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SYNOPSIS 

The Nitroxide Radical Coupling (NRC) reaction (Scheme 1) that occurs between a 

carbon centered radical and a nitroxide enjoyed considerable success in the recent 

years owing to some appealing characteristics. 

 

Scheme 1: Nitroxide Radical Coupling (NRC) reaction  

 

The nitroxyl free radicals (or nitroxides) are indeed secondary amine N-oxides that are 

stable at room temperature and can quickly couple with carbon-centered radicals, such as 

polymer macroradicals, at close to diffusion-controlled rates (10-9 L mol-1 s-1)1. For this 

particular feature, nitroxides were used as spin-trap to control the extent of crosslinking 

in the reaction of polyethylene with peroxide2, 3 and as probe of polypropylene 

degradation4. In addition the NRC displays characteristics resembling the “click 

chemistry”1 approach: it is fast and reliable and easy to implement with high yield; 

moreover it is an efficient and specific reaction which can be conducted under relatively 

mild conditions and overall it is compatible with several functional groups and applicable 

in a modular manner5. 

The nitroxide radical coupling (NRC) reaction is an excellent tool to add specific 

functionalities to different polymers by using ad hoc synthesized nitroxides that are able 

to quickly react with the macroradicals formed by H-abstraction from a polymer 

backbone.  

Indeed, the insertion of functional groups (even in low amount) into polymers as 

polyolefins and polyesters can positively affect important properties such as toughness, 

adhesion, barrier properties, surface properties (paintability, printability,…), solvent 

resistance, miscibility with other polymers, and rheological properties6 without 

compromising their fundamental starting features. “Functional” polyolefins can be 

prepared by the copolymerization of α-olefins with unsaturated monomers bearing polar 
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groups, usually with the help of a metal catalyst. However this procedure suffers from the 

presence of functionalities that can deactivate the catalyst by negatively affecting the 

process efficiency. Moreover, the classical radical post-polymerization modification of 

the polymer matrix by using unsaturated monomers does not respond to the 

requirement of selectivity and does not guarantee the structural preservation of the 

pristine macromolecular architecture. Indeed, the presence of the propagation and 

chain transfer steps, increases the amount of free radicals during the functionalization 

process, causing the occurrence of typical side reactions7. Instead by NRC method it is 

possible to insert selected functionalities by a one-step procedure8, 9; the process shows a 

great compatibility with different functional groups and by modulating the feed ratio, it is 

possible to achieve a very good control of the grafting degree and of the macromolecular 

architecture even though the functionalization is carried out in the melt by using peroxide 

as free radical initiator.  

In this scenario, the main objective of this work was to use 2,2,6,6-tetramethylpiperidine-

1-oxyl (TEMPO) derivatives as functionalizing agents. In fact, the possibility to synthesize 

TEMPO derivatives bearing functionalities with specific activity and therefore able to 

engender properties not inherently owned by basic polymers, can make the NRC 

approach particularly interesting in both melt and surface radical-initiated 

functionalization processes. 

First, in order to expand the applicability of this functionalization method, the grafting of 

2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) derivatives bearing new functional groups, 

the 4-(phenylazo)-benzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical (AzO-TEMPO), 4-

(2-thienylazo)-benzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl (ThiO-TEMPO) (bearing light-

responsive groups or chromophores), and 4-(4,4,5,5,6,6,7,7,8,8,9,9,9-

tridecafluorononanoate)-2,2,6,6-tetramethylpiperidine-1-oxyl (Fluo-TEMPO) was carried 

out in the melt by using peroxide as reaction activator. This was followed by an accurate 

study of the new properties transferred directly from the nitroxides to the polymer. In 

particular the photophysical features of the new “functional polymers” bearing covalently 

grafted azo-aromatic chromophores, were properly investigated to deepen the 

photoisomerization behavior and mechanism once the chromophore was grafted to 

polymer backbone.  
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Furthermore, with the purpose to evaluate the feasibility of NRC reaction to functionalize 

different polymer matrices, the NRC was applied to bio-polyesters like for example 

poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) which are becoming increasingly 

important in view of their thermoplastic processability, thermo-mechanical properties 

and compostability/biodegradability10. Both polymers were successfully functionalized 

with 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl (BzO-TEMPO) and 4-(1-

naphthoate)-2,2,6,6-tetramethylpiperidine-1-oxyl (NfO-TEMPO) with good yield and by 

maintaining their pristine macromolecular structure. 

In addition, the NRC was tested to promote the surface functionalization of different 

polymer substrates with the purpose of imparting new selected properties to film 

surfaces as wettability or light responsibility. A photografting method was developed by 

taking advantage of the coupling of TEMPO derivatives with macroradicals generated by 

H-abstraction through UV irradiation in the presence of a new photoinitiator (Scheme 2). 

This study allowed even investigating the feasibility of NRC under photografting 

conditions, to optimize some experimental conditions (e.g. the reagent ratio) and 

eventually to tailor/modulate the nature of the functional groups to be photografted. 

 

 

Scheme 2: UV initiated photografting of X-TEMPO derivatives onto  a polymer surface. 

 

In the photografting experiments three TEMPO derivatives were used: BzO-TEMPO, NfO-

TEMPO and Fluo-TEMPO previously tested in the melt radical grafting. The use of NfO-

TEMPO as functionalizing agent, allowed to deeply investigating the different 

behavior/reactivity of chromophores undergoing to the UV light irradiation, with respect 

to their grafting reactivity through the melt radical modification8. 

A careful study about the thermal stability of the >NO-C bond between the nitroxide and 

the macroradical (generating the alkoxyamine product) by Electron Paramagnetic 
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Resonance (EPR) spectroscopy supported by Density Functional Theory (DFT)-based 

calculations was even carried out. The results evidenced and confirmed the reversibility 

of the coupling reaction between free nitroxide and macroradicals, especially at high 

temperature and suggested interesting behavior depending on the nature/structure of 

functionalities brought by TEMPO. This feature is proven to be very useful in controlling 

the synthesis of polymers with well defined architecture laying foundations for the well-

known Nitroxide Mediated Polymerization (NMP)1, 11-14. Accordingly, by exploiting the 

thermal equilibrium between the alkoxyamine and its free form, the functionalized 

polyolefins obtained by photografting and by functionalization in the melt were used as 

macroinitiators in order to grow, in a controlled/living fashion, polystyrene chains from 

the bulk and surface activated polymers (Scheme 3). 

 

 

Scheme 3: Schematic representation of the grafting strategy. 
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CHAPTER 1 

INTRODUCTION 

 

Polyolefins are the class of commodities most widespread throughout the world owing to 

a series of features, making these polymers particularly performing; among all: 

a) the monomers low price and availability; 

b) the discover and the use of efficient catalytic systems  

c) the broad range of homo or copolymers which can be obtained; 

d) the polymers non-toxicity; 

e) the polymers recyclability; 

f) finally the cheap and environmentally friendly productive process. 

Furthermore their noteworthy chemical resistance and the wide range of mechanical 

properties (ranging from the high stiffness of techno polymers to the typical features of 

elastomers) guarantee their use in several kind of applications15, as food packaging, 

rubbish disposal bags, ultra-high strength fibers and automobile bumpers. By contrast, 

the presence in the polymer backbone of only sp3 hybridized carbons and the resulting 

lack of functional groups do not allow the polyolefins use in applications that require, for 

example, great coating/adhesion characteristics16. Nonetheless, the insertion of 

functional groups (even in low amount), as polar groups, can positively affect important 

properties such as toughness, adhesion, barrier properties, surface properties 

(paintability, printability,…), solvent resistance, miscibility with other polymers, and 

rheological properties6 without compromising the fundamental features of polyolefins. 

For this reason the polyolefins functionalization has always attracted great interest from 

chemists. Different methods were discussed in the literature, and in the following 

paragraphs some of them are described paying particular attention to basic 

reactions/mechanisms and their role in the achievement of final structure and properties 

of functionalized products. 
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1.1: Synthesis of functional polyolefins through 

(co)polymerization 

 

The direct, random copolymerization of olefins with functionalized monomers could 

seem the more straightforward method to incorporate functional groups in the 

polyolefins backbone. It theoretically allows achieving a random sequence of polar 

groups in the polymer chains and quantitatively controlling their amount by tuning 

the insertion efficiency during the reaction17. In particular the direct copolymerization 

of polar and non-polar vinyl monomers is a good synthetic approach to obtain polymers 

with adapting properties by playing on the copolymer architecture. Copolymers having 

different structure can be, in fact, prepared by changing the feed ratio of both monomers 

by taking into account their insertion efficiency18. Two main methodologies can be 

employed: the copolymerization through radical initiators/processes and the use of 

catalysts. Both the methodologies have some strengths, but also some 

disadvantages. The direct radical copolymerization of polar and non-polar vinyl 

monomers presents, indeed, some limitations due to the poor reactivity of the non polar 

monomer with respect to the functionalized one, that does not guarantee to achieve the 

polymers structure in a controlled fashion. On the other hand the catalyzed α-

olefin/functional monomer copolymerization, usually suffers from metal catalyst 

deactivation caused by a strong tendency of the catalysts themselves to complex the 

non-bonded electron pairs on N, O and X (halides) of the polar monomer rather than 

their double bonds π-electrons. In other words to avoid this phenomenon, a 

protection of the functional monomers is requested prior to the polymerization. 

Detailed analysis of these two synthetic approaches was thoroughly reported in several 

reviews17-19. 

 

1.2: Synthesis of functional polyolefins through POST-

polymerization functionalization 

 

The post-polymerization functionalization of polyolefins is a process that modifies directly 

the preformed polymers and can be applied to a wide range of starting polymers, thus 
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completely overcoming the issues evidenced for the direct copolymerization approaches. 

The chemical inertness of the polyolefins forced the chemists to use techniques and 

reagents (generally radicals) whose reactivity towards polymer chains is immediate and 

quantitative, but, owing to fast reactions, side effects can occur and must be minimized to 

allow the new materials preserving all the properties of the starting polyolefins. 

Essentially the process should guarantee the new functionality incorporation16 avoiding 

transformation that arouse breaking (degradation) or coupling of the chains 

(crosslinking), negatively affecting the ultimate physical/chemical properties of the 

functionalized material. An example of successful process is that of polyolefins with 

carbenes and nitrenes derivatives (electron deficient carbon and nitrogen species, 

respectively), which is known to proceed by the concerted insertion of carbenes or 

nitrenes into the C-H bond of the macromolecular chain20. During this process the radical 

concentration is very low and this can limit the polymer side reactions; but at the same 

time the very low stability of the functionalizing agents (even at room temperature) 

makes difficult the industrial application of these processes. 

Another kind of post-polymerization modification is constituted by the radical-initiated 

grafting process of a functional unsaturated monomer onto the polyolefin backbone. This 

methodology is the most widespread and common functionalization process, industrially 

used for the production of polymer commodities generally named “compatibilizers” and 

employed as reactive macromolecular surfactants able to compatibilize blends of 

immiscible or poorly compatible polymers. Starting from 80’th years21-25 this process was 

studied with the aim to insert specific functionalities (generally carboxylic acid and/or 

anhydride) by keeping under control the side reactions causing the ultimate properties 

detriment. An overview of the main important studies with particular reference to 

reactions mechanism are following discussed. 

 

1.2.1: Functionalization by radical grafting of unsaturated monomers  
 
The direct grafting of unsaturated monomers into polyolefins by radical initiators is a 

process that, as a whole, has a certain degree of complexity from the point of view of the 

mechanism and it can be discussed in terms of subsequent and parallel reactions (Figure 

1.2.1): the initiation step that combines the cleavage of initiator (generally a peroxide) 
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generating the primary radicals, and the formation of macroradicals by H-abstraction 

from the backbone. Based on their reactivity, the macroradicals can add the unsaturated 

monomers generating functionalized macroradicals (propagation or functionalization) or 

can evolve by chains scission and/or coupling (side reactions). The functionalized 

macroradicals can further react with the polymer chain by H-abstraction (transfer) 

providing the functionalized product and a new macroradical that can proceed by the 

same mechanism. 

The grafting success is usually measured in terms of grafting yield namely the amount of 

monomer linked to the matrix with respect to the unreacted monomer or consumed by 

side reactions. The term functionalization degree (FD) indicates, instead, the amount of 

functionalizing agent grafted in the polymer backbone per 100 moles of repeating 

monomeric units. 

 

 

Figure 1.2.1: Scheme of a polyolefin grafting reaction26. 
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The process generally occurs in the melt and it enjoys of several advantages: short 

reaction time without solvents, ease products isolation and overall it can be carried out in 

continuous by using machines (the extruders) having relatively low cost and already 

industrially used for plastics processing7. However these advantages are accompanied by 

some disadvantages all connected with the chemistry of the process: the need of 

relatively high temperatures to process the polymer and the use of radical initiators make 

this methodology not selective. Side reactions, as polymer degradation, crosslinking and 

monomer homopropagation occur mainly as a consequence of the especial polymer and 

monomer reactivity and experimental conditions. In order to address these issues, several 

parameters affecting the process results have to be optimized: in particular monomer 

type, feed composition (the ratios between all the reagents), processing conditions, time, 

temperature, mixing machine should be set on the basis of starting polymer features and 

targeted products. Furthermore, since the polar reagents used to functionalize 

polyolefins are not very soluble in the hydrophobic reaction medium provided by the 

molten polyolefins, the grafting reaction occurs mainly at the interface and it is therefore 

affected by the mixing efficiency and screw/rotor design of the extruder/mixer26.  

An accurate analysis of all parameters that significantly influence the mechanism and 

then the outcome of the functionalization process was widely reported in several 

reviews7, 16, 27, the aim of this introduction is, instead, to assess in depth the side reactions 

mechanism and to identify the suitable routes to approach a full control of collateral 

effects. 

As aforementioned, once the macroradical is formed through hydrogen abstraction it can 

react with vinyl monomers starting the grafting process:  

MM
.
+ XHC=CHX            MM-CHX-CHX

.
 (1) 

The new formed radical can add a new monomer by increasing the grafted chain length 

(2) or abstract hydrogen from the polyolefin (transfer) ending with the polyolefin 

functionalization with a single monomer unit (3): 

MM-CHX-CHX
.
 + XHCC=CHX         MM-CHX-CHX-CHX-CHX

.
 (2) 

MM-CHX-CHX
.
 + MM-H            MM-CHX-CH2X + MM

. 

where: 

(3) 
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MM
.
=macroradical;  

XHC=CHX= functional vinyl monomer;  

MM-H= polyolefin;  

MM-CHX-CH2X= functionalized polyolefin 

 

The grafting efficiency (E) is defined as the moles of monomer grafted per moles of 

radicals derived from the initiator7, therefore from the reaction (1) it appears clear that 

each primary radical formed through peroxide decomposition can give no more than one 

macroradical. For this reason the maximum value of E should be theoretically between 1 

and 2 (depending on the peroxide efficiency in providing primary radicals and 

macroradicals) in the event which all the macroradicals react with the unsatured 

monomer. Actually the data reported in Table 1.2.128 show that the E values are 

substantially greater than 1 or 2, namely these values are larger of the total amount of 

primary radicals. 

 

Table 1.2.1: Relative efficiency (E) and functionalization degree (FD) of post-polymerization 

functionalization runs carried out with different polyolefins* and by using dicumyl peroxide(DCP) 

as peroxide and diethyl maleate (DEM) as functionalizing monomer at various DCP/DEM molar 

ratios28. 

Runs DCP/DEMa Eb FD % by mol 

LLDPE1 0.22/1.80 5 1.0 

LLDPE2 0.11/1.80 7 0.7 

LLDPE3 0.11/3.60 12 1.2 

VLDPE1 0.03/0.50 7 0.2 

VLDPE2 0.11/1.80 9 1.0 

VLDPE3 0.05/1.80 10 0.5 

EPM1 0.22/2.70 9 0.9 

EPM2 0.11/1.80 12 1.2 

EPM3 0.03/0.50 17 0.5 

* LLDPE=low linear density polyethylene, ethylene/propylene + 1-butene units ratio= 6.2; VLDPE= very low density 

polyethylene, ethylene/propylene + 1-butene units ratio= 10.1; EPM= ethylene-propylene rubber, ethylene/propylene + 

1-butene units ratio= 2.3. 

a) molar ratio between the peroxide DCP (dicumyl peroxide) and the vinyl monomer DEM (diethyl maleate); b) E= 

number of grafted DEM units/moles of DCP 
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This behavior suggests that the transfer reactions (see Figure 1.2.1) play a key role in the 

mechanism, substantially increasing the number of macroradicals potentially adding the 

monomer and thus increasing the FD and E values. The E data rises by decreasing the 

amount of peroxide or for low values of peroxide/monomer ratio. In addition it seems to 

be depending on the tertiary carbon content (on the polyolefin backbone; see as example 

samples LLDPE3, VLDPE3, EPM3); it increases by raising the α-olefin content, in 

agreement with the macroradicals stability and reactivity. Transfer reactions are thus 

really important in the whole mechanism: they improve the FD values (increasing the E) 

by maintaining high content of macroradicals during the functionalization process. 

On the other part, owing to specific stability of formed macroradicals this inevitably leads 

to increase the incidence of side reactions with particular reference to crosslinking 

phenomenon because it increases the concentration of macroradicals and thus the 

possibility they meet each other. 

Collateral reactions, such as chain breaking and crosslinking, are mainly depending on the 

structure of macroradicals and thus on the nature of the polymer. By comparing the 

results about the solubility of functionalized products starting from polyethylene (LDPE) 

and polypropylene (PP) samples it appears evident that while the use of the peroxide 

leads to the formation of a crosslinked fraction for LDPE, in the case of PP it causes a 

dramatic abatement of the starting solubility, suggesting a reduction of MW, as even 

proved by viscosity measurements (Table 1.2.2). The use of a functionalizing monomer, 

diethyl maleate (DEM), may control the final solubility of products derived from LDPE, on 

the basis of peroxide/monomer ratio: by decreasing the R value (it should be lower than 

0.09) the functionalized products have the same solubility of the starting polymer. Instead 

in the case of PP independently of the R ratio the starting solubility is not restored, 

suggesting that for PP the collateral reactions are difficult to keep under control by simply 

modulating the feed composition. 
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Table 1.2.2: Functionalization of LDPE and PP with DEM and MAH in the melt. Reproduced table 

from ref29. 

Runs DEM* 
% mol 

DCP§ 
% mol 

R=DCP/DEM 
mol/mol 

Acetone 
Extracted fraction 

(%wt) 

Toluene 
Extracted fraction 

(%wt) 

MWη 

E01 0 0 - 0.5 0 - 

E02 0 0.11  0.5 42 - 

E09 1.8 0.11 0.06 2.8 0 - 

E19 1.8 0.22 0.12 1.2 38.1 - 

E12 3.6 0.11 0.03 3.1 0 - 

E18 3.6 0.17 0.05 2.9 0 - 

E16 3.6 0.22 0.06 3.2 0 - 

E17 3.6 0.33 0.09 2.0 34.0 - 

PP01 - - - - 82.9 370000 

PP02 - 0.08 - - 1.1 100000 

PP03 2.44 0.08 30.5 - 1.1 - 

PP04 4.88 0.08 61.0 - 1.1 110000 

PP05 4.88 0.16 30.5 - <1 - 

PP06 4.88 0.23 21.2 - <1 - 

PP07 1.22 0.08 15.2 - <1 - 

PP08 2.44 0.16 15.2 - <1 - 

PP09 2.44 0.23 11.0 - <1 - 
*
DEM= Diethyl maleate, monomer; 

§
DCP= Dicumyl peroxide, initiator 

E= LDPE 

 

These results definitely proved that for polyethylene–based polymers it is possible to 

control the collateral crosslinking extent by playing with the ratio between the peroxide 

and the monomer concentration owing to the fact that the coupling is a bimolecular 

reaction whose incidence is then controlled by the macroradical concentration. 

Conversely the increase of the branched units, such as propylenic units, in the polyolefin 

backbone generates a remarkable detriment of MW of functionalized products, due to the 

formation of less stable tertiary macroradicals undergoing to β-scission reaction not easy 

to control (Figure 1.2.2). 
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Figure 1.2.2: β-scission reaction mechanism 

 

This polypropylene (PP) structural modification is well documented and it strongly 

influences the functionalization process by considerably competing with the grafting 

reaction22, 30. The β-scission process is a monomolecular reaction (Figure 1.2.2) whose 

extent depends only on the relative stability of the macroradicals and cannot be avoided 

by tuning the ratio between the reagents (see table 1.2.2). As reported in literature29 and 

in Table 1.2.2, the increase of the amount of functionalizing monomers in the feed, or the 

variations in the monomer/peroxide ratio are not able to control the PP degradation. 

Moreover, the monomer reactivity towards the formed macroradicals plays a 

fundamental role in advancing the grafting yield by minimizing side reactions and overall 

in determining the grafting distribution onto the backbone on the basis of its capability to 

homopropagate at the processing temperature. Indeed, the functionalizing monomer has 

to meet different requirements: it has to be soluble in the molten polyolefin, in order to 

easily diffuse and fast link to the macroradical; its volatility has to be suitable with process 

temperature; its reactivity towards radical initiator has to be minimized and it shall be 

directed towards substrate derived radicals and obviously its susceptibility to the 

homopolymerization has to be controlled. However even if all these features should 

address the reagent choice, the mostly used unsaturated monomer are generally among 

maleic anhydride (MAH) and its derivatives or acrylic/methacrylic monomers able to graft 

functionalities suitable for the final applications (as examples polymers with improved 

compatibility with technopolymers and/or improved paintability/adhesion 

performances)31-33. 

During the last 30 years extensive studies were devoted to keep under control side 

reactions, with particular reference to crosslinking, chain scission and monomer 

homopolymerization. As example Moad7 by crossing a number of data about the 

functionalization results reported some experimental variables that may be optimized to 

maximize the grafting and minimize the side reactions. 
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Table 1.2.3: Effect of process conditions on side reactions and grafting yields. Reproduced table 

from ref7. 

Condition 

To minimize To maximize 

Crosslinking Chain scission Homopolymerization Grafting 

Mixing efficiency Raise Raise Raise Raise 

Temperature Raise Lower - Raise 

Pressure Raise Lower Raise Raise 

Monomer conc. - Raise Raise Raise 

Radical conc. Lower Lower Lower Raise 

 

Obviously this description is really simplified because several parameters are really 

difficult to optimize by considering that their effects are strongly correlated. The thermal 

chain scission, for instance, is favored by both a not efficient mixing because of 

overheating zones formation, and by a very strong mixing which can cause mechanical 

stresses. Anyway it appears clear the need to avoid the formation of many radical sites 

for limiting the discussed side reactions; the attempt to improve the grafting yield by 

increasing the amount of initiator had not success because of the consequent raise of 

chain breaking and crosslinking. In contrast improving mixing efficiency and thus 

controlling the local monomer concentration or adding suitable co-agents can improve 

the grafting yield and decrease the extent of these collateral reactions7.  

Above all, the main problem of PP based polymers functionalization refers to the β-

scission reaction that is due to the formation of not-stabilized tertiary macroradicals, 

liable to fragmentation, which is not possible to keep under control by modulating the 

experimental conditions and whose amount is further increased by the transfer reactions. 

For this reason, it was necessary to find new methodologies to make the PP macroradicals 

less prone to breaking, and with this aim new chemical reagents were investigated, and 

particularly the use of several co-agents was developed. 

 

1.3: Macroradicals stabilization by the use of co-agents 

 
Two different classes of co-agents were employed to control the stability of macroradicals 

and to lead their reactivity towards the desired grafting reaction26: 
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� chemicals that are able to quickly react with the macroradicals generating new 

resonance-stabilized macroradicals: unsaturated co-agents 

 

� chemicals that are able to decrease the instantaneous concentration of 

macroradicals through reversible radical reactions: radical-mediating co-agents. 

 

Following the main results about the use of co-agents are described with particular 

reference to their mechanism in macroradical stabilization. 

 

1.3.1 The use of unsaturated co-agents 

 

The first series of co-agents are chemicals able both to trap the macroradicals and to 

create, once linked to the polyolefin, new radical sites which are highly reactive towards 

the monomer7. The use of electron-rich monomers as co-agents was a success to improve 

the grafting and to limit side reactions when electron-deficient monomers are used as 

functionalizing agents such as MAH or methacrylic acid. One of these co-agents was 

styrene which showed to be really efficient in the MAH and methacrylic acid grafting onto 

LDPE and PP backbone. 

 

 

Figure 1.3.1: Polyolefins functionalization by using styrene as monomer-co-agent. 
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For this system the grafting yield enhancement was attributed to both the formation of 

resonance stabilized macroradical (Figure 1.3.1) and the generation of a charge transfer 

complex (CTC) between the electron-rich (styrene) and the electron-poor (MAH) species 

which is really reactive towards macroradicals7, and thus able to provide the 

functionalized polymer by limiting the side reactions. Other co-agents developed by Al-

Malaika34, 35, were based on polyfunctional monomers, especially triacrylate monomers 

(See for example Figure 1.3.2), they were used to improve the grafting of glycidyl 

methacrylate or 3,5-di-tert-butyl-4-hydroxy benzyl acrylate (DBBA) onto PP backbone 

without molecular weight detriment. Thanks to the presence of multiple double bonds, 

they act as reactive linkers between the functionalizing monomer and the polymer. In 

other words these co-agents act as chain extenders, by limiting the degradation and 

allowing achieving a final product having approximately the molecular weight of the 

pristine polymer. By this way the grafting yield was increased from 10-40%, in absence of 

the co-agent, to 80-90% in the presence of co-agent (Figure 1.3.2 ). 

 

 

Figure 1.3.2: Trimethyl propane triacrylate 

 

Finally, other chemicals, based on heteroaromatic derivatives, were developed and 

employed as functionalizing monomers and co-agents for the PP melt functionalization 

and gave high functionalization degrees without changing the polymer molecular weight 

and structure36, 37. They are constituted by a heterocyclic ring conjugated with a reactive 

double bond bearing one electron-withdrawing group. These molecules can quickly react 

with the PP tertiary radical and, by forming a resonance-stabilized macroradical, they are 

able to minimize the PP β-scission reaction (Figure 1.3.3). 
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Figure 1.3.3: Structure of heterocyclic co-agents and resonance structures after addition to a PP 

macroradical26. 

 

The ability of these co-agents to limit the PP degradation is due to both reactivity of the 

C=C bond, that is largely determined by the electron density, and stability of the 

functionalized macroradicals determined by different heteroaromatic rings. From the 

data reported in literature26 (Table 1.3.1), it is evident how both the electro-withdrawing 

group and the heterocyclic ring, influence the polymer molecular weight evolution. Wan 

and co-workers38 investigated the ability of furan, pyrrole and tiophene rings to stabilize 

the adjacent carbon-centered radical or to differently influence the electron density of 

the C=C bond. According to theoretical calculations concerning the radical stabilization 

energy of a methylene radical attached to heterocyclic rings, it appeared evident that 

furan, thiophene and pyrrole have the same stabilizing delocalization effect of the odd 

electron into the adjacent π-bond. Thus the different effect of the three co-agents on 

limiting the degradation of PP chains depends mainly on the change of the electron 

density of the adjacent C=C bond. The π-electron density of heterocyclic rings, indeed, is 

strongly dependent on the electro-withdrawing or electro-releasing effect provided by 

the heteroatom. Considering the electronegativity of heteroatom and the dipole moment 

of heterocyclic ring, the sequence of the π-electron density is: furan< thiophene< pyrrole. 
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The PP macroradical is an electron-donor species with nucleophilic character, able to 

react faster with monomers containing electron-poor double bonds and thus it is more 

reactive towards furan derivative. Simultaneously, the electronegativity of the substituent 

groups (
C

CN

COOR,
C

CN

CN ,
C

H

COOR) on the double bond changes the reactivity of the co-

agent versus PP macroradicals which react more slowly with electron-rich alkenes but 

much faster with electron-deficient alkenes. The electronegativity of cyano group, for 

example, is stronger than that of ester, so cyano is better to impoverish the C=C bond and 

therefore favors the addition of PP macroradicals. This explains the good control in the 

Mw obtained for all the samples provided by using the furan derivatives. Furthermore, an 

increase of the co-agent/primary radical molar ratio, allows improving this effect.  

 

Table 1.3.1: PP functionalized with different kind of co-agents: effect of co-agent structure, 

reagent, ratio and molecular weight on the efficiency values. Reported table from ref26 (see Figure 

1.3.4.). 

Sample X Y Co-agent/primary 

radicals ratio 

(mol/mol) 

Mn (KDa) Effa 

PPa-1 - - - 19.43 - 

PPa-2 - - - 9.61 - 

PPa-3 O C
CN

COOR 

10 19.90 n.d. 

PPa-4 O C
CN

CN  

10 21.99 n.d. 

PPa-5 S C
CN

COOR 

10 14.28 n.d. 

PPa-6 S C
CN

CN  

10 16.21 n.d. 

PPa-7 NH C
CN

COOR 

10 11.50 n.d. 

PPa-8 NH C
CN

CN  

10 15.56 n.d. 

PPc-1 - - - 310.00 - 

PPc-2 - - - 124.00 - 

PPc-3 O C
H

COOR 

2.8 190.00 2.3 
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PPc-4 O C
H

COOR 

12 265.00 2.6 

PPc-5 O C
H

COOR 

23.7 267.00 2.8 

PPc-6 S C
H

COOR 

2.8 164.00 1.9 

PPc-7 S C
H

COOR 

12 211.00 1.8 

PPc-8 S C
H

COOR 

23.7 240.00 2.0 

a
 Efficiency: molar ratio between the FD and the amount of primary radicals assuming two radicals per peroxide 

molecule. 

 

As previously discussed, even in this case the grafting efficiency quantifies the ability of 

the co-agent to undergo hydrogen transfer or disproportionation reactions: low values, 

that are those generally reached, indicate that the macroradicals formed by the co-agent 

addition are not able to propagate the functionalization process and any new alkyl 

macroradicals suitable for β-scission are generated26. 

A clear evidence of this behavior for one of the most used co-agent, the butyl 3-(2-

furyl)propenoate (BFA), in comparison with MAH can be stated by data reported in Table 

1.3.2. 

 

Table 1.3.2: Modification of PP samples with MAH and BFA in the presence of a peroxide37. 

Sample ROOR 

(%mol) 

MAH 

(%mol) 

BFA 

(%mol) 

FDMAH 

(%mol) 

FDBFA 

(%mol) 

MAH 

(conv%) 

BFA 

(conv%) 

Eff.* Mn 10
-3 

(Dalton) 

Mw 10
-3 

(Dalton) 

PP - - - - - - - - 56 260 

PPMAH4 0.036 0.86 - 0.43 - 50.8 - 6.0 31 81 

PPMAH5 0.036 1.71 - 0.49 - 28.7 - 6.8 36 97 

PPMAH6 0.036 2.57 - 0.60 - 23.1 - 8.3 29 87 

           

PPBFA3 0.036 - 0.86 - 0.10 - 11.6 1.4 50 244 

PPBFA4 0.036 - 1.71 - 0.14 - 8.0 1.9 56 202 

PPBFA5 0.036 - 2.57 - 0.19 - 7.4 1.6 56 226 

 

By keeping constant the molar concentration of the different reagents, in the case of 

functionalization runs carried out with MAH the efficiency values are always >1 

confirming the occurrence of the H-transfer reaction from the PP–MAH
. macroradicals to 
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PP chains. This phenomenon leads to a sharply drop of molecular weight caused by the β-

scission reactions, for all the used reagents ratios. On the contrary, the efficiency values 

obtained by using BFA, result to be ca. 1 underling the lack of transfer reactions and 

consequently a greater control of polymer molecular weight, very close to that of pristine 

polymer for all the reagents concentration. However the functionalization degrees are 

generally low, because the new formed PP-BFA
.
 macroradical is stabilized by resonance 

and shows a lower tendency, compared to PP–MAH
., to give H-abstraction (Figure 1.3.4). 

This make the macroradical more likely involved in coupling or in disproportionation 

reactions.  

The increase of grafting level can be reached by raising the amount of primary radicals 

and, on the basis of peculiar BFA reactivity by keeping them in stoichiometric ratio with 

BFA.  

Furthermore, when BFA and MAH are used jointly, the best results in terms of 

functionalization degree and MW conservation are achieved by working under 

stoichiometric conditions among all the reagents (Figure 1.3.5). This approach ensures to 

preserve the polymer molecular weight and to reach at the same time good conversion 

level of both the monomers up to FD of 1.6 mol%. The optimal ratio BFA/primary radicals 

equal to 1 acts in the degradation/branching competition favoring the latter one and 

limiting considerably or totally the effect of the β-scission37. 

 

 

Figure 1.3.4: Dependence of FD and Mw on peroxide concentration for samples prepared under 

stoichiometric conditions. Reported figure from ref37. 
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1.3.2. The use of radical-mediating co-agents 

 

The latter series of co-agents are generally chemicals able to decrease the instantaneous 

concentration of free active radicals through reversible radical reactions during the 

functionalization of polyolefins. This was demonstrated to be a powerful method to 

control both degradation/crosslinking side reactions and the homopolymerization of the 

functional monomer. Several kinds of these co-agents, as alkylthiuram disulfide39, 

dithiocarbamate40, 41, N-bromosuccinimide (NBS)42 and nitroxides among which 2,2,6,6-

tetramethyl-1-piperidinyloxy (TEMPO)42, 43 derivatives were used. All of them are suitable 

in limiting the β-scission reaction of polypropylene macroradicals by promoting the 

reversible radical addition between PP macroradicals and mediating radicals generated by 

addition of these co-agents (Figure 1.3.6)26. 

 

 

Figure 1.3.5: Simplified reaction mechanisms and possible structures of macroradicals during PP 

radical functionalization in the presence of a mediating radical co-agent. Reported figure from 

ref26. 
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The simplified scheme, above reported (Figure 1.3.5), just describes the radical 

functionalization of PP (but it can be extended to all the polyolefins) in the presence of 

these mediating radical co-agents and it is based on the reaction between the co-agents 

and the active free radicals (carbon-centred and alkoxy species). On the one hand the 

active free radicals (i.e. the primary radicals generated by peroxide scission) are 

converted, in situ, into mediating radical which are not able anymore to attack the 

polymeric backbone, but act as weaker initiator of functional monomer 

homopropagation. This translates into a decrease of the instantaneous concentration of 

radical species with a noteworthy control of the side reactions. On the other hand, the 

mediating radicals can react with PP
.
, PPM

.
 or with radical which are derived from the 

monomer homopolymerization. All these reactions are reversible, this means that the PP 

macroradical lifetime is significantly prolonged increasing the functionalization 

probability26. 

As example the PP functionalization with maleic anhydride (MA in this example) in 

presence of NBS, allows achieving a modified PP with markedly enhanced grafting level 

and a certain control of molecular weight44 (Figure 1.3.6). 
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Figure 1.3.6: Evolution of (a) the number average molar mass (Mn) and of (b) the crystallization 

degree (Xc) of the PP-g-MAs with the grafting level ([MA]). Classic PP-g-MAs are samples prepared 

via functionalization reaction without addition of NBS; commercial PP-g-MAs are supplied by 

Chemtura and Clariant; NBS PP-g-MAs are PP-g-MAs prepared with the addition of NBS. eIP are 

highly functionalized elastomeric PP-g-MA prepared using NBS as mediating co-agent44. 

 

The above reported graph (Figure 1.3.6) correlates some NBS PP-g-MAs (functionalized PP 

by adding a low amount of NBS) characteristics, with those of classic PP-g-MAs 

(functionalized PP in absence of NBS).  

Specifically the evolution of the average number molecular weight (Mn) and the 

crystallization degree (Xc) of PP-g-MAs with their grafting level ([MA]) is highlighted. For 

classic and commercial PP it appears clear the Mn decrease with the [MA] raise, thus 

suggesting the β-scission side reactions occurrence. Conversely the addition of small 

amount of NBS (NBS PP-g-MAs and eIP) allows reaching higher grafting level (up to 2–3 

times higher than classic PP-g-MAs) while partially avoiding Mn falling into the wax region 
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(Mn< 10 kDa). Anyway the amount of added NBS has to be adapted with the MA and 

peroxide amounts to maintain the cristallinity of the NBS PP-g-MAs comparable to that of 

the commercial PP-g-MAs. 

 

1.3.3: The Nitroxide Radical Coupling (NRC) reaction as a tool to post-polymerization 

functionalization of polyolefins 

 

Among the radical mediating co-agents the nitroxides play a special role that deserves a 

specific attention regarding their structure and reactivity. The nitroxyl free radicals (or 

nitroxides) have a particular chemical structure, characterized by the lack of hydrogen 

atoms linked to the carbon atoms in α-position with respect the NO group, which 

guarantees the stability of the compound as radical species9. Furthermore they can 

quickly couple with carbon-centered radical species, such as macroradicals, giving rise to 

the well known Nitroxide Radical Coupling (NRC) reaction.  

 

 

Scheme 1.3.1: Nitroxide Radical Coupling (NRC) reaction 

 

For this particular feature, the nitroxides were used as spin-trap to control the extent of 

crosslinking in the reaction of polyethylene with peroxide2, 3. Several applications, indeed, 

require specific properties belonging to crosslinked polyolefins such as: resistance to high 

temperature deformation, high flow resistance, good impact property (toughness), 

abrasion resistance, environmental stress crack resistance, solvent (chemical) resistance 

and good tensile properties. Polyolefins are, thus, treated with organic peroxides in order 

to achieve a crosslinked material. In the case of polyethylene, to obtain a material with 

homogeneous features, it is necessary to avoid a premature crosslinking during the initial 

mixing of the reagents/chemicals2. For this purpose the TEMPO derivatives were used as 

additives to trap the early forming radicals from the peroxide increasing the scorch time. 

Interestingly, by analyzing the obtained product with 13C-NMR, the authors2 noticed that, 
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TEMPO molecules, used as additive to control the crosslinking process, were grafted to 

the polymer backbone and were present in different locations of the hydrocarbon 

substrate confirming the occurrence of NRC reaction (Scheme 1.3.1).  

Micallef et al4 synthesized nitroxides bearing covalently linked fluorophore, that were 

employed as probes of the polypropylene degradation. The obtained results 

demonstrated that the NRC and the use of profluorescent nitroxide are powerful tools to 

investigate the polymer degradation, especially during the induction period where most 

analytical techniques are unable to detect any change in the polymer. Furthermore at 

temperature close to150 °C, namely when the polypropylene is instable and tends to 

quickly degrade, the probe acts as a retarder of thermo-oxidative degradation, by 

significantly increasing the nitroxide-doped polypropylene lifetime via TEMPO coupling 

with the macroradical. This confirms once again that NRC reaction is able to provide 

functionalized PP4. 

Based on this evidence a new method to functionalize polyethylene8, 9 by means of NRC 

reaction was developed: the quick reaction between functionalized TEMPO derivatives 

and the macroradicals formed by primary radical, could address the whole 

functionalization procedure towards a stoichiometric process, completely avoiding any 

side reactions. 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (HO-TEMPO), 4-

benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl (BzO-TEMPO)9 and 4-(1-naphthoate)-

2,2,6,6-tetramethylpiperidine-1-oxyl (NfO-TEMPO)8, which are TEMPO derivatives bearing 

a hydroxyl group, an aromatic group and a naphthalene group respectively, were used to 

achieve a functional polyethylene based material. The functionalization runs were carried 

out in the melt by tuning the temperature and the ratios of the reagents.  

The grafting success was clearly proved by UV-Vis (Figure 1.3.7), 1H-NMR and FTIR 

spectroscopy (Figure 1.3.8). In particular the last two spectroscopies allowed the 

evaluation of the FD, which ranged between 0.1 and 0.2 mol%, by providing appropriate 

calibration curves. 
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Figure 1.3.7: UV-Vis absorption spectra of PO-g-(NfO-TEMPO)_1 and PO-g-(NfO-TEMPO)_2. Figure 

reported from ref8. 

 

 
 

Figure 1.3.8: Superimposition of the FT-IR spectra of pristine Engage and of Engage-g-HO-TEMPO 

or Engage-g-BzO-TEMPO samples. Figures reported from ref9. 

 

Precisely, the UV-Vis spectra (Figure 1.3.7) highlighted the presence of an absorption 

band centred at 297 nm belonging to the naphthalene sub-unit, on the other hand FTIR 

spectra (Figure 1.3.8) showed bands attributable to the HO-TEMPO or BzO-TEMPO group, 

thus both proving the occurrence of the grafting reaction. 

Interestingly the insertion of functional groups into polyolefin backbone via NRC, did not 

lead to collateral effects caused by side reactions, both Mn and Mw were indeed very 

similar to those of the starting polymer. Furthermore the torque values did not show any 
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increase in contrast to the pure polymer treated with the only peroxide (an example is 

reported in the Figure 1.3.9)9. 

 

 

  

Figure 1.3.9: Comparison between the torque curves of the run EHTP_100_190_t20 (pure 

polymer treated with only peroxide) and EHTP_100_190_t20 HT (polymer treated with peroxide 

and HO-TEMPO). Figure reported from ref9. 

 

Finally the NRC reaction permitted to achieve functional polymers, by transfer of the 

features typical of the nitroxides functional groups, directly from the functionalizing 

agents to the polymer itself.  
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Figure 1.3.10: Comparison between the emission spectrum of the pristine polymer (black line) 

and the polymer after functionalization with NfO-TEMPO (light blue line) and digital images of 

pure polymer and PO-g-(NfO-TEMPO) under excitation with a long-range UV lamp (λ = 254 nm)8. 

 

The fluorescence emission spectrum of PO-g-NfO-TEMPO (Figure 1.3.10) not only 

provided clear evidence of the grafting of NfO-TEMPO, but also revealed a fully restored 

fluorophore emission, thus obtaining a fluorescent polymer. 

In addition Electron Paramagnetic Resonance (EPR) was used to deepen insight into the 

grafting mechanism and the >NO-C bond stability. A mixture composed of the polymer, 

peroxide and NfO-TEMPO, in the same molar concentrations used for the 

functionalization reactions, was heated inside the cavity of the EPR instrument and EPR 

spectra were recorded at regular intervals of temperature. 

The comparison of the initial EPR spectrum with the spectrum recorded at 200 °C (Figure 

1.3.11) clearly highlighted a decrease of the signal area by confirming the role as trapping 

agents played by the NfO-TEMPO towards the macroradicals created during the 

functionalization run8. 
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Figure 1.3.11: EPR spectra of the mixture polymer, peroxide and nitroxide recorded at 25°C (a) 

and 200°C (b). Figure reported from ref8. 

 

The evolution of the signal area decrease with the raise of the temperature, is well 

underlined in Figure 1.3.12. Moreover no variation of the amount of free radicals was 

observed during the cooling of the sample to room temperature, suggesting that the 

covalent bond between nitroxide and macroradical was stable at least in this 

experimental conditions. 

 

 

Figure 1.3.12: Radical number of NfO-TEMPO molecules as a function of the EPR cavity 

temperature8. 

 

These evidences were in line with the hypothesized grafting mechanism, namely the 

reaction between nitroxides and macroradicals gave rise to covalent bonds causing the 
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progressive decreasing of the free TEMPO radicals in the analyzed mixture. In other words 

by means of EPR spectroscopy, the mechanism which involves the complete inhibition of 

crosslinking was validated8. 

Having regard to the above, it appears clear the ability of the NRC reaction to create 

functional polymer by a one-step procedure. Furthermore the NRC reaction shows a great 

compatibility with different functional groups and, by modulating the feed ratio, it is 

possible to achieve a very good control of the grafting degree and the macromolecular 

architecture, even though the functionalization is carried out in the melt using peroxide 

as free radical initiator.  

In addition, the NRC displays characteristics resembling to the “click chemistry”1, 45 

approach: it is fast, reliable and easy to implement with high yield, it is an efficient and 

specific reaction which can be conducted under relatively mild conditions and overall it is 

compatible with several functional groups and applicable in a modular manner5. These 

features ensured the NRC as a powerful tool for synthesis of polymers with well defined 

architecture as for instance linear or not linear polymers and copolymers (Figures 1.3.13 

and 1.3.14) or star-shape copolymers (Figure 1.3.15)1, 46.  

For better describing these approaches that purpose in Figure 1.3.13 is reported a 

scheme concerning the synthesis of an ABC triblock copolymer via an one-pot method 

obtained by combination of NRC reaction with other “click chemistry” in a simple way 

because of the tolerance of these coupling reactions. Specifically in this synthesis the 

heterofunctional alkyne-polystyrene bromine (alkyne-PS-Br), poly(ethylene oxide)-TEMPO 

(PEO-TEMPO) or poly(g-caprolactone)-TEMPO (PCL-TEMPO), and poly(tert-butyl 

acrylate)azide (PtBA-N3) were used as precursors. Click reaction between azide end group 

of PtBA-N3 and alkyne functional group of alkyne-PS-Br was carried out jointly with the 

NRC reaction between TEMPO end group of PEO-TEMPO or PLC-TEMPO and bromine 

functional group of alkyne-PS-Br, with high efficiency. The final triblock copolymers, PtBA-

b-PS-b-PEO or PtBA-b-PS-b-PCL were indeed obtained with controlled molecular weight 

and low dispersity46. 
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Figure 1.3.13: One-pot synthesis of ABC triblock copolymers of PtBA-b-PS-b-PEO by combination 

of NRC reaction with CuACC chemistry46. 

 

The use of NRC reaction can be extended also to the synthesis of graft copolymer. In fact 

in Figure 1.3.14 is showed the mechanism used to obtain the graft copolymer poly(4-

glycidyloxy-2,2,6,6-tetramethylpiperidin-1-oxyl-co-ethylene oxide) [poly(GTEMPO-co-

EO)]-g-PS by means of NRC reaction between the multi-pendant TEMPO groups belonging 

to the linear precursor poly(GTEMPO-co-EO)and PS-Br with a bromide end group in 

CuBr/N,N,N′,N′′,N′′-Pentamethyldiethylenetriamine (PMDETA) system. The obtained data 

underlined an efficiency of NRC reaction for the graft copolymers in the range of 90.2–

95.9%. 

 

 

 

Figure 1.3.14: The illustration of graft [Poly(GTEMPO-co-EO)-g-PS] by NRC reaction46. 

 

Furthermore the NRC reaction was used in order to achieve star shape polymer, whose 

synthesis among all polymers with well defined structure, has always presented a 

challenge for chemists. The synthesis of a star shape copolymer, bearing PS-b-PEO as arm 

chains and hyperbranched polyglycerol (HPG) as core, was carried out by combining the 

Atom Transfer Radical Polymerization (ATRP) mechanism with the NRC reaction (Figure 

1.3.15). The results highlighted a coupling efficiency of the NRC reaction truly satisfactory 

(90%) despite the high density of coupling sites on HPG46. 
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Figure 1.3.15: The synthetic illustration of HPG-g-(PS-b-PEO)n by ATRP mechanism and NRC 

reaction46. 

 

Another interesting feature of NRC is the reversibility of the coupling reaction between 

free nitroxide and macroradicals, especially at high temperature. By taking advantage 

from this reversibility, the exchange of chemical functionality on macromolecules is 

possible, indeed chain-end groups can be substituted with a variety of functional 

nitroxide derivatives (Figure 1.3.9)1, 46. 

 

 

Figure 1.3.16:Terminal functionalization via nitroxide radical exchange reaction1.  

 

1.4: Objectives of the work 
 

By considering the state-of-art on functionalization processes and the recent results 

concerning in particular the NRC approach, during this PhD thesis, an in-depth study 

about the possibility to apply this reaction to different polymers with the aim to insert 

specific functional groups in the melt or onto the surface, was investigated. 
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Specifically, first to expand the study of the functionalization in the molten state, the 

grafting of 4-(phenylazo)-benzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical (AzO-

TEMPO), 4-(2-thienylazo)-benzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl (ThiO-TEMPO) 

(bearing light-responsive groups or chromophores) and 4-(4,4,5,5,6,6,7,7,8,8,9,9,9-

tridecafluorononanoate)-2,2,6,6-tetramethylpiperidine-1-oxyl (Fluo-TEMPO) (bearing 

fluorinated alkyl chain) onto a random copolymer ethylene/α-olefin (EOC) and onto the 

high density polyethylene (HDPE), was carried out by means of a peroxide as reaction 

activator. The functionalized polymers were characterized by infrared analysis (FTIR) and 

thermogravimetric analysis (TGA), with the aim to evaluate the grafting occurrence, 

whereas functionalization degree was calculated by FTIR spectroscopy. 

This was followed by an accurate study of the new properties transferred directly from 

the nitroxides to the polymer. In particular the photophysical features of both the free 

nitroxides and of new “functional polymers” bearing covalently grafted azo-aromatic 

chromophores, were properly investigated by means of UV-Vis at different wavelengths. 

Finally, water contact angle measurements were used to confirm the photo-isomerization 

effects onto wettability changes of the surface of these materials. 

Furthermore, with the purpose to evaluate the feasibility of NRC reaction to functionalize 

different polymer matrices, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl (BzO-

TEMPO) and 4-(1-naphthoate)-2,2,6,6-tetramethylpiperidine-1-oxyl (NfO-TEMPO) were 

successfully grafted on bio-polyesters, namely poly lactic acid (PLA) and poly butylen 

succinate (PBS). The grafting was confirmed by fluorescence spectroscopy; the 

functionalization degree was estimated by UV-Vis and 1H-NMR spectroscopy; whereas the 

preservation of molecular weight distribution was evidenced by SEC analysis. Moreover, 

by combining theoretical calculations with experimental evidence collected by the EPR 

analysis of a functionalized PBS sample and by 1H-NMR spectroscopy a possible grafting 

site on the PBS chain was identified.  

In addition the NCR was tested to promote the surface functionalization of a linear low 

density polyethylene (LLDPE) and a styrene-b-(ethylene-co-butene)-b-styrene (SEBS) 

block copolymer. A photografting method was developed by taking advantage of the 

coupling of TEMPO derivatives with macroradicals generated by H-abstraction through 

UV irradiation in the presence of a new photoinitiator. During this experiment BzO-

TEMPO, NfO-TEMPO, and Fluo-TEMPO were used as functionalizing agents. The samples 
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were analyzed by infrared analysis (FTIR and ATR-FTIR), electron paramagnetic resonance 

(EPR), and TGA. The fluorescence emission spectroscopy was used to investigate the 

optical properties of the NfO-TEMPO surface functionalized films, while the static contact 

angle measurements were used to evaluate the wettability features of the polymer 

surface modified with Fluo-TEMPO. 

In addition a careful study about the thermal stability of the >NO-C bond between the 

nitroxide and the macroradical (generating the alkoxyamine product) by EPR 

spectroscopy and by Density Functional Theory (DFT) calculations was carried out. In 

particular these investigations were aimed at trying to thoroughly understand if an 

electronic effect of the substituting groups of TEMPO derivatives can influence the bond 

dissociation enthalpy of the >NO-C bond. 

Finally by exploiting the thermal equilibrium between the alkoxyamine and its free form, 

the functionalized polyolefins obtained by photografting and by functionalization in the 

melt were used as macroinitiators in order to grow, in a controlled/living fashion, 

polystyrene chains from the bulk and surface activated polymers.  

The grafting success was evaluated by infrared analysis (ATR-FTIR), TGA, and differential 

scanning calorimetry (DSC) analysis. 
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CHAPTER 2 

SYNTHESIS OF NEW FUNCTIONALIZED POLYOLEFINS BY 

NITROXIDE RADICAL COUPLING REACTION IN THE MELT 
 

2.1: Preparation and characterization of AzO-TEMPO, ThiO-

TEMPO and Fluo-TEMPO functionalized polyolefins. 

 

The 4-(phenylazo)-benzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical (AzO-TEMPO), 4-

(2-thienylazo)-benzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl (ThiO-TEMPO) and 4-

(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononanoate)-2,2,6,6-tetramethylpiperidine-1-oxyl 

(Fluo-TEMPO) were chosen as functional TEMPO derivatives to graft onto a random 

copolymer ethylene/α-olefin (EOC) and onto the high density polyethylene (HDPE), in the 

melt by using a peroxide as radical initiator. Fluo-TEMPO was grafted onto the EOC 

copolymer, whereas ThiO-TEMPO was used to functionalize the HDPE and finally with 

AzO-TEMPO both the polyolefins were modified. These TEMPO derivatives were 

synthesized ad hoc precisely with the purpose to provide the polyolefins with new and 

never investigated functional groups. In particular, greater emphasis will be given to the 

photo physical properties of the azo-aromatic TEMPO derivatives both in solution and 

grafted onto the polyolefins. 

The synthesis of AzO-TEMPO was realized by modifying a procedure already reported in 

literature47, whereas the ThiO-TEMPO (see Experimental Part, Scheme 7.2.2.1, Chapter 7) 

was obtained by esterification of the (E)-4-(thiophen-2-yldiazenyl)-benzoic acid (2 in 

Experimental Part, Scheme 7.2.2.1, Chapter 7) prepared from 4-

carboxybenzenediazonium tetrafluoroborate (1 in Experimental Part, Scheme 7.2.2.1, 

Chapter 7) and 2-thienylmagnesium bromide, according to the procedure reported by 

Moylan, McNelis and coworkers48. Finally the synthesis of Fluo-TEMPO was carried out 

according to a conventional Steglich esterification reaction, using the fluorinated 

carboxylic acid in the presence of N,N’-dicyclohexylcarbodiimide (DCC) and a catalytic 
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amount of 4-dimethylaminopyridine (DMAP) (see Experimental Part, Scheme 7.2.3.1, 

Chapter 7). 

 

 

 

Figure 2.1.1: Chemical structure of AzO-TEMPO, ThiO-TEMPO and Fluo-TEMPO. 

 

ThiO-TEMPO and Fluo-TEMPO were prepared in a frame of collaboration activities with 

research groups working at the Department of Chemistry and Industrial Chemistry of Pisa 

University. The three TEMPO derivatives were purified by column chromatography, and 

then characterized by HPLC-MS analysis (Figure 2.1.2) and by FT-IR spectroscopy both 

confirming their molecular structure.  
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A 

 

B 

 

Figure 2.1.2: HPLC-MS chromatogram of: A AzO-TEMPO m/z: 381 [M + 1], 380 [M] and B Fluo-

TEMPO m/z: 547 [M+1], 532 [M-14]; the ThiO-TEMPO HPLC-MS chromatogram is not available, 

anyway the m/z: 386 [M] was found. 

 

The HPLC-MS chromatograms of nitroxides underlined mass peaks at m/z: 380 and 381 

corresponding to AzO-TEMPO [M] and [M+1] respectively (Figure 2.1.2A), 547 belonging 

to Fluo-TEMPO [M+1] (Figure 2.1.2B) and 386 which is characteristic to ThiO-TEMPO [M] 

(unfortunately the spectrum is not available). 

The infrared spectra of azo-aromatic TEMPO derivatives showed a band at 1715 cm-1 due 

to the carbonyl stretching and a band at 3055 cm-1, in the case of AzO-TEMPO, and at 
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3077 cm-1, in the case of ThiO-TEMPO, attributable to the C-H stretching of the benzene 

and of the thiophene, respectively. Both spectra showed also a very weak band at about 

1410 cm-1 that can be attributed to the asymmetric stretching of the diazo group49 (Figure 

2.1.3). 

 

 

Figure 2.1.3: FT-IR spectrum of AzO-TEMPO and ThiO-TEMPO collected from KBr 

 

Concerning the Fluo-TEMPO, the infrared spectrum (Figure 2.1.4) clearly showed a band 

at 1731 cm-1 corresponding to the carbonyl stretching, furthermore the intense 

absorptions in the wide range 1400-984 cm-1proved the presence of fluorinated alkyl 

functionalities -(CF2)nCF3. 
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Figure 2.1.4: FT-IR spectrum of Fluo-TEMPO collected from KBr 

Thermograms of TEMPO derivatives showed a single degradation step in the case of AzO-

TEMPO (Tonset=270°C) and a gradual weight loss between 100 and 240°C followed by the 

main degradation step (Tonset=248°C) in the case of ThiO-TEMPO (Figure 2.1.5). The initial 

weight loss was attributed to the volatilization of some side products or reagent residues 

derived from the synthesis of ThiO-TEMPO (see Chapter 7, section 7.2.2) and in a very 

limited extent to the volatilization/degradation of the nitroxide as supported by EPR 

measurements collected after treating the nitroxide at 190°C for 10 min (Figure 2.1.6). 

 

 

Figure 2.1.5: Thermogram and DTA signal of AzO-TEMPO and ThiO-TEMPO under nitrogen from 

30°C to 700°C, heating rate 10°C/min. 
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Figure 2.1.6: EPR spectrum of ThiO-TEMPO mixed with silica gel registered at room temperature 

before (a) and after heating at 190°C for 10 min (b). 

In the case of Fluo-TEMPO (Figure 2.1.7) the main degradation step at about Tonset=200°C 

was observed. DTA curve showed a peak attributed to the melting (at about 50°C). 

 

 

Figure 2.1.7: Thermogram and DTA signal of Fluo-TEMPO under nitrogen from 30°C to 700°C, 

heating rate 10°C/min. 

 

Functionalized polyolefin with X-TEMPO, were obtained by free radical grafting post-

reactor modification. Reactions were carried out in the melt, at 170 °C and 190°C for EOC 

and HDPE respectively, in a discontinuous mechanical mixer and they were initiated by 

di(tert-butylperoxy-iso-propyl)benzene. 

The torque value, recorded during runs, was almost constant, only a very low difference 

between the initial and final torque was present (an example is showed in Figure 2.1.8), 
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by suggesting a very good control of side reactions such as crosslinking or degradation of 

the polymer matrix8, 9, which was usually observed in the post-reactor modification of 

polyolefins with unsaturated monomers.  

 

Figure 2.1.8: Torque curve of the run (EOC)-g-(AzO-TEMPO) 

 

Crude samples were extracted with boiling acetone for 16 h in order to remove all low 

molecular weight compounds (reagents and by-products), then analyzed by FT-IR with the 

aim to evaluate the grafting occurrence and to determine the functionalization degree 

(FD). Infrared spectra of functionalized HDPE and EOC, confirmed the grafting of the 

TEMPO derivatives (Figures 2.1.9, 2.1.10 and 2.1.11). The spectra belonging to the 

samples bearing AzO- and ThiO-TEMPO, evidenced the presence of a band at 1722 cm-1 

due to the carbonyl stretching of the grafted functionalities; as the same the normalized 

spectra of EOC modified with Fluo-TEMPO evidenced the band at 1736 cm-1 , which may 

be associated to the carbonyl stretching of the ester group, and the presence of C-F 

vibrations stretching in the range between 1400 and 1000 cm-1.  
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Figure 2.1.9: FT-IR spectra of HDPE, HDPE-g-(AzO-TEMPO) and HDPE-g-(ThiO-TEMPO). 

 

 

Figure 2.1.10: FT-IR spectra of (EOC)-g-(AzO-TEMPO). 
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Figure 2.1.11: FT-IR spectra of EOC, (EOC)-g-(Fluo-TEMPO)  

 

From the FT-IR spectra of functionalized HDPE samples, and by using the data of a 

calibration curve which was previously reported by our research group9, it was possible to 

roughly evaluate the functionalization degree (FD) of the HDPE-g-(X-TEMPO) samples 

which was about 0.1 mol% for both TEMPO derivatives. In the case of (EOC)-g-(AzO-

TEMPO), by using the same calibration curve, a FD value of about 0.18 mol% was 

calculated reflecting the different feed conditions used to modify the two polymers (Table 

2.1.1). On the basis of the FD values and by considering the number average molecular 

weight of the pristine polymer (see Experimental Part, Table 7.1.2 in Chapter 7), it was 

possible to state that about 1 functional group per each HDPE polymer chain and about 2-

3 functional groups per each EOC chain were grafted. These low FDs and the random 

arrangement of the functional groups onto the polymer chain, allowed excluding the 

interactions between chromophores. For this reason, the trans-cis-trans photo- and 

thermal-isomerization of chromophores grafted to the polyolefins were studied and 

compared to those characteristics of the free TEMPO derivatives. 

To evaluate the FD of (EOC)-g-(Fluo-TEMPO) sample, a calibration curve was, instead, 

prepared ad hoc. The curve was obtained by recording FTIR spectra of mixtures (at known 

composition) of copolymer and nitroxide. The ratio between the area of the Fluo-TEMPO 

diagnostic band (1145 cm-1 corresponding to the -CF3 stretching) and of the band at 

720cm-1 (methylene rocking of polyethylene) used as internal reference, was plotted 
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versus the amount of the nitroxide simulating the grafted species. The linear fitting of the 

data allowed the preparation of the calibration curves (Figure 2.1.12) used to evaluate 

the FD of functionalized EOC. The FD value obtained by following the calibration curve, 

for the (EOC)-g-(Fluo-TEMPO) sample was 0.08%. 

 

 

Figure 2.1.12: Calibration curves for (EOC)-g-(Fluo-TEMPO) sample. The reported error was 

evaluated by considering the FD values of three determinations. 

 

To check the thermal stability of the functionalized polymers and to state if at high 

temperature a homolytic bond cleavage of the >N-O-C bond can cause the leaching of the 

grafted TEMPO from the polymer matrix, the samples were analyzed by TGA under 

nitrogen flow. Thermograms of functionalized polymers evidenced a first weight loss 

(about 1 wt% for the samples bearing AzO and ThiO-TEMPO and 1.6 wt% for the sample 

bearing Fluo-TEMPO) starting at about 270°Cin the case of the samples functionalized 

with the azo-aromatic TEMPO derivatives and at about 247°Cin the case of (EOC)-g-(Fluo-

TEMPO) (Figure 2.1.13). This first degradation step was followed by the main degradation 

step of the polymer matrix at about 485°C, for HDPE, and at about 470°C, for EOC (Figure 

2.1.13). 
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B 

 
 

C 

 
 

Figure2.1.13: TGA thermograms and their first derivative of A: EOC before and after 

functionalization with AzO-TEMPO, B: HDPE before and after functionalization with AzO-TEMPO 

or ThiO-TEMPO and C: EOC before and after functionalization with FluO-TEMPO. The analyses are 

carried out under nitrogen flow. 
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Both temperatures are very close to the degradation temperature of the two pristine 

polymers thus suggesting that the functionalization process did not alter the thermal 

degradation mechanism of the matrix. As far as the first weight loss, it can be due to the 

bond cleavage between the grafted TEMPO moiety and the macroradical. In fact the 

balance among the bonded and free form of the nitroxides, at high temperature was 

shifted towards the radical form. The percentage of this weight loss roughly corresponds 

to the FD evaluated by FT-IR analysis (Table 2.1.1) confirming the attribution of this TGA 

step to the detachment of TEMPO moieties. 

 

Table 2.1.1: Radical functionalization of polyolefins: feed composition, functionalization degree 

(FD) and thermal properties 

Sample name 

Feed composition Functionalization 

Degree1 

Thermal properties 

X-TEMPO2 

(mol%) 

Peroxide 

(mol%) 

FDFT-IR
3 

(mol%) 

FDTGA
4 

(mol%) 

T5%
5 

(°C) 

Tmax
6 

(°C) 

EOC7 - - - - 440 470 

HDPE7 - - - - 456 488 

(EOC)-g-(AzO-TEMPO) 0.28 0.09 0.18 0.20 430 475 

HDPE-g-(AzO-TEMPO) 0.14 0.04 0.12 0.09 447 486 

HDPE-g-(ThiO-TEMPO) 0.14 0.04 0.11 0.08 455 487 

(EOC)-g-(Fluo-TEMPO) 0.17 0.057 0.08 0.11 422 472 

1
Functionalization Degree (FD): moles of the grafted functional groups with respect to 100 moles of monomer repeating 

units. 
2
X-TEMPO:functional TEMPO derivative. 

3
FD evaluated by FT-IR analysis. 

4
FD evaluated by TGA analysis under 

nitrogen. 
5
Temperature corresponding to 5% weight loss. 

6
Maximum degradation temperature.

7
EOC and HDPE starting 

polymers. 
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2.2: Photo-physical properties of free azo-aromatic TEMPO 

derivatives 
 

The UV-Vis spectra of both the TEMPO derivatives compared with that one of 

azobenzene, all obtained from diluted acetonitrile solutions, are shown in Figure 2.2.1. 

They revealed that the AzO-TEMPO main absorption band at 323 nm (π-π* transition) is 

red shifted of about 10 nm and shows a higher extinction molar coefficient (ε) respect on 

the azobenzene same band47. The other two bands of AzO-TEMPO at 224 nm (σ-σ* 

transition)50and 446 nm (n-π* transition) maintain the same position of those of 

azobenzene. The main absorption band of ThiO-TEMPO is even more red shifted (about 

53 nm) with respect to that of azobenzene because of the presence of the electron 

donating thiophene ring (substituent of the N=N bond) that makes ThiO-TEMPO 

classifiable as “aminoazo-benzene” type chromophores. This kind of molecules have the 

main π-π* transition moved to a lower energy, so closely to the n-π* transition to cause 

their partial overlapping. For that reason the band at 446 nm (n-π* transition) in the 

spectrum of ThiO-TEMPO looks like a long tail of the main absorption band51. 

 
Figure 2.2.1: UV-Vis absorption spectra of azobenzene, AzO-TEMPO and ThiO-TEMPO in 
acetonitrile. 

 
The irradiation of the azobenzene and TEMPO derivatives solutions at 366 nm caused the 

photo-isomerization of all compounds from the trans isomer to a new Photo Stationary 

State (PSS366) rich in the cis isomer (Figure 2.2.2 and Figure 2.2.3). In all cases isosbestic 

points were detected (two in the case of azobenzene and AzO-TEMPO and three in the 
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case of ThiO-TEMPO) confirming that the isomerization involves two species that are in 

equilibrium between each other. 

Figure 2.2.2: Absorption spectra of azobenzene before and after irradiation at 366 nm and 254 

nm 

A B 

  

Figure 2.2.3: Absorption spectra of A: AzO-TEMPO and B: ThiO-TEMPO in acetonitrile solution 

before and after irradiation at 366 nm and 254 nm, respectively. 

 

When the AzO-TEMPO solution was hit by the UV-rays at 366 nm the band at 320 nm, 

belonging to the trans isomer, decreased while the band at around 460 nm, belonging to 

the cis isomer, increased47 (Figure 2.2.4). The reaching of the new photo stationary states 

(PSS366) occurred in about 35 min of irradiation and were mainly composed of the pure cis 

isomer52. Concerning the ThiO-TEMPO solution, its irradiation with the same lamp 
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generated the decrease of the band at 369 nm and the increase of a band at 284 nm 

(Figure 2.2.4). 

A B 

  

Figure 2.2.4: Absorption spectra of: A: AzO-TEMPO (acetonitrile solution) and B: ThiO-TEMPO 

(acetonitrile solution) collected after different irradiation times during irradiation at 366 nm. 

 

As shown in the picture above the increase of the ThiO-TEMPO band at 440 nm is not 

evident, but rather, it seems to undergo a decrease during irradiation, actually the 

reduction of the main band at 369 nm can screen and partially compensate the expected 

increase of the less intense band at 440 nm. In this case, the PSS366 was reached in about 

6 min of irradiation. The faster isomerization of ThiO-TEMPO with respect to that of AzO-

TEMPO can be imputed to the higher molar extinction coefficient of ThiO-TEMPO at the 

irradiation wavelength rather than to a different photo-isomerization efficiency of the 

two chromophores. 

The back cis-trans isomerization of azobenzene derivatives can be obtained thermally or 

by irradiation with opportune wavelength light. Usually the azobenzene 

photoisomerization is accomplished under visible light because in this region the molar 

extinction coefficient of the cis isomer is higher respect that of the trans isomer51, 

whereas in the UV region, the difference between the molar extinction coefficient of the 

cis and trans isomers is lower. Only at about 240 nm the cis isomer of azobenzene 

absorbs more than the trans isomer. Anyway, the presence of substituents onto the 
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benzene ring of azobenzene derivatives can shift the absorption maxima both of the cis 

and trans isomer thus, in some cases, the cis isomer can absorb more than the trans 

isomer both in the visible and in the UV region. In these cases, the cis-trans photo-

isomerization can be promoted by irradiation with visible or UV light53-55. Regarding the 

AzO-TEMPO, its cis isomer absorbs more than the trans species both in the visible region 

and in the UV between 240 and 280 nm, whereas, the cis isomer of ThiO-TEMPO has a 

higher extinction coefficient only in the UV region between 250 and 300 nm. In the light 

of this, to photo-isomerize the cis isomer of AzO-TEMPO both the visible or the UV light 

can be used, whereas, in the case of ThiO-TEMPO only UV irradiation can be efficient. In 

order to verify this hypothesis, irradiation at 254 nm was carried out. As hypothesized, 

the irradiation of the cis isomer of AzO-TEMPO with a 254 nm emitting lamp completely 

restored the trans isomer in 35 min. The same conversion was observed also in the case 

of azobenzene showing that its cis isomer can be photo-isomerized by irradiation in the 

UV region. Irradiation of both cis and trans ThiO-TEMPO with the same lamp gave a new 

PSS254 (Figure 2.2.3) having a spectral pattern that appears as a combination of the 

spectrum of the trans and cis isomers. 

This result was confirmed by the TLC analysis of the irradiated solution that evidenced the 

presence of two products. To evaluate the composition of this PSS254, the absorption 

spectrum of the pure cis isomer of ThiO-TEMPO would be necessary, however by 

considering that the separation of the two isomers was not possible neither by column 

chromatography nor by other techniques, the spectrum of the cis isomer of ThiO-TEMPO 

was esteemed on the basis of the Fischer method56. To apply this method two 

requirements are necessary: first, upon irradiation of a sample by two different 

wavelengths, two PSS having different composition have to be reached; second, the 

trans-cis system has to be sufficiently thermally and photo-chemically stable to make 

possible the establishment of true photo-stationary states. It is also necessary to make 

the assumption that the ratio between the quantum yields for the trans-cis and cis-trans 

isomerization are constant, independently on the irradiation wavelength. In the case of 

ThiO-TEMPO the first two requirements are fulfilled, whereas for the last assumption 

there is not possibility to evaluate the quantum yield at different wavelengths and it was 

assumed that this hypothesis is also valid.  
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Application of the Fischer method to the two PSSs, obtained upon irradiation of ThiO-

TEMPO solution with 254 nm and 366 nm lamps, allowed to extrapolate the spectrum of 

the cis isomer (Figure 2.2.3) and to esteem the composition of the mixture at PSSs (Table 

2.2.2). To account for the different compositions at PSSs, it is necessary to consider that 

the trans-cis isomerization is both a photo-chemically and thermally reversible process. 

Both processes are interconnected and depend on the nature of azobenzene derivatives. 

Particularly, the rate of the photochemical process depends on the quantum yield of the 

cis-trans isomerization and on the extinction coefficients of each isomer at the irradiation 

wavelength; whereas, the thermal reversibility is mainly related to the nature of 

substituent on the azobenzene and to the isomerization medium. In the case of ThiO-

TEMPO, irradiation at 254 nm gives a mixture of the two isomers because this wavelength 

is quite near to one isosbestic point of this molecule (Figure 2.2.3). At this wavelength the 

extinction coefficient of the cis and trans isomer is similar, therefore both the isomers are 

absorbing during irradiation and an equilibrium composition is obtained. A rough 

evaluation of the quantum yield for the trans-cis isomerization of AzO-TEMPO and ThiO-

TEMPO upon irradiation at 366 nm was carried out by considering the equation and the 

method reported in literature by Gauglitz57 and Rau58. To evaluate the incident irradiation 

intensity, the photo-isomerization of azobenzene was used as actinometer59. Quantum 

yields obtained by this method for both AzO-TEMPO and ThiO-TEMPO were quite low 

being about 0.05, but they are in agreement with the value reported in the literature for 

AzO-TEMPO47. 

Thermal back-isomerization from cis to trans isomer was observed for both X-TEMPO 

derivatives, but the process is quite slow especially in the case of AzO-TEMPO that 

regained only about 35% of trans form in 24 hs. Faster back isomerization is observed in 

the case of cis ThiO-TEMPO that needs about 6 hs to recover 90% of trans isomer. The 

rate of the back thermal isomerization depends on the mechanism of the process. It can 

occur either by inversion of a nitrogen center or via rotation where the latter seems to be 

favored for derivatives with strong dipole moment50, even if a combination of the two 

mechanisms cannot be excluded. The presence of a polar substituent on the phenyl ring, 

generally, accelerates the isomerization rate by increasing the dipole moment of the 

molecule and by lowering the activation barrier of the thermal relaxation. This effect can 

be responsible for the faster thermal isomerization detected in the case of ThiO-TEMPO 
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that has the thiophene ring, an electron donor group, substituted to N=N bond50. 

Exposition of cis isomers of both TEMPO derivatives to natural light (laboratory light) 

gives two new PSSs containing about 92% trans isomer in the case of AzO-TEMPO and 

40% of trans isomer in the case of ThiO-TEMPO. 

Finally, more irradiation cycles were repeated both in the case of AzO-TEMPO and ThiO-

TEMPO giving in all cases the same composition and the same conversion as a 

demonstration of the fact that trans-cis-trans isomerization is completely reversible and 

the process is repeatable.  

In the underlying table all the spectral parameters are reported. 

 

Table 2.2.2: UV-Vis absorption and photo-physical properties of trans azobenzene, AzO-TEMPO 

and ThiO-TEMPO in solution (CH3CN) 

Sample 

λ max 

(nm) 

ε max 

(M
-1

cm
-1

) 

PSS366
1
 

(min) 

Composition 

at PSS 366 

Dark cis-trans
2
 

h (% trans) 

PSS254
3
 

(min) 

Composition 

at PSS 254 

Azobenzene 

 

226 

316 

446 

 

14500 

23000 

550 

 

35 

 

100% Cis 

 

16 h (8.5%)
4
 

 

35 

 

n.d. 

 

AzO-TEMPO 

 

228 

323 

446 

 

14100 

25500 

266 

 

35 

 

100% Cis 

 

24h (10%)
 

 

35 

 

0% Cis 

 

ThiO-TEMPO 

237 

369 

11260 

23200 

6 91% Cis 6h (80%) 20 38% Cis 

1
Irradiation time necessary to reach the Photo Stationary State under 366 nm emitting lamp(PSS366).

2
Time after which 

the tabulated composition is regained during thermal cis-trans back-isomerization.
3
Irradiation time necessary to reach 

the Photo Stationary State under 254 nm emitting lamp(PSS254). All samples were irradiated from the cis rich 
form.

4
5x10

-5
M in THF

50
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2.3: Photo-physical properties of HDPE-g-(X-TEMPO) and (EOC)-g-

(AzO-TEMPO) 
 
The photo-physical properties of X-TEMPO functionalized polyolefins were evaluated by 

recording UV spectra of polymer films before and after irradiation with an opportune 

wavelength lamp. The absorption spectra of the X-TEMPO grafted to the polyolefins are 

quite similar to the spectra recorded for the free chromophores in solution, suggesting 

that they are molecularly dispersed in the matrices (Figure 2.3.1). 

 

Figure 2.3.1: Superimposition of UV-Vis absorption spectra of pristine HDPE, HDPE-g-(AzO-

TEMPO) and HDPE-g-(ThiO-TEMPO). 

 

The UV spectrum of AzO-TEMPO grafted to HDPE or to EOC highlights a partially resolved 

vibrational structure of the main absorption band that is more evident in the spectra of 

functional polyolefins than in the spectrum of AzO-TEMPO recorded in solution (Figure 

2.2.4). The presence of a low resolved vibrational structure is described in the literature 

also for azobenzene solutions51. Interestingly, a higher vibrational resolution was 

observed in the UV spectrum of azobenzene embedded in polyethylene films or in 

solution cooled to 77 K60. Therefore, the fact that in the spectra of AzO-TEMPO recorded 

in solution, the vibrational structure is less evident than in the spectra recorded from 

polymers, may reveal that AzO-TEMPO grafted to the polymer matrices is organized in a 

rigid environment. The comparison between the free and grafted TEMPO derivatives 
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evidenced also that the grafted chromophores exhibited the trans-cis-trans isomerization 

processes already observed for the free TEMPO derivatives, suggesting that the photo- 

and thermal-isomerization in the polymer matrix proceeded without side 

reactions(Figures 2.2.4; 2.3.2 and 2.3.3). 

 

 
Figure 2.3.2: Absorption spectra of (EOC)-g-(AzO-TEMPO) collected after different irradiation 
times during irradiation at 366 nm 
 

A B 

 
Figure 2.3.3: Absorption spectra of A: (HDPE)-g-(AzO-TEMPO) and B: (HDPE)-g-(ThiO-TEMPO) 
collected after different irradiation times during irradiation at 366 nm 

 
Anyway, some differences, especially in terms of isomerization efficiency and 

isomerization kinetics, between chromophores free in solution or embedded, after 

grafting, in the polymer matrix were detected. In particular, the degree of photo-

isomerization (R) at PSS366 or at PSS254 (Table 2.3.1), evaluated from the relation:  

R= [(A0 - A∞)/A0] * 100  
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where: 

• A0is the absorbance before the irradiation,  

• A∞ is the absorbance at PSS at the same wavelength61,  

revealed that the process is less effective when the TEMPO derivatives are grafted to the 

polymer than when they are free in solution. 

 

Table 2.3.1: Degree of photo-isomerization R = [(A0-A∞)/A0] x 100 at PSS reached upon irradiation 

at 366 nm (PSS366) at 254 nm (PSS254) 

Sample R at PSS366 R at PSS254* 

AzO-TEMPO (CH3CN solution) 82 - 

ThiO-TEMPO (CH3CN solution) 83 34 

(EOC)-g-(AzO-TEMPO) 57 - 

HDPE-g-(AzO-TEMPO) 60 - 

HDPE-g-(ThiO-TEMPO) 64 20 

* The PSS was reached upon irradiation of the film having the absorption spectrum typical of the trans isomer of grafted 
ThiO-TEMPO 

 

For example R is about 60% for X-TEMPO grafted to polymer chains, and analyzed as 

polymer films, whereas it is about 80% when the molecules are irradiated in solution. 

Evidently, the presence of the polymer network affects the isomerization of the azo-

moiety and only a fraction of the grafted molecules can effectively be isomerized. These 

deviations of the final conversions from that obtained in solution could be due to the 

restriction of the mobility of chromophores in polymer solids and to the heterogeneous 

distribution of local free-volume at the isomerization sites. 

The time necessary to reach the PSSs under irradiation is longer for the TEMPO 

derivatives grafted to the polymer matrix than for the free chromophores in acetonitrile 

solution. This effect can be well evidenced by reporting the absorbance variation as a 

function of the irradiation time (Figures 2.3.4 and 2.3.5). 
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Figure 2.3.4: Absorbance vs. irradiation time at 366 nm for A) AzO-TEMPO in acetonitrile solution, 

(EOC)-g-(AzO-TEMPO) and HDPE-g-(AzO-TEMPO) 

 

 

Figure 2.3.5: Absorbance vs. irradiation time at 366 nm for ThiO-TEMPO in acetonitrile solution 

and HDPE-g-(ThiO-TEMPO) 

 

The comparison of the curves, even considering the different starting absorbance, clearly 

shows that the isomerization of the free molecules in solution is faster and gives a larger 

degree of photo-isomerization. The absorbance data collected during the irradiation can 

be used to evaluate the kinetics of the trans-cis photo-isomerization process and, as a 

first approximation, kinetic data can be fitted by a first order kinetic law (Equation (1)): 

ln[(A0 - A
∞

)/(A0 - At) = kt (1) 
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where: 

• A0, At and A
∞

 are the absorbance values before irradiation, attime t of irradiation 

and at PSS, respectively,  

• k = I0(εtфtc þ εcфct)ln10 +kct 

where: 

• I0 is the incident irradiation intensity, 

• εt and εc are the molar extinction coefficient of the trans and cis form at the 

irradiation wavelength, respectively;  

• фtc and фct are the isomerization quant yields of the trans-cis and cis-trans 

photoisomerization; 

• kct is the rate constant for the thermal cis-trans isomerization. 

 

It is necessary to underline that the photoisomerization of an azo-aromatic compound is a 

very complex process since it involves many different aspects that it is difficult to 

consider. The process is not only a pure photochemically reversible process, but it 

involves a thermal conversion that can play a significant role62. Equation (1) was used as a 

tool to easily compare the experimental results reported in Figures 2.3.4 and 2.3.5. By 

applying Equation (1), higher rates constant were obtained for the trans-cis isomerization 

of both X-TEMPO molecules in solution than for the same chromophores grafted to the 

polymers (Figure. 2.3.6 and 2.3.7, and Table 2.3.2). 

 

Figure 2.3.6: First order kinetic plots of data for the trans-cis isomerization of AzO-TEMPO in 

acetonitrile solution and grafted to HDPE or EOC 
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Figure 2.3.7: First order kinetic plots of data for the trans-cis isomerization of ThiO-TEMPO in 

acetonitrile solution and grafted to HDPE 

 

Table 2.3.2: Kinetic parameters for the trans-cis isomerization of AzO-TEMPO and ThiO-TEMPO in 

solution or grafted to HDPE or EOC and crystallinity of EOC and HDPE samples. 

Sample k (sec
-1

) Crystallinity (%)
1
 

AzO-TEMPO solution 2.0 x 10-3± 9 x 10-6 - 

(EOC)-g-(AzO-TEMPO) 1.6 x 10-3± 2 x 10-5 13.32 

HDPE-g-(AzO-TEMPO) 9.0 x 10-4± 9 x 10-6 65.03 

   

ThiO-TEMPO solution 1.4 x 10-2± 3 x 10-4 - 

HDPE-g-(ThiO-TEMPO) 6.7 x 10-3± 5 x 10-5 63.23 

1
Evaluated by DSC analysis considering that the melting enthalpy of polyethylene 100 % crystalline is 290 J/g, 

2
Evaluated 

on the first heating scan
63

. The crystallinity of pristine EOC was about 15%, 
3
 Evaluated on the second heating scan. The 

crystallinity of pristine HDPE was about 70% 

 

Furthermore, from the Figure 2.3.6 is possible to deduce that the photoisomerization of 

AzO-TEMPO grafted into HDPE is slower respect when it is grafted onto EOC copolymer. 

To explain this different behavior is necessary to consider that the trans-cis isomerization 

of azo-aromatic derivatives is accompanied by the rearrangement of the hindered 
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azobenzene moiety. For example, in the case of azobenzene, the distance between the 

para carbon atoms of the aromatic rings goes from 0.90 nm (trans) to 0.55 nm (cis)64. 

Keeping in mind these considerations is easy to understand that to allow this physical 

transformation of the chromophores, a change of the conformation of the polymer chains 

is necessary to accommodate the cis isomer. The polymers that are more flexible are able 

to adapt more rapidly to the size and shape of the cis isomer upon its formation from the 

trans form. If the polymer chain rearrangement occurs on the time scale associated with 

the photo-isomerization of the chromophores, the process occurs faster. On the contrary, 

those polymers that are more rigid and have small free volumes, hinder the isomerization 

and slow down the trans-cis isomerization process. The reverse is true for the back 

thermal isomerization process; indeed, those polymers that are more flexible are also 

able to adapt more rapidly to the size and shape of the cis isomer, as a consequence the 

thermal back isomerization to the trans form is slower because of the greater stabilization 

of the cis isomer. In a rigid media, the polymer chains change their conformation slowly 

than the isomerization process; as a consequence the cis isomer is, for longer time, 

surrounded by a polymer conformation that resembles the template shape of the trans 

isomer rather than that of the cis form. In these conditions, the cis isomer quickly re-

isomerizes to the trans form65. On the basis of these considerations, two aspects have to 

be considered to compare the isomerization rate between different media: first the 

mobility of the polymer matrix or generally of a solution, and second the free volume 

distribution. With regard to the isomerization of AzO-TEMPO grafted to EOC or HDPE, the 

data reported in Table 2.3.2 suggest that the process is faster in EOC than in HDPE. 

Evidently, the EOC chains can more easily change their conformation with respect to 

HDPE probably because the EOC chains are more flexible and/or the free volume of HDPE 

is smaller. Both contributes can be related to the crystallinity of the two matrices; indeed 

the crystalline phase of a polymer is rigid and also the interfacial region between the 

amorphous and crystalline phase is considered to be stiffer than the flexible amorphous 

phase. As a consequence, a polymer that is characterized by a higher crystallinity is also 

more rigid65-67 or less flexible, than a less crystalline matrix. Therefore, with the aim to 

relate the isomerization kinetics observed for the functionalized polymers, with the 

cristallinity of the matrix, all prepared samples were analyzed by DSC (Table 2.3.2, Figures 

2.3.8 and 2.3.9).  
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A B 

  

Figure 2.3.8: DSC curves of EOC mixed in brabender at 170°C and of EOC functionalized with AzO-

TEMPO (A) fist heating scan and (B) cooling (10°C/min) under nitrogen. 

 

A B 

 

Figure 2.3.9: DSC curves of HDPE mixed in brabender at 190°C and HDPE functionalized with AzO-

TEMPO and ThiO-TEMPO, second heating and cooling (10°C/min) under nitrogen. 

 

The analysis evidenced that EOC has a lower crystallinity than HDPE and that after 

grafting of the TEMPO derivatives, it further decreases68. Moreover, both X-TEMPO 

moieties were expected to be localized in the amorphous region, or at least at the 

interfacial region between the amorphous and the crystalline fraction of EOC or HDPE 

because the functional groups are too sterically hindered to enter in the crystalline region 

of the polymer65, 69. The more rigid and crystalline HDPE environment has the role to 

disfavor and to slow down the formation of the less kinetically stable and more hindered 

cis isomer, whereas when the chromophores are grafted to the less rigid matrix (EOC) the 

effect is less evident. On the basis of these considerations, the slower formation of the cis 
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isomer embedded in the more rigid polymer matrix can be attributed to the fact that the 

molecules experienced a more strained conformation accounting for a general slowing 

down of the process65, 66. The thermal back-isomerization from cis to trans isomer was 

observed for all our samples; in the case of HDPE-g-(ThiO-TEMPO) 5/6 hs are necessary to 

recover about 80% of the starting absorbance, whereas in the case of HDPE-g-(AzO-

TEMPO) the same conversion requires about 30 h. This comparison confirms that, as 

occurred in solution, ThiO-TEMPO isomerizes quickly than AzO-TEMPO, also when it is 

grafted and embedded in a polymer matrix. Comparison between the thermal back 

isomerization of AzO-TEMPO grafted to HDPE or EOC evidenced that the process is slower 

in EOC (60% of the trans form of AzO-TEMPO grafted to EOC is recovered in 30 hs from 

the cis form) confirming that the less rigid matrix allows for the formation, upon 

irradiation, of a less strained cis isomer that slowly rearranges to the more 

thermodynamically stable trans isomer. Finally, the water contact angle on the surface of 

the pristine polymers and of the functionalized polymer was determined before and after 

photo-isomerization from the trans to the cis rich PSS366.The aim is to highlight the 

change of the surface wettability caused by the isomerization of the azo-aromatic 

group70. Results (Table 2.3.3) evidenced that the radical functionalization of the matrix 

does not change the wettability of the polymer matrix whereas, after isomerization, a 

small decrease of the contact angle values is observed. This behavior is in agreement with 

the fact that the trans isomer has no dipole moment, whereas the dipole moment of the 

non planar cis isomer is 3D64. The differences between the values reported in the Table 

2.3.3 are small, but significant if related to the functionalization degree. Finally, the more 

polar ThiO-TEMPO seems to cause a larger effect than AzO-TEMPO confirming the 

potential usefulness of this group and of the NRC reaction for the preparation of smart 

polyolefins. 
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Table 2.3.3: Water contact angle of pristine polymers and functionalized polymers recorded 

before and after irradiation at 366 nm. 

Sample Contact angle (°) 
Contact angle (°)after 

irradiation at 366 nm 

HDPE 99.1±2.2 - 

EOC 98.2±2.1 - 

HDPE-g-(AzO-TEMPO) 96.7±1.1 93.3±1.5 

HDPE-g-(ThiO-TEMPO) 98.3±2.6 94.8±2.1 

(EOC)-g-(AzO-TEMPO) 97.8±0.8 95.1±1.7 

 

2.4: Conclusions 
 
TEMPO derivatives bearing covalently linked azo-type chromophores or a fluorocarbon 

chain were prepared and successfully grafted to HDPE or EOC, by free radical post reactor 

modification initiated by peroxide. The grafting occurrence was definitely demonstrated 

by TGA and FTIR spectroscopy, in particular the latter allowed the evaluation of the FD by 

means of appropriate calibration curves. Furthermore results reported here evidenced 

that UV-Vis absorption spectra, recorded from film of functionalized materials with azo-

type chromophores, show the same trend of the spectra of the two functionalizing agents 

in solution, confirming that the photo-physical properties of the chromophores are 

preserved when they are grafted to the polymer. At the same time the presence of 

fluorine in the sample grafted with TEMPO bearing fluorocarbon chain was undoubted 

evidenced by FTIR measurements.  

In particular the photophysical properties of the two azo-aromatic derivatives, both as a 

free radical and grafted moieties, were deeply investigated. They showed different 

extinction molar coefficient, even after grafting, most probably associable to the nature 

of the aromatic ring substituted to the N=N double bond. The quantum yields obtained 

for both AzO-TEMPO and ThiO-TEMPO were quite low being about 0.05, however they 

are in agreement with the value reported in the literature. 
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In terms of isomerization kinetics and isomerization efficiency some differences between 

the free and grafted chromophores were observed, attributable to the matrix effect and 

particularly to the polymer cristallinity. Polymers having higher cristallinity are more rigid 

and enable with more difficult a rearrangement of the azo-aromatic moiety although the 

functional groups were likely localized in the amorphous region, or at least at the 

interfacial region between amorphous and crystalline phase. The isomerization of the 

azo-aromatic moiety is strongly dependent on the conformational mobility of the 

chromophore and of the polymer chains, therefore the process can be hindered by a less 

flexible matrix as occurred in the case of HDPE. Interestingly, the surface of the 

functionalized polymers showed a change in the wettability properties after isomerization 

of the chromophores thus highlighting the dipole moment appearance passing from the 

planar trans isomer to the not planar cis isomer. 
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CHAPTER 3 

SYNTHESIS OF FUNCTIONALIZED POLYESTERS BY NITROXIDE 

COUPLING REACTION IN THE MELT 

 

3.1: Preparation and characterization of BzO-TEMPO and NfO-

TEMPO functionalized polyesters 

 

The NRC feasibility was further tested by applying the TEMPO derivatives grafting process 

to polyester-based materials like poly(butylene succinate) (PBS) and poly(lactic acid) 

(PLA). These biodegradable aliphatic polyesters are becoming increasingly important 

given that they have thermoplastic processability and thermo-mechanical properties10. 

However, their versatility and successful use as commodity plastics is limited, as is the 

exploitation in biomedical, electronic and optical sectors. The lack of reactive 

functionalities limits the use of biodegradable aliphatic polyesters in a series of 

demanding applications, where the precise control and placement of functionality is 

critical. Modification by radical grafting is an interesting and more convenient post-

polymerization modification strategy for preparing side-chain functionalized polyesters, 

following a well-known approach used for preparing functionalized polyolefins7, 27, 71. In 

the case of biodegradable aliphatic polyesters, the peroxide modification, the radical 

grafting of maleic anhydride (MAH), and the preparation and use of polyester-graft-MAH 

were reported72-74. The reactivity of polyesters versus peroxide radicals was exploited in 

order to increase the polymer melt viscosity by branching and/or crosslinking75-78. Highly 

branched PLA and PBS were obtained by treating the molten polymers in an extruder or 

batch mixer with peroxides via a coupling reaction between macroradicals. The radical 

grafting of MAH on PBS, PLA, and copolyesters was also investigated. Carlson et al and 

Mani et al79-81 firstly reported the preparation of MAH functionalized biodegradable 

polyesters by reactive extrusion and their use as interfacial adhesion promoters in blends 

and composites. This reaction was further investigated by modulating the MAH/peroxide 
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ratio82. The grafting yield increased if the amount of peroxide was increased, but with a 

decrease in the extent of polymer crosslinking. In addition, Signori et al.83 proposed the 

functionalization of PBSA with MAH in combination with cinnamate-like coagents to 

increase the grafting yield, following a method previously described for polyolefins36, 71, 84. 

One of the main drawbacks of this approach is the difficulty in pinpointing the covalent 

grafting of MAH moieties both qualitatively and quantitatively. Indeed, infrared 

spectroscopy, which is generally used to show stretching vibrations associated with the 

functional groups, is not very suitable in this case because of the overlap between the 

C=O stretching signal of the covalent grafted moieties with the C=O stretching signal of 

the polyester chains. The functionalization degree is generally calculated by laborious 

acid-base titrations, and the low quantity of grafted groups that is generally achieved and 

the possible degradation of polymer chains by hydrolysis do not make this approach very 

reliable. Moreover, the radical functionalization method is affected by poor control and 

lack of selectivity. Consequently, a procedure providing excellent control of macroradical 

formation versus grafting of functional molecules, together with sensitive analytical 

techniques, is highly desirable. In this context the radical functionalization of MAH in the 

presence of suitable co-agent able to control side reactions can be approached85, but the 

radical coupling reaction between a macroradical formed on the polymer backbone by H-

abstraction and a functional nitroxide can be considered a very interesting tool to graft 

specific functionalities onto polymer chains. 

With this aim 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl (BzO-TEMPO), and 4-(1-

naphtoate)-2,2,6,6-tetramethylpiperidine-1-oxyl (NfO-TEMPO) (Figure 3.1.1) were used. 

 

 

Figure 3.1.1: Structure of 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl (BzO-TEMPO) and 4-

(1-naphtoate)-2,2,6,6-tetramethylpiperidine-1-oxyl (NfO-TEMPO). 
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Both nitroxides were already used in grafting polyolefins with good results in terms of 

grafting yield and macromolecular weight control8, 9. In particular (NfO-TEMPO) is a pro-

fluorescent nitroxide whose fluorescence is restored after formation of alkoxyamine (and 

thus after the grafting) providing a really performing tool in assessing the NRC reaction. 

PBS and PLA were grafted in the melt in an internal batch mixer (BrabenderPlastograph 

OHG47055), by using respectively benzoyl peroxide (BPO) and di(tert-

butylperoxyisopropyl)benzene (mixture of isomers) (DTBPIB) chosen on the basis of the 

polymers processing temperature (120°C in case of PBS and 180°C in case of PLA) and 

different amounts of nitroxide as reported in the Table 3.1.1. The collected samples were 

characterized in terms of molecular weight evolution (by SEC measurements) while the 

FD was determined by UV spectroscopy by getting ready calibration curves using 

PBS/BzO-TEMPO and PBS/NfO-TEMPO CHCl3 solutions at known compositions (Figures 

3.1.2 and 3.1.3). Further confirmations about the grafting levels were obtained by NMR 

spectroscopy 
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Figure 3.1.2: A UV-Vis spectra of PBS/BzO-TEMPO calibration solutions and B UV-Vis calibration 

curve at 282 nm 
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Figure 3.1.3: A UV-Vis spectra of PBS/NfO-TEMPO calibration solutions and B UV-Vis calibration 

curve at 298 nm 

 

Table 3.1.1: PBS and PLA radical functionalization: feed composition, molecular weight, 

functionalization degree. 

Sample name 

Feed composition Functionalization 

degree
a
 

Molecular weight and 

distribution 

Peroxide 

(mol%) 

f-TEMPO
b
 

(mol%) 

FDUVc 

(mol%) 

FDNMRd 

(mol%) 

Mn 

(D) 

Mw 

(D) 
Mw/Mn 

PBS
e
 − − − − 17700 42180 2.38 

PBS-120 − − − − 16900 42700 2.53 

PBS-BPO-120 1 − − − n.d.f n.d.f n.d.f 

PBS-BT1-BPO-120 1 0.5 0.15 n.d. 15630 35100 2.24 

PBS-BT2-BPO-120 1 1 0.24 0.24 15060 34410 2.28 

PBS-NfT1-BPO-120 1 0.5 0.26 n.d. 15130 33860 2.24 

PBS-NfT2-BPO-120 1 1 0.30 0.29 16980 39910 2.35 

PLA − − − − 111460 199340 1.79 

PLA-180 − − − − 108750 184730 1.70 

PLA-DTBPIB-180 0.5 − − − n.d.
f
 n.d.

f
 n.d.

f
 

PLA-NfT2-DTBPIB-180 0.5 1 0.04 0.04 69290 168070 2.43 

PLA-BT-DTBPIB-180 0.125 1.5 0.025 n.d. 97000 159000 1.6 

a
The functionalization degree represents the moles of the grafted functional groups per 100 moles of monomeric units. 

b
f-TEMPO: functional TEMPO derivative. 

c
Determined by the UV-Vis calibration curve. 

d
Determined by 

1
H-NMR analysis. 

e
PBS pristine polymer extracted with boiling MeOH for 15 hrs. 

f
Not determined because the sample is partially insoluble 

in CHCl3 

 

Initially PBS was treated at 120°C without adding any reagents (PBS-120, blank sample) 

and then its reactivity versus BPO radicals was investigated by treating the molten 
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polymer with 1 mol% of BPO (PBS-BPO-120) (Figure 3.1.4). This amount of peroxide is 

enough to induce a concentration of macroradicals that promotes the formation of 60-

80% gel content. 

 

Figure 3.1.4: Torque curves of PBS-120, PBS-BPO-120, PBS-g-(BzO-TEMPO), and PBS-g-(NfO-

TEMPO) samples. 

 

After the peroxide was added, an immediate increase in the torque was observed, which 

indicates an increase in the melt viscosity during the run. This effect is due to the coupling 

reaction between PBS macroradicals, which are formed by hydrogen abstraction from 

polymer chains. Indeed, PBS-BPO-120 is only partially soluble in CHCl3, thus confirming 

that branching/crosslinking occurred during the treatment of PBS with the peroxide. 

Nonetheless, this undesired reaction needs to be controlled during the modification in 

order to obtain a functionalized material in which the initial structure of the polymer is 

preserved. Two different concentrations of both functional nitroxides were chosen: 1 

mol%, corresponding to the maximum number of peroxide radicals that can be produced 

during the run (considering that each run was carried out for a time corresponding to the 

half-life time of the peroxide); 0.5 mol%, that is half of the peroxide concentration. The 

latter corresponds to the concentration of primary radicals considering that generally 

only 50% of primary radicals are active in the H-abstraction, the rest being lost by β-

scission reaction. While the PBS reaction with BPO demonstrated an appreciable increase 

in the torque, no increase in the torque was observed for the four-functionalization runs. 

Importantly, this effect is consistent with a suppression of the coupling reaction between 

PBS macroradicals, as previously observed during the functionalization of polyolefins8, 
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9(see Chapter2). The SEC analysis of the purified samples (completely soluble in CHCl3) 

indicated a slight decrease in both Mn and Mw if compared with PBS-120 and pristine PBS, 

probably due to some limited degradation (Table 3.1.1). However, in the case of PBS-

NfT2-BPO-120, prepared using the highest amount of NfO-TEMPO, the molecular weight 

values were very close to those of PBS-120. 

Proof of the PBS functionalization was obtained by UV-Vis analysis of purified samples 

(residues to methanol extraction, to avoid non reacting functionalizing agents and 

byproducts). Besides confirming the successful functionalization, UV-Vis spectroscopy led 

to the quantitative determination of the moles of the grafted functionalities. The 

characteristic absorptions of BzO-TEMPO centered at 275 and 282 nm (enlargement in 

Figure 3.1.5) and due to the π-π* transition of the aromatic ring were observed in the 

spectra of the functionalized samples (Figure3.1.5.a). Similarly, in the case of PBS-g-(NfO-

TEMPO) samples, the UV-Vis spectra (Figure 3.1.5.b) showed an absorption band 

centered at 298 nm, which is characteristic of the π-π* transition of the aromatic moiety 

of NfO-TEMPO (enlargement in Figure3.1.5b)8. 

 

Figure 3.1.5: UV-Vis absorption spectra of PBS-g-(BzO-TEMPO) (a) and PBS-g-(NfO-TEMPO) 

samples (b). The insets show the spectra of BzO-TEMPO and NfO-TEMPO. 

 

The functional grafted groups were evaluated by determining the functionalization 

degree (FD= moles of grafted functional groups per 100 moles of monomeric units) using 

two calibration curves based on standard solutions at known concentrations of PBS and 

BzO-TEMPO or NfO-TEMPO (Figure 3.1.2 e 3.1.3). The resulting linear correlations were 

used to quantify the chromophore concentration in the functionalized PBS samples from 
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solutions of a known polymer concentration (assuming similar extinction coefficients of 

grafted and free chromophores), and the FD was determined accordingly (Table 3.1.1). 

Although rather low, the FDs are of the same order of magnitude as the values reported 

in the literature with regard to the functionalization of polyesters with MAH and 

peroxide, which range between 0.4 and 1.5 wt%73, 82, 86. Indeed, the highest FD obtained 

with NfO-TEMPO corresponds to 0.6 wt%, but the amount of functionalizing agent used is 

notably lower (i.e. 0.8-1.9 wt% NfO-TEMPO versus 3-8 wt% MAH) and the conversion 

ranges between 33-50% rather than 15-30% for MAH grafting. This suggests an enhanced 

yield for the nitroxide radical coupling functionalization methodology. In addition, in the 

case of PBS the moles of grafted moieties per 100 moles of monomeric units are 

comparable to those obtained with polyethylene using the same functionalization 

method8, 9. Although a direct comparison is not fully appropriate because the reaction 

temperature and the peroxide adopted were different, in the case of PBS the amount of 

nitroxide used to obtain the functionalization by controlling the final molecular weight of 

the polymer was three times lower than that used with polyethylene. This may be due to 

a better control of macroradical side reactions in polyesters compared to polyolefins, 

which suggests that the nitroxide radical coupling reaction is a well-performing 

functionalization method for this kind of polymer too. 

The FD of the two PBS-g-(BzO-TEMPO) samples increased with the BzO-TEMPO 

concentration keeping the peroxide moles constant. In contrast, in the PBS-g-(NfO-

TEMPO) samples, the FD values were similar (around 0.3 mol%) irrespectively of the NfO-

TEMPO concentration in the feed. The data seem to indicate that the NfO-TEMPO is more 

likely than BzO-TEMPO to graft to PBS: FD values were higher, and for the highest FD, the 

molecular weight of the polymer was closer to the pure PBS. This different behavior may 

be due to a different reactivity of the functional TEMPO molecules, depending mainly on 

their solubility/dispersibility in the molten polymer. 

To corroborate the outcomes of the UV-Vis procedure, the FD values of PBS-BT2-BPO-120 

and PBS-NfT2-BPO-120 were determined by 1H-NMR spectroscopy (Table 3.1.1). In order 

to get a complete attribution of polymer signals, the 1H-NMR spectrum of the purified 

PBS-120 sample was acquired first. The signals observed in this spectrum are in 

agreement with the previously reported analysis of Bionolle 100187 (Figure 3.1.6). Besides 

the typical PBS signals, the spectra of the functionalized samples (Figures 3.1.6b and 
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3.1.6c) highlighted signals due to the grafting of the functional TEMPO derivatives in the 

spectral region between 7 and 9 ppm and a signal at about 5.3 ppm, which can be 

attributed to the methine proton on the TEMPO ring in the alpha position compared to 

the ester functional group (Hh, Figures 3.1.6b and 3.1.6c)8. 
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Figure 3.1.6: 1H-NMR spectra of PBS-120 (a), PBS-BT2-BPO-120 (b), and PBS-NfT2-BPO-120 (c) 

 

The 1H-NMR spectrum of PBS-BT2-BPO-120 shows three signals (Ha, Hb, Hc) in the 7-8 

ppm range due to the aromatic protons (see molecule structure in Figure 3.1.6b for 

attributions). For the quantitative determination of the grafted groups, a known amount 

of a reference compound (1,4-dinitrobenzene, RC) was dissolved in a deuterated 

chloroform solution of the functionalized polymer at a known concentration8, 9. A 

comparison between the area of the peak of the RC protons at 8.39 ppm with those of 

the aromatic protons of the grafted BzO-TEMPO unit enabled the FDNMR to be evaluated 

(Table 3.1.1). Similarly, in the case of PBS-NfT2-BPO, the 1H-NMR spectrum (Figure 3.1.5c) 

showed five multiplet signals (Ha-Hg) in the 8.9-7.4 ppm range, which are all due to 

protons of the naphthalene ring. Note that the FD values collected by UV calibration and 

NMR determination (Table 3.1.1) are in a very good agreement, thus underlining that the 

UV-Vis methodology, through the use of appropriate calibration curves, can be 

successfully used to quantitatively evaluate the FD of PBS samples functionalized with 

BzO-TEMPO and NfO-TEMPO. We attributed the signal at 9.76 ppm in the spectra of the 

functionalized samples to the formation of aldehyde groups87
 probably deriving from a 

partial thermo-oxidative degradation of the polymer which occurs during the 

functionalization process.  

Interestingly, by comparing the spectrum of PBS-120 (Figure 3.1.6a) and the spectra of 

functionalized samples (Figures 3.1.6b and 6c), a triplet at about 4.3 ppm emerges in the 
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spectra of functionalized samples. On the basis of the chemical shift and multiplicity, this 

signal can be attributed to a methine proton in the alpha position compared to the 

carbonyl group of the succinic acid unit of PBS substituted by the functional TEMPO 

moiety (Hi, Figures 3.1.6b and 3.1.6c). The presence of this signal supports the 

mechanism of grafting previously reported, which proposes the insertion of the functional 

moieties onto the dicarboxylic acid units of the polyester73, 86. 

In order to provide direct evidence of the grafting site, an EPR study was carried out on a 

functionalized PBS sample to tentatively intercept the EPR signals of PBS macroradicals 

formed by the homolytic cleavage of the -C-ON< bond induced by the temperature 

increase. Purified PBS-BT2-BPO-120 was heated in the EPR cavity and spectra were 

registered at different temperatures. At the beginning of the experiment (at 40°C), the 

spectrum exhibited a weak asymmetric three-line signal due to free BzO-TEMPO 

entrapped in the rigid polymer phase, whose presence is due to the equilibrium between 

grafted and ungrafted species8. By gradually increasing the temperature, the nitroxide 

signal became similar to the signal of a nitroxide radical that is free to rotate (Figure 

3.1.7), the integrated area at 100°C corresponding to a 3.67x1015 spin. A further increase 

in the temperature up to 155°C produced an increase in the EPR signal due to the TEMPO 

radicals, thus suggesting that the homolytic cleavage of the nitroxide-PBS bond had 

occurred. The integrated area of this signal after 5 minutes at this temperature 

corresponds to a 1.28x1016 spin, which is about 10% of the FD of this sample. 

 

 

Figure 3.1.7: EPR spectrum of PBS-BT2-BPO-120 registered at 373K (red line) and at 428K after 5 

min at this temperature (black line). 
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Interestingly, in addition to the main three-line signal due to the nitroxide radical, with a 

nitrogen isotropic hyperfine splitting constant (AN) of 15.3 G and a carbon (13C isotope) 

isotropic hyperfine splitting constant (AC) of 6.8 G, the EPR spectrum collected at 155°C 

also revealed a very weak signal (labeled as “b” in Figure 3.1.8) with a proton splitting 

constant of 21 G. 

 

 

Figure 3.1.8: EPR spectrum (second derivative) of PBS-BT2-BPO-120 registered at 155°C “a” is the 

signal of detached BzO-TEMPO radicals; “s” signals are due to 13C satellites, giso = 2.00472; “b” is 

the signal of PBS macroradicals formed by detachment at high temperature of the grafted f-

TEMPO, giso = 2.00492. 

 

This signal, which is partially covered by the strong nitroxide signal, indicates the 

formation of a carbon-centered radical coupled with one alpha proton, which can be 

attributed to the PBS macroradical likely generated by the detachment of the nitroxide. 

The intensity of this signal could be very low because of the very high reactivity of carbon-

centered radicals, which at high temperatures can give rise to recombination reactions 

even with the free nitroxide. 

The PLA functionalization was tested using BzO-TEMPO and NfO-TEMPO as a functional 

molecules, in order to easily prove the grafting thanks to the UV-Vis or to the emission 

from the functionalized product. The peroxide addition again caused a marked increase in 

the torque values (Figure 3.1.9) plus the formation of a CHCl3 insoluble material due to 

coupling reactions between PLA macroradicals, as reported in the literature79. 
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Figure 3.1.9: Torque curves of PLA-180, PLA-DTBPIP-180, and PLA-NfT2-DTBPIB-180. 

 

The functionalization run PLA-NfT2-DTBPIB-180 did not show the same torque increment, 

which is probably due to the coupling between PLA macroradicals and NfO-TEMPO giving 

the desired functionalized product. The same trend was evidenced also in the case of the 

functionalization run PLA-BT-DTBPIB-180. However, the SEC analysis carried out after 

purification of the sample showed a partial decrease in both Mn and Mw and an increase 

in the dispersity (Table 3.1.1). Accordingly, although the coupling reaction between PLA 

macroradicals was suppressed, a degradation effect was found. Given that coupling is a 

bimolecular reaction, the macroradicals concentration was probably reduced, thus 

inhibiting coupling between macroradicals, though some of them were likely involved in 

degradation probably by a β-scission reaction79, 88. The UV-Vis analysis of the purified PLA-

NfT2-DTBPIB-180 sample (Figures 3.1.10) revealed an absorption band centered at 299 

nm which confirms the presence of the grafted chromophore (naphtoic group). 

Analogously, in the case of PLA-g-(BzO-TEMPO) sample (Figure 3.1.11) the UV-Vis spectra 

showed an absorption band at about 280nm which is typical of the BzO-TEMPO 

chromophore. 
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Figure 3.1.10: UV-VIS spectrum of PLA-NfT2-DTBPIB-180 sample 

 

 

Figure 3.1.11: UV-VIS spectrum of PLA-BT-DTBPIB-180 sample 

 

To roughly estimate the FDs, the absorbance of the bands at 298 nm and at 280 nm were 

plotted versus the PBS/NfO-TEMPO and the PBS/BzO-TEMPO calibration curves 

previously reported (Figure 3.1.3). Very low FDs were found, in the case of PLA-g-(NfO-

TEMPO) was calculated a FD equal to 0.04 mol%, which was confirmed by 1H-NMR 

analysis (Table 3.1.1), whereas in the case of PLA-g-(BzO-TEMPO) the evaluated FD was 

0.025 mol%. However it is necessary to consider that in this last case, the used peroxide 

amount was half of that employed during the functionalization run PLA-NfT2-DTBPIB-180. 

As reported in the literature, the PLA macroradical is generated by H-abstraction at the 
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tertiary carbon atom, which is thus likely to be the grafting site of the functional 

nitroxide72, 89, 90. 

 

3.2: Fluorescent properties of aliphatic polyesters grafted with 

NfO-TEMPO 

 

In a previous work on polyethylene radical functionalization with NfO-TEMPO8, it was 

shown that the fluorescence emission spectrum of NfO-TEMPO was characterized by a 

very low emission intensity, whereas in the case of the metoxy-derivative of NfO-TEMPO 

(which can be considered as a model compound of the grafted TEMPO), the maximum 

emission position and its intensity was very close to that of 1-naphthoic acid. In 

agreement with the literature, molecules containing a nitroxide tethered to a fluorophore 

show dramatically reduced fluorescence due to intramolecular quenching of the 

fluorophore excited singlet state91-93. In contrast, the free radical trapping of the nitroxide 

moiety yields a diamagnetic alkoxyamine and restores the emission from the fluorophore. 

Because of this behavior, if the pro-fluorescent nitroxide is grafted to the backbone of 

PBS, a fluorescence emission for the functionalized polymer is expected. Fluorescent 

emission spectra of PBS, PBS-NfT1-BPO and PBS-NfT2-BPO were thus collected from 

polymer films (Figure 3.2.1). The spectra of the two functionalized samples showed a 

large emission band centered at 365 nm, as similarly observed for polyethylene-g-(NfO-

TEMPO)8, thus confirming once again that grafting had been successful. The difference 

observed in the emission intensity of the samples reflects the FD values of PBS-NfT1-BPO-

120 and PBS-NfT2-BPO-120.  
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Figure 3.2.1: Digital images of PBS and PBS-NfT2-BPO-120 under excitation with a long-range UV 

lamp (λ = 254 nm) (a), and fluorescence emission spectra (λexc = 290 nm) of PBS, PBS-NfT1-BPO-

120, and PBS-NfT2-BPO-120 film (b). The spectra are normalized with respect to the scattering 

intensity.  

 

Similarly to PBS-g-(NfO-TEMPO) samples, a fluorescent PLA sample was obtained, in 

which the optical properties were transferred from the chromophore to the polymer. The 

fluorescence emission spectrum of the PLA-NfT2-DTBPIB-180 film (Figure 3.2.2) showed a 

weak but visible band centered at 360 nm, similar to the one observed in the analogous 

functionalized PBS samples. The low emission intensity is in agreement with the low FD of 

this sample. 
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Figure 3.2.2: Digital images of PLA and PLA-NfT2-DTBPIB-180 under excitation with a long-range 

UV lamp (λ = 254 nm) (a) and fluorescence emission spectra (λexc = 290 nm) of PLA, PLA-NfT2-

DTBPIB-180 film (b). The spectra are normalized with respect to the scattering intensity.  

 

This thus demonstrates the possibility to simply transfer the optical properties of the 

chromophore to the biodegradable polymer using a post-polymerization method. From 

these results it appears that low functionalization degrees are sufficient to give 

fluorescence, which is a property not observed in the pure material. This is indeed the 

main objective of a post-polymerization functionalization reaction: to impart new 

properties without changing the original characteristics of the polymer.  

 

3.3: Conclusions 
 

The NRC reaction with TEMPO bearing aromatic moieties (BzO- and NfO-TEMPO) was 

employed to functionalize new polymer substrates differing from polyolefins and 

belonging to the biopolyesters class, namely PBS and PLA. The grafting was clearly proved 

by UV-Vis and 1H-NMR spectroscopy that also allowed the evaluation of the FD, which 

ranged between 0.15 and 0.30 mol% in agreement with values obtained even by 

conventional grafting procedures, highlighting the feasibility and versatility of NRC 
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approach. The SEC data indicated that the grafted polyesters molecular weight is close to 

that of the pristine polymers, thus suggesting even for such polymer substrate the NRC 

ability to limit the radical-induced crosslinking/branching. 

Additionally, by combining EPR analysis and 1H-NMR spectroscopy, it was demonstrated 

that the grafting site of PBS derives from the hydrogen abstraction from one of the two 

CH2 groups of the succinic acid unit. 

Finally the fluorescence emission spectra of both PBS and PLA samples functionalized 

with NfO-TEMPO not only provided a clear evidence of the grafting, but also revealed a 

fully restored fluorophore emission, generating with this method fluorescent polyesters. 

The NRC reaction is thus be suitable in providing a convenient and versatile route for 

introducing different functional groups on biodegradable aliphatic polyesters using a 

range of functional TEMPO derivatives. It is particularly attractive considering the ever-

increasing demand for specific functionalized polyesters to replace commodity plastics in 

several applications such as films for packaging. It also provides a tool in polymer tailoring 

as demonstrated by the fluorescent feature exhibited by the functionalized polyesters. 

Such a fluorescent feature could be exploited to develop sensors or anti-counterfeit 

packaging. The polyesters carrying integral fluorescent moieties could also be exploited to 

design fluorescent biodegradable and biocompatible polymers for biomedical 

applications94. 
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CHAPTER 4 

 

SURFACE COPOLYMERS MODIFICATION THROUGH 

NITROXIDE-MEDIATED PHOTOGRAFTING 

 

The properties and the microstructures of the surface of a polymer material are 

particularly important because all physical and chemical interactions between the 

material and the environment take place at this interface95. For this reason, the 

modification of the polymer surface properties is often requested for applications where 

the bulk properties have not to be changed, but the pristine surface appears to be 

inadequate for specific applications. Different examples were reported in the literature 

that take advantage of a modification process confined only to the surface a polymer 

matrix. For some applications requiring high adhesive interactions like for example 

coating, painting, printing, or in the active packaging sector for metal chelation96, 97, or in 

the preparation of separation membranes98, polar groups were confined to surfaces. 

Meanwhile, for some other uses like for example in biomedical applications or in the anti 

fouling field, it is of particular importance to have a super hydrophobic surface and that 

could be obtained by the surface modification of different polymer matrices99-101. A 

methodology that enjoyed considerable success is the photografting technique that can 

be used to modify the surface without altering the bulk properties of the polymer matrix. 

This procedure is based on surface grafting reactions initiated by ultraviolet irradiation in 

the presence of a photoinitiator. The photoinitiator, once activated by UV radiation, is 

able to abstract a hydrogen atom from the polymer surface. The macroradical, thereby 

generated, can react with vinyl monomers allowing the grafting of a single molecule or of 

a polymer chain102. Compared with other techniques like for example plasma or corona 

treatment, the photografting method shows several advantages as: 

� easy industrialization, 

� low cost of processing, 
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� simple equipment, 

� fast reaction rate, 

� clear analytical identification of inserted functionality or polymer chain, 

� the modification of the polymer matrix is limited to a shallow region near the 

surface. 

Surface photografting polymerization thus offers the unique ability to tune and 

manipulate surface properties without damaging the bulk material95. 

As above outlined, the photografting procedure requires the presence of a photoinitiator, 

and the most frequently used is benzophenone (BP) and its derivatives. BP absorbs UV 

light at 340-360 nm, it reaches an excited singlet state which is short-lived and it passes to 

a triplet state through the intersystem crossing phenomenon. In this state, BP can 

abstract a hydrogen atom from the substrate103 by generating a macroradical and a ketyl 

radical (or semipinacol). The latter is not prone to reinitiate a free radical reaction and 

tends to participate in termination reactions by coupling95. 

 

Figure 4.1: Surface photografting mechanism onto a substrate in the presence of BP and a vinyl 

monomer, irradiated under UV-light103. 

 

This technique was widely used to improve the wettability and the adhesion of the 

polyolefins surface properties and several variables were considered to improve this 

methodology.  

 

� Kind of monomer 

Given that the photografting technique is based on a radical addition of a functionalizing 

monomer to macroradical, the monomer nature appears to be a fundamental parameter 
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to control the grafting efficiency. Yang and Ranby104 evaluated several kinds of 

monomers, which are able to undergo to surface photografting polymerization. By 

comparing different acrylates, as acrylic acid (AA), methyl acrylate (MA), butyl acrylate 

(BuA) and glycidyl acrylate (GA), they noticed that AA shows the highest 

photopolymerization efficiency and its grafting efficiency is between 60% and 80%, while 

MA and BuA have the highest grafting efficiency. The GA grafting efficiency gradually 

increases with the reaction time. These differences may be attributed to the distinct 

affinity of the monomer for:  

I. the macroradical, 

II. the semipinacol free radical 

which have increasing polarity in this order. 

This may explain why AA, the more polar monomer, is attracted to the semipinacol free 

radical, while the others acrylate monomers are less polar and thus more prone to react 

with the macroradical. Instead, a comparison between vinyl acetate (VAc) and ethyl 

acrylate (EA), reveals a big difference: the grafting amount calculated for VAc was 2.6 %, 

while for EA was 60.8 %105. This deviation is due to the fact that VAc acts as an electro-

donating monomer, little prone to react with free radicals, conversely EA is strongly 

reactive toward free radicals. For this reason the lost of EA in side reactions is minimal 

and thus the percentage of grafting is higher, conversely, being less reactive to radicals, 

VAc is consumed by side reactions. Another factor characterizing the monomer grafting 

efficiency is the steric hindrance. For instance, the comparison between different 

substituted acrylamides105
 evidenced that the presence of cumbersome groups makes 

difficult the approach of the monomer to the substrate and reduces the grafting 

efficiency. Finally, it is often reported that the grafting efficiency increases with the 

monomer concentration up to a certain limit and then starts to decrease with further 

increase of monomer. This happens because the increase of the monomer concentration 

favors its homopolymerization rather than the grafting106. 

 

� Substrate nature 

Ranby and Yang104 investigated the effect of the substrate nature on the grafting 

efficiency by testing several polymer matrices for the AA photografting in the presence of 



Results and Discussion 

Ilaria Domenichelli 

 

80 
 

BP. The reactivity order in the photografting reaction observed by the authors was 

reported in Figure 4.2. 

 

 

The red drawn hydrogen atoms indicate the hydrogen  

atoms that most likely will be abstracted to form a macroradical 

 

Figure 4.2: Decreasing pathway of the grafting efficiency of different polymer substrates. Figure 

reported from ref104. 

 

The reason of this reactivity order was related to the different reactivity of the C-H bond 

of these polymers. Nylon and PET have electro-donor atoms (N and O respectively), 

directly linked to the C-H bond, which gives an activating effect to the formation of the 

macroradical. PP tertiary hydrogen atoms are easy to abstract because the so formed 

tertiary radicals are relatively more stable than other carbon centered radicals. Since 

LDPE contains some tertiary hydrogen in the branching point, its reactivity is higher than 

that of HDPE that has only secondary hydrogen. Finally polycarbonate (PC) contains only 

primary hydrogen in the methyl later group that is difficult to abstract by the excited BP 

and thus shows the lowest reactivity. Besides the chemical composition, the polymer 

crystallinity is another important variable to control the grafting occurrence. A decrease 

in the crystallinity of the matrix leads to a grafting improvement because the reactants 

can easily diffuse to reach the active site in the amorphous phase105. Finally the substrate 

has to be transparent to the UV radiation. 
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� Solvent effect 

The choice of solvent depends on several factors such as the monomer solubility, its 

capability to swell the substrate, the generation of free radicals derived from solvent, etc. 

First of all, the solvent has to efficiently swell the substrate to favor the monomer and 

photoinitiator diffusion inside the matrix. 

Furthermore, the efficiency of grafting in solution depends on the competitive reaction of 

macroradicals (P.) with monomer (1) or solvent (2) and this occurs especially when the 

photografting is carried out by using alcohols: 

P
.
 + M                P-M

.
 (1) 

P
.
 + CH3OH               PH + CH2O

.
 (2) 

where P
.
 represents the macroradical and M is the monomer. 

When reaction (1) prevails, the desired grafting is reached otherwise the monomer 

homopolymerization is favored. 

 

� Photoinitiator concentration 

Yang and Ranby104 evaluated the grafting efficiency of AA on LDPE by using three different 

initiators: BP, 9-fluorenone (FL), and xanthone (Xan) and evaluated also as their 

concentration affects the grafting efficiency. They noticed that by increasing the BP 

concentration the grafting efficiency does not show significant changes, conversely in the 

case of FL the higher is the concentration, the less is the grafting efficiency. Finally Xan 

shows an intermediate effect, namely the grafting efficiency decreases with a high 

photoinitiator concentration, but in a more limited extent than FL (Figure 4.3). 
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Figure 4.3: Effect of photoinitiators concentration on the grafting efficiency104. 

 

The authors attributed these results to a screening effect of the system due to the UV 

absorption properties of both the photoinitiator and the monomer being the BP the 

photoinitiator that shows the least screening effect, and FL the photoinitiator that has the 

largest screening effect; and Xan evidences an intermediate behavior.  

 

� Temperature 

Generally the grafting increases with temperature. Several interpretations were proposed 

to explain this observation, one of them was that a faster monomer diffusion process in 

the polymer substrate is achieved by increasing the temperature. Another one was that 

by increasing the temperature the thermal decomposition rate of initiator becomes 

higher as well as the initiator efficiency in producing free radicals on the pristine polymer. 

As results an increase in the polymer macroradicals concentration, and thus an enhance 

in the graft polymerization105 was observed. A really interesting conclusion was that the 

maximum grafting is achieved for a temperature near the glass transition temperature 

(Tg) of the polymer; for temperatures below the Tg, the generated surface radicals cannot 

react, owing to the reduced monomer diffusion and limited chain flexibility, whereas for T 
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significantly above Tg, the number of radicals available for grafting decreases and thus the 

combination of monomer radicals results in lower grafting amount. 

 

A technical upgrading of this methodology to increase the grafting efficiency and to limit 

some side reactions (like for example the homopolymerization of the monomer), was 

proposed by Bowman 107 and Castell 108, 109. A sequential grafting by separating the whole 

process in two steps was discussed. The first step sees, in absence of monomers, the 

coupling between the semipinacol radical, derived from BP, and macroradicals, promoted 

by UV irradiation. In the second step monomer solutions are added to the activated 

substrate and graft polymerization is initiated by UV irradiation. Castell called the result 

of the first step “surface initiator” and he observed that this activated surface is stable 

and can be stored for further usage. This “surface initiator” can react with an acrylic acid, 

initiating the polymerization under the presence of UV light. In this way the formation of 

homopolymer is reduced because there is no free BP on the polymer surface or in the 

monomer solutions and semipinacol is not able to abstract a hydrogen atom from the 

monomer to start its homopolymerization (Figure 4.4). 

 

 

Figure 4.4: Modification of PP surface using a two-step grafting method108. 

 

In this study, in the place of the vinyl monomers usually employed to modify various 

polymer surfaces, the UV initiated photografting of functional TEMPO derivatives is 

proposed as a possible alternative. Indeed, from the data discussed in the previous 

chapters it is evident that the coupling reaction between macroradicals and TEMPO 

derivatives (NRC reaction) is a powerful tool to functionalize polyolefin and polyesters 
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that allows transferring the functional properties characteristic of the TEMPO radicals to 

the polymer matrix. The process described in the previous chapters is carried out in the 

melt and the formation of macroradicals is promoted by peroxide. In the following 

paragraph, macroradicals are generated by a photoinitiator under UV radiation and the 

coupling reaction between TEMPO derivatives and so formed macroradical is described. 

Finally, a discussion about the possible mechanism of this process is reported. 

 

4.1: Preparation and characterization of functionalized 

polyolefins 

 

The functionalization of linear low density polyethylene (LLDPE) and styrene-b-(ethylene-

co-butene)-b-styrene) (SEBS) block copolymer films, was obtained through UV induced 

photografting reactions initiated by 4-methoxybenzophenone (MeOBP), which was 

selected as photoinitiator because it has the same reactivity as the more common 

benzophenone, but it shows lower toxicity109, 110. Furthermore it is also less volatile than 

BP avoiding leaching issues sometime discussed in the literature as a possible cause of 

reduced efficiency of BP especially at high temperature111. Finally the presence of the 

methoxy group can increases the compatibility and miscibility of the photoinitiator to the 

polymer matrix. As functional TEMPO derivatives, BzO-TEMPO, NfO-TEMPO (See Chapter 

3) and Fluo-TEMPO (See Chapter 2) (Figure 4.1.1) were used.  

 

 

Figure 4.1.1: Structure of 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl (BzO-TEMPO),4-(1-

naphthoate)-2,2,6,6-tetramethylpiperidine-1-oxyl (NfO-TEMPO) and4-(4,4,5,5,6,6,7,7,8,8,9,9,9-

tridecafluorononanoate)-2,2,6,6-tetramethylpiperidine-1-oxyl (Fluo-TEMPO). 
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As regards the matrix, these two polymers were selected because they have low 

crystallinity, which, in agreement with literature data105, seems to be an important factor 

to favor a higher grafting yield.  

The samples were prepared by spraying an acetone solution of X-TEMPO and MeOBP 

over the polymer surface followed by irradiation of the dried films (Method A). 

Alternatively, to modify LLDPE, another methodology was used. The TEMPO derivatives 

and MeOBP were mixed with the polymer in the melt, and then films of this pre-reactive 

mixture were irradiated (Method B). In this case, a more homogeneous dispersion of 

reagents can be obtained avoiding the use of the solvent that can interfere with the 

photografting process, allowing in any case the modification of the polymer surface 

properties. In order to check the presence of the functionalizing group belonging to the 

TEMPO derivatives, onto the polymer surface, the LLDPE functionalized samples were 

analyzed by ATR-FTIR spectroscopy and the analyses were carried out onto both the film 

surfaces. The spectra of the samples obtained by method A showed the simultaneous 

grafting of X-TEMPO and semipinacol derived from MeOBP (Table 4.1.1, Figure 4.1.2 and 

Figure 4.1.3) whereas no signals were detected on the non-irradiated side. The presence 

of multiple or large bands in the carbonyl region are probably due to some surface 

oxidation products. 

 

 

Figure 4.1.2: ATR-FTIR spectra of LLDPE and LLDPE-g-(MeOBP)A 
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Figure 4.1.3: ATR-FTIR spectra of functionalized LLDPE samples obtained by method A compared 

with the spectrum of pristine LLDPE: A) LLDPE, B) LLDPE-g-(BzO-TEMPO)A, C) LLDPE-g-(NfO-

TEMPO)A and D) LLDPE-g-(Fluo-TEMPO)A. All the spectra were normalized to the band at 720 cm-1 

(methylene rocking of LLDPE). The showed frequencies (black lines) correspond to the 

characteristic bands of the grafted semipinacol derived from MeOBP (Figure 4.1.2). 

Table 4.1.1: Typical frequency of grafted X-TEMPO and semipinacol 
 

X-TEMPO 
Frequency 

(cm-1) 
Assignation 

BzO-TEMPO9 1724 C=O stretching 

 1275 C-O stretching of C(=O)-O 

 1112 
C-O stretching of the bond that links the ester 

group to the piperidine ring 

NfO-TEMPO8 1717 C=O stretching 

 1133 C-O stretching 

 781 C–H out of plane bending of naphthalene 

Fluo-TEMPOa 1743 C=O stretching 

 1240 CF2 stretching 

 1145 CF3 stretching 

Semipinacol108 
1510 and 

1604 
C=C stretching of the aromatic 

 1250 C-O-C asymmetric stretching of MeO 

 1174 C-O stretching 

 700 out of plane bending of phenyl ring 

a
 Figure 2.1.4 in Chapter 2 
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The behavior reported for LLDPE was found also in the SEBS ATR-FTIR spectra. Indeed 

it was possible to note the contemporary grafting of functionalizing nitroxides (only 

NfO-TEMPO and Fluo-TEMPO were used with SEBS) and semipinacol. Concerning the 

non irradiated side, no evidences of grafting were observed (Figure 4.1.4). 

 

 

Figure 4.1.4: ATR-FTIR spectra of A) SEBS; B) SEBS-g-(NfO-TEMPO)A; C) SEBS-g-(Fluo-TEMPO)A. 

The spectra were normalized to the band at 700 cm-1 (the C-C stretching of the SEBS aromatic 

ring). 

 

As regards instead, the samples obtained through method B, the ATR spectra show 

the bands characteristic of the X-TEMPO grafting while the semipinacol bands 

appeared to be less intense (Figure 4.1.5).  
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Figure 4.1.5: ATR-FTIR spectra of functionalized LLDPE samples obtained by method B compared 

with the spectrum of pristine LLDPE: A) LLDPE, B) LLDPE-g-(BzO-TEMPO)B, C) LLDPE-g-(NfO-

TEMPO)B and D) LLDPE-g-(Fluo-TEMPO)B. All spectra were normalized to the band at 720 cm-1 

(methylene rocking of LLDPE) 

 

Furthermore spectra collected from both sides of films showed bands characteristic of the 

grafting of X-TEMPO although they have a low intensity especially on the non-irradiated 

side (an example is showed in the Figure 4.1.6). Lower evidences of surface oxidation 

were observed in all these samples. 

 

 

Figure 4.1.6: ATR-FTIR spectra of LLDPE, LLDPE-g-(BzO-TEMPO)B collected from the irradiated and 

not irradiated side of the film. 

 

This behavior suggests the occurrence of a bulk photografting process. In agreement with 

this observation, UV-Vis investigation of LLDPE film evidenced that the UV radiation can 
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penetrate through the film thickness being the absorbance of the film about 0.4 in all the 

UV range (Figure 4.1.7). 

 

 

Figure 4.1.7: UV-Vis spectrum of LLDPE film 

To better characterize the functionalized films, transmission FT-IR spectra of these 

samples were recorded. The data confirmed the grafting of X-TEMPO (Table 4.1.1) and, in 

the case of the samples obtained by method A also of the semipinacol (Figures 4.1.8 and 

4.1.9). A FT-IR spectra comparison between (LLDPE)-g-(BzO-TEMPO) prepared by means 

of method A and method B is showed in Figure 4.1.10. 

 

 

Figure 4.1.8: FT-IR spectra of samples prepared by method A: A) LLDPE; B) LLDPE-g-(BzO-

TEMPO)A; C) LLDPE-g-(NfO-TEMPO)A and D) LLDPE-g-(Fluo-TEMPO)A 
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Figure 4.1.9: FT-IR spectra of samples prepared by method B: A) LLDPE; B) LLDPE-g-(BzO-

TEMPO)B; C) LLDPE-g-(NfO-TEMPO)B and D) LLDPE-g-(Fluo-TEMOPO)B. 

 

 

Figure 4.1.10: FT-IR spectra of A) LLDPE; B) LLDPE-g-(BzO-TEMPO)A; C) LLDPE-g-(BzO-TEMPO)B 

 

Another interesting result from the ATR-FTIR versus FT-IR analysis is that the spectra of 

the samples functionalized with NfO-TEMPO show a lower degree of oxidation of the 

polymer surface with respect to those of the samples grafted with BzO-TEMPO and Fluo-

TEMPO. This particular behavior of NfO-TEMPO will be discussed later.  

In the case of samples obtained by method A, the amount of the grafted X-TEMPO was 

determined gravimetrically by weighting the samples before and after the photografting 

and the purification steps (Table 4.1.2). Generally, a weight increase of about 2-3 wt% 

was detected in agreement with the data reported in the literature for the photo-assisted 

2000 1800 1600 1400 1200 1000 800 600

Wavenumber (cm-1)

A

A
bs

or
ba

nc
e 

(a
.u

.)
B

C  

D

2000 1800 1600 1400 1200 1000 800 600

Wavenumber (cm-1)

A

A
bs

or
ba

nc
e 

(a
.u

.)

B

C



Results and Discussion 

Ilaria Domenichelli 

 

91 
 

grafting of BP, a molecule that cannot propagate similarly to X-TEMPO derivatives112. 

However, due to the competitive grafting of X-TEMPO and semipinacol, it is not possible 

to evaluate the amount of grafted X-TEMPO alone. 

 

Table 4.1.2: Weight increase of the functionalized samples obtained by method A 

Sample 
Weight increase

a
 

(%) 

LLDPE-g-(MeOBP)Ab 0.6 

LLDPE-g-(BzO-TEMPO)A 3.7 

LLDPE-g-(NfO-TEMPO)A 2.1 

LLDPE-g-(Fluo-TEMPO)A 2.5 

  

SEBS-g-(NfO-TEMPO)A 1.6 

SEBS-g-(Fluo-TEMPO)A 2.5 

a
The weight increase was determined after the surface photografting and the purification of the samples. 

b
 In this case 

1/3 of MeOBP was used relative to that used in the other runs.  

 

In the case of the samples obtained by method B the amount of photo-grafted species 

was estimated by FT-IR spectroscopy using ad hoc prepared calibration curves (9, Figure 

2.1.12 in Chapter 2 and Figure 4.1.12) (Table 4.1.3). For these samples the conversion is 

quite high, considering the amount of grafted X-TEMPO with respect to its amount in the 

feed (see Experimental Part, Chapter 7, section 7.3.3). 
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Figure 4.1.12: Calibration curve used to evaluate the functionalization degree of LLDPE-g-(NfO-

TEMPO)B 

 

Table 4.1.3: Functionalization degree (FD) and X-TEMPO conversion for the samples obtained by 

method B. 

Sample FDFT-IR 

(mol%) [wt%] 

Conversion 
a
(%) 

LLDPE-g-(BzO-TEMPO)B 0.08 [0.56] 27 

LLDPE-g-(NfO-TEMPO)B 0.12 [1.00] 40 

LLDPE-g-(Fluo-TEMPO)B 0.06 [0.83] 40 

a
 Amount of grafted X-TEMPO with respect to its quantity in the feed 

 

LLDPE functionalized samples were extracted with boiling toluene in order to state if 

some modification of the polymer matrix occurred during photografting (Table 4.1.4). 

Indeed the radical functionalization of polyethylene is usually accompanied by side 

reactions, typically chain extension and/or cross-linking, that, in the melt can be 

controlled by modulating the feed conditions26. However, the literature reports the 

occurrence of photo-crosslinking of polyethylene assisted by photoinitiators and this can 

be a side process of the photografting of X-TEMPO111, 113. 
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Table 4.1.4: Percentage of toluene insoluble fraction for the LLDPE functionalized samples  

Samples 
Toluene insoluble 

fraction (%) 

LLDPEa 0 

LLDPE-g-(MeOBP)Ab 72.3 

LLDPE-g-(BzO-TEMPO)A 84.5 

LLDPE-g-(NfO-TEMPO)A 83.0 

LLDPE-g-(Fluo-TEMPO)A 75.0 

  

LLDPE-g-(MeOBP)B 66.0 

LLDPE-g-(BzO-TEMPO)B 62.6 

LLDPE-g-(NfO-TEMPO)B 23.0 

LLDPE-g-(Fluo-TEMPO)Bc 30.0 

a
Film of LLDPE irradiated in the absence of reagents.

b
The amount of MeOBP used for the preparation of this sample is 

1/3 of that used for the other surface functionalized samples. 
c
The amount of reagents used to obtain this sample is 1/2 

of that used for the other samples. 

 

Independently of the method used to functionalize the films, and the type of X-TEMPO, a 

quite high toluene insoluble fraction was collected in all cases, apart for the blank LLDPE 

film that was irradiated in the absence of reagents and that resulted completely soluble 

(Table 4.1.4). Considering the ability of X-TEMPO to react with carbon centered radicals 

and control the side reactions usually occurring during the radical functionalization of 

polyolefins and polyesters in the melt8, 9 (see Chapter 2 and 3), it is expected that the 

presence of X-TEMPO can partially limit the formation of an insoluble fraction. However, 

from the data reported in Table 4.1.4, this control seems to occur only in part in the B 

samples and among the samples of this series it appears more evident when NfO-TEMPO 

was used.  

To further highlight the formation of the covalent bond between the polymer and the X-

TEMPO, and to confirm the amount of the grafted species, TGA analyses of all the 

samples obtained by method A were carried out. Indeed, the >NO-R bond of 

alkoxyamines is thermally reversible and by heating the equilibrium between the bonded 

and the free form can be shifted towards the free radicals8. As underlined in the previous 

Chapters, thermograms of LLDPE samples functionalized with X-TEMPO show a two steps 

degradation profile. The first step was attributed to the detaching of X-TEMPO and the 
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weight loss associated to this step was related to the amount of the grafted functionality. 

All LLDPE films obtained by photografting showed the same behavior (Figure 4.1.12B, C 

and D), the weight loss and the onset temperature associated with the first step were 

reported in Table 4.1.5. The onset temperature associated with this step is different for 

all the samples and seems to be dependent on the nature of X-TEMPO. The TGA analysis 

of the SEBS functionalized samples compared with the thermogram of the pristine 

polymer, showed similar results to that reported for the LLDPE functionalized samples 

(Figure 4.1.12A, Table 4.1.5). 

 

A B 

 

C D 

 

Figure 4.1.12: TGA thermograms and their first derivative of SEBS before and after the treatment 

with Fluo-TEMPO (A) and LLDPE before and after functionalization with BzO-TEMPO(B), NfO-

TEMPO (C) and Fluo-TEMPO (D). 
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Table 4.1.5: TGA data of the first weight loss of LLDPE and SEBS functionalized samplesa 

Sample Tonset first step
b
 

(°C) 

Weight loss
 c
 

(%) 

LLDPE-g-(MeOBP)Ad - - 

LLDPE-g-(BzO-TEMPO)A 244 2.5±0.3 

LLDPE-g-(NfO-TEMPO)A 240 1.2±0.2 

LLDPE-g-(Fluo-TEMPO)A 223 1.5±0.2 

LLDPE-g-(MeOBP)Bd - - 

LLDPE-g-(BzO-TEMPO)B 248 1.0±0.2 

LLDPE-g-(NfO-TEMPO)B 250 1.0±0.1 

LLDPE-g-(Fluo-TEMPO)B 234 1.2±0.2 

   

SEBS-g-(NfO-TEMPO)A 251 1.3±0.3 

SEBS-g-(Fluo-TEMPO)A 219 2.1±0.2 

a
The analysis were carried out under nitrogen flow from 30 to 700°C (heating rate 10°C/min) 

b
Tonset corresponding to the first weight loss 

c
 Weight loss percentage associated to the first step 

d
 For this sample only the polymer degradation step was detected at 471° C 

 

The agreement between the TGA data and the weight increase determined 

gravimetrically (compare Tables 4.1.2 and 4.1.5) is quite good. Differences between the 

two values can be attributed to the fact that during the TGA analysis only the detaching of 

X-TEMPO was observed, indeed in the case of LLDPE-g-(MeOBP)A or B, where semipinacol 

derived from MeOBP was grafted onto the LLDPE film, only the degradation of the 

polymer matrix was detected. From the data reported in Table 4.1.5, it can be observed 

that a comparable amount of grafted X-TEMPO can be obtained by method A or B, but in 

the case of method A a larger quantity of reagents is necessary to obtain the grafting (see 

Experimental Part, Chapter 7, section 7.3.3), moreover the simultaneous grafting of the 

semipinacol and also a larger extent of the surface oxidation were observed. 

From the data discussed so far, it is quite evident that the more homogeneous 

distribution of the reagents inside the polymer matrix obtained by method B can favor 

the control of some side processes like for example the grafting of the semipinacol and 

partially the chain extension reaction, reducing the insoluble toluene fraction as well as 

the extent of surface oxidation. The method B allows also a higher efficiency of the 

photografting process as evidenced by TGA analysis. However, the deposition of the 
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reagents onto the surface by method A probably is the troublesome point of the whole 

process. Indeed, acetone solutions were sprayed on the sample surface by an airbrush, 

but the control of the extent of surface coverage is limited by the procedure itself that is 

not completely reproducible. Moreover, both X-TEMPO and MeOBP are microcrystalline 

powders that retain their microcrystallinity even after evaporation of the acetone from 

the polymer surface. The presence of crystallites can reduce the incident radiation 

efficiency by light scattering causing a reduction of the grafting degree111. Moreover, 

acetone can help the grafting process, but it can only partially swell the polymer95, 114. The 

reagents are thus expected to be confined on the first layers of the films as confirmed by 

the fact that the ATR-FTIR spectra collected from the non-irradiated side of the film 

prepared by method A showed no signals of grafted X-TEMPO. Finally, it cannot be 

excluded that a possible low affinity of the reagents for the matrix and/or their 

evaporation due to the air circulation during irradiation, especially in the samples 

prepared by method A, can influence the photografting efficiency.  

 

4.2: Surface property evaluation 

 

The aim of this study is the surface modification of polymers through photografting of X-

TEMPO derivatives and from the results so far discussed it is evident that different 

functional groups were successfully photo-grafted onto different types of polymer 

surfaces. To account for the unique feature given to the polymer by the grafted functional 

groups, specific analyses were carried out. In particular, the films functionalized with NfO-

TEMPO were analyzed by fluorescence emission spectroscopy, whereas in the case of the 

films functionalized with Fluo-TEMPO measurements of the contact angle were 

performed to evaluate the hydrophobicity and lipophobicity of the modified surfaces. 

The fluorescence emission spectra collected from LLDPE-g-(NfO-TEMPO)A, LLDPE-g-(NfO-

TEMPO)B and SEBS-g-(NfO-TEMPO)A are reported in Figure 4.2.1. 

The emission spectrum of LLDPE-g-(NfO-TEMPO)A shows a large band at about 430 nm, 

whereas a more complex spectral pattern with a maximum at about 380 nm and a 

shoulder at about 430 nm, can be observed in the case of LLDPE-g-(NfO-TEMPO)B. The 

emission maximum of these spectra evidences a noteworthy red shift with respect to the 
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emission spectrum collected in the case of a similar sample functionalized in the melt by 

using a peroxide8. Probably the development of some highly conjugated fluorescent 

products via the formation of an excimer can cause this shift115. Such interactions can be 

more feasible in the sample obtained by method A where the chromophores were mainly 

confined on the surface, than in the sample B where the nitroxide radicals were dispersed 

throughout the whole film thickness and the conjugation between the chromophores is 

less probable. Accordingly, the emission spectrum of B sample shows two overlapping 

bands: one centered at about 380 nm, the typical emission of the single naphthalene 

group, and the second at about 430 nm probably due to the excimer emission. Although a 

rigorous quantum efficiency evaluation was not carried out, it can be observed that the 

fluorescence intensity was very low for all the samples, and effectively lower than that 

recorded for the sample obtained in the melt8 containing about the same amount of NfO-

TEMPO. The same behavior was noticed also for the SEBS-g-(NfO-TEMPO); in this case the 

spectrum showed a large band, with low emission intensity, centered at about 430nm. 

 

 

Figure 4.2.1: Fluorescence emission spectra of LLDPE-g-(NfO-TEMPO)A, LLDPE-g-(NfO-TEMPO)B 

and SEBS-g-(NfO-TEMPO)A. λexc: 300nm 

 

In order to evaluate the wettability properties of the films functionalized with Fluo-

TEMPO, static contact angle measurements were carried out using water and n-

hexadecane as probing liquids. Data of the Fluo-TEMPO modified films are collected in 

Table 4.2.1 and compared with those of the non-functionalized films.  
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Table 4.2.1: Contact angles for the films of LLDPE-g-(Fluo-TEMPO), SEBS-g-(Fluo-TEMPO) and the 

corresponding pristine copolymers. 

Film θw
a)

 

(°) 

θh
a) 

(°) 

LLDPE 96 ± 2 31 ± 1 

LLDPE-g-(Fluo-TEMPO)A 98 ± 2 40 ± 2 

LLDPE-g-(Fluo-TEMPO)B 96 ± 2 49 ± 1 

SEBS 96 ± 1 36 ± 2 

SEBS-g-(Fluo-TEMPO)A 98 ± 2 38 ± 1 

(a)
 Measured with water and n-hexadecane. 

 

The values of θ with water and n-hexadecane are conventionally regarded as estimations 

of hydrophobicity (θw>∼ 90°) and lipophobicity (θh>∼ 60°), respectively. According to this 

criterion both the Fluo-TEMPO functionalized and non-functionalized films are 

hydrophobic (θw= 96–98°) and poorly lipophobic (31–49°). The inclusion of the Fluo-

TEMPO functions appears to especially affect the lipophobic character of the modified 

films, being θh generally larger than that of the pristine copolymers. However, this trend 

was more significant for LLDPE-based films, for which θh increases of 9–18°. Such an 

increase, although not so high, was surprising if one considers the relatively low 

functionalization degree typical of the present samples (e.g. 0.12 mol% for LLDPE-g-(Fluo-

TEMPO)B). Measurements of liquid–solid contact angles are commonly used to evaluate 

solid surface tension γS. However, the correlation between θ and γ is still a controversial 

question and none of the different approaches proposed are generally accepted116-118. 

Accordingly, we followed the additive-component method of the surface tension of 

Owens, Wendt, and Kaelble119-122. The surface tension values γS calculated for the Fluo-

TEMPO modified copolymers and the pristine polyolefin films are collected in Table 4.2.2. 

Consistently with their hydrophobic nature, all the films display relatively low surface 

tensions (24–26 mN m–1). Moreover, in agreement with the contact angle values 

discussed above, films functionalized with Fluo-TEMPO generally show a lower surface 

tension than the corresponding pristine films, even though this trend is more evident for 

the LLDPE-based samples (e.g. γS passed from 25.7 mN m–1 for LLDPE-g-(Fluo-TEMPO)B to 
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21.8 mN m–1 for LLDPE). In any case, the largely predominant contribution to γS is the 

dispersion component γS
d, being γS

p 1.7−2.9 mN m–1, typical of an apolar surface.  

A decrease in surface tension of the functionalized copolymer films suggests that the 

fluorinated chains of the Fluo-TEMPO moieties are preferentially located at the polymer-

air interface, as a result of their low surface energy. This finding supports the hypothesis 

that a surface modification of the pristine polyolefins has occurred.  

 

Table 4.2.2: Surface tensions for the films of LLDPE-g-(Fluo-TEMPO), SEBS-g-(Fluo-TEMPO) and 

the corresponding pristine copolymers.  

Film γS
d(a) 

(mN m–1) 

γS
p(a) 

(mN m–1) 

γS
(a) 

(mN m–1) 

LLDPE 23.8 1.9 25.7 

LLDPE-g-(Fluo-TEMPO)A 21.5 1.9 23.4 

LLDPE-g-(Fluo-TEMPO)B 18.9 2.9 21.8 

SEBS 22.6 2.1 24.7 

SEBS-g-(Fluo-TEMPO)A 22.1 1.7 23.8 

(a)
Calculated with the Owens–Wendt–Kaelble method: γS

d
 dispersion component, γS

p
 polar 

component. 

 

4.3: Discussion about the grafting mechanism of X-TEMPO 

As previously discussed, BP or its derivatives in their excited triplet state can abstract a 

hydrogen atom from the polymer backbone generating a macroradical and a ketyl radical 

(or semipinacol). The radical species derived from the photoinitiator (semipinacol) is 

rather unreactive towards H-atom abstraction, but it can dimerize to benzopinacol or 

combine with other radicals, e.g. P•, P-M• or P(-M-)nM• (where P• is the starting 

macroradical and P-M• or P(-M-)nM• are the growing polymer chains) thus giving 

termination reaction123, 124. Macroradicals are the reactive species and can start the vinyl 
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monomer polymerization or can crosslink if the reaction is carried out in the absence of 

other reagents95, 111. If X-TEMPO free radicals are added during the reaction, they can 

react with macroradicals by coupling. From this description, it is evident that the 

photografting of X-TEMPO to the polymer matrix is really a complex process involving 

different competing reactions (Scheme 4.3.1).  

 

 

 

 

Scheme 4.3.1: Formation of macroradicals and semipinacol by UV-irradiation and possible 

products deriving from the reactions of macroradicals, semipinacol and X-TEMPO. 

 

Probably, beyond the described processes, some other reactions and factors can 

influence the photografting of X-TEMPO. For example, under UV irradiation and in the 

presence of oxygen, polyolefins can be photo-oxidized generating new functional groups 

that can further react under UV irradiation125. Besides, also the solubility, the affinity and 

the hindrance of X-TEMPO with respect to the polymer matrix can influence its diffusion 

inside the polymer. From the discussed results, it seems that the simultaneous grafting of 

the semipinacol and X-TEMPO occurs especially in the case of samples prepared by 

method A whereas the more homogeneous dispersion of the reagents by applying the 

method B seems to be useful to limit a few of the possible reactions such as the grafting 
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of semipinacol, partially the oxidation of the matrix and the polymer chain extension. 

Probably, as reported in literature109, 124, a double steps mechanism, where the first step 

is the grafting of MeOBP followed by the polymerization of vinyl monomers under UV 

light, can be effective also in the case of X-TEMPO. In this case the second step is the 

grafting of X-TEMPO in place of vinyl monomers polymerization. Some explorative runs of 

the two steps method were carried out with the aim to state the feasibility of this 

procedure also in the case of the grafting of X-TEMPO. 

For these experiments, to limit the surface photo-oxidation, a procedure already reported 

in literature103, 124 was applied. By this method the photoinitiator solution was deposited 

between two polymer films and then the obtained double layer was treated under UV 

light. The comparison between ATR-FTIR spectra of the pristine polymer and of the 

(LLDPE)-g-(MeOBP)_E sample obtained by this method, shows that the bands 

characteristic of the grafting of semipinacol were present and that although some photo-

oxidation bands are still present, they show a low intensity. This suggests that by this 

procedure the photo-oxidation was not completely avoided but at least limited (Figure 

4.3.1). 

After the first step completion, static water contact angle measurements were carried 

out. They showed a decrease from 96 °± 2 to 89 °± 2 of the water contact angle pointing 

out the presence of hydrophilic groups on the surface originated from the grafted 

semipinacol109.  

 

Figure 4.3.1: Superposition of the ATR-IR spectra of pristine LLDPE (black line) and UV-treated 

LLDPE films in the presence of MeOBP between two polyethylene films (red line). 
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To prove the second step of the photografting mechanism, the NVP monomer was 

deposited between two LLDPE films, previously functionalized with the photoinitiator, 

and irradiated under UV light, ((LLDPE)-g-(PVP)). The same procedure was also conducted 

on a pristine polymer film not previously activated with MeOBP, ((LLDPE)/(NVP)). To 

demonstrate the photopolymerization of N-vinylpyrrolidone onto MeOBP functionalized 

polymer surface, the ATR-IR spectra of these samples, ((LLDPE)-g-(PVP) and 

(LLDPE)/(NVP)), were analyzed and compared with that of the pure LLDPE (Figure 4.3.2).  

 

 

Figure 4.3.2: ATR-IR spectra of pristine polymer, (LLDPE)-g–(PVP) and (LLDPE)_NVP. 

 

ATR-FTIR spectrum of the sample (LLDPE)-g-(PVP) shows a band at 1660 cm-1 assigned to 

a superimposition of the stretching of C-O and of C-N characteristic of poly-

vinylpyrrolidone (PVP)124, 126. Furthermore the static contact angle measurements, carried 

out by using water as wetting liquid, highlighted that the contact angle value decreases 

from 96 °± 2 to 70 °± 2 when PVP was grafted, in agreement with the data reported in 

literature124. Conversely, the ATR-FTIR spectrum of (LLDPE)/NVP after purification 

presented no significant differences with the pure copolymer and no appreciable change 

was evidenced in the contact angle measures. These results demonstrated that the bond 

between the semipinacol and the macroradical generated during the first step, can be re-

activated under UV irradiation and, if the second step is carried out in the presence of a 

vinyl monomer, its photo-polymerization can start from the polymer surface. 
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The two-step photografting mechanism was investigated also using the TEMPO 

derivatives, precisely Fluo-TEMPO and NfO-TEMPO, in place of NVP. The samples were 

obtained by following the aforementioned “sandwich” procedure and the ATR-IR and 

fluorescence analysis were carried out. The comparison between the infrared spectrum of 

the MeOBP functionalized LLDPE and that of the sample obtained after the Fluo-TEMPO 

photografting by the two-step method ((LLDPE)_(Fluo-TEMPO)), showed the presence of 

a very weak band at about 1244 cm-1. The enlargement and the superimposition with the 

(LLDPE)-g-(Fluo-TEMPO)B ATR-IR spectrum, reported in Figure 4.3.3, allowed attributing 

this band to the C-F stretching. This may be a clear clue of the grafted nitroxide presence 

onto the polymer surface. 

 

 

Figure 4.3.3: ATR-IR spectra of LLDPE functionalized with only photoinitiator (black line) and the 

same sample after the nitroxide addition (LLDPE_Fluo-TEMPO). In the enlargement the compared 

spectra belonging to LLDPE functionalized with only photoinitiator (black line) and the same 

sample after the nitroxide addition (LLDPE_Fluo-TEMPO) (red line) and the LLDPE film 

functionalized in bulk with Fluo-TEMPO (LLDPE)-g-(Fluo-TEMPO)B (blue line). 

 

Regarding the sample obtained by the two-step method and using NfO-TEMPO as 

functionalizing nitroxide, the fluorescence analysis underlined an emission band centered 

at 367 nm and therefore very similar to the emission spectrum collected in the case of a 

sample functionalized in the melt (Figure 4.3.4). This result may be attributed to the lack 
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of π-stacking between the NfO-TEMPO naphtalene rings because of the low amount of 

grafted functionalities, which were found to be well separated onto the polymer surface. 

 

 

Figure 4.3.4: Fluorescence analysis of the LLDPE film treated with NfO-TEMPO during the second 

step of the photografting mechanism. 

 

Taking everything into account and according to published data107, 109, the first step of the 

mechanism allowed to create a “surface initiators” that can be further re-activated under 

UV irradiation : in the second step functional nitroxides can be successfully grafted onto 

the polymer surface. 

 

4.4: Discussion about the particular case of NfO-TEMPO 

The photografting of NfO-TEMPO deserves a special discussion, indeed all the samples 

containing this functional group showed a particular behavior with respect to the other X-

TEMPO grafted polymers. For example the ATR-FTIR spectra of LLDPE-g-(NfO-TEMPO), 

contrary to all other X-TEMPO functionalized LLDPE samples, did not show bands 

attributable to the photo-oxidation. Meantime, the insoluble toluene fraction of the bulk 

functionalized LLDPE is quite limited with respect to the other samples. Moreover, the 

fluorescence emission is red shifted with respect to that observed in the case of samples 

functionalized in the melt in the presence of peroxide8 and has a lower intensity. All these 
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behaviors could be associated with some specific features of the naphthalene moiety. 

Indeed naphthalene is reported to be a quencher of the benzophenone triplet excited 

state by an energy transfer mechanism127. By this mechanism, the naphthalene is excited 

to its triplet state and excited benzophenone comes back to the ground state, as 

consequence it is no more able to abstract hydrogen atom from the polymer. Probably 

the H-abstraction and the triplet excited state quenching of BP are strongly competing 

processes that can influence the final results of the reaction giving mainly grafting or 

cross-linking. It is also reported that a naphthoyl group bonded to 2,2,6,6-tetramethyl 

piperidin-4-ol can protect high density polyethylene (HDPE) and polypropylene (PP) from 

thermal and photo-oxidation process and that the simultaneous presence on the same 

molecule of the naphthoyl moiety and of the hindered amine has a synergic effect in the 

protection of both polyolefins115. The authors hypothesized a mechanism where the 

molecules containing the naphthoyl group bonded to the hindered amine decomposed 

under UV radiation producing naphthalene radicals. These radicals can scavenge the 

oxygen to form aromatic peroxy radicals115 and other non-emitting species. By this 

mechanism it can be explained both the protection towards oxidation observed during 

the NfO-TEMPO photografting as well as the decrease and the red shift of the emission 

spectra of NfO-TEMPO photo-grafted to LLDPE and to SEBS. Indeed, the naphthoyl group 

reacts preferentially with oxygen preventing the oxidation of the polymer, meanwhile the 

naphthalene ring fragments formed during photolysis can recombine giving highly 

conjugated species, whose emission spectrum was shifted towards red whit respect to 

that of naphthalene.  

 

4.5: Conclusions 

 

Since the formation of a covalent bond between the functional TEMPO derivatives and 

macroradicals is a good method to functionalize polyolefins and polyesters in the melt by 

using a peroxide, the NRC reaction was here accomplished to covalently immobilize some 

specific functionalities onto polymer surfaces according to the photografting technique. 

In this case two methods were proposed to modify the surface properties of two 

polymers (LLDPE and SEBS) through the photografting of BzO-TEMPO, NfO-TEMPO and 
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Fluo-TEMPO. Both methods allowed the surface modification, although the method B, 

where a pre-reactive mixture was prepared by melt mixing the reagents before 

photografting, seems to guarantee better results in terms of grafting efficiency and 

control of side reactions (chain extension/crosslinking) and oxidation. Fluorescence 

emission spectroscopy and contact angle measurements allowed stating that by 

photografting of X-TEMPO derivatives it is possible to transfer the peculiar properties of 

the functional groups present onto the TEMPO moiety to the polymer surface. However 

the fluorescence emission study evidenced the NfO-TEMPO photografting occurrence, 

although a particular interaction between the excited naphthoyl group and the 

photoinitiator under photografting conditions was considered as responsible of the 

relatively low grafting of this functional X-TEMPO. Finally the success of the two step 

photografting mechanism was demonstrated: in particular the first step allows creating 

“surface initiators” that can be further re-activated under UV irradiation whereas the 

second step can be a possible alternative to graft functional nitroxides onto the polymer 

surface. 
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CHAPTER 5 

 

STUDY OF REVERSIBILITY OF NRC REACTION: THE STABILITY 

OF THE ALKOXYAMINE GRAFTED SPECIES  

 

5.1: Characterization of functionalized polyolefins with Electron 

Paramagnetic Resonance (EPR) technique 

 

As outlined in the previous Chapter, the onset temperature associated with the first 

degradation step, recorded by TGA analysis, is different for all the samples and seems to 

be dependent on the nature of X functionality of X-TEMPO derivative (Table 5.1.1). 

 

Table 5.1.1: Detaching T recorded by TGA analysis  

Sample Tonset first stepb 

(°C) 

LLDPE-g-(BzO-TEMPO) 244 

LLDPE-g-(NfO-TEMPO) 240 

LLDPE-g-(Fluo-TEMPO) 223 

LLDPE-g-(HO-TEMPO)* 233 

b 
Tonset corresponding to the first weight loss recorded by TGA analysis 

*This is a LLDPE sample prepared by grafting of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (HO-
TEMPO) in the melt by means of the use of a peroxide

9
. 

 
Further evidences of the differences in the detaching temperature of X-TEMPO were 

obtained by Electron Paramagnetic Resonance (EPR) analysis. Even if the samples were 

purified before the analysis, all samples show an initial EPR spectrum (Figure 5.1.1a) due 

to a low fraction of free nitroxide probably deriving from the equilibrium between the 

free and bond form of the macroalkoxyamine. This spectrum evolved, on heating, in the 

spectrum recorded at 180 °C (Figure 5.1.1b). The increase of the signal area confirms the 

homolytic bond cleavage of the >NO-R bond, whereas the increased symmetry of the 
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signal is an evidence of the larger mobility of the free nitroxide in the melt matrix owing 

to polymer bond cleavage. 

 

 

Figure 5.1.1.EPR spectra of LLDPE-g-(Fluo-TEMPO) at 60°C (a) and at 180°C (b). 

 

By reporting the spin number as a function of temperature, it was observed that, in 

agreement with TGA data, the detaching of X-TEMPO, evidenced by an increase of the 

spin number, is depending on the nature of X (Figure 5.1.2).  

 

 

A B 
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C D 

 
 

Figure 5.1.2: Spins number vs. temperature of A: LLDPE-g-(NfO-TEMPO), B: LLDPE-g-(Fluo-

TEMPO), C: LLDPE-g-(BzO-TEMPO) and D: LLDPE-g-(HO-TEMPO). 

 

In particular aromatic moieties seems to stabilize the >NO-R bond, whereas the less 

stable alkoxyamine is generated by grafting the Fluo-TEMPO. The entropy factor could 

have the main role in determining the differences in the detaching temperature of X-

TEMPO from the polymer chains. The entropy of the system can be influenced by many 

factors, including the temperature increase and the polymer environment surrounding 

the X-TEMPO as well as the nature of X and its affinity to the polymer matrix or its steric 

hindrance but it is difficult to correlate all these parameters with the observed 

differences. 

In order to thoroughly understand if an electronic effect of the X group of X-TEMPO can 

influence the bond dissociation enthalpy of the >NO-R bond, Density Functional Theory 

(DFT) calculations were carried out.  

 

5.2: Theoretical study 

 

The main objective of most quantum chemical approaches is the (approximate) solution 

of the time-independent, non-relativistic Schrödinger equation: 

Ĥ ψi���1, ��2, ….,��N, ���1, ���2,…..,���M) = Ei ψi���1, ��2, ….,��N, ���1, ���2,…..,���M) 

where Ĥ is the Hamilton operator for a molecular system consisting of M nuclei and N 

electrons in the absence of magnetic or electric fields. 
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ψi���1, ��2, ….,��N, ���1, ���2,…..,���M) stands for the wave function of the ith state of the system, 

which depends on the 3N spatial coordinates (��i) and the N spin coordinates (si) of the 

electrons, which are collectively termed (��i) and the 3M spatial coordinates of the nuclei, 

(���I). 

Finally, Ei is the numerical value of the energy of the state described by ψi
128. 

The wave function ψi contains all information that can possibly be known about a 

quantum system, therefore solving the Schrödinger equation one can predict the 

behavior of any electronic system. Unfortunately, because of the presence of too many 

degrees of freedom, analytical solutions of the Schröedinger equation are possible only 

for a very few simple systems. In order to solve this problem it is necessary to involve 

some approximations 129. One of the earliest approximations was formulated in 1928 by 

Hartree, who considered the many-electron wave function as a product of single-particle 

functions. However this simplification cannot be accepted as a model wave function for 

fermions because it assigns a particular one-electron function to a particular electron and 

hence violates the fact that electrons are indistinguishable128, 129. In 1930 Fock 

incorporated the Fermi statistic in this model, approximating the N-electron wave 

function by an antisymmetrized product (Slater determinant) of N one-electron wave 

functions χi(��i). However, replacing the true N-electron wave function by a single Slater 

determinant represents a drastic approximation, indeed it does not take in account 

Coulomb correlation, leading to a total electronic energy different from the exact solution 

of the non-relativistic Schrödinger equation. 

The turning point was when Thomas in 1927 and Fermi in 1928 assumed that the motions 

of the electrons are not correlated and that the corresponding kinetic energy can be 

described by a local approximation based on the results for free electrons. In this way the 

energy is completely given in terms of the electron density129. Although this approach 

appears rather inaccurate for most applications, it laid the foundation for the 

development of the Density Functional Theory (DFT). DFT was born in 1964 when a 

paperby Hohenberg and Kohn appeared in the Physical Review. The Hohenberg-Kohn 

theorem, asserts that all ground-state properties of a many-electron system are 

determined by the electron density which is a function of the three spatial coordinates130. 

In this way it is possible to reduce the number of variables from 3N variables (the 



Results and Discussion 

Ilaria Domenichelli 

 

111 
 

coordinates of all N atoms in the system) characteristic of a many-body electronic wave 

function to only three variables. This makes calculations involving the electron density 

faster than calculations with wave functions. In fact, density functional theory makes 

possible to study systems with hundreds and even thousands of atoms128. Furthermore in 

DFT, the total ground state energy of a many-electron system is a functional of the 

density; therefore by knowing the electron density functional, it is possible to calculate 

the total energy of the system. 

 

5.2.1: Computational details 

 

All calculations were performed with the Gaussian suite of programs131. The 

computations were carried out with the hybrid B3LYP functional132-135
,in conjunction with 

the m-aug-cc-pVTZ basis set136, 137,where d functions on hydrogens were removed. 

Semiempirical dispersion contributions were also included into DFT computations by 

means of the D3 model of Grimme, leading to B3LYP-D3 functional138, 139. Full geometry 

optimizations were performed for all compounds (see Figure 5.2.2.1) checking the nature 

of the obtained structures by diagonalizing their Hessians. 
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5.2.2: Computational results 

 

 

 

 

HO-TEMPO BzO-TEMPO 

 

 

 

 

NfO-TEMPO Fluo-TEMPO 

Figure 5.2.2.1: Optimized geometries of HO-TEMPO, BzO-TEMPO, NfO-TEMPO and Fluo-TEMPO 
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Considering that the polymer, which is functionalized with the TEMPO derivatives, is a 

linear low density polyethylene, it was possible to simulate it as a basic alkyl radical. In 

order to figure out the right number of carbon atoms to include in this radical, some tests 

were run based on HO-TEMPO, which is the smallest investigated compound and 

therefore the one that requires the less time for calculations. These tests consisted in 

calculating the energy difference between the alkoxyamine and the sum of the free 

radicals using alkyl radicals of different lengths: pentyl, heptyl, nonyl and undecyl radicals 

(see Table 5.2.2.1).  

 

Table 5.2.2.1: Energy differences between the HO-TEMPO based alkoxyamines and the sum of 

HO-TEMPO and the corresponding alkyl radicals 

 

Energy 
difference(kcal/mol) 

ΔEa 
(kcal/mol) 

pentyl radical 42.22637475 
 heptyl radical 42.68054549 0.454170741 

nonyl radical 42.98865647 0.308110979 

undecyl radical 43.08758461 0.098928143 
a
: evolution of the energy difference with the lengthening of the chain

 

 

One can see first from data reported in Table 5.2.2.1 that the energy difference becomes 

higher when the carbon atoms number of the alkyl radicals increases. However the 

evolution of this difference becomes lower by lengthening the chain, starting from 0.45 

kcal/mol (pentyl to heptyl radicals), to 0.09 kcal/mol (nonyl to undecyl radicals). 

Considering this slight evolution between nonyl and undecyl radicals and in order to save 

some computational time, the polymer was simulated as a nonyl radical for this study. 
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HO-TEMPO BzO-TEMPO NfO-TEMPO 

Figure 5.2.2.2: Optimized geometries of HO-TEMPO-g-nonane, BzO-TEMPO-g-nonane and NfO-

TEMPO-g-nonane 

 

As shown on Figures 5.2.2.2 and 5.2.2.3, the nonyl moiety presents the same orientation 

in the optimized geometries of all the four investigated compounds, which allows 

comparing their energies.  

 

Table 5.2.2.2: Energy differences between alkoxyamines and the sum of the corresponding 

nitroxides and nonyl radical 

Sample 
Calculated Energy difference 

(kcal/mol) 
Experimental T detachinga 

(° C) 

nonane-g-HO-TEMPO 42.98865647 140 

nonane-g-BzO-TEMPO 43.10999423 160 

nonane-g-NfO-TEMPO 43.10311296 170 

nonane-g-Fluo-TEMPO 44.69535582 110 
a
: T detaching recorded by EPR analysis, roughly evaluated as intercept of tangents to curves reported in 

Figure 5.1.2 



Results and Discussion 

Ilaria Domenichelli 

 

115 
 

In Table 5.2.2.2, the energy differences between alkoxyamines and the sum of the 

corresponding nitroxides and nonyl radical is depicted. It is evident that the calculated 

energy differences are in a good agreement with the experimental detaching 

temperatures measured by EPR for all the nitroxides, besides the Fluo-TEMPO. Indeed, 

detaching nonane-g-HO-TEMPO was found to require a lower temperature than 

detaching nonane-g-BzO-TEMPO and nonane-g-NfO-TEMPO (140 °C vs 160-170°C). In the 

same time the energy difference between the nonane-g-HO-TEMPO and the free HO-

TEMPO and nonyl radicals was also found lower than that between nonane-g-BzO-TEMPO 

and nonane-g-NfO-TEMPO and their free forms. This suggests that breaking the C-O bond 

in nonane-g-BzO-TEMPO and in nonane-g-NfO-TEMPO requires a similar energy, and a 

higher one than breaking the C-O bond in nonane-g-HO-TEMPO. In the case of nonane-g-

Fluo-TEMPO the results do not follow the right trend. The model using the nonyl radical 

to simulate the polymer chain is not efficient for this compound (Figure 5.2.2.3), by 

considering that the fluorocarbon chain should interact with the polymer. However, the 

nonyl radical is not long enough to exhibit these interactions and the simulation of a 

polymer chain with higher carbons on backbone would have necessitated a huge 

computational cost. 

 

 

Figure 5.2.2.3: Optimized geometry of Fluo-TEMPO-g-nonane 
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5.3: Conclusions 

 

The stability of the alkoxyamines >NO-C bond was here investigated by means of EPR 

measurements and DFT calculations. Through EPR different detaching temperatures 

depending on the X-TEMPO substituting group, were measured. This allowed establishing 

a thermal stability ranking where Fluo-TEMPO appears to be the less stable, followed by 

HO-TEMPO, and then BzO-TEMPO and NfO-TEMPO which showed similar stability. These 

experimental data were in good agreement with the DFT energy calculations for all the 

nitroxides, besides the Fluo-TEMPO. Indeed in this case the employed model to simulate 

the polymer chain was not efficient to exhibit the interactions between the fluorocarbon 

chain and the polymer matrix which affect the alkoxyamine stability. On the other hand it 

was not possible to use a most appropriate model because that would need a huge 

computational cost. However thanks to these accurate characterizations, an electronic 

effect of the TEMPO derivative functional group, which influences the bond dissociation 

enthalpy, was demonstrated  
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CHAPTER 6 

SYNTHESIS OF GRAFTED POLYOLEFINS BY NITROXIDE 

MEDIATED POLYMERIZATION. 

 

6.1: Controlled grafting of polystyrene onto polyethylene 

backbone via “grafting from” technique 

 

The objectives of this study is to attempt the functionalization of polyolefins with 

different TEMPO derivatives here used as “macroinitiators” for the synthesis of 

polyolefin-g-polystyrene graft copolymers via “grafting from” technique using styrene or 

styrene derivatives as (co)monomers. Generally the grafted chains introduction onto the 

surface of polymeric substrates can be performed according to three different strategies: 

 

� “Grafting to” approach refers to preformed polymers bearing end-functional 

groups that can react with suitable functionalities, belonging to the polymer 

matrix, by means of a covalent bond, by generating a stable tethered polymer 

brush. A drawback of this method is that only a little amount of macromolecular 

chains can be immobilized onto the polymer surface. In fact the chains have to 

diffuse through the existing polymer to reach the specific functional groups, but 

this turns out to be hard because of the steric repulsion of the polymer chains, 

that generates a low grafting density140. In addition another limitation is caused by 

the creation of impurities of non-grafted polymer chains with the polymer grafted 

surface which are complicated to eliminate141. 

 

� “Grafting through” approach is based on macromonomers polymerization. The 

macromolecules are indeed functionalized with polymerizable groups which 

enable to copolymerize the macromonomers with monomers of a lower molecular 

weight. In this way a comb-shaped structure can be created with high grafting 

density of macromolecules141. 
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� “Grafting from” approach makes use of active species, immobilized onto the 

polymer surface, to initiate the polymerization of monomers from the surface 

toward the bulk phase, circumventing the diffusion problem of the “grafting to” 

method140. Furthermore this procedure allows achieving higher grafting density 

than the “grafting to” method, because in this case there are relatively small 

molecules, the monomers, that have to reach the surface bound initiator site141. 

 

Specifically in this study the macroalkoxyamines employed as matrices were constituted 

by polyethylenes as substrates and AzO-TEMPO, ThiO-TEMPO and Fluo-TEMPO as 

functionalizing agents (see Figure 2.1.1 in Chapter 2). In particular (HDPE)-g-(AzO-

TEMPO), (HDPE)-g-(ThiO-TEMPO) and (EOC)-g-(AzO-TEMPO) were obtained through free 

radical grafting via a post-reactor modification strategy (see Chapter 2, section 2.1), while 

(LLDPE)-g-(Fluo-TEMPO)A and (LLDPE)-g-(Fluo-TEMPO)B were prepared through the 

photografting technique (see Chapter4, section 4.1). Contrary to all the other 

methodologies described in literature for the synthesis of this kind of 

macroalkoxyamines142-146, the nitroxides radical coupling reactions, as already described 

in Chapter 2 and 4, enables to insert specific/complex functionalities by a one step 

methodology. The process shows, indeed, a great compatibility with different functional 

groups, allowing the easy and rapid synthesis of the macroinitiators without using metal 

catalyst. 

As regards the polystyrene grafting reaction, it was carried out by taking advantage from 

the presence of TEMPO, in order to obtain a “Reversible Deactivation Radical 

Polymerization (RDRP)” according to the scheme reported in Figure 6.1.1 and in 

agreement with literature on the “grafting from” TEMPO functionalized 

polymers/surfaces142-146.  
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Figure 6.1.1: Schematic representation of the grafting strategy
142-146

. 

 

The establishment of a thermal equilibrium between a (macro)alkoxyamine (dormant) 

and its free (active) form, is well documented and it constitutes the basis for the Nitroxide 

Mediated Polymerization (NMP). NMP is, indeed, characterized by a reversible coupling 

reaction between an alkyl (macro)radical and a nitroxide, acting as controlling agent, to 

yield a (macro)alkoxyamine as the predominant species. Upon the temperature 

increasing, the O-C bond between the nitroxide and the alkyl radical, undergoes a 

homolytic cleavage producing the growing propagating radicals and the nitroxide147 

(Figure 6.1.2).  

 

Figure 6.1.2: Reversible activation/deactivation involving the alkoxyamine species 

 

The equilibrium is an exclusively thermal process where neither catalyst nor bimolecular 

exchange are required. For this reason the polymerization kinetics is governed by both 

this activation-deactivation equilibrium and the persistent radical effect147. Furthermore, 

the O-C bond dissociation energy is strongly dependent on: (a) structure of the nitroxide 
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and (b) stability of the formed alkyl radical148. Thus, the choice of the monomer and the 

nitroxide plays a pivotal role to allow a controlled propagation leading to RDRP.  

In 1993, motivated by the awareness that the nitroxides can trap the free radicals, by 

forming an adduct having a weak bond and, thus, successfully decrease the 

polymerization rate14, Georges11
 was the first scientist to use a nitroxide in a free radical 

polymerization. By employing 2,2,6,6-tetramethyl-l-piperidinyloxy (TEMPO) as a 

controlling agent, benzoyl peroxide (BPO) as initiator and styrene (Sty) as monomer at 

123°C, he could obtain polystyrene (PS) with controlled molecular weight and a narrow 

dispersity (Đ= 1.27). Georges noted the small dispersity was obtained early in the 

reaction, evidencing that the polymeric chains were initiated all in the same time and the 

Đ remained narrow during the entire duration of the polymerization, as proof of a pseudo 

living/controlled process. A further evidence of the controlled behavior of the free radical 

polymerization was given by the linear increase of the molecular weight with monomer 

conversion, maintaining narrow Đ. These results opened the way of RDRP by using 

TEMPO as a controlling agent. The period since the Georges’ first experiment was 

followed by a great number of significant developments in the NMP technique, which 

largely demonstrated the ability of TEMPO to control the (co)polymerization of Sty or 

styrene derivatives12, 13, 149-153. 

In this scenario, the aim of this study is to investigate the possibility to grow, in a 

controlled fashion, PS or polystyrene derivatives brushes from the polyolefins backbone. 

Depending on the technique used to obtain the macroinitiators, two different 

methodologies were adopted to grow polymer chains: (HDPE)-g-(AzO-TEMPO), (HDPE)-g-

(ThiO-TEMPO) and (EOC)-g-(AzO-TEMPO) graft copolymers were dissolved in 

trichlorobenzene and then mixed with the Sty monomer at 120 °C for 48 h (Method 1). 

(LLDPE)-g-(Fluo-TEMPO)A and (LLDPE)-g-(Fluo-TEMPO)B, were dipped in the Sty monomer 

(liquid) and the embedded films were heated up to 120 °C for 72 h (Method 2). After the 

polymerization runs, all the samples were cleaned by extraction with chloroform or 

acetone (see Experimental Part, Chapter 7, section 7.4), with the aim to eliminate the 

ungrafted PS. In addition the (EOC)-g-(AzO-TEMPO) was chosen as matrix to graft, 

according to the method 1, copolymer brushes constituted by styrene and some styrene 

derivatives as: pentafluorostyrene (F5Sty), 4-vinylbenzylchloride (VBC) and sodium 4-

styrene sulfonate (SS) (Table 6.1.1). The choice of F5Sty as comonomer is due to its 
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particular surface properties conferred to it by the presence of fluorine atoms, which also 

have the advantage to be easily detected through 19F-NMR spectroscopy154. Regarding 

the VBC, it is selected for the presence of –CH2Cl functionality that can be easily 

substituted with different functional groups by endowing modified materials with specific 

properties owing to the functional groups155, 156. Finally, the last choice fell on SS thanks 

to the presence of a sulfonate group which may allow the creation of an amphiphilic 

material 149, 157, as well as protonic exchange (e.g. fuel cell membranes).  

 

Table 6.1.1: Experimental conditions for the radical (co)polymerization of functionalized 

polyolefins with styrene and styrene derivatives. 

Conditions 
a
: Solvent used = 1,2,4-trichlorobenzene 10 mL; 

b
: Bulk reaction, *: [Sty]/[Sty derivatives]= 1/1 

 

To evaluate the grafting occurrence, the ATR-FTIR spectra of the macroalkoxyamines 

before and after polymerization of styrene or styrene derivatives, were compared and the 

attributions suggested by considering the possible structure of the grafted samples. All 

the spectra were normalized with respect to the band at 720 cm-1attributed to the CH2 

rocking absorption of polyethylene. 

Concerning the products obtained according to method 1, no bands ascribable to the 

comonomers grafting were observed (Figure 6.1.3) with the exception of products labeled 

(EOC)-g-(AzO-TEMPO)_PS and (EOC)-g-(AzO-TEMPO)_PS-co-PSS graft copolymers. 

 

 

Sample monomer A monomer B [monomer]/ 

[X-TEMPO] 

T 

(
o
C) 

Time 

(h) 

    

(EOC)-g-(AzO-TEMPO)_PS
a
 Sty - 180 120 48 

(HDPE)-g-(AzO-TEMPO)_PS
a
 Sty - 180 120 48 

(HDPE)-g-(ThiO-TEMPO)_PS
a
 Sty - 180 120 48 

(EOC)-g-(AzO-TEMPO)_PS-co-PF5Sty
a
 Sty F5Sty 360* 120 48 

(EOC)-g-(AzO-TEMPO)_PS-co-PSS
a
 Sty SS 360* 120 48 

(EOC)-g-(AzO-TEMPO)_PS-co-PVBC
a
 Sty VBC 360* 120 48 

(LLDPE)-g-(FluO-TEMPO)A_PS
b
 Sty - 6900 120 72 

(LLDPE)-g-(FluO-TEMPO)B_PS
b
 Sty - 6900 120 72 
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A B 

 
 

C D 

  

Figure 6.1.3: ATR-FTIR spectra of A: (HDPE)-g-(THiO-TEMPO) (black line) and (HDPE)-g-(THiO-

TEMPO)_PS (red line), B: (HDPE)-g-(AzO-TEMPO) (black line) and (HDPE)-g-(AzO-TEMPO)_PS (red 

line), C: (EOC)-g-(AzO-TEMPO) (red line), (EOC)-g-(AzO-TEMPO)_PS-co-PF5Sty (black line) and D: 

ATR-FTIR spectra of the (EOC)-g-(AzO-TEMPO) (black line), (EOC)-g-(AzO-TEMPO)_PS-co-PVBC (red 

line). 

 

Indeed, spectrum of (EOC)-g-(AzO-TEMPO)_PS sample showed the presence of a band 

centered at 699 cm-1 which may be attributed to the out-of-plane bending of the CH 

groups in the polystyrene aromatic ring (Figure 6.1.4). 
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Figure 6.1.4: ATR-FTIR spectra of the (EOC)-g-(AzO-TEMPO) (red line), (EOC)-g-(AzO-TEMPO)_PS 

(black line). 

 

Furthermore, in the (EOC)-g-(AzO-TEMPO)_PS-co-PSS ATR-FTIR spectrum, a weak band at 

around 1040 cm-1 that may be related to the SO3 group symmetric vibration158, 159, 

suggested the grafting of Sty and SS even if with really low yield (Figure 6.1.5). 

 

Figure 6.1.5: ATR-FTIR spectra of the (EOC)-g-(AzO-TEMPO) (black line), (EOC)-g-(AzO-

TEMPO)_PS-co-PSS (red line). 
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Therefore on the basis of these preliminary evidences it seems clear that by using the 

method 1 and macroinitiators derived from possible cleavage of grafted AzO and ThiO-

TEMPO, the grafting of Sty or styrene derivatives via copolymerization occurs with very 

low yield. On the contrary, the ATR-FTIR spectra of the samples obtained according to the 

method 2 and by using samples derived from Fluo-TEMPO insertion definitely revealed 

the presence of diagnostic bands of Sty grafting: in particular the signals at 699 and 756 

cm-1 owing to the out-of-plane bending of the CH groups of the PS aromatic ring, the 

band at 1493 cm-1 attributed to the stretching vibrations of the carbons in the PS 

aromatic ring, and finally the band at around 1600 cm-1 related to the PS aromatic 

stretching bond were highlighted suggesting even a good covering of films surface (Figure 

6.1.6). 

 

A B 

  

Figure 6.1.6: ATR-FTIR spectra of A: (LLDPE)-g-(Fluo-TEMPO)A (black line) and (LLDPE)-g-(Fluo-

TEMPO)A_PS (red line) and B: (LLDPE)-g-(Fluo-TEMPO)B (black line) and (LLDPE)-g-(Fluo-

TEMPO)B_PS (red line). 

 

The apparently low grafting yield for the samples derived from method 1, could be due to 

the use of solvent, which generates a reduction in the polymerization rate and 

significantly decreases the monomer conversion of TEMPO mediated radical 

polymerization systems150. Moreover, in these runs the amount of the monomer was 

significantly smaller than the quantity used in the method 2 ([Sty]/[TEMPO]= 180 vs 

[Sty]/[TEMPO]= 6900).  

However, the thermal stability of grafted alkoxyamine is a key parameter that plays a 

fundamental role in these copolymerization reactions. It was showed that the homolytic 
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cleavage of –C-ON< bond, necessary to initiate the copolymerization reaction, occurs at 

relatively low temperatures for the moieties derived from Fluo-TEMPO grafting (as 

provided by EPR, see Chapter 5, section 5.1). They are indeed closer to the reaction 

temperature (employed for the grafting from approach) than those of the other 

alkoxyamines, justifying the apparent higher yield for (LLDPE)-g-(Fluo-TEMPO) samples. 

Conversely the high thermal stability of grafted AzO and ThiO-TEMPO derivatives (as 

proved by TGA, see chapter 2, section 2.1.) probably reduces the availability and the 

amount of species able to initiate the Sty polymerization, with detriment in copolymer 

grafting yield. 

However, in order to investigate the PS chain grafting occurrence more deeply, further 

characterizations were carried out. First of all, efforts were made to evaluate the content 

of the grafted PS via gravimetric measurements, namely by weighting the samples before 

and after the graft copolymerization, but without adequate results. Indeed, regarding the 

samples prepared through method 1, a negligible weight increase in PS-grafted samples 

compared with the matrix, made impossible a proper grafting evaluation, whereas for the 

samples synthesized according to the method 2, the problem was their partial solubility in 

chloroform during the purification steps (via centrifugation). Anyway the samples were 

analyzed by TGA under nitrogen flow starting from room temperature up to 600°C at 10 

°C/min to tentatively evidencing degradation steps attributable to the different polymer 

species.  

The thermograms of the samples obtained according to the method 1 (Figure 6.1.7) 

compared to polyethylene starting materials and a PS sample obtained by free radical 

polymerization, highlighted a behavior similar to that of the starting polyolefins, even if 

the degradation of the grafted copolymers occurred at lower temperature160, 161. This may 

be attributed to the breaking of bonds between the polyolefin matrix and the PS brushes; 

however, the degradation profiles are really similar and, as evidenced by DTG curves, only 

one step can be detected (Figure 6.1.8). In this condition, it seems that the degradation of 

the aromatic part in the copolymerized samples is merged with the degradation of the 

aliphatic polymer backbone and consequently the weight loss due to the styrene moiety 

cannot be distinguished 161. For this reason, it was not possible to calculate a weight lost 

percentage correlated to the amount of polystyrene grafting.  
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A B 

  

C 

 

Figure 6.1.7: TGA thermograms of the functionalized HDPE and EOC samples before (black line) 

and after (red line) the treatment with styrene and the free polystyrene (blue line). The analysis 

carried out under nitrogen flow. 

 

The DTG curves (Figure 6.1.8) highlighted a difference in the maximum degradation 

temperature between the starting material and the sample copolymerized with PS of 

about 10°C; by underlining the decrease of thermostability due to the PS grafting 162. 
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Figure 6.1.8: DTG thermograms of: A: ThiO-TEMPO functionalized HDPE macroinitiators (red line), 

ThiO-TEMPO functionalized HDPE copolymerized with styrene (black line) and free PS (blue line), 

B: AzO-TEMPO functionalized HDPE macroinitiators (black line), AzO-TEMPO functionalized HDPE 

copolymerized with styrene (red line) and free PS (blue line), C: AzO-TEMPO functionalized EOC 

macroinitiators (black line), AzO-TEMPO functionalized EOC copolymerized with styrene (red line) 

and free PS (blue line). The analysis carried out under nitrogen flow. 

 

The samples treated with the styrene derivatives as the comonomer underlined a 

behavior similar to those of the samples grafted with only Sty (Figure 6.1.9). 
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Figure 6.1.9: TGA thermograms of A: the (EOC)-g-(AzO-TEMPO) (black line), (EOC)-g-(AzO-

TEMPO)_PS-co-PF5Sty (red line) and pristine polystyrene (blue line), B: the (EOC)-g-(AzO-TEMPO) 

(red line), (EOC)-g-(AzO-TEMPO)_PS-co-PVBC (black line) and pristine polystyrene (blue line) and 

C: the (EOC)-g-(AzO-TEMPO) (red line), (EOC)-g-(AzO-TEMPO)_PS-co-PSS (black line) and pristine 

polystyrene (blue line). The analysis carried out under nitrogen flow. 

 

In particular, the (EOC)-g-(AzO-TEMPO)_PS-co-PSS thermogram (Figure 6.1.10) evidenced 

a first degradation step starting at around 100°C which may be attributed to the loss of 

free and hydrogen bonded water and adsorbed gas molecules due to the presence of 

highly hydrophilic sulfonic acid groups161. While the second step could represent the 

cleavage of the brushes bond with the backbone even though, also in this case, the 

degradation of the polystyrene chains is merged with the degradation of the polyethylene 

and consequently Sty moiety degradation cannot be distinguished from the matrix161. 
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Figure 6.1.10: TGA thermograms of the (EOC)-g-(AzO-TEMPO) (blue line), (EOC)-g-(AzO-

TEMPO)_PS-co-PSS (red line) and (EOC)-g-(AzO-TEMPO)_PS (black line). The analysis carried out 

under nitrogen flow. 

 

The DTG thermograms confirmed the maximum degradation temperature decrease, by 

stating the copolymer grafting occurrence (Figure 6.1.11). 
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Figure 6.1.11: DTG thermograms ofA: AzO-TEMPO functionalized EOC macroinitiators (red line), 

AzO-TEMPO functionalized EOC copolymerized with styrene and sodium 4-styrene sulfonate 

(black line) and free PS (blue line), B: AzO-TEMPO functionalized EOC macroinitiators (black line), 

AzO-TEMPO functionalized EOC copolymerized with styrene and pentafluoro styrene(red line) and 

free PS (blue line) and C: AzO-TEMPO functionalized EOC macroinitiators (red line), AzO-TEMPO 

functionalized EOC copolymerized with styrene and vinylbenzyl chloride (black line) and free PS 

(blue line). The analysis carried out under nitrogen flow. 

 

As regards the samples obtained by method 2 namely polyethylene samples grafted with 

Fluo-TEMPO, the thermograms of the copolymers, compared with the curves collected 

for the matrices, showed significant difference in terms of thermal stability: in both cases 

the copolymers provided by grafting from approach evidenced a shift in the temperature 

(at maximum rate of degradation, DTG curves) of about 50 °C toward the temperature 

characteristic of PS. Moreover a bimodal peak suggesting the presence of copolymer 

fractions having thermal stability depending on their composition, likely meaning 

different LLDPE/polystyrene ratios, can be noticed, even if also in this case the evaluation 

of the amount of grafted PS chains is not possible.(Figures 6.1.12, 6.1.13, and 6.1.14). 
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Figure 6.1.12: TGA thermograms of A: (LLDPE)-g-(Fluo-TEMPO)A_PS (black line) and the (LLDPE)-

g-(Fluo-TEMPO)A (red line) and B: (LLDPE)-g-(Fluo-TEMPO)B_PS (black line) and the (LLDPE)-g-

(Fluo-TEMPO)B (red line). The analysis carried out under nitrogen flow. 

 

 

Figure 6.1.13: DTG curves of (LLDPE)-g-(Fluo-TEMPO)A(red line), (LLDPE)-g-(Fluo-TEMPO)A_PS 

(black line) and PS (blue line). The analysis carried out under nitrogen flow. 
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Figure 6.1.14: DTG curves of (LLDPE)-g-(Fluo-TEMPO)B(black line), (LLDPE)-g-(Fluo-TEMPO)B_PS 

(red line) and PS (blue line). The analysis carried out under nitrogen flow. 

 

Differential Scanning Calorimetry (DSC) analysis were carried out and the thermogram of 

each sample was recorded in the second heating run at 10 °C/min to eliminate the 

thermal history (Figure 6.1.15). 

A 
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Figure 6.1.16: DSC curves of A: (LLDPE)-g-(Fluo-TEMPO)B (black line), (LLDPE)-g-(Fluo-

TEMPO)B_PS (red line) and B: (LLDPE)-g-(Fluo-TEMPO)A (black line), (LLDPE)-g-(Fluo-TEMPO)A_PS 

(red line). 

 

By comparing the macroinitiators DSC curves before and after the treatment with 

styrene, appeared the clear presence of a second order transition at around 93 °C which 

may be related to the PS Tg. These observations further evidenced the successfully PS 

grafting from the polyolefin matrix. 

 

6.2. Conclusions 

 

In this Chapter macroalkoxyamines obtained through the NRC reaction of AzO-TEMPO, 

ThiO-TEMPO and Fluo-TEMPO with polyolefin macroradicals, were used as 

macroinitiators for the synthesis of polyolefin-g-polystyrene graft copolymers via 

“grafting from” technique using styrene or styrene derivatives as (co)monomers.  

ATR-FTIR, TGA and DSC analysis fully highlighted the grafting occurrence: in particular the 

obtained thermograms showed a lower degradation temperature for the polyolefins 

treated with the comonomer compared to the matrices. This behavior was caused by the 

breaking of bonds between the polyolefin and the PS brushes. However the TGA curves 

did not allow quantifying the PS grafted amount, but it can undoubtedly state that the 
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grafting yield was significantly higher when macroalkoxyamines bearing Fluo-TEMPO 

were used as matrices. The reason of this lies in different factors: first of all the grafting 

reaction onto polyolefins functionalized with AzO- and ThiO-TEMPO was carried out with 

lower amount of comonomer and in presence of solvent which caused a reduction in the 

polymerization rate and significantly limited the monomer conversion. In addition the 

same alkoxyamines showed higher thermal stability than (LLDPE)-g-(Fluo-TEMPO) by 

reducing the availability and the amount of species able to initiate the styrene 

polymerization, with detriment in copolymer grafting yield. 

In conclusion, the obtained functional macroalkoxyamines can be considered as 

“activated compounds” which can be interestingly used later time as macroinitiators to 

synthesize polymer materials with tuned/tailored structures and fascinating properties. 
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CHAPTER 7 

EXPERIMENTAL PART 

 
7.1: Materials 

 
The used materials are grouped in two different tables: in the first all the commercial 

available nitroxides or materials required for the new ones synthesis; the materials 

required for the polyolefins modification by means of free radical grafting or by 

photografting technique; and the materials required for the copolymerization reaction 

between the modified polyolefins and styrene or styrene derivatives through Nitroxide 

Mediated Polymerization, are grouped together (Table 7.1.1). In the second table all the 

polymer matrix used in this project are listed (Table 7.1.2). 

 

Table 7.1.1: Chemicals used 

Materials Formula/ 

Abbreviations 

Characteristics 

Origin 

4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl HO-TEMPO Fluka 

4-benzoyloxy- 

2,2,6,6-tetramethylpiperidine-1-oxyl 

BzO-TEMPO Fluka 

4-(phenylazo)benzoyl chloride - Sigma Aldrich 

triethylamine Et3N Sigma Aldrich 

4-aminobenzoic acid - Sigma Aldrich 

tetrafluoroboric acid HBF4 Sigma Aldrich 

4-aminobenzoic acid - Sigma Aldrich 

sodium nitrite NaNO2 Sigma Aldrich 

2-bromothiophene - Sigma Aldrich 

tetrahydrofuran THF Sigma Aldrich 

N,N'-dicyclohexylcarbodiimide* DCC Sigma Aldrich 
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4-dimethylaminopyridine* DMAP Sigma Aldrich 

dimethylsulfoxide-d6 DMSO-d6 Sigma Aldrich 

Dioxane - Sigma Aldrich 

acetonitrile AcN Sigma Aldrich 

4,4,5,5,6,6,7,7,8,8,9,9,9-

Tridecafluorononanoicacid 

F Sigma Aldrich 

1-naphtoic acid NfCOOH Sigma Aldrich 

1-naphtoyl chloride NfCl Sigma Aldrich 

Dichloromethane* DCM Sigma Aldrich 

Benzoyl peroxide BPO Sigma Aldrich 

Chloroform-d CDCl3 Sigma Aldrich 

1,4-dinitrobenzene - Sigma Aldrich 

1,4-dimethoxybenzene - Sigma Aldrich 

trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-

propenylidene] 

malononitrile 

- Sigma Aldrich 

Di(tert-butylperoxy-isopropyl)benzene  

(mixture of isomers) 

DTBPIB, Perkadox 14S-FL Akzo Nobel 

4-methoxybenzophenone MeOBP Sigma Aldrich 

Diethylether - Sigma Aldrich 

1-vinyl-2-pyrrolidinone NVP Sigma Aldrich 

Styrene Sty Sigma Aldrich 

Pentafluoro styrene F5STy Sigma Aldrich 

4-styrene sulfonate SS Sigma Aldrich 

Vinylbenzylchloride VBC Sigma Aldrich 

Acetone - Sigma Aldrich 

Chloroform - Sigma Aldrich 

Toluene - Sigma Aldrich 

1,2,4-trichlorobenzene - Sigma Aldrich 
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*DCC: was washed with ethyl acetate/dichloromethane (1/9; vol/vol), dried on magnesium sulfate over night, filtered 
and dried under vacuum; DMAP was recrystallized from toluene; DCM was refluxed over CaH2 for 4 h and distilled 
under nitrogen. 
**Fluka pre-coated aluminum F254 silica gel 60 sheets were used for TLC analyses. Purifications by flash-
chromatography were performed using silica gel Merck 60 (particle size 0.040–0.063 mm). All the reactions were 
performed under argon by standard syringe, cannula and septa techniques. 
 

Table 7.1.2: Polymer matrix 

Material Abbreviation Characteristics 

Origin Mn 

(g/mol) 

Mw 

(g/mol) 

Dispersity Density 

(g/cm
3
) 

MFR 

 

High density 

polyethylene 

HDPE Lacqtene 

2070MN60 

Arkema 

21000 86000 4.10 0.96 7g/10min 

(2.16Kg at 

190°C) 

Random copolymer 

ethylene/α-olefin 

EOC - 50000 102000 2.15 0.87 4.7g/10min 

(2.16Kg at 

190°C) 

Poly(butylene 

succinate) 

PBS Bionolle 1001  

Showa 

High Polymer Co 

17700 42180 2.38 - 1.5 g/10min 

(2.16 kg at 

190 °C)  

Poly(lactic acid) PLA 2002D 96% 

 L-lactide 

NatureWorks 

111460 199340 1.79 - 4-8 g/10min 

(2.16 kg at 

190 °C) 

Polystyrene-b-

poly(ethylene-co-

butylene)-b-

polystyrene 

 

SEBS Kraton G1657M, 

Kraton Polymers 

- - - - 22g/10min 

(5Kg at 

230°C)  

Linear low density 

polyethylene 

(copolymer 

ethylene- α-olefin) 

LLDPE - - - - - - 
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7.2: SYNTHESIS OF NITROXIDES 

 
7.2.1: Synthesis of 4-(phenylazo)benzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical 

(AzO-TEMPO) 

 

A solution of 4-(phenylazo)benzoyl chloride (0.71 g, 2.9x10-3mol), HO-TEMPO (0.5 g, 2.9 

mmol) and trietylamine (0.47 mL, 2.9 mmol) in dichloromethane (20 mL) was mixed at 

room temperature under nitrogen for 24 h. Crude mixture was hydrolyzed with water (50 

mL) and extracted with dichloromethane (3x50 mL). AzO-TEMPO was purified by column 

chromatography by using toluene/ethyl acetate (8/2) as eluting mixture. Yield 80%. 

Melting point = 130°C47; MS(CI): m/z: 381 [M + 1], 380 [M]; FT-IR (KBr): ν = 3055, 2970, 

2936, 1717, 1468, 1407, 1316, 1279, 1240, 1179, 1112, 865, 776, 691 cm-1. C22H26N3O3 

Calculated C, 69.45; H, 6.89; N, 11.04. Found: C, 69.40; H, 6.87; N, 11.00. 

 
7.2.2: Synthesis of 4-(2-thienylazo)-benzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical 

(ThiO-TEMPO) 

 

The synthesis of ThiO-TEMPO was carried out as reported in Scheme 7.2.2.1. 

 

 

Scheme 7.2.2.1: Synthesis of 4-(2-thienylazo)-benzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical 

(ThiO-TEMPO) 

 

Synthesis of p-carboxybenzenediazonium tetrafluoroborate (1)
163

 

4-Aminobenzoic acid (6.86 g, 50 mmol) was dissolved in a solution of tetrafluoroboric acid 

(48 wt. % in water, 26.2 mL, 36.58 g, 200 mmol) and water (50 mL). The mixture was 

stirred at room temperature until the aminobenzoic acid was completely dissolved, and 

2 ThiO-TEMPO
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then cooled at 0°C (some precipitation of solid occurred). The solution was maintained at 

0 °C and a solution of sodium nitrite (3.65 g, 53 mmol) in water (10 mL) was added 

dropwise within 30 minutes. During the addition it was observed the precipitation of a 

solid. At the end of the addition the mixture was allowed to warm to room temperature, 

which caused the complete dissolution of the solid. The reaction mixture was then cooled 

to 5 °C, and the resulting solid was recovered by filtration, washed with cold diethyl ether 

and dried in vacuo, giving 1 as a colorless solid (6.25 g, 53 % yield). 1H-NMR (DMSO-d6) δ 

8.80 (m, J = 7.8 Hz, 2H); 8.45 (m, J = 7.8 Hz, 2H). 19F-NMR (DMSO-d6) δ −148.2; −148.3. 

 

Synthesis of 4-(2-thienylazo)-benzoic acid (2) 

According to the procedure reported in the literature for the synthesis of 4-(2-thienylazo)-

N,N-diethylaniline48
 to a suspension of magnesium turnings (0.734 g, 30.2 mmol) in 

tetrahydrofuran (10 mL) was added dropwise a solution of 2-bromothiophene (2.9 mL, 

4.89 g, 30 mmol) in tetrahydrofuran (20 mL) at room temperature (an exothermic 

reaction was observed). After all the magnesium was consumed (3 hours), the resulting 

solution was added via cannula to a suspension of p-carboxybenzenediazonium 

tetrafluoroborate (1) (3.54 g, 15 mmol) in a mixture of tetrahydrofuran and dioxane (5/2, 

70 mL) cooled at -50 °C. After the addition, the resulting deep red mixture was allowed to 

warm to room temperature and stirred overnight. The reaction mixture was then 

quenched with a saturated aqueous sodium carbonate solution and washed with ethyl 

acetate. The aqueous basic phase was acidified to pH = 5 with acetic acid and extracted 

with ethyl acetate (4 x 30 mL) and with dichloromethane (2 x 30 mL). The collected 

organic extracts were dried on anhydrous sodium sulfate, concentrated in vacuum and 

the residue was purified by flash chromatography on silica gel using a mixture of n-

hexane and ethyl acetate (50:50) as eluent, to yield 2(0.46 g, 15 %) as an orange solid. 

MS [m/z ]: 232 (86) [M+]; 121 (26); 111 (100); 83 (48);65 (26); 39 (36). 

1H NMR (DMSO- d6) δ 8.13 (m, J = 8.5 Hz, 2H); 7.92 (dd, J = 3.9 Hz, J = 1.2 Hz, 1H); 7.88 (m, 

J = 8.5 Hz, 2H); 7.66 (dd, J = 5.2 Hz, J = 1.2 Hz, 1H); 7.25 (dd, J = 5.2 Hz, J = 3.9 Hz, 1H). 
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Synthesis of 4-(2-thienylazo)-benzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical (ThiO-

TEMPO) 

To a suspension of 2(0.46 g, 2 mmol) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl 

(0.35 g, 2 mmol) in dichloromethane (50 mL) was added N,N'-dicyclohexylcarbodiimide 

(0.49 g, 2.4 mmol) and 4-dimethylaminopyridine (0.29 g, 2.4 mmol). The resulting clear 

solution was stirred at room temperature for 30 h, during the reaction a precipitate was 

formed. At the end of the reaction dichloromethane was added and the suspension was 

filtered on Celite. The crude product was purified by flash chromatography on silica gel 

using a mixture of toluene and ethyl acetate (85:15) as the eluent, to give TiO-TEMPO as a 

deep orange solid (0.54 g, 71%). Melting point = 155-158 °C; MS(CI): m/z: 386 [M] ; FT-IR 

(KBr): ν = 3080, 2970, 2936, 1717, 1468, 1411, 1316, 1279, 1240, 1179, 1112, 865, 776, 

711 cm-1. Anal. Calc. for C20H24N3SO3: C, 62.15; H,6.26; N,10.87; S, 8.30. Found: C, 62.10; 

H, 6.21; N, 10.82; S, 8.28%. 

 

7.2.3: Synthesis of 2,2,6,6-tetramethylpiperidine-1-oxyl-4-yl 4,4,4,5,5,6,6,7,7,8,8,9,9,9-

tridecafluorononanoate (Fluo-TEMPO) 

 

The synthesis of Fluo-TEMPO was carried out as reported in Scheme 7.2.3.1. 

 

Scheme 7.2.3.1: Synthesis of 4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononanoate)-2,2,6,6-tetra-

methylpiperidine-1-oxyl (Fluo-TEMPO) 

 

In a three-necked round bottom flask were introduced 0.718 g (1.83 mmol) of 

4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononanoicacid and 0.045 g (0.37 mmol) of DMAP in 

10 mL of anhydrous dichloromethane, followed by addition of 0.378 g (1.83 mmol) of DCC 

in 4 mL of dichloromethane. The resulting mixture was stirred under nitrogen atmosphere 

for 1h. Then, a solution of 0.315 g (1.85 mmol) of HO-TEMPO in 6 mL of anhydrous 

dichloromethane was added. The reaction mixture was refluxed for 48h at ambient 
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temperature. The solution was cooled and the precipitate was filtered off. The organic 

solid was washed with 5% NaHCO3, 5% HCl and water, each time with 50 mL of solution 

until neutrality. The organic phase was dried with anhydrous sodium sulfate overnight, 

and finally evaporated to dryness under vacuum. 

The resulting solid was purified by column chromatography by using silica gel as 

stationary phase and dichloromethane/ethyl acetate (95/5 vol/vol) as eluant. Finally the 

yield of product is 22 %. m.p. 60–61°C.IR (KBr): ν = 2980,2850, 1740, 1145-984 cm-1. MS 

(ESI): m/z: 547 [M+1], 532 [M-14]; elemental analysis calc (%) for C18H21F13NO3 (546): C 

39.56, H 3.85, F 45.24, N 2.56 

 
7.2.4: Synthesis of 4-(1-naphthoate)-2,2,6,6-tetramethylpiperidine-1-oxyl (NfO-TEMPO) 

 

The synthesis of NfO-TEMPO was carried out like in a previous paper8. To a solution of 4-

hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (914 mg, 5.3 mmol) in 20 mL of 

dichloromethane, 0.80 mL of 1-naphthoylchloride (2.65 mmol) and 0.42 mL of 

triethylamine (2.65 mmol) were added. The resulting mixture has been stirred under inert 

atmosphere for 24 h. The reaction was hydrolyzed with water (50 mL), the organic phase 

was extracted twice with water (2 × 50 mL). The dichloromethane phase was dried over 

anhydrous sodium sulfate then solvent was removed under reduced pressure. The 

resulting orange solid was purified by column chromatography by using silica gel as 

stationary phase and dichloromethane as eluant. The NfO-TEMPO was recovered from 

the second orange band which eluded as a micro-crystalline orange solid (yield 52%). m.p. 

99–100 °C (lit. 100–102 °C). 

IR (KBr): ν = 3052, 2974, 2937, 2863, 1713, 1593, 1577, 1510, 1462, 1377, 1364, 1311, 

1278, 1216, 1197, 1180, 1134, 1075, 1030, 1013, 872, 815, 559, 509 cm−1; MS(CI): m/z: 

349 [M + 23], 327 [M + 1], 346 [M]; elemental analysis calc (%) for C20H24NO3 (326.42): C 

73.59, H 7.41, N 4.29; found: C 73.49, H 7.20, N 4.11. 
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7.3: POLYMERS MODIFICATION THROUGH TEMPO DERIVATIVES 

 
7.3.1: Polyolefins melt functionalization procedure 

The melt reactions were carried out in an internal batch mixer 

(BrabenderPlastographOHG47055) with a chamber of 30 mL. Torque and temperature 

data were acquired by Brabender Mixing software Win-Mix ver.1.0. Functionalization of 

HDPE was carried out at 190°C, 50 rpm for 20 min. 20 g of polymer were introduced in the 

hot brabender and after the melting, 0.145 mol% of ThiO-TEMPO or AzO-TEMPO were 

added and one minute later 0.043 mol% of DTBPIB in the ThiO and AzO-TEMPO was 

introduced in the brabender chamber (Table 7.3.1). Functionalized crude samples were 

cut in small pieces and extracted with boiling acetone for 16 h and further purified by 

dissolution in hot xylene and precipitation from acetone. Samples were dried to constant 

weight and analyzed. 

Melt functionalization of the random copolymer ethylene/α-olefin (EOC) was carried out 

at 170 °C, 50 rpm for 20 min by adopting the same procedure described for the 

preparation of functionalized HDPE samples. In this case 0.28 mol% of AzO-TEMPO and 

0.09 mol% of DTBPIB or 0.17 mol% of Fluo-TEMPO and 0.057 mol% of DTBPIB were used 

(Table 7.3.1.1). Crude sample was extracted with boiling acetone for 16 h in order to 

remove all low molecular weight sub-products and it was further purified by dissolution in 

hot toluene (80 °C) and collected by precipitation of the toluene solution in acetone. The 

purified sample was dried to constant weight and analyzed.  

The functionalization degree (FD) of the functionalized polymers was evaluated by using 

the FT-IR spectroscopy9. Particularly, in the case of functionalized EOC with AzO-TEMPO, 

the FD was evaluated by using a previously described calibration curve9 where the ratio 

between the area of a peak at 1112 cm-1 (associated to the grafted specie) and that of the 

methylene rocking of polyethylene at 720 cm-1 was considered. In the case of HDPE, in 

the spectral region near 700 cm-1 two peaks are present at about 720 cm-1 and 730 cm-1 

attributed to the crystalline phase of HDPE. These two peaks are superimposed to a broad 

band centered ad about 723 cm-1 associated with the amorphous phase of the polymer 

matrix164. To evaluate the FD of HDPE functionalized samples (Table 7.3.1.1), total area of 

all peaks in the region between 700 and 740 cm-1 was considered as representative of the 
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total amount of methylene groups165, and the same calibration curve used in the case of 

EOC was applied. 

In the case of EOC functionalized with Fluo-TEMPO the FTIR calibration curve was 

prepared ad hoc (See section 7.5.6) 

 

Table 7.3.1.1: Radical functionalization of polyolefins: feed composition, functionalization degree 

(FD) and thermal properties 

Sample name 

Feed composition Functionalization Degree1 Thermal properties 

X-TEMPO2 

(mol%) 

Peroxide 

(mol%) 

FDFT-IR
3 

(mol%) 

FDTGA
4 

(mol%) 

T5%
5 

(°C) 

Tmax
6 

(°C) 

EOC7 - - - - 440 470 

HDPE7 - - - - 456 488 

(EOC)-g-(AzO-TEMPO) 0.28 0.09 0.18 0.20 430 475 

HDPE-g-(AzO-TEMPO) 0.14 0.04 0.12 0.09 447 486 

HDPE-g-(ThiO-TEMPO) 0.14 0.04 0.11 0.08 455 487 

(EOC)-g-(Fluo-TEMPO) 0.17 0.057 0.08 0.11 422 472 

1
Functionalization Degree (FD): moles of the grafted functional groups with respect to 100 moles of monomer repeating 

units. 
2
X-TEMPO:functional TEMPO derivative. 

3
FD evaluated by FT-IR analysis. 

4
FD evaluated by TGA analysis under 

nitrogen. 
5
Temperature corresponding to 5% weight loss. 

6
Maximum degradation temperature.

7
co-EO and HDPE 

starting polymers. 

 

7.3.2: Polyesters melt functionalization procedure 

 
The PBS functionalization reactions using BPO as a peroxide were performed at 120 °C, 50 

rpm and 6 min (6 min was selected as the time of mixing since the half-life of BPO at 120 

°C is about 3 min) (Table 7.3.2.1). The functionalization of PBS using DTBPIB as a radical 

initiator was carried out at 150 °C, 50 rpm and 14 min (14 min was selected as the time of 

mixing since the half-life of DTBPIB at 150 °C is about 10.6 min) (Table 7.3.2.1). In a typical 

experiment, 25 g of PBS were introduced in the hot Brabender chamber, the 

functionalizing agent was added two minutes after the matrix melted and the peroxide 

was introduced in the Brabender chamber one minute later. In order to remove 

unreacted reagents and byproducts of the peroxide decomposition, small pieces of PBS 
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samples were weighed (around 1.5 g), placed into a cellulose extraction thimble, 

extracted with boiling methanol for 15 h, and finally vacuum dried to constant weight. 

The functionalization reaction of PLA, using DTBPIB as a radical initiator, was carried out 

at 180 °C, 50 rpm and 14 min (Table 7.3.2.2). The half-life of DTBPIB at 180 °C is 0.6 min; 

thus, it can be reasonably hypothesized that at the end of the mixing all the peroxide was 

consumed. In a typical experiment, 25 g of PLA were introduced into the hot Brabender 

chamber, the functionalizing agent was added two minutes after the matrix melted and 

the peroxide was introduced into the Brabender chamber one minute later. The 

functionalized PLA sample was purified by dissolution in chloroform at room temperature 

and collected by precipitation in diethyl ether. The procedure was repeated twice. 

 

Table 7.3.2.1: PBS radical functionalization: feed composition, functionalization degree (FD) and 

molecular weight 

Sample name 

Feed composition 
Functionalization 

Degreea 

Molecular weight and 

distribution 

X-TEMPOb 

(mol%) 

Peroxide 

(mol%) 

FDUV
c 

(mol%) 

FDNMR
d 

(mol%) 

Mn
5 

(g/mol) 

Mw
6 

(g/mol) 

Mw/Mn 

PBSe - - - - 17700 42180 2.38 

PBS_120 - - - - 16900 42700 2.53 

PBS_BPO_120 - 1 - - n.df. n.df. n.df. 

PBS_BT1_BPO_120 0.5 1 0.15 n.d. 15630 35100 2.24 

PBS_BT2_BPO_120 1 1 0.24 0.24 15060 34410 2.28 

PBS_NfT1_BPO_120 0.5 1 0.26 n.d. 15130 33860 2.24 

PBS_NfT2_BPO_120 1 1 0.30 0.29 16980 39910 2.35 

PBS_150 - - - - 17420 39470 2.26 

PBS_DTBPIB_150 - 1 - - n.df. n.df. n.df. 

PBS_BT2_DTBPIB_150 1 1 0.14 n.d. 15970 39150 2.45 

a 
Functionalization Degree (FD): moles of the grafted functional groups with respect to 100 moles of monomer 

repeating units. 
b 

X-TEMPO: functional TEMPO derivative. 
c 
FD evaluated by UV-Vis calibration curve. 

d 
FD evaluated by 

1
H-NMR analysis. 

e 
PBS pristine polymer extracted with boiling MeOH for 15h. 

f 
Not determined because the sample is 

partially insoluble in CHCl3. 
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Table 7.3.2.2: PLAradical functionalization: feed composition, functionalization degree (FD) and 

molecular weight 

Sample name 

Feed composition 
Functionalization 

Degreea 

Molecular weight 

and distribution 

 

X-TEMPOb 

(mol%) 

Peroxide 

(mol%) 

FDUV
c 

(mol%) 

FDNMR
d 

(mol%) 

Mn
5 

(g/mol) 

Mw
6 

(g/mol) 

Mw/Mn 

PLA - - - - 111460 199340 1.79 

PLA_180 - - - - 108750 184730 1.70 

PLA_DTBPIB_180 - 0.5 - - n.de. n.de. n.de. 

PLA_NfT2_DTBPIB_180 1 0.5 0.04 0.04 69290 168070 2.43 

a 
Functionalization Degree (FD): moles of the grafted functional groups with respect to 100 moles of monomer 

repeating units. 
b 

X-TEMPO: functional TEMPO derivative. 
c 
FD evaluated by UV-Vis calibration curve. 

d 
FD evaluated by 

1
H-NMR analysis. 

e 
Not determined because the sample is partially insoluble in CHCl3. 

 

7.3.3: Polymer photografting 

 

Method A: This method was applied to functionalize both LLDPE and SEBS. 0.1 mmol of X-

TEMPO derivative were dissolved in 1mL of acetone and 2.8x10-2 mmol of MeOBP were 

added to the solution (X-TEMPO : MeOBP = 3.6 mol : 1 mol). In the preparation of EOC 

functionalized with MeOBP (LLDPE-g-(MeOBP)A) 9x10-3 mmol of reactant were used. The 

resulting mixture was introduced into the reservoir of an airbrush (nozzle diameter: 0.3 

mm; cup capacity: 7 mL; air pressure: 1 bar) and sprayed on the LLDPE or SEBS film 

(dimension about 3 cm x 7 cm, thickness ca. 80 µm). After the evaporation of the solvent 

(about 3 min under hood) the film was irradiated for 20 minutes. The entire procedure 

(spray of the acetone solution, evaporation of the solvent and irradiation of the film) was 

repeated two more times. The irradiated samples were purified by boiling acetone 

extraction for 5 h, and finally dried. In the case of SEBS only NfO-TEMPO and Fluo-TEMPO 

were used. The acronym of the samples obtained by this procedure is: (LLDPE or SEBS)-g-

(X-TEMPO)A. 

The weight percent of grafted X-TEMPO was calculated by the following equation: 

Percentage of grafted X-TEMPO= [(W1-W0)/W0]x100, 

where W0 is the weight of the starting film and W1is the weight of the film after 

irradiation and purification by acetone extraction.  
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The grafting of the semipinacol derived from MeOBP, obtained by method A, was 

confirmed by ATR-FTIR analysis (Figure 4.1.2 in Chapter 4) by the presence of bands at 

700 (out of plane bending of the phenyl ring), 1174 (probably C-O stretching), 1250 

(asymmetric C-O-C stretching of the MeO group), 1510 and 1604 cm-1(C=C stretching of 

the aromatic ring)108. 

 

Method B: It was applied only to LLDPE. Indeed, in the case of SEBS this procedure cannot 

be applied because of the high melting temperature of the matrix that is not compatible 

with the thermal stability and volatility of MeOBP and of the X-TEMPO derivatives. In the 

case of EOC, a pre-reactive mixture was obtained by adding, to the molten matrix, both X-

TEMPO and MeOBP. The samples were prepared by using an internal batch mixer 

(Brabender Plastograph OHG47055) with a chamber of 30 cc. Torque and temperature 

data were acquired by Brabender Mixing software Win-Mix ver.1.0. The run was 

performed at 100°C, 50 rpm for 10 min. 20 g of EOC were introduced in the hot 

Brabender chamber, the functionalizing agent (BzO-TEMPO and NfO-TEMPO 0.30 mol % 

or in the case of Fluo-TEMPO 0.15 mol %) was added two minutes after the melting of the 

matrix and the photoinitiator (0.1 mol % in the case of BzO-TEMPO and NfO-TEMPO or 

0.05 mol% in the case of Fluo-TEMPO) was introduced in the Brabender chamber 1 min 

later. Polymer films of these mixtures (dimension about 3 cm x 7 cm, thickness ca. 80 μm) 

were prepared by compression molding at 110°C and irradiated with the UV-lamp for 20 

min. The irradiated samples were purified by boiling acetone extraction for 5 h, and dried. 

The acronym of the samples obtained by this procedure is: LLDPE-g-(X-TEMPO)B. 

Films obtained by the two previously described methods were irradiated in the presence 

of air to avoid the use of specially designed devices. 

 

7.3.4: Photografting of (LLDPE)-g-(PVP), (LLDPE)-g-(NfO-TEMPO) and (LLDPE)-g-(Fluo-

TEMPO) according to the two step mechanism 

 

0.056 mmol (11.88 mg) of MeOBP and 1 mL of acetone were introduced into the 

container of an airbrush, and sprayed on LLDPE film. The film was covered with another 

LLDPE film to limit the presence of oxygen and irradiated for 20 min. After irradiation, the 

films were separated, purified at reflux with acetone for 5 hours and dried completely 
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(LLDPE-g-MeOBP_E). Later 1-vinyl-2-pyrrolidinone (NVP) (32,23 mg, 0.29 mmol) was 

deposited onto one of the film and the second film was used as a cover, the sample 

obtained by this method is coded (LLDPE)-g-(PVP). In another run the NVP deposition was 

conducted on a LLDPE film not previously functionalized with the photoinitiator, the 

sample obtained by this method is coded LLDPE/NVP. Finally, NfO-TEMPO (97.8 mg, 

0.3mmol) or Fluo-TEMPO (163.8 mg, 0.3 mmol) dissolved in 3 mL of acetone was 

deposited onto one of the LLDPE-g-MeOBP_E grafted film and the second film was used 

as a cover. All polymer film sandwiches were irradiated for 30 minutes. After irradiation, 

the two films were separated and purified by boiling acetone extraction for 5 h. Films 

were dried under vacuum for 24 h to a constant weight and analyzed. 

 

7.4: Radical copolymerization of styrene and styrene derivatives onto the 

PE-g-X-TEMPO according to the Nitroxide Mediated Polymerization (NMP) 

technique 

 
METHOD 1: This method was applied to copolymerize (HDPE)-g-(AzO-TEMPO), (HDPE)-g-

(ThiO-TEMPO) and (EOC)-g-(AzO-TEMPO) with Styrene (Sty). The copolymerization was 

performed in a 50 mL flask where the macroinitiator (500 mg, ) was dissolved in 10 mL of 

1,2,4-trichlorobenzene at 120 °C. Separately Sty ([Sty]/[X-TEMPO]= 180) was degassed by 

N2 bubbling for 30 min. The monomer was then transferred into the solution of 

functionalized polyethylene. The reaction was stopped after 48 h and the crude product 

was washed by extraction via centrifugation in chloroform or acetone for HDPE and EOC 

samples respectively. The recovered solid was then dried under vacuum at 80 °C 

overnight. 

The same method was used also to copolymerize (EOC)-g-(AzO-TEMPO) with Sty together 

with some styrene derivatives as Pentafluoro styrene (F5Sty), Sodium 4-styrene sulfonate 

(SS) and 4-Vinylbenzylchloride (VBC); in this case the used ratios were: [Monomers]/[X-

TEMPO]= 360, [Sty]: [Styrene derivatives]= [50]: [50]. 

 
METHOD 2: The radical copolymerization of (LLDPE)-g-(FluO-TEMPO)A and (LLDPE)-g-(Fluo-

TEMPO)B films (110 and 300 mg respectively) with Sty was performed in a 50 mL flask 

where the macroinitiators were immersed in 5 mL and 2.5 mL respectively of monomer 



Experimental Part 

Ilaria Domenichelli 

 

148 
 

([Sty]/[X-TEMPO]= 6900). After degassing them by N2 bubbling for 30 min, the films were 

heated, under stirring, at 120 °C for 72 h. Then the crude products were washed by 

extraction in chloroform in order to separate the polyethylene-g-polystyrene from the 

ungrafted polystyrene. Then the films were recovered and dried under vacuum at 80 °C 

overnight. 

 

Table 7.4.1: Experimental conditions for the radical (co)polymerization of functionalized 

polyolefins with styrene and styrene derivatives. 

Conditions 
a
: Solvent used = 1,2,4-trichlorobenzene 10 mL;

b
: Bulk reaction, *: [Sty]/[Sty derivatives]= 1/1 

 

7.5: Characterization 

 
7.5.1: Melting point measure 

 

Melting points were recorded on a hot-stage microscope (Reichert Thermovar).  

 

7.5.2: Gas-liquid Chromatography 

 

GLC analysis were performed using two types of capillary columns: an Alltech AT-35 

bonded FSOT column (30 m x 0.25 mm i.d.) and an Alltech AT-1 bonded FSOT column (30 

m x 0.25 mm i.d.). 

 

Sample monomer A monomer B [monomer]/ 

[X-TEMPO] 

T 

(
o
C) 

Time 

(h) 

    

(EOC)-g-(AzO-TEMPO)_PS
a
 Sty - 180 120 48 

(HDPE)-g-(AzO-TEMPO)_PS
a
 Sty - 180 120 48 

(HDPE)-g-(ThiO-TEMPO)_PS
a
 Sty - 180 120 48 

(EOC)-g-(AzO-TEMPO)_PS-co-PF5Sty
a
 Sty F5Sty 360* 120 48 

(EOC)-g-(AzO-TEMPO)_PS-co-PSS
a
 Sty SS 360* 120 48 

(EOC)-g-(AzO-TEMPO)_PS-co-PVBC
a
 Sty VBC 360* 120 48 

(LLDPE)-g-(FluO-TEMPO)A_PS
b
 Sty - 6900 120 72 

(LLDPE)-g-(FluO-TEMPO)B_PS
b
 Sty - 6900 120 72 
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7.5.3: Mass Spectroscopy 

 

The mass spectra were acquired on an AB Sciex API 4000 triple quadrupole mass 

spectrometer equipped with a turbo-V ion spray source, coupled to a Perkin Elmer Series 

200 Micro HPLC Pump. The experimental conditions have been as follows: Curtain Gas 

(Nitrogen, CUR): 10; Gas Sources 1 & 2 (air; GS1 & GS2): 25; GS2 Temperature (TEM): 300 

_C; Ionspray Voltage (IS): 5.5 kV; Declustering Potential (DP): 20 V; Entrance Potential 

(EP): 10 V; Scan Range (Positive ions): 150–800 Th in 0.5 s; EI-MS spectra were measured 

at 70 eV by GLC/MS..  

 

7.5.4: Nuclear Magnetic Resonance (NMR) 

 

A Bruker AV 400 (400 MHz) equipped with a 5 mm multinuclear probe with reverse 

detection was used to record the1H-NMR spectra. 2048 scans were recorded with an 

acquisition time of 5 seconds at 32 °C. About 40 mg of each polymer sample were 

dissolved in 1 mL of chloroform-d (CDCl3) at room temperature and a known amount 

of a solution of 1,4-dinitrobenzene(reference compound, RC) or of 1,4-

dimethoxybenzenein the case of PLA, in CDCl3 (6.6 x 10-3 M) was added. The resulting 

solution was analyzed. 

 

7.5.5: Size Exclusion Chromatography (SEC) 

 

Number average molecular weight (Mn) and weight average molecular weight (Mw) as 

well as dispersity (Mw/Mn) of the samples were determined using size exclusion 

chromatography (SEC), Agilent Technologies 1200 Series. The instrument was equipped 

with an Agilent degasser, an isocratic HPLC pump, an Agilent refractive index (RI) 

detector, and two PLgel 5 mm MiniMIX-D columns conditioned at 35 °C. Chloroform 

(CHCl3)was used as the mobile phase at a flow rate of 0.3 mL min-1. The system was 

calibrated with polystyrene standards in a range from 500 to 3 x 105 g mol-1. Samples 

were dissolved in CHCl3 (2 mg mL-1) and filtered through a 0.20 micron syringe filter 

before analysis. Mn and Mw were determined using AgilentChemStation software. 
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7.5.6: Fourier Transform Infrared Spectroscopy (FTIR) and Fourier Transform Infrared-

Attenuated total Reflectance Spectroscopy (FTIR-ATR) 

 

The Fourier transform infrared-attenuated total reflectance (ATR-FTIR)and the 

transmission FT-IR spectra were recorded at room temperature with a Perkin-Elmer 

Spectrum Two Spectrometer equipped with the ATR accessory with diamond crystal. ATR-

FTIR spectra were acquired in the 4000-650 cm-1regionwith resolution of 4 cm-1 using 16 

scansions. FT-IR spectra were acquired in the 4000-400 cm-1 region with resolution of 4 

cm-1 using 16 scansions. Spectra of polymers were obtained from films prepared by 

compression molding at 190 °C for HDPE and SEBS and at 110 °C for EOC and LLDPE. 

The FT-IR calibration curves used for the determination of the functionalization degree 

(FD) of (HDPE)-g-(AzO-TEMPO), (HDPE)-g-(ThiO-TEMPO) (EOC)-g-(AzO-TEMPO), and 

(LLDPE)-g-(BzO-TEMPO) sample functionalized by method B were obtained by applying a 

previously described procedure9. Concerning the (EOC)-g-(Fluo-TEMPO), (LLDPE)-g-(Fluo-

TEMPO)B and (LLDPE)-g-(NfO-TEMPO)B samples, two calibration curves were prepared ad 

hoc. Known amounts of NfO-TEMPO or Fluo-TEMPO were added to EOC in toluene 

solutions. The resulting solutions were deposited onto KBr windows and after 

evaporation of the solvent FT-IR spectra were acquired. In the case of NfO-TEMPO the 

ratio between the area of the peaks at 1720 cm-1 (C=O stretching NfO-TEMPO) and 720 

cm-1 (CH2 rocking EOC) was reported as a function of the amount of NfO-TEMPO in the 

solution (mole of NfO-TEMPO with respect to 100 moles of monomeric repeating unit of 

EOC). For each concentration 3 spectra were acquired. The linear fitting of the data gives 

the calibration curve reported in Figure 4.1.12 (Chapter 4). In the case of Fluo-TEMPO the 

ratio between the peaks at 1145 cm-1 (CF3 stretching) and 720 cm-1 (CH2 rocking of EOC) 

was considered (See Figure 2.1.12 of Chapter 2 for the calibration curve). To determine 

the area of the bands of interest, a mathematical deconvolution of the opportune 

spectral region was performed by using a NLSF method (Non linear Least Squares Fitter) 

(Origin 7.5 software), by using a Gaussian-shaped bands in the deconvolution9. The 

equations of the calibration were obtained by a linear fitting procedure (Origin 7.5). 
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7.5.7: Thermogravimetric Analysis (TGA) 

 

Thermo gravimetric analysis (TGA) were carried out by using the instrument Seiko EXSTAR 

7200 TGA/DTA. In a typical experiment, the sample (about 10 mg) was placed in an 

alumina sample pan and the run was carried out at a standard rate of 10°C/min from 30 

to 700°C (or 600°C for the macroalkoxyamines grafted with styrene) under nitrogen flow. 

 

7.5.8: Differential Scanning Calorimetry Analysis (DSC) 

 

Differential Scanning Calorimetry (DSC) analysis was carried out using a Perkin-Elmer DSC-

4000 differential scanning calorimeter thermal analyzer equipped with a 3 stage cooler 

able to reach -130°C. Thermal scans were carried out on 10-15 mg samples under 

nitrogen atmosphere. Previously, the instrument was calibrated by using indium (m.p. 

156.6 °C, ΔH = 28.5 J/g) and zinc (m.p. 419.5 °C). HDPE samples were heated from 30 to 

180°C then cooled to 30°C and heated again to 180°C at a cooling/heating rate of 10 

°C/min. EOC samples were cooled to -60°C, heated to 130°C and cooled to 30°C at a 

cooling/heating rate of 10°C/min. LLDPE samples were cooled to -90°C, heated to 90°C, 

cooled to -90° and heated one more time to 120°C at a cooling/heating rate of 10 °C/min. 

 

7.5.9: UV-Visible spectra 

 

UV-Vis absorption spectra were recorded at room temperature with a Perkin-Elmer 

Lambda 25 UV-Vis Spectrometer. Acetonitrile solution of AzO-TEMPO and ThiO-TEMPO 

(about 5x10-5 M) and films of functionalized polymers were analyzed. HDPE films were 

prepared by compression moulding, EOC films were prepared by solution casting onto a 

quartz plate. 

LLDPE films were prepared by compression moulding. 

PBS solutions were prepared by dissolving 50 mg of each sample in 5 mL of CHCl3. A 

quantitative analysis of the samples was obtained by referring to calibration curves. 

Two different UV-Vis calibration curves were developed by measuring the absorbance of 

CHCl3 dilute solutions of PBS/BzO-TEMPO and PBS/NfO-TEMPO blends having known 

composition, and then plotting the absorbance versus the TEMPO-derivative 
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concentration. In the case of BzO-TEMPO, a PBS solution was obtained by dissolving 108 

mg of the polymer in 10 mL of CHCl3; a 2.935 × 10-2 M solution of BzO-TEMPO in CHCl3 

was also prepared. Then, exact volumes of the BzO-TEMPO solution (10 μL, 30 μL, 60 μL, 

100 μL,150 μL, 210 μL, 290 μL, 390 μL, 410 μL, and 550 μL) were added into the PBS 

solution (10 mL). The UV-Vis absorbance at 282 nm (which is a characteristic absorption 

band of BzO-TEMPO) of these dilute solutions was recorded and plotted versus the BzO-

TEMPO concentration (Figure 7.5.9.1). By a linear fitting of the data it was obtained a 

curve, which was a straight line in the range of selected concentrations (the absorbance 

of the calibration samples was < 1). The FD of the PBS-g-(BzO-TEMPO) samples (expressed 

as the moles of nitroxide moieties per 100 moles of monomeric units of polymer) was 

determined by measuring the UV-Vis absorbance of sample solutions prepared by 

dissolving in CHCl3 a known amount of polymer. 

Following the same procedure, the UV-Vis calibration curve for the samples 

functionalized with NfO-TEMPO was obtained preparing a PBS CHCl3 solution (by 

dissolving 115 mg of the polymer in 10 mL of CHCl3) and a 1.189 × 10-2 M CHCl3 solution of 

NfO-TEMPO. Then, exact volumes of the NfO-TEMPO solution (10 μL, 20 μL, 70 μL, 150 μL, 

and 250 μL) were added into the PBS solution (10 mL). For each blend the absorbance at 

298 nm (which is a characteristic absorption band of NfO-TEMPO) versus the NfO-TEMPO 

concentration was plotted (Figure 7.5.9.2). The linear fitting of the data allowed to obtain 

the calibration curve, which was used to evaluate the FD of the NfO-TEMPO 

functionalized PBS samples. For both the calibration curves the absorbance (Abs) of the 

pure PBS solution at the wavelength of absorption of the chromophore was evaluated. 

Moreover, the Abs Max of the calibration blends was calculated by considering the value 

of the absorbance at 282 nm in the case of BzO-TEMPO and at 298 nm in the case of NfO-

TEMPO, and subtracting to this value the absorbance at 450 nm (considered as the 

baseline). 
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Figure7.5.9.1: (A) UV-Vis spectra of PBS/BzO-TEMPO calibration solutions and (B) UV-Vis 

calibration curve at 282 nm 
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Figure7.5.9.2: (A) UV-Vis spectra of PBS/NfO-TEMPO calibration solutions and (B) UV-Vis 

calibration curve at 298 nm 

 

7.5.10: Steady-state fluorescence spectra 

 

Fluorescence emission spectra of polymer films were acquired under isotropic excitation 

with a Perkin Elmer luminescence spectrometer LS55 controlled by FL Winlab software 

and equipped with the front-surface accessory, excitation wavelength= 300 nm.  
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7.5.11: Photo-activation of AzO-TEMPO, ThiO-TEMPO and functionalized polymers 

 

Photo-activation of AzO-TEMPO, ThiO-TEMPO and functionalized polymers was carried 

out with a Black Light equipment from Helios Italquartz Triwood 25/36 system equipped 

with 2 quartz glass lamps screened at 366 nm (6 Watt each) and with 2 quartz glass lamps 

screened at 254 nm (6 Watt each).  

 

7.5.12: UV light irradiation for photografting technique 

 

UV-light irradiation on the surface of film obtained by UV technology Honle UVA 

CUBE400, for 20 min. The lamp used was a high pressure Mercury Lamp with a power of 

400 W. 

 

7.5.13: Electron Paramagnetic Resonance (EPR) 

 

X band EPR spectra were obtained by a Varian E112 spectrometer, controlling the 

temperature with a Varian E257 temperature control unit. The EPR spectrometer was 

interfaced to an IPC 610/P566C industrial grade Advantech computer by means of a data 

acquisition system. This consisted of an acquisition board capable of acquiring up to 500 

000 12 bit samples per second. The experiments were run by placing a small amount 

(about 30 mg) of the LLDPE-g-(X-TEMPO) or PBS-BT2-BPO-120 samples into a quartz tube 

(internal diameter 3 mm) and gradually increasing the temperature. 

 

7.5.14: Static Contact Angle 

 

Static contact angles with water and n-hexadecane (θw and θh) were measured on films by 

using the sessile drop method with a Camtel FTA200 goniometer at room temperature. 

The reported values have to be considered as the average of 7 measurements for each 

sample. Data were recorded 25 seconds after the drop deposition. Static contact angles 

were then used to determine the surface tension (γS) of the polymer films by following 

the Owens–Wendt–Kaelble approach119, 120 and presented in ref118. Briefly, in this method 

the solid surface tension: 
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   γS = γ S
d + γS

p
 (1) 

combined with the Young’s equation yields: 

 γL (1+ cosθ ) = 2 (γS
dγL

d )1/2 + (γS
pγL

p )1/2  (2) 

whereγS
d and γS

p are the unknown dispersion and polar components of surface tension of 

the solid film, respectively.  

 

7.5.15: Polymer films preparation 

 

Polymer films were prepared by compression moulding at 190°C for HDPE and SEBS or 

110°C for EOC and LLDPE, under a pressure of about 5 tons by using the Carvel press 

3851-0. 

 

7.5.16: Gel content calculation 

 

The amount of toluene insoluble fraction for the LLDPE functionalized films, obtained by 

using method A and B, was determined by extracting the functionalized films with boiling 

toluene for 16 h. The insoluble toluene fractions were dried at constant weight under 

vacuum. 

The insoluble toluene fraction was calculated as the following: 

Insoluble toluene fraction= 
��

�	
X100, 

where W1 and W2 are the weight of the original sample and of the insoluble toluene 

fraction, respectively. 
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CHAPTER 8 

CONCLUSIONS 

 

In this thesis the Nitroxide Radical Coupling (NRC) reaction between polymers 

macroradicals and TEMPO derivatives carrying different functionalities, was investigated. 

The obtained data allowed undoubtedly stating that: 

� the NRC reaction provided a versatile and convenient route for introducing 

different functional groups into polymer matrices by limiting the radical-induced 

side reactions of the polymer substrate; 

� the functionalization can occur both in the bulk and onto the surface of the 

polymer matrices; 

� the NRC reaction is able to functionalize different substrates: its high efficiency 

was indeed demonstrated for both polyolefins and polyesters modification; 

� the properties of the functional polymers were affected by the nature of the 

specific functional TEMPO groups used, and reflected their intrinsic chemical-

physical features; 

� the X-TEMPO detaching occurs at high temperatures, thus suggesting the>NO-C- 

bond stability at room temperature; 

� finally the obtained functional polymers may be seen as “activated compounds” 

which can be interestingly used later time as macroinitiators to synthesize tailored 

grafted polymer materials bearing peculiar features and characteristics. 
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