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ABSTRACT. In this thesis, we present the distributional ap-
proach to fractional Sobolev spaces and fractional variation developed
in [20,22,23]. The new space BV*(R") of functions with bounded
fractional variation in R” of order o € (0, 1) is distributionally defined
by exploiting suitable notions of fractional gradient and fractional di-
vergence already existing in the literature. In analogy with the clas-
sical BV theory, we give a new notion of set E of (locally) finite frac-
tional Caccioppoli a-perimeter and we define its fractional reduced
boundary F*E. We are able to show that W*!(R") C BV*(R")
continuously and, similarly, that sets with (locally) finite standard
fractional a-perimeter have (locally) finite fractional Caccioppoli a-
perimeter, so that our theory provides a natural extension of the
known fractional framework. We first extend De Giorgi’s Blow-up
Theorem to sets of locally finite fractional Caccioppoli a-perimeter,
proving existence of blow-ups and giving a first characterisation of
these (possibly non-unique) limit sets. We then prove that the frac-
tional a-variation converges to the standard De Giorgi’s variation
both pointwise and in the I'-limit sense as a — 1~ and, similarly,
that the fractional S-variation converges to the fractional a-variation
both pointwise and in the I'-limit sense as 8 — «~ for any given
a € (0,1). Finally, by exploiting some new interpolation inequali-
ties on the fractional operators involved, we prove that the fractional
a-gradient converges to the Riesz transform as @ — 07 in L? for
p € (1,400) and in the Hardy space and that the a-rescaled fractional
a-variation converges to the integral mean of the function as v — 0%.






“Quemadmodum” — inquit — “magnus luctator est, non qui omnes
numeros nexusque perdidicit (quorum usus sub adversario rarus est),
sed qui in uno se aut altero bene ac diligenter exercuit et eorum
occasiones intentus expectat, neque enim refert quam multa sciat, si
scit quantum victoriae satis est; sic in hoc studio multa delectant,
pauca vincunt.”

“The great fighter” — he said — “is not he who thoroughly knows all
the moves and all the catches (which are rarely used in actual fights),
but he who has well and diligently trained in one or two of them and
has carefully examined their possibilities, since it is not important he
knows a lot, if he knows what is needed for the victory. Similarly, in
this study many notions are interesting, but only few really matter.”

Lucius Annaeus Seneca, De Beneficiis, Liber VII, 1-4






To my mother Sonia,

the greatest fighter I have ever met.
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Introduction

The definition of variation. Beyond its initial motivation related to the con-
nection with Dirichlet’s test for the convergence of Fourier series on R pointed out by
C. Jordan [53], the modern definition of function of bounded variation dates back to
E. De Giorgi [30] and G. Fichera [40] (see [6, Section 3.12] and the references therein
for a historical account).

Very closely to Fichera’s original idea [40], given an open set 2 C R", the variation
of a function f € L .(Q) in an open set A C Q is given by

1) DA ={ [ Fdiveds: ¢ € CZ@QRY), suppe € A, [lplieiorzn < 1)

If |IDf|(A) < 400 for any open set A € 2, then f has locally finite variation in  and
we write f € BVjo(2). The space of functions of bounded variation on €2,

(1.2) BV(Q) = {f € L'(Q) : |Df|(Q) < +oo},

is tightly connected with Schwartz’s Theory of Distributions since, thanks to Riesz’s
Representation Theorem, a function f € L'(Q2) belongs to BV (Q) if and only if its

distributional derivative is representable by a finite n-vector valued Radon measure
on Q, Df € #(Q;R"), i.e.,

(1.3) / fdivpde = —/ o-dDf for all g € CX(Q;R).
Q Q

The equality in (.3 naturally generalises the integration-by-part formula available for
functions in C!(Q) and immediately shows that the Sobolev space W'1(Q) is continu-
ously embedded in BV (), precisely

(1.4) fewt(Q) — fe BV(Q) with Df =Vf.Z"

Interestingly, the original definition by E. De Giorgi in [30] does not follow the
above distributional approach but, instead, relies on the heat flow. Letting
1 |z
pt(l') = W ellit‘ for all t > 0, T e Rn,

be the heat kernel, a function f € L*(R™) belongs to BV (R") if and only if

(L.5) I(f) = lim i |VP.f|dz < 400,

t—0t JR

where P, f = f*p,. In this case, it actually holds that I(f) = |Df|(R"). Note that the
limit in (I.5) always exists since, thanks to the semigroup property of the heat flow,

(1.6) IVPsiif| = |[VPsPLf| = |[PsVP.f| < Ps|VP.f| forall s,t >0,

xiii
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so that the function
(0, +00) 3 t / VP, f| da
Rn

is non-increasing.

A metric-measure approach to variation and RCD(K, c0) spaces. An im-
portant feature of BV functions is that they can be approximated (in energy) with
smooth functions. In fact, as proved in [12], a function f € L'(Q) belongs to BV (Q)
if and only if there exists a sequence (fi)ren C C*(2) such that fr, — f in L'(Q) as
k — +o0 and

k—+o0

(L7) L= lim /Q]ka|dx < +00.

In this case, the least constant L in is precisely |Df|(2).

As observed by M. Miranda Jr. [66], the approximation in makes sense also
in a metric measure space (X,d, m) once the concept of smooth function is replaced
by the one of Lipschitz function. Precisely, given f € L'(X, m), one can consider the
quantity

(18)  [Df|(Q) = inf{l}imlnf/ﬂ IDfil dz : fx € Lipeo(Q), fs — f in Ll(Q,m)}
— 400
for any open set ) C X, where

. f(y) — f(z)]
[Df|(x) = lim sup 1(ry)
is the slope of f € Lip(X) and plays the same role of the modulus of the gradient
in R". Thus f € BV(X,d,m) if and only if |[Df|(X) < 400 and, in this case, the
map Q — |Df|(2) is the restriction to open sets of a finite Borel measure, the total
variation measure |Df| € 4 (X).
With this general metric-measure setting in mind, a natural question is whether
the variation defined in can be recovered also via De Giorgi’s heat-flow approach.
Similarly to and accordingly to the seminal paper [21] (see [7-9] for a general
introduction), the Dirichlet—Cheeger energy of a function f € L?(X,m) is given by

Ch(f) = inf{lgglgof/x IDfil? dm : fi € Lipy(X), fe — f in L3(X, m)}.

r e X,

Under some very general assumptions on (X,d, m), the functional Ch: L?*(X,m) —
[0, +00] is densely defined, lower semicontinuous and convex, so that its gradient flow
(0,4+00) Dt — f; = P;f starting from an initial datum f € L?(X,m) in the Hilbertian
space L?(X, m) provides a natural definition of the heat flow in the metric-measure
setting according to the general approach developed in [18]. Note that, at this level of
generality, the finiteness domain W1?(X,d, m) of Ch, endowed with the natural norm
\/ I+ I172(x m) + Ch(-), is a Banach space that may not be a Hilbert space and the heat

flow (P;);>o may not be linear, see [9, Remark 4.6].
In order to provide a consistent extension of (L.5) in a non-smooth space, one would
like to have a suitable replacement of (L.6) in the metric-measure setting. If the ambient
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space X is a Riemannian manifold (M, g) with d = d; and m = vol,, and if the Ricci
tensor satisfies Ricg, > K for some K € R, then the following Bakry-Emery inequality

(1.9) |V P f| < e ™ PV, f|

holds for all ¢ > 0 and f € C*(M), see [106, Theorem 1.3] (note that K = 0 in
the case M = R™). In a general non-smooth metric-measure space (X,d, m), one
thus would like to have a suitable replacement of the Bakry-Emery inequality for
some K € R. This requirement (equivalently) defines the so-called CD(K, c0) spaces
introduced by J. Lott and C. Villani [57] and K. T. Sturm [100,101]. However, at this
level of generality, the heat flow (P;);~¢ may still not be a linear functional, since the
CD condition embeds Finsler manifolds, see [70]. In order to rule out this possibility,
L. Ambrosio, N. Gigli and S. Savaré [10] introduced the notion of RCD(K, 00) spaces
adding the linearity of the heat flow to the CD(K, co) condition.

The RCD condition provides a pretty wide metric-measure setting in which the
variation defined in can be equivalently recovered via a suitable generalisation
of De Giorgi’s heat-flow approach. Indeed, if (X,d,m) is a RCD(K, co0) space, and
if f € LY(X,m)N L>(X,m) for simplicity (the general case f € L'(X,m) can be
recovered by a suitable truncation argument), then by the Bakry-Emery inequality it
holds P;f € L'(X, m) N Lip,(X). One can thus consider the quantity

I(f) =limsup [ |DP;f|dm
X

t—0+

and prove that f € BV(X,d,m) if and only if I(f) < +oo with I(f) = |Df|(X).

The variation in Carnot groups. Although RCD(K, c0) spaces are a quite gen-
eral setting, there exists a large variety of non-RCD(K, 00) spaces, the so-called Carnot
groups, that provide a natural framework in which the distributional definition of vari-
ation can be suitably generalised and does coincide with the one given by De
Giorgi’s heat-flow approach (I.5).

A Carnot group G is a connected, simply connected and nilpotent Lie group whose
Lie algebra g of left-invariant vector fields has dimension n and admits a stratification
of step k,

g=VioV,o---®V,
with
Vi=[W,Vieq] fori=1,... K, V1, V] = {0}.
Given an adapted basis of g, i.e. a basis X1,...,X,, such that
Xh; 1415 ---,Xp, s a basis of V;, 1=1,...,K,

where m; = dim(V;) and h; = my + -+ +m; for i = 1,... &, with hy = 0 and
h. = n, the group G can be identified with the manifold R™ endowed with the group
law determined by the Campbell-Hausdorff formula via exponential coordinates (in
particular, the identity e € G corresponds to 0 € R” and 27! = —x for x € G). In
addition, the Haar measure of the group G coincides with the n-dimensional Lebesgue
measure Z".
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The horizontal tangent bundle of the group G is the left-invariant sub-bundle HG
of the tangent bundle T'G such that H.G = {X(0) : X € V;}. Letting

mi mi
ng:Z(Xjf)Xj and diVGSOZZXj%‘
j=1 7=1
be the horizontal gradient of a function f € C'(G) and the horizontal divergence of a
vector field ¢ € C*(G;R™) respectively, and imitating (I.1), the horizontal variation

of a function f € L .(Q) in a open set Q C G is given by
(1.10)

IDef](Q) = {/Gfdingpdx Lo € CF(G;R™), suppp C 2, |9l e(azmy < 1}.

The space
BV5(Q) = {f € L'(Q) : [DafI(Q) < +oo}

of functions with bounded horizontal variation in {2 thus generalises the space in (1.2)).

Once the horizontal tangent bundle HG is endowed with a left-invariant scalar pro-
duct (-, ) that makes Xi, ..., X,,, an orthonormal basis, thanks to Chow-Rashevskii’s
Theorem the group G can be given the Carnot—Carathéodory distance

dee(,y) = inf{/o1 V (3(t),¥(t))g dt : 7 is horizontal, v(0) =z, v(1) = y}, z,y €G.

Here a horizontal curve v: [0,1] — G is a Lipschitz curve such that +(t) € H,)G for
a.e. t €0, 1].

Although the resulting metric-measure space (G, de.,-Z") is not a CD space any
time G is non-commutative, see [11, Proposition 3.6], it shares many properties with
RCD spaces. In fact, the horizontal heat flow (PE);~¢ naturally induced by the Carnot—
Carathéodory metric structure is linear and, as proved in my paper in collaboration
with L. Ambrosio [11], it does coincide with the gradient flow of the relative entropy
functional in the Wasserstein space of probability measures on G, see [11, Theorem 2.4].
Moreover, if we define

Ig(f) = limsup/G |VePEf| da

t—0t

for a function f € L'(G), then f € BVg(G) if and only if Ig(f) < +oo, with
1De fI(G) < Is(f) < (14 c6)|DefI(G)

for some constant ¢g > 0 depending only on the group structure of G, see [17, Theo-
rem 2.11]. Note that, contrarily to the RCD setting, it is not known whether ¢ = 0.

From the variation to isoperimetric and minimal cluster problems. De
Giorgi’s heat-flow definition of the variation is interesting also because it provides
a natural link between the properties of the heat kernel and the isoperimetric problem
in R™.

Given a set &£ C R" of finite Lebesgue measure, De Giorgi’s definition suggests
to study the properties of the function P;xr whenever ¢t > 0. As observed in [54,81],
if B C R™ is a ball, then the inequality

IPixallze@ny < [IPexsllz2@ny,



INTRODUCTION xvii

for all £ > 0 and all measurable sets A C R" such that |A| = |B|, is equivalent to the
isoperimetric inequality

(I.11) P(B) < P(A),
where
(1.12) P(E) = |Dxg|(R")

denotes the Caccioppoli perimeter of a measurable set £ C R". Inequality (I.11) was
proved at this level of generality in [32] and constitutes one of the milestones of De
Giorgi’s scientific production after the development of the theory of finite perimeter
sets.

If £ has a sufficiently smooth (topological) boundary, then the perimeter functional
in ([.12) coincides with the classical surface measure and, precisely, one can prove that

(1.13) P(E) = #""1(0F)

for all sets E with Lipschitz boundary, where #"~! denotes the (n — 1)-dimensional
Hausdorff measure. One of the finest De Giorgi’s intuitions [31] is that, for a finite
perimeter set E with non-smooth boundary, the right ‘boundary object’ to keep the
validity of is a special subset of the topological boundary, the so-called reduced
boundary # E. With this notion in hand, a measurable set £ C R™ has finite Cacciop-
poli perimeter if and only if /" }(F E) < +o0, in which case we have

(1.14) P(E) = #"(FE).

Besides the Euclidean space, the isoperimetric property of (metric) balls has been
proved also in the sphere and in the hyperbolic space endowed with their canonical
Riemannian perimeter and volume, see [83]. However, isoperimetric sets may be not
metric balls in general, as it happens for instance for a family of sub-Riemannian
manifolds known as Grushin spaces [43,68], and the characterisation of their precise
shape is a hard task even for relatively simple spaces, for example see the longstanding
Pansu conjecture on the isoperimetric set in the Heisenberg groups [67,71].

Instead of looking for isoperimetric sets in particular spaces, one can approach
the isoperimetric problem from a wider point of view by considering more general
perimeter and volume functionals involving densities. Precisely, if f: S"~! — [0, +o0]
and h: R™ x St — [0, +00] are two L[, and lower semi-continuous functions, then
for any given measurable set ¥ C R"™ with locally finite perimeter one can consider

(1.15) |E|f:/Ef(a:) dz, Ph(E):/th(x,yE(x))d%”‘l(x).

Note that the canonical perimeter and volume functionals on a Riemannian manifold
locally behave like (I.15]), where f stands for the norm of the Riemannian metric and h
for the norm of its derivative. The isoperimetric problem with densities (f,h),

(1.16) inf{P,(E) : |E|; = v} for a given volume v > 0,

has gained a lot of attention in recent years, first in the case of the single density (i.e.,
when h(z,v) = f(z) for all (z,r) € R” x S"7!), and then in the more general case of
the double density (L.16]), see [79,/80] and the references therein for an account on the
most recent developments.
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If two or more volumes are involved in the minimisation of the perimeter, then the
admissible sets are called bubble clusters. Given m € N, an m-bubble cluster is a family
of m pairwise disjoint sets & = {E; CR":i=1,...,m}, such that P,(FE;) < 400
and |E;|; < +oo for all i = 1,...,m. Given a vector of volumes v = (vy,...,v,,) €
(0, +00)™, a minimal m-bubble cluster is a solution of the clustering problem

(Il?) 1nf{77h(5) €= U E; C R", ’E’L’f =v Vi=1,... ,m},
i=1
where & = {FE;:i=1,...,m} is an m-bubble cluster and
1 " 1 &
i=1 i=1

is the (weighted) cluster-perimeter functional. In the physical case f = h = 1 and
n = 3, J. Plateau [77] experimentally established that soap films are made of constant
mean curvature smooth surfaces meeting in threes along an edge, the so-called Plateau
border, at an angle of 120 degrees. These Plateau borders, in turn, meet in fours
at a vertex at an angle of arccos(—%) ~ 109.47 degrees, the tetrahedral angle. Exis-
tence and regularity of minimisers of in the Fuclidean setting f = h = 1 were
proved by F. J. Almgren Jr. [4]. Plateau’s observations were rigorously confirmed by
J. Taylor [102], while the planar case n = 2 was treated separately by F. Morgan [69].

When m = 2, problem is the well-known double bubble problem. In the
Euclidean setting, its solution is the so-called standard double bubble given by three
(n — 1)-dimensional spherical cups intersecting in an (n — 2)-dimensional sphere at an
angle of 120 degrees (for equal volumes, the central cup is in fact a flat disc). The
first proof of this result for n = 2 was given in [41] exploiting the analysis carried out
in [69] (a second proof appeared in [35]). The case n = 3 was established first in [50]
for equal volumes and then in [52] with no restrictions. The case n > 4 was finally
solved in [82].

When m > 3, problem is still unsolved even in the Euclidean case f =
h =1 and presents several interesting open questions, see [58, Part IV]. In the planar
Euclidean setting n = 2, the case m = 3 was solved in full generality in [105], while
the case m = 4 has been completely understood only in the case of four equal volumes,
see [72-74] .

The double bubble problem has been addressed in the n-dimensional sphere, in full
generality for n = 2 in [59] and only with partial results for n > 3 in [24,26], on the
2-dimensional boundary of the cone in R? in [56], and on the flat 2-torus in [25]. In my
paper in collaboration with V. Franceschi [45], we address the double bubble problem
in a 2-dimensional sub-Riemannian space, the so-called Grushin plane, in the case of
equal volumes and prescribed contact interface.

Very little is known about the clustering problem in the case of non-trivial
densities. In my work in collaboration with V. Franceschi and A. Pratelli [44], we
prove that Steiner’s 120-degree property is still valid for minimising planar clusters in
the case h(x,v) = h(x) for all (z,v) € R" x S"~!, generalising the results of [69].

A new distributional approach to the variation in the fractional setting.
Besides the validity of ([.14), an essential feature of De Giorgi’s reduced boundary is
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the following blow-up property: if x € # E, then
(1.18) X% - XH,, () in Llloc<Rn)

as r — 0, where

. Dxg(B(z))
H,.»h={yeR":y-vg(x) >0}, ve(r) = lim ———————"—.
=) =1 W2 0h el = I D B )
The function vg: FE — S*! denotes the so-called measure-theoretic inner unit nor-
mal of E and coincides with the usual inner unit normal of £ when the boundary of £
is sufficiently smooth. In other words, the blow-up property in (I.18) shows that, in a
neighbourhood of a point x € .# FE, the finite perimeter set F is infinitesimally close to

T+ Hyp@y={y €R": (y —2) - vp(r) > 0}.

In this sense, the boundary of set of finite perimeter is very similar to a (n — 1)-
dimensional C!-hypersurface in R”. Actually, starting from the blow-up property ,
De Giorgi [32] proved that the reduced boundary .Z F is in fact a 52" -rectifiable set,
meaning that there exist countably many (n—1)-dimensional C'-hypersurfaces (My)ren
in R™ and compact sets C}, C M, such that

! (( U Ck> AEE) = 0.

For a modern presentation of these results, see the recent monograph [58].

From this point of view, sets of (locally) finite Caccioppoli perimeter have C-
type boundary regularity. However this type of regularity does not fit the Holder-type
boundary regularity of fractal sets naturally arising in Geometric Measure Theory, such
as the Smith—Volterra—Cantor set, the von Koch snowflake, the Sierpinski carpet, the
Mandelbrot set and the Menger sponge among the others, see [37,38,76|. For the study
of fractal objects, Caccioppoli sets and, consequently, functions of bounded variation
are a too restrictive class, and the definition of some sort of ‘space of functions of
fractional regularity’ is in order.

Also because of the study of the wild nature of fractal sets, in the last decades
fractional Sobolev spaces have been given an increasing attention (see [34, Section 1]
for a detailed list of references in many research directions). If p € [1,4+00) and

€ (0,1), the fractional Sobolev space W*P(R") is the space

(L19) WoP(R") = {feLP(R")' D () // |x_ |n+p2|pd dy<+oo}

endowed with the norm

| fllwer@ny = | fller@ny + [flwer@ny, [ € WHP(R").

In the geometric regime p = 1, somewhat imitating the classical case ([.12), the W*!-
seminorm naturally induces the fractional a-perimeter

1
1.20 P.(E) = N n=2/ /7dd.
(1:20) () = Ixelwesny r\EJE |T — y|"te o
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The notion of fractional a-perimeter can be also localised in the following way. If
2 C R™ is an open set, then

(1.21) Pa(E;Q):/Q Q’XE( ©) = X(y) dxdy+2//n\ﬂ Xele) = xeWl . 0

|z — yl”*‘* Ix — y|rte

is the fractional a-perimeter of E relative to 2, see |27, Section 7]

Note that the fractional perimeter functional in (I.20) and has a strong non-
local nature, in the sense that its value depends also on points Wthh are very far from
the boundary of the set E. For this reason, it is not clear if such a perimeter measure
may be linked with some kind of fractional analogue of De Giorgi’s reduced bound-
ary (which, a posteriori, cannot be expected to be a special subset of the topological
boundary of F). In more general terms, the fractional Sobolev spaces W*?(R"), differ-
ently from the standard Sobolev spaces W1P(R™), do not have an evident distributional
nature, in the sense that the W*P-seminorm does not seem to be the LP-norm of some
kind of distributionally defined gradient of fractional order.

Recently, the search for a good notion of differential operator in this fractional
setting has led several authors to consider the following fractional gradient

(1.22) VO (2) = ina /Rn (y —|§)_(fg§i'yn)+;{(x)) .

reR",

where p,, o is a multiplicative normalising constant controlling the behaviour of V¢ as
a — 17. For a detailed account on the existing literature on this operator, see [90,
Section 1]. Here we only refer to [86-90,92-95| for the articles tightly connected to the
present work (see also |78, Section 15.2]). According to [90, Section 1], it is interesting
to notice that [51] seems to be the earliest reference for the operator defined in (I.22).

A fundamental aspect of the fractional gradient in ([.22) is that it satisfies three na-
tural ‘qualitative’ requirements as a fractional operator: invariance under translations
and rotations, homogeneity of order a under dilations and some continuity proper-
ties in an appropriate functional space, e.g. Schwartz space S(R™). As observed by
M. Silhavy in [92, Theorem 2.2], these three requirements actually characterise the
fractional gradient in , up to multiplicative constants (in fact, observing that
V@ = (—=A)2 R on Schwartz functions, where (—A)2 is the fractional Laplacian and
R is the Riesz transform, this can be recovered from from [96, Chapter III, Proposi-
tion 2]). This characterisation shows that the definition in (I.22) is well posed not only
from a mathematical point of view, but also from a physical point of view.

From its very definition, it is not difficult to see that the fractional gradient in (I.22))
is well defined as an element of L!(R";R") for functions in W*!(R"), since

(1.23) LIV @) dr < i [flwas

Moreover, the operator in (1.22) allows for the following fractional integration-by-part
formula

(1.24) / fdivipde = —/ o VO Fde
R" Rn
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whenever f € C°(R") and ¢ € C°(R"; R"), where

o (y — ) - (o(y) — p(x)) n
(1.25) divie(z) = pina /Rn T dy, x€R",
comes naturally as the fractional divergence of the test vector field ¢ € C°(R"™; R"),
see [92, Section 6.

With the energetic estimate and the integration-by-part formula at
disposal, one is now tempted to approach fractional Sobolev spaces in distributional
terms. This is the new perspective introduced in my paper [22] in collaboration with
G. E. Comi, where we combine the functional approach of [89,90] with the distribu-
tional point of view of [92] in order to develop a satisfactory extension of the variation
and the Caccioppoli perimeter in the fractional setting.

Imitating (L.1), for a given a € (0,1) the fractional a-variation of a function f €
LY(R™) is given by

(126) D fIRY) =sup{ [ fdivipds: o € CRRMRY), plimn < 1.
If |D*f|(R™) < 400, then f has finite fractional a-variation and
(1.27) BV*(R") = {f € L'(R") : [D*f|(R") < 400}

endowed with the natural norm

(I.28) | fllBve@y = | fllor@ey + [ DYfI(R™), f e BVYR"),

is the naturally associated space of functions of bounded fractional a-variation in R™.
Note that is well defined, since div®p € L>®(R") for all p € C*(R™;R").

The space in is actually a Banach space and its norm is lower semicon-
tinuous with respect to L'-convergence. By (L.23)), and (L.26)), one immediately
gets that W*!(R") C BV*(R") with strict continuous embedding, in perfect analogy
with . Moreover, similarly to Anzellotti-Giaquinta approximation , one can
prove that the sets C>°(R") N BV*(R™) and C2°(R") are dense in energy in BV*(R™).

Emulating the classical definition in , it is very natural to define the fractional
analogue of the Caccioppoli perimeter using the total fractional variation in (I.26)).
Note that this definition is well posed, since div®p € L*(R") for all ¢ € W*H(R"™; R")
arguing similarly as in (I.23). One can actually prove that

(I.29) |DaXE|(Q) < Un,aPa(E? Q)

for all measurable sets £ C R"™ such that P,(E;§) < 400, so that our approach
naturally includes sets with finite W*!-perimeter. Similarly to what happened for the
fractional variation , fractional Caccioppoli a-perimeter is lower semicontinuous
with respect to Ll -convergence. Moreover, a fractional isoperimetric inequality holds,
in the sense that for all n > 2 one has

|E|% < ol DXE|(R™)  whenever xp € BVY(R").

Last but not least, a natural analogue of De Giorgi’s reduced boundary, which we
call fractional reduced boundary F*FE, is well posed for any set E with (locally) finite
fractional Caccioppoli a-perimeter. In addition, one can prove that |D*yg| < 72" L
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ZF°F and that, given x € F“E, the family (£5%),., admits limit points in the L} -
topology and any such limit point must have constant measure-theoretic inner unit
fractional normal.

We remark that a different approach to fractional variation was developed in [107].
We do not know if the fractional variation defined in (I.26)) is linked to the one intro-
duced in [107] and it would be very interesting to establish a connection between the
two.

In order to study the relation between the fractional Sobolev space and the
fractional gradlent in the case p > 1, guided by the fractional 1ntegrat10n by-part
formula , one can deﬁne the weak fractwnal a-gradient of a function f € LP(R"),
with p € [1, +00], as the function V*f € L (R"; R") satisfying

/fdivagodx:—/ Vef - pdx
Rn Rn

for all ¢ € CX(R™;R"). For a € (0,1) and p € [1,+00], one can thus define the
distributional fractional Sobolev space

SYP(R™) ={f e LP(R"):AV*f € L(R";R")}
naturally endowed with the norm

[fllser@ny = [ fllzo@n) + IV fllio@nimn),  f € STPRT).

In the case p € (1,+00), it is known that S*P(R") D L*P(R") with continuous em-
bedding, where L*P(R™) is the Bessel potential space of parameters o € (0,1) and
p € (1,+00), see [22, Section 3.9] and the references therein. In my paper [20]
in collaboration with E. Brue, M. Calzi and G. E. Comi, we prove that also the
inclusion S*?(R™) C L*P(R™) holds continuously, so that the spaces S*?(R") and
L*P(R™) do coincide. As a consequence, one gets the following relations: S*t*P(R™) C
WeP(R™) C S =P(R") with continuous embeddings for all a € (0,1), p € (1,400)
and 0 < ¢ < min{a,1—a}, see [89, Theorem 2.2]; S*?(R") = W*>*R") for all

€ (0,1), see [89, Theorem 2.2]; W*P(R") C S*P(R") with continuous embedding for
all € (0,1) and p € (1,2], see [96, Chapter V, Section 5.3].

The fractional Sobolev space can be understood also as an ‘intermediate
space’ between the space LP(R™) and the standard Sobolev space W1P(R"). In fact,
WeP(R™) can be recovered as a suitable (real) interpolation space between the spaces
LP(R™) and WP(R"), see [14,65,103]. One then naturally expects that, for a suffi-
ciently regular function f, the fractional Sobolev seminorm [f]ya.»(rny, multiplied by a
suitable renormalising constant, should tend to || f||Lr&r) as & = 07 and to ||V f]| 1o @n)
as o« — 17. Indeed, for p € [1,4+00), it is known that
(1.30) lim « [f]eva,p([gn) = Anp ||f||11;p(Rn)

a—0t

for all f € Une(o,1) W*P(R"), while

(1.31) lim (1—a) [f]];va’z)(R") = Bnp ”Vf“Lp R7;R™)

a—1—

for all f € WP(R™). Here A, ,, B,, > 0 are two constants depending only on n, p.
The limit (I.30) was proved in [61,62], while the limit (I.31) was established in [15].
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As proved in [29], when p = 1 the limit (I.31) holds in the more general case of BV
functions, that is,
(1.32) lim (1 — a) [flwei@ny = Bu1 |[DfI(R")

a—1—

for all f € BV (R"). For a different approach to the limits in and in based
on interpolation techniques, see [65].

Concerning the fractional perimeter P, given in (L.21), one has some additional
information besides equations (1.30) and (I1.32).

On the one hand, thanks to [75, Theorem 1.2|, the fractional a-perimeter P, enjoys
the following fractional analogue of Gustin’s Bozing Inequality (see [49] and [39, Corol-
lary 4.5.4]): there exists a dimensional constant ¢, > 0 such that, for any bounded open
set £ C R"™, one can find a covering

E C U Br,C (ZL’k)
keN
of open balls such that
(1.33) > T < cua(l — a)Pa(E).
keN

Inequality bridges the two limiting behaviours given by (I.30) and (I.32)) and pro-
vides a useful tool for recovering Gagliardo—Nirenberg—Sobolev and Poincaré—Sobolev
inequalities that remain stable as the exponent a € (0, 1) approaches the endpoints.

On the other hand, by [5, Theorem 2|, the fractional a-perimeter I'-converges in
Ll .(R™) to the standard De Giorgi’s perimeter as @ — 17, that is, if Q@ C R" is a
bounded open set with Lipschitz boundary, then

(134) D(Lhe) - lim (1 - a) Pa(E: Q) = 20,1 P(E;Q)
a—1-

for all measurable sets E C R", where w, is the volume of the unit ball in R™ (it should
be noted that in [5] the authors use a slightly different definition of the fractional -
perimeter, since they consider the functional J,(F, Q) = 3P,(E,(2)). For a complete
account on I'-convergence, we refer the reader to the monographs [16,28] (throughout
all the thesis, with the symbol I'(X) - lim we denote the I'-convergence in the ambient
metric space X). The convergence in , besides giving a I'-convergence analogue
of the limit in , is tightly connected with the study of the regularity properties of
non-local minimal surfaces, that is, (local) minimisers of the fractional a-perimeter P,,
see |27, Section 7] for an account on the latest results in this directions.

In my paper [23] in collaboration with G. E. Comi, we study the asymptotic be-
haviour of the fractional a-variation (I.26) as @« — 17, both in the pointwise and in the
['-convergence sense. We provide counterparts of the limits and for the
fractional a-variation. Indeed, we prove that, if f € WP(R") for some p € [1, +00),
then f € S*P(R") for all « € (0,1) and, moreover,

(135) a]il’{l_ ||Vaf - foLp(]R";]R") = 0

In the geometric regime p = 1, we show that if f € BV(R") then f € BV*(R") for all
a € (0,1) and, in addition,

(1.36) D*f =~ Df in #(R";R") and |D“f| — |Df| in A4 (R") as o — 1~
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and
(1.37) lim [D*f|(B") = | DJ|(E").

We are also able to treat the case p = +oo. In fact, we prove that if f € W1*°(R")
then f € S*>°(R") for all a € (0,1) and, moreover,

(1.38) Vef —=Vf in LR, R")asa — 1~
and
(1.39) IV fll oo s ey < Hminf [[VE f[] oo n; ey

(the symbol ‘=’ appearing in and denotes the weak*-convergence, see
below for the notation).

Some of the above results were partially announced in [91]. In a similar perspective,
we also refer to the work [63], where the authors proved convergence results for non-
local gradient operators on BV functions defined on bounded open sets with smooth
boundary. The approach developed in [63] is however completely different from the
asymptotic analysis we presently perform for the fractional operator defined in ([.22)),
since the boundedness of the domain of definition of the integral operators considered
in [63] plays a crucial role.

Notice that the renormalising factor (1 — Oé)% is not needed in the limits (L.35) —
(L.39)), contrarily to what happened for the limits (I.31]) and (I.32). In fact, this differ-
ence should not come as a surprise, since the constant j,, encoded in the definition

of the operator V* in ([.22) satisfies

(1.40) Hono ™~ as a — 17

and thus plays a similar role of the factor (1 — oc)% in the limit as o« — 1.

Another relevant aspect of our approach is that convergence as a — 1~ holds true
not only for the total energies, but also at the level of differential operators, in the
strong sense when p € (1,400) and in the weak™® sense for p = 1 and p = +o00. In
simpler terms, the non-local fractional a-gradient V¢ converges to the local gradient V
as @ — 17 in the most natural way every time the limit is well defined.

We also provide a counterpart of for the fractional a-variation as @ — 17.
Precisely, we prove that, if 2 C R" is a bounded open set with Lipschitz boundary,
then

(1.41) I(L;

loc

) Tim [D*xz|(2) = P(E; )

for all measurable set £ C R™. In view of (.29), one may ask whether the I'-limsup
inequality in (I.41) could be deduced from the I'-lim sup inequality in ([.34). In fact,

by employing (L.29) together with ([.34) and (L.40), one can estimate

2Wn—l

I—‘<‘Lllor:) -lim sup |DaXE| (Q) < 11(Llloc) -lim sup :un,OtPOZ(Ev Q) =
a—1— a—1— Wn,

P(E, Q).

However, we have 2“2?—*1 > 1 for any n > 2 and thus the I'-lim sup inequality in (I.41)

follows from the T'-lim sup inequality in (I.34) only in the case n = 1. In a similar
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way, one sees that the I'-liminf inequality in (L.41) implies the I'-liminf inequality

in only in the case n = 1.

Besides the counterpart of , our approach allows us to prove that I'-conver-
gence holds true also at the level of functions. Indeed, if f € BV(R") and  C R" is
an open set such that either € is bounded with Lipschitz boundary or €2 = R"”, then

(142) D(L)- Tim [D*f1() = |DSI(2).

Again, similarly as before and thanks to the asymptotic behaviour (I.40), the renor-

malising factor (1 — «) is not needed in the limits ([.41) and (I.42).
As a byproduct of the techniques developed for the asymptotic study of the frac-

tional a-variation as o — 17, we are also able to characterise the behaviour of the
fractional [-variation as f — «~, for any given o € (0,1). On the one hand, if
f € BV*(R"), then

DPf —~ D in .#(R";R") and |DPf| — |D*f| in .#(R") as § — o~
and, moreover,
lim_ |[D7f|(R") = [Df|(R™).
B—a

On the other hand, if f € BV*(R") and €2 C R" is an open set such that either 2 is
bounded and |D® f|(092) = 0 or 2 = R", then

DY)~ Jim [D?F]() = |D*f1(2).

In my paper [20] in collaboration with E. Brue, M. Calzi and G. E. Comi, we
study the asymptotic behaviour of the fractional a-variation as a — 0T, At
least for sufficiently regular functions, as o — 07 the fractional a-gradient in is
converging to the operator

(1.43) VO£ (@) = fino / (y —2)(f(y) = f(x))

R" |y — [+

dy, x€R",

where i, o is the limit of y,, o, as @ — 07 (in this case, there is no renormalisation factor).
The operator in is well defined for all f € C2°(R"™) and, actually, coincides with
the well-known vector-valued Riesz transform Rf, see [47, Section 5.1.4] and [96,
Chapter III]. Similarly, the fractional a-divergence in is formally converging
as a — 0T to the operator

divlp(z) = 0 /Rn v~ mTy (—QDSTEJ; #(z)) dy, x € R",

which is well defined for all ¢ € C2°(R";R™). In perfect analogy with (I.26) above, one
can thus introduce the space BV?(R") as the space of functions f € L'(R") such that
the quantity

DAY = sup{ [ fdiv’odn: o € CXRMRY), gy < 1)

is finite. Surprisingly (and differently from the fractional a-variation), it turns out
that |D°f] < " for all f € BV°(R"). More precisely, one can actually prove that
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BVY(R"™) = H'(R"), in the sense that f € BV(R") if and only if f € H'(R"), with
Df = Rf%" in .#(R";R"). Here

H'(R") = {f € L'(R") : Rf € L'(R";R")}

is the (real) Hardy space, see [97, Chapter III] for the precise definition. The Hardy
space thus comes as the right target functional space for the study of the conver-

gence of the fractional a-variation as @ — 0. One can prove that, if f € H'(R") N
Uae(O,l) welt (Rn)v then

144 1 o - 1 n.RPn) — .
(I.44) i IVf = Rf|l o1 mn;mny = 0

Of course, if Rf ¢ L'(R™;R"), that is, f ¢ H'(R"), then one cannot expect strong
convergence in L' and, instead, has to consider the asymptotic behaviour of the rescaled
fractional gradient o V*f as o — 07 as suggested by the limit in (L.30]). Precisely, if
J € Uac(0) WeL(R™), then

lim a/ |V f(x)| dr = nwppino
R?’L

a—0t

/Rnf(a:)dx :

In the case p € (1, +00), since the Riesz transform ([.43) extends to a linear continuous
operator R: LP(R") — LP(R"), one can prove that, if f € Uye(,1) W*P(R"), then

(1.45) Jim [V f = Rf|[Logn; gny = 0.

Moreover, since the Riesz transform (L.43) also extends to a linear continuous operator
R: H'(R") — H'(R"), one can prove that, if f € Uae(o.1) HS"*(R™), then

(146) O}L%EL ||vo¢f — Rf”Hl(]R";]R") = 0.

Here
HS*'(R") = {f € H'(R"): V°f € H'(R")}
is the fractional Hardy—Sobolev space, see [99]. Since one can prove that
Hl (Rn) N U Wa,l(Rn) — U Hsoz,l(Rn)’
ag(0,1) ag(0,1)

the convergence in (L.46) is actually a refinement of (I.44).
Remarkably, the limits in (I.44), (I.45) and (I.46) follow from some new fractional

interpolation inequalities. On the one hand, by Calderén—Zygmund Theorem, if o €
(0,1], then there exists a constant ¢, , > 0 such that

(1.47) [DP FI(R™) < ena | fll i gny [ D FI(R?)

for all 8 € [0,a) and all f € H'(R") N BV*(R™). On the other hand, by Mihlin—
Hoérmander Multiplier Theorem, given p € (1,+00), there exists a constant ¢,, > 0
such that

=

a=B e’
(1.48) IV? fllo@nrmy < Cnp IV Fllogans mmy 1V F Il o an; moy
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forall 0 <y < p <a<1landall fe S*(R"). In the particular case v = 0, thanks
to the LP-continuity of the Riesz transform, one also has

a—B B
(I-49) ||v6f||LP(R”;R”) < Cnp ||f||L3(Rn) ||vaf||fp(Rn;Rn)

forall0 < g < a<1landall f e S*(R"). In a similar way, there exists a dimensional
constant ¢, > 0 such that

a—p
(L.50) IV £l 11 n; ey < HV”fHHl Rn; Rm) ||V“fHH1<Rn R")

forall0 <y < B <a<1landall f€ HS*(R"). Again, in the particular case v = 0,
thanks to the H!-continuity of the Riesz transform, one also has

a=B 8
(I-51) ||V’Bf||H1(R";R”) < Cn ||fHH01L(IR") ||VafHID}1(Rn;Rn)

forall 0 < B <a <1andall fe HS*(R").

The novelty of inequalities - lies in the fact that, differently from the
classical fractional interpolation inequalities, constants do not depend on the inter-
polating parameter. To achieve this stability, we adopt a direct approach exploiting
the precise structure of the fractional gradient instead of relying on complex
interpolation techniques.

According to [14, Theorem 6.4.5(6)], for all a,9 € (0,1) and p € (1, +00) we have
the following complex interpolation

(1.52) (LP(R™), S“P(R™)) g = SP*P(R™).
As a consequence, ([.52)) implies that, for all 0 < f < @ < 1 and p € (1, +00), there
exists a constant ¢, o3, > 0 such that
a=8 B
(1.53) 1 lse@n) < cnasp | fIlLo@ny | f 1| §on @n)

for all f € S*P(R™). Similarly, for all o,9 € (0,1), we have the following complex
interpolation

(1.54) (H'(R™), HS®'(R"))p) = HS"™'(R™),
and thus

a—f B
(1.55) [ flzssa@ny < Cnas 11 ey 111 Er g gy

for all f € HS*'(R") (the identification in was pointed us by M. Calzi). In-
equalities and suggest that, in order to obtain and (L.51) with com-
plex interpolation methods, one essentially should prove that the identifications (I.52)
and hold uniformly with respect to the interpolating parameter. We believe that
this result may be achieved but, since we do not need this level of generality for our
aims, we prefer to prove ([.48) — in a direct way.

We do not know if inequality can be achieved also by complex interpolation
methods. In fact, we do not know even if the two spaces (H'(R"), BV (R"))y and
BV?(R") are somehow related for ¢ € (0,1). By [14, Theorems 3.5.3 and 6.4.5(1)], we
have the following real interpolations

(L'(R™), WHH(R")g, = (L'(R"), BV (R"))g,, = By ,(R")
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for all ¥ € (0,1) and p € [1,40c], where BY (R") denotes the Besov space (see [14,
Section 6.2] or [55, Chapter 14] for the definition). By [14, Theorem 4.7.1], we know
that

(H'(R"), BV(R")91 S (H'(R"), BV(R") S (H'(R"), BV (R"))s,c
for all ¥ € (0,1). Since H'(R") C L*(R™) continuously, on the one side we have
(H'(R"), BV(R"))p1 S (L'(R"), BV(R")g1 = BY,(R") = W™ (R"),
and, on the other side,
(H'(R"), BV(R"))poe S (L'(R"), BV (R"))g0c = BY o (R"),

for all 9 € (0,1). The continuous inclusion W*!(R") C BV*(R") is strict for all
a € (0,1) and the inclusion BV*(R") C Bf (R") holds continuously for all o € (0,1)
and is strict for all n > 2.

Organisation of the thesis. In this thesis, we present the distributional approach
to fractional Sobolev spaces and fractional variation developed in [20,22,23]. The
material is organised as follows. In Chapter |1} after having introduced the elementary
properties of the fractional operators V® and div®, we define the space of functions of
bounded fractional variation BV *(R™) and we establish its fundamental features. The
spaces BV*?(R"), BV(R") and S®P(R") are also studied. In Chapter 2, we develop
the theory of sets with (locally) finite fractional Caccioppoli perimeter and prove the
existence of blow-ups. In Chapter [3] we deal with the asymptotic behaviour of the
fractional a-variation as @ — 17, studying pointwise convergence and I'-convergence
of the fractional gradient. The asymptotic behaviour of the fractional S-variation as
B — a~ is also considered. Finally, in Chapter[4] we study the asymptotic behaviour of
the fractional a-variation as o — 07, proving new fractional interpolation inequalities.
An application to potential estimates involving Riesz potential in Lorentz spaces is also
provided.



Notation

We denote by .Z" and 7 the n-dimensional Lebesgue measure and the a-dimen-
sional Hausdorff measure on R™ respectively, with o > 0. Unless otherwise stated, a
measurable set is an .Z"-measurable set. We also use the notation |E| = Z"(E). All
functions we consider in this paper are Lebesgue measurable, unless otherwise stated.
We let B,.(x) be the standard open Euclidean ball with center z € R"™ and radius r > 0.

We let B, = B,(0). Recall that w, = |B,| = n2/T (%’2) and "1 (OBy) = nwy,
where T is Euler’'s Gamma function, see [13].

We let GL(n) D O(n) D SO(n) be the general linear group, the orthogonal group
and the special orthogonal group respectively. We tacitly identify GL(n) C R™ with the
space20f invertible n X n-matrices and we endow it with the usual Euclidean distance
in R™.

For k € Ny U {+0cc} and m € N, we denote by C*(Q; R™) and Lip,(Q; R™) the
spaces of C*-regular and, respectively, Lipschitz-regular, m-vector-valued functions
defined on R™ with compact support in €.

For m € N, we denote by S(R";R™) the space of m-vector-valued Schwartz func-
tions on R™. For k € Ny U {+o0} and m € N, we let

Si(R™R™) = {f e SR™R™): [ 4 f(w)dr =0 for all a € Ny with Ja] < k}

n

where 2 = 27 - .. .- 22" for all multi-indices a € Nf}. See [47, Section 2.2] for instance.
We let F: S(R") — S(R") be the Fourier transform. For its precise definition and
main properties, we refer to [47, Section 2.2.2] for instance.
For any exponent p € [1,+o0], we denote by

LP(;R™) = {u: Q= R™: Ju|| prrm) < +oo}

the space of m-vector-valued Lebesgue p-integrable functions on Q. For p € [1, +0o0],
we say that (fi)rken C LP(Q;R™) weakly converges to f € LP(2;R™), and we write
fr = fin LP(Q;R™) as k — +oo, if

(N.56) lim /ka-apdx:/ﬂf-gpdx

k——+o0
for all p € LY(Q;R™), with q € [1, +o0] the conjugate exponent of p, that is, % + % =1

(with the usual convention J%O = 0). Note that in the case p = +00 we make a little
abuse of terminology, since the limit in actually defines the weak*-convergence
in L>(Q;R™).

We denote by

WP R™) = {u € LP(GR™) : [ulwroozm) = |Vl praperm < +00}

XXix
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the space of m-vector-valued Sobolev functions on €, see for instance [55, Chapter 10]
for its precise definition and main properties. We also let

w' (4 R™) = {u € Li (U R™) : [ulwisamm < +00}.
We denote by
BV(;R™) = {u € L' R™) : [u]pv(amn) = |Dul(Q) < +o0}

the space of m-vector-valued functions of bounded variation on €2, see for instance |6,
Chapter 3] or [36, Chapter 5] for its precise definition and main properties. We also
let

(4 R™) = {u € Li, (GR™) : [ulpy(amn) < +00}.
For av € (0,1) and p € [1,4+00), we denote by

o m m u(x) — u(y)?
WeP(Q;R™) = {u € LP(SER™) = [ulfyamqprm) :/Q X de dy < +OO}

the space of m-vector-valued fractional Sobolev functions on €, see [34] for its precise
definition and main properties. We also let

w*P(Q;R™) = {u € Li (G R™) : [ulwas@prm) < +oo}.

For a € (0,1) and p = 400, we simply let

Wee(Q; R™) = {u € L>®(;R™): sup —]u(x) — uly)| < +oo},
x,yeQ, x#y |z —y|®

so that W (Q; R™) = Cy*(Q;R™), the space of m-vector-valued bounded a-Hélder
continuous functions on (2.
Given a € (0,n), we let

n—«a

. S () .
(N.57) I.f(x) =2 F(%) /Rn |x_y|n_ady, z e R,

be the Riesz potential of order o € (0,n) of f € C®(R™;R™). We recall that, if
a, B € (0,n) satisfy a + f < n, then we have the following semigroup property

(N.58) Lo(Igf) = lavsf
for all f € C(R™;R™). In addition, if 1 < p < ¢ < 400 satisfy
I 1 «
¢ p 0
then there exists a constant C), , > 0 such that the operator in satisfies
(N‘59) H]afHLq(R";Rm) < Cn,a,p“f”LP(R";Rm)

for all f € C°(R™; R™). As a consequence, the operator in extends to a linear
continuous operator from LP(R™ R™) to LI(R"™;R™), for which we retain the same
notation. For a proof of and , we refer the reader to [96, Chapter V,
Section 1] and to [48] Section 1.2.1].
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Given « € (0,1), we also let

NG o N R R )
f(z) =2% F(—%) - |y|n+e

[N]1)

(—4) dy, x € R",

be the fractional Laplacian (of order «) of f € Lip,(R™; R™).
For a € (0,1) and p € (1, +00), we let
Low(R™ R™) = (1d — A) % (I(R™; R™)
(N.60) 5
={f € S®"R™): (Id— A5 f € L(R:R™)}

be the m-vector-valued Bessel potential space with norm
(N.61) 1 Fll on(n;mmy = [1(Id = A)% fllrogn;rmy,  f € LOP(R™R™),

see [2, Sections 7.59-7.65] for its precise definition and main properties. We also re-
fer to [85, Section 27.3], where the authors prove that the space in (N.60) can be
equivalently defined as the space

LYP(R™ R™) = LP(R™; R™) N I, (LP(R™; R™))

(N.62) _ {f € L*(R";R™) : (—A)%f € LpGRn;Rm)}’

endowed with the norm
(N63) Hf”La,p(Rn;Rm) = HfHLp(Rn;Rm) + “(-A)%fHLp(Rn;Rm), f e La,p(Rn;Rm)’

see [85, Theorem 27.3| (in particular, the two norms defined in and in are
equivalent and so, unless otherwise stated, we will use both of them with no particular
distinction). We recall that C2°(R") is a dense subset of L*?(R™;R™), see [2, Theo-
rem 7.63(a)] and [85, Lemma 27.2]. Note that the space L*P(R"™;R™) can be defined
also for any a > 1 by simply using the composition properties of the Bessel potential
(or of the fractional Laplacian), see |2, Section 7.62]. All the properties stated above
remain true also for a > 1 and, moreover, L*¥P(R™; R™) = W*P(R™; R™) for all k € N,
see |2, Theorem 7.63].
For m € N, we denote by

H'(R™R™) = {f € L'(R";R™) : Rf € L'(R";R™)}
the m-vector-valued (real) Hardy space endowed with the norm
£l sy = (£l o memy + (1R F |21 s memmy,— f € H'(R™R™),
where Rf denotes the Riesz trasform of f € H!(R";R™),

lim Mdy, reR™ i=1,...,m,
{ll>r [yl

I (2t
(N.64)  Rif(z) = <ni)

T2 e—0t

see |48, Sections 2.1 and 2.4.4] and [97, Chapter III] for a more detailed exposi-
tion. We also recall that the Riesz transform defines a continuous operator
R: LP(R™R™) — LP(R™;R™) for any given p € (1,+00), see [47, Corollary 5.2.8],
and a continuous operator R: H'(R";R™) — H'(R™;R™), see (97, Chapter III, Sec-
tion 5.25].



XXXii NOTATION

We let . (2; R™) be the space of m-vector-valued Radon measures with finite total
variation. We let

0l() =sup{ [ ¢-du: ¢ € CEOQR™), Nl < 1
be the total variation of u € Z(Q;R™). We say that (ug)ren C A (2;R™) weakly
converges to p € A (2;R™), and we write pp — pin A (Q;R™) as k — +o0, if
(N.65) lim [ @-du, = / ©-du
Q )

k—4o00

for all p € C2°(Q2;R™). Note that we make a little abuse of terminology, since the limit
in actually defines the weak*-convergence in .4 (Q;R™).

Given A > 0, we let LM (R"; R™) be the Morrey space of measures u € . (Q; R™)
such that

[ ell (g my = sup sup |p|(B,(2)) r— < +oc.
2ERM >0

In the sequel, in order to avoid heavy notation, if the elements of a function space
F(;R™) are real-valued (i.e. m = 1), then we will drop the target space and simply
write F'(§2).



CHAPTER 1
A distributional approach to fractional variation

1. Silhavy’s fractional calculus

1.1. Definition of V* and div®. We recall and study the non-local operators V¢
and div® introduced by Silhavy in [92]. We refer also to [78, Section 15.2] and the
references therein.

Let a € (0,1) and set

. 1‘\ n+a+1

(1.1) [l = 2013 (1fa )
r(%e)

We let

(1.2) V() = pno lim Mdz

Y200 {lz|>¢} ’Z‘n—&-a—&-l

be the a-gradient of f € C*(R") at z € R™. We also let

(1.3) divp(z) = finq lim 2 pletz) dz

e=0 J{|z|>e}  |z|ntot]

be the a-divergence of ¢ € C*(R™";R") at € R™. The non-local operators V¢
and div® are well defined in the sense that the involved integrals converge and the
limits exist, see [92, Section 7).

Since

(1.4) /{ S - 0, Ve >0,

lz|>e} |z|ntet]

it is immediate to check that V®c = 0 for all ¢ € R. Moreover, the cancellation in (1.4])
yields

(1.50) VF@) = ol | W=D ey ay

e—0 ly—z|>e} |y — l‘|n+o‘+1

o (y —2)(f(y) — f(z))
(1.5b) = e s |y — a[rtott W

(1.5¢) = o /Rn (y —2)(f(y) — f(=x)) d

B |y — x[rtott

for all f € C°(R™). Indeed, (1.5a) follows by a simple change of variables and (1.5Db)
is a consequence of (1.4)). To prove (1.5¢) it is enough to apply Lebesgue’s Dominated
Convergence Theorem. Indeed, we can estimate

(y —2)(f(y) — f(x))
(1.6) Aywm

|y _ $|n+a+1

Y, Vr € R,

1
dy < Lip(f)/o r~*dr

1
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and

1.7 /
(.7 {ly—z|>1}
As a consequence, the operator V* f defined by (1.5¢) is well defined for all f € Lip,(R")

and satisfies (1.2)), and (1.5b).

By [92, Theorem 4.3], V* is invariant by translations and rotations and is a-
homogeneous. Moreover, for all f € C*(R") and A € R, we have

(y —z)(f(y) — f(x))

‘y _ x‘n+a+1

“+oco
dy < 2||f||Loo(Rn)/l r= () gy,

(1.8) (VEFA)) (@) = [A["sgn (A)(VEf)(Az), 2z e R™
Arguing similarly as above, we can write
(1.9a) div¥o(z) = pin o lim =) v ,

’ 1
e=0 J{ja—y|>e} |y — x[nFot

(y — ) (ply) — v(2)) ,

1.9b = nalim Y
( ) Hon, =0 J(lo—y|>e) |y — z[ntotl

_ (y — ) (py) — p(x)) n
(1.9¢) = ln.a /Rn T dy, Vo € R",

for all ¢ € Lip.(R™; R").

Exploiting (1.5¢) and (1.9¢), we can extend the operators V* and div® to functions
with w*!-regularity.
Lemma 1.1 (Extension of V* and div® to w®'). Let a € (0,1). If f € w*'(R™) and
¢ € w* (R*;R"), then the functions V*f(z) and div® f(zx) given by (1.5¢) and (1.9¢)

respectively are well defined for £™-a.e. x € R™. As a consequence, V®f(z) and

div® f(z) satisfy (1.2), (1.5a), (1.5b) and (1.3), (1.9a), (1.9b) respectively for £"-a.e.

r e R
Proof. Let f € w™(R™). Then
/ / (v —2)(f(y) — f(=))

ly — a|ntatl
and thus the function V*f(z) given by (1.5¢) is well defined for £"-a.e. z € R™ and

satisfies (1.2)), and (1.5b) by and by Lebesgue’s Dominated Convergence

Theorem. A similar argument proves the result for any ¢ € w®!(R™; R"). O

dy dx < [flwa ey

1.2. Equivalent definition of V* and div® via Riesz potential. Recalling the
definition in (1.1), one easily sees that

Lo flx+y)
Ii_, = :
1 f(.?l') n4 o — 1 Jrn ‘y’n—i-a—l
and
Lo Vof(z+y) T Vyf(z+y)
VI of(z) = : dy = : dy,
1-af(2) n+a—1Jrn |y[rte-t Y= +a—1J/rn |y|rte-t Y
so that

V[1—04f = Il—avf
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for all f € C°(R™). A similar argument proves that
divli_op = I_,divp

for all ¢ € C°(R™;R").
Thus, accordingly to the approach developed in [51,86-90], we can consider the
operators

Ve =VI_,: C¥(R") — C®(R"R")
and
div® = divl;_o: CP(R™R") — C®(R™).
We can prove that these two operators coincide with the operators defined in
and (1.3). See also [89] Theorem 1.2].
Proposition 1.2 (Equivalence). Let a € (0,1). We have Ve = V* on Lip,(R") and
div® = div® on Lip.(R"; R").
Proof. Let f € Lip.(R™) and fix x € R™. Integrating by parts, we can compute
ﬁaf(m) S lim/ Vy/(z +y) dy
{lyl>¢}

n+oa—1e0 ly|te-t
. yf(y+ ) a
:,un,ahm/ = dy =V*f(x),
=0 J{|y|>e} |y|n+a+l ( )
since we can estimate

flr+y) y 1
A" (y)‘ =
’/{w —} [y|tety|

{lyl=¢} Iyl’”o“1 lyl

< nwnHVfHLoo(Rn;Rn)sl’o‘

The proof of div®y = div®y for all ¢ € Lip,.(R™;R™) follows similarly. O

A useful consequence of the equivalence proved in Proposition above is the
following result.

Corollary 1.3 (Representation formula for div® and V). Let a € (0,1). If p €
Lip.(R™;R") then div®p € LY(R™) N L>®(R™) with

 a fina dive(y)
1.10 d = :
(1.10) V() n+a—1Jre |y — zrte-l

for all x € R™,

(]_].1) ||diva(p||Ll(Rn) S Mn,a[@]wavl(Rn;Rn)
and
(112) ||diVag0||Loo(Rn) S Onya’U”diV(,D”Loo(Rn)

for any bounded open set U C R™ such that supp(p) C U, where

n+a—1
Nn,a . 1— nwn, n loa
113) O, p = ’ diam(U)° () US|
13) Conp = gt (wndiom (@4 (2 ) 7 1)
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Analogously, if f € Lip,(R"), then V*f € L'(R™;R™) N L>®(R"; R"™) with

Hn,a Vi)
n+a—1Jre |y —x|rte-!

(1.14) Ve f(x) =

for all x € R™,

and
(1.16) IV fll Lo mnirny < Criaul|V || oo rnimry

for any bounded open set U C R™ such that supp(f) C U, where C, ov is as in (1.13).

Proof. The representation formula (1.10) follows directly from Proposition 1.2l The
estimate in (1.11) is a consequence of Lemma Finally, if U C R"™ is a bounded
open set such that supp(p) C U, then

divip(e)] < L2 [y — af e fdive(y)| dy

n+a—1

unaHdiWIILw(w)/ 1o
< ) _ n Ozd
- n+aoa—1 U|y d Y

and follows by Lemma/1.4/below. The proof of (1.14), and is similar
0

and is left to the reader.

Lemma 1.4. Let a € (0,1) and let U C R™ be a bounded open set. For all x € R™, we
have

n+a—1
n nw. n 1—a
11 / _ l—n—ad < - nd. -« (n> o .
) [ly=apmay s o (i@ (22) o)

Proof. For § > 0, set U° = {z € R" : dist(x,U) < §}. Since clearly
T e U(S - B(diam(U)+5) (.CE) 2 U7

for all z € U we can estimate

/ ly — x| dy S/ ly — x| dy
U B(dgiam(v)+5) ()

diam(U)+§
= nwn/ r~%dr
0

= " (Qiam(U) + 6)

11—«

On the other hand, it is plain that

rd U, yelU = |y—x| >0,
so that for all ¢ U° we can estimate

[y = = dy < 6t meu).
Thus, for all 6 > 0 and x € R", we can estimate

J =l dy < S (diam(U) + )7 + 070U
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< T (diam(U)' 0 4 6'70) + 610U

T 1l-«

since the function s — '~ is subadditive for all s > 0. Thus (1.17) follows minimising
in 0 > 0 the right-hand side. O

1.3. Relation of V* and div® with the fractional Laplacian. Following [92],
for any f € C*(R") we set

f(x+h)

Vn,a o W

dh if a € (~1,0),
f(z) ifa=0,

(1.18) (—A)2 f(x) = flz+h) — f(z)

Vna | e dh if a € (0,1),
ymnm/ fleth) = fz) it aell,2),
T e=0 J{|n]>e} |h|rte
where
T (nte
(1.19) Upa = 201732 ()

R

r(-3)
Note that, in the case a € (—1,0), we have
(=A)2 =1_, on C=(R™).
We stress the fact that this definition is consistent with the previous definitions of
fractional gradient and divergence in the sense that
—dive VP = (—A)* T
for any o € (—1,1) and g € (0,1), see [92, Theorem 5.3]. Thus, in particular, we get
—div*V* = (=A)®
for any a € (0, 1).

1.4. Duality and Leibniz’s rules. We now study the properties of the operators
V® and div®. We begin with the following duality relation, see [92, Section 6.
Lemma 1.5 (Duality). Let « € (0,1). For all f € Lip,(R") and ¢ € Lip (R™;R") it
holds

(1.20) fdivipdr = —/ v - Vfdz.
Rr R"
Proof. Recalling Lemma [1.1] and exploiting (1.5a]) and (1.9a]), we can write
e o : (y—2z)-»y)
/Rn Jdivipdr = pinq /]R” f(x) ll_% /{|a:—y|>a} W dydx

e—0

. (y —x) - o(y)
= nahm/ / T) L dy dx
fin. n {|Hj|>€}f( ) ly — afrrert Y
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Jim [ f Pt )R LCOIR
Y50 Jpn {|a— y‘>€} ‘l’ _ ‘n—&—a—&-l
=—/ ) V() dy
by the Lebesgue’s Dominated Convergence Theorem and Fubini’s Theorem. U

We now prove two Leibniz-type rules for the operators V® and div®, which in
particular show the strong non-local nature of these two operators.

Lemma 1.6 (Leibniz’s rule for V*). Let o € (0,1). For all f, g € Lip,(R") it holds
V(fg) = [V +gVef+ VRS 9),

where

(y —2)(f(y) — f(2)(g(y) — g(z))

|y _ x|n+a+1

51 (9@) = fina [

With fi,q as in (1.1). Moreover, it holds

dy, VreR",

V800 Dllerees < om0
with p,q € (1,00) such that % + é =1 and similarly
IVRLU Dl gerey < 2ptnall £l 2o ®e)[g]wan @n).-
Proof. Given f, g € Lip,(R"), by Lemma [1.1]and by (1.5¢) we have
o y —x)(f(y)gy) — f(z)g(z
T E) = [ DI [t

’y _ x’n—i—a—i—l

o [ WD) = IO + S 9)gla) = S o)

- |y — a[rrott !

/ (y —2)f(y)(g(y) — g(z))

‘y _ x‘nJraJrl

dy + g(x)V f(x)
e /R (v —2)(f(y) — f(#))(9(y) — 9(x)) dy

|y — et

+ f(2)Vg(z) + g(x)V* f(z).
We also have that

V%0070l ey < e [ [ |x_y|ngj"9|; >_x|ngj'd yds,

= e </ R d“’)p </ SRR dm>q

for any p, ¢ € (1, 00) such that % + % = 1. The case p = o0, ¢ = 1 follows similarly. [

Lemma 1.7 (Leibniz’s rule for div®). Let a € (0,1). For all f € Lip.(R™) and
¢ € Lip, (R™;R™) it holds

div¥(fy) = fdivie + ¢ - Vf + diviy(f, @),
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where
(121) divie(f9)(@) = pine [
WIth [ln.q aS N . Moreover, it holds
ldivie (£, )l < inalFliy 5 0 g (28 o

(y —z) - (ply) — () (fly) — f(z))

|y _ x|n+0¢+1

dy, VzreR",

with p,q € (1,00) such that % + % =1 and similarly

[divRe (s @)@y < 2tn,all fl Lo e [@lwar @egn),
[divRe(f, @)l pr@n) < 20m,0ll0l Lo e [flwe s n).-
Proof. Given f € Lip,(R") and ¢ € Lip, (R"; R™), by Lemmall.1]and by (1.5¢) we have
o _ (y— =) - (fWely) — f(x)p(x))
div*(fo)(2) = pina /Rn |y — a|rretl dy

- /R (=) (fWeW) - FW)e) + fWe() — f@)e@)

|y — afrrett

_ MW/R (y — ) - (p(y) — p(x))f(y)

|y _ $|n+o¢+1

e /R (v — ) (o(y) — (@) (f(y) — f(z))

|y — z[rret

Y

dy + ¢(x) -V f(x)

dy + f(x)diviep(z)+

p(x) -V f(x).
We also have that

v (7 s a < g [ [ LW LW =20
[z —y|? \y—x\ ‘

<// |flﬂc—yl’"”+°”|pd d> </"/”|¢|x—y|"+“|qd o )

for any p, ¢ € (1, 00) such that ;1) + E = 1. The case p = 0o, ¢ = 1 follows similarly. [

Remark 1.8 (Extension of V§;, and divy, to fractional Sobolev spaces). Thanks to
the estimates in Lemma|1.6] for all « € (0,1) the bilinear operator

Vo Lip (R") x Lip,(R") — L'(R™;R")
can be continuously extended to a bilinear operator
Vi wrP(R?) x wad(R") — LY(R™R™)
for any p,q € [1, 00| such that % + % = 1, for which we retain the same notation (we

tacitly adopt the convention ws> = L*>). Analogously, because of the estimates in
Lemma [1.7] the bilinear operator

divy; : Lip.(R™) x Lip,(R™;R") — L'(R™)
can be continuously extended to a bilinear operator

divd, : wrP(R") x wa(R™; R") — L'(R")
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for any p,q € [1, 00| such that % + % = 1, for which we retain the same notation.

2. The space BV“®

In this section we introduce and study the fractional BV space naturally induced
by the operators V¢ and div® defined in Section (1] following De Giorgi’s distributional
approach. In the presentation of the results, we will frequently refer to [36, Chapter 5].

2.1. Definition of BV*(R") and Structure Theorem. In analogy with the
classical case (see [36, Definition 5.1] for instance), we start with the following defini-
tion.

Definition 1.9 (BV*(R") space). Let a € (0,1). A function f € L*(R™) belongs to
the space BV*(R") if

sup{/]R fdiviy dz o € CX(R™YR™), ||@]| oo (rnrn) < 1} < +00.

We can now state the following fundamental result relating non-local distributional
gradients of BV“ functions to vector valued Radon measures.

Theorem 1.10 (Structure Theorem for BV functions). Let a € (0,1) and f €
LY(R™). Then, f € BV*(R") if and only if there exists a finite vector valued Radon
measure D*f € 4 (R™;R™) such that

(1.22) / Fdivepds = —/ - dDf
R™ R™

for all ¢ € C*(R™;R™). In addition, for any open set U C R™ it holds
(L23)  |Df|(U) = sup{/Rn Fdivep de: g € C(URY), l¢llimwan < 1}.

Proof. If f € L*(R™) and if there exists a finite vector valued Radon measure D*f €
A (R™; R™) such that holds, then f € BV*(R") by Definition [1.9]

If f € BV*(R"), then the proof is identical to the one of [36, Theorem 5.1], with
minor modifications. Define the linear functional L: C°(R™; R") — R setting

L) = — / Fdivipds Y € C®(R™RM).
Note that L is well defined thanks to Corollary [1.3] Since f € BV*(R"), we have
C(U) = sup{L(p) : ¢ € CZ(U;RY), |lgllzoowmny < 1} < 400
for each open set U C R", so that
1L(e)| < CU)lellewmmy Ve € CZ(U;R™).

Thus, by the density of C2°(R™";R") in C.(R";R"), the functional L can be uniquely
extended to a continuous linear functional L: C.(R™;R™) — R and the conclusion
follows by Riesz’s Representation Theorem. 0
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2.2. Lower semicontinuity of fractional variation. Similarly to the classical
case, the fractional variation measure given by Theorem in (1.23) is lower semi-
continuous with respect to L!-convergence.

Proposition 1.11 (Lower semicontinuity of fractional variation measure). Let « €
(0,1). If (fx)ren C BV*(R") and fi, — [ in L*(R™) as k — +oo, then f € BV*(R")
with
|D*f|(U) < liminf |D* fi|(U)
k—+oco
for any open set U C R".

Proof. Let ¢ € C*(R™;R™) with ||¢]|gee@ngny < 1. Then div¥e € L>(R"™) by Corol-
lary and so we can estimate
/n faivie o= lim [ fidivipde=— lm [ odD*f <liminf|[D"fi|(R").
This shows that
| D f|(R") < lim inf | D fi.|(R"),
k—+o00

thanks to Theorem [1.10l Finally, if U is an open set in R™, it is enough to take
¢ € C>(U;R™) and to argue as above, applying (1.23). O

From Proposition we immediately deduce the following result, whose standard
proof is left to the reader.

Corollary 1.12 (BV® is a Banach space). Let a € (0,1). The linear space BV *(R")
equipped with the norm

I/l Bve@m = [[fllzr @ + [D*fI(RY), — f e BVYR"),
where Df is given by Theorem [1.10, is a Banach space.

2.3. Approximation by smooth functions. Here and in the following, we let
0 € C°(R™) be a function such that

(1.24) supp o C By, 0>0, / o(z) de =1,

see [36], Section 4.2.1] for an example. We thus let (g:).»0 C C°(R™) be defined as
1

(1.25) 0.(z) = =0 (5”) Vo € R™.
en- \e

We call (g:)es0 a family of standard mollifiers. We have the following result.

Lemma 1.13 (Convolution with standard mollifiers). Let o € (0,1) and let (g:)es0 as
in (1.25). If ¢ € Lip,(R™;R"), then

(1.26) div®(o. * ) = 0. * div¥p
for any e > 0. Thus, if f € BV*(R™), then

(1.27) D%(ge * f) = (02 % D* )L™
for any e > 0, and

(1.28) D%(ge * f) — D f

in A (R";R") as e — 0.
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Proof. Let ¢ € Lip,(R™;R") and = € R™. Recalling (1.10]), we can write
diviyp = K, o * dive,

where

Mnua —_n—a n
Kn,a($>:m|ﬂf’1 , reR \{0}

Since g, * ¢ € Lip.(R™;R™), we can compute
div® (0. * ) = K, o * div(o: * @)
= K0 * (0o * divep)
= 0 * (K0 * divy)
= 0. xdivip

and (1.26) follows. Now let f € BV*(R") and ¢ € C>°(R™;R"). By and (1.26),

for all € > 0 we can compute
—/Rn(gE x f)diviedr = —/Rn f(0e x div¥yp) dz
= —/Rn fdiv®(o: * ) dz
= [ (e-x¢)aD"f

= / (0. * D*f) dz,
proving (1.27). The convergence in (1.28) thus follows from standard properties of the

mollification of Radon measures, see [6, Theorem 2.2] for instance. U

As an immediate application of Lemma we can prove that a function in
BV*(R™) can be tested against the fractional divergence of any Lip regular vector
field.

Proposition 1.14 (Lip,regular test). Let o € (0,1). If f € BV*(R"), then (1.22)
holds for all ¢ € Lip . (R™; R™).

Proof. Fix ¢ € Lip (R™;R"™) and let (0:)es0 C C°(R") be as in (1.25). Then . * ¢ €
C>®(R™;R") and so, by Lemma [1.13and (1.22), we have

(1.29) /Rn(gs x ) divipds = /R Fdive(o. * o) dz = — /Rn(gg x ) -dD .

Since g. * ¢ — o uniformly and g. * f — f in L'(R") as € — 0, and div® ¢ € L>(R")
by Corollary [1.3| we can pass to the limit as ¢ — 0 in (1.29) getting

/ fdivagodx:—/ o -dD*f
R® Rn
for any ¢ € Lip (R"; R"). O

As in the classical case, we can prove the density of C*°(R")NBV*(R") in BV*(R"™).
Theorem 1.15 (Approximation by C* N BV functions). Let o € (0,1). If f €
BV*(R™), then there exists (fi)ren C BV*(R™) N C>®(R") such that

(i) fr = f in L'(R");
(i) |D* fi|(R™) — |D*f|(R™).
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Proof. Let (0.):>0 C C2°(R™) be as in (1.25)). Fix f € BV*(R") and consider f. = fx*o,
for all € > 0. Since f. — f in L'(R"), by Proposition we get that

D f|(R") < limnf [ D £.|(R).
By Lemma we also have that
DR = [ e+ D*f|dz < |D"/|(R")
and the proof is complete. 0
Let (ng)r>0 C C°(R™) be such that

(1.30)  0<nr<1, nr = 1 on Bp, supp(nr) C Bprt1, Lip(ngr) < 2.

We call ng a cut-off function. As in the classical case, we can prove the density of
C°(R™) in BVY(R").
Theorem 1.16 (Approximation by C2° functions). Let o € (0,1). If f € BV*(R"),
then there exists (fi)ren C C2°(R™) such that

(i) fr = f in LY(R");

(i) |D* fi|(R™) — |D*f|(R™).
Proof. Let (nr)r=0 C C°(R™) be as in (1.30). Thanks to Theorem [1.15] it is enough to
prove that fng — f in BV*(R") as R — +oo for all f € C*(R")NBV*(R"). Clearly,

fnr — f in LY(R™) as R — +oo. Thus, by Proposition , we just need to prove
that

(1.31) lin sup | D*(f)[(R") < |D° f|(R").
R—+o00
Fix ¢ € C°(R™;R"). Then, by Lemma 1.7, we get
/Rn fordiviede = /Rn fdiv (nre) do — /Rn fo-Vinrdr - /Rn f ARy, (g, @) de.
Since f € BV*(R") and 0 < nr < 1, we have

/n fdiv*(nry) dx

< [l llzoe nsrny [ D FI(R).

Moreover, we have

‘/ fo-Vopd
Rn

and, similarly,

nr(y) — nr(2)| dy da

Re |y — II”*“

< tnallpllim@nan [ 1f(@)

‘ |773(y) - 'f]R(l’)’ dy dz.
By —@frte

1, 9) do| < 2 allellzm oy [ 15(@)

Combining these three estimates, we conclude that

‘/R i divip dz| < (o]l @z | D FI(RY)

nr(y) — nr(2)]
St @ || oo / dy d
+ 3ptn.allpl Lo @nir |f ()] R [y — :z:\“+a x
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and (1.31)) follows by Theorem m Indeed, we have

. nr(y) — nr(z)|
R1—1>I—&I—1<>o R™ ’f(l’) R™ |y _ x|n+o¢

combining (1.6)), (1.7) and (1.30) with Lebesgue’s Dominated Convergence Theorem.
[

dydxr =0

2.4. Gagliardo—Nirenberg—Sobolev inequality. Thanks to Theorem [1.16] we
are able to prove the analogous of the Gagliardo—Nirenberg—Sobolev inequality for the
space BV*(R™).

Theorem 1.17 (Gagliardo—Nirenberg—Sobolev inequality). Let o € (0,1) and n > 2.
There exists a constant ¢, o > 0 such that

(1.32) < Cna| DY fI(R™)

(T —

forany f € BVY(R"). As a consequence, BV*(R") is continuously embedded in L(R")

for any q € [1, 2—].
Proof. By (88| Theorem A’], we know that (1.32) holds for any f € C°(R™). So let
f € BV*(R") and let (fi)ren C C°(R™) be as in Theorem [1.16. By Fatou’s Lemma

and Proposition [1.11] we thus obtain
_n__ < i i _n < i « n - « n
171 gy < B il 5 gy < i i [D*FI(RY) = | D% | (B)
and the proof is complete. 0]

Incidentally, we observe that the continuous embedding BV*(R") C L= (R")
for n >2 and a € (0,1) can be improved by using the main result of the recent
work [92] (see also [94]). Indeed, if n > 2, a € (0,1) and f € C°(R"), then, by taking
F =V*fin [92, Theorem 1.1], we have that

11 < a2l s gy < oIV 3

thanks to the boundedness of the Riesz transform R: Lwa'!(R") — Lwa'(R";R"),
where ¢, o, ¢, , > 0 are two constants depending only on n and «, and LY (R") is the
Lorentz space of exponents —— 1 (we refer to [47,48] for an account on Lorentz spaces
and on the properties of Riesz transform). Thus, recalling Theorem [1.16, we readily
deduce the continuous embedding BV*(R") ¢ Lwa'(R") for n > 2 and a € (0,1)
using Fatou’s Lemma in Lorentz spaces (see [47, Exercise 1.4.11] for example).
Remark 1.18. We stress the fact that Theorem does not hold for n =1, as will
be shown in Example below. It is worth to notice that an analogous restriction
holds for [88, Theorem A], for which the authors provide a counterexample in the case
n =1 (see [88, Counterexample 3.2]). The authors then derive [88, Theorem A’] as
a consequence of [88, Theorem A], without proving the necessity of the restriction to
n > 2 in this second case, as we do in Example [1.22]
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2.5. Coarea inequality. In analogy with the classical case, we can prove a coarea
inequality formula for functions in BV*(R").

Theorem 1.19 (Coarea inequality). Let oo € (0,1). If f € BV*(R") is such that

(1.33) LD x| (R) dt < +o0,
then

(1.34) D*f = [ DX(po dt
and

(1.35) D] < [ 1D"(gu] dt.

Proof. Let ¢ € C>(R™;R™). By (1.33) and applying Fubini’s Theorem twice, we can
compute

/ o-dD*f = — / fdivie(x) dz
= - le SO < R X (—oo0,f z) — X(~00,0) (t) dt) dx
= —// div®p(x) X{f>t}< T) — X(- oo,O)(t)) dx dt

= - dD* dt
/R/Rn ¥ X{f>t}

_ d /D“ dt)
Rn@ ( B X{f>t}

proving . Thus

|D*f| = ‘/RDQX{f»} dt‘ < /R|DQX{f>t}| dt
and the proof is complete. 0

2.6. A fractional version of the Fundamental Theorem of Calculus. Let

a € (0,1) and let y, _, be given by (1.1) (note that the expression in (1.1) makes sense
for all & € (—1,1)). We let
(1.36)

T(R") = {f € C*(R") : D*f € L'(R") N Cy(R") for all multi-indices a € Ny }

and
T(R"R") ={p e C*R"R") : p; € TR"), i =1,...,n}.
By [92, Section 5], the operator

(1.37) div™p(x) = pn,—a / .

is well defined for any ¢ € T(R™;R"). Moreover, by [92, Theorem 5.3|, we have the
following inversion formula

(1.38) — divT*V* = idT(Rn).

z-p(r+ 2)

’Z‘n+1fa dz
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Exploiting (1.37) and (1.38) we can prove the following fractional version of the Fun-
damental Theorem of Calculus. See [89, Theorem 2.1] for a similar approach.

Theorem 1.20 (Fractional Fundamental Theorem of Calculus). Let o € (0,1). If
f e Cx(R™), then

z—x z2—y

W30 1)~ 1) = [, (i ) VG

for any x,y € R™.

Proof. Since clearly C°(R") C T(R"), we have V¢ f € T(R"; R") by [92, Theorem 4.3].

Applying (1.38)), we have
fy) = (@) = (=div*V*f)(y) — (=div "V f)(z)
i [ e (T4 2) = T +2) ds

for all 2,y € R™. Then (1.39) follows splitting the integral and changing variables. O

An easy consequence of Theorem is that the distributional a-divergence of the
kernel appearing in (1.39) is a difference of Dirac deltas.

Proposition 1.21. Let o € (0,1). If x,y € R™, then

(1.40) Y —adiv® ( i — ) =5, — 0,

| . _y|n+1—a | . _x|n+1—o¢
in the sense of Radon measures.
Proof. 1t follows immediately from (1.39). U

Example 1.22. Let a € (0,1). For any a,b € R, with a # b, consider the function
fava() = |z —b*Tsgn(z —b) — |v — a|* 'sgn(xr —a), z€R\{a,b}.

We have that f,;, € BV*(R) with

0 — da

1,—«

(1.41) D%fopa =

in the sense of finite Radon measures. Indeed, one can easily check that f, ;. € L'(R).

Since n = 1, we have V* = div®. Thus, (1.41) follows from (1.40), proving that
f € BV*(R). In addition, note that f,,, € BV*(R) \ Lﬁ(R), since

) |z —al™' asz — aq,

|fa,b70c(x)|m ~

|z — b7 asz —b.

Thus, Theorem cannot hold for n = 1. By the way, note that fq . € WHALR) for
all 8 € (0, ) (this will also be a consequence of Theorem below).
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2.7. Compactness. We start with the following Holder estimate on the L'-norm
of translations of functions in C°(R").

Proposition 1.23 (L!'-estimate on translations). Let o € (0,1). If f € BV(R"), then

(1.42) | 1f@+y) = (@) de < qualyl* D fI(RY)
for all y € R™, where
2 z—e;
1.4 ne = ina [ - dz.
( 3> T, Hn, R |Z|n+1—a |Z _ el|n+1—a <
Proof. Assume f € C°(R™). By (1.39), we have
2 «
L@+ y) = f@)]de < i / ) / s~ g | [V 2l de e
2 z—y

dz.

=t ol Vs |

Now we notice that the integral appearing in the last term is actually a radial function
of y. Indeed, let R € SO(n) be such that Ry = |y|v, for some v € S"~!. Making the
change of variable z = |y| "Rw, we obtain

|z[n+1—e B |z — y|rti-e

t t
_ R R(w —
/ = z—y dx = [yl wo (w—v) dw
R® ’Z‘n+1fa ’Z _ y’nJrlfa R |w|n+1fa ’U) _ y|n+17a
_ «a w (w — V)
= |yl R |[w[rti-e B jw — p|rti-a dw.

Since v is arbitrary, we may choose v = e;. We now prove that

J.

To this purpose, we notice that

I

z zZ— €1
|z[nHl=e |z — e [rtl-e

1 1
dzg/ 7dz+/ ——dz
By |z|"@ By |z —eq|P@
1

[e7

dz < +o0.

z z— e
Z‘n—&-l—oe - |Z _ el|n+1—a

<2

dz = 2nw,—
5 oo % = 2nun—

On the other hand, for all z € R"\ By we have

z—ep B (e —te) di
|2 — eq[rti-e - Z|n+1 a / ]z — Ly |t

:/0 —| 2 —+(n+1—a)(z —1)

2 — tel|n+l «

(z —tey) gt
|Z _ te1’n+3—a

so that
n/R”\Bz

z z— e
|z[nti—e B |z — ey|nt1-e

dz</ 1|z—te1|+(n—a+1)|z1—t|dtdz
~ JrR™\B, |z — teq|nt2—a

1 1
<(n—a+2 // —————dzdt
= ) 0 JRm\B, |z — tey |l
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1 1
co-arr) [ [l a
<(n—-a ) R\By |2[P 1 &

NWy,

— 2
=n—a+ )1_a

We conclude that
z z—e 3 (n—a+2)

/Rn |z|nt1—a - |z — e [nHl-a dz < nwy <2a ™ 1—

Thus (1.42)) follows for all f € C°(R™). Now let f € BV*(R™) By Theorem [1.16, we
can find (fx)reny C C°(R™) such that fr — f in L'(R") and |D® f;|(R") — | D f|(R™)
as k — +o0o. Hence, for all y € R", we get

[ @ty = f@lde = Tim [ fula+y) - fil@)|do
R» ——+o0 JR"

< Yoo [Y|* k1—1>I-Poo | D fi| (R™)

= Tna |y|* |D* fI(R")

and the conclusion thus follows. O

><+oo.

Similarly to the classical case, as a consequence of the previous result we can prove
the following key estimate of the L'-distance of a function in BV*(R"™) and its convo-
lution with a mollifier.

Corollary 1.24 (L'-distance with convolution). Let « € (0,1). If f € BVY(R"™), then
(1.44) [0z * f = fllor@ny < o €D fI(R)
for all e > 0, where (g:)e=o C CX(R™) is as in D and Ynq as in Pmposz’tion .

Proof. By Theorem [1.16} it is enough to prove ( for f € C*(R"). By (1.42), we
get

lo-x f = fllen < [ [ e)lf @ —2y) = f(@) dyda

= [ o) [ 1f@@—ey) = fl@) dady

< Y eIV sz [ o)yl dy

1
< Vo EX IV fll L1 (e
and the proof is complete. O

We are now ready to prove following compactness result for the space BV*(R").
Theorem 1.25 (Compactness for BV*(R")). Let a € (0,1). If (fx)ken C BV*(R")

satisfies
sup || fil| pvern) < 400,
keN

then there exists a subsequence (fy,)jen C BV*(R™) and a function f € L'(R™) such
that

fkj - f in Llloc(Rn)
as j — 400.
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Proof. We follow the line of the proof of [6, Theorem 3.23]. Let (0.)es0 C C°(R™) be
as in (1.25)) and set f. = g * fx. Clearly fx. € C*°(R") and

[ frellewy < Mloellnoe@nll fillrgmy, [V fiellwowimny < NIV oellLoe@nmn || fill o n)
for any open set U @ R™. Thus (fi.)ren is locally equibounded and locally equicon-
tinuous for each ¢ > 0 fixed. By a diagonal argument, we can find a sequence (k;),en

such that (fi,c)jen converges in C(U) for any open set U € R™ with ¢ = 1/p for all
p € N. By Corollary [1.24] we thus get

lim sup gy | fer, — fr;| dv = lim sup/U | frna/p = frya/pl do

h,j—40c0 h,j——4o00

+ lim sup ; | fren = frnaywl + 1 fry — fag 1yl d

h,j—4o00

2 n,o o n
< Zn, sup | D* fx|(R™)
keN

= e

for all open set U @ R". Since p € N is arbitrary and L'(U) is a Banach space, this
shows that (fy;);en converges in LY (U) for all open set U @ R™. Up to extract a further
subsequence (which we do not relabel for simplicity), we also have that fi,(z) — f(z)
for Z"-a.e. x € R". By Fatou’s Lemma, we can thus infer that

n < 1 i . n < (e ny.
1 fllr@ny < I}QﬁgofﬂfijLl(R ) < ilelgﬂkaBv ®")

Hence f € L'(R") and the proof is complete. O

Remark 1.26 (Improvement of [89, Theorem 2.1]). The argument presented above
can be used to extend the validity of [89, Theorem 2.1] to all exponents p € [1,7),
since our strategy does not rely on the boundedness of Riesz’s transform but only on
the inversion formula . We leave the details of the proof of this improvement
of [89, Theorem 2.1] to the interested reader.

2.8. The inclusion W*!(R") C BV*(R"). As in the classical case, fractional BV
functions naturally include fractional Sobolev functions.
Theorem 1.27 (W*Y(R") C BV*(R")). Let a € (0,1). If f € W*YR"™) then f €
BV*(R"™), with

(1.45) DY fI(R") < pnal flwer @m)
and
(1.46) /Rnfdlv cpdx:—/Rngo-V fdx

for all ¢ € Lip (R™;R"), so that D*f =V~ f.Z".
Moreover, if f € BV(R"), then f € WY (R") for any a € (0,1), with

(1.47) [ fllwer@n) < enallfll BV En)

for some ¢, o >0 and

Lina dD f(y)

n+a—1Jrn |y —zrte-l

(1.48) Ve f(z) =

for £L"-a.e. x € R™.
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Proof. Let f € W*1(R"). For any ¢ € Lip,(R™; R"), by Lebesgue’s Dominated Conver-
gence Theorem, Fubini’s Theorem and Lemma and recalling (1.4), we can compute

(y — ) - o(y)
divipdxr = Whm/ / —d dx
fdivipdr = p N . p[rrart W

Rn e—0
o hm/ / (?JL)JC(JF)I dz dy
=0 Jrn J{|z— y|>6} |y _ I|n+a

(W —2)(f(z) - fy))
hm/n/{'x y|>a} dx dy

¥ 30 |y _ x|n+a+1

=—/ fy) dy.

This proves (1.46)), so that f € BV*(R"). Inequality (1.45)) follows as in Lemma [1.1]
Now let f € BV(R"). We claim that f € W*(R"). Indeed, take (fi)ren C

C*>°(R") N BV(R") such that f, — f in L'(R") and ||V fi|l1@ern)y — |Df|(R") as
k — +oo (for instance, see [36, Theorem 5.3]). Since WH(R™) € W*(R"™) (the proof
of this inclusion is similar to the one of [34, Proposition 2.2], for example), by Fatou’s
Lemma we get that

1 lfwen eny < Lim inf [] fieflwer gn)
< Cno L inf || fillwa gn)
= Cna kgrfoo(nkaLl(R") + D fi| (R™))
= Cnall fllBy@En).
Since |Df|(R") < 400, by Lemma |1.4]the function in is well defined in L _(R™).
Fix ¢ € C(R™; R"). By Corollary [1.3, we can write

/Rn f(z)divie(z) dx = _ Hno /n/n _dively) dy dx.

n+a-—1 ]y—x!”*al

Recalling Lemma [1.4] applying Fubini’s Theorem twice and integrating by parts, we
obtain

dlvgo dlvygo r+y)

/n/n I|n+a ldydx /n/n |n+a 1 d dx
mwwm+w

_/n/n |n+a1 dy dx

=iénWP””aA; f(z) dive(z +y) do dy

== RnWP‘”*{éﬂw@w+x)-deC®dy

:'T/n/nurjz?m/“w'de@)
=— @@)3/ 4D/ ()

n o —y|rret
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Thus we conclude that

L f@) divp@)de = 2 [ o). [

_n+a—1 R

Recalling (1.46)), this proves (1.48) and the proof is complete. O

We now want to understand in which cases inequality (1.45) is actually an equality.
The key idea to the answer of this question lies in the following simple result.

Lemma 1.28. Let A C R" be a measurable set with £™(A) > 0. If F € L'(4;R™),

then
| F@yde| < [ 1F(@)|de.

with equality if and only if F = fv a.e. in A for some constant direction v € S™ ! and
some scalar function f € L'(A) with f >0 a.e. in A.

dD{(x)

n e —ylrtest

Proof. The inequality is well known and it is obvious that it is an equality if F' = fv
a.e. in A for some constant direction v € S™! and some scalar function f € L'(A)
with f > 0 a.e. in A. So let us assume that

/A F(z)dz| = /A |F(2)| da.

If [, F(x)dx =0, then also [, |F(x)|dx = 0. Thus F' = 0 a.e. in A and there is nothing
to prove. If [, F'(x)dxz # 0 instead, then we can write

/A |F(2)] — F(z) - vdz =0,

with i) d
= fA (.ZE) £ c Sm—l‘
| Ja F(x) dz |
Therefore, we obtain |F'(z)| = F(z)-v for a.e. z € A, so that ;Ei;' v=1forae xze A

such that |F(z)| # 0. This implies that F' = fv a.e. in A with f = |F| € L'(A) and
the conclusion follows. O

As an immediate consequence of Lemma we have the following result.
Corollary 1.29. Let « € (0,1). If f € W*Y(R"), then

(1.49) IV fllrnsrey < tna[flwer @n),
with equality if and only if f =0 a.e. in R™.
Proof. Inequality (1.49) is already proved in (1.45). Note that, given f € L'(R"),
[flwer@mny = 0 if and only if f = 0 a.e. and thus, in this case, (1.49) is trivially an
equality.
If (1.49) holds as an equality and f is not equivalent to the zero function, then
/ |vaf($)| - ;una/ |f(y)7_ f(x)| dy dx =0
R~ Tre |y — xjnte
and thus

(1.50)

/ (f(y) = f(=)) - (y — =) dy| :/ \f(y)—f(x)ldy

|y — a|rrett |y — x|+e



20 1. A DISTRIBUTIONAL APPROACH TO FRACTIONAL VARIATION

for all + € U, for some measurable set U C R"™ such that Z"(R"\ U) = 0. Now
let z € U be fixed. By Lemma (applied with A = R™), (1.50) implies that the
(non-identically zero) vector field

y—= (fy) = f(@)(y—=2), yeR",
has constant direction for all y € V., for some measurable set V, C R" such that
ZL"(R™"\ V) = 0. Thus, given y,y’ € V,, the two vectors y — z and y’ — x are linearly
dependent, so that the three points x, y and y’ are collinear. If n > 2, then this

immediately gives £"(V,) = 0, a contradiction, so that (1.49) must be strict. If
instead n = 1, then we know that

(1.51) relU = y— (f(y) — f(x)) (y — x) has constant sign for all y € V..

We claim that implies that the function f is (equivalent to) a (non-constant)
monotone function. If so, then f ¢ L'(R), in contrast with the fact that f € W*(R),
so that must be strict and the proof is concluded. To prove the claim, we argue
as follows. Fix x € U and assume that

(1.52) (f(y) = f(2) (y —2) >0
for all y € V, without loss of generality. Now pick 2’ € U NV, such that 2’ > z. Then,

choosing y = ' in (1.52)), we get (f(2') — f(z)) (' — x) > 0 and thus f(2') > f(z).
Similarly, if 2 € U NV, is such that 2’ < x, then f(2’) < f(x). Hence

esssup f(z) < f(z) < eszs>i£1ff(z)

for all x € U (where ess sup and essinf refer to the essential supremum and the essential
infimum respectively) and thus f must be equivalent to a (non-constant) non-decreasing
function. ]

2.9. The inclusion BV*(R") C W#1(R") for < a. In the following result we
prove that BV%(R") C W5!(R") with continuous embedding for all 0 < § < o < 1.

Theorem 1.30 (BV*(R") C WAL(R") for B < a). Let a, B € (0,1) with 3 < a. Then
BV*(R") ¢ WHL(R™), with

(1.53) [flwsr@ny < Cnap I fllBre@n),
for all f € BV*(R™), where

(1.54) Cra,8 = Nwn
and Ynq 15 as in (1.43).
Proof. Let f € C(R™) and r > 0. By (1.42), we get
T+ z
flwsi@n /n/" e +y) = J( )‘dxdy

|y|"+P

<[ o e (I sy Xes, () + bl IV s 0, ()
-

p

NwWy,

=2 ||f||L1(Rn)+a E

%aT‘a ﬁ“V f||L1 R™;R™)
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nw nw
< (2" P 4 e ’Ynoﬂ“a_ﬁ> | fll Bvemn),
(2757 50015 ) e

so that both (1.53) and (1.54) are proved by minimising in » > 0 for all f € C°(R™).
Now let f € BV*(R™). By Theorem [1.16] there exists (fi)ren C C2°(R") such that
| fell Bve®ny = || fll Bve(®n) and fir — f a.e. as k — 4-o00. Thus, by Fatou’s Lemma, we
get that

lwsagny < Hmint[filwoign < Um Coog | fillve@ = Crap fllpven
and the conclusion follows. O

Note that the constant in 1) satisfies limg_,o~ Cp a3 = +00. As an immediate
consequence of Theorem[1.30} we get that BV*(R") C BVA(R") forall 0 < 8 < a < 1.

2.10. Relation between BV*(R") and bv(R™). Given a € (0, 1), we notice that
(1.55) 120 fllzs oy < vl Flwes o
for all f € C°(R™). Thus the linear operator
(—A)F: C=(R") — L(R")
can be continuously extended to a linear operator
(1.56) (=A)2: WL(R") — LY(R"),

for which we retain the same notation.
Given a € (0,1) and € > 0, for all f € W*!(R") we set

R =, [ RS

dh.
{|h]>e} |h|nte

By Lebesgue’s Dominate Convergence Theorem, we have that
lim I(=2)272f = (=A)% fllpi@ny =0

for all f € W*!(R"). Thus, arguing as in the proof of [84, Lemma 2.4] (see also [85,
Section 25.1]), for all f € W*!(R™) we have

(1.57) I,(=A)2f = f in LY(R™).

Taking advantage of the identity in (1.57)), we can prove the following result.

Lemma 1.31 (Relation between BV *(R") and bv(R")). Let o € (0,1). The following
properties hold.

(i) If f € BVYR™), then u=I_f € bu(R") with Du = D*f in .4 (R™;R").
(ii) If u € BV(R"), then f = (—A) = u € BV*(R"™) with

||f||L1(Rn) S Cn7a||u||Bv(Rn) and Daf = DU mn %(Rn7Rn)

As a consequence, the operator (—A) 2" : BV(R") — BV*(R™) is continuous.
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Proof. We prove the two properties separately.
Proof of (i). Let f € BV*(R"). Since f € L*(R"), we have I;_,f € L{ (R"). By
Fubini’s Theorem, for any ¢ € C2°(R™;R") we have

(1.58) / fdivagodx:/ f]l_adivgpdx:/ udivp dx,
Rn Rn R®

proving that u = I;_,f € bv(R") with Du = D*f in .Z (R";R").
Proof of (ii). Let u € BV(R"). By Theorem [1.27, we know that u € W!=*!(R"),
11— .
so that f = (=A)2 uw e LY(R™) with || f||1 &) < nellullBv@e) by (1.47) and (1.55)).
Then, arguing as before, for any ¢ € C2°(R"™; R™) we get (1.58)), since we have I;_,f = u
in L'(R") by (1.57). The proof is complete. O

Remark 1.32 (Integrability issues). Note that the inclusion

Ii-o(BV*(R")) C Lie(R")
in Lemma above is sharp. Indeed, by Tonelli’s Theorem it is easily seen that
Li_oxr ¢ L'(R") whenever xp € W*(R"). However, when n > 2, by Theorem [1.17]
and by Hardy-Littlewood—Sobolev inequality (see [96, Chapter V, Section 1.2] for
instance), the map I;_,: BV* — LP(R™) is continuous for each p € ( - " }

n—l4+a’ n—1
3. The space BV*?

3.1. Definition of BV*?(R"). Thanks to Lemma [1.31] we can relate functions
with bounded a-variation and functions with bounded variation via Riesz potential
and the fractional Laplacian. We would like to prove a similar result between functions
with bounded a-variation and functions with bounded [-variation, for any couple of
exponents 0 < f < a < 1.

However, although the standard variation of a function f € L} .(R") is well define,
it is not clear whether the functional

(1.59) © |—>/ fdivipdx
R

is well posed for all ¢ € CP(R"™;R™), since div®y does not have compact support.
Nevertheless, thanks to Corollary , the functional in (1.59) is well defined as soon
as f € LP(R") for some p € [1,400|. Hence, it seems natural to define the space

(1.60) BV*P(R") = {f € LP(R") : |D*f|(R") < oo}
for any o € (0,1) and p € [1,4o0]. In particular, BV*}(R") = BV*(R"). Similarly,
we let
BV'P(R") = {f € L"(R") : [Df|(R") < +oo}
for all p € [1,400]. In particular, BV} (R™) = BV (R").

3.2. Weak Gagliardo—Nirenberg—Sobolev inequality. A further justification
for the definition of these new spaces comes from the following fractional version of
the Gagliardo—Nirenberg—Sobolev embedding given in Theorem [1.17; if n > 2 and
a € (0,1), then BV*(R™) is continuously embedded in LP(R") for all p € {1, #}

Hence, thanks to (1.60), we can equivalently write

BV(R") C BV*?(R")
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In the case n = 1, the space BV*(R) does not embed in Lﬁ(R) with continuity
by Example [1.22] However, somehow completing the picture provided by [92], we can

prove that the space BV *(R) continuously embeds in the Lorentz space Lﬁ’m(R). Al-
though this result is truly interesting only for n = 1, we prove it below in all dimensions
for the sake of completeness.

Theorem 1.33 (Weak Gagliardo—Nirenberg—Sobolev inequality). Given a € (0,1),
there exists a constant ¢, o > 0 such that

(1.61)
forall f € BV*(R"). As a consequence, BV*(R") is continuously embedded in LI(R™)

n

for any q € [1, "~).
Proof. Let f € C°(R™). By (1.38), we have

with continuous embedding for all n > 2, a € (0,1) and p € {1 L}

11l o gy < nal D FI(RY)

s —ava (y_x)vaf(y> n
f(.ZU) = —div V f(ZL') = _ﬂn,—a /]Rn |y — $|n+l—o¢ dya xr € R )
so that
ve n,—a o n
P < e [ T gy B ) 1902, xR
Rn \y - ilf‘ Hn1—a

Since the operator I,: L'(R") — Lwa*°(R") is continuous by Hardy Littlewood-
Sobolev inequality (see [96, Theorem 1, Chapter V] or [47, Theorem 1.2.3]), we can
estimate
11l oy < Ml VI ey < €nalllVFllLran = o |DFIRY)
L& (Rn) = [ e Lama ™ (Rn) = ‘Mo (R™) n,a )

n,l—«

where ¢, > 0 is a constant depending only on n and «. Thus, inequality
follows for all f € C>(R™). Now let f € BV*(R"). By Theorem there exists
(fe)keny C C°(R™) such that f — f a.e. in R™ and |D*fi|(R") — |D*f|(R") as
k — 400. By Fatou’s Lemma in Lorentz spaces (see [47, Exercise 1.4.11] for example),
we thus get

/]

L#’OO(R”) S %I_r}l_&gof ||f’€| Lﬁﬁ‘x’(mn) S Cn,Oﬂ kEI—Poo |D fk|(R ) = Cn7Oé|D f|(R )
and so (1.61)) readily follows. Finally, thanks to [47, Proposition 1.1.14], we obtain the
continuous embedding of BV*(R") in LI(R") for all ¢ € [1, -2). O

Remark 1.34 (The embedding BV*(R) C Lﬁ’m(R) is sharp). Let o € (0,1). The
continuous embedding BV*(R) C Lﬁ’o"(R) is sharp at the level of Lorentz spaces, in
the sense that BV*(R") \ Lﬁ’q(R) # & for any ¢ € [1, +00). Indeed, if we let

fal@) =z —11*"sgn(z — 1) — |z[* sgn(z), 2 €R\{0,1},
then f, € BV®(R) by Example and it is not difficult to prove that f, €
Lﬁ"x’(R). However, we can find a constant ¢, > 0 such that

fal@)] 2 calel* X1y (@) = gale), 2 €R\{0,1},
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so that dy, > dg,, where dy, and d,, are the distribution functions of f, and g,. A
simple calculation shows that

1
5 if 0 <5<yt

dg, (s) = )
we=1" L -
2(75) if §>cod4 77,

so that, by [47, Proposition 1.4.9], we obtain
1

—+o0
1all! o > lgall? . = / (d,, (5)]707) 591 g
rat®) T L ®) 1—ado .

2a(1—a)  rtoo

> / s ds = +00
11—« cadl—a

and thus f, ¢ Lﬁ’q(R) for any ¢ € [1, +00).

We collect the above continuous embeddings in the following statement.
Corollary 1.35 (The embedding BV* C BV*?). Let a € (0,1) and p € [1, #) We
have BV*(R"™) C BV*P(R"™) with continuous embedding. In addition, if n > 2, then
also BV*(R") C BV®w-a (R") with continuous embedding.

3.3. Relation between BV® and BV*? for < o and p > 1. With Corol-
lary at hands, we are finally ready to investigate the relation between a-variation
and [-variation for 0 < f < a < 1.

Lemma 1.36. Let 0 < < a < 1. The following hold.
(i) If f € BVA(R"), thenu = L,_sf € BV*?(R") for any p € (=25, 2 (includ-
ing p= "= if n>2), with D*u= DPf in .#(R™";R").
(ii) If u € BVYR"), then f = (—A)*T u € BVA(R") with
Ifllzr@n < cnagllullpye@ny and DPf =D in .#(R";R").

As a consequence, the operator (—A)QT_ﬁ: BV(R") — BVA(R") is continuous.

Proof. We begin with the following observation. Let ¢ € C°(R™;R") and let U C R”
be a bounded open set such that suppe C U. By Corollary and the semigroup
property (N.58) of the Riesz potential, we can write

divﬁgo = I pdive = I, pl1_odivp = I,_zdivie.
Similarly, we also have
Lo sldivp| = I 5|1 _odivg] < L_sTy_aldivg| = _pldive],
so that I,_g|div®p| € L*(R™) with
[ a—pldiveol|| oe@ny < [[1-pldivep|[| Lo @n) < Cnpul|divep|| oo mny

by Lemma [1.4, We now prove the two statements separately.

Proof of . Let f € BVA(R") and ¢ € C>*(R";R"). Thanks to Corollary ,
if n > 2, then f € BVA4(R") for any ¢ € [1,;%5] and so I,_pf € LP(R") for any

pE ( L L} by (N.59). If instead n = 1, then f € BV?4(R) for any ¢ € [1, 1)

n—a+p’ n—a 71—
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and so Io—gf € LP(R) for any p € ( ! ! ) Since f € L'(R") and I, _s|div¥y| €

l1—a+p’ 1—a
L*>(R™), by Fubini’s Theorem we have
(1.62) / fdivipdr = / flo—pdivipdr = / udiv®pdz,
R R R

proving that u = I,_gf € BV*P(R") for any p € (anJrﬁ’ #) (including p = 2 if
n > 2), with D = D°f in .4 (R";R").

Proof of (i). Let u € BV*(R"). By Theorem|1.30, we know that u € We=#1(R™),
so that f = (=A)*T"u € LY(R") with || f||1@n) < cnas |[ullBre@n by (1.56). Then,
arguing as before, for any ¢ € C*(R™;R") we get , since we have I,_gf = u
in L'(R") by (1.57). The proof is complete. O

3.4. Fractional variation of Radon measures. Let o € (0,1). Exploiting
Proposition and Corollary , it is not difficult to see that, if ¢ € C*(R™;R")
then div®y € Lip,(R"). Thus we can define the fractional gradient of any finite Radon
measure u € . (R") by setting

(D%, ) = —/ diviedu  for all ¢ € C2°(R™;R"),
R

see also [92, Section 6]. The following result shows that, in accordance with the
classical BV case, BV“ functions are exactly the densities of finite Radon measures
having fractional gradient equal to a finite n-vector valued Radon measure.

Proposition 1.37. Let o € (0,1). If p € M(R") is such that D*n € M(R";R"),
then u = f£" for some f € BV*(R").
Proof. Let (0:)e=0 C C2°(R™) be a family of standard mollifiers as in (1.25). Arguing

exactly as in the proof of Theorem|[1.15 o, *p € BV*(R")NC>®(R™) with D*(g.*u) =
0c * D% for all € > 0. By Theorem [1.33] we thus have

loe # pll g oo gy < Cnall e D prll 1 rigny < cna Dl (R™)

for all € > 0. Hence, recalling [47, Propositions 1.1.6 and 1.1.14], the family (0. * f)c0
is uniformly bounded in L(R") for any given ¢ € {1, #) Therefore there exist a
subsequence (g, * pt)reny and a function f € LI(R™) such that o., * ¢ — f in LI(R")
as k — +oo. However, g. * u — p in A4 (R™) as ¢ — 07, so we must have y = f.£",
which immediately implies that f € BV*(R"). O

4. The space BV"

4.1. Definition of BV’(R") and Structure Theorem. Somehow naturally ex-
tending the validity of Proposition to the case a = 0, for f € Lip,(R") and
¢ € Lip.(R™;R") we define

Vf=0Vf and divlp = Ldive.

It is immediate to check that the integration-by-part formula

(1.63) / fdivPypda = —/ o Vfde
R™ R"
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holds for all given f € Lip.(R") and ¢ € Lip.(R";R"). Hence, in analogy with Defini-
tion [1.9] we are led to the following definition.

Definition 1.38 (BV°(R") space). A function f € L'(R") belongs to the space
BVO(R") if

sup{/Rnfdivﬂgodx L € CXRYRY), ]| oo @nirny < 1} < +00.

The proof of the following result is very similar to the one of Theorem and we
omit it.
Theorem 1.39 (Structure Theorem for BV functions). Let f € L'(R"). Then,
f € BVO(R") if and only if there exists a finite vector-valued Radon measure D°f €
A (R";R™) such that

(1.64) / fdivlpdr = —/ - dDf
R7 R"
for all ¢ € C°(R™;R™). In addition, for any open set U C R™ it holds
(165) D7) =sup{ [ fanpdr: o € OFURY, lgllimuam < 1),

4.2. The identification BV°(R") = H!(R"). We now prove that the space
BVY(R") actually coincides with the Hardy space H'(R"). Precisely, we have the
following result.

Theorem 1.40 (The identification BV? = H'). We have BV(R™) = H*(R"™), in the
sense that f € BVY(R") if and only if f € H'(R"), with D°f = Rf ™ in .# (R";R").
Proof. We prove the two inclusions separately.

Proof of H*(R") C BV°(R"). Let f € H'(R") and assume f € Lip (R"). By (1.63)),
we immediately get that D°f = Rf .#™ in .4 (R™;R") with Rf = V°f in L'(R™; R"),
so that f € BVY(R™). Now let f € H'(R™). By |97, Chapter III, Section 5.2(b)], we

can find (fi)reny C H'(R")NC(R™) such that f, — fin H'(R") as k — +oco. Hence,
given p € C°(R™;R"), we have

/Rnfkdivogodx: —/Rngo-Rfkdx

for all £ € N. Passing to the limit as k — 400, we get
fdivlpde = —/ ¢-Rf dx
]R'IL Rn

so that f € BVO(R") with D°f = Rf £™ in .# (R"; R") according to (1.65).

Proof of BVY(R™") C H'(R"). Let f € BV°(R"). Since f € L*(R"), Rf is well-
defined as a (vector-valued) distribution, see [97, Chapter III, Section 4.3]. Thanks
to (1.64), we also have that (Rf,¢) = (D°f, ) for all p € C*(R";R"), so that
Rf = D°f in the sense of distributions. Now let (0.).»0 C C°(R™) be a family of
standard mollifiers (see e.g. [22, Section 3.2]). We can thus estimate

IRf * 0cl| L2 @@nirny = [ D°f * 0cl| 1 rns ey < |D°f|(R™)

for all € > 0, so that f € H'(R") by Proposition 3 in [97, Chapter III, Section 4.3],
with D'f = Rf.%"™ in .4 (R";R"). O
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4.3. Relation between W*!(R") and H'(R"). Thanks to the identification es-
tablished in Theorem [1.40] we can prove the following result.

Proposition 1.41. Let a € (0,1]. The following hold.
(i) If f € H'(R™), then u = I,f € BV®%w= (R") with D*u = D°f in .4 (R";R").
(ii) If a € (0,1) and u € W*L(R™), then f = (—A)*?u € H(R") with
| fller@n) < pin—altlwer@ny and Rf =V a.e. in R".

Proof. We prove the two statements separately.

Proof of (i). Let f € H'(R"). By Stein-Weiss inequality (see [88, Theorem 2| for
instance), we know that u = I,f € Lo« (R"). To prove that |D%|(R") < +o0, we
exploit Theorem and argue similarly as in the proof of Lemma [1.31] Indeed, for
all ¢ € C°(R™;R"™), we can write

fdivlpde :/ f I divipdz :/ udiv®p dx
R R” Rn
by Fubini’s Theorem, since f € L'(R") and I,,|div®p| € L>®(R"), being
L|diveg| = I, _odive] < IoI1_o|divep| = L|divg| € L=(R")

thanks to the semigroup property (N.58) of the Riesz potential. This proves that
D%y = D°f in .4 (R™;R"™).
Proof of (ii). Let w € W' (R"). Then f = (—A)*/?y satisfies

[ o),

» Ty — [ dr < fin,—o [U]we @)

Iy = o [

To prove that f € H'(R"), we exploit Theorem again. For all ¢ € C*(R™;R"),
we can write

n

/ udiv®p dz :/ u(—A)2divlp de :/ fdivPpdx
n n Rn
by Fubini’s Theorem, since v € L'(R") and div’¢ € Lip,(R™;R"), proving that f =

(—=A)*2?y € HYR") with D°f = D% in .#(R";R"). Since D = Vou.Z" by
Theorem and D°f = Rf £™ by Theorem the conclusion follows. U

5. The space S*P

5.1. Definition of S*?(R"). We are now tempted to approach fractional Sobolev
spaces from a distributional point of view. Recalling Corollary [1.3} we can give the
following definition.

Definition 1.42 (Weak a-gradient). Let a € (0,1), p € [1,400], f € LP(R"). We say
that g € Ll (R"; R") is a weak a-gradient of f, and we write g = Vf, if

loc
/ fdiv“npd:z::—/ g-pdx
Rn R"

for all ¢ € C°(R™;R").
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For a € (0,1) and p € [1,+0o0], we can thus introduce the distributional fractional
Sobolev space (S*P(R™), || - ||sermn)) letting

(1.66) S¥P(R™) ={f e LP(R") : AV*f € LP(R";R")}
and
(1.67) [ fllsar@ny = | fllee@n) + [V fllr@agny, — Vf € SUP(R").

5.2. Lower semicontinuity of S“?-energy. Similarly to the BV “-case, the S“*-
energy is lower semicontinuous with respect to LP-convergence. The proof of the fol-
lowing result is very similar to the one of Proposition and is left to the reader.

Proposition 1.43. Let a € (0,1) and p € [1,+00). If (fx)ren C S¥P(R™) is such that
Lim inf [V fi || Lo ggn; ey < 400

and fr — f in LP(R™) as k — +o0, then f € S*P(R™) with

(1.68) IV Fllrizmy < Yminf [V fif| 1o ey

for any open set U C R™.
We omit the standard proof of the following result.
Proposition 1.44 (S*? is a Banach space). Let o € (0,1) and p € [1,400]. The space
(S*P(R™), || - [|ser(rny) @5 a Banach space.
We leave the proof of the following interpolation result to the reader.
Lemma 1.45 (Interpolation). Let o € (0,1) and py,ps € [1, +00|, with py < pa. Then

SePL(R™) () SP2 (R™) € S%9(R")

with continuous embedding for all q € [py, pa].

5.3. Approximation by smooth functions. Taking advantage of the techniques
developed in the study of the space BV *(R™) above, we are able to prove the following
approximation result.

Theorem 1.46 (Approximation by C*° N S*P functions). Let a € (0,1) and p €
[1,400). The set C*(R™) N S*P(R") is dense in S*P(R™).

Proof. Let (9.)e>0 C C2°(R™) be as in (1.25). Fix f € S*P(R™) and consider f. = f*o.
for all e > 0. By Lemma [1.13] it is easy to check that f. € C*°(R™) N S*P(R") with
Vef. = 0.« V*f for all € > 0, so that the conclusion follows by standard properties of
the convolution. 0

5.4. Approximation by test functions. Given o € (0,1) and p € [1,4+o0], it is
easy to see that, if f € C2°(R"), then, by Lemmal|[l.5, f € S“P(R") with V*f given as
in (1.2).

In the case p = 1, we can prove that C>°(R") is a dense subset of S*!(R") by
arguing similarly as in the proof of Theorem [1.16]

Theorem 1.47 (Approximation by C° functions in S*!). Let a@ € (0,1). The set
C>(R") is dense in S (R").
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Proof. Let (ng)r=0 C C°(R™) be as in (1.30). Thanks to Theorem 1.46] it is enough to

29

prove that fng — f in S (R") as R — +oo for all f € C*(R") N S*!(R"). Clearly,

fnr — fin L}(R") as R — +o00. We now argue as in the proof of Theorem [1.16, Fix

¢ € C>(R™;R™). Then, by Lemmall.7, we get

/Rn fordiviede = /R fdiv (nre) do — /R fe-Vinrdr - /R f AV, (g, @) da.

Since f € S“!(R"), we have

/Rnfdiv (nryp) dz / nry - V[ dx.
Since fnr € CX(R™), we also have

| mdivipde == [ o) do
Thus we can write

LV =V ) - pde = [ (1=np)e-V*fda

- /R feo-Vonpdr - /]R S AV, (g, @) de.

Moreover, we have

/ fo-Vinrdx

and, similarly,

|77R(y) - UR($)|
R Jy — e

< il Lo R"R"/ |f(z)] dy dx

| |77R(y) - UR(x)’
R |y — |t

< 2nallpllm oz [ 1£()

Comblnlng these two estimates, we get that

(V2 =V nf) - o da| < Nl [ (0= )97 do

(MR @) d dy dzx.

| nr(y) — nr(2)| dy de.

+3 n,o [e'e) n. n/
fin,all @l Lo e ® |f(2) Rn |y — a|rre

We thus conclude that
192 = V2 (nf)lgs ooy < [ (1 =) V7| d

+3:un7a/Rn |f($)| ‘nR(y) ( >|d dr.

R ‘y l.‘nJra
Therefore V®(nrf) — Ve f in L}(R™";R") as R — +o00. Indeed, we have

lim (1—ng)|Vfldxe =0

R—4o00 JR
combining (1.30) with Lebesgue’s Dominated Convergence Theorem and
lim z)] / ‘”R @] gy de = 0
R—+o00 |n+a

combining (1.6)), (1.7) and ) with Lebesgue s Dominated Convergence Theorem.

O
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To prove that C2°(R™) is also a dense subset of S*P(R") for p € (1, +00), we need

to adopt a different strategy. We consider the space

557 (B) = O o

naturally endowed with the S*?-norm. The space Sy (R™), ||| se»®n)) Was introduced
in [89] (with a different, but equivalent, norm). Thanks to [89, Theorem 1.7], for all
a € (0,1) and p € (1,400) we have Sg’(R") = L*P(R"™), where L*P(R") is the
Bessel potential space recalled in (N.60]). It is known that L**t=P(R") C W*P(R™) C
Lo—=P(R™) with continuous embeddings for all « € (0,1), p € (1,400) and 0 < € <
min{a, 1 — a}, see [89, Theorem 2.2]. In the particular case p = 2, it holds that
LY2(R™) = W*2(R") for all « € (0,1), see [89, Theorem 2.2]. In addition, W*P(R") C
L*P(R™) with continuous embedding for all « € (0,1) and p € (1, 2], see [96, Chapter V,
Section 5.3].

With this notation, the density of the set C2°(R") in S“P(R") is obviously equivalent
to the density of the set Sy*(R"), ie., of the set L*P(R"), in S*(R"). We thus
take advantage of some of the properties of the Bessel potential and of the fractional
Laplacian. We begin with the following integration-by-part formula.

Lemma 1.48. Let p,q € (1,+00) be such that ;1) —i—% =1. If f € LP(R") and ¢ €
Li(R™ R™), then

. 0 _ o0
(1.69) /Rnfdlv pdr = /Rngp VUfdz.

Proof. Integrating by parts and applying Fubini’s Theorem, formula (1.69) is easily
proved for all f € C°(R") and ¢ € C*(R™;R"). Since the real-valued bilinear func-
tionals

(fo) = [ fa'ode,  (fp) = [ o-VOfdr,

are both continuous on LP(R"™) x L4(R™; R™) by Hoélder’s inequality and the LP-conti-
nuity of Riesz transform, the conclusion follows by a simple approximation argument.
O

Adopting the notation introduced in [92, Equation (1.9)], for a € (0,1) and f €

C(R™), we let
« f y+l‘ - f Yy
D f(37):/n| ( |y|’3+a W
for all x € R™. In the following result we prove that the operator D naturally extends

to a continuous operator from W1P(R") to LP(R), see also [60, Lemma p. 114].

Lemma 1.49. Let o € (0,1) and p € [1,+00]. The operator D*: WHP(R™) — LP(R)
is well defined and satisfies

dy

o 2nwyVp o o o
(1.70) 1D iy < e o 19
for all f € WhHP(R™).

Proof. Let f € C2°(R") and r > 0. We can estimate

o [fly+ ) — f(2)] [fly+ ) — f(2)]
D f(x) < Vn’a</|y|<r |y [t dy + |y[+e dy>

[y|>r
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for all z € R™. By Minkowski’s integral inequality, on the one hand we have

H/) fu )= fOL, | o W) = fOlse
wl<r  fy|nte Loy i< [yl e
d
(1.71) < ||vf||Lp(Rn;Rn) |y|’”‘+y“1
1—
nwy "
= 17 IV £l e e rn)
while, on the other hand, we have
|/ fly+-)—f() dy < 1f (@ + )lle@ny + [ fll o @n) dy
e fy[rte Loy i< [yl e
dy
:2 f Lp(Rn /
H H P(R™) ly[>r |y‘n+a
2nw,r— ¢
= 2 |l

Hence

N Tl—a roo
rmfmm@s%w%4yﬂﬂvmmwwr+aHmmwQ

for all » > 0. Thus (1.70) follows by choosing r = ”v”ffHHLL% for all f € C*(R™).

Since C°(R") is a dense subset of W1P(R"), we can extend D*: C°(R") — LP(R)
to a linear bounded operator D*: W'?(R") — LP(R) (for which we retain the same
notation) still satisfying (1.70). The proof is complete. O

In the following result, we recall the following self-adjointness property the frac-
tional Laplacian. For the reader’s convenience, we give a brief proof of it below.

Lemma 1.50. Let a € (0,1) and p,q € [1,+00] such that  + ¢ =1. If f € W'P(R")
and g € WH(R"), then

(1.72) [ F(=8)tgda = /Rng(—A)%fdx.

Proof. Formula (1.72)) is well known for f, g € S(R") and can be proved by exploiting
Functional Calculus or by directly using the definition of (—=A)2 for instance. Since
the real-valued functional

fgr—>/ gdac

is bilinear and continuous on LP(R") x W14(R"; R") by Holder’s inequality and thanks
to Lemma above, the conclusion follows by a simple approximation argument. [J

We are now finally ready to prove that C'°(R") is a dense subset of S*?(R™) for
p € (1,+00).
Theorem 1.51 (Approximation by C2° functions in S*? for p > 1). Let a € (0,1)
and p € (1,+00). The set C*(R™) is dense in S*P(R™).
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Proof. We divide the proof in two steps.

Step 1. Let f € S®P(R") and assume f € W'P(R") N Lip,(R™). Given ¢ €
C>®(R™ R"), we can write div¥y = (—A)2div’p with div’p € Lip,(R") N W4(R"), so
that

/ f(=A)2divlpdr = / (=A)3 fdivpda
n R

for all p € C2°(R™;R™) by Lemma Since (—A)3 f € LP(R") by Lemma [1.49, by
Lemma we have

/ (=A)?2 fdivlpdr = —/ @V (=A)2 fda
n R

for all p € C(R™R"). We thus get that Vof = VO(=A)2 f for all f € S*P(R")N
WhP(R™) N Lip,(R™), so that

arll(=A)% fllor@ny < [flser@ < call(=A)% fllo@n)

for all f € S*P(R™)NW P (R™)NLip,(R"), where ¢y, ¢y > 0 are two constants depending
only on p > 1. Thus, recalling the equivalent definition of the space L*P(R") given

in (N.62), we conclude that
SeP(R™) N WHP(R™) N Lip,(R™) € L*?(R™)
with continuous embedding.

Step 2. Now fix f € S*P(R") and let (g:)e>0 C C°(R™) be a family of standard
mollifiers as in (1.25). Setting f. = f * g. for all £ > 0, arguing as in the proof of
Theorem we have that f. — f in S*P(R™) as ¢ — 07. By Young’s inequality,
we have that f. € S*?(R") N W'P(R") N Lip,(R") for all ¢ > 0. Thus S*?(R") N

WhP(R™) N Lip,(R™) is a dense subset of S*?(R™). Hence, by Step 1, we get that also
So P (R™) is a dense subset of S“P(R™) and the conclusion follows. O

As an immediate consequence of Theorem [1.51] we obtain the following result.
Corollary 1.52 (The identification S*? = L*P?). Let a € (0,1) and p € (1,+00). We
have S*P(R™) = L“P(R").

Thanks to the identification given by Corollary [1.52] we can prove the following
result.

Proposition 1.53 (Approximation by Sy functions in S*? for p > 1). Let a € (0, 1)
and p € (1,400). The set So(R™) is dense in S*P(R™).

Proof. By Corollary 1.52) we equivalently need to prove that the set Sy(R™) is dense
in L*P(R"™). To this aim, let us consider the functional M: (S(R"),| - ||zrrr)) — R
defined as

M(f)= [ f@)de, feS®).
Clearly, the linear functional M cannot be continuous on (S(R"), || - ||zr@®n~)) and thus

its kernel Sp(R™) must be dense S(R™) with respect to the LP-norm. Since the Bessel
potential

N]1)

(Id = A)72: (SR™), || - lser@ny) = (SR, || - || o @m))

is an isomorphism, the conclusion follows. 0
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The following result gives an LP-estimate on translations of functions in S*?(R").
Thanks to Corollary this result can be derived from the analogous result already
known for functions in L*?(R"™). However, the estimate in provides an explicit
constant (independent of p) that may be of some interest. The proof of Proposition m
below can be easily done by following the one of Proposition and we leave it to
the reader.

Proposition 1.54. Let o € (0,1) and p € [1,400). If f € S*P(R"), then
(1.73) IFC+y) = FOllze@n) < Analyl* IV flle@eirry

for all y € R", where v, > 0 is as in (1.43).
As a simple consequence of Proposition [1.54] we have the following result, which

is connected to the problem of finding a measurable set £ C R™ such that yg €
BV (R") \ W*H(R"™), see Chapter 2|
Corollary 1.55. Let o, 3 € (0,1) and p,q € [1,+00). If xg € S#4(R") with Bq > ap,
then xg € W*P(R™) with
1_o =
[XE]W"*P(R") < Ca,gpgn|E[7 P ||VﬁXE||£q(Rn;Rn)

for some constant c, n > 0 depending only on o, B, p, q, and n.
B:p.4,

Proof. Let r > 0 and write

P
[XE W!XP Rn /n /n |XE x+y XE(I)l df]: dy

|y[+ep
_/ / IXe(® +y) — xe(@)] dr dy
{lyl<r} JRn |y["+er
/ / IXe( +y) — xp(2)] dz dy.
{lyl>r} Jrn ly[rror
On the one hand, we have
1 / dy r—P
IXe(z+y) = xp()|dedy < 2|E] = 2nwy|E| —.
/{|y|>r} |y[rter Jre {lyl=r} [y["Fer ap
On the other hand, by Proposition [1.54] we can estimate
=
IXE(z +y) — xp(2)| dvdy
/{|y<r} |y[rter Jre
=
= Xe(®+y) — xe(x)|'drdy
{lyl<r} [y["er Jrn xele +9) @)
dy
— - — ML, o
(lyl<r} ||XE( y) XE< )HLq(R ) |y|n+ap

dy
q B q
< Tn,B HV XEHLG(R”;R") /{| <1} |y|n+ap_5q

rPa—ap
= %5 ||V XEHLq(Rn R™) qu

The conclusion thus follows by choosing r = |E|*/51/||V# XE|| L9(R™; Rn)- O



34 1. A DISTRIBUTIONAL APPROACH TO FRACTIONAL VARIATION

5.5. Relation between W*? and S%P. We can thus collect the relation between
WeP(R™) and S*P(R") in the following result.

Proposition 1.56 (Relation between WP and S“?). The following properties hold.
(i) If o € (0,1) and p € [1,2], then W*P(R"™) C S*P(R™) with continuous embed-
ding.
(i) If 0 < a < B < 1 and p € (2, +0oc], then WPP(R™) C S*P(R™) with continuous
embedding.

Proof. Property (i) follows from the discussion above for the case p € (1,2] and from
Theorem for the case p = 1. Property follows from the discussion above for
the case p € (2,400), while for the case p = +00 it is enough to observe that

fly) — f(z
IV fll Lo (mnirny < fin,a SUD % d
zeR” JR™ |y - l’|

dy
§2,un,a f L>°(R"™ / I
S S

S Cn7o¢7ﬁ||f||wﬁ,oo(Rn)
for all f € WH>(R"). O

dy

_'_,Un,a f By00(R™ I}
Flwse@n f ) |y[rto—f

5.6. The inclusion S*!(R") C BV*(R"). As in the classical case, we have
Sel(R") € BV*(R™) with continuous embedding.
Theorem 1.57 (S*'(R") C BVY(R")). Let a € (0,1). If f € BV*(R"), then f €
Sl (R™) if and only if |D*f| < L™, in which case
DYf =Vef L in #(R";R").

Proof. Let f € BV*(R") and assume that |D*f| < £". Then D*f = g " for some
g € L'(R™;R"). But then, by Theorem we must have

fdivipdr = —/ g-pdx
R" R"

for all p € C°(R™;R"), so that f € S*!(R") with V*f = g. Viceversa, if f € S*!(R")
then

/ fdivo‘gpdx:—/ ¢-Vfdx
Rn R"L
for all p € C°(R™;R"), so that f € BV*(R™) with D*f = V*f Z" in .# (R";R"). O

5.7. The inclusion S*!(R") C BV%(R") is strict. As a simple consequence of
Lemma [1.31, we can prove that the inclusion S®!(R") C BV(R") is strict for all
a€ (0,1) and n > 1.

Theorem 1.58 (BV*(R") \ S*Y(R") # @). Let a € (0,1). The inclusion S**(R") C
BV*(R™) is strict.

Proof. Let u € BV(R") \ W' (R"). By Lemma we know that f = (—=A)z%u €
BV*(R"™) with Du = D®f in . (R"; R™). But then | D f] is not absolutely continuous
with respect to ™, so that f ¢ S“!(R") by Theorem [1.57 O
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5.8. The inclusion W*!(R") C S*!(R") is strict. By Theorem [1.58, we know
that the inclusion W*(R™) € BV*(R") is strict. In the following result we prove that
also the inclusion W*!(R") C S*!(R") is strict.

Theorem 1.59 (S*!'(R")\ W*!(R") # @). Let a € (0,1). The inclusion W*(R") C
Sl (R™) is strict.

Proof. We argue by contradiction. If W*!(R™) = S*!(R"), then the inclusion map
Wel(R") — S*YR™) is a linear and continuous bijection. Thus, by the Inverse
Mapping Theorem, there must exist a constant C' > 0 such that

for all g € S“'(R"). Now let f € BV*(R")\ S*!(R") be given by Theorem [1.58|
By Theorem there exists (fx)reny C C°(R™) such that f;, — f in L'(R") and
|D* fi,|(R") — |D*f|(R") as k — +oo. Up to extract a subsequence (which we do

not relabel for simplicity), we can assume that fy(x) — f(z) as k — 400 for £"-a.e.
x € R™. By (1.74) and Fatou’s Lemma, we have that

< C ll?figof kaHSa,l(Rn)
=C lm || fillpven
= C||flsvegn < +oo.

Therefore f € W*!(R™), in contradiction with Theorem We thus must have that
the inclusion map W*!(R") < S*!(R"™) cannot be surjective. O

5.9. The inclusion BV*(R") C Bf (R") is strict for all n > 2. From Propo-
sition , one immediately deduces that the inclusion BV*(R") C Bf_(R") holds
continuously for all a € (0,1), where By (R") is the Besov space, see [55, Chapter 14].
In the following result, we show that this inclusion is actually strict whenever n > 2.
Theorem 1.60 (BY (R")\ BV*(R") # @ for n > 2). Let a € (0,1) andn > 2. The
inclusion BV*(R") C BY (R") is strict.

Proof. By Theorem , we just need to prove that Bf (R") \ Lma(R") # @. Let
m € C2(R™) be as in (1.30) and let f(z) = mi(z)]x]* ™ for all z € R™. On the one
side, we clearly have f ¢ L»—«(R™). On the other side, for all h € R” with |h| < 1, we
can estimate

[ ) = f@)de < (@ + B)le + B = (@)]e]* "] de
R {2|>2/h]}
+/ m(x)|z|* ™" dx
{la|<3Ihl} 1(@)le]
< Clh| |z|*" e+ C |z[*" dx
{z|>2[h[} {|2|<3/hl}

+oo 3|h|
— C|H| / o2 g+ 0/ oL dr = C|h|°,
2h| 0
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where C' > 0 is a constant depending only on n and « (that may vary from line to
line). Thus f € Bf  (R") and the conclusion follows. O



CHAPTER 2

A distributional approach to fractional Caccioppoli perimeter

1. Fractional Caccioppoli sets

1.1. Definition of fractional Caccioppoli sets and the Gauss—Green for-
mula. As in the classical case (see |6, Definition 3.3.5] for instance), we start with the
following definition.

Definition 2.1 (Fractional Caccioppoli set). Let o € (0,1) and let £ C R" be a
measurable set. For any open set 2 C R", the fractional Caccioppoli a-perimeter in €)
is the fractional variation of yg in €, i.e.

|D*xE|(Q) = sup{/E divipdr : o € CP(QR™), [l re@rny < 1}.

We say that E is a set with finite fractional Caccioppoli c-perimeter in Q if |[D*xg|(2) <
+00. We say that F is a set with locally finite fractional Caccioppoli a-perimeter in €)
if |[D*xg|(U) < +oo for any U € (.

We can now state the following fundamental result relating non-local distributional
gradients of characteristic functions of fractional Caccioppoli sets and vector valued
Radon measures.

Theorem 2.2 (Gauss—Green formula for fractional Caccioppoli sets). Let o € (0,1)
and let Q@ C R™ be an open set. A measurable set E C R™ is a set with finite fractional
Caccioppoli a-perimeter in Q if and only if D*xg € #(2;R™) and

(2.1) / divtepdr = —/ v -dD%xE
E Q
for all ¢ € C(Q;R™). In addition, for any open set U C Q it holds
(2.2) |D*xe|(U) = SUP{/E divip dz : ¢ € CF(UsR"), [lol e wimn) < 1}‘

Proof. The proof is similar to the one of Theorem 1.10| If D*xp € #(Q; R") and (2.1)
holds, then E has finite fractional Caccioppoli a-perimeter in © by Definition [2.1]
If F is a set with finite fractional Caccioppoli a-perimeter in €2, then define the
linear functional L: C°(Q; R™) — R setting
L(p) = —/ divipdr Vo € C(RY).
E

Note that L is well defined thanks to Corollary [I.3] Since E has finite fractional
Caccioppoli a-perimeter in €2, we have

C(U) = sup{L() : p € C(U;R™), [l < 1} < +00
for each open set U C €2, so that
[L(e)| < CO)[ellewmny Vo € CZ(U;RT).
37
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Thus, by the density of C°(Q;R") in C,(€2;R"), the functional L can be uniquely
extended to a continuous linear functional L: C.(€2; R™) — R and the conclusion follows
by Riesz’s Representation Theorem. ([l

1.2. Lower semicontinuity of fractional variation. As in the classical case,
the variation measure of a set with finite fractional Caccioppoli a-perimeter is lower
semicontinuous with respect to the local convergence in measure. We also achieve a
weak convergence result.

Proposition 2.3 (Lower semicontinuity of fractional variation measure). Let o € (0,1)

and let Q C R™ be an open set. If (Ex)ren s a sequence of sets with finite fractional
Caccioppoli a-perimeter in Q and xg, — xg in L. (R"), then

(2.3) D% g, — D% in M(;R"),
and
2.4 D7 I(9) < i inf [ D7, |(©),

Proof. Up to extract a further subsequence, we can assume that xg, (z) — xg(x) as
k — +oo for Z™-a.e. x € R". Now let ¢ € C°(€;R™) be such that ||¢||ferny < 1.
Then div®p € L'(R™) by Corollary and so, by Lebesgue’s Dominated Convergence
Theorem, we have

Ca o - T D% < Timi o .
Ajdlv o dx kginoo . div®y dz kkrlloo-égo dDx g, < 1]1I£+1£lof|D Xz, |(£2)
By Theorem we get (2.4). The convergence in (2.3)) easily follows. O

1.3. Fractional isoperimetric inequality. As a simple application of Theo-
rem [1.17, we can prove the following fractional isoperimetric inequality.

Theorem 2.4 (Fractional isoperimetric inequality). Let « € (0,1) and n > 2. There
exists a constant ¢, o > 0 such that

(2.5) |E|% < ¢nal D*xE|(R™)
for any set E C R™ such that |E| < 400 and |D*xg|(R") < 400.
Proof. Since xgp € BV*(R™), the result follows directly by Theorem m ([l

1.4. Compactness. As an application of Theorem [1.25] we can prove the follow-
ing compactness result for sets with finite fractional Caccioppoli a-perimeter in R™ (see
for instance [58, Theorem 12.26] for the analogous result in the classical case).

Theorem 2.5 (Compactness for sets with finite fractional Caccioppoli a-perimeter).
Let o € (0,1) and R > 0. If (Ex)ken is a sequence of sets with finite fractional
Caccioppoli a-perimeter in R™ such that

sup | DX g, |(R") < +00 and E, C B VkeN,
keN
then there exist a subsequence (Ey;)jen and a set . C By with finite fractional Cac-
ctoppoli a-perimeter in R™ such that
XE,, = XE 1N L'(R")

as j — 400.
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Proof. Since Ej, C By for all k € N, we clearly have that (xg,)rerr C BV*(R"). By
Theorem there exist a subsequence (Ej,)jen and a function f € L'(R"™) such that
Xg,, — fin Li,.(R") as j — +o0. Since again Ej, C Bp for all j € N, we have that
XE, — [ in L*(R™) as j — +oo. Up to extract a further subsequence (which we do
not relabel for simplicity), we can assume that XE, () = f(x) for L™-a.e. z € R as

j — 400, so that f = yg for some E C Bg. By Proposition we conclude that F
has finite fractional Caccioppoli a-perimeter in R™. OJ

Theorem can be applied to prove the following compactness result for sets with
locally finite fractional Caccioppoli a-perimeter.

Corollary 2.6 (Compactness for locally finite fractional Caccioppoli a-perimeter sets).
Let a € (0,1). If (Ex)ren is a sequence of sets with locally finite fractional Caccioppoli
a-perimeter in R™ such that

(2.6) sup |D%xg,|(Br) < +00 VR >0,
keN

then there exist a subsequence (E,)jen and a set E with locally finite fractional Cac-
ctoppoli a-perimeter in R™ such that

XEkj — XE in Llloc(Rn)
as j — 400.

Proof. We divide the proof into two steps, essentially following the strategy presented
in the proof of [58, Corollary 12.27].

Step 1. Let ' C R™ be a set with locally finite fractional Caccioppoli a-perimeter
in R”. We claim that

(2.7) | DX prse|(R) < [DXp|(Br) + 3pinaFa(Br) VR > 0.

Indeed, let R < R and let (ug)geny € C°(R™) be such that supp(uy) € Br and 0 <
up < 1 for all k € N and also u, — xp,, in W*'(R") as k — +o0. If p € C*(R";R"™)

/ uy divio dr = / div*(ugyp) do — / - Vuy dr — / divyy, (ug, ) dx
F F F P

< /Fdivo‘(ukgo) Az + 3fin o [Ur| o1 (&)
< DXF|(Brr) + 3pin o[ur]wer @)
< D r|(Br) + 3ptnaluk]we @
by Lemma [1.7, Passing to the limit as k¥ — +o00, we conclude that

/ divep de < |Dr|(Br) + 34inaPa(Br)
FﬂBR/

and thus
|D*X By [(R") < |D*Xp|(Br) + 3fin,aPa(Br)

by Theorem . Since Xpng, — XrrBg in L'(R") as R' — R, the claim in (2.7)
follows by Proposition
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Step 2. By (2.6) and (2.7), we can apply Theorem to (Ex N Bj)ken for each
fixed j € N. By a standard diagonal argument, we find a subsequence (Ej, )pen and

a sequence (F});ey of sets with finite fractional Caccioppoli a-perimeter such that
XEy,nB; — XF; in LY(R") as h — +oo for each 5 € N. Up to null sets, we have
F; C Fji, so that xg, — xg in Li,.(R") with E = Ujey Fj. The conclusion thus
follows by Proposition O

1.5. Fractional reduced boundary. Thanks to the scaling property of the frac-
tional divergence, we have

(28) DaX)\E = )\nia(é)\)#DaXE on )\Q,

where ) (z) = Az for all x € R" and A > 0. Indeed, we can compute

divep dz = A* / (div®y) o 8y dor = A" / dive (g o 8y) do

AE E E

for all ¢ € C°(2;R™). In analogy with the classical case, we are thus led to the
following definition.

Definition 2.7 (Fractional reduced boundary). Let o € (0,1) and let @ C R™ be an
open set. If £ C R"™ is a set with finite fractional Caccioppoli a-perimeter in €2, then
we say that a point x € €2 belongs to the fractional reduced boundary of E (inside 2),
and we write z € Z*F, if

DY g(B,
x € supp(D%xE) and Jlim X (B () e s L

r=0 | Doxp|(B,(x))
We thus let

B . DQXE(BT($))
. g« n—1 - =
Ves QN FUE = 8 i) =l s B @)

be the (measure theoretic) inner unit fractional normal to E (inside ).

r€EQNFE,

As a consequence of Definition and arguing similarly as in the proof of Propo-
sition if £ C R" is a set with finite fractional Caccioppoli a-perimeter in €2, then
the following Gauss—Green formula

2.9 /d'o‘d:—/ v d| D%,
(2.9) divipds e P Ve 1D XE]
holds for any ¢ € Lip.(€; R").

1.6. Sets of finite fractional perimeter are fractional Caccioppoli sets.
In analogy with the classical case and with the inclusion W*!(R") ¢ BV*(R"), we
can show that sets with finite fractional a-perimeter have finite fractional Caccioppoli
a-perimeter. Recall that the fractional a-perimeter of a set E C R in an open set
Q2 C R" is defined as

Pu(B:Q) = | xe(o) - da:dy—i—Q// ‘XE XeW g, 4y,
alo |z — y‘n+a B\Q y’nJra

see [27] for an account on this subject.
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Proposition 2.8 (Sets of finite fractional perimeter are fractional Caccioppoli sets).
Let a € (0,1) and let Q@ C R™ be an open set. If E C R" satisfies P,(E;Q) < 400,
then E is a set with finite fractional Caccioppoli a-perimeter in € with

(2.10) [DXE|() < pinaPo(E;8)

and

(2.11) / div¥p dr = —/ ¢-Vi%gpdr
E Q

for all ¢ € Lip,(2;R"™), so that D*xg = v |D*g| = Vg ZL". Moreover, if E is
such that |E| < +o00 and P(E) < 400, then xp € W*Y(R") for any « € (0,1), and

Hn,a VE(y)
n+a—1J/r |y —xrte-!

(2.12) Ve(z) = d|Dxg|(y)

for £L"-a.e. x € R™.
Proof. Note that Vxg € L'(Q; R"), because

/‘VXE’d$<Mna//n‘XE 2@l g, g

’y_x’nJra
gum/ xe(y) ()dydxwm// Xe() = xe@)l o
“Jato Ty =l P

S ,un,apa(E; Q)

Now let ¢ € Lip.(2;R™) be fixed. By Lebesgue’s Dominated Convergence Theorem,
by (1.4) and by Fubini’s Theorem (applied for each fixed € > 0), we can compute

. (y—2)-o(y)
divep da = i o lim // dyd
/E Wopdr = sl—>0 {lz—y|>e} |y—m|"+°Hrl yazr

(y— z) xp(z)
i [ b= Dxe()
50 {|z— y|>s} |y _ x|n+a+1
im / / =) (xely) - >1<E(1’)) i dy
¥ 250 {|z— y|>€} |y — x|n+a+
= —/ - Vixpdy.
o)
Thus (2.10) and (2.11)) follow by Theorem 2.2]and Definition 2.7} Finally, (2.12) follows
from (1.48), since xp € BV (R"). O

At the present moment, we do not know if the condition |[D%yg|(2) < 400 implies
that also P,(FE;Q) < 4o0.

Remark 2.9 (Z*F is not £ -negligible in general). It is important to notice that,
by Proposition 2.8, we have
P (E;Q) < +o0o = ZL"(QNF°E) >0

including even the case yg € BV(R"). This shows a substantial difference between
the standard local De Giorgi’s perimeter measure |Dxg| and the non-local fractional
De Giorgi’s perimeter measure |D“xg|: the former is supported on a .£"-negligible set
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contained in the topological boundary of E, while the latter, in general, can be sup-
ported on a set of positive Lebesgue measure and, for this reason, cannot be expected
to be contained in the topological boundary of E.

Remark 2.10 (Fractional reduced boundary and precise representative). We let

ol
111
w (z) = {0 B (@) B, @)

u(y) dy if the limit exists and is finite,

0 otherwise,

be the precise representative of a function u € LL_(R™;R™). Note that u* is well

defined at any Lebesgue point of u. By Proposition 2.8, if P,(E;€) < +oo then
D g = Vo pZL" with V¥g € L*(€;R"). Therefore the set

ROE = {x € Q:[(Vixp)"(2)] = [Vxzl () # 0}

is such that

(2.13) RGE COQNFYE
and
(VxE)* ()
vi(z) = —54 2 for all z € RSE.
E( ) |VO£XE‘*($) Q

The following simple example shows that the inclusion in (2.13) and the inequality

in (2.10) can be strict.

Example 2.11. Let n =1, « € (0,1) and a,b € R, with a < b. It is easy to see that
X(ab) € WeL(R). By (2.12), for any x # a,b we have that
H1,a 1
V(o) = 2 d(d,— 0
X( 717)(1;) a Jr |ZL’ _ y|a ( b) (Z/)

oo F(1+§)< 1 1 )

TavE T (5e) \p—al fr-of

We claim that

(2.14) ﬁa(a,b):R\{a;b}
while
(2.15) R%(a,b) =R\ {aa;—bb}

so that inclusion (2.13) is strict. Finally, we also claim that

(2.16) 19Xl ) < praPal(a,1)).
Indeed, notice that
VX (ap)(x) >0
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if and only if x < “TH’, so that

xT+r ‘ - b
ViXew@)dy |1 o<,
lim 2357 _
r— o
/:H VX (a) (¥)] dy 1 itae a;—b.
If z = aT’Lb, then
g

V%@y(y)dy =0 Vr >0,

atb
B) T

and claim (2.14) follows. In particular, we have

b
1 if < 200
o 2
V(ab) (z) = 0t b
-1 if =z > )
On the other hand, it is clear that
. 1 a+r o
lim o | VX (y) dy = +o0
and
) 1 b+r o
limo- | VXey(y)dy = —o0
so that claim (2.15) follows. To prove (2.16)), note that
4
2.17 P.,((a,b)) = ———(b—a)'™™
217 ((@.) a<1_a>< 0

since P,((a,b)) = (b—a)'=*P,((0, 1)) by the scaling property of the fractional perimeter
and

1
P,((0.1 :2/ / . dyd
(0. ) o Jo Jy—afite Y

2 v=t
_2 lsmwl "
R\ (0,1)

ly — |
B E sgn(z — 1) sgn(x) p
Caltnon |1zl ||
2 [ 1 1 2 [0 1 1
= — —— — —dr+ — — d
/ x—l xa S —oo (—x)* (1 —2) v
4
7/ dr = ———.
(1+ x) all —a)

On the other hand, we have

1
2 +aﬂ1,a

DA

(2.18) IV X (a2 @)
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Indeed, VX (@pllri@ = (b —a)' "V x@n /i) by (2.8) and
1 1

«
—||ve :/ - d
VN0l o =]
1
_ — d
/ 91:—1) (1_95)& !
+/ :
(1—xz)°
1 1 1 1
— ~——d ——d
| o, <1—w)°‘ v
31 1 1
= _ d / — d
o (1_3;-) T+ C“ (1—33') v
1 1
—2/ dx+2 R
1+x) e (1—az)~
21+o¢
— 1429t ypot ) = .
1—a< + + ) 11—«

Combining (2.17) and (2.18), we get (2.16].

Thanks to Example above, we know that inequality (2.10) is strict for £ =
(a,b) with a,b € R, a < b, and Q = R". As we did in Section we now want to
address this problem in full generality.

Given an open set {2 C R” and a measurable set £ C R", we define

Pa(E;Q):/ |XE(y)_XE<m)|dxdy+/ IXE(y)—XE(x)IdIdy_
alo |y — e medaly — e

It is obvious to see that
Po(E;Q) < Pa(E; Q) < 2P, (E;9Q).
Arguing similarly as in the proof of Proposition [2.8] it is immediate to see that
(2.19) IVXE L) < fina Pa(E; Q)
an inequality stronger than that in (2.10). In analogy with Corollary[1.29] we have the

following result.
Corollary 2.12. Let o € (0,1), & C R™ be an open set and E C R"™ be a measurable
set such that P,(E;Q) < +oo.

(i) If n > 2, L"(E) >0 and L™(R™\ E) > 0, then inequality is strict.

(ii) If n =1, then is an equality if and only if the following hold:
(a) for a.e. z € QN E, L1 ((—o0,z)\ E) =0 vel L ((z,4+00)\ E) =0;
(b) for a.e. v € Q\ E, L ((—o00,2) N E) =0 vel L ((x,+0) N E) = 0.

Proof. We prove the two statements separately.
Proof of (i). Assume n > 2. Since Z"(E) > 0, for a given z € Q' \ E the map

y— (y—x), foryek,



1. FRACTIONAL CACCIOPPOLI SETS 45

does not have constant orientation. Similarly, since Z"(R™ \ E) > 0, for a given
x € QN E also the map

y—(y—=), foryeR"\E,
does not have constant orientation. Hence, by Lemma we must have

dy
< | —=— forzeQ\E,
/E|y—x|”+°‘ or x \

/ |y x|n+a+1

and, similarly,

y—x dy
S A </ —7__ forzeQNE.
/Rn\E |y — z[rtet y‘ r\g Jy — [t

We thus get

/n (xe(y) — xe(2)) - (y — ) i | i

Va ‘Rn) — na/
|| XE||L1(Q,R) Hon, 0 ’y_x’n+a+l

T y—x
= fn,a 7d dx + na/ / T ——dy|d
s /Q\E / ly — x|nte T e fong RO\E |y — x|t Yo
dyd dyd ~
<,una/ / v / / v _,unaPa(E;Q)a
e JE |y — xfnte ]”*a onp Jems |y — a|rte 7

proving (i .
Proof of (ii). Let

|y _ x|1+a

, for x,y € R, y # x.

Then we can write

P, (E;Q) = //|ny7 )| dy dx

- /Q (/_OO ‘fE(y,$)|dy+/$+oo |fE(y,x)]dy> dx

IVxEllL@r) = m,a/g‘/RfE(y,x) sgn(y — ) dy

—+00
= U1,a /
Q

/_OO fely.w)dy — | fu(y,2)dy
Hence (2.19)) is an equality if and only if

[ swaray— [ rwrdy| = [ st oldy+ [ ety ) dy

and

dx

dz.

(2.20)

for a.e. z € ). Observing that

[ rewaydy— [ ety dy‘ <[ _ssl.a) dy‘ + ’/;” fo(y.) dy‘

< [ it ldy+ [ 17l dy
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for a.e. x € Q, we deduce that (2.19) is an equality if and only if

eon) | [ setvaras— [ feloo)dy

-| [ stv a4

+o0o
[ sty

(2.22) = /;\fE(y,x)!der/zm fe(y, )| dy

for a.e. z € Q. Now, on the one hand, squaring both sides of (2.21) and simplifying,
we get that (2.19) is an equality if and only if

(2.9 ([ setvaran) ([ sotwran) =0

for a.e. z € . On the other hand, we can rewrite (2.22) as

0 < /_;IfE(yw)ldy— ’/_; fe(y, x) dy‘

400 400
| fswardy| = [ felya)ldy <0

for a.e. x € €2, so that we must have

| teardy| = [ \fel)ldy

and

+00 +oo
| fetydy| = [ Ifplyx)ldy

for a.e. x € Q. Hence (2.23) can be equivalently rewritten as

(220 ([ rstvaian) [ 1ntlan) o

for a.e. x € Q. Thus (2.19) is an equality if and only if at least one of the two integrals in
the left-hand side of (2.24) is zero, and the reader can check that readily follows. [J

Remark 2.13 (Half-lines in Corollary 2.12(ii)). In the case n = 1, it is worth to stress
that (2.19) is always an equality when the set E C R is (equivalent to) an half-line,

i.e.,

HVQX(CL,JrOO) HLl(Q;R) = ,ul,aﬁa((aa —|—OO), Q)
for any o € (0, 1), any a € R and any open set Q C R such that P,((a, +00); Q) < +oo.
However, the equality cases in (2.19)) are considerably richer. Indeed, on the one side,

VX (=5, —0)u(=1,400) | L1 ((0,1);R) = 1,0 Pa((—5, —=4) U (=1, 4+00); (0,1))

and, on the other side,

|‘VQX(—5,—4)U(O,+OO)“Ll((—l,l);R) < ,ul,aPa((_’Ba _4> U (07 +OO)> <_1> 1))

for any a € (0,1). We leave the simple computations to the interested reader.
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2. Existence of blow-ups for fractional Caccioppoli sets

In this section we prove existence of blow-ups for sets with locally finite fractional
Caccioppoli a-perimeter. We follow the approach presented in [36, Section 5.7].

2.1. Integration by parts on balls. We start with the following technical pre-
liminary result.

Lemma 2.14. Let a € (0,1). For all e,7 > 0 and x € R™ we define

1 if 0<|ly—x| <,

r+e—|y—«x
hs,r,az(y) - €|y |

0 if ly—a|>r+e.
Then V°h.,, € L'(R™;R™) with

,Una
2.25 V% e yoa(y) = ——"—— /
(2.25) relt) = it [

if r<ly—z|<r+e,

r—Zz

2 =y d
2)\B,(z) |T — 2|

for L"-a.e. y € R™.
Proof. Clearly h.,, € Lip,(R") and

ly—=x
Vh T = -1 z T .
eraly) = =2 =] (B @B )(Y)
Therefore by (1.48) we get
1 pna 1 zZ—x
Veh rx = - : z x d
g,r, (y> en + a — 1 R |Z - y|n+a_1 |Z _ x|XBT‘+6( )\Br( )(Z) VA
for £"-a.e. y € R". By Theorem , we get V*h.,., € L'(R™;R"). O

We now proceed with the following formula for integration by parts on balls, see [36,
Lemma 5.2] for the analogous result in the classical setting.

Theorem 2.15 (Integration by parts on balls). Let o € (0,1). If E C R" is a set with
locally finite fractional Caccioppoli a-perimeter in R™, then

(2.26)
dive dy —I—/ © - VXB,(z) dy +/ divyy, (XB.(2), ) dy = —/ w- dD%E
ENByr(x) E E B,(x)
for all p € Lip (R";R"), x € F*FE and for £*-a.e. r > 0.

Proof. Fixe,r > 0, z € #°E and ¢ € Lip,(R";R") and let A, be as in Lemmal2.14|
On the one hand, by (2.9) we have

(2.27) / div®(p heyq) dy = —/ (hers ) - dD%Xp.
E FoE

Since he,.(y) — Xm(y) as ¢ — 0 for any y € R™ and |D*xg|(0B,(x)) = 0 for

ZLl-a.e. r >0, we can compute

lim (herap) - dDp = / o dD%xE.
By ()

e—=0J)zaop - (z



48 2. A DISTRIBUTIONAL APPROACH TO FRACTIONAL CACCIOPPOLI PERIMETER

On the other hand, by Lemma [1.1]and Lemma we have
(2.28) div*(p he ) = hero divio + @ - VOhe o + diviy (Pera, @)-
We deal with each term of the right-hand side of (2.28)) separately. For the first term,
since 0 < heyp < XB,yy(x) for all € € (0,1) and h.,, — x5, in L'(R") as e — 0, by
Corollary and Lebesgue’s Dominated Convergence Theorem we can compute
(2.29) lim [ h.,,diviedy = / div®p dy.

E ENB;(z)

e—0

For the second term, by (2.25) we have

Mo xr—=z 1—n—
YV, d:—’/ / — oyt dz dy.
/Esp(y) rely) dy e(n+a—1) E('O(y) Byte(2)\By (@) |m—z||z vl =

By Fubini’s Theorem, we can compute

r—z

l-n—«
oy / z—y dz dy
/E (v) Byie(@)\Br(z) |2 — z|‘ |

r—=z / 1-n—a
= ) oely)lz—y dydz
/Br+s($)\3r($) |z —2] JE ) |

r+e T — 2z I 1
= — "rdydA" do.
L Lo [ o)==yl dydoen =) do

o — =]

By Lebesgue’s Differentiation Theorem, we have

i 1 ) /
1im — .
oz JgtVY Brie(2)\Br(z) |2 — 2|

1 r+e T — 2z
— 1 7/ / / o 1fnfo¢d d%nfl d
B2 ) Jome To— 2] ez =yl y (2) do
xr —z

- o)z =yl dydoen )

~ Job,) |z — 2|

r—=z -n—a n—
— [ el [ 2=y (2) dy
E 9B, (z)

|z = 2|

= /E o(y) - / z—y|' " dDx B, ) (2) dy

R"|

for £*-a.e. r > 0. Therefore, by (1.48), we get that

lim/ @ V., dy
E

e—0
”n,oa —n—a
(2.30) =——"— [ oy)- /R |2 = yI' """ dDxp, ) (2) dy

n+a—1JE
- / v VOXB, @) dY
E
for #1-a.e. r > 0. Finally, for the third term, note that

(z —y) - (p(2) = W) (heyu(2) = hera(y))
|z — y[rrott

r—z

[z —y|' " dzdy

lp(2) — (y)]

1 n
=yl © LR

<2

for all y € R™, so that
lim divyey, (e e, ) (y) = divie (XB, (), ) (9)
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for Z"-a.e. y € R" by Lebesgue’s Dominated Convergence Theorem. Since

- 4 n
b )] <2 [ =80 0 e Lyee),

again by Lebesgue’s Dominated Convergence Theorem we can compute

(2.31) hm/ diviy, (Pe .z, @) dy—/ divyy (X B, (2), ©) dy-
Combining (2.27), (2.28)), (2.29), (2.30) and (2.31), we obtain (2.26). 0

2.2. Decay estimates. We can now deduce the following decay estimates for the
fractional De Giorgi’s perimeter measure, see [36, Lemma 5.3] for the analogous result
in the classical setting.

Theorem 2.16 (Decay estimates). Let a € (0,1). There exist Ay o, Bnao > 0 with

the following property. Let E C R™ be a set with locally finite fractional Caccioppoli
a-perimeter in R™. For any x € F*E, there exists r, > 0 such that

(2.32) [ DXE|(Br (7)) < Apar™™®
and
(2.33) | DX BB, () |(R") < Bpar™™®

for allr € (0,7;).

Proof. We divide the proof in two steps, dealing with the two estimates separately.

Step 1: proof of (2.32). Fix x € Z*E and choose ¢ € Lip,(R";R") such that
¢ = vg(x) in By(z) and ||@||L@ngny < 1. On the one hand, by Definition [2.7, there
exists 7, € (0,1) such that

(2.34) /mﬁ" dDyp > |D 5l(B.(x))

for all 7 € (0,7,). On the other hand, by (2.26) we have

/ div®p dy‘ + ‘/ ¢ - dD*XB,(z)
ENB,(z) E

/leNL XB;(z)> )dy‘

for #1-a.e. r € (0,7,). We now estimate the three terms in the right-hand side sepa-
rately. For the first one, since p(y) = v (z) in B, (x) we can estimate

le(2) — e(y)]
di dy| < fina / dzd
/EQBT() Viely) dy| < p ENB,(z) JR" ]z— ]”*O‘ =

p(z
o / / [p(2) — n+(a N i ay
ENB.(z) JRMB,(z) |2 — Y]

1

< 2pin 0 / / —————dzdy
~(z) JRM\B(2) |2 — y|"Fe

= 24,0 Pa( By (7))

/ - dD% g <
B, (x)

(2.35)
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so that

(2.36)

div®o(y) dy| < 24, o Po(By) 7.
/EOBT@) ivo(y) dy| < 2pin 0 Pa(Br)r

For the second term, by Proposition we can estimate

(2.37) [E ¢ dDXB, ()
Finally, by Lemma[1.7] we can estimate

S |DaXBr(x)|(Rn) S Mn,apa<Br<x)> - Mn,apa(Bl> e

[E divir, (XB. (), #) dy’ < [ divRe, (X5, (@), ©) | 1)

< 20X B, (@) | wer &)

= 240 Pa(B; (7))
so that
(2.38) ‘ /E divye (X8, (2): #) dy‘ < 2tnaba(Br) 7"
Combining (2.34), (2.35)), (2.36), (2.37) and (2.38), we conclude that
(2.39) | DX E|(By(2)) < 10py, 0 Po(By) 1"

for Z1-a.e.r € (0,7,). Hence (2.32) follows with A,, o, = 10, o FPa(B1) for all r € (0,7,)
by a simple continuity argument.

Step 2: proof of (2.33). Fix z € F*E and ¢ € Lip (R™; R") with ||¢]| oo @nrn) < 1.
Again by (2.26) we can estimate

/EOB . diviedy| < [D*xe|(By(z)) + |D*XB, @) |(R") + /E |divRy (X B, (), ©)| dy

for Lt-a.e. r € (0,r,). Using (2.37), (2.38) and (2.39), we conclude that

|DaXEﬂBr(x)|<]Rn> S 13Mn,aPa(B1) re

for Z1-a.e.r € (0,7,). Hence (2.33) follows with B,, o = 131, o Pa(B1) for all v € (0,7,)
by a simple continuity argument. This concludes the proof. O

As an easy consequence of Theorem 2.16] we can prove that
|Dxp| < A" LFE
for any set E with locally finite fractional Caccioppoli a-perimeter in R™.

Corollary 2.17 (|D%xg| < " “L.Z*E). Let o € (0,1). If E is a set with locally
finite fractional Caccioppoli a-perimeter in R™, then

Ana —
(2.40) |Dyp| < 2ol gpn-a| gop,

where A, o is as in (2.32).
Proof. By (2.32)), we have that

D* BT Ana
0 _.(ID"xs], 2) = lim sup 12 XE/Br@) - An,

r—0 anarnia o Wn—a

for any x € Z“E. Therefore, (2.40) is a simple application of [6, Theorem 2.56]. O
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For any set E of locally finite fractional Caccioppoli a-perimeter, Corollary
enables us to obtain a lower bound on the Hausdorff dimension of Z“F.

Proposition 2.18. Let a € (0,1). If E is a set with locally finite fractional Caccioppoli
a-perimeter in R™, then

(2.41) dimy (F“E) >n—a.

Proof. Since |D*xg|(Z“E) > 0 by Definition 2.7, by Corollary we conclude that
H(FE) > 0, proving (2.41). O

2.3. No coarea formula in BV*(R"). As another interesting consequence of

Corollary [2.17, we are able to prove that assumption (1.33) in Theorem cannot
be dropped.

Corollary 2.19 (No coarea formula in BV*(R")). Let o € (0,1). There ezist f €
BV*(R"™) such that

(2.42) L 1D |®") dt = +oc.

Proof. Let E C R"™ be such that xyp € BV(R") and consider f = (—A)l_TQXE. By
Lemma [1.31} we know that f € BV*(R") with |D*f| = |Dxg| = #"'L.ZE. If

L 1D | (®") dt < 400

then

|D*f| < /R |DX >0y dt
by Theorem [1.19) Thus |D°f| < "~ by Corollary so that "1 (FE) = 0,
which is clearly absurd. 0

Remark 2.20. If f € W*}(R"), then

/R |DaX{f>t}’(Rn> dt < /jln,a/RPa({f > t}) dt = ,U/n,a[f]Wavl(R") < +00

by Proposition and Tonelli’s Theorem, so that (2.42) does not hold for all f €
BV*(R™). We do not know if (1.35)) is an equality for some functions f € BV*(R™).

2.4. Existence of blow-ups. We can now prove the existence of blow-ups for sets
with locally finite fractional Caccioppoli a-perimeter in R”, see [36, Theorem 5.13] for
the analogous result in the classical setting. Here and in the following, given a set E
with locally finite fractional Caccioppoli a-perimeter and = € F*E, we let Tan(F, x)
be the set of all tangent sets of E at x, i.e. the set of all limit points in L{, (R")-topology

loc
of the family {@ ir> 0} as r — 0.

r

Theorem 2.21 (Existence of blow-up). Let o € (0,1). Let E be a set with locally finite
fractional Caccioppoli a-perimeter in R™. For any x € F#*E we have Tan(E, ) # @.

Proof. Fix x € #*FE. Up to a translation, we can assume x = 0. We set £, = E/r =
{y e R" : ry € E} for all r > 0. We divide the proof in two steps.
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Step 1. For each p € N, we define D? = E, N B,. By the a-homogeneity of div®,
we have

/p divip dy = r’”/
D? ENByp

for all ¢ € C°(R™;R™). By (2.33)), we thus get
D%\ pr|(R") = r*""|D*XEnB,, |(R") < B, op"™@

(@ivie)(r ) dz =1 [ aivi(e(r ) dz

ENB,p

for all » > 0 such that rp < rg. Hence, for each fixed p € N, we have
sup [D%xpr|(R") < By ap"™ ™.

r<ro/p

Step 2. Let (ry)ren be such that r, — 0 as k — +oc0 and let By, = E,, and D} = Dy
for simplicity. By Step 1, for each p € N we know that

sup [D%Xpr|(R") < Boop™™® and DpC B, VkeN
Tk<7“0/p
Thanks to Theorem [2.5] by a standard diagonal argument we find a subsequence
(DZ], )jen and a sequence (F),),en of sets with finite fractional Caccioppoli a-perimeter
such that xpr — xp, in LY(R™) as j — 400 for each p € N. Up to null sets, we have
J

Fp C Fpya, 80 that g, — xr in Li,.(R™), where F' = U,en Fp. We thus conclude that
F € Tan(E, z). O

2.5. Characterisation of blow-ups. We now give a characterisation of the blow-
ups of sets with locally finite fractional Caccioppoli a-perimeter in R", see Claim #1
in the proof of [36, Theorem 5.13] for the result in the classical setting.

Proposition 2.22 (Characterisation of blow-ups). Let o € (0,1). Let E be a set
with locally finite fractional Caccioppoli a-perimeter in R™ and let x € F“E. If F €
Tan(E, x), then F is a set of locally finite fractional Caccioppoli a-perimeter such that
vi(y) = ve(z) for |D*xp|-a.e. y € F*F.

Proof. As in the proof of Theorem [2.21] we assume z = 0 and we set E, = E/r. By
Theorem , there exists (74 )ren such that r, — 0 as k — +oo and XE,, — XF in

Li..(R"). By Proposition m, it is clear that F" has locally finite fractional Caccioppoli
a-perimeter in R™. By (2.3), we get

D%xg,, — D%%r in Mo (R™; R™)
as k — 4o00. Thus, for #t-a.e. L > 0, we have
(243) DaXErk (BL) — DaXF(BL) as k — +oo.
Since

D% g, =r*7"(01)2 D& Vr >0,

we have that

|D*XE,, |(Br) =" |D*XEe|(Br,L)
and

DXg,, (BL) =iy "D*xp(Br,L).-
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Since 0 € Z*E, we thus get

D*xp,, (B1) DX (Bry1)
2.44 lim — %~ — lim — >k — ().
( ) k—+oco u)O‘XET,C ’(BL) k—+oo ’DQXE’(BTkL) E( )

Therefore, by Proposition [1.11] (2.43) and (2.44)), we obtain that
D% r|(Br) < liminf |D%xg, |(Br)
k——+o00

= kglfoo B, vg(0) - dDxg,,

_ / V2(0) - dD%xp
By,

= [ vg(0)-vg dIDXF|
B,

< [D%xr|(BL)

53

for Z'-a.e. L > 0. We thus get that v%(y) = v%(0) for |D*xp|-a.e. y € B,N.Z*F and

Ll-a.e. L >0, so that the conclusion follows.

U






CHAPTER 3

Asymptotic behaviour of fractional variation as a — 1~

1. Truncation and approximation of BV functions

For the reader’s convenience, in this starting section we state and prove two known
results on BV functions and sets with locally finite perimeter.

1.1. Truncation of BV functions. Following [6, Section 3.6] and [36, Sec-
tion 5.9], given f € Ll _(R™), we define its precise representative f*: R" — [0, +0o0]
as

* . 1
(3.1) f*(z) = lim

r—0t W, "

| Wy, wer,

Br(z)

if the limit exists, otherwise we let f*(z) = 0 by convention.

Theorem 3.1 (Truncation of BV functions). If f € BVj,.(R"), then

(3.2) fxs, € BV(R"), with D(fxp,) = x3,Df + f*Dxs,,

for L'-a.e. v > 0. If, in addition, f € L=(R"), then holds for all r > 0.

Proof. Fix ¢ € C*(R™ R"™) and let U C R" be a bounded open set such that supp(y) C
U. Let (0:)es0 € C°(R™) be a family of standard mollifiers as in (1.25) and set

fe = fxo-foralle > 0. Note that supp (gg*(XBTgo)) C U and supp (QE*<XBTdiV(p)> cU
for all ¢ > 0 sufficiently small and for all » > 0. Given r > 0, by Leibniz’s rule and
Fubini’s Theorem, we have

/]R” fex, divpdr = /Rn x5, div(f.p) dr — /]R" XB,.p - Vfdx

= [ o dDxu, ~ [ 0% (xu) - dDF.
Since f. — f a.e. in R™ as ¢ — 07 and

£l ee * (xB,Idivel) < |fIxulldivelle @) € L'(R")

for all € > 0, by Lebesgue’s Dominated Convergence Theorem we have

lim / fexn, divpdr = / fxas, divpdz
R7 R”

e—0t

(3.3)

for all 7 > 0. Thus, since o * (xB,¢) = X5, ¢ pointwise in R" as ¢ — 07 and

0= % (x5, )| < l¢llLoo@nrmyxv € L'(R™,|Df])

for all € > 0 sufficiently small, again by Lebesgue’s Dominated Convergence Theorem
we have

tim [ o-x(xa)-dDf = | xip-dDf

e—0t JRn
55
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for all » > 0. Now, by [6, Theorem 3.78 and Corollary 3.80], we know that f. — f*
" 1ae. in R" as € — 0%, As a consequence, given any r > 0, we get that f. — f*
|Dxg,|-a.e. in R" as ¢ — 0F. Thus, if f € L>°(R"), then

[fepl < 1Nl ol € LY (R", |Dxs, )

for all € > 0 and so, again by Lebesgue’s Dominated Convergence Theorem, we have

lim [ fip- dDys, = /R fe- dDxs,

e—0t JRn

for all » > 0. Therefore, if f € L>°(R"), then we can pass to the limit as ¢ — 07

in (3.3) and get
| ixs divede == [ - dDxs, — [ xge-dDJ
R™ R™ R™

for all ¢ € C*(R™;R") and for all » > 0. Since [|f*|pe@mn) < || fllzoo@ny, this
proves (3.2) for all » > 0. If f is not necessarily bounded, then we argue as follows.
Without loss of generality, assume that ||¢|| oo @n;rny < 1. We can thus estimate

Ga | [ s dDxs - [ feaDxs|< [ 1f - pasen

Given any R > 0, by Fatou’s Lemma we thus get that

/ Jeo - dDxp, —/ f*o- dDxsp,
Rn Rn

R
< / lim inf
0

e—0t JoB, |

dr

lim inf
0 e—=0t

fo— fldz " ar

R
< liminf/ / . — f*|do" " dr
0 0B,

e—0t

= lim [ |f.— f|dz=0.

e—=0t JBR
Hence, the set
(3.5) 7z - {7" > 0:liminf [ |f. — f*|doemt = o}
e—0*t JoB,

satisfies £1((0,+00)\ Z) = 0 and depends neither on the choice of ¢ nor on the choice
of the Z"-representative of f. Now fix r € Z and let (gx)ren be any sequence realising

the liminf in (3.5). By (3.4)), we thus get
lim /R ferw - dDxp, = /Rn f*e - dDxs,

k——+o0

uniformly for all ¢ satisfying ||¢|| e (rn;rny < 1. Passing to the limit along the sequence
(¢k)ken as k — 400 in (3.3)), we get that

| fxp divode =~ [ f'o- dDxp, — [ i ¢ dDf
Rn R™ R™

for all ¢ € C(R™;R™) with |||z @n,rn) < 1. Finally, since

R
// \f*\d,%”"*ldr:/ |f*| dz < +oo,
0 JOB, Br
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the set
W:{r>0:/6 |f*|d<%””_1dr<+oo}
B

satisfies Z1((0, +00) \ W) = 0 and does not depend on the choice of the #"-represen-
tative of f. Thus (3.2) follows for all » € W N Z and the proof is concluded. O

1.2. Approximation by sets with polyhedral boundary. We now state and
prove standard approximation results for sets with finite perimeter or, more generally,
BViee(R™) functions, in a sufficiently regular bounded open set.

We need the following two preliminary lemmas.

Lemma 3.2. Let VW C S" !, with V finite and W at most countable. For any e > 0,

there exists R € SO(n) with |R —I| < e, where T is the identity matriz, such that
RV)NW = .

Proof. Let N € N be such that V = {v; € S" ' :i=1,..., N}. We divide the proof in
two steps.

Step 1. Assume that W is finite and set A, = {R € SO(n) : R(v;) ¢ W} for all
i =1,...,N. We now claim that A; is an open and dense subset of SO(n) for all
i=1,...,N. Indeed, given any i = 1,..., N, since W is finite, the set A5 = SO(n)\ A;
is closed in SO(n). Moreover, we claim that int(A¢) = @. Indeed, by contradiction,
let us assume that int(A$) # &. Then there exist ¢ > 0 and R € A¢ such that any
S € SO(n) with |S — R| < ¢ satisfies S € Af. In particular, for these R € A and
e > 0, we have R + 2%% € AS for any k > 1, which implies R(v;) + sz Vi € W tor
any k > 1, in contrast with the fact that W is finite. Thus, A; is an open and dense
subset of SO(n) for all i = 1,..., N, and so also the set

N
AV =N A ={ReSO(n):R(v;) ¢ WVi=1,...,N}
i=1
is an open and dense subset of SO(n). The result is thus proved for any finite set 1.
Step 2. Now assume that W is countable, W = {w; € S"': k € N}. For all
M € N, set Wy = {w, € W: k< M}. By Step 1, we know that A" is an open
and dense subset of SO(n) for all M € N. Since SO(n) € R™ is compact, by Baire’s
Theorem A = (y7eny AVM is a dense subset of SO(n). This concludes the proof. O

Since det: GL(n) — R is a continuous map, there exists a dimensional constant
6, € (0,1) such that det R > L for all R € GL(n) with |R — Z| < 4,.
Lemma 3.3. Let ¢ € (0,9,) and let E C R™ be a bounded set with P(E) < +o00. If
R € SO(n) satisfies |R —Z| < €, then
IR(E) A E| <2erg P(E),
where rg =sup{r > 0:|E\ B,| > 0}.
Proof. We divide the proof in two steps.

Step 1. Let r > 0 and let f € C°(R™). Setting Ry = (1 —t)Z +tR for all ¢ € [0, 1],
we can estimate

[ 1 R@) = f@)ldo = |

T T

/Ol(Vf(Rt(x)),R(x) _ @) dt| de
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<R-Zlr [ [ VIR )| do it

Since |[R; —Z| = t|R—Z| < te < 4, for all t € [0, 1], R, is invertible with det(R; ') < 2
for all ¢ € [0,1]. Hence we can estimate

| VFR@) da = [ V)] |det(Re D dy <2 [V F(y)ldy,
r R¢(Br) R”»

so that

(3.6) | 1f(R@)) = @) do < 227 |V £l oo

T

Step 2. Since xg € BV(R"), combining [36, Theorem 5.3] with a standard cut-off
approximation argument, we find (f;)ren C C°(R") such that f;, — xg pointwise a.e.
in R” and |V f|(R") — P(E) as k — 4o00. Given any r > 0, by (3.6) in Step 1 we

have
[ (R = fu(a) o < 22|V fill ooz
for all £ € N. Passing to the limit as k — +o00, by Fatou’s Lemma we get that
(R(E) A E)N B,| <2erP(E).

Since E C B, up to Z"-negligible sets, also R(E) C B,, up to -£™-negligible sets.
Thus we can choose r = rg and the proof is complete. 0]

We]are now ready to prove the main approximation result, see also [5, Proposi-
tion 15|.

Theorem 3.4. Let €2 C R™ be a bounded open set with Lipschitz boundary and let
E C R" be a measurable set such that P(E;$) < +oo. There ezists a sequence (Ey)ken
of bounded open sets with polyhedral boundary such that

(3.7) P(E;00) =0

for all k € N and

(3.8) XE, = XE in L (R") and  P(E;Q) — P(E;Q)
as k — +o0.

Proof. We divide the proof in four steps.

Step 1: cut-off. Since € is bounded, we find Ry > 0 such that Q C Bg,. Let us
define R, = Ry + k and

1
Cr = {x € Q°  dist(x,00) < kz}
for all k € N. We set E} = E N Bg, NC§ for all k € N. Note that E} is a bounded
measurable set such that
XE! — XE In LL . (R™) as k — 400

and
P(EL;Q) = P(E;Q) for all k € N.
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Step 2: extension. Let us define
1
Ay = R™ : dist(x,Q) < —
k {xe ist(x, )<4k’}
for all k£ € N. Since xpginq € BV(Q) for all k € N, by [6, Definition 3.20 and Proposi-
tion 3.21] there exists a sequence (vg)geny C BV (R™) such that

vp =0ae in Aj, vy = xg in Q,  [Dy|(092) =0

for all k € N. Let us define F} = {v;, > t} for all t € (0,1). Given k € N, by the coarea
formula [6, Theorem 3.40], for a.e. t € (0,1) the set F} has finite perimeter in R" and
satisfies

FlC Ay, FNQ=E.NQ, P(F;00) =0
for all k& € N. We choose any such t; € (0, 1) for each k¥ € N and define E} = E} U F}*
for all £ € N. Note that E? is a bounded set with finite perimeter in R™ such that

Xg2 = XE in Ly (R™") as k — 400

and
P(E%Q) = P(E;Q) and P(E200)=0 forall ke N.

Step 3: approximation. Let us define
. 1 3
Dy = {x € Q° : dist(z,00) € [4k’ 4kH
for all £ € N. First arguing as in the first part of the proof of [58, Theorem 13.§]
taking [58, Remark 13.13] into account, and then performing a standard diagonal
argument, we find a sequence of bounded open sets (E})reny with polyhedral boundary
such that
E} C D§ for all k € N

and
Xgg = XE in L (R"),  P(E}Q) — P(E;Q) and  P(E};9Q) — 0
as k — +oo. If there exists a subsequence (E} )jen such that P(Ej;0Q) = 0 for all

J € N, then we can set E; = Fj, for all j € N and the proof is concluded. If this is not
the case, then we need to proceed with the next last step.

Step 4: rotation. We now argue as in the last part of the proof of [5, Proposition 15].
Fix k € N and assume P(E};0Q) > 0. Since E} has polyhedral boundary, we have
AN OFE; N 9Q) > 0 if and only if there exist v € S" ! and U C ZQ such that
A HU) >0, vg(x) =v forall z € U and U C OH for some half-space H satisfying
vy = v. Since P(Q) = 2" 1(09Q) < +o0, the set

W={ves " ({z €00 vo(z) = v}) > 0}
= U {y eSS+ @ > ! ({z €09 : vo(z) = v}) > P(Q)>}

h+1
heN

is at most countable. Since E} has polyhedral boundary, the set
Vi = {V eSSt ({a: € OB} : v (x) = V}) > 0}

is finite. By Lemma [3.2] given ), > 0, there exists Ry, € SO(n) with |Ry —Z| < & such
that Ry (Vi) N W = @&. Hence the set E} = Ry(E}) must satisfy P(E};00) = 0. By
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Lemma 3.3} we can choose 5 > 0 sufficiently small in order to ensure that |E{ A E}| <
=. Now choose 1, € (O, i) such that P(E}; Qr) < 2P(E}; 09), where
Qr = {x € R : dist(z, 0Q) < ni.}.
Since €2 is bounded, possibly choosing £, > 0 even smaller, we can also ensure that
QAR Q) C Q. Hence we can estimate
|P(E; Q) — P(ES Q)| = [ (OB NRTHQ)) — A" (0E; N Q)]
<" BN (QARTQ))
< A" HOER N QL.
We can thus set Ejy = E} for all k € N and the proof is complete. O
Remark 3.5 (A minor gap in the proof of [5, Proposition 15]). We warn the reader that
the cut-off and the extension steps presented above were not mentioned in the proof
of [5, Proposition 15], although they are unavoidable for the correct implementation
of the rotation argument in the last step. Indeed, in general, one cannot expect the
existence of a rotation R € SO(n) arbitrarily close to the identity map such that
P(R(E);0Q) = 0 and, at the same time, the difference between P(R(FE);(2) and
P(FE;Q) is small. For example, one can consider
Q= {(xl,xg) cA:xt+al< 25}
and
E = {(:pl,xg) cA:l<zi+ai< 4}U{(:v1,x2) €CA:9< i+l < 16}
where A = {(z1,72) € R? : 2y > 0, x5 > 0}. In this case, for any rotation R € SO(2)
arbitrarily close to the identity map, we have P(R(E); ) > 2+ P(E;Q).

We conclude this section with the following result, establishing an approximation
of BVje. functions similar to that given in Theorem [3.4]

Theorem 3.6. Let 0 C R™ be a bounded open set with Lipschitz boundary and let
f € BVioc(R™). There ezists (fx)ren C BV (R™) such that

| D fil(9€2) = 0
for all k € N and
fe = fin Li(R") and  [Dfil(Q) — [Df](Q)
as k — +oo. If, in addition, f € L*(R™), then fi, — f in L'(R") as k — +oo.

Proof. We argue similarly as in the proof of Theorem [3.4] in two steps.

Step 1: cut-off at infinity. Since © is bounded, we find Ry > 0 such that Q C Bp,.
Given (Ry)r C (Rp,+00), we set gp = fxBp, forall k € N. By Theorem , we have
gr € BV (R™) for a suitable choice of the sequence (Ry)ren, with |Dgyi|(2) = |Df|(£2)
for all k € N and g — f in LL.(R") as k — 4oo. If, in addition, f € L'(R"), then
gr — fin LY(R"™) as k — +o0.

Step 2: extension and cut-off near €). Let us define

1
Ay, = {a; € R" : dist(x, Q) < k:}
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for all £ € N. Since grxq € BV(Q) with |Dgx|(Q2) = |Df](Q) for all &k € N, by [6,
Definition 3.20 and Proposition 3.21] there exists a sequence (hg)reny C BV (R") such
that

supp hy, C Aok, hp = gr in Q, |Dhi|(0Q) =0
for all £ € N and

lim |hk| dx =0
k—+o0 Axp\Q

(the latter property easily follows from the construction performed in the proof of [6,
Proposition 3.21]). Now let (vg)reny C C°(R™) be such that suppv, C Af and 0 <
v, < 1 for all £ € N and vy — xqc pointwise in R" as k — +o0o0. We can thus set
fr = hi +vpgi for all k& € N. By [6, Propositon 3.2(b)], we have vpgr € BV (R") for all
k € N, so that f, € BV(R") for all £ € N. Since we can estimate

|fr = ] < |hi — [xal + vk — Xae
= k| xa50\0 + Uk — Xoe

gkl + gk — fl xae
gkl + 19k — fl xae

for all k € N, we have f — f in LL_(R") as k — +oo, with f; — f in L'(R") as
k — +oo if f € L'(R™). By construction, we also have

D fil(Q2) = [Dhy|(2) and | D fi[(0€2) = [Dhy|(0€2)
for all £ € N. The proof is complete. 0

2. Lip,-regular tests for fractional operators

In this section, we extend the fractional operators V® and div® to Lip,-regular
functions and, consequently, we prove that Leibniz’s rule and the integration-by-part
formula still hold in this context.

2.1. Extension of V® and div” to Lip,-regular tests. In the following result,
we extend the fractional a-divergence to Lip,-regular vector fields.

Lemma 3.7 (Extension of div® to Lip,). Let « € (0,1). The operator
div®: Lip,(R™;R") — L*(R")
given by

59) o) = s [ IO o

n ’y _ x’n+o¢+l

for all ¢ € Lip,(R™;R™), is well defined, with

21, 1
3.10 dive Q|| oo (mny < 2
( ) || v SDHL R7) > Oé(]. — Oé)

—

Lip() [l o mn: my:

and satisfies

. . (y — ) (ply) — ¢(x))
div® =l 1 d
V(@) = fina 50+ Jjy—ol><} ly — x|rratl
_ I (y — ) - o(y)
= Hn,a 1 n+a+1
e=0t Jly—al>e} |y — x|

(3.11)
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for all x € R™. Moreover, if in addition I,_,|divy| € Li..(R"), then
(3.12) div¥p(z) = I1_,dive(x)
for a.e. x € R™.

Proof. We split the proof in two steps.
Step 1: proof of (3.9), (3.10) and (3.11). Given z € R™ and r > 0, we can estimate

(y —z) - (o(y) — o(x)) . v
/{Iy—xgr} ‘dy < nwnLlp(@)/ﬂ o “do

|y — a|rrot!
/{|y—o:|>r}

Hence the function in (3.9)) is well defined for all x € R™ and

and

(y —z) - (p(y) — p(z))
|y — z|rtett

+oo
dy < 2nwnH¢HLwawaRnx/’ o1+ g,

L. 2 o0 n. n
||diva90||L°°(]R”) S nwy, ( lp(QD) Tl—a + HQOHL (R7;R™) ,r,—a> 7
11—« «
so that (3.10)) follows by optimising the right-hand side in > 0. Moreover, since
‘ (y— ) - (o(y) — ¢(@))

’y _ x’n+o¢+1

X(€,+OO)<|y - {E|)

X(o,l)(|y —x|)
|y — et

Xitoo) Yy —2l) 1 o
eny(]R)

< Lip(y)
ly — |t

+ 2||| oo rr; ')

and

z
———dy =0
/{|z|>5} |z|ntett
for all € > 0, by Lebesgue’s Dominated Convergence Theorem we immediately get the
two equalities in (3.11)) for all z € R".
Step 2: proof of (3.12). Assume that I;_,|diveg| € Li, . (R™). Then

loc

|dive(y)| n

for a.e. x € R™. Hence, by Lebesgue’s Dominated Convergence Theorem, we can write
. . divep(y)
I divp(z) = fipo lim —
1 30( ) % et {ly—z|>¢} ’y _x’n+oz71
for a.e. z € R™. Now let € > 0 be fixed and let R > 0. Again by (3.13) and Lebesgue’s
Dominated Convergence Theorem, we have
di di
lim ive(y) dy = / ive(y) :
R—+00 J{R>|y—x|>¢} ]y — .’ﬂ’nJrO‘* {ly—z|>c} |y — x|n+a7
for a.e. z € R". Moreover, integrating by parts, we get
/ dive(y) dy = / divyp(y + ) dy
{ {R>y|>e}

R>ly—a|>e} [y — x|rto—! |y|nto-t

y ey +a) y e +a)
= LE R ae ) - [ LS R Ay
S T et D70 = f et )
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Yoy + )
o[ welren,
(R>ly|>e}  |y[rTott

for all R > 0 and for a.e. x € R™. Since ¢ € L>®(R";R"), by Lebesgue’s Dominated
Convergence Theorem we have

lim

y-elyta) :/ y- ey +m)
Rrtoo J{R>y|>e}  [y[ntett {lyl><)

|y|att

for all € > 0 and all z € R™. We can also estimate
y oy + ) 1
L dI"
/{y| Ry [yl [y[ret )
for all R > 0 and all x € R™®. We thus have that
di .
/ 1vs0(i/)71 dy — y 90(3 tlx) p / y so(y:r xl) 4 (y)
{ly—z|>e} |y — x|+ {yl>er |y fyl=2} Jy| [y[m+e

< nwa || oo ns mey R~

for all e > 0 and a.e. x € R™. Since also

y oly+z) 0y |
LTV g
/{y|=s} lyl |y|mFet (@)

y oy +x)— o) O
A"
/{y| —eplyl y[mret )

< nwy, Lip(p) '™
for all e > 0 and x € R", we conclude that

lim / dive(y) . / (y — ) p(y)

_ VYY) gy = lim ALV A
{ly—x|>¢} Iy—$|"+“ 1T 20 Jyalsey [y — afrretd

for a.e. z € R", proving (| . 0

We can also extend the fractional a-gradient to Lip,-regular functions. The proof
is very similar to the one of Lemma and is left to the reader.

Lemma 3.8 (Extension of V* to Lip,). Let o € (0,1). The operator
Ve: Lip,(R") — L>*(R™;R")

dy

e—0t

given by

VI () = e /R (v — Ty) _(i ,(ff;lf (z)) dy. © R,

for all f € Lip,(R™), is well defined, with

21“"nwnﬂn a

a(l — a)

IV fll 2o @nimmy < Lip(f)* |1/l =)

and satisfies

Vaf( ) fine 51—.>0+ /{Iyz|>e} (y - ‘xy) _(i‘(nyjo;j(x)) dy
= [p,q lim w d

=0t Hly—al>e} |y — z[rrot!
for all x € R"™. Moreover, if in addition I, |V f| € LL.(R™), then
Vaf(x) = LoV f(z)

for a.e. x € R".
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2.2. Extended Leibniz’s rules for V* and div®. The following two results
extend the validity of Leibniz’s rules proved in Lemma and Lemma to Lip,-
regular functions and Lip,-regular vector fields. The proofs are very similar to the ones
given in Chapter|1|and to those of Lemma|[3.7/and Lemma [3.8] and thus are left to the
reader.

Lemma 3.9 (Extended Leibniz’s rule for V®). Let a € (0,1). If f € Lip,(R") and
n € Lip.(R™), then

Venf) =0V + fV+ VL, f),

R e

for all x € R™, with

where

227wy i o || f || Lo (m7)
a(l — a)

V&L (17, £)]| oo (s mny < Lip(1)* |0l =y

and
IV (s Ol @esrry < pinall 1l oo @y [l weot @y
Lemma 3.10 (Extended Leibniz’s rule for div®). Let « € (0,1). If ¢ € Lip,(R"; R")
and n € Lip,(R™), then
div®(ng) = ndivie + ¢ - Vi + diviy,(n, @),

where

dive:, (1, ) () = Mw/ v =) (ply) = o(@))nly) = n(z) ,

R" |y — @[ttt
for all v € R", with

22_anwnﬂn’a ||()0||L00(Rn7]Rn)
a(l —a)

1diviy, (7, @) || oo (rn) < Lip(n)* |9l ;=g

and
1divRL (7, ©) | L1 ey < tin,allol] oo @nsme [M]wor () -
2.3. Extended integration-by-part formulas. Thanks to Lemma [3.10] we can

actually prove that a function in BV *(R™) can be tested against any Lip,-regular vector
field.

Proposition 3.11 (Lip,-regular test for BV* functions). Let a € (0,1). If f €
BV*(R™), then (1.22) holds for all ¢ € Lip,(R™;R™).

Proof. We argue similarly as in the proof of Theorem [1.16l Fix ¢ € Lip,(R";R") and
let (Nr)r=0 C C°(R™) be a family of cut-off functions as in (1.30) On the one hand,

since
[ fmdivdo = [ faiviods| < Jdivi el [ 110~ n)do

for all R > 0, by Lebesgue’s Dominated Convergence Theorem we have

lim fnrdiviodr = / fdiv¥pdz.
R—+o0 JRn Rn
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On the other hand, by Lemma we can write
/Rn fnr divio de = /Rn fdiv*(nre) dr — /Rn fo- Vg dr — /Rn f diviy, (g, o) dx
for all R > 0. By Proposition we have
L fdivimp)de == [ neg-dD"f
for all R > 0. Since
[ ame-dDf — [ p-ap?s| < lplumean [ (1= nn)diD*f

for all R > 0, by Lebesgue’s Dominated Convergence Theorem (with respect to the
finite measure |D® f|) we have

lim / nRg0~dD°‘f:/ o dD°f.
R™ R™

R—+00

Finally, we can estimate
[ fe Vounds
and, similarly,

‘/ fdiviy (ng, @) dx

By Lebesgue’s Dominated Convergence Theorem, we thus get that

lim (/n fo-Vepdr + /Rn f divie (mg, ©) da:) =0

R—+o00

< Nl [ 17 [ = g g,

R |y — xfnte

nr(y) — nr(z)]
< Al [ 11 [, T dyd

and the conclusion follows. O

Thanks to Lemma [3.9, we can prove that a function in Lip,(R") can be tested
against any Lip_.-regular vector field. The proof is very similar to the one of Proposi-
tion and is thus left to the reader.

Proposition 3.12 (Integration by parts for Lip,-regular functions). Let o € (0,1). If
f € Lip,(R™), then

/ fdiv“gpdx:—/ 0V fdr
R?’L ]Rn
for all ¢ € Lip (R™; R").

3. Estimates and representation formulas for the fractional a-gradient

3.1. Integrability properties of the fractional a-gradient. We begin with
the following technical local estimate on the W®!-seminorm of a function in BVi..
Lemma 3.13. Let a € (0,1) and let f € BVioe(R"). Then f € W (R™) with

nwy, (2R)1
(3.14) Fhwasog < "

for all R > 0.

|Df|(Bsr)
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Proof. Fix R > 0 and let f € BVlOC(R") be such that f € C'(Bsg). We can estimate
)|
a dy dx
W 1 BR /\BR ‘/BR |y_l'|n+a

_/ / @) = F@) o,
Br JBp{ly— m|<2R} |y — z|nta

/BR \f(x + h) — f(z)| dz dh.

<

{|h|<2R} W"*‘"

Since

1
[ f@rm = f@lde < [ Vi th) - nldtds
BR BR 0
< |hy/01/B IV f(x + th)| dz dt
< yhy/BMl IV f(2)|dz

for all h € R™, we have

1
o < —_— \Y dz dh
Phwesion) S [ T 19/ G)dz

Df|(B
S/ |Df|(Bsg) dh
{Ihl<2ry |h|nte-l
nwn,(2R)1

=14 |Df|(Bsr)

proving for all f € BVi.(R™) N C*(Bsg). Now fix R > 0 and let f € BVj,.(R™).
By [36, Theorem 5.3], we can find a sequence (fx)ren C BV (Bsg) N C*°(Bsg) such
that |D fy|(Bsg) — |Df|(Bsg) and fry — f a.e. in Bsg as k — +oo. Hence, by Fatou’s
Lemma, we get

flwer sy < %mi{.lof [frlwe ()

< nwy, (2R)

- 1 -«
nw, (2R)1

= PR D i B

and the proof is complete. 0

Jm |D fi|(Bsr)

In the following result, we collect several local integrability estimates involving the
fractional a-gradient of a function satisfying various regularity assumptions.

Proposition 3.14. The following statements hold.
(i) If f € BV(R"), then f € BV*(R"™) for all « € (0,1) with D*f = V*f.Z" and
(3.15) Vef=1L_,Df a.c inR".
In addition, for any bounded open set U C R™, we have
(3.16) IVEfllrw:rny < Crap [DfI(R™)
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forall v € (0,1), where Cy, oy is as in (1.13). Finally, given an open set A C R",
we have

(B17) [V fllrcasmn) <

Wn, fn,o |Df|(/TT> lma | M+ 20— —a
n+a—1< 1l—«a ro HfHLan

for allr >0 and a € (0,1), where A, = {x € R™: dist(m, A) <r}. In particular,
we have

N NWy, .o (M + 200 — 1)1
(3.18) VS s ansgey < "bmal )

el 20 = D v

(ii) If f € L*(R™) N VV&’}(R”), then the fractional a-gradient D*f € Mo.(R™;R™)
exists and satisfies D f = V*f. L™ with Vaf € L%OC(R"; R™) and

IV F o2 i) < o [, / ) yrw @) = 1)l g, g,

< fin (mwaw + Pa(B) ||l e)
for all R >0 and o € (0,1).
(iii) If f € L>®(R™) N BWo(R™), then the fractional a-gradient D*f € M,.(R";R™)
exists and satisfies D*f = Vf.£" with V*f € L .(R";R") and

nwp(2R)1 nwy )2 R
O DB + 25 e ).

(3.19)

(320) [V fllptmmn) < fina (

for all R >0 and a € (0,1).

Proof. We prove the three statements separately.

Proof of . Thanks to Theorem , we just need to prove (3.16) and (3.17).
We prove (3.16). By (3.15), by Tonelli’s Theorem and by Lemma , we get

[ \Veflde < [ IalDflde < oo IDSIR?),
U U

where (), o v is defined as in m
We now prove (3.17) in two steps.

Proof of (3.17), Step 1. Assume f € C°(R") and fix r > 0. We have
/ VO f|de = / -V [|dz
Vi(x+h)

Hn,c // NG d
- n—l—a—l( {lnj<ry  |h|ntet T Al n>r}  |h|rre-t )

We estimate the two double integrals appearing in the right-hand side separately. By
Tonelli’s Theorem, we have

|V f(x+h) / / dh
dh dx = Vi +h)|de ———
//{h|<r} |h|rta—t {|h]<r} A| ( ) |h|rta—t

dh
< IV F sy /{|h|9«} []rre—t

dh

11—«

r
= NWwn, m ||vf||L1(A7T;R”)'
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Concerning the second double integral, integrating by parts we get

Vf(z+h) hf(z+h)
IV b = -1 ———— = dh
/{|h|>r} |A|rtet (n+a >/{|h|>r} |A[rtett

~ Jni=ry [B] [R[rre-t
for all x € A. Hence, we can estimate
Vf(x+h)
AlJni>ry Rt

< — -~ >~ @@ 7
dr < (n+« 1)/ f[|h|>r} B[ dh dz

|f $+h | ~1
A" (h) d
//{h =} |hfrtet (h) dz

o (nta—1
S nwanHLl(Rn) T (a + 1)

n+2a—1
= NWny (@) ||f||L1(R") T

Thus (3.17) follows for all f € C°(R™) and r > 0.

Proof of (3.17), Step 2. Let f € BV(R") and fix r > 0. Combining [36, Theo-
rem 5.3] with a standard cut-off approximation argument, we find (fi)reny C C°(R")
such that fr, — f in LY(R") and |Dfy|(R") — |Df|(R™) as k — +o0. By Step 1, we

have that
nWn fina [ |Dfel(Ar) o  n+20—1
3.21) ||V rn) < ’ B
(3.21) || fk|\L1(A,R)—n+&_1< 1—a T

for all £ € N. We claim that

(3.22) (V) L — (V) L™ as k — +oc.

Indeed, if ¢ € Lip (R™;R"), then div®e € L*(R") by (1.12) and thus

g0~V°‘fkdx—/ ¢ - Vfdx :’/ fkdivawdx—/ fdiviodx
Rn Rn Rn

< ||diva90||L°°(R”;lR") ||fk - f”Ll(]R”)

dh

Vfulln )

R

for all £ € N, so that
lim g0~V°‘fkda::/ p-V*fdx.
k—+oo0 JRn R

Now fix ¢ € C?(R";R"). Let U C R" be a bounded open set such that supp ¢ C U. For
each € > 0 sufficiently small, pick 9. € Lip,(R"; R") such that ||¢ — 9).||Lec@mn;rn) < €
and supp . C U. Then

[oevepd= [ govepde <[ vovide— [ vovosds
Rn Rn Rn R™
+ ||t — ol oo @n;re) (HVakaLl(U;R”) + ||vafHL1(U;R"))
< v _ v
<|[ v Visido= [ v Vofds
+ & Crau (IDfi|(R") + [DFI(R)),
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so that
lim

/go-Vo‘fkdx—/ o VO dr
k——+o00 n R7

Thus, (3.22) follows passing to the limit as e — 0". Thanks to (3.22), by [58, Propo-
sition 4.29] we get that

< 2e Gy o u| DFI(R™).

IV fllra ey < lériligof IV fiell L1 a;mmy-

Since
[DFI(U) < Vi inf | D £ (U)

for any open set U C R™ by [36, Theorem 5.2], we can estimate
limsup | D fi|(A,) < hm | D fi|(R™) — hmmf |Dfi|(R™\ A,)

k—4o00

< \Df\(R”) — |DFI(R™\ A,)
= [DfI(A,).

Thus, (3.17) follows taking limits as k — +occ in (3.21). Finally, (3.18) is easily deduced
by optimising the right-hand side of (3.17) in the case A = R" with respect to r > 0.

Proof of . Assume f € L‘X’(R”) N I/Vlfj’cl (R™). Given R > 0, we can estimate

/ IVef( |da:<una/ / |dxdy
Br " ’I - ?J’n+a

|f(z) = fy)l f(x) = fy)l
na dz dy + na/ / —d dy
M /BR /BR |:If - |n+a Br n\BR |-I - |n+a

1
< fimal flwent () + 2t m// =~ dxd
< tnalflwesme + 2mall e [ f o Ao dy
= finalflwer(sr) + tnall f|| 2o @) Pa(Br)

and (3.19) follows. To prove that D®f = V®f.£" we argue as in the proof of Propo-
sition 2.8, Let ¢ € Lip,(R";R"). Since f € L>(R"), we have

oo i@l [, Sy e L),

Hence, by the definition of div® on Lip_-regular vector fields and by Lebesgue’s Domi-
nated Convergence Theorem, we have

/Rnfdivagadx = lim - f(:c)/{ Mdydw

e—0t+ ly—z|>e} |y — x|n+a+1
Since

|f@)] o] o
dyde < ||l [ 1oy ly—a " dody
/”/{Iy x\>e} — x|nta Pl e R™ ) {ly—|>c}

nw
< e n”fHLOO(JR” H<P||L1 R”; R")
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for all € > 0, by Fubini’s Theorem we can compute
(y —z) - o(y) (z —y) f(=)
flx / —dydaz— / Y / ~———~dxdy
/ A i eoa |y — afrret 2 P Jasios |z —y[rrott

o (@ —y) (fl2) = f)
B )/{Ix y|>e} dz dy.

R" |z —y|rrest

Since

(2= ) U~ ) )~ F) .
lf ] <140) a

|z —y|rrett R |z —y[rre
for all y € R™ and € > 0, and
f(z) = f(y)]
— —————dr € L .(R"
Yy .. ‘l‘ _ y‘n+a loc( )
by (3.19), again by Lebesgue’s Dominated Convergence Theorem we conclude that

/Rn f(x) divip(z) de = —lim - w(y) /{|x_y|>8} @ —|:?;)_(f;|2;10;1f(y)) dz dy

Sy @= ) () = ) 0

=0 J{|jz—y|>e} |z — y[rrett

== [ ) VS dy
for all ¢ € Lip (R";R™). Thus D*f € Mo.(R";R") is well defined and D*f =
vefgnt,
Proof of (iti). Assume f € L®(R"™) N BVj,c(R"). By Lemma [3.13| we know that
f € L=R") n W (R™) for all a € (0,1), so that DYf € Mo.(R*; R") exists by (ii).

Hence, inserting (3.14)) in (3.19), we find
N nwy (2R)
IVfller(Barn) < fna (

O DB + PuB) R e ).
Since for all x € B; we have

/ dy B dz </ dz nWy,
R\By |y — 2|t Jrn\Bia) [2]7 T Jrmm 2t a1~ fa))e

being I' increasing on (0,+00) (see [13]), we can estimate

dy dx 2nwn dx
PuBy =2, | <=,
By JRm\B; |y — :C\”m a g (1—|z])~

_ 2(nwy,)? /01 : gt g — 2(nw,)? T(n)T(1 — «)

a 1—t) a I'h+1-a)
2(nwy, )?
< (neon) 'l — o),
«
so that
nw, (2R)1 2(nw, )R

Va 1 . n < n.o - D - . < T oo n
I9° e < s ("2 1D floviany + 2L e

proving (3.20)). O
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Note that Proposition , in particular, applies to any f € WHH(R"). In the
following result, we prove that a similar result holds also for any f € W1?(R") with
p € (1,400).

Proposition 3.15 (W'(R") C S*P(R") for p € [1,+)). Let « € (0,1) and p €
[1,400). If f € WIP(R™), then f € S*P(R™) with
(3.23)

IV Fllzrasrmy <

nonttna (Wl %
n+a—1 11—«

e 7
for any r > 0 and any open set A C R™, where A, = {x € R" : dist(z, A) <r}. In
particular, we have

(n+2a — 1) nwppin o
n+a—-1 oaol—a)

(3.24) IV Nl o e emy < IV A1 2o sy L | ey

In addition, if p € (1, ﬁ) and q = - then

np
n—(1-a)
(3.25) Vef=0L_Vf ae inR"
and V*f € L{(R™;R").
Proof. We argue similarly as in the proof of Proposition [3.14{().

Proof of (3.23), Step 1. Assume f € C°(R") and fix an open set A C R™ and
r > 0. Arguing as in the proof of (3.17), we can write

I Vf(z) = M(/{ Vf(z+h) dh + /{ Vf(z+h) dh)

n+a—1\Jyp<y |hfrtet lh|>ry  |h[rTo=t

S L e -1 —
n+o—1 < (hi<ry |R|rteT +(n+a—-1) (hisrp  |R[Prot

/{|h|=r} || |h[ntert A R)

for all x € A. By (1.14) and Minkowski’s Integral Inequality (see [96, Section A.1], for

example), we thus have

* h P(A- R
IV fllzra;rny < _ Hna / IVF(C+ R)l[Lecasrm) "
’ 1\ Jni<ry

dh

n + o — |h|n+a—1
£ (- =+ h)|lLeca)
+(n+a-—1 / dh
( ) {Ihl>r} ||t
£ (- =+ h)|lLeca) 1
A" (h
* /{h ry |h|rterd )
fne (10 g ) o o, P2y
n—a+1\1- Le(AnRe) wn = Le@n) T,

proving (3.23)) for all f € C>(R™) and r > 0.

Proof of (3.23)), Step 2. Let f € WP(R™) and fix an open set A C R™ and r > 0.
Combining [36, Theorem 4.2] with a standard cut-off approximation argument, we find
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(fi)ren C C(R™) such that fi — f in W'?(R") as k — +o00. By Step 1, we have
that
(3.26)

IV fellLearny <

NWn, tn,o vak’”LP(AiT;Rn) 1—a n+ 2a —
11—«

T D fellrgy 7
n+aoa-—1 " o kllLP@®) T

for all & € N. Hence, choosing A = R"™, we get that the sequence (V®fi)ren 18

uniformly bounded in LP(R";R™). Up to pass to a subsequence (which we do not
relabel for simplicity), there exists g € LP(R";R") such that V*f; — ¢ in LP(R"; R")
as k — 4o00. Given p € C*(R";R"), we have

/ fkdivo‘<pd:c:—/ ¢ -V frdr
R R®
for all £ € N. Passing to the limit as k — 400, by Corollary [1.3| we get that

/fdivo‘godx:—/ p-gdr
R™ R"

for any ¢ € C®(R™;R"), so that ¢ = V*f and hence f € S*?(R") according to
Definition We thus have that

IV e asrmy < Lim inf IV fiell o4, Rm)
for any open set A C R", since

Lo verae= tim [ oo fide <ol ey, it [Vl
for all p € C°(A;R™). Therefore, (3.23) follows by taking limits as k — +oo in (3.26).
Proof of (3.24). Inequality (3.24) follows by applying (3.23) with A = R"™ and

minimising the right-hand side with respect to » > 0.
Proof of (3.25). Now assume p € (1,&) and let ¢ = —"—. Let ¢ €

n—(1—a)p
C(R™; R") be fixed. Recalling inequality (N.59), since ¢ € La1(R";R") we have
that

ol i_al f] € LY(R™), || L1a|V f] € L'(R").
In particular, Fubini’s Theorem implies that
fhiap € L'(RR"), Liap-Vfe LR
Since div®p € Lp%l(R”) by Corollary , we also get that
fdivl_o = fdivtp € L'(R™).
Therefore, observing that I;_,¢ € Lip,(R"; R™) because
VIi_ap = V% € L®(R";R"™)

again by Corollary and performing a standard cut-off approximation argument, we
can integrate by parts and obtain

/ g0'[1,and:U:/ Loap-Vfde = —/ Fdivly apde = —/ Fdivie da.
Rn Rn Rn Rn
Therefore

/ oI oV fde= —/ fdivep dz

Rn Rn
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for all ¢ € C°(R™;R"), proving (3.25). In particular, notice that V*f € LI(R™;R")
by inequality (N.59). The proof is complete. O

For the case p = +00, we have the following immediate consequence of Lemma
and Proposition [3.12]
Corollary 3.16 (W'>°(R") C S*<(R")). Let a € (0,1). If f € W'(R"™), then
f e Se>®(R") with
MW [, o

3.27 V| poo(rn mry < 287
(3.27) [V fll oo (rs ey < (1= a)

IV F11G o0 (g oy L | oy

3.2. Two representation formulas for the a-variation. In this section, we
prove two useful representation formulas for the a-variation.

We begin with the following weak representation formula for the fractional a-

variation of functions in BVj..(R™) N L>°(R™). Here and in the following, we denote
by f* the precise representative of f € LL _(R"), see (3.1) for the definition.

loc

Proposition 3.17. Let a € (0,1) and f € BVi.(R") N L®(R"™). Then Vf €
L (R™R") and

(3.28) Le-vefde=Jim [ ¢-ho(xp,Df)de

for all p € Lip, (R™; R™).

Proof. By Proposition [3.14[(iii), we know that V*f € L _(R™R") for all a € (0,1).
By Theorem [3.1, we also know that fxp, € BV(R") N L>(R") with D(xp,f) =
Xs,Df + f*Dxpy for all R > 0. Now fix ¢ € Lip,(R";R") and take R > 0 such that
supp ¢ C Bp/s. By Theorem we have that

| xsaf diviode == [ oV (s de == [ o hoaD(xs,f) do.

Moreover, we can split the last integral as

(3.29) /Rn @I oD(XByf)dr = /Rn 2 hw(XfBRDf) dx + /Rn ¢ Iio(f*DxBy)dz.

For all z € Bg/s, we can estimate

[ Ii-a(f*Dxg) ()] =

/a fy) d%n_1<y)|

Br |z — y|"tom1 |y

- i /831 f*(Ry) i d%nil(y)

o " n+a—1
R y—2 vl
Wy,
S o |CC‘ n+a—1 ||f||Loo(Rn)
R (1= %)
2n+a71nwn
< - - oo n
S T ha | £l £oo ()

and so, since supp ¢ C Bg/z, we get that

onta=lpng.,
< T Ra HSOHLl(Rn;Rn) Hf”LOO(R")-

(3.30) ’ /R @ hoo(f"Dxsy,) dx
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Therefore, by (1.11]), Lebesgue’s Dominated Convergence Theorem, (3.29) and (3.30),
we get that

L fdiviede= lim [ xpfdivde= lm [ oo hoo(s,Df) de

and the conclusion follows. O

In the following result, we show that for all functions in bv(R"™) N L>(R™) one
can actually pass to the limit as R — +oo inside the integral in the right-hand side

of (3.28).

Corollary 3.18. If either f € BV (R") or f € bu(R") N L*(R™), then
(3.31) Vef=1L_oDf a.e inR"

Proof. If f € BV(R™), then (3.31]) coincides with (3.15) and there is nothing to prove.
So let us assume that f € bu(R™) N L>®(R™). Writing Df = v¢|Df| with vy € S*7*
|Dfl|-a.e. in R™, for all x € R™ we have

o vi(y) vi(y)
lim x%,(y) P = o for |[Df|-a.e. y # .

Moreover, for a.e. x € R", we have

vt (y)
|y _ x|n+a—1 — |y _ xln—&-oa—l

X5r(Y) e L,(R",|Df|) VR >0,

because Ij_o|Df| € LL.(R") by Lemma [1.4. Therefore, by Lebesgue’s Dominated
Convergence Theorem (applied with respect to the finite measure |Df|), we get that

REIEOO Loo(XB,Df)(x) = (Ii-aDf)(x) forall z € R™
Now let ¢ € Lip.(R™; R"). Since
o Lia(X5, D) < |l i-a| Df| € L'(R™) VR >0,

again by Lebesgue’s Dominated Convergence Theorem we get that

(3.32) Jim [ (DN de= [ o heaDfda.
The conclusion thus follows combining (3.28)) with (3.32). O

3.3. The inclusion BV® C W"! for 3 < a: a representation formula. In
Theorem , we proved that the inclusion BV* C W#! is continuous for 8 < a.
In the following result we prove a useful representation formula for the fractional (-
gradient of any f € BV*(R"), extending the formula obtained in Corollary

Proposition 3.19. Let o € (0,1). If f € BV*R"), then f € WFYR™) for all
B € (0,a) with

(3.33) VPf=1,3Df a.e inR"
In addition, for any bounded open set U C R"™, we have
(3.34) IVZ Fllorw;rmy < Cojaarsyu D FI(R™)
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for all 5 € (0,a), where Cy, oy is as in (1.13). Finally, given an open set A C R™, we
have
(3.35)

n —a Wn, Daf Ai'r a— Wn .o n+2/B—O[ _
”VﬁfHLl(A;R") < — ( : | )r T ( ) 1122y 7 6)

n+pf—a« a—p p
for all r > 0 and all § € (0, ), where wno = [|VXB, |0 @nrr), Wna = |Dxp, |[(R") =
nwy, and, as above, A, = {x € R™ : dist(x, A) < r}. In particular, we have

g 18
al’[’n 1—‘,—6—04&)1? 1wn7a0‘ (n + 26 - a) B
3.36) |V flloignirny < —2 :
(336) 77 lls ey < B A

Proof. Fix f € (0,«). By Theorem we already know that f € WAL(R"), with

DA f = VP f%" according to Theorem . We thus just need to prove (3.33), (3.34)
and (3.35)).

We prove (3.33). Let ¢ € C*(R™;R"). Note that I, sp € Lip,(R";R") is such
that divl,_gp = I,_pdivep, so that

B
a

Hpr y [DYFI(R™) <.

I odivIy_pp = I _oIo_pdive = I,_zdivp = divPyp

by the semigroup property (N.58)) of the Riesz potential. Moreover, in a similar way,
we have

L o|divl,_go| = L _o|la_pdive| < Lol sldive| = I_g|dive| € L. (R™).

By Lemma , we thus have that div®l,_gp = div? . Consequently, by Proposi-
tion [3.11] we get

/Rn fdiviode = /R Fdivela_spds = —/Rn Ln_sp - dD"f.

Since | D f|(R") < +oo, we have I,_g|D*f| € Li..(R™) and thus, by Fubini’s Theorem,
we get that

/ Lo pp-dD°f = / o Lo sD"f da.
Rn R’ﬂ
We conclude that
/ fdivﬁcpdx:—/ o IopgDfdx
]Rn Rn

for any ¢ € C°(R™;R"), proving (3.33)).
We prove (3.34). By (3.33), by Tonelli’s Theorem and by Lemma [1.4] we get

/U VP flde < /U Lo—| D fldz < C,, (1—arpu| D FI(R)

where C, o is as in (1.13).

We now prove (3.35) in two steps. We argue similarly as in the proof of (3.17).
Proof of (3.35), Step 1. Assume f € C°(R") and fix r > 0. We have

[V fldz = [ |La-sV"f|do

Hnitp-a // Vefl@+ ),
_l’_
Sy B ( (h<ry  |B|rA—e v

Vef(x+h)
2 AT ablda )
Al{nzry  |h|rtEe |x>
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We estimate the two double integrals appearing in the right-hand side separately. By
Tonelli’s Theorem, we have

|Vef(z+h)| / / dh
/ /{|h|<r} |h|nth— {|hl<r} Ve ) |p|nth—

dh
g / o
D771(4.) {Inl<r} |R|"*Fe
e [D°1(A)
a—f '
Concerning the second double integral, we apply [3, Lemma 3.1.1(c)] to each component
of the measure D*f € . (R™;R"™) and get

/{|hl>}wdh=(n+ﬂ—a)/+mwd Df(B,(x))

|h|n+67a QnJrﬁfaJrl - TTH»Bfa

for all x € A. Since
D*[(By() = [ x,(y) V" f(a+ ) dy
= — [ e +) Vs, () dy

= _Qn_a /]R” f(ZE + Qy) VQXBl (y> dy?
we can compute

+oo D f(B, D f(B,
(n—i—ﬁ—oz)/r Mdg_w
—(n+B-a) /:OO Qﬁlﬂ /Rn f(@ + 0y) Vx5, (y) dy do

+ rlﬁ/Rn f(x+7ry) Vs, (y) dy
:/n (W—(n+ﬂ—Q)L+mwdQ> Vexe (y) dy

for all x € A. Hence, we have

Ve f(x+h)
———~dh|d </
/A /{|h|>r} |h|rtB—a = fan
[z +ry)

S/ﬂ/ﬂleaXBl< )| dz dy

—l—(n—i—ﬁ—a)/ /:oo/n'f zﬁtf’y Vo, (9) da dody

_ Wna(n+28—a)
g
Thus (3.17) follows for all f € C°(R™) and r > 0.

Proof of (3.17), Step 2. Let f € BV*(R") and fix > 0. By Theorem [1.16| we
find (fi)ren C C°(R") such that f, — f in L*(R™) and | D f¢|(R™) — |D° f|(R"™) as

Vef(x+h) |
AL N
/{|h|>r} | h|nrh—e

_B.

11l my 7
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k — 400. By Step 1, we have that
(3.37)

IV? fellrasny <

1iha (MW, | DY (A, o Wna(n+28 —a -

n+p—a a—p3 5
for all £ € N. We have that
(3.38) (VP )L™ = (VP) L™ as k — +oo.

This can be proved arguing similarly as in the proof of (3.22) using (3.34). We leave
the details to the reader. Thanks to (3.38)), by [58, Proposition 4.29] we get that

V2 fllr ey < liminf (V7 fil| o aimen)-
Since
ID*fI(U) < liminf |D° | (©)
for any open set U C R™ by Proposition [1.11], we can estimate
limsup |D° fy](A,) < lim_[D* il (R") ~ iminf |D° fy (R \ 4,)

k—4o00

< IDaf!(R”) — |DYFI(R™\ Ay)

=D fI(A,).
Thus, (3.35) follows taking limits as k — 4oo in (3.37). Finally, (3.36) follows by
considering A = R" in (3.35) and optimising the right-hand side in r > 0. O

3.4. The inclusion S??(R") C S“?(R") for 0 < 8 < a < 1. We conclude with
the following result which can be derived from the theory of Bessel potential spaces.
However, we state it here since our distributional approach provides explicit constants
(independent of p) in the estimates that may be of some interest. The proof is very
similar to the one of Proposition and we leave it to the interested reader.

Proposition 3.20 (SPP(R") C S*P(R") for 0 < S <a <1). Let 0 < B < a <1 and
p € (1,400). If f € S*P(R"), then f € SPP(R™) with

a—f —B
NWp tn,1+8—a r o r
339) 19 sy < "0 (L0 i+ o o Wi |

for any r > 0 and any open set A C R", where A, = {x € R" : dist(z, A) <r} and
Cna > 0 is a constant depending only on n and a. In particular, we have

Mn1+8—a for o
(3.40) ||v6f||LP(R”;R”) < Cna Bla — ﬁ)(:f;ﬁ —a) vV fllﬁé(Rn;Rn HfHLP(]R" )

where ¢, o > 0 is a constant depending only on n and «. In addition, if p € (1, aiw)
and q = W then

(3.41) Vif=1,5Vf ae inR"
and VP f € LY(R™;R").
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4. Asymptotic behaviour of fractional a-variation as o — 1~

4.1. Convergence of V* and div® as a — 17. We begin with the following
simple result about the asymptotic behaviour of the constant p, , as o — 17.

Lemma 3.21. Let n € N. We have

Hn o _n /3 r (% + 1)

(3.42) — <72 \/> =:C) Va € (0,1)
l—-a 2 r (%)

and

(3.43) lim e =

a—1- 1 —

Proof. Since I'(1) =1 and I'(1 + z) =  T'(z) for = > 0 (see [13]), we have I'(z) ~ z~!
as x — 07. Thus as @« — 1~ we find

LD (e, n
i = 2075 ~a i (l—a)T ( + 1) — (1 —a)

r(52) 2
and (3.43) follows.
Since I is log-convex on (0, +00) (see [13]), for all x > 0 and a € (0, 1) we have
[(z+a)=T(1-a)z+alx+1)) <T(x) *T(x+1)*=2°T(z).

For z = 7 and a = O‘T“, we can estimate

+1

P(U5) < (5)r(E) (5

for all n > 2. Also, for n = 1, we trivially have I' (%7“) <T (%), because I' is increasing

on (1,+00) (see [13]). For z =1+ 152 and a = ¢, we can estimate

3 1—a\? 1-a 3l—a_/l1—a
r'i=)<{(1 I'(i1 <4/ = T )
<2>_<+ 2) (+ 2)—\/;2 <2>
We thus get
. T ( ptatl . SF nyq
Mn,a(l - a)_l — 204—1 T2 (1—042) <77 2 \/;(23)
r(5e+1) r(3)
and (3.42)) follows. 0

In the following technical result, we show that the constant C), , v defined in (1.13))
is uniformly bounded as a — 17 in terms of the volume and the diameter of the
bounded open set U C R™.

Lemma 3.22 (Uniform upper bound on C,, o as &« — 17). Letn € N and a € (3,1).
Let U C R™ be bounded open set. If Cy o p is as in (1.13), then

(3.44) Choav < (Wncln) (< n 1) max{l,‘w[]'}n +max{1,\/diam(U)}) = Kp,U,
n_ 1

2 n

where Cy, is as in (3.42).
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Proof. By (3.42), for all & € (1,1) we have

1 P, < nCy < nCy,

(n+a—-1)(1-a)  n+a—-1"n-1

Since t17 < max{l, \/f} for any t > 0 and o € (%, 1), we have

wy (diam(U)* < w, max{l, diam(U)}

and
n+aoa—1 l-a
( nw, )n‘U‘la_ nw, Ul(n+a—1)\ "
n+a—1 Cn+a-—1 nWy,
1
nwy, { U] }"
< I max 1,— 7 .
(n—3) “n

Combining these inequalities, we get the conclusion. U

As consequence of Corollary and Lemma [3.22, we prove that V* and div®
converge pointwise to V and div respectively as a — 17.

Proposition 3.23. If f € C}(R"), then for all x € R™ we have

(3.45) lirgli I.f(x) = f(z).
As a consequence, if f € C3(R") and ¢ € C*(R™;R"), then for all z € R™ we have
(3.46) 111{1_ Vef(z) = Vf(x), linll_ divp(z) = dive(z).

Proof. Let f € C}(R"™) and fix x € R™. Writing (1 in spherical coordinates, we find

Laf(@) = 2t [T 0 ok gu) dgdt o)

— 6—>0

Since f € C}(R"), for each fixed v € dB; we can integrate by parts in the variable g
and get

+oo Clta o — 0% o—+00 +oo - d
[Tt e eydo= [ faren)| == [T 0,0+ o) de

0=4
=T far ) - [0 0+ o)) do

Clearly, we have

lim 5‘“/8 f(z + 0v)ds#"*(v) = 0.
B1

6—0t

Thus, by Fubini’s Theorem, we conclude that
Mnul_a o (e n—1
4 I, =——— / d do.
(3.47) fla) == e [T [ @ os(e+ o) e ) de

Since f has compact support and recalling (3.43), we can pass to the limit in (3.47)
and get

lim, 1 f(x) m%é&/ (f(z + ov)) dopd ™ (v) = f(x),
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proving (3.45). The pointwise limits in (3.46) immediately follows by Corollary U

In the following crucial result, we improve the pointwise convergence obtained in
Proposition to strong convergence in LP(R™) for all p € [1, +0o0].

Proposition 3.24. Let p € [1,+00]. If f € C*(R") and ¢ € C*(R™;R"), then
lim_ HV“f - VfHLp(R’n;Rn) = O, lim_ HdiVa(p - dngDHLp(Rn) = 0.
a—1 a—1

Proof. Let f € C*(R™). Since

/ dy /1 do NWy,
_= nwn _— = s
B |y[Pte—t 00 l—a

for all x € R™ we can write
MW [ln,a o Vf(x
Vi) = 1) ay.
(1-—a)n+a-1) n+a—1Jp |y
Therefore, by (1.14)), we have

Ve =z S;ZN;Z — V@)

Lo </ Vi +y) — Vi) dy+/ Wdy>
B, R™\ By

= nta_ 1 |y|n+a—1 |y|n+a—1

for all z € R™. We now distinguish two cases.

Case 1: p € [1,+00). Using the elementary inequality |v + w[P < 2P~ (Ju[P + |w]|?)
valid for all v, w € R", we have
P

NWr
o F(z)— : d
/n Vi) (1-a)n+a—-1) Vile)| de
p—1 _ p
<« 2 e / Vi@+y) —Vf) dy| du
n+a—1Jr|J/B ly[rte—t
p—1 p

M / M dul dz.
n+a—1Jrn|Jrm\B, |y[Pte!

We now estimate the two double integrals appearing in the right-hand side separately.
For the first double integral, similarly as in the proof of Proposition [3.23], we pass
in spherical coordinates to get
(3.48)
/ Vi@+y) - Vi
By

|y[ret

Lay = [ e o) - Vi) ded )

i L (VEG o) = V@) dm

T 1l-a
e dod. ™!
[ b 2Vt o)) de (v)
for all z € R™. Hence, by (3.43), we find

. ,Un,a n—1
aligl* l1-—a)(n+a-—1) /631 (Ve +v) = V@) dA" ()
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1 n—1
= | (V) = V(@) A ()
and
: Hna ! -« n—1
aligl* (1-—a)n+a—-1) /BBl /0 ¢ "0V (w + ou)) dod A (v)

1 1
nwy, /331 /0 8@(Vf(3}’ T QU)) dQ d%n_l(v)

1
— o d n—1
o | (VI 0) = V(@) ™ (w)
for all x € R™. Therefore, we get
. Hn,a Vf(x + y) - Vf(fl?) _
alg?f n+a—1Jp |ly|nte—t dy =0

for all z € R™. Recalling (3.42), we also observe that

fna  IVf(@+y) — V() Vi +y) — V)
n+a—1 ly|nte-t ly|"

for all @ € (0,1), x € R" and y € B;. Moreover, letting R > 0 be such that supp f C
Bpr, we can estimate

/ IVf(z+y) = V()
By ly|™

<G,

dy < nwy ||V f || Lo mr; ey X By ()

for all x € R™, so that
\Y ~-V P
By ly|"
In conclusion, applying Lebesgue’s Dominated Convergence Theorem, we find

[ Yain-vie),

|y|n+a71

p

dr = 0.

. ,Un,oz
lim ————
a=l-n+a—1Jre

For the second double integral, note that
/ Vi+y) :/ V(f(z+y) - fl=) ,
R"\Bl Rn\Bl

|y|n+a—1 |y|n+oz—1

Y

for all z € R™. Now let R > 0. Integrating by parts, we have that
/ \ V(f(z+y) - f(z)) dy = (n+o— 1)/ y(flety) - fz) ,
Br\B1

|y[ et Br\By |y[rtactl Y
1 n—1
[,y () = f(@) a7 ()

- [, @ty ~ f@)d ()

for all z € R™. Since

JLLEEET TP
R™\Bg |y|n+a a R

| £1] oo )
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and
1 1 ann

et oy 1) 1) 7 (0) < S e
for all R > 0, we conclude that

/ VIE+Y) 0 i Vie+y) ,

R™\ B, ’y|n+a71 R—+o0 Br\B1 |y|n+a71
+y) - [(@)

3.49 _ 9 / y(f(z p
( ) (TL +a ) R\ B, |y‘n+o¢+1 Y

= [, o) = @) )

for all x € R". Hence, by Minkowski’s Integral Inequality (see [96, Section A.1], for
example), we can estimate

v .
| / I +ﬁ) ay
R\B; y[nte

[ lten-sol,
R"\ By

S(n+(x—1)‘

LP(R7;R") ‘y|n+a LP(R™)
] [ 1640 = fla7 )
dB; Lr(R")
n+2a—1
< —— 20wy || f| e @n)-

Thus, by (3.43), we get that

li Mn,oz
m —
asl-n+a—1Jr

p

dr = 0.

/ Vir+y) J
R”\B;

|y[rtat

Case 2: p = 4o00. We have

o NWn i, o
Vif(r) = (1-—a)(n+a—1) Vi)
Moo <sup / Vf(fl' + y) - Vf(l')

“n+a—1\ser|/B ly|ta-t

sup
zeR™

Vf(x+
/ ( 1y) a )
RM\B fy["tes
Again we estimate the two integrals appearing in the right-hand side separately. We
note that

A&“ﬁ@+W—VN@M%W%w—/.f@ﬂ@aw@+w»@¢%%wo

dy‘ + sup
rER™

_/ / 9,(V f(x + ov)) dod#™} (v),
0B
so that we can rewrite as
Vix+y) - Vf( N
/Bl |y|nte-t dy = 1—04/331/ 1— 0" 0,(Vf(x+ ov))dods#"*(v).

Hence, we can estimate

/ Vi(r+y) — Vi)

|y[nto—t

sup
xeR”

.
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= : a /831 /01(1 — 07 sup |90,(Vf(x + ov))| dods#" " (v)

1-— TzER™
1 2
o nwn ||v .]C||L<x>(IRn;R2n)7

<
-2
so that
. Hn,a
lim
a1 n+a — 1 zern

For the second integral, by (3.49) we can estimate

/ Vi(r+y) dy
R”\Bl

|y|rra—t

/ Vi@+y) - Vf(z)

|y|n+a71

dy|:0.

sup dx

r€eR™

<(n+a-—1)sup
rER™

JERLCET R dy‘
R7\ By

|y |t

b [ 1) - Sl )|
x€R™ | JOB1
n+2a—1

Thus, by (3.43), we get that

lim
a—1"nn —I— o — 1 zER™

We can now conclude the proof. Again recalling (3.43), we thus find that
lim [|V*f =V f]| e (rnirn)
a—1

/ Vi(z+y) dy‘ o
R"\B1

|y|n+a—1

NWy o

(I1-—a)(n+a—1)

< lim

a—1—

Vf

-

LP(R™;R")

MWy oy,

Vfllrewngny li —1]=0
IV llzece R <(1—a)(n+a—1) )

83

for all p € [1,+00] and the conclusion follows. The LP-convergence of div®y to dive

as o — 1~ for all p € [1, +00] follows by a similar argument and is left to the reader.

O

Remark 3.25. Note that the conclusion of Proposition still holds if instead one
assumes that f € S(R") and ¢ € S(R™;R"). We leave the proof of this assertion to

the reader.

4.2. Weak convergence of a-variation as o — 17. In Theorem below,
we prove that the fractional a-variation weakly converges to the standard variation as

a — 17 for functions either in BV(R") or in BVj,.(R") N L*(R™). In the proof of

Theorem we are going to use the following technical result.

Lemma 3.26. There exists a dimensional constant ¢, > 0 with the following property.

If f € L=®(R™) N BVige(R™), then
(3.50) IV Fllr Bz < e (RCIDFI(Bsr) + B || f || o (em)
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for all R >0 and o € (1, 1).
Proof. Since I'(z) ~ 27" as x — 07 (see [13]), inequality (3.50) follows immediately

combining (3.20) with Lemma [3.21] O

Theorem 3.27. If either f € BV(R") or f € BVio.(R™) N L>®(R"), then
Df =~ Df asa—1".

Proof. We divide the proof in two steps.
Step 1. Assume f € BV (R"). By Theorem we have

/(p-Vafdx:—/ fdivipdr
Rn R™

for all ¢ € Lip.(R™;R"). Thus, given ¢ € C*(R";R"), recalling Proposition and
the estimates (1.12) and (3.44)), by Lebesgue’s Dominated Convergence Theorem we
get that

im [ ©-Vefdr=— lim fdivagod:v:—/ fdiwdx:/ o-dDf.
Rn Rn Rn

a—1~ JR» a—1-

Now fix ¢ € CO(R™;R"). Let U C R" be a fixed bounded open set such that supp ¢ C
U. For each £ > 0 sufficiently small, pick ¢. € C2(R™; R") such that ||¢—t. || oo @nrn) <
e and supp ¢ C U. Then, by (3.16), we can estimate

o Vofde— [ -dDF| <l = Vellumnan ( [ 1V2F1dw + DR
|[ vevosdo= [ v.-anf|
R~ Rn
<e(1+ Crav) IDFIR")
|[ veverdo= [ v.-anf|
Rn Rn
for all @ € (0,1). Thus, by the uniform estimate (3.44) in Lemma [3.22] we get
LoeVetd— [ o-dDf| < e+ m) IDFIR?)

and the conclusion follows passing to the limit as ¢ — 07.
Step 2. Assume f € BVj,o(R™) N L®(R"). By Proposition [3.14{(iii), we know that

Df = Vo fZ" with Vo f € L] .(R";R"). By Proposition [3.24] we get that
@-V“fdx—/ o-dDf
R R"

for all ¢ € C?(R™R"). Now fix ¢ € C°(R™R") and choose R > 1 such that
suppy C Bgr. For each ¢ > 0 sufficiently small, pick ¢. € C?(R";R") such that

¢ — Vel oo @nrny < € and supp . C Bg. Then, by (3.50)), we can estimate

R

(3.51) lim

a—1~

lim
a—1—

< £l oo mmy ali}r?i | div®e — divel| L1 (gn;rny = 0

go-Vafdx—/ o-dDf
Rn

< [l = vell oo nsmny (IVF L (Brsrey + |DFI(Br))

Rn

+’/Rn¢€-vo‘fdx—/Rn¢g-de‘



4. ASYMPTOTIC BEHAVIOUR OF FRACTIONAL a-VARIATION AS a — 1~ 85
< €Can (HfHLOO(R") -+ |Df|(BgR>>

¥ An¢€~vafdx—4nwe-d0f‘

for all a € (3,1). We thus get

3529 lim|[ o vide— [ o dDf| < eciR" (Iflme +1DS|(Bon)
a—1 R Rn
and the conclusion follows passing to the limit as e — 07. U

We are now going to improve the weak convergence of the fractional a-variation
obtained in Theorem by establishing the weak convergence also of the total frac-
tional a-variation as o — 17, see Theorem below. To do so, we need the following
preliminary result.

Lemma 3.28. Let p € 4 (R™;R"™). We have (I,pu) L™ — pas a — 07,

Proof. Since Riesz potential is a linear operator and thanks to Hahn—Banach Decom-
position Theorem, without loss of generality we can assume that g is a nonnegative
finite Radon measure.

Let now ¢ € C}(R") and let U C R™ be a bounded open set such that supp ¢ C U.
We have that ||l.|¢]||re@n) < Knull@]lremn) for all a € (0,1) by Lemma and
Lemma . Thus, by , Fubini’s Theorem and Lebesgue’s Dominated Conver-

gence Theorem, we get that

lim/ o lypdr = lim ]agod,u:/ wdp.
Rn n Rn

a—0t a—0t JR

Now fix ¢ € CO(R™;R"). Let U C R" be a fixed bounded open set such that supp ¢ C
U. For each ¢ > 0 sufficiently small, pick ¢. € C}(R™; R") such that ||[o—t. || oo @nrn) <
e and supp . C U. Then, since u(R") < +00, by Lemma and by (3.44)), we can

estimate

‘/ solaudx—/ P dp
R™ R™

<| [ et = [ veds| + ol +en0)

IN

| dtedn— [ v du‘+€(1+0n,a,U)M(R”)
Rn Rn

IN

[ Labedn— | wadu|+e<1+w>u<w>
Rn R’"/

for all a € (0, %), so that

< 6(1 + IimU) M(Rn)

lim sup ‘/Rngpfa,udx—/wgod,u

a—0t

The conclusion thus follows passing to the limit as ¢ — 07. U
Theorem 3.29. If either f € BV (R") or f € bu(R") N L*(R™), then
(3.53) |D*f| = |Df| asa—1".
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Moreover, if f € BV(R"), then also
(3.54) Jim [ D?FI(R") = [DF(R").

Proof. We prove (3.53) and (3.54) separately.

Proof of (3.53). By Theorem we know that D*f — Df as « — 17. By [58,
Proposition 4.29], we thus have that

(3.55) [DF|(4) < liminf [ D°](4)

for any open set A C R"”. Now let K C R" be a compact set. By the representation

formula (3.31) in Corollary 3.18] we can estimate
[DFI(K) = [V fllzracrny < Mol DIl = (ol D] Z7)(K).
Since |Df|(R™) < +o0, by Lemma and [58, Proposition 4.26] we can conclude

that
limsup |[Df|(K) < hmsup(fl o D L") (K) < |Df|(K),

a—1— a—1—

and so (3.53)) follows, thanks again to [58, Proposition 4.26].
Proof of (3.54). Now assume f € BV(R"). By (3.17) applied with A = R™ and

r =1, we have

| D fI(R?) <

n+aoa-—1 11—«

By (3.43)), we thus get that

(3.56) lim sup | D*f|(R") < [Df[(R").

a—1—

Thus (3.54) follows combining (3.55)) for A = R™ with (3.50]. O

Note that Theorem and Theorem in particular apply to any f € Wh1(R").
In the following result, by exploiting Proposition|3.15| we prove that a stronger property
holds for any f € WH(R") with p € [1, +00).

Theorem 3.30. Let p € [1,+00). If f € WIP(R"), then
(357) ali)r{l_ Hvaf - VfHLp(RTL;Rn) =0.

NWy, fn o D R" n+2a—1
p (‘ SR | ||fHL1<Rn>)-

Proof. By Proposition we know that f € S“P(R") for any « € (0,1). We now
assume € (1, +00) and divide the proof in two steps.

Step 1. We claim that
(3.58) O}H{L IV fll o @n;rey = [V [l 2o @n; 7).
Indeed, on the one hand, by Proposition [3.24], we have
(3.59) / p-Vfdr = —/ fdivpdr = — lim / fdivieodr = hm w-Vfdx
R™ R™ a—1— n R"
for all ¢ € C°(R";R™), so that

/ o Vide <ol lim inf ||V £ ] o

LPT (R R o
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for all p € C°(R™;R™). We thus get that
(360) ||VfHLP(Rn;Rn) S halgi.‘[_lf ||VafHLP(Rn;Rn).
On the other hand, applying (3.23) with A = R" and r = 1, we have
nwn fina [ |IVflle@nrny n+2a—1
(e ).

\Via nRgn)y <
| f||LP(R,R)—n+a_1 l -« «

By (3.43)), we conclude that
(361) hm Sup HvafHLP(]Rn;Rn) S ||Vf”Lp(Rn;Rn).

a—1-

Thus, follows combining and (3.61).

Step 2. We now claim that
(3.62) Vef —=Vf in LP(R";R") asa— 1.
Indeed, let ¢ € L%(R”;Rn). For each ¢ > 0, let 1. € C°(R™;R") be such that

v — goHLpr%l(Rn;Rn) < e. By (3.59) and (3.58), we can estimate

lim sup
a—1—

< lim sup
a—1—

/ <,0~Vo‘fdx—/ p-Vfdx
R™ R"

Anwa-vafdx—én¢€-Vfdx

+ [ o=l IV flde+ [ g =0l [Vl da

<e (alg? IV f o mrs mny + ||Vf||LP(R";R")>

= 2e |V f| o @n;rm)
so that (3.62)) follows passing to the limit as ¢ — 0.

Since LP(R™;R™) is uniformly convex (see [19, Section 4.3] for example), the limit

in (3.57) follows from (3.58) and (3.62) by [19, Proposition 3.32], and the proof of the

case p € (1,4+00) is complete.

For the case p = 1, we argue as follows (we thank Mattia Calzi for this simple
argument). Without loss of generality, it is enough to prove the limit in (3.58) for
any given sequence (ay)ren such that oy, — 17 as k — +o00. By (3.54), the sequence
(IIV f|| L1 (Rn; 7)) ken is bounded for any f € W'(R") and thus, by Banach-Steinhaus
Theorem, the linear operators V% : WhI(R") — L!(R™; R") are uniformly bounded (in
the operator norm). The conclusion hence follows by exploiting the density of C2°(R")
in W1(R") and Proposition [3.24] O

For the case p = +00, we have the following result.
Theorem 3.31. If f € Wh(R"), then

(3.63) Vef—=Vf in L=(R"R") asa— 17
and

(364) HVf”Loo(Rn;Rn) S lggir_lf HvafHLOO(Rn;Rn),
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Proof. We argue similarly as in the proof of Theorem [3.30] in two steps.
Step 1: proof of (3.63). By Proposition and Proposition we have
(3.65) lim / ¢-Vfdr=— lim fdivtedr = —/ fdivpdr = / 0-Vfdx
a—1— JRn a—1— JR» R™ R
for all ¢ € C°(R";R™), so that
/ (Yo Vf dx S HSOHL:[(RTL;RTL) lim lI}f ||Vo‘fHLoo(Rn;Rn)
Rn a—1

for all o € C°(R™;R™). We thus get (3.64).
Step 2: proof of (3.64). Let ¢ € L*(R™;R™). For each € > 0, let ¥. € C>°(R™; R™)
be such that |[¢). — ¢||L1(gn. rny < €. By (3.65) and (3.27), we can estimate

/go-V‘”‘fdx—/ o Vfde
Rn R™

lim sup
a—1-

< lim sup
a—1—

/Rn@bg-vo‘fdx—/ﬂ%n@ba-Vfdx

[ o= wlvflde+ [ 1= vllVflda

<e (hm sup ||V fll oo mn;rny + ||Vf||L°°(1R”;R”)>

a1~

<e(m+ DIV Ffllze@nrn
so that follows passing to the limit as ¢ — 0T, U
Remark 3.32. We notice that Theorem and Theorem in the case f =

xe € BV(R") with E C R" bounded, and Theorem [3.30, were already announced
in [91, Theorems 16 and 17].

4.3. I'-convergence of a-variation as o — 17. In this section, we study the
['-convergence of the fractional a-variation to the standard variation as @ — 1.
We begin with the I'-lim inf inequality.
Theorem 3.33 (I'-liminf inequalities as o« — 17). Let Q C R™ be an open set.
(1) If (fa)aco1) C Lio(R™) satisfies SUDae(0,1) | fallpe@mny < 400 and fo — f in
LL.(R™) as a — 17, then

loc
(3.60) DS < tim nf DL,
(6) If (fa)aco1) C LY(R™) satisfies fo — f in L*(R™) as a — 17, then (3.66) holds.

Proof. We prove the two statements separately.

Proof of (i). Let ¢ € C(Q;R") be such that [[¢]|L~@zn < 1. Since we can
estimate

/ fadiviodr — / fdivpdx
Rn Rn

< [ o= flldivelde + [ |falldive - dive| do

< [|diveol| poe s mm) fo = fldz + ( sup || fallze@n ) |divie — diviol ),
supp ¢ a€e(0,1)

by Proposition we get that
/ fdivpds = lim / fadivip de < lim inf | DY f](Q)
Rn a—1— JRn a—1—
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and the conclusion follows.

Proof of (ii). Let ¢ € CX(;R") be such that [|¢||L~@rm < 1. Since we can
estimate

/ fo‘divagodac—/ f divp dz §/ |fo — 1l \divg0|dx+/ | fa| |[div®e — dive| dx
R" Rn Rn Rn

< Nldivel| @ | fa = flli@ny + divee — dive]| Lo @) [| fall 2 gy,
by Proposition we get that

/ fdivpdr = lim / fadiviodx <liminf |D“f,|(£2)
Rn a1~ Jrn a—1-

and the conclusion follows. O

We now pass to the I'-lim sup inequality.
Theorem 3.34 (I"-lim sup inequalities as o — 17). Let Q C R™ be an open set.
(i) If f € BV(R") and either 2 is bounded or @ = R", then

(3.67) limsup |D* () < [Df|().

a—1—

(i7) If f € BVioe(R™) and §2 is bounded, then
[ (Lige) -limsup [D*f[(Q) < [Df|(9).

a—1-
In addition, if f = xg, then the recovering sequences (fa)ac(o,) in and can be
taken such that fo = xg, for some measurable sets (Eq)ac(o,1)-

Proof. Assume f € BV(R™). By Theorem we know that |Dof| — |Df| as
a — 17. Thus, by [58, Proposition 4.26], we get that
(3.68) lim sup | D° £1(€2) < limsup | D° f(@) < | DF|(©)

a—1— a—1~
for any bounded open set Q@ C R™. If Q@ = R", then (3.67) follows immediately
from (3.54). This concludes the proof of .

Now assume that f € BVi..(R™) and 2 is bounded. Let (Rg)reny C (0,+00) be a
sequence such that Ry — +oo as k — 400 and set fy = fxp, for all k € N. By
Theorem 3.1, we can choose the sequence (Rj)ren such that, in addition, f, € BV(R")
with Df;, = X%Rk Df + f*Dxp,, for all k € N. Consequently, fr — f in L (R") as
k — +oo and, moreover, since 2 is bounded, |D f|(©2) = [Df|(2) and |Dfi|(02) =
|Df|(0%2) for all k € N sufficiently large. By (3.68)), we have that
(3.69) lim sup | D* f3.|(Q) < |Dfi|(Q)

a—1—
for all & € N sufficiently large. Hence, by [16, Proposition 1.28], by [28, Proposi-
tion 8.1(c)] and by (3.69), we get that

(L) -imsup |D° £I(€) < lim nf ((L4,) -Tim sup |D* ] (©)
——+o00

a—1— a—1—

< lim |Dfi|(€) = [DfI(€).
—+00
This concludes the pI'OOf Of " .
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Finally, if f = xg, then we can repeat the above argument verbatim in the metric
spaces {xr € L'(R") : F C R"} for (i) and {xr € L{.(R") : F C R"} for (ii) endowed
with their natural distances. U

Remark 3.35. Thanks to (3.67), a recovery sequence in Theorem is the constant
sequence (also in the special case f = xg).

Combining Theorem and Theorem [3.34[(ii), we can prove that the fractional
Caccioppoli a-perimeter T'-converges to De Giorgi’s perimeter as @ — 1~ in L] _(R"™).
We refer to [5] for the same result on the classical fractional perimeter.

Theorem 3.36 (I'(L{..) - lim of perimeters as o — 17). Let Q C R" be a bounded open
set with Lipschitz boundary. For every measurable set E C R™, we have

D(L) - lim [Dxs|(©) = P(E; Q).

Proof. By Theorem [3.33(i), we already know that
I(L; )—lim}nf |D*xg|(Q) > P(E;Q),
a—1—

loc

so we just need to prove the T'(LL )-limsup inequality. Without loss of generality,

we can assume P(E;Q) < +oo. Now let (Eg)ren be given by Theorem [3.4] Since

XE, € BVioc(R") and P(Ey;09) = 0 for all k& € N, by Theorem we know that
[(L;..)-limsup |[D%xg, |(Q) < P(Ey; Q)

loc
a—1—

for all k¥ € N. Since xg, — xz in LL.(R") and P(E;Q) — P(E;Q) as k — 400,

loc

by [16, Proposition 1.28] we get that
T (Lige) - lim sup | D*x () < lim inf (D(Lj,e) - limsup [ Dy |(€2))
—+00

a—1— a—1—

< lim P(E; Q) = P(E;Q)

~ k—+oco

and the proof is complete. 0]

Finally, combining Theorem and Theorem [3.34, we can prove that the
fractional a-variation I'-converges to De Giorgi’s variation as o — 17 in L'(R").

Theorem 3.37 (I'(L') - lim of variations as a — 17). Let  C R" be an open set such
that either ) is bounded with Lipschitz boundary or Q0 = R™. For every f € BV (R"™),
we have

D(LY) - lim [D*/](9) = |DfI(@)

Proof. The case 2 = R™ follows immediately by [28, Proposition 8.1(c)] combining

Theorem with Theorem . We can thus assume that €2 is a bounded open
set with Lipschitz boundary and argue similarly as in the proof of Theorem 3.36] By

Theorem [3.33((ii), we already know that
(L) -lim inf [D*f|(2) > [Df[(%),
a—1"

so we just need to prove the I'(L')-lim sup inequality. Without loss of generality, we
can assume |Df[(Q) < +oo. Now let (fy)ren € BV(R") be given by Theorem 3.6,
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Since | D fx|(0€2) = 0 for all £ € N, by Theorem we know that
D(L')-limsup |D* fi () < [Dfil(Q) = |Dfil(Q)

a—1—

for all £ € N. Since f — f in L*(R") and |[D*f|(Q) — |D*f|(Q) as k — oo,
by [16, Proposition 1.28] we get that

D(LY)-lim sup [ D* £|(62) < lim inf (T(L!)-limsup |D° f,](©)
—+o0

a—1— a—1-
< li =
< I |DAI(®) = DFI(©)
and the proof is complete. 0

Remark 3.38. Thanks to Theorem we can slightly improve Theorem [3.36] In-
deed, if xg € BV(R™), then we also have

D(L')- lim [D°xgl(©) = Dyl (©)
for any open set (2 C R" such that either €2 is bounded with Lipschitz boundary
or  =R"
5. Asymptotic behaviour of fractional f-variation as § — o~

5.1. Convergence of V7 and div’ as f — a. We begin with the following simple
result about the L'-convergence of the operators V7 and div” as § — o with a € (0,1).

Lemma 3.39. Let a € (0,1). If f € WY(R™) and ¢ € W*H(R™;R"), then
(3.70) lim ||V f — Vf|l L1 gnzn) = 0, lim ||div®p — div¥p]| 1 (@n) = 0.
B—a~ B—a~

Proof. Given 3 € (0, ), we can estimate

LIV F(@) = Vo F @) d < s = il [l e
1 1

£(y) = f(@)]
T A S el e R

Since the I' function is continuous (see [13]), we clearly have

—|dydz.

I - w1y = 0.
6_1)127 |’un’ﬂ :un,al [f]W L(R™) 0

Now write
1 1

/‘/\ﬂw—fwﬂ B

wlrnly =zt |ly—zf [y -zl

:/ /Iﬂw—f@N| 11
nJrefy =zt |y =P |y —af

F) = f@)]] 1 |
O et |\y—x\ﬂ‘1y—x1a

On the one hand, since f € W*!(R"), we have

If(y)—f($)!| 11
ly—z  ly—=zf  |y—x

dy dx

Xo,)(|y — z|) dy dx

X[ +o0) ([y — ) dy dz.

X(o,l)(|y — )
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fly)— f(z 1 1
:‘ ) (@)l < - ]y—xW)X(O’l)(‘y_xD

ly —al* \ly — |

MW = F@L ) € 1L (')

|y — x|t

and thus, by Lebesgue’s Dominated Convergence Theorem, we get that

1
hm/ / " 5~
f—a Jrn Jre \y—x\” ly—zl® |y —zl*
On the other hand, since one has

|f(z +h) — flz+h) — f(z)]
L W ana / / dhd
Flwoseny = /n/{|h|<1} W"*B T Jpe {|h\>1} b5 !

< oo + W}Hﬁ [ 15+ 1)l +17(@)] dedh

Xon(ly —x|) dydx = 0.

2nwn

= [flwermn) + 1l e ey

for all 5 € (0, «), we can estimate

|f(y) — | ‘ 1
|y_$|” |y—x|5 |y_
1f(y) — f(2)] 1 1

R <|y Py - $|a> X[1.400) |y — )

_1I) = @)

ly — z|t? X[1,400) ([y — )

/)~ @)

e Xi1+00) |y — z]) € L}, (R*")
ly — x|

X[1400) (| — 2])

for all g € (%, 04) and thus, by Lebesgue’s Dominated Convergence Theorem, we get
that

. fly) — f(@)] | 1
lim / / | — X400 (ly —2|)dydx =0

and the first limit in (3.70]) follows. The second limit in (3.70) follows similarly and we
leave the proof to the reader. O

Remark 3.40. Let a € (0,1). If f € W*rSH(R") and ¢ € WotsH(R") for some
€ (0,1 — ), then, arguing as in the proof of Lemma [3.39] one can also prove that

. o o . . 5 -« o
Blgih IVPf = VO fll@nimm) = 0, /3152+ [divZe — div®ol| 1 @n) = 0.

We leave the details of proof of this result to the interested reader.

If one deals with more regular functions, then Lemma can be improved as
follows.
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Lemma 3.41. Let a € (0,1) and p € [1,+00]. If f € Lip.(R") and ¢ € Lip.(R™; R"),
then

(371) hmi ||V5f - Vaf||LP(Rn;Rn) = 07 hmﬁ ||d1Vﬁg0 - diVa(p”Lp(]Rn) =0.
B—a B—a

Proof. Since clearly f € W*H(R"™) for any « € (0,1), the first limit in for the
case p = 1 follows from Lemma [3.39. Hence, we just need to prove the validity of
the same limit for the case p = +o0, since then the conclusion simply follows by an
interpolation argument.

Let § € (0,«) and € R™. We have

a |f(z) = f(y)]
Ve f(x) = VP (@) < |ins — tinal /Rn Wdy
|flz) = flyl| 1 1
n — d
o fo e (e |
= |:un75 - ,un,oz‘ /R" |f<x TZTT)L+_O‘ f<x)’ dz
[flx+2)— fl@)]] 1 1
+,un,ﬁ/n |Z|n |Z’6 — |Z’a dz.
Since
|f(z+2) = fz)] Lip(f) 2| f | oo @y
/n ’Z‘n+a dz S /{|ZS1} ’Z‘n+a71 dz + ‘/{|Z|>1} |Z’n+a dz
f;nw”<Luxf>%_2nfnUwRq)
11—« «
and
fla+2)—fz)]| 1 1 Lip(f)( I )d
/" |2[" EERNP T = /{z|g1} 2t 2l 2P

+/ [Faly (R)< B )dz
(=113 |z|” 2P 2|

B Lip(f) 2| f]] oo )
< 2= e (it gy + 52,

for all 5 € (%, 04) we obtain

IV°f = VP Fll e unsny < Cna max{Lip(£), [|f | o) } (I1tnp = tinal + (@ = B)),

for some constant ¢, , > 0 depending only on n and «. Thus the conclusion follows
since fin, 5 — fna as f — a~. The second limit in (3.71)) follows similarly and we leave
the proof to the reader. O

5.2. Weak convergence of $-variation as 3 — a~. In Theorem below, we
prove the weak convergence of the -variation as [ — a~, extending the convergences
obtained in Theorem and Theorem
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Theorem 3.42. Let o € (0,1). If f € BV*(R"), then
D°f ~D%f and |DPf|—|D%f| asfB — a .
Moreover, we have

(3.72) i [D7fI(R") = |D°f|(R").

Proof. We divide the proof in three steps.

Step 1: we prove that D?f — D®f as f — a~. We argue similarly as in Step 1 of
the proof of Theorem [3.27, By Proposition [3.19] we have

/ w‘Vﬁfd:z::—/ fdivPodz
n Rn

for all 8 € (0,a) and ¢ € Lip,(R";R™). Thus, thanks to (3.71) in the case p = oo, we
get

lim/ 0 VP fdr = — lim fdiv%dx:—/ fdiv%pdx:/ ©-dD" f.
- Jrn p—a~ JRn Rn Rn

B—a

Now fix ¢ € COYR™R"). Let U C R"™ be a fixed bounded open set such that
suppp C U. For each ¢ > 0 sufficiently small, pick ¢. € Lip.(R™;R") such that

| — Vel oo ®nrry < € and supp ). C U. Then, by (3.34), we can estimate
Lo Vo= [ edDf| <l = ulliememn ([ 1V 51do+ D7 fIRY)
| [ v vipdo = [ w.eapey
R R”
< e(1+ Cna-atpv) [Df|(R")
| [ veovegde [ vo-apy]
Rn Rr
for all 5 € (0, ). Thus, by the uniform estimate (3.44) in Lemma [3.22, we get
go-Vafdx—/R o-dDf

and the conclusion follows passing to the limit as e — 0.

Step 2: we prove that |D? f| — |D®f| as 3 — a~. We argue similarly as in the first
part of the proof of Theorem Since DA f — D*f as B — a~ as proved in Step 1
above, by [58, Proposition 4.29], we have that

(3.74) ID°71(4) < lip inf | D°1|(4)

(3.73) lim

—a

<e(l+ rny) |DF|(RY)

R"

for any open set A C R”. Now let K C R"™ be a compact set. By the representation

formula (3.33) in Proposition [3.19] we can estimate
D FI(E) = V7 fllo s zey < IHamg| D flllr () = (Tap| D f|27)(K).
Since |D°f|(R™) < 400, by Lemma and [58, Proposition 4.26] we conclude that
(375)  limsup [ DP|(K) < limsup (I_s| D" f| 2" (K) < |D*£|(E6).
B—a~ -

B—a

The conclusion thus follows thanks to [58, Proposition 4.26].
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Step 3: we prove (3.72). We argue similarly as in the proof of (3.53). By (3.35)

applied with A = R"™ and r = 1, we have

Hn, 14— nwny, o n Wn,a (77, + 26 - Oé)
DA f|(R") < =2 D*f|(R o
D7) < Lntsrce (e ey 22RO gy
By (3.43)), we get that
(3.76) limsup [D? f|(R") < [D*f|(R").
B—a~

Thus, follows combining for A = R" with (3.76). U

In analogy with Theorem [3.42] from Proposition we can extend the validity of
Theorem and deduce the following result. The proof is very similar to the one of
Theorem and is thus left to the reader.

Theorem 3.43. Let a € (0,1) and p € [1,+00). If f € S¥P(R™), then
(3.77) Bl_i}g_ IV?f =V fll o@n ) = 0.

5.3. I'-convergence of [-variation as § — «a~. In this section, we study the
['-convergence of the fractional §-variation as  — o, partially extending the results
obtained in Section [4.3]

We begin with the I'-lim inf inequality.

Theorem 3.44 (I'-liminf inequality for § — a~). Let o € (0,1) and let Q@ C R™ be
an open set. If (f5)pe,.0) C L' (R™) satisfies fg — f in L'(R™) as B — o=, then

(3.78) |D*£| () < 1}3m inf | D f5](9).

—a
Proof. We argue similarly as in the proof of Theorem [3.33(ii). Let p € C°(€;R™) be
such that ||¢]|ze@rr) < 1. Let U C R™ be a bounded open set such that supp ¢ C U.

By (1.12)), we can estimate

’/ fgdivﬁgpdx—/ fdivipdr
Rn Rn

< [ 1fs = 1ol do+ [ 1f]1div7e — dive| do

< Copulldive]| oo @ rmy|fs = fllor@n) + /R [fI1divp — diviep| do

for all B € (0,a). Since divPp — div®y in L°(R") as 3 — a~ by (3.71), we easily
obtain

lim [ |f]|divPp — div¥p| dz = 0.
Rn

B—a~

Hence, we get

/ Fdivipde = lim [ fsdivipde < liminf |D? f5)(Q)
R™ Jé] B—a~

—a~ JR?

and the conclusion follows. O

We now pass to the I'-lim sup inequality.
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Theorem 3.45 (T'-limsup inequality for 8 — a7). Let a € (0,1) and let Q C R™ be
an open set. If f € BV*(R™) and either Q) is bounded or 2 = R"™, then
(3.79) limsup |[D° £|(Q) < |D*£|(Q).
B—a~
Proof. We argue similarly as in the proof of Theorem [3.34] By Theorem [3.42] we know

that |DPf] — |D®f| as B — a~. Thus, by [58, Proposition 4.26] and (3.72)), we get
that

(3.80) limsup [ D? £](©2) < limsup| D £|() < | D £|()
B—a~ B—a~
for any open set 2 C R™ such that either € is bounded or 2 = R". O

Corollary 3.46 (I'(L')-lim of variations in R" as 3 — a~). Let o € (0,1). For every
f € BV*R"), we have

L(LY) "~ Jim DY fI(R") = |D* f|(R").

In particular, the constant sequence is a recovery sequence.

Proof. The result follows easily by combining (3.78)) and (3.79) in the case @ =R™. O
Remark 3.47. We recall that, by Theorem 1.57, f € BV*(R") satisfies |D*f| <
™ if and only if f € S*Y(R"). Therefore, if f € S*(R"), then |D®f|(02) = 0
for any bounded open set  C R"™ such that Z"(0Q) = 0 (for instance, 2 with
Lipschitz boundary). Thus, we can actually obtain the I'-convergence of the fractional
[-variation as 8 — «~ on bounded open sets with Lipschitz boundary for any f €

S*HR™) too. Indeed, it is enough to combine (3.78) and (3.79) and then exploit the
fact that |Df](092) = 0 to get

F(Ll)-ﬁlggf [DPF1() = [D*f1()

for any f € S®(R").



CHAPTER 4

Asymptotic behaviour of fractional variation as o — 07

1. The space HS*!

1.1. Definition of HS*!(R"). Following the classical approach of [99], for a €
[0, 1] we let

HS™ (R") = (I - A)% (H'(R"))
={fe H'R"): (I - A3 f € H'(R")}
be the (real) fractional Hardy—Sobolev space endowed with the norm
[ llimserany = 1= A)E flimny, € HS™(R").

In particular, HS*(R™") = H'(R") coincides with the Hardy space and HS™!(R")
is the standard (real) Hardy—Sobolev space. As remarked in [99, p. 130], we can
equivalently define

endowed with the (equivalent) norm

1 fllzrse @ny = [l + [(=2)% flm@ny, fe HS(R").
In particular, the operator
(-=A)2: HS*'(R") — H'(R")
is well defined and continuous.

1.2. Approximation by test functions. For the reader’s convenience we briefly
prove the following density result. Here and in the following, for simplicity we let

LA(R™) = {f e L'(R") : /R Flx) do = o}

be the space of integrable functions with zero mean.

Lemma 4.1 (Approximation by C>° N L} functions in HS*!'). Let o € (0,1). The set
C2(R™) N L{(R™) is dense in HS™'(R").

Proof. Since the set Sy(R") is dense in H'(R™) by [97, Chapter III, Section 5.2(b)],
we have that the set (I — A)™2(Sy(R")) is dense in HS*!(R"). Since clearly (I —
A)72(Sp(R™)) C Sp(R™), we thus get that the set So(R") is dense (and embeds contin-
wously) in HS*!(R™). Since the set C2°(R™)N LY (R™) is dense in So(R™), the conclusion
follows. O

97
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Exploiting Lemma , for a € (0,1) we can equivalently define
HS“'(R") = {f € H'(R") : V*f € H'(R";R")}
endowed with the (equivalent) norm
I fllser@ny = [ fllar@n) + 1V Fllaignmey,  f € HSMH(R").
Indeed, if f € O(R™) N Li(R™), then we can write V*f = R(—A)? f, so that
(4.1) e (=22 Fllmeny < IVl eizny < eall (A)2 fll gy

for all f € C°(R") N L{(R™) thanks to the H'-continuity property of the Riesz trans-
form and the fact that R? = —I on H'(R"), where ¢, > 0 is a dimensional constant.
By Lemma (4.1} the validity of (4.1) extends to all f € HS%!(R") and the conclusion
follows.

As a consequence, note that HS*!'(R™) ¢ S*!(R") for all & € (0, 1) with continuous
embedding. We also have the following result.

Lemma 4.2. [f0 < < a <1, then

(4.2) H'(R™) N W*HR") ¢ HS*'(R")

and

(4.3) HS*Y(R™) ¢ H'(R™) N WH(R™).

As a consequence, we get

(4.4) H'®RYN (J WR"Y = |J HS*(R").
a€(0,1) ae(0,1)

Proof. On the one hand, by Proposition [1.41(ii), we have (—A)% (W (R")) C H'(R")
and the inclusion (4.2)) immediately follows. On the other hand, HS*!(R") C H'(R™)N
SelR™) ¢ HY(R™) N BV*(R"), so that the inclusion (4.3) follows from Theorem [1.30.

U

We note that the well posedness and the equivalence of the definitions of H.S*!(R")
given above and the stated results hold for any o > 0 thanks to the composition prop-
erties of the operators involved. We leave the standard verifications to the interested
reader.

2. Interpolation inequalities

2.1. The case p = 1 via the Calder6n—Zygmund Theorem. For a € (0,1)
and R > 0, we let T, g: S(R™) — S’'(R™;R") be the linear operator defined by

_ y(1=nr(y) n
(4.5) Torf(x) = /Rn fly+a) e dy, r e R,
for all f € S(R™). Here (nr)r>o C C°(R") is a family of cut-off functions as in (1.30).

In the following result, we prove that T  is a Calderén—Zygmund operator mapping
HY(R") to L'(R™; R™).
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Lemma 4.3 (Calderén-Zygmund estimate for T, z). There is a dimensional constant
7o > 0 such that, for any given o € (0,1) and R > 0, the operator in (4.5) uniquely
extends to a bounded linear operator T, r: H'(R™) — L'(R™;R"™) with

1 To.rfllr @y < TR fll 0 )
for all f € H'(R™).
Proof. We apply [48, Theorem 2.4.1] to the kernel

z (1 —nr(z)) n
Ka,R<$>:W, SL’ER,Q?#O.

First of all, we have
1—ng(x) 2¢ 1
|x|n+a — R ‘x|n’

| Kar(z)| < r€R" z#0,

so that we can choose A; = 2nw, R~* in the size estimate (2.4.1) in [48]. We also have

||
()] 1= k) 20 1 ,
[VEar(@)] < C<R 2|+ + |z[retl < dep R |z|ntt reRY 2 #£0,

where ¢, > 0 is a dimensional constant, so that we can choose Ay = ¢/,R™* in the
smoothness condition (2.4.2) in [48], where ¢, > ¢, is another dimensional constant.
Finally, since clearly

/ K, g(z)dz =0
m<|z|<M

for all m < M, we can choose A3 = 0 in the cancellation condition (2.4.3) in [48].
Since Ay + Ay + A3 = ¢/ R~ for some dimensional constant ¢, > ¢/, the conclusion
follows. U

With Lemma at our disposal, we can prove the following result.

Theorem 4.4 (H' — BV interpolation inequality). Let o € (0,1]. There exists a
constant ¢, o > 0 such that

(4.6) ave@n < cnallFIi@h" [f13vagn

for all 3 € [0,) and all f € H'(R™) N BV*(R"™).

Proof. Let a € (0,1] be fixed. Thanks to Theorem [1.40} the case § = 0 is trivial, so
we assume [ € (0, ). We divide the proof in three steps.

Step 1. Let f € HY(R") N BV*(R") and assume f € Lip,(R"). By Lemma [3.8 we
can write

(4.7)
(fly+2z) = fz)
VS = | [, dy‘
= s An”R(y)y'<f(?nyg+: f(z)) dy+/Rn<1—nR<y>>y'(ﬂ?yﬁfﬁﬁ f(x)) &y
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for all z € R™ and all R > 0. On the one hand, for a < 1, by Proposition we can
estimate

(4.8)

L.

[ oty LD =S

|y|n+,3+1

1
dr< [ o [ W ta) = f@)drdy

o rl(R™ dy
< G DR [ o
R
R0

:’Yn,aoé_ﬁ

| D* f(R™)

for all R > 0, where 7, , > 0 is a constant depending only on n and « (note that the
validity of Proposition for all f € BV*(R™) follows by a simple approximation
argument, thanks to Theorem [1.16). If o = 1 instead, we simply have

. _ 1-8
/n /n nR(y) Yy (f(?‘Jy—’i;f6>+l f(x» dy | dr < - |Daf’(Rn),
for all R > 0. On the other hand, by Lemma we have
Lo | L= et D 2T gy o
(4.9) y- fly+z)

. /n(l - 77R<y)) |y|n+5+1 dy ’ dx

< 7RI fll 1 ey

for all R > 0, where 7,, > 0 is the constant of Lemma [4.3] Combining the above
estimates, we get

R

‘Dﬁﬂ(Rn) < Hn,p <7n,a ﬂ

[flave@) + TaR™" HfHHl(Rﬂ))
Ro—8
a-p
for all R > 0, where we have set v,; = 1 by convention. Assuming [f]gyvemr) # 0

without loss of generality and choosing R = || f Hllq/f‘(Rn) [f] g (&nys We get

< fin,p MAX{ Ty, %,a}< [f]Bva(Rn) + R’ ||f||H1(R")>

n 2/'L7l, maX{Tn7 771;706} a— « «
(4.10) D FI(RY) < IR IR | Rl (e e
for all f € HY(R")NBV*(R") such that f € Lip,(R™). Using a standard approximation
argument via convolution, thanks to Proposition [1.11], inequality (4.10) follows for all
f € HY(R") N BV*(R").
Step 2. If a < 1, then, by Proposition we know that
[ 14p—o <Ra—6 RB

0t B—ala—p [flavemn) + BHf”Ll(R”))

(4.11) IDPFI(R™) < cn
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for all f € BV*(R") and all R > 0, where ¢, , > 0 is a constant depending only on n
and « such that

cp1 = lim ¢, < +o00.

a—1~—
If a = 1, then, by Proposition , inequality (4.11) holds with o = 1 for all
f € BV(R™). Assuming || f|z1@n) # 0, choosing R = [ ]113/36! Rn) ||f||L11/Hgn and using
the inequality || f||L1(n) < [|f|| g1 (), We can estimate
B n Cn,o Hn1+p—a (a ,8)/& B/a
(4.12) [DPfI(R") < Bla—B) ntp- o I gy [fBve e

for all f € H'(R™) N BV*(R").
Step 3. Combining (4.10) and (4.12)), we get

D FIR™) < e, B) [y (1R ey
for all f € H'(R™) N BV*(R"), where

2 n ny n,o n,x n —Q
@(a,ﬁ):min{ s X T, Yoo} Cn, Bn1+p }, 0<pB<a<l.

a-B  Bla-Bn+h-a
We observe that

c _ c
lim ¢(a, ) = —= lim Hritp-a _ Cno
B—a~

an f—a- a—pf anNWy,
by Lemma and that

2/fm 0 maX{Tna Tn a}
li = : — .
,BL%L SD( 5) a

The conclusion thus follows again by Lemma [3.21] O

Remark 4.5 (H' — W! interpolation inequality). Thanks to Theorem [1.27, from
Theorem [4.4) one can replace the BV ®-seminorm in the right-hand side of with
the W*!-seminorm up to multiply the constant ¢, o by 1. However, one can prove
a slightly finer estimate essentially following the proof of Theorem Indeed, for
any given f € H'(R") N W (R") sufficiently regular, one writes V7 f as in (4.7)
and estimate the second part of it as in (4.9). To estimate the first term, instead of
following (4.8), one simply notes that
$</ / fly+az)— f(2)] dy da
" JBr |y|"+5

/n /nnR<y)y~(f(y+w)—f d
Raﬁ// |fly+x) - f(x)ldydx

’y|n+5+1
ly[te
S Ra B [f]Wa,l(Rn)

for all R > 0. Hence
|D? F|(R") < pin (R [flwenr @y + 7R | fll ey

for all R > 0, and the desired inequality follows by optimising the right-hand side.
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2.2. The cases p > 1 and H! via the Mihlin—-Hérmander Multiplier The-
orem. Let 0 < 8 < «a <1 and consider the function

maﬁ(g) = |€‘6 ) 6 € Rn'
1+ [¢]«
It is not difficult to see that
1M sl = sup sup ‘fa O map(§) ‘ < +o0.

aeNg, |a<|2|+1 §ER™M\{0}

We thus define the convolution operator T, ,: S(R") — S'(R") with convolution
kernel given by F~!(m,g), i.e.,

(4.13) Tl = F(f + F H(mag),  f€SR).

In the following result, we observe that the convolution operator T, , satisfies the
Mihlin-Hérmander properties uniformly with respect to the parameters 0 < § < a < 1.

Lemma 4.6 (Mihlin-Hormander estimates for 15, ,). There is a dimensional constant
o, > 0 such that the following properties hold for all given 0 < f < a < 1.

(i) For all given p € (1,+00), the operator in (4.13) uniquely extends to a bounded
linear operator T, ,: LP(R™) — LP(R™) with

1
[T s f Nl oy < 0 max{@ p—l} 1l ze reny

for all f € LP(R™).
(ii) The operator in (4.13) uniquely extends to a bounded linear operator T s
HY(R™) — HY(R") with
[T o Sl @y < o (| f [0 e
for all f € H'(R™).
Proof. Statements (i) and follow from the Mihlin-Hormander Multiplier Theorem,

see [47, Theorem 6.2.7] for the LP-continuity and [46, Chapter III, Theorem 7.30] for
the H'-continuity, where

op = sup ||magsls < +oo.
0<p<a<l
We leave the simple verifications to the interested reader. 0

With Lemma at our disposal, we can prove the following result.

Theorem 4.7 (Bessel and fractional Hardy—Sobolev interpolation inequalities). The
following statements hold.

(1) Given p € (1,400), there exists a constant ¢, > 0 such that
a=f B=y
(4.14) IV il o@nsny < np IV F I Zogins ey 1V F Il o n )
forall0 <~y <p<a<1andalfeS*(R"). In the case v = 0, we also have

a—/f B8
(4.15) IV Fll oz < cngp L1l i@y IV F I s oy

forall0 < B <a<1andall feS*(R").
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(ii) There exists a dimensional constant ¢, > 0 such that

a8
(4.16) HV'@fHHI(R" rr) < Cn HVVJCHHl R"™; R™) HvafHHl(]R" Rn)
forall0 <y < B <a<1andalfe HSYR"). In the case v = 0, we also
have
8 a8 -
(4.17) v fHHl(R”;R”) < Cn Hf”H%(Rn) IV fHIE—le(Rn;Rn)

forall0 < B<a<1andadll fe HS*(R").

Proof. Without loss of generality, we can directly assume that 0 <y < g <a < 1. We
prove the two statements separately.

Proof of (i). Given f € S*P(R"), we can write
(—A)5f = F Mmas) # (L4 (=8)3)f) = T, o (T + (-2)3)f),

so that
(=) fll o) = || Tona o (1 + (—2)%) )mw)
<o, max{ 1} If+( fHLP Rn)
1 a
(4.18) < 0 maxq p (11l oy + 1(=2)% flloqer))

thanks to Lemma . Now let f € C® (R” Since
(-A)2V'f = R(—A)7 f € [’(R™R")

because f € L*T7P(R"™) and by the LP-continuity property of the Riesz transform,
we get that V7 f € S“P(R";R") according to the definition given in and the
identification established in Corollary . By applying to the components of
the function V7 f € S*P(R"; R") with exponents o — 7 and 5 — 7 in place of o and /3
respectively, we get

B;’Y
IV ety = (-8) 9 e
1
vy «
< gy~ L (197 e+ 19° o)

for all f € C°(R™). By performing a dilation and by optimising the right-hand side,
we find that

a8
IV7 fllzeeesmen) < cnp HV”fHLp(Rn Rn) ||V“f||Lp Rn; R

for all f € C°(R™), where ¢,, > 0 is a constant depending only on n and p. Thanks

to Theorem [1.51] Proposition and Proposition [3.20, inequality (4.14) follows by

performing a standard approximation argument.

In the case v = 0, inequality (4.15)) follows from (4.14) by the LP-continuity of the
Riesz transform. This concludes the proof of (i).
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Proof of . Given f € HS*!(R"™), arguing as above, we can write

(=A)2f = F  (map) * (I + (D)5 f) = T, , (T + (-2)3) f),

so that

B o
(4.19) I(=2) fllan@ey < on (Il @ + 1(=2)% fllm @)
thanks to Lemma [4.6(ii). Now let f € C=°(R"). Note that V7 f € H'(R"; R"), because
V7f e LY(R™R") and

div’V7f = div?R(=A)2 f = (~A)2 f € H'(R")

by Proposition [1.41](ii). Moreover,

(~A)3V7f = R(~0)"T f € H'(R"R")
because f € HS*™1(R") and by the H'-continuity property of the Riesz transform.
Thus V7f € HS*'(R";R"). By applying (4.19) to the components of the function
V7 f € HS®(R";R") with exponents o —~ and 3 —+ in place of « and 3 respectively,
by arguing as above we get

B B—y
[(=A)2 fll@ny = [(=2) = V7 f [ 1. gns e
< en (IIV Fllin @iy + IV f 1 sy
for all f € C°(R™). By performing a dilation and by optimising the right-hand side,
we find that
a=p
IV fll 1 sy < O ||V7f||H1(Rn Rn) ||Vaf||H1(IR" R")

for all f € C>°(R™), where ¢, > 0 is a dimensional constant. Thanks to Lemma [4.1]
inequality (4.16) follows by performing a standard approximation argument.

In the case v = 0, inequality (4.17) follows from (4.14)) by the H'-continuity of the
Riesz transform. This concludes the proof of . U

3. Asymptotic behaviour of fractional a-variation as a — 07

In this section, we study the asymptotic behaviour of V* as o« — 0%.

3.1. Pointwise convergence of V* as a — 0. We start with the pointwise
convergence of V to V° as a — 0% for sufficiently regular functions.
Lemma 4.8 (Pointwise convergence of V* as & — 07). Let o € (0,1] and p € (1,400).
For B € [0, ), the operator

VI CRd(R™) N LP(R™) — LS, (R™R™)

loc

defined as

(4.20) V(@) = puns lim |

ly|>e

y- fly+x)

|y |ntHB+1 dy, z €RY,

for all f € C2.(R™) N LP(R™), is well defined and satisfies

ro=ph
(4.21) IV? £l Lo (Brgmy < Cn,pﬂn,ﬁ<a ~ 5

ot 752 1 fllmt )
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for all r, R > 0, where ¢, , > 0 is a constant depending only on n and p. In addition,

it holds
. B _ o
(1.22) Jim Vf(@) = V5 (a)
for all x € R™.
Proof. Given f € C2.(R") N LP(R™) and = € R™, we can estimate
/ y- fly+x) dy| S/ [fly + ) — f(=)] dy+/ |y + )]
ly|>e e<|y|<r ly|>r

[y[n At |y th |y|™th
1
dy dy \°
< (B Y . 7
< Vlevea @ /|y|<r [ 1o )</|y|zr |y|(”+/”q>
1
nw, 8 new,,r"— A\
—_ a(Bo(en + | —m———— 0
o— 7 [flooa (B, (x) ((n+6)q—n> [ f1l o )

for all r > &> 0 and 3 € [0,), where ¢ = -25. Thus the limit in (4.20) is well posed
and (4.21) follows. In addition, since i, 3 — fno as § — 07 and

1 d
90+ ol (o =1) e
lyl<1

ly|? |y|n—
L\ |f(y+ )
s, (1 L),
O Syt ly|? ly|"

for all 3 € (0,a) and = € R", the limit in (4.22) follows by the Monotone Convergence
Theorem and Lebesgue’s Dominated Convergence Theorem. O

IVf(2) = VO f(a)] <

1 _ /"Ln,ﬁ
n,0

As an immediate consequence of Lemma we can show that the fractional a-
variation is lower semicontinuous as o — 0F.

Corollary 4.9 (Lower semicontinuity of BV *-seminorm as o — 07). If f € L'(R"),
then

(4.23) |ID°f|(R™) < lim inf | D* f|(R").

Proof. Given ¢ € C°(R";R") with |[¢]| g @n;zn) < 1, thanks to Lemma 4.8 and Corol-
lary [1.3], we have
/ fdiv’odr = lim [ fdivieds < liminf [D®f|(RY),
R® a—0t JRn a—07t

by Lebesgue’s Dominated Convergence Theorem, so that (4.23) follows by (1.65). O

3.2. Strong and energy convergence of V* as a — 07. We now study the
strong and the energy convergence of V* as o — 0.

For the strong convergence, we have the following result. See Section for the
proof.

Theorem 4.10 (Strong convergence of V¢ as « — 07). The following hold.
(1) If f € Uae(on) HS*H(R™), then
(4.24) lim [|[V*f — Rf|| g @n;rny = 0.
a—0t
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(”) [fp S (17 +OO) and f € UaE(O,l) Sa,p(Rn)) then
(4.25) Jim [V f = Rf|[zogn; gny = 0.

For the convergence of the (rescaled) energy, we instead have the following result.
See Section [3.4] for the proof.

Theorem 4.11 (Energy convergence of V* as a — 0%). If f € Upe0) W' (R"), then
lim a/ |V fldx = nwnpin o
Rn

a—0t /]R" f dr

3.3. Proof of Theorem[4.10, Before the proof of Theorem[4.10, we need to recall
the following well-known result, see the first part of the proof of [42, Lemma 1.60]. For
the reader’s convenience and to keep the paper the most self-contained as possible, we
briefly recall its simple proof.

Lemma 4.12. Let m € Ny. If f € §,,(R"), then f = divg for some g € S,,,—1(R"; R")
(with g € S(R™;R™) in the case m =0).

Proof. Applying Fourier transform everywhere, the problem can be equivalently re-
stated as follows: if ¢ € S(R™) satisfies 9?¢(0) = 0 for all a € Nj such that |a|] < m,
then ¢ = 37 &1;(€) for some ¢y, ..., ¢, € S(R") with 0°¢;(0) =0 foralli=1,...,n
and all a € Nj such that |a| < m — 1. This can be achieved as follows. Fixed any
¢ € C*(R™) such that

supp( C By and (=1 on By,

we can define

¥i(§) = C(§) ; Dpp(t8) dt + P & p(§), §eR",
forall2=1,...,n. It is now easy to prove that such v;’s satisfy the required properties
and we leave the simple calculations to the reader. 0]

Thanks to Lemma [4.12] we can prove the following LP-convergence result of the
fractional a-Laplacian and the fractional a-gradient as ax — 07 for functions in Sp(R™).

Lemma 4.13. Let p € [1,400]. If f € So(R"), then

(4.26) Tim, (=A%  fllisny = 0.
As a consequence, if p € (1,4+00) and f € So(R™), then
(427) all%lJr ||V f - RfHLp(Rn;Rn) = 0.

Proof. Let f € Sy(R™) be fixed. If p € (1,400), then

IVf = Rf | to@nrny = |R(=A)2 f — Rf||onirn) < cnpll(=A)2 f — fllLo@n)

by the LP-continuity of the Riesz transform, so that (4.27) follows from (4.26). To
prove (4.26), given z € R" write

N Ty = L PN U (23 OES L

|h|rte {Ihl<1} |h|nte
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where as usual

for o € (0,1). One easily sees that
n,x 1
(4.28) lim "o = —

a—0t nwy,

On the one hand, as in (1.71), we can estimate

fG+h) = f() NWnVn, o
n,x dh S 5 V e
H Ry oy S T IV e
so that
R — f(
e Iy TSR VTSR P

by (4.28) for all p € [1,400]. On the other hand, by Lemma there exists g €
S(R™;R™) such that f = divg and thus we can write

flx+h)—flx) ,, f(z+h) NWnVn.a
e /{ms} = Ve /{|h|§1} dh == 1)

‘h|n+a ’h’n+a
divg(x + h) NWnVn.o
—u dh — ’ .
/{lmsu ||t o« 1@

Integrating by parts, the reader can easily verify that

divg(-
,/n’a/ M dh
{|n|<1}

=0
‘h|n+a

Lp(R™)

lim
a—0T

for all p € [1,400]. Hence we get

. . _ NWpVna\
lim [[(=A)%f = fllzeen) = [ fllr@n) lim, (1 + a) =0

for all p € [1,4+00]. The proof is complete. O
We can now prove Theorem [4.10

Proof of Theorem |4.10. We prove the two statements separately.

Proof of (i). Let f € HS*!(R"). By Lemma [4.1, there exists (fi)ren C So(R")
such that fy — f in HS*!(R™) as k — +oo. If 8 € (0, ), then we can estimate

IV?f — Rfllm@n ey < |V fe = Rfullm o zny + V2 = VP fill i sy
+ |Rf — Rfll ey mny

a=g B
< IV fi = Rfull i @eizny + eall f = fell i @ny IV F = Vo felli gn
+ A f = fellmm

for all k € N by (4.17) in Theorem and the H!'-continuity of the Riesz transform,
where ¢, ¢, > 0 are dimensional constants. Thus

limsup ||[V7 f — Rl mnymny < limsgp V7 fr — Rfellm@nrny + N f — fellmr@n
B—0

B—0Tt
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= |l f = fellargny
for all k € N by (4.27) in Lemma [4.13] where ¢ = ¢, + ¢,. Hence (4.24)) follows by
passing to the limit as k — 400 and the proof of (i) is complete.

Proof of (ii). We argue similarly as in the proof of (i). Let f € S*P(R"). By
Proposition [1.53 there exists (fx)ren C So(R™) such that f — f in S*P(R™) as
k — +oo. If § € (0, ), then we can estimate

VP f — Rf| rmn;rny < IV? f — R o mn;mny + VP f — VBkaLP(R";Rn)
+[|Rf — Rfellze@n;rn

a=fB B
< Hvﬁfk - Rfk“LP(R";R”) + Cn,p”f - fk||HDf(Rn) Hvaf - Vaka(Llp(Rn;Rn)
+ ol f = fill o @n

for all k£ € N by (4.15) in Theorem and the LP-continuity of the Riesz transform,
where the constants ¢, p, c;,, > 0 depend only on n and p. Thus

hm sup ||V/Bf — RfHLP(R";R”) S hm sup ||vﬂfk — RkaLP(R”;R") + 027p||f - kaLP(Rn)
B—0t B—0t
= I = fulle@n)

for all k € N by (4.26) in Lemma where ¢, , = ¢, + ¢}, ,. Hence (4.25) follows

by passing to the limit as & — +o0o and the proof of is complete. U

3.4. Proof of Theorem We now pass to the proof of Theorem [4.11 We

need some preliminaries. We begin with the following result.
Lemma 4.14. Let f € LX(R") and let R > 0 be such that supp f C Br. If ¢ > R,

then
y- fly+a)
/|y|>€ ay /IR” fd

[y[ra+t A = nnfino

lim o
a—0t Hn.a n

Proof. Since fin o — fino as @ — 07, we just need to prove that

/y|>z-: . f(y ; x> dy /R" Jdu

[ dr = nwy,

(4.29) lim a / ) .

a—0t

We now divide the proof in two steps.
Step 1. We claim that

(4.30) lim oz/n

a—0t

/Rnfdx’.

dr = nw,

r- f(y+ )
—Z 7 d
/|y|>8 v

|x|n+o¢+1

Indeed, since supp f C Bg, we have that

/ wdy:o for all = € R" such that |z +y| > R.
> |a[rtett

Since |y| > €, we have that

(4.31) 7| <e—R = |z +y| >R
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and thus we can write

- fly+) | / 1 /
Q ——= " dy|dr = « +x)d
/ " /y|>€ jafprost Y e T2 | Jypse y+a)dy

1
=
/|a:|>€—R |$’n+0‘

dz

dz.

fly+x)dy

ly|>e

Now, on the one hand, we have

(432) o v ) dy|de < amon| e [ o
. a x r < anwy, 1(Rr
e—R<|z|<e+R ‘x’nJra ly|>e Y Y - LH &) e—r rotl
for all & € (0,1). On the other hand, since
|z| > e+ R = Bpr C B.(2)",
we have
1 1
a/ / fly+z)dy da::a/ / fdz|dx
|z[>e+R ’l’|n+a ly|>e |z[>e+R ’l’|n+a n
(4.33)
= [ g
(e + R)* |Jrn

for all a € (0,1). Hence claim (4.30) follows by first combining (4.32) and (4.33)) and

then passing to the limit as a — 0.
Step 2. We claim that

T

)
(434> "y|n+a+1 + ’w‘n+a+1

iz + | . n+a+1
< (n+3) ly[rte+ti\e — R

for all z,y € R™ such that x| > e — R, |y| > € and |y + 2| < R. Indeed, setting
F(z) = et forall z € R” \ {0}, we can estimate

y @
|y|n+a+1 ‘x|n+a+1

= [F(y) = F(=2)| < |y + 2| sup IDF|((1 =)y — tx)
te

|
<(n+a+2)y+x sup .
( v+l sup Ty taprren

Since
1 < 1
(L= t)y — tx[rrett = [ly| — tly + af[+ott
< 1
~ (ly| = Ryttt

1 ‘ n+a+1
- ( y| )
= y[rrett \Jy| - R

1 n+a+1
< £
— ‘y’n—i-a—l-l (8 _ R)
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for all ¢ € [0,1], claim (4.34) immediately follows. Now, recalling (4.31), we can

estimate
z- fly+z)
dx—a/ / dy‘dx’
’ /" lyl>e n|Jlyl>e  |p|rrett

Yy X
< a/ / +x +
— n Jly|>e |f(y )| ‘ ‘y’nJraJrl ‘x’nJraJrl

Y T
/|x>€R/ ly|>e ‘f(y )’ ‘ ’ |n+a+1 ’x|n+a+1

a(n+3) ”+a+1/ / |y+:E| dy dx
— 2R lz|>e—R y\>e | |n+a+1
for all @ € (0,1) thanks to (4.34). Since
dr

1
Q _ +x + x| dz dy < anw, R n / —_—,
/y|>£ |y|n+a+1 /|CC|>£—R |f(y )l |y | v= ||f||L1(R ) r>e rot2

we conclude that
(4.35) limsup a/ y|dr — a/
a—07t " n

Thus (4.29) follows by combining (4.30)) with (4.35)) and the proof is complete. O

Thanks to Lemma [4.14] we can prove the following result.
Lemma 4.15. Let f € L*(R™) and n > 0. There exists € > 0 such that

ama [ y-fyta) N

|y[rrott
Proof. Let n’ > 0 be such that n = 2nwy i, 0n'. Since f € L'(R™), we can find R > 0
such that [g. |fldz <7'. Let g = fxs, € LY(R") and € > R. Then

y fly+x) ‘ /
T L dy|dr —
/n /|y>5 |y|n+a+1 y n

1
<[ mmdy [ 1f+e) — gy +a)ldo
lw>< [yl R"

. nwy || f — gHLl(Rn) nwr
o a < « -
(073 (079

/fdx —‘/ gdx
R™ R™

by Lemma we conclude that

y-fly+a)

|y|n+a+1 dy

dy dx

dy dx

/ y-fly+a)
ly|>e

|y|n+o¢+1

/ Wdy‘dx‘ o,
ly|>e

|x’n+a+1

lim sup
a—0t

dx — nwnp fin o

y | dx

/ y-9(y+x)
|y|>€ ’y|n+a+1

Since clearly

<Wf =gl <7,

lim sup Oéﬁbn,a/ / Mdy dx — nwy, n.o / fdx‘
a0+ | Jlglse [y[rret R
< lim sup oz,u,w/ / %—i_f)dy dx — nwp o / gdz
a0+ | Jgise  Jy[rret R
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/

+ <nwnun,0 + nw,, lim un,aa_a> n
a—0t
= 2nwn,un,0 7], ="
and the proof is complete. 0]
We are now ready to prove Theorem [4.11]

Proof of Theorem[{.11. Assume f € W5L(R") for some 8 € (0,1) and fix n > 0. By
Lemma there exists € > 0 such that

/ fdz

R

Ohn [ /|>€y'f<@/+fc>dy

|y‘n+a+1
Since for all a € (0, 3) we can estimate

/Rnfdx

/ y~f(y+1x) dy
e |y|mtat

(4.36) lim sup

a—0t

dx — MWy fin,0

oz/]R |V f|de — nwypin o

< aun,a/

+wm/ / fy+2) =@, g,
n <e

|y |t
i |

/ y fly+) dy
ly|>e
by (4.36) we have

fotae]

dx — nwy fin o

<

dr — NWn Un,0 +« Hn,o 5ﬂ_a[f]W5v1(R”)u

o f2]
/Rnfdx

and the conclusion follows passing to the limit as n — 0F. U

|y|n+a+1

lim sup ‘a/ |V f| dx — nwn fino

a—0t

4. An application to potential estimates in Lorentz spaces

4.1. A fractional version of Meyers—Ziemer’s trace inequality. The follow-
ing result is a fractional generalisation of Meyers—Ziemer trace inequality, see [64], in
the spirit of [95, Problem 7.1].

Theorem 4.16 (Fractional Meyers—Ziemer trace inequality). Let o € (0,1). There
exists a dimensional constant ¢, > 0 such that

(437) L ey din < calllcrnson| D FI(RY)
for all f € BVYR"™) and all p € LY (R").
Proof. Assume f € C°(R"™). We have u = |I1_,f| € Lip,(R") with

/Rn \Vu|dz = /Rn IV flde < o flwermny < +00.

Thus, E; = {x € R": u(x) >t} is an open set with finite perimeter for a.e. ¢ > 0.
Since

|E: N By (z)| _ min{|E4|, | B, ()|}
B, (z)| | B, (z)|
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and
F O\ imiTa
Bt = [{z € R": [[1_of] >t} < cna <HfHLtWR)> < 400

|E:NBr ()]
|Br ()]
continuous, equals 1 for small » > 0 (since F; is open) and tends to zero as r — +oo.

Thus, arguing as in [95, Section 6], we can estimate

p(Er) < enl Dxe,|(R")
for a.e. t > 0. Therefore, applying the coarea formula to the function u, we find
/ udu:/u(Et)dt < cn/ |Dx s, | (R™) dt:cn/ V| dz = c,| D f|(R),
proving (4.37) for all f € C>(R™).
Now let f € BV*(R"). By Lemma , [i_of € bu(R™) with DI,_f = D*f

in A (R™;R"). Let (0:)es0 € C°(R™) be a family of standard mollifies as in (1.25).
By Remark we have o. x I;_,f € Lip,(R") with

LIV e o)l do < [D*F|(R")

for all ¢ > 0. Since p < "' and (g. * [} _of)(x) = (L1_of)*(z) for " 1 ae.
x € R" as ¢ — 07, the conclusion follows by Fatou’s Lemma. 0

by Hardy-Littlewood—Sobolev inequality, for all x € E; the function r — is

As a simple consequence of Theorem and the asymptotic analysis of the frac-
tional operators, we get the following result.

Corollary 4.17 (Meyer—Ziemer trace inequalities). There ezists a dimensional con-
stant ¢, > 0 with the following properties. Let u € LY 1(R™).

(i) If f € BV(R"), then

(4.38) L 1Fdn < el s | DFIRY).
(ii) If f € HY(R™), then
(4.39) LA < callllrins o | RS sy

Proof. We prove the two statements separately.

Proof of (i). Assume f € C>°(R™). By Proposition 3.23, we know that I;_, f(z) —
f(x) for all z € R"® as a — 1—. Hence, by Fatou’s Lemma, Theorem and

Theorem we get
/ | fldp < liminf/ 1o f|dp
R” a—1— Rn
< el ero sy Tim D 1|(R)
= Callpllern-r @y [DFIR™),
proving (4.38)) for all f € C>(R™).
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Now let f € BV(R"). There exists (fx)ren C C°(R™) such that f, — f* #"1-
a.e. in R" and |Dfi|(R") — |Df|(R") as k — +o00. Since u < £, again by Fatou’s
Lemma we get

/ ]f*]dugliminf/ | fie| dp

Rn k‘ﬁ—‘,—oo Rn
< n— n ] n
< callpll grn-1® )kETm|ka|(R )
= el ptll crn-1 @y | DFI(R™)

and the conclusion follows.

Proof of (ii). Assume f € Lip,(R") N WH(R") N H'(R™). By the Dominated
Convergence Theorem, we easily get that I, f(x) — I f(z) for all z € R" as a« — 0.
Hence, by Fatou’s Lemma, Theorem and Theorem [4.10] we get

[ A0 fdye < timint [ (1 fld

R” a—0t R”
< eollill prnar g lim | D F|(R™
< callppll e 1<R)agg+| fI(R™)
= Cullpll 1n1 @) | RS || L1 ey,

proving (4.39)) for all f € Lip,(R™) N WHHR™) N HY(R™).

Now let f € H'(R") and define f. = f * g. for all ¢ > 0. Then f. € Lip,(R™) N
WH(RY) N HY(R™) and f. — f in H'(R") as ¢ — 07. Since I f € bv(R™) by Propo-
sition and I, f. = (I1f) % 0. for all ¢ > 0, we know that I f.(z) = (I.f)*(x)
as € — 0T for " '-a.e. v € R". Since u < #"! again by Fatou’s Lemma we get

LAy dp < timin [ (1 £ d

R e—=0t JRn
< n 1,n—1 n 1 R £ 1 n
< callpllgrm-r(ny U | R S| 21 grny

= callpllermr@m 1R[]y

and the conclusion follows. O

We incidentally note that Corollary can be proved exactly in the same
way of Theorem [4.16] see [95, Section 6]. However, we decided to present
and (4.39) as consequences of (4.37) motivated by [95, Problem 7.1]. Also, note that
Corollary positively answers [95, Problem 7.1] for the extremal case a = 1.

4.2. Potential estimates. In the following result we prove the equivalence be-
tween three inequalities involving Riesz’s potential, see [93,94].
Theorem 4.18 (Potential estimates). Let n > 2 and o € (0,1). There exists a con-
stant ¢no > 0 such that the following inequalities are equivalent (and hold with the
same constant).

(i) For all f € HY(R") it holds
(4.40) [py

Lita L (Rre) < ral Bf |2 @n)

(ii) For all f € BV*(R") it holds

(4.41) < o DY fI(R™)

||f||Lﬁﬂ1(Rn)
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(iii) Given 3 € (0,a), for all f € BVP(R"™) it holds

" B IR
(1.42) s e gy < €l D7 IR

Proof. Inequalities (4.40) and (4.41) were proved in [93] (see also [94]) and their equiva-
lence was briefly explained in [93, Introduction|. For the reader’s convenience, we prove

all the implications.

Proof of () = (ii). Let f € C*(R"). By Proposition [1.41{(ii), we know that
u=(—A)2f € H(R") with Ru = Vf in L'(R"). Hence, by (4.40), we get that

HfHL#J(Rn) - ”]CYUHL#J(Rn) S Cn,aHRuHLl(R") - Cn,a|Daf|(Rn)7

proving (4.42)) for all f € C>(R™).
Now let f € BV*(R"). By Theorem [1.16, we can find (fi)ren C C°(R") such
that fr — f a.e. in R™ and |D® f|(R") — |D*f|(R") as k — 4o00. Thus, by Fatou’s

Lemma, we can estimate

< hmmf [ fell s

< : (0% n — 0% n
[ —— oy < Cna 1| DP [ (R) = €| D fI(RY)

and the conclusion follows.
Proof of —> (). Let f € C*(R") N H'(R™). By Lemma 4.12] there exists
g € C*(R";R") such that f = divg, so that u = I,f = div®g € L'(R"). Hence, by

Proposition [1.41]fi), we get that v € BV*(R") with D*u = Rf. Thus, by (4.41), we
get

Hafll 2z gy = 0l 2 oy < CnallBullprgny = cnol D FIRT),

proving for all f € C°(R™) N HY(R™).

Now let f € H'(R"™). By |97, Chapter III, Section 5.2(b)], we can find (fi)ren C
COO(]RH) N Hl(Rn) such that fk: — f in Ll(Rn) and ||Rfk||L1(]R") — ||Rf||Ll(]Rn) as
k — +oo. Since I, fr, — I, f in L{ (R"), possibly passing to a subsequence, by Fatou’s
Lemma we can estimate

o fll 21 ey < Limdnf [ 1 e

loc

LA gy S Cna M IR fillpr @) = cnall RSl L1 wn)

and the conclusion follows

Proof of (i) = (iii). Fix 8 € (0,) and f € C*(R™). By Proposition [1.41{(ii), we
know that u = (—A)2 f € HY(R") with Ru = VA f in L'(R"). Hence, by (4.40), we
get that

||‘[Oé BfHLn o’ (Rn ||] UHLn o’ Rn) < C?’L,a”RuHLl(R") - CTL,OC|Dﬁf|(Rn)7

proving (4.42)) for all f € C>(R™).

Now let f € BV#(R™). By Theorem[1.16} we can find (fx)ren C C2°(R™) such that
fe — fin L*(R") and a.e. in R” and |D’f,|(R*) — |DPf|(R") as k — +o0. Since
Insfr — In_pf in L .(R™), possibly up to pass to a subsequence, by Fatou’s Lemma
we can estimate

n 1 1 n 1 ﬁ n pr— B n
el gy < 0 [T fil ) < i [ D7 Fil(R™) = €, D fI(RY)

and the conclusion follows.
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Proof of = (). Let f € C*(R") N H'(R"), so that f € BV?(R") for all
B € (0,a). Since I,_gf — I,f in L{.(R") as 8 — 0T, there exists (B¢)ren C (0, )
with 8, — 07 as k — +oo such that I,_s5 f — I,f a.e. in R". Thus, by Fatou’s

Lemma, inequality (4.42) and Theorem we get

Mo fll 2y < U inf [ Lo, fIl ) 2

S Cna kggloo ID% fllageny = cnall R ||t nsmn)s

proving for all f € C>(R™")N H'(R"). The conclusion thus follows as in the last
part of the proof of the implication — .

Proof of — (ii). Let f € C=°(R™), so that f € BVA(R") for all 5 € (0,a).
Since In_gf(z) — f(z) for all z € R™ as B — a~ by Proposition [3.23] by Fatou’s
Lemma, inequality and Theorem we get

T < limi T < i B n) — a n
111 gy < B0 o s gy < nn Jim D7 FI(RY) = el D FI(RY)

proving (4.40) for all f € C°(R™). The conclusion thus follows as in the last part of
the proof of the implication (i) = (ii). O
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