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Abstract 
 

Annual killifishes inhabit temporary ponds and their embryos survive the dry season encased in the 

mud by entering diapause, a process that arrests embryonic development in response to hostile 

conditions. During diapause oxygen consumption is suppressed and the cell cycle arrested, however 

the key factors responsible for these effects are largely unknown. Killifish developmental stages 

were described in the 70s in several species, mainly by direct microscopic observation. There is 

however lack of a precise description of cells dynamics during the whole developmental process. 

Annual killifishes are present within three clades distributed in Africa (one East and one West of the 

Dahomey gap) and South America. Within each of these phylogenetic clades, a non-annual clade is 

sister taxon to a annual clade and therefore represent an example of convergent evolution. 

Transgenesis is possible in at least one among the killifishes annual species, Nothobranchius 

furzeri.  

Early cleavage of teleost embryos is characterized by a very fast cell cycle (15-30 minutes) and lack 

of G1 and G2 phases. In this work I used time lapse brightfield microscopy to investigate cells 

division’s kinetics during the first developmental stages of annual- and non-annual species 

belonging to the three different phylogenetic clades. Annual killifishes of all three clades had 

cleavage times significantly longer when compared to their non-annual sister taxa (average 35 min 

vs. average 75 min), showing, for the first time, that cell cycle rate during cleavage, a trait thought 

to be rather evolutionary conserved can undergo convergent evolutionary change in response to 

variations in life-history.  

Furthermore, using FUCCI fluorescent imaging of the cell cycle after microinjection in the annual 

species Nothobranchius furzeri, I demonstrated that the first 5 division are synchronous, do not 

show a G1 phase, and cell cycle synchronization is lost after the 5th cleavage division. 

I generated FUCCI N. furzeri trangenic fish and finely characterized through time-lapse imaging 

cell cycle progression during all developmental steps: epiboly, dispersed phase, diapause I, 

reaggregation, somitogenesis and diapause II. I discovered that dispersed phase is divided in two 

steps and that diapause I arrest happens at the transition between them. In addition, I showed that 

the reactivation of cell cycle upon release from diapause I and II release is synchronous and very 

fast (hours).  

Finally, I compared the microRNA profile of several species (annual and non annual) in diapause II 

or at the equivalent morphological stage and I identified some miRNAs that are differentially 
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expressed. Among these the miR-430 cluster is a particularly interesting candidate since it plays a 

key role during early development of zebrafish embryos. 
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1. Introduction 

 

1.1 The model taxon 

 

1.1.1 Killifishes 

 

Killifish are small oviparous (egg-laying) fish that belong to the order of Cyprinodontiformes. 

Altogether, there are about 1270 different species of killifish, divided in 7 families according to 

fishbase, including Aplocheilidae, Cyprinodontidae, Fundulidae, Nothobranchiidae, Profundulidae, 

Rivulidae and Valenciidae [1].  

Killifishes are mainly distributed in three regions of the world: South America, middle-west Africa 

(west of Dahomey gap) and middle-east Africa (east of Dahomey gap) and families that live in the 

same geographical area  belong to a mophyletic group [2]. 

Killifishes usually colonize environments like permanent streams, rivers and lakes, but some 

species adapted to survive in extreme enviroments like ephemeral pond of water. These species are 

called annual while the species that lives in permanent water environments are called non annual [3]  

Early studies suggest the existence of four events of loss and re-gain of an ancestral annual trait [2], 

[4], [5] while more recent studies suggests that it repeatedly evolved, at least three times in Africa 

and three times in South America [6]. In either of the two scenarios, an annual clade has always a 

sister non-annual clade that is phylogenetically closer than any other annual clade (Figure 1.1).  
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Figure 1.1: Distribution of annualism onto the proposed molecular phylogeny. Left, the cladogram belongs to Murphy and Collier 

molecular analysis [2] based on cytochrome b, 12 s rRNA and 16 s rRNA genes. Black branches represent annual lineages, while 

white branches indicate non-annual lineages. Right, the tree has been done by Furness et al. using supermatrix tree construction 

methods on seven mitochondrial and two nuclear genes from GenBank [6]. Species highlighted in red have embryos capable of 

undergoing diapause II, while those in black do not.  

 

 

1.1.2 Annualism 

 

Annual killifishes inhabit ephemeral bodies of water that fill during the monsoon season and 

disappear by evaporation after its end. Annual killifishes are present in Africa and South America 

and are adapted to alternating wet and dry seasons [2], [7]–[11] (Figure 1.2). 
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Figure 1.2: Annual killifishes life cycle. Fertilized eggs are layed in the mud during the rainy season. Their development arrests in 

Diapause I II or III in response to negative environmental condition due to the dry season, not hatching and preserving the species. 

As rainy season starts again embryos complete their development and hatch. The figure has been modified from aqualog.de. 

 

For surviving in such an extreme environment, annual killifishes (regardless of the species) evolved 

some peculiar and distinctive traits, that mainly concern embryonic development, grow rates and 

lifespan. 

Growth rates of annual killifishes are extraordinary high [8], not only for cyprinodontiformes but for 

vertebrates in general. The largest body of studies on this aspect has been conducted in the african 

annual killifish Nothobranchius furzeri, that shows exceptional growing rates after hatching, reaching 

its maximum size in less than 10 weeks[9]. Annual killifish evolved this very fast growth rate in order 

to reach sexual maturity and reproduce before their environment dryes out, becoming fertile in less 

than three weeks [8]. 

With each breeding event, annual fish can lay in the mud up to hundreds of eggs every day [8]. All 

adult fish die when their habitat dries out and survival of the population is ensured by desiccation-

resistant eggs that enter into diapause and remain encased in the dry mud until the next rainy season 

[2], [7]–[12].  

Diapause is a common feature of insect species from temperate climates and seasonal life cycle and 

fresh-water crustaceans from ephemeral habitats such as Artemia [13]–[15]. In vertebrates evolved 

in annual killifishes species and in over 130 species of mammals, including mouse, mustelid 

carnivores and some species of marsupialis, that are three of the most studied mammals models 

[16]. It consists in a suspension of development at precise developmental stages and its trigger can 

greatly vary among the species. In insects is mainly triggered in response to onset of direct hostile 

enviromental conditions or changes of the photoperiod predicting the proximity of the winter season 

[13]. In mammals it instead happens as an obligatory developmental stage or in response to 

maternal signals like hormonal changes, that indicates adverse environmental conditions outside the 

uterus [16]. 

 

 

1.1.3 Embryogenesis and development 

 

Killifishes embryos developmental stages are broadly similar to any other teleost fish embryo. 

Embryos proceed through the phases of early meroblastic discoidal cells cleavages (segmentation), 

late cell cleavages, epiboly, dispersed phase, diapause I (optional), reaggregation, axis formation, 

somitogenesis, diapause II (optional), organogenesis and diapause III (optional). Among these 
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phases only dispersed phase, reaggregation and diapauses are peculiar of some of killifishes species 

(mainly, but not only, annual species), while all the other steps are common to all teleost fishes [3], 

[17], [18].  

In the killifish Fundulus heteroclitus [19], it is well described that during the cleavage phase cell 

divisions are synchronized so that 2, 4, 8, 16 and 32 cells arise in succession. This pattern is broadly 

conserved in teleost species, and cell cycle during cleavage is extremely fast (in the order of 15 to 

30 minutes) in typical model teleosts such as Danio rerio [20], Oryzia latipes [21], Gasterosteus 

aculeatus [22] and also Xenopus laevis [23]. During cleavage, there is no transcription of the 

embryonic genome but only translation of maternal transcripts and the cell cycle lacks the G1 and 

G2 phases, thus proceeding directly from S- to M-phase [24], [25]. 

Not so much is known about the activation of zygotic transcription. Recent studies revealed that in 

medaka and also in zebrafish the first signs of transcription from the zygotic genome are observed 

around the sixth division [26], [27] and are defined as pre-MBT transcription. This is considerably 

earlier than the tenth division, as originally reported for D. rerio in correspondence to the mid 

blastula transition [20], and is in line with recent results obtained in O. latipes, where the 

desynchronization is observed between the fifth and the sixth division [26]. It is therefore possible 

that in annual fish as well, the activation of the very first zygotic genes corresponds to the first signs 

of asynchrony. 

Epiboly in Fundulus heteroclitus [19] is very similar or identical to Danio rerio [20], Oryzia latipes 

[21], Gasterosteus aculeatus [22], and cells generated at the animal pole migrate over the yolk 

surface until the complete envelopment. 

As it happens for zebrafish, two layers of cells migrate during epiboly: the yolk syncytial layer and 

the blastomeres layer [17], [28]. The YSL is a transient extra-embryonic syncytial tissue that forms 

during early cleavage stages and persists until larval stages. During gastrulation, the YSL undergoes 

highly dynamic movements, which are tightly coordinated with the movements of the overlying 

blastomeres cells layer, and has critical functions in cell fate specification and morphogenesis of the 

early germ layers [28], the blastomeres cells instead are the cells that will form the embryos 

primordial axis [17]. 

Due to the dispersed phase that happens after the end of epiboly, axis formation in killifishes occurs 

at a different time compared to other teleost species like medaka or zebrafish. These two species in 

fact start to form the axis already before the epiboly is completed [20], [21] while killifishes first 
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completely envelop the yolk with cells, then disperse the blastomeres, and finally reaggregate them 

to form the primordial axis [17], [19]. 

The morphogenetic events that occur during somitogenesis and organogenesis in killifish are 

broadly similar to those shaping embryos of other teleost fish, with the obvious exception of 

diapause II arrest phase, that was never described in other fish like medaka or zebrafish. The somite 

formation dynamics are characterized by a progressive increase in the somites number together with 

the formation of the precursors of some of the main organs of an embryo, like eyes, heart, brain and 

liver [12], [29]. 

During somitogenesis two different developmental pathways have been described for annual 

killifishes, in relation to their commitment to go or not in diapause II [30], [31]. The commitment to 

enter diapause II is made during the previous developmental stages (already at the 24 somites stage 

or even earlier) and is irreversible [31]. This decision will lead embryos that will stop or not on 

diapause II to follow two different developmental ways, assuming a different morphology during 

somitogenesis. Embryos that will enter diapause II develop evolving their primordial axis mainly 

increasing its lenght and not growing radially. As a result, once arrested in diapause II, at the stage 

of 30-36 somites, these embryos present with a long and thin axis and head. Embryos that will not 

enter diapause II instead homogeneously develop growing both over the antero-posterior and the 

radial axis during somitogenesis, resulting broad at 30-36 somites (Figure 1.3). At this stage these 

embryos have indeed an axis and a head that are considerably wider compared to embryos entered 

in diapause II. In addition the head and some of its structures like the eyes primordia are way bigger 

and more defined than in diapausing embryos. These dynamics were demonstrated for 

Austrofundulus limnaeus [31] and for Nothobranchius furzeri [30], a south american and african 

annual species, respectively, and are thought to be a common feature among annual killifishes 

species. Due to this, diapause II has recently been defined as an alternative developmental pathway 

more than as a developmental stage itself, which affect a large part of embryos morphogenesis, 

shaping in a different way embryonal axis during almost all the somitogenesis. 
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Figure 1.3: Nothobranchius furzeri differential developmental pathways. Nothobranchius furzeri and annual killifishes in general 

develop in a different way accordingly to their decision to stop or not in diapause 2. Diapause 2 is entered around the 30-somite 

stage, yet morphological divergence in the head region is readily apparent well before this stage is reached. Figure design modified 

from original [30]. 

 

1.1.4 Diapause  

 

The early development of annual fish is conserved in the different annual genera Callopanchax, 

Nematolebias, Rachovia, Nothobranchius, Austrofundulus, Cynolebias [3], [17], [30], [32] and is 

characterized by three possible points of developmental arrest, termed diapause I, II and III [3]. 

Diapause I occurs early in development, after epiboly ends and before the somite embryo has formed, 

during a dispersed cell phase, which is unique to annual killifish [3]. Although embryos have been 

induced to enter this state through low temperatures or hypoxia [3], [18], [33], embryos reared under 

standard laboratory conditions rarely undergo diapause I  [30]. Diapause II occurs after the formation 

of the embryonic axis, in embryos possessing from  30 to 36 pairs of somites, and several organ 

systems are recognizable [3], [18]. Lastly, diapause III occurs when the embryo is fully developed 

and precedes hatching.  

The major point of developmental arrest occurs during diapause II (DII). DII is a facultative stage: it 

can be skipped when embryos are incubated at high temperature [8], [30], [31], [34], [35],but lower 

temperature, darkness, dehydration or anoxia (all conditions occurring in natural habitats) induce DII 

[10], [33], [36]. The duration of DII is highly variable and the embryos can remain in this stage for 

several months [11], [34] or even years (A. Cellerino, unpublished).   

As a result of arrest at one or more of these three stages, embryos can extend greatly their 

developmental time, allowing them to overcome the dry season, when adult fish have perished. 
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Embryos, even of the same clutch, routinely follow different developmental trajectories arresting or 

not in diapause I, II, or III [17], [31] that makes their individual developmental time very different 

and unpredictable. This is supposed to represent a bet hedging strategy, to cope with the fact that 

environmental conditions are only partially predictable. The rain season can vary in its timing and 

amount of pluvial input, up to the point that in some particularly dry seasons the habitats may not be 

filled for sufficient amount of time to sustain killifish reproduction while in other seasons they may 

fill multiple times. Such a bet hatching strategy is well known for seed banks in the soil [37], [38]. 

Multiple phases of developmental arrest, that can last a variable amount of time, generate therefore 

diversity in the developmental stage of embryos, so that embryos of the same clutch can be shifted 

in any phase of the development. Among the whole pool of embryos a subgroup will be always 

ready to hatch in response to any sudden environmental change, giving the species an extremely 

high chance to survive in its extreme environment [38]. 

The physiological and molecular mechanisms of diapause were studied in detail in the South-

American species, Austrofundulus limnaeus. Diapause II is characterized by drastic depression of 

protein synthesis, oxygen consumption and of mitochondrial respiration associated with G1 arrest of 

the cell-cycle [11], [39]–[41]. These basic mechanisms seem to be conserved in also in African 

annual genus Nothobranchius [6], [30], [38], [42]. 

Diapause in annual killifish is also associated with major metabolic remodeling, where several 

pathways involved in energy production are modulated in order to minimize the embryo's aerobic 

metabolism and production of reactive oxygen species allowing quiescence. During diapause, 

oxygen consumption is suppressed and the cell cycle arrested [11], [41]. In some habitats of annual 

killifish the duration of the temporary pools is only a few months [43], and therefore the animals 

spend the largest fraction of their life in diapause. 

Studies in the tapeworm Caenorabditis elegans have drawn a connection between diapause and aging. 

C. elegans can enter a stage of dormancy called dauer when the environmental conditions are 

unfavorable. Some genetic mutations that influence dauer formation also modulate longevity. In 

particular, the daf-2 mutation that affects an ortholog of the IGF/insulin receptor, increases lifespan 

over two-fold. Strikingly, the influence of the IGF/insulin pathway on longevity is conserved also in 

vertebrates and humans [44], [45]. In addition, the gene expression profile in the dauer larvae stage 

show high similarities to the expression profile of long-lived adult mutants [46]. Also small non-

coding RNAs are embedded in the genetic network that links diapause and longevity, as exemplified 

by miR-71. This microRNA is a longevity gene and an aging biomarker in C. elegans and is also 

essential for diapause [47]–[50]. 
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1.1.5 Nothobranchius furzeri 

 

One of the most studied annual killifishes is the african species Nothobranchius furzeri. This 

species of killifish, as many african annual killifishes, is small (typically <8 cm), with marked 

sexual dimorphism and dichromatism. Due to its reduced dimensions, large tollerance of water 

parameter and ease of alimentation with commercially-available foods, captive care of this species 

is relatively easy and convenient (though time-consuming), and studies requiring a large number of 

individuals (in the order of hundreds) have been performed in several laboratories [9], [51], [52] 

Nothobranchius fish have a short maximum natural lifespan (<12 months) due to annual desiccation 

of the pools they inhabit. Notably, this short lifespan is also retained in captivity, varying between 3 

and 18 months [52]–[54] and depends on the humidity of habitat of origin, suggesting that duration 

of the pools in the wild drives evolution of aging in natural populations [43] (Figure 1.4). 

 

 

Figure 1.4: Survival trajectory of Nothobranchius furzeri in the laboratory. Survival is expressed as a percentage of maximum 

survival. The 25°C curve (dashed line) plots the survival rate of 68 fishes kept at a constant temperature of 25°C. The ‘Var’ curve 

(black line) plots the survival rate of 33 fishes kept at room temperature during the months June–August in Canossa, Italy. Tot (grey 

line) is the average of the two curve [52]. 

 

Nothobranchius extremely short lifespan and aging phenotype has made this taxon a laboratory 

model for in research for the study of age related diseases and age mechanics. Over the years, many 
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aspects of their aging phenotype were charachterized [53], [54], such as behavioural impairmentes 

[55]–[57], histopathological lesions [58] and disruption of the circadian rhythms [54]. In addition, 

telomere erosion [59]–[61], reduced mitochondrial numbers and function [62], accumulation of 

lipofuscin [56], [61], [63], [64], increased apoptosis [58], [63] and dramatic reduction of stem cell 

activity [65] were described in aged fishes. Finally, genome-wide analysis of transcript regulation 

revealed similarities in gene expression during aging between N. furzeri and humans both at the 

level of microRNAs and protein-coding transcripts [66], [67].  The Nothobranchius life cycle is 

entirely adapted to the ephemeral and unpredictable conditions of their habitat. As the other annual 

killifishes described above, fish hatch when the pool is filled with water, grow rapidly and become 

sexually mature within a few weeks [8], [37]. After reaching sexual maturity, they reproduce daily, 

also in laboratory conditions [8], [68], that means that every day a lot of eggs are available for 

observation or manipulation. Nowadays embryos can be routinely genetically manipulated in order 

to generate transgenic lines with a gene insertion [35] or deletion [69].  

Diapause and early development in N. furzeri have been characterized over years, with studies that 

investigated specifically cleavage and early cell movements in Nothobranchius as well as the 

effects of some environmental variables on diapause [42], [70]–[72].  

Nothobranchius furzeri developmental stages and diapause dynamics reflect entirely the stages and 

the dynamics described above for Austrofundulus [12] or any other annual killifish. 
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1.2 Transgenesis 
 

1.2.1 Basis of trasgenesis 

 

Transgenesis is used in a wide variety of research applications ranging from the study of gene 

expression to the creation of animal models of human diseases. Transgenic tools enabled in vivo 

labeling and detailed observation of specific cell types using fluorescent reporters and thereby 

complement mutagenesis by facilitating targeted genetic screens [73], [74].  

In fish, many of the transgenesis techniques were developed in zebrafish, due to its high fecundity, 

ease of egg manipulation, developmental speed and the transparency of the zebrafish embryos [20]. 

Transgenic zebrafish were first generated by microinjection of naked DNA [75]. In this technique, a 

plasmid DNA is linearized with a restriction enzyme, purified, and then microinjected into the 

cytoplasm of one-cell stage embryos. On average, a small percentage of the injected fish (< 10%) 

transmit the transgene to the next generation. These transgenes tend to form tandem arrays or 

concatamers at the integration site, which in some cases may lead to variegated expression or 

silencing in the subsequent generation. Thus, while numerous transgenic fish have been generated 

with this technique [76]–[78], the germline transmission frequency and the reliability of transgene 

expression have been low. Pseudotyped retroviral vectors have also been successfully used for 

transgenesis in zebrafish, particularly for genome-wide insertional mutagenesis [79], [80] and 

enhancer trapping [81]. However, the retroviral vectors can only carry inserts of small sizes and 

their application in the laboratory is labor intensive. 

To further improve the rate and ease of transgenesis in zebrafish and to create vectors that are useful 

for genetic analyses in this model vertebrate, were optimized transposable elements [82]–[85]. 

Among them, the Tol2 transposable element from the medaka fish appears to have the highest rate 

of genomic integration in the germ lineage and is now widely used as a genetic tool (reviewed in 

[86], [87]). 

Tol2 is an active DNA transposable element capable of catalyzing transposition upon recognition of 

a target sequence. The Tol2 transposition system used for transgenesis consists of two elements: an 

RNA encoding the Tol2 transposase and a plasmid containing a nonautonomous Tol2 transposon 

(i.e. not encoding the transposase) surrounding the gene of interest [87]–[89]. The transposase 

recognizes the target Tol2 sequence in the plasmid, excises the gene of interest, and integrates it 

into the host’s genome [88], [90], thus allowing efficient and stable transgenesis. 
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In addition, a vector containing the minimal DNA sequences required for Tol2 transposition has 

been described, making preparation of new transgene constructs relatively easy [91], [92]. 

Many Tol2 vectors have been reported to date, including vectors that facilitate the rapid 

construction of promoter- or protein-GFP fusions through the Gateway technology [93]–[95]. These 

vectors can be used for expression of any foreign genes in embryos by transient and stable 

transgenic approaches. Furthermore, Tol2 gene and enhancer trap vectors have been developed for 

gene expression studies and mutagenesis [96]–[98]. Tol2 -mediated transgenesis is a highly efficient 

method to create stable transgenic fish since 50–70% of injected fish transmit genomic insertions of 

the injected Tol2 construct to the next generation [92], [96]. Insertion, however, remains mosaic. 

Tol2 transposon was also developed as a system to efficiently generate transgenic animals in other 

fish model systems, including stickleback and cichlids [99] or commercially relevant fishes species 

such as salmon, trout, and tilapia [100], [101] 

 

1.2.2 Transgenesis in Nothobranchius 

 

In the year 2011, Valenzano et al. Tested the efficiency of the Tol2 system in N. furzeri and 

reported a good efficiency of transgene insertion in the germline [35] (Figure 1.5). Early embryonic 

development is much slower in N. furzeri as compared to zebrafish, with cell cycle speeds in the 

order of almost two hours as opposed to 15  minutes (see Results). This may facilitate early 

integration of the transgene and germline transmission. The slow embryonic development of N. 

furzeri might increase the chances of early embryo integration and, therefore, robust germline 

transmission as compared with other model systems. Indeed, the frequency of GFP-positive F1 

offspring from a cross between GFP-positive P0 parents and wild-type fish was reported to be about 

30% in N. furzeri [35].  These results were replicated by Hartmann & Englert and Allard et al. [102] 
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Figure 1.5:Nothobranchius furzeri transgenic fish. Expression of GFP in pCska-gfp Tol2 transgenic N. furzeri. GFP expression in 

live noninjected (top row), injected P0fish (second row), and the F1 (third row),and F2 (bottom row) progeny of GFP positive N. 

furzeri.  [35] 
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1.3  Cell cycle 

 

1.3.1 General mechanics 

 

Cell cycle is an ubiquitous, complex process involved in the growth and proliferation of cells, 

organismal development, regulation of DNA damage repair, tissue hyperplasia and response to 

injury and diseases such as cancer. The cell cycle involves numerous regulatory proteins that direct 

the cell through a specific sequence of events culminating in mitosis and the production of two 

daughter cells. Central to this process are the cyclin-dependent kinases (cdks) and the cyclin 

proteins that regulate the cell’s progression through the stage of the cell cycle referred to as G1, S, 

G2 and m phases [103].  

The cell cycle can be morphologically subdivided into interphase and stages of M (mitotic) phase, 

which include prophase, metaphase, anaphase, and telophase [104]. Interphases encompasses G1, S, 

and G2 [103]. The G1 and G2 phases of the cycle represented the “gaps” in the cell cycle that occur 

between the two obvious landmarks, DNA synthesis and mitosis. In the first gap, G1 phase, the cell 

is preparing for DNA synthesis. S phase cells are synthetizing DNA and therefore have aneuploid 

DNA content between 2N and 4N. The G2 phase is the second gap in the cell cycle during which 

the cell prepares for mitosis or M phase. G0 cells are not actively cycling [103]. 

The timely execution of each stage of the cell cycle is intimately linked to key developmental 

processes such as differentiation and organogenesis. On the other hand, failure to precisely regulate 

cell-cycle progression leads to various diseases such as cancer [105], [106]. To ensure that events 

such as S phase and mitosis proceed both in an orderly fashion and with high fidelity, cells have 

developed a series of checkpoints that act as quality control centers at each stage of the cell cycle. 

These checkpoints, which govern the transitions between G1/S and G2/M, are designed to monitor 

cellular parameters such as genomic integrity and cell size throughout the division cycle [107], 

[108]. 

If a cell fails to meet minimal requirements at any point during the process, regulatory factors 

prevent the onset of the next phase until the task at hand has been completed [107]. For many years, 

it has been difficult to precisely track cell-cycle progression in a live, multicellular context. This is 

because most of the techniques currently used to monitor the cell cycle—such as BrdU 

incorporation or immunostaining of cell-cycle markers—require cell fixation prior to analysis. As a 

consequence, these methods do not permit the dynamic behaviors of cycling cells to be visualized in 

real time. 
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1.3.2 FUCCI  

 

In the 2008 Sakaue-Sawano and colleagues designed a fluorescent reporter to track cell-cycle 

progression with high spatiotemporal resolution in a multicellular contex [109] that provided a 

molecular tool to easily distinguishing between cells engaged in different stages of the cell cycle 

with minimal perturbation to the system under study, allowing the dynamic behavior of cycling 

cells to be monitored in real-time.  

 

 

Figure 1.6: Cell cycle visialization with FUCCI reporters. Cells that brings FUCCI reporters emit green fluorescence during S G2 

and M phases, red fluorescence during G1 and G0 phases and are colorless at the interface between M and G1/G0 phase. 

This method, termed fluorescent ubiquitination-based cell-cycle indicator (FUCCI), exploits cell-

cycle-dependent proteolysis of the ubiquitination oscillators, Cdt1 and Geminin, to specifically 

mark the G1/S transition in living cells [109], [110]. 

By fusing the red- and green-emitting fluorescent proteins monomeric Kuzabira Orange 2 (mKO2) 

and monomeric Azami Green (mAG) to the sequences of Cdt1 and Geminin respectively that carry 

the ubiquitination sites, is possible to achieve striking contrast between various stages of the 

division cycle (Figure 1.6). Specifically, the nuclei of cells in G1 phase (and G0) appear red, 

because the mAG-Gemin fusion protein is preferentially degraded, while those of cells in S/G2/M 

appear green because the mKO2-Cdt1 fusion protein is preferentially degraded. During the 
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transition from G1 to S phase, cell nuclei turn yellow, clearly marking cells that have initiated DNA 

replication [109], [110]. 

The dramatic color changes exhibited by Fucci are based upon the reciprocal activities of the 

ubiquitin E3 ligase complexes APCCdh1 and SCFSkp2 [111]. 

The APCCdh1 and SCFSkp2 complexes are E3 ligase activities that mark a variety of proteins with Ub 

in a cell cycle-dependent manner [111]. Because the SCFSkp2 complex is a direct substrate of the 

APCCdh1 complex but also functions as a feedback inhibitor of APCCdh1 [112], [113], these two 

ligase activities oscillate reciprocally during the cell cycle. The APCCdh1 complex is active in the 

late M and G1 phases, while the SCFSkp2 complex is active in the S and G2 phases. Two direct 

substrates of the APCCdh1 and SCFSkp2 complexes, Geminin and Cdt1, are involved in ‘‘licensing’’ 

of replication origins [114]. This carefully regulated process ensures that replication occurs only 

once in a cell cycle. In higher eukaryotes, proteolysis and Geminin-mediated inhibition of the 

licensing factor Cdt1 are essential for preventing re-replication.  

Consequently, the APCCdh1 and SCFSkp2 substrates Geminin and Cdt1 are specifically degraded 

during G1 and S/G2/M, respectively [115]. 

Even if these proteins function as effective G1 and S/G2/M markers, geminin, but not Cdt1, is 

interchangeable between mammals and fish in terms of ubiquitin-mediated degradation [116]. In the 

2009 Sugiyama et al. generated DNA constructs using the zebrafish homologs of Cdt1 (zCdt1) and 

geminin (zGem), characterized them using cultured fish cells, constructed transgenic zebrafish lines 

and observed the correct dynamic patterns of cell-cycle progression in several parts of the embryo, 

including the retina and notochord [116] (Figure 1.7). 
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Figure 1.7: Time-lapse imaging of a FUCCI transgenic zebrafish embryo during segmentation. Green and red cells populate 

specific embryonic regions during development. First steps of segmentation are characterized by a predominance of green cells, and 

red cells increase in number, populating the somites, as development proceeds. Due to z-stacking, green and orange signals at 

different z-positions merge to generate yellow signal. Note that zebrafish FUCCI reporters does not yield yellow fluorescence at the 

G1/S transition, whereas the original FUCCI in mammalian cells does [116].  

 

Summarizing, FUCCI technology offers a powerful in-vivo tool for studying the cell cycle in 

mammals and fishes, because cell nuclei color changes in a fast and reliable way as cell cycle 

proceeds.   

This technique is particularly powerful when used in combination with traditional confocal laser 

scanner microscopy [117] or new generation microscopy, such as selective plane illumination 

microscopy [118] and digital scanned laser light sheet fluorescence microscopy [119], that have 

been developed for high-speed in vivo observation of embryonic development at subcellular 

resolution. 
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Aims 
 

Annual killifishes are some of the most stiking fishes living on our planet, because of their 

adaptation to extreme environments, that led to the evolution of extreme growth rates ,extraordinary 

fast aging, peculiar embryonic development and the evolution of diapause.  

Unfortunately, our knowledge of annual killifish biology is very limited and many observations 

were made by amateurs that raise these fishes as an hobby rather than by professional scientists. For 

this reason, even basic aspects of embryonic development and diapause mechanics are unknown.    

The objective of my thesis was to shed some light on the processes that characterize the cell cycle 

of annual and non annual killifishes during embryonic development and in the diapause phase both 

from a macroscopic and molecular point of view. 

I therefore set three main aims:  

1) To describe the development of non annual kilifishes embryos (that lacks from the literature 

entirely) and compare it with the known development of annual killifishes [3], [17], [18], 

evidencing any possible difference in morphogentic processes. 

 

2) To test the applicability of FUCCI technology [116] to killifish species to describe cellular 

dynamics during early development and diapause phases, in order to define the cell cycle 

profile for embryos arrested in  diapause, committed to enter in diapause, committed to 

escape diapause and releasing from diapause. 

 

3) To identify some of the molecular factors involved in the diapause control, in particular 

microRNAs. 
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2. Results 

 

2.1 Developmental differences 

 

The first set of experiments aimed at describing the early developmental dynamics of a 

taxonomically representative collection of killifishes species covering all continents where 

killifishes are distributed:. South America, west Africa and east Africa (Figure 2.1) 

Eggs or adults of 12 killifishes species were obtained and raised under laboratory conditions. At 

least one annual and one non-annual species were chosen for each of the three geographical clades. 

From South America, we chose the annual species Rachovia brevis and the related non-annual 

species Rivulus cylindraceus. From Africa, west of Dahomey gap, the annual species Callopanchax 

occidentalis and the non-annual species Scriptaphyosemion guignardi and Epiplatys dageti 

monroviae. From Africa, east of Dahomey gap, the annual species Nothobranchius furzeri, N. 

guentheri, N. korthausae and N. melanospilus and the non-annual species Aphyosemion australe 

and A. striatum.  

As outgroup, we chose the closest outgroup taxon to all annual killifishes Aplocheilus lineatus, as 

based on the phylogeny reported by Murphy and Collier [2].  However, more recently two studies of 

molecular phylogeny indicate that Aplocheilus is sister taxon to the African killifishes [30]. These 

studies were published after my work was completed. According to these views, an outgroup for all 

killifishes would be Fundulus, for which a detailed description of embryonic development is 

available [19].    
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Figure 2.1:  Phylogram of the species used for the experiments. Dashed lines indicate non-annual species, solid lines annual 

species and color codes for the three evolutionary lineages. The geographic distribution of each lineage is show on the right. The 

phylogram is derived from the original Murphy and Collier molecular phylogram [2] based on cytochrome b, 12 s rRNA and 16 s 

rRNA genes. 

 

To document embryonic development, we used live imaging and fertilized embryos were imaged 

for hours up to days, every few minutes (2 to 5 minutes, depending on the species), with a 

brightfield microscope. For most of the species analyzed, it was possible to image the development 

up to some days after the end of epiboly and in some cases also the formation of the embryonic axis 

and the  process of somitogenesis (Figure 2.2). 
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Figure 2.2: Killifish embryo time lapse example. Figures show Aplocheilus lineatus embryos raw acquisitions, in some of the 

critical developmental steps: segmentation (A), asynchronous cell divisions (B,C)  epiboly (D), axis formation (E) axis grow (F). 

Time at which each stage occurs is shown.  
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2.1.1 Non-annual killifishes development description 

 

Non-annual killifishes have an early development that is very similar to the one described for other 

fish model organism, like Fundulus [19], zebrafish [20] or medaka [21]. 

For the first hours, the cells divide synchonously, rapidly and at regular time intervals of less than 

30 minutes (Figure 2.3).   

After this phase of synchronous divisions (that on average spans the first 6 cleavages), 

asynchronous division starts and each cell or cells group divides independently, with a pace that 

depends on its position within the embryo. 

 

 

Figure 2.3: Early cleavage time-lapse. Non-annual species (dashed boxes) are compared with annual species (solid boxes) by 

brightfield time lapse imaging. Early cleavage stages are shown for each species and the average time at which they occur is 

indicated. There is a large difference in early cell division rates between annual and non-annual species. 
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When a critical number of cells is reached (this number cannot be assessed by simple brightfield 

microscopy due to overlaid cell masses) the epiboly starts and cells begin to migrate over the yolk 

surface toward the opposite part of the embryo (Figure 2.4 D).  

Two layers of migrating cells can be recognized. The first layer that migrate is a thin and almost 

transparent layer of cells and is composed by the yolk syncytial layer (YSL) cells, that contact 

directly the yolk surface (Figure 2.4 D,E).  

The other layer of cells is composed by the epiblast cells, that migrate in the same direction of YSL 

cells, moving on top of them, and not contacting the yolk directly. These cells appear to be much 

smaller and their borders are well-defined compared to the YSL cells that form a syncitium. 

Once epiboly is completed, or in some species, even before this process ends, the embryonic axis 

starts to appear, as a thicker and oval aggregation of cells (Figure 2.4 H). 

Some species, like Aplocheilus and Epiplatys, shows a pecocius formation of the primordial axis, 

that precedes the completion of epiboly, as it happens in other teleost fishes like zebrafish [20]. 

Other species, belonging to Aphyosemion or Scriptaphyosemion genera shows instead a delayed 

formation of the axis. These fishes after epiboly is completed have a phase similar to annual fishes 

dispersed phase (Figure 2.5), where epiblast cells migrates over the YSL for minutes or hours, 

without reaggregating to form the axis. 

The embryonic axis extends over time, generating slowly the several embryo structures like the 

somites, the head, the eyes, the fins and all the other organs (Figure 2.4 I-M). 

All these structures slowly evolve, growing and shaping in a continuous developmental process, 

forming finally a fry ready to hatch (Figure 2.4 N). All the developmental process, from the 

fertilized cell to the fry, regardless to the species of killifish, excluding diapauses arrests, usually 

takes an average time of 22 days at 26°C. 
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Figure 2.4: Killifish developmental table. Aphyosemion striatum (non annual) complete embryonic development. The developmental 

steps shown are common to annual and non annual killifishes. 
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2.1.2 Annual killifishes development description 

 

Development of annual killifishes (Movie S1) shares various similarities with the development of 

non-annual species, but presents some major differences. 

In the first place, as treated in the introduction, annual killifish can stop their development in 

diapause, but the arrest of the development itself is not the only peculiar feature since alternative 

developmental pathways are taken in embryos that enter or skip diapause. 

Diapause I is a phase where an embryo can arrest after epiboly ends, when the YSL and the epiblast 

cells have already completely enveloped all the yolk surface (Figure 2.5). Annual embryos epiboly 

dynamics are slightly different from non-annual ones, because epiblast cells are smaller in number 

and are dispersed (Figure 2.5 B, arrows). In annual embryos, indeed, epiblast cells  never  contact 

closely each other, as it is the case in the majority of non annual species . The number of epiblast 

cells that migrate over the YSL greatly varies among the observed non annual species. Cell density 

is reduced in Scriptaphyosemion (Figure 2.5 A) and in Aphyosemion while is very high in Epiplatys 

and Rivulus, so much that is impossible to distinguish one cell from each other with brightfield 

microscopy. Non annual species that have a lower epiblast cells density during epiboly have as well 

an higher propension to not immediately form embryonic axis after epiboly and to spend some 

hours in a dispersed-phase like stage. Annual species always have spread and clearly detectable 

epiblast cells, as well as they always have a dispersed phase that lasts for several days (figure 2.5 

B). 
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Figure 2.5: Differential development after epiboly in non annual and annual killifishes. A Scriptaphyosemion guignardi (non 

annual) and a Rachovia brevis (annual) embryos are compared during and after epiboly. Epiboly proceeds the same in both species, 

with YSL and epiblast cells enveloping the yolk. In S. guignardi epiblast cells’ density is higher (A) while in R. brevis they are more 

discrete and spread (B, arrows). Few hours after epiboly ends S. guignardi forms the embryonic axis, while R. brevis begins the 

dispersed phase or stops in the diapause 1 phase. The embryonic axis in R. brevis willstart to form much later. 

 

Once epiboly is over, annual killifishes epiblast cells continue to randomly migrate over the yolk 

surface for an undefined amount of time (usually days) before reaggregating to form the embryonic 

axis. This phase has been described as the dispersed phase, is peculiar of annual species and is 

obligatory. During this phase, an arrest in diapause I can happen. 

 

2.1.3 Cleavage rate differences 
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The main result obtained from brightfield time lapse analysis is a large-scale difference in 

segmentation timings between annual and non-annual species (Figure 2.6). 

Converting the image sequences into videos, it was possible to evaluate the pace of cell divisions 

for each species, in order to precisely quantify this difference (Movie S2). 

 

 

Figure 2.6: Early cleavage time-lapse. Non-annual species (dashed boxes) are compared with annual species (solid boxes) by 

brightfield time-lapse imaging. Early cleavage stages are shown for each species and the time at which they occur is indicated. 

There is a large difference in early division rate between annual and non-annual species. 
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The length of the cell cycle varies dramatically between annual and non-annual species (Figure 2.7, 

Student’s t-test, P <0.001) and this difference is conserved in both the africans and the south 

americans killifish species. As showed in figure 2.8, where the number of cells is reported as a 

function of time for each of the species of our taxonomical sampling, there is a clear separation 

between annual and non-annual killifish early segmentation rates. Regardless of the phylogenesis or 

the geographic orgin of a given species, if that species is annual, it has an early cleavage rate that is 

slower than any other non-annual species. Precisely, the five non-annual species analyzed show an 

average cleavage time of 34.8 minutes (range 23.0 to 48.0), that  is comparable to the outgroup A. 

lineatus, while the six annual species analyzed show an average cleavage time of 75.6 minutes 

(range 66.0 to 100.0). If Fundulus and not Aplocheilus is considered as outgroup, according to 

Furness and Moritz phylogenesis, the result of the study remains unchanged. In fact Fundulus has a 

cleavage time of 28 minutes [19], that is comparable with non annual species cleavage time.  

 

 

Figure 2.7: Difference between annual and non-annual division rate is conserved in Aplocheloidei. All species followed with time-

lapses videos were plotted. Developmental stages are shown on the x-axis and time at which they occur on the y-axis. Dashed lines 

indicate non-annual species, solid lines annual species and color codes the geographic clade. For each species only one individual 

embryo is plotted. 

 

To confirm the data,  replications of the time lapses were performed for the crucial species 

considered for the studies: Nothobranchius furzeri and N. guentheri, as annual killifishes, their 

closest non-annual relative Aphyosemion striatum, and the closest outgroup taxon to all annual 

killifishes Aplocheilus lineatus. 

As before, a clear separation between annual and non-annual segmentation rates is observed, with a 

very low variation between the replicas (Figure 2.8). 



 

33 

 

The average cells doubling time is 106.5 minutes +/-2.2 for N. furzeri (annual), 103.6 minutes +/- 

2.6 for N. guentheri (annual), 28.2 minutes +/- 1.5 for A. striatum (non-annual) and 31.1 +/- 0.8 for 

A. lineatus (non-annual). 

 

 

Figure 2.8: Early division rates greatly differ between annual and non-annual species. Time-lapses videos were plotted, with 

developmental stages on the x-axis and time of occurrence on y-axis. Data are means of three independent experiments. Error bars 

represent standard deviations. Dashed lines indicates confidence intervals of the regressions. The slopes of the lines clearly show the 

great difference between annual and non-annual early division times. 

 

2.2 Exploring cell dynamics during development 

 

2.2.1 Segmentation 

 

The differences in segmentation rates between annual and non-annual species led to the next 

question concerning the mechanisms responsible for this difference . 

Non annual killifishes show division rates similar to those observed in the other teleost fishes were 

this phenomenon was investigated, with very fast early cleavages (under 40 minutes for each 

division), probably due to an alternation of only an M and a S phase [24], that can be considered as 

a basal trait. Therefore, I focused my investigations on annual species, whose segmentation 

dynamics can be considered as the derived trait. In particular, I used  the annual species 
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Nothobranchius furzeri, because it is the annual species most diffused in the scientific community, 

protocols for microinjections are available [35], [102] and it showed the slowest cell division rate in 

the segmentation phase. I assume that the basic mechanisms will be identical in the two other 

annual clades. 

Cell cycle dynamics of Nothobranchius furzeri embryos were explored by FUCCI (see 

Introduction). In this system, a red and a green fluorescent reporters are fused to protein motives 

that drive degradation in the G1 and the S phase respectively [109]. Therefore, a cell in the G1 phase 

would appear red and a cell in the S/G2/M phase green, while cells at the transition between M and 

G1, or M and S, would show no fluorescence. This experiment therefore will indicate whether slow 

cell cycle is due to slower S and M phases or rather to the presence of a G1 phase. 

FUCCI reporter mRNAs optimized for zebrafish [116] were microinjected in N. furzeri fertilized 

one cell stage eggs and then the embryos fluorescence was analysed in time lapse using confocal 

microscopy (five independent experiments). From these experiments (Figure 2.9 and Movie S3), it 

is clear that the first five divisions (Wourms stages 4-8) are synchronous. The red and green 

fluorescent reporters rise in phase after cell division (Figure 2.9 A-F), become cytoplasmic (Figure 

2.9 G) and are then degraded (Figure 2.9 H) shortly before cell division. Starting from the sixth 

division (Wourms stage 9) (Figure 2.9  K), cells with a prevalence of red fluorescence intermingled 

with cells with a prevalence of green fluorescence are detectable, demonstrating desynchronization 

of the cell cycle and the appearance of a G1 phase. 
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Figure 2.9: Cell cycle during early cleavage (Wourms stages 4-11). Cell cycle progression in Nothobranchius furzeri was visualized 

by fluorescent ubiquitination-based cell cycle indicator (FUCCI). From (A) to (H) the last synchronus division (fourth) is shown, all 

nuclei are yellow and cells perfectly synchronized in cycling. (I) Represents the first division where asynchrony starts. (J) last 

synchronous dark stage. (K-L) later stages when cells are clearly asynchronous and cells in different phases can be recognized at the 

same time point. 

 

2.2.2 FUCCI transgenic fish. 

 

Exogenous RNA has limited half-life and is stable just for 5-14 day once injected in a N. furzeri 

embryos. This stability greatly depends on the temperature of embryo incubation, which in turns 

influences developmental pace, and the time spent in the diapause I stage. In practical terms, 

injecting a dose of exogenous RNA that does not cause toxicity in an embryo always lead to a RNA 

stability that in a major part does not last longer than the dispersed phase, resulting in a weak signal 

and leading to a difficult or not correct microscopic analysis . So, tracking cell cycle progression 

and cell movements after the dispersed phase for exploring cell cycle dynamics during diapause I, 

somitogenesis, diapause II and organogenesis, required the generation of a transgenic line with 

stable expression of FUCCI reporters. 
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Two different N. furzeri transgenic lines were created, integrating FUCCI constructs in the fish 

genome through the TOL2 transgenesis system [87]. 

The first transgenic line carried the FUCCI red construct (Kusabira orange - Cdt1) under the control 

of the zebrafish ubiquitin promoter (Figure 2.10 B) 

The second transgenic line carried the FUCCI green construct (Azami green - Geminin) under the 

control of the zebrafish ubiquitin promoter (Figure 2.10 A) 

Zebrafish ubiquitin promoter is a 3483 base pair promoter that drives ubiquitous expression of the 

downstream gene in zebrafish at all developmental stages. Its activity was tested in our lab in the 

Nothobranchius species and the expression pattern resulted the same as for zebrafish (Figure 2.10 

D).  

 

Figure 2.10: FUCCI transgenic lines generation. A and B are schematic representations of FUCCI green and red constructs, 

respectively. FUCCI constructs were injected separately in different 1 cell stage fertilized embryos. Positive embryos were raised 

into adult fish, bred and screened for 3 generations (C). F2 FUCCI green fish were finally bred with F2 FUCCI red fish to generate 
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double FUCCI embryos, that were used for the largest part of the experiments (C). D is a schematic representations of zUbiquitin-

EGFP construct. EGFP expression in Nothobranchius embryos and adult fish is shown. 

 

F0 transgenic fish were bred one to another for 2 generations (FUCCI red with FUCCI red and 

FUCCI green with FUCCI green, separately), in order to increase the number copies of FUCCI 

constructs in their genome, enhancing  the signal. F2 transgenic fish were then used to characterize 

the FUCCI pattern (Figure 2.10 C). 

 

2.2.3 FUCCI red F2 fish description. 

 

FUCCI red was documented during the dispersed phase (Wourms stages 19-20), the somitogenesis 

(Wourms stage 31), in the newly hatched embryo (Wourms stage 44) and in adult fish.  

FUCCI red fluorescence was nuclear. During the dispersed phase, two cell types  express red 

fluorescence: large cells of the YSL and some other smaller cells of the epiblast (Figure 2.11). The 

nucleus of the YSL cells was 22-27 µm of diameter and these nuclei formed a regular array.The 

nuclear diameter of the epiblast cells was much smaller, in the order of 7-9 µm (Figure 2.11, 

arrows). The red fluorescence YSL  appeared as a constant red signal that lasted for all the 

embryonic development, until hatch and over, while the red signal of the epiblast cells was 

transient, and lasted for a variable amount of hours before fading. 
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Figure 2.11: Dispersed phase FUCCI red embryo (Wourms stages 19-20). Big red nuclei belong to the YSL (yolk syncytial layer) 

cells while small red nuclei (arrows) belong to epiblast cells. YSL nuclei red fluorescence never fade or cycle, so YSL cells are 

probably blocked in G0 phase. 

 

At the somitogenesis stage, the YSL pattern was unchanged and all the other red cells showed a 

clear patterned distribution that delinated specific regions of the embryo (Figure 2.12). In the older, 

more rostral, somites, the inner part of the somite showed a high concentration of red cells. In the 

more caudal part of the embryo, where somites were still forming,  red cells were more spread and 

diffused. Once that the new somite pair was completely formed, they increased in numbers and 

retained the higher density in the inner part. These groups of somite red cells were reminiscent of 

the pattern previously described in zebrafish FUCCI transgenic line [116]. Just below the 

nothochord midline there was another narrow streak of red cells that extended from the tip of the 

head region to the tip of the tail. Also in the head, several regions contained red cells, but in these 

regions they were quite rare, spread and did not delineate specific areas.  
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Figure 2.12:  Mid somitogenesis FUCCI red embryo (Wourms stage 31). Red aggregates of cells belonging to somites are clearly 

distinguishable. Red cells also populate some undefined regions of the head and a narrow streak that goes from the base of the head 

to the tip of the tail between the somite pairs. 

 

In the hatched fry, the concentration of red cells increased greatly (Figure 2.13). The lateral muscles 

of the trunk (d) and of the tail (e) presented a majority of red cells. In the head region, almost every 

part of the brain had some spread red cells or red cells aggregates (a). The lens (b) showed strong 

red fluorescence at this stage. This  could be an artefact due to the high protein stability in this 

region that did not permit the correct degradation of the FUCCI reporter. What remained of the 

yolk, was still sorrounded by red large cells belonging to the YSL (f). As last, the pectoral fins (c) 

appeared to be greatly populated by red cells. 

 

 

Figure 2.13: Hatched FUCCI red fry (Wourms stage 44). Discrete regions in the embryo’s body are populated by red cells at this 

stage: a) brain b) lens c)pectoral fins d-e) trunk dorsal and lateral muscles, f) YSL leftovers cells.  
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The adult FUCCI red trasgenic fish appeared completely red under the fluorescence since many 

cells were in a G1 or G0 phase at this stage (Figure 2.14).  

Males and females showed a pattern that could be defined identical, and also the signal intensity 

was comparable between different specimens. 

 

 

Figure 2.14. Adult FUCCI red fish. The majority of the cells present red at this stage, probably in G0 phase since many of them are 

fully differentiated. Fish look homogeneously red under the microscope and there are no striking differences between males and 

females specimens. The signal in the lens could be artificial, due to incorrect protein stability in this region.. 

 

2.2.4 FUCCI green F2 fish description. 

 

FUCCI green fish showed two different kind of fluorescence patterns, one of which was 

unexpected. Some specimens showed the a concentration of green fluorescent cells in the 

mitotically-active regions of the embryo while some other specimens showed a ubiquitous 

expression of green fluorescence at any developmental stage (Figure 2.15). This odd pattern was not 

further investigated and the embryos discared, but is probably the result of a partial integration of 
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the construct in the fish genome, or a mutation in the transgene sequence itself, that impairs the 

functionality of the geminin targeting sequence. 

. 

 

 

Figure 2.15. Unexpected FUCCI green embryos pattern. Examples of embryos showing the unexpected FUCCI green pattern. In 

these embryos the fluorescence is ubiquitous at any developmental stage.  

 

The “correct” pattern of the FUCCI green F2 embryos can be described as follows: 

During the dispersed phase, a variable proportion of green epiblast cells were detected (Figure 

2.16). The nuclei of these cells were between 7 and 25 µm in diameter, with a higher proportion of 

the smaller cells. During this developmental stage, both in the case that many (Figure 2.16 B) or 

few (Figure 2.16 A) green cells were present, they seemed to be arranged randomly on the embryo 

surface. The phase of the cell cycle of these cells was for sure one among S/G2/M, but 

unfortunately the FUCCI system is not able to give information about exactly which one of these. 
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Figure 2.16: Dispersed phase FUCCI green embryos (Wourms stages 19-20). At the dispersed phase FUCCI green embryos 

revealed two possible conditions of cells proliferation. A) represent the condition where only few green cells are present while B) the 

one where many of them can be detected. There is a simultaneous presence of big and small green nuclei at this stage, even if small 

nuclei are predominant. 

 

During active somitogenesis (in developing embryos and not in diapausing ones) proliferating green 

cells were spotted in every part of the developing embryo. The signal was moderately strong both in 

the trunk, in the tail and in the head primordia (figure 2.17). The maximum intensity of the signal, 

that corresponded to the maximum density of proliferating cells, was limited to a narrow region 

along the midline of the embryo, that went from the end of the head to the end of the tail, and that 

was positioned between the yolk surface and the ventral part of the developing embryo. Among the 
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yolk surfaces, a large number of green cells, that reminded the dispersed phase stage, were still 

visible, even if was not clear if these cells were actually proliferating or blocked in the G2 phase 

and migrating on the yolk surface. 

 

 

Figure 2.17:  Mid somitogenesis FUCCI green embryo (Wourms stage 31). At this stage the whole growing axis is populated by 

green cells. The higher density of green cells lies in a narrow streak in the middle of the forming axis, starting from the base of the 

head and ending in the middle part of the embryonic axis. 

 

In the hatched fry, the proliferative regions in the embryo were more defined (Figure 2.18). In the 

torso and the tail the proliferating green cells that could be detected were spread and 

homogeneously distributed (f). Other spread green cells, even if with a slightly increased density, 

could be detected in the caudal and pectoral fins (d) and at the base of the head, in the hindbrain (e). 

The forebrain (a) showed a totally different pattern. The proliferating cells were not widespread but 

formed dense aggregates on the borders of the optic tectum that corresponded to the neuronal stem 

cell niches [65], while no proliferating cells could be seen in the inner part, that appeared 

completely dark. The olfactory epithelium (b) at this stage seemed to be one of the major 

proliferating regions, composed by dense streaks of proliferating cells. As last, the pupils (c) shone 

of green fluorescence at this stage, but, as discussed for the FUCCI red trasgenic line, this could be 

an artefact due to the high protein stability in the lens that did not permit the correct degradation of 

the FUCCI construct. 
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Figure 2.18: Hatched FUCCI green fry (Wourms stage 44). Discrete regions are populated by green cells at this stage: a) forebrain 

b) olfactory nerves c) lens d) fins e) hindbrain f) torso and tail muscles.  

 

In adult FUCCI green specimens, no green cells could be detected under a stereomicroscope and the 

only green signal present at this stage was confined to the region of the eye (Figure 2.19). 

 

 

Figure 2.19. Adult FUCCI green fish. The majority of the cells present colorless at this stage because prolifertion is greatly reduced 

at this stage, compared to embryonic stages. Green intense signal is retained in the lens but it could be an artefact due to increased 

protein stability in this region. 
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This negative pattern was expected, since only few cells proliferate in the adult fish and only the 

skin surface is visible. For this reason, is understandable that no green signal was detectable with a 

stereomicroscope. 

Concerning the signal retained in the eye, as noticed for the previous stage of hatched fry, it was 

probably due to a different stability of the proteins in the lens, caused by the peculiar chaperones 

present there that protects crystallins from degradation. These chaperones probably lead to an 

uncommon high stability of FUCCI in this region, and so there is the chance that azami green-

geminin protein formed in the lens primordia could not be degraded as soon as the cells exited from 

S/G2/M phases, accumulating over time. 

 

2.2.5 Fin cut FUCCI green adult validation. 

 

To check if the rest of the body, that appeared not green, was still able to express the green signal in 

response of proliferation events, a fin cut experiment was performed (Figure 2.20). 

One male and one female belonging to the F2 generation of FUCCI green were isolated and half of 

their caudal fin was cutted away. Another FUCCI green F2 female was left uncutted, as control. 

After 24 hours and for the next 9 days the transgenic fish showed a huge amount of green cells near 

to the cutted region of the fin, as long as it was regrowing, indicating proliferation. So, FUCCI 

green marker was absolutely able to mark proliferating cells also in the adult. 

In details the proliferation event showed a burst in all the region before the cutted site just after 48 

hours from the cut. 72 hours after the cut was performed, the green cells clustered in a specific 

region just next to the cutted site, defining short and dense proliferation areas that spread single 

cells towards the distal part of the fin. These green proliferating regions extended as the fin grew, 

reducing gradually their density until the fin was totally regenerated.  
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Figure 2.20. FUCCI green adult speciemen caudal fin cut. In a normal condition there are no green cells in the caudal fin of an 

adult FUCCI green fish. If part of the fin is removed performing a cut, after 2 days many green cells gathers, with a density that 

slowly drops toward the animal body. In the following days green cells specifically localize in proximity of the injury, reducing 

greatly their presence in the distal part. Over time the number of green cells drops, until the fin is totally regenerated.   
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2.3 F3 double FUCCI fish time lapse.  

 

Once verified the correct pattern and functioning of both the FUCCI red and green transgenic lines, 

the F2 fish were crossed (FUCCI red with FUCCI green), generating double FUCCI green/red 

embryos, that were analyzed through confocal imaging. 

Three to five embryos that showed at the stage of epiboly both the green and the red signal 

(indicating the inheritance of both the FUCCI red and green transgene), were acquired for periods 

spanning from hours to days at stages from the end of epiboly to almost the end of somitogenesis, 

i.e. past the stage when embryos would enter into diapause II.  

The stacks of images of each time point were then processed with Imaris and analyzed through 

particle analysis or surface analysis, depending on the specific cases. 

All experiments were performed through time lapse confocal microscopy, acquiring the same 

embryo or different embryos multiple times, for many hours, during different phases of their 

development. Unfortunately each of these experiments required a huge amount of time, since every 

single time lapse acquisition lasted from 8 hours to 4 days, and for this reason the amount of 

repetitions for each stage is small (Table 2.1). In addition some stages, like the release from 

diapause I, are very difficult to image, since they do not happen at a fixed developmental time, and 

last a relatively short amount of time (10 hours or less). I used the time lapse strategy because my 

main purpose was to give a complete overview about N. Furzeri development even if the 

compromise was to have a small number of repetitions. 

The transgenes expression was activated after the MBT stage, and detection of a fluorescence signal 

with a confocal microscope was not possible before the stage of 70% epiboly, so any image 

reported here and relative to an earlier stage was obtained by synthetic RNA injection. 

Embryonic Stage Amount of embryos imaged 

Dispersed Phase (WS 19-

20) 

Early (with few green cells) 4 

Late (with many green cells) 6 

Dispersed Phase transition (from few to many green cells) 1 

Reaggregation Phase (WS 21-25) 4 

Extension Phase (WS 26) 4 

Somitogenesis (without diapause II arrest) (WS 29-33) 6 

Diapause II arrest and release  3 
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Table 2.1: Embryos acquisitions for each developmental stage. Table shows the number of embryos acquired at each developmental 

stage. From stage to stage embryos acquired could be the same, acquired progressively during its development, or different ones. WS 

means wourms stage.  

 

2.3.1 Epiboly 

 

For the first day (at 26°C) the embryos divided synchronously for the first 5 divisions and then in an 

asynchronous way. Proliferating cells were confined to the animal pole, the region of the embryos 

where the first cell was located. 

At the beginning of the second day, some cells started to migrate over the yolk surface. The first 

cells that migrated were the cells belonging to the YSL, that anticipated the migration of the other 

cells by at least 6 hours. YSL cells were blocked in G1-G0 phase (red color) for all the span of 

subsequent development, they never divided and their nuclei appeared to be much larger as 

compared to the other epiblast cells (21-27 µm vs. 8-12 µm). 

The start of the epiboly (Wourms stage 15) overlapped for some hours (around 13 hours) with the 

end of the proliferating process at the animal pole. At 40% epiboly (Wourms stages 16-17), the 

division process at the animal pole was completed, and only some big spread green cells, probably 

blocked in G2, red small cells (much smaller and less intense than the YSL ones), and big YSL red 

cells could be detected (Figure 2.21).  

The green and the small red cells belonging to the epiblast migrated in an apparently random 

direction, with shorter or longer paths above the YSL cells layer. This data confirms what already 

shown by Lesseps et al., that studied the cell movements at this stage and after a pathways track 

analysis defined the movements random [120].The average speed of the epiblast cells was higher 

than the one of the YSL cells. 
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Figure 2.21: Cell cycle during epiboly (Wourms stage 14-19) and dispersed phase. Cell cycle progression in Nothobranchius 

furzeri was visualized by fluorescent ubiquitination-based cell cycle indicator (FUCCI). Green cells in the S-/G2 phase, red cells are 

G1-phase cells. Cells divide for the first days of development at the animal pole and then just migrate in G1 onto the embryo surface 

during late epiboly and the dispersed cell phase. As long as epiboly proceeds green cells number progressively decrease and only 

few are left at the stage of 75% epiboly (arrows). 

 

Concerning the YSL cells, their movements over the yolk surface were slow and ordered, they 

moved towards a defined position (opposite to the animal pole) in a straight (curved because the 

surface of the yolk is a sphere) way, and they continued to move until the completion of epiboly 

(Wourms stages 18-19) (Movie S4), when they reached their final position in the syncitium that will 

be maintained during ensuing development. In the final position, the nuclei of the YSL cells 

distributed a very defined and regular architecture, covering entirely the yolk surface at an average 

distance of about 80 µm from each other. Their number was also quite stable and was estimated to 

be around 500 (Figure 2.22). 
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Figure 2.22. Cell’s behaviour during epiboly (Wourms stages 18-19). When epiboly occurs both green and red cells are present in 

double FUCCI embryos (A). As long as epiboly proceed (B, C) the number of green cells gradually and slowly decreases over time 

while the number of red cells increases until the reaching of a plateau (graph minutes 400-700). The cells in the field of view were 

easily tracked and counted transforming the dots in particles with imaris (D,E,F). The images and graph refers to the acquired 

portion of the embryos, equivalent to the upper part. 

 

Once reached their final position, the YSL nuclei did not move, divide or migrate anymore. 

Therefore, the YSL cells could be used as a reference to correct for yolk movements, that often 
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occurred in the embryos during the development, and allowed to precisely track the movements of 

all the other cells and structures (Figure 2.23). 

 

Figure 2.23. YSL nuclei as reference point for drift correction. Embryos continuously move through all the development (A,B,C,D) 

but YSL nuclei once in their final position (that occurs at the end of epiboy) never move anymore. These nuclei can therefore be used 

as reference points and drifts and rotations that occurs during developmenta can be corrected using ther position (E,G,F,H). 

Correctiong the drifts allows a more precise and reiable cell tracking and data analysis.  

 

2.3.2 Early dispersed phase (Wourms stages 19-20) and diapause I. 

 

When epiboly ended and the dispersed phase began, the number of detectable green cells and red 

cells not in the YSL was reduced from more than 200 to less than 70 for each kind, in a ratio of 

almost 1:1 (Figure 2.24 C). At this stage it was possible to separately count YSL red cells and 

epiblast red cells because their nuclei diameter greatly varied (~22 µm vs ~9 µm respectively) and 

could be easily and precisely distinguished by Imaris (Figure 2.24 B).The drop in number of 

epiblast cells was progressive, began with the start of the epiboly and slowly proceeded during all 

this phase (Figure 2.22). Is important to remark that this description refers to the cells that were in a 

S/G2/M or G1/G0 phases, and not to the total number of cells present in the embryos. FUCCI is 

indeed unable to mark, for example cells at the interface between the M and the G1or S phase that 

cannot be therefore counted.  

So, the correct statement for epiboly description is that in this developmental stage the number of 

detectable cells (S/G2/M/G1/G0) significantly drops, but the total number of epiblast cells probably 

remains constant, since migrating cells are clearly visible in transmitted light throughout the 

dispersed phase (Figure 2.5 B and Movie S1). 
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In addition, is necessary to remark that all the embryos observed (N > 30), despite inevitable 

variations of ambient paramenters, step in this condition after the end of epiboly, where only few 

epiblast green or red cells were detectable, although this condition may last just a few days .  

This condition, if extends its duration over time, is probably what in literature is defined as diapause 

I stage (DI). It starts with the beginning of the dispersed phase, and has these characteristic features: 

• regularly spaced YSL big cells nuclei (19-25  µm nucleus diameter), that do not move, 

migrate or divide. 

• presence of few (less than 80) red and green small (7-13 µm nucleus diameter) epiblast cells, 

cycling at a very slow rate or not cycling at all. These cells move randomly above the YSL 

surface during the whole diapause I process. 

• this stage presents, even if in some cases just for few hours, in all the embryos, it is reached 

by a continuous decrease of red and green epiblast cells during epiboly, and starts with the 

start of the dispersed phase. 

• this stage can last for variable amount of times, depending on environmental conditions. 
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Figure 2.24. Cells behaviour during early dispersed phase (Worms stages 19-20). The first part of the dispersed phase is 

charachterized by the presence of few epiblast green or red cell (A). YSL cells were converted in white big dots while epiblast green 

and red cells in green and red small dots (B) and the all the cells were tracked over time. The number of each type of cell resulted 

constant for more than 10 hours (C graph) and epiblast cells continuosly moved during the whole time (C diagram). The images and 

graph refers to the acquired portion of the embryos, equivalent to the upper part. 

 

2.3.3 Release from diapause I. 

 

There are at present no direct data concerning which could be the activation signal that release an 

embryo from diapause I, even if probably temperature and oxygen levels are involved in the 

process. The experience collected during my time lapse experiments shows that the time of the 

permanence in this condition is variable (in the order of days) and there are hints that the release 

happens in a very short amount of time (less than 1 day). During my observations, I was indeed able 

to image only embryos with either few green cells or crowded with green cells. I can therefore 

assume that the transition step, from few to many green cells is a very fast step, difficult or 

impossible to acquire just performing random samples observation. 
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The following description, concerning the dynamics how diapause I  ends and embryos 

development reactivates refers to only one embryo acquisition (Movie S5), because, as said before, 

this transition is extremely challenging to observe due to its speed and unpredictability. 

The release from diapause I was characterized by a rapid appearance of a large number of green 

fluoresecent cells, indicating that  most of the red and “invisible” dark epiblast cells, entered into 

S/G2/M divisions, without becoming red(Figure 2.25). These reactivated cells divided together and 

synchronously generating pulses of green/dark cells. The amount of cells involved in this process 

increased pulse after pulse, indicating that the cells that proliferated and divided (green) generated 

cells that in their turn proliferated. These pulses occurred every 10 hours at 26°C and the cells 

involved in these divisions didn't go or barely went through a G1 red phase. Most of them just step 

from a green to a dark phase, a pattern reminiscent of that seen during segmentation, only having 

S/G2/M green phases.  

In addition, the proliferating cells moved in an apparently random fashion during all the division 

processes, in a way that was totally comparable to the movements of epiblast cells that were 

documented during diapause I by brightfield microscopy (Movie S1) or during early dispersed 

phase by confocal microscopy. 
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Figure 2.25. Transition from early to late dispersed phase. From an initial codition where only few epiblast cells could be detected 

as green or red (A) multiple reactivation and division events bring green cell number to increase up to a final condition where their 

number is 4-6 times more (H). Division events happens sinchronously and are characterized by multiple peaks of proliferation in 

which cells grow (C,E,G) and divide (D,F,H) alltogether. The images and graph refers to the acquired portion of the embryos, 

equivalent to the upper part. 

 

2.3.4 Late dispersed phase (Wourms stage 20). 

 

In this way the number of the epiblast cells increased dramatically in few hours and the embryo was 

able to prepare for axiogenesis in less than 2 days.  

The increase in the amount of green cells led to the second part of the dispersed phase (Figure 2.26), 

that was characterized by an almost equal number of YSL, epiblast green and epiblast red cells, that 

was around 500 each in the whole embryo (Figure 2.26 C). Similarly to the first part of the 

dispersed phase, also in this second part, the epiblast cells appeared to not divide or cycle or change 

their average number so were probably blocked in G1 or G2 phases but they migrated randomly 
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over the YSL surface at a speed that was comparable to the speed that they reached during the early 

dispersed phase and diapause II, amounting to 61,2 ± 26,3 nm/s. The second part of dispersed 

phase, once the pulses of proliferation were completed, was actually similar to the diapause I stage, 

with the only difference that the red and green detectable cells were 4 to 5 times higher in number. 

The amount of time embryos spent in this second part of dispersed phase could not be determined in 

my experiments and is not clear if it was fixed or variable. 

 

 

Figure 2.26. Cells behaviour during late dispersed phase (Wourms stage 20). The second part of the dispersed phase is 

charachterized by the presence of many epiblast green or red cell (A), at least 4 times more compared to the initial early part. YSL 

cells were converted in white big dots while epiblast green and red cells in green and red small dots (B) and the all the cells were 

tracked over time. The number of each type of cell resulted rather constant for more than 10 hours (C graph) and epiblast cells 

continuosly moved during the whole time (C diagram). The images and graph refers to the acquired portion of the embryos, 

equivalent to the upper part. 

 

2.3.5 Reaggregation (Wourms stages 21-26). 
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When a certain number (not possible to define with my experimental datas, it could futhermore vary 

between different specimen) of green cells was reached, the majority of those cells migrated 

towards a undefined point of the embryo, forming a circular aggregate that was initially sparse and 

whose radius became progressively smaller (Figure 2.27 and Movie S6). I couldn’t determine the 

point of the embryo toward wich cells migrated, but experiments performed by Wourms in the 1972 

[17] suggest that it is located in the lower emisphere of the egg, opposed to the animal pole.  The 

movements of the cells in this region were greatly reduced in speed, compared to the previous 

phases, and the circular formation step from an initial diameter of about 900 µm to a final one of 

about 470 um (radius estimation was done on a single embryo using a cell density threshold with 

Imaris). The whole reaggregation process required a short fraction of total developmental time and 

in about 15 hours the final short radius green cells circular formation was completely defined. 

From this circular aggregate of proliferating cells the whole embryo evolved. 

 



 

58 

 

 

Figure 2.27. Reaggregation phase (Wourms stages 21-25). Green cells are the ones that mostly take part in the embryonix axis 

formation and development. Initially they gathers in a point of the embryo (A,B,C), forming a circular structure that progressively 

reduce its radius. The green formation can be converted in a surface (D,E,F) that shows that the area reduction evolves with a linear 

dynamic over time (graph). The images and graph refers to the acquired portion of the embryos, equivalent to the upper part. 

 

Slowly the circular organization changed in shape, becoming an ellipsoid, lengthening, and 

retaining a higher density of the dividing cells in the inner part and a lower density in the borders 

(Figure 2.28 and Movie S6). The area of the whole structure almost remained unchanged and only 

its shape changed.  Since the cumulative green signal intensity did not vary at this stage and the 
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cells mostly rearranged in the space, it can be assumed that the cell proliferation was reduced. In 

this phase, the number of epiblast green or red cells that did not belong to the main formation and 

that wandered over the YSL surface was greatly reduced, and was comparable or inferior to the 

number of cells that randomly moved over the YSL surface during diapause I (<80). 

 

 

Figure 2.28. Axis extension phase (Wourms stage 26). Green cells play a major role in this phase. The initial circular formation (A) 

evolves lenghtning until the formation of the primordial axis (C). The change in shape can be measured (D,E,F) and is slow, 

progressive and homogeneous (G). The images and graph refers to the acquired portion of the embryos, equivalent to the upper part. 

 

As the main structure evolved and lengthened, its shape changed, and so changed the density of the 

dividing cells in the different regions. 
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Just before the start of the somitogenesis (Wourms stages 27-28), the developing embryo appeared 

constituted by 2 streaks of dense proliferating green cells on the left and right side of the embryo, 

clearly separated by a narrow dark cell layer (Figure 2.29, detail). The cells from these 2 streaks 

divided and migrated toward the inside. Movements kinetics can be better appreciated in movie S6 

(min 00:20 to 00:25). 

At the top and the bottom of the formation were present two circular enlargements, dense with 

proliferating cells, that will form respectively the head and the somites of the embryo (Figure 2.29). 

These cells divided and migrated in a circular way (can be appreciated better in Movie S6). 

 

 

Figure 2.29. Axis elongation kinetics (Wourms stage 28). Green cells greatly proliferate and move in the transition phase that links 

the end of axis definition with the beginning of somitogenesis. The cells populating the rostral and the caudal tip of the axis performs 

mainly circulat movements, in diraction of the axis body, while the cells belonging to the middle part of the axis are disposed in 2 

streaks (detail) and move inwards towards the midline. 

 

2.3.6 Somitogenesis (Wourms stages 29-33+). 

 

The first red structures that appeared, formed by clusters of red G1/G0 cells, were the somites. They 

started to form approximately in the 2/3 posterior part of the embryo and they increased in number 

as in all other fish species by addition of progressively more caudal somite pairs (Figure 2.30). The 

formation of somites was progressive and initial dispersed ensembles of red cells in few hours 

turned into defined red cell aggregates, forming the somite (Movie S6).  
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In the somites, only red G1/G0 cells were present and an overlap or co-existence of dividing and 

differentiated cells was not visible. 

The somites structures were inserted among dividing cells, exactly between the green cells of the 

midline streak and the green cells at the border of the embryo. In a lateral view, instead, they 

appeared to be above the green cells of the midline streak (Figure not shown). 

 

 

Figure 2.30. Somitogenesis (Wourms stage 31).  At mid somitogenesis green cells populate the major part of the embryos, that is in 

active proliferation, while red cells are mostly confined to already determined somite pairs. There is no overlap between green and 

red cells. 
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Embryos destined to go in diapause II and embryos that would skip diapause followed different 

developmental paths, as already showed by Furness [30].The morphology of the forming 

nothochord was different between the two developmental trajectories.  

The following experiments and measurements refer to only one diapause II committed embryo 

(DCE) and one not diapause II committed embryo (not-DCE), since only two embryos resulted 

correctly oriented to allow a precise measurement of body length and somites length (Figure 2.31). 

The data suggested a possible difference between a DCE and a not DCE already at the stage of 10 

somites, but as already said this is the the suggestion derived by only one comparison, since no 

additional datas are available. For this particular stage description length measurements were 

performed by hand using Fiji. The DCE is an embryo that was imaged day after day as many other 

embryos, and that by chance arrested in diapause II phase at mid somitogenesis. The analysis and 

comparison are therefore been done in a blind way, and the commitment of the DCE specimen 

revealed only aftermath. 

The elongation of the nothochord structure was much faster in embryos that were committed to skip 

diapause. The effect of temperature could be excluded since all embryos were imaged at 26°C. 

The DCE imaged started to form the first somites (formed by a cloud of differentiated red cells) 

when they reached a total lenght of about  530 um, while not-DCE showed the first red somites 

when they were about 600 µm long. So, the first morphological difference in lenght between 

committed and not committed embryos was observed at the start of somitogenesis, before the 10-

somite stage described by Furness [30]. 

In addition, as development proceeded not-DCE showed an elongation speed that was higher 

compared to DCE. In fact, the elongation speed for not-DCE was approximately 18 um/hour while 

for DCE only approximately 5,6 um/hours. Also the somite region elongation speed, accordingly to 

the reduced elongation rates between the two developmental trajectories was reduced. Not-DCE 

showed a somite region elongation speed (that is the speed at which the somite region extend in 

lenght, due to the progressive formation of the somites) of about 26,4 um/hours while DCE of about 

11,5 um/hours. 

The ratio between total elongation and somites elongation in DCE and not-DCE was not so 

different (approximately 0,68 vs approximately 0,49) and the embryos following either of the two 

developmental trajectories, even if developing at different rates, mostly conserved the relative 

proportions between their parts. 
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As previously described [30], [31], the width of DCE and not-DCE differed greatly. Unfortunately, 

since FUCCI only marks the nuclei of the cells and not the whole cells, this measurement was hard 

to define and absolutely not precise, so no quantitative data could be gathered regarding this 

measure although a difference between the width of DCE and not-DCE was clearly visible, with 

DCEnot-DCE being broader, particularly in the head region, possibly due to the increased 

proliferation in the lateral embryonic axis.  
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Figure 2.31. Differential axis elongation between diapause II committed and not committed embryos (Wourms stages 29-30). 

Diapause II committed embryos show an axis lenght that is inferior compared to not committed embryos when somitogenesis starts. 

The somite region result proportionally inferior aswell. Axis and somites increase in lenght with a comparable speed both in 

committed and not committed embryos as development proceeds. Length measurements were performed by hand using Fiji 

 

2.3.7 Diapause II 

 

The diapause II stage was charactherized by a dramatically reduction of proliferating cells. In 

diapause II embryos, all processes of development as proliferation or migration were suppressed. 

There were some green cells, spread among the somites, but their number was dramatically reduced 

as compared to the previous stages of development (Figure 2.32). In addition, these remaining green 

cells were possibly blocked in G2, since they were not dividing or moving. 

Under our experimental conditions, when embryos entered diapause II somites were made by red 

cells and could be easily counted. All DCE entered diapause at the 30 somites stage. 

Even if in the diapause II stage cell movements and dynamics were almost inexistent, sometimes 

muscular twitches bending the nothochord were detected. Their pattern appeared random without 

periodicity or being triggered by external stimuli. It was therefore impossible to estimate the 

number of twitch per hour.  

In addition, at this stage, the length of the embryo was absolutely comparable to the length of a not-

DCE, as opposed the width that was significantly lower as compared to a 30 somites not-DCE. 

I documented the final stage of a diapausing embryo, when proliferation was suppressed (Figure 

2.32). I could not document how this stage was reached and therefore the kinetics by which 

proliferation dropped (i.e. gradually or abruptly). 
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Figure 2.32. Diapause II arrested embryo.. Embryos arrested in diapause II shows an extremely reduced presence of green cells. 

Red cells clearly define the already formed somites and populate in a diffuse way the whole axis region. At this stage the embryos do 

not develop and cells do not proliferate or move, anyway sometimes muscolar contraction can be observed in the axis. 

 

2.3.8 Release from diapause II 

 

The release from diapause II was documented in 3 embryos and was characterized by a rapid catch-

up process by which  almost all the previously red or colorless cells of the embryo (excluding the 

red cells forming the already complete somites) switched to green fluorescence(Figure 2.33 and 

Movie S7). These cells started to divide, stepping mostly through S/G2/M phases. Cell cycle 

reactivation happened in less than 4 hours, and started apparently simultaneously in all the cells of 
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the embryo. After the burst of reactivation, that lasted for at least 6 hours, it reduced to a steady 

state with similar kinetics (Figure 2.33 G).  

During this process, red cells remained confined in the somites and in a more diffuse way in the 

head and in the trunk, without populating new areas of the embryo. 

Anyway, what could be noticed was an increase of thickness of these regions. Red cells, that at the 

beginning of the reactivation delineated a long and skinny embryo (Figure 2.33 A,H), at the end of 

the process revealed a more wide and chubby body (Figure 2.33 F,I), much more similar to the 

embryos that skipped the diapause II stage. 
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Figure 2.33. Release from diapause II. A sudden reactivation of almost all the embryos cells determines the release from diapause 

II. Green cells greatly increase their number and density in less than 10 hours (B,C,D) increasing the lateral size of the embryo and 

reactivating the development. After the initial proliferation burst green cells slowly decrease in number and density (D,E,F), 

becoming comparable to embryos that did not arrested in diapause, at a comparable stage. Somites morphology changes after cells 

proliferation, and embryos width and each somite size become bigger (H,I). wA=70 ± 6 um; wB= 97 ± 9 um; xA= 16.5 ± 2.5 um; 

xB= 24.6 ± 2.8 um; yA= 16.7 ± 2.4 um; yB= 25.5 ± 3,5 um. Measurements performed with fiji. The images and graph refers to the 

acquired portion of the embryos, equivalent to the upper part. The bend in E is due to a slight loss of the imaging focal plane and is 

artifactual. 



 

68 

 

 

2.3.9 DCE development past diapause II (Wourms stages 33+). 

 

As the embryonic development approached to an end in DCE embryos, the proliferating cells 

density became similar to the previous phases, with a major concentration of green cells in the two 

midline streaks, at the border of the embryo, and in the head. In addition, as soon as cell cycle was 

reactivated, also cell migration started again. Similarly to the previous developmental stages, cells 

from the two lateral streaks appeared to migrate toward the midline, both in the somite region and in 

the head of the embryo. 

As already said the green signal slowly faded and the proliferating cells remained in the stem cell 

niches and otherwise were scatterd across the embryo, generating mostly red cells that contributed 

to the increase on embryo width. After one day from the reactivation, DCE were comparable in 

morphology to not-DCE, and also the pattern of red and green cells was not visibly different. 

 

2.3.10 Development of not-DCE  

 

In the embryos that did not step into the diapause II arrest phase, the densitiy of green cells did not 

diminish, that means that in these embryos cells continued to cycle during all the development until 

the complete formation of the embryo. After the formation of the first 2 somites, 4 symmetrical 

green streaks of proliferation, that went from the base of the head to the end of the tail, could be 

clearly defined in the embryo. Two inner proliferation streaks, close to the midline and divided by 

the midline itself, and two outer streaks, one left and one right, defining the outer borders of the 

embryo (Figure 2.34). 

If the two inner streaks had cells that migrates inwards (Movie S6), the movements of the cells of 

the outer streaks were less predictable, as they seemed to move in random directions. The cells 

belonging to the outer streak also moved outside the embryo formation region, going over the YSL 

cells covering the yolk surface, probably contributing in forming the blood vessels that would 

completely surround what remained of the yolk once the embryogenesis process was completed. 

All the somites were defined by red cells while the main green proliferation event occurred in the 

rest of the embryo. As the development proceeded, the green signal slowly reduced in intensity and 

the proliferating cells became spreader and spreader in the embryo while the red cells became more 

and more dominant, expanding from the somites regions to the head and to the all the other parts of 
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the trunk. In not-DCE there is never a stage comparable to DCE where the green intensity drops 

nearly to zero.  

The not-DCE embryos never present furthermore a stage where they look skinny, since this never-

stopping proliferation lead them to the characteristic chubby morphology in each phase of their 

development. 

 

 

Figure 2.34. Not diapausing embryos end of development (Wourms stages 29-32). Green cells populate the whole embryonic axis 

for all the somitogenesis in embryos that do not enter diapause II. Green cells number and density slowly drops as long as  

development proceed while red cells increase with time populating at first the somite pairs and afterwards almost every region of the 

axis. 
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Figure 2.35. Graphical abstract resuming FUCCI N. furzeri fish development. Images and developmental times refers to 26°C 

incubation conditions, except purple arrows that refers to low temperature (18°C-21°C) incubation conditions. Stages refers to 

developmental stages described by Wourms [3]. 
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2.4 Molecular analysis of diapause 

 

2.4.1 MicroRNAs differential analysis 

 

To begin to shed light on the molecular factors involved in the diapause process, an experiment of 

genome-wide expression analysis of small RNAs was performed. 7 species of killifish belonging to 

all of the 3 existent clades were selected (Figure 2.36). From South America, were chosen the 

annual species Austrofundulus leohoignei and the related non-annual species Rivulus cylindraceus. 

From Africa, west of Dahomey gap, the annual species Callopanchax occidentalis and the non-

annual species Epiplatys dageti monroviae. From Africa, east of Dahomey gap, the annual species 

Nothobranchius furzeri (5 replicates) and the non-annual species Aphyosemion striatum (4 

replicates). 

As outgroup, Aplocheilus lineatus was chosen as the closest outgroup taxon to all annual killifish.  

 

 

Figure 2.36: Phylogram of the species used for the experiments. Blue indicates non-annual species, red annual species. The 

geographic distribution of each lineage is show on the right. The phylogram is derived from the original Murphy and Collier 

molecular phylogram based on cytochrome b, 12 s rRNA and 16 s rRNA genes [2]. 

 

Fertilized embryos were collected from each species and were kept at 24°C. At this temperature, 

more than 50% of the annual embryos stopped their development in the diapause 2 phase. 
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30 to 50 embryos from each species, blocked in diapause 2 for annual species or at the equivalent 

developmental stage (mid somitogenesis) for non annual species, were pooled, and the RNA was 

extracted. 

In a second experiment, two groups of N. furzeri embryos were kept in different conditions. One 

group was kept at low temperature (21°C) and the other group at high temperature (27°C), in order 

to induce or prevent the arrest in diapause 2, respectively. RNA was extracted from diapausing 

embryos belonging to the first group and from 30 somite-stage not diapausing embryos belonging 

to the second group. To confirm that the embryos from the second group were effectively not 

arresting in diapause, only 30% of the embryos were sacrificed for RNA extraction and the others 

left to develop as control. All the control embryos did not stop in diapause. 

From total RNA extracted from each sample, the miRNA portion was isolated and the miRNAs 

expression was analyzed by miRNA-Seq. This analysis was performed by Mario Baumgart at the 

Leibniz Institute on Aging in Jena.   

In total, 1.97x108 sequences in the 18-33 nt size range were obtained and 2.97x107 (15%) could be 

annotated as miRNAs based on miRBase v21.0 allowing two mismatches with Danio rerio 

reference miRNAs. Distribution of size classes was bimodal and showed two peaks: one at 22 bp, 

that is consistent with the size of mature miRNAs, and one at 28 bp, that is consistent with the size 

of piRNAs. On the other hand, size distribution of small RNAs previously obtained from 

Nothobranchius furzeri somatic tissues [67] was unimodal and centered on the expected size of 

mature miRNAs. Therefore, low annotation yields could be due to a prevalence of piRNAs in the 

small RNA population of the killifish embryos at this developmental stage. Indeed, presence of 

piRNAs in zebrafish embryos up to 1-day postfertilization (when somitogenesis is completd) was 

recently reported [121]. However, since the genomes of the species analyzed here are not available, 

it is not possible to annotate piRNAs in our datasets. In total, we identified 291 evolutionarily-

conserved miRNAs expressed in at least one sample. In order to reveal the effects of phylogeny and 

physiological status on global miRNA expression, multidimensional scaling (MDS) was performed. 

MDS is an iterative algorithm that projects individual samples onto a plane minimizing the 

difference between their distance on the plane and their distance based on miRNA expression 

(defined a 1-ρ, where ρ is the Spearman’s correlation coefficient). The result is a dimensional 

clustering that reveals the similarities between all the embryonic samples (Figure 2.37). 

Analyzing the MDS graph, the following observations can be made: 
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There is a complete separation between annual and non annual killifishes species samples, 

regardless of their clade affiliation or phylogenesis. The two groups of killifishes, annual and non 

annual, form well-separated clusters. 

Further, biological replicates of Nothobranchius furzeri and Aphyosemion striatum form two 

distinct clusters nested within the annual and non annual clusters, respectively. 

Nothobranchius furzeri 30 somites not diapausing embryos cluster together and position in the 

graph very close to diapausing N. furzeri embryos samples, but shifted toward the non annual 

samples.  

 

Figure 2.37: Mid somitogenesis killifishes miRNA MDS. The two axis show the principal components. MicroRNAs of diapausing 

annual embryos (red), mid somitogenesis non annual embryos (blue), and Nothobranchius furzeri mid somitogenesis not diapausing 

embryos (light blue) are plotted on the graph. Annual and non annual killifishes completely separate and not diapausing N. furzeri 

embryos belongs to the annual group but are shifted towards non annual species. 
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In a first approach, we identified DEMs common to all three lineages. For each of the three lineages, 

we contrasted the non-annual species with one annual species (Kal’s Z-test, FDR-corrected p<0.01 

and absolute fold change > 1.5). Venn analysis revealed six miRNAs that were up-regulated in DII 

embryos in all three lineages : miR-10a/b/d miR-101a, miR-146a and miR-192 (Figure 2.38 B). Seven 

miRNAs were down-regulated in DII embryos in all three lineages: miR-130, miR.184, miR-18a, 

miR-22a, miR-430a, miR-462, miR-731 (Figure 2.38 A).  

Was then investigated the existence of differentially-expressed miRNAs (DEMs) linked to diapause 

using DESeq2 [122]. 

 

In second analysis we performed two different tests : 

In test 1, we treated each species as replicate, with only one replicate each for N. furzeri and A. 

striatum, and contrasted annual- vs. non-annual samples. In Test 2, we contrasted N. furzeri (5 

replicates) with its sister non-annual taxon, A. striatum (4 replicates). In Test 1, a total of 16 DEMs 

were detected with false discovery rate (FDR), p < 0.05. 8 were higher- and 8 lower-expressed in 

diapausing embryos. Out of these, 6 DEM with higher expression in the diapausing embryos were 

also DEM in Test 2 (miR-199-3p, miR-126a-3p, miR-153a-3p, miR-141-3p, miR-30d and miR-200a-

3p) and all 8 DEMs with lower expression in the diapausing embryos (miR-18b-3p, miR-200a-5p, 

miR-21, miR-462, miR-731, miR-430a-3p, miR-19d-5p, miR-430c-3p) were also DEMs in test 2. It 

shoud be noted that miR-430a and miR-430c are the most expressed miRNAs in annaul- and non-

annual embryos, respectively.  

If FDR correction was omitted in Test 1, were detected 17 up-regulated DEMs (out of these, 10 

were in the intersection with Test 2) (Figure 2.38 D) and 30 down-regulated DEMs (out of these, 25 

were in the intersection with Test 2) (Figure 2.38 C). These down-regulated DEMs included 4 out 

of the 6 members of the miR-17~92 cluster (miR-19a, miR-20a, miR-92a and miR-18b) that is 

know as important regulator of the cell cycle [123]. 

MiR-430a miR-462 and miR-731 emerged as down-regulated and miR-101a as up-regulated during 

diapause II in both the analysis.  
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Figure 2.38: Differential microRNAs expression between annual and non-annual species. A and B represent the DEMs common to 

all three lineages, C and D represent the DEMs common to test1 (annual vs non-annual) and test2 (5 nothobranchius furzeri 

replicates vs 4 aphyosemion striatum replicates). MiRNAs in A and C are less expressed in embryos arrested in diapause II while 

miRNAs in B and D are more expressed. 

 

2.4.2 MiR-430 expression in N. furzeri 

 

Activity of miR-430 is linked to degradation of maternal transcripts at the mid-blastula transition 

[124]. This feature has been characterized in zebrafish, that as previously treated, has different 

developmental dynamics compared to a large part of killifish species, so I decided to investihgate 

whether also in N. furzeri, activity of miR-430 is induce at the mid-blastula transition. 

Killifish 1 cell stage fertilized embryos were injected with a sensor for miR-430 (Figure 2.39). 

The sensor is a GFP coding sequence fused to a 3‘-UTR containing binding sites for miR-430 (G-

430). Together with the sensor, it was injected an RFP mRNA equally concentrated in order to  

normalize the GFP intensity level in the embryos. 
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A construct with a mutation in the binding sites for miR430 fused to the GFP coding sequence (G-

430-mut) served as control [124]. Also in this case, the RFP mRNA was co-injected. 

 

 

Figure 2.39: MiR-430 sensor. Schematic representation of the miR-430 sensor and of the miR-430 mutated control sensor. The 

control sensor has point mutations in the 3’UTR sequence on miR-430 binding sites. Both the sensors were co-injected with a 

constitutive RFP coding RNA in 1 cell stage N. furzeri embryos. Fluorescence intensity levels were measured once a day for one 

week. 

Injected embryos were imaged once a day for a week and GFP and RFP intensity levels were 

measured (Figure 2.40). 

The GFP/RFP intensity ratio showed a different behaviour in G-430 and G-430-mut injected 

embryos. 

In G-430-mut injected embryos, both GFP and RFP were visible 24h after injection, after that the 

intensity ratio slowly decayed over time.  

In the same way also in G430 embryos fluorescent proteins were visible at 24h after injection, but 

the ratio dramatically dropped in the next 24 hours, and GFP levels remained very low until the end 

of the imaging period.  
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Figure 2.40: MiR-430 is expressed in N. furzeri between 24 and 48 hours post fertilization. Images and the graph show a dramatic 

drop in GFP intensity between the first and the second day after the injection. The mutated sensor does not have this trend. RFP 

levels remains weak and stable for all the time of the experiment, while GFP levels gradually drops over days, at a constant rate in 

both the sensors.  

MiR-430 is therefore active in N. furzeri embryos between 24 and 48 hours after fertilization, and in 

embryos that will not arrest in diapause 2,  its effect continues over time until the phase of mid 

somitogenesis. 
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3. Discussion 

 

3.1 Early development in annual and non-annual killifishes 

 

What emerges from the data presented here is a clear difference between segmentation rates of 

annual and non-annual embryos. Annual killifishes show cleavage rates that are on average half or 

less as compared to non-annual killifish. 

This phenotype is conserved in all the fish analyzed, belonging to three different geographic clades 

separated by large geographic distance. Therefore, this developmental trait correlates with 

annualism, regardless of the phylogenesis of a killifish species. 

This slowness in early cell division could be the result of positive selection and provide an 

evolutionary advantage for annual species. 

Non-annual species in fact live in an relatively stable environment that is not subject to dramatic 

seasonal changes and is present throughout the year. For this, their development is very similar to 

other fish species and is under positive selection for rapid generation of a fry. The development is 

relatively fast and in 22 days usually the fry is able to hatch, to swim and to eat. This speed has an 

evolutionary meaning. Fish eggs are considered food by a large part of fish and other predators, 

sometimes even by their own parents. For this reason, the longer an embryo stays in its egg, the 

longer it is unable to escape a predator, and therefore, it can be assumed that developmental speed is 

under directional selection. 

The evolutionary scenario of annual killifishes is totally different, since they inhabit small 

temporary ponds that drive evolution of completely different life-history traits. 

A small pond sometimes extends for just a few tenths of meters. In addition, it is temporary, and so 

it is absent for a fraction of the year or sometimes, in arid habitats, not existing for several years in a 

row. This means that the diversity of the aquatic vertebrates that are able to populate the pond is 

extremely reduced, because of both its size and temporary nature. This leads to a reduced risk of 

predation for annual killifishes embryos. 

For this reason, it is biologically convenient for an embryo to develop as slow as possible, because 

the chance to hatch in an environment without predators is much higher. As a result, the 
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evolutionary pressure on the developmental speed is relaxed in annual species and this could be a 

reason for the evolution of such slow early cleavages. 

A second hypotesis instead postulates that the extension of early cleavages is a positively selected 

trait. Extending the early cleavages span implicates that the period when an embryo can respond to 

environmental conditions is equally extended. In fact, annual killifish embryos can skip diapause 

[31]. This can be interpreted as bet hedging strategy because diapause skipping embryos can hatch 

if the water body fills more than once during a season [125], allowing a second generation, and the 

commitment to this alternative developmental pathway is determined during the early development 

[31]. So, slowing the cleavage phase could have an effect in extending the amount of time available 

to embryos to respond to environmental conditions.  

 

3.2 FUCCI transgenesis in N. furzeri. 

 

FUCCI technology applied to N. furzeri fish proved to be a very powerful and reliable tool for cell 

dynamics studies and developmental analysis. Cells can be monitored from the stage of 70% 

epiboly to the fish adult life and their change of reporter expression in relation to the cell cycle 

progression is very reliable. 

In this work, FUCCI was used to describe cells dynamics during the development and the diapause 

phases in N. furzeri embryos but its applications could be much wider. It is able to describe 

precisely how cells behave during development, and could be used to identify the environmental 

variables that affect the development itself. It is able to instantly detect the release from diapause I 

or II, and could be used in the future to perforn molecular analysis (RNA-seq, CHIP-seq, 

metabolomics etc...) comparing embryos that are just exiting from diapause with embryos of the 

same cohort that remain in diapuase, to identify the molecular mechanisms that control this process. 

It can monitor the proliferation or regeneration in adult fish, and could be used to follow the repair 

dynamics in fish at different ages, since N. furzeri is also a very good model of ageing. Concluding, 

these and other applications make FUCCI N. furzeri fish an innovative tool, because a highly 

informative techonology is applied to a very peculiar organism, that has unique developmental 

features and is a great model of ageing. 

 

3.3 Diapause I 
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The results from FUCCI imaging describe precisely how the cells of the N. furzeri embryo behave 

during development. The initial five cell divisions are characterized by synchronous divisions, that 

take each the same amount of time and show only the presence of S M and possible G2 phases, 

without G1. Is still unclear the reason what are the molecular mechanisms responsible for extending 

the duration of cell divisions. Anyway, from these studies emerges that one of the phases 

responsible of this slowness is one among S or M or both. 

Another information acquired from FUCCI imaging is the progressive decrease in the number of 

green colored cells during epiboly. Since green cells are in S, G2 or M phase, this means a 

progressive reduction of dividing cells as long as epiboly proceed. This results in a very reduced 

amount of green proliferating cells when epiboly ends and persists during the initial part of the 

dispersed phase, that can turn into diapause I. 

Each embryo analyzed showed a progressive reduction of dividing cells while approaching the 

dispersed phase. It is therefore fair to assume that N. furzeri embryos are basically prone to enter the 

diapause I condition, and what can be modulated is only the time spent in this stage and its release. 

According to the data gathered, diapause I appeared to be the default developmental program of the 

embryos, that can last for varying amounts of time, depending on environmental condition, but not 

be skipped. 

According to the literature,  the triggers that release an embryo from diapause I are probably the 

same environmental conditions that influences diapause II, like temperature, humidity, pressure and 

other environmental factors [8], [31], [34], [35], [38] . Anyway, contrary to diapause I, a long 

permanence in diapause I is difficult to observe and  it seldom lasts more than a few days. 

In all the life imaging experiments performed here, no embryos remained in the diapause I 

condition for more than 10 days and usually presented themselves in the released condition few 

days after the beginning of the dispersed phase. 

Summing up, what emerges from the data is that diapause I is a phase in which every embryo 

obligatorily enters and easily leaves. This strategy is advantageous for the embryos, in fact, epiboly 

is one of the first step in embryos development and there is not so much time to evaluate the 

environmental condition and to decide if  stopping in diapause I or not, even if, for what said 

before, slowing the initial cleavages could help in evaluating the environment.  
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A default programme that stops every embryo in diapause I after epiboly completion could be an 

economic strategy, since an embryo should just decide whether to extend this phase, if conditions 

are negative, or release it and continue the development, if they are not.  

Concluding, the controls on diapause I are probably less strict than on diapause II because even if a 

wrong choice is done, the embryo can still stop on the following phase of diapause and so there is 

no reason and no evolutionary pressure on hard controls on diapause I. 

 

3.4 Release from dipause I 

 

The exit from the diapause I condition is a rapid event lasting few hours that is difficult to be 

documented. In the only embryo where this was possible, it was characterized by the simultaneous 

reactivation of  many of the epiblast cells proliferated synchronously in a succession of S G2 M 

phases, without stepping on a G1 phase. These rounds of simultaneous cells divisions repeat several 

times, until the embryo reaches the amount of cells for the reaggregation phase.  

Is important to say that all the cells that start to divide again on embryo reactivation start 

simultaneously, so, there is a mechanism of cellular communication to allow synchronization of 

sparse cells, rather than a domino mechanism where some cells begin to proliferate and the others 

follow over time. 

Admittedly, this phenomenon was observed in just one embryo but there are two lines of thought 

that suggest that this is a general phenomenon: I) the diapause I embryos that we observed were 

either in the “few cells” or “many cells” stage, suggesting that the transition is rapid II) the same 

phenomenon is observed upon exit from diapause II.  

During the ampification process and also after reaching the critical number of cells for 

reaggregation, epiblast cells move and migrate with a velocity that is comparable to the velocity of 

the cells during the diapause I stage. This continous migration is very peculiar and its biological 

meaning is still unknown. Since this feature is unique of annual killifishes, probably it is involved 

with one of the features of annualism, like the diapause I regulation. 

The continuous migration of cells could in fact help in giving each cell a perception of the whole 

embryo rather than of a specific sector and this could lead to reactivate the epiblast cells all together 

rather than at different times. 
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3.5 Diapause II 

 

As opposed to to diapause I, diapause II is not an obligatory developmental phase and not even a 

developmental block itself, but rather a more complex developmental programme. Embryos that are 

destined to arrest in the diapause II condition are commited to this fate much earlier and organize 

the axis in a different way as compared to embryos that already have decided to not stop in diapause 

II [30]. 

As already described, a DCE lengthens its axis and form somites mantaining a slim morphology, 

while a not DCE increases also its lateral size while lenghtening. When somitogenesis starts my 

datas suggests (even if observed in only one case) that a DCE is already shorter than a not DCE, and 

as long as the development continues the not DCE mantains much more proliferation compared to a 

DCE. This results in an increase in cells number also in the width of the embryo and could be the 

explaination for the chubby morphology. 

Diapause II stage is characterized by an arrest of development and cell proliferation that happens at 

mid somitogenesis. FUCCI fish in diapause II condition have only few green cells along the midline 

of their axis, that are probably blocked in G2 since do not move or divide as far as it can be judged 

by eye while the other cells are in G1, G0 or in a post M phase. The dynamics of cell cycle down-

regualtion in a DCE that transit from a developing embryo at 10 somite stage with the majority of 

cells being green and dividing cells to a totally blocked embryo in 30 somites with almost no green 

proliferating cells could not be documented. .  

What can be theorized is either a progressive reduction of the proliferation as long as the 

somitogenesis proceeds, or a rapid drop after that the 30 somites stage is reached. However, 

considering that down-regualtion of cell cycle upon entry in diapause I is rapid and completed in a 

few hours, the second possibility appears more likely. All the cells kinetics are differentially 

modulated in diapause II and also the regulation of the cell cycle could be different or anyway 

delayed as compared to a normal developmental condition. Cells could for example stop to cycle at 

30 somites but still appear green just because protein degradation is inhibited and fade the green 

signal slowly over time only due to the high GFP stability.  

Unfortunately imaging the entry in diapause II is difficult due to technical limitations since the 

experimental conditions for imaging a developing embryo imply high temperatures that induce 

diapause release and inhibit diapause maintenance, induction or extension. In addition, diapause is a 

very long developmental process, that lasts for days and also this makes acquiring data very hard.  
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The release from diapause is a much more clear process and is also easier to record. It involves a 

large part of the cells of the embryo that synchronously, as happens for the release from diapause I, 

start to proliferate again. The reactivation is incredibly fast (as compared to the total duration of 

development) and after few hours the embryo’s cells reach proliferation levels that are comparable 

to the levels of a not DCE at the same developmental stage. In addition, in the hours just following 

the reactivation, the embryo changes morphology and shapes in a way that is very similar to not 

DCE, becoming wider and chubby. 

Concluding, in few hours the embryo reactivates the cell cycle in a large part of its cells and 

corrects its developmental pathway to became the same as not DCEs. Then it continues its normal 

development, slowing down the proliferation process, as happen also in the later embryonic stages 

of not DCEs and forms the complete embryo, that will be indistinguishable from a not DCE. 

Why does the morphology of DCE and non-DCE embryo differ between 10- and 30-somite stages? 

A theory that could explain this dynamic postulates that blocking a smaller (thinner) embryo is 

energetically less costly than blocking a larger (broader) one. The primordial axis of a 30 somites 

DCE is thinner in size compared to a not DCE. This means that to block, to maintain blocked, and 

mostly to reactivate its cells is less energetically demanding since the cells are smaller in number. In 

addition this strategy is very convenient also because in less than a day the size gap can be regained. 

Thanks to these features, diapause II reveals to be the main arrest phase that can happen in a annual 

killifish embryo, and last even for years. 

 

3.6 Diapause molecular factors. 

 

The molecular factors involved in the diapause process, in killifishes, are largely unknown. Many 

evidences show that metabolic pathways are reduced to minimum levels but nobody knows exactly 

which are the key molecules that influence this change. 

MiRNAs have never been investigated in vertebrate diapause. MicroRNAs act by translational 

inhibition and subsequent RNA degradation due to deadenylation of polyA tails. The respective 

contribution of these two modes of action to repression of gene expression is debated.  

MicroRNAs could play a main role in diapause induction and regulation, since it is well known how 

a single microrna can control the expression levels of many genes belonging to the same or to 

different pathways. 
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To verify this hypothesis a microRNA expression profile was perfomed on annual and non annual 

killifishes species belonging to each one of the three clades, during the stage of diapause II in 

annual species or the equivalent morphological stage in non annual species. 

Results showed how, regardless the phylogenesis, annual and non annual killifish completely 

separate on a MDS analysis, meaning that annuals features, in this particular stage, influence 

gloable miRNA expression profiles stronger than phylogenetic relationships. 

This suggests that microRNAs are really involved in the diapause process and probably play a main 

role in diapause control during development. 

Among all microRNAs found with the differential miR seq analysis, the miR 430 cluster emerges. 

This microRNA cluster is less expressed in annual diapausing embryos rather then in non annual or 

in annual developing embryos. 

In zebrafish, where this cluster has been characterized, its expression rises after the mid blastula 

transition and its role is mainly involved with the degradation of maternal RNAs [124]. The 

temporal expression analysis (Figure 2.40) shows that also in N. furzeri, an annual killifish, it start 

to be expressed after the mid blastula transition phase. 

In zebrafish, during pre-blastula stages, miRNA-430 was shown to act primarily by inhibiting protein 

synthesis [126]. However, after onset of zygotic transition and in adult cells mRNA degradation 

seems to be the predominant mechanism.  

The miR-462/miR-731 cluster is induced under hypoxic stress via hypoxia-inducible factor 1α  in 

zebrafish and functions in cellular adaptations. Overexpression of miR-462 and miR-731 represses 

cell proliferation through blocking cell cycle progress of DNA replication, and induces apoptosis 

[127]. In situ detection revealed furthermore that in zebrafish the miR-462/miR-731 cluster is 

highly expressed in a consistent and ubiquitous manner throughout the early developmental stages 

[127]. Since killifish embryos are extremely tolerant to hypoxia [128] this could be the reason why 

the expression of miR-462/miR-731 results lower than in developing embryos. It should be noted 

that hypoxia in zebrafish also up-regulates miR-430, again a finding that I observed in directly 

developing embryos. 

Another interesting microRNA is miR-101, it  acts as a highly-connected hub in gene regulatory 

networks transcription factors and epigenetic modulators as the first neighbors and genes involved 

in cell-cycle progression as second neighbors [129]. Overexpression of miR-101 is known to induce 
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cell-cycle arrest in different cell types [50]. So high levels of miR-101 in diapausing embryos would 

contribute to the G1 block that is typical of diapause [41]. 

Finally, down-regulation of the miR-17~92 cluster (oncomiR-1) could be linked to depression of 

the cell cycle. OncomiR-1 is is major regulator of cell cycle and overexpressed in several tumors 

cycle [123]. On the other hand, it is well-established that oncomiR-1 is downregulated during aging 

of human mitotically-active cells where it targets the cell-cycle inhibitor p21[130] and in different 

models of replicative senescence in vitro. 

Concluding, since diapause is characterized by a prominent depression of protein synthesis, that is 

reduced to 10% of the pre-diapause levels, it is therefore highly likely that both proteins and 

mRNAs are stabilized during diapause. In this context, miRNAs could act primarily, if not 

exclusively, by inhibiting protein synthesis. Upon exit of diapause, release of miRNAs would allow 

immediate onset of translation. This concept is further supported by the observation that diapausing 

embryos of N. furzeri show paradoxical up-regulation of genes related to translational elongation, 

suggesting that these embryos are primed for a catch-up process upon exit from diapause. 
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4. Material and methods 

 

4.1 Fish maintenance 

 

4.1.1 Fish husbandry 

 

Wild type fishes used were raised in 35 lt tanks (25cm x 50cm x 28cm ) at these densities 

Aplocheilus lineatus, Aphyosemion australe, Aphyosemion striatum, Fundulopanchax gardneri, 

Nothobranchius furzeri, Nothobranchius guentheri, Nothobranchius korthause, Scriptaphysemion 

guignardi and Epiplatys dageti monroviae: 3-4 couples each tank;  

Nothobranchius melanospilus: 1-2 couples each tank; Callopanchax occidentalis, Nematolebias 

whitei: 1 couple each tank; Rivulus cylindraceus, Rachovia brevis, Austrofundulus leohoignei: 3 

couples each tank;  

Water parameters for all species were ph: 7-8; Kh: 3-5; T: 24-26 °C. 

25% of the water in each tank was replaced with fresh tap water during every week. 

Fishes were raised in 12 hours of light and 12 of darkness. 

Nothobranchius furzeri transgenic fishes were raised in the same water and environmental condition 

of all the other fishes, but from the 3rd to the 8th week of life they were kept in smaller 3,8 lt tanks  

(25cm x 10cm x 15cm) at the density of 1 couple for each tank. After the 8th week they were 

moved in the 35 lt tank like all the other fishes. 

 

4.1.2 Fish feeding 

 

All the fishes were fed with “SHG microgranuli” and chironomus two times a day and “Premium 

Artemia Coppens®” once a day as much as they can eat except for Nothobranchius furzeri breeders 

and Nothobranchius furzeri transgenic lines. 

Nothobranchius furzeri breeders and Nothobranchius furzeri transgenic lines were fed instead with 

chironomus 2-3 times a day and “Premium Artemia Coppens®” 1-2 times a day. 
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4.2 Breeding 

 

Annual and non-annual fish were bred in two different ways:  

For annual ones a box (from 20cm x 15cm x 10cm to 9cm x 9cm x 4cm) half full of river sand (ø < 

0,2mm) was put on the bottom of the tank. Lot of small boxes (0,7-1,3 for each male in the tank) 

worked better in tanks with 4+  males. The boxes were put in the fish tanks for 2-3 hours 3-5 days a 

week, and the average number of eggs layed by each female in the sand was 20-50, depending on 

species, fish, age and tank fish density. The sands were always put at the same hour of the day, (for 

example from 10 am to 13 am, or from 2 pm to 5 pm) to train the fish to breed at that hours and to 

maximize the egg production. 

 

Non-annual fish were bred in a total different way. 25 cm long “breeding mops” were made using 2 

mm thick green, brown or grey 100%  acrylic wool and a bijou was screwed at the top of them for 

making them floating. One or more mops (optimum was one every two males) were put in the 

tanks. After a short period, fish learned to go in the mops and breed inside it, laying eggs in the on 

the wool filaments. Depending on species, mops were kept in the tanks from 1 hour to 1 day, 

allowing the fish to breed inside of them. The average number of eggs layed by each female was 

greatly different, from 2 to 40, depending mostly on species. 

 

4.3 Eggs collection 

 

Annual species eggs were collected by removing the bowl from the tank, sieving the sand with a 

sieve (1 mm grid width) and then trasferring the eggs from the sieve to a petri dish filled with tap 

water.  

Non-annual species eggs were collected by removing the mops from the tanks, looking for them 

through the wool filaments, taking them with hands and putting them in a petri dish full of tap 

water. 

Once collected dead and bad shaped eggs were removed from the petri dish, and the other were 

transferred to another petri dish in 35ml of tap water at the density of max 50 eggs per petri dish. 

The eggs were then kept at 26°C. 
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4.4 Eggs husbandry 

 

Non-annual fishes eggs were kept in a 50 ml petri dish with 35 ml of tap water at 26°C until the 

hatch (that usually required 22 days). The water in the petri dish was replaced once a day with new 

tap water and the embryos that died during this period were daily removed. 

The hatched frys were kept for the first 4-10 weeks, depending on species, in small 4 lt tanks, in 

aquarium water at the density of max 5 fish in each tank, and were fed only with brine shrimps. 

The water in these tanks was half replaced with aquarium water every two days, and the tanks were 

kept at 26 °C. 

After fish reached the size of 2-3 cm they were moved in the 35 lt tanks of the aquariums. 

Annual wild type fishes embryos and F1, F2 or F3 transgenic embryos were kept in 50 ml petri dish 

in 35 ml of tap water, at 26°C, until their eyes turned from colorless to black (that usually required 

around 14 days). During this period the water in the petri dish was replaced once a day with fresh 

tap water and the embryos that died during development were daily removed. 

Once the eye of the surviving embyos turned black, they were moved to peat moss petri dishes (50 

ml petri dishes with 0,5 cm of fairly humid peat moss or coconut fiber pressed on the bottom). Up 

to 150 embryos were put in each peat moss petri dish, and kept at 26°C in this condition until their 

eyes turned from black to totally golden (that usually required 14 days). 

Once golden eyed, the embryos were put in a small 5 lt tank with 1 cm high 4°C aquarium water 

and a big spoon of peat moss. In these condition usually more than 60% of the embryos was able to 

hatch in 1-2 days. 

The hatched frys were then kept for the first 4 weeks, depending on species, in small 4 lt tanks, in 

aquarium water, at the density of max 5 fish in each tank, and were fed only with brine shrimps. In 

these tanks was put a big spoon of peat moss, and the water level was gradually increased for the 

first week from 1 cm to 10 cm (+3 cm of acqaurium water every 2 days). 

After the first week, the water in these tanks was half replaced with aquarium water every two days, 

and the tanks were kept at 26 °C. 

After fish reached the size of 2-3 cm (usually after 4 weeks) they were moved in the 35 lt tanks of 

the aquariums. 
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4.5 Transgenic eggs husbandry 

 

Nothobranchius furzeri F0 transgenic embryos (freshly injected embryos) were kept in a 50 ml petri 

dish in 35 ml of tap water, at 26°C for the first 2 days after injection. During this period the water in 

the petri dish was replaced once a day with new one and the embryos that died were daily removed. 

After 2 days survived embryos were moved to peat moss petri dishes (50 ml petri dishes with 0,5 

cm of fairly humid peat moss or coconut fiber pressed on the bottom). Up to 150 embryos were put 

in each peat moss petri dish, and kept at 26°C in this condition until their eyes fully developed 

turning to totally golden (this required from 20 days to several months since a lot of injected 

embryos entered in diapause). 

Once golden eyed, the embryos were put in a small 5 lt tank with 1 cm high 4°C aquarium water 

and a big spoon of peat moss. In these condition usually more than 60% of the embryos was able to 

hatch in 1-2 days. 

The hatched frys were then kept for the first 4 weeks, in small 4 lt tanks, in aquarium water, at the 

density of max 5 fish in each tank, and were fed only with brine shrimps. In these tanks was put a 

big spoon of peat moss, and the water level was gradually increased for the first week from 1 cm to 

10 cm (+3 cm of acqaurium water every 2 days). 

After the first week, the water in these tanks was half replaced with aquarium water every two days, 

and the tanks were kept at 26 °C. 

After taht fish reached the 3rd week of life they were screened with a fluorescence miscroscope to 

check the reliability of the signal, and the embryos with an absent, too weak or not correct signal 

were discarded. The fish with a correct signal expression were then moved from the 3rd to the 8th 

week of life in smaller 3,8 lt tanks (25cm x 10cm x 15xm), in an aquarium at the density of 1 couple 

each  tank. After the 8th week they were moved in the 35 lt tanks like all the other fishes. 

 

4.6 Transgenic embryos screening 
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Transgenic embryos were screened with a fluorescence miscroscope at different stages (epiboly, 

dispersed phase, mid somitogenesis, hatched fry or 4 weeks old fish) depending on the injected 

construct. 

Fish were anestetized with tricaine 0,5X for few minutes, then screened and selected. 

Fish that showed the correct pattern of expression of the transgene were raised, the rest was 

discarded. 

All the embryos belonging to all the transgenic generations were screened. 

 

4.7 Transgenic lines generation 

 

4.7.1 FUCCI plasmids construction 

 

FUCCI plasmids were constructed starting from zebrafish mKO2-zCdt1(1/190) and mAG-

zGem(1/100) plasmids [116], replacing the original promoter with the zebrafish ubiquitin promoter.  

Original plasmids were amplified in E. coli and purified with Wizard® Plus SV Minipreps DNA 

Purification Promega. Then 2 µg of each plasmid were cut with Nhe1 and BamHI, ran on gel and 

the higher band was piurified using Wizard® SV Gel and PCR Clean-Up Promega.  

Ubiquitin promoter was amplified by PCR from pENTR5'_ubi using Q5® High-Fidelity DNA 

Polymerase, with these primers (F: 5'-cattgaGCTAGCatggatgttttcccagtcacgacg-3', R:5'- 

tgactaGGATCCtgtaaacaaattcaaagtaagat-3') and the following termocicling protocol :  

98°C 30'' 

(98°C 10'', 52°C 30'', 72°C 2') X35 cycles 

72°C 2' 

pENTR5'_ubi was a gift from Leonard Zon (Addgene plasmid # 27320) [131]. 

The PCR product was ran on an agarose gel and the band purified using Wizard® SV Gel and PCR 

Clean-Up Promega. 

Vectors and the ubiquitn promoter insert were ligated over night using NEB T4 DNA Ligase, in a 

molar ratio of 1:3, mixing 50 ng of vectors and 73 ng of insert. 
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The resulting plasmid was then amplified in E. coli and purified with Wizard® Plus SV Minipreps 

DNA Purification Promega. This final plasmid was injected in 1 cell stage embryos together with 

the tol2 synthetic RNA. 

 

4.7.2 Tol2 RNA synthesis 

 

Tol2 synthetic RNA was synthetized using mMESSAGE mMACHINE® SP6 Transcription Kit 

Ambion. pCS2FA-transposase plasmid, linearized using NotI was used as template and sp6 as 

promoter for RNA trascription. Resulting synthetic RNA concentration was measured with a 

nanodrop and on an agarose gel. 

  

4.7.3 Eggs injection 

 

Transgenic fish were generated injecting 1 µl of a solution containing 30ng/µl of TOL2 RNA, 

40ng/µl of plasmid DNA, 400 mM of KCl in 1 cell stage N. furzeri embryos. 

Injections were performed at 26°C using a Leica M80 stereo microscope and a Tritech air injection 

system.  

Eggs were oriented on a 2% agar framework and injected sequentially. 

Once injected, eggs were put in a petri dish with 26°C aquarium water. After1.5 hours dead eggs 

were removed, and the others were let develop in a new petri dish with 35 ml of 26°C aquarium 

water. 

 

4.8 FUCCI synthetic RNA  

 

FUCCI synthetic RNAs were synthetized using mMESSAGE mMACHINE® SP6 Transcription Kit 

Ambion. Azami green-geminin and kusabira orange-Cdt1 DNA fragments were cloned in a pCS2 

vector using BamH1 and Cla1. Then the resulting vectors were linearized using NotI and used as 

template for trascription. Sp6 promoter was used for trascription. synthetic RNA concentration was 

measured with a nanodrop and on an agarose gel. 
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Once transcribed the RNA was stored at -80 and thawed just before the injection. 

The injections were performed exactly in the same way as for the transgenic line generation. 

The mixture injected was 1 ul composed by 400 ng/ul of total RNA (half FUCCI green RNA and 

half FUCCI red RNA).  

1 hour after injections, dead eggs were removed and the other ones were embedded in 1% low 

melting agarose following the microscope sample preparation protocol. 

 

4.9 Mir-430 reporter RNA 

 

Mir-430 reporters synthetic RNA were synthetized using mMESSAGE mMACHINE® SP6 

Transcription Kit Ambion. The reporter plasmid and the mutated reporter plasmid, gifted by 

Giraldez AJ [124], were linearized using NotI and used as template. Sp6 promoter was used for 

RNA trascription. Resulting synthetic RNAs concentration was measured with a nanodrop and on 

an agarose gel. 

 

4.10 Microscopy 

 

4.10.1 Samples preparation  

 

All the pre-hatching embryos acquired were prepared in this way, regardless their developmental 

stage: 

From 3 to 40 eggs (depending on experiment) were put in a 1,5 ml falcon tube with 10 ml of liquid 

low melting agarose 1,5% solution, not warmer than 32°C. The falcon was left in agitation for 30 

seconds to completely mix the eggs and the liquid agarose.  

The non-annual species eggs, that presented a lot of hairs on the surface, were shaved with forceps 

before the agar embedding, in order to achieve a better quality of image during images acquisitions.  

The eggs and 3 ml of the agar solution were poured in a willco dish and the eggs were put in the 

middle using forceps, spaced each other by more or less 2 mm. Only for the experiment of the miR-

430 reporter 40 eggs were poured into a 50 ml petri dish with 30 ml of liquid low melting agar 
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solution. After poured into the dish, the eggs were carefully oriented in the desired way using 

forceps, then the agar was left solidify at room temperature for 10 to 30 minutes. 

  

4.10.2 Brightfield acquisitions 

 

Once ready with agarose embedded eggs, the willco dish was parafilmed, reversed upside down and 

put under a Leica M80 stereo microscope. Up to 6 eggs were embedded each time for brightfield 

acquisitions. The microscope was setted up to offer the best condition of brightness and constrast 

and the zoom was adjusted accordingly to the number and the size of the eggs to image. 

Photos were captured every 2 to 5 minutes, depending on species, with a  Nikon Digital Sight DS-

Fi1 camera or with a ZEISS Axiocam ERc 5s camera. Acquisition lasted from hours to several 

days, depending on species. 

 

4.10.3 Brightfield videos and images processing 

 

All the acquired photos relative to a single acquisition session, were loaded on Fiji imagej as an 

image sequence and analyzed to verify sincrony between the eggs in the acquisition field. 

A single egg present in the image was chosen, rotated and cropped, in order to make a new image 

sequence including only that embryo, and this was saved in a separated folder. 

This new folder was imported in Sony Vegas, a video-make software, in order to make a smooth 

video from a discontinuous image sequence. Time, writings, video effects and soundtrack were 

added as different levels and all the levels were rendered olny once in a .avi file to mantain the best 

possible resolution.   

Brightfield images were edited with GIMP. Contrast, brightness and sharpness were modified in 

order to make pictures the most possible beautiful, clear and informative. 

 

4.10.4 Confocal acquisitions 
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For confacal acquisitions a Leica TCS SP5 X inverted microscope was used. 3 to 5 embryos were 

embedded in agar in a willko dish that was then sealed with parafilm. The position of each embryo 

in the dish was marked with the Leica confocal software Leica LAS X Core, and automatically, 

every 10 minutes, every embryo in the dish was scanned sequentially with a 488 nm and a 543 nm 

argon laser. Only the top half of each embryo (about 500 µm) was scanned, since the light can't well 

penetrate the lower half, resulting in distorted and faded lower part images. Images stacks were 

acquired every 7-12 µm, depending on samples and on experiments. Experimental sessions lasted 

from 10 to 61 hours, depeding on the developmental stage acquired. Time lapses acquisitions were 

performed at 26°C. Images were acquired with a 10x dry objective and with a digital zoom of 1.2x. 

 

4.10.5 Fluorescence images processing 

 

All the stacks relative to a single time point were projected using Fiji Z-project standard deviation 

algorithm, both for green and red fluorescence channels. Projected images were then adjusted in 

brightness and contrast with GIMP in order to optimize the "signal to noise" ratio and be more clear 

and informative. 

 

 

4.10.6 Imaris analysis 

 

Raw Leica datas from time lapses acquisitions were analyzed with Imaris. Whole time lapses 

acquisition datas were loaded on Imaris, then the red and green channel were adjusted in brightness 

and contrast in order to separate the cells nuclei from the background as best as possible. For the 

stages of epiboly, diapause I and dispersed phase the red and green nuclei were then converted in 

YSL cells dots, epiblast red cells and epiblast green cells with Imaris particle analysis function. It 

was possible to separate YSL red cells and epiblast red cells (that appeared both red) using the size 

recognition function of Imaris particle analysis. 

For the stages of reaggregation, axis formation, segmentation and diapause II, was not possible to 

track separately the cells nuclei, so the aggregates of cells were converted in an unique surface with 

the surface analysis function of Imaris. Parameters for particle or surface recognition were adjusted 
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in different way for each set of images analyzed, in order to track the structures of interest getting 

rid of the background and of the aspecific signals. 

Particles belonging to background or to artifact structures that were not filtered out by the automatic 

recognition process were removed manually. 

 

4.11 Graphs productions 

 

Annual vs non-annual developmental graphs were produced by recognizing on the time lapses 

image sequences the various developmental stages (1, 2, 4, 8, n cells ). Then the relative photo 

number was multiplied by the number of minutes by which the photos were acquired, divided by 60 

to convert it into hours and plotted on a graph. 

Imaris related graphs, concerning FUCCI fluorescence analysis, were made with Imaris, with the 

particle or surface analysis feature. All datas plotted in the graphs are relative to the segmentation 

analysis or the track analysis done by the program. 

The graph relative to the comparison between CDE and not CDE during somitogenesis was done 

measuring manually with Fiji the lenght of the different part of the two kind of embryos, time point 

by time point, and then plotting the datas in the graph. 

 

4.12 Sequencing 

 

4.12.1 Samples collection  

 

Annual fishes embryos were collected for the RNA extraction during diapause II stage, after at least 

a week from the beginning of the diapause condition. Non-annual fishes embryos were instead 

collected at mid somitogenesis, in a developmental stage equivalent to the annual diapause II.  

For the differential analysis on N. furzeri two pool of eggs were made. 

200 eggs were collected from Notobranchius furzeri PL strain, then 100 were kept at 18°C and the 

other 100 at 28°C. All the 100 eggs at 18°C entered diapause II and, after one week  that they were 

in diapause, 30 of them were grinded for RNA extraction. Concerning the 100 eggs at 28°C, at the 
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stage of mid somitogenesis 30 of them were grinded for RNA extraction, and the other 70 were kept 

as control. All the 70 control eggs didn’t entered into the diapause condition.  

 

4.12.2 RNA extraction 

 

The RNA from killifish embryos was extracted with the following protocol: 

15-30 Embryos in diapause 2 or diapause 2 equivalent stage (mid somitogenesis) were grinded 

together in 1 ml of QIAzol Lysis Reagent QUIAGEN and incubated for 5 minutes at RT. 200 ul of 

chloroform were added to the homogenate and then the samples were heavily shaked and 

centrifuged at 12.000 xg at 4°C for 20 minutes. The aqueous phase was transferred to a new cup 

and 1,1 volumes of isopropanol, 0,16 volumes of NaAc (2M; pH 4.0), and 10µg of glicogen were 

added to each solution. After an incubation of 2 hours at -80°C the samples were centrifuged at 

12.000 xg at 4°C for 20 minutes. Supernatants were discarded and the pellet were washed twice 

with 1ml of 80% ethanol.  

RNAs were resuspended in ultra-pure H2O. 

  

4.12.3 Sequencing  

 

miRNAs new generation sequencing on annual and non-annual fishes embryos samples were 

performed by Mario Baumgard in the Leibniz Institute for Age Research - Fritz Lipmann Institute 

in Jena. 

 

4.13 Fin cut experiment  

 

Specimens were anesthetized with a tricaine solution (400 mg/L), wedged in a sponge, and the 

fin was gently cutted using sharp scissors. The operation did not required more than 30 seconds. 

The fish were observed once a day for 10 days using a Leica MZ10 F stereo microscope. Both 

fluorescence and brightfield Images were captured using fixed exposure and gain parameters. 

Fish were kept anesthetized in a tricaine solution (400 mg/L) for the whole acquisition 

procedure, that lasted no more than 5 minutes for each specimen. 
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4.14 Mir-430 sensor experiment 

4.14.1 Sensor injection 

 

Embryos were injected with 0,5 ul of 400 ng/µl miR-430 sensor RNA or with miR-430-Mut sensor 

RNA at 1 cell stage. In both case, also 0,5ul of 400ng/µl of RFP RNA were co-injected. 30 minutes 

after the injection dead embryos were removed and the living ones were embedded in 26°C liquid 

0,7% low melting agarose, on the bottom of a 50 ml petri dish. Separated petri dishes were used for 

the two pool of injected embryos (miR-430 and miR-430-Mut). 

After the agarose solidyfied both petri dishes were incubated at 26°C. 

 

4.14.2 Sensor image acquisition 

 

Sensor injected embryos were acquired every day using a Nikon Eclipse E600 straight fluorescence 

microscope. 

Images were captured using a Nikon element NIS-Elements F. The same values of gain and 

exposure were used for all the pictures and for both red and green fluorescence channels. One-two 

embryos were captured in each image field, at a magnification of 10X. 

 

4.14.3 Sensor graph production 

 

Sensors injected embryos images were opened in Fiji as an image sequence, eggs were selected 

with the round selection tool and pixel intensity was measured inside the selection. An individual 

measurement was performed for the images acquired in red and green, exactly in the same selection 

region. Each time point in the graph represent the mean of each embryo’s green-pixel-intensity/red-

pixel-intesity ratio. 
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