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Abstract of the Dissertation

Multigrid QM/MM
approaches in ab initio

molecular dynamics
by

Teodoro LAINO
Doctor of Philosophy in Chimica

Scuola Normale Superiore di Pisa, Pisa, 2002/2006

The seeds of contemporary quantum chemistry were sown as early as 1930, a mere
three years after Heisenberg postulated his uncertainty principle but their high compu-
tational intensity precluded applications until mid-1960s, when computers were used
to simulate the function of proteins and their chemical reactions. These calculations
were based on molecular mechanics (MM) techniques derived from Newton’s laws of
motion.

However classical molecular mechanics (MM) methods cannot describe the elec-
tronic changes during a reaction, and are ill-equipped to address ligand-receptor inter-
actions in systems containing metals. Ab initio quantum mechanics (QM) is required
to study reactive chemistry or interactions involving transition metals in a protein
environment. However, even with today’s computer technology, full QM calculations
of entire proteins are still intractable. An ideal way of simulating a large realistic
system would be an embedding of a quantum mechanical calculation into a classical
molecular mechanics model of the environment. This alternative approach is named
quantum mechanics/molecular mechanics (QM/MM) scheme.

In an hybrid QM/MM treatment, a computationally expensive method is used to
describe a small portion of the full system (generally addressed as QM subsystem)
while a relatively simple treatment is used to describe the rest of the system (MM
subsystem). This places severe demands on the efficiency of the implementation of
any QM/MM scheme. Two main bottlenecks can be identified in such calculations:
one concerns the evaluation of the QM energy and derivatives while the other is
associated with the evaluation of the electrostatic interaction between the QM and
the MM part. Though most of the last 20 years have shown algorithmic improvements
of quantum mechanical methodologies, leading to an increase of our ability in studying
the electronic structure of fragments of biomolecules (e.g. an enzyme active site) or
entire biosystems, no significant gains have been recorded in obtaining a fast and
reliable QM/MM coupling term that avoids the use of any hierarchical method or
multipole technique.

The core of this dissertation focuses on the presentation of a novel scheme, based
on the use of multi-grid techniques in conjunction with the representation of the
Coulomb potential through a sum of functions with different cutoffs (GEEP), to build
a QM/MM coupling fast, reliable and computationally more efficient than other avail-
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able versions. The overall speedup is of 1-2 orders of magnitude with respect to other
PW-based implementations of the QM/MM coupling Hamiltonian [1, 2]. The lack
of tuning parameters and electrostatic cutoffs makes this implementation a totally
free parameter scheme, without any significant loss of accuracy. Consequently, very
stable simulations can be obtained with optimal energy conservation properties. More-
over the new scheme has been designed to include the effects of periodic boundary
conditions into hybrid QM/MM descriptions of chemical/biological systems, avoiding
spherical truncation scheme and treating properly the long-range part of the QM/MM
electrostatic potential. The effects of the periodic boundary conditions in the evalua-
tion of the QM/MM electrostatic potential is included with a modified Ewald lattice
summation. The scheme preserves the linear-scaling property of the GEEP technique
and is computationally efficient.

Within a DFT framework, it is shown for the first time that the use of periodic
boundary conditions together with a proper treatment of the long-range interactions
is necessary for studying ordered systems at QM/MM level.

I will first summarize the state of the art related to QM/MM methods (see
Chap.(2)), presenting the argument and all related problems as most abstract as
possible, i.e. without relying on a particular quantum mechanical method.

In the second part a brief summary of the quickstep algorithm (Chap.(3)) and
of the MM methodologies (Chap.(4)) is provided.

In the third part a novel method (GEEP) to calculate the Coulomb interaction be-
tween the QM and MM subsystems is explained and validated (Chap.(6)). A fully con-
sistent periodic extension to this method is discussed and a new decoupling/recoupling
scheme to calculate the electrostatic of the QM system is proposed (Chap.(7)).

In the fourth part I will present general applications to solid state physics studying
different silica-based systems. In particular a first step involved the validation of the
QM/MM approach both for the quantum description and for QM/MM boundary
region employing small clusters of SiO2 (Chap.(8)). A by product of this validation
scheme was the discovery of the importance of the shape of the MM cluster when an
electrostatic scheme with cutoff is used when computing the QM/MM electrostatic
coupling. In particular for small SiO2 clusters (described at QM level), the shape of
the embedding MM cluster may have dramatic consequences, transforming the SiO2,
a well non-known insulator into a metallic conductor. The problem can be fixed in two
ways: optimizing the shape of the MM cluster or using the fully periodic QM/MM
coupling description.

Relying on the validation of the QM/MM model to small silica clusters we have
applied the QM/MM methodology to the study of migration of charged oxygen va-
cancy defects in α-quartz (Chap.(9)), providing a new interpretation to controversial
experimental results.
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Chapter 1

Introduction

Fueled by breakthroughs in both hardware and algorithm development, the past few
decades have witnessed an explosive growth in computational power, which has led to
remarkable advances in various fields of science and technology such as the mapping
of the human genome.

It also set the stage for addressing even more ambitious goals, many of which could
not be achieved through hardware developments alone. Because conventional modeling
strategies are typically based on single physical descriptions, they are simply unable to
capture the relevant phenomena occurring over many space and time scales. Problems
of this type include modeling space weather (where plasma kinetics meets magneto-
hydrodynamics), materials science (where ab initio molecular dynamics meets solid
mechanics), distributed network performance (where discrete event dynamics meets
stochastic fluid models), and nanodevice electronics (where quantum kinetic theory
meets quantum hydrodynamics).

Therefore the modeling of complex solid state - biological systems is nowadays
still a daunting challenge. The validity of sophisticated first principle methods is
not seriously disputed, but their high computational intensity precluded the extensive
use until the 1990s. Although computers had been used to simulate the function
of proteins and their chemical reactions since the mid-1960s, these calculations were
based on molecular mechanics (MM) techniques derived from Newton’s equations of
motion, that operate at the level of molecules rather than electrons.

However, the weakness of MM methods is that they rely on making simple assump-
tions. For example, electrons are not considered directly, but are assumed to be in an
optimum state determined by the location of their atomic nuclei. MM methods model
the full molecule with classical potentials like stretching, bending and torsion together
with a fixed or polarized electrostatic description of the effective atomic charges and
with an additional dispersive term very often modeled with a Lennard-Jones potential.
This works reasonably well in several important cases (proteins, organic and inorganic
crystals) but fails to describe reactions that involve binding or recognition in solution,
as occurs in most crucial reactions in biology. Most reactions in nature involve bond
formation and breaking, with associated changes in electron organization that cannot
be described accurately through classical potentials because of the implicit quantum
nature of the phenomena. Similarly, reactions involving docking or molecular recog-
nition in solution require the calculation of polarization effects which are determined
by the behavior of their orbitals.

Whenever electrons need to be considered explicitly, quantum mechanical (QM)
methods steps in. The same is true for studying reactions that involve the recognition
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of light (such as in the retina) or stimulation by light (as in photosynthesis), because
these processes involve the excitation of electrons. QM methods, which are often
named ab initio because they are based on first principles without using empirical
techniques, also reveal the dynamics of reactions as they are taking place. They make
possible to determine and analyze intermediates, such as radicals and oxidation states
of metal ions, that exist transiently before the finished products of the reaction are
formed.

While significant progress has been made in the development of quantum chemical
approaches for large systems [3, 4], it is clear that to shed light on many biological
processes we still need to exploit the integration of different computational chemistry
methodologies with differing accuracies and costs.

By embedding a quantum mechanics calculation in a classical molecular mechanics
model of the environment, the hybrid QM/MM schemes attempt to incorporate envi-
ronmental effects at an atomic level, including as mechanical constraints, electrostatic
perturbations and dielectric screening. Since the first published example from the field
of computational enzymology [5], many QM/MM schemes have been implemented and
applied in a wide variety of chemical applications.

Traditional mono-methodological approach have proven to be inadequate because
of the range of scales and the prohibitively large number of variables involved. How-
ever, combining QM/MM with other classical techniques focusing on a small number
of crucial variables has proved to be the winning strategy and QM/MM methods are,
nowadays, closely identified with the successful technology in the molecular simulation
field. Since the early landmark study of Warshel and Levitt [5] (they were the first to
employ QM/MM hybrid Hamiltonians) many articles proved and validated this class
of hybrid methods (see Chap.(2)).

Despite the large amount of published data none of the QM/MM related papers
focused on the computational efficiency of the Hamiltonian coupling term, that can
be easily comparable to the cost of the QM calculation. In the present dissertation
we address this problem and describe a new QM/MM technique based on the use of
multi-grids framework in conjunction with the representation of the Coulomb potential
through a sum of functions with different cutoffs, derived from a Gaussian expansion
of the electrostatic potential (GEEP for short). The QM/MM implementation we
introduce is based on the quantum mechanical program quickstep and the molecular
mechanics driver fist (both part of the CP2K package). The method itself, through
the use of a modified Ewald lattice summation, includes the effects of the periodic
boundary conditions in the evaluation of the MM electrostatic potential.

The present implementation makes almost negligible the computational cost of the
electrostatic coupling between the QM and the MM subsystems and moreover the use
of a GPW (see Chap.(3.2)) scheme makes feasible the treatment of several hundreds
of atoms at DFT level on commodity clusters.

The main rule to keep in mind is that any hybrid QM/MM methods represent
a compromise, and so require judicious application in order to keep accuracy under
control. I would say that the reliability of any QM/MM simulation strongly depends
on the skills and thoroughness of the researcher doing the work, particularly during the
planning/testing phase of the simulations, said Markus Dittrich from the University
of Illinois at Urbana-Champaign, USA, who applies such methods to analyze ATP
hydrolysis. Once all the necessary steps have been taken, QM/MM simulations can
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give meaningful qualitative results, in some cases even quantitative ones. Inevitably,
this requires extensive testing and benchmarking for each system.





Chapter 2

QM/MM : an overview

In this chapter we provide an overview of hybrid QM/MM (quantum mechanics /
molecular mechanics) calculations. We consider the choice of QM and MM methods,
the construction of the total QM/MM potential energy, the nature of the QM/MM
coupling, and the treatment of bonds between QM and MM regions. Recent reviews,
on the variety of ways in which QM and MM calculations can be combined, include
those by Gao [6], Thiel [7] and Sherwood [8].
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Since its birth QM/MM has steadily developed and the last couple of years have seen
a rapid increase in the rate of publications of QM/MM applications. It is significant
to show what is the amount of papers since the first pioneering work of Warshel and
Levitt [5] that use in the title or in the abstract the word “QM/MM ” and in the
same time what is the number of publication that cite reference [5], that is considered
the starting point of all QM/MM related technologies and applications. In Fig.(2.1),
we show the number of publications citing the work of Warshel and Levitt (in gray).
Since 1976 and for the 20 years later the number of publications was constant at
about 30 articles per year. But if we look at the number of articles citing the word
QM/MM or QM-MM (in the title or in the abstract) we see that this number is
exponentially increasing in the last years, and no article citing these labels has been
published until the first 90s 1. In the 20 years covering the middle 70s-90s much work
has been done to validate QM/MM methods, and definitely the exponential growth in
the last years is due to the interest on these technologies by Life Science disciplines. At
the moment this class of computational methods represent one of the most powerful
tools to solve the big computational challenges in molecular biology and biophysics.
Last but not least, one reason for the slow uptake of the QM/MM methods has been
the computational cost, but the present high availability of computational power has
renewed attention to these methodologies.

���:� ;<�!*��!=>4#"+?#�A@B*C'D68')$+*�%
The first step in a QM/MM approach is to divide the entire system (E), into inner
(I) and outer (O) regions and into a link part (L) between the two subsystems. The
QM description is used to model processes in the inner region and the MM descrip-
tion is used to model the outer region. As always the devil is in the details, and it

1[9] is the most cited article among publications citing the word QM/MM .
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Figure 2.1: In red number of Publications that since the 1976 (the first work based on QM/MM

techniques) used the word QM/MM or QM-MM in the title or in the abstract. In gray the number

of publications that cite the work of Warshel and Levitt [5]. The analysis is based on ISI web of

SCIENCE.

is rarely possible to simply write down the total energy in terms of two, non over-
lapping subsystems. Very often the interactions between the systems are so strong
(the obvious example being the presence of a chemical bond across the two regions)
that the reliability of QM calculations restricted to the inner region may be no longer
guaranteed. One would like to determine the optimal size of the QM system, in order
to minimize this strong interaction and to avoid that a wrong description deprecates
the full calculation. The question is quite simple but there is no general answer. The
fact is that when applying QM/MM methodologies to new systems (where no general
recipes are available in literature) many factors needs to be tested to validate the
method itself on that peculiar case. A good chemical know-how gives most of the
times a good starting point for the choice of the QM system. Nevertheless some form
of termination, or treatment of the boundary is generally required. We can classify
the approaches to the QM termination problem into two main groups:

? those based on Capping atoms [10, 9], additional centers added to the QM
calculation but not present in the entire system (E), to saturate the free valence
of the QM boundary atoms due to the partitioning of the system. We will refer to
capping atom as the atom used to satisfy the valence requirements of the QM
region and allows for a standard electronic structure calculation to be performed
on the QM fragment. It is important to realize that the capping atom is not
part of the real system, but is simply an atom that is introduced to truncate the
electronic system of the QM region. For every link bond there are three atoms
of importance, the capping atom and the two atoms that are part of the real
link bond (one from QM region and the other from the MM region). From this
point on, we will refer to the MM atom that is part of the real link bond as the
link atom. It is this atom that is replaced by the capping atom in the electronic
structure calculation of the QM model system. The position of capping atoms
in the region (L) are either viewed as independent variables or as a function of
the positions of atom in both (I) and (O) regions. Capping atoms are generally
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Figure 2.2: QM and MM System representation in QM/MM schemes. The shaded region between

QM and MM part represents the QM/MM link part (L), that needs special care (see Sec.(2.3))

invisible to the MM calculations;

? those having a boundary region, with both QM and MM features. This
boundary region can be described in several different manner, ranging from a re-
parameterized semi-empirical Hamiltonian, to an optimized monovalent pseudo-
potential or frozen hybrid orbital.

���:\ ]_^��!=�^�')�A` $#,X-a/10+/b/ %c5����!de�7%
According to the form of the interaction Hamiltonian, we can further group QM/MM
schemes into two broad classes:

2.3.1 Additive Schemes

For capping atom based schemes ( E = entire ; I = inner (QM); O = outer (MM); L
= link ) the total energy expression takes the form of :

EEQM/MM = EOMM +EI,LQM +EI,OQM/MM −E
I,L
Corr (2.1)

where the term EOMM is the energy the MM subsystem, EI,LQM is the energy of

the QM subsystem including capping atoms in the QM description, EI,OQM/MM is the

QM/MM coupling term, including all terms that couple the two regions, for exam-
ple MM-style bonding and Van der Waals interactions and modifications to the QM
Hamiltonian to reflect the influence of some or all of the atoms in the outer region.

The correction term EI,LCorr represents terms designed to reduce the dependency of
the total energy on the nuclei in the link atom region [11]. How this term is handled
depends on the choice of link atom coordinates, as discussed in Sec.(2.6.1). However,
in most of the cases, this term is often neglected.
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Additive schemes are probably the most widely adopted QM/MM approach, par-
ticularly in the biomolecular field, AMBER [10, 12, 13] and CHARMM [9, 14, 15, 16]
based implementations being important examples.

The main problems within this scheme is the accurate computation of the coupling
term EI,OQM/MM , in the presence of the capping atoms [17], particularly if electrostatic

perturbations to the QM Hamiltonian are included. This problem is due to the pres-
ence of the atoms added to the QM subsystem to saturate the dangling valence of
the QM boundary atoms. So whenever one computes the electrostatic interaction en-
ergy between the QM and MM subsystems one takes in consideration also the charge
density due to the electron and nuclei of the capping atoms.

Boundary-region based methods ( E = entire; I = inner (QM); O = outer (MM);
B = boundary ), are usually intrinsically additive. The total energy can be written as

EEQM/MM = EO,BMM +EI,BQM +EI,O,BQM/MM (2.2)

where EO,BMM is the MM energy of the system including the QM/MM boundary

atoms, EI,BQM is the QM energy including the same set of boundary atoms and EI,O,BQM/MM

contains all coupling terms (electrostatic, Van der Waals, etc.). There is no need for
any link atom corrections, but since the boundary atoms are treated both by QM and
MM methods it is important that the classical energy expression is modified to avoid
multiple counting of interactions. This class of schemes has been adopted most widely
for studies involving strongly ionic materials where boundary region is treated by
model- or pseudo-potential. However, as we will show in the later sections, a number
of treatments designed for covalent systems also eliminate capping atoms, placing a
re-parameterized atomic description or a frozen orbital at the site of the first MM
atom.

2.3.2 Subtractive Schemes

In this scheme the entire system is first treated by MM. Then a calculation on the
inner region including capping atoms is performed with QM techniques and finally a
third calculation on the inner region at the MM level is used to eliminate multiple
counting [11]. This approach is generally applied to capping atom based schemes, in
which case the total energy can be expressed as

EEQM/MM = EEMM +EI,LQM −EI,LMM (2.3)

where EEMM is the MM energy of the entire system while EI,LMM is the energy of
the QM part of the system, computed at the MM level of theory.

The coupling term EI,O,LQM/MM is no longer required as all interactions between

inner and outer regions are handled at the MM level of theory, in the EEMM term.
The handling of capping atom corrections here occurs implicitly as a result of the
subtraction. It is necessary that the forces in the link region arising from the difference
between the QM and the MM representations (EI,LQM − E

I,L
MM ) remain small for all

reasonable positions of the link atoms. It is therefore particularly necessary in this
case to use a classical force field parameterization able to reproduce inside the QM
region the same forces obtained at the QM level of theory.

If the process under investigation involves changes in chemical bonding it will
become more difficult to provide a suitable force field. However, if the inner region is



E!FfL ��	 F2F [#��	�PQg WQhji ��Sk���2�QY���� W PC��Y�P#l�P W �m����P�n 13

large enough, it is possible to ensure that the contribution to the total energy from
atoms in the interior of the inner region completely cancels when the subtraction
EEMM − EI,LMM is performed, and there is therefore no requirements for the force field
to model the energetics of the reaction. Nevertheless, the force field must be able
to compute the interaction between the reacting center and the outer region at the
MM level of theory, which requires, for example, fluctuating charges for the former.
Since the charge density of the inner region may change during the course of the
reaction this can be a quite demanding requirement. Subtractive schemes are clearly
not suitable for cases in which the electronic structure of the QM region is expected
to be significantly perturbed by interaction with the environment [18]. Where good
quality force fields are available the approach can be very accurate since there are no
problems with interactions between the link atom region and the classical environment.
This scheme is actually quite general and can be used to couple different levels of QM
theory, as exemplified by the IMOMO [19, 20] or ONIOM [21, 22] of Morokuma and
coworkers.
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2.4.1 The choice of the quantum model

The choice of the quantum model is essentially related to the property one wish to
compute with a QM/MM method. Generally speaking the design of a QM/MM scheme
is not affected by the QM method involved and its use is mostly governed by the same
criteria that apply to pure QM calculations.

One of the most common QM methods, since the pioneering work of Warshel and
Levitt [5], are the ones based on semi-empirical [23] Hamiltonians. These methods rely
on effective Hamiltonians, parameterized through the fitting of energies and geometric
data with the one obtained in experimental measures. As any parameterized method,
semi-empirical have a good accuracy in treating molecules similar to the ones used for
the parameterization. In general semi-empirical methods can reproduce [24, 25, 26, 27]
energies and geometries of fundamental states of a large class of compounds. The
low computational cost with respect to the ab initio techniques boosted their use
especially in the field of biological applications, and for long time such schemes were
likely to remain important for applications incorporating molecular dynamics. In the
last years, indeed, new powerful methods based on a dual basis set expansion of the
wave function, mixed Gaussian and Plane Wave (GPW), have been developed [28, 29]
(see also Chap.(3)), making feasible to perform molecular dynamics studies, using
Density Functional Theory (DFT) , almost at the same computational cost of a semi-
empirical calculation. For molecular dynamics investigations on excited states, the use
of semi-empirical Hamiltonians is still preferred to the time dependent DFT (TDDFT)
formalism, due to the better representation of the excited state surface through the
use of Complete Active Space (CAS) techniques, or Multi configurational ones into a
semi-empirical framework [30].

A large number of ab initio QM/MM schemes are based on Hartree-Fock [31,
10] and DFT [32, 33] within a Gaussian basis set formalism. Recently a number of
approaches based on Car-Parrinello DFT codes (using plane waves (PW) basis set)
have been also introduced [34, 35, 2].
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2.4.2 The choice of the classical model

The choice of the MM scheme depends on whether the additive or subtractive schemes
are chosen, since within the subtractive scheme any force field can be used.

Within additive schemes, instead, the choice of the MM model may have significant
influence on the treatment of the boundary, since different classical approaches differ
markedly with respect to the handling of both bonded and non-bonded interactions.
The most important distinction is that between:

? valence force field, exemplified by the biomolecular force fields (CHARMM
[36], AMBER [37]) and a number of more general purpose force fields including
MM3 [38] and the consistent force field (CFF [39]) constructed from energy terms
such as bond stretches, angle bends, etc. (See Chap.(4)).

? ionic force fields in which the principal terms are the electrostatic and short-
range (van der Waals interactions type) forces, an example is the shell model [40]
or the van Beest, Kramer, van Santen (BKS) potential [41] specifically designed
to describe SiO2 bulk.

The choice of the force field determines the atomic partial charges on MM nuclei,
thus affecting the long-range QM/MM interactions, as for most current implementa-
tions the same charges are used for MM· · ·MM and QM· · ·MM interactions. Moreover,
the handling of bonding and close inter-ionic contacts between QM and MM regions
will generally follow the same approach as the treatment of similar interactions within
the MM region.

In the valence force field case it is easy to identify the terms involved, typically
bond-stretch, angle-bend and torsion terms that are needed, and it is simple to delete
those that correspond to terms handled by the QM interaction. For these reasons,
additive schemes based on capping atoms are easier to construct with valence force
fields. The ionic class of force fields can be used in boundary-region additive schemes,
but only if the force field charges can generate the correct electrostatic potential in
the QM region and thus the correct inter-ionic forces. This is more likely to be true
for highly ionic materials, unless significant parameterization of the boundary region
is carried out.
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Bakowies and Thiel [11] defined three ways of treating QM/MM electrostatic interac-
tion:

Model-I mechanical embedding, in which the QM calculation is essentially
performed in the gas phase, without electronic coupling to the environment.
The electrostatic interaction between QM and MM regions is either omitted
or performed by the MM code, using a classical point charge model for the
QM charge distribution ( a potential derived charge model).

Model-II electrostatic embedding, in which the classical region appears as an
external charge distribution (i.e. a set of point charges) in the QM Hamil-
tonian. The polarization of the QM region by the MM charge distribution
thus occurs as part of the QM electronic structure calculation [30]. The
partial charges used to describe the MM distribution are frequently taken
to be those used in the force field [9], relying on the use of electrostatic
properties in the force field charge derivation. Charge equilibration schemes,



E!F�GwF�F l���
���	 L ��� 15

which determine the MM charges as a function of geometry have also been
implemented [42, 43].
In ab initio localized basis schemes it is clear that the electrostatic embed-
ding scheme should be implemented, at least at long range, by adding the
contribution of the MM point charges to the 1-electron Hamiltonian. How-
ever, within the semi-empirical formalism, the definition of the electrostatic
potential is more ambiguous as a result of the overlap approximations used,
and alternative formulations for the 1-electron integral terms have been sug-
gested [44] [42].

Model-III polarized embedding, in which the polarization of the MM region
in response to the QM charge distribution is also included. Intuitively this
makes most sense when force fields have been explicitly parameterized with a
polarization function. In fact, most unpolarized force fields implicitly incor-
porate MM polarization in their charge parameterization; hence they tend
to overestimate the polarization effects of the MM backbone, if used in a
polarized model. Then, care must be taken in using force fields explicitly
developed for a QM/MM polarized embedding scheme.
A variety of models for the classical polarization are available, including the
shell model [40], and coupled distributed atomic polarizabilities [45], in which
the polarization on MM atoms is treated through the use of parameterized
dipoles fixed on atoms. In this model, the result of the change in MM charge
distribution from the classical polarization is not propagated to the QM
calculation, resulting in a non variational total energy.

Model-IV mutual polarization scheme, is defined as an extension to the previ-
ous model, where QM and MM polarizations are made self-consistent, either
by iterative solution of the SCF (Self Consistent Field) and polarizability
problems [46, 47], or by matrix inversion techniques, as in the Direct Reac-
tion Field (DRF) model [48, 49, 50, 51, 52]

The treatment of the short-range QM/MM interactions, i.e. Van der Waals, gen-
erally follows the model used in the MM calculation. Re-fitting of the non-bonded
parameters is often carried out to optimize the performance of the QM/MM poten-
tial, particularly in the case of solvation studies [53, 54, 55, 56, 57] or in all that
systems in which the details of non-bonded contacts are particularly important.
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If there are bonds or strong ionic interactions between the QM and MM regions it
is necessary to introduce some termination in the QM subsystem, either through
the capping atom or boundary region approaches. In Fig.(2.3), we show the labeling
adopted in the following discussion for those models incorporating capping atoms. For
termination of sites where a covalent bond has been broken addition of a capping atom
is the most popular approach. An extra nuclear center is introduced, together with
basis functions and electrons required to form a covalent bond to the QM region that
will mimic the bond to the MM region. The simplest and still most popular choice is
the use of a hydrogen atom [9], even though other monovalent (halogen atoms) atoms
have used in the last years [58].

There are clearly chemical differences between hydrogen and the chemical group
it replaces. Within empirical and semi-empirical schemes, an obvious enhancement



16 E!FHGIF2FKJML �2�ON�PQ�:NR� P�S

Figure 2.3: QM labels quantum atoms, MM classical atoms and L labels the capping atom.

is to adjust the capping atom parameterization to mimic more closely the modeled
group. Recently, Antes and Thiel [59] have described the semi-empirical Adjusted
Connection Atom (ACA) scheme, in which the link atom is replaced with a boundary
atom parameterized for a single valence electron in order to model a methyl group.

A related approach within ab initio based QM/MM methodologies is to place a
pseudo-potential at the MM site to mimic the electronic properties of the replaced
bond [60]. This avoids the additional atomic center of the capping atom approach.

All the techniques listed above assume that once the termination potential has been
set up, a full wave-function optimization (SCF or Conjugate Gradients type optimiza-
tion) is performed on the resulting system. An alternative approach is to constrain
the SCF solution to reflect the influence of the bonds that we have omitted. The local
self consistent field (LSCF) scheme [61, 62] of Rivail et al. involves the preliminary
calculation of the localized bond orbital, which is then frozen during the calculation.
The generalized hybrid orbital (GHO) scheme of Gao et al. [63] constrains the hy-
bridization of the terminating center but allows adjustment of the QM/MM bond
itself, allowing changes in local geometry to be handled. This procedure effectively
replaces the link atom with a carbon with three frozen and one QM active sp3 hybrids.
The QM active hybrid corresponds to half the frozen bond in the LSCF approach.

These approaches have to be considered a great improvement with respect to the
atomic capping descriptions. They do not need any parameterization before the com-
putation, i.e. the calculation is totally independent from the compounds to be de-
scribed with QM/MM technologies. Anyway, in spite of its drawbacks, the real appeal
of the capping atom approach is its conceptual simplicity, its ease of implementation,
and the minimal computational costs. The various frozen orbital (LSCF, GHO) all
require substantial programming for implementation. The use of a pseudo-halogen as
a link atom adds several electrons to the quantum region and it does not represent a
valuable choice. Instead, a one-electron carbon pseudo-potential (as the one developed
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by Thiel and co-workers [59] but for ab initio quantum systems) [64, 65] should be the
right choice to resemble the properties of the cut bond.

All these methods require special care in choosing the frontier bond. Reuter et al.
[66] have found that atoms in the MM regions with large charges in close proximity
to the frontier can lead to substantial errors in energy. In addition, variations in the
electron population of the frozen orbital can have a significant effect on the energy
of the system. Based on these findings, they conclude that: LSCF procedures are
less robust than capping atom methods but that similar results are obtained using both
methods if special care is taken.

It is then a combination between the definition of the terminating orbitals and the
reparameterization of the link atom region, which allows to obtain accurate confor-
mational energies [67].

2.6.1 Coordinates and Forces of capping sites

In contrast to the boundary atom schemes, the additional QM centers in the capping
atom lead to an important ambiguity. Initial coordinates can be chosen by placing
the link atom on the bond that is being terminated, but once a geometry optimization
or molecular dynamics run has been started there is a number of different ways of
updating the coordinates of the capping atom and of handling the forces.

Optimized Capping Atom In these approaches, the capping atom coordinates are
added to the atom list used in the geometry optimization or molecular dynamics
scheme, and the coordinates are free to vary [9].
Sometimes some additional force field terms may be added to favor the positioning
along the M1-Q1 bond. This is particularly important when link atom corrections
lead to small and unphysical forces on the link atoms.

Constrained Capping Atom In the Constrained Capping Atom approach, the cap-
ping atom coordinates are written as a function of the link atom coordinates:

~RMM1 = ~RQM1 + α(~Rcapping − ~RQM1)

= (1− α)~RQM1 + α~Rcapping (2.4)

α is a constant parameter. In this way the bond distance RMM1−QM1, between
QM- and MM-link atoms is defined as a fraction of the QM-link - capping atom
bond distance Rcapping

RMM1−QM1 = α · Rcapping (2.5)

Using Eq.(2.4) it is possible to eliminate them from the set of free coordinates used
in the optimization or dynamics. Such an elimination is particularly interesting for
molecular dynamics and for the evaluation of vibrational frequencies, which would
be modified by coupling to any independent capping atom motions, producing
totally unphysical results.
Since the capping atoms have non-zero forces it is necessary to add a term to
the link atom forces to counterbalance the changes in the capping atom position
resulting from the link atom movements. There are many capping models in the
recent literature [68, 69, 70, 71], of which the IMOMM method of Maseras and
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Morokuma [72] is the most representative one. In this scheme, the capping atom
(C) is constrained to move along the direction (QM1) - (MM1), and this is ob-
tained by working in internal coordinates such that the same internal coordinates
were used to update the capping atoms coordinates and to define the position of
the corresponding link atom (MM1). The internal coordinate force can then be
obtained by adding the QM and MM contributions.
When working in pure Cartesian coordinates the same effect can be realized by
using the chain rule to establish the contribution to the forces on the real atoms
Xi:

dE

dXi
=

∂E

∂Xi
+
∑

l

∂E

∂Xcapp
l

∗ ∂X
capp
l

∂Xi
(2.6)

where the derivative
∂Xcappl

∂Xi
is a 3x3 matrix describing the coupling of the capping

atom (Xcapp
l ) and link atom (Xi) motions as a function of the constrain term.

There is a term for each atom i which appears in the definition of the position of
the capping atom l [73]. This model was chosen to describe QM/MM link regions
in the QM/MM driver we developed.
In a recent implementation, the Add-Remove model [74], it is the position of the
capping atom (C) that follows the classical atom (MM1). This has the major
advantage that one does not remove the degrees of freedom of the real classical
atom, therefore the energy does not depend anymore on some arbitrary param-
eter α. Furthermore the real classical atom (MM1) interacts normally with the
real QM system and is allowed to move in the optimization of the MM system.
Then, before the QM calculation starts, the positions of the capping atom (C)
is updated from the current position of the (MM1) atom. After the QM energy
and gradients have been obtained, they are corrected by removing the interac-
tions of the capping atoms: the MM interactions, which the capping atom would
have with the atoms in the real (QM+MM) system if it was a classical atom,
are subtracted. That is, the capping atom is added and removed. During each
step of dynamics or optimization, the charges of the QM system are updated af-
ter each QM wave-function optimization cycle, and used in the next MM energy
and gradients computation. This step is very important and it will be empha-
sized during the discussion of our QM/MM implementation though in a slightly
different context (see Sec.(7.7)).
This procedure is not variational but the extension of the correction inside each
SCF cycle and the computation of the derivatives of the QM charges with respect
to the nuclear variables (something similar to Pulay forces in atomic position
dependent basis sets) would lead to a totally variational scheme. The formalism
is equivalent for multiple link bonds present at the same QM/MM interface.
When using constrained capping atoms in additive schemes some adjustment to
the force field is required. The MM force constant for the angle bend (QM2-
QM1-MM1) is in effect supplemented by the bending potential for the group
(QM2-QM1-L), since the restoring forces acting on H are transferred to atom
(MM1) as described in Eq.(2.6). Greater accuracy could be achieved by fitting
a modified MM parameter to reflect the presence of the capping atom. Similar
considerations apply to the torsion angles build by sequence like (QM3-QM2-
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QM1-MM1) or (QM2-QM1-MM1-MM2) etc. One can also try to keep fixed the
QM1-H distance, in order to tune the electronic characteristic of the termination
[75].

Similar considerations apply to the boundary atom schemes. It is generally as-
sumed, or considered as a requirement for the boundary atom pseudo-potential pa-
rameterization, that the QM calculation incorporating a model potential will generate
suitable geometries for the QM· · ·MM bond.

2.6.2 Modifications of charge distributions at the boundary

Within all of the polarized QM/MM schemes (Model II-IV in Sec.(2.5)) the leading
term in QM/MM Hamiltonian formalism (see Sec.(2.3)) is represented by the electrons
interaction with MM nuclei charges (see Chap.(6)). In the simplest electrostatic model

( Model-II ) and for additive schemes the HI,OQM/MM can be defined in the following
way

Helec,staticQM/MM =
∑

α

qα

|~ri − ~Rα|
(2.7)

where α labels MM atoms with coordinates ~Rα and ~ri labels the electrons coordi-
nates.

Problems can be expected when point charges modeling the MM region (qα) closely
approach the QM electronic charge distribution [66]. These problems (generally re-
ferred as electronic spill-out problems) come from the possibility for the electron den-
sity to localize on the classical point charges of the MM atoms, and it is particu-
larly pronounced in a plane waves basis set approach [76]. In the absence of capping
atoms, close approach is usually prevented by the non-bonded interaction potentials
(Lennard-Jones type or 10-12 terms [77] ) which are repulsive at short range. However
in the region across the QM/MM boundary some adjustment to the classical charge
distribution is essential, as the nearest point charges to the QM region will be at most
a single bond distance away. The terminating capping atom (hydrogens or halogens),
is almost superimposed on the link atom (MM1 in Fig.(2.3)). Clearly this problem
will be more severe when large basis sets are used, or with a plane wave basis set, and
in fact it is possible to disregard it in the semi-empirical case [9].

Antes and Thiel [47] have discussed a variety of approaches to the problem, sum-
marized in the classification below. Some of them are applicable only in presence of a
localized basis set, while others have a much more wide range of applicability.

Selective deletion of 1-electron integrals

This is a typical treatment that can be applied only to localized basis sets. For QM
calculations with small basis sets the leading spurious interaction is that of the basis
functions on the capping atom with the classical MM charges. Since the capping atom
is an artifact of the QM/MM scheme it has been suggested that the model can be
improved simply by deleting the 1-electron Hamiltonian contributions (coming from
the interaction term of Eq.(2.7)) involving capping atom basis functions and the full
set of MM charges [47]. This corresponds to modify the QM Hamiltonian and therefore
is fully variational.
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Antes and Thiel also defined a further scheme, in which all 1-electron terms are
included with the exception of those that involve only basis functions on the capping
atom (C) and the charge on the link atom (MM1).

Deletion of selected atomic charges

Perhaps the simplest way of dealing with charges on the nearby classical centers is to
delete them from the Hamiltonian Eq.(2.7). In the original implementation of Singh
and Kollman [10], any MM charge less than 4 bonds from any other QM atom was
removed. An improvement of this method is to delete only MM charges at the link
atom (MM1) sites [12].

The danger of these schemes is that simply deleting charges according to the con-
nectivity will often result in a net charge, as experienced by QM atoms, of the remain-
ing MM atoms. Such an artifact will have particularly serious effects on computed
energies for processes in which the total charge of the QM region is modified, such as
protonation reactions.

Many biochemical force fields have the feature that sets of neighboring atomic
charges can be grouped together such that the total group charge is an integer (usually
zero) [78]. This is a convenient feature for a force field as it guarantees a molecule,
built by combining these charge groups, to have an integer charge without any other
adjustment of the atomic parameters.

So a choice could be to neglect of all MM charges of the group containing atom
(MM1) [47]. While this clearly removes some significant physical interactions, the
fact that the removed charges will sum to zero will ensure that the total MM charge
experienced by the QM calculation is correct. The leading term that is missing will
be the dipole moment of the group containing atom (MM1).

A series of tests on protonation reactions were used to benchmark this type of
scheme [47], using semi-empirical, DFT and MP2 wave-functions. The differences
between the schemes were observed to be more pronounced for the ab initio wave-
function. In particular the last deletion scheme, was found to be robust for all types
of wave-functions.Ab initio studies using force field based on neutral groups appears
to be the obvious choice.

Charge shifting scheme

In treating aluminosilicates, a different scheme has been developed [75, 79], because in
the typical force field used, there is no simple subset of MM atoms that can be deleted
without associating an artificial total charge with the local MM environment. The idea
is to derive for each atom an electrostatic model from a sum of bipolar contributions
from the bonds in which the atom is involved. This idea has been used in the past for
general chemical systems, for example the MM3 force field [38] uses an electrostatic
model including bond dipole terms.

Gaussian Blur

Brooks has suggested [8] that the problem of close approach of the MM charges to the
QM region is largely due to the unrealistic representation of this charge distribution
by a point charge. The Gaussian blur approach replaces the point charges for selected
MM centers with a Gaussian charge distribution. In Chap.(5) the problem of the
regularization and renormalization [2, 80] of the coulomb electrostatic interaction is
addressed to remedy the non physical QM/MM coulomb interaction at short distances.
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Another important point of QM/MM implementations is whether the scheme is varia-
tional and in particular energy conserving. If the energy of the system can be written
as E(~r,λ), where ~r is a set of external parameters that characterize the physical sys-
tem and λ a set of wave-function parameters that describe the electronic state (i.e.
molecular orbitals), we say that the energy is fully variational with respect to the
electronic parameters λ if E(~r,λ?) satisfies the variational conditions for all values of
the external parameters ~r:

∂E(~r, λ)

∂λ

∣∣∣∣
λ?

= 0 (2.8)

with the partial derivatives calculated at λ = λ?. To ensure that the variational condi-
tion Eq.(2.8) are always fulfilled, the electronic parameters must change in a particular
manner as the molecule deforms. The variational conditions therefore implicitly de-
termine the dependence of the electronic parameters λ(~r) on ~r.

Carrying on the differentiation at λ = λ? and invoking the chain rule, we obtain
the molecular gradients

d E(~r)

d ~r
=
∂E(~r, λ)

∂~r

∣∣∣∣
λ?

+
∂E(~r, λ)

∂λ

∣∣∣∣
λ?

· ∂λ
∂~r

(2.9)

The first term represents the explicit dependence of the electronic-energy function on
~r; the second term represents the implicit dependence of the energy function on ~r. In
case of a fully variational scheme the second term gives a zero contribution retrieving
the simple well known expression for molecular gradients.

Most of the QM/MM implementations rely on variational schemes [9, 14, 15, 81, 82]
though quite few non-variational approaches were presented as well [35]. Beyond being
variational or non-variational we stress the importance for QM/MM codes to produce
energy conserving dynamics. Even non-variational algorithms can produce conserved
dynamics if the proper terms in Eq.(2.9) are taken into account. The importance of
performing energy conserving dynamics stays in the possibility to compute thermo-
dynamical quantities, i.e. compute relevant properties like free energy and entropy.
The algorithms we will show in the next chapters (Chap.(6) and Chap.(7)) are all
variational and energy conserving.
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In many aspects the issue governing implementation of QM/MM computer codes are
similar to those associated with the individual QM and MM methods. Most of the
coupling terms are readily computed using the modules implemented in either the QM
or MM packages. However, it is worth giving some brief comments on some of the
usual implementational issues.

1. those based on classical modeling packages, with a QM code integrated as a force
field extension

2. those based on a QM packages, incorporating the MM environment as a pertur-
bation

3. modular schemes in which a central control program is provided and a choice of
both QM and MM methods is left open
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Probably the most popular approach to date has been the (1), because the modeling
tools present in a typical MM/MD package are well suited for manipulation of large,
complex chemical systems. A good example of this approach is the series of QM
implementation within the CHARMM package [9, 14, 15] However, one area in which
the functionality of a traditional macromolecular program may need enhancing is the
search for transition states.

Option (2) is particularly well suited when the tools required are those associated
with small molecule quantum chemistry or as in the present work, a well developed
QM formalism (Car-Parrinello Molecular Dynamics) in which embedding all the MM
environment.

The last option (3) offers the greatest flexibility, especially when care is taken to
ensure that the component packages are modified to a minimal extent, so to provide
the best hope in substituting up-to-date versions of the QM and MM packages when
they become available [83].



Part II

Overview of QM and MM methods





Chapter 3

Density Functional Theory: An
overview

In this chapter we present the Gaussian and Plane Wave (GPW) method and its
implementation in quickstep which is part of the freely available program CP2K
[84]. The GPW method allows for accurate density functional calculations in gas
and condensed phases and can be effectively used for molecular dynamics simulations.
The computation of the total energy and the Kohn-Sham matrix scales linearly with
the system size, even for condensed phase systems of just a few tens of atoms. The
efficiency of the method allows for the use of large Gaussian basis sets for systems
up to 3000 atoms, and the accuracy of the method for various basis sets in gas and
condensed phases is excellent. A detailed review on Quickstep was recently published
[85].

\���� ��*768=>$9?2��5m68')$+*
Density functional theory [86, 87] (DFT) is a well established method to perform
electronic structure calculations. The accuracy of the method is such that many
properties of systems of interest to chemistry, physics, material science, and biology
can be predicted in a parameter free way. The standard computational approach
to DFT is already efficient and thus appropriate for fairly large systems, currently
about 100 atoms. Nevertheless, the computation of the Hartree (Coulomb) energy
and the orthogonalization of the wave functions are not scaling linearly with system
size, and these terms therefore dominate the computational cost for larger systems
[88]. The hybrid Gaussian and plane waves (GPW) method [89] provides an efficient
way to treat these terms accurately at a significantly reduced cost. We present here
the implementation of this method in Quickstep, which is part of the freely available
program package CP2K[84].

The method uses an atom-centered Gaussian-type basis to describe the wave func-
tions, but uses an auxiliary plane wave basis to describe the density. With a density
represented as plane waves or on a regular grid, the efficiency of Fast Fourier Trans-
forms (FFT) can be exploited to solve the Poisson equation and to obtain the Hartree
energy in a time that scales linearly with the system size. Fast Fourier Transforms
and regular grids are well established in plane wave codes [90] and their efficiency has
recently been exploited in a similar method [91, 92, 93, 94, 95].

Another method that is based on similar concepts [96, 97] and has become increas-
ingly popular is the so called resolution of the identity (RI) method or density fitting.
Contrary to the GPW method, most RI methods expand the density in an auxiliary
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basis of the same nature as the primary basis, but optimized specifically for this pur-
pose [98, 99, 100]. Since a density expanded in plane waves can be represented on a
realspace grid, there is a direct connection to methods that use numerical calculation
of matrix elements [101, 102] or grid discretization and finite element methods (for a
recent review see Ref. [103]).

The GPW method is most similar to methods that employ auxiliary realspace grids
but differ by the choice of localized primary basis functions used to represent the wave
functions [104, 105, 106, 107, 108, 109].

Periodic boundary conditions follow naturally from the FFT based treatment of
the Poisson equation, and the GPW method scales linearly for three dimensional
systems with a small prefactor. The GPW method seems therefore best suited for
the simulation of large and dense systems, such as liquids and solids, and all recent
applications of the method fall in this category [29, 110, 111, 112, 113]. For these
systems, it is important to be able to efficiently perform stable molecular dynamics
simulations, in order to address finite temperature effects. Plane wave codes and the
basic GPW implementation presented here require that the nuclei are described using
pseudo potentials. This approximation is highly accurate if e.g. Goedecker-Teter-
Hutter (GTH) pseudo potentials are employed [114, 115]. An extension of the GPW
method, the Gaussian and augmented-plane-wave (GAPW) method [28] allows for all
electron calculations.

The extensive experience with Gaussian-type basis sets shows that basis set se-
quences that increase rapidly in accuracy can be constructed in a systematic way
[116]. At the same time, a compact description of the wave functions is maintained,
and this opens the way for efficient methods to solve for the self consistent field (SCF)
equations. Furthermore, as Gaussian functions are localized, the representations of
the Kohn-Sham, overlap and density matrix in this basis become sparse with increas-
ing system size [88]. This eventually allows for solving the Kohn-Sham (KS) equations
using computational resources that scale linearly with system size. We have currently
only implemented methods that are scaling cubically with system size, but these have
been designed to reach high efficiency for Gaussian basis sets [117].

\��:� ;<4&��%c%('�4&*�4#*�?� #"�4#*���`�4�^��7%�de��68��$9?
3.2.1 Energy functional

The gist of the Gaussian and plane wave (GPW) method [89] is the use of two rep-
resentations of the electron density. Such a dual representation allows for an efficient
treatment of the electrostatic interactions, and leads to a scheme that has a linear
scaling cost for the computation of the total energy and Kohn-Sham matrix with re-
spect to the system size. The first representation of the electron density n(r) is based
on an expansion in atom centered, contracted Gaussian functions

n(r) =
∑

µν

P µνϕµ(r)ϕν(r) (3.1)

where P µν is a density matrix element, and ϕµ(r) =
∑

i diµgi(r) with primitive Gaus-
sian functions gi(r) and corresponding contraction coefficients diµ. The second repre-
sentation employs an auxiliary basis of plane waves, and is given by

ñ(r) =
1

Ω

∑

G

ñ(G) exp(iG · r) (3.2)
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where Ω is the volume of the unit cell, and G are the reciprocal lattice vectors. The
expansion coefficients ñ(G) are such that ñ(r) is equal to n(r) on a regular grid in the
unit cell. This choice allows for a rapid conversion between n(r), ñ(r) and ñ(G) using
an efficient mapping procedure (see App.(B)) and fast Fourier transforms (FFT).

Using this dual representation, the Kohn-Sham DFT energy expression [86, 87] as
employed within the GPW framework is defined as

E[n] =ET[n] +EV[n] +EH[n] +EXC[n] +EII

=
∑

µν

P µν 〈ϕµ(r)| − 1

2
∇2|ϕν(r)〉

+
∑

µν

P µν 〈ϕµ(r)|V PP
loc (r)|ϕν (r)〉

+
∑

µν

P µν 〈ϕµ(r)|V PP
nl (r, r′)|ϕν(r′)〉

+ 2πΩ
∑

G

ñ∗(G) ñ(G)

G2

+

∫
eXC(r) dr

+
1

2

∑

I 6=J

ZIZJ
|RI −RJ |

(3.3)

where ET[n] is the electronic kinetic energy, EV[n] is the electronic interaction with
the ionic cores, EH[n] is the electronic Hartree energy and EXC[n] is the exchange–
correlation energy. The interaction energies of the ionic cores with charges ZA and
positions RA is denoted by EII. EV[n] is described by norm-conserving pseudo poten-
tials [118] with a potential split in a local part V PP

loc (r) and a non-local part V PP
nl (r, r′).

The pseudo potential terms are described in more detail in Sec.(3.2.2), the elec-
trostatic contributions to the the total energy in Sec.(3.2.3), and the exchange and
correlation term in Sec.(3.2.4). Deeper comments about the linear scaling computa-
tional cost can be found in the main review on quickstep [85].

3.2.2 Pseudo potentials

An expansion of an atomic all-electron density or wave function in plane waves is
computationally inefficient. However, to describe a wide range of chemically interest-
ing events, such as bond breaking and formation, an accurate description is required
only for the valence electrons. Such an accurate description can be obtained using a
pseudo potential description of the nuclei. This technique is well established in the
plane wave community. The GPW method use the pseudo potentials of Goedecker,
Teter, and Hutter (GTH) [114, 115].

The norm-conserving, separable, dual-space GTH pseudo potentials consist of a
local part including a long-ranged (LR) and a short-ranged (SR) term

V PP
loc (r) = V LR

loc (r) + V SR
loc (r) (3.4)

= −Zion

r
Erf
(
αPPr

)
+

4∑

i=1

CPP
i

(√
2αPPr

)2i−2

exp
[
−
(
αPPr

)2]
(3.5)
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with

αPP =
1√

2rPP
loc

and a non-local part

V PP
nl (r, r′) =

∑

lm

∑

ij

〈 r | plmi 〉hlij 〈 plmj | r′ 〉 (3.6)

with the Gaussian-type projectors

〈r | plmi 〉 = N l
i Y

lm(r̂) rl+2i−2 exp

[
−1

2

(
r

rl

)2
]

where N l
i are normalization constants and Y lm(r̂) spherical harmonics. The set of

parameters (rPP
loc , CPP

i , rl, and hlij) have been optimized with respect to atomic all-
electron wave functions as obtained from fully relativistic density functional calcula-
tions using a numerical atomic program. The optimized pseudo potentials include all
scalar relativistic corrections via an averaged potential [115], and improve therefore
the accuracy for applications involving heavier elements. The emphasis in the con-
struction of these pseudo potentials has been on accuracy, and hence these pseudo
potentials are computationally demanding if a plane wave method is used, as a large
plane wave basis typically is required. The GPW method is less sensitive to the hard-
ness of the pseudo potential since the kinetic energy (see Eq.(3.3)) and the short range
pseudo potential terms are computed in the Gaussian basis. The long range term can
be efficiently treated as part of the electrostatic energy (see Sec.(3.2.3)), whereas the
short range terms can be easily computed as two and three center overlap integrals.
An extended database (H–Rn) with GTH pseudo potential parameters based on the
local density approximation is available [84] for use with Quickstep. In addition,
parameters for the common elements have been optimized for the gradient-corrected
exchange-correlation potentials of Becke, Lee, Yang, and Parr (BLYP) [119, 120, 121],
Becke and Perdew (BP) [119, 122], Hamprecht, Cohen, Tozer and Handy (HCTH/120,
HCTH/407) [123] and Perdew, Burke and Ernzerhof (PBE) [124].

3.2.3 Electrostatic energy

The electrostatic energy in a periodic system is defined by a conditionally converging
sum in which the separate contributions of ions and electrons are infinite. All terms
of the electrostatic energy are therefore treated simultaneously

EES =

∫
V PP

loc (r)n(r)dr + 2πΩ
∑

G

ñ∗(G) ñ(G)

G2 +
1

2

∑

I 6=J

ZIZJ
|RI −RJ |

(3.7)

using the Ewald sum method [125] as it is commonly implemented in plane wave
electronic structure codes [90]. The long range part of all electrostatic interactions is
treated in Fourier space, whereas the short range part is treated in real space. This
separation is conveniently achieved for the ionic cores if a Gaussian charge distribution
(nIc(r)) for each nucleus is introduced and defined as

nIc(r) = − ZI

(Rc
I)

3 π
−3/2 exp

[
−
(
r −RI

Rc
I

)2
]
, (3.8)
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Figure 3.1: Convergence of the absolute error in the electrostatic energy Eq.(3.11) with respect to

plane wave cutoff at fixed density matrix. The system is a single water molecule described with a

GTH pseudo potentials and a TZV2P basis in a 10Å cubic cell. The relation Ecutoff = π2

2h2 is used

to convert the grid spacing h to the corresponding plane wave cutoff. Figure taken from Ref. [85].
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in which the parameter Rc
I can be chosen for optimal performance. In Quickstep,

this parameter is set to
Rc
I =
√

2rPP
loc (3.9)

so that the corresponding potential of the Gaussian charge distribution

V Icore(r) =

∫
dr′

nIc(r′)
|r − r′| = − ZI

|r −RI |
Erf

[ |r −RI |
Rc
I

]
, (3.10)

cancels exactly the long-ranged term V LR
loc (r) of the local pseudo potential.

We rewrite the expression for the energy Eq.(3.7) using Eq.(3.8) as

EES =

∫
V SR

loc (r)n(r)dr

+
Ω

2

∑

G

ñ∗tot(G) vH(G)

+
1

2

∑

I 6=J

ZIZJ
|RI −RJ |

Erfc


 |RI −RJ |√

Rc
I

2 +Rc
J

2


−

∑

I

1√
2π

Z2
I

Rc
I

, (3.11)

where erfc is the complementary error function, the Hartree potential vH(G) =
4πñtot(G)/G2, and a total charge distribution ñtot(G) = ñ(G) + ñc(G) has been in-
troduced. The last three terms of Eq.(3.11) define the total Hartree energy (EH[ntot]),
the overlap energy (Eovrl) and self energy (Eself) respectively.

The two representations of the electrostatic energy Eq.(3.7) and Eq.(3.11) are
strictly equivalent if an infinite sum over G vectors is employed. In practice, a differ-
ence between the two energy expressions, due to the use of finite density grids, can
be observed, but this difference is rapidly converging with respect to G space cutoff
i.e. the grid spacing used. The rapid convergence of the electrostatic energy Eq.(3.11)
with respect to the plane wave cutoff, and thus the size of the auxiliary basis is shown
in Fig.(3.1).

3.2.4 Exchange–Correlation Potential

A necessary ingredient in practical application of DFT is the introduction of an ap-
proximate exchange and correlation functional EXC. In the present implementation
of Quickstep typical generalized gradient approximations (GGA) and meta-GGAs
based on the kinetic energy density τ such as BLYP [119, 120, 121], PBE [124], HCTH
[123, 126, 127], OLYP [128], TPSS [129] can be computed efficiently. These functionals
have the general form

EXC[n] =

∫
exc
(
n↑(r), n↓(r),∇n↑(r),∇n↓(r), τ↑, τ↓

)
dr. (3.12)

This form does not cover functionals where the Hartree-Fock exchange term is ex-
plicitly introduced [130, 131] such as the popular B3LYP functional[132]. Currently,
no implementations of Hartree-Fock exchange can approach the efficiency with which
Eq.(3.12) can be evaluated.

To compute Eq.(3.12) and its derivatives with respect to the density matrix we
use a discrete representation of EXC on the same uniform density grid that has been
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used for the Hartree energy as is common in plane wave based calculations [133] and
other grid based methods [134]. This avoids the use of the more accurate techniques
employed within the quantum chemistry community [135, 136, 137] as these meth-
ods would, within the GPW scheme, dominate the total cost of the calculation by a
relatively large factor.

For the evaluation of the exchange and correlation contribution, in the spin unpo-
larized case, the following operations are performed for each grid point:

1. computation of n(r) =
∑

µν P
µνϕµ(r)ϕν(r)

2. computation of τ(r) =
∑

µν(1/2)P µν∇ϕµ(r) · ∇ϕν(r)

3. numerical approximation of ∇n based on the values of n(r) on the grid

4. evaluation of exc and its derivatives ∂exc/∂n, ∂exc/∂∇n, ∂exc/∂τ on each point
of the grid

5. computation of vxc
n and vxc

τ on the grid

vxc
n =

∂exc

∂n
−∇ ·

( ∂exc

∂|∇n|
∇n
|∇n|

)
(3.13)

vxc
τ =

∂exc

∂τ
(3.14)

6. calculation of the matrix element of the sum of vxc
n and the Hartree potential

vH(r) (see section Sec.(3.2.3)) between the Gaussians

∫ (
vxc
n (r) + vH(r)

)
ϕµ(r)ϕν(r)dr (3.15)

7. calculation of the matrix element of vxc
τ between the Gaussians

∫
vxc
τ (r)∇ϕµ(r) · ∇ϕν(r)dr (3.16)

these operations are discussed in more detail in Sec.(3.3.1) and App.(B).
The presence of terms such as

t = −|∇n|
2

nα
∂t

∂|∇n| = −2
|∇n|
nα

. (3.17)

in GGAs and meta-GGAs leads to very sensitive behavior in regions of vanishing den-
sity such as the tails of the atomic densities. The near singularities encountered in
Eq.(3.17) are in that case customarily resolved by removing the contributions to exc

and vxc of the regions where the density n is lower than a given cutoff ε . In addition,
care should be taken to fulfill numerically the exact relationship |∇n| < 8nτ for func-
tionals that depend on the kinetic energy density. However, using pseudo potentials,
the density can also be small in the core region, where gradients are typically larger.
This is especially true for the GTH pseudo potentials that by construction have a zero
pseudo charge density at the core for all elements except H. We illustrate in Fig.(3.2)
that for these pseudo potentials the core region is by far the most problematic part of
the exchange and correlation potential. The pronounced spike of vxc in the core gives
rise to small variations in the total energy as atoms move relative to the grid.



32 � PZ� W �����+�w
�������� ��� L gc��Y�PQ����� J�� �2��NRPZ��N�� P�S

Figure 3.2: Behavior of n and vxc with the BLYP functional close to the core of an O atom in a

water molecule along the bisector of the HOH angle with an unusually large cutoff of 5000 Ry. The

left panel shows the electron density, whereas the three right panels show vxc as calculated using

a derivative in G space, using a quadratic spline (D6(S6)−1) and using the operators S10 −D6 as

defined in the text. It can be observed that the latter methods lead to a more physical exchange and

correlation potential surface. Figure taken from Ref. [85].

The G space differentiation is commonly used in plane waves codes but is not the
best choice with the GPW method. Whereas G space differentiation of the density on
the grid yields the exact derivative∇n(r) in the former case, the approximate∇ñ(r) is
obtained in the later case. When used, the differentiation of a small spike of ∂e/∂|∇n|
in Eq.(3.13) gives rise to the strong ’ringing’ effects illustrated in Fig.(3.2). Even
though integration effectively filters out the highest frequencies, the energy oscillates
significantly when the system is translated (see Fig.(3.3-b)).

Different schemes to compute the exchange and correlation energy more accurately
were explored, and a nearest neighbor smoothing operator Sq was introduced [85]

(Sq f)i,j,k =
q3

q3 + 6q2 + 12q + 8

1∑

l=−1

1∑

m=−1

1∑

n=−1

q−|l|−|m|−|n|fi+l,j+m,k+n, (3.18)

together with a smoothed finite differences operator Dq , that for the x derivative is

(Dq
xf)i,j,k =

q2

2(q2 + 4q + 4)

1∑

l=−1

1∑

m=−1

q−|l|−|m|(fi−1,j+l,k+m − fi+1,j+l,k+m) (3.19)

and likewise for the other directions.
To avoid the ’ringing’ a numerical derivative that assumes less continuity can be

used. D6(S6)−1 calculates the derivative of the quadratic spline interpolating n on
the grid. It behaves better than the G derivative, but the energy oscillations are not
sufficiently reduced. D6 alone, i.e. without sharpening step (S6)−1, gives information
on the neighborhood rather than on the grid point itself, and damps the oscillations
more, at a cost in the accuracy of the energies (see Fig.(3.3-a) and Fig.(3.3-b)).
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Figure 3.3: Panel (a) shows the average systematic error in the interaction energy with the BLYP

functional for water dimer configurations (∼ 5 kcal from the minimum), panel (b) the oscillations

of the interaction energy due to imperfect translation invariance, and panel (c) the forces on the

center of mass. Derivatives, and the combined n smoothing-derivative operators S50 − D6(S6)−1

and S10 − D6 are compared with respect to the cutoff (triangles, +, ×, squares and circles). The

reference interaction energies were calculated with a cutoff of 2000 Ry using the usual G space

derivatives. The oscillations of the energy and the magnitude of the forces on the center of mass of

the last two methods are at an acceptable level for cutoffs of about 300 Ry. Figure taken from Ref.

[85].

For a translationally invariant evaluation of the integral of a function f over the
grid points (i, j, k) it is appropriate to associate to each mesh point not the value of
the function itself, but rather an estimate of its average value in a neighborhood of
(i, j, k). For a highly non-linear term such as the exchange correlation energy this
average can not easily be estimated. We therefore evaluate the xc functionals using
a locally averaged density n̂(r) employing the smoothing operator Sq . Typical values
for q are 10 or 50 depending on the required amount of smoothing. Such a smoothing
is equivalent with a redefinition of EXC that reduces to the identity as the cutoff is
increased. v̂xc

n̂ can be calculated as function of n̂ = Sq n as

vxc
n = v̂xc

n̂

δn̂

δn
= Sq v̂xc

n̂ . (3.20)

Combining the quadratic spline and D6 derivatives with the smoothing on n brings
the oscillations of the energy to an acceptable level. S50−D6(S6)−1 has good conver-
gence characteristics, and implies only a small grid spacing dependent re-normalization
of EXC. The operator S10 −D6 implies a significant amount of smoothing, resulting
in even less grid dependence in the forces, and is fast to calculate since an inversion
step is not necessary, but might be less appropriate to study systems where significant
charge reorganization takes place. The exchange and correlation potentials obtained
with these methods are well behaved, which also helps the convergence of the SCF
procedure.

Nevertheless, none of the methods presented here is fully satisfactory, as a balance
between the different accuracy goals is difficult to achieve. Non linear core corrected
pseudo potentials [138] could provide a more elegant solution since the problematic
region of small density would be removed. It is likely that these pseudo potentials
can be treated efficiently, and they would bring additional benefits for strongly spin
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polarized systems. The Gaussian and augmented-plane-wave (GAPW) method [28, 29]
could also solve the issues described here in a more fundamental way.

\��:\ ;¤£¦¥ ,>$#=>5��7%
3.3.1 Deriving the Kohn-Sham matrix from the GPW energy

In this section we present how the exact derivativeHµν = ∂E/∂P µν of the total energy
is computed taking into account all approximations that lead from the Gaussian based
density n({P µν}) to the density represented on the grid ñ({P µν}). This includes the
mapping from the Gaussian basis to the grid using finite radii, the use of multi-grids,
and of grid based methods to compute ∇ñ(r). This derivation is presented in [85].
We use the notation ñi to denote a value of ñ(r) on a particular grid point with
coordinates ri. Truncation to a finite radius of the products φµ(r)φν (r) is equivalent
to summing over a subset {µ′, ν′} of {µ, ν} in the definition

ñi =
∑

{µ′,ν′}
P µ
′ν′φµ′(ri)φν′(ri). (3.21)

The derivative of E({P µν}, ñ({P µν})) will be obtained explicitly using the chain rule
as

Hµν =
∂E

∂P µν
+
∂E

∂ñi

∂ñi
∂P µν

, (3.22)

where summation over repeated indices, such as i, is implicit. We refer to ∂E/∂ñi as
the potential on the grid, and use vi as an abbreviation.

An example is the Slater exchange energy which we compute as

Eslater
x =

∑

j

dr C ñ
4
3

j (3.23)

where dr is a volume element, and the corresponding derivative is given as

∂Eslater
x

∂ñi

∂ñi
∂P µν

=
∑

j

dr C
4

3
ñ

1
3

j δij
∂ñi
∂P µν

= dr vi
∂ñi
∂P µν

.

(3.24)

The sum in Eq.(3.21) is only over a subset µ′, ν′. This amounts to performing the
following integration (with respect to ri)

vi
∂ñi
∂P µν

dr = viφµ(ri)φν(ri)dr (3.25)

over exactly the same grid points that have been used in the mapping of φµ(r)φν (r) .
Only slightly more involved is the case where the density functional depends on

the density and on the gradient of the density. The gradient is gj = Dj({ñi}), where
the derivative operator Dj can be a function of all grid points, e.g. if the discrete
Fourier transform is employed for computing the gradient, or a local function of the
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grid for a finite difference approximation gj = (ñj+1 − ñj−1)/(2∆). Using the chain
rule leads to

∂E(ñi, gi)

∂P µν
=

∂E(ñi, gi)

∂ñi

∂ñi
∂P µν

+
∂E(ñi, gi)

∂gj

∂gj
∂ñi

∂ñi
∂P µν

(3.26)

∂E(ñi, gi)

∂P µν
=

∂E(ñi, gi)

∂ñi

∂ñi
∂P µν

+
∂E(ñi, gi)

∂gj

∂Dj({ñi})
∂ñi

∂ñi
∂P µν

, (3.27)

valid for all choices of D. Computing ∂E(ñi, gi)/∂gj and ∂Dj({ñi})/∂ñi is the nu-
merical equivalent of performing a partial integration.

Furthermore, we consider, as an extension of the basic scheme, a multi-grid method
in which φµ(r)φν (r) is mapped to a different grid, according to the smoothness of
the Gaussian product. The total density needs to be obtained on the finest grid
using an operator that performs the interpolation. The value on the fine mesh is
obtained as nfj = Ij({nci}) where the superscripts f and c imply the fine and the
coarse mesh respectively, and the interpolating operator Ij might depend on all grid
points. Therefore the derivative will involve terms like

vj
∂Ij({nci})

∂nci

∂nci
∂P µν

. (3.28)

The index j in the above expression runs over all grid points of the fine mesh, whereas
the index i goes over the coarse mesh. The term vj∂Ij({nci})/∂nci can be interpreted
as constructing the potential on the coarse grid.

Finally, we note that in the particular cases of a Fourier space derivative for Dj

and a Fourier interpolation for Ij , it is advantageous to use a g-space representation
for all densities and operators involved, as all derivatives such as ∂Dg({ñg})/∂ñg′ are
diagonal (i.e. ∝ δgg′).

3.3.2 Forces on the ions

The ionic forces can be evaluated by computing explicitly the gradient of the GPW
energy as defined by Eq.(3.3) and Eq.(3.11) with respect to the atomic positions.
This derivative must take the atom centered nature of the Gaussian basis set and the
orthogonality constraints on the wave functions into account. We list the required
derivatives in the following. These are computed analytically for all terms except for
the Coulomb and exchange and correlation terms that are computed on the grids,
consistent with their definition.

The derivatives of the density independent terms are given by

∇IEovrl =
∑

J 6=I

RJ −RI

|RI −RJ |2





ZIZJ
|RI −RJ |

Erfc


 |RI −RJ |√

Rc
I

2 +Rc
J

2


+

2√
π

ZIZJ√
Rc
I

2 +Rc
J

2
exp

[
−|RI −RJ |2
Rc
I

2 +Rc
J

2

]


∇IEself =0

All other terms depend directly on the density matrix P µν , but involve only derivatives
of Cartesian Gaussian functions, that can easily be computed, since these are again
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Cartesian Gaussian functions, but with different l quantum number. In this derivation,
we follow closely Ref. [139] and introduce explicitly the derivatives ∇IP µν which are
afterwards related to the orthogonality constraints on the wave function. We define
Ecore and Hcore

µν as the energy and matrix elements due to the electronic kinetic energy,
the short range part of the local pseudo potential, and the non-local pseudo potential

∇IEcore =
∑

µν

(∇IP µν)Hcore
µν +

∑

µν

P µν(∇IHcore
µν )

=
∑

µν

(∇IP µν)Hcore
µν

+
∑

µν

P µν
[
2〈∇Iϕµ(r)| − 1

2
∇2|ϕν(r)〉

+ 2〈∇Iϕµ(r)|V SR
loc (r)|ϕν (r)〉

+ 2〈∇Iϕµ(r)|V PP
nl (r, r′)|ϕν(r′)〉

+ 〈ϕµ(r)|∇IV SR
loc (r)|ϕν (r)〉

+ 〈ϕµ(r)|∇IV PP
nl (r, r′)|ϕν(r′)〉

]

(3.29)

where the number of terms is already reduced by regrouping terms, exploiting symme-
try of P µν and Hcore

µν . Furthermore, the translational invariance of the first derivatives
is exploited for the force calculation in Quickstep using identities such as e.g.

〈∇Iϕµ(r)| − 1

2
∇2|ϕν(r)〉 = −〈ϕµ(r)| − 1

2
∇2|∇Jϕν(r)〉

〈∇Iϕµ(r)|V (r)|ϕν(r)〉+ 〈ϕµ(r)|V (r)|∇Jϕν(r)〉 = −〈ϕµ(r)|∇KV (r)|ϕν(r)〉

where ϕµ(r), ϕν(r) and V (r) are located on the atoms I , J and K respectively.
The density dependent energy terms are computed using the chain rule with the

density as an intermediate variable to yield the following derivatives

∇IEH[ntot] +∇IExc[n] =
∑

µν

(∇IP µν)V tot
µν

+ 2
∑

µν

P µν
∫

(∇Iϕµ(r))vtot(r)ϕν(r)dr

+

∫
(∇InIc(r))vH(r) dr

(3.30)

where vtot(r) = vH(r) + vxc(r).
In the above equations, the terms involving ∇IP µν can be collected and rewritten

using the Kohn-Sham matrix Kµν as

∑

µν

(∇IP µν) (Hcore
µν + V tot

µν ) =
∑

µν

(∇IP µν)Kµν (3.31)

The derivative of the density matrix can be eliminated by expanding the density
matrix in terms of the wave function coefficients, inserting the Kohn-Sham equations
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(Eq.(3.32)), and simplifying the expression using the derivative of the orthogonality
constraints on the wave functions (Eq.(3.33)).

∑

ν

Kµνc
ν
i = εi

∑

ν

Sµνc
ν
i (3.32)

∇I
∑

µν

cµi Sµνc
ν
i = 0

2
∑

µν

(∇Icµi )Sµνc
ν
i = −

∑

µν

cµi (∇ISµν)cνi
(3.33)

This leads to

∑

µν

(∇IP µν)Kµν =
∑

µν

occ∑

i

[
(∇Icµi )Kµνc

ν
i + cµiKµν(∇Icνi )

]

= 2
∑

µν

occ∑

i

εi(∇Icµi )Sµνc
ν
i

= −
∑

µν

occ∑

i

εic
µ
i c
ν
i (∇ISµν)

= −
∑

µν

W µν(∇ISµν)

= −2
∑

µν

W µν〈∇Iϕµ(r)|ϕν(r)〉

(3.34)

where the energy weighted density matrix W µν is introduced. It can be observed that
this force contribution is easily calculated as it only involves derivatives of overlap
matrix elements. This term was originally derived by Pulay [139] and is only present
if the basis set depends on the atomic positions. For complete basis sets this term
vanishes.

\��po «u4�%(')%K%c��6w%
The Kohn-Sham orbitals are expanded in Gaussian orbital functions in the frame-
work of the GPW method as described in Sec.(3.2). Significant experience exists
with Gaussian basis sets and they are available in a number of formats [140, 141].
Whereas polarization and diffuse functions can normally be adopted from published
basis sets, the valence part of the basis has to be generated for the usage with the
GTH pseudo potentials. A systematically improving sequence of basis sets for use
with the GTH pseudo potentials was optimized for all first- and second-row elements,
using the procedure detailed below.

Exponents of a set of primitive Gaussian functions were optimized to yield the
lowest pseudo atom energies for all first- and second-row elements with an atomic DFT
code employing the appropriate GTH potential for each element. The atomic DFT
code allows for the calculation of first analytic derivatives of the total atomic energy
with respect to the Gaussian orbital exponents. A family basis set scheme was adopted
using the same set of exponents for each angular momentum quantum number of the
occupied valence states, i.e. s and p orbitals for the elements from H to Ar. A growing
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number of primitive Gaussian functions, typically four to six, was included into these
sets to provide an increasingly good description of the pseudo atomic wave function.
Finally, these primitive Gaussian functions were contracted using the coefficients of
the respective pseudo atomic wave functions. In addition, a split valence scheme was
applied to enhance the flexibility of the valence basis part. The splitting was increased
in line with the number of primitive Gaussian functions employed from double- (DZV)
over triple- (TZV) up to quadruple-zeta valence (QZV). For instance, the basis set
sequence for oxygen starts with four primitive Gaussian functions on the DZV level,
uses five functions for TZV, and finally six on the QZV level. Moreover, these basis
sets were augmented by polarization functions which were taken from the all-electron
basis sets cc-pVXZ (X = D, T, Q) of Dunning [116, 142], but only the first p or d set of
polarization functions was used depending on the actual element. In that way a new
sequence of basis sets was created with an increasing number of primitive Gaussian
functions and polarization functions for each first- and second-row element. The basis
sets were labeled DZVP, TZVP, TZV2P, QZV2P, and QZV3P due the applied degree
of splitting and the increasing number of provided polarization functions. If required,
these basis sets can be further augmented by diffuse functions, analogous to the aug-
cc-pVXZ basis sets, resulting in a sequence aug-DZVP, aug-TZVP, aug-TZV2P, aug-
QZV2P, and aug-QZV3P. The inclusion of diffuse functions may significantly improve
the accuracy of certain molecular properties, especially in the gas phase, but require
treatment for the near linear dependencies that typically arise in condensed phase
calculations.

\��py ¬{$9*�5|"p��%(')$+*�%
In this chapter, we have described the current implementation of the GPW method
in the quickstep program. A number of novel computational techniques make the
computational cost of increasing the basis set size rather modest, effectively growing
linearly with basis set size. At present, without controversy, quickstep algorithm
can be considered the state of the art in molecular simulation programs.



Chapter 4

Molecular Mechanics: Overview

In this chapter we provide a general insight into the main potential energy functions
used in Molecular Mechanics (MM) methods, relevant for QM/MM applications.

oB��� ��*768=>$9?2��5m68')$+*
The modeling of the properties of molecules using appropriate potential functions
is called molecular mechanics (MM). This name reflects the fact that a molecular
force field considers a molecule as a collection of balls connected by springs and that
examination of the mechanical properties of such a system is similar to the study of
the properties of the corresponding molecule. The aim of MM techniques is to perform
computer simulations, or to do chemical experiments with a computer rather than a
laboratory bench. Though the results of such simulations have to be validated by
experiment, it is known that in many cases you may rely on them as much as on the
true experimental values.

The MM approach includes several techniques that are aimed at determining dif-
ferent molecular properties. In particular, with a given set of analytical potential
functions one can evaluate the molecular equilibrium geometries and the vibrations
around these configurations. The task can be accomplished in the simplest way using
the Cartesian representation. That is, the potential surface for a molecule with N
atoms can be expanded formally around the equilibrium configuration ~R0 and give

V (~R0 + δ ~R) = V (~R0) +
∑

iα

(
∂V

∂Riα

)
δRiα +

∑

iα,jβ

(
∂2V

∂Riα∂Rjβ

)
δRiαδRjβ + . . .

(4.1)

where the indices i and j indicate atoms while α and β run over the x, y, z and
coordinates of each atom. The first term is just the energy of the molecule at the
equilibrium geometry. The second and third terms can be used to evaluate the equi-
librium geometry and the vibrational frequencies.
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It is well known from structural chemistry and from quantum calculations that bond
lengths and valence angles in typical units and groups are very similar even if they ap-
pear in different molecules. The single bond between two sp3 hybridized carbon atoms
is around 1.5 Å long and the valence angle for an sp3 carbon is usually close to 109◦.
On the other hand, these values are frequently distorted in some strained ring systems
(like cyclopropane) or crowded molecules (like tetramethylmethane). The concept of
molecular strain can be rationalized considering bonds as elastic springs whose distor-
tion is reflected by a positive increment (i.e., thermodynamically unfavorable) to the
potential energy of the molecule. These approaches were originally called empirical
potential energy functions but the term molecular mechanics is now in common use.
The mathematical form of this potential energy function (also called potential energy
surface) is:

V (~R1, . . . , ~RN ) =

k∑

i=1

V i(~R1, . . . , ~RN) (4.2)

where V represents the potential energy of the molecular system and depends upon
the Cartesian coordinates of all atoms denoted here as {~R1, . . . , ~RN}. V i are in-
dividual energy terms representing contributions from individual interactions which
depend upon the Cartesian coordinates of atoms. Having V one can calculate the
potential energy of the molecular system as well as the forces acting on atoms and
groups. Individual energy terms, V i, are functions of coordinates (usually internal
coordinates) and parameters, i.e., constants, called force field parameters. The set of
such parameters and the functional form of the potential is called a force field. In a
good force field, parameters are well balanced and produce consistent results. There
are many different force fields which differ substantially in the values of correspond-
ing parameters and in the functional form of the energy terms. The functional forms
and parameters of molecular force fields are usually estimated from studies of small
molecules with the implicit assumption that these functions are transferable from small
to large molecules. Individual potential terms V i are conventionally grouped into two
classes:

Bonded terms describe contributions from atoms which are covalently bound. They
include bond stretching, angle bending, out-of-plane distortions, and torsional
terms. Some force fields include cross-terms, e.g., stretch-stretch, stretch-bend,
etc.

Non-bonded terms represent contributions to potential energy coming from inter-
actions between atoms which are not covalently bound, i.e., Van der Waals inter-
actions, electrostatic interactions and hydrogen bonds.

See Ref.[143] for an excellent monograph on MM topics and on implementational
issues.

4.2.1 Bonded Potentials

Stretching Potential

The bond stretching term, V bondij , for a covalent bond between atoms i and j, represents
a contribution to the potential energy resulting from deformation of the optimal bond
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length. Most frequently a simple symmetric parabola (i.e., harmonic approximation)
is used:

V bondij =
1

2
Kbond
ij (dij − d0

ij)
2 (4.3)

where Kbond
ij is a bond stretching parameter (frequently called a bond stretching

force constant) and its value represents the stiffness of the bond (i.e., the ease with
which the bond can be distorted). Large values of Kbond

ij correspond to “hard” bonds

and small values to “soft” bonds. The value of d0
ij corresponds to the optimal (i.e.,

unstrained) bond length. Contribution from this term is never negative and is equal
to zero only when the actual bond length, dij , is exactly equal to the optimal bond
length . The actual bond length dij is calculated from the Cartesian coordinates of
atoms i and j. For accurate calculations more elaborate expressions for the bond
stretching term are used, e.g., a Morse potential, which takes into account the fact
that the potential for bond deformation is not symmetric and it is easier to stretch
the bond than to squeeze it.

Bending Potential

The form of the angle bending term is very similar. In most cases the contribution
to potential energy, V angleijk , is represented by a harmonic expression depending upon

the bending force constant, Kangle
ijk , the actual value of the valence angle θijk and its

“natural”, optimal value, θ0
ijk

V angleijk =
1

2
Kangle
ijk (θijk − θ0

ijk)2 (4.4)

The out-of-plane term is used to account for the energy contribution from distorting
an aromatic or conjugated system of bonds from planarity and is most frequently a
harmonic term:

V angleχ =
1

2
Kangle
χ χ2 (4.5)

where in the case of sp2 hybridized carbon, χ is an angle between one of the bonds
originating at the central atom and a plane passing through the other two bonds.

Torsional Potential

The functional form of the torsional depends, in most cases, on the cosine of the
product of a torsional angle and the periodicity

V torsionijkl =
1

2
Vn[1 + s cos(nθijkl)] (4.6)

where Vn is the height of the torsional barrier; s is -1 if a minimum occurs for
the eclipsed conformation and +1 if a minimum corresponds to the staggered confor-
mation; n is a periodicity, i.e., the number of maxima per full revolution; and θijkl



42 F ��g PZ��
�g L � F PZ�ZY L ��� � WQJ T N�PQ�:NR� P�S

is a torsional angle.For the torsional angle involving C–C bond in ethane, s=1 and
n=3, while for the double bond in ethylene s=-1 and n=2. More elaborate force fields
use as a torsional term the sum of several cosine functions with different periodicities
to account for smaller “humps” appearing on the torsional energy dependence. On
occasion, the harmonic potential is used for torsional angles around double bonds due
to their stiffness.

4.2.2 Non-bonded Potentials

Non-bonded terms describe contributions brought by the interaction of atoms which
are not covalently bonded. Atoms which are two bonds apart (1-3 interactions), are
usually not included in the non-bonded interaction list, since it is assumed that their
interaction is satisfactorily accounted for by the angle bending term. However, non-
bonded interactions of atoms separated by 3 covalent bonds in the molecular graph
(1-4 interactions) are routinely included in spite of the fact that they appear in the
torsional term. Generally, the non-bonded interactions represent contributions to
energy from Van der Waals interactions, electrostatic interactions and they frequently
account explicitly for hydrogen bonds.

The non-bonded terms are usually represented mathematically as two-body in-
teractions. They depend on the coordinates of only two interacting atoms, i.e., are
represented as pairwise potentials. This is an approximation, and it is well known
that the interaction between two atoms depends significantly upon the positions of
other atoms, especially those at close proximity. However, even for pairwise potentials,
calculation of non-bonded terms is at present a significant computational effort since
it is approximately proportional to the square in number of atoms. For three-body
potentials (i.e., functions which depend on positions of three non-bonded atoms), the
computational effort would be proportional to the cube of the number of atoms and
this is unmanageable for large molecules. For that reason, the three-body potentials
are not routinely used. The quadratic scaling of two body potentials can be in some
cases reduced up to linear scaling by omitting the interactions of distant atoms (i.e.,
skipping calculation of the non-bonded term for atoms which are further apart than
some predetermined cut off distance). However, checking if atoms are outside the cut
off distance is also a substantial computational effort for larger molecules, and it is
considered to represent the most computationally expensive part of MM codes.

Van der Waals terms

The Van der Waals interaction energy, V vdW , is represented by the sum of two terms,
a repulsive term (V overlap) and an attractive term (V dispersion):

V vdW = V overlap − V dispersion (4.7)

The repulsive term, V overlap, rapidly grows at close inter-atomic distances due to
the overlapping of the electron clouds of the two atoms which results in the disruption
of their electronic structure. This gives rise to a strong repulsion . At moderate
distances between atoms, i.e., larger than the sum of their Van der Waals radii, the
dispersion term, V dispersion dominates. These attractive forces were first identified
by London in 1930, and exist even when molecules have no permanent charge or
dipole moment. The dispersion energy is of quantum mechanical origin and cannot
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be described in classical terms. The electrons in an atom are in continuous motion
and the electron distribution around the nucleus is constantly fluctuating giving rise
to instantaneous dipole moments. Though on the average the dipole moment of an
atom is zero, at any given moment there is some temporary dipole moment present
which by induction produces a dipole moment of opposing direction in the neighboring
atom. The attraction of these instantaneous dipoles results in a dispersion energy.
The simplest and most widely used equation approximating this behavior is due to
Lennard-Jones [144]. For two atoms i and j as a function of their distance rij :

V vdWij =
nεij
n−m

[
m

n

(
rij
σij

)−n
−
(
rij
σij

)−m]
(4.8)

where εij is the depth of a well (i.e., the maximal attraction energy), n and m are
exponents (typically n=12 or 9, and m=6), and σij is the distance between atoms
which corresponds to a minimum.

BKS potential

Among the numerous number of pair potential types developed to describe the most
desperate systems we want to focus our attention on the one that successfully describes
the behavior of silicon dioxide in the glass phase, relevant for the discussion in the
next chapters (see Chap.(7), Chap.(8) and Chap.(9)). Among the most widely used, is
the so-called BKS potential developed by van Beest, Kramer, van Santen (BKS) [41].
We choose to use the BKS potential, as it allows for faster simulation than the other
available three-body [145, 146] potentials while leading to similar results; the three
body information necessary to create the tetrahedra network in silicon dioxide is not
lost with the BKS potential, but is implicitly present by the choice of the po- tential
parameters derived from the cluster model of van Beest et al. [41]. The BKS potential
is a two-body potential based on the Buckingham potential with an added Coulombic
term. It describes the interaction between two atoms i and j with an interatomic
distance rij through the functional form:

VMM =
∑

ij

(
qiqj
rij

+ Vij

)
(4.9)

Vij = Aije
−bijrij − Cij

r6
ij

, (4.10)

The parameters for the short range interaction A,b,C are given in Ref.[41].

Electrostatic terms

The electrostatic interaction energy, V elec, between two non-bonded atoms i and j is
usually represented by Coulomb’s law:

V elecij =
qiqj
εrij

(4.11)

where qi and qj are the net atomic charges of atom i and j, respectively, rij is
the inter-atomic distance, and ε is the dielectric constant of the medium between the
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interacting charges. The dielectric constant, ε, is a well defined quantity only for
macroscopic systems. At the molecular level, a common approximation is to use its
value for a vacuum (i.e., ε=1). To take into account the presence of other atoms in
the molecule or to incorporate the influence of the solvent, implicit solvent models
[147, 148, 149] have been developed, in which the polarization effects due to the
presence of the solvent is approximated using different values for ε and solving the
Poisson equation for the system.

The major ambiguity in the Coulomb potential is the concept of atomic charge
itself. The atom is made up of a nucleus and electrons orbiting around it, and its charge
is zero by definition. However, in the molecule, averaged electron trajectories are no
longer centrosymmetric around nuclei, due to the formation of chemical bonds between
atoms, and the resulting average electron density can be a very complex function in
three dimensions. Electrons are on average closer to more electro-negative atoms and
farther from atoms with low electro-negativity. The net effect of this unequal electron
distribution can be approximated by placing a number of point charges in such a
way that they reproduce the electrostatics of the molecule with reasonable accuracy.
Usually, these charges are placed at the positions of atomic nuclei and are called net
atomic charges.

There are several ways of deriving atomic charges depending on which molecu-
lar property is chosen to be represented best. In many popular force fields they are
chosen to reproduce known experimental data, e.g.: dipole moments, geometries, vi-
brational spectra, etc. They are frequently derived theoretically from a variety of
electro-negativity equalization schemes and quantum calculations at different levels
of sophistication. In the case of quantum chemical calculations, the charges may be
derived either from population analysis [150, 151, 152, 153, 154, 155] or fitted by least
squares [156, 157, 158, 159] to the electrostatic potential. The charges derived from ab
initio electrostatic potential are considered superior but this method is also the most
computationally demanding.

Hydrogen bonds

The effect of hydrogen bonding is incorporated into the potential energy surface of
a molecular system in a variety of ways. In general, hydrogen bonds are formed
between hydrogen donor and hydrogen acceptor groups: –D–H...A–AA–. The simplest
approach, which at the same time performs very well, is to assume that the proton
does not contribute to the Van der Waals energy. In this model [160], the proton and
the acceptor atom attract each another since they possess opposing net charges. This
results in the stretching of the D–H bond and driving atom A towards the hydrogen.
Balance is achieved by contributions from the D–H stretching term, and electrostatic
and Van der Waals repulsions of atoms D and A. This approach does not impose any
directionality on the hydrogen bonds but the balance of all of these forces usually yields
a geometry close to linear (i.e., when atoms D, H, A and AA lie on the straight line).
Some more elaborate models explicitly use powers of cos(θD−H...A) and cos(θH...A−AA)
to enforce the linearity of the observed hydrogen bond geometry and incorporate the
12-10 Lennard-Jones potential for the distance between H and A [77].

oB�:\ /�$+"��75��#"�4|=¸·¹�H*�4#d�')5j%
Molecular Dynamics (MD) simulations evaluate the motion of the atoms in a given
system and provide the positions or trajectory of these atoms as a function of time.
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The trajectories are calculated by solving the classical equation of motion for the
molecule under consideration. This alike to the well known approach in which one
evaluates the speed and position of a bullet starting from the initial velocity, the
mass and the forces by using Newton’s equation of motion. In the case of molecules,
one obtains the relevant forces on each atom from the first derivatives of the given
potential functions. The actual evaluation of classical trajectories is done numerically,
expressing the changes in coordinates and velocities at a time increment, ∆t, by

~Ri(t+ ∆t) = ~Ri(t) + Ṙi(t)∆t (4.12)

Ṙi(t+ ∆t) = Ṙi(t) + R̈i(t)∆t (4.13)

Using the Newton’s law:

Mi
~Ri = ~Fi = − ∂V

∂ ~Ri

(4.14)

and starting with a given set of initial conditions (e.g. with the values of ~Ri(t = 0)
and Ṙi(t = 0)) you can evaluate the trajectory of the system. Advanced several nu-
merical schemes can be used for integrating numerically Newton equation of motions,
for instance the Verlet Algorithm [161].

The strength of MD approaches is associated with the fact that they have the abil-
ity to simulate, at least in principle, the true microscopic behaviors of macromolecules.
The weakness is associated with the fact that some properties reflect extremely long
time processes which cannot be simulated by any current computer.

The emergence of MD simulations in studies of biological systems can be traced
to a simulation of the dynamics of the primary event in the visual process [162] that
correctly predicted a photoisomerization process of around 100 femtoseconds. A sub-
sequent study [163] attempted to examine the heat capacity of BPTI by a very short
simulation of this protein in vacuum. However, at the early stages of the development
of this field, it was not possible to obtain meaningful results for average properties of
macromolecules due to the need for much stronger computers to reach a reasonable
convergence (the heat capacity was drastically underestimated in Ref. [164], reflect-
ing artificial relaxation motions). Nevertheless, ultrafast reactions such as those that
control the photo-biological process could be simulated even at this early stage [162].

Eventually with the increase of computer power it has become feasible to reach
simulation times of microseconds and to start to obtain meaningful average properties
of macromolecules.





Part III

Theoretical QM/MM Methods





Chapter 5

Regularization of the
electrostatic coupling

In this chapter the problem of defining a regularized and renormalized electrostatic
coupling Hamiltonian for hybrid QM/MM calculations is addressed. For honesty sake
we specify that the choice of the functional form used for the electrostatic coupling
Sec.(6.3) was originally driven by empirical considerations and only later, in 2005, a
theoretical justification was proposed [80].

yB��� ��*768=>$9?2��5m68')$+*
The development of an appropriate coupling Hamiltonian between the two subsys-
tems is the biggest challenge in such hybrid methods [2, 57, 63]. The manner in which
bonded interactions between MM and QM atoms are treated was already discussed in
Chap.(2.3). On the other hand, the electrostatic part of nonbonded interactions face
a different challenge. The point-like description of the MM-atom charges and their
interactions with the QM electrons at short ranges can cause an artificial and non
physical polarization of the QM electron density [2, 57, 165]. Such an artificial polar-
ization can influence the outcome of a chemical reaction study, the dipole moment,
and other properties based on electronic charge density [2, 57, 165].

As it stands, the point charges are meant to reproduce the electrostatic potential
between atoms in a molecule where the atom-atom separation is of the order of an
angstrom or above. However, for the QM/MM Hamiltonian, the separation between a
point charge and QM electrons can take any value from zero to the size of the system.
Obviously, the point-charge description for the MM atom cannot provide a compatible
picture for the QM/MM Coulomb interaction at distances close to zero and this can
be a source of non physical polarization of QM electrons and divergent forces on the
MM atoms. To remove this divergence, arising from a point-like charge description
of the MM atom, an empirical description of a renormalized Coulomb potential was
introduced [2, 165]. Recently [80] a theoretical derivation based on a localized partial-
wave expansion of the MM charge was proposed, adjusting the extension of the charge
distribution in order to normalize the Coulomb potential near interatomic separations
of the order of twice the covalent radius. Exploiting the s-wave expansion of the
point charge, the scheme leads naturally to large scale cancellations in the Coulomb
potential. At short distances, the potential intrinsically reduces to a value of 1/rc
(rc = covalent radius) thus avoiding non physical localization of QM electrons on a
positively charged MM atom, in full agreement with the original semi-empirical hint.
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The central issue of a QM/MM hybridization scheme is the definition of the QM/MM
coupling part HQM/MM [57, 10, 166, 63]. HQM/MM accounts for the interaction
between the quantum system and the MM atoms. In general, HQM/MM contains
Coulomb (long-range) and short-range interactions (Van der Waals attraction and
short-range repulsion) and is taken as [57, 10, 166, 63]

HQM/MM =
∑

a∈MM

∫
dr
ρe(r, rα)qa

r− ra
+

∑

a∈MM

∑

α∈QM

Zαqa
|rα − ra|

+

∑

a∈MM

∑

α∈QM
4εα,a

{(
σα,a
|rα − ra|

)12

−
(

σα,a
|rα − ra|

)6
}

(5.1)

where r, rα and ra represent the position vector for electrons, QM nuclei with charge
Zα and MM nuclei with atom partial charge qa, respectively. ρe represents the electron
density. The short-range repulsion and attractive mutual average polarization (Van
der Waals) between QM and MM atoms are modeled using the Lennard-Jones (LJ)
potential [167]; σ and ε are parameters defining the LJ potential.

If an interaction Hamiltonian like Eq.(5.1) is used, artifacts may arise due to the
presence of unscreened Coulomb charges of the MM atoms. This effect is ultimately
due to the absence of Pauli exclusion repulsion for the QM electrons by the MM atoms.
The atom included in the MM subsystem should exert Pauli repulsion due to its own
electrons (which are replaced together with the nuclear charge by an effective point
charge) and would deter the QM electrons to penetrate the atom valence shell. In a
purely classical force field calculation, the 1

|rα−ra| term of the Lennard-Jones potential

[167] take into account this effect and provides sufficient repulsion between atoms
at short range, thus keeping the attractively interacting MM atoms at appropriate
separations. For QM theories, the Pauli exclusion repulsion is incorporated either
properly antisymmetrizing the electronic wave function or by employing an exclusion
hole concept (for methods with DFT origin). Nevertheless, incorporating the Pauli
exclusion repulsion between the QM electronic charge distribution and the MM point
charges in a hybrid QM/MM calculation remains a formidable challenge. One idea is
to seek a comprehensive description of the QM/MM Coulomb interaction considering
a localized expansion of the charges which regularizes the potential at short range
while reduces to the Coulomb potential for larger distances (r >> 2rc). As the charge
reflects the overall electrostatic potential acting at a point in the configuration space,
it accounts for the Pauli exclusion effect too. However, this conjecture is valid only
beyond a certain radius and not at short distances where the notion of point charge
looses its validity. Thus it is customary to regularize the potential at these short
distances without affecting its value for distances grater than rc.

Earlier Eichinger et al.[35] and recently Das et al.[165] proposed to replace the
MM point charge with a Gaussian delocalized charge density to remedy the short-
range artifact. They used a multistep approach to evaluate the Coulomb interaction
between an MM atom and the quantum system. The Coulomb part of their hybrid
QM/MM Hamiltonian is given by

Hρe,qa =

∫
d3rρe(r, rα)qa

Erf(|r− ra|/σ)

|r− ra|
(5.2)
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Here ρe(r, rα) is the electronic charge density, Erf is the error function, ra is the po-
sition of the ath MM atom and the value of σ is the same for all atoms (0.8Å). As
the error function (which integrates the Gaussian distribution over a certain radius)
asymptotically reaches the value of unity, the above function has the correct asymp-
totic behavior of the Coulomb interaction at large distance. At short distances, the
error function is less than unity and it tends to zero as distance goes to zero, thus
removing the discontinuity in the QM/MM interaction potential. We compare the
functional behavior of this form of the potential vis-a-vis the pure Coulomb inter-
action in Fig.(5.1). It appears that the potential does not saturate near twice the
covalent radius of the atom, which is supposed to be a key issue in the modeling
of the Coulomb QM/MM interaction. Afterwards, Laio et al.[2] introduced another
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Figure 5.1: Electrostatic interaction potential between an electron (a.u.) and a unite positive

charge. The rc value is equal to 0.699 a.u..

functional form that takes into account the short range effect with the Coulomb po-
tential saturating near the covalent radius of the MM atom. The Coulomb part of
their hybrid QM/MM Hamiltonian is given by

Hρe,qa =

∫
d3rρe(r, rα)qa

rnc,a − r̃n

rn+1
c,a − r̃n+1

(5.3)

where r̃ ≡ |r − ra|. In the above prescription, the usual Coulomb interaction of 1
r̃ is

being replaced by v(r̃) =
rnc,a−r̃n

r
(
c,an+1)−r̃(n+1)

. This functional form also has the correct
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asymptotic behavior of 1
r̃ and as r̃→ 0, it smoothly converges to 1

rc,a
. In Fig.(5.1) we

show the behavior of the potential v(r̃) for rc,a = 0.699a.u. ( 0.37 Å). This corresponds
to the electrostatic potential of a QM electron with a unit positive charge. The
functional form, although appears very useful for QM/MM electrostatic interactions,
has not been derived theoretically and thus may be considered as empirical. The
functional forms of Eichinger et al.[35] and Laio et al.[2] mentioned above reduce both
the attractive and repulsive Coulomb interactions at short distances while having the
correct asymptotic behavior. Another crucial aspect of these prescriptions is that they
lead to zero forces ( finite potential ) at very short ranges, thus avoiding the artificial
localization of the electronic charge density on a positive MM point charge. Laio et
al.[2] also remarked that they were not successful in finding a functional form that
provides repulsion at short distances and could mimic the Pauli exclusion between
electronic charge density and the MM point charge.

The problem has been finally solved by Biswas et al.[80] who obtained a regularized
and renormalized description for the QM/MM electrostatic interaction by arguing that
the point like description of the charge must be valid at interatomic separation but at
short distance the Coulomb potential must be given by a localized charge distribution.
To seek a comprehensive model for the QM/MM Coulomb interaction that could
account for the short-range effect, we first consider a localized wave function φ(r−ra)
for the charge present at ra so that the normalization of the wave function provides
the charge qa,

∫
|φ(r− ra)|2d3r = qa (5.4)

where r is an arbitrary point in space. For φ, a good representation is a partial-wave
expansion in terms of an orthonormal basis set φlm = Rl(u)Ylm(û) of a hydrogen-like
wave function and take

φ(u) =

(
qa∑
l |Cl|2

)1/2

·
∑

lm

ClRl(u)Ylm(û) (5.5)

whereRl(u) is similar to the radial part of the hydrogen-like wave function and Ylm(û),
the spherical harmonics, represent the angular part; Cl is the expansion coefficient.
Similar partial-wave expansion to construct a wave function is frequently used in
atomic molecular physics [168]. The next approximation is to adopt a first-order
approximation (l=0) to the expansion scheme which would allow to account for the
delocalized effect of the charge in the s-wave approximation

φ(r− ra) =

(
qaξ

3

π

)1/2

exp−ξ|r−ra| (5.6)

The Slater function (see Eq.(5.6)) provides a consistent picture with the localized de-
scription of a charge and also enables us to arrive at analytical forms for the potential
and force as shown below for the s wave. A similar expansion scheme, but using
Gaussian orbitals, has been employed earlier by Das et al.[165] to study QM/MM
systems. Although both the Gaussian and Slater orbitals are known to provide com-
petitive results, the Slater orbitals have the proper behavior (cusp) at the origin while
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the Gaussian orbitals are generally easier to deal with computationally. However,
the analytical form for the Coulomb potential using Slater orbitals provides the same
computational advantage as Gaussian orbitals. The parameter ξ of the Slater orbital
has the dimension of an inverse length and it is natural associate it to the reciprocal of
the covalent radius rc,a: ξ ≈ 1

rc,a
. More generally the parameter ξ can be represented

as ξ = λ/rc,a, where the λ parameter will be used to renormalize the Coulomb energy
at 2rc,a (the interatomic separation). λ controls the spread of the wave function, and
for λ >> 1 the charge distribution collapses to a point like charge.

With the above wave-function description for the charge, we now write the
Coulomb interaction potential (static potential) between the ath MM atom and the
QM system as

Hρe,qa =

∫
d3r

∫
d3r′

ρe(r, rα)|φ(r′ − ra)|2
|r′ − r| (5.7)

HρN ,qa =

∫
d3r

∫
d3r′

ρN (rα)|φ(r′ − ra)|2
|r′ − r| (5.8)

where HCoulQM/MM = Hρe,qa + HρN ,qa ; ρN is the charge distribution of the ionic core

of the αth QM atom (i.e. sum of the nuclear and inner electron charges). In CP2K
the ionic cores are distributed over the grid used also for the electronic charge density.
This manner of distributing ionic core charges would not lead to any appreciable
modification to the Coulomb energy as the separation between the QM nuclei and
the MM atoms becomes of the order of interatomic separation in a molecule and thus
would be quite compatible with the point-charge description. Thus, focusing on the
effect of the spatial distribution of the MM charges over the QM electron density will
not lead to any loss of accuracy. After performing the integrals (as shown in App.(E))
the following analytical expressions are obtained:

Hρe,qa =

∫
d3rqaρe(r, rα) ·

[
1

|r− ra|
− exp−2ξ|r−ra|

|r− ra|
− ξ ∗ exp−2ξ|r−ra|

]
(5.9)

HρN ,qa =

∫
d3rqaρN (rα) ·

[
1

|r− ra|
− exp−2ξ|r−ra|

|r− ra|
− ξ ∗ exp−2ξ|r−ra|

]
(5.10)

From the above, we see that asymptotically (i.e. for |r− ra| → ∞), Hρe,qa converges
to the coulomb potential 1

|r−ra| . Also for ξ → ∞ (which recovers the point-charge

description of the MM charge), the expression reduces to the usual Coulomb potential,
as expected. At short distance the effect of the localized distribution of the MM charge
introduces large cancellation to the Coulomb interaction and leads to a finite potential
given by ξ (ξ has the dimension of 1/r). Thus this potential leads to zero forces as
the distance approaches zero.

It is interesting and worthwhile to mention that the empirical form of the Coulomb
potential proposed by Laio et al.[2] provides a very similar behavior; the two expres-
sions differ marginally only at low and intermediate ranges, since both potentials
converge to the value of 1

rc,a
at zero distance. As the value of the parameter λ is

increased, one gradually approaches towards a point-charge description for the MM
atom. At 0.97 Å (typical H-O separation in water) the value of the electrostatic po-
tential of Eichinger et al.[35], Laio et al.[2] and the one derived by Biswas et al.[80]
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Coulomb interaction.

differ from the Coulomb potential arising from the point-charge description by about
9.5%, 1.3% and 1.9%, respectively (see Fig.(5.2)); all are smaller than the Coulomb
potential of a point charge. It is worthwhile to emphasize that for λ = 1.3, the
Coulomb potential approaches the point-charge potential faster and normalizes near
0.74 Å (interatomic separation in hydrogen molecule). The results of [80] show that a
value of λ = 1.3 reduces the above difference of 1.9% (obtained with λ = 1.0) to 0.5%
and the corresponding expansion of the point charge provides the best results [80].
Surprisingly, the empirical form of Laio et al.[2] describes the localized distribution
of the MM point charge quite effectively and provides an understanding of the im-
portance of accounting the smearing effect of the MM charge. As compared with the
functional form of Laio et al.[2] and with the Biswas et al. potential [80] obtained with
Slater orbital, the potential arising from a Gaussian distribution of the point charge
[35] overestimates this effect by about 46%.

Since the modification in the Coulomb potential reflects a delocalization effect of
the MM charge, both the QM electron density and the QM ionic cores should expe-
rience the same modified Coulomb potential. However, this is not strictly necessary
as far as the full Hamiltonian treatment stays consistent in the definition of energy
and derivatives. In fact in Laio et al.[2] they do not consider the smearing effect of
the MM charge when computing the interaction with the ionic cores (see Sec. IV of
Ref.[2]), thus replacing the modified Coulomb potential with a pure Coulomb interac-
tion 1

rα−ra
. Though the formalism presented in the next chapters (see Chap.(6) and
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Chap.(7)) relies on a gaussian distribution for the point charge, both charge distribu-
tion densities (Gaussian and s-wave) are available in the QM/MM driver. Moreover,
in the present implementation in CP2K I ensure that both the QM electrons and the
ionic cores experience the same external potential.





Chapter 6

An efficient real space multi-grid
QM/MM electrostatic coupling

In this chapter we will address the problem of optimizing the algorithm of the QM/MM
electrostatic potential. In fact, while the cost of solving the Schrödinger equation in the
QM part is the bottleneck of these calculations, evaluating the Coulomb interaction
between the QM and the MM part can be surprisingly expensive: it can be just
as time-consuming as solving the QM part. We present in this chapter a new real
space multi-grid approach which handles Coulomb interactions very effectively. This
algorithm has been implemented in the CP2K code [84]. This novel scheme cuts the
cost of this part of the calculation by two orders of magnitude with respect to other
schemes [2]. The method does not need fine tuning or adjustable parameters and it is
quite accurate, leading to a dynamics with very good energy conservation.

����� ��*768=>$9?2��5m68')$+*
The study of chemical reactions in condensed phases is computationally demanding,
owing not only to the size of the simulating system but also to the large degree of
configurational sampling necessary to characterize a chemical reaction. This places
severe demands on the efficiency of the implementation of any QM/MM scheme. Two
main bottlenecks can be identified in such calculations: one concerns the evaluation
of the QM energy and derivatives while the other is associated with the evaluation of
the electrostatic interaction between the QM and the MM part. In this respect we can
identify two classes of codes, those based on Gaussian-type orbitals (GTOs) to repre-
sent both the wave-function and the charge density [169, 170] and those using grids
in real space to represent the charge density [171, 84, 172]. The latter encompasses
both codes fully based on plane waves (PWs) and the more recent mixed approaches
based on Gaussian plane waves (GPWs). It is on this second class of algorithms that
this thesis is focused.

For localized basis sets (GTOs), the use of an efficient pre-screening technique is
imperative in order to avoid the quadratic construction of the one-electron QM/MM
Hamiltonian matrix. For non-local basis sets (PWs), if the interaction is evaluated
analytically, the computational price is proportional to the number of grid points times
the number of MM atoms. Surprisingly the evaluation of the QM/MM electrostatic
interaction, for the latter scheme, requires between 20% and 100% of the time needed
by the QM calculation, this in spite of the use of sophisticated hierarchical multipole
(HMP) methods [173] or of clever implementations based on electrostatic cutoffs [2].
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Furthermore these techniques require a fine tuning of parameters to yield optimal
performance, and lead to a loss of accuracy that makes error control difficult.

In this chapter we describe a new implementation of the QM/MM coupling term
that avoids the use of any hierarchical method or multipole technique. This novel
scheme is based on the use of multi-grid techniques in conjunction with the repre-
sentation of the Coulomb potential through a sum of functions with different cutoffs,
derived from the new Gaussian expansion of the electrostatic potential (GEEP for
short).

The overall speedup is of 1-2 orders of magnitude with respect to other PW-
based implementations of the QM/MM coupling Hamiltonian [1, 2]. The lack of
tuning parameters and electrostatic cutoffs makes this implementation a totally free
parameter scheme, without any significant loss of accuracy. Consequently, very stable
simulations can be obtained with optimal energy conservation properties.

���:� ¥Á4�^��jÂ´,��#*�5¯6}')$+*�]± 76}':d�')Ãm4768'�$9*
Our implementation is based on the use of an additive [174, 166, 10] QM/MM scheme
(See Chap.(2.3.1)). The total energy of the molecular system can be partitioned into
three disjointed terms:

ETOT (rα, ra) = EQM (rα) +EMM (ra) +EQM/MM (rα, ra) (6.1)

where EQM is the pure quantum energy, EMM is the classical energy and EQM/MM

represents the mutual interaction energy of the two subsystems. These energy terms
depend parametrically on the coordinates of the quantum nuclei (rα) and classical
atoms (ra).

The quantum subsystem is described at the density functional theory (DFT) level,
exploiting the quickstep [85] algorithm (See Chap.(3)).

The classical subsystem is described through the use of the MM driver called FIST,
also included in the CP2K package. This driver allows the use of the most common
force fields (see Chap.(4)) employed in molecular mechanics simulations [36, 37].

The interaction energy term EQM/MM contains all non-bonded contributions be-
tween the QM and the MM subsystem, and in a DFT framework we express it as:

EQM/MM (rα, ra) =
∑

a∈MM

qa

∫
ρ(r, rα)va(|r− ra|)dr +

∑

a∈MM,α∈QM
vV dW (rα, ra)

(6.2)
where ra is the position of the MM atom a with charge qa, ρ(r, rα) is the total
(electronic plus nuclear) charge density of the quantum system, and vV dW (rα, ra) is
the Van der Waals interaction between classical atom a and quantum atom α, and
finally:

va(|r − ra|) =
Erf(|r − ra|/rc,a)

|r− ra|
(6.3)

where rc,a is an atomic parameter, generally close to the covalent radius of the atom a.
This function is the exact potential energy function originated by a Gaussian charge

distribution ρ(|r− ra|) =
(

1√
π∗rc,a

)3

exp(−(|r− ra|/rc,a)2). Moreover, the expression

in Eq.(6.3) has the desired property of tending to 1/r at large distances and going
smoothly to a constant for small r (see Chap.(5)).
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Due to the Coulomb long-range behavior, the computational cost of the integral
in Eq.(6.2) can be very large. When using a localized basis set like GTOs , the most
natural way to handle this term is to modify the one-electron Hamiltonian by adding
to it the contribution of the MM classical field:

Hµν
QM/MM = −

∫
φ∗µ(r, rα)

[ ∑

a∈MM

qa
|ra − r|

]
φν(r, rα)dr (6.4)

φµ and φν being Gaussian basis functions, depending parametrically on the QM nu-
clei positions rα, and qa the atomic charge of classical atom a with coordinates ra.
In this case a suitable pre-screening procedure can be applied for the integral evalu-
ation, in order to effectively compute only the non-zero terms and thus avoiding the
quadratically scaling construction of the core Hamiltonian with respect to the number
of elements of the basis set. When using a fully delocalized basis set like PWs, on
the other hand, the QM/MM interaction term is evaluated by modifying the external
potential and collocating on the grid nodes the contribution coming from the MM po-
tential. Unfortunately the number of operations that a direct evaluation of Eq.(6.2)
requires is of the order of NuNMM , where Nu is the number of grid points, usually
of the order of 106 points, and NMM is the number of classical atoms, usually of the
order of 104 or more in systems of biochemical interest. It is evident that in a real
system a brute force computation of the integral in Eq.(6.2) is impractical.

6.2.1 GEEP: Gaussian Expansion of the Electrostatic Potential

The key of our method is a decomposition of the electrostatic potential in terms of
Gaussian functions with different cutoffs:

va(r, ra) =
Erf(|r − ra|/rc,a)

|r− ra|
=
∑

Ng

Ag exp−(|r−ra|/Gg)2

+Rlow(|r− ra|) (6.5)

The smoothed Coulomb potential is expressed as a sum of Ng Gaussian functions and
of a residual function Rlow. The Ag are the amplitudes of the Gaussian functions, Gg
are their width. If the parametersAg andGg are properly chosen, the residual function
Rlow will be smooth, i.e. its Fourier transform will have a compact domain for very
small g vectors, and will be approximately zero for g >> Gcut. The Gcut parameter
is related to the spacing of the grid on which the Rlow function will be mapped. We
performed the fit of Eq.(6.5) by a least square approach in Fourier space, using the
analytical expression of the g-representation of the modified electrostatic potential
[175]:

ṽa(g) =

[
4π

g2

]
exp

(
−g

2r2
c,a

4

)
(6.6)

In Fig.(6.1) we show the result of the fitting procedure in g-space with rc,a = 1.1 Å,
comparing the Fourier components of the modified Coulomb potential with the Fourier
components of the residual function Rlow. In this case the compact support of Rlow
is truncated at Gcut ≈ 1.0 which should be compared with the value of Gcut ≈ 3.0
needed to achieve the same accuracy when using va(r, ra). This implies that the
residual function can be mapped on a grid with a spacing one order of magnitude
bigger than the one required to map the va function.
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Figure 6.1: On the left: Gaussian expansion of the electrostatic potential (GEEP). The picture

shows the components of the fit for the value rc,a = 1.1 Å. On the right: Fourier transform of the

potential in Eq.(6.3) (in red) and Fourier transform of the residual function Rlow in Eq.(6.5) (in

green). For this particular case (rc,a = 1.1) we can define for the residual function a Gcut ≈ 1.0.
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In Fig.(6.1) we show the same result of the fit in real space and in Table (6.1) we
provide coefficients for selected values of rc,a.

Table 6.1: Amplitudes and coefficients of the optimal Gaussians as derived by the fit

Radius rc,a = 1.1 Å Radius rc,a = 0.44 Å
Number of Gaussians Ag (a.u.) Gg (bohr) Ag (a.u.) Gg (bohr)

1 0.103103 4.243060 0.230734 1.454390
2 0.125023 2.966300 0.270339 1.094850
3 0.098613 2.254250 0.075855 4.906710
4 - - 0.190667 0.883485
5 - - 0.173730 1.965640
6 - - 0.127689 2.658160
7 - - 0.095104 3.591640

The advantage of this decomposition scheme is that grids of different spacing can be
used to represent the different contributions to va(r, ra). In fact, the evaluation of a
function on a grid relies on the assumption that the grid spacing is optimally chosen on
the basis of its Fourier transform spectrum. Writing a function as a sum of terms with
compact support and with different cutoffs, the mapping of the function is achieved
using different grid levels, in principle as many levels as contribution terms, each
optimal to describe the corresponding function. In our case, sharp Gaussians require
fine grids while coarser grids are necessary for the smoothest components. In addition
the Gaussians can be truncated beyond a certain threshold value, which makes the
collocation of the Gaussians on the grid a very efficient process (see App.(B)).

The problem of mapping a non-compact function on a fine grid is then converted
into the mapping of Ng compact functions on grids with cutoffs lower or at least equal
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to the fine grid, plus a non-compact very smooth function Rlow mapped on the coarsest
available grid. The sum of the contributions of all the grids, suitably interpolated, will
be approximately equal to the function mapped analytically on the fine grid within
errors due to the interpolation procedure.

6.2.2 GEEP library

A library with optimized parameters for the GEEP expansion is available into the
CP2K code both for Gaussian and for s-wave (see App.(E)) charge distribution den-
sities. In particular exploiting the scaling properties of both functional form it is
possible to have a proper expansion for whatever value of the rc,a parameter.

6.2.3 Multi-grid Framework

Multi-grid methods are well established tools in the solution of partial differential
equations [176, 177]. In the present implementation multi-grid techniques are em-
ployed to combine functions with different cutoffs, i.e. represented on different grid
levels.

Let us start by considering two grids, a coarse grid C with Nc points and a fine grid
F with Nf points, respectively at grid-level k-1 and k. The interpolation operator

Ikk−1 : C → F (6.7)

is by definition a transfer operator of a low cutoff function to a grid with an higher
cutoff. The extension of the function to more points requires some regularity assump-
tions on its behavior. Two limiting cases can be identified: C1 and C∞, which can
be handled with a simple linear interpolation scheme and with a G − space interpo-
lation, respectively. If the function is C∞, as in the case of a Gaussian, it is normally
better to use an interpolator that assumes a high regularity. This ceases to be true
once a collocation threshold is defined for the mapping of the Gaussians. In fact, the
function on the grid becomes less regular, and an interpolation of a lower order might
perform better. Another reason to avoid G-space interpolation comes from the fact
that periodic boundary conditions with respect to the QM grid cannot be applied to
the QM/MM potential. This makes the normal G − space interpolation unsuitable
for our purpose. Thus we preferred to use an interpolation that works entirely in real
space. For simplicity we use a set of commensurate grids, in which all the points of the
coarse grid are points of the fine grid. Moreover, the number of points in each direction
doubles going from the coarse to the fine grid level immediately above (Nf = 8Nc in
3D). In the case of 1D space, the interpolation operator can be defined as:

Ikk−1(i, j) =
∑

n

T (i, n)S−1(n, j) (6.8)

where for the points away from the border T (i, n) = N3(n−i/2) and S(i, j) = N3(j−i);
N3 being the characteristic B-spline function of order 3 [178] (see App.(F)). The border
was treated as a non-uniform B-Spline. Higher dimensional spaces can be treated using
the direct product of the transformation along the single dimensions. The opposite
operation, the restriction Jk−1

k is defined through the condition that the integral of
the product of a function defined on the coarse grid with a function defined on a fine
grid should give the same result both on the fine and on the coarse grid. Thus the
restriction is simply the transpose of the interpolation
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Jk−1
k (i, j) =

[
Ikk−1(i, j)

]T
=
∑

n

S−1(i, n)T (n, j) (6.9)

Using Ngrid grid levels and choosing the finer and coarser grid levels in order to
treat correctly the sharpest and smoothest Gaussian components respectively, we can
achieve good accuracy and performance.

���:\ -a/10+/b/ z{*��!=>�C�
The QM/MM electrostatic energy within DFT can be expressed with the following
equation:

EQM/MM (rα, ra) =

∫
drρ(r, rα)V QM/MM (r, ra) (6.10)

where V QM/MM is the electrostatic QM/MM potential evaluated on the finest grid,
the same on which the final QM total density is evaluated. The overall description of
the algorithm used to evaluate the QM/MM electrostatic potential on the finest grid
can be outlined as follows:

? Each MM atom is represented as a continuous Gaussian charge distribution. The
electrostatic potential generating from this charge is fitted through a Gaussian
expansion using functions with different cutoffs, Sec.(6.2.1).

? Every Gaussian function is mapped on one of the available grid levels, chosen
to be the first grid whose cutoff is equal to or bigger than the cutoff of that
particular Gaussian function. Using this collocation criterion, every Gaussian
will be represented on the same number of grid points irrespective of its width.
In practice a submesh of size ≈ 25x25x25 is sufficient for an optimal Gaussian
representation. Moreover, once a collocation threshold is defined, the Gaussian
can be considered a compact domain function, i.e. it is zero beyond a certain
distance, usually called Gaussian radius. Thus only MM atoms embedded into
the QM box, or close to it, will contribute to the finest grid levels, as shown in
Fig.(6.2).

The result of this collocation procedure is a multi-grid representation of

the QM/MM electrostatic potential V
QM/MM
i (r, ra), where i labels the grid

level, represented by a sum of single atomic contributions V
QM/MM
i (r, ra) =∑

a∈MM via(r, ra), on that particular grid level. In a realistic system the collo-
cation represents most of the computational time spent in the evaluation of the
QM/MM electrostatic potential, that is around 60− 80%.

? Afterwards, the multi-grid expansion V
QM/MM
i (r, ra) is sequentially interpolated

starting from the coarsest grid level up to the finest level. The QM/MM electro-
static potential on the finest grid level can then be expressed as:

V QM/MM (r, ra) =

fine∑

i=coarse

fine−1∏

k=i

Ikk−1V
QM/MM
i (r, ra) (6.11)

where V
QM/MM
i (r, ra) is the electrostatic potential mapped on grid level i and

Ikk−1 is the interpolation operator in real space. This operation does not depend
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Figure 6.2: Schematic representation of the collocation procedure. Two MM atoms and three grid

levels have been depicted. The circles (in the first and second grid levels) are the collocation region

of the Gaussian centered on the two MM atoms. Atoms whose distance from the QM box is greater

than the Gaussian collocation radius do not contribute to the potential on that grid level. However,

all atoms contribute to the coarsest grid level through the long-range Rlow part.

on the number of MM atoms but only on the number of grid points, i.e. on the
cutoff used in the calculation and on the dimensions of the QM box. For realistic
systems the computational cost is around 20 − 40% of the overall cost of the
evaluation of the QM/MM electrostatic potential.

Using the real space multi-grid technique together with the GEEP expansion, the
prefactor in the evaluation of the QM/MM electrostatic potential has been lowered
from Nf ∗Nf ∗Nf to Nc ∗Nc ∗Nc, where Nf is the number of grid points on the finest
grid and Nc is the number of grid points on the coarsest grid. The computational cost
of the other operations for evaluating the electrostatic potential, such as the mapping
of the Gaussians and the interpolations, becomes negligible in the limit of a large MM
system, usually more than 600-800 MM atoms.

Using the fact that grids are commensurate (Nf/Nc = 23(Ngrid−1)), and employing
for every calculation 4 grid levels, the speed-up factor is around 512 (29); this means
that the present implementation is 2 orders of magnitude faster than the direct ana-
lytical evaluation of the potential on the grid. The number of grid levels that can be
used is limited by two technical factors. The first is that the coarsest grid needs to
have at least as many points per dimension as the ones corresponding to the cutoff of
the residual function Rlow in order to perform the interpolation/restriction in an effi-
cient manner. The second limitation is due to the constraint of using commensurate
grid levels. The more grid levels are required in the calculation, the more the finest
grid level cutoff will increase. This leads to an increment in memory requirements
and to an unnecessary precision when handling the higher cutoff grids. Usually it is a
combination of cutoff and grid levels that provides maximum efficiency. The two pa-
rameters can be chosen by checking that the coarsest grid level has no more than 5-10
grid points per dimension within the specified cutoff for the finest grid. Following the
previous rule, the number of operations required for the direct evaluation of Eq.(6.2)
is of the order of N*100*NMM , where N is an integer between 1 and 10 and NMM is
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the number of classical atoms.

���po -a/10+/b/ z{*��!=>�C�Å+$#=>5��7%
The forces on classical atoms due to the interaction Hamiltonian Eq.(6.10) are obtained
by taking the derivative of Eq.(6.10) with respect to the classical atomic positions ra:

−∂E
QM/MM

∂ra
= −

∫
ρ(r, rα)

∂V QM/MM (r, ra)

∂ra
dr (6.12)

The integral evaluation can be divided into terms deriving from the different grid
levels:

−∂E
QM/MM

∂ra
= −

fine∑

i=coarse

∫
ρ(r, rα)

∂V
i,QM/MM
fine (r, ra)

∂ra
dr (6.13)

where the V
i,QM/MM
fine labels the potential term on the finest grid level coming from

the corresponding grid level i. Using the multi-grid expression for terms V
i,QM/MM
fine =

∏fine−1
k=i Ikk−1V

QM/MM
i , the derivatives can be written as:

−∂E
QM/MM

∂ra
= −

fine∑

i=coarse

∫
ρ(r, rα)

fine−1∏

k=i

Ikk−1

∂V
QM/MM
i (r, ra)

∂ra
dr (6.14)

= −
fine∑

i=coarse

∫ [ fine∏

k=i+1

Jk−1
k

]
ρ(r, rα)

∂V
QM/MM
i (r, ra)

∂ra
dr (6.15)

In the previous equation the property that the interpolation operator is equal to the
transpose of the restriction operator (and vice-versa) was used. The MM derivatives
are then evaluated applying the restriction operator to the converged QM ρ(r, rα).
This leads to a multi-grid expansion of the density and each integral is evaluated on
the appropriate grid level. The overall derivative is the sum of the contributions of
the different grid levels.

We now consider the forces on the QM atoms. If nαc (r) is the Gaussian density
used to represent the core charge distribution of the αth quantum ions and labeling
with P µν the µν element of the density matrix in the Gaussian basis set { φµ }, the
forces on quantum ions (see also Sec.(3.3.2)) due to the QM/MM interaction potential
are

−∂E
QM/MM

∂rα
= −

∑

µν

(
∂P µν

∂rα
)V QM/MM
µν − (6.16)

2
∑

µν

P µν
∫

(
∂φµ(r, rα)

∂rα
)V QM/MM (r, ra)φν(r, rα)dr− (6.17)

∫
(
∂nαc (r, rα)

∂rα
)V QM/MM (r, ra)dr (6.18)

where V
QM/MM
µν =

∫
φµ(r, rα)V QM/MM (r, rα)φν (r, rα)dr is the QM/MM Hamilto-

nian interaction term in the Gaussian basis set { φµ }. The first term is the so-called
Pulay term [179] and is present because the basis set depends explicitly on the atomic
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position [85]. It vanishes if Gaussians form a complete basis set. The evaluation of
the gradients on QM atoms is relatively inexpensive compared to a full quantum cal-
culation. All considerations raised in Sec.(6.3), concerning the scaling of the present
scheme in the evaluation of the QM/MM potential, remain valid in the evaluation of
the forces on classical atoms.

The calculation of the forces within the present implementation has been compared
with the calculation of the forces using the method described in [2], which is an
implementation of QMMM in the CPMD code [171]. Comparison with the CPMD-
QMMM code is complicated by the fact that in [2] a multipolar expansion is used for
the long-range part of the QM/MM electrostatic coupling. For this reason we compare
only forces on atoms of the first MM solvation shell, which are treated exactly also in
CPMD-QMMM code. We consider a system of 215 classical SPC [180] water molecules
and 1 QM water molecule. Although the system size is relatively small, the number of
molecules present is comparable to the number of molecules normally treated exactly
in CPMD-QMMM. In Fig.(6.4) we show the relative error between the previous and
the present implementations. The highest relative errors (less than 1.0 %) correspond
to forces which have small modules (≤ 10−3a.u.). The average relative error is≈ 0.01%
with a speed-up in the energy and derivative evaluation of a factor of 40 with respect
to CPMD.
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Figure 6.3: Relative errors on derivatives evaluated with the different functional form of Eq.(6.3)

implemented in CPMD code and the new scheme implemented in CP2K. The average relative error

is 0.01 %.
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An important figure of merit for QM/MM codes that are aimed at molecular
dynamics (MD) simulation is their ability to conserve the energy (see Sec.(2.7)). In
order to address this issue we studied a system composed of 3 water molecules, 2
MM and 1 QM, equilibrated at 400K. We simulate this system for 1 picosecond.
The results are shown in Fig.(6.3). For comparison the energy of the pure classical
and the quantum run are shown in the same picture. No drift is observed during 1
picosecond of simulation. We also show the potential energy during the simulation,
whose oscillation is ≈ 3 orders of magnitude bigger than the total energy oscillation.

Figure 6.4: On the left: energy conservation of a system composed of 3 water molecules equilibrated

at 400K during 1 ps of simulation. The red line shows the total energy for the QM/MM run, the

green line represents a pure classical run and the blue line shows a pure quantum run. The total

energies have been shifted for better visualization. No drift is observed and all energy conservation is

consistent. On the right: potential energy during the same run. Its variation is 3 orders of magnitude

larger than the total energy variation.
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Consistently with checks done in previous work [2, 173], we test the accuracy of our
implementation by computing the pair correlation function of a QM system embedded
in a classical solvent. As found elsewhere [2], the smoothing radius plays an important
role in determining the bond properties of the system, and the choice of this param-
eter can have dramatic effects on pair correlation functions. The use of a different
functional form (cf. Eq.(6.3) with Eq.(3) of [2]) forced us to re-parameterize the rc,a.

For the classical water molecules, the cutoff radii rc,a were chosen in order to re-
produce the coordination number and the main peaks of the classical SPC water pair
correlation function. A system of 2560 water molecules (2559 classical SPC water and
1 quantum water) in a cubic box, subject to periodic boundary conditions, was investi-
gated. The system was previously equilibrated at ρ = 1g/cm3, T=298K. One SPC wa-
ter molecule was then replaced by a QM water molecule. GTH pseudo-potentials [118]
were used to describe the core charge distribution and B-LYP exchange-correlation
density functional [181, 182] was employed in all the calculations, in conjunction with
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a plane-wave cutoff of Ecut = 280 Hartee. Several runs, with different values of the
radius parameter rc,a, were performed. The optimized radii are 0.44 Å for hydrogen
and 1.20 Å for oxygen and allow the full classical SPC pair correlation function to be
reproduced, as shown in Fig.(6.5). Due to the different functional form of Eq.(6.3),
the optimal values found with our implementation are slightly different from the ones
of ref. [2].

Figure 6.5: H-O and O-O pair correlation functions or QM water. QM/MM values are compared

with the full classical SPC calculation. The QM/MM calculations are performed with rc,a equal

to 1.2 Å for oxygen and 0.44 Å for hydrogen. The quantum box and the classical box employed

in the simulation have a cube box size of 10.0 Å and 42.0 Å respectively. The roughness of the

QM/MM curve is due to the much shorter simulation time. The bin size for the evaluation of the

pair correlation function is of 0.2 Å.
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In order to test the transferability of the rc,a parameters determined for water, we
also evaluated the pair correlation function of a QM di-peptide (GLY-ALA) zwit-
terion solvated in 3352 SPC water. We aimed at reproducing the pair correlation
function obtained with the AMBER force field [37]. The pair correlation functions
obtained with the present QM/MM implementation are indeed extremely close to the
full classical results (see Fig.(6.6)).
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In this chapter we presented an algorithm for evaluating the QM/MM coupling term
with a fast linear scaling implementation. The main result is the dropping of the
prefactor in the linear scaling, with a gain in the number of floating point operations
proportional to 23(Ngrid−1), where Ngrid is the number of grid levels used in the multi-
grid framework. The evaluation of the electrostatic potential on a grid is proportional
to the number of MM atoms times the number of grid points. In real systems the linear
scaling evaluation of the potential is therefore characterized by a prefactor ≈ 106. In
this scheme the prefactor is instead ≈ 103. The number of floating point operations
is reduced several orders of magnitude and the computational time is 10-100 times
smaller.
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Figure 6.6: Hpept-Owat and Opept-Hwat pair correlation functions for the ALA-GLY di-peptide

in SPC water. QM/MM values are compared with the full classical SPC calculation. The QM/MM

calculations are performed with rc,a equal to 1.2 Å for oxygen and 0.44 Å for hydrogen. The quan-

tum box and the classical box employed in the simulation have a cube box size of 15.0 Å and 50.0 Å

respectively. A plane-wave cutoff of 280 Hartree was used during all the simulations, in conjunction

with the GTH pseudo-potential and the BLYP exchange-correlation density functional. The rough-

ness of the QM/MM curve is due to the much shorter simulation time. The bin size for the evaluation

of the pair correlation function is of 0.2 Å.
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The algorithm is presently implemented in the package CP2K, released under GPL
license and freely available on the internet [84]. The scheme was validated by checking
the energy conservation and for a realistic system numerical accuracy was verified by
comparing the forces with the analytical method, with a mean relative error of 0.01%.
In addition, we computed the pair correlation function of a QM water molecule in
classical water and of a QM zwitterionic di-peptide in classical water. The modified
Coulomb interaction and the multi-grid approach reproduce correctly the structural
properties of a QM water molecule solvated in classical water and the parameters ob-
tained therein can be used effectively to describe the properties of an organic molecule
containing both negatively and positively charged moieties, as in the case of the zwit-
terion.

The performance analysis confirms the present algorithm as the state of the art for
the evaluation of QM/MM interaction coupling within a GPW scheme. Moreover, at
variance with the majority of present-day QM/MM methods, our scheme does not rely
on electrostatic cutoffs and so avoids all related problems. Consequently, the present
method offers a fast, easy-to-use code for QM/MM calculations of large biological and
inorganic systems.



Chapter 7

Periodic boundary conditions in
QM/MM simulations

In this chapter we provide an extension to periodic boundary conditions of the method
presented in Chap.(6) in order to treat properly the long-range electrostatic interac-
tions in hybrid QM/MM simulations. The scheme has been implemented in the context
of a QM calculation based on density functional theory (DFT). Results from QM/MM
calculations with periodic boundary conditions (PBC) show that the use of PBC is
essential when studying highly ordered crystal structures. The present method allows
periodic boundary conditions to be used in molecular simulations of biological and
material science systems.

����� ��*768=>$9?2��5m68')$+*
Understanding and predicting the properties of condensed systems requires, among
other things, the reliable treatment of the long-range Coulomb interactions [183].
Many schemes have been proposed and a consensus has emerged regarding the use of
periodic boundary conditions (PBC) to treat properly the interactions between the
periodic replicas. In fact, it is usually believed that PBC have to be used together with
an exact treatment of the long-range interactions between the periodically repeated
images in order to obtain reliable MD simulations [184, 185, 186, 187, 188, 189].

Numerous methods have been developed to avoid the truncation of the electrostatic
interactions beyond a given cutoff, and have been applied in the context of classical
simulations [190, 191, 192, 193, 194, 195]. These methods are all based on different
techniques to compute the lattice sum involved in the evaluation of the long-range
electrostatic interactions within PBC.

The treatment of long-range forces in conjunction with PBC is much less well es-
tablished for hybrid quantum mechanics/molecular mechanics (QM/MM) simulations.
So far, most of the QM/MM implementations have relied on a spherical truncation
scheme, in which the solute(QM)-solvent(MM) electrostatic interactions are neglected
beyond a certain cutoff distance Rc. There are only a few exceptions. A very popu-
lar and inexpensive approach is the reaction field method, which couples the spherical
truncation scheme with a polarizable continuum medium that extends beyond a cutoff
distance Rc [196, 197, 198, 199, 200, 201] . Ewald’s lattice summation technique were
also investigated to treat the long-range QM/MM electrostatic interactions. Within
a semi-empirical framework, the first implementation is due to Gao and Alhambra
[202]. In their scheme only the long-range QM/MM interactions are evaluated, while
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the QM/QM ones are omitted. For the particular set of applications tested by these
authors, namely solvation phenomena, the solute-solvent (QM/MM) interactions were
considered as the determining ones. Recent implementations of Ewald techniques ex-
tended to the full QM/MM long-range interactions [203, 204] show indeed that even
for solvation cases long-range QM/QM electrostatic interactions play a significant role.
Within a self-consistent DFT scheme, to the best of our knowledge there is only one
QM/MM scheme that allows PBC [205] to be used. This approach is conceptually
similar to the one we present here and it relies on the use of splines in reciprocal space
(k-space), optimally designed for use within plane wave (PW) codes. Our approach
is on the other hand, based on real space techniques, and is designed to be used with
Gaussian basis codes, as is CP2K [84].

In Chap.(6) we proposed a new computational scheme based on the Gaussian
expansion of the electrostatic potential (GEEP) [81]. This technique can be used
efficiently to map functions on a grid and we applied it to the development of a new
QM/MM electrostatic coupling for isolated systems which exhibits linear scaling.

The scheme presented in this chapter is implemented into the CP2K package [84],
and extends the approach of Chap.(6) to applications where the use of PBC is re-
quired. It relies on the most efficient methods for calculating long-range electrostatic
interactions of point charges within PBC and scales linearly with respect to the num-
ber of MM atoms. Moreover the evaluation of the MM electrostatic potential using
PBC is independent of the number of QM atoms, depending only on the dimension of
the coarsest grid used in the multi-grid approach.

An accuracy test was first performed on an analytically solvable model in order to
provide a clear and unambiguous validation of the new approach. As a more realistic
test case we apply the new method to the study of SiO2 and its charged oxygen
vacancy defect and on a zwitterionic di-peptide (GLY-ALA) in water. The tests show
clearly that to achieve a correct description of the QM/MM system there are only two
possibilities: the first is based on the optimization of the shape and charges of the
MM crystal, in order to reproduce correctly the long-range stabilizing effects within
a truncation scheme [206] and the other is to treat long-range interactions with a
proper PBC scheme. Although results are similar for both approaches the use of
QM/MM-PBC schemes avoids the preparation steps related to the fine tuning of the
MM sub-system. For the solvated zwitterionic di-peptide we find, as expected, that
the use of QM/MM-PBC can be avoided due to the high dielectric shield and to the
lack of long-range stabilizing effects.

���:� /���6(��$9?#$+"�$&�C�
Assuming the overall charge neutrality condition, the electrostatic interaction energy
of a QM/MM simulation within PBC can be easily evaluated:

ETOT =
1

2

∫

R3

∫

R3

drdr′
ρ(r)ρ(r′)
|r − r′| (7.1)

ρ = ρQM+ρMM being the total charge density of the system (see Fig.(7.1-a)). Volumes
integrals cover the full space R3 and will be omitted in the following to make notation
lighter.
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Figure 7.1: These frames show the decomposition of the total QM/MM energy. In each frame two

of the many periodic replica have been shown. Frame Fig.(7.1-a) shows the total system. Frame

Fig.(7.1-b) shows the energy of the MM sub-system embedded in the neutralizing background charge

(deriving from the division of the QM and MM sub-systems). Frame Fig.(7.1-c) shows the energy of

the QM sub-system with the neutralizing background charge of the QM cell and that relating to the

MM cell. The last frame Fig.(7.1-d) depicts the QM/MM pure electrostatic mutual interaction term.
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Once the total density is split into a QM and a MM part both sub-systems could
in principle possess an overall net charge different from zero. Therefore the use of
a neutralizing background charge (ρB) is necessary to avoid divergence in treating
electrostatic within PBC. The total energy (see Fig.(7.1-a)) term can be split into
three separate terms:

EMM =
1

2

∫ ∫
drdr′

(ρMM (r) + ρB,MM )(ρMM (r′) + ρB,MM )

|r − r′| (7.2)

EQM =
1

2

∫ ∫
drdr′

(ρQM (r) + ρB,QM )(ρQM (r′) + ρB,QM )

|r − r′| (7.3)

EQM/MM =

∫ ∫
drdr′

(ρQM (r) + ρB,QM )(ρMM (r′) + ρB,MM )

|r − r′| (7.4)

The physical nature of these terms is illustrated pictorially in Fig.(7.1). Assuming the
total charge of the system is zero (although this assumption can be relaxed with no
modifications to the formalism) the mixed terms involving the neutralizing background
charge of the EQM/MM cancel the interaction terms of the QM and MM density with
their own background charges. The expression for the three terms is:

EMM =
1

2

∫ ∫
drdr′

(ρMM (r))(ρMM (r′))
|r − r′| (7.5)
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EQM =
1

2

∫ ∫
drdr′

(ρQM (r))(ρQM (r′))
|r − r′| (7.6)

EQM/MM =

∫ ∫
drdr′

(ρQM (r))(ρMM (r′))
|r − r′| (7.7)

The first term (Eq.(7.5) and Fig.(7.1-b)) is evaluated using standard techniques such
as particle-particle or particle-mesh schemes [192, 194]. The second term (Eq.(7.6)
and Fig.(7.1-c)) is the Hartree energy of the QM sub-system. Since the total energy
of the QM sub-system is usually evaluated exploiting a smaller cell, care needs to be
taken to include the correct electrostatic interactions of the periodic QM replicas, i.e.
restore the correct periodicity (MM cell). The last term (Eq.(7.7) and Fig.(7.1-d)) is
the evaluation of the periodic MM electrostatic potential, partitioned into a real space
contribution and a periodic correction. The real space term contains the interaction
due to the short-range part of the electrostatic potential of the MM charges with the
total quantum charge distribution (electrons plus nuclei). Only MM atoms close to
the QM region will contribute to this term. The periodic term contains instead the
long-range effects of the MM sub-system.

In the next section, the standard Ewald method is briefly reviewed for a N-point
charge particle system interacting in an orthorhombic box of edge Lx, Ly, Lz. We
then introduce the Ewald lattice summation with the GEEP scheme [81]. Finally
we discuss the algorithm to decouple/recouple multiple QM images. In the following
Latin letters a, b will be used to index the MM atoms, while Greek letters α, β will be
used for QM atoms.

7.2.1 Ewald lattice summation for electrostatic interactions

Given an N-point charge particle system, the electrostatic potential Φtot(r) at position
r is evaluated using the Ewald lattice sum technique [190]. In this approach, Φtot(r)
is split into the sum of two potentials, using a Gaussian screening charge of width κ:

Φtot(r) = Φrec(r) + Φreal(r) (7.8)

The reciprocal space potential term Φrec(r) is determined using the Fourier series:

Φrec(r) =
4π

V

∑

k6=0

e−
k2

4κ

k2

MM∑

a

qae
−ık·|r−ra| (7.9)

where k = [2πnx/L
2
x, 2πny/L

2
y, 2πnz/L

2
z] and V is the volume (V=Lx·Ly·Lz) of the

primary unit cell. The real space part of the Ewald potential is given by:

Φreal(r) =

MM∑

a

∑

|L|≤Lcut
qa

Erfc(κ|r− ra + L|)
|r− ra + L| (7.10)

where L = [nxLx, nyLy, nzLz] counts the periodic images and nx, ny and nz are
integers. As the Erfc has a real space short-range property, only the |L| ≤ Lcut
periodic images will contribute to the real space term of the electrostatic potential.
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7.2.2 QM/MM periodic potential

The QM/MM periodic potential (see Eq.(7.7) and Fig.(7.1-d)) on a generic point i of
the finest grid level can be computed using the real space lattice sum:

V fine(ra)i =

MM∑

a

∞ ′∑

L

qava(ri, ra + L) (7.11)

where ri is the coordinate of the point i of the finest grid level and ra indexes the
functional dependence from the set of MM atomic coordinates and v is given by
Eq.(6.3). The summation over L involves all integer translations of the real space
lattice vectors L = [nxLx, nyLy, nzLz] for integers nk and the prime symbol indicates
that when L = 0 the term |ri − ra| = 0 is neglected. The summation in Eq.(7.11) has
the same convergence properties as the standard Ewald summation schemes [190].

The total QM/MM electrostatic energy can be split into two rapidly convergent
terms [207, 190], one over real space and the other over reciprocal space lattice vectors:

EQM/MM (rα, ra) = E
QM/MM
real (rα, ra) +E

QM/MM
recip (rα, ra) (7.12)

where:

E
QM/MM
real (rα, ra) =

∫
drρ(r, rα)V

QM/MM
real (r, ra) (7.13)

and

E
QM/MM
recip (rα, ra) =

∫
drρ(r, rα)V

QM/MM
recip (r, ra) (7.14)

The definition of the two terms is strictly connected to the type of functional form
used to describe the Coulomb interactions. In our case, since we decided to treat
the MM classical charges through a Gaussian charge distribution, the electrostatic
potential function has the analytical form:

va(r, ra) =
Erf(|r− ra|/rc,a)

|r− ra|
(7.15)

easily represented as a sum of two terms [81]:

va(r, ra) =
Erf(|r− ra|/rc,a)

|r− ra|
=
∑

Ng

Ag exp(−|r− ra|2
G2
g

) +Rlow(|r− ra|) (7.16)

The best choice is to use the mathematical properties of the two functional forms
(short-range term and long-range term) to define the division into real and reciprocal
space contributions:

va(r, ra) =
Erf(|r− ra|/rc,a)

|r− ra|
=
∑

Ng

Ag exp(−|r− ra|2
G2
g

) +Rlow(|r− ra|)

=vrsa (r, ra) + vrecipa (r, ra) (7.17)

All short-range interactions will be evaluated in the real space while all long-range
interactions will be taken into account in the reciprocal space formalism. The real

space term V
QM/MM
real (r, ra) is defined as:
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V
QM/MM
real (r, ra) =

∑

|L|≤Lcut

∑

a

qav
rs
a (r, ra + L)

=
∑

|L|≤Lcut

∑

a

qa


∑

Ng

Ag exp(−|r− ra + L|2
G2
g

)


 (7.18)

where a labels the MM atoms. The radii of the Gaussians are such that only a few
periodic images (|L| ≤ Lcut, ideally only one) are needed to achieve convergence of
the real space term, while others give zero contribution. As in [81], each Gaussian of
Eq.(7.18) is mapped on the appropriate grid level. The same approach outlined here
for Gaussian charge distribution holds for the s-wave charge expansion.

The effect of the periodic replicas of the MM sub-system is only in the long-range
term, and it comes entirely from the residual function Rlow(r, ra) of Eq.(7.17):

V
QM/MM
recip (r, ra) =

∞ ′∑

L

∑

a

qav
recip
a =

∞ ′∑

L

∑

a

qaRlow(|r− ra + L|) (7.19)

Performing the same manipulation used in Ewald summation [190] (see App.(D)) the
previous equation can be computed more efficiently in the reciprocal space:

V
QM/MM
recip (ri, ra) = L−3

kcut ′∑

k

∑

a

R̃low(k)qa cos [2πk · (ri − ra)] (7.20)

The term R̃low(k), representing the Fourier transform of the smooth electrostatic
potential, can be evaluated analytically:

R̃low(k) =

[
4π

|k|2
]

exp

(
−|k|

2r2
c,a

4

)
−
∑

Ng

Ag(π)
3
2G3

g exp(−G
2
g |k|2
4

) (7.21)

The potential in Eq.(7.20) can be mapped on the coarsest grid. In fact, the long-range
contribution is physically very smooth and a good representation can be achieved with
large grid spacings. Furthermore, since the Rlow function is a low cutoff function,
R̃low(k) is zero for all k-vectors larger than a well defined kcut. The kcut parameter
depends strongly on the number of Gaussian functions used in the GEEP scheme (as
described in Sec.(6.2.1)).

Once the electrostatic potential of a single MM charge within periodic boundary
conditions is derived, the evaluation of the electrostatic potential due to the MM sub-
system is easily computed employing the same multi-grid operators (interpolation and
restriction) described in Sec.(6.2.3) and in App.(F).

7.2.3 Periodic coupling with QM images

In the present section we complete the description of the electrostatic coupling, dis-
cussing the interaction between the periodic images of the QM replicas (see Fig.(7.1-
c)). The Quickstep [85, 208] algorithm uses a mixed plane wave / Gaussian basis set
to solve the DFT equations for the quantum sub-system. The plane waves are used
to compute efficiently the Hartree potential. Therefore, unless the quantum box and



F P��Y���	���g ���� 75

the MM box have the same dimensions, the QM images, interacting by PBC implicit
in the evaluation of the Hartree potential, have the wrong periodicity.

In order to avoid this error, the QM problem is usually solved using standard
decoupling techniques [209, 210]. This approximation is legitimate when the evaluation
of the QM/MM potential is performed using spherical truncation schemes for Coulomb
interactions.

Since we want to describe the long-range QM/MM interaction with periodic bound-
ary conditions, we may not neglect the QM/QM periodic interactions, which play a
significant role if the QM sub-system has a net charge different from zero or a signif-
icant dipole moment. Therefore we exploit a technique recently proposed by Blöchl
[210], for decoupling the periodic images and restoring the correct periodicity also for
the QM part. A full and comprehensive description of the methods to evaluate energy
corrections and derivatives is given in reference [210]. Here we summarize Blöchl’s
decoupling scheme. Given a QM total density charge ρ(r, rα), the electrostatic energy
of this isolated density is:

E =
1

2

∫

V

dr

∫
dr′

ρ(r, rα)ρ(r′, rα)

|r− r′| (7.22)

Let us introduce a new model charge density ρ̂(r, rα), which is localized within the
same volume V as ρ(r, rα) and which reproduces the multipole moments of the correct
charge distribution. The representation adopted in [210] is given by the sum:

ρ̂(r, rα) =
∑

α

qαgα(r, rα) (7.23)

of atom-centered spherical Gaussians, which are normalized such that they posses a
charge of one:

gi(r, rα) =
1

(
√
πrc,α)3

exp(−|r− rα|2
r2
c,α

) (7.24)

where rα denotes a particular atomic site. Every atomic site may be the center of
various Gaussians with different decay lengths rc,α. By construction, the multipole
moments of the model charge density agree with those of the original charge distri-
bution. Since the electrostatic interaction of separated charge distribution (the array
of periodic QM charge densities) depends only on its multipole moments, the model
charge density is used to modify the Hartree potential and to cancel the electrostatic
interactions between the periodic images. In App.(C), we briefly summarize with a
matrix formalism the charge fit scheme as derived in [210]. In the same way as the
Blöchl scheme cancels the electrostatic interactions between periodic images, it is pos-
sible to use it to include the electrostatic interactions between periodic images with
the periodicity of the MM box.

7.2.4 QM/MM forces

The derivatives on MM atoms can be easily evaluated taking the derivative of both
terms in real space and in reciprocal space, and summing the contribution of the
different grid levels. The derivatives of the real space term are the same as the one
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presented in Sec.(6.4). The derivatives of the reciprocal space term need to be eval-
uated by deriving the MM nuclei potential energy contribution and integrating this
derivative with the quantum charge distribution:

∂E
QM/MM
recip (rα, ra)

∂ra
=

∫
drρ(r, rα)

∂V
QM/MM
recip (r, ra, rα)

∂ra
= (7.25)

∆ω
∑

ri

ρ(ri, rα)L−3

kcut ′∑

k

MM∑

a

R̃low(k)qa
∂ cos [2πk · (ri − ra)]

∂ra

(7.26)

where ∆ω is the volume element of the coarsest grid level. This contribution is summed
with the terms in real space to obtain the total derivatives on MM atoms. The deriva-
tives on QM atoms are computed in the same way as we described in Sec.(6.4), the
only difference being that the QM derivatives are modified by the coupling/decoupling
terms. These corrections have been derived and extensively discussed in [210].

���:\ �k�7%w6M%K4#*�?Õ�. # #"�'�5�4768')$+*�%
Four systems were selected to test the new method. The first one, an infinite array
of Gaussian alternating opposite charges, can be solved analytically and therefore
provides a clear and unambiguous test of the accuracy of our new approach.

The second system is a periodic model of α-quartz (α-SiO2) where a bulk frag-
ment, described at the DFT level, is embedded in the environment of classical atoms
described with MM force fields. The third system analyzes a charged oxygen va-
cancy defect in α-quartz, in the same periodic model. These two systems do not
possess an analytical solution but both have been extensively studied experimentally
[211, 212, 213, 214, 215, 216, 217, 218] and theoretically [219, 220, 221, 222, 223, 224,
225, 226, 227].

The last system is a zwitterionic di-peptide (GLY-ALA) in water. It was chosen
since it represents an extreme test where the use of PBC is expected to have minor
effects on the electronic structure properties.

7.3.1 Analytical test

In order to validate this new algorithm, we consider the electrostatic interaction of an
array of Gaussian charge distributions:

ρ(rα) = (κ/π)3/2 exp(−κ2|rα|2) (7.27)

κ being the width of the Gaussian charge density.

The charges (32 positively charged (+1) and 32 negatively charged (-1)) are arranged
on a cubic array of points forming a NaCl lattice. Neighboring charges have opposite
sign. The potential generated by such a set of charges can be calculated exactly by
noting that the electrostatic potential of a single charge density (Eq.(7.27)) at an
arbitrary distance r can be determined analytically, Vext(r) = Erf(κr)/r. We now
construct a test QM/MM model, selecting two neighboring charges (see Fig.(7.2))
and calculating the Hartree potential in a smaller orthorhombic cell centered around
the two chosen charges. This calculation would have been a necessary step had we
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Figure 7.2: Orthorhombic cell of face centered cubic lattice of Gaussian charges. The two big

spheres represent the QM atoms. Lattice parameter 17.2 Å. The Gaussian charges have a width of

0.5
√

2 Å

treated the two selected centers quantum mechanically instead of with a fixed nuclear
charge distribution. The calculation was performed using a plane wave cutoff of 25
Ry and 3 Gaussians were used for each selected atom to build the model density used
to decouple/recouple the periodic images.

Table 7.1: The interaction of a Gaussian charge distribution in a 3-dimensional lattice as shown in

Fig.(7.2) as a function of the number of Gaussians used in GEEP and as a function of the QM cell.
∗ The QM/MM non-periodic calculation was performed with 64000 MM atoms arranged in a cube

cell of 344.0 Å.
QM Cell (x,y,z) (Å) Num. Gauss. kcut (bohr−1) Etot (Hartree) ∆E (mHartree)

34.4 34.4 34.4 Analytical Calculation 3.441010

34.4 34.4 34.4 6 0.5 3.440520 0.49
34.4 34.4 34.4 6 0.7 3.441176 -0.17
34.4 34.4 34.4 6 1.0 3.441119 -0.11
34.4 34.4 34.4 6 2.0 3.441070 -0.06

34.4 34.4 34.4 6 0.5 3.440520 0.49
34.4 34.4 34.4 9 0.5 3.440687 0.33
34.4 34.4 34.4 12 0.5 3.440885 0.12
34.4 34.4 34.4 15 0.5 3.440895 0.11

34.4 34.4 34.4 15 0.5 3.440895 0.11
27.0 27.0 27.0 15 0.5 3.440978 0.03
34.4 27.0 27.0 15 0.5 3.440951 0.06
22.0 22.0 12.0 15 0.5 3.440865 0.14
12.0 12.0 12.0 15 0.5 3.441356 -0.35

34.4 34.4 34.4 QM/MM non-periodic∗ 3.443106 2.10

In Table (7.1) we show how this pseudo QM/MM calculation depends on parameters
like the QM cell dimension (affecting the coupling/decoupling between QM periodic
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images), the kcut parameter of Eq.(7.20) and the number of Gaussians used in the
GEEP scheme. In particular we note that the number of Gaussians is strictly cor-
related to the kcut value. In fact, the more Gaussians that are used in the GEEP
scheme, the more the Rlow will be a low cutoff function. This permits a smaller kcut
parameter to be used in order to reach the same accuracy (see Table (7.1)).

The choice of the dimension of the QM box is almost irrelevant for the accuracy
of the results (see Table (7.1)). In fact even using a box of 12.0 Å, which is the
smallest possible box size usable with this QM sub-system, we find accurate results.
We remark that other decoupling techniques [209, 205] require boxes twice the size of
the minimum box, leading to a substantial computational overhead.

Moreover we computed the pseudo QM/MM interaction energy for the non-
periodic pseudo QM/MM calculation, using an MM environment of 64000 atoms (MM
cell side of 344.0 Å). The result shows that for ordered structures surface effects are
very important and the only way to include correctly the electrostatic interactions is
by using PBC. Overall this test indicates that the new proposed scheme is both valid
and efficient. In terms of computational time no additional overhead was noted when
performing pseudo QM/MM calculation with or without PBC.

7.3.2 SiO2

We now consider a realistic problem, a crystal of α-SiO2 (α-quartz) in an orthorhom-
bic cell, subject to periodic boundary conditions. Several QM/MM schemes have been
proposed in the literature for silica-based systems [228, 229, 230, 231, 232, 233, 234,
206], differing in the description of the quantum-classical interface and of the classi-
cal region. All of them treat the QM/MM long-range interaction with a truncation
scheme, properly optimizing the charges of the H-atoms terminating the MM cluster
or its shape in order to recover the correct long-range effects.

The MM crystal we used for this test is made up of 15552 atoms (5184 SiO2 units)
in an orthorhombic cell of 49.94, 57.66 and 63.49 Å. The system was optimized using
the empirical pair potential of van Beest [41] which is known to provide a reliable
description of bulk α-SiO2 [235]. A fragment of 160 atoms was described at the QM
level Fig.(7.3), describing the oxygen boundary atoms with a core charge increased by
0.4 in order to maintain the neutrality of the overall system. This boundary scheme
will be described in details in Sec.(8.2). DFT calculations with Gödecker-Tetter-Hutter
(GTH) [118] pseudo-potentials [118] using local density approximation to describe the
exchange-correlation functional were performed on the QM site using a cutoff of 200
Ry. We optimized the wave-function with and without the use of periodic boundary
conditions. The results show that the use of periodicity is essential to treat highly
ordered crystal structures. Without periodic boundary conditions we find the Kohn-
Sham gap to be 0.12 eV which is much lower than the experimental band gap of
about 9 eV [236, 237] and than the computed Kohn-Sham gap of 5.8 eV [220]. Also
the population analysis gives an indication that the lack of PBC leads to an incorrect
description of the system. In fact by population analysis [210] we find that many
oxygen atoms have a positive charge while some silicon atoms have a negative charge.
If we use periodic boundary conditions, on the other hand, we find results that agree
with those previously published. In particular, using PBC, we find for the Kohn-Sham
band gap a value of 6.23 eV using the same computational parameters as in the case of
non-PBC. The population analysis shows the proper charge distribution with charges
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close to +2.0 and -1.0 for silicon and oxygen respectively.
After removing the atom depicted in Fig.(7.3) from the same crystal structure, we

studied the charged oxygen vacancy defect in SiO2 with the same computational setup
used for stoichiometric SiO2.

Figure 7.3: The picture shows the QM cluster. Silicon atoms in yellow, oxygen in red, boundary

oxygen atoms (treated increasing the core charge by 0.4) in purple and in blue the oxygen atom (OX)

removed to create the oxygen vacancy defect.

As for quartz the lack of PBC leads to an incorrect description for both the electronic
structure and the population analysis. The use of the present scheme gives a Kohn-
Sham band gap of 3.18 eV, as against the theoretical result [220] of 3.30 eV. The
value obtained without PBC is 0.0089 eV. Unlike the other QM/MM schemes used
for silica we do not use any additional charge to terminate the MM cluster and no
particular attention was paid to the choice of its shape. The computational cost for
the evaluation of the QM/MM-PBC electrostatic potential on this system accounts
for 5% of the total cpu time of a single MD step. In particular 1 MD step (energy
and forces), on Cray-XT3 using 32 processors, requires 7 minutes. 23 seconds out of
7 minutes are used to evaluate the QM/MM electrostatic potential. Without using
the long-range PBC option the computational time used for the construction of the
QM/MM electrostatic potential is roughly 12 seconds. Thus, the use of PBC does not
represent a significant overhead in the overall computation scheme, making feasible
the study of crystal structures within a QM/MM-PBC framework.
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The results obtained for SiO2 both with and without PBC could in principle
be attributed to the peculiar electronic structure of this material (with a partial
ionic/covalent structure). Therefore we further tested both QM/MM schemes, with
and without PBC, on a zwitterionic di-peptide (GLY-ALA) in water, where the long-
range stabilizing effects due to the Madelung potential are not present. We expect
small effects from using PBC with this particular system.

Using the same description for the QM system as the one described in Sec.(6.5), we
find that PBC do not affect the value of the Kohn-Sham gap or the charge population
analysis with respect to the common implementations where a truncation scheme was
used. This is due to the large dielectric constant of water and to the lack of long-range
stabilizing effects such as the Madelung potential in an ionic crystal.
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In this chapter we proposed a new scheme designed to include the effects of periodic
boundary conditions into hybrid QM/MM descriptions of chemical/biological systems.
The present scheme uses the Gaussian expansion of the electrostatic potential (GEEP)
Sec.(6.2.1) and is implemented in the CP2K package [84]. Through the use of a
modified Ewald lattice summation it is possible to include the effects of the periodic
boundary conditions in the evaluation of the MM electrostatic potential. The scheme
preserves the linear-scaling property of the GEEP technique and is computationally
efficient. The method has no additional overhead with respect to the evaluation of
the QM/MM electrostatic potential with a truncation scheme using a spherical cutoff.
The new scheme is validated with an analytical model and with three real test cases:
the α-quartz crystal and its charged oxygen vacancy defect and a zwitterionic di-
peptide (GLY-ALA) in water. It is clear from these tests that the use of periodic
boundary conditions together with a proper treatment of the long-range interactions
is required for ordered systems, unless a careful truncation scheme optimizing the
shape and dipole of the MM environment is used. Therefore, it is now possible to
perform routinely ab initio molecular dynamics and electronic structure calculations
in crystal systems. The scheme has been developed describing the electrons with
DFT but the extension to other quantum chemical schemes (Hartree-Fock and post
Hartree-Fock methods) is straightforward.



Part IV

Applications





Chapter 8

A Quickstep-based QM/MM
approach for silica

QM/MM approaches are currently used to describe several properties of silica-based
systems, which are local in nature and require a quantum description of only a small
number of atoms around the site of interest, e.g. local chemical reactivity or spectro-
scopic properties of point defects. In this chapter we show step by step the validation
of a QM/MM scheme for silica using the QM/MM framework described in Chap.(6),
within the quickstep approach for the description of the quantum region. This
scheme has been validated by computing the structural and dynamical properties of
an oxygen vacancy in α-quartz, a prototypical defect in silica. We will show that good
convergence in the Si-Si bond length and formation energy is achieved by using a quan-
tum cluster of only eight atoms in size. We check the suitability of the method for
molecular dynamics and evaluate the Si-Si bond frequency from the velocity-velocity
correlation function.

����� ��*768=>$9?2��5m68')$+*
Silica is pervasive in present technologies, its applications ranging from optical fibers
to metal-oxide-semiconductor devices and even to car tires. Ab initio studies have
provided important insight on the properties of bulk phases, defects and surfaces of
silica [238, 239, 240, 241]. The usual approach in the ab initio modeling of condensed
matter systems makes use of supercells with periodic boundary conditions containing
at most few hundreds of atoms. However, if one is interested in the study of point
defects as an impurity atom or a vacancy, the use of a full quantum periodic model
implies an extremely high concentration of defects with a consequently strong defect-
defect interaction due to the limited supercell size. On the other hand, the use of a
full quantum cluster model, popular in the chemistry community, suffers from other
limitations, since also in this case the size of the system can not exceed, typically, one
hundred atoms. Long range electrostatic interactions are not kept into account and
local relaxation associated, e.g. with defect formation, is partially hindered by the
boundary atoms that have to be held fixed in order to prevent a global rearrangement
of the cluster. However the properties to be addressed are often local in nature, such
as the structure and spectroscopic properties of point defects or the chemical reac-
tivity of specific sites. In these cases, a quantum mechanical description is necessary
only for a small number of atoms around the site of interest, the rest of the system
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affects the local properties only via long range electrostatic interactions and geometri-
cal constraints. For this class of problems the QM/MM approach offers a satisfactory
compromise between accuracy and computational efficiency [174]. By embedding a
quantum mechanics calculation in a classical molecular mechanics model of the envi-
ronment, the hybrid QM/MM schemes attempt to incorporate environmental effects
at an atomistic level, including such influences as mechanical constraints, electrostatic
perturbations and dielectric screening.

Several QM/MM schemes have been proposed in literature for silica-based sys-
tems [228, 229, 230, 231, 232, 242, 243, 233, 234], differing in the description of the
quantum-classical interface and of the classical region. In this chapter we present a
QM/MM scheme for silica suitable for implementation in the general QM/MM frame-
work described in this thesis.

Our specialization of the general QM/MM scheme to silica has been validated
by computing the structural and dynamical properties of an oxygen vacancy in α-
quartz, a prototypical defect in silica. For this benchmark case, we consider the effect
on the accuracy of the description of several factors: i) the total size of the system
(MM+QM); ii) the size of the QM subsystem; iii) the manner in which the valence
at the boundary of the QM system is saturated; iv) the basis set. In this manner we
provide an optimized setup for performing molecular dynamics QM/MM simulations
in silicon dioxide. The quality of the description is demonstrated by performing a
long molecular dynamics at finite temperature on the oxygen vacancy described with
a minimal QM/MM model. We have found that convergence in the properties of the
defect is already achieved with a very small quantum subsystem composed of eight
atoms only. The combination of the QM/MM approach with the use of a localized basis
set for the quantum cluster calculations makes long molecular dynamics simulations
affordable at a low computational cost, e.g. 14 hours/ps on a single Opteron processor
(2.2 GHz) for a system made of 8 QM atoms and 1764 MM atoms.

���:� /���6(��$9?3$&,<5�4#"�5��#"�476}')$+*�%
The validity of a QM/MM scheme relies on few ingredients: the way in which bonded
interactions between atoms in the classical and quantum region are described; the way
in which electrostatic interaction between the two subsystem is treated; the quality
of the classical force field. Finally, if the QM/MM scheme is aimed at performing
molecular dynamics, a variational formulation of the total energy with respect to the
atomic positions is also required.

For what concerns the classical force field, the most sophisticated QM/MM scheme
presently available in literature is probably that proposed by Sulimov et al. in
Ref. [229] where they use a classical region which includes up to several hundred polar-
izable atoms within a shell model , surrounded by a first region with non-polarizable
point charges ions and by an outer region treated as a polarizable continuum. Here,
we use a the van Beest, Kramer, van Santen (BKS) potential (see Eq.(4.9)). Even
this simplified description of the classical subsystem does not affect significantly the
accuracy of the description as we will show in Sec.(8.3) for the test case we considered.
The condition of neutrality of the system imposes that qO = − 1

2qSi. The charge of
silicon ion is +2.4 e. The parameters for the short range interaction A,b,C are given
in Ref.[41]. This potential has been successfully applied to the study of the phase
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diagram of crystalline silica [244] and also provides a useful model of the amorphous
phase [235].

Performing a QM/MM calculation on silica requires the description of a ”pseu-
dobond” between an MM Si and a QM O, or, vice versa, between an MM O and a
QM Si. If, for example, the QM system is a six member ring, each Si atom will have
two dangling bonds, whose valence has to be saturated in some way. Several strategies
have been explored in the literature, for silica or similar systems, involving e.g. the
introduction of extra ”dummy” hydrogen atoms [245, 246, 247], or the ad hoc param-
eterization of a pseudo potential for the boundary atoms [63, 62, 60, 248, 249]. This
latter approach has been adopted, for instance,in the QM/MM scheme for silica of
Ref.[229]. We here propose a manner for capping the QM region that does not require
the introduction of extra atoms, and makes use of the ordinary pseudo potential also
for the boundary atoms. We choose the QM region in such a manner that the boundary
QM atoms are always oxygen atoms. The pseudo potential of these atoms (that from
now we indicate with O∗) is the ordinary one. To saturate the valence of the boundary
oxygen atoms we add one electron for each O∗, which would ideally come from the
neighboring MM Si. In order to enforce global charge neutrality, we change the ionic
charge of the boundary oxygen pseudo potential from 6 to 6.4. Hence, the total charge
of the QM system is (0.4− 1)nO∗ = −0.6nO∗ which is equal to the total charge of
the classical atoms that have been replaced by the QM atoms. In fact, in a system in
which all the silicon atoms are four-fold coordinated while all the O-atoms are two-fold
coordinated the number of boundary oxygens is given by nO∗ = 4nSi − 2nO, where
nSi, nO are the number of QM Si and QM O respectively. Therefore, since the charge
of classical Si and O are 2.4 and -1.2 respectively, the total classical charge of the QM
subsystem is indeed 2.4nSi − 1.2nO = −0.6 (+4nSi − 2nO) = −0.6nO∗ , equal to the
QM charge.

The total energy of the system depends variationally on the coordinates of the
quantum (rQMi ) and classical (rMM

i ) atoms and its functional form has been described
in Chap.(6).

We perform DFT calculation in the local density approximation (LDA), by using
Gaussian based pseudo potentials [118] with a DZVP atomic basis set and expanding
the electron density in plane-waves with an energy cutoff of 240 Ry.

The interaction energy term, EQM/MM is expressed as:

EQM/MM (rQM , rMM ) =
∑

i∈MM

qi

∫
dr

erf(
|r−rMM

i |
rc,i

)ρQM (r)

|r− rMM
i | +

∑

i∈MM
j∈QM

Vij(r
MM
i , rQMj )

(8.1)
where ρQM (r) is the total (electronic plus nuclear) charge density of the quantum
system. Eq.(8.1) corresponds to Eq.(6.2), but the Van der Waals interactions have

been replaced with a more general potential (Vij (r
MM
i , rQMj )).

All the classical steric and electrostatic interactions between QM atoms are set to
zero. Instead, a classical short range potential of the form (Eq.(4.9)) is introduced
between O∗ and the first classical silicon atoms. The parameters of the interaction are
obtained by performing a series of full QM calculations on a H3Si-O-Si-O-Si-H3 cluster
by varying the distance between the central Si and one of the two oxygen atoms while
keeping other angles and distances fixed (see Fig.(8.1)). This distance dependence has
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QMMM

O*Si

Figure 8.1: Structure of the small cluster used for the fitting of the short range potential between

the boundary O∗and the first classical silicon. The arrows indicate the Si-O bond elongated. Si, O

and H atoms are depicted in yellow, red, and grey, respectively.

then been fitted with the functional form (Eq.(4.9)). The parameters obtained with
this procedure are A=603935406. K, b=5.6077 Å−1, C=2244282. K/Å6. These values
are only slightly different from those of the van Beest, Kramer, van Santen potential.

In order to test the quality of our QM/MM model, we consider a big cluster of
α-quartz made by an integer number of SiO2 units saturated with hydrogens. The
system is divided in two regions, one treated within the ab-initio framework (QM
region), the second treated by a classical force field (MM region). In real applications,
the QM subregion should ideally be as small as possible for reasons of computational
efficiency. With this goal in mind, we benchmark our QM/MM model by considering
the structural properties of a 6-member ring embedded in MM SiO2 and the formation
energy of the neutral oxygen vacancy with QM subsystems of various size.

���:\ �k4#"�')?#4768'�$9*�$#,�6(���Å-�/102/3/ 4& # |=>$&4�5��
8.3.1 Geometry of the 6-member ring in α-quartz.

We first consider a rather small SiO2 cluster composed of 164 atoms saturated with
H atoms. This system is chosen because it can be optimized at the full QM level.
The QM region is a ring made by six member ring approximately at the center of
this cluster (see Fig.(8.2)). In order to reduce possible long range electrostatic effects
we optimized the charges of the classical H-atoms terminating the cluster in order to
reproduce the full QM dipole moment. The position of the H-atoms and of the Si and
O atoms connected to them are held fixed in the geometry optimization using both
the QM/MM or MM Hamiltonian.

The difference between the QM/MM and the full QM geometry is used as a measure
of the quality of the capping and of the QM/MM Hamiltonian.

By using the capping scheme described in Sec.(8.2), we perform a geometry opti-
mization of the system using the QM/MM Hamiltonian (Eq.(8.1)). The results are
shown in Fig.(8.3), in which the full QM, MM and QM/MM structures are superim-
posed. The differences between these structures are small, especially for what concerns
the QM subsystem. The value of the root mean square deviation (RMSD) between
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Figure 8.2: Structure of the cluster with a QM six-membered ring (depicted with spheres). The

color code is the same as in Fig.(8.1).

Figure 8.3: Superposition of the geometries obtained from a full quantum (blue line), a full classical

(red line) and a QM/MM optimization (green line).

the QM/MM and full QM geometries is computed for the QM subsystem, the full
cluster and the boundary atoms. The results are reported in Table (8.1).

For a comparison, we also considered capping schemes in which the valence of
the QM system is saturated by dummy hydrogen atoms. If the last QM atom is an
oxygen, the H is placed in the direction of the first MM Si. Hence, the QM subsystem
will be terminated by -OH moieties (Model ”OH”). If the last QM atom is a Si, the
H is placed in the direction of the first MM oxygen (Model ”H”). The RMSD for
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RMSD RING [Å] INTERFACE [Å] FULL [Å]

MM 0.248 0.254 0.199
QM/MM O* 0.183 0.221 0.196

QM/MM O-H 0.275 0.403 0.254
QM/MM Si-H 0.191 0.276 0.206

Table 8.1: RMSD of the MM structure and the QM/MM O∗, O-H, Si-H terminated with respect

to the QM structure in three different case: in case RMSDRING we compare only the 6SiO atoms

of the ring; in case RMSDINTERFACE we compare the positions of all the QM atoms and the MM

boundary atoms (for MM case we chose the same atoms of O* and O-H cases); in case RMSDFULL

we compare the positions of all the atoms.

these two models are also reported in Table (8.1). The ratio of the SiO/SiH bond
lengths for ”H” capping or the ratio OH/SiO for ”OH” capping have been fixed at
the values determined in a preliminary full quantum optimization. The model ”OH”
shows a large RMSD for both the ring and interface regions. This is due to a large
difference in the SiOH angle (115o) of the silanol with respect to the SiOSi angle
(145o) in α-quartz, as already pointed out by by Sauer et al in Ref. [228]. However
the ”OH” capping might perform better for small silica clusters with smaller SiOSi
angles [242, 243]. The model ”SiH” performs better than the ”OH” model, but still
show large deviation in the interface region. However, since we have not attempted to
reparameterize the short range potential at the interface as we did for the O∗ capping,
we must say that there is still room for improvement for the ”H” capping.

8.3.2 Formation energy of an oxygen vacancy in α-quartz.

We now consider the formation energy and the structure of the neutral oxygen va-
cancy defect in α-quartz. We use the experimental structural parameters: a=4.913 Å,
c/a=1.100 [250, 211]. Removal of an oxygen atom produces a relaxation of the
lattice with a formation of a Si-Si covalent bond, whose length is much shorter
than the equilibrium Si-Si distance in a perfect lattice (3.08 Å). Theoretical stud-
ies report that the equilibrium distance of the Si-Si bond is in the range 2.3-
2.6 Å[229, 251, 222, 252, 253, 227]. The predicted value is strongly affected by the size
of quantum system in cluster and periodic calculations. Also for the formation energy,
the values reported in literature depend significantly on the model (full QM cluster,
full QM periodic or QM/MM) and on the basis set. Boureau and Carniato [254]
found that the formation energy of the neutral oxygen vacancy must be larger than
7.3 eV from purely thermodynamic arguments. Density-functional-theory calculations
in periodic models give 6.97 eV [251], 7.85 eV[222], 9.6 eV[252] at the LDA level and
8.64 eV at the GGA level[252]. Hartree-Fock calculations on an isolated cluster give
6.7 eV and 5.5 eV with and without the d functions in the basis set and 8.5 eV in-
cluding correlation energy at the MP2 level [253, 227]. Sulimov et al. [229], using a
QM/MM approach with the QM region treated at the unrestricted Hartee-Fock level
(UHF), have obtained a formation energy of 6.08 eV with the 6-31G* basis set used,
which corresponds to ours.

They have also found that the formation of a Si-Si bond induces a strong anisotropic
relaxation of the lattice that extends up to 13 Å from the defect. They also find a
Si-Si distance of 2.32-2.40 Å depending from the basis set used (2.37 Å with a basis
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set equivalent to ours).
We compute the formation energy using the QM/MM Hamiltonian described in

Sec.(8.2), considering the effect of several factors that could influence the accuracy of
the calculation.

We first consider the effect of the size of QM subsystem, computing the formation
energy for the three QM subsystems shown in Fig.(8.4). The smaller system (9 atoms)

Figure 8.4: Structure of three different QM clusters used for the study of the oxygen vacancy.

(a) Si2OO∗6 , (b) Si8O7O∗18, (c) Si14O16O∗24. Si, O and O∗ are depicted in yellow, red, and green,

respectively.

is the O (SiO∗3)2 moiety. The oxygen atoms in the SiO∗3 groups are boundary atoms,
while the central O is removed to generate the vacancy. The average and large QM
subsystems are composed of all the SiO2 units within three and five bond separation
from the oxygen that is removed, i.e. 33 or 54 atoms, respectively. For all the three
cases, the QM subsystem is embedded in a classical cluster composed of 508 SiO2

units. The Si and the O atoms at the boundary of the classical cluster are saturated
by hydrogen ions of charges -0.6 and +0.6, respectively.

The vacancy formation energy is given by

∆Eform = E(O) +E(vacancy)−E(quartz). (8.2)

The energy of the isolated oxygen E (O) is obtained as E (O) =
1
2

(
E (O2) +Ediss (O2)

)
where E (O2) is the ab-initio total energy of the O2

molecule in the triplet state and Ediss (O2) = 5.16 eV is the experimental dissociation
energy of O2[255]. The correction due to the basis set superposition error (BSSE) is
about 0.1 eV. The results are shown in Table (8.2). We estimated the BSSE with
the counterpoise correction [256] separately for the three energy terms in Eq.(8.2) as
follows: i) the correction to perfect quartz is the difference in total energy due to the
addition to the basis set of a ghost oxygen atom which forms a O2 molecule with the
oxygen removed in the vacancy formation; ii) E(O) is calculated with a full basis set
of i); iii) the correction to the E(vacancy) is obtained by using the full basis set of i)
in the unrelaxed vacancy configuration.

We have also checked the dependence of the geometry and formation energy on the
basis set by performing additional calculations on the smaller cluster (Si2OO∗6) with
the TZVP and TZV2P basis sets. The results are reported in Table (8.3) and show
that the DZVP basis set is accurate enough for structural properties, but formation
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dist Si-Si [Å] ∆E [eV] ∆ECP [eV]

QM+MM regions: 1764 atoms
(A) Si2OO∗6 2.35 7.34 -0.11
(B) Si8O7O∗18 2.36 7.31 -0.12
(C) Si14O16O∗24 2.40 7.36 -0.13

QM+MM regions: 773 atoms
(B) Si8O7O∗18 2.35 7.36 -0.12

Table 8.2: Si-Si bond length, vacancy formation energy (∆E) and the counterpoise correction

∆ECP (included in ∆E) for different size of the QM and MM regions. The DZVP basis set has been

used.

dist. Si-Si [Å] ∆E [eV] ∆ECP [eV]

DZVP 2.35 7.34 -0.11
TZVP 2.34 7.44 -0.08
TZV2P 2.34 7.91 -0.07

Table 8.3: Si-Si bond length, vacancy formation energy (∆E) and the counterpoise correction

∆ECP (included in ∆E) for different basis sets.

energies change sizably with the basis set as already found in Hartree-Fock calculation
with smaller basis sets in Ref [229].

As a final remark, we note that for a crystalline system the Madelung field in
the quantum region would strongly depend on the value of the classical charges in
the MM region. Different MM models with different charges might provide similar
bulk properties, e.g. bulk structure of the glass, along with different local Madelung
fields. Therefore, particular care must be paid in using QM/MM when the properties
of charged defects are addressed, e.g. the heterolytic breaking of a siloxane bond. The
QM/MM scheme we propose is expected to correctly describe the elastic response of
the of the system surrounding the quantum region. Its applicability to study of any
other local properties of the quantum region which would depend on the details of
the Madelung field must be carefully checked. In this respect, the BKS potentials
we have used is probably better than others available in literature also in describing
the local Madelung field since the classical charges are fitted on ab-initio data. In
our benchmark application the vacancy is a neutral defect and the problems outlined
above are probably less severe. To check further this point, we have computed the
formation energy of the unrelaxed oxygen vacancy in model B (Cfr. Table (8.2))
by changing the charge of classical silicon from 2.4 (BKS) to several values in the
range 1.6-3.6. The charges of the hydrogen atoms capping the MM cluster and of
the boundary quantum oxygen atoms have been scaled accordingly. It turns out that
the change in the formation energy of the unrelaxed oxygen vacancy is always smaller
than 20 meV.

8.3.3 Molecular dynamics

In order to check the validity of our setup we have performed molecular dynamics
simulations of the QM/MM system of size 8/1764 starting from the structure of the
defect (Si2O∗6) optimized with the DZVP basis set. We have first equilibrated the
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system at high temperature (1000 K) by velocity rescaling for 0.3 ps. Observables
are measured by averaging over a run 10 ps long. The time step used in the velocity
Verlet algorithm is 0.5 fs. In Fig.(8.5)a, we report the fluctuation in the potential
energy and the total energy, constant of motion, of our microcanonical simulation.
The fluctuation in the constant of motion is two order of magnitude smaller than the
thermal fluctuations in the potential energy which prove the robustness of our scheme.
The Si-Si bond is stable and undergoes stretching deformation with a characteristic
frequency that we have identified by Fourier transforming the autocorrelation function
< Ṙ(t)Ṙ(0) > where Ṙ(t) is the instantaneous Si-Si bond vector. The correlation
function is computed up to 2.5 ps by averaging over three independent sections of
a run 10 ps long. The results are well converged up to 0.3 ps. For longer times,
a longer simulation run would be needed. The autocorrelation function is therefore
windowed with a Fermi-Dirac function which smoothly brings < Ṙ(t)Ṙ(0) > to zero
above 0.25 ps. The resulting power spectrum is shown in Fig.(8.5)b. The peak at
∼20.5 THz corresponds to the main stretching mode of The Si-Si bond. Its position
in frequency (20.5 THz) compares well with that of the Si-Si stretching mode of the
disilane molecule H5C2OSi-SiOC2H5 we have identified at 21.3 THz from a molecular
dynamics simulation 2.2 ps long at 300 K or at 22.4 THz from the diagonalization
of the dynamical matrix computed within linear response theory [257] with the code
CPMD [171, 258]. The peak at 20.5 THz is also in good agreement with a prominent
structure in the vibrational spectra of the Si-Si bond which emerges from the difference
in the vibrational density of states, computed fully ab-initio (LDA) in Ref.[259], for
two periodic models (36 atoms large) of α-quartz with and without the oxygen vacancy
(see Fig.1 of Ref.[259]). The computational load for the molecular dynamics simulation
on a single Opteron processor (2.2 GHz) is 28 hours/ps for the small quantum cluster
(Si2O∗6) and 72 hours/ps for the larger cluster (Si8O6O∗24) both with a classical cluster
of 1764 atoms.

���po ¬{$9*�5|"p��%(')$+*
We have presented a QM/MM scheme for silica which is implemented in the general
QM/MM framework, presented in this thesis. The capping of the QM region consist of
boundary oxygen atoms with a modified charge to enforce total charge neutrality. The
quantum cluster in quickstep is treated at the DFT level by expanding Kohn-Sham
orbitals in GTOs and the charge density on an auxiliary plane waves basis set. The
combination of the QM/MM method with a localized basis set scheme for the descrip-
tion of the quantum region, allows local structures in silica to be described accurately
with small quantum clusters and at a low computational cost. This scheme makes
long molecular dynamics simulations, needed for instance to simulate local chemical
reactivity, easily affordable. The method has been tested calculating structural and
dynamical properties of an oxygen vacancy in α-quartz. We have found that good
convergence in the Si-Si bond length and formation energy is achieved by using a
quantum cluster as small as eight atoms in size.
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Figure 8.5: Potential energy (Epot) and total energy (Etot) as a function of time in the molecular

dynamics simulation. b) The power spectrum of the velocity-velocity autocorrelation function for the

Si-Si bond length only (see text).



Chapter 9

Migration of positively charged
defects in α-quartz

In this chapter we apply the QM/MM method presented in Chap.(7) and validated in
Chap.(8) to model the migration of charged oxygen defects in α-quartz. We simulate
the transition mechanism and compute the potential energy surface for the puckering
of the symmetric charged oxygen vacancy and the formation of the E′1 center. By
overcoming low energy barriers this puckering mechanism can be reiterated allowing
the drift of the positive charge localized on an over-coordinated oxygen atom. This
process enhances the stability of the E′1 center and can be regarded as an important
channel of structural reorganization of oxygen deficient silica in the presence of strong
polarizing electric fields.

Ú���� ��*768=>$9?2��5m68')$+*
As we have seen in Sec.(8.1), silicon dioxide is a material of prime importance in
microelectronics and fiber optics. Many of the peculiar properties that make silica
such an interesting and versatile material are determined by the presence of defects
and impurities. Defects strongly affect the performances of silica as a dielectric in
transistors, being responsible for current leakage, but they are also held responsible
for some phenomena that are positively exploited in optical fibers, such as photosensi-
tivity, which stands behind the writing of photoinduced Bragg gratings [260] and the
generation of second-order non-linear response [261] achieved by poling. The underly-
ing microscopic mechanisms of both these phenomena are still mainly unknown, but
they are related to structural rearrangements of the SiO2 network in correspondence
of defects. Among the defects that have a remarkable effect on photosensitivity and
poling in silica, it was recently pointed out the role of oxygen deficient centers [262].
Neutral oxygen vacancies in silicon dioxide consist of a covalent bond between two sil-
icon atoms. Upon ionization, the Si-Si bond is weakened and the remaining unpaired
electron is delocalized between the two silicon atoms [SiSi+]. This configuration is
commonly associated with the ESR signal of the E′δ which is observed in amorphous
silica [263, 224]. On the other hand no experimental evidence of this defect has been
found in α-quartz so far, which suggests that it is not thermodynamically stable in
the crystalline environment as argued in Ref. [264]. In fact, the positively charged
oxygen vacancy (OV+) can undergo an asymmetric relaxation that localizes the un-
paired electron on a three-fold coordinated silicon atom and the hole on the other one.
The positively charged silicon atom reverts back and forms an elongated electrostatic
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bond with a bridging oxygen of the surrounding network, turning into a puckered
configuration. This configuration ([Si(3)+O(3)+]) consists of a silicon dangling bond
and an over-coordinated oxygen atom and is unanimously related to the ESR signal
of the E′1 center [212, 213, 214, 215, 216, 217, 218]. The correspondent structure in
amorphous silica is dubbed E′γ center.

Given that it is one of the most abundant point defects in silica and its importance
in the degradation of the performances of the gate oxide in transistors, the charged
oxygen vacancy has been the subject of a large number of calculations [264, 223,
220, 221, 222, 223, 224, 265, 266, 267, 225, 226, 227]. In particular recent studies
[220, 264] showed that the positive vacancy is stable only for Fermi levels that lie
nearly 3.3 eV above the valence top band of α-quartz. Hence the positive oxygen
vacancy in the configuration [Si(3)+O(3)+] can be efficiently created by irradiation
followed by a thermal relaxation or with hole injection techniques. Computationally a
partial disagreement is found in literature as for the relative energies of the two defect
configurations. Blöchl [220] shows that the [SiSi+] and the [Si(3)+O(3)+] defects are
nearly isoenergetic, with the [Si(3)+O(3)+] more stable by 0.04 eV, while Boero et
al.[223] predicted [Si(3)+O(3)+] to be more stable by 0.3 eV. This partial disagreement
has been justified with the use of different exchange-correlation functionals in the DFT
calculations, in particular Boero et al.[223] used a local density approximation (LDA)
[268] as opposed to Blöchl using a gradient-corrected functionals [124]. The Barrier
of the conversion E′δ - E′1 has been calculated [220] to be 0.38 eV, in agreement
with Boero et al.[223]. Other quantum chemical studies [224] predict [Si(3)+O(3)+]
to be more stable by 0.64 eV with a barrier between the two defects of 0.38 eV.
Unfortunately the structures of these cluster calculations differ sizably from the DFT
based calculations [223, 220] possibly due to the use of Hartree-Fock for computing
optimized geometries. As this defect is known to generate an important strain field
in the silica matrix [230, 229, 269] we argue that the way the boundary conditions
are treated can be another very important source of discrepancies in the calculation
of the energetics.

From the barrier of 0.38 eV for the transition between [SiSi+] and [Si(3)+O(3)+],
one would expect to see both configurations in about equal concentrations, whereas in
isochronal annealing studies, performed on amorphous silica, the E′γ center apparently
anneals at much higher temperature than E′δ [263]. Thus there is still an open issue
related to the apparent higher stability of the E′γ center compared to the E′δ. Blöchl
[220] suggested that the concentration measured in isochronal annealing experiments
does not only reflect thermal stability, but also a possible charge transfer process that
makes the defect ESR invisible. The arguments used to validate this speculation are
mainly based on relative stability of the electronic levels between the oxygen charge
and neutral vacancy defects. In fact, the charging level of E′δ lies 1.38 eV below the
silicon mid-gap, where it can capture electrons from other filled defect states or the
contacts while the charging level of E′γ lies 0.68 eV above it.

Starting from an ionized OV, and relying on the validation of the QM/MM method
presented in this thesis (see Chap.(7) and Chap.(6)), we compute the migration path
and the potential energy barrier for the puckering and formation of an E′1 (known
as E′γ in amorphous silica) center and a three-fold coordinated oxygen atom. The
QM/MM approach employed here allows for an accurate description of the defect-
induced strain field in the crystal, which provides a better estimate of the energetics
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of the defects configurations with respect to previous published results[223, 220].
Here we propose an alternative mechanism, based on the migration of the three-

fold coordinated oxygen atom through the quartz pattern, that concurs to stabilizing
the E′1 over the E′δ. On the basis of our computational evidences, we propose that once
the E′1 center is formed, it can easily access a large number of states, we will call E?1,
ESR similar to the E′1, characterized by a migration of the three-fold oxygen defect
through the crystal. Moreover we propose for the first time a process of structural
rearrangement in silica associated to a directional charge migration, which does not
involve the existence of ionic impurities. Since this process is accompanied by the drift
of the positive hole, we suggest that the puckering mechanism can be substantially
enhanced by the application of an external electric field, resulting in a migration of the
positive charge assisted by the migration of the three-fold coordinated oxygen atom.
These concepts can be extended to amorphous system except for directionality which
is peculiar of the quartz crystal. Although the study of the amorphous system would
be technologically more relevant, it would have required a statistical analysis, which
is unaffordable to present day computer resources. We have therefore chosen to study
defect transformations in α-quartz which saves us from sampling over a large amount
of different sites.

Ú��:� /���6(��$9?#%
We have performed QM/MM geometry optimizations, molecular dynamics and opti-
mization of reaction path to describe quantitatively the energetics along the coordinate
linking the E′δ, E′1 and E?1. The calculations presented are based on results presented
in Chap.(7) and Chap.(6). A DFT [86, 87] level of theory with local spin density
(LSD) approximation to treat the open shell system is used for the description of the
quantum region. The exchange-correlation functional employed in the overall calcu-
lation is PBE [270, 124] and a cutoff of 250 Ry is used for the expansion of the QM
electronic density. The classical force field used to describe the MM system subsystem
is the van Beest, Kramer, van Santen (BKS) potential [41] already extensively tested
for QM/MM simulations of α-quartz (see Chap.(8)). All calculations have been per-
formed with the CP2K package. The wave function optimization is performed by the
quickstep algorithm [85] using a dual basis set (BS): a Gaussian BS to construct the
Hamiltonian core matrix and a plane wave BS to evaluate the exchange-correlation
and Hartree potential.

The MM quartz crystal made of 5184 SiO2 units (15552 atoms) in an orthorombic
cell with lattice constants of 49.94, 57.66 and 63.49 Å is optimized using the BKS pair
potential[41] which provides a reliable description of bulk α-quartz. After removal of
an oxygen atom, a portion of 159 atoms was chosen in order to surround the OV defect
and to suitably describe the motion of the defect through the crystal Fig.(9.1). The
oxygen boundary atoms is described with a core charge increased by 0.4 e in order
to maintain the neutrality of the overall system. The link between the QM and the
MM region is the performed through the use of modified pseudo potential as already
described and extensively tested in Sec.(8.2).

The QM/MM potential is efficiently computed exploiting the Gaussian expansion
of the electrostatic potential (GEEP) scheme (see Sec.(6.2.1)). The long range electro-
static term in the QM/MM coupling scheme is essential to treat properly the quantum
properties of the QM subsystem in ordered structures like α-quartz. The inclusion of
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Figure 9.1: Structure of the QM fragment embedded in the MM crystal. Atoms involved into the

migration of the charged OV are depicted with bigger dots

the periodic boundary conditions in the evaluation of the SCF perturbing MM external
potential is achieved introducing a reciprocal space term of the MM electrostatic po-
tential through a modified Ewald scheme (see Chap.(7)). Moreover the QM subsystem
is coupled itself to its periodic replicas as explained in Sec.(7.2.3). QM/MM geometry
optimizations have been performed on the three local minima identified with the de-
fects E′δ, E′1 and E?1 Fig.(9.2). Once defined the structure of the three local minima,
we have performed a full mapping of the energetics of the reaction path going from E′δ
to E?1 passing through E′1. The reaction path has been computed with a nudged elastic
band calculation [271, 272, 273] using the module implemented into the CP2K code.
The optimization of the band has been performed by a coupled steepest descent/DIIS
procedure with a tolerance of 0.001 a.u. on gradients.

Ú��:\ Æu�7%��#"D6w%K4#*�?�?�')%c5���%c%('�$9*
9.3.1 Equilibrium Geometries

Performing geometry optimization of a neutral OV, created by removing an oxygen
atom from a QM fragment of the fully optimized MM crystal,a covalent bond is formed
between the two silicon atoms with a length of 2.34 Å. When an electron is removed
from the system this covalent bond is weakened and the distance between the two
silicon atoms increases to 2.85 Å. We have verified that this structural conformation
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Fig.(9.3-a), identified with the (E′δ) center, is stable in a MD run of 5.0 ps long at
room temperature (398K).

(A) (B) (C)

Si(1)
Si(1)

Si(1)

Si(2)

Si(2)

Figure 9.2: Locally stable structures of the positively charged oxygen vacancy: the symmetric

charged OV (E′δ)(panel A), the puckered configuration (E′1) with the positive charged localized on

the three-fold coordinated oxygen (B) and the configuration obtained after the migration of the

three-fold coordinated oxygen (E?1)(C). Large spheres represent silicon atoms while smaller ones are

oxygen atoms. The arrows indicate the three-fold coordinated oxygens in panels (B) and (C).

Another locally stable structure is obtained by puckering one of the silicon atoms[223,
220] Fig.(9.3-a) and Fig.(9.3-b). In qualitative agreement with Ref.[223, 220], we find
that this configuration, identified as the E′1 center, is more stable than the initial
[SiSi+] conformation, being the relative total energy difference 0.18 eV. The quanti-
tative disagreement in this stabilization energy with respect to previously published
data (0.04 eV [220] and 0.30 eV in [223]) may be due to different reasons. As in [220]
we performed all calculations using a gradient-corrected exchange-functional, while
Boero et al. [223] were using plain LDA. Another source of difference may be repre-
sented by the open shell DFT treatment, however in previous works it was shown that
geometries and energies of the E′γ center in amorphous silica do not change switching
from LDA to LSD [274]. The largest source of discrepancy between our work and
the previous ones is certainly that the QM/MM scheme allows large systems to be
simulated, thus providing a more realistic treatment of the defect induced strain field,
which can extend for up to five coordination shells in the case of oxygen deficiency cen-
ters [230, 229]. In addition, the system size used in [223] and [220] is also too small to
avoid a strong interaction between the charged periodic replica, while in our case the
QM charged system interacts with a periodicity that is the one of the full MM crystal
(≈ 60 Å against ≈ 10 Å) and the periodic interaction is screened by the presence of the
MM charge distribution. Interestingly, while performing geometry optimization of the
puckered configuration we found two isoenergetic local minima (see Fig.(9.3-b) and
Fig.(9.3-c)), differing slightly in the coordination distances of the three-fold oxygen
atom. In particular the distance of this oxygen from the puckered Silicon can change
of 0.1 Å from one minima to the other. In this latter configuration two of the three
distances Si-O around the three-folded oxygen atom are almost equivalent, while the
third is constantly 0.1 Å smaller.
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Figure 9.3: These frames show the relevant bond distances for the several optimized geometry

structures at QM/MM level. For clarity reason only atoms involved in the migration of the OV

defects are shown. Frame Fig.(9.3-a) shows the E′δ , obtained relaxing the OV after charging the

defect. Frame Fig.(9.3-b) and Fig.(9.3-c) show two local isoenergetic minima of the E′1 defect. the

two structures differ of few picometers in the bond distances around the three-fold oxygen atoms.

The last frame Fig.(9.3-d) shows the migrated defect, called in this work E?1 .

(a) (b)

(c) (d)

The equivalence between these two bonds suggest that the puckering mechanism can be
iterated. By breaking a pre-existing Si-O bond around the over-coordinated oxygen
the dangling bond of the silicon atom reverts back and binds to another bridging
oxygen which becomes 3-fold coordinated Fig.(9.3-d), what we call in this thesis E?1.
This transformation is accompanied by the migration of the positive charge that moves
farther apart from the paramagnetic silicon center as it gets localized on the newly
formed 3-fold coordinated oxygen atom.

Also for this structure, here labeled E?1, we highlight the presence of two longest
bonds around the new three-fold oxygen atom involving the recently puckered Silicon
and the Silicon atom having the right geometrical characteristic to perform a new
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puckering motion. The E?1 Fig.(9.3-d) is less stable than the original E′1 by 0.41 eV,
but as the process can be iterated until another point defect is found, there is a large
number of such configurations available, which are indistinguishable from the pristine
E′1 defect 1. This makes the ensemble of these metastable states relevant to the kinetics
and thermodynamics of defects in α-quartz and possibly in amorphous silica, in spite
of the higher formation energy. For example if we have a concentration of E′ centers
of 1015/cm3, there are ∼ 106 available migration sites, with a relative chance of being
populated with respect to the E′δ equal to P (E?1 )/P (E′δ) = e−∆E/kT each. Given the
energetics reported above, at room temperature this ratio is 10−3, which multiplied
by the number of available E?1 sites, gives a relative population of the E?1 103 times
larger than the E′δ and similar to the E′1 . Increasing the temperature or reducing
the defect concentration moves this balance even more on the side of the E?1. The
migration path is predetermined to be helical on the basis of quartz chirality, since
only 2 out of the 3 silicon atoms coordinating the oxygen atom have a neighboring
oxygen atom at ≈ 3.0 Å on which the puckering leads to a metastable structure.

9.3.2 Migration path energy profile

Using the above mentioned optimized structures we have performed a nudged elastic
band (NEB) [271, 272, 273] optimization of the transition path to describe the energet-
ics of the migration of the defect from E′δ to E?1 through E′1. The calculation has been
performed using the NEB module as implemented in CP2K , interpolating 16 more
images between the 4 optimized geometries, in order to have all images roughly at the
same distance. A spring constant of 0.03 a.u. was used to describe the spring force
between replicas together with the IT-NEB [273] algorithm to avoid the formation of
kinks. A coupled steepest descent/DIIS optimization has been used to optimize the
band. The 20 replicas used to describe the full migration path were computed using
64 processors per replica (1280 processors in total) and the optimization procedure
required 188 optimization steps to achieve the convergence criteria on gradients (0.001
a.u.). The full band optimization required 200K cpu hours to be completed.

The optimized energy profile is shown in Fig.(9.4) and it clearly shows that defects
E′δ and E′1 are separated by a barrier of 0.14 eV, value smaller than the one reported
by [223, 220] of 0.38 eV. Same considerations done for the optimized energies holds
for the quantitative disagreement between this work and the previous ones [223, 220]
regarding transition state energies. Moreover defects E′1 and E?1 are separated by a
barrier of 0.59 eV, that can be relatively easily overcome even at room temperature.
The barriers between E?1 states are expected to be even lower, so that the puckering
mechanism can continue along the crystal pattern.

1We argue that the E?1 structure cannot be distinguished from the E′1 by ESR, as the influence

a positive charge at more than 4-5 Å on the spin localization on the three fold coordinated silicon
atom is negligible.
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Figure 9.4: Optimized energy path from E′δ to E?1 through E′1.

9.3.3 Charge analysis and energy levels

The charged oxygen deficient centers studied all over this chapter are open-shell sys-
tems. In order to validate the results obtained we checked that the self-interaction
error [268, 275] in this system was not a vitiating source of error. Indeed the analysis
of the spin-density shows that it is very localized around the under-coordinate silicon
atom. This confined spin-density reflects in a negligible error due to the interaction
of the electron with itself.

It’s interesting to note that the migration of the three-fold coordinated oxygen
is tightly couple to the migration of the positive charge. The population analysis
is a by-product of the coupling/decoupling scheme. In fact the charged used to re-
store the proper periodicity for the QM system [210] (see also App.(C)) reproduce
correctly the amount of charge present on each atom [210]. A Löwdin population
analysis was performed for comparison and results for both methodologies were quite
in good agreement. In the defect E′δ the positive charge is delocalized between the
two silicon atoms. After the first puckering the positive charge is mainly localized
over the three-fold oxygen atom (+0.49 e) with a small delocalization over the Silicon
atoms surrounding the oxygen (+0.17 e), while the unpaired electron is located on
the under-coordinated silicon atom. The same behavior is observed for the defect E?1,
the positive charge being totally localized around the three folded oxygen atom, with
a main localization over the oxygen itself (+0.64 e). An interesting aspect is also
provided by the energy level of the unpaired electron.
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Figure 9.5: This picture shows the energy levels of the unpaired electron along the optimized path

from E′δ to E?1 through E′1.

In Fig.(9.6) we have shown the density of states (DOS) for the three configurations,
providing different DOS for α and β spin. The DOS was obtained averaging the states
levels during 5 ps of MD simulation at 398K (all configurations were stable during a
microcanonical MD at 398K for the simulated time of 5 ps). It is unmistakable from
this picture that the energy level of the defect rises going from E′δ to E′1 and then E?1
(see Fig.(9.6-a), Fig.(9.6-c) and Fig.(9.6-e)). Going into details, in Fig.(9.5) we show
the energy level of the defect along the optimized migration path, the zero being the
energy level of an electron in the top valence band. As we can see the energy level
increases along the migration E′δ → E?1. The energy level of E′1 is higher of 1.95 eV
with respect to E′δ and roughly equivalent (0.1 eV smaller) than E?1. Both qualitative
and quantitative picture of the energy levels totally agree with previously reported
calculations [220].

Ú��po ¬{$9*�5|"p��%(')$+*�%
In this chapter we studies the migration path of oxygen charged defects in α-quartz.
On the basis of transition state energies and equilibrium stability we conjecture that
the well known process going from defect E′δ to E′1 can take place in an iterative way
along the crystal path leading to a charge migration far from the OV site, provid-
ing an alternative explanation to available controversial experimental data [263]. In
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fact, the low potential energy barriers computed for both processes (<0.6eV) suggest
that the positive charge can easily migrate during the thermal annealing and several
equivalent states can be populated providing the same E′1 ESR signal. After annealing
only configurations where the paramagnetic center and the 3-fold coordinated oxygen
are close to one another can easily recombine to the energetically more favored E′δ
structure, while if the positive charge migrates farther apart recombination will be
unlikely to happen. Therefore our result provides a convincing explanation for the
apparent higher stability of the E′1 center. In the presence of an external electric field,
as in the case of poling, this mechanism would be enhanced, providing a viable path
to a permanent structural modification associated to the drift of positive charges.
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Figure 9.6: These frames show the density of states, divided between spin α and β, of the three

configurations: E′δ , E′1 and E?1 . In particular the comparison between frames Fig.(9.6-a), Fig.(9.6-c)

and Fig.(9.6-e), shows that the energy level of the defect increases in energy going from E′δ to E′1 and

E?1 . The Energy level of the defect is not identifiable for E′δ (see Fig.(9.6-a) and Fig.(9.6-b)) while

for E′1 and E?1 it can easily identified at 0.09-0.1 Hartree from the top valence band (see Fig.(9.6-c)

and Fig.(9.6-e)). For completeness also the density of states of the spin β have been provided.
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Chapter 10

Conclusions

The QM/MM studies performed in the last 30 years demonstrated the importance of
the protein environment for a correct theoretical description of an enzymatic reaction.
At the same time they permitted to increase the length scale of the simulation to
examine long-range strain around a defect or crack in a solid or a crystal.

Combining QM and MM methods by applying them to separate subsystems with
a boundary in physical space is nowadays very natural, and it is safe to say that it is
now a permanent part of the theoretical toolbox. However, there is still ample space
for developing more accurate, robust, cost-effective and easy-to-use implementations.

In this thesis we presented an algorithm named GEEP (Gaussian Expansion of the
Electrostatic Potential, see Sec.(6.2.1)) used to evaluate the QM/MM electrostatic
coupling term with a fast linear scaling implementation. The main result is the drop-
ping of the prefactor in the linear scaling, with a gain in the number of floating point
operations proportional to 23(Ngrid−1), where Ngrid is the number of grid levels used
in the multi-grid framework. The cost of the evaluation of the electrostatic potential
on a grid is proportional to the number of MM atoms times the number of grid points.
In real systems the linear scaling evaluation of the potential is therefore characterised
by a prefactor ≈ 106. In this scheme the prefactor is instead rarely larger than ≈ 103.
The number of floating point operations is reduced by several orders of magnitude
and the computational time is 10-100 times smaller.

Furthermore, we extended the GEEP algorithm in order to describe fully periodic
potentials (see Chap.(7)), leading to a proper treatment of the QM/MM electrostatic
coupling in condensed matter systems (crystals). This extension is designed in order
to include the effects of periodic boundary conditions into hybrid QM/MM descrip-
tions without the use of spherical truncation schemes in treating the electrostatics.
The periodic boundary conditions scheme preserves the linear-scaling property of the
GEEP technique and is computationally efficient, leading to no additional overhead
with respect to the evaluation of the QM/MM electrostatic potential with a trunca-
tion scheme using a spherical cutoff. Preliminary tests showed that the use of periodic
boundary conditions together with a proper treatment of the long-range interactions
is required for ordered systems, unless a careful truncation scheme with a preliminary
optimisation of the shape and dipole of the MM environment is used.

All the presented algorithms have been implemented into the freely available CP2K
package [84].

Finally a validation of a QM/MM approach for silica-based system has been pre-
sented (see Chap.(8)). We tested the QM/MM approach on small SiO2 clusters in
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order to probe the quantum description, the classical potential and the QM/MM inter-
action between the two subsystems. Relying on this validation scheme we investigated
the migration of E′1 defects in SiO2 (see Chap.(9)), providing a new interpretation to
ambiguous experimental data. Between the charged oxygen vacancy defects two of
them were object of our studies E′δ and E′1, experimentally known to be connected
through a very small barrier (≈ 0.2eV ), easily overcome at room temperature. Hence
one would expect to see both configurations in approximately equal concentrations,
whereas in isochronal annealing studies the E′1 center apparently anneals at much
higher temperature than E′δ. One proposed explanation to this dilemma takes into
account the easiest possibility of the E′δ center to be discharged and consequently to
disappear due to their conversion into neutral oxygen vacancy.

In this thesis we propose a different interpretation. Performing QM/MM simula-
tions we show that at room temperature a feasible dynamical channel exist for the
depletion of E′δ defects, consisting in a migration of the E′1 center. The computed bar-
riers for this migration process are ≈ 0.60eV consistently with the physical phenomena
observed at room temperature.

Approximately 200.000 cpu hours have been dedicated to the computation of the
potential energy profile of the migration path. Beside this, a lot of human efforts has
been invested in optimising algorithm and improving them, relying constantly on the
idea of free software: sharing knowledge with people that either modify or use what
you make available to the scientific community. Ideally, the results obtained in this
thesis will be interesting, engaging, and who knows maybe life changing for few!



Part V

Appendices





AppendixA

Gaussian Distributions
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Gaussian product rule is probably the most important tool in computational chemistry
and physics. It can be expressed in the following way:

exp−a(x−xa)2 · exp−b(x−xb)
2

= exp−
ab
a+b (xa−xb)2 · exp−(a+b)[x−axa+bxb

a+b ]2 (A.1)

�Ü�:� ¬{$9�#"r$9d�v±��*76M�!=>4�5¯6}')$+*���*76w�7�2=>4#"�%
Computational chemistry and computational physics applied to molecules have a com-
mon big challenge: a fast computation of coulomb integrals (both in a plane wave for-
malism and in a localized basis framework, all integrals (1- and 2- electrons integrals)
can be reduced to a coulomb interaction integral).

Coulomb integrals cannot be expressed in a close analytical form. Usually, error
function or a Boys function is used to represent them. The Coulomb integrals represent
the interaction between two charge distributions ρp:

Vpq =

∫ ∫
d3rd3r′

ρp(~r)ρq(~r
′)

|~r −~r′| (A.2)

We are interested in the computation of the Coulomb terms with a Gaussian type
charge distribution

ρp =
Zp

(Rcp)
3
π−

3
2 exp


−

(
|~r − ~Rp|
Rcp

)2

 (A.3)

Once you know how to compute Vpq you can construct nuclear-nuclear repulsion
integrals, nuclear-electron attraction integrals (by setting one charge distribution to
a point charge and the other one to a certain Z value, taking care of the shielding
effect of the inner core electrons, whenever pseudo-potentials are used). We use the
following representation of the r−1

12 operator:

1

r1 − r2
=

1√
π

∫ +∞

−∞
exp−[~r1−~r2]2t2 dt (A.4)

This is used to compute the potential at point ~rc generated by charge distribution
ρp(~r)



110
  L 
 W¡W � L � � � W ����� l�
���� ��� W

Vp(~rc) =

∫
d3r

ρp(~r)

|~r −~rc|
(A.5)

Using the Gaussian product rule and setting for shortness

Cp = −Zp
(
βp
π

) 3
2

, (A.6)

βp =
1

(Rcp)
2

(A.7)

it is easy to show that

Vp(~R) =

∫
d~r

∫ +∞

−∞
dt

{
Cp√
π

exp

„
−(βp+t2)(r−R0)2− βpt

2

βp+t2
(~R−~rp)2

«}

=
Cp√
π

∫ +∞

−∞

(
π

βp + t2

) 3
2

exp

„
−βp(~R−~r)2 t2

βp+t2

«

dt

=
2Cp√
π

∫ +∞

0

(
π

βp + t2

) 3
2

exp

„
−βp(~R−~r)2 t2

βp+t2

«

dt (A.8)

where ~R0 =
βp~rp+t2 ~R
βp+t2 . This remaining integral can be solved by applying the

substitution

u2 =
t2

βp + t2
, dt =

βp

(1− u2)
3
2

du (A.9)

The integration limits change in t = 0 → u = 0, t = ∞ → u = 1. With these
modifications we get

Vp ~R =
2Cpπ

βp

∫ 1

0

exp−βp(~R−~rp)2u2

du

=
2Cpπ

βp
F0(βp(~R −~rp)2) (A.10)

where F0 is the Boys function of the first order [276] [277].
The last equation can be expressed with the help of the error function:

F0(x) =

√
π

4x
Erf(
√
x) (A.11)

Erf(x) =

∫ x

0

exp−t
2

dt (A.12)

Once we have the potential Vp(~r), we can compute the actual interaction matrix
element Vpq from the integral
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Vpq =

∫
Vp(~r)ρq(~r)d~r

= 2ZpZq

√
βp
π

(
βp
π

) 3
2
∫
d~r

∫ 1

0

dt exp−βp(~r−~rp)2t2 exp−βq(~r−~rq)
2

(A.13)

Using the GPR to get a form appropriate for integration over all space:

Vpq = 2ZpZq
√
βpπ

(
βp
π

) 3
2
∫
d~r

∫ 1

0

dt exp
− βqβpt

2

βq+βpt2
(~rp−~rq)2

exp−(βpt
2+βq)(~r−~R0)2

(A.14)

Integration over space gives

Vpq = ZpZq
2β

1
2
p β

3
2
q

π2

∫ 1

0

dt exp
− βqβpt

2

βq+βpt2
(~rp−~rq)2

(
π

βq + βpt2

) 3
2

(A.15)

Trying the following substitution, similar to the one used previously but with a
small hint to shorten the transformation

u2 = t2
βq + βq
βq + βqt2

, dt =
(βq + βq)βq

[βq + βp(1− u2)]
3
2

du (A.16)

One obtains after applying this substitution, the interaction energy of two charge
clouds distribution, as a function of the relative mean point distribution ~rq and ~rp

Vpq = ZpZq
2√
π

√
βpq exp−βpq(~rp−~rq)

2

, βpq =
βpβq
βp + βq

=
1

(Rcq)
2 + (Rcp)

2
(A.17)

A slightly simpler form is obtained where error function is used

Vpq = ZpZq
1

|~rp −~rq |
Erf
(√

βpq |~rp −~rq |
)

(A.18)

Observe that

lim
rpq→0

Vpq = 2ZpZq

√
βpq
π

(A.19)





AppendixB

Efficient mapping of product
Gaussian on the real space grid

The transformation of the atomic orbital based density matrix to an electron density
on a real space grid, and the complementary operation, i.e. the computation of matrix
elements given a potential on a real space grid are important operations in the GPW
method. This step needs to be performed at every SCF cycle, and might contribute
significantly to the overall execution time of the algorithm. However, a Gaussian basis
set allows for techniques that reduce the cost of this operation significantly if regular
orthogonal grids are employed. The described algorithm has a computational cost for
computing integrals involving Cartesian Gaussian that scales effectively linearly in the
l quantum number.

A first step in the algorithm is the transformation of the atomic orbital basis into
primitive Cartesian Gaussian

gηlxly lz(r) = xl
x

exp(−ηx2)yl
y

exp(−ηy2)zl
z

exp(−ηz2). (B.1)

The product of two primitive Gaussian gηalxal
y
alza

(r−A) and gηblxb l
y
b
lz
b
(r−B) is a Carte-

sian factor multiplied by a single Gaussian with center

P =
ηaA+ ηbB

ηa + ηb
, (B.2)

exponent ηp = ηa + ηb, and prefactor

exp(− ηaηb
ηa + ηb

|A−B|2). (B.3)

Based on this exponent, the total l quantum number, and the prefactor, the radius
R of a sphere around P is computed where the Gaussian product is non-negligible to
within some threshold, typically 10−10 − 10−14. Only grid points within this sphere
are used in the integration and mapping.

The product can be factorized in three parts that each depend only on a single
variable x, y or z. Each part can be precomputed on a 1d grid, the full value of
the Gaussian product on any point of the 3d grid is a product of 3 precomputed
numbers. In particular, the inner loop on the grid (e.g. x component) will just be
a single multiplication of a constant (depending on y and z) with number stored in
a 1d array (independent of y and z). Furthermore, all products that have the same



114
�(½#�Q� PQ���¾[ L ¢�¢�� ���+��Vc¢�����	�
>��   L 
 WÝW � L ��������Y�PC��P L g W ¢ L �QPH����� 	

center, independent of the l quantum number, can be computed simultaneously by
expanding for each term the factors (x − A)l

x
a (x − B)l

x
b and summing the prefactors

of identical terms. The inner loop contains in that case just lxa + lxb + 1 terms, each
one can be precomputed as described above. Therefore O(l3al

3
b ) terms are computed in

approximately O(la + lb) time, contributing greatly to the efficiency of the algorithm.
In particular, basis sets involving high angular momentum are relatively inexpensive,
even if derivatives for e.g. the kinetic energy density or the forces are required.

As described previously [208], multi grids, i.e. grids with different mesh sizes, are
employed to compute matrix elements and densities.

In the multi grid method, the exponent ηp of the Gaussian product is used to select
a grid so that the number of grid points per σ2

p = 1/2ηp is approximately independent
of ηp. The accuracy of the multi grid method is fixed specifying a single number
(number of grid points per σp) which is conveniently expressed as the plane wave
cutoff of the grid used for Gaussian with ηp = 1. We employ 30 Ry as a default
relative cutoff as this is both efficient and accurate. Furthermore, it is not necessary
to have multi grids for each exponent, and in our experience it is sufficient to have N
grids with

Eicut =
E1

cut

α(i−1)
i=1..N (B.4)

where α = 3.0. The necessary N and E1
cut depend on the smallest and largest expo-

nents of the Gaussian basis set used, but are typically four and 280 Ry respectively.



AppendixC

Construction of the model
charge density

The model density ρ̂(r, rα), introduce in Sec.(7.2.3),can be derived by minimizing the
multi-pole moments and the net charge of the system:

∆QL =

∣∣∣∣
∫
drrlYL(r)(ρ(r, rα)− ρ̂(r, rα))

∣∣∣∣ (C.1)

∆W =

∣∣∣∣
∫
drr2(ρ(r, rα)− ρ̂(r, rα))

∣∣∣∣ (C.2)

The parameters of the model density are obtained from a fit to the original charge
density, which is biased by a weight function. In the reciprocal space, both require-
ments Eq.(C.1) and Eq.(C.2) can be translated into expressions that are sensitive only
to the intermediate neighborhood of the origin. Thus the fit uses a weighting function
of the form:

w(k) = 4π
(|k|2 − |kcut|2)2

|k|2|kcut|2
(C.3)

for |k| < |kcut| and zero elsewhere. The weight function enhances the importance of
the low k-vectors while ignoring the high k-vectors of the density.

Using the method of Lagrange multipliers, the parameters of the model density qα
are obtained from the extremal condition of

L(qα, λ) =
V

2

∑

k6=0

w(k)

∣∣∣∣∣ρ(k)−
∑

α

qαgα(k)

∣∣∣∣∣

2

− λV
[
ρ(k = 0)−

∑

α

qαgα(k = 0)

]

(C.4)
In matrix form the equation can be written in

Aq + λC = BCq = N (C.5)

where the matrix element of A, C and B are given by:

Ai,j = V
∑

k6=0

w(k)[g†i (k)gj(k)] (C.6)

Ci = V gi(k = 0) = 1 (C.7)

Bi = V
∑

k6=0

w(k)Re[ρ†(k)gi(k)] (C.8)
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and q is the array of parameters of the model charge density. The solution to this
linear equation system is given by:

q = A−1

[
B−C

CA−1B−N
CA−1C

]
(C.9)



AppendixD

Derivation of the long-range
QM/MM potential

The effect of the periodic copies of the MM sub-system is only in the long-range term,
and it comes entirely from the residual function Rlow(r, ra) of Eq.(7.17):

V
QM/MM
recip (r, ra) =

∞ ′∑

L

∑

a

vrecipa =

∞ ′∑

L

∑

a

Rlow(|r − ra + L|) (D.1)

This summation has the same convergence properties as the Ewald series, and can be
efficiently computed in the reciprocal space. To derive the expression of this modified
Ewald sum, let us assume we know the analytical expression of the density σ(r, ra)
originating from the atomic potential Rlow. The potential at point ri due to the charge
distribution σ(r, ra) is:

V
QM/MM
recip (ri, ra) =

∫
dr
σ(r + ri, ra)

r
= L−3

∫
dr

kcut ′∑

k

σ̃(k) exp[−ı2πk(r + ri − ra)]

r

(D.2)
The use of the identity [278]

∫
dr

exp[−ı2πk(r + ri − ra)]

r
=

∫ ∞

0

rdr

∫ 2π

0

dφ

∫ π

0

sin θdθ exp[−ı2π|k||r + ri − ra| cos θ]

(D.3)

=
4π

k2
cos [2πk · (ri − ra)] (D.4)

in Eq.(D.2) leads to

V
QM/MM
recip (ri, ra) = 4πL−3

kcut ′∑

k

σ̃(k)

k2
cos [2πk · (ri − ra)] (D.5)

Using the Maxwell equation ∇2V = 4πρ and its representation in Fourier space, the
term in Eq.(D.5)

4π
σ̃(k)

k2
= R̃low(k) (D.6)
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is the Fourier transform of the potential originated by the density of charge σ(r, ra).
Then the previous equation can be written

V
QM/MM
recip (ri, ra) = L−3

kcut ′∑

k

∑

a

R̃low(k)qa cos [2πk · (ri − ra)] (D.7)



AppendixE

Derivation of Coulomb potential
for delocalized point-like charges

To perform the integration in Eq.(5.7), we consider the integral:

I(r) =

∫
d3r′
|φ(r′ − ra)|2
|r′ − r| (E.1)

Using Eq.(5.6) for φ and taking the Fourier transformations for exp−2ξ|r′−ra| and
1

|r′−ra| , we obtain

I =
qaξ

3

π

∫
d3r′

(
2ξ

π2

∫
d3p

expıp·(r
′−ra)

(p2 + 4ξ2)2

)
·
(

1

2π2

∫
d3q

expıq·(r
′−r)

q2

)
(E.2)

Rearranging and performing the integration over d3r′, we get

I =
qaξ

3

π

2ξ

π2

1

2π2
(2π)3

∫
d3p

∫
d3qδ(p− q) ∗ exp−ıp·ra

(p2 + 4ξ2)2

expıq·r

q2
(E.3)

Performing the integration over d3q using δ-function integration one obtains

I =
qaξ

3

π

8ξ

π

∫
d3p

expıp·(r−ra)

p2 ∗ (p2 + 4ξ2)2
(E.4)

Decomposing 1
p2∗(p2+4ξ2)2 we rewrite the above integral as

I =
qaξ

3

π

8ξ

π

∫
d3p

[
1

ζ4p2
− 1

ζ4 ∗ (p2 + ζ2)
− 1

ζ2 ∗ (p2 + ζ2)2

]
· expıp·(r−ra) (E.5)

where ζ = 2ξ. Taking the inverse Fourier transforms for all the three integrals and
simplifying for the constants, we finally obtain

I = qa

[
1

|r− ra|
− exp−2ξ|r−ra|

|r− ra|
− ξ exp−2ξ|r−ra|

]
(E.6)





AppendixF

Splines

F.0.1 Multi grid

Multi grid methods instead of just a fine grid Gf use other coarser grids. These grid
levels are ordered from the most coarse Gc = G1 to the finest Gf (1 = c ≤ f). In 3D
all the coarser grids do not cost much in term of memory (typically 0.14-0.4 times
the memory of the fine grid). Adding these extra grids is useful because each one
can represent a given wavelength in an optimal way (i.e. with a minimal number of
points), and perform operations on this wavelength efficiently. Typically operations
on each grid level are local and work on patches of neighboring points, and after a
series of them one collects the result on the fine grid.

Multi grids methods can be used to solve linear equations on a grid, for example
partial differential equations, but they aren’t yet used for this purpose in CP2K . We
use multi grids to transfer the density from the Gaussian basis set to the grid trying to
use a constant number of points per Gaussian, as described in [208], and in QM/MM
to transfer the MM potential on the grid.

Multi grid is interesting only if there is an efficient way to transfer the operations
done on one grid level to the others. For i < j the transfer functions

P ij : Gi → Gj (F.1)

Rji : Gj → Gi (F.2)

are called prolongation and restriction respectively.
If one wants that the integration of a function h defined on a finer grid Gj with a

function g defined on a coarser grid Gi give the same result both transferring g to the
fine grid and summing there or (more efficiently) transferring h to the coarse grid and
then summing there one has

〈P ij g, h〉 = 〈g,Rjih〉 (F.3)

i.e. the projection is the dual of the restriction.
The prolongation can be seen as an interpolation: given the values on a coarse grid

try to find the values on a finer grid. In general one can also imagine a continuous
function that underlies the prolongation operation. A very good method for grids
with periodic boundary condition is the G-space interpolation. With a fast Fourier
transform (FFT) one can find the G-space representation n̂ijk of the points on the
grid. Then a continuous representation of them would be

n(r) =
∑

ijk

n̂ijkexp(G(i, j, k) · r), (F.4)



122 Þ ¢�g � ��P W

where G(i, j, k) = 2πh−1[i, j, k], h−1 is the inverse of the cell vectors matrix, and
i, j, k are evenly distributed between the positive and negative values. The G-space
interpolation can be performed directly in the G-space, without going in the direct
space. Indeed the G(i, j, k) of the coarser grid are a subset of the ones of the finer
grid, and the mapping is trivial, taking care that for an even number of grid points
you assign half the value to N/2 and half to −N/2.

The continuous function underlying the G-space interpolation is C∞ (i.e. smooth,
infinitely often differentiable), and is the best interpolation scheme (with respect to
L2 norm) for points that come from a periodic C∞ function. Unfortunately if the
points come from a function which is not smooth or for a non periodic function this
is no longer true.

In CP2K non smoothness is present because at the core there is a jump in the
derivative (cusp condition), and the exchange-correlation functionals, especially the
gradient corrected ones, exacerbate the problem. This, as explained in the section 3.2.4
is due also to the pseudo potential we use in CP2K . Also introducing a cutoff for the
Gaussian loses their smoothness. It was in this setting that we initially introduced the
spline approach. This turned out to be more useful that we thought and an extension
of it was used to cope with the non periodicity (with respect to the QM cell) of the
potential in a QM/MM setting.

F.0.2 Periodic uniform splines

A uniform cardinal B-Spline of order 3 in 3d is a function R3 → R

f(x, y, z) =
∑

ijk

cijkN
3(x− i)N3(y − j)N3(z − k), (F.5)

that is controlled by the coefficients cijk .
N3 is a piecewise polynomial function in C2 with compact support that can be

seen as the convolution of the characteristic function of [−1/2, 1/2] (χ[−1/2,1/2]) with
itself three times.

N3(t) =





1
6 (t+ 2)3 −2 ≤ t < −1

− 1
2 t

3 − t2 + 2
3 −1 ≤ t < 0

1
2 t

3 − t2 + 2
3 0 ≤ t < 1

− 1
6 (t− 2)3 1 ≤ t < 2

0 otherwise

(F.6)

F.0.3 Periodic prolongation/restriction

With this the prolongation operation can be defined as follow:

1. find the coefficients cijk that interpolate the values vijk on the coarse grid

2. evaluate the spline Eq.(F.5) on the fine grid to obtain the final values wijk

We define the function

Si : Gi → Gi (Si)klm,nop = N3(||k − n||)N3(||l − o||)N3(||m− p||) (F.7)

where ||x|| is introduced because of periodic boundary conditions, and means the
smallest distance, for example for the dimension x

||x|| = ((x +Nx/2) mod Nx)−Nx/2, (F.8)
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Figure F.1: The N3 function
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where Nx is the number of grid points in the dimension of x. Si maps the coefficients
cijk to the values vijk . This matrix is very sparse because the N 3 is different from 0
only for the nearest neighbor, i.e. for an integer value i

N3(i) =





1
6 if i = −1
2
3 if i = 0
1
6 if i = 1
0 otherwise

(F.9)

The application Sic can be seen as the convolution of the grid with the 3x3x3 stencil
(indexed from -1 to 1) with values

S4 =
2

3

3−|i|−|j|−|k| 1
6

|i|+|j|+|k|
(F.10)

which has values

[[
8

27
,

2

27
,

1

54
,

1

216
]] (F.11)

for center, face centers,edges, and vertices of the 3x3x3 cube. This is the same S4

operation used in the XC section (3.2.4) and can be implemented very efficiently.
Then the first step of the prolongation is

c = (Si)−1v (F.12)

which we calculate iteratively with a conjugated gradient solver, using

[[2− 8

27
,− 2

27
,− 1

54
,− 1

216
]] (F.13)

as approximate inverse for the first guess, and

[[4.096,−1.28, 0.4,−0.125]] (F.14)

as pre-conditioner. The pre-conditioner is generated by the 1d-values
[−1.6/4, 1.6,−1.6/4] in each direction. It was found by minimizing the condition
number of Si multiplied by operators generated from 1d-values, and then (slightly)
further optimized in the program. With this in 10-15 iterations, independently of the
size of the grid, a convergence to less than 10−10 for both argument and residual can
be achieved.

To evaluate the spline on the fine grid we use commensurate grids for efficiency
reasons, which means that each grid has exactly the double of the number of points
in every direction than the previous grid level. In this case it is useful to introduce
the (rectangular) matrix.

(T ii+1)klm,nop = N3(
k

2
− n)N3(

l

2
− o)N3(

m

2
− p) (F.15)

which is very sparse as for half integer the only nonzero values are

N3(
i

2
)i=−4..4 = [0,

1

48
,

1

6
,

23

48
,

2

3
,

23

48
,

1

6
,

1

48
, 0] (F.16)



Þ ¢�g � ��P W 125

Thus we have
P ii+1 = T ii+1(Si)−1, (F.17)

and
Ri+1
i = (P ii+1)T = (Si)−1(T ii+1)T . (F.18)

The interpolation between the other grid levels can be defined as the product of the
cascade prolongation/restrictions from grid i to grid j

P ij =

i∏

k=j−1

P kk+1 = P j−1
j ...P i+1

i+2 P
i
i+1, (F.19)

and

Rji =

j−1∏

k=i

Rk+1
k = Ri+1

i Ri+2
i+1...R

j
j−1. (F.20)

This approach works very well with periodic boundary conditions. The coefficients
of the spline can be seen as the G-space coefficients of a Fourier transform. Like them
they depend in a unique and global way from the values on the grid (direct space):
any coefficient depends on the values of all the grid, but with the splines the weight
of far away points decreases faster than with G-space interpolation, splines are more
localized.

The coefficients define a continuous function that on the grid has exactly the values
of the direct space, but that is defined everywhere, not just on the grid, and thus they
can be used to interpolate the values, or transfer the function between grid levels.
The continuous function defined by the cubic splines is C2 (twice continuously differ-
entiable). This is not optimal to interpolate smooth functions, but if the function to
interpolate is not so regular (due for example to cutoff effects, or numerical instabili-
ties) then the spline interpolation becomes better. In fact local discontinuities, being
the spline more localized, spread around less as can be seen looking at the interpola-
tion of a delta like function on a grid, which as was discussed in section 3.2.4 is similar
to the situation that arises in the core of the atom with gradient corrected functions.

F.0.4 Non-periodic uniform splines

If one wants to go beyond the periodic boundary conditions the function N 3 cannot
be used for the coefficients close to the border. Indeed using the N 3 function would
force the function to go at 0 and with derivative 0 two units after the border, and
what is worse (one can argue that what happens beyond the border is not relevant and
is an artifact) a simple linear function cannot be interpolated exactly. This gives rise
to border effects that cannot be neglected. This problem is important for QM/MM
where the potential generated by the MM atoms is not periodic with respect to the
QM cell. As already stated the solution is to modify the form of the N 3 functions for
the coefficients close to the border.

To find out how to modify the functions we will look at a generalization of the
uniform cardinal splines. To simplify the discussion we will first look at a non-uniform
B-Spline of order 3 in just 1 dimension. This is a parametric 1d line in a 2d dimensional
space, i.e. a R→ R2 function

g(u) =
∑

i

PiN
3(u− i), (F.21)
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Figure F.2: The left panel shows the weights of the splines for i = −2..2. The dotted red splines

(with i = −2..0) have the same coefficient, so they have been summed up into the continuous black

line. The right panel shows the value of x as function of u

where Pi is an array (indexed by the integer i) of 2-dimensional vectors.
This looks complicated, but if one sets

Pi = [i, vi] (F.22)

then if we call the first component of g, x and the second h

[x(u), h(u)] := g(u), (F.23)

we see that the mapping x(u) is the identity and

h(u) = h(x) =
∑

i

viN(x− i) (F.24)

and so h is just a uniform cardinal spline.
Assuming that the lower boundary is at 0, we want to look at

Pi = [max(0, i), vmax(0,i)]. (F.25)

As we can see for u ≥ 1 u = x, but for smaller values the correspondence breaks
and the function gets really parametric. x begins to change more and more slowly, and
finally freezes at 0 when u reaches −1. Now the correct way to redefine the N 3(x− i)
to functions Mi(x) for i close to the border (i.e. to 0) is

M0(x(u)) = N3(u+ 2) +N3(u+ 1) +N3(u)

M1(x(u)) = N3(u− 1)

M2(x(u)) = N3(u− 2)

(F.26)

and for i > 2 Mi(x) = N3(x− i).
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Figure F.3: The border functions M0..2 as function of x.

To be able to directly represent M0..2(x) one has to invert x(u)

x−1(t) =





undefined t < 0
3
√

6u− 1 t < 1
6

2
√

2 cos
(

1
3 (π + arccos( 3

√
2(t−1)
4 )

)
+ 1 t < 1

t t ≥ 1

(F.27)

With an explicit inverse one obtains a direct representation of the functions M0..2

shown in figure F.3 We see that for the evaluation on a grid with spacing 1 only
the weight exactly at the border has to be changed (to 1), whereas for an uniform
refinement, i.e. to prolongate to a grid with spacing 1/2, the border and the points
just before it have to be changed. Approximately M0...2 have the following values at
the important points:

M0(0) = 1 M0( 1
2 ) = 0.517977703393314356529532

M1(0) = 0 M1( 1
2 ) = 0.464044593213371286940937 (F.28)

M2(0) = 0 M2( 1
2 ) = 0.017977703393314356529531.

Thus using the weights given by M0,M1,M2 instead of the ones given by N 3 at the
border the simplicity of the uniform spline schema can be kept and linear functions
can be correctly interpolated. The upper border is just symmetric.

In 3d we have to look at non-uniform B-Spline of order 3 in 3 dimensions, which
are parametric 3d surfaces in a 4d dimensional space, i.e. a R3 → R4 function

g(u, v, t) =
∑

ijk

PijkN
3(u− i)N3(v − j)N3(t− k), (F.29)
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where Pijk is a 3d grid (indexed by the integer i, j, k) of 4-dimensional vectors.
Looking at it one can see that the fact that the weight functions are just a direct

product of the 1d weighting functions is preserved with boundaries along the border
of a box. Assuming that the lower left corner of the box is for (i, j, k) = (0, 0, 0)

f(x, y, z) =
∑

ijk

vijkMi(x)Mj(y)Mk(z), (F.30)

with Mi as defined in the 1d case.

F.0.5 Non-periodic prolongation/restriction

The prolongation and restriction operation can be calculated just as before

P ij = T̃ ij (S̃
i)−1 (F.31)

Rji = (P ij )T = ((S̃i)T )−1(T̃ ij )
T (F.32)

where S̃i and T̃ ij are different from Si and T ij because they use Mi(x) instead of

the N3(x − i). This means that S̃i differs from Si only at the border where in
each dimension 1 is used instead of 2/3 as weight and the 1/6 contribution from the
neighboring point is ignored. This breaks the symmetry of Si and makes the sum of
the contributions of the weights c close to the border differ from 1. Likewise T̃ ij differs

from T ijonly at the border using the values of Eq.(F.28).

The inversion of S̃i is performed using the same approximate inverse as in the non-
periodic case, but setting the weight to 1 instead of 2/3 at the border, and removing
the 1/6 contribution from the point next to the border, as with S̃. For the pre-
conditioner the contribution from the weight c at the border are scaled in such a way
that at the value at the border is 1 (i.e. not just setting the border to one, but also
changing the contribution to the close-by v. With this method the same performance
as in the periodic case can be achieved on big grids: ≈ 12 iterations for 10−10 accuracy,
≈ 20 for machine accuracy (10−14). For small grids other approximate inverse and
pre-conditioners (not based on the the periodic solution) would be better, but ≈ 1/3
more iterations on the small grids is not costly, and not worth extra optimization.

Such a function can describe exactly hyper planes, is efficient to evaluate and has
worked very well for the QM/MM implementation in CP2K .
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