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Abstract

Several trilinear interactions of higher spin fields involving two equal (s = s1 = s2)
and one higher even (s3 > s) spin are presented. Interactions are constructed on the
Lagrangian level using Noether’s procedure together with the corresponding next to free
level fields of the gauge transformations. In certain cases when the number of derivatives
in the transformation is 2s − 1 the interactions lead to the currents constructed from
the generalization of the gravitational Bell-Robinson tensors. In other cases when the
number of derivatives in the transformation is more than 2s−1 we obtain the finite tower
of interactions with smaller even spins less than s3 in full agreement with our previous
results for the interaction of the higher even spins field with a conformal scalar[1, 2]. The
self interacting case is presented as an algorithmic formalism for the construction of the
cubic interactions to be applied to spin four and higher.
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1 Introduction

The construction of interacting higher spin gauge field theories (HSF) has always been
considered an important task during the last thirty years (See [3]-[8] and ref. there∗). The
complications and difficulties which accompany any serious attempt to solve the essential
problems in this area always attracted interest but activity intensified after discovering
the important role HSF plays in AdS/CFT correspondence. Particular attention caused
the holographic duality between the O(N) sigma model in three dimensional space and
HSF gauge theory living in the four dimensional space with negative constant curvature
[9]. This case of holography is singled out by the existence of two conformal points of the
boundary theory and the possibility to describe them by the same HSF gauge theory with
the help of spontaneously breaking of higher spin gauge symmetry and mass generation
by a corresponding Higgs mechanism. All these complicated physical tasks necessitate
quantum loop calculations for HSF field theory [10]-[16] and therefore information about
manifest, off-shell and Lagrangian formulation of possible interactions for HSF. Then after
successful calculations on the quantum level the construction can be controlled by com-
parison with the boundary O(N) model results checking the AdS/CFT correspondence
conjecture on the loop level [10], [11], [13].

In this article we continue the construction of possible couplings including different
higher spin fields which was started in our previous articles about couplings including HSF
and scalar fields [1, 2, 10] and that are important for the Higgs mechanism mentioned
above. Here we turn to the trilinear interaction between HSF gauge fields of different
spins (s-s-s’) in a flat background but the results can be easily generalized to the AdS
background. The first three sections are devoted to the development of the idea: how we
can apply higher spin gauge symmetry of a spin ”s” gauge field to the field with a spin
lower than ”s”. Then getting in this way information about the first order gauge trans-
formation, we can handle Noether’s procedure applying this first order transformation
to the zero order free Lagrangian and integrating this variation to a first order trilinear
interaction. Starting from the construction of the spins 1-1-2 and 1-1-4, we discover in
this simple case the same phenomenon as in the previously investigated scalar case [1, 2],
namely the appearance of the couplings with all even spins lower than the initial maximal
higher spin gauge field involved in the interaction vertex (Section 2). Then we generalize
the construction to the more complicated 2-2-4 and then to 2-2-6 where the previously
constructed 2-2-4 interaction again appears automatically (Section 3). The next section
starts from the description of a technique for working with the HSF fields in Fronsdal’s
[17] formulation and deWit-Friedman curvatures [18, 19]. In the same section we succeed
with the construction of the interaction Lagrangian of spin type s-s-2s together with the
first order higher spin gauge transformation. The last section considers a technical setup
aimed at an algorithm for the general solution of the selfinteraction problem of a spin ”s”
gauge field. due to the extreme volume of the linear algebraic task we intend to present
the result for the case of spin four in a forthcoming publication [20].

∗We do not pretend here for complete quotations and just present some references important for us
during this investigation
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2 Exercises on spin one field couplings with the higher

spin gauge fields

We start this section constructing the well known interaction of the electromagnetic
field Aµ in flat D dimensional space-time with the linearized spin two field. Hereby we
illustrate how Noether’s procedure regulates the relation between gauge symmetries of
different spin fields. The standard free Lagrangian of the electromagnetic field is

L0 = −
1

4
FµνF

µν = −
1

2
∂µAν∂

µAν +
1

2
(∂A)2, (2.1)

Fµν = ∂µAν − ∂νAµ, ∂A = ∂µA
µ. (2.2)

To construct the interaction we propose a possible form for the action of the spin two
linearized gauge symmetry

δ0εh
(2)µν(x) = 2∂(µεν)(x) = ∂µεν(x) + ∂νεµ(x), (2.3)

on the spin one gauge field Aµ(x). Then Noether’s procedure fixes this coupling (1-1-2
interaction) of the electromagnetic field with linearized gravity correcting when necessary
the proposed transformation.

We start from the following general ansatz for a gauge variation of Aµ with respect to
a spin 2 gauge transformation with vector parameter ερ

δ1εAµ = −ερ∂ρAµ + Cερ∂µAρ. (2.4)

Then we apply this variation (2.4) to (2.1) and after some algebra neglecting total deriva-
tives we obtain †

δ1εL0 = ∂(µεν)∂µAρ∂νA
ρ −

1

2
ε(1)∂µAν∂

µAν +
1

2
ε(1)(∂A)

2 + C∂(µεν)∂ρAµ∂
ρAν

− 2C∂(µεν)∂ρA(µ∂ν)A
ρ +

C

2
ε(1)∂µAν∂

νAµ −
C

2
ε(1)(∂A)

2

+ (C − 1)(∂A)∂µεν∂νAµ. (2.6)

Then we have to compensate (or integrate) this variation using the gauge variation of the

spin 2 field (2.3) and its trace δ0εh
(2)µ
µ = 2ε(1) . We see immediately that the last line in

(2.6) is irrelevant but can be dropped by choice of the free constant C = 1. With this
choice we have instead of (2.4)

δ1εAµ = −ερ∂ρAµ + ερ∂µAρ = ερFµρ, (2.7)

so that our spin two transformation now is manifestly gauge invariant with respect to the
spin one gauge invariance

δ0σAµ = ∂µσ, (2.8)

†From now on we will never make a difference between a variation of the Lagrangians or the actions
discarding all total derivative terms and admitting partial integration if necessary. For compactness we
introduce also shortened notations for divergences of the tensorial symmetry parameters

ǫ
µν...

(1) = ∇λǫ
λµν..., ǫ

µ...

(2) = ∇ν∇λǫ
νλµ..., . . . (2.5)
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and our spin one gauge invariant free action (2.1) keeps this property also after spin two
gauge variation. Namely (2.6) now can be written as

δ1εL0 = ∂(µεν)FµρF
ρ

ν −
1

4
ε(1)FµνF

µν . (2.9)

This variation can be compensated introducing the following 2-1-1 interaction

L1(Aµ, h
(2)
µν ) =

1

2
h(2)µνΨ(2)

µν , (2.10)

where

Ψ(2)
µν = −FµρF

ρ
ν +

1

4
gµνFρσF

ρσ, (2.11)

is the well known energy-momentum tensor for the electromagnetic field.
Thus we solved Noether’s equation

δ1εL0(Aµ) + δ0εL1(Aµ, h
(2)
µν ) = 0 (2.12)

in this approximation completely, defining a first order transformation and interaction
term at the same time. Finally note that the corrected Noether’s procedure spin two
transformation of the spin one field (2.7) can be written as a combination of the usual
reparametrization for the contravariant vector Aµ(x) (non invariant with respect to (2.8))
and spin one gauge transformation with the special field dependent choice of the parameter
σ(x) = ερ(x)Aρ(x)

δ1εAµ = ερFµρ = −ε
ρ∂ρAµ − ∂µε

ρAρ + ∂µ (ε
ρ(x)Aρ(x)) , (2.13)

Now we turn to the first nontrivial case of the vector field interaction with a spin four
gauge field with the following zero order spin four gauge variation

δ0ǫh
µρλσ = 4∂(µǫρλσ), δ0ǫh

ρλσ
ρ = 2ǫλσ(1). (2.14)

where we have a symmetric and traceless gauge parameter ǫµνλ to construct a gauge
variation for Aµ. According to the previous lesson we start from a spin one gauge invariant
ansatz for the spin four transformation of Aµ field

δ1ǫAµ = ǫρλσ∂ρ∂λFµσ. (2.15)

Thus we have now the following variation of L0

δ1ǫL0 = δ1ǫ (−
1

4
FµνF

µν) = (δ1ǫAν)∂µF
µν = −∂µ(ǫ

ρλσ∂ρ∂λFνσ)F
µν . (2.16)

After some algebra, again neglecting total derivatives and using the Bianchi identity
for Fµν

∂µFνλ + ∂νFλµ + ∂λFµν = 0, (2.17)

and taking into account the important relation

− ∂µǫρλσ∂ρF
ν

µ ∂λFσν = −∂(µǫρλσ)∂(ρF
ν

µ ∂λFσ)ν +
1

4
ǫλσ(1)∂

νFµλ∂
µFνσ

−
1

2
∂νǫρλσ∂λFσν∂

µFµρ −
1

4
ǫλσ(1)∂

µFµρ∂
νFνσ, (2.18)
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we arrive at the following form of the variation convenient for our analysis

δ1ǫL0 = −∂(µǫρλσ)∂(ρF
ν

µ ∂λFσ)ν +
1

4
ǫλσ(1)∂

νFµλ∂
µFνσ +

1

4
ǫλσ(1)∂λFµν∂σF

µν

− ∂λ(ǫ
λσ
(1)Fµσ)∂νF

νµ −
1

4
ǫλσ(1)∂

µFµλ∂
νFνσ −

1

2
∂ρǫνλσ∂λFσρ∂

µFµν

+ ∂(µǫ
ν)
(2)FµσF

σ
ν −

1

4
ǫ(3)FµνF

µν . (2.19)

Returning to the gauge variation of the spin four field (2.14) we notice that all terms
in the first line of (2.19) and the first two terms in the second line can be integrated to
the interaction terms, but the first two terms in the second line are proportional to the
equation of motion for the initial Lagrangian (2.1), hence they are not physical and can
be removed by the following field redefinition

Aµ → Aµ − ∂λ(h
αλσ
α Fµσ)−

1

4
hα

αµσ∂βF
βσ. (2.20)

The last term in the second line is also proportional to the free field equations but is not
integrable, so we can cancel this term only by changing the initial variation of Aµ (2.15).
The modified form of (2.15) is

δ1ǫAµ = ǫρλσ∂ρ∂λFµσ +
1

2
∂ρǫµλσ∂

λF σρ. (2.21)

So we can drop the second line of (2.19).
Another novelty in comparison with the previous case is the third line of (2.19). Com-

paring with (2.9) we see that we can integrate these two terms introducing an additional
spin two field coupling and compensate the first and third line introducing the following
linearized Lagrangian for the coupling of the electromagnetic field to the spin four and
spin two fields

L1(Aµ, h
(2)µν , h(4)µναβ) =

1

4
h(4)µναβΨ

(4)
µναβ +

1

2
h(2)µνΨ(2)

µν , (2.22)

where the current Ψ
(2)
µν is the same energy-momentum tensor (2.10) and

Ψ
(4)
µναβ = ∂(αF

ρ
µ ∂βFν)ρ −

1

4
g(µν∂

λFασ∂
σFβ)λ +

1

4
g(µν∂αF

σρ∂β)Fσρ. (2.23)

The whole action
L0(Aµ) + L1(Aµ, h

(2)µν , h(4)µναβ), (2.24)

is invariant with respect to the spin one gauge transformations and the following higher
spin transformations

δ1Aµ = ǫρλσ∂ρ∂λFµσ +
1

2
∂ρǫµλσ∂

λF σρ,

δ0h(4)µναβ = 4∂(µǫναβ), δ0ǫh
µαβ
µ = 2ǫαβ(1),

δ0h(2)µν = 2∂(µǫ
ν)
(2), δ0h(2)µ

µ = 2ǫ(3). (2.25)

Therefore we proved that like the previously investigated scalar–higher spin coupling case
[2], the interaction with the spin four gauge field leads to the additional interaction with
the lower even spin two field.
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3 Generalization to the 2-2-4 and 2-2-6 interactions

In this section we turn to the spin two field as a lower spin field in the construction of
the higher spin gauge invariant interactions with spin 4 and spin 6 gauge potentials. And
again we want to keep manifest the lower spin two gauge invariance.

So proceeding similarly as in the previous section we start from the free spin two
Pauli-Fierz Lagrangian [21]

L0(h
(2)
µν ) =

1

2
∂µh

(2)
αβ∂

µh(2)αβ − ∂αh
(2)αβ∂µh

(2)µ
β + ∂µh

(2)α
α ∂βh

(2)βµ −
1

2
∂µh

(2)α
α ∂µh

(2)β
β , (3.1)

and try to solve the following Noether’s equation

δ1εL0(h
(2)
µν ) + δ0εL1(h

(2)
µν , h

(4)αβλρ) = 0. (3.2)

For this purpose we introduce the following starting ansatz for the spin four transformation
of the spin two field

δ1ǫh
(2)
µν = ǫρλσ∂ρΓλσ,µν , (3.3)

where Γλσ,µν is the spin two gauge invariant symmetrized linearized Riemann curvature

Γαβ,µν =
1

2
(Rαµ,βν +Rβµ,αν), (3.4)

Γ(αβ,µ)ν = 0, (3.5)

introduced by de Witt and Freedman for higher spin gauge fields together with the higher
spin generalization of the Christoffel symbols [18]. This symmetrized curvature is more
convenient for the construction of an interaction with symmetric tensors. The corre-
sponding Ricci tensor (Fronsdal operator for higher spin generalization) and scalar can
be defined in the usual manner using traces

Fµν = Γλ
µν,λ = ✷h(2)

µν − 2∂(µ∂
αh

(2)
ν)α + ∂µ∂νh

(2)α
α , (3.6)

F = Fµ
µ = 2(✷h(2)µ

µ − ∂µ∂νh
(2)µν). (3.7)

In terms of these objects the Bianchi identities can be written as

∂λΓµν,αβ = ∂(µΓν)λ,αβ + ∂(αΓβ)λ,µν , (3.8)

∂λFαβ = ∂µΓµλ,αβ + ∂(αFβ)λ, (3.9)

∂λFλµ =
1

2
∂µF

α
α . (3.10)

Then a variation of (3.1) with respect to (3.3) is

δ1ǫL0(h
(2)
µν ) =

δL0

δh
(2)
µν

δ1ǫh
(2)
µν = −(Fµν −

1

2
gµνF)ǫρλσ∂ρΓλσ,µν . (3.11)

To integrate it and solve the equation (3.2) we submit to the following strategy:
1) First we perform a partial integration and use the Bianchi identity (3.9) to lift the

variation to a curvature square term.
2) Then we make a partial integration again and rearrange indices using (3.5) and

(3.8) to extract an integrable part.
3) Symmetrizing expressions in this way we classify terms as
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• integrable

• integrable and subjected to field redefinition (proportional to the free field equation
of motion)

• non integrable but reducible by deformation of the initial ansatz for the gauge
transformation (again proportional to the free field equation of motion)

Then if no other terms remain we can construct our interaction together with the
corrected first order transformation. Following this strategy after some fight with formulas
we win the battle obtaining the following expression

δ1ǫL0(h
(2)
µν ) = −∂(αǫβµν)(Ψ

(4)
(Γ)αβµν −Ψ

(4)
(F)αβµν)

− ǫµν(1)Γµν,αβ

δL0

δh
(2)
αβ

+ ∂ρǫ µν
α Γβρ,µν

δL0

δh
(2)
αβ

, (3.12)

where

Ψ
(4)
(Γ)αβµν = Γ ρσ

(αβ, Γµν),ρσ −
2

3
g(αβΓ

ρ,σλ
µ Γν)ρ,σλ, (3.13)

Ψ
(4)
(F)αβµν = F(αβFµν) − g(αβF

σ
µFν)σ = −

δL0

δh(2)(αβ
Fµν) + g(αβ

δL0

δh
(2)µ
σ

Fν)σ, (3.14)

δL0

δh(2)αβ
= −Fαβ +

1

2
gαβF . (3.15)

So we see immediately that in (3.12) only the last term of the second line is not integrable
but proportional to the equation of motion and can be dropped by the correction to the
initial gauge transformation (3.3). On the other hand taking into account (2.14) and

(3.13)-(3.15) we can compensate Ψ
(4)
(F) and the first term in the second line of (3.12) by

the following field redefinition

h(2)
µν → h(2)

µν −
1

2
h(4)αλσ
α Γλσ,µν −

1

4
h(4)αλ
µν Fαλ +

1

4
h
(4)αλ

α(µFν)λ. (3.16)

Thus after field redefinition we arrive at the 4-2-2 gauge invariant interaction

L1(h
(2)
µν , h

(4)
αβµν) =

1

4
h(4)αβµνΨ

(4)
(Γ)αβµν(h

(2)
µν )

=
1

4
h(4)αβµνΓαβ,ρσΓ

ρσ
µν, −

1

6
h(4)αµν
α Γ ρ,σλ

µ Γνρ,σλ, (3.17)

with the following gauge transformations

δǫh
(2)
µν = ǫρλσ∂ρΓλσ,µν − ∂ρǫλσ(µΓ

ρ,λσ

ν) , (3.18)

δ0ǫh
(4)µρλσ = 4∂(µǫρλσ), δ0ǫh

(4)ρλσ
ρ = 2ǫλσ(1). (3.19)

Now in possession of knowledge about the 2-2-4 interaction we start to construct the
most nontrivial interaction in this article between spin 2 and spin 6 gauge fields. We would
like to check the appearance of the 2-2-4 coupling during the construction of 2-2-6 which
we expect from the analogy with the scalar case considered in [1, 2] and the 1-1-4 case
considered in the previous section. To proceed we have to solve the following Noether’s
equation

δ1εL0(h
(2)
µν ) + δ0εL1(h

(2)
µν , h

(6)
αβλρσδ) = 0, (3.20)
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with a starting ansatz for the spin 6 first order gauge transformation for the spin 2 field:

δ1ǫh
(2)
µν (x) = ǫαβρλσ(x)∂α∂β∂ρΓλσ,µν(x), (3.21)

and the standard zero order gauge transformation for the spin 6 gauge field

δ0ǫh
(6)µναβσρ = 6∂(µǫναβσρ)(x), (3.22)

δ0ǫh
(6)µαβσρ
µ = 2ǫαβσρ(1) . (3.23)

First of all we have to transform the variation

δ1εL0(h
(2)
µν ) = −(F

µν −
1

2
gµνF)ǫαβρλσ∂α∂β∂ρΓλσ,µν , (3.24)

into a form convenient for integration. Following the same strategy as before in the 2-2-4
case, using many times partial integration and Bianchi identities (3.5), (3.8)-(3.10), we
obtain after tedious but straightforward calculations

δ1εL0(h
(2)
µν ) = ∂(αǫβµνλρ)Ψ

(6)
(Γ)αβµνλρ − ∂(αǫβµν)Ψ

(4)
(Γ)αβµν

+
4

3
∂ρǫ µνλσ

α ∂λ∂σΓβρ,µν

δL0

δh
(2)
αβ

−
1

3
∂ρ∂λǫ µνσ

αβ ∂σΓρλ,µν

δL0

δh
(2)
αβ

−Rµν
int(Γ,F)

δL0

δh
(2)
µν

, (3.25)

where

Ψ
(6)
(Γ)αβµνλρ = ∂(αΓ

σδ
βµ, ∂νΓλρ),σδ − g(αβ∂µΓ

κ,σδ
ν ∂λΓρ)κ,σδ

−
1

2
g(αβ∂

κΓ σδ
µν, ∂σΓλρ),κδ, (3.26)

Ψ
(4)
(Γ)αβµν = Γ ρσ

(αβ, Γµν),ρσ −
2

3
g(αβΓ

ρ,σλ
µ Γν)ρ,σλ, (3.27)

and Rµν
int(Γ,F)

δL0

δh
(2)
µν

are remaining integrable terms proportional to the equation of mo-

tion. Indeed the symmetric tensor Rµν
int(Γ,F) is expressed through the only integrable

combinations of derivatives of gauge parameter

Rµν
int(Γ,F , ǫ) = ǫαβλδ(1) ∂α∂βΓ

µν
λδ, −

1

3
∂λǫ

αβδ(µ
(1) ∂αΓ

ν)
λ,βδ + ∂λ

[

∂(λǫαβδµν)∂αFβδ

]

−
2

3
∂λ

[

ǫλαµν(1) ∂αF
]

+
1

6
ǫαβµν(1) ∂α∂βF + ∂(αǫ

βµν)
(2) Fαβ +

5

3
∂αǫ

βλµν)
(1) ∂λFαβ

−
5

3
∂λ

[

ǫ
λαβ(µ
(1) ∂αF

ν)
β

]

+
1

6
✷ǫαβµν(1) Fαβ −

1

6
∂λǫαβµν(1) ∂λFαβ −

1

2
ǫ
α(µ
(3) F

ν)
α .

(3.28)

Substituting into this expression ∂(λǫαβδµν) with 1
6
h(6)λαβδµν , ∂(αǫ

βµν)
(2) with 1

4
h(4)αβµν , and

correspondingly 2ǫαβµν(1) and 2ǫαβ(3) with their traces, we define a field redefinition for h(2)µν

h(2)µν → h(2)µν +Rµν
int(Γ,F , h

(6), h(4)), (3.29)

using which we can drop the third line in (3.25). The second line in (3.25) can be cancelled
by the following deformation of the initial ansatz for the transformation (3.21)

δ1ǫh
(2)
αβ = ǫµνρλσ∂µ∂ν∂ρΓλσ,αβ −

4

3
∂ρǫ µνλσ

α ∂λ∂σΓβρ,µν +
1

3
∂ρ∂λǫ µνσ

αβ ∂σΓρλ,µν . (3.30)
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Thus we arrive at the promised result that the 2-2-6 interaction automatically includes
also the 2-2-4 interaction constructed above, and the corresponding trilinear interaction
Lagrangian is

L1(h
(2), h(4), h(6)) = −

1

6
h(6)αβµνλρΨ

(6)
(Γ)αβµνλρ +

1

4
h(4)αβµνΨ

(4)
(Γ)αβµν

−
1

6
h(6)αβµνλρ∂αΓ

σδ
βµ, ∂νΓλρ,σδ +

1

6
h(6)αµνλρ
α ∂µΓ

κ,σδ
ν ∂λΓρκ,σδ

+
1

12
h(6)αµνλρ
α ∂κΓ σδ

µν, ∂σΓλρ),κδ +
1

4
h(4)αβµνΓαβ,ρσΓ

ρσ
µν, −

1

6
h(4)αµν
α Γ ρ,σλ

µ Γνρ,σλ. (3.31)

This formula together with the corrected gauge transformation (3.30) solves completely
Noether’s equation (3.20).

4 2s-s-s interaction Lagrangian

The most elegant and convenient way of handling symmetric tensors such as h
(s)
µ1µ2...µs(z)

is by contracting it with the s’th tensorial power of a vector aµ of the tangential space at
the base point z [12]-[16]

h(s)(z; a) =
∑

µi

(

s
∏

i=1

aµi)h(s)
µ1µ2...µs

(z). (4.1)

In this way we obtain a homogeneous polynomial in the vector aµ of degree s. In this
formalism the symmetrized gradient, trace and divergence are‡

Grad : h(s)(z; a)⇒ Gradh(s+1)(z; a) = (a∇)h(s)(z; a), (4.2)

Tr : h(s)(z; a)⇒ Trh(s−2)(z; a) =
1

s(s− 1)
✷ah

(s)(z; a), (4.3)

Div : h(s)(z; a)⇒ Divh(s−1)(z; a) =
1

s
(∇∂a)h

(s)(z; a). (4.4)

The gauge variation of a spin s field is

δh(s)(z; a) = s(a∇)ǫ(s−1)(z; a), (4.5)

with traceless gauge parameter

✷aǫ
(s−1)(z; a) = 0, (4.6)

for the double traceless gauge field

✷
2
ah

(s)(z; a) = 0. (4.7)

We will use the deWit-Freedman curvature and Cristoffel symbols [18, 19]. We contract
them with the degree s tensorial power of one tangential vector aµ in the first set of s

‡To distinguish easily between ”a” and ”z” spaces we introduce for space-time derivatives ∂
∂zµ the

notation ∇µ and as before we will admit integration everywhere where it is necessary (we work with a
Lagrangian as with an action) and therefore we will neglect all space-time total derivatives when making
a partial integration
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indices and with a similar tensorial power of another tangential vector bν in its second
set. The deWit-Freedman curvature and n-th Cristoffel symbol are then written as

Γ(s)(z; b, a) : Γ(s)(z; b, λa) = Γ(s)(z;λb, a) = λsΓ(s)(z; b, a), (4.8)

Γ
(s)
(n)(z; b, a) : Γ

(s)
(n)(z; b, λa) = λsΓ

(s)
(n)(z; b, a), (4.9)

Γ
(s)
(n)(z;λb, a) = λnΓ

(s)
(n)(z; b, a), (4.10)

Γ(s)(z; b, a) = Γ
(s)
(n)(z; b, a)|n=s. (4.11)

Next we introduce the notation ∗a, ∗b for a contraction in the symmetric spaces of indices
a or b

∗a =
1

(s!)2

s
∏

i=1

←−
∂ µi

a

−→
∂ a

µi
. (4.12)

To manipulate reshuffling of different sets of indices we employ other differentials with
respect to a and b, e.g.

Ab = (a∂b), (4.13)

Ba = (b∂a). (4.14)

Then we see that operators Ab, a
2, b2 are dual (or adjoint) to Ba,✷a,✷b with respect to

the ”star” product (4.12)

Abf(a, b) ∗a,b g(a, b) = f(a, b) ∗a,b Bag(a, b), (4.15)
(

a2

b2

)

f(a, b) ∗a,b g(a, b) = f(a, b) ∗a,b

(

✷a

✷b

)

g(a, b). (4.16)

In the same fashion gradients and divergences are dual with respect to the full scalar
product in the space (z, a, b)

(a∇)

(b∇)
f(z; a, b) ∗a,b g(z; a, b) = −f(z; a, b) ∗a,b

(∇∂a)

(∇∂b)
g(z; a, b).

(4.17)

Now one can prove that [18, 16]:

AbΓ
(s)(z; a, b) = BaΓ

(s)(z; a, b) = 0. (4.18)

These ”primary Bianchi identities” are manifestations of the hidden antisymmetry. The
n-th deWit-Freedman-Cristoffel symbol is

Γ
(s)
(n)(z; b, a) ≡ Γ

(s)
(n)ρ1...ρn,µ1...µℓ

bρ1 ...bρnaµ1 ...aµℓ = [(b∇)−
1

n
(a∇)Ba]Γ

(s)
(n−1)(z; b, a), (4.19)

or in another way

Γ
(s)
(n)(z; b, a) = (

s
∏

k=1

[(b∇)−
1

k
(a∇)Ba])h

(s)(z; a). (4.20)
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Using the following commutation relations

[Ba, (a∇)] = (b∇), (4.21)

[Bk
a , (a∇)] = kBk−1

a (b∇), (4.22)

[Ba, (a∇)
k] = k(b∇)(a∇)k−1, (4.23)

✷b(b∇)
i = i(i− 1)(b∇)i−2

✷, (4.24)

∂b
µ(b∇)

i∂µ
b B

j
a = ij(b∇)i−1Bj−1

a (∇∂a), (4.25)

✷bB
j
a = j(j − 1)Bj−2

a ✷a, (4.26)

and mathematical induction we can prove that

Γ
(s)
(n)(z; b, a) =

n
∑

k=0

(−1)k

k!
(b∇)n−k(a∇)kBk

ah
(s)(z; a). (4.27)

The gauge variation of n-th Cristoffel symbol is

δΓ
(s)
(n)(z; b, a) =

(−1)n

n!
(a∇)n+1Bn

a ǫ
(s−1)(z; a), (4.28)

putting here n = s we obtain gauge invariance for the curvature

δΓ
(s)
(s)(z; b, a) = 0. (4.29)

Tracelessness of the gauge parameter (4.6) implies that b-traces of all Cristoffel symbols
are gauge invariant

✷bδΓ
(s)
(n)(z; b, a) =

(−1)n

(n− 2)!
(a∇)n+1Bn−2

a ✷aǫ
(s−1)(z; a) = 0. (4.30)

Thus for the second order gauge invariant field equation we can use the trace of the second
Cristoffel symbol, the so called Fronsdal tensor:

F (s)(z; a) =
1

2
✷bΓ

(s)
(2)(z; b, a)

= ✷h(s)(z; a)− (a∇)(∇∂a)h
(s)(z; a) +

1

2
(a∇)2✷ah

(s)(z; a). (4.31)

Using equation (4.27) for Cristoffel symbols and after long calculations we obtain the
following expression

✷bΓ
(s)
(n)(z; b, a) =

n−2
∑

k=0

(−1)k

k!
(n− k)(n− k − 1)(b∇)n−k−2(a∇)kBk

aF
(s)(z; a). (4.32)

We have expressed the b-trace of any Γ
(s)
(n) through the Fronsdal tensor or the b-trace of the

second Cristoffel symbol, but this is not the whole story. Using mathematical induction
and (4.21)-(4.26) again we can show that

n−2
∑

k=0

(−1)k

k!
(n− k)(n− k − 1)(b∇)n−k−2(a∇)kBk

aF
(s)(z; a)

= n(n− 1)(

n
∏

k=3

[(b∇)−
1

k
(a∇)Ba])F

(s)(z; a). (4.33)

11



In particular for the trace of the curvature we can write

✷bΓ
(s)(z; b, a) = s(s− 1)U(a, b, 3, s)F (s)(z; a), (4.34)

where we introduced an operator mapping the Fronsdal tensor on the trace of the curva-
ture

U(a, b, 3, s) =

s
∏

k=3

[(b∇)−
1

k
(a∇)Ba]. (4.35)

Now let us consider this curvature in more detail. First we have the symmetry under
exchange of a and b

Γ(s)(z; a, b) = Γ(s)(z; b, a). (4.36)

Therefore the operation ”a-trace” can be defined by (4.34) with exchange of a and b at
the end. The mixed trace of the curvature can be expressed through the a or b traces
using ”primary Bianchi identities” (4.18)

(∂a∂b)Γ
(s)(z; b, a) = −

1

2
Ba✷bΓ

(s)(z; b, a) = −
1

2
Ab✷aΓ

(s)(z; b, a). (4.37)

The next interesting properties of the higher spin curvature and corresponding Ricci
tensors are so called generalized secondary or differential Bianchi identities. We can
formulate these identities in our notation in the following compressed form ([. . . ] denotes
antisymmetrization )

∂

∂a[µ
∂

∂bν
∇λ]Γ

(s)(z; a, b) = 0. (4.38)

This relation can be checked directly from representation (4.27). Then contracting with
aµ and bν we get a symmetrized form of (4.38)

s∇µΓ
(s)(z; a, b) = (a∇)∂a

µΓ
(s)(z; a, b) + (b∇)∂b

µΓ
(s)(z; a, b). (4.39)

Now we can contract (4.39) with a ∂µ
b and using (4.37) obtain a connection between the

divergence and the trace of the curvature

(s− 1)(∇∂b)Γ
(s)(z; a, b) = [(b∇)−

1

2
(a∇)Ba]✷bΓ

(s)(z; a, b). (4.40)

These two identities with a similar identity for the Fronsdal tensor

(∇∂a)F
(s)(z; a) =

1

2
(a∇)✷aF

(s)(z; a), (4.41)

play an important role for the construction of the interaction Lagrangian. To complete
the free field information we present here Fronsdal’s Lagrangian in terms of our quantities:

L0(h
(s)(a)) =

1

2
∇µh

(s)(a) ∗a ∇
µh(s)(a)−

1

2
(∇∂a)h

(s)(a) ∗a (∇∂a)h
(s)(a)

+
1

2
(∇∂a)h

(s)(a) ∗a (a∇)✷ah
(s)(a)−

1

4
∇µ✷ah

(s)(a) ∗a ∇
µ
✷ah

(s)(a)

−
1

8
(∇∂a)✷ah

(s)(a) ∗a (∇∂a)✷ah
(s)(a). (4.42)

The same Lagrangian can be written in the following compact form

L0(h
(s)(a)) = −

1

2
h(s)(a) ∗a F

(s)(a) +
1

8
✷ah

(s)(a) ∗a ✷aF
(s)(a). (4.43)
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To obtain the equation of motion we vary (4.42) or (4.43) and obtain

δL0(h
(s)(a)) = −(F (s)(a)−

a2

4
✷aF

(s)(a)) ∗a δh
(s)(a). (4.44)

Zero order gauge invariance can be checked easily by substitution of (4.5) into this varia-
tion and use of the duality relation (4.17) and identity (4.41) taking into account trace-
lessness of the gauge parameter (4.6). Now we turn to the generalization of the Noether
procedure of the 2-2-4 case to the general s-s-2s interaction construction. So we must
propose a first order variation of the spin s field with respect to a spin 2s gauge transfor-
mation. Remembering that Fronsdal’s higher spin gauge potential is double traceless, we
must make sure that the same holds for the variation. Expanding the general variation
in powers of a2

δh(s)(a) = δh
(s)
(1)(a) + a2δh(s−2)(a) + (a2)2δh(s−4)(a) + . . . , (4.45)

we see that the double tracelessness condition ✷
2
aδh

(s)(a) = 0 expresses the third and

higher terms of the expansion (4.45) through the first two free parameters δh
(s)
(1)(a) and

δh(s−2)(a)§. From the other hand Fronsdal’s tensor is double traceless by definition and
therefore all these O(a4) terms are unimportant because they do not contribute to (4.44).
This leaves us freedom in the choice of δh(s−2)(a). Substituting (4.45) in (4.44) we discover
that the following choice of δh(s−2)(a)

δh(s−2)(a) =
1

2(D + 2s− 2)
✷aδh

(s)
(1)(a), (4.46)

reduces our variation (4.44) to

δ(1)L0(h
(s)(a)) = −F (s)(a) ∗a δh

(s)
(1)(a). (4.47)

Then we propose the following spin 2s transformation of the spin s potential

δh
(s)
(1)(a) = 2sŨ(b, a, 2, s)ǫ2s−1(z; b) ∗b Γ

(s)(z; b, a), (4.48)

where

Ũ(b, a, 2, s) =

s
∏

k=2

[

(∇∂b)−
1

k
Ab(∇∂a)

]

, (4.49)

is operator dual to

[(b∇)−
1

2
(a∇)Ba]U(b, a, 3, s) =

s
∏

k=2

[(b∇)−
1

k
(a∇)Ba], (4.50)

§For completeness we present here the solution for δh(s−4)(a) following from the double tracelessness
condition

δh(s−4)(a) = −
1

8α1α2

[

✷
2
aδh

(s)
(1)(a) + 4α1✷aδh

(s−2)(a)
]

,

αk = D + 2s− (4 + 2k), k ∈ {1, 2}.
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with respect to the ∗a,b contraction product. Taking into account (4.34) and Bianchi
identities (4.40) we get

δ(1)L0(h
(s)(a)) = 2ǫ2s−1(z; b) ∗b Γ

(s)(z; b, a) ∗a s[(b∇)−
1

2
(a∇)Ba]U(b, a, 3, s)F

(s)(z; a)

= 2ǫ2s−1(z; b) ∗b Γ
(s)(z; b, a) ∗a

1

s− 1
[(b∇)−

1

2
(a∇)Ba]✷bΓ

(s)(z; b, a)

= 2ǫ2s−1(z; b) ∗b Γ
(s)(z; b, a) ∗a (∇∂b)Γ

(s)(z; b, a)

= −(b∇)ǫ2s−1(b) ∗b Γ
(s)(b, a) ∗a Γ

(s)(b, a)− 2ǫ2s−1(b) ∗b ∇µΓ
(s)(b, a) ∗a ∂

µ
b Γ

(s)(b, a). (4.51)

Then using a secondary Bianchi identity (4.39) and a primary one (4.18) one can show
that

−2ǫ2s−1(b) ∗b ∇µΓ
(s)(b, a) ∗a ∂

µ
b Γ

(s)(b, a)

=
1

s+ 1
(∇∂b)ǫ

2s−1(b) ∗b ∂
b
µΓ

(s)(b, a) ∗a ∂
µ
b Γ

(s)(b, a). (4.52)

Putting all together we see that the integrated first order interaction Lagrangian

L1(h
(s)(a), h(2s)(b)) =

1

2s
h(2s)(z; b) ∗b Ψ

(2s)
(Γ) (z; b), (4.53)

Ψ
(2s)
(Γ) (z; b) = Γ(s)(b, a) ∗a Γ

(s)(b, a)−
a2

2(s+ 1)
∂b
µΓ

(s)(b, a) ∗a ∂
µ
b Γ

(s)(b, a). (4.54)

supplemented with transformation (4.48) for h(s)(a) and the standard zero order for
h(2s)(a)

δ0h
(2s)(z; b) = 2s(b∇)ǫ(2s−1)(z; b), (4.55)

δ0✷bh
(2s)(z; b) = 4s(∇∂b)ǫ

(2s−1)(z; b), (4.56)

completely solves Noether’s equation

δ(1)L0(h
(s)(a)) + δ0L1(h

(s)(a), h(2s)(b)) = 0. (4.57)

Note that here just as in the 2-2-4 case we did not obtain an interaction with lower
spins because all derivatives included in the ansatz were used for the lifting to the second
curvature.

5 Cubic self-interaction of even higher spin fields

Though it is desirable to use curvatures and Christoffel symbols to express also local
manifestly covariant self-interactions of higher spin fields, such ansatz has not yet been
successful. Of course cubic self-interactions can be built from three curvatures by tensorial
contractions, but this ansatz is in this context considered to be trivial because of the great
number of derivatives (3s for spin s) it contains. A minimally improved ansatz with 3s-2
derivatives has been shown to exist for all s [22] by deriving it by a QFT calculation.
Extending known examples for spin 2 and 3 [3], we would like to construct the interaction
with s derivatives for spin s. To construct such interaction we have developed an algorithm
displayed in the remainder of this article.
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As in the classical work [3] the presumed interaction Lagrangian L1 gives by variation
the current

J(z; a) =
δ

δh(z; a)
L1, (5.1)

and this current is as a consequence of gauge invariance required to be conserved ”on-shell”
modulo a2

(∇ · ∂a)J(z; a) = j0(z; a) + a2j1(z; a) +O((a2)2), (5.2)

j0(z; a) = Ŷ(a, b;∇) ∗b
ˆF (s)(z; b) +R(z; a), (5.3)

and ˆF (s) is the first variation of the Lagrangian L0

ˆF (s)(z; b) = F (s)(z; b)−
1

4
b2F (s)(z; b), (5.4)

where F (s)(z; b) is Fronsdal’s operator (4.31). Thus the remainder R(z; a) of the coset
decomposition of j0(z; a) is postulated to vanish.

There are two provisos to be made. We will in this analysis use deDonder gauge
throughout. Use of free gauge did not allow us to produce a recursive algorithm. Moreover
we will make the coset decomposition with respect to Fronsdal’s F (s) indeed, it is later
possible to correct for this technical defect with not much effort. Let us now describe the
basic concepts of the algorithm.

We consider one specific term in the large number of cubic interactions of supposedly
general form

L1,specific = A

∫

dz1dz2dz3δ(z1 − z2)δ(z1 − z3)(∂a∂b)
Q12(∂a∂c)

Q13(∂b∂c)
Q23

✷
δ1
a ✷

δ2
b ✷

δ3
c (∇1∇2)

ω12(∇1∇3)
ω13(∇2∇3)

ω23

(∂a∇2)
α2(∂a∇3)

α3(∂b∇2)
β2(∂b∇3)

β3(∂c∇2)
γ2(∂c∇3)

β3

h(z1; a)h(z2; b)h(z3; c). (5.5)

All space derivatives can be applied to the second and third field factors if ∇1 is replaced
by −∇2 −∇3. The factor A is a kind of a coupling constant, it can be characterized as a
function of all exponents

A = A(α2, α3; β2, β3; γ2, γ3 | δ1, δ2, δ3 | ω12, ω13, ω23). (5.6)

The domain on which these functions are defined is the first topic to be studied.
First we have

δ1,2,3 ∈ {0, 1}, (5.7)

since the double trace of the fields h vanishes. Moreover we use the shorthands

α = α2 + α3; β = β2 + β3, γ = γ2 + γ3; (5.8)

ω = ω12 + ω13 + ω23; (5.9)

and denote the fixed degree in the space derivatives by ∆. All exponents are obviously
nonnegative.

The balancing equations for these exponents are

∆ = α + β + γ + 2ω, (5.10)

s = Q12 +Q13 + α + 2δ1, (5.11)

s = Q12 +Q23 + β + 2δ2, (5.12)

s = Q13 +Q23 + γ + 2δ3, (5.13)
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Introducing once again shorthands by

σ1 = s− 2δ1 − α ≥ 0, (5.14)

σ2 = s− 2δ2 − β ≥ 0, (5.15)

σ3 = s− 2δ3 − γ ≥ 0, (5.16)

we can express the exponents Qij by

Q12 = 1/2(σ1 + σ2 − σ3), (5.17)

Q13 = 1/2(σ1 + σ3 − σ2), (5.18)

Q23 = 1/2(σ2 + σ3 − σ1). (5.19)

These Qij must be positive which entails triangular inequalities for the σ1,2,3. Inserting
then (5.14) - (5.16) into (5.17) - (5.19) and identifying

∆ = s, (5.20)

we obtain the explicit formulae

Q12 = ω + γ − δ12,3, (5.21)

Q13 = ω + β − δ13,2, (5.22)

Q23 = ω + α− δ23,1, (5.23)

where e.g.
δ12,3 = δ1 + δ2 − δ3, (5.24)

which takes values between −1 and +2. We obtain

α ≥ max{0, δ23,1 − ω}, (5.25)

β ≥ max{0, δ13,2 − ω}, label5.26 (5.26)

γ ≥ max{0, δ12,3 − ω}. (5.27)

The identification (5.20) is tentative and the proof that a cubic invariant form does exist
under this condition is one issue of this investigation.

When we take the variation of L1,specific with respect to the field h we get three terms.
The first is

X(α2, α3; β2, β3; γ2, γ3 | δ1, δ2, δ3 | ω12, ω13, ω23) = (a2)δ1✷δ2
b ✷

δ3
c (a∂b)

Q12(a∂c)
Q13

×(∂b∂c)
Q23(a∂2)

α2(a∂3)
α3(∂b∂2)

β2(∂b∂3)
β3(∂c∂2)

γ2(∂c∂3)
γ3(−✷2 − ∂2 · ∂3)

ω12

×(−✷3 − ∂2 · ∂3)
ω13(∂2∂3)

ω23h(z2; b)h(z3; c) |z2=z3=z . (5.28)

This being the variation with respect to the first factor h, we take next the variation with
respect to the second factor renaming the internal (”dull”) variables a, b, c and z1, z2, z3
and performing the necessary partial integrations to get rid of the space derivatives on
the field which is varied

c→ b→ a→ c; 3→ 2→ 1→ 3, (5.29)

but maintain all exponents α, β, γ, δ, ω. Finally we do the same with the third factor in the
Lagrangian applying the inverse (equal the square) of the permutation (5.29). Together
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we obtain the sum of three expressions X(..; ..; .. | ... | ...)

X(α2, α3; β2, β3; γ2, γ3 | δ1, δ2, δ3 | ω12, ω13, ω23)

+(−1)α2+β2+γ2
∑

kα,kβ ,kγ

(

α2

kα

)(

β2

kβ

)(

γ2
kγ

)

X(β − kβ, kβ; γ − kγ, kγ;α− kα, kα

| δ3, δ1, δ2 | ω23, ω12, ω13) + (−1)α3+β3+γ3
∑

kα,kβ ,kγ

(

α3

kα

)(

β3

kβ

)(

γ3
kγ

)

X(kγ, γ − kγ; kα, α− kα; kβ, β − kβ | δ2, δ3, δ1 | ω13, ω23, ω12). (5.30)

If we return to the current we can expand it as

J(z; a) =
∑

domain(A)

A(α2, α3; β2, β3; γ2, γ3 | δ1, δ2, δ3 | ω12, ω13, ω23)

X(α2, α3; β2, β3; γ2, γ3 | δ1, δ2, δ3 | ω12, ω13, ω23), (5.31)

and the question arises under which condition this current can be integrated over h to
obtain a Lagrangian.

The answer to this question is simple: the integrability conditions are dual to the
relation (5.30) between the basis elements. In explicit terms the integrability necessitates
that amplitudes form triplets and the relations valid inside the triplets are

A(β −mβ , mβ; γ −mγ , mγ ;α−mα, mα | δ3, δ1, δ2 | ω23, ω12, ω13)

=
∑

nα,nβ ,nγ

(−1)nα+nβ+nγ

(

nα

mα

)(

nβ

mβ

)(

nγ

mγ

)

A(nα, α− nα;nβ , β − nβ;nγ, γ − nγ | δ1, δ2, δ3 | ω12, ω13, ω23). (5.32)

A second relation connects two A with the inverse permutation of arguments.
The triangular matrix used in (5.32)

Pm,n = (−1)n
(

n

m

)

, 0 ≤ m ≤ n ≤ N, (5.33)

has the property
P 2 = 1, (5.34)

and therefore typically represents a transposition (or reflection). To the integrability
constraints belongs also an almost trivial exchange symmetry between the two fields
contained in the current (”2, 3-symmetry”). It has the form

A(α2, α3; β2, β3; γ2, γ3 | δ1, δ2, δ3 | ω1, ω2, ω3)

= A(α3, α2; γ3, γ2; β3, β2 | δ1, δ3, δ2 | ω1, ω3, ω2). (5.35)

Using the basis (5.28) on shell, the product over the derivatives (∇i∇j)
ωij degenerates

into (∇2∇3)
ω (5.13). So in the recursion equations only this exponent ω appears. If we

reconstruct the interaction Lagrangian at the end we face the ambiguity under

(∇2∇3)
ω →

∏

ij

(∇i∇j)
ωij . (5.36)

However the Laplacians appearing are irrelevant since they can be (and should be) re-
moved by field redefinitions.
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Requiring R(z; a) to vanish on shell we use the basis (5.28) with the simplification
{ωij} → ω, this we will address as the ”canonical” basis. Then quartets of labels (α, β, γ |
ω) with (5.10)

α + β + γ + 2ω = ∆+ 1, (5.37)

characterize each recursion equation. These recursion equations are

α2A(α2 + 1, α3; β2, β3; γ2, γ3 | δ1, δ2, δ3 | ω − 1)

+α3A(α2, α3 + 1; β2, β3; γ2, γ3 | δ1, δ2, δ3 | ω − 1)

+Q12[A(α2, α3; β2 − 1, β3; γ2, γ3 | δ1, δ2, δ3 | ω)

+A(α2, α3; β2, β3 − 1; γ2, γ3 | δ1, δ2, δ3 | ω)]

+Q13[A(α2, α3; β2, β3; γ2 − 1, γ3 | δ1, δ2, δ3 | ω)

+A(α2, α3; β2, β3; γ2, γ3 − 1 | δ1, δ2, δ3 | ω)]

+2(δ1 + 1)[A(α2 − 1, α3; β2, β3; γ2, γ3 | δ1 + 1, δ2δ3 | ω)

+A(α2, α3 − 1; β2, β3; γ2, γ3 | δ1 + 1, δ2, δ3 | ω)] = 0. (5.38)

It is obvious that the variables δ2, δ3 are fixed in all entries of this equation. Let us
assume them to be fixed now. Then the function A with prescribed arguments α, β, γ, δ1, ω
is regarded as an element of a vector space B(α, β, γ | δ1, ω). Since α2, β2, γ2 vary and
enumerate the components of the vectors of this space, it has dimension (α+1)(β+1)(γ+
1). The recursion defines linear relations between the vectors of a quartet of spaces

B(α + 1, β, γ | δ1, ω − 1), B(α, β − 1, γ | δ1, ω),

B(α, β, γ − 1 | δ1, ω), B(α− 1, β, γ | δ1 + 1, ω). (5.39)

The domain D[δ2, δ3] is defined to consist of those points (base points) on which a vector
space (fibre) B(α, β, γ | δ1, ω) exists. Two base points can be connected by a line if both
appear in the same recursion equation. This decomposes the domain D[δ2, δ3] into several
connected graphs. Actually some base points may not appear in any recursion equation.
To each connected graph we have a linear homogeneous equation system for the vectors
of its spaces. Therefore for each graph there is a linear space of solutions. Using the
canonical basis the direct sum of all these can be projected on four subspaces with fixed
n

δ1 + δ2 + δ3 = n ∈ {0, 1, 2, 3}, (5.40)

and on each of these four spaces the integrability conditions act again as a linear system
of equations. The vector space of these solutions defines the interaction Lagrangian.

Finally the first order correction δ
(s)
(1) to the gauge transformation is derived from

Noether’s equation

[δ
(s)
(1)(z; a)− ǫ(z; b) ∗b Ŷ(a, b;−

←−
∇)] ∗a F̂(z; a) = 0, (5.41)

where Ŷ is taken from (5.2).

6 Conclusions

We presented interaction Lagrangians for triplets of higher spin fields, a pair of which has
equal spin s1 whereas the third has spin s2 > s1. Besides the Lagrangians the next-to-
leading order of the gauge transformations is given. The fields of smaller spins appear
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combined into currents of the Bell-Robinson form [3]. Remarkable is that for one such
spin s2 the interaction implies the existence of a whole ladder of interactions for smaller
spins s2−2n > s1. In the case of three equal spins we presented only the formalism which
can be transcribed into an algorithm. The applications of this algorithm will be presented
in a forthcoming article [20].
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