledge of the MO coefficients derivatives, which are the solution
of the couple perturbed Kohn-Sham equations (CPKS).
It has been shown that there is no need to solve the CPKS equations for each
perturbation, but rather only for one degree of freedom, which represents the
orbital relaxation contribution to the one-particle density matrices (1PDM) in-
volved in all post-SCF gradient expressions (see section 2.5). In the resulting
equation, the occupied-occupied and virtual-virtual blocks of the P∆ matrix
are already available from the diagonalization of (3.43), whereas the occupied-
virtual block is the unknown (as in eq. 3.31). The final form of the gradient
of the excitation energy is conveniently expressed in the AO basis as

ωξ =
∑
µν

hξµνP
∆
µν +

∑
µν

SξµνWµν +
∑
µνκλ

〈µκ|νλ〉ξΓµν,κλ + ωXC,ξ + ωPCM,ξ (3.54)

where we have used µ, ν... to indicate atomic basis functions, Γµν,κλ to indicate
the two-particle density matrix (2PDM), which collects all the contributions
that multiply the integral first derivatives 〈µκ|νλ〉ξ, and Wµν to indicate the
energy weighted density matrix.
Here hξµν and Sξµν are the derivatives of the one electron Hamiltonian and the
overlap matrix, respectively, and ωXC,ξ, is a derivative of exchange-correlation
contributions.
All the details of the derivation of this expression can be found in the reference
paper, here it is useful to focus on the PCM parts only. Equation 3.54 includes
two explicit PCM contributions:

ωPCM,ξ =
∑
µν

V PCM(ξ)
µν P∆

µν +
∑
µνκλ

VPCM(ξ)
µν,κλ (X + Y )µν(X + Y )κλ (3.55)

even if the solvent reaction field also implicitly affects eq. (3.54) through P∆

and W. The first explicit PCM contribution is common to all post-SCF gradi-
ents and it involves the change in the 1PDM made by the post-SCF procedure:
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∑
µν

V PCM(ξ)
µν P∆

µν =
∑
µν

P∆
µν

[∑
k

V E
µν,kq

w
k

]
(3.56)

Equation 3.54 can be finally summed to the standard DFT contribution to give
the expression for the total free energy gradient of each state in the presence
of the solvent,

GTD−DFT,ξ = GDFT,ξGS + ωξ (3.57)

where GDFT,ξGS , is the ground-state DFT gradient contribution (see ref 29).
This procedure can be used to obtaine excited-state relaxed geometries and
emission energies by applying the nonequilibrium description, but this time in
a reversed order (i.e., an equilibrated excited state and a nonequilibrium, or
vertical, ground state).
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3.4 Applications of PCM-LR and PCM-cLR

schemes to push-pull chromophores

In this section we report a TD-DFT/PCM study of the structure and proper-
ties of the low-lying, intramolecular charge-transfer singlet electronic state of
two push-pull chromophores that possess an electron-donating group and an
electron-accepting group connected by a conjugated π system, namely julo-
lidinemalononitrile (JM) and indolinedimethine-malononitrile (IDMN). Both
JM and IDMN have been deeply studied by Myers-Kelley and co-workers us-
ing UV and resonance Raman (RR) spectroscopies [143], [144], [145]. JM has
been further analysed with computational studies by our group [146] and by
Guthmuller and Champagne [147]; in both studies a PCM description was in-
troduced to include solvent effects. Here, a comparative analysis of the two
systems is presented; such an analysis will start from the suggestions of the
two previous papers [146], [147] (namely the need of including solvent effects
and the importance of a correct QM description), but it will proceed further by
applying the PCM tools described in the previous sections of this chapter. In
such a way, the nature of the excited state of interest will be deeply analysed
in terms of both structural and electronic aspects.

3.4.1 Computational Details.

The calculations were performed at the DFT level by using the 6-311G(d,p)
basis set. As suggested by a previous paper on JM [147], the effect of HF ex-
change has been addressed by considering B3LYP, B3LYP-35, and BH&HLYP
hybrid functionals. Although both B3LYP and BH&HLYP are commonly used
functionals [50],[47] this is not the case for B3LYP-35, which is a Becke three
parameter hybrid type functional constructed by the following expression:

0.65ESlater
X + (1− 0.65)EHF

X + 0.585EBecke
X + EVWN

C + 0.81ELY P
C (3.58)

In comparison, for the B3LYP functional the values are 0.8, 0.72, and 0.81,
respectively (see section 2.2). The use of these functionals has been motivated
by the expected significant dependence of the excited state geometries and
properties on the amount of Hartree-Fock exchange in the functional (B3LYP,
BH&HLYP, and B3LYP- 35 contain 20%, 50%, and 35% of Hartree-Fock ex-
change, respectively). In addition, the CAM-B3LYP functional [63] ( 19%
exact exchange at short-range, like a conventional hybrid, but 65% at long-
range) has been used to test the reliability of DFT hybrid functionals against a
proper description of charge-transfer electronic transitions. Solvent effects were
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described by exploiting the IEF-PCM with a molecule-shaped cavity made of
interlocking spheres centered on heavy atoms: the default set of sphere radii
(UA0) implemented in the Gaussian code [78] was exploited. Vertical exci-
tation energies were obtained in the nonequilibrium solvation regime, by ex-
ploiting both the linear response (LR) and the corrected LR (cLR) schemes
as described before. Excited-state geometries and properties were obtained
applying the TD-DFT gradients implementation to all four functionals ( see
section 3.3.3). Resonance Raman spectra in solution were obtained by exploit-
ing the extension of IEFPCM to STD approach [146]. All QM calculations were
performed using a development version of the Gaussian package [78] whereas
the vibronic structure of absorption spectra was simulated by exploiting the
FCfast code [148],[149].

3.4.2 Results and Discussion

Figure 3.2: Structure of julolidine-malononitrile (JM) and indolinedimethine-
malononitrile (IDMN) in terms of the two resonance forms. The indication of
selected bond distances is also given

Before moving to the study of excitation and excited-state geometries and
properties, let us focus on ground-state geometry and electronic charge dis-
tribution. A key geometrical parameter useful to rationalize the behavior of
push-pull systems is the bond length alternation (BLA) index [150]; such an
index, which is defined as the difference between the average length of the
carbon-carbon single and double bonds, has been widely used in the literature
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focusing on the structure and properties of push-pull systems (see, e.g., ref.
[151],[152] and [153]). By definition, a positive BLA value is associated to
the neutral form, a negative value to the zwitterionic form and a zero value
to a delocalized system (see Figure 3.2): In Figure 3.3 the variations of BLA
for IDMN and JM moving from cyclohexane to acetonitrile are reported, as
obtained by using the four DFT functionals. The values reported are qualita-
tively consistent with a two state model, pictorially represented in Figure 3.2.
More specifically, as the solvent polarity increases, the ground state displays a
more zwitterion-like structure: with increasing solvent polarity and increasing
zwitterionic character, we observe alternate positive and negative variations
of the single and of the double bond lengths along the whole skeleton going
from the amino to the cyano nitrogen. The expected solvent dependence of
the conjugated bond lengths is easily deduced by inspection of the resonance
forms in Figure 3.2. This behavior is almost identical at each DFT level of
description.
In more detail, as can be seen from the inspection of Figure 3.3, an increase
in the BLA index is noticed by increasing the HF exchange percentage in
the DFT functional, i.e., going from B3LYP to B3LYP-35, BHandHLYP, and
CAM-B3LYP. Such a behavior is common both to cyclohexane and to ace-
tonitrile. A greater HF exchange percentage yields more localized single and
double bonds. Despite this common behavior of BLA, the two chromophores
show a different response to the solvent. IDMN is described as a neutral struc-
ture in the ground state in both solvents with an increasing delocalization of
charge in the polar solvent, as expected. This is not the case of JM that is de-
scribed as more delocalized than IDMN as shown by the small BLA values (for
B3LYP and B3LYP-35 a slightly zwitterion character appears in acetonitrile).
It has to be noted that for IDMN the presence of an aromatic ring proba-
bly makes the two-state picture not appropriate to rationalize the behavior of
this molecule, because the zwitterionic form breaks the aromaticity. In Table
3.4.2, molecular dipole moments and isotropic (electronic) static polarizabil-
ities are reported, as a function of the DFT functional both in cyclohexane
and in acetonitrile. For both molecules, the molecular dipole moment and the
polarizability increases going from apolar to polar solvent, as expected, and
decreases by increasing the HF exchange percentage in the functional. Once
again, some differences appear in the two molecules. For IDMN the effects on
the dipole moment due to the change in the functional are less evident than
for the previously analysed geometrical parameters (the largest variation of µ
is only of about 2%). IDMN isotropic polarizabilities are slightly more sensi-
tive yielding 4% largest variation going from B3LYP to CAM-B3LYP. For JM,
the molecular dipole moment decreases of about 11% moving from B3LYP to
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Figure 3.3: Variations of the BLA index for IDMN and JM moving from cy-
clohexane (CYC) to acetonitrile (ACN), as obtained by using the four selected
DFT functionals.

CAM-B3LYP, while the static polarizability decreases of about 6%. In both
cases, these data are in agreement with the structural changes reported in
the previous section: both dipole moments and polarizabilities increase as the
BLA index decreases, i.e., as a more delocalized structure is present.

Vertical Transition Energies.

Before analysing excited state structure and properties, let us start the dis-
cussion on the transition properties. As said before, we will focus on the first
charge-transfer singlet transition, which has a π−π∗ character and is described
as HOMO-LUMO for all functionals and both systems (see Figure 3.4).
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Table 3.2: Dipole Moment (Debye) and Isotropic Static Polarizability
(Å3) for the Two Molecules in the Two Solvents As Obtained with
Different Functionals

µ α
CYC ACN CYC ACN

JM
B3LYP 13.7 17.3 39.3 50.3
B3LYP-35 13.4 16.7 37.6 47.8
BH&HLYP 13.0 16.1 36.2 45.7
CAM-B3LYP 12.2 15.9 37.1 47.1

IDMN
B3LYP 12.3 15.4 39.2 48.5
B3LYP-35 12.3 15.3 37.6 46.2
BH&HLYP 12.3 15.2 36.3 44.3
CAM-B3LYP 12.0 15.1 37.3 45.8

Figure 3.4: Pictorial view of the HOMO and LUMO orbitals of JM and IDMN.

In Table 3.3 vertical excitation energies in the two solvents as obtained
within both the LR and the cLR frameworks are reported. To have a better
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appreciation of the LR and cLR differences, the common starting energy (
∆EK0,neq

GS ) obtained in a frozen ground-state solvation is also reported (see
section 3.3.2 for details). In general, for both molecules, a decrease in the
transition energy value is observed with increasing solvent polarity and such
a behavior is common to both LR and cLR. Absolute energies always increase
upon passing from LR to cLR. This can be explained using the simple but
still effective diagnostic index introduced in eq. 3.53 in terms of differences of
dipoles and transition dipoles. As we shall show in the next section, both JM
and IDMN present an increase of the dipole moment in the excited state of the
order of 3-4 Debye; by using these values and the transition dipoles reported in
Table 3.3, we see that the parameter is much larger than one for both systems:
this means that ∆ELR < ∆EcLR. As this increase is similar in both solvents,
the solvatochromic shifts remain almost the same passing from LR to cLR.
Moving to the comparison with experiments, the absolute energies are always
overestimated, whereas solvatochromic shifts are reproduced pretty well by all
functionals, especially by CAM-B3LYP. The overestimation of the absolute
energies is surely due to a combination of different effects, including those
related to the use of a continuum electrostatic only solvation model and more
important to the use of a TD-DFT description. To have an idea of the effect of
the QM level, we have compared gas-phase TD-DFT results with that obtained
at SAC-CI level [12], which is an accurate method to predict transition energies.
For IDMN, all functionals overestimate the SAC-CI value of about 0.3, 0.5, 0.7
and 0.6 eV for B3LYP, B3LYP-35, BH&HLYP, and CAM-B3LYP, respectively.
If we assume that the intrinsic error due to TD-DFT is not dependent on the
solvent, we can subtract the TD-DFT - SAC-CI differences from the energies
reported in Table 3.3 to obtain effective energies; with that, a good agreement
with experiments is recovered, especially for CAM-B3LYP/cLR.

Excited-State Structure and Properties.

Let us analyse structural changes of the charge-transfer state following the ver-
tical excitation by using, once more, the BLA index (see Figure 3.5). For both
molecules, the BLA index for the excited state shows an inverse behavior with
respect to the ground state. In both solvents the JM excited state is described
as a zwitterion by all functionals (BLA < 0) with the exception of B3LYP
in cyclohexane, which gives a small positive BLA. Also, for IDMN a negative
BLA is found in both solvents with BHandHLYP and CAM-B3LYP, whereas
B3LYP35 in cyclohexane and B3LYP in both solvents give positive and not
negligible BLA. From this analysis, it is evident that B3LYP fails at describing
structural changes upon excitation, whereas the correct picture is recovered ei-
ther by increasing the percentage of exact exchange (as in BHandHLYP) or by
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separating out the short and long-range contributions (as in CAM-B3LYP).
Also, B3LYP-35 introduces significant improvement in the description of the
excited-state geometry with respect to B3LYP; however, such an improvement
is not sufficient to get the correct picture for IDMN. To characterize the ex-

Figure 3.5: Variation of the BLA index following the excitation for JM and
IDMN in cyclohexane (CYC) and acetonitrile (ACN). The four selected DFT
functionals are considered.

cited states also from the electronic point of view, in Table 3.4 excited-state
dipole moments obtained at GS minimum geometry (vertical) and at relaxed
geometry for both molecules are reported. This allows us to obtain informa-
tion on the role played by structural and electronic changes resulting from the
electronic excitation. The inspection of the table shows that the major con-
tribution to the change in the dipole moment passing from ground to excited
state results from the vertical excitation: the excited-state nuclear relaxation
causes only a further slight increase in the dipole moment. This is particu-
larly true for JM in cyclohexane, where the “vertical” dipole is almost equal to
that at the excited-state geometry. We recall that in acetonitrile, in addition
to the different geometry, the “relaxed” values distinguish from the vertical
ones in the solvation regime used, namely nonequilibrium in the vertical and
equilibrium in the relaxed.

The effect of the different functional is quite small especially for JM, but
some trends can be observed. Looking first to vertical values, we see that
in both molecules the increase of exact exchange (passing from B3LYP to
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Table 3.4: Vertical and Relaxed Excited-State Dipoles (Debye) for
the Two Molecules in the Two Solvents As Obtained with Different
Functionals

vertical relaxed
CYC ACN CYC ACN

JM
B3LYP 17.56 20.08 17.59 21.46
B3LYP-35 17.08 19.61 17.42 21.51
BH&HLYP 17.07 19.48 17.28 21.42
CAM-B3LYP 17.14 19.45 17.38 21.60

IDMN
B3LYP 15.66 18.63 16.7 20.06
B3LYP-35 14.93 17.68 16.17 19.37
BH&HLYP 14.74 17.27 15.45 18.54
CAM-B3LYP 14.86 17.20 15.02 18.05

B3LYP-35 and BH&HLYP) leads to smaller dipole moments. This decrease
is counterbalanced by the separation between short- and longrange exchange
introduced in CAM-B3LYP. If the effect of the functional on the geometry is
also considered using the relaxed dipole moments, we see a different behavior
for the two molecules. For JM, all functionals are quite similar, whereas for
IDMN, B3LYP gives much larger dipole moments than the other function-
als. This unique behavior of B3LYP is a direct consequence of what already
commented for BLA reported in Figure 3.5. A final analysis of the change in
the state character upon excitation can be obtained in terms of a population
analysis. Here the Merz-Kollman (MK) model [154] is adopted by using both
the vertical and the relaxed excited-state geometries. To have a more direct
analysis, it is convenient to define a CT parameter as

fCT = ∆EXC−GS
D −∆EXC−GS

A (3.59)

where ∆EXC−GS
X is the difference of charge in the donor or acceptor unit upon

excitation. If the excitation really corresponds to a CT from donor to accep-
tor, then ∆EXC−GS

D is large and positive and ∆EXC−GS
A is still large in absolute

value but negative. As a result, fCT will be large and positive. To calculate
fCT , we have to define the donor and acceptor units; in both molecules we have
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Figure 3.6: fCT parameter (see text) for JM and IDMN in cyclohexane (CYC)
and acetonitrile (ACN) with the four selected DFT functionals.
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assumed the ring nitrogen atom as the donor and the C(CN)2 as the acceptor.
The results obtained are reported in Figure 3.6 for all the functionals and the
two solvents. Once again JM and IDMN present quite different behavior: for
JM fCT is always positive and increases with the solvent (by increasing the
percentage of HF exchange we observe only a small increase). In contrast, for
IDMN the effect of the functional is more dramatic as fCT changes sign by
increasing the HF exchange. From this graph it is evident that the excitation
in JM presents a much more pronounced CT character than IDMN; in IDMN
the excited-state character strongly depends on the functional used and in
particular on the percentage of HF exchange but also on the separation into
short and longrange terms. Note that B3LYP always predicts a reversed flow
of charge from the expected acceptor to the donor (i.e., fCT < 0).
To conclude the analysis, we will combine the results obtained so far for JM
and IDMN ground- and excited-state structures/ properties and use them to
simulate UV and Resonance Raman (RR) spectra. In Figure 3.7 the simu-
lated absorption spectra are reported; these are obtained by calculating the
Franck-Condon integrals of vibrational wave functions belonging to two differ-
ent electronic states as implemented into the program FCFAST. Experimental
findings taken from refs [143] and [145] are also shown as insets. The simulation
of the band shapes was done by using CAM-B3LYP ground- and excited-state
geometries and ground state harmonic frequencies (which are assumed to be
valid also for the excited state), and a bandwidth of 500 cm−1. This value was
taken to reproduce the experimental broadening of the spectrum. So to have
a more direct comparison with experimental graphs, spectra are reported in
cm−1 for JM and in nm for IDMN. For both molecules the agreement between
calculated and experimental findings is satisfactory, the relative intensities of
the secondary peak (actually a shoulder) correctly decreases by increasing the
solvent polarity exactly as in the experimental spectra. Notice, however, that,
because simulated spectra are normalized with respect to the absorption max-
imum, nothing can be said about the main peak intensity passing from one
solvent to the other.

Moving now to RR spectra, the main effects of the solvent (position of the
peaks and their intensities) can be ascribed to two different origins: one due to
the solvent-induced changes in the geometry of both ground and excited states
and the other due to the variations induced in the electronic distribution of
both states.
As far as concerns the theoretical aspects related to the implementation of
PCM-RR, the interested reader can find all the details in ref. [146],[155]; here
we shall only recall that the application of PCM to the two computational
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Figure 3.7: CAM-B3LYP simulated absorption spectra for JM and IDMN
as obtained by combining calculated excitation energies with Franck-Condon
integrals. Experimental findings taken from ref [143].
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strategies commonly used to simulate resonance Raman spectra (the trans-
form theory, TT, approach by Peticolas and Rush [156] and the short time
dynamics, STD, theory [157],[158]) involves the determination of a different
portion of the potential energy surface (PES) for the solvated excited state
together with a different solvation regime.
Namely, in TT an equilibrium solvation and a completely relaxed geometry
is used to describe the excited state, whereas in STD the vertical (or Franck-
Condon) portion of the excited state PES is used together with a nonequilib-
rium solvation. These differences in the treatment of the solvent effect suggests
that the STD approach is more suited than TT to describe the sequence of
fast events occurring in the Resonance Raman experiments of solvated systems.
An analysis of the effects of these different solvation regimes determining TT
and STD spectra of JM can be found in the cited paper. The same molecu-
lar system has bee further analysed in a successive paper by Guthmuller and
Champagne,[147] where a detailed analysis of the effects of different DFT func-
tionals is reported. Starting from the results of these studies on JM, here it
is of interest to focus on IDMN. As said above, the STD better represents the
solvation effects on RR spectra; therefore, in the present study the analysis
will be limited to STD intensities, which are defined as [157],[158]:

I0→1m(ωm) ∝ ω2
m∆2

m; ∆m =

√
ωm
~

∆Qm (3.60)

where ∆m and ∆Qm are the dimensionless displacement and the displacement
along the mass-weighted normal coordinate for mode m (whose vibrational
frequency in the ground state is ωm m), respectively. In the STD framework,
∆Qm is calculated from the partial derivative of the excited-state electronic en-
ergy (EK) along the normal mode Qm at the ground-state equilibrium position

∆Qm = − 1

ω2
m

∂Gk

∂Qm

(3.61)

Gk is the free energy of the K state, obtained through eq (riferimento a teoria)
within the corrected linear response approach in the nonequilibrium solvation
regime.
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Figure 3.8: Calculated IDMN RRS spectra in the 1300-1800 cm−1 range ob-
tained in the STD-cLR approach in cyclohexane (CYC) and acetonitrile(ACN).
Experimental spectra taken from ref [145] are also shown as insets.

For the ground-state geometry and frequencies we have used two different
functionals, namely CAM-B3LYP and B3LYP, whereas for excited-state gra-
dients only CAM-B3LYP has been used: this functional in fact has shown to
be the most reliable method to describe IDMN excited state. Notice that only
six normal modes were selected, the ones showing the largest variations upon
solvation. The corresponding 1300-1800 cm−1 window of the STD-cLR RR
spectra is reported in Figure 3.8 for both solvents (in the inset the experimen-
tal spectra are also shown). The mode at about 1360 cm−1 mainly involves
the R1 and R4 bond stretching; the peak at about 1520 cm−1 is due to the
asymmetric stretching mode of the rings. The normal modes yielding peaks
at 1570 and 1606 cm−1 have similar vibrational components, and in particular
the first normal mode involves the in-phase R1 and R4 stretching with out-
of-phase R2 and R3 stretching; the second mode is composed of the in-phase
R2 and R4 and out-of-phase R3 stretching. The other two normal modes (at
about 1640 and 1650 cm−1) both involve the benzene ring stretching, and the
one at 1650 cm−1 also accounts for the out-of-phase R2 and R3 stretching.
Moving to the comparison with experiments, the main experimental features
passing from one solvent to the other are correctly reproduced only by the
CAM-B3LYP description using the B3LYP ground-state geometry (and vi-
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brational frequencies). Only at this level of description we reproduce the ex-
perimentally observed change in the relative intensities of the peaks in the
1500-1600 region of the spectra. These two peaks are assigned to modes hav-
ing dominant contributions from the R2 and R4 stretches. These are double
bonds in the neutral structure but single bonds in the zwitterion, which should
make a larger contribution to the structure in polar solvents.
The better agreement obtained with mixed description seems to indicate that
CAM-B3LYP gives a less accurate description of the peak position and thus
of the ground-state geometry with respect to B3LYP whereas it well describes
the nature of the excited state. Such an agreement is not unexpected in light of
what has previously been discussed about structural and electronic parameters
of the ground and excited states. In fact, although B3LYP gives a good descrip-
tion of the ground state (see, e.g., the discussion on BLA index and vibrational
frequencies), CAM-B3LYP is instead more reliable in describing the excited
state. In fact, only CAM-B3LYP (and BH&HLYP) give the correct BLA in-
dex behavior in the excited state and the corresponding description in terms of
charge-transfer character, as evaluated by means of the Merz-Kollman popu-
lation analysis. These results show that the correct description of RR spectra,
which requires the accurate description of the ground- and excited-state PES,
is particularly challenging for TD-DFT, so that the use of different functionals
and/or basis sets, specifically tailored to the states under examination may be
required.
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3.5 Application of PCM-LR and PCM-cLR

schemes to Nile Red system:

The TICT problem

Nile Red (diethylamino-5H-benzo[a]phenoxazin-5-one, NR) is a lipophilic and
fluorescent dye, which is used in a large number of technical applications,
ranging from solvent mixtures [159] to dye-based lasers [160]. In particular,
this molecule undergoes a large solvatochromic shift in the UV-visible absorp-
tion spectrum, so that it may be used as a polarity probe in a variety of
chemical and biochemical environments [161]. The large solvent sensitivity
of NR originates in the significant increase of dipole moment occurring when
going from the ground to the lowest excited state, that indicates a large elec-
tronic reorganization upon excitation. Accurate experimental determinations
of dipole moment variations have been attempted in the past years, but the
obtained values exhibit considerable discrepancies, ranging between 5 and 12
D [162],[163],[164],[165],[166],[167],[168]. In contrast, more recent experiments,
based on a systematic analysis of absorption and fluorescence spectra of NR
in several solvents, suggest a much smaller modification of about 1.8 D [169].
Spectroscopic properties of NR are even more interesting. Indeed NR presents
a fluorescence spectrum with two peaks (often interpreted as dual fluorescence)
centred at ca. 530 and ca. 570 nm in apolar solvents (more specifically values
of 525 and 570 nm, and 538 and 568 nm have been measured in n-hexane4
and in n-heptane [170], respectively). Though modulated, this behaviour is
retained in non-protic media [163] but also in more complex chemical environ-
ment such as binary solvent mixtures with a high water ratio [162] or reverse
micelles [170].
These experimental studies suggest that this peculiar spectroscopic fingerprint
could be related to a twisted intramolecular charge transfer (TICT) process
[171],[172], the same mechanism used to explain the anomalous dual fluores-
cence of 4,40-dimethylaminobenzonitrile (DMABN) [173].

From an electronic point of view, TICT states are accessible in multichro-
mophoric systems possessing a weakly coupled electron donor (D) and electron
acceptor (A). Two stable conformations are then obtained in the lowest ex-
cited state by twisting the D and A moieties, one with respect to the other. In
NR, the acceptor and donor parts are the ketone and the diethylamino groups,
respectively, whereas the twisting angle (θ) corresponds to a rotation around
the C–N bond (see Fig. 3.9).
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Figure 3.9: Sketch of the locally excited (LE), the planar and twisted in-
tramolecular charge (PICT and TICT) forms of NR

The formation of the TICT state can be viewed as an adiabatic photo-
reaction proceeding on the S1 potential energy surface (PES). Indeed the orig-
inally reached locally excited (LE) state with planar conformation has only a
weak CT character (large mesomeric interaction between D and A results in
an incomplete charge separation) whereas in the twisted TICT conformation,
a significantly larger electronic charge is transferred from D to A, since the
mesomeric interaction is blocked (see Fig. 3.9).
In alternative to the TICT process, another interpretation of experimental
data, based on the so-called planar ICT (PICT) model, rejects the necessity of
a large-amplitude motion for the formation of a highly polar ICT state [174].
Such hypothesis is based on the equilibration dynamics between the LE and
ICT state which takes place on a picosecond scale, with rates increasing when
larger alkyl groups substitute the amino moiety [175].
The PICT model postulates an ICT structure with an increased double bond
character between the D and A moieties (C–N bond in NR), resulting in a
partial positive charge on the amino group and a quinoidal resonance struc-
ture. In a more general interpretation of the model, it is claimed that the
vibronic coupling could play a non-negligible role and that a large (nearly per-
pendicular) twist is unnecessary to form the highly polar ICT state [176].
The controversy on the TICT vs. PICT process in DMABN and deriva-
tives is for many aspects still open at both experimental and theoretical levels
[173],[177],[178],[179],[180]. More generally, these mechanisms are antagonist
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in many photoinduced CT processes, as, for instance, those present in metal-
lic complexes mimicking photosynthesis [181]. Few theoretical papers have
attempted to obtain some hints on the nature of NR optical properties. Previ-
ous semi-empirical (ZINDO/S) calculations showed the existence of two stable
conformers in the lowest (S1) excited state, characterized by very different
dipole moments, thus supporting the TICT proposal [166]. However, ab ini-
tio calculations, based on the configuration interaction with single excitations
(CIS) approach, indicate that the LE state is planar and has a larger dipole
moment than the corresponding twisted structure, contradicting the TICT
proposal [182]. More recently an extensive study, based on TD-DFT and CIS
calculations, suggested that the LE state exhibits a red shift in the emission
spectra, and no evidence of a twisted intramolecular charge transfer state was
found [183]. However, the authors of this latter work called for a more system-
atic analysis based upon more reliable TD-DFT structures for excited states.

We present here a detailed theoretical analysis of the lowest excited state
(S1) features of NR. The main goal is to determine the structural and elec-
tronic features of NR in its S1 state and, from them, to gain insights on the
nature of the apparent dual fluorescence observed in the experiments. To this
end, TD-DFT studies of the absorption and fluorescence spectra, both in gas
phase and in heptane solution, have been carried out. A particular attention
has been devoted to the conformational effects tuning the emission behaviour.
From a more computational point of view, the performances of several ex-
change–correlation functionals have been analysed. Indeed the existence of a
TICT implies a charge transfer transition, which, as above mentioned, could
be poorly described at TD-DFT level if conventional functionals are selected
(see section 2.6 and refs [26],[72],[184],[73]). At the same time, it is interesting
to assess the behaviour of the selected functionals and of TD-DFT approach
itself in reproducing PES characteristics relatively far from energy minima
and the IEFPCM/LR and cLR perfomances in investigating TICT or PICT
excitations in solution.

3.5.1 Computational Details

All DFT and TD-DFT calculations have been carried out with a development
version of the Gaussian suite [78], using five hybrid functionals including an
increasing fraction of Hartree–Fock exchange (HF-X) and two range-separated
hybrids (RSHs): B3LYP, (20% of HF-X), B3P86 (20% of HF-X), PBE0 (25%
of HF-X),43 BMK (42% of HF-X), BH&HLYP (50% of HF-X), CAM-B3LYP
(19% short range and 65% long range of HF-X) and the LC-ωPBE (0% short
range and 100% long range of HF-X). In this last functional, a larger damping
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parameter (0.40 a.u. instead of 0.33 a.u. for CAM-B3LYP, see section 2.2) is
selected, so that a relatively larger HF-X is included at intermediate interelec-
tronic separation.
All the calculations (geometry optimization, absorption and emission) have
been carried out with the 6-311G(d,p) basis set. To verify the convergence on
the transition energies, some tests have been carried out with the 6-31+G(d,p):
differences smaller than 0.04 eV have been found for the first transition.
A series of SAC-CI [12] calculations with 6-31G basis set have been performed
to obtain qualitative wave function benchmarks for rigid scan of excited state
PES. Test calculations have shown that the (computationally prohibitive) con-
sideration of diffuse functions in the SAC-CI calculations does not alter the
shape of the PES. The SAC-CI calculations have been performed in the frozen-
core approximation, using tight (L3) thresholds and neglecting the R2S2 inte-
grals.
Solvent effects have been introduced by exploiting the IEF-PCM approach and
the default set of sphere radii (UA0) implemented in the Gaussian code [78] has
been used. Vertical absorption and emission energies have been obtained, by
exploiting both the linear response (LR) and the corrected LR (cLR) schemes
(sections 3.3.1 and 3.3.2).
Vibrationally resolved spectra within the harmonic approximation have been
computed using the FC classes program [185]. The simulated spectra (at 298
K) have been convoluted using Gaussian functions with a full width at half
maximum (FWHM) of 0.07 eV. All initial states with a Boltzmann population
> 30% of that of the ground state were considered for a total of 40 initial
vibrational states. A maximal number of 24 overtones for each mode and 19
combination bands on each pair of modes were accounted for.

3.5.2 Results and Discussion

A limited number of computational studies of the ground state properties and
electronic spectra of NR can be found [164],[182],[183]. In particular, it is
worth highlighting a very recent and detailed conformational analysis of NR
in the ground electronic state which has demonstrated that all the conformers
present wavelength of maximal absorption differing only by 3nm for the lowest
state [183]. Amongst all conformers, the most stable is characterized by an
almost planar rearrangement with only the two ethyl groups of the amino
moiety lying outside the molecular plane (on opposite sides). This conformer
has been considered in the present study and constitute the starting point of
the results reported herein.
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Absorption Spectrum

The absorption spectrum of NR in the range 400–600 nm range is characterized
by two band maxima at 488 (2.54 eV) and 508 nm (2.44 eV) in n-hexane4 and
490 nm (2.53) and 510 (2.43 eV) in n-heptane [170]. Additionally, spectroscopic
studies revealed significant variations in the absorption (and emission) bands
positions and intensities as functions of the solvent polarity [162].

Table 3.5 lists the three lowest electronic transitions calculated with dif-
ferent functionals. Of these three transitions the first one is the only with an
oscillator strength different from zero, for all the considered theoretical ap-
proaches. It mainly corresponds to a π−π∗ transition from HOMO to LUMO
(see Fig. 3.10).

Figure 3.10: NR HOMO (left) and LUMO (right) obtained with the CAM-
B3LYP functional

An analysis of the orbital shapes suggests that the traditional assignment
of this band to an electronic CT from the amino donor to the carbonyl ac-
ceptor is only partially fulfilled. Indeed, only a small decrease of the donor
group in the LUMO orbital is observed with a parallel increase of the acceptor
contribution. The map of the electron density variation from S0 to S1 reported
in Fig. 3.11 also supports this picture, with a small negative variation around
nitrogen atom and positive values on the C=O side. However it is not possible
to clearly evidencing a net charge transfer.

It is interesting to note that, as expected, [26] increasing the HF-X ratio in the
GH functionals yields larger transition energies, that ranges from 2.7 (B3LYP
and B3P86) to 3.2 eV (BH&HLYP). Even higher energy transitions are found
with the LC-ωPBE (3.5 eV), while the CAM-B3LYP approach shows an inter-
mediate behaviour between BMK and BH&HLYP. In fact, all selected func-
tionals provide larger transitions larger than the SAC-CI reference (2.5 eV,
obtained with a smaller basis set), B3LYP being the closest (+0.2 eV). The
inclusion of solvent effects (n-heptane) shifts all the transitions to lower ener-
gies by an almost constant quantity (ca. 0.2 and ca. 0.1 eV within the LR
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Figure 3.11: Electron density difference between S1 and S0 (green positive, red
negative).

and the cLR scheme, respectively). From the data reported in Table 3.5, it
is quite apparent that a relatively good agreement between the lowest exper-
imental transition energy (2.43 eV) and the TD-DFT values is reached, with
errors ranging between +0.15 (B3LYP, B3P86) and +0.61 eV (BH&HLYP).
The minimal deviations, obtained with B3LYP, B3P86 and PBE0, are within
the typical error bar foreseen for the selected level of theory [26]. However,
none of the considered methods reveals a second strong absorption, all the
other transitions (up to 4 eV) being characterized by null oscillator strengths
(see Table 3.5). These results seem to indicate that the second peak observed
in the experiments is not due to a second electronic state.

Table 3.6: Computed dipole moments (D) for the ground state, as
well as for the vertical and adiabatic S1 state

S0 S1 vertical S1 adiabatic
Functional Gas phase n-Heptane Gas phase n-Heptane Gas-phase n-heptane
B3P86 8.9 10.6 12.7 14.3 11.5 14.1
B3LYP 8.7 10.4 12.6 14.2 11.4 13.9
PBE0 8.7 10.3 13.1 14.3 11.4 13.9
BMK 7.8 9.9 12.6 14.6 11.3 14.1
BH&HLYP 8.4 9.2 13.0 14.2 11.6 13.7
CAM-B3LYP 7.8 9.1 12.7 14.2 11.4 13.8
LC-ωPBE 7.3 8.4

Additional information on the nature of the excited states can be obtained
by the analysis of dipole moment variations from ground to excited states. In
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particular, as stated in the Introduction, early experimental data suggested a
dipole variation as large as 5.0 and 6.9 D, whereas more recent studies point
towards a significantly lower change of about 1.8 D [169],[186]. In Table 3.6, all
the computed ground, vertical (i.e. at S0 geometry) and adiabatic (i.e. at S1

geometry) dipole moments are reported. Ground state dipole moments range
between 10.6 D (B3P86) and 8.4 D (LC-ωPBE), this last value being in very
good agreement with measurements (8.4 D/8.7 D) [162],[170]. In contrast, all
the computed dipoles for vertical S1 state are around 14 D, so that variations
are between 3 and 5 D, the upper limit being obtained with CAM-B3LYP and
BH&HLYP.

Emission Spectrum

As reported in the introduction to this section, NR presents a fluorescence
spectrum with two peaks (often interpreted as dual fluorescence) centred at
2.18 eV (570 nm) and 2.36 eV (525 nm) in n-hexane,4 and 2.18 eV (568 nm)
and 2.30 eV (538 nm) in n-heptane [170]. The significant redshift observed
between absorption and emission bands is an indication of a structural change
in the excited state.

Table 3.7: Computed emission maxima (eV) in the gas phase and in
solution

Gas-phase n-Heptane (LR) n-Heptane (cLR)
B3P86 2.55 2.40 2.52
B3LYP 2.54 2.39 2.50
PBE0 2.59 2.44 2.56
BMK 2.70 2.53 2.66
BH&HLYP 2.77 2.59 2.73
CAM-B3LYP 2.69 2.51 2.64
LC-ωPBEa 2.81 2.60
SAC-CI 2.67

a Computed using CAM-B3LYP S1 structure.

In Table 3.7 the emission energies, computed for the isolated and the sol-
vated molecule, using the optimized S1 geometries are reported. These tran-
sition energies range between 2.5 (B3LYP) and 2.8 (BH&HLYP). As for the
absorption, the largest values are obtained by increasing HF exchange. The in-
clusion of solvent effects leads to a small red-shift which further reduces when
the cLR scheme is used. As mentioned above, the Stokes shift is generally
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explained in terms of a structural variation in going from the ground to the
excited state. Some key structural parameters, obtained upon TD-DFT op-
timization of the S1 structure, are reported in Table 3.8f and Fig. 3.12. In
particular, Table 3.8 collects the values obtained for the twisting (θ) and pyra-
midalization (δ) angles. The twisting angle is defined as the average of the
two dihedrals C2–C1–N28–C36 and C5–C1–N28–C29, while pyramidalization
angle (δ) is defined as the deviation from planarity of the three atoms attached
to the nitrogen (180o - —C1–N28–C29–C36—), see Fig. 3.9 for labelling. As
it clearly appears from these data, NR is only slightly twisted in the ground
state (5 6 θ 6 7), while the angle d is always very close to 01. Both angles are
slightly affected by electronic excitations and by solvent effects. Going from
the ground to excited state, B3LYP, B3P86 and BMK calculations predict a
small increase of twisting angles whereas BH&HLYP and CAM-B3LYP yield
a small decrease.

Table 3.8: Computed values (degrees) for the twisting (θ) and pyra-
midalization (δ) angles

S0 S1

Isolated Solvent Isolated Solvent
θ δ θ δ θ δ θ δ

B3P86 5.5 0.3 5.5 0.4 6.1 0.3 6.1 0.3
B3LYP 5.8 0.3 5.7 0.4 6.3 0.3 6.3 0.3
PBE0 5.5 0.4 5.6 0.4 6.0 0.3 6.0 0.3
BMK 7.1 0.3 6.9 0.4 7.2 0.6 7.0 0.3
BH&HLYP 6.2 0.3 6.1 0.4 5.9 0.4 5.7 0.4
CAM-B3LYP 5.9 0.4 5.2 0.6 5.8 0.5 5.8 0.5

More significant variations are instead found for two bond lengths in the
D and A units, namely C–N and C=O bonds, shown in Fig. 3.12. In partic-
ular, B3LYP and B3P86 calculations predict an increase of both bonds upon
S0–S1 transition, whereas BMK, BH&HLYP and CAM-B3LYP describe a de-
crease of the C–N bond and a parallel increase of C=O bond. In other words,
functionals with a small HF-X fraction (B3LYP, B3P86) suggest that the CN
bond has a larger “single bond” character (lengthening) in the excited state
than in the ground state, whereas RSH and GH functionals including a larger
HF-X fraction indicate that the CN bond gains more ‘double-bond’ character
(shortening) in the excited state. The first description suggests a TICT state,
whereas the second is consistent with a PICT process.
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Figure 3.12: Variation (Å ) of the C–N and C=O bonds going from S0 to S1

state, computed both in gas phase and solution (n-heptane).

Finally it is worth noting that the dipole moment in the excited state only
slightly changes upon structural relaxation as shown by the values reported in
Table 3.6. This result is in clear contrast with a typical TICT behavior, e.g.
in DMABN a variation of ca. 10 D was found [180].

Analysis of TICT process

According to the TICT model, upon electronic excitation, the molecule ini-
tially forms a moderately non-polar state presenting geometry features similar
to that of the ground state. Next, an electron is transferred from the donor
to the acceptor, subsequently leading to a twisted molecular configuration, in
which D and A moieties are nearly perpendicular with respect to each other.
As mentioned above, the active molecular degree of freedom for Nile Red is
the rotation of the amino group around the CN bond connecting the N(C2H5)2

unit to the rigid aromatic withdrawing system. Still according to the TICT
models, the TS connecting the nearly nonpolar state to the highly polar prod-
uct, is more polar than the reactant. As a result, the preferential solvation of
the more polar TS compared to the reactant causes a decrease in the activa-
tion barrier of the TICT process with increasing the polarity of the medium.
Therefore, the highest barriers should be expected in nonpolar or low-polar
solvents, such as n-heptane.

Previous theoretical studies, carried out at semiempirical [166] and CIS
level [183] (see section 3.5), have shown that NR is quasiplanar in the ground
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state and presents a large rotation barrier for the diethylamino group. This
large barrier is not significantly altered for the first excited states.
In order to gain further insights on the TICT hypothesis and to possibly lo-
calize a second fluorescent stable structure on the excited electronic surface, a
TD-DFT rigid scan of the twisting angle θ has been carried out using selected
functionals (B3LYP, BH&HLYP, CAM-B3LYP). The obtained energy profiles
are collected in Fig. 3.13 together with SAC-CI results.
As it can be noted, the B3LYP curve is the only one showing a second min-
imum at 90o, whose depth increases in presence of the solvent (B3LYP/solv
data in Fig. 3.13). Upon complete relaxation this twisted structure becomes
more stable than the planar one by -0.19 eV. In contrast, all the other function-
als do not detect a twisted stable structure. It is note worthy that BH&HLYP
and CAM-B3LYP provide qualitatively similar profiles to SAC-CI plot. This
is consistent with previous findings demonstrating that RSH hybrids provide
results closer to highly correlated wave function schemes for longrange CT ex-
citations [187],[184].
The difference found here in the absolute energies could be partially ascribed
to the smaller basis set used in the SAC-CI calculations. Furthermore, the
CAM-B3LYP profile is not shifted by solvent, thus indicating a small varia-
tion of the charge transfer between D and A units as a function of the twisting
angle.

Figure 3.13: Relative energy profiles (in eV) of the S1 state with respect to the
planar structure obtained in a rigid scan of the twisting angle.

A similar behaviour is revealed also by the Merz–Kollman (MK) charges
[154]. As in the case of Push-pull systems study,the charge transfer parameter
as fCT is the charge difference in the donor or acceptor unit between ground
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and excited state. The donor and acceptor groups are the N(CH3)2 and the
C=O moieties, respectively. The results obtained for the selected functional,
reported in Fig. 3.14, refer to the 0 and 90 degrees values of twisting angle of
the excited state geometry.
For the planar structure, all functionals give the same picture and they indi-
cate that there is not a significant CT, whereas different behaviors are found
for the twisted structure. Indeed, B3LYP results suggest a significant CT at
θ = 90o, thus supporting the hypothesis of a TICT process while all the other
functionals indicate a PICT process. In addition, it must be pointed out that,
assuming valid the TICT structure found at B3LYP level, the corresponding
emission would be found at about 1.7 eV (after complete optimization), a
value in clear disagreement with the experimental data. To summarize, from

Figure 3.14: Gas-phase values of the charge transfer parameter (fCT , see text
for definition) for two different values of the y dihedral angle in the excited
state of Nile Red.

the present analysis it comes out that NR presents important differences with
respect to typical TICT systems such as DMABN.
In TICT systems, LE and CT states are usually very close to each other in
the S0 structure and their relative stability strongly depends on the θ angle: a
planar (θ = 0o) rearrangement correspond to a more stable LE configuration,
whereas the CT state is lower in energy at the twisted conformation (θ ≈ 90o).
In contrast, NR is characterized by only one electronic state along the twisting
coordinate; this behavior better fits with the PICT picture.
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Figure 3.15: Gas-phase CAM-B3LYP absorption and emission vibronic spec-
tra. The spectra have been obtained by fitting with gaussian functions having
a full width at half maximum of 0.07 eV and by renormalizing to the maxima.

Therefore, the origin of the double band in the absorption and fluorescence
spectra should have another origin and some insights can be given by vibronic
couplings. Indeed, in Fig. 3.15 are reported the vibronic spectra for both
absorption and emission, computed at CIS and CAM-B3LYP level. These
spectra have been obtained by using gas-phase harmonic frequencies (HF/CIS
and CAM-B3LYP) and the CAM-B3LYP adiabatic energy difference computed
in solution. As it can be seen from the graph, the CAM-B3LYP absorption
spectrum shows two absorption maxima separated of 0.14 eV, in excellent
agreement with the experimental split (0.10 eV).
Furthermore, the relative intensities are in good agreement with the experi-
mental data so that the overall shape of the spectrum is well reproduced by
this theoretical level. The same trends hold for the CAM-B3LYP emission
spectrum: also in this case a double band shape is found with a calculated
splitting (of 0.16 eV) close to the measured value (of 0.12 eV) and with the
relative intensities in good agreement with experiments. A more detailed anal-
ysis of the vibronic contributions indicates four main normal modes. The one
giving the most intense contribution corresponds to a mode at 1613 cm−1
which can be described as a combination of aromatic ring deformation and of
C–N double bond stretching. This mode well represents the global electronic
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rearrangement induced by the PICT process (see Fig. 3.9).
The band maxima, computed with the inclusion of the vibronic couplings, are
at 446 and 469 nm for the absorption and at 480 and 514 nm for the emis-
sion, very close to the experimental values (490/510 and 538/568 nm for the
absorption and emission, respectively). As matter of fact, the CAM-B3LYP
error is of about 0.24 eV for the four bands, in line with previous reported
benchmarks,26 and, very interestingly, the accuracy is similar for S0 - S1 and
S1 - S0 transitions. Finally, CIS spectra have a shape globally similar to those
of CAM-B3LYP spectra but the relative intensities are different and, more im-
portant, absorption is blue-shifted whereas emission is red-shifted. This last
result suggests that the CIS frequencies cannot be used for vibronic coupling
evaluation on the top of TD-DFT transition energies.
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3.6 A new Self Consistent Linear Response

scheme

In the previous sections the theoretical formulation and some applications of
PCM-LR and PCM-cLR approaches for excited states were presented. Here
we present a new approach wich improves the cLR strategy toward a self-
consistent state specific description iteratively. We call this approach Self
Consistent Linear Response (SCLR)

As described in section 3.3.2, a correction to the LR approach is obtained
by calculating the relaxed density through the Z-vector approach, applied to
the case of linear response in the presence of solvent. In such a formulation
however, the P∆ obtained is used to calculate the new charges q∆ without a
self consistent procedure between P∆ and q∆. The strategy here proposed,
is to recover this self consistency by an iterative procedure. To have a clear
description of the theoretical and computational aspects of the new strategy
we adopt a CIS formulation but all the results are validalso for a TD-DFT
formulation.
Let us start with the definition of some quantities needed later. For a generic
excited state K, we expand the wave function in terms of single excitation
determinants

|Ψ̃K〉 =
∑
ia

MK
ia |Φ̃a

i 〉 (3.62)

where

Φ̃L = Φ̃a
i = Φ̃GS(i→ a) (3.63)

The superscript ”∼” indicates solvated quantities. We set the ortogonality of
wave functions:

〈Ψ̃K |Ψ̃J〉 = δKJ (3.64)

Therefore, for the ortogonality of Slater Determinats involved:∑
ia

(MK
ia )2 = 1 (3.65)

Finally, we write the rules for matrix elements of PCM Slater determinants,
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considering that in our scheme, in which the charges have already been deter-
mined and stored, the operators V̂ PCM are one-electron operators:

〈Φ̃a
i |Ĥ

eff
GS |Φ̃

b
j〉 = [ẼGS + (ε̃a − ε̃i)]δijδab − 〈ã̃i||b̃j̃〉 (3.66)

〈Φ̃a
i |V̂ x

PCM |Φ̃b
j〉 =

[
Ṽ GSqx +

(
〈ã|V̂σ|ã〉 − 〈̃i|V̂σ |̃i〉

)
qx
]
δijδab (3.67)

The free energy for a generic excited state K is:

GKCIS = 〈Ψ̃K |Ĥvac +
1

2
V̂ K
PCM |Ψ̃K〉

= 〈Ψ̃K |Ĥvac +
1

2
V̂ GS
PCM +

1

2
V̂ ∆
PCM |Ψ̃K〉

= 〈Ψ̃K |Ĥvac +
1

2
V̂ GS
PCM |Ψ̃K〉+ 〈Ψ̃K |1

2
V̂ ∆
PCM |Ψ̃K〉

=
∑
ia

∑
jb

MK∗
ia M

K
jb 〈Φ̃a

i |Ĥvac +
1

2
V̂ GS
PCM |Φ̃b

j〉

+
1

2

∑
ia

∑
jb

MK∗
ia M

K
jb 〈Φ̃a

i |V̂ ∆
PCM |Φ̃b

j〉

(3.68)

the first term can be derived from the definition of energy eq. (3.21) adding
and subtracting 1

2
V̂ GS
PCM :

∑
ia

∑
jb

MK∗
ia M

K
jb 〈Φ̃a

i |Ĥvac +
1

2
V̂ GS
PCM |Φ̃b

j〉 =

=
∑
ia

∑
jb

MK∗
ia M

K
jb 〈Φ̃a

i |Ĥ
eff
GS |Φ̃

b
j〉+

−1

2

∑
ia

∑
jb

MK∗
ia M

K
jb 〈Φ̃a

i |V̂ GS
PCM |Φ̃b

j〉

(3.69)

Using the Slater-PCM rule (3.66):
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∑
ia

∑
jb

MK∗
ia M

K
jb 〈Φ̃a

i |Ĥ
eff
GS |Φ̃

b
j〉 =

= ẼGS +
∑
ia

(MK
ia )2 [ε̃a − ε̃i]−

∑
ia

∑
jb

MK∗
ia M

K
jb 〈ã̃i||b̃j̃〉

(3.70)

The second term in (3.69) can be reduced by mean of eq. (3.67) to:

1

2

∑
ia

∑
jb

MK∗
ia M

K
jb 〈Φ̃a

i |V̂ GS
PCM |Φ̃b

j〉 =

=
1

2
Ṽ GSqGS +

1

2

∑
ia

(MK
ia )2

[
〈ã|V̂σ|ã〉 − 〈̃i|V̂σ |̃i〉

]
qGS

(3.71)

The last term in eq. (3.68), is the analogous to eq.(3.71) for V̂ ∆
PCM :

1

2

∑
ia

∑
jb

MK∗
ia M

K
jb 〈Φ̃a

i |V̂ ∆
PCM |Φ̃b

j〉 =

=
1

2
Ṽ GSq∆ +

1

2

∑
ia

(MK
ia )2

[
〈ã|V̂σ|ã〉 − 〈̃i|V̂σ |̃i〉

]
q∆

(3.72)

Therefore, substituting eqs.(3.70), (3.71) and (3.72) in (3.68) we obtain:

GKCIS = GGS +
1

2
Ṽ GSq∆ +

∑
ia

(MK
ia )2(ε̃a − ε̃i)−

∑
ia

∑
jb

MK∗
ia M

K
jb 〈ã̃i||b̃j̃〉

+
1

2

∑
ia

(MK
ia )2

[
〈ã|V̂σ|ã〉 − 〈̃i|V̂σ |̃i〉

]
(q∆ − qGS) (3.73)

∆GK0
CIS =

∑
ia

(MK
ia )2(ε̃a − ε̃i)−

∑
ia

∑
jb

MK∗
ia M

K
jb 〈ã̃i||b̃j̃〉

+
1

2

∑
ia

(MK
ia )2

[
〈ã|V̂σ|ã〉 − 〈̃i|V̂σ |̃i〉

]
q∆ (3.74)

If we now apply a LR formulation of the CIS method, we can write

∆GK0
CIS ≈ ω̃SCLRK (3.75)
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where

ω̃SCLRK =
∑
ia

(KK
ia )2(ε̃a − ε̃i) +

1

2

∑
ia

(KK
ia )2

[
〈ã|V̂σ|ã〉 − 〈̃i|V̂σ |̃i〉

]
q∆

−
∑
ia

∑
jb

KK∗
ia K

K
jb 〈ã̃i||b̃j̃〉 (3.76)

and K = X + Y are the eigenvectors of the linear response problem.

We also define in this case:

V ∆ =
∑
ia

(Kia)
2
[
〈ã|V̂σ|ã〉 − 〈̃i|V̂σ |̃i〉

]
(3.77)

The expression in eq. (3.76) can be solved iteratively in a LR fashion, by
updating the q∆ charges, calculated by P∆, and therefore recover the self con-
sistency between V ∆ and q∆. The discussion outlined here allows us to identify
the term V ∆ to operate an the iteration also for P∆ calculated from the equa-
tion of the Z-vector. We implement the iterative procedure in a development
version of Gaussian09 [78] suite:

• In the first step the quantity ω̃SCLRK is obtained from the equation of
LR-PCM where VPCM = 0 (as described for the cLR scheme). The term
VPCM is not considered later.

• The equations CPKS (through the approach of the Z-Vector) are solved
and then we get the ”relaxed density matrix” P∆ .

• The P∆ is used to calculate q∆ charges that are stored.

• In the next step, the subroutine that calculate LR-PCM is called, and
the diagonal form of V ∆ (see eq. 3.77) is used to achieve an iteration
to calculate the new ω̃SCLRK and eigenvectors of Linear Response. These
constitue the occ-virt, virt-occ blocks of the new P∆, i.e. TK .

• The new P∆ is calculated once again by mean of Z-vector equation (where
the diagonal term V ∆ is also considered), and used as before to obtain
the charges q∆.

• The iterative procedure ends when ω̃
SCLR[n]
K = ω̃

SCLR[n−1]
K
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With respect to cLR scheme, eqs. (3.48) or (3.49), our SCLR formulation
eq.(3.76) not only permits to achieve the self consistency between charges q∆

and density P∆, but it is also possible to take in account the equilibrium or
non-equilibrium regime during iteration.
Finally, the expression of V ∆, eq. (3.77) is of the same type of a state specific
expression (cfr. eq. (27) and (53) in the analysis of Cammi et al. [188]) and
not indirectly recovered as in cLR scheme.

3.6.1 Numerical applications: compairing LR, cLR and
SCLR

Figure 3.16: Structures of molecular systems studied.

In this section, a preliminary application of the SCLR scheme is reported
together with a comparison with respect to cLR and LR calculations. The
systems studied are reported in figure 3.16.
Molecular geometries were optimized using the hybrid (27% of HF-X) meta-
GGA6 functional M06 [189] and 6-311+G(2df,2p) basis set in the case of ace-
tone and pyridine, and using the 6-311G(d,p) basis set in the case of coumarin

6The meta-GGA it is essentially an extension of the GGA (see section 2.2) in which
the non-interacting kinetic energy density is used as input to the functional as well as the
electron density and its gradient.
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Table 3.9: n−π∗ transitions (eV) to the first excited state of acetone
and pyridine in n-hexane and solvatochromic shift ∆ω (eV) in passing
to water. ”+ n w” refers to the inclusion of n explicit molecules of
water in the calculation.

Acetone
n-hexane ∆ω wat-hex ∆ω wat+2w-hex

LR 4.51 0.15 0.37
cLR 4.49 0.13 0.36
SCLR 4.47 0.13 0.37
expa 0.23

Pyridine
n-hexane ∆ω wat-hex ∆ω wat+1w-hex

LR 4.75 0.14 0.31
cLR 4.69 0.13 0.31
SCLR 4.60 0.17 0.36
expb 0.35

aRef. [191]
bRef. [192]. The value in water is evaluated using averaged values of pyrimidine and
pyrazine.

153 (C153), IDMN and JM. Calculations in solution were carried out using
the SMD [190] definition of the cavities implemented in Gaussian 09. Excited
state energies and dipoles of all molecular systems were calculated using the
M06/6-311+G(2df,2p) combination.
We investigated two type of transitions: n − π∗(acetone and pyridine) and
π− π∗ ( C153, JM and IDMN) in polar and non polar solvents: n-hexane and
water for acetone and pyridine, cyclohexane and dimethyl sulfoxide for C153
and cyclohexane and acetonitrile (ACN) for JM and IDMN.

In this study, two types of analysis can be made. The first is an internal
comparison of the three approaches adopted to analyze the effect of the solvent
description on the transitions. The second is a comparison with experimental
data. However, it is important to note that the comparison of a model for
the vertical excitation energies in solution with respect to experimental data
is a problematic issue, since different aspects come into play: the description
of the electronic structure of the solute (in this case due to the XC functional
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used), dispersion, short range and electrostatic effects.
Assuming that both the effects of the QM level and the dispersion (and other
minor nonelectrostatic terms) are not very sensitive to the nature of the sol-
vent, we prefer to conduct our analysis in terms of solvatochromic shifts from
apolar to polar solvents, because only electrostatic effects are treated explic-
itly in all the three adopted approaches. Our considerations are in line with
the study of Weijo et Al. [193] which shows that dispersion is a significant
contribution to the overall solvent effect, but unlike the electrostatic contribu-
tion, it does not depend strongly on the specific solvent. As a result, if one
is interested in solvatochromic shifts, results obtained with the electrostatic
model often yield satisfactory results in comparison to experimental shifts due
to the almost exact cancellation of the dispersion contributions.

In table 3.9 the n− π∗ transitions of acetone and pyridine in n-hexane and
water are reported. For these excitations, one can expect blue shifts moving
from apolar to polar solvent because the dipole moment in these molecules sub-
stantially decreases upon the electronic excitation (Table 3.6.1), and, therefore,
the excited electronic state is solvated less favorably than the ground state.
This expectation is correctly reproduced by all methods and confirmed by ex-
periments. Solvatochromic shifts in acetone can be qualitatively accounted for
by considering only dielectric polarization, but in order to get a quantitative
agreement in water, hydrogen bonding effects have to be considered. To do
that we introduce small solute-solvent clusters in which the water molecules
needed to saturate the solute hydrogen bonding sites are included in the QM
part of the system while the rest of the solvent is still treated as a continuum
dielectric.
If we apply such a cluster description for acetone in water and we include
two explicit water molecules, an overestimation of the solvatochromic shift is
found.
These findings, however, are in line with the QM/MM/PCM study of Stein-
dal et al.[194]. They show that a satisfactory estimate of the solvent shift is
achieved by treating the bulk solvent using PCM, but taking the dynamics of
the hydrogen bonding into explicit account . If the latter point is neglected via
the use of the supermolecule approach based on the energy-minimized solute-
solvent cluster, as in our case, a considerable overestimation of the solvent shift
of the n− π∗ excitation energy is obtained due to the overestimated strength
of the solute-solvent hydrogen bonding, i.e. due to the dynamical effect, in
average, the interaction could be modeled as less than two water molecules
have to be explicitly taken in account.
As a matter of fact, the average of the solvatochromic shifts in the case of zero
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and two explicit water molecules is 0.26 eV for LR and 0.25 eV for cLR and
SCLR, close to the experimentally estimated one (0.23 eV).
In the case of pyridine, the results obtained with one explicit water molecule
taken in account are in good agreement with the experiments. This can be ex-
plained considering that for pyridine there is only one strong hydrogen bonding
site and in this case the simulation of short-range effects of water by a single
hydrogen bonded water molecule is physically correct. The lowest π−π∗ elec-
tronic transition of C153, IDMN, and JM is accompanied by a red shift due
to an increase of the dipole moment upon the corresponding transition, which
makes the excited state more favorably solvated than in the ground state. All
the methods yield qualitatively correct predictions of the red shift, as reported
in table 3.10.

Moving now to a comparison of the different approaches, we note that for
π − π∗ systems the SCLR approach gives the best estimation of the solva-
tochromic shifts, with the exception of the IDMN case. This is probably due
to a more “correlated” solute-solvent polarization description of the solvation
energy by SCLR with respect to cLR in this case. This will be more clear
introducing an analysis in function of the index δ defined in section 3.3.2 and
figure 3.1. By definition, δ values greater than one are associated to a positive
correction to LR, and viceversa for 0 < δ < 1.

In the case of n− π∗ transitions, for both molecules the correction of cLR
and SCLR with respect to LR is negative, with a decrease of dipole moments
in passing from ground to excited state. For these systems, the values of
δ index are zero, as the transition dipole moments associated are zero, and
this explain the sign of correction. Moreover, from the small values of dipole
moment variation (∆µEXC−GS) in table 3.6.1 (cfr. figure 2.1), we can infer that
ωLR − ωcLR and ωLR − ωSCLR are small, in particular in the case of acetone.
As a matter of fact, we obtain -0.01 eV (acetone) and -0.04 eV (pyridine) from
cLR, and -0.05 eV (acetone) and -0.15 eV (pyridine) for SCLR with respect
to LR. In the same line, the solvatochromic shifts of the three approaches are
very similar, due to the fact that the correction to the P∆ is small for both
cLR and SCLR,as we can deduce comparing the ∆µEXC−GS in table 3.6.1.

In the case of π− π∗ transitions, we found an increasing of cLR and SCLR
values with respect to LR ones (table 3.10), in line whit the values of δ index
reported in table 3.6.1, that are greater than one. We cannot make a direct
comparison of δ values between cLR and SCLR, because the P∆ matrix ob-
tained is different. However, whitin the same approach, we can see that greater
values of solvatochromic shifts are obtained increasing the difference between
δ s from apolar to polar solvents. This can explain the value of solvatochromic
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Table 3.10: π − π∗ transitions (eV) to the first excited state of
Coumarin 153, IDMN and JM. ∆ω (eV) are the solvatochromic
shifts in passing from cyclohexane to dimethyl solfoxide (DMSO)
or to acetonitrile (ACN).

C153
cyclohexane ∆ω DMSO-cyclohexane

LR 3.24 -0.13
cLR 3.27 -0.16
SCLR 3.39 -0.17
expa -0.28

IDMN
cyclohexane ∆ω ACN-cyclohexane

LR 3.22 -0.00
cLR 3.38 -0.02
SCLR 3.41 -0.11
expb -0.05

JM
cyclohexane ∆ω ACN-cyclohexane

LR 3.06 -0.06
cLR 3.20 -0.07
SCLR 3.29 -0.13
expc -0.12

aRef. [195]
bRef. [145]
cRef. [143]
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Table 3.11: Dipole moment variation (Debye) in passing from ground
to excited state (∆µEXC−GS) for n−π∗ and π−π∗ excitations. LR and
SCLR calculations are reported.

n− π∗
Non polar solvent Polar solventa

LR SCLR LR SCLR
µGS ∆µEXC−GS ∆µEXC−GS µGS ∆µEXC−GS ∆µEXC−GS

acetone 3.47 -1.45 -1.33 4.68 -2.08 -1.56
pyridine 2.65 -2.25 -2.63 3.36 -3.04 -2.52

π − π∗
Non polar solvent Polar solvent

LR SCLR LR SCLR
µGS ∆µEXC−GS ∆µEXC−GS µGS ∆µEXC−GS ∆µEXC−GS

C153 8.36 6.64 5.37 10.33 8.39 5.17
IDMN 12.35 3.14 2.95 15.59 3.27 2.36
JM 13.67 4.40 3.27 17.62 4.60 2.53

aValues reported are dipole moments in water without explicit water molecules included.

Table 3.12: Values of the index δ for the π− π∗ excitations of systems
studieda.

cLR SCLR
non polar polar non polar polar

C153 1.6 1.1 1.3 1.5
IDMN 37.3 34.1 26.3 43.4
JM 16.1 16.5 17.3 34.6

aValues for acetone and pyridine are not reported, as the transition dipole moments are zero
or close to zero for the n− π∗ first excited state
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shift obtained by SCLR in the case of IDMN, a value analogous to the JM one.
In both cases, the value of δ is almost double in passing from cyclohexane to
acetonitrile (see table 3.6.1).

To conclude, the corrections to LR due to a better description of the electro-
static solvent effects are expected to be small in the case of vertical excitation
energies during the absorption process. In particular, the SCLR correction
is always greater than the cLR one, because a larger ”correlation” between
the molecular and the polarization density of the solvent is introduced. How-
ever we can expect that the differences among the different approaches will
be more pronounced in the case of emissions, where the LR approach gives
a non-physical picture of the processes involved, as it is not possible to take
in account a non-equilibrium ground state with a frozen solvent potential due
to the excited state. This is not the case of both cLR and SCLR, as in these
approaches a state specific description is recovered.



Chapter 4

Conclusions

The whole research presented in this Thesis is adressed to investigate the po-
tentiality of TD-DFT methods and the reliability offered by a combined TD-
DFT/PCM approach to determine excitation energies, structures and proper-
ties of excited states of molecules in gas phase and in solution. More in detail,
this Thesis has focused on two main topics. The first was the critical analy-
sis of TD-DFT methods when applied to the calculation of molecular excited
state energies and properties. The goal was to assess the performance of XC
functionals and to find diagnostic tools to analyse the achieved results. The
first part can be seen as a preliminary step to individuate a good computa-
tional protocol whitin the LR-KS scheme to be coupled with the TD-PCM
approach to treat solute-solvent interactions in describing excited states of sol-
vated molecules. To this aim, two alternative couplings between TD-DFT and
PCM (i.e. LR-PCM and cLR) have been tested to describe charge transfer
excitations of large systems in solution and to assess the excitation mecha-
nism in TICT and/or PICT systems. Finally, a new self-consistent strategy
(SCLR) for describing solvated excited states has been developed and imple-
mented whitin the TD-DFT method.

In particular, in chapter 2 we have presented an analysis on the per-
formances of the Linear Response (LR) TD-DFT approach in determining
electronic excitation energies. The analysis was focused on local or nonlo-
cal changes in the electronic density and on the role played by the Hartree
Fock Exchange (HF-X). A new diagnostic index, called Γ,was introduced. It
is connected to the difference of the variance of the electronic position moving
from occupied to virtual orbitals. Such an index can be seen as the difference
between the size of the molecular orbitals involved in the description of the
transition, if we represent the size by a sphere of radius equal to the root
mean square of the distance of the electron in the orbital from the centroid
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of charge [76]. Its performances for local, Rydberg and charge-transfer (CT)
excitations have been tested. It has been shown how this index can be used as
a diagnostic tool for the description of the nature of the excitation studied by
different hybrid functionals. In general, it is in fact difficult to achieve a clear
and unequivocal picture by only looking at the molecular orbitals involved,
especially for large systems. We have compared the new index with the Λ
index proposed by Tozer and collaborators [72], which is based on the overlap
of the absolute value of the molecular orbitals involved in the excitation, and
we have analysed the respective potentialities in achieving a good diagnosis of
TDDFT accuracy with Rydberg excitations. In particular, we have shown that
the principal effect of increasing the HF-X percentage is to increase orbital en-
ergy differences, thus making any analysis based only on the evaluation of the
shape and extension of molecular orbitals not sufficient to obtain an exhaus-
tive diagnostic index for TDDFT users. Since in the case of CT excitations in
push-pull chromophores (where the ground and excited states are delocalized)
we cannot define separated regions for the charge transfer, the Coulombic in-
teractions between the occupied and virtual orbitals (that are described by
the nonlocal HF potential) need to be reduced. If the local Coulomb and XC
part of the functional are not able to reduce these interactions, smaller errors
with respect more correlated methods, are obtained with hybrid functionals
presenting low HF-X percentage. This is the case for example of DMABN in
the planar structure, IDMN, JM and Prodan, where Λ and Γ have very small
values if compared to those typical of Rydberg cases. One can also expect
that the Coulomb and the local part of the first order terms in the LR-KS
energy become more important in the case of a push pull chromophore, where
the transition involves a larger spatial reorganization of charge, but still very
delocalized on the molecule. This study suggests that a possible future ex-
tension in the direction of more effective diagnostic tools could be represented
by localization techniques of the transition density matrix in terms of natural
transition orbitals [84].

In the second part of the chapter 2, we have presented a study on the
performances of several TD-DFT functionals in describing excited-state ge-
ometries and properties for n − π∗ and π − π∗ valence excitations. There,
we have selected small organic systems so to have a direct comparison with
CASPT2 data available in the literature. Our study shows that all function-
als generally give a qualitatively good description of excitation energies and
excited-state structures and properties. For these small molecular systems, it
is a general behavior of DFT functionals to overestimate single bond lengths
and underestimate the double ones, which means that DFT gives a more lo-
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calized picture, with respect to CASPT2, which is known to provide accurate
results [196]. For this kind of system, where the electron density reorganiza-
tion remains relatively limited, the best performances are obtained by using
low percentage HF-X hybrids functionals, particularly for carbon-heteroatom
double bonds. Higher percentage HF-X functionals and CAM-B3LYP work
better in the case of a stronger modification of the electron density after ex-
citation in n − π∗ and in extended π − π∗ systems. However, the amount of
the change of electron density remains too small during the vertical process in
the case of small molecules to outperform B3LYP and PBE0, which provide
absorption and emission spectra with similar accuracies. Obviously, for tran-
sitions with large charge delocalization, as those involved in π − π∗ or n− π∗
excitations in large conjugated systems or push-pull chromophores [120],[121],
as well as for Rydberg excitations [28]-[30],[88],[80], one expects that the inclu-
sion of corrections to the long-range correlation and exchange potential may
become mandatory [197], as we found for the case of the three PSB model
systems, in particular to reproduce bond length alternation, as yet pointed
out for the analogous ground state case [95]. Our constitues, to the best of our
knowledge, the first systematic investigations of excited-state structures [32],
and it is our intention to extend in a near future our studies to larger systems,
including also different types of excitations and solvent effects.

In chapter 3, we have combined the TD-DFT methods studied in chapter 2
with the PCM to study structures and properties of excited-state chromophores
in homogeneous solutions. The applications here presented show potentialities
and limits of this scheme to probe structures and properties of excited states
of solvated chromophores, from their formation from a vertical electronic tran-
sition within a nonequilibrium solvation regime up to their decay, or relax-
ation, using a detailed QM description coherently coupled with the dynamics
of the solvent. The results of the study of absorption, emission, structures and
resonant Raman spectra computed for two push-pull chromophores (JM and
IDMN) have shown the critical role of the functional used and the possibility
to achieve better results using a mixed approach to the DFT/TD-DFT part
of the calculation, i.e. different functionals for the ground and excited state,
respectively. In particular, as alredy pointed out by the study on the TD-
DFT performance in reproducing structures and properties of excited states
(see chapter 2), the long range correction becomes mandatory to achieve a
good description of the shape of the PES of large molecular systems, where
in general hybrids functional correctly describe the structure of the ground
state (with the exception of particularly delocalized systems). In addition, the
importance of this last aspect in solvated systems can be also connected to
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the fact that at present only electrostatic solvent effects are included to model
excited states.
Another example of the combined effect of TD-DFT and solvation models is
represented by the study of the Nile Red system. For such a compound, we
have investigated the nature and the structures of the electronic excited states
involved in the absorption and emission spectra by using a TD-DFT approach
explicitly accounting for solvent effects. It turned out that the functional se-
lected has a major impact not only on the absorption and fluorescence maxima
but also on the shape of the potential energy surface obtained through rota-
tion of the amino group. Indeed, with B3LYP, a second minima at nearly
perpendicular geometry is obtained. This twisted geometry associated with a
strong charge-transfer between the donor and acceptor moieties, corresponds
to a TICT mechanism implying a dual fluorescence process originating from
two different structures. However, SAC-CI calculations show that this second
minimum is a computational artefact. The correct one-minimum shape is re-
produced by range separated hybrids, such as CAM-B3LYP. These accurate
CAM-B3LYP results indicate that the suggested dual fluorescence in Nile Red
is in fact the result of a strongly active vibronic coupling, thus supporting the
PICT, rather than the TICT process. These conclusions are in agreement with
the most recent spectroscopic studies [169],[186], and also with the negligible
viscosity effect on fluorescence properties, inconsistent with the TICT hypoth-
esis [198]. It is our hope that this work nicely illustrates that TD-DFT may
allow to take the inner track for investigating complex excited-states mecha-
nisms, once chosen an adequate exchange–correlation functional and a correct
description of the solvent effects is taken into account.

Finally, we have proposed a self-consistent state-specific vertical excita-
tion model for electronic excitations in solution, that we called Self Consistent
Linear Response (SCLR). This model uses a nonequilibrium formulation of
the excited-state reaction field and the excited-state polarization energy. We
have called this model ”self-consistent” because it evaluates the excited-state
reaction field iteratively (i.e. self-consistently), and we have called it ”state-
specific” because the model computes the excited-state polarization energy by
using the excited-state (i.e. state-specific) electronic density.
We tested the two other protocols (LR and cLR) used in this Thesis as ap-
proximations to the SCLR approach. We found that more accurate Stokes
shift can be obtained using the SCLR/PCM protocol, but the effects of the
correction to LR are small in the case of vertical excitation enegies during the
absorption process. In particular, the SCLR correction is always greater than
the cLR one, because a larger ”correlation” between the molecular and the
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polarization density of the solvent is introduced. However we can expect that
the differences among the various approaches will be more pronounced in the
case of emission, where the LR approach gives a non-physical picture of the
processes involved, as it is not possible to take into account a non-equilibrium
ground state with a frozen solvent potential proper of the excited state. This
is not the case of both cLR and SCLR, as in these approaches a state specific
description is recovered. Therefore, further extensions of the PCM methodol-
ogy to study phenomena involving excited electronic states are also expected
in the near future, both to overcome some actual limitations and to expand
the variety of phenomena to be studied. For example, the SCLR approach
here presented (as also the cLR) is now limited to the energy evaluation for
single point calculations, and it would be desirable to extend this method to
include the analytical gradient, so to be able to compute excited-state equi-
librium geometries at this level of theory. In addition, at present, in SCLR
(as in cLR case) only electrostatic solvent effects are included in the model
used for the excited states; this is a clear approximation that is realistic in
polar environments, whereas, as soon as the solvent polarity decreases, further
nonelectrostatic effects such as repulsion and dispersion can become important
especially when considering excited states.

It is worth noticing that all the solvation models used belong to the contin-
uum framework. This is indeed an approximation in which all the microscopic
aspects of the environment are neglected. Recent studies have shown that
in many cases this apparently crude approximation properly compares with
methods based on the explicit treatment of the environment molecules (such
as QM/MM) if a refined version of continuum models is used [199],[200],[201].
Obviously, this is true in the cases in which we do not have strong specific in-
termolecular interactions between the system of interest and the environment
or when these interactions are averaged out in the measurement process. In
all the other cases, in fact, a purely continuum approach does not manage to
obtain a complete picture of the environment effects. Also in these difficult
cases, however, the continuum approach can still represent a simple and effec-
tive way to take into account the “mean field” part of the environment effect,
whereas all the short-range interactions which do not average to zero, can be
introduced by using a “supermolecule” or “cluster” picture. This combined ap-
proach in which three different shells are involved (the molecular system under
study, the strongly interacting environment molecules and the rest) is indeed
very powerful as it accounts not only for both short and long-range effects but
can also be easily extended to explicitly include mutual polarization among
the various shells once the explicit additional molecules are treated at a QM
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level or using a polarizable force field [194]. In addition, the same approach
can be extended to a real dynamic description, in which the molecular degrees
of freedom of the system of interest are coupled to those of the strongly inter-
acting environment in the presence of the mean field of the remainder. Both
these aspects become particularly important when we want to simulate excited
states formation and relaxation.



Appendix A

Basis set dependence of excited
state structures

Excited state bond lengths, mean values and relative standard deviations are
reported in tables A.1 - A.7.
Values are in function of basis set used, namely Pople’s 6-31G(d), 6-311G(d)
and Dunning’s cc-pVDZ, cc-pVTZ, aug-cc-pVDZ, and aug-cc-pVTZ [89].

In general, the introduction of polarization function or triple-zeta basis set
expansion gives a shortening of bond lengths, with a dispersion of data around
0.2-0.4 %, as it can be argued by RSD values.
Pyrrole and propenoic acid anion constitute exceptions: in this case values are
more basis set dependent with a dispersion of data around 1-2 %. Moreover,
the behaviors of functional performances in passing from 6-31G* to AUG-cc-
pVTZ are not so regular as in the other systems studied.
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Table A.1: Cis buta-1,3-diene excited state bond lengths (Å) in func-
tion of basis set and functional used.

Table A.2: Trans buta-1,3-diene excited state bond lengths (Å) in
function of basis set and functional used
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Table A.3: Pyrrole excited state bond lengths (Å) in function of basis
set and functional used.
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Table A.4: Acrolein excited state bond lengths (Å) in function of basis
set and functional used.
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Table A.5: Acetone excited state bond lengths (Å) in function of basis
set and functional used.
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Table A.6: Diazomethane excited state bond lengths (Å) in function
of basis set and functional used.
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Table A.7: Propenoic acid anion excited state bond lengths (Å) in
function of basis set and functional used.
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List of Papers

Part of the material presented in this Thesis has been already published (or is
in preparation for publication) in the following papers:

1. How locally does the electron density change during an elec-
tronic excitation: new diagnostic tools and critical analysis
C. A. Guido, B. Mennucci and C. Adamo (in preparation)

2. Practical Computational Methods for Electronic Excitation in
Solution: Vertical Excitation Model
A. V. Marenich, C. J. Cramer, D. G. Truhlar, C. A. Guido, B. Mennucci,
G. Scalmani and M. J. Frisch (Chem. Sci., 2011, Advance Article, DOI:
10.1039/C1SC00313E )

3. On the TD-DFT Accuracy in Determining Single and Double
Bonds in Excited-State Structures of Organic Molecules
C. A. Guido, D. Jacquemin, C. Adamo and B. Mennucci, J. Chem. Phys.
A, 114, 13402 (2010)

4. Planar vs. twisted intramolecular charge transfer mechanism
in Nile Red: new hints from theory
C. A. Guido,B. Mennucci,D. Jacquemin and C. Adamo, Phys. Chem.
Chem. Phys., 12, 8016 (2010)

5. Structures and Properties of Electronically Excited Chromophores
in Solution from the Polarizable Continuum Model Coupled to
the Time-Dependent Density Functional Theory
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Un pensiero...

La pagina finale di una tesi é di solito l’occasione per i ringraziamenti.
Trovo, tuttavia, riduttivo usare questo spazio per un mero elenco di tutte le
persone che mi sono state accanto durante questi tre anni di perfezionamento
alla Scuola Normale...

Nella coinvolgente piena dei miei trascorsi
bruciati dal tempo che non passa mai
ai miei tre ”compari” canto il mio bene.

Un saluto si soffi via da queste pagine
alle coscenze di chi mi ha vissuto all’ombra della torre.

Lascio le birre con cui filosofeggiando del vissuto
io e te, Francesco, abbiam cullato le sere.

Al buon Vincenzo, fraterno amico e consigliere
brindo tra le risate appese ai muri.

E il candido affetto di Ilaria terrò nei poster dei miei ricordi,
e le serate con Anna Chiara e Chicca, a farmi monito che non si è mai troppo
lontani.

Si dipingeranno le risate sulla vita e i suoi costumi
nel ricordar la mia casa di via Trento.
Del ”Purpiceddu”, tra il caffè e l’amicizia,
dell’Augusto imperator della chitarra,
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Delle gentil ”patate berlusconane” e il loro abbraccio,
ho fatto un cesto di rose senza spine.

Riparerò dal vento il soffice dente di Leone
di Claudia e Vincenza,
di Ilaria, di Arianna.

Ai tanti amici che la fortuna copiosa m’ha sbocciato,
tra gli alti e i bassi di Parigi e la Toscana,
che non si cruccino se qui non compare il nome:
Nel mio poema ciascun di voi è ben segnato
Lasciatemi sol riverirvi e ringraziare.

Ma nel mio ultimo rigo di pensiero,
che nasce dal mattino fino a sera,
ci sono il viso e le mani di Simona:
Alla fine, non ero una chimera...

Ciro


