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Chapter 1

Introduction

1.1 Regularization by noise: definition, aim

and motivation

We say that a regularization by noise phenomenon occurs for a possibly ill-
posed ODE or PDE if this equation becomes well-posed under addition of
noise. The main aim of this thesis is to study such a phenomenon in the
context of finite-dimensional ODEs, with additive noise, and related linear
transport-type PDEs.

Many ODEs and related linear PDEs with irregular coefficients, and many
nonlinear PDEs, exhibit ill-posedness, for example explosion (non existence
of suitable solution), non uniqueness, lack of regularity, lack of stability. For
the ODE case, the most prominent example is given in dimension 1 by

dX = 2sign(X)|X|1/2dt, X0 = 0,

which has infinitely many solutions, namely all the solution that stays in 0
up to a time t0 (possibly 0 or +∞) and then leave 0 as ±(t − t0)2. When
we perturb the equation with a suitable (even small) noise, it can happen
that the equation gains well-posedness, in a strong, pathwise sense: for al-
most every realization of the noise, the perturbed equation exhibits existence,
uniqueness and, in some sense, stability. In the example above, we can add
additive noise, i.e. a 1-dimensional Brownian motion W : the SDE

dX = 2sign(X)|X|1/2dt+ dW, X0 = 0

gains existence and pathwise uniqueness.
We aim here at describing this phenomenon in the case of finite-dimensional

SDEs with additive noise, i.e.

dX = b(t,X)dt+ dW
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on Rd, where W is a d-dimensional Brownian motion, and of the associated
linear transport-type SPDEs, like the stochastic transport equation

∂tv + b · ∇v +∇v ◦ Ẇ = 0,

where v is the random solution and ◦ denotes Stratonovich integration. Our
main goal is to show regularization by noise for a wide class of vector field b,
often where only integrability conditions on b are imposed. We will mainly
look at restoring uniqueness, for ODEs with more than one solution (like
the example above), and/or avoiding concentration of particles, for ODEs
with non-injective flows, and/or restoring regularity of the flow, for ODEs
with space-irregular flows. We will give an intuition on the phenomenon and
proofs from different points of view and with different techniques, some based
on the SDEs some on the SPDEs, some using the regularizing properties at
fixed realization of the noise some exploiting the martingale structure.

One motivation to look at this problem comes from physics, where irreg-
ular vector fields are present in many situation, especially in fluid dynamics.
The SDE above can be thought describing a motion of a particle subject
to this irregular vector field and perturbed by noise. On the mathematical
side, the main interest in this phenomenon comes from its counterintuitive
nature (at a first glance, one may not expect that a time-irregular Brown-
ian perturbation can correct a space-irregular vector field); the analysis of
this phenomenon can therefore give more insight on the effect of noise on ill-
posed system. This topic can also provide new techniques to solve SPDEs,
and it can be considered as a first step before investigating the non-linear
case (much more difficult in general). Finally, it may give some hints on
the problem of zero noise: if we add εdW to the ODE and we let ε go to
0, which solutions of the ODE do we select? This might be a way to select
the physically relevant solutions, although this is far from the scopes of this
thesis.

1.2 Classes of examples

Before going into the types of examples, we underline one point of our anal-
ysis: we look at the SDE above mainly at a fixed realization W (ω) of the
noise, but letting the initial datum x0 vary; notice indeed that the SDE has
a natural interpretation at ω fixed, without stochastic integration. In other
words, at least at a formal level, we keep ω, the random input, fixed and we
look at the flow Xω(t, x0), i.e. the map Xω : [0, T ]× Rd → Rd such that, for
every x0, Xω(·, x0) solves the SDE, for ω fixed, starting from x0. We are less
interested here at the law of the process X(·, x0) for x0 fixed.
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The propotype questions we want to answer are the following one:

• for fixed ω, for given x0, is the solution to the SDE above, at ω, starting
from x0, unique?

• for fixed ω, does the flow Xω have spatial regularity, of Lipschitz type
or Sobolev type?

• for fixed ω, does the flow Xω avoid concentration (particles starting
from distant points that come very close one to each others)?

• for fixed ω, if concentration is avoided but uniqueness may fail for single
x0, is there at least uniqueness among flows which do not concentrate
particles?

• in possible non-uniqueness situation, is there a unique way to select the
trajectories solution to the SDE (i.e. a unique, in some sense, measure
supported on the set of solutions)?

Depending on the answer to these questions and on the type of ill-
posedness of the ODE, we have different classes of examples (with some
overlapping among classes). For each class, we give the corresponding reg-
ularization by noise result proved in the thesis, under some simplified as-
sumptions (for example, we assume that the drift is time-independent) and
referring to the true results after for precise statement and notation.

In the first class, the most restrictive one where the strongest regular-
ization by noise occurs, the ODE shows non-uniqueness but noise restores
uniqueness for ω and x0 fixed and Lipschitz regularity of the flow. To get
an idea of this, imagine a drift b which is regular everywhere but in 0. Un-
der certain integrability conditions on the singularity in 0, the noise is much
faster than any possible solutions to the deterministic ODE, and so moves
the particle away from 0 before any non-uniqueness (or concentration or ir-
regularity) phenomenon can appear.

The main result in this class is the following one (from Theorem 8.1, see
also 9.1 for the associated PDE and 11.5 for a general Hölder continuous
drift):

Theorem 1.1. Assume that b is in Cα
x,b for some α > 1/2. Then, for ω fixed,

for any initial datum x, existence, uniqueness and (local) Lipschitz regularity
in space hold for the solution to the SDE.

In the second class, a similar phenomenon happens, for ω fixed, but at
the level of flows rather than of fixed x0: the noise avoids concentration of
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particles and restore uniqueness and Sobolev regularity among the flows that
do not concentrate particles. In principle, the noise might not be so strong
to restore existence and uniqueness from a single initial datum.

The main result in this class is the following one (from Theorems 10.1,
11.1 and 12.1):

Theorem 1.2. Assume that b is in Lpx for some p > d ∨ 2. Then, for ω
fixed, existence, uniqueness and W 1,m

x,loc regularity in space holds among flows,
solution to the SDE, with spatial density in Lmx,loc (precisely in Lmt,x,loc), for m
finite high enough.

In the third class, the ODE shows concentration of particles, noise avoids
it as before but the flow does not need to be weakly differentiable anymore.

The main result in this class is the following one (from Theorem 6.4):

Theorem 1.3. Assume that b is in W 1,p̃
x for some p̃ > 1, divb is in Lpx for

some p > d/2 ∨ 1 and b has compact support. Then, for ω fixed, existence
and uniqueness hold among flows, solution to the SDE, with spatial density
in Lmx,loc (precisely in Lmt,x,loc), for m finite high enough.

In the fourth class, the weakest and largest one, the noise at ω fixed
may not produce uniqueness, but uniqueness in law (at x0 fixed or with a
diffuse initial datum X0) provides a unique probability measure on the set of
solution at ω, which is given by filtering the unique law with respect to W .

Regularization by noise, strictly speaking, deals with the first three classes
of examples, which we are mainly interested in, but we will also investigate
the fourth type of examples, on the continuity equation (which will be stated
in the next section). We get indeed this result (from Theorem 7.12):

Theorem 1.4. Assume that b is in Lp̃x for some p̃ > 2, divb is in Lqx for some
q > p/2 ∨ 1 and b has compact support. Then existence and uniqueness hold
for the stochastic continuity equation in Lm among solutions in a suitable
weighted Lmt,x,ω space, for m finite high enough, and adapted to the Brownian
(completed) filtration.

1.3 The linear SPDEs

We have mentioned we look at the SDE for ω fixed and consider, formally,
uniqueness and concentration properties of the flow solution to the SDE. Now
we want to be more precise on these concepts; this brings to the formulation
of two stochastic PDEs, the continuity equation and the transport equation.
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An SDE with irregular coefficients may not even have a flow (since there
could be more than one solution starting from any point). But we can still
speak of uniqueness and concentration properties when we introduce a mass:
we take µ0, an initial finite measure on Rd, and look at the evolution of µ0

under the SDE (at ω fixed). In the case we have a flow X, this means looking
at

µωt = (Xω
t )#µ0, (1.1)

the image measure of µ0 under Xt, but we can extend the definition also
when X is replaced by any family X(x) of solutions parameterized by the
initial datum x (and to suitable superposition of such families). We stress
the fact that µt is not the law of the SDE of the probability measure P , for a
fixed initial point x, but is the “law” under X of the initial measure µ0, for
a fixed ω. The family of measures (µt)t satisfies the (stochastic) continuity
equation

∂tµ+ div(bµ) + div(µ ◦ Ẇ ) = 0,

in the sense of distributions in space and in the integral formulation in time,
where ◦ denotes Stratonovich integration. Using the equation, we can still
formulate the problems of uniqueness and concentration. For example, the
non-concentration property translates into the existence of a solution µ which
stays, at any time t, absolutely continuous with respect to Lebesgue measure
(starting from µ0 absolutely continuous); one can specialize this concept ask-
ing that µt has a density in Lmloc for some m. The uniqueness property starting
from a single point x translates into uniqueness for the continuity equation
starting from δx, while the uniqueness property among non-concentrating
flows translates into uniqueness among solutions which are absolutely con-
tinuous with respect to Lebesgue measure (starting from a diffuse initial
condition). In particular, the continuity equation can capture easily well-
posedness in cases where this holds among non-concentrating flows but not
among single solutions. Therefore it represents a well-suited framework where
to study some of our questions.

We also consider the (stochastic, backward) transport equation

∂tv + b · ∇v +∇v · ◦Ẇ = 0,

again in the sense of distributions in space and in the integral formulation
in time. This equation is well-suited for studying the regularity of the flow.
Indeed we have the formal representation formula

vs,t(x) = vt(Xs,t(x)), (1.2)

where vs,t is the solution, at time s of the transport equation, with final
time t and final datum vt, and Xs,t is the flow with s, t as initial and final

5



times. So any differentiability property of the flow (in space x) translates
into a differentiability property for the transport equation (with regular final
datum).

A general advantage of these SPDEs is the linearity, which helps in vari-
ous situations, for example for a priori estimates. Maybe the most relevant
context where such linearity is exploited is the duality method (which will
be explained later): the continuity equation and the transport equation are
formally dual one to each other. This provides one formal way to prove
uniqueness, which can be made rigorous with not so much effort, under suit-
able regularity assumptions. More important, the duality technique has the
advantage to be essentially deterministic, which helps for results at ω fixed.

We will give some proofs which use only flows (Lagrangian approach),
some which use only PDEs (Eulerian approach) and can be of interest on
their own, for linear SPDEs, without the link with the flows.

1.4 Different kinds of uniqueness

The SDE uniqueness can be of different kinds, we state and explain them.
Notice that the SDE has an easy interpretation at W (ω) fixed, with no need
(for the definition) of stochastic integration. To make it clearer, defining
X̃ = X −W , we get the random ODE

dX̃ = b̃(X̃)dt,

where b̃ is the random coefficient b̃ω(t, x) = b(t, x+Wt(ω)).

We start with solutions with a fixed initial datum x in Rd.

1. The strongest kind of uniqueness is the so called path-by-path unique-
ness. It means roughly what follows: for a.e. realization W (ω) of the
Brownian motion, the SDE driven by W (ω) has at most one solution.
This concept makes sense because of the interpretation of the SDE at
W (ω) fixed.

2. A still strong kind of uniqueness is the pathwise uniqueness: given a
probability space with a filtration and a Brownian motion, any two
processes, adapted to that filtration, solutions to the SDE, must coin-
cide.

3. The weakest form of uniqueness is uniqueness in law: any two adapted
processes solutions to the SDE must have the same law.
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Notice the difference between path-by-path uniqueness and pathwise unique-
ness: intuitively, in both cases one can take two families Xω, Y ω solutions
to the SDE (at ω), but, for pathwise uniqueness, the two families must be
adapted processes (with respect to suitable filtrations) to coincide, while, for
path-by-path uniqueness, they coincide independently of any other assump-
tion (they do not need even to be measurable in ω). In particular, path-
by-path uniqueness implies pathwise uniqueness. Also pathwise uniqueness
implies uniqueness in law, by the classical Yamada-Watanabe theorem.

Similar definitions can be given for uniqueness among flows which do not
concentrate.

In the following, we are mainly interested in path-by-path uniqueness,
among single solutions and among flows. Notice that path-by-path unique-
ness among flows can provide information on pathwise uniqueness even among
single solutions. Indeed path-by-path uniqueness among flows, together with
existence, can provide existence of strong (i.e. adapted to Brownian filtra-
tion) solutions, at least starting from a.e. initial datum. If moreover we
have uniqueness in law from a fixed initial datum (which can be proved in
many cases via Girsanov theorem or via PDEs arguments), then pathwise
uniqueness among solutions holds by Yamada-Watanabe theorem.

As for PDEs, path-by-path uniqueness, both among solutions and among
flows, has a translation at the level of the continuity equation. Indeed, there
exists a proper transformation of the continuity equation, which can be read
at W (ω) fixed, and where a path-by-path uniqueness definition can be given.
Similarly for the transport equation.

Intuitively, also pathwise uniqueness and uniqueness in law can be trans-
lated for continuity equation, but the link here is not completely clear and we
do not investigate this for the moment. Let us just mention that the trans-
lation of uniqueness in law for continuity equation is the so called Wiener
uniqueness, namely uniqueness among solutions which are adapted to the
Brownian filtration.

1.5 Methods and tools

The main methods used are the following ones:

• Uniqueness from regularity via duality: This method is based on
the formal relation

d

ds
Xs,t(X0,s) = 0,

where Xs,t is the flow from time s to t and X0,s is any solution (starting
at time 0) at time s. At the level of PDEs, recalling the representation
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formulae (1.1) and (1.2), this relation becomes

d

ds

ˆ
Rd
vs,tdµs = 0,

where µ solves the continuity equation and v the transport equation.
The first, resp. the second relation, if true, implies easily uniqueness for
X, resp. for µ. To make the relations rigorous, we need some regularity
assumptions either on the drift b or on v. In particular, as soon as
we have a priori estimates on the space derivative of v (or equivalently
X), we have uniqueness. This reasoning works at ω fixed; hence it
implies not only path-by-path uniqueness, but, in principle, also an
identification of the “good” set of Brownian trajectories.

• Improved space regularity of b̃ and Young estimates, for the
SDE and the continuity equation: The modified random drift b̃
enjoys 1 degree more of space regularity, at the price of losing 1/2 time
derivative (as it can be seen, for example, by heat equation estimates).
Hence the random ODE driven by b̃ can be studied via Young integra-
tion arguments. This brings to Lipschitz (in space) a priori estimates
which imply regularity. A similar reasoning, directly for uniqueness,
can be done for the continuity equation, using Young integration ar-
guments for transport-type PDEs. An adaptation of this method (for
flows) can be done via Girsanov theorem.

• Itô-Kunita transformation of the SDE: The transformation of the
SDE via diffeomorphism uses Itô formula, which involves a Laplacian
and therefore makes one hope for elliptic regularization effects. Indeed,
using PDEs arguments, one can suitably transform the SDE into a new
one, with more regular coefficients.

• A priori estimates for SPDEs, via parabolic PDEs: Given a
solution v to the transport equation, then E[v] satisfies a parabolic
PDE. The same is essentially true for E[vm] and E[|∇v|m], at a formal
level and with a system of parabolic PDEs (rather than a single PDE).
This gives Sobolev bounds on v via parabolic estimates.

• Wiener chaos decomposition of SPDEs: By the linearity of v, the
projection of the SPDE on the Wiener chaos spaces bring to a system
of SPDEs, which actually reduce to the correspondent parabolic PDE.
This allows to deduce Wiener uniqueness for the SPDE from uniqueness
for the parabolic PDE.
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Some tools have already been mentioned. For completeness we give a list
of (what we think as) the main tools:

• duality among linear equations;

• Young integration theory, for an analysis of the SDE based on the
improved regularity of b̃;

• the martingale structure, both for Itô-Kunita transformation and
a priori estimates for SPDEs (they both involve the Laplacian in Itô
formula), and also to get the improved regularity of b̃ (although the
martingale structure is not essential for this point);

• Girsanov theorem, for an adaptation of Young estimates and (as we
will see) in the Itô-Kunita transformation method;

• the renormalization property (vm satisfies a transport-type equa-
tion), used for a priori estimates for SPDEs;

• the parabolic PDE estimates, used whenever the martingale struc-
ture comes into play;

• Wiener chaos decomposition.

Among these methods and tools, let us remark the two big approaches:

• The pathwise Young argument. This approach decouples the prob-
lem into two: first we find (and identify when possible) a full-measure
set where the modified drift b̃ has good regularity properties, then we
use such regularity properties to get well-posedness. As observed by
M. Gubinelli, this is an approach à la rough paths: we identify an ele-
ment in the equation (in this case b̃), which governs the equation in a
continuous way. This approach has the advantage of being applicable
to a wide class of perturbations and, in some cases, of identifying the
exceptional set of Brownian trajectories where things might go wrong;
this may be relevant for non-linear arguments (if the exceptional set is
independent of b for example). The continuity with respect to b̃ may
help also in the zero noise problem (a suitable rescaling of b̃ may suggest
which solutions are selected in the small noise limit).

• The martingale argument. This approach uses deeply the martin-
gale structure: more precisely, it exploits Itô formula and the regulariz-
ing properties of the associated second order operator (the Laplacian in
our case). This approach has the advantage of exploiting simpler tools
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and (more important) of being applicable to larger classes of drifts b,
which cannot be reached (at least not easily) by the Young integration
approach.

Notice that the two arguments can be mixed (as actually we do here). For
example, one can use a martingale argument to show the improved regularity
for b̃ and then Young integration bounds for the a priori estimates on the
flow. One can also identify another element rather than b̃ which governs the
equation, like Db(X) via Girsanov theorem.

We remark that we speak here (with some abuse) of martingale structure
since we can apply Itô formula and get a deterministic integral (i.e. defined
without stochastic integration) with second order terms and a stochastic
integral with first order terms and with zero expectation: this can be done
in the context of martingale theory. On the other hand, we also use that
the deterministic integral is written in terms of a deterministic second order
operator: this property is not related to martingales, but may be rather
connected to Markov property (via Dirichlet forms).

1.6 A historical overview on the subject

Regularization by noise is a wide subject nowadays and it includes many
works. We give a short overview of the topic, recalling some of the works,
from our perspective and without any claim of completeness. We start with
the papers that mainly contributed to this thesis.

Before going into regularization by noise, we recall a few relevant results
for ODEs and associated linear PDEs with irregular coefficients. DiPerna
and Lions [DL89] introduce the use of the transport equation to study the
corresponding ODE and get existence and uniqueness for the transport equa-
tion, for drifts with Sobolev regularity and bounded divergence. Ambrosio
[Amb04] extends the result to drifts with bounded variation and introduce
the concept of Lagrangian flow (see also [AC14] for a revision). From the La-
grangian point of view, Crippa and De Lellis [CDL08] prove a similar result
using flows. Finally, we recall the approach by Figalli [Fig08] on martingale
Lagrangian flows for SDEs.

Regularization by noise, in a weak sense, is known from a long time: for
example, Girsanov theorem allows to restore uniqueness in law for a SDE with
bounded drift; Strook and Varadhan [SV06] have generalize this approach to
bounded continuous coefficients with uniform elliptic diffusion. The analysis
of the law of SDEs with non-smooth coefficients in one dimension can be
performed in one dimension via scale function and speed measure, see for
example [Bre92].
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If we consider strong uniqueness, we can say the story starts with the
works by Zwonkin [Zvo74] and Veretennikov [Ver80]; in the last one, strong
uniqueness for SDEs is proved when the drift is bounded. The case of un-
bounded drift was treated by Portenko [Por82], although for weak solutions,
and by Gyöngy and Mart́ınez [GM01]. Later, Krylov and Röckner [KR05]
show strong uniqueness for the SDE under only a certain integrability of the
drift (the Krylov-Röckner condition). This result is revisited and extended,
in the context of stochastic flows, by Fedrizzi and Flandoli [FF11], [FF13a],
who prove existence and regularity of the flow, using the Itô-Tanaka trick
and the regularity properties of the Kolmogorov equation. At the level of
the SDE, this represents an optimal result (see the counterexample in Chap-
ter 2 when the Krylov-Röckner condition does not hold) and is essentially
what we call the martingale approach in the Lagrangian setting. A similar
approach in the case of Hölder continuous drift, with a stronger result in
terms of regularity, is given in [FGP10]. The case of general elliptic diffusion
coefficients is dealt in [Bah99] and in [Zha05] among others.

In this line, but with a different approach, Chen and Li [CL14] give a regu-
larization by noise result, which uses the heat kernel properties to get a priori
estimates on the derivative; this approach could be suited for generalization
e.g. to manifolds. Again in this line, Champagnat and Jabin [CJ13] decouple
the problem into estimates on the Fokker-Planck equation and uniqueness
given such estimates.

It is worth mentioning that, in one dimension, the problem can be studied
through special tools: the first work in this direction is by Flandoli and Russo
[FR02], who use a version of the Itô-Tanaka trick in one dimension. Local
time can also be used, see for example [Att10] and [AP12]. See also [CE05] on
a classification of uniqueness/non-uniqueness situations for one-dimensional
SDEs.

In parallel with the development of the SDE theory, results for the asso-
ciated linear PDEs started. The first intuition in this direction is by Flan-
doli, Gubinelli and Priola [FGP10], who prove pathwise well-posedness of
the stochastic transport equation for Hölder continuous drifts, relying on the
differentiability of the related stochastic flows and the method of charac-
teristics (which is related to the duality method). Other works follow this
direction and extend this result to prove regularity or uniqueness under the
Krylov-Röckner condition: see for example [FF13b] (regularity of the trans-
port equation), [NO15] and [MO15] (uniqueness and renormalization prop-
erty for continuity/transport equation), [MNP15] and [BN14] (improved reg-
ularity for transport equation for irregular and regular drift), [FMN14] for
the vector advection equation, [Rez14] for an application to Navier-Stokes
equations.
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Another direction instead uses directly PDE methods (without appealing
to the flow) to get pathwise well-posedness. One of the first work in this
direction was by Attanasio and Flandoli [AF11], who combine the renormal-
ization theory (for deterministic theory, close to duality here) and properties
of the Kolmogorov equation and prove uniqueness for the transport equation
for drifts with bounded variation and with discontinuous initial condition.
A martingale-based approach is proposed in [BFGM14], where regularity for
the transport equation is proved via a priori estimates (following an idea in
[BF13]), under the Krylov-Röckner condition and actually even slightly be-
yond (uniqueness is also proved via duality and the result is transferred to
the flow). This is the martingale approach in the Eulerian setting.

Outside the tools that exploit the martingale structure, Proske and coau-
thors started a line of proof (for SDEs), which exploits Girsanov theorem and
regularizing properties of the law of the Brownian motion. In [MPMBN+13]
this approach is used to get Malliavin differentiability of the solution, in case
of bounded drift. The approach is extended in [Rez14] to the Krylov-Röckner
condition (a geometric interpretation is also given). The method can be ap-
plied also to wider class of noises, at least when a Girsanov-type result holds,
and indeed it has been applied in [BNP15].

The path-by-path problems were less investigated up to recent years, one
possible reason being the lack of a proper calculus without probability. The
first result in this direction is by Davie [Dav07], who proves path-by-path
uniqueness for the SDE for bounded drifts. This result, up to now, is still
almost optimal and the proof is not easy to reproduce. A breakthrough
came with the paper by Catellier and Gubinelli [CG12]: in the context of
Hölder continuous drifts, they use Young integration techniques and better
regularity of the modified drift to get well-posedness for a.e. Brownian path
(with the exceptional set being, in some cases, independent of the drift).
Their approach is deterministic in nature and in fact it is applied to a wide
class of noises, like fractional Brownian motion. This is the pathwise Young
approach in the Lagrangian case (which we consider, in this thesis, limited
to the Brownian case).

This approach opens the way to path-by-path analysis also for PDEs. In
[Cat15] and [Nil15] existence and (in the first paper) uniqueness is proved
for the stochastic (better: rough) transport equation at a fixed realization
of the noise, even for a more general noise; the proofs exploit the method
of characteristics. A path-by-path method based directly on the PDE is in
[GM], where the recently developed approach on unbounded Young/rough
drivers, by Bailleul and Gubinelli [BG15], is used in this context. This is the
pathwise Young approach in the Eulerian case.

The duality method is another approach to the path-by-path uniqueness
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problem. The advantage of such a method is that one can get regularity
by other means (for example martingale tools) and still get path-by-path
uniqueness. In this form the method is used in the already cited [BFGM14],
in [Cat15] and also in [Sha14], where a simple formulation involving only
flows is given.

We close this part of the overview with Wiener uniqueness. A result in
this direction is given in [Mau11] for the stochastic transport equation under
the Krylov-Röckner condition (restricted to time-independent vector fields).
The method exploited, the Wiener chaos decomposition, is adapted from
the paper [LJR02] by Le Jan and Raimond, who use it in the context of
non-smooth diffusion coefficients. Another approach, based on Wiener expo-
nentials, is proposed by Fedrizzi, Neves and Olivera [FNO14] and extended
in [MO]. Here this result is presented but using the Wiener chaos approach.

So far, the papers who are directly linked to this thesis. Of course, many
other approaches, in this or other contexts, have been developed and they
definitely constitute other lines of research, with new viewpoints and new
applications. They did not find space here only because they are not in the
directions explored by this thesis. We mention some of them, starting from
the SDE case:

• Regularization by noise for infinite-dimensional SDEs: The works [DPF10],
[DPFPR13] and [DPFRV14] (among others) explore this topic extend-
ing, for continuous or bounded vector fields, the approach in martingale
Eulerian approach.

• Regularization by noise for degenerate noise: This case, where the
previous techniques do not extend easily, is explored for example in
[CDR12], for a class of Hölder continuous drifts and a noise of weak
Hörmander type, in [LTS15], where the case of degeneracy in all di-
mensions but one is treated, and in [BBC07], for an example of one
dimensional degenerate noise with reflection.

• Regularization by noise for other kinds of noise: Apart for the already
cited [CG12] and [BNP15], we mention [HP13] (among others) for a
PDE-based approach to regularization with Lévy noise, and [Pri15] for
path-by-path uniqueness, via duality, and other results again for Lévy
noise.

Here are some topics which are no more regularization by noise for ODEs
or linear PDEs, but are related at least in the spirit (one adds a noise to the
system and sees what happens):
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• Regularization by noise for nonlinear PDEs, with singular interacting
kernel and transport-type noise: Concerning transport-type noise, this
topic is much more difficult than the linear case and the behaviour of
the system is different. For example, in many equations coming from
physics, the drift is driven by an interaction kernel of the form |x−y|α,
for some power α usually smaller than 1. Thinking from a Lagrangian
point of view, the main difficulty in such cases is that, when a noise
of the form +dW is added to the system, W independent of x, then
the interaction X − Y between two particles is poorly affected by this
noise (the additive noise on X and Y is cancelled in the difference)
and this prevents the kernel, and so the drift, to be regularized (oppo-
sitely to the linear case where the drift is regularized). The situation
seems not to change for noises as σ(x)W , at least for regular σ, maybe
space-irregular noises may help. Anyway, there are a few works on this
topic, like [FGP11], where noise regularizes because it avoids very rare
(measure zero) initial configurations bringing to explosion (rather than
because it is stronger than the deterministic drifts). In [DFV14] the
case of the Vlasov-Poisson system is treated and a regularization by
noise phenomenon for special initial conditions is proved.

• Regularization by noise for nonlinear PDEs, with general noise: In
other works, regularization by noise is shown with a particular form
of the noise, in order to respect the structure of the equation and to
produce regularization at the same time; we recall some of papers on
this topic. A first class of works is on Navier-Stokes equations with ad-
ditive noise: we mention [DPD03] on the associated Kolmogorov equa-
tion, [FR08] and [Rom08] on existence of Markov selections and links
between uniqueness and invariant measures. Another relevant context
is that of dispersive equations: we mention [dBD05] on blow-up for
stochastic Schrödinger equation, [BSDDM05] on numerical results on
nonlinear Schrödinger equation with multiplicative white noise (which
suggest a regularization effect), [DT11] with improved Strichartz esti-
mates for nonlinear Schrödinger equation with dispersive noise, [CG15]
and [CG14] on nonlinear Schrödinger and Korteweg–de Vries equa-
tions with dispersive noise, by Young-type techniques. A third class
of works is on parabolic second-order PDEs in one spatial dimension
(which include reaction-diffusion equations and Burgers equation): we
mention [AG01], [BGP94] and [Gyö98]. Outside these contexts, we
mention [BF13] for parabolic systems, [GS14] for scalar conservation
laws, [DLN01] and [SY04] for mean curvature flows.
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• Regularization by noise for fluid-dynamical models: Many papers deal
with regularization by noise for some models from fluid dynamics (not
necessarily coming from SPDEs), mainly from turbulence. We mention
[Bia13] and [BBF14] among others; see also the book [Fla11] for an
overview.

• Other “unexpected” effects of noise on SDEs: Here the field is huge if
we take into account any effect but, just to stay at the level of SDEs
with additive noise, we mention [HM14a]-[HM14b] on SDEs with drifts
which grow more than linearly, [FGS14] on synchronization by noise
and [ACW83] on stabilization by noise of linear ODEs.

• Regularization by noise in law, for distributional drifts: Here one uses
the Wiener measure to make sense of SDEs where the drift is just a
distribution. We mention, among other works, [BC03] for drifts in
the Kato class, [FIR14] for distributional drifts with Young techniques,
[DD14] (in one dimension) and [CC15] (in general dimension) again for
distributional (but more irregular) drifts with rough paths and para-
controlled distributions techniques.

• Regularization by noise for the density of the laws: Existence of reg-
ular densities for the laws of some S(P)DEs driven by irregular vector
fields can be shown. We mention (among other papers) [DR14] on
densities for Navier-Stokes equations and [BC14] on densities of SDEs
with Hölder continuous coefficients. This type of results and the tech-
niques used may be applied to regularization by noise (at least in the
martingale approach).

• Zero-noise selection: For the ODE case, we take an ODE with more
than one solution, we add +εW to the ODE, which becomes well-
posed, and then we let ε go to 0 to see which deterministic solutions are
selected. The problem is non-trivial and has been solved, in many cases,
only in one dimension, by Bafico and Baldi [BB82], see also (among
various papers) [AF11], [DF14], [Tre13] and [KM13] and [PP15] for a
multidimensional example. In the PDE case, the idea is similar (and of
course difficult), an example for a special case of Vlasov-Poisson is in
[DFV14]. Zero noise limits also appear in other contexts, see [MP14]
and [DLN01].

Finally, it is dutiful to recall the first book on regularization by noise:
[Fla11]. Here one can find an overview and insights into several topics (in-
tuitions, model from fluid dynamics, infinite-dimensional case and others,
beside the finite-dimensional case), as well as many references.
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1.7 Organization of the thesis

The thesis is organized as follows:

• In Chapter 2, we classify the types of irregular drifts, depending on
the corresponding regularization by noise results. We also give an intu-
ition of the phenomenon and an example of very irregular drift, where
regularization by noise does not occur.

• In Chapter 3, we give definitions, basic properties and technical issues
and some stability results on the SDE and the associated linear SPDEs.
This Chapter does not contain regularization by noise results but is the
technical basis for the rest of the thesis.

• In Chapter 4, we show the renormalization/duality method. As a result
of this Chapter and the previous ones, we give some “black-box” results
which provide (path-by-path) well-posedness given suitable regularity
estimates on the flow or on the drift.

• In Chapter 5, we give the a priori estimates and a uniqueness result on
parabolic PDEs which are needed in the following chapters.

• In Chapter 6, we give a first regularization by noise result, for existence
of solutions to the stochastic continuity equation. We obtain, as a
consequence, a well-posedness result in the class of non-concentrating
solutions.

• In Chapter 7, we prove Wiener uniqueness for the stochastic continuity
equation, starting from uniqueness for the Fokker-Planck equation.

• In Chapter 8, we show regularization by noise in the case of α-Hölder
continuous drifts with α > 1/2. We use Young integration techniques
to show a priori Lipschitz estimates on the flow solution to the SDE.

• In Chapter 9, in the context of the previous Chapter, we show path-by-
path uniqueness for the stochastic continuity equation, using a Young
integration approach but purely based on PDE techniques.

• In Chapter 10, we extend the approach in the Chapter 8, via Girsanov
theorem and a SPDE argument (which will be fully developed in Chap-
ter 12).

• In Chapter 11, we show regularization by noise for a class of unbounded
vector fields. We use a suitable transformation of the SDE, involving
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the associated parabolic PDE, to show a priori Sobolev estimates on
the flow solution to the SDE. The analogous Lipschitz estimates for
Hölder continuous drifts are also shown.

• In Chapter 12, we prove a similar result, but with a purely PDE
method, based on Sobolev energy estimates and the renormalization
property for the stochastic transport equation. We also apply this
method to study another linear SPDE, namely the stochastic vector
advection equation (a linearization of the three-dimensional stochastic
Euler equation with multiplicative noise).

• In the Appendix, we give some technical facts on (joint) measurability,
we recall the main properties of the spaces of functions that we use and
finally we recall the main facts on Young integration.

1.8 Notation

Here we recall some frequently used notation.

• (Ω,A, (Fs,t)0≤s≤t≤T , P ) is a probability space with a two-side filtration
(i.e. (Fs,t) ⊆ Fs′,t′ for s′ ≤ s ≤ t ≤ t′); we can take A = F0,T without
loss of generality. We assume that A is countably generated up to P -
null sets, in particular all the σ-algebrae Fs,t are countably generated
up to P -null sets (see the Appendix, Sections A.1 and A.2 for more
details). We also assume the standard assumption, i.e. Ft,t contains all
the P -null sets and (Fs,t)s≤t is right continuous with respect to t and
left continuous with respect to s. We sometimes fix s and consider only
the forward filtration.

• The variables s, t, r denote times in [0, T ]; s usually is the initial time
for forward equations, t is the final time for backward equations (but
in Chapter 9, 0 is the initial time and T the final time). The variables
x, y, . . . denote space points on Rd; x · y denotes the canonical scalar
product on Rd; BR and B̄R denote the centered resp. open ad close balls
in Rd of radius R. The variable ω denotes the probabilistic datum in
Ω.

• The process W is a d-dimensional Brownian motion with respect to
the filtration (Fs,t)s,t (i.e. Wt −Ws is independent of F0,s and of Ft,T ).
We denote by FW the Brownian completed filtration, namely FWs,t is
generated by Wt′ −Ws′ for s ≤ s′ ≤ t′ ≤ t and by the P -null sets. We
use the notation ◦dW for the Stratonovich integration; sometimes we
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write ◦Ẇ , as a short form for the integral notation. We use the same
symbol for integration in the forward direction and in the backward
direction.

• We say that a real-valued function f is (ν-)measurable with respect
to a measure space (E, E , ν) if, for every open set G, f−1(G) is in the
completion of E with respect to ν. We say that a real-valued process is
progressively measurable if it is (L1|[0,T ] ⊗ P -)measurable with respect
to the progressive σ-algebra P , which is generated by all the sets of the
form A×B, where A is in B([0, t]) and B is in Ft for some t.

• The space Mx is the space of finite signed measures on Rd; Mx,+ is
the subset of non-negative finite measures on Rd. The image measure
of a measure ν through a map f is denoted by f#ν or by ν ◦ f−1.

• The spaces Lpx, L
p
t , L

p
ω, Lpt,x, ... denote Lp(Rd), Lp([0, T ]) (or Lp([s, T ])

or Lp([0, t]) when appropriate), Lp(Ω), Lp([0, T ] × Rd), .... When a
domain D of Rd is considered, Lpx,D denotes Lp(D). The space Lpx,loc is
the space of functions which are in Lpx,BR for every R > 0. However we
consider it a symbol rather than a space: when we say that a certain
property is satisfies in Lpx,loc (for example, a functional is continuous on
Lpx,loc), we mean that, for every R > 0, this property is valid in Lpx,BR .
We also introduce weighted spaces: given a strictly positive C∞x weight
χ, Lpx,χ,D is the space of measurable functions f with

‖f‖Lpx,D =

(ˆ
D

|f(x)|pχ(x)dx

)1/p

< +∞.

• Given a Banach space V = U∗, the dual space of a separable Banach
space U , the space Lpx(V ) denotes Lp(Rd;V ), the space of weakly-*
measurable functions on Rd with values in V , with p-integrable V norm.
It is a Banach space with the norm

‖f‖Lpx(V ) = ‖‖f(x)‖V ‖Lpx . (1.3)

Similarly for Lpt (V ), Lpω(V ), Lpt,x(V ), ...; the notation Lpx,D(V ), Lpx,loc(V )
is used as before. More details on such spaces are in the Appendix,
Sections A.1 and A.2. The space V is usually Mx, L

p
x,D (for p > 1),

W 1,p
x,D (for 1 < p < +∞). Similarly, given a separable Banach space U ,

the space Lp(U) denotes the space of weakly measurable functions on
Rd with values in U , with p-integrable U norm; see again the Appendix
for more details. The space U is usually Cx,BR , Cx,0 (see below for
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these notations). The norm (1.3) is also used, when possible, outside
the cases V separable space or dual of a separable space.

• Given a Banach space V , the spaces Ct(V ), Cx(V ) denote C([0, T ];V ),
C(Rd;V ), the spaces of V -values continuous functions. Similarly, for
0 < α < 1, the spaces Cα

t (V ), Cα
x (V ) denote Cα([0, T ];V ), Cα(Rd;V ),

the spaces of locally α-Hölder continuous functions. Given a domain D
of Rd, Cx,D(V ), Cα

x,D(V ) denote resp. the space of V -valued continuous
bounded functions on D and the space of V -valued bounded, globally
α-Hölder continuous functions on D. They are Banach spaces with the
norms

‖f‖Cx,D(V ) = sup
x∈D
‖f(x)‖V ,

‖f‖Cαx,D(V ) = sup
x∈D
‖f(x)‖V + sup

x,y,∈D,x6=y

‖f(x)− f(y)‖V
|x− y|α

.

When D = Rd, we use the notation Cx,b(V ), Cα
x,b(V ). For k in N, the

space Ck+α
x,D (V ) = Ck,α

x,D(V ) denotes the space of k-times differentiable
functions: we say that f , V -valued function, is differentiable in x if
f(y) = f(x) + Df(x)(y − x) + o(|y − x|) for some Df(x) linear map
from Rd to V ; we say that f is twice differentiable if Df is differentiable
and so on. For V = R or Rn, we omit V in the notation. C∞x,c is the
space of R-valued C∞ functions in x with compact support. The space
Cx,0 is the closed subspace of Cx,b(R) of continuous functions vanishing
at infinity. The space Ck

x,lin denotes the space of R-valued Ck functions

on Rd, with bounded derivatives of order 1, . . . k (lin stands for “at
most linear growth”). It is a Banach space with the norm

‖f‖Ckx,lin = sup
x∈Rd

|f(x)|
1 + |x|

+
k∑
j=1

sup
x∈Rd
|Djf(x)|.

• The space W k,p
x is the Sobolev space on Rd of order k and exponent p.

For R > 0, W k,p
x,BR

is the Sobolev space on BR of order k and exponent p,
i.e. the space of functions whose distributional derivatives (up to order
k) in the domain BR are in Lp (see the Appendix for more details).
W 1,∞
x,BR

can be identified with the space of Lipschitz function on BR.

• For R > 0, 0 < α < 1, 1 ≤ p < +∞, Wα,p
x,BR

is the fractional Sobolev
space on BR of order α and exponent p: it is the space of functions in
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Lpx,BR such that

‖f‖Wα,p
x,BR

= ‖f‖Lpx,BR +

(ˆ
BR

ˆ
BR

|f(x)− f(y)|p

|x− y|d+αp
dxdy

)1/p

< +∞.

The definition is extended to p = +∞ to the space of functions in L∞x,BR
such that

‖f‖Wα,∞
x,BR

= ‖f‖L∞x,BR + ess sup
x,y∈BR,x 6=y

|f(x)− f(y)|
|x− y|α

< +∞;

it can be identified with the space of α-Hölder continuous functions on
BR. The space W k+α,p

x,BR
is the space of functions in W k,p

x,BR
whose k-th

order derivative is in Wα,p
x,BR

; it has the norm ‖f‖Wk+α,p
x,BR

= ‖f‖Wk,p
x,BR

+

‖Dkf‖Wα,p
x,BR

. All the definition can be extended to the whole space Rd,

replacing BR with Rd.

• Given a Banach space V , for R > 0, 0 < α ≤ 1, 1 ≤ p ≤ +∞, the
Wα,p
x,BR

(V ) norm can be defined as before, replacing |f(x)− f(y)| with
‖f(x)− f(y)‖V .

• The space of Borel bounded functions on Rd and on a domain D is
denoted resp. by BBx and by BBx,D.

• The product 〈·, ·〉 denotes the L2 duality product, usually with respect
to the x variable. When two variables x, y are involved in the product,
we use the notation 〈·, ·〉x, 〈·, ·〉y, 〈·, ·〉x,y.

• The arguments t, x, ω, . . . of the functions are sometimes indicated as
subscripts (or superscripts in case of ω), sometimes omitted.

• The letters b, X, µ, v are mainly used resp. for the drift, the solution
to the SDE, the solution to the (stochastic) continuity equation, the
solution to the (stochastic) transport equation. We sometimes use the
notation µb,s,µs , v = vb,t,vt , ... to keep track of the dependence of µ on
the drift b, the initial datum s and the initial measure µs, and similarly
for v. The letter X is actually used both for a solution to the SDE and
the flow solution, namely X = X(s, t, x, ω) = Xs,ω

t (x).

• We use the notation b̃, X̃, µ̃, ṽ for the transformed drift and the trans-
formed solutions to the SDE, the SCE and the STE at the level of the
random ODE and the corresponding linear random PDEs; in Chapter
9, we still keep the “tilde” notation but the link between b and b̃, X
and X̃, ... is not used (see the first Section of that Chapter for details).

20



• The function ρ is a non-negative even C∞x,c function on Rd, normalized
to have ‖ρ‖L1

x
= 1. For ε > 0, ρε is the function defined by ρε(x) =

ε−dρ(ε−1x); similarly (∇ρ)ε(x) = ε−d∇ρ(ε−1x). For a function f and a
measure ν, we use the notation f ε = f ∗ ρε, νε = ν ∗ ε.

• A weight (strictly positive C∞x function on Rd) is usually denoted by χ,
conditions on the weight are given case by case. However the following
weights are recurrent: χR, which is ≤ 1 globally, = 1 on BR, = 0 on
B2R and with |∇χ| ≤ 2/R; χη(x) = (1 + |x|2)η/2; χR,η, which is = 1 on
BR and = (1 + |x|2)η/2 on Bc

R+1.

• Integrability exponents are usually denoted by p, q, r, m, m̃, .... The
superscript ′ denotes the conjugate exponent:

1

p
+

1

p′
= 1.

• The expression “there exists a locally bounded function C(‖f‖V ) ...”
is a convenient (thought not usual) way to say that we have a priori
bounds, uniform in terms of ‖f‖V .

• The constants are usually denoted by C. For simplicity of notation,
when we are not interested in the value or the precise dependence of
the constant, we use the same letter for different constants even in the
same proof.

• We say that a normed space V , contained in another normed space U ,
has a set A as a mildly U -dense subset if A is contained in V and, for
every f in V , there exists a sequence (fn)n in A which converges to f
in U and is bounded in V .

• Lin(V, U) denotes the linear continuous functionals from V to U Banach
spaces.

• The notation divf denotes the distributional divergence of f .

• We say that f belongs to Cβ−1
t , for 0 < β < 1, if

´ t
0
frdr belongs to Cβ.

We say that f belongs to Cα+
t if f belongs to Cα+ε

t for some ε > 0.
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Chapter 2

Examples

In this chapter we give examples of regularization by noise. We show that,
in the deterministic case, ill-posedness or lack of regularity occur, while they
do not appear (at least partially) in the stochastic case. We classify these
examples depending on the kind of uniqueness, non concentration and reg-
ularity the noise brings. Together whit the examples, we define the classes
of drifts we are interested in and that will appear in the results. Finally we
show a counterexample where regularization by noise does not occur.

In all the examples, we will assume, even if not explicitly said, at most
linear growth of b outside a ball, namely:

Condition 2.1. There exists R0 > 0 such that b/(1+|x|) is in L∞t (BBx,BcR0
),

where BB denotes the set of Borel bounded functions.

2.1 First class

In this class, we have examples of regularization by noise in the strongest
sense: noise restores path-by-path uniqueness and Lipschitz regularity of the
flow. The class of drifts where this regularization holds is the following one:

Condition 2.2. The drift b is bounded Hölder continuous, in the sense that
b is Cβ

t (Cα
x,b) for some β > 0, α > 0.

As a prototype example, we consider, on Rd, for 0 < α < 1,

b(x) = g(x/|x|)|x|α10<|x|≤1 + g(x/|x|)1|x|>1, (2.1)

where g : Sd−1 → Rd is a C∞ function. In the deterministic case, depending
on g, concentration, non uniqueness, irregularity of the flow can appear even
in the same example.
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For example, for g(x̂) = x̂, the deterministic ODE shows non-uniqueness
from 0 and non-continuity of the flow. Indeed:

• if x0 6= 0, then there exists a unique solution Y to the ODE starting
from x0, namely Y (t) = (|x0|1−α+ (1−α)t)1/(1−α)x̂01t≤t1 + et−t1x̂01t>t1 ,
where t1 is the first time that |Y | = 1 (t1 = 0 if |x0| > 1);

• if x0 = 0, then there is an infinite number of solution to the ODE
starting from 0, namely any Y (t) = 1t>ta((1−α)(t−t0))1/(1−α)x̂a1t≤t1 +
et−t1x̂a1t>t1 for some t0 in [0,∞] (for ta =∞, we find the null solution)
and some xa in Sd−1 (and with t1 as before).

We also have non-uniqueness for the transport equation with discontinuous
(at 0) initial datum.

For g(x̂) = −x̂ instead, for every initial x0, there exists a unique solution
Y to the ODE, but this solution reaches 0 in finite time and then stays in 0.
Thus concentration appears in 0 for the flow and the continuity equation.

For d = 2, g(x̂) = x̂1x̂, in the deterministic case the flow can exhibit dis-
continuity, non-uniqueness and concentration of the mass in 0: every particle
which starts from x1 < 0 reaches 0 in finite time, where it can stay up to any
time t0 in [0,+∞] and then leave 0.

Finally, consider g(x̂) = Rx̂, where R is a unitary d× d matrix. For this
choice, already in the deterministic case we have existence and uniqueness,
from every initial datum, the solution being given by Y (t) = exp[|x0|αtR]x0.
However, the flow is not Lipschitz at 0. Notice that b, in this case, is a vector
field in W 1,1

x,loc with zero divergence, for which results for the deterministic
case ([DL89], [Amb04]) already imply existence and uniqueness among non-
concentrating flows.

For these examples and all the examples belonging to 2.2, our results 8.1
and 11.5 apply and restore: path-by-path uniqueness from a single initial
datum, Lipschitz regularity for the flow (and one may also prove regularity
for the transport equation); furthermore, 9.1 gives a PDE-based proof of
path-by-path uniqueness for the SCE and 12.1 gives non-concentration for
the flow and the continuity equation. [Actually Theorem 11.5 only gives a
priori Lipschitz estimates for the flow, but one can use these estimates to
prove path-by-path uniqueness and Lipschitz regularity.]

2.2 Second class

In this class, noise restores existence of non-concentrating flow, Sobolev reg-
ularity of the flow, uniqueness among flows which do not concentrate. We
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do not have Lipschitz regularity or uniqueness among single trajectories (in
the sense that we do not know whether they hold or not).

We have two conditions for this class, the second slightly larger than the
first one:

Condition 2.3. The drift b belongs to the Krylov-Röckner (KR) class, namely
Lqt (L

p
x) for some p, q satisfying

2 < p, q < +∞, d

p
+

2

q
< 1. (2.2)

Condition 2.4. The drift b belongs to the Ladyzhenskaya-Prodi-Serrin (LPS)
class, plus a regular but at most linear term, namely b = b(1) + b(2), where
b(2) belongs to L∞t (C1

x,lin) and b(1) satisfies the following assumptions:

• b(1) is in Lqt (L
p
x) for some p, q satisfying

2 ≤ p, q ≤ +∞, d

p
+

2

q
≤ 1; (2.3)

• 1) p > d or 2) p = d ≥ 3 and ‖b(1)‖L∞t (Ldx) is small enough or 3)

p = d ≥ 3 and b(1) is in Ct(L
d
x).

We say that p, q satisfy Condition 2.3, resp. 2.4 if they satisfy (2.2), resp.
(2.3).

Remark 2.5. Notice that, under Condition 2.4 and p = d ≥ 3 and b(1) in
Ct(L

d
x), we can assume, without loss of generality, ‖b(1)‖L∞t (Ldx) small enough:

indeed, if b(1) is in Ct(L
d
x), then, for every ε > 0, there exists a vector field b̄ in

Ct(C
∞
x,c) with ‖b(1)− b̄‖Ct(Ldx) < ε; therefore, we can take a new decomposition

of b, replacing b(1) with b(1)− b̄ and b(2) with b(2) + b̄, to get ‖b(1)‖L∞t (Ldx) small
enough.

The first prototype example is given again by

b(x) = g(x/|x|)|x|α10<|x|≤1 + g(x/|x|)1|x|>1

but for −1 < α < 0, where again g : Sd−1 → Rd is a C∞ function. These
examples show very similar pathologies to the case 0 < α < 1.

A second example is given, in dimension d = 2, by

b1(x) = −1

4
x1sgn(x2)|x2|−1/4,

b2(x) = −5|x2|4/5.
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The deterministic ODE exhibits non-uniqueness and concentration in 0 (and
existence of non-continuous generalized flows solutions). Indeed, the follow-
ing paths are solutions of the ODE starting from x with x2 > 0, for any real
C:

XC
1 (t, x) = x1 exp[x

−1/20
2 ] exp[−(x

1/5
2 − t)−1/4]1

t≤x1/5
2

+

+ C exp[−(t− x1/5
2 )−1/4]1

t>x
1/5
2
,

XC
2 (t, x) = (x

1/5
2 − t)5.

The counterpart at the level of the continuity equation is non-uniqueness and
a concentration phenomenon.

A third example is given in [Aiz78] by Aizenman, where bounded divergence-
free drifts on R3 are produced, which exhibits non-existence of measure-
preserving flows or non-uniqueness of such flows.

For these examples and all the examples belonging to 2.3 or to 2.4, our
results 10.1, 11.1 and 12.1 apply and restore: existence and path-by-path
uniqueness for non-concentrating flows (and non-concentrating solutions to
the continuity equation), Sobolev regularity for the flow and the transport
equation.

We should say, for the examples above and in general in the class 2.4, we
do not know whether these results are optimal or a stronger regularization
by noise result holds, like Lipschitz regularity or path-by-path uniqueness
among single trajectories (apart for the example in [Aiz78], since a result
of Davie [Dav07] ensures path-by-path uniqueness among single paths for
bounded drifts).

2.3 Third class

In this class, noise restores still existence and uniqueness of non-concentrating
flows, but regularity could not hold. More precisely, noise restores existence
for these flows, while uniqueness holds already for the deterministic equa-
tion (the point is that there might be no non-concentrating solutions in the
deterministic case).

The condition for this class is the following one:

Condition 2.6. The drift b belongs to Lm
′

t (W 1,m′

x,loc ) for some m′ > 1 and has
compact support. Its divergence satisfies |divb|2 in the Krylov-Röckner class.

The compact support assumption (here and also in the fourth class) is due
to technical reasons and may be replaced by suitable conditions at infinity.
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For all the examples belonging to 2.6, our result 6.4 applies and restores:
non-concentration for the flow and the continuity equation, while path-by-
path uniqueness among non-concentrating flows is ensured already in the
deterministic case.

Once more, the examples of the form (2.1), for 0 < α < 1 belong to this
class. However for these examples, noise restores also path-by-path unique-
ness among single trajectories and Lipschitz regularity for the flows, so that
these example are not peculiar of this class. On the other hand, if one wants
a simple proof only of existence and uniqueness among non-concentrating
solutions, this method provides such a proof.

2.4 Fourth class

In this class, there might not be path-by-path uniqueness, but noise gives a
unique selection by filtering with respect to Brownian motion.

Condition 2.7. The drift b belongs to Lm̄t (Lm̄x,loc) for some m̄ > 2 and has
compact support. Its divergence satisfies |divb|2 in the Krylov-Röckner class.

For all the examples belonging to 2.7, our result 7.12 applies and restores:
uniqueness among the non-concentrating solutions to continuity equations
which are adapted to the Brownian filtration.

2.5 An intuition

Let us come back to the prototype examples of the first and second classes,
namely

b(x) = g(x/|x|)|x|α10<|x|≤1 + g(x/|x|)1|x|>1,

for −1 < α < 1. Here it is possible to have an intuitive idea, “by hands”, of
what happens. If one consider the ODE without noise starting from 0, any
solution Y grows near 0 no faster than t1/(1−α); on the contrary, the Brownian
motion W near 0 grows as t1/2 (this is false, but only for a logarithmic
correction, which does not affect the intuition). Heuristically, we could say
that the “speed” of Y near 0 which is caused by the drift is like tα/(1−α), while
the one caused by W is like t−1/2. So what we expect to happen is that the
Brownian motion moves the particle immediately away from 0, faster than
the action of the drift, and this prevents the formation of non-uniqueness
or singularities. At least in the one-dimensional case, this can be seen also
through speed measure and scale function, see [Bre92], see also [CE05].

This explains also intuitively why α > −1. Indeed, this bound is optimal,
as we see from the following Section.
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2.6 A counterexample

Here we take the drift

b(x) := −β|x|−2x1x 6=0,

with β > 1/2. Notice that this drift is at the borderline, but outside, of the
LPS class. For this particular SDE, we have

Proposition 2.8. For some T > 0 and M > 0, if X0 is a random variable,
independent of W and uniformly distributed on BM , then there does not exist
a weak solution, starting from X0.

Proof. Step 1: the SDE does not have a weak solution for X0 = 0
(for any T > 0). The method is taken from [CE05].

Assume, by contradiction, that (X,W ) is a weak solution on [0, T ], i.e.
there is a filtered probability space (Ω,A,Ft, P ), an Ft-Brownian motion W

in Rd, an Ft-adapted continuous process (Xt)t≥0 in Rd, such that
´ T

0
|b(Xt)|dt <

+∞ and, a.s.,

Xt =

ˆ t

0

b(Xr)dr +Wt.

HenceX is a continuous semimartingale, with quadratic covariation 〈X i, Xj〉t =
δijt between its components. By Itô formula, we have

d[|Xt|2] = −2β1Xt 6=0dt+2Xt ·dWt+dt = (1Xt=0−(2β−1)1Xt 6=0)dt+2Xt ·dWt.

We now claim that ˆ T

0

1Xr=0dr = 0 (2.4)

holds with probability one. This implies

|Xt|2 = −(2β − 1)

ˆ t

0

1Xr 6=0dr +

ˆ t

0

2Xr · dWr.

Therefore |Xt|2 is a positive local supermartingale, null at t = 0. This implies
|Xt|2 ≡ 0, hence Xt ≡ 0. But this contradicts the fact that 〈X i, Xj〉t = δijt.

It remains to prove the claim (2.4). Consider the random set {t ∈
[0, T ]|Xt = 0}. It is a subset of A1 = {t ∈ [0, T ]|X1

t = 0}, so it is suffi-
cient to prove that the Lebesgue measure of A1 is zero, P -a.s. and this is

equivalent to P
(´ T

0
1Xi

r=0dr = 0
)

= 1. Since X is a continuous semimartin-

gale, with quadratic covariation 〈X i, Xj〉t = δijt, also X1 is a continuous
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semimartingale, with quadratic covariation 〈X1, X1〉t = t. Hence, by the
occupation times formula (see [RY99], Chapter VI Corollary 1.6)

ˆ T

0

1X1
r=0dr =

ˆ
R

1a=0L
a
T (X1)da

where LaT (X1) is the local time at a on [0, T ] of the process X1. Hence, a.s.,´ T
0

1X1
r=0dr = 0.

Step 2: the SDE does not have a weak solution starting from
X0 uniformly distributed on BM (for some T > 0 and M > 0). Again,
we suppose by contradiction that there exists such a solution X (associated
with some filtration G), on a probability space (Ω,A, P ). Let τ be the first
time when X hits 0 (it is a stopping time with respect to G), with τ = ∞
where X does not hit 0. We now claim that

P (τ <∞) > 0. (2.5)

Assuming this, we can construct a new process Y , which is a weak solution
to the SDE, starting from Y0 = 0. This is in contradiction with Step 1. The
process Y is built as follows. Take Ω̃ = {τ < ∞}, Ã = {A ∩ Ω̃|A ∈ A},
Q = P (Ω̃)−1P |Ã, on Ω̃ define Yt = Xt+τ and W̃t = Wt+τ − Wτ , Ht =
σ{W̃s, Ys|s ≤ t} (this is a σ-algebra on Ω̃). Then we observe the following
facts:

• W̃ is a natural Brownian motion on the space (Ω̃,A, Q), i. e., for every
positive integer n, for every 0 < t1 < . . . tn and for every f1, . . . fn in
Cb(Rd), there holds

E

1Ω̃

n∏
j=1

fj(W (tj + τ)−W (tj−1 + τ))

 (2.6)

= P (Ω̃)
n∏
j=1

ˆ
Rd
fjdN (0, (tj − tj−1)I),

where N (m,A) is the Gaussian law of mean m and covariance matrix
A. This can be verified, for a general G-stopping time, with a standard
argument: first one proves (2.6) when τ is a stopping time with discrete
range in [0,∞], then, for the general case, one uses an approximation
of τ with stopping times τk with discrete range such that τk ↓ τ (as
k →∞) and {τ =∞} = {τk =∞} for every k.
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• W̃ is a Brownian motion with respect to the filtration H, i.e., for every
0 = t0 < t1 < . . . tn ≤ s < t and for every f, g1, . . . gn in Cb(Rd), there
holds

E
[
1Ω̃f(W (t+ τ)−W (s+ τ))

n∏
j=0

gj(X(tj + τ))
]

=

ˆ
Rd
fdN (0, (t− s)I)E

[ n∏
j=0

gj(X(tj + τ))
]
.

Again this can be shown by approximation (with stopping times with
discrete range).

• Y is a weak solution to the SDE, starting from Y0 = 0. This follows
immediately from

Xs′ = Xs +

ˆ s′

s

b(Xr)dr +Ws′ −Ws,

setting s′ = t+ τ and s = τ .

It remains to prove the claim (2.5). We suppose by contradiction that
τ = ∞ a.s.; this implies that, for every t, P (Xt 6= 0) = 1. Then, computing
E[|X|2] by the Itô formula, we get

d

dt
E[|Xt|2] = −2βP{Xt 6= 0}+ 1 = −2β + 1 < 0,

hence there exists a time t0 > 0 such that E[|Xt0|2] < 0, which is a contra-
diction. This completes the proof.
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Chapter 3

Some general facts on SDEs
and associated SPDEs

In this chapter we want to discuss in detail some general facts on the SDEs
and the associated linear stochastic PDEs (SDPEs).

Before starting, we recall some assumptions and notation we use in this
Chapter and in the following ones. We always assume that b is a fixed
function (not an equivalence class) and is in L1

t (L
1
x,loc) (with a little abuse

of notation, we use the symbol Lp also for the function b, although it is
not an equivalence class). We denote by (Ω, (Fs,t)0≤s≤t, P ) a given two-sided
filtered probability space, satisfying the standard assumptions (Fs,s contains
the P -null sets for every s, (Fs,t)t is right continuous for fixed s, (Fs,t)s is
left continuous for fixed t). The process W is a d-dimensional Brownian
motion with respect to (Fs,t)s,t (i.e. W is a d-dimensional Brownian motion
with respect to its natural completed filtration and, for any s′ ≤ s ≤ t ≤ t′,
Fs′,s, Wt −Ws and Ft,t′ are independent). For technical reasons, we assume
the following Condition (see the Appendix, Sections A.1 and A.2 for more
details):

Condition 3.1. The measure space (Ω,F0,T ) is countably generated, up to P -
null sets, i.e. there exists a countable subset C of F0,T such that the completion
(with respect to P ) of the σ-algebra generated by C is F0,T .

As a consequence of this Condition, all the σ-algebrae Fs,t are countably
generated up to P -null set.

This condition is satisfied, for example, if (Ω,Fs,t, P ) is the canonical
space C([0, T ]), endowed with the filtration generated by πr (the evaluation
map at time r) and by the P -null sets, with the Wiener measure P . For this
reason, this assumption is not restrictive for existence and for path-by-path
uniqueness (since we can work with the canonical space).
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3.1 Definitions of solutions

The main equations we are interested in are the (deterministic or stochastic)
ordinary differential equation and its associated (deterministic or stochastic)
continuity and transport equation.

We start with the deterministic case: we consider:

• the ordinary differential equation (ODE) on Rd: X = (Xt)t, t in [s, T ],
solves

dX = b(X)dt,

with given initial datum Xs = x;

• the continuity equation (CE) on Rd: µ = (µt)t, t in [s, T ], is a family
of signed measures on Rd solving

dµ+ div(bµ)dt = 0,

with given initial datum µs;

• the (backward) transport equation (TE) on Rd: v = v(s, x), s in [0, t],
x in Rd, is a scalar field solving

dv + b · ∇vds = 0,

with given final datum vt.

Their stochastic counterparts are (with σ real constant):

• the stochastic (ordinary) differential equation (SDE) on Rd: X =
(Xω

t )t,ω, t in [s, T ], ω in Ω, is an adapted process solution to

dX = b(X)dt+ σdW,

with given initial datum Xs = x;

• the stochastic continuity equation (SCE) on Rd: µ = (µωt )t,ω, t in [s, T ],
ω in Ω, is an adapted family of signed measures on Rd solving

dµ+ div(bµ)dt+ σdiv(µ) ◦ dW = 0,

with given initial datum µs.

• the stochastic (backward) transport equation (STE) on Rd: v = v(s, x, ω) =
vωs (x), s in [0, t], x in Rd, ω in Ω, is an adapted scalar field solving

dv + b · ∇vdt+ σ∇v ◦ dW = 0.

with given final datum vt.
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We recall the formal links between these three equations, which hold when
coefficients and solutions are regular (precise definitions will be given after).
First, let X = X(s, t, x, ω) be the stochastic flow solving the SDE (which, at
a formal level, is a family of processes (X(s, ·, x, ·))s,x indexed by the initial
time and datum); we call Xω

s,t, omitting sometimes ω, the map from Rd into
itself given by the flow, with initial time s, evaluated at time t and with ω
fixed. We have formally:

• the family µ, defined by

µωt := (Xω
s,t)#µs, (3.1)

is the solution to the SCE (the symbol (Xω
s,t)#µs denotes the image

measure of µs under (Xω
s,t));

• the family v, defined by

vωs := vt(X
ω
s,t), (3.2)

is the solution to the backward STE.

Outside the regular case, we are interested in solutions to the SCE with
no regularity assumptions (distributional solutions) and we want to prove
uniqueness among this solutions: indeed this uniqueness gives uniqueness
among certain flows solving the SDE.

As for the STE, we are mainly (but not exclusively) interested in solutions
to the STE with Sobolev space regularity (differentiable solutions): indeed
this regularity allows to prove existence of flows with Sobolev space regularity.

In the following, we only give the definitions for the stochastic continuity
and transport equation. However, the definitions of solution for the deter-
ministic continuity and transport equation can be recovered from the ones
in the stochastic case, by dropping all the terms with the stochastic integral
and the terms with a second order derivative (i.e. σ = 0) and removing ω
(and the progressively measurability) from the assumptions.

We will refer to the deterministic case as the case σ = 0 (dropping ω),
while we will take, in the stochastic case, σ = 1.

Moreover we adopt the convention that, where dealing with the distribu-
tional/differentiable solutions to (S)CE/(S)TE, the assumptions given in the
corresponding definitions are always satisfied.

3.1.1 Continuity equation

Definition 3.2. Fix s ≥ 0 and let µs be in Mx. A distributional solution to
the stochastic continuity equation (SCE) is a family of measures (µωt )t≥s,ω, in
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L∞t,ω(Mx), bounded-weakly progressively measurable (with respect to (Fs,t)t),
with |b||µ| in L1

t (Mx,loc) for a.e. ω, such that, for every ϕ in C∞x,c, it holds
for a.e. (t, ω),

〈µt, ϕ〉 (3.3)

= 〈µs, ϕ〉+

ˆ t

s

〈µ, b · ∇ϕ〉dr + σ

ˆ t

s

〈µ,∇ϕ〉 · dW +
1

2
σ2

ˆ t

s

〈µ,∆ϕ〉dr.

A classical solution is a distributional solution which is in Cs(C
2
x,loc) for a.e.

ω.

We recall that the space L∞t,ω(Mx) is the space of weakly-* measurable
functions from [0, T ]×Ω with values inMx. The bounded-weak progressive
measurability means that: for every f bounded Borel function on Rd, (t, ω) 7→
〈µωt , f〉 is progressively measurable. The condition |b||µ| in L1

t (Mx,loc) for a.e.

ω ensures that the term
´ t
s
〈µ, b · ∇ϕ〉dr is well-defined. For more details on

these technical conditions, see the Appendix, Sections A.1 and A.2.
For simplicity, here and in the following, we assume the initial datum for

the SCE (and for the forward STE) and the final datum for the backward
STE to be deterministic.

Remark 3.3. The initial time can be reduced to 0 by the following transfor-
mation: if µ is a solution to the SCE with initial time s, then −→µ , defined as
−→µ (r, ω) = µ(r + s, ω) is a solution to the the SCE starting at 0

d−→µ + div(
−→
b −→µ )dt+ σdiv(−→µ ) ◦ d

−→
W = 0,

with respect to the filtration (
−→
F r)r, where

−→
b (r, x) = b(r+s, x),

−→
W r = Wr+s−

Ws and
−→
F r = Fs,s+r.

3.1.2 Backward transport equation, distributional so-
lution

Similarly to the CE case, we define the distributional solution for the back-
ward STE. Since the form of the equation is different (and its meaning as
well), we need an additional hypothesis on the divergence of b. The stochastic
integral has to be understood in the backward direction.

Definition 3.4. Fix t ≥ 0, let vt be in L∞x and let b in L1
s,x,loc with divb in

L1
s,x,loc. A distributional solution to the stochastic backward transport equa-

tion (STE) is a map v in L∞s,ω(L∞x ) (with s ≤ t), weakly-* progressively
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measurable (with respect to (Fs,t)s), such that, for every ϕ in C∞x,c, it holds
for a.e. (s, ω),

〈vs, ϕ〉 (3.4)

= 〈vt, ϕ〉 −
ˆ t

s

〈v, b · ∇ϕ〉dr −
ˆ t

s

〈v, ϕdivb〉dr+

− σ
ˆ t

s

〈v,∇ϕ〉dW +
1

2
σ2

ˆ t

s

〈v,∆ϕ〉dr.

We recall that the space L∞s,ω(L∞x ) is the space of weakly-* measurable,
essentially bounded functions from [0, t] × Ω with values in L∞x . It can be
identified with the space L∞s,x,ω (see the Appendix, Sections A.1 and A.2).

3.1.3 Backward transport equation, differentiable so-
lution

We will deal with solutions of the (S)TE with Sobolev differentiable. In this
case, the formulation above changes and it is possible to avoid the integrabil-
ity assumption on the divergence of b (bringing the derivative on v). Again
the stochastic integral has to be understood in the backward direction.

Definition 3.5. Fix t ≥ 0, m in ]1,+∞], let vt be in C1
x,b and let b in L1

s,x,loc

with divb in L1
s,x,loc. A W 1,m

x differentiable solution to the stochastic transport
equation (STE) is a map v in L∞s,ω(L∞x ) (with s ≤ t), weakly-* progressively

measurable (with respect to (Fs,t)s), in Lms,ω(W 1,m
x,loc), such that, for every ϕ in

C∞x,c, it holds for a.e. (s, ω),

〈vs, ϕ〉 (3.5)

= 〈vt, ϕ〉+

ˆ t

s

〈b · ∇v, ϕ〉dr + σ

ˆ t

s

〈∇v, ϕ〉dW − 1

2
σ2

ˆ t

s

〈∇v,∇ϕ〉dr.

A classical solution is a differentiable solution which is in Cs(C
2
x,loc) for a.e.

ω.

For m finite, for R > 0, the space Lms,ω(W 1,m
x,BR

) is the space of weakly
(or equivalently strongly) measurable functions from [0, t]×Ω with values in
W 1,m
x,BR

and with finite Lms,ω(W 1,m
x,BR

) norm. It can be identified with a subspace

of Lms,x,ω,[0,T ]×BR×Ω. For m = +∞, the space L∞s,ω(W 1,∞
x,BR

) is the subspace of

L2
s,ω(W 1,2

x,BR
) with finite L∞s,ω(W 1,∞

x,BR
) norm. See the Appendix, Sections A.1

and A.2), for more details.
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3.1.4 Forward transport equation

In the above definitions, we always considered the backward case, as the TE
will be used in the backward form. However, it is more convenient to deal
with the forward formulation (one usually is more familiar with calculations
in the forward case). Instead of giving the definition of solution in the forward
case, which is completely analogous to the backward one, we give the link
between the two cases.

Remark 3.6. If v is a (distributional or differentiable) solution to the back-
ward STE, with final time t, then −→v , defined as −→v (r, x, ω) = v(t− r, x, ω) is
a (distributional or differentiable) solution to the forward STE

d−→v −
−→
b · ∇−→v dt− σ∇−→v ◦ d

−→
W = 0,

with respect to the filtration (
−→
F r)r, where

−→
b (r, x) = b(t− r, x),

−→
W r = Wt −

Wt−r and
−→
F r = Ft−r,t.

3.1.5 Time continuity

Before going on, we give a couple of results which allow to work with some
nicer formulations (from a technical point of view) of the definitions above.

In all the previous definitions, the equality were always up to a set of
measure zero. In the deterministic case, one can work with a suitable version
of the solution, so that the PDE is satisfied for every t.

Lemma 3.7. Let (µt)t be a distributional solution to the CE. Then there
exists a modification (µ̄t)t (i.e. µt = µ̄t for a.e. t), weakly-* continuous in
time t, which satisfies (3.3) for every t and for every ϕ.

Proof. We take the initial time s = 0 for simplicity. Fix D a countable set
in C∞c (Rd), which is dense in C2

c (in the sense that it is dense in C2(BR) for
every R), and let F be a full-measure set in [0, T ] such that, for every t in
F , ‖µt‖Mx ≤ ‖µ‖L∞t (Mx) and µt satisfies (3.3) for every ϕ in D. For any t
in [0, T ], let (tn)n be a sequence in F converging to t (it exists because F is
dense). Since (µtn)n is a bounded sequence of signed measures, by Banach-
Alaoglu theorem there exists µ̄t with ‖µ̄t‖Mx ≤ ‖µ‖L∞t (Mx) and a subsequence
(µtnk )k converging weakly-* to µ̄t. So we have, for every ϕ in D,

〈µ̄t, ϕ〉 = lim
k
〈µtnk , ϕ〉 (3.6)

= 〈µ0, ϕ〉+ lim
k

ˆ tnk

0

〈µ, b · ∇ϕ〉dr = 〈µ0, ϕ〉+

ˆ t

0

〈µ, b · ∇ϕ〉dr.
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Since D is dense in Cx,c, the formula above determines ūt completely. This
in particular does not depend on the choice of (tn)n or (tnk) (not even on the
version of µ chosen), since the RHS of (3.6) does not. Besides, for t in F ,
(3.6) implies that 〈µ̄t, ϕ〉 = 〈µt, ϕ〉 for every ϕ in D and so µ̄t = µt, hence µ̄
is a version of µ. Finally, a simple density argument (using density of D and
the uniform bound ‖µ̄t‖Mx ≤ ‖µ‖L∞t (Mx) for every t) allows to extend (3.6)
to every ϕ in C∞c and to show continuity of t 7→ 〈µ̄, ϕ〉 for every ϕ in Cx,c,
i.e. weak-* continuity in time. The proof is complete.

In a similar way, using the L∞t,x,ω bound and in addition the lower semi-

continuity properties of the norms of L∞t,x and Lmt (W 1,m
x,BR

), one can prove:

Lemma 3.8. Let (vs)s be a distributional, resp. differentiable solution to the
backward TE. Then there exists a modification (v̄s)s (i.e. vs = v̄s as functions
in L∞x for a.e. s), weakly-* continuous in time, which satisfies (3.4), resp.
(3.5) for every s and for every ϕ. The analogous result holds for the forward
TE.

From now on we will work with these continuous modifications when
possible, without using the notation with “bar”. Notice however that, in the
case of the transport equation, v̄ is weakly-* continuous in t as an L∞x -valued
map (in particular, it takes values in a space of equivalent classes), and we
do not know whether there exists a representative ¯̄v (i.e. ¯̄vt is in the class
v̄t for every t), which is jointly measurable in (s, x). A similar observation
holds for the continuity equation, when the solution is in Lmt,x for some m.

Remark 3.9. For the stochastic PDEs, the dependence on ω makes it dif-
ficult to deduce the existence of modifications of the solutions, which satisfy
the equations for every t and ϕ (outside a P -null set in Ω independent of
t and ϕ). However, for the continuity equation, one can easily deduce that,
for every ϕ in C∞c , there exists a process µ(ϕ), modification of 〈µ, ϕ〉 (i.e.
µ(ϕ) = 〈µ, ϕ〉 for a.e. (t, ω)), with continuous trajectories and verifying (3.3)
for every t, outside a P -null set in Ω independent of t (but possibly dependent
on ϕ). A similar conclusion holds also for the stochastic transport equation,
where we call v(ϕ) the time-continuous modification of 〈v, ϕ〉.

We conclude this section extending, in the deterministic case, the distri-
butional formulation of the linear PDEs to the case of time-dependent test
functions.

Lemma 3.10. Let µ be a solution to the CE (we assume that it is the weakly-
* continuous version). Then, for every ϕ in Ct(C

1
x,c), such that, for every x,
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ϕ(·, x) is in W 1,1
t and ∂tϕ is in L1

t (Cx,c), it holds

〈µt, ϕt〉 = 〈µs, ϕs〉+

ˆ t

s

〈µ, b · ∇ϕ〉dr +

ˆ t

s

〈µ, ∂tϕ〉dr. (3.7)

The analogous result holds also for the TE, in both distributional and differ-
entiable formulations, again for every ϕ as above.

Here and in the following, ρ is a C∞x,c nonnegative even function, normal-
ized to have ‖ρ‖L1

x
= 1 and, for any ε > 0, ρε(x) = ε−dρ(ε−1x) is a standard

mollifier. For any function f in L1
x,loc and for any locally finite signed mea-

sure ν, f ε = f ∗ ρε and νε = ν ∗ ρε. Measurability and continuity property of
f ε and νε, when f and ν depends on t and ω, are in the Appendix, Section
A.2.

Proof. We prove the result for the CE, again with s = 0 for simplicity. Using
ρε(x − ·) as test function for ϕ, we find the following equation for µε, valid
for every (t, x):

µεt(x) = µε0(x)−
ˆ t

0

(brµr) ∗ ·∇ρε(x)dr.

Multiplying this equation by ϕ(t, x) and using the chain rule, we get

µεt(x)ϕt(x) = µε0(x)ϕ0(x)−
ˆ t

0

(brµr) ∗ ·∇ρε(x)ϕr(x)dr +

ˆ t

0

µεr(x)∂tϕr(x)dr

Now we integrate this equality in x, exchange the integrals in t and x and
then bring the convolution on ϕ, leads to

〈µεt, ϕt〉 = 〈µε0, ϕ0〉+

ˆ t

0

〈µ, b · ∇ϕε〉dr +

ˆ t

0

〈µ, (∂tϕ)ε〉dr

Now we let ε go to 0. Using the conditions µ in L∞t (Mx), |b||µ| in L1
t (Mx,loc),

the uniform (in (t, x)) convergence of ϕε and its space derivative and the
L1
t (Cx) convergence of ∂tϕ

ε, we get 3.7.

3.2 Random equations and rigorous links with

stochastic equations

In this section we introduce the random (ordinary and partial) differential
equations corresponding to the stochastic equations SDE, SCE and STE.
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These are deterministic equations, but with coefficients parameterized by
ω in Ω, and they are obtained from the stochastic equation via a suitable
transformation. As we will see, their usefulness is mainly in two facts (beside
also other technical aspects):

• the random coefficients (the random drift b̃ below), obtained transform-
ing the usual coefficients (the drift b) enjoy some unexpected regularity
property, that gives an intuition and, in some cases, a proof of regular-
ization by noise;

• in this setting we can study uniqueness among solutions for these equa-
tions, at frozen ω, that is path-by-path uniqueness.

The random coefficient that appears in every equation is

b̃(t, x, ω) = b(t, x+Wt(ω)).

The starting point is the following: if X solves the SDE, then X̃ = X−W
solves the random ODE (rDE)

dX̃ = b̃(X̃)dt.

One can go also in the reverse direction. Precisely, the following lemma, of
immediate proof, holds:

Lemma 3.11. A process X satisfies the SDE if and only if X̃ = X −W is
progressively measurable (with respect to (Ft)t) and satisfies the rDE for a.e.
ω.

Given the rDE, we consider the associated linear PDEs, namely the ran-
dom continuity equation (rCE)

dµ̃+ div(b̃µ̃)dt = 0;

and the random transport equation (rTE)

dṽ + b̃ · ∇ṽdt = 0.

Given the stochastic PDEs and their random counterparts, one can ask for
a direct link among them. From the link between ODEs and linear PDEs
(3.1) and (3.2) (in both deterministic and stochastic cases) and the formula
X̃ = X −W , we can guess such a link: we have formally

µ̃t = (X̃)t)#µ0 = (Xt −Wt)#µ0 = (· −Wt)#µt
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and similarly

ṽt = v0(X̃−1
t ) = v0(X̃−1

t −Wt) = vt(· −Wt).

In the following lemmata we prove these links rigorously in the general case,
without appealing to the underlying flow X (which may not exist in general),
but with a regularization procedure.

Lemma 3.12. Let µ be a distributional solution to the SCE. Then µ̃, defined
by

µ̃t = (· −Wt)#µt,

is a distributional solution to the rCE.

Notice that, for a.e. ω, µ̃makes sense asMx-valued map t 7→ µ̃t, bounded-
weakly progressively measurable and in L∞t (Mx); moreover, |b̃||µ̃| is in L1

t (Mx,loc)
for a.e. ω.

Proof. We start with the case of initial time 0. Fix ϕ in C∞c (Rd). We claim
that it holds, for a.e. (t, x, ω),

µεt(x)ϕ(x−Wt) (3.8)

= µε0(x)ϕ(x)−
ˆ t

0

(µrbr) ∗ ∇ρε(x)ϕ(x−Wr)dr+

−
ˆ t

0

µr ∗ ∇ρε(x)ϕ(x−Wr) · dWr +
1

2

ˆ t

0

µr ∗∆ρε(x)ϕ(x−Wr)dr+

−
ˆ t

0

µεr(x)∇ϕ(x−Wr) · dWr +
1

2

ˆ t

0

µεr(x)∆ϕ(x−Wr)dr+

+

ˆ t

0

µr ∗ ∇ρε(x) · ∇ϕ(x−Wr)dr,

where all the addends but the stochastic integral are measurable in (t, x, ω)
and the stochastic integrals have versions that are measurable in (t, x, ω)
(these are the versions considered in the equality above). So, for a.e. (t, ω),
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integrating (3.8) in x, we get
ˆ
Rd
µε(t, x)ϕ(x−Wt)dx

=

ˆ
Rd
µε0(x)ϕ(x)dx−

ˆ t

0

ˆ
Rd

(µrbr) ∗ ∇ρε(x)ϕ(x−Wr)dxdr+

−
ˆ t

0

ˆ
Rd
µr ∗ ∇ρε(x)ϕ(x−Wr)dx · dWr+

+
1

2

ˆ t

0

ˆ
Rd
µr ∗∆ρε(x)ϕ(x−Wr)dxdr+

−
ˆ t

0

ˆ
Rd
µεr(x)∇ϕ(x−Wr)dx · dWr +

1

2

ˆ t

0

ˆ
Rd
µεr(x)∆ϕ(x−Wr)dxdr+

+

ˆ t

0

ˆ
Rd
µr ∗ ∇ρε(x) · ∇ϕ(x−Wr)dxdr,

where we used Fubini theorem and stochastic Fubini theorem (precisely The-
orem 2.2 in [Ver12]) to exchange the integrals. Using again Fubini theorem
to bring the convolution on ϕ(· −Wt), we get (for a.e. (t, ω))

〈µt, ϕε(· −Wt)〉

= 〈µ0, ϕ
ε〉 −

ˆ t

0

〈µr, br · ∇ϕε(· −Wr)〉dr+

+

ˆ t

0

〈µr,∇ϕε(· −Wr)〉 · dWr +
1

2

ˆ t

0

〈µr,∆ϕε(· −Wr)〉dr+

−
ˆ t

0

〈µr,∇ϕε(· −Wr)〉 · dWr +
1

2

ˆ t

0

〈µr,∆ϕε(· −Wr)〉dr+

−
ˆ t

0

〈µr,∆ϕε(x−Wr)〉dr

= 〈µ0, ϕ
ε〉 −

ˆ t

0

〈µr, br · ∇ϕε(· −Wr)〉dr.

Letting ε → 0, since µ, bµ are assumed to be resp. in L∞t (Mx) and in
L1
t (Mx,loc) for a.e. ω, we have for a.e. (t, ω),

〈µt, ϕ(· −Wt)〉 = 〈µ0, ϕ〉 −
ˆ t

0

〈µr, br · ∇ϕ(· −Wr)〉dr.

By the change of variable x̃ = x−Wt, we end with

〈µ̃t, ϕ〉 = 〈µ0, ϕ〉+

ˆ t

0

〈b̃µ̃,∇ϕ〉dr, (3.9)
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valid for every ϕ in C∞c , for every (t, ω) in a full measure set Fϕ, depending
on ϕ. In order to conclude, we need to make the “good” full measure set
independent of ϕ. For this, we use a density argument, similar to that in
the proof of Lemma 3.7. Let D be a countable set in C∞c , dense in C2

b , take
F = ∩ϕ∈DFϕ. Then F is a full measure set such that, for every (t, ω) in
F , (3.9) holds for every ϕ in D; we can also assume, possibly passing to a
smaller full-measure set F , that µ̃ωt is inMx and |b̃ω||µ̃ω| is in L1

t (Mx,loc) for
every (t, ω) in F . Now, for a generic ϕ in C∞x,c, we take a sequence ϕn in D,
satisfying equation (3.9) and converging to ϕ in C2

b ; by the bounds on µ̃ and
|b̃||µ̃| in F and dominated convergence theorem, we can pass to the limit in
the equation, for (t, ω) in F , getting (3.9) for ϕ. Hence, for a.e. ω, the rCE
holds.

It remains to prove the claimed formula (3.8) and the measurability (in
(t, x, ω)) of the addends. We start with recalling measurability. All the
addends but the stochastic integrals can be interpreted in two ways: as
elements in Lmt,x,ω and, for fixed x, as elements in Lmt,ω; we denote by Adet

a generic addend in Lmt,x,ω and [Adet(x)] its counterpart in Lmt,ω, for x fixed.
As for the stochastic integrals, for fixed x, they are elements in Lmt,ω (for
each x, they are equivalent classes), but stochastic Fubini theorem (Theorem
2.2 in [Ver12]) provides versions of them which are in Lmt,x,ω (in particular
measurable in (t, x, ω)); we also denote by Astoch this version in Lmt,x,ω and
[Astoch(x)] its counterpart in Lmt,ω (the usual stochastic integral) for x fixed.
The formula (3.8) must be intended as equality in Lmt,x,ω, involving the terms
Adet and Astoch. We prove this equality by proving the corresponding equality
in Lmt,ω, among the terms [Adet(x)] and [Astoch(x)], for each x. For this, fix
x in Rd. By the distributional formulation of the SCE, applied to the test
function ρε(x− ·), we get the following equation for µε:

µεt(x)

= µε0(x)−
ˆ t

0

(µrbr) ∗ ∇ρε(x)dr+

−
ˆ t

0

µr ∗ ∇ρε(x) · dWr +
1

2

ˆ t

0

µr ∗∆ρε(x)dr.

Applying Itô formula (for a.e. continuous function, Proposition A.12 in the
Appendix) to µεt(x)ϕ(x − Wt), we get (3.8) for a.e. (t, ω), i.e. the desired
equality in Lmt,ω. The proof in the case s = 0 is complete.

In the general case s ≥ 0, one can apply the change of variable to the

solution −→µ , starting at 0, defined in Remark 3.3, getting a rCE for −̃→µ r =

(·−
−→
W r)#

−→µ r = (·−Wr+s +Ws)#µr+s. Now notice that µ̃t = (·−Ws)#
−→µ t−s,
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hence, by a change of variable (notice that, for fixed s and ω, Ws(ω) is a
constant), we get the desired rCE for µ̃.

Corollary 3.13. There exists a version of µ which is weakly-* continuous
in time, for a.e. ω.

Notice that this map is weakly-* measurable in (t, ω) because of Lemma
A.7 in the Appendix.

Proof. We take the weakly-* continuous version of µ̃ (which we still call µ̃
with abuse of notation), we want to prove that the version of µ defined by
(·+Wt)#µ̃t (which we still call µ) is weakly-* continuous, i.e., for a.e. ω,

t 7→ 〈µt, ϕ〉 = 〈µ̃t, ϕ(·+Wt)〉 (3.10)

is continuous for every ϕ in Cx,c.
Step 1: It is enough to show this property for every ϕ in C1

x,c. Indeed, for
a general ϕ in Cx,0, we take ψ in C1

x,c with ‖ϕ− ψ‖Cx,b < ε and we split

|〈µ̃t, ϕ(·+Wt)〉 − 〈µ̃r, ϕ(·+Wr)〉|
≤ |〈µ̃t, ψ(·+Wt)〉 − 〈µ̃r, ψ(·+Wr)〉|+
+ ‖µ̃t‖Mx‖ψ(·+Wt)− ϕ(·+Wt)‖Cx,b + ‖µ̃r‖Mx‖ψ(·+Wr)− ϕ(·+Wr)‖Cx,b .

The RHS is smaller than 3ε for r sufficiently close to t, by the thesis for
ψ, the bound ‖µ̃t‖Mx ≤ C (which holds for every t, since we are using the
continuous version) and the invariance of the Cx,b norm under translation.

Step 2: Now we prove continuity of (3.10) for ϕ in C1
x,c. In this case we

have

|〈µ̃t, ϕ(·+Wt)〉 − 〈µ̃r, ϕ(·+Wr)〉|
≤ |〈µ̃t, ϕ(·+Wt)〉 − 〈µ̃r, ϕ(·+Wt)〉|+ ‖µ̃r‖Mx‖ϕ(·+Wt)− ϕ(·+Wr)‖Cx,c .

The first addend tends to 0, as r → t, because of weak-* continuity of µ̃.
For the second addend, we have again ‖µ̃r‖Mx ≤ C for every r and also
‖ϕ(·+Wt)− ϕ(·+Wr)‖Cx,c ≤ ‖ϕ‖C1

x,b
|Wt −Wr|, which tends to 0 as r → t.

We have proved (3.10) for ϕ in C1
x,c. The proof is complete.

Similarly one can prove the following link between STE and rTE and the
existence of a weakly-* continuous version for any solution to the STE:

Lemma 3.14. Let v be a distributional, resp. differentiable solution to the
backward STE. Then ṽ, defined by ṽs = vs(· −Ws), is a distributional, resp.
differentiable solution to the backward rTE. The analogous result holds for
the forward STE.
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Corollary 3.15. There exists a version of v which is weakly-* continuous in
time, for a.e. ω.

Remark 3.16. Notice that the full P -measure set of ω, where the rCE (or
the rTE) holds, depends (a priori at least) on the initial time s and datum µ
and also on the specific representative of the equivalence class µ (see Remark
A.5 in the Appendix). Moreover, if s 6= 0, the initial datum µ̃s of the rCE is
random, although the dependence on ω is only through Ws, which is indepen-
dent of the driving Brownian motion (Wt−Ws)t≥s; similarly, the final datum
ṽ of the rTE is random, although the dependence on ω is only through Wt.

3.3 Link ODE-PDEs in the regular setting,

stochastic case

Given now all the equations, in this Section and in the next one we give a
rigorous link between the ordinary (deterministic or stochastic) differential
equation and the associated partial differential equations, the link that was
formally given in (3.1) and in (3.2).

We start with the link between SDE and stochastic transport equation
in the regular setting. The results together with the proofs are in [Kun84]
and [Kun97] (for example, existence, uniqueness and representation formulae
of Propositions 3.18 and 3.19 are special cases of Theorem 6.1.9 in [Kun97],
Chapter 6); the integrability estimates are proved in [BFGM14], Lemma 12
(for that lemma the coefficients are also regular in time, but the proof can
be easily adapted to our case).

Proposition 3.17. Assume that b is in L∞t (Ck,ε
x,lin) for some integer k ≥ 1

and some ε in ]0, 1[. Then, for every initial time s and datum x, strong
existence (i.e. existence of solutions adapted to the Brownian filtration) and
pathwise uniqueness hold for the SDE starting at time s and from datum x.
Moreover, there exists a modification of the solution which is a stochastic Ck

x

flow, namely a map X : {0 ≤ s ≤ t ≤ T} × Rd × Ω → Rd, such that, for
every s, x, X(s, ·, x, ·) is the adapted solution to the SDE, starting at time s
and from datum x, and, for a.e. ω, X(·, ·, ·, ω) is a flow of continuous maps,
Ck-diffeomorphisms in space.

Proposition 3.18. Assume that b is in L∞t (C3,ε
x,lin), for some ε > 0, and

the final datum vt is in C∞x,b. Then there exists a unique classical solution
v = vt,vt to the backward STE, with final time t and final datum vt and it
holds

v(s, x) = vt(Xs,t(x)).
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In particular this classical solution is in Cs(C
2
x,loc) for a.e. ω. Moreover, if vt

and b are compactly supported, then the solution v is in Lms,ω(W 1,m
x,χ ) for every

finite m and every weight χ = χη of the form χη(x) = (1 + |x|2)η/2, for every
real η.

The main consequence of this result is that one can transfer the a priori
estimates from SDE to STE and vice versa.

Proposition 3.19. Assume that b is in L∞t (C4,ε
x,lin), for some ε > 0, and the

initial datum µs is in C∞x,b ∩L1
x. Then there exists a unique classical solution

µ = µs,µs to the SCE, with initial time s and initial datum µs and it holds

µ(t, ·)dx = (Xs,t)#(µsdx).

In particular this classical solution is in Ct(C
2
x,loc) for a.e. ω. Moreover, if µs

and b are compactly supported, then the solution µ is in Lmt,ω(Lmx,χ) for every

finite m and every weight χ = χη of the form χη(x) = (1 + |x|2)η/2, for every
real η.

3.4 Link ODE-PDEs in the irregular setting:

Lagrangian flows

Now we pass to the case of irregular drifts and we present the main link
between ODE and continuity equation, in the deterministic setting, without
any regularity assumption on b (apart very mild integrability conditions).

First we discuss a representation formula for solutions to the CE, in terms
of solutions to the ODE.

Remark 3.20. There is an easy way to pass from ODE to CE, even in the
irregular case. Even if we do not have a regular flow solution to the ODE,
but just existence of at least one solution, we can take a finite signed measure
η on Ct(Rd) which is concentrated on the set of solutions to the ODE. Now,
calling µt = (πt)#η (where πt(γ) := γ(t) is the evaluation map at time t) the
1-marginals of η, then (µt) is a distributional solution to the CE, starting
from µ0. Indeed, for any ϕ in C∞c , we have

〈µt, ϕ〉 =

ˆ
Ct

ϕ(γt)η(dγ) =

ˆ
Ct

ϕ(γs)η(dγ) +

ˆ
Ct

ˆ t

s

b(γr) · ∇ϕ(γr)drη(dγ)

= 〈µs, ϕ〉+

ˆ t

s

〈µt, b · ∇ϕ〉dr,

where in the second equality we have used that γ satisfies the ODE for η-a.e.
γ.
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A natural question arises from this Remark: does any solution µ to the
CE admit the representation formula above, that is does there exists η finite
signed measure on Ct, concentrated on solutions to the ODE and having (µt)t
as 1-marginals? The answer is positive and is contained in the superposition
principle ([AC14], Theorem 12). We do not recall the result here, but we
mention that this result is the key to build flows solutions to the ODE out
of solutions to the CE, in the following existence and uniqueness result 3.24.
Notice also that this is a recurrent problem in probability: as in Kolmogorov
extension theorem, one is given a family of 1-marginals and wants to find
(and, if possible, to identify) a law η having the given 1-marginals and en-
joying certain properties. General results in this direction, at least in the
SDEs context, are provided by Kurtz and coauthors (see [KO88], [Kur98]
and [KN11] among other papers).

Now we discuss the link between CE uniqueness and ODE uniqueness.

Proposition 3.21. Let x0 be an initial datum in Rd (at initial time s) and
suppose that uniqueness holds for the CE starting from δx0 (at s), among
distributional solutions in L∞t (Mx). Then uniqueness holds for the ODE
starting from x0.

Proof. Let X, Y be two solutions to the ODE, with Xs = Ys = x0. Then
µt = δXt , νt = δYt are two solutions to the CE (in L∞t (Mx)) starting from
δx0 , so they must coincide for a.e. t. This implies that Xt = Yt for a.e. t, so
for every t by continuity.

Although this last result is valid when b is in L1
t (L

1
x,loc), the uniqueness

assumption above is very strong and usually does not hold for general b.
In many situations, under suitable assumptions on b, one has existence and
uniqueness for the CE in a smaller class of solutions, for example solutions
which are bounded in time and space. In this case, we cannot expect unique-
ness for the ODE among any solutions, but we can have uniqueness among
certain kind of generalized flows.

For this, we define Lagrangian flows.

Definition 3.22. An admissible Lagrangian class L is a subset of L∞t (Mx),
satisfying the following conditions:

• L is contained in L∞t (Mx,+);

• L is convex;

• if µ belongs to L and if µ′, element in L∞t (Mx), with 0 ≤ µ′t ≤ µt for

a.e. t, satisfies the CE and the condition
´ T
s

´
Rd |b|/(1 + |x|)µ′(dx)dt <

+∞, then also µ′ belongs to L.
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We use the notation span(L) for the vector space generated by L.

Definition 3.23. An L Lagrangian flow, solution to the ODE with initial
positive finite measure µs and initial time s, is a measurable map X : [s, T ]×
Rd → Rd, such that

1. for µs-a.e. x, the map t 7→ X(t, x) solves the ODE starting from x at
s;

2. the family (µXt )t, defined by µXt := (X(t, ·))#µs, belongs to L.

Reasoning as in Remark 3.20, one can see easily that µXt is a distributional
solution to the CE, belonging to L. The main point is that, if uniqueness
holds for the CE among solutions in L, then this implies uniqueness among L
Lagrangian flows, and, in this case, existence also transfers from CE to ODE.
This result is a consequence of [AC14], Theorems 16 and 19 and relative
proofs.

Theorem 3.24. Let b be in L1
t (L

1
x,loc) and let µs be in Mx,+.

1. Assume that uniqueness holds for the CE among L solutions, start-
ing from s, for any initial nonnegative measure bounded by µs. Then
uniqueness holds among L Lagrangian flows, starting from µs (and from
any initial nonnegative measure bounded by µs) at s.

2. Assume in addition that existence holds for the CE among L solutions,
for µs as initial solution at initial time s. Then existence and unique-
ness hold among L Lagrangian flows, starting from µs at s.

3. In this case, let µ be the L-solution to the CE (starting from µs at s)
and let X be the L-Lagrangian flow. Then we have, for every t,

µt = (Xt)#µs. (3.11)

This completes the link the deterministic case. In order to cover also the
stochastic case, we introduce the concept of stochastic Lagrangian flows: at
the level of rDE, they are Lagrangian flows solutions of the rDE, indexed by
ω, adapted to the proper filtration.

Definition 3.25. An L stochastic Lagrangian flow, solution to the SDE with
initial positive finite measure µs, is a map X : [s, T ] × Rd × Ω → Rd, such
that

1. the map (t, ω, x) 7→ X(t, x, ω) is L1|[s,T ]⊗P⊗µs-measurable with respect
to P ⊗ B(Rd);
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2. for µs-a.e. x, the process t 7→ X(t, x) solves the SDE starting from x;

3. for a.e. ω, the family (µ̃X̃
ω

t )t, defined by µ̃X̃
ω

t := (X̃ω(t, ·))#µ̃
ω
s , belongs

to L.

Remark 3.26. The condition of measurability with respect to P ⊗ B(Rd)
means that, for every open set A of Rd, X−1(A) is in the completion of
P ⊗ B(Rd) with respect to the measure L1 ⊗ P ⊗ µs. It is an adaptability
condition (recall that P is the progressive σ-algebra) and it implies that, for
µs-a.e. x, the process t 7→ X(t, x) is progressively measurable.

The following Lemma, of immediate proof, gives the link between stochas-
tic Lagrangian flows for the SDE and Lagrangian flows associated with the
rDE:

Lemma 3.27. The map X is a stochastic Lagrangian flow if and only if, for
a.e. ω, X̃ω is a Lagrangian flow for the rDE and X is L1⊗P⊗µs-measurable
with respect to P ⊗ B(Rd).

Remark 3.28. Existence of a stochastic Lagrangian flow X implies existence
of a Lagrangian flow X̃ for the rDE, on a full P -measure set Ωµs

1 in Ω which
may depend on the initial measure µs. However, if ω is in Ωµs

1 and if ν is
another positive measure on Rd bounded by µ̃ωs , then the flow X̃ω, restricted
to the support of ν, is a Lagrangian flow solving the rDE at ω fixed. In partic-
ular, if we have existence for µs fully supported on Rd or for a sequence (µns )
of measures whose supports cover Rd, then one can choose Ω1 independently
of µs.

In the following, we will be mainly interested in the path-by-path unique-
ness, among single trajectories or among flows.

3.5 Different types of uniqueness

We have seen we can deal with SDE or rDE, and the same for the associ-
ated linear PDEs, and among single trajectories or among Lagrangian flows.
Connected to each kind of equation and solution, we have a different kind of
uniqueness: pathwise uniqueness for the SDE, path-by-path uniqueness for
the rDE.

3.5.1 Uniqueness for SDE

Definition 3.29. We say that the SDE has pathwise uniqueness, starting
from x in Rd at time s, if, for every (countably generated) filtered probability
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space (Ω, (Fs,t)t, P ) and for every Brownian motion with respect to (Fs,t)t,
the SDE has a unique solution X with Xs = x.

Definition 3.30. We say that the SDE has path-by-path uniqueness, starting
from x in Rd at time s, if, for a.e. realization W (ω) of the Brownian motion,
the rDE has at most one solution.

Since any solution of the SDE can be transformed in a solution to the
rDE, through Lemma 3.11, we get:

Lemma 3.31. Path-by-path uniqueness (starting from x at s) implies path-
wise uniqueness (starting from x at s).

Since the rDE brings also the concept of Lagrangian flows, path-by-path
uniqueness can be defined also for these flows.

Definition 3.32. We say that the SDE has path-by-path uniqueness among
L Lagrangian flows, starting from a positive measure µ̄s on Rd at time s,
if, for a.e. realization W (ω) of the Brownian motion, uniqueness among L-
Lagrangian flows, starting from µ̄s at s, holds for the rDE.

Path-by-path uniqueness among single solutions is a particular case of
this uniqueness, choosing L = L∞t (Mx).

One may define also a concept of pathwise uniqueness among stochastic
Lagrangian flows, but this concept would be a bit involved (we should take
the conditional probability of µ with respect to W (ω)), hence we skip it.
Moreover, in many cases where path-by-path uniqueness is available only
among Lagrangian flows, it is possible by a modified argument to get pathwise
uniqueness even starting from a given point x: for example, existence and
path-by-path uniqueness imply existence of a strong (i.e. adapted to the
Brownian filtration) solution, for a.e. x; this and uniqueness in law imply
pathwise uniqueness (for a.e. x).

3.5.2 Uniqueness for SPDEs

In correspondence with the concepts of pathwise and path-by-path unique-
ness for the SDE, we can state also pathwise and path-by-path uniqueness
for the SCE and for the STE.

Definition 3.33. We say that pathwise uniqueness for the SCE holds, in
a certain subset V of L∞t (Mx), starting from an initial measure µs at time
s, if, for every (countably generated) filtered probability space (Ω, (Fs,t)t, P )
and for every Brownian motion with respect to (Fs,t)t, the SCE has at most
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one solution µ starting from µs at s, with µω in V for a.e. ω. Analogous
definition for the (forward or backward, distributional or differentiable) STE,
with backward filtration for the backward case.

Definition 3.34. We say that path-by-path uniqueness for the SCE holds,
in a certain set V, starting from an initial measure µ̄s at time s, if, for a.e.
realization W (ω) of the Brownian motion, uniqueness in V, starting from µ̄s
at s, holds for the rCE. Analogous definition for the (forward or backward,
distributional or differentiable) STE.

By the link between STE and rTE, in Lemma 3.12, we get:

Lemma 3.35. Assume that V is invariant under the operation (νt)t 7→ ((· −
Wt)#νt)t. Then path-by-path uniqueness in V implies pathwise uniqueness in
V.

Remark 3.36. Stated in this way, the exceptional set in Ω, where uniqueness
for the rCE does not hold, may depend on the initial measure µs. However,
if we prove uniqueness in L of solutions starting from 0, in a full P -measure
set Ω1, then, by linearity, this uniqueness (in L) holds also for any initial
condition in Mx, for every ω in Ω1 (which is independent of the initial con-
dition).

Remark 3.37. Path-by-path uniqueness for the SDE in a class L and path-
by-path uniqueness for the SCE in L are linked via Theorem 3.24, applied to
the rDE and the rCE.

3.5.3 Wiener uniqueness

When speaking about uniqueness for SCE (and linear SPDEs more in gen-
eral), there is also another kind of uniqueness: Wiener uniqueness, i.e. unique-
ness among solutions to the SCE adapted to the Brownian (completed) fil-
tration.

Definition 3.38. We say that Wiener uniqueness for the SCE holds, in a
certain subset V̄ of L∞t,ω(Mx), starting from an initial measure µs at time
s, if, given a Brownian motion and its natural completed filtration (starting
from s) (Fs,t)t, the SCE has at most one solution µ in V̄ starting from µs at
s and adapted to the Brownian completed filtration.

This is the weaker form of uniqueness for the SCE. This kind of uniqueness
should be the translation, at the level of the SCE, of uniqueness in law for
the SDE. The intuitive idea behind this correspondence is the following one.
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Given any solution X to the SDE, a solution (µt)t to the continuity equation
can be created filtering its law with respect to the Brownian motion and
taking the 1-marginal time projections; when the law ofX (or, more precisely,
the law of (X,W )) is unique, then also (µt) is uniquely determined. So, if
any solution of the continuity equation, adapted to the Brownian motion, is
obtained via this filtering procedure, then uniqueness in law implies Wiener
uniqueness.

We do not explore here, in a rigorous way, the link between Wiener
uniqueness for the SCE and uniqueness in law for the SDE. However we
will show Wiener uniqueness starting from uniqueness of the Fokker-Planck
equation associated with the SDE (which is related precisely to uniqueness in
law for the SDE): this technique gives a well-posedness result (though weak)
with not so much effort.

3.6 Stability and existence for stochastic PDEs

via a priori estimates

In this Section we state and prove some stability results for the (stochastic)
linear PDEs under convergence of sequences, when uniform bounds for the
sequence are given. These results, beside their intrinsic interest, are the basis
for the a priori estimates method: we can prove existence of a solution, in
the case when the coefficients are irregular, by showing uniform estimates of
the solutions of approximating equations with regularized coefficients. All
the results are given in the stochastic case, but they are valid also in the
deterministic case, with same assumptions and theses but dropping ω (and
adaptability).

We start with stochastic transport equation. We state and prove the
result only in the forward case, the backward case being completely similar.

Theorem 3.39. Take 1 < m < +∞. Let bn, n in N, b be vector fields in
Lm

′
t (Lm

′

x,loc) such that (bn)n converges to b in Lm
′

t (Lm
′

x,loc). Let vn0 , v0 be in C2
x,b

such that (vn0 )n converges weakly to v0 in Lmx,loc. Assume that, for each bn

and vn0 , there exists vn differentiable solution to the forward STE driven by
the drift bn, starting from vn0 . Assume, for every R > 0, the uniform bound

sup
n
‖vn‖Lmt,ω(W 1,m

x,BR
) + sup

n
‖vn‖L∞t,x,ω < +∞. (3.12)

Then there exists v in Lmt,ω(W 1,m
x,loc) differentiable solution to the STE driven by

b, starting from v0, and there exists a subsequence (vnk)k weakly converging
to v in Lmt,ω(W 1,m

x,loc).
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Before going into the proof, we show an elementary fact on conditional
expectation, which will be useful to prove adaptedness of v.

Lemma 3.40. Let (E,A, Q) be a probability space and let B be a σ-algebra
contained in A. Then, for any integrable random variable Z on (E,A, Q),
it holds: Z is measurable with respect to B if and only if, for any bounded
random variable F on (E,A, Q),

E[ZF ] = E[ZE[F |B]]. (3.13)

Proof. We know that Z is B-measurable if and only if Z = E[Z|B] a.s., that
is, if and only if, for any bounded A-measurable random variable F ,

E[ZF ] = E[E[Z|B]F ].

Now, by well-known properties of conditional expectation, we have for the
RHS E[E[Z|B]F ] = E[E[Z|B]E[F |B]] = E[ZE[F |B]]. The lemma is proved.

Corollary 3.41. The space Lm(E,B, Q) is stable under weak Lm(A) con-
vergence, i.e.: if (Zn)n is a sequence of random variables in Lm(B), weakly
convergent in Lm(A) to Z, then Z is B-measurable.

Proof. In view of the previous lemma, it is enough to verify that E[ZF ] =
E[ZE[F |B]] for any bounded A-measurable F . Since this equality holds for
Zn, we can pass to the limit to get the equality for Z.

Actually, such a result follows also by an abstract argument in functional
analysis (namely: a convex subset of a Banach space is strongly closed if and
only if it is weakly closed), but we wanted to remark the Lemma above.

Proof of Theorem 3.39. First step: existence of a weakly convergent
subsequence. Fix R > 0. Since W 1,m

x,BR
is a dual space (see the Appendix,

Section A.2), also Lmt,ω(W 1,m
x,BR

) is a dual space, as a consequence of Proposition
A.1 in the Appendix. Hence the uniform bound (3.12) implies by Banach-
Alaoglu theorem that there exists a subsequence (vnk)k converging weakly-*
in Lmt,ω(W 1,m

x,BR
) to a function v. By a diagonal procedure (taking R in N), we

can choose the sequence (nk)k and the limit v independently of R. We can
apply the same argument to the space L∞t,x,ω (which is also a dual space), so
we can assume that (vnk)k converges weakly-* to v in L∞t,x,ω.

Second step: verification of adaptedness. We must verify that, for
every ϕ in L1

x, 〈v, ϕ〉 is progressively measurable (with respect to (Ft)t),
i.e. it is P-measurable, where P is the predictable σ-algebra. By a density
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argument, it is enough to take ϕ in C∞x,c. We know that 〈vn, ϕ〉 are P-
measurable, and they converge weakly to 〈v, ϕ〉 in Lmt,ω by the first step.
Hence the conclusion follows from Corollary 3.41.

Third step: STE for v. To conclude, we must verify that v satisfies
the STE, driven by b, starting from v0. We know that, for each n, for every
ϕ in C∞c ,

〈vnt , ϕ〉 = 〈vn0 , ϕ〉+
ˆ t

0

〈bn · ∇vn, ϕ〉dr+

ˆ t

0

〈∇vn, ϕ〉dW − 1

2

ˆ t

0

〈∇vn,∇ϕ〉dr.

We will prove that every term of the formula above converges in a weak sense
(against any bounded functions) to the same term without the superscript
n, so that v verifies (3.5). For this, let F be a function in L∞t,ω, take R > 0
such that the support of ϕ is contained in BR.

It is an immediate consequence of the weak-* convergence of v and of the
weak convergence of v0 thatˆ T

0

E[〈vnt − vn0 , ϕ〉Ft]dt→
ˆ T

0

E[〈vt − v0, ϕ〉Ft]dt.

Now we analyze the term with bn. We split it into∣∣∣∣∣∣
ˆ T

0

E

[ˆ t

0

〈bn · ∇vn, ϕ〉drF

]
dt−

ˆ T

0

E

[ˆ t

0

〈b · ∇v, ϕ〉drF

]
dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
ˆ T

0

E

[
〈b · (∇vn −∇v), ϕ〉

ˆ T

r

Fdt

]
dr

∣∣∣∣∣∣+
+

ˆ T

0

E

|bn − b||∇vn||ϕ| ∣∣∣∣∣
ˆ T

r

Fdt

∣∣∣∣∣
 dr.

The first addend converges to 0: indeed vn converges weakly to v in Lmt,ω(W 1,m
x,BR

)
and the map

v 7→
ˆ T

0

E

[
〈b · ∇v, ϕ〉

ˆ T

r

Fdt

]
dr

is a linear continuous functional on Lmt,ω(W 1,m
x,BR

); here we used that b is in

Lm
′

t (Lm
′

x,loc). For the second addend, we use Hölder inequality to get

ˆ T

0

E

|bn − b||∇vn||ϕ| ∣∣∣∣∣
ˆ T

r

Fdt

∣∣∣∣∣
 dr

≤ ‖bn − b‖Lm′t (Lm
′

x,BR
)‖∇v

n‖Lmt,ω(Lmx,BR
)T‖F‖L∞t,ω .
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Since bn converges to b in Lm
′

t (Lm
′

x,loc) and ∇vn in uniformly bounded in
Lmt,ω(Lmx,BR), also the second addend goes to 0. Hence the integral with bn

converges to the corresponding integral with b.
For the stochastic integral, we haveˆ t

0

〈∇vn, ϕ〉dW →
ˆ t

0

〈∇v, ϕ〉dW,

since the map

v 7→
ˆ t

0

〈∇v, ϕ〉dW

is a linear continuous functional on Lmt,ω(W 1,m
x,BR

) (by Itô isometry and Burkholder-
Davis-Gundy inequality).

With the same reasoning, we also haveˆ t

0

〈∇vn,∇ϕ〉dr →
ˆ t

0

〈∇v,∇ϕ〉dr.

Hence v satisfies (3.5). The proof is complete.

In many situations, one has uniform bounds in stronger Sobolev-type
topology. Precisely, given m as in the previous Theorem, we consider the
space

LWmt,mω ,mx,R = Lmtt (Lmωω (W 1,mx
x,BR

)),

with the norm

‖f‖LWmt,mω,mx,R
≤ ‖‖‖f‖W 1,mx

x,BR

‖Lmωω ‖Lmtt ,

where m ≤ mt,mω,mx <∞, R > 0; in the case R = +∞, we replace W 1,mx
x,BR

with W 1,mx
x in the definition. We extend this definition to the case when

at least one among mt,mω,mx is +∞: in this case, the space LWmt,mω ,mx,R

is defined as the subspace of Lmt (Lmω (W 1,m
x,BR

)) with finite LW norm; see the
Appendix, Sections A.1 and A.2 for more details.

Proposition 3.42. Under the assumptions of Theorem 3.39, suppose that,
for every R > 0 (resp. R = +∞),

sup
n
‖vn‖LWmt,mω,mx,R

< +∞. (3.14)

Then v belongs to LWα
mt,mω ,mx,R

for every R > 0 (resp. R = +∞) and

sup
n
‖vn‖LWmt,mω,mx,R

≤ sup
n
‖vn‖LWmt,mω,mx,R

. (3.15)

Moreover, if mt, mω and mx are all finite, there exists a subsequence (vnk)k
which converges weakly in LWmt,mω ,mx,R for every R > 0 finite.
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Proof. By Theorem 3.39, we can assume (with no loss of generality) that the
sequence (vn)n converges weakly to v in Lmt,ω(W 1,m

x,loc). We start with the case
of mt, mω, mx and R all finite (we omit the indices when not necessary). In
this case, LW is a reflexive space, as a consequence of reflexivity of W 1,mx

x,BR
(see the Appendix, Section A.2) and Proposition A.1 in the Appendix. Hence
Banach-Alaoglu theorem applies and gives the existence of an element w in
LW and a subsequence (vnk)k converging weakly to w in LW . Now LW is
continuously included in Lmt,ω(W 1,m

x,BR
), so actually (vnk)k converges to w also

in this space. Hence w = v. The bound (3.14) follows from semicontinuity
of the norm with respect to weak convergence.

Now we consider the case of mx = +∞ and mt, mω finite and R finite.
For this, recall that, for any f in L∞x,BR , as h→ +∞,

1

Ch,R
‖f‖Lhx,BR ↑ ‖f‖L

∞
x,BR

,

where Ch,R = |BR|1/h (the fact that the sequence is increasing is a conse-
quence of Hölder inequality). Hence we have, by dominated convergence
theorem, for every g in LWmt,mω ,∞,R,

1

Ch,R
‖g‖LWmt,mω,h,R

↑ ‖g‖LWmt,mω,∞,R
.

Hence (3.15) for finite exponents gives

‖v‖LWmt,mω,∞,R
= sup

h

1

Ch,R
‖v‖LWmt,mω,h,R

≤ sup
h

sup
n

1

Ch,R
‖vn‖LWmt,mω,h,R

= sup
n

1

Ch,R
‖vn‖LWmt,mω,∞,R

.

We pass to the case of mω = +∞, m ≤ mx ≤ +∞, mt and R finite.
Again we have, for any G in L∞ω , as h→ +∞,

‖G‖Lhω ↑ ‖G‖L∞ω ,

and therefore, by dominated convergence theorem, for every g in LWmt,∞,mx,R,

‖g‖LWmt,h,mx,R
↑ ‖g‖LWmt,∞,mx,R

.

Hence (3.15) for mt, mω finite and R finite gives

‖v‖LWmt,∞,mx,R
= sup

h

1

Ch,R
‖v‖LWmt,h,mx,R

≤ sup
h

sup
n

1

Ch,R
‖vn‖LWmt,h,mx,R

= sup
n

1

Ch,R
‖vn‖LWmt,∞,mx,R

.
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Iterating again the procedure, we obtain (3.15) in the general case (also
mt possibly +∞), but for R finite.

Finally, for the whole space case (R = +∞), we have

‖v‖LWmt,mω,mx,∞
= sup

R>0
‖v‖LWmt,mω,mx,R

≤ sup
R>0

sup
n
‖vn‖LWmt,mω,mx,R

= sup
n
‖v‖LWmt,mω,mx,∞

.

Lemma 3.43. Assume that mt = +∞. If we use the weakly-* continuous
(in time) version of v, then v satisfies

‖vt‖Lmωω (W 1,mx
x,BR

) ≤ ‖v‖L∞t (Lmωω (W 1,mx
x,BR

)) (3.16)

for every t (not just for a.e. t).

Proof. We start with the case mω, mx and R finite. Take a full-measure
(in particular dense) set F in [0, T ] such that the bound (3.16) holds for
every t in [0, T ]. Fix t in [0, T ], take a sequence (tn)n in F converging to
t. Since Lmωω (W 1,mx

x,BR
) is a reflexive space, by Banach-Alaoglu theorem there

exists a subsequence (tnk) such that vtnk converges weakly in Lmωω (W 1,mx
x,BR

)

to an element w in Lmωω (W 1,mx
x,BR

) and ‖w‖Lmωω (W 1,mx
x,BR

) ≤ ‖v‖L∞t (Lmωω (W 1,mx
x,BR

)) by

lower semicontinuity. In particular, for every ϕ in C∞x,c, for every G in L∞ω ,

E[〈w,ϕ〉G] = lim
k
E[〈vtnk , ϕ〉G].

On the other hand, weakly-* continuity of v gives (by dominated convergence
theorem)

E[〈vt, ϕ〉G] = lim
k
E[〈vtnk , ϕ〉G].

Therefore vt = w for a.e. (ω, x) and so ‖vt‖Lmωω (W 1,mx
x,BR

) ≤ ‖v‖L∞t (Lmωω (W 1,mx
x,BR

)).

For the case when at least one among mω, mx and R is infinite, we can
repeat the procedure in the proof of Proposition 3.42 and get the thesis.

As an immediate consequence of the stability result, we can infer existence
of a differentiable solution to the STE from a priori estimates. Here and in
the following, we say that a Banach space V , contained in Lpt,x,loc for some
1 ≤ p < +∞, has Ct(C

∞
x,c) as a mildly Lpt,x,loc-dense set if Ct(C

∞
x,c) is contained

in V and, for every f in V , there exists a sequence (fn)n in Ct(C
∞
x,c) which

converges to f in Lpt,x,loc and is bounded in V .
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Corollary 3.44. Fix 1 < m < +∞, α ≥ 1, m ≤ mt,mω,mx ≤ +∞. Let
V be a Banach space, contained in Lm

′

t,x,loc and having Ct(C
∞
x,c) as a mildly

Lm
′

t,x,loc-dense subset. Assume that, for every R > 0, there exists a locally
bounded function C : [0,+∞[×[0,+∞[→ [0,+∞[ such that, for every b in
Ct(C

∞
x,c) and every initial datum v0 in C∞x,c, the corresponding classical solu-

tion v to the STE satisfies

‖v‖Lmt,ω(W 1,m
x,BR

) ≤ C(‖b‖V , ‖v0‖C2
b
). (3.17)

Then, for every b in V , for every initial datum v0 in C2
b , there exists a

differentiable solution v to the corresponding STE, which satisfies the bound
(3.17). Furthermore, if we also have the uniform bound

‖v‖Lmtt (Lmωω (Wα,mx
x,BR

)) ≤ C(‖b‖V , ‖v0‖C2
b
), (3.18)

then we can choose v satisfying also the bound (3.18).

Proof. Let (bn)n be a sequence in Ct(C
∞
x,c), converging to b in Lm

′

t,x,loc and
bounded in V , and let vn be the classical solution to the STE driven by bn

(with initial datum vn0 being also a proper regularization of v0). Then the
solution v with the estimates (3.17) and (3.18) is obtained as a consequence of
the previous Theorem 3.39 and Proposition 3.42, provided we have a uniform
bound also in the L∞t,x,ω norm. But this bound holds, since any classical

solution vn verifies vnt = vn0 (X−1
t ) and so ‖vn‖L∞t,x,ω ≤ ‖v

n
0 ‖L∞x .

A similar result holds for the distributional solution to the STE, we state
the result without the proof, which is analogous.

Theorem 3.45. Let bn, n in N, b be vector fields in L1
t (L

1
x,loc), with divb in

L1
t (L

1
x,loc), such that (bn)n and (divbn)n converges resp. to b, divb in L1

t (L
1
x,loc).

Let vn0 , v0 be in C2
x,b such that (vn0 )n converges weakly to v0 in L1

x,loc. Assume
that, for each bn and vn0 , there exists vn distributional solution to the forward
STE, driven by the drift bn, starting from vn0 . Assume, for every R > 0, the
uniform bound

sup
n
‖vn‖L∞t,x,ω < +∞.

Then there exists v in L∞t,x,ω distributional solution to the STE driven by
b, starting from v0, and there exists a subsequence (nk)k such that (vnk)k
converges weakly-* to v in L∞t,x,ω.

Corollary 3.46. For every b in L1
t (L

1
x,loc) with divb in L1

t (L
1
x,loc), for every

initial datum v0 in C2
b , there exists a distributional solution v to the corre-

sponding STE, which satisfies the bound

‖v‖L∞t,x,ω ≤ ‖v0‖L∞t,x,ω .
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Proof. The proof follows again by approximation of b with Ct(C
∞
x,c) functions,

using then Theorem 3.45 and the bounds for classical solutions ‖v‖L∞t,x,ω ≤
‖v0‖L∞x .

Finally we state the stability result for the SCE.

Theorem 3.47. Take 1 < m < +∞. Let bn, n in N, b be vector fields in
Lm

′
t (Lm

′

x,loc) such that (bn)n converges to b in Lm
′

t (Lm
′

x,loc). Let µn0 , µ0 be in

Lm
′

x,loc ∩Mx such that (µn0 )n converges weakly-* to µ0 in Mx. Assume that,
for each bn and µn0 , there exists µn distributional solution to the SCE, driven
by the drift bn, starting from µn0 . Assume, for every R > 0, the uniform
bound

sup
n
‖µn‖Lmt,ω(Lmx,BR

) + sup
n
‖µn‖L∞t,ω(Mx) < +∞.

Then there exists µ in Lmt,ω(Lmx,loc) ∩ L∞t,ω(Mx) distributional solution to the
SCE, driven by b, starting from µ0, and there exists a subsequence (nk)k such
that (µnk)k converges weakly to µ in Lmt,ω(Lmx,loc).

Proof. The proof is analogous but for proving that µ is in L∞t,ω(Mx), for
which we cannot use the previous machinery, because this space may not be
a dual space. So we prove directly that

‖µ‖L∞t,ω(Mx) ≤ sup
n
‖µn‖L∞t,ω(Mx).

In order to prove this estimate, it is enough to show the same bound but on
a closed ball B̄R in Rd (i.e. replacingMx withMx,B̄R), for every R > 0. For
this, it is enough to prove that the L∞t,ω(Mx,B̄R) norm is lower semicontinuous
with respect to the weak convergence in Lmt,ω(Lm

x,B̄R
). To prove this, by Lemma

A.9, there exists a countable set D in L∞t,ω(Cx,B̄R), dense in L1
t,ω(Cx,B̄R), such

that

‖µ‖L∞t (Mx,B̄R
) = sup

G∈D,‖G‖
L1
t,ω(Cx,B̄R

)
≤1

ˆ T

0

E[〈µ,G〉]dr

Since the map ν 7→
´ T

0
E[〈ν,G〉]dr is continuous in the weak Lmt,ω(Lm

x,B̄R
)

topology, the L∞t,ω(Mx,B̄R) norm is lower semicontinuous. The proof is com-
plete.

In the following, we assume m ≤ mt,mω,mx ≤ +∞; furthermore, for
applications, we introduce a weight χ, strictly positive test function in C∞x .
The definition of the weighted space Lmxx,χ,BR is extended to R = +∞ as Lmxx,χ.
The proof of the following result is similar to that of Proposition 3.42.
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Proposition 3.48. Under the assumptions of Theorem 3.47, suppose that,
for every R > 0 (resp. R = +∞),

sup
n
‖vn‖Lmtt (Lmωω (Lmxx,χ,BR

)) < +∞.

Then µ belongs to Lmt(L
mω(Lmxx,χ,BR)) for every R > 0 (resp. R = +∞) and

sup
n
‖µn‖Lmtt (Lmωω (Lmxx,χ,BR

)) ≤ sup
n
‖vn‖Lmtt (Lmωω (Lmxx,χ,BR

)).

Moreover, if mt, mω and mx are all finite, there exists a subsequence (vnk)k
which converges weakly in Lmtt (Lmωω (Lmxx,χ,BR)) for every R > 0 finite.

Corollary 3.49. Fix 1 < m < +∞, m ≤ mt,mω,mx ≤ +∞. Let V be a
Banach space, contained in Lm

′

t,x,loc and having Ct(C
∞
x,c) as a mildly Lm

′

t,x,loc-

dense subset; let V0 be a Banach space, contained in Lm
′

x,loc ∩Mx and having
C∞x,c as a mildly Mx-dense subset. Assume that, for every R > 0, there
exists a locally bounded function C : [0,+∞[×[0,+∞[→ [0,+∞[ such that,
for every b in Ct(C

∞
x,c) and every initial datum µ0 in C∞x,c, the corresponding

classical solution v to the STE satisfies

‖µ‖Lmt,ω(Lmxx,χ,BR
) ≤ C(‖b‖V , ‖µ0‖V0). (3.19)

Then, for every b in V , for every initial datum µ0 in V0, there exists a
distributional solution µ to the corresponding SCE, which satisfies the bound
(3.19). If µ0 is a positive measure, we can choose µ to positive measure
valued. Furthermore, if we also have the uniform bound

‖µ‖Lmtt (Lmωω (Lmxx,χ,BR
)) ≤ C(‖b‖V , ‖µ0‖V0), (3.20)

then we can choose µ satisfying also the bound (3.20).

Proof. The proof follows by approximation of b with Ct(C
∞
x,c) functions, using

then Theorem 3.47 and Proposition 3.48 and the bounds for classical solutions
‖µ‖L∞t,ω(Mx) ≤ ‖µ0‖Mx . The positivity preserving property follows from the
fact that positivity is preserved in the weak convergence in Lmt,ω(Lmx,χ,BR).
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Chapter 4

Renormalization/duality,
uniqueness and regularity

In this chapter we describe the renormalization/duality method: this gives
a general way to get uniqueness for the stochastic continuity equation. It
is a completely deterministic method, therefore its application at ω fixed to
the random equations (rCE and rTE) leads to the path-by-path uniqueness.
This method has also another advantage, namely it gives well-posedness as
soon as we have the existence of a regular (at least differentiable) solution to
the stochastic transport equation, or equivalently of a regular flow solution
to the SDE.

The duality argument, as presented in this chapter, is taken mainly from
[BFGM14], with some technical differences; see also [Sha14] for a similar
argument at the level of flows. Some analogies with the renormalization
argument are inspired by [AC14].

4.1 The idea of renormalization/duality

Here we present the idea of the duality argument (the argument will be
developed later rigorously). Since the method is deterministic in nature, all
the equations are here without noise.

We want to prove uniqueness for the CE

∂tµ+ div(bµ) = 0,

with given initial datum µ0 (and initial time 0 for simplicity), among solutions
in an admissible Lagrangian class L (as in Definition 3.22). [Recall that, by
Theorem 3.24, this uniqueness implies uniqueness among L Lagrangian flow

61



solving the ODE.] By linearity of the CE, it is enough to show that any
solution µ in span(L) with initial datum µ0 ≡ 0 is 0.

The main point is the formal duality between CE and backward TE,
which we now explain. Let v be an L∞t,x solution to the backward TE

∂sv + b · ∇v = 0,

with final condition vt in C∞c . Formally, multiplying µ and v and integrating
by parts, we get

∂t

ˆ
Rd
µvdx = −

ˆ
Rd

div(bµ)vdx−
ˆ
Rd
µb · ∇vdx = 0. (4.1)

Hence 〈µ, v〉 is constant in time, so

〈µt, vt〉 = 〈µ0, v0〉 = 0. (4.2)

Since this is true for every vt in C∞c , then we conclude µt ≡ 0.
Of course this argument cannot work, because µ and v are not regular in

general and so the computations in (4.1) are not valid. To solve this problem,
we look at ˆ

Rd

ˆ
Rd
µ(r, x)v(r, y)ρε(x− y)dxdy

where (ρε)ε>0 is the usual family of mollifiers (with some abuse of notation,
we write µ(x)dx for µ(dx)). Then, using the distributional formulation of
both CE and TE, we get

ˆ
Rd

ˆ
Rd
µ(t, x)v(t, y)ρε(x− y)dxdy (4.3)

=

ˆ t

0

ˆ
Rd

ˆ
Rd
µ(r, x)v(r, y)(b(r, x)− b(r, y)) · ∇ρε(x− y)dxdydr+

+

ˆ t

0

ˆ
Rd

ˆ
Rd
µ(r, x)v(r, y)divb(r, y)ρε(x− y)dxdydr

(the RHS can have a meaning also when divb is not defined, if we assume
more regularity on v, as we will see). So, if we prove that the right-hand side
of the above formula tends to 0 (as ε goes to 0), we have proved uniqueness.

One may notice the similarity between this idea and the renormaliza-
tion argument by DiPerna and Lions [DL89] and Ambrosio [Amb04]. They
consider mainly the TE, which enjoys the following formal property (renor-
malization): if v is a solution, then also v2 is a solution. If this formal fact
were true, then one could infer uniqueness easily. In order to make this ar-
gument rigorous, one uses approximations uε of u and ends with controlling
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a remainder similar to the RHS of (4.3). This control is done, in [DL89] and
[Amb04], via a commutator lemma, in the case that b has Sobolev or BV
regularity and bounded divergence (actually one requires bounded negative
part of the divergence).

Hence in both the duality method and the renormalization method there
is a formal argument that gives uniqueness and a rigorous approximation
argument, where terms like in (4.3) appear. In view of this similarity, we
develop the duality argument in a similar way to the renormalization argu-
ment. The duality argument has the advantage to be suitable for several
hypothesis: one can require different regularity assumptions on b or on v; it
also avoid some technical integrability assumptions (if we had to consider µ2

for µ solution to the CE, then we should probably require µ in L2). One
should also say that this duality is typical of linear situations, while the
renormalization techniques can be applied to nonlinear contexts.

Let us mention that the duality technique has also a counterpart in the
method of characteristics. Indeed, at least from a formal point of view,
having in mind the representation formula (3.1), the relation (4.2) reads as

〈vt(Xt), µ0〉 = 〈v0, µ0〉,

which, if true for a dense set of µ0, leads to

vt(Xt) = v0,

which is the formal relation (3.2) (for the backward TE) used in the method
of characteristics.

Finally, there is one way to read and to use the duality method which
is purely Lagrangian, without PDEs. Given any solution Y to the ODE
starting at 0 and a flow X solution to the ODE, we get formally

d

dr
Xr,t(Yr) = DXx,t(Yr)b(Xr,t(Yr))−DXx,t(Yr)b(Xr,t(Yr)) = 0.

where we have used that X, as function of the initial time s and the initial
datum x, satisfies the TE. This is the counterpart of the computation in
(4.1): notice indeed that, formally, µt = (Yt)#µ0 and vr = vt(Xr,t) (given by
the representation formulae (3.1) and (3.2)) verify

〈µr, vr〉 = 〈µ0, vt(Xr,t(Yr))〉

and so the scalar product 〈µr, vr〉 is read in terms of the composition Xr,t(Yr).
If one is interested only in the ODE, one may develop the duality argument
only in the Lagrangian context.
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4.2 Duality pairs and uniqueness

We saw that uniqueness holds as soon as we have a rigorous duality rela-
tion. We formalize this with a definition, in analogy to the definition of
renormalized solutions.

Definition 4.1. Let µ, v be resp. a distributional solution to the CE, with
initial time s, and a (distributional or differentiable) solution to the backward
TE, with final time t. We say that (µ, v) is a duality pair at times (s, t) if:

1. µs is in L1
x and vt is in Cx,b;

2. it holds
〈µt, vt〉 = 〈µs, vs〉.

We say that µ admits a duality pairing if, for every t in [0, T ] and every ϕ in
C∞x,c, there exists a (distributional or differentiable)solution v to the backward
TE, with final time t and final datum vt = ϕ, such that (µ, v) is a duality
pair at times (s, t).

When not specified, we will assume s = 0.

Remark 4.2. The first condition in the definition above guarantees that
〈µ0, v0〉 and 〈µt, vt〉 exist. It can be replaced, for example, by requiring v0 and
vt in Cx,b, or by requiring µ0 and µt in L1

x.

Here is the uniqueness result, again in analogy to uniqueness from renor-
malized solutions.

Proposition 4.3. Let L be a Lagrangian class. Suppose that every solution µ
to the CE, in the vector space span(L), starting from µ0 ≡ 0, admits a duality
pairing. Then uniqueness holds for the CE among solutions in span(L).

Proof. By linearity of the CE and stability of span(L) under difference, it is
enough to show that any solution µ to the CE in span(L), starting from 0,
is 0. Let µ be such a solution, fix t in [0, T ] and ϕ in C∞c . By assumption
there exists v solution to the backward TE, with vt = ϕ, such that

〈µt, ϕ〉 = 〈µ0, v0〉 = 0.

Since this is true for every t and ϕ, µ ≡ 0. The proof is complete.

Remark 4.4. As one can see from the proof, we can weaken the hypothesis
of the previous Theorem, asking that µ has a duality pair (µ, v), at time t and
with vt = ϕ, for every t in F and every ϕ in D, where F , D are countable
dense sets of resp. [0, T ], C∞x,c. It is also enough to ask this for measures that
are difference of solutions in L with the same initial datum.
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If uniqueness holds for the CE and there exists a duality pair (µ, v), then
we have a useful representation formula for v.

Proposition 4.5. Assume that existence and uniqueness hold for the CE in
the class span(L) and let X be the Lagrangian flow solving the ODE. Assume
that the set {µ0|µ ∈ spanL} ∩ L1

x is dense in L1
x and that there exists v,

solution to the backward TE with final time t and with vt in Cx,b, such that
(µ, v) is a duality pair for any solution µ in span(L). Then it holds, for a.e.
x,

v0(x) = vt(Xt(x)). (4.4)

Proof. Let µ be a solution to the CE in span(L). We know (by formula
(3.11)) that µt admits the representation formula 〈µt, ϕ〉 = 〈µ0, ϕ(Xt)〉 for
every ϕ measurable bounded function. This formula, applied to vt, and the
duality pair property, give

〈µ0, v0〉 = 〈µt, vt〉 = 〈µ0, vt(Xt)〉.

Since the set of possible µ0 is dense in L1
x, we have v0 = vt(Xt) for a.e. x.

We end this section by noticing the symmetric role played by µ and v.
Indeed, exchanging µ and v in the proofs above, one get the following result:

Proposition 4.6. Let U be a vector space, contained in Lmt,ω(W 1,m
x,loc) (resp.

in L∞t,x). Suppose that every differentiable (resp. distributional) solution v to
the backward TE, in the space U , with final time t, admits a duality pair-
ing. Then uniqueness holds for the backward TE among differentiable (resp.
distributional) solutions in U .

Remark 4.7. As before for the CE, it is possible to weaken the assumptions
of the Proposition above, asking that v has a duality pair (µ, v), at times (s, t)
and initial measure µs = ϕ, for every s in F and every ϕ in D, where F , D
are countable dense sets of resp. [0, T ], C∞x,c.

4.3 The commutator lemma

Here we develop the duality argument, as in the first Subsection: we regular-
ize the solution to the TE, arriving at (4.3), then we study the RHS of (4.3)
and we prove that it goes to 0 if b or v enjoy some regularity assumptions.
This leads to uniqueness for the CE under these assumptions.

First we make explicit the computations that bring to (4.3): given µ, v
be solutions to resp. the CE and the backward TE (in the distributional or in
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the differential case), now we get an equation for µ⊗ v, which is the element
of L∞r,ω(Mx,y,loc) defined by

µr ⊗ vr(d(x, y)) = µr(dx)⊗ vr(y)dy.

Notice that the map t 7→ µ⊗ v is weakly-* measurable as anMx,y,B̄R-valued
map, i.e., for every ψ in Cx,y,B̄R , t 7→ 〈µ⊗v, ψ〉 is measurable (by an argument
similar to that below). This measurability property can be extended to Borel
functions ψ which are not bounded or are time dependent, provided they
satisfy suitable integrability assumptions.

Here, when µ and v appear at fixed time, we use the time weakly-* (with
respect to the Mx topology) continuous version of µ and the time weakly-*
(with respect to the L∞x topology) continuous version of v. Instead, when µ
and v appear as integrands of an integral in time, we use the version which
is jointly measurable in (t, x, ω), for which we can use Fubini theorem (mind
that this version may not be the weakly-* continuous one).

We start with the case when v is a distributional solution. Let ψ be a C∞c
function on R2d, then ϕ : (r, x) 7→

´
Rd ψ(x, y)vr(y)dy verifies the equations,

for every (r, x),

∇ϕ(r, x) =

ˆ
Rd
∇xψ(x, y)vr(y)dy,

∂tϕ(r, x) =

ˆ
Rd
b(r, y) · ∇yψ(x, y)vr(y)dy +

ˆ
Rd

divyb(r, y)ψ(x, y)vr(y)dy;

in particular, ϕ is in Ct(C
1
x,c), ϕ(·, x) is in W 1,1

t for every x and ∂tϕ is in
L1
t (Cx,c). So, applying ϕ as time-dependent test function for µ and using

Lemma 3.10 and the equalities above, we get the equation for 〈µ ⊗ v, ψ〉 =
〈µ, ϕ〉:

〈µt⊗vt, ψ〉−〈µ0⊗v0, ψ〉 =

ˆ t

0

〈µ⊗v, bx·∇xψ+by·∇yψ〉dr+
ˆ t

0

〈µ⊗v, divbyψ〉dr.

In the differentiable case for v, proceeding similarly we arrive at

〈µt ⊗ vt, ψ〉 − 〈µ0 ⊗ v0, ψ〉 =

ˆ t

0

〈µ⊗ v, bx · ∇xψ〉dr −
ˆ t

0

〈µ⊗∇xv, byψ〉dr.

Now, in order to arrive to the duality relation between µ and v, we take
as test function ψ(x, y) = ρ

(2)
ε (x, y)χR(x), where ρ

(2)
ε (x, y) := ρε(x− y). Here

(ρε)ε is the usual family of (compactly supported) mollifiers on Rd and, for
R > 0, χR is a smooth function, with 0 ≤ χR ≤ 1 and |∇χR| ≤ 2/R, equal
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to 1 on BR and to 0 on Bc
2R. Notice that this condition implies (for R ≥ 1)

that

|∇χR(x)| ≤ 8

1 + |x|
1R≤|x|≤2R.

In the distributional case, using that ∇xρε(x − y) = −∇yρε(x − y), we
arrive atˆ

Rd

ˆ
Rd
vt(y)ρε(x− y)χR(x)µt(dx)dy −

ˆ
Rd

ˆ
Rd
v0(y)ρε(x− y)χR(x)µ0(dx)dy

(4.5)

=

ˆ t

0

ˆ
Rd

ˆ
Rd
b(r, x)ρε(x− y) · ∇χR(x)vr(y)µr(dx)dydr+

+

ˆ t

0

ˆ
Rd

ˆ
Rd
vr(y)(b(r, x)− b(r, y)) · ∇ρε(x− y)χR(x)µr(dx)dydr+

+

ˆ t

0

ˆ
Rd

ˆ
Rd
vr(y)divb(r, y)ρε(x− y)χR(x)µr(dx)dydr.

For the differentiable case, using again that ∇xρε(x−y) = −∇yρε(x−y) and
bringing the derivative along y from ρε to v, we getˆ

Rd

ˆ
Rd
vt(y)ρε(x− y)χR(x)µt(dx)dy −

ˆ
Rd

ˆ
Rd
v0(y)ρε(x− y)χR(x)µ0(dx)dy

=

ˆ t

0

ˆ
Rd

ˆ
Rd
b(r, x)ρε(x− y) · ∇χR(x)vr(y)µr(dx)dydr+

+

ˆ t

0

ˆ
Rd

ˆ
Rd

(b(r, x)− b(r, y))ρε(x− y) · ∇vr(y)χR(x)µr(dx)dydr. (4.6)

For simplicity of notation, we sometimes use the first formulation also for
the differentiable case, meaning implicitly that the derivative along y must
be brought on v.

Proposition 4.8. Let µ be a solution to the CE starting at time 0 from µ0

in L1
x and let v be a solution to the backward TE, with final time t and final

condition vt in Cx,b. Assume that, for every R > 0,

lim
ε→0

∣∣∣∣∣
ˆ t

0

〈µ⊗ v, (bx · ∇xρ
(2)
ε + divy(byρ

(2)
ε ))(χR)x〉dr

∣∣∣∣∣ = 0 (4.7)

Assume also that

lim
R→+∞

lim sup
ε→0

∣∣∣∣∣
ˆ t

0

〈µ⊗ v, ρ(2)
ε bx · ∇x(χR)x〉dr

∣∣∣∣∣ = 0. (4.8)

Then (µ, v) is a duality pair (at times (0, t)).
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The object in the limit in (4.7) is called the commutator.

Remark 4.9. Condition (4.7) on the commutator is the relevant hypothesis
in the Proposition above. Condition (4.8) is more technical, and it holds
easily in many situations, for example when b has at most linear growth
outside of a ball, namely b satisfies Condition 2.1.

Proof. We know that 〈µr ⊗ vr, ρ(2)
ε (χR)x〉 satisfies equation (4.5) (or (4.5) in

the differentiable case). First we let ε go to 0, keeping R fixed. We have that

〈µr ⊗ vr, ρ(2)
ε (χR)x〉 tends to 〈µr, vrχR〉 for r = 0, t, because of the conditions

µ0 in L1
x, v0 in L∞x , µt in Mx, vt in Cx,b (recall we are using the continuous

versions of µ and v, so that µt is bounded inMx for every t and vs is bounded
in L∞s for every s). Hence condition 4.7 implies

|〈µt, vtχR〉 − 〈µ0, v0χR〉| ≤ lim sup
ε→0

∣∣∣∣∣
ˆ t

0

〈µ⊗ v, ρ(2)
ε bx · ∇x(χR)x〉dr

∣∣∣∣∣ .
Finally we let R go to +∞. We have that 〈µr, vrχR〉 tends to 〈µr, vr〉 for
r = 0, t, because of the global conditions µ0 in L1

x, v0 in L∞x , µt inMx, vt in
Cx,b. So condition 4.8 implies

|〈µt, vt〉 − 〈µ0, v0〉| = 0,

which is the duality relation.

Now we give some conditions which imply that the commutator is in-
finitesimal. The first one requires regularity of the drift b.

Lemma 4.10. Let p, q be in [1,+∞[. Assume that b in Lqt (W
1,p
x,loc), µ in

Lq
′

t (Lp
′

x,loc) ∩ L∞t (Mx) with
´ T

0

´
Rd |b|/(1 + |x|)d|µ| < +∞, v in L∞t,x. Then

conditions (4.7) and (4.8) hold, so, if condition 1 in 4.1 also holds, (µ, v) is
a duality pair.

Before going into the proof, we remind a useful fact concerning the con-
tinuity of translations in Lpx,BR (restricted to a ball BR): let f be a function
in Lpx,loc, 1 ≤ p < +∞, then ‖f(· + εz) − f‖Lpx,BR → 0 (as ε → 0) for every

z, for every R > 0. To see this, we mimic the proof on the whole Rd: let ϕ
be a continuous bounded function on Rd, such that ‖f −ϕ‖Lpx,BR+1

< η for η

small enough, then ‖f −ϕ‖Lpx,BR < η and ‖f(·+ εz)−ϕ(·+ εz)‖Lpx,BR < η for

every ε < 1. Therefore, since the thesis is satisfied for ϕ in place of f , one
can conclude as in the proof for the whole Rd.
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Proof. We start with the commutator. We write it asˆ t

0

ˆ
Rd

ˆ
Rd
µ(x)v(y)(b(x)− b(y)) · ∇ρε(x− y)χR(x)dxdydr

+

ˆ t

0

ˆ
Rd

ˆ
Rd
µ(x)v(y)divb(y)ρε(x− y)χR(x)dxdydr.

Since b is weakly differentiable, it holds for a.e. (x, y)

b(x)− b(y) =

ˆ 1

0

Db(y + ξ(x− y))dξ(x− y)

So the commutator readsˆ t

0

ˆ
Rd

ˆ
Rd
µ(x)v(y)

ˆ 1

0

Db(y + ξ(x− y))dξ(x− y) · ∇ρε(x− y)χR(x)dxdydr

+

ˆ t

0

ˆ
Rd

ˆ
Rd
µ(x)v(y)divb(y)ρε(x− y)χR(x)dxdydr,

that is, with the change of variable z = ε−1(x− y),ˆ t

0

ˆ
Rd

ˆ
Rd
µ(x)v(x− εz)

ˆ 1

0

Db(x− (1− ξ)εz)dξz · ∇ρ(z)χR(x)dxdzdr+

+

ˆ t

0

ˆ
Rd

ˆ
Rd
µ(x)v(x− εz)divb(x)ρ(z)χR(x)dxdzdr. (4.9)

Now we let ε go to 0 and we want to show convergence of the formula above
to the same expression without ε. For the first addend, we split

Db(x− (1− ξ)εz)v(x− εz)−Db(x)v(x)

= (Db(x− (1− ξ)εz)−Db(x))v(x− εz) +Db(x)(v(x− εz)− v(x))

and we use Hölder inequality, getting∣∣∣∣∣∣
ˆ t

0

ˆ
Rd

ˆ
Rd
µ(x) ·

·

[
v(x− εz)

ˆ 1

0

Db(x− (1− ξ)εz)dξ − v(x)Db(x)

]
z · ∇ρ(z)χR(x)dxdzdr

∣∣∣∣∣∣
≤
ˆ
Rd

ˆ 1

0

‖µ‖
Lq
′
t (Lp

′
x,B2R

)
·

· ‖v(· − εz)‖L∞t,x‖Db(· − (1− ξ)εz)−Db‖Lqt (Lpx,B2R
)|z||∇ρ(z)|dξdz+

+

∣∣∣∣∣
ˆ t

0

ˆ
Rd
χR(x)µ(x)Db(x)

ˆ
Rd

(v(x− εz)− v(x))z · ∇ρ(z)dzdxdr

∣∣∣∣∣ .
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For the first term of the RHS above, for every z, ξ, ‖Db(· − (1 − ξ)εz) −
Db‖Lqt (Lpx,B2R

) converges to 0 by continuity of translations in Lpx and dominated

convergence in t (‖Db(·− (1−ξ)εz)−Db‖Lpx,B2R
converges to 0 for a.e. time r

and is bounded by 2‖Db‖Lpx,B2R
); so the first term converges to 0 by dominated

convergence theorem with respect to z and ξ. For the second term,

ˆ
Rd

(v(x− εz)− v(x))z · ∇ρ(z)dz =

ˆ
Rd

(v(x− y)− v(x))(y · ∇ρ(y))εdy

goes to 0 for a.e. x, since (zDρ(z))ε is a mollifier (up to scaling the L1 norm)
and the convolution of an L∞ function with any mollifier converges to the
function (times the L1 norm) a.e.. So the second term converges to 0 by
dominated convergence theorem (v(x − εz) is a.e. bounded by ‖v‖L∞t,x). We
have proved convergence for the first addend in (4.9). Reasoning similarly
for the second addend, we get that the commutator converges to

ˆ t

0

ˆ
Rd
µ(x)v(x)tr

[
Db(x)

ˆ
Rd
zDρ(z)dz

]
χR(x)dxdr+

+

ˆ t

0

ˆ
Rd
µ(x)v(x)divb(x)

ˆ
Rd
ρ(z)dzχR(x)dxdr.

Integrating by part, we get that
´
Rd zDρ(z)dz = −I

´
Rd ρ(z)dz = −I. Hence

the limit of the commutator reads

ˆ t

0

ˆ
Rd
µ(x)v(x)(tr[−Db(x)] + divb)χR(x)dxdr = 0.

We have proved condition (4.7) on the commutator.
Condition (4.8) is easily verified. Indeed∣∣∣∣∣
ˆ t

0

〈µ⊗ v, ρ(2)
ε bx · ∇x(χR)x〉dr

∣∣∣∣∣ ≤ 8‖v‖L∞t,x

ˆ t

0

ˆ
Rd

|b||µ|
1 + |x|

1R≤|x|≤2Rdxdr

and the RHS is infinitesimal (asR→ +∞) by the condition
´ t

0

´
Rd
|b||µ|
1+|x|dxdr <

+∞. The proof is complete.

The second Lemma requires instead regularity on the solution to the TE.
For simplicity, we only consider the case b in Lpt (L

p
x) (without taking different

integrability exponents in time and space).

Lemma 4.11. Assume one of the following conditions:

70



• let p be in [1,+∞] and let m̃, m be in [1,+∞] such that 1/m+ 1/m̃+
1/p ≤ 1, and assume b in Lpt (L

p
x,loc), µ in Lm̃t (Lm̃x,loc) ∩ L∞t (Mx) with´ T

0

´
Rd |b|/(1 + |x|)d|µ| < +∞, v in Lmt (W 1,m

x,loc) ∩ L∞t,x;

• assume b in L∞t (Cx), µ in L∞t (Mx) with
´ T

0

´
Rd |b|/(1+ |x|)d|µ| < +∞,

v in L1
t (W

1,∞
x,loc) ∩ L∞t,x.

Then conditions (4.7) and (4.8) hold, so, if condition 1 in 4.1 also holds,
(µ, v) is a duality pair.

Proof. We start with the commutator, first in the case b in Lpt (L
p
x,loc), L

m̃
t (Lm̃x,loc).

Using the regularity of v, we write it as

ˆ t

0

ˆ
Rd

ˆ
Rd
µ(x)(b(x)− b(y)) · ∇v(y)ρε(x− y)χR(x)dxdydr,

that is, with the change of variable z = ε−1(x− y),

ˆ t

0

ˆ
Rd

ˆ
Rd
µ(x)(b(x)− b(x− εz)) · ∇v(x− εz)ρ(z)χR(x)dxdzdr.

For p < +∞, Hölder inequality gives∣∣∣∣∣
ˆ t

0

ˆ
Rd

ˆ
Rd
µ(x)(b(x)− b(x− εz)) · ∇v(x− εz)ρ(z)χR(x)dxdzdr

∣∣∣∣∣
≤
ˆ
Rd
‖µ‖Lm̃t (Lm̃x,B2R

)‖b(·)− b(· − εz)‖Lpt (Lpx,B2R
)‖∇v(· − εz)‖Lmt (Lmx,B2R

)ρ(z)dz.

Since v is in Lmt (W 1,m
x,loc), by continuity of translations in Lpx and dominated

convergence theorem (in a way similar to the previous proof), this term tends
to 0 as ε→ 0. For p = +∞ and m̃ < +∞, we split the commutator in

ˆ t

0

ˆ
Rd

ˆ
Rd
µ(x)(b(x)− b(x− εz)) · ∇v(x− εz)ρ(z)χR(x)dxdzdr

=

ˆ t

0

ˆ
Rd

ˆ
Rd
µ(x)(b(x)− b(x− εz)) · ∇v(x)ρ(z)χR(x)dxdzdr+

+

ˆ t

0

ˆ
Rd

ˆ
Rd
µ(x)(b(x)− b(x− εz)) · ∇(v(x− εz)− v(x))ρ(z)χR(x)dxdzdr

For the first addend,
ˆ
Rd

(b(x)− b(x− εz))ρ(z)dz =

ˆ
Rd

(b(x)− b(x− y))ρε(y)dy
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goes to 0 for a.e. x, since the convolution of an L∞ function with any mollifier
converges to the function a.e.. So the first attend tends to 0 by dominated
convergence theorem. For the second addend, by Hölder inequality we bound
it with∣∣∣∣∣
ˆ t

0

ˆ
Rd

ˆ
Rd
µ(x)(b(x)− b(x− εz)) · ∇(v(x− εz)− v(x))ρ(z)χR(x)dxdzdr

∣∣∣∣∣
≤ 2

ˆ
Rd
‖µ‖Lm̃t (Lm̃x,B2R

)‖b‖L∞t (L∞x,B2R+1
)‖∇v(· − εz)−∇v(·)‖Lmt (Lmx,B2R

)ρ(z)dz,

which goes to 0 by continuity of translations in Lmx,B2R
and dominated conver-

gence theorem. This proves convergence to 0 of the commutator for p = +∞
and m̃ < +∞. Finally, if p = +∞ and m̃ = +∞ (which forces m = 1), we
change variable x′ = x− εz and we proceed as in the previous case (m̃ finite)
but exchanging the roles of v and µχR. Condition (4.7) is proved under the
first assumption.

In the case b in L∞t (Cx), µ in L∞t (Mx), proceeding as before (replacing
µ(x)dx with µ(dx)), we write the commutator as

ˆ t

0

ˆ
Rd

ˆ
Rd

(b(x)− b(x− εz)) · ∇v(x− εz)ρ(z)χR(x)µ(dx)dzdr (4.10)

Exchanging the order of integration and applying Hölder inequality, we get∣∣∣∣∣
ˆ t

0

ˆ
Rd

ˆ
Rd

(b(x)− b(x− εz)) · ∇v(x− εz)ρ(z)χR(x)µ(dx)dzdr

∣∣∣∣∣
≤
ˆ t

0

ˆ
Rd

(ˆ
Rd
|b(x)− b(x− εz)|ρ(z)dz

)
‖∇v(x− ε·)‖L∞z χR(x)|µ|(dx)dr

≤ ‖∇v‖L∞x,B2R+1

ˆ t

0

ˆ
Rd

(ˆ
Rd
|b(x)− b(x− εz)|ρ(z)dz

)
χR(x)|µ|(dx)dr,

where we have used the fact that, for every x, ‖∇v(x − ε·)‖L∞z χR(x) ≤
‖∇v‖L∞x,B2R+1

. Since b is in L∞t (Cx), for every t in a full-measure set F

(independent of x), for every x, by dominated convergence theorem,ˆ
Rd
|b(x)− b(x− εz)|ρ(z)dz → 0.

Since v is in L1
t (W

1,∞
x,loc), by dominated convergence theorem (in x before and

in t then), we get that (4.10) tends to 0. Condition (4.7) is proved also in
this case.

Condition (4.8) is easily verified as in the proof of the previous Lemma.
The proof is complete.
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4.4 Regularity implies well-posedness

In the previous section we have seen that the existence of a solution to the TE
with Sobolev regularity gives uniqueness for the CE among Lm̃ solutions, and
that this uniqueness implies uniqueness among Lagrangian flows. We also
have seen that such a regular solution to the TE exists if we have suitable
a priori estimates, and that these estimates give stability of the solution.
These two facts give a strategy to prove well-posedness, starting from Sobolev
a priori estimates on the TE. We summarize this strategy in the following
theorem. Recall that a Banach space V , contained in some Banach space of
functions (or measures) U , has C∞x,c (resp. Ct(C

∞
x,c)) as a U -mildly dense set

if C∞x,c (resp. Ct(C
∞
x,c)) is contained in V and, for every f in V , there exists

a sequence (fn)n in C∞x,c (resp. in Ct(C
∞
x,c)) which converges to f in U and is

bounded in V .
From now on, we always assume that the vector field b has at most linear

growth, namely Condition 2.1.

Theorem 4.12. Let p be in ]1,+∞[ and let m, m̃ be in ]1,+∞[ such that
1/m+ 1/m̃+ 1/p ≤ 1. Let V be a Banach space, contained in Lpt (L

p
x,loc) and

having Ct(C
∞
x,c) as a Lpt (L

p
x,loc)-mildly dense subset. Let V0 be a normed space

contained in Mx, having C∞x,c as a Mx-mildly dense subset, stable under the
operations µ 7→ µ+, µ 7→ µ− and with V0 ∩ L1

x dense in L1
x. Assume the

following conditions:

• A priori estimates for the STE: for every R > 0, there exists a locally
bounded function CSTE : [0,+∞[×[0,+∞[→ [0,+∞[ such that, for
every b in Ct(C

∞
x,c), for every final time t and every final datum ϕ in

C∞x,c, the corresponding classical solution v = vb,t,ϕ to the STE satisfies

sup
s∈[0,t]

E‖vs‖mW 1,m
x,BR

≤ CSTE(‖b‖V , ‖ϕ‖C2
b
). (4.11)

• A priori estimates for the SCE: for every R > 0, there exists a locally
bounded function CSCE : [0,+∞[×[0,+∞[→ [0,+∞[ such that, for
every b in Ct(C

∞
x,c), for every initial time s and every initial datum

µs in C∞x,c, the corresponding classical solution µ = µb,s,µs to the SCE
satisfies

E‖µ‖m̃Lm̃t (Lm̃x,BR
) ≤ CSCE(‖b‖V , ‖µs‖V0). (4.12)

Then well-posedness holds for b in V , in the following sense:

1. Well-posedness for the SCE: For every b in V , for every s and every
µs in V0, there exists a F-adapted distributional solution µ = µb,s,µs
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to the SCE in the class Lm̃t,ω(Lm̃x,loc), which is unique in the path-by-
path sense in the class Lm̃t (Lm̃x,loc). Furthermore, if (bn)n converges to

b in Lm̃
′

t (Lm̃
′

x,loc) and is bounded in V and if (µns )n is a sequence in V0

converging weakly-* to µs, then (µb
n,s,µn0 )n converges weakly to µb,s,µs in

Lm̃t,ω(Lm̃x,BR), for every R > 0.

2. Well-posedness and regularity for the STE: For every b in V , for every
t and every final ϕ in C2

b , there exists a F-adapted differential solution
v = vb,t,ϕ to the TE in the class L∞s (Lmω (W 1,m

x,loc)), which is unique in

the path-by-path sense in the class Lms (W 1,m
x,loc). Furthermore, if (bn)n

converges to b in Lm
′

t (Lm
′

x,loc) and is bounded in V and if (ϕn)n is a se-

quence in C2
b converging weakly to ϕt in Lmx,loc, then (vb

n,ϕn)n converges

weakly to vb,t,ϕ in Lms,ω(W 1,m
x,BR

), for every R > 0.

3. Well-posedness and regularity for the SDE: For every b in V , for every
s and every µs in V0 ∩Mx,+, there exists a Lm̃t (Lm̃x,loc)-Lagrangian flow

X = Xb solving the SDE and starting from µs; this flow is unique in
the path-by-path sense in the class of Lm̃t (Lm̃x,loc)-Lagrangian flow. This

flow is also in L∞t (Lm̃ω (W 1,m̃
x,loc)). Furthermore, if (bn)n converges to b

in Lpt (L
p
x,loc) and is bounded in V , then (Xbn)n converges to Xb, in the

sense of convergence of µnt = (Xbn

s,t)#µs to µt = (Xb
s,t)#µs (as solution

to the SCE).

4. Representation formulae: For every s < t, for every ϕ in C2
b , for every

µs in V0, for a.e. ω, it holds

µs,µst = (Xs,t)#µs, (4.13)

vt,ϕs = ϕ(Xs,t), (4.14)

where µ and v are the time weakly-* continuous versions (as from 3.13
and 3.15).

Remark 4.13. Here and in the following, the a priori Sobolev estimates on
the STE (or on the rTE) can be easily replaced by the corresponding Sobolev
estimates on the SDE (or on the rDE), by the correspondence between the
two equations in the regular setting (Proposition 3.18).

Proof. The result follows from the previous lemmata. Precisely:

1. Existence of a differentiable solution v for the STE and existence of a
distributional solution µ for the SCE follow from the hypotheses (4.12)
and (4.11) and the stability results 3.39 and 3.47 (together with 3.42).
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Moreover, if µ0 is non-negative, µ takes values in the space of non-
negative measures. Thanks to Lemmata 3.14 and 3.12, for fixed initial
and final data µs and vt, µ̃ and ṽ also satisfy resp. the rCE and the rTE
for a.e. ω (where the exceptional set in Ω may depend on the initial
and final data, on the initial and final times and on the specific version
of µ and v chosen).

2. Path-by-path uniqueness for the SCE, i.e. uniqueness (for a.e. ω) of
the rCE, follows from existence for the rTE and the duality method.
Precisely, fix the initial time s. The estimate (4.11) together with
Lemma 3.14 implies the existence of a countable set F dense in [s, T ],
a countable set D dense in C2

b and a full-measure set Ω1 in Ω such
that, for every t in F and every ϕ in D, for every ω in Ω1, ṽb,t,ϕ is in
Lmr (W 1,m

x,loc). By Lemma 4.11 applied to the rCE and the rTE, for every
ω in Ω1, for any solution µ̃ to the rCE at ω fixed, (µ̃, ṽ) is a dual pair.
Hence we can apply Proposition 4.3 and Remark 4.4 to the rCE and
the rTE (notice that, for fixed ω, ṽ has ϕ̃ as final datum, which however
is still in a countable dense set): uniqueness for µ̃ in Lm̃t (Lm̃x,loc) holds
for every ω in Ω1 and for every initial datum µ̄s in Mx.

3. Path-by-path uniqueness for the STE follows similarly, using Proposi-
tion 4.6 and Remark 4.7 and the density of V0 ∩ L1

x in L1
x.

4. Existence and uniqueness for Lagrangian flows solving the rDE, for
a.e. ω, and the representation formula (4.13) for the SCE follow from
Theorem 3.24. Precisely, for every µs in Mx,+, existence of a non-
negative solution for the rCE starting from µ̃s and uniqueness from
any initial datum, for a.e. ω, imply, via Theorem 3.24, existence and
uniqueness for the flow X̃ω solving the rCE and starting from µs, for
a.e. ω. The representation formula (3.11), applied to the rCE (and
extended to initial signed measure), gives the desired formula (4.13).
Mind that the family of Lagrangian flows X̃ω, built in this way, may
not be measurable in ω. For this, we will build a modification which is
measurable and adapted.

5. Stability for the SCE and stability for the STE follow from path-by-
path uniqueness for the SCE and the STE and the stability results 3.39
and 3.47 (for any limiting point µ of the SCE, then µ̃ satisfies the rCE
and is therefore unique).

6. The representation formula (4.14) for the STE follows the representa-
tion formulae (4.4) and (4.13). Indeed, by existence for the rCE, there
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exists a countable set D′ dense in C∞x,c and a full-measure set Ω1 in Ω

such that, for every µs in D′, µ̃b,s,µst is in Lms (W 1,m
x,loc) and uniqueness

holds for the rCE at ω fixed in Ω1; we can also assume that ṽb,t,ϕs is in
Lms (W 1,m

x,loc) for every ω in Ω1. Hence we can apply the representation
formula (4.4), which gives the desired formula (4.14) for every ω in Ω1.

7. Regularity for the Lagrangian flow follow from Sobolev regularity of vs
(which holds at every s because of Lemma 3.43) and the representation
formula 4.14. Stability for the flow is an immediate consequence of
stability for the SCE.

8. The adaptedness property follows from adaptedness for the STE and
the representation formula (4.14). To show this, we fix s and we use v to
build a version X̄ of Xω which is measurable in (t, x, ω) and actually
adapted. Fix t in a countable dense set F of [s, T ], containing the
dyadic numbers. The representation formula (4.14) links the map Xs,t

with the solution vt,ϕs to the STE. We claim that this solution is, up to
identification, B(Rd) ⊗ Fs,t measurable. Indeed the map (r, ω) 7→ vωr
is weakly-* progressively measurable (as L∞x valued map, where we
identify the function vωr with its equivalence class), therefore ω 7→ vωr
is weakly-* Fr,t-measurable for a.e. r and so for every r, since v is the
weakly-* continuous version (and the filtration is left continuous in r);
in particular, ω 7→ vωt is in L2(Ω,Fs,t;L2

x) (we use L2 since this is a
reflexive space). By Lemma A.6, there exists a version of vt (which we
will continue calling it vt) which is B(Rd)⊗Fs,t-measurable and in L∞ω,x:
we have proved the claim. For this version, the representation formula
(4.14) still holds for a.e. ω (the null set possibly depending on ϕ), for
a.e. x (possibly depending on ω). Keeping this version of vt, we define
the version of Xs,t as

X̄s,t = lim
n
vt,ϕns

for (x, ω) such that the limit exists (and 0 where the limit does not
exist), where (ϕn)n is a sequence of C2

x,b functions with ϕn(x) = x on
Bn. By the representation formula (4.14), the limit exists for every
(x, ω) in a full measure set At (vn being definitively constant) and it
is equal to X on a full measure subset Bt,ω of Rd, for every ω in a full
measure set Ω1,t. By a diagonal argument, we can choose A, Ω1 and
(for ω in Ω1) Bω independent of t, for any t in F . Finally, in order to
define X̄ for any t, we take

X̄n
s,t(x, ω) =

N(n)∑
k=1

1[tnk ,t
n
k+1[∩[s,T ](t)X̄s,tnk

(x, ω),
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where tnk = k2−n, and we define

X̄s,t(x, ω) = lim
n
X̄n
s,t(x, ω)

for (t, x, ω) such that the limit exists (and 0 where the limit does not
exist). Using the fact that X̄ is a version of X for every t in F and
that, for every ω, for a.e. x, Xω has continuous trajectories, we get
that the limit exists for a.e. (t, x, ω) and is a version of X; moreover it
has continuous paths for a.e. (x, ω). It remains to prove adaptability.
For t in F , X̄s,t is Ld⊗P -measurable (and so µs⊗P -measurable) with
respect to B(Rd) × Fs,t, because pointwise limit of random variables
which are measurable with respect to B(Rd)×Fs,t. The same holds for
a general t, by continuity of the paths of X̄ and right continuity of the
filtration. This implies adaptability X̄ in the sense of Definition 3.25.

In the case of a priori estimates in W 1,∞
x on the transport equation, we

get a stronger path-by-path uniqueness result. We state this result only for
the SDE (for simplicity) but in a strong assumption on the classical estimates
on the STE, which hold now for every final datum, every initial time and
every final time, independently of ω (outside a P -null set). This assumption
will be verified in at least one application.

Theorem 4.14. Assume that

• V , V̄ are Banach spaces contained continuously in Ct(Cx,lin) such that,
for every b in V , b̃ is in V̄ for a.e. ω. The space V̄ has Ct(C

∞
x,c) as a

Ct(Cx,loc)-mildly dense subset.

• for a.e. ω, a priori estimates for the rTE: for every R > 0, there exists a
locally bounded function CrTE : [0,+∞[×[0,+∞[→ [0,+∞[ such that,
for every b̃ in Ct(C

∞
x,c), for every final time t and every final datum ϕ̃

in C∞x,c, the corresponding classical solution ṽ to the rTE satisfies

sup
s∈[0,t]

‖ṽb̃,t,ϕ̃s ‖W 1,∞
x,BR

≤ CrTE(‖b̃‖V̄ , ‖ϕ‖C2
b
). (4.15)

Then, for every b in V , for every initial time s ≥ 0, for every initial point
x, existence and path-by-path uniqueness hold for the SDE. Moreover there
exists a version X : [s, T ] × Rd × Ω → Rd of the solution which is locally
Lipschitz continuous in x.
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As we will see from the proof, the set where existence and uniqueness for
the rDE hold is actually independent of x.

Proof. Again the result follows from the previous lemmata. Precisely:

1. For uniqueness, fix the full P -measure set Ω1 such that (4.15) holds.
For each ω in Ω1, the stability results 3.39 and 3.42, adapted to the TE
case and applied to the rTE, give the existence of a L∞t (W 1,∞

x,loc) solution
to the rTE (at ω fixed). Then the duality argument gives path-by-path
uniqueness for ω in Ω1.

2. For existence and regularity for the rDE, fix ω in Ω1. Let (g̃n)n be a
sequence in Ct(C

∞
x,c) converging to b̃ in Ct(Cx,loc) and in Ṽ (therefore

also in Ct(Cx,lin)); let Ỹ n be the flows solutions to the rDEs driven
by g̃n. The uniform bound (4.15) and the uniform boundedness of b̃n

in Ct(Cx,lin) imply that the sequence (Ỹ n)n is uniformly bounded in
W 1,∞
t,x,[0,T ]×BR , for every R > 0. Therefore, by Arzerà-Ascoli theorem,

(Ỹ n)n is precompact in Ct,x,[0,T ]×BR . Moreover, since (g̃n)n converges

locally uniformly to b̃ and b̃ is continuous, any limit point of (Ỹ n)n is a
family of solutions (parameterized by the initial datum x) to the rDE
driven by b̃. By uniqueness of the rDE (for each x), the whole sequence
(Ỹ n)n must converge to the solution X̃ to the rDE in Ct,x,[0,T ]×BR . The

uniform W 1,∞
t,x,[0,T ]×BR bound on (Ỹ n)n implies the Lipschitz regularity

of X̃.

3. For adaptability, let (bn)n be a sequence in Ct(C
∞
x,c) converging to b in

Ct(Cx,loc) and bounded in Ct(Cx,lin) (mind that b̃n might be different
from g̃n, which might not be adapted); let Xn be the adapted stochastic
flows solutions to the rDEs driven by bn. Fix the initial datum x in
Rd. The uniform boundedness of b̃n in Ct(Cx,lin) implies that, for a.e.
ω, (X̃n(x))n is uniformly bounded in W 1,∞

t , therefore it is precompact
in Ct. Moreover, as before, any limit point of (X̃n(x))n is a solution
to the rDE driven by b̃. By uniqueness, the whole sequence (X̃n(x))
converges to X̃(x) in Ct, for a.e. ω. So, since Xn(x) is adapted, also
X(x) is adapted.

4.5 Well-posedness for Sobolev-type drifts

In the case we do not have Sobolev regularity for the solution to the STE,
but we do have Sobolev regularity on the drift, we can still conclude a well-
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posedness result.

Theorem 4.15. Let p, q be in [1,+∞[ and let m̃ be in ]1,+∞[ such that
1/m̃+ 1/(p ∧ q) ≤ 1. Let V be a Banach space, contained in Lm̃

′
t (Lm̃

′

x,loc) and

having Ct(C
∞
x,c) as a Lm̃

′
t (Lm̃

′

x,loc)-mildly dense subset. Let V0 be a normed space
contained in Mx, having C∞x,c as a Mx-mildly dense subset, stable under the
operations µ 7→ µ+, µ 7→ µ− and with V0 ∩ L1

x dense in L1
x. Assume the

following conditions:

• Sobolev regularity of the drift: V is contained continuously in Lqt (W
1,p
x,loc).

• A priori estimates for the SCE: for every R > 0, there exists a locally
bounded function CSCE : [0,+∞[×[0,+∞[→ [0,+∞[ such that, for
every b in Ct(C

∞
x,c), for every initial time s and every initial datum

µs in C∞x,c, the corresponding classical solution µ = µb,s,µs to the SCE
satisfies

E‖µ‖m̃Lm̃t (Lm̃x,BR
) ≤ CSCE(‖b‖V , ‖µs‖V0).

Then well-posedness holds for b in V , in the following sense:

1. Well-posedness for the SCE: For every b in V , for every s and every
µs in V0, there exists a F-adapted distributional solution µ = µb,s,µs

to the SCE in the class Lm̃t,ω(Lm̃x,loc), which is unique in the path-by-

path sense in the class Lq
′

t (Lp
′

x,loc). Furthermore, if (bn)n converges to
b in Lqt (L

p
x,loc) and is bounded in V and if (µns )n is a sequence in V0

converging weakly-* to µs in Mx, then (µb
n,s,µns )n converges weakly to

µb,s,µs in Lm̃t,ω(Lm̃x,BR), for every R > 0.

2. Well-posedness for the STE: For every b in V , for every t and every
final ϕ in C2

b , there exists a F-adapted distributional solution v = vb,t,ϕ

to the TE in the class L∞s,x,ω, which is unique in the path-by-path sense
in the class L∞s,x. Furthermore, if (bn)n converges to b in Lqt (L

p
x,loc) and

is bounded in V and if (ϕn)n is a sequence in C2
b converging weakly to

ϕt in L∞x,loc, then (vb
n,t,ϕn)n converges weakly to vb,t,ϕ in L∞s,x,ω, for every

R > 0.

3. Well-posedness for the SDE: For every b in V , for every s and every µs
in V0∩Mx,+, there exists a Lm̃t (Lm̃x,loc)-Lagrangian flow X = Xb solving
the SDE and starting from µs; this flow is unique in the path-by-path
sense in the class of Lq

′

t (Lp
′

x,loc)-Lagrangian flow. Furthermore, if (bn)n
converges to b in Lm̃

′
t (Lm̃

′

x,loc) and is bounded in V , then (Xbn)n converges

to Xb, in the sense of convergence of µnt = (Xbn

s,t)#µs to µt = (Xb
s,t)#µs

(as solution to the SCE).
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4. Representation formulae: For every s < t, for every ϕ in C2
b , for a.e.

ω, (4.13) and (4.14) hold (where again µ and v are the time weakly-*
continuous versions).

Proof. The proof is similar to that of Theorem 4.12, using Lemma 4.10 in
place of Lemma 4.11 and without regularity for the STE.

Although uniqueness holds also without noise, let us point out two facts:

1. this “deterministic” uniqueness result translates into a path-by-path
uniqueness result;

2. existence holds without requiring boundedness of the divergence of the
drift, which usually is assumed in the deterministic case (more precisely,
boundedness of the negative part of the divergence is required).
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Chapter 5

PDEs: facts and estimates

In this chapter we give some a priori estimates and related results on the
parabolic PDEs associated with the SDE. These will be the basis for our
analysis on regularization by noise.

The results of Section 5.1 go back at least to Krylov [Kry96] and [Kry08]
and are taken, in this form, from [Fla11] and [FF13a]. The content of Sections
5.2 and 5.4 is taken from [MO], the content of Section 5.3 is adapted from
[BFGM14].

5.1 A priori estimates, part I

We start with the simplest parabolic equation, namely the backward heat
equation on Rd

∂tv +
1

2
∆v = f, (5.1)

with fixed final datum vT ≡ 0 at time T . It is well known that, for f in
Ct(C

∞
x,c), there exists a bounded solution v = vf in Ct(C

∞
x ) to the heat

equation. The next result gives parabolic estimates on v in terms of f .

Lemma 5.1. Fix α in ]0, 1[, ε > 0 (smaller than α). There exists C > 0 such
that, for every f in Ct(C

∞
x,c), there exists a solution v to the heat equation

(5.1) (with vT ≡ 0) satisfying

‖v‖Ct(C2+α−ε
x,b ) + ‖v‖

C
1/2
t (C1+α−ε

x,b )
+ ‖v‖C1

t (Cα−εx,b ) ≤ C(‖f‖Ct(Cαx,b).

Proof. The Ct(C
α+2−ε
x,b ) and the C1

t (Cα−ε
x,b ) are for example in [Fla11], Chap-

ter 2 Theorem 2.3. The C
1/2
t (Cα+1−ε

x,b ) estimate follows by an interpolation
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argument. Indeed, by Proposition A.11 in the Appendix, we get

‖vt − vs‖C1+α−ε
x,b

≤ C‖vt − vs‖1/2

Cα−εx,b

‖vt − vs‖1/2

C2+α−ε
x,b

≤ C‖v‖1/2

C1
t (Cα−εx,b )

‖v‖1/2

Ct(C
2+α−ε
x,b )

|t− s|1/2,

which gives the desired C
1/2
t (Cα+1−ε

x,b ) bound.

In the next result we consider a modified version of the backward Kol-
mogorov equation associated with the SDE (on Rd), namely

∂tv + b · ∇v +
1

2
∆v − λv = f, (5.2)

with fixed final datum vT ≡ 0 at time T ; here λ > 0 is a given positive
number, we will keep track of the λ dependence by the notation vλ, when
necessary. Again it is well known that, for b, f in Ct(C

∞
x,c), there exists a

solution v = vb,f in C1
t (C∞x ) to the Kolmogorov equation. Here are the key

parabolic estimates.

Lemma 5.2. Fix p, q satisfying Condition 2.3. Then there exists a locally
bounded function C : [0,+∞[×[1,+∞[→ [0,+∞[ such that, for every b, f in
Ct(C

∞
x,c) and for every λ ≥ 1, there exists a solution v to (5.2) satisfying

‖vλ‖Lqt (W 2,p
x ) + ‖vλ‖Ct(C1

x,b)
≤ C(‖b‖Lqt (Lpx), λ)‖f‖Lqt (Lpx).

Moreover we have, for any c > 0, as λ→ +∞,

sup
b,f∈Ct(C∞x,c),‖b‖Lqt (L

p
x)
≤c,‖f‖

L
q
t (L

p
x)
≤c
‖∇vλ‖Ct(Cx,b) → 0.

This result is stated and proved, for example, in [FF13a], Lemma 3.2,
Theorem 3.3 and Lemma 3.4.

5.2 A priori estimates, part II

In this section and in the next one we provide new a priori estimates on
Kolmogorov-like equations. The method (sometimes called energy estimate
method) is to estimate the desired norm of the solution v directly: starting
from the equation and using the chain rule, we get a PDE for vm (or for
|∇v|m), then we take the L2 norm and use a Gronwall-type argument, taking
advantage of the derivative term coming from the Laplacian.
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This section is devoted to the case when divb satisfies an integrability as-
sumption; in this case, we provide Lmx and W 1,2

x estimates for a Kolmogorov-
like equation.

Precisely, we consider the equation

∂tv + b · ∇v + hv =
1

2
∆v, (5.3)

with fixed initial datum v0. This equation covers the cases of Kolmogorov
equation (h = 0) and Fokker-Planck equation (h = divb).

In the following, we assume for simplicity that the supports of b and
h are contained in [0, T ] × BR for some fixed R > 0. We consider the
weight χ = χη,R, strictly positive function in C∞x , with χ ≡ 1 on BR and
χ(x) = (1 + |x|2)η/2 on BR+1, for some real number η. This weight satisfies,
in particular,

|∇χη,R| ≤ Cη,R
χη,R

1 + |x|
1BcR .

Remark 5.3. In the case of v0 in C∞x,c, b and h in Ct(C
∞x, c), the equation

above admits a solution in W 1,m
t (W 2,m

x,χη,R
), for every m in [1,+∞] and for

every weight χη,R, for every real η. The proof of this result is for example in
[BFGM14], Lemma 12 (the result is given for a linear stochastic PDE and
the coefficients are also regular in time, but the proof can be easily adapted
to our case). This justifies the formal computations we will do.

Theorem 5.4. Fix p, q satisfying Condition 2.3, fix m positive integer, fix
R > 0. Then there exists a locally bounded function C : [0,+∞[×[0,+∞[→
[0,+∞[ such that, for every b, h in Ct(C

∞
x,c) with support in BR and for every

v0 in C∞x,c, it holds

‖v‖L∞t (L2m
x,χ) + ‖∇[vm]‖L2

t (L
2
x,χ) ≤ C(‖div(b)‖

L
q/2
t (L

p/2
x,χ)

, ‖h‖
L
q/2
t (L

p/2
x,χ)

)‖v0‖L2m
x,χ
.

Remark 5.5. Since in the first step we will compose v with the power func-
tion, it is convenient to recall a general key property of the Kolmogorov equa-
tion. If v is a regular solution (we always work in the regular setting) and
f : R→ R is a C3

b function, then f(v) satisfies the equation

∂tf(v) + b · ∇f(v) + hf ′(v)v =
1

2
∆f(v)− 1

2
f ′′(v)|∇v|2. (5.4)

This fact follows directly from the formulae

∂tf(v) = f ′(v)∂tv, ∇f(v) = f ′(v)∇v, ∆f(v) = f ′(v)∆v+f ′′(v)|∇v|2. (5.5)
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This property is very close to the renormalization property for the transport
equation (which is the stability of the TE under composition, see Section
4.1): when the Kolmogorov equation is transformed via composition with f ,
it keeps its terms and has an additional penalization in the |∇v|2 term. The
reason for this is that the Kolmogorov equation is the average of the stochastic
transport equation, as one can see from the representation formula for the
solution. Hence, the stability is due to the renormalization property, and the
penalization term is due to the average.

Proof. Step 1: Parabolic equation for vm and weighted L2m equality.
In this step we derive an equation for vm and obtain an L2m equality. Using
the formula (5.4) for f(r) = rm, we get

∂t[v
m] + b · ∇[vm] +mhvm =

1

2
∆[vm]− 1

2
m(m− 1)vm−2|∇v|2.

Multiplying this equation by χvm (using again (5.5)) and integrating (v is in
Lrt (L

r
x,χ) with its first and second derivatives, for every r, by Remark 5.3),

we get

∂t

ˆ
Rd
χv2mdx+

ˆ
Rd
χb · ∇[v2m]dx+m

ˆ
Rd
χhv2mdx

=
1

2

ˆ
Rd
χ∆[v2m]dx− m(2m− 1)

m2

ˆ
Rd
χ|∇[vm]|2dx.

Using integration by parts, we get rid of the term with the Laplacian and we
bring the derivative of v on b:

ˆ
Rd
χv2m

t dx−
ˆ
Rd
χv2m

0 dx+
m(2m− 1)

m2

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr

=

ˆ t

0

ˆ
Rd
χdivbv2mdxdr −m

ˆ
Rd
χhv2mdx+

+

ˆ t

0

ˆ
Rd
∇χ · bv2mdxdr − 1

2

ˆ t

0

ˆ
Rd
∇χ · ∇[v2m]dxdr.

Since χ is 1 on the support of b, we have ∇χ · b ≡ 0. Therefore

ˆ
Rd
χv2m

t dx−
ˆ
Rd
χv2m

0 dx+
m(2m− 1)

m2

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr (5.6)

=

ˆ t

0

ˆ
Rd
χ(−mh+ divb)v2mdxdr −

ˆ t

0

ˆ
Rd
∇χvm · ∇[vm]dxdr.
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The idea is to use now Gronwall lemma to get an estimate of the L2m
x norm

of v. For the addend in the RHS with ∇χ, Young inequality and the fact
|∇χ| ≤ Cχ give, for ε > 0 (to be fixed later),∣∣∣∣ˆ

Rd
∇χvm · ∇[vm]dx

∣∣∣∣ ≤ C

ˆ
Rd

(ε−1/2χ1/2vm)(ε1/2χ1/2|∇[vm]|)dx (5.7)

≤ Cε

ˆ
Rd
χv2mdx+ ε

ˆ
Rd
χ|∇[vm]|2dx.

Now we have to estimate the term with −mh+ divb in terms of this norm.
Step 2.1: Estimating the term with −mh+divb, the case p = +∞.

For simplicity of notation, we deal only with the term divb, the estimate with
mh being analogous. We start with the easy case divb in L∞. In this case
we obtain ∣∣∣∣ˆ

Rd
χdivbv2mdx

∣∣∣∣ ≤ ‖divb‖L∞x
ˆ
Rd
χv2mdx,

and so ∣∣∣∣∣
ˆ t

0

ˆ
Rd
χdivbv2mdx

∣∣∣∣∣ ≤
ˆ t

0

‖divb‖L∞x
ˆ
Rd
χv2mdxdr.

Step 2.2: Estimating the term with −mh+divb, the case p < +∞.
In the case p < +∞, calling p̃ = p/2, Hölder inequality implies∣∣∣∣ˆ

Rd
χdivbv2mdx

∣∣∣∣ ≤ ‖divb‖Lp̃x‖χ
1/2vm‖2

L2p̃′
x
,

where we have used the fact that χ ≡ 1 on the support on divb. Hence
we have to bound ‖χvm‖2

L2p̃′
x

, which is a stronger norm than the desired

‖χ1/2vm‖2
L2
x
. However, from (5.6), we control also the L2 norm of χ∇[vm].

So we can use this control, via Sobolev-Gagliardo-Nirenberg inequality, to
estimate this higher (2mp̃′) integrability of v.

Lemma 5.6. For every ϕ in C∞x ∩W 1,2
x , it holds

‖χ1/2ϕ‖
L2p̃′
x
≤ C‖χ1/2ϕ‖1−a

L2
x
‖χ1/2∇ϕ‖aL2

x
+ C‖χ1/2ϕ‖L2

x

where a = d/(2p̃).

Proof. The condition p̃ = p/2 > d/2∨1 (implied by Condition 2.3) guarantees
that we can apply Sobolev-Gagliardo-Nirenberg inequality, so that

‖χ1/2ϕ‖
L2p̃′
x
≤ C‖χ1/2ϕ‖1−a

L2
x
‖∇[χ1/2ϕ]‖aL2

x
,
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where 0 < a < 1 is given by

1

2p̃′
= a

(
1

2
− 1

d

)
+ (1− a)

1

2
,

that is, after easy computations, a = d/(2p̃). Since ∇[χ1/2ϕ] = ∇[χ1/2]ϕ +
χ1/2∇ϕ and |∇[χ1/2]| = χ−1/2|∇χ|/2 ≤ Cχ1/2, we get the thesis.

From this Lemma, we get∣∣∣∣ˆ
Rd
χdivbv2mdx

∣∣∣∣
≤ C‖divb‖Lp̃x‖χ

1/2vm‖2(1−a)

L2
x
‖χ1/2∇[vm]‖2a

L2
x

+ C‖divb‖Lp̃x‖χ
1/2vm‖2

L2
x
.

To deal with the second addend in the RHS, we use Young inequality with
a penalization term of order ε, namely

fg ≤ Cεf
1/(1−a) + εg1/a,

where Cε > 0 is some constant depending on ε and a; we will fix ε later.
Applying this inequality to f = ‖divb‖Lpx‖χ1/2vm‖2(1−a)

L2
x

, g = ‖χ1/2∇[vm]‖2a
L2
x
,

we get∣∣∣∣ˆ
Rd

divbv2mdx

∣∣∣∣
≤ Cε‖divb‖1/(1−a)

Lp̃x
‖χ1/2vm‖2

L2
x

+ ε‖χ1/2∇[vm]‖2
L2
x

+ C‖divb‖Lp̃x‖χ
1/2vm‖2

L2
x
.

Putting all together, we end with∣∣∣∣∣
ˆ t

0

ˆ
Rd

divbv2mdx

∣∣∣∣∣ (5.8)

≤ Cε

ˆ t

0

(‖divb‖p/(p−d)

Lp̃x
+ ‖divb‖Lp̃x)

ˆ
Rd
χv2mdxdr + ε

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr,

which includes also the case p = +∞.
Step 3: Conclusion via Gronwall lemma. Putting together (5.6),

(5.7) and (5.8), we obtain∣∣∣∣ˆ
Rd
χv2m

t dx−
ˆ
Rd
χv2m

0 dx

∣∣∣∣+
m(2m− 1)

m2

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr

≤ Cε

ˆ t

0

ˆ t

0

(1 + ‖ −mh+ divb‖p/(p−d)

Lp̃x
+ ‖ −mh+ divb‖Lp̃x)

ˆ
Rd
χv2mdxdr+

+ ε

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr.
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Now we choose ε = 1/2 < 1 ≤ m(2m− 1)/m2. So we have∣∣∣∣ˆ
Rd
χv2m

t dx−
ˆ
Rd
χv2m

0 dx

∣∣∣∣+
1

2

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr

≤ C

ˆ t

0

(1 + ‖ −mh+ divb‖p/(p−d)

Lp̃x
+ ‖ −mh+ divb‖Lp̃x)

ˆ
Rd
v2mdxdr.

Condition 2.3 ensures the time integrability of ‖divb‖p/(p−d)

Lpx
, so we can apply

Gronwall lemma and get
ˆ
Rd
χv2m

t dx

≤
ˆ
Rd
χv2m

0 dx exp

[
C

ˆ t

0

(1 + ‖ −mh+ divb‖p/(p−d)

Lp̃x
+ ‖ −mh+ divb‖Lp̃x)dr

]

and also
ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr

≤
ˆ
Rd
χv2m

0 dx · 2C
ˆ t

0

(1 + ‖ −mh+ divb‖p/(p−d)

Lp̃x
+ ‖ −mh+ divb‖Lp̃x)dr·

· exp

[
C

ˆ t

0

(1 + ‖ −mh+ divb‖p/(p−d)

Lp̃x
+ ‖ −mh+ divb‖Lp̃x)dr

]
.

The proof is complete.

5.3 A priori estimates, part III

In this section we use a similar method to the previous section, but for a
slightly more general Kolmogorov-type equation and with different hypothe-
ses on the coefficients. Before giving the setting and the result, we give a
short motivation for this equation. Let v be the solution to the Kolmogorov
equation (5.3) and assume for simplicity that we are in (spatial) dimension 1
and that h = 0. Then, differentiating the equation in x, we get the following
PDE for ∂xv:

∂t[∂xv] + b∂x[∂x]v + ∂xb∂xv =
1

2
∂2
x[∂xv],

with fixed initial condition ∂xv0. Hence we see that ∂xv satisfies a PDE
which is the Kolmogorov equation, plus the term ∂xb∂xv. In more than
one dimensions, we get a system of PDEs for ∇v = (∂x1v, . . . ∂xdv), but the
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structure is always of a Kolmorogov equation with additional terms of the
form ∂xib

j∂xjv. In Chapter 12, we will see that similar equations or systems
appear as average of certain SPDEs. The most important example is given by
the derivative of the solution to the STE, another example is the stochastic
vector advection equation (a linearized version of the 3D stochastic Euler
equation with multiplicative noise).

For this reason, we introduce the following Kolmogorov-type equation:

∂tv + b · ∇v + (divg + h)v =
1

2
∆v, (5.9)

with given initial datum v0, and we prove a priori Lm estimates on the
solution.

We require the Ladyzhenskaya-Prodi-Serrin integrability assumption on
b, as in Condition 2.4, but no differentiability assumptions; the same for g,
which should be thought morally as b, and h2. We also allow the vector fields
to have a regular component but possibly with linear growth, in the line of
Condition 2.4. We consider a weight χ, strictly positive C∞x function, with
at most polynomial growth, with the property that, for some C > 0,

|∇χ(x)| ≤ C
χ(x)

1 + |x|
, ∀x ∈ Rd.

The typical example of such a χ is

χη(x) = (1 + |x|2)η/2

for some real number η.

Theorem 5.7. Fix p, q satisfying Condition 2.4, fix m positive integer.
Write b = b(1) + b(2), g = g(1) + g(2), where all the addends are functions in
Ct(C

∞
x,c). Then there exists a locally bounded function C : [0,+∞[5→ [0,+∞[

such that, for every b(j), g(j), j = 1, 2, h in Ct(C
∞
x,c) and for every v0 in C∞x,c,

it holds

sup
t∈[0,T ]

ˆ
Rd
χ(x)v2m

t dx ≤ C

ˆ
Rd
χ(x)v2m

0 dx,

where

C = C(‖b(1)‖Lqt (Lpx), ‖g(1)‖Lqt (Lpx), ‖h‖Lq/2t (L
p/2
x )

, ‖b(2)‖L1
t (C

1
x,lin), ‖g(2)‖L1

t (C
1
x,lin)).

Remark 5.8. The Kolmogorov-type PDE (5.9) enjoys a similar property to
(5.4), namely

∂tf(v) + b · ∇f(v) + (divg + h)f ′(v)v =
1

2
∆f(v)− 1

2
f ′′(v)|∇v|2. (5.10)
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Moreover, as in the previous Section, in the case of regular compactly sup-
ported coefficients and initial datum, the PDE (5.9) admits a solution in
W 1,m
t (W 2,m

x,χη), for every m in [1,+∞] and for every weight χη, for every real
η, see again [BFGM14], Lemma 12. This justifies the computations below.

Proof. Step 1: Parabolic equation for vm and weighted L2m equality.
We derive an equation for vm and obtain a weighted L2m

x equality. Using the
formula (5.10) for f(r) = rm, we get

∂t[v
m] + b · ∇[vm] +m(divg + h)vm =

1

2
∆[vm]− 1

2
m(m− 1)vm−2|∇v|2.

Multiplying this equation by χvm and integrating, we get

∂t

ˆ
Rd
χv2mdx+

ˆ
Rd
χb · ∇[v2m]dx+ 2m

ˆ
Rd
χ(divg + h)v2mdx

=
1

2

ˆ
Rd
χ∆[v2m]dx− m(2m− 1)

m2

ˆ
Rd
χ|∇[vm]|2dx.

Using integration by parts, we bring the derivative of g(1) on vm and the
derivative of vm on b(2) and on χ:

ˆ
Rd
χv2m

t dx−
ˆ
Rd
χv2m

0 dx+
m(2m− 1)

m2

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr

= 2

ˆ t

0

ˆ
Rd
χ(−b(1) +mg(1))vm · ∇[vm]dxdr+

− 2

ˆ t

0

ˆ
Rd
χmhv2mdxdr + 2

ˆ t

0

ˆ
Rd
∇χ · g(1)v2mdxdr+

+ 2

ˆ t

0

ˆ
Rd
χ(divb(2) −mdivg(2))v2mdxdr + 2

ˆ t

0

ˆ
Rd
∇χ · b(2)v2mdxdr+

−
ˆ t

0

ˆ
Rd
∇χvm · ∇[vm]dxdr.
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Since |∇χ(x)| ≤ Cχ(x)(1 + |x|)−1 ≤ Cχ(x), we get

ˆ
Rd
χv2m

t dx−
ˆ
Rd
χv2m

0 dx+
m(2m− 1)

m2

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr (5.11)

≤ 2

ˆ t

0

ˆ
Rd
χ(|b(1)|+m|g(1)|)|v|m|∇[vm]|dxdr+

+ 2

ˆ t

0

ˆ
Rd
χ(m|h|+ |g(1)|)v2mdxdr+

+ 2

ˆ t

0

ˆ
Rd
χ

(
|divb(2)|+m|divg(2)|+ C

|b(2)|
1 + |x|

)
v2mdxdr+

+ C

ˆ t

0

ˆ
Rd
χ|v|m|∇[vm]|dxdr.

The idea is to use now Gronwall lemma to get an estimate of the L2m norm
of v. For this we have to estimate the “irregular” terms with |b(1)|+m|g(1)|
and m|h|+ |g(1)| and the “regular” term with |divb(2)|+m|divg(2)|+m|h|+
C|b(2)|/(1 + |x|).

Step 2: estimating the regular terms. The last term in (5.11) is
estimated easily via Young inequality: for every ε > 0,

ˆ t

0

ˆ
Rd
χ|v|m|∇[vm]|dxdr ≤ Cε

ˆ t

0

ˆ
Rd
χv2mdxdr + ε

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr.

For the regular term, Hölder inequality gives

ˆ t

0

ˆ
Rd
χ

(
|divb(2)|+m|divg(2)|+ C

|b(2)|
1 + |x|

)
v2mdxdr

≤
ˆ t

0

∥∥∥∥∥|divb(2)|+m|divg(2)|+ C
|b(2)|

1 + |x|

∥∥∥∥∥
L∞x

ˆ
Rd
χv2mdxdr.

Step 3.1: estimating the irregular terms, the easy case p = ∞.
For the irregular terms, we start with the easiest, yet important, case: p =∞.
We put g(1) = 0 for simplicity of notation, the general case being analogous.
Here, for the term with b(1), Hölder inequality gives

ˆ t

0

ˆ
Rd
χ|b(1)||v|m|∇[vm]|dxdr ≤

ˆ t

0

‖b(1)‖L∞x ‖χ
1/2vm‖L2

x
‖χ1/2∇[vm]‖L2

x
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and then Young inequality givesˆ t

0

ˆ
Rd
χ|b(1)||v|m|∇[vm]|dxdr

≤ Cε

ˆ t

0

‖b(1)‖2
L∞x

ˆ
Rd
χv2mdxdr + ε

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr.

For the term with h, we getˆ t

0

ˆ
Rd
χm|h|v2mdxdr ≤ m

ˆ t

0

‖h‖L∞x
ˆ
Rd
χv2mdxdr.

Step 3.2: estimating the irregular terms, the general case. In the
case p < +∞, for the term with b(1) (again we put g(1) = 0 for simplicity),
Hölder inequality (applied twice) impliesˆ t

0

ˆ
Rd
χ|b(1)||v|m|∇[vm]|dxdr ≤

ˆ t

0

‖χ1/2|b(1)||v|m‖L2
x
‖χ1/2|∇[vm]|‖L2

x
dr

≤
ˆ t

0

‖b(1)‖Lpx‖χ
1/2vm‖

L2p̃′
x
‖χ1/2|∇[vm]|‖L2

x
dr, (5.12)

where p̃ = p/2. Hence we have to bound ‖χ1/2|v|m‖
Lp̃
′
x

, a stronger norm

than the desired ‖χ1/2vm‖2
L2
x
. As in the previous Section, from (5.6), we

control also the L2 norm of χ∇[vm] and we can use this control, via Sobolev-
Gagliardo-Nirenberg inequality, to estimate this higher p̃′ integrability of
|v|m.

Indeed, we can Lemma 5.6, which can be extended to the case p = d. We
get from (5.12)ˆ t

0

ˆ
Rd
χ|b(1)||v|m|∇[vm]|dxdr

≤ C

ˆ t

0

‖b(1)‖Lpx‖χ
1/2vm‖1−d/p

L2
x
‖χ1/2|∇[vm]|‖1+d/p

L2
x

dr+

+ C

ˆ t

0

‖b(1)‖Lpx‖χ
1/2vm‖L2

x
‖χ1/2|∇[vm]|‖L2

x
dr.

First suppose p > d, i.e. a = d/p < 1. Young inequality applied to the first
addend of the RHS, with exponents 2/(1 − a), 2/(1 + a), gives, for every
ε > 0, ˆ t

0

‖b(1)‖Lpx‖χ
1/2vm‖1−d/p

L2
x
‖χ1/2|∇[vm]|‖1+d/p

L2
x

dr

≤ Cε

ˆ t

0

‖b(1)‖2p/(p−d)

Lpx

ˆ
Rd
χv2mdxdr + ε

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr.
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Similarly, Young inequality applied to the second addend, with exponents 2,
2, gives

ˆ t

0

‖b(1)‖Lpx‖χ
1/2vm‖L2

x
‖χ1/2|∇[vm]|‖L2

x
dr

≤ Cε

ˆ t

0

‖b(1)‖2
Lpx

ˆ
Rd
χv2mdxdr + ε

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr.

We end (in the case p > d) with

ˆ t

0

ˆ
Rd
χ|b(1)||v|m|∇[vm]|dxdr

≤ Cε

ˆ t

0

(‖b(1)‖2p/(p−d)

Lpx
+ ‖b(1)‖2

Lpx
)

ˆ
Rd
χv2mdxdr + ε

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr.

For p = d ≥ 3 (which implies a = 1), we cannot use Young inequality for the
first addend, since the term ‖χ1/2zm‖ does not appear. In this case we have
by Hölder inequality

ˆ t

0

ˆ
Rd
χ|b(1)||v|m|∇[vm]|dxdr

≤ C(‖b(1)‖L∞t (Lpx) + ε)

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr+

+ Cε‖b(1)‖2
L∞(Lpx)

ˆ t

0

ˆ
Rd
χv2mdxdr.

For the term with mh+ |g(1)|, we put again g(1) = 0: the estimate with h
can be applied also to g(1), replacing p with 2p and q with 2q (since 2p and
2q also satisfy Condition 2.4). Hölder inequality gives

ˆ t

0

ˆ
Rd
χ|h|v2mdxdr ≤

ˆ t

0

‖h‖Lp̃x‖χ
1/2vm‖2

L2p̃′
x

dr,

where p̃ = p/2. Applying again Lemma 5.6, we get

ˆ t

0

ˆ
Rd
χ|h|v2mdxdr

≤
ˆ t

0

‖h‖
L
p/2
x
‖χ1/2vm‖2(1−d/p)

L2
x

‖χ1/2|∇[vm]|‖2d/p

L2
x

dr +

ˆ t

0

‖h‖
L
p/2
x
‖χ1/2vm‖2

L2
x
dr.
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First suppose p > d (i.e. a = d/p < 1). Young inequality applied to the first
addend of the RHS, with exponents 1/(1− a), 1/a, gives, for every ε > 0,

ˆ t

0

‖h‖
L
p/2
x
‖χ1/2vm‖2(1−d/p)

L2
x

‖χ1/2|∇[vm]|‖2d/p

L2
x

dr

≤ Cε

ˆ t

0

‖h‖p/(p−d)

L
p/2
x

ˆ
Rd
χv2mdxdr + ε

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr.

We end (in the case p > d) with

ˆ t

0

ˆ
Rd
χ|h|v2mdxdr

≤ Cε

ˆ t

0

(‖h‖p/(p−d)

L
p/2
x

+ ‖h‖
L
p/2
x

)

ˆ
Rd
χv2mdxdr + ε

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr.

For p = d ≥ 3 (which implies a = 1), we have by Hölder inequality

ˆ t

0

ˆ
Rd
χ|h|v2mdxdr

≤ C‖h‖
L∞t (L

p/2
x )

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr + C‖h‖

L∞t (L
p/2
x )

ˆ t

0

ˆ
Rd
χv2mdxdr.

Step 4: conclusion via Gronwall lemma. In the case d < p ≤ +∞,
putting together all these terms, we find, for every ε > 0,∣∣∣∣ˆ

Rd
χv2m

t dx−
ˆ
Rd
χv2m

0 dx

∣∣∣∣+
m(2m− 1)

m2

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr (5.13)

≤ Cε

ˆ t

0

ρ(r)

ˆ
Rd
χv2mdxdr + Cε

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr.

where

ρ(r) = 1 + ‖b(1)‖2p/(p−d)

Lpx
+ ‖b(1)‖2

Lpx
+ ‖g(1)‖2p/(p−d)

Lpx
+ ‖g(1)‖2

Lpx
+

+ ‖h‖p/(p−d)

L
p/2
x

+ ‖h‖
L
p/2
x

+ ‖g‖2p/(2p−d)

Lpx
+ ‖g‖Lpx+

+ ‖divb(2)‖L∞x + ‖divg(2)‖L∞x + ‖b(2)‖Cx,lin .

Choosing ε small enough, we get

ˆ
Rd
χv(t)2mdx−

ˆ
Rd
χv(0)2mdx ≤ C

ˆ t

0

ρ(r)

(ˆ
Rd
χv(r)2mdx

)
dr.
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By Condition 2.4, ρ is in L1([0, T ]). Hence we can apply Gronwall lemma,
obtaining ˆ

Rd
χv(t)2mdx ≤ eC

´ t
0 ρ(r)dr

(ˆ
Rd
χv(0)2mdx

)
.

The thesis is reached in the case p > d.
When p = d ≥ 3, we get∣∣∣∣ˆ

Rd
χv2m

t dx−
ˆ
Rd
χv2m

0 dx

∣∣∣∣+
m(2m− 1)

m2

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr (5.14)

≤ Cερ

ˆ t

0

ˆ
Rd
χv2mdxdr + C(ψ + ε)

ˆ t

0

ˆ
Rd
χ|∇[vm]|2dxdr.

where

ρ = 1 + ‖b(1)‖2
L∞t (Lpx) + ‖g(1)‖2

L∞t (Lpx) + ‖h‖
L∞t (L

p/2
x )

+

+ ‖g(1)‖2
L∞t (Lpx) + ‖g(1)‖L∞t (Lpx) + ‖divb(2)‖L∞x + ‖divg(2)‖L∞x + ‖b(2)‖Cx,lin ,

ψ = ‖b(1)‖2
L∞t (Lpx) + ‖g(1)‖2

L∞t (Lpx) + ‖h‖
L∞t (L

p/2
x )

.

By Condition 2.4, both ρ and ψ are finite and we can assume ψ small enough
(recall Remark 2.5). Hence, choosing ε also small, we obtain

ˆ
Rd
χv(t)2mdx−

ˆ
Rd
χv(0)2mdx ≤ Cρ

ˆ t

0

(ˆ
Rd
χv(r)2mdx

)
dr

and, as before by Gronwall lemma, we find
ˆ
Rd
χv(t)2mdx ≤ eCρt

(ˆ
Rd
χv(0)2mdx

)
.

The proof is complete.

Remark 5.9. As one can see from the proof, the result is valid under a more
general assumption on b(1), g(1) and h, namely: b(1) =

∑n
k=1 b

(1),k and all the
estimates are in terms of ‖b(1),k‖Lqkt (L

pk
x ) for pk, qk satisfying Condition 2.4;

similarly for g with ‖g(1),k‖Lqkt (L
pk
x ) and h with ‖h(1),k‖

L
qk/2
t (L

pk/2
x )

.

5.4 Uniqueness by duality

In this section we use the previous a priori estimates to obtain uniqueness
(among distributional solutions) for the Fokker-Planck equation

∂tu+ div[bu] =
1

2
∆u (5.15)
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with given initial datum u0.
Notice also that this equation is obtained by averaging over ω the stochas-

tic continuity equation, as the Kolmogorov equation is obtained by averag-
ing the stochastic transport equation. Having in mind the correspondence
between Fokker-Planck equation and SCE and between Kolmogorov equa-
tion and STE, one can provide existence results via stability and uniqueness
results via duality (between Fokker-Planck equation and Kolmogorov equa-
tion), in the same way one does with (S)CE and (S)TE.

Here are the precise definitions of solutions for the Fokker-Planck equation
and the Kolmogorov equation. Concerning the Fokker-Planck equation, for
simplicity, we deal only with L∞t (L2

x,loc) solutions (starting at time 0) and
with vector fields in L2

t (L
2
x,loc). Moreover, for technical reasons (that will be

clear in Chapter 7), we do not ask the solution u to be in L∞t (Mx).

Definition 5.10. Let b be in L2
t (L

2
x,loc) and let u0 be in L2

x,loc. A distributional

solution to the Fokker-Planck equation is a measurable map u : [0, T ]×Rd →
R, in L2

t (L
2
x,loc), such that, for every ϕ in C∞x,c, it holds

〈ut, ϕ〉 = 〈u0, ϕ〉+

ˆ t

0

〈ur, br · ∇ϕ〉dr +
1

2

ˆ t

0

〈ur, ·∆ϕ〉dr. (5.16)

Definition 5.11. Let b be in L2
t (L

2
x,loc) and let vt be in L2

x,loc. A differentiable
solution to the backward Kolmogorov equation is a measurable map v : [0, t]×
Rd → R, in L∞s,x ∩ L2

s(W
1,2
x,loc), such that, for every ϕ in C∞x,c, it holds

〈vs, ϕ〉 = 〈vt, ϕ〉+

ˆ t

s

〈br · ∇vr, ϕ〉dr −
1

2

ˆ t

s

〈∇vr,∇ϕ〉dr.

Here is the existence and uniqueness result. The strategy, as said, is
by stability and duality. In particular, the stability results given for SCE
and STE are valid also in this context, replacing the (S)CE with the Fokker-
Planck and the (S)TE with the Kolmogorov equation, and without the proba-
bilistic datum ω (this even simplifies the proof); the assumptions are the same
(up to removing ω when necessary), apart for the global bound L∞t (Mx),
which is missing here. The only problem, of technical nature, is that the
missing L∞ bound in time does not allow u (solution to the Fokker-Planck
equation) to have a L2

x-valued weakly continuous (in time) version, but this
missing continuity property can be replaced by weak continuity in negative
order Sobolev spaces. For the duality result, we repeat the computations in
Proposition 4.8 and Lemma 4.11; the main difference is in some additional
global conditions one has to impose (as known, the heat equation has more
than one solution without global assumptions). In the following, χ = χη,R
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is the weight defined before Theorem 5.4, i.e. a strictly positive function in
C∞x , with χ = 1 on BR and χ(x) = (1 + |x|2)η/2 on BR+1, where R > 0 is
such that BR contains the support of b.

Theorem 5.12. Fix p, q satisfying Condition 2.3 and fix m positive integer,
R0 > 0 and η > d(m − 1), χ = χη,R0. Let m̄ be in [2,+∞] such that
1/2 + 1/2m + 1/m̄ ≤ 1 and assume that b is in Lm̄t (Lm̄x,loc) with compact

support in BR0 and that divb is in L
q/2
t (L

p/2
x ). Assume also that u0 is in L∞x

with compact support and that vT is in C2
x,c. Then there exists a differentiable

solution v to the backward Kolmogorov equation, in the class L∞t,x∩L2
t (W

1,2
x ),

and the Fokker-Planck equation (5.15) admits a unique solution in the class
L2m
t (L2m

x,χ).

Proof. Existence for Kolmogorov equation. Existence follows by a priori
estimates in 5.4 (applied in the case of L2 estimates, with weight ≡ 1), via
the stability results 3.39 and 3.48, adapted to the Kolmogorov equation.

Existence for the Fokker-Planck equation. Again existence follows
by a priori estimates in 5.4 (for any integer m), via the stability results 3.47
and 3.48, adapted to the Fokker-Planck equation and without the global
bound L∞t (Mx) here (and also without the L2-valued weak continuity prop-
erty, which is not needed for stability).

Uniqueness for the Fokker-Planck equation. The proof of unique-
ness is by duality, exploiting the existence of v solution to Kolmogorov equa-
tion in L2

t (W
1,2
x ) and a suitable adaptation of the arguments in Proposition

4.8 and Lemma 4.11, with Condition 1. We sketch the main steps of the
proof. By linearity, it is enough to show that, for any solution u to the
Fokker-Planck equation in L2m

t (L2m
x,χ) starting from 0, for any solution v to

the Kolmogorov equation in L∞t,x∩L2
t (W

1,2
x,χ) with final time t and final datum

vt in C∞x,c, we get 〈ut, vt〉 = 〈u0, v0〉 = 0.
Step zero: One can choose a version of the solution u such that t 7→

ut ∈ (W 2,k
x,BR,0

)∗ is weakly-* continuous, for every R > 0, provided k is a

finite sufficiently large number (such that W 2,k
x,BR

is embedded into W 1,∞
x,BR

).
Indeed all the addends in the RHS of (5.16) are bounded, uniformly in t, by
C(‖ϕ‖W 2,k

x,BR

+ ‖ϕ‖W 1,∞
x,BR

) (where C is a constant dependent possibly on R);

this bound implies, as in the proof of Lemma 3.7, the existence of the weakly-
* continuous version. Using this version, we can extend the distributional
formulation of the solution to time-dependent test functions ϕ, provided these
are regular enough, namely ϕ in Ct(C

2
x,c), with ϕ(·, x) in W 1,1

t for every x
and ∂tϕ in L1

t (Cx,c); the proof is analogous to the proof of Lemma 3.10.
First step: equation satisfied by u⊗ v. Repeating the steps at the begin-

ning of Section 4.3 and using the (W 2,k
x,BR,0

)∗-valued weak-* continuous version
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of u, we find, for every ϕ in C∞c (Rd × Rd), the equality

〈ut⊗vt〉 =

ˆ t

0

〈u⊗v, bx ·∇xϕ+divy(by ·∇yϕ)〉dr+
1

2

ˆ t

0

〈u⊗v,∆xϕ−∆yϕ〉dr.

Second step: expression for the commutator. We take ρε, χR as in Section
4.3, with the additional condition (compatible with the other conditions)
that |∆χR| ≤ C for some C independent on R; we also take R such that the
support of b is contained in BR (and so b · ∇χR = 0). Inserting ϕ(x, y) =
ρε(x− y)χR(x) in the equation above, we get

〈ut ⊗ vt, ρ(2)
ε (χR)x〉 (5.17)

=

ˆ t

0

〈u⊗ v, (χR)x(bx · ∇xρ
(2)
ε + divy(by · ∇yρ

(2)
ε )〉dr+

+
1

2

ˆ t

0

〈u⊗ v, ρ(2)
ε ∆(χR)x − 2∇yρ

(2)
ε · ∇(χR)x〉dr.

Third step: controlling the commutator. We first let ε go to 0, keeping
R fixed. Using the W 1,2

x regularity of v and proceeding as in Lemma 4.11,
Condition 1, we get that

ˆ t

0

〈u⊗ v, (χR)x(bx · ∇xρ
(2)
ε + divy(by · ∇yρ

(2)
ε )〉dr → 0.

As for the other addend in (5.17), using integration by parts in y (at R fixed,
so that we can use the compact support of ρε(x− y)χR(x)), we rewrite this
addend as

1

2

ˆ t

0

〈u⊗ v, ρ(2)
ε ∆(χR)x〉dr +

ˆ t

0

〈u⊗∇yv, ρ
(2)
ε ∇(χR)x〉dr.

From this formula and the fact that u, v and ∇v are in L2
t (L

2
x,loc), we get

convergence of this term to

1

2

ˆ t

0

〈uv,∆χR〉dr +

ˆ t

0

〈u∇v,∇χR〉dr.

Putting all together, we find

〈utvt, χR〉 =
1

2

ˆ t

0

〈uv,∆χR〉dr +

ˆ t

0

〈u∇v,∇χR〉dr.
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Fourth step: control at ∞ and conclusion. Now we let R → +∞. We
need that u is in L2

x globally. For this, we have by Hölder inequality

ˆ
Rd
|u|2dx ≤ C

ˆ
Rd
χ−η/m,Rχη/m,R|u|2dx

≤ C

(ˆ
Rd
χ−η/(m−1),Rdx

)1−1/m(ˆ
Rd
χη,R|u|2mdx

)1/m

.

Since η > d(m − 1), χ−η/(m−1),R is integrable and so u is in L2
t (L

2
x). Using

this, the fact that v and ∇v are in L2
t (L

2
x) (globally in space) and the fact

that |∇χR| and |∆χR| are uniformly bounded and supported on Bc
R, we can

pass to the limit and get finally 〈ut, vt〉 = 0.
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Chapter 6

Existence for stochastic
continuity equation

We start the main part of the thesis by showing regularization by noise in an
existence result, for the SCE, under mild assumptions on the drift or on its
divergence; such a result is false without noise. If we also require the drift
to be in W 1,1

x , but with no boundedness assumption on the divergence, then
the theory in the deterministic case gives also (path-by-path) uniqueness; we
then conclude existence and uniqueness of suitable Lagrangian flows.

Throughout all this chapter, we assume b with at most linear growth
outside of a ball, namely Condition 2.1.

6.1 A priori estimates

The existence results are based on the a priori estimates. Here is the first
one. In the following, we fix R > 0 such that the support of b is in BR and
we consider the weight χ = χη,R, strictly positive function in C∞x , with χ = 1
on BR and χ(x) = (1 + |x|2)η/2 on BR+1, for some real number η.

Theorem 6.1. Fix p, q satisfying (2.3), fix m positive integer, fix R > 0 and
η real number. Then there exists a locally bounded function C : [0,+∞[→
[0,+∞[ such that, for every b in Ct(C

∞
x,c) with support in BR and for every

µ0 in C∞x,c, it holds

sup
t∈[0,T ]

ˆ
Rd
χη,RE[µmt ]2dx ≤ C(‖divb‖

L
q/2
t (L

p/2
x )

)

ˆ
Rd
χη,R|µ0|2mdx.

The method is as follows: we write the equation satisfied by Eµmt , which
turns to be a parabolic equation, and then we use the parabolic estimates in

99



Chapter 5. We will comment later, in Chapter 12, on this method, which in
that Chapter will be used to get a priori estimates on the derivative of the
transport equation. We only mention that, in order to get an equation for
Eµmt , we use the renormalization property for transport-like equations and
the zero expectation of the Itô integral.

Notice that, since we deal with regular compactly supported initial datum
and coefficients, there exists a unique classical solution to the SCE, which
is integrable in the sense of Proposition 3.19; this justifies the computations
below.

Proof. Step 1: the parabolic equation for E[µm]. Applying Itô formula
to the SCE and using chain rule (∂t[µ

m] = mµm−1∂tµ, ∇[µm] = mµm−1∇µ),
we get

∂t[µ
m] + b · ∇[µm] +mdivbµm +∇[µm] ◦ Ẇ = 0,

which reads with Itô integral

∂t[µ
m] + b · ∇[µm] +mdivbµm +∇[µm]Ẇ =

1

2
∆[µm].

Taking expectation, we obtain

∂tE[µm] + b · ∇E[µm] +mdivbE[µm] +∇E[µm]Ẇ =
1

2
∆E[µm].

This is the parabolic PDE (5.3), with h = mdivb.
Step 2: conclusion. From Theorem 5.4 (applied just for L2 estimates),

we conclude immediately the thesis.

The second a priori estimate is the following one. Here we consider the
weight χ, strictly positive C∞x function, with at most polynomial growth,
satisfying, for every x in Rd,

|∇χ(x)| ≤ C
χ(x)

1 + |x|
. (6.1)

Theorem 6.2. Fix p, q satisfying Condition 2.4, fix m positive integer.
Write b = b(1) + b(2), where the addends are functions in Ct(C

∞
x,c). Then

there exists a locally bounded function C : [0,+∞[2→ [0,+∞[ such that, for
every b(j), j = 1, 2, in Ct(C

∞
x,c) and for every µ0 in C∞x,c, it holds

sup
t∈[0,T ]

ˆ
Rd
χ(x)E[µmt ]2dx ≤ C(‖b(1)‖Lqt (Lpx), ‖b(2)‖L1

t (C
1
x,lin))

ˆ
Rd
χ(x)|µ0|2mdx.

Proof. The strategy of proof is identical to the previous proof: we write the
equation for E[µm], which in this case we identify with the parabolic PDE
5.9, with g = mb, h = 0; then we apply the a priori estimates in Theorem
5.7.
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6.2 The existence results

From the a priori estimates before, one can deduce almost immediately ex-
istence results, using Theorem 3.47. We emphasize that these results do not
hold in the deterministic case: one usually has to require boundedness of the
divergence (more precisely, of its negative part), see for example [AC14].

Theorem 6.3. Fix m positive even integer. Let µ0 be in L∞x with compact
support. Assume one of the following assumptions:

• b belongs to Lm
′

t (Lm
′

x,loc) with support in BR and divb belongs to L
q/2
t (L

p/2
x ),

where p, q satisfy (2.3); the weight χ is of the form χ = χη,R (defined
in the previous Section), for some real η;

• b belongs to the class 2.4; the weight χ is of the form χ(x) = χη(x) =
(1 + |x|2)η/2.

Then there exists a distributional solution µ to the SCE driven by b and
starting from µ0, in the class Lmt,ω(Lmx,χ).

Proof. The a priori estimate provided by Theorem 6.1 (for the first hypoth-
esis) and Theorem 6.2 (for the second hypothesis), applied for m even (so
that µm = |µ|m), and the stability result 3.47 (where we use the integrability
hypothesis on b) give the existence of a solution in the class Lmt,ω(Lmx,loc). To
get the bound with the weight, notice thatˆ

Rd
χηE[µm]dx =

ˆ
Rd
χη+d/2+1E[µm]χ−d/2−1dx

≤
(ˆ

Rd
χ2η+d+2E[µm]2dx

)1/2(ˆ
Rd
χ−d−2dx

)1/2

,

and similarly for χη,R; since χ−d−2 is in L1
x, we obtain by Theorem 6.1 and

Theorem 6.2 an a priori bound on the Lmt,ω(Lmx,χ) norm. Hence the stability
result 3.48 implies the desired Lmt,ω(Lmx,χ) bound.

6.3 Path-by-path uniqueness under Sobolev

assumptions

Recall that, in the deterministic context, uniqueness holds for the SCE if b has
some Sobolev regularity. Then, putting together this uniqueness result and
the previous existence result, we get a well-posedness result for the SCE, in
a path-by-path way, which implies well-posedness at the level of Lagrangian
flows. In particular, we get well-posedness for the class of drifts 2.6.
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Theorem 6.4. Assume the hypotheses of Theorem 6.3. Assume also that
b is in Lm

′
t (W 1,m′

x,loc ). Then existence, path-by-path uniqueness and stability
hold, in the class Lmt,ω(Lmx,χ), starting from initial datum in L∞x compactly
supported, in the sense of Theorem 4.15.

Proof. The result is a consequence of Theorem 6.3, via Theorem 4.15.
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Chapter 7

Wiener uniqueness for
stochastic continuity equation

In this chapter we aim to prove uniqueness for the SCE in the class of Wiener
solutions: these are the solutions which are adapted to the Brownian fil-
tration; hence we refer to this kind of uniqueness as Wiener uniqueness.
The main tool is Wiener chaos decomposition: this allows to reduce Wiener
uniqueness to uniqueness for the associated Fokker-Planck equation.

The result presented here is taken from [MO]. The method is slightly
different and inspired to [Mau11].

7.1 Wiener chaos decomposition

We recall here some facts about Wiener chaos decomposition. In the following
H is a separable Hilbert space, (Ω,A, P ) is a probability space (countably
generated), W is a d-dimensional Brownian motion on (Ω,A, P ) and (FWt )t
is the associated Brownian (completed) filtration, i.e. the filtration generated
by W completed with the P -null events. [Notice that any function from Ω to
H is weakly measurable if and only if it is strongly measurable if and only if
it is measurable as a function (Ω,FWT , P ) → (H,B(H)); the same holds for
maps from [0, T ] × Ω to H and when H is replaced by a separable Banach
space, see Remark A.2 in the Appendix.]

For n in N, we call ∆n(T ) = {(t1, . . . tn)|0 ≤ t1 ≤ . . . tn ≤ T}. For f in
L2(∆n(T );H)nd, we define its n-iterated stochastic integral as

ˆ T

0

f(r)dnW (r) =
d∑

k1,...kn=1

ˆ T

0

. . .

ˆ r2

0

fk1,...kn(r1, . . . rn)dW k1
r1
. . . dW kn

rn .
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The map f 7→
´ T

0
f(r)dnW (r) is an isometry between L2(∆n(T );H)nd, with

the norm ‖f‖2
L2 =

∑
k1,...kn

‖fk1,...kn‖2
L2 , and L2(Ω,FWT , P ;H).

Definition 7.1. For n in N, the n-th Wiener chaos En = En(T ) is the close
subspace of L2(Ω,FWT , P ;H) given by all r.v. Y such that

Y =

ˆ T

0

f(r)dnW (r)

for some f in L2(∆n(T );H)nd. We call Πn = Πn(T ) the orthogonal projector
(in L2(Ω,FWT , P ;H)) on En.

It is easy to see that the spaces En are orthogonal one to each other. The
next result, stated for example in [BH91], Chapter 2 Proposition 2.12 (for
H = R, extended to general H in Chapter 3), states that this collection is
complete.

Theorem 7.2. Let (FWt )t the Brownian completed filtration. Then the space
L2(Ω,FWT , P ;H) has the following orthogonal decomposition:

L2(Ω,FWT , P ;H) = ⊕∞n=0En.

Remark 7.3. The end time T is not so relevant (and we will omit it when
not necessary): indeed, for a r.v. Z adapted to Ft, t ≤ T , Πn(T )Z = Πn(t)Z.

The following shift property is the main tool in the proof of Wiener
uniqueness. Here and in the following, we set E−1 = {0}, Π−1 ≡ 0; we
extend the definition of Πn for Y r.v. on Hm, defining ΠnY componentwise.

Lemma 7.4 (Shift property). Let Y be in L2
t,ω(H)d adapted to (FWt )t. Then,

for any n in N, it holds

Πn

ˆ T

0

YrdWr =

ˆ T

0

Πn−1YrdWr.

Proof. We must verity that
´ T

0
Πn−1YrdWr belongs to En and that, for any

r.v. F in En,

E

[
F

ˆ T

0

Πn−1YrdWr

]
= E

[
F

ˆ T

0

YrdWr

]
. (7.1)

The term
´ T

0
Πn−1YrdWr belongs to En because it is the stochastic integral of

an n−1-iterated stochastic integral, so it is an n-iterated stochastic integral.
As for (7.1), there are two cases. In the case n = 0, (7.1) holds because
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both the LHS and the RHS are zero: for n = 0, F is a constant and the
stochastic integral has zero mean. In the case n > 0, since F belongs to
En, there exists G in L2

t (En−1)d adapted to (FWt )t such that F =
´ T

0
GrdWr.

So, by Itô isometry and the property of projection (applied to the product
E[GrΠn−1Yr]), we have

E

[
F

ˆ T

0

Πn−1YrdWr

]
=

ˆ T

0

E [GrΠn−1Yr] dr

=

ˆ T

0

E [GrYr] dr = E

[
F

ˆ T

0

YrdWr

]
.

The lemma is proved.

Before ending the section, we state some other easy properties that will
be useful in the proof of the main result. With a small abuse of notation, we
use Πn without distinguishing the underlying Hilbert space H.

Remark 7.5. We have

1. for any Y in L2(Ω,FWT , P ;H) and any ϕ in H, Πn〈Y, ϕ〉 = 〈ΠnY, ϕ〉;

2. for any Y in L2
t,ω(R), adapted to (FWt )t, Πn

´ T
0
Yrdr =

´ T
0

ΠnYrdr.

We omit the proof of these two facts, which is similar to the proof of the
previous lemma: for example, for the first point, one shows that 〈ΠnY, ϕ〉
belongs to En and that E[F 〈ΠnY, ϕ〉] = E[F 〈Y, ϕ〉] for any F in En.

Finally, we recall that, given a measurable map Y in L2
t,ω(H), measur-

able with respect to B([0, T ]) × FWT , then ΠnY is well-defined as a map in
L2
t (L

2
ω(H)) (it is measurable with respect to t, since Πn is a continuous func-

tional on L2
ω(H)); by Lemma A.6 in the Appendix, it can be identified with

a map in L2
t,ω(H); we will use implicitly this identification in what follows.

7.2 Wiener uniqueness

Now we state the main result. For simplicity, we set the initial time s to 0.

Theorem 7.6. Assume that b is in L2
t (L

2
x,loc). Suppose that Fokker-Planck

equation has uniqueness property in L2
t (L

2
x), starting from initial datum in a

certain vector space V0. Then the SCE has Wiener uniqueness property in
L2
t (L

2
x), starting from initial datum in V0.
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The idea of the proof is simple and based on Lemma 7.4. By completeness
of Wiener chaos decomposition (here we take H = L2

x), uniqueness for a
solution µ to the CE reduces to uniqueness of Πnµ. Projecting the SCE on
En, Lemma 7.4 gives

dΠnµ+ b · ∇Πnµdt =
1

2
∆Πnµdt−∇Πn−1µdW,

so Πnµ satisfies the Fokker-Planck equation with a stochastic source term,
driven by Πn−1µ. Hence, by induction, uniqueness for Πnµ reduces to unique-
ness for Fokker-Planck equation.

Proof. By linearity of the SCE, it is enough to prove that µ0 = 0 implies
µ ≡ 0 for any Wiener solution µ to the SCE starting from µ0. Since µ is
adapted to the Brownian filtration, by Theorem 7.2 (in the case H = L2

x) it
is enough to show that Πnµ ≡ 0 for any n in N. We prove this by induction.

For n = 0, projecting the SCE on the 0-th Wiener chaos (i.e. taking
expectation), we get, for every ϕ in C∞x,c, for a.e. t,

〈Π0µt, ϕ〉 =

ˆ t

0

〈Π0µr, br · ∇ϕ〉dr +

ˆ t

0

〈Π0µr,
1

2
∆ϕ〉dr.

So Π0µ satisfies Fokker-Planck equation and is in L2
t (L

2
x). Hence, by unique-

ness for Fokker-Planck equation, Π0µ = 0.
For the inductive step, from n− 1 to n, projecting the SCE on the n-th

Wiener chaos, by Lemma 7.4 and Remark 7.5 we get, for every ϕ in C∞x,c, for
a.e. t, for a.e. ω,

〈Πnµt, ϕ〉 (7.2)

=

ˆ t

0

〈Πnµr, br · ∇ϕ〉dr +

ˆ t

0

〈Πnµr,
1

2
∆ϕ〉dr +

∑
k

ˆ t

0

〈Πn−1µr, ∂xkϕ〉dW k
r .

By the inductive hypothesis, Πn−1µ = 0, so the stochastic integral is 0 a.s.:
for every ϕ in C∞x,c, for a.e. (t, ω), 〈Πnµ, ϕ〉 satisfies (7.2) without the stochas-
tic integral, which is the weak formulation of the Fokker-Planck equation.

In order to conclude, we need to get the exceptional set of ω independent
of ϕ. For this, we proceed as usual by a density argument. Let D be a
countable set in C∞x,c, dense in C2

x,c (in the sense that it is dense in C2
x,BR

for every R); let A be a full-measure set in [0, T ] × Ω where the equality
(7.2) (without the stochastic integral) holds for every ϕ in D and where
‖Πnµt(ω)‖L2

x
and ‖Πnµ(ω)‖L2

t (L
2
x) are finite. Then, using the density of D,

one can extend the formula (7.2) to every ϕ in C∞c , for all (t, ω) in A. Hence,
for a.e. ω, Πnµ satisfies Fokker-Planck equation and is in L2

t (L
2
x). So Πnµ = 0

for a.e. ω and the thesis is proved.
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Remark 7.7. Here we see the reason why, in Definition 5.10 of solution
for the Fokker-Planck equation, we have not required the solution to stay in
L∞t,ω(Mx): this property may not be preserved by the projections Πn, hence
Πnµ may not satisfy it.

7.3 Extension to weighted Lebesgue spaces

In this section we want to extend our uniqueness result to the space Lmx,χ, for

2 ≤ m < +∞, with weight χ of the form χ(x) = χη(x) = (1 + |x|2)η/2. The
main result of this section is the following:

Theorem 7.8. Assume that b is in L2
t (L

2
x,loc). Suppose that Fokker-Planck

equation has uniqueness property in Lmt (Lmx,χ), starting from initial datum in
a certain vector space V0. Then the SCE has Wiener uniqueness property in
Lmt (Lmx,χ), starting from initial datum in V0.

The problem in the proof of this result is that Lmx,χ is not an Hilbert
space in general (it is a separable Banach space), so we cannot apply directly
the theory of Wiener chaos taking H = Lmx,χ. Hence we have to adapt the
technique to our case.

For this, for R > 0, we define ΠR
n as the projector Πn associated with the

Hilbert space H = L2
x,BR

. We start with the following properties of Πn.

Remark 7.9. 1. For any +∞ ≥ R′ > R, for any f in L2(Ω,FWT , P ;L2
x,BR′

),

we have ΠR′
n f |BR = ΠR

n (f |BR), hence we can omit R and define Πnf
for f in L2(Ω,FWT , P ;L2

x,loc).

2. For any f in L2(Ω,FWT , P ;L2
x,loc), for any ψ in C∞(Rd), Πn[ψf ] =

ψΠnf .
The proof of these two facts is similar to the proof of Lemma 7.4.

The key fact for Lmω bounds (in ω) is that these are preserved by each
projection Πn (although not uniformly in n): we have the following result,
which follows for example from [Maa10], Proposition 3.1.

Proposition 7.10. Take H = R. For every 2 ≤ m < +∞, for every n in
N, there exists Cm,n > 0 such that, for every real-valued random variable Y
in L2(Ω,FWT , P ),

E[|ΠnY |m] ≤ Cm,nE[|Y |m].

As a consequence of this result, we can extend each projection Πn to the
space Lmx,χ.
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Corollary 7.11. Fix 2 ≤ m < +∞, n in N. Then Πn is a bounded operator
from Lm(Ω,FWT , P ;Lmx,χ) into itself.

Proof. By a density argument, it is enough to prove that, for every f in
Lm(Ω,FWT , P ;Cx,c), for some constant C > 0 (independent on ϕ but possibly
dependent on n, m), it holds

E[‖Πnf‖mLmx,χ ] ≤ CE[‖f‖mLmx,χ ]. (7.3)

For fixed x in Rd, the previous Proposition gives

E[χ(x)|Πnf(x)|m] ≤ Cm,nE[χ(x)|f(x)|m].

Integrating in x this inequality, we get (7.3).

Proof of Theorem 7.8. The proof is as the proof of Theorem 7.6, with Πn

defined on Lm(Ω,FWT , P ;Lmx,χ) as before and replacing the fact that Πnµ is in
L2
t (L

2
x) a.s. with the fact that Πnµ is in Lmt (Lmx,χ) a.s., which is a consequence

of the previous Corollary.

7.4 Application

As an application of Theorem 7.8, we have Wiener uniqueness for the SCE,
in the class of drifts 2.7.

Theorem 7.12. Fix p, q satisfying Condition 2.3 and fix m positive integer,
R > 0 and η > d(m − 1), χ = χη,R. Let m̄ be in [2,+∞] such that 1/2 +
1/2m + 1/m̄ ≤ 1 and assume that b is in Lm̄t (Lm̄x,loc) with compact support

in BR and that divb is in L
q/2
t (L

p/2
x ). Assume also that u0 is in L∞x with

compact support. Then existence and Wiener uniqueness hold for the SCE,
in the class L2m

t,ω (L2m
x,χ) ∩ L∞t,ω(Mx), starting from µ0.

Proof. Existence has been proved in Theorem 6.3 (with the first hypothesis,
replacing m with 2m). Uniqueness follows from Theorem 5.12, via Theorem
7.8, applied with the weight χ = χη,R.
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Chapter 8

The pathwise Young argument:
the Lagrangian approach

In this Chapter we show regularization by noise for the SDE by a pathwise
argument, mainly based on a regularization of the transformed drift b̃ of the
associated random ODE (rDE) and on Young estimates. We consider a drift

b in C0+
t (C

1/2+
x,b ) and we work on the rDE, which we recall here:

dX̃ = b̃(X̃)dt. (8.1)

We prove a priori Lipschitz estimates on the flow solution to the rDE, for
a.e. ω. The argument is in two parts. In the first part we show that, for b in
C0+
t (C

1/2+
x,b ), b̃ is in in C

−1/2+
t (C

3/2+
x ): this means that b̃ has more regularity in

space, at the price of losing regularity in time. In the second part we prove
that, for b̃ bounded and in C

−1/2+
t (C

3/2+
x ), the flow solution has uniform

estimates in W 1,∞
x,loc. Well-posedness follows then by the duality argument.

The content of this Chapter is based on the argument by Catellier and
Gubinelli [CG12] for the idea and the second part (although we use linear
Young theory on Banach spaces). The first part is proved instead via the Itô-
Tanaka trick, see for example [Fla11]. The Itô-Tanaka trick is a martingale-
based argument, but there is another proof of the first part (with slightly
different assumptions) in [CG12], which does not use martingales or PDEs
and can be generalized to more general driving noises (for example fractional
Brownian motion).

8.1 The main result

Here is the main well-posedness result, in the class of drifts 2.2 with 1/2+-
Hölder regularity in space.
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Theorem 8.1. Assume that b is in Ct(C
α
x,b) for some α > 1/2. Then well-

posedness and Lipschitz regularity hold for the SDE, in the sense of Theorem
4.14.

The proof of this result is at the end of the Chapter.

8.2 Improved space regularity for the drift

In this section we address at the first part of the proof, the improved space
regularity of b̃. For any f regular compactly supported function on Rd, we
define

f̃(t, x) = f(r, x+Wr).

We then call F : [0, T ]×Rd → R the function F (t, x) =
´ t

0
f̃(r, x)dr, so that

F (t, x)− F (s, x) =
´ t
s
f̃(r, x)dr.

Theorem 8.2. Fix R > 0, α > 0, ε > 0 (small enough) and m ≥ 1 finite.
There exists a constant C > 0 such that, for every f in Ct(C

∞
x,c), for every

s, t in [0, T ], for every x, y in BR, it holds

E

∣∣∣∣∣
ˆ t

s

[∇f̃(r, x)−∇f̃(r, y)]dr

∣∣∣∣∣
m

≤ C‖f‖m
Cβt (Cαx,b)

|x− y|(α−ε)m|t− s|m/2 (8.2)

E

∣∣∣∣∣
ˆ t

s

f̃(r, x)dr

∣∣∣∣∣
m

+ E

∣∣∣∣∣
ˆ t

s

∇f̃(r, x)dr

∣∣∣∣∣
m

≤ C‖f‖m
Cβt (Cαx,b)

|t− s|m/2 (8.3)

In particular, we have

E‖Ft − Fs‖mW 1+α−2ε,m
x,BR

≤ C‖f‖m
Cβt (Cαx,b)

|t− s|m/2, (8.4)

E[‖F‖m
W

1/2−ε,m
t (W 1+α−2ε,m

x,BR
)
] ≤ C‖f‖m

Cβt (Cαx,b)
. (8.5)

The proof is based on the estimates on the heat equation in Lemma
5.1 and on the Itô-Tanaka trick. We recall the backward heat equation on
[0, T ]× Rd with source term f :

∂tv +
1

2
∆v = f (8.6)

with final condition vT ≡ 0.

Lemma 8.3 (Itô-Tanaka trick). For every t in [0, T ], for every x in Rd, we
have a.s.ˆ t

0

f̃(r, x)dr = v(t, x+Wt)− v(0, x)−
ˆ t

0

∇v(r, x+Wr) · dWr (8.7)
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Proof. By Lemma 5.1, v is in C1
t (Cx) ∩ Ct(C2

x), so we can apply Itô formula
and get

v(t, x+Wt)− v(0, x)

=

ˆ t

0

∇v(r, x+Wr) · dWr +

ˆ t

0

[∂tv(r, x+Wr) +
1

2
∆v(r, x+Wr)]dr.

Since v satisfies the backward heat equation (8.6), the thesis follows imme-
diately.

The idea of the proof of Theorem 8.2 is the following one. By (8.7),´ t
0
f̃(r, x)dr is the sum of three terms which have more regularity in space:

the “worse” term (as for regularity), the stochastic integral, is expected to
be in C1+α−ε

x in space, since this is the space regularity of ∇u; we pay the
price of less regularity in time, since the stochastic integral, even for f time-
independent, is no better that 1/2−-Hölder continuous in time.

Proof of Theorem 8.2. For the first part, we only show (8.2), the proof of
(8.3) being similar and easier. By the Itô-Tanaka trick, we write

´ t
s
[∇f̃(r, x)−

∇f̃(r, y)]dr in terms of v, namely

ˆ t

s

[∇f̃(r, x)−∇f̃(r, y)]dr

= ∇v(t, x+Wt)−∇v(t, y +Wt)−∇v(s, x+Ws) +∇v(s, y +Ws)+

−
ˆ t

s

[D2v(r, x+Wr)−D2v(r, y +Wr)] · dWr

By Burkholder inequality we get

E

∣∣∣∣∣
ˆ t

s

[∇f̃(r, x)−∇f̃(r, y)]dr

∣∣∣∣∣
m

≤ CE|∇v(t, x+Wt)−∇v(t, y +Wt)−∇v(s, x+Ws) +∇v(s, y +Ws)|m+

+ CE

∣∣∣∣∣
ˆ t

s

|D2v(r, x+Wr)−D2v(r, y +Wr)|2dr

∣∣∣∣∣
m/2

We analyze the two addends on the RHS separately. We start from the
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stochastic integral (which seems the most relevant one). We have

E

∣∣∣∣∣
ˆ t

s

|D2v(r, x+Wr)−D2v(r, y +Wr)|2dr

∣∣∣∣∣
m/2

(8.8)

≤ E

∣∣∣∣∣
ˆ t

s

‖D2v(r, ·+Wr)‖2
Cα−εx,b
|x− y|2(α−ε)dr

∣∣∣∣∣
m/2

≤ ‖D2v‖m
Ct(C

α−ε
x,b )
|x− y|(α−ε)m|t− s|m/2.

As for the first addend, we write it as

E|∇v(t, x+Wt)−∇v(t, y +Wt)−∇v(s, x+Ws) +∇v(s, y +Ws)|m

≤ CE|∇v(t, x+Wt)−∇v(t, y +Wt)−∇v(s, x+Wt) +∇v(s, y +Wt)|m+

+ CE|∇v(s, x+Wt)−∇v(s, y +Wt)−∇v(s, x+Ws) +∇v(s, y +Ws)|m.

So we have (we call ∆x,yD
2vs = D2v(s, x)−D2v(s, y))

E|∇v(t, x+Wt)−∇v(t, y +Wt)−∇v(s, x+Ws) +∇v(s, y +Ws)|m (8.9)

≤ CE‖∇v(t, ·+Wt)−∇v(s, ·+Wt)‖mCα−εx,b
|x− y|(α−ε)m+

+ CE

∣∣∣∣∣
ˆ 1

0

∆x+Ws+ξ(Wt−Ws),y+Ws+ξ(Wt−Ws)D
2vsdξ · (Wt −Ws)

∣∣∣∣∣
m

≤ C‖∇v‖m
C

1/2
t (Cα−εx,b )

|x− y|(α−ε)m|t− s|m/2+

+ C‖D2v‖m
Ct(C

α−ε
x,b )
|x− y|(α−ε)m|t− s|m/2.

Putting together (8.8) and (8.9), we obtain

E

∣∣∣∣∣
ˆ t

s

[∇f̃(r, x)−∇f̃(r, y)]dr

∣∣∣∣∣
m

≤ c(‖v‖m
C

1/2
t (C1+α−ε

x,b )
+ ‖v‖m

Ct(C
2+α−ε
x,b )

)|x− y|(α−ε)m|t− s|m/2.

Now Lemma 5.1 gives (8.2).

112



Now we prove (8.4) and (8.5). Notice that

‖Ft − Fs‖mW 1+α−2ε,m
x,BR

= ‖Ft − Fs‖mLmx,BR + ‖DFt −DFs‖mLmx,BR+

+

ˆ
Rd

ˆ
Rd

|DF (t, x)−DF (s, x)−DF (t, y) +DF (s, y)|m

|x− y|d+(α−2ε)m
dxdy

=

ˆ
Rd

∣∣∣∣∣
ˆ t

s

f̃(r, x)dr

∣∣∣∣∣
m

dx+

ˆ
Rd

∣∣∣∣∣
ˆ t

s

∇f̃(r, x)dr

∣∣∣∣∣
m

dx+

+

ˆ
Rd

ˆ
Rd

|
´ t
s
[Df̃(r, x)−Df̃(r, y)]dr|m

|x− y|d+(α−2ε)m
dxdy.

Hence (8.2) and (8.3) give (8.4), by Hölder inequality, taking into account
that |x− y|−d+εm is an integrable function. The proof of (8.5) is a bit more
lengthy but on the same line, we omit it.

The following Corollary gives the desired improved regularity for f̃ .

Corollary 8.4. Fix R > 0, α > 0, ε > 0 and m ≥ 1 finite large enough.
There exists a constant C > 0 such that, for every f in Ct(C

α
x,b), it holds

E[‖f̃‖m
C
−1/2+ε
t (C1+α−6ε

x,BR
)
] ≤ C‖f‖m

Cβt (Cαx,b)

Proof. First step: extension of the bound (8.4) to f in Ct(C
α
x,b). Fix s < t.

For f in Ct(C
α
x,b), we take a sequence (fn)n in Ct(C

∞
x,c), bounded in Ct(C

α
x,b),

converging to f in Ct(C
α′
x,BR

) for some α′ < α and for every R > 0; we

call F n(t, x) =
´ t

0
f̃n(r, x)dr. The bound (8.4) applied to F n gives that

(F n
t − F n

s )n is a bounded sequence in Lmω (W 1+α−ε,m
x,BR

). Now W 1+α−ε,m
x,BR

is

a reflexive space, so, by Proposition A.1 in the Appendix, Lmω (W 1+α−ε,m
x,BR

).
Therefore, by Banach-Alaoglu theorem, there exists a subsequence (F nk)k
converging weakly to some element G in Lmω (W 1+α−ε,m

x,BR
). On the other hand

(F n)n converges to F in L∞ω (Ct(Cx)). Therefore G = F for a.e. ω and, by
lower semicontinuity of the Lmω (W 1+α−ε,m

x,BR
) norm, (8.4) holds for F .

Second step: conclusion. Choosing m large enough in the bound (8.5),
we can apply Sobolev embedding in space (on BR), losing ε in the space
exponent:

E‖Ft − Fs‖mC1+α−3ε
x,BR

≤ C‖f‖m
Cβt (Cαx,b)

|t− s|m/2

(more precisely, the bound above is satisfied by the space continuous version
of F , which however is F ). On the other hand, we have the trivial estimate

‖Ft − Fs‖mCα−3ε
x,BR

≤ C‖Ft − Fs‖mCαx,BR ≤ C‖f‖m
Cβt (Cαx,b)

|t− s|m.
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which holds for every ω, for a constant C independent of ω. These two bounds
give, by the interpolation inequality (Proposition A.11 in the Appendix), for
0 < ρ < 1,

E‖Ft − Fs‖mCα−3ε+ρ
x,BR

≤ E

[
‖Ft − Fs‖(1−ρ)m

Cα−3ε
x,BR

‖Ft − Fs‖ρmC1+α−3ε
x,BR

]
≤ C‖f‖m

Cβt (Cαx,b)
|t− s|(2−ρ)m/2.

Now we choose ρ = 1−3ε. Again for m large enough, we use Kolmogorov con-
tinuity criterion (for Cα

x,b-valued functions, see for example [Kun97], Chapter
1 Theorem 1.4.1), losing ε/2 in the time exponent, and so we get the thesis
(again for the Cα

x,b-valued continuous version of F , which must be F itself by
continuity of f).

8.3 Regularity estimate for the random ODE

We have shown in the previous section the improved space regularity of b̃.
Here we go on with the second part of the proof, namely we prove that,
for such a vector field b̃, when α > 1/2, the flow solving (8.1) is Lipschitz
continuous. Notice that this part is completely decoupled from the previous
one: whenever one has a vector field b̃ with certain regularity properties,
then the flow is Lipschitz continuous. This result can therefore be applied
also for other cases, for example when the Brownian motion is replaced by a
fractional Brownian motion, provided one proves the required regularity for
b̃; this has been done in [CG12].

Given a regular bounded vector field b̃, we use X̃ b̃,s(t, x) to denote the
flow solution to the ODE (8.1) starting from s (omitting the superscripts b̃
or s when not necessary).

Theorem 8.5. Fix ε > 0, R > 0. There exist R′ > 0 (locally bounded func-
tion of ‖b̃‖L∞t (Cx,b)) and a locally bounded functions C : [0,+∞[→ [0,+∞[,

such that, for every vector field b̃ in Ct(C
∞
x,c), for every s ≥ 0, the correspond-

ing flow X̃ b̃,s satisfies

‖X̃ b̃‖W 1,∞
t (L∞x,BR

) + ‖DX̃ b̃‖
C

1/2+ε
t (L∞x,BR

)
≤ C(‖b̃‖L∞t (Cx,b) + ‖b̃‖

C
−1/2+ε
t (C

3/2+ε
x,BR′

)
).

For simplicity, we fix s = 0 in the proof: it is easy to see that all the
estimates hold for any s, uniformly in s (in [0, T ]).

The first remark for the proof is that the derivative DX̃ of the flow, which
we want to estimate, satisfies the linear equation

∂tDX̃ = Db̃(X̃)DX̃.
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Since Db̃ has Cα
x space regularity but negative order time regularity, one

hopes to apply Young integration theory to derive estimates. However Db̃
appears composed with the flow X̃, so we cannot apply the estimates for Db̃
directly (and in fact they do not hold in general for the composition).

The idea of the proof is in two steps. In the first step we analyze the
regularity properties of Db̃(X̃). For this analysis, the following remark is
crucial: the composition (with X̃t) operator St, namely Stϕ(x) = ϕ(X̃(t, x)),
is linear, so Db̃t(X̃t) = StDb̃t is a “product” on a Banach space; hence
it can be estimated through infinite-dimensional Young integration theory
(which comes with no differences from the finite-dimensional theory, see the
Appendix, Section A.3). First we give bounds on St in terms of the flow X̃,
and then give an estimate of Db̃(X̃) in terms of these bounds on St.

In the second step, using Young integration theory, we estimates DX̃ in
terms of the regularity of Db̃(X̃). The first step then allows to conclude.

Notice that some of the partial results we will give have their own interest
and may be used in other contexts (see the beginning of the next Chapter).

8.4 Estimates on the composition

We start with an easy Lipschitz in time estimate on X̃.

Lemma 8.6. It holds

sup
0≤s<t≤T

sup
x∈Rd
|X̃(t, x)− X̃(s, x)| ≤ ‖b̃‖L∞t (Cx,b)|t− s|. (8.10)

In particular
|X̃(t, x)− x| ≤ ‖b̃‖L∞t (Cx,b)T. (8.11)

Proof. The proof is immediate from the expression

X̃(t, x)− X̃(s, x) =

ˆ t

s

b̃(r, X̃(r, x))dr.

For the next lemma, we introduce the following (crucial) notation: given
a Borel bounded function ϕ : Rd → R, we call

Stϕ(x) = ϕ(X̃(t, x))

For every t, St is a linear operator from BBx to BBx (where BBx is the set
of Borel bounded functions on Rd). This is relevant because it transforms

115



the composition, a nonlinear operation in x, into a linear operation, at the
price of working with the infinite-dimensional space of functions. The next
Lemma specifies in which spaces St is bounded, and which regularity it has
in time.

Lemma 8.7. Call R′ = R+ ‖b̃‖L∞t (Cx,b)T . It holds for every 0 < α′ < 1, for
every ϕ in C∞x,c, for every s < t in [0, T ],

‖Stϕ− Ssϕ‖L∞x,BR ≤ ‖b̃‖
α′

L∞t (Cx,b)
‖ϕ‖Cα′x,BR′

|t− s|α′ ,

that is

‖S‖Cα′t (Lin(Cα
′

x,BR′
;L∞x,BR

)) ≤ 1 + ‖b̃‖α′L∞t (Cx,b)
.

Proof. Fix x in BR. By the previous Lemma, X̃(t, x) and X̃(s, x) live in BR′ ,
with R′ = R + ‖b̃‖L∞t (Cx,b)T . Hence we have

|Stϕ(x)− Ssϕ(x)| = |ϕ(X̃(t, x))− ϕ(X̃(s, x))| (8.12)

≤ ‖ϕ‖Cα′x,BR′
|X̃(t, x)− X̃(s, x)|α′ ≤ ‖ϕ‖Cα′x,BR′

‖b̃‖α′L∞t (Cx,b)
|t− s|α′ ,

where the last inequality uses the previous Lemma again. This proves the
first inequality. The second one follows from the first inequality and from
the trivial bound ‖Stϕ‖L∞x,BR ≤ ‖ϕ‖L∞x,BR for every t.

The next lemma deals with the regularity property of Db̃(X̃). It is the
key lemma.

Lemma 8.8. For any α′ > 0, β′ > 0 such that α′ + β′ > 1, it holds

‖Db̃(X̃)‖
Cβ
′−1

t (L∞x,BR
)
≤ C‖b̃‖

Cβ
′−1

t (C1+α′
x,BR′

)
(1 + ‖b̃‖α′L∞t (Cx,b)

). (8.13)

Proof. We recall the following Young inequality in infinite dimension (here
we use α′ + β′ > 1), a particular case of Theorem A.13 in the Appendix: for
any ϕ in Ct(C

∞
x,c),

‖Sϕ‖
Cβ
′−1

t (L∞x,BR
)
≤ C‖ϕ‖

Cβ
′−1

t (Cα
′

x,BR′
)
‖S‖Cα′t (Lin(Cα

′
x,BR′

;L∞x,BR
)). (8.14)

Applying this inequality to ϕ = Db̃ (precisely, to each of its components)
and using the previous Lemma, we get the thesis.
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8.5 Estimates on the flow derivative

Now we can analyze the derivative of the flow DX̃. As already written, this
derivative satisfies the linear equation

DX̃t(x) = I +

ˆ t

0

Db̃r(X̃r(x))DX̃r(x)dr. (8.15)

For x fixed, this equation can be interpreted as a linear Young ODE in
DX̃r(x). We can therefore use Young integration theory to provide estimates
in the uniform (in space) topology.

Lemma 8.9. For any α′ > 0, β′ > 1/2 with α′ + β′ > 1, we have

‖DX̃‖
Cβ
′

t (L∞x,BR
)
≤ C exp[C(1 + A1/β′)](1 + A) (8.16)

where A = ‖b̃‖
Cβ
′−1

t (C1+α′
x,BR′

)
(1 + ‖b̃‖α′L∞t (Cx,b)

).

Proof. Fix x in BR. By Young ODE a priori estimates applied to (8.15) (see
Lemma A.14 in the Appendix, here we need β′ > 1/2), we get

‖DX̃(x)‖
Cβ
′

t
(8.17)

≤ C exp[C(1 + ‖Db̃(X̃(x))‖1/β′

Cβ
′−1

t

)](1 + ‖Db̃(X̃(x))‖
Cβ
′−1

t
),

so, taking the supremum over x in BR,

‖DX̃‖
Cβ
′

t (L∞x,BR
)
≤ C exp[C(1+‖Db̃(X̃)‖1/β′

Cβ
′−1

t (L∞x,BR
)
)](1+‖Db̃(X̃)‖

Cβ
′−1

t (L∞x,BR
)
).

Combining this estimate with (8.13), we get the thesis.

Proof of Theorem 8.5. The thesis follows from (8.16), applied with α′ =
1/2 + ε, β′ = 1/2 + ε, and from (8.11).

Remark 8.10. Notice that all the proof was essentially the consequence of
these four inequalities, each of them elementary (assuming Young theory)
and independent from the other ones: (8.10), (8.12), (8.14) and (8.17).

We can finally prove our main result.

Proof of Theorem 8.1. The result follows, via Theorem 4.14 and Remark
4.13, from the a priori estimates in 8.5 and from the fact that b̃ is in C

−1/2+ε
t (C1+α−6ε

x,loc )
for a.e. ω, by Corollary 8.4.
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Remark 8.11. After using Young integration theory, a natural question
arises: is it possible to go beyond the case b in C

1/2+
x (that is Db̃ in C

−1/2+
t (C

1/2+
x )),

via a pathwise approach but exploiting rough paths? Indeed, rough paths the-
ory can be viewed (also) as the extension of Young integration theory beyond

the case of C
1/2+
t integrators. The main point seems that we need an ad-

ditional regularity property on the transformed drift b̃ (in order to have the
second-order iterated integral in rough paths theory). This possible extension
has to be investigated.
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Chapter 9

The pathwise Young argument:
the Eulerian approach

In this Chapter we keep the pathwise point of view but we analyze the linear
random PDEs (continuity and transport equations) rather than the ODE,
proving uniqueness directly by Young methods. Precisely, we consider again
a drift b in Ct(C

1/2+
x,b ) (for simplicity we suppose it compactly supported

and divergence free) and we work on the random continuity equation (rCE)
associated with the random ODE, which we recall here:

∂tũ+ div(b̃ũ) = 0, (9.1)

with given initial datum ũ0. We want to get (path-by-path) uniqueness for
the rCE, in the class L∞t (Mx), directly (without using the uniqueness result
for the rDE in the previous Chapter). The idea is again to use that b̃, the

transformed drift, is a.s. in C
−1/2+
t (C

3/2+
x ) and to apply a suitable adaptation

of the duality/renormalization method with Young integration techniques.
Although uniqueness for the rCE itself follows from uniqueness for the

rDE, this method has the peculiarity of being only PDE-based and we hope
to apply it also to more general vector fields of the form b in Ct(W

1/2,p
x ) for

some finite p (possibly 1) and get uniqueness for the CE in the L∞ class.
This extension would be the analogue of the works by DiPerna and Lyons
[DL89] and Ambrosio [Amb04]: they prove, in the deterministic context,
well-posedness for the continuity/transport equation beyond the Lipschitz
assumptions on the drift, allowing a W 1,1

x or even BV drift with bounded
divergence.

The argument here is based on [GM]. The proof uses ideas and techniques
from the paper by Bailleul and Gubinelli [BG15], which deal with vector fields
(rough drivers) coming from rough paths theory. We adapt some ideas to
the Young case (we do not need rough paths), but we modify them to take

119



into account both the Young-type assumption b in C
−1/2+
t (C

3/2+
x ) and the

uniform bound b in L∞t,x.

9.1 The result and the strategy

The main result of the Chapter is the following:

Theorem 9.1. Let b̃ be in Ct(Cx,b)∩Cβ−1
t (C1,α

x,b ) for some β > 1/2, α > 1/2
and assume that divb = 0. Then uniqueness holds for the CE 9.1 in the class
L∞t (Mx), starting from any initial measure µs and any time s.

We emphasize that this result is completely deterministic (there is no ω
involved), we kept the notation with “tilde” only to remember the application
to regularization by noise, but b̃ does not need to be b(t, x + Wt). We will
take s = 0 in the following, for simplicity of notation.

As an application of this result, we have path-by-path uniqueness for the
SCE:

Corollary 9.2. Assume that b is in Ct(C
α
x,c) and that divb = 0. Then path-

by-path uniqueness holds for the SCE in the class L∞t (Mx).

Proof. By 8.2, the transformed drift b̃ satisfies the assumptions of the The-
orem above, replacing α with α− ε: the compact support assumption guar-
antees that the local Cβ−1

t (C1,α
x ) bound can be extended globally. Hence the

thesis follows from the Theorem above applied to the rCE.

In the following, we change the notation in this way: we call T (instead
of t) the final time involved in the duality method, while s < t denote two
times in [0, T ] (the initial time is fixed to 0).

Here is the idea of the proof of the main result. We consider the commu-
tator appearing in Lemma 4.8 (using the notation µ(x)dx for µ(dx)):∣∣∣∣∣

ˆ T

0

〈µ̃⊗ ṽ, (b̃x · ∇xρ
(2)
ε + divy(b̃yρ

(2)
ε ))(χR)x〉dr

∣∣∣∣∣ ,
which reads (at least formally), with the divergence-free condition of b̃,∣∣∣∣∣

ˆ T

0

〈µ̃(x)ṽ(y), (b̃(x)− b̃(y)) · ∇ρε(x− y)χR(x)〉dr

∣∣∣∣∣
=

∣∣∣∣∣
ˆ 1

0

ˆ T

0

〈µ̃(x)ṽ(y), Db(y + ξ(x− y))(x− y) · ∇ρε(x− y)χR(x)〉drdξ

∣∣∣∣∣ .
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Since (x − y)Dρε(x − y) has derivatives which explode in 0 when ε → 0, it
is convenient to make the change of variable z = (y − x)/ε and remove the
singularity from the ρ:∣∣∣∣∣

ˆ 1

0

ˆ T

0

ˆ
Rd

ˆ
Rd
µ̃(x)ṽ(x+ εz)Db(x+ εz)z · ∇ρ(−z)χR(x)dxdzdrdξ

∣∣∣∣∣ .
From this formula, we would like to bound the commutator using the regu-
larity assumption on b: Db is in Cβ−1

t (Cα
x ), which invites to exploit Young in-

tegration. To do so, heuristically, we need µ̃(x)ṽ(x+εz) to stay in Cβ
t ((Cα

x )∗)
or in Cβ

t (U∗), where U is some suitable Banach space containing Db(x+ εz).
Hence we need a priori estimates on the negative Sobolev norm of µ̃(x)ṽ(x+
εz).

For this, we start with the simple estimate, for every ϕ in C∞x,c, for every
s < t.

|〈µ̃t − µ̃s, ϕ〉| ≤
ˆ t

s

|b̃||∇ϕ|d|µ̃| ≤ |t− s|‖b̃‖Ct,x‖ϕ‖C1
x,c
‖µ̃‖L∞t (Mx),

which implies that µ̃ is in C1
t ((C1

x,c)
∗). Interpolating this result with the

bound in L∞t (Mx) = L∞t (C∗x,c), we get (up to details) µ̃ in C
1/2+
t ((C

1/2+
x,c )∗).

Unfortunately, when we consider µ̃(x)ṽ(x+ εz), such a simple reasoning does
not bring any useful estimate: the strategy of interpolating after estimating
does not work we can no more get a C1

t ((C1
x,c)
∗) estimate. Hence we have

to estimate the C
1/2+
t ((C

1/2+
x,c )∗) norm, or the C

1/2+
t (U∗) for a suitable U , di-

rectly. For this, we use the idea proposed by Bailleul and Gubinelli [BG15],
where, in some sense, we interpolate before estimating, bringing the interpo-
lation on the test function. Proceeding in this way, we get that µ̃(x)ṽ(x+εz) is
“almost” in Cβ

t (U∗), where U is morally L1
z(W

α′,∞
x )∩L∞x (W 1,1

z ) (“almost” be-
cause actually µ̃(x)ṽδ(x+εz) is in Cβ

t (U∗), see below). Notice that Db(x+εz)
“almost” belongs to this space, in the sense that Db(x) is in the space. For-
getting about the “almost” problems, we could conclude.

The true strategy actually is based not directly on duality but on ap-
proximate duality: we replace ṽ by ṽδ solution to the backward transport
equation driven by the vector field b̃δ; this b̃δ obtained by convolution of b
with the usual mollifier ρδ, where δ is to be chosen. The reason for this
approximated duality is to deal with the z dependence of Db(x + εz): this
is problematic because this field is not differentiable in z, but on the other
hand we would like to take advantage of the ε factor in front of z. One may
introduce definitions of approximating duality pairing and other details, but
here we just adapt the strategy of duality to our context. First we get an
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equation for µ̃(x)ṽ(x+ εz) and we use this equation to get uniform (in δ and

ε) C
1/2+
t (U∗) bounds on µ̃(x)ṽ(x+ εz), provided we tune δ accordingly to ε.

Finally we use these bounds as in the commutator Lemma 4.10, to show that
the approximated commutator is infinitesimal in ε and conclude.

9.2 First estimates

In the following, ρ is a nonnegative even function in C∞x,c, normalized to have
‖ρ‖L1

x
= 1, and, for ε > 0, we define ρε(x) = ε−dρ(ε−1x) (the usual mollifier);

for a function f on Rd, we define fρ = f ∗ ρ, and similarly for a measure ν.
Let µ̃ be a solution of the CE. Let ϕ̃ be a function in C∞x,c and, for any

δ > 0, let ṽδ be the solution to the backward TE driven by b̃δ = b̃ ∗ ρδ, with
final time T and final datum ϕ̃:

∂sṽ
δ + b̃δ · ∇ṽδ = 0.

For both µ̃ and ṽ, we take the time weakly-* continuous versions.
First we get an equation for µ̃(x)ṽδ(x + εz), for ε, δ fixed (where, with

some abuse of notation, we use µ̃(x)dx for µ̃(dx)). Notice that µ̃(x)ṽδ(x+εz)
is an element of L∞t (Mx,z,BR) (for every R > 0) and, for every t, we have
〈µ̃t(x)ṽt(x + εz), ψ(x, z)〉 = 〈µ̃t(x)ṽt(y), ε−dψ(x, ε−1(y − x))〉 for every ψ in
C∞x,z,c. Since ṽδ is continuous in space (at every time), for every time t we can
repeat the computations at the beginning of Section 4.3, replacing ṽ with ṽδ,
and get, for every ψ in C∞x,z,c,

〈µ̃t⊗ṽt, ψ〉−〈µ̃0⊗ṽ0, ψ〉 =

ˆ t

0

〈µ⊗ṽ, b̃x·∇xψ+b̃δy·∇yψ〉dr+
ˆ t

0

〈µ̃⊗v, divb̃δyψ〉dr.

Replacing ψ with ε−dψ(x, ε−1(y − x)), using the change of variable z = (y −
x)/ε and the condition divb = 0 (which stays true for b̃δ), we arrive at the
equation

〈µ̃t(x)ṽt(x+ εz)− µ̃0(x)ṽ0(x+ εz), ψ(x, z)〉 (9.2)

=

ˆ t

0

〈µ̃(x)ṽδ(x+ εz), b̃(x) · ∇xψ(x, z)〉dr+

−
ˆ t

0

〈µ̃(x)ṽδ(x+ εz),
1

ε
(b̃δ(x+ εz)− b̃(x)) · ∇zψ(x, z)〉dr.

Now we introduce the space where we want µ̃(x)ṽ(x + εz) to be Hölder
continuous in time: this is the space U∗ dual of the space U . Here U is
defined as the closure of the functions in C∞x,z,c under the norm

‖ψ‖U := ‖ψ‖
Wα′,∞
x (L1

z)
+ ‖ψ‖L∞x (W 1,1

z ),
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for some 1/2 < α′ < α.
From the formula above, it seems relevant to control 1

ε
(b̃δ(x+ εz)− b̃(x)) ·

∇zψ(x, z) in the U norm. Hence we aim now at such an estimate.
The following interpolation bounds will be crucial. We recall that ρ is

a non-negative even C∞x,c function, ρδ(x) = δ−dρ(δ−1x) for δ > 0 and, for
f measurable locally integrable function, f η = f ∗ ρδ. We also recall the
following easy but relevant property of the approximate identities: for every
k in N, for every f in L1

x,loc, D
k(f ε) = ε−kf ∗ (Dkρ)ε.

Lemma 9.3. Fix 0 ≤ γ ≤ 1. We have, for every δ > 0, for every f in
W γ,∞
x , for every g in W 1+γ,∞

x ,

‖∇f δ‖L∞x ≤ Cδ−(1−γ)‖f‖W γ,∞
x

,

‖f − f δ‖L∞x ≤ Cδγ‖f‖W γ,∞
x

,

‖g − gδ‖W γ
x (L1

z) ≤ Cδ‖g‖W 1+γ,∞
x

.

Proof. We take the continuous versions of f and g. For the first statement,
notice that

∇f ∗ ρδ(x) =

ˆ
Rd

(f(x)− f(x′))∇ρδ(x− x′)dx′,

because
´
Rd f(x)∇ρ(x− x′)dx′ = 0. Hence

‖∇f δ‖L∞x = sup
x

∣∣∣∣ˆ
Rd

(f(x)− f(x′))∇ρδ(x− x′)dx′
∣∣∣∣

≤ sup
x

ˆ
Rd
|f(x)− f(x′)||∇ρδ(x− x′)|dx′

= δ−1 sup
x

ˆ
Rd
|f(x− δy)− f(x)||∇ρ(y)|dy

≤ δ−1δγ‖f‖W γ,∞
x

ˆ
Rd
|y|γ|∇ρ(y)|dy.

This proves the first statement.
For the second statement, we have similarly

‖f − f δ‖L∞x = sup
x

∣∣∣∣ˆ
Rd

(f(x)− f(x′))ρδ(x− x′)dx′
∣∣∣∣

≤ sup
x

ˆ
Rd
|f(x)− f(x′)|ρδ(x− x′)dx′

= sup
x

ˆ
Rd
|f(x− δy)− f(x)|ρ(y)dy

≤ δγ‖f‖W γ,∞
x

.
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For the third statement, we have, for every x, y,

|g(x)− gδ(x)− g(y) + gδ(y)|

=

∣∣∣∣ˆ
Rd

[g(x)− g(x− δw)− g(y) + g(y − δw)]ρδ(w)dw

∣∣∣∣
=

∣∣∣∣∣
ˆ
Rd

ˆ 1

0

[∇g(x− ξδw)−∇g(y − ξδw)] · δwdξρ(w)dw

∣∣∣∣∣
≤ δ|x− y|γ‖∇g‖W γ,∞

x

ˆ
Rd
|w|ρ(w)dw.

From this the third statement follows. The proof is complete.

Now we can prove the following estimate on (b̃δ(x+ εz)− b̃(x))/ε:

Lemma 9.4. For every β > 1/2, α > 1/2 (and actually for every positive
β, α), there exists a constant C > 0 such that, for every b in Cβ−1

t (Cα
x,b),∥∥∥∥∥

ˆ t

s

1

ε
(b̃δ(x+ εz)− b̃(x))dr

∥∥∥∥∥
Wα′,∞
x (L∞z )∩L∞x (W 1,∞

z )

≤ C(1 + εδ−(1−α) + ε−1δ)‖b̃‖Cβ−1
t (C1,α

x,b )|t− s|
β.

Proof. We split the term with b̃ into two terms, which will be estimates
separately:

1

ε
(b̃δ(x+ εz)− b̃(x)) =

1

ε
(b̃δ(x+ εz)− b̃δ(x)) +

1

ε
(b̃δ(x)− b̃(x)).

First term. We estimate the term with (b̃δ(x+ εz)− b̃δ(x))/ε, which we
write as ˆ t

s

1

ε
(b̃δ(x+ εz)− b̃(x))dr =

ˆ 1

0

D

ˆ t

s

b̃δ(x+ εξz)zdrdξ. (9.3)

We start with the estimate in theWα′,∞
x (L∞z ) norm. SinceDb̃ is in Cβ−1

t (Cα
x,b),

we have

sup
x 6=y

sup
z

∣∣∣D ´ t
s
b̃δ(x+ εξz)−D

´ t
s
b̃δ(x+ εξz)

∣∣∣
|x− y|α

≤ ‖Db̃‖Cβ−1
t (Cαx,b)

|t− s|

and so∥∥∥∥∥
ˆ 1

0

D

ˆ t

s

b̃δ(x+ εξz)zdrdξ

∥∥∥∥∥
Wα′,∞
x (L∞z )

≤ ‖Db̃‖Cβ−1
t (Cαx,b)

|t− s|β.
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Now we estimate the L∞x (W 1,∞
z ) norm, which reduces to the L∞x,z norm for

the derivative of (9.3) in the z direction (since the control of the L∞x,z norm

of (9.3) contained in the L∞z (Wα′,∞
x ) bound). Here we see the usefulness

of the approximation with bδ. Indeed, since Db̃ is in Cβ−1
t (Cα

x,b), by the
interpolation Lemma (9.3) we have

‖D2

ˆ t

s

b̃δdr‖L∞x ≤ Cδ−(1−α)‖D
ˆ t

s

b̃dr‖Wα,∞
x
≤ δ−(1−α)‖Db̃‖Cβ−1

t (Cαx )|t− s|
β

and so∥∥∥∥∥Dz

ˆ 1

0

D

ˆ t

s

b̃δ(x+ εξz)zdrdξ

∥∥∥∥∥
L∞x,z

=

∥∥∥∥∥
ˆ 1

0

εξD2

ˆ t

s

b̃δ(x+ εξz)drdξ

∥∥∥∥∥
L∞x,z

≤ Cεδ−(1−α)|t− s|β.

Without δ, we could have not differentiated this term in the z direction. This
concludes the bound for the term with (b̃δ(x+ εz)− b̃δ(x))/ε.

Second term. We estimate the term with (b̃δ(x)− b̃(x))/ε. In this case
it is enough to bound the Wα′,∞

x norm, the term being independent of z.
Again by the interpolation Lemma 9.3, we have∥∥∥∥∥

ˆ t

s

1

ε
(b̃δ(x)− b̃(x))dr

∥∥∥∥∥
Wα′,∞
x

(9.4)

≤ Cε−1δ‖
ˆ t

s

b̃dr‖W 1+α,∞
x

≤ ε−1δ‖Db̃‖Cβ−1
t (Cαx )|t− s|

β.

This proves the bound for this term. Putting together the two bounds, we
find the thesis.

Corollary 9.5. For every β > 1/2, α > 1/2 (and actually for every positive
β, α), there exists a constant C > 0 such that, for every b in Cβ−1

t (Cα
x,b), for

every ψ in U , it holds∥∥∥∥∥
ˆ t

s

1

ε
(b̃δ(x+ εz)− b̃(x)) · ∇zψdr

∥∥∥∥∥
U

≤ C(1 + εδ−(1−α) + ε−1δ)‖b‖Cβ−1
t (C1,α

x,b )‖∇zψ‖U |t− s|β.

In the proof we use the following bound: for any functions f in C∞x,z, g in
C∞x,z,c, it holds

‖fg‖U ≤ 4‖f‖
Wα′,∞
x (L∞z )∩L∞x (W 1,∞

z )
‖g‖U . (9.5)
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This follows from the following inequalities, of easy proof:

‖fg‖
Wα′,∞
x (L1

z)
= sup

x6=y

‖f(x)g(x)− f(y)g(y)‖L1
z

|x− y|α

≤ ‖f‖
Wα′,∞
x (L∞z )

‖g‖L∞x (L1
z) + ‖f‖L∞x (L∞z )‖g‖Wα′,∞

x (L1
z)
,

‖fg‖L∞x (W 1,1
z ) ≤ ‖‖f‖W 1,∞

z
‖g‖L1

z
‖L∞x + ‖‖f‖L∞z ‖g‖W 1,1

z
‖L∞x

≤ ‖f‖L∞x (W 1,∞
z )‖g‖L∞x (L1

z) + ‖f‖L∞x (L∞z )‖g‖L∞x (W 1,1
z ).

The bound (9.5) can be extended to all functions f and g with f in the
closure of C∞x,z functions with respect to the Wα′,∞

x (L∞z ) ∩ L∞x (W 1,∞
z ) norm

and g in U .

Proof. First, notice that Cα
x,b is contained in the closure of C∞x with respect

to the Wα′,∞
x norm, since α′ < α (see Remark A.10 in the Appendix). So

the function (x, z) 7→
´ t
s
b̃(x)dr is in the closure of C∞x,z with respect to

the Wα′,∞
x (L∞z ) ∩ L∞x (W 1,∞

z ) norm. Moreover, since b̃ is globally bounded,
(x, z) 7→

´ t
s
b̃δ(x + εz)dr is regular with bounded derivatives of all orders;

hence (again by Remark A.10) it is also in the closure of C∞x,z with respect to
the W 1,∞

x,z norm and in particular it is in the closure of C∞x,z with respect to the

Wα′,∞
x (L∞z ) ∩ L∞x (W 1,∞

z ) norm. Hence we can apply the previous inequality

to f(x, z) = f b̃(x, z) = ε−1
´ t
s
(b̃δ(x + εz) − b̃(x))dr and g(x, z) = ∇zψ(x, z)

and get∥∥∥∥∥
ˆ t

s

1

ε
(b̃δ(x+ εz)− b̃(x)) · ∇zψdr

∥∥∥∥∥
U

≤ 4‖f b̃‖
Wα′,∞
x (L∞z )∩L∞x (W 1,∞

z )
‖∇zψ‖U .

We conclude by Lemma 9.4.

For this reason, we choose from now on δ = ε(2−α)/(2−2α); in fact any
choice between ε and ε1/(1−α) works as well, apart for δ = ε (since later we
will need ε−1δ → 0).

9.3 Estimates for the duality pair

Here we give estimates on the approximated duality pair, in the space Cβ
t (U∗),

using the equation (9.2).

Proposition 9.6. Assume that 1/2 < β < α′ < α. There exists C > 0 such
that

‖µ(x)vδ(x+ εz)‖Cβt (U∗) ≤ C.
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Remark 9.7. For every δ > 0, ε > 0, the norm above is finite. Indeed one
can show that ‖µ‖Cβt (U∗) is finite, by reasoning for example as in Section 9.1

(we omit some details, which are in the line of the arguments below); this
implies that ‖µ(x)vδ(x+ εz)‖Cβt (U∗) is finite since vδ is regular.

Let ρ be a non-negative even C∞x,c function; for η = (ηx, ηz) with ηx, ηz >
0, define the anisotropic mollifier ρ̄η(x, z) = η−dx η−dz ρ(η−1

x x)ρ(η−1
z z). Define

ψη = ψ ∗ ρ̄η (the convolution being on the (x, z) variable). The following
bounds are similar in spirit to the interpolation Lemma 9.3.

Lemma 9.8. We have

‖∇xψ
η‖L∞x (L1

z) ≤ Cη−(1−α′)
x ‖ψ‖U , (9.6)

‖∇zψ
η‖U ≤ Cη−1

z ‖ψ‖U , (9.7)

‖ψ − ψη‖L∞x (L1
z) ≤ C(ηα

′

x + ηz)‖ψ‖U . (9.8)

Proof. For the first bound, we adapt the proof of Lemma 9.3. Recall that,
for each (x, z),

∇xψ ∗ ρ̄η(x, z) =

ˆ
Rd

ˆ
Rd

(ψ(x′, z′)− ψ(x, z′))∇xρ̄η(x− x′, z − z′)dx′dz′,

because
´
Rd ψ(x, z′)∇xρ̄(x− x′, z − z′)dx′ = 0. Hence

‖∇xψ
η‖L∞x (L1

z)

= sup
x

ˆ
Rd

∣∣∣∣ˆ
Rd

ˆ
Rd

(ψ(x′, z′)− ψ(x, z′))∇xρ̄η(x− x′, z − z′)dx′dz′
∣∣∣∣ dz

≤ sup
x

ˆ
Rd

ˆ
Rd

ˆ
Rd
|ψ(x′, z′)− ψ(x, z′)||∇ρηx(x− x′)|ρηz(z − z′)dz′dzdx′

≤ sup
x

ˆ
Rd
‖ψ(x′, ·)− ψ(x, ·)‖L1

z
|∇ρηx(x− x′)|dx′

= η−1
x sup

x

ˆ
Rd
‖ψ(x− ηxy, ·)− ψ(x, ·)‖L1

z
|∇ρ(y)|dy

≤ η−1
x ηα

′

x ‖ψ‖Wα′,∞
x (L1

z)

ˆ
Rd
|y|α′ |∇ρ(y)|dy,

where, in the second inequality, we used Young inequality for the convolution
in z. The first bound is proved.

The second bound follows from the fact that ∇zψ
η = η−1

z ψ ∗ (∇zρ̄)η
(where (∇zρ̄)η = η−dx η−dz ρ(η−1

x x)∇ρ(η−1
z z)) and that ‖ψ∗(∇zρ̄)η‖U ≤ C‖ψ‖U

((∇zρ)ηz being bounded in L1
z).
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For the third bound, we write ψ − ψη = (ψ − ψ(ηx,0)) + (ψ(ηx,0) − ψη),
where ψ(ηx,0) is obtained convolving ψ with ρηx only in the x variable. For
the first addend, we have, proceeding as before,

‖ψ − ψ(ηx,0)‖L∞x (L1
z) = sup

x

∣∣∣∣ˆ
Rd

ˆ
Rd

(ψ(x′, z)− ψ(x, z))ρηx(x− x′)dx′
∣∣∣∣ dz

≤ ηα
′

x ‖ψ‖Wα′,∞
x (L1

z)

ˆ
Rd
|y|α′ρ(y)dy.

For the second addend, we have

‖ψ(ηx,0) − ψη‖L∞x (L1
z) = sup

x

ˆ
Rd

∣∣∣∣ˆ
Rd

[ψ(ηx,0)(x, z)− ψ(ηx,0))(x, z′)]ρηz(z
′)dz′

∣∣∣∣ dz
≤ C sup

x

ˆ
Rd

ˆ
Rd
|ψ(ηx,0)(x, z)− ψ(ηx,0))(x, z − εzy)|ρ(y)dydz

≤ Cηz sup
x

ˆ 1

0

ˆ
Rd

ˆ
Rd
|∇zψ

(ηx,0)(x, z − ξεzy)|dz|y|ρ(y)dydξ

≤ Cηz‖∇zψ‖L∞x (L1
z)

ˆ
Rd
|y|ρ(y)dy,

where we have used that ‖∇zψ
(ηx,0)‖L∞x (L1

z) ≤ ‖∇zψ‖L∞x (L1
z). Putting together

this two estimates, we find the third bound. The proof is complete.

Given the previous Lemma, the idea of the proof is as follows. We take
∆s,t := µ̃t(x)ṽt(x+εz)−µ̃s(x)ṽs(x+εz) and test it against a function in U (we
want a Hölder bound in time). We split the test function ψ = (ψ−ψη) +ψη.
When testing ∆s,t against ψ−ψη, we only use the L∞x (L1

z) bound before and
gain a factor ηα

′
x + ηz (with no Hölder type term like |t− s|γ). When testing

∆s,t against ψη, we use the equation (9.2) with Young integration bounds

and get factors like η
−(1−α′)
x |t − s|γx , η−1

z |t − s|γz . At this point we tune ηx,
ηy proportional to a suitable power of |t − s| and obtain the desired Hölder
bound in time.

Proof of Proposition 9.6. We have to estimate

‖µ̃t(x)ṽδt (x+ εz)− µ̃s(x)ṽδs(x+ εz)‖U∗
= sup

ψ∈C∞x,z,c,‖ψ‖U≤1

|〈µ̃t(x)ṽδt (x+ εz)− µ̃s(x)ṽδs(x+ εz), ψ〉|.

For this, fix s < t and ψ as above. We split 〈µt(x)vδt (x + εz) − µs(x)vδs(x +
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εz), ψ〉 in

〈µt(x)vδt (x+ εz)− µs(x)vδs(x+ εz), ψ〉
= 〈µt(x)vδt (x+ εz)− µs(x)vδs(x+ εz), ψ − ψη〉+
+ 〈µt(x)vδt (x+ εz)− µs(x)vδs(x+ εz), ψη〉 =: I + II.

The η is fixed and will be determined later (dependently on t− s).
For the term I with ψ − ψη, by (9.8) we get, via Hölder inequality (in x

first and in z then),

|I| ≤ 2 sup
t
‖µ̃(x)‖Mx‖〈ṽδ(x+ εz), ψ − ψη〉z‖Cx,b

≤ 2 sup
t
‖µ̃(x)‖Mx‖ṽδ(x+ εz)‖L∞x (L∞z )‖ψ − ψη‖L∞x (L1

z)

≤ C(ηα
′

x + ηz)‖µ̃‖L∞t (Mx)‖ṽδ‖L∞t,x‖ψ‖U

(notice that x 7→ 〈ṽδ(x+εz), ψ−ψη〉z is continuous, so its L∞x norm coincides
with the Cx,b norm; similarly for other maps below).

For the term II with ψη, we use equation (9.2): we have

II =

ˆ t

s

〈µ̃(x)ṽδ(x+ εz), b̃(x) · ∇xψ
η(x, z)〉dr+

−
ˆ t

s

〈µ̃(x)ṽδ(x+ εz),
1

ε
(b̃δ(x+ εz)− b̃(x)) · ∇zψ

η(x, z)〉dr =: II.1 + II.2.

We estimate the addend II.1 by (9.6) and the fact that b is in Ct(Cx,b),
obtaining, via Hölder inequality (in x first and in z and t then),

|II.1| ≤
ˆ t

s

‖µ̃(x)‖Mx‖〈ṽδ(x+ εz), b̃(x) · ∇xψ
η(x, z)〉z‖Cx,bdr

≤ |t− s|‖µ̃‖L∞t (Mx)‖ṽδ‖L∞t,x‖b̃‖Ct(Cx,b)‖∇zψ
η‖L∞x (L1

z)

≤ Cη−(1−α′)
x |t− s|‖µ̃‖L∞t (Mx)‖ṽδ‖L∞t,x‖b̃‖L∞t (Cx,b)‖ψ‖U .

We use Young estimates (on Banach spaces, Section A.3 in the Appendix)
for the addend II.2: by Corollary 9.5 and (9.7) we have∣∣∣∣∣II.2− 〈µ̃s(x)ṽδs(x+ εz),

1

ε

ˆ t

s

(b̃δ(x+ εz)− b̃(x)) · ∇zψ
η(x, z)dr〉

∣∣∣∣∣
≤ C|t− s|2β‖µ̃(x)ṽδ(x+ εz)‖U∗

∥∥∥∥∥1

ε

ˆ t

s

(b̃δ(x+ εz)− b̃(x)) · ∇zψ
η(x, z)

∥∥∥∥∥
U

≤ Cη−1
z |t− s|2β‖µ̃(x)ṽ(x+ εz)‖Cβt (U∗)‖b̃‖Cβ−1

t (C1,α
x,b )‖ψ‖U .
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Moreover, using (9.3) and (9.4), we get, via Hölder inequality,∣∣∣∣∣〈µ̃s(x)ṽδs(x+ εz),
1

ε

ˆ t

s

(b̃δ(x+ εz)− b̃(x)) · ∇zψ
η(x, z)dr〉

∣∣∣∣∣
≤ ‖µ̃s‖Mx

∥∥∥∥∥〈ṽδs(x+ εz),
1

ε

ˆ t

s

(b̃δ(x+ εz)− b̃(x))dr · ∇zψ
η(x, z)〉z

∥∥∥∥∥
Cx,b

≤ ‖µ̃s‖Mx‖ṽδs‖L∞x

∥∥∥∥∥1

ε

ˆ t

s

(b̃δ(x+ εz)− b̃(x))dr

∥∥∥∥∥
L∞x (L∞z )

‖∇zψ
η(x, z)‖L∞x (L1

z)

≤ C|t− s|β‖µ̃‖L∞t (Mx)‖ṽδ‖L∞t,x‖b̃‖Cβ−1
t (C1,α

x,b )‖ψ‖U .

So we obtain

|II.2|
≤ C|t− s|β‖µ̃‖L∞t (Mx)‖ṽδ‖L∞t,x‖b̃‖Cβ−1

t (C1,α
x,b )‖ψ‖U+

+ Cη−1
z |t− s|2β‖µ̃(x)ṽ(x+ εz)‖Cβt (U∗)‖b̃‖Cβ−1

t (C1,α
x,b )‖ψ‖U .

Putting all together, we end with

|〈µ̃t(x)ṽδt (x+ εz)− µ̃s(x)ṽδs(x+ εz), ψ〉|
≤ C(ηα

′

x + ηz)‖µ̃‖L∞t (Mx)‖ṽδ‖L∞t,x‖ψ‖U+

+ Cη−(1−α′)
x |t− s|‖µ̃‖L∞t (Mx)‖ṽδ‖L∞t,x‖b̃‖L∞t (Cx,b)‖ψ‖U+

+ C|t− s|β‖µ̃‖L∞t (Mx)‖ṽδ‖L∞t,x‖b̃‖Cβ−1
t (C1,α

x,b )‖ψ‖U+

+ Cη−1
z |t− s|2β‖µ̃(x)ṽ(x+ εz)‖Cβt (U∗)‖b̃‖Cβ−1

t (C1,α
x,b )‖ψ‖U .

Since we want to control the ‖µ(x)v(x+ εz)‖Cβt (V ∗R) norm, we choose now

η such that ηz = ηα
′

x = c|t− s|β, where c > 0 is a constant to be fixed later.

The condition β < α′ ensures that η
−(1−α′)
x |t − s| ≤ c−(1−α′)/α′C|t − s|β (for

every s, t in [0, T ]). Hence the previous estimate becomes

|〈µ̃t(x)ṽδt (x+ εz)− µ̃s(x)ṽδs(x+ εz), ψ〉|
≤ C|t− s|β‖µ̃‖L∞t (Mx)‖ṽδ‖L∞t,x(c

−1 + c−(1−α′)/α′‖b̃‖L∞t (Cx,b) + ‖b̃‖Cβ−1
t (C1,α

x,b ))‖ψ‖U

+ cC|t− s|β‖µ̃(x)ṽ(x+ εz)‖Cβt (U∗)‖b̃‖Cβ−1
t (C1,α

x,b )‖ψ‖U .
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Taking the supremum over ψ with ‖ψ‖U ≤ 1 and over s < t, we get

‖µ̃(x)ṽ(x+ εz)‖Cβt (U∗) ≤ C‖µ̃0‖Mx‖ṽδ‖L∞t,x+

+ C‖µ̃‖L∞t (Mx)‖ṽδ‖L∞t,x(c
−1 + c−(1−α′)/α′‖b̃‖L∞t (Cx,b) + ‖b̃‖Cβ−1

t (C1,α
x,b ))‖+

+ cC‖µ̃(x)ṽ(x+ εz)‖Cβt (U∗)‖b̃‖Cβ−1
t (C1,α

x,b ),

where C‖µ̃0‖Mx‖ṽδ‖L∞t,x takes into account the U∗ norm of µ̃0ṽ
δ
0 (which enters

the Cβ
t (U∗) norm).

Finally we choose c > 0 so that cC‖b̃‖Cβ−1
t (C1,α

x,b ) ≤ 1/2 (i.e. c−1 propor-

tional to ‖b̃‖Cβ−1
t (C1,α

x,b )). With this choice (and since ‖µ̃(x)ṽ(x+ εz)‖Cβt (U∗) is

finite) we get

‖µ̃(x)ṽ(x+ εz)‖Cβt (U∗)

≤ C‖µ̃0‖Mx‖ṽδ‖L∞t,x + C‖µ̃‖L∞t (Mx)‖ṽδ‖L∞t,x·

· (‖b̃‖Cβ−1
t (C1,α

x,b ) + ‖b̃‖(1−α′)/α′

Cβ−1
t (C1,α

x,b )
‖b̃‖L∞t (Cx,b) + ‖b̃‖2

Cβ−1
t (C1,α

x,b )
).

The proof is complete.

Remark 9.9. In the proof we used Young estimates for a Lebesgue integral,
the term II.2. More in general, given ν in L∞t (Mx,z,BR) ∩ Cβ

t (U∗), g in

L∞t (Cx,z) ∩ Cβ−1
t (U) with support on [0, T ]×BR, an integral of the form

ˆ t

0

〈ν, g〉dr,

can be interpreted both as Lebesgue integral (when the duality product is be-
tween Mx,z,BR and Cx,z) and as Young integral (when the duality product is
between U∗ and U). The two integrals coincide, so we can use any tool from
Lebesgue and Young integrals. Indeed, when g is in C1

t (U), then the Young in-
tegral reduces to a Riemann integral and therefore coincides with the Lebesgue
integral. For a general g in L∞t (Cx,z) ∩ Cβ−1

t (U), both the Lebesgue integral

and the Young integral can be approximated by
´ t

0
〈ν, gn〉dr, where (gn)n is

a sequence in L∞t (Cx,z) ∩ C1
t (U) converging to g in L1

t (Cx,z) ∩ C
β′−1
t (U), for

any β′ < β (for example, gn(t) =
ffl t+1/n

t−1/n
g(r)dr).

9.4 The commutator lemma

Now we take ψ(x, z) = ρ(z)χR(x) as test function for equation (9.2), where ρ
is a nonnegative even function in C∞x,c (for simplicity, the ρ considered before)
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and, for R > 0, χR is a smooth function, with 0 ≤ χR ≤ 1 and |∇χR| ≤ 2/R,
equal to 1 on BR and to 0 on Bc

2R. As in Section 4.3, we find a commutator.
We show now that this commutator is infinitesimal in ε.

Lemma 9.10. We have, as ε→ 0,
ˆ T

0

〈µ̃(x)ṽδ(x+ εz),
1

ε
(b̃δ(x+ εz)− b̃(x)) · ∇ρ(z)χR(x)〉dr → 0.

Proof. In view of Young integration theory, we split the integrals on intervals
[tj, tj+1], for tj = jh ∧ T (tN = T ), h > 0:

ˆ T

0

〈µ̃(x)ṽδ(x+ εz),
1

ε
(b̃δ(x+ εz)− b̃(x)) · ∇ρ(z)χR(x)〉dr =

N−1∑
j=0

ˆ tj+1

tj

. . . .

For each integral, we use Corollary 9.5 and, by Young integration, we get∣∣∣∣∣
ˆ tj+1

tj

〈µ̃(x)ṽδ(x+ εz),
1

ε
(b̃δ(x+ εz)− b̃(x)) · ∇ρ(z)χR(x)〉dr

∣∣∣∣∣ (9.9)

≤

∣∣∣∣∣〈µ̃tj(x)ṽδtj(x+ εz),
1

ε

ˆ tj+1

tj

(b̃δ(x+ εz)− b̃(x)) · ∇ρ(z)χR(x)dr〉

∣∣∣∣∣
+ Ch2β‖µ̃(x)v(x+ εz)‖Cβt (U∗)‖b̃‖Cβ−1

t (C1,α
x,b ).

Now we let ε→ 0 (and so δ = ε(2−α)/(2−2α) → 0), keeping h > 0 fixed. We
start by showing that the first addend in the RHS above tends to 0. For this,
we first prove the convergence of

´ t
s

1
ε
(b̃δ(x + εz) − b̃(x))dr to D

´ t
s
b̃(x)dr.

We split ∣∣∣∣∣
ˆ t

s

1

ε
(b̃δ(x+ εz)− b̃(x))dr −D

ˆ t

s

b̃(x)dr

∣∣∣∣∣
≤

∣∣∣∣∣1ε (b̃δ(x+ εz)− b̃δ(x))−D
ˆ t

s

b̃δ(x)drdξ

∣∣∣∣∣+
+

∣∣∣∣∣D
ˆ t

s

b̃δ(x)dr −D
ˆ t

s

b̃(x)dr

∣∣∣∣∣+

∣∣∣∣∣
ˆ t

s

1

ε
(b̃δ(x)− b̃(x))dr

∣∣∣∣∣
=

∣∣∣∣∣∣
ˆ 1

0

(
D

ˆ t

s

b̃δ(x+ εξz)dr −D
ˆ t

s

b̃δ(x)dr

)
dξ

∣∣∣∣∣∣+
+

∣∣∣∣∣D
ˆ t

s

b̃δ(x)dr −D
ˆ t

s

b̃(x)dr

∣∣∣∣∣+

∣∣∣∣∣
ˆ t

s

1

ε
(b̃δ(x)− b̃(x))dr

∣∣∣∣∣
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Using this splitting, the Hölder continuity properties of b̃ and the interpola-
tion Lemma 9.3, we get, for every (x, z),∣∣∣∣∣

ˆ t

s

1

ε
(b̃δ(x+ εz)− b̃(x))dr −D

ˆ t

s

b̃(x)dr

∣∣∣∣∣ ≤ C|t− s|β(εα + δα + ε−1δ).

By our choice of δ, ε−1δ → 0. Hence, for ε, δ going to 0, we get∥∥∥∥∥
ˆ t

s

1

ε
(b̃δ(x+ εz)− b̃(x))dr −D

ˆ t

s

b̃(x)dr

∥∥∥∥∥
L∞x,z

→ 0.

Putting this into the first addend of the RHS of (9.9), by Hölder inequality
(using the L∞t (Mx) norm of µ and the uniform L∞t,x bound of vδ), we obtain
the convergence

〈µ̃tj(x)ṽδtj(x+ εz),

(
1

ε

ˆ tj+1

tj

(b̃δ(x+ εz)− b̃(x))dr

)
· ∇ρ(z)χR(x)〉

→ 〈µ̃tj(x)ṽδtj(x+ εz),

(
D

ˆ tj+1

tj

b̃(x)dr

)
z · ∇ρ(z)χR(x)〉.

Since b is divergence-free, D
´ tj+1

tj
b̃(x)drz ·∇ρ(z) = 0 and so the first addend

of the RHS in (9.9) is infinitesimal, as desired.
Therefore for every h > 0 we have, first passing to the limit ε → 0 in

(9.9) and then summing over j,

lim sup
ε→0

∣∣∣∣∣
ˆ tj+1

tj

〈µ̃(x)ṽδ(x+ εz),
1

ε
(b̃δ(x+ εz)− b̃(x))∇ρ(z)χR(x)〉dr

∣∣∣∣∣
≤ Ch−1h2β lim sup

ε→0
‖µ̃(x)ṽ(x+ εz)‖Cβt (U∗)‖b̃‖Cβ−1

t (C1,α
x,b ).

Now the RHS is infinitesimal in h, because β > 1/2. Hence, by arbitrariness
of h, we conclude that the LHS is 0. The proof is complete.

We are ready to prove uniqueness from approximated duality.

Proof of Theorem 9.1. Equation (9.2), applied to the CE with µ̃0 ≡ 0, with
test function ψ(x, z) = ρ(z)χR(x), gives that

〈µ̃T (x)ϕ̃(x+ εz), ρ(z)χR(x)〉

= −
ˆ T

0

〈µ̃(x)ṽδ(x+ εz),
1

ε
(b̃δ(x+ εz)− b̃(x))∇ρ(z)χR(x)〉dr+

+

ˆ T

0

〈µ̃(x)ṽδ(x+ εz), b̃(x)ρ(z) · ∇χR(x)〉dr.
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We let ε→ 0: using the commutator lemma 9.10 (and the uniform L∞t,x bound
on vδ in terms of the final datum ϕ), we get

|〈µ̃T , ϕ̃χR〉| ≤ lim sup
ε→0

∣∣∣∣∣
ˆ T

0

〈µ̃(x)ṽδ(x+ εz), b̃(x)ρ(z) · ∇χR(x)〉dr

∣∣∣∣∣ .
Since |∇χR(x)| ≤ 8/(1 + |x|)1R≤|x|≤2R, we get

|〈µ̃T , ϕ̃χR〉| ≤ C
1

R
‖µ̃‖L∞t (Mx)‖ϕ̃‖L∞x ‖b̃‖Ct(Cx).

Letting R → +∞, we finally obtain 〈µ̃T , ϕ̃〉 = 0. By the arbitrariness of T
and ϕ̃, we conclude µ ≡ 0. The proof of uniqueness is complete.
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Chapter 10

The Girsanov argument

In this chapter we consider again the random ODE

dX̃ = b̃(X̃)dt,

but under weaker regularity assumption on b that C
1/2+
x , using more the

stochastic nature. The starting point is the following remark: by the bound
(8.17) in Chapter 9, a bound on the C

1/2+
t (L∞x ) norm of Db̃(X̃) implies a

bound on the Lipschitz norm of DX̃. Now it may happen that Db̃(X̃) is

bounded in C
1/2+
t (L∞x ), even when b̃ is not regular enough to apply Young

integration techniques for the composition Db̃(X̃).
This is the case, for example, when we have Girsanov theorem. Indeed,

for fixed x, this theorem implies that X(x) and x+W are equivalent in law,
so that Db̃(X̃(x)) = Db(X(x)) and Db̃(x) = Db(x + W ) are equivalent as
well. Hence, roughly speaking, the bounds on Db̃(X) can be reduced to those
on Db̃.

Unfortunately this is not true at the level of L∞x bounds, since the equiv-
alence above holds only for the law at x fixed. However, we can still work
with Lm bounds for m finite.

The content of this Chapter is inspired again by the work [CG12] and
also by the approach by Proske and coauthors ([MPMBN+13] for example,
see also [Rez14]).

10.1 The result

Here is the main result, in the class of drifts 2.3:

Theorem 10.1. Assume that b is in the class 2.3 (and satisfies Condition
2.1). Fix 2 ≤ m < +∞, 2 ≤ m̃ < +∞ such that 1/m+ 1/m̃+ 1/(p∧ q) ≤ 1.
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Then existence, path-by-path uniqueness and stability hold in the sense of
Theorem 4.12.

The proof of this result is at the end of the Chapter.

10.2 Digression on exponentials

In what follows, we will often meet solutions A to the matrix-valued differ-
ential equation

∂tA = M(Y )A

where M is a certain matrix field and Y is a stochastic process, usually
the solution an SDE. The most important example is given by the space
derivative DX of a solution X to the SDE

dX = b(X)dt+ dW,

in this case M = Db and Y = X. Another important example, in view of
Girsanov transform, is the case when Y is a Brownian motion. Notice that,
in dimension one, A ha the explicit form At = A0 exp[

´ t
0
Mr(Yr)dr], that is

why we speak of exponentials.
There are (at least) two ways to deal with these objects. The first way

consists of writing the explicit formula for A, namely

At (10.1)

= A0 +
∞∑
n=1

ˆ t

0

ˆ t1

0

. . .

ˆ tn−1

0

Mt1(Yt1)Mt2(Yt2) . . .Mtn(Ytn)dtn . . . dt2dt1,

and to estimate every term of the sum. This approach requires to have
estimates on the marginal laws of Y , it can be lengthy but does not require
a priori a martingale structure. This is the method followed by Proske and
coauthors, in [MPMBN+13] and other papers, and extended in [Rez14] to
the case of b in the class 2.3.

The second way is to write an SPDE for A and to use a priori estimates for
that SPDE. This is somehow a quicker method, but requires the martingale
structure. Precisely, we take the solution Y = Y (s, t, x) = Ys,t(x) to the
following SDE on Rd

dY = B(Y )dt+ dW, Ys = x,

and we assume that A = A(s, t, x) = As,t(x) satisfies the linear SDE on Rn×n

dA = M(Y )Adt, As = I,
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where B : [0, T ]×Rd → Rd, M : [0, T ]×Rd → Rn×n are in Ct(C
∞
x,c) (and W

is a d-dimensional Brownian motion as usual). Then we have the following
representation result:

Proposition 10.2. Fix t in [0, T ] and Ut in (C∞x,c)
n. Then

U(s, x) = A(s, t, x)∗Ut(Y (s, t, x))

is in Cs(C
2
x,loc) and satisfies the following linear backward SPDE:

∂sU + (B · ∇)U +M∗U +
∑
k

∂xkU ◦ Ẇ k = 0. (10.2)

Proof. For a vector v in Rn, call V (x, v) = A(x)v. This process solves the
same SDE of A, but with initial datum v. Now the link (3.2) between SDEs
and backward STEs (rigorously, Theorem 3.18, which can be extended also
to the case of general Ct(C

4
x,lin) drifts and diffusion coefficients) applies to

the couple (Y, V ) and gives that Ū(s, x, v) = U(s, x) · v = Ut(Y (s, t, x)) ·
V (s, t, x, v) satisfies the following backward STE on [0, t]×Rd×Rn 3 (s, x, v):

∂sŪ(x, v) +B(x) · ∇xŪ(x, v) +M(x)v · ∇vŪ(x, v) +∇xŪ(x, v) ◦ Ẇ = 0.

But we also know that Ū is linear in the v component, precisely Ū = U · v.
Hence the product (M(x)v · ∇v)Ū(x, v) is actually U(x) ·M(x)v. Hence the
equation above reads

∂sU(x) · v + (B(x) · ∇x)U(x) · v +M(x)∗U(x) · v +∇x(U(x) · v) ◦ Ẇ = 0.

Since this is true for every vector v, we get the thesis.

Remark 10.3. The key idea in this Proposition is to interpret the term M∗U ,
roughly speaking, as a transport-type term of the form Mv ·∇v[U ·v], where v
is an additional free variable, so that the SPDE is a transport equation with
respect to (x, v).

10.3 Application of Girsanov transform

In this Section we prove the Sobolev (in space) a priori estimates on the flow.

Theorem 10.4. Fix p, q satisfying Condition 2.3, fix R > 0 and an even
integer m ≥ 2. Then there exists a locally bounded function C : [0,+∞[→
[0,+∞[ such that, for any vector field b in Ct(C

∞
x,c), for every s ≥ 0, it holds

sup
t∈[s,T ]

ˆ
BR

E
[
|X(t, x)|m + |DX(t, x)|m

]
dx ≤ C(‖b‖Lqt (Lpx)).
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For simplicity, we fix s = 0 in the following: it is easy to see that all the
estimates hold for any s, uniformly in s (in [0, T ]).

The following two lemmata provide the key estimates. The first one is
related to Novikov condition.

Lemma 10.5. Fix R > 0 and an even integer m ≥ 2. Then it holds

sup
t∈[0,T ]

ˆ
BR

E exp

[
m

ˆ t

s

|b(r, x+Wr −Ws)|2dr

]
dx ≤ C(‖b‖Lqt (Lpx)). (10.3)

For the second one, given a continuous trajectory γ : [0, T ] → Rd, call
A(γ) the solution to the linear ODE

∂tA
(γ) = Db̃(γ)A(γ), A

(γ)
0 = I.

Notice that A is a bounded function of γ (and it is measurable as a function
(Ct,B(Ct))→ (Ct,B(Ct))). Then call A(x) = A(x+W ).

Lemma 10.6. Fix R > 0 and an even integer m ≥ 2. Then it holds

sup
t∈[0,T ]

ˆ
BR

E[|A|m]dx ≤ C(‖b‖Lqt (Lpx)). (10.4)

For the proof of these two lemmata, notice that they are both particular
cases of the situation in the previous paragraph, precisely: for 10.5, take
Y = x + W , n = 1, M = |b|2; for 10.6, take Y = x + W , n = d, M = Db.
Hence they can be proved with the two techniques described there (the one
based on the expansion (10.1) and the one based on the SPDE (10.2)).

Here we prove the lemmata only using the SPDE technique. The proof
uses the techniques developed for SPDEs in Chapter 12, in particular The-
orem 12.5 in that Chapter. We give a proof only for 10.6 (the proof of 10.5
being similar).

Proof of 10.6. By Proposition 10.2, applied with Ut = ei (the i-th vector of
the canonical basis of Rd), we get that A satisfies the SPDE

∂sA+ ADb+
d∑

k=1

∂xkA ◦ Ẇ k = 0.

From Theorem 12.5, we get (10.4).
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Proof of Theorem 10.4. First step: application of Girsanov theorem. Fix x
in BR. Since b is in Ct(C

∞
x,c) (we are dealing with a priori estimates), Novikov

condition holds and we can apply Girsanov theorem: the law of X(x), which
we denote by P ◦X(x)−1, is absolutely continuous with respect to the Wiener
measure starting at x, with density given by

ρT (x) = exp

[ˆ T

0

b(x+Wr)dWr −
1

2

ˆ T

0

|b(x+Wr)|2dr

]
.

Notice that, for every η ≥ 1, by Hölder inequality and the martingale prop-
erty of the exponentials,

EρT (x)η (10.5)

≤ E

exp

[
η2

ˆ T

0

b(x+Wr)dWr −
η2

2

ˆ T

0

|b(x+Wr)|2dr

]1/η

·

· E

exp

[
η2(η + 1)

2

ˆ T

0

|b(x+Wr)|2dr

]1−1/η

= E

exp

[
η2(η + 1)

2

ˆ T

0

|b(x+Wr)|2dr

]1−1/η

.

Now DX̃(x) satisfies the ODE

∂tDX̃(x) = Db̃(X̃(x))DX̃(x), DX̃0 = I,

and so the process DX̃(x) is a (measurable bounded) function of X(x), pre-
cisely DX(x) = A(X(x)). Hence Girsanov theorem (together with (10.5))
gives

E
[
|X(t, x)|m + |DX(t, x)|m

]
= E

[(
|x+Wt|m + |A(t, x)|m

)
ρT

]
(10.6)

≤ 21/2E
[
|x+Wt|2m + |A(t, x)|2m

]1/2
E[ρ2

T ]1/2

= 21/2E
[
|x+Wt|2m + |A(t, x)|2m

]1/2
E

exp

[
6

ˆ T

0

|b(x+Wr)|2dr

]1/4

.

Second step: conclusion. Having the estimate above, we can conclude
thanks to the bounds (10.3) and (10.4) and Hölder inequality.

Proof of Theorem 10.1. The result follows, via Theorem 4.12 and Remark
4.13, from the a priori estimates in 10.4 (for the STE) and the estimates in
6.2 (for the SCE).
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10.4 Final remarks

Looking more carefully at this proof, we see two advantages and two disad-
vantages.

The first advantage is of course the more general result with respect to
the previous Chapter. The second, maybe even more important, advantage
is that the strategy still keeps two arguments separated, namely the Girsanov
argument and the STE argument. This can be relevant in contexts where
there is still a Gaussian structure but the STE analysis is more complicated
or not available (as for example when the Brownian motion is replaced by the
fractional Brownian motion): one can still rely on some Girsanov theorem,
and then use other arguments (for example controlling every term in (10.1))
for the estimates on A. This has been done for the fractional Brownian
motion in [CG12] and in [BNP15].

The first disadvantage, which comes together with the more general result,
is the more strict link with the stochastic nature of the problem, which for
example does not allow to identify clearly the P -null set where “things could
go wrong”, that is where the flow may not be regular (Lipschitz or Sobolev).
The second disadvantage is that it seems not a flexible argument for Hölder
and fractional Sobolev estimates: indeed the Girsanov equivalence between
X(x) and x + W is limited to a fixed x and is false in general for the joint
laws of (X(x), X(y)) and (x + W, y + W ), while the Hölder and fractional
Sobolev estimates usually require a control on the difference X(x)−X(y).
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Chapter 11

The martingale argument: the
Lagrangian approach

In this chapter we show a priori estimates on the derivative of the flow by
an elegant argument which relies on Itô formula and regularity theory for
the associated second-order PDE, hence on the martingale structure of the
problem.

The content of this Chapter is mainly taken from [FF11], [FF13a], [FF13b].

11.1 The main result

The following main result, in the class of drifts 2.3, is the same of the previous
chapter. The method for the a priori estimates is different.

Theorem 11.1. Assume that b is in the class 2.3 (and satisfies Condition
2.1). Fix 2 ≤ m < +∞, 2 ≤ m̃ < +∞ such that 1/m+ 1/m̃+ 1/(p∧ q) ≤ 1.
Then existence, path-by-path uniqueness and stability hold in the sense of
Theorem 4.12.

The proof is at the end of this Chapter.

11.2 A transformation of the SDE

For simplicity, we fix s = 0 in the following: it is easy to see that all the
estimates hold for any s, uniformly in s (in [0, T ]).

We want to derive information on the SDE from information on the PDE.
For this, we have seen, at the end of Section 4.1, the duality relation between
the flow X and the solution of the backward stochastic transport equation
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v: formally, d[vr(Xr)] = 0. The idea is to replace v by its average, or, more
precisely, by the solution Ψ̄ of the backward Kolmorogov equation

∂tΨ̄ + b · ∇Ψ̄ +
1

2
∆Ψ̄ = 0, Ψ̄T = id.

Applying Itô formula, we get the following equation for Y = Ψ̄(X):

dY = DΨ̄(X)dW = DΨ̄(Ψ̄−1(Y ))dW. (11.1)

Now we can expect Ψ̄ to be at least twice weakly differentiable, from parabolic
regularity theory, and from this we hope to get regularity for DΨ̄(Ψ̄−1) and
deduce regularity of Y and then on X.

We start defining precisely the transformation of the SDE and proving its
regularity. One problem in the transformation above is that the invertibility
of Ψ̄ (which is required for formula (11.1)) does not hold in general. Actually,
Ψ̄ is invertible on [0, T ] for T ≤ T0, for a suitable T0. To see this invertibility
property up to T0, we write Ψ̄ = id + ψ̄ and we notice that ψ̄ satisfies the
PDE

∂tψ̄ + b · ∇ψ̄ +
1

2
∆ψ̄ = b, ψ̄T = 0.

Adapting the result 5.2 to this parabolic PDEs, one gets that ‖Dψ̄‖Cβt (L∞x ) is

bounded by C(‖b‖Lqt (Lpx)), where C is as usual a locally bounded function; this

fact and the fact that ψ̄T = 0 imply that ‖Dψ̄s‖L∞x ≤ C(‖b‖Lqt (Lpx))|T − t|β.

So there exists t0 < T (possibly negative), with 2(T − t0)−β < C(‖b‖Lqt (Lpx)),

such that ‖Dψ̄t‖L∞x < 1/2 for every t in [t0, T ]. This implies invertibility (in
x) of Ψ̄ on [t0, T ]. In particular, if T is such that t0 ≤ 0, then we get the
desired invertibility on [0, T ].

We could just keep the transformation Ψ̄, restricting the attention first on
an interval [0, T0] where invertibility holds and then iterating to reach every
time. However we use a slightly modification of Ψ̄, which is invertible for
every time and is still related to a PDE similar to the backward Kolmorogov
equation above, so that we can transform the original SDE into a SDE with
more regular coefficients. We consider Ψλ = id + ψλ, with ψλ satisfying the
PDE

∂tψ
λ + b · ∇ψλ +

1

2
∆ψλ + λψλ = −b, ψλT = 0.

The estimates in 5.2 then gives the following:

Corollary 11.2. There exist locally bounded functions C, λ = λ(‖b‖Lqt (Lpx))

such that, for any vector field b in Ct(C
∞
x,c), for every t in [0, T ], Ψλ

t is a C1
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diffeomorphism and it holds

‖Ψλ‖Ct(Cx,lin) + ‖DΨλ‖Ct,x + ‖(Ψλ)−1‖Ct(Cx,lin) + ‖D[(Ψλ)−1]‖Ct,x+
+ ‖D2Ψλ‖Lqt (Lpx) ≤ C(‖b‖Lqt (Lpx)).

Proof. The estimate on Ψ and its space derivatives are a consequence of
Theorem (5.2) and of the definition of Ψλ (actually, for every λ > 0).

As for the invertibility of the map Ψt : Rd → Rd, Theorem (5.2) guar-
antee the existence of λ = λ(‖b‖Lqt (Lpx)) (locally bounded function) such that

‖Dψλ‖Ct,x < 1/2. Moreover, for every t, |Ψt(x)| → +∞ as |x| → +∞, as
ψλ is bounded (again by Theorem 5.2). Hence, by Hadamard theorem (see
for example [Pro04], Theorem 59), Ψt is a C1

x diffeomorphism. Moreover the
formula

DΨ−1
t (x) = (DΨt(Ψ

−1
t (x)))−1 =

∞∑
n=0

(−Dψt(Ψ−1
t (x)))n

and the bound ‖Dψλt ‖Ct,x < 1/2 imply that D[Ψ−1
t ] is (continuous and)

uniformly bounded in (t, x) (over all [0, T ]× Rd). The estimate on Ψ−1
t and

its space derivative follows easily. The proof is complete.

Now we fix λ such that the above result holds (we can choose the same
λ for all b with bounded ‖b‖Lqt (Lpx)) and we call

Y = Ψλ(X).

Lemma 11.3. Y satisfies the SDE

dY = −λΨλ(X)dt+DΨλ(X)dW (11.2)

Proof. The lemma is a consequence of Itô formula.

From now on, we omit the symbol λ.

11.3 The estimates on the transformed SDE

We are ready to give the W 1,m
x bound on the flow X, using the flow Y .

Looking at the transformed SDE (11.2), the coefficients have at least Sobolev
regularity in space W 1,p

x , for finite p; this indicates already a regularization.
If we had also W 1,∞

x bounds, then we could conclude. However, since
we do not have such bounds (even when p = ∞), it is not clear how such
a Sobolev estimate implies the Sobolev regularity: indeed, replacing for a
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moment dW with dt (just to have an idea of what is happening), the usual
DiPerna-Lions and Ambrosio results would just give a Lagrangian flow, with-
out any Lm estimates on the derivative. The reason for such an improvement
is again in Girsanov theorem: the law of X, equivalent to the Wiener mea-
sure, regularizes the term

´ t
0
|D2Ψr(Xr(x))|2dr.

Theorem 11.4. Fix p, q satisfying Condition 2.3. Fix an even integer m ≥
2, R > 0. Then there exists a locally bounded function C : [0,+∞[→ [0,+∞[
such that, for any vector field b in Ct(C

∞
x,c), it holds

sup
t∈[0,T ]

sup
x∈BR

E
[
|DX(t, x)|m

]
≤ C(‖b‖Lqt (Lpx)).

Proof. By Corollary 11.2, it is enough to prove the same estimate on DY .
The flow derivative DY satisfies the equation

dDY = −λDΨ(X)DXdt+D2Ψ(X)DXdW.

Now we want to apply Itô formula for |DY |m, for m even integer. We start
with the one-dimensional case: here we get simply

d[|DY |m]

= −λmDΨ(X)DXDY m−1dt+mD2Ψ(X)DXDY m−1dW+

+
1

2
m(m− 1)|D2Ψ(X)DX|2DY m−2dt.

We would like then to take expectation, but then we could not apply Gronwall
lemma, since the term DΨ(X), D2Ψ(X)2 would be unbounded term inside
the time integral. Hence we do as follow. Define A as the process

A(t, x) = A(X,m)(t, x)

= (C + C2)

ˆ t

0

[
λm|DΨ(r,Xr(x))|+ 1

2
m(m− 1)|D2Ψ(r,Xr(x))|2

]
dr.

where C is a constant such that |DX| ≤ C|DY | (it exists thanks to Corollary
11.2). Applying again Itô formula to e−ADY m we get rid of the deterministic
integral, more precisely

d[e−A|DY |m]

=

[
−A− λmDΨ(X)DXDY m−1 +

1

2
m(m− 1)|D2Ψ(X)DX|2DY m−2

]
dt+

+ eAmD2Ψ(X)DXDY m−1dW
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and the integrand in the deterministic integral is nonpositive. So taking
expectation, we get

∂tE[e−A|DY |m] ≤ 0. (11.3)

In the case of general dimension d, we should use Itô formula for |DY |m =
(tr[DYDY ∗])m/2. The notation then becomes more involved, but the strategy
remains the same, the only change is to define A as

A(t, x) = A(X,m)(t, x)

= c(C + C2)

ˆ t

0

[
λm|DΨ(r,Xr(x))|+ 1

2
m(m− 1)|D2Ψ(r,Xr(x))|2

]
dr.

for some constant c to be fixed later, depending only on the dimension d and
(possibly) on m. Then we use Itô formula to e−A|DY |m (for m even integer)
and we fix c so that the deterministic integrand in the Itô differential of
e−A|DY |m is nonpositive. In this way we still get (11.3).

The estimate (11.3) gives

E[|DY |m] = E[eA
(2m)/2e−A

(2m)/2|DY |m]

≤ E[eA
(2m)

]1/2E[e−A
(2m)|DY |2m]1/2 ≤ E[eA

(2m)

]1/2.

Hence it is enough to get, for every m, a uniform (in b) estimate on E[eA
(X,m)

].
This can be done again by Girsanov theorem. Precisely, calling again

ρT (x) = exp

[ˆ T

0

b(x+Wr)dWr −
1

2

ˆ T

0

|b(x+Wr)|2dr

]
,

we have (recall the estimate of E[ρ2
T ] in (10.6))

E
[
eA

(X,m)
]

= E
[
eA

(W,m)

ρT

]
≤ E

[
e2A(W,m)

]1/2

E[ρ2
T ]1/2

≤ E
[
e2A(W,m)

]1/2

E

exp

[
6

ˆ T

0

|b(x+Wr)|2dr

]1/4

,

where A(W,m) is defined as A(X,m), replacing X(x) with x+W . Now Lemma
10.5 in Chapter 10 gives that

E

exp

[
6

ˆ T

0

|b(x+Wr)|2dr

] ≤ C(‖b‖Lqt (Lpx)).
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Also Lemma 10.6 in Chapter 10 and the bounds on Ψ in Corollary 11.2 give
that

E
[
e2A(W,m)

]
≤ C(‖DΨ‖L∞t (L∞x ) + ‖D2Ψ‖Lqt (Lpx)) ≤ C(‖b‖Lqt (Lpx)).

Putting together these two bounds, we get that E[eA
(m)

] and so E[|DY |m] is
controlled by C(‖b‖Lqt (Lpx)). The proof is complete.

Proof of Theorem 11.1. The result follows, via Theorem 4.12 and Remark
4.13, from the a priori estimates in 11.4 (for the STE) and the estimates in
6.2 (for the SCE).

11.4 The result for Hölder continuous coeffi-

cients

The same strategy can be used to prove Lipschitz estimates for the flow, in
the case of α-Hölder (in space) continuous drifts, for α > 0.

Theorem 11.5. Assume that b is in Ct(C
α
x,b) for some α > 0. Fix 0 <

α′ < α, 2 ≤ m < +∞, R > 0. Then there exists a locally bounded function
C : [0,+∞[→ [0,+∞[ such that, for any vector field b in Ct(C

∞
x,c), it holds

sup
t∈[0,T ]

E

[
‖DXt‖mCα′x,BR

]
≤ C(‖b‖Ct(Cαx,b)).

We do not give a proof of this result, which is in [FGP10], Theorem 5. The
strategy is in the same line as above (using Kolmogorov continuity criterion
and not using Girsanov theorem): we transform the SDE through Ψλ, whose
L∞t (C2+α′+

x,lin ) norm is controlled by the Ct(C
α
x,b) norm of b; the new SDE has

then L∞t (C1+α′+
x,lin ) coefficients, therefore the C1+α′

x norm of the solution X can
be estimated classically, via Kolmogorov continuity criterion.

Starting from this result and applying the machinery in Chapter 4, one
can prove existence, path-by-path uniqueness (among single solutions), start-
ing from every point x and existence of a stochastic flow which is Lipschitz
continuous in x (see [BFGM14] and [Sha14]).
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Chapter 12

The martingale argument: the
Eulerian approach

In this chapter we show Sobolev-type a priori estimates on the stochastic
transport equation. We use a direct energy method for the derivative of the
solution, which satisfies a similar linear SPDE because of the renormalization
property of the STE. This method exploits Itô formula and the zero expec-
tation of the stochastic integral and ends in bounds on a Kolmogorov-type
equation (hence we use again the martingale structure). The same argu-
ment works also for a more general type of first order linear vector-valued
SPDEs, like the stochastic vector advection equation (a linearized version of
the stochastic three-dimensional Euler equations with multiplicative noise).

The content of this Chapter is mainly based on the paper [BFGM14]. A
similar result on the stochastic vector advection equation, but with Hölder
continuous vector fields and based on the method of characteristics, is in
[FMN14]. Another application in fluid dynamics, to the Navier-Stokes equa-
tion, is in [Rez14], where the vorticity formulation of the equation is used (as
here for the vector advection equation), although with different scopes and
techniques.

12.1 The main result

The following main result, in the class of drifts 2.4, is a slight extension of
the previous chapter. The method for the a priori estimates is purely based
on PDEs arguments.

Theorem 12.1. Assume that b is in the class 2.4. Fix 2 ≤ m < +∞,
2 ≤ m̃ < +∞ such that 1/m + 1/m̃ + 1/(p ∧ q) ≤ 1. Then existence,
path-by-path uniqueness and stability hold in the sense of Theorem 4.12.
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The proof is at the end of Section 12.4.

12.2 A stochastic PDE for the derivative of

the STE

Before stating and proving the result, we focus on two key properties of the
STE: the derivative of its solution satisfies also a stochastic transport-like
linear PDE and the same holds also for its powers. The last property is linked
to the renormalization property of the transport equation, we investigate this
in the next section.

In order to deal with Sobolev estimates for the STE (we use the forward
formulation, the backward one being completely similar), we derive a SPDE
for the derivative of the solution v. We start from (spatial) dimension 1.
Differentiating the STE with respect to x, we get

∂t[∂xv] + b∂x[∂xv] + ∂xb∂xv + ∂x[∂xv] ◦ Ẇ = 0,

with fixed initial condition ∂xv0. As for the Kolmorogov equation, we see that
∂xv satisfies a SPDE which is given by the stochastic transport equation plus
the term ∂xb∂xv.

In more than one dimension, we get a system of SPDEs for the vector
field ∇v = (∂x1v, . . . ∂xdv), precisely

∂t[∂xiv] + b · ∇[∂xiv] +
d∑
j=1

∂xib
j∂xjv +∇[∂xiv] ◦ Ẇ = 0, i = 1, . . . d,

or equivalently, in matrix notation (whereDxv is a row vector and∇v = Dxv
∗

is its transpose vector),

∂tDxv + (b · ∇)Dxv +DxvDb+∇Dxv ◦ Ẇ = 0,

with fixed initial condition ∂xv0. Although we have more than one equa-
tion, again the structure is always of a stochastic transport equation with
additional terms of the form ∂xib

j∂xjv.

12.3 The renormalization property

The renormalization property for the stochastic transport equation is the
following fact: if v is a regular solution to the STE and f : R → R is a C2

b

function, then f(v) is also a regular solution to the STE. In the context of
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regular coefficients and solution, this fact is an easy consequence of the chain
rule for the space derivative, namely

∇f(v) = f ′(v)∇v,

and of Itô formula (for Stratonovich integral) for the time differential.
Since ∇v satisfies a system of transport-like equations, we expect it to

enjoy the renormalization property which is typical of this kind of equation.
Again we start with (spatial) dimension 1. In this case, using the chain rule
(for the space derivative) and Itô formula (for the time differential), we get,
for any f in C2

b , the following equation for f(∂xv):

∂t[f(∂xv)] + b∂x[f(∂xv)] + ∂xbf
′(∂xv)∂xv + ∂x[f(∂xv)] ◦ Ẇ = 0.

Again this equation has the form of the stochastic transport equation, with
the additional term ∂xbf

′(∂xv)∂xv. Applying this formula to f(r) = rm, for
m positive integer, we obtain the following equation for (∂xv)m:

∂t[(∂xv)m] + b∂x[(∂xv)m] +m∂xb(∂xv)m + ∂x[(∂xv)m] ◦ Ẇ = 0.

Now we come to the case of general dimension, where we have a system
of equations. In analogy to the one dimensional case, we would like to have
an equation for |∇v|m, or a system of equations for (∂xiv)m. Unfortunately,
in both the cases we do not obtain a close equation or system, because of the
terms ∂xib

j∂xjv in the system for ∇v: indeed, take for example m = 2, then
the equation for (∂xiv)2 becomes

∂t[(∂xiv)2] + b · ∇[(∂xiv)2] + 2
d∑
j=1

∂xib
j∂xiv∂xjv +∇[(∂xiv)2] ◦ Ẇ = 0,

hence the mixed products ∂xiv∂xjv appear and the system is not closed. The

solution to this problem is to consider, for m = 2, a system with
(
d+1

2

)
equa-

tions, having all the products ∂xiv∂xjv as unknown variables. For general m,

this means to consider a system with
(
d+m−1
m

)
equations, having as unknown

variables the products

wI =
∏
i∈I

∂xiv, (12.1)

for any multi-index I in {1, . . . d}m (see below for the precise notation). This
needs more effort of notation and makes the computations a bit lengthy.

As for notation, we denote by I = (I1, . . . Im) a multi-index in {1, . . . d}m
and, with a little abuse of notation, we identify I and J multi-indices when
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there exists a permutation σ of {1, . . .m} such that Jσ(k) = Ik for every k.
Again with abuse of notation, we write i ∈ I to mean that there exists k
such that Ik = i. We also write∏

i∈I

∂xiv =
m∏
k=1

∂xIkv,
∑
i∈I

∂xiv =
m∑
k=1

∂xIkv, ....

Finally, given a multi-index I and two indices i, j in {1, . . . d} with i ∈ I,
we call (I \ i) ∪ j the multi-index obtained by I replacing one i in I with j;
more precisely, taking a k such that Ik = i, we impose ((I \ i) ∪ j)k = j and
((I \ i) ∪ j)h = Ih for all h 6= k (by our identification of multi-indices, the
choice of k is not relevant).

With this notation, we can state the system of PDEs for (wI)I :

∂twI + b · ∇wI +
∑
i∈I

d∑
j=1

∂xib
jw(I\i)∪j +∇wI ◦ Ẇ = 0, I multiindex. (12.2)

We see again that this system is made of transport-like equations. Indeed
the computations for the multidimensional case do not have any substantial
difference from those in the one dimensional case.

12.4 The Sobolev estimates on the STE

Given the equation satisfied by wI , we are ready to prove the a priori Sobolev
estimates on the STE.

Theorem 12.2. Fix p, q satisfying Condition 2.4. Fix m ≥ 2 even integer.
Write b = b(1) +b(2), where the addends are functions in Ct(C

∞
x,c). Then there

exists a locally bounded function C : [0,+∞[2→ [0,+∞[ such that, for every
b(j), j = 1, 2, in Ct(C

∞
x,c), for every s ≥ 0 and every vs in C∞x,c, it holds

sup
t∈[s,T ]

ˆ
Rd
χ(x)E[|∇vt|m]2dx

≤ C(‖b(1)‖Lqt (Lpx), ‖b(2)‖L1
t (C

1
x,lin))

ˆ
Rd
χ(x)|∇vs|2mdx.

Again, for simplicity, we fix s = 0 in the proof: it is easy to see that all
the estimates hold for any s, uniformly in s (in [0, T ]).

In the case of v0 in C∞x,c, b in Ct(C
∞
x,c), Proposition 3.18 ensures that the

regular solution of this equation, given by Proposition 3.18, is in Lmω (W 1,m
t (W 2,m

x,χη)),

for every m in [1,+∞[ and for every weight χη(x) = (1 + |x|2)η/2, for every
real η. This justifies the computations below.
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Proof. Step 1: the parabolic system for E[wI ]. We write the system for
zI = E[wI ], for I multi-index of length m. Equation (12.2) reads with Itô
integral

∂twI + b · ∇wI +
∑
i∈I

d∑
j=1

∂xib
jw(I\i)∪j +∇wIẆ =

1

2
∆wI , I multiindex

Taking expectation, we obtain

∂tzI + b · ∇zI +
∑
i∈I

d∑
j=1

∂xib
jz(I\i)∪j =

1

2
∆zI , I multiindex

This is a parabolic system, whose form is similar to the parabolic equation
(5.9) in Theorem 5.7, by putting g = b, h = 0.

Continuation. The rest of the proof goes on in analogy to Step 2, 3, 4 of
the proof of Theorem 5.7. The only relevant difference is that, before Step 4,
we sum over all multi-indices I with length m: we get an inequality similar
to (5.13) (or (5.14) for p = d ≥ 3), with θm(t, x)2 = χ(x)

∑
|I|=m zI(t, x)2

replacing χ(x)v2m(t, x) and ρm(t, x)2 = χ(x)
∑
|I|=m |∇zI(t, x)|2 replacing

χ(x)|∇[vm]|2; see [BFGM14] for the computations in full detail.

Proof of Theorem 12.1. The result follows, via Theorem 4.12, from the a
priori estimates in 12.2 (for the STE) and the estimates in 6.2 (for the SCE).

12.5 Existence for the stochastic vector ad-

vection equation and other linear SPDEs

The method above, based on a priori estimates, can in principle be applied
to a vector valued stochastic linear transport-like PDE of the form

∂sv + (b · ∇)v + (Nv · ∇)g + hv +∇v ◦ Ẇ = 0, (12.3)

where v : [0, t]×Rd×Ω→ Rn is the (n-dimensional) solution, b : [0, T ]×Rd →
Rd, g : [0, T ]×Rd → Rn, h : [0, T ]×Rd → R are given (deterministic) fields,
N in Rd×n is a given matrix and W is a d-dimensional Brownian motion
(with the assumptions we had so far).

We first state the definition of classical solution and the existence and the
representation formula, when the coefficients are regular.
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Definition 12.3. Assume that all the coefficients are in Ct(C
∞
x,c) and that

the final datum vt is in C∞x,c. A classical solution to the SPDE (12.3) is a
measurable function v : [0, T ]× Rd × Ω→ Rn, which is in Cs(C

2
x,loc) for a.e.

ω and satisfies, for a.e. ω,

v(s, x)

= v(t, x) +

ˆ t

s

(b(r, x) · ∇)v(r, x)dr +

ˆ t

s

(Nv(r, x) · ∇)g(r, x)dr+

+

ˆ t

s

h(r, x)v(r, x)dr +
d∑

k=1

ˆ t

s

∂xkv(r, x) ◦ dW k
r +

1

2

ˆ t

s

∆v(r, x)dr, ∀(s, x).

Proposition 12.4. Assume that all the coefficients are in Ct(C
∞
x,c) and that

the final datum vt is in C∞x,c. Then there exists a classical solution to (12.3)
and is given by

v(s, x) = As(t, x)∗vt(X
s(t, x)),

where (A,X) satisfies the system of SDEs

dXs(t, x) = b(t,Xs(t, x))dt+ dWt,

dAs(t, x) = (N∗Dg(t,Xs(t, x))∗ + h(t,Xs(t, x))I)As(t, x)dt,

with initial data Xs(s, x) = x, As(s, x) = I.

Proof. The thesis is a consequence of Proposition 10.2, taking B = b and
M = N∗Dg∗ + hI.

Here are the a priori estimates. As usual, we state the estimates for the
forward equation, but the analogous result holds for the backward case.

Theorem 12.5. Fix p, q satisfying Condition 2.4. Fix m positive even inte-
ger. Write b = b(1)+b(2), g = g(1)+g(2), where all the addends are functions in
Ct(C

∞
x,c). Then there exists a locally bounded function C : [0,+∞[5→ [0,+∞[

such that, for every b(j), g(j), j = 1, 2, h in Ct(C
∞
x,c) and for every v0 in C∞x,c,

it holds

sup
t∈[0,T ]

ˆ
Rd
χ(x)E[|vt|m]2dx ≤ C

ˆ
Rd
χ(x)v2m

0 dx.

where

C = C(‖b(1)‖Lqt (Lpx), ‖g(1)‖Lqt (Lpx), ‖h‖Lq/2t (L
p/2
x )

, ‖b(2)‖L1
t (C

1
x,lin), ‖g(2)‖L1

t (C
1
x,lin)).
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The proof is in the same line of Theorem 12.2. From the point of view
of notation, we denote now: wI =

∏
i∈I v

i (where vi is the i-th component
of v), for I multi-index in {1, . . . n}. Also in this case, the solution is in
Lmω (W 1,m

t (W 2,m
x,χη)), for every m in [1,+∞[ and for every weight χη(x) =

(1 + |x|2)η/2, for every real η. This fact can be proved adapting the proof in
[BFGM14], Lemma 12. This justifies the computations in the proof below.

Proof. Step 1: the parabolic system for E[wI ]. We write the system for
zI = E[wI ], for I multi-index of length m. Using Itô integral as before, we
get

∂twI+b·∇wI+
∑
i∈I

n∑
j=1

Nj ·∇giw(I\i)∪j+hwI+∇wIẆ =
1

2
∆wI , I multiindex

Taking expectation, we obtain

∂t(zI) + b · ∇(zI) +
∑
i∈I

n∑
j=1

Nj · ∇giz(I\i)∪j + hzI =
1

2
∆zI , I multiindex

This is a parabolic system, whose form is similar to the parabolic equation
(5.9) in Theorem 5.7.

Continuation. The rest of the proof goes on in analogy to Step 2, 3, 4 of
the proof of Theorem 5.7. The only relevant difference is again in replacing
χ(x)v2m(t, x) with θm(t, x)2 = χ(x)

∑
|I|=m zI(t, x)2 and χ(x)|∇[vm]|2 with

ρm(t, x)2 = χ(x)
∑
|I|=m |∇zI(t, x)|2.

We apply this result in two examples, which are relevant for us. The first
one is the proof of Lemma 10.6, involving the exponential A(x). For each
i = 1, . . . d, v = A(x)i satisfies the SPDE 12.3 in the case b = 0, h = 0 and
vT = ei (the i-th vector of the canonical basis of Rd). Hence Lemma 10.6
follows from Theorem 12.5. Analogously one can prove Lemma 10.5.

The second example is the (forward) stochastic vector advection equation
on R3, namely

∂tv + (Dv)b− (Db)v +∇v ◦ Ẇ = 0,

divv = 0,

where b is assumed divergence-free. This example is a linearized version of the
three-dimensional stochastic Euler equation, in vorticity form (see [FMN14]
for more details). In the regular case, applying Proposition 12.4 to the first

153



equation, after some passages that we omit here (see [FMN14] for another
proof), we get the representation formula

v(t, x) = DXt(x)v0(X−1
t (x)). (12.4)

In particular, since b and v0 is divergence-free, this formula implies that v is
divergence-free, so that the two equations above are compatible and we get
existence in the regular case.

In the non-regular case (if b is non Lipschitz), in the deterministic setting
(i.e. without noise), the solution can explode at some time, as one can expect
from the representation formula (12.4); an example of explosion at one point
(where the solution is no more in Lm for high m too), for a class of bounded
b, is given in [FMN14]. On the contrary, in the stochastic case, Theorem
12.5, applied with d = 3, g = −b, h = 0, gives a priori estimates which will
imply the existence of an “almost bounded” solution.

We first give the definition of (distributional) solution, for simplicity in
the forward case. Notice that, thanks to the divergence-free assumptions on
v and b, we can bring all the derivatives on the test function.

Definition 12.6. Fix 1 < m < +∞. Let b be in Lm
′

t (Lm
′

x,loc) with divb ≡ 0 (in
the sense of distribution) and let v0 be in L1

x,loc also with divv0 ≡ 0. A solution
v to the stochastic vector advection equation is a map v : [0, T ]×R3×Ω→ R3,
in Lmt,ω(Lmx,loc)

3, with divv ≡ 0, weakly progressively measurable, such that, for
every ϕ in C∞c (R3;R3), it holds, for a.e. (t, ω),

〈vt, ϕ〉 (12.5)

= 〈v0, ϕ〉+

ˆ t

0

〈v,Anti(Dϕ)b〉dr +
∑ ˆ t

0

〈v, ∂xkϕ〉dW k
r +

1

2

ˆ t

0

〈v,∆ϕ〉dr,

where Anti(Dϕ) denotes the antisymmetric part of the matrix Dϕ.

Here is the existence result:

Theorem 12.7. Assume that b is in the class 2.4 with divb ≡ 0 and the
initial datum v0 is in L∞x with compact support and with divv0 ≡ 0. Then
there exists a solution v to the stochastic vector advection equation, which is
in L∞t (Lmω (Lmx,loc)) for every finite m.

Proof. The proof is in the line of the stability result for the STE 3.39. We
start with a family of bn in Ct(C

∞
x,c), divergence-free, converging to b in

Lm
′

t (Lm
′

x,loc) and with bounded norm in the class 2.4 (i.e. bn = bn,(1) + bn,(2),

where bn,(1) have bounded Lqt (L
p
x) norm and bn,(2) have bounded L1

t (C
1
x,lin)

norm); similarly we take a family of vn0 in C∞x,c converging to v in L1
x,loc,
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with bounded L∞x norm and with all the support contained in a ball BR0

independent of n; we call vn the solutions to the corresponding stochas-
tic vector advection equation. Theorem 12.5 provides uniform bounds in
L∞t (Lmω (Lmx,BR)). As in the proof of 3.39, first one proves weak compactness
of (vn)n in the space Lmt,ω(Lmx,BR), for every R > 0, using the uniform bounds;
then one proves that any limit point v (in the weak topology) is weakly pro-
gressively measurable and satisfies equation 12.5. We are left to prove that
v is divergence-free. But this follows by passing to the limit in the equality

ˆ T

0

E[F 〈vnt ,∇ψt〉]dr = 0,

which holds for any ψ in Ct(C
∞
x,c) and any F in L∞ω , because of the divergence-

free property of vn. The proof is complete.
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Appendix A

Technical facts and Young
integration

A.1 Some facts on measurability

Here we recall some facts on measurability and Lp spaces of Banach-valued
functions. We need this in order to work with spaces like Lmt,ω(Lmx ) or
L∞t,ω(Mx).

In the following, (E, E , λ) is finite measure space; we always assume that
such E is countably generated, up to λ-null set, i.e. it is given by the comple-
tion (with respect to λ) of the σ-algebra generated by a countable subset C
of E . This is needed to have Lp(E;R) separable for finite p and it is crucial
at least in Proposition A.1. The assumption that λ is finite can be easily
replaced by σ-finite hypothesis, with the natural changes in statements and
proofs. When we work with more variables x, y, ..., we use the notation
(Ex, Ex, λx), (Ey, Ey, λy), ... for the spaces where these variables live.

We say that a real-valued function f : E → R is measurable (or, more
precisely, λ-measurable), if, for every open set A in R, f−1(A) is in Ēλ, the
σ-algebra obtained by completion of E with respect to λ. This is equivalent
to say that there exists f̃ : E → R, strictly measurable (i.e., for every open
set A in R, f̃−1(A) is in E), which coincides λ-a.e. with f . This definition
can be extended to [−∞,+∞]-valued functions and to Rd-valued functions,
componentwise. Notice that, with this definition, a composition g(f) of a
measurable function f with a Borel function g : R → R is still measurable,
but this is no more true when g is only measurable.

We say that a property P = P (x) holds true a.e. if there exists a full-
measure set A such that P is true on A. Mind that we do not require, a priori,
that the set {x|P (x) holds } is measurable (it is measurable a posteriori, since
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it contains a full-measure set).
Let V be a Banach space and let K be a subspace of V ∗. We say that

a function f : E → V is K-weakly measurable if, for every ϕ in K, the
real-valued map x 7→ 〈f(x), ϕ〉 is measurable (in the sense above): when
K = V ∗, we just say weakly measurable; when V = W ∗ for some Banach
space W and K = W , we say weakly-* measurable. We say that f : E → V is
strongly measurable if there exists a sequence of simple functions fn : E → V
converging pointwise λ-a.e. to f . A strongly measurable function is always
weakly measurable. We denote by

L0(E;V ) := L0(E, E , λ,K;V ) := {f : E → V K-weakly measurable},
L0(E;V ) := L0(E, E , λ,K;V ) := {f : E → V K-weakly measurable}/ ∼

the sets of resp. all K-weakly measurable functions and all equivalence classes
of K-weakly measurable functions, where ∼ is the usual equivalence relation
defined by: f ∼ g if f = g λ-a.e.. They are both vector spaces.

From now on, we assume, unless differently specified, that the K is a
closed subspace of V ∗ and has a countable subset D such that, for every v
in V ,

‖v‖V = sup
ϕ∈D,‖ϕ‖V ∗≤1

|〈v, ϕ〉|. (A.1)

This is the case when at least one of these two conditions is satisfied:

• V is a separable Banach space and K = V ∗: the weak-* topology
closed unit ball B̄V ∗

1 in V ∗ is sequentially compact (by Banach-Alaoglu
theorem) and metrizable (by separability of V ), therefore it is separable;
taking as D a countable weakly-* dense set in B̄V ∗

1 , we find (A.1).

• V = W ∗ for a separable Banach space W and K = W , taking as D a
countable dense set in W .

Under this assumption, for every K-weakly measurable function f , ‖f‖ is
measurable. Therefore we can define, for 1 ≤ p ≤ +∞, the vector spaces

Lp(E;V ) := Lp(E, E , λ,K;V ) :=

= {f : E → V K-weakly measurable|‖f‖ ∈ Lp(E, E , λ)},
Lp(E;V ) := Lp(E, E , λ,K;V ) :=

= {f : E → V K-weakly measurable|‖f‖ ∈ Lp(E, E , λ)}/ ∼ .

The latter space is a normed vector space with the norm

‖f‖Lp(E;V ) = ‖‖f‖V ‖Lp(E).
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For an element [f ] in Lp(E;V ), we can define the K∗-valued integral

ˆ
E

fdλ

as the unique linear continuous functional on K such that, for every ϕ in K,

〈
ˆ
E

fdλ, ϕ〉 =

ˆ
E

〈f, ϕ〉dλ.

In the case V = K∗, this integral is V -valued.
In the case of V separable and K = V ∗, the space Lp(E;V ) has nice

properties:

Proposition A.1. Assume that V is a separable Banach space and that
K = V ∗. Then the following properties hold.

• A function f : E → V is weakly measurable if and only if it is strongly
measurable.

• The space Lp(E;V ) is complete for every 1 ≤ p ≤ +∞ and separable
for every 1 ≤ p < +∞.

• If moreover V is reflexive and 1 ≤ p < +∞, then it holds Lp(E;V )∗ =
Lp
′
(E;V ∗), in particular Lp(E;V ) is reflexive for 1 < p < +∞.

Proof. The first statement is the well-known Pettis measurability theorem,
see for example Theorem 2 in [DU77], Chapter II. Concerning separability,
notice that simple functions are dense in Lp(V ). Moreover, there exists a
countable dense set F in V (by separability of V ) and there exists a countable
set C which generates E (up to λ-null sets), since we assumed E countably
generated. Therefore any simple function can be approximated, in Lp(V ),
by functions of the form

∑n
j=1 aj1Cj , for aj in F , Cj in C. Hence the set

of such functions is countable and dense in Lp(V ). Completeness and (for
V reflexive) duality and reflexivity are again in [DU77], Chapter IV Section
1.

Remark A.2. When V is a separable space, weak measurability and strong
measurability coincide with measurability with values in (V,B(V )), the mea-
surable space of Borel (in the strong topology) sets of V : a map f : E → V
is weakly or equivalently strongly measurable if and only if, for every open
set A of V , f−1(A) is in Ēλ. This follows from the fact that any open set in
V can be obtained as countable union of balls (by separability) and that, for
any f weakly measurable, f−1(BR(x)) = {‖f − x‖V ≤ R} is measurable.
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Remark A.3. Given W Banach space, 1 ≤ p ≤ +∞, for any functions f in
Lp(E,W ;W ∗), g in Lp′(E,W ∗;W ), the map x 7→ 〈f(x), h(x)〉 is measurable:
indeed, g is strongly measurable by the previous Proposition, so there exist gn

simple functions converging to g a.e. and in Lp, hence (x 7→ 〈f(x), gn(x)〉)n
is a sequence of measurable maps converging a.e. to 〈f, g〉, which is there-
fore measurable. Moreover ‖〈f, g〉‖L1

x
≤ ‖f‖Lp(W ∗)‖g‖Lp′ (W ). It follows that

Lp
′
(W ) is continuously embedded in (Lp(W ∗))∗ and Lp(W ∗) is continuously

embedded in (Lp
′
(W ))∗.

Now we come to the functions defined on a product space Ex × Ey with
values in V . We assume here that V = W ∗ for a separable space W and
K = W or that V is separable and K = V ∗. The space

Lpx,y(V ) = Lp(Ex × Ey, Ex ⊗ Ey, λx ⊗ λy, K;V ).

is well-defined; similarly for Lpx,y. Since Lp
′
(K) can be embedded in (Lp(V ))∗,

we can also define the space

L0
x(L

p
y(V )) = L0(Ex, Ex, λx, Lp

′
(Ey, Ey, λy, V ;K);Lp(Ey, Ey, λy, K;V ));

similarly for L0
x(L

p
y(V )). Notice that, in general, we do not know whether,

for any f in L0
x(L

p
y(V )), x 7→ ‖f(x)‖Lpy(V ) is measurable. For this reason, we

do not define Lpx(L
p
y(V )) for a general V .

Remark A.4. We keep assuming that V = W ∗ for a separable space W and
K = W or that V is separable and K = V ∗. Given a function f in Lpx,y(V ),
then, for λx-a.e. x,

y 7→ f(x, y)

is a function in Lpy(V ), as a consequence of Fubini theorem. Moreover, the

map x 7→ [y 7→ f(x, y)] is Lp
′
y (K)-weak measurability, i.e.

x 7→
ˆ
Ey

〈f(x, y), ψ(y)〉λy(dy)

is measurable for any ψ in Lp
′
(K), as follows from measurability of (x, y) 7→

〈f(x, y), ψ(y)〉 and Fubini theorem. Furthermore, if g is equivalent to f in
Lpx,y(V ) (i.e. they coincide λx ⊗ λy-a.e.), then, for λx-a.e. x, y 7→ f(x, y)
and y 7→ g(x, y) are equivalent in Lpy(V ). It follows that the map

Lpx,y(V ) 3 [f ] 7→ [x 7→ [y 7→ f(x, y)]] ∈ L0
x(L

p
y(V )).

is well-defined. It is actually an injective map: for [f ] 6= [g] in Lpx,y(V ),
chosen two representatives f , g, by Fubini theorem, there exists a positive-
measure set A in Ex, such that, for each x in A, there exists a positive-
measure set Bx in Ey with f(x, y) 6= g(x, y) for y in By; that is, for each x
in A, [y 7→ f(x, y)] 6= [y 7→ g(x, y)].
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Remark A.5. At this point, we remark one fact concerning null-measure
sets. When we say that, given [f ] in L0(V ), a property P = P f (x) (depending
on f) holds true a.e., we should notice that, in general, the exceptional set
where P f may not hold depends on the representative of f . In particular,
when we say that, given [f ] in Lpx,y(V ), a property P x7→[f(x,·)] holds true for
a.e. x, the exceptional set does depend on the choice of the representative of
[x 7→ [f(x, ·)]]. With a small abuse of notation, we still keep the notation
P f (x), P x 7→[f(x,·)], meaning implicitly that we have chosen a representative.

Next we move to the case of V separable reflexive space and K = V ∗,
1 < p < +∞. In this case, we can define the Banach space

Lpx(L
p
y(V )) = Lp(Ex, Ex, λx, Lp

′
(Ey, Ey, λy, V ;K);Lp(Ey, Ey, λy, K;V )).

Proposition A.6. Assume that V is a separable reflexive space and K = V ∗,
take 1 < p < +∞. Then Lpx,y(V ) and Lpx(L

p
y(V )) can be identified, in the

sense that the map

Lpx,y(V ) 3 [f ] 7→ [x 7→ [y 7→ f(x, y)]] ∈ Lpx(Lpy(V ))

is a well-defined, bijective isometry between Banach spaces.

Proof. We only have to prove the surjectivity. For this, let [F ] be a map in
Lpx(L

p
y(V )) and choose a (weakly measurable) representative F ; we must find

a representative of [F ] which is jointly measurable in (x, y). By Proposition
A.1, F is also strongly measurable, i.e. there exists a sequence (Fn)n of simple
functions in Lpx(Lpy(V )) which converges to F in Lpy(V ) for a.e. x and, without
loss of generality, in Lpx(L

p
y(V )). We can write Fn as

Fn(x) =

N(n)∑
k=1

[Fn,k]1An,k(x)

for some measurable An,k and some element [Fn,k] in Lpy(V ). Now we define,
for each n, the map Gn : Ex × Ey → V given by

Gn(x, y) =

N(n)∑
k=1

Gn,k(y)1An,k(x),

where Gn,k is a representative of [Fn,k]. The function Gn is measurable,
as sum of tensor products of measurable functions. Moreover, since ‖Gn −
Gm‖Lpx,y(V ) = ‖Fn−Fm‖Lpx(Lpy(V )), the sequence ([Gn])n is Cauchy in Lpx,y(V ),
therefore it converges to some [G] in Lpx,y(V ) (this space being complete
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by Proposition A.1). This implies that [x 7→ [y 7→ Gn(x, y)]] converges to
[x 7→ [y 7→ G(x, y)]] in Lpx(L

p
y(V )); since [y 7→ Gn(x, y)] is a representative

of Fn(x) and [Fn] converges to [F ] in Lpx(L
p
y(V )), it follows that [F ] = [x 7→

[y 7→ G(x, y)]]. Hence G is the desired representative of F .

Now we come to a measurability problem on the product space. We
assume that V = K∗, K is a separable Banach space and 1 < p < +∞. We
take Ey as a “nice” (possibly unbounded) domain of Re (for example balls,
rectangles, stripes).

Lemma A.7. Let f be a function in Lpx,y(V ) and assume that, for λx-a.e.
x, y 7→ f(x, y) admits a weakly-* continuous version (with values in V );
then there exists f̃ : Ex×Ey → V , weakly-* measurable, representative of f ,
such that f̃(x, ·) is weakly-* continuous for λx-a.e. x. In fact, any weakly-*
continuous (in y) version f̃ of f is weakly-* measurable in (x, y).

Proof. For n in N, k in Ze, we take ynk = 2−nk and rn = 2−n−1; we define
Qrn(ynk ) as the intersection between Ey and the cube of Re centered in ynk and
with edges of length 2rn (we assume that Qrn(ynk ) form a disjoint partition
of E into positive measure sets; this can be always done for nice domains,
in the worst case via a slight modification in the definition of Qrn(ynk )). We
define fn as

fn(x, y) =
∑

k∈Ze,|k|≤n

1Qrn (ynk )(y)

 
Qrn (ynk )

f(x, y′)λy(dy
′)

This is a weakly-* measurable map. By assumption, there exists a full-λx
measure set A in Ex such that, for all x in A, y 7→ f(x, y) admits a weakly-*
continuous version. Then, for every (x, y) in A×Ey (calling ynk (y) the unique
point ynk such that y belongs to Qrn(ynk )), for every ϕ in K,

〈fn(x, y)− f̃(x, y), ϕ〉 =

 
Qrn (ynk (y))

〈f(x, y′)− f̃(x, y), ϕ〉λy(dy′)→ 0

since f̃ is the continuous version of f . Then f̃ is the weakly-* pointwise
limit of the weakly-* measurable maps fn, on the measurable set A × Ey.
Therefore f̃ is weakly-* measurable in (x, y).

A.2 Spaces of functions and interpolation

Here we define the space of functions that we use in the thesis, according to
the previous section. We also give an interpolation lemma and a statement
on Itô formula.
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Before going on, we recall a fact that we use in at least two arguments:
every subset A of a separable metric space (X, d) is separable as well. Indeed,
if D is a countable dense set in X, then the set DA = {y(x, n)|x ∈ D,n ∈ N}
is dense in A, where y(x, n) is a point in A with d(y(x, n), x) ≤ (1/n) ∨
infz∈A(d(z, x) + 1).

The countably generated probability space. We assume on (Ω,F0,T , P )
Condition 3.1: (Ω,F0,T ) is a countably generated space, up to P -null sets. It
implies:

Lemma A.8. For all s < t, the σ-algebra Fs,t is countably generated. The
progressive σ-algebra P is also countably generated.

Proof. Fix s < t. The space S of indicator functions (precisely, classes of
equivalence) on Ω adapted to Fs,t is a subset of L2(Ω,F0,T , P ), which is
separable (since F0,T is countably generated), so S must be also separable.
Therefore there exists a countable set C in Fs,t such that every indicator
function can be approximated in L2 by an indicator function of a set in C,
this implies that C generates Fs,t up to P -null sets.

Similarly one proves that P is countably generated: P is a sub-σ algebra
of B([0, T ])×F0,T , which is countably generated.

Therefore we can apply the results of the previous Section to Lpω, whatever
σ-algebra is involved.

The space L∞t,ω(Mx). The space Mx is the dual space of the separable
space Cx,0 of continuous functions vanishing at infinity. Therefore we can
define the space L∞t,ω(Mx), where the solutions to the SCE live, as the space
of weakly-* measurable functions from [0, T ]×Ω with values inMx. Similarly
in the deterministic context (without the variable ω) and forMx,B̄R . Notice
that, when µωt has a density in L1

x, then this density (which we still denote
by µ) is in L∞t,ω(L1

x), the space of L1
x-valued weakly measurable functions

with L1
x norm essentially bounded: in particular, µ can be identified with a

measurable function in (t, x, ω).
On this space, we need the following:

Lemma A.9. Fix R > 0. There exists a countable set D in L∞t,ω(Cx,B̄R),
dense in L1

t,ω(Cx,B̄R), such that

‖µ‖L∞t (Mx,B̄R
) = sup

G∈D,‖G‖
L1
t,ω(Cx,B̄R

)
≤1

ˆ T

0

E[〈µ,G〉]dr (A.2)

Proof. First step: it holds

‖µ‖L∞t (Mx,B̄R
) = sup

G∈L∞t,ω(Cx,B̄R
),‖G‖

L1
t,ω(Cx,B̄R

)
≤1

ˆ T

0

E[〈µ,G〉]dr. (A.3)
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To see this, it is enough to show the ≥ inequality (the ≤ inequality is a
consequence of Hölder inequality). Fix µ in L∞t (Mx). Let DC be a countable
set of Cx,B̄R , dense in {ϕ ∈ Cx,B̄R |‖ψ‖Cx,B̄R ≤ 1}; let Dt,ω be a countable set

in L∞t,ω, dense in {ψ ∈ L1
t |‖ψ‖L1

t,ω
≤ 1}. We order ϕ1, ϕ2, . . . the elements in

DC . Fix n in N, define Ank , k = 1 . . . n, by induction on k: An0 = ∅,

Ank
= {(t, ω) ∈ [0, T ]× Ω| min

h=1,...n
‖µωt ‖Mx,BR

− 〈µωt , ϕh〉 = ‖µωt ‖Mx,BR
− 〈µωt , ϕk〉}\

\ ∪m=1,...k−1A
n
m.

The family Ank forms a partition of [0, T ] × Ω into measurable disjoint sets.
Finally, for n in N, ψ in Dt,ω, define

Gn,ψ(t, ω, x) = T−1ψ(t, ω)
n∑
k=1

1Ank (t, ω)ϕk(x)

For each n and ψ, Gn,ψ is in L∞t,ω(Cx,B̄R) and

‖Gn,ψ‖L1
t,ω(Cx,B̄R

) ≤ ‖ψ‖L1
t,ω

sup
k
‖ϕk‖Cx,B̄R ≤ 1.

Now, by the definition ofAnk , for each (t, ω), (‖µωt ‖Mx,BR
−〈µt,

∑n
k=1 1Ank (t, ω)ϕk〉)n

is non-negative non-increasing, bounded by 2‖µωt ‖Mx,BR
, converging to 0 as

n→ +∞. Therefore, for each ψ,∣∣∣∣∣
ˆ T

0

E[‖µ‖Mx,B̄R
ψ − 〈µ,Gn,ψ〉]dr

∣∣∣∣∣
≤
ˆ T

0

E[|ψ|(‖µ‖Mx,B̄R
− 〈µ,

n∑
k=1

1Ank (t, ω)ϕk〉)]dr → 0.

It follows that

‖µ‖L∞t (Mx,B̄R
) = sup

ψ∈Dt,ω

∣∣∣∣∣
ˆ T

0

E[‖µ‖Mx,B̄R
ψ − 〈µ,Gn,ψ〉]dr

∣∣∣∣∣
≤ sup

ψ∈Dt,ω ,n∈N

∣∣∣∣∣
ˆ T

0

E[〈µ,Gn,ψ〉]dr

∣∣∣∣∣ .
This proves (A.3). Notice that we obtained the norm ‖µ‖L∞t (Mx,B̄R

) as the
supremum of a countable set, but this set depends on µ through Ank .
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Second step: conclusion. Recall that L1
t,ω(Cx,B̄R) is a separable space

(by Proposition A.1, since Cx,B̄R is separable). Therefore the subspace of
functions in L∞t,ω(Cx,B̄R) is also separable in the L1

t,ω(Cx,B̄R) topology. Hence
(A.3) implies (A.2), taking as D a countable set in L∞t,ω, dense in L∞t,ω(Cx,B̄R)
(and then in L1

t,ω(Cx,B̄R)) with respect to the L1
t,ω(Cx,B̄R) topology. The proof

is complete.

The space L∞t,ω(L∞x ). The space L∞x is the dual space of L1
x. Therefore

we can define the space L∞t,ω(L∞x ), where the solutions to the STE live, as the
space of weakly-* measurable functions from [0, T ] × Ω with values in L∞x .
This space can be identified with the space L∞t,x,ω by a suitable extension of
Proposition A.6: every element v in L∞t,ω(L∞x ) is also in L2

t,ω(L2
x,BR

), for every
R, hence it can be seen as an element in L2

t,x,ω,BR
and, by the L∞ bound,

actually in L∞t,x,ω. Similarly in the deterministic context and for L∞x,BR .
The spaces Lpt,ω(Lpx,BR,χ) and Lptt (Lpωω (Lpxx,BR,χ)). Given 1 < p < +∞,

R > 0 (possibly R = +∞ replacing BR with Rd), χ strictly positive function
in C∞x , the space Lpx,BR,χ is defined as the space of measurable functions
(precisely, classes of equivalence) f on BR such that

‖f‖Lpx,BR,χ := ‖χ1/pf‖Lpx,BR =

(ˆ
BR

χ|f |pdx

)1/p

< +∞.

It is a separable reflexive space: indeed it is isomorphic, via the map f 7→
fχ1/p, to the space Lpx,BR , which is separable and reflexive. Therefore we can
define the space Lpt,ω(Lpx,BR,χ), which can be identified with the space Lpt,x,ω,
by Proposition A.6.

We can also define, for all finite exponents > 1, Lptt (Lpωω (Lpxx,BR,χ)), which
are separable reflexive space by Proposition A.1.

In Proposition 3.48 we have also used the Lptt (Lpωω (Lpxx,BR,χ)) norm for
infinite exponents (only the norm, not the space): notice that, for any f in
L2
t,ω(L2x,BR), the norm ‖f‖Lptt (Lpωω (Lpxx,BR,χ

)) is well defined (possibly +∞).

The spaces W k,p
x,BR

and W k,p
x,BR,0

. Given a centered ball BR in Rd (or,

for R = +∞, in B∞ := Rd), given a C∞x strictly positive weight χ, given
1 ≤ p ≤ +∞, the space W 1,p

x,BR,χ
is defined as the space of functions on BR

whose distributional derivative, in the domain BR, lies in Lpx,BR,χ. Precisely,

a function f is defined to be in W 1,p
x,BR,χ

if, for every i = 1, . . . d, there exists
gi in Lpx,BR,χ such that, for every ϕ in C∞x,c with support in BR, it holds

〈f, ∂xiϕ〉 = −〈gi, ϕ〉.

The function gi is denoted by ∂xif . The space W 1,p
x,BR,χ

is a Banach space

with the norm ‖f‖W 1,p
x,BR,χ

= ‖f‖Lpx,BR,χ + ‖∇f‖Lpx,BR,χ . The space W 1,p
x,BR,χ,0

is
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the closure (in W 1,p
x,BR,χ

) of the C∞x,c functions with support in BR; it is strictly
contained in W 1,p

x,χ if R < +∞ and it coincides with W 1,p
x,χ for R = +∞.

The spaces W 1,p
x,BR,χ

and W 1,p
x,BR,χ,0

are isomorphic, via the map f 7→
(f,Df), to closed subspaces of Lpx,BR,χ × L

p
x,BR,χ

, which is a separable space

for 1 ≤ p < +∞ and reflexive for 1 < p < +∞; hence W 1,p
x,BR,χ

and W 1,p
x,BR,χ,0

are separable for 1 ≤ p < +∞ and reflexive for 1 < p < +∞ (recall that
closed subspaces of reflexives spaces are reflexive).

These definitions and facts can be extended to W k,p
x,BR

and W k,p
x,BR,0

, for k

integer: W k,p
x,BR,χ

and W k,p
x,BR,χ,0

are separable for 1 ≤ p < +∞ and reflexive
for 1 < p < +∞.

The spaces Lpt,ω(W 1,p
x,BR,χ

) and Lptt (Lpωω (W 1,px
x,BR,χ

)). Given 1 < p < +∞,

R > 0 (possibly +∞ replacing BR with Rd), χ strictly positive function in
C∞x , the space W 1,p

x,BR,χ
is a separable reflexive space. Therefore we can define

the spaces Lpt,ω(W 1,p
x,BR,χ

) and, for all finite exponents > 1, Lptt (Lpωω (W 1,px
x,BR,χ

)),
which are separable reflexive space by Proposition A.1. In Proposition 3.42
we have also used the Lptt (Lpωω (W 1,px

x,BR,χ
)) norm for infinite exponents (only

the norm, not the space): notice that, for any f in L2
t,ω(L2x,BR), the norm

‖f‖Lptt (Lpωω (W 1,px
x,BR,χ

)) is well defined (possibly +∞).

Fractional Sobolev norm. Given a (possibly unbounded) domain A
of Rn, a Banach space V , the fractional Sobolev norm Wα,p(V ), 0 < α ≤ 1,
1 < p < +∞, of a function f : A→ V is defined as

‖f‖Wα,p
x,A(V ) = ‖f‖Lpx,A +

(ˆ
A

ˆ
A

‖f(x)− f(y)‖pV
|x− y|d+αp

dxdy

)1/p

.

This definition is extended to p = +∞, 0 ≤ α ≤ 1, as the norm

‖f‖Wα,∞
x,A (V ) = ‖f‖L∞x,A + ess- sup

x 6=y

‖f(x)− f(y)‖V
|x− y|α

.

and it coincides with the Cα
x,A(V ) norm when f has a continuous represen-

tative (which is the case at least for V = R, by Sobolev embedding).

Fractional Sobolev space. When V = R, 1 < p < +∞, the space
Wα,p
x,A = Wα,p

x,A(R) (defined by the measurable classes of equivalence f with
finite Wα,p

x,A norm) is separable and reflexive: indeed it is isomorphic, via the

map f 7→ (f, |f(x) − f(y)|/|x − y|α+d/p), to a closed subspace of Lpx ⊗ Lpx,y,
which is separable and reflexive. Therefore we can define the space Lpω(Wα,∞

x,A ,
which is separable and reflexive.

Analogous results hold when Wα,p
x,A is replaced by W k+α,p

x,A , for k integer,
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where the W k+α,p
x,A norm is defined by

‖f‖Wk+α,p
x,A (V ) = ‖f‖Wk,p

x,A
+

(ˆ
A

ˆ
A

‖Dkf(x)−Dkf(y)‖pV
|x− y|d+αp

dxdy

)1/p

.

The spaces Cα and Lpt (C
α
x ). For each integer k (possibly 0), for R > 0

finite, the space Ck
x,B̄R

is a separable space, hence we can define the spaces

Lpt (C
k
x,B̄R

), Lpt,ω(Ck
x,B̄R

); similarly for Cx,0. We also use the norms Lpt (C
α
x,BR

),

Lpt (C
α
x,b), L

p
t (C

k
x,b), L

p
t (C

k
x,lin), as norms for Borel functions from [0, T ] × Rd

to R (mind however that Cα
x,BR

, Cα
x,b, ... are not separable).

Remark A.10. For 0 ≤ α′ < α < +∞, Wα,∞
x (which can be identified with

Cα
x,b when α is not an integer) is in the closure of C∞x with respect to the

Wα′,∞
x norm. To see this, first notice the following interpolation inequality,

of easy proof: ‖g‖
Wα′,∞
x

≤ C‖g‖(1−α+α′)/(α−k)

Wα,∞
x

‖g‖(α−α′)/(α−k)

Wk,∞
x

, for every g in

Wα,∞
x . Now, given f in Cα

x,b and the approximations f ε given by the convo-

lution with a standard mollifier, then ‖f − f ε‖
Wα′,∞
x

≤ Cεα−α
′‖f‖Wα,∞

x
, as

follows from the previous bound with g = f − f ε, the bound ‖f − f ε‖Wα,∞
x
≤

C‖f‖Wα,∞
x

and the bound on ‖f − f ε‖Wk,∞
x

coming from Lemma 9.3. There-

fore f can be approximated in Wα′,∞
x by the C∞x functions f ε.

The Cβ−1
t norm. Given a function f in Ct,x, when we write f in Cβ−1

t (V )

for some vector space V , we mean that F is in Cβ
t (V ), where F (t, x) =´ t

0
f(r, x)dr.

Localization. Here and in the following, we use the notation with loc.
For example, when we say that a certain property holds for a function f
with values in Lpx,loc, we mean that the property holds for f restricted to BR,
as a Lpx,BR-valued function, for every R > 0; similarly for other spaces of
functions.

The space L∞t (Mx,y,loc). The notation “µ⊗v is in L∞t (Mx,y,loc)” means
that, for every R > 0, µ⊗ v is in L∞t (Mx,y,BR).

Bounded-weak (progressive) measurability and the L1
t (Mx,loc)

condition. For the continuity equation, we need to define two additional
conditions. The first one is the bounded-weak (progressive) measurabil-
ity: this means that, for every ϕ in BBx (bounded Borel functions on Rd),
(t, ω) 7→ 〈µt, ϕ〉 is (progressively) measurable.

The second condition is |b||µ| in L1
t (Mx,loc) for a.e. ω. This means that,

for fixed ω (outside a P -null set), for every R > 0, for a.e. t, 1BR |bt| is
integrable with respect to |µt| (in particular, 1BR |bt||µt| is a well-defined
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signed measure on Rd) and the map t 7→ ‖1BR |bt||µt|‖Mx is in L1
t . Notice

that t 7→ ‖1BR |bt||µt|‖Mx is measurable because, for every t,

‖1BR |bt||µt|‖Mx = sup
ϕ∈D,‖ϕ‖Cx,b≤1

|〈µt, 1BRbtϕ〉|

for a countable dense setD in Cx,b and t 7→ 〈µt, 1BRbtϕ〉 is measurable because
of the bounded-weak measurability assumption.

Convolutions. Given µ in L∞t,ω(Mx) and a test function ϕ in C∞x,c, the
convolution map [0, T ] × Rd × Ω 3 (t, y, ω) 7→ µωt ∗ ϕ(y) ∈ R is measurable.
Indeed we can add the variable y and consider µ as a map in L∞t,y,ω(Mx);
so the convolution map, which reads as (t, y, ω) 7→ 〈ϕ(y − ·), µωt 〉, is mea-
surable by Remark A.3. Moreover, any continuous version (when it exists),
with respect to t or y or (t, y), is measurable by Lemma A.7. Similarly for
convolutions with functions in Lpt,ω(Lpx,loc), 1 ≤ p ≤ +∞.

An interpolation lemma. Here we give a classical interpolation result,
see for example in [Tri78], Section 2.7.2 Remark 1 for the Rd case and Section
4.5.2, Remarks 2 and 3 for the BR case.

Proposition A.11. Let 0 < α < β < +∞, 0 < ρ < 1; assume that α +
ρ(β − α) is not an integer. Then there exists C > 0 such that, for every f
in Cβ

x,b, it holds

‖f‖
C
α+ρ(β−α)
x,b

≤ C‖f‖1−ρ
Cαx,b
‖f‖ρ

Cβx,b
.

The same result holds replacing the Hölder norms on Rd with the Hölder
norms on BR, for R > 0.

Itô formula for classes of equivalence. We conclude with a version
of the Itô formula for Lpt,ω classes of equivalence.

Proposition A.12. Let [X] be an element of Lpt,ω, 1 ≤ p ≤ +∞. Assume
that there exists [B], [G] in L2

t,ω, progressively measurable, such that [X]
satisfies, for a.e. (t, ω)

Xt = X0 +

ˆ t

0

Brdr +

ˆ t

0

GrdWr (A.4)

(more precisely, the equality above holds as equality in L2
t,ω, i.e. between

classes of equivalence). Let f : [0, T ] × Rd → R be a function in Ct(C
2
x,b) ∩
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Cx,b(C
1
t ). Then it holds, for a.e. (t, ω),

ft(Xt)− f0(X0) =

=

ˆ t

0

∂tfr(Xr)dr +

ˆ t

0

∇fr(Xr) ·Brdr+

+

ˆ t

0

∇fr(Xr) ·GrdWr +
1

2

ˆ t

0

tr[D2fr(Xr)GrG
∗
r]dr

(more precisely, the equality above holds as equality in L2
t,ω).

Proof. By formula (A.4), there exists a version X of [X] with continuous
trajectories and satisfying (A.4) for every t, for a.e. ω (with the exceptional
ω-set independent of t): indeed, we simply take X defined for every t by
formula (A.4), taking the continuous versions of the integrals. Applying Itô
formula for this version X, we find the thesis.

A.3 Young integration theory

We review some facts on Young integration theory, which is made to give
sense of integrals where the integrator path is not of BV type, but satisfies
assumptions like Hölder continuity.

Given U , V Banach spaces, we call Lin(V, U) the set of linear continuous
functions from V to U ; it is a Banach space with the operator norm. The
following result is at the basis of Young integration theory. It is due to Young
[You36] for R-valued functions. The extension on Banach space is taken from
[FH14]: the statement below is a consequence of the Sewing Lemma 4.2 in
[FH14], Chapter 4 (we do not need assumptions on Lin(V,Lin(V, U)) as in
[FH14], since these are needed for the rough paths case).

Theorem A.13. Fix 0 < α < 1, 0 < β < 1 such that α + β > 1. Let U , V
be Banach spaces. Then, for every 0 ≤ s ≤ t ≤ T , for every g : [0, T ] → V
in Cβ

t (V ), for every f : [0, T ]→ Lin(V, U) in Cα
t (Lin(V, U)), there exists the

U-valued limit ˆ t

s

frdgr := lim
n

∑
[s′,t′]∈Πn

fs′(gt′ − gs′)

for every sequence (Πn)n of finite partitions of [s, t] with infinitesimal size
|Πn| = sup[s′,t′]∈Πn(t′ − s′); the limit is independent of the choice of sequence
(Πn)n. Moreover it holds∣∣∣∣∣

ˆ t

s

frdgr − fs(gt − gs)

∣∣∣∣∣ ≤ C|t− s|α+β‖f‖Cαt (Lin(V,U))‖g‖Cβt (V )
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for a constant C independent of s, t (in [0, T ]) and of f and g. In particular

‖
ˆ t

0

frdgr‖Cβt (U) ≤ ‖f‖Cαt (Lin(V,U))‖g‖Cβt (V ).

The integral above is called Young integral.
We conclude the section with an a priori estimate on the solution to linear

Young differential equations.

Lemma A.14. Fix β > 1/2. Let X be in C1
t and let Y be the solution to

the linear equation
Ẏt = YtẊt.

Then it holds

‖Y ‖Cβt ≤ C|Y0| exp[C(1 + ‖X‖1/β

Cβt
)](1 + ‖X‖Cβt ).

For the proof, we use the notation

‖f‖Cβ
t,[u,v]

:= |fu|+ sup
u≤s<t≤v

|ft − fs|
|t− s|β

,

‖f‖Ct,[u,v]
:= sup

u≤t≤v
|ft|.

Proof. We take h > 0 to be fixed later and call tj = jh ∧ T , j = 0 . . . N . By
Young estimate, we have, for any j, for any tj ≤ s < t ≤ tj+1,

|Yt − Ys| ≤ |Ys||Xt −Xs|+ C|t− s|2β‖Y ‖Cβ
t,[tj ,tj+1]

‖X‖Cβt .

Dividing by |t− s|β (and adding the initial datum Ytj), we get

‖Y ‖Cβ
t,[tj ,tj+1]

≤ |Ytj |+ ‖Y ‖Ct,[tj ,tj+1]
‖X‖Cβt + C|t− s|β‖Y ‖Cβ

t,[tj ,tj+1]
‖X‖Cβt

and, using the inequality ‖Y ‖Ct,[tj ,tj+1]
≤ |Ytj |+ hβ‖Y ‖Cβ

t,[tj ,tj+1]
, we obtain

‖Y ‖Cβ
t,[tj ,tj+1]

≤ |Ytj |(1 + ‖X‖Cβt ) + Chβ‖Y ‖Cβ
t,[tj ,tj+1]

‖X‖Cβt .

Now we fix h such that Chβ‖X‖Cβt < 1/2, for example hβ = 1/(2C‖X‖Cβt )∧1.

We get
‖Y ‖Cβ

t,[tj ,tj+1]
≤ 2|Ytj |(1 + ‖X‖Cβt )

and so
‖Y ‖Ct,[tj ,tj+1]

≤ |Ytj |+ hβ‖Y ‖Cβ
t,[tj ,tj+1]

≤ C|Ytj |.
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Iterating this inequality in j, we get the global exponential bound

‖Y ‖Ct ≤ |Y0| exp[CT/h] ≤ |Y0| exp[CT (1 + ‖X‖1/β

Cβt
)].

Finally we obtain

‖Y ‖Cβt ≤ ‖Y ‖Ct + sup
j
‖Y ‖Cβ

t,[tj ,tj+1]
+ ‖Y ‖Cth−β

≤ C|Y0| exp[CT (1 + ‖X‖1/β

Cβt
)](1 + ‖X‖Cβt ).

The proof is complete.
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