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Introduction

In the last decades, computational chemistry has established itself as an useful and powerful tool

for designing molecular systems and forecast their properties over a wide range of space and time

scales. In silico methods accelerate the design and discovery of novel materials with specific proper-

ties (e.g., mechanical, optical, pH responsive) as well as new chemicals with pharmacological activity.

The proper theoretical framework for the description of molecular systems at the atomic level are the

laws of quantum mechanics (QM). However, a satisfactory sampling of the phase space of large sys-

tems (up to a milion of atoms) is achievable only by employing classical methods, such as Molecular

Dynamics (MD) and Monte Carlo (MC) simulations [1]. These techniques are based on molecular me-

chanics (MM) rules, which assume molecules being composed by a set of atoms modeled as spheres

and linked together by springs. Electronic degrees of freedom are neglected, as entailed by the Born-

Oppenheimer approximation. Atomic motions are described by means of the classical laws, and the

potential energy surface (PES) is represented by a sum of analytical expressions with immediate phys-

ical meaning, aimed at describing bonded and non-bonded interactions between atoms. The integra-

tion the classical equation of motion is rather cheap, thus to allow to get structural and thermodynamic

properties in molecular simulations at a computational cost which is significantly lower if compared

to QM and hybrid QM/MM computations.

The complete set of functions and the corresponding parameters used in MM methods to describe

both intra- and intermolecular interactions in a chemical system is named force field (FF). At present,

a high number of FFs is available in computational chemistry, each to be used in a wide, yet specific

chemical domain, from organic liquids (as the OPLS force field [2, 3]) to biomolecules (e.g., AMBER

[4, 5] and GROMOS [6]) and minerals (e. g. INTERFACE [7], ClayFF [8]). In each of them, atoms are

organized in "atom types", i.e. chemical elements with a specific hybridization and a specific chemical

surrounding: identical atom types share the same FF parameters, and the same atoms (e.g., carbon)

can be described by multiple atom types (e.g., in a sp2 carbonyl group or in a sp alkyne). Transferability

of both functional forms and parameters is an important feature, since it enables the employment of

parameters developed on a small set of molecules to a wider range of chemical entities. The accuracy

offered by transferable force fields however is limited by many factors (first of all, the similarity of the

target molecule to those employed in the parameterization route and the thermodynamic conditions

employed in the simulations during the parameterization procedure) and it may be also insufficient

to guarantee the reproduction of several target properties of interest at the same level of the species

included in the training set. Moreover, the invoked generality of the parameters may undermine the

simulation of several chemical phenomena, such as spectroscopic data, the change of flexibility of

organic dyes when going from liquid solutions to more obstructing environments, and bulk properties

of liquids (as the static dielectric constant ε, density, structure, and many others).

With the growth of computer power and storage capacity, the role of classical simulation methods
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has become ever more relevant in life and material science. Increasingly complex systems can be simu-

lated by exploiting highly performing computing (HPC) facilities. In this scenario, there is wide margin

for improve the currently available MM models and gather new insights from theoretical investigations

with more detail and accuracy. Therefore, it is no coincidence that novel fitting methods and strate-

gies, aimed at overcoming the drawbacks mentioned above, have been developed in the last few years:

among them, innovative tools and software for the development of intramolecular FFs specifically tai-

lored for one molecule by fitting QM optimized energies, gradients and Hessian matrix have recently

attracted attention within the scientific community [9–13]. Parallel efforts are directed to the refine-

ment or the computation ex novo of atomic charges [14], through the employment of novel schemes

for electron density partitioning [15] or to the inclusion of virtual sites, which mimic somehow polar-

izability effects and correctly simulate hydrogen bonding patterns, within molecular topologies [16].

This thesis is devoted to improve classical simulations reliability through the application of novel

strategies for classical FFs optimization. To this end, MM and QM state of the art approaches have

been combined together and integrated in different protocols, devoted to the accurate parameteriza-

tion and classical MD simulations of molecular systems, to overcome current performances offered

by general parameters and to address new chemical problems of different kind. With this aim, the

employed FFs have been developed from scratch or re-parameterized only in some parts depending

on the circumstances, and showing how an accurate modeling, based on first principle computations

and not relying on any empirical parameters, allow to compute with accuracy a series of thermody-

namic, structural and spectroscopic properties of interest. In order to validate the optimized set of

parameters, the computed MD trajectories have been extensively investigated: the reliability of the

proposed parameters has been evaluated by comparing simulated results with available experimen-

tal data. In the cases of molecular probes force field optimization, the population of QM-predicted

conformational energy minima along the trajectory has also been considered. Furthermore, MD has

been opportunely integrated with QM methods (mainly routed in the density functional theory, DFT)

to compute absorption spectra, which are not obtainable with standard force field-based procedures,

in order to gain a further comparison with experiments.

The thesis is organized as follows. In the first part, the theory underlying the thesis work is briefly

reported. The second part focuses on the applications arising from the protocols explained in the first

part. The chemical investigations carried out in the course of this PhD are reported following, in as-

cending order, a sort of "degree of modification" of the used parameter set, from the first works (where

a low level of modification of the FF is applied) until to the last one, where a totally new parameteriza-

tion procedure is proposed.

Future perspectives concerning this research work are given in the last section. All the parameter

sets developed in this thesis are given in the Appendice.
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This part is organized as follows. In Chapter 1, a summary on classical force fields and most com-

mon functional forms currently available in the literature is given. In Chapter 2 a general overview on

MD technique (the main tool used in this thesis) is briefly reported. In this regard, MD simulations

have been used to

1. validate the developed FFs;

2. investigate on structural, dynamic and spectroscopic properties of the considered chemical sys-

tems.

Chapter 3 presents two algorithms for force field development: Joyce [9], which performs a parameter

optimization for the FF intramolecular potential, and LRR-DE, a new procedure for the generation

of non-bonded models for metal ions, developed in the course of this PhD. The analysis of the MD

trajectories have been performed by using a set of computational tools, which are outlined in Chapter

4.
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Chapter 1

Molecular Mechanics force fields

The total energy E of a molecular system is given by the time-independent Schrödinger equation

ĤΨ(r,R) = EΨ(r,R) (1.1)

where Ĥ is the Hamiltonian operator which describes both potential and kinetic energy and Ψ is

the wavefunction dependent on the electrons and the nuclei positions (r and R). Under the Born-

Oppenheimer assumption, the motion of electrons can be separated from the motion of the nuclei, due

to the large difference between elctron and nuclear masses: electrons moves faster and they readapt

their positions instantly to nuclear motions. Therefore, the wave function can be factorized into an

electronic and a nuclear part, and the electronic energy (Eel ) can be computed for fixed nuclear po-

sitions. Eel defines the PES over all the possible nuclear coordinates: a chemical systems can be con-

sidered as a ball moving on the corresponding PES, whose sampling by means of dynamic simulations

allow to get a lot of molecular properties.

At present, several approximation levels can be used in order to model the PES (from MM to DFT

and coupled-cluster methods). In force field methods, it is calculated as a sum of pairwise potentials,

dependent on the spatial coordinates of the nuclei. The specific decomposition depends upon the

force field in use. One way of representing the potential energy of a molecule in vacuum is the follow-

ing:

Ei ntr a = Estr etch +Ebend +ERtor s +EF tor s +Enb (1.2)

Here, the intramolecular energy depends on five terms: the first four are due to bonded-atoms in-

teractions, and single energy contributions derive from displacement from equilibrium values. Estr etch ,

Ebend , ERtor s and EF tor s correpond to the stretching, bending, rigid and flexible torsions potentials.

The last (Enb) term refers to non-bonded contributions: both 1-4 interactions (computed between

end atoms involved in a dihedral angles, often scaled applying an empirical factor) and those between

atoms separated by more than three bonds are included in such term. The first derivative of the po-

tential Ei ntr a computed on atom i corresponds to the atomic force on that atom.

Eq. 1.2 refers to a particular class of force field, i.e. the empirical non-reactive ones. Such kind

of classical models have been used within this work: the corresponding terms, well adopted within

widespread MD codes, are discussed in the next section. It has to be stressed that alternative ways of

modeling the PES of a system, such as polarizable and reactive models, can be adopted depending on

the chemical phenomenon that needs to be studied.
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1.1 Force field terms

1.1.1 Bonded interactions

The most known approach to model chemical bonds in a molecule is to rely on Hooke’s law formula,

which assign quadratic penalties to the displacement from the reference bond length, according to

V (r ) = 1

2
k s

i j (bi j −beq
i j )2 (1.3)

where k s
i j is the force constant associated to the i j bond, bi j is the measured bond length and beq

i j is the

bond length at the equilibrium. Anharmonic potentials too, with asymmetric energy profile and zero

forces at infinite distance can also be used. Among them, the Morse potential [17], has the following

form

V (r ) = Di j [1−exp(−βi j (bi j −beq
i j ))]2 (1.4)

where Di j and βi j are the well depth and the corresponding steepness, respectively. The Morse poten-

tial is used to describe bond formation and bond breaking, since it considers the existence of unbound

states: for this reason it is adopted in reactive force fields in modeling chemical reactivity.

The Hooke’s law is used also to describe deviation of angles from their equilibrium values:

V (θ) = 1

2
kθi j k (θi j k −θeq

i j k )2 (1.5)

where kθi j k is the force constant of angle îjk, θi j k and θ
eq
i j k are actual angle and corresponding refer-

ence value. Boradly speaking, values of kθi j k are generally lower if compared to k s
i j k , meaning that

lower amounts of energy are required to deform angles and move them from their reference positions.

GROMOS force field uses a cosine-based function for angle vibrations. A harmonic corrective term on

the distance between i and k (i.e., the end atoms of the angle), in addition to Eq. 1.5, is used in the

CHARMM force field [18] (known as the Urey-Bradley potential).

In flexible molecules, dihedral angles affect molecular conformation. Two different kind of dihedral

angles can be defined: rigid torsions, modeled through standard harmonic potentials, as the ones

described by equation 1.3 and 1.5, and flexible torsions. Improper dihedral angles, often included

in force fields in order to keep a group of atoms fixed at a particular geometry (e.g., planar aromatic

rings), are included in the first category. In the other one, dihedral angles are modeled using periodic

functions (cosine series expansion). A typical form is the following:

E F
tor s = kφi j kl (1+ cos(nφ−γ)) (1.6)

Here, kφi j kl is the force constant which governs the flexible torsion defined by the i , j , k and l atoms. γ

is the phase factor, and it determines where the function passes thorugh a minimum. The multiplicity

value instead defines the number of minima along a complete scan of the i j kl dihedral angle. Mag-

nitudes of kφi j kl are notably lower if compared to bonds and angles force constants: for some systems,

significant deviations of dihedral angles from their equilibrium states can be easily observed in MD

simulations of few hundreds of picoseconds.
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The parameterization of the bonded interactions is usually performed by means of spectroscopic

experiments: also quantum mechanics calculations on the isolated molecule can be used.

1.1.2 Non-bonded interactions

Non-bonded interactions are essentially of van der Waals (vdW) and electrostatic nature. Usually mod-

elled as a function of the inverse of the distance beetween two non-bonded atoms, force field non-

bonded part is important for chemical structure determination: in fact, both van der Waals and elec-

trostatic interactions have a key role in determining the global structure of large molecules, e.g. pro-

tein folding. Furthermore, they contribute to intermolecular interactions and macroscopic properties.

vdW interactions, in particular, have been shown to dominate the heats of vaporization of nonpolar

organic molecules and have effects on several other condesed-phase properties, such as density and

molecular volumes.

Depending on the force field in use, 1-4 interactions (i.e., those between non-bonded atoms which

are separated by three bonds) can be scaled down by using empirical factors. Just for example, OPLS

uses a 0.5 scale factor for both electrostatic and vdW interactions; AMBER applies 0.8333 for electro-

statics, while it scales vdW in equal measure as OPLS. Scale factors for non-bonded interactions are

not considered in GROMOS force field.

van der Waals interactions

The most common way to think about vdW forces is to consider two non-bonded atoms. In a clas-

sical way, such atoms could be seen as two spheres with an atomic radius, rvdW : at infinte distances

there are no attractive forces between them. As the two atoms approach one another, dispersive forces

beetween them arise, mainly due to the correlated fluctuations of the electron clouds. This results in

the formation of two dipoles. Such interactions are commonly named London forces and they have

an inverse sixth power dependence on the distance between the two considered atoms [19]. The most

popular function used to describe Van der Waals interactions is the Lennard-Jones potential [20] (Eq.

1.7).

V (r ) = 4εi j

[(
σi j

ri j

)12

−
(
σi j

ri j

)6]
(1.7)

In such equation, rij indicates the distance beetween the considered atoms i and j,σi j is the separation

at which the energy value is zero and εi j is the minimum (the well depth). The well depth parameter

is often expressed in units of temperature, as ε/kb , where kb is the Boltzmann’s constant. Often, the

same law is expressed in function of the distance at which the energy value matches the well depth, rm.

In this case, the LJ function is

V (r ) = εi j

[(
rm

ri j

)12

−2

(
rm

ri j

)6]
(1.8)

It is easy to demonstrate that the value of rm correspond to 21/6σ, since, at this separation, the first

derivative of the energy with respect to the distance r is equal to zero.

The following more simplified formulation

V (r ) = Ai j

ri j

12

− Bi j

ri j

6

(1.9)
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is commonly used in molecular simulation packages. Here, Ai j = 4εi jσ
12
i j and Bi j = 4εi jσ

6
i j .

In order to describe vdW behavior, the potential function must contain both an attractive and a

repulsive contribution: as said before, it is theoretically demonstrated that the attractive term has a

dependence on the inverse of the sixth power of the distance. As regarding the repulsive contribution,

there is no theoretical justification to the r−12 dependence. The Buckingham potential instead has a

more reliable (from a theoretical point of view) repulsion term [21]:

V (r ) = Abi j exp(−Bbi j ri j )− Bi j

r 6
i j

(1.10)

where Abi j , Bbi j are constants specific for atoms i and j in the Buckingham potential. Bi j is the same

as in Eq. 1.9. Another functional form with an exponential dependence is the already shown Morse

potential (Eq. 1.4). In spite of their agreement with quantum mechanics theories, exponential forms

for the VdW potential are not so popular and this fact is mainly due to their excessive computational

cost. It has to be mentioned that some mathematical operations, like square roots and exponential

functions are computationally more expensive if compared to more simple multiplications and addi-

tions. Force field calculations use atomic cartesian coordinates as variables in the energy expression

and so the determination, for example, of a distance between two atoms involves the use of a square

root. This value is directly employed in the functional of the exponential expression, while it compares

raised to even powers inside the LJ potential. Hence in the latter case the exact value of the distance

is not needed. Furthermore, it has to be considered that the main differences between the functional

forms above mentioned regard only the repulsive contribution to the whole potential, which is less

important during non-bonded energies calculations since it arises under the rm value.

Polyatomic systems are made up by different atom types, and if a cutoff value has not been set,

the vdW energy ordinarily has to be computed for all the atom pairs. The application of the potential

described above, however, requires the knowledge a priori of the σ and the ε parameters. Neverthe-

less, these factors are usually reported as single values for each individual atom type. Currently it is

not feasible to calculate individual parameters for all the atom-pair interactions of interest (i.e., the

differentσi j and εi j values). Thus, a way to combine single atom type parameters is necessary in order

to calculate long-range interactions between different atom types. Moreover, good results for the vdW

interactions between unlike atoms will be attainable only if appropriate combination rules are used.

Current molecular mechanics force fields use either the geometric mean to express the well depth εi j ,

while different solutions are adopted for the vdW minimum distance rm between atom i and atom j.

The geometric mean used by OPLS and GROMOS (generally named as the OPLS combination rule)

tends to underestimates the experimental values, specially when the considered atoms differ substan-

tially. In a similar way, but with a lesser degree, performs the arithmetic mean rule, used by AMBER

and CHARMM (Lorentz-Berthelot combination rule [22, 23]). Anyway, the minimum energy distance

tends to fall closer to that of the larger atom in the considered pair. Broadly speaking, both OPLS and

Lorentz-Berthelot rules consider parameters of dissimilar atoms as almost an additive. Other, more

specific rules, as the Fender-Halsey [24] and the Waldman-Hagler [25], treat the interaction between

substantially different atoms to be significantly weakened [26].

As mentioned above, the determination of good-quality energy parameters in the evaluation of

vdW interactions is a very important step during force fields parameterization, because of the key role
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that such factors play on several macromolecular properties. Different experimental techniques, as

beam scattering [27] and cromatography [28], have been used many decades ago in order to estimate

potential parameters. Moreover,σ and ε have been determined for polar molecules like NH3 and water

by viscosity measures and diffusion studies [29] correlating transport properties with the LJ potential.

The analysis of crystal packing and X-ray structures is an alternative experimental practice used to

calculate energy parameters at the atomistic level. In fact, since crystalline structures are determined

by the balance between repulsive and attractive forces between molecules inside a crystal, theoretical

studies on these systems could shed light on intermolecular forces potential [30, 31].

Taking into account the rm value, it is well known that it could be approximated as the sum of the

atomic vdW radii (rvdW ) of the two interacting atoms. However, the selection of a set of vdW radii

appears unfortunately arbitrary, due to the variability of contact distances among the different X-ray

data as the atoms experience different environment and are more or less compressed. In the case of

enough crystal structures and available zero-point density data, one could pick for that value of rvdW

which yields the correct packing density ρO at 0°K [32].

Looking for a periodical equation for the vdW radii, some semiempirical rules were developed.

Correlations of these parameter with electron density values, with the de Broglie wavelenght λb of the

outermost electrons (that assumded rvdW = λb/2) and with the covalent radius rc were made [33].

Pauling, for example, proposed rvdW = rc +0.8Å for VA-VII elements [34]. One of the most easy way to

test the validity of experimentally determined potential parameters may be the second virial coefficient

(B(T )) of a gas composed by the considered atoms [35]. Values of B(T ) are computed as a function of

rvdW and ε, which are modified until B(T) coincides with the experimental datum at the considered

temperature. Since the curves of rvdW versus ε are temperature dependent, values of LJ energy param-

eters can be determined from an overlap region, where every curves met together. In this region the

parameters have to be found in order to have the best fit with the experimental curve of B(T).

Nowadays most used methods in the determination of the ε and σ could be denoted as ’fitting

methods’. Thanks to the increase of computational performances, it is usual to perform molecular

simulations where non bonded parameters are modified in a iterative way, in order to reproduce ex-

perimental data [36]. In fact, although it is well accepted that parameters assigned to one atom in a

molecule are quite well transferable to describe the same atom in a different molecule, often some sort

of optimization is needed. This is particularly required if several experimental properties have to be

contemporaneously reproduced. These procedures start with an initial guess of the force field param-

eters, which are then used to perform several computer simulations. By these, different properties, like

vapor pressure and caloric properties are computed and a cost function (usually gradient-based) cal-

culates the deviation of the predicted quantities from the experiments. Then, from these results, a new

set of parameter is achieved and used in a next ensemble of simulations, leading to a less deviation

from the experimental observables, and so on. This process continues, unless a minimum is reached

[37]. OPLS and GROMOS non bonded parameters for alkanes were developed in such manner, using

heat of vaporization, C-C radial distribution functions and heat of vaporization as target properties

[38, 39]. Recent procedures have also highlighted the dependence of observables to a single LJ param-

eter: e.g. surface tension γ at the liquid vapor interface could be modulated varying ε, while density

is closely related to the σ factor. This could be exploited by developing systematic procedures where

specific parameters could be modified leaving almost unchanged the others [40]. Unfortunately, other
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parameterization studies have shown that very different values of the LJ parameters can well repro-

duce condensed phase properties. This problem, known as the parameter correlation problem [41]

indicates that often more information beyond the macroscopic observables is needed. The reproduc-

tion of ab initio data on interactions between rare gas atoms and model compounds could represent

a solution to this issue [42]. LJ parameters are selected in order to reproduce interaction energies be-

tween gas atoms and model compounds computed at the QM level. Only in a second step, such values

are modulate in order to yeld condensed-phase properties in good agreement with experiment. How-

ever, due to the required computational cost to determine accurate parameters able to describe vdW

interactions from quantum mechanics calculations, fitting procedures remain widely used.

Electrostatic interactions

In MM, electrostatic potential in a molecule is computed as a sum of pairwise interactions between

partial charges located at the centre of the nuclei. In classical force field, this issue is achieved by

applying the Coulomb law

V (r ) = qi q j

4πε0ri j
(1.11)

where qi and q j are partial charges located on atom i and j , respectively. Within this formalism,

charges are fixed, i.e. they do not depend on molecular conformation and they are not influenced

by alterations in the local enviroments which they perceive during a MD simulation. Polarizable force

fields in principle should be more accurate than fixed charge force fields, but for many systems of in-

terest, current fixed-charged models may provide results that are comparably reasonable in aqueous

solution to polarizable contemporaries [43]. Despite several limitations, which derive mainly from the

isotropic distribution around the nuclei, point-charges model using Coulomb equation is still largely

used: forces due to electrostatic interactions (i.e., the first derivative of Eq. 1.11) are easy to compute

and directly act on the nuclei, so to be really useful in MM simulations.

Since their importance in chemistry, great attention have been paied in developing robust methods

to compute partial charges during the years. These efforts are usually classified in four main categories,

depending on the fitting scheme adoptetd and/or the target property of the fitting procedure itself.

1. Class I charges are not dependent on QM quantities and they are computed by using intuitive

approaches, usually based on electronegativity concepts. As an example, the method proposed

by Marsili and Gasteiger in 1980 [44] can be cited: it is a iterative process based on atoms elec-

tronegativity, where atomic charge quantity Q is transferred from low- to high-electronegative

atom types at each step k. The electron charge transferred depends on the electronegativity dif-

ference between the atoms and it is strictly modulated by k, since Q ∝ f k , where f is a dumping

factor of value 0.5. Another model belonging to this first category is the QEq (charge equilibration

model) by Rappè and Goddard [45]. The QEq model requires as input data the ionization poten-

tials (IP), electron affinity and atomic radii of the different atom types of a molecule. Charges

are computed taking into account shielded electrostatic interactions between all charges: point

charges therefore depend on molecular geometry, and they are computed during MD simula-

tions. QEq is used within the Universal Force Field (UFF) [46], so to be extended to all the ele-

ments of the periodic table. Class I charge models are known to be fast, and they are used for

chemoinformatic purposes [47].
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2. Class II charge models include population analysis schemes, such as Mulliken [48], Hirshfeld

[49] and Lowdin [50] population analysis. Atomic charges are obtained from the partitioning of

the electron density (obtained at the QM level) into atomic populations following orbital-based

processes.

3. Class III charges are derived in order to reproduce physical observables computed from the wave

function. Here, only the molecular electrostatic potential (MEP) as a property to be fitted is

considered. The ESP (again, from "electrostatic potential") procedure [51] is a lest-squares algo-

rithm which assign the best atomic charge set able to reproduce the MEP, computed at QM level,

around the molecule. Different points, located on a cubic grid encompassing the vdW surface of

the molecule, are considered for the evaluation of the MEP. The restrained-ESP (RESP) method

[52] tries to overcome some of the typical problems of the ESP procedure, such as the conforma-

tional dependence of computed charges as well as their high absolute values. RESP charges are

currently adopted in AMBER.

4. Class IV charges are developed using either Class II or Class III charges as precursor set trans-

formed in a new one by a semi-empirical mapping, which is optimized so that the new set

of charges better reproduce a physical observable (e.g., molecular dipole moment or the MEP

computed at a high level of theory) than the precursor one. By using experimental quantities,

Class IV charges are designed to adjust for systematic errors that occur systematically for a given

level of electronic structure [53]. Class IV charges deriving approaches are commonly defined

as Charge Models (CM). Last CM, CM5 [54], uses Hirshfeld population analysis as input charges,

which are less sensitive to basis set size as well as the choice of the basis. Such model has been

parametrized on a large training set of more than six hundred of instances, using the data for 26

elements.

1.2 A survey of existing force fields

In the context of classical simulations, force fields encode and predict the chemical traits of the simu-

lated chemical system. Therefore, the choice of the force field to be used is of paramount importance

for any computational chemistry investigation. As already anticipated in the Introduction, FF param-

eters are obtained in order to reproduce experimental and/or high level QM data for a selected set of

similar molecular target. This practice allows for the transfer of the optimized parameters to chemical

entities with similar features to the one included in the original target set. A common way of FF clas-

sification is based on the degree of transferability of the corresponding parameter set [55]. Thus, in

the first group, FFs aimed at large transferability can be included, such as the ones designed in order to

cover the whole periodic table (e.g. UFF). A second large group is made up by FFs well focused on a spe-

cific class of chemical systems (proteins, lipid, organic molecules). A third group includes high-quality

force fields, properly derived in order to accurately reproduce a range of molecular properties, from

conformational structure to vibrational frequencies. Force fields which belong to this category (e.g.,

COMPASS [55]) feature complex yet flexible functional forms and off-diagonal cross-coupling terms.

At last, a series of algorithm and procedures devoted to the ad hoc parameterization of FFs specifically
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tailored for one molecules have to be mentioned. These tools are commonly employed when spectro-

scopic accuracy has to be achieved, thus that specificity for the investigated system is largely preferred

over transferability of the employed parameters.

In the following, a general but not exhaustive overview on currently available force fields is pro-

vided.

1.2.1 Biomolecules

From the beginning of the 80’s the modeling of proteins and macromolecules of biological interest

has been placed at the heart of computational chemistry. Current force fields for biological macro-

molecules look very similar to each other in their functional forms and often in the parameters: they

rely on fixed point-charges, they mostly employ the standard LJ potential (Eq. 1.9) for modeling attrac-

tive and dispersive interactions, and they use harmonic potentials for stretching and bending (Eq. 1.3

and 1.5) and Eq. 1.6 for flexible dihedral angles.

The first AMBER (Assisted Model Building with Energy Refinement) force field was released in 1984

[56]. Significant advances were done by Cornell et al. [57] with the Amber94 force field: bonded pa-

rameters were determined to reproduce structural and vibrational frequency data on small molecular

fragments that make up proteins and nucleic acids. Atomic charges were computed using a 6-31*

basis set with RESP fitting, while vdW parameters were iteratively varied during Monte Carlo simula-

tions until bulk properties were reproduced. Later versions have been focused on the improvement of

amino-acid side-chain and protein backbone dihedral angles description using NMR measurement as

reference data [5, 58]. In 2004, an extension of Amber aimed at including organic molecules have been

developed (that is, the General Amber Force Field, GAFF [59]).

The development of OPLS (Optimized Potentials for Liquid Simulations) was aimed initially at the

modeling of liquids. Original OPLS used a united-atoms paradigm: sites for non-bonded interactions

were placed on all non-hydrogen atoms and on hydrogens attached to heteroatoms or carbons in aro-

matic rings [60]. Later, OPLS moved to an all-atoms representation. Force field non-bonded parame-

ters were derived in order to reproduce several experimental properties [2], such as densities and heat

of vaporization, while stretching and bending paramaters have been adopted from AMBER. The re-

cent OPLS3 version [3] correctly deal with proteins as well as accurately predict protein-ligand binding

affinities.

CHARMM (Chemistry at HARvard Molecular Mechanics) force field was released together with its

simulation package in the early 1980s [18]. As in OPLS, also the initial CHARMM used a united-atoms

representation. Parameters were developed and tested mainly on gas-phase simulations, but this pa-

rameterization also used more sophisticated fits to quantum mechanics calculations, typically includ-

ing hydrogen bonded complexes between water and different molecular fragments [61]. Several im-

provements have been made during the years to reliably describe lipids [62]. The Charmm general

force field (CGenFF) [63] should be seen as an extension of the chemical space covered by the standard

CHARMM to include organic molecules such as drug-like compounds.

GROMOS (GROningen MOlecular Simulation) non bonded interaction parameters were obtained

at the beginnning from crystallographic data and atomic polarizabilities, and adjusted such that exper-

imental distances and interaction energies of individual pairs were reproduced for minimum energy

configurations [64]. Since then, the parameters have been deeply improved by exploiting the increase
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in computational power. Latest versions have been developed using free enthalpies of hydration and

apolar solvation for a range of compounds as target data, since the importance of such property in

many processes of biological interest [65].

1.2.2 Water models

Classical water models are parametrized in order to reproduce experimental data (radial distribution

function, diffusion coefficient, density, dielectric constant and so on). TIP3P [66] and SPC [67] are

among the simple water models commonly used in biomolecular simulations: they use three sites

(each on one atom) which are kept at a fixed geometry, and they slightly differ on both atomic charges

and LJ parameters. The TIP4P model adds one more site (without mass) along the bisector of the �HOH

angle at a 0.15 Å distance from the oxygen atom. TIP5P instead uses two dummy atoms negatively

charged, which represent the two lone pairs of the oxygen atom and leading to a tetrahedral geometry.

A more complex form than the one of the models already mentioned is used in the Toukan and Rahman

model [68]: here, the structure is assumed to be flexible and the O-H bond is described anharmonic.

New versions of the TIP3P and TIP4P models have been recently developed [69] which exhibit a better

reproduction of several experimental properties (the dielectric constant, in particular).

1.2.3 Minerals

ClayFF [8] and INTERFACE [7] are two force fields specially derived to model inorganic compounds

and their interfaces with fluids, using the same energy expression as the one of the biomolecular FFs.

PMMCS [70] instead employs a three-terms interatomic potential, made by the Coulomb and Morse

potentials together with the repulsive contribution C /r 12 term of the LJ potential.

1.2.4 Reactive force fields

In this category reactive models, which explicitly take into account bond formation and breaking in

order to model chemical reactions, have to be included. ReaxFF [71], developed in 2001, used a bond-

order potential, which provide a general relationship between bond distance and bond energy that

leads to proper dissociation of bonds to separate atoms. The terms of the potential have been designed

in order to go to zero as atoms dissociate. Other contributions in the force field take into account

over- and undercoordination penalties and conjugation effects on the global energies. ReaxFF have

been developed initially on hydrocarbon compounds, aimed at reproduce heats of formation, bond

lengths and angles data available in the literature. Experimental data of both non-reactive and reactive

behavior were fairly reproduced. The same model has been applied also to other chemical systems

such as metal ions in water and metal-catalyzed reactions [72, 73].

1.2.5 Polarizable models

Polarization refers to the ability of charge distribution to rearrange itself as a consequence of a sur-

rounding electrostatic field. Respect to standard, fixed charges models, polarizable force fields offer an

improvement in functional forms by including many-body effects.
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A way to model polarization is to consider variable point charges: the combination of the fluctu-

ating charge QEq model [45] based on electronegativity to model electrostatics with standard OPLS

has been applied to small peptides to predict energetics of different configurations [74]. AMOEBA

[75, 76] replace the partial charges model with contributions of both permanent and induced multi-

poles. The polarization is achieved through a mutual induction scheme which requires an induced

dipole to polarize all the other sites, until all the induced dipoles at each site reach convergence. The

computational cost offered by such models is higher with respect to standard non-polarizable models,

although less expensive if compared to hybrid QM/MM approaches. A cheaper way is offered by the

Drude oscillator model [77], which uses an additional particle to be attached to each polarizable site

to account for polarizabiltiy, thus preserving the classical particle-particle electrostatic interaction of

non-polarizable force fields.The polarizable version of CHARMM is based on the Drude oscillator [78].

1.2.6 Algorithms for high-quality FFs

As already stressed in this document, general transferable force fields may fail in the reproduction of

chemical properties which are of paramount importance. Indeed, only a small part of the chemical

space is covered by current parameterizations. Even if universal force fields as the UFF are aimed to

deal with a molecular system of every kind, they are insufficient for many purposes. In order to fill this

gap, many routines have been developed to accurate parametrize one chemical system, in a particu-

lar electronic configuration, by exploiting specific reference data and minimizing a specific objective

function.

The force-matching approach [79] has been applied to parametrize non-polarizable force fields (of

the GROMOS form) by computing atomic forces at the QM level during QM/MM MD simulations [80].

The method optimizes all the interaction parameters, except for the vdW ones, which are retained from

pre-existing sets of parameters. The atomic charges are derived at first by reproducing the electrostatic

potential and forces experienced by the MM part of the system; then, the contribution given by the

computed charges and the used LJ parameters is subtracted by the atomic forces in the QM region: the

remaining part is used for the fitting of the bonded part of the optimizing force field.

Other tools use the Hessian matrix computed at the QM level as a reference quantity in order to

optimize the bonded part of the force field [10, 81]. The improvement of bonded description is the

main goal of the Paramfit tool [12] by fitting high level energy and forces. GAAMP [12] optimizes both

standard as well as Drude polarizable atomic models, using existing parameters as initial data; then,

electrostatics is parametrized by using ESP and the QM-level interactions between water and the con-

sidered molecule as target data, and torsion potentials are refined to match QM energies of different

conformers.

Efficient methods able to optimize new, more demanding functional forms (as the Class 3 FFs)

have been recently developed. ForceBalance [13] gives high freedom to the user in the choice of the

potential form and reference data. To this end, this tool is able to optimize both linear and non-linear

parameters (as the exponential parts of the Buckingham and the Morse potentials). Moreover, the

objective function is regularized in order to i) prevent from the overfitting to the target data, and ii) to

avoid large and unphysical values of the optimized parameters.
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Chapter 2

Molecular Dynamics

Molecular Dynamics (MD) simulations solve Newton’s equation of motion (EOM) for a system of N

interacting particles [82]:

mi
∂2~ri

∂t 2 = ~Fi i = 1,2, . . . , N (2.1)

where ~ri are the coordinates of particle i , t is the time, and ~Fi is the sum of the forces acting over

particle i :

~Fi =−∂V

∂~ri
(2.2)

where the potential energy V (~ri ) is a function of the types of atoms in the system, of their relative

distance and parameters. EOM is solved at discrete time intervals, saving the coordinates (and in some

cases the velocities too) of all atoms in the system as a function of time (i.e. storing a trajectory of the

simulated system). Following the ergodic hypothesis, the average of a observable over the simulated

time corresponds to the average over the statistical ensemble in use. Hence, macroscopic properties

can be extracted performing time averages of the saved coordinates. Table 2.1 shows the global MD

algorithm.

The use of classical mechanics at normal temperatures is usually a good approximation. However

very light atoms, most notably hydrogen atoms, show quantum mechanical behavior in certain situ-

ations such as tunneling phenomena or hydrogen bonding formation. Moreover in MD simulations

covalent bonds and bond angles are usually approximated as classical oscillators. A classical approx-

imation can give a reasonable description of quantum oscillator as long as the resonance energy, hν

is small enough compared to kB T . At room temperature this value is about 200 cm−1, i.e. very low

compared to the energies of common covalent bonds such as the covalent C-C bond stretching. This

means that, when performing simulations, both a correction to the energy of classical oscillators or

constrains to the atoms can be applied. Constraints are used very often in classical simulations be-

cause this allows to increase the integration time step (neglecting the higher oscillations) and thus to

perform longer simulations at a reasonable time (vide infra).

2.1 Integration of the equations of motion

The equation of motion is integrated using finite difference methods. The information on the state of

the system at time t are used to calculate the forces at time t +δt and then to predict the new positions

at time t +δt (δt is the integration step). If the new position of a particle at time t +δt , ~r (t +δt ), is
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1. Input and initial conditions
Initial coordinates,~r , of all atoms in the system

Initial velocities ~v of all atoms in the system
Calculation of the potential energy V as a function of~r and ~v

⇓
2. Force calculation

The force exerted on each atom is
~Fi =− ∂V

∂~ri

calculated taking into account non bonded interactions between atom couples
~Fi =∑

j ~Fi j

bonded interactions (that can depend from 2 to 4 atoms)
geometrical constraints and/or external forces

The kinetic and potential energy and the pressure tensor are calculated
⇓

3. Position and velocity update
Atomic motion is performed solving with numerical methods

Newton’s equations of motion
~Fi
mi

= d 2~ri

d t 2

or
d~ri
d t =~vi ;~ai = ~Fi

mi

Coordinates, velocities, energies... are saved in the trajectory

steps 2,3,4 are repeated up to the established number of time steps

TABLE 2.1: An overview of the MD algorithm.

expanded in Taylor series:

~r (t +δt ) =~r (t )+~v(t )δt +~a(t )
δt 2

2
+O(δt 3)+·· · (2.3)

where~r and ~a are the velocity and acceleration at time t . In the precedent equation, ~a = ~F
2m (~F is the

force acting on the particle at time t ), so that an analogous expansion of~r for negative times can be

written:

~r (t +δt ) = ~r (t )+~v(t )δt +
~F (t )

2m
δt 2 +O(δt 3)+·· · (2.4)

~r (t −δt ) = ~r (t )−~v(t )δt +
~F (t )

2m
δt 2 −O(δt 3)+·· · (2.5)

Summing side by side these two equations:

~r (t +δt ) = 2~r (t )−~r (t −δt )+
~F (t )

m
δt 2 +O(δt 4) (2.6)
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The forces are calculated once per cycle, and a trajectory obtained with this algorithm is time re-

versible. The velocity is no present in the algorithm and can be approximated as

~v(t ) = ~r (t +δt )−~r (t −δt )

2δt
(2.7)

This algorithm for calculating the new positions is known as the Verlet algorithm [83]. Another time

reversible method used to integrate the equations of motions is known as the leap-frog algorithm [84].

It uses the positions at time t and the velocities at time t − δt
2 . Positions are calculated subtracting to

the series expansion of~r (t +δt ) that of~r (t ) at time t :

~v(t + δt

2
) = ~r (t − δt

2
)+

~F

m
δt +O(δt 4) (2.8)

~r (t +δt ) = ~r (t )+~v(t + δt

2
)δt +O(δt 3) (2.9)

Each cycle of integration requires the calculation of ~r (t +δt ), ~v(t + δt
2 ), and of the acceleration

~F
2m .

Velocities at time t , needed to calculate kinetic energy (and consequently other properties such as

temperature and pressure) are obtained by:

~v(t ) = ~v(t + δt
2 )+~v(t − δt

2 )

2
(2.10)

The leap-frog algorithm has the advantage of providing a direct method to calculate the velocity which

provides a better precision and a way of direct control of the temperature of the system (by calculating

the kinetic energy).

2.2 Boundary Conditions

The common way to minimize edge effects in the simulated (finite) system in MD is to adopt periodic

boundary conditions (PBC) when surface effects are not of interest. In a system made up of 1000 atoms

arranged in a 10× 10× 10 cube, nearly half the atoms are on the outer faces, and these will have a

large effect on the measured properties. Even for a system consisting of 106 atoms, the surface atoms

amount to 6% of the total, which is a relevant part of the whole assembly. Surrounding the simulation

box with replicas of itself takes care of this problem. Provided the potential range is not too long, the

minimum image convention assures that each atom interacts with the nearest atom or image in the

periodic array. In the course of the simulation, if an atom leaves the basic simulation box, attention

can be switched to the incoming image.

Calculations exploiting PBC are rather expensive, since they require a space-filling box once it is

replicated across each dimension. Moreover, it is worth noting that the imposed artificial periodic-

ity can lead to artifacts when considering properties which are influenced by long-range correlations.

Among them, effects on the counter ion distribution, conformational equilibria and energetic bias in

the simulation of charged systems can be included. Special attention must be paid to the case where

the potential range is not short: for example for charged and dipolar systems. Usually long range forces

are not calculated beyond a certain cutoff distance to save computational time. Outside the cutoff
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range the forces are calculated using lattice sum methods (like the Ewald sum method, see next sec-

tion) or by a simple truncation. The use of the minimum image convention implies that the cutoff

radius cannot exceed half the box side (or half the shortest box vector for a non cubic box). To further

reduce the simulation time a list of neighbors is often used: this is a list of all the atoms in the cut-

off range of atoms i . Because in liquid systems atoms are continuously entering or leaving the cutoff

sphere the neighbor list is compiled using a greater range and updated every few steps.

To avoid PBC-induced spurious effects, non-periodic boundary conditions (NPBC) can be em-

ployed. The hard part of these models is related to the proper description of edge effects introduced by

the presence of an artificial confinement of the system. To this end, restraints to the sphere boundary

atoms or a proper modeling of the interactions between the simulated system and the wall of the cavity

via elastic collisions have been evaluated in the literature [85–88].

2.3 Long range electrostatics

Suppose a system of N positively and negatively charged particles, located in a cube with side L. The

system is periodic (i.e., PBC are used) and as a whole is electrically neutral, i.e.
∑

i qi = 0 The Coulomb

potential here can be written as:

VCoul = 1

2

N∑
i=1

qiΦ(~ri ) (2.11)

Φ(~ri ) =
′∑

j ,n

q j

|~ri j −nL| (2.12)

where Φ is the electrostatic potential at the position of ion i and the prime on the summation indi-

cates that the sum is over all periodic images n and over all particles j , except j = i if n = 0. Equation

2.11 cannot be used to compute the electrostatic energy, because the sum is only conditionally conver-

gent. Now every particle charge qi are assumed to be surrounded by a diffuse charge distribution (say

a Gaussian distribution) of the opposite sign, such that the total charge of this cloud exactly cancels qi .

In that case the electrostatic potential due to particle i is due exclusively to the fraction of qi that is not

screened. At large distances, this fraction rapidly goes to 0, and the contribution to the electrostatic

potential at a point n due to a set of screened charges can be easily computed by direct summation.

However, a correction for the screening charge cloud on every particle must be added. This is equal

to adding a smooth charge density. There are three contributions to the electrostatic potential: i) the

one due to the point charge qi , ii) the one due to the (Gaussian) screening charge cloud (with charge

qi ), and iii) the one due to the compensating charge cloud with charge qi . If the Coulomb self in-

teractions are not excluded (correcting for them afterwards) the compensating charge distribution is

not only a smoothly varying function, but it is also periodic. Such a function can be represented by a

(rapidly converging) Fourier series, and thus can be easily evaluated in a numerical implementation.

The single slowly-converging sum of equation 2.11 has been converted into two quickly-converging

terms: the Fourier series for the screening and compensating charge clouds and the direct sum of the

screened charges. The use of a fixed cutoff range makes the Fourier part of the Ewald summation scale

as O (N 2) making the technique inefficient for large systems. To improve computational efficiency it is

possible to apply discrete Fast Fourier Transform methods, distributing the charges on a mesh. This
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significantly decreases the computational cost. Widely used mesh based approaches are the PPPM

(Particle-Particle Particle-Mesh) and PME (Particle Mesh Ewald) techniques [89, 90].

2.4 Geometric constraints

In order to gain computational time, the time step can be increased by freezing the fastest molecular

motions, such as the intramolecular vibrations and rotations. This can be achieved imposing a set

of geometrical constraints that keep the constrained distances and angles in a threshold from a given

value. One of the most common methods used to restrain molecular motion is the SHAKE algorithm

[91]. At each simulation step, after the integration of motion have been calculated, SHAKE transforms

the set of non constrained coordinates {r ′} in the set of constrained coordinates {r ′′}; this is done by

the Lagrange multipliers method. If σk is the generic equation of a constrain, then

σk (~r1, . . . ,~rK ) = 0 k = 1, . . . ,K (2.13)

~fi =− ∂

∂~ri

(
V +

K∑
k=1

λkσk
)

(2.14)

~gi =−
K∑

k=1
λk

∂σk

∂~ri
(2.15)

where λk is the Lagrange multiplier, ~fi is the generalized force and ~gi is the force associated to a con-

strain. The use of SHAKE involves the resolution of a system of K second order equations , neglecting

the quadratic terms λ2
k . Water molecules often make up to the 80% of atoms in a simulation box and,

for this reason, a non iterative version of SHAKE (called SETTLE [92]) has been optimized to be used

with water.

Another method used to impose constraints is the LINCS [93] algorithm. It is a non iterative method

(it takes two steps only) based on the resolution of matrix equations. LINCS is faster and more stable

than SHAKE but can be applied only on bond lengths or isolated bond angles, such as the �HOH angle

in a water molecule, and thus can be used only for small molecules.

2.5 Starting conditions

To start a MD simulation an initial set of coordinates and velocities of all the atoms in the system is

needed. Furthermore the set of molecular bonds and angles of all the molecules present (i.e. the topol-

ogy of the system) may be specified. To avoid the superposition of atoms a structure from a precedent

simulation or from a crystalline structure is used. The initial velocities, if not available, are generated

using a Maxwellian distribution at the chosen temperature of simulation:

p(~vi ) =
√

mi

2πkB T
exp

(
− mi v2

i

2kB T

)
p( ~vi ) is the probability for particle i to have velocity ~vi . The integration time step choice is based on

the rate of the fastest process that takes place in the simulation: the integration algorithms are based

on the assumption that the average velocity in the time interval t (t +δt ) is equal to the instantaneous
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velocity in t + δt
2 . The time step is usually set at 0.1 times the relaxation time of the fastest process in

the system, e.g. if molecular vibrations and rotations are considered a time step of one or few fem-

toseconds is used (the relaxation times being in the range of 10−11−10−14s ). At the same time the time

step is chosen as long as possible to minimize the computational cost and perform a simulation with a

greater number of atoms and/or a longer simulation time. Table 2.2 shows the complete configuration

update algorithm including the application of geometric constraints.

Update algorithm

Given:
atomic positions,~r , at time t ,

atomic velocities, ~v , at time t − ∆t
2 ,

accelerations
~F
m at time t ,

(constraints are neglected)
total kinetic energies and virial.

⇓
1. Compute scaling factors µ e λ (see sec. 2.6)

⇓
2. Velocities are updated and scaled as λ:

~v ′ =λ(~v +a∆t )
⇓

3. Non constrained positions are computed:~r ′ =~r +~v ′∆t
⇓

4. Constrains are applied (with the SHAKE or LINCS algorithm);
new coordinates~r ′′

⇓
5. Velocities are corrected for constraints ~v = (~r ′′−~r )/(∆t )

⇓
6. Atomic coordinates and box dimensions are scaled:

~r =µ~r ′′;b =µb

TABLE 2.2: configuration update algorithm.

2.6 Temperature and Pressure control

In MD simulations the integration of the equation of motion keeps the total energy (i.e. the simulation

is performed in a microcanonical ensemble). This type of simulation is not well suited to be compared

with experimental data that is usually obtained at constant temperature and pressure. Moreover, due

to the approximations used to perform simulations, such as the cutoff long range interactions, there

is a need to monitor the temperature and pressure of the system. The temperature T of a system with

Nd f degrees of freedom is a function of the kinetic energy of the atoms:

Eki n(t ) =
N∑

i=1

1

2
mi~v

2
i (t ) = 1

2
Ng l kB T (t ) (2.16)

where kB is the Boltzmann constant, and T (t ) is the time dependent temperature. The thermal capac-

ity per degree of freedom allows to relate the total kinetic energy and the temperature: if (C d f
V ) is the
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thermal capacity per degree of freedom, then

∆Eki n(t ) = Nd f C d f
V ∆T (t ) (2.17)

The control of the temperature is performed by a weak coupling with an external thermal bath at the

temperature T0. If the temperature drifts from T0 it is slowly corrected using the following equation (τ

is a time constant)

∆Eki n(t ) = Nd f C d f
V ∆T (t ) (2.18)

This method is known as the Berendsen’s thermostat [94] and has the advantage of being able to change

the strength of the coupling between the system and the external bath (usually a short τ, about the

integration time step, is used during the equilibration phase, while a longer one is used during the

sampling). The heat flow to or from the system takes place changing the λ parameter:

∆Eki n(t ) = [λ2 −1]
1

2
Nd f kB T (t ) (2.19)

λ =
[

1+ ∆t

τt

(T0

Tt
−1

)]−1/2
(2.20)

where τt = τkB
2CV

; τt is different from τ (for aqueous solutions the ratio is usually τ/τt = 3). The same

relaxation method may be applied to monitor the pressure (which can be calculated fomr the virial) in

the simulation box, using the isothermal compressibility to correlate the changes pressure and volume

at time t .

The Berendsen bath method is very efficient for relaxing a system; however it does not generate a

canonical surface. To resolve this problem methods that allow to keep the temperature and the pres-

sure constant while generating a canonical surface have been developed, such as the velocity-rescale

method [95] for the temperature and the Parrinello - Rahman scheme [96] for pressure. This methods

make use of an extended Hamiltonian; the coupling with an external bath is achieved adding a friction

term to atomic velocities with a friction constant that is function of the current difference between

the actual and target parameter being monitored (i.e. pressure or temperature). It is noteworthy to

observe that with an extended Hamiltonian method an oscillating relaxation, which is very different

from the damped exponential relaxation (that is, the result of the Berendsen scheme and methods of

the first type), is obtained, and more time steps to reach equilibrium are needed.
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Chapter 3

Force field development

The following sections focus on two procedures made up of several algorithms devoted to the ad hoc

parameterization of chemical systems which have been used within this thesis work: the Joyce and the

LRR-DE procedures. These two methods are complementary: Joyce is in fact devoted to the parameter-

ization of the intramolecular part of a force field, while LRR-DE optimizes at present the non-bonded

part of a pair-wise model.

3.1 Joyce

Joyce [81] is a force field parameterization scheme which performs bonding parameters optimization

using QM data as reference. Recently, the program has been provided of a user-friendly GUI, called

Ulysses [9].

3.1.1 An overview

The intramolecular potential in Joyce has the general form

Ei ntr a = ∑
µ∈bond s

1

2
k s
µ(bµ−beq

µ )2+

+ ∑
µ∈ang l es

1

2
kθµ(θµ−θeq

µ )2

+ ∑
µ∈Rtor s

1

2
kφµ (φµ−φeq

µ )2 (3.1)

+ ∑
µ∈Ftor s

Nµ
cos∑
j

kδjµ(1+ cos(nµ

j δµ−γ
µ

j ))

+ ∑
i , j∈atoms

4εi j

[(
σi j

ri j

)12

−
(
σi j

ri j

)6]
+ ∑

i , j∈atoms

qi q j

4πε0ri j

The meaning of the single terms have been already illustrated in Chapter 1; i , j run over atoms, while

Rtor s and Ftor s indicate stiff and flexible torsions, respectively.

Given a molecule of interest, QM geometry optimization is performed initially. Such step is usually

performed at the DFT level. The program use the energy, gradients and Hessian matrix (i.e. energy

second derivatives with respect to the nuclear displacements) computed on the located global mini-

mum for the force field optimization. The other input needed by the program is a selection of internal

coordinates (ICs) which consist in all bond stretches, angle bendings and dihedral torsions that can
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be obtained from a given connectivity criteria referred to the reference conformation (here, the global

minimum). The chosen RICS will be used during the parameters fitting procedure. By default, Joyce

creates by itself a complete set of internal coordinates of the molecule. The input topology file may

contain non-bonded parameters (atomic charges and LJ - σ and ε - parameters), altough these values

are not optimized. Non-bonded parameters can be easily transferred from literature, or, as in the case

of point charges, re-computed at the QM level, using for instance one of the procedure outlined in

section 1.1.2.

QM input data obtained from the minimum energy conformation are enough to correctly optimize

the harmonic term of Eq. 1.2, thus to describe with some accuracy the molecular system close to the

minimum. Concerning flexible dihedral, which are modeled as a sum of cosine functions (see Eq.

1.6) , harmonic approximation may be insufficient, and additional data, as the one computed along a

whole dihedral angle scan, are required. Therefore, when flexible dihedral angles are present, energy

scan along such coordinates are performed: the torsion is varied from -180° to 180°, spaced by fixed

intervals, and the whole geometry is relaxed while keeping freezed at the chosen value the considered

dihedral angle.

The Joyce merit function has the following form

I i ntr a =
Ng eom∑

g=0

[
Wg

[
Ug −E i ntr a

g

]2
]
+

3N−6∑
K

W ′
[

GK −
(
∂E i ntr a

∂QK

)]2

g=0
+

+
3N−6∑
K≤L

2W ′′
K L

(3N −6)(3N −5)

[
HK L −

(
∂2E i ntr a

∂QK ∂QL

)]2

g=0

(3.2)

Here, K , L run over the normal coordinates, Ng eom is the number of sampled conformations; Ug is the

energy difference between the energy of the g t h conformation and the one computed on the global

minimum (g = 0). GK is the energy gradient with respect to the normal coordinate K , while HK L is the

Hessian matrix with respect to K and L. Both GK and HK L are evaluated at g = 0. The constants W ,

W ′ and W ′′ weight the several terms at each geometry and can be chosen in order to drive the results

depending on the circumstances. The energy, gradient and Hessian terms are normalized in order to

account for the different number of terms and to make the weights independent from the number of

atoms in the molecule.

The minimization of Eq. 3.2 leads to a linear problem, so that k s
i j , kθi j k and kφi j kl are analytically

derived. Equilibrium values instead are simply measured on the minimum geometry. The first term is

evaluated only if flexible dihedral angles are intended to be parametrized: in such case, Ng eom corre-

sponds to the number of scanned geometries submitted to partial QM optimization. Such process is

evaluated under the Frozen Internal Rotation Approximation (FIRA), which assumes that no relevant

geometry rearrangements are experienced by the molecule during the scan, except for the scanned

dihedral itself.

3.1.2 Current compatibilities

The code reads QM input files obtained through the Gaussian software [97]: in particular, energies,

gradients and Hessian matrix are read from a formatted .fchk file. The definition of all the ICs setting

up the force field are retrieved from a GROMACS [98] .top topology file. As main output file, a topology
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FIGURE 3.1: Flowchart of the Joyce protocol.

file of the molecule under examination with the intramolecular optimized parameters is written again

in the GROMACS topology format.

3.1.3 Parametrization protocol and validation

In this thesis, Joyce has been used for the parameterization of force field specifically tailored for single

molecules (Chapters 7 and 8). The following protocol has been applied:

1. Global minimum of the investigated molecule is located by means of DFT computations. Energy,

gradients and Hessian matrix are computed on the obtained geometry. Moreover, CM5 point

charge are computed. Environment effects are taken into account by means of the Polarizable

Continuum Model (PCM) [99]. The inclusion of polarization effects due to the surrounding en-

vironment allows for a better description for the species to be parametrized within the environ-

ments where they are intended to be simulated. However, the trasferibility of the developed force

field in other solvents, especially in those with significant different dielectric constants from the

one used in the continuum model, is reduced. The choice of the functional, as well as the ba-

sis set, depends on the nature of the system. B3LYP exchange-correlation functional has been

mainly used, because of its good compromise between accuracy and computational cost. Such

step is performed using the Gaussian software.

2. In the case of molecules with flexible torsions, which are known to affect molecular conforma-

tions, energy scans around each of them are performed. This step can be not applied to CH3

groups and similar, since their influence on the global structure determination is poor. Dihedral

angles are varied in steps of 30° (or less), and optimizing the obtained structure while keeping
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Molecules GAFF [59] Seminario [101] Parafreq [100] Joyce
H-peroxide - - 65.6 49.8

biphenyl 130.0 80.7 62.2 62.9
bicyclo[2.2.2]octane 73.5 129.4 68.6 52.9

nitro-pyridine 156.5 128.7 78.7 63.2
toluensulfonic acid 158.8 108.4 46.7 41.6

TABLE 3.1: Frequency related standard deviations (cm−1) with respect to QM reference values
obtained from MM vibrational frequencies computed with different force fields. All

the reported values are taken from Ref. [100].

freezed the considered soft variable. The employed level of theory is the same as the one used in

the previous step.

3. The Joyce program is used to generate and accurately select a suitable set of internal coordinates

to be parametrized. In particular the definition of bond, angles, torsions and improper dihedral

angles is performed at this step. A redundant set of coordinates (RICS) can also be employed.

4. Only harmonic terms are parametrized in first instance. Dependencies are applied on identi-

cal coordinates (i.e., those coordinates defined by the same atom types or which are equal for

symmetry reasons), in order to describe such variables with the same set of parameters.

5. A second parameterization step is performed. Here, only flexible dihedral angels are parametrized.

The number of cosine functions to be used for each torsion is established by the user, as well as

the corresponding multiplicity value: these choices have to be made in order to reproduce the

related reference QM energy scan. Identical dihedral angles within the same molecule are re-

fined only once, and the obtained parameters are transferred to the others. The harmonic part

terms are constrained to the values computed during step 4.

6. The obtained force field is validated by inspecting at first the square root of I i ntr a (Eq. 3.2), min-

imized by Joyce during the parameterization. Then, the normal mode wavenumbers, computed

at the force field level, are compared to the QM ones, by computing the standard deviation. In

the case of flexible dihedral parameterization, the force field energy scan is compared to the

single-point DFT energies to assess the quality of the fit.

The Joyce algorithm has been validated in Ref. [9] by looking at the predicted vibrational frequen-

cies and modes on a set of selected systems. In the target set both rigid (hydrogen peroxide, biphenyl,

bicyclo[2.2.2]octane) as well as flexible (nitro-pyridine and toluensulfonic acid) molecules have been

included, thus providing a heterogenous dataset. Moreover, this set was investigated in a previous

work with available force fields [100], allowing therefore for a direct comparison with previous tests.

The molecules have been parametrized following the procedure previously itemized, with few differ-

ences: in particular, no environment descriptions were provided during the QM computations, so to

increase transferability of the developed models among multiple solvents.

Through the inspection of Table 3.1 it is undeniable that the Joyce force fields are able to reproduce

rather accurately the vibrational behavior of the target molecules, giving frequencies in agreement or

even better than the ones provided by standard force fields and other parameterization methods. In

order to properly describe the flexibility of the floppy molecules included in the set, corresponding
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FIGURE 3.2: a) Structure of nitropiridine and toluensulfonic acid, with flexible dihedral angles
highlighted. b) Torsional profiles comparison between Joyce and QM counterparts
for the two flexible molecules. For toluensulfonic acid, dihedrals δ1 and δ2 are those

indicated in the top panel.

soft dihedral angles have been parametrized according to the workflow discussed above. Only two

molecules are considered in this regard: nitropiridine and toluensulfonic acid (corresponding struc-

tures are shown in 3.2a). The accordance for these molecules with the reference QM data is shown

in Figure 3.2b: the computed energy profiles correctly account for both conformation minima and

barriers along the investigated torsions.

3.2 LRR-DE

The linear ridge regression-differential evolution (LRR-DE) is a procedure able to optimize the non-

bonded part of a FF without altering the functional form and the parameters of the FF of the other

atoms of the system. Thanks to such approach, the obtained models can be integrated into consol-

idated MM packages and FFs. The method exploits a combination of machine learning techniques,

that in the recent years are increasingly finding applications in computational chemistry [102–104].

Inspired by recent works [105], LRR-DE combines the linear ridge regression technique with differen-

tial evolution [106, 107], a metaheuristic optimization algorithm which is effective in the exploration

of high dimensionality search spaces. In particular, LRR-DE uses linear ridge regression to optimize



32 Chapter 3. Force field development

the linear parameters of a tunable model and differential evolution to optimize the non-linear param-

eters, minimizing the leave-one-out cross-validation error (vide infra). In the most general form of

the methodology ab initio forces and energies of sampled configurations are used as reference out-

put, leading to a multi-objective optimization problem. Some of the features which characterize the

proposed method, such as a regularized multi-objective cost function, aimed to prevent from over-

fitting, and the ability of optimize either linear and non linear parameters, are already implemented

in the ForceBalance tool [13] already mentioned in Section 1.2.6. However, significant novelties can

be outlined. The combination of algebraic techniques and metaheuristics employed in LRR-DE, us-

ing the LOOCV error as criterion to optimize the non-linear parameters, enforces the protection from

the overfitting with respect to the training set data and increases the efficiency in finding the global

minimum in the parameters space. Moreover, the weights which tune the contribution of the single

objective functions are predetermined in ForceBalance. In contrast, the proposed protocol introduces

the optimization of the weights so as to allow for error checking in order to obtain the most balanced

compromise solution. An high level flowchart of the algorithm is shown in Figure 3.3. In the following,

the main features and capabilities are discussed in some detail. The algorithm has been validated us-

ing the parameterization of the non-bonded models of metal ions (Zn2+, Ni2+, Mg2+, Ca2+ and Na+) in

water as test case. The whole validation study is shown in Chapter 9.

FIGURE 3.3: High level flowchart of the proposed algorithm.

3.2.1 The Linear Ridge Regression Differential Evolution procedure

Given a data set {xl , yl }, where xl is the l-th input vector and yl the corresponding output value, an

interpolative general model can be built as linear combination of the functionsϕ(x,θ), called predictors

or descriptors in the language of the statistical learning:

yest =
Nfunctions∑

j
Cjϕj(x,θj) (3.3)

where {C} and {θ} are the linear and non-linear parameters of the model respectively. In the lin-

ear ridge regression technique [108–112], the optimal linear parameters are obtained minimizing the

regularized cost function
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J = 1

2M

M∑
l

(
yl −

N f uncti ons∑
j

C jϕ j (xl ,θ j )

)2

+λ
N f uncti ons∑

j
C 2

j (3.4)

where M is the size of the data set and λ is the regularization parameter. The introduction of the

regularization term prevents the overfitting of the model penalizing high values of the linear parame-

ters. In order to evaluate properly the regularization term, all the predictors are scaled with respect to

the relative standard deviations

ϕ̃ j (xl ,θ j ) = ϕ j (xl ,θ j )√
1

M

∑M
l

(
ϕ j (xl ,θ j )−ϕ j (xl ,θ j )

)2
(3.5)

The minimization of the cost function (eq. 3.4), in the scaled form, can be performed analytically

solving the system of linear equations

∂J

∂C̃ j
=

M∑
l

(
yl −

N f uncti ons∑
j

C̃ j ϕ̃ j (xl ,θ j )

)
ϕ̃ j (xl ,θ j )+2MλC̃ j = 0 (3.6)

and the solutions are given by the normal equation

C̃ = (
HT H+2MλI

)−1 (
HT y

)
(3.7)

where H is the M × N f uncti ons matrix of the scaled descriptors, I is the N f uncti ons × N f uncti ons

identity matrix, and y is the vector of the output.

The evaluation of the equation 3.7 can be performed if the values of λ and {θ} parameters have

been previously established, therefore they are considered as hyperparameters. In order to obtain the

optimal values of the hyperparameters, the criterion here employed is the minimization of the cross-

validation error.

Cross-validation

Cross-validation (CV) [112] is a resampling method applied in statistical learning for the model assess-

ment and model selection. In order to estimate the accuracy of a regression model on observations not

included in the training set, a test set of instances should be available. However, this is usually not the

case. CV overcomes this obstacle executing multiple fittings of subsets of the training set and evaluat-

ing the errors on the remaining data. In the k-fold CV, the data set is randomly split into k equally sized

subsets. Each of these subsets is used in turn as a test set, while the remaining k −1 are used for the

training. Therefore, k models are built, each one provides a validation error averaging the deviations

of the predictions with respects to the data point of the corresponding test set. The cross-validation

error is computed as the mean of the k validation errors. An illustrative scheme of the cross validation

technique is shown in Figure 3.4.

When k is equal to the number of the instances of the data set, the case is called leave-one-out

cross-validation (LOOCV). LOOCV provides an approximated unbiased prediction of the expected test

error, because the training sets of the subsets are almost identical to the general training set. In sta-

tistical learning, the minimization of the LOOCV error is a standard criterion to optimize the hyperpa-

rameters of the model. The LOOCV error is computed as
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FIGURE 3.4: Cross-validation scheme. Excerpt from the paper of Hansen et al. [102]

LOOCVer r or (λ, {θ}) = 1

M

M∑
l

(
yl − y (−l )

est (xl ,λ, {θ})
)2

(3.8)

here y (−l )
est (xi,λ, {θ}) is the prediction for the l-th instance, using the model trained with all the data

except the l-th instance. The equation 3.8 represents the mean squared error (MSE); the mean absolute

error (MAE) can be equally used, nevertheless the MSE is more sensitive to the outliers, therefore it is

a better choice to reduce the occurrence of large errors of the model. Calculating this estimate can

be computationally demanding because it requires to repeat the resolution of equation 3.7 M times.

However, for the linear ridge regression method the following relationship holds [113]

LOOCVer r or (λ, {θ}) = 1

M

M∑
l

(
yl − yest (xl ,λ, {θ})

1−hl

)2

(3.9)

where yest (xl,λ, {θ}) is the prediction of the model trained with the complete data set for the l-th

instance, and hi is the leverage defined as

hl =
1

M
+ (ϕl − ϕ̄)2∑M

l ′ (ϕil ′ − ϕ̄)2
(3.10)

The formula 3.9 reduces of a factor M the computational cost of the estimate of LOOCVer r or , nev-

ertheless an efficient method is necessary to sample the hyperparameters space: each evaluation of

LOOCVer r or in fact involves the calculation of the elements of the H matrix (unless {θ} = Ø) and the

solution of the normal equation (3.7).

Optimization of the hyperparameters using differential evolution

The minimization of LOOCVer r or (eq. 3.9) with respect to the hyperparameters λ and {θ} is a non con-

vex optimization, therefore a metaheuristic algorithm is necessary to search for the global minimum of
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Initialize population {ρi , i = 1...N P }

G ← 0
while not converged and G < Gmax do

for i = 1...N P do
randomly select ρa , ρb , ρc (a 6= b 6= c) from population
draw random integer jr and between 1 and D
for j = 1...D do

if rand[0,1] < C R or j = jr and then
u[ j ] ← ρa[ j ] + F · (ρb[ j ] - ρc [ j ])

else
u[ j ] ← ρi [ j ]

end if
end for
if f (u) < f (ρi ) then
ρi ← u

end if
end for
G ← G + 1

end while

TABLE 3.2: Pseudocode of DE/rand/1/bin. "←" is the assignment operator.

the objective function. To accomplish this task, the procedure here presented exploits the evolution-

ary algorithm known as differential evolution (DE) in its basic version DE/rand/1/bin. DE has been

proved to be very competitive in benchmarks tests [114] and in real world applications [115] compared

to other global optimization algorithms. Moreover it offers the great advantage of providing stable per-

formances varying the parameters on which it depends. This technique has been already applied to

the optimization of hyperparameters for a support vector machine classifier [116] providing better re-

sults than grid search and particle swarm optimization algorithms. Recently DE has been identified as

convenient global optimizer also in computational chemistry [117, 118].

DE is a population-based derivative-free algorithm that consists of three main steps: mutation,

crossover, and selection. After a set {ρi } of N P trial solution vectors defined in the domain of the

objective function is randomly initialized, the three steps of the algorithm proceed iteratively on each

vector ρi (called target vector) of the population until a tolerance criterion is satisfied. In the mutation

step, a donor vector is created through the differential mutation operation

ν j =ρa +F (ρb −ρc ) (3.11)

where F is a parameter of the algorithm called differential weight and the indices a,b,c are chosen

randomly with the condition a 6= b 6= c 6= i . This implies that the size of the population must be larger

than four units.

In the crossover step, the donor vector exchanges its components with pi. According to the bino-

mial scheme, the crossover is performed following the rule
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ui , j =
{

vi , j if U (0,1)i , j ≤C R or j = jr and

ρi , j otherwise
(3.12)

where U (0,1)i , j is a random number selected from an uniform distribution in the range [0,1] and

C R is a parameter of the algorithm called crossover rate; jr and is an integer random number between 1

and D (being D the dimension of the vector). In all the applications conducted in this work, F and C R

have been set to 0.7 and 0.85, respectively, as result from calibrations on some test cases.

In the selection step, the objective function ( f , in Table 3.2) is evaluated in u. If the new vector

yields a lower or equal value than ρi , it will replace the target vector in the next generation.

When the termination condition is satisfied the best solution provides the optimal hyperparame-

ters.

Properties of LRR-DE

The LRR-DE procedure is a method capable of reproducing data by optimizing the parameters, both

linear and non-linear, of a model chosen by the user. The application of the regularization and cross-

validation protects the optimization from overfitting. The DE algorithm guarantees high efficiency

in the search of the optimal hyperparameters. These features make LRR-DE suitable to optimize the

parameters of physical models with respect to experimental or ab initio data.

As a simple illustrative example, the LRR-DE method is applied to the fitting of the potential energy

curve of the Z n2+ · · ·H2O interaction, calculated at the MP2/aug-cc-pVTZ level, as function of the only

variable d , the interatomic distance between the zinc ion and the oxygen atom. A training set of 16

points is employed to build models of increasing complexity. The results are collected in Table A.14. In

Figure 3.5 the graphical representations of two cases are shown.

The simplest considered model, 12-3, includes a repulsive d−12 term analogous to that of the

Lennard-Jones potential and an attractive d−3 term to account for the charge-dipole interaction. The

performance of this model is poor, as can be seen by observing Figure 3.5 (a). The reduction of the

error is drastic if the d−12 term is substituted by an exponential repulsion. Even better results can be

obtained employing a buffered d−12 term to describe the repulsion. Both the exponential and buffered

d−12 terms have a non-linear parameter. Further terms, even without an immediate physical interpre-

tation, can be added to the models to reduce the errors. For instance, in the 12b-3-G and 12b-3b-G

models a Gaussian function is included, resulting in a significant performance improvement. This

Model Linear Parameters Non-linear parameters MSE (LOOCV) MSE (test)
12-3 2 0 719.040 768.565

Exp-3 2 1 3.530 3.526
12b-3 2 1 0.525 0.434

12b-3-G 3 3 0.079 0.068
12b-3b-G 3 4 0.001 0.002

TABLE 3.3: Mean squared errors (MSE), in (kcal/mol)2, for five models optimized to reproduce
the MP2/aug-cc-pVTZ potential energy curve of the Z n2+ · · ·H2O interaction. The test
errors are calculated with respect to 100 points not included in the training set. The

analytical expressions of the models are shown in Table 3.4.
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Model Analytical expression

12-3 C1
d 12 + C2

d 3

Exp-3 C1 exp(−θd)+ C2
d 3

12b-3 C1
(d−θ)12 + C2

d 3

12b-3-G C1
(d−θ1)12 + C2

d 3 +C3 exp
(
− (d−θ2)2

2θ2
3

)
12b-3b-G C1

(d−θ1)12 + C2
(d−θ2)3 +C3 exp

(
− (d−θ3)2

2θ2
4

)
TABLE 3.4: Analytical expressions of the models tested in the fitting of the potential energy curve

of the Z n2+ · · ·H2O

FIGURE 3.5: Graphical representation of the potential energy curves of the models 12-3 (blue line,
left) and 12b-3 (blue lines, right), compared with the target data (red line), namely the
MP2/aug-cc-pVTZ energies (red lines) for Z n2+ · · ·H2O interaction. The blue circles

are the points included in the training set.

simple univariate example highlights the crucial role of the descriptor selection in the outcome of the

fitting. In general, the choice of the functional form of the model can be made evaluating the per-

formances in the reproduction of the quantities of reference in relation to the particular operational

needs. It is worth noting that LRR-DE does not use constraints in the optimization of the linear coef-

ficients. Therefore the sign of each term, which indicates if it describes a repulsion or an attraction,

emerges spontaneously from the optimization and it is not imposed by the user. However, the j -th lin-

ear parameter can be fixed to a constant value, K , performing the fitting of the other parameters with

respect to the output subtracted of the contribution of the j -th descriptor (yl −Kϕ j (xl )). This possibil-

ity has been exploited in the validation tests to generate force fields with the electrostatic component

defined by the formal charge of the ions. Tighter control can be exerted on the non-linear parameters

by defining the lower and upper limits of the search domain.

3.2.2 Single-objective application of the LRR-DE procedure: the force-matching approach

The application of the LRR-DE procedure to the generation of non-bonded force fields can be per-

formed using as target output one or more types of reference quantities, calculated with ab initio meth-

ods or obtained by the experiments. In this section the single-objective case is illustrated, in which only

one type of reference data is used. As stated in Section 3.2, the parameterization of metal ions will be

used as validation set of the method; therefore, as case study, the single objective mode is here applied

to this kind of systems, using the ab initio forces computed on the metal ion as reference. This ap-

proach recalls the force-matching method [79, 119, 120] with the important differences that here the
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cost function is regularized and the hyperparamaters are tuned to minimize the cross-validation error.

Assuming that the potential of the metal ion is the result of the sum of pairwise potentials with

respect to all the other atoms,

VM (Rl ) =
Natoms−1∑

i
VM−i ({C}, {θ},Rl) (3.13)

where Rl is the l-th configuration of the system, if VM−i is expressed as a linear combination of

functions v

VM−i (Rl ) =
N f uncti ons∑

j
C j v j ({θ},Rl ) (3.14)

the k-th component of the molecular mechanics model of force exerted on the metal (F M M
M ,k (Rl)) as

a result of interactions with all other atoms is given by

F M M
M ,k (Rl ) =−

∂
(∑Natoms−1

i

∑N f uncti ons

j C j Di j v j ({θ},Rl )
)

∂k
(3.15)

F M M
M ,k (Rl ) =−

N f uncti ons∑
j

C j

Natoms−1∑
i

Di j
∂v j ({θ},Rl )

∂k
(3.16)

Di j is a characteristic parameter of the i -th atom, assuming that the combination rule for the j -th

function is multiplicative.

The model of the force field corresponds to the equation 3.3 if the following identity is set

ϕ j (x,θ j ) =−Di j
∂v j ({θ},Rl )

∂k
(3.17)

then the LRR-DE procedure can be applied if the target output are set equal to the ab initio forces,

F QM
M ,k , and the values of the descriptors are assigned to the elements of the H matrix, according to the

equation 3.5.

3.2.3 Generalization to the multi-objective fitting

The multi-objective optimization of the parameters exploits simultaneously different types of refer-

ence output, for example the ab initio forces on the metal ion, the forces on the nearest neighbor

atoms from the metal ion, the contribution to the total energy due to the force field to optimize, differ-

ent levels of the theory for the calculations, and systems of different composition. The simplest way to

approach a multi-objective optimization problem is the reduction to a single-objective one building a

weighted cost function. In this case the equation 3.4 becomes

J =
Nb∑
b

wb
1

2Mb

Mb∑
l

(
yl ,b −

N f uncti ons∑
j

C̃ j ϕ̃ j ,b(xl ,θ j )

)2

+λ
N f uncti ons∑

j
C̃ j

2
(3.18)

where wb is the scaled weight of the b-th set of targets, of size Mb , calculated as
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wb = w ′
b√

1
Mb

∑Mb

l

(
yl ,b − yb

)2
(3.19)

In the equation 3.19, w ′
b are the effective weights, subject to constraints w ′

b ∈ [0,1] and
∑Nb

b w ′
b = 1.

The definition of their values is the topic of the next subsection.

The minimization of the weighted cost function with respect to the linear parameters is given by a

normal equation that includes the weights:

C̃ = (
HT WH+2MλI

)−1 (
HT Wy

)
(3.20)

being W the diagonal matrix containing the wb values. In this case M =∑Nb

b Mb . The equations 3.9

and 3.10 must be modified as follows to take into account the weights

LOOCVer r or (λ, {θ}) =
Nb∑
b

(
1

Mb

Mb∑
l

(
yl −ϕest (xl ,λ, {θ})

1−hl

)2

wb

)
(3.21)

hl =
1

M
+ wl (ϕl − ϕ̄)2∑M

l ′ wl ′(ϕl ′ − ϕ̄)2
(3.22)

In order to be used as a reference data in the LRR-DE procedure, a quantity has to be expressed as

a linear combination of the v functions or of the their derivatives. In the case of the forces on other

atoms, this condition is satisfied by setting

yl ,A,k = F QM
A,k (Rl )−

Natoms−2∑
i

f Ai ,k (Rl ) (3.23)

and

Hl , j ,A,k =−D A j
∂v j ({θ},Rl )

∂k
(3.24)

where F QM
A,k is the ab initio k-component of the force on the atom A for the l-th configuration and

f Ai ,k is the k-component of the force on the atom A due to the i -th atom calculated with the force field

kept constant in the fitting process.

The ab initio references for the contribution of the force field of the metal ion to the total energy of

the system can be calculated as the difference

yl = EQM
tot (Rl )−EQM

env (Rl )−EQM
M (3.25)

where EQM
env (Rl) is the energy of the Rl configuration without the metal ion and EQM

M is the energy

of the isolated metal ion. The elements of the H matrix in this case are

H j ,l =
Natoms−1∑

i
Di j v j ({θ},Rl ) (3.26)

The global H matrix, in the multi-objective fitting, is then the result of the concatenation of two or

more matrices, each one relating to a specific quantity of reference.
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Optimization of the weights in the multi-objective fitting

In multi-objective optimization, the utopia point [121], OF°, is defined as the vector of the single ob-

jective functions in which each component, OFb°, corresponds to the global minimum in its relative

space with respect to the variables to be optimized. In practice the utopia point is generally unattain-

able and two common approaches are adopted to address the problem: i) identify the set of Pareto

solutions [122], leaving to the decision maker the choice on which to use ii) locate a compromise so-

lution [123] minimizing the distance from the utopia point. Both alternatives involve some degree of

arbitrariness. Here, as a criterion for obtaining the optimal weights, the second approach is adopted,

using the Chebyshev metrics in a normalized space [124] as a method for calculating the distance from

the utopia point:

OF nor m
b (C,θ;w) = OFb(C,θ;w)−OF ◦

b

OF max
b −OF ◦

b

(3.27)

The application of the Chebyshev distance involves the use of the minimax criterion:

wopt = min{max{OFnor m(C,θ;w)}} (3.28)

It implies that the maximum component of the vector OFnor m(C,θ;w) is minimized with respect

to the weights. This choice aims at achieving the most balanced compromise solution. The result

of the minimization depends on the choice of the OF max
b , that corresponds to the worst acceptable

value for the b-th objective function. The optimization of the equation 3.28 is performed using the

simulated annealing algorithm [125]. The proposed variations for the weights are executed by applying

an adaptive heuristics that reduces the number of the function evaluations and exploits the monotone

relationship between wb and OF nor m
b .
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Analysis of trajectories

The investigations reported in this PhD thesis have been performed by combining both classical MM

techniques (mainly MD simulations) together with high, QM-level computations, giving rise to pro-

tocols which can be defined as "hybrid QM/MM" approaches. In this thesis, QM computations have

been performed at the DFT level, using the B3LYP exchange-correlation functional [126] or the long-

range corrected CAM-B3LYP [127]. The combination of the two level of theory has been anticipated

in the previous section, where the functioning of the Joyce software and the LRR-DE procedure for the

development of QM-based force field is illustrated: QM computations are used in fact to create all the

input files (i.e., energy, gradients and Hessian matrix) which are used to built reliable parameters sets

to be used in classical MD simulations. Using the developed FFs, MD simulations have been exten-

sively carried out, to investigate the structural and dynamic properties of the solutes in the considered

environments, by using analysis tools which are deepen in the following. The importance of a proper

and effective force filed parameterization for the systems under investigation appears to be clear at

this stage, since the computed properties (structural, dynamic and spectroscopic) are strictly affected

by the force field parameters, which determine the traits of the simulated chemical entities.

4.1 Structural properties

Radial distribution functions (rdf or g (r )) describes how the density of a certain kind of particle (i.e., an

atom type) varies from a reference one as a function of its distance. Rdf plots are very important, since

they provide useful information about the atomic structure of a molecular systems. The rdf between

generic atoms of type A and B has been computed as

g AB (r ) = 〈ρB (r )〉
〈ρB 〉local

= 1

〈ρB 〉l ocal

1

NA

NA∑
i∈A

NB∑
j∈B

δ(ri j − r )

4πr 2 (4.1)

where 〈ρB (r )〉 is the density of atom type B computed at distance r around A, and 〈ρB 〉l ocal is the

density of B averaged over all spheres around A with radius equal to the half of the simulation box

length. NA and NB are the number of A, B particles, and ri j is the distance between particle i and j .

The averaging is performed in time, i.e. over all the frames of the MD trajectory. In practice, the system

is divided into spherical slices from r to r +dr , in order to obtain an histogram. In an homogeneous

system the average number of atoms B in a spherical layer around A between r and r + dr is given by

d NB = 4πr 2ρg AB (r )dr (4.2)
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Integrating the right hand term one obtains the average coordination number of atoms B around A

inside a sphere of radius r centered on A. The plot of the rdf profile gives important information on

the location of first and second solvation shells, as well as on the intermolecular interactions that take

place in molecular systems, thus to allow to use a cutoff value to separate different shells for sub-

sequent analysis. Moreover, the Fourier transform of the rdf combination yields the total scattering

functions that can be measured with a diffraction experiment (X-Ray or neutron).

The radius of gyration is well known to provide a rough measure of the compactness of a structure.

It has been computed, using a standard GROMACS utility, as

Rg =
√∑

i r 2
i mi∑

i mi
(4.3)

where mi is the mass of atom i and ri is the position of atom i with respect to the center of mass of the

molecule.

4.2 Dynamical properties

Dynamical features are of great importance, since they allow to understand the influence of the em-

bedding environment on the internal flexibility and global mobility of a solute in a solvent

Dynamic properties have been estimated mainly by using correlation functions. The mean square

displacement (MSD) has been calculated as

MSD(t ) = lim
t→∞〈[r (t0 + t )− r (t0)]2〉 (4.4)

For molecules made up of more atoms, r refers to each atom i and the obtained MSD is averaged

over these atoms. For large molecules, however, r can be simply related to the center of mass of the

molecule. When a diffusive regime has been established by the solute, the diffusion coefficient D can

be determined by using the Einstein relation [82]

D = lim
t→∞

1

6t
MSD(t ) (4.5)

The diffusion coefficient D provides quantitative information, experimentally verifiable, on the motion

of a solute in a solvent.

Giving three atoms i , j and k, the rotational autocorrelation function (Cp (t )) is calculated as the

autocorrelation function of the vector p, defined as p = i j x j k (i.e. the cross product of the two vectors

i j and j k) according to

Cp (t ) = 〈Pl (p(t0) ·p(t0 + t ))〉 (4.6)

where Pl is the first or the second Legendre polynomial read as

P1r ot = cos(φ(τ)) ; P2r ot =
1

2
(3cos2(φ(τ))−1) (4.7)

This measure describes the tumbling and spinning of a molecule due to the presence of the surround-

ing environment. When Cp (t ) is fitted to an exponential function (such as Cp (t ) = exp(−t/τp )) it is
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possible to estimate the correlation time τp , defined as the time needed to the investigated molecule

to completely rotate around p.

The static dielectric constant ε of pyridine has been estimated in Chapter 6 on the basis of the fluc-

tuations of the total dipole moment M of the simulation box, by computing the total dipole moment

autocorrelation function with the following equation [128]

ε= 1+ 4π

3〈V 〉kbT
(〈M 2〉〈M〉2) (4.8)

and

M =∑
i
µi (4.9)

where µi is the molecular dipole moment of molecule i and V is the volume of the simulation box.

4.3 Hydrogen bond analysis

During a MD simulation, all the possible hydrogen bonds (HBonds) between donors (D) and acceptors

(A) in a chemical systems are inspected. In particular, the atom at high electronegativity bound to the

hydrogen atom has to be considered as D .

HBonds have been defined through the following standard geometric criterion

r ≤ rHB

α≤αHB

(4.10)

where r is the distance between A and B , and α is the angle between atoms H, D and A at each frame;

rHB and αHB are the corresponding reference values. By default, αHB is set equal to 30°, while rHB is

3.5 Å (which corresponds to the first minimum of the radial distribution function of SPC water [129].

In contrast with the geometric criterion employed in this works, it is worth noting that also con-

tinuous formulations of HBonds can be used. Continuous functions properly take into account the

gradual decay of HBonding networks similar to the one of rdf profiles. One of these methods [130]

substitutes the stepwise treshold of Eq. 4.10 with Gaussian functions. Each A-D interaction can be

defined as a HBond assuming a score between 0 and 1, according to

f (r,α) = g (;re ;rhw )× g (α;αe ,αhw ) (4.11)

where r is the acceptor-hydrogen distance and α is still the �HDA angle, and

g (x; xe , xhw ) =
1 if x ≤ xe

exp(− (x−xe)2

2x2
hw

if x > xe

where xe , xhw are the maximum and half-width values of either the non-normalized radial or angular

distribution function, obtained by a fit of the corresponding data. This function has been recently used

for the description of formamide liquid [16] and nicotine molecule in water solution [131].
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4.4 Absorption spectra

Absorption spectra have been computed on different and statistically uncorrelated configurations ex-

tracted from MD trajectories (see Chapters 7 and 8). Vertical transition energies are computed at the

DFT level, producing single peak for each of the considered electronic transition, and convoluted with

Gaussian functions in the energy domain using a properly chosen width at half maximum (HW H M)

value, ∆v , according to [132]

ε(ν) ∝ ∑
i∈st ates

fi

∆ν
exp

[(
ν−ν0

i

σν

)2]
(4.12)

where

σν =
[

2
√

2ln(2)
]−1

∆ν (4.13)

and fi and ν0
i are the oscillator strength and the frequency of the i-th excitation, respectively. The

distribution functions allow to gain the broadening usually observed in experimental spectra. The

final spectrum is then converted to the wavelength domain (ε̄(λ)) for an easier comparison with ex-

periments. Single signals computed on the MD snapshots, as extracted from the corresponding MD

trajectories, are averaged according to:

ε̄(λ) = ∑
c∈con f s

εc (λ)

Ncon f s
(4.14)

During the absorption computations, environment effects are considered in two different ways, using:

1. implicit solvation models (e.g., PCM). Here, solvent atomic coordinates are completely neglected

during the vertical transition energies. The solute is placed within a cavity of proper size sur-

rounded by a dielectric medium representing the environment. The molecule-shaped cavity is

built by connecting spheres centered on the heavy atoms of the solute, by using the default set

of atoms radii available in Gaussian software.

2. electrostatic embedding (EE). This is an explicit way of considering the enviroment, since atomic

cordinates of the solvent are included during the spectroscopic computation [133, 134]. In par-

ticular, spheres centered at the solute center of mass are cut for each of the extracted snapshot:

all the solvent molecules with at least one atom lying within the sphere radius from the solute are

considered and replaced by the corresponding atomic charge in the calculation. The final system

is then put into a PCM cavity, leading to a three-layers computation (DFT/point charges/PCM).

Solute-solvents direct electrostatic interactions, which depend on atoms positions of the two

conunterparts, are directly taken into account within this scheme.

4.5 Free energy calculations

Free energy difference estimation is a central task in chemistry. Many measurable properties (confor-

mational equilibria, association constants, transition paths and so on) depend on the free energy of the

system. Within the canonical ensemble, free energy is denoted as Helmoltz energy A; if the pressure

rather than the volume is kept constant instead the same quantity is named as (G) Gibbs free energy.

Experimentally, only the difference in free energy between two different states can be computed, so



4.5. Free energy calculations 45

that the quantities of interest in computational chemistry are actually ∆A and ∆G , which are numeri-

cally equivalent in condensed phase systems. In Chapters 5, 6 and 9 free energy differences have been

computed by using two different techniques: the umbrella sampling [135] and the Bennet acceptance

ratio (BAR) method [136].

In umbrella sampling, free energy difference are computed as a function of a reaction coordinate

ξ, chosen by the user. A biased sampling is allowed by the application of a harmonic potential ω, to

ensure a proper sampling along ξ. This operation is performed in different windows, the distribution

of which overlap and each one characterized by a particular value of ξ. The resulting distribution is,

however, non-Boltzmann. The corresponding Boltzmann averages can be extracted from the non-

Boltzmann distribution, thus to obtain equlibrium quantities, according to

Ai (ξ) =− 1

β
lnP b

i (ξ)−ωi (ξ)+Fi (4.15)

where β corresponds to 1/(kbT ) and P b
i (ξ) is the biased distribution of window i obtained from MD.

The calculated Ai (ξ) is also known as potential of mean force, (PMF). The value of ∆G is simply the

difference between the highest and lowest values of the PMF curve. However, the constant Fi is unde-

termined. A common method to get Fi for extracting PMF is the Weighted Histogram Analysis Method

(WHAM) [137], implemented in GROMACS, which determines the global, unbiased distribution P u by

minimizing the corresponding statistical error. Hence, the following formula is applied:

exp(−βFi ) =
∫

P u(ξ)exp[−βwi (ξ)]dξ (4.16)

The whole process is iterative and goes on until convergence.

BAR is a common method for computing free energy of hydration. The method estimates free

energy differences relying on the output from simulations of different states, controlled by a parameter

(λ) which weights all the force field contributions. From λ= 1 to λ= 0, interactions between the solute

and the solvent is progressively turned off and the particles disappear from the medium. The free

energy difference can be calculated directly if two states (sayλi andλ j ) are close enough, by computing

the Monte Carlo acceptance ratio of transition of i to j and viceversa. For a given configuration, free

energy difference between state A and B is expressed as

∆Ai j = 1

β
ln

〈αexp[−βUi ]〉 j

〈αexp[−βU j ]〉i
(4.17)

where α value is determined by minimizing the free energy difference between i and j . Then, solving

numerically

ni∑
i=1

1

1+exp(ln( ni
n j

)+β∆Ui j −β∆A)
−

n j∑
j=1

1

1+exp(ln(
n j

ni
)+β∆U j i −β∆A)

= 0 (4.18)

the free energy ∆A is obtained. It is worth noticing that when the solute has nearly disappeared (i.e., λ

value close to zero) the interaction energy is low, thus to allow particles to get close enough to collide

each other. To avoid this issue, standard Coulomb and LJ potentials are replaced by the corresponding

"soft-core" versions [138]. Soft core potentials available in GROMACS software (employed for the free
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energy calculations performed in this work) are shifted versions of the regular potentials, so that the

singularity in the potential (and the corresponding derivative) at zero distance is never reached.

4.6 Clustering analysis of structures

MD simulations produce a lot of information, such as atoms positions, forces and velocities. Although

several properties are easy to compute directly from the MD trajectories, many others are difficult to

extract and rationalize on the basis of the sampled molecular configurations [139]. Cluster analysis (or

simply clustering) is defined as the process of partitioning a set of data objects into subsets [140]. The

obtained subsets are called clusters and each cluster object is similar to the other objects of the same

cluster, yet dissimilar to the objects belonging to other clusters. The clustering is based on proper

metrics, which define the similarities and dissimilarities between the objects. Often, the used metric

involves distances measure. Cluster analysis is defined also as a form of unsupervised learning, that is,

the data which have to be clustered are not classified ("unlabeled" data), and as a consequence there

is no univocal evaluation of the clustering results.

Four main clustering methods categories are usually defined. In partitioning methods (k-Means

[141], k-Medoids [142]) a set of N objects are divided in K clusters (N ≤ K ), and the clusters are formed

in order to optimize a partitioning criterion chosen by the user. The representative object of a cluster is

referred as the centroid of that cluster, which is its center point. Hierarchical methods (such as BIRCH

[143]) create a hierarchical decomposition of the set of data into clusters until a termination condition

holds. They can be agglomerative or divisive , based on how the process is performed. In density-

based approaches (DBSCAN [144], OPTICS [145]) the clusters sizes grow until a density treshold (i.e.,

the number of data objects in the "neighborhood" of a cluster) is above a treshold value. Unlike the

other two, density-based approaches can lead to the formation of non-spherical clusters. The last

category includes grid-based methods (as the STING method [146]), which convert the objects into

points on a quantized grid. Such clustering procedures are cheap, since they do not depend on the

number of the data points to be clustered, but only on the number of cells of the grid.

In Chapter 6, molecular conformations of pyridine extracted from MD trajectories have been ex-

posed to a clustering procedure based on the k-Means algorithm, a centroid-based technique belong-

ing to the partitioning methods. The procedure is composed by few step, which are repeated iteratively.

K initial objects are randomly chosen as initial centroids of K clusters. Then, each object is assigned

to the nearest cluster, i.e. each conformation is included within the cluster featured by its most similar

centroid. The measure must be chosen by the user. The K centroids are recalculated as the mean of

the membership cluster, and the data objects are assigned again to the closest centroids. Within each

cluster, the objective function J to be minimized is the following

J =
K∑

j=1

N∑
i=1

‖X j
i −C j‖2 (4.19)

where ‖X j
i −C j‖ is the computed distance between the point X j

i and the centroid C j of the J-th cluster.

The algorithm is therefore aimed at minimizing the intra-clusters variance. The whole algorithm is

illustrated in Table 4.1.
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1. k-Means algorithm

Input:

◦ k: the number of clusters,
◦ D : a set of data objects.

Output: a set of clusters.

Method:
1) chose randomly k objects from D as the initial cluster centroids;
2) repeat
3) (re)assign each object with the closest cluster

on the basis of the distance from the mean value of the objects in the cluster;
4) recalculate the mean value of the object of each cluster;
5) until no change;

TABLE 4.1: The k-Means algorithm for partitioning.

k-Means can be only applied if a mean of the data objects can be defined. Moreover, it is sensitive

to data noise and outliers, since they could strictly affect the mean value.

One of the main limitation of the method is the necessity for the user to specify the number of

clusters in advance. The performances are strictly dependent on the value of K , and in general there

is no exact method for determining the correct number of clusters for a particular analysis. Common

practice is to perform k-Means analysis multiple times, and comparing the quality of the clustering

obtained from different values of K . A good estimate can be obtained by considering the Calinski-

Harabasz (CH) index [147] in order to evaluate the optimal K , defined as

C HK = [B/K −1]

[W/n −K ]
(4.20)

where n is the total number of objects, B denotes the deviation between clusters for a K value, and W is

the deviation of each object from the respective cluster centroid. The higher the C HK value, the better

is the solution.
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Part II

Applications
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This part presents the studies and corresponding results accomplished during this PhD. It is orga-

nized as it follows:

• Chapter 5 reports on an unbinding study of an intercalating drug (doxorubicin) from its bio-

logical counterpart (a DNA fragment). The computational investigation has been performed by

using standard force field parameters taken from literature, with small changes. Related results

has been shown during the presentation of the program Caffeine, developed in the SMART lab-

oratory. Despite a fair agreement with previous theoretical works, the obtained results mainly

serve the purpose of providing a realistic and reasonable data set for the software tools. Data

visualization, a topic always intimately connected with chemistry and research in general, has to

be considered as the surrounding scenario of this section.

• Chapter 6 shows how reliable bulk properties can be simulated only by refining the non-bonded

part of a standard force field. Pyridine, a standard solvent routinely used in industry and in

synthesis, has been considered as a case study. The transferability of the proposed model from

the pure liquid to the aqueous solution is demonstrated, filling a gap in currently available force

fields for pyridine, unable to describe both systems at the same level of accuracy.

• In Chapters 7 and 8 the building from scratch of the entire, QM-derived, intramolecular force

fied of two chromophores allowed for effective MD simulations and spectroscopic studies. The

interest on these molecular probes is related to the potential applications as photoactive species

in luminescent solar concentrators (Chapter 7) and as microenvironment sensors (Chapter 8).

In both cases, force field modeling has been made possible thanks to the Joyce software cited

above. The former chapter reports also on the reliable modelling of environment effects during

absorption spectra simulations of the investigated dyes within a polymeric matrix. The latter

instead focused on the comparison between the dynamic and structural properties exhibited by

the analyzed probe in different environments.

• In Chapter 9 the LRR-DE method (see Section 3.2) is validated through the parameterization of

non-bonded models of metal ions in water solution. Beside the standard Lennard-Jones plus

Coulomb functional, a more complicated and flexible form is parameterized to highlight the po-

tentiality of the LRR-DE method in the optimization of models of general functional forms. The

performances of the new models in reproducing thermodynamic and structural properties from

MD simulations are of comparable or better quality respect to literature ones. It is noteworthy

that this method can be easily extended in order to consider other environments different from

water (e.g., protein catalytic sites).
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Chapter 5

Dissociation of Doxorubicin from DNA

Binding Site

The unbinding process of an anticancer agent, doxorubicin, from its biological counterpart (a DNA

fragment) is investigated in this chapter. Standard Amber99sb force field [4] and GAFF [59] have been

used, with small changes. This study has been performed in conjunction with the presentation of the

software Caffeine [148], specifically tailored for molecular structures and data visualization with Vir-

tual Reality (VR) systems such as VR theater and helmets. The doxorubicin-DNA complex has been

considered as a well versed case study to demonstrate the benefits that can be obtained from immer-

sive VR (IVR) along the several stages of a typical computational chemistry investigation.

5.1 Background

5.1.1 Visualization in chemistry

A detailed and yet compact representation of molecular structures, together with the inclusion of re-

lated properties in formulas and graphs, has always been at the heart of chemistry. Since the very

beginning, chemists faced the growing amount of new, chemical entities by building their own termi-

nology and ways of representation: it can been said in fact that chemistry was the first modern science

able to create new objects to be studied and, as a consequence, needed a new language in addition

to words and mathematical equations. The (only apparently) confused and complicated graphical

conventions that nowadays worldwide chemists use to communicate each other are the consistent

result of the process mentioned above. Afterwards, with the advent of computer machines, scien-

tists of different areas have been able to take advantage of computer graphics techniques, which have

allowed an extension of chemical language through the visual representation of molecular objects,

ranging from small organic compounds to huge macromolecules of biological interest. In practice,

two-dimensional schemes, drawn by means of only pencil and paper, have been juxtaposed by more

sophisticated pictures and models, which reflect in many cases the chemical and physical features of

the rendered molecular system. Such evolution has enabled the molecules to be perceived for what

they really are, i.e. 3D objects with a well-established position in space of the relative atoms, thus be-

ing characterized in a more precise and effective manner. Molecular models such as ball-and-stick,

licorice and vdW spheres are still used today despite their oldness and immediacy [149]. Even surfaces

are a useful method of structure representation, mostly used when significant molecular properties

such as shape, size and occupied volume are needed to be highlighted. Representation therefore plays
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a key role in science and during the whole discovery process: it conveys information (such as the re-

sult of a QM computation) to human inspectors, possibly in an interactive way, by relying on human

pattern recognition, and suggesting innovative points of investigation and new, previously unexplored

scenarios [150]. More in general, scientific visualization has to reveal data, guiding researchers among

knowledge acquisition: without molecular graphics and its drawing conventions many of numerical

calculation would provide very little scientific insight by the sheer amount of numbers fed to the user

[151].

Nowadays, the massive increase of computer graphics technologies for three dimensional IVR is

allowing to achieve a further evolution in data representation and visualization [152]. In fact, it is now

possible to create virtual 3D environments that extend users perception and increase users ability to

quickly tackle with massive amounts of data coming from multiple and different sources: within such

systems, users can directly interact with visualized data (by means of dedicated devices) in a more

natural and friendly way compared to standard desktop systems with mouse and keyboard [153, 154].

VR tools include a vast array of devices at present, from cheap consumer grade ones to very costly

specialized hardware. In the first category are included interactive sensors like the Microsoft Kinect

[155] and the Leap Motion [156], current generation immersive helmets such as the Oculus Rift [157]

and the Vive from HTC and Valve [158], or force-feedback devices like the Novint Falcon 3D Touch

controller [159]. The second category instead accounts for virtual theaters such as the CAVE (Cave

Automatic Virtual Environment) [160, 161], equipped with high-precision tracking sensors and driven

by one or more powerful workstations. While CAVE-like systems represent some of the most advanced

IVR system available today, they are (very) expensive fixed installations. For that reasons, they can be

found only in few specialized research centers [162, 163].

FIGURE 5.1: (a) CAVE theater at Scuola Normale Superiore. (b) User wearing the Oculus Rift DK1
helmet.

5.1.2 The Caffeine molecular viewer: an overview

Caffeine is an innovative molecular viewer under continuous development at the SMART laboratory

[164] at Scuola Normale Superiore in Pisa. It is aimed to enable the employment of different architec-

tures, ranging from the standard computer desktop to more expensive IVR environments, within the

field of high-accuracy molecular systems (and related data) representation. A particular field highly

taken into account during the software’s development is the accurate visualization of scientific numer-

ical data while still keeping the system under investigation at its native atomic detail, under the user
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control, allowing therefore for an intuitive and human friendly data fruition. Some peculiar features

include the augmented reality-like visualization of 2D charted data and the interactive filtering of tra-

jectories through the selection of chemical configurations of interest (called "key-frames"). The soft-

ware can visualize both static and dynamic molecular structures (trajectories) read from PDB, XYZ and

Gaussian Cube files. As many other molecular viewers, Caffeine supports the most diffused graph-

ical representations methods, such as “all-atoms” visualization (balls-and-sticks, licorice, and vdW

spheres) and ribbon diagrams for polypeptides and polynucleotides. In addition, volumetric datasets

such as electron densities and molecular orbitals can be imported from Gaussian Cube files and visu-

alized as isosurfaces.

5.2 The DOX/DNA system

5.2.1 Doxorubicin

Doxorubicin (DOX hereafter, structure in Figure 5.2a) is an anthracycline antibiotic, able to bind DNA

by intercalation. The binding process is promoted by the peculiar structure of such chemical agent,

which features fused hydrophobic ring systems that can insert between base pairs, creating favorable

π-stacking with nucleobases and shelding from solvent molecules [165]. Apart from this planar, hy-

drophobic part, DOX exhibits also a hydrophilic, aminosugar moiety (daunosamine). The carbohy-

drate acts as an anchor, sitting in the DNA minor groove and interacting at the same time with nearby

nucleobases. As a consequence of the intercalation event, Topoisomerase (either I or II) enzymes,

which play key roles during DNA replication and trascription, are obstructed so to promote the dis-

ruption of DNA double strand and leading the cell to death [166].

Intercalating drugs are among the most employed drugs in anticancer therapy even today. How-

ever, despite their widespiread use, a detailed understanding of the formation and dissociation process

of the DNA/drug complex remains elusive. From a computational chemistry point of view, MD sim-

ulations of DOX and related molecules [167, 168] have tried to elucidate the structural changes that

take place in B-DNA upon intercalation. Enhanced sampling methods have been used to shed light

on the intercalation pathway of daunomycin (closely related to DOX), suggesting a three-step process

[169–171] which is compatible with experimental findings [172, 173].

5.2.2 Computational Details

Simulations were carried out with GROMACS 4.6.5 [98]. The PDB crystallographic structure 1D11 [174]

containing one daunomycin molecule and a single palindromic DNA sequence of six nucleotides, was

chosen as starting system. Daunomycin was modified adding a hydroxil group on the methyl-ketone

side chain using GaussView [175] to obtain the DOX. Considering its palindromic sequence, the nucleic

acid was duplicated, rotated of approximately 180° and moved with the aim of reproducing the HBonds

pattern between complementary nucleobases. The so-built double-stranded system was protonated

and immersed in a cubic box of roughly 16500 TIP3P [66] water molecules, adding Na+ and Cl− ions to

achieve neutrality. The final system was composed by 50160 atoms put in a rectangular box of 493 nm3.

DNA was described using the Amber99sb force field. DOX intramolecular terms and vdW parameters

were modeled according to the GAFF force field [59]. To parametrize a reliable charge set for the DOX
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FIGURE 5.2: (a) Scheme of the daunomycin and doxorubixin compounds; the hydrophobic an-
thraquinone moiety is shown in black while the hydrophilic aminosugar part is in
blue. (b) Top view doxorubicin drug, shown using a ball and stick representation
with standard colours and omitting apolar hydrogen atoms. The position of the cen-
ter of mass (COM), used in the umbrella sampling, is shown as a cyan atom relative to
the center of ring B (see dashed line). (c-d) Top and side view of the starting structure
(1D11) after the modeling of doxorubicin drug; the drug is intercalated between the
two CG pairs. DNA backbone is shown either blue (5-3) or red (3-5), with the ending
part of the ribbon thinner (C3) or thicker (C5); nucleotides are depicted using filled

polygons omitting the detailed atomic structure.

molecule, the multi-conformation RESP (Multi-RESP [176]) procedure was applied. Such method takes

into account more than one conformation of minimum energy via the equation

C (n) =
∑

i Ci (n)e
−∆Ei

kT∑
i e

−∆Ei
kT

(5.1)

where C (n) is the Multi-RESP charge of the atom n; Ci (n) is the RESP charge of atom n in the

conformation i ; Ei is the energy difference between the conformation i and the global minimum; k is

the Boltzmann constant; T is the temperature (298.15 K). To ensure the stability of the terminal base

pair in the intercalation site, additional weak harmonic bonds between the CG base pair above DOX

were added; such bonds (each of 50 kJ mol−1) were modeled in order to resemble the hydrogen bond

coupling between the two nucleobases [177]. Long range electrostatic interactions were accounted

by means of the PME method [89]. A cut-off of 14 Å was used for short range electrostatic Van der

Waals interactions. LINCS [93] was used to constrain bond lengths and angles. The system was initially

minimized by means of the steepest descent algorithm. Relaxation of solvent molecules and counter

ions to 300 K was initially performed keeping solute atoms restrained to their initial positions with a

force constant of 1000 kJ mol−1 nm−2), for 5.0 ns in a NPT (using the Parrinello-Rahman barostat [96])

ensemble and using an integration time step of 2.0 fs. Then, the system was carried again to 0 K and

progressively heated to 300 K in steps of 50 K. Starting from the last conformation of the equilibration

step, DOX was pulled away from the intercalation site by the application of a harmonic potential of 125
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kJ mol−1 nm−2 between the centers of mass (COMs) of DOX and of the four nucleobases delimiting

the intercalation site. A pull rate of 10 nm ns−1 was used. The pulling process was allowed in each

dimension. When a distance of 17.5 Å was reached, the DOX molecule was assumed to be completely

separated from the DNA bundle. Along this path, system configurations were taken every 0.6 Å of

COMs separation and used as starting point for the umbrella sampling, for a total of 25 simulation

windows. Afterwards, a 200 ps equilibration run (at 300 K and 1 bar pressure) was performed for each

selected window, according to the protocol reported by Lemkul et al [178]. In each window 10 ns of

MD was performed, for a total of 250 ns. Instantaneous atomic forces along the umbrella sampling

trajectories, together with the mutual displacements along the reaction coordinate, were stored every

2 ps. Results were analyzed using the WHAM method [137] to compute the PMF profile along the

predefined reaction coordinate.

5.2.3 Results

The unbinding mechanism

FIGURE 5.3: Binary complex dissociation process. Note that in panels (b-d) the position of the in-
termediate at 10 Å and final dissociated state along the sampling coordinate is high-
lighted with a blue dashed line. (a) Binding site of the DOX compound in the initial
conformation. The position of the centers of mass of the binding site (b.s., indicated
by the gold sphere) and of DOX (purple sphere) is shown. (b) Potential of mean force
(PMF) curve associated to the distance between centers of mass of the binding base
pairs and of the doxorubicin drug. (c) Calculated change in rise between DNA base
pairs. (d) Number of hydrogen bonds between the binding site nucleobases (black)

or DOX (red) with water molecules.
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The unbinding process of DOX from the binary complex was investigated through the umbrella

sampling method. In a first step, the drug was removed (pulling process) from its intercalation site

applying a harmonic potential between the centers of mass (COMs) of DOX and of the binding site

(see Figure 5.3a). For the latter, only the heavy atoms of the four nucleobases delimiting the interca-

lation site were considered. DOX was allowed to leave the intercalation site along each dimension,

while the distance between the two considered COMs was chosen as the reaction coordinate. In Fig-

ure 5.3, panel b, the ∆G over the COMs distance is represented. The ∆G curve shows a large global

minimum (assuming zero value for convenience) at about 2 Å and centered at approximately 2.5 Å.

Interestingly, this situation is the same as in the crystallographic and in the fully equilibrated structure,

where a distance between the two considered COMs of 2.69 Å is identified; the free energy minimum

that emerges from the present investigation is thus confirmed by experimental data. The curve then in-

creases rapidly as DOX is removed from the intercalation site. Two partially stable states are observed,

one at about 8.5 Å and a second one at 10.2 Å. In the first, narrow well DOX seems to be still able to

interact with DNA nucleobases through π-stacking interactions of its D aromatic ring, while the B-A

rings are almost outside the intercalation site and thus accessible by the solvent. Roughly 3 kcal/mol

are enough to overcome this state and enter in the next metastable state observed between 10 and 11

Å. This state could be associated to the intermediate one (IM) already found in previous studies [171] in

the case of daunomycin: here, the rigid body of the DOX molecule lies on the plane defined by the two

DNA backbones, while the intercalation site is still in an opened conformation (see Figure 5.4). Going

forward on the chosen reaction coordinate, a rotation of DOX is observed at about 11 Å: this movement

is sufficient to break the weak interactions that take place in the intermediate state, allowing the com-

pound to definitively get rid of the macromolecular target. Finally, the energy profile establishes itself,

and no more energy rises are detected as DOX approaches the bulk solvent. However, already at 12 Å it

is very difficult to perform an appropriate sampling, because the ligand is completely dissociated from

its biological target, and it is thus free to rotate and diffuse through the solvent. From Figure 5.3b it can

be observed that 14 kcal/mol are necessary for DOX to reach the solvent. Such estimation is in good

agreement with previous results of Lavery and co-workers on daunomycin [169, 171]. The measured

difference should be reasonable, in view of the marginal differences between these two molecules.

FIGURE 5.4: (a) Intermediate bound state of DOX with the nearest neighbor water molecules
shown as licorice. (b) as as (a), within the CAVE.

Intercalation, and, subsequently, dissociation of anthracyclines from DNA have been demonstrated
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to alter the overall topology of DNA [179]. A lot of parameters could be monitored to detect confor-

mational changes along the time in which such processes take place. Here, the rise parameter, i.e. the

distance along two base pairs along the DNA sequence, was considered as a measure of structural mod-

ification during the unbinding process. Figure 5.3c shows the average rise distance between the base

pairs in the intercalation site as a function of the reaction coordinate in the simulated windows. High

rise values (of approximately 7.5 Å) are detected for the intercalated state: then, as DOX approaches the

bulk solvent, the distance between two consecutive bases decreases, reaching a final value of about 3.5

Å in the unbounded state, very close to the value of 3.4 Å featured by native B-DNA. It is also possible to

observe that the intermediate state (at about 10 Å of COM distance) is still in an opened conformation,

with a rise value close to 6 Å. Finally, the hydration of the binary system as a function of the reac-

tion coordinate was taken into account (see Figure 5.3d) calculating the average number of hydrogen

bonds between water molecules and either DOX or the four nucleobases of the binding site. Interca-

lation induces a decrease of the number of HBonds as DOX acts as an obstacle for water molecules,

which cannot enter the binding site. At the same time, DOX is less hydrated as it approaches the DNA

binding task: on average, two hydrogen bonds that take place in the DOX unbounded state lack in the

intercalated state. It is interesting to note a peak of averaged number of hydrogen bonds for both the

considered molecules in proximity of the intermediate state: in fact, at this point, DOX has already left

the intercalation site, so to be considered solvent-exposed. In the meanwhile, the DNA intercalation

site is still open and freely accessible by water molecules, that can hence interact with nucleobases.

Then, after 10 Å of COM distance, the number of H-bonded water molecules slowly decreases. This is

in agreement with the prior considerations: in fact, after this point, as it is proved in Figure 5.3c, the

binding site reduces its size, because of the departure of DOX, thus decreasing water accessibility to

the intercalation site nucleobases.

Studying the dissociation process in a IVR environment

The DOX/DNA investigation has been largely conducted by taking advantage of IVR technologies in-

stalled at Scuola Normale, and always using the Caffeine software. As regarding IVR tools currently

available in the SMART laboratory, the CAVE [160, 161] and the Oculus Rift [157] are currently sup-

ported by Caffeine.

The CAVE is a cube-like room-sized IVR system, whose walls (from three to six) are projected with

stereoscopic images. The position of the user within the CAVE is detected by a tracking system and

used by the software to adjust the perspective of the displayed images, so to obtain a convincing and

coherent stereoscopic visualization across the screens. When using the CAVE a new feedback, priopro-

ception, is added to the perception of data. Proprioception is the capability to perceive and recognize

the position of the own body in space, even without sight: the kinesthetic inputs from mechanore-

ceptors in muscles, tendons, and joints contribute to the human perception of limb position and limb

movement in space. Within the CAVE 2D data charts are drawn in front of the user, immersed in the

3D scene and follows the movements of the user’s head, in a way analogous to an augmented reality

content (see Figure 5.5). The ability to “pinpoint” insights by using quantitative information becomes

critical in a IVR environment where it is easier for the (inexperienced) user to be overwhelmed by vari-

ous feedbacks. Moreover, the use of key-frames, by itself a useful feature, becomes critically important

within a IVR environment since it allow the user to concentrate on important properties and provides
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a guide during the visualization process to elaborate and save insights that otherwise would be lost

upon leaving the IVR. Moreover, the user is able to interact with the system by means of a dedicated

remote application for mobile devices. This application currently allows the user to rotate, translate

and scale the molecular system, and to control the playback of frames.

FIGURE 5.5: Dissociation of DOX from DNA bindingsite. (a) Simultaneous representation of
charted data and molecules. The binary complex is on the right while a graph show-
ing the distance between COMs is visible on the left with the red marker highlighting
the current frame and distance value. For sake of clarity, the stereo mode of pro-
jectors was temporarily disabled to shoot this photo. (b) Selection of sensible struc-
tures as starting configurations in the umbrella sampling study performed within the

CAVE.

In the analysis of DOX/DNA computations, the "CAVE" version of Caffeine has been used. In par-

ticular, the selection of the starting configurations for the umbrella windows was performed within

such IVR environment: the ability to view, at the same time, a molecular conformation and the chart

reporting the distance between COMS was exploited in order to effectively select sensible structures.

Chosen structures have been marked as key-frames and used for the subsequent umbrella simula-

tions. Then, appropriate conformations (such as the centroids of the single umbrella windows) have

been used to reconstruct the whole unbinding process, from the intercalated to the completely un-

bound state, through the IM one, so as to build an artificial trajectory to be used in Caffeine to follow

in the meanwhile both chemical structure evolution and related structural parameters. Finally, con-

sidering the PMF chart in Figure 5.3b, it is always possible to connect the current, visualized snapshot

to its associated free energy value just switching from the COMs distance chart to the PMF one, thus

increasing the user’s understanding of the overall free energy study.

5.2.4 Conclusions

The dissociation of the binary complex DOX/DNA has been properly simulated by using extensive MD

simulations through the application of the umbrella sampling method. Standard Amber99sb force

field has been considered to describe DNA. Additional bonds were modeled in correspondence of the

terminal base pairs, in order to prevent from disruption of the nucleic acid fragment. As stated at the

beginning of this chapter, this system has been chosen as a proper platform for presenting Caffeine

software and to show the potential of using IVR in computational medicinal chemistry. A simplified

(to limit the computational cost), yet consistent, computational protocol has been developed to serve

as a basis for illustrating the features of Caffeine to a wide audience. It is worth to observe anyway that,
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qualitatively, the estimation of the free energy barrier (14 kJ/mol) is in good agreement with the pre-

vious results of Lavery and co-workers on daunomycin [169, 171]. Moreover, comparable profiles can

be observed between the two systems as regarding structural parameters such as the rise value. The

whole investigation envisions the idea of possible, productive and realistic employment of IVR tech-

nologies in computational chemistry, as well as the use of the Caffeine molecular viewer as a reliable

front-end device in post-processing analysis.
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Chapter 6

Fine-Tuning of Atomic Point Charges: the

Case of Pyridine

A correct description of electrostatic contributions in force fields for classical simulations is mandatory

for an accurate modeling of molecular interactions in pure liquids or solutions. Here, a new protocol

for point charge fitting is proposed, aimed to take into the proper account different polarization effects

due to the environment employing virtual sites and tuning the point charge within the polarizable

continuum model framework. The protocol has been validated by means of MD simulations on pure

pyridine liquid and on pyridine aqueous solution, reproducing a series of experimental observables

and providing the information for their correct interpretation at atomic level.

6.1 Background

Despite its key role in describing the solvation ability of a substance, the static dielectric constant re-

mains one of the most difficult bulk properties for classical simulations[180] and it is especially sensi-

tive to the electrostatic part of the force field. Since the most widely used force fields still rely on partial

atomic charges, several strategies have been employed to determine effective values for these quanti-

ties; one of the most adopted approaches relies in optimize their values to reproduce the QM derived

electrostatic potential of a molecule[52]. The atomic charges depend strongly on the level of theory

used in QM calculations and on the description of solvation effects. In this present study, the electro-

static parameters have been obtained through the Charge Model 5 (CM5) [54] taking into account the

bulk solvent effects by means of Conductor-like Polarizable Continuum Model (C-PCM) [181]. This

allows one to take into account the different polarization effect of various solvents (here pyridine or

water) in tuning the effective atomic charges (as explained in the following). Furthermore, since the

presence of hydrogen bonds (HB) has a remarkable effect on magnitude of the static dielectric constant

(ε) [182], a thorough description of intermolecular interactions is necessary.

One of the problems in the HB description is its directionality. A possible solution is the use of off-

site charges (so-called virtual sites or dummy atoms, VS hereafter) with a fixed position with respect to

the generating atom that is meant to model the presence of lone pairs [16, 131]. In fact, an improved

HB description of pyridine in aqueous solution has been obtained employing VS and adjusting the

charges on the carbon atoms directly bound to nitrogen to preserve the molecular dipole moment

[131]. However, to develop a model for pyridine able to describe the interactions both in aqueous

solution and in pure liquid, the atomic charges on the whole molecule have been determined with a
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fitting procedure using as reference parameters both the molecular dipole and quadrupole moments.

Therefore, a method for the derivation of partial atomic charges and VS is proposed, which completely

depends on properties determined at the QM level without any additional empirical parameters. It is

demonstrated that the same strategy works for both pure (liquid) pyridine and its aqueous solution.

The pyridine aqueous solution, as well as the pure liquid, have been studied by means of classical

simulations employing several models [131, 183, 184]. Although some of the tested force fields provide

reasonable results, here the transferability of the proposed model may be highlighted: such model is

able to simulate both pure pyridine and its aqueous solution, overcoming the limitations on previously

reported force fields and delivering accurate structural and thermodynamic properties together with

the static dielectric constant.

6.2 Methods

Classical MD simulations of both pure liquid and aqueous solution of pyridine were carried out using

GROMACS 4.6.5 [98] and the OPLS/AA force field [183] to describe intramolecular and intermolecular

potential with the exception of the pyridine atomic charges, which were estimated using the CM5 pop-

ulation analysis [54]. DFT calculations were performed at the B3LYP/6-31+G(d) level of theory using

GAUSSIAN-09 [97] package and taking into account bulk solvent effects by means of the C-PCM [181]

setting the reference solvent (pyridine or water) and imposing the value of the scaling factor for the

sphere radius (α) to 1.05. A VS was located at the position of the centroid of the localized molecular

orbital describing the sp2 lone-pair of the nitrogen atom using the Pipek-Mezey localization procedure

[185] (the centroid distance from the nitrogen atom has been constrained during the simulation). The

charge on the VS has been obtained adjusting the atomic charges of pyridine through a fitting proce-

dure to reproduce the calculated dipole and quadrupole moments, as indicated in Table 6.1 (for atom

labeling Table 6.1).

The simulation for the pyridine pure liquid was performed on a system containing 500 molecules,

whereas the simulation of the aqueous solutions was performed on one pyridine and 512 TIP3P-FB

[69] water molecules. In both cases, a cubic box with periodic boundary conditions was employed.

After a steepest descent energy minimization the systems were heated up to 298.15 K for 200 ps (using

the velocity-rescale thermostat[95] and τ = 0.1 ps) and then the time step and temperature coupling

constant were increased to 2.0 fs and 0.2 ps respectively, and systems were let to converge to uniform

density in a NPT ensemble (using the Parrinello-Rahman barostat [96] and τ = 0.1 ps).

Afterward production runs were run in the NVT ensemble, fixing the fastest degrees of freedom

with LINCS algorithm (δt = 2.0 fs) [93]. The total sampling time was 50 ns for both the pure liquid

and the aqueous solution. Electrostatic interactions were evaluated using the PME [90] method with

a grid spacing of 1.2 Å and a spline interpolation of order 4. Harder et al. [3] have proposed an OPLS3

pyridine model, which also has an off-site charge on the nitrogen atom and reproduces well the hy-

dration free energy (-4.3 kcal/mol). MD simulation using this force field was performed, in order to

determine structural information on pure liquid and compare the obtained results with the proposed

model. The main difference between OPLS3 and the presented model is the charge on nitrogen atom,

which is not null in OPLS3 (+0.179 e) and the procedure employed to define the virtual site position

[8]. An ab initio MD (AIMD) simulation of a pyridine aqueous solution at ambient temperature was
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q(e)
Solvent=Pyridine Solvent=Water

CM5 Adjusted ∆ (CM5-Adj) CM5 Adjusted ∆ (CM5-Adj)
C1-C2 0.035648 0.001047 0.034601 0.034855 -0.000150 0.035005
C3-C4 -0.090393 -0.113328 0.022935 -0.089909 -0.113072 0.023163

C5 -0.068839 -0.113375 0.044536 -0.068037 -0.113058 0.045021
N -0.390529 0.000000 -0.390529 -0.393605 0.000000 -0.393605
VS 0.000000 -0.329297 0.329297 0.000000 -0.331658 0.331658

H1-H2 0.112816 0.151052 -0.038236 0.112965 0.151590 -0.038625
H3-H4 0.113452 0.095364 0.018088 0.114284 0.096017 0.018267

H5 0.116322 0.174402 -0.058080 0.117252 0.175946 -0.058694
µ (D) -2.62941 -2.68354

Q(XX) (D·Å) -2.15265 -2.15585
Q(YY) (D·Å) 7.75545 7.78872
Q(ZZ) (D·Å) -5.60280 -5.63287

TABLE 6.1: The CM5 charges (e) for pyridine calculated at the B3LYP/6-31+G(d) level and used in
the simulations (adjusted) taking into account the solvent (pyridine or water) effect by
means of C-PCM. In the column ∆ (CM5-Adj) is reported the difference between the
calculated and used charges. The molecular dipole (µ) and quadrupole (Q) moments
obtained from CM5 charges and employed during the fitting procedure in presence of
VS are also reported. In the last row, the pyridine and water atoms labeling and the

virtual site position are indicated.

carried out using the CP2K program [186] to further assess the reliability of this procedure to describe

the hydrogen bond interactions and their directional character. A cubic box of size 11.77 Å was con-

sidered, containing 1 pyridine and 50 water molecules and subjected to periodic boundary conditions.

20 ps of simulation in the NVE ensemble was performed, using a time step of 0.1 fs. The electronic

structure was calculated with DFT, utilizing the BLYP functional [187]. The TZV2P basis set was used

in conjunction with the GTH pseudopotentials [188, 189]. A plane wave cutoff of 340 Ry was adopted

for electron density. VdW interactions have been described by the method proposed by Grimme [190].

Dielectric constant and density have been evaluated using standard tools provided with GROMACS. To

calculate the heat of vaporization, ∆Hvap , gas-phase simulations of 2 ns (δt = 0.2 fs) have been added

for both systems. The ∆Ghyd were calculated using BAR method [136], performing the simulations

with GROMACS. Structural analysis was performed with TRAVIS package [191].
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The relative orientation of first neighbour pyridine molecules was also investigated by means of the

k-Means clustering algorithm [141]. The optimal number of clusters was determined with the Calinski-

Harabasz criterion.

6.3 Results

6.3.1 Aqueous solution

FIGURE 6.1: (a) Radial distribution functions between the pyridine nitrogen (green) and hydro-
gen (black) atoms and the water hydrogen and oxygen atoms respectively. In red the
g(r) between the pyridine ring center (RC) and the oxygen atom of water. (b) Isosur-
face, obtained from MD simulation, of water oxygen (red), hydrogen atoms (green)
around the pyridine molecule at an isovalue of 68 and 60 nm−3 respectively. c. Iso-
surface of water oxygen (red), hydrogen atoms (green) around the pyridine molecule
at an isovalue of 68 and 60 nm−3 respectively. The results are obtained with the model

deprived of VS.

The structure of pyridine in aqueous solution is characterized by the hydrogen bond interaction

between the nitrogen atom of the heterocyclic ring and a hydrogen atom of the solvent molecules (Fig-

ure 6.1a). The oxygen atom also interacts with the hydrogen atoms of pyridine, leading to a weaker

interaction, as confirmed by a longer interatomic distance (see Figure 6.1a). In fact, the first maximum

in gN ···H (r ) and gC H ···O(r ) radial distribution functions (rdf) occurs around 1.8 Å and 3.2 Å respectively.

The relative sdf of water hydrogen and oxygen atoms around the pyridine are reported in Figure 6.1b,

corroborating the presence of a hydrogen bond between the nitrogen and the hydrogen atoms. The

isovalue adopted to show the results does not lead to similar isosurfaces involving the pyridine hydro-

gen atoms, confirming the weaker character of the interaction with solvent. The oxygen atom density

is localized above and below the aromatic ring suggesting the presence of HB · · ·π interaction. In fact,

the radial distribution function between the pyridine ring center (RC) and the oxygen atom (red line

in Figure 6.1b confirms the presence of such an interaction. To demonstrate the usefulness of VS to

mimic the lone pair of the sp2 nitrogen atom, in Figure 6.1c are also shown the same sdf obtained ana-

lyzing the simulations of the model when the VS is removed. In this case the simulation was performed

using the CM5 charges (6.1) without the VS and the HB density distribution shows a lack in direction-

ality, the sdf is not localized in the ring plane but above and below it. As described in Methods section,

also an ab initio simulation, for purposes of comparison, was performed. Therefore, in Figure 6.2 the

rdf between the pyridine nitrogen atom and the water oxygen atom obtained from three simulation is
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FIGURE 6.2: Radial distribution functions between the pyridine nitrogen and the water oxygen
(gN ···O (r )) atoms obtained from three simulations: this work (blue), CP2K (green)

and the model without the virtual site (red).

reported: the here presented force field, CP2K and a simulation performed without VS. The compari-

son between CP2K and the present model (with VS) is remarkable and confirms the usefulness of VS to

describe the hydrogen bond.

6.3.2 Pure pyridine

A first structural analysis of pure pyridine is reported in Figure 6.3a, where the rdf between nitrogen

atoms is shown. The gN ···N (r ) shows two distinct peaks, one around 4.9 Å and one around 5.9 Å. A

similar rdf was obtained by Jorgensen and McDonald [39] and by Baker and Grant [192], who have

previously studied liquid pyridine using the OPLS and OPLS-CS force fields respectively. Jorgensen

and McDonald attributed the first peak to antiparallel contacts and the second to dimers that are offset

stacked with parallel (head-to-tail) dipoles. According to Baker and Grant, the first peak results from a

structure in which a pyridine molecule donates a hydrogen bond through the H1/H2 hydrogen atoms

(for atom labeling see Table 6.1) and the second peak from one in which a pyridine molecule donates

a hydrogen bond using the H3/H4 hydrogen atoms. Interpretation of the peaks in structural terms can

be obtained by computing the combined distribution function (cdf) between the gN ···N (r ) distance

and the angle formed between the vectors connecting pyridine ring center and nitrogen atom. The cdf

is shown in Figure 6.3b and permits to attribute the first peak to an antiparallel arrangement and the

second to a parallel arrangement and to an interaction, which occurs between rings forming an angle

up to 45°.

To better understand the relative orientation of pyridine molecules, k-Means[141] was applied.

The first neighbour distances between the center of rings, the nitrogen and the C5 atoms was selected

as clustering features; by inspection of Figure 6.3, an 8.0 Å cut-off for each feature was determined.
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FIGURE 6.3: Radial distribution function between N· · ·N in pure liquid (black: the proposed
model; red: OPLS3). b. Combined distribution function between N· · ·N distance
and the angle a formed between the vectors connecting the center of the ring and
the nitrogen atom (orange vectors in picture b). The results are obtained from the

pure liquid pyridine simulation.

Application of the Calinski-Harabasz score [147] indicated the optimal number of clusters at NC = 2

containing 56% and 44% of data points, respectively. The first neighbour distances of the cluster cen-

ters show an approximately parallel orientation of molecules. The N· · ·N and C5· · ·C5 distances for

the two cluster centers are of 5.78, 5.53 and 6.68, 6.87 Å respectively. This corresponds to the arrange-

ments where the angle between two rings is 0° or around 45° (see insert in Figure 6.3b). In Figure 6.3a

the gN ···N (r ) g(r) calculated from the OPLS3 simulation is reported, which shows a slightly lower peak

at around 5.9 Å suggesting that in the present case the parallel arrangement is more abundant. This

observation will be useful to evaluate the differences between the calculated bulk properties.

FIGURE 6.4: Isosurface of the pyridine nitrogen atom (blue), carbon atoms (gray) and hydrogen
atoms (green) around the pyridine molecule at an isovalue of 15, 14 and 11 nm−3

respectively. The results are obtained from the pure liquid pyridine simulation.

The average densities of nitrogen, carbon and hydrogen atoms around the molecules are reported
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in Figure 6.4. The hydrogen atoms density around nitrogen atom supports the hypothesis that the in-

teractions in the pyridine liquid are dominates by N· · ·HC hydrogen bonds. The same is true for the

nitrogen atom density, localized near hydrogen atoms. This spatial distribution function deserves an

additional consideration: the density does not point along the CH bond but is localized in the center

of two CH bonds; this is due to the possibility of having simultaneous interactions between the ni-

trogen atom and two hydrogen atoms. Furthermore, the localization of hydrogen atoms (as well as

the carbon) density above and below the aromatic ring, suggests that the arrangements are stabilized

by the formation of CH· · ·π interactions. It is also noteworthy that the N· · ·HC interactions mainly

involve, as expected, the H3, H4 and H5 hydrogens. Figure 6.5a sketches the cdf between two differ-

ent N· · ·H distances; this analysis confirms the simultaneous interaction in the pure liquid, as already

shown by the sdf of Figure 6.4. Figure 6.5b shows also the relative cdf for the water solution between

two N· · ·H(water) distances; it is apparent that the interaction involves only one hydrogen atom and

confirms the results of sdf analysis. Figure 6.5a-b reports also the single rdf, which points out a stronger

interaction in the pyridine aqueous solution (shorter distance N· · ·H involved) with respect to the pure

liquid (higher maximum in the radial distribution function). In the following, results obtained for bulk

properties (Table 6.2) are discussed. A correct reproduction of the static dielectric constant of the pure

liquid is particularly important in view of the large use of pyridine as solvent for several processes of

technological relevance [193]. Our pure liquid model, using CM5 charges (C-PCM) and a VS for sp2

nitrogen atom, allows one to obtain a dielectric constant value of 11.2 ± 0.2 in good agreement with

the experimental value of 12.4 [193]. This result represents a non-negligible improvement with respect

of the value of 6.7 ± 0.1 obtained using the standard OPLS force field [180]. Furthermore, the analysis

of a MD simulation on pure pyridine performed in the present study employing the OPLS3 force field

[3] leads to less accurate values of both static dielectric constant (9.1 ± 0.2) and density (1008.9 ± 0.2

kg/m3). Looking at Figure 6.3, the better value of dielectric constant could be due to a higher number

of parallel pyridine or nearly parallel pyridine molecules issuing from the new force field. In Figure 6.6

the rdf between the nitrogen and the hydrogen atoms of pyridine is shown: the new model has a higher

peak for the gN ···H5(r ) which is in agreement with the parallel orientation of pyridine molecule.

Properties This work Exp.
ε 11.2 ± 0.2 12.4

ρ (kg/m3) 995.3 ± 0.2 977.8
∆Hvap (kcal/mol) 10.7 ± 0.2 9.61
∆Ghyd (kcal/mol) -4.23 ± 0.02 -4.7

TABLE 6.2: Computed values and experimental data for static dielectric constant, density
(kg/m3), heat of vaporization (kcal/mol) and free energy of hydration (kcal/mol) for

pyridine molecule.

Other properties, often used to validate a force field, such as density and heats of vaporization

(∆Hvap ), were also calculated and their computed values are in agreement with the experimental re-

sults. A density value of 995.3 ± 0.2 kg/m3 was obtained (the experimental value is of 977.8 kg/m3

[194]); instead, the calculated ∆Hvap value is equal to 10.7 ± 0.2 kcal/mol. Since the experimental

value is 9.61 kcal/mol [194] and OPLS provides a value of 9.76 kcal/mol [15], in this case OPLS per-

forms better than the new model.

Furthermore, the availability of the pyridine aqueous simulation, allows us to derive the free energy
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FIGURE 6.5: (a) Combined distribution function between N· · ·H3,4 e N· · ·H5, like indicated in
insert, obtained from the pure pyridine liquid simulation. (b) Combined distribution

function between N· · ·H1 and N· · ·H2 obtained from the water pyridine solution.

of hydration, ∆Ghyd . The result obtained is of -4.23 kcal/mol (Table 6.2) with an error around the 10%

with respect to the experimental value of -4.7 kcal/mol [90].

6.3.3 Conclusion

In this study, an improved force field of pyridine, which allows one to describe both the pure liquid

and the aqueous solution, is presented. The main feature of the new force field is the use of partial

atomic charges that takes into account in an effective way the polarization effects of the environment,

without adding any ad hoc correction term to the force field. By changing the dielectric constant value

in the C-PCM protocol, it has been possible to describe through the same model the pyridine aqueous

solution and the pure pyridine liquid. Furthermore, since the hydrogen bonds have been found to be

important in describing the structure, a VS was introduced to mimic the lone pair of the sp2 nitrogen

atom. The VS allows one to describe the directional character of hydrogen bond interaction in agree-

ment with reference AIMD simulation, without compromising the description of the pure liquid. In

fact, the VS can describe both the interaction involving only a couple of atoms (pyridine-water) and a

simultaneous interaction involving more than two atoms, like the interaction found in pure pyridine

liquid, which may involve the nitrogen atom of one pyridine molecule and two hydrogen atoms of

another.

Starting from these satisfactory structural results, also thermodynamic properties for the pure liq-

uid was computed. The static dielectric constant, which is often poorly reproduced with standard force

fields, has been properly reproduced. Although usually not included in force field validation, the di-

electric constant represents a very important parameter governing the solvation capacity. At the same

time, satisfactory results were obtained for density and vaporization enthalpy.
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FIGURE 6.6: Radial distribution function between N and H1 (green), H3 (red), H5 (blue) hydrogen
atoms. In continuous line OPLS3, in dashed line the model presented in this work.
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Chapter 7

Modeling of Photoactive Dyes Within a

Sunlight Harvesting Device

This chapter is aimed at a deeper investigation of two recently synthesized heteroaromatic fluorophores

by means of a computational multilayer approach, integrating QM and MM. In particular, dispersion

of the title dyes in a polymer matrix is studied in connection with potential applications as photoactive

species in luminescent solar concentrators (LSCs). MD simulations, based on accurate QM-derived

force fields, reveal increased stiffness of these organic dyes when going from CHCl3 solution to the

polymer matrix. QM/MM computations of UV spectra for snapshots extracted from MD simulations

show that this different flexibility permits explaining the different spectral shapes obtained experimen-

tally for the two different environments. Moreover, the general spectroscopic trends are reproduced

well by static computations employing a polarizable continuum description of environmental effects.

7.1 Background

Commodity materials based on thermoplastic polymers derived from oil or renewable resources are

everyday expanding their range of applications, thanks to their excellent thermo-mechanical proper-

ties, chemical stability, easy processing, sustainability and low cost [195]. A new class of materials is

nowadays even more rapidly evolving due to the development of modern technologies that require

combinations of properties. This great interest towards functional materials has driven a wide inves-

tigation on the design and development of new “intelligent” systems with unique mechanical and op-

tical properties [196]. Several specific features can be finely tuned by an appropriate combination of

a polymeric matrix with different molecular entities, by means of dispersion [197] or covalent func-

tionalization [198, 199]. Such materials can be envisaged as stimuli responsive devices, which can find

widespread applications in various fields [200, 201]. Many external factors, such as pressure, temper-

ature, pH, viscosity or radiation, can in fact, alter the system’s response [202]. Owing to these char-

acteristics, optical responsive materials can be exploited in renewable energy technologies; over the

last three decades increasing interest has been devoted to light harvesting devices. Recent findings

on global warming [203] and nonrenewable energy resources have stimulated increasing interest to-

wards the employment of alternative ways for energy. Sunlight stands indeed as an ideal asset that

can be taken advantage of. Luminescent solar concentrators (LSCs) represent a way to decrease the

cost of solar photovoltaics [204]. LSCs consist of a fluorescent dye dispersed in a thin slab of polymeric

material. Upon solar irradiation, a fraction of the emitted light is collected at the edges of the device
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where photovoltaic cells are located [205]. Organic fluorescent dyes bearing π-conjugated electron-

donor and electron-acceptor moieties exhibit intra-molecular charge-transfer (ICT) [206] properties,

and can therefore show the optical properties required by LSCs, such as high quantum yield and large

Stokes shift [207].

Selection of the best molecular structure for such applications is not easily driven by a strategy

based on experimental data alone, which can be very approximate. Therefore, computational mod-

eling finds increasing use to carry out systematic studies aimed to gain a deeper understanding of

the chemical–physical properties responsible for the experimental optical features. As a matter of fact,

computational approaches nowadays allow simulation of spectral shapes at a very reasonable cost and

with good results [208]. It is therefore not surprising that many and different computational methods,

aimed at the reproduction of photophysical properties of organic probes dispersed in – or covalently

bounded to – several environments, have been recently reported [209–212]: such methods, trying to

reveal subtle phenomena that take place at the atomic level, hard to detect by means of experimental

techniques alone, are becoming an invaluable tool to support experiments. However, the modeling of

environmental effects, is often a crucial step, and it needs to be taken into account in order to correctly

describe the photophysics of a target molecule: charge density can rearrange as a consequence of the

electric field generated by the surrounding environment. Moreover, the conformational equilibrium of

flexible molecules is often strongly tuned by solvent effects. Unfortunately, it is still arduous to treat the

solvent using very accurate QM calculations, because of the computational cost of including a large

reservoir of molecules constituting the environment. For these reasons, during the last few decades

different approaches have been developed to deal with solvation, ranging from implicit methods, such

as the PCM [99], to more demanding procedures, such as Monte Carlo (MC), and both classical and ab

initio MD simulations, which explicitly feature solvent molecules in their spatial coordinates [213, 214].

In a recent paper [215], a new class of alkynylimidazole-based fluorophores has been studied as

promising luminescent dyes in LSCs. UV-Vis spectra of these molecules in tetrahydrofuran (THF) so-

lution as well as in a poly(methyl methacrylate) (PMMA) thin film were experimentally determined,

suggesting an enhanced rigidity of the investigated fluorophores in the polymer matrix. Absorption

spectra were simulated in good agreement with experimental data, using the CAM-B3LYP long-range

corrected hybrid density functional, in conjunction with the PCM to take bulk environmental effects

into account. Moreover, a fast and reliable computational protocol was developed to simulate absorp-

tion and emission spectra of such luminescent species when dispersed in the rigid, polymeric environ-

ment: starting from the ground-state energy minimum, the main dihedral angle (i.e., the one between

the phenyl and the imidazole moieties) was fixed at its ground-state value during the excitation (mim-

icking in such a way the caging effects of the hydrophobic bundle), while all other internal coordinates

have been relaxed. As already stated, bulk electrostatic effects were taken into account by the PCM. As

is well known, PCM offers the unquestionable advantage of providing an overall and reliable descrip-

tion of the surrounding environment, which is mainly characterized by its dielectric constant. How-

ever, the continuum method fails in the treatment of specific solute–solvent interactions, which de-

pend on the spatial coordinates of the two interacting components [216]. For this reason, in the present
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study, a recently developed protocol [217] was applied to address with improved accuracy the descrip-

tion of the polymeric bundle, and compared to the cheaper “static” approach described above in the re-

production of spectroscopic properties. The proposed approach involves computational methodolo-

gies ranging from MD simulations, based on accurate force fields, to full QM calculations, and explicitly

simulating the surrounding solvent. As is well known, FF based simulations manage to mimic the dyes

in a realistic environment, and follow the time-evolution of the whole system to its most likely config-

urations over time scales longer than 100 ns. However, since variations in the chromophore’s structure

significantly affect the computation of its spectroscopic properties, highly accurate and reliable FF

parameters are required. For this reason the FF parameterization of the dye used in this work was per-

formed using Joyce [9, 81], and all the intra-molecular parameters needed to describe the chromophore

in its ground state were specifically derived from QM calculations by fitting optimized energies, gra-

dients and Hessian matrices. Two different alkynylimidazole-based fluorophores bearing a different

electron withdrawing group were investigated for their potential application in LSCs, namely the novel

5-((4-dicyanovinyl)ethynyl)-1-methyl-2-(4-nitrophenyl)-1H-imidazole, a, and the already reported25

5-((4-methoxy)ethynyl)-1-methyl-2-(4-nitrophenyl)-1H-imidazole, b (Figure 7.1). Alkynylimidazoles a

and b were prepared according to a simple reaction sequence, starting from 1-methyl-1H-imidazole.

FIGURE 7.1: Structures of the investigated a (left) and b (right) alkynylimidazole fluorophores.

Evidence for the reduced flexibility of these organic dyes when dispersed in a polymeric bundle

is gathered by comparison with chloroform solution, employing classical MD simulations. Then, at-

tention is focused on reproducing absorption spectra in PMMA, and, in particular, on the comparison

between different representations of the polymeric environment during such spectroscopic calcula-

tions.

7.2 Methods

7.2.1 General approach

The applied computational protocol (sketched in Figure 7.2) can be summarized as follows:

1. QM calculations are performed to sample the conformational space of the considered dyes to

find their global minimum. Energies, first and second derivatives, are computed, together with

CM5 [54] point charges. Next, partial geometry optimizations are performed, constraining spe-

cific internal coordinates at selected values, in order to describe soft degrees of freedom (i.e.,

flexible dihedrals). The obtained data are then used to optimize FF parameters.

2. Reliable models for both PMMA and CHCl3 are built, by means of MM methods using FF parame-

ters taken from the literature. MD simulation of the fluorophores in the two different considered
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environments (i.e., in the real sized polymer matrix and in CHCl3 solution) are then performed

and analyzed.

3. Statistically uncorrelated snapshots are extracted from the MD trajectories, once the inspection

of the internal motions of the dyes indicates that the accessible conformations have been sam-

pled with sufficient accuracy.

4. Absorption spectra are computed (according to the protocol outlined in Section 4.4) and com-

pared on one hand with experiments and on the other hand with the results obtained using a

polarizable continuum representation of the environment (i.e., the polymeric matrix).

FIGURE 7.2: Sketch of the multilevel protocol employed in the present work.

7.2.2 QM calculations

QM calculations were performed to (i) obtain reference structures, for parameterizing classical FFs,

and to (ii) compute absorption spectra.

For both compounds a and b, global energy minima were located at the DFT level, using the B3LYP

exchange–correlation functional and the SNSD basis set [218, 219]. To reproduce experimental condi-

tions, solvent effects were taken into account by means of the conductor-like variant of PCM [181]. In

particular, butanoic acid was considered as the solvent, because of its dielectric constant (2.9931) sim-

ilar to that of PMMA (3–3.3). Moreover, the Hessian matrix and harmonic vibrational frequencies were

evaluated on the computed global minimum. In order to describe flexible terms in the fluorophores

FFs and QM energy scans along flexible dihedrals were performed, all the other geometrical parame-

ters being optimized at fixed values of the soft variable spaced by 30°. The structures obtained from



7.2. Methods 77

those relaxed scans were then used by Joyce software in order to fit dihedral FF parameters. Absorp-

tion spectra were computed for several (roughly, two-hundred for compound) statistically uncorre-

lated snapshots, extracted from MD simulations running in the polymeric environment. Environmen-

tal effects were taken into account by the so-called electrostatic embedding (EE) [133, 134] in which all

the retained PMMA atoms are represented by their OPLS [183] point charges. At larger distances, bulk

solvent effects were accounted for by means of the PCM. Electronic transitions were computed using

the TD-DFT method, and considering the six lowest electronic states for each snapshot. The CAM-

B3LYP functional and the SNSD basis set were used: this combination, in fact, has already been shown

to be suitable for these kinds of systems [215]. Transition energies obtained for the MD snapshots were

broadened by means of Gaussian functions, using a half width at half maximum (HWHM) of 0.25 eV.

The final absorption spectrum is obtained by averaging the individual signals.

All the QM calculations were performed using the Gaussian 09 suite of programs [97].

7.2.3 Molecular modeling and MD simulations

A random sequence of atactic PMMA, in a completely linear conformation, was built by using an in-

house Python script, thus obtaining a real-sized macromolecule of approximately 300 kDa (therefore,

having 2920 monomers of methacrylic acid). Such conformation was then minimized using the con-

jugate gradient algorithm, until an energy threshold of 0.5 kJ/mol was reached. A replica of this mini-

mized conformation was added and rotated, with the aim of increasing the complexity of the system.

Preliminary MD runs were performed in vacuo, to equilibrate the polymer: the simulation time-step

was initially set to 0.1 fs for the first 200 ps and then increased to 0.5 fs for the remaining 4.8 ns. A 14 Å

cutoff was applied for both the electrostatic and the van der Waals (vdW) interactions. When a curled

conformation was eventually reached by the polymer, periodic boundary conditions were applied in

all the directions and the dye was manually introduced inside the polymer matrix and kept frozen at its

equilibrium conformation. The system was coupled to a thermal bath at 300 K and to a pressure bath

at 1 bar through weak coupling schemes [94], thus running in the NPT ensemble. Coupling constants

were set to 0.1 ps and 0.5 ps, respectively. vdW forces were computed applying a cutoff distance of

13 Å whereas long-range electrostatic interactions were treated with the PME method. After 20 ns of

MD simulation, the final density was found to be lower than 1.00 g/cm−3, pretty far from the average

experimental value (1.17–1.19 g cm−3). To achieve a mass density closer to the experimental range, all

the angles’ force constant values were reduced by 50%. Moreover, the coupling constant to the barostat

was reduced from 0.5 to 0.1 ps. Under these conditions, after 20 ns of simulation, a density value of

1.20 g cm−3 was obtained. Such collapsed structure was finally re-equilibrated by restoring the system

under the initial conditions. After 5 ns, the density value was detected to be stable at 1.15 g m−3 (a

reasonable value taking into account the complexity of the simulated system). The modeling process

of the polimer matrix is summarized in Figure 7.3.
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FIGURE 7.3: PMMA equilibration process. From left to right: a portion of the starting linear struc-
ture; tangled conformation obtained during the equilibration procedure; final equi-

librated structure with PBC.

7.3 Results

7.3.1 Fluorophore force fields

Van der Waals (vdW) parameters were directly transferred from published force fields. For both a and

b, CM5 charges were computed at geometries optimized in butanoic acid at the DFT/PCM level.

No evident differences were found on the two minima, as shown in Figure 7.4, where the a and b

minima structures are superimposed. In particular, values of 28° and 30° for the dihedral angle between

the imidazole and the pull-phenyl was found for a and b, respectively.

FIGURE 7.4: Superposition of a (carbons in grey) and b (carbons in green) computed minima.

Starting from a, and as already mentioned in Section 3.1, the parameterization was performed

through the minimization of the Joyce merit function for each scanned internal coordinate, obtain-

ing an overall standard deviation of 0.00624 kJ/mol. The same equilibrium geometrical parameters

and force constants were used for equivalent internal coordinates only if contained within the same

molecular block, e.g. the phenyl-pull or the phenyl-push moiety. The flexibility of the molecule un-

der examination does not permit the use of only the absolute energy minimum to obtain a reliable FF.

Therefore, a reference QM scan was performed for all the dihedral angles that could affect the overall

conformation (and indicated in Figure 7.5 as δ1–5). The obtained energy profiles for the five dihedral

angles are shown in Figure 7.5, where single point energies calculated at the QM level are compared to

their FF counterparts.

The good agreement between both levels of theory (see Figure 7.5) points out that the Joyce FF

performs a remarkable job in reproducing the structures and relative energies of different conformers.



7.3. Results 79

FIGURE 7.5: Left: Structure of the dye a. Right: Energy profiles along the five parameterized flexi-
ble dihedrals (from δ1, on top, to δ5, on bottom) at the QM (red circles) and the Joyce

FF (continuous line) levels.

All the potential energy curves along the five torsional angles are symmetric about the origin. The

δ1 and δ4 dihedral angles show energy minima at 0° and 180°, i.e. for planar arrangements of the

whole molecule. The largest geometry variations are related to the δ2 dihedral angle, which shows four

different energy minima at ±30° and ±150°. However, planar conformers (0° and 180°) are also quite

stable due to the significant electron delocalization between the two connected rings. The capability of

the FF of a to reproduce the vibrational behavior of the molecule was checked by comparing QM and

FF harmonic frequencies. Figure 7.6 shows that the QM trend is well reproduced by the FF calculations,

with a root-mean square deviation of 82 cm−1, which can be considered satisfactory for the purposes

of the present study.

With the aim of developing a FF also for the b dye, a somewhat different strategy was used: FF

parameters for the common, planar structure were simply transferred from a to b. Then, reference

geometrical parameters and bonding force constants relative to the nitro group were computed for the

b molecule, freezing all the other parameters at the values optimized for a.

7.3.2 MD simulation analysis

The enhanced rigidity of the fluorophores upon dispersion in the polymer bundle was postulated to

explain the reduced efficiency of quenching effects [215]. In fact, quantum yields determined in so-

lution and PMMA have essentially the same value (≈0.1): while this parameter in solution is widely

affected by large conformational changes that take place between the ground and the excited states,

in the polymer matrix these structural conversions are not allowed. The goal of the MD simulations is

therefore two-fold: on the one hand they permit the generation of statistically uncorrelated snapshots
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FIGURE 7.6: Top: Computed vibrational frequencies (both at the QM and FF levels) of fluo-
rophore a. Bottom: Differences between the two descriptions.

on which spectroscopic properties can be computed and, on the other hand, they also permit demon-

strating, at an atomistic level, the reduced flexibility of the dispersed molecules, due to polymer caging

effects. In the following only the dye a is considered, since results related to dye b are almost identical

to a. Interesting aspects are evidenced by inspection of Figure 7.7, where the population distribution

of the δ1 and the δ4 flexible dihedral angles are plotted for the two investigated environments.

FIGURE 7.7: Population distribution of the δ1 (left panel) and the δ4 (right panel) flexible dihe-
drals in the two considered environments.
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In the left panel, it is easy to note differences among the behavior of the dye when dispersed in

the polymer matrix and in solution: in the former case, δ1 is frozen at approximately 180°, whereas

both planar conformations (0° and 180°) are populated in the latter case. This fact could be due to the

hindering effect exhibited by the polymer chains: their steric hindrance prevents the dye from any con-

formational rearrangement along the considered dihedral, since such torsion implies the movement

of a large and bulky group (the dicyanovinyl moiety). Concerning next δ4 (right panel in Figure 7.7),

no significant differences were found between the two different environments: nonetheless, in PMMA,

the population is more peaked at 0° than in chloroform solution, highlighting again the constraining

effect of the polymer matrix. This trend is confirmed by the behavior of δ2.

FIGURE 7.8: Left: Time evolution of the δ2 dihedral in the PMMA matrix (black) and chloroform
solution (red). Right: Time correlation of the δ2 dihedral in the two environments.

As a matter of fact, the inter-conversion between the allowed conformations of δ2 is much faster in

CHCl3 than inside the polymer (Figure 7.8, left panel): indeed, during the considered 50 ns, only two

well-defined transitions from one conformer to the other were observed, the first one occurring after

more than 15 ns.

Furthermore, in CHCl3, the four different conformers of the dye show comparable populations. In

contrast, it is clear that 50 ns are not sufficient to obtain a fully equilibrated population of all the energy

minima when the dye is within the PMMA thin film, because of the very slow structural conversions

allowed by the polymeric entanglement. This observation was also confirmed by looking at the δ2

time autocorrelation function (ACF), shown in the right panel of Figure 7.8. This is apparent from the

trend of the fluorophore to assume different conformations along δ2 in chloroform solution, with the

∆(t) value approaching zero after only 1 ns of simulation. Conversely, the same dihedral appears to

be constant, remaining highly correlated for a much longer time, when the dye is within the polymer

environment.
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Further evidence of different flexibilities of the investigated dye among the PMMA chains and the

chloroform solutions was provided by the analysis of other structural features, such as (i) the radius

of gyration and (ii) the distance between the pull- and the push-phenyl rings, placed at the ends of

the dye. Such parameters give an overall description of the internal mobility of the fluorophore in the

medium under examination. The radius of gyration has been calculated according to Eq. 4.3, and its

normalized trend is plotted in Figure 7.9, left panel.

FIGURE 7.9: Left: Normalized gyration radius distribution of the investigated dye among the sam-
pled time in the two different simulations. Right: Distance evolution between the two

phenyl rings.

The hardness encountered by the dye is evident in the polymer simulation, where the radius of gy-

ration is stable at 0.6 nm. Similar conclusions can be drawn by looking at the evolution of the distance

between the push- and the pull-moieties during the simulation. As shown in Figure 7.9, right panel,

the polymer does not allow the dispersed molecule to relax along its major axis, thus keeping the dis-

tance between the two considered groups around 1.05 nm for the whole time span. In contrast, in the

chloroform solution, the distance between the two considered groups oscillates frequently, thanks to

the higher flexibility of the surrounding environment.

The computation of dynamic properties in the two different media could permit gaining further

insights also concerning the effects of the considered environments on the fluorophore’s dynamics.

The mean square displacement (MSD) of the center of mass of a was computed for dye a in the two

surroundings.

Figure 7.10 shows the MSD variation during the first 50 ps. The behavior of the dye in chloroform

is typical for a molecular solute in a liquid solvent, where a diffusive regime is quickly approached. In

contrast, in the polymer matrix, the MSD value suddenly reaches a plateau: the solute is trapped, its

motion being strongly hindered by the surrounding PMMA cage, which delays the establishment of a
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FIGURE 7.10: Comparison between the MSD(t ) values computed in the PMMA matrix and chlo-
roform solution.

diffusive regime. Moreover, the absence of a sub-diffusive behavior indicates that the polymer chains

are also not diffusing, i.e. the polymer behaves as a plastic, thin film.

7.3.3 UV absorption spectra

All the results analyzed in the previous section point out a strong rigidity of the dyes induced by the

caging effect of the polymeric matrix. It is, therefore, natural to assume that structural changes be-

tween the ground and excited electronic states are severely restricted in the polymer bundle. Keeping

this in mind, it seems reasonable to simulate polymer hindering effects by the previously adopted static

approach [215], where the δ2 dihedral angle is fixed to its ground-state value and bulk polymer effects

are taken into account by the PCM. MD simulations on the contrary permit checking this simplified

model by looking at the populations of the different conformers along the time.

Both the approaches mentioned above (the static and the dynamic one) were applied and com-

pared with experiments. Inspection of Figure 7.11 shows that both the static and dynamic approaches

overestimate the absorbance intensity at the maximum absorption wavelength. Nonetheless, the dy-

namic approach reproduces very well the first peak at approximately 300 nm, whose intensity is un-

derestimated in the static model. This last approach shifts the absorption wavelength by about 11 nm,

while the same experimental peak is underestimated by 7 nm using the dynamic approach. The same

observations could be extended to system b (7.11 11, right panel). The overall shape of the experi-

mental spectrum is again better reproduced by the dynamic simulation than by its static counterpart.

The two approaches show, instead, comparable errors (of opposite sign) concerning the position of the

peak maximum.

Computational and experimental findings are summarized in Table 7.1. Globally, inspection of

the shape of the computed spectra evidences a good match with experiments, especially concerning

the decay slope. Furthermore, the good agreement between the results obtained from atomistic and
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FIGURE 7.11: Absorption spectra of a (left) and b (right panel) computed using the dynamic ap-
proach (EE, continuous red line) and the static approach (PCM, blue line), com-

pared to the experimental spectrum (Exp., continuous green line).

continuous descriptions of the environment suggests the absence of strong specific solute–solvent in-

teractions (especially of electrostatic origin). Although the dynamic atomistic approach improves the

reproduction of the spectral shape (especially in the area under 350 nm), it is worth noting that PCM

performs a remarkable job in simulating the main features of the polymer embedding, permitting a

preliminary semi-quantitative analysis of general trends by a fast approach.

System Method Absorption peak (nm)

a in PMMA
Experimental 404

Static approach (PCM) 415
Dynamic approach (EE) 397

b in PMMA
Experimental 373

Static approach (PCM) 378
Dynamic approach (EE) 365

TABLE 7.1: Wavelength values calculated at the lie peak for both a and b upon dispersion in the
PMMA matrix.
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7.3.4 Conclusion

Purposely tailored FFs have enabled us to follow the time evolution of two alkynylimidazole fluo-

rophores when dispersed in a PMMA matrix intended to be part of a sunlight-harvesting device. Care-

ful analysis of MD trajectories highlighted an overall rigidity of such hetero-aromatic molecular struc-

tures, due to the presence of the polymer chains, which hindered inter-conversions between different

low-energy conformers. Analogous simulations in chloroform solution showed, instead, a significant

flexibility of the dyes. These results confirm the hypothesis advanced recently to explain the different

behavior of these dyes in solution and in the polymeric matrix.

Next, the attention was focused on the computation of absorption spectra of the same fluorophores

within the polymer matrix. This was achieved by using two different methods, i.e. (i) a static approach,

where spectroscopic computations were made only on the conformational minimum, modeling the

environment using PCM, and (ii) a dynamic approach, where the same computations were made on

several snapshots extracted from the MD trajectories, and explicitly representing the polymer through

the so-called electrostatic embedding. Even if a more correct reproduction of absorption spectra was

achieved by the application of the second, more demanding, protocol, it has to be noticed that a static

approach also works pretty well. In particular, the static protocol is confirmed in this work to be a

very useful tool in virtual screening campaigns, where the best structures for the above-mentioned

applications have to be chosen by fast yet sufficiently accurate methods. It is, however, apparent that

reliable optical features can be obtained using only force fields tailored for the correct reproduction of

structural properties.

The proposed approaches could also be extended to the simulation of emission spectra: the valid-

ity of the CAM-B3LYP theoretical scheme in the computation of emission properties is currently under

investigation, together with the parameterization of ad hoc FFs for the excited states of the two tested

dyes, to be used during MD simulations in the dynamic approach. Future applications of the proposed

procedures could also cover the inclusion of new, polar polymer matrices, as well as other condensed-

phase environments, in order to further assess the validity of both implicit and explicit models.
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Chapter 8

Computational Study of a Fluorescent

Molecular Rotor in Various Environments

Fluorescent molecular rotors (FMRs) belong to an important class of environment sensitive dyes ca-

pable to effectively report on viscosity and polarity of their microenvironment. FMRs have found

widespread applications in various research fields, ranging from analytical to biochemical sciences, for

example in intracellular imaging studies or in volatile organic compound detection. Here, a computa-

tional investigation of a recently proposed FMR, namely the 4-(diphenylamino)phthalonitrile (DPAP),

in various chemical environments is presented. A purposely developed force field is developed and

then applied to simulate the rotor into a high- and low-polar solvent (i.e., acetonitrile and cyclohex-

ane), a polymer matrix and a lipid membrane. Subtle effects of the molecular interactions with the

embedding medium, the structural fluctuations of the rotor and its rotational dynamics are analyzed

in some detail. Results correlate with available experimental data, thus supporting the reliability of

the model, and provide further insights on the environment-specific properties of the dye. In partic-

ular, it is shown how molecular diffusion and rotational correlation times of the FMR are affected by

the surrounding medium and how the molecular orientation of the dye becomes anisotropic once im-

mersed in the lipid bilayer. Moreover, a qualitative correlation between the FMR rotational dynamics

and the fluorescence lifetime is detected, a result in line with the observed viscosity dependence of

its emission. Finally, optical absorption spectra are computed and successfully compared with their

experimental counterparts.

8.1 Background

During the last decades, the chemistry toolbox has been significantly expanded by the development

of new organic fluorophores characterized by innovative structural and optical features. In particular,

molecular dyes able to modulate their photophysical properties in response to different surrounding

environments are nowadays employed in wide areas of chemical research, ranging from environmental

to photovoltaics applications [220], and from biology to medicine [221–224]. In this context, fluores-

cent molecular rotors (FMR) have gained much attention owing to their simple synthesis and versatil-

ity [225–227]. Typically, FMRs are characterized by an electron acceptor moiety and an electron donor

unit, which are connected by a flexible spacer with conjugated bonds. Such a chemical linker ensures,

upon excitation, an electronic density shift from one unit to the other and confers to FMRs a peculiar
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sensitivity towards local viscosity and polarity of the environment. In FMRs, emission is finely modu-

lated by intramolecular structural changes occurring in the excited state, in addition to solvent dipolar

relaxation. Moreover, in most FMRs the fluorescence signal stems from the competition between a lo-

cally (bright) excited state and a twisted intramolecular (either bright or dark) charge-transfer (TICT)

state [225]. As a result, FMRs have been successfully employed as intracellular microviscosity detectors

for i n vi vo applications [228, 229]. This is relevant in view of the connection of plasma and cellular

viscosity changes with biochemical processes and diseases [230].

Among the many FMRs reported to date, the recently synthetized 4-(diphenylamino) phthaloni-

trile (DPAP) turned out to be the prototype of a novel class of FMRs [231]. DPAP chemical structure

presents a tertiary amine electron donor and two nitrile groups acting as electron acceptor moieties,

embedded in a π-extended conjugated system (Figure 8.1). In contrast to most FMRs, which are char-

acterized by a locally excited (LE)/TICT state mechanism, DPAP photophysical behavior is basically

modulated by a free rotational motion of its phenyl rings [231]. DPAP spectroscopic response and its

polarity and viscosity dependence have been already exploited in several applications [232–234]. Usu-

ally the modus oper andi of FMR photophysical mechanisms, including DPAP, are typically addressed

by QM investigations of their electronic excited states and conformational changes. However their de-

tailed structural and dynamical features in complex molecular environments and their specific inter-

actions with the surroundings, which ultimately modulate the FMR spectroscopy, still remain largely

elusive. Due to the several interplaying effects that directly and indirectly affect FMRs upon disso-

lution in condensed-phase systems, a thorough in silico investigation may help to properly identify

the molecular determinants of the recorded experimental observables and possibly uncover the subtle

relationship between molecular dynamics and spectroscopy [235, 236].

FIGURE 8.1: 4-(diphenylamino)phthalonitrile (DPAP) structure.

In this work, a MD study of DPAP in multiple environments has been carried out in order to de-

scribe the effect of the embedding medium on the structural and dynamical behaviour of the rotor.

Acetonitrile (ACN), tetrahydrofuran (THF), o-xylene and cyclohexane were considered as solvents, to

include a reasonable range of bulk properties (as static dielectric constant and viscosity). Addition-

ally the study has been extended to include the atactic poly(methyl methacrylate) polymeric matrix

(PMMA) and the hydrated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer, since ap-

plications of DPAP in both polymeric films [233] and in cell membrane environments [234] have been
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reported in previous studies. Hence, DPAP has been chosen as an illustrative example for the com-

putational treatment of a FMR in different target environments. A multistep computational protocol

has been set out [235], which involves the development of a reliable ground-state molecular model

of the rotor based on QM calculations, extensive atomistic simulations in all the environments and

subsequent spectroscopic calculations of the optical absorption spectra. On the other hand, emis-

sion spectra, whose modeling would require the use of the excited-state force field, will be addressed

in a future work, following the same computational procedure established in the present study. It is

worth noting that a reliable force field is crucial in this context, owing to sensitivity of the dynamical

and spectroscopic response to conformational changes of the FMR [231]. Analysis of the MD trajec-

tories has allowed to shed some light on the structural and dynamic properties of the dye within the

considered embeddings and concurrent local structural perturbations of the surroundings. Further-

more, the rotor mobility and rotational dynamics were scrutinized in view of the dye-environment

specific interactions. Interestingly, in some of the environements a relation between molecular rota-

tional dynamics and fluorescence lifetime has emerged from the present analysis. This result may have

far-reaching implications for the possible exploitation of spectroscopic techniques to gather detailed

molecular information in a large number of materials.

8.2 Methods

8.2.1 QM calculations and force field parameterization

All intramolecular terms were parameterized by using the Joyce software [9] by fitting energy gradients

and Hessian matrix to corresponding QM data. In particular, bond, angle and stiff torsion terms were

fitted to a QM Hessian matrix computed at DPAP optimized geometry, while torsional potentials of

flexible dihedral angles were further refined through relaxed potential energy surface (PES) scan cal-

culations. DPAP optimized geometries, energies and Hessian matrix were computed at the Density

Functional Theory (DFT) level, according to the B3LYP exchange-correlation functional and the SNSD

basis set [218, 219]. Bulk solvent effects were taken into account by means of the C-PCM [181]. Atomic

partial charges were computed according to class IV CM5 charges [54] at the minimum energy con-

figuration, whereas Lennard-Jones parameters were transferred from the OPLS/AA FF [2]. Acetonitrile

and cyclohexane only were considered within the C-PCM to evaluate the influence of solvent polar-

ity on DPAP structural and electronic properties, however FF parameters and atomic charges were fi-

nally based on acetonitrile owing to negligible differences in the obtained parameters (e.g., the largest

atomic charge deviation was 2.98 x 10−2e). Vertical transition energies were computed at the CAM-

B3LYP/SNSD level of theory on selected configurations sampled during the MD simulations. All QM

calculations were performed using the Gaussian 09 suite of programs [97].

8.2.2 MD simulations

Classical MD simulations of DPAP in different environments were performed using the GROMACS (ver.

4.6.5) software package [98]. The OPLS-AA FF [2] was used to describe intramolecular and intermolec-

ular potential of tetrahydrofuran, o-xylene and acetonitrile with the exception of ACN atomic charges,

which were estimated using the CM5 population analysis [54]. For cyclohexane, the general Amber
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TABLE 8.1: Technical details of the performed Molecular Dynamics simulations.

Environment N. of molecules Box edge (nm) Force Field

Acetonitrile 3053 6.62 OPLS-AA[2]

THF 962 5.24 OPLS-AA[2]

o-Xylene 556 4.82 OPLS-AA[2]

Cyclohexane 997 5.69 GAFF[59]

DOPC bilayer
200 DOPC

8.27 x 8.27 x 6.26 CHARMM[63]
5791 H2O

PMMA
2 chains of

9.45 OPLS-AA[2, 241]
2920 monomers

FF (GAFF) for organic molecules [59] has been selected, since preliminary investigations showed that

poor results were obtained in reproducing density with OPLS-AA. PMMA coordinates and topology

were taken from the work of Chapter 7, using standard OPLS parameters. The hydrated (by means

of TIP3P water molecules [237]) DOPC bilayer was modeled according to CHARMM FF [63], which is

able to reproduce available experimental information on the structure and dynamics of phospholipid

bilayers reasonably well.[238–240]

One DPAP molecule was solvated or embedded into a number of molecules representing the above

mentioned environments enforcing periodic boundary conditions (see details in Table 8.1). In partic-

ular, in order to simulate DPAP in the hydrated DOPC bilayer, a rectangular box was chosen. After a

steepest descent energy minimization, the systems were slowly heated up from an initial temperature

of 150 K to 300 K for about 500 ps using the velocity-rescale thermostat [95] and a coupling constant

(τ) equal to 0.1 ps. All systems, except DPAP in lipid bilayer, were equilibrated for 1 ns (with a timestep

of 1.0 fs) in a NPT ensemble, using the Berendsen barostat [94], and the velocity-rescale thermostat

with coupling constants of 1.0 ps and 0.1 ps respectively. In the case of lipid bilayer, the equilibra-

tion run lasted 6 ns according to a NPT ensemble, using the semi-isotropic pressure coupling. After-

wards, all production runs were carried out in the NVT ensemble, using the velocity-rescale thermostat

(T=298.15 K and τ=0.1 ps) and increasing the integration timestep from 1.0 to 2.0 fs. Fastest degrees of

freedom were constrained with the LINCS algorithm [93]. In the case of cyclohexane, only bonds with

hydrogen atoms were kept rigid. The total sampling time was about 130 ns for all the systems. Elec-

trostatic potential was described using the PME method [89], using a real-space cutoff of 1.4 nm and

spline interpolation of order 4. VdW interactions were computed applying a cutoff of 1.4 nm. OPLS

combination rules were used. System coordinates were stored every 500 steps (i.e., each picosecond).

Trajectories analysis were performed with the TRAVIS package [191] and homemade scripts.
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8.3 Results and Discussion

8.3.1 DPAP force field

FIGURE 8.2: DPAP propeller-like conformation is indicated with green vectors. The rings centers
(1, 2 and 3), the ipso (C1, C1’ and C1”) and the ortho (C2, C2’ and C2”) carbon atoms

are labeling in red and black respectively.

DPAP optimized structure adopts a propeller-like conformation in order to minimize steric hin-

drance among the three phenyl rings (see Figure 8.2). DPAP belongs to the C1 point group since the

presence of cyano substituents on one ring breaks the D3 symmetry that otherwise characterizes the

parent molecule (i.e. triphenylamine). The central NC1C1′C1′′ moiety (for atom labeling see Figure

8.2) adopts a nearly planar geometry. From DFT calculations, the C1NC1′ and C1NC1′′ angles are equal

to about 121◦, whereas C1′NC1′′ is 117◦ in acetonitrile (i.e., the highest polar solvent) and in cyclohex-

ane (lowest polar solvent), the difference between C1NC1′ (or C1NC1′′) and C1′NC1′′ being ascribed to

the inductive and resonance effects of the two cyano groups on ring 1.[242] The three main degrees of

freedom, characterizing DPAP conformational changes in solution, are the ring torsional angles with

respect to the central amine group (i.e. NC1C1′C1′′), hereafter referred to as dihedral 1 (C2C1NC1′′),

dihedral 2 (C1′′NC1′C2′) and dihedral 3 (C2′′C1′′NC1′). Owing to the subtle interplay between struc-

tural conformation and photophysical properties, special attention was due to the parameterization

of the torsional potentials along such dihedral angles, as described in the following.

Starting from the DFT optimized geometry of the dye, distinct relaxed PES scans along the dihe-

dral angles were performed (Figure 8.3): each torsional angle was modified in multiple steps (at least

25), then the dye structure was relaxed keeping frozen the accounted dihedral angle to avoid spurious

distorted conformations due to close interactions between the phenyl rings. Note that the potential

energy curves (PEC) of dihedral angle 2 and 3 are equivalent, in this case. Solvent (i.e. acetonitrile) ef-

fects have been included implicitly in calculations. The obtained DFT PEC was used to refine torsional
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FIGURE 8.3: Torsional profile comparison between QM (black points) and Joyce (lines) for dihe-
dral angles 1 (a) (in red) and 2 and 3 (b) (in green).

potential terms of the DPAP FF. Results are depicted in Figure 8.3, where DFT and MM PEC profiles

show negligible differences. Both PEC are symmetric with respect to the planar geometry (at either 0◦

or 180◦) and show four minima in correspondence to the propeller-like conformations.

Overall, the PEC profile is typical of aromatic amines: a similar profile, for example, has been ob-

tained for the triphenylamine [243]. In particular, dihedral angle 2 and 3 show symmetry-related en-

ergy minima at ±130◦ and ± 50◦, whereas dihedral 1 minima are located at ± 25◦ and ± 155◦. These

results are consistent with DPAP optimized geometry, in which 1, 2 and 3 are, respectively, 22◦, 51◦

and 125◦ in acetonitrile and 23◦, 53◦ and 127◦ in cyclohexane. Two energy barriers characterize the

interconversion among such energy minima, whose positions correspond to the planar and orthogo-

nal geometry of the considered ring with respect to the central amine moiety: a small one of less than

1 kcal/mol and a larger one of about 3-5 kcal/mol. Interestingly, there is an apparent swap of such

barriers in the two type of torsional angles: the highest energy barrier corresponds to the orthogonal

configuration in case of dihedral 1 and to the planar configuration in case of dihedral 2 and 3. As a

consequence, the torsional potentials of the three dihedral angles cannot be treated equivalently. This

peculiar observation is ultimately due to the resonance effect of the cyano groups on ring 1, which

confer to an extra stabilization energy to the planar geometry. For the unsubstituted phenyl rings, the

orthogonal conformation is energetically more favourable with respect to the planar one because the
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steric hindrance is minimized. The situation is reversed in case of the di-substituted ring (i.e., ring 1).

8.3.2 DPAP in solutions

MD simulations of the dye in liquids, i.e. acetonitrile, tetrahydrofuran, o-xylene and cyclohexane, were

carried out at normal conditions. DPAP intermolecular interactions and solvation have been analyzed

in terms of the rdf profiles.

Figure 8.4 shows the rdf issuing from the center of mass (COM) of solvent molecules (acetonitrile,

tetrahydrofuran, o-xylene or cylohexane) and the center of each of the three DPAP aromatic rings (RC).

Noticeable differences are detected for ring 1 compared to ring 2/3. In the case of acetonitrile (Figure

8.4, blue line), the first main peak located at approximately 5 Å is clearly higher for the unsubstituted

aromatic rings. Such peak takes a height of 1.25 and 0.9 for ring 2/3 and 1, respectively. A second less

pronounced peak appears at 10 Å. A similar, but more structured, profile is found in cyclohexane (Fig-

ure 8.4, green line), where ring 1 is again less interacting with surrounding solvent molecules. The first

peak is located at 6 Å of COM· · ·RC distance. Three more peaks are observed at 11, 15 and 20 Å. The

four peaks are smooth and well resolved, thus indicating a well-defined solvent structure, as already

pointed out by previous theoretical and experimental studies on cyclohexane liquid solution.[244, 245]

The difference between ring 1 and 2/3 can be ascribed to the two cyano substituents, which turned

away solvent molecules from ring 1 center. In case of THF and o-xylene solvents, the rdf profile is in-

termediate between the two more structurally different solvents, acetonitrile and cyclohexane, as can

be admired in Figure 8.4. Ring 1 in particular, appears to be less solvated, compared to the cyclohexane

case, with a peak height of 1.2 in both solvents. Looking at the other rings (2 and 3), the distribution

is closer to the case of cyclohexane, though a lower interaction (of height 1.6 approximately) between

ring center and THF COMs is detected.

To highlight specific interactions between the cyano groups and the solvent, the rdf between the

cyano nitrogens and the solvent hydrogen atoms (i.e. the methyl hydrogen atoms of acetonitrile and

the cyclohexane hydrogen atoms) are considered. The corresponding rdfs are depicted in Figure 8.5.

The N· · ·H intermolecular interactions are well established in acetonitrile, with a well-defined peak

(height of 1.3) located at approximately 2.6 Å, with an integral value computed at the end of the peak

of 11. These results indicate that nitrogens are well disposed to interact with up to four acetonitrile

molecules. A second peak is present at 4 Å. For cyclohexane, no specific interactions have been found

which is consistent with its molecular symmetry. The same observation made in acetonitrile can be

easily extended to o-xylene, since both corresponding structures present a CH3 group.

The acetonitrile solution was also analyzed to observe the opposite interaction, i.e the one that

involves DPAP aromatic ring H atoms and acetonitrile N atoms. In this case, acetonitrile acts as a hy-

drogen bonding acceptor. Figure 8.6 shows individual rdf for each H atom belonging to DPAP. Note

that DPAP H atoms are considered equivalent under the assumption that the three rings may undergo

free rotations. Steric obstruction and ring oscillations prevent solvent molecules from approaching H

atoms in ortho position with respect to the tertiary amine nitrogen. This is the reason why the cor-

responding rdf are the lowest (see red, blue and green lines in Figure 8.6). The other hydrogen atoms

instead are easily accessible and can interact with acetonitrile. In Figure 8.6 the hydrogen atom colored

in black is the most disposed to interact with acetonitrile, being assisted by the nearby cyano groups.
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FIGURE 8.4: Radial distribution functions between DPAP ring centers (i.e., 1, panel (a); 2, panel
(b); 3, panel (c)) and acetonitrile (blue), o-xylene (magenta), tetrahydrofuran (cyan)

or cyclohexane (green) center of mass.
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FIGURE 8.5: Radial distribution functions between DPAP (cyano) N and acetonitrile H atoms
(blue) or cyclohexane H atoms (green).

FIGURE 8.6: Radial distribution functions computed between different H atoms on DPAP and N
atom on acetonitrile. Each H atom, and corresponding distribution, is highlighted

following the color scheme depicted in the right panel.
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Indeed, cyano substituents act as hydrogen bonding acceptors, thus facilitating the interaction with

the ring H atom.

8.3.3 DPAP in polymeric matrix and lipid bilayer

DPAP was docked into the cavity of a pre-equilibrated atactic PMMA matrix following a similar protocol

of a previous study [241]. The DPAP structure was embedded into the polymer matrix avoiding close

contacts with the surrounding polymer chains and the system was minimized via the steepest descent

algorithm until a energy threshold of 0.5 kJ/mol was reached. Within the simulated time interval, DPAP

remained trapped into the PMMA cavity, displaying no translational motion and little reorientational

freedom (vi de i n f r a).

The main structural features characterizing the rotor within the PMMA matrix were described by

evaluating the rdf between DPAP cyano N atoms and PMMA methyl H atoms, and between DPAP H

atoms and PMMA carbonyl O atoms. Inspection of Figure 8.7 reveals a noticeable structure arising

from the interaction of the polymer hydrogen atoms and the nitrogen atoms of the cyano substituents,

with an average distance evaluated from the last 2 ns of the MD simulation of 3.15 Å.

FIGURE 8.7: Radial distribution functions computed between DPAP H atoms and PMMA (car-
bonyl) O atoms (orange) and DPAP (cyano) N and PMMA (methyl) H atoms (violet).

Other distinguishable rdf peaks, due to the tangled structure of the polymer bundle, are located at

4.4, 6.4 and 9.2 Å. By comparison, a labile interaction takes place between the polymer carbonyl O and

DPAP aromatic H atoms with a first low peak at about 3 Å.

On the other hand, in the study of the DPAP/DOPC membrane system, an initial configuration

was obtained from a previous equilibrated membrane configuration containing one cholesterol unit,

in which cholesterol was replaced by DPAP. In the starting configuration, DPAP was embedded within

the lipid membrane at 2 Å depth from the hydrophilic interface. To characterize DPAP molecular dy-

namics in the hydrated DOPC bilayer, the lateral displacement and in-depth distance of the rotor from

the lipid polar surface, as a function of time, were monitored (Figure 8.8). The lateral displacement

(along the XY plane) shows a slow diffusive regime ≈15 Å in 100 ns of simulation. During the simu-

lation, DPAP sequesters itself well within the dense membrane up to 13.43 Å from the lipid surface,

which also accounts for its hindered rotations (see below). The average immersion distance was 7.05 Å
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which is less than half of the average bilayer thickness (38 Å). This result is consistent with the experi-

mental evidence issuing from a previous bioimaging study [246] in which DPAP was shown to localize

preferentially within the cell membrane and into lipid vescicles according to its hydrophobic nature.

A complete permeation was not observed within the present sampling, since it would require much

longer timescales.

FIGURE 8.8: Displacement in XY plane (a) and Z dimension (b) of DPAP within the membrane.
The DPAP centroid (blue circle in b) was taken as reference for the analysis. The DPAP
permeates up to 13.43 Å from the lipid surface, defined considering the phosphate

centroids (red circle in b).

To better analyze DPAP orientation within the lipid membrane during the MD simulation, the time

evolution of the angle formed between the normal to the lipid bilayer and the normal to the DPAP

NC1C1′C1′′ moiety (see Figure 8.9) was evaluated.

As can be noted in Figure 8.9, most of the time DPAP molecular plane was oriented at an angle

around 30◦ (or equivalently 150◦) with respect to the lipid bilayer orthogonal axis, undergoing only two

rotational transitions during the 100 ns time interval. The present analysis provided evidence of the

anisotropic effect of the lipid environment, which, coupled to the intrinsic viscosity of the lipid alkyl

chains, has severely hindered DPAP rotational dynamics. This result is not surprising since it appears
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FIGURE 8.9: Evolution of the angle between the normal to the plane of lipid bilayer hydrophilic
interface (vector in blue) and the axis perpendicular (vector in orange) to the plane
defined by the three ipso carbon atoms (in yellow in insert) during 100 ns of simula-

tion.

TABLE 8.2: Dynamical and spectroscopic properties of DPAP.

Environment D (10−5 cm2 s−1) τrot (ps) τdi h
rot (ps) µ (mPa s) τ f l (ns)[231]

Acetonitrile 3.68 ± 0.02 6.55±0.06 5.91±0.07 0.344[248] 2.61

THF 1.54 ±0.03 13.5±0.9 12.8±0.2 0.47[249] 12.9

o-Xylene 0.18 ± 0.02 84±7 80±5 0.81[250] 12.5

Cyclohexane 0.17 ± 0.03 62±4 62±4 0.887[251] 9.16

DOPC bilayer 0.024 ± 0.006 173±67 151±66 134-195[252] 14.3

PMMA - 28600±8100 11000±7000 -a 12.3

a The PMMA viscosity has not been reported since the corresponding value strictly depends on the
chain lengths.[253] In general, polymer viscosity is determined upon dissolution in a solvent.

consistent with what it is known for other organic compounds once embedded into lipid membranes,

e.g. cholesterol [247].

8.3.4 Comparison of the structural and dynamic features of DPAP in multiple environ-

ments

The chemical environments considered in this work cover a broad spectrum of complex molecular em-

beddings, ranging from apolar/hydrophobic to polar/high-permittivity solvents and from low-density

to highly viscous environments, including also a non-homogeneous and anisotropic system (i.e. the

hydrated lipid membrane). Furthermore, the structural complexity and molecular weight of the em-

bedding molecules increases considerably from acetonitrile to PMMA. In this section, the influence of

the surrounding medium on the dynamic and structural properties of DPAP was scrutinized in some

detail.

First, DPAP mobility was evaluated in terms of its self-diffusion constant in all embeddings. With
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FIGURE 8.10: Dihedral distribution function of the three dihedral angles: in solid red line dihe-
dral angle 1, in solid green line dihedral angle 2 and in black dashed line dihe-
dral angle 3 in (a) ACN, (b) Cyclohexane, (c) Hydrated 1,2-dioleoyl-sn- glycero-3-
phosphocholine (DOPC) lipid bilayer, and (d) Poly(methyl methacrylate) polymeric
matrix. (Note that the distributions have been symmetrized for the sake of compar-

ison).

the exception of PMMA, noticeable translational motions were observed. The obtained diffusion con-

stants, D , spanned several orders of magnitude (Table 8.2) as a result of medium viscosity and inter-

molecular interactions (as evidenced in the previous sections). In particular, a qualitative agreement

with viscosity is apparent, as reported in Table 8.2. However, a quantitative relation, as predicted by

the Stokes-Einstein equation [254] (which correlates the orientational diffusivity with viscosity) could

not be obtained, likely due the formation of environment-specific interactions.

The distribution of the three flexible dihedral angles of DPAP (i.e. dihedral 1, 2 and 3, see descrip-

tion above), was evaluated as issuing from the MD simulations in all the considered environments.

The angle distributions reflected the corresponding periodic torsional potentials based upon which

the FF was derived, as shown in Figure 8.10. In all the MD simulations, DPAP selectively populated the

three different torsional angles, with the highest occurrence falling within the minimum-energy con-

figurations, while other geometries were progressively disfavoured according to the QM energy scan

profile reported in Figure 8.3. In all cases except PMMA, the three aromatic rings were able to un-

dergo a complete rotation, thus populating all minima predicted by the QM analysis. At this point, it is

worth noting that DPAP rings may oscillate around their corresponding free energy minima but can-

not rotate independently. Rather, structural transitions of the three dihedral angles may occur only in

a concerted way. Such a coupled rotational motion is another sign of the steric hindrance among the

aromatic rings.
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In order to highlight the different intramolecular dynamics of DPAP in the selected environments,

the time evolution and distribution of the dihedral angle 1 was evaluated and depicted along 1 ns in

Figure 8.11.

FIGURE 8.11: Time dependent dihedral distribution function for dihedral angle 1 for the first ns of
simulation in ACN (a), cyclohexane (b), hydrated DOPC lipid bilayer (c) and PMMA

polymeric matrix (d).

In simple organic liquids (acetonitrile, cyclohexane, o-xylene and tetrahydrofuran) several com-

plete rotations of the dicyano substituted ring were observed with ACN and cyclohexane yielding the

fastest and lowest rotation rate, respectively. On the other hand, in the DOPC bilayer only a small

amplitude oscillation (from -30◦ to +30◦) was noticed and in the PMMA matrix no transitions were

observed. A more quantitative analysis along the entire MD trajectories was carried out by evaluat-

ing the time autocorrelation function (ACF) of ring 1 torsional angle (Figure 8.12). Overall, the same

trend discussed above was observed. The corresponding rotational correlation times (τdih
rot ) suggested

the slowest dynamics to occur in the PMMA matrix (see results in Table 8.2). Note that the transition

frequency of DPAP torsional angle is to be considered a direct consequence of the interaction with the

environment, in addition to the intrinsic viscosity of the medium.

Furthermore, to characterize DPAP molecular rotations, the ACF of the axis perpendicular to the

NC1C1′C1′′ group (i.e., three ipso carbon atoms marked in yellow in inset of Figure 8.13b) was eval-

uated as a function of time. The ACF in acetonitrile decays more rapidly than in all other systems,

showing a rotational correlation time (τrot) of about 6.55 ps (Table 8.2), followed by THF (τrot = 13.5

ps), cyclohexane (τrot = 62 ps) and o-xylene (τrot = 84 ps). This result appears to be consistent with the

interactions between investigated solvent molecules and DPAP rings highlighted in Figure 8.4. The

rotational motions appeared highly retarded in the more viscous systems as the membrane or the

polymeric embedding. Here, it is worth noting that DPAP maintained a higher degree of rotational
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FIGURE 8.12: Autocorrelation function of the vector perpendicular to the ring 1 (Figure 8.2). Data
related to the first 100 ps of simulation are reported.

freedom into the lipid bilayer than into the polymeric matrix (both intramolecular ring rotations and

whole-molecule rotations, see Table 8.2). However, rotational (and translational) motions of DPAP in

PMMA could not be sampled satisfactorily within the simulated time interval, owing to the high iner-

tial mass of the polymeric matrix. Therefore, the estimated correlation times (i.e., τdih
rot and τrot) have

to be considered qualitatively more than quantitatively.

Previously, DPAP fluorescence quantum yield was observed to follow approximately a Förster-

Hoffmann relation [255] when plotted against viscosity in a set of low-dielectric and increasingly vis-

cous solvents [231]. Here, excluding the DPAP/PMMA and DPAP/THF systems, a good degree of cor-

relation between DPAP rotational dynamics (τrot) and the observed fluorescence lifetime (τ f l ) was

noted in the same environments under investigation, as reported in Table 8.2 and depicted in Figure

8.14. This finding is consistent with the view that non-radiative processes are disfavored in more vis-

cous and less interacting embeddings, thus enhancing the half-life time of the corresponding excited

states. As a matter of fact, entrapping fluorescent dyes into nanoparticles, such as silica-based parti-

cles, is a fruitful strategy exploited in imaging applications to achieve extended emission lifetimes. In

this study, the role of the environment in modulating DPAP fluorescence signal emerged as connected

with the capability to hinder or enhance DPAP rotational dynamics.

8.3.5 Optical absorption spectra of DPAP

Theoretical absorption spectra of DPAP in all environments were evaluated by carrying out spectro-

scopic calculations, at the CAM-B3LYP/SNSD level of theory, on 200 molecular configurations ex-

tracted from MD trajectories. Spectra were generated from the convolution of vertical excitation en-

ergy calculations on the first few excited states using an empirical half-width-half-maximum (HWHM)

parameter to better match experiments. The four liquids (for which experimental absorption were
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FIGURE 8.13: (a) Mean square displacement (nm2) of DPAP in acetonitrile (blue line), tetrahydro-
furan (cyan line), o-xylene (magenta dashed line), cyclohexane (green line), DOPC
bilayer (red line) and PMMA (violet line). Data related to the first 800 ps of simu-
lation are reported. (b) Autocorrelation function of the vector perpendicular to the
plane defined by the three ipso carbon atoms (in yellow), shown in the insert. Data

related to the first 200 ps of simulation are reported.

available) were modeled with the PCM, with a HWHM of 0.2 or 0.1 eV. The simulated absorption spec-

tra are depicted in Figure 8.15 and compared to the experimental counterparts taken from Ref. [231]

(spectra are normalized for comparison). The main, broad peak, located at 329 nm and 327 nm in ace-

tonitrile and cyclohexane, respectively, corresponds essentially to the S1 ← S0 and S2 ← S0 transitions.

The same transition accounts for the main peaks at 327 nm and 324 nm in the case of o-xylene and

THF. In all solvents, the main band is well reproduced by the theoretical calculations: in acetonitrile,

the theoretical spectrum is slightly redshifted by about 8 nm, while in cyclohexane deviation is only
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FIGURE 8.14: Correlation between DPAP rotational correlation time (ps) and fluorescence life-
times (ns) in the six considered environments.

FIGURE 8.15: Comparison between theoretical (a, c) and experimental (b, d) absorption spectra
of DPAP in acetonitrile (continuous blue line), cyclohexane (dashed green line) o-

xylene (dashed magenta line) and tetrahydrofuran (continuous cyan line).

3 nm. Similar deviations of 2 nm and 7 nm are observed for the other two low-dielectric solvents. A

second peak, which has been assigned to the S3 ← S0 transition, appears at smaller wavelengths. The

peak maximum is well defined in cyclohexane (292 nm) and o-xylene, and fairly reproduced by present

computations (299 nm for cyclohexane; 298 nm for o-xylene). The same transition is not appreciable

in acetonitrile as well as in THF, and the corresponding peak is merged in the first wide band. Finally, in

the four solvents another optical band at shorter wavelengths resulted from calculations did not match

an experimental counterpart in the considered region of the electromagnetic spectrum. Results on the

maximum absorption peaks are summarized in Table 8.3. Similitudes between experimental spectra

are well preserved in the theoretical ones, confirming the DPAP solvent-independent features of this
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kind of spectroscopy within the accounted wavelength region.[256]

To verify if further improvements could be achieved in modeling absorptions, the electrostatic embed-

ding [133, 134] was considered to describe solvent molecules during vertical energies computations.

Within such paradigm, solvent residues with at least one atom within 20 Å from DPAP have been re-

placed by the respective atomic charge (according to the corresponding force field) during the QM

computation. The EE wavelengths at maximum absorption for acetonitrile and cyclohexane were lo-

cated at 341 and 327 nm, respectively. This result is in agreement with the PCM case for cyclohexane.

Also for acetonitrile, anyway, the peak is in line with the previous investigation, since it is within the

corresponding statistical error reported in Table 8.3. Despite the absorption spectra of DPAP recorded

in various solvents were found not to change substantially, in contrast to the emission ones, their the-

oretical reproduction was not expected to be trivial, since excitation energies are quite sensitive to the

dihedral angle 1 both in polar and apolar solvents.[231] Hence, it was largely important to base spec-

troscopic calculations on reliable molecular structures which also provide a representative sampling

of the FMR configurational space.

Environment
Absorption peak (nm)

Theory Experiment[231]

Acetonitrile 329±20 321

THF 331±18 324

o-Xylene 325±17 327

Cyclohexane 327±15 324

DPOC 323±12 -

PMMA 321±13 -

TABLE 8.3: Maximum absorption peak wavelength (nm)

Absorption spectra were also computed in the PMMA polymeric matrix and DOPC membrane

(HWHM value of 0.2 eV), even if no experimental counterparts were available in this case (Figure 8.16).

These two environments are characterized by low dielectric permittivity: PMMA is about 2.8-3 and

a similar value can be predicted for the membrane, since DPAP is embedded in the lipophilic layer

throughout the MD simulation (Figure 8.8). In both cases, the dielectric medium was simulated by

adopting the butanoic acid (ε= 2.9931) within the PCM formalism. Note that PCM was already shown

to well reproduce the electrostatic effects of PMMA environment in a previous work [241]. Maximum

absorption wavelength was found at about 321 nm for both systems, in line with the calculations for

the solvents reported above. The other two peaks take place at about 298 and 268 nm and appear as
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shoulders of the main first absorption band. However, in the membrane case, the decay at lower wave-

length values is faster, and the S3 ← S0 transition peak is better defined. It is worth noting that such

subtle differences are only due to the DPAP configurations extracted from MD simulations, since the

description of the environment (i.e. the dielectric continuum) is the same.

FIGURE 8.16: Absorption spectra of DPAP in membrane (red) and in PMMA (violet line) using
PCM as environment model.

8.4 Conclusions

A molecular model of DPAP, a recently proposed FMR fruitfully employed in various imaging and de-

tection applications, has been presented and investigated through extensive MD simulations in dif-

ferent environments. In each case, DPAP has shown peculiar structural and dynamical features, as

well as specific interactions with the environment. In the lipid membrane, DPAP has displayed an

anisotropic molecular orientation and a jump-diffusion rotational dynamics. This seems consistent

with the observed alignment of cholesterol and other organic compounds, once embedded into lipid

bilayers. The reliability of the present DPAP model was further tested by simulating the absorption op-

tical spectra including the effect of the embedding, obtaining an overall good agreement with available

spectroscopic data.

The subtle effects issuing from medium viscosity and environment-specific interactions on the dy-

namic properties of the rotor have been especially highlighted and discussed in view of DPAP molec-

ular mobility. Self-diffusion constant and rotational correlation time of the present FMR are, indeed,

strongly modulated by the environment to the extent that they may vary by several orders of magni-

tude. This is of particular interest since the rotational relaxation of fluorescent dyes can be related

to various optical properties, such as fluorescence lifetime, emission intensity, fluorescence depolar-

ization, etc., as well as to properties of the micro-environment, such as the viscosity. Here, a simple

quantitative relation between the viscosity of the embedding medium and the FMR dynamics could

not be obtained. This result comes as no surprise since the existence of specific dye-environment

interactions, the non-continuous rotational dynamics and the shape of the rotor are all factors con-

tributing to appreciable deviations from the ideal Stokes-Einstein-Debye model, as already noted in

previous studies (see, e.g., Ref. [257]).
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Nevertheless, the present study has unraveled a possible correlation between DPAP rotational cor-

relation time and its fluorescence lifetime in all considered environments (except PMMA and THF): the

more retarded the rotational relaxation, the longer the emission lifetime. Intriguingly, this finding may

provide a molecular insight on the effective control exerted by the FMR rotational dynamics towards

the competition between radiative and non-radiative decay processes, which ultimately modulates the

dye fluorescence signal. Accordingly, specific intermolecular interactions more suited to interfere with

molecular rotations seem to be the key factor modulating the emission response of the present FMR.

While this point would necessitate further investigation and validation, for example by modeling the

dye excited state and emission dynamics, if confirmed it could be used to gather detailed molecular dy-

namics information on the dye, as well as on its interactions with the environment, through standard

spectroscopic techniques.
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Chapter 9

Validation of the LRR-DE procedure

LRR-DE is s novel statistical procedure which has been developed in order to optimize the parame-

ters of non-bonded force fields of metal ions in soft matter. The criterion for the optimization is the

minimization of the deviations from ab initio forces and energies calculated for model systems. The

method exploits the combination of the linear ridge regression and the cross-validation techniques

with the differential evolution algorithm. Wide freedom in the choice of the functional form of the

force fields is allowed since both linear and non-linear parameters can be optimized. The method has

been described in Section 3.2. In this chapter, the methodology has been validated using the force field

parameterization of five metal ions (Zn2+, Ni2+, Mg2+, Ca2+, and Na+) in water. To this end, LRR-DE

has been combined with a novel sampling procedure aimed at maximize the dissimilarity of the in-

stances included in the training set and the coverage of the conformational space of the investigated

molecular system.

9.1 Background

Metal ions are omnipresent in proteins, where they serve fundamental functional roles, including

structural and catalytic functions [258]. In the complex scenario of force field development, the classi-

cal modeling of metal ions is still maybe regarded as a stand-alone issue. Three different approaches

are commonly used for the description of metal ionic species within MD simulations, which are sum-

marized in the following.

1. The non-bonded model [259] treats the metal ion as a simple sphere, characterized by its atomic

charge and the vdW parameters. The interactions with surrounding ligands is described by

means of classical Coulomb and LJ potentials.

2. The bonded model [260, 261] models the metal ion as covalently bound to its coordinating atoms,

thus to explicitly considers chemical bonds, angles and diheadrals with the first coordination

sphere atoms.

3. The dummy-atoms model [262] connects additional sites with the central ion, at the specific ge-

ometry to be attained. Dummy atoms act as virtual sites, ad they mimic somehow valence elec-

trons. No real bonding with the coordination sphere is considered, and, as in the non-bonded

model case, the interactions with other atoms is modeled thorugh Coulomb plus LJ potentials.



108 Chapter 9. Validation of the LRR-DE procedure

Among them, the non-bonded model is the most commonly used, because of its easy implementation

in MM software; moreover, it allows in principle to describe changes of ligands at the metal coordi-

nation center. Ions parameters for non-bonded models in biomolecular FFs have been historically

developed in water solution, as done by Stote and Karplus [263] and, more recently, Jensen and Jor-

gensen [264]. Subsequently, the optimized parameters are transferred within metalloprotein catalitic

sites [265]. Major challenges are related to the proper treatment of non-negligible QM effects, which

are hard to include within classical descriptions [266]. In this context, the limits of the simple elec-

trostatic plus Lennard-Jones (LJ) model emerge, and a transition to more flexible, multi-parameters

potential (e.g., by means of polarization) becomes necessary [262, 267, 268]. Therefore, the availability

of techniques capable to optimize FFs of any functional form can be crucial.

9.1.1 Current status of parameterization procedures of non-bonded metal ions force fields

The generation of metal ions FFs has been extensively discussed by Li and Merz in a recent review

[269]. Methods for parameterizing non-bonded FFs of metal ions are based primarily on the repro-

duction of experimental thermodynamic and structural quantities. In the pioneering work of Aqvist

[270], the parameterization of 12-6 LJ potentials of a set of ions was performed using the hydration free

energies as a reference and the FEP method [271] to calculate the MM estimates. Babu and Lim [272]

used the same method exploiting the relative HFEs with respect to the Cd2+ value to generate the FFs

of 24 divalent metal ions. Joung and Cheatham [273] parametrized 12-6 Lennard-Jones potentials of

monovalent ions employing as reference HFE, crystal lattice energies and crystal lattice constants. Li,

Merz and co-workers [259, 274] developed the parameters of over fifty metal ions reproducing HFE,

ion-oxygen distances (IOD) and coordination numbers (CN). In general, the methods that employ ex-

perimental references suffer of two difficulties: i) the availability of data is usually limited to a reduced

number of solvents, sometimes only to water. ii) the exploration of the parameter space, usually per-

formed through a grid search, requires a MD or Monte Carlo simulation for each trial solution, making

the process inefficient and applicable only to simple functional forms. Both problems can be solved

using QM data as target values in the fitting. However, only a very small number of methods based on

QM references has been developed. The more significant ones are the works of Floris et al. [275] and

Wu at al. [268]. The method proposed by Floris et al. optimizes the ion-water potential reproducing

ab initio energies calculated for [M(H2O)n]q+, where the number of the explicit water molecules (n)

is one or two, and the rest of the solvent is described by the PCM. Therefore, the performances of the

method are dependent on the quality of the solvent description. Moreover, the application of PCM pre-

cludes the possibility to parametrize the FFs in heterogeneous environments. These limitations have

been overcome in the recent application of the force-matching method by Wu et al. to parametrize the

short-long effective functions (SLEF) model in protein environment. In the Wu et al. methodology a

squared deviations cost function defined with respect to a sample of QM/MM references is minimized

using a local optimizer. The procedure here presented maintains the desirable properties of the Wu et

al. approach and introduces further advances in order to generate transferable non-bonded pairwise

force fields to model metal ions interactions in metalloproteins. In fact, the multi-objective optimiza-

tion allows a tight control on the performances of the model. The application of a regularized cost

function and the tuning of the hyperparameters through the leave-one-out cross validation protect
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from overfitting. The combination of algebraic and metaheuristic optimization ensures the efficient

detection of the global minimum of the cost function in the parameter space.

9.2 GRASP sampling

In order to build the training set for the fitting, a set of representative configurations of the environ-

ment of the metal must be selected. The sampling must be performed carefully to obtain a general

and balanced model maintaining the size of the training set such as the computational cost of the

technique is affordable.

Assuming to have a criterion for deciding if a set of configurations is better than another, the selec-

tion of the best training set would be a NP-hard problem of combinatorial optimization. Therefore, the

sampling issue can be separated in three distinct problems: i) generate the candidate configurations to

be included in the training set ii) propose a model to determine the fitness of a training set iii) identify

an approximated procedure to solve the combinatorial problem of maximization of the fitness. In par-

ticular, the application of the greedy randomized adaptive search procedure [276] (GRASP) is exploited

for the third step. For this reason, the whole procedure is called GRASP sampling, which funcitoning is

sketched in Figure 9.1.

FIGURE 9.1: An illsutrative example of the use of GRASP to maximize the dissimilarity of the in-
stances of a chosen dataset. The GRASP selection (right panel) from a pool (left) is

compared to a random selection (central panel).

9.2.1 Generation of the candidate configurations

In this work, the generations of the candidate configurations has been performed with the parallel

tempering [277–279] technique using a pre-existing FF. It is suitable for this purpose because it explores

a large portion of the free-energy landscape of a molecular system. The configurations are drawn for

each replica at regular intervals of extension comparable to the time scale of the significant events

of the system considered and proceeds up to obtain a sufficiently large pool of candidates (tens of

thousands). Alternative approaches aimed to the generation of the candidate configurations can be

considered, such as the extraction from a MD trajectory or a metadynamics sampling, as well as from

pre-existent databases. Moreover, procedures which iteratively improve the FF through subsequent

sampling and fitting steps can be used in order to correctly reproduce the physics of the investigated

system, as proposed by previous works [13, 120].
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9.2.2 The metal-centric dissimilarity score

Since the aim of the present work is the optimization of the FF of a specific atom, the evaluation of

the fitness of a possible training set should be focused on the environment of that atom. More specif-

ically, the configurations included in the training set should maximize the representativeness of the

situations in proximity of the metal ion. In order to achieve this goal, a dissimilarity score of a set of

configurations focused on the neighborhood of the metal is proposed.

As descriptor of the l-th configuration, the vector dl is used, whose elements are the Euclidean

distances between the metal and all other atoms. Each i -th component of the vector dl is transformed

applying a Gaussian kernel as follows

kl i = exp

[
− d 2

l i

2σ2

]
(9.1)

where the parameter σ is a measure of the distance from the metal which identifies the most sig-

nificant region to sample.

The Euclidean distance between the l-th and j -th configurations in the k-space is

δl j = ‖kl −k j‖ (9.2)

δl j is invariant with respect to the translations or rotations of the system, moreover it satisfies the

coincidence axiom (δl j = 0 if and only if l ≡ j ) and the symmetry condition (δl j = δ j l ). As consequence

of the transformation of the equation 9.1, kl i −k j i is amplified with respect to dl i −d j i where the first

derivative of the Gaussian function is larger. This fact occurs in correspondence of d = σ. For d → 0

and d Àσ, conversely the differences in the k-space vanish, therefore in those zones the information

is compressed.

The metal-centric dissimilarity score of the set {k}, constituted by NT S configurations selected

among NPT candidates, is defined as the mean value of the Nloc distances from the Nloc nearest con-

figurations weighed for an exponential factor, 2Nloc− j :

DS({k}, NT S , NPT ) =
1

NT S

∑NT S

l
1

Nloc

∑Nloc

j 2Nloc− jδl j∑Nloc

j 2Nl oc− j
(9.3)

In this formula, the j -th configuration is the j -th nearest one to the l-th configuration. The expo-

nential weight has two roles: i) it assigns more importance to the nearest configuration in the score

ii) it makes the score near independent from the Nl oc value. The dissimilarity score is related to the

inverse of the local density of the points in the k-space. If the configurations are selected in order to

maximize the score, for a given value of NT S , a stratified sampling of the environment of the metal is

obtained. That is, the distributions of the distances between the metal ion and the atoms included in

the spherical shell centered in d = σ are flatter than the distributions generated by the parallel tem-

pering simulations. The maximization of the coverage offered by a stratified sampling increases the

probability to perform the fitting in interpolation regime instead of extrapolation regime.
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The dimensionality reduction and permutational symmetry

The number of the atoms of the system of interest is generally in the order of thousands, nevertheless

the dimensionality of the k vector can be reduced without loss of information because only few com-

ponents have a value different from zero. This measure assures that the calculation of the dissimilarity

score is affordable in the combinatorial optimization step.

To assure the permutational invariance of the dissimilarity score, a further arrangement of the k

vector is necessary, namely all the equivalent atoms are placed in ordered positions with respect to the

distance from the metal ion. In this context, two atoms of the same element are considered permuta-

tionally invariant if they can exchange their positions through a move compatible with the dynamics

of the system.

9.2.3 The combinatorial optimization of the training set

The maximization of the dissimilarity score (equation 9.3) with respect to the candidate configura-

tions is performed exploiting an adapted form of the greedy randomized adaptive search procedure

[276] (GRASP). GRASP is a combinatorial optimization method consisting in two main phases repeated

iteratively: construction and local search. In the first one a greedy randomized adaptive strategy is

employed to build a feasible solution that is refined by a subsequent local search. The operation is

repeated saving the best solution found.

The construction phase starts selecting randomly one configuration from the candidate set. In or-

der to extract the second configuration, the Euclidean distances from the first one are calculated for all

the remaining candidates, and a configuration is selected randomly from the subset of the instances

further than the 99-th percentile. In analogous way the following Nloc - 2 configurations are chosen.

From this point on the construction phase proceeds iteratively by cumulative addition of a new ele-

ment that maximizes the dissimilarity score. The new element is selected from a list of ordered candi-

dates, {si }, composed evaluating the dissimilarity score of the set {{Si−1}+si }, where {Si−1} is the partial

solution composed by i −1 elements. The selection of the subsequent element is performed according

to an exponential probability distribution that attributes the maximum value to the first element of the

ordered list.

In the local search phase, the solution is modified one element at a time and the trial solution is ac-

cepted if the dissimilarity score increases. This operation is performed using three different strategies:

random substitution, proposal of new elements sorted by distance from the centroids of the partial

solution and local refinement.

9.3 Computational details

Classical simulations were performed under periodic boundary conditions, using GROMACS 4.6.5

[280].

The systems were composed by one metal ion, surrounded by 2178 water molecules, leading to

a cubic box of size 40 Å. The rigid TIP3P model [281] has been used to describe the water molecules.

Fastest degrees of freedom were constrained with the LINCS algorithm [93]. In the sampling step,

the metal ions have been modeled using parameters developed by Åqvist [270] (Mg2+, Na+), Merz
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[282] (Zn2+) and Li [259] (Ni2+, Ca2+). Each system was minimized using the steepest descent algo-

rithm implemented in GROMACS using a convergence threshold on the root-mean-square forces of 1

kJ·mol−1·cm−1. Systems were slowly heated from 0 to 298 K in NVT ensemble for 1 ns, and then equi-

librated in NPT conditions for 1 ns to reach uniform density. The final structure for each system was

considered as the starting point for the parallel tempering simulations. A number of 25 replicas was

employed, covering a temperature range of 100 K, from 298 to 398 K. Temperature distribution of sin-

gle replicas in the chosen range was established so as to attempt an exchange rate of 0.25 [283]. Each

replica was equilibrated in the NPT ensemble for 500 ps, using the stochastic velocity rescale algorithm

[95]. The time step was set equal to 2 fs. Production runs were conducted in the NVT ensemble for 5

ns, for a total simulation time of (5ns × 25 replicas) 125 ns. Electrostatic interactions were described

through the PME method, whereas van der Waals interactions were considered applying a cutoff of 10

Å. The FFs generated with the LRR-DE procedure were tested by initially equilibrating the systems in

the NPT ensemble for 500 ps. After that, production run time was set to 5 ns in the NVT ensemble. Cut-

off values of 19 Å for both LJ and real-space PME were used. Non-standard models were tested using

tabulated potentials.

Radial distribution functions were computed using standard tools available in GROMACS software

on the last 1.5 ns of simulation. Free energy of hydration values were computed using the Bennett

acceptance ratio (BAR) [284] implemented in GROMACS. A number of 21 windows was used. Corre-

sponding λ values were chosen ranging from 0 to 1, in steps of 0.05. Each window was run for 500

ps. The first 100 ps was considered to equilibrate the systems, and therefore not included in the final

HFE computation. All the QM calculations were performed using the Guassian 09 package [97] at the

B3LYP/cc-pVDZ level. Singlet spin-state has been considered for all the ions except Ni2+, for which the

triplet has been found to be more stable than the singlet spin state in the QM model systems. All the

parameters optimized with the LRR-DE are provided in Appendix A.

9.4 Validation

The algorithm has been validated by applying it to the parameterization of the force fields of five metal

ions in water: Zn2+, Ni2+, Mg2+, Ca2+, and Na+. The TIP3P model [281] has been used to describe the

water molecules. The whole adopted protocol is summarized in Figure 9.2.

Particular attention has been addressed in the case of the zinc ion, which has been used as ref-

erence for the calibration of the method. QM/MM calculations on large spherical clusters and pure

QM calculations on clusters of lower size have been initially considered as references. Although the

first type of calculation reproduces more closely the actual situation in which common FFs are used, it

involves two disadvantages: i) a bias is introduced by the MM part of the calculation, and ii) the num-

ber of atoms involved is very large, increasing the computational cost of the fitting. Therefore, in this

work, pure QM calculations on small clusters have been chosen as references, verifying that the size

of the model systems was sufficiently large through a systematic study with variable number of water

molecules (see next section). As level of theory, the B3LYP functional in combination with the cc-pVDZ

basis set has been selected.

A large basin of candidate configurations has been generated using parallel tempering and a set of

160 elements has been extracted through the GRASP sampling procedure. The appropriate size of the
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FIGURE 9.2: High level flowchart of the proposed algorithm.
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training set (Ntr ai n) has been identified by performing a statistical convergence test, applying the LRR-

DE method to the fitting of the forces and the energies for the cluster [Z n(H2O)128]2+ case. Starting

from a training set of 8 elements and incrementing the size progressively, the three linear parameters of

the 12-6-1 FF have been optimized with respect to the QM references. For each size of the training set,

256 independent training sets have been generated selecting randomly Ntr ai n configurations without

repetition, from the total 160 available and using the remaining 160-Ntr ai n configurations as test set.

The averages of the resulting mean squared errors are shown in Figure 9.3. The graphs confirm that

the LOOCV error (red lines) constitutes a better estimate of the test error (green lines) with respect

to the training set errors (blue line). In fact, the LOOCV errors and test errors converge to the same

value when the size of the training set is greater than 60. The values of the test errors decrease rapidly

when the training set size is small, and converge to a constant value when Ntr ai n is greater than 100

instances. Therefore, in all the following fittings training sets of 120 elements have been employed, so

as to provide sufficient generality to the obtained models.

FIGURE 9.3: Mean of 256 tests of the MSE for the training set (blue line), leave-one-out cross val-
idation (red line), and test set (green line), increasing progressively the size of the
training set. The model 12-6-1 has been used to perform the fitting. In each test the
elements of the training set are selected randomly from the 160 configurations and

the remaining are used as test set.

9.4.1 Systematic comparative study of binary potentials

In order to calibrate the methodology, the optimization of the parameters of twelve binary pairwise

models (see Table 9.2) has been performed using as reference systems the [Z n(H2O)n]2+ clusters with

n equal to 6, 16, 32, 64, and 128, water molecules. The models consist of a repulsive term, activated

only for the zinc-oxygen interaction, and the Coulomb potential. The clusters are built extracting the

n closest water molecules to the zinc ion for each of the 160 sampled configurations (see Figure 9.4).

The results have been compared to AMBER99 [270], Li et al. [259] (Li, hereafter) and Hartree-Fock

(HF) estimates. In standard conditions of temperature and pressure, the coordination number of the
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zinc ion in bulk water is six [285] and the mean number of molecules included in the first and second

spheres of coordination is about 30 [286]. Therefore, the smallest cluster considered corresponds to

the extraction of the first sphere of coordination, the [Z n(H2O)16]2+ cluster is representative of the

first shell of coordination and part of the second one, and the larger clusters include all the molecules

of the first two coordination spheres and beyond. For the largest clusters, [Z n(H2O)128]2+, the average

distance of the furthest oxygen is 9.6 Å. The parameterization of the force fields has been executed

in single-objective mode with the forces on the zinc ion as output references for each cluster, in two-

objective mode, contemplating simultaneously forces on the zinc ion and energies of the same cluster,

and in four-objective mode considering all the possible couplings of forces and energies for two types

of clusters. In all cases, the resulting force fields have been tested on the QM forces on zinc ion, the

energies (yl in equation 3.26) and the forces on the nearest oxygen and hydrogen atoms for all the

clusters, so as to evaluate their capacity in predicting quantities unused in the fitting. As a significant

case, the 12s-1 FF data are shown in Appendix B (Tables B.1, B.2, B.3, B.4) and analyzed below.

FIGURE 9.4: Representative structures of the extracted clusters containing 6 (a), 16 (b), 32 (c), 64
(d) and 128 (e) water molecules.

Table B.1 reports the MAEs obtained training the 12b-1 force field with the single-objective fitting.

The LRR-DE procedure allows to obtain the optimal reproduction of the fitted quantities for the con-

sidered model, achieving errors about four times lower than the standard force fields AMBER99 and

Li. This can be better appreciated by observing Figure 9.5, where the comparison between the QM

forces and those predicted by the model for a test set of 40 instances not included in the training set

is shown. As consequence of the Newton’s third law, also the errors of the forces on the oxygen atoms

are drastically reduced with respect to the AMBER estimates. In addition, from the data it emerges that

the forces in clusters of different size than the one used in the training can be reproduced with good

accuracy. On the other hand, the force fields trained on the forces produce high errors in the predic-

tion of the energies, indicating that these models are not sufficiently general. In order to overcome this

drawback, the transition to a multi-objective fitting is necessary. Table B.2 reports the results for the

two-objective fittings, considering simultaneously the forces and the energies for a given cluster. The

inclusion of the energies in the output references allows to obtain a remarkable reduction of the MAEs

for this quantity at the price of a moderate yet acceptable increase in error on the forces. Even more

general force fields can be generated if the fitting is performed on data of clusters of two different sizes

(Tables B.3 and B.4). In fact, the MAEs resulting from the four-objective fitting are considerably lower

than the errors produced by AMBER99 and Li for both the forces and the energies. From the tables
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TABLE 9.1: Mean absolute errors (kJ/mol for the energies, E, and kJ/(mol nm) for the forces, F) in
the prediction of the quantities indicated in the first column, for the model indicated

in the first row trained using the four-objective fitting 4-o(32H2O/128H2O).



9.4. Validation 117

Model Analytical expression Number of non-linear parameters

14-1
C O

1
d 14 + C2

d 0

12-1
C O

1
d 12 + C2

d 0

10-1
C O

1
d 10 + C2

d 0

8-1
C O

1
d 8 + C2

d 0

6-1
C O

1
d 6 + C2

d 0

14b-1
C O

1
(d+θO )14 + C2

d 1

12b-1
C O

1
(d+θO )12 + C2

d 1

10b-1
C O

1
(d+θO )10 + C2

d 1

8b-1
C O

1
(d+θO )8 + C2

d 1

6b-1
C O

1
(d+θO )6 + C2

d 1

Exp-1 C O
1 exp[−θOd ]+ C2

d 1

Exp2-1 C O
1 exp[−θO,1d +θO,2d 2]+ C2

d 2

TABLE 9.2: Analytical expressions of the two-terms models tested in the systematic comparative
study.

it can be noticed that the deviations of the HF forces from the B3LYP references are lower than those

provided by model 12b-1, which however reproduces the energies more accurately. Therefore, as gen-

eral recipe for the production of the force fields tested in the MD applications four-objective fittings

have been exploited, employing as system references the clusters [M(H2O)32]n+ and [M(H2O)128]n+

(4-o(32H2O/128H2O) hereafter). The multi-objective fittings produce larger errors in the prediction of

the forces on oxygen atoms with respect to the single-objective ones. However, they remain consid-

erably lower if compared with AMBER. For this reason the forces on the coordinating atoms have not

been included as output references in the systematic study.

Table 9.1 shows the comparison of the performances of the twelve potentials considered in the sys-

tematic study for the 4-o(32H2O/128H2O) fitting. Except for the case 6-1, that produces larger errors,

all the potentials provide comparable results in the reproduction of the energies. Conversely, the errors

for the forces are more dependent on the repulsive part of the potential employed. More specifically,

the use of a repulsive term dependent on a non-linear parameter guarantees better performances.

Notable is the modest result of the 12-1 model, that exploits the repulsive term of the Lennard-Jones

potential, only the r−14 term produces a worse agreement with the QM forces.

The proposal of a novel functional form for the force fields of the metal ions goes beyond the scope

of this work, however, the systematic comparative study provides the following useful indications in

this regard: i) the optimal charge to reproduce the forces on the metal ion is lower than the formal

charge (Table B.1) ii) in the single-objective fitting, the optimal charge for the smallest cluster is lower

with respect to the clusters of larger size (Table B.1) iii) the introduction of the energies in the references

has the effect to increase the value of the optimal charge over the formal charge (Tables B.2, B.3, B.4) the

use of a repulsive term including a non-linear parameter is necessary to achieve good performances in

the reproduction of the forces (Table 9.1). Tables B.1, B.2, B.3, and B.4 are all related to the data of the

model 12b-1, however, the behavior described in the points i), ii) and iii) is common to all the tested

potentials. From a physical point of view, these results can be justified by the effects of the charge
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FIGURE 9.5: Graphical comparison of the prediction of 12b-1 model (blue points) and Li (red
points) predictions of the forces on the zinc ion in the [Zn(H2O)128]2+ cluster with

respect to the B3LYP/cc-pVDZ reference for a test set of 40 configurations.

transfer from the ion to the coordinating water molecules and of the non-point-like structure of the

ion. Both effects are expected to vanish at large distances, where a Coulomb potential generated by

the formal point charge describes adequately the ion interactions. Therefore, a generic three-terms

force field for metal ions that implements the indications emerged from the systematic comparative

study has the form:

Vtot =Vr ep (θ)+ qF

r
+ f (r )dump g (r ) f lex

r
(9.4)

where Vr ep (θ) is the repulsive part of the potential, qF is the formal charge of the ion, f (r )dump is

a dumping function which goes to zero beyond the first coordination shell of the ion, and g (r ) f lex is

a function that provides the necessary flexibility to meet simultaneously the points i), ii) and iii). An

explicit form for the potential of the equation 9.4 is

Vtot = C1

(r −θ1)12 + qF

r
+C2

e−θ2r (1−e−θ3(r−θ4)2
)

r
(9.5)

The third term of this FF, here labeled as 12b-1F -E1Gr, recalls the physical meaning pursued by

the model proposed by Wu et al. [268] to describe zinc charge interactions in metalloenzymes cat-

alytic sites. In this context, the employment of such functional form has only illustrative purposes to

highlight the potentiality of the LRR-DE method in the optimization of models of general functional

forms. Therefore, the 12b-1F -E1Gr FF has been tested and compared to the 12-6-1 (Lennard-Jones
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combined with Coulomb potential, optimizing the charge value) and 12-6-1F (Lennard-Jones com-

bined with Coulomb potential, with the charge of the ion set equal to the formal charge) FFs only in

terms of structural properties.

9.4.2 Parameters Optimization and Molecular Dynamics simulations

The 12-6-1, 12-6-1F , and 12b-1-1EGr force fields have been trained using the 4-o(32H2O/ 128H2O) fit-

ting for the cases of the Zn2+ ion in water, and tested in MD simulations. Properties derivable from MD

have been also compared with Babu and Lim parameters [272], as well as the already cited Li param-

eters: performances of these two sets of parameters have been re-evaluated in this paper by applying

the same computational protocol reported in the corresponding original work. Uniform values have

been assigned to the weights of the objective functions, and they have been optimized according to

the procedure explained in subsection 3.2.3 only if unsatisfactory errors for a QM reference have been

observed. Table 9.3 reports the mean absolute errors of the three-terms models with respect to QM

references of the zinc-water clusters. The larger flexibility of the 12b-1F -E1Gr force field allows to re-

duce the errors, in particular in the reproduction of the forces. The accuracy of the 12-6-1 forces is

significantly higher than the 12-6-1F ones. This behavior is a consequence of the fact that the LRR-

DE optimization provides a negative parameters for the r−6 term when the charge is a free parameter.

Thus, the r−6 term contributes in describing the repulsion and as a consequence the QM forces are

reproduced with the 6-1 quality (Table 9.1). Both 12-6-1F and 12-6-1 FFs overcome the performance

provided by Li. The same trend is observed in the results of the MD simulations. In fact, the radial dis-

tribution function (g(r)) between zinc ion and water oxygen obtained with the 12-6-1F model presents

a slightly better agreement with the EXAFS data [287] than the Li prediction (see Figure 9.6). A more

consistent improvement is achieved with the 12-6-1 and 12b-1F -E1Gr potentials, as can be appreci-

ated in Figure 9.6. Broadly speaking, the ion-oxygen distance is well reproduced by the employed

models, and their performances are better than polarizable models [288, 289], which predict lower val-

ues when compared to the experimental ones. As the flexibility of the FF is improved, the height of the

peak diminishes while its width increases, thus becoming comparable with results provided by ab ini-

tio investigations [286, 289], as well as with the experimental EXAFS data. Moreover, it is worth noticing

that the g(r) peak obtained with the 12-6-1 model (where only three parameters - i.e., Lennard-Jones

parameters and the electrostatic charge - are optimized) is in line with the one predicted by even more

flexible models, such as the one proposed by Chillemi et al [287], where 9 parameters are optimized.

As regarding the hydration free energy (HFE), the prediction provided by the 12-6-1 model is con-

siderably more accurate than the estimates of 12-6-1F and Li. In particular, the deviation between the

experimental reference and the 12-6-1 estimate is lower than 5 kJ/mol, while for 12-6-1F and Li is larger

than 100 kJ/mol. Taking into account the parameters generated by Babu for the zinc ion, the LRR-DE

12-6-1F model offers a slightly worse reproduction (of 0.01 Å) of the IOD value. However, an opposite

behavior is observed in the reproduction of HFE, where the performance of Babu FF is poor, with a

deviation from the experimental value of roughly 175 kJ/mol.

The whole protocol already used for zinc ion has been extended to the optimization of the FF mod-

els for Ni2+, Mg2+, Ca2+, and Na+ ions in bulk water. In the cases of Ca2+ and Na+ forces on coordinat-

ing oxygens have been included in the training, thus performing a six-objective fitting. Such measure



120 Chapter 9. Validation of the LRR-DE procedure

Test set 12-6-1F 12-6-1 12b-1F -E1Gr 12b-1 AMBER99 [270] Li [259] HF
E(6H2O) 49.12 77.48 70.75 51.59 140.97 116.71 153.47
E(16H2O) 49.36 74.34 59.45 63.37 86.14 68.36 146.89
E(32H2O) 47.73 49.84 41.48 46.23 93.35 74.38 136.58
E(64H2O) 51.42 44.35 43.33 43.80 86.11 69.96 129.74
E(128H2O) 49.38 47.92 43.81 45.43 95.75 77.10 113.38
F(Zn, 6H2O) 280.69 194.72 141.48 178.21 748.83 627.34 65.13
F(Zn, 16H2O) 287.11 210.88 184.37 203.36 724.32 604.13 71.97
F(Zn, 32H2O) 279.35 204.67 180.99 195.77 724.55 603.82 74.96
F(Zn, 64H2O) 280.30 201.49 180.38 193.69 726.41 605.57 73.59
F(Zn, 128H2O) 279.54 201.66 179.97 193.63 724.29 604.22 73.81
F(6O, 6H2O) 1242.78 1003.25 611.03 942.68 1766.17 1650.26 767.28
F(6O, 16H2O) 1321.28 1082.85 692.46 1022.52 1842.67 1727.30 808.86
F(6O, 32H2O) 1346.07 1107.02 714.92 1046.45 1867.99 1752.40 807.00
F(6O, 64H2O) 1338.86 1099.57 707.54 1039.01 1861.30 1745.70 808.01
F(6O, 128H2O) 1337.46 1098.12 706.39 1037.63 1859.89 1744.27 808.02
F(12H, 6H2O) 356.05 451.17 356.05 422.85 356.05 356.05 527.17
F(12H, 16H2O) 403.66 498.40 403.66 470.31 403.66 403.66 617.26
F(12H, 32H2O) 408.32 506.54 408.32 477.65 408.32 408.32 630.00
F(12H, 64H2O) 407.67 504.33 407.67 475.87 407.67 407.67 629.47
F(12H, 128H2O) 407.36 503.70 407.36 475.20 407.36 407.36 629.30

TABLE 9.3: Mean absolute errors (kJ/mol for the energies and kJ/(mol nm) for the forces) in the
prediction of the quantities indicated in the first column, for the model indicated in

the first row.

FIGURE 9.6: Radial distribution functions between zinc ion and water oxygens, using the 12-6-1F ,
12-6-1, 12b-1F -E1Gr (left panel) and Li[259] and Babu[272] models (right). In both

panels, the comparison with the experimental profile[287] is provided.

turned out to be necessary, since errors on these quantities were larger than expected. Table 9.4 col-

lects the estimates of the position of the first peak of the radial distribution function, the HFE, and the

coordination number of the ion for the five considered systems.
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The optimized 12-6-1F on nickel divalent cation overcomes the performances of Li and Babu in

terms of HFE estimation. Compared to the 12-6-1F force field, Babu offers a better agreement with the

experimental IOD value (of 0.01 Å). As regarding the 12-6-1 model, the experimental HFE is exceeded

by 102.72 kJ/mol; however the prediction of the ion-oxygen distance (IOD) is improved of 0.9 Å with re-

spect to the Li [267] data. The experimental IOD is reproduced even better by 12b-1F -E1Gr model, and

the experimental ion-water oxygen radial distribution function [287] is reproduced with quite good

accuracy (see Figure 9.7).

For the magnesium ion, the peak of the g(r) provided by the MD simulation with the 12-6-1F model

has a deviation larger than 0.02 Å from the experimental data with respect to the Li prediction. The g(r)

is correctly reproduced by Babu parameters. On the other hand, 12-6-1F gives a reduction of the error

of about 35 kJ/mol and 108 kJ/mol in the HFE estimate with respect to the Li and Babu force fields,

respectively. As for the zinc case, also for the magnesium ion, the 12-6-1 model produces a large im-

provement in the HFE prediction. Among all the considered FFs, the 12b-1F -E1Gr model provides the

best agreement with the experimental data for the g(r) peak position. The 12-6-1 and 12b-1F -E1Gr FFs

give estimates in good agreement with the state-of-art pairwise potentials [290] and polarizable mod-

els [289]. Moreover, a satisfactory comparability with AIMD and QM/MM simulations, which predict

ion-oxygen distance values between 2.08 and 2.13 Å[289], is observed.

FIGURE 9.7: Radial distribution functions between water oxygens and Ni2+, Mg2+, Ca2+ and Na+
ions. The 12-6-1F (red line), 12-6-1 (green line) and 12b-1F -E1Gr (blue line) models
considered in this work are compared to Li (dashed magenta line) and experimental

(black line) estimates.
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The 12-6-1F model for the calcium ion trained with the LRR-DE procedure offers better perfor-

mances than Li and Babu in the prediction of the peak position as well as in the HFE estimation. Again,

the 12-6-1 force field produces a further increase in accuracy for the HFE, at the expense of a slightly

worse result in the g(r) peak position. Also the performance of the 12b-1F -E1Gr model is less satisfac-

tory than in the previous cases. However, such measures are in line with those coming from a recent

AIMD simulation which provides a metal-ion distance in the first coordination shell of 2.51±0.07 [291].

In the case of the sodium ion, LRR-DE performances are compared to the ones offered by Joung

and Cheatham parameters [273]. The LRR-DE models give an excellent agreement with the experi-

mental data in the prediction of the peak position of the radial distribution function. QM/MM sim-

ulations conducted on the hydrated ion present a certain variability in the computed metal-oxygen

distance, ranging from 2.33 to 2.42 [292–294]. The HFE values calculated with the 12-6-1 and 12-6-1F

models produce a decrease of accuracy of 15 kJ/mol with respect to the Cheatham estimate. However,

it is worth noting that sodium Lennard-Jones parameters were specifically optimized by Joung and

Cheatham in order to reproduce the HFE value [273].

All the computed g(r) profiles for Ni2+, Mg2+, Ca2+ and Na+ are shown in Figure 9.7. The second

hydration shell (i.e., the second peak in the IOD profile) is highlighted in Figure 9.8. No notable dif-

ference can be appreciated in the peak position for the FFs tested. However, on average, the height

of the peak predicted by Babu appears to be lower. In all cases the coordination numbers of the ions

are consistent with those experimentally observed. Properties computed with Babu and Li parameters

coincide with previous investigations [259].

FIGURE 9.8: Second peak from radial distribution functions for the metal ion-water oxygens in-
teraction in Molecular Dynamics simulations using the Li (black line, Zn 2+ , Ni 2+
, Mg 2+ , Ca 2+ ), Babu and Lim (orange, Zn 2+ , Ni 2+ , Mg 2+ , Ca 2+ ), Joung and
Cheatham (magenta, Na + ), 12-6-1 F (red), 12-6-1 (green) and 12b-1 F -E1Gr (blue)

models.
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All the experimental quantities explored in this investigation are reproduced with good accuracy

by all the tested LRR-DE optimized models even if not directly considered during the parameter fitting

procedure. Therefore, the discussed optimization method has been proved to be general, since the

considered structural and thermodynamic properties are reproduced with comparable accuracy with

respect to standard FFs, directly optimized in order to reproduce such quantities. Since the presented

method is designed to refine only the FF of the metal ion, the optimized parameters are specific for

the description within the surrounding considered environment, and the general performances are

affected by the implicit approximations included in this model. The obtained FFs have not been tested

in environments not considered in the training and the quality of the performances are not guaranteed

in such cases. Transferable FFs can be generated using this methodology, if an appropriate sampling

which considers interactions with a wide range of atom types is executed.

IOD MAE(IOD) HFE MAE(HFE) CN

Zn2+

Li et al. 1.93 0.16 -1849.33 105.85 6
Babu and Lim 1.98 0.11 -1779.53 175.65 6

12-6-1F 1.97 0.12 -1801.39 153.79 6
12-6-1 2.04 0.05 -1960.62 5.44 6

12b-1F -E1Gr 2.07 0.02 6
Exp. 2.09 ± 0.006 -1955.18 6

Ni2+

Li et al. 1.92 0.14 -1874.01 105.86 6
Babu and Lim 1.98 0.08 -1800.74 179.13 6

12-6-1F 1.97 0.09 -2022.78 42.91 6
12-6-1 2.01 0.05 -2082.59 102.72 6

12b-1F -E1Gr 2.03 0.03 6
Exp. 2.06 ± 0.01 -1979.87 6

Mg2+

Li et al. 2.03 0.06 -1724.23 105.85 6
Babu and Lim 2.08 0.01 -1651.10 178.98 6

12-6-1F 2.01 0.08 -1759.79 70.29 6
12-6-1 2.03 0.06 -1871.92 41.84 6

12b-1F -E1Gr 2.06 0.03 6
Exp. 2.09 ± 0.004 -1830.08 6

Ca2+

Li et al. 2.49 0.03 -1399.97 105.01 8
Babu and Lim 2.61 0.15 -1328.19 166.79 8.3

12-6-1F 2.46 0.00 -1431.76 73.22 8
12-6-1 2.53 0.07 -1551.43 46.45 8

12b-1F -E1Gr 2.50 0.04 8
Exp. 2.46 -1504.98 8

Na+

Joung and Cheatham 2.34 0.01 -374.89 10.05 5.87
12-6-1F 2.34 0.01 -389.53 24.69 5.91
12-6-1 2.34 0.01 -389.95 25.11 5.95

12b-1F -E1Gr 2.35 0.00 5.72
Exp. 2.35± 0.06 -364.84 5-6

TABLE 9.4: Simulated IOD peak (Å), free energy of hydration (HFE, kJ/mol) and coordination
number (CN) values using the developed parameters for the considered force fields.
Results are compared with the ones of Li et al., Babu and Lim, Joung and Cheatham,
and experimental data. The mean absolute errors are with respect to the experimental

references.
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9.5 Conclusion

Force Field MAE(IOD peak) MAE(HFE)
Li et al. 0.10 105.64

Babu and Lim 0.09 177.64
12-6-1F 0.07 85.05
12-6-1 0.06 49.11

12b-1F -E1Gr 0.03

TABLE 9.5: Mean absolute deviations from the experimental references for the position of the first
IOD peak (MAE(IOD peak)) and the hydration free energy (MAE(HFE)) for the consid-

ered divalent ions. MAE(IOD peak) is expressed in Å and MAE(HFE) in kJ/mol.

A novel statistical procedure (called LRR-DE) has been developed to optimize the parameters of a

model so as to reproduce the general behavior of a system, given a representative data set. The fun-

damental feature of the method is the combination of the linear ridge regression and cross-validation

techniques with the metaheuristic algorithm differential evolution. This machinery allows to optimize

both linear and non-linear parameters of a model of generic functional form. The application of the

regularization and the cross-validation avoids the problem of overfitting, if the training set is chosen

properly. This aim is achieved applying the GRASP sampling, a combinatorial technique capable to

maximize the dissimilarity of the elements of the data set. A methodology based on LRR-DE has been

derived to parametrize the non-bonded force fields of metal ions, using ab initio quantities as refer-

ences. From the calibration phase, performed on the case of the zinc ion in water, a general protocol

for the fitting has been identified. This involves the use of both the forces and the energies computed

on clusters of different sizes as references. The application of the multi-objective optimization is op-

tionally activated and further reference data can be considered if unsatisfactory errors for a certain

type of data have been obtained. The validation of the methodology has been performed exploiting

the cases of five ions in water, for which several quantitative results of comparison, both experimental

and computational, are available. The performances of the force fields trained with the LRR-DE have

proved to be of comparable or better quality with respect to standard FFs, as the summary Table 9.5

attests. The possibility of the LRR-DE procedure to use as reference QM forces and energies of different

systems simultaneously offers great margins of applicability to the method. In particular, the method is

suitable for the optimization of FF of metal ions in heterogeneous environment, such as in the case of

protein cofactors, for which experimental thermodynamic data are usually unavailable. The procedure

can be applied to generate transferable FFs, if an appropriate sampling which considers interactions

with a wide range of atom types is executed. Moreover, the capacity of the method to tune generic

models makes it the ideal tool for optimizing FF with more sophisticated functional forms than those

commonly used in MD programs.
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Conclusions and perspectives

This thesis has been focused on the accurate classical modeling of chemical systems through the de-

velopment of reliable force fields for MD simulations. Such task has been accomplished by the employ-

ment of several computational tools, ranging from state-of-art algorithms for atomic charges fitting to

statistical learning techniques for the refininment of LJ parameters. The application in MD simulations

of the proposed models allowed for the theoretical investigation of a wide range of chemical systems

(biomolecules, flexible dyes and rigid organic molecules) thus to shed light on the related subtle phe-

nomena that take place at the atomic level and correlate them with experimental observables.

The accuracy offered by literature models has been evaluated at first, and it has been proved to

be adequate for the description of structural and termodynamic phenomena of biomolecular systems

(Chapter 5). This purpose has been addressed by setting up a computational protocol for the sim-

ulation of the dissociation process of a ligand-receptor complex, using immersive technologies for a

deeper understanding of the investigated event.

Then, it has been demonstrated that current limits of literature force fields, as the one related to

trasferability from one environment to another one, can be overcomed, thus allowing to reproduce

a series of chemical properties with sufficient accuracy and at reasonable cost by employing classi-

cal simulations in multiple solvents. A protocol based on first-principle computations has lead to the

optimization of the description of intermolecular interactions by properly taking into account envi-

ronment effects. The procedure, applied and validated on pyridine (Chapter 6), can be easily extended

to other organic solvents of industrial interest (aniline, DMSO, and so on) in order to fill current gaps

in available force fields of common use and improve the description of several molecules for which

accurate models are still missing.

The application of computational tools for the optimization of specifically tailored ground-state

force fields for flexible and large molecules has allowed for the simulation of absorption spectra and

other structural and dynamical features with fair agreement with experimental data. Future works will

be devoted to the generation of excited-states force fields, using the same protocol already applied

for the alkynylimidazole dyes and DPAP in Chapters 7 and 8: such models can be easily employed for

the analysis of excited-state dynamics as well as for the computation of the fluorescence, since the

importance of emission properties in these kind of molecular probes.

At final, a novel procedure for the development of non-bonded models of metal ions in water solu-

tion has lead to the obtaining of new parameters with comparable or even better quality respect to the

literature ones (Chapter 9). The method will be applied in the near future to more complex and het-

erogeneous systems, such as metallic catalytic sites and organometallic systems. Moreover, the fitting

procedure can be extended to optimize the intramolecular part of a force field.

In general, the satisfactory comparison with available experimental data proves the quality of the
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proposed approaches, as well as helps in the understanding of the complex mechanisms that gov-

ern the investigated phenomena. The protocols developed in this work can be further extended to

the in silico investigation and prediction of the technological properties of other molecular species of

industrial interest, thus accelerating their set-up and fabrication processes. On the other hand, the

presented computational strategies and models may be integrated with other theoretical tools within

virtual screening campaigns, aimed at a more effective search of novel chemical entities with the de-

sired physico-chemical traits.
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Part III

Appendices
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Appendix A

Force field parameters

A.1 AP dyes

This section of Appendix A reports structures, atom indices and Joyce force field parameters of the dyes

studied in Chapter 7. LJ parameters are transferred from OPLS-AA. Charges have been computed using

CM5 at the B3LYP/SNSD level of theory. Non-bonded interactions of the 1-4 type have been excluded.

FIGURE A.1: Main scaffold, structures and atom numbers used in the topology files of the two
investigated dyes.

Atom Charge Lennard-Jones Atom Charge Lennard-Jones

# Type q(e) ε σ # Type q(e) εi (kJ/mol) σ (nm)

1 CA -0.014692 0.355 0.29288 26 CA 0.097115 0.355 0.29288

2 CA -0.077903 0.355 0.29288 27 CA -0.115905 0.355 0.29288

3 CA -0.080194 0.355 0.29288 28 CA -0.085843 0.355 0.29288

4 CA 0.016234 0.355 0.29288 29 HA 0.111585 0.242 0.12552

5 CA -0.092009 0.355 0.29288 30 HA 0.114977 0.242 0.12552

6 CA -0.074794 0.355 0.29288 31 HA 0.112094 0.242 0.12552

7 HA 0.111753 0.242 0.12552 32 HA 0.112284 0.242 0.12552

8 HA 0.115161 0.242 0.12552 33 OS -0.231589 0.029 0.58576

9 HA 0.114037 0.242 0.12552 34 CT -0.12639 0.355 0.27614

10 HA 0.117279 0.242 0.12552 35 HV 0.117978 0.25 0.12552

11 CA 0.236292 0.355 0.29288 36 HV 0.106994 0.25 0.12552

12 N -0.278203 0.325 0.71128 37 HV 0.106948 0.25 0.12552

13 CA 0.101919 0.355 0.29288
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Atom Charge Lennard-Jones Atom Charge Lennard-Jones

# Type q(e) ε σ # Type q(e) εi (kJ/mol) σ (nm)

14 CA 0.02153 0.355 0.29288 a

15 N -0.408453 0.325 0.71128 38 CL -0.022113 0.355 0.317984

16 HA 0.126081 0.242 0.12552 39 HA 0.13151 0.242 0.12552

17 CM -0.105589 0.355 0.76144 40 CD 0.019259 0.355 0.317984

18 HC 0.121021 0.25 0.12552 41 CN 0.211037 0.33 0.276144

19 HC 0.120628 0.25 0.12552 42 CN 0.201518 0.33 0.276144

20 HC 0.11887 0.25 0.12552 43 N -0.356313 0.32 0.71128

21 CK -0.065676 0.33 0.87864 44 N -0.369598 0.32 0.71128

22 CK -0.044361 0.33 0.87864 b

23 CA -0.019544 0.355 0.29288 38 NO 0.062924 0.325 0.50208

24 CA -0.087302 0.355 0.29288 39 ON -0.188437 0.296 0.71128

25 CA -0.107599 0.355 0.29288 40 ON -0.186432 0.296 0.71128

Bond

i j beq
i j (nm) k s

i j (kJ/mol) i j beq
i j (nm) k s

i j (kJ/mol)

1 2 0.1414 315699.207 25 26 0.1404 347563.214

2 3 0.1383 355365.18 26 27 0.1401 347563.214

3 4 0.1412 322199.123 23 28 0.1405 333025.144

4 5 0.1407 322199.123 27 28 0.1393 348716.415

1 6 0.1412 315699.207 24 29 0.1086 336132.25

5 6 0.1386 355365.18 25 30 0.1086 336132.25

2 7 0.1083 338818.342 27 31 0.1083 336132.25

3 8 0.1084 338818.342 28 32 0.1086 336132.25

5 9 0.1083 338818.342 26 33 0.136 332011.511

6 10 0.1087 338818.342 33 34 0.1427 264301.282

4 11 0.146 320098.726 34 35 0.109 313438.804

11 12 0.1376 310883.584 34 36 0.1096 313438.804

12 13 0.1389 309257.087 34 37 0.1096 313438.804

13 14 0.1391 369872.098

11 15 0.1337 370395.568 a

14 15 0.1354 332448.31 1 38 0.1443 331364.784

14 16 0.1081 346296.187 38 39 0.1088 330151.178

12 17 0.1461 246654.559 38 40 0.137 324566.43

17 18 0.109 318908.58 40 41 0.1428 327488.968

17 19 0.1091 318908.58 40 42 0.1428 327488.968

17 20 0.1094 318908.58 41 43 0.1162 1119155.778

13 21 0.1405 406572.33 42 44 0.1162 1119155.778

21 22 0.1218 872113.995 b

22 23 0.1421 408943.544 1 38 0.1464 154137.162

23 24 0.1412 333025.144 38 39 0.1231 470490.51

24 25 0.1385 348716.415 38 40 0.1231 470490.51



A.1. AP dyes 131

Angle

i j k θ
eq
i j k kθi j k i j k θ

eq
i j k kθi j k

1 2 3 120.73 253.9221 22 23 24 120.97 173.8313

2 1 6 117.63 193.1521 22 23 28 120.87 173.8313

1 2 7 120.67 317.778 23 24 25 120.85 157.5618

2 1 43 125.51 335.0622 24 23 28 118.16 126.5979

2 3 4 121.43 245.4664 23 24 29 119.46 313.9231

3 2 7 118.6 331.085 24 25 26 120.35 222.8489

2 3 8 119.92 331.085 25 24 29 119.69 333.5413

3 4 5 118.05 173.1986 24 25 30 120.86 333.5413

4 3 8 118.65 334.2055 25 26 27 119.59 211.48

3 4 11 118.12 352.7555 26 25 30 118.79 306.2763

4 5 6 120.53 245.4664 25 26 33 115.89 309.6693

4 5 9 120.81 334.2055 26 27 28 119.75 222.8489

5 4 11 123.8 352.7555 26 27 31 121.13 306.2763

1 6 5 121.62 253.9221 27 26 33 124.52 309.6693

1 6 10 119.19 317.778 23 28 27 121.3 157.5618

6 1 43 116.85 335.0622 23 28 32 119.38 313.9231

6 5 9 118.63 331.085 28 27 31 119.13 333.5413

5 6 10 119.19 331.085 27 28 32 119.32 333.5413

4 11 12 126.64 281.2499 26 33 34 118.63 92.5806

4 11 15 122.48 236.5187 33 34 35 105.78 508.21

11 12 13 106.84 233.2102 33 34 36 111.15 508.21

12 11 15 110.88 263.8464 33 34 37 111.14 508.21

11 12 17 129.13 223.0908 35 34 36 109.5 3 21.1039

12 13 14 105.33 181.1476 35 34 37 109.5 3 21.1039

13 12 17 123.78 190.9795 36 34 37 109.68 321.1039

12 13 21 123.8 228.1906

13 14 15 110.55 208.6338 a

13 14 16 127.02 236.8634 1 38 39 114.32 489.3336

14 13 21 130.87 229.9816 1 38 40 131.6 107.8855

11 15 14 106.41 210.1101 39 38 40 114.08 248.6584

15 14 16 122.43 340.9489 38 40 41 119.06 167.314

12 17 18 109.83 477.4827 38 40 42 125.76 167.314

12 17 19 108.37 477.4827 41 40 42 115.18 206.1414

12 17 20 111.24 477.4827 40 41 43 178.44 684.4887

18 17 19 108.99 328.7599 40 42 44 179.95 684.4887

18 17 20 109.66 328.7599 b

19 17 20 108.7 328.7599 1 38 39 118.2 443.4879

13 21 22 178.62 141.9975 1 38 40 118.2 443.4879

21 22 23 179.78 57.2501 39 38 40 123.65 1110.8395

Rigid torsion

i j k l φ
eq
i j kl kφi j kl i j k l φ

eq
i j kl kφi j kl

1 2 3 4 0 41.625 17 12 13 21 0 147.627

2 3 4 5 0 112.976 21 13 14 16 0 91.483

3 4 5 6 0 112.976 23 24 25 26 0 100.257
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Rigid torsion

i j k l φ
eq
i j kl kφi j kl i j k l φ

eq
i j kl kφi j kl

4 5 6 1 0 41.625 24 25 26 27 0 81.101

2 1 6 5 0 102.567 25 26 27 28 0 81.101

6 1 2 3 0 102.567 26 27 28 23 0 100.257

7 2 3 8 0 45.925 24 23 28 27 0 92.593

8 3 4 11 0 124.124 28 23 24 25 0 92.593

11 4 5 9 0 124.124 22 23 24 29 0 113.375

9 5 6 10 0 45.925 29 24 25 30 0 41.63

11 12 13 14 0 98.884 30 25 26 33 0 118.527

12 13 14 15 0 189.666 33 26 27 31 0 118.527

13 14 15 11 0 289.976 31 27 28 32 0 41.63

12 11 15 14 0 269.018 22 23 28 32 0 113.375

15 11 12 13 0 160.815 a

4 11 12 17 0 8.72 39 38 40 42 0 137.51

Flexible torsion

i j k l γδi j kl kδi j kl nδ i j k l γδi j kl kδi j kl nδ

5 4 11 12 0.0 0.365 1 27 26 33 34 180.0 6.799 2

0.0 -7.023 2 180.0 1.016 4

0.0 0.195 3 26 33 34 35 180.0 2.088 3

0.0 3.293 4 a

0.0 -0.126 5 2 1 38 39 0.0 -7.292 2

0.0 0.203 6 0.0 1.096 4

11 12 17 18 0.0 -0.405 3 b

0.0 0.067 6 2 1 38 39 0.0 -6.413 2

0.0 0.652 4
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A.2 DPAP

This section reports structures, atom indices and Joyce force field parameters of DPAP moelcular rotor

(Chapter 8). LJ parameters are transferred from OPLS-AA. Charges have been computed using CM5 at

the B3LYP/SNSD level of theory. Non-bonded interactions of the 1-4 type have been excluded.

FIGURE A.2: Main scaffold, structures and atom numbers used in the topology files of DPAP
molecule.

Atom Charge Lennard-Jones Atom Charge Lennard-Jones

# Type q(e) ε σ # Type q(e) εi (kJ/mol) σ (nm)

1 CN 0.194079 0.365 0.62760 19 HA 0.109806 0.242 0.12552

2 CB 0.001146 0.355 0.29288 20 CA -0.096189 0.355 0.29288

3 CA -0.063950 0.355 0.29288 21 HA 0.111658 0.242 0.12552

4 HA 0.129524 0.242 0.12552 22 CA -0.094065 0.355 0.29288

5 CA -0.082391 0.355 0.29288 23 HA 0.114456 0.242 0.12552

6 HA 0.120872 0.242 0.12552 24 C 0.099678 0.355 0.29288

7 C 0.137370 0.355 0.29288 25 CA -0.093872 0.355 0.29288

8 N -0.295163 0.330 0.71128 26 HA 0.114647 0.242 0.12552

9 CA -0.074139 0.355 0.29288 27 CA -0.095871 0.355 0.29288

10 HA 0.123468 0.242 0.12552 28 HA 0.111831 0.242 0.12552

11 CB 0.022105 0.355 0.29288 29 CA -0.100695 0.355 0.29288

12 CN 0.207369 0.365 0.62760 30 HA 0.110007 0.242 0.12552

13 C 0.099989 0.355 0.29288 31 CA -0.095871 0.355 0.29288

14 CA -0.094065 0.355 0.29288 32 HA 0.111831 0.242 0.12552

15 HA 0.114456 0.242 0.12552 33 CA -0.093872 0.355 0.29288

16 CA -0.096189 0.355 0.29288 34 HA 0.114647 0.242 0.12552

17 HA 0.111658 0.242 0.12552 35 NN -0.400313 0.320 0.71128

18 CA -0.101147 0.355 0.29288 36 NN -0.382804 0.320 0.71128
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Bond

i j beq
i j (nm) k s

i j (kJ/mol) i j beq
i j (nm) k s

i j (kJ/mol)

1 2 0.1424 325609.235 18 20 0.1396 327121.563

2 3 0.1403 317335.500 20 21 0.1086 334783.052

3 4 0.1085 334783.052 13 22 0.1399 281475.110

3 5 0.1384 327121.563 20 22 0.1395 327121.563

5 6 0.1083 334783.052 22 23 0.1086 334783.052

5 7 0.1413 281475.110 8 24 0.1434 265578.413

7 8 0.1388 265578.413 24 25 0.1400 281475.110

7 9 0.1411 281475.110 25 26 0.1086 334783.052

9 10 0.1083 334783.052 25 27 0.1394 327121.563

2 11 0.1415 230073.749 27 28 0.1086 334783.052

9 11 0.1391 317335.500 27 29 0.1397 327121.563

11 12 0.1433 325609.235 29 30 0.1086 334783.052

8 13 0.1434 265578.413 29 31 0.1397 327121.563

13 14 0.1400 281475.110 31 32 0.1086 334783.052

14 15 0.1086 334783.052 24 33 0.1399 281475.110

14 16 0.1394 327121.563 31 33 0.1395 327121.563

16 17 0.1086 334783.052 33 34 0.1086 334783.052

16 18 0.1397 327121.563 1 35 0.1164 1119383.487

18 19 0.1086 334783.052 12 36 0.1161 1119383.487

Angle

i j k θ
eq
i j k kθi j k i j k θ

eq
i j k kθi j k

1 2 3 120.53 826.0873 14 16 18 120.33 603.0479

1 2 11 121.41 392.6911 17 16 18 120.17 323.8368

2 1 35 179.60 242.1940 16 18 19 120.18 323.8368

2 3 4 119.28 357.5271 16 18 20 119.62 603.0479

2 3 5 121.17 306.8322 19 18 20 120.20 323.8368

3 2 11 118.07 490.1432 18 20 21 120.15 323.8368

4 3 5 119.55 323.8368 18 20 22 120.33 603.0479

3 5 6 119.08 323.8368 21 20 22 119.51 323.8368

3 5 7 121.15 716.7162 13 22 20 119.97 716.7162

6 5 7 119.76 286.0881 13 22 23 119.65 286.0881

5 7 8 121.35 608.1875 20 22 23 120.38 323.8368

5 7 9 117.91 425.4345 8 24 25 120.36 608.1875

8 7 9 120.75 608.1875 8 24 33 119.84 608.1875

7 8 13 121.13 338.8713 24 25 26 119.72 286.0881

7 8 24 121.20 338.8713 24 25 27 119.96 716.7162

7 9 10 120.15 286.0881 25 24 33 119.79 425.4345

7 9 11 120.82 478.0010 26 25 27 120.32 323.8368

10 9 11 119.03 357.5271 25 27 28 119.50 323.8368

2 11 9 120.88 490.1432 25 27 29 120.32 603.0479

2 11 12 120.29 392.6911 28 27 29 120.17 323.8368

9 11 12 118.82 826.0873 27 29 30 120.18 323.8368

11 12 36 179.93 242.1940 27 29 31 119.63 603.0479

8 13 14 120.38 608.1875 30 29 31 120.19 323.8368
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Angle

i j k θ
eq
i j k kθi j k i j k θ

eq
i j k kθi j k

8 13 22 119.83 608.1875 29 31 32 120.15 323.8368

13 8 24 117.67 338.8713 29 31 33 120.33 603.0479

13 14 15 119.72 286.0881 32 31 33 119.51 323.8368

13 14 16 119.97 716.7162 24 33 31 119.96 716.7162

14 13 22 119.78 425.4345 24 33 34 119.65 286.0881

15 14 16 120.31 323.8368 31 33 34 120.39 323.8368

14 16 17 119.50 323.8368

Rigid torsion

i j k l φ
eq
i j kl kφi j kl i j k l φ

eq
i j kl kφi j kl

11 2 3 4 -179.3 79.017 15 14 16 18 -179.0 87.040

11 2 3 5 -0.1 88.959 14 16 18 20 -0.2 73.958

35 1 2 3 1.8 0.001 17 16 18 19 0.4 30.534

1 2 11 12 0.7 105.609 16 18 20 21 -179.9 87.040

2 3 5 6 -179.3 32.981 19 18 20 22 179.8 87.040

3 2 11 9 0.0 97.751 18 20 22 13 0.5 48.999

4 3 5 7 179.2 61.357 21 20 22 23 -0.1 30.534

3 5 7 9 0.1 35.342 33 24 25 26 179.0 67.394

6 5 7 9 179.5 67.394 8 24 33 34 -1.2 31.209

5 7 9 11 -0.2 60.572 24 25 27 28 179.9 61.357

8 7 9 10 -0.8 31.209 8 24 25 27 -179.3 179.055

7 9 11 2 0.2 22.464 25 24 33 31 0.1 35.342

10 9 11 2 -179.2 79.017 26 25 27 29 -178.9 87.040

9 11 12 36 13.8 0.001 25 27 29 30 179.6 87.040

8 13 14 16 -179.3 179.055 28 27 29 31 -179.4 87.040

8 13 22 20 178.6 179.055 27 29 31 33 -0.4 73.958

13 14 16 17 179.9 61.357 30 29 31 32 0.3 30.534

22 13 14 16 -0.7 35.342 29 31 33 24 0.5 48.999

14 13 22 23 -179.9 67.394 32 31 33 34 -0.1 30.534

Improper dihedrals

i j k l φ
eq
i j kl kφi j kl i j k l φ

eq
i j kl kφi j kl

2 1 3 11 -0.0 52.740 20 16 19 18 -0.1 245.364

5 2 4 3 0.5 275.811 22 18 21 20 0.3 245.364

7 3 6 5 0.4 268.761 23 13 20 22 -0.0 345.666

9 5 8 7 -0.1 541.118 24 8 25 33 0.8 541.118

8 7 13 24 0.0 28.016 27 24 26 25 -0.2 253.992

11 7 10 9 -0.4 210.894 29 25 28 27 -0.5 245.364

12 2 9 11 -0.4 22.646 31 27 30 29 -0.1 245.364

13 8 14 22 0.8 541.118 33 29 32 31 0.3 245.364

16 13 15 14 -0.1 253.992 34 24 31 33 -0.0 345.666

18 14 17 16 -0.5 245.364
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Flexible torsion

i j k l γδi j kl kδi j kl nδ i j k l γδi j kl kδi j kl nδ

5 7 8 13 0.00 -4.632 2 7 8 24 33 0.00 3.642 2

0.00 0.324 3 0.00 -0.015 3

0.00 2.880 4 0.00 2.707 4

9 7 8 24 0.00 -4.632 2 7 8 13 22 0.00 3.642 2

0.00 0.324 3 0.00 -0.015 3

0.00 2.880 4 0.00 2.707 4

13 8 24 25 0.00 3.642 2 24 8 13 14 0.00 3.642 2

0.00 -0.015 3 0.00 -0.015 3

0.00 2.707 4 0.00 2.707 4
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A.3 Metal ions

Here, the force field parameters optimized for the metal ions Zn2+, Ni2+, Mg2+, Na2+ and Ca2+ are re-

ported. When atomic charge is optimized, LJ parameters are written as A12
i j and B 6

i j instead of standard

σ and ε, (as they compared in Eq. 1.9). Since the optimization has been conducted in water environ-

ment, the reported parameters are intended to work in water solution. Moreover, since water model

has not vdW, the LJ interactions involve only metal ions and water oxygens.

σ (nm) ε (kJ/mol)
Zn2+ 0.3516905 0.000204
Ni2+ 0.1145527 744.7884
Mg2+ 0.1939073 0.734308
Na2+ 0.2150201 1.686356
Ca2+ 0.2577062 2.029290

TABLE A.12: Metal ions LRR-DE optimized parameters for the 12-6-1F model.

A12 (kJ mol−1 nm12) B6 (kJ mol−1 nm6) q (e)
Zn2+ 3.405e-08 -0.004349 2.300773
Ni2+ 1.232e-07 -0.000057 2.213392
Mg2+ 3.344e-08 -0.005197 2.321638
Na2+ 3.689e-07 0.000620 1.021000
Ca2+ 6.562e-07 -0.008399 2.271904

TABLE A.13: Metal ions LRR-DE optimized parameters for the 12-6-1 model.

C1 (kJ mol−1 nm12) C2 (e) θ1 (nm) θ2 (nm−1) θ3 (nm−2) θ4 (nm)
Zn2+ 2.912e-05 696.482913 -0.099025 15.281931 0.270012 0.126974
Ni2+ 4.1724190 4.9229e-07 -0.021800 10.000000 7.000000 0.100000
Mg2+ -22.109731 -91.616616 -0.795994 20.000000 10.00000 0.270071
Na2+ 5.782e-06 2.4124543 -0.057371 8.4124410 6.089116 0.182687
Ca2+ 1.085e-04 11.3382033 -0.101856 10.1049636 8.342623 0.218861

TABLE A.14: Metal ions LRR-DE optimized parameters for the 12b-1-E1Gr model.
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Appendix B

Systematic study of zinc potentials

This section reports the computed mean absolute errors (kJ mol−1 for the energies, E, and kJ mol−1

nm−1 for the forces, F) in the prediction of the quantities indicated in the first column. The training set

data is indicated in the first row. Reported data are relative to the optimized 12b-1 model. The values

of the errors for the same data set used in the training process are marked in bold. F(6O, nH2O) are the

forces on the six oxygen atoms closest to the zinc ion for the cluster with n water molecules. F(12H,

nH2O) are the forces on the twelve hydrogen atoms closest to the zinc ion for the cluster with n water

molecules.
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