
Scuola Normale Superiore
Classe di Scienze Matematiche, Fisiche e Naturali

A Distributional Approach to Fractional
Sobolev Spaces and Fractional Variation

Tesi di Perfezionamento in Matematica

Candidato:
Giorgio Stefani

Relatore:
Prof. Luigi Ambrosio

Anno Accademico 2019 – 2020
Pisa, 13 Febbraio 2020





Scuola Normale Superiore
Classe di Scienze Matematiche, Fisiche e Naturali

A Distributional Approach to Fractional
Sobolev Spaces and Fractional Variation

Tesi di Perfezionamento in Matematica

Candidato:
Giorgio Stefani
matricola n. 20173

. . . . . . . . . . . . . . . . . . . . . .

Relatore:
Prof. Luigi Ambrosio

. . . . . . . . . . . . . . . . . . . . . .

Anno Accademico 2019 – 2020
Pisa, 13 Febbraio 2020





Abstract. In this thesis, we present the distributional ap-
proach to fractional Sobolev spaces and fractional variation developed
in [20,22,23]. The new space BV α(Rn) of functions with bounded
fractional variation in Rn of order α ∈ (0, 1) is distributionally defined
by exploiting suitable notions of fractional gradient and fractional di-
vergence already existing in the literature. In analogy with the clas-
sical BV theory, we give a new notion of set E of (locally) finite frac-
tional Caccioppoli α-perimeter and we define its fractional reduced
boundary FαE. We are able to show that Wα,1(Rn) ⊂ BV α(Rn)
continuously and, similarly, that sets with (locally) finite standard
fractional α-perimeter have (locally) finite fractional Caccioppoli α-
perimeter, so that our theory provides a natural extension of the
known fractional framework. We first extend De Giorgi’s Blow-up
Theorem to sets of locally finite fractional Caccioppoli α-perimeter,
proving existence of blow-ups and giving a first characterisation of
these (possibly non-unique) limit sets. We then prove that the frac-
tional α-variation converges to the standard De Giorgi’s variation
both pointwise and in the Γ-limit sense as α → 1− and, similarly,
that the fractional β-variation converges to the fractional α-variation
both pointwise and in the Γ-limit sense as β → α− for any given
α ∈ (0, 1). Finally, by exploiting some new interpolation inequali-
ties on the fractional operators involved, we prove that the fractional
α-gradient converges to the Riesz transform as α → 0+ in Lp for
p ∈ (1,+∞) and in the Hardy space and that the α-rescaled fractional
α-variation converges to the integral mean of the function as α→ 0+.





“Quemadmodum” — inquit — “magnus luctator est, non qui omnes
numeros nexusque perdidicit (quorum usus sub adversario rarus est),
sed qui in uno se aut altero bene ac diligenter exercuit et eorum
occasiones intentus expectat, neque enim refert quam multa sciat, si
scit quantum victoriae satis est; sic in hoc studio multa delectant,
pauca vincunt.”

“The great fighter” — he said — “is not he who thoroughly knows all
the moves and all the catches (which are rarely used in actual fights),
but he who has well and diligently trained in one or two of them and
has carefully examined their possibilities, since it is not important he
knows a lot, if he knows what is needed for the victory. Similarly, in
this study many notions are interesting, but only few really matter.”

Lucius Annaeus Seneca, De Beneficiis, Liber VII, 1–4





To my mother Sonia,

the greatest fighter I have ever met.
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Introduction

The definition of variation. Beyond its initial motivation related to the con-
nection with Dirichlet’s test for the convergence of Fourier series on R pointed out by
C. Jordan [53], the modern definition of function of bounded variation dates back to
E. De Giorgi [30] and G. Fichera [40] (see [6, Section 3.12] and the references therein
for a historical account).

Very closely to Fichera’s original idea [40], given an open set Ω ⊂ Rn, the variation
of a function f ∈ L1

loc(Ω) in an open set A ⊂ Ω is given by

(I.1) |Df |(A) =
{∫

Ω
f divϕdx : ϕ ∈ C∞c (Ω;Rn), suppϕ ⊂ A, ‖ϕ‖L∞(Ω;Rn) ≤ 1

}
.

If |Df |(A) < +∞ for any open set A b Ω, then f has locally finite variation in Ω and
we write f ∈ BVloc(Ω). The space of functions of bounded variation on Ω,

(I.2) BV (Ω) =
{
f ∈ L1(Ω) : |Df |(Ω) < +∞

}
,

is tightly connected with Schwartz’s Theory of Distributions since, thanks to Riesz’s
Representation Theorem, a function f ∈ L1(Ω) belongs to BV (Ω) if and only if its
distributional derivative is representable by a finite n-vector valued Radon measure
on Ω, Df ∈M (Ω;Rn), i.e.,

(I.3)
∫

Ω
f divϕdx = −

∫
Ω
ϕ · dDf for all ϕ ∈ C∞c (Ω;Rn).

The equality in (I.3) naturally generalises the integration-by-part formula available for
functions in C1

c (Ω) and immediately shows that the Sobolev space W 1,1(Ω) is continu-
ously embedded in BV (Ω), precisely

(I.4) f ∈ W 1,1(Ω) ⇐⇒ f ∈ BV (Ω) with Df = ∇f L n.

Interestingly, the original definition by E. De Giorgi in [30] does not follow the
above distributional approach but, instead, relies on the heat flow. Letting

pt(x) = 1
(4πt)n/2 e

−|x|2
4t for all t > 0, x ∈ Rn,

be the heat kernel, a function f ∈ L1(Rn) belongs to BV (Rn) if and only if

(I.5) I(f) = lim
t→0+

∫
Rn
|∇Ptf | dx < +∞,

where Ptf = f ∗ pt. In this case, it actually holds that I(f) = |Df |(Rn). Note that the
limit in (I.5) always exists since, thanks to the semigroup property of the heat flow,

(I.6) |∇Ps+tf | = |∇PsPtf | = |Ps∇Ptf | ≤ Ps|∇Ptf | for all s, t > 0,
xiii
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so that the function
(0,+∞) 3 t 7→

∫
Rn
|∇Ptf | dx

is non-increasing.

A metric-measure approach to variation and RCD(K,∞) spaces. An im-
portant feature of BV functions is that they can be approximated (in energy) with
smooth functions. In fact, as proved in [12], a function f ∈ L1(Ω) belongs to BV (Ω)
if and only if there exists a sequence (fk)k∈N ⊂ C∞(Ω) such that fk → f in L1(Ω) as
k → +∞ and

(I.7) L = lim
k→+∞

∫
Ω
|∇fk| dx < +∞.

In this case, the least constant L in (I.7) is precisely |Df |(Ω).
As observed by M. Miranda Jr. [66], the approximation in (I.7) makes sense also

in a metric measure space (X, d,m) once the concept of smooth function is replaced
by the one of Lipschitz function. Precisely, given f ∈ L1(X,m), one can consider the
quantity

(I.8) |Df |(Ω) = inf
{

lim inf
k→+∞

∫
Ω
|Dfk| dx : fk ∈ Liploc(Ω), fk → f in L1(Ω,m)

}
for any open set Ω ⊂ X, where

|Df |(x) = lim sup
y→x

|f(y)− f(x)|
d(x, y) , x ∈ X,

is the slope of f ∈ Lip(X) and plays the same role of the modulus of the gradient
in Rn. Thus f ∈ BV (X, d,m) if and only if |Df |(X) < +∞ and, in this case, the
map Ω 7→ |Df |(Ω) is the restriction to open sets of a finite Borel measure, the total
variation measure |Df | ∈M (X).

With this general metric-measure setting in mind, a natural question is whether
the variation defined in (I.8) can be recovered also via De Giorgi’s heat-flow approach.

Similarly to (I.8) and accordingly to the seminal paper [21] (see [7–9] for a general
introduction), the Dirichlet–Cheeger energy of a function f ∈ L2(X,m) is given by

Ch(f) = inf
{

lim inf
k→+∞

∫
X
|Dfk|2 dm : fk ∈ Lipb(X), fk → f in L2(X,m)

}
.

Under some very general assumptions on (X, d,m), the functional Ch : L2(X,m) →
[0,+∞] is densely defined, lower semicontinuous and convex, so that its gradient flow
(0,+∞) 3 t 7→ ft = Ptf starting from an initial datum f ∈ L2(X,m) in the Hilbertian
space L2(X,m) provides a natural definition of the heat flow in the metric-measure
setting according to the general approach developed in [18]. Note that, at this level of
generality, the finiteness domain W 1,2(X, d,m) of Ch, endowed with the natural norm√
‖ · ‖2

L2(X,m) + Ch(·), is a Banach space that may not be a Hilbert space and the heat
flow (Pt)t>0 may not be linear, see [9, Remark 4.6].

In order to provide a consistent extension of (I.5) in a non-smooth space, one would
like to have a suitable replacement of (I.6) in the metric-measure setting. If the ambient
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space X is a Riemannian manifold (M, g) with d = dg and m = volg, and if the Ricci
tensor satisfies Ricg ≥ K for some K ∈ R, then the following Bakry–Émery inequality

(I.9) |∇gPtf | ≤ e−tK Pt|∇gf |

holds for all t > 0 and f ∈ C∞c (M), see [106, Theorem 1.3] (note that K = 0 in
the case M = Rn). In a general non-smooth metric-measure space (X, d,m), one
thus would like to have a suitable replacement of the Bakry–Émery inequality (I.9) for
some K ∈ R. This requirement (equivalently) defines the so-called CD(K,∞) spaces
introduced by J. Lott and C. Villani [57] and K. T. Sturm [100,101]. However, at this
level of generality, the heat flow (Pt)t>0 may still not be a linear functional, since the
CD condition embeds Finsler manifolds, see [70]. In order to rule out this possibility,
L. Ambrosio, N. Gigli and S. Savaré [10] introduced the notion of RCD(K,∞) spaces
adding the linearity of the heat flow to the CD(K,∞) condition.

The RCD condition provides a pretty wide metric-measure setting in which the
variation defined in (I.8) can be equivalently recovered via a suitable generalisation
of De Giorgi’s heat-flow approach. Indeed, if (X, d,m) is a RCD(K,∞) space, and
if f ∈ L1(X,m) ∩ L∞(X,m) for simplicity (the general case f ∈ L1(X,m) can be
recovered by a suitable truncation argument), then by the Bakry–Émery inequality it
holds Ptf ∈ L1(X,m) ∩ Lipb(X). One can thus consider the quantity

I(f) = lim sup
t→0+

∫
X
|DPtf | dm

and prove that f ∈ BV (X, d,m) if and only if I(f) < +∞ with I(f) = |Df |(X).

The variation in Carnot groups. Although RCD(K,∞) spaces are a quite gen-
eral setting, there exists a large variety of non-RCD(K,∞) spaces, the so-called Carnot
groups, that provide a natural framework in which the distributional definition of vari-
ation (I.1) can be suitably generalised and does coincide with the one given by De
Giorgi’s heat-flow approach (I.5).

A Carnot group G is a connected, simply connected and nilpotent Lie group whose
Lie algebra g of left-invariant vector fields has dimension n and admits a stratification
of step κ,

g = V1 ⊕ V2 ⊕ · · · ⊕ Vκ
with

Vi = [V1, Vi−1] for i = 1, . . . , κ, [V1, Vκ] = {0}.
Given an adapted basis of g, i.e. a basis X1, . . . , Xn such that

Xhi−1+1, . . . , Xhi is a basis of Vi, i = 1, . . . , κ,

where mi = dim(Vi) and hi = m1 + · · · + mi for i = 1, . . . , κ, with h0 = 0 and
hκ = n, the group G can be identified with the manifold Rn endowed with the group
law determined by the Campbell–Hausdorff formula via exponential coordinates (in
particular, the identity e ∈ G corresponds to 0 ∈ Rn and x−1 = −x for x ∈ G). In
addition, the Haar measure of the group G coincides with the n-dimensional Lebesgue
measure L n.
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The horizontal tangent bundle of the group G is the left-invariant sub-bundle HG
of the tangent bundle TG such that HeG = {X(0) : X ∈ V1}. Letting

∇Gf =
m1∑
j=1

(Xjf)Xj and divGϕ =
m1∑
j=1

Xjϕi

be the horizontal gradient of a function f ∈ C1(G) and the horizontal divergence of a
vector field ϕ ∈ C1(G;Rm1) respectively, and imitating (I.1), the horizontal variation
of a function f ∈ L1

loc(Ω) in a open set Ω ⊂ G is given by
(I.10)
|DGf |(Ω) =

{∫
G
f divGϕdx : ϕ ∈ C∞c (G;Rm), suppϕ ⊂ Ω, ‖ϕ‖L∞(G;Rm1 ) ≤ 1

}
.

The space
BVG(Ω) =

{
f ∈ L1(Ω) : |DGf |(Ω) < +∞

}
of functions with bounded horizontal variation in Ω thus generalises the space in (I.2).

Once the horizontal tangent bundle HG is endowed with a left-invariant scalar pro-
duct 〈·, ·〉G that makesX1, . . . , Xm1 an orthonormal basis, thanks to Chow–Rashevskii’s
Theorem the group G can be given the Carnot–Carathéodory distance

dcc(x, y) = inf
{∫ 1

0

√
〈γ̇(t), γ̇(t)〉G dt : γ is horizontal, γ(0) = x, γ(1) = y

}
, x, y ∈ G.

Here a horizontal curve γ : [0, 1] → G is a Lipschitz curve such that γ̇(t) ∈ Hγ(t)G for
a.e. t ∈ [0, 1].

Although the resulting metric-measure space (G, dcc,L n) is not a CD space any
time G is non-commutative, see [11, Proposition 3.6], it shares many properties with
RCD spaces. In fact, the horizontal heat flow (PG

t )t>0 naturally induced by the Carnot–
Carathéodory metric structure is linear and, as proved in my paper in collaboration
with L. Ambrosio [11], it does coincide with the gradient flow of the relative entropy
functional in theWasserstein space of probability measures onG, see [11, Theorem 2.4].
Moreover, if we define

IG(f) = lim sup
t→0+

∫
G
|∇GPG

t f | dx

for a function f ∈ L1(G), then f ∈ BVG(G) if and only if IG(f) < +∞, with
|DGf |(G) ≤ IG(f) ≤ (1 + cG)|DGf |(G)

for some constant cG ≥ 0 depending only on the group structure of G, see [17, Theo-
rem 2.11]. Note that, contrarily to the RCD setting, it is not known whether cG = 0.

From the variation to isoperimetric and minimal cluster problems. De
Giorgi’s heat-flow definition (I.5) of the variation is interesting also because it provides
a natural link between the properties of the heat kernel and the isoperimetric problem
in Rn.

Given a set E ⊂ Rn of finite Lebesgue measure, De Giorgi’s definition (I.5) suggests
to study the properties of the function PtχE whenever t > 0. As observed in [54,81],
if B ⊂ Rn is a ball, then the inequality

‖PtχA‖L2(Rn) ≤ ‖PtχB‖L2(Rn),
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for all t > 0 and all measurable sets A ⊂ Rn such that |A| = |B|, is equivalent to the
isoperimetric inequality
(I.11) P (B) ≤ P (A),
where
(I.12) P (E) = |DχE|(Rn)
denotes the Caccioppoli perimeter of a measurable set E ⊂ Rn. Inequality (I.11) was
proved at this level of generality in [32] and constitutes one of the milestones of De
Giorgi’s scientific production after the development of the theory of finite perimeter
sets.

If E has a sufficiently smooth (topological) boundary, then the perimeter functional
in (I.12) coincides with the classical surface measure and, precisely, one can prove that
(I.13) P (E) = H n−1(∂E)
for all sets E with Lipschitz boundary, where H n−1 denotes the (n − 1)-dimensional
Hausdorff measure. One of the finest De Giorgi’s intuitions [31] is that, for a finite
perimeter set E with non-smooth boundary, the right ‘boundary object’ to keep the
validity of (I.13) is a special subset of the topological boundary, the so-called reduced
boundary FE. With this notion in hand, a measurable set E ⊂ Rn has finite Cacciop-
poli perimeter if and only if H n−1(FE) < +∞, in which case we have
(I.14) P (E) = H n−1(FE).

Besides the Euclidean space, the isoperimetric property of (metric) balls has been
proved also in the sphere and in the hyperbolic space endowed with their canonical
Riemannian perimeter and volume, see [83]. However, isoperimetric sets may be not
metric balls in general, as it happens for instance for a family of sub-Riemannian
manifolds known as Grushin spaces [43,68], and the characterisation of their precise
shape is a hard task even for relatively simple spaces, for example see the longstanding
Pansu conjecture on the isoperimetric set in the Heisenberg groups [67,71].

Instead of looking for isoperimetric sets in particular spaces, one can approach
the isoperimetric problem from a wider point of view by considering more general
perimeter and volume functionals involving densities. Precisely, if f : Sn−1 → [0,+∞]
and h : Rn × Sn−1 → [0,+∞] are two L1

loc and lower semi-continuous functions, then
for any given measurable set E ⊂ Rn with locally finite perimeter one can consider

(I.15) |E|f =
∫
E
f(x) dx, Ph(E) =

∫
FE

h(x, νE(x)) dH n−1(x).

Note that the canonical perimeter and volume functionals on a Riemannian manifold
locally behave like (I.15), where f stands for the norm of the Riemannian metric and h
for the norm of its derivative. The isoperimetric problem with densities (f, h),
(I.16) inf{Ph(E) : |E|f = v} for a given volume v > 0,
has gained a lot of attention in recent years, first in the case of the single density (i.e.,
when h(x, ν) = f(x) for all (x, ν) ∈ Rn × Sn−1), and then in the more general case of
the double density (I.16), see [79,80] and the references therein for an account on the
most recent developments.
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If two or more volumes are involved in the minimisation of the perimeter, then the
admissible sets are called bubble clusters. Given m ∈ N, an m-bubble cluster is a family
of m pairwise disjoint sets E = {Ei ⊂ Rn : i = 1, . . . ,m}, such that Ph(Ei) < +∞
and |Ei|f < +∞ for all i = 1, . . . ,m. Given a vector of volumes v = (v1, . . . , vm) ∈
(0,+∞)m, a minimal m-bubble cluster is a solution of the clustering problem

(I.17) inf
{
Ph(E) : E =

m⋃
i=1

Ei ⊂ Rn, |Ei|f = vi ∀i = 1, . . . ,m
}
,

where E = {Ei : i = 1, . . . ,m} is an m-bubble cluster and

Ph(E) = 1
2 Ph

(
m⋃
i=1

Ei

)
+ 1

2

m∑
i=1

Ph(Ei)

is the (weighted) cluster-perimeter functional. In the physical case f = h = 1 and
n = 3, J. Plateau [77] experimentally established that soap films are made of constant
mean curvature smooth surfaces meeting in threes along an edge, the so-called Plateau
border, at an angle of 120 degrees. These Plateau borders, in turn, meet in fours
at a vertex at an angle of arccos(−1

3) ' 109.47 degrees, the tetrahedral angle. Exis-
tence and regularity of minimisers of (I.17) in the Euclidean setting f = h = 1 were
proved by F. J. Almgren Jr. [4]. Plateau’s observations were rigorously confirmed by
J. Taylor [102], while the planar case n = 2 was treated separately by F. Morgan [69].

When m = 2, problem (I.17) is the well-known double bubble problem. In the
Euclidean setting, its solution is the so-called standard double bubble given by three
(n− 1)-dimensional spherical cups intersecting in an (n− 2)-dimensional sphere at an
angle of 120 degrees (for equal volumes, the central cup is in fact a flat disc). The
first proof of this result for n = 2 was given in [41] exploiting the analysis carried out
in [69] (a second proof appeared in [35]). The case n = 3 was established first in [50]
for equal volumes and then in [52] with no restrictions. The case n ≥ 4 was finally
solved in [82].

When m ≥ 3, problem (I.17) is still unsolved even in the Euclidean case f =
h = 1 and presents several interesting open questions, see [58, Part IV]. In the planar
Euclidean setting n = 2, the case m = 3 was solved in full generality in [105], while
the case m = 4 has been completely understood only in the case of four equal volumes,
see [72–74] .

The double bubble problem has been addressed in the n-dimensional sphere, in full
generality for n = 2 in [59] and only with partial results for n ≥ 3 in [24,26], on the
2-dimensional boundary of the cone in R3 in [56], and on the flat 2-torus in [25]. In my
paper in collaboration with V. Franceschi [45], we address the double bubble problem
in a 2-dimensional sub-Riemannian space, the so-called Grushin plane, in the case of
equal volumes and prescribed contact interface.

Very little is known about the clustering problem (I.17) in the case of non-trivial
densities. In my work in collaboration with V. Franceschi and A. Pratelli [44], we
prove that Steiner’s 120-degree property is still valid for minimising planar clusters in
the case h(x, ν) = h(x) for all (x, ν) ∈ Rn × Sn−1, generalising the results of [69].

A new distributional approach to the variation in the fractional setting.
Besides the validity of (I.14), an essential feature of De Giorgi’s reduced boundary is
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the following blow-up property: if x ∈ FE, then

(I.18) χE−x
r
→ χHνE(x) in L1

loc(Rn)

as r → 0, where

HνE(x) = {y ∈ Rn : y · νE(x) ≥ 0}, νE(x) = lim
r→0

DχE(Br(x))
|DχE|(Br(x)) .

The function νE : FE → Sn−1 denotes the so-called measure-theoretic inner unit nor-
mal of E and coincides with the usual inner unit normal of E when the boundary of E
is sufficiently smooth. In other words, the blow-up property in (I.18) shows that, in a
neighbourhood of a point x ∈ FE, the finite perimeter set E is infinitesimally close to

x+HνE(x) = {y ∈ Rn : (y − x) · νE(x) ≥ 0}.

In this sense, the boundary of set of finite perimeter is very similar to a (n − 1)-
dimensional C1-hypersurface in Rn. Actually, starting from the blow-up property (I.18),
De Giorgi [32] proved that the reduced boundary FE is in fact a H n−1-rectifiable set,
meaning that there exist countably many (n−1)-dimensional C1-hypersurfaces (Mk)k∈N
in Rn and compact sets Ck ⊂Mk such that

H n−1

( ⋃
k∈N

Ck

)
4FE

 = 0.

For a modern presentation of these results, see the recent monograph [58].
From this point of view, sets of (locally) finite Caccioppoli perimeter have C1-

type boundary regularity. However this type of regularity does not fit the Hölder-type
boundary regularity of fractal sets naturally arising in Geometric Measure Theory, such
as the Smith–Volterra–Cantor set, the von Koch snowflake, the Sierpinski carpet, the
Mandelbrot set and theMenger sponge among the others, see [37,38,76]. For the study
of fractal objects, Caccioppoli sets and, consequently, functions of bounded variation
are a too restrictive class, and the definition of some sort of ‘space of functions of
fractional regularity’ is in order.

Also because of the study of the wild nature of fractal sets, in the last decades
fractional Sobolev spaces have been given an increasing attention (see [34, Section 1]
for a detailed list of references in many research directions). If p ∈ [1,+∞) and
α ∈ (0, 1), the fractional Sobolev space Wα,p(Rn) is the space

(I.19) Wα,p(Rn) =
{
f ∈ Lp(Rn) : [f ]pWα,p(Rn) =

∫
Rn

∫
Rn

|f(x)− f(y)|p
|x− y|n+pα dx dy < +∞

}

endowed with the norm

‖f‖Wα,p(Rn) = ‖f‖Lp(Rn) + [f ]Wα,p(Rn), f ∈ Wα,p(Rn).

In the geometric regime p = 1, somewhat imitating the classical case (I.12), the Wα,1-
seminorm naturally induces the fractional α-perimeter

(I.20) Pα(E) = [χE]Wα,1(Rn) = 2
∫
Rn\E

∫
E

1
|x− y|n+α dx dy.
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The notion of fractional α-perimeter can be also localised in the following way. If
Ω ⊂ Rn is an open set, then

(I.21) Pα(E; Ω) =
∫

Ω

∫
Ω

|χE(x)− χE(y)|
|x− y|n+α dx dy + 2

∫
Ω

∫
Rn\Ω

|χE(x)− χE(y)|
|x− y|n+α dx dy

is the fractional α-perimeter of E relative to Ω, see [27, Section 7].
Note that the fractional perimeter functional in (I.20) and (I.21) has a strong non-

local nature, in the sense that its value depends also on points which are very far from
the boundary of the set E. For this reason, it is not clear if such a perimeter measure
may be linked with some kind of fractional analogue of De Giorgi’s reduced bound-
ary (which, a posteriori, cannot be expected to be a special subset of the topological
boundary of E). In more general terms, the fractional Sobolev spacesWα,p(Rn), differ-
ently from the standard Sobolev spacesW 1,p(Rn), do not have an evident distributional
nature, in the sense that the Wα,p-seminorm does not seem to be the Lp-norm of some
kind of distributionally defined gradient of fractional order.

Recently, the search for a good notion of differential operator in this fractional
setting has led several authors to consider the following fractional gradient

(I.22) ∇αf(x) = µn,α

∫
Rn

(y − x)(f(y)− f(x))
|y − x|n+α+1 dy, x ∈ Rn,

where µn,α is a multiplicative normalising constant controlling the behaviour of ∇α as
α → 1−. For a detailed account on the existing literature on this operator, see [90,
Section 1]. Here we only refer to [86–90,92–95] for the articles tightly connected to the
present work (see also [78, Section 15.2]). According to [90, Section 1], it is interesting
to notice that [51] seems to be the earliest reference for the operator defined in (I.22).

A fundamental aspect of the fractional gradient in (I.22) is that it satisfies three na-
tural ‘qualitative’ requirements as a fractional operator: invariance under translations
and rotations, homogeneity of order α under dilations and some continuity proper-
ties in an appropriate functional space, e.g. Schwartz space S(Rn). As observed by
M. Šilhavý in [92, Theorem 2.2], these three requirements actually characterise the
fractional gradient in (I.22), up to multiplicative constants (in fact, observing that
∇α = (−∆)α2R on Schwartz functions, where (−∆)α2 is the fractional Laplacian and
R is the Riesz transform, this can be recovered from from [96, Chapter III, Proposi-
tion 2]). This characterisation shows that the definition in (I.22) is well posed not only
from a mathematical point of view, but also from a physical point of view.

From its very definition, it is not difficult to see that the fractional gradient in (I.22)
is well defined as an element of L1(Rn;Rn) for functions in Wα,1(Rn), since

(I.23)
∫
Rn
|∇αf(x)| dx ≤ µn,α [f ]Wα,1(Rn).

Moreover, the operator in (I.22) allows for the following fractional integration-by-part
formula

(I.24)
∫
Rn
f divαϕdx = −

∫
Rn
ϕ · ∇αf dx
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whenever f ∈ C∞c (Rn) and ϕ ∈ C∞c (Rn;Rn), where

(I.25) divαϕ(x) = µn,α

∫
Rn

(y − x) · (ϕ(y)− ϕ(x))
|y − x|n+α+1 dy, x ∈ Rn,

comes naturally as the fractional divergence of the test vector field ϕ ∈ C∞c (Rn;Rn),
see [92, Section 6].

With the energetic estimate (I.23) and the integration-by-part formula (I.24) at
disposal, one is now tempted to approach fractional Sobolev spaces in distributional
terms. This is the new perspective introduced in my paper [22] in collaboration with
G. E. Comi, where we combine the functional approach of [89,90] with the distribu-
tional point of view of [92] in order to develop a satisfactory extension of the variation
and the Caccioppoli perimeter in the fractional setting.

Imitating (I.1), for a given α ∈ (0, 1) the fractional α-variation of a function f ∈
L1(Rn) is given by

(I.26) |Dαf |(Rn) = sup
{∫

Rn
f divαϕdx : ϕ ∈ C∞c (Rn;Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1

}
.

If |Dαf |(Rn) < +∞, then f has finite fractional α-variation and

(I.27) BV α(Rn) =
{
f ∈ L1(Rn) : |Dαf |(Rn) < +∞

}
endowed with the natural norm
(I.28) ‖f‖BV α(Rn) = ‖f‖L1(Rn) + |Dαf |(Rn), f ∈ BV α(Rn),
is the naturally associated space of functions of bounded fractional α-variation in Rn.
Note that (I.26) is well defined, since divαϕ ∈ L∞(Rn) for all ϕ ∈ C∞c (Rn;Rn).

The space in (I.27) is actually a Banach space and its norm (I.28) is lower semicon-
tinuous with respect to L1-convergence. By (I.23), (I.24) and (I.26), one immediately
gets that Wα,1(Rn) ⊂ BV α(Rn) with strict continuous embedding, in perfect analogy
with (I.4). Moreover, similarly to Anzellotti–Giaquinta approximation (I.7), one can
prove that the sets C∞(Rn)∩BV α(Rn) and C∞c (Rn) are dense in energy in BV α(Rn).

Emulating the classical definition in (I.12), it is very natural to define the fractional
analogue of the Caccioppoli perimeter using the total fractional variation in (I.26).
Note that this definition is well posed, since divαϕ ∈ L1(Rn) for all ϕ ∈ Wα,1(Rn;Rn)
arguing similarly as in (I.23). One can actually prove that
(I.29) |DαχE|(Ω) ≤ µn,αPα(E; Ω)
for all measurable sets E ⊂ Rn such that Pα(E; Ω) < +∞, so that our approach
naturally includes sets with finite Wα,1-perimeter. Similarly to what happened for the
fractional variation (I.26), fractional Caccioppoli α-perimeter is lower semicontinuous
with respect to L1

loc-convergence. Moreover, a fractional isoperimetric inequality holds,
in the sense that for all n ≥ 2 one has

|E|
n−α
n ≤ cn,α|DαχE|(Rn) whenever χE ∈ BV α(Rn).

Last but not least, a natural analogue of De Giorgi’s reduced boundary, which we
call fractional reduced boundary FαE, is well posed for any set E with (locally) finite
fractional Caccioppoli α-perimeter. In addition, one can prove that |DαχE| �H n−α
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FαE and that, given x ∈ FαE, the family (E−x
r

)r>0 admits limit points in the L1
loc-

topology and any such limit point must have constant measure-theoretic inner unit
fractional normal.

We remark that a different approach to fractional variation was developed in [107].
We do not know if the fractional variation defined in (I.26) is linked to the one intro-
duced in [107] and it would be very interesting to establish a connection between the
two.

In order to study the relation between the fractional Sobolev space (I.19) and the
fractional gradient (I.22) in the case p > 1, guided by the fractional integration-by-part
formula (I.24), one can define the weak fractional α-gradient of a function f ∈ Lp(Rn),
with p ∈ [1,+∞], as the function ∇αf ∈ L1

loc(Rn;Rn) satisfying∫
Rn
f divαϕdx = −

∫
Rn
∇αf · ϕdx

for all ϕ ∈ C∞c (Rn;Rn). For α ∈ (0, 1) and p ∈ [1,+∞], one can thus define the
distributional fractional Sobolev space

Sα,p(Rn) = {f ∈ Lp(Rn) : ∃∇αf ∈ Lp(Rn;Rn)}

naturally endowed with the norm

‖f‖Sα,p(Rn) = ‖f‖Lp(Rn) + ‖∇αf‖Lp(Rn;Rn), f ∈ Sα,p(Rn).

In the case p ∈ (1,+∞), it is known that Sα,p(Rn) ⊃ Lα,p(Rn) with continuous em-
bedding, where Lα,p(Rn) is the Bessel potential space of parameters α ∈ (0, 1) and
p ∈ (1,+∞), see [22, Section 3.9] and the references therein. In my paper [20]
in collaboration with E. Bruè, M. Calzi and G. E. Comi, we prove that also the
inclusion Sα,p(Rn) ⊂ Lα,p(Rn) holds continuously, so that the spaces Sα,p(Rn) and
Lα,p(Rn) do coincide. As a consequence, one gets the following relations: Sα+ε,p(Rn) ⊂
Wα,p(Rn) ⊂ Sα−ε,p(Rn) with continuous embeddings for all α ∈ (0, 1), p ∈ (1,+∞)
and 0 < ε < min{α, 1− α}, see [89, Theorem 2.2]; Sα,2(Rn) = Wα,2(Rn) for all
α ∈ (0, 1), see [89, Theorem 2.2]; Wα,p(Rn) ⊂ Sα,p(Rn) with continuous embedding for
all α ∈ (0, 1) and p ∈ (1, 2], see [96, Chapter V, Section 5.3].

The fractional Sobolev space (I.19) can be understood also as an ‘intermediate
space’ between the space Lp(Rn) and the standard Sobolev space W 1,p(Rn). In fact,
Wα,p(Rn) can be recovered as a suitable (real) interpolation space between the spaces
Lp(Rn) and W 1,p(Rn), see [14,65,103]. One then naturally expects that, for a suffi-
ciently regular function f , the fractional Sobolev seminorm [f ]Wα,p(Rn), multiplied by a
suitable renormalising constant, should tend to ‖f‖Lp(Rn) as α→ 0+ and to ‖∇f‖Lp(Rn)
as α→ 1−. Indeed, for p ∈ [1,+∞), it is known that

(I.30) lim
α→0+

α [f ]pWα,p(Rn) = An,p ‖f‖pLp(Rn)

for all f ∈ ⋃α∈(0,1)W
α,p(Rn), while

(I.31) lim
α→1−

(1− α) [f ]pWα,p(Rn) = Bn,p ‖∇f‖pLp(Rn;Rn)

for all f ∈ W 1,p(Rn). Here An,p, Bn,p > 0 are two constants depending only on n, p.
The limit (I.30) was proved in [61,62], while the limit (I.31) was established in [15].
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As proved in [29], when p = 1 the limit (I.31) holds in the more general case of BV
functions, that is,
(I.32) lim

α→1−
(1− α) [f ]Wα,1(Rn) = Bn,1 |Df |(Rn)

for all f ∈ BV (Rn). For a different approach to the limits in (I.30) and in (I.32) based
on interpolation techniques, see [65].

Concerning the fractional perimeter Pα given in (I.21), one has some additional
information besides equations (I.30) and (I.32).

On the one hand, thanks to [75, Theorem 1.2], the fractional α-perimeter Pα enjoys
the following fractional analogue of Gustin’s Boxing Inequality (see [49] and [39, Corol-
lary 4.5.4]): there exists a dimensional constant cn > 0 such that, for any bounded open
set E ⊂ Rn, one can find a covering

E ⊂
⋃
k∈N

Brk(xk)

of open balls such that
(I.33)

∑
k∈N

rn−αk ≤ cnα(1− α)Pα(E).

Inequality (I.33) bridges the two limiting behaviours given by (I.30) and (I.32) and pro-
vides a useful tool for recovering Gagliardo–Nirenberg–Sobolev and Poincaré–Sobolev
inequalities that remain stable as the exponent α ∈ (0, 1) approaches the endpoints.

On the other hand, by [5, Theorem 2], the fractional α-perimeter Γ-converges in
L1

loc(Rn) to the standard De Giorgi’s perimeter as α → 1−, that is, if Ω ⊂ Rn is a
bounded open set with Lipschitz boundary, then
(I.34) Γ(L1

loc) - lim
α→1−

(1− α)Pα(E; Ω) = 2ωn−1P (E; Ω)

for all measurable sets E ⊂ Rn, where ωn is the volume of the unit ball in Rn (it should
be noted that in [5] the authors use a slightly different definition of the fractional α-
perimeter, since they consider the functional Jα(E,Ω) = 1

2Pα(E,Ω)). For a complete
account on Γ-convergence, we refer the reader to the monographs [16,28] (throughout
all the thesis, with the symbol Γ(X) - lim we denote the Γ-convergence in the ambient
metric space X). The convergence in (I.34), besides giving a Γ-convergence analogue
of the limit in (I.32), is tightly connected with the study of the regularity properties of
non-local minimal surfaces, that is, (local) minimisers of the fractional α-perimeter Pα,
see [27, Section 7] for an account on the latest results in this directions.

In my paper [23] in collaboration with G. E. Comi, we study the asymptotic be-
haviour of the fractional α-variation (I.26) as α→ 1−, both in the pointwise and in the
Γ-convergence sense. We provide counterparts of the limits (I.31) and (I.32) for the
fractional α-variation. Indeed, we prove that, if f ∈ W 1,p(Rn) for some p ∈ [1,+∞),
then f ∈ Sα,p(Rn) for all α ∈ (0, 1) and, moreover,
(I.35) lim

α→1−
‖∇αf −∇f‖Lp(Rn;Rn) = 0.

In the geometric regime p = 1, we show that if f ∈ BV (Rn) then f ∈ BV α(Rn) for all
α ∈ (0, 1) and, in addition,
(I.36) Dαf ⇀ Df in M (Rn;Rn) and |Dαf |⇀ |Df | in M (Rn) as α→ 1−
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and
(I.37) lim

α→1−
|Dαf |(Rn) = |Df |(Rn).

We are also able to treat the case p = +∞. In fact, we prove that if f ∈ W 1,∞(Rn)
then f ∈ Sα,∞(Rn) for all α ∈ (0, 1) and, moreover,
(I.38) ∇αf ⇀ ∇f in L∞(Rn;Rn) as α→ 1−

and
(I.39) ‖∇f‖L∞(Rn;Rn) ≤ lim inf

α→1−
‖∇αf‖L∞(Rn;Rn)

(the symbol ‘⇀’ appearing in (I.36) and (I.38) denotes the weak*-convergence, see
below for the notation).

Some of the above results were partially announced in [91]. In a similar perspective,
we also refer to the work [63], where the authors proved convergence results for non-
local gradient operators on BV functions defined on bounded open sets with smooth
boundary. The approach developed in [63] is however completely different from the
asymptotic analysis we presently perform for the fractional operator defined in (I.22),
since the boundedness of the domain of definition of the integral operators considered
in [63] plays a crucial role.

Notice that the renormalising factor (1 − α)
1
p is not needed in the limits (I.35) –

(I.39), contrarily to what happened for the limits (I.31) and (I.32). In fact, this differ-
ence should not come as a surprise, since the constant µn,α encoded in the definition
of the operator ∇α in (I.22) satisfies

(I.40) µn,α ∼
1− α
ωn

as α→ 1−

and thus plays a similar role of the factor (1− α)
1
p in the limit as α→ 1−.

Another relevant aspect of our approach is that convergence as α→ 1− holds true
not only for the total energies, but also at the level of differential operators, in the
strong sense when p ∈ (1,+∞) and in the weak* sense for p = 1 and p = +∞. In
simpler terms, the non-local fractional α-gradient ∇α converges to the local gradient ∇
as α→ 1− in the most natural way every time the limit is well defined.

We also provide a counterpart of (I.34) for the fractional α-variation as α → 1−.
Precisely, we prove that, if Ω ⊂ Rn is a bounded open set with Lipschitz boundary,
then
(I.41) Γ(L1

loc) - lim
α→1−

|DαχE|(Ω) = P (E; Ω)

for all measurable set E ⊂ Rn. In view of (I.29), one may ask whether the Γ - lim sup
inequality in (I.41) could be deduced from the Γ - lim sup inequality in (I.34). In fact,
by employing (I.29) together with (I.34) and (I.40), one can estimate

Γ(L1
loc) - lim sup

α→1−
|DαχE|(Ω) ≤ Γ(L1

loc) - lim sup
α→1−

µn,αPα(E,Ω) = 2ωn−1

ωn
P (E,Ω).

However, we have 2ωn−1
ωn

> 1 for any n ≥ 2 and thus the Γ - lim sup inequality in (I.41)
follows from the Γ - lim sup inequality in (I.34) only in the case n = 1. In a similar
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way, one sees that the Γ - lim inf inequality in (I.41) implies the Γ - lim inf inequality
in (I.34) only in the case n = 1.

Besides the counterpart of (I.34), our approach allows us to prove that Γ-conver-
gence holds true also at the level of functions. Indeed, if f ∈ BV (Rn) and Ω ⊂ Rn is
an open set such that either Ω is bounded with Lipschitz boundary or Ω = Rn, then

(I.42) Γ(L1) - lim
α→1−

|Dαf |(Ω) = |Df |(Ω).

Again, similarly as before and thanks to the asymptotic behaviour (I.40), the renor-
malising factor (1− α) is not needed in the limits (I.41) and (I.42).

As a byproduct of the techniques developed for the asymptotic study of the frac-
tional α-variation as α → 1−, we are also able to characterise the behaviour of the
fractional β-variation as β → α−, for any given α ∈ (0, 1). On the one hand, if
f ∈ BV α(Rn), then

Dβf ⇀ Dαf in M (Rn;Rn) and |Dβf |⇀ |Dαf | in M (Rn) as β → α−

and, moreover,
lim
β→α−

|Dβf |(Rn) = |Dαf |(Rn).

On the other hand, if f ∈ BV α(Rn) and Ω ⊂ Rn is an open set such that either Ω is
bounded and |Dαf |(∂Ω) = 0 or Ω = Rn, then

Γ(L1) - lim
β→α−

|Dβf |(Ω) = |Dαf |(Ω).

In my paper [20] in collaboration with E. Bruè, M. Calzi and G. E. Comi, we
study the asymptotic behaviour of the fractional α-variation (I.26) as α → 0+. At
least for sufficiently regular functions, as α→ 0+ the fractional α-gradient in (I.22) is
converging to the operator

(I.43) ∇0f(x) = µn,0

∫
Rn

(y − x)(f(y)− f(x))
|y − x|n+1 dy, x ∈ Rn,

where µn,0 is the limit of µn,α as α→ 0+ (in this case, there is no renormalisation factor).
The operator in (I.43) is well defined for all f ∈ C∞c (Rn) and, actually, coincides with
the well-known vector-valued Riesz transform Rf , see [47, Section 5.1.4] and [96,
Chapter III]. Similarly, the fractional α-divergence in (I.25) is formally converging
as α→ 0+ to the operator

div0ϕ(x) = µn,0

∫
Rn

(y − x) · (ϕ(y)− ϕ(x))
|y − x|n+1 dy, x ∈ Rn,

which is well defined for all ϕ ∈ C∞c (Rn;Rn). In perfect analogy with (I.26) above, one
can thus introduce the space BV 0(Rn) as the space of functions f ∈ L1(Rn) such that
the quantity

|D0f |(Rn) = sup
{∫

Rn
f div0ϕdx : ϕ ∈ C∞c (Rn;Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1

}
is finite. Surprisingly (and differently from the fractional α-variation), it turns out
that |D0f | � L n for all f ∈ BV 0(Rn). More precisely, one can actually prove that
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BV 0(Rn) = H1(Rn), in the sense that f ∈ BV 0(Rn) if and only if f ∈ H1(Rn), with
D0f = RfL n in M (Rn;Rn). Here

H1(Rn) =
{
f ∈ L1(Rn) : Rf ∈ L1(Rn;Rn)

}
is the (real) Hardy space, see [97, Chapter III] for the precise definition. The Hardy
space thus comes as the right target functional space for the study of the conver-
gence of the fractional α-variation as α → 0+. One can prove that, if f ∈ H1(Rn) ∩⋃
α∈(0,1)W

α,1(Rn), then

(I.44) lim
α→0+

‖∇αf −Rf‖L1(Rn;Rn) = 0.

Of course, if Rf /∈ L1(Rn;Rn), that is, f /∈ H1(Rn), then one cannot expect strong
convergence in L1 and, instead, has to consider the asymptotic behaviour of the rescaled
fractional gradient α∇αf as α → 0+ as suggested by the limit in (I.30). Precisely, if
f ∈ ⋃α∈(0,1)W

α,1(Rn), then

lim
α→0+

α
∫
Rn
|∇αf(x)| dx = nωnµn,0

∣∣∣∣∣
∫
Rn
f(x) dx

∣∣∣∣∣.
In the case p ∈ (1,+∞), since the Riesz transform (I.43) extends to a linear continuous
operator R : Lp(Rn)→ Lp(Rn), one can prove that, if f ∈ ⋃α∈(0,1)W

α,p(Rn), then

(I.45) lim
α→0+

‖∇αf −Rf‖Lp(Rn;Rn) = 0.

Moreover, since the Riesz transform (I.43) also extends to a linear continuous operator
R : H1(Rn)→ H1(Rn), one can prove that, if f ∈ ⋃α∈(0,1) HS

1,α(Rn), then

(I.46) lim
α→0+

‖∇αf −Rf‖H1(Rn;Rn) = 0.

Here
HSα,1(Rn) =

{
f ∈ H1(Rn) : ∇αf ∈ H1(Rn)

}
is the fractional Hardy–Sobolev space, see [99]. Since one can prove that

H1(Rn) ∩
⋃

α∈(0,1)
Wα,1(Rn) =

⋃
α∈(0,1)

HSα,1(Rn),

the convergence in (I.46) is actually a refinement of (I.44).
Remarkably, the limits in (I.44), (I.45) and (I.46) follow from some new fractional

interpolation inequalities. On the one hand, by Calderón–Zygmund Theorem, if α ∈
(0, 1], then there exists a constant cn,α > 0 such that

(I.47) |Dβf |(Rn) ≤ cn,α ‖f‖
α−β
α

H1(Rn) |D
αf |(Rn)

β
α

for all β ∈ [0, α) and all f ∈ H1(Rn) ∩ BV α(Rn). On the other hand, by Mihlin–
Hörmander Multiplier Theorem, given p ∈ (1,+∞), there exists a constant cn,p > 0
such that

(I.48) ‖∇βf‖Lp(Rn;Rn) ≤ cn,p ‖∇γf‖
α−β
α−γ
Lp(Rn;Rn) ‖∇

αf‖
β−γ
α−γ
Lp(Rn;Rn)
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for all 0 ≤ γ ≤ β ≤ α ≤ 1 and all f ∈ Sα,p(Rn). In the particular case γ = 0, thanks
to the Lp-continuity of the Riesz transform, one also has

(I.49) ‖∇βf‖Lp(Rn;Rn) ≤ cn,p ‖f‖
α−β
α

Lp(Rn) ‖∇
αf‖

β
α

Lp(Rn;Rn)

for all 0 ≤ β ≤ α ≤ 1 and all f ∈ Sα,p(Rn). In a similar way, there exists a dimensional
constant cn > 0 such that

(I.50) ‖∇βf‖H1(Rn;Rn) ≤ cn ‖∇γf‖
α−β
α−γ
H1(Rn;Rn) ‖∇

αf‖
β−γ
α−γ
H1(Rn;Rn)

for all 0 ≤ γ ≤ β ≤ α ≤ 1 and all f ∈ HSα,1(Rn). Again, in the particular case γ = 0,
thanks to the H1-continuity of the Riesz transform, one also has

(I.51) ‖∇βf‖H1(Rn;Rn) ≤ cn ‖f‖
α−β
α

H1(Rn) ‖∇
αf‖

β
α

H1(Rn;Rn)

for all 0 ≤ β ≤ α ≤ 1 and all f ∈ HSα,1(Rn).
The novelty of inequalities (I.47) – (I.51) lies in the fact that, differently from the

classical fractional interpolation inequalities, constants do not depend on the inter-
polating parameter. To achieve this stability, we adopt a direct approach exploiting
the precise structure of the fractional gradient (I.22) instead of relying on complex
interpolation techniques.

According to [14, Theorem 6.4.5(6)], for all α, ϑ ∈ (0, 1) and p ∈ (1,+∞) we have
the following complex interpolation
(I.52) (Lp(Rn), Sα,p(Rn))[ϑ] ∼= Sϑα,p(Rn).
As a consequence, (I.52) implies that, for all 0 < β < α < 1 and p ∈ (1,+∞), there
exists a constant cn,α,β,p > 0 such that

(I.53) ‖f‖Sβ,p(Rn) ≤ cn,α,β,p ‖f‖
α−β
α

Lp(Rn) ‖f‖
β
α

Sα,p(Rn)

for all f ∈ Sα,p(Rn). Similarly, for all α, ϑ ∈ (0, 1), we have the following complex
interpolation
(I.54) (H1(Rn), HSα,1(Rn))[ϑ] ∼= HSϑα,1(Rn),
and thus

(I.55) ‖f‖HSβ,1(Rn) ≤ cn,α,β ‖f‖
α−β
α

H1(Rn) ‖f‖
β
α

HSα,1(Rn)

for all f ∈ HSα,1(Rn) (the identification in (I.54) was pointed us by M. Calzi). In-
equalities (I.53) and (I.55) suggest that, in order to obtain (I.49) and (I.51) with com-
plex interpolation methods, one essentially should prove that the identifications (I.52)
and (I.54) hold uniformly with respect to the interpolating parameter. We believe that
this result may be achieved but, since we do not need this level of generality for our
aims, we prefer to prove (I.48) – (I.51) in a direct way.

We do not know if inequality (I.47) can be achieved also by complex interpolation
methods. In fact, we do not know even if the two spaces (H1(Rn), BV (Rn))[ϑ] and
BV ϑ(Rn) are somehow related for ϑ ∈ (0, 1). By [14, Theorems 3.5.3 and 6.4.5(1)], we
have the following real interpolations

(L1(Rn),W 1,1(Rn))ϑ,p ∼= (L1(Rn), BV (Rn))ϑ,p ∼= Bϑ
1,p(Rn)



xxviii INTRODUCTION

for all ϑ ∈ (0, 1) and p ∈ [1,+∞], where Bϑ
p,q(Rn) denotes the Besov space (see [14,

Section 6.2] or [55, Chapter 14] for the definition). By [14, Theorem 4.7.1], we know
that

(H1(Rn), BV (Rn))ϑ,1 ⊂∼ (H1(Rn), BV (Rn))[ϑ] ⊂∼ (H1(Rn), BV (Rn))ϑ,∞
for all ϑ ∈ (0, 1). Since H1(Rn) ⊂ L1(Rn) continuously, on the one side we have

(H1(Rn), BV (Rn))ϑ,1 ⊂∼ (L1(Rn), BV (Rn))ϑ,1 ∼= Bϑ
1,1(Rn) ∼= W ϑ,1(Rn),

and, on the other side,
(H1(Rn), BV (Rn))ϑ,∞ ⊂∼ (L1(Rn), BV (Rn))ϑ,∞ ∼= Bϑ

1,∞(Rn),
for all ϑ ∈ (0, 1). The continuous inclusion Wα,1(Rn) ⊂ BV α(Rn) is strict for all
α ∈ (0, 1) and the inclusion BV α(Rn) ⊂ Bα

1,∞(Rn) holds continuously for all α ∈ (0, 1)
and is strict for all n ≥ 2.

Organisation of the thesis. In this thesis, we present the distributional approach
to fractional Sobolev spaces and fractional variation developed in [20, 22, 23]. The
material is organised as follows. In Chapter 1, after having introduced the elementary
properties of the fractional operators ∇α and divα, we define the space of functions of
bounded fractional variation BV α(Rn) and we establish its fundamental features. The
spaces BV α,p(Rn), BV 0(Rn) and Sα,p(Rn) are also studied. In Chapter 2, we develop
the theory of sets with (locally) finite fractional Caccioppoli perimeter and prove the
existence of blow-ups. In Chapter 3, we deal with the asymptotic behaviour of the
fractional α-variation as α → 1−, studying pointwise convergence and Γ-convergence
of the fractional gradient. The asymptotic behaviour of the fractional β-variation as
β → α− is also considered. Finally, in Chapter 4, we study the asymptotic behaviour of
the fractional α-variation as α→ 0+, proving new fractional interpolation inequalities.
An application to potential estimates involving Riesz potential in Lorentz spaces is also
provided.



Notation

We denote by L n and H α the n-dimensional Lebesgue measure and the α-dimen-
sional Hausdorff measure on Rn respectively, with α ≥ 0. Unless otherwise stated, a
measurable set is an L n-measurable set. We also use the notation |E| = L n(E). All
functions we consider in this paper are Lebesgue measurable, unless otherwise stated.
We let Br(x) be the standard open Euclidean ball with center x ∈ Rn and radius r > 0.
We let Br = Br(0). Recall that ωn = |B1| = π

n
2 /Γ

(
n+2

2

)
and H n−1(∂B1) = nωn,

where Γ is Euler’s Gamma function, see [13].
We let GL(n) ⊃ O(n) ⊃ SO(n) be the general linear group, the orthogonal group

and the special orthogonal group respectively. We tacitly identify GL(n) ⊂ Rn2 with the
space of invertible n× n -matrices and we endow it with the usual Euclidean distance
in Rn2 .

For k ∈ N0 ∪ {+∞} and m ∈ N, we denote by Ck
c (Ω;Rm) and Lipc(Ω;Rm) the

spaces of Ck-regular and, respectively, Lipschitz-regular, m-vector-valued functions
defined on Rn with compact support in Ω.

For m ∈ N, we denote by S(Rn;Rm) the space of m-vector-valued Schwartz func-
tions on Rn. For k ∈ N0 ∪ {+∞} and m ∈ N, we let

Sk(Rn;Rm) =
{
f ∈ S(Rn;Rm) :

∫
Rn
xaf(x) dx = 0 for all a ∈ Nn

0 with |a| ≤ k
}
,

where xa = xa1
1 · . . . · xan

n for all multi-indices a ∈ Nn
0 . See [47, Section 2.2] for instance.

We let F : S(Rn)→ S(Rn) be the Fourier transform. For its precise definition and
main properties, we refer to [47, Section 2.2.2] for instance.

For any exponent p ∈ [1,+∞], we denote by

Lp(Ω;Rm) =
{
u : Ω→ Rm : ‖u‖Lp(Ω;Rm) < +∞

}
the space of m-vector-valued Lebesgue p-integrable functions on Ω. For p ∈ [1,+∞],
we say that (fk)k∈N ⊂ Lp(Ω;Rm) weakly converges to f ∈ Lp(Ω;Rm), and we write
fk ⇀ f in Lp(Ω;Rm) as k → +∞, if

(N.56) lim
k→+∞

∫
Ω
fk · ϕdx =

∫
Ω
f · ϕdx

for all ϕ ∈ Lq(Ω;Rm), with q ∈ [1,+∞] the conjugate exponent of p, that is, 1
p

+ 1
q

= 1
(with the usual convention 1

+∞ = 0). Note that in the case p = +∞ we make a little
abuse of terminology, since the limit in (N.56) actually defines the weak*-convergence
in L∞(Ω;Rm).

We denote by

W 1,p(Ω;Rm) =
{
u ∈ Lp(Ω;Rm) : [u]W 1,p(Ω;Rm) = ‖∇u‖Lp(Ω;Rn+m) < +∞

}
xxix
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the space of m-vector-valued Sobolev functions on Ω, see for instance [55, Chapter 10]
for its precise definition and main properties. We also let

w1,p(Ω;Rm) =
{
u ∈ L1

loc(Ω;Rm) : [u]W 1,p(Ω;Rm) < +∞
}
.

We denote by

BV (Ω;Rm) =
{
u ∈ L1(Ω;Rm) : [u]BV (Ω;Rm) = |Du|(Ω) < +∞

}
the space of m-vector-valued functions of bounded variation on Ω, see for instance [6,
Chapter 3] or [36, Chapter 5] for its precise definition and main properties. We also
let

bv(Ω;Rm) =
{
u ∈ L1

loc(Ω;Rm) : [u]BV (Ω;Rm) < +∞
}
.

For α ∈ (0, 1) and p ∈ [1,+∞), we denote by

Wα,p(Ω;Rm) =
{
u ∈ Lp(Ω;Rm) : [u]pWα,p(Ω;Rm) =

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+pα dx dy < +∞

}
the space of m-vector-valued fractional Sobolev functions on Ω, see [34] for its precise
definition and main properties. We also let

wα,p(Ω;Rm) =
{
u ∈ L1

loc(Ω;Rm) : [u]Wα,p(Ω;Rm) < +∞
}
.

For α ∈ (0, 1) and p = +∞, we simply let

Wα,∞(Ω;Rm) =
{
u ∈ L∞(Ω;Rm) : sup

x,y∈Ω, x 6=y

|u(x)− u(y)|
|x− y|α

< +∞
}
,

so that Wα,∞(Ω;Rm) = C0,α
b (Ω;Rm), the space of m-vector-valued bounded α-Hölder

continuous functions on Ω.
Given α ∈ (0, n), we let

(N.57) Iαf(x) = 2−απ−n2
Γ
(
n−α

2

)
Γ
(
α
2

) ∫
Rn

f(y)
|x− y|n−α

dy, x ∈ Rn,

be the Riesz potential of order α ∈ (0, n) of f ∈ C∞c (Rn;Rm). We recall that, if
α, β ∈ (0, n) satisfy α + β < n, then we have the following semigroup property

(N.58) Iα(Iβf) = Iα+βf

for all f ∈ C∞c (Rn;Rm). In addition, if 1 < p < q < +∞ satisfy
1
q

= 1
p
− α

n
,

then there exists a constant Cn,α,p > 0 such that the operator in (N.57) satisfies
(N.59) ‖Iαf‖Lq(Rn;Rm) ≤ Cn,α,p‖f‖Lp(Rn;Rm)

for all f ∈ C∞c (Rn; Rm). As a consequence, the operator in (N.57) extends to a linear
continuous operator from Lp(Rn;Rm) to Lq(Rn;Rm), for which we retain the same
notation. For a proof of (N.58) and (N.59), we refer the reader to [96, Chapter V,
Section 1] and to [48, Section 1.2.1].
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Given α ∈ (0, 1), we also let

(−∆)α2 f(x) = 2απ−n2
Γ
(
n+α

2

)
Γ
(
−α

2

) ∫
Rn

f(x+ y)− f(x)
|y|n+α dy, x ∈ Rn,

be the fractional Laplacian (of order α) of f ∈ Lipb(Rn;Rm).
For α ∈ (0, 1) and p ∈ (1,+∞), we let

Lα,p(Rn;Rm) = (Id−∆)−α2 (Lp(Rn;Rm))

=
{
f ∈ S ′(Rn;Rm) : (Id−∆)α2 f ∈ Lp(Rn;Rm)

}(N.60)

be the m-vector-valued Bessel potential space with norm
(N.61) ‖f‖Lα,p(Rn;Rm) = ‖(Id−∆)α2 f‖Lp(Rn;Rm), f ∈ Lα,p(Rn;Rm),
see [2, Sections 7.59-7.65] for its precise definition and main properties. We also re-
fer to [85, Section 27.3], where the authors prove that the space in (N.60) can be
equivalently defined as the space

Lα,p(Rn;Rm) = Lp(Rn;Rm) ∩ Iα(Lp(Rn;Rm))

=
{
f ∈ Lp(Rn;Rm) : (−∆)α2 f ∈ Lp(Rn;Rm)

}
,

(N.62)

endowed with the norm
(N.63) ‖f‖Lα,p(Rn;Rm) = ‖f‖Lp(Rn;Rm) + ‖(−∆)α2 f‖Lp(Rn;Rm), f ∈ Lα,p(Rn;Rm),
see [85, Theorem 27.3] (in particular, the two norms defined in (N.61) and in (N.63) are
equivalent and so, unless otherwise stated, we will use both of them with no particular
distinction). We recall that C∞c (Rn) is a dense subset of Lα,p(Rn;Rm), see [2, Theo-
rem 7.63(a)] and [85, Lemma 27.2]. Note that the space Lα,p(Rn;Rm) can be defined
also for any α ≥ 1 by simply using the composition properties of the Bessel potential
(or of the fractional Laplacian), see [2, Section 7.62]. All the properties stated above
remain true also for α ≥ 1 and, moreover, Lk,p(Rn;Rm) = W k,p(Rn;Rm) for all k ∈ N,
see [2, Theorem 7.63].

For m ∈ N, we denote by

H1(Rn;Rm) =
{
f ∈ L1(Rn;Rm) : Rf ∈ L1(Rn;Rmn)

}
the m-vector-valued (real) Hardy space endowed with the norm

‖f‖H1(Rn;Rm) = ‖f‖L1(Rn;Rm) + ‖Rf‖L1(Rn;Rmn), f ∈ H1(Rn;Rm),

where Rf denotes the Riesz trasform of f ∈ H1(Rn;Rm),

(N.64) Rif(x) =
Γ
(
n+1

2

)
π
n+1

2
lim
ε→0+

∫
{|y|>ε}

y fi(x+ y)
|y|n+1 dy, x ∈ Rn, i = 1, . . . ,m,

see [48, Sections 2.1 and 2.4.4] and [97, Chapter III] for a more detailed exposi-
tion. We also recall that the Riesz transform (N.64) defines a continuous operator
R : Lp(Rn;Rm) → Lp(Rn;Rm) for any given p ∈ (1,+∞), see [47, Corollary 5.2.8],
and a continuous operator R : H1(Rn;Rm) → H1(Rn;Rm), see [97, Chapter III, Sec-
tion 5.25].
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We let M (Ω;Rm) be the space of m-vector-valued Radon measures with finite total
variation. We let

|µ|(Ω) = sup
{∫

Ω
ϕ · dµ : ϕ ∈ C∞c (Ω;Rm), ‖ϕ‖L∞(Ω;Rm) ≤ 1

}
be the total variation of µ ∈ M (Ω;Rm). We say that (µk)k∈N ⊂ M (Ω;Rm) weakly
converges to µ ∈M (Ω;Rm), and we write µk ⇀ µ in M (Ω;Rm) as k → +∞, if

(N.65) lim
k→+∞

∫
Ω
ϕ · dµk =

∫
Ω
ϕ · dµ

for all ϕ ∈ C∞c (Ω;Rm). Note that we make a little abuse of terminology, since the limit
in (N.65) actually defines the weak*-convergence in M (Ω;Rm).

Given λ ≥ 0, we let L1,λ(Rn;Rm) be the Morrey space of measures µ ∈M (Ω;Rm)
such that

‖µ‖L1,λ(Rn;Rm) = sup
x∈Rn

sup
r>0
|µ|(Br(x)) r−λ < +∞.

In the sequel, in order to avoid heavy notation, if the elements of a function space
F (Ω;Rm) are real-valued (i.e. m = 1), then we will drop the target space and simply
write F (Ω).



CHAPTER 1

A distributional approach to fractional variation

1. Šilhavý’s fractional calculus

1.1. Definition of ∇α and divα. We recall and study the non-local operators ∇α

and divα introduced by Šilhavý in [92]. We refer also to [78, Section 15.2] and the
references therein.

Let α ∈ (0, 1) and set

(1.1) µn,α = 2απ−n2
Γ
(
n+α+1

2

)
Γ
(

1−α
2

) .

We let

(1.2) ∇αf(x) = µn,α lim
ε→0

∫
{|z|>ε}

zf(x+ z)
|z|n+α+1 dz

be the α-gradient of f ∈ C∞c (Rn) at x ∈ Rn. We also let

(1.3) divαϕ(x) = µn,α lim
ε→0

∫
{|z|>ε}

z · ϕ(x+ z)
|z|n+α+1 dz

be the α-divergence of ϕ ∈ C∞c (Rn;Rn) at x ∈ Rn. The non-local operators ∇α

and divα are well defined in the sense that the involved integrals converge and the
limits exist, see [92, Section 7].

Since
(1.4)

∫
{|z|>ε}

z

|z|n+α+1 dz = 0, ∀ε > 0,

it is immediate to check that ∇αc = 0 for all c ∈ R. Moreover, the cancellation in (1.4)
yields

∇αf(x) = µn,α lim
ε→0

∫
{|y−x|>ε}

(y − x)
|y − x|n+α+1f(y) dy(1.5a)

= µn,α lim
ε→0

∫
{|x−y|>ε}

(y − x)(f(y)− f(x))
|y − x|n+α+1 dy(1.5b)

= µn,α

∫
Rn

(y − x)(f(y)− f(x))
|y − x|n+α+1 dy, ∀x ∈ Rn,(1.5c)

for all f ∈ C∞c (Rn). Indeed, (1.5a) follows by a simple change of variables and (1.5b)
is a consequence of (1.4). To prove (1.5c) it is enough to apply Lebesgue’s Dominated
Convergence Theorem. Indeed, we can estimate

(1.6)
∫
{|y−x|≤1}

∣∣∣∣∣(y − x)(f(y)− f(x))
|y − x|n+α+1

∣∣∣∣∣ dy ≤ Lip(f)
∫ 1

0
r−α dr

1
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and

(1.7)
∫
{|y−x|>1}

∣∣∣∣∣(y − x)(f(y)− f(x))
|y − x|n+α+1

∣∣∣∣∣ dy ≤ 2‖f‖L∞(Rn)

∫ +∞

1
r−(1+α) dr.

As a consequence, the operator∇αf defined by (1.5c) is well defined for all f ∈ Lipc(Rn)
and satisfies (1.2), (1.5a) and (1.5b).

By [92, Theorem 4.3], ∇α is invariant by translations and rotations and is α-
homogeneous. Moreover, for all f ∈ C∞c (Rn) and λ ∈ R, we have
(1.8) (∇αf(λ·))(x) = |λ|α sgn (λ)(∇αf)(λx), x ∈ Rn.

Arguing similarly as above, we can write

divαϕ(x) = µn,α lim
ε→0

∫
{|x−y|>ε}

(y − x) · ϕ(y)
|y − x|n+α+1 dy,(1.9a)

= µn,α lim
ε→0

∫
{|x−y|>ε}

(y − x) · (ϕ(y)− ϕ(x))
|y − x|n+α+1 dy,(1.9b)

= µn,α

∫
Rn

(y − x) · (ϕ(y)− ϕ(x))
|y − x|n+α+1 dy, ∀x ∈ Rn,(1.9c)

for all ϕ ∈ Lipc(Rn;Rn).
Exploiting (1.5c) and (1.9c), we can extend the operators ∇α and divα to functions

with wα,1-regularity.
Lemma 1.1 (Extension of ∇α and divα to wα,1). Let α ∈ (0, 1). If f ∈ wα,1(Rn) and
ϕ ∈ wα,1(Rn;Rn), then the functions ∇αf(x) and divα f(x) given by (1.5c) and (1.9c)
respectively are well defined for L n-a.e. x ∈ Rn. As a consequence, ∇αf(x) and
divα f(x) satisfy (1.2), (1.5a), (1.5b) and (1.3), (1.9a), (1.9b) respectively for L n-a.e.
x ∈ Rn.

Proof. Let f ∈ wα,1(Rn). Then∫
Rn

∫
Rn

∣∣∣∣∣(y − x)(f(y)− f(x))
|y − x|n+α+1

∣∣∣∣∣ dy dx ≤ [f ]Wα,1(Rn)

and thus the function ∇αf(x) given by (1.5c) is well defined for L n-a.e. x ∈ Rn and
satisfies (1.2), (1.5a) and (1.5b) by (1.4) and by Lebesgue’s Dominated Convergence
Theorem. A similar argument proves the result for any ϕ ∈ wα,1(Rn;Rn). �

1.2. Equivalent definition of ∇α and divα via Riesz potential. Recalling the
definition in (1.1), one easily sees that

I1−αf(x) = µn,α
n+ α− 1

∫
Rn

f(x+ y)
|y|n+α−1 dy

and

∇I1−αf(x) = µn,α
n+ α− 1

∫
Rn

∇xf(x+ y)
|y|n+α−1 dy = µn,α

n+ α− 1

∫
Rn

∇yf(x+ y)
|y|n+α−1 dy,

so that
∇I1−αf = I1−α∇f
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for all f ∈ C∞c (Rn). A similar argument proves that

divI1−αϕ = I1−αdivϕ

for all ϕ ∈ C∞c (Rn;Rn).
Thus, accordingly to the approach developed in [51,86–90], we can consider the

operators
∇̃α = ∇I1−α : C∞c (Rn)→ C∞(Rn;Rn)

and
d̃ivα = divI1−α : C∞c (Rn;Rn)→ C∞(Rn).

We can prove that these two operators coincide with the operators defined in (1.2)
and (1.3). See also [89, Theorem 1.2].
Proposition 1.2 (Equivalence). Let α ∈ (0, 1). We have ∇̃α = ∇α on Lipc(Rn) and
d̃ivα = divα on Lipc(Rn;Rn).

Proof. Let f ∈ Lipc(Rn) and fix x ∈ Rn. Integrating by parts, we can compute

∇̃αf(x) = µn,α
n+ α− 1 lim

ε→0

∫
{|y|>ε}

∇yf(x+ y)
|y|n+α−1 dy

= µn,α lim
ε→0

∫
{|y|>ε}

yf(y + x)
|y|n+α+1 dy = ∇αf(x),

since we can estimate∣∣∣∣∣
∫
{|y|=ε}

f(x+ y)
|y|n+α−1

y

|y|
dH n−1(y)

∣∣∣∣∣ =
∣∣∣∣∣
∫
{|y|=ε}

(f(x+ y)− f(x))
|y|n+α−1

y

|y|
dH n−1(y)

∣∣∣∣∣
≤ nωn‖∇f‖L∞(Rn;Rn)ε

1−α.

The proof of d̃ivαϕ = divαϕ for all ϕ ∈ Lipc(Rn;Rn) follows similarly. �

A useful consequence of the equivalence proved in Proposition 1.2 above is the
following result.
Corollary 1.3 (Representation formula for divα and ∇α). Let α ∈ (0, 1). If ϕ ∈
Lipc(Rn;Rn) then divαϕ ∈ L1(Rn) ∩ L∞(Rn) with

(1.10) divαϕ(x) = µn,α
n+ α− 1

∫
Rn

divϕ(y)
|y − x|n+α−1 dy

for all x ∈ Rn,

(1.11) ‖divαϕ‖L1(Rn) ≤ µn,α[ϕ]Wα,1(Rn;Rn)

and

(1.12) ‖divαϕ‖L∞(Rn) ≤ Cn,α,U‖divϕ‖L∞(Rn)

for any bounded open set U ⊂ Rn such that supp(ϕ) ⊂ U , where

(1.13) Cn,α,U = nµn,α
(1− α)(n+ α− 1)

(
ωndiam(U)1−α +

(
nωn

n+ α− 1

)n+α−1
n

|U |
1−α
n

)
.
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Analogously, if f ∈ Lipc(Rn), then ∇αf ∈ L1(Rn;Rn) ∩ L∞(Rn;Rn) with

(1.14) ∇αf(x) = µn,α
n+ α− 1

∫
Rn

∇f(y)
|y − x|n+α−1 dy

for all x ∈ Rn,
(1.15) ‖∇αf‖L1(Rn;Rn) ≤ µn,α[f ]Wα,1(Rn)

and
(1.16) ‖∇αf‖L∞(Rn;Rn) ≤ Cn,α,U‖∇f‖L∞(Rn;Rn)

for any bounded open set U ⊂ Rn such that supp(f) ⊂ U , where Cn,α,U is as in (1.13).

Proof. The representation formula (1.10) follows directly from Proposition 1.2. The
estimate in (1.11) is a consequence of Lemma 1.1. Finally, if U ⊂ Rn is a bounded
open set such that supp(ϕ) ⊂ U , then

|divαϕ(x)| ≤ µn,α
n+ α− 1

∫
Rn
|y − x|1−n−α |divϕ(y)| dy

≤
µn,α‖divϕ‖L∞(Rn)

n+ α− 1

∫
U
|y − x|1−n−α dy

and (1.12) follows by Lemma 1.4 below. The proof of (1.14), (1.15) and (1.16) is similar
and is left to the reader. �

Lemma 1.4. Let α ∈ (0, 1) and let U ⊂ Rn be a bounded open set. For all x ∈ Rn, we
have

(1.17)
∫
U
|y − x|1−n−α dy ≤ n

1− α

(
ωndiam(U)1−α +

(
nωn

n+ α− 1

)n+α−1
n

|U |
1−α
n

)
.

Proof. For δ > 0, set U δ = {x ∈ Rn : dist(x, U) < δ}. Since clearly
x ∈ U δ =⇒ B(diam(U)+δ)(x) ⊃ U,

for all x ∈ U δ we can estimate∫
U
|y − x|1−n−α dy ≤

∫
B(diam(U)+δ)(x)

|y − x|1−n−α dy

= nωn

∫ diam(U)+δ

0
r−α dr

= nωn
1− α (diam(U) + δ)1−α .

On the other hand, it is plain that
x /∈ U δ, y ∈ U =⇒ |y − x| > δ,

so that for all x /∈ U δ we can estimate∫
U
|y − x|1−n−α dy ≤ δ1−n−α|U |.

Thus, for all δ > 0 and x ∈ Rn, we can estimate∫
U
|y − x|1−n−α dy ≤ nωn

1− α (diam(U) + δ)1−α + δ1−n−α|U |
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≤ nωn
1− α

(
diam(U)1−α + δ1−α

)
+ δ1−n−α|U |

since the function s 7→ s1−α is subadditive for all s > 0. Thus (1.17) follows minimising
in δ > 0 the right-hand side. �

1.3. Relation of ∇α and divα with the fractional Laplacian. Following [92],
for any f ∈ C∞c (Rn) we set

(1.18) (−∆)α2 f(x) =



νn,α

∫
Rn

f(x+ h)
|h|n+α dh if α ∈ (−1, 0),

f(x) if α = 0,

νn,α

∫
Rn

f(x+ h)− f(x)
|h|n+α dh if α ∈ (0, 1),

νn,α lim
ε→0

∫
{|h|>ε}

f(x+ h)− f(x)
|h|n+α dh if α ∈ [1, 2),

where

(1.19) νn,α = 2απ−n2
Γ
(
n+α

2

)
Γ
(
−α

2

) .
Note that, in the case α ∈ (−1, 0), we have

(−∆)α2 = I−α on C∞c (Rn).
We stress the fact that this definition is consistent with the previous definitions of

fractional gradient and divergence in the sense that

−divα∇β = (−∆)
α+β

2

for any α ∈ (−1, 1) and β ∈ (0, 1), see [92, Theorem 5.3]. Thus, in particular, we get
−divα∇α = (−∆)α

for any α ∈ (0, 1).

1.4. Duality and Leibniz’s rules. We now study the properties of the operators
∇α and divα. We begin with the following duality relation, see [92, Section 6].
Lemma 1.5 (Duality). Let α ∈ (0, 1). For all f ∈ Lipc(Rn) and ϕ ∈ Lipc(Rn;Rn) it
holds

(1.20)
∫
Rn
f divαϕdx = −

∫
Rn
ϕ · ∇αf dx.

Proof. Recalling Lemma 1.1 and exploiting (1.5a) and (1.9a), we can write∫
Rn
f divαϕdx = µn,α

∫
Rn
f(x) lim

ε→0

∫
{|x−y|>ε}

(y − x) · ϕ(y)
|y − x|n+α+1 dy dx

= µn,α lim
ε→0

∫
Rn

∫
{|x−y|>ε}

f(x) (y − x) · ϕ(y)
|y − x|n+α+1 dy dx
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= −µn,α lim
ε→0

∫
Rn

∫
{|x−y|>ε}

ϕ(y) · (x− y) f(x)
|x− y|n+α+1 dx dy

= −
∫
Rn
ϕ(y) · ∇αf(y) dy

by the Lebesgue’s Dominated Convergence Theorem and Fubini’s Theorem. �

We now prove two Leibniz-type rules for the operators ∇α and divα, which in
particular show the strong non-local nature of these two operators.
Lemma 1.6 (Leibniz’s rule for ∇α). Let α ∈ (0, 1). For all f, g ∈ Lipc(Rn) it holds

∇α(fg) = f∇αg + g∇αf +∇α
NL(f, g),

where

∇α
NL(f, g)(x) = µn,α

∫
Rn

(y − x)(f(y)− f(x))(g(y)− g(x))
|y − x|n+α+1 dy, ∀x ∈ Rn,

with µn,α as in (1.1). Moreover, it holds

‖∇α
NL(f, g)‖L1(Rn;Rn) ≤ µn,α[f ]

W
α
p ,p(Rn)[g]

W
α
q ,q(Rn)

with p, q ∈ (1,∞) such that 1
p

+ 1
q

= 1 and similarly

‖∇α
NL(f, g)‖L1(Rn;Rn) ≤ 2µn,α‖f‖L∞(Rn)[g]Wα,1(Rn).

Proof. Given f, g ∈ Lipc(Rn), by Lemma 1.1 and by (1.5c) we have

∇α(fg)(x) = µn,α

∫
Rn

(y − x)(f(y)g(y)− f(x)g(x))
|y − x|n+α+1 dy

= µn,α

∫
Rn

(y − x)(f(y)g(y)− f(y)g(x) + f(y)g(x)− f(x)g(x))
|y − x|n+α+1 dy

= µn,α

∫
Rn

(y − x)f(y)(g(y)− g(x))
|y − x|n+α+1 dy + g(x)∇αf(x)

= µn,α

∫
Rn

(y − x)(f(y)− f(x))(g(y)− g(x))
|y − x|n+α+1 dy

+ f(x)∇αg(x) + g(x)∇αf(x).

We also have that

‖∇α
NL(f, g)‖L1(Rn;Rn) ≤ µn,α

∫
Rn

∫
Rn

|f(y)− f(x)|
|x− y|

n+α
p

|g(y)− g(x)|
|y − x|

n+α
q

dy dx,

≤ µn,α

(∫
Rn

∫
Rn

|f(y)− f(x)|p
|x− y|n+α dy dx

) 1
p
(∫

Rn

∫
Rn

|g(y)− g(x)|q
|x− y|n+α dy dx

) 1
q

for any p, q ∈ (1,∞) such that 1
p

+ 1
q

= 1. The case p =∞, q = 1 follows similarly. �

Lemma 1.7 (Leibniz’s rule for divα). Let α ∈ (0, 1). For all f ∈ Lipc(Rn) and
ϕ ∈ Lipc(Rn;Rn) it holds

divα(fϕ) = fdivαϕ+ ϕ · ∇αf + divαNL(f, ϕ),
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where

(1.21) divαNL(f, ϕ)(x) = µn,α

∫
Rn

(y − x) · (ϕ(y)− ϕ(x))(f(y)− f(x))
|y − x|n+α+1 dy, ∀x ∈ Rn,

with µn,α as in (1.1). Moreover, it holds
‖divαNL(f, ϕ)‖L1(Rn) ≤ µn,α[f ]

W
α
p ,p(Rn)[ϕ]

W
α
q ,q(Rn;Rn)

with p, q ∈ (1,∞) such that 1
p

+ 1
q

= 1 and similarly

‖divαNL(f, ϕ)‖L1(Rn) ≤ 2µn,α‖f‖L∞(Rn)[ϕ]Wα,1(Rn;Rn),

‖divαNL(f, ϕ)‖L1(Rn) ≤ 2µn,α‖ϕ‖L∞(Rn;Rn)[f ]Wα,1(Rn).

Proof. Given f ∈ Lipc(Rn) and ϕ ∈ Lipc(Rn;Rn), by Lemma 1.1 and by (1.5c) we have

divα(fϕ)(x) = µn,α

∫
Rn

(y − x) · (f(y)ϕ(y)− f(x)ϕ(x))
|y − x|n+α+1 dy

= µn,α

∫
Rn

(y − x) · (f(y)ϕ(y)− f(y)ϕ(x) + f(y)ϕ(x)− f(x)ϕ(x))
|y − x|n+α+1 dy

= µn,α

∫
Rn

(y − x) · (ϕ(y)− ϕ(x))f(y)
|y − x|n+α+1 dy + ϕ(x) · ∇αf(x)

= µn,α

∫
Rn

(y − x) · (ϕ(y)− ϕ(x))(f(y)− f(x))
|y − x|n+α+1 dy + f(x)divαϕ(x)+

+ ϕ(x) · ∇αf(x).
We also have that

‖divαNL(f, ϕ)‖L1(Rn) ≤ µn,α

∫
Rn

∫
Rn

|f(y)− f(x)|
|x− y|

n+α
p

|ϕ(y)− ϕ(x)|
|y − x|

n+α
q

dy dx,

≤ µn,α

(∫
Rn

∫
Rn

|f(y)− f(x)|p
|x− y|n+α dy dx

) 1
p
(∫

Rn

∫
Rn

|ϕ(y)− ϕ(x)|q
|x− y|n+α dy dx

) 1
q

for any p, q ∈ (1,∞) such that 1
p

+ 1
q

= 1. The case p =∞, q = 1 follows similarly. �

Remark 1.8 (Extension of ∇α
NL and divαNL to fractional Sobolev spaces). Thanks to

the estimates in Lemma 1.6, for all α ∈ (0, 1) the bilinear operator
∇α

NL : Lipc(Rn)× Lipc(Rn)→ L1(Rn;Rn)
can be continuously extended to a bilinear operator

∇α
NL : w

α
p
,p(Rn)× w

α
q
,q(Rn)→ L1(Rn;Rn)

for any p, q ∈ [1,∞] such that 1
p

+ 1
q

= 1, for which we retain the same notation (we
tacitly adopt the convention w α

∞ ,∞ = L∞). Analogously, because of the estimates in
Lemma 1.7, the bilinear operator

divαNL : Lipc(Rn)× Lipc(Rn;Rn)→ L1(Rn)
can be continuously extended to a bilinear operator

divαNL : w
α
p
,p(Rn)× w

α
q
,q(Rn;Rn)→ L1(Rn)
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for any p, q ∈ [1,∞] such that 1
p

+ 1
q

= 1, for which we retain the same notation.

2. The space BV α

In this section we introduce and study the fractional BV space naturally induced
by the operators ∇α and divα defined in Section 1 following De Giorgi’s distributional
approach. In the presentation of the results, we will frequently refer to [36, Chapter 5].

2.1. Definition of BV α(Rn) and Structure Theorem. In analogy with the
classical case (see [36, Definition 5.1] for instance), we start with the following defini-
tion.
Definition 1.9 (BV α(Rn) space). Let α ∈ (0, 1). A function f ∈ L1(Rn) belongs to
the space BV α(Rn) if

sup
{∫

Rn
f divαϕ dx : ϕ ∈ C∞c (Rn;Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1

}
< +∞.

We can now state the following fundamental result relating non-local distributional
gradients of BV α functions to vector valued Radon measures.
Theorem 1.10 (Structure Theorem for BV α functions). Let α ∈ (0, 1) and f ∈
L1(Rn). Then, f ∈ BV α(Rn) if and only if there exists a finite vector valued Radon
measure Dαf ∈M (Rn;Rn) such that

(1.22)
∫
Rn
f divαϕdx = −

∫
Rn
ϕ · dDαf

for all ϕ ∈ C∞c (Rn;Rn). In addition, for any open set U ⊂ Rn it holds

(1.23) |Dαf |(U) = sup
{∫

Rn
f divαϕ dx : ϕ ∈ C∞c (U ;Rn), ‖ϕ‖L∞(U ;Rn) ≤ 1

}
.

Proof. If f ∈ L1(Rn) and if there exists a finite vector valued Radon measure Dαf ∈
M (Rn;Rn) such that (1.22) holds, then f ∈ BV α(Rn) by Definition 1.9.

If f ∈ BV α(Rn), then the proof is identical to the one of [36, Theorem 5.1], with
minor modifications. Define the linear functional L : C∞c (Rn;Rn)→ R setting

L(ϕ) = −
∫
Rn
f divαϕdx ∀ϕ ∈ C∞c (Rn;Rn).

Note that L is well defined thanks to Corollary 1.3. Since f ∈ BV α(Rn), we have

C(U) = sup
{
L(ϕ) : ϕ ∈ C∞c (U ;Rn), ‖ϕ‖L∞(U ;Rn) ≤ 1

}
< +∞

for each open set U ⊂ Rn, so that

|L(ϕ)| ≤ C(U)‖ϕ‖L∞(U ;Rn) ∀ϕ ∈ C∞c (U ;Rn).

Thus, by the density of C∞c (Rn;Rn) in Cc(Rn;Rn), the functional L can be uniquely
extended to a continuous linear functional L̃ : Cc(Rn;Rn) → R and the conclusion
follows by Riesz’s Representation Theorem. �
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2.2. Lower semicontinuity of fractional variation. Similarly to the classical
case, the fractional variation measure given by Theorem 1.10 in (1.23) is lower semi-
continuous with respect to L1-convergence.
Proposition 1.11 (Lower semicontinuity of fractional variation measure). Let α ∈
(0, 1). If (fk)k∈N ⊂ BV α(Rn) and fk → f in L1(Rn) as k → +∞, then f ∈ BV α(Rn)
with

|Dαf |(U) ≤ lim inf
k→+∞

|Dαfk|(U)

for any open set U ⊂ Rn.

Proof. Let ϕ ∈ C∞c (Rn;Rn) with ‖ϕ‖L∞(Rn;Rn) ≤ 1. Then divαϕ ∈ L∞(Rn) by Corol-
lary 1.3 and so we can estimate∫

Rn
f divαϕ dx = lim

k→+∞

∫
Rn
fk divαϕ dx = − lim

k→+∞

∫
Rn
ϕ dDαfk ≤ lim inf

k→+∞
|Dαfk|(Rn).

This shows that
|Dαf |(Rn) ≤ lim inf

k→+∞
|Dαfk|(Rn),

thanks to Theorem 1.10. Finally, if U is an open set in Rn, it is enough to take
ϕ ∈ C∞c (U ;Rn) and to argue as above, applying (1.23). �

From Proposition 1.11 we immediately deduce the following result, whose standard
proof is left to the reader.
Corollary 1.12 (BV α is a Banach space). Let α ∈ (0, 1). The linear space BV α(Rn)
equipped with the norm

‖f‖BV α(Rn) = ‖f‖L1(Rn) + |Dαf |(Rn), f ∈ BV α(Rn),
where Dαf is given by Theorem 1.10, is a Banach space.

2.3. Approximation by smooth functions. Here and in the following, we let
% ∈ C∞c (Rn) be a function such that

(1.24) supp % ⊂ B1, % ≥ 0,
∫
Rn
%(x) dx = 1,

see [36, Section 4.2.1] for an example. We thus let (%ε)ε>0 ⊂ C∞c (Rn) be defined as

(1.25) %ε(x) = 1
εn
%
(
x

ε

)
∀x ∈ Rn.

We call (%ε)ε>0 a family of standard mollifiers. We have the following result.
Lemma 1.13 (Convolution with standard mollifiers). Let α ∈ (0, 1) and let (%ε)ε>0 as
in (1.25). If ϕ ∈ Lipc(Rn;Rn), then
(1.26) divα(%ε ∗ ϕ) = %ε ∗ divαϕ
for any ε > 0. Thus, if f ∈ BV α(Rn), then
(1.27) Dα(%ε ∗ f) = (%ε ∗Dαf)L n

for any ε > 0, and
(1.28) Dα(%ε ∗ f) ⇀ Dαf

in M (Rn;Rn) as ε→ 0.
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Proof. Let ϕ ∈ Lipc(Rn;Rn) and x ∈ Rn. Recalling (1.10), we can write
divαϕ = Kn,α ∗ divϕ,

where
Kn,α(x) = µn,α

n+ α− 1 |x|
1−n−α, x ∈ Rn \ {0}.

Since %ε ∗ ϕ ∈ Lipc(Rn;Rn), we can compute
divα(%ε ∗ ϕ) = Kn,α ∗ div(%ε ∗ ϕ)

= Kn,α ∗ (%ε ∗ divϕ)
= %ε ∗ (Kn,α ∗ divϕ)
= %ε ∗ divαϕ

and (1.26) follows. Now let f ∈ BV α(Rn) and ϕ ∈ C∞c (Rn;Rn). By (1.22) and (1.26),
for all ε > 0 we can compute

−
∫
Rn

(%ε ∗ f) divαϕdx = −
∫
Rn
f (%ε ∗ divαϕ) dx

= −
∫
Rn
f divα(%ε ∗ ϕ) dx

=
∫
Rn

(%ε ∗ ϕ) dDαf

=
∫
Rn
ϕ · (%ε ∗Dαf) dx,

proving (1.27). The convergence in (1.28) thus follows from standard properties of the
mollification of Radon measures, see [6, Theorem 2.2] for instance. �

As an immediate application of Lemma 1.13, we can prove that a function in
BV α(Rn) can be tested against the fractional divergence of any Lipc-regular vector
field.
Proposition 1.14 (Lipc-regular test). Let α ∈ (0, 1). If f ∈ BV α(Rn), then (1.22)
holds for all ϕ ∈ Lipc(Rn;Rn).
Proof. Fix ϕ ∈ Lipc(Rn;Rn) and let (%ε)ε>0 ⊂ C∞c (Rn) be as in (1.25). Then %ε ∗ ϕ ∈
C∞c (Rn;Rn) and so, by Lemma 1.13 and (1.22), we have

(1.29)
∫
Rn

(%ε ∗ f) divαϕdx =
∫
Rn
f divα(%ε ∗ ϕ) dx = −

∫
Rn

(%ε ∗ ϕ) · dDαf.

Since %ε ∗ ϕ→ ϕ uniformly and %ε ∗ f → f in L1(Rn) as ε→ 0, and divα ϕ ∈ L∞(Rn)
by Corollary 1.3, we can pass to the limit as ε→ 0 in (1.29) getting∫

Rn
f divαϕdx = −

∫
Rn
ϕ · dDαf

for any ϕ ∈ Lipc(Rn;Rn). �

As in the classical case, we can prove the density of C∞(Rn)∩BV α(Rn) in BV α(Rn).
Theorem 1.15 (Approximation by C∞ ∩ BV α functions). Let α ∈ (0, 1). If f ∈
BV α(Rn), then there exists (fk)k∈N ⊂ BV α(Rn) ∩ C∞(Rn) such that

(i) fk → f in L1(Rn);
(ii) |Dαfk|(Rn)→ |Dαf |(Rn).
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Proof. Let (%ε)ε>0 ⊂ C∞c (Rn) be as in (1.25). Fix f ∈ BV α(Rn) and consider fε = f ∗%ε
for all ε > 0. Since fε → f in L1(Rn), by Proposition 1.11 we get that

|Dαf |(Rn) ≤ lim inf
ε→0

|Dαfε|(Rn).

By Lemma 1.13 we also have that

|Dαfε|(Rn) =
∫
Rn
|%ε ∗Dαf | dx ≤ |Dαf |(Rn)

and the proof is complete. �

Let (ηR)R>0 ⊂ C∞c (Rn) be such that
(1.30) 0 ≤ ηR ≤ 1, ηR = 1 on BR, supp(ηR) ⊂ BR+1, Lip(ηR) ≤ 2.
We call ηR a cut-off function. As in the classical case, we can prove the density of
C∞c (Rn) in BV α(Rn).
Theorem 1.16 (Approximation by C∞c functions). Let α ∈ (0, 1). If f ∈ BV α(Rn),
then there exists (fk)k∈N ⊂ C∞c (Rn) such that

(i) fk → f in L1(Rn);
(ii) |Dαfk|(Rn)→ |Dαf |(Rn).

Proof. Let (ηR)R>0 ⊂ C∞c (Rn) be as in (1.30). Thanks to Theorem 1.15, it is enough to
prove that fηR → f in BV α(Rn) as R→ +∞ for all f ∈ C∞(Rn)∩BV α(Rn). Clearly,
fηR → f in L1(Rn) as R → +∞. Thus, by Proposition 1.11, we just need to prove
that
(1.31) lim sup

R→+∞
|Dα(fηR)|(Rn) ≤ |Dαf |(Rn).

Fix ϕ ∈ C∞c (Rn;Rn). Then, by Lemma 1.7, we get∫
Rn
fηR divαϕdx =

∫
Rn
f divα(ηRϕ) dx−

∫
Rn
f ϕ · ∇αηR dx−

∫
Rn
f divαNL(ηR, ϕ) dx.

Since f ∈ BV α(Rn) and 0 ≤ ηR ≤ 1, we have∣∣∣∣∫
Rn
f divα(ηRϕ) dx

∣∣∣∣ ≤ ‖ϕ‖L∞(Rn;Rn)|Dαf |(Rn).

Moreover, we have∣∣∣∣∫
Rn
f ϕ · ∇αηR dx

∣∣∣∣ ≤ µn,α‖ϕ‖L∞(Rn;Rn)

∫
Rn
|f(x)|

∫
Rn

|ηR(y)− ηR(x)|
|y − x|n+α dy dx

and, similarly,∣∣∣∣∫
Rn
f divαNL(ηR, ϕ) dx

∣∣∣∣ ≤ 2µn,α‖ϕ‖L∞(Rn;Rn)

∫
Rn
|f(x)|

∫
Rn

|ηR(y)− ηR(x)|
|y − x|n+α dy dx.

Combining these three estimates, we conclude that∣∣∣∣∫
Rn
fηR divαϕdx

∣∣∣∣ ≤ ‖ϕ‖L∞(Rn;Rn)|Dαf |(Rn)

+ 3µn,α‖ϕ‖L∞(Rn;Rn)

∫
Rn
|f(x)|

∫
Rn

|ηR(y)− ηR(x)|
|y − x|n+α dy dx
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and (1.31) follows by Theorem 1.10. Indeed, we have

lim
R→+∞

∫
Rn
|f(x)|

∫
Rn

|ηR(y)− ηR(x)|
|y − x|n+α dy dx = 0

combining (1.6), (1.7) and (1.30) with Lebesgue’s Dominated Convergence Theorem.
�

2.4. Gagliardo–Nirenberg–Sobolev inequality. Thanks to Theorem 1.16, we
are able to prove the analogous of the Gagliardo–Nirenberg–Sobolev inequality for the
space BV α(Rn).
Theorem 1.17 (Gagliardo–Nirenberg–Sobolev inequality). Let α ∈ (0, 1) and n ≥ 2.
There exists a constant cn,α > 0 such that

(1.32) ‖f‖
L

n
n−α (Rn) ≤ cn,α|Dαf |(Rn)

for any f ∈ BV α(Rn). As a consequence, BV α(Rn) is continuously embedded in Lq(Rn)
for any q ∈ [1, n

n−α ].

Proof. By [88, Theorem A’], we know that (1.32) holds for any f ∈ C∞c (Rn). So let
f ∈ BV α(Rn) and let (fk)k∈N ⊂ C∞c (Rn) be as in Theorem 1.16. By Fatou’s Lemma
and Proposition 1.11, we thus obtain

‖f‖
L

n
n−α (Rn) ≤ lim inf

k→+∞
‖fk‖L n

n−α (Rn) ≤ cn,α lim
k→+∞

|Dαfk|(Rn) = cn,α|Dαf |(Rn)

and the proof is complete. �

Incidentally, we observe that the continuous embedding BV α(Rn) ⊂ L
n

n−α (Rn)
for n ≥ 2 and α ∈ (0, 1) can be improved by using the main result of the recent
work [92] (see also [94]). Indeed, if n ≥ 2, α ∈ (0, 1) and f ∈ C∞c (Rn), then, by taking
F = ∇αf in [92, Theorem 1.1], we have that

‖f‖
L

n
n−α ,1(Rn) ≤ cn,α‖Iα∇αf‖

L
n

n−α ,1(Rn;Rn) ≤ c′n,α‖∇αf‖L1(Rn;Rn)

thanks to the boundedness of the Riesz transform R : L
n

n−α ,1(Rn) → L
n

n−α ,1(Rn;Rn),
where cn,α, c′n,α > 0 are two constants depending only on n and α, and L

n
n−α ,1(Rn) is the

Lorentz space of exponents n
n−α , 1 (we refer to [47,48] for an account on Lorentz spaces

and on the properties of Riesz transform). Thus, recalling Theorem 1.16, we readily
deduce the continuous embedding BV α(Rn) ⊂ L

n
n−α ,1(Rn) for n ≥ 2 and α ∈ (0, 1)

using Fatou’s Lemma in Lorentz spaces (see [47, Exercise 1.4.11] for example).
Remark 1.18. We stress the fact that Theorem 1.17 does not hold for n = 1, as will
be shown in Example 1.22 below. It is worth to notice that an analogous restriction
holds for [88, Theorem A], for which the authors provide a counterexample in the case
n = 1 (see [88, Counterexample 3.2]). The authors then derive [88, Theorem A’] as
a consequence of [88, Theorem A], without proving the necessity of the restriction to
n ≥ 2 in this second case, as we do in Example 1.22.
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2.5. Coarea inequality. In analogy with the classical case, we can prove a coarea
inequality formula for functions in BV α(Rn).
Theorem 1.19 (Coarea inequality). Let α ∈ (0, 1). If f ∈ BV α(Rn) is such that

(1.33)
∫
R
|Dαχ{f>t}|(Rn) dt < +∞,

then

(1.34) Dαf =
∫
R
Dαχ{f>t} dt

and

(1.35) |Dαf | ≤
∫
R
|Dαχ{f>t}| dt.

Proof. Let ϕ ∈ C∞c (Rn;Rn). By (1.33) and applying Fubini’s Theorem twice, we can
compute ∫

Rn
ϕ · dDαf = −

∫
Rn
f divαϕ(x) dx

= −
∫
Rn

divαϕ(x)
(∫

R
χ(−∞,f(x))(t)− χ(−∞,0)(t) dt

)
dx

= −
∫
R

∫
Rn

divαϕ(x)
(
χ{f>t}(x)− χ(−∞,0)(t)

)
dx dt

=
∫
R

∫
Rn
ϕ · dDαχ{f>t} dt

=
∫
Rn
ϕ · d

(∫
R
Dαχ{f>t} dt

)
proving (1.34). Thus

|Dαf | =
∣∣∣∣∫

R
Dαχ{f>t} dt

∣∣∣∣ ≤ ∫
R
|Dαχ{f>t}| dt

and the proof is complete. �

2.6. A fractional version of the Fundamental Theorem of Calculus. Let
α ∈ (0, 1) and let µn,−α be given by (1.1) (note that the expression in (1.1) makes sense
for all α ∈ (−1, 1)). We let
(1.36)
T (Rn) =

{
f ∈ C∞(Rn) : Daf ∈ L1(Rn) ∩ C0(Rn) for all multi-indices a ∈ Nn

0

}
and

T (Rn;Rn) = {ϕ ∈ C∞(Rn;Rn) : ϕi ∈ T (Rn), i = 1, . . . , n}.
By [92, Section 5], the operator

(1.37) div−αϕ(x) = µn,−α

∫
Rn

z · ϕ(x+ z)
|z|n+1−α dz

is well defined for any ϕ ∈ T (Rn;Rn). Moreover, by [92, Theorem 5.3], we have the
following inversion formula

(1.38) − div−α∇α = idT (Rn).
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Exploiting (1.37) and (1.38) we can prove the following fractional version of the Fun-
damental Theorem of Calculus. See [89, Theorem 2.1] for a similar approach.
Theorem 1.20 (Fractional Fundamental Theorem of Calculus). Let α ∈ (0, 1). If
f ∈ C∞c (Rn), then

(1.39) f(y)− f(x) = µn,−α

∫
Rn

(
z − x

|z − x|n+1−α −
z − y

|z − y|n+1−α

)
· ∇αf(z) dz

for any x, y ∈ Rn.

Proof. Since clearly C∞c (Rn) ⊂ T (Rn), we have∇αf ∈ T (Rn;Rn) by [92, Theorem 4.3].
Applying (1.38), we have

f(y)− f(x) = (−div−α∇αf)(y)− (−div−α∇αf)(x)

= µn,−α

∫
Rn

z

|z|n+1−α ·
(
∇αf(x+ z)−∇αf(y + z)

)
dz

for all x, y ∈ Rn. Then (1.39) follows splitting the integral and changing variables. �

An easy consequence of Theorem 1.20 is that the distributional α-divergence of the
kernel appearing in (1.39) is a difference of Dirac deltas.
Proposition 1.21. Let α ∈ (0, 1). If x, y ∈ Rn, then

(1.40) µn,−αdivα
(

· − y
| · −y|n+1−α −

· − x
| · −x|n+1−α

)
= δy − δx

in the sense of Radon measures.

Proof. It follows immediately from (1.39). �

Example 1.22. Let α ∈ (0, 1). For any a, b ∈ R, with a 6= b, consider the function

fa,b,α(x) = |x− b|α−1 sgn(x− b)− |x− a|α−1 sgn(x− a), x ∈ R \ {a, b}.

We have that fa,b,α ∈ BV α(R) with

(1.41) Dαfa,b,α = δb − δa
µ1,−α

in the sense of finite Radon measures. Indeed, one can easily check that fa,b,α ∈ L1(R).
Since n = 1, we have ∇α = divα. Thus, (1.41) follows from (1.40), proving that
f ∈ BV α(R). In addition, note that fa,b,α ∈ BV α(R) \ L

1
1−α (R), since

|fa,b,α(x)|
1

1−α ∼


|x− a|−1 as x→ a,

|x− b|−1 as x→ b.

Thus, Theorem 1.17 cannot hold for n = 1. By the way, note that fa,b,α ∈ W β,1(R) for
all β ∈ (0, α) (this will also be a consequence of Theorem 1.30 below).
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2.7. Compactness. We start with the following Hölder estimate on the L1-norm
of translations of functions in C∞c (Rn).
Proposition 1.23 (L1-estimate on translations). Let α ∈ (0, 1). If f ∈ BV (Rn), then

(1.42)
∫
Rn
|f(x+ y)− f(x)| dx ≤ γn,α |y|α |Dαf |(Rn)

for all y ∈ Rn, where

(1.43) γn,α = µn,−α

∫
Rn

∣∣∣∣∣ z

|z|n+1−α −
z − e1

|z − e1|n+1−α

∣∣∣∣∣ dz.
Proof. Assume f ∈ C∞c (Rn). By (1.39), we have∫

Rn
|f(x+ y)− f(x)| dx ≤ µn,−α

∫
Rn

∫
Rn

∣∣∣∣∣ z

|z|n+1−α −
z − y

|z − y|n+1−α

∣∣∣∣∣ |∇αf(x+ z)| dz dx

= µn,−α‖∇αf‖L1(Rn;Rn)

∫
Rn

∣∣∣∣∣ z

|z|n+1−α −
z − y

|z − y|n+1−α

∣∣∣∣∣ dz.
Now we notice that the integral appearing in the last term is actually a radial function
of y. Indeed, let R ∈ SO(n) be such that Ry = |y|ν, for some ν ∈ Sn−1. Making the
change of variable z = |y| tRw, we obtain∫

Rn

∣∣∣∣∣ z

|z|n+1−α −
z − y

|z − y|n+1−α

∣∣∣∣∣ dz = |y|α
∫
Rn

∣∣∣∣∣
tRw

|w|n+1−α −
tR(w − ν)
|w − ν|n+1−α

∣∣∣∣∣ dw
= |y|α

∫
Rn

∣∣∣∣∣ w

|w|n+1−α −
(w − ν)

|w − ν|n+1−α

∣∣∣∣∣ dw.
Since ν is arbitrary, we may choose ν = e1. We now prove that∫

Rn

∣∣∣∣∣ z

|z|n+1−α −
z − e1

|z − e1|n+1−α

∣∣∣∣∣ dz < +∞.

To this purpose, we notice that∫
B2

∣∣∣∣∣ z

|z|n+1−α −
z − e1

|z − e1|n+1−α

∣∣∣∣∣ dz ≤
∫
B2

1
|z|n−α

dz +
∫
B2

1
|z − e1|n−α

dz

≤ 2
∫
B3

1
|z|n−α

dz = 2nωn
3α
α
.

On the other hand, for all z ∈ Rn \B2 we have
z − e1

|z − e1|n+1−α −
z

|z|n+1−α =
∫ 1

0

d

dt

(
(z − te1)

|z − te1|n+1−α

)
dt

=
∫ 1

0
− e1

|z − te1|n+1−α + (n+ 1− α)(z1 − t)
(z − te1)

|z − te1|n+3−α dt

so that∫
Rn\B2

∣∣∣∣∣ z

|z|n+1−α −
z − e1

|z − e1|n+1−α

∣∣∣∣∣ dz ≤
∫
Rn\B2

∫ 1

0

|z − te1|+ (n− α + 1)|z1 − t|
|z − te1|n+2−α dt dz

≤ (n− α + 2)
∫ 1

0

∫
Rn\B2

1
|z − te1|n+1−α dz dt
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≤ (n− α + 2)
∫ 1

0

∫
Rn\B1

1
|z|n+1−α dz dt

= (n− α + 2) nωn1− α.

We conclude that∫
Rn

∣∣∣∣∣ z

|z|n+1−α −
z − e1

|z − e1|n+1−α

∣∣∣∣∣ dz ≤ nωn

(
23α
α

+ (n− α + 2)
1− α

)
< +∞.

Thus (1.42) follows for all f ∈ C∞c (Rn). Now let f ∈ BV α(Rn) By Theorem 1.16, we
can find (fk)k∈N ⊂ C∞c (Rn) such that fk → f in L1(Rn) and |Dαfk|(Rn)→ |Dαf |(Rn)
as k → +∞. Hence, for all y ∈ Rn, we get∫

Rn
|f(x+ y)− f(x)| dx = lim

k→+∞

∫
Rn
|fk(x+ y)− fk(x)| dx

≤ γn,α |y|α lim
k→+∞

|Dαfk|(Rn)

= γn,α |y|α |Dαf |(Rn)
and the conclusion thus follows. �

Similarly to the classical case, as a consequence of the previous result we can prove
the following key estimate of the L1-distance of a function in BV α(Rn) and its convo-
lution with a mollifier.
Corollary 1.24 (L1-distance with convolution). Let α ∈ (0, 1). If f ∈ BV α(Rn), then
(1.44) ‖%ε ∗ f − f‖L1(Rn) ≤ γn,α ε

α|Dαf |(Rn)
for all ε > 0, where (%ε)ε>0 ⊂ C∞c (Rn) is as in (1.25) and γn,α as in Proposition 1.23.

Proof. By Theorem 1.16, it is enough to prove (1.44) for f ∈ C∞c (Rn). By (1.42), we
get

‖%ε ∗ f − f‖L1(Rn) ≤
∫
Rn

∫
Rn
%(y)|f(x− εy)− f(x)| dy dx

=
∫
Rn
%(y)

∫
Rn
|f(x− εy)− f(x)| dx dy

≤ γn,α ε
α‖∇αf‖L1(Rn;Rn)

∫
B1
%(y)|y|α dy

≤ γn,α ε
α‖∇αf‖L1(Rn;Rn)

and the proof is complete. �

We are now ready to prove following compactness result for the space BV α(Rn).
Theorem 1.25 (Compactness for BV α(Rn)). Let α ∈ (0, 1). If (fk)k∈N ⊂ BV α(Rn)
satisfies

sup
k∈N
‖fk‖BV α(Rn) < +∞,

then there exists a subsequence (fkj)j∈N ⊂ BV α(Rn) and a function f ∈ L1(Rn) such
that

fkj → f in L1
loc(Rn)

as j → +∞.
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Proof. We follow the line of the proof of [6, Theorem 3.23]. Let (%ε)ε>0 ⊂ C∞c (Rn) be
as in (1.25) and set fk,ε = %ε ∗ fk. Clearly fk,ε ∈ C∞(Rn) and
‖fk,ε‖L∞(U) ≤ ‖%ε‖L∞(Rn)‖fk‖L1(Rn), ‖∇fk,ε‖L∞(U ;Rn) ≤ ‖∇%ε‖L∞(Rn;Rn)‖fk‖L1(Rn)

for any open set U b Rn. Thus (fk,ε)k∈N is locally equibounded and locally equicon-
tinuous for each ε > 0 fixed. By a diagonal argument, we can find a sequence (kj)j∈N
such that (fkj ,ε)j∈N converges in C(U) for any open set U b Rn with ε = 1/p for all
p ∈ N. By Corollary 1.24, we thus get

lim sup
h,j→+∞

∫
U
|fkh − fkj | dx = lim sup

h,j→+∞

∫
U
|fkh,1/p − fkj ,1/p| dx

+ lim sup
h,j→+∞

∫
U
|fkh − fkh,1/p|+ |fkj − fkj ,1/p| dx

≤ 2γn,α
pα

sup
k∈N
|Dαfk|(Rn)

for all open set U b Rn. Since p ∈ N is arbitrary and L1(U) is a Banach space, this
shows that (fkj)j∈N converges in L1(U) for all open set U b Rn. Up to extract a further
subsequence (which we do not relabel for simplicity), we also have that fkj(x)→ f(x)
for L n-a.e. x ∈ Rn. By Fatou’s Lemma, we can thus infer that

‖f‖L1(Rn) ≤ lim inf
j→+∞

‖fkj‖L1(Rn) ≤ sup
k∈N
‖fk‖BV α(Rn).

Hence f ∈ L1(Rn) and the proof is complete. �

Remark 1.26 (Improvement of [89, Theorem 2.1]). The argument presented above
can be used to extend the validity of [89, Theorem 2.1] to all exponents p ∈ [1, n

α
),

since our strategy does not rely on the boundedness of Riesz’s transform but only on
the inversion formula (1.38). We leave the details of the proof of this improvement
of [89, Theorem 2.1] to the interested reader.

2.8. The inclusion Wα,1(Rn) ⊂ BV α(Rn). As in the classical case, fractional BV
functions naturally include fractional Sobolev functions.
Theorem 1.27 (Wα,1(Rn) ⊂ BV α(Rn)). Let α ∈ (0, 1). If f ∈ Wα,1(Rn) then f ∈
BV α(Rn), with
(1.45) |Dαf |(Rn) ≤ µn,α[f ]Wα,1(Rn)

and
(1.46)

∫
Rn
f divαϕdx = −

∫
Rn
ϕ · ∇αf dx

for all ϕ ∈ Lipc(Rn;Rn), so that Dαf = ∇αf L n.
Moreover, if f ∈ BV (Rn), then f ∈ Wα,1(Rn) for any α ∈ (0, 1), with

(1.47) ‖f‖Wα,1(Rn) ≤ cn,α‖f‖BV (Rn)

for some cn,α > 0 and

(1.48) ∇αf(x) = µn,α
n+ α− 1

∫
Rn

dDf(y)
|y − x|n+α−1

for L n-a.e. x ∈ Rn.
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Proof. Let f ∈ Wα,1(Rn). For any ϕ ∈ Lipc(Rn;Rn), by Lebesgue’s Dominated Conver-
gence Theorem, Fubini’s Theorem and Lemma 1.1, and recalling (1.4), we can compute∫

Rn
fdivαϕdx = µn,α lim

ε→0

∫
Rn

∫
{|x−y|>ε}

f(x)(y − x) · ϕ(y)
|y − x|n+α+1 dy dx

= µn,α lim
ε→0

∫
Rn

∫
{|x−y|>ε}

ϕ(y) · (y − x)f(x)
|y − x|n+α+1 dx dy

= µn,α lim
ε→0

∫
Rn

∫
{|x−y|>ε}

ϕ(y) · (y − x)(f(x)− f(y))
|y − x|n+α+1 dx dy

= −
∫
Rn
ϕ(y) · ∇αf(y) dy.

This proves (1.46), so that f ∈ BV α(Rn). Inequality (1.45) follows as in Lemma 1.1.
Now let f ∈ BV (Rn). We claim that f ∈ Wα,1(Rn). Indeed, take (fk)k∈N ⊂

C∞(Rn) ∩ BV (Rn) such that fk → f in L1(Rn) and ‖∇fk‖L1(Rn;Rn) → |Df |(Rn) as
k → +∞ (for instance, see [36, Theorem 5.3]). Since W 1,1(Rn) ⊂ Wα,1(Rn) (the proof
of this inclusion is similar to the one of [34, Proposition 2.2], for example), by Fatou’s
Lemma we get that

‖f‖Wα,1(Rn) ≤ lim inf
k→+∞

‖fk‖Wα,1(Rn)

≤ cn,α lim inf
k→+∞

‖fk‖W 1,1(Rn)

= cn,α lim
k→+∞

(‖fk‖L1(Rn) + |Dfk|(Rn))

= cn,α‖f‖BV (Rn).

Since |Df |(Rn) < +∞, by Lemma 1.4 the function in (1.48) is well defined in L1
loc(Rn).

Fix ϕ ∈ C∞c (Rn;Rn). By Corollary 1.3, we can write∫
Rn
f(x) divαϕ(x) dx = µn,α

n+ α− 1

∫
Rn

∫
Rn
f(x) divϕ(y)

|y − x|n+α−1 dy dx.

Recalling Lemma 1.4, applying Fubini’s Theorem twice and integrating by parts, we
obtain∫

Rn

∫
Rn
f(x) divϕ(y)

|y − x|n+α−1 dy dx =
∫
Rn

∫
Rn
f(x) divyϕ(x+ y)

|y|n+α−1 dy dx

=
∫
Rn

∫
Rn
f(x) divxϕ(x+ y)

|y|n+α−1 dy dx

=
∫
Rn
|y|1−n−α

∫
Rn
f(x) divϕ(x+ y) dx dy

= −
∫
Rn
|y|1−n−α

∫
Rn
ϕ(y + x) · dDf(x) dy

= −
∫
Rn

∫
Rn

ϕ(y)
|y − x|n+α−1 dy · dDf(x)

= −
∫
Rn
ϕ(y) ·

∫
Rn

dDf(x)
|x− y|n+α−1 dy.
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Thus we conclude that∫
Rn
f(x) divαϕ(x) dx = − µn,α

n+ α− 1

∫
Rn
ϕ(y) ·

∫
Rn

dDf(x)
|x− y|n+α−1 dy.

Recalling (1.46), this proves (1.48) and the proof is complete. �

We now want to understand in which cases inequality (1.45) is actually an equality.
The key idea to the answer of this question lies in the following simple result.
Lemma 1.28. Let A ⊂ Rn be a measurable set with L n(A) > 0. If F ∈ L1(A;Rm),
then ∣∣∣∣∣

∫
A
F (x) dx

∣∣∣∣∣ ≤
∫
A
|F (x)| dx,

with equality if and only if F = fν a.e. in A for some constant direction ν ∈ Sm−1 and
some scalar function f ∈ L1(A) with f ≥ 0 a.e. in A.
Proof. The inequality is well known and it is obvious that it is an equality if F = fν
a.e. in A for some constant direction ν ∈ Sm−1 and some scalar function f ∈ L1(A)
with f ≥ 0 a.e. in A. So let us assume that∣∣∣∣∣

∫
A
F (x) dx

∣∣∣∣∣ =
∫
A
|F (x)| dx.

If
∫
A F (x) dx = 0, then also

∫
A |F (x)| dx = 0. Thus F = 0 a.e. in A and there is nothing

to prove. If
∫
A F (x) dx 6= 0 instead, then we can write∫

A
|F (x)| − F (x) · ν dx = 0,

with
ν =

∫
A F (x) dx
|
∫
A F (x) dx | ∈ Sm−1.

Therefore, we obtain |F (x)| = F (x) ·ν for a.e. x ∈ A, so that F (x)
|F (x)| ·ν = 1 for a.e. x ∈ A

such that |F (x)| 6= 0. This implies that F = fν a.e. in A with f = |F | ∈ L1(A) and
the conclusion follows. �

As an immediate consequence of Lemma 1.28, we have the following result.
Corollary 1.29. Let α ∈ (0, 1). If f ∈ Wα,1(Rn), then
(1.49) ‖∇αf‖L1(Rn;Rn) ≤ µn,α[f ]Wα,1(Rn),

with equality if and only if f = 0 a.e. in Rn.
Proof. Inequality (1.49) is already proved in (1.45). Note that, given f ∈ L1(Rn),
[f ]Wα,1(Rn) = 0 if and only if f = 0 a.e. and thus, in this case, (1.49) is trivially an
equality.

If (1.49) holds as an equality and f is not equivalent to the zero function, then∫
Rn

(
|∇αf(x)| − µn,α

∫
Rn

|f(y)− f(x)|
|y − x|n+α dy

)
dx = 0

and thus

(1.50)
∣∣∣∣∣
∫
Rn

(f(y)− f(x)) · (y − x)
|y − x|n+α+1 dy

∣∣∣∣∣ =
∫
Rn

|f(y)− f(x)|
|y − x|n+α dy
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for all x ∈ U , for some measurable set U ⊂ Rn such that L n(Rn \ U) = 0. Now
let x ∈ U be fixed. By Lemma 1.28 (applied with A = Rn), (1.50) implies that the
(non-identically zero) vector field

y 7→ (f(y)− f(x)) (y − x), y ∈ Rn,

has constant direction for all y ∈ Vx, for some measurable set Vx ⊂ Rn such that
L n(Rn \ Vx) = 0. Thus, given y, y′ ∈ Vx, the two vectors y − x and y′ − x are linearly
dependent, so that the three points x, y and y′ are collinear. If n ≥ 2, then this
immediately gives L n(Vx) = 0, a contradiction, so that (1.49) must be strict. If
instead n = 1, then we know that
(1.51) x ∈ U =⇒ y 7→ (f(y)− f(x)) (y − x) has constant sign for all y ∈ Vx.
We claim that (1.51) implies that the function f is (equivalent to) a (non-constant)
monotone function. If so, then f /∈ L1(R), in contrast with the fact that f ∈ Wα,1(R),
so that (1.49) must be strict and the proof is concluded. To prove the claim, we argue
as follows. Fix x ∈ U and assume that
(1.52) (f(y)− f(x)) (y − x) > 0
for all y ∈ Vx without loss of generality. Now pick x′ ∈ U ∩ Vx such that x′ > x. Then,
choosing y = x′ in (1.52), we get (f(x′) − f(x)) (x′ − x) > 0 and thus f(x′) > f(x).
Similarly, if x′ ∈ U ∩ Vx is such that x′ < x, then f(x′) < f(x). Hence

ess sup
z<x

f(z) ≤ f(x) ≤ ess inf
z>x

f(z)

for all x ∈ U (where ess sup and ess inf refer to the essential supremum and the essential
infimum respectively) and thus f must be equivalent to a (non-constant) non-decreasing
function. �

2.9. The inclusion BV α(Rn) ⊂ W β,1(Rn) for β < α. In the following result we
prove that BV α(Rn) ⊂ W β,1(Rn) with continuous embedding for all 0 < β < α < 1.
Theorem 1.30 (BV α(Rn) ⊂ W β,1(Rn) for β < α). Let α, β ∈ (0, 1) with β < α. Then
BV α(Rn) ⊂ W β,1(Rn), with
(1.53) [f ]Wβ,1(Rn) ≤ Cn,α,β ‖f‖BV α(Rn),

for all f ∈ BV α(Rn), where

(1.54) Cn,α,β = nωn
α2

α−β
β γβ/αn,α

β(α− β)
and γn,α is as in (1.43).

Proof. Let f ∈ C∞c (Rn) and r > 0. By (1.42), we get

[f ]Wβ,1(Rn) =
∫
Rn

∫
Rn

|f(x+ y)− f(x)|
|y|n+β dx dy

≤
∫
Rn

1
|y|n+β

(
2‖f‖L1(Rn)χRn\Br(y) + γn,α|y|α‖∇αf‖L1(Rn;Rn)χBr(y)

)
dy

= 2nωn
β
r−β‖f‖L1(Rn) + nωn

α− β
γn,αr

α−β‖∇αf‖L1(Rn;Rn)
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≤
(

2nωn
β
r−β + nωn

α− β
γn,αr

α−β
)
‖f‖BV α(Rn),

so that both (1.53) and (1.54) are proved by minimising in r > 0 for all f ∈ C∞c (Rn).
Now let f ∈ BV α(Rn). By Theorem 1.16, there exists (fk)k∈N ⊂ C∞c (Rn) such that
‖fk‖BV α(Rn) → ‖f‖BV α(Rn) and fk → f a.e. as k → +∞. Thus, by Fatou’s Lemma, we
get that

[f ]Wβ,1(Rn) ≤ lim inf
k→+∞

[fk]Wβ,1(Rn) ≤ lim
k→+∞

Cn,α,β ‖fk‖BV α(Rn) = Cn,α,β ‖f‖BV α(Rn)

and the conclusion follows. �

Note that the constant in (1.54) satisfies limβ→α− Cn,α,β = +∞. As an immediate
consequence of Theorem 1.30, we get that BV α(Rn) ⊂ BV β(Rn) for all 0 < β < α < 1.

2.10. Relation between BV α(Rn) and bv(Rn). Given α ∈ (0, 1), we notice that

(1.55) ‖(−∆)α2 f‖L1(Rn) ≤ νn,α[f ]Wα,1(Rn)

for all f ∈ C∞c (Rn). Thus the linear operator

(−∆)α2 : C∞c (Rn)→ L1(Rn)

can be continuously extended to a linear operator

(1.56) (−∆)α2 : Wα,1(Rn)→ L1(Rn),

for which we retain the same notation.
Given α ∈ (0, 1) and ε > 0, for all f ∈ Wα,1(Rn) we set

(−∆)α/2ε f(x) = νn,α

∫
{|h|>ε}

f(x+ h)− f(x)
|h|n+α dh.

By Lebesgue’s Dominate Convergence Theorem, we have that

lim
ε→0
‖(−∆)α/2ε f − (−∆)α2 f‖L1(Rn) = 0

for all f ∈ Wα,1(Rn). Thus, arguing as in the proof of [84, Lemma 2.4] (see also [85,
Section 25.1]), for all f ∈ Wα,1(Rn) we have

(1.57) Iα(−∆)α2 f = f in L1(Rn).

Taking advantage of the identity in (1.57), we can prove the following result.
Lemma 1.31 (Relation between BV α(Rn) and bv(Rn)). Let α ∈ (0, 1). The following
properties hold.

(i) If f ∈ BV α(Rn), then u = I1−αf ∈ bv(Rn) with Du = Dαf in M (Rn;Rn).
(ii) If u ∈ BV (Rn), then f = (−∆) 1−α

2 u ∈ BV α(Rn) with

‖f‖L1(Rn) ≤ cn,α‖u‖BV (Rn) and Dαf = Du in M (Rn;Rn).

As a consequence, the operator (−∆) 1−α
2 : BV (Rn)→ BV α(Rn) is continuous.
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Proof. We prove the two properties separately.
Proof of (i). Let f ∈ BV α(Rn). Since f ∈ L1(Rn), we have I1−αf ∈ L1

loc(Rn). By
Fubini’s Theorem, for any ϕ ∈ C∞c (Rn;Rn) we have

(1.58)
∫
Rn
f divαϕdx =

∫
Rn
f I1−αdivϕdx =

∫
Rn
u divϕdx,

proving that u = I1−αf ∈ bv(Rn) with Du = Dαf in M (Rn;Rn).
Proof of (ii). Let u ∈ BV (Rn). By Theorem 1.27, we know that u ∈ W 1−α,1(Rn),

so that f = (−∆) 1−α
2 u ∈ L1(Rn) with ‖f‖L1(Rn) ≤ cn,α‖u‖BV (Rn) by (1.47) and (1.55).

Then, arguing as before, for any ϕ ∈ C∞c (Rn;Rn) we get (1.58), since we have I1−αf = u
in L1(Rn) by (1.57). The proof is complete. �

Remark 1.32 (Integrability issues). Note that the inclusion
I1−α(BV α(Rn)) ⊂ L1

loc(Rn)
in Lemma 1.31 above is sharp. Indeed, by Tonelli’s Theorem it is easily seen that
I1−αχE /∈ L1(Rn) whenever χE ∈ Wα,1(Rn). However, when n ≥ 2, by Theorem 1.17
and by Hardy–Littlewood–Sobolev inequality (see [96, Chapter V, Section 1.2] for
instance), the map I1−α : BV α → Lp(Rn) is continuous for each p ∈

(
n

n−1+α ,
n
n−1

]
.

3. The space BV α,p

3.1. Definition of BV α,p(Rn). Thanks to Lemma 1.31, we can relate functions
with bounded α-variation and functions with bounded variation via Riesz potential
and the fractional Laplacian. We would like to prove a similar result between functions
with bounded α-variation and functions with bounded β-variation, for any couple of
exponents 0 < β < α < 1.

However, although the standard variation of a function f ∈ L1
loc(Rn) is well define,

it is not clear whether the functional
(1.59) ϕ 7→

∫
Rn
f divαϕdx

is well posed for all ϕ ∈ C∞c (Rn;Rn), since divαϕ does not have compact support.
Nevertheless, thanks to Corollary 1.3, the functional in (1.59) is well defined as soon
as f ∈ Lp(Rn) for some p ∈ [1,+∞]. Hence, it seems natural to define the space
(1.60) BV α,p(Rn) = {f ∈ Lp(Rn) : |Dαf |(Rn) <∞}
for any α ∈ (0, 1) and p ∈ [1,+∞]. In particular, BV α,1(Rn) = BV α(Rn). Similarly,
we let

BV 1,p(Rn) = {f ∈ Lp(Rn) : |Df |(Rn) < +∞}
for all p ∈ [1,+∞]. In particular, BV 1,1(Rn) = BV (Rn).

3.2. Weak Gagliardo–Nirenberg–Sobolev inequality. A further justification
for the definition of these new spaces comes from the following fractional version of
the Gagliardo–Nirenberg–Sobolev embedding given in Theorem 1.17: if n ≥ 2 and
α ∈ (0, 1), then BV α(Rn) is continuously embedded in Lp(Rn) for all p ∈

[
1, n

n−α

]
.

Hence, thanks to (1.60), we can equivalently write
BV α(Rn) ⊂ BV α,p(Rn)
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with continuous embedding for all n ≥ 2, α ∈ (0, 1) and p ∈
[
1, n

n−α

]
.

In the case n = 1, the space BV α(R) does not embed in L
1

1−α (R) with continuity
by Example 1.22. However, somehow completing the picture provided by [92], we can
prove that the space BV α(R) continuously embeds in the Lorentz space L

1
1−α ,∞(R). Al-

though this result is truly interesting only for n = 1, we prove it below in all dimensions
for the sake of completeness.
Theorem 1.33 (Weak Gagliardo–Nirenberg–Sobolev inequality). Given α ∈ (0, 1),
there exists a constant cn,α > 0 such that
(1.61) ‖f‖

L
n

n−α ,∞(Rn) ≤ cn,α|Dαf |(Rn)

for all f ∈ BV α(Rn). As a consequence, BV α(Rn) is continuously embedded in Lq(Rn)
for any q ∈ [1, n

n−α).

Proof. Let f ∈ C∞c (Rn). By (1.38), we have

f(x) = −div−α∇αf(x) = −µn,−α
∫
Rn

(y − x) · ∇αf(y)
|y − x|n+1−α dy, x ∈ Rn,

so that

|f(x)| ≤ µn,−α

∫
Rn

|∇αf(y)|
|y − x|n−α

dy = µn,−α
µn,1−α

(n− α) Iα|∇αf |(x), x ∈ Rn.

Since the operator Iα : L1(Rn) → L
n

n−α ,∞(Rn) is continuous by Hardy–Littlewood–
Sobolev inequality (see [96, Theorem 1, Chapter V] or [47, Theorem 1.2.3]), we can
estimate
‖f‖

L
n

n−α ,∞(Rn) ≤
nµn,−α
µn,1−α

‖Iα|∇αf |‖
L

n
n−α ,∞(Rn) ≤ cn,α‖|∇αf |‖L1(Rn) = cn,α |Dαf |(Rn),

where cn,α > 0 is a constant depending only on n and α. Thus, inequality (1.61)
follows for all f ∈ C∞c (Rn). Now let f ∈ BV α(Rn). By Theorem 1.16, there exists
(fk)k∈N ⊂ C∞c (Rn) such that fk → f a.e. in Rn and |Dαfk|(Rn) → |Dαf |(Rn) as
k → +∞. By Fatou’s Lemma in Lorentz spaces (see [47, Exercise 1.4.11] for example),
we thus get
‖f‖

L
n

n−α ,∞(Rn) ≤ lim inf
k→+∞

‖fk‖L n
n−α ,∞(Rn) ≤ cn,α lim

k→+∞
|Dαfk|(Rn) = cn,α|Dαf |(Rn)

and so (1.61) readily follows. Finally, thanks to [47, Proposition 1.1.14], we obtain the
continuous embedding of BV α(Rn) in Lq(Rn) for all q ∈ [1, n

n−α). �

Remark 1.34 (The embedding BV α(R) ⊂ L
1

1−α ,∞(R) is sharp). Let α ∈ (0, 1). The
continuous embedding BV α(R) ⊂ L

1
1−α ,∞(R) is sharp at the level of Lorentz spaces, in

the sense that BV α(Rn) \ L
1

1−α ,q(R) 6= ∅ for any q ∈ [1,+∞). Indeed, if we let
fα(x) = |x− 1|α−1 sgn(x− 1)− |x|α−1 sgn(x), x ∈ R \ {0, 1},

then fα ∈ BV α(R) by Example 1.22, and it is not difficult to prove that fα ∈
L

1
1−α ,∞(R). However, we can find a constant cα > 0 such that

|fα(x)| ≥ cα|x|α−1χ(− 1
4 ,

1
4)(x) =: gα(x), x ∈ R \ {0, 1},
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so that dfα ≥ dgα , where dfα and dgα are the distribution functions of fα and gα. A
simple calculation shows that

dgα(s) =


1
2 if 0 < s ≤ cα41−α

2
(
cα
t

) 1
1−α

if s > cα41−α,

so that, by [47, Proposition 1.4.9], we obtain

‖fα‖q
L

1
1−α ,q(R)

≥ ‖gα‖q
L

1
1−α ,q(R)

= 1
1− α

∫ +∞

0
[dgα(s)]q(1−α) sq−1 ds

≥ 2q(1−α)

1− α

∫ +∞

cα41−α
s−qsq−1 ds = +∞

and thus fα /∈ L
1

1−α ,q(R) for any q ∈ [1,+∞).
We collect the above continuous embeddings in the following statement.

Corollary 1.35 (The embedding BV α ⊂ BV α,p). Let α ∈ (0, 1) and p ∈
[
1, n

n−α

)
. We

have BV α(Rn) ⊂ BV α,p(Rn) with continuous embedding. In addition, if n ≥ 2, then
also BV α(Rn) ⊂ BV α, n

n−α (Rn) with continuous embedding.

3.3. Relation between BV β and BV α,p for β < α and p > 1. With Corol-
lary 1.35 at hands, we are finally ready to investigate the relation between α-variation
and β-variation for 0 < β < α < 1.
Lemma 1.36. Let 0 < β < α < 1. The following hold.
(i) If f ∈ BV β(Rn), then u = Iα−βf ∈ BV α,p(Rn) for any p ∈

(
n

n−α+β ,
n

n−α

)
(includ-

ing p = n
n−α if n ≥ 2), with Dαu = Dβf in M (Rn;Rn).

(ii) If u ∈ BV α(Rn), then f = (−∆)α−β2 u ∈ BV β(Rn) with
‖f‖L1(Rn) ≤ cn,α,β ‖u‖BV α(Rn) and Dβf = Dαu in M (Rn;Rn).

As a consequence, the operator (−∆)α−β2 : BV α(Rn)→ BV β(Rn) is continuous.
Proof. We begin with the following observation. Let ϕ ∈ C∞c (Rn;Rn) and let U ⊂ Rn

be a bounded open set such that suppϕ ⊂ U . By Corollary 1.3 and the semigroup
property (N.58) of the Riesz potential, we can write

divβϕ = I1−βdivϕ = Iα−βI1−αdivϕ = Iα−βdivαϕ.
Similarly, we also have

Iα−β|divαϕ| = Iα−β|I1−αdivϕ| ≤ Iα−βI1−α|divϕ| = I1−β|divϕ|,
so that Iα−β|divαϕ| ∈ L∞(Rn) with

‖Iα−β|divαϕ|‖L∞(Rn) ≤ ‖I1−β|divϕ|‖L∞(Rn) ≤ Cn,β,U‖divϕ‖L∞(Rn)

by Lemma 1.4. We now prove the two statements separately.
Proof of (i). Let f ∈ BV β(Rn) and ϕ ∈ C∞c (Rn;Rn). Thanks to Corollary 1.35,

if n ≥ 2, then f ∈ BV β,q(Rn) for any q ∈ [1, n
n−β ] and so Iα−βf ∈ Lp(Rn) for any

p ∈
(

n
n−α+β ,

n
n−α

]
by (N.59). If instead n = 1, then f ∈ BV β,q(R) for any q ∈ [1, 1

1−β )
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and so Iα−βf ∈ Lp(R) for any p ∈
(

1
1−α+β ,

1
1−α

)
. Since f ∈ L1(Rn) and Iα−β|divαϕ| ∈

L∞(Rn), by Fubini’s Theorem we have

(1.62)
∫
Rn
f divβϕdx =

∫
Rn
f Iα−βdivαϕdx =

∫
Rn
u divαϕdx,

proving that u = Iα−βf ∈ BV α,p(Rn) for any p ∈
(

n
n−α+β ,

n
n−α

)
(including p = n

n−α if
n ≥ 2), with Dαu = Dβf in M (Rn;Rn).

Proof of (ii). Let u ∈ BV α(Rn). By Theorem 1.30, we know that u ∈ Wα−β,1(Rn),
so that f = (−∆)α−β2 u ∈ L1(Rn) with ‖f‖L1(Rn) ≤ cn,α,β ‖u‖BV α(Rn) by (1.56). Then,
arguing as before, for any ϕ ∈ C∞c (Rn;Rn) we get (1.62), since we have Iα−βf = u
in L1(Rn) by (1.57). The proof is complete. �

3.4. Fractional variation of Radon measures. Let α ∈ (0, 1). Exploiting
Proposition 1.2 and Corollary 1.3, it is not difficult to see that, if ϕ ∈ C∞c (Rn;Rn)
then divαϕ ∈ Lipb(Rn). Thus we can define the fractional gradient of any finite Radon
measure µ ∈M (Rn) by setting

〈Dαµ, ϕ〉 = −
∫
Rn

divαϕdµ for all ϕ ∈ C∞c (Rn;Rn),

see also [92, Section 6]. The following result shows that, in accordance with the
classical BV case, BV α functions are exactly the densities of finite Radon measures
having fractional gradient equal to a finite n-vector valued Radon measure.
Proposition 1.37. Let α ∈ (0, 1). If µ ∈ M(Rn) is such that Dαµ ∈ M(Rn;Rn),
then µ = fL n for some f ∈ BV α(Rn).

Proof. Let (%ε)ε>0 ⊂ C∞c (Rn) be a family of standard mollifiers as in (1.25). Arguing
exactly as in the proof of Theorem 1.15, %ε ∗µ ∈ BV α(Rn)∩C∞(Rn) with Dα(%ε ∗µ) =
%ε ∗Dαµ for all ε > 0. By Theorem 1.33, we thus have

‖%ε ∗ µ‖L n
n−α ,∞(Rn) ≤ cn,α‖%ε ∗Dαµ‖L1(Rn;Rn) ≤ cn,α|Dαµ|(Rn)

for all ε > 0. Hence, recalling [47, Propositions 1.1.6 and 1.1.14], the family (%ε ∗µ)ε>0

is uniformly bounded in Lq(Rn) for any given q ∈
[
1, n

n−α

)
. Therefore there exist a

subsequence (%εk ∗ µ)k∈N and a function f ∈ Lq(Rn) such that %εk ∗ µ ⇀ f in Lq(Rn)
as k → +∞. However, %ε ∗ µ ⇀ µ in M (Rn) as ε → 0+, so we must have µ = fL n,
which immediately implies that f ∈ BV α(Rn). �

4. The space BV 0

4.1. Definition of BV 0(Rn) and Structure Theorem. Somehow naturally ex-
tending the validity of Proposition 1.2 to the case α = 0, for f ∈ Lipc(Rn) and
ϕ ∈ Lipc(Rn;Rn) we define

∇0f = I1∇f and div0ϕ = I1divϕ.
It is immediate to check that the integration-by-part formula

(1.63)
∫
Rn
f div0ϕdx = −

∫
Rn
ϕ · ∇0f dx
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holds for all given f ∈ Lipc(Rn) and ϕ ∈ Lipc(Rn;Rn). Hence, in analogy with Defini-
tion 1.9, we are led to the following definition.
Definition 1.38 (BV 0(Rn) space). A function f ∈ L1(Rn) belongs to the space
BV 0(Rn) if

sup
{∫

Rn
f div0ϕdx : ϕ ∈ C∞c (Rn;Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1

}
< +∞.

The proof of the following result is very similar to the one of Theorem 1.10 and we
omit it.
Theorem 1.39 (Structure Theorem for BV 0 functions). Let f ∈ L1(Rn). Then,
f ∈ BV 0(Rn) if and only if there exists a finite vector-valued Radon measure D0f ∈
M (Rn;Rn) such that

(1.64)
∫
Rn
f div0ϕdx = −

∫
Rn
ϕ · dD0f

for all ϕ ∈ C∞c (Rn;Rn). In addition, for any open set U ⊂ Rn it holds

(1.65) |D0f |(U) = sup
{∫

Rn
f div0ϕdx : ϕ ∈ C∞c (U ;Rn), ‖ϕ‖L∞(U ;Rn) ≤ 1

}
.

4.2. The identification BV 0(Rn) = H1(Rn). We now prove that the space
BV 0(Rn) actually coincides with the Hardy space H1(Rn). Precisely, we have the
following result.
Theorem 1.40 (The identification BV 0 = H1). We have BV 0(Rn) = H1(Rn), in the
sense that f ∈ BV 0(Rn) if and only if f ∈ H1(Rn), with D0f = Rf L n in M (Rn;Rn).

Proof. We prove the two inclusions separately.
Proof of H1(Rn) ⊂ BV 0(Rn). Let f ∈ H1(Rn) and assume f ∈ Lipc(Rn). By (1.63),

we immediately get that D0f = Rf L n in M (Rn;Rn) with Rf = ∇0f in L1(Rn;Rn),
so that f ∈ BV 0(Rn). Now let f ∈ H1(Rn). By [97, Chapter III, Section 5.2(b)], we
can find (fk)k∈N ⊂ H1(Rn)∩C∞c (Rn) such that fk → f in H1(Rn) as k → +∞. Hence,
given ϕ ∈ C∞c (Rn;Rn), we have∫

Rn
fk div0ϕdx = −

∫
Rn
ϕ ·Rfk dx

for all k ∈ N. Passing to the limit as k → +∞, we get∫
Rn
f div0ϕdx = −

∫
Rn
ϕ ·Rf dx

so that f ∈ BV 0(Rn) with D0f = Rf L n in M (Rn;Rn) according to (1.65).
Proof of BV 0(Rn) ⊂ H1(Rn). Let f ∈ BV 0(Rn). Since f ∈ L1(Rn), Rf is well-

defined as a (vector-valued) distribution, see [97, Chapter III, Section 4.3]. Thanks
to (1.64), we also have that 〈Rf, ϕ〉 = 〈D0f, ϕ〉 for all ϕ ∈ C∞c (Rn;Rn), so that
Rf = D0f in the sense of distributions. Now let (%ε)ε>0 ⊂ C∞c (Rn) be a family of
standard mollifiers (see e.g. [22, Section 3.2]). We can thus estimate

‖Rf ∗ %ε‖L1(Rn;Rn) = ‖D0f ∗ %ε‖L1(Rn;Rn) ≤ |D0f |(Rn)
for all ε > 0, so that f ∈ H1(Rn) by Proposition 3 in [97, Chapter III, Section 4.3],
with D0f = RfL n in M (Rn;Rn). �



5. THE SPACE Sα,P 27

4.3. Relation between Wα,1(Rn) and H1(Rn). Thanks to the identification es-
tablished in Theorem 1.40, we can prove the following result.
Proposition 1.41. Let α ∈ (0, 1]. The following hold.
(i) If f ∈ H1(Rn), then u = Iαf ∈ BV α, n

n−α (Rn) with Dαu = D0f in M (Rn;Rn).
(ii) If α ∈ (0, 1) and u ∈ Wα,1(Rn), then f = (−∆)α/2u ∈ H1(Rn) with

‖f‖L1(Rn) ≤ µn,−α[u]Wα,1(Rn) and Rf = ∇αu a.e. in Rn.

Proof. We prove the two statements separately.
Proof of (i). Let f ∈ H1(Rn). By Stein–Weiss inequality (see [88, Theorem 2] for

instance), we know that u = Iαf ∈ L
n

n−α (Rn). To prove that |Dαu|(Rn) < +∞, we
exploit Theorem 1.40 and argue similarly as in the proof of Lemma 1.31. Indeed, for
all ϕ ∈ C∞c (Rn;Rn), we can write∫

Rn
f div0ϕdx =

∫
Rn
f Iαdivαϕdx =

∫
Rn
u divαϕdx

by Fubini’s Theorem, since f ∈ L1(Rn) and Iα|divαϕ| ∈ L∞(Rn), being

Iα|divαϕ| = Iα|I1−αdivϕ| ≤ IαI1−α|divϕ| = I1|divϕ| ∈ L∞(Rn)

thanks to the semigroup property (N.58) of the Riesz potential. This proves that
Dαu = D0f in M (Rn;Rn).

Proof of (ii). Let u ∈ Wα,1(Rn). Then f = (−∆)α/2u satisfies

‖f‖L1(Rn) = µn,−α

∫
Rn

∣∣∣∣∣
∫
Rn

u(y)− u(x)
|y − x|n+α dy

∣∣∣∣∣ dx ≤ µn,−α[u]Wα,1(Rn).

To prove that f ∈ H1(Rn), we exploit Theorem 1.40 again. For all ϕ ∈ C∞c (Rn;Rn),
we can write ∫

Rn
u divαϕdx =

∫
Rn
u (−∆)α2 div0ϕdx =

∫
Rn
f div0ϕdx

by Fubini’s Theorem, since u ∈ L1(Rn) and div0ϕ ∈ Lipb(Rn;Rn), proving that f =
(−∆)α/2u ∈ H1(Rn) with D0f = Dαu in M (Rn;Rn). Since Dαu = ∇αuL n by
Theorem 1.27 and D0f = Rf L n by Theorem 1.40, the conclusion follows. �

5. The space Sα,p

5.1. Definition of Sα,p(Rn). We are now tempted to approach fractional Sobolev
spaces from a distributional point of view. Recalling Corollary 1.3, we can give the
following definition.
Definition 1.42 (Weak α-gradient). Let α ∈ (0, 1), p ∈ [1,+∞], f ∈ Lp(Rn). We say
that g ∈ L1

loc(Rn;Rn) is a weak α-gradient of f , and we write g = ∇αf , if∫
Rn
f divαϕdx = −

∫
Rn
g · ϕdx

for all ϕ ∈ C∞c (Rn;Rn).
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For α ∈ (0, 1) and p ∈ [1,+∞], we can thus introduce the distributional fractional
Sobolev space (Sα,p(Rn), ‖ · ‖Sα,p(Rn)) letting

(1.66) Sα,p(Rn) = {f ∈ Lp(Rn) : ∃∇αf ∈ Lp(Rn;Rn)}

and

(1.67) ‖f‖Sα,p(Rn) = ‖f‖Lp(Rn) + ‖∇αf‖Lp(Rn;Rn), ∀f ∈ Sα,p(Rn).

5.2. Lower semicontinuity of Sα,p-energy. Similarly to theBV α-case, the Sα,p-
energy is lower semicontinuous with respect to Lp-convergence. The proof of the fol-
lowing result is very similar to the one of Proposition 1.11 and is left to the reader.
Proposition 1.43. Let α ∈ (0, 1) and p ∈ [1,+∞). If (fk)k∈N ⊂ Sα,p(Rn) is such that

lim inf
k→+∞

‖∇αfk‖Lp(Rn;Rn) < +∞

and fk → f in Lp(Rn) as k → +∞, then f ∈ Sα,p(Rn) with

(1.68) ‖∇αf‖Lp(U ;Rn) ≤ lim inf
k→+∞

‖∇αfk‖Lp(U ;Rn)

for any open set U ⊂ Rn.
We omit the standard proof of the following result.

Proposition 1.44 (Sα,p is a Banach space). Let α ∈ (0, 1) and p ∈ [1,+∞]. The space
(Sα,p(Rn), ‖ · ‖Sα,p(Rn)) is a Banach space.

We leave the proof of the following interpolation result to the reader.
Lemma 1.45 (Interpolation). Let α ∈ (0, 1) and p1, p2 ∈ [1,+∞], with p1 ≤ p2. Then

Sα,p1(Rn) ∩ Sα,p2(Rn) ⊂ Sα,q(Rn)

with continuous embedding for all q ∈ [p1, p2].

5.3. Approximation by smooth functions. Taking advantage of the techniques
developed in the study of the space BV α(Rn) above, we are able to prove the following
approximation result.
Theorem 1.46 (Approximation by C∞ ∩ Sα,p functions). Let α ∈ (0, 1) and p ∈
[1,+∞). The set C∞(Rn) ∩ Sα,p(Rn) is dense in Sα,p(Rn).

Proof. Let (%ε)ε>0 ⊂ C∞c (Rn) be as in (1.25). Fix f ∈ Sα,p(Rn) and consider fε = f ∗%ε
for all ε > 0. By Lemma 1.13, it is easy to check that fε ∈ C∞(Rn) ∩ Sα,p(Rn) with
∇αfε = %ε ∗∇αf for all ε > 0, so that the conclusion follows by standard properties of
the convolution. �

5.4. Approximation by test functions. Given α ∈ (0, 1) and p ∈ [1,+∞], it is
easy to see that, if f ∈ C∞c (Rn), then, by Lemma 1.5, f ∈ Sα,p(Rn) with ∇αf given as
in (1.2).

In the case p = 1, we can prove that C∞c (Rn) is a dense subset of Sα,1(Rn) by
arguing similarly as in the proof of Theorem 1.16.
Theorem 1.47 (Approximation by C∞c functions in Sα,1). Let α ∈ (0, 1). The set
C∞c (Rn) is dense in Sα,1(Rn).
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Proof. Let (ηR)R>0 ⊂ C∞c (Rn) be as in (1.30). Thanks to Theorem 1.46, it is enough to
prove that fηR → f in Sα,1(Rn) as R → +∞ for all f ∈ C∞(Rn) ∩ Sα,1(Rn). Clearly,
fηR → f in L1(Rn) as R→ +∞. We now argue as in the proof of Theorem 1.16. Fix
ϕ ∈ C∞c (Rn;Rn). Then, by Lemma 1.7, we get∫

Rn
fηR divαϕdx =

∫
Rn
f divα(ηRϕ) dx−

∫
Rn
f ϕ · ∇αηR dx−

∫
Rn
f divαNL(ηR, ϕ) dx.

Since f ∈ Sα,1(Rn), we have∫
Rn
f divα(ηRϕ) dx = −

∫
Rn
ηRϕ · ∇αf dx.

Since fηR ∈ C∞c (Rn), we also have∫
Rn
fηR divαϕdx = −

∫
Rn
ϕ · ∇α(ηRf) dx.

Thus we can write∫
Rn

(∇αf −∇α(ηRf)) · ϕdx =
∫
Rn

(1− ηR)ϕ · ∇αf dx

−
∫
Rn
f ϕ · ∇αηR dx−

∫
Rn
f divαNL(ηR, ϕ) dx.

Moreover, we have∣∣∣∣∫
Rn
f ϕ · ∇αηR dx

∣∣∣∣ ≤ µn,α‖ϕ‖L∞(Rn;Rn)

∫
Rn
|f(x)|

∫
Rn

|ηR(y)− ηR(x)|
|y − x|n+α dy dx

and, similarly,∣∣∣∣∫
Rn
f divαNL(ηR, ϕ) dx

∣∣∣∣ ≤ 2µn,α‖ϕ‖L∞(Rn;Rn)

∫
Rn
|f(x)|

∫
Rn

|ηR(y)− ηR(x)|
|y − x|n+α dy dx.

Combining these two estimates, we get that∣∣∣∣∫
Rn

(∇αf −∇α(ηRf)) · ϕdx
∣∣∣∣ ≤ ‖ϕ‖L∞(Rn;Rn)

∫
Rn

(1− ηR)|∇αf | dx

+ 3µn,α‖ϕ‖L∞(Rn;Rn)

∫
Rn
|f(x)|

∫
Rn

|ηR(y)− ηR(x)|
|y − x|n+α dy dx.

We thus conclude that
‖∇αf −∇α(ηRf)‖L1(Rn;Rn) ≤

∫
Rn

(1− ηR)|∇αf | dx

+ 3µn,α
∫
Rn
|f(x)|

∫
Rn

|ηR(y)− ηR(x)|
|y − x|n+α dy dx.

Therefore ∇α(ηRf)→ ∇αf in L1(Rn;Rn) as R→ +∞. Indeed, we have

lim
R→+∞

∫
Rn

(1− ηR)|∇αf | dx = 0

combining (1.30) with Lebesgue’s Dominated Convergence Theorem and

lim
R→+∞

∫
Rn
|f(x)|

∫
Rn

|ηR(y)− ηR(x)|
|y − x|n+α dy dx = 0

combining (1.6), (1.7) and (1.30) with Lebesgue’s Dominated Convergence Theorem.
�
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To prove that C∞c (Rn) is also a dense subset of Sα,p(Rn) for p ∈ (1,+∞), we need
to adopt a different strategy. We consider the space

Sα,p0 (Rn) = C∞c (Rn)‖·‖Sα,p(Rn)

naturally endowed with the Sα,p-norm. The space (Sα,p0 (Rn), ‖·‖Sα,p(Rn)) was introduced
in [89] (with a different, but equivalent, norm). Thanks to [89, Theorem 1.7], for all
α ∈ (0, 1) and p ∈ (1,+∞) we have Sα,p0 (Rn) = Lα,p(Rn), where Lα,p(Rn) is the
Bessel potential space recalled in (N.60). It is known that Lα+ε,p(Rn) ⊂ Wα,p(Rn) ⊂
Lα−ε,p(Rn) with continuous embeddings for all α ∈ (0, 1), p ∈ (1,+∞) and 0 < ε <
min{α, 1− α}, see [89, Theorem 2.2]. In the particular case p = 2, it holds that
Lα,2(Rn) = Wα,2(Rn) for all α ∈ (0, 1), see [89, Theorem 2.2]. In addition,Wα,p(Rn) ⊂
Lα,p(Rn) with continuous embedding for all α ∈ (0, 1) and p ∈ (1, 2], see [96, Chapter V,
Section 5.3].

With this notation, the density of the set C∞c (Rn) in Sα,p(Rn) is obviously equivalent
to the density of the set Sα,p0 (Rn), i.e., of the set Lα,p(Rn), in Sα,p(Rn). We thus
take advantage of some of the properties of the Bessel potential and of the fractional
Laplacian. We begin with the following integration-by-part formula.
Lemma 1.48. Let p, q ∈ (1,+∞) be such that 1

p
+ 1

q
= 1. If f ∈ Lp(Rn) and ϕ ∈

Lq(Rn;Rn), then

(1.69)
∫
Rn
f div0ϕdx = −

∫
Rn
ϕ · ∇0f dx.

Proof. Integrating by parts and applying Fubini’s Theorem, formula (1.69) is easily
proved for all f ∈ C∞c (Rn) and ϕ ∈ C∞c (Rn;Rn). Since the real-valued bilinear func-
tionals

(f, ϕ) 7→
∫
Rn
f div0ϕdx, (f, ϕ) 7→

∫
Rn
ϕ · ∇0f dx,

are both continuous on Lp(Rn) × Lq(Rn;Rn) by Hölder’s inequality and the Lp-conti-
nuity of Riesz transform, the conclusion follows by a simple approximation argument.

�

Adopting the notation introduced in [92, Equation (1.9)], for α ∈ (0, 1) and f ∈
C∞c (Rn), we let

Dαf(x) =
∫
Rn

|f(y + x)− f(y)|
|y|n+α dy

for all x ∈ Rn. In the following result we prove that the operator Dα naturally extends
to a continuous operator from W 1,p(Rn) to Lp(R), see also [60, Lemma p. 114].
Lemma 1.49. Let α ∈ (0, 1) and p ∈ [1,+∞]. The operator Dα : W 1,p(Rn) → Lp(R)
is well defined and satisfies

(1.70) ‖Dαf‖Lp(Rn) ≤
2nωnνn,α
α(1− α) ‖f‖

α
Lp(Rn)‖∇f‖1−α

Lp(Rn;Rn)

for all f ∈ W 1,p(Rn).
Proof. Let f ∈ C∞c (Rn) and r > 0. We can estimate

Dαf(x) ≤ νn,α

(∫
|y|<r

|f(y + x)− f(x)|
|y|n+α dy +

∫
|y|≥r

|f(y + x)− f(x)|
|y|n+α dy

)
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for all x ∈ Rn. By Minkowski’s integral inequality, on the one hand we have∥∥∥∥∥
∫
|y|<r

|f(y + ·)− f(·)|
|y|n+α dy

∥∥∥∥∥
Lp(Rn)

≤
∫
|y|<r

‖f(y + ·)− f(·)‖Lp(Rn)

|y|n+α dy

≤ ‖∇f‖Lp(Rn;Rn)

∫
|y|<r

dy

|y|n+α−1

= nωnr
1−α

1− α ‖∇f‖Lp(Rn;Rn)

(1.71)

while, on the other hand, we have∥∥∥∥∥
∫
|y|≥r

|f(y + ·)− f(·)|
|y|n+α dy

∥∥∥∥∥
Lp(Rn)

≤
∫
|y|<r

‖f(y + ·)‖Lp(Rn) + ‖f‖Lp(Rn)

|y|n+α dy

= 2‖f‖Lp(Rn)

∫
|y|≥r

dy

|y|n+α

= 2nωnr−α
α

‖f‖Lp(Rn).

Hence

‖Dαf‖Lp(Rn) ≤ 2nωnνn,α
(
r1−α

1− α ‖∇f‖L
p(Rn;Rn) + r−α

α
‖f‖Lp(Rn)

)

for all r > 0. Thus (1.70) follows by choosing r = ‖f‖Lp(Rn)
‖∇f‖Lp(Rn; Rn)

for all f ∈ C∞c (Rn).
Since C∞c (Rn) is a dense subset of W 1,p(Rn), we can extend Dα : C∞c (Rn) → Lp(R)
to a linear bounded operator Dα : W 1,p(Rn) → Lp(R) (for which we retain the same
notation) still satisfying (1.70). The proof is complete. �

In the following result, we recall the following self-adjointness property the frac-
tional Laplacian. For the reader’s convenience, we give a brief proof of it below.
Lemma 1.50. Let α ∈ (0, 1) and p, q ∈ [1,+∞] such that 1

p
+ 1

q
= 1. If f ∈ W 1,p(Rn)

and g ∈ W 1,q(Rn), then

(1.72)
∫
Rn
f (−∆)α2 g dx =

∫
Rn
g (−∆)α2 f dx.

Proof. Formula (1.72) is well known for f, g ∈ S(Rn) and can be proved by exploiting
Functional Calculus or by directly using the definition of (−∆)α2 for instance. Since
the real-valued functional

(f, g) 7→
∫
Rn
f (−∆)α2 g dx

is bilinear and continuous on Lp(Rn)×W 1,q(Rn;Rn) by Hölder’s inequality and thanks
to Lemma 1.49 above, the conclusion follows by a simple approximation argument. �

We are now finally ready to prove that C∞c (Rn) is a dense subset of Sα,p(Rn) for
p ∈ (1,+∞).
Theorem 1.51 (Approximation by C∞c functions in Sα,p for p > 1). Let α ∈ (0, 1)
and p ∈ (1,+∞). The set C∞c (Rn) is dense in Sα,p(Rn).
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Proof. We divide the proof in two steps.
Step 1. Let f ∈ Sα,p(Rn) and assume f ∈ W 1,p(Rn) ∩ Lipb(Rn). Given ϕ ∈

C∞c (Rn;Rn), we can write divαϕ = (−∆)α2 div0ϕ with div0ϕ ∈ Lipb(Rn)∩W 1,q(Rn), so
that ∫

Rn
f (−∆)α2 div0ϕdx =

∫
Rn

(−∆)α2 f div0ϕdx

for all ϕ ∈ C∞c (Rn;Rn) by Lemma 1.50. Since (−∆)α2 f ∈ Lp(Rn) by Lemma 1.49, by
Lemma 1.48 we have∫

Rn
(−∆)α2 f div0ϕdx = −

∫
Rn
ϕ · ∇0(−∆)α2 f dx

for all ϕ ∈ C∞c (Rn;Rn). We thus get that ∇αf = ∇0(−∆)α2 f for all f ∈ Sα,p(Rn) ∩
W 1,p(Rn) ∩ Lipb(Rn), so that

c1‖(−∆)α2 f‖Lp(Rn) ≤ [f ]Sα,p(Rn) ≤ c2‖(−∆)α2 f‖Lp(Rn)

for all f ∈ Sα,p(Rn)∩W 1,p(Rn)∩Lipb(Rn), where c1, c2 > 0 are two constants depending
only on p > 1. Thus, recalling the equivalent definition of the space Lα,p(Rn) given
in (N.62), we conclude that

Sα,p(Rn) ∩W 1,p(Rn) ∩ Lipb(Rn) ⊂ Lα,p(Rn)
with continuous embedding.

Step 2. Now fix f ∈ Sα,p(Rn) and let (%ε)ε>0 ⊂ C∞c (Rn) be a family of standard
mollifiers as in (1.25). Setting fε = f ∗ %ε for all ε > 0, arguing as in the proof of
Theorem 1.46, we have that fε → f in Sα,p(Rn) as ε → 0+. By Young’s inequality,
we have that fε ∈ Sα,p(Rn) ∩ W 1,p(Rn) ∩ Lipb(Rn) for all ε > 0. Thus Sα,p(Rn) ∩
W 1,p(Rn) ∩ Lipb(Rn) is a dense subset of Sα,p(Rn). Hence, by Step 1, we get that also
Sα,p0 (Rn) is a dense subset of Sα,p(Rn) and the conclusion follows. �

As an immediate consequence of Theorem 1.51, we obtain the following result.
Corollary 1.52 (The identification Sα,p = Lα,p). Let α ∈ (0, 1) and p ∈ (1,+∞). We
have Sα,p(Rn) = Lα,p(Rn).

Thanks to the identification given by Corollary 1.52, we can prove the following
result.
Proposition 1.53 (Approximation by S0 functions in Sα,p for p > 1). Let α ∈ (0, 1)
and p ∈ (1,+∞). The set S0(Rn) is dense in Sα,p(Rn).

Proof. By Corollary 1.52, we equivalently need to prove that the set S0(Rn) is dense
in Lα,p(Rn). To this aim, let us consider the functional M : (S(Rn), ‖ · ‖Lp(Rn)) → R
defined as

M(f) =
∫
Rn
f(x) dx, f ∈ S(Rn).

Clearly, the linear functional M cannot be continuous on (S(Rn), ‖ · ‖Lp(Rn)) and thus
its kernel S0(Rn) must be dense S(Rn) with respect to the Lp-norm. Since the Bessel
potential

(Id−∆)−α2 : (S(Rn), ‖ · ‖Sα,p(Rn))→ (S(Rn), ‖ · ‖Lp(Rn))
is an isomorphism, the conclusion follows. �
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The following result gives an Lp-estimate on translations of functions in Sα,p(Rn).
Thanks to Corollary 1.52, this result can be derived from the analogous result already
known for functions in Lα,p(Rn). However, the estimate in (1.73) provides an explicit
constant (independent of p) that may be of some interest. The proof of Proposition 1.54
below can be easily done by following the one of Proposition 1.23 and we leave it to
the reader.
Proposition 1.54. Let α ∈ (0, 1) and p ∈ [1,+∞). If f ∈ Sα,p(Rn), then
(1.73) ‖f(·+ y)− f(·)‖Lp(Rn) ≤ γn,α |y|α ‖∇αf‖Lp(Rn;Rn)

for all y ∈ Rn, where γn,α > 0 is as in (1.43).
As a simple consequence of Proposition 1.54, we have the following result, which

is connected to the problem of finding a measurable set E ⊂ Rn such that χE ∈
BV α(Rn) \Wα,1(Rn), see Chapter 2.
Corollary 1.55. Let α, β ∈ (0, 1) and p, q ∈ [1,+∞). If χE ∈ Sβ,q(Rn) with βq > αp,
then χE ∈ Wα,p(Rn) with

[χE]Wα,p(Rn) ≤ cα,β,p,q,n|E|
1
p
− α
βq ‖∇βχE‖

α
β

Lq(Rn;Rn)

for some constant cα,β,p,q,n > 0 depending only on α, β, p, q, and n.

Proof. Let r > 0 and write

[χE]Wα,p(Rn) =
∫
Rn

∫
Rn

|χE(x+ y)− χE(x)|p
|y|n+αp dx dy

=
∫
{|y|<r}

∫
Rn

|χE(x+ y)− χE(x)|
|y|n+αp dx dy

+
∫
{|y|≥r}

∫
Rn

|χE(x+ y)− χE(x)|
|y|n+αp dx dy.

On the one hand, we have∫
{|y|≥r}

1
|y|n+αp

∫
Rn
|χE(x+ y)− χE(x)| dx dy ≤ 2|E|

∫
{|y|≥r}

dy

|y|n+αp = 2nωn|E|
r−αp

αp
.

On the other hand, by Proposition 1.54, we can estimate∫
{|y|<r}

1
|y|n+αp

∫
Rn
|χE(x+ y)− χE(x)| dx dy

=
∫
{|y|<r}

1
|y|n+αp

∫
Rn
|χE(x+ y)− χE(x)|q dx dy

=
∫
{|y|<r}

‖χE(·+ y)− χE(·)‖qLq(Rn)
dy

|y|n+αp

≤ γqn,β ‖∇βχE‖qLq(Rn;Rn)

∫
{|y|<r}

dy

|y|n+αp−βq

= γqn,β ‖∇βχE‖qLq(Rn;Rn)
rβq−αp

βq − αp
.

The conclusion thus follows by choosing r = |E|1/βq/‖∇βχE‖1/β
Lq(Rn;Rn). �
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5.5. Relation between Wα,p and Sα,p. We can thus collect the relation between
Wα,p(Rn) and Sα,p(Rn) in the following result.
Proposition 1.56 (Relation between Wα,p and Sα,p). The following properties hold.

(i) If α ∈ (0, 1) and p ∈ [1, 2], then Wα,p(Rn) ⊂ Sα,p(Rn) with continuous embed-
ding.

(ii) If 0 < α < β < 1 and p ∈ (2,+∞], then W β,p(Rn) ⊂ Sα,p(Rn) with continuous
embedding.

Proof. Property (i) follows from the discussion above for the case p ∈ (1, 2] and from
Theorem 1.27 for the case p = 1. Property (ii) follows from the discussion above for
the case p ∈ (2,+∞), while for the case p = +∞ it is enough to observe that

‖∇αf‖L∞(Rn;Rn) ≤ µn,α sup
x∈Rn

∫
Rn

|f(y)− f(x)|
|y − x|n+α dy

≤ 2µn,α‖f‖L∞(Rn)

∫
{|y|>1}

dy

|y|n+α + µn,α[f ]Wβ,∞(Rn)

∫
{|y|≤1}

dy

|y|n+α−β

≤ cn,α,β‖f‖Wβ,∞(Rn)

for all f ∈ W β,∞(Rn). �

5.6. The inclusion Sα,1(Rn) ⊂ BV α(Rn). As in the classical case, we have
Sα,1(Rn) ⊂ BV α(Rn) with continuous embedding.
Theorem 1.57 (Sα,1(Rn) ⊂ BV α(Rn)). Let α ∈ (0, 1). If f ∈ BV α(Rn), then f ∈
Sα,1(Rn) if and only if |Dαf | � L n, in which case

Dαf = ∇αf L n in M (Rn;Rn).

Proof. Let f ∈ BV α(Rn) and assume that |Dαf | � L n. Then Dαf = gL n for some
g ∈ L1(Rn;Rn). But then, by Theorem 1.10, we must have∫

Rn
f divαϕdx = −

∫
Rn
g · ϕdx

for all ϕ ∈ C∞c (Rn;Rn), so that f ∈ Sα,1(Rn) with ∇αf = g. Viceversa, if f ∈ Sα,1(Rn)
then ∫

Rn
f divαϕdx = −

∫
Rn
ϕ · ∇αf dx

for all ϕ ∈ C∞c (Rn;Rn), so that f ∈ BV α(Rn) with Dαf = ∇αf L n in M (Rn;Rn). �

5.7. The inclusion Sα,1(Rn) ⊂ BV α(Rn) is strict. As a simple consequence of
Lemma 1.31, we can prove that the inclusion Sα,1(Rn) ⊂ BV α(Rn) is strict for all
α ∈ (0, 1) and n ≥ 1.
Theorem 1.58 (BV α(Rn) \ Sα,1(Rn) 6= ∅). Let α ∈ (0, 1). The inclusion Sα,1(Rn) ⊂
BV α(Rn) is strict.

Proof. Let u ∈ BV (Rn) \W 1,1(Rn). By Lemma 1.31, we know that f = (−∆) 1−α
2 u ∈

BV α(Rn) with Du = Dαf in M (Rn;Rn). But then |Dαf | is not absolutely continuous
with respect to L n, so that f /∈ Sα,1(Rn) by Theorem 1.57. �
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5.8. The inclusion Wα,1(Rn) ⊂ Sα,1(Rn) is strict. By Theorem 1.58, we know
that the inclusion Wα,1(Rn) ⊂ BV α(Rn) is strict. In the following result we prove that
also the inclusion Wα,1(Rn) ⊂ Sα,1(Rn) is strict.
Theorem 1.59 (Sα,1(Rn)\Wα,1(Rn) 6= ∅). Let α ∈ (0, 1). The inclusion Wα,1(Rn) ⊂
Sα,1(Rn) is strict.

Proof. We argue by contradiction. If Wα,1(Rn) = Sα,1(Rn), then the inclusion map
Wα,1(Rn) ↪→ Sα,1(Rn) is a linear and continuous bijection. Thus, by the Inverse
Mapping Theorem, there must exist a constant C > 0 such that

(1.74) [g]Wα,1(Rn) ≤ C‖g‖Sα,1(Rn)

for all g ∈ Sα,1(Rn). Now let f ∈ BV α(Rn) \ Sα,1(Rn) be given by Theorem 1.58.
By Theorem 1.16, there exists (fk)k∈N ⊂ C∞c (Rn) such that fk → f in L1(Rn) and
|Dαfk|(Rn) → |Dαf |(Rn) as k → +∞. Up to extract a subsequence (which we do
not relabel for simplicity), we can assume that fk(x)→ f(x) as k → +∞ for L n-a.e.
x ∈ Rn. By (1.74) and Fatou’s Lemma, we have that

[f ]Wα,1(Rn) ≤ lim inf
k→+∞

[fk]Wα,1(Rn)

≤ C lim inf
k→+∞

‖fk‖Sα,1(Rn)

= C lim
k→+∞

‖fk‖BV α(Rn)

= C ‖f‖BV α(Rn) < +∞.

Therefore f ∈ Wα,1(Rn), in contradiction with Theorem 1.58. We thus must have that
the inclusion map Wα,1(Rn) ↪→ Sα,1(Rn) cannot be surjective. �

5.9. The inclusion BV α(Rn) ⊂ Bα
1,∞(Rn) is strict for all n ≥ 2. From Propo-

sition 1.23, one immediately deduces that the inclusion BV α(Rn) ⊂ Bα
1,∞(Rn) holds

continuously for all α ∈ (0, 1), where Bα
p,q(Rn) is the Besov space, see [55, Chapter 14].

In the following result, we show that this inclusion is actually strict whenever n ≥ 2.
Theorem 1.60 (Bα

1,∞(Rn) \ BV α(Rn) 6= ∅ for n ≥ 2). Let α ∈ (0, 1) and n ≥ 2. The
inclusion BV α(Rn) ⊂ Bα

1,∞(Rn) is strict.

Proof. By Theorem 1.17, we just need to prove that Bα
1,∞(Rn) \ L

n
n−α (Rn) 6= ∅. Let

η1 ∈ C∞c (Rn) be as in (1.30) and let f(x) = η1(x)|x|α−n for all x ∈ Rn. On the one
side, we clearly have f /∈ L

n
n−α (Rn). On the other side, for all h ∈ Rn with |h| < 1, we

can estimate∫
Rn
|f(x+ h)− f(x)| dx ≤

∫
{|x|>2|h|}

∣∣∣η1(x+ h)|x+ h|α−n − η1(x)|x|α−n
∣∣∣ dx

+
∫
{|x|<3|h|}

η1(x)|x|α−n dx

≤ C|h|
∫
{|x|>2|h|}

|x|α−n−1 dx+ C
∫
{|x|<3|h|}

|x|α−n dx

= C|h|
∫ +∞

2|h|
rα−2 dr + C

∫ 3|h|

0
rα−1 dr = C|h|α,
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where C > 0 is a constant depending only on n and α (that may vary from line to
line). Thus f ∈ Bα

1,∞(Rn) and the conclusion follows. �



CHAPTER 2

A distributional approach to fractional Caccioppoli perimeter

1. Fractional Caccioppoli sets

1.1. Definition of fractional Caccioppoli sets and the Gauss–Green for-
mula. As in the classical case (see [6, Definition 3.3.5] for instance), we start with the
following definition.
Definition 2.1 (Fractional Caccioppoli set). Let α ∈ (0, 1) and let E ⊂ Rn be a
measurable set. For any open set Ω ⊂ Rn, the fractional Caccioppoli α-perimeter in Ω
is the fractional variation of χE in Ω, i.e.

|DαχE|(Ω) = sup
{∫

E
divαϕdx : ϕ ∈ C∞c (Ω;Rn), ‖ϕ‖L∞(Ω;Rn) ≤ 1

}
.

We say that E is a set with finite fractional Caccioppoli α-perimeter in Ω if |DαχE|(Ω) <
+∞. We say that E is a set with locally finite fractional Caccioppoli α-perimeter in Ω
if |DαχE|(U) < +∞ for any U b Ω.

We can now state the following fundamental result relating non-local distributional
gradients of characteristic functions of fractional Caccioppoli sets and vector valued
Radon measures.
Theorem 2.2 (Gauss–Green formula for fractional Caccioppoli sets). Let α ∈ (0, 1)
and let Ω ⊂ Rn be an open set. A measurable set E ⊂ Rn is a set with finite fractional
Caccioppoli α-perimeter in Ω if and only if DαχE ∈M (Ω;Rn) and

(2.1)
∫
E

divαϕdx = −
∫

Ω
ϕ · dDαχE

for all ϕ ∈ C∞c (Ω;Rn). In addition, for any open set U ⊂ Ω it holds

(2.2) |DαχE|(U) = sup
{∫

E
divαϕ dx : ϕ ∈ C∞c (U ;Rn), ‖ϕ‖L∞(U ;Rn) ≤ 1

}
.

Proof. The proof is similar to the one of Theorem 1.10. If DαχE ∈M (Ω;Rn) and (2.1)
holds, then E has finite fractional Caccioppoli α-perimeter in Ω by Definition 2.1.

If E is a set with finite fractional Caccioppoli α-perimeter in Ω, then define the
linear functional L : C∞c (Ω;Rn)→ R setting

L(ϕ) = −
∫
E

divαϕdx ∀ϕ ∈ C∞c (Ω;Rn).

Note that L is well defined thanks to Corollary 1.3. Since E has finite fractional
Caccioppoli α-perimeter in Ω, we have

C(U) = sup
{
L(ϕ) : ϕ ∈ C∞c (U ;Rn), ‖ϕ‖L∞(U ;Rn) ≤ 1

}
< +∞

for each open set U ⊂ Ω, so that
|L(ϕ)| ≤ C(U)‖ϕ‖L∞(U ;Rn) ∀ϕ ∈ C∞c (U ;Rn).

37
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Thus, by the density of C∞c (Ω;Rn) in Cc(Ω;Rn), the functional L can be uniquely
extended to a continuous linear functional L̃ : Cc(Ω;Rn)→ R and the conclusion follows
by Riesz’s Representation Theorem. �

1.2. Lower semicontinuity of fractional variation. As in the classical case,
the variation measure of a set with finite fractional Caccioppoli α-perimeter is lower
semicontinuous with respect to the local convergence in measure. We also achieve a
weak convergence result.
Proposition 2.3 (Lower semicontinuity of fractional variation measure). Let α ∈ (0, 1)
and let Ω ⊂ Rn be an open set. If (Ek)k∈N is a sequence of sets with finite fractional
Caccioppoli α-perimeter in Ω and χEk → χE in L1

loc(Rn), then
(2.3) DαχEk ⇀ DαχE inM(Ω;Rn),
and
(2.4) |DαχE|(Ω) ≤ lim inf

k→+∞
|DαχEk |(Ω).

Proof. Up to extract a further subsequence, we can assume that χEk(x) → χE(x) as
k → +∞ for L n-a.e. x ∈ Rn. Now let ϕ ∈ C∞c (Ω;Rn) be such that ‖ϕ‖L∞(Ω;Rn) ≤ 1.
Then divαϕ ∈ L1(Rn) by Corollary 1.3 and so, by Lebesgue’s Dominated Convergence
Theorem, we have∫

E
divαϕ dx = lim

k→+∞

∫
Ek

divαϕ dx = − lim
k→+∞

∫
Ω
ϕ · dDαχEk ≤ lim inf

k→+∞
|DαχEk |(Ω).

By Theorem 2.2, we get (2.4). The convergence in (2.3) easily follows. �

1.3. Fractional isoperimetric inequality. As a simple application of Theo-
rem 1.17, we can prove the following fractional isoperimetric inequality.
Theorem 2.4 (Fractional isoperimetric inequality). Let α ∈ (0, 1) and n ≥ 2. There
exists a constant cn,α > 0 such that

(2.5) |E|
n−α
n ≤ cn,α|DαχE|(Rn)

for any set E ⊂ Rn such that |E| < +∞ and |DαχE|(Rn) < +∞.
Proof. Since χE ∈ BV α(Rn), the result follows directly by Theorem 1.17. �

1.4. Compactness. As an application of Theorem 1.25, we can prove the follow-
ing compactness result for sets with finite fractional Caccioppoli α-perimeter in Rn (see
for instance [58, Theorem 12.26] for the analogous result in the classical case).
Theorem 2.5 (Compactness for sets with finite fractional Caccioppoli α-perimeter).
Let α ∈ (0, 1) and R > 0. If (Ek)k∈N is a sequence of sets with finite fractional
Caccioppoli α-perimeter in Rn such that

sup
k∈N
|DαχEk |(Rn) < +∞ and Ek ⊂ BR ∀k ∈ N,

then there exist a subsequence (Ekj)j∈N and a set E ⊂ BR with finite fractional Cac-
cioppoli α-perimeter in Rn such that

χEkj → χE in L1(Rn)
as j → +∞.
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Proof. Since Ek ⊂ BR for all k ∈ N, we clearly have that (χEk)k∈Rn ⊂ BV α(Rn). By
Theorem 1.25, there exist a subsequence (Ekj)j∈N and a function f ∈ L1(Rn) such that
χEkj → f in L1

loc(Rn) as j → +∞. Since again Ekj ⊂ BR for all j ∈ N, we have that
χEkj → f in L1(Rn) as j → +∞. Up to extract a further subsequence (which we do
not relabel for simplicity), we can assume that χEkj (x)→ f(x) for L n-a.e. x ∈ Rn as
j → +∞, so that f = χE for some E ⊂ BR. By Proposition 2.3 we conclude that E
has finite fractional Caccioppoli α-perimeter in Rn. �

Theorem 2.5 can be applied to prove the following compactness result for sets with
locally finite fractional Caccioppoli α-perimeter.
Corollary 2.6 (Compactness for locally finite fractional Caccioppoli α-perimeter sets).
Let α ∈ (0, 1). If (Ek)k∈N is a sequence of sets with locally finite fractional Caccioppoli
α-perimeter in Rn such that

(2.6) sup
k∈N
|DαχEk |(BR) < +∞ ∀R > 0,

then there exist a subsequence (Ekj)j∈N and a set E with locally finite fractional Cac-
cioppoli α-perimeter in Rn such that

χEkj → χE in L1
loc(Rn)

as j → +∞.

Proof. We divide the proof into two steps, essentially following the strategy presented
in the proof of [58, Corollary 12.27].

Step 1. Let F ⊂ Rn be a set with locally finite fractional Caccioppoli α-perimeter
in Rn. We claim that
(2.7) |DαχF∩BR |(Rn) ≤ |DαχF |(BR) + 3µn,αPα(BR) ∀R > 0.
Indeed, let R′ < R and let (uk)k∈N ⊂ C∞c (Rn) be such that supp(uk) b BR and 0 ≤
uk ≤ 1 for all k ∈ N and also uk → χBR′ in W

α,1(Rn) as k → +∞. If ϕ ∈ C∞c (Rn;Rn)
with ‖ϕ‖L∞(Rn;Rn) ≤ 1, then∫

F
uk divαϕdx =

∫
F

divα(ukϕ) dx−
∫
F
ϕ · ∇αuk dx−

∫
F

divαNL(uk, ϕ) dx

≤
∫
F

divα(ukϕ) dx+ 3µn,α[uk]Wα,1(Rn)

≤ |DαχF |(BR′) + 3µn,α[uk]Wα,1(Rn)

≤ |DαχF |(BR) + 3µn,α[uk]Wα,1(Rn)

by Lemma 1.7. Passing to the limit as k → +∞, we conclude that∫
F∩BR′

divαϕdx ≤ |DαχF |(BR) + 3µn,αPα(BR′)

and thus
|DαχF∩BR′ |(R

n) ≤ |DαχF |(BR) + 3µn,αPα(BR)
by Theorem 2.2. Since χF∩BR′ → χF∩BR in L1(Rn) as R′ → R, the claim in (2.7)
follows by Proposition 2.3.
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Step 2. By (2.6) and (2.7), we can apply Theorem 2.5 to (Ek ∩ Bj)k∈N for each
fixed j ∈ N. By a standard diagonal argument, we find a subsequence (Ekh)h∈N and
a sequence (Fj)j∈N of sets with finite fractional Caccioppoli α-perimeter such that
χEkh∩Bj → χFj in L1(Rn) as h → +∞ for each j ∈ N. Up to null sets, we have
Fj ⊂ Fj+1, so that χEkh → χE in L1

loc(Rn) with E = ⋃
j∈N Fj. The conclusion thus

follows by Proposition 2.3. �

1.5. Fractional reduced boundary. Thanks to the scaling property of the frac-
tional divergence, we have

(2.8) DαχλE = λn−α(δλ)#D
αχE on λΩ,

where δλ(x) = λx for all x ∈ Rn and λ > 0. Indeed, we can compute∫
λE

divαϕdx = λn
∫
E

(divαϕ) ◦ δλ dx = λn−α
∫
E

divα(ϕ ◦ δλ) dx

for all ϕ ∈ C∞c (Ω;Rn). In analogy with the classical case, we are thus led to the
following definition.
Definition 2.7 (Fractional reduced boundary). Let α ∈ (0, 1) and let Ω ⊂ Rn be an
open set. If E ⊂ Rn is a set with finite fractional Caccioppoli α-perimeter in Ω, then
we say that a point x ∈ Ω belongs to the fractional reduced boundary of E (inside Ω),
and we write x ∈ FαE, if

x ∈ supp(DαχE) and ∃ lim
r→0

DαχE(Br(x))
|DαχE|(Br(x)) ∈ Sn−1.

We thus let

ναE : Ω ∩FαE → Sn−1, ναE(x) = lim
r→0

DαχE(Br(x))
|DαχE|(Br(x)) , x ∈ Ω ∩FαE,

be the (measure theoretic) inner unit fractional normal to E (inside Ω).
As a consequence of Definition 2.7 and arguing similarly as in the proof of Propo-

sition 1.14, if E ⊂ Rn is a set with finite fractional Caccioppoli α-perimeter in Ω, then
the following Gauss–Green formula

(2.9)
∫
E

divαϕdx = −
∫

Ω∩FαE
ϕ · ναE d|DαχE|,

holds for any ϕ ∈ Lipc(Ω;Rn).

1.6. Sets of finite fractional perimeter are fractional Caccioppoli sets.
In analogy with the classical case and with the inclusion Wα,1(Rn) ⊂ BV α(Rn), we
can show that sets with finite fractional α-perimeter have finite fractional Caccioppoli
α-perimeter. Recall that the fractional α-perimeter of a set E ⊂ R in an open set
Ω ⊂ Rn is defined as

Pα(E; Ω) =
∫

Ω

∫
Ω

|χE(x)− χE(y)|
|x− y|n+α dx dy + 2

∫
Ω

∫
Rn\Ω

|χE(x)− χE(y)|
|x− y|n+α dx dy,

see [27] for an account on this subject.
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Proposition 2.8 (Sets of finite fractional perimeter are fractional Caccioppoli sets).
Let α ∈ (0, 1) and let Ω ⊂ Rn be an open set. If E ⊂ Rn satisfies Pα(E; Ω) < +∞,
then E is a set with finite fractional Caccioppoli α-perimeter in Ω with

(2.10) |DαχE|(Ω) ≤ µn,αPα(E; Ω)
and

(2.11)
∫
E

divαϕdx = −
∫

Ω
ϕ · ∇αχE dx

for all ϕ ∈ Lipc(Ω;Rn), so that DαχE = ναE |DαχE| = ∇αχE L n. Moreover, if E is
such that |E| < +∞ and P (E) < +∞, then χE ∈ Wα,1(Rn) for any α ∈ (0, 1), and

(2.12) ∇αχE(x) = µn,α
n+ α− 1

∫
Rn

νE(y)
|y − x|n+α−1 d|DχE|(y)

for L n-a.e. x ∈ Rn.

Proof. Note that ∇αχE ∈ L1(Ω;Rn), because∫
Ω
|∇αχE| dx ≤ µn,α

∫
Ω

∫
Rn

|χE(y)− χE(x)|
|y − x|n+α dy dx

≤ µn,α

∫
Ω

∫
Ω

|χE(y)− χE(x)|
|y − x|n+α dy dx+ µn,α

∫
Ω

∫
Rn\Ω

|χE(y)− χE(x)|
|y − x|n+α dy dx

≤ µn,αPα(E; Ω).

Now let ϕ ∈ Lipc(Ω;Rn) be fixed. By Lebesgue’s Dominated Convergence Theorem,
by (1.4) and by Fubini’s Theorem (applied for each fixed ε > 0), we can compute∫

E
divαϕdx = µn,α lim

ε→0

∫
E

∫
{|x−y|>ε}

(y − x) · ϕ(y)
|y − x|n+α+1 dy dx

= µn,α lim
ε→0

∫
Ω

∫
{|x−y|>ε}

ϕ(y) · (y − x)χE(x)
|y − x|n+α+1 dx dy

= −µn,α lim
ε→0

∫
Ω

∫
{|x−y|>ε}

ϕ(y) · (y − x)(χE(y)− χE(x))
|y − x|n+α+1 dx dy

= −
∫

Ω
ϕ · ∇αχE dy.

Thus (2.10) and (2.11) follow by Theorem 2.2 and Definition 2.7. Finally, (2.12) follows
from (1.48), since χE ∈ BV (Rn). �

At the present moment, we do not know if the condition |DαχE|(Ω) < +∞ implies
that also Pα(E; Ω) < +∞.
Remark 2.9 (FαE is not L n-negligible in general). It is important to notice that,
by Proposition 2.8, we have

Pα(E; Ω) < +∞ =⇒ L n(Ω ∩FαE) > 0
including even the case χE ∈ BV (Rn). This shows a substantial difference between
the standard local De Giorgi’s perimeter measure |DχE| and the non-local fractional
De Giorgi’s perimeter measure |DαχE|: the former is supported on a L n-negligible set
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contained in the topological boundary of E, while the latter, in general, can be sup-
ported on a set of positive Lebesgue measure and, for this reason, cannot be expected
to be contained in the topological boundary of E.
Remark 2.10 (Fractional reduced boundary and precise representative). We let

u∗(x) =


lim
r→0

1
|Br(x)|

∫
Br(x)

u(y) dy if the limit exists and is finite,

0 otherwise,

be the precise representative of a function u ∈ L1
loc(Rn;Rm). Note that u∗ is well

defined at any Lebesgue point of u. By Proposition 2.8, if Pα(E; Ω) < +∞ then
DαχE = ∇αχEL n with ∇αχE ∈ L1(Ω;Rn). Therefore the set

Rα
ΩE = {x ∈ Ω : |(∇αχE)∗(x)| = |∇αχE|∗(x) 6= 0}

is such that

(2.13) Rα
ΩE ⊂ Ω ∩FαE

and

ναE(x) = (∇αχE)∗(x)
|∇αχE|∗(x) for all x ∈ Rα

ΩE.

The following simple example shows that the inclusion in (2.13) and the inequality
in (2.10) can be strict.
Example 2.11. Let n = 1, α ∈ (0, 1) and a, b ∈ R, with a < b. It is easy to see that
χ(a,b) ∈ Wα,1(R). By (2.12), for any x 6= a, b we have that

∇αχ(a,b)(x) = µ1,α

α

∫
R

1
|x− y|α

d (δa − δb) (y)

= 2α
α
√
π

Γ
(
1 + α

2

)
Γ
(

1−α
2

) (
1

|x− a|α
− 1
|x− b|α

)
.

We claim that

(2.14) Fα(a, b) = R \
{
a+ b

2

}

while

(2.15) Rα
R(a, b) = R \

{
a,
a+ b

2 , b

}
,

so that inclusion (2.13) is strict. Finally, we also claim that

(2.16) ‖∇αχ(a,b)‖L1(R) < µ1,αPα((a, b)).

Indeed, notice that
∇αχ(a,b)(x) ≥ 0
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if and only if x ≤ a+b
2 , so that

lim
r→0

∫ x+r

x−r
∇αχ(a,b)(y) dy∫ x+r

x−r
|∇αχ(a,b)(y)| dy

=


1 if x < a+ b

2 ,

−1 if x > a+ b

2 .

If x = a+b
2 , then ∫ a+b

2 +r

a+b
2 −r

∇αχ(a,b)(y) dy = 0 ∀r > 0,

and claim (2.14) follows. In particular, we have

να(a,b)(x) =


1 if x <

a+ b

2 ,

−1 if x >
a+ b

2 .

On the other hand, it is clear that

lim
r→0

1
2r

∫ a+r

a−r
∇αχ(a,b)(y) dy = +∞

and
lim
r→0

1
2r

∫ b+r

b−r
∇αχ(a,b)(y) dy = −∞,

so that claim (2.15) follows. To prove (2.16), note that

(2.17) Pα((a, b)) = 4
α(1− α)(b− a)1−α

since Pα((a, b)) = (b−a)1−αPα((0, 1)) by the scaling property of the fractional perimeter
and

Pα((0, 1)) = 2
∫
R\(0,1)

∫ 1

0

1
|y − x|1+α dy dx

= 2
α

∫
R\(0,1)

[
sgn(x− y)
|y − x|α

]y=1

y=0
dx

= 2
α

∫
R\(0,1)

sgn(x− 1)
|1− x|α − sgn(x)

|x|α
dx

= 2
α

∫ ∞
1

1
(x− 1)α −

1
xα

dx+ 2
α

∫ 0

−∞

1
(−x)α −

1
(1− x)α dx

= 4
α

∫ ∞
0

1
xα
− 1

(1 + x)α dx = 4
α(1− α) .

On the other hand, we have

(2.18) ‖∇αχ(a,b)‖L1(R) = 21+αµ1,α

α(1− α)(b− a)1−α.
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Indeed, ‖∇αχ(a,b)‖L1(R) = (b− a)1−α‖∇αχ(0,1)‖L1(R) by (2.8) and

α

µ1,α
‖∇αχ(0,1)‖L1(R) =

∫
R

∣∣∣∣∣ 1
|x|α
− 1
|x− 1|α

∣∣∣∣∣ dx
=
∫ ∞

1

∣∣∣∣∣ 1
xα
− 1

(x− 1)α

∣∣∣∣∣ dx+
∫ 1

0

∣∣∣∣∣ 1
xα
− 1

(1− x)α

∣∣∣∣∣ dx
+
∫ 0

−∞

∣∣∣∣∣ 1
(−x)α −

1
(1− x)α

∣∣∣∣∣ dx
=
∫ ∞

1

1
(x− 1)α −

1
xα

dx+
∫ 1

1
2

1
(1− x)α −

1
xα

dx

+
∫ 1

2

0

1
xα
− 1

(1− x)α dx+
∫ 0

−∞

1
(−x)α −

1
(1− x)α dx

= 2
∫ ∞

0

1
xα
− 1

(1 + x)α dx+ 2
∫ 1

2

0

1
xα
− 1

(1− x)α dx

= 2
1− α

(
1 + 2α−1 + 2α−1 − 1

)
= 21+α

1− α.

Combining (2.17) and (2.18), we get (2.16).
Thanks to Example 2.11 above, we know that inequality (2.10) is strict for E =

(a, b) with a, b ∈ R, a < b, and Ω = Rn. As we did in Section 2.8, we now want to
address this problem in full generality.

Given an open set Ω ⊂ Rn and a measurable set E ⊂ Rn, we define

P̃α(E; Ω) =
∫

Ω

∫
Ω

|χE(y)− χE(x)|
|y − x|n+α dx dy +

∫
Rn\Ω

∫
Ω

|χE(y)− χE(x)|
|y − x|n+α dx dy.

It is obvious to see that

P̃α(E; Ω) ≤ Pα(E; Ω) ≤ 2P̃α(E; Ω).

Arguing similarly as in the proof of Proposition 2.8, it is immediate to see that

(2.19) ‖∇αχE‖L1(Ω;Rn) ≤ µn,αP̃α(E; Ω),

an inequality stronger than that in (2.10). In analogy with Corollary 1.29, we have the
following result.
Corollary 2.12. Let α ∈ (0, 1), Ω ⊂ Rn be an open set and E ⊂ Rn be a measurable
set such that P̃α(E; Ω) < +∞.
(i) If n ≥ 2, L n(E) > 0 and L n(Rn \ E) > 0, then inequality (2.19) is strict.
(ii) If n = 1, then (2.19) is an equality if and only if the following hold:

(a) for a.e. x ∈ Ω ∩ E, L 1((−∞, x) \ E) = 0 vel L 1((x,+∞) \ E) = 0;
(b) for a.e. x ∈ Ω \ E, L 1((−∞, x) ∩ E) = 0 vel L 1((x,+∞) ∩ E) = 0.

Proof. We prove the two statements separately.
Proof of (i). Assume n ≥ 2. Since L n(E) > 0, for a given x ∈ Ω \ E the map

y 7→ (y − x), for y ∈ E,
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does not have constant orientation. Similarly, since L n(Rn \ E) > 0, for a given
x ∈ Ω ∩ E also the map

y 7→ (y − x), for y ∈ Rn \ E,
does not have constant orientation. Hence, by Lemma 1.28, we must have∣∣∣∣∣

∫
E

y − x
|y − x|n+α+1 dy

∣∣∣∣∣ <
∫
E

dy

|y − x|n+α , for x ∈ Ω \ E,

and, similarly,∣∣∣∣∣
∫
Rn\E

y − x
|y − x|n+α+1 dy

∣∣∣∣∣ <
∫
Rn\E

dy

|y − x|n+α , for x ∈ Ω ∩ E.

We thus get

‖∇αχE‖L1(Ω;Rn) = µn,α

∫
Ω

∣∣∣∣∣
∫
Rn

(χE(y)− χE(x)) · (y − x)
|y − x|n+α+1 dy

∣∣∣∣∣ dx
= µn,α

∫
Ω\E

∣∣∣∣∣
∫
E

y − x
|y − x|n+α dy

∣∣∣∣∣ dx+ µn,α

∫
Ω∩E

∣∣∣∣∣
∫
Rn\E

y − x
|y − x|n+α dy

∣∣∣∣∣ dx
< µn,α

∫
Ω\E

∫
E

dy dx

|y − x|n+α + µn,α

∫
Ω∩E

∫
Rn\E

dy dx

|y − x|n+α = µn,αP̃α(E; Ω),

proving (i).
Proof of (ii). Let

fE(y, x) = χE(y)− χE(x)
|y − x|1+α , for x, y ∈ R, y 6= x.

Then we can write
P̃α(E; Ω) =

∫
Ω

∫
R
|fE(y, x)| dy dx

=
∫

Ω

(∫ x

−∞
|fE(y, x)| dy +

∫ +∞

x
|fE(y, x)| dy

)
dx

and

‖∇αχE‖L1(Ω;R) = µ1,α

∫
Ω

∣∣∣∣∣
∫
R
fE(y, x) sgn(y − x) dy

∣∣∣∣∣ dx
= µ1,α

∫
Ω

∣∣∣∣∣
∫ x

−∞
fE(y, x) dy −

∫ +∞

x
fE(y, x) dy

∣∣∣∣∣ dx.
Hence (2.19) is an equality if and only if

(2.20)
∣∣∣∣∣
∫ x

−∞
fE(y, x) dy −

∫ +∞

x
fE(y, x) dy

∣∣∣∣∣ =
∫ x

−∞
|fE(y, x)| dy +

∫ +∞

x
|fE(y, x)| dy

for a.e. x ∈ Ω. Observing that∣∣∣∣∣
∫ x

−∞
fE(y, x) dy −

∫ +∞

x
fE(y, x) dy

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ x

−∞
fE(y, x) dy

∣∣∣∣∣+
∣∣∣∣∣
∫ +∞

x
fE(y, x) dy

∣∣∣∣∣
≤
∫ x

−∞
|fE(y, x)| dy +

∫ +∞

x
|fE(y, x)| dy
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for a.e. x ∈ Ω, we deduce that (2.19) is an equality if and only if∣∣∣∣∣
∫ x

−∞
fE(y, x) dy −

∫ +∞

x
fE(y, x) dy

∣∣∣∣∣ =
∣∣∣∣∣
∫ x

−∞
fE(y, x) dy

∣∣∣∣∣+
∣∣∣∣∣
∫ +∞

x
fE(y, x) dy

∣∣∣∣∣(2.21)

=
∫ x

−∞
|fE(y, x)| dy +

∫ +∞

x
|fE(y, x)| dy(2.22)

for a.e. x ∈ Ω. Now, on the one hand, squaring both sides of (2.21) and simplifying,
we get that (2.19) is an equality if and only if

(2.23)
(∫ x

−∞
fE(y, x) dy

)(∫ +∞

x
fE(y, x) dy

)
= 0

for a.e. x ∈ Ω. On the other hand, we can rewrite (2.22) as

0 ≤
∫ x

−∞
|fE(y, x)| dy −

∣∣∣∣∣
∫ x

−∞
fE(y, x) dy

∣∣∣∣∣
=
∣∣∣∣∣
∫ +∞

x
fE(y, x) dy

∣∣∣∣∣−
∫ +∞

x
|fE(y, x)| dy ≤ 0

for a.e. x ∈ Ω, so that we must have∣∣∣∣∣
∫ x

−∞
fE(y, x) dy

∣∣∣∣∣ =
∫ x

−∞
|fE(y, x)| dy

and ∣∣∣∣∣
∫ +∞

x
fE(y, x) dy

∣∣∣∣∣ =
∫ +∞

x
|fE(y, x)| dy

for a.e. x ∈ Ω. Hence (2.23) can be equivalently rewritten as

(2.24)
(∫ x

−∞
|fE(y, x)| dy

)(∫ +∞

x
|fE(y, x)| dy

)
= 0

for a.e. x ∈ Ω. Thus (2.19) is an equality if and only if at least one of the two integrals in
the left-hand side of (2.24) is zero, and the reader can check that (ii) readily follows. �

Remark 2.13 (Half-lines in Corollary 2.12(ii)). In the case n = 1, it is worth to stress
that (2.19) is always an equality when the set E ⊂ R is (equivalent to) an half-line,
i.e.,

‖∇αχ(a,+∞)‖L1(Ω;R) = µ1,αP̃α((a,+∞); Ω)

for any α ∈ (0, 1), any a ∈ R and any open set Ω ⊂ R such that P̃α((a,+∞); Ω) < +∞.
However, the equality cases in (2.19) are considerably richer. Indeed, on the one side,

‖∇αχ(−5,−4)∪(−1,+∞)‖L1((0,1);R) = µ1,αP̃α((−5,−4) ∪ (−1,+∞); (0, 1))

and, on the other side,

‖∇αχ(−5,−4)∪(0,+∞)‖L1((−1,1);R) < µ1,αP̃α((−5,−4) ∪ (0,+∞); (−1, 1))

for any α ∈ (0, 1). We leave the simple computations to the interested reader.



2. EXISTENCE OF BLOW-UPS FOR FRACTIONAL CACCIOPPOLI SETS 47

2. Existence of blow-ups for fractional Caccioppoli sets

In this section we prove existence of blow-ups for sets with locally finite fractional
Caccioppoli α-perimeter. We follow the approach presented in [36, Section 5.7].

2.1. Integration by parts on balls. We start with the following technical pre-
liminary result.
Lemma 2.14. Let α ∈ (0, 1). For all ε, r > 0 and x ∈ Rn we define

hε,r,x(y) =



1 if 0 ≤ |y − x| ≤ r,

r + ε− |y − x|
ε

if r < |y − x| < r + ε,

0 if |y − x| ≥ r + ε.

Then ∇αhε,r,x ∈ L1(Rn;Rn) with

(2.25) ∇αhε,r,x(y) = µn,α
ε(n+ α− 1)

∫
Br+ε(x)\Br(x)

x− z
|x− z|

|z − y|1−n−α dz

for L n-a.e. y ∈ Rn.

Proof. Clearly hε,r,x ∈ Lipc(Rn) and

∇hε,r,x(y) = −1
ε

y − x
|y − x|

χBr+ε(x)\Br(x)(y).

Therefore by (1.48) we get

∇αhε,r,x(y) = −1
ε

µn,α
n+ α− 1

∫
Rn

1
|z − y|n+α−1

z − x
|z − x|

χBr+ε(x)\Br(x)(z) dz

for L n-a.e. y ∈ Rn. By Theorem 1.27, we get ∇αhε,r,x ∈ L1(Rn;Rn). �

We now proceed with the following formula for integration by parts on balls, see [36,
Lemma 5.2] for the analogous result in the classical setting.
Theorem 2.15 (Integration by parts on balls). Let α ∈ (0, 1). If E ⊂ Rn is a set with
locally finite fractional Caccioppoli α-perimeter in Rn, then
(2.26)∫

E∩Br(x)
divαϕdy +

∫
E
ϕ · ∇αχBr(x) dy +

∫
E

divαNL(χBr(x), ϕ) dy = −
∫
Br(x)

ϕ · dDαχE

for all ϕ ∈ Lipc(Rn;Rn), x ∈ FαE and for L 1-a.e. r > 0.

Proof. Fix ε, r > 0, x ∈ FαE and ϕ ∈ Lipc(Rn;Rn) and let hε,r,x be as in Lemma 2.14.
On the one hand, by (2.9) we have

(2.27)
∫
E

divα(ϕhε,r,x) dy = −
∫

FαE
(hε,r,x ϕ) · dDαχE.

Since hε,r,x(y) → χBr(x)(y) as ε → 0 for any y ∈ Rn and |DαχE|(∂Br(x)) = 0 for
L 1-a.e. r > 0, we can compute

lim
ε→0

∫
FαE

(hε,r,x ϕ) · dDαχE =
∫
Br(x)

ϕ · dDαχE.
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On the other hand, by Lemma 1.1 and Lemma 1.7, we have
(2.28) divα(ϕhε,r,x) = hε,r,x divαϕ+ ϕ · ∇αhε,r,x + divαNL(hε,r,x, ϕ).
We deal with each term of the right-hand side of (2.28) separately. For the first term,
since 0 ≤ hε,r,x ≤ χBr+1(x) for all ε ∈ (0, 1) and hε,r,x → χBr(x) in L1(Rn) as ε → 0, by
Corollary 1.3 and Lebesgue’s Dominated Convergence Theorem we can compute

(2.29) lim
ε→0

∫
E
hε,r,x divαϕdy =

∫
E∩Br(x)

divαϕdy.

For the second term, by (2.25) we have∫
E
ϕ(y) · ∇αhε,r,x(y) dy = µn,α

ε(n+ α− 1)

∫
E
ϕ(y) ·

∫
Br+ε(x)\Br(x)

x− z
|x− z|

|z − y|1−n−α dz dy.

By Fubini’s Theorem, we can compute∫
E
ϕ(y) ·

∫
Br+ε(x)\Br(x)

x− z
|x− z|

|z − y|1−n−α dz dy

=
∫
Br+ε(x)\Br(x)

x− z
|x− z|

·
∫
E
ϕ(y) |z − y|1−n−α dy dz

=
∫ r+ε

r

∫
∂B%(x)

x− z
|x− z|

·
∫
E
ϕ(y) |z − y|1−n−α dy dH n−1(z) d%.

By Lebesgue’s Differentiation Theorem, we have

lim
ε→0

1
ε

∫
E
ϕ(y) ·

∫
Br+ε(x)\Br(x)

x− z
|x− z|

|z − y|1−n−α dz dy

= lim
ε→0

1
ε

∫ r+ε

r

∫
∂B%(x)

x− z
|x− z|

·
∫
E
ϕ(y) |z − y|1−n−α dy dH n−1(z) d%

=
∫
∂Br(x)

x− z
|x− z|

·
∫
E
ϕ(y) |z − y|1−n−α dy dH n−1(z)

=
∫
E
ϕ(y) ·

∫
∂Br(x)

x− z
|x− z|

|z − y|1−n−α dH n−1(z) dy

=
∫
E
ϕ(y) ·

∫
Rn
|z − y|1−n−α dDχBr(x)(z) dy

for L 1-a.e. r > 0. Therefore, by (1.48), we get that

lim
ε→0

∫
E
ϕ · ∇αhε,r,x dy

= µn,α
n+ α− 1

∫
E
ϕ(y) ·

∫
Rn
|z − y|1−n−α dDχBr(x)(z) dy

=
∫
E
ϕ · ∇αχBr(x) dy

(2.30)

for L 1-a.e. r > 0. Finally, for the third term, note that∣∣∣∣∣(z − y) · (ϕ(z)− ϕ(y))(hε,r,x(z)− hε,r,x(y))
|z − y|n+α+1

∣∣∣∣∣ ≤ 2 |ϕ(z)− ϕ(y)|
|z − y|n+α ∈ L1

z(Rn)

for all y ∈ Rn, so that
lim
ε→0

divαNL(hε,r,x, ϕ)(y) = divαNL(χBr(x), ϕ)(y)
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for L n-a.e. y ∈ Rn by Lebesgue’s Dominated Convergence Theorem. Since

|divαNL(hε,r,x, ϕ)(y)| ≤ 2
∫
Rn

|ϕ(z)− ϕ(y)|
|z − y|n+α dz ∈ L1

y(Rn),

again by Lebesgue’s Dominated Convergence Theorem we can compute

(2.31) lim
ε→0

∫
E

divαNL(hε,r,x, ϕ) dy =
∫
E

divαNL(χBr(x), ϕ) dy.

Combining (2.27), (2.28), (2.29), (2.30) and (2.31), we obtain (2.26). �

2.2. Decay estimates. We can now deduce the following decay estimates for the
fractional De Giorgi’s perimeter measure, see [36, Lemma 5.3] for the analogous result
in the classical setting.
Theorem 2.16 (Decay estimates). Let α ∈ (0, 1). There exist An,α, Bn,α > 0 with
the following property. Let E ⊂ Rn be a set with locally finite fractional Caccioppoli
α-perimeter in Rn. For any x ∈ FαE, there exists rx > 0 such that

(2.32) |DαχE|(Br(x)) ≤ An,αr
n−α

and

(2.33) |DαχE∩Br(x)|(Rn) ≤ Bn,αr
n−α

for all r ∈ (0, rx).

Proof. We divide the proof in two steps, dealing with the two estimates separately.
Step 1: proof of (2.32). Fix x ∈ FαE and choose ϕ ∈ Lipc(Rn;Rn) such that

ϕ ≡ ναE(x) in B1(x) and ‖ϕ‖L∞(Rn;Rn) ≤ 1. On the one hand, by Definition 2.7, there
exists rx ∈ (0, 1) such that

(2.34)
∫
Br(x)

ϕ · dDαχE ≥
1
2 |D

αχE|(Br(x))

for all r ∈ (0, rx). On the other hand, by (2.26) we have∫
Br(x)

ϕ · dDαχE ≤
∣∣∣∣∣
∫
E∩Br(x)

divαϕdy
∣∣∣∣∣+

∣∣∣∣∫
E
ϕ · dDαχBr(x)

∣∣∣∣
+
∣∣∣∣∫
E

divαNL(χBr(x), ϕ) dy
∣∣∣∣

(2.35)

for L 1-a.e. r ∈ (0, rx). We now estimate the three terms in the right-hand side sepa-
rately. For the first one, since ϕ(y) ≡ ναE(x) in Br(x), we can estimate∣∣∣∣∣

∫
E∩Br(x)

divαϕ(y) dy
∣∣∣∣∣ ≤ µn,α

∫
E∩Br(x)

∫
Rn

|ϕ(z)− ϕ(y)|
|z − y|n+α dz dy

= µn,α

∫
E∩Br(x)

∫
Rn\Br(x)

|ϕ(z)− ναE(x)|
|z − y|n+α dz dy

≤ 2µn,α
∫
Br(x)

∫
Rn\Br(x)

1
|z − y|n+α dz dy

= 2µn,αPα(Br(x))
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so that

(2.36)
∣∣∣∣∣
∫
E∩Br(x)

divαϕ(y) dy
∣∣∣∣∣ ≤ 2µn,αPα(B1) rn−α.

For the second term, by Proposition 2.8 we can estimate

(2.37)
∣∣∣∣∫
E
ϕ · dDαχBr(x)

∣∣∣∣ ≤ |DαχBr(x)|(Rn) ≤ µn,αPα(Br(x)) = µn,αPα(B1) rn−α.

Finally, by Lemma 1.7, we can estimate∣∣∣∣∫
E

divαNL(χBr(x), ϕ) dy
∣∣∣∣ ≤ ‖divαNL(χBr(x), ϕ)‖L1(Rn)

≤ 2µn,α[χBr(x)]Wα,1(Rn)

= 2µn,αPα(Br(x))
so that

(2.38)
∣∣∣∣∫
E

divαNL(χBr(x), ϕ) dy
∣∣∣∣ ≤ 2µn,αPα(B1) rn−α.

Combining (2.34), (2.35), (2.36), (2.37) and (2.38), we conclude that
(2.39) |DαχE|(Br(x)) ≤ 10µn,αPα(B1) rn−α

for L 1-a.e. r ∈ (0, rx). Hence (2.32) follows with An,α = 10µn,αPα(B1) for all r ∈ (0, rx)
by a simple continuity argument.

Step 2: proof of (2.33). Fix x ∈ FαE and ϕ ∈ Lipc(Rn;Rn) with ‖ϕ‖L∞(Rn;Rn) ≤ 1.
Again by (2.26) we can estimate∣∣∣∣∣

∫
E∩Br(x)

divαϕdy
∣∣∣∣∣ ≤ |DαχE|(Br(x)) + |DαχBr(x)|(Rn) +

∫
E
|divαNL(χBr(x), ϕ)| dy

for L 1-a.e. r ∈ (0, rx). Using (2.37), (2.38) and (2.39), we conclude that
|DαχE∩Br(x)|(Rn) ≤ 13µn,αPα(B1) rn−α

for L 1-a.e. r ∈ (0, rx). Hence (2.33) follows with Bn,α = 13µn,αPα(B1) for all r ∈ (0, rx)
by a simple continuity argument. This concludes the proof. �

As an easy consequence of Theorem 2.16, we can prove that
|DαχE| �H n−α FαE

for any set E with locally finite fractional Caccioppoli α-perimeter in Rn.
Corollary 2.17 (|DαχE| � H n−α FαE). Let α ∈ (0, 1). If E is a set with locally
finite fractional Caccioppoli α-perimeter in Rn, then

(2.40) |DαχE| ≤ 2n−α An,α
ωn−α

H n−α FαE,

where An,α is as in (2.32).
Proof. By (2.32), we have that

Θ∗n−α(|DαχE|, x) = lim sup
r→0

|DαχE|(Br(x))
ωn−αrn−α

≤ An,α
ωn−α

for any x ∈ FαE. Therefore, (2.40) is a simple application of [6, Theorem 2.56]. �
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For any set E of locally finite fractional Caccioppoli α-perimeter, Corollary 2.17
enables us to obtain a lower bound on the Hausdorff dimension of FαE.
Proposition 2.18. Let α ∈ (0, 1). If E is a set with locally finite fractional Caccioppoli
α-perimeter in Rn, then

(2.41) dimH (FαE) ≥ n− α.

Proof. Since |DαχE|(FαE) > 0 by Definition 2.7, by Corollary 2.17 we conclude that
H n−α(FαE) > 0, proving (2.41). �

2.3. No coarea formula in BV α(Rn). As another interesting consequence of
Corollary 2.17, we are able to prove that assumption (1.33) in Theorem 1.19 cannot
be dropped.
Corollary 2.19 (No coarea formula in BV α(Rn)). Let α ∈ (0, 1). There exist f ∈
BV α(Rn) such that

(2.42)
∫
R
|Dαχ{f>t}|(Rn) dt = +∞.

Proof. Let E ⊂ Rn be such that χE ∈ BV (Rn) and consider f = (−∆) 1−α
2 χE. By

Lemma 1.31, we know that f ∈ BV α(Rn) with |Dαf | = |DχE| = H n−1 FE. If∫
R
|Dαχ{f>t}|(Rn) dt < +∞

then
|Dαf | ≤

∫
R
|Dαχ{f>t}| dt

by Theorem 1.19. Thus |Dαf | � H n−α by Corollary 2.17, so that H n−1(FE) = 0,
which is clearly absurd. �

Remark 2.20. If f ∈ Wα,1(Rn), then∫
R
|Dαχ{f>t}|(Rn) dt ≤ µn,α

∫
R
Pα({f > t}) dt = µn,α[f ]Wα,1(Rn) < +∞

by Proposition 2.8 and Tonelli’s Theorem, so that (2.42) does not hold for all f ∈
BV α(Rn). We do not know if (1.35) is an equality for some functions f ∈ BV α(Rn).

2.4. Existence of blow-ups. We can now prove the existence of blow-ups for sets
with locally finite fractional Caccioppoli α-perimeter in Rn, see [36, Theorem 5.13] for
the analogous result in the classical setting. Here and in the following, given a set E
with locally finite fractional Caccioppoli α-perimeter and x ∈ FαE, we let Tan(E, x)
be the set of all tangent sets of E at x, i.e. the set of all limit points in L1

loc(Rn)-topology
of the family

{
E−x
r

: r > 0
}
as r → 0.

Theorem 2.21 (Existence of blow-up). Let α ∈ (0, 1). Let E be a set with locally finite
fractional Caccioppoli α-perimeter in Rn. For any x ∈ FαE we have Tan(E, x) 6= ∅.

Proof. Fix x ∈ FαE. Up to a translation, we can assume x = 0. We set Er = E/r =
{y ∈ Rn : ry ∈ E} for all r > 0. We divide the proof in two steps.
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Step 1. For each p ∈ N, we define Dp
r = Er ∩ Bp. By the α-homogeneity of divα,

we have∫
Dpr

divαϕdy = r−n
∫
E∩Brp

(divαϕ)(r−1z) dz = rα−n
∫
E∩Brp

divα(ϕ(r−1·)) dz

for all ϕ ∈ C∞c (Rn;Rn). By (2.33), we thus get
|DαχDpr |(R

n) = rα−n|DαχE∩Brp |(Rn) ≤ Bn,αp
n−α

for all r > 0 such that rp < r0. Hence, for each fixed p ∈ N, we have
sup
r<r0/p

|DαχDpr |(R
n) ≤ Bn,αp

n−α.

Step 2. Let (rk)k∈N be such that rk → 0 as k → +∞ and let Ek = Erk andD
p
k = Dp

rk
for simplicity. By Step 1, for each p ∈ N we know that

sup
rk<r0/p

|DαχDp
k
|(Rn) ≤ Bn,αp

n−α and Dp
k ⊂ Bp ∀k ∈ N.

Thanks to Theorem 2.5, by a standard diagonal argument we find a subsequence
(Dp

kj
)j∈N and a sequence (Fp)p∈N of sets with finite fractional Caccioppoli α-perimeter

such that χDp
kj
→ χFp in L1(Rn) as j → +∞ for each p ∈ N. Up to null sets, we have

Fp ⊂ Fp+1, so that χEkj → χF in L1
loc(Rn), where F = ⋃

p∈N Fp. We thus conclude that
F ∈ Tan(E, x). �

2.5. Characterisation of blow-ups. We now give a characterisation of the blow-
ups of sets with locally finite fractional Caccioppoli α-perimeter in Rn, see Claim #1
in the proof of [36, Theorem 5.13] for the result in the classical setting.
Proposition 2.22 (Characterisation of blow-ups). Let α ∈ (0, 1). Let E be a set
with locally finite fractional Caccioppoli α-perimeter in Rn and let x ∈ FαE. If F ∈
Tan(E, x), then F is a set of locally finite fractional Caccioppoli α-perimeter such that
ναF (y) = ναE(x) for |DαχF |-a.e. y ∈ FαF .

Proof. As in the proof of Theorem 2.21, we assume x = 0 and we set Er = E/r. By
Theorem 2.21, there exists (rk)k∈N such that rk → 0 as k → +∞ and χErk → χF in
L1

loc(Rn). By Proposition 1.11, it is clear that F has locally finite fractional Caccioppoli
α-perimeter in Rn. By (2.3), we get

DαχErk ⇀ DαχF inMloc(Rn;Rn)

as k → +∞. Thus, for L 1-a.e. L > 0, we have
(2.43) DαχErk (BL)→ DαχF (BL) as k → +∞.
Since

DαχEr = rα−n(δ 1
r
)#D

αχE ∀r > 0,
we have that

|DαχErk |(BL) = rα−nk |DαχE|(BrkL)
and

DαχErk (BL) = rα−nk DαχE(BrkL).
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Since 0 ∈ FαE, we thus get

(2.44) lim
k→+∞

DαχErk (BL)
|DαχErk |(BL) = lim

k→+∞

DαχE(BrkL)
|DαχE|(BrkL) = ναE(0).

Therefore, by Proposition 1.11, (2.43) and (2.44), we obtain that
|DαχF |(BL) ≤ lim inf

k→+∞
|DαχErk |(BL)

= lim
k→+∞

∫
BL
ναE(0) · dDαχErk

=
∫
BL
ναE(0) · dDαχF

=
∫
BL
ναE(0) · ναF d|DαχF |

≤ |DαχF |(BL)
for L 1-a.e. L > 0. We thus get that ναF (y) = ναE(0) for |DαχF |-a.e. y ∈ BL∩FαF and
L 1-a.e. L > 0, so that the conclusion follows. �





CHAPTER 3

Asymptotic behaviour of fractional variation as α→ 1−

1. Truncation and approximation of BV functions

For the reader’s convenience, in this starting section we state and prove two known
results on BV functions and sets with locally finite perimeter.

1.1. Truncation of BV functions. Following [6, Section 3.6] and [36, Sec-
tion 5.9], given f ∈ L1

loc(Rn), we define its precise representative f ? : Rn → [0,+∞]
as

(3.1) f ?(x) = lim
r→0+

1
ωnrn

∫
Br(x)

f(y) dy, x ∈ Rn,

if the limit exists, otherwise we let f ?(x) = 0 by convention.
Theorem 3.1 (Truncation of BV functions). If f ∈ BVloc(Rn), then
(3.2) fχBr ∈ BV (Rn), with D(fχBr) = χ?BrDf + f ?DχBr ,

for L 1-a.e. r > 0. If, in addition, f ∈ L∞(Rn), then (3.2) holds for all r > 0.

Proof. Fix ϕ ∈ C∞c (Rn;Rn) and let U ⊂ Rn be a bounded open set such that supp(ϕ) ⊂
U . Let (%ε)ε>0 ⊂ C∞c (Rn) be a family of standard mollifiers as in (1.25) and set
fε = f∗%ε for all ε > 0. Note that supp

(
%ε∗(χBrϕ)

)
⊂ U and supp

(
%ε∗(χBrdivϕ)

)
⊂ U

for all ε > 0 sufficiently small and for all r > 0. Given r > 0, by Leibniz’s rule and
Fubini’s Theorem, we have∫

Rn
fεχBr divϕdx =

∫
Rn
χBrdiv(fεϕ) dx−

∫
Rn
χBrϕ · ∇fε dx

= −
∫
Rn
fεϕ · dDχBr −

∫
Rn
%ε ∗ (χBrϕ) · dDf.

(3.3)

Since fε → f a.e. in Rn as ε→ 0+ and
|f | %ε ∗ (χBr |divϕ|) ≤ |f |χU‖divϕ‖L∞(Rn) ∈ L1(Rn)

for all ε > 0, by Lebesgue’s Dominated Convergence Theorem we have

lim
ε→0+

∫
Rn
fεχBr divϕdx =

∫
Rn
fχBr divϕdx

for all r > 0. Thus, since %ε ∗ (χBrϕ)→ χ?Brϕ pointwise in Rn as ε→ 0+ and

|%ε ∗ (χBrϕ)| ≤ ‖ϕ‖L∞(Rn;Rn)χU ∈ L1(Rn, |Df |)
for all ε > 0 sufficiently small, again by Lebesgue’s Dominated Convergence Theorem
we have

lim
ε→0+

∫
Rn
%ε ∗ (χBrϕ) · dDf =

∫
Rn
χ?Brϕ · dDf

55
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for all r > 0. Now, by [6, Theorem 3.78 and Corollary 3.80], we know that fε → f ?

H n−1-a.e. in Rn as ε → 0+. As a consequence, given any r > 0, we get that fε → f ?

|DχBr |-a.e. in Rn as ε→ 0+. Thus, if f ∈ L∞(Rn), then
|fεϕ| ≤ ‖f‖L∞(Rn)|ϕ| ∈ L1(Rn, |DχBr |)

for all ε > 0 and so, again by Lebesgue’s Dominated Convergence Theorem, we have

lim
ε→0+

∫
Rn
fεϕ · dDχBr =

∫
Rn
f ?ϕ · dDχBr

for all r > 0. Therefore, if f ∈ L∞(Rn), then we can pass to the limit as ε → 0+

in (3.3) and get∫
Rn
fχBr divϕdx = −

∫
Rn
f ?ϕ · dDχBr −

∫
Rn
χ?Brϕ · dDf

for all ϕ ∈ C∞c (Rn;Rn) and for all r > 0. Since ‖f ?‖L∞(Rn) ≤ ‖f‖L∞(Rn), this
proves (3.2) for all r > 0. If f is not necessarily bounded, then we argue as follows.
Without loss of generality, assume that ‖ϕ‖L∞(Rn;Rn) ≤ 1. We can thus estimate

(3.4)
∣∣∣∣∫

Rn
fεϕ · dDχBr −

∫
Rn
f ?ϕ · dDχBr

∣∣∣∣ ≤ ∫
∂Br
|fε − f ?| dH n−1.

Given any R > 0, by Fatou’s Lemma we thus get that∫ R

0
lim inf
ε→0+

∣∣∣∣∫
Rn
fεϕ · dDχBr −

∫
Rn
f ?ϕ · dDχBr

∣∣∣∣ dr
≤
∫ R

0
lim inf
ε→0+

∫
∂Br
|fε − f ?| dH n−1 dr

≤ lim inf
ε→0+

∫ R

0

∫
∂Br
|fε − f ?| dH n−1 dr

= lim
ε→0+

∫
BR
|fε − f ?| dx = 0.

Hence, the set

(3.5) Z =
{
r > 0 : lim inf

ε→0+

∫
∂Br
|fε − f ?| dH n−1 = 0

}
satisfies L 1((0,+∞)\Z) = 0 and depends neither on the choice of ϕ nor on the choice
of the L n-representative of f . Now fix r ∈ Z and let (εk)k∈N be any sequence realising
the lim inf in (3.5). By (3.4), we thus get

lim
k→+∞

∫
Rn
fεkϕ · dDχBr =

∫
Rn
f ?ϕ · dDχBr

uniformly for all ϕ satisfying ‖ϕ‖L∞(Rn;Rn) ≤ 1. Passing to the limit along the sequence
(εk)k∈N as k → +∞ in (3.3), we get that∫

Rn
fχBr divϕdx = −

∫
Rn
f ?ϕ · dDχBr −

∫
Rn
χ?Brϕ · dDf

for all ϕ ∈ C∞c (Rn;Rn) with ‖ϕ‖L∞(Rn;Rn) ≤ 1. Finally, since∫ R

0

∫
∂Br
|f ?| dH n−1 dr =

∫
BR
|f ?| dx < +∞,
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the set
W =

{
r > 0 :

∫
∂Br
|f ?| dH n−1 dr < +∞

}
satisfies L 1((0,+∞) \W ) = 0 and does not depend on the choice of the L n-represen-
tative of f . Thus (3.2) follows for all r ∈ W ∩ Z and the proof is concluded. �

1.2. Approximation by sets with polyhedral boundary. We now state and
prove standard approximation results for sets with finite perimeter or, more generally,
BVloc(Rn) functions, in a sufficiently regular bounded open set.

We need the following two preliminary lemmas.
Lemma 3.2. Let V,W ⊂ Sn−1, with V finite and W at most countable. For any ε > 0,
there exists R ∈ SO(n) with |R − I| < ε, where I is the identity matrix, such that
R(V ) ∩W = ∅.

Proof. Let N ∈ N be such that V = {vi ∈ Sn−1 : i = 1, . . . , N}. We divide the proof in
two steps.

Step 1. Assume that W is finite and set Ai = {R ∈ SO(n) : R(vi) /∈ W} for all
i = 1, . . . , N . We now claim that Ai is an open and dense subset of SO(n) for all
i = 1, . . . , N . Indeed, given any i = 1, . . . , N , since W is finite, the set Aci = SO(n)\Ai
is closed in SO(n). Moreover, we claim that int(Aci) = ∅. Indeed, by contradiction,
let us assume that int(Aci) 6= ∅. Then there exist ε > 0 and R ∈ Aci such that any
S ∈ SO(n) with |S − R| < ε satisfies S ∈ Aci . In particular, for these R ∈ Aci and
ε > 0, we have R + ε

2k
I
|I| ∈ A

c
i for any k ≥ 1, which implies R(vi) + ε

2k|I|vi ∈ W for
any k ≥ 1, in contrast with the fact that W is finite. Thus, Ai is an open and dense
subset of SO(n) for all i = 1, . . . , N , and so also the set

AW =
N⋂
i=1

Ai = {R ∈ SO(n) : R(vi) /∈ W ∀i = 1, . . . , N}

is an open and dense subset of SO(n). The result is thus proved for any finite set W .
Step 2. Now assume that W is countable, W = {wk ∈ Sn−1 : k ∈ N}. For all

M ∈ N, set WM = {wk ∈ W : k ≤M}. By Step 1, we know that AWM is an open
and dense subset of SO(n) for all M ∈ N. Since SO(n) ⊂ Rn2 is compact, by Baire’s
Theorem A = ⋂

M∈NA
WM is a dense subset of SO(n). This concludes the proof. �

Since det : GL(n) → R is a continuous map, there exists a dimensional constant
δn ∈ (0, 1) such that detR ≥ 1

2 for all R ∈ GL(n) with |R − I| < δn.
Lemma 3.3. Let ε ∈ (0, δn) and let E ⊂ Rn be a bounded set with P (E) < +∞. If
R ∈ SO(n) satisfies |R − I| < ε, then

|R(E)4 E| ≤ 2εrE P (E),
where rE = sup{r > 0 : |E \Br| > 0}.
Proof. We divide the proof in two steps.

Step 1. Let r > 0 and let f ∈ C∞c (Rn). Setting Rt = (1− t)I + tR for all t ∈ [0, 1],
we can estimate∫

Br
|f(R(x))− f(x)| dx =

∫
Br

∣∣∣∣∫ 1

0
〈∇f(Rt(x)),R(x)− x〉 dt

∣∣∣∣ dx
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≤ |R − I| r
∫ 1

0

∫
Br
|∇f(Rt(x))| dx dt.

Since |Rt−I| = t|R−I| < tε < δn for all t ∈ [0, 1], Rt is invertible with det(R−1
t ) ≤ 2

for all t ∈ [0, 1]. Hence we can estimate∫
Br
|∇f(Rt(x))| dx =

∫
Rt(Br)

|∇f(y)| | det(R−1
t )| dy ≤ 2

∫
Rn
|∇f(y)| dy,

so that

(3.6)
∫
Br
|f(R(x))− f(x)| dx ≤ 2εr‖∇f‖L1(Rn;Rn).

Step 2. Since χE ∈ BV (Rn), combining [36, Theorem 5.3] with a standard cut-off
approximation argument, we find (fk)k∈N ⊂ C∞c (Rn) such that fk → χE pointwise a.e.
in Rn and |∇fk|(Rn) → P (E) as k → +∞. Given any r > 0, by (3.6) in Step 1 we
have ∫

Br
|fk(R(x))− fk(x)| dx ≤ 2εr‖∇fk‖L1(Rn;Rn)

for all k ∈ N. Passing to the limit as k → +∞, by Fatou’s Lemma we get that
|(R(E)4 E) ∩Br| ≤ 2εr P (E).

Since E ⊂ BrE up to L n-negligible sets, also R(E) ⊂ BrE up to L n-negligible sets.
Thus we can choose r = rE and the proof is complete. �

We are now ready to prove the main approximation result, see also [5, Proposi-
tion 15].
Theorem 3.4. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and let
E ⊂ Rn be a measurable set such that P (E; Ω) < +∞. There exists a sequence (Ek)k∈N
of bounded open sets with polyhedral boundary such that

(3.7) P (Ek; ∂Ω) = 0
for all k ∈ N and

(3.8) χEk → χE in L1
loc(Rn) and P (Ek; Ω)→ P (E; Ω)

as k → +∞.

Proof. We divide the proof in four steps.
Step 1: cut-off. Since Ω is bounded, we find R0 > 0 such that Ω ⊂ BR0 . Let us

define Rk = R0 + k and

Ck =
{
x ∈ Ωc : dist(x, ∂Ω) ≤ 1

k

}
for all k ∈ N. We set E1

k = E ∩ BRk ∩ Cc
k for all k ∈ N. Note that E1

k is a bounded
measurable set such that

χE1
k
→ χE in L1

loc(Rn) as k → +∞

and
P (E1

k ; Ω) = P (E; Ω) for all k ∈ N.
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Step 2: extension. Let us define

Ak =
{
x ∈ Rn : dist(x,Ω) < 1

4k

}
for all k ∈ N. Since χE1

k
∩Ω ∈ BV (Ω) for all k ∈ N, by [6, Definition 3.20 and Proposi-

tion 3.21] there exists a sequence (vk)k∈N ⊂ BV (Rn) such that
vk = 0 a.e. in Ack, vk = χE1

k
in Ω, |Dvk|(∂Ω) = 0

for all k ∈ N. Let us define F t
k = {vk > t} for all t ∈ (0, 1). Given k ∈ N, by the coarea

formula [6, Theorem 3.40], for a.e. t ∈ (0, 1) the set F t
k has finite perimeter in Rn and

satisfies
F t
k ⊂ Ak, F t

k ∩ Ω = E1
k ∩ Ω, P (F t

k; ∂Ω) = 0
for all k ∈ N. We choose any such tk ∈ (0, 1) for each k ∈ N and define E2

k = E1
k ∪ F

tk
k

for all k ∈ N. Note that E2
k is a bounded set with finite perimeter in Rn such that
χE2

k
→ χE in L1

loc(Rn) as k → +∞
and

P (E2
k ; Ω) = P (E; Ω) and P (E2

k ; ∂Ω) = 0 for all k ∈ N.
Step 3: approximation. Let us define

Dk =
{
x ∈ Ωc : dist(x, ∂Ω) ∈

[ 1
4k ,

3
4k

]}
for all k ∈ N. First arguing as in the first part of the proof of [58, Theorem 13.8]
taking [58, Remark 13.13] into account, and then performing a standard diagonal
argument, we find a sequence of bounded open sets (E3

k)k∈N with polyhedral boundary
such that

E3
k ⊂ Dc

k for all k ∈ N
and

χE3
k
→ χE in L1

loc(Rn), P (E3
k ; Ω)→ P (E; Ω) and P (E3

k ; ∂Ω)→ 0
as k → +∞. If there exists a subsequence (E3

kj
)j∈N such that P (E3

kj
; ∂Ω) = 0 for all

j ∈ N, then we can set Ej = Ekj for all j ∈ N and the proof is concluded. If this is not
the case, then we need to proceed with the next last step.

Step 4: rotation. We now argue as in the last part of the proof of [5, Proposition 15].
Fix k ∈ N and assume P (E3

k ; ∂Ω) > 0. Since E3
k has polyhedral boundary, we have

H n−1(∂E3
k ∩ ∂Ω) > 0 if and only if there exist ν ∈ Sn−1 and U ⊂ FΩ such that

H n−1(U) > 0, νΩ(x) = ν for all x ∈ U and U ⊂ ∂H for some half-space H satisfying
νH = ν. Since P (Ω) = H n−1(∂Ω) < +∞, the set

W =
{
ν ∈ Sn−1 : H n−1 ({x ∈ ∂Ω : νΩ(x) = ν}) > 0

}
=
⋃
h∈N

{
ν ∈ Sn−1 : P (Ω)

h
≥H n−1 ({x ∈ ∂Ω : νΩ(x) = ν}) > P (Ω)

h+1 )
}

is at most countable. Since E3
k has polyhedral boundary, the set

Vk =
{
ν ∈ Sn−1 : H n−1

({
x ∈ ∂E3

k : νE3
k
(x) = ν

})
> 0

}
is finite. By Lemma 3.2, given εk > 0, there exists Rk ∈ SO(n) with |Rk−I| < εk such
that Rk(Vk) ∩W = ∅. Hence the set E4

k = Rk(E3
k) must satisfy P (E4

k ; ∂Ω) = 0. By
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Lemma 3.3, we can choose εk > 0 sufficiently small in order to ensure that |E4
k4E3

k | <
1
k
. Now choose ηk ∈

(
0, 1

2k

)
such that P (E3

k ;Qk) ≤ 2P (E3
k ; ∂Ω), where

Qk = {x ∈ Rn : dist(x, ∂Ω) < ηk}.
Since Ω is bounded, possibly choosing εk > 0 even smaller, we can also ensure that
Ω4R−1(Ω) ⊂ Qk. Hence we can estimate

|P (E4
k ; Ω)− P (E3

k ; Ω)| = |H n−1(∂E3
k ∩R−1(Ω))−H n−1(∂E3

k ∩ Ω)|

≤H n−1
(
∂E3

k ∩ (Ω4R−1(Ω))
)

≤H n−1(∂E3
k ∩Qk).

We can thus set Ek = E4
k for all k ∈ N and the proof is complete. �

Remark 3.5 (A minor gap in the proof of [5, Proposition 15]). We warn the reader that
the cut-off and the extension steps presented above were not mentioned in the proof
of [5, Proposition 15], although they are unavoidable for the correct implementation
of the rotation argument in the last step. Indeed, in general, one cannot expect the
existence of a rotation R ∈ SO(n) arbitrarily close to the identity map such that
P (R(E); ∂Ω) = 0 and, at the same time, the difference between P (R(E); Ω) and
P (E; Ω) is small. For example, one can consider

Ω =
{

(x1, x2) ∈ A : x2
1 + x2

2 < 25
}

and
E =

{
(x1, x2) ∈ A : 1 < x2

1 + x2
2 < 4

}
∪
{

(x1, x2) ∈ Ac : 9 < x2
1 + x2

2 < 16
}

where A = {(x1, x2) ∈ R2 : x1 > 0, x2 > 0}. In this case, for any rotation R ∈ SO(2)
arbitrarily close to the identity map, we have P (R(E); Ω) > 2 + P (E; Ω).

We conclude this section with the following result, establishing an approximation
of BVloc functions similar to that given in Theorem 3.4.
Theorem 3.6. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and let
f ∈ BVloc(Rn). There exists (fk)k∈N ⊂ BV (Rn) such that

|Dfk|(∂Ω) = 0
for all k ∈ N and

fk → f in L1
loc(Rn) and |Dfk|(Ω)→ |Df |(Ω)

as k → +∞. If, in addition, f ∈ L1(Rn), then fk → f in L1(Rn) as k → +∞.
Proof. We argue similarly as in the proof of Theorem 3.4, in two steps.

Step 1: cut-off at infinity. Since Ω is bounded, we find R0 > 0 such that Ω ⊂ BR0 .
Given (Rk)k ⊂ (R0,+∞), we set gk = fχBRk for all k ∈ N. By Theorem 3.1, we have
gk ∈ BV (Rn) for a suitable choice of the sequence (Rk)k∈N, with |Dgk|(Ω) = |Df |(Ω)
for all k ∈ N and gk → f in L1

loc(Rn) as k → +∞. If, in addition, f ∈ L1(Rn), then
gk → f in L1(Rn) as k → +∞.

Step 2: extension and cut-off near Ω. Let us define

Ak =
{
x ∈ Rn : dist(x,Ω) < 1

k

}
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for all k ∈ N. Since gkχΩ ∈ BV (Ω) with |Dgk|(Ω) = |Df |(Ω) for all k ∈ N, by [6,
Definition 3.20 and Proposition 3.21] there exists a sequence (hk)k∈N ⊂ BV (Rn) such
that

supphk ⊂ A2k, hk = gk in Ω, |Dhk|(∂Ω) = 0
for all k ∈ N and

lim
k→+∞

∫
A2k\Ω

|hk| dx = 0

(the latter property easily follows from the construction performed in the proof of [6,
Proposition 3.21]). Now let (vk)k∈N ⊂ C∞c (Rn) be such that supp vk ⊂ Ack and 0 ≤
vk ≤ 1 for all k ∈ N and vk → χΩc pointwise in Rn as k → +∞. We can thus set
fk = hk + vkgk for all k ∈ N. By [6, Propositon 3.2(b)], we have vkgk ∈ BV (Rn) for all
k ∈ N, so that fk ∈ BV (Rn) for all k ∈ N. Since we can estimate

|fk − f | ≤ |hk − fχΩ|+ |vk − χΩc | |gk|+ |gk − f |χΩc

= |hk|χA2k\Ω + |vk − χΩc| |gk|+ |gk − f |χΩc

for all k ∈ N, we have fk → f in L1
loc(Rn) as k → +∞, with fk → f in L1(Rn) as

k → +∞ if f ∈ L1(Rn). By construction, we also have
|Dfk|(Ω) = |Dhk|(Ω) and |Dfk|(∂Ω) = |Dhk|(∂Ω)

for all k ∈ N. The proof is complete. �

2. Lipb-regular tests for fractional operators

In this section, we extend the fractional operators ∇α and divα to Lipb-regular
functions and, consequently, we prove that Leibniz’s rule and the integration-by-part
formula still hold in this context.

2.1. Extension of ∇α and divα to Lipb-regular tests. In the following result,
we extend the fractional α-divergence to Lipb-regular vector fields.
Lemma 3.7 (Extension of divα to Lipb). Let α ∈ (0, 1). The operator

divα : Lipb(Rn;Rn)→ L∞(Rn)
given by

(3.9) divαϕ(x) = µn,α

∫
Rn

(y − x) · (ϕ(y)− ϕ(x))
|y − x|n+α+1 dy, x ∈ Rn,

for all ϕ ∈ Lipb(Rn;Rn), is well defined, with

(3.10) ‖divαϕ‖L∞(Rn) ≤
21−αnωnµn,α
α(1− α) Lip(ϕ)α‖ϕ‖1−α

L∞(Rn;Rn),

and satisfies

divαϕ(x) = µn,α lim
ε→0+

∫
{|y−x|>ε}

(y − x) · (ϕ(y)− ϕ(x))
|y − x|n+α+1 dy

= µn,α lim
ε→0+

∫
{|y−x|>ε}

(y − x) · ϕ(y)
|y − x|n+α+1 dy

(3.11)
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for all x ∈ Rn. Moreover, if in addition I1−α|divϕ| ∈ L1
loc(Rn), then

(3.12) divαϕ(x) = I1−αdivϕ(x)
for a.e. x ∈ Rn.
Proof. We split the proof in two steps.

Step 1: proof of (3.9), (3.10) and (3.11). Given x ∈ Rn and r > 0, we can estimate∫
{|y−x|≤r}

∣∣∣∣∣(y − x) · (ϕ(y)− ϕ(x))
|y − x|n+α+1

∣∣∣∣∣ dy ≤ nωnLip(ϕ)
∫ r

0
%−α d%

and ∫
{|y−x|>r}

∣∣∣∣∣(y − x) · (ϕ(y)− ϕ(x))
|y − x|n+α+1

∣∣∣∣∣ dy ≤ 2nωn‖ϕ‖L∞(Rn;Rn)

∫ +∞

r
%−(1+α) d%.

Hence the function in (3.9) is well defined for all x ∈ Rn and

‖divαϕ‖L∞(Rn) ≤ nωn

(
Lip(ϕ)
1− α r1−α + 2‖ϕ‖L∞(Rn;Rn)

α
r−α

)
,

so that (3.10) follows by optimising the right-hand side in r > 0. Moreover, since∣∣∣∣∣(y − x) · (ϕ(y)− ϕ(x))
|y − x|n+α+1 χ(ε,+∞)(|y − x|)

∣∣∣∣∣
≤ Lip(ϕ) χ(0,1)(|y − x|)

|y − x|n+α−1 + 2‖ϕ‖L∞(Rn;Rn)
χ[1,+∞)(|y − x|)
|y − x|n+α ∈ L1

x,y(Rn)

and ∫
{|z|>ε}

z

|z|n+α+1 dy = 0

for all ε > 0, by Lebesgue’s Dominated Convergence Theorem we immediately get the
two equalities in (3.11) for all x ∈ Rn.

Step 2: proof of (3.12). Assume that I1−α|divϕ| ∈ L1
loc(Rn). Then

(3.13) |divϕ(y)|
|y − x|n+α−1 ∈ L

1
y(Rn)

for a.e. x ∈ Rn. Hence, by Lebesgue’s Dominated Convergence Theorem, we can write

I1−αdivϕ(x) = µn,α lim
ε→0+

∫
{|y−x|>ε}

divϕ(y)
|y − x|n+α−1 dy

for a.e. x ∈ Rn. Now let ε > 0 be fixed and let R > 0. Again by (3.13) and Lebesgue’s
Dominated Convergence Theorem, we have

lim
R→+∞

∫
{R>|y−x|>ε}

divϕ(y)
|y − x|n+α−1 dy =

∫
{|y−x|>ε}

divϕ(y)
|y − x|n+α−1 dy

for a.e. x ∈ Rn. Moreover, integrating by parts, we get∫
{R>|y−x|>ε}

divϕ(y)
|y − x|n+α−1 dy =

∫
{R>|y|>ε}

divyϕ(y + x)
|y|n+α−1 dy

=
∫
{|y|=R}

y

|y|
ϕ(y + x)
|y|n+α−1 dH

n−1(y)−
∫
{|y|=ε}

y

|y|
ϕ(y + x)
|y|n+α−1 dH

n−1(y)
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+
∫
{R>|y|>ε}

y · ϕ(y + x)
|y|n+α+1 dy

for all R > 0 and for a.e. x ∈ Rn. Since ϕ ∈ L∞(Rn;Rn), by Lebesgue’s Dominated
Convergence Theorem we have

lim
R→+∞

∫
{R>|y|>ε}

y · ϕ(y + x)
|y|n+α+1 dy =

∫
{|y|>ε}

y · ϕ(y + x)
|y|n+α+1 dy

for all ε > 0 and all x ∈ Rn. We can also estimate∣∣∣∣∣
∫
{|y|=R}

y

|y|
ϕ(y + x)
|y|n+α−1 dH

n−1(y)
∣∣∣∣∣ ≤ nωn‖ϕ‖L∞(Rn;Rn)R

−α

for all R > 0 and all x ∈ Rn. We thus have that∫
{|y−x|>ε}

divϕ(y)
|y − x|n+α−1 dy =

∫
{|y|>ε}

y · ϕ(y + x)
|y|n+α+1 dy −

∫
{|y|=ε}

y

|y|
ϕ(y + x)
|y|n+α−1 dH

n−1(y)

for all ε > 0 and a.e. x ∈ Rn. Since also∣∣∣∣∣
∫
{|y|=ε}

y

|y|
ϕ(y + x)
|y|n+α−1 dH

n−1(y)
∣∣∣∣∣ =

∣∣∣∣∣
∫
{|y|=ε}

y

|y|
ϕ(y + x)− ϕ(x)
|y|n+α−1 dH n−1(y)

∣∣∣∣∣
≤ nωn Lip(ϕ) ε1−α

for all ε > 0 and x ∈ Rn, we conclude that

lim
ε→0+

∫
{|y−x|>ε}

divϕ(y)
|y − x|n+α−1 dy = lim

ε→0+

∫
{|y−x|>ε}

(y − x) · ϕ(y)
|y − x|n+α+1 dy

for a.e. x ∈ Rn, proving (3.12). �

We can also extend the fractional α-gradient to Lipb-regular functions. The proof
is very similar to the one of Lemma 3.7 and is left to the reader.
Lemma 3.8 (Extension of ∇α to Lipb). Let α ∈ (0, 1). The operator

∇α : Lipb(Rn)→ L∞(Rn;Rn)
given by

∇αf(x) = µn,α

∫
Rn

(y − x) · (f(y)− f(x))
|y − x|n+α+1 dy, x ∈ Rn,

for all f ∈ Lipb(Rn), is well defined, with

‖∇αf‖L∞(Rn;Rn) ≤
21−αnωnµn,α
α(1− α) Lip(f)α‖f‖1−α

L∞(Rn),

and satisfies

∇αf(x) = µn,α lim
ε→0+

∫
{|y−x|>ε}

(y − x) · (f(y)− f(x))
|y − x|n+α+1 dy

= µn,α lim
ε→0+

∫
{|y−x|>ε}

(y − x) · f(y)
|y − x|n+α+1 dy

for all x ∈ Rn. Moreover, if in addition I1−α|∇f | ∈ L1
loc(Rn), then

∇αf(x) = I1−α∇f(x)
for a.e. x ∈ Rn.
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2.2. Extended Leibniz’s rules for ∇α and divα. The following two results
extend the validity of Leibniz’s rules proved in Lemma 1.6 and Lemma 1.7 to Lipb-
regular functions and Lipb-regular vector fields. The proofs are very similar to the ones
given in Chapter 1 and to those of Lemma 3.7 and Lemma 3.8, and thus are left to the
reader.
Lemma 3.9 (Extended Leibniz’s rule for ∇α). Let α ∈ (0, 1). If f ∈ Lipb(Rn) and
η ∈ Lipc(Rn), then

∇α(ηf) = η∇αf + f ∇αη +∇α
NL(η, f),

where
∇α

NL(η, f)(x) = µn,α

∫
Rn

(y − x) · (f(y)− f(x))(η(y)− η(x))
|y − x|n+α+1 dy

for all x ∈ Rn, with

‖∇α
NL(η, f)‖L∞(Rn;Rn) ≤

22−αnωnµn,α‖f‖L∞(Rn)

α(1− α) Lip(η)α‖η‖1−α
L∞(Rn)

and
‖∇α

NL(η, f)‖L1(Rn;Rn) ≤ µn,α‖f‖L∞(Rn)[η]Wα,1(Rn).

Lemma 3.10 (Extended Leibniz’s rule for divα). Let α ∈ (0, 1). If ϕ ∈ Lipb(Rn;Rn)
and η ∈ Lipc(Rn), then

divα(ηϕ) = η divαϕ+ ϕ · ∇αη + divαNL(η, ϕ),
where

divαNL(η, ϕ)(x) = µn,α

∫
Rn

(y − x) · (ϕ(y)− ϕ(x))(η(y)− η(x))
|y − x|n+α+1 dy

for all x ∈ Rn, with

‖divαNL(η, ϕ)‖L∞(Rn) ≤
22−αnωnµn,α‖ϕ‖L∞(Rn;Rn)

α(1− α) Lip(η)α‖η‖1−α
L∞(Rn)

and
‖divαNL(η, ϕ)‖L1(Rn) ≤ µn,α‖ϕ‖L∞(Rn;Rn)[η]Wα,1(Rn).

2.3. Extended integration-by-part formulas. Thanks to Lemma 3.10, we can
actually prove that a function in BV α(Rn) can be tested against any Lipb-regular vector
field.
Proposition 3.11 (Lipb-regular test for BV α functions). Let α ∈ (0, 1). If f ∈
BV α(Rn), then (1.22) holds for all ϕ ∈ Lipb(Rn;Rn).

Proof. We argue similarly as in the proof of Theorem 1.16. Fix ϕ ∈ Lipb(Rn;Rn) and
let (ηR)R>0 ⊂ C∞c (Rn) be a family of cut-off functions as in (1.30) On the one hand,
since ∣∣∣∣∫

Rn
fηR divαϕdx−

∫
Rn
f divαϕdx

∣∣∣∣ ≤ ‖divαϕ‖L∞(Rn)

∫
Rn
|f | (1− ηR) dx

for all R > 0, by Lebesgue’s Dominated Convergence Theorem we have

lim
R→+∞

∫
Rn
fηR divαϕdx =

∫
Rn
f divαϕdx.
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On the other hand, by Lemma 3.10 we can write∫
Rn
fηR divαϕdx =

∫
Rn
f divα(ηRϕ) dx−

∫
Rn
f ϕ · ∇αηR dx−

∫
Rn
f divαNL(ηR, ϕ) dx

for all R > 0. By Proposition 1.14, we have∫
Rn
f divα(ηRϕ) dx = −

∫
Rn
ηRϕ · dDαf

for all R > 0. Since∣∣∣∣∫
Rn
ηRϕ · dDαf −

∫
Rn
ϕ · dDαf

∣∣∣∣ ≤ ‖ϕ‖L∞(Rn;Rn)

∫
Rn

(1− ηR) d|Dαf |

for all R > 0, by Lebesgue’s Dominated Convergence Theorem (with respect to the
finite measure |Dαf |) we have

lim
R→+∞

∫
Rn
ηRϕ · dDαf =

∫
Rn
ϕ · dDαf.

Finally, we can estimate∣∣∣∣∫
Rn
f ϕ · ∇αηR dx

∣∣∣∣ ≤ ‖ϕ‖L∞(Rn;Rn)

∫
Rn
|f(x)|

∫
Rn

|ηR(y)− ηR(x)|
|y − x|n+α dy dx

and, similarly,∣∣∣∣∫
Rn
f divαNL(ηR, ϕ) dx

∣∣∣∣ ≤ 2‖ϕ‖L∞(Rn;Rn)

∫
Rn
|f(x)|

∫
Rn

|ηR(y)− ηR(x)|
|y − x|n+α dy dx.

By Lebesgue’s Dominated Convergence Theorem, we thus get that

lim
R→+∞

(∫
Rn
f ϕ · ∇αηR dx+

∫
Rn
f divαNL(ηR, ϕ) dx

)
= 0

and the conclusion follows. �

Thanks to Lemma 3.9, we can prove that a function in Lipb(Rn) can be tested
against any Lipc-regular vector field. The proof is very similar to the one of Proposi-
tion 3.11 and is thus left to the reader.
Proposition 3.12 (Integration by parts for Lipb-regular functions). Let α ∈ (0, 1). If
f ∈ Lipb(Rn), then ∫

Rn
f divαϕdx = −

∫
Rn
ϕ · ∇αf dx

for all ϕ ∈ Lipc(Rn;Rn).

3. Estimates and representation formulas for the fractional α-gradient

3.1. Integrability properties of the fractional α-gradient. We begin with
the following technical local estimate on the Wα,1-seminorm of a function in BVloc.
Lemma 3.13. Let α ∈ (0, 1) and let f ∈ BVloc(Rn). Then f ∈ Wα,1

loc (Rn) with

(3.14) [f ]Wα,1(BR) ≤
nωn(2R)1−α

1− α |Df |(B3R)

for all R > 0.
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Proof. Fix R > 0 and let f ∈ BVloc(Rn) be such that f ∈ C1(B3R). We can estimate

[f ]Wα,1(BR) =
∫
BR

∫
BR

|f(y)− f(x)|
|y − x|n+α dy dx

=
∫
BR

∫
BR∩{|y−x|<2R}

|f(y)− f(x)|
|y − x|n+α dy dx

≤
∫
{|h|<2R}

1
|h|n+α

∫
BR
|f(x+ h)− f(x)| dx dh.

Since ∫
BR
|f(x+ h)− f(x)| dx ≤

∫
BR

∫ 1

0
|∇f(x+ th) · h| dt dx

≤ |h|
∫ 1

0

∫
BR
|∇f(x+ th)| dx dt

≤ |h|
∫
BR+|h|

|∇f(z)| dz

for all h ∈ Rn, we have

[f ]Wα,1(BR) ≤
∫
{|h|<2R}

1
|h|n+α−1

∫
BR+|h|

|∇f(z)| dz dh

≤
∫
{|h|<2R}

|Df |(B3R)
|h|n+α−1 dh

= nωn(2R)1−α

1− α |Df |(B3R)

proving (3.14) for all f ∈ BVloc(Rn) ∩C1(B3R). Now fix R > 0 and let f ∈ BVloc(Rn).
By [36, Theorem 5.3], we can find a sequence (fk)k∈N ⊂ BV (B3R) ∩ C∞(B3R) such
that |Dfk|(B3R)→ |Df |(B3R) and fk → f a.e. in B3R as k → +∞. Hence, by Fatou’s
Lemma, we get

[f ]Wα,1(BR) ≤ lim inf
k→+∞

[fk]Wα,1(BR)

≤ nωn(2R)1−α

1− α lim
k→+∞

|Dfk|(B3R)

= nωn(2R)1−α

1− α |Df |(B3R)

and the proof is complete. �

In the following result, we collect several local integrability estimates involving the
fractional α-gradient of a function satisfying various regularity assumptions.
Proposition 3.14. The following statements hold.
(i) If f ∈ BV (Rn), then f ∈ BV α(Rn) for all α ∈ (0, 1) with Dαf = ∇αfL n and

(3.15) ∇αf = I1−αDf a.e. in Rn.
In addition, for any bounded open set U ⊂ Rn, we have

(3.16) ‖∇αf‖L1(U ;Rn) ≤ Cn,α,U |Df |(Rn)
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for all α ∈ (0, 1), where Cn,α,U is as in (1.13). Finally, given an open set A ⊂ Rn,
we have

(3.17) ‖∇αf‖L1(A;Rn) ≤
nωn µn,α
n+ α− 1

(
|Df |(Ar)

1− α r1−α + n+ 2α− 1
α

‖f‖L1(Rn) r
−α
)

for all r > 0 and α ∈ (0, 1), where Ar = {x ∈ Rn : dist(x,A) < r}. In particular,
we have

(3.18) ‖∇αf‖L1(Rn;Rn) ≤
nωn µn,α(n+ 2α− 1)1−α

α(1− α)(n+ α− 1) ‖f‖1−α
L1(Rn) [f ]αBV (Rn).

(ii) If f ∈ L∞(Rn) ∩Wα,1
loc (Rn), then the fractional α-gradient Dαf ∈ Mloc(Rn;Rn)

exists and satisfies Dαf = ∇αfL n with ∇αf ∈ L1
loc(Rn;Rn) and

‖∇αf‖L1(BR;Rn) ≤ µn,α

∫
BR

∫
Rn

|f(x)− f(y)|
|x− y|n+α dx dy

≤ µn,α
(
[f ]Wα,1(BR) + Pα(BR) ‖f‖L∞(Rn)

)(3.19)

for all R > 0 and α ∈ (0, 1).
(iii) If f ∈ L∞(Rn) ∩ BVloc(Rn), then the fractional α-gradient Dαf ∈ Mloc(Rn;Rn)

exists and satisfies Dαf = ∇αfL n with ∇αf ∈ L1
loc(Rn;Rn) and

(3.20) ‖∇αf‖L1(BR;Rn) ≤ µn,α

(
nωn(2R)1−α

1− α |Df |(B3R) + 2(nωn)2Rn−α

αΓ(1− α)−1 ‖f‖L∞(Rn)

)
.

for all R > 0 and α ∈ (0, 1).
Proof. We prove the three statements separately.

Proof of (i). Thanks to Theorem 1.27, we just need to prove (3.16) and (3.17).
We prove (3.16). By (3.15), by Tonelli’s Theorem and by Lemma 1.4, we get∫

U
|∇αf | dx ≤

∫
U
I1−α|Df | dx ≤ Cn,α,U |Df |(Rn),

where Cn,α,U is defined as in (1.13).
We now prove (3.17) in two steps.
Proof of (3.17), Step 1. Assume f ∈ C∞c (Rn) and fix r > 0. We have∫
A
|∇αf | dx =

∫
A
|I1−α∇f | dx

≤ µn,α
n+ α− 1

(∫
A

∫
{|h|≤r}

|∇f(x+ h)|
|h|n+α−1 dh dx+

∫
A

∣∣∣∣∣
∫
{|h|>r}

∇f(x+ h)
|h|n+α−1 dh

∣∣∣∣∣ dx
)
.

We estimate the two double integrals appearing in the right-hand side separately. By
Tonelli’s Theorem, we have∫

A

∫
{|h|≤r}

|∇f(x+ h)|
|h|n+α−1 dh dx =

∫
{|h|≤r}

∫
A
|∇f(x+ h)| dx dh

|h|n+α−1

≤ ‖∇f‖L1(Ar;Rn)

∫
{|h|≤r}

dh

|h|n+α−1

= nωn
r1−α

1− α ‖∇f‖L1(Ar;Rn).
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Concerning the second double integral, integrating by parts we get∫
{|h|>r}

∇f(x+ h)
|h|n+α−1 dh = (n+ α− 1)

∫
{|h|>r}

hf(x+ h)
|h|n+α+1 dh

−
∫
{|h|=r}

h

|h|
f(x+ h)
|h|n+α−1 dH

n−1(h)

for all x ∈ A. Hence, we can estimate∫
A

∣∣∣∣∣
∫
{|h|>r}

∇f(x+ h)
|h|n+α−1 dh

∣∣∣∣∣ dx ≤ (n+ α− 1)
∫
A

∫
{|h|>r}

|f(x+ h)|
|h|n+α dh dx

+
∫
A

∫
{|h|=r}

|f(x+ h)|
|h|n+α−1 dH n−1(h) dx

≤ nωn‖f‖L1(Rn) r
−α
(
n+ α− 1

α
+ 1

)
= nωn

(
n+ 2α− 1

α

)
‖f‖L1(Rn) r

−α.

Thus (3.17) follows for all f ∈ C∞c (Rn) and r > 0.
Proof of (3.17), Step 2. Let f ∈ BV (Rn) and fix r > 0. Combining [36, Theo-

rem 5.3] with a standard cut-off approximation argument, we find (fk)k∈N ⊂ C∞c (Rn)
such that fk → f in L1(Rn) and |Dfk|(Rn) → |Df |(Rn) as k → +∞. By Step 1, we
have that

(3.21) ‖∇αfk‖L1(A;Rn) ≤
nωn µn,α
n+ α− 1

(
|Dfk|(Ar)

1− α r1−α + n+ 2α− 1
α

‖fk‖L1(Rn) r
−α
)

for all k ∈ N. We claim that
(3.22) (∇αfk) L n ⇀ (∇αf) L n as k → +∞.
Indeed, if ϕ ∈ Lipc(Rn;Rn), then divαϕ ∈ L∞(Rn) by (1.12) and thus∣∣∣∣∫

Rn
ϕ · ∇αfk dx−

∫
Rn
ϕ · ∇αf dx

∣∣∣∣ =
∣∣∣∣∫

Rn
fk divαϕdx−

∫
Rn
f divαϕdx

∣∣∣∣
≤ ‖divαϕ‖L∞(Rn;Rn) ‖fk − f‖L1(Rn)

for all k ∈ N, so that

lim
k→+∞

∫
Rn
ϕ · ∇αfk dx =

∫
Rn
ϕ · ∇αf dx.

Now fix ϕ ∈ C0
c (Rn;Rn). Let U ⊂ Rn be a bounded open set such that suppϕ ⊂ U . For

each ε > 0 sufficiently small, pick ψε ∈ Lipc(Rn;Rn) such that ‖ϕ − ψε‖L∞(Rn;Rn) < ε
and suppψε ⊂ U . Then∣∣∣∣∣

∫
Rn
ϕ · ∇αfk dx−

∫
Rn
ϕ · ∇αf dx

∣∣∣∣∣ ≤
∣∣∣∣∫

Rn
ψε · ∇αfk dx−

∫
Rn
ψε · ∇αf dx

∣∣∣∣
+ ‖ψε − ϕ‖L∞(Rn;Rn)

(
‖∇αfk‖L1(U ;Rn) + ‖∇αf‖L1(U ;Rn)

)
≤
∣∣∣∣∫

Rn
ψε · ∇αfk dx−

∫
Rn
ψε · ∇αf dx

∣∣∣∣
+ εCn,α,U

(
|Dfk|(Rn) + |Df |(Rn)

)
,
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so that
lim

k→+∞

∣∣∣∣∫
Rn
ϕ · ∇αfk dx−

∫
Rn
ϕ · ∇αf dx

∣∣∣∣ ≤ 2εCn,α,U |Df |(Rn).

Thus, (3.22) follows passing to the limit as ε→ 0+. Thanks to (3.22), by [58, Propo-
sition 4.29] we get that

‖∇αf‖L1(A;Rn) ≤ lim inf
k→+∞

‖∇αfk‖L1(A;Rn).

Since
|Df |(U) ≤ lim inf

k→+∞
|Dfk|(U)

for any open set U ⊂ Rn by [36, Theorem 5.2], we can estimate

lim sup
k→+∞

|Dfk|(Ar) ≤ lim
k→+∞

|Dfk|(Rn)− lim inf
k→+∞

|Dfk|(Rn \ Ar)

≤ |Df |(Rn)− |Df |(Rn \ Ar)
= |Df |(Ar).

Thus, (3.17) follows taking limits as k → +∞ in (3.21). Finally, (3.18) is easily deduced
by optimising the right-hand side of (3.17) in the case A = Rn with respect to r > 0.

Proof of (ii). Assume f ∈ L∞(Rn) ∩Wα,1
loc (Rn). Given R > 0, we can estimate∫

BR
|∇αf(x)| dx ≤ µn,α

∫
BR

∫
Rn

|f(x)− f(y)|
|x− y|n+α dx dy

= µn,α

∫
BR

∫
BR

|f(x)− f(y)|
|x− y|n+α dx dy + µn,α

∫
BR

∫
Rn\BR

|f(x)− f(y)|
|x− y|n+α dx dy

≤ µn,α[f ]Wα,1(BR) + 2µn,α‖f‖L∞(Rn)

∫
BR

∫
Rn\BR

1
|x− y|n+α dx dy

= µn,α[f ]Wα,1(BR) + µn,α‖f‖L∞(Rn)Pα(BR)

and (3.19) follows. To prove that Dαf = ∇αfL n, we argue as in the proof of Propo-
sition 2.8. Let ϕ ∈ Lipc(Rn;Rn). Since f ∈ L∞(Rn), we have

x 7→ |f(x)|
∫
Rn

|ϕ(y)− ϕ(x)|
|y − x|n+α dy ∈ L1(Rn).

Hence, by the definition of divα on Lipc-regular vector fields and by Lebesgue’s Domi-
nated Convergence Theorem, we have∫

Rn
f divαϕdx = lim

ε→0+

∫
Rn
f(x)

∫
{|y−x|>ε}

(y − x) · ϕ(y)
|y − x|n+α+1 dy dx.

Since∫
Rn

∫
{|y−x|>ε}

|f(x)| |ϕ(y)|
|y − x|n+α dy dx ≤ ‖f‖L∞(Rn)

∫
Rn
|ϕ(y)|

∫
{|y−x|>ε}

|y − x|−n−α dx dy

≤ nωn
αεα
‖f‖L∞(Rn)‖ϕ‖L1(Rn;Rn)
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for all ε > 0, by Fubini’s Theorem we can compute∫
Rn
f(x)

∫
{|y−x|>ε}

(y − x) · ϕ(y)
|y − x|n+α+1 dy dx = −

∫
Rn
ϕ(y)

∫
{|x−y|>ε}

(x− y) f(x)
|x− y|n+α+1 dx dy

= −
∫
Rn
ϕ(y)

∫
{|x−y|>ε}

(x− y) (f(x)− f(y))
|x− y|n+α+1 dx dy.

Since

|ϕ(y)|
∣∣∣∣∣
∫
{|x−y|>ε}

(x− y) (f(x)− f(y))
|x− y|n+α+1 dx

∣∣∣∣∣ ≤ |ϕ(y)|
∫
Rn

|f(x)− f(y)|
|x− y|n+α dx

for all y ∈ Rn and ε > 0, and

y 7→
∫
Rn

|f(x)− f(y)|
|x− y|n+α dx ∈ L1

loc(Rn)

by (3.19), again by Lebesgue’s Dominated Convergence Theorem we conclude that∫
Rn
f(x) divαϕ(x) dx = − lim

ε→0

∫
Rn
ϕ(y)

∫
{|x−y|>ε}

(x− y) (f(x)− f(y))
|x− y|n+α+1 dx dy

= −
∫
Rn
ϕ(y) lim

ε→0

∫
{|x−y|>ε}

(x− y) (f(x)− f(y))
|x− y|n+α+1 dx dy

= −
∫
Rn
ϕ(y) · ∇αf(y) dy

for all ϕ ∈ Lipc(Rn;Rn). Thus Dαf ∈ Mloc(Rn;Rn) is well defined and Dαf =
∇αfL n−1.

Proof of (iii). Assume f ∈ L∞(Rn) ∩ BVloc(Rn). By Lemma 3.13, we know that
f ∈ L∞(Rn) ∩Wα,1

loc (Rn) for all α ∈ (0, 1), so that Dαf ∈Mloc(Rn;Rn) exists by (ii).
Hence, inserting (3.14) in (3.19), we find

‖∇αf‖L1(BR;Rn) ≤ µn,α

(
nωn(2R)1−α

1− α |Df |(B3R) + Pα(B1)Rn−α ‖f‖L∞(Rn)

)
.

Since for all x ∈ B1 we have∫
Rn\B1

dy

|y − x|n+α =
∫
Rn\B1(−x)

dz

|z|n+α ≤
∫
Rn\B1−|x|

dz

|z|n+α = nωn
α(1− |x|)α ,

being Γ increasing on (0,+∞) (see [13]), we can estimate

Pα(B1) = 2
∫
B1

∫
Rn\B1

dy dx

|y − x|n+α ≤
2nωn
α

∫
B1

dx

(1− |x|)α

= 2(nωn)2

α

∫ 1

0

tn−1

(1− t)α dt = 2(nωn)2

α

Γ(n) Γ(1− α)
Γ(n+ 1− α)

≤ 2(nωn)2

α
Γ(1− α),

so that

‖∇αf‖L1(BR;Rn) ≤ µn,α

(
nωn(2R)1−α

1− α |Df |BV (B3R) + 2(nωn)2Rn−α

αΓ(1− α)−1 ‖f‖L∞(Rn)

)
,

proving (3.20). �
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Note that Proposition 3.14(i), in particular, applies to any f ∈ W 1,1(Rn). In the
following result, we prove that a similar result holds also for any f ∈ W 1,p(Rn) with
p ∈ (1,+∞).
Proposition 3.15 (W 1,p(Rn) ⊂ Sα,p(Rn) for p ∈ [1,+∞)). Let α ∈ (0, 1) and p ∈
[1,+∞). If f ∈ W 1,p(Rn), then f ∈ Sα,p(Rn) with
(3.23)

‖∇αf‖Lp(A;Rn) ≤
nωnµn,α
n+ α− 1

(‖∇f‖Lp(Ar;Rn)

1− α r1−α + n+ 2α− 1
α

‖f‖Lp(Rn) r
−α
)

for any r > 0 and any open set A ⊂ Rn, where Ar = {x ∈ Rn : dist(x,A) < r}. In
particular, we have

(3.24) ‖∇αf‖Lp(Rn;Rn) ≤
(n+ 2α− 1)1−α

n+ α− 1
nωnµn,α
α(1− α) ‖∇f‖

α
Lp(Rn;Rn)‖f‖1−α

Lp(Rn).

In addition, if p ∈
(
1, n

1−α

)
and q = np

n−(1−α)p , then

(3.25) ∇αf = I1−α∇f a.e. in Rn

and ∇αf ∈ Lq(Rn;Rn).

Proof. We argue similarly as in the proof of Proposition 3.14(i).
Proof of (3.23), Step 1. Assume f ∈ C∞c (Rn) and fix an open set A ⊂ Rn and

r > 0. Arguing as in the proof of (3.17), we can write

I1−α∇f(x) = µn,α
n+ α− 1

(∫
{|h|≤r}

∇f(x+ h)
|h|n+α−1 dh+

∫
{|h|>r}

∇f(x+ h)
|h|n+α−1 dh

)

= µn,α
n+ α− 1

(∫
{|h|≤r}

∇f(x+ h)
|h|n+α−1 dh+ (n+ α− 1)

∫
{|h|>r}

h · f(x+ h)
|h|n+α+1 dh

−
∫
{|h|=r}

h

|h|
f(x+ h)
|h|n+α−1 dH

n−1(h)
)

for all x ∈ A. By (1.14) and Minkowski’s Integral Inequality (see [96, Section A.1], for
example), we thus have

‖∇αf‖Lp(A;Rn) ≤
µn,α

n+ α− 1

(∫
{|h|≤r}

‖∇f(·+ h)‖Lp(A;Rn)

|h|n+α−1 dh

+ (n+ α− 1)
∫
{|h|>r}

‖f(·+ h)‖Lp(A)

|h|n+α dh

+
∫
{|h|=r}

‖f(·+ h)‖Lp(A)

|h|n+α−1 dH n−1(h)
)

≤ µn,α
n− α + 1

(
nωn

1− α ‖∇f‖Lp(Ar;Rn) r
1−α + nωn

n+ 2α− 1
α

‖f‖Lp(Rn) r
−α
)
,

proving (3.23) for all f ∈ C∞c (Rn) and r > 0.
Proof of (3.23), Step 2. Let f ∈ W 1,p(Rn) and fix an open set A ⊂ Rn and r > 0.

Combining [36, Theorem 4.2] with a standard cut-off approximation argument, we find
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(fk)k∈N ⊂ C∞c (Rn) such that fk → f in W 1,p(Rn) as k → +∞. By Step 1, we have
that
(3.26)

‖∇αfk‖Lp(A;Rn) ≤
nωn µn,α
n+ α− 1

(‖∇fk‖Lp(Ar;Rn)

1− α r1−α + n+ 2α− 1
α

‖fk‖Lp(Rn) r
−α
)

for all k ∈ N. Hence, choosing A = Rn, we get that the sequence (∇αfk)k∈N is
uniformly bounded in Lp(Rn;Rn). Up to pass to a subsequence (which we do not
relabel for simplicity), there exists g ∈ Lp(Rn;Rn) such that ∇αfk ⇀ g in Lp(Rn;Rn)
as k → +∞. Given ϕ ∈ C∞c (Rn;Rn), we have∫

Rn
fk divαϕdx = −

∫
Rn
ϕ · ∇αfk dx

for all k ∈ N. Passing to the limit as k → +∞, by Corollary 1.3 we get that∫
Rn
f divαϕdx = −

∫
Rn
ϕ · g dx

for any ϕ ∈ C∞c (Rn;Rn), so that g = ∇αf and hence f ∈ Sα,p(Rn) according to
Definition 1.42. We thus have that

‖∇αf‖Lp(A;Rn) ≤ lim inf
k→+∞

‖∇αfk‖Lp(A;Rn)

for any open set A ⊂ Rn, since∫
Rn
ϕ · ∇αf dx = lim

k→+∞

∫
Rn
ϕ · ∇αfk dx ≤ ‖ϕ‖

L
p
p−1 (A;Rn)

lim inf
k→+∞

‖∇αfk‖Lp(A;Rn)

for all ϕ ∈ C∞c (A;Rn). Therefore, (3.23) follows by taking limits as k → +∞ in (3.26).
Proof of (3.24). Inequality (3.24) follows by applying (3.23) with A = Rn and

minimising the right-hand side with respect to r > 0.
Proof of (3.25). Now assume p ∈

(
1, n

1−α

)
and let q = np

n−(1−α)p . Let ϕ ∈
C∞c (Rn;Rn) be fixed. Recalling inequality (N.59), since ϕ ∈ L

q
q−1 (Rn;Rn) we have

that
|ϕ| I1−α|f | ∈ L1(Rn), |ϕ| I1−α|∇f | ∈ L1(Rn).

In particular, Fubini’s Theorem implies that
f I1−αϕ ∈ L1(Rn;Rn), I1−αϕ · ∇f ∈ L1(Rn).

Since divαϕ ∈ L
p
p−1 (Rn) by Corollary 1.3, we also get that

f divI1−αϕ = f divαϕ ∈ L1(Rn).
Therefore, observing that I1−αϕ ∈ Lipb(Rn;Rn) because

∇I1−αϕ = ∇αϕ ∈ L∞(Rn;Rn2)
again by Corollary 1.3 and performing a standard cut-off approximation argument, we
can integrate by parts and obtain∫

Rn
ϕ · I1−α∇f dx =

∫
Rn
I1−αϕ · ∇f dx = −

∫
Rn
f divI1−αϕdx = −

∫
Rn
f divαϕdx.

Therefore ∫
Rn
ϕ · I1−α∇f dx = −

∫
Rn
f divαϕdx
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for all ϕ ∈ C∞c (Rn;Rn), proving (3.25). In particular, notice that ∇αf ∈ Lq(Rn;Rn)
by inequality (N.59). The proof is complete. �

For the case p = +∞, we have the following immediate consequence of Lemma 3.9
and Proposition 3.12.
Corollary 3.16 (W 1,∞(Rn) ⊂ Sα,∞(Rn)). Let α ∈ (0, 1). If f ∈ W 1,∞(Rn), then
f ∈ Sα,∞(Rn) with

(3.27) ‖∇αf‖L∞(Rn;Rn) ≤ 21−α nωnµn,α
α(1− α) ‖∇f‖

α
L∞(Rn;Rn)‖f‖1−α

L∞(Rn).

3.2. Two representation formulas for the α-variation. In this section, we
prove two useful representation formulas for the α-variation.

We begin with the following weak representation formula for the fractional α-
variation of functions in BVloc(Rn) ∩ L∞(Rn). Here and in the following, we denote
by f ? the precise representative of f ∈ L1

loc(Rn), see (3.1) for the definition.
Proposition 3.17. Let α ∈ (0, 1) and f ∈ BVloc(Rn) ∩ L∞(Rn). Then ∇αf ∈
L1

loc(Rn;Rn) and

(3.28)
∫
Rn
ϕ · ∇αf dx = lim

R→+∞

∫
Rn
ϕ · I1−α(χ?BRDf) dx

for all ϕ ∈ Lipc(Rn;Rn).

Proof. By Proposition 3.14(iii), we know that ∇αf ∈ L1
loc(Rn;Rn) for all α ∈ (0, 1).

By Theorem 3.1, we also know that fχBR ∈ BV (Rn) ∩ L∞(Rn) with D(χBRf) =
χ?BRDf + f ?DχBR for all R > 0. Now fix ϕ ∈ Lipc(Rn;Rn) and take R > 0 such that
suppϕ ⊂ BR/2. By Theorem 1.27, we have that∫

Rn
χBRf divαϕdx = −

∫
Rn
ϕ · ∇α(χBRf) dx = −

∫
Rn
ϕ · I1−αD(χBRf) dx.

Moreover, we can split the last integral as

(3.29)
∫
Rn
ϕ · I1−αD(χBRf) dx =

∫
Rn
ϕ · I1−α(χ?BRDf) dx+

∫
Rn
ϕ · I1−α(f ?DχBR) dx.

For all x ∈ BR/2, we can estimate

|I1−α(f ?DχBR)(x)| =
∣∣∣∣∣
∫
∂BR

f ?(y)
|x− y|n+α−1

y

|y|
dH n−1(y)

∣∣∣∣∣
= 1
Rα

∣∣∣∣∣∣∣
∫
∂B1

f ?(Ry)∣∣∣y − x
R

∣∣∣n+α−1
y

|y|
dH n−1(y)

∣∣∣∣∣∣∣
≤ nωn

Rα
(
1− |x|

R

)n+α−1 ‖f‖L∞(Rn)

≤ 2n+α−1nωn
Rα

‖f‖L∞(Rn)

and so, since suppϕ ⊂ BR/2, we get that

(3.30)
∣∣∣∣∫

Rn
ϕ · I1−α(f ?DχBR) dx

∣∣∣∣ ≤ 2n+α−1nωn
Rα

‖ϕ‖L1(Rn;Rn) ‖f‖L∞(Rn).
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Therefore, by (1.11), Lebesgue’s Dominated Convergence Theorem, (3.29) and (3.30),
we get that∫

Rn
f divαϕdx = lim

R→+∞

∫
Rn
χBRf divαϕdx = lim

R→+∞

∫
Rn
ϕ · I1−α(χ?BRDf) dx

and the conclusion follows. �

In the following result, we show that for all functions in bv(Rn) ∩ L∞(Rn) one
can actually pass to the limit as R → +∞ inside the integral in the right-hand side
of (3.28).
Corollary 3.18. If either f ∈ BV (Rn) or f ∈ bv(Rn) ∩ L∞(Rn), then
(3.31) ∇αf = I1−αDf a.e. in Rn.

Proof. If f ∈ BV (Rn), then (3.31) coincides with (3.15) and there is nothing to prove.
So let us assume that f ∈ bv(Rn) ∩ L∞(Rn). Writing Df = νf |Df | with νf ∈ Sn−1

|Df |-a.e. in Rn, for all x ∈ Rn we have

lim
R→+∞

χ?BR(y) νf (y)
|y − x|n+α−1 = νf (y)

|y − x|n+α−1 for |Df |-a.e. y 6= x.

Moreover, for a.e. x ∈ Rn, we have∣∣∣∣∣χ?BR(y) νf (y)
|y − x|n+α−1

∣∣∣∣∣ ≤ 1
|y − x|n+α−1 ∈ L

1
y(Rn, |Df |) ∀R > 0,

because I1−α|Df | ∈ L1
loc(Rn) by Lemma 1.4. Therefore, by Lebesgue’s Dominated

Convergence Theorem (applied with respect to the finite measure |Df |), we get that
lim

R→+∞
I1−α(χ∗BRDf)(x) = (I1−αDf)(x) for all x ∈ Rn.

Now let ϕ ∈ Lipc(Rn;Rn). Since

|ϕ · I1−α(χ?BRDf)| ≤ |ϕ| I1−α|Df | ∈ L1(Rn) ∀R > 0,
again by Lebesgue’s Dominated Convergence Theorem we get that

(3.32) lim
R→+∞

∫
Rn
ϕ · I1−α(χ∗BRDf) dx =

∫
Rn
ϕ · I1−αDf dx.

The conclusion thus follows combining (3.28) with (3.32). �

3.3. The inclusion BV α ⊂ W β,1 for β < α: a representation formula. In
Theorem 1.30, we proved that the inclusion BV α ⊂ W β,1 is continuous for β < α.
In the following result we prove a useful representation formula for the fractional β-
gradient of any f ∈ BV α(Rn), extending the formula obtained in Corollary 3.18.
Proposition 3.19. Let α ∈ (0, 1). If f ∈ BV α(Rn), then f ∈ W β,1(Rn) for all
β ∈ (0, α) with

(3.33) ∇βf = Iα−βD
αf a.e. in Rn.

In addition, for any bounded open set U ⊂ Rn, we have

(3.34) ‖∇βf‖L1(U ;Rn) ≤ Cn,(1−α+β),U |Dαf |(Rn)
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for all β ∈ (0, α), where Cn,α,U is as in (1.13). Finally, given an open set A ⊂ Rn, we
have
(3.35)

‖∇βf‖L1(A;Rn) ≤
µn,1+β−α

n+ β − α

(
ωn,1|Dαf |(Ar)

α− β
rα−β + ωn,α(n+ 2β − α)

β
‖f‖L1(Rn) r

−β
)

for all r > 0 and all β ∈ (0, α), where ωn,α = ‖∇αχB1‖L1(Rn;Rn), ωn,1 = |DχB1 |(Rn) =
nωn, and, as above, Ar = {x ∈ Rn : dist(x,A) < r}. In particular, we have

(3.36) ‖∇βf‖L1(Rn;Rn) ≤
αµn,1+β−αω

β
α
n,1ω

1− β
α

n,α (n+ 2β − α)1− β
α

β(n+ β − α)(α− β) ‖f‖1− β
α

L1(Rn) |D
αf |(Rn)

β
α .

Proof. Fix β ∈ (0, α). By Theorem 1.30, we already know that f ∈ W β,1(Rn), with
Dβf = ∇βfL n according to Theorem 1.27. We thus just need to prove (3.33), (3.34)
and (3.35).

We prove (3.33). Let ϕ ∈ C∞c (Rn;Rn). Note that Iα−βϕ ∈ Lipb(Rn;Rn) is such
that divIα−βϕ = Iα−βdivϕ, so that

I1−αdivIα−βϕ = I1−αIα−βdivϕ = I1−βdivϕ = divβϕ
by the semigroup property (N.58) of the Riesz potential. Moreover, in a similar way,
we have

I1−α|divIα−βϕ| = I1−α|Iα−βdivϕ| ≤ I1−αIα−β|divϕ| = I1−β|divϕ| ∈ L1
loc(Rn).

By Lemma 3.7, we thus have that divαIα−βϕ = divβϕ. Consequently, by Proposi-
tion 3.11, we get∫

Rn
f divβϕdx =

∫
Rn
f divαIα−βϕdx = −

∫
Rn
Iα−βϕ · dDαf.

Since |Dαf |(Rn) < +∞, we have Iα−β|Dαf | ∈ L1
loc(Rn) and thus, by Fubini’s Theorem,

we get that ∫
Rn
Iα−βϕ · dDαf =

∫
Rn
ϕ · Iα−βDαf dx.

We conclude that ∫
Rn
f divβϕdx = −

∫
Rn
ϕ · Iα−βDαf dx

for any ϕ ∈ C∞c (Rn;Rn), proving (3.33).
We prove (3.34). By (3.33), by Tonelli’s Theorem and by Lemma 1.4, we get∫

U
|∇βf | dx ≤

∫
U
Iα−β|Dαf | dx ≤ Cn,(1−α+β),U |Dαf |(Rn)

where Cn,α,U is as in (1.13).
We now prove (3.35) in two steps. We argue similarly as in the proof of (3.17).
Proof of (3.35), Step 1. Assume f ∈ C∞c (Rn) and fix r > 0. We have∫
A
|∇βf |dx =

∫
A
|Iα−β∇αf | dx

≤ µn,1+β−α

n+ β − α

(∫
A

∫
{|h|<r}

|∇αf(x+ h)|
|h|n+β−α dhdx+

∫
A

∣∣∣∣∣
∫
{|h|≥r}

∇αf(x+ h)
|h|n+β−α dh

∣∣∣∣∣dx
)
.
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We estimate the two double integrals appearing in the right-hand side separately. By
Tonelli’s Theorem, we have∫

A

∫
{|h|<r}

|∇αf(x+ h)|
|h|n+β−α dh dx =

∫
{|h|<r}

∫
A
|∇αf(x+ h)| dx dh

|h|n+β−α

≤ |Dαf |(Ar)
∫
{|h|<r}

dh

|h|n+β−α

= nωn |Dαf |(Ar)
α− β

rα−β.

Concerning the second double integral, we apply [3, Lemma 3.1.1(c)] to each component
of the measure Dαf ∈M (Rn;Rn) and get∫

{|h|≥r}

∇αf(x+ h)
|h|n+β−α dh = (n+ β − α)

∫ +∞

r

Dαf(B%(x))
%n+β−α+1 d%− Dαf(Br(x))

rn+β−α

for all x ∈ A. Since

Dαf(B%(x)) =
∫
Rn
χB%(y)∇αf(x+ y) dy

= −
∫
Rn
f(x+ y)∇αχB%(y) dy

= −%n−α
∫
Rn
f(x+ %y)∇αχB1(y) dy,

we can compute

(n+ β − α)
∫ +∞

r

Dαf(B%(x))
%n+β−α+1 d%− Dαf(Br(x))

rn+β−α

= −(n+ β − α)
∫ +∞

r

1
%β+1

∫
Rn
f(x+ %y)∇αχB1(y) dy d%

+ 1
rβ

∫
Rn
f(x+ ry)∇αχB1(y) dy

=
∫
Rn

(
f(x+ ry)

rβ
− (n+ β − α)

∫ +∞

r

f(x+ %y)
%β+1 d%

)
∇αχB1(y) dy

for all x ∈ A. Hence, we have∫
A

∣∣∣∣∣
∫
{|h|>r}

∇αf(x+ h)
|h|n+β−α dh

∣∣∣∣∣ dx ≤
∫
Rn

∣∣∣∣∣
∫
{|h|>r}

∇αf(x+ h)
|h|n+β−α dh

∣∣∣∣∣ dx
≤
∫
Rn

∫
Rn

|f(x+ ry)|
rβ

|∇αχB1(y)| dx dy

+ (n+ β − α)
∫
Rn

∫ +∞

r

∫
Rn

|f(x+ %y)|
%β+1 |∇αχB1(y)| dx d% dy

= ωn,α(n+ 2β − α)
β

‖f‖L1(Rn) r
−β.

Thus (3.17) follows for all f ∈ C∞c (Rn) and r > 0.
Proof of (3.17), Step 2. Let f ∈ BV α(Rn) and fix r > 0. By Theorem 1.16, we

find (fk)k∈N ⊂ C∞c (Rn) such that fk → f in L1(Rn) and |Dαfk|(Rn) → |Dαf |(Rn) as



3. ESTIMATES AND REPRESENTATION FORMULAS FOR THE FRACTIONAL α-GRADIENT 77

k → +∞. By Step 1, we have that
(3.37)

‖∇βfk‖L1(A;Rn) ≤
µn,1+β−α

n+ β − α

(
nωn|Dαfk|(Ar)

α− β
rα−β+ ωn,α(n+ 2β − α)

β
‖fk‖L1(Rn) r

−β
)

for all k ∈ N. We have that

(3.38) (∇βfk) L n ⇀ (∇βf) L n as k → +∞.

This can be proved arguing similarly as in the proof of (3.22) using (3.34). We leave
the details to the reader. Thanks to (3.38), by [58, Proposition 4.29] we get that

‖∇βf‖L1(A;Rn) ≤ lim inf
k→+∞

‖∇βfk‖L1(A;Rn).

Since
|Dαf |(U) ≤ lim inf

k→+∞
|Dαfk|(U)

for any open set U ⊂ Rn by Proposition 1.11, we can estimate

lim sup
k→+∞

|Dαfk|(Ar) ≤ lim
k→+∞

|Dαfk|(Rn)− lim inf
k→+∞

|Dαfk|(Rn \ Ar)

≤ |Dαf |(Rn)− |Dαf |(Rn \ Ar)
= |Dαf |(Ar).

Thus, (3.35) follows taking limits as k → +∞ in (3.37). Finally, (3.36) follows by
considering A = Rn in (3.35) and optimising the right-hand side in r > 0. �

3.4. The inclusion Sβ,p(Rn) ⊂ Sα,p(Rn) for 0 < β < α < 1. We conclude with
the following result which can be derived from the theory of Bessel potential spaces.
However, we state it here since our distributional approach provides explicit constants
(independent of p) in the estimates that may be of some interest. The proof is very
similar to the one of Proposition 3.15 and we leave it to the interested reader.
Proposition 3.20 (Sβ,p(Rn) ⊂ Sα,p(Rn) for 0 < β < α < 1). Let 0 < β < α < 1 and
p ∈ (1,+∞). If f ∈ Sα,p(Rn), then f ∈ Sβ,p(Rn) with

(3.39) ‖∇βf‖Lp(A;Rn) ≤
nωnµn,1+β−α

n+ β − α

(
rα−β

α− β
‖∇αf‖Lp(Ar;Rn) + cn,α

r−β

β
‖f‖Lp(Rn)

)

for any r > 0 and any open set A ⊂ Rn, where Ar = {x ∈ Rn : dist(x,A) < r} and
cn,α > 0 is a constant depending only on n and α. In particular, we have

(3.40) ‖∇βf‖Lp(Rn;Rn) ≤ cn,α
µn,1+β−α

β(α− β)(n+ β − α) ‖∇
αf‖β/αLp(Rn;Rn)‖f‖

(β−α)/α
Lp(Rn) ,

where cn,α > 0 is a constant depending only on n and α. In addition, if p ∈
(
1, n

α−β

)
and q = np

n−(α−β)p , then

(3.41) ∇βf = Iα−β∇αf a.e. in Rn

and ∇βf ∈ Lq(Rn;Rn).
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4. Asymptotic behaviour of fractional α-variation as α→ 1−

4.1. Convergence of ∇α and divα as α → 1−. We begin with the following
simple result about the asymptotic behaviour of the constant µn,α as α→ 1−.
Lemma 3.21. Let n ∈ N. We have

(3.42) µn,α
1− α ≤ π−

n
2

√
3
2

Γ
(
n
2 + 1

)
Γ
(

3
2

) =: Cn ∀α ∈ (0, 1)

and
(3.43) lim

α→1−
µn,α

1− α = ω−1
n .

Proof. Since Γ(1) = 1 and Γ(1 + x) = xΓ(x) for x > 0 (see [13]), we have Γ(x) ∼ x−1

as x→ 0+. Thus as α→ 1− we find

µn,α = 2απ−n2
Γ
(
n+α+1

2

)
Γ
(

1−α
2

) ∼ π−
n
2 (1− α) Γ

(
n

2 + 1
)

= ω−1
n (1− α)

and (3.43) follows.
Since Γ is log-convex on (0,+∞) (see [13]), for all x > 0 and a ∈ (0, 1) we have

Γ(x+ a) = Γ((1− a)x+ a(x+ 1)) ≤ Γ(x)1−a Γ(x+ 1)a = xa Γ(x).
For x = n

2 and a = α+1
2 , we can estimate

Γ
(
n+ α + 1

2

)
≤
(
n

2

)α+1
2

Γ
(
n

2

)
≤ Γ

(
n

2 + 1
)

for all n ≥ 2. Also, for n = 1, we trivially have Γ
(

2+α
2

)
≤ Γ

(
3
2

)
, because Γ is increasing

on (1,+∞) (see [13]). For x = 1 + 1−α
2 and a = α

2 , we can estimate

Γ
(3

2

)
≤
(

1 + 1− α
2

)α
2

Γ
(

1 + 1− α
2

)
≤
√

3
2

1− α
2 Γ

(1− α
2

)
.

We thus get

µn,α(1− α)−1 = 2α−1 π−
n
2

Γ
(
n+α+1

2

)
Γ
(

1−α
2 + 1

) ≤ π−
n
2

√
3
2

Γ
(
n
2 + 1

)
Γ
(

3
2

)
and (3.42) follows. �

In the following technical result, we show that the constant Cn,α,U defined in (1.13)
is uniformly bounded as α → 1− in terms of the volume and the diameter of the
bounded open set U ⊂ Rn.
Lemma 3.22 (Uniform upper bound on Cn,α,U as α→ 1−). Let n ∈ N and α ∈ (1

2 , 1).
Let U ⊂ Rn be bounded open set. If Cn,α,U is as in (1.13), then

(3.44) Cn,α,U ≤
nωnCn(
n− 1

2

)
 n(

n− 1
2

) max
{

1, |U |
ωn

} 1
n

+ max
{

1,
√

diam(U)
} =: κn,U ,

where Cn is as in (3.42).
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Proof. By (3.42), for all α ∈ (1
2 , 1) we have
nµn,α

(n+ α− 1)(1− α) ≤
nCn

n+ α− 1 ≤
nCn
n− 1

2
.

Since t1−α ≤ max
{

1,
√
t
}
for any t ≥ 0 and α ∈ (1

2 , 1), we have

ωn(diam(U))1−α ≤ ωn max
{

1,
√

diam(U)
}

and (
nωn

n+ α− 1

)n+α−1
n

|U |
1−α
n = nωn

n+ α− 1

(
|U |(n+ α− 1)

nωn

) 1−α
n

≤ nωn(
n− 1

2

) max
{

1, |U |
ωn

} 1
n

.

Combining these inequalities, we get the conclusion. �

As consequence of Corollary 1.3 and Lemma 3.22, we prove that ∇α and divα
converge pointwise to ∇ and div respectively as α→ 1−.
Proposition 3.23. If f ∈ C1

c (Rn), then for all x ∈ Rn we have
(3.45) lim

α→0−
Iαf(x) = f(x).

As a consequence, if f ∈ C2
c (Rn) and ϕ ∈ C2

c (Rn;Rn), then for all x ∈ Rn we have
(3.46) lim

α→1−
∇αf(x) = ∇f(x), lim

α→1−
divαϕ(x) = divϕ(x).

Proof. Let f ∈ C1
c (Rn) and fix x ∈ Rn. Writing (1.14) in spherical coordinates, we find

Iαf(x) = µn,1−α
n− α

lim
δ→0

∫
∂B1

∫ +∞

δ
%−1+αf(x+ %v) d% dH n−1(v).

Since f ∈ C1
c (Rn), for each fixed v ∈ ∂B1 we can integrate by parts in the variable %

and get∫ +∞

δ
%−1+αf(x+ %v) d% =

[
%α

α
f(x+ %v)

]%→+∞

%=δ
− 1
α

∫ +∞

δ
%α ∂%(f(x+ %v)) d%

= −δ
α

α
f(x+ δv)− 1

α

∫ +∞

δ
%α ∂%(f(x+ %v)) d%.

Clearly, we have
lim
δ→0+

δα
∫
∂B1

f(x+ δv) dH n−1(v) = 0.

Thus, by Fubini’s Theorem, we conclude that

(3.47) Iαf(x) = − µn,1−α
α(n− α)

∫ ∞
0

∫
∂B1

%α ∂%(f(x+ %v)) dH n−1(v) d%.

Since f has compact support and recalling (3.43), we can pass to the limit in (3.47)
and get

lim
α→0+

Iαf(x) = − 1
nωn

∫
∂B1

∫ ∞
0

∂%(f(x+ %v)) d% dH n−1(v) = f(x),
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proving (3.45). The pointwise limits in (3.46) immediately follows by Corollary 1.3. �

In the following crucial result, we improve the pointwise convergence obtained in
Proposition 3.23 to strong convergence in Lp(Rn) for all p ∈ [1,+∞].
Proposition 3.24. Let p ∈ [1,+∞]. If f ∈ C2

c (Rn) and ϕ ∈ C2
c (Rn;Rn), then

lim
α→1−

‖∇αf −∇f‖Lp(Rn;Rn) = 0, lim
α→1−

‖divαϕ− divϕ‖Lp(Rn) = 0.

Proof. Let f ∈ C2
c (Rn). Since∫

B1

dy

|y|n+α−1 = nωn

∫ 1

0

d%

%α
= nωn

1− α,

for all x ∈ Rn we can write
nωnµn,α

(1− α)(n+ α− 1) ∇f(x) = µn,α
n+ α− 1

∫
B1

∇f(x)
|y|n+α−1 dy.

Therefore, by (1.14), we have

∇αf(x)− nωnµn,α
(1− α)(n+ α− 1) ∇f(x)

= µn,α
n+ α− 1

(∫
B1

∇f(x+ y)−∇f(x)
|y|n+α−1 dy +

∫
Rn\B1

∇f(x+ y)
|y|n+α−1 dy

)
for all x ∈ Rn. We now distinguish two cases.

Case 1: p ∈ [1,+∞). Using the elementary inequality |v + w|p ≤ 2p−1(|v|p + |w|p)
valid for all v, w ∈ Rn, we have∫

Rn

∣∣∣∣∣∇αf(x)− nωnµn,α
(1− α)(n+ α− 1) ∇f(x)

∣∣∣∣∣
p

dx

≤ 2p−1µn,α
n+ α− 1

∫
Rn

∣∣∣∣∣
∫
B1

∇f(x+ y)−∇f(x)
|y|n+α−1 dy

∣∣∣∣∣
p

dx

+ 2p−1µn,α
n+ α− 1

∫
Rn

∣∣∣∣∣
∫
Rn\B1

∇f(x+ y)
|y|n+α−1 dy

∣∣∣∣∣
p

dx.

We now estimate the two double integrals appearing in the right-hand side separately.
For the first double integral, similarly as in the proof of Proposition 3.23, we pass

in spherical coordinates to get

∫
B1

∇f(x+ y)−∇f(x)
|y|n+α−1 dy =

∫
∂B1

∫ 1

0
%−α (∇f(x+ %v)−∇f(x)) d% dH n−1(v)

= 1
1− α

∫
∂B1

(∇f(x+ v)−∇f(x)) dH n−1(v)

−
∫
∂B1

∫ 1

0

%1−α

1− α ∂%(∇f(x+ %v)) d% dH n−1(v)

(3.48)

for all x ∈ Rn. Hence, by (3.43), we find

lim
α→1−

µn,α
(1− α)(n+ α− 1)

∫
∂B1

(∇f(x+ v)−∇f(x)) dH n−1(v)
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= 1
nωn

∫
∂B1

(∇f(x+ v)−∇f(x)) dH n−1(v)

and

lim
α→1−

µn,α
(1− α)(n+ α− 1)

∫
∂B1

∫ 1

0
%1−α ∂%(∇f(x+ %v)) d% dH n−1(v)

= 1
nωn

∫
∂B1

∫ 1

0
∂%(∇f(x+ %v)) d% dH n−1(v)

= 1
nωn

∫
∂B1

(∇f(x+ v)−∇f(x)) dH n−1(v)

for all x ∈ Rn. Therefore, we get

lim
α→1−

µn,α
n+ α− 1

∫
B1

∇f(x+ y)−∇f(x)
|y|n+α−1 dy = 0

for all x ∈ Rn. Recalling (3.42), we also observe that
µn,α

n+ α− 1
|∇f(x+ y)−∇f(x)|

|y|n+α−1 ≤ Cn
|∇f(x+ y)−∇f(x)|

|y|n

for all α ∈ (0, 1), x ∈ Rn and y ∈ B1. Moreover, letting R > 0 be such that supp f ⊂
BR, we can estimate∫

B1

|∇f(x+ y)−∇f(x)|
|y|n

dy ≤ nωn‖∇f‖L∞(Rn;Rn)χBR+1(x)

for all x ∈ Rn, so that

x 7→
(∫

B1

|∇f(x+ y)−∇f(x)|
|y|n

dy

)p
∈ L1(Rn).

In conclusion, applying Lebesgue’s Dominated Convergence Theorem, we find

lim
α→1−

µn,α
n+ α− 1

∫
Rn

∣∣∣∣∣
∫
B1

∇f(x+ y)−∇f(x)
|y|n+α−1 dy

∣∣∣∣∣
p

dx = 0.

For the second double integral, note that∫
Rn\B1

∇f(x+ y)
|y|n+α−1 dy =

∫
Rn\B1

∇(f(x+ y)− f(x))
|y|n+α−1 dy

for all x ∈ Rn. Now let R > 0. Integrating by parts, we have that∫
BR\B1

∇(f(x+ y)− f(x))
|y|n+α−1 dy = (n+ α− 1)

∫
BR\B1

y (f(x+ y)− f(x))
|y|n+α+1 dy

+ 1
Rn+α−1

∫
∂BR

(f(x+ y)− f(x)) dH n−1(y)

−
∫
∂B1

(f(x+ y)− f(x)) dH n−1(y)

for all x ∈ Rn. Since∫
Rn\BR

|f(x+ y)− f(x)|
|y|n+α dy ≤ 2nωn

αRα
‖f‖L∞(Rn)
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and
1

Rn+α−1

∫
∂BR
|f(x+ y)− f(x)| dH n−1(y) ≤ 2nωn

Rα
‖f‖L∞(Rn)

for all R > 0, we conclude that∫
Rn\B1

∇f(x+ y)
|y|n+α−1 dy = lim

R→+∞

∫
BR\B1

∇f(x+ y)
|y|n+α−1 dy

= (n+ α− 1)
∫
Rn\B1

y (f(x+ y)− f(x))
|y|n+α+1 dy

−
∫
∂B1

(f(x+ y)− f(x)) dH n−1(y)

(3.49)

for all x ∈ Rn. Hence, by Minkowski’s Integral Inequality (see [96, Section A.1], for
example), we can estimate∥∥∥∥∥

∫
Rn\B1

∇f(·+ y)
|y|n+α−1 dy

∥∥∥∥∥
Lp(Rn;Rn)

≤ (n+ α− 1)
∥∥∥∥∥
∫
Rn\B1

|f(·+ y)− f(·)|
|y|n+α dy

∥∥∥∥∥
Lp(Rn)

+
∥∥∥∥∥
∫
∂B1
|f(·+ y)− f(·)| dH n−1(y)

∥∥∥∥∥
Lp(Rn)

≤ n+ 2α− 1
α

2nωn‖f‖Lp(Rn).

Thus, by (3.43), we get that

lim
α→1−

µn,α
n+ α− 1

∫
Rn

∣∣∣∣∣
∫
Rn\B1

∇f(x+ y)
|y|n+α−1 dy

∣∣∣∣∣
p

dx = 0.

Case 2: p = +∞. We have

sup
x∈Rn

∣∣∣∣∣∇αf(x)− nωnµn,α
(1− α)(n+ α− 1) ∇f(x)

∣∣∣∣∣
≤ µn,α
n+ α− 1

(
sup
x∈Rn

∣∣∣∣∣
∫
B1

∇f(x+ y)−∇f(x)
|y|n+α−1 dy

∣∣∣∣∣+ sup
x∈Rn

∣∣∣∣∣
∫
Rn\B1

∇f(x+ y)
|y|n+α−1 dy

∣∣∣∣∣
)
.

Again we estimate the two integrals appearing in the right-hand side separately. We
note that∫

∂B1
(∇f(x+ v)−∇f(x)) dH n−1(v)−

∫
∂B1

∫ 1

0
%1−α ∂%(∇f(x+ %v)) d% dH n−1(v)

=
∫
∂B1

∫ 1

0
(1− %1−α) ∂%(∇f(x+ %v)) d% dH n−1(v),

so that we can rewrite (3.48) as∫
B1

∇f(x+ y)−∇f(x)
|y|n+α−1 dy = 1

1− α

∫
∂B1

∫ 1

0
(1− %1−α) ∂%(∇f(x+ %v)) d% dH n−1(v).

Hence, we can estimate

sup
x∈Rn

∣∣∣∣∣
∫
B1

∇f(x+ y)−∇f(x)
|y|n+α−1 dy

∣∣∣∣∣
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≤ 1
1− α

∫
∂B1

∫ 1

0
(1− %1−α) sup

x∈Rn
|∂%(∇f(x+ %v))| d% dH n−1(v)

≤ 1
2− α nωn ‖∇

2f‖L∞(Rn;R2n),

so that

lim
α→1−

µn,α
n+ α− 1 sup

x∈Rn

∣∣∣∣∣
∫
B1

∇f(x+ y)−∇f(x)
|y|n+α−1 dy

∣∣∣∣∣ = 0.

For the second integral, by (3.49) we can estimate

sup
x∈Rn

∣∣∣∣∣
∫
Rn\B1

∇f(x+ y)
|y|n+α−1 dy

∣∣∣∣∣ dx
≤ (n+ α− 1) sup

x∈Rn

∣∣∣∣∣
∫
Rn\B1

|f(x+ y)− f(x)|
|y|n+α dy

∣∣∣∣∣
+ sup

x∈Rn

∣∣∣∣∣
∫
∂B1
|f(x+ y)− f(x)| dH n−1(y)

∣∣∣∣∣
≤ n+ 2α− 1

α
2nωn‖f‖L∞(Rn).

Thus, by (3.43), we get that

lim
α→1−

µn,α
n+ α− 1 sup

x∈Rn

∣∣∣∣∣
∫
Rn\B1

∇f(x+ y)
|y|n+α−1 dy

∣∣∣∣∣ = 0.

We can now conclude the proof. Again recalling (3.43), we thus find that
lim
α→1−

‖∇αf −∇f‖Lp(Rn;Rn)

≤ lim
α→1−

∥∥∥∥∥∇αf − nωnµn,α
(1− α)(n+ α− 1) ∇f

∥∥∥∥∥
Lp(Rn;Rn)

+ ‖∇f‖Lp(Rn;Rn) lim
α→1−

(
nωnµn,α

(1− α)(n+ α− 1) − 1
)

= 0

for all p ∈ [1,+∞] and the conclusion follows. The Lp-convergence of divαϕ to divϕ
as α→ 1− for all p ∈ [1,+∞] follows by a similar argument and is left to the reader. �

Remark 3.25. Note that the conclusion of Proposition 3.24 still holds if instead one
assumes that f ∈ S(Rn) and ϕ ∈ S(Rn;Rn). We leave the proof of this assertion to
the reader.

4.2. Weak convergence of α-variation as α → 1−. In Theorem 3.27 below,
we prove that the fractional α-variation weakly converges to the standard variation as
α → 1− for functions either in BV (Rn) or in BVloc(Rn) ∩ L∞(Rn). In the proof of
Theorem 3.27, we are going to use the following technical result.
Lemma 3.26. There exists a dimensional constant cn > 0 with the following property.
If f ∈ L∞(Rn) ∩BVloc(Rn), then

(3.50) ‖∇αf‖L1(BR;Rn) ≤ cn
(
R1−α|Df |(B3R) +Rn−α ‖f‖L∞(Rn)

)
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for all R > 0 and α ∈ (1
2 , 1).

Proof. Since Γ(x) ∼ x−1 as x → 0+ (see [13]), inequality (3.50) follows immediately
combining (3.20) with Lemma 3.21. �

Theorem 3.27. If either f ∈ BV (Rn) or f ∈ BVloc(Rn) ∩ L∞(Rn), then
Dαf ⇀ Df as α→ 1−.

Proof. We divide the proof in two steps.
Step 1. Assume f ∈ BV (Rn). By Theorem 1.27, we have∫

Rn
ϕ · ∇αf dx = −

∫
Rn
f divαϕdx

for all ϕ ∈ Lipc(Rn;Rn). Thus, given ϕ ∈ C2
c (Rn;Rn), recalling Proposition 3.23 and

the estimates (1.12) and (3.44), by Lebesgue’s Dominated Convergence Theorem we
get that

lim
α→1−

∫
Rn
ϕ · ∇αf dx = − lim

α→1−

∫
Rn
f divαϕdx = −

∫
Rn
f divϕdx =

∫
Rn
ϕ · dDf.

Now fix ϕ ∈ C0
c (Rn;Rn). Let U ⊂ Rn be a fixed bounded open set such that suppϕ ⊂

U . For each ε > 0 sufficiently small, pick ψε ∈ C2
c (Rn;Rn) such that ‖ϕ−ψε‖L∞(Rn;Rn) <

ε and suppψε ⊂ U . Then, by (3.16), we can estimate∣∣∣∣∫
Rn
ϕ · ∇αf dx−

∫
Rn
ϕ · dDf

∣∣∣∣ ≤ ‖ϕ− ψε‖L∞(Rn;Rn)

(∫
U
|∇αf | dx+ |Df |(Rn)

)
+
∣∣∣∣∫

Rn
ψε · ∇αf dx−

∫
Rn
ψε · dDf

∣∣∣∣
≤ ε(1 + Cn,α,U) |Df |(Rn)

+
∣∣∣∣∫

Rn
ψε · ∇αf dx−

∫
Rn
ψε · dDf

∣∣∣∣
for all α ∈ (0, 1). Thus, by the uniform estimate (3.44) in Lemma 3.22, we get

(3.51) lim
α→1−

∣∣∣∣∫
Rn
ϕ · ∇αf dx−

∫
Rn
ϕ · dDf

∣∣∣∣ ≤ ε(1 + κn,U) |Df |(Rn)

and the conclusion follows passing to the limit as ε→ 0+.
Step 2. Assume f ∈ BVloc(Rn) ∩ L∞(Rn). By Proposition 3.14(iii), we know that

Dαf = ∇αfL n with ∇αf ∈ L1
loc(Rn;Rn). By Proposition 3.24, we get that

lim
α→1−

∣∣∣∣∫
Rn
ϕ · ∇αf dx−

∫
Rn
ϕ · dDf

∣∣∣∣ ≤ ‖f‖L∞(Rn) lim
α→1−

‖divαϕ− divϕ‖L1(Rn;Rn) = 0

for all ϕ ∈ C2
c (Rn;Rn). Now fix ϕ ∈ C0

c (Rn;Rn) and choose R ≥ 1 such that
suppϕ ⊂ BR. For each ε > 0 sufficiently small, pick ψε ∈ C2

c (Rn;Rn) such that
‖ϕ− ψε‖L∞(Rn;Rn) < ε and suppψε ⊂ BR. Then, by (3.50), we can estimate∣∣∣∣∣
∫
Rn
ϕ · ∇αf dx−

∫
Rn
ϕ · dDf

∣∣∣∣∣ ≤ ‖ϕ− ψε‖L∞(Rn;Rn)
(
‖∇αf‖L1(BR;Rn) + |Df |(BR)

)
+
∣∣∣∣∣
∫
Rn
ψε · ∇αf dx−

∫
Rn
ψε · dDf

∣∣∣∣∣
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≤ εcnR
n
(
‖f‖L∞(Rn) + |Df |(B3R)

)
+
∣∣∣∣∣
∫
Rn
ψε · ∇αf dx−

∫
Rn
ψε · dDf

∣∣∣∣∣
for all α ∈ (1

2 , 1). We thus get

(3.52) lim
α→1−

∣∣∣∣∫
Rn
ϕ · ∇αf dx−

∫
Rn
ϕ · dDf

∣∣∣∣ ≤ εcnR
n
(
‖f‖L∞(Rn) + |Df |(B3R)

)
and the conclusion follows passing to the limit as ε→ 0+. �

We are now going to improve the weak convergence of the fractional α-variation
obtained in Theorem 3.27 by establishing the weak convergence also of the total frac-
tional α-variation as α→ 1−, see Theorem 3.29 below. To do so, we need the following
preliminary result.
Lemma 3.28. Let µ ∈M (Rn;Rn). We have (Iαµ)L n ⇀ µ as α→ 0+.

Proof. Since Riesz potential is a linear operator and thanks to Hahn–Banach Decom-
position Theorem, without loss of generality we can assume that µ is a nonnegative
finite Radon measure.

Let now ϕ ∈ C1
c (Rn) and let U ⊂ Rn be a bounded open set such that suppϕ ⊂ U .

We have that ‖Iα|ϕ|‖L∞(Rn) ≤ κn,U‖ϕ‖L∞(Rn) for all α ∈ (0, 1
2) by Lemma 1.4 and

Lemma 3.22. Thus, by (3.45), Fubini’s Theorem and Lebesgue’s Dominated Conver-
gence Theorem, we get that

lim
α→0+

∫
Rn
ϕ Iαµ dx = lim

α→0+

∫
Rn
Iαϕdµ =

∫
Rn
ϕdµ.

Now fix ϕ ∈ C0
c (Rn;Rn). Let U ⊂ Rn be a fixed bounded open set such that suppϕ ⊂

U . For each ε > 0 sufficiently small, pick ψε ∈ C1
c (Rn;Rn) such that ‖ϕ−ψε‖L∞(Rn;Rn) <

ε and suppψε ⊂ U . Then, since µ(Rn) < +∞, by Lemma 1.4 and by (3.44), we can
estimate∣∣∣∣∣

∫
Rn
ϕ Iαµ dx−

∫
Rn
ϕdµ

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Rn
ψε Iαµ dx−

∫
Rn
ψε dµ

∣∣∣∣∣+ ε‖Iαµ‖L1(U) + εµ(U)

≤
∣∣∣∣∣
∫
Rn
Iαψε dµ−

∫
Rn
ψε dµ

∣∣∣∣∣+ ε(1 + Cn,α,U)µ(Rn)

≤
∣∣∣∣∣
∫
Rn
Iαψε dµ−

∫
Rn
ψε dµ

∣∣∣∣∣+ ε(1 + κn,U)µ(Rn)

for all α ∈ (0, 1
2), so that

lim sup
α→0+

∣∣∣∣∣
∫
Rn
ϕ Iαµ dx−

∫
Rn
ϕdµ

∣∣∣∣∣ ≤ ε(1 + κn,U)µ(Rn).

The conclusion thus follows passing to the limit as ε→ 0+. �

Theorem 3.29. If either f ∈ BV (Rn) or f ∈ bv(Rn) ∩ L∞(Rn), then

(3.53) |Dαf |⇀ |Df | as α→ 1−.
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Moreover, if f ∈ BV (Rn), then also
(3.54) lim

α→1−
|Dαf |(Rn) = |Df |(Rn).

Proof. We prove (3.53) and (3.54) separately.
Proof of (3.53). By Theorem 3.27, we know that Dαf ⇀ Df as α → 1−. By [58,

Proposition 4.29], we thus have that
(3.55) |Df |(A) ≤ lim inf

α→1−
|Dαf |(A)

for any open set A ⊂ Rn. Now let K ⊂ Rn be a compact set. By the representation
formula (3.31) in Corollary 3.18, we can estimate

|Dαf |(K) = ‖∇αf‖L1(K;Rn) ≤ ‖I1−α|Df |‖L1(K) = (I1−α|Df |L n)(K).
Since |Df |(Rn) < +∞, by Lemma 3.28 and [58, Proposition 4.26] we can conclude
that

lim sup
α→1−

|Dαf |(K) ≤ lim sup
α→1−

(I1−α|Df |L n)(K) ≤ |Df |(K),

and so (3.53) follows, thanks again to [58, Proposition 4.26].
Proof of (3.54). Now assume f ∈ BV (Rn). By (3.17) applied with A = Rn and

r = 1, we have

|Dαf |(Rn) ≤ nωn µn,α
n+ α− 1

(
|Df |(Rn)

1− α + n+ 2α− 1
α

‖f‖L1(Rn)

)
.

By (3.43), we thus get that
(3.56) lim sup

α→1−
|Dαf |(Rn) ≤ |Df |(Rn).

Thus (3.54) follows combining (3.55) for A = Rn with (3.56). �

Note that Theorem 3.27 and Theorem 3.29 in particular apply to any f ∈ W 1,1(Rn).
In the following result, by exploiting Proposition 3.15, we prove that a stronger property
holds for any f ∈ W 1,p(Rn) with p ∈ [1,+∞).
Theorem 3.30. Let p ∈ [1,+∞). If f ∈ W 1,p(Rn), then
(3.57) lim

α→1−
‖∇αf −∇f‖Lp(Rn;Rn) = 0.

Proof. By Proposition 3.15 we know that f ∈ Sα,p(Rn) for any α ∈ (0, 1). We now
assume ∈ (1,+∞) and divide the proof in two steps.

Step 1. We claim that
(3.58) lim

α→1−
‖∇αf‖Lp(Rn;Rn) = ‖∇f‖Lp(Rn;Rn).

Indeed, on the one hand, by Proposition 3.24, we have

(3.59)
∫
Rn
ϕ ·∇f dx = −

∫
Rn
f divϕdx = − lim

α→1−

∫
Rn
f divαϕdx = lim

α→1−

∫
Rn
ϕ ·∇αf dx

for all ϕ ∈ C∞c (Rn;Rn), so that∫
Rn
ϕ · ∇f dx ≤ ‖ϕ‖

L
p
p−1 (Rn;Rn)

lim inf
α→1−

‖∇αf‖Lp(Rn;Rn)
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for all ϕ ∈ C∞c (Rn;Rn). We thus get that

(3.60) ‖∇f‖Lp(Rn;Rn) ≤ lim inf
α→1−

‖∇αf‖Lp(Rn;Rn).

On the other hand, applying (3.23) with A = Rn and r = 1, we have

‖∇αf‖Lp(Rn;Rn) ≤
nωn µn,α
n+ α− 1

(
‖∇f‖Lp(Rn;Rn)

1− α + n+ 2α− 1
α

‖f‖Lp(Rn)

)
.

By (3.43), we conclude that

(3.61) lim sup
α→1−

‖∇αf‖Lp(Rn;Rn) ≤ ‖∇f‖Lp(Rn;Rn).

Thus, (3.58) follows combining (3.60) and (3.61).
Step 2. We now claim that

(3.62) ∇αf ⇀ ∇f in Lp(Rn;Rn) as α→ 1−.

Indeed, let ϕ ∈ L
p
p−1 (Rn;Rn). For each ε > 0, let ψε ∈ C∞c (Rn;Rn) be such that

‖ψε − ϕ‖
L

p
p−1 (Rn;Rn)

< ε. By (3.59) and (3.58), we can estimate

lim sup
α→1−

∣∣∣∣∣
∫
Rn
ϕ · ∇αf dx−

∫
Rn
ϕ · ∇f dx

∣∣∣∣∣ ≤ lim sup
α→1−

∣∣∣∣∣
∫
Rn
ψε · ∇αf dx−

∫
Rn
ψε · ∇f dx

∣∣∣∣∣
+
∫
Rn
|ϕ− ψε| |∇αf | dx+

∫
Rn
|ϕ− ψε| |∇f | dx

≤ ε

(
lim
α→1−

‖∇αf‖Lp(Rn;Rn) + ‖∇f‖Lp(Rn;Rn)

)
= 2ε ‖∇f‖Lp(Rn;Rn)

so that (3.62) follows passing to the limit as ε→ 0+.
Since Lp(Rn;Rn) is uniformly convex (see [19, Section 4.3] for example), the limit

in (3.57) follows from (3.58) and (3.62) by [19, Proposition 3.32], and the proof of the
case p ∈ (1,+∞) is complete.

For the case p = 1, we argue as follows (we thank Mattia Calzi for this simple
argument). Without loss of generality, it is enough to prove the limit in (3.58) for
any given sequence (αk)k∈N such that αk → 1− as k → +∞. By (3.54), the sequence
(‖∇αkf‖L1(Rn;Rn))k∈N is bounded for any f ∈ W 1,1(Rn) and thus, by Banach–Steinhaus
Theorem, the linear operators∇αk : W 1,1(Rn)→ L1(Rn;Rn) are uniformly bounded (in
the operator norm). The conclusion hence follows by exploiting the density of C∞c (Rn)
in W 1,1(Rn) and Proposition 3.24. �

For the case p = +∞, we have the following result.
Theorem 3.31. If f ∈ W 1,∞(Rn), then

(3.63) ∇αf ⇀ ∇f in L∞(Rn;Rn) as α→ 1−

and

(3.64) ‖∇f‖L∞(Rn;Rn) ≤ lim inf
α→1−

‖∇αf‖L∞(Rn;Rn).
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Proof. We argue similarly as in the proof of Theorem 3.30, in two steps.
Step 1: proof of (3.63). By Proposition 3.12 and Proposition 3.24, we have

(3.65) lim
α→1−

∫
Rn
ϕ ·∇αf dx = − lim

α→1−

∫
Rn
f divαϕdx = −

∫
Rn
f divϕdx =

∫
Rn
ϕ ·∇f dx

for all ϕ ∈ C∞c (Rn;Rn), so that∫
Rn
ϕ · ∇f dx ≤ ‖ϕ‖L1(Rn;Rn) lim inf

α→1−
‖∇αf‖L∞(Rn;Rn)

for all ϕ ∈ C∞c (Rn;Rn). We thus get (3.64).
Step 2: proof of (3.64). Let ϕ ∈ L1(Rn;Rn). For each ε > 0, let ψε ∈ C∞c (Rn;Rn)

be such that ‖ψε − ϕ‖L1(Rn;Rn) < ε. By (3.65) and (3.27), we can estimate

lim sup
α→1−

∣∣∣∣∣
∫
Rn
ϕ · ∇αf dx−

∫
Rn
ϕ · ∇f dx

∣∣∣∣∣ ≤ lim sup
α→1−

∣∣∣∣∣
∫
Rn
ψε · ∇αf dx−

∫
Rn
ψε · ∇f dx

∣∣∣∣∣
+
∫
Rn
|ϕ− ψε||∇αf | dx+

∫
Rn
|ϕ− ψε||∇f | dx

≤ ε

(
lim sup
α→1−

‖∇αf‖L∞(Rn;Rn) + ‖∇f‖L∞(Rn;Rn)

)
≤ ε (n+ 1) ‖∇f‖L∞(Rn;Rn)

so that (3.62) follows passing to the limit as ε→ 0+. �

Remark 3.32. We notice that Theorem 3.27 and Theorem 3.29, in the case f =
χE ∈ BV (Rn) with E ⊂ Rn bounded, and Theorem 3.30, were already announced
in [91, Theorems 16 and 17].

4.3. Γ-convergence of α-variation as α → 1−. In this section, we study the
Γ-convergence of the fractional α-variation to the standard variation as α→ 1−.

We begin with the Γ - lim inf inequality.
Theorem 3.33 (Γ - lim inf inequalities as α→ 1−). Let Ω ⊂ Rn be an open set.
(i) If (fα)α∈(0,1) ⊂ L1

loc(Rn) satisfies supα∈(0,1) ‖fα‖L∞(Rn) < +∞ and fα → f in
L1

loc(Rn) as α→ 1−, then
(3.66) |Df |(Ω) ≤ lim inf

α→1−
|Dαfα|(Ω).

(ii) If (fα)α∈(0,1) ⊂ L1(Rn) satisfies fα → f in L1(Rn) as α→ 1−, then (3.66) holds.
Proof. We prove the two statements separately.

Proof of (i). Let ϕ ∈ C∞c (Ω;Rn) be such that ‖ϕ‖L∞(Ω;Rn) ≤ 1. Since we can
estimate∣∣∣∣∣
∫
Rn
fα divαϕdx−

∫
Rn
f divϕdx

∣∣∣∣∣ ≤
∫
Rn
|fα − f | |divϕ| dx+

∫
Rn
|fα| |divαϕ− divϕ| dx

≤ ‖divϕ‖L∞(Rn;Rn)

∫
suppϕ

|fα − f | dx+
(

sup
α∈(0,1)

‖fα‖L∞(Rn)
)
‖divαϕ− divϕ‖L1(Rn),

by Proposition 3.24 we get that∫
Rn
f divϕdx = lim

α→1−

∫
Rn
fα divαϕdx ≤ lim inf

α→1−
|Dαf |(Ω)
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and the conclusion follows.
Proof of (ii). Let ϕ ∈ C∞c (Ω;Rn) be such that ‖ϕ‖L∞(Ω;Rn) ≤ 1. Since we can

estimate∣∣∣∣∣
∫
Rn
fα divαϕdx−

∫
Rn
f divϕdx

∣∣∣∣∣ ≤
∫
Rn
|fα − f | |divϕ| dx+

∫
Rn
|fα| |divαϕ− divϕ| dx

≤ ‖divϕ‖L∞(Rn)‖fα − f‖L1(Rn) + ‖divαϕ− divϕ‖L∞(Rn)‖fα‖L1(Rn),

by Proposition 3.24 we get that∫
Rn
f divϕdx = lim

α→1−

∫
Rn
fα divαϕdx ≤ lim inf

α→1−
|Dαfα|(Ω)

and the conclusion follows. �

We now pass to the Γ - lim sup inequality.
Theorem 3.34 (Γ - lim sup inequalities as α→ 1−). Let Ω ⊂ Rn be an open set.
(i) If f ∈ BV (Rn) and either Ω is bounded or Ω = Rn, then

(3.67) lim sup
α→1−

|Dαf |(Ω) ≤ |Df |(Ω).

(ii) If f ∈ BVloc(Rn) and Ω is bounded, then
Γ(L1

loc) - lim sup
α→1−

|Dαf |(Ω) ≤ |Df |(Ω).

In addition, if f = χE, then the recovering sequences (fα)α∈(0,1) in (i) and (ii) can be
taken such that fα = χEα for some measurable sets (Eα)α∈(0,1).

Proof. Assume f ∈ BV (Rn). By Theorem 3.29, we know that |Dαf | ⇀ |Df | as
α→ 1−. Thus, by [58, Proposition 4.26], we get that
(3.68) lim sup

α→1−
|Dαf |(Ω) ≤ lim sup

α→1−
|Dαf |(Ω) ≤ |Df |(Ω)

for any bounded open set Ω ⊂ Rn. If Ω = Rn, then (3.67) follows immediately
from (3.54). This concludes the proof of (i).

Now assume that f ∈ BVloc(Rn) and Ω is bounded. Let (Rk)k∈N ⊂ (0,+∞) be a
sequence such that Rk → +∞ as k → +∞ and set fk = fχBRk for all k ∈ N. By
Theorem 3.1, we can choose the sequence (Rk)k∈N such that, in addition, fk ∈ BV (Rn)
with Dfk = χ?BRk

Df + f ?DχBRk for all k ∈ N. Consequently, fk → f in L1
loc(Rn) as

k → +∞ and, moreover, since Ω is bounded, |Dfk|(Ω) = |Df |(Ω) and |Dfk|(∂Ω) =
|Df |(∂Ω) for all k ∈ N sufficiently large. By (3.68), we have that
(3.69) lim sup

α→1−
|Dαfk|(Ω) ≤ |Dfk|(Ω)

for all k ∈ N sufficiently large. Hence, by [16, Proposition 1.28], by [28, Proposi-
tion 8.1(c)] and by (3.69), we get that

Γ(L1
loc) - lim sup

α→1−
|Dαf |(Ω) ≤ lim inf

k→+∞

(
Γ(L1

loc) - lim sup
α→1−

|Dαfk|(Ω)
)

≤ lim
k→+∞

|Dfk|(Ω) = |Df |(Ω).

This concludes the proof of (ii).
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Finally, if f = χE, then we can repeat the above argument verbatim in the metric
spaces {χF ∈ L1(Rn) : F ⊂ Rn} for (i) and {χF ∈ L1

loc(Rn) : F ⊂ Rn} for (ii) endowed
with their natural distances. �

Remark 3.35. Thanks to (3.67), a recovery sequence in Theorem 3.34(i) is the constant
sequence (also in the special case f = χE).

Combining Theorem 3.33(i) and Theorem 3.34(ii), we can prove that the fractional
Caccioppoli α-perimeter Γ-converges to De Giorgi’s perimeter as α → 1− in L1

loc(Rn).
We refer to [5] for the same result on the classical fractional perimeter.
Theorem 3.36 (Γ(L1

loc) - lim of perimeters as α→ 1−). Let Ω ⊂ Rn be a bounded open
set with Lipschitz boundary. For every measurable set E ⊂ Rn, we have

Γ(L1
loc) - lim

α→1−
|DαχE|(Ω) = P (E; Ω).

Proof. By Theorem 3.33(i), we already know that

Γ(L1
loc) - lim inf

α→1−
|DαχE|(Ω) ≥ P (E; Ω),

so we just need to prove the Γ(L1
loc) - lim sup inequality. Without loss of generality,

we can assume P (E; Ω) < +∞. Now let (Ek)k∈N be given by Theorem 3.4. Since
χEk ∈ BVloc(Rn) and P (Ek; ∂Ω) = 0 for all k ∈ N, by Theorem 3.34(ii) we know that

Γ(L1
loc) - lim sup

α→1−
|DαχEk |(Ω) ≤ P (Ek; Ω)

for all k ∈ N. Since χEk → χE in L1
loc(Rn) and P (Ek; Ω) → P (E; Ω) as k → +∞,

by [16, Proposition 1.28] we get that

Γ(L1
loc) - lim sup

α→1−
|DαχE|(Ω) ≤ lim inf

k→+∞

(
Γ(L1

loc) - lim sup
α→1−

|DαχEk |(Ω)
)

≤ lim
k→+∞

P (Ek; Ω) = P (E; Ω)

and the proof is complete. �

Finally, combining Theorem 3.33(ii) and Theorem 3.34, we can prove that the
fractional α-variation Γ-converges to De Giorgi’s variation as α→ 1− in L1(Rn).
Theorem 3.37 (Γ(L1) - lim of variations as α→ 1−). Let Ω ⊂ Rn be an open set such
that either Ω is bounded with Lipschitz boundary or Ω = Rn. For every f ∈ BV (Rn),
we have

Γ(L1) - lim
α→1−

|Dαf |(Ω) = |Df |(Ω).

Proof. The case Ω = Rn follows immediately by [28, Proposition 8.1(c)] combining
Theorem 3.33(ii) with Theorem 3.34(i). We can thus assume that Ω is a bounded open
set with Lipschitz boundary and argue similarly as in the proof of Theorem 3.36. By
Theorem 3.33(ii), we already know that

Γ(L1) - lim inf
α→1−

|Dαf |(Ω) ≥ |Df |(Ω),

so we just need to prove the Γ(L1) - lim sup inequality. Without loss of generality, we
can assume |Df |(Ω) < +∞. Now let (fk)k∈N ⊂ BV (Rn) be given by Theorem 3.6.
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Since |Dfk|(∂Ω) = 0 for all k ∈ N, by Theorem 3.34 we know that
Γ(L1) - lim sup

α→1−
|Dαfk|(Ω) ≤ |Dfk|(Ω) = |Dfk|(Ω)

for all k ∈ N. Since fk → f in L1(Rn) and |Dαfk|(Ω) → |Dαf |(Ω) as k → +∞,
by [16, Proposition 1.28] we get that

Γ(L1) - lim sup
α→1−

|Dαf |(Ω) ≤ lim inf
k→+∞

(
Γ(L1) - lim sup

α→1−
|Dαfk|(Ω)

)
≤ lim

k→+∞
|Dfk|(Ω) = |Df |(Ω)

and the proof is complete. �

Remark 3.38. Thanks to Theorem 3.37, we can slightly improve Theorem 3.36. In-
deed, if χE ∈ BV (Rn), then we also have

Γ(L1) - lim
α→1−

|DαχE|(Ω) = |DχE|(Ω)

for any open set Ω ⊂ Rn such that either Ω is bounded with Lipschitz boundary
or Ω = Rn.

5. Asymptotic behaviour of fractional β-variation as β → α−

5.1. Convergence of ∇β and divβ as β → α. We begin with the following simple
result about the L1-convergence of the operators ∇β and divβ as β → α with α ∈ (0, 1).
Lemma 3.39. Let α ∈ (0, 1). If f ∈ Wα,1(Rn) and ϕ ∈ Wα,1(Rn;Rn), then
(3.70) lim

β→α−
‖∇βf −∇αf‖L1(Rn;Rn) = 0, lim

β→α−
‖divβϕ− divαϕ‖L1(Rn) = 0.

Proof. Given β ∈ (0, α), we can estimate∫
Rn
|∇βf(x)−∇αf(x)| dx ≤ |µn,β − µn,α| [f ]Wα,1(Rn)

+ µn,β

∫
Rn

∫
Rn

|f(y)− f(x)|
|y − x|n

∣∣∣∣∣ 1
|y − x|β

− 1
|y − x|α

∣∣∣∣∣ dy dx.
Since the Γ function is continuous (see [13]), we clearly have

lim
β→α−

|µn,β − µn,α| [f ]Wα,1(Rn) = 0.

Now write∫
Rn

∫
Rn

|f(y)− f(x)|
|y − x|n

∣∣∣∣∣ 1
|y − x|β

− 1
|y − x|α

∣∣∣∣∣ dy dx
=
∫
Rn

∫
Rn

|f(y)− f(x)|
|y − x|n

∣∣∣∣∣ 1
|y − x|β

− 1
|y − x|α

∣∣∣∣∣χ(0,1)(|y − x|) dy dx

+
∫
Rn

∫
Rn

|f(y)− f(x)|
|y − x|n

∣∣∣∣∣ 1
|y − x|β

− 1
|y − x|α

∣∣∣∣∣χ[1,+∞)(|y − x|) dy dx.

On the one hand, since f ∈ Wα,1(Rn), we have
|f(y)− f(x)|
|y − x|n

∣∣∣∣∣ 1
|y − x|β

− 1
|y − x|α

∣∣∣∣∣χ(0,1)(|y − x|)
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= |f(y)− f(x)|
|y − x|n

(
1

|y − x|α
− 1
|y − x|β

)
χ(0,1)(|y − x|)

≤ |f(y)− f(x)|
|y − x|n+α χ(0,1)(|y − x|) ∈ L1

x,y(R2n)

and thus, by Lebesgue’s Dominated Convergence Theorem, we get that

lim
β→α−

∫
Rn

∫
Rn

|f(y)− f(x)|
|y − x|n

∣∣∣∣∣ 1
|y − x|β

− 1
|y − x|α

∣∣∣∣∣χ(0,1)(|y − x|) dy dx = 0.

On the other hand, since one has

[f ]Wβ,1(Rn) =
∫
Rn

∫
{|h|<1}

|f(x+ h)− f(x)|
|h|n+β dh dx+

∫
Rn

∫
{|h|≥1}

|f(x+ h)− f(x)|
|h|n+β dh dx

≤ [f ]Wα,1(Rn) +
∫
{|h|≥1}

1
|h|n+β

∫
Rn
|f(x+ h)|+ |f(x)| dx dh

= [f ]Wα,1(Rn) + 2nωn
β
‖f‖L1(Rn)

for all β ∈ (0, α), we can estimate

|f(y)− f(x)|
|y − x|n

∣∣∣∣∣ 1
|y − x|β

− 1
|y − x|α

∣∣∣∣∣χ[1,+∞)(|y − x|)

= |f(y)− f(x)|
|y − x|n

(
1

|y − x|β
− 1
|y − x|α

)
χ[1,+∞)(|y − x|)

≤ |f(y)− f(x)|
|y − x|n+β χ[1,+∞)(|y − x|)

≤ |f(y)− f(x)|
|y − x|n+α

2
χ[1,+∞)(|y − x|) ∈ L1

x,y(R2n)

for all β ∈
(
α
2 , α

)
and thus, by Lebesgue’s Dominated Convergence Theorem, we get

that

lim
β→α−

∫
Rn

∫
Rn

|f(y)− f(x)|
|y − x|n

∣∣∣∣∣ 1
|y − x|β

− 1
|y − x|α

∣∣∣∣∣χ[1,+∞)(|y − x|) dy dx = 0

and the first limit in (3.70) follows. The second limit in (3.70) follows similarly and we
leave the proof to the reader. �

Remark 3.40. Let α ∈ (0, 1). If f ∈ Wα+ε,1(Rn) and ϕ ∈ Wα+ε,1(Rn) for some
ε ∈ (0, 1− α), then, arguing as in the proof of Lemma 3.39, one can also prove that

lim
β→α+

‖∇βf −∇αf‖L1(Rn;Rn) = 0, lim
β→α+

‖divβϕ− divαϕ‖L1(Rn) = 0.

We leave the details of proof of this result to the interested reader.
If one deals with more regular functions, then Lemma 3.39 can be improved as

follows.
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Lemma 3.41. Let α ∈ (0, 1) and p ∈ [1,+∞]. If f ∈ Lipc(Rn) and ϕ ∈ Lipc(Rn;Rn),
then

(3.71) lim
β→α−

‖∇βf −∇αf‖Lp(Rn;Rn) = 0, lim
β→α−

‖divβϕ− divαϕ‖Lp(Rn) = 0.

Proof. Since clearly f ∈ Wα,1(Rn) for any α ∈ (0, 1), the first limit in (3.71) for the
case p = 1 follows from Lemma 3.39. Hence, we just need to prove the validity of
the same limit for the case p = +∞, since then the conclusion simply follows by an
interpolation argument.

Let β ∈ (0, α) and x ∈ Rn. We have

|∇αf(x)−∇βf(x)| ≤ |µn,β − µn,α|
∫
Rn

|f(x)− f(y)|
|x− y|n+α dy

+ µn,β

∫
Rn

|f(x)− f(y)|
|x− y|n

∣∣∣∣∣ 1
|x− y|β

− 1
|x− y|α

∣∣∣∣∣ dy
= |µn,β − µn,α|

∫
Rn

|f(x+ z)− f(x)|
|z|n+α dz

+ µn,β

∫
Rn

|f(x+ z)− f(x)|
|z|n

∣∣∣∣∣ 1
|z|β
− 1
|z|α

∣∣∣∣∣ dz.
Since ∫

Rn

|f(x+ z)− f(x)|
|z|n+α dz ≤

∫
{|z|≤1}

Lip(f)
|z|n+α−1 dz +

∫
{|z|>1}

2‖f‖L∞(Rn)

|z|n+α dz

≤ nωn

(
Lip(f)
1− α + 2‖f‖L∞(Rn)

α

)
and∫

Rn

|f(x+ z)− f(z)|
|z|n

∣∣∣∣∣ 1
|z|β
− 1
|z|α

∣∣∣∣∣ dz ≤
∫
{|z|≤1}

Lip(f)
|z|n−1

(
1
|z|α
− 1
|z|β

)
dz

+
∫
{|z|>1}

2‖f‖L∞(Rn)

|z|n

(
1
|z|β
− 1
|z|α

)
dz

≤ (α− β)nωn
(

Lip(f)
(1− α)(1− β) + 2‖f‖L∞(Rn)

αβ

)
,

for all β ∈
(
α
2 , α

)
we obtain

‖∇αf −∇βf‖L∞(Rn;Rn) ≤ cn,α max
{

Lip(f), ‖f‖L∞(Rn)
} (
|µn,β − µn,α|+ (α− β)

)
,

for some constant cn,α > 0 depending only on n and α. Thus the conclusion follows
since µn,β → µn,α as β → α−. The second limit in (3.71) follows similarly and we leave
the proof to the reader. �

5.2. Weak convergence of β-variation as β → α−. In Theorem 3.42 below, we
prove the weak convergence of the β-variation as β → α−, extending the convergences
obtained in Theorem 3.27 and Theorem 3.29.
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Theorem 3.42. Let α ∈ (0, 1). If f ∈ BV α(Rn), then
Dβf ⇀ Dαf and |Dβf |⇀ |Dαf | as β → α−.

Moreover, we have
(3.72) lim

β→α−
|Dβf |(Rn) = |Dαf |(Rn).

Proof. We divide the proof in three steps.
Step 1: we prove that Dβf ⇀ Dαf as β → α−. We argue similarly as in Step 1 of

the proof of Theorem 3.27. By Proposition 3.19, we have∫
Rn
ϕ · ∇βf dx = −

∫
Rn
f divβϕdx

for all β ∈ (0, α) and ϕ ∈ Lipc(Rn;Rn). Thus, thanks to (3.71) in the case p =∞, we
get

lim
β→α−

∫
Rn
ϕ · ∇βf dx = − lim

β→α−

∫
Rn
f divβϕdx = −

∫
Rn
f divαϕdx =

∫
Rn
ϕ · dDαf.

Now fix ϕ ∈ C0
c (Rn;Rn). Let U ⊂ Rn be a fixed bounded open set such that

suppϕ ⊂ U . For each ε > 0 sufficiently small, pick ψε ∈ Lipc(Rn;Rn) such that
‖ϕ− ψε‖L∞(Rn;Rn) < ε and suppψε ⊂ U . Then, by (3.34), we can estimate∣∣∣∣∫

Rn
ϕ · ∇βf dx−

∫
Rn
ϕ · dDαf

∣∣∣∣ ≤ ‖ϕ− ψε‖L∞(Rn;Rn)

(∫
U
|∇βf | dx+ |Dαf |(Rn)

)
+
∣∣∣∣∫

Rn
ψε · ∇βf dx−

∫
Rn
ψε · dDαf

∣∣∣∣
≤ ε(1 + Cn,(1−α+β),U) |Dαf |(Rn)

+
∣∣∣∣∫

Rn
ψε · ∇αf dx−

∫
Rn
ψε · dDf

∣∣∣∣
for all β ∈ (0, α). Thus, by the uniform estimate (3.44) in Lemma 3.22, we get

(3.73) lim
β→α−

∣∣∣∣∫
Rn
ϕ · ∇αf dx−

∫
Rn
ϕ · dDf

∣∣∣∣ ≤ ε(1 + κn,U) |Dαf |(Rn)

and the conclusion follows passing to the limit as ε→ 0+.
Step 2: we prove that |Dβf |⇀ |Dαf | as β → α−. We argue similarly as in the first

part of the proof of Theorem 3.29. Since Dβf ⇀ Dαf as β → α− as proved in Step 1
above, by [58, Proposition 4.29], we have that
(3.74) |Dαf |(A) ≤ lim inf

β→α−
|Dβf |(A)

for any open set A ⊂ Rn. Now let K ⊂ Rn be a compact set. By the representation
formula (3.33) in Proposition 3.19, we can estimate

|Dβf |(K) = ‖∇βf‖L1(K;Rn) ≤ ‖Iα−β|Dαf |‖L1(K) = (Iα−β|Dαf |L n)(K).
Since |Dαf |(Rn) < +∞, by Lemma 3.28 and [58, Proposition 4.26] we conclude that
(3.75) lim sup

β→α−
|Dβf |(K) ≤ lim sup

β→α−
(Iα−β|Dαf |L n)(K) ≤ |Dαf |(K).

The conclusion thus follows thanks to [58, Proposition 4.26].
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Step 3: we prove (3.72). We argue similarly as in the proof of (3.53). By (3.35)
applied with A = Rn and r = 1, we have

|Dβf |(Rn) ≤ µn,1+β−α

n+ β − α

(
nωn
α− β

|Dαf |(Rn) + ωn,α(n+ 2β − α)
β

‖f‖L1(Rn)

)
.

By (3.43), we get that

(3.76) lim sup
β→α−

|Dβf |(Rn) ≤ |Dαf |(Rn).

Thus, (3.72) follows combining (3.74) for A = Rn with (3.76). �

In analogy with Theorem 3.42, from Proposition 3.20 we can extend the validity of
Theorem 3.30 and deduce the following result. The proof is very similar to the one of
Theorem 3.30 and is thus left to the reader.
Theorem 3.43. Let α ∈ (0, 1) and p ∈ [1,+∞). If f ∈ Sα,p(Rn), then

(3.77) lim
β→α−

‖∇βf −∇αf‖Lp(Rn;Rn) = 0.

5.3. Γ-convergence of β-variation as β → α−. In this section, we study the
Γ-convergence of the fractional β-variation as β → α−, partially extending the results
obtained in Section 4.3.

We begin with the Γ - lim inf inequality.
Theorem 3.44 (Γ - lim inf inequality for β → α−). Let α ∈ (0, 1) and let Ω ⊂ Rn be
an open set. If (fβ)β∈(0,α) ⊂ L1(Rn) satisfies fβ → f in L1(Rn) as β → α−, then

(3.78) |Dαf |(Ω) ≤ lim inf
β→α−

|Dβfβ|(Ω).

Proof. We argue similarly as in the proof of Theorem 3.33(ii). Let ϕ ∈ C∞c (Ω;Rn) be
such that ‖ϕ‖L∞(Ω;Rn) ≤ 1. Let U ⊂ Rn be a bounded open set such that suppϕ ⊂ U .
By (1.12), we can estimate∣∣∣∣∣
∫
Rn
fβ divβϕdx−

∫
Rn
f divαϕdx

∣∣∣∣∣ ≤
∫
Rn
|fβ − f | |divβϕ| dx+

∫
Rn
|f | |divβϕ− divαϕ| dx

≤ Cn,β,U‖divϕ‖L∞(Rn;Rn)‖fβ − f‖L1(Rn) +
∫
Rn
|f | |divβϕ− divαϕ| dx

for all β ∈ (0, α). Since divβϕ → divαϕ in L∞(Rn) as β → α− by (3.71), we easily
obtain

lim
β→α−

∫
Rn
|f | |divβϕ− divαϕ| dx = 0.

Hence, we get ∫
Rn
f divαϕdx = lim

β→α−

∫
Rn
fβ divβϕdx ≤ lim inf

β→α−
|Dβfβ|(Ω)

and the conclusion follows. �

We now pass to the Γ - lim sup inequality.
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Theorem 3.45 (Γ - lim sup inequality for β → α−). Let α ∈ (0, 1) and let Ω ⊂ Rn be
an open set. If f ∈ BV α(Rn) and either Ω is bounded or Ω = Rn, then
(3.79) lim sup

β→α−
|Dβf |(Ω) ≤ |Dαf |(Ω).

Proof. We argue similarly as in the proof of Theorem 3.34. By Theorem 3.42, we know
that |Dβf | ⇀ |Dαf | as β → α−. Thus, by [58, Proposition 4.26] and (3.72), we get
that
(3.80) lim sup

β→α−
|Dβf |(Ω) ≤ lim sup

β→α−
|Dβf |(Ω) ≤ |Dαf |(Ω)

for any open set Ω ⊂ Rn such that either Ω is bounded or Ω = Rn. �

Corollary 3.46 (Γ(L1) - lim of variations in Rn as β → α−). Let α ∈ (0, 1). For every
f ∈ BV α(Rn), we have

Γ(L1) - lim
β→α−

|Dβf |(Rn) = |Dαf |(Rn).

In particular, the constant sequence is a recovery sequence.
Proof. The result follows easily by combining (3.78) and (3.79) in the case Ω = Rn. �
Remark 3.47. We recall that, by Theorem 1.57, f ∈ BV α(Rn) satisfies |Dαf | �
L n if and only if f ∈ Sα,1(Rn). Therefore, if f ∈ Sα,1(Rn), then |Dαf |(∂Ω) = 0
for any bounded open set Ω ⊂ Rn such that L n(∂Ω) = 0 (for instance, Ω with
Lipschitz boundary). Thus, we can actually obtain the Γ-convergence of the fractional
β-variation as β → α− on bounded open sets with Lipschitz boundary for any f ∈
Sα,1(Rn) too. Indeed, it is enough to combine (3.78) and (3.79) and then exploit the
fact that |Dαf |(∂Ω) = 0 to get

Γ(L1) - lim
β→α−

|Dβf |(Ω) = |Dαf |(Ω)

for any f ∈ Sα,1(Rn).



CHAPTER 4

Asymptotic behaviour of fractional variation as α→ 0+

1. The space HSα,1

1.1. Definition of HSα,1(Rn). Following the classical approach of [99], for α ∈
[0, 1] we let

HSα,1(Rn) = (I −∆)−α2 (H1(Rn))

=
{
f ∈ H1(Rn) : (I −∆)α2 f ∈ H1(Rn)

}
be the (real) fractional Hardy–Sobolev space endowed with the norm

‖f‖HSα,1(Rn) = ‖(I −∆)α2 f‖H1(Rn), f ∈ HSα,1(Rn).

In particular, HS0,1(Rn) = H1(Rn) coincides with the Hardy space and HS1,1(Rn)
is the standard (real) Hardy–Sobolev space. As remarked in [99, p. 130], we can
equivalently define

HSα,1(Rn) = H1(Rn) ∩ Iα(H1(Rn))

=
{
f ∈ H1(Rn) : (−∆)α2 f ∈ H1(Rn)

}
endowed with the (equivalent) norm

‖f‖HSα,1(Rn) = ‖f‖H1(Rn) + ‖(−∆)α2 f‖H1(Rn), f ∈ HSα,1(Rn).
In particular, the operator

(−∆)α2 : HSα,1(Rn)→ H1(Rn)
is well defined and continuous.

1.2. Approximation by test functions. For the reader’s convenience we briefly
prove the following density result. Here and in the following, for simplicity we let

L1
0(Rn) =

{
f ∈ L1(Rn) :

∫
Rn
f(x) dx = 0

}
be the space of integrable functions with zero mean.
Lemma 4.1 (Approximation by C∞c ∩L1

0 functions in HSα,1). Let α ∈ (0, 1). The set
C∞c (Rn) ∩ L1

0(Rn) is dense in HSα,1(Rn).

Proof. Since the set S0(Rn) is dense in H1(Rn) by [97, Chapter III, Section 5.2(b)],
we have that the set (I − ∆)−α2 (S0(Rn)) is dense in HSα,1(Rn). Since clearly (I −
∆)−α2 (S0(Rn)) ⊂ S0(Rn), we thus get that the set S0(Rn) is dense (and embeds contin-
uously) in HSα,1(Rn). Since the set C∞c (Rn)∩L1

0(Rn) is dense in S0(Rn), the conclusion
follows. �

97
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Exploiting Lemma 4.1, for α ∈ (0, 1) we can equivalently define

HSα,1(Rn) =
{
f ∈ H1(Rn) : ∇αf ∈ H1(Rn;Rn)

}
endowed with the (equivalent) norm

‖f‖HSα,1(Rn) = ‖f‖H1(Rn) + ‖∇αf‖H1(Rn;Rn), f ∈ HSα,1(Rn).

Indeed, if f ∈ C∞c (Rn) ∩ L1
0(Rn), then we can write ∇αf = R(−∆)α2 f , so that

(4.1) c−1
n ‖(−∆)α2 f‖H1(Rn) ≤ ‖∇αf‖H1(Rn;Rn) ≤ cn‖(−∆)α2 f‖H1(Rn)

for all f ∈ C∞c (Rn) ∩ L1
0(Rn) thanks to the H1-continuity property of the Riesz trans-

form and the fact that R2 = −I on H1(Rn), where cn > 0 is a dimensional constant.
By Lemma 4.1, the validity of (4.1) extends to all f ∈ HSα,1(Rn) and the conclusion
follows.

As a consequence, note thatHSα,1(Rn) ⊂ Sα,1(Rn) for all α ∈ (0, 1) with continuous
embedding. We also have the following result.
Lemma 4.2. If 0 < β < α < 1, then

(4.2) H1(Rn) ∩Wα,1(Rn) ⊂ HSα,1(Rn)

and

(4.3) HSα,1(Rn) ⊂ H1(Rn) ∩W β,1(Rn).

As a consequence, we get

(4.4) H1(Rn) ∩
⋃

α∈(0,1)
Wα,1(Rn) =

⋃
α∈(0,1)

HSα,1(Rn).

Proof. On the one hand, by Proposition 1.41(ii), we have (−∆)α2 (Wα,1(Rn)) ⊂ H1(Rn)
and the inclusion (4.2) immediately follows. On the other hand, HSα,1(Rn) ⊂ H1(Rn)∩
Sα,1(Rn) ⊂ H1(Rn)∩BV α(Rn), so that the inclusion (4.3) follows from Theorem 1.30.

�

We note that the well posedness and the equivalence of the definitions of HSα,1(Rn)
given above and the stated results hold for any α ≥ 0 thanks to the composition prop-
erties of the operators involved. We leave the standard verifications to the interested
reader.

2. Interpolation inequalities

2.1. The case p = 1 via the Calderón–Zygmund Theorem. For α ∈ (0, 1)
and R > 0, we let Tα,R : S(Rn)→ S ′(Rn;Rn) be the linear operator defined by

(4.5) Tα,Rf(x) =
∫
Rn
f(y + x) y (1− ηR(y))

|y|n+α+1 dy, x ∈ Rn,

for all f ∈ S(Rn). Here (ηR)R>0 ⊂ C∞c (Rn) is a family of cut-off functions as in (1.30).
In the following result, we prove that Tα,R is a Calderón–Zygmund operator mapping
H1(Rn) to L1(Rn;Rn).
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Lemma 4.3 (Calderón–Zygmund estimate for Tα,R). There is a dimensional constant
τn > 0 such that, for any given α ∈ (0, 1) and R > 0, the operator in (4.5) uniquely
extends to a bounded linear operator Tα,R : H1(Rn)→ L1(Rn;Rn) with

‖Tα,Rf‖L1(Rn;Rn) ≤ τnR
−α‖f‖H1(Rn)

for all f ∈ H1(Rn).

Proof. We apply [48, Theorem 2.4.1] to the kernel

Kα,R(x) = x (1− ηR(x))
|x|n+α+1 , x ∈ Rn, x 6= 0.

First of all, we have

|Kα,R(x)| ≤ 1− ηR(x)
|x|n+α ≤ 2α

Rα

1
|x|n

, x ∈ Rn, x 6= 0,

so that we can choose A1 = 2nωnR−α in the size estimate (2.4.1) in [48]. We also have

|∇Kα,R(x)| ≤ C

(
1
R

∣∣∣η′( |x|
R

)∣∣∣
|x|n+α + 1− ηR(x)

|x|n+α+1

)
≤ 4cn

2α
Rα

1
|x|n+1 , x ∈ Rn, x 6= 0,

where cn > 0 is a dimensional constant, so that we can choose A2 = c′nR
−α in the

smoothness condition (2.4.2) in [48], where c′n > cn is another dimensional constant.
Finally, since clearly ∫

m<|x|<M
Kα,R(x) dx = 0

for all m < M , we can choose A3 = 0 in the cancellation condition (2.4.3) in [48].
Since A1 + A2 + A3 = c′′nR

−α for some dimensional constant c′′n ≥ c′n, the conclusion
follows. �

With Lemma 4.3 at our disposal, we can prove the following result.
Theorem 4.4 (H1 − BV α interpolation inequality). Let α ∈ (0, 1]. There exists a
constant cn,α > 0 such that

(4.6) [f ]BV β(Rn) ≤ cn,α ‖f‖(α−β)/α
H1(Rn) [f ]β/αBV α(Rn)

for all β ∈ [0, α) and all f ∈ H1(Rn) ∩BV α(Rn).

Proof. Let α ∈ (0, 1] be fixed. Thanks to Theorem 1.40, the case β = 0 is trivial, so
we assume β ∈ (0, α). We divide the proof in three steps.

Step 1. Let f ∈ H1(Rn) ∩ BV α(Rn) and assume f ∈ Lipb(Rn). By Lemma 3.8, we
can write

|∇βf(x)| = µn,β

∣∣∣∣∣
∫
Rn

y · (f(y + x)− f(x))
|y|n+β+1 dy

∣∣∣∣∣
= µn,β

∣∣∣∣∣
∫
Rn
ηR(y) y · (f(y + x)− f(x))

|y|n+β+1 dy +
∫
Rn

(1− ηR(y)) y · (f(y + x)− f(x))
|y|n+β+1 dy

∣∣∣∣∣

(4.7)
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for all x ∈ Rn and all R > 0. On the one hand, for α < 1, by Proposition 1.23 we can
estimate

∫
Rn

∣∣∣∣∣
∫
Rn
ηR(y) y · (f(y + x)− f(x))

|y|n+β+1 dy

∣∣∣∣∣ dx ≤
∫
BR

1
|y|n+β

∫
Rn
|f(y + x)− f(x)| dx dy

≤ γn,α |Dαf |(Rn)
∫
BR

dy

|y|n+β−α

= γn,α
Rα−β

α− β
|Dαf |(Rn)

(4.8)

for all R > 0, where γn,α > 0 is a constant depending only on n and α (note that the
validity of Proposition 1.23 for all f ∈ BV α(Rn) follows by a simple approximation
argument, thanks to Theorem 1.16). If α = 1 instead, we simply have∫

Rn

∣∣∣∣∣
∫
Rn
ηR(y) y · (f(y + x)− f(x))

|y|n+β+1 dy

∣∣∣∣∣ dx ≤ R1−β

1− β |D
αf |(Rn),

for all R > 0. On the other hand, by Lemma 4.3 we have∫
Rn

∣∣∣∣∣
∫
Rn

(1− ηR(y)) y · (f(y + x)− f(x))
|y|n+β+1 dy

∣∣∣∣∣ dx
=
∫
Rn

∣∣∣∣∣
∫
Rn

(1− ηR(y)) y · f(y + x)
|y|n+β+1 dy

∣∣∣∣∣ dx
≤ τnR

−β‖f‖H1(Rn)

(4.9)

for all R > 0, where τn > 0 is the constant of Lemma 4.3. Combining the above
estimates, we get

|Dβf |(Rn) ≤ µn,β

(
γn,α

Rα−β

α− β
[f ]BV α(Rn) + τnR

−β ‖f‖H1(Rn)

)

≤ µn,β max{τn, γn,α}
(
Rα−β

α− β
[f ]BV α(Rn) +R−β ‖f‖H1(Rn)

)

for all R > 0, where we have set γn,1 = 1 by convention. Assuming [f ]BV α(Rn) 6= 0
without loss of generality and choosing R = ‖f‖1/α

H1(Rn) [f ]−1/α
BV α(Rn), we get

(4.10) |Dβf |(Rn) ≤ 2µn,β max{τn, γn,α}
α− β

‖f‖(α−β)/α
H1(Rn) [f ]β/αBV α(Rn)

for all f ∈ H1(Rn)∩BV α(Rn) such that f ∈ Lipb(Rn). Using a standard approximation
argument via convolution, thanks to Proposition 1.11, inequality (4.10) follows for all
f ∈ H1(Rn) ∩BV α(Rn).

Step 2. If α < 1, then, by Proposition 3.19, we know that

(4.11) |Dβf |(Rn) ≤ cn,α
µn,1+β−α

n+ β − α

(
Rα−β

α− β
[f ]BV α(Rn) + R−β

β
‖f‖L1(Rn)

)
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for all f ∈ BV α(Rn) and all R > 0, where cn,α > 0 is a constant depending only on n
and α such that

cn,1 = lim
α→1−

cn,α < +∞.

If α = 1, then, by Proposition 3.14(i), inequality (4.11) holds with α = 1 for all
f ∈ BV (Rn). Assuming ‖f‖L1(Rn) 6= 0, choosing R = [f ]1/αBV α(Rn) ‖f‖

−1/α
L1(Rn) and using

the inequality ‖f‖L1(Rn) ≤ ‖f‖H1(Rn), we can estimate

(4.12) |Dβf |(Rn) ≤ cn,α
β(α− β)

µn,1+β−α

n+ β − α
‖f‖(α−β)/α

H1(Rn) [f ]β/αBV α(Rn)

for all f ∈ H1(Rn) ∩BV α(Rn).
Step 3. Combining (4.10) and (4.12), we get

|Dβf |(Rn) ≤ ϕ(α, β) ‖f‖(α−β)/α
H1(Rn) [f ]β/αBV α(Rn)

for all f ∈ H1(Rn) ∩BV α(Rn), where

ϕ(α, β) = min
{

2µn,β max{τn, γn,α}
α− β

,
cn,α

β(α− β)
µn,1+β−α

n+ β − α

}
, 0 < β < α ≤ 1.

We observe that
lim
β→α−

ϕ(α, β) = cn,α
αn

lim
β→α−

µn,1+β−α

α− β
= cn,α
αnωn

by Lemma 3.21 and that

lim
β→0+

ϕ(α, β) = 2µn,0 max{τn, γn,α}
α

.

The conclusion thus follows again by Lemma 3.21. �

Remark 4.5 (H1 − Wα,1 interpolation inequality). Thanks to Theorem 1.27, from
Theorem 4.4 one can replace the BV α-seminorm in the right-hand side of (4.6) with
the Wα,1-seminorm up to multiply the constant cn,α by µn,α. However, one can prove
a slightly finer estimate essentially following the proof of Theorem 4.4. Indeed, for
any given f ∈ H1(Rn) ∩ Wα,1(Rn) sufficiently regular, one writes ∇βf as in (4.7)
and estimate the second part of it as in (4.9). To estimate the first term, instead of
following (4.8), one simply notes that∫

Rn

∣∣∣∣∣
∫
Rn
ηR(y) y · (f(y + x)− f(x))

|y|n+β+1 dy

∣∣∣∣∣ dx ≤
∫
Rn

∫
BR

|f(y + x)− f(x)|
|y|n+β dy dx

≤ Rα−β
∫
Rn

∫
BR

|f(y + x)− f(x)|
|y|n+α dy dx

≤ Rα−β [f ]Wα,1(Rn)

for all R > 0. Hence

|Dβf |(Rn) ≤ µn,β
(
Rα−β [f ]Wα,1(Rn) + τnR

−β ‖f‖H1(Rn)
)

for all R > 0, and the desired inequality follows by optimising the right-hand side.
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2.2. The cases p > 1 and H1 via the Mihlin–Hörmander Multiplier The-
orem. Let 0 ≤ β ≤ α ≤ 1 and consider the function

mα,β(ξ) = |ξ|β

1 + |ξ|α , ξ ∈ Rn.

It is not difficult to see that

‖mα,β‖? = sup
a∈Nn0 , |a|≤bn2c+1

sup
ξ∈Rn\{0}

∣∣∣∣ ξa ∂a
ξ mα,β(ξ)

∣∣∣∣ < +∞.

We thus define the convolution operator Tmα,β : S(Rn) → S ′(Rn) with convolution
kernel given by F−1(mα,β), i.e.,
(4.13) Tmα,βf = F(f ∗ F−1(mα,β)), f ∈ S(Rn).
In the following result, we observe that the convolution operator Tmα,β satisfies the
Mihlin–Hörmander properties uniformly with respect to the parameters 0 ≤ β ≤ α ≤ 1.
Lemma 4.6 (Mihlin–Hörmander estimates for Tmα,β). There is a dimensional constant
σn > 0 such that the following properties hold for all given 0 ≤ β ≤ α ≤ 1.
(i) For all given p ∈ (1,+∞), the operator in (4.13) uniquely extends to a bounded

linear operator Tmα,β : Lp(Rn)→ Lp(Rn) with

‖Tmα,βf‖Lp(Rn) ≤ σn max
{
p,

1
p− 1

}
‖f‖Lp(Rn)

for all f ∈ Lp(Rn).
(ii) The operator in (4.13) uniquely extends to a bounded linear operator Tmα,β :

H1(Rn)→ H1(Rn) with
‖Tmα,βf‖H1(Rn) ≤ σn ‖f‖H1(Rn)

for all f ∈ H1(Rn).
Proof. Statements (i) and (ii) follow from the Mihlin–Hörmander Multiplier Theorem,
see [47, Theorem 6.2.7] for the Lp-continuity and [46, Chapter III, Theorem 7.30] for
the H1-continuity, where

σn = sup
0≤β≤α≤1

‖mα,β‖? < +∞.

We leave the simple verifications to the interested reader. �

With Lemma 4.6 at our disposal, we can prove the following result.
Theorem 4.7 (Bessel and fractional Hardy–Sobolev interpolation inequalities). The
following statements hold.
(i) Given p ∈ (1,+∞), there exists a constant cn,p > 0 such that

(4.14) ‖∇βf‖Lp(Rn;Rn) ≤ cn,p ‖∇γf‖
α−β
α−γ
Lp(Rn;Rn) ‖∇

αf‖
β−γ
α−γ
Lp(Rn;Rn)

for all 0 ≤ γ ≤ β ≤ α ≤ 1 and all f ∈ Sα,p(Rn). In the case γ = 0, we also have

(4.15) ‖∇βf‖Lp(Rn;Rn) ≤ cn,p ‖f‖
α−β
α

Lp(Rn) ‖∇
αf‖

β
α

Lp(Rn;Rn)

for all 0 ≤ β ≤ α ≤ 1 and all f ∈ Sα,p(Rn).
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(ii) There exists a dimensional constant cn > 0 such that

(4.16) ‖∇βf‖H1(Rn;Rn) ≤ cn ‖∇γf‖
α−β
α−γ
H1(Rn;Rn) ‖∇

αf‖
β−γ
α−γ
H1(Rn;Rn)

for all 0 ≤ γ ≤ β ≤ α ≤ 1 and all f ∈ HSα,1(Rn). In the case γ = 0, we also
have

(4.17) ‖∇βf‖H1(Rn;Rn) ≤ cn ‖f‖
α−β
α

H1(Rn) ‖∇
αf‖

β
α

H1(Rn;Rn)

for all 0 ≤ β ≤ α ≤ 1 and all f ∈ HSα,1(Rn).

Proof. Without loss of generality, we can directly assume that 0 ≤ γ < β < α ≤ 1. We
prove the two statements separately.

Proof of (i). Given f ∈ Sα,p(Rn), we can write

(−∆)
β
2 f = F−1(mα,β) ∗

(
(I + (−∆)α2 )f

)
= Tmα,β

(
(I + (−∆)α2 )f

)
,

so that

‖(−∆)
β
2 f‖Lp(Rn) =

∥∥∥Tmα,β((I + (−∆)α2 )f
)∥∥∥

Lp(Rn)

≤ σn max
{
p,

1
p− 1

}
‖f + (−∆)α2 f‖Lp(Rn)

≤ σn max
{
p,

1
p− 1

}(
‖f‖Lp(Rn) + ‖(−∆)α2 f‖Lp(Rn)

)
(4.18)

thanks to Lemma 4.6(i). Now let f ∈ C∞c (Rn). Since

(−∆)α2∇γf = R (−∆)
α+γ

2 f ∈ Lp(Rn;Rn)

because f ∈ Lα+γ,p(Rn) and by the Lp-continuity property of the Riesz transform,
we get that ∇γf ∈ Sα,p(Rn;Rn) according to the definition given in (N.62) and the
identification established in Corollary 1.52. By applying (4.18) to the components of
the function ∇γf ∈ Sα,p(Rn;Rn) with exponents α− γ and β − γ in place of α and β
respectively, we get

‖∇βf‖Lp(Rn;Rn) = ‖(−∆)
β−γ

2 ∇γf‖Lp(Rn;Rn)

≤ σn max
{
p,

1
p− 1

}(
‖∇γf‖Lp(Rn) + ‖∇αf‖Lp(Rn)

)
for all f ∈ C∞c (Rn). By performing a dilation and by optimising the right-hand side,
we find that

‖∇βf‖Lp(Rn;Rn) ≤ cn,p ‖∇γf‖
α−β
α−γ
Lp(Rn;Rn) ‖∇

αf‖
β−γ
α−γ
Lp(Rn;Rn)

for all f ∈ C∞c (Rn), where cn,p > 0 is a constant depending only on n and p. Thanks
to Theorem 1.51, Proposition 1.43 and Proposition 3.20, inequality (4.14) follows by
performing a standard approximation argument.

In the case γ = 0, inequality (4.15) follows from (4.14) by the Lp-continuity of the
Riesz transform. This concludes the proof of (i).
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Proof of (ii). Given f ∈ HSα,1(Rn), arguing as above, we can write

(−∆)
β
2 f = F−1(mα,β) ∗

(
(I + (−∆)α2 )f

)
= Tmα,β

(
(I + (−∆)α2 )f

)
,

so that
(4.19) ‖(−∆)

β
2 f‖H1(Rn) ≤ σn

(
‖f‖H1(Rn) + ‖(−∆)α2 f‖H1(Rn)

)
thanks to Lemma 4.6(ii). Now let f ∈ C∞c (Rn). Note that ∇γf ∈ H1(Rn;Rn), because
∇γf ∈ L1(Rn;Rn) and

div0∇γf = div0R(−∆)
γ
2 f = (−∆)

γ
2 f ∈ H1(Rn)

by Proposition 1.41(ii). Moreover,

(−∆)α2∇γf = R (−∆)
α+γ

2 f ∈ H1(Rn;Rn)
because f ∈ HSα+γ,1(Rn) and by the H1-continuity property of the Riesz transform.
Thus ∇γf ∈ HSα,1(Rn;Rn). By applying (4.19) to the components of the function
∇γf ∈ HSα,1(Rn;Rn) with exponents α−γ and β−γ in place of α and β respectively,
by arguing as above we get

‖(−∆)
β
2 f‖H1(Rn) = ‖(−∆)

β−γ
2 ∇γf‖H1(Rn;Rn)

≤ cn
(
‖∇γf‖H1(Rn;Rn) + ‖∇αf‖H1(Rn;Rn)

)
for all f ∈ C∞c (Rn). By performing a dilation and by optimising the right-hand side,
we find that

‖∇βf‖H1(Rn;Rn) ≤ σn ‖∇γf‖
α−β
α−γ
H1(Rn;Rn) ‖∇

αf‖
β−γ
α−γ
H1(Rn;Rn)

for all f ∈ C∞c (Rn), where cn > 0 is a dimensional constant. Thanks to Lemma 4.1,
inequality (4.16) follows by performing a standard approximation argument.

In the case γ = 0, inequality (4.17) follows from (4.14) by the H1-continuity of the
Riesz transform. This concludes the proof of (ii). �

3. Asymptotic behaviour of fractional α-variation as α→ 0+

In this section, we study the asymptotic behaviour of ∇α as α→ 0+.

3.1. Pointwise convergence of ∇α as α → 0+. We start with the pointwise
convergence of ∇α to ∇0 as α→ 0+ for sufficiently regular functions.
Lemma 4.8 (Pointwise convergence of∇α as α→ 0+). Let α ∈ (0, 1] and p ∈ (1,+∞).
For β ∈ [0, α), the operator

∇β : C0,α
loc (Rn) ∩ Lp(Rn)→ L∞loc(Rn;Rn)

defined as

(4.20) ∇βf(x) = µn,β lim
ε→0+

∫
|y|>ε

y · f(y + x)
|y|n+β+1 dy, x ∈ Rn,

for all f ∈ Cα
loc(Rn) ∩ Lp(Rn), is well defined and satisfies

(4.21) ‖∇βf‖L∞(BR;Rn) ≤ cn,pµn,β

(
rα−β

α− β
[f ]C0,α(BR+r) + r−

n
p
−β ‖f‖Lp(Rn)

)
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for all r, R > 0, where cn,p > 0 is a constant depending only on n and p. In addition,
it holds
(4.22) lim

β→0+
∇βf(x) = ∇0f(x)

for all x ∈ Rn.

Proof. Given f ∈ Cα
loc(Rn) ∩ Lp(Rn) and x ∈ Rn, we can estimate∣∣∣∣∣

∫
|y|>ε

y · f(y + x)
|y|n+β+1 dy

∣∣∣∣∣ ≤
∫
ε<|y|<r

|f(y + x)− f(x)|
|y|n+β dy +

∫
|y|≥r

|f(y + x)|
|y|n+β

≤ [f ]C0,α(Br(x))

∫
|y|<r

dy

|y|n+β−α + ‖f‖Lp(Rn)

(∫
|y|≥r

dy

|y|(n+β)q

) 1
q

≤ nωnr
α−β

α− β
[f ]C0,α(Br(x)) +

(
nωnr

n−(n+β)q

(n+ β)q − n

) 1
q

‖f‖Lp(Rn)

for all r > ε > 0 and β ∈ [0, α), where q = p
p−1 . Thus the limit in (4.20) is well posed

and (4.21) follows. In addition, since µn,β → µn,0 as β → 0+ and

|∇βf(x)−∇0f(x)| ≤
∣∣∣∣∣1− µn,β

µn,0

∣∣∣∣∣ |∇0f(x)|+ µn,β[f ]C0,α(B1(x))

∫
|y|<1

(
1
|y|β
− 1

)
dy

|y|n−α

+ µn,β

∫
|y|>1

(
1− 1
|y|β

)
|f(y + x)|
|y|n

dy

for all β ∈ (0, α) and x ∈ Rn, the limit in (4.22) follows by the Monotone Convergence
Theorem and Lebesgue’s Dominated Convergence Theorem. �

As an immediate consequence of Lemma 4.8, we can show that the fractional α-
variation is lower semicontinuous as α→ 0+.
Corollary 4.9 (Lower semicontinuity of BV α-seminorm as α → 0+). If f ∈ L1(Rn),
then
(4.23) |D0f |(Rn) ≤ lim inf

α→0+
|Dαf |(Rn).

Proof. Given ϕ ∈ C∞c (Rn;Rn) with ‖ϕ‖L∞(Rn;Rn) ≤ 1, thanks to Lemma 4.8 and Corol-
lary 1.3, we have∫

Rn
f div0ϕdx = lim

α→0+

∫
Rn
f divαϕdx ≤ lim inf

α→0+
|Dαf |(Rn),

by Lebesgue’s Dominated Convergence Theorem, so that (4.23) follows by (1.65). �

3.2. Strong and energy convergence of ∇α as α → 0+. We now study the
strong and the energy convergence of ∇α as α→ 0+.

For the strong convergence, we have the following result. See Section 3.3 for the
proof.
Theorem 4.10 (Strong convergence of ∇α as α→ 0+). The following hold.
(i) If f ∈ ⋃α∈(0,1)HS

α,1(Rn), then
(4.24) lim

α→0+
‖∇αf −Rf‖H1(Rn;Rn) = 0.
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(ii) If p ∈ (1,+∞) and f ∈ ⋃α∈(0,1) S
α,p(Rn), then

(4.25) lim
α→0+

‖∇αf −Rf‖Lp(Rn;Rn) = 0.

For the convergence of the (rescaled) energy, we instead have the following result.
See Section 3.4 for the proof.
Theorem 4.11 (Energy convergence of ∇α as α→ 0+). If f ∈ ⋃α∈(0,1) W

α,1(Rn), then

lim
α→0+

α
∫
Rn
|∇αf | dx = nωnµn,0

∣∣∣∣∫
Rn
f dx

∣∣∣∣.
3.3. Proof of Theorem 4.10. Before the proof of Theorem 4.10, we need to recall

the following well-known result, see the first part of the proof of [42, Lemma 1.60]. For
the reader’s convenience and to keep the paper the most self-contained as possible, we
briefly recall its simple proof.
Lemma 4.12. Let m ∈ N0. If f ∈ Sm(Rn), then f = divg for some g ∈ Sm−1(Rn;Rn)
(with g ∈ S(Rn;Rn) in the case m = 0).

Proof. Applying Fourier transform everywhere, the problem can be equivalently re-
stated as follows: if ϕ ∈ S(Rn) satisfies ∂aϕ(0) = 0 for all a ∈ Nn

0 such that |a| ≤ m,
then ϕ = ∑n

1 ξiψi(ξ) for some ψ1, . . . , ψn ∈ S(Rn) with ∂aψi(0) = 0 for all i = 1, . . . , n
and all a ∈ Nn

0 such that |a| ≤ m − 1. This can be achieved as follows. Fixed any
ζ ∈ C∞c (Rn) such that

supp ζ ⊂ B2 and ζ = 1 on B1,

we can define

ψi(ξ) = ζ(ξ)
∫ 1

0
∂iϕ(tξ) dt+ 1− ζ(ξ)

|ξ|2
ξi ϕ(ξ), ξ ∈ Rn,

for all i = 1, . . . , n. It is now easy to prove that such ψi’s satisfy the required properties
and we leave the simple calculations to the reader. �

Thanks to Lemma 4.12, we can prove the following Lp-convergence result of the
fractional α-Laplacian and the fractional α-gradient as α→ 0+ for functions in S0(Rn).
Lemma 4.13. Let p ∈ [1,+∞]. If f ∈ S0(Rn), then

(4.26) lim
α→0+

‖(−∆)α2 f − f‖Lp(Rn) = 0.

As a consequence, if p ∈ (1,+∞) and f ∈ S0(Rn), then
(4.27) lim

α→0+
‖∇αf −Rf‖Lp(Rn;Rn) = 0.

Proof. Let f ∈ S0(Rn) be fixed. If p ∈ (1,+∞), then

‖∇αf −Rf‖Lp(Rn;Rn) = ‖R(−∆)α2 f −Rf‖Lp(Rn;Rn) ≤ cn,p‖(−∆)α2 f − f‖Lp(Rn)

by the Lp-continuity of the Riesz transform, so that (4.27) follows from (4.26). To
prove (4.26), given x ∈ Rn write

(−∆)α2 f(x) = νn,α

∫
{|h|>1}

f(x+ h)− f(x)
|h|n+α dh+ νn,α

∫
{|h|≤1}

f(x+ h)− f(x)
|h|n+α dh,
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where as usual

νn,α = 2απ−n2
Γ
(
n+α

2

)
Γ
(
−α

2

)
for α ∈ (0, 1). One easily sees that

(4.28) lim
α→0+

νn,α
α

= − 1
nωn

.

On the one hand, as in (1.71), we can estimate∥∥∥∥∥ νn,α
∫
{|h|>1}

f(·+ h)− f(·)
|h|n+α dh

∥∥∥∥∥
Lp(Rn)

≤ nωnνn,α
1− α ‖∇f‖L

p(Rn;Rn),

so that
lim
α→0+

∥∥∥∥∥ νn,α
∫
{|h|>1}

f(·+ h)− f(·)
|h|n+α dh

∥∥∥∥∥
Lp(Rn)

= 0

by (4.28) for all p ∈ [1,+∞]. On the other hand, by Lemma 4.12 there exists g ∈
S(Rn;Rn) such that f = divg and thus we can write

νn,α

∫
{|h|≤1}

f(x+ h)− f(x)
|h|n+α dh = νn,α

∫
{|h|≤1}

f(x+ h)
|h|n+α dh− nωnνn,α

α
f(x)

= νn,α

∫
{|h|≤1}

divg(x+ h)
|h|n+α dh− nωnνn,α

α
f(x).

Integrating by parts, the reader can easily verify that

lim
α→0+

∥∥∥∥∥ νn,α
∫
{|h|≤1}

divg(·+ h)
|h|n+α dh

∥∥∥∥∥
Lp(Rn)

= 0

for all p ∈ [1,+∞]. Hence we get

lim
α→0+

‖(−∆)α2 f − f‖Lp(Rn) = ‖f‖Lp(Rn) lim
α→0+

(
1 + nωnνn,α

α

)
= 0

for all p ∈ [1,+∞]. The proof is complete. �

We can now prove Theorem 4.10.
Proof of Theorem 4.10. We prove the two statements separately.

Proof of (i). Let f ∈ HSα,1(Rn). By Lemma 4.1, there exists (fk)k∈N ⊂ S0(Rn)
such that fk → f in HSα,1(Rn) as k → +∞. If β ∈ (0, α), then we can estimate

‖∇βf −Rf‖H1(Rn;Rn) ≤ ‖∇βfk −Rfk‖H1(Rn;Rn) + ‖∇βf −∇βfk‖H1(Rn;Rn)

+ ‖Rf −Rfk‖H1(Rn;Rn)

≤ ‖∇βfk −Rfk‖H1(Rn;Rn) + cn‖f − fk‖
α−β
α

H1(Rn) ‖∇
αf −∇αfk‖

β
α

H1(Rn;Rn)

+ c′n‖f − fk‖H1(Rn)

for all k ∈ N by (4.17) in Theorem 4.7(ii) and the H1-continuity of the Riesz transform,
where cn, c′n > 0 are dimensional constants. Thus

lim sup
β→0+

‖∇βf −Rf‖H1(Rn;Rn) ≤ lim sup
β→0+

‖∇βfk −Rfk‖H1(Rn;Rn) + c′′n‖f − fk‖H1(Rn)
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= c′′n‖f − fk‖H1(Rn)

for all k ∈ N by (4.27) in Lemma 4.13, where c′′n = cn + c′n. Hence (4.24) follows by
passing to the limit as k → +∞ and the proof of (i) is complete.

Proof of (ii). We argue similarly as in the proof of (i). Let f ∈ Sα,p(Rn). By
Proposition 1.53, there exists (fk)k∈N ⊂ S0(Rn) such that fk → f in Sα,p(Rn) as
k → +∞. If β ∈ (0, α), then we can estimate

‖∇βf −Rf‖Lp(Rn;Rn) ≤ ‖∇βfk −Rfk‖Lp(Rn;Rn) + ‖∇βf −∇βfk‖Lp(Rn;Rn)

+ ‖Rf −Rfk‖Lp(Rn;Rn)

≤ ‖∇βfk −Rfk‖Lp(Rn;Rn) + cn,p‖f − fk‖
α−β
α

H1(Rn) ‖∇
αf −∇αfk‖

β
α

Lp(Rn;Rn)

+ c′n,p‖f − fk‖Lp(Rn)

for all k ∈ N by (4.15) in Theorem 4.7(i) and the Lp-continuity of the Riesz transform,
where the constants cn,p, c′n,p > 0 depend only on n and p. Thus

lim sup
β→0+

‖∇βf −Rf‖Lp(Rn;Rn) ≤ lim sup
β→0+

‖∇βfk −Rfk‖Lp(Rn;Rn) + c′′n,p‖f − fk‖Lp(Rn)

= c′′n,p‖f − fk‖Lp(Rn)

for all k ∈ N by (4.26) in Lemma 4.13, where c′′n,p = cn,p + c′n,p. Hence (4.25) follows
by passing to the limit as k → +∞ and the proof of (ii) is complete. �

3.4. Proof of Theorem 4.11. We now pass to the proof of Theorem 4.11. We
need some preliminaries. We begin with the following result.
Lemma 4.14. Let f ∈ L1

c(Rn) and let R > 0 be such that supp f ⊂ BR. If ε > R,
then

lim
α→0+

αµn,α

∫
Rn

∣∣∣∣∣
∫
|y|>ε

y · f(y + x)
|y|n+α+1 dy

∣∣∣∣∣ dx = nωnµn,0

∣∣∣∣∫
Rn
f dx

∣∣∣∣.
Proof. Since µn,α → µn,0 as α→ 0+, we just need to prove that

(4.29) lim
α→0+

α
∫
Rn

∣∣∣∣∣
∫
|y|>ε

y · f(y + x)
|y|n+α+1 dy

∣∣∣∣∣ dx = nωn

∣∣∣∣∫
Rn
f dx

∣∣∣∣.
We now divide the proof in two steps.

Step 1. We claim that

(4.30) lim
α→0+

α
∫
Rn

∣∣∣∣∣
∫
|y|>ε

x · f(y + x)
|x|n+α+1 dy

∣∣∣∣∣ dx = nωn

∣∣∣∣∫
Rn
f dx

∣∣∣∣.
Indeed, since supp f ⊂ BR, we have that∫

|y|>ε

x · f(y + x)
|x|n+α+1 dy = 0 for all x ∈ Rn such that |x+ y| ≥ R.

Since |y| > ε, we have that

(4.31) |x| ≤ ε−R =⇒ |x+ y| ≥ R
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and thus we can write

α
∫
Rn

∣∣∣∣∣
∫
|y|>ε

x · f(y + x)
|x|n+α+1 dy

∣∣∣∣∣ dx = α
∫
Rn

1
|x|n+α

∣∣∣∣∣
∫
|y|>ε

f(y + x) dy
∣∣∣∣∣ dx

= α
∫
|x|>ε−R

1
|x|n+α

∣∣∣∣∣
∫
|y|>ε

f(y + x) dy
∣∣∣∣∣ dx.

Now, on the one hand, we have

(4.32) α
∫
ε−R<|x|≤ε+R

1
|x|n+α

∣∣∣∣∣
∫
|y|>ε

f(y + x) dy
∣∣∣∣∣ dx ≤ αnωn‖f‖L1(Rn)

∫ ε+R

ε−R

dr

rα+1

for all α ∈ (0, 1). On the other hand, since

|x| > ε+R =⇒ BR ⊂ Bε(x)c,

we have

α
∫
|x|>ε+R

1
|x|n+α

∣∣∣∣∣
∫
|y|>ε

f(y + x) dy
∣∣∣∣∣ dx = α

∫
|x|>ε+R

1
|x|n+α

∣∣∣∣∫
Rn
f dz

∣∣∣∣ dx
= nωn

(ε+R)α
∣∣∣∣∫

Rn
f dz

∣∣∣∣
(4.33)

for all α ∈ (0, 1). Hence claim (4.30) follows by first combining (4.32) and (4.33) and
then passing to the limit as α→ 0+.

Step 2. We claim that

(4.34)
∣∣∣∣∣ y

|y|n+α+1 + x

|x|n+α+1

∣∣∣∣∣ ≤ (n+ 3) |x+ y|
|y|n+α+1

(
ε

ε−R

)n+α+1

for all x, y ∈ Rn such that |x| > ε − R, |y| > ε and |y + x| < R. Indeed, setting
F (z) = z

|z|n+α+1 for all z ∈ Rn \ {0}, we can estimate∣∣∣∣∣ y

|y|n+α+1 + x

|x|n+α+1

∣∣∣∣∣ = |F (y)− F (−x)| ≤ |y + x| sup
t∈[0,1]

|DF |((1− t)y − tx)

≤ (n+ α + 2) |y + x| sup
t∈[0,1]

1
|(1− t)y − tx|n+α+1 .

Since
1

|(1− t)y − tx|n+α+1 ≤
1

||y| − t|y + x||n+α+1

≤ 1
(|y| −R)n+α+1

≤ 1
|y|n+α+1

(
|y|
|y| −R

)n+α+1

≤ 1
|y|n+α+1

(
ε

ε−R

)n+α+1
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for all t ∈ [0, 1], claim (4.34) immediately follows. Now, recalling (4.31), we can
estimate ∣∣∣∣∣α

∫
Rn

∣∣∣∣∣
∫
|y|>ε

y · f(y + x)
|y|n+α+1 dy

∣∣∣∣∣ dx− α
∫
Rn

∣∣∣∣∣
∫
|y|>ε

x · f(y + x)
|x|n+α+1 dy

∣∣∣∣∣ dx
∣∣∣∣∣

≤ α
∫
Rn

∫
|y|>ε
|f(y + x)|

∣∣∣∣∣ y

|y|n+α+1 + x

|x|n+α+1

∣∣∣∣∣ dy dx
= α

∫
|x|>ε−R

∫
|y|>ε
|f(y + x)|

∣∣∣∣∣ y

|y|n+α+1 + x

|x|n+α+1

∣∣∣∣∣ dy dx
≤ α(n+ 3)

(
ε−R
ε− 2R

)n+α+1 ∫
|x|>ε−R

∫
|y|>ε
|f(y + x)| |y + x|

|y|n+α+1 dy dx

for all α ∈ (0, 1) thanks to (4.34). Since

α
∫
|y|>ε

1
|y|n+α+1

∫
|x|>ε−R

|f(y + x)| |y + x| dx dy ≤ αnωnR ‖f‖L1(Rn)

∫
r>ε

dr

rα+2 ,

we conclude that

(4.35) lim sup
α→0+

∣∣∣∣∣α
∫
Rn

∣∣∣∣∣
∫
|y|>ε

y · f(y + x)
|y|n+α+1 dy

∣∣∣∣∣ dx− α
∫
Rn

∣∣∣∣∣
∫
|y|>ε

x · f(y + x)
|x|n+α+1 dy

∣∣∣∣∣ dx
∣∣∣∣∣ = 0.

Thus (4.29) follows by combining (4.30) with (4.35) and the proof is complete. �

Thanks to Lemma 4.14, we can prove the following result.
Lemma 4.15. Let f ∈ L1(Rn) and η > 0. There exists ε > 0 such that

lim sup
α→0+

∣∣∣∣∣αµn,α
∫
Rn

∣∣∣∣∣
∫
|y|>ε

y · f(y + x)
|y|n+α+1 dy

∣∣∣∣∣ dx− nωnµn,0
∣∣∣∣∫

Rn
f dx

∣∣∣∣
∣∣∣∣∣ < η.

Proof. Let η′ > 0 be such that η = 2nωnµn,0 η′. Since f ∈ L1(Rn), we can find R > 0
such that

∫
BcR
|f | dx < η′. Let g = fχBR ∈ L1

c(Rn) and ε > R. Then∣∣∣∣∣
∫
Rn

∣∣∣∣∣
∫
|y|>ε

y · f(y + x)
|y|n+α+1 dy

∣∣∣∣∣ dx−
∫
Rn

∣∣∣∣∣
∫
|y|>ε

y · g(y + x)
|y|n+α+1 dy

∣∣∣∣∣ dx
∣∣∣∣∣

≤
∫
|y|>ε

1
|y|n+α dy

∫
Rn
|f(y + x)− g(y + x)| dx

=
nωn‖f − g‖L1(Rn)

αεα
<
nωn
αεα

η′.

Since clearly ∣∣∣∣∣∣∣∣∫
Rn
f dx

∣∣∣∣− ∣∣∣∣∫
Rn
g dx

∣∣∣∣∣∣∣∣ ≤ ‖f − g‖L1(Rn) < η′,

by Lemma 4.14 we conclude that

lim sup
α→0+

∣∣∣∣∣αµn,α
∫
Rn

∣∣∣∣∣
∫
|y|>ε

y · f(y + x)
|y|n+α+1 dy

∣∣∣∣∣ dx− nωn µn,0
∣∣∣∣∫

Rn
f dx

∣∣∣∣
∣∣∣∣∣

< lim sup
α→0+

∣∣∣∣∣αµn,α
∫
Rn

∣∣∣∣∣
∫
|y|>ε

y · g(y + x)
|y|n+α+1 dy

∣∣∣∣∣ dx− nωn µn,0
∣∣∣∣∫

Rn
g dx

∣∣∣∣
∣∣∣∣∣
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+
(
nωnµn,0 + nωn lim

α→0+
µn,αε

−α
)
η′

= 2nωnµn,0 η′ = η

and the proof is complete. �

We are now ready to prove Theorem 4.11.
Proof of Theorem 4.11. Assume f ∈ W β,1(Rn) for some β ∈ (0, 1) and fix η > 0. By
Lemma 4.15, there exists ε > 0 such that

(4.36) lim sup
α→0+

∣∣∣∣∣αµn,α
∫
Rn

∣∣∣∣∣
∫
|y|>ε

y · f(y + x)
|y|n+α+1 dy

∣∣∣∣∣ dx− nωnµn,0
∣∣∣∣∫

Rn
f dx

∣∣∣∣
∣∣∣∣∣ < η.

Since for all α ∈ (0, β) we can estimate∣∣∣∣∣α
∫
Rn
|∇αf | dx− nωnµn,0

∣∣∣∣∫
Rn
f dx

∣∣∣∣
∣∣∣∣∣

≤
∣∣∣∣∣αµn,α

∫
Rn

∣∣∣∣∣
∫
|y|>ε

y · f(y + x)
|y|n+α+1 dy

∣∣∣∣∣ dx− nωnµn,0
∣∣∣∣∫

Rn
f dx

∣∣∣∣
∣∣∣∣∣

+ αµn,α

∫
Rn

∫
|y|≤ε

|f(y + x)− f(x)|
|y|n+α dy dx

≤
∣∣∣∣∣αµn,α

∫
Rn

∣∣∣∣∣
∫
|y|>ε

y · f(y + x)
|y|n+α+1 dy

∣∣∣∣∣ dx− nωnµn,0
∣∣∣∣∫

Rn
f dx

∣∣∣∣
∣∣∣∣∣+ αµn,α ε

β−α[f ]Wβ,1(Rn),

by (4.36) we have

lim sup
α→0+

∣∣∣∣α ∫
Rn
|∇αf | dx− nωnµn,0

∣∣∣∣∫
Rn
f dx

∣∣∣∣∣∣∣∣ < η

and the conclusion follows passing to the limit as η → 0+. �

4. An application to potential estimates in Lorentz spaces

4.1. A fractional version of Meyers–Ziemer’s trace inequality. The follow-
ing result is a fractional generalisation of Meyers–Ziemer trace inequality, see [64], in
the spirit of [95, Problem 7.1].
Theorem 4.16 (Fractional Meyers–Ziemer trace inequality). Let α ∈ (0, 1). There
exists a dimensional constant cn > 0 such that

(4.37)
∫
Rn
|(I1−αf)?| dµ ≤ cn‖µ‖L1,n−1(Rn)|Dαf |(Rn)

for all f ∈ BV α(Rn) and all µ ∈ L1,n−1(Rn).
Proof. Assume f ∈ C∞c (Rn). We have u = |I1−αf | ∈ Lipb(Rn) with∫

Rn
|∇u| dx =

∫
Rn
|∇αf | dx ≤ µn,α[f ]Wα,1(Rn) < +∞.

Thus, Et = {x ∈ Rn : u(x) > t} is an open set with finite perimeter for a.e. t > 0.
Since

|Et ∩Br(x)|
|Br(x)| ≤ min{|Et|, |Br(x)|}

|Br(x)|
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and

|Et| = |{x ∈ Rn : |I1−αf | > t}| ≤ cn,α

(
‖f‖L1(Rn)

t

) n
n−1+α

< +∞

by Hardy–Littlewood–Sobolev inequality, for all x ∈ Et the function r 7→ |Et∩Br(x)|
|Br(x)| is

continuous, equals 1 for small r > 0 (since Et is open) and tends to zero as r → +∞.
Thus, arguing as in [95, Section 6], we can estimate

µ(Et) ≤ cn|DχEt |(Rn)

for a.e. t > 0. Therefore, applying the coarea formula to the function u, we find∫
Rn
u dµ =

∫
R
µ(Et) dt ≤ cn

∫
R
|DχEt |(Rn) dt = cn

∫
Rn
|∇u| dx = cn|Dαf |(Rn),

proving (4.37) for all f ∈ C∞c (Rn).
Now let f ∈ BV α(Rn). By Lemma 1.31(i) , I1−αf ∈ bv(Rn) with DI1−αf = Dαf

in M (Rn;Rn). Let (%ε)ε>0 ⊂ C∞c (Rn) be a family of standard mollifies as in (1.25).
By Remark 1.32, we have %ε ∗ I1−αf ∈ Lipb(Rn) with∫

Rn
|∇(%ε ∗ I1−αf)| dx ≤ |Dαf |(Rn)

for all ε > 0. Since µ � H n−1 and (%ε ∗ I1−αf)(x) → (I1−αf)?(x) for H n−1-a.e.
x ∈ Rn as ε→ 0+, the conclusion follows by Fatou’s Lemma. �

As a simple consequence of Theorem 4.16 and the asymptotic analysis of the frac-
tional operators, we get the following result.
Corollary 4.17 (Meyer–Ziemer trace inequalities). There exists a dimensional con-
stant cn > 0 with the following properties. Let µ ∈ L1,n−1(Rn).
(i) If f ∈ BV (Rn), then

(4.38)
∫
Rn
|f ?| dµ ≤ cn‖µ‖L1,n−1(Rn)|Df |(Rn).

(ii) If f ∈ H1(Rn), then

(4.39)
∫
Rn
|(I1f)?| dµ ≤ cn‖µ‖L1,n−1(Rn)‖Rf‖L1(Rn).

Proof. We prove the two statements separately.
Proof of (i). Assume f ∈ C∞c (Rn). By Proposition 3.23, we know that I1−αf(x)→

f(x) for all x ∈ Rn as α → 1−. Hence, by Fatou’s Lemma, Theorem 4.16 and
Theorem 3.29, we get∫

Rn
|f | dµ ≤ lim inf

α→1−

∫
Rn
|I1−αf | dµ

≤ cn‖µ‖L1,n−1(Rn) lim
α→1−

|Dαf |(Rn)

= cn‖µ‖L1,n−1(Rn)|Df |(Rn),

proving (4.38) for all f ∈ C∞c (Rn).
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Now let f ∈ BV (Rn). There exists (fk)k∈N ⊂ C∞c (Rn) such that fk → f ? H n−1-
a.e. in Rn and |Dfk|(Rn)→ |Df |(Rn) as k → +∞. Since µ�H n−1, again by Fatou’s
Lemma we get ∫

Rn
|f ?| dµ ≤ lim inf

k→+∞

∫
Rn
|fk| dµ

≤ cn‖µ‖L1,n−1(Rn) lim
k→+∞

|Dfk|(Rn)

= cn‖µ‖L1,n−1(Rn)|Df |(Rn)
and the conclusion follows.

Proof of (ii). Assume f ∈ Lipb(Rn) ∩ W 1,1(Rn) ∩ H1(Rn). By the Dominated
Convergence Theorem, we easily get that I1−αf(x)→ I1f(x) for all x ∈ Rn as α→ 0+.
Hence, by Fatou’s Lemma, Theorem 4.16 and Theorem 4.10, we get∫

Rn
|I1f | dµ ≤ lim inf

α→0+

∫
Rn
|I1−αf | dµ

≤ cn‖µ‖L1,n−1(Rn) lim
α→0+

|Dαf |(Rn)

= cn‖µ‖L1,n−1(Rn)‖Rf‖L1(Rn),

proving (4.39) for all f ∈ Lipb(Rn) ∩W 1,1(Rn) ∩H1(Rn).
Now let f ∈ H1(Rn) and define fε = f ∗ %ε for all ε > 0. Then fε ∈ Lipb(Rn) ∩

W 1,1(Rn) ∩H1(Rn) and fε → f in H1(Rn) as ε → 0+. Since I1f ∈ bv(Rn) by Propo-
sition 1.41(i) and I1fε = (I1f) ∗ %ε for all ε > 0, we know that I1fε(x) → (I1f)?(x)
as ε→ 0+ for H n−1-a.e. x ∈ Rn. Since µ�H n−1, again by Fatou’s Lemma we get∫

Rn
|(I1f)∗| dµ ≤ lim inf

ε→0+

∫
Rn
|I1fε| dµ

≤ cn‖µ‖L1,n−1(Rn) lim
ε→0+

‖Rfε‖L1(Rn)

= cn‖µ‖L1,n−1(Rn)‖Rf‖L1(Rn)

and the conclusion follows. �

We incidentally note that Corollary 4.17(i) can be proved exactly in the same
way of Theorem 4.16, see [95, Section 6]. However, we decided to present (4.38)
and (4.39) as consequences of (4.37) motivated by [95, Problem 7.1]. Also, note that
Corollary 4.17(ii) positively answers [95, Problem 7.1] for the extremal case α = 1.

4.2. Potential estimates. In the following result we prove the equivalence be-
tween three inequalities involving Riesz’s potential, see [93,94].
Theorem 4.18 (Potential estimates). Let n ≥ 2 and α ∈ (0, 1). There exists a con-
stant cn,α > 0 such that the following inequalities are equivalent (and hold with the
same constant).
(i) For all f ∈ H1(Rn) it holds

(4.40) ‖Iαf‖L n
n−α ,1(Rn) ≤ cn,α‖Rf‖L1(Rn)

(ii) For all f ∈ BV α(Rn) it holds
(4.41) ‖f‖

L
n

n−α ,1(Rn) ≤ cn,α|Dαf |(Rn)
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(iii) Given β ∈ (0, α), for all f ∈ BV β(Rn) it holds
(4.42) ‖Iα−βf‖L n

n−α ,1(Rn) ≤ cn,α|Dβf |(Rn).

Proof. Inequalities (4.40) and (4.41) were proved in [93] (see also [94]) and their equiva-
lence was briefly explained in [93, Introduction]. For the reader’s convenience, we prove
all the implications.

Proof of (i) =⇒ (ii). Let f ∈ C∞c (Rn). By Proposition 1.41(ii), we know that
u = (−∆)α2 f ∈ H1(Rn) with Ru = ∇αf in L1(Rn). Hence, by (4.40), we get that

‖f‖
L

n
n−α ,1(Rn) = ‖Iαu‖L n

n−α ,1(Rn) ≤ cn,α‖Ru‖L1(Rn) = cn,α|Dαf |(Rn),

proving (4.42) for all f ∈ C∞c (Rn).
Now let f ∈ BV α(Rn). By Theorem 1.16, we can find (fk)k∈N ⊂ C∞c (Rn) such

that fk → f a.e. in Rn and |Dαfk|(Rn) → |Dαf |(Rn) as k → +∞. Thus, by Fatou’s
Lemma, we can estimate
‖f‖

L
n

n−α ,1(Rn) ≤ lim inf
k→+∞

‖fk‖L n
n−α ,1(Rn) ≤ cn,α lim

k→+∞
|Dαfk|(Rn) = cn,α|Dαf |(Rn)

and the conclusion follows.
Proof of (ii) =⇒ (i). Let f ∈ C∞c (Rn) ∩ H1(Rn). By Lemma 4.12, there exists

g ∈ C∞c (Rn;Rn) such that f = divg, so that u = Iαf = divαg ∈ L1(Rn). Hence, by
Proposition 1.41(i), we get that u ∈ BV α(Rn) with Dαu = Rf . Thus, by (4.41), we
get

‖Iαf‖L n
n−α ,1(Rn) = ‖u‖

L
n

n−α ,1(Rn) ≤ cn,α‖Ru‖L1(Rn) = cn,α|Dαf |(Rn),

proving (4.41) for all f ∈ C∞c (Rn) ∩H1(Rn).
Now let f ∈ H1(Rn). By [97, Chapter III, Section 5.2(b)], we can find (fk)k∈N ⊂

C∞c (Rn) ∩ H1(Rn) such that fk → f in L1(Rn) and ‖Rfk‖L1(Rn) → ‖Rf‖L1(Rn) as
k → +∞. Since Iαfk → Iαf in L1

loc(Rn), possibly passing to a subsequence, by Fatou’s
Lemma we can estimate
‖Iαf‖L n

n−α ,1(Rn) ≤ lim inf
k→+∞

‖Iαfk‖L n
n−α ,1(Rn) ≤ cn,α lim

k→+∞
‖Rfk‖L1(Rn) = cn,α‖Rf‖L1(Rn)

and the conclusion follows.
Proof of (i) =⇒ (iii). Fix β ∈ (0, α) and f ∈ C∞c (Rn). By Proposition 1.41(ii), we

know that u = (−∆)β2 f ∈ H1(Rn) with Ru = ∇βf in L1(Rn). Hence, by (4.40), we
get that

‖Iα−βf‖L n
n−α ,1(Rn) = ‖Iαu‖L n

n−α ,1(Rn) ≤ cn,α‖Ru‖L1(Rn) = cn,α|Dβf |(Rn),

proving (4.42) for all f ∈ C∞c (Rn).
Now let f ∈ BV β(Rn). By Theorem 1.16, we can find (fk)k∈N ⊂ C∞c (Rn) such that

fk → f in L1(Rn) and a.e. in Rn and |Dβfk|(Rn) → |Dβf |(Rn) as k → +∞. Since
Iα−βfk → Iα−βf in L1

loc(Rn), possibly up to pass to a subsequence, by Fatou’s Lemma
we can estimate
‖Iα−βf‖L n

n−α ,1(Rn) ≤ lim inf
k→+∞

‖Iα−βfk‖L n
n−α ,1(Rn) ≤ cn,α lim

k→+∞
|Dβfk|(Rn) = cn,α|Dβf |(Rn)

and the conclusion follows.
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Proof of (iii) =⇒ (i). Let f ∈ C∞c (Rn) ∩ H1(Rn), so that f ∈ BV β(Rn) for all
β ∈ (0, α). Since Iα−βf → Iαf in L1

loc(Rn) as β → 0+, there exists (βk)k∈N ⊂ (0, α)
with βk → 0+ as k → +∞ such that Iα−βkf → Iαf a.e. in Rn. Thus, by Fatou’s
Lemma, inequality (4.42) and Theorem 4.10, we get

‖Iαf‖L n
n−α ,1(Rn) ≤ lim inf

k→+∞
‖Iα−βkf‖L n

n−α ,1(Rn)

≤ cn,α lim
k→+∞

‖Dβkf‖L1(Rn) = cn,α‖Rf‖L1(Rn;Rn),

proving (4.40) for all f ∈ C∞c (Rn)∩H1(Rn). The conclusion thus follows as in the last
part of the proof of the implication (ii) =⇒ (i).

Proof of (iii) =⇒ (ii). Let f ∈ C∞c (Rn), so that f ∈ BV β(Rn) for all β ∈ (0, α).
Since Iα−βf(x) → f(x) for all x ∈ Rn as β → α− by Proposition 3.23, by Fatou’s
Lemma, inequality (4.42) and Theorem 3.42 we get
‖f‖

L
n

n−α ,1(Rn) ≤ lim inf
β→α−

‖Iα−βf‖L n
n−α ,1(Rn) ≤ cn,α lim

β→α−
|Dβf |(Rn) = cn,α|Dαf |(Rn),

proving (4.40) for all f ∈ C∞c (Rn). The conclusion thus follows as in the last part of
the proof of the implication (i) =⇒ (ii). �
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